RECEIVED

1:22 pm, Jul 13, 2007

Alameda County Environmental Health

Perjury Statement

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

Ted Dang, President

1/12/06 Date

July 7, 2007 Project: CA1264-6

Global ID: SL0609503209

Mr. Jerry Wickham Alameda County Environmental Health Department 1131 Harbor Bay Parkway Alameda, California 94502-6577

Quarterly Groundwater Monitoring Report Second Quarter 2007

Former Gas Station 2547 East 27th Street Oakland, California

Dear Mr. Wickham:

Ceres Associates is pleased to present this Second Quarter 2007, Quarterly Groundwater Monitoring Report, on behalf of Tomorrow Development for the former gas station at 2547 East 27th Street, Oakland, California (Property; refer to Figure 1 - Property Location Map).

Background

The Property is currently undeveloped with a chain-link fence along the perimeter. Some concrete pieces, remnants of the former foundation, were observed on the Property. The Property is located amongst single and multiple family residences.

The Property was formerly developed with a fuel and service station between 1927 and 1994. In 1994, one 100-gallon waste oil underground storage tank (UST) and four 500-gallon gasoline USTs were removed from the Property. After the tanks were removed, the excavation pits were lined with visqueen plastic and backfilled with the excavated material.

Assessment of the Property began in 2002 by Kleinfelder, followed by additional sampling events both on and off-site by Ceres Associates in 2005 and 2006. Contaminated backfill material was identified as a potential source of subsurface contamination. A total of approximately 200 cubic yards of contaminated soil was excavated and removed from the Property in late 2006 and early 2007. Copies of previous assessments can be found by contacting the Alameda County Environmental Health Department (EHD).

The regulatory risk criteria utilized in this report are Environmental Screening Levels (ESLs) established by the San Francisco Bay Regional Water Quality Control Board (RWQCB) for residential sites where groundwater IS a potential or current drinking water source.

Geology and Hydrogeology

The soils on the Property consist of generally sandy gravel fill from the surface to four (4) feet below ground surface (bgs). From four (4) to twelve (12) feet bgs the soil appears to be fat and lean silty clays. Below twelve (12) feet the soil is generally gravel and sand with some clay. Off-site soils are generally consistent with on-site soils.

Groundwater has been encountered on the Property between approximately three and fourteen (14) feet bgs. Once encountered, groundwater appears to rise to within approximately three to five feet of the ground surface. The variable groundwater elevations across the Property suggest the possibility of a perched groundwater lense. Groundwater flow gradients have historically been to the east-southeast.

Scope of Sampling

Ceres Associates conducted quarterly groundwater sampling activities of six monitoring wells on April 30, 2007: MW-1, MW-2, MW-3, MW-4, MW-5, and EX-1 (refer to Figure 2 – Second Quarter 2007 Quarterly Monitoring Results).

Sampling Process

Ceres Associates measured the depth to water from the top of each well casing (refer to Appendix for a copy of the Monitoring Well Data Forms).

As per the approved work plan, Ceres Associates employed a "low flow technique" to monitor the groundwater at the site. Polyethylene tubing was extended from the surface to the approximate midpoint of the screened interval of the well. The tubing was connected to a peristaltic pump, which pumped the groundwater to a flow-through multi-parameter cell devise. The water then flowed into additional tubing into a collection bucket to be transferred to the above mentioned 55-gallon drum for future disposal.

The wells were purged for at least five minutes at a rate of less than 1 liter per minute until the readings on the flow-through devise showed less than a 10% change for three consecutive minutes, for the following parameters: pH, conductivity, dissolved oxygen, and temperature. A sounding probe was used during the collection so that the pumping rate could be adjusted to assure that the well water depth remained stable. However, MW-2 was not able to supply enough water to allow for pumping for more than approximately six minutes. Thus, for this well only, the 10% change for three consecutive minutes parameter was not followed. For MW-2 the 40-milliliter glass vial samples were collected during the

first attempt after a five minute purge, then the one-liter amber bottle sample was collected approximately 90 minutes later, after a three minute purge.

All of the water samples were then collected in laboratory-cleaned 40-milliliter glass vials and one-liter amber bottles with Teflon-lined caps. The samples were then placed into an ice-cooled chest for delivery to a State of California-certified analytical laboratory.

Decontamination was accomplished by discarding all the tubing and then washing the flow-through cell and sounding probe using a non-phosphate detergent followed by two freshwater rinses.

Groundwater generated during the sampling and decontamination processes was placed into an on-site 55-gallon drum, pending laboratory analysis for proper disposal.

Ceres Associates requested that the laboratory analyze the sample for total petroleum hydrocarbons (TPH) as gasoline (TPHg), as diesel (TPHd), and as motor oil (TPHmo) using US EPA method 8015C; for benzene, toluene, ethylbenzene, and xylenes (BTEX) using US EPA Method 8021B; and for volatile organic compounds (VOCs) using US EPA Method 8260B. The sampling schematic changed since the previous quarterly monitoring event in compliance with a request made by the EHD in a letter dated April 26, 2007 (refer to Appendix – Regulatory Correspondence). Where analytes overlapped in methods, the higher result was reported herein.

Results

During April 2007, the groundwater gradient ranged from east to south-southeast, with an overall trend toward the southeast (refer to Figure 3 - Groundwater Contour Map).

The following table details the concentrations reported by the laboratory for samples submitted from this sampling event as well as historic values (no isoconcentration maps were generated for this data because there are insufficient data points for contouring).

Quarterly Groundwater Monitoring Data and Results

Site: 2547 East 27th Street, Oakland, California

Well	Sample Date	Depth to Groundwater	Groundwater Elevation	TPHg	TPHd	TPHmo	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
(TOC)	Sample Date	Groundwater (ft)	(ft amsl)	irng	IPHU	TPHIIIO	benzene	roluerie	Ethylbenzene	Aylelles	WIIDE
-		(it)	(it dilisi)		Cond	centrations repo	rted as microg	rams per Liter	· (µg/L)		
ESL (Table F	-1a): Groundwate	er IS a current or po	otential source of								
drinking water	,	<u>, </u>		100	100	100	1	40	30	20	5
ESL (Table E	-1a): Potential Va	apor Intrusion; High	h Permeability								
Soils, Resider	ntial Use			use soil gas	use soil gas	use soil gas	540	380,000	170,000	160,000	24,000
MW-1	8/24/2006	4.63	104.12	ND	ND	NA	ND	ND	ND	ND	ND
108.75	11/17/2006	4.50	104.25	ND	ND	ND	ND	ND	ND	ND	ND
	1/30/2007	4.14	104.61	ND	78	280	ND	ND	ND	ND	ND
	4/30/2007	4.04	104.71	ND	ND	ND	ND	ND	ND	ND	ND
MW-2	8/24/2006	4.26	105.29	ND	78	NA	ND	ND	0.65	1.5	ND
109.55	11/17/2006	4.16	105.39	ND	ND	ND	ND	ND	0.8	1.8	ND
	1/30/2007	4.29	105.26	ND	ND	ND	ND	ND	1	2	ND
	4/30/2007	4.53	105.02	ND	60	ND	ND	ND	ND	ND	ND
1414.0	0/04/0000	4.40	404.00	NB	NB	N 10	ND	NB	ND	ND	ND
MW-3	8/24/2006	4.40	104.00	ND	ND	NA	ND	ND	ND	ND	ND
108.4	11/17/2006	3.92	104.48	ND	ND	ND	ND	ND	ND	ND	ND
	1/30/2007	4.30	104.10	ND	ND	ND	ND	ND	ND	ND	ND
	4/30/2007	4.22	104.18	ND	ND	ND	ND	ND	ND	ND	ND
MW-4	8/24/2006	4.87	103.02	ND	ND	NA	ND	ND	ND	ND	ND
107.89	11/17/2006	3.75	104.14	ND	ND	ND	ND	ND	ND	ND	ND
	1/30/2007	3.82	104.07	ND	ND	ND	ND	ND	ND	ND	ND
	4/30/2007	4.50	103.39	ND	ND	ND	ND	ND	ND	ND	ND
MW-5	0/04/0006	F 00	402.05	ND	ND	NIA	ND	ND	ND	ND	ND
108.65	8/24/2006 11/17/2006	5.00 3.30	103.65 105.35	ND ND	ND ND	NA ND	ND ND	ND ND	ND ND	ND ND	ND ND
100.00			105.35	ND ND	ND	ND ND				ND ND	ND ND
	1/30/2007	3.22					ND	ND	ND		
	4/30/2007	3.20	105.45	ND	ND	ND	ND	ND	ND	ND	ND
EX-1	8/24/2006	4.84	104.62	460	220	NA	ND	ND	ND	ND	ND
109.46	11/17/2006	4.38	105.08	270	130	ND	ND	ND	ND	1.9	ND
	1/30/2007	4.00	105.46	2,200	800	270	1	ND	3.9	3.2	ND<10
	4/30/2007	4.20	105.26	1,000	740	ND	ND	ND	1.7	2.4	ND

Abbreviations and Notes

μg/L micrograms per Liter TOC elevation of well at the

TOC elevation of well at the top of the casing, in feet above mean sea level

TPHg total petroleum hydrocarbons as gasoline using US EPA method 8015C total petroleum hydrocarbons as diesel using US EPA method 8015C TPHmo total petroleum hydrocarbons as motor oil using US EPA method 8015C methyl tertiary butyl ether using US EPA method 8260B and/or 8021B

benzene, toluene, ethylbenzene, and xylenes were analyzed by US EPA method 8021B and 8260B (only the highest concentration was reported here)

ESL Environmental Screening Limit, published by San Francisco Bay Regional Water Quality Control Board

NA not analyzed

ND not detected below the method reporting limit

ND < X not detected below an increased method reporting limit (see lab sheets for further details)

NE not yet an established value

Discussion

<u>Petroleum Hydrocarbons</u>

TPHg, TPHd, and TPHmo were not detected in samples collected from MW-3, MW-4, or MW-5. This is consistent with historical monitoring events.

Though concentrations of TPHd and TPHmo were detected above the method reporting limits in MW-1 during the First Quarter 2007 monitoring event conducted in January 2007, concentrations of these analytes were not detected above the method detection limit during this Second Quarter 2007 monitoring event. The only TPHd and TPHmo concentrations reported in MW-1 above the method detection limit was the First Quarter 2007 event at 78 micrograms per liter (μ g/L) and 280 μ g/L, respectively.

Concentrations of TPHd in MW-2 have been sporadic, being reported above the method detection limit in half of the quarterly monitoring events: Third Quarter 2006 at 78 μ g/L and Second Quarter 2007 at 60 μ g/L. Both of these reported concentrations are below the Residential ESL for these compounds of 100 μ g/L.

In groundwater monitoring well EX-1 concentrations of TPHg and TPHd have fluctuated over time. Further, concentrations of TPHmo have been reported above the method detection limit during only one quarter monitoring event, First Quarter 2007, which coincides with the only one other TPHmo concentration above the method detection limit (in MW-1 during the same quarter). The concentrations of TPHg and TPHd in groundwater monitoring well EX-1 have exceeded the Residential ESL since August 2006. Given the recent remedial efforts on-site, and given the proximity of this well to the remediation area, it is likely that future groundwater monitoring events will show a decrease in constituents in the groundwater in this area.

Volatile Organic Compounds (VOCs)

At the request of the EHD Ceres Associates requested VOC analysis using US EPA method 8260. VOC analytes were not detected in those samples collected from MW-1, MW-3, MW-4, or MW-5. This is consistent with historical monitoring events. Further, EDB, EDC, MTBE, TAME, ETBE, DIPE, and TBA were not detected above the method detection levels in all wells sampled. Chlorinated hydrocarbons carbon tetrachloride, ethylene dichloride, methylene chloride, tetrachloroethane, and trichloroethylene were also not detected above method detection levels in all wells sampled.

Benzene has only been reported in one well (EX-1) and in only one quarter (First Quarter 2007). However, concentrations of benzene were not reported during the current Second Quarter 2007 event above the method reporting limit of 0.5 μ g/L. During the current sampling, sec-butyl benzene (refer to full laboratory reports in the appendix) was reported at 3.1 μ g/L, isopropylbenzene at 8.5 μ g/L, and n-propyl benzene at 7.6 μ g/L. According to the laboratory these compounds are benzene rings with additional organic constituents, and are all common components of gasoline fuel. The laboratory further noted that these constituents are not usually significant components of diesel or kerosene.

Though during the first three quarterly monitoring events of MW-2 concentrations of ethylbenzene and xylenes were reported above the method detection limits (generally at or below 2 μ g/L), during the current event these analytes were not detected above the method detection limit. During the current quarterly sampling event of this well, the laboratory reported that the sampled contained chloroform at 23 μ g/L, bromoform at 0.51 μ g/L, dichlorobromomethane at 0.55 μ g/L, and bromochloromethane at 1.5 μ g/L. This was the only well that such analytes were reported above the method detection limits. The source of these compounds is likely laboratory cross-contamination.

Conclusions and Recommendations

Concentrations of TPHg and TPHd were detected in groundwater monitoring well EX-1 at concentrations above the residential ESL. Concentrations of these analytes were not reported in the other monitoring wells. These results indicated that the affected groundwater is localized in the area of well EX-1. Minor concentrations of VOCs (primarily ethylbenzene and toluene) have been associated with higher concentrations of TPH compounds detected in well EX-1. These concentrations have continued to decrease, and are below the Residential ESLs.

Concentrations of TPHd and select VOCs detected presently and historically in MW-2 are well below residential ESLs are do not indicate a concern for the Property. This well is located off of the Property and cross-gradient to the source area on the Property. Installation details of well MW-2 from (refer to Revised Soil and Groundwater Sampling Report, dated July 2006) indicate that this monitoring well was installed to a depth of approximately 8 feet below ground surface (bgs) because of what the drill rig operator described as a large block of concrete beneath the well. The well is screened between 3 and 8 feet bgs and is located amongst several utility conduits (which frequently include gravelly layers for utility placement). Given the relatively shallow nature of the well and it's proximity to utility trenches, it is probable that the source of these constituents in MW-2 is from off the Property and such constituents may be migrating along the utility trenches.

Ceres Associates recommends conducting additional quarterly groundwater monitoring at the Property to assess the effectiveness of on-site remediation as well as general natural attenuation processes. The next quarterly groundwater monitoring event is scheduled for July 2007.

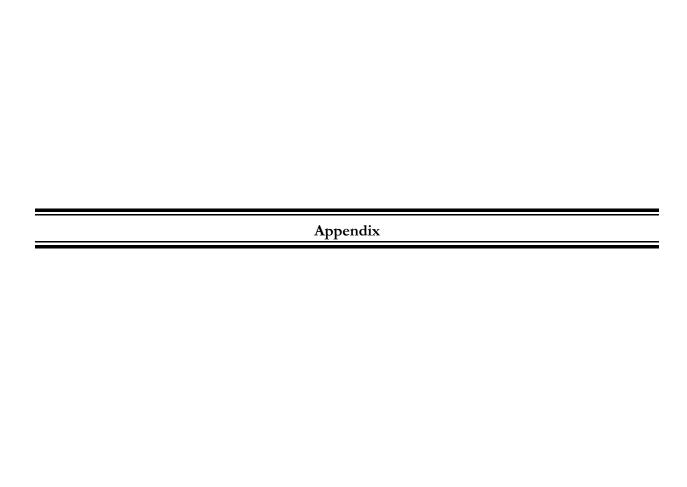
Limitations

This report was prepared according to accepted industry standards and guidelines for similar activities conducted in this geographic region at this time. Any data supplied by others is not the responsibility of Ceres Associates.

If you have questions regarding this project please contact Ryan Meyer at (707) 748-3170 or via email at ryanmeyer@ceresassociates.com.

Prepared by:

Ryan Meyer, REA


Project Geologist, Project Manager

Reviewed by:

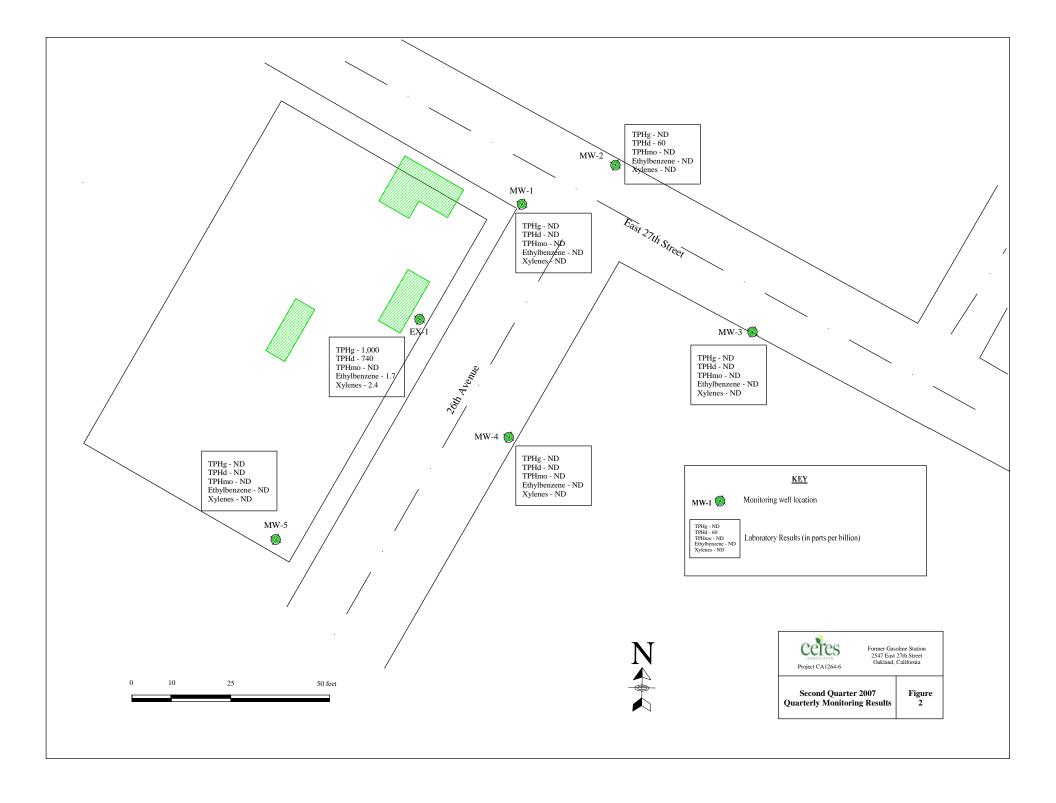
Kimberly Brandt, PG CHG

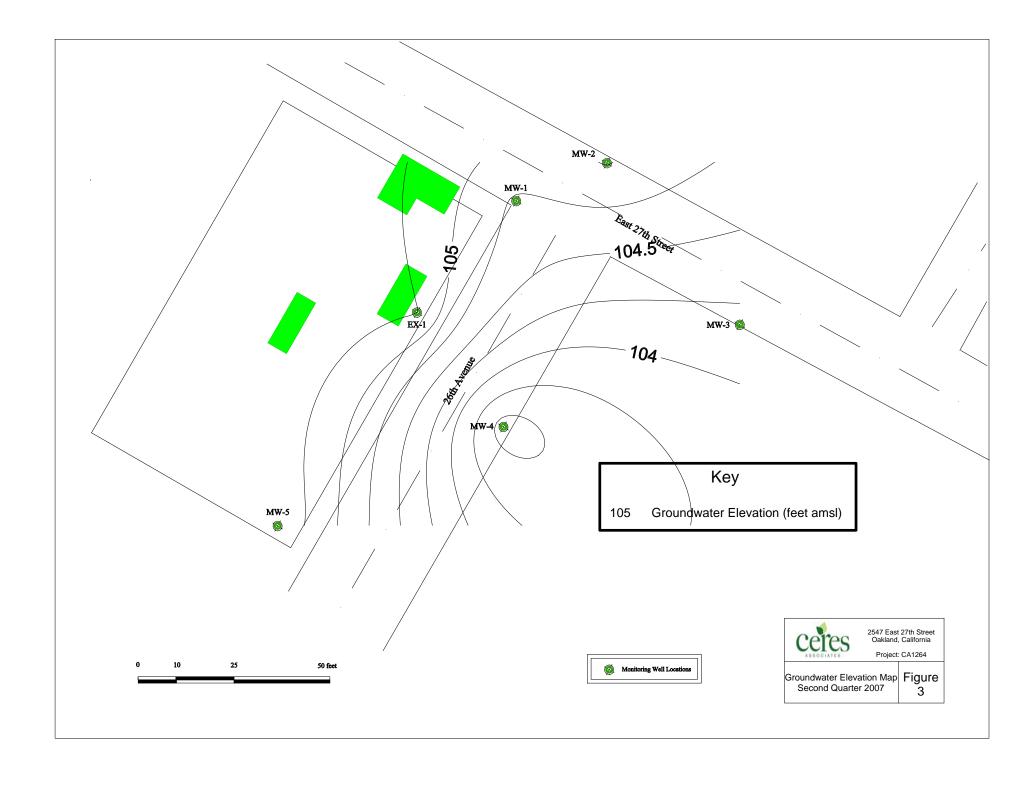
Senior Project Geologist, Senior Project Manager

Figures

Map Taken From:

United States Geological Survey 7.5 Minute Topographic Series Oakland East, California Quadrangle




Project CA1264-6

Former Gasoline Station 2547 East 27th Street Oakland, California

PROPERTY LOCATION MAP

figure 1

Ceres Associates	Client Project ID: CA 1264; Qtrly Tomorrow	Date Sampled: 04/30/07
424 First Street		Date Received: 04/30/07
Benicia, CA 94510	Client Contact: Ryan Meyer	Date Reported: 05/07/07
Bolleta, CIT 7 10 TO	Client P.O.:	Date Completed: 05/07/07

WorkOrder: 0704630

May 07, 2007

Dear Ryan:

Enclosed are:

- 1). the results of 6 analyzed samples from your CA 1264; Qtrly Tomorrow project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager

0704630 CAB

N N	McCAMPBELL ANALYTICAL, INC.									П	CHAIN OF CUSTODY RECORD_																						
			RG, CA 94											T	UR	NA	AR	OU	ND	T	IMI	E)			
	bsite: www.m	ccampbel	l.com En		nain@								- 1	_	7	Г	. 1		DE	. 12	4	DD				24			48 I			HR	
Tel	ephone: (877) 252-92	62		Fax	(92	5) 25	2-92	269				- 1	G	eol	lra	cke	er E	DF		4	PD Ch)F	it oo	E	kcel	o ee		Wr	ite (Jn (וע	V) □ s required
Report To:	Ryan M	usn	F	Bill To						_			\dashv						Δ	nal	ysis				шр	ie is	em	uen	tai		Other		Comments
Company:	hous	A550C		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,.								\dashv								-	1100	ues								T	\dashv	Comments
L	74 151	Sheet											┪	LBE		3&F)				-	gener												Filter
Beri	Bly Cia, OA 94510 E-Mail: PYANMEJER @ Consultation of the Tele: (707) 748-3170 Fax: (707) 748-3171							5 CV.	W	_	0 E/I					Cong						6	6					Samples for Metals					
Tele: (767)	748-317	0	F	ax: (70-	57	419	-31	71					8015) / MTBE	0,1	/ 552	1	(\$2	21)		ors/		(\$				/ 602	6020					analysis:
Project #:	CA 1261	1-	P	rojec	t Nai	ne:	94	ly	To	W	m	W	_			1664	(418.	V00	08/3	es)	rocl		icide			NAS	9010	010					Yes / No
	Project Location:							\dashv	802	May	ase (suoc	H) 13	A 602	sticid	X; /	ides)	Herb	Cs)	OCs)	Hs/I	0.8/	9/8	6020									
Sampler Signatur	Sampler Signature:							\dashv	(602	1	Gre	ocarl	/ 802	(EP.	I Pe	ONI	estici	ic Cl	ex.	(SV	(PA)	/ 200	/ 200	/ 010			- 1	100					
SAMPLING SAMPLING							Gas (602 / 8021 +	015)	Total Petroleum Oil & Grease (1664 / 5520 E/B&F)	Total Petroleum Hydrocarbons (418.1)	EPA 502.2 / 601 / 8010 / 8021 (HVOCs)	MTBE / BTEX ONLY (EPA 602 / 8021)	EPA 505/ 608 / 8081 (CI Pesticides)	EPA 608 / 8082 PCB's ONLY; Aroclors / Congeners	EPA 507 / 8141 (NP Pesticides)	EPA 515 / 8151 (Acidic Cl Herbicides)	EPA 524.2 / 624 8260 (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.7 / 200.8 / 6010 / 6020)	LUFT 5 Metals (200.7 / 200.8 / 6010 / 6020)	Lead (200.7 / 200.8 / 6010 / 6020)				p -							
SAMPLE ID	LOCATION/			# Containers	ıtaiı									трн ая	TPH as Diesel (8015)	lenm	lenm	109	EX	8 / 80	082 I	8141	8151	624	625	SIM	etals	tals (/ 200				
	Field Point Name	Date	Time	nta	S	r.	*	ge				3	-	& T	s Die	etro	etro	02.2	/BT	9 /50	8 / 80	07/	15/	24.2	25.2	270	17 M	5 Me	200.7				
		Dutt	11110	ပိ	ype	Water	Soil	Sludge	Other	ICE	HCL	HN03	Other	BTEX &	ьн а	otal F	otal	PA 5	TBE	PA S	PA 6	PA 5	PA 5	PA S	PA S	PA 8	AM	UFT	ad (- 1	
1		1.20	M	-	I	-	S <	S	0		Ξ.	Ξ.	\rightarrow	_		Ţ	Ţ	E	Σ	E	团	E	E	E	E	E	C	Г	7		\vdash	4	
MW-)		4-30-	07	5	_	X	_	_	Ш	×	*		_	*	*									1								4	
NW-Z			13.			Ш		_	Ш	Ш	1		_																			_	
~~~3						Ш					Ш		_																				
/mw-5																																	
1/mw-5						$\ \cdot\ $																											
EX-1				1		*					7			T	7									1									
	_												$\neg$																				
													7																				
			1	n	7		1		N	1			$\exists$		-							_											
		.1	11/1	11/1	n	1	12	16	1/4	21		1	$\dashv$																		$\Box$	$\dashv$	
			100		$\Box$		#	1	$\Box$				$\forall$		_																	1	
					_	$\vdash$	+	+	Н	7			$\dashv$																			$\forall$	
						+	7																		$\dashv$								
			-		-	$\vdash$	+	+	$\vdash$		-	+	+	-	-	-		-			-								$\vdash$			$\dashv$	
Relinquished By: Date: Time: Received By:						+	ICE	E/t°_	7,1	4)1											CON	IME	ENTS		$\perp$								
BANK	130 2:55 Envice tech WAD 145							GO	OD	CON	DIT	ION		4		/						-014	LIVEE	4113									
Relinquished By:	· · · · · · · · · · · · · · · · · · ·	Date:	Time:	Rece	ived B	y:			-		_	_	$\exists$		AD S					AB	_		/	,									
Fnyloter	Relinquished By:  Date: Time: Received By:							APPROPRIATE CONTAINERS PRESERVED IN LAB																									
Relinquished By:		Date:	Time:	Rece	iyed/B	ÿ: /)	/	7	-				コ	rk	ESEI	VE	D IIV			7													
	78/3907 436 X(rel) (mydunny)							1	PR	ESEI	RVA	TIO		AS/	08		ME pH<		S	OTF	IER												
	/ N B901 70 1 280 (My Juna )								IK		A TA	110	10	_	-		pii	_				-	_										

# McCampbell Analytical, Inc.

1534 Y Pittsb (925)

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

# CHAIN-OF-CUSTODY RECORD

Page 1 of 1

WorkOrder: 0704630 ClientID: CAB

Fax

Bill t Requested TAT: 5 days

✓ Email

Report to:

Ryan Meyer Email: ryanmeyer@ceresassociates.com Chwania Mejia

✓ EDF

Ceres Associates TEL: (707) 748-317 FAX: (707) 748-317 Ceres Associates

424 First Street ProjectNo: CA 1264; Qtrly Tomorrow

Benicia, CA 94510 PO:

424 First Street Benicia, CA 94510 Date Received 04/30/2007

ThirdParty

, CA 94510 Date Printed: 04/30/2007

HardCopy

cmejia@ceresassociates.com

					Requested Tests (See legend below)											
Sample ID	ClientSampID	Matrix	<b>Collection Date</b>	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0704630-001	MW-1	Water	4/30/2007		С	Α		В								
0704630-002	MW-2	Water	4/30/2007		С	Α	С	В								
0704630-003	MW-3	Water	4/30/2007		С	Α		В								
0704630-004	MW-4	Water	4/30/2007		С	Α		В								
0704630-005	MW-5	Water	4/30/2007		С	Α		В								
0704630-006	EX-1	Water	4/30/2007		С	Α		В								

Excel

#### Test Legend:

1	8260B_W	2 G-MBTEX_W	3 PREDF REPORT	4 TPH(DMO)_W	5	
6		7	8	9	10	
11		12	7			

Prepared by: Sheli Cryderman

#### **Comments:**

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

Ceres Associates	Client Project ID: CA 1264; Qtrly	Date Sampled: 04/30/07
424 First Street	Tomorrow	Date Received: 04/30/07
424 Phat Succi	Client Contact: Ryan Meyer	Date Extracted: 05/01/07
Benicia, CA 94510	Client P.O.:	Date Analyzed: 05/01/07

#### Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW 5030B Analytical Method: SW 8260B Work Order: 0704630

Lab ID				0704630-001C			
Client ID				MW-1			
Matrix				Water			
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	10	Acrolein (Propenal)	ND	1.0	5.0
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl ether (TAME)	ND	1.0	0.5
Benzene	ND	1.0	0.5	Bromobenzene	ND	1.0	0.5
Bromochloromethane	ND	1.0	0.5	Bromodichloromethane	ND	1.0	0.5
Bromoform	ND	1.0	0.5	Bromomethane	ND	1.0	0.5

Acetone	ND	1.0	10	Acrolein (Propenal)	ND	1.0	5.0
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl ether (TAME)	ND	1.0	0.5
Benzene	ND	1.0	0.5	Bromobenzene	ND	1.0	0.5
Bromochloromethane	ND	1.0	0.5	Bromodichloromethane	ND	1.0	0.5
Bromoform	ND	1.0	0.5	Bromomethane	ND	1.0	0.5
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA)	ND	1.0	5.0
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene	ND	1.0	0.5
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide	ND	1.0	0.5
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene	ND	1.0	0.5
Chloroethane	ND	1.0	0.5	2-Chloroethyl Vinyl Ether	ND	1.0	1.0
Chloroform	ND	1.0	0.5	Chloromethane	ND	1.0	0.5
2-Chlorotoluene	ND	1.0	0.5	4-Chlorotoluene	ND	1.0	0.5
Dibromochloromethane	ND	1.0	0.5	1,2-Dibromo-3-chloropropane	ND	1.0	0.5
1,2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane	ND	1.0	0.5
1,2-Dichlorobenzene	ND	1.0	0.5	1,3-Dichlorobenzene	ND	1.0	0.5
1,4-Dichlorobenzene	ND	1.0	0.5	Dichlorodifluoromethane	ND	1.0	0.5
1,1-Dichloroethane	ND	1.0	0.5	1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.5
1,1-Dichloroethene	ND	1.0	0.5	cis-1,2-Dichloroethene	ND	1.0	0.5
trans-1,2-Dichloroethene	ND	1.0	0.5	1,2-Dichloropropane	ND	1.0	0.5
1,3-Dichloropropane	ND	1.0	0.5	2,2-Dichloropropane	ND	1.0	0.5
1,1-Dichloropropene	ND	1.0	0.5	cis-1,3-Dichloropropene	ND	1.0	0.5
trans-1,3-Dichloropropene	ND	1.0	0.5	Diisopropyl ether (DIPE)	ND	1.0	0.5
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl ether (ETBE)	ND	1.0	0.5
Freon 113	ND	1.0	10	Hexachlorobutadiene	ND	1.0	0.5
Hexachloroethane	ND	1.0	0.5	2-Hexanone	ND	1.0	0.5
Isopropylbenzene	ND	1.0	0.5	4-Isopropyl toluene	ND	1.0	0.5
Methyl-t-butyl ether (MTBE)	ND	1.0	0.5	Methylene chloride	ND	1.0	0.5
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene	ND	1.0	0.5
Nitrobenzene	ND	1.0	10	n-Propyl benzene	ND	1.0	0.5
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroethane	ND	1.0	0.5
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene	ND	1.0	0.5
Toluene	ND	1.0	0.5	1,2,3-Trichlorobenzene	ND	1.0	0.5
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroethane	ND	1.0	0.5
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene	ND	1.0	0.5
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropropane	ND	1.0	0.5
4045							1

 Surrogate Recoveries (%)

 %SS1:
 97
 %SS2:
 92

 %SS3:
 108
 92

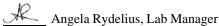
Xvlenes

1,3,5-Trimethylbenzene

#### Comments:

Vinvl Chloride

1,2,4-Trimethylbenzene


ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

ND

ND

# surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; J) analyte detected below quantitation limits; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative; q) reported in ppm.



^{*} water and vapor samples are reported in  $\mu g/L$ , soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in  $\mu g/kg$ .

Ceres Associates	Client Project ID: CA 1264; Qtrly	Date Sampled: 04/30/07
424 First Street	Tomorrow	Date Received: 04/30/07
424 Phst Succi	Client Contact: Ryan Meyer	Date Extracted: 05/01/07
Benicia, CA 94510	Client P.O.:	Date Analyzed: 05/01/07

#### Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0704630

ı	Lab ID				0704630-002C			
ı	Client ID				MW-2			
	Matrix				Water			
	Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
		115	4.0	4.0		115	4.0	- O

Matrix		Water										
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit					
Acetone	ND	1.0	10	Acrolein (Propenal)	ND	1.0	5.0					
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl ether (TAME)	ND	1.0	0.5					
Benzene	ND	1.0	0.5	Bromobenzene	ND	1.0	0.5					
Bromochloromethane	ND	1.0	0.5	Bromodichloromethane	1.5	1.0	0.5					
Bromoform	0.51	1.0	0.5	Bromomethane	ND	1.0	0.5					
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA)	ND	1.0	5.0					
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene	ND	1.0	0.5					
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide	ND	1.0	0.5					
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene	ND	1.0	0.5					
Chloroethane	ND	1.0	0.5	2-Chloroethyl Vinyl Ether	ND	1.0	1.0					
Chloroform	23	1.0	0.5	Chloromethane	ND	1.0	0.5					
2-Chlorotoluene	ND	1.0	0.5	4-Chlorotoluene	ND	1.0	0.5					
Dibromochloromethane	0.55	1.0	0.5	1,2-Dibromo-3-chloropropane	ND	1.0	0.5					
1,2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane	ND	1.0	0.5					
1,2-Dichlorobenzene	ND	1.0	0.5	1,3-Dichlorobenzene	ND	1.0	0.5					
1,4-Dichlorobenzene	ND	1.0	0.5	Dichlorodifluoromethane	ND	1.0	0.5					
1,1-Dichloroethane	ND	1.0	0.5	1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.5					
1,1-Dichloroethene	ND	1.0	0.5	cis-1,2-Dichloroethene	ND	1.0	0.5					
trans-1,2-Dichloroethene	ND	1.0	0.5	1,2-Dichloropropane	ND	1.0	0.5					
1,3-Dichloropropane	ND	1.0	0.5	2,2-Dichloropropane	ND	1.0	0.5					
1,1-Dichloropropene	ND	1.0	0.5	cis-1,3-Dichloropropene	ND	1.0	0.5					
trans-1,3-Dichloropropene	ND	1.0	0.5	Diisopropyl ether (DIPE)	ND	1.0	0.5					
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl ether (ETBE)	ND	1.0	0.5					
Freon 113	ND	1.0	10	Hexachlorobutadiene	ND	1.0	0.5					
Hexachloroethane	ND	1.0	0.5	2-Hexanone	ND	1.0	0.5					
Isopropylbenzene	ND	1.0	0.5	4-Isopropyl toluene	ND	1.0	0.5					
Methyl-t-butyl ether (MTBE)	ND	1.0	0.5	Methylene chloride	ND	1.0	0.5					
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene	ND	1.0	0.5					
Nitrobenzene	ND	1.0	10	n-Propyl benzene	ND	1.0	0.5					
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroethane	ND	1.0	0.5					
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene	ND	1.0	0.5					
Toluene	ND	1.0	0.5	1,2,3-Trichlorobenzene	ND	1.0	0.5					
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroethane	ND	1.0	0.5					
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene	ND	1.0	0.5					
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropropane	ND	1.0	0.5					
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylbenzene	ND	1.0	0.5					
Vinvl Chloride	ND	1.0	0.5	Xvlenes	ND	1.0	0.5					
		Surre	ogate Re	ecoveries (%)								

l	Surrogate Recoveries (%)								
	%SS1: 98		%SS2:	92					
	%SS3:	108							

#### Comments:

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

# surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; J) analyte detected below quantitation limits; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative; q) reported in ppm.



^{*} water and vapor samples are reported in  $\mu g/L$ , soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in  $\mu g/k$  wipe.

Ceres Associates	Client Project ID: CA 1264; Qtrly	Date Sampled: 04/30/07
424 First Street	Tomorrow	Date Received: 04/30/07
424 Phat Succi	Client Contact: Ryan Meyer	Date Extracted: 05/01/07
Benicia, CA 94510	Client P.O.:	Date Analyzed: 05/01/07

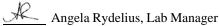
#### Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0704630

Lab ID	0704630-003C						
Client ID		MW-3					
Matrix		Water					
Compound	Concentration *	DF Reporting Limit	Compound	Concentration *	DF	Reporting Limit	

Matrix	Water						
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	10	Acrolein (Propenal)	ND	1.0	5.0
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl ether (TAME)	ND	1.0	0.5
Benzene	ND	1.0	0.5	Bromobenzene	ND	1.0	0.5
Bromochloromethane	ND	1.0	0.5	Bromodichloromethane	ND	1.0	0.5
Bromoform	ND	1.0	0.5	Bromomethane	ND	1.0	0.5
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA)	ND	1.0	5.0
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene	ND	1.0	0.5
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide	ND	1.0	0.5
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene	ND	1.0	0.5
Chloroethane	ND	1.0	0.5	2-Chloroethyl Vinyl Ether	ND	1.0	1.0
Chloroform	ND	1.0	0.5	Chloromethane	ND	1.0	0.5
2-Chlorotoluene	ND	1.0	0.5	4-Chlorotoluene	ND	1.0	0.5
Dibromochloromethane	ND	1.0	0.5	1,2-Dibromo-3-chloropropane	ND	1.0	0.5
1,2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane	ND	1.0	0.5
1,2-Dichlorobenzene	ND	1.0	0.5	1,3-Dichlorobenzene	ND	1.0	0.5
1.4-Dichlorobenzene	ND	1.0	0.5	Dichlorodifluoromethane	ND	1.0	0.5
1,1-Dichloroethane	ND	1.0	0.5	1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.5
1,1-Dichloroethene	ND	1.0	0.5	cis-1,2-Dichloroethene	ND	1.0	0.5
trans-1,2-Dichloroethene	ND	1.0	0.5	1,2-Dichloropropane	ND	1.0	0.5
1,3-Dichloropropane	ND	1.0	0.5	2,2-Dichloropropane	ND	1.0	0.5
1,1-Dichloropropene	ND	1.0	0.5	cis-1,3-Dichloropropene	ND	1.0	0.5
trans-1,3-Dichloropropene	ND	1.0	0.5	Diisopropyl ether (DIPE)	ND	1.0	0.5
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl ether (ETBE)	ND	1.0	0.5
Freon 113	ND	1.0	10	Hexachlorobutadiene	ND	1.0	0.5
Hexachloroethane	ND	1.0	0.5	2-Hexanone	ND	1.0	0.5
Isopropylbenzene	ND	1.0	0.5	4-Isopropyl toluene	ND	1.0	0.5
Methyl-t-butyl ether (MTBE)	ND	1.0	0.5	Methylene chloride	ND	1.0	0.5
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene	ND	1.0	0.5
Nitrobenzene	ND	1.0	10	n-Propyl benzene	ND	1.0	0.5
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroethane	ND	1.0	0.5
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene	ND	1.0	0.5
Toluene	ND	1.0	0.5	1,2,3-Trichlorobenzene	ND	1.0	0.5
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroethane	ND	1.0	0.5
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene	ND	1.0	0.5
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropropane	ND	1.0	0.5
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylbenzene	ND	1.0	0.5
Vinvl Chloride	ND	1.0	0.5	Xvlenes	ND	1.0	0.5
		Surro	gate Re	coveries (%)			

Comments:


%SS1:

%SS2:

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

# surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; J) analyte detected below quantitation limits; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative; q) reported in ppm.



92

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in  $\mu g/\text{wipe}$ .

Lab ID

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Telephone: 877-252-9262 Fax: 925-252-9269

0704630-004C

Ceres Associates	Client Project ID: CA 1264; Qtrly	Date Sampled: 04/30/07
424 First Street	Tomorrow	Date Received: 04/30/07
424 Phat Succi	Client Contact: Ryan Meyer	Date Extracted: 05/01/07
Benicia, CA 94510	Client P.O.:	Date Analyzed: 05/01/07

#### Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0704630

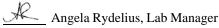
Lab ID		0704630-004C						
Client ID		MW-4						
Matrix		Water						
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit	
Acetone	ND	1.0	10	Acrolein (Propenal)	ND	1.0	5.0	
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl ether (TAME)	ND	1.0	0.5	
Benzene	ND	1.0	0.5	Bromobenzene	ND	1.0	0.5	
Bromochloromethane	ND	1.0	0.5	Bromodichloromethane	ND	1.0	0.5	
Bromoform	ND	1.0	0.5	Bromomethane	ND	1.0	0.5	
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA)	ND	1.0	5.0	
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene	ND	1.0	0.5	
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide	ND	1.0	0.5	
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene	ND	1.0	0.5	
Chloroethane	ND	1.0	0.5	2-Chloroethyl Vinyl Ether	ND	1.0	1.0	
Chloroform	ND	1.0	0.5	Chloromethane	ND	1.0	0.5	
2-Chlorotoluene	ND	1.0	0.5	4-Chlorotoluene	ND	1.0	0.5	
Dibromochloromethane	ND	1.0	0.5	1,2-Dibromo-3-chloropropane	ND	1.0	0.5	
1,2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane	ND	1.0	0.5	
1,2-Dichlorobenzene	ND	1.0	0.5	1,3-Dichlorobenzene	ND	1.0	0.5	
1,4-Dichlorobenzene	ND	1.0	0.5	Dichlorodifluoromethane	ND	1.0	0.5	
1,1-Dichloroethane	ND	1.0	0.5	1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.5	
1,1-Dichloroethene	ND	1.0	0.5	cis-1,2-Dichloroethene	ND	1.0	0.5	
trans-1,2-Dichloroethene	ND	1.0	0.5	1,2-Dichloropropane	ND	1.0	0.5	
1,3-Dichloropropane	ND	1.0	0.5	2,2-Dichloropropane	ND	1.0	0.5	
1,1-Dichloropropene	ND	1.0	0.5	cis-1,3-Dichloropropene	ND	1.0	0.5	
trans-1,3-Dichloropropene	ND	1.0	0.5	Diisopropyl ether (DIPE)	ND	1.0	0.5	
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl ether (ETBE)	ND	1.0	0.5	
Freon 113	ND	1.0	10	Hexachlorobutadiene	ND	1.0	0.5	
Hexachloroethane	ND	1.0	0.5	2-Hexanone	ND	1.0	0.5	
Isopropylbenzene	ND	1.0	0.5	4-Isopropyl toluene	ND	1.0	0.5	
Methyl-t-butyl ether (MTBE)	ND	1.0	0.5	Methylene chloride	ND	1.0	0.5	
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene	ND	1.0	0.5	
Nitrobenzene	ND	1.0	10	n-Propyl benzene	ND	1.0	0.5	
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroethane	ND	1.0	0.5	
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene	ND	1.0	0.5	
Toluene	ND	1.0	0.5	1,2,3-Trichlorobenzene	ND	1.0	0.5	
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroethane	ND	1.0	0.5	
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene	ND	1.0	0.5	
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropropane	ND	1.0	0.5	
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylbenzene	ND	1.0	0.5	

Comments:

%SS1:

Vinvl Chloride

0.5


Xvlenes Surrogate Recoveries (%)

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

ND

# surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; J) analyte detected below quantitation limits; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative; q) reported in ppm.



93

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

Lab ID

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

0704630-005C

Ceres Associates	Client Project ID: CA 1264; Qtrly	Date Sampled: 04/30/07
424 First Street	Tomorrow	Date Received: 04/30/07
424 Phat Succi	Client Contact: Ryan Meyer	Date Extracted: 05/01/07
Benicia, CA 94510	Client P.O.:	Date Analyzed: 05/01/07

#### Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0704630

Client ID		MW-5						
Matrix		Water						
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit	
Acetone	ND	1.0	10	Acrolein (Propenal)	ND	1.0	5.0	
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl ether (TAME)	ND	1.0	0.5	
Benzene	ND	1.0	0.5	Bromobenzene	ND	1.0	0.5	
Bromochloromethane	ND	1.0	0.5	Bromodichloromethane	ND	1.0	0.5	
Bromoform	ND	1.0	0.5	Bromomethane	ND	1.0	0.5	
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA)	ND	1.0	5.0	
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene	ND	1.0	0.5	
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide	ND	1.0	0.5	
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene	ND	1.0	0.5	
Chloroethane	ND	1.0	0.5	2-Chloroethyl Vinyl Ether	ND	1.0	1.0	
Chloroform	ND	1.0	0.5	Chloromethane	ND	1.0	0.5	
2-Chlorotoluene	ND	1.0	0.5	4-Chlorotoluene	ND	1.0	0.5	
Dibromochloromethane	ND	1.0	0.5	1,2-Dibromo-3-chloropropane	ND	1.0	0.5	
1,2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane	ND	1.0	0.5	
1,2-Dichlorobenzene	ND	1.0	0.5	1,3-Dichlorobenzene	ND	1.0	0.5	
1,4-Dichlorobenzene	ND	1.0	0.5	Dichlorodifluoromethane	ND	1.0	0.5	
1,1-Dichloroethane	ND	1.0	0.5	1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.5	
1,1-Dichloroethene	ND	1.0	0.5	cis-1,2-Dichloroethene	ND	1.0	0.5	
trans-1,2-Dichloroethene	ND	1.0	0.5	1,2-Dichloropropane	ND	1.0	0.5	
1,3-Dichloropropane	ND	1.0	0.5	2,2-Dichloropropane	ND	1.0	0.5	
1,1-Dichloropropene	ND	1.0	0.5	cis-1,3-Dichloropropene	ND	1.0	0.5	
trans-1,3-Dichloropropene	ND	1.0	0.5	Diisopropyl ether (DIPE)	ND	1.0	0.5	
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl ether (ETBE)	ND	1.0	0.5	
Freon 113	ND	1.0	10	Hexachlorobutadiene	ND	1.0	0.5	
Hexachloroethane	ND	1.0	0.5	2-Hexanone	ND	1.0	0.5	
Isopropylbenzene	ND	1.0	0.5	4-Isopropyl toluene	ND	1.0	0.5	
Methyl-t-butyl ether (MTBE)	ND	1.0	0.5	Methylene chloride	ND	1.0	0.5	
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene	ND	1.0	0.5	
Nitrobenzene	ND	1.0	10	n-Propyl benzene	ND	1.0	0.5	
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroethane	ND	1.0	0.5	
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene	ND	1.0	0.5	
Toluene	ND	1.0	0.5	1,2,3-Trichlorobenzene	ND	1.0	0.5	

 Surrogate Recoveries (%)

 %SS1:
 97
 %SS2:
 92

 %SS3:
 106
 92

0.5

0.5

0.5

0.5

1,1,1-Trichloroethane

1,2,3-Trichloropropane

1,3,5-Trimethylbenzene

Trichloroethene

Xvlenes

#### Comments:

Vinvl Chloride

1,2,4-Trichlorobenzene

1,1,2-Trichloroethane

Trichlorofluoromethane

1,2,4-Trimethylbenzene

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

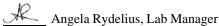
ND

ND

ND

ND

ND


1.0

1.0

1.0

# surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; J) analyte detected below quantitation limits; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative; q) reported in ppm.



ND

ND

ND

ND

ND

1.0

1.0

1.0

0.5

0.5

0.5

0.5

^{*} water and vapor samples are reported in  $\mu g/L$ , soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in  $\mu g/k$  wipe.

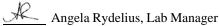
Ceres Associates	Client Project ID: CA 1264; Qtrly	Date Sampled: 04/30/07
424 First Street	Tomorrow	Date Received: 04/30/07
424 Phat Succi	Client Contact: Ryan Meyer	Date Extracted: 05/02/07
Benicia, CA 94510	Client P.O.:	Date Analyzed: 05/02/07

#### Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0704630

Lab ID		0704630-006C						
Client ID		EX-1						
Matrix		Water						
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit	
Acetone	ND	1.0	10	Acrolein (Propenal)	ND	1.0	5.0	
A auxilonituila	ND	1.0	2.0	tout Amyl mothyl othou (TAME)	MD	1.0	0.5	

Matrix Water							
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	10	Acrolein (Propenal)	ND	1.0	5.0
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl ether (TAME)	ND	1.0	0.5
Benzene	ND	1.0	0.5	Bromobenzene	ND	1.0	0.5
Bromochloromethane	ND	1.0	0.5	Bromodichloromethane	ND	1.0	0.5
Bromoform	ND	1.0	0.5	Bromomethane	ND	1.0	0.5
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA)	ND	1.0	5.0
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene	3.1	1.0	0.5
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide	ND	1.0	0.5
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene	ND	1.0	0.5
Chloroethane	ND	1.0	0.5	2-Chloroethyl Vinyl Ether	ND	1.0	1.0
Chloroform	ND	1.0	0.5	Chloromethane	ND	1.0	0.5
2-Chlorotoluene	ND	1.0	0.5	4-Chlorotoluene	ND	1.0	0.5
Dibromochloromethane	ND	1.0	0.5	1,2-Dibromo-3-chloropropane	ND	1.0	0.5
1,2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane	ND	1.0	0.5
1,2-Dichlorobenzene	ND	1.0	0.5	1,3-Dichlorobenzene	ND	1.0	0.5
1,4-Dichlorobenzene	ND	1.0	0.5	Dichlorodifluoromethane	ND	1.0	0.5
1,1-Dichloroethane	ND	1.0	0.5	1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.5
1,1-Dichloroethene	ND	1.0	0.5	cis-1,2-Dichloroethene	ND	1.0	0.5
trans-1,2-Dichloroethene	ND	1.0	0.5	1,2-Dichloropropane	ND	1.0	0.5
1,3-Dichloropropane	ND	1.0	0.5	2,2-Dichloropropane	ND	1.0	0.5
1,1-Dichloropropene	ND	1.0	0.5	cis-1,3-Dichloropropene	ND	1.0	0.5
trans-1,3-Dichloropropene	ND	1.0	0.5	Diisopropyl ether (DIPE)	ND	1.0	0.5
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl ether (ETBE)	ND	1.0	0.5
Freon 113	ND	1.0	10	Hexachlorobutadiene	ND	1.0	0.5
Hexachloroethane	ND	1.0	0.5	2-Hexanone	ND	1.0	0.5
Isopropylbenzene	8.5	1.0	0.5	4-Isopropyl toluene	ND	1.0	0.5
Methyl-t-butyl ether (MTBE)	ND	1.0	0.5	Methylene chloride	ND	1.0	0.5
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene	ND	1.0	0.5
Nitrobenzene	ND	1.0	10	n-Propyl benzene	7.6	1.0	0.5
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroethane	ND	1.0	0.5
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene	ND	1.0	0.5
Toluene	ND	1.0	0.5	1,2,3-Trichlorobenzene	ND	1.0	0.5
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroethane	ND	1.0	0.5
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene	ND	1.0	0.5
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropropane	ND	1.0	0.5
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylbenzene	ND	1.0	0.5
Vinvl Chloride	ND	1.0	0.5	Xvlenes	ND	1.0	0.5
		Surre	ogate Re	ecoveries (%)			


Surrogate Recoveries (%)								
%SS1: 101			%SS2:	81				
	%SS3:	101						

#### Comments:

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

# surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; J) analyte detected below quantitation limits; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative; q) reported in ppm.



^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in  $\mu g/\text{wipe}$ .

Ceres Associates
Client Project ID: CA 1264; Qtrly Tomorrow
Date Sampled: 04/30/07

Date Received: 04/30/07

Client Contact: Ryan Meyer
Date Extracted: 05/03/07-05/04/07

Client P.O.:
Date Analyzed 05/03/07-05/04/07

#### Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

	Gasonne Range (Co-C12) Volatile Hydrocarbons as Gasonne with DTEA and WTDE									
Extracti	on method SW5030B		Analy	ytical methods SV	V8021B/8015Cm			Work Order	: 0704	4630
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS
001A	MW-1	W	ND	ND	ND	ND	ND	ND	1	103
002A	MW-2	W	ND	ND	ND	ND	ND	ND	1	102
003A	MW-3	W	ND	ND	ND	ND	ND	ND	1	106
004A	MW-4	W	ND	ND	ND	ND	ND	ND	1	92
005A	MW-5	W	ND	ND	ND	ND	ND	ND	1	104
006A	EX-1	W	1000,b,m	ND	ND	ND	1.7	2.4	1	97
		1	ı	1	1		1	l		1
_	orting Limit for DF =1;	W	50	5.0	0.5	0.5	0.5	0.5	1	μg/L
	means not detected at or ove the reporting limit	S	NA	NA	NA	NA	NA	NA	1	mg/Kg

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in  $\mu$ g/wipe, product/oil/non-aqueous liquid samples in mg/L.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; p) see attached narrative.



[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

Ceres Associates	Client Project ID: CA 1264; Qtrly	Date Sampled: 04/30/07
424 First Street	Tomorrow	Date Received: 04/30/07
Benicia, CA 94510	Client Contact: Ryan Meyer	Date Extracted: 04/30/07
20110111	Client P.O.:	Date Analyzed 05/02/07

#### Diesel (C10-23) and Oil (C18+) Range Extractable Hydrocarbons as Diesel and Motor Oil*

Extraction method: SW351	10C	Analytical me	thods: SW8015C	Wo	ork Order: 0	704630
Lab ID	Client ID	Matrix	TPH(d)	TPH(mo)	DF	% SS
0704630-001B	MW-1	W	ND	ND	1	83
0704630-002B	MW-2	W	60,b	ND	1	82
0704630-003B	MW-3	W	ND	ND	1	74
0704630-004B	MW-4	W	ND	ND	1	75
0704630-005B	MW-5	W	ND	ND	1	79
0704630-006B	EX-1	W	740,d	ND<2500	10	87
	g Limit for DF =1;	W	50	250	μ	g/L
	s not detected at or ne reporting limit	S	NA	NA	_	g/Kg

^{*} water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil range (?); no recognizable pattern; m) fuel oil; n) stoddard solvent/mineral spirits; p) see attached narrative.

## QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water QC Matrix: Water WorkOrder: 0704630

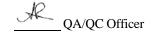
EPA Method SW8260B	Extra	ction SW	5030B		Ba	tchID: 27	763	Sp	iked Samp	ole ID:	0704630-00	1C
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
, mary to	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND	10	93.1	95.1	2.13	95.9	96.6	0.759	70 - 130	30	70 - 130	30
Benzene	ND	10	98.8	98.1	0.769	96.4	96.7	0.350	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	50	90.4	93.8	3.66	88.2	88.2	0	70 - 130	30	70 - 130	30
Chlorobenzene	ND	10	96	97.5	1.58	95.3	95.3	0	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	10	82.5	83.2	0.760	85.9	87.2	1.49	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	10	110	113	1.99	117	113	2.94	70 - 130	30	70 - 130	30
1,1-Dichloroethene	ND	10	70.8	71.2	0.594	78.9	74	6.32	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	10	112	111	0.773	112	111	0.392	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	10	102	102	0	104	105	0.896	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND	10	97.8	99.5	1.78	105	103	1.92	70 - 130	30	70 - 130	30
Toluene	ND	10	82.6	82.5	0.143	85.7	85.3	0.564	70 - 130	30	70 - 130	30
Trichloroethene	ND	10	75.3	74.7	0.784	75	73	2.66	70 - 130	30	70 - 130	30
%SS1:	97	10	90	89	0.836	97	94	3.46	70 - 130	30	70 - 130	30
%SS2:	92	10	96	95	0.738	102	102	0	70 - 130	30	70 - 130	30
%SS3:	108	10	121	122	0.207	122	121	0.948	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

#### BATCH 27763 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0704630-001C	04/30/0	7 05/01/07	05/01/07 5:17 PM				


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.



QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water QC Matrix: Water WorkOrder: 0704630

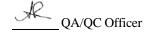
EPA Method SW8021B/8015Cm	Extra	ction SW	5030B		Ba	tchID: 27	772	Sp	iked Samp	ole ID:	0704631-00	3A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
7 that y to	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex [£]	ND	60	92	91	1.18	100	91.4	9.28	70 - 130	30	70 - 130	30
MTBE	ND	10	94.7	94.4	0.315	115	110	4.74	70 - 130	30	70 - 130	30
Benzene	ND	10	95.7	93.9	1.90	107	109	1.90	70 - 130	30	70 - 130	30
Toluene	ND	10	97.1	95.2	1.99	98.2	99.8	1.53	70 - 130	30	70 - 130	30
Ethylbenzene	ND	10	95.5	93.3	2.40	108	108	0	70 - 130	30	70 - 130	30
Xylenes	ND	30	86.3	86	0.387	107	107	0	70 - 130	30	70 - 130	30
%SS:	101	10	109	107	1.97	97	100	3.02	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

#### BATCH 27772 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0704630-001A	04/30/07	05/03/07	05/03/07 6:46 AM	0704630-002A	04/30/07	05/04/07	05/04/07 1:50 AM
0704630-003A	04/30/07	05/03/07	05/03/07 8:13 AM	0704630-004A	04/30/07	05/03/07	05/03/07 8:42 AM
0704630-005A	04/30/07	05/04/07	05/04/07 8:17 AM	0704630-006A	04/30/07	05/04/07	05/04/07 7:47 AM


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

# cluttered chromatogram; sample peak coelutes with surrogate peak.



## QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water QC Matrix: Water WorkOrder: 0704630

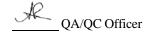
EPA Method SW8260B	Extra	ction SW	5030B		Ba	tchID: 27	774	Sp	iked Samp	ole ID:	0704630-00	4C
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
Amaryto	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND	10	96.9	98.6	1.77	108	104	3.32	70 - 130	30	70 - 130	30
Benzene	ND	10	103	96.6	5.93	107	106	1.36	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	50	91.7	86.9	5.43	88.7	93.9	5.73	70 - 130	30	70 - 130	30
Chlorobenzene	ND	10	94.1	93.1	1.06	103	99.4	3.95	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	10	81.8	85.2	4.16	94.6	90.1	4.84	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	10	117	117	0	128	122	4.56	70 - 130	30	70 - 130	30
1,1-Dichloroethene	ND	10	82.7	84.6	2.28	88.1	89.4	1.40	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	10	117	113	3.80	124	123	1.50	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	10	107	106	0.741	117	114	2.54	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND	10	105	108	2.69	118	112	4.67	70 - 130	30	70 - 130	30
Toluene	ND	10	86	84.6	1.66	94.5	89.1	5.80	70 - 130	30	70 - 130	30
Trichloroethene	ND	10	79.4	74.9	5.79	83.4	81.8	1.89	70 - 130	30	70 - 130	30
%SS1:	97	10	101	98	3.20	96	98	1.45	70 - 130	30	70 - 130	30
%SS2:	93	10	101	101	0	102	103	0.619	70 - 130	30	70 - 130	30
%SS3:	108	10	125	122	2.53	119	121	2.00	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

#### BATCH 27774 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0704630-002C	04/30/07	05/01/07	05/01/07 6:19 PM	0704630-003C	04/30/07	05/01/07	05/01/07 7:03 PM
0704630-004C	04/30/07	05/01/07	05/01/07 7:47 PM	0704630-005C	04/30/07	05/01/07	05/01/07 8:31 PM
0704630-006C	04/30/07	05/02/07	05/02/07 2:17 PM				


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = <math>100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.



## QC SUMMARY REPORT FOR SW8015C

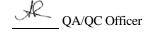
W.O. Sample Matrix: Water QC Matrix: Water WorkOrder 0704630

EPA Method SW8015C Extraction SW3510C				BatchID: 27777 Spiked Sample ID: N/A						N/A		
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%)	١
raidiyto	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(d)	N/A	1000	N/A	N/A	N/A	95.4	106	10.4	N/A	N/A	70 - 130	30
%SS:	N/A	2500	N/A	N/A	N/A	88	104	16.9	N/A	N/A	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

#### **BATCH 27777 SUMMARY**

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0704630-001B	04/30/07	04/30/07	05/02/07 10:39 AM	0704630-002B	04/30/07	04/30/07	05/02/07 11:46 AM
0704630-003B	04/30/07	04/30/07	05/02/07 12:53 PM	0704630-004B	04/30/07	04/30/07	05/02/07 1:59 PM
0704630-005B	04/30/07	04/30/07	05/02/07 5:20 PM	0704630-006B	04/30/07	04/30/07	05/02/07 6:27 PM


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = <math>100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.







ID#: EX-1

Quarter Date	4/30/0	7 Sampler ₩∕
Well Details		Sampling Details
Depth to Water (initial) 4, 2 for Well Diameter Well Depth Screened Interval Pumping Point	S	Start Time Stop Time Pump Rate Notes
	A	Analysis

<u>Time</u>	<u>Depth</u>	Temp (C)	Water Quali Cond (mS/cm)	ty Data <u>DO</u> (mg/L)	<u>pH</u> (units)	<u>ORP</u>	<u>Turb</u>
050	4,54	13.11	0.65 4653 4653 4654 4659	3,52 431 22 26 123	6.88 6.70 6.70 6.70	-113 -143 -145 -148 -150	146 93.7 95.1 97.1 72.5

Notes:

Strong petrol odor



ID#:

Mw-5

Quarter Date	ou/30/07 Sampler ™K
Well Details	Sampling Details
Depth to Water (initial) 3.2.4 Well Diameter Well Depth Screened Interval Pumping Point	Start Time Stop Time Pump Rate Notes
	Analysis

Time	<u>Depth</u>	Temp (C)	Water Qualine Cond (mS/cm)	ty Data <u>DO</u> (mg/L)	<u>pH</u> (units)	<u>ORP</u>	<u>Turb</u>
0567	3,81 4,10 4,120 4,120 4,120	16.14 16.15 16.15	403 403 403 403 403	2,79 2,92 0,70 0,65 ,60	669 6.52 6.50 2.650 2.655	44 51 51 51 57	146 128 114 114

Notes:

3000

and of the second



ID#: WW-4

Quarter	Date 04/	130/07 Sampler WK
Well	Details	Sampling Details
Depth to Water (initial) Well Diameter Well Depth Screened Interval Pumping Point	4.50 pt	Start Time Stop Time Pump Rate Notes
		Analysis

V.								
<u>Time</u>	<u>Depth</u>	Temp (C)	Water Qual <u>Cond</u> (mS/cm)	ity Data <u>DO</u> (mg/L)	<u>pH</u> (units)	<u>ORP</u>	<u>Turb</u>	
0500	4,20	17.9 17.7 17.67 17.73	401 490 490 490	115 024 073 173	7.46 6.62 6.57	174 177 177 175	103 4434, 3439,	,8
				52.				

Notes: water ~ 2" over puc



ID#: MW-3

Quarter Date	04/30/07 Sampler WK
Well Details	Sampling Details
Depth to Water (initial)  Well Diameter  Well Depth  Screened Interval  Pumping Point	Start Time Stop Time Pump Rate Notes
	Analysis

Time	<u>Depth</u>	Temp (C)	Water Qualit Cond (mS/cm)	t <b>y Data</b> <u>DO</u> (mg/L)	<u>pH</u> (units)	ORP	<u>Turb</u>
999	4,73	18.71	1.21	7.75	6.89 6.70 6.70	204 215 217 218	100 70.8 64.0 58.2

Notes:

rainwater ~ I inch above yould - Pipe top



ID#: MW-Z

Quarter	Date	4/30/0	F Sampler WK
W	ell Details		Sampling Details
Depth to Water (init Well Diameter Well Depth Screened Interval Pumping Point			Start Time Stop Time Pump Rate Notes
10P APRICI			Analysis

Time	<u>Depth</u>	Temp (C)	Water Quali Cond (mS/cm)	<b>ty Data</b> <u>DO</u> (mg/L)	<u>pH</u> (units)	ORP	<u>Turb</u>
05-04	5.11	13.75	167	5,75 5,60 5,74	7.11 9128 9.31	236 213 210	216 2000 1242

Notes:

by this lager of water in well: detint

janort of unti

Dump (and 5- after 2 voAs; refurred to fill remaining glass were @ eno of day





ID#: M = M

Quarter	Date 4/30/0	7 Sampler
Well	Details	Sampling Details
Depth to Water (initial) Well Diameter Well Depth Screened Interval Pumping Point	4.04 ft	Start Time Stop Time Pump Rate Notes
	9 0	Analysis

Time	<u>Depth</u>	Temp (C)	Water Qual Cond (mS/cm)	ity Data <u>DO</u> (mg/L)	<u>pH</u> (units)	<u>ORP</u>	<u>Turb</u>
0	4.26						
5	442	19.56	1798	:45	11.0	32	47.1
6	4,47	19.56	.755	. 41	10.95	30	41.5
7	4,48	19.60	.726	, 37	10,92	29	33.1
8	4.49	19.65	.712	, 34	10,88	26	36.2
	11 111						
				_			
					<del>                                      </del>		

Notes: