Engineering & sciences applied to the earth & its environment

May 28, 1996 93C0276A-4300

Ms. Rita Sullins Don-Sul, Inc. 187 North L Street Livermore, CA 94550

Subject: Installation and Sampling of Replacement Monitoring Wells

187 North L Street, Livermore, California

Dear Ms. Sullins:

INTRODUCTION

Woodward-Clyde Consultants (WCC) has completed installation of four replacement monitoring wells, sampling and analysis of groundwater samples from those wells at the Arrow Rentals Site. The replacement of the wells was requested by Ms. Eva Chu of the Alameda County Environmental Health Services (ACEHS) in a letter dated January 19, 1996. The work was authorized by Don-Sul, Inc. by an addendum to the contract between WCC and Don-Sul, Inc. dated August 31, 1993. This report discusses the installation of the new monitoring wells and the results of the analysis of the groundwater samples.

DESCRIPTION OF FIELD ACTIVITIES

Monitoring Well Installation

Between March 11 and 13, 1996, Gregg Drilling & Testing, Inc. installed three groundwater monitoring wells W-1s, W-Bs and W-3s on the Arrow Rentals Site. Groundwater monitoring well W-Es was installed at the south end of North M Street under the observation of a WCC engineer. The locations of these monitoring wells are shown on Figure 1. Prior to the drilling of the borings for the wells, Underground Service Alert (USA) was contacted to arrange utility clearance at the North M Street location. WCC obtained an encroachment permit from the City of Livermore for this location and a permit issued by the Alameda County Flood Control and Water Conservation District for all four wells.

The borings for monitoring wells W-1s and W-Bs were drilled using 12-inch diameter, hollow stem augers, to allow installation of 6-inch diameter PVC well casing. These larger-diameter well casings may be used for groundwater extraction if required for remediation. The W-3s boring was drilled using 10-inch diameter, hollow stem augers, to allow installation of 4-inch diameter PVC well casing. The W-Es boring was drilled using 8-inch diameter, hollow stem

Engineering & sciences applied to the earth & its environment

May 31, 1996

D'es plume moving - loss l'és explain lepher conc in WB3 Homin W15?

Ms. Eva Chu Alameda County Environmental Health Services 1131 Harbor Bay Pkwy., #250 Alameda, CA 94502-6577

Subject: Installation and Sampling of Replacement Monitoring Wells - 187 North L Street, Livermore, California

Dear Ms. Chu:

Enclosed is the installation and sampling of replacement of four monitoring wells report submitted after completion of the work performed between March 11, 1996 and April 24, 1996, at 187 North "L" Street in Livermore for Don-Sul, Inc.

If you have any questions, please contact me at (510) 874-3125.

Sincerely,

Mr. Albert P. Ridley, CEG

Project Manager

Enclosures: Woodward-Clyde May 28, 1996 Report.

augers, to allow installation the 2-inch diameter PVC well casing. A WCC staff engineer observed the drilling and well installation operations and prepared a log of the soil cuttings and well construction. The logs are presented in Appendix A. The logs indicate the results of headspace readings of soil from selected depths using a photo ionization detector (PID). Soil cuttings generated during drilling are stored on-site in twenty-one labeled 55-gallon drums pending disposal arrangements. Five composite soil samples from drums were collected and analyzed for MtBE, BTEX, and lead.

The monitoring wells were constructed as follows. A 25-foot section of schedule 40 PVC, 0.010-inch-aperature slotted casing was installed between the depths of 20 feet and 45 feet. A sand filter pack consisting of 2/12 Monterey Type, Lonestar sand, was placed from the bottom of the boring to approximately 2 feet above the top of the screen. The filter pack was sealed with an approximately 2-foot-thick layer of bentonite pellets placed above the top of the sand pack. The remaining portion of the annulus was sealed with Portland cement grout. A water-tight, locking well cap was placed inside the casing and a traffic-rated Christy box was placed over each well. The well construction details are shown on the log of each monitoring well, in Appendix A.

Monitoring Well Development and Groundwater Sampling

Groundwater sampling was performed on March 22, 1996 in wells W-1s, W-Bs, W-3s, and W-Es by a WCC field technician. These well locations are shown on Figure 1. The purged water from the wells was stored in one 55 gallon barrel on site and labeled by WCC Personnel. The Groundwater Sampling Logs are shown in Appendix B.

The groundwater was sampled by using a bailer. A new length of hose and a new bailer were used for each well. The samples were placed into appropriate pre-labeled, laboratory-supplied sample containers. Sample vials were then immediately placed into a chilled cooler. The cooler was given to Inchcape Testing Services Anametrix Laboratories, San Jose, California, under chain-of-custody procedures. Each groundwater sample was analyzed for TPH gasoline using modified EPA Method 8015, benzene, toluene, ethyl benzene, xylenes (BTEX) and MtBE using modified EPA Method 8021.

Monitoring Well Survey and Groundwater Elevations

In April 24, 1996, monitoring wells were surveyed by a licensed land surveyor under the observation of a WCC staff engineer. Prior to surveying, old locks from well caps were cut-off, well caps were removed, and well names were painted on the pavement. Elevations were based on City of Livermore datum.

During the surveying, well integrity was provided to monitoring wells W-Es, W-E, W-3s, W-BS, W-B, W-C, W-A, and W-1s by locking well caps using eight locks keyed-alike. Monitoring wells W-1, W-2, and W-3 do not have adequate locking caps and, therefore, at this time, well integrity is not provided to those wells. We anticipate adding locking caps to these wells.

During the surveying, stabilized groundwater levels were measured in monitoring wells W-Es, W-3s, W-1s, and W-Bs with an electrical water level indicator and oil/water interface probe. Between each groundwater level measurement, the interface probe was decontaminated using Alconox soap and clean water.

RESULTS OF FIELD ACTIVITIES

Groundwater Results

Monitoring well elevations were reported by the surveyor at 474.44 feet/MSL in W-E, 474.66 feet/MSL in W-Es, 479.22 feet/MSL in W-2, 478.19 feet/MSL in W-3, 476.98 feet/MSL in W-3s, 478.82 feet/MSL in W-Bs, 478.61 feet/MSL in W-B, 479.04 feet/MSL in W-A, 479.09 feet/MSL in W-1s, 478.66 feet/MSL in W-1, and 479.47 feet/MSL in W-C (Table 1). Water depths were measured at 18.45 feet in W-Es, 17.70 feet in W-3s, 17.95 feet in W-1s, and 18.05 feet in W-Bs (Table 2). Local groundwater flow direction is calculated to be toward west (Figure 2). Due to a recent water pipe leak of approximately 38,000 gallons near W-1, measured water depth in W-1 may be higher than usual.

Water samples were analyzed for TPH gasoline using modified EPA Method 8015, benzene, toluene, ethyl benzene, xylenes (BTEX) and MtBE using modified EPA Method 8021. The data were reviewed by WCC and found to be of acceptable quality. The laboratory analytical data for Wells W-Es, W-1s, W-Bs, and W-3s are summarized in Table 3 and the laboratory reports are shown in Appendix C

Groundwater samples from the monitoring wells W-1s and W-Bs in the central area of the site were reported to contain 6,400 μ g/L and 61,000 μ g/L total petroleum hydrocarbons (TPH) quantified as gasoline, respectively. Benzene was reported at concentrations of 580 μ g/L and 9,800 μ g/L in the two monitoring wells. Toluene was detected in wells W-1s and W-Bs respectively at 470 and 8,000 μ g/L, ethylbenzene was detected in wells W-1s and W-Bs respectively at 85 and 2,200 μ g/L, and total xylenes were detected in wells W-1s and W-Bs respectively at 1,100 and 11,000 μ g/L.

The groundwater sample from monitoring well W-3s in the western corner of the site was reported with 100 μ g/L TPH-gasoline, 13 μ g/L benzene, 6.9 μ g/L toluene, 5.3 μ g/L

H: MELANIE/93C0276A.DOC

ethylbenzene, and 14 μ g/L total xylenes. No TPH-gasoline or BTEX were reported at concentrations exceeding their respective detection limits in the groundwater sample from the off-site monitoring well W-Es, located approximately 225 feet west of the western site boundary. MtBE was not reported at concentrations exceeding the detection limits in samples from any of the four monitoring wells.

Waste Disposal

Analytical results from composite soil cutting from drums are summarized in Table 4 and the laboratory reports are shown in Appendix C. The water results are from the wells and therefore representative of the purge water (Table 3).

Twenty one 55-gallon drums of waste soil will be transported and disposed to a Class II Landfill, twenty five 55-gallon drums of waste non RCRA solis soils will be transported to recycle, and 1375 gallons of purged water will be transported to recycle.

CONCLUSIONS AND RECOMMENDATIONS

Review of the field sampling and laboratory test results indicate that no floating product was observed in groundwater from wells W-1s, W-3s, W-Bs or W-Es during the 3-22-96 sampling and analysis. Comparison of the laboratory results from the previous groundwater sampling of the adjacent deeper wells on 9-13-95 to the current 3-22-96 sampling and analysis results shows that there has been a significant reduction in detected concentrations of BTEX and TPH gasoline (see Table 3 and 3A).

There is only one exception to the reduction in concentrations of BTEX and TPH gasoline. The concentration of total xylenes and TPH gasoline in groundwater from well W-Bs is higher than that reported for a groundwater sample from well W-B (see Tables 3 and 3A). The higher detected total xylenes and TPH gasoline in W-Bs may be a result of the higher elevation of the screened interval in W-Bs which samples a shallow zone of groundwater as compared to the deeper screened section in W-B. However, the concentrations of benzene and toluene in groundwater from W-Bs are significantly lower than the previous results for well W-B. The concentration of ethylbenzene reported for groundwater from W-Bs (2,200 ug/l) is about the same as reported for groundwater from W-B (2,000 ug/l).

In 1995 benzene was reported at a concentration of 4 ug/l for groundwater from the downgradient well W-E. However, in the 3-22-96 sampling of well W-Es the laboratory reports no detection above the reporting limit of 0.5 ug/l for benzene.

We believe that these observed reductions in the concentration of BTEX and TPH gasoline in groundwater from these wells is a result of natural degradation of these compounds in the HIMELANIEO93C0276A.DOC

shallow groundwater. Furthermore, the absence of benzene in groundwater from the downgradient well W-Es indicates that the groundwater plume is stable and is most likely becoming smaller.

Please call if you have any questions.

Sincerely,

Albert P. Ridley, CEG

Project Manager

Attachments: Table 1 Monitoring Well Elevations

Table 2 Groundwater Elevations

Table 3 Results of Laboratory Analyses of Groundwater for 3-22-96 Table 3A Results of Laboratory Analyses of Groundwater for 9-13-95 Table 4 Summary of Laboratory Analyses of Composite Soil Samples

Figure 1 Site Plan

Figure 2 Groundwater Elevation Contour Map

Appendix A Well Logs

Appendix B Groundwater Sampling Logs

Appendix C Laboratory Reports

TABLE 1.
MONITORING WELL ELEVATIONS

Monitoring Well	Top of Casing Elevation [feet, MSL]
W-E	474,44
W-Es	474.44
W-2	479.22
W-3	478.19
W-3s	476.98
W-Bs	478.82
W-B	478.61
. W-A	479.04
W-1s	479.09
W-1	478.66
W-C	479.47

Note:

MSL: Mean Sea Level (elevations based on City of Livermore datum)

TABLE 2.
GROUNDWATER ELEVATIONS

Well Number	ell Number Top of Casing Elevation [feet, MSL]		Water Elevation [feet, MSL]
W-Es	474.66	18.45	456.21
W-3s	476.98	17.70	459.28
W-1s	479.09	17.95	461.14
W-Bs	478.82	18.05	460.77

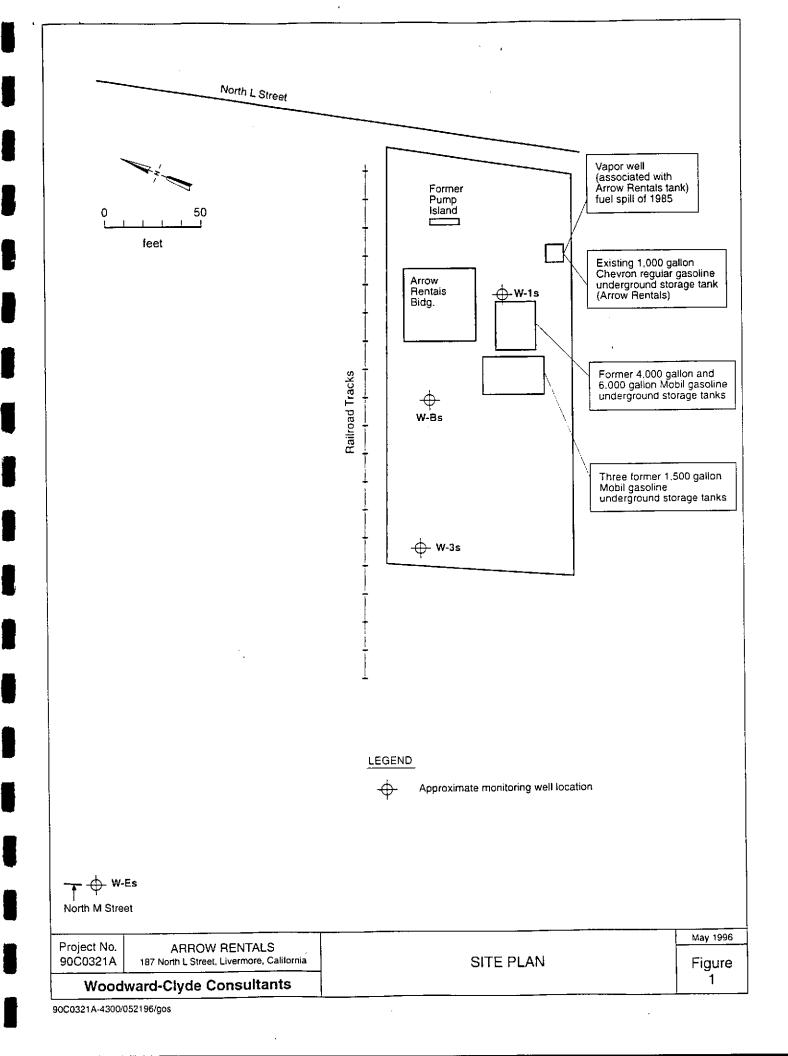
Legend:

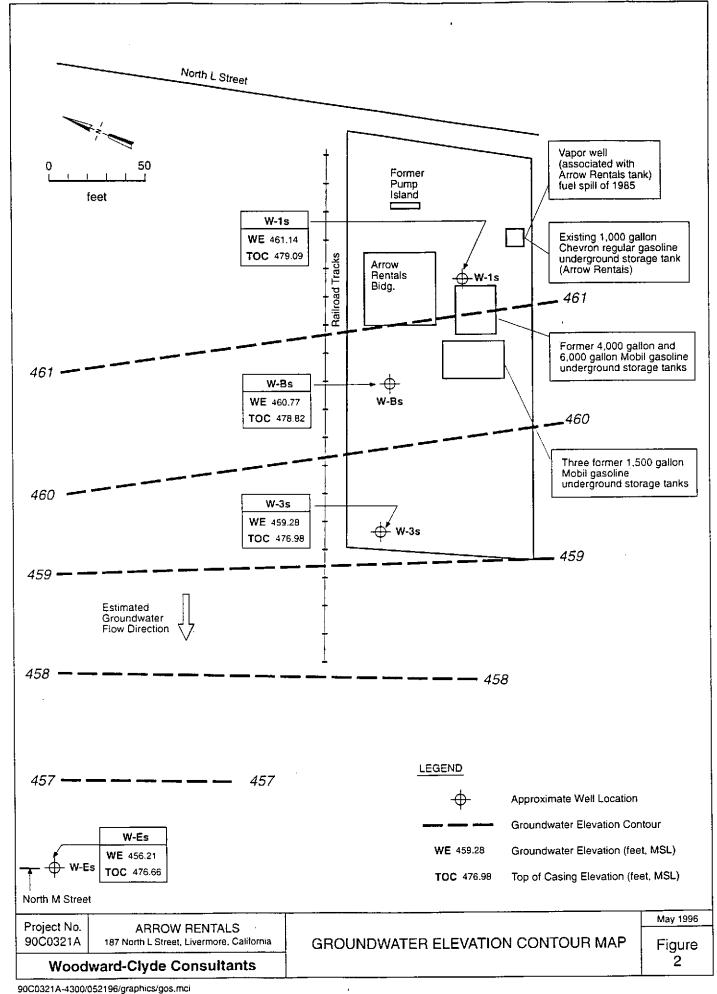
TOC: Top of PVC Casing

MSL: Mean Sea Level (elevations based on City of Livermore datum)

Groundwater levels measured on April 24, 1996.

TABLE 3.
RESULTS OF LABORATORY ANALYSES OF GROUNDWATER FOR 3-22-96


			Chemical [µg/L]												
	Location	MtBE	Benzene	Toluene	Ethylbenzene	Total Xylenes	TPH-gasoline								
	W-Es	<5	<0.5	<0.5	<0.5	<0.5	<50								
TO	45' W-1s	<500	580 470		85	1,100	6,400								
	W-Bs	<5000	9,800	8,000	2,200	11,000	61,000								
	W-3s	<5	13	6.9	5.3	14	100								


TABLE 3A.
RESULTS OF LABORATORY ANALYSES OF GROUNDWATER FOR 9-13-95

	Chemical [µg/L]												
Location	MtBE	Benzene	Toluene	Ethylbenzene	Total Xylenes	TPH-gasoline							
W-E	18	4	<.5	<.5	<.5	95							
W-1	<12,500	65,000	78,000	6,400	36,000	660,000							
W-B	NT	22,000	79,000	2,000	4,000	13,000							
W-3	<5	5,600	290.0	460.0	280	27,000							
					<u> </u>								

TABLE 4.
SUMMARY OF LABORATORY ANALYSES OF COMPOSITE SOIL SAMPLES (for soil cuttings in drums)

	Chemical [mg/kg]												
Location	MtBE	Benzene	Toluene	Ethylbenzene	Total Xylenes	TPH-gasoline	Lead						
S-1-5	7.7	15	51	29	140	2000	12						
S-6-10	3,9	6.2	20	9.1	45	580	13.8						
S-11-14	< 0.25	0.68	1.1	0.27	3.3	83	14.8						
S-15-18	< 0.125	0.29	1.4	0.59	2.5	81	8.5						
S-19-21	< 0.005	<0.005	<0,005	< 0.005	< 0.005	<0.5	6						

Woodward-Clyde Consultants	PRO	DJECT NA	AME.	ARR	ow	RE	UTALS	NO 9360 273A
BORING LOCATION W_ 15				ELEVAT				
DRILLING AGENCY GREGG & DRILLING	Chr.S St	Picor		DATE ST	TART	ED ED	3/11/96	· → 3/11/96
GRILLING EQUIPMENT Mobile Drill		,,,,,		COMPLE				SAMPLER
DRILLING METHOD Hollow Stern Auger	ORILL BIT			NO. C	F	DIST	. 0	UNDIST.
SIZE AND TYPE OF CASING 6" diameter school	we LOP	10		WATE	E PI	FIRS	Ť	COMPL. 24 HRS
	FROM 45	7.0	FT.	FOCCE		L		CHECKED BY:
SIZE AND TYPE OF PACK Honterey land I 2/12	FROM 45			—	,	(La) e	
TYPE OF SEAL Bentonite Pellets	FROM 17		FT.	Jeson	HC '	eug		
	717	GRAPH	اد دوو	-		SAP	MPLES.	
DESCRIPTION		Lithology	Piezorr		Paromet	vie No	Penatea Penate Renat (Blues)	REMARKS 1Drift Rate, Fluid loss, Odor etc.1
Aspalt Severete 4 moles		V					= -	
2 - Cuttings - Gravel (GP)		\ \ \ \ \	!					·
4 🕂		V V			1	-		
6 ‡		۷ ۷						
8 +		1 1						·
lo ‡		V V						
12 ‡		V V						
14 +		v ^				-		0.0
16 +								PID = 0.7 ppm
18 +						-		
20 =		, , , 1			-			PID: 182 ppm gasoline ode
22 ‡		1.						
24 =		.,;						Pan - 2 29 Ann
26 - Cectings - Gravels with silt	·	_						PD = 323 ppm gasoline oda
28 = Silty gravely sand (GM)					-			

	Wat Clyde Conscitation	T case	IIC LOG	1		SAA	PLES	
06.714	DESCRIPTION	Lithology	Piezometer Installation	Weter Content	Patomata		Penetra Henvit (Bloom)	REMARKS 1Drall Rate, Found loss Odon, etc.)
30 -					+			PID = 250 ppm gasoline oda
32-	-	311						
34 -	ch Mr 1100 it					-		4.0
36 -	Sifty grandly sand (GIT), moist	- 1				- -		PID = 135 ppm gasoline odor
38	•	* * * * * * * * * * * * * * * * * * * *				- -		
40-		- 1						PID = 77 ppm
42 -		- 11						
44 -		,			:			
	Bottom of boing 45'			1				
	Dottom of boxing 45							
	-							
	- - 							
					-	† 		
	+ + + + + + + + +				.	 		
	 					†		
	‡ ‡ ‡					+		,
	<u>1</u>					+		
	+					†		
	† +					+		
L	‡					1		2 . 2

*****	dward-Cryde Consultants	PRO	DJECT N.	AME.	AKK	ow	f(Er	7.145Z	NO.	93CO 2 +3 A
BORIF	G LOCATION W_BS			7	ELEVAT	100	AND	MUTAC		
DAILL		Ciris ;	. A		DATE STARTED 3/12/96 -> 3/12/96					
DRILL		Clicis s	riene		DATE F				SAMPLER	
	Toble Viell	0001 517							ļ	
l	HOHOW Star Huger	DRILL BIT			NO. C	<u> ES</u>	DIST.	<u> </u>	UNDIST.	0
3	AND TYPE OF CASING 6" diameter schedus	le 40 PVC			WATE ELE		FIRS	T 	COMPL.	24 HRS
TYPE	OF PERFORATION 0.010 Slotted PVC	FROM 45	- TO 20	2 FT.	LOGGE				CHECKED B	Y :
SIZE	AND TYPE OF PACK Montercy Land # 2/12	FROM 45	TO 18	FT.		1	1			
TYPE		FROM 18	TO 16		Jerom	e 4	essequ		ļ	:
-	JEANEMUS TENEIS	10	GRAPH				SAL	PLES		
Ξ=			GRZFF	1000		į.			REM	AAKS
DEFTH	DESCRIPTION		Lithoragy	Piezom Installa		Petor	7 eq.	Berrie .	(Drill Pare, Flui	d lou. Door, sic j
<u> </u>	- Aspall cornete to riches					•		12.20		
:	/ Him		· ·			:				
] :	Cities		V	•		;				
2 -	t ary quavels (GM) hown to de	ack	J			-	-		'	
]	Cuttings Silty quavels (GM) have to de	İ	v Č,	l]	
[, :	lroun		V]		;				
14 -			V ,	1			ţ			
:			· V	1	-		}		PID = 2.	Oppm
1/-	<u></u>		V			:				• •
	Ţ		,		- 1]]		-		
:			V V	1		:			<u> </u>	,
8 -			•		ľ	}			ļ	
] " -			./	ŀ		7			i	
:			V V			:				_
10 -	-]	:		ļ	PID = 2.	5 ppm
-			V V		- 1	-				10
] -						:	1			
12-	<u>†</u>		V V		i	-			ļ	
:	•		V			:	!		1	
1 :	<u> </u>		V						1	
14 -	 -		_ v v			-	-			
` :	<u> </u>		١, ١			:	t		P1D = 2	. 8 ppm
	Call Alan P	·//		ļ] :	<u> </u>			1,
16 -	Gravelly sand (GM) brown m	u i f	1	[1	-	<u>-</u>			
-	some lett, moist			ł						
18	,		////			:	[
1 '8 -			· · · ·	t		:	†			
1 :	<u>†</u>			ĺ		:	t			
20 -	<u> </u>		1 /.				<u> </u>		0,0 2	£
120	F		٦ () [=	\exists	7	F	1	PID = 3.	S ppm
	Ţ						1			r
22-	<u>‡</u>					1	<u>t</u>			
	İ		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<u> </u>	_	-	<u> </u>			
1	+		١,				1			
24 -	I_		. 1		<u>-</u>	:	‡			
1 -1	‡		l .		二	1	†			•
	<u>†</u>				\dashv	1	ł I		P1) = 3.	5 pm
26.	[\vdash		-	Į			1.
	‡		. ' (‡		1	
	‡		1 , 1				1		}	
28 -	1		$ \cdot = \ell$		_	-	 		1	
1	 						I			
1	†		1			•	∔ [t	1	

MOOC	ward-Clyde Consultants 🐷 🔻	PROJECT NA	4ME	(11/0)	····	VF N			NO. JOGGETTA
		GRAPH	ic rod		<u>.</u>		MP L		
30 FT 34 ET 31	DESCRIPTION	Lithology	Piezameter Installation	Weign	Pre Iome Date	Type No	are I	E Constitution of the cons	REMARKS (Drill Rate, Fluid Ioss Odor, etc.)
30 + 32 + 32	Silt, some clay, hown, moist					141	48	2 = 2 ~	PID = 3.2 ppm PID = 2.8 ppm
42 44 46 -	Bottom of bowing 45'					 			PID = 4.7 ppm
						+ ++++ + +++ 			
						+++++++++++++++++++++++++++++++++++++++			

Woodward-Clyde Consultants	PROJECT NAME				<u> NO. 93co 273</u> /
BORING LOCATION W-35		ELEVAT	ION AND DA	TUM	
DRILLING AGENCY GREAG & DRILLING DRILL	er Fine	DATE ST	ARTED 3/	2/96	-> 3/12/96
DRILLING EQUIPMENT	AT TOTAL		TION DEPTH		SAMPLER
DRILLING METHOD, Stern Auger DRILL	BIT	NO. 0		- 	UNDIST.
SIZE AND TYPE OF CASING 4" diameter shedule 40	DVC	SAMPL	R FIRST		COMPL. 24 HRS
4 augman shearing 40	45 TO 20 FT.	LOGGE		- i	CHECKED BY:
J. DI O STONEAL TVC				İ	
Jonkery Janot #/ 2/12	45 TO 18 FT.	Jam	e lebeque	<u> </u>	
TYPE OF SEAL Bentonite pellets FROM	10 15	<u> </u>			
==	GRAPHIC LO		SAMPS		REMARKS
DESCRIPTION		meter \$ 50	Prezonne Date Type No Hecov II	Hanni Hanni Halowa/	(Drill Rate, Fluid Ious, Odor, etc.)
As halt concerte 4 inches.				7 = B	
-	· -			1	
+ Silti grand (c) P + 1 1 1	V V			İ	
2 = Silty gravel (GC) brown to dark how	un , ,		‡		i
1	v				
' 			Ŧ		
I]			P1D = 0 ppm
6 ‡	V		‡		,,
 	ا بر ا				!
. ‡	' √		†	ļ	
8 +	l v		+		
 	ľv				į
10 + Clayed gravel (61)	V	Ì			4.5
10 + Clayed gravel (GC)			🕇		PID = 0 Ppm
*					
12 ‡	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	- 1	‡		
1 ‡	1, ,				
1 ±			<u> </u>		
14 —	V V	- 1	+		
 	l. v l				4.5
16 ‡	Y				PID = Oppm
 '*	////	- 1	🕇		·
1 ‡					
18 ‡	7777		‡		
1 ±					
1 1			🖠		
20 1	` ` . ⊟		+		PID = 0 ppm
1 1	` ,		1 🖠 📗		
1 ₂ , 7	' /				
22-+	' ',		🕇	ļ	
1 ‡			‡.		
14 ‡	1 11				İ
1 1	·				010-000
26 = clayed gravel brown]			PID = Oppm
126 + clayed gravet brown			+		
] [1 1				1
1,,, ‡					
128 +			‡		1
1 1	, ,		1 1	<u> </u>	<u> </u>
FIELD	LOG OF BORING	3 NO	W_3s		_ SMEET 1 of 2

	- Was cope constant								
1116.111	DESCRIPTION	Lithology	Plezometer (installation	Weign	Paromet	_	_	Ferens Hears (Blows) 6 m.1	REMARKS (Drift Rate, Fried loss Oddi, etc.)
30 -	- Chyed gravel (GC), moist	· · ·			‡				P10 = 0 ppm
32	- -					• •			·
34 -		, ,			†	· -			
36 -		- 1			1	-			PID = 1.2 ppm
		, ,							·
38 -		**							PID = 1.7 ppm
40 -						+			
42-					-				PID = 1.0 ppm.
44				- - -	-	+			
46 -	Bottom of bosing 45'					-			
						<u> </u>			
	<u>‡</u>					†			
•	 					Ī		i	
	† ‡				-	†			
	‡ ‡					‡	-		
						‡			
	<u>+</u>			į		+			
	† †					Ī			
	 			ļ		-			
	1 1 1 1 1 1 1 1 1 1					+			
	+ + + + + + + + + +					‡			
L_	<u>+</u>	FIELD LOG OF BO	DRING N	10	,	w_	3.	5	SHEET_2 of 2

woodward-Cryde Consultants	NE HKI	KOW KEN	O I H L	NO. <u>9360 273</u> 1				
BORING LOCATION W. ES		ELEVAT	ELEVATION AND DATUM					
DRILLING AGENCY GREGG & DRILLING 9	RILLEA JOYNEL	DATE ST	TARTED 3	/13/96	- 3/13/96			
DRILLING EQUIPMENT Mobile Drill	neibi soften		TION DEPTH		SAMPLER			
DOWN INC METHOD	RILL BIT	NO. 0	OF DIST.	0	UNDIST. O			
1101100 STATE TANGE		SAMPL	-ES		COMPL. 24 HRS			
2 diameter stream		ELEV	<u>, i </u>					
J. DIO SIGILLAL TVC	ROM 45 TO 20 F		DSY	ľ	CHECKED BY:			
joinerly send I 2/12	ROM 45 TO 18 F	T. Ta	. 1.1					
TYPE OF SEAL ZONTONITE Pollets	ROM 18 TO 16 F	T. JOISHL	a lebegi	هـ				
	GRAPHIC	roc	SAMP	LES				
DESCRIPTION	Lithology Pil	Italiation E 0	Pro Pro Pro Pro Pro Pro Pro Pro Pro Pro	2 = 3 =	REMARKS			
a= Acal At 1 and	la ₁	IZBII4IIAN B.S.	Personne Data Type No Hecov (i	Penetra Henra 1010mm 6 m	(Oriti Rate, Fluid loss, Odor, stc.)			
sitty gravel (GC) - brown to day	R V V							
2 bown	\	j						
4 ‡			‡					
					PID = 2.5 ppm			
8 +	V							
10 +	V V				PID = 3.3 ppm			
 					, - <i>II</i>			
14 +								
	v V				PID = 2.9 ppm			
<u> </u>								
18 +								
20 			‡		PID = 2.9 ppm			
22			<u> </u>					
1								
24 +					PID = 4.6 ppm			
26 } Silty to chyed gravel (GM/GC)			‡		' '/			
28 trown								
<u> </u>	_							

		GRAPE	IC FOC			SAMPLES		ES	
DFF1H 1616 ET1	DESCRIPTION	Lithology	Prezometer Installetion	Weler	Pugromate Data	fyps No	nege 11	Penetra Hessit IBford 6 m.1	REMARKS (Drift Rate, Fluid toss Door, etc.)
30 -	- clayed sand (SC), bown, most					1			PID=2.4 ppm.
32	- -								
34 -		. ,			:	-			
36 -		. '				‡ -			
38 -								<u></u>	
1 :	†								
40 -					•	+			
42-				† - -	.	†			
44 -	 - 					1			
46-	Bottom of loving 43'					+			1
• [‡ <u>†</u>			
	T					† †			
						†			
						†			
	† ‡					1			
	1					+			
						‡			
	+ +					‡			
	<u>+</u>					1			
						‡			
						‡			SUSSET 2-4-2

								A 1
W	ATER	SAN	ЛРLЕ	LOG				W-1s
ect No. :	93C	02	76A			Date:	3 <i>-2</i>	2-96
ject Name	Are	-0 W	Rea	/-/s _				
nple Local	1100. -	<u>] s</u>	<u> </u>	lockin				
l Descript		PV	<u>ر بر</u>	•) =	<i></i>		
ther Con	ditions: . C / Comments		_ /. •					
				<u>.</u>				<u> </u>
					150	_	<u> </u>	bailer
uality	Assura	ince	Method to	Measure Water	Level:	200	<u>′ 5-</u>	liast
np Lines:		New /	Cleaned	, B	aller Line:	3: (lew /	Cleaned
hod of cl	eaning Pump	/ Bailer:		701	٧_			4.00/7.00
Meter No			307	1374	/8	Ca	Delardi	red - lines
ilic Con	ductance Met	ler No.: _ ノフ。 _	176	0-27	12 X	1.468	- 3 7	8 × 3=1194
ımənts:	וע אין	. 10_		/. 		J		
						176	- Q	17 59
ampl	ing						4	17.59 Casing
leasu	rement	<u>s</u>	Measurin	ng Point (MP):		op	.0	
Time	Discharge (gallons)	рH	Temp. (°C)	Specific Conductance (µmhos / cm)	Turbidity	-4.1	Odor	Comments
046	ZO	6.98	19.5	990	Low	Grey	ND	
148	40	7.12	20.2	1000	11	LI		
) 5 1	60	7.08	<i>200</i>		MA	<u>), 740 </u>	11	
155	80	706	ル コ スエ	<i></i>	NIC	<u> </u>	11	
957	100	7.10	14.9	11	1110	-:		SIL
100			14 X	l li	HIGH	4 7 <i>A</i> N	1 11	J. (1)
	120	{: -U_	1	·			1	
	120		7					
	120	(eu.		//				7
otal Disc		120) 9 g #	//ons o		umes Rem	oved:	3
	harge:	discharge	d water:	//onso			oved:	3
lethod of	harge:	discharge	d water:	// ns o 5 5 go /	easing Vol		oved: _	3 DA'S (TPH 3A
othod ol	harge:	discharge	d water:	//onso	asing Vol	drumas Rami	nl. VI	OA'S (FFH 3A
othod ol	harge:	discharge imple cont	d water:	// ns o 5 5 go /	B Woo	Januard	. S n/. V	OA'S (FAITS) le Consultants Oakland, CA 94607-4014

Froject No. : 73 Col	MPLE L	.OG		ample		W-3 22-9
Project Name:	w R	ento	/3		<u> </u>	
Sample Location:	4. 40 F	>7C	- //	k		
4	<u>, 40 </u>			PEN	7	
Weather Conditions: Observations / Comments:		·		·		
						
Quality Assurance	Sampling Met Method to Me				رو ک	Solinat
Purnp Lines: New /	Cleaned	В	ailer Unes:	G	Very /	Cleaned
Method of cleaning Pump / Bailer:		^	<i>y</i> <u>n</u>			4.00/7
pH Meter No.:	307	37	48		ilbrated	red-lin
Comments: 44.8/-/2					_	×3-5
· · · · · · · · · · · · · · · · · · ·		·				
Sampling	Water Level (t	bolow MP) a	n Start:	7.2	22	End: 17. Z
Sampling Measurements	Water Level (t Measuring Po		n Start:	17.2 20	22 of	[nd: 17.2
	Measuring Po	alot (MP): Specific whietance	at Start:	17.2 20	22 of	End: /7. Z
Measurements Discharge (gallons) pH	Measuring Po	olot (MP): Specific	1	Color	Odor	Gst
Measurements Discharge out	Measuring Pc	Specific substance of the second seco	tinblilly	Color	Odor	Gst
Measurements 1 Discharge (gallons) pH	Measuring Policy (10) 1000	Specific adjectance of the street of the str	Totality HGH	Color	Oder ND	Gst
Measurements	Measuring Pc temp. (°C) Cor (pin 20 8 20 8 20 8	Specific adject (MP): Specific adject and specific (MP): 500 500 500 500 500 500 500 500 500 5	tubility HIGH	Color Gray TTAN	OND II	Gst
Measurements 100 Discharge (pillons) pill	Measuring Policy (10) 100 p. (10) 20 8 20 9 20 9 20 9 20 9 20 9	Specific uniertance on those of cm) 500 500 500 500 500 500 500 5	totalily	Color Gray TAN	Oder ND	Gst
Measurements	Measuring Policy (10) 100 p. (10) 20 8 20 9 20 9 20 9 20 9 20 9	Specific adject (MP): Specific adject and specific (MP): 500 500 500 500 500 500 500 500 500 5	tubility HIGH	Color Gray TTAN	OND II	Gst
Measurements 100 Discharge (pillons) pill	Measuring Policy (10) 100 p. (10) 20 8 20 9 20 9 20 9 20 9 20 9	Specific uniertance on those of cm) 500 500 500 500 500 500 500 5	totalily	Color Gray TAN	Oder ND	Gst
Measurements 100 Discharge (grillons) pl	Measuring Policy Con (pin 20 8 20 8 20 8 20 8 20 8 20 8 20 8 20	Specific uniectoric politics / cm) 5	timbelly HIGH	Color Gray	Coder	Gst
Measurements	Measuring Policy (10) 100	Specific uniectoric politics / cm) 5	totalilly HIGH IL IL IL	Color Gray	Coder	Gst
Measurements 100 Discharge (grillons) pl	Measuring Policy (units) Temp. (v) Con (units) ZO 8	Specific unietroir o obios / cm) 50 10 10 10 10 10 10	timbelly HIGH	Color Gray	Coder	Gst

W	ATER	SAI	MPLE	LOG	S	ampl	e No.	<u>w-</u>	<u>_s</u>
oject No. :	93	60	276	A Renta		ale:	3-	22-	-96
iject Name:		-E	<u>ا ليا</u> د	KEN!	.1.3				
npie Locati ill Descripti	_		4.4	O PVC	يمه	//.	.ek	long !	30
ather Conc			<u>~</u>					J	
	/ Comments	ı:			na-	bai!	<u>ed</u>		
	<u> </u>				<u> </u>		7/	7	// :
Quality	Assura	ınce	Sampling		Disp	0 Sa 200	ي ط	_ <i>ニー</i> ダィ S_ ん'	het-
				Measure Wate			New	Cleane	d
mp Lines:		Ver	Cleaned		ailer Ures:				
ethod ol cle Meter No.	aning Pump		30	977		Ca	librated	400	7.00
	watanga Mal	or No :		ノスクリ	18_	c	alibrated	zed:	lined
omments:	44.50	-18	.15=	26.41	4.165	- 4.3	5 x	3 = [3	ડ .(
									-
Sampli	nd.		Water Le	vel (below MP) :	nt Start:	1.8.	15.	End:	8.19
Measu	rement	s	Į.	ng Point (MP):		30	• 1	· C.	SING
Tkne	Discharge (gallons)	pH	Tomp.	Specific Conductance (pmhos/cm)	Turbklity	Colui	Odor	Co	mmonts
405	3	7.40	19.4	730	14/6/	THN	ND	-	
4//	6	7.27	19.3	730	66	, (A			
415	9	7.28	19.0	720	11	ts			<u>-</u>
421	12	7,24	18.8	720	11	111	17	İ	
425	14	7.27	18.5	720	l t	11	11		
	 			<u></u>	<u> </u>				
		1	 	 	<u> </u>	<u>'</u>	1	2+	
Total Disch	arðe;	<u> </u>	901	ans o	asing Volum	nes Nom	oved:)	
Method of	disposal of	diecharga	d water:	53,3	•//•n	. 41	~ A	Ė	
Number an	d size ol sa	mple con	lainers filled	@14.3	<u> </u>	• V	<u> </u>	>	
				-	Moss	huare	l-Clyc	le Con	sultants
		~~	и		500 12	th Street, !	5ute 100, 74151.89	Oakland, CA	94607-4014

WATER SA	MPLE LOG	Sar	mple No.	W-Bs	
Sample Location: W = B	ow Rent	o / h		22-96	
Observations / Comments:	Sampling Melhod:		6/e •• 'S	Cleaned	
Specific Conductance Meter No.:	AV	# Lines:	Calibrated Calibrated	1.00/7.00	
Sampling Measurements	Water Level (below MP) at Measuring Point (MP): Temp. Specific Conductance	T.		d: 17.72 Casing	
: 45 25 7.2 1 : 48 40 7.0 1 : 51 60 7.0 1 : 54 80 7.0 1 : 57 100 7.0 1 : 57 100 7.0 1 2 : 00 1 2 7.0 1 2 1 1 1 1 1 1 1 1	(9.6 820 219.9 860 19.6 840 19.6 850	11 11 11 11 11 11 11 11 11 11 11 11 11	NI)		,
 	o gallousco	sing Valumes		3 +	

1961 Concourse Drive Suite E San Jose, CA 95151 Tel: 408-452-8192 Fax: 408-452-8198

MR. BILL COPELAND WOODWARD-CLYDE CONSULTANTS 500 12TH STREET, SUITE 100 OAKLAND, CA 94607-4014 Workorder # : 9603195 Date Received : 03/23/96 Project ID : 93C0276A

Purchase Order: N/A

The following samples were received at Inchcape for analysis:

ANAMETRIX ID	CLIENT SAMPLE ID
9603195- 1	W-Es
9603195- 2	W-1s
9603195- 3	W-Bs
9603195- 4	W-3s
9603195- 5	TBLANK

This report is organized in sections according to the specific Inchcape laboratory group which performed the analysis(es) and generated the data.

The results contained within this report relate to only the sample(s) tested. Additionally, these data should be considered in their entirety and Inchcape cannot be responsible for the detachment, separation, or otherwise partial use of this report.

Inchcape is certified by the California Department of Health Services (DHS) to perform environmental testing under Certificate Number 1234.

If you have any further questions or comments on this report, please call your project manager as soon as possible. Thank you for using Inchcape Testing Services.

Froject Manager

4-3-96 Date

This report consists of 12 pages.

REPORT SUMMARY INCHCAPE, INC. (408)432-8192

MR. BILL COPELAND

WOODWARD-CLYDE CONSULTANTS 500 12TH STREET, SUITE 100

OAKLAND, CA 94607-4014

Workorder # : 9603195 Date Received : 03/23/96 Project ID : 93C0276A

Purchase Order: N/A Department : GC Sub-Department: TPH

SAMPLE INFORMATION:

INCHCAPE SAMPLE ID	CLIENT SAMPLE ID	MATRIX	DATE SAMPLED	METHOD
9603195- 1	W-Es	WATER	03/22/96	трндвтех
9603195- 2	W-1s	WATER	03/22/96	TPHgBTEX
9603195- 3	W-Bs	WATER	03/22/96	ТРНЭВТЕХ
9603195- 4	W-3s	WATER	03/22/96	TPHgBTEX
9603195- 5	TBLANK	WATER	03/20/96	ТРНЭВТЕХ

REPORT SUMMARY INCHCAPE, INC. (408)432-8192

MR. BILL COPELAND WOODWARD-CLYDE CONSULTANTS 500 12TH STREET, SUITE 100 OAKLAND, CA 94607-4014 Workorder # : 9603195
Date Received : 03/23/96
Project ID : 93C0276A
Purchase Order: N/A

Purchase Order: N/A
Department : GC
Sub-Department: TPH

QA/QC SUMMARY :

- All holding times have been met for the analyses reported in this section.

Recol Bacon 4/3/90 Department Supervisor Date

Chemist

04/03/46 Date

GC/TPH- PAGE 2

INCHCAPE TESTING SERVICES - ANAMETRIX

(408) 432-8192

DATA SUMMARY FORM

Anametrix ID:	9603195-01	Client Project ID:	93C0276A
Matrix:	WATER	Client Sample ID:	W-Es
Date Sampled:	3/22/96	Instrument ID:	HP4
Date Analyzed:	3/27/96	Surrogate Recovery:	103%
Date Released:	4/3/96	Concentration Units:	ug/L

COMPOUND	Dilution <u>Factor</u>	Reporting <u>Limit</u>	Amount Found
MtBE	1	5.0	ND
Benzene	1	0.5	ND
Toluene	1	0.5	ND
Ethylbenzene	1	0.5	ND
Total Xylenes	1	0.5	ND
Gasoline	1	50	ND

ND: Not detected at or above the reporting limit for the method.

TPHg: Total Petroleum Hydrocarbons as gasoline is determined by GC/FID (modified EPA Method 8015) following sample purge and trap by EPA Method 5030 BTEX: BTEX as Methyl tert-Butyl Ether, Benzene, Toluene, Ethylbenzene, and Total Xylenes is determined by GC/PID (modified EPA Method 8021) following sample purge and trap by EPA Method 5030.

INCHCAPE TESTING SERVICES - ANAMETRIX (408) 432-8192

DATA SUMMARY FORM

Anametrix ID:	9603195-02	Client Project ID:	93C0276A
Matrix:	WATER	Client Sample ID:	W-1s
Date Sampled:	3/22/96	Instrument ID:	HP4
Date Analyzed:	3/27/96	Surrogate Recovery:	98%
Date Released:	4/3/96	Concentration Units:	ug/L

COMPOUND	Dilution <u>Factor</u>	Reporting <u>Limit</u>	Amount Found
MtBE	100	500	ND
Benzene	100	50	580
Toluene	100	50	470
Ethylbenzene	100	50	85
Total Xylenes	100	50	1100
Gasoline	100	5000	6400

ND: Not detected at or above the reporting limit for the method.

TPHg: Total Petroleum Hydrocarbons as gasoline is determined by GC/FID (modified EPA Method 8015) following sample purge and trap by EPA Method 5030 BTEX: BTEX as Methyl tert-Butyl Ether, Benzene, Toluene, Ethylbenzene, and Total Xylenes is determined by GC/PID (modified EPA Method 8021) following sample purge and trap by EPA Method 5030.

INCHCAPE TESTING SERVICES - ANAMETRIX (408) 432-8192

DATA SUMMARY FORM

Anametrix ID: Matrix: Date Sampled: Date Analyzed: Date Released:	9603195-03 WATER 3/22/96 3/27/96 4/3/96	Client Project ID: Client Sample ID: Instrument ID: Surrogate Recovery: Concentration Units:		93C0276A W-Bs HP4 97% ug/L
COMPOUND		Dilution <u>Factor</u>	Reporting <u>Limit</u>	Amount Found

1000

1000

1000

1000

1000

1000

MtBE

Benzene

Toluene

Ethylbenzene

Total Xylenes

Gasoline

ND: Not detected at or above the reporting limit for the method.

TPHg: Total Petroleum Hydrocarbons as gasoline is determined by GC/FID (modified EPA Method 8015) following sample purge and trap by EPA Method 5030 BTEX: BTEX as Methyl tert-Butyl Ether, Benzene, Toluene, Ethylbenzene, and Total Xylenes is determined by GC/PID (modified EPA Method 8021) following sample purge and trap by EPA Method 5030.

5000

500

500

500

500

50000

Surrogate recovery quality control limits for p-Bromofluorobenzene are 61-139%. All testing procedures follow California Department of Health Services approved methods.

ND

9800

8000

2200

11000

61000

INCHCAPE TESTING SERVICES - ANAMETRIX (408) 432-8192

DATA SUMMARY FORM

Anametrix ID:	9603195-04	Client Project ID:	93C0276A
Matrix:	WATER	Client Sample ID:	W-3s
Date Sampled:	3/22/96	Instrument ID:	HP4
Date Analyzed:	3/27/96	Surrogate Recovery:	116%
Date Released:	4/3/96	Concentration Units:	ug/L

COMPOUND	Dilution <u>Factor</u>	Reporting <u>Limit</u>	Amount Found
MtBE	1	5.0	ND
Benzene	1	0.5	13
Toluene	1	0.5	6.9
Ethylbenzene	1	0.5	5.3
Total Xylenes	1	0.5	14
Gasoline	1	50	100

ND: Not detected at or above the reporting limit for the method.

TPHg: Total Petroleum Hydrocarbons as gasoline is determined by GC/FID (modified EPA Method 8015) following sample purge and trap by EPA Method 5030 BTEX: BTEX as Methyl tert-Butyl Ether, Benzene, Toluene, Ethylbenzene, and Total Xylenes is determined by GC/PID (modified EPA Method 8021) following sample purge and trap by EPA Method 5030.

INCHCAPE TESTING SERVICES - ANAMETRIX (408) 432-8192

DATA SUMMARY FORM

Anametrix ID: Matrix:	9603195-05 WATER	Client Project ID: Client Sample ID:		93C0276A TBLANK
Date Sampled:	3/20/96		Instrument ID:	HP4
Date Analyzed:	3/26/96	Surrogate Recovery: 10		102%
Date Released:	4/3/96	Concentration Units:		ug/L
		Dilution	Reporting	Amount
COMPOUND		<u>Factor</u>	<u>Limit</u>	Found

COMPOUND	<u>Factor</u>	<u>Limit</u>	Found
MtBE	1	5.0	ND
Benzene	1	0.5	ND
Toluene	1	0.5	ND
Ethylbenzene	1	0.5	ND
Total Xylenes	1	0.5	ND
Gasoline	1	50	ND

ND: Not detected at or above the reporting limit for the method.

TPHg: Total Petroleum Hydrocarbons as gasoline is determined by GC/FID (modified EPA Method 8015) following sample purge and trap by EPA Method 5030

BTEX: BTEX as Methyl tert-Butyl Ether, Benzene, Toluene, Ethylbenzene, and Total Xylenes is determined by GC/PID (modified EPA Method 8021) following sample purge and trap by EPA Method 5030.

INCHCAPE TESTING SERVICES - ANAMETRIX (408) 432-8192

DATA SUMMARY FORM

Anametrix ID:	BM2601E1	Client Project ID:	93C0276A
Matrix:	WATER	Client Sample ID:	Method Blank
Date Sampled:	N/A	Instrument ID:	HP4
Date Analyzed:	3/26/96	Surrogate Recovery:	84%
Date Released:	4/3/96	Concentration Units:	ug/L

COMPOUND	Dilution <u>Factor</u>	Reporting <u>Limit</u>	Amount Found
MtBE	1	5.0	ND
Benzene	1	0.5	ND
Toluene	1	0.5	ND
Ethylbenzene	1	0.5	ND
Total Xylenes	1	0.5	ND
Gasoline	1	50	ND

ND: Not detected at or above the reporting limit for the method.

TPHg: Total Petroleum Hydrocarbons as gasoline is determined by GC/FID (modified EPA Method 8015) following sample purge and trap by EPA Method 5030 BTEX: BTEX as Methyl tert-Butyl Ether, Benzene, Toluene, Ethylbenzene, and Total Xylenes is determined by GC/PID (modified EPA Method 8021) following sample purge and trap by EPA Method 5030.

TOTAL PETROLEUM HYDROCARBONS AS GASOLINE

INCHCAPE TESTING SERVICES - ANAMETRIX (408) 432-8192

MATRIX SPIKE RECOVERY REPORT

Client Project ID: 93C0276A

Anametrix ID:

9603175-07

Client Sample ID: Batch Spike

Date Released:

4/3/96

Date Sampled:

3/19/96

Instrument ID:

HP4

Date Analyzed:

3/26/96

Matrix:

WATER

Concentration Units:

ug/L

COMPOUND NAME	SPIKE <u>AMT</u>	SAMPLE CONC	MS <u>CONC</u>	% REC <u>MS</u>	MSD CONC	%REC <u>MSD</u>	<u>RPD</u>
Gasoline	500	0	420	84%	410	82%	-2%
p-Bromofluorobenz	ene			136%		124%	

Quality control limits for MS/MSD recovery are 48-149%

Quality control limits for RPD(relative percent difference) are +/- 30%

Quality control limits for p-Bromofluorobenzene recovery are 61-139%.

TOTAL PETROLEUM HYDROCARBONS AS GASOLINE

INCHCAPE TESTING SERVICES - ANAMETRIX (408) 432-8192

LABORATORY CONTROL SAMPLE REPORT

Client Project ID: 93C0276A

Anametrix ID:

MM2601E1

Matrix:

WATER

Date Released:

4/3/96

Date Analyzed:

3/26/96

Instrument ID:

HP4

Concentration Units:

ug/L

COMPOUND

SPIKE

LCS

%REC

<u>NAME</u>

AMT

CONC

LCS

Gasoline

500

410

82%

p-Bromofluorobenzene

137%

Quality control limits for LCS recovery are 67-127%.

Quality control limits for p-Bromofluorobenzene recovery are 61-139%.

TOTAL PETROLEUM HYDROCARBONS AS BTEX

INCHCAPE TESTING SERVICES - ANAMETRIX (408) 432-8192

LABORATORY CONTROL SAMPLE REPORT

Client Project ID: Matrix: Date Analyzed:	93C0276A WATER 3/26/96		Anametrix ID: Date Released: Instrument ID: Concentration Unit	NM2601E3 4/3/96 HP4 ss: ug/L
COMPOUND NAME		SPIKE <u>AMT</u>	LCS <u>CONC</u>	%REC LCS
MtBE		10.0	9.7	97%
Benzene		10.0	10.1	101%
Toluene		10.0	9.8	98%
Ethylbenzene		10.0	10.1	101%
Total Xylenes		10.0	9.5	95%
p-Bromofluoroben	zene			94%

Quality control limits for LCS recovery are 50-150% for MTBE, 52-133% for benzene, 57-136% for toluene, 56-139% for ethylbenzene, and 56-141% for total xylenes.

9603195 **Woodward-Clyde Consultants Chain of Custody Record** 500 12th Street, Suite 100, Oakland, CA 94607-4014 (510) 893-3600 **ANALYSES** 3COZ76A Number of Containers REMARKS (Sample Sample Matrix (S)oil, (W)ater, (preservation, handling EPA Method EPA Method EPA Method procedures, etc.) SAMPLE NUMBER W 3 N W Results to: Bill Copeland TOTAL NUMBER OF CONTAINERS

RELINQUISHED &

PROJECT NO.

SAMPLERS: (Signature)

TIME

RELINQUISHED BY :

DATE/TIME

RECEIVED BY:

ETHOD OF SHIPMENT

RECEIVED BY:

(Signature)

(Signature)

SHIPPED BY: (Signature)

COURIER (Signature) RECEIVED FOR LAB BY : (Signatur)

DATE/TIME

SAMPLE RECEIVING CHECKLIST

Workorder Number: 9603/95	Client Project ID:	93 <u>(</u>	276A
Cooler			
Shipping documentation present?	(YES)	NO	N/A
If YES, enter Carrier and Airbill #: FEDEX FOUL 20317	181		
Custody Seal on the outside of cooler?	YES	NO	N/A
Condition: Intact Broken			
Temperature of sample(s) within range?	YES	NO	N/A
List temperatures of cooler(s): 3'	-		
Note: If all samples taken within previous 4 hr, circle N/A and pla	ce in		
sample storage area as soon as possible.			
Samples			
Chain of custody seal present for each container?	YES	NO	(N/A)
Condition: Intact Broken			\sim
Samples arrived within holding time?	YES:	NO	N/A
Samples in proper containers for methods requested?	YES	NO	
Condition of containers: Intact Broken			
If NO, were samples transferred to proper container(s)?			
Were VOA containers received with zero headspace?	(YES)	NO	N/A
If NO, was it noted on the chain of custody?			
Were container labels complete? (ID, date, time, preserv	vative) YES	NO	N/A
Were samples properly preserved?	YES	NO	N/A
If NO, was the preservative added at time of receipt?			
pH check of samples required at time of receipt?	YES	NO	
If YES, pH checked and recorded by:			
Sufficient amount of sample received for methods reque	ested? (YES)	NO	
If NO, has the client or PM been notified?			
Field blanks received with sample batch?	YES	NO	(N/A
Trip blanks received with sample batch?	(YES)	NO	N/A
Trip drains received with sample sures.			
Chain of Custody			
Chain of custody form received with samples?	(YES)	NO	
Has it been filled out completely and in ink?	(YES)	NO	
Sample IDs on chain of custody form agree with labels		NO	
Number of containers on chain agree with number rece		NO	
Analysis methods specified?	(ES)	NO	
Sampling date and time indicated?	(YES)	NO	
Proper signatures of sampler, courier and custodian in	(YES)	NO	
appropriate spaces? With time and date?	<u> </u>		
Turnaround time? Standard Rush			
Any NO responses and/or any BROKEN that was checked must be	e detailed in a Correcti	ve Action F	om.
Sample Custodian: The Date: 2/2364 Project			

f:\forms\newscr.doc

1961 Concourse Drive Suite E San Jose, CA 95131 Tel: 408-432-8192 Fax: 408-432-8198

MR. BILL COPELAND WOODWARD-CLYDE CONSULTANTS 500 12TH STREET, SUITE 100 OAKLAND, CA 94607-4014 Workorder # : 9603182 Date Received : 03/21/96 Project ID : 93C0276A

Purchase Order: N/A

The following samples were received at Inchcape for analysis:

ANAMETRIX ID	CLIENT SAMPLE ID
9603182- 1	S-1-5
9603182- 2	S-6-10
9603182- 3	S-11-14
9603182- 4	S-15-18
9603182- 5	S-19-21

This report is organized in sections according to the specific Inchcape laboratory group which performed the analysis(es) and generated the data.

The results contained within this report relate to only the sample(s) tested. Additionally, these data should be considered in their entirety and Inchcape cannot be responsible for the detachment, separation, or otherwise partial use of this report.

Inchcape is certified by the California Department of Health Services (DHS) to perform environmental testing under Certificate Number 1234.

If you have any further questions or comments on this report, please call your project manager as soon as possible. Thank you for using Inchcape Testing Services.

Project Manager

4-2-96

Date

This report consists of 25 pages.

REPORT SUMMARY INCHCAPE, INC. (408)432-8192

MR. BILL COPELAND

WOODWARD-CLYDE CONSULTANTS 500 12TH STREET, SUITE 100

OAKLAND, CA 94607-4014

Workorder # : 9603182
Date Received : 03/21/96
Project ID : 93C0276A
Purchase Order: N/A

Department : GC Sub-Department: TPH

SAMPLE INFORMATION:

INCHCAPE SAMPLE ID	CLIENT SAMPLE ID	MATRIX	DATE SAMPLED	METHOD
9603182- 1	S-1-5	SOIL	03/21/96	TPHgBTEX
9603182- 2	S-6-10	SOIL	03/21/96	TPHgBTEX
9603182- 3	S-11-14	SOIL	03/21/96	TPHgBTEX
9603182- 4	S-15-18	SOIL	03/21/96	TPHgBTEX
9603182- 5	S-19-21	SOIL	03/21/96	TPHgBTEX

REPORT SUMMARY INCHCAPE, INC. (408)432-8192

MR. BILL COPELAND WOODWARD-CLYDE CONSULTANTS 500 12TH STREET, SUITE 100 OAKLAND, CA 94607-4014 Workorder # : 9603182 Date Received : 03/21/96 Project ID : 93C0276A

Purchase Order: N/A
Department : GC
Sub-Department: TPH

QA/QC SUMMARY :

- All holding times have been met for the analyses reported in this section.

Department Supervisor

3/24/46 Date

e Chemi

Anylis 1 03/29/14 Date

GC/TPH- PAGE 2

INCHCAPE TESTING SERVICES - ANAMETRIX (408) 432-8192

DATA SUMMARY FORM

Anametrix ID:	9603182-01	Client Project ID:	93C0276A
Matrix:	SOIL	Client Sample ID:	S-1-5
Date Sampled:	3/21/96	Instrument ID:	HP6
Date Analyzed:	3/28/96	Surrogate Recovery:	99%
Date Released:	3/29/96	Concentration Units:	mg/Kg

Dilution <u>Factor</u>	Reporting <u>Limit</u>	Amount <u>Found</u>
5000	2.5	7.7
5000	2.5	15
5000	2.5	51
5000	2.5	29
5000	2.5	140
5000	250	2000
	5000 5000 5000 5000 5000	Factor Limit 5000 2.5 5000 2.5 5000 2.5 5000 2.5 5000 2.5 5000 2.5

ND: Not detected at or above the reporting limit for the method.

TPHg: Total Petroleum Hydrocarbons as gasoline is determined by GC/FID (modified EPA Method 8015) following sample purge and trap by EPA Method 5030.

BTEX: BTEX as Methyl tert-Butyl Ether, Benzene, Toluene, Ethylbenzene, and Total Xylenes is determined by GC/PID (modified EPA Method 8021) following sample purge and trap by EPA Method 5030.

Reporting limits are determined by dividing the dilution factor by 10 to generate an RLMF (reporting limit multiplication factor) which is then multiplied by the reporting limit for an undiluted sample. RLMFs of less than one are rounded up to one.

Surrogate recovery quality control limits for p-Bromofluorobenzene are 53-147%. All testing procedures follow California Department of Health Services approved methods.

Manalyst Date

Supervisor

INCHCAPE TESTING SERVICES - ANAMETRIX (408) 432-8192

DATA SUMMARY FORM

Anametrix ID:	9603182-02		Client Project ID:	93C0276A
Matrix:	SOIL		Client Sample ID:	S-6-10
Date Sampled:	3/21/96		Instrument ID:	HP6
Date Analyzed:	3/28/96		Surrogate Recovery:	102%
Date Released:	3/29/96		Concentration Units:	mg/Kg
		Dilution	Reporting	Amount
COMPOUND		<u>Factor</u>	<u>Limit</u>	<u>Found</u>
MtBE		2500	1.25	3.9
Benzene		2500	1.25	6.2
Toluene		2500	1.25	20
Ethylbenzene		2500	1.25	9.1
Total Xylenes	,	2500	1.25	45
Gasoline		2500	125	580

ND: Not detected at or above the reporting limit for the method.

TPHg: Total Petroleum Hydrocarbons as gasoline is determined by GC/FID (modified EPA Method 8015) following sample purge and trap by EPA Method 5030.

BTEX: BTEX as Methyl tert-Butyl Ether, Benzene, Toluene, Ethylbenzene, and Total Xylenes is determined by GC/PID (modified EPA Method 8021) following sample purge and trap by EPA Method 5030.

Reporting limits are determined by dividing the dilution factor by 10 to generate an RLMF (reporting limit multiplication factor) which is then multiplied by the reporting limit for an undiluted sample. RLMFs of less than one are rounded up to one.

Surrogate recovery quality control limits for p-Bromofluorobenzene are 53-147%. All testing procedures follow California Department of Health Services approved methods.

Analyst Date

Supervisor

INCHCAPE TESTING SERVICES - ANAMETRIX (408) 432-8192

DATA SUMMARY FORM

Anametrix ID:	9603182-03	Client Project ID:	93C0276A
Matrix:	SOIL	Client Sample ID:	S-11-14
Date Sampled:	3/21/96	Instrument ID:	HP6
Date Analyzed:	3/28/96	Surrogate Recovery:	103%
Date Released:	3/29/96	Concentration Units:	mg/Kg

COMPOUND	Dilution <u>Factor</u>	Reporting <u>Limit</u>	Amount <u>Found</u>
MtBE	500	0.25	ND
Benzene	500	0.25	0.68
Toluene	500	0.25	1.1
Ethylbenzene	500	0.25	0.27
Total Xylenes	500	0.25	3.3
Gasoline	500	25	83

ND: Not detected at or above the reporting limit for the method.

TPHg: Total Petroleum Hydrocarbons as gasoline is determined by GC/FID (modified EPA Method 8015) following sample purge and trap by EPA Method 5030.

BTEX: BTEX as Methyl tert-Butyl Ether, Benzene, Toluene, Ethylbenzene, and Total Xylenes is determined by GC/PID (modified EPA Method 8021) following sample purge and trap by EPA Method 5030.

Reporting limits are determined by dividing the dilution factor by 10 to generate an RLMF (reporting limit multiplication factor) which is then multiplied by the reporting limit for an undiluted sample. RLMFs of less than one are rounded up to one.

Surrogate recovery quality control limits for p-Bromofluorobenzene are 53-147%. All testing procedures follow California Department of Health Services

approved methods.

INCHCAPE TESTING SERVICES - ANAMETRIX (408) 432-8192

DATA SUMMARY FORM

Anametrix ID:	9603182-04	Client Project ID:	93C0276A
Matrix:	SOIL	Client Sample ID:	S-15-18
Date Sampled:	3/21/96	Instrument ID:	HP6
Date Analyzed:	3/28/96	Surrogate Recovery:	117%
Date Released:	3/29/96	Concentration Units:	mg/Kg

	Dilution	Reporting	Amount
COMPOUND	<u>Factor</u>	<u>Limit</u>	Found
		•	
MtBE	250	0.125	ND
Benzene	250	0.125	0.29
Toluene	250	0.125	1.4
Ethylbenzene	250	0.125	0.59
Total Xylenes	250	0.125	2.5
Gasoline	250	12.5	81

ND: Not detected at or above the reporting limit for the method.

TPHg: Total Petroleum Hydrocarbons as gasoline is determined by GC/FID (modified EPA Method 8015) following sample purge and trap by EPA Method 5030.

BTEX: BTEX as Methyl tert-Butyl Ether, Benzene, Toluene, Ethylbenzene, and Total Xylenes is determined by GC/PID (modified EPA Method 8021) following sample purge and trap by EPA Method 5030.

Reporting limits are determined by dividing the dilution factor by 10 to generate an RLMF (reporting limit multiplication factor) which is then multiplied by the reporting limit for an undiluted sample. RLMFs of less than one are rounded up to one.

Surrogate recovery quality control limits for p-Bromofluorobenzene are 53-147%. All testing procedures follow California Department of Health Services approved methods.

In 03/21/16 Analyst

INCHCAPE TESTING SERVICES - ANAMETRIX (408) 432-8192

DATA SUMMARY FORM

Anametrix ID:	9603182-05		Client Project ID:	93C0276A
Matrix:	SOIL		Client Sample ID:	S-19-21
Date Sampled:	3/21/96		Instrument ID:	HP6
Date Analyzed:	3/27/96		Surrogate Recovery:	114%
Date Released:	3/29/96		Concentration Units:	mg/Kg
		Dilution	Reporting	Amount
COMPOUND		<u>Factor</u>	<u>Limit</u>	Found
MtBE		2	0.005	ND
Benzene		2	0.005	ND
Toluene		2	0.005	ND
Ethylbenzene		2	0.005	ND
Total Xylenes		2	0.005	ND ·

ND: Not detected at or above the reporting limit for the method.

2

TPHg: Total Petroleum Hydrocarbons as gasoline is determined by GC/FID (modified EPA Method 8015) following sample purge and trap by EPA Method 5030.

0.5

BTEX: BTEX as Methyl tert-Butyl Ether, Benzene, Toluene, Ethylbenzene, and Total Xylenes is determined by GC/PID (modified EPA Method 8021) following sample purge and trap by EPA Method 5030.

Reporting limits are determined by dividing the dilution factor by 10 to generate an RLMF (reporting limit multiplication factor) which is then multiplied by the reporting limit for an undiluted sample. RLMFs of less than one are rounded up to one.

Surrogate recovery quality control limits for p-Bromofluorobenzene are 53-147%. All testing procedures follow California Department of Health Services

RESULTS - TPHg/BTEX - Page 5

approved methods.

Gasoline

Date Analyst

ND

INCHCAPE TESTING SERVICES - ANAMETRIX (408) 432-8192

DATA SUMMARY FORM

Anametrix ID:	BM2701E1	Client Project ID:	93C0276A
Matrix:	SOIL	Client Sample ID:	Sand Blank
Date Sampled:	N/A	Instrument ID:	HP6
Date Analyzed:	3/27/96	Surrogate Recovery:	108%
Date Released:	3/29/96	Concentration Units:	mg/Kg

	Dilution	Reporting	Amount
COMPOUND	<u>Factor</u>	<u>Limit</u>	Found
		_	
MtBE	. 1	0.005	ND
Benzene	1	0.005	ND
Toluene	1	0.005	ND
Ethylbenzene	1	0.005	ND
Total Xylenes	I	0.005	ND
Gasoline	1	0.5	ND

ND: Not detected at or above the reporting limit for the method.

TPHg: Total Petroleum Hydrocarbons as gasoline is determined by GC/FID (modified EPA Method 8015) following sample purge and trap by EPA Method 5030.

BTEX: BTEX as Methyl tert-Butyl Ether, Benzene, Toluene, Ethylbenzene, and Total Xylenes is determined by GC/PID (modified EPA Method 8021) following sample purge and trap by EPA Method 5030.

Reporting limits are determined by dividing the dilution factor by 10 to generate an RLMF (reporting limit multiplication factor) which is then multiplied by the reporting limit for an undiluted sample. RLMFs of less than one are rounded up to one.

Surrogate recovery quality control limits for p-Bromofluorobenzene are 53-147%. All testing procedures follow California Department of Health Services approved methods.

Analyst Date

Supervisor

INCHCAPE TESTING SERVICES - ANAMETRIX (408) 432-8192

DATA SUMMARY FORM

Anametrix ID:	BM2702E1		Client Project ID:	93C0276A
Matrix:	SOIL		Client Sample ID:	MEOH Blank
Date Sampled:	N/A	•	Instrument ID:	HP6
Date Analyzed:	3/27/96		Surrogate Recovery:	101%
Date Released:	3/29/96		Concentration Units:	mg/Kg
		Dilution	Reporting	Amount
COMPOUND		<u>Factor</u>	<u>Limit</u>	<u>Found</u>
MtBE		50	0,025	ND
Benzene		50	0.025	ND
Toluene		50	0.025	ND
Ethylbenzene		50	0.025	ND
Total Xylenes		50	0.025	ND
Gasoline		50	2.5	ND

ND: Not detected at or above the reporting limit for the method.

TPHg: Total Petroleum Hydrocarbons as gasoline is determined by GC/FID (modified EPA Method 8015) following sample purge and trap by EPA Method 5030.

BTEX: BTEX as Methyl tert-Butyl Ether, Benzene, Toluene, Ethylbenzene, and Total Xylenes is determined by GC/PID (modified EPA Method 8021) following sample purge and trap by EPA Method 5030.

Reporting limits are determined by dividing the dilution factor by 10 to generate an RLMF (reporting limit multiplication factor) which is then multiplied by the reporting limit for an undiluted sample. RLMFs of less than one are rounded up to one.

Surrogate recovery quality control limits for p-Bromofluorobenzene are 53-147%. All testing procedures follow California Department of Health Services approved methods.

Analyst Date

Supervisor

INCHCAPE TESTING SERVICES - ANAMETRIX (408) 432-8192

DATA SUMMARY FORM

Anametrix ID: Matrix: Date Sampled: Date Analyzed: Date Released:	BM2802E1 SOIL N/A 3/28/96 3/29/96	Client Project ID: Client Sample ID: Instrument ID: Surrogate Recovery: Concentration Units:		93C0276A MEOH Blank HP6 94% mg/Kg
		Dilution	Reporting	Amount Found
COMPOUND		<u>Factor</u>	<u>Limit</u>	. Found
MtBE		50	0.025	ND
Benzene		50	0.025	ND
Toluene		50	0.025	ND
Ethylbenzene		50	0.025	ND
Total Xylenes		50	0.025	ND
Gasoline		50	2.5	ND

ND: Not detected at or above the reporting limit for the method.

TPHg: Total Petroleum Hydrocarbons as gasoline is determined by GC/FID (modified EPA Method 8015) following sample purge and trap by EPA Method 5030.

BTEX: BTEX as Methyl tert-Butyl Ether, Benzene, Toluene, Ethylbenzene, and Total Xylenes is determined by GC/PID (modified EPA Method 8021) following sample purge and trap by EPA Method 5030.

Reporting limits are determined by dividing the dilution factor by 10 to generate an RLMF (reporting limit multiplication factor) which is then multiplied by the reporting limit for an undiluted sample. RLMFs of less than one are rounded up to one.

Surrogate recovery quality control limits for p-Bromofluorobenzene are 53-147%. All testing procedures follow California Department of Health Services approved methods.

Analyst Date

Cheugh Balman Supervisor

INCHCAPE TESTING SERVICES - ANAMETRIX (408) 432-8192

MATRIX SPIKE RECOVERY REPORT

Client Project ID:	93C0276A			Anametrix 1	D:	9603182-05	
Client Sample ID:	S-19-21			Date Releas	sed:	3/29/96	
Date Sampled:	3/21/96			Instrument	ID:	HP6	
Date Analyzed:	3/27/96			Matrix:		SOIL	
				Concentrati	on Units:	mg/Kg	
COMPOUND	SPIKE	SAMPLE	MS	% REC	MSD	%REC	
<u>NAME</u>	<u>AMT</u>	<u>CONC</u>	<u>CONC</u>	<u>MS</u>	<u>CONC</u>	<u>MSD</u>	<u>RPD</u>
Gasoline	1.0	0	0.79	79%	0.70	70%	-12%

104%

Quality control limits for MS/MSD recovery are 48-149%

p-Bromofluorobenzene

Quality control limits for RPD(relative percent difference) are +/- 30%.

Quality control limits for p-Bromofluorobenzene recovery are 53-147%.

103%

INCHCAPE TESTING SERVICES - ANAMETRIX (408) 432-8192

MATRIX SPIKE RECOVERY REPORT

Client Project ID:	93C0276A	Anametrix ID:	9603207-02
Client Sample ID:	Batch Spike	Date Released:	3/29/96
Date Sampled:	3/23/96	Instrument ID:	HP6
Date Analyzed:	3/28/96	Matrix:	SOIL
		Concentration Units:	mg/Kg

COMPOUND NAME	SPIKE <u>AMT</u>	SAMPLE CONC	MS <u>CONC</u>	% REC <u>MS</u>	MSD CONC	%REC <u>MSD</u>	<u>RPD</u>
MtBE	0.0200	0	0.0172	86%	0.0174	87%	1%
Benzene	0.0200	0	0.0189	95%	0.0188	94%	-1%
Toluene	0.0200	0	0.0205	103%	0.0212	106%	3%
Ethylbenzene	0.0200	0	0.0168	84%	0.0159	80%	-6%
Total Xylenes	0.0200	0	0.0163	82%	0.0176	88%	8%
p-Bromofluoroben	zene			86%		83%	

Quality control limits for MS/MSD recovery are 50-150% for methyl tert-butyl ether, 45-139% for benzene, 51-138% for toluene, 48-146% for ethylbenzene, and 50-139% for total xylenes.

Quality control limits for RPD(relative percent difference) are +/- 30%.

INCHCAPE TESTING SERVICES - ANAMETRIX (408) 432-8192

LABORATORY CONTROL SAMPLE REPORT

Client Project ID: 93C0276A

p-Bromofluorobenzene

Anametrix ID:

MM2702E1

Matrix:

SOIL

Date Released:

3/29/96

Date Analyzed:

3/28/96

Instrument ID:

HP6

Concentration Units:

mg/Kg

99%

COMPOUND	SPIKE	LCS	%REC
NAME	<u>AMT</u>	<u>CONC</u>	<u>LCS</u>
Gasoline	0.50	0.54	108%

Quality control limits for LCS recovery are 58-130%.

TOTAL PETROLEUM HYDROCARBONS

INCHCAPE TESTING SERVICES - ANAMETRIX (408) 432-8192

BTEX LABORATORY CONTROL SAMPLE REPORT

Client Project ID:	93C0276A		Α	nametrix ID:	NM2701E3
Matrix:	SOIL		D	ate Released:	3/29/96
Date Analyzed:	3/28/96		Ir	strument ID:	HP 6
			C	oncentration Units:	mg/Kg
COMPOUND		SPIKE		LCS	%REC
NAME		<u>AMT</u>		CONC	<u>LCS</u>
Methyl tert-butyl e	ther	0.0100		0.0087	87%
Benzene		0.0100		0.0095	95%
Toluene		0.0100		0.0094	94%
Ethylbenzene		0.0100		0.0096	96%
Total Xylenes		0.0100		0.0090	90%
Duemody each on	-				99%
p-Bromofluoroben	zene				2270

Quality control limits for LCS recovery are 50-150 % for methyl tert-butyl ether, 52-133% for benzene, 57-136% for toluene, 56-139% for ethylbenzene, and 56-141% for total xylenes.

TOTAL PETROLEUM HYDROCARBONS

INCHCAPE TESTING SERVICES - ANAMETRIX (408) 432-8192

BTEX LABORATORY CONTROL SAMPLE REPORT

Client Project ID:	93C0276A	Anametrix ID:	MM2801E3
Matrix:	SOIL	Date Released:	3/29/96
Date Analyzed:	3/28/96	Instrument ID:	HP6
		Concentration Units:	mg/Kg

COMPOUND NAME	SPIKE <u>AMT</u>	LCS <u>CONC</u>	%REC <u>LCS</u>
Methyl tert-butyl ether	0.0100	0.0082	82%
Benzene	0.0100	0.0097	97%
Toluene	0.0100	0.0096	96%
Ethylbenzene	0.0100	0.0098	98%
Total Xylenes	0.0100	0.0094	94%
p-Bromofluorobenzene			107%

Quality control limits for LCS recovery are 50-150 % for methyl tert-butyl ether, 52-133% for benzene, 57-136% for toluene, 56-139% for ethylbenzene, and 56-141% for total xylenes.

INCHCAPE TESTING SERVICES - ANAMETRIX (408) 432-8192

LABORATORY CONTROL SAMPLE REPORT

Client Project ID: 93C0276A

Anametrix ID:

NM2801E1

Matrix:

SOIL

Date Released:

3/29/96

Date Analyzed:

3/28/96

Instrument ID:

HP6

Concentration Units:

mg/Kg

COMPOUND NAME	SPIKE <u>AMT</u>	LCS <u>CONC</u>	%REC <u>LCS</u>
Gasoline	0.50	0.50	100%
p-Bromofluorobenzene			92%

Quality control limits for LCS recovery are 58-130%.

ANAMETRIX REPORT DESCRIPTION INORGANICS

Analytical Data Report (ADR)

The ADR contains tabulated results for inorganic analytes. All field samples, QC samples and blanks were prepared and analyzed according to procedures in the following references:

- "Test Methods for Evaluating Solid Waste," SW-846, EPA, 3rd Edition, November 1986.
- "Methods for Chemical Analysis of Water and Wastes," EPA, 3rd Edition, 1983.
- CCR Title 22, Section 66261, Appendix II, California Waste Extraction Test.
 - CCR Title 22, Section 66261, Appendix XI, Organic Lead.
- "Standard Methods for the Examination of Water and Wastewater," APHA, AWWA, WEF, 18th Edition, 1992.
- USEPA Contract Laboratory Program Statement of Work for Inorganic Analyses, ILM02.1, 1991.

Matrix Spike Report (MSR)

The MSR summarizes percent recovery and relative percent difference information for matrix spikes and matrix spike duplicates. This information is a statement of both accuracy and precision. MSRs may not be provided with all analytical reports. Anametrix control limit for MSR is 75-125% with 25% for RPD limits, except for Method 6010A, which is 80-120% with 25% RPD limits.

Laboratory Control Sample Report (LCSR)

The LCSR summarizes percent recovery information for laboratory control spikes on reagent water or soil. This information is a statement of performance for the method, i.e., the samples are properly prepared and analyzed according to the applicable methods. Anametrix control limit for LCSR is 80-120%.

Method Blank Report (MBR)

The MBR summarizes quality control information for reagents used in preparing samples. The absolute value of each analyte measured in the method blank should be below the method reporting limit for that analyte.

Post Digestion Spike Report (PDSR)

The PDSR summarizes percent recovery information for post digestion spikes. A post digestion spike is performed for a particular analyte if the matrix spike recovery is outside of established control limits. Any percent recovery for a post digestion spike outside of established limits for an analyte indicates probable matrix effects and interferences for that analyte. Anametrix control limit for PDSR is 75-125%.

Qualifiers (Q)

Anametrix uses several data qualifiers in inorganic reports. These qualifiers give additional information on the analytes reported. The following is a list of qualifiers and their meanings:

- 1 Sample was analyzed at the stated dilution due to interferences.
- U Analyte concentration was below the method reporting limit. For matrix and post digestion spike reports, a value of "0.0" is entered for calculation of the percent recovery.
- B Sample concentration was below the reporting limit but above the instrument detection limit. Result is entered for calculation of the percent recovery only.
- H Spike percent recovery was outside of Anametrix control limits due to interferences from relatively high concentration level of the analyte in the unspiked sample.
- L Reporting limit was increased to compensate for background absorbances or matrix interferences.

Comment Codes

In addition to qualifiers, the following codes are used in the comment section of all reports to give additional information about sample preparation methods:

- A Sample was prepared for silver based on the silver digestion method developed by the Southern California Laboratory, Department of Health Services, "Acid Digestion for Sediments, Sludges, Soils and Solid Wastes. A Proposed Alternative to EPA SW846, Method 3050." Environmental Science and Technology, 1989, 23, 898-900.
- T Spikes were prepared after extraction by the Toxicity Characteristic Leaching Procedure (TCLP).
- C Spikes were prepared after extraction by the California Waste Extraction Test (CWET) method.
- D Reported results are dissolved, not total, metals.

Reporting Conventions

Analytical values reported are gross values, i.e., not corrected for method blank contamination. Solid matrices are reported on a wet weight basis, unless specifically requested otherwise.

REPORT SUMMARY INCHCAPE, INC. (408)432-8192

MR. BILL COPELAND

WOODWARD-CLYDE CONSULTANTS 500 12TH STREET, SUITE 100 OAKLAND, CA 94607-4014

Workorder # : 9603182
Date Received : 03/21/96
Project ID : 93C0276A
Purchase Order: N/A
Department : METALS

Sub-Department: METALS

SAMPLE INFORMATION:

INCHCAPE SAMPLE ID	CLIENT SAMPLE ID	MATRIX	DATE SAMPLED	METHOD
9603182- 1	S-1-5	SOIL	03/21/96	6010
9603182- 2	S-6-10	SOIL	03/21/96	6010
9603182- 3	S-11-14	SOIL	03/21/96	6010
9603182- 4	S-15-18	SOIL	03/21/96	6010
9603182- 5	S-19-21	SOIL	03/21/96	6010

REPORT SUMMARY INCHCAPE, INC. (408)432-8192

MR. BILL COPELAND

WOODWARD-CLYDE CONSULTANTS 500 12TH STREET, SUITE 100

OAKLAND, CA 94607-4014

Workorder # : 9603182 Date Received : 03/21/96 Project ID : 93C0276A

Purchase Order: N/A
Department : METALS
Sub-Department: METALS

QA/QC SUMMARY :

- All holding times have been met for the analyses reported in this section.

Mong Kame Jor 04/01/96
Department Supervisor Date

chemist Johnson 4/196

INORGANICS - PAGE 2

INCHCAPE TESTING SERVICES ANAMETRIX LABORATORIES (408) 432-8192 DATA REPORT

Analyte-Method: Lead-6010A Client Project Number: 93C0276A

Matrix - Units: SOIL - mg/Kg

Analyst: FN Supervisor: Mi

Anametrix Sample ID	Client Sample ID	Prep. Method	Instr. ID	Date Sampled	Date Prepared	Date Analyzed	D.F.	Reporting Limit	Results	Q
9603182-01	S-1-5	3050A	ICP2	03/21/96	03/25/96	03/27/96	1	4.0	12.0	
9603182-02	S-6-10	3050A	ICP2	03/21/96	03/25/96	03/27/96	1	4.0	13.8	
9603182-03	S-11-14	3050A	ICP2	03/21/96	03/25/96	03/27/96	1	4.0	14.8	
9603182-04	S-15-18	3050A	ICP2	03/21/96	03/25/96	03/27/96	1	4.0	8.5	
9603182-05	S-19-21	3050A	ICP2	03/21/96	03/25/96	03/27/96	1	4.0	6.0	
BM256SA	METHOD BLANK	3050A	ICP2	N/A	03/25/96	03/27/96	1	4.0	ND	

COMMENTS:

INCHCAPE TESTING SERVICES ANAMETRIX LABORATORIES (408) 432-8192 MATRIX SPIKE REPORT

Anametrix. Sample ID: 9603180-05MS, MD

Client Sample ID: BATCH SPIKE

Client Proj. Number: 93C0276A

Matrix: SOIL

Associated W.O.# 9603182

Analyst:	1-11
Supervisor:	MW

	Analyte	Analyt. Method	Instr. I.D.	Date Prepared	Date Analyzed	Units	Spike Amount	Sample Conc.	Matrix Spike Conc.	% Rec.	Matrix Sp. Dup. Conc.	% Rec.	RPD	Q
Lea	d	6010A	ICP2	03/25/96	03/27/96	mg/Kg	50.0	4.8	59.7	110	59.0	108	1.2	

COMMENTS:

INCHCAPE TESTING SERVICES **ANAMETRIX LABORATORIES**

(408) 432-8192

LABORATORY CONTROL SAMPLE REPORT

Lab. Control Sample ID: LM256SA

Anametrix WO #: 9603182

Client Project Number: 93C0276A

Matrix: SOIL

Analyst: Supervisor: MW

Analyte	Prep. Method	Analytical Method	Instr. ID	Date Prepared	Date Analyzed	Dil. Factor	Units	Spike Amount	LCS Results	% Recovery	Q
Lead	3050A	6010A	ICP2	03/25/96	03/27/96	1	mg/Kg	50.0	47.2	94.4	

COMMENTS:

7603182(26) **Woodward-Clyde Consultants Chain of Custody Record** 500 12th Street, Suite 100, Oakland, CA 94607-4014 (510) 893-3600 PROJECT NO. **ANALYSES** 23C0276A Number of Containers SAMPLERS: (Signature) REMARKS (Sample preservation, EPA Method EPA Method EPA Method handling procedures, etc.) DATE TIME SAMPLE NUMBER <u>S</u> 17:39 IZ:43 <u>S</u>SSS 13:00 Hold for composite information. 13:07 5 -/0 S <u>S</u> -17 14:22 <u>5</u> S Resultsto: Bill Copeland 15:03 3/21/1015:09 5-2 TOTAL NUMBER OF CONTAINERS 3 2 96 RELINQUISHED BY 3 2 96 DATE TIME RECEIVED BY: RELINQUISHED BY DATE/TIME RECEIVED BY: (Sign**at**ure) (Signature) (Sidnature) llow (Signature) 1830 [Z-5] METHOD OF SHIPMENT SHIPPED RECEIVED FOR LAB BY : COURIER DATE:TIME (Signature) (Signature) (Signature) 4/ 1830

SAMPLE RECEIVING CHECKLIST

Workorder Number: 9603/82 Clien	nt Project ID:	9300	276A
Cooler			
Shipping documentation present?	YES	NO	(N/A)
If YES, enter Carrier and Airbill #:		210	••••
Custody Seal on the outside of cooler?	YES	NO	N/A)
Condition: Intact Broken			
Temperature of sample(s) within range?	(YES)	NO	N/A
List temperatures of cooler(s): 3 'C			
Note: If all samples taken within previous 4 hr, circle N/A and place in			
sample storage area as soon as possible.			
Samples			
Chain of custody seal present for each container?	YES	NO	MA
Condition: Intact Broken			
Samples arrived within holding time?	YES	NO	N/A
Samples in proper containers for methods requested?	YES .	NO	
Condition of containers: Intact Broken			
If NO, were samples transferred to proper container(s)?			
Were VOA containers received with zero headspace?	YES	NO	NA
If NO, was it noted on the chain of custody?			
Were container labels complete? (ID, date, time, preservative		NO	N/A
Were samples properly preserved?	YES	NO	N/A
If NO, was the preservative added at time of receipt?			
pH check of samples required at time of receipt?	YES	NO	
If YES, pH checked and recorded by:			
Sufficient amount of sample received for methods requested	? (YES)	NO	
If NO, has the client or PM been notified?			
Field blanks received with sample batch?	YES	NO	
Trip blanks received with sample batch?	YES	NO	(N/A)
Chain of Custody			
Chain of custody form received with samples?	YES_	NO	
Has it been filled out completely and in ink?	YES	(NO)	
Sample IDs on chain of custody form agree with labels?	(YES)	NO	
Number of containers on chain agree with number received?		NO	
Analysis methods specified?	YES_	NO	
Sampling date and time indicated?	(YEZ)	NO	
Proper signatures of sampler, courier and custodian in	YES	NO	
appropriate spaces? With time and date?			
Turnaround time? Standard Rush			
Any NO responses and/or any BROKEN that was checked must be deta	illed in a Correcti	ve Action Fo	orm.
Sample Custodian: 5r Date: 3/2/46 Project Man	ager: W	Date: <u>3-7</u>	2-46

f:\forms\newscr.doc