RECEIVED 1:16 pm, Sep 04, 2007 Alameda County Environmental Health # **Revised Soil Excavation Report:** Former Gas Station 2547 East 27th Street Oakland, California > <u>Date:</u> August 31, 2007 # **Prepared for:** Tomorrow Development 1305 Franklin Street, Suite 500 Oakland, California # Submitted to: Jerry Wickham Alameda County Health Care Services Agency Environmental Health Services 1131 Harbor Bay Parkway Alameda, California # Prepared by: Ceres Associates 424 First Street Benicia, California 94510 Tel. (707) 748-3170 Fax. (707) 748-3171 August 31, 2007 Alameda County Health Care Services Agency (ACHCSA) Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577 Subject: Revised Soil Excavation Report, Former Gas Station, 2547 East 27th Street, Oakland, California (File No. 0396) Dear Mr. Wickham: Ceres has prepared this revised Soil Excavation Report to address the comments provided by the ACHCSA agency in a letter dated April 26, 2007 for the site located at 2547 East 27th Street, Oakland, California ("Property"). In December 2006 and January 2007, Ceres Associates supervised the excavation and removal of approximately 200 cubic yards of impacted soil from the Property, followed by backfilling of the excavation pit. Additionally, two rounds of confirmation sampling was conducting, including samples collected in December 2006 and June 2007. It appears that the majority of the petroleum impacted "source material" has been removed from the Property and that the risk to future occupants of the Property from this residual contamination is minimal. Further, it does not appear that the Property is a significant contributor to groundwater contamination off the Property. However, Ceres Associates recommended continuing quarterly groundwater sampling at the Property to assess the effectiveness of the soil remediation. Tomorrow Development and Ceres Associates request that the ACHCSA review and approve the enclosed Revised Soil Excavation Report. If you have any questions or comments, please contact Ryan Meyer at (707) 748-3170 or via email at ryanmeyer@ceresassociates.com. Sincerely, **Ceres Associates** Ryan Meyer, R.E.A. Project Manager Kin & Branch Kimberly A. Brandt, R.G., C.HG. Senior Associate Hydrogeologist cc: Ted Dang Tomorrow Development 1305 Franklin Boulevard Oakland, California #### **Statement of Qualifications** The Project Manager for this report was Ryan Meyer. Mr. Meyer assisted in field work, report preparation, and overall project management. Mr. Meyer is a Registered Environmental Assessor (No. 07936), has a B.S. in Environmental Resource Science, as well as is HAZWOPR 40-hr certified. Mr. Meyer has also participated in UC Extension programs covering such topics as Risk Assessments, Work Plans, and other Corrective Action implementation. The Senior Associate Hydrogeologist, and supervising Geologist, for this report was Kimberly Brandt. Ms. Brandt assisted in report preparation, data analysis, and overall conclusions and recommendations contained herein. Ms. Brandt is a Professional Geologist (No. 6658) and a Certified Hydrogeologist (No. 555). Ms. Brandt has evaluated, selected, and implemented appropriate investigation and remediation methods at various environmental sites located throughout the Bay Area, Northern and Southern California, and in Oregon. # Perjury Statement | I declare, under penalty of perjury, that the information and/or recommendations contained in the | 16 | |---|----| | attached document or report is true and correct to the best of my knowledge. | | Ted Dang, President Date # **Table of Contents** | 1.0 | INTRODUCTION | 1 | |------|---|----| | 2.0 | SITE CHARACTERISTICS | 2 | | 2.1 | Geologic/Hydrogeologic Setting | 2 | | 2.2 | Soil | 2 | | 2.3 | Groundwater | 2 | | 3.0 | PREVIOUS PROPERTY INVESTIGATIONS | 3 | | 3.1 | Previous Soil and Groundwater Sampling | 3 | | 3.2 | September 1994 Aqua Science Engineers – Tank Removal Report | 3 | | 3.3 | May 2001 M.L. River Group – Phase I ESA | 4 | | 3.4 | August 2002 Kleinfelder- Soil and Groundwater Sampling | 4 | | 3.5 | January 2005 Ceres Associates – Soil and Groundwater Sampling | 5 | | 3.6 | February 2006 Ceres Associates – Soil and Groundwater Sampling | 6 | | 3.7 | May 2006 Ceres Associates - Well Survey | 8 | | 3.8 | October 2006 Ceres Associates - Deeper Groundwater Sampling | 8 | | 3.9 | August 2006 to April 2007 Ceres Associates - Quarterly Groundwater Monitoring Results | 9 | | 3.10 | Summary of Identified Contaminants and Concentrations | 10 | | 4.0 | SOIL EXCAVATION AND CONFIRMATION SAMPLING | 11 | | 4.1 | Excavation | 11 | | 4.2 | Excavation Limitations | 13 | | 4.3 | Stockpiled Soil | 13 | | 4.4 | Soil Backfilling and Off Haul | 14 | | 4.5 | Initial Confirmation Sampling | 14 | | 4.6 | Subsequent Soil Sampling | 16 | | 5.0 | SUMMARY AND CONCLUSIONS | 18 | | 6.0 | RECOMMENDATIONS | 21 | | 7.0 | PROPERTY RE-USE | 22 | | 8.0 | LIMITATIONS | 23 | #### **Figures** Figure 1 – Topographic Map Figure 2 – Previous USTs and Developments Figure 3 – Boring Location Map Figure 4 – Monitoring Well Location Map Figure 5 - Planned Excavation Map Figure 6 – Actual Excavation Map #### Tables Table 1: Soil Sampling during UST Removal - August 1994 Table 2: Kleinfelder Soil and Groundwater Sampling - June 2002 Table 3: Ceres Associates Soil and Groundwater Sampling – January 2005 Table 4: Ceres Associates Soil and Groundwater Sampling – February 2006 Table 5: Ceres Associates Deeper Groundwater Sampling – September 2006 Table 6: Ceres Associates Quarterly Groundwater Monitoring – August 2006 to April 2007 Table 7: Ceres Associates Initial PID readings during Excavation – December 2006 Table 8: Ceres Associates Initial Confirmation Soil Sampling – December 2006 Table 9: Ceres Associates Additional Soil Sampling PID readings – June 2005 Table 10: Ceres Associates Additional Soil Sampling - June 2007 #### **Appendices** Soil Logs Non-hazardous Waste Manifests Laboratory Data Sheets Photographs Correspondence #### 1.0 INTRODUCTION The Property is located at 2547 East 27th Street, Oakland in Alameda County, California (*refer to Figure 1 – Topographic Map*). The Property was formerly occupied by a fuel and service station between 1927 and 1994. In 1994 the fuel and service station was demolished and the Property is currently unoccupied. A chain-link fence is present at the perimeter to secure the Property. The Property is periodically used for storage of building materials for nearby construction sites. The Property is located amongst single-and multiple- family residences. In 1994, one 100-gallon waste oil underground storage tank (UST) and four 500-gallon gasoline USTs were excavated and removed from the Property. The 500-gallon USTs reportedly contained gas and diesel. After the USTs were removed, the excavation pits were lined with visqueen plastic and backfilled with the excavated material. This report summarizes the activities conducted at the Property to date and presents the results of the soil excavation activities conducted in December 2006 and January 2007, following an ACHCSA approved Corrective Action Plan (CAP), dated June 28, 2006. The regulatory risk criteria utilized in this report are Environmental Screening Levels (ESLs) established by the San Francisco Bay Regional Water Quality Control Board (RWQCB) for residential sites where groundwater IS a potential or current drinking water source. #### 2.0 SITE CHARACTERISTICS # 2.1 Geologic/Hydrogeologic Setting Based upon geologic maps, the Property is underlain by Pleistocene alluvial fan deposits (Helley & Graymer, 1997). The Property lies at approximately 115 feet above mean sea level. The local topography slopes to the south, southeast. #### 2.2 Soil The soils on the Property consist of generally sandy gravel fill from the surface to four (4) feet below ground surface (bgs). From four (4) feet to twelve (12) feet bgs the soil appears to consist of silty clays. Between twelve (12) feet and fifteen (15) feet bgs the soil is generally gravel and sand with some clay. At depths greater than fifteen (15) feet to a depth of twenty-seven (27) feet bgs, the soils are primarily clay with some silts, sands, and gravels. Off-site soils are generally consistent with on-site soils. #### 2.3 Groundwater Groundwater has been encountered on the Property between approximately three (3) and fourteen (14) feet bgs. Groundwater elevations are generally within three (3) to five (5) feet of the ground surface. The variable groundwater elevations across the Property suggest the possibility of a perched groundwater lenses. The groundwater flow direction, based upon historic quarterly monitoring events by Ceres Associates, ranges from east-northeast to south-southeast, with an overall trend toward the southeast, with a gradient of 0.006 ft/ft. #### 3.0 PREVIOUS PROPERTY INVESTIGATIONS Several investigations and remedial actions have been conducted at the Property. The following section summarizes those investigations and actions. ## 3.1 Previous Soil and Groundwater Sampling Soil and groundwater contamination at the Property appears to have originated from historic uses of underground storage tanks for the purposes of storing gasoline and diesel fuel and waste oil *(refer to Figure 2 – Previous USTs and Developments)*. The Property has been the subject of several previous assessments, including: - Tank Removal Report, September 1994, Aqua Science Engineers - Phase I ESA, May 2001, M.L. River Group - Soil and Groundwater Sampling, August 2002, Kleinfelder - Soil and Groundwater Sampling, January 2005, Ceres Associates - Soil and Groundwater Sampling and Monitoring Well Installation, February 2006, Ceres Associates - Well
Survey, May 2006, Ceres Associates - Deeper Groundwater Sampling, October 2006, Ceres Associates - Quarterly Groundwater Monitoring, 2006 2007, Ceres Associates Based upon previous soil and groundwater sampling events at the Property, the following target compounds have been identified: | Compound | Abbreviation | | |--|--------------------|--| | Total Petroleum Hydrocarbons as Gasoline | TPHg | | | Total Petroleum Hydrocarbons as Diesel | TPHd | | | Total Petroleum Hydrocarbons as Motor | TPHmo/ho | | | Oil/Hydraulic Oil | | | | Benzene | | | | Toluene | Callactivaly DTEV | | | Ethylbenzene | Collectively, BTEX | | | Xylenes | | | ## 3.2 September 1994 Aqua Science Engineers - Tank Removal Report An Underground Storage Tank Removal Report, dated September 15, 1994, was prepared for the Property by Aqua Science Engineers, Inc. According to the report four 500-gallon and one 100-gallon steel underground storage tanks were removed form the Property on August 30 and 31, 1994 (refer to Figure 2 – Previous USTs and Developments. All four of the 500-gallon tanks were reported to have contained gasoline; the 100-gallon tank was reported to have contained waste oil. #### Soil Sample Results Soil samples collected from the bottom of the excavations indicated detectable concentrations of TPHg and BTEX (refer to Table 1: Soil Sampling during UST Removal – August 1994). Detectable concentrations of oil and grease were identified in the soil directly beneath the former waste oil tank. Concentrations ranged from a low of 0.2 mg/Kg to a high of 930 mg/Kg TPHg beneath the four former gasoline USTs. There were no detectable concentrations of petroleum hydrocarbons found beneath the former pump islands. Upon completion of the soil sample collection, the excavations were lined with visqueen plastic and backfilled immediately with the stockpiled material. According to the report, this re-filling was meant only as a temporary measure and this plan was verbally discussed at the time and approved by Barney Chan of the ACHCSA. #### Recommendations Aqua Science Engineers, Inc. recommendationed removal and stockpiling of the material that had been placed back into the excavations as temporary backfill; collecting samples and analyzing for profiling and acceptance into an off-site recycling facility, then off-hauling; over-excavating, stockpiling and sampling the residual contaminated soil; backfilling the excavation with clean, imported, compactable material to grade; and, conducting subsurface soil and groundwater investigations proscribed by local the regulatory agency. ## 3.3 May 2001 M.L. River Group - Phase I ESA A Phase I ESA report, dated May 10, 2001, was conducted for the Property by M.L. River Group Environmental Consultants. According to the report, the Property was first developed sometime between 1900 and 1920, and was operated as a gasoline and/or garage from 1927 through 1994. At the time of the report, the Property was vacant and no structures or building materials remained on the site. Neither hazardous materials nor electrical transformers were observed on the Property. However, the report did summarize the above referenced UST Removal Report, noting that soil sampling conducting during the UST removal indicated subsurface contamination. No further site study or remediation had been done at the Property between the time of the tank removal and the preparation of this Phase I ESA Report. The case had been referred to the Alameda County District Attorney's Office shortly before the Phase I ESA's publication. Prior to granting closure for the site, the ACHCSA reportedly required remediation of the contaminated soil and additional studies of the soil and groundwater. The Phase I ESA report concluded that "soil remediation and subsurface investigation of the Subject Site must be performed before redeveloping the Property". # 3.4 August 2002 Kleinfelder- Soil and Groundwater Sampling A Soil and Groundwater Sampling report, dated August 2, 2002, was prepared for the Property by Kleinfelder. The report cited the Phase I history noted above. Kleinfelder advanced three soil borings (EB-1, EB-2 and EB-3) on the Property on June 19, 2002 (refer to Figure 3 – Boring Location Map). At that time, monitoring wells were installed in each of the three borings. According to the boring logs (refer to Appendix for a copy of the boring logs), between two and five feet of screen was inserted into the borings and the remainder of the borings were backfilled with grout. These wells are no longer operational. #### Soil Sample Results According to the report, reported concentrations of TPHg, TPHd, TPHmo and BTEX compounds were detected in at least one of the soil samples collected from each soil boring exceeding regulatory action limits (refer to Table 2: Kleinfelder Soil and Groundwater Sampling - June 2002). TPHg was detected at 1,200 mg/Kg in EB-1 and 1,800 mg/Kg in EB-2. TPHd was detected at 650 mg/Kg in a soil sample collected from EB-1 and 1,500 mg/Kg in a soil sample collected from EB-2. TPHmo was detected in concentrations above laboratory reporting limits only in the soil sample from boring EB-1 at 14 mg/Kg. Further, the laboratory described the detected TPHg as strongly aged gasoline, and the TPHd was described as Stoddard solvent. A soil sample collected from EB-1 had reported concentrations of ethylbenzene at 1.6 mg/Kg, toluene at 0.62 mg/Kg, and xylenes of 3.3 mg/Kg. A soil sample collected from EB-2 had reported concentrations of ethylbenzene at 3.1 mg/Kg and xylenes at 4.9 mg/Kg. Concentrations of MTBE were not reported above the method reporting limit for any of the soil samples submitted for analysis. #### Groundwater Sample Results Groundwater samples were collected from each of the three groundwater monitoring wells. The groundwater samples reportedly to contained concentrations of TPH in each of the three groundwater wells. TPHd was reported in monitoring well EB-1 at a concentration of 56 micrograms per liter (μ g/L). The groundwater sample collected from monitoring well EB-2 was reported to contain TPHg at 82 μ g/L, TPHd at 360 μ g/L, and TPHmo at 310 μ g/L. A groundwater sample from monitoring well EB-3 reportedly contained concentrations of TPHd at 270 μ g/L and TPHmo at 540 μ g/L. Only EB-2 had reported concentrations of BTEX compounds. This well had concentrations of benzene at 0.97 μ g/L, toluene at 1.3 μ g/L, and xylenes at 1.3 μ g/L. Ethylbenzene and MTBE were not reported above their laboratory reporting limits. #### Recommendations Kleinfelder recommended conducting further soil and groundwater sampling to determine the extent of soil contamination and to confirm the groundwater results from their initial study. Kleinfelder suggested a program of shallow drilling in a grid pattern in order to help delineate the extent of the impacted soil and that additional groundwater samples be collected to further study the potential impacts to groundwater. # 3.5 January 2005 Ceres Associates - Soil and Groundwater Sampling To further access the extent of soil and groundwater impacts at the Property, Ceres Associates collected soil and groundwater samples on January 7, 2005 (project CA1264-1, dated January 28, 2005) (refer to Figure 3 – Boring Location Map). Ten (10) soil borings were drilled at the Property to a maximum depth of 10 feet bgs (labeled SB-1 through SB-10); soil samples were collected at five and 10 feet bgs from each boring. Additionally, grab groundwater samples were collected from soil borings SB-1 through SB-10, as well as from six hydro-punch® borings (labeled GW-1 through GW-6). Soil and grab groundwater samples were analyzed for TPHg, TPHd, BTEX, and MTBE (refer to Table 3: Ceres Associates Soil and Groundwater Sampling – January 2005). #### Soil Sample Results The only soil samples from five (5) feet bgs that were reported to contain concentrations of the target analytes above reporting limits were collected from soil boring SB-6, and had reported concentrations of benzene of 0.024 mg/Kg and ethylbenzene of 0.031 mg/Kg; and SB-9 which had reported concentrations of TPHg at 32 mg/Kg, TPHd at 52 mg/Kg, ethylbenzene at 0.017 mg/Kg and xylenes at 0.013 mg/Kg. The 10 foot bgs samples tended to have higher concentrations of the target analytes, although the 10 foot samples from SB-1, SB-2, and SB-8 were reported by the laboratory to not contain concentrations of the target analytes above their respective reporting limits. The highest concentrations of the target analytes were reported as 61 mg/Kg of TPHg (SB5-10), 46 mg/Kg of TPHd (SB5-10), 0.007 mg/Kg of benzene (SB5-10), 0.045 mg/Kg of ethylbenzene (SB5-10), and 0.027 mg/Kg of xylenes (SB5-10). The reported concentrations of the target analytes in the soil samples analyzed from soil borings SB-1 through SB-10 did not exceed regulatory action limits. #### **Groundwater Sample Results** Target analytes were reported above method reporting limits in all but one of the grab groundwater samples. Concentrations of TPHg were as high as 90,000 μ g/L (SB-9); 750,000 μ g/L for TPHd (SB-9); 140 μ g/L for benzene (SB-9); 1.5 μ g/L for toluene (SB-1: note, however, that the result for SB-9 was reported as ND<50); 77 μ g/L for ethylbenzene (SB-9); and 20 μ g/L for xylenes (SB-6: note, however, that the result for SB-9 was reported as ND<50). MTBE was not reported above the method limits in any grab groundwater samples. Benzene concentrations exceeded the regulatory limit of 1 μ g/L, set by the State of California Department of Health Services (CDHS) Maximum Contaminant Level (MCL). While the CDHS has not created MCLs for TPHg and TPHd, the RWQCB had established an ESL for both TPHg and TPHd of 100 μ g/L. #### **Recommendations** Based on these results, Ceres Associates recommended the installation of additional monitoring wells both on and off the Property to help
define the limits of contamination and to assess groundwater flow direction. This additional work was conducted in February 2006. # 3.6 February 2006 Ceres Associates - Soil and Groundwater Sampling Ceres Associates collected on and off-site soil and groundwater samples on February 16 and 17, 2006 (Ceres Associates Project # CA1264-3, dated February 28, 2006, revised July 2006). A total of 14 borings were advanced on and off the Property in an effort to confirm the concentrations of contaminants on the Property as well as assess off-site migration of target compounds (labeled SB-11 through SB-24). These borings were advanced to between 8 and 20 feet bgs (refer to Figure 3 – Boring Location Map). Soil samples were collected every two feet, and one grab groundwater sample was collected from each boring. Though all samples were submitted to the laboratory, only three soil samples and the one grab groundwater sample from each boring were analyzed for target compounds. The soil samples were chosen for analysis according to observed field conditions (odors, colorations, capillary fringe location, and PID readings). Samples were analyzed for TPHg, TPHd, TPHmo, TPHho, VOCs, and lead (refer to Table 4: Ceres Associates Soil and Groundwater Sampling – February 2006). #### **Groundwater Monitoring Well Installation** Additionally, Ceres Associates installed five groundwater monitoring wells (MW-1 through MW-5) and one extraction well that was intended for potential future remediation purposes (EX-1) (refer to Figure 4 – Monitoring Well Location Map). The groundwater monitoring wells were installed to 15 feet bgs, with screened intervals between 5 and 15 feet bgs (except for MW-2: installed to 8 feet bgs, with screened interval between 3 and 8 feet bgs). The extraction well was similarly installed to 15 feet bgs, with a screened interval between 5 and 15 feet bgs. #### Soil Sample Results Laboratory results indicated that target analyte concentrations in soil samples fell below the Residential ESL for TPHg and TPHd in all but two samples: SB12-14 at 250 mg/Kg of TPHg and SB21-12 at 490 mg/Kg of TPHd. Concentrations of TPHg in soil samples ranged from ND to 250 mg/Kg (SB12-14); concentrations of TPHd in soil samples ranged from ND to 490 (SB21-12); and, concentration of TPHho or TPHmo in soil samples ranged from ND to 38 mg/Kg (SB20-12). Concentrations of BTEX compounds were not reported by the laboratory above the method reporting limits, except for one sample (SB14-14) at 0.0074 mg/Kg. Other VOCs were not reported above the method reporting limits for submitted soil samples. Lead concentrations were reported by the laboratory to range from ND to 51 mg/Kg. #### **Groundwater Sample Results** Grab groundwater sampling results indicated that hydrocarbon affected groundwater was detected offsite, east of the Property, in most of the sample points advanced by Ceres Associates during this sampling event. Concentrations of TPHg above the method reporting limits were only reported in three grab groundwater samples: 1,500 μ g/L in SB-21 (on the Property), 74 μ g/L in SB-14 (east of the Property), and 51 μ g/L in SB-19 (south of the Property). However, points between these sample locations were not reported above ND. The highest concentrations of TPHd were reported off-site: SB-22 at 3,600 μ g/L, immediately south of the Property and SB-13 at 1,300 μ g/L, east of the Property. Onsite TPHd contamination was reported as high as 910 μ g/L at SB-21, located along the southern boundary of the Property. Samples further south and east of SB-21 were also reported above ND at concentrations exceeding the ESL for TPHd. Concentrations of TPHmo (motor oil and hydraulic oil) were detected both on and off-site (SB-13, SB-15, SB-17, SB-20, and SB-22). Concentrations of these target analytes were generally higher than the concentrations reported for TPHg or TPHd, with highest concentrations detected at 28,000 μ g/L of TPHmo in SB-22. Concentration of VOCs were not reported by the laboratory of their respective method reporting limits. Concentrations of lead were reported by the laboratory between ND and 17 μ g/L. Based on the results it was concluded that on-site contamination of petroleum hydrocarbons in groundwater had migrated off-site, down-gradient of the Property, in a generally easterly direction. Concentrations of petroleum hydrocarbons were reported above the ESL in groundwater samples collected as much as 100 feet down-gradient of the Property. The relatively high concentrations of petroleum hydrocarbons were not accompanied by high concentrations of BTEX compounds or fuel oxygenates. In fact, fuel oxygenates EDB and 1,2-DCA were reported as ND for all grab groundwater and soil samples submitted to the laboratory. Concentrations of BTEX compounds fell below the Maximum Contaminant Levels (MCLs) in all grab groundwater samples collected (SB-11 through SB-24). #### Monitoring Well Sample Results Samples were not collected from the monitoring wells during this sampling event; however, groundwater samples were collected as part of quarterly groundwater monitoring activities (see Quarterly Groundwater Monitoring Summary below for further information regarding the results of such sampling). #### Recommendations It was recommended that one deeper boring be advanced to 40 feet bgs to assess potential vertical contamination migration, preparing a corrective action plan, and preparing a risk assessment. This work was ultimately completed in October 2006. ## 3.7 May 2006 Ceres Associates - Well Survey Ceres Associates prepared a well survey, dated May 15, 2006 (Ceres Associates project CA1264-3). The ACHCSA requested that the well survey be conducted in a letter to Tomorrow Developed, dated October 3, 2005. The survey was conducted to locate groundwater wells within a 2,000-foot radius of the Property. Ceres Associates collected data from the State of California Department of Water Resources, the Alameda County Public Works Agency, and from the City of Oakland Public Works Department. A total of 19 wells were identified in the search area, generally located between 1,000 and 2,000 feet from the Property. The Property is located to the west of Sousal Creek; however, all of the wells identified within the search radius are located east of Sousal Creek. The report included figures and supporting documents regarding the identified wells. Recommendations were not made in the report, as the well survey was meant to compliment other on-going investigation reports. ### 3.8 October 2006 Ceres Associates - Deeper Groundwater Sampling Ceres Associates advanced one soil boring (SB25) on the Property to 27 feet bgs on September 20, 2006 (refer to Figure 3 – Boring Location Map). SB25 was placed in close proximity to extraction well EX-1. The sampling was done per the request by the ACHCSA in a letter dated May 18, 2006. The purpose of this boring was to assess soil statigraphy beneath the Property and to collect depth-discrete grab groundwater samples. Although the initial request by ACHCSA was to sample to 40 feet bgs, the Geoprobe® 6600 met with refusal at 27 feet bgs. Other attempts were made in nearby locations (still on the Property) to exceed this depth, however these attempts were unsuccessful and resulted in shallower borings. Continuous soil cores were collected during the advancement of SB-25 and analyzed in the field for potential depth-discrete groundwater sampling points. Based upon the soil data, depth-discrete sample locations were planned for 13 and 21 feet bgs. A hydro-punch was used to collect grab groundwater samples from these depth-discrete locations. The groundwater samples collected were submitted to the laboratory for analysis of TPHg, TPHd, TPHmo, MTBE, and BTEX constituents (refer to Table 5: Ceres Associates Deeper Groundwater Sampling – September 2006). Soil samples were not requested in the May 18,2006 letter from ACHCSA, so they were not collected. **Groundwater Sample Results** The results of the groundwater sampling indicated that only one concentration of target analytes was reported above the method reporting limits: 0.84 μ g/L of benzene at 21 feet bgs. This result falls below the Residential ESL of 1 μ g/L for benzene. Other sample analytes at both 13 and 21 feet bgs were not reported above the method reporting limits by the laboratory. The results of the deeper groundwater sampling were included in the quarterly monitoring report, dated October 27, 2006. # 3.9 August 2006 to April 2007 Ceres Associates - Quarterly Groundwater Monitoring Results Ceres Associates has monitored six groundwater monitoring wells on the Property (five groundwater monitoring and one extraction) since their installation in February 2006. Wells MW-1, MW-2, MW-3, MW-4, MW-5, and EX-1 have been sampled four times: August 2006, November 2006, January 2007, and April 2007 (refer to Figure 3 – Boring Location Map). These wells have been sampled using low-flow purging/sampling methods. Samples have been analyzed for various fuel and fuel related compounds, including TPHg, TPHd, TPHmo, MTBE, and BTEX using US EPA methods 8015 and 8021 (refer to Table 6: Ceres Associates Quarterly Groundwater Monitoring – August 2006 to April 2007). The ACHCSA requested additional compound analysis for samples collected during the Second Quarter 2007 sampling event (per the April 26, 2007 letter to Tomorrow Development) as follows: 1,2-dibromoethane(EDB), ethylene dichloride (EDC), MTBE, tert-amyl methyl ether (TAME), ethyl tert-butyl ether (ETBE), di-isopropyl ether (DIPE), Tertiary Butanol (TBA), chlorinated hydrocarbons, carbon tetrachloride, ethylene dichloride, methylene chloride, tetrachloroethane, trichloroethylene, and chloroform. These additional analytes were reported as ND by the laboratory for all groundwater samples submitted for analysis. Among the new compounds that were required by the ACHCSA during the Second
Quarter 2007, only chloroform was detected above the method reporting limits. The only "new" analytes detected were in MW-2 at a concentration of 23 μ g/L chloroform, 0.51 μ g/L of bromoform, 0.55 μ g/L of dichlorobromomethane, and 1.5 μ g/L of bromochloromethane. The source of VOCs in MW-2 is not known. MW-1, located between the Property and MW-2, did not have concentrations of these compounds above the method reporting limits. MW-2 is screened between 3 and 8 feet bgs, in an area of the soil horizon dominated by subsurface utility trenches and lines. It is possible that these minor VOC concentrations are a result of small spills and leaks associated with these utility lines, and not that of the Property. Based upon the four quarters of quarterly groundwater monitoring, elevated concentrations of target compounds in on-site groundwater are generally limited to monitoring well EX-1. Only the two wells closest to the Property, MW-1 and MW-2, have had groundwater sample results reported by the laboratory above the method reporting limits for target analytes TPHg, TPHd, TPHmo, ethylbenzene and xylenes. The highest concentrations of target analytes reported by the laboratory for quarterly groundwater monitoring are in EX-1 at 2,200 μ g/L of TPHg (exceeding the ESL of 100 μ g/L); 800 μ g/L of TPHd (exceeding the ESL of 100 μ g/L); 1.0 μ g/L of benzene; 3.9 μ g/L of ethylbenzene; and 3.2 μ g/L of xylenes. Concentrations of toluene and MTBE have not been reported in groundwater monitoring wells above the method reporting limits. Isoconcentration maps have not been generated for this site because of a lack of data points (no more than two data points are available for any given analyte and date). # 3.10 Summary of Identified Contaminants and Concentrations Based upon the above reported sampling events at the Property, the following maximum compound concentrations have been reported: | Compound | Maximum Soil | Maximum Soil | Maximum | Maximum | April 2007 | April 2007 | |--------------|-----------------|---------------|---------------|---------------|---------------|-------------| | Compound | Concentration | Concentration | Groundwater | Groundwater | Groundwater | Groundwater | | | | | | | | | | | (on-site) | (off-site) | Concentration | Concentration | sample | Sample | | | | | (on-site) | (off-site) | (on-site) | (off-site) | | | Milligrams/Kild | ogram (mg/Kg) | | Micrograms/ | ′Liter (μg/L) | | | TPHg | 1,800 | 250 | 90,000/2,200 | 74/ND | 1,000 | ND | | TPHd | 1,500 | 28 | 750,000/800 | 3,600/78 | 740 | 60 | | TPHmo/ho | 14 | 38 | ND/270 | 28,000/280 | ND | ND | | Benzene | 0.024 | ND | 140/1.0 | ND/ND | ND | ND | | Toluene | ND | ND | 1.5/ND | 1.4/ND | ND | ND | | Ethylbenzene | 0.045 | ND | 77/3.9 | ND/1.0 | 1.7 | ND | | Xylenes | 0.027 | 0.0075 | 20/3.2 | 1.7/2.0 | 2.4 | ND | 90,000/2,200 = Groundwater concentrations are reported as grab groundwater sample/quarterly monitoring sample ND = not detected above the method reporting limits #### 4.0 SOIL EXCAVATION AND CONFIRMATION SAMPLING When the former Property USTs were removed in 1994, soil contamination was observed and noted beneath the USTs and the product piping. At the time of the UST removal, soil samples were collected from beneath the former USTs and from the stockpiled soil from the excavation. The laboratory reported concentrations as high as 930 mg/Kg of TPHg, 2.2 mg/Kg of benzene, 2.2 mg/Kg of toluene, 2.7 mg/Kg of ethylbenzene, and 3.3 mg/Kg of xylenes. The stockpiled soil was apparently used as backfill material in the tank pit excavations on a temporary basis to support nearby structures (refer to Figure 5 – Planned Excavation Map, which includes a reference the historic excavation). Those structures have since been removed. ACHCSA requested that the contaminated backfill material be removed from the Property in a letter dated May 18, 2006. ACHCSA noted that "the purpose of the excavations is to remove residual contamination that poses a long-term potential for exposure and will be a long-term source of groundwater contamination." Ceres Associates prepared a Corrective Action Plan (CAP), dated June 28, 2006. The CAP noted that the removal of the soil used to backfill UST pits was the first step in remediating the Property. The extent of the excavation was to be assessed by use of a PID (until readings along the walls reached below 1 ppm), vertically by groundwater intrusion (or similar PID analysis), and a buffer of five-feet within monitoring wells. Confirmation sampling was to include two floor samples and one wall sample per excavation area for analysis of TPHg, TPHd, and BTEX compounds. If confirmation samples met Residential ESLs, the excavations were to be backfilled with clean imported soils. The ACHCSA approved the CAP, in a letter dated August 4, 2006, with several comments (refer to Appendix for a copy of the correspondence). With regard to the planned excavations, the ACHCSA requested that the excavation be extended beyond that identified by Ceres Associates to include areas under the 27th Street sidewalk and former pipe runs. Additionally, the agency requested that confirmation samples taken from the former waste oil UST excavation be analyzed for additional analytes [oil & grease, chlorinated hydrocarbons, 1,4-dioxane, EDB, EDC, MTBE, TAME, ETBE, DIPE, TBE, ethanol, LUFT 5 metals (cadmium, chromium, lead, nickel and zinc), polychlorinated biphenyls (PCBs), and polynuclear aromatic hydrocarbons(PNAs)]. #### 4.1 Excavation On December 1, 2006, excavation activities commenced at the Property. Ceres Associates contracted with ERRG, Inc., for excavation and off-haul services related to the Property. An excavation permit was not required by the City of Oakland, however parking lane closure permits were obtained by ERRG. After lane closure permits were approved, "No Parking" signs were posted along the edge of the Property, in accordance with the permits. Prior to field work the soil excavation boundaries were marked on the surface using a white, non-toxic paint. More than 48 hours prior to field work, Ceres Associates notified the Underground Service Alert (USA) of our work plans. The excavations were advanced using a small excavator, and was centered around the former USTs and associated piping (refer to Figure 5 – Planned Excavation Map). The excavations were labeled according to location and were completed to the following parameters (refer to Figure 5 – Planned Excavation Map): | Area | Description | |------|---| | I | Encompassed the northwestern section, adjacent to East 27th Street. The excavation pit is a rectangle approximately 18 feet (parallel to East 27th Street) by approximately eight feet. This excavation is centered on former UST excavation pits that were backfilled. The excavation was extended to 9.5 feet bgs. | | II | Encompasses the easternmost area of excavation, adjacent to 26th Ave. This area is a rectangle of approximately 15 feet by 15 feet, extending almost to former boring GW-3. The purpose of this area was to address former pipe runs associated with the former USTs. Additionally, approximately half way between the 26th Avenue and the former boring GW-3, an extension of the pit runs northwest (towards East 27th Street and connecting with Area I) so as to include the former pipe area. The excavation was extended to 9.5 feet bgs. | | III | This rectangular pit is located approximately in the middle of the Property. The rectangle measured approximately 10 feet wide and 15 feet in length (long-side paralleled 26 th Avenue). This excavation was centered on former soil boring EB-3. The excavation was extended to 9.5 feet bgs. | Ceres Associates utilized a photo-ionization detector (PID), using a standard headspace method analysis, to assess the effectiveness of affected soil removal along the horizontal and vertical boundaries of the excavation. The excavation was generally continued horizontally until the PID reading was below 1 ppm (refer to Table 7: Ceres Associates Initial PID readings during Excavation – December 2006). Originally, Area I and Area II were connected by a four foot wide channel, extending to approximately 9 feet bgs. However, the separating wall was removed after preliminary results of initial confirmation sampling indicated elevated hydrocarbon concentrations in the wall. Therefore, the area of sample II-9-W was removed entirely (to a depth of approximately 9.5 feet bgs). Additionally, the northwest corner of Area III was connected with the southwest corner of Area II, because the excavations were so close it made practical sense to remove a barrier (thereby increasing the efficiency of backfilling activities). By the completion of the excavation, the excavation areas were connected (refer to Figure 6 – Actual Excavation Map). Excavation areas were extended to a depth of approximately 9.5 feet bgs, where PID readings were measured at 0.0 ppm. A total of approximately 200 cubic yards of contaminated soil was excavated and removed from the Property by ERRG under Ceres Associates supervision (refer to Photographs 1 - 15, located in the Appendix - Property Photographs). During the excavation process, approximately one 5-foot section of ¾ inch PVC was observed; however, additional well materials or PVC was not encountered. It is likely that the PVC was a remnant of monitoring wells installed by Kleinfelder in 2002; however, other well
materials were not observed during the excavation process. According to the boring logs for these wells (EB-1, EB-2, and EB-3) between two and five feet of screen were inserted at the surface with the remainder of each boring being grouted [the logs indicate as much as one foot of sand pack was used]. Therefore, because the excavations extended to approximately 9.5 feet in these areas and the wells were only as deep as approximately 5 feet, the entirety of the three wells were removed by the excavation process. #### 4.2 Excavation Limitations The extent of each excavation was limited by necessary set-backs from adjacent surface features – for safety purposes – and Ceres Associates groundwater monitoring wells, specifically EX-1. The northeast wall of excavation Area I (represented by sample I-9-W) could not be feasibly excavated further northeast because it is adjacent to the public sidewalk of east 27th Street and several utility lines, and would have caused undermining and threatened the integrity of these adjoining features. PID readings taken of soil on the walls of this excavation were reported as 0 ppm. Ceres Associates had not obtained permission or appropriate permits to remove the public sidewalk to further excavation activities. The northwest wall of excavation Area I (represented by sample I-9-N) could not feasibly be excavated further northwest due to shallow groundwater intrusion at approximately 9.5 feet bgs, causing destabilization of the excavation wall. PID readings taken of soil on the walls of this excavation were reported as 0 ppm. ## 4.3 Stockpiled Soil Soil removed from the excavation pit was placed on the southwest portion of the Property on top of visqueen plastic sheeting. After each day's activities, the stockpiled soil was covered with additional layers of visqueen, in an effort to minimize potential impacts to non-impacted soils. The excavation pit was secured by a chain link fence around the Property. Ceres Associates collected a composite of the stockpiled soil that was generated during the excavation process to establish a soil profile for disposal. A total of approximately 396 tons of soil was excavated from the Property by Ceres Associates. Stockpiled soil was removed from the Property on January 22, 2007, and transported, under manifest, as non-hazardous waste to B&J Landfill, Vacaville, California (refer to Appendix for copies of non-hazardous waste manifests). Ceres Associates collected one four-point composite soil sample (Ceres Associates provided the laboratory with four samples, the laboratory performed the compositing prior to analysis) from the stockpiled soil and submitted the sample to McCampbell Analytical, a state-certified laboratory, for analysis of TPHg, TPHd, TPHmo, and BTEX using US EPA Methods 8015C and 8021B, as well as LUFT 5 metals. The results of that sampling are as follows: # Composite Sample of Stockpiled Soil (reported in milligrams per kilogram, mg/Kg) | Sample | TPHg | TPHd | TPHmo | Ethylbenzene | Xylenes | Chromium | Lead | Nickel | Zinc | |--------|------|------|-------|--------------|---------|----------|------|--------|------| | S-1-4 | 140 | 33 | 9.8 | 0.099 | 0.27 | 45 | 48 | 51 | 110 | The following analytes were not detected above the method reporting limits: Benzene, Toluene, and Cadmium. These data were submitted to the B&J Landfill for review. Based upon these data, the soil was accepted into the B&J Landfill in Vacaville, California. # 4.4 Soil Backfilling and Off Haul After the excavation was complete and confirmation soil samples were received, ERRG backfilled the excavation pits. Due to site access restraints this work occurred primarily on December 2 and 4, 2006, but an additional four truckloads were required on January 22, 2007 to complete the backfill work. The bottom approximately three feet of the fill consisted of quarry fines supplied by Curtner Quarry of Milpitas California. This material is the sifted, primarily mineral component from a rock quarry. According to the Curtner Quarry, the fines have a maximum diameter of 9.50 millimeters (0.375 inch), and have at least 50% under 0.3 millimeters (0.012 inches). The quarry fines were compacted using a back-hoe and a "sheeps-foot" compaction attachment on an excavator. The compacted material was then overlain with Mirafi 140N non-woven, polypropylene, 55 mil thickness, geo-textile fabric. The placement of the fabric creates a barrier so that the fill soil placed on top of will be less likely to subside. Clean fill soil from undeveloped land was also acquired from Curtner Quarry to fill the remaining portion of the excavation. The fill material was brought onto the Property, then spread out on top of the fabric. At approximately every 18 to 24 inches, the fill material was compacted in the same manner as described above for the quarry fines. A total of 380 tons of soil and base rock were brought on-site for backfill purposes. # 4.5 Initial Confirmation Sampling Ceres Associates collected confirmation soil samples from the walls of the excavation after the extent of the excavation had been reached on December 2, 2006. In July 2007, Ceres Associates collected additional samples from the area around the excavation areas. Soil samples were collected from along each wall of each excavation area by pressing laboratory provided glass jars into the sidewall of the excavation and then they were sealed a Teflon-lined cap and were labeled with a unique identification (refer to Figure 6 - Actual Excavation Map). Samples were placed on ice, pending delivery to McCampbell Analytical, a state-certified laboratory, as follows: #### **Laboratory Analysis Matrix: Initial Confirmation Sampling** | Sample | Depth Taken
(ft bgs) | Laboratory Analyses | |---------|-------------------------|---| | I-9-N | | | | I-9-W | | | | I-9-S | | | | I-9-E | | | | II-9-N | | | | II-9-W | 9 | TPHg, TPHd, TPHmo using US EPA Method 8015C | | II-9-S | 9 | BTEX using US EPA Method 8021B | | II-9-E | | | | III-9-N | | | | III-9-W | | | | III-9-S | | | | III-9-E | | | #### Rationale for sample submittal Ceres Associates continued the excavations horizontally until contaminated soils were no longer observed and the PID readings were below 1 mg/Kg. Samples were collected near the base of each wall near the mid-point of the length of the wall. The following table notes the PID readings recorded in the field at the full extent of the excavation (refer to Table 7: Ceres Associates Initial PID readings during Excavation – December 2006). PID readings were not reported above 0 ppm, except for two sample locations: the bottom of Excavation I at six feet bgs (227 ppm) and then again at eight feet bgs (114 ppm). This excavation was extended to nine and one-half feet bgs, where the PID ultimately read 0 ppm. #### Soil Sample Results Concentrations of TPHmo, MTBE, benzene, toluene, and ethylbenzene were reported as ND for all 12 samples submitted for analysis (refer to Table 8: Ceres Associates Initial Confirmation Soil Sampling – December 2006). Further, concentrations of TPHg, TPHd, and xylenes were reported as ND in those samples from excavation II and III, except for one sample in excavation II (sample II-9-W, discussed below). Those concentrations above the method reporting limits did not exceed the Residential ESL for TPHg and TPHd (no sample exceeded the ESL for xylenes) in samples I-9-E and I-9-S. Three samples did exceed the ESL for TPHg and TPHd: I-9-W, I-9-N, and II-9-W. In these samples, concentrations of TPHg ranged from 400 to 600 mg/Kg and concentrations of TPHd ranged from 81 to 420 mg/Kg. The area of sample II-9-W was excavated – after the sample was collected – as part of the final excavation activities associated with the removal of historically impacted soils. #### 4.6 Subsequent Soil Sampling After initial confirmation sample results were received, the excavations were backfilled. However, the scope of confirmation sampling did not comply with the CAP. In a letter dated April 26, 2007, from ACHCSA, additional soil sampling was requested. The following summarizes the scope and results of the additional soil sampling. To address ACHCSA concerns, additional soil samples were collected using a direct-push sampling rig (Geoprobe®) on June 25th, 2007 (refer to Figure 6 – Actual Excavation Map). Ceres Associates advanced a total of eight soil borings to a total depth of approximately 10 feet below ground surface (labeled CS-1 through CS-8). The locations of the borings are described below (refer to Appendix for copies of boring logs): | Boring | Location | |--------|---| | CS-1 | Outside northwest wall of excavation Area III | | CS-2 | Outside southeast wall of excavation Area III | | CS-3 | Outside northeast wall of excavation Area III | | CS-4 | Outside southwest wall of excavation Area III | | CS-5 | Adjacent to northwest wall of excavation Area I | | CS-6 | Near center of Excavation Area III | | CS-7 | Near center of Excavation Area II | | CS-8 | Near center of Excavation Area I | Soil borings were not advanced into the sidewalk because the City of Oakland does not permit such borings. Further, borings were not advanced into the street, because prior boring locations in the street were sufficient for contamination delineation purposes. Soil samples were then collected in acetate sample tubes installed inside the sample sleeve. After the rod assembly was hydraulically extended to the target sample depth, the sample sleeve was retrieved to ground surface and the acetate sample tube containing soil from the appropriate sample interval was capped with Teflon®-lined plastic end caps, labeled, placed in a Ziplock® bag, and stored in a chest cooled with crushed ice. Samples were placed on ice, pending delivery to McCampbell Analytical, a state-certified laboratory, for analysis as requested by the ACHCSA in their April 26, 2007
letter: **Laboratory Analysis Matrix: Subsequent Soil Sampling** | Boring | Samples | Samples | Laboratory Analyses | |--------|-----------------|--------------|--| | | Collected | Submitted | | | | | for Analysis | | | CS-1 | 2.5; 5.0; 7.5; | 5.0 and 10.0 | TPHg, TPHd, TPHmo using US EPA Method 8015C | | | and 10.0 ft bgs | ft bgs | Total Petroleum Oil & Grease using US EPA Method 9071B | | CS-2 | 2.5; 5.0; 7.5; | 5.0 and 10.0 | PCBs using US EPA Method 8082A | | | and 10.0 ft bgs | ft bgs | PNAs/PAHs using US EPA Method 8270C | | CS-3 | 2.5; 5.0; 7.5; | 5.0 and 10.0 | VOCs using US EPA Method 8260B | | | and 10.0 ft bgs | ft bgs | LUFT 5 Metals using US EPA Method 6010C | | CS-4 | 2.5; 5.0; 7.5; | 5.0 and 10.0 | 1,4-dioxane using US EPA Method 8260B | | | and 10.0 ft bgs | ft bgs | | |------|-----------------|--------------|---| | CS-5 | 2.5; 5.0; 7.5; | 5.0 and 10.0 | | | | and 10.0 ft bgs | ft bgs | | | CS-6 | 10.0 ft bgs | 10.0 ft bgs | | | CS-7 | 10.0 ft bgs | 10.0 ft bgs | TPHg, TPHd, TPHmo using US EPA Method 8015C | | CS-8 | 10.0 ft bgs | 10.0 ft bgs | BTEX using US EPA Method 8260B | ^{*}Samples were not saturated. #### Field Screening In addition to collecting samples for analysis, small amounts of each sample depth were placed into a Ziplock® bag and allowed to heat in the sun to encourage volatilization. Using a standard headspace method, Ceres Associates used a Thermo 580 PID to record volatile organic compound concentrations in each bag (refer to Table 9: Ceres Associates Additional Soil Sampling PID readings – June 2005). ## Rational for sample submittal Ceres Associates submitted the 5 and 10 foot samples from the outer walls/bottom of excavation Area III and outer wall of excavation Area I for analysis. Although varying PID readings were measured across the sample range, PID readings associated with sample collection were not significantly differentiated; therefore, PID readings were not used to determining sample submittal. This schematic provided two vertical data points per wall boring, including a sample that would have been at the deepest extent of the borings near 10 feet bgs, and one near the mid-point of excavation at 5 feet bgs. Additionally, Ceres Associates collected a sample from approximately 10 feet bgs from excavation Areas I and II, to further assess soil conditions below the depths of the excavation. #### Soil Sample Results Concentrations of TPHg, TPHd, and BTEX were reported as ND for all samples submitted for analysis (refer to Table 10: Ceres Associates Additional Soil Sampling – June 2007). Additionally, concentrations of PCBs, PNAs, PAHs, 1,4-Dioxane, cadmium, and total oil and grease were not detected in any of the soil samples submitted for analysis. Concentrations of TPHmo were only reported in one sample – CS4-5 – at 5.9 mg/Kg. Concentrations of TPHmo and LUFT 5 metals were reported below the Residential ESL. #### 5.0 SUMMARY AND CONCLUSIONS Four USTs were removed from the Property in 1994, and at that time contaminated soil was placed back into the excavation as backfill material. Additional subsurface investigations revealed impacted soil and groundwater. At the direction of the ACHCSA, a CAP was prepared to remove the contaminated soil and replace with imported fill materials. Excavation activities to remove the contaminated backfill materials were completed on December 1 and 2, 2006. A total of approximately 200 cubic yards of contaminated soil was excavated and removed from the Property. This soil was considered a source of contamination at the Property due to the presence of petroleum hydrocarbons. The excavation removed affected soils in all three excavations, with the exception of two sidewalls in excavation I. Laboratory sample results from the excavations were reported below the ESL for target compounds in those remaining sidewalls of excavation area II and III. Two confirmation samples indicated concentrations of target compounds above the ESLs remain in place (an additional soil sample was reported above the ESL – II-9-W – however, this sample area was removed as part of ongoing excavation activities on December 2, 2006). Concentrations of TPHg were reported at 450 mg/Kg in sample I-9-W, at 600 mg/Kg in sample I-9-N, and at 400 mg/Kg in sample II-9-W. Further, concentrations of TPHd were reported at 420 mg/Kg in sample I-9-N and at 180 mg/Kg in sample II-9-W. These concentrations exceed the ESL of 100 mg/Kg. Other samples and/or analytes were not reported above the ESL. Further excavation at the Property was not feasible given site constraints. The sidewall area of sample I-9-W could not feasibly be excavated further because it is adjacent to the public sidewalk of east 27th Street, and would have caused undermining; and, the sidewall area of sample I-9-N could not feasibly be excavated further due to shallow groundwater intrusion issues and stabilization of the excavation wall. #### Horizontal Delineation Sampling Residual contamination beneath the sidewalk, in the area of I-9-W, is not anticipated to further impact the Property. Additionally, residual contamination identified in sample I-9-N, from the northwest edge of excavation Area I, is limited. While the ACHCSA was not notified of the limitation on the extent of this portion of the excavation, it is not anticipated that this residual material will pose a significant health risk. Historical sampling along with more current confirmation sampling did not indicate significant residual contaminant concentrations in this area. Soil boring SB-10, advanced in January 2005, was located in close proximity to the northwest edge of the Excavation Area I and is representative of the soils in the area of sample I-9-N. The sample collected at five feet bgs and the sample collected at 10 feet bgs from SB-10 were reported by the laboratory as ND for TPHg, TPHd, and BTEX. Further, Ceres Associates advanced one soil boring, CS-5, near to the excavation wall associated with sample I-9-N. The sample collected at five feet bgs and the sample collected at 10 feet bgs from CS5 were reported by the laboratory as ND for TPHg, TPHd, TPHmo, and BTEX constituents. Concentrations of target compounds were reported as ND in the groundwater sample collected from MW-2 (located down-gradient of this area) during the April 2007 quarterly groundwater monitoring sampling event. It appears that the extent of excavation Area I was sufficient to effectively remove the affected material. #### Vertical Delineation Sampling Each excavation was extended to between 9.5 feet bgs. For each excavation area, one confirmation soil sample (conducted as part of the subsequent soil sampling) was collected at approximately 10 feet bgs from near the center of each excavation, in undisturbed soil (not imported fill materials). These samples were meant to reflect the "floor" of the December 2006 excavations. According to the laboratory, target analytes [TPHg, TPHd, TPHmo, and BTEX] were not reported above the method reporting limits for these samples. It would appear that the vertical extent the excavations was sufficient for effective source removal. The concern of the ACHCSA in reviewing the contamination at the site appeared to center around the contaminated soil from historic backfilling. It appears that the majority of that contaminated soil was removed and off-hauled during the excavation. Soil sampling indicates that affected soil remains in the northern portion of the Property. The extent of this affected soil appears to be limited and will not significantly impact groundwater beneath the site. As indicated in the April 26, 2007 letter from the ACHCSA, removal of this soil is not required at this time. #### Former Waste Oil Area In complying with the ACHCSA requests for sampling parameters of the outer walls of the excavation Area III, the laboratory analyzed the samples submitted from CS1 through CS4 (the 5 and 10-foot sample for each boring) for oil and grease, chlorinated hydrocarbons, 1,4-dioxane, EDB, EDC, MTBE, TAME, ETBE, DIPE, TBE, ethanol, LUFT 5 metals, PCBs, and PNAs. The laboratory did not report concentrations above the method reporting limits for the specified analytes, except for 5.9 mg/Kg of TPHmo at 5 feet bgs in CS-4 (the southwest wall of excavation Area III). This concentration is below the Residential ESL of 500 mg/Kg for TPHmo. It would appear that the removal of source material in this area was effective and sufficient. #### **Residual Contamination** Concentrations of BTEX compounds were not reported above the method reporting limits during initial confirmation sampling, except for xylenes at a maximum concentration of 1.1 mg/Kg. This concentration falls below the ESL of 2.3 mg/Kg. Petroleum hydrocarbons were limited to TPHg and TPHd. Although two samples were identified above the ESL of 100 mg/Kg during initial confirmation sampling, the maximum concentrations reported were 600 mg/Kg for TPHg (I-9-N) and 420 mg/Kg of TPHd (I-9-W). Further, additional confirmation sampling as well as prior sampling in the area of one of these samples (I-9-N) did not indicate these target analytes above the method reporting limits. The area of I-9-W is adjacent to an impervious surface in the form of a sidewalk and roadway. Although petroleum hydrocarbons were identified at slightly elevated concentrations, the more volatile compounds (BTEX compounds) were not identified above the ESLs. Further concentrations of target compounds are not thought to pose a significant soil vapor intrusion risk to future buildings on the Property, based upon a comparison of soil and groundwater concentrations reported on-site to published screening levels (see Appendix for Regulatory Risk Criteria). It is also anticipated that any residual contaminants will naturally attenuate over time to concentrations below the ESLs. Concentrations of target analytes in
groundwater monitoring wells are anticipated to decrease because of the removal of this source material and because of on-going natural attenuation. Continued groundwater monitoring will provide concentrations of contaminants in groundwater. A well survey already completed for the Property did not identify nearby sensitive site receptors that would be thought to have been impacted by the Property (refer to Well Survey, 2547 East 27th Street, Oakland, California, May 17, 2006). It is anticipated that the area of affected groundwater from the Property will stabilize and recede as natural attenuation processes reduce residual contaminants. # 6.0 RECOMMENDATIONS Ceres Associates recommends continuing quarterly groundwater sampling at the Property to assess the effectiveness of the remediation. #### 7.0 PROPERTY RE-USE Regarding site use, although the TPHg and TPHd concentrations exceed the ESL in two of the samples (450 and 81 mg/Kg in I-9-W and 600 and 420 mg/Kg in I-9-N, respectively), the other nine samples from around the remainder of the site were all below the ESL (with seven of those being below the detection limits). Further, subsequent soil sampling across the Property did not reveal residual contamination (samples from CS1 through CS8) above the ESLs. The planned construction is residential, slab-on-grade with no basement or below grade enclosed parking structure In addition to the over-excavation and placement of clean fill, this should provide sufficient separation from the little residual hydrocarbons remaining in the soil. The only two samples exhibiting volatile organic hydrocarbons contained only xylenes; the concentrations in both samples were below the ESL for xylenes. Upward migration of volatile vapors from these very low concentrations, with the sub-grade soils and planned building construction discussed above, is unlikely to produce detectable concentrations in the structures Based upon a preliminary layout for the two single family residences planned for the site (refer to Appendix for copy of Preliminary Site Map), it appears that both EX-1 and MW-5 will be accessible after construction. The construction of the buildings are anticipated to include a 10 foot set back on all sites of the Property, which will be used for landscaping, driveways, and sidewalks. Any potential affected soil that is encountered will be excavated and confirmation soil samples will be collected and analyzed for TPHg, TPHd, TPHmo, and BTEX. The excavation will then be backfilled with clean materials. ACHCSA will be notified of the sampling results prior to backfilling and will be apprised of the development schedule of the Property. # 8.0 LIMITATIONS This investigation was conducted according to accepted industry standards and guidelines for similar investigations conducted in this geographic region at this time. In today's technology, no amount of assessment can certify that the Property is completely free of environmental concern. It is possible undocumented or concealed conditions of the Property could exist beyond what was found during this investigation. This report does not cover any Property conditions beyond the date the work was conducted. | Figures | | |---------|--| | | | 1 inch equals 2000 feet Map Taken From: United States Geological Survey 7.5 Minute Topographic Series Oakland East, California Quadrangle Former Gasoline Station 2547 East 27th Street Oakland, California TOPOGRAPHIC MAP FIGURE 1 Table 1: Soil Sampling During UST Removal - August 1994 Sampling Dates: August 30 and 31, 1994 ## Soil Sample Results | | | TPHg | TPHd | Benzene | Toluene | Ethylbenzene | Xylenes | Oil & Grease | |--|---------------------------|--------|-------|--------------------|-------------------|-------------------|----------|--------------| | ESL (Table A-1): Residential Site, shallow soils, where Groundwater IS a current or potential source of drinking water | | 100 | 100 | 0.044 | 2.9 | 3.3 | 2.3 | 500 | | Sample | Sample Location* | | conce | entrations are rep | oorted in milligr | ams per kilogram, | mg/Kg | | | 1 | Fill end of UST-A | 390 | | 0.17 | 0.35 | 0.63 | 0.76 | | | 2 | Between UST-A and UST-B | 5.4 | | 0.03 | 0.01 | 0.03 | 0.02 | | | 3 | Fill end of UST-B | 930 | | 2.2 | 2.2 | 2.7 | 3.3 | | | 4 | Fill end of UST-C | 0.2 | NA | ND<0.005 | ND<0.005 | ND<0.005 | ND<0.005 | NA | | 5 | Fill end of UST-D | ND<0.2 | | ND<0.005 | ND<0.005 | ND<0.005 | ND<0.005 | | | 6 | Beneath South Pump Island | 1 | | ND<0.1 | ND<0.1 | ND<0.1 | ND<0.1 | | | 7 | Beneath North Pump Island | 110 | | ND<0.005 | ND<0.005 | ND<0.005 | ND<0.005 | | | 8 | Fill end of UST-E | 1.1 | ND<10 | ND<0.005 | ND<0.005 | ND<0.005 | ND<0.005 | 170 | | STKP-East | Stockpiled soil | 750 | NIA | 0.36 | 0.66 | 1.4 | 1.8 | NA | | STKP-West | Stockpiled soil | 860 | NA | ND<0.005 | 0.72 | 1.9 | 2.1 | INA | ## **Abbreviations and Notes** TPHg total petroleum hydrocarbons as gasoline using US EPA method 8015C total petroleum hydrocarbons as diesel using US EPA method 8015C * Sample locations provided by UST Removal report, dated September 1994, by Aqua Science Engineers ESL Environmental Screening Limit, published by San Francisco Bay Regional Water Quality Control Board (Feb. 2005) ND not detected below the method reporting limit ND < X not detected below an increased method reporting limit (see lab sheets for further details) NA not analyzed Table 2: Kleinfelder Soil and Groundwater Sampling - June 2002 Sampling Dates: June 19, 2002 #### Soil Sample Results | | TPHg | TPHd | TPHmo | Benzene | Toluene | Ethylbenzene | Xylenes | MTBE | Lead | |---|--------------|-----------------|-----------------|---------------|--------------|----------------------|----------|--------|------| | ESL (Table A-1): Residential Site,
shallow soils, where Groundwater
IS a current or potential source of
drinking water | 100 | 100 | 500 | 0.044 | 2.9 | 3.3 | 2.3 | 0.023 | 150 | | Boring | | | concen | trations repo | orted as mil | ligrams per kilograi | m, mg/Kg | | | | EB-1 @ 4.5 ft bgs | 1200 | 650 | 14 | ,
ND<0.5 | 0.62 | 1.6 | 3.3 | ND<5.0 | 24 | | EB-2 @ 5.5 ft bgs | 1800 | 1500 | ND<500 | ND<1 | ND<1 | 3.1 | 4.9 | ND<10 | 4.4 | | EB-3 @ 4 ft bgs | ND | ND | ND | ND | 0.0054 | ND | ND | ND | 3.8 | | | | | | | | ample Results | | | | | | TPHg | TPHd | TPHmo | Benzene | Toluene | Ethylbenzene | Xylenes | MTBE | Lead | | ESL (Table F-1a): Groundwater IS
a current or potential source of
drinking water | 100 | 100 | 100 | 1 | 40 | 30 | 20 | 5 | 2.5 | | ESL (Table E-1a): Potential Vapor
Intrusion; High Permeability Soils,
Residential Use | use soil gas | use soil
gas | use soil
gas | 540 | 380,000 | 170,000 | 160,000 | 24,000 | NE | | Boring | | | conce | entrations re | eported as r | nicrograms per lite | r, μg/L | | | | EB-1 | ND | 56 | ND | EB-2 | 82 | 360 | 310 | 0.97 | 1.3 | ND | 1.3 | ND | ND | | LD Z | 02 | 300 | 310 | 0.97 | 1.3 | ND | 1.3 | ND | IND | ## **Abbreviations and Notes** TPHg total petroleum hydrocarbons as gasoline using US EPA method 8015C TPHd total petroleum hydrocarbons as diesel using US EPA method 8015C TPHmo total petroleum hydrocarbons as motor oil using US EPA method 8015C MTBE methyl tertiary butyl ether using US EPA method 8260B and/or 8021B ESL Environmental Screening Limit, published by San Francisco Bay Regional Water Quality Control Board (Feb. 2005) NA not analyzed ND not detected below the method reporting limit ND < X not detected below an increased method reporting limit (see lab sheets for further details) NE no established value Table 3: Ceres Associates Soil and Groundwater Sampling - January 2005 Sampling Dates: January 7, 2005 #### Soil Sample Results | | TPHg | TPHd | Benzene | Toluene | Ethylbenzene | Xylenes | MTBE | |-------------------------------------|------|------|-------------------|----------------|---------------------|---------|---------| | ESL (Table A-1): Residential Site, | | | | | | | | | shallow soils, where Groundwater IS | 100 | 100 | 0.044 | 2.9 | 3.3 | 2.3 | 0.023 | | a current or potential source of | 100 | 100 | 0.044 | 2.3 | 5.5 | 2.5 | 0.023 | | drinking water | | | | | | | | | Sample | | conc | entrations report | ed as milligra | ms per kilogram, mg | g/Kg | | | SB1-5 | ND | SB1-10 | ND | SB2-5 | ND | SB2-10 | ND | SB3-5 | 1.5 | ND | ND | ND | ND | ND | ND | | SB3-10 | 3.8 | 2.3 | ND | ND | ND | ND | ND | | SB4-5 | ND | SB4-8 | 32 | 10 | ND | ND | 0.034 | 0.011 | ND | | SB5-5 | ND | SB5-10 | 61 | 46 | 0.007 | ND | 0.045 | 0.027 | ND | | SB6-5 | ND | SB6-10 | 41 | 35 | 0.024 | ND | 0.031 | ND | ND<0.10 | | SB7-5 | ND | SB7-10 | 2.3 | 1.5 | ND | ND | ND | ND | ND | | SB8-5 | ND | SB8-10 | ND | SB9-5 | 32 | 52 | ND | ND | 0.017 | 0.013 | ND | | SB9-10 | 1.5 | 6.6 | ND | ND | ND | ND | ND | | SB10-5 | ND | SB10-10 | ND | | | | | | | | | #### Groundwater Sample Results | | TPHg | TPHd | Benzene | Toluene | Ethylbenzene | Xylenes | MTBE | |-------------------------------------|--------------|--------------|---------|---------|----------------------|---------|--------| | ESL (Table F-1a): Groundwater IS a | | | | | | | | | current or potential source of | 100 | 100 | 1 | 40 | 30 | 20 | 5 | | drinking water | | | | | | | | | ESL (Table E-1a): Potential Vapor | | | | | | | | | Intrusion; High Permeability Soils, | use soil gas | use soil gas | 540 | 380,000 | 170,000 | 160,000 | 24,000 | | Residential Use | | | | | | | | | Sample | | | | | ograms per liter, μg | | | | SB1 GW | ND | ND | 1.3 | 1.5 | ND | 0.69 | ND | | SB2 GW | ND | SB3 GW | 11,000 | 42,000 | ND<5.0 | ND<5.0 | 8.2 | ND<5.0 | ND<50 | | SB4 GW | 4,600 | 24,000 | ND<2.5 | ND<2.5 | 4.1 | 3.8 | ND<25 | | SB5 GW | 6,000 | 12,000 | 6.8 | ND<2.5 | 4.2 | 5.8 | ND<25 | | SB6 GW | 35,000 |
560,000 | 83 | ND<10 | 34 | 20 | ND<100 | | SB7 GW | 21,000 | 250,000 | 21 | ND<10 | 19 | ND<10 | ND<100 | | SB8 GW | 1,000 | 3,900 | ND | ND | ND | 1.1 | ND | | SB9 GW | 90,000 | 750,000 | 140 | ND<50 | 77 | ND<50 | ND<500 | | SB10 GW | 600 | 1,300 | ND | ND | ND | 0.7 | ND | | GW1 | 1,600 | 2,500 | ND | ND | 0.95 | 0.81 | ND | | GW2 | 830 | 620 | ND | ND | 0.72 | ND | ND | | GW3 | ND | NA | 1 | 0.51 | ND | ND | ND | | GW4 | ND | ND | 0.66 | ND | ND | ND | ND | | GW5 | 1,900 | 2,300 | 4.3 | ND | 1.7 | 1.3 | ND | | GW6 | 3,900 | 7,600 | 1.2 | ND | 2.3 | 2.6 | ND | #### Abbreviations and Notes total petroleum hydrocarbons as gasoline using US EPA method 8015C total petroleum hydrocarbons as diesel using US EPA method 8015C methyl tertiary butyl ether using US EPA method 8021B TPHg TPHd MTBE Environmental Screening Limit, published by San Francisco Bay Regional Water Quality Control Board (Feb. 2005) ESL NA not analyzed not detected below the method reporting limit ND not detected below an increased method reporting limit (see lab sheets for further details) ND < X Table 4: Ceres Associates Soil and Groundwater Sampling - February 2006 2547 East 27th Street, Oakland, California February 16 and 17, 2006 Site: Sampling Dates: ## Soil Sample Results | | our dample results | | | | | | | | | | |---------------------------|--------------------|------|-------|----------|-------------------|---------------------------|-----------|---------|---------------|------| | | TPHg | TPHd | TPHmo | Benzene | Toluene | Ethylbenzene | Xylenes | EDB | 1,2-DCA | Lead | | ESL (Table A-1): | | | | | | | | | | | | Residential Site, shallow | | | | | | | | | | | | soils, where Groundwater | 100 | 100 | 500 | 0.044 | 2.9 | 3.3 | 2.3 | 0.00033 | 0.0045 | 150 | | IS a current or potential | | | | | | | | | | | | source of drinking water | | | | | | | | | | | | Sample | | | | aanaan | trationa rapartas | d in milligrams per kilog | rom ma/Ka | | | | | SB11-06 | ND 7.6 | | SB11-08 | ND 7.0 | | SB11-10 | ND 5.9 | | SB12-08 | ND 8.8 | | SB12-12 | ND | SB12-14 | 250 | 28 | ND | ND<0.025 | ND<0.025 | ND<0.025 | ND<0.025 | | ND<0.025 | 6.2 | | SB13-04 | ND | 1.1 | ND 7.1 | | SB13-06 | ND | 1.3 | 5.1 | ND | ND | ND | ND | ND | ND | 6.3 | | SB13-08 | ND | 4.2 | 16 | ND | ND | ND | ND | ND | ND | 16 | | SB14-06 | ND | 1.2 | ND 10 | | SB14-08 | ND 10 | | SB14-14 | ND | 2.1 | ND | ND | ND | ND | 0.0075 | ND | ND | 9.1 | | SB15-08 | ND 7.9 | | SB15-12 | ND | 3.1 | 17 | ND | ND | ND | ND | ND | ND | 7.5 | | SB15-14 | ND 7 | | SB16-08 | ND 10 | | SB16-12 | ND 8.7 | | SB16-14 | ND 7.8 | | SB17-08 | ND 7.2 | | SB17-12 | ND 9.8 | | SB17-14 | ND 9.9 | | SB18-08 | ND 14 | | SB18-12 | ND 7.5 | | SB18-14 | ND | SB19-08 | ND 6.6 | | SB19-12 | ND 6.6 | | SB19-14 | ND 10 | | SB20-02 | ND | 1.1 | ND 12 | | SB20-08 | 3.6 | 14 | ND 7 | | SB20-12 | 5.1 | 12 | 38 | ND | SB20-14 | ND 11 | | SB21-02 | ND | 1.4 | ND 51 | | SB21-05 | ND 16 | | SB21-08 | ND | 1.4 | ND 5.9 | | SB21-10 | ND | ND | ND | ND
ND | ND | ND | ND | ND | ND
ND 0.40 | 6.5 | | SB21-12 | 18 | 490 | ND | ND<0.10 | ND<0.10 | ND<0.10 | ND<0.10 | ND<0.10 | ND<0.10 | 5.5 | | SB21-14 | ND | 2.1 | ND 12 | | SB22-08 | ND 5.6 | | SB22-12 | ND 5.2 | | SB22-14 | ND |---------|----|----|----|----|----|----|----|----|----|-----| | SB23-08 | ND | SB23-12 | ND 17 | | SB23-14 | ND 8.1 | | SB24-08 | ND 9.1 | | SB24-12 | ND 5.1 | | SB24-14 | ND 6.1 | ## **Groundwater Sample Results** | | TPHg | TPHd | TPHmo | Benzene | Toluene | Ethylbenzene | Xylenes | EDB | 1,2-DCA | Lead | |--|-----------------|-----------------|-----------------|---------|------------------|-------------------------|------------|------|---------|------| | ESL (Table F-1a):
Groundwater IS a current
or potential source of
drinking water | 100 | 100 | 100 | 1 | 40 | 30 | 20 | 0.05 | 0.5 | 2.5 | | ESL (Table E-1a):
Potential Vapor Intrusion;
High Permeability Soils,
Residential Use | use soil
gas | use soil
gas | use soil
gas | 540 | 380,000 | 170,000 | 160,000 | 150 | 200 | NE | | Sample | | | | conce | entrations repor | ted in micrograms per l | iter, μg/L | | | | | SB11-GW | ND | 150 | 730 | ND | ND | ND | ND | ND | ND | 29 | | SB12-GW | ND | SB13-GW | ND | 1300 | 7900 | ND | SB14-GW | 74 | 190 | 400 | ND | ND | ND | 1.7 | ND | ND | 19 | | SB15-GW | ND | 790 | 4900 | ND | ND | ND | ND | ND | ND | 19 | | SB16-GW | ND | ND | 310 | ND | SB17-GW | ND | ND | ND | ND | 1.4 | ND | 0.51 | ND | ND | 2.4 | | SB18-GW | ND | 470 | 2300 | ND | ND | ND | ND | ND | ND | 17 | | SB19-GW | 51 | 89 | ND 2.5 | | SB20-GW | ND | 280 | 2200 | ND | ND | ND | ND | ND | ND | 18 | | SB21-GW | 1500 | 910 | ND | ND | ND | 1.3 | 1.8 | ND | ND | 16 | | SB22-GW | ND | 3600 | 28000 | ND | ND | ND | ND | ND | ND | 19 | | SB23-GW | ND 13 | | SB24-GW | ND 10 | ## **Abbreviations and Notes** TPHg total petroleum hydrocarbons as gasoline using US EPA method 8015C TPHd total petroleum hydrocarbons as diesel using US EPA method 8015C TPHmo total petroleum hydrocarbons as motor oil using US EPA method 8015C MTBE methyl tertiary butyl ether using US EPA method 8260B and/or 8021B TPH hydraulic oil was reported as the same as TPHmo, therefore only TPHmo is reported here ESL Environmental Screening Limit, published by San Francisco Bay Regional Water Quality Control Board (Feb. 2005) NA not analyzed ND not detected below the method reporting limit ND < X not detected below an increased method reporting limit (see lab sheets for further details) NE not established Table 5: Ceres Associates Deeper Groundwater Sampling - September 2006 Sampling Dates: September 20, 2006 | | TPHg | TPHd | TPHmo | Benzene | Toluene | Ethylbenzene | Xylenes | MTBE | |---|-----------------|-----------------|-----------------|---------------|---------------|----------------------|---------|--------| | ESL (Table F-1a): Groundwater IS a current or potential source of drinking water | 100 | 100 | 100 | 1 | 40 | 30 | 20 | 5 | | ESL (Table E-1a): Potential Vapor
Intrusion; High Permeability Soils,
Residential Use | use soil
gas | use soil
gas | use soil
gas | 540 | 380,000 | 170,000 | 160,000 | 24,000 | | Target Depth | | | Concent | rations repor | ted as microg | rams per liter, μg/L | | | | 13 ft bgs | ND | 21 ft bgs | ND | ND | ND | 0.84 | ND | ND | ND | ND | ## **Abbreviations and Notes** TPHg total petroleum hydrocarbons as gasoline using US EPA method 8015C TPHd total petroleum hydrocarbons as diesel using US EPA method 8015C TPHmo total petroleum hydrocarbons as motor oil using US EPA method 8015C MTBE methyl tertiary butyl ether using US EPA method 8260B and/or 8021B ESL Environmental Screening Limit, published by San Francisco Bay Regional Water Quality Control Board (Feb. 2005) ND not detected below the method reporting limit Table 6: Ceres Associates Quarterly Groundwater Monitoring - August 2006 to April 2007 Sampling Dates: Multiple (see below) | Well | (тос) | Sample Date | Depth to
Groundwater
(ft) | Groundwater
Elevation
(ft amsl) | TPHg | TPHd | TPHmo | Benzene | Toluene | Ethylbenzene | Xylenes | MTBE | |-------------|--------------------|--------------------|---|---------------------------------------|--------------|--------------|------------------|----------------|----------------|--------------|---------|--------| | | | | (it) | (it airisi) | | Cond | centrations repo | rted as microg | rams per Liter | · (µq/L) | | | | SL (Table | F-1a): Gro | oundwater IS a cu | irrent or potential s | ource of drinking | | | • | | • | ,, , | | | | vater | -, | | , | <u> </u> | 100 | 100 | 100 | 1 | 40 | 30 | 20 | 5 | | ESL (Table | E-1a): Pot | ential Vapor Intru | ısion; High Permea | bility Soils, | | | | | | | | | | Residential | l Use [°] | <u> </u> | | | use soil gas | use soil gas | use soil gas | 540 | 380,000 | 170,000 | 160,000 | 24,000 | | | N/ 4 | 0/04/0000 | 4.00 | 101.10 | ND | ND | N1.0 | ND | ND | ND | ND | ND | | MV | | 8/24/2006 | 4.63 | 104.12 | ND | ND | NA | ND | ND | ND | ND | ND | | 108 | 3.75 | 11/17/2006 | 4.50 | 104.25 | ND | | | 1/30/2007 | 4.14 | 104.61 | ND | 78
ND | 280 | ND | ND | ND | ND | ND | | | | 4/30/2007 | 4.04 | 104.71 | ND | MV | V-2 | 8/24/2006 | 4.26 | 105.29 | ND | 78 | NA | ND | ND | 0.65 | 1.5 | ND | | 109 | 9.55 | 11/17/2006 | 4.16 | 105.39 | ND | ND | ND | ND | ND | 0.8 | 1.8 | ND | | | | 1/30/2007 | 4.29 | 105.26 | ND | ND | ND | ND | ND | 1 | 2 | ND | | | | 4/30/2007 | 4.53 | 105.02 | ND | 60 | ND | ND | ND | ND | ND | ND | | MV | V-3 | 8/24/2006 | 4.40 | 104.00 | ND | ND | NA | ND | ND | ND | ND | ND | | | 8.4 | 11/17/2006 | 3.92 | 104.48 | ND | | | 1/30/2007 | 4.30 | 104.10 | ND | | | 4/30/2007 | 4.22 | 104.18 | ND | MV | V-4 | 8/24/2006 | 4.87 | 103.02 | ND | ND | NA | ND | ND | ND | ND | ND | | | 7.89 | 11/17/2006 | 3.75 | 104.14 | ND | | | 1/30/2007 | 3.82 | 104.07 | ND | | | 4/30/2007 | 4.50 | 103.39 | ND | MV | V-5 | 8/24/2006 | 5.00 | 103.65 | ND | ND | NA | ND | ND | ND | ND | ND | | | 3.65 | 11/17/2006 | 3.30 | 105.35 | ND | , 00 | . | 1/30/2007 | 3.22 | 105.43 | ND | | | 4/30/2007 | 3.20 | 105.45 | ND | F | K-1 | 8/24/2006 | 4.84 | 104.62 | 460 | 220 | NA | ND | ND | ND | ND | ND | | | 9.46 | 11/17/2006 | 4.38 | 105.08 | 270 | 130 | ND | ND | ND | ND | 1.9 | ND | | ,00 | - | 1/30/2007 | 4.00 | 105.46 | 2,200 | 800 | 270 | 1 | ND | 3.9 | 3.2 | ND<10 | | | | 4/30/2007 | 4.20 | 105.26 | 1,000 | 740 | ND | ND | ND | 1.7 | 2.4 | ND | #### **Abbreviations and Notes** | μg/L | micrograms per Liter | |------|----------------------| | | | TOC elevation of well at the top of the casing, in feet above mean sea level TPHg total petroleum hydrocarbons as gasoline using US EPA method 8015C TPHd total petroleum hydrocarbons as diesel using US
EPA method 8015C TPHmo total petroleum hydrocarbons as motor oil using US EPA method 8015C MTBE methyl tertiary butyl ether using US EPA method 8260B and/or 8021B * benzene, toluene, ethylbenzene, and xylenes were analyzed by US EPA method 8021B and 8260B (only the highest concentration was reported here) ESL Environmental Screening Limit, published by San Francisco Bay Regional Water Quality Control Board (Feb. 2005) NA not analyzed ND not detected below the method reporting limit ND < X not detected below an increased method reporting limit (see lab sheets for further details) NE not yet an established value Table 7: Ceres Associates Initial PID readings during Excavation - December 2006 Sampling Dates: December 1 and 2, 2006 # PID readings taken of sidewalls and floor during excavation process | Excavation / PID | 2 ft bgs | _ | 6 ft bgs | _ | 9.5 ft bgs | |------------------|----------|-------------|---------------|--------------|------------| | sample location | | reported as | s parts per i | million, ppm | 1) | | I-bottom | 0 | 0 | 227 | 114 | 0 | | I-east | 0 | 0 | 0 | 0 | 0 | | I-west | 0 | 0 | 0 | 0 | 0 | | I-north | 0 | 0 | 0 | 0 | 0 | | I-south | 0 | 0 | 0 | 0 | 0 | | II-bottom | 0 | 0 | 0 | 0 | 0 | | II-east | 0 | 0 | 0 | 0 | 0 | | II-west | 0 | 0 | 0 | 0 | 0 | | II-north | 0 | 0 | 0 | 0 | 0 | | II-south | 0 | 0 | 0 | 0 | 0 | | III-bottom | 0 | 0 | 0 | 0 | 0 | | | 0 | 0 | 0 | 0 | 0 | | III-east | 0 | 0 | 0 | 0 | 0 | | III-west | 0 | 0 | 0 | 0 | 0 | | III-north | 0 | 0 | 0 | 0 | 0 | | III-south | 0 | 0 | 0 | 0 | 0 | | Sample | PID
Reading | Depth of
Sample
(ft bgs) | |---------|----------------|--------------------------------| | I-9-W | 0 | 9 | | I-9-E | 0 | 9 | | I-9-N | 0 | 9 | | I-9-S | 0 | 9 | | II-9-W | 0 | 9 | | II-9-E | 0 | 9 | | II-9-N | 0 | 9 | | II-9-S | 0 | 9 | | III-9-W | 0 | 9 | | III-8-E | 0 | 9 | | III-9-N | 0 | 9 | | III-9-S | 0 | 9 | Table 8: Ceres Associates Initial Confirmation Soil Sampling - December 2006 Sampling Dates: December 1 and 2, 2006 | Sample | TPHg | TPHd | TPHmo/ho
concentrations re | MTBE
eported in l | | | Ethylbenzene mg/Kg | Xylenes | |---|-------------------------------|-------------------------------|-------------------------------|----------------------|-------|-----|--------------------|-------------------------------| | ESL (Table A-1): Residential
Site, shallow soils, where
Groundwater IS a current or
potential source of drinking | 100 | 100 | 500 | 0.023 | 0.044 | 2.9 | 3.3 | 2.3 | | water I-9-W I-9-E I-9-N I-9-S II-9-W* | 450
1.7
600
7
400 | 81
ND
420
1.2
180 | | | | | | ND
ND
1.1
0.016
1 | | II-9-E
II-9-N
II-9-S
III-9-W
III-8-E
III-9-N
III-9-S | ND <u>Key</u> ESL Environmental Screening Limit, published by San Francisco Bay Regional Water Quality Control Board (Feb. 2005) ND Not detected above the method reporting limit TPHg Total petroleum hydrocarbons as gasoline TPHd Total petroleum hydrocarbons as diesel TPHmo Total petroleum hydrocarbons as motor oil Table 9: Ceres Associates Additional Soil Sampling PID readings - June 2005 Sampling Dates: June 25, 2007 | | PID Reading | |--------------------|------------------------| | Sample | (ppm)* | | CS1-2.5 | 4 | | CS1-5 | 1 | | CS1-7.5 | 1 | | CS2-2.5 | 3 | | CS2-5 | 1 | | CS2-7.5 | 2 | | CS2-10 | 1 | | CS3-2.5 | 2 | | CS3-5 | 3 | | CS3-7.5 | 1 | | CS3-10 | 3 | | CS4-2.5 | 9 | | CS4-5 | 1 | | CS4-7.5 | 1 | | CS4-10 | 1 | | CS5-2.5 | 7 | | CS5-5 | 1 | | CS5-7.5 | 2 | | CS5-10 | 1 | | CS6-10 | 1 | | CS7-10 | 1 | | CS8-10 | 1 | | Background PID rea | adings during sampling | ^{*}Note: Background PID readings during sampling were between 1.0 and 3 $\,$ Table 10: Ceres Associates Additional Soil Sampling - June 2007 Sampling Dates: June 25, 2007 | Sample | TPHg | TPHd | TPHmo | Benzene | Toluene
Concentration | Ethylbenzene
ns reported in milli | Xylenes
igrams per kilog | Chromium
gram, mg/Kg | Lead | Nickel | Zinc | |---|------|------|-------|---------|---------------------------------|---|------------------------------------|-------------------------|------|--------|------| | ESL (Table A-1): Residential Site,
shallow soils, where Groundwater
IS a current or potential source of
drinking water | 100 | 100 | 500 | 0.044 | 2.9 | 3.3 | 2.3 | 58 | 150 | 150 | 600 | | CS1-5 | | | | | | | | 52 | ND | 40 | 42 | | CS1-10 | | | | | | | | 31 | ND | 22 | 18 | | CS2-5 | | | ND | | | | | 33 | ND | 25 | 18 | | CS2-10 | | | ND | | | | | 46 | 6.9 | 55 | 38 | | CS3-5 | | | | | | | | 30 | ND | 19 | 16 | | CS3-10 | | | | | | | | 49 | 9.6 | 72 | 53 | | CS4-5 | ND | ND | 5.9 | ND | ND | ND | ND | 40 | 6.8 | 26 | 21 | | CS4-10 | | | | | | | | 38 | 5.6 | 33 | 22 | | CS5-5 | | | | | | | | 28 | ND | 19 | 13 | | CS5-10 | | | ND | | | | | 51 | ND | 35 | 30 | | CS6-10* | | | ND | | | | | 36 | ND | 32 | 26 | | CS7-10
CS8-10 | | | | | | | | | NA | | | #### Analytes that were reported as ND, but not listed here: PCBs, PNAs, PAHs, 1,4 Dioxane, Cadmium, and Total Oil and Grease <u>Key</u> ESL Environmental Screening Limit, published by San Francisco Bay Regional Water Quality Control Board (Feb. 2005) ND Not detected above the method reporting limit NA Not analyzed TPHg Total petroleum hydrocarbons as gasoline TPHd Total petroleum hydrocarbons as diesel TPHmo Total petroleum hydrocarbons as motor oil ^{*} Sample 6-10 was analyzed one day outside of the hold time for volatile organic compounds (BTEX was within time frame) Photograph 1 - Excavation outlines, Areas I and II. Photograph 2 - Excavation outlines, Areas II and III. Photograph 3 - Excavation outlines, Area III. Photograph 4 -Excavation of Area II, in progress. Photograph 5 - Excavation of Area II, in progress. Note stained soil being removed. Photograph 6 - View of excavation pits, Areas I, II, and III are now connected. The excavator is working on Area III. Photograph 7 - View of the extent of excavation of Area I and II. Photograph 8 - View of initial backfilling of Area III. Photograph 9 - Backfilling with quarry materials. Photograph 10 - Barrier roll. Photograph 11 - Barrier roll.. Photograph 12 - Backfill of imported fill material Photograph 13 - View of partially backfilled excavation. Photograph 14 - View of backfilling and compacting work. Photograph 15 - View of compacting work. | Ceres Associates | Client Project ID: #CA1264-6 | Date Sampled: 06/25/07 | |--------------------|------------------------------|--------------------------| | 424 First Street | | Date Received: 06/25/07 | | Benicia, CA 94510 | Client Contact: Ryan Meyer | Date Reported: 07/03/07 | | Beineta, err 71310 | Client P.O.: | Date Completed: 07/24/07 | WorkOrder: 0706632 July 24, 2007 Dear Ryan: Enclosed are: - 1). the results of 1 analyzed sample from your #CA1264-6 project, - 2). a QC report for the above sample - 3). a copy of the chain of custody, and - 4). a bill for analytical services. All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again. Best regards, Angela Rydelius, Lab Manager | we Tel | bsite: www.m | | | | | | | | CHAIN OF CUSTODY RECORD TURN AROUND TIME RUSH 24 HR 48 HR 72 HR 5 DAY GeoTracker EDF Excel Write On (DW) Check if sample is effluent and "J" flag is required Analysis Request Other Comments | | | | | | | | | d | | | | | | | | | | | | | | | | |---|----------------------------------|--------------|-------|--------------|---|-------|------|-----|---|---|---------|---------------------------|----------------------|----------------------|-------------------------|--------------------------------------|---|-----------------------------------|-------------------------------------|------------------------|--------------------------------|---------------------------------------|-----------------------------|--------------------------------|---------------------------------|---|--|------------------------------------|---|------------|-------------|-----------|--| | Tele: (10) | Onlyland, | CA 9" | 510 I | ax: (| Mail: ryanmeyer@ceresassocialen.com ax: (707) 748-3171 roject Name: CA 1264-6 | | | | com | §602 / 8021 + 8015) / MTBE | Xxxx o. | Grease (1864 (5830 E-B&F) | arbons (418.1) 5/ | 8021 (HVOCs) 407 (| EPA 602 / 8021) | Pesticides) | EPA 608 / 8082 PCB's ONLY; A octors / Congeners | ticides) | CI Herbicides) | VOCs) | \$vocs) | AHRENAS | 200.8 / 6010 / 6020) | 200.8 / 6010 / 6020) | 0 / 6020) | e 5x 8370M | PART/PNA, LOCS | c ach | Filter
Samples
for Meta
analysis
Yes / No | als | | | | | SAMPLE ID | LOCATION/
Field Point
Name | SAMI
Date | Time | # Containers | Type Containers | Water | Air | | | RES | HOO SON | ED | BTEX & TPH as Gas 16 | TPH as Diesel (8015) | Total Petroleum Oil & C | Total Petroleum Hydrocarbons (418.1) | EPA 502.2 / 601 / 8010 / 8021 (HVOCs) | MTBE / BTEX ONLY (EPA 602 / 8021) | EPA
505/ 608 / 8081 (CI Pesticides) | EPA 608 / 8082 PCB's O | EPA 507 / 8141 (NP Pesticides) | EPA 515 / 8151 (Acidic CI Herbicides) | EPA 524.2 / 624/8260 (VOCs) | EPA 525.2 / 625 / 8270 (SVOCs) | EPA 8270 SIM / 8310 (PAHK PNAS) | CAM 17 Metals (200.7 / 200.8 / 6010 / 6020) | LUFT 5 Metals (\$00.7 / 200.8 / 6010 / 6020) | Lead (200.7 / 200.8 / 6010 / 6020) | 1.4 dioxam | POZI PCPS, | who was the | 1/12/12 A | | | (54-7.5
(54-10 | | Glasso7 | | 1 | | | 1 | | X | | | | X | × | X | | -4 | 0 0 | b | χ | | | X | | X | | X | | X | 4 | | | | | (55-2.5
(55-7.5
(55-7.5 | | | _ | | | | | | | | | - | X | X | X | rol | | 10 | 4 | X | | | X | | X | | X | | X | | | | | | (56-10 | | | | | | | | | | | | | XX | X | X | | | | | X | | | X |) | X | رسد | X | | X | × | - | | | | C58-10
(58-10 | | 4 | | \$ | | 4 | > | | 4 | | | | X | X | | | | | | | | | 2 | 3 | 5 | (# | -X | 0 | nly | | | | | | | | | | | | | | 1 | V | A | CL. | 3 | Je | A | 4 | | _ | | | | | | | | | | | | | | | | | | Relinquished By: Relinquished By: ONURO-FECH SO | Ish
wices 6 | Date: | Time: | GNT | ceived By: ceived By: | | | | | ICE/t ^p COMMENTS: GOOD CONDITION HEAD SPACE ABSENT DECHLORINATED IN LAB APPROPRIATE CONTAINERS | Relinquished By: | Datey Time: Received By: | | | | | PR | ESEI | RVE | D IN | VO | 3 | | G | MET | | 8 (| тн | ER | | | | | | | | | | | | | | | | # McCampbell Analytical, Inc. 1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262 # CHAIN-OF-CUSTODY RECORD Page 1 of 1 WorkOrder: 070663 A ClientID: CAB **✓** EDF Excel Fax ✓ Email HardCopy ThirdParty Report to: Ryan Meyer Ceres Associates 424 First Street Benicia, CA 94510 Email: TEL: ryanmeyer@ceresassociates.com (707) 748-317 FAX: (707) 748-317 ProjectNo: #CA1264-6 PO: Bill t Chwania Mejia Ceres Associates 424 First Street Benicia, CA 94510 cmejia@ceresassociates.com Requested TA 5 days Date Receive 06/25/2007 Date Add-On: 07/12/2007 Date Printed: 07/13/2007 | | | | | | Requested Tests (See legend below) | | | | | | | | | | | | |-------------|--------------|--------|------------------------|------|------------------------------------|---|---|---|---|---|---|---|---|----|----|----| | Sample ID | ClientSampID | Matrix | Collection Date | Hold | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | | 0706632-021 | CS6-10 | Soil | 06/25/07 | | В | В | В | В | В | В | | | | | | | ## Test Legend: | 1 | 1,4-DIOXANE_S | 2 8082A_PC | B_S 3 | 8260B_S | 4 | 8270D-PNA_S | 5 | 9071B_S | |----|---------------|------------|-------|---------|---|-------------|----|---------| | 6 | LUFT_S | 7 | 8 | | 9 | | 10 | | | 11 | | 12 | | | | | | | Prepared by: Melissa Valles 9071, PCBs1 PAH/PNAs-8270, VOCs, Luft, 1-4 Dioxane added 7/12/07 per email, std tat-RV **Comments:** NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense. | Ceres Associates | Client Project ID: | #CA1264-6 Date Sampled: 06/25/07 | |---------------------|--------------------|------------------------------------| | 424 First Street | | Date Received: 06/25/07 | | Benicia, CA 94510 | Client Contact: Ry | yan Meyer Date Extracted: 07/13/07 | | 20110111, 0117 1010 | Client P O : | Date Analyzed 07/16/07 | ## 1,4-Dioxane by P&T and GC/MS SIM Mode* Extraction method SW5030B Analytical methods SW8260B Work Order: 0706632 | Extraction method SW5 | 030B | Analytical methods | SW8260B | Work Order: 07 | 06632 | |-----------------------|------------------------|--------------------|-------------|----------------|-------| | Lab ID | Client ID | Matrix | 1,4-Dioxane | DF | % SS | | 021B | CS6-10 | S | ND | 1 | 93 | Reporti | ng Limit for DF =1; | W | NA | | IA | | | ins not detected at or | vv . | INA | I I | 1A | | 375 | | 1111 | 1111 | |-----------------------------|----------|-----------------------|-------------| | ND means not detected at or | C | 0.02 | Л | | above the reporting limit | 2 | 0.02 | mg/kg | | usove the reporting mint | | | | | * | J / 1: J | 1 : 1:: 1 1:: 1 1:: 1 | TCID & CDID | ^{*} water and vapor samples are reported in μg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in μg/wipe. ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis. # surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference. h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative. | Ceres Associates | | Client Project ID: #CA1264-6 Date Sample | | | | | 06/25/07 | | | |----------------------------|-----------|--|------------------------------|------------------|-----------|-----------------|-----------------|--------------|--| | 424 First Street | | | | | | Date Received: | 06/25/07 | | | | Benicia, CA 94510 | | | Client C | ontact: Ryan Me | yer | Date Extracted: | 07/13/07 | | | | Беней, СП 94310 | | | Client P. | O.: | | Date Analyzed | 07/14/07 | | | | | Po | olychlori | | | | | | | | | Extraction Method: SW3550C | | | Analytical Method: SW8082A W | | | | | | | | | Lab ID | | 32-021B | | | | | | | | | Client ID | CS | 6-10 | | | | Reporting
DF | Limit for =1 | | | | Matrix | ; | S | | | | | | | | | DF | | 1 | | | | S | W | | | Compound | | | | Conce | entration | | mg/kg | ug/L | | | Aroclor1016 | | N | ID | | | | 0.025 | NA | | | Aroclor1221 | | N | ID | | | | 0.025 | NA | | | Aroclor1232 | | N | ID | | | | 0.025 | NA | | | Aroclor1242 | | N | ID | | | | 0.025 | NA | | | Aroclor1248 | | N | ID | | | | 0.025 | NA | | | Aroclor1254 | | N | ID | | | | 0.025 | NA | | | Aroclor1260 | | N | ID | | | | 0.025 | NA | | | PCBs, total | | ND | | | | | | NA | | | | | | Surr | ogate Recoveries | s (%) | | | | | | %SS: | | 1 | 13 | | | | | | | | Comments | | | | | | | | | | ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis. # surrogate diluted out of range or surrogate coelutes with another peak. (h) a lighter than water immiscible sheen/product is present; (i) liquid sample that contains >~1 vol. % sediment; (j) sample diluted due to high organic content/matrix interference; (k) p,p,- is the same as 4,4,-; (l) florisil (EPA 3620) cleanup; (m) silica-gel (EPA 3630) cleanup; (n) elemental sulfur (EPA 3660) cleanup; (o) sulfuric acid permanganate (EPA 3665) cleanup; (p) see attached narrative; q) reporting limit raised due to insufficient sample amount; (r) results are reported on a dry weight basis; ^{*} water samples in $\mu g/L$, soil/sludge/solid samples in mg/kg, wipe samples in $\mu g/wipe$, filter samples in $\mu g/filter$, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L. | Ceres Associates | Client Project ID: #CA1264-6 | Date Sampled: 06/25/07 | |-------------------|------------------------------|--------------------------| | 424 First Street | | Date Received: 06/25/07 | | 424 Phst Succi | Client Contact: Ryan Meyer | Date Extracted: 07/13/07 | | Benicia, CA 94510 | Client P.O.: | Date Analyzed 07/14/07 | ## Volatile Organics by P&T and GC/MS (Basic Target List)* Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0706632 | Lab ID | 0706632-021B | | |-----------|--------------|--| | Client ID | CS6-10 | | | Matrix | Soil | | | | | | | Matrix | | | | Soil | | | | |-----------------------------|-----------------|------|--------------------|-------------------------------|-----------------|-----|--------------------| | Compound | Concentration * | DF | Reporting
Limit | Compound | Concentration * | DF | Reporting
Limit | | Acetone | ND | 1.0 | 0.05 | Acrolein (Propenal) | ND | 1.0 | 0.05 | | Acrylonitrile | ND | 1.0 | 0.02 | tert-Amyl methyl ether (TAME) | ND | 1.0 | 0.005 | | Benzene | ND | 1.0 | 0.005 | Bromobenzene | ND | 1.0 | 0.005 | | Bromochloromethane | ND | 1.0 | 0.005 | Bromodichloromethane | ND | 1.0 | 0.005 | | Bromoform | ND | 1.0 | 0.005 | Bromomethane | ND | 1.0 | 0.005 | | 2-Butanone (MEK) | ND | 1.0 | 0.02 | t-Butyl alcohol (TBA) | ND | 1.0 | 0.05 | | n-Butyl benzene | ND | 1.0 | 0.005 | sec-Butyl benzene | ND | 1.0 | 0.005 | | tert-Butyl benzene | ND | 1.0 | 0.005 | Carbon Disulfide | ND | 1.0 | 0.005 | | Carbon Tetrachloride | ND | 1.0 | 0.005 | Chlorobenzene | ND | 1.0 | 0.005 | | Chloroethane | ND | 1.0 | 0.005 | 2-Chloroethyl Vinyl Ether | ND | 1.0 | 0.01 | | Chloroform | ND | 1.0 | 0.005 | Chloromethane | ND | 1.0 | 0.005 | | 2-Chlorotoluene | ND | 1.0 | 0.005 | 4-Chlorotoluene | ND | 1.0 | 0.005 | | Dibromochloromethane | ND | 1.0 | 0.005 | 1,2-Dibromo-3-chloropropane | ND | 1.0 | 0.005 | | 1,2-Dibromoethane (EDB) | ND | 1.0 | 0.005 | Dibromomethane | ND | 1.0 | 0.005 | | 1,2-Dichlorobenzene | ND | 1.0 | 0.005 | 1,3-Dichlorobenzene | ND | 1.0 | 0.005 | | 1,4-Dichlorobenzene | ND | 1.0 | 0.005 | Dichlorodifluoromethane | ND | 1.0 | 0.005 | | 1,1-Dichloroethane | ND | 1.0 | 0.005 | 1,2-Dichloroethane (1,2-DCA) | ND | 1.0 | 0.005 | | 1,1-Dichloroethene | ND | 1.0 | 0.005 | cis-1,2-Dichloroethene | ND | 1.0 | 0.005 | | trans-1,2-Dichloroethene | ND | 1.0 | 0.005 | 1,2-Dichloropropane | ND | 1.0 | 0.005 | | 1,3-Dichloropropane | ND | 1.0 | 0.005 | 2,2-Dichloropropane | ND | 1.0 | 0.005 | | 1,1-Dichloropropene | ND | 1.0 | 0.005 |
cis-1,3-Dichloropropene | ND | 1.0 | 0.005 | | trans-1,3-Dichloropropene | ND | 1.0 | 0.005 | Diisopropyl ether (DIPE) | ND | 1.0 | 0.005 | | Ethylbenzene | ND | 1.0 | 0.005 | Ethyl tert-butyl ether (ETBE) | ND | 1.0 | 0.005 | | Freon 113 | ND | 1.0 | 0.1 | Hexachlorobutadiene | ND | 1.0 | 0.005 | | Hexachloroethane | ND | 1.0 | 0.005 | 2-Hexanone | ND | 1.0 | 0.005 | | Isopropylbenzene | ND | 1.0 | 0.005 | 4-Isopropyl toluene | ND | 1.0 | 0.005 | | Methyl-t-butyl ether (MTBE) | ND | 1.0 | 0.005 | Methylene chloride | ND | 1.0 | 0.005 | | 4-Methyl-2-pentanone (MIBK) | ND | 1.0 | 0.005 | Naphthalene | ND | 1.0 | 0.005 | | Nitrobenzene | ND | 1.0 | 0.1 | n-Propyl benzene | ND | 1.0 | 0.005 | | Styrene | ND | 1.0 | 0.005 | 1,1,1,2-Tetrachloroethane | ND | 1.0 | 0.005 | | 1,1,2,2-Tetrachloroethane | ND | 1.0 | 0.005 | Tetrachloroethene | ND | 1.0 | 0.005 | | Toluene | ND | 1.0 | 0.005 | 1,2,3-Trichlorobenzene | ND | 1.0 | 0.005 | | 1,2,4-Trichlorobenzene | ND | 1.0 | 0.005 | 1,1,1-Trichloroethane | ND | 1.0 | 0.005 | | 1,1,2-Trichloroethane | ND | 1.0 | 0.005 | Trichloroethene | ND | 1.0 | 0.005 | | Trichlorofluoromethane | ND | 1.0 | 0.005 | 1,2,3-Trichloropropane | ND | 1.0 | 0.005 | | 1,2,4-Trimethylbenzene | ND | 1.0 | 0.005 | 1,3,5-Trimethylbenzene | ND | 1.0 | 0.005 | | Vinvl Chloride | ND | 1.0 | 0.005 | Xvlenes | ND | 1.0 | 0.005 | | | | Surr | ogate Re | ecoveries (%) | | | | | 1 | i | | | 1 | 1 | | | %SS1: 98 %SS2: %SS3: 96 Comments ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis. # surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference. h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative. ^{*} water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/kg$. | Ceres Associates | Client Pro | oject ID: #CA120 | 64-6 | Date Sampled: | 06/25/07 | | |----------------------------|-----------------|----------------------|------------------|-----------------|-----------------|---------| | 424 First Street | | | | Date Received: | 06/25/07 | | | Denisia CA 04510 | Client Co | ontact: Ryan Me | yer | Date Extracted: | 07/13/07 | | | Benicia, CA 94510 | Client P.0 | O.: | | Date Analyzed: | 07/22/07 | | | Polynuclear A | romatic Hydroca | rbons (PAHs / PN | NAs) using SIM N | Iode by GC/MS* | : | | | Extraction Method: SW3550C | • | ytical Method: SW827 | | • | Work Order: | 0706632 | | Lab ID | 0706632-021B | | | | | | | Client ID | CS6-10 | | | | Reporting
DF | | | Matrix | S | | | | | | | DF | 1 | | | | S | W | | Compound | | Conce | entration | | mg/kg | ug/L | | Acenaphthene | ND | | | | 0.005 | NA | | Acenaphthylene | ND | | | | 0.005 | NA | | Anthracene | ND | | | | 0.005 | NA | | Benzo(a)anthracene | ND | | | | 0.005 | NA | | Benzo(a)pyrene | ND | | | | 0.005 | NA | | Benzo(b)fluoranthene | ND | | | | 0.005 | NA | | Benzo(g,h,i)perylene | ND | | | | 0.005 | NA | | Benzo(k)fluoranthene | ND | | | | 0.005 | NA | | Chrysene | ND | | | | 0.005 | NA | | Dibenzo(a,h)anthracene | ND | | | | 0.005 | NA | | Fluoranthene | ND | | | | 0.005 | NA | | Fluorene | ND | | | | 0.005 | NA | | Indeno (1,2,3-cd) pyrene | ND | | | | 0.005 | NA | | 1-Methylnaphthalene | ND | | | | 0.005 | NA | | 2-Methylnaphthalene | ND | | | | 0.005 | NA | | Naphthalene | ND | | | | 0.005 | NA | | Phenanthrene | ND | | | | 0.005 | NA | | Pyrene | ND | | | | 0.005 | NA | | | Surre | ogate Recoveries | s (%) | | | | | %SS1 | 70 | | | | | | | %SS2 | 79 | | | | | | | Comments | | | | | | | ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis. #) surrogate diluted out of range; &) low or no surrogate due to matrix interference. h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; J) analyte detected below quantitation limits; p) see attached narrative; r) results are reported on a dry weight basis. ^{*} water samples in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L. | Ceres Associat | tes | Client Pro | ject ID: 4 | #CA1264-6 | Date Sampled: 06/25/ | 07 | | |--|---|--------------|-----------------------|--------------------------|------------------------|----------|-------| | 424 First Street | İ | | Date Received: 06/25/ | 07 | | | | | Hexan Manalytical methods: SW9071B Lab ID Client ID | 510 | Client Co | ntact: Ry | yan Meyer | Date Extracted: 07/13/ | 07 | | | Defficia, CA 94. | 310 | Client P.C |).: | | Date Analyzed 07/16/ | 07 | | | | Hexane Ex | xtractable 1 | Material v | without Silica Gel Treat | ment* | | | | Analytical methods: | SW9071B | | 1 1 | | Work Ore | der: 070 | 06632 | | Lab ID | Client ID | | Matrix | HI | EM | DF | % SS | | 0706632-021B | CS6-10 | | S | N | ID | 1 | N/A | F | Reporting Limit for DF =1; | | W | N | JA | N | A | | | ID means not detected at or above the reporting limit | | S | | 50 | | /Kg | DF = dilution factor (may be raised to dilute target analyte or matrix interference). # surrogate diluted out of range or not applicable to this sample. g) sample extract repeatedly cleaned up with silica gel until constant IR result achieved; h) a lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) results are reported on a dry weight basis. ^{*} water samples and all TCLP & SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in mg/wipe, product/oil/non-aqueous liquid samples in mg/L. | Zemvin, erry iere | Client P.O.: | Date Analyzed: 07/23/07 | |-------------------|------------------------------|--------------------------| | Benicia, CA 94510 | Client Contact: Ryan Meyer | Date Extracted: 07/13/07 | | 424 First Street | | Date Received: 06/25/07 | | Ceres Associates | Client Project ID: #CA1264-6 | Date Sampled: 06/25/07 | ### LUFT 5 Metals* | | | | | LUFT 5 | Metals* | | | | | | |--------------|--|--------|-----------------|-------------------|----------|------|--------|-------------|---------|------| | Extraction m | nethod SW3050B | | | Analytical method | ls 6010C | | | Work Order: | 0706632 | | | Lab ID | Client ID | Matrix | Extraction Type | Cadmium | Chromium | Lead | Nickel | Zinc | DF | % SS | | 021B | CS6-10 | S | TOTAL^ | ND | 36 | ND | 32 | 26 | 1 | 102 | ng Limit for DF =1; | W | TOTAL^ | NA | NA | NA | NA | NA | N | A | | | ns not detected at or
the reporting limit | S | TOTAL^ | 1.5 | 1.5 | 5.0 | 1.5 | 5.0 | mg | /Kg | *water samples are reported in μ g/L, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, filter samples in μ g/filter. # means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument. $TOTAL^{\wedge} = acid digestion.$ WET = Waste Extraction Test (STLC). DI WET = Waste Extraction Test using de-ionized water. i) aqueous sample containing greater than ~1 vol. % sediment; for DISSOLVED metals, this sample has been preserved prior to filtration; for TOTAL^ metals, a representative sediment-water mixture was digested; j) reporting limit raised due to insufficient sample amount; k) reporting limit raised due to matrix interference; m) estimated value due to low/high surrrogate recovery, caused by matrix interference; n) results are reported on a dry weight basis; p) see attached narrative. ## QC SUMMARY REPORT FOR SW9071B W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder 0706632 | EPA Method SW9071B | Extraction SM5520DF_S | | | | BatchID: 29299 S | | | Sp | oiked Sample ID: 0707252-009A | | | | |--------------------|-----------------------|--------|--------|--------|------------------|--------|--------|----------|-------------------------------|---------|--------------|-----| | Analyte | Sample | Spiked | MS | MSD | MS-MSD | LCS | LCSD | LCS-LCSD | Acce | eptance | Criteria (%) | | | 7 tildiyto | mg/Kg | mg/Kg | % Rec. | % Rec. | % RPD | % Rec. | % Rec. | % RPD | MS / MSD | RPD | LCS/LCSD | RPD | | HEMSGT | ND | 1000 | 108 | 111 | 1.92 | 95.7 | 94 | 1.79 | 70 - 130 | 30 | 70 - 130 | 30 | All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE ## BATCH 29299 SUMMARY | Sample ID | Date Sampled | Date Extracted | Date Analyzed | Sample ID | Date Sampled | Date Extracted | Date Analyzed | |--------------|--------------
----------------|------------------|-----------|--------------|----------------|---------------| | 0706632-021B | 06/25/07 | 07/13/07 | 07/16/07 5:30 PM | | | | | MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation. % Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2). MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery. N/A = not enough sample to perform matrix spike and matrix spike duplicate. QC SUMMARY REPORT FOR SW8260B W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder 0706632 | EPA Method SW8260B Extraction SW5030B | | | | | BatchID: 29305 Spiked Sample ID: N/A | | | | N/A | | | | |---------------------------------------|--------|--------|--------|--------|--------------------------------------|--------|--------|----------|----------|---------|--------------|-----| | Analyte | Sample | Spiked | MS | MSD | MS-MSD | LCS | LCSD | LCS-LCSD | Acce | eptance | Criteria (%) | 1 | | Analyte | mg/kg | mg/kg | % Rec. | % Rec. | % RPD | % Rec. | % Rec. | % RPD | MS / MSD | RPD | LCS/LCSD | RPD | | 1,4-Dioxane | N/A | 0.10 | N/A | N/A | N/A | 110 | 110 | 0 | N/A | N/A | 70 - 130 | 30 | | %SS1: | N/A | 0.050 | N/A | N/A | N/A | 96 | 95 | 1.31 | N/A | N/A | 70 - 130 | 20 | All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE ## BATCH 29305 SUMMARY | Sample ID | Date Sampled | Date Extracted | Date Analyzed | Sample ID | Date Sampled | Date Extracted | Date Analyzed | |--------------|--------------|----------------|------------------|-----------|--------------|----------------|---------------| | 0706632-021B | 06/25/0 | 7 07/13/07 | 07/16/07 7:19 PM | | | | | MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation. % Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2). MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery. N/A = not enough sample to perform matrix spike and matrix spike duplicate. 1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269 ## QC SUMMARY REPORT FOR SW8082A QC Matrix: Soil WorkOrder 0706632 W.O. Sample Matrix: Soil | EPA Method SW8082A Extraction SW3550C | | | | | BatchID: 29229 | | | Spiked Sample ID: 0707181-034A | | | | 4A | |---------------------------------------|--------|--------|--------|--------|----------------|--------|--------|--------------------------------|----------|---------|--------------|-----| | Analyte | Sample | Spiked | MS | MSD | MS-MSD | LCS | LCSD | LCS-LCSD | Acce | eptance | Criteria (%) |) | | , undiffe | mg/kg | mg/kg | % Rec. | % Rec. | % RPD | % Rec. | % Rec. | % RPD | MS / MSD | RPD | LCS/LCSD | RPD | | Aroclor1260 | ND | 0.075 | 74.3 | 75.5 | 1.58 | 91.2 | 91.5 | 0.303 | 70 - 130 | 20 | 70 - 130 | 20 | | %SS: | 124 | 0.050 | 123 | 123 | 0 | 127 | 127 | 0 | 70 - 130 | 20 | 70 - 130 | 20 | All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE ## BATCH 29229 SUMMARY | Sample ID | Date Sampled | Date Extracted | Date Analyzed | Sample ID | Date Sampled | Date Extracted | Date Analyzed | |--------------|--------------|----------------|------------------|-----------|--------------|----------------|---------------| | 0706632-021B | 06/25/07 | 7 07/13/07 | 07/14/07 6:32 PM | | | | | MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation. % Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2). MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery. N/A = not enough sample to perform matrix spike and matrix spike duplicate. ## QC SUMMARY REPORT FOR SW8260B W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder 0706632 | EPA Method SW8260B | Extra | Extraction SW5030B | | | | BatchID: 29231 | | | Spiked Sample ID: 0707181-036A | | | | |-------------------------------|---------------|--------------------|--------|--------|--------|----------------|--------|----------|--------------------------------|---------|--------------|-----| | Analyte | Sample Spiked | | MS | MSD | MS-MSD | LCS | LCSD | LCS-LCSD | Acce | eptance | Criteria (%) |) | | , mary to | mg/Kg | mg/Kg | % Rec. | % Rec. | % RPD | % Rec. | % Rec. | % RPD | MS / MSD | RPD | LCS/LCSD | RPD | | tert-Amyl methyl ether (TAME) | ND | 0.050 | 86.3 | 88.2 | 2.16 | 83.7 | 86.8 | 3.64 | 70 - 130 | 30 | 70 - 130 | 30 | | Benzene | ND | 0.050 | 107 | 104 | 2.72 | 104 | 102 | 1.79 | 70 - 130 | 30 | 70 - 130 | 30 | | t-Butyl alcohol (TBA) | ND | 0.25 | 95.9 | 93.9 | 2.09 | 94.8 | 94.1 | 0.711 | 70 - 130 | 30 | 70 - 130 | 30 | | Chlorobenzene | ND | 0.050 | 106 | 108 | 1.83 | 109 | 108 | 1.06 | 70 - 130 | 30 | 70 - 130 | 30 | | 1,2-Dibromoethane (EDB) | ND | 0.050 | 82.6 | 85.2 | 3.04 | 85.6 | 85.4 | 0.197 | 70 - 130 | 30 | 70 - 130 | 30 | | 1,2-Dichloroethane (1,2-DCA) | ND | 0.050 | 105 | 102 | 3.31 | 99.4 | 101 | 1.36 | 70 - 130 | 30 | 70 - 130 | 30 | | 1,1-Dichloroethene | ND | 0.050 | 119 | 114 | 4.18 | 116 | 118 | 1.72 | 70 - 130 | 30 | 70 - 130 | 30 | | Diisopropyl ether (DIPE) | ND | 0.050 | 108 | 106 | 1.71 | 108 | 105 | 2.34 | 70 - 130 | 30 | 70 - 130 | 30 | | Ethyl tert-butyl ether (ETBE) | ND | 0.050 | 91.2 | 91.1 | 0.121 | 90 | 89.4 | 0.730 | 70 - 130 | 30 | 70 - 130 | 30 | | Methyl-t-butyl ether (MTBE) | ND | 0.050 | 84 | 83.6 | 0.561 | 82.4 | 83.2 | 0.956 | 70 - 130 | 30 | 70 - 130 | 30 | | Toluene | ND | 0.050 | 104 | 106 | 2.56 | 110 | 107 | 3.52 | 70 - 130 | 30 | 70 - 130 | 30 | | Trichloroethene | ND | 0.050 | 86.4 | 84.1 | 2.67 | 84.6 | 84.2 | 0.399 | 70 - 130 | 30 | 70 - 130 | 30 | | %SS1: | 101 | 0.050 | 119 | 114 | 4.53 | 114 | 112 | 1.39 | 70 - 130 | 30 | 70 - 130 | 30 | | %SS2: | 96 | 0.050 | 101 | 102 | 0.906 | 105 | 102 | 2.91 | 70 - 130 | 30 | 70 - 130 | 30 | | %SS3: | 98 | 0.050 | 114 | 118 | 3.05 | 125 | 118 | 5.97 | 70 - 130 | 30 | 70 - 130 | 30 | All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE ## BATCH 29231 SUMMARY | Sample ID | Date Sampled | Date Extracted | Date Analyzed | Sample ID | Date Sampled | Date Extracted | Date Analyzed | |--------------|--------------|----------------|------------------|-----------|--------------|----------------|---------------| | 0706632-021B | 06/25/07 | 7 07/13/07 | 07/14/07 7:22 AM | | | | | MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation. % Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2). MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery. N/A = not enough sample to perform matrix spike and matrix spike duplicate. ## QC SUMMARY REPORT FOR SW8270C W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder: 0706632 | EPA Method SW8270C | Extraction SW3550C | | | | BatchID: 29292 Sp | | | | piked Sample ID: 0707246-006A | | | | |---------------------|--------------------|--------|--------|--------|-------------------|--------|--------|----------|---------------------------------|-----|----------|-----| | Analyte | Sample | Spiked | MS | MSD | MS-MSD LCS | | LCSD | LCS-LCSD | .CS-LCSD Acceptance Criteria (% | | | | | radyte | mg/kg | mg/kg | % Rec. | % Rec. | % RPD | % Rec. | % Rec. | % RPD | MS / MSD | RPD | LCS/LCSD | RPD | | Benzo(a)pyrene | 1.6 | 0.10 | NR | NR | NR | 108 | 107 | 1.03 | 30 - 130 | 30 | 30 - 130 | 30 | | Chrysene | 1.1 | 0.10 | NR | NR | NR | 90.7 | 91.6 | 0.938 | 30 - 130 | 30 | 30 - 130 | 30 | | 1-Methylnaphthalene | ND<0.10 | 0.10 | 99 | 102 | 3.18 | 98.7 | 95.3 | 3.42 | 30 - 130 | 30 | 30 - 130 | 30 | | 2-Methylnaphthalene | ND<0.10 | 0.10 | 100 | 105 | 4.35 | 93.9 | 91.9 | 2.19 | 30 - 130 | 30 | 30 - 130 | 30 | | Phenanthrene | 1.3 | 0.10 | NR | NR | NR | 81.7 | 80.3 | 1.82 | 30 - 130 | 30 | 30 - 130 | 30 | | Pyrene | 4.2 | 0.10 | NR | NR | NR | 84.8 | 82.9 | 2.29 | 30 - 130 | 30 | 30 - 130 | 30 | | %SS1: | # | 0.050 | # | # | # | 76 | 75 | 0.970 | 30 - 130 | 30 | 30 - 130 | 30 | | %SS2: | # | 0.050 | # | # | # | 79 | 78 | 0.660 | 30 - 130 | 30 | 30 - 130 | 30 | All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: #### BATCH 29292 SUMMARY | Sample ID | Date Sampled | Date Extracted | Date Analyzed | Sample ID | Date Sampled | Date Extracted | Date Analyzed | |--------------|--------------|----------------|------------------|-----------|--------------|----------------|---------------| | 0706632-021B | 06/25/0 | 7 07/13/07 | 07/22/07 9:35 PM
| | | | | MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation. % Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2). MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery. N/A = not enough sample to perform matrix spike and matrix spike duplicate. NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content. NONE # QC SUMMARY REPORT FOR 6010C W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder 0706632 | EPA Method 6010C | | | | Extraction SW3050B | | | | BatchID: 29275 | | | Spiked Sample ID 0707226-007A | | | | |------------------|---------|--------|----------|--------------------|--------|--------|--------|----------------|----------|-----------------------|-------------------------------|----------|-----|--| | Analyte | Sample | Spiked | MS | MSD | MS-MSD | Spiked | LCS | LCSD | LCS-LCSD | CSD Acceptance Criter | | | ·) | | | | mg/Kg | mg/Kg | % Rec. | % Rec. | % RPD | mg/Kg | % Rec. | % Rec. | % RPD | MS / MSD | RPD | LCS/LCSD | RPD | | | Cadmium | 100 | 50 | 83 | 92.8 | 3.37 | 10 | 97.6 | 100 | 2.38 | 75 - 125 | 20 | 80 - 120 | 20 | | | Chromium | 84 | 50 | 94.2 | 95.1 | 0.342 | 10 | 97.9 | 92.5 | 5.67 | 75 - 125 | 20 | 80 - 120 | 20 | | | Lead | 1900 | 50 | NR | NR | NR | 10 | 84.2 | 96.5 | 13.5 | 75 - 125 | 20 | 80 - 120 | 20 | | | Nickel | 82 | 50 | 74.6, F1 | 85.4 | 4.46 | 10 | 101 | 96.8 | 3.95 | 75 - 125 | 20 | 80 - 120 | 20 | | | Zinc | 280,000 | 500 | NR | NR | NR | 100 | 102 | 104 | 1.85 | 75 - 125 | 20 | 80 - 120 | 20 | | | %SS: | 103 | 250 | 107 | 108 | 0.279 | 250 | 102 | 102 | 0 | 70 - 130 | 20 | 70 - 130 | 20 | | All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE F1 = MS / MSD exceed acceptance criteria. LCS - LCSD validate prep batch. #### BATCH 29275 SUMMARY | Sample ID | Date Sampled | Date Extracted | Date Analyzed | Sample ID | Date Sampled | Date Extracted | Date Analyzed | |--------------|--------------|----------------|------------------|-----------|--------------|----------------|---------------| | 0706632-021B | 06/25/0 | 07/13/07 | 07/23/07 6:45 PM | | | | | MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation. % Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2). MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery. N/A = not applicable to this method. | Ceres Associates | Client Project ID: #CA1264-6 | Date Sampled: 06/25/07 | |--------------------|------------------------------|--------------------------| | 424 First Street | | Date Received: 06/25/07 | | Benicia, CA 94510 | Client Contact: Ryan Meyer | Date Reported: 07/03/07 | | Beineta, err 71310 | Client P.O.: | Date Completed: 07/03/07 | WorkOrder: 0706632 July 03, 2007 Dear Ryan: Enclosed are: - 1). the results of 13 analyzed samples from your #CA1264-6 project, - 2). a QC report for the above samples - 3). a copy of the chain of custody, and - 4). a bill for analytical services. All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again. Best regards, Angela Rydelius, Lab Manager | We Tel | bsite: www.mo
ephone: (877 | 1534 WII
PITTSBU
ccampbel
() 252-92 | LLOW PARG, CA 94
Lcom En | SS RO.
1565-17 | AD
701
nain@
Fax: | mec: | ampt
5) 25 | ell.c
2-9 | om | | | | | | | | AR | OU | DE | T | IM
C | E
PD
Ch | F, | RUS | SH
Ex | 24
xcel | HR |) 1 | 48 I
Wri | IR
ite C
nd "J | 72 I
On (I | is i | 5 DAY cequired | |---|----------------------------------|--|-----------------------------|---------------------------|----------------------------|-------|---------------|--------------|-------|-----|------------|------|-------|----------------------|--------------------|-------------------------------------|--------------------------------------|---------------------------------------|-----------------------------------|-------------------------------------|---|--------------------------------|---------------------------------------|-----------------------------|--------------------------------|----------------------------------|-------------------------------------|--|------------------------------------|----------------------|---------------|------|--| | Tele: (767) 74 Project #: 4 12 Project Location: | 16-3170
64-6
Outland, U | 4.94510 | F | Z-Mai
Tax: (
Projec | 707 |) > | | | | iet | 5. U | z M | | /8021 + 8015) / MTBE | Leder 01 | ase (1664 <u>, 5630 E/B&E</u>) | bons (418.1) 2 90 | 21 (HVOCs) | A 602 / 8021) | sticides) | EPA 608 / 8082 PCB's ONLY; Aroclors / Congeners | ides) | Herbicides) | (S) | OCs) | Hs (PNAs) | 0.8 / 6010 / 6020) | .8 / 6010 / 6020) | 6020) | A 6380M | | 1 | Filter
Samples
for Metals
analysis:
Yes / No | | Sampler Signatur | e: 47711 | 1 | PLING | | LS | 1 | MAT | RE | K | | MET
ESE | | | ins (602 | 5) + | II & Gre | ydrocar | 010 / 80 | LY (EP | 1 (CI Pe | B's ON | P Pestic | cidic Cl | 260 (VC | 270 (SV | 310 (PA | 00.7 / 20 | 0.7 / 200 | / 60109 / | 3 | | | | | SAMPLE ID | LOCATION/
Field Point
Name | Date | Time | # Containers | Type Containers | Water | Soil | Sludge | Other | ICE | | HNO, | Other | BTEX & TPH as G | TPH as Diesel (801 | Total Petroleum Oil & Grease (1664 | Total Petroleum Hydrocarbons (418.1) | EPA 502.2 / 601 / 8010 / 8021 (HVOCs) | MTBE / BTEX ONLY (EPA 602 / 8021) | EPA 505/ 608 / 8081 (CI Pesticides) | EPA 608 / 8082 PC | EPA 507 / 8141 (NP Pesticides) | EPA 515 / 8151 (Acidic CI Herbicides) | EPA 524.2 / 624 8260 (VOCs) | EPA 525.2 / 625 / 8270 (SVOCs) | EPA 8270 SIM / 8310 (PAHs (PNAS) | CAM 17 Metals (200.7 / 200.8 / 6010 | (LUFT 5 Metals (300.7 / 200.8 / 6010 / 6020) | Lead (200.7 / 200.8 / 6010 / 6020) | 1.4 diex | | | | | CS1-2.5 | | 4/25/07 | | (| | | X | | | X | | | | - | | . / | | he | 10 | | ~ | | | | | | | ./ | | 1 | | Ţ | | | C51-5 | | 1 | | | | Н | + | + | Н | + | Н | | | \times | . Х | X | | no | / | | X | | | X | | X | | X | | | | + | | | CS1-10 | | | | | | | \vdash | + | | + | | | | X | ~ | V | | 10 | 0 | | X | | | X | | V | | V | | V | | + | | | c52-25 | | | | | | | | T | П | 1 | | | - | _ | -5 | | h | 01 | 1 | | | | | | | | | ^ | | | | t | | | 152-5 | | | | | | | | | | | | | | X | X | X | | | | | X | | | X | | X | | X | | X | | | | | CS 2-1.5 | | | | | | | | _ | | 1 | | | , | . / | | | _ | ho | 10 | 1 | | | | . 7 | | | | | | | | 1 | | | (53-2.5 | | | | 1 | | Н | \vdash | + | Н | + | Н | | | X | X | X | | - 10 | -/ | 1 | X | - | | X | - | X | | X | H | X | + | + | | | C53-5 | | | | | | | 1 | + | | + | | | | X | V | 'V | - | - h | 011 | 1 | V | | | V | | X | | × | Н | V | | + | | | C53-1.5 | | | | | | | 1 | t | | | | | | | | _ | _ | h | 0/ | 1 | X | | | / | | | | \wedge | | | + | t | | | C53-10 | | | | | | | | | | | | | | X | X | X | | _, | | | X | | | X | | X | | X | | X | | I | | | C54-25 | | -11 | | 4 | | | 1 | 1 | | 1 | | | - | | | _ | | - h | 0/ | 6 | | | | 5/ | | | | , | | | | 1 | | | (34-5 | | V | Time | Post | i a d D | | 4 | | | 7 | | | _ | X | X | X | - | | / | | X | _ | | X | _ | _ | | X | | NTS: | | | | | | velsh | Date: | Time: | EN | ived B | -1 | ECH | SE | PU | ici | 22 | A | A | HE | AD | SPA | DIT
CE A | ION | NT_ | AB | | / | | | P | ler 1 | R-N | 1. | 8 | 260 | o fa | V | + Dickore | | Relinquished By: | AL | Date: 2 | 7390
Time: | 1 | ived B | (| 1 |) | V | 女 | Q | Ó | | AP
PR | PRO | PRI
RVE | ATE
D IN | LA | NTAI
B | INE | | ME | | s | оті | | < | 6 | /2 | 4/0 | 7 | | | | NW. N | IcCAMP1 | BELL | ANAI | LYI | ICA | L, | IN | C. | | | | | | | | | C | H | AI | N (| OF | C | US | T | OL | Y | R | EC | OI | RD | | |------------------|---|---------------------|-------|------------|-----------------|-------|------|-----------|-----------|----------|------------|----------|--------------|----------------------|---------------------------|--------------------------------------|---------------------------------------|-----------------------------------|-------------------------------------|--|--------------------------------|---------------------------------------|-------------------------|--------------------------------|-----------------------------|---|--|------------------------------------|--------|------|-------------------------| | | | 1534 WIL
PITTSBU | | | | | | | | | | | T | UR | N. | AR | OU | ND | T | MI | E | | | | |) | | | | | / | | W | ebsite: www.me | | | | | mecai | npbe | ll.cor | n | | | | | | | _ | | | . 4 | 2 | - | _ ' | RUS
| H | 24 | HR | | 48 H | R | 72 H | R 5 DAY | | To | lephone: (877 |) 252-920 | 62 | | Fax: | (925 | 252 | 2-926 | 9 | | | - 1 | G | ieo'l | ra | cke | r E | DF | | | | | | | | | | | | | W) 📮 | | Report To: | ua He | Unc. | D | m Te | . (| | 0. | | _ | _ | _ | \dashv | _ | _ | _ | _ | | | nol | | | | | mpi | e is | еш | uent | an | _ | ther | is required | | _ | Report To: Ryan Meyer Bill To: Ryan Mayer Company: Cares Associates | | | | | | | | | | | \dashv | _ | | | | | | | | | | mer | Comments | | | | | | | | | 424 FAST ST | | | | | | | | | | \dashv | BE | | (4.0) | 7 | 10 | | | eners | | | | | | | | | 2 | | Filter | | | | | Bencia, | CA 94 | 510 E | -Mai | l: r | lann | neve | - QU | iresa | 9501 | la ex | com | M | 1 | # | 2 | 2 | | | ong | | | | | | 6 | | | 10 | | Samples | | Tele: (707) | 148-3120 | | F | | 707 | | | | | | | | 8015) / MTBE | 6 | 663 | 2 | | = | | rs/C | | _ | | | 1 | 6020 | 6020) | | 6288 | | for Metals
analysis: | | | 1264-6 | | | | t Nan | | | | | | | | + | X | 1 | 418.1 | 200/ | / 802 | 3 | roclo | | cides | Λ | (| NA | /010 | /01 | | × | | Yes / No | | Project Location | | CA , | | | | | | | | | | | 8021 | 1 | Grease (1864-18639 E/B&T) | ons (| € | 602 | icide | 13 | (s) | E E | (3) | 00 | Â | 9/8 | 9/8 | 020) | 2 | | | | Sampler Signatu | re: Por | 2/ | | | | | | | _ | | | | 1209 | X | Grea | carb | 802 | (EPA | Pest | ONE | sticie | 5 | S | (SVC | PAH | / 200 | 200. | 9/01 | 9 | | | | | 1 | SAMP | PLING | 2500 | S. | M | ATI | RIX | P | ME' | THO
ERV | ED | (S) | 10 | 8 | Total Petroleum Hydrocarbons (418.1) | EPA 502.2 / 601 / 8010 / 8021 (HVOCs) | MTBE / BTEX ONLY (EPA 602 / 8021) | EPA 505/ 608 / 8081 (Cl Pesticides) | EPA 608 / 8082PCB's ONLY; Aroclors / Congeners | EPA 507 / 8141 (NP Pesticides) | EPA 515 / 8151 (Acidic CI Herbicides) | 524.2 / 624/8260 (VOCs) | EPA 525.2 / 625 / 8270 (SVOCs) | 8270 SIM / 8310 (PAHs(PNAS) | CAM 17 Metals (200.7 / 200.8 / 6010 / 6020) | TUFT 5 Metals (\$00.7 / 200.8 / 6010 / 6020) | Lead (200.7 / 200.8 / 6010 / 6020) | 3 | | | | 926 (1920) | LOCATION/ | | | Containers | Type Containers | | Т | | 1 | | | | TPH as | TPH as Diesel (8015) | Total Petroleum Oil | H | 8/10 | хох | 808 | 1 | 100 | 51 (| 2 | 25/8 | M/8 | als (2 | \$\
\\ | 200.8 | XO | | | | SAMPLE ID | Field Point | | | tain | ont | | | d) | | | | | ₽/ | Diese | ling | trole | 2/6 | BTE | / 608 | / 808 | 81 | - 8 | 2/6 | 2/6 | 10 SI | Met | Mets | 0.77 | 9 | | | | | Name | Date | Time | lo. | be C | Water | | Sludge | Other | HCL | HNO3 | Other | BTEX | 1 | al Pe | al Pe | 1 502 | BE/ | 1 505 | 809 \ | 1 507 | 1515 | 1 524 | 1 525 | 82 | M 17 | 1.5 | d (20 | - | | | | | | | | # | Ty | Wat | Air | Slu | | E | E | ŏ | BT | TPI | \\E | Tot | EP/ | MT | EP/ | EP/ | EP/ | E | EPA | EP/ | EPA | C | 4 | 2 | - | | | | 154-7.5 | | (dasto) | | ١ | | | | | λ | 4 , | - | | | | _ | | -4 | 0 | b | | | | | | | | 7 | | \Box | | | | 154-10 | | 1 | | 1 | | | 1 | | n | | | | X | X | X | | | | | X | | | X | | X | | X | | X | | | | CS 5-2-5 | | | | | | | | | | | | - | _ | - | | | - 4 | 20 | / | 7 | | | | | | | , | | | | | | LS 5-5 | | | | | | | | | | | | | X | X | X | | | | - | X | | | X | | X | | X | | X | | | | (55-7-5 | | | _ | - | | - | | | | - | - | | _ | | -1 | rol | 1 | | | - | | | | | | | | | | | | | 155-10 | | | | | | | | | 11 | | | | X | X | LX | | | | | X | | | X | | X | | X | | X | | | | (56-10 | | | | | | | | | | | | | X | X | | | | | | | | | X | | | | 1 | ľ | | | | | C5\$-10 | | | | | | | | | | | | | X | X | | | | | | | | | X | 2 | D | 1 | -u | | 1 | | | | (58-10 | | (4) | | 47 | | 4 | | | 4 | 7 | | | X | V | | | | | | | | | X | (| D | (# | -1 | 9 | 1 | | | | | | V | | * | | 1 | | П | 1 | \top | \top | | | | | | | | | | | | |) | | | | | 6 | | | | | | | | X | | | + | \Box | + | + | | | | | | | | | | | | | | | | | | \exists | = | | | | | | | | | | | + | \forall | 11 | 7 | 10 | \Box | _ | | | | | | | | | | | | | | | | _ | _ | | | | | | | | | | - | - | 4 | 07 | GIL | < | 1 | Q | 1 | | | | | | | | | | | | | \dashv | | | | | | | | | | | | - | | + | | | 3 | Te | | 4 | | | | | | | | | | | | | | + | - | | | Relinquished By: | | Date: | Time: | Rece | ived B | v: | | | | _ | | \vdash | IC | E/t° | | | | | | | | | | | | _ | COM | IME | NTS: | | | | 1- L 101 | Ish | 06/25/07 | 12-47 | GN | VLPO | -760 | ut " | SGL | nce | 5 | AA | | GC | OOD | | | | | | | | | | | | | | | | | | | Relinquished By: | | Date: | Time: | Rece | ived B | | | X | | | | \dashv | | CHL | | | | _ | AB | _ | | | | | | | | | | | | | GNVIRD-TECHS | sovices 6 | 8565 | 526 | 1 | | | / | | | | 0 | - | | PRO | | | | | INE | RS_ | | - 1 | | | | | | | | | | | Relinquished By: | 1/2 | Datey | Time: | Rece | eived B | y: 1 | 0 | | 10 | 1)1 | | \neg | FR | ESE | KVE | DIN | LA | | | | | | | | | | | | | | | | | 6/ | 397 | 345 | | | M | 1 | 1 | a | Y | | | PR | ESE | RVA | TIO | | DAS | 08 | | ME
pH< | | S | ОТН | IER | | | | | | | ## McCampbell Analytical, Inc. 1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262 # CHAIN-OF-CUSTODY RECORD Page 1 of 1 ClientID: CAB WorkOrder: 0706632 | | | | | ✓ EDF | | Excel | | Fax | [| ✓ Email | | Hard | Сору | Thi | dParty | | | |---|--------------------|------------------------------|-----------------|-------------------|---------------------------------|-------------------|----------|--------------------|-----|-------------------|------------|----------|---------|---------|----------|----------|----------| | Report to: Ryan Meyer Ceres Associates 424 First Street | | Email:
TEL:
ProjectNo: | 17 | Ce
42 | wania l
res Ass
4 First S | sociate
Street | | | | Dat | te Rec | d TAT: | 06/25/ | | | | | | Benicia, CA 94510 | | PO: | | | | | | nicia, C
ejia@c | | 0
sociate | s.com | | Dat | te Prii | nted: | 06/25/ | 2007 | | Sample ID | ClientSampID | | Matrix | Collection Date | Hold | 1 | 2 | 3 | Req | uested
5 | Tests
6 | (See leg | gend be | elow) | 10 | 11 | 12 | | | - Cilonicampia | | | | 11010 | • | _ | | | | | <u> </u> | | | | | | | 0706632-002 | CS1-5 | | Soil | 6/25/07 | | Α | Α | Α | Α | Α | Α | Α | | Α | <u> </u> | <u> </u> | | | 0706632-004 | CS1-10 | | Soil | 6/25/07 | | Α | Α | Α | Α | Α | Α | Α | | | ↓ | ↓ | | | 0706632-006 | CS2-5 | | Soil | 6/25/07 | | Α | Α | Α | Α | Α | Α | Α | | | <u> </u> | <u> </u> | <u> </u> | | 0706632-008 | CS2-10 | | Soil | 6/25/07 | | Α | Α | Α | Α | Α | Α | Α | | | ↓ | ↓ | | | 0706632-010 | CS3-5 | | Soil | 6/25/07 | | Α | Α | Α | Α | Α | Α | Α | | | ↓ | ↓ | | | 0706632-012 | CS3-10 | | Soil | 6/25/07 | | Α | Α | Α | Α | Α | Α | Α | | | ↓ | ↓ | | | 0706632-014 | CS4-5 | | Soil | 6/25/07 | | Α | Α | Α | Α | Α | Α | Α | | | <u> </u> | <u> </u> | | | 0706632-016 | CS4-10 | | Soil | 6/25/07 | | Α | Α | Α | Α | Α | Α | Α | | | <u> </u> | <u> </u> | | | 0706632-018 | CS5-5 | | Soil | 6/25/07 | | Α | Α | Α | Α | Α | Α | Α | | | <u> </u> | <u> </u> | | | 0706632-020 | CS5-10 | | Soil | 6/25/07 | | Α | Α | Α | Α | Α | Α | Α | | | <u> </u> | <u> </u> | | | 0706632-021 | CS6-10 | | Soil | 6/25/07 | | | | | | | Α | | Α | | | | | | 0706632-022 | CS7-10 | | Soil | 6/25/07 | | | | | | | Α | | Α | | | | | | 0706632-023 | CS8-10 | | Soil | 6/25/07 | | | | | | | Α | | Α | | | | | | Test Legend: 1 1,4-DIOXANE_S 6 G-MBTEX_S 11 | 2 7 7 12 | 8082A_F
LUFT | | | 8260B
ГЕХ-82 | _S
60B_S | | 9 | 1 | 8270D-
PREDF F | | - | | 5 10 | 9071 | B_SG_S | <u>}</u> | | The following SampIDs: 002 | A, 004A, 006A, 008 | A, 010A, 012 | 2A, 014A, 016A, | 018A, 020A, 021A, | 022A, | 023A c | ontain t | estgroup | D. | | | | Prepa | red by: | : Melis | sa Vall | es | #### **Comments:** NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense. ## **Sample Receipt Checklist** | Client Name: | Ceres Associate | es | | | Date a | nd Time Received: | 6/25/07 3: | 52:26 PM | |-------------------|--------------------------|---------------------|---------|----------|---------------|----------------------|--------------|----------------| | Project Name: | #CA1264-6 | | | | Checkl | list completed and r | eviewed by: | Melissa Valles | | WorkOrder N°: | 0706632 | Matrix <u>Soil</u> | | | Carrier | : Rob Pringle (M | IAI Courier) | | | | | Chai | n of Cu | stody (C | OC) Informa | <u>tion</u> | | | | Chain of custody | y present? | | Yes | V | No 🗆 | | | | | Chain of custody | / signed when relinqu | ished and received? | Yes | V | No 🗆 | | | | | Chain of custody | agrees with sample | labels? | Yes | ✓ | No 🗌 | | | | | Sample IDs noted | d by Client on COC? | | Yes | V | No 🗆 | | | | | Date and Time of | f collection noted by Cl | ient on COC? | Yes | ✓ | No \square | | | | | Sampler's name i | noted on COC? | | Yes | ✓ | No 🗆 | | | | | | | <u> </u> | Sample | Receipt | Information | | | | | Custody seals in | tact on shippping con | tainer/cooler? | Yes | | No 🗆 | | NA 🗹 | | | Shipping contain | er/cooler in good cond | dition? | Yes | V | No 🗆 | | | | | Samples in prope | er containers/bottles? | | Yes | ~ | No 🗆 | | | | | Sample containe | ers intact? | | Yes | ✓ | No \square | | | | | Sufficient sample | e volume for indicated | test? | Yes | ✓ | No 🗌 | | | | | | | Sample Prese | rvatio | n and Ho | old Time (HT) | Information | | | | All samples recei | ived within holding tim | ne? | Yes | ✓ | No 🗌 | | | | | Container/Temp I | Blank temperature | | Coole | er Temp: | 6.2°C | | NA \square | | | Water - VOA via | ls have zero headspa | ice / no bubbles? | Yes | | No \square | No VOA vials subm | itted 🗹 | | | Sample labels ch | hecked for correct pre | servation? | Yes | ~ | No 🗌 | | | | | TTLC Metal - pH | acceptable upon rece | ipt (pH<2)? | Yes | | No 🗆 | | NA 🗹 | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | ===== | ====== | ===== | | ===: | ==== | | ==== | ====== | | | | | | | | | | | | Client contacted: | | Date contact | cted: | | | Contacted | by: | | | Comments: | | | | | | | | | "When Ouality Counts' 1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269 | Ceres Associates | Client Project ID: #CA1264-6 | Date Sampled: 06/25/07 | |---------------------|------------------------------|---------------------------------| | 424 First Street | | Date Received: 06/25/07 | | Benicia, CA 94510 | Client Contact: Ryan Meyer | Date Extracted: 06/26/07 | | Belleta, C.17 le 10 | Client P.O.: | Date Analyzed 06/26/07-06/27/07 | #### 1,4-Dioxane by P&T and GC/MS SIM Mode* Extraction method SW5030B Analytical methods SW8260B Work Order: 0706632 | Extraction method SW5 | 5030B | Analytical metho | ds SW8260B | Work Order: 07 | 06632 | |-----------------------|------------------------|------------------|-------------|----------------|-------| | Lab ID | Client ID | Matrix | 1,4-Dioxane | DF | % SS | | 002A | CS1-5 | S | ND | 1 | 78 | | 004A | CS1-10 | S | ND | 1 | 79 | | 006A | CS2-5 | S | ND | 1 | 78 | | 008A | CS2-10 | S | ND | 1 | 78 | | 010A | CS3-5 | S | ND | 1 | 77 | | 012A | CS3-10 | S | ND | 1 | 76 | | 014A | CS4-5 | S | ND | 1 | 76 | | 016A | CS4-10 | S | ND | 1 | 77 | | 018A | CS5-5 | S | ND | 1 | 75 | | 020A | CS5-10 | S | ND | 1 | 75 | ing Limit for DF =1; | W | NA | N | ΙA | | ND mea | ans not detected at or | S | 0.02 | **** | x/lza | | ND means not detected at or above the reporting limit | S | 0.02 | mg/kg | |--|----------------|---|-----------------| | * water and vapor samples are reported in ug/L soil/sluc | dge/solid samp | ules in mg/kg_product/oil/non-aqueous liquid samples and al | 1 TCI P & SPI P | extracts are reported in mg/L, wipe samples in µg/wipe. ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis. # surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference. 1534 Willow Pass Road, Pittsburg, CA 94565-1701 Telephone: 877-252-9262 Fax: 925-252-9269 | Ceres Associates | Client Project ID: #CA1264-6 | Date Sampled: 06/25/07 | |-----------------------|------------------------------|----------------------------------| | 424 First Street | | Date Received: 06/25/07 | | Benicia, CA 94510 | Client Contact: Ryan Meyer | Date Extracted: 06/25/07 | | 20.10.11, 0.12, 10.20 | Client P.O.: | Date Analyzed: 06/26/07-06/27/07 | | | | | ## Polychlorinated Biphenyls (PCBs) Aroclors by GC-ECD* | Extraction Method: SW3550C | An | alytical Method: SW808 | 2A | | Work Order: | 0706632 | |----------------------------|-----------------|------------------------|--------------|--------------|-----------------|---------| | Lab | ID 0706632-002A | 0706632-004A | 0706632-006A | 0706632-008A | | | | Client | ID CS1-5 | CS1-10 | CS2-5 | CS2-10 | Reporting
DF | | | Ma | rix S | S | S | S | | | | | DF 1 | 1 | 1 | 1 | S | W | | Compound | | Conce | entration | | mg/kg | ug/L | | Aroclor1016 | ND | ND | ND | ND | 0.025 | NA | | Aroclor1221 | ND | ND | ND | ND | 0.025 | NA | | Aroclor1232 | ND | ND | ND | ND | 0.025 | NA | | Aroclor1242 | ND | ND | ND | ND | 0.025 | NA | | Aroclor1248 | ND | ND | ND | ND | 0.025 | NA | | Aroclor1254 | ND | ND | ND | ND | 0.025 | NA | | Aroclor1260 | ND | ND | ND | ND | 0.025 | NA | | PCBs, total | ND | ND | ND | ND | 0.025 | NA | | | Sur | rogate Recoverie | s (%) | | | | | %SS: | 107 | 107 | 107 | 108 | | | | Comments | | | | | | | ^{*} water samples in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, filter samples in µg/filter, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L. ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis. # surrogate diluted out of range or surrogate coelutes with another peak. (h) a lighter than water immiscible sheen/product is present; (i) liquid sample that contains >~1 vol. % sediment; (j) sample diluted due to high organic content/matrix interference; (k) p,p,- is the same as 4,4,-; (l) florisil (EPA 3620) cleanup; (m) silica-gel (EPA 3630) cleanup; (n) elemental sulfur (EPA 3660) cleanup; (o) sulfuric acid permanganate (EPA 3665) cleanup; (p) see attached narrative; q) reporting limit raised due to insufficient sample amount; (r) results are reported on a dry weight basis; | Ceres Associates | Client Project ID: #CA1264-6 | Date Sampled: 06/25/07 | |----------------------|------------------------------|----------------------------------| | 424 First Street | | Date Received: 06/25/07 | | Benicia, CA 94510 | Client Contact: Ryan Meyer | Date Extracted: 06/25/07 | | 20110111, 0.127 1010 | Client P.O.: | Date Analyzed: 06/26/07-06/27/07 | ## Polychlorinated Biphenyls (PCBs) Aroclors by GC-ECD* Extraction Method: SW3550C Analytical Method: SW8082A Work Order: 0706632 | Extraction Method: SW3550C | | Anal | ytical Method: SW808 | 2A | | Work Order: | 0706632 | |----------------------------|-----------|--------------|----------------------|--------------|--------------|-----------------|---------| | | Lab ID | 0706632-010A | 0706632-012A | 0706632-014A | 0706632-016A | | | | | Client ID | CS3-5 | CS3-10 | CS4-5 | CS4-10 | Reporting
DF | | | | Matrix | S | S | S | S | | | | | DF | 1 | 1 | 1 | 1 | S | W | | Compound | | | Conce | entration | | mg/kg | ug/L | | Aroclor1016 | | ND | ND | ND | ND | 0.025 | NA | | Aroclor1221 | | ND | ND | ND | ND | 0.025 | NA | | Aroclor1232 | | ND | ND | ND | ND | 0.025 | NA | | Aroclor1242 | | ND | ND | ND | ND | 0.025 | NA | | Aroclor1248 | | ND | ND | ND | ND | 0.025 | NA | | Aroclor1254 | | ND | ND | ND | ND | 0.025 | NA | | Aroclor1260 | | ND | ND | ND | ND | 0.025 | NA | | PCBs, total | | ND | ND | ND | ND | 0.025 | NA | | | | Surr | ogate Recoveries | s (%) | | | | | %SS: | | 108 | 107 | 106 | 107 | | | | Comments | | | | | | | | ^{*} water samples in μ g/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, filter samples in μ g/filter, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L. ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis. # surrogate diluted out of range or surrogate coelutes with another peak. (h) a lighter than water immiscible sheen/product is present; (i) liquid sample that contains >~1 vol. % sediment; (j) sample diluted due to high organic content/matrix interference; (k) p,p,- is the same as 4,4,-; (l) florisil (EPA 3620) cleanup; (m) silica-gel (EPA 3630) cleanup; (n) elemental sulfur (EPA 3660) cleanup; (o) sulfuric acid permanganate (EPA 3665) cleanup; (p) see attached narrative; q) reporting limit raised due to insufficient sample amount; (r) results are reported on a dry weight basis; | Ceres Associates | | Client Project ID: #CA1264-6 | | | 54-6 | Date Sampled: | 06/25/07 | | |----------------------------|--------------------------|------------------------------|-----------|----------------------|-----------------|-----------------|-----------------|---------| | 424 First Street | | Date F | | | | Date Received: | 06/25/07 | | | Benicia, CA 94510 | | | Client Co | ontact: Ryan Me | yer | Date Extracted: | 06/25/07 | | | Benicia, CA 94310 | Client P.O.: | | | | Date Analyzed: | 06/26/07-0 | 6/27/07 | | | | Po | olychlor | inated Bi | phenyls (PCBs) A | roclors by GC-E | CD* | | | | Extraction Method: SW3550C | | | Anal | ytical Method: SW808 | 2A | | Work Order: | 0706632 | | | Lab ID | 070663 | 32-018A | 0706632-020A | | | | | | | Client ID | C | S5-5 | CS5-10 | | | Reporting
DF | | | | Matrix | | S | S | | | 1 | | | | DF | | 1 | 1 | | | S | W | | Compound | | Concentration | | | | | mg/kg | ug/L | | Aroclor1016 | | 1 | ND | ND | | | 0.025 | NA | | Aroclor1221 | | 1 | ND | ND | | | 0.025 | NA | | Aroclor1232 | | 1 | ND | ND | | | 0.025 | NA | | Aroclor1242 | | 1 | ND | ND | | | 0.025 | NA | | Aroclor1248 | | 1 | ND | ND | | | 0.025 | NA | | Aroclor1254 | | 1 | ND | ND | | | 0.025 | NA | | Aroclor1260 | | 1 | ND | ND | | | 0.025 | NA | | PCBs, total | | ND | | ND | | | 0.025 | NA | | | Surrogate Recoveries (%) | | | | | | | | | %SS: | | 1 | 108 | 110 | | | | | | Comments | | | | | | | | | ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis. # surrogate diluted out of range or surrogate coelutes with another peak. (h) a lighter than water immiscible sheen/product is present; (i) liquid sample that contains >~1 vol. % sediment; (j) sample diluted due to high organic content/matrix interference; (k) p,p,- is the same as 4,4,-; (l) florisil (EPA 3620) cleanup; (m) silica-gel (EPA 3630) cleanup; (n) elemental sulfur (EPA 3660) cleanup; (o) sulfuric acid permanganate (EPA 3665) cleanup; (p) see attached narrative; q) reporting limit raised due to insufficient sample amount; (r) results are reported on a dry weight basis; ^{*} water samples in $\mu g/L$, soil/sludge/solid samples in mg/kg, wipe samples in $\mu g/wipe$, filter samples in $\mu g/filter$, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L. | Ceres Associates | Client Project ID: #CA1264-6 | Date Sampled: 06/25/07 | |-------------------|------------------------------|--------------------------| | 424 First Street | | Date Received: 06/25/07 | | 424 Phst Sueet | Client Contact: Ryan Meyer | Date Extracted: 06/25/07 | | Benicia, CA 94510 | Client P.O.: | Date Analyzed 06/27/07 | ## Volatile Organics by P&T and GC/MS (Basic Target List)* Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0706632 | Lab ID | 0706632-002A | | | | | |
-----------|--------------|-----|--|--|--|--| | Client ID | CS1-5 | | | | | | | Matrix | Soil | | | | | | | | n : | n d | | | | | | Matrix | | Soil | | | | | | |-----------------------------|-----------------|-------|--------------------|-------------------------------|-----------------|-----|--------------------| | Compound | Concentration * | DF | Reporting
Limit | Compound | Concentration * | DF | Reporting
Limit | | Acetone | ND | 1.0 | 0.05 | Acrolein (Propenal) | ND | 1.0 | 0.05 | | Acrylonitrile | ND | 1.0 | 0.02 | tert-Amyl methyl ether (TAME) | ND | 1.0 | 0.005 | | Benzene | ND | 1.0 | 0.005 | Bromobenzene | ND | 1.0 | 0.005 | | Bromochloromethane | ND | 1.0 | 0.005 | Bromodichloromethane | ND | 1.0 | 0.005 | | Bromoform | ND | 1.0 | 0.005 | Bromomethane | ND | 1.0 | 0.005 | | 2-Butanone (MEK) | ND | 1.0 | 0.02 | t-Butyl alcohol (TBA) | ND | 1.0 | 0.05 | | n-Butyl benzene | ND | 1.0 | 0.005 | sec-Butyl benzene | ND | 1.0 | 0.005 | | tert-Butyl benzene | ND | 1.0 | 0.005 | Carbon Disulfide | ND | 1.0 | 0.005 | | Carbon Tetrachloride | ND | 1.0 | 0.005 | Chlorobenzene | ND | 1.0 | 0.005 | | Chloroethane | ND | 1.0 | 0.005 | 2-Chloroethyl Vinyl Ether | ND | 1.0 | 0.01 | | Chloroform | ND | 1.0 | 0.005 | Chloromethane | ND | 1.0 | 0.005 | | 2-Chlorotoluene | ND | 1.0 | 0.005 | 4-Chlorotoluene | ND | 1.0 | 0.005 | | Dibromochloromethane | ND | 1.0 | 0.005 | 1,2-Dibromo-3-chloropropane | ND | 1.0 | 0.005 | | 1.2-Dibromoethane (EDB) | ND | 1.0 | 0.005 | Dibromomethane | ND | 1.0 | 0.005 | | 1,2-Dichlorobenzene | ND | 1.0 | 0.005 | 1,3-Dichlorobenzene | ND | 1.0 | 0.005 | | 1.4-Dichlorobenzene | ND | 1.0 | 0.005 | Dichlorodifluoromethane | ND | 1.0 | 0.005 | | 1,1-Dichloroethane | ND | 1.0 | 0.005 | 1,2-Dichloroethane (1,2-DCA) | ND | 1.0 | 0.005 | | 1,1-Dichloroethene | ND | 1.0 | 0.005 | cis-1,2-Dichloroethene | ND | 1.0 | 0.005 | | trans-1,2-Dichloroethene | ND | 1.0 | 0.005 | 1,2-Dichloropropane | ND | 1.0 | 0.005 | | 1,3-Dichloropropane | ND | 1.0 | 0.005 | 2,2-Dichloropropane | ND | 1.0 | 0.005 | | 1,1-Dichloropropene | ND | 1.0 | 0.005 | cis-1,3-Dichloropropene | ND | 1.0 | 0.005 | | trans-1,3-Dichloropropene | ND | 1.0 | 0.005 | Diisopropyl ether (DIPE) | ND | 1.0 | 0.005 | | Ethylbenzene | ND | 1.0 | 0.005 | Ethyl tert-butyl ether (ETBE) | ND | 1.0 | 0.005 | | Freon 113 | ND | 1.0 | 0.1 | Hexachlorobutadiene | ND | 1.0 | 0.005 | | Hexachloroethane | ND | 1.0 | 0.005 | 2-Hexanone | ND | 1.0 | 0.005 | | Isopropylbenzene | ND | 1.0 | 0.005 | 4-Isopropyl toluene | ND | 1.0 | 0.005 | | Methyl-t-butyl ether (MTBE) | ND | 1.0 | 0.005 | Methylene chloride | ND | 1.0 | 0.005 | | 4-Methyl-2-pentanone (MIBK) | ND | 1.0 | 0.005 | Naphthalene | ND | 1.0 | 0.005 | | Nitrobenzene | ND | 1.0 | 0.1 | n-Propyl benzene | ND | 1.0 | 0.005 | | Styrene | ND | 1.0 | 0.005 | 1,1,1,2-Tetrachloroethane | ND | 1.0 | 0.005 | | 1,1,2,2-Tetrachloroethane | ND | 1.0 | 0.005 | Tetrachloroethene | ND | 1.0 | 0.005 | | Toluene | ND | 1.0 | 0.005 | 1,2,3-Trichlorobenzene | ND | 1.0 | 0.005 | | 1,2,4-Trichlorobenzene | ND | 1.0 | 0.005 | 1,1,1-Trichloroethane | ND | 1.0 | 0.005 | | 1,1,2-Trichloroethane | ND | 1.0 | 0.005 | Trichloroethene | ND | 1.0 | 0.005 | | Trichlorofluoromethane | ND | 1.0 | 0.005 | 1,2,3-Trichloropropane | ND | 1.0 | 0.005 | | 1,2,4-Trimethylbenzene | ND | 1.0 | 0.005 | 1,3,5-Trimethylbenzene | ND | 1.0 | 0.005 | | Vinvl Chloride | ND | 1.0 | 0.005 | 7-7- | ND | 1.0 | 0.005 | | | | Surre | ogate Re | ecoveries (%) | | | | | Surrogate Recoveries (76) | | | | | | | | %SS1: 94 %SS2: %SS3: 103 Comments ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis. # surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference. ^{*} water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/wipe$. | Ceres Associates | Client Project ID: #CA1264-6 | Date Sampled: 06/25/07 | |-------------------|------------------------------|--------------------------| | 424 First Street | | Date Received: 06/25/07 | | 424 Phist Succt | Client Contact: Ryan Meyer | Date Extracted: 06/25/07 | | Benicia, CA 94510 | Client P.O.: | Date Analyzed 06/27/07 | #### Volatile Organics by P&T and GC/MS (Basic Target List)* Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0706632 | Client ID CS1-10 | | |------------------|--| | | | | Matrix Soil | | | Matrix | | | | Soil | | | | |-----------------------------|-----------------|------|--------------------|-------------------------------|-----------------|-----|--------------------| | Compound | Concentration * | DF | Reporting
Limit | Compound | Concentration * | DF | Reporting
Limit | | Acetone | ND | 1.0 | 0.05 | Acrolein (Propenal) | ND | 1.0 | 0.05 | | Acrylonitrile | ND | 1.0 | 0.02 | tert-Amyl methyl ether (TAME) | ND | 1.0 | 0.005 | | Benzene | ND | 1.0 | 0.005 | Bromobenzene | ND | 1.0 | 0.005 | | Bromochloromethane | ND | 1.0 | 0.005 | Bromodichloromethane | ND | 1.0 | 0.005 | | Bromoform | ND | 1.0 | 0.005 | Bromomethane | ND | 1.0 | 0.005 | | 2-Butanone (MEK) | ND | 1.0 | 0.02 | t-Butyl alcohol (TBA) | ND | 1.0 | 0.05 | | n-Butyl benzene | ND | 1.0 | 0.005 | sec-Butyl benzene | ND | 1.0 | 0.005 | | tert-Butyl benzene | ND | 1.0 | 0.005 | Carbon Disulfide | ND | 1.0 | 0.005 | | Carbon Tetrachloride | ND | 1.0 | 0.005 | Chlorobenzene | ND | 1.0 | 0.005 | | Chloroethane | ND | 1.0 | 0.005 | 2-Chloroethyl Vinyl Ether | ND | 1.0 | 0.01 | | Chloroform | ND | 1.0 | 0.005 | Chloromethane | ND | 1.0 | 0.005 | | 2-Chlorotoluene | ND | 1.0 | 0.005 | 4-Chlorotoluene | ND | 1.0 | 0.005 | | Dibromochloromethane | ND | 1.0 | 0.005 | 1,2-Dibromo-3-chloropropane | ND | 1.0 | 0.005 | | 1.2-Dibromoethane (EDB) | ND | 1.0 | 0.005 | Dibromomethane | ND | 1.0 | 0.005 | | 1.2-Dichlorobenzene | ND | 1.0 | 0.005 | 1.3-Dichlorobenzene | ND | 1.0 | 0.005 | | 1.4-Dichlorobenzene | ND | 1.0 | 0.005 | Dichlorodifluoromethane | ND | 1.0 | 0.005 | | 1,1-Dichloroethane | ND | 1.0 | 0.005 | 1,2-Dichloroethane (1,2-DCA) | ND | 1.0 | 0.005 | | 1,1-Dichloroethene | ND | 1.0 | 0.005 | cis-1,2-Dichloroethene | ND | 1.0 | 0.005 | | trans-1.2-Dichloroethene | ND | 1.0 | 0.005 | 1.2-Dichloropropane | ND | 1.0 | 0.005 | | 1,3-Dichloropropane | ND | 1.0 | 0.005 | 2.2-Dichloropropane | ND | 1.0 | 0.005 | | 1.1-Dichloropropene | ND | 1.0 | 0.005 | cis-1.3-Dichloropropene | ND | 1.0 | 0.005 | | trans-1.3-Dichloropropene | ND | 1.0 | 0.005 | Diisopropyl ether (DIPE) | ND | 1.0 | 0.005 | | Ethylbenzene | ND | 1.0 | 0.005 | Ethyl tert-butyl ether (ETBE) | ND | 1.0 | 0.005 | | Freon 113 | ND | 1.0 | 0.1 | Hexachlorobutadiene | ND | 1.0 | 0.005 | | Hexachloroethane | ND | 1.0 | 0.005 | 2-Hexanone | ND | 1.0 | 0.005 | | Isopropylbenzene | ND | 1.0 | 0.005 | 4-Isopropyl toluene | ND | 1.0 | 0.005 | | Methyl-t-butyl ether (MTBE) | ND | 1.0 | 0.005 | Methylene chloride | ND | 1.0 | 0.005 | | 4-Methyl-2-pentanone (MIBK) | ND | 1.0 | 0.005 | Naphthalene | ND | 1.0 | 0.005 | | Nitrobenzene | ND | 1.0 | 0.1 | n-Propyl benzene | ND | 1.0 | 0.005 | | Styrene | ND | 1.0 | 0.005 | 1.1.1.2-Tetrachloroethane | ND | 1.0 | 0.005 | | 1.1.2.2-Tetrachloroethane | ND | 1.0 | 0.005 | Tetrachloroethene | ND | 1.0 | 0.005 | | Toluene | ND | 1.0 | 0.005 | 1,2,3-Trichlorobenzene | ND | 1.0 | 0.005 | | 1,2,4-Trichlorobenzene | ND | 1.0 | 0.005 | 1,1,1-Trichloroethane | ND | 1.0 | 0.005 | | 1.1.2-Trichloroethane | ND | 1.0 | 0.005 | Trichloroethene | ND | 1.0 | 0.005 | | Trichlorofluoromethane | ND | 1.0 | 0.005 | 1,2,3-Trichloropropane | ND | 1.0 | 0.005 | | 1.2.4-Trimethylbenzene | ND | 1.0 | 0.005 | 1.3.5-Trimethylbenzene | ND | 1.0 | 0.005 | | Vinyl Chloride | ND | 1.0 | 0.005 | Xylenes | ND | 1.0 | 0.005 | | | | Surr | | ecoveries (%) | | | | | | | 2411 | - 5 m - 1 m | | | | | | Surrogate Recoveries (%) | | | | | | | | |--------------------------|-----|-------|----|--|--|--|--| | %SS1: | 93 | %SS2: | 97 | | | | | | %SS3: | 102 | | | | | | | Comments ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis. # surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference. ^{*} water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/wipe$. | Ceres Associates | Client Project ID: #CA1264-6 | Date Sampled: 06/25/07 | |-------------------|------------------------------|--------------------------| | 424 First Street | | Date Received: 06/25/07 | | 424 Prist Succi | Client Contact: Ryan Meyer | Date Extracted: 06/25/07 | | Benicia, CA 94510 | Client P.O.: | Date Analyzed 06/27/07 | #### Volatile Organics by P&T and GC/MS (Basic Target List)* Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0706632 | Lab ID | 0706632-006A | | | | | | |-----------|--------------|--|---|--|--|--| | Client ID | CS2-5 | | | | | | | Matrix | Soil | | | | | | | | D | | D | | | | | Matrix | | Soil | | | | | | |-----------------------------|-----------------|------|--------------------|-------------------------------|-----------------|-----|--------------------| | Compound | Concentration * | DF | Reporting
Limit | Compound | Concentration * | DF | Reporting
Limit | | Acetone | ND | 1.0 | 0.05 | Acrolein (Propenal) | ND | 1.0 | 0.05 | | Acrylonitrile | ND | 1.0 | 0.02 | tert-Amyl methyl ether (TAME) | ND | 1.0 | 0.005 | | Benzene | ND | 1.0 | 0.005 | Bromobenzene | ND | 1.0 | 0.005 | | Bromochloromethane | ND | 1.0 | 0.005 | Bromodichloromethane | ND | 1.0 | 0.005 | | Bromoform | ND | 1.0 | 0.005 | Bromomethane | ND | 1.0 | 0.005 | | 2-Butanone (MEK) | ND | 1.0 | 0.02 | t-Butyl alcohol (TBA) | ND | 1.0 | 0.05 | | n-Butyl benzene | ND | 1.0 | 0.005 | sec-Butyl benzene | ND | 1.0 | 0.005 | |
tert-Butyl benzene | ND | 1.0 | 0.005 | Carbon Disulfide | ND | 1.0 | 0.005 | | Carbon Tetrachloride | ND | 1.0 | 0.005 | Chlorobenzene | ND | 1.0 | 0.005 | | Chloroethane | ND | 1.0 | 0.005 | 2-Chloroethyl Vinyl Ether | ND | 1.0 | 0.01 | | Chloroform | ND | 1.0 | 0.005 | Chloromethane | ND | 1.0 | 0.005 | | 2-Chlorotoluene | ND | 1.0 | 0.005 | 4-Chlorotoluene | ND | 1.0 | 0.005 | | Dibromochloromethane | ND | 1.0 | 0.005 | 1,2-Dibromo-3-chloropropane | ND | 1.0 | 0.005 | | 1,2-Dibromoethane (EDB) | ND | 1.0 | 0.005 | Dibromomethane | ND | 1.0 | 0.005 | | 1,2-Dichlorobenzene | ND | 1.0 | 0.005 | 1,3-Dichlorobenzene | ND | 1.0 | 0.005 | | 1,4-Dichlorobenzene | ND | 1.0 | 0.005 | Dichlorodifluoromethane | ND | 1.0 | 0.005 | | 1,1-Dichloroethane | ND | 1.0 | 0.005 | 1,2-Dichloroethane (1,2-DCA) | ND | 1.0 | 0.005 | | 1,1-Dichloroethene | ND | 1.0 | 0.005 | cis-1,2-Dichloroethene | ND | 1.0 | 0.005 | | trans-1,2-Dichloroethene | ND | 1.0 | 0.005 | 1,2-Dichloropropane | ND | 1.0 | 0.005 | | 1,3-Dichloropropane | ND | 1.0 | 0.005 | 2,2-Dichloropropane | ND | 1.0 | 0.005 | | 1,1-Dichloropropene | ND | 1.0 | 0.005 | cis-1,3-Dichloropropene | ND | 1.0 | 0.005 | | trans-1,3-Dichloropropene | ND | 1.0 | 0.005 | Diisopropyl ether (DIPE) | ND | 1.0 | 0.005 | | Ethylbenzene | ND | 1.0 | 0.005 | Ethyl tert-butyl ether (ETBE) | ND | 1.0 | 0.005 | | Freon 113 | ND | 1.0 | 0.1 | Hexachlorobutadiene | ND | 1.0 | 0.005 | | Hexachloroethane | ND | 1.0 | 0.005 | 2-Hexanone | ND | 1.0 | 0.005 | | Isopropylbenzene | ND | 1.0 | 0.005 | 4-Isopropyl toluene | ND | 1.0 | 0.005 | | Methyl-t-butyl ether (MTBE) | ND | 1.0 | 0.005 | Methylene chloride | ND | 1.0 | 0.005 | | 4-Methyl-2-pentanone (MIBK) | ND | 1.0 | 0.005 | Naphthalene | ND | 1.0 | 0.005 | | Nitrobenzene | ND | 1.0 | 0.1 | n-Propyl benzene | ND | 1.0 | 0.005 | | Styrene | ND | 1.0 | 0.005 | 1,1,1,2-Tetrachloroethane | ND | 1.0 | 0.005 | | 1,1,2,2-Tetrachloroethane | ND | 1.0 | 0.005 | Tetrachloroethene | ND | 1.0 | 0.005 | | Toluene | ND | 1.0 | 0.005 | 1,2,3-Trichlorobenzene | ND | 1.0 | 0.005 | | 1,2,4-Trichlorobenzene | ND | 1.0 | 0.005 | 1,1,1-Trichloroethane | ND | 1.0 | 0.005 | | 1,1,2-Trichloroethane | ND | 1.0 | 0.005 | Trichloroethene | ND | 1.0 | 0.005 | | Trichlorofluoromethane | ND | 1.0 | 0.005 | 1,2,3-Trichloropropane | ND | 1.0 | 0.005 | | 1,2,4-Trimethylbenzene | ND | 1.0 | 0.005 | 1,3,5-Trimethylbenzene | ND | 1.0 | 0.005 | | Vinvl Chloride | ND | 1.0 | 0.005 | Xvlenes | ND | 1.0 | 0.005 | | | | Surr | ogate Re | coveries (%) | | | | | | | | | | | | | %SS1: 92 %SS2: 98 %SS3: 102 Comments ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis. # surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference. ^{*} water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/wipe$. | Ceres Associates | Client Project ID: #CA1264-6 | Date Sampled: 06/25/07 | |-------------------|------------------------------|--------------------------| | 424 First Street | | Date Received: 06/25/07 | | 424 Prist Succi | Client Contact: Ryan Meyer | Date Extracted: 06/25/07 | | Benicia, CA 94510 | Client P.O.: | Date Analyzed 06/27/07 | #### Volatile Organics by P&T and GC/MS (Basic Target List)* Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0706632 | Lab ID | 0706632-008A | |-----------|--------------| | Client ID | CS2-10 | | Matrix | Soil | | | | | Matrix Soil | | | | | | | | |-----------------------------|-----------------|------|--------------------|-------------------------------|-----------------|-----|--------------------| | Compound | Concentration * | DF | Reporting
Limit | Compound | Concentration * | DF | Reporting
Limit | | Acetone | ND | 1.0 | 0.05 | Acrolein (Propenal) | ND | 1.0 | 0.05 | | Acrylonitrile | ND | 1.0 | 0.02 | tert-Amyl methyl ether (TAME) | ND | 1.0 | 0.005 | | Benzene | ND | 1.0 | 0.005 | Bromobenzene | ND | 1.0 | 0.005 | | Bromochloromethane | ND | 1.0 | 0.005 | Bromodichloromethane | ND | 1.0 | 0.005 | | Bromoform | ND | 1.0 | 0.005 | Bromomethane | ND | 1.0 | 0.005 | | 2-Butanone (MEK) | ND | 1.0 | 0.02 | t-Butyl alcohol (TBA) | ND | 1.0 | 0.05 | | n-Butyl benzene | ND | 1.0 | 0.005 | sec-Butyl benzene | ND | 1.0 | 0.005 | | tert-Butyl benzene | ND | 1.0 | 0.005 | Carbon Disulfide | ND | 1.0 | 0.005 | | Carbon Tetrachloride | ND | 1.0 | 0.005 | Chlorobenzene | ND | 1.0 | 0.005 | | Chloroethane | ND | 1.0 | 0.005 | 2-Chloroethyl Vinyl Ether | ND | 1.0 | 0.01 | | Chloroform | ND | 1.0 | 0.005 | Chloromethane | ND | 1.0 | 0.005 | | 2-Chlorotoluene | ND | 1.0 | 0.005 | 4-Chlorotoluene | ND | 1.0 | 0.005 | | Dibromochloromethane | ND | 1.0 | 0.005 | 1,2-Dibromo-3-chloropropane | ND | 1.0 | 0.005 | | 1,2-Dibromoethane (EDB) | ND | 1.0 | 0.005 | Dibromomethane | ND | 1.0 | 0.005 | | 1,2-Dichlorobenzene | ND | 1.0 | 0.005 | 1,3-Dichlorobenzene | ND | 1.0 | 0.005 | | 1,4-Dichlorobenzene | ND | 1.0 | 0.005 | Dichlorodifluoromethane | ND | 1.0 | 0.005 | | 1,1-Dichloroethane | ND | 1.0 | 0.005 | 1,2-Dichloroethane (1,2-DCA) | ND | 1.0 | 0.005 | | 1,1-Dichloroethene | ND | 1.0 | 0.005 | cis-1,2-Dichloroethene | ND | 1.0 | 0.005 | | trans-1,2-Dichloroethene | ND | 1.0 | 0.005 | 1,2-Dichloropropane | ND | 1.0 | 0.005 | | 1,3-Dichloropropane | ND | 1.0 | 0.005 | 2,2-Dichloropropane | ND | 1.0 | 0.005 | | 1,1-Dichloropropene | ND | 1.0 | 0.005 | cis-1,3-Dichloropropene | ND | 1.0 | 0.005 | | trans-1,3-Dichloropropene | ND | 1.0 | 0.005 | Diisopropyl ether (DIPE) | ND | 1.0 | 0.005 | | Ethylbenzene | ND | 1.0 | 0.005 | Ethyl tert-butyl ether (ETBE) | ND | 1.0 | 0.005 | | Freon 113 | ND | 1.0 | 0.1 | Hexachlorobutadiene | ND | 1.0 | 0.005 | | Hexachloroethane | ND | 1.0 | 0.005 | 2-Hexanone | ND | 1.0 | 0.005 | | Isopropylbenzene | ND | 1.0 | 0.005 | 4-Isopropyl toluene | ND | 1.0 | 0.005 | | Methyl-t-butyl ether (MTBE) | ND | 1.0 | 0.005 | Methylene chloride | ND | 1.0 | 0.005 | | 4-Methyl-2-pentanone (MIBK) | ND | 1.0 | 0.005 | Naphthalene | ND | 1.0 | 0.005 | | Nitrobenzene | ND | 1.0 | 0.1 | n-Propyl benzene | ND | 1.0 | 0.005 | | Styrene | ND | 1.0 | 0.005 | 1,1,1,2-Tetrachloroethane | ND | 1.0 | 0.005 | | 1,1,2,2-Tetrachloroethane | ND | 1.0 | 0.005 | Tetrachloroethene | ND | 1.0 | 0.005 | | Toluene | ND | 1.0 | 0.005 | 1,2,3-Trichlorobenzene | ND | 1.0 | 0.005 | | 1,2,4-Trichlorobenzene | ND | 1.0 | 0.005 | 1,1,1-Trichloroethane | ND | 1.0 | 0.005 | | 1,1,2-Trichloroethane | ND | 1.0 | 0.005 | Trichloroethene | ND | 1.0 | 0.005 | | Trichlorofluoromethane | ND | 1.0 | 0.005 | 1,2,3-Trichloropropane | ND | 1.0 | 0.005 | | 1,2,4-Trimethylbenzene | ND | 1.0 | 0.005 | 1,3,5-Trimethylbenzene | ND | 1.0 | 0.005 | | Vinvl Chloride | ND | 1.0 | 0.005 | 7-7- | ND | 1.0 | 0.005 | | | | Surr | ogate Re | ecoveries (%) | | | | | I | 1 | | | | 1 | | | %SS1: 94 %SS2: 98 %SS3: 104 ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis. # surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference. ^{*} water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/kg$. | Ceres Associates | Client Project ID: #CA1264-6 | Date Sampled: 06/25/07 | |-------------------|------------------------------|--------------------------| | 424 First Street | | Date Received: 06/25/07 | | 424 Phst Succi | Client Contact: Ryan Meyer | Date Extracted: 06/25/07 | | Benicia, CA 94510 | Client P.O.: | Date Analyzed 06/27/07 | ## Volatile Organics by P&T and GC/MS (Basic Target List)* Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0706632 | Lab ID | 0706632-010A | | |-----------|--------------|---| | Client ID | CS3-5 | | | Matrix | Soil | | | | D | D | | Matrix Soil | | | | | | | | |-----------------------------|-----------------|------|--------------------|-------------------------------|-----------------|-----|--------------------| | Compound | Concentration * | DF | Reporting
Limit | Compound | Concentration * | DF | Reporting
Limit | | Acetone | ND | 1.0 | 0.05 | Acrolein (Propenal) | ND | 1.0 | 0.05 | | Acrylonitrile | ND | 1.0 | 0.02 | tert-Amyl methyl ether (TAME) | ND | 1.0 | 0.005 | | Benzene | ND | 1.0 | 0.005 | Bromobenzene | ND | 1.0 | 0.005 | | Bromochloromethane | ND | 1.0 | 0.005 | Bromodichloromethane | ND | 1.0 | 0.005 | | Bromoform | ND | 1.0 | 0.005 | Bromomethane | ND | 1.0 | 0.005 | | 2-Butanone (MEK) | ND | 1.0 | 0.02 | t-Butyl alcohol (TBA) | ND | 1.0 | 0.05 | | n-Butyl benzene | ND | 1.0 | 0.005 | sec-Butyl benzene | ND | 1.0 | 0.005 | | tert-Butyl benzene | ND | 1.0 | 0.005 | Carbon Disulfide | ND | 1.0 | 0.005 | | Carbon Tetrachloride | ND | 1.0 | 0.005 | Chlorobenzene | ND | 1.0 | 0.005 | | Chloroethane | ND | 1.0 | 0.005 | 2-Chloroethyl Vinyl Ether | ND | 1.0 | 0.01 | | Chloroform | ND | 1.0 | 0.005 | Chloromethane | ND | 1.0 | 0.005 | | 2-Chlorotoluene | ND | 1.0 | 0.005 | 4-Chlorotoluene | ND | 1.0 | 0.005 | | Dibromochloromethane | ND | 1.0 | 0.005 | 1,2-Dibromo-3-chloropropane | ND | 1.0 | 0.005 | | 1,2-Dibromoethane (EDB) | ND | 1.0 | 0.005 | Dibromomethane | ND | 1.0 | 0.005 | | 1,2-Dichlorobenzene | ND | 1.0 | 0.005 | 1,3-Dichlorobenzene | ND | 1.0 | 0.005 | | 1,4-Dichlorobenzene | ND | 1.0 | 0.005 | Dichlorodifluoromethane | ND | 1.0 | 0.005 | | 1,1-Dichloroethane | ND | 1.0 | 0.005 | 1,2-Dichloroethane (1,2-DCA) | ND | 1.0 | 0.005 | | 1,1-Dichloroethene | ND | 1.0 | 0.005 | cis-1,2-Dichloroethene | ND | 1.0 | 0.005 | | trans-1,2-Dichloroethene | ND | 1.0 | 0.005 | 1,2-Dichloropropane | ND | 1.0 | 0.005 | | 1,3-Dichloropropane | ND | 1.0 | 0.005 | 2,2-Dichloropropane | ND | 1.0 | 0.005 | | 1,1-Dichloropropene | ND | 1.0 | 0.005 | cis-1,3-Dichloropropene | ND |
1.0 | 0.005 | | trans-1,3-Dichloropropene | ND | 1.0 | 0.005 | Diisopropyl ether (DIPE) | ND | 1.0 | 0.005 | | Ethylbenzene | ND | 1.0 | 0.005 | Ethyl tert-butyl ether (ETBE) | ND | 1.0 | 0.005 | | Freon 113 | ND | 1.0 | 0.1 | Hexachlorobutadiene | ND | 1.0 | 0.005 | | Hexachloroethane | ND | 1.0 | 0.005 | 2-Hexanone | ND | 1.0 | 0.005 | | Isopropylbenzene | ND | 1.0 | 0.005 | 4-Isopropyl toluene | ND | 1.0 | 0.005 | | Methyl-t-butyl ether (MTBE) | ND | 1.0 | 0.005 | Methylene chloride | ND | 1.0 | 0.005 | | 4-Methyl-2-pentanone (MIBK) | ND | 1.0 | 0.005 | Naphthalene | ND | 1.0 | 0.005 | | Nitrobenzene | ND | 1.0 | 0.1 | n-Propyl benzene | ND | 1.0 | 0.005 | | Styrene | ND | 1.0 | 0.005 | 1,1,1,2-Tetrachloroethane | ND | 1.0 | 0.005 | | 1,1,2,2-Tetrachloroethane | ND | 1.0 | 0.005 | Tetrachloroethene | ND | 1.0 | 0.005 | | Toluene | ND | 1.0 | 0.005 | 1,2,3-Trichlorobenzene | ND | 1.0 | 0.005 | | 1,2,4-Trichlorobenzene | ND | 1.0 | 0.005 | 1,1,1-Trichloroethane | ND | 1.0 | 0.005 | | 1,1,2-Trichloroethane | ND | 1.0 | 0.005 | Trichloroethene | ND | 1.0 | 0.005 | | Trichlorofluoromethane | ND | 1.0 | 0.005 | 1,2,3-Trichloropropane | ND | 1.0 | 0.005 | | 1,2,4-Trimethylbenzene | ND | 1.0 | 0.005 | 1,3,5-Trimethylbenzene | ND | 1.0 | 0.005 | | Vinvl Chloride | ND | 1.0 | 0.005 | Xvlenes | ND | 1.0 | 0.005 | | | | Surr | ogate Re | ecoveries (%) | | | | | | | | | | | | | %SS1: 93 %SS2: 98 %SS3: 104 #### Comments ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis. # surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference. ^{*} water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/wipe$. | Ceres Associates | Client Project ID: #CA1264-6 | Date Sampled: 06/25/07 | |-------------------|------------------------------|--------------------------| | 424 First Street | | Date Received: 06/25/07 | | 424 Phst Succi | Client Contact: Ryan Meyer | Date Extracted: 06/25/07 | | Benicia, CA 94510 | Client P.O.: | Date Analyzed 06/27/07 | #### Volatile Organics by P&T and GC/MS (Basic Target List)* Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0706632 | Lab ID | 0706632-012A | |-----------|--------------| | Client ID | CS3-10 | | Matrix | Soil | | 11111111 | | | Reporting | 501 | | | Reporting | |-----------------------------|-----------------|-------|-----------|-------------------------------|-----------------|-----|-----------| | Compound | Concentration * | DF | Limit | Compound | Concentration * | DF | Limit | | Acetone | ND | 1.0 | 0.05 | Acrolein (Propenal) | ND | 1.0 | 0.05 | | Acrylonitrile | ND | 1.0 | 0.02 | tert-Amyl methyl ether (TAME) | ND | 1.0 | 0.005 | | Benzene | ND | 1.0 | 0.005 | Bromobenzene | ND | 1.0 | 0.005 | | Bromochloromethane | ND | 1.0 | 0.005 | Bromodichloromethane | ND | 1.0 | 0.005 | | Bromoform | ND | 1.0 | 0.005 | Bromomethane | ND | 1.0 | 0.005 | | 2-Butanone (MEK) | ND | 1.0 | 0.02 | t-Butyl alcohol (TBA) | ND | 1.0 | 0.05 | | n-Butyl benzene | ND | 1.0 | 0.005 | sec-Butyl benzene | ND | 1.0 | 0.005 | | tert-Butyl benzene | ND | 1.0 | 0.005 | Carbon Disulfide | ND | 1.0 | 0.005 | | Carbon Tetrachloride | ND | 1.0 | 0.005 | Chlorobenzene | ND | 1.0 | 0.005 | | Chloroethane | ND | 1.0 | 0.005 | 2-Chloroethyl Vinyl Ether | ND | 1.0 | 0.01 | | Chloroform | ND | 1.0 | 0.005 | Chloromethane | ND | 1.0 | 0.005 | | 2-Chlorotoluene | ND | 1.0 | 0.005 | 4-Chlorotoluene | ND | 1.0 | 0.005 | | Dibromochloromethane | ND | 1.0 | 0.005 | 1,2-Dibromo-3-chloropropane | ND | 1.0 | 0.005 | | 1,2-Dibromoethane (EDB) | ND | 1.0 | 0.005 | Dibromomethane | ND | 1.0 | 0.005 | | 1,2-Dichlorobenzene | ND | 1.0 | 0.005 | 1,3-Dichlorobenzene | ND | 1.0 | 0.005 | | 1,4-Dichlorobenzene | ND | 1.0 | 0.005 | Dichlorodifluoromethane | ND | 1.0 | 0.005 | | 1,1-Dichloroethane | ND | 1.0 | 0.005 | 1,2-Dichloroethane (1,2-DCA) | ND | 1.0 | 0.005 | | 1,1-Dichloroethene | ND | 1.0 | 0.005 | cis-1,2-Dichloroethene | ND | 1.0 | 0.005 | | trans-1,2-Dichloroethene | ND | 1.0 | 0.005 | 1,2-Dichloropropane | ND | 1.0 | 0.005 | | 1,3-Dichloropropane | ND | 1.0 | 0.005 | 2,2-Dichloropropane | ND | 1.0 | 0.005 | | 1,1-Dichloropropene | ND | 1.0 | 0.005 | cis-1,3-Dichloropropene | ND | 1.0 | 0.005 | | trans-1,3-Dichloropropene | ND | 1.0 | 0.005 | Diisopropyl ether (DIPE) | ND | 1.0 | 0.005 | | Ethylbenzene | ND | 1.0 | 0.005 | Ethyl tert-butyl ether (ETBE) | ND | 1.0 | 0.005 | | Freon 113 | ND | 1.0 | 0.1 | Hexachlorobutadiene | ND | 1.0 | 0.005 | | Hexachloroethane | ND | 1.0 | 0.005 | 2-Hexanone | ND | 1.0 | 0.005 | | Isopropylbenzene | ND | 1.0 | 0.005 | 4-Isopropyl toluene | ND | 1.0 | 0.005 | | Methyl-t-butyl ether (MTBE) | ND | 1.0 | 0.005 | Methylene chloride | ND | 1.0 | 0.005 | | 4-Methyl-2-pentanone (MIBK) | ND | 1.0 | 0.005 | Naphthalene | ND | 1.0 | 0.005 | | Nitrobenzene | ND | 1.0 | 0.1 | n-Propyl benzene | ND | 1.0 | 0.005 | | Styrene | ND | 1.0 | 0.005 | 1,1,1,2-Tetrachloroethane | ND | 1.0 | 0.005 | | 1,1,2,2-Tetrachloroethane | ND | 1.0 | 0.005 | Tetrachloroethene | ND | 1.0 | 0.005 | | Toluene | ND | 1.0 | 0.005 | 1,2,3-Trichlorobenzene | ND | 1.0 | 0.005 | | 1,2,4-Trichlorobenzene | ND | 1.0 | 0.005 | 1,1,1-Trichloroethane | ND | 1.0 | 0.005 | | 1,1,2-Trichloroethane | ND | 1.0 | 0.005 | Trichloroethene | ND | 1.0 | 0.005 | | Trichlorofluoromethane | ND | 1.0 | 0.005 | 1,2,3-Trichloropropane | ND | 1.0 | 0.005 | | 1,2,4-Trimethylbenzene | ND | 1.0 | 0.005 | 1,3,5-Trimethylbenzene | ND | 1.0 | 0.005 | | Vinvl Chloride | ND | 1.0 | 0.005 | Xvlenes | ND | 1.0 | 0.005 | | | | Surro | gate Re | ecoveries (%) | | | | %SS1: 91 %SS2: 98 %SS3: 105 Comments ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis. # surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference. ^{*} water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/wipe$. | Ceres Associates | Client Project ID: #CA1264-6 | Date Sampled: 06/25/07 | |-------------------|------------------------------|--------------------------| | 424 First Street | | Date Received: 06/25/07 | | 424 Phat Succi | Client Contact: Ryan Meyer | Date Extracted: 06/25/07 | | Benicia, CA 94510 | Client P.O.: | Date Analyzed 06/27/07 | #### Volatile Organics by P&T and GC/MS (Basic Target List)* Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0706632 | Lab ID | 0706632-014A | | | | | | |-----------|--------------|-----------|--|--|--|--| | Client ID | CS4-5 | | | | | | | Matrix | Soil | | | | | | | | Donomino | Danantina | | | | | | Combound Concentration DF | IVIaulix | | | | 2011 | | | | |--|-----------------------------|-----------------|-------|--------------------|-------------------------------|-----------------|-----|--------------------| | Aervlonirile | Compound | Concentration * | DF | Reporting
Limit | Compound | Concentration * | DF | Reporting
Limit | | Benzene | Acetone | ND | 1.0 | 0.05 | Acrolein (Propenal) | ND | 1.0 | 0.05 | | Bromochloromethane | Acrylonitrile | ND | 1.0 | 0.02 | tert-Amyl methyl ether (TAME) | ND | 1.0 | 0.005 | | Bromoform | Benzene | ND | 1.0 | 0.005 | Bromobenzene | ND | 1.0 | 0.005 | | 2-Butanone (MEK) ND | Bromochloromethane | ND | 1.0 | 0.005 | Bromodichloromethane | ND | 1.0 | 0.005 | | Butyl benzene | Bromoform | ND | 1.0 | 0.005 | Bromomethane | ND | 1.0 | 0.005 | | ND 1.0 0.005 Carbon Disulfide ND 1.0 0.005 Carbon Disulfide ND 1.0 0.005 Carbon Tetrachloride ND 1.0 0.005 Chlorobenzene ND 1.0 0.005 Chlorobenzene ND 1.0 0.005 Chlorobenzene ND 1.0 0.005 Chloroform ND 1.0 0.005 Chlorobenzene ND 1.0 0.005 Chloroform ND 1.0 0.005
Chlorobenzene 1. | 2-Butanone (MEK) | ND | 1.0 | 0.02 | t-Butyl alcohol (TBA) | ND | 1.0 | 0.05 | | Carbon Tetrachloride | n-Butyl benzene | ND | 1.0 | 0.005 | sec-Butyl benzene | ND | 1.0 | 0.005 | | Chloroethane | tert-Butyl benzene | ND | 1.0 | 0.005 | Carbon Disulfide | ND | 1.0 | 0.005 | | Chloroform | Carbon Tetrachloride | ND | 1.0 | 0.005 | Chlorobenzene | ND | 1.0 | 0.005 | | 2-Chlorotoluene | Chloroethane | ND | 1.0 | 0.005 | 2-Chloroethyl Vinyl Ether | ND | 1.0 | 0.01 | | Dibromochloromethane ND | Chloroform | ND | 1.0 | 0.005 | Chloromethane | ND | 1.0 | 0.005 | | 1,2-Dibromoethane (EDB) ND 1.0 0.005 Dibromomethane ND 1.0 0.005 1,2-Dichlorobenzene ND 1.0 0.005 1.3-Dichlorobenzene ND 1.0 0.005 1,4-Dichlorobenzene ND 1.0 0.005 Dichlorodifluoromethane ND 1.0 0.005 1,1-Dichloroethane ND 1.0 0.005 Dichlorodifluoromethane ND 1.0 0.005 1,1-Dichloroethane ND 1.0 0.005 Dichloroethane (1,2-DCA) ND 1.0 0.005 1,1-Dichloroethene ND 1.0 0.005 Dichloroethane (1,2-DCA) ND 1.0 0.005 1,1-Dichloroethene ND 1.0 0.005 Dischloroptopane ND 1.0 0.005 1,1-Dichloroptopane ND 1.0 0.005 Dischloroptopane ND 1.0 0.005 1,1-Dichloroptopane ND 1.0 0.005 Dischloroptopane ND 1.0 0.005 1,1-Dichloroptopane ND 1.0 0.005 Discopropopane | 2-Chlorotoluene | ND | 1.0 | 0.005 | 4-Chlorotoluene | ND | 1.0 | 0.005 | | 1,2-Dichlorobenzene | Dibromochloromethane | ND | 1.0 | 0.005 | 1,2-Dibromo-3-chloropropane | ND | 1.0 | 0.005 | | 1,4-Dichlorobenzene | 1,2-Dibromoethane (EDB) | ND | 1.0 | 0.005 | Dibromomethane | ND | 1.0 | 0.005 | | 1,1-Dichloroethane | 1,2-Dichlorobenzene | ND | 1.0 | 0.005 | 1,3-Dichlorobenzene | ND | 1.0 | 0.005 | | 1,1-Dichloroethene | 1,4-Dichlorobenzene | ND | 1.0 | 0.005 | Dichlorodifluoromethane | ND | 1.0 | 0.005 | | trans-1,2-Dichloroethene ND 1.0 0.005 1,2-Dichloropropane ND 1.0 0.00 1,3-Dichloropropane ND 1.0 0.005 2,2-Dichloropropane ND 1.0 0.00 1,1-Dichloropropene ND 1.0 0.005 cis-1,3-Dichloropropene ND 1.0 0.00 trans-1,3-Dichloropropene ND 1.0 0.005 Diisopropyl ether (DIPE) ND 1.0 0.00 Ethylbenzene ND 1.0 0.005 Ethyl tert-butyl ether (ETBE) ND 1.0 0.00 Freon 113 ND 1.0 0.01 Hexachlorobutadiene ND 1.0 0.00 Hexachloroethane ND 1.0 0.005 2-Hexanone ND 1.0 0.00 Isopropylbenzene ND 1.0 0.005 4-Isopropyl toluene ND 1.0 0.00 Methyl-t-butyl ether (MTBE) ND 1.0 0.005 Methylene chloride ND 1.0 0.00 Methyl-t-butyl ether (MTBE) | 1,1-Dichloroethane | ND | 1.0 | 0.005 | 1,2-Dichloroethane (1,2-DCA) | ND | 1.0 | 0.005 | | 1,3-Dichloropropane ND 1.0 0.005 2,2-Dichloropropane ND 1.0 0.005 1,1-Dichloropropene ND 1.0 0.005 cis-1,3-Dichloropropene ND 1.0 0.005 Ethylbenzene ND 1.0 0.005 Ethyl tert-butyl ether (ETBE) ND 1.0 0.005 Freon 113 ND 1.0 0.01 Hexachlorobutadiene ND 1.0 0.005 Hexachloropthane ND 1.0 0.005 2-Hexanone ND 1.0 0.005 Isopropylbenzene ND 1.0 0.005 2-Hexanone ND 1.0 0.005 Methyl-t-butyl ether (MTBE) ND 1.0 0.005 Methylene chloride ND 1.0 0.005 4-Methyl-2-pentanone (MIBK) ND 1.0 0.005 Methylene chloride ND 1.0 0.005 Styrene ND 1.0 0.005 Naphthalene ND 1.0 0.005 Styrene ND 1.0 0. | 1,1-Dichloroethene | ND | 1.0 | 0.005 | cis-1,2-Dichloroethene | ND | 1.0 | 0.005 | | 1,1-Dichloropropene | trans-1,2-Dichloroethene | ND | 1.0 | 0.005 | 1,2-Dichloropropane | ND | 1.0 | 0.005 | | trans-1,3-Dichloropropene ND 1.0 0.005 Diisopropyl ether (DIPE) ND 1.0 0.00 Ethylbenzene ND 1.0 0.005 Ethyl tert-butyl ether (ETBE) ND 1.0 0.00 Freon 113 ND 1.0 0.1 Hexachlorobutadiene ND 1.0 0.00 Hexachloroethane ND 1.0 0.005 2-Hexanone ND 1.0 0.00 Isopropylbenzene ND 1.0 0.005 4-Isopropyl toluene ND 1.0 0.00 Methyl-t-butyl ether (MTBE) ND 1.0 0.005 Methylene chloride ND 1.0 0.00 4-Methyl-2-pentanone (MIBK) ND 1.0 0.005 Naphthalene ND 1.0 0.00 Nitrobenzene ND 1.0 0.005 Naphthalene ND 1.0 0.00 Styrene ND 1.0 0.005 Naphthalene ND 1.0 0.00 1.1,2-Tetrachloroethane ND 1.0 0. | 1,3-Dichloropropane | ND | 1.0 | 0.005 | 2,2-Dichloropropane | ND | 1.0 | 0.005 | | Ethylbenzene ND 1.0 0.005 Ethyl tert-butyl ether (ETBE) ND 1.0 0.00 Freon 113 ND 1.0 0.1 Hexachlorobutadiene ND 1.0 0.00 Hexachloroethane ND 1.0 0.005 2-Hexanone ND 1.0 0.00 Isopropylbenzene ND 1.0 0.005 4-Isopropyl toluene ND 1.0 0.00 Methyl-t-butyl ether (MTBE) ND 1.0 0.005 Methylene chloride ND 1.0 0.00 4-Methyl-2-pentanone (MIBK) ND 1.0 0.005 Naphthalene ND 1.0 0.00 Nitrobenzene ND 1.0 0.005 Naphthalene ND 1.0 0.00 Styrene ND 1.0 0.01 n-Propyl benzene ND 1.0 0.00 1,1,2-Tetrachloroethane ND 1.0 0.005 1,1,1,2-Tetrachloroethane ND 1.0 0.00 1,2,4-Trichloroethane ND 1.0 0 | 1,1-Dichloropropene | ND | 1.0 | 0.005 | cis-1,3-Dichloropropene | ND | 1.0 | 0.005 | | Freon 113 ND 1.0 0.1 Hexachlorobutadiene ND 1.0 0.00 Hexachloroethane ND 1.0 0.005 2-Hexanone ND 1.0 0.00 Isopropylbenzene ND 1.0 0.005 4-Isopropyl toluene ND 1.0 0.00 Methyl-t-butyl ether (MTBE) ND 1.0 0.005 Methylene chloride ND 1.0 0.00 4-Methyl-2-pentanone (MIBK) ND 1.0 0.005 Naphthalene ND 1.0 0.00 Nitrobenzene ND 1.0 0.005 Naphthalene ND 1.0 0.00 Styrene ND 1.0 0.005 Naphthalene ND 1.0 0.00 Styrene ND 1.0 0.005 1,1,1,2-Tetrachloroethane ND 1.0 0.00 1,1,2,2-Tetrachloroethane ND 1.0 0.005 1,2,3-Trichloroethane ND 1.0 0.00 1,2,4-Trichloroethane ND 1.0 0.005 | trans-1,3-Dichloropropene | ND | 1.0 | 0.005 | Diisopropyl ether (DIPE) | ND | 1.0 | 0.005 | | Hexachloroethane | Ethylbenzene | ND | 1.0 | 0.005 | Ethyl tert-butyl ether (ETBE) | ND | 1.0 | 0.005 | | Isopropylbenzene | Freon 113 | ND | 1.0 | 0.1 | Hexachlorobutadiene | ND | 1.0 | 0.005 | | Methyl-t-butyl ether (MTBE) ND 1.0 0.005 Methylene chloride ND 1.0 0.005 4-Methyl-2-pentanone (MIBK) ND 1.0 0.005 Naphthalene ND 1.0 0.005 Nitrobenzene ND 1.0 0.1 n-Propyl benzene ND 1.0 0.005 Styrene ND 1.0 0.005 1,1,1,2-Tetrachloroethane ND 1.0 0.005 1,1,2,2-Tetrachloroethane ND 1.0 0.005 Tetrachloroethene ND 1.0 0.005 Toluene ND 1.0 0.005 1,2,3-Trichlorobenzene ND 1.0 0.005 1,2,4-Trichloroethane ND 1.0 0.005 1,1,1-Trichloroethane ND 1.0 0.005 1,1,2-Trichloroethane ND 1.0 0.005 Trichloroethene ND 1.0 0.005 Trichlorofluoromethane ND 1.0 0.005 1,2,3-Trichloropropane ND 1.0 0.005 1,2,4-Trimethylbenzene ND | Hexachloroethane | ND | 1.0 | 0.005 | 2-Hexanone | ND | 1.0 | 0.005 | | 4-Methyl-2-pentanone (MIBK) ND 1.0 0.005 Naphthalene ND 1.0 0.005 Nitrobenzene ND 1.0 0.1 n-Propyl benzene ND 1.0 0.005 Styrene ND 1.0 0.005 1,1,1,2-Tetrachloroethane ND 1.0 0.005 1,1,2,2-Tetrachloroethane ND 1.0 0.005 Tetrachloroethane ND 1.0 0.005 Toluene ND 1.0 0.005 1,2,3-Trichlorobenzene ND 1.0 0.005 1,2,4-Trichloroethane ND 1.0 0.005 Trichloroethane ND 1.0 0.005 1,1,2-Trichloroethane ND 1.0 0.005 Trichloroethane ND 1.0 0.005 Trichlorofluoromethane ND 1.0 0.005 1,2,3-Trichloropropane ND 1.0 0.005 1,2,4-Trimethylbenzene ND 1.0 0.005 1,3,5-Trimethylbenzene ND 1.0 0.005 Vinyl Chloride ND < | Isopropylbenzene | ND | 1.0 | 0.005 | 4-Isopropyl toluene | ND | 1.0 | 0.005 | | Nitrobenzene ND 1.0 0.1 n-Propyl benzene ND 1.0 0.00 Styrene ND 1.0 0.005 1,1,2-Tetrachloroethane ND 1.0 0.005 1,1,2,2-Tetrachloroethane ND 1.0 0.005 Tetrachloroethene ND 1.0 0.005 Toluene ND 1.0 0.005 1,2,3-Trichlorobenzene ND 1.0 0.005 1,2,4-Trichlorobenzene ND 1.0 0.005 1,1,1-Trichloroethane ND 1.0 0.005 1,1,2-Trichloroethane ND 1.0 0.005 Trichloroethene ND 1.0 0.005 Trichlorofluoromethane ND 1.0 0.005 1,2,3-Trichloropropane ND 1.0 0.005 1,2,4-Trimethylbenzene ND 1.0 0.005 Xylenes ND 1.0 0.005 | Methyl-t-butyl ether (MTBE) | ND | 1.0 | 0.005 | Methylene chloride | ND | 1.0 | 0.005 | | Styrene ND 1.0 0.005 1,1,1,2-Tetrachloroethane ND 1.0 0.005 1,1,2,2-Tetrachloroethane ND 1.0 0.005 Tetrachloroethane ND 1.0 0.005 Toluene ND 1.0 0.005 1,2,3-Trichlorobenzene ND 1.0 0.005 1,2,4-Trichlorobenzene ND 1.0 0.005 1,1,1-Trichloroethane ND 1.0 0.005 1,1,2-Trichloroethane ND 1.0 0.005 Trichloroethane ND 1.0 0.005 Trichlorofluoromethane ND 1.0 0.005 1,2,3-Trichloropropane ND 1.0 0.005 1,2,4-Trimethylbenzene ND 1.0 0.005 Xylenes ND 1.0 0.005 | 4-Methyl-2-pentanone (MIBK) | ND | 1.0 | 0.005 | Naphthalene | ND | 1.0 | 0.005 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Nitrobenzene | ND | 1.0 | 0.1 | n-Propyl benzene | ND | 1.0 | 0.005 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Styrene | ND | 1.0 | 0.005 | 1,1,1,2-Tetrachloroethane | ND | 1.0 | 0.005 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 1,1,2,2-Tetrachloroethane | ND | 1.0 | 0.005 | Tetrachloroethene | ND | 1.0 | 0.005 | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | Toluene | ND | 1.0 | 0.005 | 1,2,3-Trichlorobenzene | ND | 1.0 | 0.005 | | Trichlorofluoromethane ND 1.0 0.005 1,2,3-Trichloropropane ND 1.0 0.005 1,2,4-Trimethylbenzene ND 1.0 0.005 1,3,5-Trimethylbenzene ND 1.0 0.005 Vinvl Chloride ND 1.0 0.005 Xvlenes ND 1.0 0.005 | 1,2,4-Trichlorobenzene | ND | 1.0 | 0.005 | 1,1,1-Trichloroethane | ND | 1.0 | 0.005 | | 1,2,4-Trimethylbenzene ND 1.0 0.005 1,3,5-Trimethylbenzene ND 1.0 0.005 Vinvl Chloride ND 1.0 0.005 Xvlenes ND 1.0 0.005 | 1,1,2-Trichloroethane | ND | 1.0 | 0.005 | Trichloroethene | ND | 1.0 | 0.005 | | Vinvl Chloride ND 1.0 0.005 Xvlenes ND 1.0 0.000 | Trichlorofluoromethane | ND | 1.0 | 0.005 | 1,2,3-Trichloropropane | ND | 1.0 | 0.005 | | | 1,2,4-Trimethylbenzene | ND | 1.0 | 0.005 | 1,3,5-Trimethylbenzene | ND | 1.0 | 0.005 | | Surrogate Recoveries (%) | Vinvl Chloride | ND | 1.0 | 0.005 | Xvlenes | ND | 1.0 | 0.005 | | | | | Surre | ogate Re | ecoveries (%) | | | | | Surrogate Recoveries (70) | | | | | | | | |---------------------------|-----|-------|----|--|--|--|--| | %SS1: | 90 | %SS2: | 99 | | | | | | %SS3: | 105 | | | | | | | Comments ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis. # surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference. ^{*} water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/wipe$. | Ceres Associates | Client Project ID: #CA1264-6 | Date Sampled:
06/25/07 | |-------------------|------------------------------|--------------------------| | 424 First Street | | Date Received: 06/25/07 | | 424 Phst Succi | Client Contact: Ryan Meyer | Date Extracted: 06/25/07 | | Benicia, CA 94510 | Client P.O.: | Date Analyzed 06/27/07 | #### Volatile Organics by P&T and GC/MS (Basic Target List)* Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0706632 | Lab ID | 0706632-016A | |-----------|--------------| | Client ID | CS4-10 | | Matrix | Soil | | | | | Matrix | | Soil | | | | | | |-----------------------------|-----------------|------|--------------------|-------------------------------|-----------------|-----|--------------------| | Compound | Concentration * | DF | Reporting
Limit | Compound | Concentration * | DF | Reporting
Limit | | Acetone | ND | 1.0 | 0.05 | Acrolein (Propenal) | ND | 1.0 | 0.05 | | Acrylonitrile | ND | 1.0 | 0.02 | tert-Amyl methyl ether (TAME) | ND | 1.0 | 0.005 | | Benzene | ND | 1.0 | 0.005 | Bromobenzene | ND | 1.0 | 0.005 | | Bromochloromethane | ND | 1.0 | 0.005 | Bromodichloromethane | ND | 1.0 | 0.005 | | Bromoform | ND | 1.0 | 0.005 | Bromomethane | ND | 1.0 | 0.005 | | 2-Butanone (MEK) | ND | 1.0 | 0.02 | t-Butyl alcohol (TBA) | ND | 1.0 | 0.05 | | n-Butyl benzene | ND | 1.0 | 0.005 | sec-Butyl benzene | ND | 1.0 | 0.005 | | tert-Butyl benzene | ND | 1.0 | 0.005 | Carbon Disulfide | ND | 1.0 | 0.005 | | Carbon Tetrachloride | ND | 1.0 | 0.005 | Chlorobenzene | ND | 1.0 | 0.005 | | Chloroethane | ND | 1.0 | 0.005 | 2-Chloroethyl Vinyl Ether | ND | 1.0 | 0.01 | | Chloroform | ND | 1.0 | 0.005 | Chloromethane | ND | 1.0 | 0.005 | | 2-Chlorotoluene | ND | 1.0 | 0.005 | 4-Chlorotoluene | ND | 1.0 | 0.005 | | Dibromochloromethane | ND | 1.0 | 0.005 | 1,2-Dibromo-3-chloropropane | ND | 1.0 | 0.005 | | 1.2-Dibromoethane (EDB) | ND | 1.0 | 0.005 | Dibromomethane | ND | 1.0 | 0.005 | | 1.2-Dichlorobenzene | ND | 1.0 | 0.005 | 1.3-Dichlorobenzene | ND | 1.0 | 0.005 | | 1.4-Dichlorobenzene | ND | 1.0 | 0.005 | Dichlorodifluoromethane | ND | 1.0 | 0.005 | | 1,1-Dichloroethane | ND | 1.0 | 0.005 | 1,2-Dichloroethane (1,2-DCA) | ND | 1.0 | 0.005 | | 1,1-Dichloroethene | ND | 1.0 | 0.005 | cis-1,2-Dichloroethene | ND | 1.0 | 0.005 | | trans-1.2-Dichloroethene | ND | 1.0 | 0.005 | 1.2-Dichloropropane | ND | 1.0 | 0.005 | | 1,3-Dichloropropane | ND | 1.0 | 0.005 | 2.2-Dichloropropane | ND | 1.0 | 0.005 | | 1.1-Dichloropropene | ND | 1.0 | 0.005 | cis-1.3-Dichloropropene | ND | 1.0 | 0.005 | | trans-1.3-Dichloropropene | ND | 1.0 | 0.005 | Diisopropyl ether (DIPE) | ND | 1.0 | 0.005 | | Ethylbenzene | ND | 1.0 | 0.005 | Ethyl tert-butyl ether (ETBE) | ND | 1.0 | 0.005 | | Freon 113 | ND | 1.0 | 0.1 | Hexachlorobutadiene | ND | 1.0 | 0.005 | | Hexachloroethane | ND | 1.0 | 0.005 | 2-Hexanone | ND | 1.0 | 0.005 | | Isopropylbenzene | ND | 1.0 | 0.005 | 4-Isopropyl toluene | ND | 1.0 | 0.005 | | Methyl-t-butyl ether (MTBE) | ND | 1.0 | 0.005 | Methylene chloride | ND | 1.0 | 0.005 | | 4-Methyl-2-pentanone (MIBK) | ND | 1.0 | 0.005 | Naphthalene | ND | 1.0 | 0.005 | | Nitrobenzene | ND | 1.0 | 0.1 | n-Propyl benzene | ND | 1.0 | 0.005 | | Styrene | ND | 1.0 | 0.005 | 1.1.1.2-Tetrachloroethane | ND | 1.0 | 0.005 | | 1.1.2.2-Tetrachloroethane | ND | 1.0 | 0.005 | Tetrachloroethene | ND | 1.0 | 0.005 | | Toluene | ND | 1.0 | 0.005 | 1,2,3-Trichlorobenzene | ND | 1.0 | 0.005 | | 1,2,4-Trichlorobenzene | ND | 1.0 | 0.005 | 1,1,1-Trichloroethane | ND | 1.0 | 0.005 | | 1.1.2-Trichloroethane | ND | 1.0 | 0.005 | Trichloroethene | ND | 1.0 | 0.005 | | Trichlorofluoromethane | ND | 1.0 | 0.005 | 1,2,3-Trichloropropane | ND | 1.0 | 0.005 | | 1.2.4-Trimethylbenzene | ND | 1.0 | 0.005 | 1.3.5-Trimethylbenzene | ND | 1.0 | 0.005 | | Vinyl Chloride | ND | 1.0 | 0.005 | Xylenes | ND | 1.0 | 0.005 | | | | Surr | | ecoveries (%) | | | | | | | 2411 | - 5 m - 1 m | | | | | | | Surrogate Re | ecoveries (%) | | |-------|--------------|---------------|----| | %SS1: | 93 | %SS2: | 99 | | %SS3: | 104 | | | Comments ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis. # surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference. ^{*} water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/wipe$. | Ceres Associates | Client Project ID: #CA1264-6 | Date Sampled: 06/25/07 | |-------------------|------------------------------|--------------------------| | 424 First Street | | Date Received: 06/25/07 | | 424 Phst Succi | Client Contact: Ryan Meyer | Date Extracted: 06/25/07 | | Benicia, CA 94510 | Client P.O.: | Date Analyzed 06/27/07 | #### Volatile Organics by P&T and GC/MS (Basic Target List)* Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0706632 | Lab ID | 0706632-018A | | |-----------|--------------|---| | Client ID | CS5-5 | | | Matrix | Soil | | | | | I | | Matrix | | Soil | | | | | | |-----------------------------|-----------------|------|--------------------|-------------------------------|-----------------|-----|--------------------| | Compound | Concentration * | DF | Reporting
Limit | Compound | Concentration * | DF | Reporting
Limit | | Acetone | ND | 1.0 | 0.05 | Acrolein (Propenal) | ND | 1.0 | 0.05 | | Acrylonitrile | ND | 1.0 | 0.02 | tert-Amyl methyl ether (TAME) | ND | 1.0 | 0.005 | | Benzene | ND | 1.0 | 0.005 | Bromobenzene | ND | 1.0 | 0.005 | | Bromochloromethane | ND | 1.0 | 0.005 | Bromodichloromethane | ND | 1.0 | 0.005 | | Bromoform | ND | 1.0 | 0.005 | Bromomethane | ND | 1.0 | 0.005 | | 2-Butanone (MEK) | ND | 1.0 | 0.02 | t-Butyl alcohol (TBA) | ND | 1.0 | 0.05 | | n-Butyl benzene | ND | 1.0 | 0.005 | sec-Butyl benzene | ND | 1.0 | 0.005 | | tert-Butyl benzene | ND | 1.0 | 0.005 | Carbon Disulfide | ND | 1.0 | 0.005 | | Carbon Tetrachloride | ND | 1.0 | 0.005 | Chlorobenzene | ND | 1.0 | 0.005 | | Chloroethane | ND | 1.0 | 0.005 | 2-Chloroethyl Vinyl Ether | ND | 1.0 | 0.01 | | Chloroform | ND | 1.0 | 0.005 | Chloromethane | ND | 1.0 | 0.005 | | 2-Chlorotoluene | ND | 1.0 | 0.005 | 4-Chlorotoluene | ND | 1.0 | 0.005 | | Dibromochloromethane | ND | 1.0 | 0.005 | 1,2-Dibromo-3-chloropropane | ND | 1.0 | 0.005 | | 1,2-Dibromoethane (EDB) | ND | 1.0 | 0.005 | Dibromomethane | ND | 1.0 | 0.005 | | 1,2-Dichlorobenzene | ND | 1.0 | 0.005 | 1,3-Dichlorobenzene | ND | 1.0 | 0.005 | | 1,4-Dichlorobenzene | ND | 1.0 | 0.005 | Dichlorodifluoromethane | ND | 1.0 | 0.005 | | 1,1-Dichloroethane | ND | 1.0 | 0.005 | 1,2-Dichloroethane (1,2-DCA) | ND | 1.0 | 0.005 | | 1,1-Dichloroethene | ND | 1.0 | 0.005 | cis-1,2-Dichloroethene | ND | 1.0 | 0.005 | | trans-1,2-Dichloroethene | ND | 1.0 | 0.005 | 1,2-Dichloropropane | ND | 1.0 | 0.005 | | 1,3-Dichloropropane | ND | 1.0 | 0.005 | 2,2-Dichloropropane | ND | 1.0 | 0.005 | | 1,1-Dichloropropene | ND | 1.0 | 0.005 | cis-1,3-Dichloropropene | ND | 1.0 | 0.005 | | trans-1,3-Dichloropropene | ND | 1.0 | 0.005 | Diisopropyl ether (DIPE) | ND | 1.0 | 0.005 | | Ethylbenzene | ND | 1.0 | 0.005 | Ethyl tert-butyl ether (ETBE) | ND | 1.0 | 0.005 | | Freon 113 | ND | 1.0 | 0.1 | Hexachlorobutadiene | ND | 1.0 | 0.005 | | Hexachloroethane | ND | 1.0 | 0.005 | 2-Hexanone | ND | 1.0 | 0.005 | | Isopropylbenzene | ND | 1.0 | 0.005 | 4-Isopropyl toluene | ND | 1.0 | 0.005 | | Methyl-t-butyl ether (MTBE) | ND | 1.0 | 0.005 | Methylene chloride | ND | 1.0 | 0.005 | | 4-Methyl-2-pentanone (MIBK) | ND | 1.0 | 0.005 | Naphthalene | ND | 1.0 | 0.005 | | Nitrobenzene | ND | 1.0 | 0.1 | n-Propyl benzene | ND | 1.0 | 0.005 | | Styrene | ND | 1.0 | 0.005 | 1,1,1,2-Tetrachloroethane | ND | 1.0 | 0.005 | | 1,1,2,2-Tetrachloroethane | ND | 1.0 | 0.005 | Tetrachloroethene | ND | 1.0 | 0.005 | | Toluene | ND | 1.0 | 0.005 | 1,2,3-Trichlorobenzene | ND | 1.0 | 0.005 | | 1,2,4-Trichlorobenzene | ND | 1.0 | 0.005 | 1,1,1-Trichloroethane | ND | 1.0 | 0.005 | | 1,1,2-Trichloroethane | ND | 1.0 | 0.005 | Trichloroethene | ND | 1.0 | 0.005 | | Trichlorofluoromethane | ND | 1.0 | 0.005 | 1,2,3-Trichloropropane | ND | 1.0 | 0.005 | | 1,2,4-Trimethylbenzene | ND | 1.0 | 0.005 | 1,3,5-Trimethylbenzene | ND | 1.0 | 0.005 | | Vinvl Chloride | ND | 1.0 | 0.005 | Xvlenes | ND | 1.0 | 0.005 | | | | Surr | ogate Re | coveries (%) | | | | %SS1: 99 %SS2: 100 %SS3: 103 ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis. # surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference. Comments ^{*} water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/wipe$. | Ceres Associates | Client Project ID: #CA1264-6 | Date Sampled: 06/25/07 | |-------------------|------------------------------|--------------------------| | 424 First Street | | Date Received: 06/25/07 | | 424 Phst Succi | Client Contact: Ryan Meyer | Date Extracted: 06/25/07 | | Benicia, CA 94510 | Client P.O.: | Date Analyzed 06/27/07 | #### Volatile Organics by P&T and GC/MS (Basic Target List)* Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0706632 | Lab ID | 0706632-020A | |-----------|--------------| | Client ID | CS5-10 | | Matrix | Soil | | | | | Matrix | Soil | | | | | | | |-----------------------------|-----------------|-------|--------------------|-------------------------------|-----------------|-----|--------------------| | Compound | Concentration * | DF | Reporting
Limit | Compound | Concentration * | DF | Reporting
Limit | | Acetone | ND | 1.0 | 0.05 | Acrolein (Propenal) | ND | 1.0 | 0.05 | | Acrylonitrile | ND | 1.0 | 0.02 | tert-Amyl methyl ether (TAME) | ND | 1.0 | 0.005 | | Benzene | ND | 1.0 | 0.005 | Bromobenzene | ND | 1.0 | 0.005 | | Bromochloromethane
 ND | 1.0 | 0.005 | Bromodichloromethane | ND | 1.0 | 0.005 | | Bromoform | ND | 1.0 | 0.005 | Bromomethane | ND | 1.0 | 0.005 | | 2-Butanone (MEK) | ND | 1.0 | 0.02 | t-Butyl alcohol (TBA) | ND | 1.0 | 0.05 | | n-Butyl benzene | ND | 1.0 | 0.005 | sec-Butyl benzene | ND | 1.0 | 0.005 | | tert-Butyl benzene | ND | 1.0 | 0.005 | Carbon Disulfide | ND | 1.0 | 0.005 | | Carbon Tetrachloride | ND | 1.0 | 0.005 | Chlorobenzene | ND | 1.0 | 0.005 | | Chloroethane | ND | 1.0 | 0.005 | 2-Chloroethyl Vinyl Ether | ND | 1.0 | 0.01 | | Chloroform | ND | 1.0 | 0.005 | Chloromethane | ND | 1.0 | 0.005 | | 2-Chlorotoluene | ND | 1.0 | 0.005 | 4-Chlorotoluene | ND | 1.0 | 0.005 | | Dibromochloromethane | ND | 1.0 | 0.005 | 1,2-Dibromo-3-chloropropane | ND | 1.0 | 0.005 | | 1,2-Dibromoethane (EDB) | ND | 1.0 | 0.005 | Dibromomethane | ND | 1.0 | 0.005 | | 1,2-Dichlorobenzene | ND | 1.0 | 0.005 | 1,3-Dichlorobenzene | ND | 1.0 | 0.005 | | 1,4-Dichlorobenzene | ND | 1.0 | 0.005 | Dichlorodifluoromethane | ND | 1.0 | 0.005 | | 1,1-Dichloroethane | ND | 1.0 | 0.005 | 1,2-Dichloroethane (1,2-DCA) | ND | 1.0 | 0.005 | | 1,1-Dichloroethene | ND | 1.0 | 0.005 | cis-1,2-Dichloroethene | ND | 1.0 | 0.005 | | trans-1,2-Dichloroethene | ND | 1.0 | 0.005 | 1,2-Dichloropropane | ND | 1.0 | 0.005 | | 1,3-Dichloropropane | ND | 1.0 | 0.005 | 2,2-Dichloropropane | ND | 1.0 | 0.005 | | 1,1-Dichloropropene | ND | 1.0 | 0.005 | cis-1,3-Dichloropropene | ND | 1.0 | 0.005 | | trans-1,3-Dichloropropene | ND | 1.0 | 0.005 | Diisopropyl ether (DIPE) | ND | 1.0 | 0.005 | | Ethylbenzene | ND | 1.0 | 0.005 | Ethyl tert-butyl ether (ETBE) | ND | 1.0 | 0.005 | | Freon 113 | ND | 1.0 | 0.1 | Hexachlorobutadiene | ND | 1.0 | 0.005 | | Hexachloroethane | ND | 1.0 | 0.005 | 2-Hexanone | ND | 1.0 | 0.005 | | Isopropylbenzene | ND | 1.0 | 0.005 | 4-Isopropyl toluene | ND | 1.0 | 0.005 | | Methyl-t-butyl ether (MTBE) | ND | 1.0 | 0.005 | Methylene chloride | ND | 1.0 | 0.005 | | 4-Methyl-2-pentanone (MIBK) | ND | 1.0 | 0.005 | Naphthalene | ND | 1.0 | 0.005 | | Nitrobenzene | ND | 1.0 | 0.1 | n-Propyl benzene | ND | 1.0 | 0.005 | | Styrene | ND | 1.0 | 0.005 | 1,1,1,2-Tetrachloroethane | ND | 1.0 | 0.005 | | 1,1,2,2-Tetrachloroethane | ND | 1.0 | 0.005 | Tetrachloroethene | ND | 1.0 | 0.005 | | Toluene | ND | 1.0 | 0.005 | 1,2,3-Trichlorobenzene | ND | 1.0 | 0.005 | | 1,2,4-Trichlorobenzene | ND | 1.0 | 0.005 | 1,1,1-Trichloroethane | ND | 1.0 | 0.005 | | 1,1,2-Trichloroethane | ND | 1.0 | 0.005 | Trichloroethene | ND | 1.0 | 0.005 | | Trichlorofluoromethane | ND | 1.0 | 0.005 | 1,2,3-Trichloropropane | ND | 1.0 | 0.005 | | 1,2,4-Trimethylbenzene | ND | 1.0 | 0.005 | 1,3,5-Trimethylbenzene | ND | 1.0 | 0.005 | | Vinvl Chloride | ND | 1.0 | 0.005 | Xvlenes | ND | 1.0 | 0.005 | | | | Surre | ogate Re | ecoveries (%) | | | | %SS1: 87 %SS2: 100 %SS3: 105 Comments ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis. # surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference. ^{*} water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/kg$. | Ceres Associates | Client Project ID: #CA1264-6 | Date Sampled: 06/25/07 | |-------------------|------------------------------|--------------------------| | 424 First Street | | Date Received: 06/25/07 | | Benicia, CA 94510 | Client Contact: Ryan Meyer | Date Extracted: 06/25/07 | | | Client P.O.: | Date Analyzed 06/27/07 | ## Polynuclear Aromatic Hydrocarbons (PAHs / PNAs) using SIM Mode by GC/MS* | Extraction Method: SW3550C | Work Order: | 0706632 | | | | | |----------------------------|--------------|-----------------|--------------|--------------|---------------------------|------| | Lab II | 0706632-002A | 0706632-004A | 0706632-006A | 0706632-008A | | | | Client II | CS1-5 | CS1-10 | CS2-5 | CS2-10 | Reporting Limit for DF =1 | | | Matri | x S | S | S | S | | | | D | 7 1 | 1 | 1 | 1 | S | W | | Compound | | Conc | entration | | mg/kg | ug/L | | Acenaphthene | ND | ND | ND | ND | 0.005 | NA | | Acenaphthylene | ND | ND | ND | ND | 0.005 | NA | | Anthracene | ND | ND | ND | ND | 0.005 | NA | | Benzo(a)anthracene | ND | ND | ND | ND | 0.005 | NA | | Benzo(a)pyrene | ND | ND | ND | ND | 0.005 | NA | | Benzo(b)fluoranthene | ND | ND | ND | ND | 0.005 | NA | | Benzo(g,h,i)perylene | ND | ND | ND | ND | 0.005 | NA | | Benzo(k)fluoranthene | ND | ND | ND | ND | 0.005 | NA | | Chrysene | ND | ND | ND | ND | 0.005 | NA | | Dibenzo(a,h)anthracene | ND | ND | ND | ND | 0.005 | NA | | Fluoranthene | ND | ND | ND | ND | 0.005 | NA | | Fluorene | ND | ND | ND | ND | 0.005 | NA | | Indeno (1,2,3-cd) pyrene | ND | ND | ND | ND | 0.005 | NA | | 1-Methylnaphthalene | ND | ND | ND | ND | 0.005 | NA | | 2-Methylnaphthalene | ND | ND | ND | ND | 0.005 | NA | | Naphthalene | ND | ND | ND | ND | 0.005 | NA | | Phenanthrene | ND | ND | ND | ND | 0.005 | NA | | Pyrene | ND | ND | ND | ND | 0.005 | NA | | | Surr | ogate Recoverie | s (%) | | | | | %SS1 | 73 | 72 | 71 | 70 | | | | %SS2 | 97 | 96 | 97 | 95 | | | | Comments | | | | | | | ^{*} water samples in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L. ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis. #) surrogate diluted out of range; &) low or no surrogate due to matrix interference. h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; J) analyte detected below quantitation limits; p) see attached narrative; r) results are reported on a dry weight basis. Ceres Associates Client Project ID: #CA1264-6 Date Sampled: 06/25/07 Date Received: 06/25/07 Client Contact: Ryan Meyer Date Extracted: 06/25/07 Client P.O.: Date Analyzed 06/27/07 ## Polynuclear Aromatic Hydrocarbons (PAHs / PNAs) using SIM Mode by GC/MS* | Extraction Method: SW3550C | Ana | lytical Method: SW827 | Work Order: | 0706632 | | | | |----------------------------|--------------|-----------------------|--------------|--------------|---------------------------|------|--| | Lab ID | 0706632-010A | 0706632-012A | 0706632-014A | 0706632-016A | | | | | Client ID | CS3-5 | CS3-10 | CS4-5 CS4-10 | | Reporting Limit for DF =1 | | | | Matrix | S | S | S | S | 7 | | | | DF | 1 | 1 | 1 | 1 | S | W | | | Compound | | Conce | entration | | mg/kg | ug/L | | | Acenaphthene | ND | ND | ND | ND | 0.005 | NA | | | Acenaphthylene | ND | ND | ND | ND | 0.005 | NA | | | Anthracene | ND | ND | ND | ND | 0.005 | NA | | | Benzo(a)anthracene | ND | ND | ND | ND | 0.005 | NA | | | Benzo(a)pyrene | ND | ND | ND | ND | 0.005 | NA | | | Benzo(b)fluoranthene | ND | ND | ND | ND | 0.005 | NA | | | Benzo(g,h,i)perylene | ND | ND | ND | ND | 0.005 | NA | | | Benzo(k)fluoranthene | ND | ND | ND | ND | 0.005 | NA | | | Chrysene | ND | ND | ND | ND | 0.005 | NA | | | Dibenzo(a,h)anthracene | ND | ND | ND | ND | 0.005 | NA | | | Fluoranthene | ND | ND | ND | ND | 0.005 | NA | | | Fluorene | ND | ND | ND | ND | 0.005 | NA | | | Indeno (1,2,3-cd) pyrene | ND | ND | ND | ND | 0.005 | NA | | | 1-Methylnaphthalene | ND | ND | ND | ND | 0.005 | NA | | | 2-Methylnaphthalene | ND | ND | ND | ND | 0.005 | NA | | | Naphthalene | ND | ND | ND | ND | 0.005 | NA | | | Phenanthrene | ND | ND | ND | ND | 0.005 | NA | | | Pyrene | ND | ND | ND | ND | 0.005 | NA | | | | Surr | ogate Recoverie | s (%) | | | | | | %SS1 | 71 | 70 | 71 | 71 | | | | | %SS2 | 95 | 89 | 95 | 94 | | | | | Comments | | | | | | | | ^{*} water samples in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L. ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis. #) surrogate diluted out of range; &) low or no surrogate due to matrix interference. h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; J) analyte detected below quantitation limits; p) see attached narrative; r) results are reported on a dry weight basis. Extraction Method: SW3550C 1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269 Work Order: 0706632 Ceres AssociatesClient Project ID: #CA1264-6Date Sampled: 06/25/07424 First StreetDate Received: 06/25/07Benicia, CA 94510Client Contact: Ryan MeyerDate Extracted: 06/25/07Client P.O.:Date Analyzed 06/27/07 ## Polynuclear Aromatic Hydrocarbons (PAHs / PNAs) using SIM Mode by GC/MS* Analytical Method: SW8270C Lab ID 0706632-018A 0706632-020A Reporting Limit for DF =1 Matrix S S | DF | 1 | 1 | | S | W | | | | |--------------------------|----|---------------|--|-------|------|--|--|--| | Compound | | Concentration | | | ug/L | | | | | Acenaphthene | ND | ND | | 0.005 | NA | | | | | Acenaphthylene | ND | ND | | 0.005 | NA | | | | | Anthracene | ND | ND | | 0.005 | NA | | | | | Benzo(a)anthracene | ND | ND | | 0.005 | NA | | | | | Benzo(a)pyrene | ND | ND | | 0.005 | NA | | | | | Benzo(b)fluoranthene | ND | ND | | 0.005 | NA | | | | | Benzo(g,h,i)perylene | ND | ND | | 0.005 | NA | | | | | Benzo(k)fluoranthene | ND | ND | | 0.005 | NA | | | | | Chrysene | ND | ND | | 0.005 | NA | | | | | Dibenzo(a,h)anthracene | ND | ND | | 0.005 | NA | | | | | Fluoranthene | ND | ND | | 0.005 | NA | | | | | Fluorene | ND | ND | | 0.005 | NA | | | | | Indeno (1,2,3-cd) pyrene | ND | ND | | 0.005 | NA | | | | | 1-Methylnaphthalene | ND | ND | | 0.005 | NA | | | | | 2-Methylnaphthalene | ND | ND | | 0.005 | NA | | | | | Naphthalene |
ND | ND | | 0.005 | NA | | | | | Phenanthrene | ND | ND | | 0.005 | NA | | | | | Pyrene | ND | ND | | 0.005 | NA | | | | | Surrogate Recoveries (%) | | | | | | | | | #### Bullogate Recoveries (70) | %SS1 | 72 | 71 | | | |----------|----|----|--|--| | %SS2 | 95 | 98 | | | | Comments | | | | | ^{*} water samples in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L. ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis. #) surrogate diluted out of range; &) low or no surrogate due to matrix interference. h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; J) analyte detected below quantitation limits; p) see attached narrative; r) results are reported on a dry weight basis. 1534 Willow Pass Road, Pittsburg, CA 94565-1701 Telephone: 877-252-9262 Fax: 925-252-9269 | Ceres Associates | Client Project ID: #CA1264-6 | Date Sampled: 06/25/07 | |--------------------|------------------------------|--------------------------| | 424 First Street | | Date Received: 06/25/07 | | Benicia, CA 94510 | Client Contact: Ryan Meyer | Date Extracted: 06/25/07 | | Beneuit, erry isre | Client P.O.: | Date Analyzed 06/29/07 | | Hexane Extractable Material With Silica Gel Treatment* | | | | | | | | | |--|--|--------|--------|-----------------|-------|--|--|--| | Analytical methods: SW90 | 71B | | | Work Order: 070 |)6632 | | | | | Lab ID | Client ID | Matrix | HEMSGT | DF | % SS | | | | | 0706632-002A | CS1-5 | S | ND | 1 | N/A | | | | | 0706632-004A | CS1-10 | S | ND | 1 | N/A | | | | | 0706632-006A | CS2-5 | S | ND | 1 | N/A | | | | | 0706632-008A | CS2-10 | S | ND | 1 | N/A | | | | | 0706632-010A | CS3-5 | S | ND | 1 | N/A | | | | | 0706632-012A | CS3-10 | S | ND | 1 | N/A | | | | | 0706632-014A | CS4-5 | S | ND | 1 | N/A | | | | | 0706632-016A | CS4-10 | S | ND | 1 | N/A | | | | | 0706632-018A | CS5-5 | S | ND | 1 | N/A | | | | | 0706632-020A | CS5-10 | S | ND | 1 | N/A | ng Limit for DF =1; | W | NA | N | ΙA | | | | | | ns not detected at or
the reporting limit | S | 50 | mg | g/Kg | | | | ^{*} water samples and all TCLP & SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in mg/wipe, product/oil/non-aqueous liquid samples in mg/L. DF = dilution factor (may be raised to dilute target analyte or matrix interference). # surrogate diluted out of range or not applicable to this sample. g) sample extract repeatedly cleaned up with silica gel until constant IR result achieved; h) a lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) results are reported on a dry weight basis. "When Ouality Counts" 1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269 | Ceres Associates | Client Project ID: #CA1264-6 | Date Sampled: 06/25/07 | | | | | |-------------------|------------------------------|---------------------------------|--|--|--|--| | 424 First Street | | Date Received: 06/25/07 | | | | | | Benicia, CA 94510 | Client Contact: Ryan Meyer | Date Extracted: 06/25/07 | | | | | | 25.00.00 | Client P.O.: | Date Analyzed 06/26/07-07/02/07 | | | | | | | | | | | | | Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline* Extraction method SW5030B Analytical methods SW8015Cm Work Order: 0706632 Lab ID Client ID Matrix TPH(g) DF % SS 002A CS1-5 S ND 1 81 004A CS1-10 S ND 87 006A CS2-5 S ND 74 008A CS2-10 S ND 1 86 010A 1 CS3-5 S ND 73 012A CS3-10 S ND 1 84 014A CS4-5 S ND 1 83 016A CS4-10 S ND 1 88 018A CS5-5 S 1 78 ND 020A CS5-10 S ND 88 1 021A CS6-10 S ND 022A CS7-10 S ND 1 80 023A CS8-10 S ND 1 87 | Reporting Limit for DF =1; | W | NA | NA | |-----------------------------|---|-----|-------| | ND means not detected at or | S | 1.0 | mg/Kg | | above the reporting limit | | 1.0 | mg/Kg | ^{*} water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L. ⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) value derived using a client specified carbon range; o) results are reported on a dry weight basis; p) see attached narrative. [#] cluttered chromatogram; sample peak coelutes with surrogate peak. "When Ouality Counts" 1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269 | 20110111, 0117, 1010 | Client P.O.: | Date Analyzed: 06/26/07 | | | | | | |----------------------|------------------------------|--------------------------|--|--|--|--|--| | Benicia, CA 94510 | Client Contact: Ryan Meyer | Date Extracted: 06/25/07 | | | | | | | 424 First Street | | Date Received: 06/25/07 | | | | | | | Ceres Associates | Client Project ID: #CA1264-6 | Date Sampled: 06/25/07 | | | | | | #### LUFT 5 Metals* | 002A CS1-5 S TTLC ND 52 ND 40 42 1 96 004A CS1-10 S TTLC ND 31 ND 22 18 1 94 006A CS2-5 S TTLC ND 33 ND 25 18 1 94 008A CS2-10 S TTLC ND 46 6.9 55 38 1 97 010A CS3-5 S TTLC ND 30 ND 19 16 1 93 012A CS3-10 S TTLC ND 49 9.6 72 53 1 98 014A CS4-5 S TTLC ND 40 6.8 26 21 1 95 016A CS4-10 S TTLC ND 38 5.6 33 22 1 96 018A CS5-5 S <td< th=""><th></th><th></th><th></th><th></th><th>LUFIS</th><th>victais.</th><th></th><th></th><th></th><th></th><th></th></td<> | | | | | LUFIS | victais. | | | | | | |---|--------------|----------------|--------|-----------------|-------------------|----------|------|--------|-------------|---------|------| | 002A CS1-5 S TTLC ND 52 ND 40 42 1 96 004A CS1-10 S TTLC ND 31 ND 22 18 1 94 006A CS2-5 S TTLC ND 33 ND 25 18 1 94 008A CS2-10 S TTLC ND 46 6.9 55 38 1 97 010A CS3-5 S TTLC ND 30 ND 19 16 1 93 012A CS3-10 S TTLC ND 49 9.6 72 53 1 98 014A CS4-5 S TTLC ND 38 5.6 33 22 1 95 016A CS4-10 S TTLC ND 28 ND 19 13 1 93 020A CS5-10 S <td< th=""><th>Extraction 1</th><th>method SW3050B</th><th></th><th></th><th>Analytical method</th><th>ls 6010C</th><th></th><th></th><th>Work Order:</th><th>0706632</th><th></th></td<> | Extraction 1 | method SW3050B | | | Analytical method | ls 6010C | | | Work Order: | 0706632 | | | 004A CS1-10 S TTLC ND 31 ND 22 18 1 94 006A CS2-5 S TTLC ND 33 ND 25 18 1 94 008A CS2-10 S TTLC ND 46 6.9 55 38 1 97 010A CS3-5 S TTLC ND 30 ND 19 16 1 93 012A CS3-10 S TTLC ND 49 9.6 72 53 1 98 014A CS4-5 S TTLC ND 40 6.8 26 21 1 95 016A CS4-10 S TTLC ND 38 5.6 33 22 1 96 018A CS5-5 S TTLC ND 51 ND 35 30 1 95 020A CS5-10 S <t< th=""><th>Lab ID</th><th>Client ID</th><th>Matrix</th><th>Extraction Type</th><th>Cadmium</th><th>Chromium</th><th>Lead</th><th>Nickel</th><th>Zinc</th><th>DF</th><th>% SS</th></t<> | Lab ID | Client ID | Matrix | Extraction Type | Cadmium |
Chromium | Lead | Nickel | Zinc | DF | % SS | | 006A CS2-5 S TTLC ND 33 ND 25 18 1 94 008A CS2-10 S TTLC ND 46 6.9 55 38 1 97 010A CS3-5 S TTLC ND 30 ND 19 16 1 93 012A CS3-10 S TTLC ND 49 9.6 72 53 1 98 014A CS4-5 S TTLC ND 40 6.8 26 21 1 95 016A CS4-10 S TTLC ND 38 5.6 33 22 1 96 018A CS5-5 S TTLC ND 28 ND 19 13 1 93 020A CS5-10 S TTLC ND 51 ND 35 30 1 95 15 TTLC NA N | 002A | CS1-5 | S | TTLC | ND | 52 | ND | 40 | 42 | 1 | 96 | | 008A CS2-10 S TTLC ND 46 6.9 55 38 1 97 010A CS3-5 S TTLC ND 30 ND 19 16 1 93 012A CS3-10 S TTLC ND 49 9.6 72 53 1 98 014A CS4-5 S TTLC ND 40 6.8 26 21 1 95 016A CS4-10 S TTLC ND 38 5.6 33 22 1 96 018A CS5-5 S TTLC ND 28 ND 19 13 1 93 020A CS5-10 S TTLC ND 51 ND 35 30 1 95 0 TTLC ND 51 ND 35 30 1 95 0 TTLC ND ND ND ND | 004A | CS1-10 | S | TTLC | ND | 31 | ND | 22 | 18 | 1 | 94 | | 010A CS3-5 S TTLC ND 30 ND 19 16 1 93 012A CS3-10 S TTLC ND 49 9.6 72 53 1 98 014A CS4-5 S TTLC ND 40 6.8 26 21 1 95 016A CS4-10 S TTLC ND 38 5.6 33 22 1 96 018A CS5-5 S TTLC ND 28 ND 19 13 1 93 020A CS5-10 S TTLC ND 51 ND 35 30 1 95 1< | 006A | CS2-5 | S | TTLC | ND | 33 | ND | 25 | 18 | 1 | 94 | | 012A CS3-10 S TTLC ND 49 9.6 72 53 1 98 014A CS4-5 S TTLC ND 40 6.8 26 21 1 95 016A CS4-10 S TTLC ND 38 5.6 33 22 1 96 018A CS5-5 S TTLC ND 28 ND 19 13 1 93 020A CS5-10 S TTLC ND 51 ND 35 30 1 95 1 TTLC ND 51 ND 35 30 1 95 1 TTLC ND 10 ND 10 ND 10 ND 10 ND ND ND ND ND ND ND < | 008A | CS2-10 | S | TTLC | ND | 46 | 6.9 | 55 | 38 | 1 | 97 | | 014A CS4-5 S TTLC ND 40 6.8 26 21 1 95 016A CS4-10 S TTLC ND 38 5.6 33 22 1 96 018A CS5-5 S TTLC ND 28 ND 19 13 1 93 020A CS5-10 S TTLC ND 51 ND 35 30 1 95 Image: Company of the c | 010A | CS3-5 | S | TTLC | ND | 30 | ND | 19 | 16 | 1 | 93 | | 016A CS4-10 S TTLC ND 38 5.6 33 22 1 96 018A CS5-5 S TTLC ND 28 ND 19 13 1 93 020A CS5-10 S TTLC ND 51 ND 35 30 1 95 Image: Compact of the compac | 012A | CS3-10 | S | TTLC | ND | 49 | 9.6 | 72 | 53 | 1 | 98 | | 018A CS5-5 S TTLC ND 28 ND 19 13 1 93 020A CS5-10 S TTLC ND 51 ND 35 30 1 95 | 014A | CS4-5 | S | TTLC | ND | 40 | 6.8 | 26 | 21 | 1 | 95 | | 020A CS5-10 S TTLC ND 51 ND 35 30 1 95 Image: Control of the c | 016A | CS4-10 | S | TTLC | ND | 38 | 5.6 | 33 | 22 | 1 | 96 | | Reporting Limit for DF =1; ND means not detected at or S TTLC 15 15 50 mg/Kg | 018A | CS5-5 | S | TTLC | ND | 28 | ND | 19 | 13 | 1 | 93 | | ND means not detected at or S TTLC 1.5 1.5 5.0 mg/Kg | 020A | CS5-10 | S | TTLC | ND | 51 | ND | 35 | 30 | 1 | 95 | | ND means not detected at or S TTLC 1.5 1.5 5.0 mg/Kg | | | | | | | | | | | | | ND means not detected at or S TTIC 15 15 50 15 50 mg/Kg | | | | | | | | | | | | | ND means not detected at or S TTIC 15 15 50 15 50 mg/Kg | | | | | | | | | | | | | ND means not detected at or S TTIC 15 15 50 15 50 mg/Kg | | | | | | | | | | | | | ND means not detected at or S TTLC 1.5 1.5 5.0 mg/Kg | | | | | | | | | | | | | ND means not detected at or S TTLC 1.5 1.5 5.0 mg/Kg | | | | | | | | | | | | | S TTIC 15 15 50 15 50 mg/Kg | | | W | TOTAL^ | NA | NA | NA | NA | NA | N | ΙA | | | | | S | TTLC | 1.5 | 1.5 | 5.0 | 1.5 | 5.0 | mg | g/Kg | ^{*}water samples are reported in μ g/L, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, filter samples in μ g/filter. i) aqueous sample containing greater than ~1 vol. % sediment; for DISSOLVED metals, this sample has been preserved prior to filtration; for TTLC metals, a representative sediment-water mixture was digested; j) reporting limit raised due to insufficient sample amount; k) reporting limit raised due to matrix interference; m) estimated value due to low/high surrrogate recovery, caused by matrix interference; n) results are reported on a dry weight basis; p) see attached narrative. [#] means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument. Client Project ID: #CA1264-6 Ceres Associates Date Sampled: 06/25/07 Date Received: 06/25/07 424 First Street Date Extracted: 06/25/07 Client Contact: Ryan Meyer Benicia, CA 94510 Client P.O.: Date Analyzed: 06/27/07 BTEX by GC/MS* Work Order: 0706632 Extraction Method: SW5030B Analytical Method: SW8260B Lab ID 0706632-021A 0706632-022A 0706632-023A CS6-10 CS7-10 CS8-10 Client ID Reporting Limit for DF =1 Matrix S S S DF 1 1 1 S W Compound Concentration mg/kg ug/L Benzene ND ND ND 0.005 NA Ethylbenzene ND ND ND 0.005 NA Toluene ND ND ND 0.005NA Xylenes ND ND ND 0.005 NA **Surrogate Recoveries (%)** %SS1: 90 89 87 %SS2: 101 101 100 %SS3: 100 100 Comments ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis. # surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference. ^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe. | Ceres Associates | Client Project ID: #CA1264-6 | Date Sampled: 06/25/07 | |-------------------|------------------------------|---------------------------------| | 424 First Street | | Date Received: 06/25/07 | | Benicia, CA 94510 | Client Contact: Ryan Meyer | Date Extracted: 06/25/07 | | Zemvin, erry iere | Client P.O.: | Date Analyzed 06/26/07-07/02/07 | | | | | #### Diesel (C10-23) and Oil (C18+) Range Extractable Hydrocarbons as Diesel and Motor Oil* | Extraction method: SW35 | 50C | | nethods: SW8015C | Wor | k Order: 0 | 706632 | |----------------------------|-----------|--------|------------------|---------|------------|--------| | Lab ID | Client ID | Matrix | TPH(d) | TPH(mo) | DF | % SS | | 0706632-002A | CS1-5 | S | ND | ND | 1 | 91 | | 0706632-004A | CS1-10 | S | ND | ND | 1 | 98 | | 0706632-006A | CS2-5 | S | ND | ND | 1 | 100 | | 0706632-008A | CS2-10 | S | ND | ND | 1 | 104 | | 0706632-010A | CS3-5 | S | ND | ND | 1 | 84 | | 0706632-012A | CS3-10 | S | ND | ND | 1 | 101 | | 0706632-014A | CS4-5 | S | ND,g | 5.9 | 1 | 95 | | 0706632-016A | CS4-10 | S | ND | ND | 1 | 99 | | 0706632-018A | CS5-5 | S | ND | ND | 1 | 87 | | 0706632-020A | CS5-10 | S | ND | ND | 1 | 95 | | 0706632-021A | CS6-10 | S | ND | ND | 1 | 92 | | 0706632-022A | CS7-10 | S | ND | ND | 1 | 90 | | 0706632-023A | CS8-10 | S | ND | ND | 1 | 93 | Reporting Limit for DF =1; | | W | NA | NA | ug | g/L | | Reporting Limit for D1 =1, | w | NA | NA | ug/L | | | | |--|---|-----|-----|-------|--|--|--| | ND means not detected at or | S | 1.0 | 5.0 | mg/Kg | | | | | above the reporting limit | ы | 1.0 | 5.0 | mg/Kg | | | | | * water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in | | | | | | | | mg/L, and all DISTLC / SPLP / TCLP extracts are reported in μ g/L. [#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract. ⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel (asphalt?); f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range/jet fuel; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit; o) mineral oil; p) see attached narrative. QC SUMMARY REPORT FOR SW8021B/8015Cm W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder 0706632 | EPA Method SW8015Cm | Extra | ction SW | 5030B | | BatchID: 28884 Sp | | | | | piked Sample ID: 0706580-007A | | | | | |---|-------|----------|--------|--------|-------------------|--------|--------|----------|----------------------------------|-------------------------------|----------|-----|--|--| | Analyte Sample Spiked MS MSD MS-MSD LCS | | | | | | | | LCS-LCSD | .CS-LCSD Acceptance Criteria (%) | | | | | | | Allalyte | mg/Kg | mg/Kg | % Rec. | % Rec. | % RPD | % Rec. | % Rec. | % RPD | MS / MSD | RPD | LCS/LCSD | RPD | | | | TPH(btex [£] | ND | 0.60 | 94.2 | 99.2 | 5.15 | 82.4 | 94.7 | 13.9 | 70 - 130 | 30 | 70 - 130 | 30 | | | | MTBE | ND | 0.10 | 97.8 | 98.4 | 0.587 | 91.3 | 95.4 | 4.46 | 70 - 130 | 30 | 70 - 130 | 30 | | | | Benzene | ND | 0.10 | 88.3 | 90 | 1.98 | 85.8 | 87.1 | 1.54 | 70 - 130 | 30 | 70 - 130 | 30 | | | | Toluene | ND | 0.10 | 78.1 | 77.9 | 0.247 | 80.9 | 79.2 | 2.20 | 70 - 130 | 30 | 70 - 130 | 30 | | | | Ethylbenzene | ND | 0.10 | 93.6 | 93.8 | 0.134 | 90.9 | 88.1 | 3.15 | 70 - 130 | 30 | 70 - 130 | 30 | | | | Xylenes | ND | 0.30 | 86.7 | 87 | 0.384 | 86.3 | 82.3 | 4.74 | 70 - 130 | 30 | 70 - 130 | 30 | | | | %SS: | 84 | 0.10 | 83 | 96 | 15.2 | 83 | 92 | 10.5 | 70 - 130 | 30 | 70 - 130 | 30 | | | $All \ target \ compounds \ in \ the \ Method \ Blank \ of \ this \ extraction \ batch \ were \ ND \ less \ than \ the \ method \ RL \ with \ the \ following \ exceptions:$ NONE #### BATCH 28884 SUMMARY | Sample ID | Date Sampled | Date Extracted | Date Analyzed | Sample ID | Date Sampled | Date Extracted | Date Analyzed | |--------------|--------------|----------------|------------------|--------------|--------------|----------------|------------------| | 0706632-002A | 06/25/07 | 06/25/07 | 06/26/07
5:26 PM | 0706632-004A | 06/25/07 | 06/25/07 | 06/29/07 5:50 PM | | 0706632-006A | 06/25/07 | 06/25/07 | 06/28/07 4:29 AM | | | | | MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation. % Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2). MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery. £ TPH(btex) = sum of BTEX areas from the FID. # cluttered chromatogram; sample peak coelutes with surrogate peak. QC SUMMARY REPORT FOR SW8015C W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder 0706632 | EPA Method SW8015C Extraction SW3550C | | | | | | chID: 28 | 885 | Spiked Sample ID: 0706580-023A | | | | | | |---------------------------------------|--------|--------|---------|--------|--------|----------|--------|--------------------------------|----------|---------|--------------|-----|--| | Analyte | Sample | Spiked | MS | MSD | MS-MSD | LCS | LCSD | LCS-LCSD | Acce | eptance | Criteria (%) | | | | | mg/Kg | mg/Kg | % Rec. | % Rec. | % RPD | % Rec. | % Rec. | % RPD | MS / MSD | RPD | LCS/LCSD | RPD | | | TPH(d) | 85 | 20 | 141, F1 | 128 | 2.36 | 111 | 110 | 0.253 | 70 - 130 | 30 | 70 - 130 | 30 | | | %SS: | 109 | 50 | 96 | 93 | 2.86 | 84 | 85 | 0.105 | 70 - 130 | 30 | 70 - 130 | 30 | | All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE F1 = MS / MSD exceed acceptance criteria. LCS - LCSD validate prep batch. | BATCH | 28885 | SUMMARY | |-------|-------|---------| | | | | | Sample ID | Date Sampled | Date Extracted | Date Analyzed | Sample ID | Date Sampled | Date Extracted | Date Analyzed | |--------------|--------------|----------------|------------------|--------------|--------------|----------------|------------------| | 0706632-002A | 06/25/07 | 06/25/07 | 06/28/07 8:11 PM | 0706632-004A | 06/25/07 | 06/25/07 | 06/26/07 5:18 PM | | 0706632-006A | 06/25/07 | 06/25/07 | 07/02/07 3:46 PM | 0706632-008A | 06/25/07 | 06/25/07 | 06/27/07 1:40 AM | | 0706632-010A | 06/25/07 | 06/25/07 | 06/27/07 9:05 AM | 0706632-012A | 06/25/07 | 06/25/07 | 06/27/07 7:11 PM | | 0706632-014A | 06/25/07 | 06/25/07 | 06/27/07 6:51 AM | 0706632-016A | 06/25/07 | 06/25/07 | 06/27/07 8:23 PM | | 0706632-018A | 06/25/07 | 06/25/07 | 06/26/07 7:44 PM | 0706632-020A | 06/25/07 | 06/25/07 | 06/27/07 7:57 AM | | 0706632-021A | 06/25/07 | 06/25/07 | 06/26/07 6:30 PM | 0706632-022A | 06/25/07 | 06/25/07 | 06/26/07 7:39 PM | MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation. % Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2). MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery. N/A = not enough sample to perform matrix spike and matrix spike duplicate. ## QC SUMMARY REPORT FOR SW8021B/8015Cm W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder 0706632 | EPA Method SW8015Cm | Extra | ction SW | | BatchID: 28920 Spiked Sample ID: 0706632- | | | | | | | 2A | | |-----------------------|--------|----------|--------|---|-----------------|--------|----------|-------------------------|----------|-----|----------|-----| | Analyte | Sample | Spiked | MS | MSD | MS-MSD LCS LCSD | | LCS-LCSD | Acceptance Criteria (%) | | | | | | Analyto | mg/Kg | mg/Kg | % Rec. | % Rec. | % RPD | % Rec. | % Rec. | % RPD | MS / MSD | RPD | LCS/LCSD | RPD | | TPH(btex [£] | ND | 0.60 | 116 | 101 | 13.0 | 107 | 107 | 0 | 70 - 130 | 30 | 70 - 130 | 30 | | MTBE | ND | 0.10 | 106 | 95.1 | 11.1 | 106 | 104 | 1.95 | 70 - 130 | 30 | 70 - 130 | 30 | | Benzene | ND | 0.10 | 92.4 | 90.7 | 1.76 | 101 | 99.7 | 1.58 | 70 - 130 | 30 | 70 - 130 | 30 | | Toluene | ND | 0.10 | 88.1 | 84.2 | 4.61 | 96 | 94.2 | 1.93 | 70 - 130 | 30 | 70 - 130 | 30 | | Ethylbenzene | ND | 0.10 | 93.4 | 93.6 | 0.179 | 107 | 105 | 2.00 | 70 - 130 | 30 | 70 - 130 | 30 | | Xylenes | ND | 0.30 | 100 | 100 | 0 | 107 | 103 | 3.17 | 70 - 130 | 30 | 70 - 130 | 30 | | %SS: | 80 | 0.10 | 83 | 81 | 2.73 | 94 | 91 | 3.33 | 70 - 130 | 30 | 70 - 130 | 30 | $All \ target \ compounds \ in \ the \ Method \ Blank \ of \ this \ extraction \ batch \ were \ ND \ less \ than \ the \ method \ RL \ with \ the \ following \ exceptions:$ NONE #### BATCH 28920 SUMMARY | Sample ID | Date Sampled | Date Extracted | Date Analyzed | Sample ID | Date Sampled | Date Extracted | Date Analyzed | |--------------|--------------|----------------|-------------------|--------------|--------------|----------------|-------------------| | 0706632-008A | 06/25/07 | 06/25/07 | 06/27/07 1:06 AM | 0706632-010A | 06/25/07 | 06/25/07 | 06/28/07 5:02 AM | | 0706632-012A | 06/25/07 | 06/25/07 | 06/27/07 2:37 AM | 0706632-014A | 06/25/07 | 06/25/07 | 06/28/07 6:41 AM | | 0706632-016A | 06/25/07 | 06/25/07 | 06/27/07 5:08 AM | 0706632-018A | 06/25/07 | 06/25/07 | 06/26/07 8:29 PM | | 0706632-020A | 06/25/07 | 06/25/07 | 06/26/07 9:03 PM | 0706632-021A | 06/25/07 | 06/25/07 | 06/26/07 10:10 PM | | 0706632-022A | 06/25/07 | 06/25/07 | 06/26/07 10:43 PM | 0706632-023A | 06/25/07 | 06/25/07 | 07/02/07 5:53 PM | MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation. % Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2). MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery. £ TPH(btex) = sum of BTEX areas from the FID. # cluttered chromatogram; sample peak coelutes with surrogate peak. ## QC SUMMARY REPORT FOR SW8015C W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder 0706632 | EPA Method SW8015C Extraction SW3550C | | | | | | chID: 28 | 922 | Spiked Sample ID: 0706632-023A | | | | | | |---------------------------------------|--------|--------|--------|--------|--------|----------|--------|--------------------------------|----------|---------|--------------|-----|--| | Analyte | Sample | Spiked | MS | MSD | MS-MSD | LCS | LCSD | LCS-LCSD | Acce | eptance | Criteria (%) | ١ | | | | mg/Kg | mg/Kg | % Rec. | % Rec. | % RPD | % Rec. | % Rec. | % RPD | MS / MSD | RPD | LCS/LCSD | RPD | | | TPH(d) | ND | 20 | 111 | 112 | 0.616 | 113 | 110 | 2.31 | 70 - 130 | 30 | 70 - 130 | 30 | | | %SS: | 93 | 50 | 114 | 116 | 1.36 | 113 | 110 | 2.71 | 70 - 130 | 30 | 70 - 130 | 30 | | All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE #### BATCH 28922 SUMMARY | Sample ID | Date Sampled | Date Extracted | Date Analyzed | Sample ID | Date Sampled | Date Extracted | Date Analyzed | |--------------|--------------|----------------|------------------|-----------|--------------|----------------|---------------| | 0706632-023A | 06/25/0 | 7 06/25/07 | 06/26/07 3:46 PM | | | | | MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation. % Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2). MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery. N/A = not enough sample to perform matrix spike and matrix spike duplicate. ## QC SUMMARY REPORT FOR SW8082A W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder 0706632 | EPA Method SW8082A | | Bat | chID: 28 | Spiked Sample ID: 0706632-020A | | | | | | | | | |--------------------|--------|--------|----------|--------------------------------|--------|--------|--------|----------|----------|---------|--------------|-----| | Analyte | Sample | Spiked | MS | MSD | MS-MSD | LCS | LCSD | LCS-LCSD | Acce | eptance | Criteria (%) | 1 | | | mg/kg | mg/kg | % Rec. | % Rec. | % RPD | % Rec. | % Rec. | % RPD | MS / MSD | RPD | LCS/LCSD | RPD | | Aroclor1260 | ND | 0.075 | 95.3 | 95.1 | 0.239 | 95.8 | 95.2 | 0.624 | 70 - 130 | 20 | 70 - 130 | 20 | | %SS: | 110 | 0.050 | 109 | 109 | 0 | 109 | 109 | 0 | 70 - 130 | 20 | 70 - 130 | 20 | All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE #### BATCH 28924 SUMMARY | Sample ID | Date Sampled | Date Extracted | Date Analyzed | Sample ID | Date Sampled | Date Extracted | Date Analyzed | |--------------|--------------|----------------|-------------------|--------------|--------------|----------------|-------------------| | 0706632-002A | 06/25/07 | 06/25/07 | 06/26/07 8:51 PM | 0706632-004A | 06/25/07 | 06/25/07 | 06/26/07 9:47 PM | | 0706632-006A | 06/25/07 | 06/25/07 | 06/26/07 10:44 PM | 0706632-008A | 06/25/07 | 06/25/07 | 06/26/07 11:40 PM | | 0706632-010A | 06/25/07 | 06/25/07 | 06/27/07 12:36 AM | 0706632-012A | 06/25/07 | 06/25/07 | 06/27/07 3:24 AM | | 0706632-014A | 06/25/07 | 06/25/07 | 06/27/07 4:20 AM | 0706632-016A | 06/25/07 | 06/25/07 |
06/27/07 5:15 AM | | 0706632-018A | 06/25/07 | 06/25/07 | 06/27/07 6:10 AM | 0706632-020A | 06/25/07 | 06/25/07 | 06/26/07 6:57 PM | MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation. % Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2). MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery. N/A = not enough sample to perform matrix spike and matrix spike duplicate. ## QC SUMMARY REPORT FOR SW8260B W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder 0706632 | EPA Method SW8260B Extraction SW5030B | | | | | | chID: 28 | 929 | Spiked Sample ID: N/A | | | | | |---------------------------------------|--------|--------|--------|--------|--------|----------|--------|-----------------------|----------|---------|--------------|-----| | Analyte | Sample | Spiked | MS | MSD | MS-MSD | LCS | LCSD | LCS-LCSD | Acce | eptance | Criteria (%) | ١ | | | mg/kg | mg/kg | % Rec. | % Rec. | % RPD | % Rec. | % Rec. | % RPD | MS / MSD | RPD | LCS/LCSD | RPD | | 1,4-Dioxane | N/A | 0.10 | N/A | N/A | N/A | 80.8 | 89.5 | 10.2 | N/A | N/A | 70 - 130 | 30 | | %SS1: | N/A | 0.050 | N/A | N/A | N/A | 80 | 80 | 0 | N/A | N/A | 70 - 130 | 20 | All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE #### **BATCH 28929 SUMMARY** | Sample ID | Date Sampled | Date Extracted | Date Analyzed | Sample ID | Date Sampled | Date Extracted | Date Analyzed | |--------------|--------------|----------------|-------------------|--------------|--------------|----------------|-------------------| | 0706632-002A | 06/25/07 | 06/26/07 | 06/26/07 5:55 PM | 0706632-004A | 06/25/07 | 06/26/07 | 06/26/07 6:41 PM | | 0706632-006A | 06/25/07 | 06/26/07 | 06/26/07 7:25 PM | 0706632-008A | 06/25/07 | 06/26/07 | 06/26/07 8:16 PM | | 0706632-010A | 06/25/07 | 06/26/07 | 06/26/07 9:04 PM | 0706632-012A | 06/25/07 | 06/26/07 | 06/26/07 9:50 PM | | 0706632-014A | 06/25/07 | 06/26/07 | 06/26/07 10:37 PM | 0706632-016A | 06/25/07 | 06/26/07 | 06/26/07 11:24 PM | | 0706632-018A | 06/25/07 | 06/26/07 | 06/27/07 12:16 AM | 0706632-020A | 06/25/07 | 06/26/07 | 06/27/07 1:03 AM | MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation. % Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2). MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery. N/A = not enough sample to perform matrix spike and matrix spike duplicate. ## QC SUMMARY REPORT FOR SW8260B W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder: 0706632 | EPA Method SW8260B | Extraction SW5030B | | | | BatchID: 28901 | | | Sp | Spiked Sample ID: 0706612-013A | | | | |-------------------------------|--------------------|--------|--------|--------|----------------|--------|--------|----------|--------------------------------|---------|--------------|-----| | Analyte | Sample | Spiked | MS | MSD | MS-MSD | LCS | LCSD | LCS-LCSD | Acce | eptance | Criteria (%) | ١ | | 7 may to | mg/Kg | mg/Kg | % Rec. | % Rec. | % RPD | % Rec. | % Rec. | % RPD | MS / MSD | RPD | LCS/LCSD | RPD | | tert-Amyl methyl ether (TAME) | ND | 0.050 | 103 | 104 | 1.53 | 102 | 102 | 0 | 70 - 130 | 30 | 70 - 130 | 30 | | Benzene | ND | 0.050 | 114 | 112 | 1.93 | 114 | 110 | 3.00 | 70 - 130 | 30 | 70 - 130 | 30 | | t-Butyl alcohol (TBA) | ND | 0.25 | 92.4 | 90.2 | 2.37 | 98.7 | 102 | 2.79 | 70 - 130 | 30 | 70 - 130 | 30 | | Chlorobenzene | ND | 0.050 | 99.7 | 103 | 2.89 | 99.8 | 99.9 | 0.180 | 70 - 130 | 30 | 70 - 130 | 30 | | 1,2-Dibromoethane (EDB) | ND | 0.050 | 101 | 106 | 4.21 | 102 | 103 | 1.21 | 70 - 130 | 30 | 70 - 130 | 30 | | 1,2-Dichloroethane (1,2-DCA) | ND | 0.050 | 103 | 105 | 1.36 | 104 | 99.8 | 4.32 | 70 - 130 | 30 | 70 - 130 | 30 | | 1,1-Dichloroethene | ND | 0.050 | 105 | 98.8 | 6.39 | 112 | 100 | 11.5 | 70 - 130 | 30 | 70 - 130 | 30 | | Diisopropyl ether (DIPE) | ND | 0.050 | 117 | 118 | 0.505 | 116 | 118 | 2.10 | 70 - 130 | 30 | 70 - 130 | 30 | | Ethyl tert-butyl ether (ETBE) | ND | 0.050 | 108 | 110 | 1.66 | 107 | 109 | 2.04 | 70 - 130 | 30 | 70 - 130 | 30 | | Methyl-t-butyl ether (MTBE) | ND | 0.050 | 108 | 111 | 3.00 | 106 | 107 | 1.09 | 70 - 130 | 30 | 70 - 130 | 30 | | Toluene | ND | 0.050 | 102 | 106 | 3.22 | 102 | 108 | 6.56 | 70 - 130 | 30 | 70 - 130 | 30 | | Trichloroethene | ND | 0.050 | 99 | 97.9 | 1.16 | 100 | 98.3 | 1.68 | 70 - 130 | 30 | 70 - 130 | 30 | | %SS1: | 97 | 0.050 | 102 | 98 | 3.95 | 102 | 101 | 0.311 | 70 - 130 | 30 | 70 - 130 | 30 | | % SS2: | 97 | 0.050 | 94 | 96 | 2.12 | 94 | 100 | 6.21 | 70 - 130 | 30 | 70 - 130 | 30 | | %SS3: | 95 | 0.050 | 103 | 107 | 4.00 | 102 | 114 | 11.6 | 70 - 130 | 30 | 70 - 130 | 30 | All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: BATCH 28901 SUMMARY | Sample ID | Date Sampled | Date Extracted | Date Analyzed | Sample ID | Date Sampled | Date Extracted | Date Analyzed | |--------------|--------------|----------------|------------------|--------------|--------------|----------------|-------------------| | 0706632-002A | 06/25/07 | 06/25/07 | 06/27/07 3:28 AM | 0706632-004A | 06/25/07 | 06/25/07 | 06/27/07 4:15 AM | | 0706632-006A | 06/25/07 | 06/25/07 | 06/27/07 5:03 AM | 0706632-008A | 06/25/07 | 06/25/07 | 06/27/07 5:52 AM | | 0706632-010A | 06/25/07 | 06/25/07 | 06/27/07 6:39 AM | 0706632-012A | 06/25/07 | 06/25/07 | 06/27/07 7:25 AM | | 0706632-014A | 06/25/07 | 06/25/07 | 06/27/07 1:26 PM | 0706632-016A | 06/25/07 | 06/25/07 | 06/27/07 11:57 AM | | 0706632-018A | 06/25/07 | 06/25/07 | 06/27/07 2:54 PM | 0706632-020A | 06/25/07 | 06/25/07 | 06/27/07 2:10 PM | MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation. % Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2). MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery. N/A = not enough sample to perform matrix spike and matrix spike duplicate. NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content. NONE ## QC SUMMARY REPORT FOR SW9071B W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder: 0706632 | EPA Method SW9071B | Extraction SM5520DF_S | | | | BatchID: 28923 | | | Spiked Sample ID: 0706632-002A | | | | 2A | |--------------------|-----------------------|--------|--------|--------|----------------|--------|--------|--------------------------------|----------|-----|--------------|-----| | Analyte | Sample | Spiked | MS | MSD | MS-MSD | LCS | LCSD | LCS-LCSD Acceptance Criteria (| | | Criteria (%) | | | , mayto | mg/Kg | mg/Kg | % Rec. | % Rec. | % RPD | % Rec. | % Rec. | % RPD | MS / MSD | RPD | LCS/LCSD | RPD | | HEMSGT | ND | 1000 | 105 | 108 | 2.81 | 89.5 | 87.9 | 1.86 | 70 - 130 | 30 | 70 - 130 | 30 | All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE #### BATCH 28923 SUMMARY | Sample ID | Date Sampled | Date Extracted | Date Analyzed | Sample ID | Date Sampled | Date Extracted | Date Analyzed | |--------------|--------------|----------------|------------------|--------------|--------------|----------------|------------------| | 0706632-002A | 06/25/07 | 06/25/07 | 06/29/07 6:12 PM | 0706632-004A | 06/25/07 | 06/25/07 | 06/29/07 6:17 PM | | 0706632-006A | 06/25/07 | 06/25/07 | 06/29/07 6:22 PM | 0706632-008A | 06/25/07 | 06/25/07 | 06/29/07 6:27 PM | | 0706632-010A | 06/25/07 | 06/25/07 | 06/29/07 6:32 PM | 0706632-012A | 06/25/07 | 06/25/07 | 06/29/07 6:37 PM | | 0706632-014A | 06/25/07 | 06/25/07 | 06/29/07 6:42 PM | 0706632-016A | 06/25/07 | 06/25/07 | 06/29/07 6:47 PM | | 0706632-018A | 06/25/07 | 06/25/07 | 06/29/07 6:52 PM | 0706632-020A | 06/25/07 | 06/25/07 | 06/29/07 6:57 PM | MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation. % Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2). MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery. N/A = not enough sample to perform matrix spike and matrix spike duplicate. QC SUMMARY REPORT FOR SW8260B W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder: 0706632 | EPA Method SW8260B Extraction SW5030B | | | | | | BatchID: 28925 | | | Spiked Sample ID: 0706632-023A | | | | |---------------------------------------|--------|--------|--------|--------|--------|----------------|--------|----------|--------------------------------|---------|--------------|-----| | Analyte | Sample | Spiked | MS | MSD | MS-MSD | LCS | LCSD | LCS-LCSD
| Acce | eptance | Criteria (%) | | | Allalyte | mg/Kg | mg/Kg | % Rec. | % Rec. | % RPD | % Rec. | % Rec. | % RPD | MS / MSD | RPD | LCS/LCSD | RPD | | Benzene | ND | 0.050 | 123 | 118 | 4.39 | 117 | 112 | 4.43 | 70 - 130 | 30 | 70 - 130 | 30 | | Methyl-t-butyl ether (MTBE) | ND | 0.050 | 116 | 118 | 1.72 | 111 | 109 | 1.65 | 70 - 130 | 30 | 70 - 130 | 30 | | Toluene | ND | 0.050 | 119 | 124 | 4.22 | 100 | 107 | 6.54 | 70 - 130 | 30 | 70 - 130 | 30 | | %SS1: | 87 | 0.050 | 103 | 103 | 0 | 102 | 98 | 3.45 | 70 - 130 | 30 | 70 - 130 | 30 | | %SS2: | WAIT | 0.050 | 102 | 108 | 6.05 | 94 | 98 | 3.55 | 70 - 130 | 30 | 70 - 130 | 30 | | %SS3: | 100 | 0.050 | 103 | 116 | 12.4 | 102 | 113 | 9.61 | 70 - 130 | 30 | 70 - 130 | 30 | All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE #### BATCH 28925 SUMMARY | Sample ID | Date Sampled | Date Extracted | Date Analyzed | Sample ID | Date Sampled | Date Extracted | Date Analyzed | |--------------|--------------|----------------|------------------|--------------|--------------|----------------|------------------| | 0706632-021A | 06/25/07 | 06/25/07 | 06/27/07 1:23 PM | 0706632-022A | 06/25/07 | 06/25/07 | 06/27/07 2:09 PM | | 0706632-023A | 06/25/07 | 06/25/07 | 06/27/07 2:55 PM | | | | | MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation. % Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2). MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery. N/A = not enough sample to perform matrix spike and matrix spike duplicate. #### QC SUMMARY REPORT FOR SW8270C W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder: 0706632 | EPA Method SW8270C | Extra | Extraction SW3550C | | | | | BatchID: 28926 Sp | | | | iked Sample ID: 0706632-020A | | | | | |---------------------|--------|--------------------|--------|--------|--------|--------|-------------------|----------|----------|-----|------------------------------|-----|--|--|--| | Analyte | Sample | Spiked | MS | MSD | MS-MSD | LCS | LCSD | LCS-LCSD | Acc | | | | | | | | 7 mary to | mg/kg | mg/kg | % Rec. | % Rec. | % RPD | % Rec. | % Rec. | % RPD | MS / MSD | RPD | LCS/LCSD | RPD | | | | | Benzo(a)pyrene | ND | 0.10 | 90.3 | 87.1 | 3.60 | 90.2 | 89.6 | 0.701 | 30 - 130 | 30 | 30 - 130 | 30 | | | | | Chrysene | ND | 0.10 | 84.2 | 81.9 | 2.82 | 85 | 84.6 | 0.447 | 30 - 130 | 30 | 30 - 130 | 30 | | | | | 1-Methylnaphthalene | ND | 0.10 | 96.1 | 97.5 | 1.44 | 94.6 | 92.1 | 2.76 | 30 - 130 | 30 | 30 - 130 | 30 | | | | | 2-Methylnaphthalene | ND | 0.10 | 104 | 106 | 1.34 | 102 | 101 | 1.16 | 30 - 130 | 30 | 30 - 130 | 30 | | | | | Phenanthrene | ND | 0.10 | 86.5 | 85 | 1.78 | 86.3 | 86 | 0.352 | 30 - 130 | 30 | 30 - 130 | 30 | | | | | Pyrene | ND | 0.10 | 87.7 | 88.1 | 0.427 | 89.5 | 88.5 | 1.12 | 30 - 130 | 30 | 30 - 130 | 30 | | | | | %SS1: | 71 | 0.050 | 71 | 71 | 0 | 71 | 70 | 0.670 | 30 - 130 | 30 | 30 - 130 | 30 | | | | | %SS2: | 98 | 0.050 | 95 | 94 | 0.955 | 96 | 96 | 0 | 30 - 130 | 30 | 30 - 130 | 30 | | | | All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE #### BATCH 28926 SUMMARY | Sample ID | Date Sampled | Date Extracted | Date Analyzed | Sample ID | Date Sampled | Date Extracted | Date Analyzed | |--------------|--------------|----------------|-------------------|--------------|--------------|----------------|-------------------| | 0706632-002A | 06/25/07 | 06/25/07 | 06/27/07 6:34 AM | 0706632-004A | 06/25/07 | 06/25/07 | 06/27/07 7:47 AM | | 0706632-006A | 06/25/07 | 06/25/07 | 06/27/07 9:01 AM | 0706632-008A | 06/25/07 | 06/25/07 | 06/27/07 10:16 AM | | 0706632-010A | 06/25/07 | 06/25/07 | 06/27/07 11:34 AM | 0706632-012A | 06/25/07 | 06/25/07 | 06/27/07 12:52 PM | | 0706632-014A | 06/25/07 | 06/25/07 | 06/27/07 2:10 PM | 0706632-016A | 06/25/07 | 06/25/07 | 06/27/07 3:28 PM | | 0706632-018A | 06/25/07 | 06/25/07 | 06/27/07 4:45 PM | 0706632-020A | 06/25/07 | 06/25/07 | 06/27/07 2:54 AM | MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation. % Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2). MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery. N/A = not enough sample to perform matrix spike and matrix spike duplicate. NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content. ## QC SUMMARY REPORT FOR 6010C W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder 0706632 | EPA Method 60 | EPA Method 6010C | | | | Extraction SW3050B | | | | BatchID: 28927 | | | Spiked Sample ID 0706632-020A | | | | |---------------|------------------|--------|--------|--------|--------------------|--------|--------|---------------|----------------|-------------------------|-----|-------------------------------|-----|--|--| | Analyte | Sample | Spiked | MS | MSD | MS-MSD | Spiked | LCS | LCSD LCS-LCSD | | Acceptance Criteria (%) | | | | | | | 7 mary to | mg/Kg | mg/Kg | % Rec. | % Rec. | % RPD | mg/Kg | % Rec. | % Rec. | % RPD | MS / MSD | RPD | LCS/LCSD | RPD | | | | Cadmium | ND | 50 | 108 | 102 | 5.44 | 10 | 97.8 | 111 | 12.5 | 75 - 125 | 20 | 80 - 120 | 20 | | | | Chromium | 51 | 50 | 102 | 97.5 | 2.31 | 10 | 104 | 103 | 1.67 | 75 - 125 | 20 | 80 - 120 | 20 | | | | Lead | ND | 50 | 124 | 105 | 16.5 | 10 | 103 | 102 | 1.17 | 75 - 125 | 20 | 80 - 120 | 20 | | | | Nickel | 35 | 50 | 105 | 103 | 1.06 | 10 | 100 | 107 | 6.26 | 75 - 125 | 20 | 80 - 120 | 20 | | | | Zinc | 30 | 500 | 122 | 115 | 5.83 | 100 | 104 | 103 | 0.386 | 75 - 125 | 20 | 80 - 120 | 20 | | | | %SS: | 95 | 250 | 94 | 99 | 5.42 | 250 | 96 | 101 | 5.64 | 70 - 130 | 20 | 70 - 130 | 20 | | | All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE #### BATCH 28927 SUMMARY | Sample ID | Date Sampled | Date Extracted | Date Analyzed | Sample ID | Date Sampled | Date Extracted | Date Analyzed | |--------------|--------------|----------------|------------------|--------------|--------------|----------------|------------------| | 0706632-002A | 06/25/0 | 7 06/25/07 | 06/26/07 4:00 PM | 0706632-004A | 06/25/07 | 06/25/07 | 06/26/07 4:04 PM | | 0706632-006A | 06/25/0 | 7 06/25/07 | 06/26/07 4:09 PM | 0706632-008A | 06/25/07 | 06/25/07 | 06/26/07 4:14 PM | | 0706632-010A | 06/25/0 | 7 06/25/07 | 06/26/07 4:18 PM | 0706632-012A | 06/25/07 | 06/25/07 | 06/26/07 4:23 PM | | 0706632-014A | 06/25/0 | 7 06/25/07 | 06/26/07 4:28 PM | 0706632-016A | 06/25/07 | 06/25/07 | 06/26/07 4:32 PM | | 0706632-018A | 06/25/0 | 7 06/25/07 | 06/26/07 4:37 PM | 0706632-020A | 06/25/07 | 06/25/07 | 06/26/07 3:23 PM | MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation. % Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = <math>100 * (MS - MSD) / ((MS + MSD) / 2). MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery. N/A = not applicable to this method. NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte | Ceres Associates | Excavation | Date Sampled: 11/29/06 | |--------------------|----------------------------|--------------------------| | 424 First Street | | Date Received: 11/29/06 | | Benicia, CA 94510 | Client Contact: Ryan Meyer | Date Reported: 12/01/06 | | Bellicia, CA 94310 | Client P.O.: | Date Completed: 12/01/06 | WorkOrder: 0611533 December 01, 2006 Dear Ryan: Enclosed are: - 1). the results of 6 analyzed samples from your #CA1264; Oakland Excavation project, - 2). a QC report for the above samples - 3). a copy of the chain of custody, and - 4). a bill for analytical services. All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again. Best regards, Angela Rydelius, Lab Manager ## McCAMPBELL ANALYTICAL, INC. 1534 WILLOW PASS ROAD PITTSBURG, CA 94565-1701 Website: www.mccampbell.com Email: main@mccampbell.com | CHAIN OF | CUST | ODY | RECO | RD_ | | |------------------|-------------|------------|-------|-------|------| | TURN AROUND TIME | Ø | DA . | | | | | | RUSH | 24 HR | 48 HP | 72 HR | STAV | GeoTracker EDF ☑ PDF ☑ Excel □ Write On (DW) □ Telephone: (877) 252-9262 Fax: (925) 252-9269 Check if sample is effluent and "J" flag is required Bill To: Cells Associates Report To: RUAN Meye **Analysis Request** Other Comments Associates Company: Coces EPA 608 / 8082 PCB's ONLY; Aroclors / Congeners Filter Samples E-Mail: TYAHMEYER CERESUSSOCIALES, COM CAM 17 Metals (200.7 / 200.8 / 6010 / 6020) for Metals LUFT
5 Metals (200.7 / 200.8 / 6010 / 6020) Fax: (707) 748 7130 7130 Tele: (7) EPA 502.2 / 601 / 8010 / 8021 (HVOCs) analysis: EPA 515 / 8151 (Acidic Cl Herbicides) Project Name: OAkland Excavation Project #: CA 1264 EPA 505/ 608 / 8081 (Cl Pesticides) Yes / No $Lead \; (200.7 \, / \, 200.8 \, / \, 6010 \, / \, 6020)$ DAKland Di EPA 525.2 / 625 / 8270 (SVOCs) **Project Location:** EPA 507 / 8141 (NP Pesticides) EPA 524.2 / 624 / 8260 (VOCs) Sampler Signature: METHOD **SAMPLING MATRIX** Type Containers TPH as Diesel (8015) PRESERVED # Containers LOCATION/ SAMPLE ID **Field Point** Sludge Water Time Other Name Date HNO3 HCL Soil ICE Air DISAUSG Relinguished By: Date: Time: Received By: ICE/to COMMENTS: GOOD CONDITION 11:00 11-29 HEAD SPACE ABSENT Relinquished By: Date: Time: Received By: DECHLORINATED IN LAB APPROPRIATE CONTAINERS PRESERVED IN LAB Relinquished By: Received By: Date: Time: VOAS O&G METALS OTHER PRESERVATION pH<2 ## McCampbell Analytical, Inc. 1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262 # CHAIN-OF-CUSTODY RECORD Page 1 of 1 Prepared by: Maria Venegas WorkOrder: 0611533 ClientID: CAB | | | | □EDF | | □Fa | ax | [| √ Email | | □Н | ardCopy | | ThirdF | Party | | | |--|--------------|---|--------------------|--------|------|----|---|---|---------|-----------|----------|---------|----------|-------|--------|----| | Report to: Ryan Meyer Ceres Associa 424 First Stree | | Bi
Email: ryanmeyer@ceresassociates.com
TEL: (707) 748-3170 FAX: (707) 748-3171
ProjectNo: #CA1264; Oakland Excavation | | | | | | Bill to: Lori Ceres Associates 424 First Street | | | | · | uested i | | • | | | Benicia, CA 9 | | PO: | KIAIIU EXCAVALIOII | | | | | A 9451 | 0 | | | | e Printe | | 11/29/ | | | | | | | | | | | Re | quested | l Tests (| See lege | nd belo | ow) | | | | | Sample ID | ClientSampID | Matrix | Collection Date | Hold | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | | 0611533-001 | III-9-N | Soil | 11/29/06 | | A | | | Α | | | | | | | | | | 0611533-002 | III-9-S | Soil | 11/29/06 | | A | | | A | | | | | | | | | | 0611533-003 | III-8-E | Soil | 11/29/06 | \Box | A | | | Α | | | | | | | | | | 0611533-004 | III-9-W | Soil | 11/29/06 | | Α | | | Α | | | | | | | | | | 0611533-005 | S-1-4 | Soil | 11/29/06 | Ī | Α | Α | Α | Α | | | | | | | | | | 0611533-006 | II-9-N | Soil | 11/29/06 | | Α | | | Α | | | | | | | | | | <u>Test Legend</u> : | | | | | | | | | | | | | | | | | | 1 G-MBTE | X_S 2 | LUFT_S | 3 РВ | _STLC | Soil | | 4 | | TPH(D | MO)_S | | : | 5 | | | | | 6 | 7 | | 8 | | | | 9 | | | | | 1 | 10 | | | | | 11 | 12 | | | | | | | | | | | | | | | | **Comments:** 24hr Rush NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense. 1534 Willow Pass Road, Pittsburg, CA 94565-1701 Telephone: 877-252-9262 Fax: 925-252-9269 | Ceres Associates | Client Project ID: #CA1264; Oakland Excavation | Date Sampled: | 11/29/06 | |----------------------|--|-----------------|-------------------| | 424 First Street | | Date Received: | 11/29/06 | | Benicia, CA 94510 | Client Contact: Ryan Meyer | Date Extracted: | 11/29/06 | | 20110111, 0117, 1010 | Client P.O.: | Date Analyzed | 11/29/06-11/30/06 | #### Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE* | | tion method SW5030B Analytical methods SW8021B/8015Cm Work Order: 0611533 | | | | | | | | | | | | |------------|---|--------|---------|-------------------|---------------|----------|--------------|------------|-------|-------|--|--| | Extraction | method SW5030B | | Anal | ytical methods SV | V8021B/8015Cm | | | Work Order | : 061 | 1533 | | | | Lab ID | Client ID | Matrix | TPH(g) | MTBE | Benzene | Toluene | Ethylbenzene | Xylenes | DF | % SS | | | | 001A | III-9-N | S | ND | ND | ND | ND | ND | ND | 1 | 99 | | | | 002A | III-9-S | S | ND | ND | ND | ND | ND | ND | 1 | 104 | | | | 003A | III-8-E | S | ND | ND | ND | ND | ND | ND | 1 | 96 | | | | 004A | III-9-W | S | ND | ND | ND | ND | ND | ND | 1 | 106 | | | | 005A | S-1-4 | S | 140,g,m | ND<0.50 | ND<0.050 | ND<0.050 | 0.099 | 0.27 | 10 | 106 | | | | 006A | II-9-N | S | ND | ND | ND | ND | ND | ND | 1 | 100 | • | - | | | ī | ·
I | 1 | | | | | | | _ | orting Limit for DF =1; | W | NA | NA | NA | NA | NA | NA | 1 | ug/L | | | | | means not detected at or ove the reporting limit | S | 1.0 | 0.05 | 0.005 | 0.005 | 0.005 | 0.005 | 1 | mg/Kg | | | | ND means not detected at or above the reporting limit | S | 1.0 | 0.05 | 0.005 | 0.005 | 0.005 | 0.005 | 1 | mg/Kg | | |---|---|-----|------|-------|-------|-------|-------|---|-------|--| | * water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in ug/wipe. | | | | | | | | | | | product/oil/non-aqueous liquid samples in mg/L. ⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) value derived using a client specified carbon range; o) results are reported on a dry weight basis; p) see attached narrative. [#] cluttered chromatogram; sample peak coelutes with surrogate peak. | Ceres Associates | Excavation | | Date Sampled: | 11/29/06 | | | | |----------------------------|-------------------|----------------------------|-------------------|-----------------|-----------------|---------|--| | 424 First Street | Excavati | on | - | Date Received: | 11/29/06 | | | | Benicia, CA 94510 | Client C | ontact: Ryan Me | yer | Date Extracted: | 11/29/06 | | | | Bellicia, CA 94310 | Client P. | Client P.O.: Date Analyzed | | | | | | | Gasoline Range | (C6-C12) Volatile | e Hydrocarbons a | s Gasoline with I | BTEX and MTBE | | | | | Extraction Method: SW5030B | Anal | lytical Method: SW802 | 1B/8015Cm | | Work Order: | 0611533 | | | Lab ID | 0611533-005A | | | | | | | | Client ID | S-1-4 | | | | Reporting
DF | | | | Matrix | S | | | | | | | | DF | 10 | | | | S | W | | | Compound Concentration | | | | | | ug/L | | | TPH(g) | 140,g,m | | | | 1.0 | NA | | | TPH(g) (C6-C9) | 51 | | | | 1.0 | NA | | | MTBE | ND<0.50 | | | | 0.05 | NA | | | Benzene | ND<0.050 | | | | 0.005 | NA | | | Toluene | ND<0.050 | | | | 0.005 | NA | | | Ethylbenzene | 0.099 | | | | 0.005 | NA | | | Xylenes | 0.27 | | | | 0.005 | NA | | | Surrogate Recoveries (%) | | | | | | | | | %SS: | 106 | | | | | | | | Comments | g,m | | | | | | | ^{*} water and vapor samples and all TCLP & SPLP extracts are reported in μ g/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, product/oil/non-aqueous liquid samples in mg/L. [#] cluttered chromatogram; sample peak coelutes with surrogate peak. ⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) value derived using a client specified carbon range; o) results are reported on a dry weight basis; p) see attached narrative. # McCampbell Analytical, Inc. 1534 Willow Pass Road, Pittsburg, CA 94565-1701 $Web: www.mccampbell.com \qquad E-mail: main@mccampbell.com\\$ Telephone: 877-252-9262 Fax: 925-252-9269 | | LUCT 5 Motole* | | |--------------------|--|--------------------------| | 20110111, 0117.010 | Client P.O.: | Date Analyzed 11/30/06 | | Benicia, CA 94510 | Client Contact: Ryan Meyer | Date Extracted: 11/29/06 | | 424 First Street | Excavation | Date Received: 11/29/06 | | Ceres Associates | Client Project ID:
#CA1264; Oakland Excavation | Date Sampled: 11/29/06 | #### LUFT 5 Metals* Analytical methods 6010C Extraction method SW3050B Work Order: 0611533 | Extraction inclined 5w3030b Analytical inclined 6010c work office. 001135 | | | | | | | | | | | |---|----------------------|--------|------------|---------|----------|------|--------|------|----|------| | Lab ID | Client ID | Matrix | Extraction | Cadmium | Chromium | Lead | Nickel | Zinc | DF | % SS | | 005A | S-1-4 | S | TTLC | ND | 45 | 48 | 51 | 110 | 1 | 103 | ing Limit for DF =1; | W | TTLC | NA | NA | NA | NA | NA | N | A | | | the reporting limit | S | TTLC | 1.5 | 1.5 | 5.0 | 1.5 | 5.0 | mg | g/Kg | ^{*}water samples are reported in µg/L, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in μg/wipe, filter samples in μg/filter. i) aqueous sample containing greater than ~1 vol. % sediment; for DISSOLVED metals, this sample has been preserved prior to filtration; for TTLC metals, a representative sediment-water mixture was digested; j) reporting limit raised due to insufficient sample amount; k) reporting limit raised due to matrix interference; m) estimated value due to low/high surrrogate recovery, caused by matrix interference; n) results are reported on a dry weight basis; p) see attached narrative. [#] means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument. 1534 Willow Pass Road, Pittsburg, CA 94565-1701 Telephone: 877-252-9262 Fax: 925-252-9269 | Ceres Associates | Client Project ID: #CA1264; Oakland | Date Sampled: 11/29/06 | |--------------------|-------------------------------------|-----------------------------------| | 424 First Street | Excavation | Date Received: 11/29/06 | | Benicia, CA 94510 | Client Contact: Ryan Meyer | Date Extracted: 11/29/06-12/01/06 | | Bolliela, Olivioro | Client P.O.: | Date Analyzed 12/01/06 | | | Lead by ICP* | | Extraction method CA Title 22 Analytical methods SW6010C Work Order: 0611533 | Extraction method CA I | IIIE 22 | | Alialytical methods 5 w 00 TOC work Ord | | | | | | | | | |------------------------|-----------|--------|---|------|----|------|--|--|--|--|--| | Lab ID | Client ID | Matrix | Extraction | Lead | DF | % SS | | | | | | | 0611533-005A | S-1-4 | S | STLC | 1.5 | 1 | N/A | Reporting Limit for DF =1; | W | TTLC | NA | μg/L | |---|---|------|-----|------| | ND means not detected at or above the reporting limit | S | STLC | 0.2 | mg/L | ^{*}water samples are reported in µg/L, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, filter samples in μ g/filter. i) aqueous sample containing greater than ~1 vol. % sediment; for DISSOLVED metals, this sample has been preserved prior to filtration; for TTLC metals, a representative sediment-water mixture was digested; j) reporting limit raised due to insufficient sample amount; k) reporting limit raised due to matrix interference; m) estimated value due to low/high surrrogate recovery, caused by matrix interference; n) results are reported on a dry weight basis; p) see attached narrative. [#] means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument. 1534 Willow Pass Road, Pittsburg, CA 94565-1701 Telephone: 877-252-9262 Fax: 925-252-9269 | Ceres Associates | Client Project ID: #CA1264; Oakland
Excavation | Date Sampled: 11/29/06 | |--------------------|---|--------------------------| | 424 First Street | Excavation | Date Received: 11/29/06 | | Benicia, CA 94510 | Client Contact: Ryan Meyer | Date Extracted: 11/29/06 | | 2011011, 0.17 1010 | Client P.O.: | Date Analyzed 11/29/06 | ### $Diesel\ (C10\text{-}23)\ and\ Oil\ (C18+)\ Range\ Extractable\ Hydrocarbons\ as\ Diesel\ and\ Motor\ Oil*$ | Extraction method: SW35 | 50C | Analytical me | thods: SW8015C | 7 | Vork Order: (| 0611533 | |-------------------------|--|---------------|----------------|---------|---------------|---------| | Lab ID | Client ID | Matrix | TPH(d) | TPH(mo) | DF | % SS | | 0611533-001A | III-9-N | S | ND | ND | 1 | 111 | | 0611533-002A | III-9-S | S | ND | ND | 1 | 112 | | 0611533-003A | III-8-E | S | ND | ND | 1 | 108 | | 0611533-004A | III-9-W | S | ND | ND | 1 | 103 | | 0611533-005A | S-1-4 | S | 33,n,g | 9.8 | 1 | 116 | | 0611533-006A | II-9-N | S | ND | ND | 1 | 111 | Reporting | g Limit for DF =1; | W | NA | NA | 11: | g/L | | ND means | s not detected at or
he reporting limit | S | 1.0 | 5.0 | | g/Kg | ^{*} water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L. [#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract. ⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel (asphalt?); f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range/jet fuel; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit; o) mineral oil; p) see attached narrative. ## QC SUMMARY REPORT FOR SW8021B/8015Cm W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder 0611533 | EPA Method SW8021B/8015 | Cm E | extraction | SW503 | V5030B BatchID: 24935 Spiked Sample ID: 06115 | | | | | | | : 0611516-0 | 12A | |-------------------------|--------|------------|--------|---|--------|--------|--------|----------------------------------|----------|-----|-------------|-----| | Analyte | Sample | Spiked | MS | MSD | MS-MSD | LCS | LCSD | LCS-LCSD Acceptance Criteria (%) | | | | %) | | | mg/Kg | mg/Kg | % Rec. | % Rec. | % RPD | % Rec. | % Rec. | % RPD | MS / MSD | RPD | LCS/LCSD | RPD | | TPH(btex) | ND | 0.60 | 113 | 110 | 2.47 | 113 | 116 | 3.18 | 70 - 130 | 30 | 70 - 130 | 30 | | MTBE | ND | 0.10 | 80.9 | 83.2 | 2.86 | 88.4 | 80.9 | 8.81 | 70 - 130 | 30 | 70 - 130 | 30 | | Benzene | ND | 0.10 | 102 | 118 | 14.9 | 102 | 99 | 2.47 | 70 - 130 | 30 | 70 - 130 | 30 | | Toluene | ND | 0.10 | 95.7 | 108 | 12.1 | 93.9 | 92.7 | 1.27 | 70 - 130 | 30 | 70 - 130 | 30 | | Ethylbenzene | ND | 0.10 | 103 | 120 | 14.7 | 105 | 105 | 0 | 70 - 130 | 30 | 70 - 130 | 30 | | Xylenes | ND | 0.30 | 103 | 113 | 9.23 | 100 | 100 | 0 | 70 - 130 | 30 | 70 - 130 | 30 | | %SS: | 95 | 0.10 | 104 | 111 | 6.51 | 100 | 105 | 4.88 | 70 - 130 | 30 | 70 - 130 | 30 | All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE #### BATCH 24935 SUMMARY | Sample ID | Date Sampled | Date Extracted | Date Analyzed | Sample ID | Date Sampled | Date Extracted | Date Analyzed | |-------------|--------------|----------------|------------------|-------------|--------------|----------------|------------------| | 0611533-001 | 11/29/06 | 11/29/06 | 11/29/06 6:16 PM | 0611533-002 | 11/29/06 | 11/29/06 | 11/29/06 7:45 PM | | 0611533-003 | 11/29/06 | 11/29/06 | 11/29/06 8:44 PM | 0611533-004 | 11/29/06 | 11/29/06 | 11/29/06 9:14 PM | | 0611533-005 | 11/29/06 | 11/29/06 | 1/30/06 11:52 AM | 0611533-006 | 11/29/06 | 11/29/06 | 1/29/06 11·12 PM | MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation. % Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2). MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery. £ TPH(btex) = sum of BTEX areas from the FID. ## QC SUMMARY REPORT FOR 6010C W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder 0611533 | EPA Method 60 | | Extraction SW3050B | | | | atchID: 2 | Spiked Sample ID
0611508-009A | | | | | | | |---------------|--------|--------------------|--------|--------|-------------------|-----------|-------------------------------|--------|----------|-------------------------|-----|----------------|----| | Analyte | Sample | Spiked | MS | MSD | MSD MS-MSD Spiked | | LCS | LCSD | LCS-LCSD | Acceptance Criteria (%) | | | | | 7 | mg/Kg | mg/Kg | % Rec. | % Rec. | % RPD | mg/Kg | % Rec. | % Rec. | % RPD | MS / MSD | RPD | RPD LCS/LCSD I | | | Cadmium | 2.2 | 50 | 94 | 92.1 | 1.90 | 10 | 91.5 | 94.4 | 3.15 | 75 - 125 | 20 | 80 - 120 | 20 | | Chromium | 150 | 50 | 120 | 101 | 4.63 | 10 | 90.4 | 94.1 | 4.01 | 75 - 125 | 20 | 80 - 120 | 20 | | Lead | 610 | 50 | NR | NR | NR | 10 | 108 | 109 | 0.739 | 75 - 125 | 20 | 80 - 120 | 20 | | Nickel | 240 | 50 | 118 | 97.2 | 3.46 | 10 | 93.9 | 96.1 | 2.26 | 75 - 125 | 20 | 80 - 120 | 20 | | Zinc | 800 | 500 | 113 | 108 | 1.77 | 100 | 100 | 103 | 2.39 | 75 - 125 | 20 | 80 - 120 | 20 | | %SS: | 101 | 250 | 106 | 104 | 2.09 | 250 | 104 | 106 | 1.43 | 70 - 130 | 20 | 70 - 130 | 20 | All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE #### BATCH 24927 SUMMARY | Sample ID | Date Sampled | Date Extracted | Date Analyzed | Sample ID | Date Sampled | Date Extracted | Date Analyzed | |--------------|--------------|----------------|------------------|-----------|--------------|----------------|---------------| | 0611533-005A | 11/29/0 | 06 11/29/06 1 | 1/30/06 10:01 AM | | | | | MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation. % Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = <math>100 * (MS - MSD) / ((MS + MSD) / 2). MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery. N/A = not applicable to this method. NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte $1534 \ Willow \ Pass \ Road, \ Pittsburg, \ CA \ \ 94565\text{-}1701$ Telephone: 877-252-9262 Fax: 925-252-9269 ## QC SUMMARY REPORT FOR SW6010C QC Matrix: Solid WorkOrder: 0611533 W.O. Sample Matrix: Soil | EPA Method: SW6010C | Е | xtraction: | CA Title | 22 | | BatchID: 24943 | | | piked Sample ID: N/A | | | | |---------------------|--------|------------|----------|--------|--------|----------------|--------|----------|----------------------|---------|----------------|-----| | Analyte | Sample | Spiked | MS | MSD | MS-MSD | LCS | LCSD | LCS-LCSD | А | cceptan | ce Criteria (% | %) | | | mg/L | mg/L | % Rec. | % Rec. | % RPD | % Rec. | % Rec. | % RPD | MS / MSD | RPD | LCS/LCSD | RPD | | Lead | N/A | 1 | N/A | N/A | N/A | 98.6 | 98 | 0.671 | N/A | N/A | 80 - 120 | 20 | All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE #### BATCH 24943 SUMMARY | Sample ID | Date Sampled | Date Extracted | Date Analyzed | Sample ID | Date Sampled | Date Extracted | Date Analyzed | |--------------|--------------|----------------|------------------|-----------|--------------|----------------|---------------| | 0611533-005A | 11/29/06 | 11/29/06 | 12/01/06 3:27 PM | | | | | MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation. % Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2). MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery. N/A = not applicable to this method. NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content ## QC SUMMARY REPORT FOR SW8015C W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder 0611533 | EPA Method SW8015C | EPA Method SW8015C Extraction SW3550C | | | | | | | | BatchID: 24933 Spiked Sample ID: 0611515- | | | | | | |--------------------|---------------------------------------|--------|--------|--------|--------|--------|--------|----------|---|---------|----------------|-----|--|--| | Analyte | Sample | Spiked | MS | MSD | MS-MSD | LCS | LCSD | LCS-LCSD | Ad | cceptan | ce Criteria (º | %) | | | | , and yes | mg/Kg | mg/Kg | % Rec. | % Rec. | % RPD | % Rec. | % Rec. | % RPD | MS / MSD | RPD | LCS/LCSD | RPD | | | | TPH(d) | ND | 20 | 102 | 104 | 2.03 | 97.2 | 95.3 | 1.99 | 70 - 130 | 30 | 70 - 130 | 30 | | | | %SS: | 106 | 50 | 105 | 107 | 2.00 | 101 | 99 | 2.24 | 70 - 130 | 30 | 70 - 130 | 30 | | | All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE #### BATCH 24933 SUMMARY | Sample ID | Date Sampled | Date Extracted | Date Analyzed | Sample ID | Date Sampled | Date Extracted | Date Analyzed | |-------------|--------------|----------------|------------------|-------------|--------------|----------------|------------------| | 0611533-001 | 11/29/06 | 11/29/06 | 11/29/06 3:21 PM | 0611533-002 | 11/29/06 | 11/29/06 | 11/29/06 2:07 PM | | 0611533-003 | 11/29/06 | 11/29/06 | 11/29/06 5:44 PM | 0611533-004 | 11/29/06 | 11/29/06 | 11/29/06 2:37 PM | | 0611533-005 | 11/29/06 | 11/29/06 | 11/29/06 7:10 PM | 0611533-006 | 11/29/06 | 11/29/06 | 11/29/06 4:36 PM | MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation. % Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2). MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery. N/A = not enough sample to perform matrix spike and matrix spike duplicate. | Ceres Associates | Client Project ID: #1264; Oakland | Date Sampled: 11/30/06 | |---------------------|-----------------------------------|--------------------------| | 424 First Street | Excavation | Date Received: 12/01/06 | | Benicia, CA 94510 | Client Contact: Ryan Meyer | Date Reported: 12/07/06 | | Bellion, Cri 7 1510 | Client P.O.: | Date Completed: 12/07/06 | WorkOrder: 0612024 December 07, 2006 Dear Ryan: Enclosed are: - 1). the results of 3 analyzed samples from your #1264; Oakland Excavation project, - 2). a QC report for the above samples - 3). a copy of the chain of custody, and - 4). a bill for analytical services. All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again. Best regards, Angela Rydelius, Lab Manager | N N | IcCAMP | | | | | AL | , II | IC | • | | | | | 720 | 16 J | | | C | H | AI | N | OF | · C | U | ST | OI | ΟY | R | E | CO | RD | | | |---|--------------------------|-----------|--|------------|---|----------|------------------|--------------|---------|----------|-----------------|------------------|---------------|--------------|----------------------|---|--------------------------------------|---------------------------------------|-----------------------------------
--|---|--|---------------------------------------|-------------------------------|--------------------------------|-----------------------------------|---------------------------------------|---|------------------------------------|------------------------------------|-------------------------------------|--|---| | | | | LLOW PA
JRG, CA 9 | | | | | | | | | | | Т | UR | IN. | AR | OU | INI | T | IM | E | | 3000 | | Ę | | | | l | | | LM | | | ebsite: <u>www.m</u> | ccampbe | l.com Er | | nain@ | | | | | | | | | | _ | | _ | | | ~ [| 7 1. | | | RUS | SH | 24 | HR | | 48 I | IR. | 72 | HR | 5 DAY | | Te | lephone: (877 | 7) 252-92 | 262 | | Fax | : (92 | 5) 2: | 52-9 | 269 | | | | | G | eo'. | Fra | | er E | CDI | | | | | | | | | | | | | | V) 🔲 | | December 175 1 | | | т | >-11 CD | - 70 | | . 1 | | | 1 | | | | | A | | S. | | | The state of s | 1 | COLUMN TO SERVICE | Control Control | the state of the state of | ımp | le is | effl | uen | t ar | THE RESERVE OF THE PERSON NAMED IN | NAME AND ADDRESS OF THE OWNER, WHEN | Street, or other Designation of the last | required | | Report To: | an Meger | 1 | I | Bill To |): (<u>'</u> | ew | 1 4 | 130 | Cia | 14 | 5_ | | | _ | 7 marysis request | | | | | _ | - | Name and Address of the Owner, where which is th | T | (| Other | + | Comments | | | | | | | | Company: Ce | res Asso
Street | ciate | \$ | | | | | | | | | | - | 呂 | | (F) | | | | | ners | | | | | | | | | | | | Filter | | Benicio | 51 (eec) | 70 | | E-Mai | 1.11 | AN M | FVI | DO | 2000 | 00 | a 5 C | 200 | lar | 8015) / MTBE | - | Total Petroleum Oil & Grease (1664) 5520 E/B&F) | | - | <u> </u> | | EPA 608 / 8082 PCB's ONLY; Aroclors / Congeners | | | - | | | | | | | | | Samples | | Tele: (707) | 748 74 | | | ax: (| 701 | 17 | 497 | 713 | 1 | E.70 | 1(1)(| 10 | Con | 15)/ | 01 | 5520 | | | | | s/C | | _ | | | | 6020) | 020) | | | | | for Metals | | Project #: 136 | | 0 /(- / | | rojec | t Nar | ne: | 01 | Hal | avel | P | v/a | Val | in | - 80 | MUNT | 4 3 | Total Petroleum Hydrocarbons (418.1) | EPA 502.2 / 601 / 8010 / 8021 (HVOCs) | MTBE / BTEX ONLY (EPA 602 / 8021) | | oclor | | EPA 515 / 8151 (Acidic Cl Herbicides) | | | (SV) | 10 / 6 | LUFT 5 Metals (200.7 / 200.8 / 6010 / 6020) | | | | | analysis:
Yes / No | | Project Location: | | AND | | | | | UV | 10 (1 | 00 + 0 | | n Cu | 1 | | 8021 | 2 | 4 | ns (4 | (HV | 602 / | cides | ; Ar | (SS | erbic | - F | (\$) | / PN | 09/ | / 601 | 20) | | | | 168/110 | | Sampler Signatur | | | ~ | | | | | | | | | | | | 2 | reas | arbo | 3021 | PA | Pesti | NLY | icide | CI H | ,00° | 000 | AHs | 8.003 | 8.00 | 09/ | | | | | | | | | PLING | T | 92 | | MAI | rpi | v · | | MET | | | s (602 | | * | drocs | 8/01 | .Y (E | EPA 505/ 608 / 8081 (CI Pesticides) | 's O | EPA 507 / 8141 (NP Pesticides) | die | EPA 524.2 / 624 / 8260 (VOCs) | EPA 525.2 / 625 / 8270 (SVOCs) | EPA 8270 SIM / 8310 (PAHs / PNAs) | CAM 17 Metals (200.7 / 200.8 / 6010 / | 7/2 | Lead (200.7 / 200.8 / 6010 / 6020) | | | | | | (A) (A) (A) | | DANIVE | T | LS | Type Containers | - | VALCE 1 | | A. | PF | RESI | ERV | ED | ıs Ga | TPH as Diesel (8015) | # | ı Hy | / 80 | ONI | 8081 | PCB | (NP | (Aci | / 82 | / 82 | / 831 | (200 | (200 | /8.0 | | | | | | SAMPLE ID | LOCATION/
Field Point | | | ine | ntai | | | | | | | | | ТРН я |) les | henn | leun | / 601 | rex | 80 | 3082 | 8141 | 8151 | / 624 | / 625 | SIM | etals | etals | / 20 | | | | 4 | | | Name | Date | Time | Containers | ပိ | L. | | 8 | 20 2 | | , | 3 | 7. | & T | s Die | Petro | Petro | 02.2 | / B J | 9 /50 | 8/80 | / /0 | 15/ | 24.2 | 25.2 | 3270 | 17 M | 5 M(| 200.7 | | | | | | | , | | | ပီ | ype | Water | Soil | Sludge | Other | ICE | HCL | HNO ₃ | Other | BTEX & | ь На | Tar. | otal] | PA 5 | TBE | PA 5 | PA 6 | PA 5 | PA 5 | PA 5 | PA 5 | PA 8 | AM | UFT |) paa | | | | | | | | | | # | | | 02 | C O | 2 0 | Ē | 1 | 1 | | B | F | t | Ė | H | Σ | E | 田 | E | (H) | 田 | <u>된</u> | F | С | Г | J | | | ŀ | | | 1-9-H | | | | į | | | | | | 1 | I-9-W | | | | - Table | . | | | | | | TI-9-W | | | - | 1 | | | 1 | | | 1 | | | | 1 | 1 | 4 | | | | | | | | | | | | | | | | | | | 34 . | | | | | | П | \top | | | | | | | | | | \top | + | | | | | \neg | | | | h | U | | | | | | | | | | | | | | + | | | | | | | | | | + | + | _ | H | | | $\overline{}$ | 1 | | 1 | (' | | | | | | | | | | | | | | | + | | | | | | - | | - | | _ | + | 1 | b | $\overline{}$ | | 10 |] | | | | | | | | | | | | | | | | | | + | | | | | | | | | | | \downarrow | \prec | <u> </u> | TV | 114 | -/ | | | | | | | | | | | | | | | | | | | _ | | | | | | | | | | | 1 | A | U | ' | _ | | | | | | | | | | | | 1 | *************************************** | | | | | | | | | | \top | | Г | | | \neg | 34 | 11 | | | | | | | | | | | | | | | | | T | | | | | | | | | | | + | + | + | \vdash | | | | | - | | | | | | | | | | | | | | | | | + | | | Relinguished By: | | Date: | Time: | Paga | wod P | <u></u> | | | | L | | | + | ICE | 7/40 | | 7 | | | / | | | | | | | | COR | OME | NITC | | | | | Relinquished By: Date: Time: Received By: 12-1 15-24 ENURO-TECH AA 12/01/06 | | | | | | 9 | GO | OD (| CON | DIT | ION_ | V | _ | | | | | | | • | JUIV | LIVEE | NTS | • | | | | | | | | | | | Policywiched Paul | | | | | \dashv | HE | AD S | SPAC | EA | BSE
 NT_ | AP | Envo-Tah JAC 17/1 6 ADIL | | | | | DECHLORINATED IN LAB APPROPRIATE CONTAINERS | | | | | | | 14 | Polinguished Ry: Dota: Time: Descived Ry: | | | | | ala silveria | \dashv | PR | ESEI | RVE | D IN | LAE | 3 | | | ٧ | ADI | | 12/1 | | - | M | () | / | (Q | U | 1 | | | | | | | | vo | AS | 08 | kG | ME | TAL | S | отн | ŒR | | | | | | | | | | | 141 | 7:65 | _ | 1 | | Mar and the said | | | | | | | PRI | ESEI | RVA | TIO | | | 000000000000000000000000000000000000000 | | pH< | | | | | | | | | | | | ## McCampbell Analytical, Inc. 1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262 # CHAIN-OF-CUSTODY RECORD Page 1 of 1 Prepared by: Melissa Valles WorkOrder: 0612024 ClientID: CAB | | | | ✓ EDF | | | -ax | | Emai | I | □н | lardCopy | [| Third | Party | | | |---|----------|--------|-------------------|-------|------|-----------------|-------------------------------------|-------|---|----|-----------|-----|---------------------|-------|----|----------------| | Report to:
Ryan Meyer | | | eresassociates.co | | | Bill to:
Lor | | | | | | Req | uested [·] | TAT: | 5 | days | | Ceres Associates TEL: (707) 748-3170 FAX: (707) 424 First Street ProjectNo: #1264; Oakland Excavation PO: | | | | | 71 | 424 | res Asso
4 First St
nicia, CA | treet | | | | | e Recei
e Printe | | | /2006
/2006 | | | | | | | | | | | _ | 1 | (See lege | | | | 1 | | | Sample ID ClientSampII |) | Matrix | Collection Date | Hold | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | | 0612024-001 I-9-N | | Soil | 11/30/06 | | Α | Α | Α | | | | | | | | | | | 0612024-002 II-9-W | | Soil | 11/30/06 | | Α | | Α | | | | | | | | | | | 0612024-003 III-9-W | | Soil | 11/30/06 | | Α | | Α | Test Legend: | | | | | | | | | | | | | | | | | | 1 G-MBTEX_S 2 | PREDF RE | EPORT | 3 TF | PH(DM | O)_S | | 4 | | | | | | 5 | | | | | 6 7 | | | 8 | | | | 9 | | | | | • | 10 | | | | | 11 12 | | | | | | | | | | | | | | | | | ### **Comments:** NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense. 1534 Willow Pass Road, Pittsburg, CA 94565-1701 Telephone: 877-252-9262 Fax: 925-252-9269 | Ceres Associates | Client Project ID: #1264; Oakland Excavation | Date Sampled: 11/30/06 | |-------------------|--|--------------------------| | 424 First Street | | Date Received: 12/01/06 | | Benicia, CA 94510 | Client Contact: Ryan Meyer | Date Extracted: 12/01/06 | | | Client P.O.: | Date Analyzed 12/02/06 | | | | | | | Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE* Extraction method SW5030B Analytical methods SW8021B/8015Cm Work Order: 0612024 | | | | | | | | | | | | | | |------------|--|------------|--------|------|---------|---------|--------------|---------|----|-------|--|--|--|--| | Extraction | method SW5030B | Work Order | : 061 | 2024 | | | | | | | | | | | | Lab ID | Client ID | Matrix | TPH(g) | MTBE | Benzene | Toluene | Ethylbenzene | Xylenes | DF | % SS | | | | | | 001A | I-9-N | S | ND | ND | ND | ND | ND | ND | 1 | 110 | | | | | | 002A | II-9-W | S | ND | ND | ND | ND | ND | ND | 1 | 104 | | | | | | 003A | III-9-W | S | ND | ND | ND | ND | ND | ND | 1 | 104 | Rep | orting Limit for DF =1; | W | NA | NA | NA | NA | NA | NA | 1 | ug/L | | | | | | ND 1 | ND means not detected at or above the reporting limit | | 1.0 | 0.05 | 0.005 | 0.005 | 0.005 | 0.005 | 1 | mg/Kg | | | | | ^{*} water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L. [#] cluttered chromatogram; sample peak coelutes with surrogate peak. ⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) value derived using a client specified carbon range; o) results are reported on a dry weight basis; p) see attached narrative. | Ceres Associates | Client Project ID: #1264; Oakland
Excavation | Date Sampled: 11/30/06 | |-------------------|---|--------------------------| | 424 First Street | Excavation | Date Received: 12/01/06 | | Benicia, CA 94510 | Client Contact: Ryan Meyer | Date Extracted: 12/01/06 | | Zemvin, erry iere | Client P.O.: | Date Analyzed 12/03/06 | #### Diesel (C10-23) and Oil (C18+) Range Extractable Hydrocarbons as Diesel and Motor Oil* | Extraction method: SW35 | 50C | Analytical me | Analytical methods: SW8015C Work Order: 0612024 | | | | | | | |-------------------------|----------------------|---------------|---|---------|------|--------|--|--|--| | Lab ID | Client ID | Matrix | TPH(d) | TPH(mo) | DF | % SS | | | | | 0612024-001A | I-9-N | S | ND | ND | 1 | 105 | | | | | 0612024-002A | II-9-W | S | ND | ND | 1 | 106 | | | | | 0612024-003A | III-9-W | S | ND,g | 6.4 | 1 | 105 | g Limit for DF =1; | W | NA | NA | ug/L | | | | | | ND means | s not detected at or | S | 1.0 | 5.0 | mo | r/K or | | | | ^{*} water samples are reported in μ g/L, wipe samples in μ g/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in μ g/L. 1.0 mg/Kg 5.0 above the reporting limit [#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract. ⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel (asphalt?); f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range/jet fuel; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit; o) mineral oil; p) see attached narrative. ## QC SUMMARY REPORT FOR SW8021B/8015Cm W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder 0612024 | EPA Method SW8021B/8015 | Cm E | xtraction | SW503 | 0B | | BatchII | D: 24989 | 5 | Spiked Sample ID: 0611569-037A | | | | | | |-------------------------|--------|-----------|--------|--------|--------|---------|----------|----------|--------------------------------|---------|----------------|-----|--|--| | Analyte | Sample | Spiked | MS | MSD | MS-MSD | LCS | LCSD | LCS-LCSD | Ad | cceptan | ce Criteria (º | %) | | | | , mary to | mg/Kg | mg/Kg | % Rec. | % Rec. | % RPD | % Rec. | % Rec. | % RPD | MS / MSD | RPD | LCS/LCSD | RPD | | | | TPH(btex) | ND | 0.60 | 107 | 112 | 4.17 | 105 | 110 | 4.95 | 70 - 130 | 30 | 70 - 130 | 30 | | | | MTBE | ND | 0.10 | 95.6 | 94.1 | 1.59 | 88.5 | 91.9 | 3.73 | 70 - 130 | 30 | 70 - 130 | 30 | | | | Benzene | ND | 0.10 | 93.1 | 92.5 | 0.666 | 105 | 90.5 | 15.1 | 70 - 130 | 30 | 70 - 130 | 30 | | | | Toluene | ND | 0.10 | 91.6 | 92.3 | 0.681 | 104 | 89.1 | 15.0 | 70 - 130 | 30 | 70 - 130 | 30 | | | | Ethylbenzene | ND | 0.10 | 105 | 107 | 1.78 | 120 | 103 | 14.7 | 70 - 130 | 30 | 70 - 130 | 30 | | | | Xylenes | ND | 0.30 | 103 | 103 | 0 | 117 | 103 | 12.1 | 70 - 130 | 30 | 70 - 130 | 30 | | | | %SS: | 104 | 0.10 | 97 | 98 | 1.03 | 105 | 97 | 7.92 | 70 - 130 | 30 | 70 - 130 | 30 | | | All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE #### BATCH 24989 SUMMARY | Sample ID | Date Sampled | Date Extracted | Date Analyzed | Sample ID | Date Sampled | Date Extracted
| Date Analyzed | |-------------|--------------|----------------|------------------|-------------|--------------|----------------|------------------| | 0612024-001 | 11/30/06 | 12/01/06 | 2/02/06 11:00 AM | 0612024-002 | 11/30/06 | 12/01/06 | 12/02/06 9:31 AM | | 0612024-003 | 11/30/06 | 12/01/06 | 12/02/06 9:02 AM | | | | | MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation. % Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2). MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery. £ TPH(btex) = sum of BTEX areas from the FID. ## QC SUMMARY REPORT FOR SW8015C W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder 0612024 | EPA Method SW8015C | Е | Extraction SW3550C | | | | BatchI | D: 24997 | 5 | Spiked Sample ID: 0612024-001A | | | | | |--------------------|--------|--------------------|--------|--------|--------|--------|----------|----------|--------------------------------|---------|----------------|-----|--| | Analyte | Sample | Spiked | MS | MSD | MS-MSD | LCS | LCSD | LCS-LCSD | Ad | cceptan | ce Criteria (º | %) | | | Analyte | mg/Kg | mg/Kg | % Rec. | % Rec. | % RPD | % Rec. | % Rec. | % RPD | MS / MSD | RPD | LCS/LCSD | RPD | | | TPH(d) | ND | 20 | 105 | 105 | 0 | 104 | 107 | 2.49 | 70 - 130 | 30 | 70 - 130 | 30 | | | %SS: | 105 | 50 | 107 | 105 | 1.39 | 100 | 102 | 1.81 | 70 - 130 | 30 | 70 - 130 | 30 | | All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE #### BATCH 24997 SUMMARY | Sample ID | Date Sampled | Date Extracted | Date Analyzed | Sample ID | Date Sampled | Date Extracted | Date Analyzed | |-------------|--------------|----------------|------------------|-------------|--------------|----------------|------------------| | 0612024-001 | 11/30/06 | 12/01/06 | 2/03/06 11:35 AM | 0612024-002 | 11/30/06 | 12/01/06 | 2/03/06 12:44 PM | | 0612024-003 | 11/30/06 | 12/01/06 | 12/03/06 1:52 PM | | | | | MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation. % Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2). MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery. N/A = not enough sample to perform matrix spike and matrix spike duplicate. ## Alameda County Public Works Agency - Water Resources Well Permit 399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939 Application Approved on: 06/20/2007 By jamesy Permit Numbers: W2007-0721 Permits Valid from 06/25/2007 to 06/25/2007 Cell: 530-320-4074 Application Id:1182374730867City of Project Site:OaklandSite Location:2547 East 27th Street Project Start Date: 06/25/2007 Completion Date:06/25/2007 Applicant: Ceres Associates - Ryan Meyer Phone: 707-748-3170 424 First Street, Benicia, CA 94510 Property Owner: Ted Dang Phone: -- 1350 Franklin Street, Oakland, CA 94612 Client: ** same as Property Owner ** Contact: Ryan Meyer Phone: 707-748-3170 Total Due: \$200.00 Receipt Number: WR2007-0277 Total Amount Paid: \$200.00 Payer Name : William Kleiner Paid By: MC PAID IN FULL #### **Works Requesting Permits:** Borehole(s) for Geo Probes-Sampling 24 to 72 hours only - 5 Boreholes Driller: Vironex - Lic #: 705927 - Method: DP Work Total: \$200.00 #### **Specifications** Permit Issued Dt Expire Dt # Hole Diam Max Depth Number Boreholes W2007- 06/20/2007 09/23/2007 5 2.75 in. 25.00 ft 0721 #### **Specific Work Permit Conditions** - 1. Backfill bore hole by tremie with cement grout or cement grout/sand mixture. Upper two-three feet replaced in kind or with compacted cuttings. All cuttings remaining or unused shall be containerized and hauled off site. The containers shall be clearly labeled to the ownership of the container and labeled hazardous or non-hazardous. - 2. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time. - 3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death. - 4. Applicant shall contact James Yoo for an inspection time at 510-670-6633 at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling. - 5. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00. - 6. Prior to any drilling activities onto any public right-of-ways, it shall be the applicants responsibilities to contact and coordinate a Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits ## Alameda County Public Works Agency - Water Resources Well Permit required for that City or to the County and follow all City or County Ordinances. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County a Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained. 7. Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this permit application. Boreholes shall not be converted to monitoring wells, without a permit application process. P.O. Box 282009 San Francisco, CA 94128 (415) 626-1123 Fax (415) 864-3527 | | WACTE MANIEECT | or's US EPA ID I | \$4 | Doc. No. | 2. Page
of | | 36 | 25/1 | | | |--|---
---	--	--	--
--		4	3. Generator's Name and Mailing Address Tomorro
--	--	--	--
--	--	--	--
--	--		4
Manifest Doc	. No. 2.	. Page	1
--	-----------------------------	---	--
not subject to federal	l regulatio	ns for re	porting prot
--	--	--	--
--	--	--	--
Above			E. Handling
Special Handling Instructions and Additional Information		onnen mannen den en e	
(1990) (and the control of the last
---	--	--	--
--	--		A
--	--	--	--
---	---	--	--
--		À	3. Generator's Name and Mailing Address
--	---	--	--
--	--	--	--
GENERATOR	c.		equagaged (c)
ord, or the consistence in the interestination		mailineth hicher middle bit od dae'i dy'farrenn nûn hiteatials	
--	--	--	---
Hansporter a Friend			
--	----------------------------------	---	--
--	--	--	--
--	--	---	------------------------------
PROPERTY.		GENERATOR	C.
--			,
5.0E+02			7.3E+01
BENZO(g,h,i)PERYLENE	NV	S	
SCREENING LEVELS (groundwater IS a current or potential drinking water resource) (ug/l)		1	
5.0E+00	Ceiling Value	5.0E+00	1.3E+01
investigation report dated August 22, 2002 and the Aqua Science Engineers report on the tank removal report dated September 15, 1994. - 2. Extent of Excavation Northwest of Area 1 (Parallel to East 27th Street). Confirmation soil sample 1-9-W, collected from the northwest wall of the Area 1 excavation, had the highest concentration of TPH as gasoline (600 mg/kg) and TPH as diesel (420 mg/kg). Both of these concentrations exceeded the respective target cleanup goals. The Excavation Report indicates that, "The area of sample 1-9-W could not feasibly be excavated further because it is adjacent to the public sidewalk of East 27th Street, and would have caused undermining." It is not clear why the excavation could not be continued to the northwest from the existing excavation in a direction that is parallel to the sidewalk. Please clarify why the excavation could not be continued to the northwest in the Revised Soil Excavation Report requested below. It should also be noted that in our technical comments dated August 4, 2006, we specifically stated, "For any excavation sidewalls where these parameters cannot be achieved due to the presence of surface structures or utilities, ACEH is to be notified and additional confirmation sampling will be required to document the extent of contamination left in place beneath the utility or structure." ACEH was not notified of the excavation and no additional confirmation samples were collected from this area. - 3. Observations of Contamination and Depth of Sidewall Samples. As requested in our August 4, 2006 correspondence, sidewall samples were to be collected, "from the depth interval where the highest PID readings, odor, or visual contamination was observed during excavation." We could not find any identification in the Excavation Report of the depth at which the confirmation soil samples were collected nor could we find any discussion or presentation of screening results or observations during excavation. Please address these issues in the Revised Soil Excavation Report requested below. - 4. Confirmation Soil Samples from Bottom of Each Excavation. The revised Interim CAP dated June 28, 2006 proposed that one confirmation soil sample would be collected from each sidewall and two confirmation soil samples would be collected from the bottom of each excavation. No soil samples were apparently collected and analyzed from the base of the excavations, which were apparently limited to approximately 9.0 feet bgs to prevent excessive groundwater intrusion. These confirmation samples were necessary to document the residual contamination left in place that could act as a long-term source of groundwater contamination. Additional investigation could potentially be required due to the lack of these data. - 5. Laboratory Analyses for Confirmation Soil Samples. In the technical comments on the revised CAP (see attached August 4, 2006 correspondence), we concurred with the proposal to analyze soil samples in the area of the former fuel tanks (Excavation Areas 1 and 2) for TPHg, TPHd, and BTEX. We requested that confirmation soil samples collected in the waste oil excavation (Excavation Area 3) be analyzed for TPHg by EPA Method 8015 or 8260, TPHd by EPA Method 8015, TPHm by EPA Method 8015, oil & grease by FPA Method 9070, BTEX by EPA Method 8260, chlorinated hydrocarbons by EPA Method 8260, 1,4 dioxane by EPA Method 8270M, EDB and EDC by EPA Method 8260, fuel oxygenates (MTBE, TAME, ETBE, DIPE, TBE, and ethanol) by EPA Method 8260, metals (cadmium, chromium, lead, nickel, and zinc) by ICAP or AA, PCBs, and PNAs. The four confirmation soil samples collected from the sidewall of Excavation Area 3 were apparently analyzed only for TPHg, TPHd, and BTEX. Please note that the above requested analytes are minimum verification analyses for waste oil tanks. In order to address this gap in the confirmation soil sampling, we request that you advance four shallow borings outside each sidewall of former Excavation Area 3 to collect confirmation soil samples and analyze the samples for the appropriate analytes described above. The soil borings are to be advanced to the depth at which the maximum contamination was observed during excavation in Area 3 in order to collect the confirmation soil samples. Please present the rationale for the depth of the confirmation sampling in Area 3 in the Revised Soil Excavation Report requested below. document the depth of the soil samples collected in a table and text as well as a boring log that includes a description of the soil types encountered along with screening results. - 6. Former Monitoring Wells EB-1 through EB-3. The Ceres Associates report entitled, "Soil and Groundwater Sampling Report," and dated January 28, 2005 presents water levels apparently measured in monitoring wells EB-1 through EB-3. These monitoring wells were located within the three excavation areas. However, the Soil Excavation Report indicates that evidence of the wells was not observed during the excavation process. In the Revised Soil Excavation Report requested below, please indicate whether these wells were properly decommissioned. - 7. Deeper Soil Boring SB-25. The Revised CAP proposed that one soil boring be advanced to a depth of 40 feet bgs to investigate the vertical extent of contamination. Soil boring SB25 was advanced to a depth of 27.5 feet bgs in September 2006. The boring could not be extended deeper due to refusal at 27.5 feet bgs. The soil boring log for SB25 does not record sample intervals for soil or groundwater sampling or screening results. It appears that no soil samples were collected for analysis and no screening results are presented or discussed. We could not locate analytical results for soil boring SB25 in the appendix of laboratory analytical results in the October 27, 2006 Quarterly Monitoring Report or the Soil Excavation Report. Discussion of Boring SB-25 is limited to one paragraph in the text of the Excavation Report. Please provide proper documentation of the sampling and analytical results for boring SB25 in the Revised Soil Excavation Report requested below. - 8. Stockpile Soil Sample Results. No discussion or documentation of stockpile soil sampling is presented in the Excavation Report. Please describe the sampling and properly document the results of stockpile soil sampling in the Revised Soil Excavation Report requested below. - 9. Development Plans for Site. Please clarify whether planned future property will be residential or commercial use. In the Revised Soil Excavation Report requested below, please show the outline of the planned building(s) on the Excavation Map (figure number not specified in report). - 10. Conclusions and Recommendations. Please revise the Conclusions and Recommendations section of the Soil Excavation Report in accordance with the technical comments above. In addition, please review the text for clarity and technical editing. Examples of statements that require revision include the second sentence in the fourth paragraph of the Risk Analysis and the second sentence in the second paragraph of the Property Re-Use section. - 11. Groundwater Monitoring. We concur with the proposal to conduct quarterly groundwater monitoring using each of the five existing monitoring wells. The analytical methods used during the August 2006 groundwater sampling event are generally acceptable. However, we note that the analytical method for volatile hydrocarbons as gasoline with BTEX and MTBE is EPA Method SW8021B/8015C but is incorrectly referenced in the text of the October 27, 2006 Quarterly Monitoring Report as EPA Method 8020. In addition to the analyses for TPHg, TPHd, and BTEX, we request that the groundwater samples be analyzed for chlorinated hydrocarbons by EPA Method 8260, EDB and EDC by EPA Method 8260, and fuel oxygenates (MTBE, TAME, ETBE, DIPE, and TBE) during the next groundwater sampling event. Sampling for these additional analytes may be discontinued if the additional analytes are not detected or are detected at concentrations that are not significant. Please present groundwater monitoring results in the Quarterly Groundwater Monitoring Reports requested below. - 12. Geotracker EDF Submittals. A review of the Geotracker Website indicates that analytical data from the 2006 site investigation and August 2006 groundwater sampling have been submitted but submittal of the required survey data for monitoring wells and complete copies of reports have not been submitted. In addition, the most recent confirmation sampling analytical results and Excavation Report have not been submitted to Geotracker. Pursuant to CCR Sections 2729 and 2729.1, beginning September 1, 2001, all analytical data, including monitoring well samples, submitted in a report to a regulatory agency as part of the LUFT program, must be transmitted electronically to the SWRCB GeoTracker system via the internet. Additionally, beginning January 1, 2002, all permanent monitoring points utilized to collected groundwater samples (i.e. monitoring wells) and submitted in a report to a regulatory agency, must be surveyed (top of casing) to mean sea level and latitude and longitude to sub-meter accuracy, using NAD 83, and transmitted electronically to the SWRCB GeoTracker system via the internet. Beginning July 1, 2005, electronic submittal of a complete copy of all necessary reports is also required in Geotracker (in PDF format). Please upload all required items in accordance with the above-cited regulation. ### **TECHNICAL REPORT REQUEST** Please submit technical reports to Alameda County Environmental Health (Attention: Jerry Wickham), according to the following schedule: - July 26, 2007 Revised Soil Excavation Report - August 10, 2007 Quarterly Monitoring Report for Second Quarter 2007 - November 10, 2007 Quarterly Monitoring Report for Third Quarter 2007 These reports are being requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652			
through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request. #### **ELECTRONIC SUBMITTAL OF REPORTS** The Alameda County Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of all reports in electronic form to the county's ftp site. Paper copies of reports will no longer be accepted. The electronic copy replaces the paper copy and will be used for all public information requests, regulatory review, and compliance/enforcement activities. Instructions for submission of electronic documents to the Alameda County Environmental Cleanup Oversight Program ftp site are provided on the attached "Electronic Report Upload (ftp) Instructions." Please do not submit reports as attachments to electronic mail. Submission of reports to the Alameda County ftp site is an addition to existing requirements for electronic submittal of information to the State Water Resources Control Board (SWRCB) Geotracker website. Submission of reports to the Geotracker website does not fulfill the requirement to submit documents to the Alameda County ftp site. In September 2004, the SWRCB adopted regulations that require electronic submittal of information for groundwater cleanup programs. For several years, responsible parties for cleanup of leaks from underground storage tanks (USTs) have been required to submit groundwater analytical data, surveyed locations of monitor wells, and other data to the Geotracker database over the Internet. Beginning July 1, 2005, electronic submittal of a complete copy of all necessary reports was required in Geotracker (in PDF format). Please visit the SWRCB website for more information on these requirements (http://www.swrcb.ca.gov/ust/cleanup/electronic reporting). #### PERJURY STATEMENT All work plans, technical reports, or technical documents submitted to ACEH must be accompanied by a cover letter from the responsible party that states, at a minimum, the following: "I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge." This letter must be signed by an officer or legally authorized representative of your company. Please include a cover letter satisfying these requirements with all future reports and technical documents submitted for this fuel leak case. ### PROFESSIONAL CERTIFICATION & CONCLUSIONS/RECOMMENDATIONS The California Business and Professions Code (Sections 6735, 6835, and 7835.1) requires that work plans and technical or implementation reports containing geologic or engineering evaluations and/or judgments be performed under the direction of an appropriately registered or certified professional. For your submittal to be considered a valid technical report, you are to present site specific data, data interpretations, and recommendations prepared by an appropriately licensed professional and include the professional registration stamp, signature, and statement of professional certification. Please ensure all that all technical reports submitted for this fuel leak case meet this requirement. ### UNDERGROUND STORAGE TANK CLEANUP FUND Please note that delays in investigation, later reports, or enforcement actions may result in your becoming ineligible to receive grant money from the state's Underground Storage Tank Cleanup Fund (Senate Bill 2004) to reimburse you for the cost of cleanup. ### **AGENCY OVERSIGHT** If it appears as though significant delays are occurring or reports are not submitted as requested, we will consider referring your case to the Regional Board or other appropriate agency, including the County District Attorney, for possible enforcement actions. California Health and Safety Code, Section 25299.76 authorizes enforcement including administrative action or monetary penalties of up to \$10,000 per day for each day of violation. If you have any questions, please call me at (510) 567-6791. Sincerely, Jerry Wickham Hazardous Materials Specialist Attachment: August 4, 2006 ACEH Correspondence Enclosure: ACEH Electronic Report Upload (ftp) Instructions Project CA1264-3 Oakland, California Drilling Method: Hollow Stem Auger MW-1 SHEET 1 of 1 Former Gas Station 2547 East 27th Street Oakland, California Logged By: Ken Durand Date: January 16, 2006 Drilling Method: Hollow Stem Auger WELL LOG MW-2 SHEET 1 of 1 Former Gas Station 2547 East 27th Street Oakland, California Logged By: Ken Durand Date: January 17, 2006 Drilling Method: Hollow Stem Auger WELL LOG MW-3 SHEET 1 of 1	Well Completion Details	Depth	Sample Interval
fine to coarse grained sand, wet at 14' - some fine grained angular to subangular chert gravel present, fine to coarse grained sand GRAVELLY SAND WITH CLAY (SW), wet, light brown, fine to coarse | ¥ | | 22 23 24 25 PR | OJECT NO | | | 1 N | FEL | DE | R LOG OF BORING NO. EB-1 Tomorrow Development Site 2547 E. 27th Street Oakland, California | PLATE A2 | | ···· | Date Com
Logged B
Total Dep | y : | d:
 | | 6/19/02
G. Knopp
16.0 ft | | Sampler: Macro-Core System EC-5 Method: 3" O.D. Sampler Vibratory Push Location: 5' from south perimeter, 27' west of 27th St Elevation: approx. 110' | | |--|-----------------------------------|-------------|------------|--------------|---|------|--|----------| | Depth (feet) | Sample
Number | Sample Type | Blows/Foot | Recovery (%) | PID (ppm) | nscs | Description | Remarks | | 1 2 3 4 5 6 7 8 9 10-11 12 13 14 15 16 17 18 19 20 21 22 23 24 24 25 25 25 25 25 25 25 25 25 25 25 25 25 | | | | | 66
162
100
85
52
20
20
0
0
0 | | - hand dug to 5' SILTY CLAY (CL/CH), very dark gray, moist - gray to orange-brown, trace fine to medium grained sand present SILTY CLAY (CL), orange-brown, moist, increasing sand SANDY CLAY WITH TRACE GRAVEL (SC), light olive-gray with orange-brown mottling, mosit to very moist, fine grained sand GRAVELLY SAND WITH SOME CLAY (SW), orange-brown, wet END OF BORING - 5' of 1" diameter screen inserted Boring backfilled with grout Ground water encountered at 7.5' bgs. | ₽ | | C. GARANDEPPROJECTBI OMORADA LEVEL CIPARENT SCIANOS CONTRACTOR CON | | | | 17500 | NFEL | DE | R Tomorrow Development Site 2547 E. 27th Street Oakland, California | PLATE A3 | | | | Date Comp | lete | d: | | 6/19/02 | | | Sampler: Macro-Core System EC-5 Method: 3" O.D. Sampler Hammer Wt: Vibratory Push | | | | | |--|---|-----------|---------|-------|-------------|-----------|------|--|---|----------|--|---------|---------| | | | Logged By | : | | | G. Кпорр | | | | | | | | | | | | | | | | | Location: near middle of site Flevation: approx. 110' | | | | | | | | Total Depth: 11.0 ft | | | | | (mdd) Qid | nocs | Description GRAVELLY SAND (SW), brown, slightly moist SILTY CLAY (CL/CH), red-brown to black, moist - black, very moist - wet 4.5' to 6.5' | | | | | Remarks | | UKSKNOPPVROJECTSITOMORROW DEVELOPMENTBORINGS.GPJ | | | | | | 0000 | | SILTY CLAY (CL), orange-brown, moist CLAYEY SAND WITH SOME GRAVEL (SC), orange to orange-brown, moist CLAYEY GRAVEL WITH SAND (GW), orange-brown, wet, fine to coarse grained sand, fine to medium grained angular to subangular chert, sandstone, and claystone gravel END OF BORING - 2' of screen inserted. Boring backfilled with grout. - Ground water encountered at 9' bgs. | | | | / | | | RROW DEVEL | 24 1 25 | | | | | | | | | | | | | | PROJECTSYTOMO | | |
< L | . E l | N | FEL | DΕ | R | LOG OF E | Developm | | | PLATE | | UNGKNOPPV | PRO | JECT NO. | | 17 | '500 | | | | 2547 E. 27
Oakland, C | | | <u></u> | A4 |