RECEIVED

3:48 pm, Dec 14, 2009

Alameda County Environmental Health **Stacie H. Frerichs** Team Lead Marketing Business Unit Chevron Environmental Management Company 6001 Bollinger Canyon Road San Ramon, CA 94583 Tel (925) 842-9655 Fax (925) 842-8370

December 14, 2009 (date)

Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Re: Chevron Facility # <u>21-1173</u>

Address: 500 Grand Avenue, Oakland, California_

I have reviewed the attached report titled <u>Site Conceptual Model and Case Closure</u> <u>Request______</u> and dated <u>December 14, 2009</u>.

I agree with the conclusions and recommendations presented in the referenced report. The information in this report is accurate to the best of my knowledge and all local Agency/Regional Board guidelines have been followed. This report was prepared by Conestoga-Rovers & Associates, upon whose assistance and advice I have relied.

This letter is submitted pursuant to the requirements of California Water Code Section 13267(b)(1) and the regulating implementation entitled Appendix A pertaining thereto.

I declare under penalty of perjury that the foregoing is true and correct.

Sincerely,

SHFrencho

Stacie H. Frerichs Project Manager

Enclosure: Report

SITE CONCEPTUAL MODEL AND CASE CLOSURE REQUEST

FORMER TEXACO STATION 21-1173 (FORMER EXXON NO. 7-0237) 500 GRAND AVENUE OAKLAND, CALIFORNIA LOP CASE NO. RO0000391

Prepared For: Mr. Mark Detterman, PG, CEG Alameda County Environmental Health

> Prepared by: Conestoga-Rovers & Associates

10969 Trade Center Drive, Suite 107 Rancho Cordova, California U.S.A. 95670

Office: (916) 889-8900 Fax: (916) 889-8999

web: http://www.CRAworld.com

DECEMBER 14, 2009 REF. NO. 612049 (2)

SITE CONCEPTUAL MODEL AND CASE CLOSURE REQUEST

FORMER TEXACO STATION 21-1173 (FORMER EXXON NO. 7-0237) 500 GRAND AVENUE OAKLAND, CALIFORNIA LOP CASE NO. RO0000391

Christopher J. Benedict

James P. Kiernan, P.E.

Prepared by: Conestoga-Rovers & Associates

10969 Trade Center Drive, Suite 107 Rancho Cordova, California U.S.A. 95670

Office: (916) 889-8900 Fax: (916) 889-8999

web: http://www.CRAworld.com

DECEMBER 14, 2009 Ref. No. 612049 (2)

TABLE OF CONTENTS

1.0

2.0

3.0	SITE CH	HARACTERISTICS	4		
	3.1	REGIONAL GEOLOGY AND HYDROGEOLOGY	4		
	3.2	SITE GEOLOGY AND HYDROGEOLOGY	4		
	3.3	NEARBY WELLS AND SENSITIVE RECEPTORS	5		
	3.4	PREFERENTIAL PATHWAY EVALUATION	6		
4.0	SUMM	ARY OF PREVIOUS ENVIRONMENTAL WORK	7		
5.0	RECENT GROUNDWATER MONITORING RESULTS15				
6.0	CONSTITUENTS OF CONCERN				
	6.1	SOIL	16		
	6.2	GROUNDWATER	17		
	6.3	SOIL VAPOR	17		
7.0	PETROLEUM HYDROCARBON SOURCES AND DISTRIBUTION 17				
	7.1	RELEASE SOURCE AND VOLUME	17		
	7.2	POTENTIAL OFFSITE SOURCES			
	7.3	PETROLEUM HYDROCARBON DISTRIBUTION IN SOIL			
	7.4	PETROLEUM HYDROCARBON DISTRIBUTION			
		IN GROUNDWATER			
	741	LIGHT NON-AQUEQUS PHASE LIQUID	24		
	7.5	PETROLEUM HYDROCARBON DISTRIBUTION IN SOIL VAPOI	R24		
8.0	RISK EVALUATION 25				
0.0	81	NEARBY WELLS AND SENSITIVE RECEPTORS	25		
	8.2	POTENTIAL EXPOSURE PATHWAYS.			
	8.2.1	SOIL			
	8.2.2	GROUNDWATER			
	823	SURFACE WATER	<u>2</u> 0 26		
	8.2.0	VAPOR INTRUSION	<u>2</u> 0 27		
	8.3	COMPARISON TO ENVIRONMENTAL SCREENING LEVELS	27		
	831	SOIL	28		
	8.3.2	GROUNDWATER	<u>2</u> 0 29		
	8.3.3	SOIL VAPOR			
9.0	LOW-RISK GROUNDWATER CRITERIA				
	9.1 THE LEAK HAS BEEN STOPPED AND ONGOING SOURCES.				
	INCLUDING LNAPL, HAVE BEEN REMOVED OR REMEDIATED				
	92	THE SITE HAS BEEN ADEOUATELY CHARACTERIZED	31		
	·				
6120/0 (2)		CONECTORA-ROI/EDC	& Associates		
J1∠U49 (∠)		CONESTOGA-NOVERS	C AUGUUATES		

	9.3	THE DISSOLVED HYDROCARBON PLUME IS STABLE,	
		DECREASING, AND NOT MIGRATING	32
	9.4	NO WATER WELLS, DEEPER DRINKING	
		WATER AQUIFERS, SURFACE WATER, OR OTHER	
		SENSITIVE RECEPTORS ARE LIKELY TO BE IMPACTED	32
	9.5	THE SITE PRESENTS NO SIGNIFICANT RISK	
		TO HUMAN HEALTH OR THE ENVIRONMENT	33
10.0	CONCLU	JSIONS AND RECOMMENDATIONS	33

LIST OF FIGURES (Following Text)

- FIGURE 1 VICINITY MAP
- FIGURE 2 SITE PLAN
- FIGURE 3 GEOLOGIC CROSS-SECTION A-A'
- FIGURE 4 GEOLOGIC CROSS-SECTION B-B'
- FIGURE 5 HISTORICAL ANALYTICAL RESULTS IN SOIL
- FIGURE 6 HYDROCARBON CONCENTRATION MAP OCTOBER 1, 2009
- FIGURE 7 TPHD ISOCONCENTRATION MAP

LIST OF TABLES (Following Text)

- TABLE 1WELL CONSTRUCTION DETAILS
- TABLE 2SOIL SAMPLE ANALYTICAL RESULTS
- TABLE 3GRAB-GROUNDWATER SAMPLE ANALYTICAL RESULTS
- TABLE 4SOIL VAPOR SAMPLE ANALYTICAL RESULTS

LIST OF APPENDICES

- APPENDIX A REGULATORY CORRESPONDENCE
- APPENDIX B HISTORICAL BORING LOGS
- APPENDIX C SECOND AND THIRD QUARTER 2009 GROUNDWATER MONITORING REPORTS AND HISTORICAL GROUNDWATER MONITORING DATA
- APPENDIX D SENSITIVE RECEPTOR AND WELL SURVEY INFORMATION
- APPENDIX E PREFERENTIAL PATHWAY STUDY INFORMATION
- APPENDIX F PREVIOUS SITE PLANS

1.0 INTRODUCTION

Conestoga-Rovers & Associates (CRA) has prepared this *Site Conceptual Model and Case Closure Request* on behalf of Chevron Environmental Management Company (Chevron) for former Texaco Service Station No. 21-1173 (former Exxon No. 7-0237) located at 500 Grand Avenue in Oakland, California. Preparation of a site conceptual model (SCM) to summarize site conditions, identify potential receptors and potentially complete exposure pathways, and evaluate if any data gaps exist was requested by Alameda County Environmental Health (ACEH) in a letter dated September 30, 2008 (Technical Comment No. 6).

In Technical Comments No. 1-3 of the September 30, 2008 letter, ACEH noted that the investigation summarized in the August 14, 2008 Subsurface Investigation Report was not performed as was proposed in the September 14, 2007 Workplan for Additional Soil Vapor Study (the installation and sampling of five soil vapor wells [SV-4 through SV-8] onsite and the drilling of three offsite borings). The soil vapor wells were not installed due to high groundwater levels, and the three offsite borings were not drilled due to safety concerns with numerous underground utilities present in Grand Avenue. Therefore, ACEH requested the completion of the vapor sampling, with the exception that the wells be installed in native soil rather than excavation backfill; information regarding the utilities present and clearance activities performed in Grand Avenue was also requested. In Technical Comment No. 4 of the letter, ACEH concurred with our recommendation that the remaining monitoring wells be redeveloped and sampled to evaluate current conditions as they had not been sampled since 2000. In Technical Comment No. 5 of the letter, ACEH requested the performance of a study to evaluate if any preferential pathways may exist that could contribute to the migration of impacted groundwater, including utility and well surveys. A copy of the letter is presented in Appendix A.

CRA subsequently prepared and submitted the November 21, 2008 *Response to Comments and Revised Scope of Work*, in which the collection of the soil vapor samples using direct-push methods was proposed rather than the installation of wells due to the high groundwater levels encountered, and the collection of additional soil samples in these areas was no longer recommended as sufficient data had been collected during the previous investigations. Regarding the three proposed borings in Grand Avenue, upon review of the historical data it was determined that sufficient data had been collected to adequately evaluate the downgradient extent of impacted soil; therefore, these borings were no longer recommended. It was noted that the monitoring wells would be redeveloped and sampled once an encroachment permit could be secured with the City of Oakland (City) for the five wells in Grand Avenue. Regarding the preparation of a SCM, CRA recommended that it should reflect current conditions including groundwater monitoring data (at least two quarters) and the results of any soil vapor sampling. Finally, CRA concurred that a preferential pathway study was warranted; the results would be presented in the SCM. In a letter dated May 13, 2009 (Technical Comments No. 1-4), ACEH concurred with the above recommendations; a copy of the letter is presented in Appendix A.

Please note that CRA had planned to perform the additional soil vapor sampling at the site in June 2009 as it likely was the best time of the year to perform the work (i.e., lowest groundwater levels during summer). However, during the groundwater monitoring event in early June, the depth to groundwater in the onsite wells ranged from approximately 0.9 to 1.3 feet. Based on this information, the work was not performed as it did not appear that accurate soil vapor data could be obtained. This was communicated to ACEH via e-mail on September 9, 2009, and acknowledged in a return e-mail from ACEH on September 10, 2009. During the October 2009 groundwater monitoring event, the depth to water in onsite well MW-8K was 1.85 feet, still too shallow to obtain valid soil vapor data. Therefore, it does not appear this work can be performed. However, based on the site conditions, vapor intrusion does not appear to be a significant concern and thus additional soil vapor sampling does not appear warranted, as will be further discussed.

The encroachment permit issue with the City was resolved in May 2009 and the wells were generally able to be redeveloped and sampled during the second and third quarters. However, please note that separate groundwater monitoring reports were not submitted by CRA for the two events; rather the results of the groundwater monitoring are discussed herein. Copies of the reports are included in an appendix.

Based on our review of the site background and conditions, the site appears to meet the San Francisco Bay Regional Water Quality Control Board (RWQCB) criteria for closure as a low-risk groundwater case as described in their January 5, 1996 memorandum entitled *Interim Guidance on Required Cleanup of Low-Risk Fuel Sites*.

The site description and background, site characteristics, a summary of previous environmental work, the results of the current groundwater monitoring, a discussion of remaining impacts at the site, an evaluation of potential risk, our rationale for closure based on the low-risk groundwater case criteria, and our conclusions and recommendations are presented in the following sections.

2.0 <u>SITE DESCRIPTION AND BACKGROUND</u>

The site is located on the northeast corner of the intersection of Grand Avenue and Euclid Avenue (Figure 1), and is currently a paved public parking lot. The site was formerly occupied by a Texaco, and later Exxon, service station. The date the site was first occupied by a service station is unknown; however, based on historical aerial photographs, the site appears to have been occupied by a service station as early as 1946. The site operated as a Texaco service station until 1988; then as an Exxon service station until 1991. The most recent former station facilities included a station building with three service bays containing a sump and two hydraulic hoists, three 10,000-gallon gasoline (unleaded and leaded) underground storage tanks (USTs), a 500-gallon used-oil UST, two dispenser islands, and associated product piping (Figure 2). The most recent USTs reportedly were installed in the mid-1980s. The used-oil UST was removed from the site in 1990 and the station was decommissioned in 1991 when Exxon's lease expired. In 1992, the station was demolished and all aboveground and belowground facilities were removed, including the three gasoline USTs. The site remained a vacant lot until the mid-1990s, when it was paved for use as an unattended public parking lot. No structures are present onsite.

Surrounding land use is mixed commercial and residential. The site is bounded by Grand Avenue to the south, Euclid Avenue to the west, a multi-family residential structure to the north, and a three-story structure (occupied by the American Indian Child Resource Center) to the east. The site is relatively flat at an approximate elevation of 20 feet above mean sea level (msl). To the south of the site across Grand Avenue is a portion of a city park followed by Lake Merritt, an estuarine urban surface water body, approximately 225 feet south of the site.

Environmental investigation at the site has been ongoing since 1988. To date, 23 exploratory borings (B-1 through B-14, B-8K, S1 through S3, and SV-4 through SV-8) have been drilled, 12 monitoring wells (MW-8A through MW-8L) have been installed, and 2 soil vapor surveys have been performed. Two monitoring wells (MW-8K and MW-8L) remain onsite, and five (MW-8F, MW-8G, MW-8H, MW-8I, and MW-8J) are present offsite in Grand Avenue. The well construction details are presented in Table 1. Groundwater monitoring was performed from 1988 through 2000, when it was discontinued as the site was being reviewed for closure. Remedial activities performed at the site have consisted of extensive over-excavation of impacted soil (at least 2,400 cubic yards), groundwater extraction (at least 36,300 gallons), and the placement of Oxygen Releasing Compound[®] (ORC) in wells MW-8F, MW-8G, and MW-8I. A summary of the environmental work performed at the site to date is presented in Section 4.0. The approximate well and boring locations are shown on Figure 2.

3.0 <u>SITE CHARACTERISTICS</u>

3.1 <u>REGIONAL GEOLOGY AND HYDROGEOLOGY</u>

The site is located on the East Bay Plain as mapped by E.J. Helley and others.¹ Soil in the site vicinity consists of Holocene-age, medium-grained alluvium consisting of unconsolidated, moderately sorted, fine sand, silt, and clayey silt with a few thin beds of coarse sand. These materials are underlain by late Pleistocene-age alluvium consisting of weakly consolidated, slightly weathered, poorly sorted, interbedded clay, silt, sand, and gravel. The local topography consists of gently rolling hills and flatland.

The site is located in the East Bay Plain Basin. The basin is an elongated, northwesttrending, flat alluvial plain occupying approximately 115 square miles. The basin is bounded by San Francisco Bay to the west, by San Pablo Bay to the north, by the Hayward fault to the east, and by the boundary of the Alameda County Water District to the south. The bottom of the basin is the contact between the consolidated and unconsolidated sediment, which can occur at maximum depths of 1,000 feet. The Oakland Sub-area consists of a series of alluvial fan deposits. There are no well-defined estuarine muds that act as aquitards for migration². Designated beneficial uses for groundwater in this basin include municipal, industrial, and agricultural uses. However, there is no evidence that groundwater supplies are sufficient for municipal use, primarily due to the low recharge rates. We understand there are no current or planned uses of groundwater in the site vicinity as a drinking water source.

3.2 <u>SITE GEOLOGY AND HYDROGEOLOGY</u>

Based on previous investigations, soil beneath the site generally consists of fine-grained material (clays and silts) with varying amounts of sand and gravel. A layer of clayey sand several feet thick was generally encountered at 10 to 15 feet below grade (fbg). In some of the borings, additional layers of clayey sand were encountered at approximately 5 fbg or between 20 and 25 fbg. Copies of the available historical boring logs are presented in Appendix B. Geologic cross-sections presenting soil encountered beneath the site are presented on Figures 3 and 4. However, as previously mentioned, the

¹ 1979, Flatland Deposits of the San Francisco Bay Region, California: U.S. Geological Survey Professional Paper 943

² From Department of Water Resources Bulletin 118-2-9.04

majority of the site was over-excavated to remove impacted soil (Figure 2) and backfilled with imported material (clayey gravel); this is reflected on the cross-sections.

Groundwater was encountered in the borings drilled at the site at depths ranging from less than 1 to approximately 16.5 fbg. Depth to groundwater in the site monitoring wells has ranged from less than 1 to approximately 12.5 feet below top of casing (TOC). The groundwater flow direction has consistently been to the south-southeast towards Lake Merritt. A groundwater rose diagram depicting radial gradient vectors is presented on Figure 2. Copies of the second and third quarter 2009 groundwater monitoring reports are presented in Appendix C. The historic range of groundwater elevations is shown on the cross-sections on Figures 3 and 4.

Previous studies have indicated that groundwater beneath the site moves relatively slowly due to the predominantly fine-grained soils present. Slug tests were performed in wells MW-8C and MW-8E in 1989, resulting in calculated hydraulic conductivities of 1.1x10⁻⁵ centimeters per second (cm/s) (0.03 foot/day) and 7.1x10⁻⁶ cm/s (0.02 foot/day) for silty clay and sandy clay soils beneath the site.

3.3 NEARBY WELLS AND SENSITIVE RECEPTORS

In 1988, Harding Lawson Associates (HLA) performed a sensitive receptor survey of the site vicinity. The survey indicated there were no public water supply wells within 2,500 feet of the site, no private water supply wells within 1,000 feet of the site, and no schools within 1,000 feet of the site. Lake Merritt was located to the south of the site. Local drinking water was supplied by the East Bay Municipal Utility District (EBMUD) via the Mokelumne Aqueduct from the Sierra Nevada Mountains. The results of the investigation were presented in HLA's *Environmental Assessment Report* dated September 22, 1989. A copy of the sensitive receptor information is presented in Appendix D.

In 2001, KHM Environmental Management (KHM) requested information from the Alameda County Public Works Agency (ACPWA) regarding the presence of wells within ½ mile of the site. No wells were identified within the search radius and no visual evidence of wells was observed within 1,000 feet of the site. The two nearest water supply wells identified were irrigation wells located approximately 3,500 feet west (crossgradient) and southwest (crossgradient) of the site. This work was documented in KHM's *Underground Storage Tank Case Closure Request* dated February 13, 2001. The well survey results and a copy of the figure showing the identified well locations are presented in Appendix D.

In May 2009, CRA searched California Department of Water Resources (DWR) records to evaluate the presence of any wells within ¹/₄ mile of the site. Twenty-three wells were identified within the search radius; however, all were identified as monitoring wells. The well survey results and a figure showing the identified well locations are presented in Appendix D. CRA also confirmed (via their website) that EBMUD still supplies drinking water to the site area, and the source is the Mokelumne River Basin in the Sierra Nevada range. Based on the proximity to San Francisco Bay and Lake Merritt (mixed fresh and saltwater), it is unlikely shallow groundwater in the site area would be used as a drinking water source.

As the site is an unattended paved public parking lot with no structures, no sensitive receptors exist at the site. Although the site is located in a mixed commercial and residential area, the nearby sensitive properties are located up- and crossgradient of the site. The area downgradient of the site is occupied by a major street followed by undeveloped land.

The nearest surface water body is Lake Merritt, located approximately 225 feet south-southeast (downgradient) of the site. Lake Merritt is a tidal lagoon that serves as a wildlife refuge.

3.4 PREFERENTIAL PATHWAY EVALUATION

Due to the shallow depth to groundwater at the site, ACEH requested performance of a study to evaluate the presence of potential preferential pathways in the site vicinity that may contribute to the migration of impacted groundwater. Therefore, CRA reviewed and relied upon previously obtained information and conducted a utility survey of the site and vicinity.

A site plan prepared by HLA in 1991 showed several underground utility lines both on and near the site. Gas and television lines were noted beneath the sidewalk of Grand Avenue adjacent to the site. A water line, two telephone lines, an unknown utility line, and an 8-inch sewer line were shown beneath Grand Avenue. Several utility lines were shown beneath the site; however, these lines serviced the former station and therefore the majority of these lines likely were removed during subsequent station demolition or site over-excavation activities. No information regarding the depth of any utilities was provided. A copy of the HLA site plan is presented in Appendix E. CRA also obtained a storm drain and sanitary sewer map from the City. On the map, the sewer line shown on the HLA figure beneath Grand Avenue was identified as abandoned. A 15-inch diameter sewer line was shown on the south side of Grand Avenue downgradient of the site. The flow line depth of the pipe was identified as ranging from 2.25 to 1.96 feet, and the direction of flow was west to east. No other lines were shown downgradient of the site. A copy of the City map is presented in Appendix E.

CRA contacted Underground Service Alert (USA) to have public utility companies mark the locations of utilities at the site and in the site vicinity, retained a private utility locator to further identify any potential utilities, and conducted a field reconnaissance to note the marked utilities. Based on the results, a gas line is present in the sidewalk adjacent to the south of the site, followed by an electric line, a communications line, and what appears to be an electric line for the traffic signal. Beneath Grand Avenue, an 8-inch water line appears present, followed by an electric line, a communications line, and an unknown metal utility line. No information regarding the depths of the utilities or the trench backfill material was available.

Based on the available information, several utility lines are located beneath the sidewalk and Grand Avenue downgradient of the site. Generally, no information regarding the depth or backfill material of these utilities was available. However, we would expect the utility lines beneath the sidewalk to be relatively shallow. The active sewer line on the south side of Grand Avenue also appears to be shallow (less than 3 feet). Based on our experience in the City, the trenches for older utility lines such as these generally were backfilled with native soil and thus likely would not significantly affect the general flow of groundwater. In addition, the depth to water in downgradient wells MW-8I and MW-8J has generally been between 6 and 7 feet, and that in wells MW-8F and MW-8G generally greater than 8 or 9 feet; likely below the depth of any trenches in the sidewalk and those identified in Grand Avenue. Therefore, we would not expect the identified utility lines to significantly act as preferential pathways and they do not appear to be a concern; no further work appears warranted.

4.0 <u>SUMMARY OF PREVIOUS ENVIRONMENTAL WORK</u>

A summary of the previous environmental work performed at the site is presented below. The historical soil, grab-groundwater, and soil vapor sample analytical results are presented in Tables 2 through 4, respectively. Copies of previous site plans showing former sampling locations (not shown on Figure 2) are presented in Appendix F.

May **1988** *Sensitive Receptor Survey:* In May 1988, HLA performed a sensitive receptor survey of the site vicinity. The results of the survey were previously discussed in Section 3.3.

June 1988 Well Installations: In June 1988, HLA installed four groundwater monitoring wells (MW-8A through MW-8D) at the site to depths of 15.5, 20, 24.5, and 5 fbg, respectively. Well MW-8D was designed to intercept perched water just below the ground surface. An additional boring (B-8A) was also drilled to 32 fbg that was supposed to be the location of well MW-8A; however, the boring extended through two water-bearing zones (clayey sand at 12 and 23 fbg) and thus was abandoned. Well MW-8A was placed adjacent to boring B-8A and constructed to intercept water in the upper water-bearing zone. A soil sample was collected at approximately 1.3 fbg from boring MW-8D and analyzed for total petroleum hydrocarbons as gasoline (TPHg) and benzene, toluene, ethylbenzene, and xylenes (BTEX); TPHg, toluene, and xylenes were detected at concentrations of 10, 0.4, and 0.5 milligrams per kilogram (mg/kg), respectively. The initial groundwater samples collected from wells MW-8A, MW-8B, and MW-8C were analyzed for BTEX; well MW-8D was dry. Benzene (5.3 micrograms per liter $[\mu g/L]$ was only detected in well MW-8A. Low concentrations of toluene, ethylbenzene, and xylenes (up to $13 \,\mu\text{g/L}$) were detected in wells MW-8A and MW-8C. The results of the investigation were presented in HLA's Subsurface Investigation report dated July 20, 1988.

September 1988 Soil Gas Survey: In September 1988, HLA conducted a soil gas survey both on and offsite. A total of 17 soil gas samples were collected from 16 locations at depths ranging from 2 to 6 fbg and analyzed for total hydrocarbons and BTEX using a gas chromatograph equipped with a flame ionization detector (FID). Elevated concentrations of total hydrocarbons (up to $360,000 \,\mu g/L$) and benzene (up to $86,000 \mu g/L$) were detected in two of the samples (SG-04 and SG-05) collected on the west side of the site. Elevated concentrations of total hydrocarbons (up to $1,400,000 \,\mu\text{g/L}$) and benzene (up to $300,000 \,\mu\text{g/L}$) were also detected in two of the samples (SG-12 and SG-15) collected to the south-southwest of the site. Groundwater samples collected from four observation wells (OB-1 through OB-4) located within the gasoline UST pit were also analyzed for total hydrocarbons and BTEX; total hydrocarbons (up to 32,000 μ g/L) and benzene (up to 7,700 μ g/L) were detected in all four of the samples. The results of the investigation were presented in HLA's Quarterly Technical Report-First Quarter of 1989 dated May 31, 1989 and Environmental Assessment *Report* dated September 22, 1989.

October 1988 Subsurface Investigation and Well Installation: In October 1988, HLA drilled four exploratory borings (B-1 through B-4) to depths of 8 to 16.5 fbg in the

vicinity of the gasoline USTs and dispensers. Well MW-8E was also installed adjacent to boring B-3. One soil sample was collected from borings B-1, B-3, B-4, and MW-8E (depths ranging from 3.5 to 6.5 fbg) and analyzed for TPHg and BTEX. TPHg (up to 750 mg/kg) was detected in several of the samples; low concentrations of toluene, ethylbenzene, and xylenes (up to 26 mg/kg) were also detected. Benzene was only detected in the soil sample collected at 5.5 fbg from boring MW-8E (0.82 mg/kg). The initial groundwater sample collected from well MW-8E contained benzene at 1,400 μ g/L. The results of the investigation were presented in HLA's *Quarterly Technical Report-First Quarter of 1989* dated May 31, 1989 and *Environmental Assessment Report* dated September 22, 1989.

March 1989 *Subsurface Investigation, Well Destruction and Installations:* In March 1989, HLA drilled an additional boring (B-5) on the west side of the site in the area where elevated hydrocarbon concentrations were previously detected in soil gas. Soil samples were collected from the boring at depths of 5.5, 10.5, and 16 fbg and analyzed for TPHg and BTEX, which were not detected. Well MW-8D was also destroyed at this time due to a lack of water. Two offsite monitoring wells (MW-8F and MW-8G) were installed to 16.5 fbg across Grand Avenue to the south-southeast of the site. Soil samples were collected from boring MW-8F at 11 fbg and from boring MW-8G at 6 fbg and analyzed for TPHg and BTEX, which were not detected. BTEX were not detected in the initial groundwater samples collected from the wells. The results of the investigation were presented in HLA's *Quarterly Technical Report-First Quarter of 1989* dated May 31, 1989 and *Environmental Assessment Report* dated September 22, 1989.

Fourth Quarter **1989** *Subsurface Investigation and Interim Remediation:* During fourth quarter 1989, HLA drilled four additional onsite borings (B-6 through B-9) to depths of 3.5 to 5.5 fbg. A total of five soil samples were collected at various depths (ranging from 2 to 4.5 fbg) from the borings and analyzed for TPHg, BTEX, and TPH as diesel (TPHd). TPHg (up to 580 mg/kg) was only detected in the soil samples collected from borings B-7, B-8, and B-9; concentrations of one or more BTEX compounds (up to 50 mg/kg) were also detected. TPHd was only detected in the soil sample collected at 2.5 fbg from boring B-9 (460 mg/kg). Observation wells OB-3 and OB-4 were also re-sampled and elevated concentrations of TPHg (4,000 μ g/L) and benzene (up to 500 μ g/L) were detected. In December 1989, approximately 5,000 gallons of groundwater were pumped from the gasoline UST pit and disposed offsite as an interim remedial measure. This work was documented in HLA's *Quarterly Technical Report-Fourth Quarter of 1989* dated March 21, 1990.

First Quarter 1990 Subsurface Investigation and Well Installations: During first quarter 1990, HLA drilled four additional borings (B-8K [offsite], and B-10 through B-12

[onsite]) to depths of 6 to 9.5 fbg. A total of 15 soil samples were collected at various depths (ranging from 1 to 8.5 fbg) from the borings and analyzed for TPHg, BTEX, and TPHd. Low concentrations of TPHg (up to 84 mg/kg) and BTEX (up to 5.4 mg/kg) were detected in several of the soil samples. Elevated concentrations of TPHg were detected in the soil samples collected at 1.5 fbg from boring B-11 (2,900 mg/kg) and at 4.5 fbg from boring B-12 (1,200 mg/kg). TPHd (up to 94 mg/kg) was only detected in three of the samples. Three additional offsite monitoring wells (MW-8H, MW-8I, and MW-8]) were also installed. Four soil samples were collected at various depths from each well boring and analyzed for TPHg, BTEX, and TPHd. TPHg (up to 550 mg/kg) was detected in the majority of the soil samples. An elevated concentration of TPHg (2,100 mg/kg) was detected in the sample collected at 5.5 fbg from boring MW-8J. Low concentrations of BTEX (up to 25 mg/kg) were also detected in several of the soil samples. TPHd (up to 83 mg/kg) was only detected in three of the samples. TPHg was only detected in the initial groundwater samples collected from wells MW-8H and MW-8I (460 µg/L and 580 µg/L, respectively). Benzene was detected in wells MW-8H, MW-8I, and MW-8J at 14.8 μ g/L, 116 μ g/L, and 2.7 μ g/L, respectively. TPHd was only detected in well MW-8I (440 μ g/L). This work was documented in HLA's Quarterly Technical Report-First Quarter of 1990 dated June 13, 1990.

Second Quarter 1990 Subsurface Investigation: During second quarter 1990, HLA drilled two additional borings (B-13 and B-14) to depths of 4 and 4.5 fbg, respectively. The borings were located near the station building; boring B-14 was located adjacent to the used-oil UST. A total of five soil samples were collected at various depths from the borings and analyzed for TPHg, BTEX, TPHd, and TPH "other" (heavier-end hydrocarbons). The soil sample collected from boring B-13 at 2.5 fbg was also analyzed for halogenated volatile organic compounds (HVOCs), semi-VOCs, total oil and grease (TOG), and the metals cadmium, chromium, lead, and zinc. TPHg (up to 130 mg/kg) was detected in the majority of the soil samples. Low concentrations of toluene, ethylbenzene, and xylenes (up to 5.4 mg/kg) were detected in a few of the samples. TPHd and benzene were not detected in any of the samples. Heavier-end petroleum hydrocarbons (constituents unknown) were detected in four of the samples at concentrations ranging from 62 to 1,000 mg/kg (B-13 at 2.5 fbg). The sample collected from boring B-13 at 2.5 fbg also contained the semi-VOCs naphthalene (0.9 mg/kg), 2-methylnaphthalene (1.4 mg/kg), and bis(2-ethylhexyl)phthalate (0.26 mg/kg); HVOCs were not detected with the exception of trichloroethane at 0.06 mg/kg; TOG was detected at 5,600 mg/kg; and the metals chromium and zinc were detected at 36 mg/kg and 41 mg/kg, respectively. In June 1990, during work on the used-oil UST, a layer of light non-aqueous phase liquid (LNAPL) was observed on the water in the backfill surrounding the tank. Exxon reportedly had the fluid in the excavation pumped out several times. This work was documented in HLA's *Quarterly Technical Report-Second Quarter of 1990* dated August 30, 1990.

September-October 1990 Used Oil-UST Removal and Over-Excavation: In September 1990, the 500-gallon, single-walled fiberglass used-oil UST was removed from the site. No apparent holes or cracks were observed in the tank. The excavation was approximately 7.5 feet by 9.5 feet by 8 feet deep. Approximately 1/8 inch of LNAPL was observed on the water in the excavation. A water sample (WOT #1) was collected prior to pumping the water out of the excavation; the sample contained TPHg at 1,900 µg/L, TPHd at 1,400 µg/L, benzene at 320 µg/L, and TOG at 70 µg/L; HVOCs were not detected. Four soil samples (WO#2 through WO#5) were collected at 1.5 fbg from the sidewalls of the excavation and analyzed for TPHg, BTEX, TPHd, TOG, and HVOCs. Low concentrations of TPHg (up to 15 mg/kg), TPHd (up to 20 mg/kg), and BTEX (up to 1.5 mg/kg) were detected in several of the samples. TOG was detected in all four of the samples at concentrations ranging from 100 to 2,600 mg/kg. HVOCs were not detected in any of the samples.

In October 1990, over-excavation of impacted soil was conducted in the area of the soil sample with the highest TOG concentration (WO#3; western sidewall). The upper 3 feet of this sidewall was excavated laterally to the west an additional 3 feet. Additional soil samples were collected at 1.5 (WO#7) and 2 fbg (WO#6) from the new western sidewall, and from the bottom of the original excavation on the south side (WO#8). Samples WO#6 and WO#7 contained TOG at 100 mg/kg and 850 mg/kg, respectively. Sample WO#8 was analyzed for TPHg, BTEX, TPHd, and TOG; which were not detected except toluene at 0.016 mg/kg. Two clay pipes were encountered at approximately 1.5 fbg in the northwest and northeast corners of the excavation. The excavation was backfilled several days later. This work was documented in HLA's *Soil and Groundwater Sampling During Waste Oil Tank Removal* dated November 8, 1990.

January 1991 *Clay Pipe Excavation:* In January 1991, the clay pipes were removed. The excavation trench was located on the western side of the former used-oil UST and was approximately 15 feet long, 2.5 feet wide, and 4.5 feet deep. Two water samples (EP-01 and WP-01) were collected from the trench and analyzed for TPHg, TPHd, BTEX, and TPH as motor oil (TPHmo). TPHg (5,200 μ g/L and 3,900 μ g/L), TPHd (31,000 μ g/L and 13,000 μ g/L), benzene (280 μ g/L and 320 μ g/L), and TPHmo (100,000 μ g/L and 17,000 μ g/L) were detected in both samples. The water sample collected nearest the former UST contained the higher TPH concentrations. Four soil samples were also collected from the sidewalls and bottom of the trench (depths ranging from 1.5 to 4.5 fbg) and analyzed for TPHg, BTEX, TOG, and TPHd; three of the samples were also analyzed for TPHmo and HVOCs. Low concentrations of TPHg (up to 100 mg/kg),

TPHd (up to 190 mg/kg), and BTEX (up to 0.63 mg/kg) were detected in several of the samples. TOG was detected in all four of the samples at concentrations up to 630 mg/kg. TPHmo was detected in the three soil samples analyzed at concentrations up to 330 mg/kg. HVOCs were not detected in the three soil samples analyzed. A small excavation was also made on the east side of the UST excavation and an additional soil sample was collected at 1.5 fbg; this sample only contained TPHg (1.1 mg/kg), TPHd (110 mg/kg), and TOG (780 mg/kg); BTEX were not detected. As requested by ACEH, the excavation trench was continued to the door of the first service bay. An unknown volume of water was removed from the trench. This work was documented in HLA's *Results of Pipe Excavation and Recent Groundwater Analyses* dated February 12, 1991.

April-May 1992 Station Demolition, Gasoline UST Removal, and Over-Excavation: In April 1992, the station was demolished and three 10,000-gallon, fiberglass gasoline USTs, two dispenser islands, and associated piping were removed from the site. No cracks or holes were observed in any of the tanks. During tank removal activities, approximately 25,000 gallons of impacted groundwater was pumped from the excavation and disposed offsite. Nine confirmation soil samples were collected from the bottom (10 fbg) and sidewalls (5 fbg) of the UST excavation and analyzed for TPHg and BTEX. Low concentrations of TPHg (up to 130 mg/kg) and BTEX (up to 1.4 mg/kg) were detected in several of the samples. Three soil samples were also collected beneath the dispensers and one soil sample was collected beneath the product piping at depths of 5 or 6 fbg and analyzed for TPHg, BTEX, and TOG. TPHg and benzene were detected in the four samples at concentrations ranging from 7.8 to 2,100 mg/kg and 0.019 to 11 mg/kg, respectively. TOG was also detected in the four samples at concentrations ranging from 30 to 6,900 mg/kg. Approximately 540 cubic yards of impacted pea gravel was disposed offsite. Clean, imported fill material was then used to backfill the excavation. This work was documented in HLA's Underground Storage Tank Removal report dated June 8, 1992.

In May 1992, additional excavation was performed in the area of the former dispenser islands. The excavation was approximately 55 feet wide, 60 feet long, and 7 to 9 feet deep. Nine soil samples (BE-1, BE-2, and BE-4 through BE-10) were collected from the bottom of the excavation at depths of 4.5 to 9 fbg and analyzed for TPHg and BTEX. TPHg was only detected in one of the samples (1.1 mg/kg), and toluene, ethylbenzene, and xylenes generally were not detected in any of the samples with the exception of ethylbenzene in one sample (0.058 mg/kg). Low concentrations of benzene (up to 0.043 mg/kg) were detected in several of the samples. Four soil samples (WS-2 through WS-5) were also collected at depths of 5 or 7.5 fbg from the western and southern sidewalls of the excavation. TPHg and BTEX were not detected in the sample (WS-3) collected from the western sidewall. TPHg (ranging from 72 to 1,000 mg/kg) and BTEX (benzene ranging from 1.1 to 22 mg/kg) were detected in the three samples collected

from the southern sidewall. The excavation could not be extended further to the south without undermining Grand Avenue. A small area was also excavated under a former service bay near a former hydraulic hoist and sump. Soil samples were collected from the bottom (BE-3 at 4 fbg) and the western sidewall (WS-1 at 3 fbg) of this excavation; TPHg and BTEX were not detected in either of the samples. Approximately 1,100 cubic yards of soil were removed and disposed offsite. Clean, imported fill material was then used to backfill the excavations. This work was documented in HLA's *Quarterly Technical Report-Second Quarter of 1992* dated September 10, 1992.

August **1992** *Well Destructions:* In August 1992, onsite wells MW-8A and MW-8E were destroyed by over-drilling. This work was documented in a HLA letter dated August 14, 1992.

January 1993 Additional Over-Excavation: In January 1993, Converse Environmental West (Converse) supervised the removal of additional soil from the northern portion of the site. Ten soil samples (B-1 through B-10) were collected from the bottom of the excavation, and seven soil samples (SW-1 through SW-7) were collected from the western, northern, and eastern sidewalls of the excavation and analyzed for TPHg and BTEX; which were not detected in any of the soil samples. Approximately 828 cubic yards of impacted soil were removed, and approximately 6,300 gallons of water were pumped from the excavation and disposed offsite during the work. Clean, imported fill was used to backfill the excavation. This work was documented in Converse's *Soil Excavation and Soil Sampling Report* dated March 26, 1993.

April **1993** *Well Destructions:* In April 1993, onsite wells MW-8B and MW-8C were destroyed by over-drilling. This work was documented in a letter by Pacific Environmental Group, Inc. (PEG) dated May 6, 1993.

May **1993** *Well Installations:* In May 1993, PEG installed two wells onsite (MW-8K and MW-8L) to 18 fbg. Well MW-8K was installed adjacent to former well MW-8E which historically contained the highest concentrations. No soil samples were collected for laboratory analysis from the well borings; however, organic vapor concentrations greater than 100 parts per million by volume (ppmv) were not observed. This work was documented in PEG's untitled letter report dated July 30, 1993.

1996-2000 *Groundwater Oxygenation:* In December 1996, socks containing ORC were placed in wells MW-8F, MW-8G, and MW-8I in an attempt to enhance biodegradation of petroleum hydrocarbons in groundwater. The socks were periodically replaced and were permanently removed from the wells in March 2000.

2001 *Well Survey:* In early 2001, KHM performed a well survey to evaluate the presence of wells within ½ mile of the site. The results of the survey were previously discussed in Section 3.3.

November 2006 *Subsurface Investigation:* In November 2006, Cambria Environmental Technology, Inc. (Cambria [now CRA]) advanced borings S-1 through S-3 to approximately 4 fbg along the southern edge of the site. Boring S-3 was advanced into the excavation backfill. A soil sample was collected from each boring at 4 fbg and analyzed for TPHg, BTEX, TPHd, and TOG. TPHg was detected in the soil samples collected from borings S-1 and S-2 at concentrations of 390 mg/kg and 3,800 mg/kg, respectively. Benzene was only detected in the soil sample collected from boring S-2 (0.41 mg/kg). Toluene, ethylbenzene, and xylenes (up to 170 mg/kg) were also detected in the soil samples collected from borings S-1 and S-2, and S-3 at 15 mg/kg, 580 mg/kg, and 11 mg/kg, respectively. TOG was not detected in any of the soil samples.

Soil vapor samples (SV-1 and SV-2) were also collected adjacent to the borings and analyzed for TPHg and BTEX. An additional sample (SV-3) was not analyzed due to inadequate sample volume. TPHg was detected in samples SV-1 and SV-2 at concentrations of 60,000 micrograms per cubic meter ($\mu g/m^3$) and 2 x 10⁶ $\mu g/m^3$, respectively. Benzene was detected in samples SV-1 and SV-2 at concentrations of $3,400 \ \mu g/m^3$ and $34,000 \ \mu g/m^3$, respectively. Toluene (330 $\mu g/m^3$ and 160,000 $\mu g/m^3$, respectively), ethylbenzene (2,600 μ g/m³ and 64,000 μ g/m³, respectively), and xylenes $(380 \ \mu g/m^3 \text{ and } 280,000 \ \mu g/m^3, \text{ respectively})$ were also detected in samples SV-1 and SV-2. A field duplicate sample collected from SV-2 contained significantly lower TPHg $(720,000 \, \mu g/m^3),$ concentrations of benzene $(14,000 \ \mu g/m^3),$ toluene $(69,000 \ \mu g/m^3)$, ethylbenzene $(27,000 \ \mu g/m^3)$, and xylenes $(110,000 \ \mu g/m^3)$. This work was documented in Cambria's Subsurface Investigation Report dated February 28, 2007.

March 2008 *Subsurface Investigation:* In March 2008, CRA advanced five borings (SV-4 through SV-8) to depths of 3 to 6 fbg along the southern and eastern sides of the site. Groundwater was encountered in the borings at depths of 2 to 6 fbg. Borings SV-4 through SV-6 were mistakenly advanced into the excavation backfill. One or two soil samples were collected at depths of 2 or 5 fbg from borings SV-5, SV-7, and SV-8 and analyzed for TPHg, BTEX, and methyl tertiary butyl ether (MTBE). TPHg was only detected in the soil samples collected at 2 fbg (16 mg/kg) and 5 fbg (1,400 mg/kg) from boring SV-7; BTEX (up to 19 mg/kg) were also only detected in these two samples. MTBE was not detected in any of the soil samples. A grab-groundwater sample was also collected from each of the five borings and analyzed for TPHg, BTEX, and MTBE. TPHg (6,200 μ g/L) and BTEX (benzene at 200 μ g/L) were only detected in the

groundwater sample collected from boring SV-7. Low concentrations of MTBE were detected in the groundwater samples collected from borings SV-4 (1 μ g/L), SV-7 (0.7 μ g/L), and SV-8 (2 μ g/L). The borings were intended to be completed as soil vapor wells; however, due to the shallow groundwater encountered, the wells were not installed. This work was documented in CRA's *Subsurface Investigation Report* dated August 14, 2008.

5.0 RECENT GROUNDWATER MONITORING RESULTS

As they had not been sampled since 2000, the remaining site wells (MW-8F through MW-8L) were redeveloped on June 5, 2009 and sampled by Gettler-Ryan Inc. (G-R) during second and third quarter 2009 (June 10 and October 1, respectively) to evaluate current groundwater conditions. The results of these monitoring events are discussed below. Please note that well MW-8L was not able to be redeveloped or sampled during the third quarter event due to an obstruction in the well (apparent bent casing). Copies of the second and third quarter 2009 groundwater monitoring reports prepared by G-R are presented in Appendix C.

The depth to water in the site wells during the June 5 redevelopment event ranged from 0.90 (MW-8L) to 9.92 feet below TOC (MW-8G). The depth to water in the site wells during the June 10 sampling event ranged from 0.91 (MW-8L) to 12.41 feet below TOC (MW-8F), indicating a very slow recharge rate in the downgradient wells. The depth to water in the site wells during the October 1 sampling event ranged from 1.85 (MW-8K) to 11.94 feet below TOC (MW-8G). The calculated groundwater flow direction during both events was to the south-southeast toward Lake Merritt (see the potentiometric maps in Appendix C), which is consistent with historical trends.

The groundwater samples collected from the wells were analyzed for TPHg, TPHd, BTEX, and MTBE. A silica gel cleanup was performed by the laboratory on the samples collected during the third quarter event prior to TPHd analysis. Please note that no-purge samples were collected from wells MW-8F and MW-8G during both events due to insufficient water (slow recharge). In addition, no-purge samples were collected from wells MW-8J during the third quarter event due to time constraints associated with obstructing traffic in Grand Avenue. Finally, a no-purge sample was collected from well MW-8L during the second quarter event due to a bent casing. The sampling results during both quarters are discussed below.

TPHg was only detected in well MW-8I (420 and 53 μ g/L). BTEX generally were not detected in any of the wells with the exception of low concentrations of benzene in well

MW-8I (23 and $2 \mu g/L$). MTBE was only detected in wells MW-8H (0.7 and $1 \mu g/L$), MW-8I (5 and $4 \mu g/L$), MW-8J (10 $\mu g/L$ during second quarter, not detected during third quarter), and MW-8K (2 and $1 \mu g/L$). TPHd was detected in wells MW-8F (300 and 81 $\mu g/L$), MW-8G (140 and 55 $\mu g/L$), MW-8H (78 and 640 $\mu g/L$), MW-8I (360 and 92 $\mu g/L$), MW-8J (400 $\mu g/L$ during second quarter, not detected during third quarter), and MW-8L (2,600 $\mu g/L$ during second quarter). The TPHg, TPHd, benzene, and MTBE analytical results are summarized in Table A below.

TABLE A. GROUNDWATER ANALYTICAL DATA – 2Q09 AND 3Q09 (concentrations in ug/L)					
Well	Sample Date	TPHg	TPHd	Benzene	MTBE
MM SE	6/10/09 ^a	<50	300	<0.5	<0.5
10100-01	$10/1/09^{a}$	<50	81 ^b	<0.5	<0.5
MM 8C	6/10/09 ^a	<50	140	<0.5	<0.5
WIW-0G	$10/1/09^{a}$	<50	55 ^b	<0.5	<0.5
MMA PLI	6/10/09	<50	78	<0.5	0.7
10100-011	$10/1/09^{a}$	<50	640 ^b	<0.5	1
N <i>A</i> TA7 QI	6/10/09	420	360	23	5
101 00 -01	$10/1/09^{a}$	53	92 ^b	2	4
ν πταγ φτ	6/10/09	<50	400	<0.5	10
10100-05	$10/1/09^{a}$	<50	<50 ^b	<0.5	<0.5
MIM QV	6/10/09	<50	<50	<0.5	2
IVI VV-ON	10/1/09	<50	<50 ^b	<0.5	1
MIM SI	6/10/09 ^a	<50	2,600	< 0.5	<0.5
IVIVV-OL	10/1/09	NS	NS	NS	NS

a No-purge sample

b Silica gel cleanup performed prior to analysis

< Not detected at or above stated laboratory reporting limits

NS Not sampled

6.0 <u>CONSTITUENTS OF CONCERN</u>

6.1 <u>SOIL</u>

Based on the historical data, the primary constituents of concern (COCs) in soil remaining at the site (not over-excavated) are TPHg and BTEX. TPHd was also detected in soil remaining at the site; however, only low to relatively low concentrations were detected.

The majority of the soil samples collected to date were not analyzed for MTBE. However, MTBE was not detected in the four soil samples collected from borings SV-7 and SV-8 in 2008. In addition, MTBE generally was not detected in groundwater throughout the course of monitoring, and only low concentrations were recently detected. HVOCs generally were not detected in any of the soil samples analyzed. Semi-VOCs generally were not detected in the soil sample collected from boring B-13 near the former used-oil UST with the exception of low concentrations of a few compounds, and the detected chromium and zinc concentrations were consistent with background levels. Based on these results, none of these constituents appear to be COCs in soil.

6.2 <u>GROUNDWATER</u>

Based on the monitoring results, the primary COC in groundwater is TPHd. TPHg, BTEX, and MTBE are also COCs in groundwater, but to a lesser degree as only low concentrations remain.

6.3 <u>SOIL VAPOR</u>

Although the validity of the analytical results from the 2006 investigation was called into question, the COCs in soil vapor appear to be TPHg and BTEX.

7.0 <u>PETROLEUM HYDROCARBON SOURCES AND DISTRIBUTION</u>

7.1 <u>RELEASE SOURCE AND VOLUME</u>

Based on previous investigations and UST/piping removal confirmation sampling, the primary source of the released petroleum hydrocarbons at the site appears to be the former gasoline and used-oil USTs and dispensers. As the site appears to have been occupied by a service station as early as 1946, releases from previous generation USTs or site activities likely also occurred. The volume of released product is unknown.

7.2 POTENTIAL OFFSITE SOURCES

There do not appear to be any offsite sources potentially contributing to the impacts at the site. The properties upgradient of the site are generally residential.

7.3 <u>PETROLEUM HYDROCARBON DISTRIBUTION IN SOIL</u>

Since 1988, numerous soil samples have been collected to evaluate the extent of impacted soil and the effectiveness of over-excavation activities. However, the majority of the site was over-excavated in 1992 and 1993 to remove impacted soil to the extent possible (approximately 2,400 cubic yards was removed). The final depth of the excavations ranged from 4.5 to 10 fbg. The excavations reportedly were completed to within 5 feet of the northern, eastern, and southern property lines, where further excavation could not be performed due to the proximity of adjacent structures or the sidewalk and underlying utilities (Figure 2). As a result, many of the previous soil samples were collected from areas that were later excavated (please note that this is reflected in Table 2 with "strikethrough" formatting). Therefore, only the quality of the soil remaining at the site is discussed in this section.

Based on the analytical results of the final excavation verification samples collected during the 1992 and 1993 activities, only low concentrations of TPHg (up to 130 mg/kg) and BTEX (benzene up to 0.2 mg/kg) were detected in the five samples (SS1, SS2, and SS4 through SS6) collected at 10 fbg beneath the gasoline USTs. TPHg and BTEX were not detected in the two samples collected at 5 fbg from the southern (SS7) and eastern (SS8) sidewalls of the gasoline UST excavation. TPHg and BTEX generally were not detected in the nine samples (BE-1, BE-2, and BE-4 through BE-10) collected at depths of 4.5 to 9 fbg from the bottom of the excavation in the central/southwest portion of the site with the exception of low concentrations of TPHg (1.1 mg/kg), benzene (0.043 mg/kg), and ethylbenzene (0.058 mg/kg) in sample BE-1 collected in the area of the former dispensers. TPHg and BTEX were not detected in any of the samples collected from the bottom (B-1 through B-10) and western, northern, and eastern sidewalls (SW-1 through SW-7) of the excavation in the northern portion of the site.

With regards to soil remaining in the western portion of the site, it does not appear to be significantly impacted. TPHg and BTEX were not detected in sample WS-3 collected at 7.5 fbg from the western sidewall of the excavation in the central/southwest portion of the site. In addition, two borings (B-5 and B-10) were drilled in this area in 1989 and 1990, respectively. TPHg and BTEX were not detected in the three soil samples collected from boring B-5; and TPHg, BTEX, and TPH "other" generally were not detected in the four soil samples collected from boring B-10 with the exception of low concentrations of TPHg (8.4 mg/kg) and BTEX (up to 0.28 mg/kg) in one or two of the shallower samples.

With regards to soil remaining along the southern edge of the site, it does appear to be impacted. The soil sample collected at 4 fbg from boring S-1 drilled in the southwest portion of the site in 2006 contained low concentrations of TPHg (390 mg/kg), TPHd (15 mg/kg), ethylbenzene (0.9 mg/kg), and xylenes (1.9 mg/kg). TPHg (ranging from 72 to 1,000 mg/kg and BTEX (benzene ranging from 1.1 to 22 mg/kg) were detected in samples WS-2, WS-4, and WS-5 collected at 5 fbg from the southern sidewall of the excavation in the central/southwest portion of the site; the highest concentrations were detected in sample WS-4 located near the former dispensers. The soil sample collected at 4 fbg from boring S-2 drilled to the south of the former dispensers in 2006 contained an elevated concentration of TPHg (3,800 mg/kg); lower concentrations of TPHd (580 mg/kg) and BTEX (benzene at 0.41 mg/kg) were also detected. However, only low concentrations were detected in soil in the southeast portion of the site. The sample collected at 6.5 fbg from boring B-1 drilled directly to the south of the gasoline USTs in 1988 only contained TPHg at 12 mg/kg, and the sample collected at 1.3 fbg from the boring for well MW-8D contained only low concentrations of TPHg (10 mg/kg), toluene (0.4 mg/kg), and xylenes (0.5 mg/kg). Borings S-3 (2006) and SV-5 (2008) were located within the limits of the former excavation (fill material encountered); therefore, the results of the soil samples collected from these borings are not considered.

With regards to soil remaining along the eastern edge of the site, it also appears to be impacted, although the extent appears limited to the area adjacent to the former USTs. TPHg, BTEX, and MTBE were not detected in the samples collected at 2 and 5 fbg from boring SV-8 drilled near the northeast corner of the former UST pit in 2008. TPHg, TPHd, and BTEX generally were not detected in the samples collected at 2 and 4 fbg from boring B-6 drilled in 1989, with the exception of low concentrations of TPHg (1 mg/kg) and toluene (up to 0.09 mg/kg) in one or both of the samples. The sample collected at 3.5 fbg from boring B-4 drilled in 1988 contained a slightly elevated concentration of TPHg (510 mg/kg), and low concentrations of toluene, ethylbenzene, and xylenes (up to 13 mg/kg). The sample collected at 5 fbg from boring SV-7 drilled near boring B-4 in 2008 contained an elevated concentration of TPHg (1,400 mg/kg) and low concentrations of BTEX (benzene at 0.11 mg/kg); significantly lower concentrations of TPHg (16 mg/kg) and BTEX (up to 0.078 mg/kg) were detected in the sample collected at 2 fbg from boring SV-7.

With regards to offsite soil, low to elevated concentrations of TPHg were detected in the samples collected at 5.5 fbg from borings MW-8H (550 mg/kg), MW-8I (280 mg/kg), MW-8J (2,100 mg/kg), and B-8K (84 mg/kg) drilled in Grand Avenue to the south/southeast of the site in 1990; benzene was not detected in these samples, and only low concentrations of ethylbenzene (up to 25 mg/kg), xylenes (up to 9.2 mg/kg), and

TPH "other" (up to 83 mg/kg) were detected. However, only low concentrations of TPHg (up to 24 mg/kg) were detected in the shallower samples (1.5 and 3 or 3.5 fbg) collected from these borings, as well as low concentrations of BTEX (benzene up to 0.18 mg/kg) and TPH "other" (33 mg/kg). TPHg, BTEX, and TPH "other" generally were not detected in the samples collected at 10.5 fbg from borings MW-8H, MW-8I, and MW-8J with the exception of low concentrations of TPHg (8 mg/kg) and toluene (0.02 mg/kg) in the sample collected from boring MW-8J. TPHg and BTEX were not detected in the samples collected from borings for wells MW-8F (11 fbg) and MW-8G (6 fbg) drilled downgradient of the site on the south side of Grand Avenue in 1989.

Based on the analytical results, the over-excavation activities adequately removed the impacted soil beneath the site to the extent possible. The extent of the residual soil with elevated concentrations of COCs (primarily TPHg) beneath the site appears limited to narrow (approximately 5 feet wide) areas on the southern and eastern sides of the site in the area of the former dispenser islands and former gasoline USTs, respectively, where further over-excavation could not be performed. Only low concentrations of COCs were detected in the soil samples collected at 10 fbg beneath the gasoline USTs, therefore the vertical extent of impacted soil beneath the site appears to have been adequately evaluated; impacts are not expected to extend significantly below this depth. Impacted soil also likely remains downgradient of the site beneath Grand Avenue; the highest TPHg concentration was detected in boring MW-8J. Based on the soil samples collected from boring B-8K and downgradient borings MW-8F and MW-8G, the lateral extent of impacted soil appears to have been adequately evaluated. The impacted soil appears generally limited to the smear zone around 5.5 fbg, and the COCs generally were not detected at 10.5 fbg. Therefore, the vertical extent of impacted soil offsite also appears to have been adequately evaluated. Based on the time since most of the soil samples were collected, concentrations likely have decreased due to natural attenuation processes. As the lateral and vertical extent of impacted soil both on- and offsite appear to have been adequately evaluated, no further investigation appears warranted.

The approximate boring locations and final excavation limits are shown on Figure 2. Previous site plans showing the approximate UST removal and over-excavation verification sample locations are presented in Appendix F. The historical soil sample analytical results are presented in Table 2; the TPHg, TPHd, and benzene analytical results of soil remaining at the site are also presented on Figure 5.

7.4 PETROLEUM HYDROCARBON DISTRIBUTION IN GROUNDWATER

Groundwater monitoring was performed at the site from 1988 through 2000, when it was discontinued as the site was under review for closure. Wells MW-8A, MW-8B, and MW-8C were sampled from 1988 through 1992 prior to their destruction. Well MW-8A was located in the southwest corner of the site, well MW-8B was located near the southwest corner of the station building, and well MW-8C was located in the southeast corner of the site near the gasoline USTs. TPHg and BTEX generally were not detected in these wells with the exception of low concentrations during a few events. TPHd (up to $1,200 \,\mu g/L$) was also only detected during one or two events in these wells. Low concentrations of TPH "other" (sometimes quantified as TPHmo) (generally less than $500 \,\mu g/L$) were periodically detected in these wells. Well MW-8E, located in the area of the dispensers, was also sampled from 1988 through 1992 prior to its destruction, and historically contained the highest concentrations. Elevated concentrations of TPHg (ranging from 15,000 to 56,000 μ g/L), benzene (ranging from 1,400 to 20,000 μ g/L), and TPHd (ranging from 620 to $17,000 \,\mu g/L$) were generally detected in this well; TPH "other" generally was not detected with the exception of two events (520 and 4,900 µg/L). However, this sampling was done prior to UST removal/site over-excavation and associated groundwater extraction activities.

Onsite wells MW-8K and MW-8L are located in the vicinity of the former dispensers (Figure 2). Well MW-8K was sampled from second quarter 1993 through third quarter 2000, and TPHg, TPHd, and BTEX generally were not detected during this time with the exception of low concentrations during a few events (MTBE was not detected). During 1999 and 2000, the samples collected from well MW-8K were analyzed for total recoverable petroleum hydrocarbons (TRPH) (quantified as oil and grease), which generally were not detected with the exception of an elevated concentration (9,100 μ g/L) during one event. Well MW-8L was sampled from second quarter 1993 to third quarter 1994, when sampling was discontinued due to a bent casing. Low to relatively low concentrations of TPHg (ranging from 76 to 590 μ g/L) and BTEX (benzene ranging from 1.1 to 77 μ g/L) were detected in well MW-8L during this time; TPHd was not detected.

Wells MW-8H, MW-8I, and MW-8J are located to the south/southeast of the site in Grand Avenue (Figure 2), and were sampled from first quarter 1990 through third quarter 2000. Low to relatively low concentrations of TPHg (up to 830 μ g/L) and BTEX (benzene up to 67 μ g/L) were initially detected in well MW-8H; however, concentrations decreased and TPHg and BTEX generally were not detected since the early 1990s. Low to relatively low concentrations of TPHd (generally less than 500 μ g/L) were also detected in well MW-8H; MTBE was not detected and TPH "other"

generally was not detected. Elevated concentrations of TPHg (up to 4,400 μ g/L) and benzene (up to 2,400 μ g/L) were initially detected in well MW-8I, although significant concentration fluctuations occurred; however, concentrations decreased and TPHg and BTEX were not detected since the late 1990s. Low to relatively low concentrations of TPHd (generally less than 500 μ g/L) also were periodically detected in well MW-8I but had decreased to less than 100 μ g/L by 2000; MTBE generally was not detected. TPH "other" (up to 1,400 μ g/L) was periodically detected in well MW-8I from 1990 to 1992. Low concentrations of TPHg (up to 300 μ g/L) and BTEX (benzene up to 28 μ g/L) were initially detected in well MW-8J; however, concentrations decreased and TPHg and BTEX generally were not detected since the early 1990s. TPHd and TPH "other" generally were not detected in well MW-8J, and MTBE was not detected. During 1999 and 2000, the samples collected from these wells were analyzed for TRPH (quantified as oil and grease), and elevated concentrations (ranging from 6,400 to 35,200 μ g/L) were periodically detected in the three wells.

Furthest downgradient wells MW-8F and MW-8G are located on the south side of Grand Avenue (Figure 2), and were sampled from second quarter 1989 through third quarter 2000. During this time, TPHg, BTEX, and MTBE generally were not detected in these wells with the exception of low concentrations during one or two events. Low concentrations of TPHd (generally less than $300 \,\mu g/L$) were detected in these wells during this time. Low to relatively low concentrations of TPH "other" were periodically detected in these wells from 1989 to 1992. During 1999 and 2000, the samples collected from these wells were analyzed for TRPH (quantified as oil and grease); which generally was not detected with the exception of an elevated concentration (23,000 $\mu g/L$) during one event in well MW-8G.

In February 2000, case closure was recommended based on declining concentrations in the site wells. ACEH concurred with this recommendation; however, two quarters of groundwater monitoring without the ORC socks in wells MW-8F, MW-8G, and MW-8I was requested to evaluate the stability of the plume. The ORC socks were removed in March 2000, and no significant change in concentrations was observed during the second and third quarter 2000 events. In October 2000, ACEH requested a one-time analysis for TPHd and TRPH with a silica gel cleanup on samples collected from all the wells to evaluate whether natural organic material may be contributing to the detections. The wells (except MW-8L) were sampled in November 2000 and TPHd was detected in all the wells sampled except MW-8J. The detected TPHd concentrations (ranging from 53.2 [MW-8K] to $433 \,\mu$ g/L [MW-8H]) were consistent with historical levels; indicating that natural organic matter was not interfering with the analytical results. TRPH was not detected in any of the samples. In January 2001, after review of this data, ACEH again concurred that the site appeared to be a good candidate for case closure.

As described in Section 5.0, during the recent groundwater monitoring events, TPHg was only detected in offsite well MW-8I, and only at low concentrations (420 and 53 μ g/L). BTEX generally were not detected in any of the wells with the exception of low concentrations of benzene in well MW-8I (23 and 2 μ g/L). MTBE was only detected in wells MW-8H, MW-8I, MW-8J, and MW-8K, and only at low concentrations (up to 10 μ g/L). TPHd was not detected in onsite well MW-8K; an elevated concentration (2,600 μ g/L) was detected in onsite well MW-8L during the second quarter event (no-purge sample). Low concentrations of TPHd were detected in wells MW-8H (78 and 640 μ g/L), MW-8I (360 and 92 μ g/L), MW-8J (400 μ g/L during second quarter, not detected during third quarter), MW-8F (300 and 81 μ g/L), and MW-8G (140 and 55 μ g/L). The concentrations detected during the third quarter event generally were less than those detected during the second quarter event.

Elevated concentrations of TPHg (1,900 μ g/L), TPHd (1,400 μ g/L), and benzene (320 μ g/L) were detected in the grab-groundwater sample collected from the used-oil UST excavation in 1990. Elevated concentrations of TPHg (3,900 and 5,200 μ g/L), TPHd (13,000 and 31,000 μ g/L), TPHmo (17,000 and 100,000 μ g/L), and benzene (320 and 280 μ g/L) were also detected the two grab-groundwater samples collected from the adjacent clay pipe excavation in 1991. However, these three samples were collected prior to the removal of groundwater from the excavations (volume unknown) and therefore are not considered representative of conditions beneath the site.

Elevated concentrations of TPHg (6,200 μ g/L) and benzene (200 μ g/L) were detected in the groundwater sample collected from boring SV-7 in the area of the former gasoline USTs; only low concentrations of toluene (7 μ g/L), ethylbenzene (250 μ g/L), xylenes (260 μ g/L), and MTBE (0.7 μ g/L) were detected. Petroleum hydrocarbons generally were not detected in the groundwater samples collected from borings SV-4, SV-5, SV-6, and SV-8 with the exception of low concentrations of MTBE in the samples collected from borings SV-4 (1 μ g/L) and SV-8 (2 μ g/L).

Based on the analytical results, groundwater impacted with TPHd remains beneath the site and downgradient; however, the residual concentrations are generally low. An elevated concentration of TPHd was detected in onsite well MW-8L, however, this well could not be properly redeveloped and only a grab sample could be collected. Therefore, these results likely are not representative of surrounding conditions. Groundwater in the area of offsite well MW-8I is impacted with TPHg and benzene; however, the residual concentrations are low. Elevated concentrations of TPHg and benzene were detected in the groundwater sample collected from boring SV-7 in the southeast portion of the site in March 2008. However, as this was a grab sample

collected from a boring, the detected concentrations likely are greater than what is actually present in groundwater due to the presence of impacted sediment in the sample. Based on the monitoring results, only low concentrations of TPHd (just above the reporting limit) were detected in furthest downgradient wells MW-8F and MW-8G. Therefore, the extent of impacted groundwater appears to have been adequately evaluated and no further investigation appears warranted.

Copies of the second and third quarter 2009 groundwater monitoring reports are presented in Appendix C. The historical groundwater monitoring data (prior to 1992) is also included in Appendix C. The grab-groundwater sample analytical results are presented in Table 3. The most recent concentrations in groundwater are shown on Figure 6; an iso-concentration map of TPHd concentrations in groundwater is presented on Figure 7.

7.4.1 <u>LIGHT NON-AQUEOUS PHASE LIQUID</u>

As described in Section 4.0, during work on the used-oil UST in June 1990, LNAPL reportedly was observed on the water in the tank pit backfill; Exxon reportedly had the water in the excavation pumped out several times. During removal of the used-oil UST in September 1990, approximately 1/8 inch of LNAPL reportedly was observed on the water in the excavation; an unknown volume of water was again pumped out of the excavation. LNAPL has not been observed in any of the site monitoring wells.

7.5 <u>PETROLEUM HYDROCARBON DISTRIBUTION IN SOIL VAPOR</u>

Elevated concentrations of total hydrocarbons and BTEX were detected in several of the soil vapor samples collected during the 1988 investigation. The majority of these samples were collected in the area of the gasoline USTs along the southern edge of the site, or downgradient in Grand Avenue just past the sidewalk. Elevated concentrations were also detected in a sample collected in Grand Avenue to the south of the dispenser islands, and in two samples collected on the western edge of the site crossgradient of the USTs and dispensers. Total hydrocarbons and BTEX were not detected in three samples collected to the west of the site in Euclid Avenue. However, these samples were collected prior to removal of the USTs and the subsequent remedial activities at the site. Based on this information and the age of the data, these samples are not considered representative of site conditions.

During the investigation in 2006, elevated concentrations of TPHg (60,000 and $2x10^{6} \mu g/m^{3}$) and benzene (3,400 and 34,000 $\mu g/m^{3}$) were detected in soil vapor samples SV-1 and SV-2, respectively, collected along the southern edge of the site. Elevated concentrations of toluene ($1x10^{5} \mu g/m^{3}$), ethylbenzene ($64,000 \mu g/m^{3}$), and xylenes ($2.8x10^{5} \mu g/m^{3}$) were also detected in sample SV-2. The field duplicate sample collected simultaneously with SV-2 contained significantly lower concentrations of TPHg ($7.2x10^{5} \mu g/m^{3}$), benzene ($14,000 \mu g/m^{3}$), toluene ($69,000 \mu g/m^{3}$), ethylbenzene ($27,000 \mu g/m^{3}$), and xylenes ($1.1x10^{5} \mu g/m^{3}$). The lower concentrations in the duplicate sample called into question the validity of the data. The historical soil vapor sample analytical results are presented in Table 4.

To further evaluate soil vapor quality, additional sampling (SV-4 through SV-8) was proposed with ACEH concurrence. However, two subsequent attempts to collect the additional soil vapor data (March 2008 and June 2009) were unsuccessful due to very shallow groundwater levels onsite (as shallow as 0.9 feet), precluding the collection of valid data. This was communicated to ACEH via e-mail on September 9, 2009, and acknowledged in a return e-mail from ACEH on September 10, 2009. During the October 2009 groundwater monitoring event, the depth to water in onsite well MW-8K was 1.85 feet, again too shallow to allow for the collection of valid soil vapor data. As the groundwater levels at the site have not dropped enough to allow for the collection of valid soil vapor data even at various times throughout the year, it does not appear the previously proposed additional soil vapor sampling can be performed. However, no further investigation appears warranted as potential vapor intrusion given the current site use is not a significant concern, as will be discussed in the following section.

8.0 <u>RISK EVALUATION</u>

To evaluate potential risks to human health or the environment associated with the residual petroleum hydrocarbons in soil and groundwater beneath the site, CRA evaluated the presence of wells and potential sensitive receptors in the site vicinity, evaluated potential receptor exposure pathways, and performed a screening-level risk evaluation. The findings of the risk evaluation are presented below.

8.1 NEARBY WELLS AND SENSITIVE RECEPTORS

As described in Section 3.3, no water-supply wells were identified within ¹/₄ mile of the site and the local drinking water supply is obtained from distant surface water. Based on the proximity to San Francisco Bay and Lake Merritt, it is unlikely shallow

groundwater in the site area would be used as a drinking water source. The site is an unmanned paved public parking lot with no structures and therefore no sensitive receptors exist at the site. The surrounding sensitive use properties are located up- or crossgradient of the site. The area downgradient of the site is occupied by Grand Avenue followed by undeveloped land. Lake Merritt is located approximately 225 feet downgradient of the site. Downgradient wells MW-8F and MW-8G are located approximately 115 feet from the lake; and only low concentrations of TPHd are present in these wells. Based on the low permeability soils present, and the low residual concentrations, it appears unlikely that Lake Merritt would be significantly impacted by petroleum hydrocarbons from the site. Based on this information, there do not appear to be any wells or sensitive receptors that would likely be impacted by petroleum hydrocarbons from the site.

8.2 <u>POTENTIAL EXPOSURE PATHWAYS</u>

8.2.1 <u>SOIL</u>

As the site is capped with asphalt, potential exposure to the residual subsurface impacted soil along the southern and eastern edges of the site by the general public is essentially eliminated. Therefore, the only identified potential exposure pathway to impacted soil beneath the site under the current land use scenario is direct exposure by construction workers during trenching or excavating activities.

8.2.2 <u>GROUNDWATER</u>

The extent of impacted groundwater appears to be adequately defined and no water supply wells were identified in the site vicinity. As discussed in Section 3.3, the drinking water supply is obtained from surface water runoff in the Sierra Nevada Mountains. Due to the proximity to San Francisco Bay, shallow groundwater in the site area likely never will be used as a drinking water resource. Therefore, no complete groundwater ingestion pathways appear to exist and none are likely to exist in the foreseeable future.

8.2.3 <u>SURFACE WATER</u>

The nearest surface water body is Lake Merritt, located approximately 225 feet downgradient of the site. Based on the monitoring results, only low concentrations of

TPHd remain in furthest downgradient wells MW-8F and MW-8G located approximately 115 feet from the lake. Based on the low permeability soils present, and the low residual concentrations, it appears unlikely that Lake Merritt would be significantly impacted by petroleum hydrocarbons from the site. Based on this information, there does not appear to be a significant risk to surface waters or other ecological receptors from the site hydrocarbons.

8.2.4 <u>VAPOR INTRUSION</u>

Given the current use of the site as a parking lot, vapor intrusion does not appear to be a complete potential exposure pathway as no structures are present onsite and there are no site workers or occupants. Given the current economic conditions, this land use is not expected to change in the near future.

With regards to potential future site redevelopment, as the majority of the site has been over-excavated, the only residual impacts that appear could potentially pose a significant risk via vapor intrusion are within the approximately 5-foot area adjacent to the southern and eastern property lines where further excavation could not be performed. Soil vapor samples SV-1 and SV-2 were collected within this area; the elevated TPHg and BTEX concentrations detected appear to be due to the samples being collected within the heart of the smear zone. Future development plans could include building setbacks from these property lines or these areas could be over-excavated if possible during redevelopment activities to mitigate this potential pathway. Chevron would work with ACEH and the property owner to ensure that the selected mitigation measures were adequate such that no significant risk to human health was present. It should be noted that a nearby fuel release case (Former Gulf Station No. 0006 at 460 Grand Avenue) had similar site conditions and was closed with such provisions in place should future redevelopment occur.

Although the previously proposed additional soil vapor sampling could not be performed due to the very shallow groundwater levels, based on the information above no further investigation appears warranted at this time and it is no longer recommended.

8.3 <u>COMPARISON TO ENVIRONMENTAL SCREENING LEVELS</u>

The maximum residual COC concentrations in soil, groundwater, and soil vapor were compared to the corresponding environmental screening levels (ESLs) established by the

RWQCB in May 2008. The ESLs are for use as screening levels in determining if further evaluation is warranted, in prioritizing areas of concern, in establishing cleanup goals, and in estimation of potential health risks. As stated by the RWQCB, the ESLs are considered to be conservative. The presence of a chemical at a concentration above an ESL does not necessarily indicate that adverse impacts to human health or the environment are occurring; rather exceeding ESLs indicates that the potential for impacts may exist and additional evaluation may be needed. Under most circumstances, the presence of a chemical in soil, groundwater, or soil gas at concentrations below the corresponding ESL can be assumed to not pose a significant, long-term (chronic) threat to human health and the environment.

8.3.1 <u>SOIL</u>

As discussed in Section 8.2.1 above, the only identified complete potential exposure pathway to residual impacted soil at the site under the current land use scenario is direct exposure by construction workers during trenching or excavation activities. Therefore, Table B below presents a comparison of the maximum COC concentrations detected in soil samples recently collected from areas that were not over-excavated to the respective soil ESLs associated with direct exposure concerns under the construction/trench worker exposure scenario. Older soil samples (collected during and prior to 1992) were not considered as the detected concentrations likely have decreased since the time they were collected due to natural attenuation processes and therefore they would not represent current conditions.

TABLE B. COMPARISON OF MAXIMUM SOIL CONCENTRATIONS TO ESLs			
Constituent	Highest Detected Concentration Remaining in Soil (mg/kg)	ESL for Construction/Trench Worker Exposure ¹ (mg/kg)	
TPHg	3,800 (S-2, 4 fbg)	4,200	
TPHd	580 (S-2, 4 fbg)	4,200	
Benzene	0.41 (S-2, 4 fbg)	12	
Toluene	17 (S-2, 4 fbg)	650	
Ethylbenzene	36 (S-2, 4 fbg)	650	

TABLE B. COMPARISON OF MAXIMUM SOIL CONCENTRATIONS TO ESLs			
Constituent	Highest Detected Concentration Remaining in Soil (mg/kg)	ESL for Construction/Trench Worker Exposure ¹ (mg/kg)	
Xylenes	170 (S-2, 4 fbg)	420	

 ESLs from Table K-3, Direct Exposure Soil Screening Levels, Construction/Trench Worker Exposure Scenario, in Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, RWQCB-May 2008

As shown above, the maximum COC concentrations in soil do not exceed the respective ESLs. Therefore, the residual impacted soil does not appear to pose a significant threat to human health under the current land use scenario.

8.3.2 <u>GROUNDWATER</u>

As described in Section 8.2.2 above, there were no identified complete groundwater ingestion pathways. Therefore, the most recent maximum residual COC concentrations detected in the site wells were compared to the groundwater ESLs associated with the protection of aquatic habitats (i.e., Lake Merritt). These ESLs address the potential discharge of groundwater into a surface water body and the subsequent impacts on aquatic life; however, they are conservative as potential dilution is not considered.

TABLE C. COMPARISON OF MAXIMUM GROUNDWATER CONCENTRATIONS TO ESLs				
Constituent	Highest Detected Concentration Remaining in Groundwater (ug/L)	Aquatic Habitat Goal ESL ¹ (ug/L)		
TPHg	53 (MW-8I)	210		
TPHd	2,600 (MW-8L)	210		
Benzene	2 (MW-8I)	46		
MTBE	4 (MW-8I)	8,000		

1. ESLs from Table F-1b, Groundwater Screening Levels, groundwater is not a current or potential drinking water resource, in *Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater*, RWQCB-May 2008

As shown above, the maximum detected TPHd concentration in groundwater exceeded the aquatic habitat goal ESL. However, this concentration was detected in onsite well MW-8L, the TPHd concentrations in the remaining wells were significantly lower. The most recent TPHd concentrations detected in furthest downgradient wells MW-8F (81 μ g/L) and MW-8G (55 μ g/L) located approximately 115 feet from Lake Merritt did
not exceed the ESL. Therefore, the petroleum hydrocarbons from the site do not appear to pose a significant threat to Lake Merritt.

8.3.3 <u>SOIL VAPOR</u>

As previously discussed, the soil vapor samples collected in 1988 were collected prior to removal of the USTs and the subsequent remedial activities at the site. Therefore, based on this information and the age of the data, these samples were not considered representative of site conditions and not included in the comparison. Although the validity of the analytical results was called into question, the TPHg and benzene concentrations detected in samples SV-1, SV-2, and the field duplicate, and the ethylbenzene and xylenes concentrations detected in sample SV-2 and the field duplicate exceeded the shallow soil gas ESLs associated with vapor intrusion concerns at commercial/industrial sites. The commercial/industrial shallow soil gas ESLs for TPHg, benzene, ethylbenzene, and xylenes are 29,000 μ g/m³, 280 μ g/m³, 3,300 μ g/m³, and 58,000 μ g/m³, respectively.

However, regardless of whether or not the detected concentrations were valid or exceeded the ESLs, potential vapor intrusion does not appear to be a significant concern at the site under the current land use scenario and no further work appears warranted at this time.

9.0 <u>LOW-RISK GROUNDWATER CRITERIA</u>

The site appears to meet the RWQCB criteria for classification as a low-risk groundwater case. As described in the January 5, 1996, RWQCB memorandum entitled *Interim Guidance on Required Cleanup at Low-Risk Fuel Sites*, a low-risk groundwater case has the following general characteristics:

- The leak has been stopped and ongoing sources, including LNAPL, have been removed or remediated
- The site has been adequately characterized
- The dissolved hydrocarbon plume is not migrating
- No water wells, deeper drinking water aquifers, surface water, or other sensitive receptors are likely to be impacted
- The site presents no significant risk to human health or the environment

Each low-risk groundwater case criteria, as it relates to the site, is discussed below.

9.1 THE LEAK HAS BEEN STOPPED AND ONGOING SOURCES, INCLUDING LNAPL, HAVE BEEN REMOVED OR REMEDIATED

All original potential sources of the petroleum hydrocarbon release(s) (former used-oil and gasoline USTs, dispensers, and product piping) were removed from the site by 1993. The site is no longer used as a service station, and is currently a parking lot. The over-excavation activities removed the majority of the impacted soil (approximately 2,400 cubic yards) to the extent possible. Overall, concentrations in groundwater have significantly decreased, indicating that any residual impacted soil is not acting as a continuing source of hydrocarbons that would reverse overall improving groundwater quality trends. The groundwater extraction activities appear to have been successful at removing the previously observed LNAPL, as it has never been observed in any of the site wells. Based on this information, the leak has been stopped and ongoing sources have been removed.

9.2 <u>THE SITE HAS BEEN ADEQUATELY CHARACTERIZED</u>

As described in Section 7.3, numerous soil samples have been collected from excavations and borings, and the analytical results indicate that the horizontal and vertical extent of impacted soil has been adequately evaluated. Impacted soil appears to remain in narrow strips (approximately 5 feet in width) along the southern and eastern edges of the site where further over-excavation could not be performed; and likely just downgradient of the site beneath Grand Avenue.

As described in Section 7.4, groundwater quality at the site has been monitored since 1988 by wells installed near the source area(s) and downgradient. Concentrations have decreased since the start of monitoring. Groundwater impacted with TPHd remains beneath the site and downgradient; however, the residual concentrations are generally low. An elevated concentration of TPHd was detected in onsite well MW-8L, however, as previously discussed these results likely are not representative of surrounding conditions. Groundwater in the area of offsite well MW-8I is impacted with TPHg and benzene; however, the residual concentrations are low. Although elevated concentrations of TPHg and benzene were detected in the grab-groundwater sample collected from boring SV-7 in the southeast portion of the site, the detected concentrations likely are greater than what is actually present due to the presence of impacted sediment in the sample. Only low concentrations of TPHd just above the

reporting limit are present in furthest downgradient wells MW-8F and MW-8G. The plume appears to be stable and the extent of impacted groundwater appears to have been adequately evaluated. Concentrations are expected to continue to decrease over time due to natural attenuation.

Although the proposed additional soil vapor sampling could not be performed, potential vapor intrusion does not appear to be a significant concern at the site under the current land use scenario, and therefore it no longer appears warranted. Based on this information, the extent of impact has been defined to the degree necessary to demonstrate that the site does not present a significant threat to human health or the environment.

9.3 THE DISSOLVED HYDROCARBON PLUME IS STABLE, DECREASING, AND NOT MIGRATING

Only low concentrations of TPHd (just above the reporting limit) are present in downgradient wells MW-8F and MW-8G, and concentrations in groundwater have decreased since the start of monitoring. The plume appears stable, shrinking, and not migrating. Natural attenuation is expected to continue to reduce the remaining concentrations to background levels.

9.4 NO WATER WELLS, DEEPER DRINKING WATER AQUIFERS, SURFACE WATER, OR OTHER SENSITIVE RECEPTORS ARE LIKELY TO BE IMPACTED

No water-supply wells were identified within ¼ mile of the site and the local drinking water supply is obtained from surface water in the Sierra Nevada Mountains. Based on the proximity to San Francisco Bay and Lake Merritt (mixed fresh and saltwater), it is unlikely shallow groundwater in the site area would be used as a drinking water source. The site is an unmanned paved public parking lot with no structures and therefore no sensitive receptors exist at the site. The area downgradient of the site is occupied by Grand Avenue followed by undeveloped land and therefore no sensitive receptors are present in this area with the exception of Lake Merritt, located approximately 225 feet downgradient of the site. However, based on the low permeability soils present, and the low residual concentrations in the downgradient wells, it appears unlikely that Lake Merritt would be significantly impacted by petroleum hydrocarbons from the site. Based on this information, it does not appear that any water wells, deeper drinking water aquifers, surface water, or other sensitive receptors are likely to be impacted.

9.5 THE SITE PRESENTS NO SIGNIFICANT RISK TO HUMAN HEALTH OR THE ENVIRONMENT

The most recent maximum residual COC concentrations in soil and groundwater generally did not exceed the corresponding ESLs based on the identified potential receptors and exposure pathways. As the site is paved, potential exposure to any residual impacted soil by the general public is essentially eliminated. Although impacted groundwater remains beneath the site, the concentrations are generally low, the plume appears stable and concentrations are decreasing, and no sensitive receptors appear likely to be impacted. Natural attenuation is expected to continue to decrease concentrations in groundwater to background levels. Although elevated concentrations of petroleum hydrocarbons were detected in soil vapor, potential vapor intrusion does not appear to be a significant concern given the current land use scenario. Based on this information, the site does not appear to pose a significant risk to human health or the environment.

10.0 <u>CONCLUSIONS AND RECOMMENDATIONS</u>

Preparation of a SCM to summarize site conditions and residual impacts, identify potential receptors and exposure pathways, and evaluate if any data gaps exist was requested by ACEH in letters dated September 30, 2008 and May 13, 2009. This report presented a SCM for the site and addressed the technical comments included in the ACEH letters. The site is currently used as a parking lot, and this land use is not expected to change in the near future. Based on the analytical results, the extent of impact at the site appears to have been adequately evaluated and no further investigation appears warranted at this time. The residual petroleum hydrocarbons in soil and groundwater at the site do not appear to pose a significant threat to human health or the environment under the current land use scenario, and the site appears to meet the RWQCB criteria for classification as a low-risk groundwater case.

With regards to potential future site redevelopment, as the majority of the site has been over-excavated, the only residual impacts that appear could potentially pose a risk to human health under a different land use scenario are within the approximately 5-foot area adjacent to the southern and eastern property lines where further excavation could not be performed. Future development plans could include building setbacks from these property lines or these areas could be over-excavated if possible during redevelopment activities to mitigate this potential pathway. Other mitigation measures (vapor barrier, venting system, etc.) could also be implemented at the time of redevelopment. Chevron would work with ACEH and the property owner to ensure that the selected mitigation measures were adequate such that no significant risk to human health was present. As previously noted, a nearby fuel release case (Former Gulf Station No. 0006 at 460 Grand Avenue) had similar site conditions and was closed with such provisions in place should future redevelopment occur. Therefore, on behalf of Chevron, CRA respectfully requests the site be considered for low-risk case closure and no further action.

FIGURES

Oakland, California

612049-400(002)GN-WA001 MAY 25/2009

⁶¹²⁰⁴⁹⁻⁸⁹⁹⁽⁰⁰²⁾GN-WA003 DEC 04/2009

LEGEND

- SV-1 **A** SOIL VAPOR SAMPLE LOCATION
- MW-8K MONITORING WELL LOCATION
- B-6 EXPLORATORY BORING LOCATION
 - DESTROYED MONITORING/OBSERVATION WELL LOCATION
 - A' CROSS SECTION LOCATION

figure 2 SITE PLAN FORMER TEXACO SERVICE STATION 21-1173 500 GRAND AVENUE Oakland, California

612049-899(002)GN-WA002 DEC 04/2009

612049-899(002)GN-WA002 DEC 04/2009

612049-899(002)GN-WA004 DEC 04/2009

Boring/ Well ID	Depth	Date	TPHd	TPHg	Benzene
SV-8	2	3/19/08	-	<1.0	<0.0005
	5	3/19/08	-	<1.0	<0.0005

					_		_			
	Boring Well ID	Depth	Date		TPHd		TPHg		Benzen	e
	B-6	2	10/26/8	9	<100		1		<0.05	
		4.5	10/26/8	9	<10		<1.0		<0.05	
_										
	Boring/ Well ID	Depth	Date		TPHd		TPHg	Benzene		
	B-4	3.5	10/10/88	- 1			510		<0.5	

ing/ I ID	Depth	Date	TPHd	TPHg	Benzene
/- 7	2	3/18/08	-	16	0.001
	5	3/18/08	-	1,400	0.11

FPHd	TPHg	Benzene
-	2.1	ND
-	6.6	ND
Ι	84	ND

Benzene		
<0.05		
TPHd	TPHg	Benzene
-	<10	<0.5

figure 5

HISTORICAL ANALYTICAL RESULTS IN SOIL FORMER TEXACO SERVICE STATION 21-1173 500 GRAND AVENUE *Oakland, California*

⁶¹²⁰⁴⁹⁻⁸⁹⁹⁽⁰⁰²⁾GN-WA005 DEC 04/2009

WELL CONSTRUCTION DETAILS FORMER TEXACO STATION 21-1173 500 GRAND AVENUE OAKLAND, CALIFORNIA

Well ID	Installation Date	Total Depth (fbg)	Casing Diameter (inches)	Top of Screen (fbg)	Bottom of Screen (fbg)	Screen Length (feet)	Comments
MW-8A	6/6/88	15.5	2	10	15	5	Destroyed
MW-8B	6/7/88	20	2	14.5	19.5	5	Destroyed
MW-8C	6/7/88	24.5	2	14	24	10	Destroyed
MW-8D	6/7/88	5	2	0.8	4.5	3.7	Destroyed
MW-8E	10/21/88	15.5	4	4.5	15	10.5	Destroyed
MW-8F	3/16/89	16.5	4	9	14.5	5.5	
MW-8G	3/16/89	16.5	4	5	14.5	9.5	
MW-8H	1/8/90	16.5	4	5	15	10	
MW-8I	1/9/90	16.5	4	5	15	10	
MW-8J	1/9/90	16.5	4	5	15	10	
MW-8K	5/18/93	18	2	3	18	15	
MW-8L	5/18/93	18	2	3	18	15	

Abbreviations/notes:

fbg = feet below grade

Boring/ Sample ID	Sample Depth (fbg)	Sample Date	ТРНто	TOG	TPHd	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	HVOCs	TPH other
						Concent	rations reporte	d in milligra	ms per kilogram n	ıg/kg			
Exploratory	and Monitorii	ng Well Borings											
B-1	6.5	10/10/88				12	<0.05	<0.1	<0.2	<0.1			
B-3	4	10/10/88				520	<1	<2	<4	5			
B-4	3.5	10/10/88				510	<0.5	1	3.5	13			
B-5	5.5	3/2/89				<10	<0.05	<0.1	<0.2	<0.1			
B-5	10.5	3/2/89				<10	< 0.05	< 0.1	< 0.2	< 0.1			
B-5	16	3/2/89				<10	< 0.05	<0.1	<0.2	<0.1			
B-6	2	10/26/89			<100	1	< 0.05	0.08	< 0.05	< 0.05			
B-6	4.5	10/26/89			<10	<1.0	< 0.05	0.09	< 0.05	< 0.05			
B-7	3	10/26/89			<100	580	<0.5	6.7	5.1	50			
B-8	2	10/26/89			<10	3.4	0.05	<0.05	<0.05	0.34			
B-9	2.5	10/26/89			460	100	0.05	0.32	0.81	6.4			
B-8K	1.5	1/8/90				2.1	ND	ND	ND	ND			ND
	3	1/8/90				6.6	ND	0.05	ND	ND			ND
	5.5	1/8/90				84	ND	ND	0.08	0.05			20
B-10	1.5	1/8/90				8.4	0.28	ND	0.2	0.18			ND
	2.5	1/8/90				ND	0.09	ND	ND	ND			ND
	5.5	1/8/90				ND	ND	ND	ND	ND			ND
	8.5	1/8/90				ND	ND	ND	ND	ND			ND
B-11	1.5	1/8/90				2,900	ND	ND	5.4	1.6			30
	2.5	1/8/90				62	ND	ND	0.31	0.12			11
	5.5	1/8/90				17	NÐ	NÐ	0.06	ND			ND
B-11	8.5	1/8/90				ND	ND	ND	ND	ND			ND

Boring/ Sample ID	Sample Depth (fbg)	Sample Date	TPHmo	TOG	TPHd	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	HVOCs	TPH other
						Concent	rations reporte	ed in milligra	ms per kilogram n	ıg/kg			
B-12	1	1/8/90				13	0.22	0.11	0.18	0.42			NÐ
	2.5	1/8/90				49	ND	ND	0.19	0.83			ND
	4.5	1/8/90				1,200	ND	ND	1.27	0.67			94
	6	1/8/90				ND	ND	0.06	ND	ND			ND
B-13	1.5	2Q90*			NÐ	NÐ	NÐ	ND	ND	ND			ND
	2.5 ^{1,2,3}	2Q90*		5,600	ND	130	ND	ND	1.7	5.4		ND	1,000
	3.5	2Q90*			NÐ	26	NÐ	0.06	0.06	0.3			250
B-14	1.5	2Q90*			NÐ	4 .8	NÐ	ND	ND	ND			85
	3.5	2Q90*			NÐ	2.3	NÐ	NÐ	NÐ	NÐ			62
MW-8D	1.3	6/7/88				10	<0.05	0.4	<0.2	0.5			
MW-8E	5.5	10/11/88				750	0.82	6.5	5.5	26			
MW-8F	11	3/16/89				<10	<0.5	<0.1	<0.2	<0.1			
MW-8G	6	3/16/89				<10	<0.5	<0.1	<0.2	<0.1			
MW-8H	1.5	1/10/90				ND	ND	0.07	ND	ND			ND
	3	1/10/90				2.6	ND	0.24	ND	ND			ND
	5.5	1/10/90				550	ND	ND	0.3	0.83			66
	10.5	1/10/90				ND	ND	ND	ND	ND			ND
MW-8I	1.5	1/9/90				3	0.1	ND	ND	ND			ND
	3.5	1/9/90				ND	0.06	ND	ND	0.02			ND
	5.5	1/9/90				280	ND	ND	2.7	9.2			ND
	10.5	1/9/90				ND	ND	ND	ND	ND			ND
MW-8J	1.5	1/9/90				24	0.18	0.09	0.06	0.05			ND
MW-8J	3	1/9/90				13	0.08	0.14	0.04	ND			33
	5.5	1/9/90				2100	ND	ND	25	9.2			83

Boring/ Sample ID	Sample Depth (fbg)	Sample Date	ТРНто	TOG	TPHd	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	HVOCs	TPH other
						Concent	rations reporte	d in milligrai	ns per kilogram m	ıg/kg			
	10.5	1/9/90				8	ND	0.02	ND	ND			ND
S-1	4	11/20/06		<330	15	390	< 0.062	<0.12	0.9	1.9			
S-2	4	11/20/06		<330	580	3,800	0.41	17	36	170			
S-3	4	11/20/06		<330	11	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001			
SV-5	2	3/18/08				<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005		
SV-7	2	3/18/08				16	0.001	< 0.001	0.078	0.027	< 0.0005		
SV-7	5	3/18/08				1,400	0.11	0.059	15	19	< 0.025		
SV-8	2	3/19/08				<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005		
SV-8	5	3/19/08				<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005		
Waste Oil Ta	ink Excavatio	n											
W.O.#2	1.5	9/25/90		200	<5.0	<1.0	0.048	<0.005	0.007	0.013		ND	
W.O.#3	1.5	9/25/90		2,600	220	15	0.53	0.06	0.75	1.5		ND	
W.O.#4	1.5	9/25/90		500	17	1.9	0.054	0.012	0.062	0.29		ND	
W.O.#5	1.5	9/25/90		100	21	<1.0	<0.005	0.017	<0.005	<0.005		ND	
W.O.#6	2.0	10/3/90		100									
W.O.#7	1.5	10/3/90		850									
W.O.#8	8	10/3/90		<50	<5.0	<1.0	< 0.005	0.016	< 0.005	< 0.005			
Clay Pipe Ex	cavation												
PT-NS-7.5	2.5	1/8/91	330	110	28	22	0.02	ND	0.055	0.13		ND	
PT-B-7.5	4.5	1/8/91	93	150	8.1	5.7	ND	ND	NÐ	ND		ND	
PT-SS-7.5	2.5	1/8/91	160	630	17	100	0.071	0.071	0.3	0.63		ND	
PT-E-1.5	1.5	1/8/91		780	110	1.1	<0.005	<0.005	<0.005	<0.005			
PT-W-1.5	1.5	1/8/91		370	190	3.8	< 0.005	0.014	<0.005	0.024			
Gasoline US	T and Dispen	ser Island Excava	ation										
SS1	10	4/14/92				5.3	< 0.005	0.038	0.016	0.12			
SS2	10	4/14/92				89	0.049	0.38	0.15	1.4			
SS3	5	4/14/92				<1.0	<0.005	<0.005	<0.005	0.011			
SS4	10	4/14/92				130	0.14	0.21	0.17	1.1			
SS5	10	4/14/92				36	0.2	0.028	0.04	0.15			

Boring/ Sample ID	Sample Depth (fbg)	Sample Date	TPHmo	TOG	TPHd	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	HVOCs	TPH other
						Concent	rations reporte	ed in milligra	ms per kilogram m	ıg/kg			
SS6	10	4/14/92				2.3	0.0057	< 0.005	< 0.005	0.017			
SS7	5	4/14/92				<1.0	< 0.005	< 0.005	< 0.005	< 0.005			
SS8	5	4/14/92				<1.0	< 0.005	< 0.005	< 0.005	< 0.005			
SS9	5	4/14/92				<1.0	0.0069	<0.005	<0.005	<0.005			
PI-1	5	4 /15/92		190		2,100	11	60	32	180			
PI-2	5	4/15/92		30		7.8	0.019	0.013	0.035	0.077			
PI-2A	6	4/15/92		6,900		810	1.3	1.1	2	11			
Fuel Line	5	4 /15/92		36		390	0.92	2.9	3.6	21			
Site Over-Ex	cavation												
BE-1	8	5/5/92				1.1	0.043	< 0.005	0.058	< 0.005			
BE-2	8	5/5/92				<1.0	0.011	< 0.005	< 0.005	< 0.005			
BE-3	4	5/5/92				<1.0	<0.005	<0.005	<0.005	<0.005			
BE-4	4.5	5/5/92				<1.0	< 0.005	< 0.005	< 0.005	< 0.005			
BE-5	7.5	5/5/92				<1.0	0.018	< 0.005	< 0.005	< 0.005			
BE-6	7.5	5/5/92				<1.0	< 0.005	< 0.005	< 0.005	< 0.005			
BE-7	8	5/5/92				<1.0	< 0.005	< 0.005	< 0.005	< 0.005			
BE-8	8	5/5/92				<1.0	0.028	< 0.005	< 0.005	< 0.005			
BE-9	9	5/5/92				<1.0	< 0.005	< 0.005	< 0.005	< 0.005			
BE-10	9	5/5/92				<1.0	< 0.005	< 0.005	< 0.005	< 0.005			
WS-1	3	5/5/92				<1.0	<0.005	<0.005	<0.005	<0.005			
WS-2	5	5/5/92				72	1.1	3.1	2.2	9.7			
WS-3	7.5	5/5/92				<1.0	< 0.005	< 0.005	< 0.005	< 0.005			
WS-4	5	5/5/92				1,000	22	28	30	100			
WS-5	5	5/5/92				480	11	23	9.9	42			
SW-1**	Sidewall	1/20/93				<1.0	< 0.005	< 0.005	< 0.005	< 0.005			
SW-2**	Sidewall	1/20/93				<1.0	< 0.005	< 0.005	< 0.005	< 0.005			
SW-3**	Sidewall	1/20/93				<1.0	< 0.005	< 0.005	< 0.005	< 0.005			
SW-4**	Sidewall	1/20/93				<1.0	< 0.005	< 0.005	< 0.005	< 0.005			
SW-5**	Sidewall	1/20/93				<1.0	< 0.005	< 0.005	< 0.005	< 0.005			
SW-6**	Sidewall	1/20/93				<1.0	< 0.005	< 0.005	< 0.005	< 0.005			
SW-7**	Sidewall	1/20/93				<1.0	< 0.005	< 0.005	< 0.005	< 0.005			
B-1**	Bottom	1/20/93				<1.0	< 0.005	< 0.005	< 0.005	< 0.005			

SOIL SAMPLE ANALYTICAL RESULTS FORMER TEXACO STATION 21-1173 **500 GRAND AVENUE** OAKLAND, CALIFORNIA

Boring/ Sample ID	Sample Depth (fbg)	Sample Date	ТРНто	TOG	TPHd	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	HVOCs	TPH other
						Concentr	ations reporte	d in milligrai	ms per kilogram m	g/kg			
B-2**	Bottom	1/20/93				<1.0	< 0.005	< 0.005	< 0.005	< 0.005			
B-3**	Bottom	1/20/93				<1.0	< 0.005	< 0.005	< 0.005	< 0.005			
B-4**	Bottom	1/20/93				<1.0	< 0.005	< 0.005	< 0.005	< 0.005			
B-5**	Bottom	1/20/93				<1.0	< 0.005	< 0.005	< 0.005	< 0.005			
B-6**	Bottom	1/20/93				<1.0	< 0.005	< 0.005	< 0.005	< 0.005			
B-7**	Bottom	1/20/93				<1.0	< 0.005	< 0.005	< 0.005	< 0.005			
B-8**	Bottom	1/20/93				<1.0	< 0.005	< 0.005	< 0.005	< 0.005			
B-9**	Bottom	1/20/93				<1.0	< 0.005	< 0.005	< 0.005	< 0.005			
B-10**	Bottom	1/20/93				<1.0	< 0.005	< 0.005	< 0.005	< 0.005			

Abbreviations/Notes:

Total petroleum hydrocarbons as motor oil (TPHmo), diesel (TPHd), and gasoline (TPHg) by EPA Method 8015

Total oil and grease (TOG) by EPA Method 5520

Benzene, toluene, ethylbenzene and xylenes (BTEX) by EPA Method 8020 or 8260B

Methyl tertiary butyl ether (MTBE) by EPA Method 8260B

Halogenated volatile organic compounds (HVOCs) by EPA Method 8010

"TPH other" = heavier-end hydrocarbons such as waste oil, mineral spirits, jet fuel, or fuel oil by EPA Method 8015

-- = Not analyzed

<x = Not detected at or above stated laboratory reporting limits

ND = Not detected; reporting limits vary or are unknown

Note: samples that are crossed out were collected from soil that was later removed

* Exact drilling date unknown

¹ HVOCs not detected except for Trichloroethane at 0.06 mg/kg

² Semi-volatile organic compounds ND except for Naphthalene (0.9 mg/kg), 2-Methylnaphthalene (1.4 mg/kg), and Bis(2-ethylhexyl)phthalate (0.26 mg/kg)

³ Cadmium (ND), Chromium (36 mg/kg), Lead (ND), Zinc (41 mg/kg)

** Exact sample depths unknown; depth of excavation reportedly averaged 4.5 feet

GRAB-GROUNDWATER SAMPLE ANALYTICAL RESULTS FORMER TEXACO STATION 21-1173 500 GRAND AVENUE OAKLAND, CALIFORNIA

Sample ID	Sample Date	TPHd	TPHg	Benzene	Toluene	Ethyl- benzene	Xylenes	MTBE	TPHmo	TOG	HVOCs
					Concentra	tions reported in	micrograms per	liter (µg/L)			
Clay Pipe Exca	vation Water Samj	oles									
EP-01*	1/8/91	31,000	5,200	280	300	120	860		100,000		
WP-01*	1/8/91	13,000	3,900	320	73	95	48		17,000		
Waste Oil Tanl	k Excavation										
W.O.T.#1*	9/25/90	1,400	1,900	320	180	2.1	300			70	ND
Exploratory Bo	rings										
SV-4-W	3/18/08		<50	< 0.5	< 0.5	< 0.5	< 0.5	1			
SV-5-W	3/18/08		<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5			
SV-6-W	3/18/08		<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5			
SV-7-W	3/18/08		6,200	200	7	250	260	0.7			
SV-8-W	3/19/08		<50	< 0.5	< 0.5	< 0.5	< 0.5	2			

Abbreviations/Notes:

Total petroleum hydrocarbons as diesel (TPHd) and gasoline (TPHg) by EPA Method 8015

Benzene, toluene, ethylbenzene and xylenes (BTEX) by EPA Method 8020 or 8260B

Methyl tertiary butyl ether (MTBE) by EPA Method 8260B

Total oil and grease (TOG) by EPA Method 5520

Halogenated volatile organic compouds (HVOCs) by EPA Method 8010

* Samples collected prior to removal of water from excavation

<x = Not detected at or above stated laboratory reporting limits

-- = Not Analyzed

ND = Not detected; reporting limits vary

SOIL VAPOR SAMPLE ANALYTICAL RESULTS FORMER TEXACO STATION 21-1173 500 GRAND AVENUE OAKLAND, CALIFORNIA

Sample ID	Sample Depth (fbg)	Sample Date	TPHg	Total Hydrocarbons	Benzene	Toluene	Ethyl- benzene	Xylenes
				Concetrations reported in micrograms per cubic meter $(\mu g/m^3)$				
SG-01	3	9/21/88		<800	<800	<800	<900	<900
	6	9/21/88		2,000	400	400	<200	400
SG-02	3	9/21/88		1.40E+06	3.20E+05	2.80E+05	1.20E+05	23,000
SG-04	4	9/21/88		3.60E+08	8.60E+07	4.00E+07	2.60E+07	3.30E+06
SG-05	2	9/21/88		5.40E+07	4.20E+07	8.60E+06	86,000	86,000
SG-06	4	9/21/88		<800	<800	<800	<900	<900
SG-08	5	9/28/88		<400	<400	<400	<500	<400
SG-09	4	9/28/88		<400	<400	<400	<500	<400
SG-10	4	9/28/88		<400	<400	<400	<500	<400
SG-11	3.5	9/28/88		<400	<400	<400	<500	<400
SG-12	4	9/28/88		2.50E+08	3.80E+07	1.60E+07	1.80E+05	1.70E+05
SG-13	3	9/28/88		32,000	<400	<400	<500	<400
SG-14	4	9/28/88		<400	<400	<400	<500	<400
SG-15	3	9/28/88		1.40E+09	3.00E+08	9.00E+07	2.70E+07	2.20E+07
SG-16	4	9/28/88		4.20E+05	1.20E+05	63,000	14,000	14,000
SG-17	4	9/28/88		<400	<400	<400	<500	<400
SG-18	4	9/28/88		<8,000	<8,000	<7,000	<9,000	<9,000
SV-1	4	11/20/06	60,000		3,400	330	2,600	380
SV-2	4	11/20/06	2.00E+06		34,000	1.60E+05	64,000	2.80E+05
SV-2 $Duplicate^1$	4	11/20/06	7.20E+05		14,000	69,000	27,000	1.10E+05

Abbreviations/Notes:

Total petroleum hydrocarbons as gasoline (TPHg), benzene, toluene, ethylbenzene and xylenes by EPA Method TO-3 Modified

Total hydrocarbons = approximately C4-C9 aliphatic, alicyclic, and aromatic compounds

Note: Samples collected in 1988 analyzed using a gas chromatograph and flame ionization detector (FID)

-- = Not analyzed

<x = Not detected at or above stated laboratory reporting limits

¹ Field duplicate sample collected simultaneously with initial sample

APPENDIX A

REGULATORY CORRESPONDENCE

ALAMEDA COUNTY HEALTH CARE SERVICES

DAVID J. KEARS, Agency Director

AGENCY

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

September 30, 2008

Ms. Staci Frerichs Chevron Environmental Management 6001 Bollinger Canyon Rd K2256 PO Box 6012 San Ramon, CA 94583-2324 Mr. Denis Brown Shell Oil Products US 20945 S Wilmington Ave Carson, CA 90810-1039 Ms Jennifer Sedlachek Exxon Mobil 4096 Piedmont Ave #194 Oakland, CA 94611

Mr. Brandford Howard Brandford Howard ET AL 516 Grand Avenue Oakland, CA 94610-3515

Subject: Fuel Leak Case No. RO0000391 (Global ID # T0600101355), Chevron #21-1173, 500 Grand Avenue, Oakland

Dear Ms Frerichs and Ms Seldachek; Mr. Brown and Mr. Howard:

Alameda County Environmental Health (ACEH) staff has reviewed the case file for the above referenced site and the document entitled "Work Plan for Additional for Additional Soil Vapor Study" and "Subsurface Investigation Report" received September 19, 2007 and August 14, 2008 and prepared by Conestoga Rovers Associates (CRA). We note that Chevron implemented the soil vapor work plan without Agency approval. Furthermore, the work performed in the subsurface investigation is not what was proposed in the work plan; soil vapor sampling was not completed, limited shallow soil samples were collected and soil borings were not installed. Therefore, we request that you complete the scope of work from your work plan (approved by ACEH) including soil vapor sampling and soil boring installation.

Based on ACEH staff review of the case file, we request that you address the following technical comments and send us the reports described below. Please provide 72-hour advance written notification to this office (e-mail preferred to mail to:steven.plunkett@acgov.org) prior to the start of field activities.

TECHNICAL COMMENTS

1. Work Plan for Additional Soil Vapor Study. Previous soil vapor data collected in November 2006 detected high concentrations of up to 2,204,000 µg/m³ TPHg and 35,130 µg/m³ benzene. However, CRA neglected to analyze vapor samples for leak detection compounds, calling into question the validity of the analytical results. Consequently, ACEH requested a supplemental soil vapor work plan in a directive letter dated July 30, 2007, which CRA submitted in September 2007. The work plan proposed the installation of additional soil borings, soil and groundwater sampling and soil vapor sampling. The work plan was implemented in August 2008 without Agency concurrence. However, the proposed scope of work which included soil vapor assessment was not completed. As a result, the potential for indoor vapor intrusion has not been adequately evaluated for the site.

2. Subsurface Investigation Results. The work plan recommended the installation of 3 soil borings and 5 soil vapor probes with soil, groundwater and soil vapor sampling. However, the vapor probes were not installed as proposed and soil samples were only collected from SV-5 (within the excavation backfill), SV-7 and SV-8 at selected depths of 2 feet and 5 feet bgs. In addition, the proposed soil borings along Grand Avenue were not installed. CRA states that the vapor probes were not installed due to high groundwater elevations, but no further recommendations for vapor sampling is discussed. ACEH agrees that high groundwater elevations would preclude the installation of soil vapor probes; however, the vapor probes must be installed to assess soil vapor contamination in the vadoze zone and evaluate the vapor intrusion pathway. ACEH recommends that you measure groundwater elevations in existing monitoring wells to determine the appropriate time to install soil vapor probes. We also request that soil probes be installed in native material as close to the limits of the excavation as possible. Please relocate proposed soil vapor probes SV-5 and SV-6 from the backfill material so that the probes will be installed in native, undisturbed soil.

CRA concludes that results from the recent site characterization indicate that residual contamination in soil does not pose a significant health risk. ACEH does not agree with this conclusion, given that residual TPHg and benzene contamination in the vadoze zone have not been adequately evaluated. A strong hydrocarbon odor was noted on the boring logs for SV-7 and SV-8, indicating the presence of residual contamination in soil. Furthermore, analytical data collected from boring SV-7 detected 1,400 mg/kg TPHg and 0.11 mg/kg benzene, which are above residential ESLs and demonstrate that contamination in the vadoze must be further evaluated. Please present the results from the soil vapor assessment in the soil and groundwater investigation report requested below.

- 3. Recommended Soil Borings in Grand Avenue. CRA proposed the installation of three soil borings along Grand Avenue; however, the soil borings were not installed as proposed. CRA states that the soil borings were not installed due to utility conflicts. However, no discussion is presented regarding the results of utility clearance by a utility locating service or utility clearance by hand auger. It appears that only a nominal effort was made to actually install the soil borings and determine the location of utilities. Please present any additional information you may have regarding the actual location of underground utilities and results from activities for utility clearance.
- 4. Well Redevelopment and Quarterly Groundwater Sampling. Groundwater monitoring and sampling has not been conducted at the site since 2001. CRA recommends that onsite and offsite wells should be redeveloped and sampled to evaluate the dissolved phase hydrocarbon plume beneath and downgradient of your site. ACEH concurs with the recommendations to redevelop and sample onsite and offsite monitoring wells. Please present results of your well redevelopment activities in the quarterly monitoring report requested below, and implement a program of quarterly groundwater monitoring.
- 5. Preferential Pathway Study. The purpose of the preferential pathway study is to locate potential migration pathways and conduits and determine the probability of the NAPL and/or plume encountering preferential pathways and conduits that could spread contamination. We request that you perform a preferential pathway study that details the potential migration pathways and potential conduits (wells, utilities, pipelines, etc.) for vertical and lateral migration that may be present in the vicinity of the site.

Discuss your analysis and interpretation of the results of the preferential pathway study (including the well survey and utility survey requested below) and report your results in the next quarterly groundwater monitoring report (Second Quarter 2008) requested below. The results of your study shall contain all information required by California Code of Regulations, Title 23, Division 3, Chapter 16, §2654(b).

a. Utility Survey

An evaluation of all utility lines and trenches (including sewers, storm drains, pipelines, trench backfill, etc.) within and near the site and plume area(s) is required as part of your study. Please include maps and cross-sections illustrating the location and depth of all utility lines and trenches within and near the site and plume areas(s) as part of your study.

b. Well Survey

The preferential pathway study shall include a detailed well survey of all wells (monitoring and production wells: active, inactive, standby, decommissioned (sealed with concrete), abandoned (improperly decommissioned or lost); and dewatering, drainage, and cathodic protection wells) within a ¼ mile radius of the subject site.

- 6. Site Conceptual Model (SCM). We anticipate that at this juncture, it may be advantageous to develop a site conceptual model (SCM), which synthesizes all the analytical data and evaluates all potential exposure pathways and potential receptors that may exist at the site, including identifying or developing site cleanup goals. At a minimum, the SCM should include:
 - Local and regional plan view maps that illustrate the location of sources (former facilities, piping, tanks, etc.) extent of contamination, direction and rate of groundwater flow, potential preferential pathways, and locations of receptors;
 - (2) Geologic cross section maps that illustrate subsurface features, man-made conduits, and lateral and vertical extent of contamination;
 - (3) Plots of chemical concentrations versus time;
 - (4) Plots of chemical concentrations versus distance from the source;
 - (5) Summary tables of chemical concentrations in different media (i.e. soil, groundwater, and soil vapor); and
 - (6) Well logs, boring logs, and well survey maps;
 - (7) Discussion of likely contaminant fate and transport.

If data gaps (i.e. potential contaminant volatilization to indoor air or contaminant migration along preferential pathways, etc.) are identified in the SCM, please submit a work plan to address those data gaps

TECHNICAL REPORT REQUEST

Please submit technical reports to Alameda County Environmental Health (Attention: Mr. Steven Plunkett), according to the following schedule:

- December 1, 2008 4th Quarter 2008 Groundwater Monitoring and Sampling Report
- January 15, 2009 Site Conceptual Model with Preferential Pathway Study
- March 15, 2009 Soil and Groundwater Investigation Report
- March 1, 2009 1st Quarter 2009 Groundwater Monitoring and Sampling Report
- June 1, 2009 2nd Quarter 2009 Groundwater Monitoring and Sampling Report
- September 1, 2009 3rd Quarter 2009 Groundwater Monitoring and Sampling Report
- December 1, 2009 4th Quarter 2009 Groundwater Monitoring and Sampling Report

These reports are being requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request.

ELECTRONIC SUBMITTAL OF REPORTS

ACEH's Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of reports in electronic form. The electronic copy replaces paper copies and is expected to be used for all public information requests, regulatory review, and compliance/enforcement activities. Instructions for submission of electronic documents to the Alameda County Environmental Cleanup Oversight Program FTP site are provided on the attached "Electronic Report Upload Instructions." Submission of reports to the Alameda County FTP site is an addition to existing requirements for electronic submittal of information to the State Water Resources Control Board (SWRCB) Geotracker website. In September 2004, the SWRCB adopted regulations that require electronic submittal of information for all groundwater cleanup programs. For several years, responsible parties for cleanup of leaks from underground storage tanks (USTs) have been required to submit groundwater analytical data, surveyed locations of monitoring wells, and other data to the Geotracker database over the Internet. Beginning July 1, 2005, these same reporting requirements were added to Spills, Leaks, Investigations, and Cleanup (SLIC) sites. Beginning July 1, 2005, electronic submittal of a complete copy of all reports for all sites is required in Geotracker (in PDF format). Please visit the SWRCB website for information more on these requirements (http://www.swrcb.ca.gov/ust/electronic submittal/report rgmts.shtml.

PERJURY STATEMENT

All work plans, technical reports, or technical documents submitted to ACEH must be accompanied by a cover letter from the responsible party that states, at a minimum, the following: "I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge." This letter must be signed by an officer or legally authorized representative of your company. Please include a cover letter satisfying these requirements with all future reports and technical documents submitted for this fuel leak case.

PROFESSIONAL CERTIFICATION & CONCLUSIONS/RECOMMENDATIONS

The California Business and Professions Code (Sections 6735, 6835, and 7835.1) requires that work plans and technical or implementation reports containing geologic or engineering evaluations and/or judgments be performed under the direction of an appropriately registered or certified professional. For your submittal to be considered a valid technical report, you are to present site specific data, data interpretations, and recommendations prepared by an appropriately licensed professional and include the professional registration stamp, signature, and statement of professional certification. Please ensure all that all technical reports submitted for this fuel leak case meet this requirement.

UNDERGROUND STORAGE TANK CLEANUP FUND

Please note that delays in investigation, later reports, or enforcement actions may result in your becoming ineligible to receive grant money from the state's Underground Storage Tank Cleanup Fund (Senate Bill 2004) to reimburse you for the cost of cleanup.

AGENCY OVERSIGHT

If it appears as though significant delays are occurring or reports are not submitted as requested, we will consider referring your case to the Regional Board or other appropriate agency, including the County District Attorney, for possible enforcement actions. California Health and Safety Code, Section 25299.76 authorizes enforcement including administrative action or monetary penalties of up to \$10,000 per day for each day of violation.

If you have any questions, please call me at (510) 383-1761 or send me an electronic mail message at steven.plunkett@acgov.org.

Sincerely,

Steven Plunkett Hazardous Materials Specialist

Jerry Wickham, PG, CHg, CEG Senior Hazardous Materials Specialist

cc: Laura Genin CRA 5900 Hollis Street, Suite A Emeryville, CA 94608

Donna Drogos, ACEH, Steven Plunkett ACEH, File

ALAMEDA COUNTY HEALTH CARE SERVICES AGENCY

DAVID J. KEARS, Agency Director

MAY 2 6 2009

Received

612049 (21-1173)

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

May 13, 2009

Ms. Staci Frerichs Chevron Environmental Management 6001 Bollinger Canyon Rd K2256 PO Box 6012 San Ramon, CA 94583-2324

Mr. Brandford Howard Brandford Howard ET AL 516 Grand Avenue Oakland, CA 94610-3515 Mr. Denis Brown Shell Oil Products US 20945 S Wilmington Ave Carson, CA 90810-1039 Ms Jennifer Sedlachek Exxon Mobil 4096 Piedmont Ave #194 Oakland, CA 94611

Subject: Fuel Leak Case No. RO0000391 (Global ID #T0600101355), Chevron #21-1137, 500 Grand, Oakland, CA 94611

Dear Ms. Frerichs and Ms. Seldachek, Mr. Brown and Mr. Howard:

Alameda County Environmental Health (ACEH) staff has reviewed the case file for the above referenced site and the document entitled "Response to Technical Comments and Revised Scope of Work" dated November 21, 2009 and prepared by Conestoga Rovers Associates (CRA). Chevron completed an initial soil vapor assessment in August 2008; however the full scope of work was not completed leaving the potential indoor air migration pathway incomplete. Chevron proposes the installation of five soil vapor sampling points to evaluate the soil vapor to indoor air migration pathway. In addition, Chevron recommends incorporating monitoring wells MW-8F through MW-8J into the groundwater monitoring program, as soon as the City of Oakland encroachment permit requirements have been satisfied. ACEH generally concurs with the proposed scope of work as recommended in the work plan.

Based on ACEH staff review of the case file, we request that you address the following technical comments and send us the reports described below. Please provide 72-hour advance written notification to this office (e-mail preferred to mail to:steven.plunkett@acgov.org) prior to the start of field activities.

TECHNICAL COMMENTS

- Additional Soil Vapor Study. Chevron has proposed the installation of five soil vapor sampling points to evaluate the soil vapor to indoor air migrations pathway. ACEH requests the soil vapor investigation be conducted according to the DTSC's January 2003 Advisory – Active Soil Gas Investigations. ACEH generally concurs with the recommendations in soil vapor sampling work plan. Please submit results from the investigation in the report requested below.
- Site Conceptual Model (SCM). Chevron has requested that the previously requested SCM be prepared in conjunction with soil vapor and groundwater data that accurately reflect current subsurface conditions beneath the site. We concur with your proposal to prepare a SCM, that includes a detailed discussion of the results from the soil vapor and groundwater sampling. Please submit the SCM according to the schedule below.

- Preferential Pathway Study. Chevron will perform a utility survey and, if necessary, update the well survey that was completed in 2001. ACEH concurs with Chevron's proposal to complete a utility survey. Please present results in the report requested below.
- 4. Well Redevelopment and Semi-Annual Groundwater Sampling. Groundwater monitoring and sampling has not been conducted at the site since 2001. CRA recommends that onsite and offsite wells be redeveloped and sampled to evaluate the dissolved phase hydrocarbon plume beneath and downgradient of the site. ACEH generally concurs with the recommendations to redevelop and sample onsite and offsite monitoring wells. Please present the results from the well redevelopment and sampling activities in the semi-annual groundwater monitoring report requested below.

TECHNICAL REPORT REQUEST

Please submit technical reports to Alameda County Environmental Health (Attention: Mr. Steven Plunkett), according to the following schedule:

- May 30, 2009 SCM with Preferential Pathway Study
- June 30, 2009 Semi-Annual Groundwater Monitoring and Sampling Report
- December 15, 2009 Semi-Annual Groundwater Monitoring and Sampling Report

These reports are being requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request.

ELECTRONIC SUBMITTAL OF REPORTS

ACEH's Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of reports in electronic form. The electronic copy replaces paper copies and is expected to be used for all public information requests, regulatory review, and compliance/enforcement activities. Instructions for submission of electronic documents to the Alameda County Environmental Cleanup Oversight Program FTP site are provided on the attached "Electronic Report Upload Instructions."

Submission of reports to the Alameda County FTP site is an addition to existing requirements for electronic submittal of information to the State Water Resources Control Board (SWRCB) Geotracker website. In September 2004, the SWRCB adopted regulations that require electronic submittal of information for all groundwater cleanup programs. For several years, responsible parties for cleanup of leaks from underground storage tanks (USTs) have been required to submit groundwater analytical data, surveyed locations of monitoring wells, and <u>other</u> data to the Geotracker database over the Internet. Beginning July 1, 2005, these same reporting requirements were added to Spills, Leaks, Investigations, and Cleanup (SLIC) sites. Beginning July 1, 2005, electronic submittal of a complete copy of all reports for all sites is required in Geotracker (in PDF format). Please visit the SWRCB website for more information on these requirements (<u>http://www.swrcb.ca.gov/ust/electronic submittal/report rgmts.shtml</u>.

PERJURY STATEMENT

All work plans, technical reports, or technical documents submitted to ACEH must be accompanied by a cover letter from the responsible party that states, at a minimum, the following: "I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge." This letter must be signed by an officer or legally authorized representative of your company.

Please include a cover letter satisfying these requirements with all future reports and technical documents submitted for this fuel leak case.

PROFESSIONAL CERTIFICATION & CONCLUSIONS/RECOMMENDATIONS

The California Business and Professions Code (Sections 6735, 6835, and 7835.1) requires that work plans and technical or implementation reports containing geologic or engineering evaluations and/or judgments be performed under the direction of an appropriately registered or certified professional. For your submittal to be considered a valid technical report, you are to present site specific data, data interpretations, and recommendations prepared by an appropriately licensed professional and include the professional registration stamp, signature, and statement of professional certification. Please ensure all that all technical reports submitted for this fuel leak case meet this requirement.

UNDERGROUND STORAGE TANK CLEANUP FUND

Please note that delays in investigation, later reports, or enforcement actions may result in your becoming ineligible to receive grant money from the state's Underground Storage Tank Cleanup Fund (Senate Bill 2004) to reimburse you for the cost of cleanup.

AGENCY OVERSIGHT

If it appears as though significant delays are occurring or reports are not submitted as requested, we will consider referring your case to the Regional Board or other appropriate agency, including the County District Attorney, for possible enforcement actions. California Health and Safety Code, Section 25299.76 authorizes enforcement including administrative action or monetary penalties of up to \$10,000 per day for each day of violation.

If you have any questions, please call me at (510) 383-1767 or send me an electronic mail message at steven.plunkett@acgov.org.

Sincerely,

Steven Plunkett Hazardous Materials Specialist

Donna L. Drogos, PE

Supervising Hazardous Materials Specialist

Enclosure: ACEH Electronic Report Upload (ftp) Instructions

cc: James Kirnan CRA 2000 Opportunity Drive, Suite 110 Roseville, CA 95678

> Leroy Griffin City of Oakland, Assistant Fire Marshall 250 Frank Ogawa Plaza, Suite 3341 Oakland, CA 94612

Donna Drogos, Steven Plunkett, File

Alameda County Environmental Cleanup	ISSUE DATE: July 5, 2005			
Oversight Programs	REVISION DATE: March 27, 2009 PREVIOUS REVISIONS: December 16, 2005, October 31, 2005			
(LOP and SLIC)				
SECTION: Miscellaneous Administrative Topics & Procedures	SUBJECT: Electronic Report Upload (ftp) Instructions			

The Alameda County Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of all reports in electronic form to the county's ftp site. Paper copies of reports will no longer be accepted. The electronic copy replaces the paper copy and will be used for all public information requests, regulatory review, and compliance/enforcement activities.

REQUIREMENTS

- Entire report including cover letter must be submitted to the ftp site as a single portable document format (PDF) with no password protection. (Please do not submit reports as attachments to electronic mail.)
- It is preferable that reports be converted to PDF format from their original format, (e.g., Microsoft Word) rather than scanned.
- Signature pages and perjury statements must be included and have either original or electronic signature.
- Do not password protect the document. Once indexed and inserted into the correct electronic case file, the document will be secured in compliance with the County's current security standards and a password. Documents with password protection will not be accepted.
- Each page in the PDF document should be rotated in the direction that will make it easiest to read on a computer monitor.
- Reports must be named and saved using the following naming convention:
 RO# Report Name Year-Month-Date (e.g., RO#5555 WorkPlan 2005-06-14)

Additional Recommendations

 A separate copy of the tables in the document should be submitted by e-mail to your Caseworker in Excel format. These are for use by assigned Caseworker only.

Submission Instructions

- 1) Obtain User Name and Password:
 - a) Contact the Alameda County Environmental Health Department to obtain a User Name and Password to upload files to the ftp site.
 - i) Send an e-mail to <u>dehloptoxic@acgov.org</u>
 - Or
 - ii) Send a fax on company letterhead to (510) 337-9335, to the attention of My Le Huynh.
 - b) In the subject line of your request, be sure to include "ftp PASSWORD REQUEST" and in the body of your request, include the Contact Information, Site Addresses, and the Case Numbers (RO# available in Geotracker) you will be posting for.
- 2) Upload Files to the ftp Site
 - a) Using Internet Explorer (IE4+), go to ftp://alcoftp1.acgov.org
 - (i) Note: Netscape and Firefox browsers will not open the FTP site.
 - b) Click on File, then on Login As.
 - c) Enter your User Name and Password. (Note: Both are Case Sensitive.)
 - d) Open "My Computer" on your computer and navigate to the file(s) you wish to upload to the ftp site.
 - e) With both "My Computer" and the ftp site open in separate windows, drag and drop the file(s) from "My Computer" to the ftp window.
- 3) Send E-mail Notifications to the Environmental Cleanup Oversight Programs
 - a) Send email to <u>dehloptoxic@acgov.org</u> notify us that you have placed a report on our ftp site.
 - b) Copy your Caseworker on the e-mail. Your Caseworker's e-mail address is the entire first name then a period and entire last name @acgov.org. (e.g., firstname.lastname@acgov.org)
 - c) The subject line of the e-mail must start with the RO# followed by **Report Upload**. (e.g., Subject: RO1234 Report Upload) If site is a new case without an RO# use the street address instead.
 - d) If your document meets the above requirements and you follow the submission instructions, you will receive a notification by email indicating that your document was successfully uploaded to the ftp site.

APPENDIX B

HISTORICAL BORING LOGS

.

.

:

....

.

Boring/Well Log Legend

KEY TO SYMBOLS/ABBREVIATIONS

₽	First encountered groundwater		Defi	inite contact line				
¥	Static groundwater		Inferred or gradational contact line					
ł	Soils logged by hand-auger or air-knife cuttings	PID =	Photo-ionization detector or organic vapor meter reading in parts per million (ppm)					
$\overline{\langle}$	Soils logged by drill cuttings or disturbed sample	fbg =	Feet be	elow grade				
Ð	Undisturbed soil sample interval	Blow C	counts =	Number of blows required to drive a California-modified split-spoon sampler using				
	Soil sample retained for submittal to analytical laboratory			a 140-pound hammer falling freely 30 inches, recorded per 6-inch interval of a total 18-inch sample interval				
0	No recovery within interval	msl =	Mean se	a level				
	Hydropunch screen interval	Soils logged according to the USCS.						

UNIFIED SOILS CLASSIFICATION SYSTEM (USCS) SUMMARY

	Major Divisions		Graphic	Group Symbol	Typical Description
		Clean Gravels		GW	Well-graded gravels, gravel-sand mixtures, little or no fines
	Gravel and	(≤5% fines)		GP	Poorly-graded gravels, gravel-sand mixtures, little or no fines
	Gravelly Soils	Gravels with Fines		GM	Silty gravels, gravel-sand-silt mixtures
Coarse-Grained Soils		(≥15% fines)		GC	Clayey gravels, gravel-sand-clay mixtures
(>50% Sands	-	Clean Sands		sw	Well-graded sands, gravelly sands, little or no fines
	Sand and Sandy	(≤5% fines)		SP	Poorly-graded sands, gravelly sand, little or no fines
	Soils	Sands with Fines		SM	Silty sands, sand-silt mixtures
		(≥15% fines)		SC	Clayey sands, sand-clay mixtures
				ML	Inorganic silts, very fine sands, silty or clayey fine sands, clayey silts with slight plasticity
Fine Grained	Silts ar	nd Clays		CL	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays
Soils				OL	Organic silts and organic silty clays of low plasticity
(>50% Sills and/or Clays)				мн	Inorganic silts, micaceous or diatomaceous fine sand or silty soils
	Silts a	nd Clays		СН	Inorganic clays of high plasticity
				ОН	Organic clays of medium to high plasticity, organic silts
Hi	ghly Organic Soils	3	00 00 00 5 66 66 6 66 66 60	РТ	Peat, humus, swamp soils with high organic contents

CAMBRIA

-

Cambria Environmental Technology, Inc. 2000 Opportunity Drive, Suite 110 Roseville, CA 95678 Telephone: 916.677.3407 Fax: 916.677.3687

BORING/WELL LOG

CLIENT NAME Chevron Environmental Management JOB/SITE NAME 21-1173 LOCATION 500 Grand Ave, Oakland, CA PROJECT NUMBER 61H-2049 DRILLER Fisch Environmental DRILLING METHOD Hydraulic push BORING DIAMETER 2" LOGGED BY K. Hoey REVIEWED BY D. Herzog, PG# 7211 REMARKS								BORING/WELL NAME DRILLING STARTED DRILLING COMPLETED WELL DEVELOPMENT D/ GROUND SURFACE ELEV TOP OF CASING ELEVAT SCREENED INTERVAL DEPTH TO WATER (First DEPTH TO WATER (Statio	S-1 20-Nov-06 20-Nov-06 ATE (YIELD) VATION TON NA Encountered) c)	NA Not Su /eyed NA NA	rveyed	<u> </u>
(mqq) Olq	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (ft bgs)	U.S.C.S.	GRAPHIC LOG	LITHO	DLOGIC DESCRIPTION		CONTACT DEPTH (ft bgs	WELI	DIAGRAM
WELL LOG (PID) R:21-117-21GINT/21-1173 GINT.GPJ DEFAULT.GDT 2/28/07		S-1			MH CH		Fill <u>SILT:</u> dark grey; dry medium plasticity; m <u>SILT with sand:</u> da 20% sand; medium permeability. <u>CLAY:</u> green-grey; sand; high plasticity	r; hard; 70% silt, 25% clay, noderate estimated permeat rk grey; moist; 60% silt, 209 plasticity; moderate estimat moist; soft; 50% clay, 30% ; ; low estimated permeability	5% sand; bility. 6 clay, ed silt, 20%	0.5 2.0 3.0 4.0		Portland Type I/II Bottom of Boring @ 4 ft

Cambria Environmental Technology, Inc. 2000 Opportunity Dr. Suite 110 Roseville, CA Telephone: 916.677.3407 Fax: 916.677.3687

BORING/WELL LOG

CLIENT NAME	Chevron Environmental Management	BORING/WELL NAMES-2
JOB/SITE NAME	21-1173	DRILLING STARTED
	500 Grand Ave, Oakland, CA	DRILLING COMPLETED
PROJECT NUMBER	61H-2049	WELL DEVELOPMENT DATE (YIELD) NA
DRILLER	Fisch Environmental	GROUND SURFACE ELEVATION Not Surveyed
DRILLING METHOD	Hydraulic push	TOP OF CASING ELEVATION Not Surveyed
BORING DIAMETER	2"	SCREENED INTERVAL NA
LOGGED BY	К. Ноеу	DEPTH TO WATER (First Encountered) NA
REVIEWED BY	D. Herzog, PG# 7211	DEPTH TO WATER (Static) NA

REMARKS

	PID (ppm)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (ft bgs)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (ft bgs)	WELI	LDIAGRAM
	1257		S-2			ML ML ML		Fill SILT with sand: brown-grey; dry; 75% silt, 25% sand; medium plasticity; high estimated permeability. SILT with sand: brown-grey; dry; 65% silt, 20% sand, 15% clay; medium plasticity; moderate estimated permeability. SILT: brown-grey; moist; 65% silt, 25% clay, 10% sand; Medium plasticity; moderate estimated permeability.	0.5 1.5 2.0 4.0		Portland Type I/II Bottom of Boring @ 4 ft
LL LOG (PID) R:121-1173 OAKLANDIGINT121-1173 GINT.GPJ DEFAULT.GDT 2/8/07											

Cambria Environmental Technology, Inc. 2000 Opportunity Dr. Suite 110 Roseville, CA Telephone: 916.677.3407 Fax: 916.677.3687

BORING/WELL LOG

CLIENT NAME	Chevron Environmental Management	BORING/WELL NAME S-3	
JOB/SITE NAME	21-1173	DRILLING STARTED 20-Nov-06	
LOCATION	500 Grand Ave, Oakland, CA	DRILLING COMPLETED 20-Nov-06	
PROJECT NUMBER	61H-2049	WELL DEVELOPMENT DATE (YIELD) NA	
DRILLER	Fisch Environmental	GROUND SURFACE ELEVATION Not Surveyed	
DRILLING METHOD	Hydraulic push	TOP OF CASING ELEVATION Not Surveyed	
BORING DIAMETER	2"	SCREENED INTERVAL NA	
LOGGED BY	K. Hoey	DEPTH TO WATER (First Encountered) NA	<u> </u>
REVIEWED BY	D. Herzog, PG# 7211	DEPTH TO WATER (Static) NA	<u> </u>

REMARKS

	PID (ppm)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (ft bgs)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (ft bgs)	WELL.	DIAGRAM
	0.0		S-3					<u>FILL:</u> grey; wet; 45% gravel 20% clay, 25% sand,10% silt.	4.0		Portland Type I/II Bottom of Boring @ 4 ft
AULT.GDT 2/8/07											
ITV21-1173 GINT.GPJ DEF											
R:121-1173 OAKLANDIGIN											
WELL LOG (PID) F											PAGE 1 OF 1

Conestoga-Rovers & Associates **BORING/WELL LUG** 2000 Opportunity Drive, Suite 110 Roseville, CA Telephone: 916-677-3407 Fax: 916-677-3687 SV-4 BORING/WELL NAME CLIENT NAME Chevron Environmental Management 18-Mar-08 DRILLING STARTED JOB/SITE NAME 21-1173 18-Mar-08 DRILLING COMPLETED LOCATION 500 Grand Ave, Oakland, CA WELL DEVELOPMENT DATE (YIELD)___ NA PROJECT NUMBER 612049 Not Surveyed **GROUND SURFACE ELEVATION** DRILLER CRA TOP OF CASING ELEVATION Not Surveyed Hand Auger DRILLING METHOD 3" SCREENED INTERVAL NA BORING DIAMETER Ã 2.0 fbg (18-Mar-08) B. Summersett DEPTH TO WATER (First Encountered) LOGGED BY Y. 2.0 fbg (18-Mar-08) **DEPTH TO WATER (Static)** REVIEWED BY B. Carey REMARKS CONTACT DEPTH (fbg) SAMPLE ID GRAPHIC LOG PID (ppm) BLOW DEPTH (fbg) EXTENT U.S.C.S. LITHOLOGIC DESCRIPTION WELL DIAGRAM Asphalt to 6" FILL: dark brown; wet; 40% gravel, 30% silt, 30% sand; 0.5 Portland Type high estimated permeability. **T** M 3.0 Bottom of Boring @ 3 fbg AELL LOG (PID) INROCKLI-1.CHE21-117-2/GINT21-1173 GINT.GPJ DEFAULT.GDT 7/31/08

PAGE 1 OF

Conestoga-Rovers & Associates 2000 Opportunity Drive, Suite 110 Roseville, CA Telephone: 916-677-3407

BORING/WELL LUG

Ţ

Y

R F	oseville, CA elephone: 916-677-3407 ax: 916-677-3687		
CLIENT NAME	Chevron Environmental Management	BORING/WELL NAME SV-5	
JOB/SITE NAME	21-1173	DRILLING STARTED 18-Mar-08	
LOCATION	500 Grand Ave, Oakland, CA	DRILLING COMPLETED 18-Mar-08	
PROJECT NUMBER	612049	WELL DEVELOPMENT DATE (YIELD)	NA
DRILLER	CRA	GROUND SURFACE ELEVATION	Not Surveyed
DRILLING METHOD	Hand Auger	TOP OF CASING ELEVATION Not St	urveyed
BORING DIAMETER	3"	SCREENED INTERVAL NA	
LOGGED BY	J. Bostick	DEPTH TO WATER (First Encountered	i) 4.5 fbg (18-Mar-08
REVIEWED BY	B. Carev	DEPTH TO WATER (Static)	3.0 fbg (18-Mar-08

REMARKS

	PID (ppm)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (fbg)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (fbg)	WEL	L DIAGRAM
	0.0		SV-5- 2			GM		Asphalt to 6" <u>FILL:</u> dark brown; moist; 40% gravel, 30% silt, 30% <u>sand; high estimated permeability.</u> <u>Silty GRAVEL with sand:</u> dark brown; moist; 40% gravel 30% sand,30% silt: high estimated permeability.	0.5 1.5		✓ Portland Type I/II
•		-			- 5						Bottom of Boring @ 5 fbi
	·										
SDT 7/31/08											
GINT.GPJ DEFAULT.G											
21-117-20GINTV21-1173											
ID) INROCKLI-1.CHEV											
WELL LOG (PL											PAGE 1 OF

Conestoga-Rovers & Associates 2000 Opportunity Drive, Suite 110 Roseville, CA Telephone: 916-677-3407 Fax: 916-677-3687

BORING/WELL LOG

	Chevron Environmental Management	BORING/WELL NAME SV-6
JOB/SITE NAME	21-1173	DRILLING STARTED 18-Mar-08
LOCATION	500 Grand Ave, Oakland, CA	DRILLING COMPLETED 18-Mar-08
PROJECT NUMBER	612049	WELL DEVELOPMENT DATE (YIELD) NA
DRILLER _	CRA	GROUND SURFACE ELEVATION Not Surveyed
DRILLING METHOD	Hand Auger	TOP OF CASING ELEVATIONNot Surveyed
BORING DIAMETER	3"	SCREENED INTERVAL NA
LOGGED BY	B. Summersett	DEPTH TO WATER (First Encountered) 2.0 fbg (18-Mar-08)
REVIEWED BY	B. Carey	DEPTH TO WATER (Static) 2.0 fbg (18-Mar-08)
REMARKS		

	PID (ppm)	BLOW	SAMPLE ID	EXTENT	DEPTH (fbg)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (fbg)	WEL	L DIAGRAM
	•					GM		Asphalt to 6" <u>Silty GRAVEL with sand:</u> dark brown; wet; 40% gravel 30% sand,30% silt: high estimated permeability.	0.5 3.0		 Portland Type I/II Bottom of Boring @ 3 fbg
PJ DEFAULT.GDT 7/31/08		-	•								
17-2\GINT\21-1173 GINT.G			÷								
D) INOCKLI-1.CHEV21-11											
WELL LOG (PI								· · · · · · · · · · · · · · · · · · ·			PAGE 1 OF

Conestoga-Rovers & Associates 2000 Opportunity Drive, Suite 110 Roseville, CA Telephone: 916-677-3407 Fax: 916-677-3687

BORING/WELL LOG

	Chevron Environmental Management	BORING/WELL NAME S	V-7
JOB/SITE NAME	21-1173	DRILLING STARTED	8-Mar-08
LOCATION	500 Grand Ave, Oakland, CA	DRILLING COMPLETED 1	8-Mar-08
PROJECT NUMBER	612049	WELL DEVELOPMENT DATE	(YIELD) NA
DRILLER	CRA	GROUND SURFACE ELEVAT	ION Not Surveyed
DRILLING METHOD	Hand Auger	TOP OF CASING ELEVATION	Not Surveyed
BORING DIAMETER	3"	SCREENED INTERVAL	NA
LOGGED BY	J. Bostick	DEPTH TO WATER (First End	countered)5.9 fbg (18-Mar-08)
REVIEWED BY	B. Carey	DEPTH TO WATER (Static)	3.0 fbg (18-Mar-08)

REMARKS

	(mqq) Ciq	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (fbg)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (fbg)	WELL	DIAGRAM
	69.2		SV-7- 2		 	ML		Asphalt to 6" <u>SILT:</u> brown with blue grey mottling; moist; 60%silt, 30% clay, 10% sand; Moderate plasticity; moderate estimated permeability; strong odor.	0.5		Portland Type
	1156		SV-7- 5		— 5 —			@ 5fbg <u>Sandy SILT:</u> light brown; wet; 50% silt 30% sand,20% clay: low plasticity, moderate estimated permeability.	6.0		Bottom of Boring @ 6 fb
FAULT.GDT 7/31/08											
IT21-1173 GINT.GPJ DE											
KLI-1.CHEV21-117-2/GIN											
WELL LOG (PID) 1:ROCI											

Conestoga-Rovers & Associates 2000 Opportunity Drive, Suite 110 Roseville, CA Telephone: 916-677-3407 Fax: 916-677-3687

BORING/WELL LOG

Ţ

Ţ.

Fa	ax: 916-677-3687		
CLIENT NAME	Chevron Environmental Management	BORING/WELL NAME SV-8	
JOB/SITE NAME	21-1173	DRILLING STARTED19-Mar-08	3
LOCATION	500 Grand Ave, Oakland, CA	DRILLING COMPLETED	3
PROJECT NUMBER	612049	WELL DEVELOPMENT DATE (YIELD)	NA
DRILLER	CRA	GROUND SURFACE ELEVATION	Not Surveyed
DRILLING METHOD	Hand Auger	TOP OF CASING ELEVATION Not S	urveyed
BORING DIAMETER	3"	SCREENED INTERVAL NA	
LOGGED BY	B. Summersett	DEPTH TO WATER (First Encountere	d)5.9 fbg (19-Mar-08)
REVIEWED BY	B. Carey	DEPTH TO WATER (Static)	3.0 fbg (19-Mar-08)

REMARKS

(0)

	PID (ppm)	BLOW COUNTS	SAMPLE ID .	EXTENT	DEPTH (fbg)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (fbg)	WELL DIAGRAM
	0.0		SV-8- 2			ML		Asphalt to 6" <u>SILT:</u> ; brown with white mottling; moist; 60%silt, 30% clay, 10% sand; Moderate plasticity; moderate estimated permeability; strong odor.	0.5	Portland Type
	0.0		SV <u>-</u> 8- 5		 - 5			ــــــــــــــــــــــــــــــــــــ	6.0	Bottom of Boring @ 6 fbc
								-		
JLT.GDT 5/19/08										
3 GINT.GPJ DEFAL										
-117-21GINT21-117										
ROCKLI-1.CHEV21										
WELL LOG (PID) 1:										PAGE 1 OF

APPENDIX C

SECOND AND THIRD QUARTER 2009 GROUNDWATER MONITORING REPORTS AND HISTORICAL GROUNDWATER MONITORING DATA

TRANSMITTAL

October 29, 2009 G-R #385866

- TO: Mr. James Kiernan Conestoga-Rovers & Associates 10969 Trade Center Drive, Suite 107 Rancho Cordova, CA 95670
- FROM: Deanna L. Harding Project Coordinator Gettler-Ryan Inc. 6747 Sierra Court, Suite J Dublin, California 94568

RE: Former Texaco Service Station #211173 500 Grand Avenue Oakland, California

WE HAVE ENCLOSED THE FOLLOWING:

COPIES	DATED	DESCRIPTION
2	October 19, 2009	Groundwater Monitoring and Sampling Report Third Quarter Event of October 1, 2009

COMMENTS:

Pursuant to your request, we are providing you with copies of the above referenced report for <u>your use</u> and distribution to the following:

Ms. Stacie H. Frerichs, Chevron Environmental Management Company, 6111 Bollinger Canyon Road, Room 3596, San Ramon, CA 94583

Enclosures

trans/211173-SHF

WELL CONDITION STATUS SHEET

Client/Facility #: Chevron #211173					_	Job #	38	5866					
Site Address:	500 Gra	nd Avenu	-	Event Date:	10.1.09					•			
City:	Oakland	I, CA		-	Sampler:	Fr							
WELL ID	Vault Frame Condition	Gasket/ O-Ring (M)missing	BOLTS (M) Missing (R) Replaced	Bolt Fianges B= Broken S= Stripped R=Retap	APRON Condition C=Cracked B=Broken G=Gone	Grout Seal (Deficient) inches from TOC	Casing (Condition prevents tight cap seal)	REP LC Y	LACE CK	REP C, Y		WELL VAULT Manufacture/Size/ # of Bolts	Pictures Taken Yes / No
HW-8F	DIL		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Sz2	ØK		>	1)		Emcol12"/2	
MW-86-	OIL	<		5:2	50 k.							EM60/12"/2	
MW-8H	er kan an a	PA	N4	Nh	DIL		>					CHT MOYUMENT 8"	
MW-8I	<u> </u>	NA	NA	NA	OK		~~>					in the state	
MW-8J	OIL	NA	42 14	NA	OIL	• 	>				9	CITY MONUMENT 8"	
MW-8K	OK	NA	NA	NA	σL		>					CHUSTY 12"	
MW-82	OK	NA	NA	1214	OK	OL	NOTA	4	7	4	7	CHRISTY 12"	
									-+			·	
									-+				
											-		
									-+				<u> </u>
											-		. <u> </u>
									-		-		
 Comments	<u>ا</u> – س	- 81		- Bar	- A	6- 7							
	BLE -	TO A	CC 155	(lown-		$\frac{10}{50}$	<u>eer. A</u>	<u>LS1</u>		_ <u>01</u>	<u> 391</u>	MULTION IN W	EU
THENG	E 15	А 613	D The	5 2				<u>، د د</u>	<u></u>	<u>7</u>		001 01357 MUC	<u>T100</u>
				te loc	<u> _ </u> _ ;	<u>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</u>	OF V		n	<u> </u>	1	CUNTS	

October 19, 2009 G-R Job #385866

Ms. Stacie H. Frerichs Chevron Environmental Management Company 6111 Bollinger Canyon Road, Room 3596 San Ramon, CA 94583

RE: Third Quarter Event of October 1, 2009 Groundwater Monitoring & Sampling Report Former Texaco Service Station #211173 500 Grand Ave. Oakland, California

Dear Ms. Frerichs:

This report documents the most recent groundwater monitoring and sampling event performed by Gettler-Ryan Inc. (G-R) at the referenced site. All field work was conducted in accordance with G-R Standard Operating Procedure - Groundwater Sampling (attached).

Static groundwater levels were measured and the wells were checked for the presence of separate-phase hydrocarbons. Static water level data, groundwater elevations, and separate-phase hydrocarbon thickness (if any) are presented in the attached Table 1. A Potentiometric Map is included as Figure 1.

Groundwater samples were collected from the monitoring wells and submitted to a state certified laboratory for analyses. The field data sheets for this event are attached. Analytical results are presented in the table(s) listed below. The chain of custody document and laboratory analytical report are also attached. All groundwater and decontamination water generated during sampling activities was removed from the site, per the Standard Operating Procedure.

No. 6882

CAL

Please call if you have any questions or comments regarding this report. Thank you.

Sincerely, Deanna L. Harding Project Coordinator

Douglas J Lee Senior Geologist, P.G. No. 6882

Figure 1: Potentiometric Map Table 1: Groundwater Monitoring Data and Analytical Results Attachments: Standard Operating Procedure - Groundwater Sampling Field Data Sheets Chain of Custody Document and Laboratory Analytical Reports

FILE NAME: P:\Enviro\Texaco\211173\Q09-211173.dwg | Layout Tab: Pa14

Groundwater Monitoring Data and Analytical Results

Former Texaco Service Station #211173

WELL ID/	TOC+	DTW	CWF	SPH THICKNESS	TPH- GRO	TFH-	P			.	MTBE by	MTBE by	bo
DATE	(msl)	(ft.)	(msl)	(ft.)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	0200 (02/L)	(pom)
MW-8A								and a state of the	La chi Ratifica				
-		*	~	8	WELL ABAN	DONED	-	-	-	4	4		-
MW-8B													
-	-	-	~	4.1	WELL ABAN	NDONED	0÷0	-	-	12	-	4	-
MWRC													
	-	-	-	-	WELL ABAN	DONED	-	-	-	-	-	-	
MW-8D													
÷		-	-	1	WELL ABAN	DONED		-		÷	-	-	- F
MW-8E													
	-	-	-		WELL ABAN	IDONED	с. С	-	-	-	-	-	-
MW-8F													
01/23/92	97.94	10.24	87.70		<50	1 300	40	12	-0.5	10	100		- 67
02/28/92	97.94	9.93	88.01	-	-	1,500	4.9	1.5	-0.5	1.5	-	-	
03/26/92	97.94	8.78	89.16	-		-					-	-	-
04/30/92	97.94	9.36	88.58		<50	<50	<0.5	<0.5	<0.5	<0.5	-	-	
09/28/92	97.94	11.83	86.11	-	<50	-	<0.5	<0.5	<0.5	<0.5		-	-
11/19/92	97.94	11.22	86.72	-	<50		<0.5	<0.5	<0.5	<0.5	-		-
02/12/93	97.94	9.66	88.28	-	<50	<50	<0.5	<0.5	<0.5	<0.5	1		
05/06/93	97.94	8.83	89.11	-	<50	<100	<0.5	<0.5	<0.5	<0.5		1	
08/16/93	14.04	10.16	3.88	-	<50	<50	<0.5	<0.5	<0.5	<0.5	-		-
10/12/93	14.04	10.60	3.44	-	<50	<50	<0.5	<0.5	<0.5	<0.5	-	-	
02/03/94	14.04	9.29	4.75		<50	<50	<0.5	<0.5	<0.5	<0.5		4	
05/31/94	14.04	9.34	4.70	-	<50	<50	<0.5	<0.5	<0.5	<0.5	-	-	
08/25/94	14.04	10.14	3.90		<50	<50	<0.5	<0.5	<0.5	<0.5	-		
11/02/94	14.04	10.42	3.62		<50	520	<0.5	<0.5	<0.5	<0.5	**		-

Groundwater Monitoring Data and Analytical Results

Former Texaco Service Station #211173

							Uakian	I, CA			-			
WELL ID/		TOC*	DTW	GWE	SPH THICKNESS	TPH- GRO	трн- Dro	В	Т	E	x	MTBE by 8020	MTBE by 8260	DO Reading
DATE		(msl)	(ft.)	(msl)	(ft.)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ppm)
MW-SF (cont)														
01/31/95		14.04	7.47	6.57	-	<50	290	<0.5	<0.5	<0.5	<0.5			14
05/18/95		14.04	8.00	6.04	-	<50	54	<0.5	<0.5	<0.5	<0.5	-		1
08/29/95		14.04	8.08	5.96	-	<50	83	<0.5	<0.5	<0.5	<0.5	<10	-	
11/02/95		14.04	8.70	5.34	-	<50	51	<0.5	<0.5	<0.5	<0.5	<10	-	1
02/05/96		14.04	7.16	6.88	-	<50	<50	<0.5	<0.5	<0.5	<0.5	-		2
04/30/96		14.04	7.25	6.79	a de la compañía de la	<50	62	<0.5	<0.5	<0.5	<0.5		-	
08/28/96		14.04	8.72	5.32	-	<50	<50	<0.5	<0.5	<0.5	<0.5	-		-
12/05/96		14.04	8.16	5.88	-	210	110	17	17	11	46	<30	-	
02/21/97		14.04	5.53	8.51		<50	85	<0.5	<0.5	<0.5	<0.5	<30		-
05/02/97		14.04	7.85	6.19	-	<50	<50	<0.5	<0.5	<0.5	<0.5	NA	-	
07/30/97		14.04	8.87	5.17	-	<50	93	<0.5	<0.5	<0.5	<0.5	<30		100
11/05/97		14.04	9.16	4.88	-	<50	140	<0.5	<0.5	<0.5	<0.5	<30	-	1.2
01/21/98		14.04	8.56	5.48	-	<50	<50	<0.5	<0.5	<0.5	<0.5	<30		
06/03/98		14.04	8.30	5.74	-	<50	730	<0.5	<0.5	<0.5	<0.5	2.9	-	1
08/04/98		14.04	10.67	3.37	-	<50	210	<0.5	<0.5	<0.5	<0.5	<2.5		_
11/05/98		14.04	8.72	5.32		<50	210	<0.50	<0.50	<0.50	<0.50	<2.5	-	-
02/16/99		14.04	8.78	5.26	-	<50.0	230	<0.500	<0.500	<0.500	<0.500	<2.00		
06/04/99		14.04	8.24	5.80	-	<50	120	<0.50	<0.50	<0.50	<0.50	\$2.5		-
08/31/99		14.04	8.87	5.17	-	<50.0	176	<0.500	<0.500	<0.500	<0.500	<2.50		1 7/1 4
11/03/99		14.04	9.40	4.64	1040 C	<50.0	130	<0.500	<0.500	<0.500	<0.500	<5.00	<2.00	4 6/2 0
02/29/00		14.04	8.00	14.04		<50.0	59	<0.500	<0.500	<0.500	<0.500	<2.50		6.0/1.4
04/24/00		14.04	7.05	14.04	-	<50.0	161	<0.500	<0.500	<0.500	<0.500	<2.50	-	1.1/2.0
07/25/00		14.04	8.66	14.04	-	<50.0	123	<0.500	<0.500	<0.500	<0.500	<2.50	-	0 4/1 2
11/06/00		14.04	9.37	14.04	-	-	77.3"		-			-		0.7/1.3
06/05/09 ¹		14.04	8.99	5.05	-		14	-	-	-	-	1.1.1	-	4.11.4.4
06/10/094	NP ⁵	14.04	12.41	1.63		<50	300	<0.5	<0.5	<0.5	<0.5		<0.5	
10/01/09*	NP ³	14.04	10.40	3.64	- 	<50	81*	<0.5	<0.5	<0.5	<0.5	-	<0.5	2

Groundwater Monitoring Data and Analytical Results Former Texaco Service Station #211173 500 Grand Avenue

	u	I.	ш	u,	1		e	IU
-			÷.		12	14	2.2	

SPH TPH- (mpt) TPH- (mpt) TPH- (mpt) TPH- (mpt) TPH- (mpt) TPH- (mpt) (mpt)							Oaklan	I, CA			-			
$ \begin{array}{ $	WELL ID/	TOC+	DTW	GWE	SPH THICKNESS	TPH- GRO	TPH- DRO	B	T	E	x	MTBE by 8029	MTBE by 8260	DO Reading
NV+9C 01/2392** 97.24 11.30 85.94 - <50 980 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	DATE	(msl)	(ft.)	(msi)	(ft.)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ppm)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	MW-8G										1000		1000	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	01/23/92**	97.24	11.30	85.94	-	<50	980	<0.5	<0.5	<0.5	<0.5		-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	02/28/92	97.24	10.83	86.41		4	22			-		-		2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	03/26/92	97.24	9.20	88.04	-	-	-	-	-	-				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	04/30/92	97.24	9.00	88.24	-	<50	<50	1.7	<0.5	<0.5	<0.5			-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	09/28/92	97.24	13.32	83.92	-	WELL DRY	100	2	**	-		-		-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11/19/92	97.24	-	-		WELL INACC	ESSIBLE		-	-	-	-	-	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	02/12/93	97.24			-	WELL INACC	ESSIBLE			- 20				-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	05/06/93	97.24	11.18	86.06	-	<50	60	<0.5	<0.5	<0.5	<0.5	*		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	08/16/93	13.32	9.51	3.81	**	<50	<50	<0.5	<0.5	<0.5	<0.5	-	-	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10/12/93	13.32	10.93	2.39	÷	<50	<50	<0.5	<0.5	<0.5	<0.5	14.1		-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	02/03/94	13.32	9.69	3.63	-	<50	<50	<0.5	<0.5	<0.5	<0.5	14		-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	05/31/94	13.32	9.24	4.08	-	<50	<50	<0.5	<0.5	<0.5	<0.5		-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	08/25/94	13.32	9.74	3.58	**	<50	<50	<0.5	<0.5	<0.5	<0.5	-	-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11/02/94	13.32	10.08	3.24		<50	530	<0.5	<0.5	<0.5	<0.5		- Q	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	01/31/95	13.32	5.75	7.57	-	<50	<50	<0.5	<0.5	<0.5	<0.5	-	-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	05/18/95	13.32	6.60	6.72	-	<50	<50	<0.5	<0.5	<0.5	<0.5		-	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	08/29/95	13.32	8.14	5.18		<50	120	<0.5	<0.5	<0.5	<0.5	<10	12	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11/02/95	13.32	9.16	4.16	-	<50	140	<0.5	<0.5	<0.5	<0.5	<10	-	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	02/05/96	13.32	7.18	6.14		<50	<50	<0.5	<0.5	<0.5	<0.5	-	-	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	04/30/96	13.32	7.00	6.32	-	<50	<50	<0.5	<0.5	<0.5	<0.5	-	-	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	08/28/96	13.32	8.94	4.38	19	<50	<50	<0.5	<0.5	<0.5	<0.5	-	-	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12/05/96	13.32	9.22	4.10	-	190	57	16	16	9.0	39	<30	-	-
05/02/97 13.32 7.54 5.78 <50	02/21/97	13.32	6.11	7.21	-	<50	54	<0.5	<0.5	<0.5	<0.5	<30	-	
07/30/97 13.32 WELL INACCESSIBLE	05/02/97	13.32	7.54	5.78		<50	<50	<0.5	<0.5	<0.5	<0.5		4	-
11/05/97 13.32 9.65 3.67 - <50	07/30/97	13.32			-	WELL INACC	ESSIBLE	-		-	-	-	-	
11/05/97 13.32 - - <50 <50 <0.5 <0.5 <0.5 <30 - - - - - <0.5 <0.5 <0.5 <0.5 <30 - - - - <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <td>11/05/97</td> <td>13.32</td> <td>9.65</td> <td>3.67</td> <td>100</td> <td><50</td> <td><50</td> <td><0.5</td> <td><0.5</td> <td><0.5</td> <td><0.5</td> <td><30</td> <td>-</td> <td></td>	11/05/97	13.32	9.65	3.67	100	<50	<50	<0.5	<0.5	<0.5	<0.5	<30	-	
01/21/98 13.32 7.57 5.75 <50 <50 <0.5 <0.5 <0.5 <0.5 <30 06/03/98 13.32 9.37 3.95 <50 570 <0.5 <0.5 <0.5 <0.5 <0.5 4.0	11/05/97	13.32		-	· ++	<50	<50	<0.5	<0.5	<0.5	<0.5	<30	-	2
06/03/98 13.32 9.37 3.95 - <50 570 <0.5 <0.5 <0.5 <0.5 4.0	01/21/98	13.32	7.57	5.75		<50	<50	<0.5	<0.5	<0.5	0.5	<30	-	-
00/04/00 12:35 2:00 2:00	06/03/98	13.32	9.37	3.95	-	<50	570	<0.5	<0.5	<0.5	<0.5	4.0		14
08/04/98 13.32 9.89 3.43 - <50 200 <0.5 <0.5 <0.5 <0.5 <2.5	08/04/98	13.32	9.89	3.43	-	<50	200	<0.5	<0.5	<0.5	<0.5	<2.5	-	-

Groundwater Monitoring Data and Analytical Results

Former Texaco Service Station #211173

						-	Oaklan	d, CA	-					
WELL ID/		TOC*	DTW	GWE	SPH THICKNE8S	TPH- GRO	TPH- DRO	B	т	E	x	MTBE by 8029	MTBE by 8260	DO Reading
DATE		(msl)	(ft.)	(msi)	(ft.)	(Hg/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ppm)
MW-8G (co	nt)													
11/05/98		13.32	10.81	2.51	-	<50	170	<0.50	<0.50	<0.50	<0.50	<2.5		
02/16/99		13.32	8.63	4.69	-	<50.0	270	<0.500	<0.500	<0.500	<0.500	<2.00	-	-
06/04/99		13.32	7.95	5.37		<50	190	<0.50	<0.50	<0.50	<0.50	\$2.5		-
08/31/99		13.32	9.11	4.21		<50.0	247	<0.500	<0.500	<0.500	<0.500	<2.50	1	4.5/1.3
11/03/99		13.32	9.58	3.74	-	<50.0	174	<0.500	<0.500	<0.500	<0.500	<5.00	<2.00	11.6/4.8
02/29/00		13.32	5.43	7.89	-	<50.0	90	<0.500	<0.500	<0.500	<0.500	<2.50	-	3.4/1.8
04/24/00		13.32	6.35	6.97	-	<50.0	72.4	<0.500	<0.500	<0.500	<0.500	<2.50		10.1/6.5
07/25/00		13.32	8.71	4.61		<50.0	79.2	<0.500	<0.500	<0.500	<0.500	<2.50		1.2/0.8
11/06/00		13.32	9.76	3.56	-	-	106*				(11)	-	-	1.3/1.0
06/05/091		13.32	9.92	3.40	-	**	-	-	-	-	-	-		-
06/10/094	NP ⁵	13.32	12.35	0.97	-	<50	140	<0.5	<0.5	<0.5	<0.5		<0.5	-
10/01/09*	NP ⁵	13.32	11.94	1.38	197	<50	55*	<0.5	<0.5	<0.5	<0.5	÷.	<0.5	
MW-8H		00.00				125				125-1				
01/23/92		98.90	3.74	95.16	-	110	<60	7.2	1.2	4.7	3.2	-		-
02/28/92		98.90	4.44	94.46		*	÷		-	*		÷		-
03/26/92		98.90	4.21	94.69	-	-	-			- 14		-	-	
04/30/92		98.90	3.46	95.44	-	190	90	11	1.5	5.6	3.6	-	-	
09/28/92		98.90			-	WELL INAC	CESSIBLE		-	-	- ee -	-	-	
11/19/92		98.90	3.75	95.15	-	130	-	6.8	<0.5	1.1	1.5	-		-
02/12/93		98.90	4.12	94.78	1	73	-	5.9	<0.5	0.8	<0.5	+		
02/06/93		98.90	3.85	95.05	-	57	<100	1.7	<0.5	<0,5	<0.5	-	-	
08/16/93		15.04	3.88	11.16	-	<50	<50	0.5	<0.5	0.5	1.4		-	-
10/12/93		15.04	3.80	11.24		<50	<50	<0.5	<0.5	<0.5	<0.5		-	-
02/03/94		15.04	3.71	11.33	0.000	<50	<50	<0.5	<0.5	<0.5	<0.5	-	-	
03/31/94		15.04	3.80	11.24		<50	<50	0.79	<0.5	<0.5	<0.5	-		
08/25/94		15.04	3.89	11,15	-	<50	<50	<0.5	<0.5	<0.5	<0.5	-	-	-
11/02/94		15.04	3.64	11.40	-	<50	760	<0.5	<0.5	<0.5	<0.5	-	-	-
01/31/95		15.04	3.58	11.46	-	<50	190	<0.5	<0.5	<0.5	<0.5	-		-

Groundwater Monitoring Data and Analytical Results

Former Texaco Service Station #211173

							Oaklan	d, CA							
WELL ID/		TOC*	DTW	GWE	SPH THICKNESS	TPH- GRO	TPH- DRO	В	T	E	x	MTBE by 8020	MTBE by 8260	DO Reading	日本のための
DATE	69333	(msl)	(fi.)	(msl)	(ft.)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L):	(ug/L)	(ug/L)	(ug/L)	(ppm)	
MW-8H (cont)	•														
05/18/95		15.04	3.53	11.51		<50	370	<0.5	<0.5	<0.5	<0.5				
08/29/95		15.04	3.55	11.49		<50	1.000	<0.5	< 0.5	<0.5	<0.5				
11/02/95		15.04	3.49	11.55		<50	<50	<0.5	<0.5	<0.5	<0.5				
02/05/96		15.04	3.54	11.50		<50	190	<0.5	<0.5	<0.5	<0.5				
04/30/96		15.04	3.50	11.54		<50	1,800	<0.5	<0.5	<0.5	<0.5				
08/28/96		15.04	3.62	11.42		<50	<50	<0.5	<0.5	<0.5	<0.5				
12/05/96		15.04	3.38	11.66		100	350	6.2	7.3	5.0	22	<30			
02/21/97		15.04	3.77	11.27		<50	900	<0.5	<0.5	<0.5	<0.5	<30			
05/02/97		15.04	3.64	11.40		<50	450	<0.5	<0.5	<0.5	<0.5				
07/30/97		15.04	3.65	11.39		<50	180	<0.5	0.62	<0.5	<0.5	<30			
11/05/97		15.04	3.61	11.43		<50	280	<0.5	<0.5	<0.5	<0.5	<30			
01/21/98		15.04	3.57	11.47		<50	<50	< 0.5	<0.5	<0.5	<0.5	<30			
06/03/98		15.04	3.50	11.54		<50	440	<0.5	<0.5	<0.5	<0.5	<0.5			
08/04/98		15.04	3.64	11.40		<50	300	<0.5	<0.5	<0.5	<0.5	<2.5			
11/03/99		15.04	3.49	11.55		<50.0	576	<0.500	<0.500	<0.500	<0.500	<5.00	<2.00		
04/24/00		15.04	3.63	11.41		<50.0	53.8	<0.500	<0.500	<0.500	<0.500	<2.50			
07/25/00		15.04	3.54	11.50		<50.0	90.0	<0.500	<0.500	<0.500	<0.500	<2.50			
11/06/00		15.04	3.49	11.55			433*								
06/05/09 ¹		15.04	3.91	11.13											
06/10/094	_	15.04	3.66	11.38		<50	78	<0.5	<0.5	<0.5	<0.5		0.7		
10/ 0 1/09 ⁴	NP ⁷	15.04	4.04	11.00		<50	640 ^a	<0.5	<0.5	<0.5	<0.5		1		
MW-8I															
01/23/92		98.27	6.33	91.94	-	820	210	420	7	27	20	1.2.4	1. Sec. 1		
02/28/92		98.27	6.55	91.72	-	-	-10	420	1	27	20	-		-	
03/26/92		98.27	6.45	91.82								-		-	
04/30/92		98.27	6.48	91.79		2,200	430	1 800	19	180	25			-	
09/28/92		98.27				WELL INACC	TESSIBLE	1,000	17		23				
11/19/92		98.27	6.37	91.90		720		120	1.1	29	13	_	-		

Groundwater Monitoring Data and Analytical Results

Former Texaco Service Station #211173

						Oaklan	d, CA						
STATES TO A	FOCT		6793 240	SPH	TPH-	TPH-					MTBE by	MTBE by	DO
TATER	ICC	DIW	GWE	THICKNESS	GRO	DRO	В	T	E	X	8020	8260	Reading
JAIL	(msl)	(ft.)	(msi)	(ft.)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ppm)
MW-8I (cont)													
02/12/93	98.27	6.44	91.83		4,000		970	9.2	52	36			
05/06/93	98.27	6.36	91.91		1,400	<10	370	2.4	40	8.4			
08/16/93	14.40	6.35	8.05		<50	<50	3.1	< 0.5	6	<0.5			
10/12/93	14.40	5.99	8.41		<50	<50	1.4	<0.5	<0.5	<0.5			
02/03/94	14.40	5.84	8.56		1,000	<50	270	3.2	51	14			
05/31/94	14.40	6.25	8.15		1,400	<50	330	4.6	52	16			
08/25/94	14.40	6.31	8.09		540	<50	14	0.58	30	4.3			
11/02/94	14.40	6.10	8.30		310	370	5.7	0.74	20	<0.5			
01/31/95	14.40	5.83	8.57		840	910	290	4.5	45	1.6			
05/18/95	14.40	6.09	8.31		1,700	1100	390	7.8	80	10			
08/29/95	14.40	6.09	8.31		300	560	81	<0.5	13	0.63	<10		
11/02/95	14.40	6.26	8.14		81	160	<0.5	4.1	1.5	<0.5	<10		
02/05/96	14.40	5.97	8.43		300	140	75	0.75	8.4	1.2			
04/30/96	14.40	6.04	8.36		350	<50	150	0.77	3.2	1.3			
08/28/96	14.40	6.20	8.20		1,100	380	300	2.9	3.2	2.1			
12/05/96	14.40	6.01	8.39		340	53	23	8.7	11	26	<30		
02/21/97	14.40	6.15	8.25		<50	330	<0.5	<0.5	<0.5	< 0.5	<30		
05/02/97	14.40	6.20	8.20	**	110	<50	39	<0.5	0.92	<0.5			
07/30/97	14.40	6.12	8.28		<50	170	4.2	<0.5	<0.5	<0.5	<30		
11/05/97	14.40	6.26	8.14		<50	<50	<0.5	<0.5	<0.5	<0.5	<30		
01/21/98	14.40	6.00	8.40		<50	<50	1.5	<0.5	<0.5	<0.5	<30		
06/03/98	14.40	6.74	7.66		<50	360	<0.5	<0.5	<0.5	<0.5	1.5		
08/04/98	14.40	6.16	8.24		<50	83	<0.5	<0.5	<0.5	<0.5	<2.5		
11/05/98	14.40	6.14	8.26		<50	67	<0.50	<0.50	<0.50	<0.50	<2.5		
08/31/99	14.40	6.12	8.28										
11/03/99	14.40	6.45	7.95		<50.0	192	<0.500	<0.500	<0.500	<0.500	<5.00	<2.00	7.15/9.6
02/29/00	14.40	5.69	8.71										11.1
04/24/00	14.40	6.25	8.15		<50.0	69.2	<0.500	<0.500	<0.500	<0.500	<2.50		7.1/5.6
07/25/00	14.40	6.22	8.18		<50.0	80.1	<0.500	<0.500	<0.500	<0.500	<2.50		1.4/1.2
11/06/00	14.40	6.34	8.06			157*							1.5/1.1

Groundwater Monitoring Data and Analytical Results Former Texaco Service Station #211173

George Contractor of							Oakland	i, CA				-			
WELL ID/ DATE		TOC+ (msl)	DTW (fl.)	GWE (msl)	SPH THICKNESS (fl.)	TPH- GRO (ug/L)	TFH- DRO (ug/L)	B (ug/L)	T (ug/L)	E (ug/L.)	X (ug/L)	MTBE by 8020 (ug/L)	MTBE by 8260 (ug/L)	DO Reading (ppm)	000000000
MW-SI (conf	1														7
06/05/09	'	14 40	INACCES	SIBLE	1.0	-	1.00								
06/10/091.4		14.40	631	8.00		420	360		-0.5	-0.5	-0.5	-	7	-	
10/01/094	NP ⁷	14.40	6.41	7.99	, Q	53	92*	23	<0.5	<0.5	<0.5	÷.	4	3	
MW-8J															
01/23/92		97.69	6.31	91.38		<50	<50		<0.5	<0.5	<0.5				
02/28/92		97.69	6.28	91.41	-	-			-			2.	2		
03/26/92		97.69	6.20	91.49										-	
04/30/92		97.69	6.48	91.21	_	<50	<50	2	<0.5	<0.5	<05	-		-	
09/28/92		97.69				WELL INAC	CESSIBLE	-			-0.5	-		-	
11/19/92		97.69	6.55	91.14		<50		<0.5	<0.5	<0.5	<0.5		4	-	
02/12/93		97.69	7.46	90.23		<50		<0.5	<0.5	<0.5	<0.5	-	<u></u>		
05/06/93		97.69	6.21	91.48	1.1	<50	<10	<0.5	<0.5	<0.5	<0.5	-	-	-	
08/16/93		13. 82	6.29	7.53	-	<50	<50	<0.5	<0.5	<0.5	<0.5	14	- 24-		
10/12/93		13.82	5.87	7.95		<50	<50	<0.5	<0.5	<0.5	<0.5		-		
02/03/94		13.82	5.98	7.84	-	<50	<50	<0.5	<0.5	<0.5	<0.5	-		-	
05/31/94		13.82	6.10	7.72		<50	<50	<0.5	< 0.5	<0.5	<0.5	-	144	-	
08/25/94		13.82	6.01	7.81	-	<50	<50	< 0.5	<0.5	<0.5	<0.5	-	-	-	
11/02/94		13.82	5.90	7.92	000	<50	<50	<0.5	<0.5	<0.5	<0.5				
01/31/95		13.82	5.07	8.75	-	<50	<50	3.7	<0.5	<0.5	<0.5	-	-		
05/18/95		13. 82	5.33	8.49	-	<50	<50	<0.5	<0.5	<0.5	<0.5			1.40	
08/29/95		13.82	3.50	10.32	-	<50	250	<0.5	<0.5	< 0.5	<0.5	<10			
11/02/95		13.82	5.94	7.88	÷.	<50	520	<0.5	<0.5	<0.5	<0.5	<10	- A.		
02/05/96		13.82	5.34	8.48	-	<50	65	<0.5	<0.5	<0.5	<0.5			-	
04/30/96		13.82	5.96	7.86		<50	<50	<0.5	<0.5	<0.5	<0.5	-	-		
08/28/96		13.82	6.38	7.44	*	<50	<50	<0.5	<0.5	<0.5	<0.5			-	
12/05/96		13.82	5.94	7.88	**	160	<50	13	14	8.9	38	<30	-		
02/21/97		13.82	5.60	8.22	**	<50	<50	<0.5	<05	<0.5	<0.5	<30	44		
05/02/97		13.82	6.22	7.60	~	<50	<50	<0.5	<05	<0.5	<0.5		-		

Groundwater Monitoring Data and Analytical Results

Former Texaco Service Station #211173

			-				Oakland	I, CA	-					
WELL ID/		TOC*	DTW	GWE	SPH THICKNESS	TPH- GRO	TPH- DRO	B	T	E	x	MTBE by 8020	MTBE by 8260	DO Reading
241 201000		(mst)	(11.)	(msi)	(π)	(Hg/L)	(ug/L)	(ug/1/)	(ug/L)	(ug/L)	(ug/L)	(¥g/L)	(vg/L)	(ррва)
MW-8J (cont)														
07/30/97		13.82	6.28	7.54	0.00	<50	<50	<0.5	<0.5	<0.5	<0.5	<30	-	-
11/05/97		13.82	6.03	7.79	0.00	<50	<50	<0.5	<0.5	<0.5	<0.5	<30		
01/21/98		13.82	5.71	8.11	-	<50	<50	<0.5	<0.5	<0.5	<0.5	<30	-	
06/03/98		13.82	5.45	8.37	-	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5		-
08/04/98		13.82	5.93	7.89	-	<50	<50	<0.5	<0.5	<0.5	<0.5	<2.5	-	
11/05/98		13.82	6.05	7.77	-	<50	<50	2.0	<0.50	<0.50	<0.50	<2.5	-	-
11/03/99		13.82	5.84	7.98		<50.0	58.9	<0.500	<0.500	<0.500	<0.500	<5.00	<2.00	-
04/24/00		13.82	5.58	8.24	C For C	<50.0	<50.0	<0.500	<0.500	<0.500	<0.500	<2.50	-	÷
07/25/00		13.82	5.89	7.93	14	<50.0	<50.0	<0.500	<0.500	<0.500	<0.500	<2.50		
11/06/00		13.82	6.24	7.58		2 2. 0	<50.0*	-		-		-		
06/05/09 ¹		13.82	6.59	7.23	-		-			-		-		-
06/10/09*		13.82	6.41	7.41		<50	400	<0.5	<0.5	<0.5	<0.5		10	-
10/01/09*	NP7	13.82	6.78	7.04	<	<50	<50*	<0.5	<0.5	<0.5	<0.5	-	<0.5	-
MW-8K														
05/21/93		15.18			-	54	<50	12	<0.5	<0.5	<0.5	-	-	-
08/16/93		15.18	2.08	13.10	-	<50	<50	<0.5	<0.5	1.0	<0.5	-	-	1
10/12/93		15.18	1.95	13.23		<50	<50	4.2	<0.5	<0.5	<0.5	÷	-	-
01/03/94		15.18	1.48	13.70		<50	<50	<0.5	<0.5	<0.5	<0.5	-	-	
05/31/94		15.18	1.59	13.59	-	<50	<50	1.0	0.57	<0.5	<0.5	-		-
08/25/94		15.18	2.00	13.18	-	<50	<50	0.78	<0.5	<0.5	<0.5	-		-
11/02/94		15.18	2.10	13.08	-	<50	<50	<0.5	<0.5	<0.5	<0.5		-	
01/31/95		15.18	1.35	13.83		<50	<50	<0.5	<0.5	<0.5	<0.5			
08/18/95		15.18	1.36	13.82		<50	<50	<0.5	<0.5	<0.5	<0.5		-	-
08/29/95		15.18	1.55	13.63		<50	160	<0.5	<0.5	<0.5	<0.5	<10	-	-
11/02/95		15.18	1.88	13.30	-	<50	<50	<0.5	<0.5	<0.5	<0.5	<10	-	
02/05/96		15.18	1.46	13.72	0.0	<50	<50	<0.5	<0.5	<0.5	<0.5		**	-
04/30/96		15.18	1.43	13.75	× Č > I	<50	<50	<0.5	<0.5	<0.5	<0.5		-	
08/28/96		15.18	1.75	13.43	-	<50	<50	<0.5	<0.5	<0.5	<0.5	-		

Groundwater Monitoring Data and Analytical Results

Former Texaco Service Station #211173

·····						Oaklan	d, CA							
WELL ID/ DATE	TOC*	DTW.	GWE	SPH THICKNESS (#)	TPH- GRO (vg/L)	TPH- DRO	B (pro/f)	T	E	X	MTBE by 8020	MTBE by 8260	DO Reading	のないための
• • • • • • • • • • • • • • • • • • •							(ug/1/)	(ug/L)	(ug/L).		(Hg/L)	(09/1.)	(ppm)	1
MW-8K (cont)														
12/05/96	15.18	1.42	13.76		<50	<50	<0.5	<0.5	<0.5	<0.5	<30			
02/21/97	15.18	1.49	13.69		<50	<50	<0.5	<0.5	<0.5	<0.5	<30			
05/02/97	15.18	1.60	13.58		<50	<50	<0.5	<0.5	<0.5	<0.5				
07/30/97	15.18	1.66	13.52		<50	<50	<0.5	<0.5	<0.5	<0.5	<30			
11/05/97	15.18	1.62	13.56		<50	300	<0.5	<0.5	<0.5	<0.5	<30			
01/21/98	15.18	1.29	13.89		<50	<50	<0.5	<0.5	<0.5	<0.5	<30			
06/03/98	15.18	1.17	14.01		<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5			
08/04/98	15.18	1.21	13.97		<50	<50	<0.5	<0.5	<0.5	<0.5	<2.5			
11/05/98	15.18	2.30	12.88		<50	<50	<0.50	<0.50	<0.50	<0.50	<2.5			
11/03/99	15.18	1.63	13.55		<50.0	270	<0.500	<0.500	< 0.500	<0.500	<5.00	<2.00		
04/24/00	15.18	1.25	13.93		<50.0	<50.0	<0.500	<0.500	<0.500	<0.500	<2.50			
07/25/00	15.18	1.38	13.80		<50.0	<50.0	<0.500	<0.500	< 0.500	<0.500	<2.50			
11/06/00	15.18	11.38	3.80			53.2ª								
06/05/09 ¹	15.18	1.18	14.00											
06/10/09 ⁴	15.18	1.31	13.87		<50	<50	<0.5	<0.5	<05	<0.5		2		
10/01/09 ⁴	15.18	1.85	13.33		<50	< 50 ª	<0.5	<0.5	<0.5	<0.5		1		
MW-8L														
05/21/93	14.44				76	<50	1.1	<0.5	<0.5	6				
08/16/93	14.44	2.47	11.97	-	<50	<50	<0.5	<0.5	0.7	1.1				
10/12/93	14.44	2.36	12.08	-	110	<50	13	<0.5	6	<0.5	-			
01/03/94	14.44	2.82	11.62	-	590	<50	61	2.4	<0.5	110	-		-	
05/31/94	14.44	2.66	11.78	-	410	<50	77	< 0.5	20	1.1				
08/25/94	14.44	2.34	12.10		260	<50	16	<0.5	2.5	<0.5	-	-		
11/02/94	14.44				WELL INAC	CESSIBLE					-			
01/31/95	14.44	0.08	14.36		WELL INACO	CESSIBLE	-			-				
08/18/95	14.44	0.42	14.02		WELL INACO	CESSIBLE		-			-	-	**	
08/29/95	14.44				WELL INACO	CESSIBLE	-				-			
11/02/95	14.44				WELL INACO	CESSIBLE		-	-	-	-	-	-	

Groundwater Monitoring Data and Analytical Results

Former Texaco Service Station #211173

500	Grand	Avenue
-----	-------	--------

0	ak	land	, C/	4
_	_		_	_

WELL ID/		тос•	DTW	GWE	SPH THICKNESS	TPH- GRO	TPH- DRO	B	T	E	x	MTRE by 8020	MTBE by 8260	DO Reading
DATE		(msl)	(ft.)	(msi)	(ft.)	(ag/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ppm)
MW-8L (cont)	1													
02/05/96		14.44	-	-	-	WELL INAC	CESSIBLE	**		-	-		-	-
04/30/96		14.44	-	-		WELL INACO	CESSIBLE			-		-	-	-
08/28/96		14.44	0.75	13.69		WELL INACO	CESSIBLE	-	-		-	4		-
12/05/96		14.44	-		-	WELL INACO	CESSIBLE		-		-	141	-	-
02/21/97		14.44	-			WELL INACO	CESSIBLE	*	-	-	-	-		-
05/02/97		14.44	0.60	13.84	-	WELL INACO	CESSIBLE	-		4	-			
07/30/97		14.44		-	-	WELL INACO	CESSIBLE	-						-
11/05/97		14.44	0.67	13.77	-				-			-	-	-
01/21/98		14.44	-	-	-	-	-	-		-	-	-		-
06/05/0923		14.44	0.90	13.54			-		-	4		4	1	-
06/10/091.2.4	NP	14.44	0.91	13.53		<50	2,600	<0.5	<0.5	<0.5	<0.5	-	<0.5	
10/01/09		14.44	OBSTRUC	CTION IN	WELL	-	÷	-	-	-	-	-	÷	-
TRIP BLANK QA 06/10/09					_	<50		<0.5	<0.5	<0.5	<0.5		<0.5	-

Table 1 Groundwater Monitoring Data and Analytical Results Former Texaco Service Station #211173 500 Grand Avenue Oakland, CA

Data prior to June 5, 2009, compiled from Blaine Tech Reports.

EXPLANATIONS:

TOC = Top of Casing Elevation	GRO = Gasoline Range Organics	ug/L = parts per billion
$\mathbf{ft} = \mathbf{Feet}$	DRO = Diesel Range Organics	ppm = parts per million
GWE = Groundwater Elevation	$\mathbf{B} = \mathbf{Benzene}$	= Not Measured/Not Analyzed
msl = Mean sea level	$\mathbf{T} = \mathbf{Toluene}$	QA = Quality Assurance/Trip Blank
DTW = Depth to Water	E = Ethylbenzene	D = Duplicate sample
SPH = Separate-Phase Hydrocarbons	X = Xylenes	DO = Dissolved Oxygen
TPH = Total Petroleum Hydrocarbons	MTBE = Methyl Tertiary Butyl Ether	

ANALYTICAL METHODS:

TPH-GRO by modified EPA Method 8015 TPH-DRO by modified EPA Method 8015 Benzene, Toluene, Ethylbenzene, Xylenes by EPA Method 8020

* New well elevation survey performed at wells MW-8F through MW-8L on August 16, 1993, based on mean sea level (MSL). Prior data based on arbitrary site data.

- ** Non-diesel mix >C16. The certified analytical report for sample MW-8G was revised on October 21,1993.
- * TPH-DRO with Silica Gel Cleanup.
- ¹ Well Development performed.
- ² Casing bent, see field sheet for additional information.
- ³ Attempted well development.
- ⁴ BTEX analyzed by EPA Method 8260.
- ⁵ No purge due to insufficient water.
- ⁶ No purge due to bent well casing.
- ⁷ No purge due to traffic control constraints.

STANDARD OPERATING PROCEDURE -GROUNDWATER SAMPLING

Gettler-Ryan Inc. field personnel adhere to the following procedures for the collection and handling of groundwater samples prior to analysis by the analytical laboratory. Prior to sample collection, the type of analysis to be performed is determined. Loss prevention of volatile compounds is controlled and sample preservation for subsequent analysis is maintained.

Prior to sampling, the presence or absence of free-phase hydrocarbons is determined using an interface probe. Product thickness, if present, is measured to the nearest 0.01 foot and is noted in the field notes. In addition, all depth to water level measurements are collected with a static water level indicator and are also recorded in the field notes, prior to purging and sampling any wells.

After water levels are collected and prior to sampling, if purging is to occur, each well is purged a minimum of three well casing volumes of water using pre-cleaned pumps (stack, suction, Grundfos), or disposable bailers. Temperature, pH and electrical conductivity are measured a minimum of three times during the purging. Purging continues until these parameters stabilize.

Groundwater samples are collected using disposable bailers. The water samples are transferred from the bailer into appropriate containers. Pre-preserved containers, supplied by analytical laboratories, are used when possible. When pre-preserved containers are not available, the laboratory is instructed to preserve the sample as appropriate. Duplicate samples are collected for the laboratory to use in maintaining quality assurance/quality control standards. The samples are labeled to include the job number, sample identification, collection date and time, analysis, preservation (if any), and the sample collector's initials. The water samples are placed in a cooler, maintained at 4°C for transport to the laboratory. Once collected in the field, all samples are maintained under chain of custody until delivered to the laboratory.

The chain of custody document includes the job number, type of preservation, if any, analysis requested, sample identification, date and time collected, and the sample collector's name. The chain of custody is signed and dated (including time of transfer) by each person who receives or surrenders the samples, beginning with the field personnel and ending with the laboratory personnel.

A laboratory supplied trip blank accompanies each sampling set. For sampling sets greater than 20 samples, 5% trip blanks are included. The trip blank is analyzed for some or all of the same compounds as the groundwater samples.

As requested by Chevron Environmental Management Company, the purge water and decontamination water generated during sampling activities is transported by IWM to Chemical Waste Management located in Kettleman Hills, California.

Cherror acinty#		<u> </u>	ooo number.		
Site Address:	500 Grand Aven	ue	Event Date:	10.1.09	(inclusive)
City:	Oakland, CA		Sampler:	FT	(,
	MW-8		Date Monitored:	10.1.09	<u> </u>
Vveil Diameter	<u>4</u> in.	Volun	ne 3/4"= 0.0	2 t"= 0.04 2"= 0.17 3	j"= 0.38
Total Depth	<u>14.36 ft.</u>	Facto	r (VF) 4"= 0.60	6 5"= 1.02 6"= 1.50 12	."= 5.80
Depth to Wate	r <u>10.40 ft.</u>	Check if water colum	in is less then 0.50) ft.	
Dopth to Minto	<u>4,16</u> xVF		x3 case volume =	Estimated Purge Volume:	gal.
Debru to Mate	W 00% Recharge [(Hei	ght of Water Column x 0.20)	+ DTW]:	Time Started:	(2400 h)
Purge Equipment	••	Sampling Equipment:	/	Time Completed:	(2400 hrs)
Disposable Bailer		Disnosable Bailer		Depth to Product:	ţ
Stainless Steel Rai		Pressure Bailer	<u>V</u>	Depth to Water:	ft
Stack Pump	····/	Discrete Reiler		Hydrocarbon Thickness:	ft
Suction Pump		Perietaltic Dumo		Visual Confirmation/Desc	Piption:
Grundfos				Skimmer / Absorbant Soc	k (circle one)
Peristaltic Pump			Cam D' C	Amt Removed from Skim	mer: gal
ED Bladder Pum	, <i>f</i>	Union Lena B	3/71746 2	Amt Removed from Well:	gal
Other:				Water Removed:	
				Product Transferred to:	
Sample Time/D	ate: 1120 / 101	Weather Color:	CLEAR	Odor: Y /@	
Sample Time/D Approx. Flow R Did well de-wate Time (2400 hr.)	ate: gpm ate: gpm er? If yes, Volume (gal.) pH	Veatrier Con Water Color: Sediment De Time: Volur Conductivity (µmhos/cm - µS)	Temperature (CLEAR me:g	Odor: Y / O jal. DTW @ Sampling: _ D.O. ORP (mg/L) (mV)	
Sample Time/D Approx. Flow R Did well de-wate (2400 hr.)	ate: gpm ate: gpm er? If yes, Volume (gal.) p-	Veatrier Con Water Color: Sediment De Time: Volur Conductivity (µmhos/cm - µS)	CLEAK escription: me: Temperature (C/ F)	Odor: Y / O jal. DTW @ Sampling: _ D.O. ORP (mg/L) (mV)	
Sample Time/D Sample Time/D Approx. Flow R Did well de-wate (2400 hr.)	ate: gpm ate: lf yes, volume (gal.) pl- 	LABORATORY IN RIG. PRESERV. TYPF	CLEAK Scription: me:	Odor: Y / O	
Sample Time/D Sample Time/D Sample Time/D Sample Time (2400 hr.)	ate: gpm ate: gpm er? If yes, Volume (gal.) p- (#) CONTAINER REF X voa vial YE	LABORATORY IN RIG. PRESERV. TYPE	FORMATION LABORATORY	Odor: Y / O Jal. DTW @ Sampling: D.O. ORP (mg/L) (mV) _	3260)
Sample Time/D Sample Time/D Sample Time/D Sample Time (2400 hr.)	ate:	Weather Color: Sediment De Time: Volur Conductivity (µmhos/cm - µS) LABORATORY IN RIG. PRESERV. TYPE S HCL S NP	FORMATION LABORATORY LANCASTER	SQNP4 Odor: Y / O jal. DTW @ Sampling: _ D.O. ORP (mg/L) (mV)	3260)
Sample Time/D Approx. Flow R Did well de-wate (2400 hr.)	gate:	Weather Color: Sediment De Time: Volur Conductivity (µmhos/cm - µS) LABORATORY IN RIG. PRESERV. TYPE S HCL S NP	FORMATION LABORATORY LANCASTER	Support Odor: Y Jal. DTW @ Sampling: D.O. ORP (mg/L) (mV) ANALYSES TPH-GRO(8015)/BTEX+MTBE(it) TPH-DRO w/sgc (80 t5)	3260)
Sample Time/D Approx. Flow R Did well de-wate (2400 hr.)	ate:	Weather Color: Sediment De Time: Volur Conductivity (µmhos/cm - µS) LABORATORY IN RIG. PRESERV. TYPE S HCL S NP	FORMATION LABORATORY LANCASTER	Odor: Y / O jal. DTW @ Sampling: D.O. ORP (mg/L) (mV) ANALYSES TPH-GRO(8015)/BTEX+MTBE(i TPH-DRO w/sgc (80 t5)	3260)
Sample Time/D pprox. Flow R Did well de-wate (2400 hr.) SAMPLE ID MW-8	ate:	LABORATORY IN RIG. PRESERV. TYPE	CLEAR Scription: Temperature (C/F) FORMATION LABORATORY LANCASTER LANCASTER	SQNP4 Odor: Y / Ø jal. DTW @ Sampling: D.O. ORP (mg/L) (mV)	3260)
Sample Time/D Approx. Flow R Did well de-wate (2400 hr.)	gate:	LABORATORY IN RIG. PRESERV. TYPE	FORMATION LABORATORY LANCASTER	Support Odor: Y pal. DTW @ Sampling: D.O. ORP (mg/L) (mV) ANALYSES TPH-GRO(8015)/BTEX+MTBE(i TPH-DRO w/sgc (80 15)	3260)
Sample Time/D Approx. Flow R Did well de-wate (2400 hr.)	ate:	LABORATORY IN RIG. PRESERV. TYPE S HICL NP	FORMATION LABORATORY LANCASTER	SQNP4 Odor: Y / Ø jal. DTW @ Sampling: _ D.O. ORP (mg/L) (mV) ANALYSES TPH-GRO(8015)/BTEX+MTBE(i TPH-DRO w/sgc (80 t5)	3260)
Sample Time/D Approx. Flow R Did well de-wate (2400 hr.)	ate:	LABORATORY IN RIG. PRESERV. TYPE	FORMATION LABORATORY LANCASTER	SQNP4 Odor: Y / Ø jal. DTW @ Sampling: _ D.O. ORP (mg/L) (mV) ANALYSES TPH-GRO(8015)/BTEX+MTBE(i TPH-DRO w/sgc (80 t5)	3260)
Sample Time/D Approx. Flow R Did well de-wate (2400 hr.)	ate:	LABORATORY IN RIG. PRESERV. TYPE S HCL S M CO 1 2	FORMATION LABORATORY LANCASTER LANCASTER	SQNP4 Odor: Y / Ø jal. DTW @ Sampling:	3260)
Sample Time/D Sample Time/D Approx. Flow R Did well de-wate (2400 hr.)	ate:	LABORATORY IN RIG. PRESERV. TYPE S HCL S NP E M CO 12	FORMATION LABORATORY LANCASTER LANCASTER LANCASTER	Odor: Y / D pal. DTW @ Sampling: D.O. ORP (mg/L) (mV) ANALYSES TPH-GRO(8015)/BTEX+MTBE(i TPH-DRO w/sgc (8015)	3260)

Client/Facility# Site Address: City:	E Chevron #2111 500 Grand Ave Oakland, CA	173 nue	Job Number Event Date: Sampler:	<u>385866</u> <u>10-1-09</u> ET	_ _(inclusive)
Well ID Well Diameter Total Depth Depth to Wate Depth to Wate Depth to Wate Purge Equipment Disposable Bailer Stainless Steel Bai Stack Pump Suction Pump Grundfos Peristaltic Pump QED Bladder Pump Other:	MW-8 G- 14.47 ft. 14.47 ft. 11.94 ft. 2-53 xV r W/ 80% Recharge ((H	Volu Facture Facture Check if water colum Facture Facture Factor	Date Monitored me 3/4"= 0. pr (VF) 4"= 0. nn is less then 0.5 x3 case volume + DTW]:	ID.1.04 .02 t"= 0.04 2"= 0.17 3"= 0.38 .66 5"= 1.02 6"= 1.50 12"= 5.80 .50 ft.	_ gal. (2400 hrs) ft ft ft ft ft ft ft ft gal gal
Start Time (purg Sample Time/D Approx. Flow R Did well de-wate Time (2400 hr.)	ie): ate: <u>1045 / 10</u> - ate:gpi er? If yes Voiume (gal.) I	Weather Co I.09 Water Color m. Sediment De s, Time: Volu pH Conductivity (μmhos/cm - μS)	nditions: :escription: me: Temperature (C / F)	Support Support <t< td=""><td></td></t<>	
SAMPLE ID MW-8 (+	(#) CONTAINER RE (0 x voa viat 2 x 500ml ambers	LABORATORY IN FRIG. PRESERV. TYPE YES HCL YES NP	FORMATION LABORATORY LANCASTER LANCASTER	ANALYSES TPH-GRO(8015)/BTEX+MTBE(8260) TPH-DRO w/sgc (8015)	
-					

	INSUFFI	CLENT	WATEN	FOR	PURCHNE
Add/Replaced Lock:		Add/Replaced F	Plug:	Add/Re	eplaced Bolt:

EM(0 12" (25F)

COMMENTS:

Client/Facility#	<u>Chevron #2111</u>	73	Job Number:	385866	
Site Address:	500 Grand Ave	nue	- Event Date:	10.1.09	(inclusive)
City:	Oakland, CA		Sampler:	FT	
Well ID	MW_811	· · · · · · · · · · · · · · · · · · ·	Data Maria		
Well Diameter	2/40 in		Date Monitored:	10.1.09	
Total Depth	14.98 #	Vol	ume $3/4^* = 0.0$	2 1"= 0.04 2"= 0.17	3"= 0.38
Depth to Water	4.04 ft	Check if water colu	$\frac{1}{1000} = \frac{1}{1000} = 1$	6 5"= 1.02 6"= 1.50	12"= 5.80
•	10.94 W			Jπ.	
Depth to Water	w/ 80% Recharge ((H	eight of Water Column x 0.20	X3 case volume =	Estimated Purge Volume:	gal.
	0 - 10		, · ong. <u></u>	Time Started:	(2409 hrs)
Purge Equipment:		Sampling Equipmen	t: /	Time Completed:	(2400 hrs)
Disposable Bailer	/	Disposable Bailer		Depth to Product:	^f
Stainless Steel Balk	er	Pressure Bailer		Hydrocarbon Thickness	
Stack Pump	<u> </u>	Discrete Bailer		Visual Confirmation/Des	scription:
Grundfos	<u> </u>	Peristaltic Pump		Skimmer / Aleastant C	alt (shafe and)
Peristaltic Pump	/	Other:	Som AL 6	Amt Removed from Ski	mmer: dal
QED Bladder Pump			MINDE 2	Amt Removed from We	li:gal
Other:				Water Removed:	
				Thouse Transiened IU.	
Approx. Flow Ra Did well de-wate Time (2400 hr.)	nte: gpr pr? If yes Volume (gal.) p	n. Sediment D , Time: Volu H Conductivity (umbos(cm - uS)	Description:	gal. DTW @ Sampling:	Ρ
	·			(mg/L) (m\	/)
	·	$=$ \angle			
SAMPLE ID	(#) CONTAINER RE	FRIG. PRESERV. TYPE	LABORATORY	ANAL YSE	<u> </u>
MW-8 H	x voa vial	ES HCL	LANCASTER	TPH-GRO(8015)/BTEX+MTBE	(8260)
·	2_x 500ml ambers	<u>ES NP</u>	LANCASTER	TPH-DRO w/sgc (8015)	·
	<u> </u>	·	╋		
			╪────┾		
			╀────┼	<u>_</u>	
			┝───┤		
COMMENTS:	CORAB	SAMPLE	Due To	TIME C	OUSTRAINTS
<u>T 40</u>	MEFIC CON	STROL ON	GRAND	AVENUE ROU	10
CONST	MULTION IN	PROLUESS	·		
Add/Replaced L	ock:	Add/Replaced Plug:	<i>F</i>	Add/Replaced Bolt:	

Client/Facility# Site Address: City:	Chevron #2 500 Grand Oakland, C	211173 Avenue A		_ Job Nu _ Event [_ Sample	mber:)ate: r:	385866 10	1.09	·	(inclusive)
Well ID	MW-8I			Date Moni	tored:	10.	1.09		
Well Diameter Total Depth	2/4	<u>in.</u> it.	Vo Fa	lume ; ctor (VF)	3/4"= 0.02 4"= 0.66	2 1"= 0.04 5 5"= 1.02	2"= 0.17 6"= 1.50	3"= 0.38 12"= 5.80]
Depth to Water	8.59	t. 🔲	Check if water col	umn is less th x3 case ve	en 0.50 plume = E	ft. Estimated Purg	e Volume: ") J
Depth to Water	w/ 80% Recharg	E [(Height of	Water Column x 0.2	0) + DTW]:		- Time Sta	irted:		(2400 hrs)
Purge Equipment:		5	Sampling Equipmen	nt:		Time Col	mpleted:	<u> </u>	(2400 hrs)
Disposable Bailer	,	/ [[]	Disposable Bailer			Depth to	Product: Water:		ft
Stainless Steel Baile	er	F	ressure Bailer			Hydrocar	bon Thickne	SS:	<u></u> π
Suction Pump			Discrete Bailer	<u> </u>		Visual Co	onfirmation/D	eseription:	^
Grundfos		F	enstatuc Pump			Skimmer	/ Abserbant	Sock (sizele	
Peristaltic Pump			ther:	5214.01	E	Amt Rem	oved from S	kimmer:	one) cal
QED Bladder Pump	/	-			<u> </u>	Amt Rem	oved from W	/ell:	gat
Other:						Product T	moved:	<u></u>	
								·	
Start Time (purge	e):		Weather C	onditione:		-			
Sample Time/Da	ate: 0800 /	0.1.09	Water Cok			<u> </u>	1744		
Approx. Flow Re	ite:	dom.	Sediment (<u> 4 . </u> (MP56	NATE
Did well de-wate		_ yprii. Evon Timo		Jescription:			- <u></u> .		
		rycs, rane.	· voi	ume:	ga	al. DTW @	Sampling:		
Time (2400 hr.)	Volume (gal.)	рН	Conductivity (µmhos/cm - µS)	Temperati (C/F	ire)	D.O. (mg/L)	C (r)RP mV)	
	·		=	/		·····			
SAMDI E ID			ABORATORY	NFORMATI	ON				
MM/_8		REFRIG.	PRESERV. TYPE	LABORAT	ORY		ANALYS	ES	
	"2 x 500ml ambers	VES		LANCAS		PH-GRO(8015)/BTEX+MTE	3E(8260)	
	Car oconi anibers	160	NP			PH-DRO w/sgo	(8015)		
	······································	·	·	- {					

COMMENTS:	GRAB	SAMU		15 TO	TIME		
THAFFIC IN Phot	CONTROL	40	(SHAN)	D AVE	NUSI	ROAD, (CONSTRUCTION
Add/Replaced Lo	ck:	Add/Re	placed Plug:		Add/R	enlaced Bolt	·

 Add/Replaced	Pi

ug: _____

Add/Replaced Bolt: _____

Site Address:					: 303866		
	500 Grand	Avenue		Event Date:	10	1.09	
City:	Oakland, CA			Sampler:	F		(inclusive)
Well ID	T8-WM			Date Monitored	: 10	1.05	
Well Diameter	2/4 ii	—- 1.					=,
Total Depth	14.97 #		Facto	ne 3/4"=0 pr(VF) 4"=0.	.02 1"= 0.04 .66 5"= 1.02	2''=0.17 $3''=0.3$	38
Depth to Water	<u>6.78</u> ft 8.19	xve .	Check if water colun	In is less then 0.5	50 ft.		50
Depth to Water	w/ 80% Recharge	E [(Height of	Water Column x 0.20)	+ DTWJ:	- Esumated Purge	Volume:	gal.
Purge Equipment:			Someline Feulement		Time Star	ted:	(2400 hrs
Disposable Bailer		/	Sampling Equipment: Discosoble Ball		Depth to P	Product:	(2400 hh
Stainless Steel Bailer	/		Disposable Bailer		Depth to V	Vater:	"
Stack Pump	' —— <i>—</i> —		Pressure Bailer		Hydrocarb	on Thickness:	n
Suction Pume	//////		Discrete Bailer		Visual Con	firmation/Description	<u> </u>
Guodfor	_ <u>/</u>	I	Peristaltic Pump	-			
Depetatio Duma	<u> </u>	(QED Bladder Pump		Skimmer /	Absorbant Sock (cin	cie one)
	/	(Other: 66413	SAMPLE	Amt Remo	ved from Skimmer:	gal
QED Bladder Pump	/ <u> </u>				Water Ren	veu lioin vvei:	gal
Other:					Product Tr	ansferred to:	
Did well de-water	? lf	yes, Time	: Volur	ne:	gal. DTW @ S	Sampling:	
Did Well de-water Time (2400 hr.)	? If Volume (gal.)	yes, Time pH	Conductivity (μmhos/cm - μS)	Temperature	gal. DTW @ S D.O. (mg/L)	Sampling: ORP (mV)	
Did well de-water Time (2400 hr.)	? If Volume (gal.) 	yes, Time pH	Conductivity (μmhos/cm - μS)	Temperature (C/F)	gal. DTW @ S D.O. (mg/L)	Sampling: ORP (mV)	
Did well de-water (2400 hr.)	? If Volume (gal.) 	уеs, Time pH	Conductivity (μmhos/cm - μS)	Temperature (C/F)	gal. DTW @ S D.O. (mg/L)	Corp (mV)	
Did well de-water Time (2400 hr.)	? If Volume (gal.) 	yes, Time pH	Conductivity (μmhos/cm - μS)	Temperature (C / F)	gal. DTW @ \$ D.O. (mg/L)	Sampling: ORP (mV)	
SAMPLE ID MW-8	? If Volume (gal.) (#) CONTAINER (#) CONTAINER	pH PH REFRIG. YES	Conductivity (μmhos/cm - μS) ABORATORY /N PRESERV. TYPE HCL	Temperature (C / F)	gal. DTW @ S D.O. (mg/L)	CRP (mV) (mV) ANALYSES BTEX+MTBE(8260)	
Did well de-water Time (2400 hr.)	? If Volume (gal.) 	yes, Time pH REFRIG. YES YES	Conductivity (μmhos/cm - μS) ABORATORY IN PRESERV. TYPE HCL NP	Temperature (C/F)	gal. DTW @ S D.O. (mg/L)	CRP (mV) (mV) ANALYSES BTEX+MTBE(8260) 8015)	
Did well de-water Time (2400 hr.)	? If Volume (gal.) 	yes, Time pH REFRIG. YES YES	Conductivity (µmhos/cm - µS)	Temperature (C/F) FORMATION LABORATORY LANCASTER LANCASTER	gal. DTW @ S D.O. (mg/L)	CRP (mV) (mV) ANALYSES BTEX+MTBE(8260) 8015)	
SAMPLE ID MW-8	? If Volume (gal.) 	yes, Time pH REFRIG. YES YES	Conductivity (µmhos/cm - µS)	FORMATION LABORATORY LANCASTER LANCASTER	gal. DTW @ S D.O. (mg/L)	ORP (mV) ANALYSES BTEX+MTBE(8260) 8015)	
SAMPLE ID MW-8	? If Volume (gal.) 	pH PH REFRIG. YES YES SAM	Conductivity (µmhos/cm - µS)	Temperature (C/F) FORMATION LABORATORY LANCASTER LANCASTER	gal. DTW @ S D.O. (mg/L)	ORP (mV) ANALYSES BTEX+MTBE(8260) 8015)	
SAMPLE ID MW-8	? If Volume (gal.) 	PH PH REFRIG. YES YES	LABORATORY IN PRESERV. TYPE HCL NP HCL NP	TO T	gal. DTW @ S D.O. (mg/L) TPH-GRO(8015)/1 TPH-DRO w/sgc (ORP (mV) ORP (mV) ANALYSES BTEX+MTBE(8260) 8015) WT (A 1) WT	5 021

Client/Facility#: Site Address:	Chevron #211173 500 Grand Avenue	Job Number: Event Date:	385866	-
City:	Oakland, CA	Sampler:	FT	- (inclusive)
Well ID Well Diameter Total Depth	<u>MW-8 K</u> <u>2/4 in.</u> 18.82 ft	Date Monitored: Volume 3/4"= 0.02 Factor 0/F) 4"= 0.02	10-1-09 1"= 0.04 2"= 0.17 3"= 0.38	
Depth to Water Depth to Water w Purge Equipment: Disposable Bailer Stainless Steel Bailer Stack Pump Suction Pump Grundfos	// 80% Recharge [(Height of Wate // 80% Recharge [(Height of Wate Dispos Presso Discre Perista QED B	Image: State in the state	5"= 1.02 6"= 1.50 12"= 5.80 t. stimated Purge Volume: 9-0 Time Slarted: 9-0 Time Completed: 9-0 Depth to Product: 9-0 Depth to Water: 9-0 Hydrocarbon Thickness: 9-0 Visual Confirmation/Description: Skimmer / Absorbant Sock (circle	_gai. (2400 hrs) (2400 hrs) ft ft ft ft ft ft
QED Bladder Pump Other:	Other:		Amt Removed from Skimmer: Amt Removed from Well: Water Removed: Product Transferred to:	gai gai
Start Time (purge): Sample Time/Date Approx. Flow Rate Did well de-water?	9:0928/101.09 gpm. 	Weather Conditions: Water Color: O Sediment Description: Volume: oal	dor: Y / D	
Time (2400 hr.) 0906 0912 0918	Volume (gal.) pH (μm) $3 \circ 0$ 7.15 4 6.0 7.10 49.0 7.07 4	Conductivity Temperature (O / F) (O /	D.O. ORP (mg/L) (mV)	<u></u>

		1	ABORATORY IN	FORMATION	
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	
MW-8 K	x voa vial	YES	HCL	LANCASTER	
<u> </u>	2_x 500mi ambers	YES	NP	LANCASTER	TPH-DRO w/sgc (8015)
<u> </u>	╋────				
	╉━━━━╋				
├ <u>──</u> ───	╋━━━━━╋				
<u> </u>	┟────┼				
h	╆╾╾╾╌╴┼				
·	┟┈───┼				
	<u> </u>		<u> </u>		

COMMENTS:

Add/Replaced Lock: _____

Add/Replaced	Plug:	
--------------	-------	--

Add/Replaced Bolt: _____

Client/Facility#	<u>Chevron #21</u>	1173		Job N	lumber:	385866		
Site Address:	ess: 500 Grand Avenue			 Even	Event Date:			
City:	City: Oakland, CA			Same	Complex.			
						£)		_
Well ID	MW-8 L			Date Mo	nitored:	1.0%	1.05	
Well Diameter	4 in	-	.					_ ,
Total Depth	18 00 #	_		olume actor (VE)	3/4"= 0.02	1"= 0.04	2"= 0.17 3"= 0.3	38
Depth to Water			Check if water or		4 = 0.00	0 = 1.UZ	6"= 1.50 12"= 5.8	8
		. 			then 0.50	ft.		
Depth to Water	w/ 80% Recharge	_^VI		X3 Case	volume = E	Estimated Purg	e Volume:	gal.
	the of a reconargo	f(meiður or	water Column X U.	20) + DTWJ: _		- Time Sta	rted:	(2400 hm)
Purge Equipment:		;	Sampling Equipme	ent:		Time Cor	npleted:	(2400 hrs) (2400 hrs)
Disposable Bailer			Disposable Bailer			Depth to	Product:	ft
Stainless Steel Baile	er		Pressure Bailer			Depth to	Water:	ft
Stack Pump			Discrete Bailer		<u> </u>	Hydrocart	bon Thickness:	ft
Suction Pump		F	Peristaltic Pump	\nearrow		Visual Co	nnimation/Description): I
Grundfos		(DED Bladder Pump	/	<u>_</u>	Skimmer	Absorbant Sock (cire	de one)
Peristaltic Pump	7	Ċ	Other:			Amt Rem	oved from Skimmer:	gal
QED Bladder Pump				· v		Amt Rem	oved from Well:	gal
Other:						Product T	moved:	
			-					
Sample Time/Da Approx. Flow Ra Did well de-wate Time (2400 hr.)	te: If y	gpm. /es, Time pH	Water Co Sediment : Vo Conductivity (µmhos/cm - µS)	lor: Description Dume: Temper (c /	1: (ga ature F)	Odor: Y / M al. DTW @ D.O. (mg/L)	Sampling: ORP (mV)	
			ABORATORY					
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYP	E LABOR	ATORY		ANALYSES	
O	X Voa vial	YES	HCL		STER TI	PH-GRO(8015)	/BTEX+MTBE(8260)	
	x souri ampers	TES	NP		STER TI	PH-DRO w/sgc	(8015)	
				_ <u>+</u>			- <u></u>	
						· <u> </u>		<u> </u>
			·		—— <u> </u> _			——
								<u> </u>
COMMENTS:	WELL HAS	<u>AN</u> Sou	OBSTRU TH OF T	CTION HE W	<u>6</u> -	2' 242" NE Qu	THERE'S	
MAY BE	A ROOT	FLO	n THE -	DLEE	WE	LL CAS.	Her is an	- Reat
Add/Replaced Lo	CAN STIL	Add/F	Replaced Plug:	in Do	AC	d/Replaced	Bolt:	

Cher	ron Califo	ornia Regio	on Anc	alysis Request,	Chain of Custor
Lancaster 100109	-06	Accl. #: 10	2099 See	For Lancester Laboratories us mple # <u>5794/99-</u> 20	e only YGroup #:019108
	CRA MTI Proj	ect # No Number		Analyses Requested	7 1164495
active #: SS#211173 G-R#385866 Global #D#T ite Address: 500 GRAND AVENUE, OAKLAND, CA	0600101355	Matrix	H	Preservation Codes	Preservative Codes H = HCI T = Thiosuttate
hevron PM:Lead Consultan onsultant/Office: G-R, Inc., 6747 Sierra Court, Suite	PDES PDES trainers	Ra Gei Chen		S = H ₂ SO ₄ O = Other J value reporting needed Must meet lowest dataction limit	
Ansultant Phone #: 925-551-7555 Fax #: 9 ampler: FRANK TERMINONI		NOD DRO 19	Centettes Method	possible for 8260 compounds 8021 MTBE Confirmation Confirm highest hit by 8280	
mple Identification Date Collected	Time a E Collected © O	Soli Water Oit [] A	TPH BOIS TPH BOIS B2800 tull a	Ony Total Lead	Run cosy's on all hits
MW-86 pt MW-84 mm MW-81 wat	1045 X				Commente / Remarks
NW-85 MW-8K 4	0700 0700 0928 X	4			-Collection date - revised per Cheryl - Hansen group 10/8/09
D. TAT 72 hour 48 hour	Pagenceuistical by	l III	± 10+ P.89	Time Reserved by:	that prise Time
hour 4 day 5 day a Package Options (please circle if required) Summary Type 1 - Ford EDF/EDD		Plocifi Data	Time Peceled by: G35 F F F F F F F F F F F F F F F F F F F	Date Time Oate Time	
VI (Raw Data) [] Coelt Deliverable not needed (RWQCB)	Relinquished by C UPS R	commercial Canter: diff. Other		Peceived by:	Date Time

Lancaster Laboratorias, Inc., 2425 New Holtand Pike, RO Box 12425, Lancaster, PA 17605-2425 (717) 656-2300 Copies: White and yellow should accompany samples to Lancaster Laboratories. The pink copy should be retained by the client.

4804.01 (north) Flay, 10/12/06

. ·

Chevron California Region Analysis Request/Chain of Custody

Lancaster 100	0109-0	26				Acct.	*	12	090	<u>}_</u>	_ Sar	Foi Tiple	r Lan #	ceste 5.79	r Labo 41 a	rator	les us -2-0	e only Y Gr	oup #:	910	<u>)8</u>
	c	RA M	Ti Proj	ect	# N	o Ni	ımb	<u>م</u>			4	Inal	yses	Req	Jeste	d		ר ך /	1644	95	
Facility #: SS#211173 G-R#385866 G	ilobal ID#T060	0101355		Т	Matr	bx -	T	Preserva			ation Codes				Pi	Preservative Codes					
Site Address: 500 GRAND AVENUE, OAK	LAND, CA							թ	┦Ħ	╞	-					+		H = HC) T=	Thiosulf	ate
Chevron PM: MTI	Consultant.CR	AKJ		- -	1-	1	1		í					-				$\mathbf{N} = \mathbf{H}\mathbf{N}$	Ю₃ B= \$0, 0=	NaOH Other	
Consultant/Office: G-R, Inc., 6747 Sierra Court, Suite J, Dublin, CA 94568				5	2 1	8	99												e reporting n	adad	
Consultant Pri. Mor.: Deanna L. Harding (deanna@grinc.com)				-	and		ntair	8021										Must	meet lowest d	istection	limits
Consultant Phone #:925-551-7555 Fax #: 925-551-7899				1		긔	ရီ	R		X	1		8	2	ľ	1		possi	018 101 8260 C	ompound	
Sampler: FRANK TERMINON			1			ě	8	18	١Ĕ		, te	틯	Net					BE Contime m birtheet bit	000 hu 8260		
					12	Ĩ	Ë	N N) Š		Ŭ.		Leed	1.0			Confir	m all hits by f	280		
	Date	Time	a È		te			1÷	8	8015	불	්	<u>Tex</u>	Person					oxy's on	highest h	it 🛔
Sample Identification	Collected (Collected	ଞ ଧ	တိ	ž	ō	Ē	E	Ē	Ē	Š		뾩	8				C Run_	axy's on	ali hits	
	 } _]	120	K)-	┢	W	+	8	R	K	K		\square						Comme	ents / Rema	rks	
		040	Θ			┼╌┤	Å.	Ŕ	КÀ	Ŕ				\bot	1				÷.	~	1
		940	\mathbf{A}			+	0	Ŕ	Θ	Ŕ			-+	_ _	+-	┝╌┦					
NW		700	Θ				S	Ю	Ю	Ю	$ \rightarrow $		-+			┝─╽					
MW-8K		928	\mathbf{X}^{-}			┼╴┥	ž	Ŕ	Ю	Ю	\vdash		-+			┞╴┦		-			
							<u> </u>					-+	-+	┤	+-	┨╌┨		-			
0.						\Box						1		\uparrow	1 10			1			
	┠────┤─					\square															
	┟────┤─					++					_						$-\mathbf{L}$				
	╏────┼─			\vdash		┝┤						_+			╄		-+	_			ſ
		8	_		_	┝╼┦				_	-		-+-				-+-	4			
Tumeround Time Requested (TAT) (please cir		Aginquis	shed by:	ـــــــــــــــــــــــــــــــــــــ	0	t		/		T	Date	Tu	 me	Ree	J			17			_
STD. TAT 72 hour 48 hour	г	[ب	₭=			<u> </u>	. 10	7	09	12	415		Z	<u> </u>	-02	tart	الآلي	9/14	55T
24 hour 4 day 5 day		Reinquis	shed by	•	U			6		بكر ا)ete	17	ne 72	Rec		y:	-		Det	9 Tim	9
Data Package Options (please circle if you find)		Relinquis	shed by:	-			_		10		Date	Tir	ne	Red	wed t	<u>2 E</u> N:	<u>/</u>		Det		
QC Summary Type I - Full EDF/EDD									Ş.					Z		T				• 1#11	
Type V! (Raw Data) Coelt Deliverable not needed Relinquished by C				Comit Comit	nercla	Car	nier:						(Rece	ived t	.			Dat) Tim	0
van (haartes) Disk		Terres		AUEX			aner_	1					=		4	<u>A</u>	A	\leq	vens	091	5
				n He	ceipt_		_	2	<u> </u>	5			ີດ	Cust	oby s	agis in	tari?	1000 N	io 🛛		ł

Lancaster Laboratories, Inc., 2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 (717) 656-2300 Copies: White and yellow should accompany samples to Lancaster Laboratories. The pink copy should be retained by the client.

4804.01 (nonh) Rev. 10/12/06

2

2425 New Holland Piles, PO Box 12425, Lanzanier, PA 17605-2425 -717-656-2300 Fax: 717-656-2661 - www.lancesteriebs.com

ANALYTICAL RESULTS

Prepared for:

Chevron c/o CRA Suite 110 2000 Opportunity Drive Roseville CA 95678

916-677-3407

GETTLER-RYAN INC. GENERAL CONTRACTORS

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

October 08, 2009

Project: 211173

Samples arrived at the laboratory on Friday, October 02, 2009. The PO# for this group is 211173 and the release number is MTI. The group number for this submittal is 1164495.

Client Sample Description MW-8F-W-091001 Grab Water MW-8G-W-091001 Grab Water MW-8H-W-091001 Grab Water MW-8I-W-091001 Grab Water MW-8J-W-091001 Grab Water

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

ELECTRONIC Gettler-Ryan, Inc. COPY TO

Attn: Cheryl Hansen

Lancaster Labs (LLI) # 5794199 5794200 5794201 5794202 5794203 5794203 5794204

2425 New Holland Piles, PO Box 12425, Lancesler, PA 17605-2428 +717-656-2500 Fex: 717-656-2661 + www.lancesterlebs.com

Questions? Contact your Client Services Representative Jill M Parker at (717) 656-2300

Respectfully Submitted,

dirictin Phlaer

Christine Dulaney Servior Specialist

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-858-2300 Fax: 717-658-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description:	MW-8F-W-091001 Grab Water	LLI Sample # WW 5794199
	Facility# 211173 Job# 385866 GRD	LLI Group # 1164495
	500 Grand-Oakland T0600101355 MW-8F	CA

Project Name: 211173

Collected: 10/01/2009 11:20 by FT

Submitted: 10/02/2009 09:15 Reported: 10/08/2009 at 11:20 Discard: 11/08/2009 Chevron c/o CRA Suite 110 2000 Opportunity Drive Roseville CA 95678

Account Number: 12099

1738F

CAT No.	Anelysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-8	346 8260B	ug/l	ug/l	
06054	Benzene	71-43-2	N.D.	0.5	1
06054	Ethylbenzene	100-41-4	N.D.	0.5	1
06054	Methyl Tertiary Butyl Eth	ner 1634-04-4	N.D.	0.5	1
06054	Toluene	108-88-3	N.D.	0.5	1
06054	Xylene (Total)	1330-20-7	N.D.	0.5	ī
GC Vol	latiles SW-8	46 8015B	ug/1	ug/1	
01728	TPH-GRO N. CA water C6-C1	.2 n.a.	N.D.	50	1
GC Ext w/Si G	ractable TPH SW-8 Sel	46 8015B	ug/1	ug/l	
06610	TPH-DRO CA C10-C28 w/ Si	Gel n.a.	81	50	1

General Sample Comments

State of California Lab Certification No. 2501 Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Tim		Analyst	Dilution Factor
01163	GC/MS VOA Water Prep	SW-846 5030B	1	P092782AA	10/05/2009	19:31	Daniel H Heller	1
06054	BTEX+MTBE by 8260B	SW-846 8260B	1	P092782AA	10/05/2009	19:31	Daniel H Heller	1
01146	GC VOA Water Prep	SW-846 5030B	1	09278B20A	10/05/2009	16:55	Matthew S Woods	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	09278B20A	10/05/2009	16:55	Matthew S Woods	1
02376	Extraction - Fuel/TPH (Waters)	SW-846 3510C	1	092750018A	10/02/2009	14:40	Cody R Hanna	1
06610	TPH-DRO CA C10-C28 w/ Si Gel	SW-846 8015B	1	092750018A	10/06/2009	03:06	Lisa A Reinert	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 *717-656-2300 Fax: 717-656-2681 * www.lancasterlabs.com

Sample Description:	MW-8H-W-091001 Grab Water	LLI Sample # WW 5794201
	Facility# 211173 Job# 385866 GRD	LLI Group # 1164495
	500 Grand-Oakland T0600101355 MW-8H	CA

Account Number: 12099

2000 Opportunity Drive Roseville CA 95678

Chevron c/o CRA

Suite 110

Project Name: 211173

Collected: 10/01/2009 07:30 by FT

Submitted: 10/02/2009 09:15 Reported: 10/08/2009 at 11:20 Discard: 11/08/2009

1738H

CAT No.	Anelysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-8	346 8260B	ug/l	ug/1	
06054	Benzene	71-43-2	N.D.	0.5	1
06054	Ethylbenzene	100-41-4	N.D.	0.5	1
06054	Methyl Tertiary Butyl Eth	ler 1634-04-4	1	0.5	1
06054	Toluene	108-88-3	N.D.	0.5	1
06054	Xylene (Total)	1330-20-7	N.D.	0.5	1
GC Vol	atiles SW-8	46 8015B	ug/l	ug/1	
01728	TPH-GRO N. CA water C6-C1	.2 n.a.	N.D.	50	1
GC Ext w/Si G	ractable TPH SW-8 el	46 8015B	ug/l	ug/1	
06610	TPH-DRO CA Clo-C28 w/ Si	Gel n.a.	640	50	1

General Sample Comments

State of California Lab Certification No. 2501 Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Triel#	Batch#	Analysis Date and Tim		Analyst	Dilution
01163	GC/MS VOA Water Prep	SW-846 5030B	1	P092782AA	10/05/2009	20:25	Daniel H Heller	1
06054	BTEX+MTBE by 8260B	SW-846 8260B	1	P092782AA	10/05/2009	20:25	Daniel H Heller	1
01146	GC VOA Water Prep	SW-846 5030B	1	09278B20A	10/05/2009	20:32	Matthew S Woods	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	09278B20A	10/05/2009	20:32	Matthew S Woods	1
02376	Extraction - Fuel/TPH (Waters)	SW-846 3510C	1	092750018A	10/02/2009	14:40	Cody R Hanna	1
06610	TPH-DRO CA C10-C28 w/ Si Gel	SW-846 8015B	1	092750018A	10/06/2009	04:55	Lisa A Reinert	1

2425 New Holiand Pike, PO Box 12425, Lancaster, PA 17605-2425 *717-656-2300 Fax: 717-656-2681 * www.lancasteriabs.com

Sample Description:	MW-8G-W-091001 Grab Water	LLI Sample # WW 5794200
	Facility# 211173 Job# 385866 GRD	LLI Group # 1164495
	500 Grand-Oakland T0600101355 MW-8G	CA

Account Number: 12099

2000 Opportunity Drive Roseville CA 9**56**78

Chevron c/o CRA

Suite 110

Project Name: 211173

Collected: 10/01/2009 10:45 by FT

Submitted: 10/02/2009 09:15 Reported: 10/08/2009 at 11:20 Discard: 11/08/2009

1738G

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l	ug/1	
06054	Benzene	71-43-2	N.D.	0.5	1
06054	Ethylbenzene	100-41-4	N.D.	0.5	1
06054	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	ī
06054	Toluene	108-88-3	N.D.	0.5	1
06054	Xylene (Total)	1330-20-7	N.D.	0.5	1
GC Vol	atiles SW-846	8015B	ug/1	ug/1	
01728	TPH-GRO N. CA water C6-C12	n.a.	N.D.	50	1
GC Ext	ractable TPH SW-846	8015B	ug/l	ug/l	
06610	TPH-DRO CA C10-C28 w/ Si Gel	n.a.	55	50	1

General Sample Comments

State of California Lab Certification No. 2501 Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Tir	20	Analyst	Dilution
01163	GC/MS VOA Water Prep	SW-846 5030B	1	P092782AA	10/05/2009	10.50	Daniel W Weller	Factor
06054	BTEX+MTBE by 8260B	SW-846 8260B	1	P092782AA	10/05/2009	19:58	Daniel H Heller	1
01146	GC VOA Water Prep	SW-846 5030B	1	09278B20A	10/05/2009	17:17	Matthew S Woods	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	09278B20A	10/05/2009	17:17	Matthew S Woods	1
02376	Extraction - Fuel/TPH (Waters)	SW-846 3510C	1	092750018A	10/02/2009	14:40	Cody R Hanna	ī
06610	TPH-DRO CA C10-C28 w/ Si Gel	SW-846 8015B	1	092750018A	10/06/2009	03:28	Lisa A Reinert	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 *717-656-2300 Fax: 717-856-2681* www.lancasterlabs.com

Sample Description:	MW-8I-W-091001 Grab Water	LLI Sample # WW 5794202
	Facility# 211173 Job# 385866 GRD	LLI Group # 1164495
	500 Grand-Oakland T0600101355 MW-81	CA

Account Number: 12099

2000 Opportunity Drive Roseville CA 95678

Chevron c/o CRA

Suite 110

Project Name: 211173

Collected: 10/01/2009 08:00 by FT

Submitted: 10/02/2009 09:15 Reported: 10/08/2009 at 11:20 Discard: 11/08/2009

1738I

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	5 8260B	ug/l	ug/l	
06054	Benzene	71-43-2	2	0.5	1
06054	Ethylbenzene	100-41-4	N.D.	0.5	1
06054	Methyl Tertiary Butyl Ether	1634-04-4	4	0.5	1
06054	Toluene	108-88-3	N.D.	0.5	1
06054	Xylene (Total)	1330-20-7	N.D.	0.5	1
GC Vol	atiles SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water C6-C12	n.a.	53	50	1
GC Ext w/Si G	ractable TPH SW-846 el	8015B	ug/1	ug/1	
06610	TPH-DRO CA C10-C28 w/ Si Ge	l n.a.	92	50	1

General Sample Comments

State of California Lab Certification No. 2501 Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution
01163	GC/MS VOA Water Prep	SW-846 5030B	1	P092782AA	10/05/2009 11-	53 Daniel H Heller	1
06054	BTEX+MTBE by 8260B	SW-846 8260B	1	P092782AA	10/05/2009 11:	53 Daniel H Heller	1
01146	GC VOA Water Prep	SW-846 5030B	1	09278B20A	10/05/2009 20:	54 Matthew S Woods	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	09278B20A	10/05/2009 20:	54 Matthew S Woods	1
02376	Extraction - Fuel/TPH (Waters)	SW-846 3510C	1	092750018A	10/02/2009 14:	40 Cody R Hanna	1
06610	TPH-DRO CA C10-C28 w/ Si	SW-846 8015B	1	092750018A	10/06/2009 04:	33 Lisa A Reinert	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 *717-656-2300 Fax: 717-656-2681 * WWW.lancasterlabs.com

Page 1 of 1

Sample Description:	MW-8J-W-091001 Grab Water	LLI Sample # WW 5794203
	Facility# 211173 Job# 385866 GRD	LLI Group # 1164495
	500 Grand-Oakland T0600101355 MW-8J	CA

Account Number: 12099

2000 Opportunity Drive Roseville CA 95678

Chevron c/o CRA

Suite 110

Project Name: 211173

Collected: 10/01/2009 07:00 by FT

Submitted: 10/02/2009 09:15 Reported: 10/08/2009 at 11:20 Discard: 11/08/2009

1738J

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l	ug/l	
06054	Benzene	71-43-2	N.D.	0.5	1
06054	Ethylbenzene	100-41-4	N.D.	0.5	1
06054	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	1
06054	Toluene	108-88-3	N.D.	0.5	-
06054	Xylene (Total)	1330-20-7	N.D.	0.5	1
GC Vol	atiles SW-846	8015B	ug/1	ug/l	
01728	TPH-GRO N. CA water C6-C12	n.a.	N.D.	50	1
GC Ext w/Si G	ractable TPH SW-846	8015B	ug/l	ug/1	
06610	TPH-DRO CA C10-C28 w/ Si Gel	n.a.	N.D.	50	1

General Sample Comments

State of California Lab Certification No. 2501 Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Method	Trial#	Batchë	Analysis		Applyet	The Base of Aug
No.					Date and Tin		Amerioc	Factor
01163	GC/MS VOA Water Prep	SW-846 5030B	1	P092782AA	10/05/2009	13.14	Daniel H Heller	1
06054	BTEX+MTBE by 8260B	SW-846 8260B	1	P092782AA	10/05/2009	13:14	Daniel H Heller	1
01146	GC VOA Water Prep	SW-846 5030B	1	09278B20A	10/05/2009	18.22	Matthew S Woods	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	09278B20A	10/05/2009	18.22	Matthew & Woods	1
02376	Extraction - Fuel/TPH (Waters)	SW-846 3510C	ī	092750018A	10/02/2009	14:40	Cody R Hanna	1
06610	TPH-DRO CA C10-C28 w/ Si Gel	SW-846 8015B	1	092750018A	10/06/2009	04:12	Lisa A Reinert	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 *717-656-2300 Fax: 717-656-2681 * www.lancasterlabs.com

Page 1 of 1

Sample Description:	MW-8K-W-091001 Grab Water	LLI Sample # WW 5794204
	Facility# 211173 Job# 385866 GRD	LLI Group # 1164495
	500 Grand-Oakland T0600101355 MW-8K	CA

Account Number: 12099

2000 Opportunity Drive Roseville CA 95678

Chevron c/o CRA

Suite 110

Project Name: 211173

Collected: 10/01/2009 09:28 by FT

Submitted: 10/02/2009 09:15 Reported: 10/08/2009 at 11:20 Discard: 11/08/2009

1738K

CAT No.	Analysis Name	CAS Number	As Received Result	As Recaived Nethod Detection Limit	Dilution Factor
GC/MS	Volatiles SW-8	46 8260B	ug/l	ug/l	
06054	Benzene	71-43-2	N.D.	0.5	1
06054	Ethylbenzene	100-41-4	N.D.	0.5	1
06054	Methyl Tertiary Butyl Eth	er 1634-04-4	1	0.5	1
06054	Toluene	108-88-3	N.D.	0.5	1
06054	Xylene (Total)	1330-20-7	N.D.	0.5	ī
GC Vol	atiles SW-8	46 8015B	ug/l	ug/1	
01728	TPH-GRO N. CA water C6-C1	2 n.a.	N.D.	50	1
GC Ext w/Si G	ractable TPH SW-8 Wel	46 8015B	ug/1	ug/1	
06610	TPH-DRO CA C10-C28 w/ Si (Gel n.a.	N.D.	50	1

General Sample Comments

State of California Lab Certification No. 2501 Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record								
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor
01163	GC/MS VOA Water Prep	SW-846 50)30B 1	P092782AA	10/05/2009	13.41	Daniel H Heller	1
06054	BTEX+MTBE by 8260E	SW-846 82	60B 1	P092782AA	10/05/2009	13.41	Daniel H Heller	1
01146	GC VOA Water Prep	SW-846 503	30B 1	09278B20A	10/05/2009	19.44	Matthew & Wooda	1
01728	TPH-GRO N. CA water C6-C12	SW-846 80	15B 1	09278B20A	10/05/2009	18.44	Matthew S Woods	1
02376	Extraction - Fuel/TPH (Waters)	SW-846 35:	10C 1	092750018A	10/02/2009	14:40	Cody R Hanna	1
06610	TPH-DRO CA C10-C28 w/ Si Gel	SW-846 801	158 1	092750018A	10/06/2009	03:50	Lisa A Reinert	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2661 • www.lancasterlabs.com

Page 1 of 2

Quality Control Summary

Client Name: Chevron c/o CRA Reported: 10/08/09 at 11:20 AM

Group Number: 1164495

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank MDL	Report Units	LCS <u>%REC</u>	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Batch number: P092782AA	Sample numbe	r(s): 5794	199-57942	04				
Benzene	N.D.	0.5	ug/l	103		79-120		
Ethylbenzene	N.D.	0.5	ug/l	100		79-120		
Methyl Tertiary Butyl Ether	N.D.	0.5	ug/l	102		76-120		
Toluene	N.D.	0.5	ug/l	103		79-120		
Xylene (Total)	N.D.	0.5	ug/l	101		80-120		
Batch number: 09278B20A	Sample number	r(s): 5794	199-57942	04				
TPH-GRO N. CA water C6-C12	N.D.	50.	ug/l	109	100	75-135	9	30
Batch number: 092750018A	Sample number	с(в): 5794	199-57942	04				
TPH-DRO CA C10-C28 w/ S1 Gel	N.D.	32.	ug/l	88	83	52-126	6	20

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analvsis Name	ms <u>&rec</u>	MSD <u>%REC</u>	MS/MS D Limits	<u>RPD</u>	RPD <u>MAX</u>	BKG <u>Conc</u>	DUP <u>Conc</u>	DUP RPD	Dup RPD Max
Batch number: P092782AA	Sample	number (s): 579419	9-57942	204 UNSE	K: 5794202			
Benzene	106	103	80-126	2	30				
Ethylbenzene	105	105	71-134	0	30				
Methyl Tertiary Butyl Ether	105	106	72-126	Ó	30				
Toluene	107	108	80-125	1	30				
Xylene (Total)	106	106	79-125	0	30				
Batch number: 09278B20A TPH-GRO N. CA water C6-C12	Sample 109	number(s)): 5794199 63-154	-57942	04 UNSP	K: P794185			

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis N Batch numb	ame: BTEX+MTBE by 8260B er: P092782AA Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene	
5794199	102	106	95	89	
5794200	103	106	95	91	

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancastertabs.com

Page 2 of 2

Quality Control Summary

Client Na	ame: Chevron c/o (CRA	Group Number:	1164495
Reported	: 10/08/09 at 11:2	20 AM	aroup manber.	11011999
		Surr	ogate Quality Contro	51
5794201	102	105	96	90
5794202	101	108	95	90
5794203	102	105	96	00
5794204	100	105	95	<i>72</i>
Blank	102	105	00	90
LCS	103	100	20	92
MS	100	109	33	92
MSD	100	105	32	93
1.50	100	411	96	92
Limits:	80-116	77-113	80-113	78-113
Analysis Na Batch numbe	mme: TPH-GRO N. CA wat er: 09278B20A Trifluorotoluene-F	er C6-C12		
5704100	100			
5754255	100			
5754200	101			
5/94201	99			
5/94202	102			
5794203	101			
5794204	100			
Blank	99			
LCS	128			
LCSD	126			
MS	127			
Limits:	63-135			
Analysis Na Batch numbe	me: TPH-DRO CA C10-C28 r: 092750018A Orthoterphenyl	3 w/ Si Gel		
5794199	121			
5794200	112			
5794201	106			
5794202	104			
5794203	94			
5794204	100			
Blank	<u>01</u>			
1.05	107			
LCSD	109			
	103			
Limits:	59-131		·····	

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

Lancaster Laboratories Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

N.D.	none detected	BMQL	Below Minimum Quantitation Level
TNTC	Too Numerous To Count	MPN	Most Probable Number
IU	International Units	CP Units	cobalt-chloroplatinate units
umhos/cm	micromhos/cm	NTU	nephelometric turbidity units
С	degrees Celsius	F	degrees Fahrenheit
Cal	(diet) calories	lb.	pound(s)
meq	milliequivalents	kg	kilogram(s)
g	gram(s)	mg	milligram(s)
ug	microgram(s)	ĩ	liter(s)
ml	milliliter(s)	ul	microliter(s)
m3	cubic meter(s)	fib >5 um/mi	fibers greater than 5 microns in length per ml

< less than – The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.

- > greater than
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.
- ppb parts per billion
- Dry weight Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture.
- U.S. EPA data qualifiers:

Organic Qualifiers

- A TIC is a possible aldol-condensation product
- B Analyte was also detected in the blank
- C Pesticide result confirmed by GC/MS
- D Compound quatitated on a diluted sample
- E Concentration exceeds the calibration range of the instrument
- J Estimated value
- Presumptive evidence of a compound (TICs only)
 P Concentration difference between primary and
- confirmation columns >25%
- U Compound was not detected
- X,Y,Z Defined in case narrative

Inorganic Qualifiers

- B Value is <CRDL, but ≥IDL
- E Estimated due to interference
- M Duplicate injection precision not met
- N Spike amount not within control limits
- S Method of standard additions (MSA) used for calculation
- U Compound was not detected
- W Post digestion spike out of control limits
- * Duplicate analysis not within control limits
- + Correlation coefficient for MSA < 0.995

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY – In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.

TRANSMITTAL

July 13, 2009 G-R #385866

TO: Mr. James Kiernan Conestoga-Rovers & Associates 2000 Opportunity Drive, Suite 110 Roseville, California 95678

FROM: Deanna L. Harding Project Coordinator Gettler-Ryan Inc. 6747 Sierra Court, Suite J Dublin, California 94568 RE: Former Texaco Service Station #211173 500 Grand Avenue Oakland, California

WE HAVE ENCLOSED THE FOLLOWING:

COPIES	DATED	DESCRIPTION
2	July 8, 2009	Groundwater Monitoring and Sampling Report Well Development Event of June 5, 2009 Second Quarter Event of June 10, 2009

COMMENTS:

Pursuant to your request, we are providing you with copies of the above referenced report for <u>your use</u> and distribution to the following:

Ms. Stacie H. Frerichs, Chevron Environmental Management Company, 6111 Bollinger Canyon Road, Room 3596, San Ramon, CA 94583

Enclosures

trans/211173-SHF

WELL CONDITION STATUS SHEET

Client/Facility #: Site Address: City:	Chevron #211173 500 Grand Avenue Oakland, CA						Job # Event Date: Sampler:	385866			
WELL ID	Vault Frame Condition	Gasket/ O-Ring (M)missing	BOLTS (M) Missing (R) Replaced	Bolt Flanges B= Broken S= Stripped R=Retap	APRON Condition C=Cracked B=Broken G=Gone	Grout Seal (Deficient) inches from TOC	Casing (Condition prevents tight cap seal)	REPLACE LOCK	REPLACE CAP (Y) N	WELL VAULT Manufacture/Size/ # of Bolts	Pictures Taken Yes / No
MW-8H MW-8K MW-8L-	0K 0K 0K	N/A N/A N/A			0K 0K 0K				V V Y	С. 174 Молителт 18" С.Н. С. 12" С. Н. С. 12"	

Comments MW-92 - CASING BENT AT . 90 FEET.

WELL CONDITION STATUS SHEET

ty #: Chevron #211173						Job # 385866				
500 Grai	nd Avenue	9				Event Date:	6-10-9 AC-HK			
Oakland	, CA					Sampler:				
Vault Frame Condition	Gasket/ O-Ring (M)missing	BOLTS (M) Missing (R) Replaced	Bolt Flanges B= Broken S= Stripped R=Retap	APRON Condition C=Cracked B=Broken G=Gone	Grout Seai (Deficient) inches from TOC	Casing (Condition prevents tight cap seal)	REPLACE LOCK Y / N	REPLACE CAP Y / N	WELL VAULT Manufacture/Size/ # of Bolts	Pictures Taken Yes / No
or		-7	2-5	OK		>	~	تہ	Emco-12"-2	
or		->	2.5	or	0	~~>	N	\sim	Emco iz - 2	
BK	2/A		>	orc		-7	~	\sim	City Monument - @ 8"	
OK	AL		\rightarrow	JC			\sim	\sim		
or	NA		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	OK		-)	\sim	\sim	V	
OK	~14			or)	\sim	\sim	Christy-12"-et	
or	NA		->	ige		>	~	~	V	
									-	
	Chevron 500 Grai Oakland Vault Frame Condition OK OK OK OK OK OK OK	Chevron #211173 500 Grand Avenue Oakland, CA Vault Frame Condition Gasket/ O-Ring (M)missing $OY_{}$ \bigcirc $OY_{}$ \bigcirc \bigcirc $OY_{}$ \bigcirc O	Chevron #211173 500 Grand Avenue Oakland, CA Vault Frame Condition Gasket/ O-Ring (M)missing BOLTS (M) Missing (R) Replaced OK \bigcirc \bigcirc \bigcirc \bigcirc OK \bigcirc \bigcirc \bigcirc \bigcirc OK \bigcirc \bigcirc \bigcirc \bigcirc OK \checkmark \bigcirc \bigcirc \bigcirc OK \checkmark \bigcirc \bigcirc \bigcirc OK \checkmark \land \bigcirc \bigcirc OK \checkmark \land \bigcirc \bigcirc OK \checkmark \land \land \bigcirc OK \checkmark \land \land \land OK \checkmark \land \land \land OK \checkmark \land \land \land \land OK \checkmark \land \land \land \land \land OK \checkmark \land	Chevron #211173 500 Grand Avenue Oakland, CA Wault Frame Condition Bolt Flanges $B = BrokenS = BrokenS = StrippedR = Retap OY 2-5 OY \sqrt{ A } \rightarrow \rightarrow$	Chevron #211173 500 Grand Avenue Oakland, CA Vault Frame Condition Gasket/ O-Ring (M)missing BOLTS (M) Missing (P) Replaced Bott Flanges B = Broken G = Gracked B = Broken G = Gone APRON Condition C = Cracked B = Broken G = Gone $OY_{}$ $ 2 \cdot 5$ OK $OY_{}$ $A \mid A$ $ OK$ $ OY_{}$ $A \mid A$ $ OY_{}$ $A \mid A$ <	Chevron #211173 500 Grand Avenue Oakland, CA Vault Frame Condition Gasket/ O-Ring (M)missing Bolt Flanges B = Broken S = Stripped R = Retap APRON Condition C=Cracked R = Retap Grout Seal (Deficient) Inches from S = Stripped R = Retap OK Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Condition C=Cracked R = Retap OK Image: Colspan="2">Image: Colspan="2">Colspan="2">Condition C=Cracked R = Retap OK Image: Colspan="2">Image: Colspan="2">Colspan="2">Image: Colspan="2">Colspan="2">Image: Colspan="2">Image: Colspan="2">Colspan="2">Image: Colspan="2">Image: Colspan="2">Colspan="2">Image: Colspan="2">Image: Colspan="2">Colspan="2">Image: Colspan="2">Image: Colspan="2" Image: Cols	Chevron #211173 Job # Solo Grand Avenue Job # Oakland, CA Sampler: Vault Frame Gasket/ O-Ring (M) Missing APRON Condition Grout Seel (Deficient) Casing (Condition OP Image: Condition (P) Boit Flangee B = Broken B =	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

Comments

1

L

July 8, 2009 G-R Job #385866

Ms. Stacie H. Frerichs Chevron Environmental Management Company 6111 Bollinger Canyon Road, Room 3596 San Ramon, CA 94583

RE: Well Development Event of June 5, 2009 Second Quarter Event of June 10, 2009 Groundwater Monitoring & Sampling Report Former Texaco Service Station #211173 500 Grand Ave. Oakland, California

Dear Ms. Frerichs:

This report documents the most recent groundwater monitoring and sampling events performed by Gettler-Ryan Inc. (G-R) at the referenced site. All field work was conducted in accordance with G-R Standard Operating Procedure - Groundwater Sampling (attached).

Static groundwater levels were measured and the wells were checked for the presence of separate-phase hydrocarbons. Static water level data, groundwater elevations, and separate-phase hydrocarbon thickness (if any) are presented in the attached Table 1. A Potentiometric Map is included as Figure 1.

Groundwater samples were collected from the monitoring wells and submitted to a state certified laboratory for analyses. The field data sheets for this event are attached. Analytical results are presented in the table(s) listed below. The chain of custody document and laboratory analytical report are also attached. All groundwater and decontamination water generated during sampling activities was removed from the site, per the Standard Operating Procedure.

Please call if you have any questions or comments regarding this report. Thank you.

Sincerely,

Deanna L. Harding **Project Coordinator**

Douglas & Lee Senior Geologist, P.G. No. 6882

Figure 1: Table 1: Attachments:

Potentiometric Map Groundwater Monitoring Data and Analytical Results Standard Operating Procedure - Groundwater Sampling Field Data Sheets Chain of Custody Document and Laboratory Analytical Reports

6747 Sierra Court, Suite J • Dublin, CA 94568 • (925) 551-7555 • Fax (925) 551-7888 3140 Gold Camp Drive, Suite 170 • Rancho Cordova, CA 95670 • (916) 631-1300 • Fax (916) 631-1317 1364 N. McDowell Blvd., Suite B2 • Petaluma, CA 94954 • (707) 789-3255 • Fax (707) 789-3218

No. 6882

OFCAL

Groundwater Monitoring Data and Analytical Results

Former Texaco Service Station #211173

500 Grand Avenue

O	akl	an	d,	CA
~				· · ·

				SPH	ТРН-	ТРН-					MTBE by	MTBE by	DO
WELL ID/	TOC*	DTW	GWE	THICKNESS	GRO	DRO	В	T	E	X	8029	8260	Reading
DATE	(msl)	(ft.)	(msl)	(ft.)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ppm)
MW-8A													
-	1	÷		÷	WELL ABANI	DONED	. 	-	-			-	
MW-8B													
	-		-	-	WELL ABANI	DONED			-		-	-	
MW-8C													
	di n a	11	- 1		WELL ABANI	DONED				1.42	<u></u>	-	-
MW-8D													
		÷	÷	- 11	WELL ABANI	DONED	**	-	-	-		÷	- ÷ -
MW-8E													
		-	-	-	WELL ABANI	DONED	-		-		1,44		
MW-8F													
01/23/92	97.94	10.24	87.70		<50	1,300	4.0	1.3	<0.5	1.9			
02/28/92	97.94	9.93	88.01					-					
03/26/92	97.94	8.78	89.16										-
04/30/92	97.94	9.36	88.58		<50	<50	<0.5	<0.5	< 0.5	< 0.5			
09/28/92	97.94	11.83	86.11		<50		< 0.5	<0.5	<0.5	<0.5			
11/19/92	97.94	11.22	86.72		<50		<0.5	<0.5	<0.5	<0.5	1.1		
02/12/93	97.94	9.66	88.28		<50	<50	<0.5	<0.5	<0.5	<0.5			
05/06/93	97.94	8.83	89.11	20	<50	<100	<0.5	<0.5	<0.5	<0.5			
08/16/93	14.04	10.16	3.88		<50	<50	<0.5	<0.5	<0.5	<0.5	100		
10/12/93	14.04	10.60	3.44	· · · ·	<50	<50	<0.5	<0.5	<0.5	<0.5		-	
02/03/94	14.04	9.29	4.75		<50	<50	<0.5	<0.5	<0.5	~0.5		- <u>-</u>	100 C
05/31/94	14.04	9.34	4.70		<50	<50	<0.5	~0.5	<0.5	~0.5		· · · ·	
08/25/94	14.04	10.14	3 90		<50	<50	~0.5	<0.5	<u>∼0.5</u>	<0.5			
11/02/94	14.04	10.42	3.62		<50	520	<0.5	<0.5	<0.5	<0.5 <0.5	-	-	-

Groundwater Monitoring Data and Analytical Results

Former Texaco Service Station #211173

500 Grand Avenue Oakland, CA

Ua	kla	nd,	CA

Nuclein, w. www. r		5000			SPH	ТРН-	трн-					MTBE by	MTBE by	DO
WELL ID/		TOC*	ÐIW	GWŁ	THICKNESS	GRO	DRO	B	T	E	X	8029	8260	Reading
DATE	<u></u>	(msl)	(ft.)	(msl)	(ft.)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ppm)
MW-8F (con	nt)													
01/31/95		14.04	7.47	6.57	-	<50	290	<0.5	<0.5	<0.5	<0.5	1.44		
05/18/95		14.04	8.00	6.04		<50	54	<0.5	<0.5	<0.5	<0.5			2
08/29/95		14.04	8.08	5.96	-	<50	83	<0.5	<0.5	<0.5	<0.5	<10		
11/02/95		14.04	8.70	5.34	- 44	<50	51	<0.5	<0.5	<0.5	<0.5	<10		
02/05/96		14.04	7.16	6.88		<50	<50	<0.5	<0.5	<0.5	<0.5	-		
04/30/96		14.04	7.25	6.79		<50	62	<0.5	<0.5	<0.5	<0.5			
08/28/96		14.04	8.72	5.32		<50	<50	<0.5	<0.5	<0.5	<0.5			<u>.</u>
12/05/96		14.04	8.16	5.88		210	110	17	17	11	46	<30		
02/21/97		14.04	5.53	8.51		<50	85	<0.5	<0.5	<0.5	<0.5	<30		
05/02/97		14.04	7.85	6.19		<50	<50	<0.5	<0.5	<0.5	<0.5	NA		
07/30/97		14.04	8.87	5.17		<50	93	<0.5	<0.5	<0.5	<0.5	<30		
11/05/97		14.04	9.16	4.88		<50	140	<0.5	<0.5	<0.5	<0.5	<30		1
01/21/98		14.04	8.56	5.48		<50	<50	<0.5	<0.5	<0.5	<0.5	<30	22	
06/03/98		14.04	8.30	5.74	 .	<50	730	<0.5	<0.5	<0.5	<0.5	2.9		
08/04/98		14.04	10.67	3.37	144	<50	210	<0.5	<0.5	<0.5	<0.5	<2.5		
11/05/98		14.04	8.72	5.32	-	<50	210	<0.50	<0.50	<0.50	<0.50	<2.5		
02/16/99		14.04	8.78	5.26	- 44	<50.0	230	<0.500	<0.500	<0.500	<0.500	<2.00		
06/04/99		14.04	8.24	5.80		<50	120	<0.50	<0.50	<0.50	<0.50	<2.5		
08/31/99		14.04	8.87	5.17		<50.0	176	<0.500	< 0.500	<0.500	<0.500	<2.50		1 7/1 4
11/03/99		14.04	9.40	4.64		<50.0	130	<0.500	< 0.500	<0.500	<0.500	<5.00	<2.00	4 6/2 0
02/29/00		14.04	8.00	14.04	- 4	<50.0	59	< 0.500	<0.500	< 0.500	<0.500	<2.50		6.0/1.4
04/24/00		14.04	7.05	14.04		<50.0	161	< 0.500	<0.500	< 0.500	<0.500	<2.50		1.1/2.0
07/25/00		14.04	8.66	14.04	- 40	<50.0	123	<0.500	<0.500	< 0.500	<0.500	<2.50		0.4/1.2
11/06/00		14.04	9.37	14.04		-	77.3ª							0.7/1.3
06/05/09 ¹		14.04	8.99	5.05	-			-	-		-		22	
06/10/09 ⁴	NP ⁵	14.04	12.41	1.63	-	<50	300	<0.5	<0.5	<0.5	<0.5	÷.	<0.5	-

Groundwater Monitoring Data and Analytical Results

Former Texaco Service Station #211173

500 Grand Avenue

Oakland, CA

				SPH	ТРН-	TPH-					MTBE by	MTBE by	DO
WELL ID/	TOC*	DTW	GWE	THICKNESS	GRO	DRO	В	Т	E	X	8029	8260	Reading
DATE	(msl)	(ft.)	(msl)	(ft.)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ษg/L)	(ug/L)	(ppm)
MW-8G													
01/23/92**	97.24	11.30	85.94		<50	980	<0.5	<0.5	<0.5	<0.5	-		
02/28/92	97.24	10.83	86.41	-									-
03/26/92	97.24	9.20	88.04				-						2
04/30/92	97.24	9.00	88.24		<50	<50	1.7	<0.5	<0.5	<0.5	2.2		1.2
09/28/92	97.24	13.32	83.92		WELL DRY		22						
11/19/92	97.24				WELL INACC	ESSIBLE	2	4					
02/12/93	97.24	-			WELL INACC	ESSIBLE							- 21
05/06/93	97.24	11.18	86.06		<50	60	<0.5	<0.5	<0.5	<0.5			
08/16/93	13.32	9.51	3.81	~	<50	<50	<0.5	<0.5	<0.5	<0.5			
10/12/93	13.32	10.93	2.39		<50	<50	<0.5	<0.5	<0.5	<0.5			
02/03/94	13.32	9.69	3.63		<50	<50	<0.5	<0.5	<0.5	<0.5			-
05/31/94	13.32	9.24	4.08	-	<50	<50	<0.5	<0.5	<0.5	<0.5			-
08/25/94	13.32	9.74	3.58		<50	<50	<0.5	<0.5	<0.5	<0.5			
11/02/94	13.32	10.08	3.24	-	<50	530	<0.5	<0.5	<0.5	<0.5	-		
01/31/95	13.32	5.75	7.57		<50	<50	<0.5	<0.5	<0.5	<0.5			
05/18/95	13.32	6.60	6.72		<50	<50	<0.5	<0.5	<0.5	<0.5			
08/29/95	13.32	8.14	5.18		<50	120	<0.5	<0.5	<0.5	-0.5	<10		
11/02/95	13.32	9.16	4.16		<50	140	<0.5	<0.5	<0.5	<0.5	<10	-	
02/05/96	13.32	7.18	6.14		<50	<50	<0.5	<0.5	<0.5	<0.5	~10		
04/30/96	13.32	7.00	6.32		<50	<50	<0.5	-0.5	<0.5	-0.5		1-2	-
08/28/96	13.32	8.94	4 38	-	<50	<50	<0.5	<0.5	<0.5	~0.5			-
12/05/96	13.32	9.22	4.10		190	57	16	16	0.0	20	-70		
02/21/97	13.32	6.11	7.21		<50	54	<0.5	<0.5	-0.5	-0.5	-30		
05/02/97	13.32	7.54	5.78		<50	<50	<0.5	<0.5	<0.5	<0.5	~30		
07/30/97	13.32		5.76		WELL INACC	ESSIDI E	-0.5	-0.5	~0.5	~0.5			
11/05/97	13.32	9 65	3.67		<50	2331BLL	-0.5	-0.5	-0.5	-0.5			
11/05/97	13.32		5.07		<50	<50	~0.5	<0.5	<0.5	<0.5	<30		
01/21/98	13 32	7 57	5 75		<50	~50	~0.5	<0.5	<0.5	<0.5	<30	-	
06/03/98	13.32	937	3.95		<50	570	<0.5	<0.5	<0.5	<0.5	<30	-	100
08/04/98	13.32	0.80	3.43		<50	200	<0,5	<0.5	<0.5	<0.5	4.0	- C	13 - 11
00/04/20	13.32	7.07	5.45	-	<00	200	<0.5	<0.5	<0.5	<0.5	<2.5		

Groundwater Monitoring Data and Analytical Results

Former Texaco Service Station #211173

500 Grand Avenue

Uanailu, CA														
					SPH	TPH-	TPH-					MTBE by	MTBE by	DO
WELL ID/		TOC*	DTW	GWE	THICKNESS	GRO	DRO	B	Т	E	X	8020	8260	Reading
DATE		(msl)	(ft.)	(msl)	(ft.)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ppm)
MW-8G (con	nt)													
11/05/98		13.32	10.81	2.51	- <u>.</u>	<50	170	<0.50	<0.50	<0.50	<0.50	<2.5		
02/16/99		13.32	8.63	4.69		<50.0	270	<0.500	<0.500	<0.500	<0.500	<2.00		
06/04/99		13.32	7.95	5.37		<50	190	<0.50	<0.50	<0.50	<0.50	<2.5		-
08/31/99		13.32	9.11	4.21		<50.0	247	<0.500	<0.500	<0.500	<0.500	<2.50		4 5/1 3
11/03/99		13.32	9.58	3.74	4	<50.0	174	< 0.500	<0.500	<0.500	<0.500	<5.00	<2.00	11 6/4 8
02/29/00		13.32	5.43	7.89	4	<50.0	90	< 0.500	< 0.500	<0.500	<0.500	<2.50		3.4/1.8
04/24/00		13.32	6.35	6.97		<50.0	72.4	<0.500	< 0.500	< 0.500	<0.500	<2.50		10.1/6.5
07/25/00		13.32	8.71	4.61	4	<50.0	79.2	<0.500	<0.500	<0.500	<0.500	<2.50	-	1 2/0 8
11/06/00		13.32	9.76	3.56	1940		106ª	-						1.3/1.0
06/05/09 ¹		13.32	9.92	3.40			1.1						44	
06/10/094	NP ⁵	13.32	12.35	0.97	+	<50	140	<0.5	<0.5	<0.5	<0.5	Ξ.	<0.5	- 4 3
MW-8H														
01/23/92		98.90	3 74	95 16	1.1	110	<60	7.2	1.7	4.7	2.2			
02/28/92		98.90	4 44	94 46	1.12		-00	1.4	1,2	4.7	3.2			-
03/26/92		98.90	4.21	94 69										
04/30/92		98 90	3 46	95 44		100	90	11	1.5	56	2.6			
09/28/92		98.90				WELL IN AC	CESSIBI E		1.5	5.0	5.0			
11/19/92		98.90	3 75	95 15		130		6.8	<0.5	1 1	1.5		-	
02/12/93		98.90	4.12	94.78	_	73		5.0	<0.5	0.8	<0.5		-	
05/06/93		98.90	3.85	95.05		57	<100	17	<0.5	<0.5	<0.5			
08/16/93		15.04	3.88	11.16		<50	<50	0.5	<0.5	~0.J	<0.5 1.4		-	
10/12/93		15.04	3 80	11.10		<50	<50	<0.5	<0.5	<0.5	1. 4			
02/03/94		15.04	3 71	11 33	122	<50	<50	<0.5	<0.5	<0.5	<0.5			
05/31/94		15.04	3.80	11.33	- 20	<50	<50	<0.5 0.70	<0.5	<0.5	<0.5			-
08/25/94		15.04	3.89	11.24		<50	<50	<0.79	<0.5	<0.5	<0.5			÷
11/02/94		15.04	3 64	11.15	1.11	~50	~50	<u>~0.5</u>	<0.5	<0.5	<0.5		-	
01/31/95		15.04	3.58	11.46		<50	100	<0.5	<0.5	<0.5	<0.5	-		2
05/18/95		15.04	3.53	11.51		<50	370	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	2	2	-

Groundwater Monitoring Data and Analytical Results

Former Texaco Service Station #211173

500 Grand Avenue

Oakland, CA

				SPH	TPH-	TPH-					MTBE by	MTBE by	DO
WELL ID/	TOC*	DTW	GWE	THICKNESS	GRO	DRO	B	T	E	x	8029	8260	Reading
DATE	(msl)	(ft.)	(msl)	(ft.)	(¤g/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ppm)
MW-8H (cont)													
08/29/95	15.04	3.55	11.49		<50	1.000	<0.5	<0.5	<0.5	<0.5		144	
11/02/95	15.04	3.49	11.55		<50	<50	<0.5	<0.5	<0.5	<0.5	1	2	
02/05/96	15.04	3.54	11.50	-	<50	190	<0.5	<0.5	<0.5	<0.5			
04/30/96	15.04	3.50	11.54		<50	1.800	<0.5	<0.5	<0.5	<0.5			
08/28/96	15.04	3.62	11.42		<50	<50	<0.5	<0.5	<0.5	<0.5			
12/05/96	15.04	3.38	11.66	-	100	350	6.2	73	5.0	22	<30		
02/21/97	15.04	3.77	11.27	-	<50	900	<0.5	<0.5	<0.5	<0.5	<30		
05/02/97	15.04	3.64	11.40		<50	450	<0.5	<0.5	<0.5	<0.5	-30		1
07/30/97	15.04	3.65	11.39	-	<50	180	<0.5	0.62	<0.5	<0.5	<20		
11/05/97	15.04	3.61	11.43		<50	280	<0.5	<0.5	<0.5	<0.5	<30		-
01/21/98	15.04	3.57	11.47	1.2	<50	<50	<0.5	-0.5	-0.5	<0.5	<30		
06/03/98	15.04	3.50	11.54		<50	440	<0.5	-0.5	<0.5	<0.5	<30	-	
08/04/98	15.04	3.64	11.40		<50	440	-0.5	<0.5	<0.5	<0.5	<0.5		
11/03/99	15.04	3.49	11.55		<50.0	576	~0.5	<0.5	<0.5	<0.5	<2.5	-	
04/24/00	15.04	3.63	11.35		<50.0	570	<0.500	<0.500	<0.500	<0.500	<5.00	<2.00	
07/25/00	15.04	3.54	11.41	-	<50.0	33.8	<0.500	<0.500	<0.500	<0.500	<2.50		
11/06/00	15.04	3.40	11.50	-	-50.0	90.0	<0.500	<0.500	<0.500	<0.500	<2.50		
06/05/091	15.04	3.49	11.35		-	433					-	-	1771
06/10/094	15.04	3.91	11.13				-			0.000			
00/10/07	15.04	3.00	11.58		<50	78	<0.5	<0.5	<0.5	<0.5		0.7	-
MW-81													
01/23/92	98.27	6.33	91.94		820	210	420	7	27	20			-
02/28/92	98.27	6.55	91.72	1.1					-				
03/26/92	98.27	6.45	91.82						-		- 02		
04/30/92	98.27	6.48	91.79		2,200	430	1 800	19	180	25			
09/28/92	98.27				WELL INAC	CESSIBLE			100	25	-		1250
11/19/92	98.27	6.37	91.90	220	720		120	11	20	12			
02/12/93	98.27	6.44	91.83		4 000		970	0.7	27 57	36		-	100
05/06/93	98.27	6.36	91.91		1,400	<10	370	2.4	40	8.4	0.0 0	5	-

Groundwater Monitoring Data and Analytical Results

Former Texaco Service Station #211173

500 Grand Avenue

Oa	kla	and	, C	A	
_	-			-	-

				SPH	трн-	TPH-					MTBE by	MTBE by	DO
WELLID/	TOC*	DTW	GWE	THICKNESS	GRO	DRO	B	T	E	X	8029	8260	Reading
DATE	(msl)	(ft.)	(msl)	(ft.)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ppm)
MW-8I (cont)													
08/16/93	14.40	6.35	8.05		<50	<50	3.1	<0.5	6	<0.5			
10/12/93	14.40	5.99	8.41		<50	<50	1.4	<0.5	<0.5	<0.5		-	- 15 - I
02/03/94	14.40	5.84	8.56	1	1.000	<50	270	3.2	51	14			
05/31/94	14.40	6.25	8.15		1.400	<50	330	4.6	52	16			1.2
08/25/94	14.40	6.31	8.09	-	540	<50	14	0.58	30	43		1.2	1.2
11/02/94	14.40	6.10	8.30	-	310	370	5.7	0.74	20	<0.5		12	
01/31/95	14.40	5.83	8.57	<u></u>	840	910	290	45	45	1.6			
05/18/95	14.40	6.09	8.31	-	1.700	1100	390	7.8	80	10			
08/29/95	14.40	6.09	8.31	<u></u>	300	560	81	<0.5	13	0.63	<10		
11/02/95	14.40	6.26	8.14		81	160	<0.5	41	15	<0.5	<10	-	
02/05/96	14.40	5.97	8.43		300	140	75	0.75	8.4	1 2	-10	1.	
04/30/96	14.40	6.04	8.36	-	350	<50	150	0.75	2.7	1.2			
08/28/96	14.40	6.20	8.20	-	1.100	380	300	20	3.2	2.1		-	-
12/05/96	14.40	6.01	8.39	-	340	53	23	87	11	2.1	<30		
02/21/97	14.40	6.15	8.25	-	<50	330	<0.5	<0.5	<0.5	<0.5	<30		
05/02/97	14.40	6.20	8.20		110	<50	30	<0.5	0.97	<0.5	-50		
07/30/97	14.40	6.12	8.28		<50	170	42	<0.5	<0.5	<0.5	-30	-	
11/05/97	14.40	6.26	8.14		<50	<50	<0.5	<0.5	<0.5	<0.5	<30		
01/21/98	14.40	6.00	8.40	-	<50	<50	15	<0.5	<0.5	-0.5	<30	-	
06/03/98	14.40	6.74	7.66		<50	360	<0.5	<0.5	<0.5	-0.5	15	**	
08/04/98	14.40	6.16	8.24		<50	83	<0.5	<0.5	<0.5	<0.5	25		-
11/05/98	14.40	6.14	8.26		<50	67	<0.50	<0.50	<0.50	<0.5	-2.5		
08/31/99	14.40	6.12	8.28				-0.50	~0.50	-0.50	-0.50	-6.2		
11/03/99	14.40	6.45	7.95		<50.0	197	<0.500	<0.500	<0.500	<0.500	-5.00	~2.00	7 15/0 (
02/29/00	14.40	5.69	8 71	100	50.0	172	-0.200	-0.500	-0.500	-0,500	-5.00	~2.00	7.13/9.0
04/24/00	14.40	6.25	8.15		<50.0	69.2	<0.500	<0.500	<0 500	-0 500	-2.50		11.1
07/25/00	14.40	6.22	8.18		<50.0	80.1	<0.500	<0.500	<0.500	<0.500	~2.50	-	1.1/3.0
11/06/00	14.40	6.34	8.06			157 ⁸	~0.500	-0.500	-0.500	-0.500	-2.50	-	1.4/1.2
06/05/09	14.40	INACCES	SIBLE		1	1.57			-	-			1.5/1.1
06/10/09 ^{1,4}	14.40	6.31	8.09	-	420	360	23	<0.5	<0.5	<0.5	- E	5	2

Groundwater Monitoring Data and Analytical Results

Former Texaco Service Station #211173

500 Grand Avenue

Oakland, CA

				SPH	TPH-	TPH-					MTBE by	MTBE by	DO
WELL ID/	TOC*	DTW	GWE	THICKNESS	GRO	DRO	B	T	E	X	8029	8260	Reading
DATE	(msl)	(ft.)	(msl)	(ft.)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ppm)
MW-8J													
01/23/92	97.69	6.31	91.38	4	<50	<50	t.	<0.5	<0.5	<0.5	1.1	0.0	
02/28/92	97.69	6.28	91.41			122	2			0.5			
03/26/92	97.69	6.20	91.49										
04/30/92	97.69	6.48	91.21		<50	<50	2	<0.5	<0.5	<0.5			
09/28/92	97.69		-		WELL INACO	ESSIBLE	1	-0.5	-0.9	-0.5			
11/19/92	97.69	6.55	91.14		<50		<0.5	<0.5	<0.5	<0.5		-	
02/12/93	97.69	7.46	90.23	44	<50		<0.5	<0.5	<0.5	<0.5		-	
05/06/93	97.69	6.21	91.48	-	<50	<10	<0.5	<0.5	<0.5	<0.5			
08/16/93	13.82	6.29	7.53		<50	<50	<0.5	<0.5	<0.5	<0.5			
10/12/93	13.82	5.87	7.95	-	<50	<50	<0.5	<0.5	<0.5	<0.5			-
02/03/94	13.82	5.98	7.84		<50	<50	<0.5	<0.5	<0.5	<0.5			
05/31/94	13.82	6.10	7 72		<50	<50	<0.5	<0.5	-0.5	-0.5			-
08/25/94	13.82	6.01	7.81		<50	<50	<0.5	<0.5	<0.5	<0.5			-
11/02/94	13.82	5.90	7.92	-	<50	<50	<0.5	<0.5	<0.5	<0.5			-
01/31/95	13.82	5.07	8.75		<50	<50	37	<0.5	<0.5	-0.5		5	
05/18/95	13.82	5.33	8.49	<u> </u>	<50	<50	<0.5	<0.5	-0.5	-0.5			
08/29/95	13.82	3.50	10.32		<50	250	<0.5	<0.5	<0.5	-0.5	~10	-	-
11/02/95	13.82	5.94	7 88		<50	520	<0.5	<0.5	-0.5	<0.5	<10		
02/05/96	13.82	5.34	8 48		<50	65	<0.5	<0.5	~0.5	~0.5	<10	0	-
04/30/96	13.82	5.96	7.86		<50	<50	<0.5	<0.5	<0.5	<0.5		-	-
08/28/96	13.82	6.38	7.44		<50	<50	<0.5	<0.5	<0.5	<0.5	-		-
12/05/96	13.82	5.94	7.88	1	160	<50	12	-0.5	20.3	~0.5	-20		
02/21/97	13.82	5 60	8 22		<50	<50	1.5	-05	0.9	30	<30		
05/02/97	13.82	6.22	7.60	- 20	<50	<50	<0.5	-05	<0.5	<0.5	<30		
07/30/97	13.82	6.28	7.54	- 30	<50	<50	<0.5	<05	<0.5	<0.5		-	
11/05/97	13.82	6.03	7 79		<50	~50	<0.5	<0.5	<0.5	<0.5	<30		
01/21/98	13.82	5.71	8 11		<50	~50	<0.5	<0.5	<0.5	<0.5	<30	-	
06/03/98	13.82	5.45	8 37		<50	<50	<0.5	<0.5	<0.5	<0.5	<30	-	
08/04/98	13.82	5.03	7.80		<50	~50	<0.5	<0.5	<0.5	<0.5	<0.5		100
11/05/98	13.82	6.05	7.07		<50	< 30	<0.5	<0.5	<0.5	<0.5	<2.5	-	-
11/05/20	13.64	0.05	1.11		<20	<50	2.0	<0.50	<0.50	<0.50	<2.5	0.00	-

Groundwater Monitoring Data and Analytical Results

Former Texaco Service Station #211173

500 Grand Avenue

Oakland,	CA
----------	----

				SPH	ТРН-	TPH					MTBE by	MTBE by	DO
WELL ID/	TOC*	DTW	GWE	THICKNESS	GRO	DRO	B	Т	Е	X	8029	8260	Reading
DATE	(msl)	(ft.)	(msl)	(ft.)	(#g/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ษg/L)	(ug/L)	(ppm)
MW-8J (cont)							1.1						
11/03/99	13.82	5.84	7.98	4.1	<50.0	58.9	<0 500	<0.500	<0.500	<0.500	<5.00	-2.00	
04/24/00	13.82	5.58	8.24		<50.0	<50.0	<0.500	<0.500	<0.500	<0.500	<2.50	~2.00	
07/25/00	13.82	5.89	7.93		<50.0	<50.0	<0.500	<0.500	<0.500	<0.500	~2.50		
11/06/00	13.82	6.24	7.58			<50.0ª	-0.500	-0.500	-0.500	~0.500	~2.50	-	-
06/05/09 ¹	13.82	6.59	7.23										
06/10/09 ⁴	13.82	6.41	7.41	<u></u>	<50	400	<0.5	-0.5	-0.5	-0.5			~
					-50	400	-0.5	-0.5	~0.5	~0.5		10	17
MW-8K													
05/21/93	15.18				54	<50	12	<0.5	<0.5	<0.5	100		
08/16/93	15.18	2.08	13.10	44	<50	<50	<0.5	<0.5	1.0	<0.5			
10/12/93	15.18	1.95	13.23		<50	<50	4.2	<0.5	<0.5	<0.5			
01/03/94	15.18	1.48	13.70		<50	<50	<0.5	<0.5	<0.5	<0.5			
05/31/94	15.18	1.59	13.59	2	<50	<50	1.0	0.57	<0.5	<0.5		-	
08/25/94	15.18	2.00	13.18	<u> </u>	<50	<50	0.78	<0.57	<0.5	<0.5			
11/02/94	15.18	2.10	13.08		<50	<50	<0.5	<0.5	<0.5	<0.5			
01/31/95	15.18	1.35	13.83		<50	<50	<0.5	<0.5	<0.5	<0.5		- 15 · · ·	
08/18/95	15.18	1.36	13.82		<50	<50	<0.5	<0.5	<0.5	<0.5			-
08/29/95	15.18	1.55	13.63		<50	< <u>50</u>	<0.5	<0.5	<0.5	<0.5			
11/02/95	15.18	1.88	13 30	1.25	<50	<50	<0.5	<0.5	<0.5	<0.5	<10	-	
02/05/96	15.18	1 46	13.72		<50	<50	<0.5	<0.5	<0.5	<0.5	<10		
04/30/96	15.18	1 43	13 75		<50	<50	<0.5	<0.5	<0.5	<0.5			
08/28/96	15 18	1.75	13.43	35	<50	<50	<0.5	<0.5	<0.5	<0.5	100		
12/05/96	15.18	1.75	13.76		<50	<50	<0.5	<0.5	<0.5	<0.5			
02/21/97	15.18	1.42	13.70		<50	<30	<0.5	<0.5	<0.5	<0.5	<30		0.00
05/02/97	15.18	1.40	12.59		<50	<30	<0.5	<0.5	<0.5	<0.5	<30	÷.	i s i c
07/30/97	15.10	1.66	12.50		<50	<50	<0.5	<0.5	<0.5	<0.5			
11/05/97	15.10	1.00	13.34		< 50	<00	<0.5	<0.5	<0.5	<0.5	<30		
01/21/08	15.10	1.02	13.30		<50	300	< 0.5	<0.5	<0.5	<0.5	<30		
01/21/70	15.10	1.29	13.89		<50	<50	<0.5	<0.5	<0.5	<0.5	<30		
00/03/98	15.18	1.17	14.01		<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	1.44	

8

Groundwater Monitoring Data and Analytical Results

Former Texaco Service Station #211173

500 Grand Avenue

F ·····						Oaklan	d, CA						
WELL ID/	тос*	DTW	GWE	SPH THICKNESS	TPH- GRO	TPH- DRO	B	T	E	x	MTBE by 8029	MTBE by 8260	DO Reading
DATE	(msl)	(ft.)	(msl)	(ft.)	(Hg/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ыg/L)	(ug/L)	(ppm)
MW-8K (cont)													
08/04/98	15.18	1.21	13.97		<50	<50	<0.5	<0.5	<0.5	<0.5	<25		
11/05/98	15.18	2.30	12.88		<50	<50	<0.50	<0.50	<0.50	<0.50	<2.5		-
11/03/99	15.18	1.63	13.55	1.0	<50.0	270	<0.500	<0 500	<0.500	<0.500	<5.00	<2.00	
04/24/00	15.18	1.25	13.93	-	<50.0	<50.0	<0.500	<0.500	<0.500	<0.500	<2.50	~2.00	
07/25/00	15.18	1.38	13.80		<50.0	<50.0	<0.500	<0.500	<0.500	<0.500	<2.50		
11/06/00	15.18	11.38	3.80			53.2ª			0.500	-0.500	-2.50		-
06/05/09 ¹	15.18	1.18	14.00								191		
06/10/09 ⁴	15.18	1.31	13.87		<50	<50	<0.5	<0.5	<0.5	<0.5		2	
							-0.5	-012	-0.5	-0.5		4	-
MW-8L													
05/21/93	14.44			-22-1	76	<50	11	<0.5	<0.5	6			
08/16/93	14.44	2.47	11.97	-	<50	<50	<0.5	<0.5	<0.5 0.7	11			-
10/12/93	14.44	2.36	12.08		110	<50	13	<0.5	6	<0.5		-	
01/03/94	14.44	2.82	11.62		590	<50	61	24	<05	110	10		
05/31/94	14.44	2.66	11.78		410	<50	77	<0.5	20	1 1			-
08/25/94	14.44	2.34	12.10		260	<50	16	<0.5	20	<0.5			
11/02/94	14.44				WELL INACO	CESSIBLE		<0.5	2.5	-0.5		-	-
01/31/95	14.44	0.08	14.36		WELL INACO	CESSIBLE							-
08/18/95	14.44	0.42	14.02		WELL INACO	CESSIBLE							-
08/29/95	14.44				WELL INACO	CESSIBLE					-	-	
11/02/95	14.44				WELL INACC	CESSIBLE	-						
02/05/96	14.44		-		WELL INACO	CESSIBLE	12						
04/30/96	14.44				WELL INACC	CESSIBLE	1.2						
08/28/96	14.44	0.75	13.69		WELL INACC	TESSIBLE						-	
12/05/96	14.44			-	WELL INACC	CESSIBLE							-
02/21/97	14.44				WELL INACC	TESSIBLE						-	
05/02/97	14.44	0.60	13.84		WELL INACC	FSSIBLE				-			
07/30/97	14.44				WELL INACC	FSCIBLE	-						100
11/05/97	14.44	0.67	13.77				-	-			2		-

Groundwater Monitoring Data and Analytical Results Former Texaco Service Station #211173 500 Grand Avenue

Oakland, CA

	TOC*	DTW	GWE	SPH THICKNESS	TPH- GBO	TPH- DRO	R	-The second s	IF.	×	MTBE by	MTBE by	DO
	(msl)	(ft.)	(msl)	(ft.)	(Hg/L)	(ug/L)	ug/L)	(ug/L)	L (ug/L)	A (ug/L)	8020 (ยg/L)	0200 (ug/L)	(ppm)
	14.44		-			2						100	-
	14.44	0.90	13.54					-	4	-	-		
NP ⁶	14.44	0.91	13.53		<50	2,600	<0.5	<0.5	<0.5	<0.5	÷	<0.5	
2													
	-		-	1	<50	()	<0.5	<0.5	<0.5	<0.5	÷	<0.5	-
	NP ⁶	TOC* (msl) 14.44 14.44 NP ⁶ 14.44	TOC* DTW (msl) (ft.) 14.44 - 14.44 0.90 NP ⁶ 14.44 0.91	TOC* DTW GWE (msl) (ft.) (msl) 14.44 - - 14.44 0.90 13.54 NP ⁶ 14.44 0.91 13.53	TOC* DTW GWE THICKNESS (msl) (ft.) (msl) (ft.) 14.44 - - - 14.44 0.90 13.54 - NP ⁶ 14.44 0.91 13.53 -	SPH TPH- GWE THICKNESS GRO (msl) (ft.) (msl) (ft.) (ug/L) 14.44 0.90 13.54 - - 14.44 0.90 13.54 - - NP ⁶ 14.44 0.91 13.53 - <50	SPH TPH- TPH- TOC* DTW GWE THICKNESS GRO DRO (msl) (ff.) (msl) (ff.) (ug/L) (ug/L) 14.44 0.90 13.54 14.44 0.90 13.53 NP ⁶ 14.44 0.91 13.53 <-	SPH TPH- TPH- TOC* DTW GWE THICKNESS GRO DRO B (msl) (ft.) (msl) (ft.) (ug/L) (ug/L) (ug/L) 14.44 0.90 13.54 14.44 0.90 13.53 NP ⁶ 14.44 0.91 13.53 <50	TOC* DTW GWE THICKNESS GRO DRO B T (msl) (ft.) (msl) (ft.) (ug/L) (ug/L) (ug/L) (ug/L) (ug/L) 14.44 0.90 13.54 -<	TOC* DTW GWE THICKNESS GRO DRO B T E (msl) (ff.) (msl) (ff.) (ff.) (ug/L) (ug/L) (ug/L) (ug/L) (ug/L) (ug/L) (ug/L) (ug/L) 14.44 0.90 13.54 -	TOC* DTW GWE THICKNESS GRO DRO B T E X (msl) (ft.) (ft.) (ug/L) (ug/L)	TOC* DTW GWE THICKNESS GRO DRO B T E X 8029 (msl) (ft.) (msl) (ft.) (ug/L) (ug/L) (ug/L) (ug/L) (ug/L) (ug/L) (ug/L) (ug/L) 14.44 0.90 13.54 - - - - - - - NP ⁶ 14.44 0.91 13.53 - - - - - NP ⁶ 14.44 0.91 13.53 - - - - - - - - - - - - - - - - - - - - - - - - - - NP ⁶ 14.44 0.91 13.53 - <	FOC* DTW GWE THICKNESS GRO DRO B T E X 8020 8260 (msl) (ft.) (msl) (ft.) (ug/L) (ug/L)

Groundwater Monitoring Data and Analytical Results Former Texaco Service Station #211173 500 Grand Avenue Oakland, CA

Data prior to June 5, 2009, compiled from Blaine Tech Reports.

EXPLANATIONS:

TOC = Top of Casing Elevation	GRO = Gasoline Range Organics	ug/L = parts per billion
$\mathbf{ft} = \mathbf{Feet}$	DRO = Diesel Range Organics	ppm = parts per million
GWE = Groundwater Elevation	B = Benzene	= Not Measured/Not Analyzed
msl = Mean sea level	T = Toluene	QA = Quality Assurance/Trip Blank
DTW = Depth to Water	E = Ethylbenzene	D = Duplicate sample
SPH = Separate-Phase Hydrocarbons	X = Xylenes	DO = Dissolved Oxygen
TPH = Total Petroleum Hydrocarbons	MTBE = Methyl Tertiary Butyl Ether	

ANALYTICAL METHODS:

TPH-GRO by modified EPA Method 8015 TPH-DRO by modified EPA Method 8015 Benzene, Toluene, Ethylbenzene, Xylenes by EPA Method 8020

New well elevation survey performed at wells MW-8F through MW-8L on August 16, 1993, based on mean sea level (MSL). Prior data based on arbitrary site data.
 ** Non-diesel mix >C16. The certified analytical report for sample MW-8G was revised on October 21,1993.

^a TPH-DRO with Silica Gel Cleanup.

¹ Well Development performed.

- ² Casing bent, see field sheet for additional information.
- ³ Attempted well development.
- ⁴ BTEX analyzed by EPA Method 8260.
- ⁵ No purge due to insufficient water.
- ⁵ No purge due to bent well casing.

STANDARD OPERATING PROCEDURE -GROUNDWATER SAMPLING

Gettler-Ryan Inc. field personnel adhere to the following procedures for the collection and handling of groundwater samples prior to analysis by the analytical laboratory. Prior to sample collection, the type of analysis to be performed is determined. Loss prevention of volatile compounds is controlled and sample preservation for subsequent analysis is maintained.

Prior to well development, each well is monitored for the presence of free-phase hydrocarbons and the depth to water is recorded. Wells are then developed by alternately surging the well with the bailer, then purging the well with a pump to remove accumulated sediments and draw groundwater into the well. Development continues until the groundwater parameters (temperature, pH, and conductivity) have stabilized.

Prior to sampling, the presence or absence of free-phase hydrocarbons is determined using an interface probe. Product thickness, if present, is measured to the nearest 0.01 foot and is noted in the field notes. In addition, all depth to water level measurements are collected with a static water level indicator and are also recorded in the field notes, prior to purging and sampling any wells.

After water levels are collected and prior to sampling, if purging is to occur, each well is purged a minimum of three well casing volumes of water using pre-cleaned pumps (stack, suction, Grundfos), or disposable bailers. Temperature, pH and electrical conductivity are measured a minimum of three times during the purging. Purging continues until these parameters stabilize.

Groundwater samples are collected using disposable bailers. The water samples are transferred from the bailer into appropriate containers. Pre-preserved containers, supplied by analytical laboratories, are used when possible. When pre-preserved containers are not available, the laboratory is instructed to preserve the sample as appropriate. Duplicate samples are collected for the laboratory to use in maintaining quality assurance/quality control standards. The samples are labeled to include the job number, sample identification, collection date and time, analysis, preservation (if any), and the sample collector's initials. The water samples are placed in a cooler, maintained at 4NC for transport to the laboratory. Once collected in the field, all samples are maintained under chain of custody until delivered to the laboratory.

The chain of custody document includes the job number, type of preservation, if any, analysis requested, sample identification, date and time collected, and the sample collector's name. The chain of custody is signed and dated (including time of transfer) by each person who receives or surrenders the samples, beginning with the field personnel and ending with the laboratory personnel.

A laboratory supplied trip blank accompanies each sampling set. For sampling sets greater than 20 samples, 5% trip blanks are included. The trip blank is analyzed for some or all of the same compounds as the groundwater samples.

As requested by Chevron Environmental Management Company, the purge water and decontamination water generated during sampling activities is transported by IWM to Chemical Waste Management located in Kettleman Hill, California.

FORMER TEXACO SERVICE STATION #211170 Oakland, CA

WELL DEVELOPMENT EVENT OF June 5, 2009

Client/Facility#:	Chevron #211173		Job Number:	385866	
Site Address:	500 Grand Avenue	· · · · · · · · · · · · · · · · · · ·	Event Date:	6.5-9	(inclusive)
City:	Oakland, CA		Sampler:	AC	(inclusive)
Well ID Well Diameter Initial Total Depth Final Total Depth Depth to Water Depth to Water w Purge Equipment: Disposable Bailer Stainless Steel Bailer Stack Pump Suction Pump Grundfos Peristaltic Pump QED Bladder Pump Other:	MW-8F 2/(4) in. 14,55 ft. 14,56 ft. 5.56 xVF 80% Recharge [(Height	Check if water colum Check if water colum Water Column x 0.20) Sampling Equipment: Disposable Bailer Pressure Bailer Discrete Bailer Peristattic Pump QED Bladder Pump Other:	Date Monitored: Volume 3 Factor (VF) an is less then 0.50 x10 case volume = + DTWJ: <u>10./0</u>	6<5-9	7 3"= 0.38 0 12"= 5.80 (2 gal. (2400 hrs) (2400 hrs) ft ft ft ft ft con: gal gal gal
Start Time (purge) Sample Time/Date Approx. Flow Rate Did well de-water? Time (2400 hr.) 08 30	$\begin{array}{c c} & & & & \\ \hline & & & \\ \hline e: & & & \\ \hline e: & & & \\ \hline & & & \\ \hline & & & \\ \hline \\ \hline$	Weather Color: Sediment De Ne: 0820 Volue Conductivity (µmhos/cm - 15) 1443	nditions:	Cloudy Odor: Y_LN wal. DTW @ Sampling: D.O. ORP (mg/L) (mV)	
	(#) CONTAINER REFRIG	LABORATORY IN PRESERV. TYPE		ANALYSES	
COMMENTS: D Steady (EVELOP ONLY	No recove n after den	(y after intered	2nd CV - DTW	holding
Add/Replaced Lo	ck: Add	/Replaced Plug:	KYM A	dd/Replaced Bolt:	

Client/Facility#:	Chevron #21117	3	Job Number:	385866	
Site Address:	500 Grand Aven	le	Event Date:	6-5-9	(inclusive)
City:	Oakland, CA		Sampler:	AC	
Well ID Well Diameter Initial Total Depth Final Total Depth Depth to Water Depth to Water v Purge Equipment: Disposable Bailer Stainless Steel Bailer Stack Pump Suction Pump Grundfos Peristaltic Pump QED Bladder Pump Other:	MW-8G 2/4) in. 14.41 ft. 14.41 ft. 14.5 xVF_ w/ 80% Recharge [(Heig	Check if water colur Check if water colur Sampling Equipment Disposable Bailer Pressure Bailer Discrete Bailer Peristaltic Pump QED Bladder Pump Other:	Sampler: Date Monitored: Volume Factor (VF) ann is less then 0.50 x10 case volume = + DTW]:	AC 6 · S-9 /4"= 0.02 1"= 0.04 2"= 0.17 4"= 0.66 5"= 1.02 6"= 1.50 ft. Estimated Purge Volume: Time Started: Depth to Product: Depth to Product: Depth to Product: Depth to Water: Hydrocarbon Thickness: Visual Confirmation/Description Skimmer / Absorbant Sock (circc Amt Removed from Skimmer: Amt Removed from Well: Water Removed: Product Transferred to:	3"= 0.38 12"= 5.80 gal. (2400 hrs) ft ft ft ft ft ft gal gal
Start Time (purge) Sample Time/Dat Approx. Flow Rat Did well de-water Time (2400 hr.) 0944	$\begin{array}{c} & \begin{array}{c} & \end{array} \\ \end{array} \end{array} \end{array} \end{array}$ e: $\begin{array}{c} & \begin{array}{c} & \end{array} \end{array} \\ \hline \end{array} \end{array} \\ \begin{array}{c} & \begin{array}{c} & \end{array} \end{array} \\ \hline \end{array} \\ \begin{array}{c} & \begin{array}{c} & \end{array} \end{array} \\ \hline \end{array} \\ \begin{array}{c} & \begin{array}{c} & \end{array} \end{array} \\ \hline \end{array} \\ \begin{array}{c} & \begin{array}{c} & \end{array} \\ \hline \end{array} \\ \begin{array}{c} & \begin{array}{c} & \end{array} \\ \hline \end{array} \\ \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \\ \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} $ \\ \hline \\ \hline \end{array} \\ \hline \end{array} \\ \hline \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \hline \end{array} \\ \\ \hline \end{array} \\ \hline \end{array} \\ \hline \\ \hline \\ \hline \end{array} \\ \hline \\ \\ \hline \end{array} \\ \hline \\ \\ \hline \end{array} \\ \hline \end{array} \\ \hline \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \\ \end{array} \\ \\ \hline \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\	Weather Co Water Color Sediment D Time: <u>9944</u> Volu Conductivity (µmhos/cm (LS))	Temperature	Cloudy Odor: Y / . N Jal. DTW @ Sampling: D.O. ORP (mg/L) (mV)	
SAMPLE ID	(#) CONTAINER REF	LABORATORY IN RIG. PRESERV. TYPE	NFORMATION LABORATORY	ANALYSES	
COMMENTS; [COMMENTS; [Comments;]	DEVELOP ONLY	- No lecon	ery - DTW	holdryf @ 12:	98
Add/Replaced Lo		Add/Replaced Plug:	7 91'	Add/Replaced Bolt:	

Client/Facility#:	Chevron #211173		Job Number:	385866	
Site Address:	500 Grand Avenue	e	Event Date:	10.5.05	(inclusive)
City:	Oakland, CA		Sampler:	Fr	(meiusive)
Well ID	MW-8H		Date Monitored [.]	6.509	- <u> </u>
Well Diameter	2 / 4 in.		80		260)
Initial Total Dept	h 14.96 ft.		Volume 3	/4"= 0.02 1"= 0.04	2"= 0.17 3"= 0.38
Final Total Depth	h 14.98 ft.		Factor (VF)	4"= 0.66 5"= 1.02 6	5"= 1.50 12"= 5.80
Depth to Water	3,9) ft. [Check if water colum	is less then 0.50	4	
Depth to Water y	<u>11-07</u> xVF	<u>.66 = 7,3</u>	x10 case volume =	Estimated Purge Volume	<u>73</u> gal.
	W 00% Recharge ((Height	of Water Column x 0.20)	+ DTW]:	Time Started:	(2400 h-s)
Purge Equipment:		Sampling Equipment:	/	Time Completed:	(2400 hrs) (2400 hrs)
Disposable Bailer	/	Disposable Bailer		Depth to Product:	ft
Stainless Steel Bailer		Pressure Bailer		Depth to Water:	ft
Stack Pump		Discrete Bailer		Hydrocarbon Thicknes	s:ft
Suction Pump		Peristaltic Pump		visual Confirmation/De	escription:
Grundtos Registeltie Duran		QED Bladder Pump		Skimmer / Absorbant S	Sock (circle one)
OED Bladder Pump		Other:		Amt Removed from Sk	immer: gal
Other:				Amt Removed from Water Removed:	ell: gal
				Product Transferred to	
Start Time (purge)	1007			-	
(puige)	007	_ Veather Cor	nditions:		
Sample Time/Date	e:/ 6.5.0	Weather Cor Water Color:	Iditions:	Odor: Y/N	
Sample Time/Date Approx. Flow Rate	e:/ 6. 5. 6 e:/ 6. 5. 6 e: Z. Ø gpm.	Weather Cor Water Color: Sediment De	CLEAT		
Sample Time/Date Approx. Flow Rate Did well de-water?	e:/ <i>G</i> . § . <i>G</i> e:/ <i>G</i> . § . <i>G</i> e: <i>Z</i> . <i>@</i> gpm. ? <i>L</i> < <u>\$</u> If yes, Tir	Weather Cor ک) Water Color: Sediment De ne: ۱۱٫۰۰ Volun	CLEAN	Odor: Y / D	
Sample Time/Date Approx. Flow Rate Did well de-water?	e:/ <i>G</i> . 5 . <i>G</i> e:/ <i>G</i> . 5 . <i>G</i> e: <u></u> gpm. ? If yes, Tir	Weather Cor Water Color: Sediment De ne: <u>(()</u> Volun	Aditions: <u>CLEA</u> scription: ne: <u>52.9</u> ga	Odor: Y / O]:
Sample Time/Date Approx. Flow Rate Did well de-water? Time (2400 hr.)	e:/ <i>G</i> . § . <i>G</i> e: <u>/ <i>G</i>. §. <i>G</i> e: <u></u> <i>gpm.</i> ? <u></u> If yes, Tir Volume (aal.) pH</u>	Weather Cor Water Color: Sediment De ne: <u>(()o</u> Volun Conductivity	CLEAN scription: ne: <u>52.9</u> ga	Odor: Y / () al. DTW @ Sampling	J:
Sample Time/Date Approx. Flow Rate Did well de-water Time (2400 hr.)	e:/ 6. 5. 6 e:/ 6. 5. 6 e: / 6. 5. 6 e: gpm. ? gpm. ? gpm. ? If yes, Tir Volume (gal.) pH	Veather Cor Water Color: Sediment De ne: <u>(()</u> Volun Conductivity (<u>µmhos/cm</u> - µS)	CLEAN scription: ne: <u>52.9</u> ga Temperature (CV F)	Odor: Y / () al. DTW @ Sampling D.O. (mg/L)): DRP (mV)
Sample Time/Date Approx. Flow Rate Did well de-water? Time (2400 hr.)	e: $- \frac{10.7}{10.5.0}$ e: $- \frac{10.5.0}{10.5.0}$ e: $- \frac{2.0}{10.5.0}$ gpm. f yes, Tir Volume (gal.) pH $- \frac{7.68}{10.5.0}$	Veather Cor Water Color: Sediment De ne: <u>(() Conductivity</u> (<u>umhos/cm</u> - µS)	$\frac{CLEA}{\text{scription:}}$ $\frac{F}{CLEA}$ $\frac{F}{C}$ $\frac{F}{C}$ $\frac{F}{C}$	Odor: Y / O al. DTW @ Sampling D.O. (mg/L)): DRP (mV)
Sample Time/Date Approx. Flow Rate Did well de-water? Time (2400 hr.)	e: $-\frac{100 + 7}{160 + 500}$ e: $-\frac{100 + 7}{160 + 500}$ gpm. $\frac{100 + 7}{100 + 500}$ $\frac{100 + 7}{100 + 500}$ 100	Veather Cor Water Color: Sediment De ne: <u>(()</u> Volun Conductivity (<u>µmhos/cm</u> - µS) <u>497</u>	$\frac{CLEA}{\text{scription:}}$ $\frac{CLEA}{\text{scription:}}$ $\text{ne:} \underline{S2.9} \text{ ga}$ $\frac{\text{Temperature}}{(O/F)}$ $\underline{21.2} \text{ ga}$	Odor: Y / () al. DTW @ Sampling D.O. (mg/L)	j: DRP (mV)
Sample Time/Dati Approx. Flow Rate Did well de-water (2400 hr.)	e: $-\frac{10.7}{16.5.0}$ e: $-\frac{10.7}{16.5.0}$ gpm. $\frac{10.7}{16.5.0}$ $\frac{10.7}{16.5.0}$ $\frac{10.7}{16.5.0}$ $\frac{10.7}{16.5.0}$ $\frac{10.7}{16.5.0}$ $\frac{10.7}{16.5.0}$ $\frac{10.7}{16.5.0}$ $\frac{10.7}{16.5.0}$ $\frac{10.7}{16.5.0}$ $\frac{10.7}{16.5.0}$ $\frac{10.7}{16.5.0}$ $\frac{10.7}{16.5.0}$ $\frac{10.7}{16.5.0}$ $\frac{10.7}{16.5.0}$ $\frac{10.7}{16.5.0}$ $\frac{10.7}{16.5.0}$	Weather Cor Water Color: Sediment De ne: <u>(() O</u> Volun Conductivity (μmhos/cm - μS) <u>447</u> <u>502</u>	$\frac{CLEA}{\text{scription:}}$ $\frac{CLEA}{\text{scription:}}$ $\text{ne:} \underline{52.9} \text{ga}$ $\frac{\text{Temperature}}{(O/ F)}$ $\frac{21.2}{4.6}$	Odor: Y / (1) al. DTW @ Sampling D.O. (mg/L)	j: DRP mV)
Sample Time/Dati Approx. Flow Rate Did well de-water? Time (2400 hr.) 1015 1025	e: $-\frac{10.7}{16.5.0}$ e: $-\frac{10.7}{16.5.0}$ gpm. $\frac{10.7}{16.5.0}$ $\frac{10.7}{16.5.0}$ $\frac{10.7}{16.5}$ $\frac{10.7}{16.5}$ $\frac{10.7}{16.5}$ $\frac{10.7}{16.5}$ $\frac{10.7}{16.5}$	Weather Cor Water Color: Sediment De ne: <u>((ιο</u> Volun Conductivity (μmhos/cm - μS) <u>447</u> <u>502</u> <u>502</u>	$\frac{CLEA}{C}$ scription: ne: <u>52.9</u> ga Temperature (O/ F) <u>21.2</u> <u>20.9</u>	Odor: Y / (1) al. DTW @ Sampling D.O. (mg/L)	j:
Sample Time/Date Approx. Flow Rate Did well de-water? Time (2400 hr.) 1015 1035 1035	e: $-\frac{10.7}{16.5.0}$ e: $-\frac{10.7}{16.5.0}$ gpm. $\frac{10.7}{16.5.0}$ $\frac{10.7}{16.5.0}$ $\frac{10.7}{16.5}$	Weather Cor Water Color: Sediment De ne: $(10$ Volun Conductivity (μ mhos/cm - μ S) 447 502 502 502	$\begin{array}{c} \underline{C} \underline{F} \underline{F} \underline{F} \\ \underline{C} \underline{F} \underline{F} \\ \underline{C} \\ C$	Odor: Y / O Sampling	j: DRP (mV)
Sample Time/Dati Approx. Flow Rate Did well de-water? Time (2400 hr.) 1015 1015 1035 1035 1035	e: $-\frac{100}{16.5.0}$ gpm. e: $-\frac{100}{16.5.0}$ gpm. P $-\frac{100}{16.5.0}$ gpm. P $-\frac{100}{16.5.0}$ gpm. $\frac{100}{16.5.0}$ pH $\frac{100}{16.5}$ $-\frac{100}{16.5}$	Weather Cor Water Color: Sediment De ne: 110 Volun Conductivity (μ mhos/cm - μ S) 1497 502 502 502 502 503	$\begin{array}{c} \underline{CLEA} \\ \underline{CLEA} \\$	Odor: Y / () al. DTW @ Sampling D.O. (mg/L)	j: DRP mV)
Sample Time/Dati Approx. Flow Rate Did well de-water? Time (2400 hr.) 1015 1015 1035 1035	e: $-\frac{100}{16.5.0}$ e: $-\frac{100}{16.5.0}$ gpm. $\frac{100}{16.5.0}$ $\frac{100}{16.5.0}$ $\frac{100}{16.5.0}$ $\frac{100}{16.5}$ 10	Weather Cor Water Color: Sediment De ne: 110 Volum Conductivity (μ mhos/cm - μ S) 447 500 502 502 502 502 502	$\frac{CLEA}{C}$ scription: ne: 52.9 ga Temperature (O/ F) 21.2 20.9 21.3 21.3 21.4 20.4	CLOYDY Odor: Y / (1) al. DTW @ Sampling D.O. (mg/L)	j:
Sample Time/Dati Approx. Flow Rate Did well de-water? Time (2400 hr.) 1015 1035 1035 1035	e: $-\frac{10.7}{16.5.0}$ e: $-\frac{10.7}{16.5.0}$ gpm. $\frac{10.7}{16.5.0}$ $\frac{10.7}{16.5.0}$ $\frac{10.7}{16.5.0}$ $\frac{10.7}{16.5}$	Weather Cor Water Color: Sediment De ne: $(10$ Volun Conductivity (μ mhos/cm - μ S) 447 502 502 502 502	$\begin{array}{c} \underline{C} \underline{F} \underline{F} \underline{A} \underline{F} \underline{F} \underline{A} \underline{F} \underline{F} \underline{A} \underline{F} \underline{F} \underline{F} \underline{F} \underline{F} \underline{F} \underline{F} F$	Odor: Y / (1) al. DTW @ Sampling D.O. (mg/L)	J:
Sample Time/Date Approx. Flow Rate Did well de-water? (2400 hr.) 1015 1025 1035 1035 1057	e: $-16.5.6$ e: 2.0 gpm. P $4<5$ If yes, Tir Volume (gal.) pH 7.68 145 7.68145 7.68145 $7.6722.0$ $7.6226.2$ $7.6735.5$ $7.6143.8$ $7.6151-1$ $7.5958.473.6$	Weather Corr Water Color: Sediment De ne: $(10$ Volun Conductivity (μ mhos/cm - μ S) 497 502 505 505 505	$\begin{array}{c} \underline{C} \underline{F} \underline{F} \underline{A} \underline{F} \underline{F} \underline{A} \underline{F} \underline{F} \underline{F} \underline{F} \underline{F} \underline{F} \underline{F} F$	Odor: Y / O Sampling D.O. (mg/L)	J:
Sample Time/Dati Approx. Flow Rate Did well de-water? Time (2400 hr.) 1015 1015 1035 1035 1035 1035 1035	e: $-16.5.0$ e: $-16.5.0$ get 2.0 gpm. 14.5 If yes, Tir Volume (gal.) pH -7.3 $7.6814.5$ $7.6722.0$ $7.6722.0$ $7.6722.0$ $7.6724.2$ $7.6735.5$ $7.6143.8$ $7.6151.1$ $7.5958.453.7$ $7.5958.453.7$ $7.5958.453.7$ $7.5958.453.7$ $7.5958.453.7$ $7.5958.453.7$ $7.5958.453.7$ $7.5958.453.7$ $7.5958.453.7$ $7.5958.453.7$ $7.5958.453.7$ $7.5958.47.5958.47.597.5958.47.59$	Veather Cor Water Color: Sediment De ne: <u>110</u> Volum Conductivity (<u>µmhos/cm</u> - µS) <u>497</u> <u>502</u> <u>502</u> <u>504</u> <u>505</u> <u>505</u> <u>505</u>	$\frac{CLEA}{C}$ scription: ne: 52.9 ga Temperature (C) F) 21.2 20.5 21.4 21.4 20.5 21.4 21.4 20.5 21.4 21.4 20.5 21.4 21.4 20.5 21.4 21.4 20.5 21.4 21.4 20.5 21.4 21.4 20.5 21.4 21.4 21.4 20.5 21.4 21.4 21.4 20.5 21.4	CLOYDY Odor: Y / (1) al. DTW @ Sampling D.O. (mg/L)	j:
Sample Time/Date Approx. Flow Rate Did well de-water (2400 hr.) 1015 1035 1035 1035 1055 1055 1055 1055	e: $- 16.5.6$ e: 2.0 gpm. P $4<5$ If yes, Tir Volume (gal.) pH 7.68 142 7.68142 7.68142 7.68142 7.68142 7.68142 $7.687.68142$ $7.687.687.687.687.687.687.687.687.687.687.687.687.687.6143.87.615.77.59$	Veather Cor Water Color: Sediment De ne: <u>(()</u> Volun Conductivity (<u>µmhos/cm</u> - µS) <u>()</u> <u>(447</u> <u>Soo</u> <u>Soo</u> <u>Soo</u> <u>Soo</u> <u>Soo</u> <u>Soo</u> <u>Soo</u> <u>Soo</u> <u>Soo</u> <u>Soo</u> <u>Soo</u> <u>Soo</u> <u>Soo</u> <u>Soo</u> <u>Soo</u> <u>Soo</u> <u>Soo</u> <u>Soo</u> <u>Soo</u> <u>Soo</u> <u>Soo</u> <u>Soo</u> <u>Soo</u> <u>Soo</u> <u>Soo</u> <u>Soo</u> <u>Soo</u> <u>Soo</u> <u>Soo</u> <u>Soo</u> <u>Soo</u> <u>Soo</u> <u>Soo</u> <u>Soo</u>	$\begin{array}{c} \underline{C} \underline{F} \underline{F} \underline{A} \underline{F} \underline{F} \underline{A} \underline{F} \underline{F} \underline{F} \underline{F} \underline{F} \underline{F} \underline{F} F$	CLOYDY Odor: Y / (N) al. DTW @ Sampling D.O. (mg/L) (mg/L) (mg/L)	J:
Sample Time/Date Approx. Flow Rate Did well de-water? Time (2400 hr.) 1015 1015 1035 1035 1035 1057 1100	$\begin{array}{c} 1 \\ \hline 0 \\ \hline 7 \\ \hline$	Veather Cor Water Color: Sediment De ne: <u>(()</u> Volun Conductivity (<u>µmhos/cm</u> - µS) <u>497</u> <u>502</u> <u>507</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u>	$\begin{array}{c} \underline{C} \underline{L} \underline{E} \underline{A} \underline{M} \\ \underline{C} \underline{L} \underline{C} \underline{C} \\ \underline{C} \underline{L} \underline{C} \\ \underline{C} \underline{L} \underline{C} \\ \underline{C} \underline{L} \underline{C} \\ \underline{C} \underline{L} \\ \underline{C} \underline{L} \\ \underline{C} \\ $	CLOYDY Odor: Y / (N) al. DTW @ Sampling D.O. (mg/L)	J: DRP mV)
Sample Time/Dati Approx. Flow Rate Did well de-water (2400 hr.) 1015 1015 1035 1035 1035 1035 1035 1035	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Veather Cor Water Color: Sediment De ne: <u>110</u> Volum Conductivity (<u>µmhos/cm</u> - µS) <u>497</u> <u>502</u> <u>502</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u>	$\begin{array}{c} \underline{C} \underline{L} \underline{E} \underline{A} \underline{M} \\ \underline{C} \underline{L} \underline{C} \underline{C} \\ \underline{C} \underline{L} \underline{C} \\ \underline{C} \underline{L} \underline{C} \\ \underline{C} \underline{L} \\ \underline{C} \underline{L} \\ \underline{C} \\ C$	CLOYDY Odor: Y / (N)	J:
Sample Time/Dati Approx. Flow Rate Did well de-water (2400 hr.) 1015 1015 1035 1035 1035 1055 1055 1055	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Veather Cor Water Color: Sediment De ne: <u>110</u> Volum Conductivity (µmhos/cm - µS) <u>497</u> <u>502</u> <u>502</u> <u>505</u> <u>505</u> <u>505</u> <u>515</u> <u>LABORATORY INF</u> PRESERV. TYPE	$\begin{array}{c} \underline{C} \underline{L} \underline{E} \underline{A} \underline{M} \\ \underline{C} \underline{L} \underline{C} \\ \underline{C} \underline{L} \underline{C} \\ \underline{C} \underline{L} \underline{C} \\ \underline{C} \underline{L} \\ \underline{C} \\$	CLOYDY Odor: Y / (1) al. DTW @ Sampling D.O. (mg/L)	j:
Sample Time/Dati Approx. Flow Rate Did well de-water (2400 hr.) 1015 1035 1035 1035 1055 1055 1055	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Veather Cor Water Color: Sediment De ne: <u>(()0</u> Volun Conductivity (<u>µmhos/cm</u> - µS) <u>447</u> <u>502</u> <u>502</u> <u>504</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u>	$\begin{array}{c} \underline{C} \underline{L} \underline{E} \underline{A} \underline{M} \\ \underline{C} \underline{L} \underline{E} \underline{A} \underline{M} \\ \underline{C} \underline{L} \underline{E} \underline{A} \underline{M} \\ \underline{Scription:} \\ \underline{ne:} \underline{S2.9} \\ \underline{G} \underline{I} \underline{I} \\ \underline{C} \underline{I} \underline{I} \\ \underline{C} \underline{I} \\ \underline{C} \underline{I} \\ \underline{C} \\ \underline{I} \\ \underline{C} \\ \underline{C} \\ \underline{I} \\ \underline{C} $	CLOYDY Odor: Y / (N) al. DTW @ Sampling D.O. (mg/L) (mg/L) ANALYS	J:
Sample Time/Dati Approx. Flow Rate Did well de-water (2400 hr.) 1015 1035 1035 1035 1035 1035 1035 1035	$\begin{array}{c} 1 \\ \hline 0 \\ \hline 7 \\ \hline$	Veather Cor Water Color: Sediment De ne: <u>(()o</u> Volun Conductivity (<u>µmhos/cm - µS)</u> <u>497</u> <u>502</u> <u>507</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>515</u>	Temperature (O + F) $21 \cdot 2$ $21 \cdot 2$	CLOYDY Odor: Y / (N) al. DTW @ Sampling D.O. (mg/L)	J:
Sample Time/Dati Approx. Flow Rate Did well de-water (2400 hr.) 1015 1015 1035 1035 1035 1035 1035 1035	$\begin{array}{c c} & 100 & 7 \\ \hline & 22 & 9 \\ \hline & 7 & 68 \\ \hline & 7 & 61 \\ \hline & 7 & 7 \\$	Veather Cor Water Color: Sediment De ne: <u>110</u> Volum Conductivity (<u>µmhos/cm</u> - µS) <u>497</u> <u>502</u> <u>502</u> <u>503</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u>	CAEAM $CAEAM$ $CAEAM$ $Scription:$ $ne: 52.9 ga Temperature (C + F) 21.2 20.4 20.4 20.4 20.4 0 CONEAM$	CLOYDY Odor: Y / (N) al. DTW @ Sampling D.O. (mg/L)	J:
Sample Time/Dati Approx. Flow Rate Did well de-water (2400 hr.) 1015 1015 1035 1035 1035 1055 1055 1055	$\begin{array}{c c} & & & & & & & & \\ \hline & & & & & & & \\ \hline e: & & & & & & & \\ \hline & & & & & & & \\ \hline & & & &$	Veather Cor Water Color: Sediment De ne: <u>110</u> Volun Conductivity (<u>µmhos/cm</u> - µS) <u>497</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>505</u> <u>515</u> <u>1505</u> <u>515</u> <u>1505</u> <u>515</u> <u>515</u> <u>515</u>	$\frac{CLEA}{CLEA}$		Image:

Client/Facility Site Address: City:	#: Chevron # 500 Granc Oakland, (#211173 I Avenue CA		_ Job Numbe _ Event Date: _ Sampler:	r: <u>385866</u> 6[5[0] K	9 E	(inclusive)
Well ID Well Diameter Initial Total De Final Total De Depth to Wate Depth to Wate Depth to Wate Disposable Bailer Stainless Steel Bail Stack Pump Suction Pump Grundfos Peristaltic Pump QED Bladder Pump Other:	MW- 2 / 4 pth r w/ 80% Rechar er	in. ft. ft. ft. xVF rge [(Height o	Check if water colu = f Water Column x 0.20 Sampling Equipment Disposable Bailer Pressure Bailer Discrete Bailer Peristaltic Pump QED Bladder Pump Other:	Date Monitored Volume Factor (VF) mn is less then 0.1 	t: 3/4"= 0.02 1"= 0.04 4"= 0.66 5"= 1.02 50 ft. e = Estimated Purge Vol Time Started: Time Completed: Depth to Product: Depth to Product: Depth to Water: Hydrocarbon Thic Visual Confirmation Skimmer / Absorb Ant Removed from Ant Rem	2"= 0.17 6"= 1.50 ume:	3"= 0.38 12"= 5.80 gal. (2400 hrs) ft ft ft ft ft ft ft gal gal
Start Time (purg Sample Time/Da Approx. Flow Ra Did well de-wate (2400 hr.)	e): / ate: / ate: Volume (gal.)	gpm. If yes, Time pH	Veather Co Water Color Sediment Do Conductivity (µmhos/cm - µS)	escription: me: temperature (Odor: Y / N gal. DTW @ Samp D.O. (mg/L)	ORP (mV)	
SAMPLE ID	(#) CONTAINER	REFRIG.	ABORATORY IN PRESERV. TYPE	FORMATION LABORATORY	ANA	LYSES	

I SAMPLE ID	(#) CONTAINED	REEDIC	DOFOCHU		
	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	ANALYSES
COMMENTS:	DEVELOP ON	ILY	Unable -	ovemo	ve l'd

Add/Replaced Lock: _____

Add/Replaced Plug: _____

Add/Replaced Bolt: _____

Client/Facility#: Chevron #211173	Job Number:	385866	
Site Address: 500 Grand Avenue	Event Date:	10/5/09	(inclusive)
City: Oakland, CA	Sampler:	KE	_ 、 ,
Well ID MW-SJ Well ID 21/4/15 Well Diameter 21/4/15 Initial Total Depth 14/15 Final Total Depth 14/15 Depth to Water 6.59 ft. Check if water colum Biggs 200 xVF Weill ID 14/15 Weil Diameter 14/15 Initial Total Depth 14/15 Depth to Water 6.59 ft. Check if water colum Biggs 200 xVF VF (del = 5.5) Depth to Water w/ 80% Recharge [(Height of Water Column x 0.20) Purge Equipment: Sampling Equipment Disposable Bailer Disposable Bailer Stack Pump Discrete Bailer Suction Pump Peristaltic Pump Grundfos QED Bladder Pump QED Bladder Pump Other:	Date Monitored: Volume 3 Factor (VF) 3 mn is less then 0.50 3	Image: NE 6 5 0.94 2"= 0.17 4"= 0.66 5"= 1.02 6"= 1.50 ft. Estimated Purge Volume: Estimated Purge Volume: 55, 10 ft. Estimated Purge Volume: Depth to Product: Depth to Product: Depth to Product: Depth to Water: Hydrocarbon Thickness: Visual Confirmation/Description Skimmer / Absorbant Sock (circo Amt Removed from Skimmer: Amt Removed from Well: Water Removed : Water Removed :	3"= 0.38 12"= 5.80 gal. (2400 hrs) ft ft ft ft ft ft ft gal gal
Other:	······································	Product Transferred to:	
Start Time (purge). $O \times S$ weather Co Sample Time/Date: $/$ Water Colo Approx. Flow Rate: Z gpm. Sediment D Did well de-water? $\sqrt{2S}$ If yes, Time: $O \times S^{37}$ Volu $V \notin S$ Time (2400 hr.) (gal.) pH (pumbos/cm - $\times S$) $O \times S^{35}$ G S-15 /// (pumbos/cm - $\times S$) $O \times S^{35}$ G S-15 /// (pumbos/cm - $\times S$) $O \times S^{35}$ G S-15 /// (pumbos/cm - $\times S$) $O \times S^{47}$ 12 7.97 /// (pumbos/cm - $\times S$) $O \times S^{47}$ 24 7.90 517 $O \times S^{47}$ 24 7.90 554 $O \times S^{47}$ 24 7.90 120 $O \times S^{47}$ 12 0 120 $O \times S^{47}$ 100 110	binditions: r: $Cloucly$ bescription: ume:)3 g 22 Temperature (C) F) 20.8 21.3 20.3 20.3 20.7 21.1 21.2 21.2 21.2 21.2 21.2 21.1	Dig mg Odor: Y Iight gal. DTW @ Sampling: D.O. ORP (mg/L) (mV)	
LABORATORY II SAMPLE ID (#) CONTAINER REFRIG. PRESERV. TYPE		ANAL YSES	
COMMENTS: DEVELOP ONLY dewafel: yes	38,00	704, yes 09334	logal
Add/Replaced Lock: Add/Replaced Plug: _	× 4· ,	Add/Replaced Bolt:	

Client/Facility#:	Chevron #21	11173		Job Number:	385866		
Site Address:	500 Grand A	venue		Event Date:	6.5.	~~ ~~	(inclusive)
City:	Oakland, CA	Oakland, CA		Sampler:	- FT		(inclusive)
Well ID Well Diameter	MW- 8 (2) 4 in	K		Date Monitored:	66	1.09	
Initial Total Dept Final Total Dept	h 16.55 ft.	-		Volume 3 Factor (VF)	3/4"= 0.02 1"= 0 4"= 0.66 5"= 1	.04 2"= 0.17 .02 6"= 1.50	3"= 0.38 12"= 5.80
Depth to Water	1.18 ft.		Check if water colur	nn is less then 0.50) ft.		
Depth to Water v	1 <u>) · 3</u> / v/ 80% Recharge	_xVF	$F_{\text{vater Column x 0.20}} = \frac{2 \cdot 61}{2 \cdot 61}$	x10 case volume = + DTW]:	= Estimated Purge	Volume: 26	🗢 gal.
Purge Equipment:		S	ampling Equipment		Time Started: Time Comple	ted:	(2400 hrs) (2400 hrs)
Disposable Bailer		D	isposable Bailer		Depth to Prod	luct:	ft
Stainless Steel Bailer		P	ressure Bailer		Depth to Wate	er:	ft
Stack Pump		D	iscrete Bailer		Visual Confirm	I nickness:	ft
Suction Pump		P	eristaltic Pump		Visual Commin	nation/Description	
Grundfos		Q	ED Bladder Pump		Skimmer / Ab	sorbant Sock (circ	le one)
Peristaltic Pump		O	ther:		Amt Removed	from Skimmer:	gal
QED Bladder Pump					Amt Removed	from Well:	gal
Other:					Water Remov	ed:	
					Froduct Trans	terred to:	
Sample Time/Dat Approx. Flow Rat Did well de-water	e: /6 e: /6 e: /6 e: /6 ? /6	gpm. yes, Time:	Weather Co Water Color Sediment De	iv. <u>G. Bav</u>	Odor: Y /	ampling:	
Sample Time/Dat Approx. Flow Rate Did well de-water (2400 hr.) <u>0847</u> <u>0847</u> <u>0847</u> <u>0848</u> <u>0848</u> <u>0848</u> <u>0858</u> <u>0858</u> <u>0908</u> <u>0908</u>	e: $- /6$ e: $- /6$ e: $- /6$ e: $- /6$ e: $- /6$ e: $- /6$ f: $- /6$ f: $- /6$ f: $- /6$ (gal.) - /6 (gal.) - /6 (gal.) - /6 - /6 (gal.) - /6 -	gpm. yes, Time: pH 1.65 1.60 1.67 1.57 1.57 1.55 1.50	Veatrier Co Water Color Sediment Da Volut Conductivity (µmhos/cm - µS) SSC SSY SSC SSY SSC SSY SSC SSY SSC SSY SSC SSC	$\begin{array}{c} \text{nontions:} \\ \hline U. \underline{cr. Bev} \\ \hline \\ \text{escription:} \\ \text{me:} \\ \hline \\ \ \\ \ \\ \ \\ \ \\ \ \\ \ \\ \ \\ \ \\ \$	Odor: Y / (1)	2 ampling:	
Sample Time/Dat Approx. Flow Rate Did well de-water (2400 hr.) <u>0847</u> <u>0847</u> <u>0848</u> <u>0858</u> <u>0858</u> <u>0858</u> <u>0908</u> <u>0930</u>	e: 15 Volume (gal.) 2.6 5.2 13.6 13.6 13.6 26.0 7.8 13.6 13.2 20.9 7.9 20.0 7.9 20.0 7.9 20.0 7.9 20.0 7.9 20.0 7.9	gpm. yes, Time: pH 7.65 7.67 7.67 7.50	Veatrier Co Water Color Sediment Da Volue Conductivity (µmhos/cm - µS) SSC SSC SSC SSC SSC SSC SSC SSC SSC S	FORMATION: V. G. Bev V. G	Odor: Y / ()	ampling:	
Sample Time/Dat Approx. Flow Rate Did well de-water (2400 hr.) OSUZ OSUZ OSUZ OSUZ OSUZ OSUZ OSUZ OSUZ	e: $- / 6$ e: $- / 6$ f: $- / 6$ f: $- / 6$ (gal.) - / 6 - / 6 (gal.) - / 6 - / 7 - / 7.6 - / 7.6	gpm. yes, Time: pH 7.65 7.67 7.67 7.67 7.67 7.67 7.67 7.67	Veatrier Co Water Color Sediment Da Volut Conductivity (µmhos/cm - µS) SS SS SS SS SS C SS C SS C SS C SS C	Temperature (C) F) 22-G 21.1 20.7 20.6 20.7 20.6 20.7 20.6 20.6 20.6 20.6 20.7 20.6 20.6 20.7 20.6 20.7 20.6 20.7 20.6 20.7 20.6 20.6 20.7 20.6 20.7 20.6 21.1 21.1 21.2 21.2 21.3 21.4 21.5 21.6 21.6	Odor: Y / N	ANALYSES	
Sample Time/Dat Approx. Flow Rate Did well de-water (2400 hr.) <u>DS44</u> <u>DS44</u> <u>DS44</u> <u>DS44</u> <u>DS44</u> <u>DS44</u> <u>DS44</u> <u>DS44</u> <u>DS44</u> <u>DS45</u> <u>DG558</u> <u>DG558</u> <u>DG658</u> <u>DG658</u> <u>DG658</u> <u>DG658</u> <u>DG658</u> <u>DG658</u>	e: 15 20 15 15 1	gpm. yes, Time: pH 7.65 7.65 7.65 7.65 7.65 7.55 7.50 L REFRIG.	Veatrier Co Water Color Sediment Da Volu Conductivity (µmhos/cm - µS) SS (SS (SS (SS (SS (SS (SS (SS	Notitions: V. G. Bev escription: me: g Temperature (C) F) Z2-G g Z0-Z g Z0-Z g Z0-Z g Z0-Z g Z0-Z g Z0-Z	Odor: Y / ()	ANALYSES	
Sample Time/Dat Approx. Flow Rate Did well de-water (2400 hr.) <u>DS 47</u> <u>DS 47 <u>DS 47</u> <u>DS 47</u> <u>DS 47</u> <u>DS 47</u> <u>DS 47</u> <u>DS 47</u> <u>DS 47</u> <u>DS 47 <u>DS 47</u> <u>DS 47</u> <u>DS 47</u> <u>DS 47 <u>DS 47</u> <u>DS 47</u> <u>DS 47</u> <u>DS 47</u> <u>DS 47</u> <u>DS 47</u> <u>DS 47</u> <u>DS 47 <u>DS 47</u> <u>DS 47</u> <u>DS 47</u> <u>DS 47</u> <u>DS 47</u></u></u></u></u>	e: $- 15$ volume (gal.) 2.6 5.2 13.6 13.	gpm. yes, Time: pH 7.65 7.65 7.65 7.65 7.65 7.55 7.55 7.55	Veatrier Co Water Color Sediment Da Volu Conductivity (µmhos/cm - µS) SSC SSY SSC SSC	Notitions: V. G. Bey: escription: me: g Temperature (C) F) Z2-G Z1.8 Z0-Z Z1.9 Z2.9 Z1.1 Z2.8 Z2.9 Z1.9 Z2.9 Z1.1 Z2.9 Z1.9 Z1.9 Z2.9 Z2.9 Z2.9 Z2.9 Z2.9 Z2.9 Z1.1 Z2.9 Z1.1 Z2.9 Z1.9 Z1.9	Odor: Y / ()	ANALYSES	
Sample Time/Dat Approx. Flow Rate Did well de-water (2400 hr.) <u>DS44</u> <u>DS44</u> <u>DS44</u> <u>DS44</u> <u>DS44</u> <u>DS44</u> <u>DS44</u> <u>DS44</u> <u>DS44</u> <u>DS44</u> <u>DS44</u> <u>DS44</u> <u>DS45</u> <u>DG55</u> <u>DG55</u> <u>DG55</u> <u>DG55</u> <u>DG55</u> <u>DG55</u> <u>DG55</u> <u>DG55</u> <u>DG55</u> <u>DG55</u> <u>DG55</u> <u>DG555</u> <u>DG555</u> <u>DG555</u> <u>DG555</u> <u>DG555</u> <u>DG555</u> <u>DG555</u> <u>DG555</u> <u>DG555</u> <u>DG555</u> <u>DG555</u> <u>DG555</u> <u>DG555</u> <u>DG555</u> <u>DG5555</u> <u>DG5555</u> <u>DG5555</u> <u>DG55555</u> <u>DG555555555555555555555555555555555555</u>	e: $- / 6$ e: $- / 6$ f: $- / 6$ f: $- / 6$ f: $- / 6$ (gal.) 2.6 	gpm. yes, Time: pH 7.65 7.67 7.67 7.67 7.67 7.67 7.67 7.57 7.5	Veatrier Co Water Color Sediment Da Volut Conductivity (µmhos/cm - µS) SSC SSY SSC SSC	Notitions: V. G. Bey escription: me: g Temperature (C) F) Z2-G Z1.8 Z2.9 Z1.1 Z2.9 Z1.6	Odor: Y / ()	ANALYSES	
Sample Time/Dat Approx. Flow Rate Did well de-water (2400 hr.) <u>DS44</u> <u>DS44</u> <u>DS44</u> <u>DS44</u> <u>DS44</u> <u>DS44</u> <u>DS44</u> <u>DS44</u> <u>DS44</u> <u>DS44</u> <u>DS44</u> <u>DS45</u> <u>DG55</u> <u>DG55</u> <u>DG55</u> <u>DG655</u> <u>DG655</u> <u>DG655</u> <u>DG655</u> <u>DG655</u> <u>DG655</u> <u>DG655</u> <u>DG655</u> <u>DG655</u> <u>DG655</u> <u>DG655</u> <u>DG655</u> <u>DG655</u> <u>DG655</u> <u>DG6555</u> <u>DG6555</u> <u>DG6555</u> <u>DG6555</u> <u>DG6555</u> <u>DG6555</u> <u>DG6555</u> <u>DG6555</u> <u>DG6555</u> <u>DG6555</u> <u>DG6555</u> <u>DG6555</u> <u>DG6555</u> <u>DG6555</u> <u>DG6555</u> <u>DG6555</u> <u>DG65555</u> <u>DG65555</u> <u>DG6555555555555555555555555555555555555</u>	e: $- / 6$ e: $- / 6$ f: $- / 6$ volume (gal.) 2.6 	gpm. yes, Time: pH 7.65 7.67 7.67 7.67 7.67 7.67 7.67 7.67	Verifier Co Water Color Sediment Da Volut Conductivity (µmhos/cm - µS) SSL SSY SSL SSY SSL SSY SSL SSY SSL SSY SSL SSY SSL SSL	Notitions: V. LT. Bay: escription: me: g Temperature (C) F) Z2.G Z1.9 Z2.9 Z1.5 Z2.8 Z2.9 Z1.5 Z2.9 Z1.5 Z2.9 Z1.5 Z2.9 Z1.5 Z2.9 Z1.5 Z2.9 Z1.5 Z2.9 Z1.6	Odor: Y / ()	ANALYSES	
Sample Time/Dat Approx. Flow Rate Did well de-water (2400 hr.) <u>OSUZ</u> <u>OSUZ</u> <u>OSUZ</u> <u>OSUZ</u> <u>OSUZ</u> <u>OSUZ</u> <u>OSUZ</u> <u>OSUZ</u> <u>OSUZ</u> <u>OSUZ</u> <u>OSUZ</u> <u>OSUZ</u> <u>OSUZ</u> <u>OSUZ</u> <u>OSUZ</u> <u>OSUZ</u> <u>OSUZ</u> <u>OSUZ</u> <u>OSUZ</u> <u>OSUZ</u> <u>OSUZ</u> <u>OSUZ</u> <u>OSUZ</u> <u>OSUZ</u> <u>OSUZ</u> <u>OSUZ</u> <u>OSUZ</u> <u>OSUZ</u> <u>OSUZ</u> <u>OSUZ</u> <u>OSUZ</u> <u>OSUZ</u> <u>OSUZ</u> <u>OSUZ</u> <u>OSUZ</u> <u>OSUZ</u> <u>OSUZ</u> <u>OSUZ</u> <u>OSUZ</u> <u>OSUZ</u> <u>OSUZ</u> <u>OSUZ</u> <u>OSUZ</u> <u>OSUZ</u> <u>OSUZ</u> <u>OSUZ</u> <u>OSUZ</u> <u>OSUZ</u>	e: $- / 6$ e: $- / 6$ f: $- / 6$ volume (gal.) 2.6 5.2 7.8 13.6 13.6 13.6 13.6 13.6 13.6 13.2 13.6 13.2 13.6 13.2 13.6 14.7 14.7 15.2 14.7 14.7 15.2	gpm. yes, Time: pH 7.65 7.67 7.67 7.67 7.67 7.67 7.67 7.67	Verifier Co Water Color Sediment Da Volut Conductivity (µmhos/cm - µS) SSL SSY SSL SSY SSL SSY SSL SSY SSL SSY SSL SSL	Notitions: V. LT. Bay: escription: me: g Temperature (C) F) Z2.G Z0.G Z1.G Z2.Q Z1.G FORMATION LABORATORY	Odor: Y / ()	ANALYSES	
Sample Time/Dat Approx. Flow Rate Did well de-water (2400 hr.) OSUZ OSUZ OSUZ OSUZ OSUZ OSUZ OSUZ OSUZ	e: $- / 6$ e: $- / 6$ volume (gal.) 2.6 - 7.8 - 7.8	gpm. yes, Time: pH 7.65 7.65 7.65 7.65 7.65 7.65 7.55 7.50 L REFRIG.	Veatrier Co Water Color Sediment Da Volu Conductivity (µmhos/cm - µS) SS 4 SS 4 SS 4 SS 4 SS 4 SS 4 SS 4 SS	Image: Secretation in the image: Secretation is in the image: Secretatio	Odor: Y / ()	ANALYSES	
Sample Time/Dat Approx. Flow Rate Did well de-water (2400 hr.) <u>DS 47</u> <u>DS 47 <u>DS 47</u> <u>DS 47</u> <u>DS 47</u> <u>DS 47</u> <u>DS 47</u> <u>DS 47 <u>DS 47</u> <u>DS 47 <u>DS 47</u> <u>DS 47</u> <u>DS 47</u></u></u></u>	e: $- / 6$ e: $- / 6$ f volume (gal.) - / 26 - / 26	gpm. yes, Time: pH 7.65 7.65 7.65 7.65 7.65 7.65 7.50 1.55 7.50 L REFRIG.	Verifier Co Water Color Sediment Da Volu Conductivity (µmhos/cm - µS) 58 c 58 c 58 c 58 c 58 c 58 c 58 c 58 c	Importations: Secription: me: g Temperature (C) F) Z2-G Z1.8 Z0-7 Z1.1 Z2.9 Z1.1 Z1.5 Z2.9 Z1.1 Z1.5 Z2.9 Z1.1 Z1.2 Z2.9 Z1.1 Z1.5 Z2.9 Z1.1 Z1.2 Z1.1 Z1.5 Z2.9 Z1.1 Z1.5 Z2.9 Z1.1 Z1.2 Z1.4 Z1.5 Z2.9 Z1.4 Z1.5 Z2.9 Z1.4 Z1.5 Z1.4 Z1.5 Z1.6 Z1.7 Z1.9 Z1.9 Z1.9 Z1.9 Z2.9 Z1.1 Z2.9 <	Odor: Y / ()	ANALYSES	
Sample Time/Dat Approx. Flow Rate Did well de-water (2400 hr.) <u>0847</u> <u>0847</u> <u>0848</u> <u>0858</u> <u>0858</u> <u>0908</u> <u>0908</u> <u>0930</u> SAMPLE ID	e: $- / 6$ e: $- / 6$ volume (gal.) - / 6 - / 6 - / 7 - / 6 - / 7 - / 7	gpm. yes, Time: pH 7.65 7.65 7.65 7.65 7.50 L REFRIG.	Verifier Co Water Color Sediment Da Volu Conductivity (µmhos/cm - µS) SSC SSY SSC SSC	Importations: Importation: me: g Temperature (C) F) Z2-G g Z1-G g Z0-Z g Z1-G g Z1-G g Z2-G g Z1-G g Z1-G g Z1-G g Z1-G g Z2-G g Z1-G	Odor: Y / ()	ANALYSES	

Client/Facility#: Site Address: City:	Chevron #211173 500 Grand Avenue Dakland, CA	Job Number Event Date: Sampler:	385866 0-5-09 FT	(inclusive)
Well ID Well Diameter Initial Total Depth Final Total Depth Depth to Water Depth to Water w/ Purge Equipment: Disposable Bailer Stainless Steel Bailer Stack Pump Suction Pump Grundfos	MW- SL 214 in. ft. ft. ft. xVF 80% Recharge [(Height of Water Sampl Dispos Pressu Discret Peristal QED B	Date Monitored Volume Factor (VF) (if water column is less then 0.1) _ =	3/4"= 0.02 1"= 0.04 2 4"= 0.66 5"= 1.02 6" 50 ft. 50 50 e = Estimated Purge Volume: 100 Time Started: 100 Time Completed: 100 Depth to Product: 100 Depth to Water: 100 Hydrocarbon Thickness Visual Confirmation/De Skimmer / Absorbeint S 100	gal. gal. (2400 hrs) (2400 hrs) ft ft s: ft s: ft s: ft s: ft ft s: ft ft s: ft ft
Peristaltic Pump QED Bladder Pump Other:	Other:		Amt Removed from Sk Amt Removed from We Water Removed: Product Transferred to:	immer: gal ell: gal
Start Time (purge):		Weather Conditions:		<u> </u>
Sample Time/Date	1	- Water Color:	Odor: Y / N	······································
Approx. Flow Rate:	gpm.	Sediment Description:		
Did well de-water?	If yes, Time:	Volume:	gal. DTW @ Sampling	3:
Time (2400 hr.)	Volume (gal.) pH C	conductivity Temperature (C / F)	D.O. (mg/L)	ORP (mV)
	LABO	DRATORY INFORMATION		
SAMPLE ID (#) CONTAINER REFRIG. PR	ESERV. TYPE LABORATORY	ANALY	SES

SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	ANALYSES
					////21020
					·····
	+				
	1 1				

COMMENTS: DEVELOPONLY / CASING BENT AT, 90 feet

Add/Replaced Bolt: ____

FORMER TEXACO SERVICE STATION #211170 Oakland, CA

SPECIAL EVENT OF June 10, 2009

Client/Facility#:	Chevron #2	211173		Job Number:	385866		
Site Address:	500 Grand	Avenue		Event Date	1.1	0-9	(inclusive)
City:	Oakland, C	A		Sampler:	AC	-HK	(inclusive)
Well ID	MW-8	F		Date Monitored:	6	-10-9	
Well Diameter Total Depth	21(4)	in. ft.	Volu Facto	me 3/4"= 0. or (VF) 4"= 0.	02 1"= 0.04 66 5"= 1.02	2"= 0.17 6"= 1.50 1	3"= 0.38 2"= 5.80
Depth to Water	12.41	ft. 0	Check if water colur	nn is less then 0.5 x3 case volume =	0 ft. ≈ Estimated Pure	ae Volume	
Depth to Water	w/ 80% Recharg	Je [(Height of V	Vater Column x 0.20)	+ DTW]:			yaı.
Purge Equipment:		S	ampling Equipment	:	Time Sta Time Co Depth to	arted: mpleted: Product:	(2400 hrs) (2400 hrs) ft
Stainless Steel Baile	r	P	ressure Bailer		Depth to	Water:	ft
Stack Pump	$ \longrightarrow $	D	iscrete Bailer		Visual C	onfirmation/Des	cription:
Suction Pump Grundfos	<u> </u>	P	eristaltic Pump	<u> </u>	Skimmer	/ Absorbant So	ock (circle one)
Peristaltic Pump		Ō	ther:		Amt Ren	noved from Skin	nmer: gal
QED Bladder Pump	/				Water Re	emoved:	gal
					Product	Transferred to:_	
Start Time (purge):		Weather Co	nditions:	Cla	nd.	
Sample Time/Da	te: 1410 /	6-10-9	Water Color	:	Odor: Y /	N	
Approx. Flow Rat	te:	gpm.	Sediment De	escription:	_		
Did well de-water	?	f yes, Time:	Volu	me:	gal. DTW @	Sampling:	12-41
Time (2400 hr.)	Volume (gal.)	рН	Conductivity (µmhos/cm - µS)	Temperature (C/F)	D.O. (mg/L)	ORI (mV	P /)
<u> </u>						~ 7	
						<u> </u>	
		L	ABORATORY IN	FORMATION			
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY		ANALYSE	S
	Δ χνοανία	II YES	HCI	LANCASTED	TPH CPO/2044	NOTEXIMITOR	(0000)

	(#) CONTAINEN	ILLI KIG.	FRESERV. ITPE	LABURAIURY	I ANALYSES I
MW- VE	6 x voa vial	YES	HCL	LANCASTER	TPH-GRO(8015)/BTEX+MTBE(8260)
01	Lx 500ml ambers	YES	NP	LANCASTER	TPH-DRO(8015)
	1				
COMMENTS:	Water level	has n	ot recovered	l since	6/5/9 development event
Herious DT	W was 8.99	. Ilmah	h to certain	loo and a	und well ach sough
taken à	the to den	Stoul 16	range Court	La aucuro	and wer when simple
			www. It and	TU ENSUIC	sample was collected today.
Add/Replaced L	_ock:	Add/F	Replaced Plug:		Add/Replaced Bolt:

.

Client/Facility#:	Chevron #211173	Job Number:	385866	
Site Address:	500 Grand Avenue	Event Date:	10-10-9	- (inclusive)
City:	Oakland, CA	Sampler:	AC-HK-	_(
Well ID Well Diameter Total Depth Depth to Water Depth to Water Depth to Water w Purge Equipment: Disposable Bailer Stainless Steel Bailer Stack Pump Suction Pump Grundfos Peristaltic Pump QED Bladder Pump Other:	MW-8G 2/4 in. 14.4 ft. 12.35 ft. 2.12 xVF xVF = xV80% Recharge [(Height of Water Column x Sampling Equip Disposable Bailer Pressure Bailer Discrete Bailer Peristaltic Pump QED Bladder Pui Other:	Date Monitored: Volume 3/4"= 0.02 Factor (VF) 4"= 0.66 column is less then 0.50 f	6-(0-1) 1"= 0.04 2"= 0.17 3"= 0.34 5"= 1.02 6"= 1.50 12"= 5.86 t. stimated Purge Volume:	gal. (2400 hrs) (2400 hrs) ft ft ft ft ft gal gal
Start Time (purge Sample Time/Dat Approx. Flow Rat Did well de-water Time (2400 hr.)):	er Conditions: Color:C ent Description: Volume:ga ty Temperature μS) (C 7 F)	Cloudy Odor: Y / N II. DTW @ Sampling: 12 D.O. ORP (mg/L) (mV)	-35

		L L	ABORATORY IN	FORMATION	
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	ANALYSES
MW-SG	🖉 x voa vial	YES	HCL	LANCASTER	TPH-GRO(8015)/BTEX+MTBE(8260)
	<u>'Zx 500ml</u> ambers	YES	NP	LANCASTER	TPH-DRO(8015)
	$D \neq 1$				
COMMENTS:	have tevel	has no	of recovered	since 6	5/09 development event.
Herious DTU	J was 9.92	2. Una	ble to rede	velop or pr	nge well. figh sample
taken due	to very slo	2 1900	very and t	<u>ensure</u>	a sample was collected today
Add/Replaced I	_ock:	Add/F	Replaced Plug:		Add/Replaced Bolt:

Client/Facility#:	Chevron #211173	Job Number:	385866	
Site Address:	500 Grand Avenue	Event Date:	6.10.9	- (inclusive)
City:	Oakland, CA	Sampler:	AC	_ (,
Well ID Well Diameter Total Depth Depth to Water Depth to Water w Purge Equipment: Disposable Bailer Stainless Steel Bailer Stack Pump Suction Pump Grundfos Peristaltic Pump QED Bladder Pump Other:	MW-84 2 K4 in. 14.98 ft. Check if water of 3.66 ft. Check if water of W/80% Recharge [(Height of Water Column x Book Recharge [(Height of Water Column x Disposable Bailer Pressure Bailer Peristaltic Pump QED Bladder Pum Other:	Date Monitored: Volume 3/4"= 0.02 Factor (VF) 4"= 0.66 column is less then 0.50 f	6 10 3"= 0.38 1"= 0.04 2"= 0.17 3"= 0.38 5"= 1.02 6"= 1.50 12"= 5.80 t. stimated Purge Volume: 2 2 5 Time Started:	gal. (2400 hrs) ft ft ft ft ft ft ft gal gal
Start Time (purge) Sample Time/Dat Approx. Flow Rat Did well de-water Time (2400 hr.) LO28 1032	$\begin{array}{c} \begin{array}{c} \begin{array}{c} 1024 \\ \hline \end{array} \\ \begin{array}{c} \hline \end{array} \\ \begin{array}{c} 105 \\ \hline \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 105 \\ \hline \end{array} \\ \end{array} \\$	$\begin{array}{c} \text{Pr Conditions:} \\ \text{Color:} \underline{C} \underline{C} \underline{C} \underline{C} \underline{C} \underline{C} \underline{C} C$	Clouch Ddor: Y / D Dil. DTW @ Sampling: <u>5.9</u> D.O. (mg/L) (mV)	2

LABORATORY INFORMATION							
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	ANALYSES		
MW-Q	6 x voa vial	YES	HCL	LANCASTER	TPH-GRO(8015)/BTEX+MTBE(8260)		
011	2 x 500ml ambers	YES	NP	LANCASTER	TPH-DRO(8015)		

COMMENTS:

Add/Replaced Bolt: _____

Client/Facility#:	Chevron #211173	Job Number:	385866	
Site Address:	500 Grand Avenue	Event Date	6.10-9	- (inclusivo)
City:	Oakland, CA	Sampler:	<u> </u>	
Well ID Well Diameter	<u>MW-81</u> 2/(4) in.	Date Monitored:	6-10-9	
Initial Total Depth Final Total Depth	14.60 ft. 14.61 ft.	Volume 3/4 Factor (VF) 4	4"= 0.02 1"= 0.04 2"= 0.17 4"= 0.66 5"= 1.02 6"= 1.50	3″= 0.38 12″= 5.80
Depth to Water	$\frac{6-5}{8.26} \text{ ft.} \qquad \text{Check if water column x 0 20} $	nn is less then 0.50 f 	ft. Estimated Purge Volume:	gal.
Purge Equipment: Disposable Bailer Stainless Steel Bailer Stack Pump Suction Pump Grundfos Peristaltic Pump QED Bladder Pump Other:	Sampling Equipment Disposable Bailer Pressure Bailer Discrete Bailer Peristaltic Pump QED Bladder Pump Other:		Time Started: Time Completed: Depth to Product: Depth to Water: Hydrocarbon Thickness: Visual Confirmation/Description:_/ Skimmer / Absorbant Sock (circle Amt Removed from Skimmer: Amt Removed from Well: Water Removed: Product Transferred to:	(2400 hrs) (2400 hrs) ft ft ft one) gal gal
Start Time (purge) Sample Time/Dat Approx. Flow Rate Did well de-water (2400 hr.) 0913 0916 0919 0918 0918 0918 0918 0918 0918 0918	$\begin{array}{c} \begin{array}{c} 0910 \\ \hline 12516/1009 \\ \hline 12516/1009 \\ \hline \\ $	inditions: $\frac{CLEAR}{escription:}$ $\frac{R}{ga}$ $\frac{R}{G}$	CLOWDY Ddor: N MODE al. DTW @ Sampling: D.O. ORP (mg/L) (mV)	RATE 96

LABORATORY INFORMATION							
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	ANALYSES		
MW- & L	🔓 x voa vial	YES	HCL	LANCÁSTER	TPH-GRO(8015)/BTEX+MTBE(8260)		
	ambers x 500ml ambers	YES	NP	LANCASTER	TPH-DRO(8015)		
		14			f si i		

COMMENTS:

Client/Facility#:	Chevron #211173	Job Number:	385866	
Site Address:	500 Grand Avenue	Event Date:	6-10-9	(inclusive)
City:	Oakland, CA	Sampler:	AC	
Well ID Well Diameter	MW-8 J 2 / 4) in	Date Monitored:	6-10-9	
Total Depth	14.97 tt.	Volume 3/4"= 0.02 Factor (VF) 4"= 0.66	1"= 0.04 2"= 0.17 3" 5"= 1.02 6"= 1.50 12"	= 0.38 = 5.80
Depth to Water	Check if water	column is less then 0.50 $(a = x^3 \cos y \sin y \sin y)$	ft.	<u> </u>
Depth to Water w	// 80% Recharge [(Height of Water Column :	x 0.20) + DTW]: 5-12		gal.
Purge Equipment:	Sampling Equi	pment:	Time Completed:	(2400 hrs)
Disposable Bailer	Disposable Baile	er	Depth to Product:	ft
Stainless Steel Bailer	Pressure Bailer		Hydrocarbon Thickness:	n ft
Stack Pump	Discrete Bailer		Visual Confirmation/Descri	iption:
Suction Pump Grundfos	Peristaltic Pump		Skimmer / Absorbant Sock	(circle one)
Peristaltic Pump	QED Bladder PL	imp	Amt Removed from Skimm	ner:gal
QED Bladder Pump			Amt Removed from Well:	gal
Other:			Product Transferred to:	
	2			
Start Time (purge)	: 0934 Weath	er Conditions:	Claud	
Sample Time/Dat	e: 1010 / 6-10.9 Water	Color: Clas	Odor: Y / N	
Approx. Flow Rate	e: Z gpm. Sedim	ent Description:		
Did well de-water	? <u>Ves</u> If yes, Time: <u>0941</u>	Volume: 14 g	al. DTW @ Sampling:	8.12
Time		0		
(2400 hr.)	Volume (gal.) pH Conductive (umbos/cm -	us) (C/F)	D.O. ORP	
0937	6 763 772	711	(114)	
0941	17 743 -112	$-\frac{c_{1}}{200}$ -	<u></u>	
0953	11 131 - She		<u> </u>	

	LABORATORY INFORMATION							
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	ANALYSES			
MW-Sa	🂪 🗴 x voa vial	YES	HCL	LANCASTER	TPH-GRO(8015)/BTEX+MTBE(8260)			
0)	2x 500ml ambers	YES	NP	LANCASTER	TPH-DRO(8015)			

_ . _ ____

COMMENTS:

_

Add/Replaced Bolt: _____

Client/Facility#:	Chevron #211173	Job Number:	385866	
Site Address:	500 Grand Avenue	Event Date:	6-10-9	– (inclusive)
City:	Oakland, CA	Sampler:	AC	_(
Well ID Well Diameter	MW-SK (2/4 in	Date Monitored:	6-10-9	-
Total Depth	18-87- ft.	Volume 3/4"= 0.02 Factor (VF) 4"= 0.66	1"≈ 0.04 2"= 0.17 3"= 0.3 5"= 1.02 6"= 1.50 12"= 5.8	8
Depth to Water	$\frac{1.31}{7.51} \text{ ft.} \qquad \Box \text{ Check if water} \\ 7.51 \text{ xVF} = 12 \text{ st.}$	column is less then 0.50 f	ft. Estimated Purge Volume: 9	gal
Depth to Water w	// 80% Recharge [(Height of Water Column x	0.20) + DTWJ: 4.81	_ [
Purge Equipment: Disposable Bailer	Sampling Equip Disposable Baile	ment:	Time Started: Time Completed: Depth to Product:	(2400 hrs) (2400 hrs) ft
Stainless Steel Bailer	Pressure Bailer		Depth to Water:	ft
Stack Pump	Discrete Bailer	······································	Visual Confirmation/Description	n
Suction Pump	Peristaltic Pump	······································	Skimmer / Absorbant Sock (airs	
Peristaltic Pump	QED Bladder Pur	np	Amt Removed from Skimmer:	gal
QED Bladder Pump			Amt Removed from Well:	gal
Other:	a		Product Transferred to:	
Start Time (purge)	Uleather Weather	er Conditions:	Cloudy	
Sample Time/Date	e: <u>1325 / 6-10-9</u> Water (Color: <u>Clean</u>	Odor: Y / 🖗	
Approx. Flow Rate	e:gpm. Sedime	nt Description:		
Did well de-water?	P If yes, Time:	Volume: ga	al. DTW @ Sampling:	81
Time (2400 hr.)	Volume (gal.) pH Conductivit Conductivit	(S) (C) / F)	D.O. ORP (mg/L) (mV)	
1242	$\frac{2}{6} \frac{1.32}{1.21} \frac{528}{544}$	- 23.2 -		
1258	7 7.16 549	21.9		

	LABORATORY INFORMATION							
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	ANALYSES			
MW-SV	6 x voa vial	YES	HCL	LANCASTER	TPH-GRO(8015)/BTEX+MTBE(8260)			
	Tx 500ml ambers	YES	NP	LANCASTER	TPH-DRO(8015)			
· <u>····································</u>								

COMMENTS:

Add/Replaced Bolt: _____

Client/Facility#:	Chevron #211173		Job Number:	385866	
Site Address:	500 Grand Avenue		Event Date:	6109	(inclusive)
City:	Oakland, CA		Sampler:	AC-HK	(
Well ID	MW-8L	[Date Monitored:	6.109	
Well Diameter	<u>(2)/4</u> in.	ve e Volum	ie 3/4"= 0.02	2 1"= 0.04 2"= 0.17 3"= 0.5	38
Total Depth	18-00 ft. 2.62	"See woles Factor	(VF) 4"= 0.66	6 5"= 1.02 6"= 1.50 12"= 5.8	30
Depth to Water	<u>091 tt</u>	Check if water colum	n is less then 0.50) ft.	
	xvf	<u> </u>	x3 case volume =	Estimated Purge Volume:	aal.
Depth to Water v	w/ 80% Recharge [(Height of	Water Column x 0.20)	DTW]:		
				Time Started:	(2400 hrs)
Purge Equipment:		Sampling Equipment:		Time Completed:	(2400 hrs)
Disposable Bailer		Disposable Bailer		Depth to Water	n #
Stainless Steel Bailer		Pressure Bailer		Hydrocarbon Thickness:	
Stack Pump		Discrete Bailer		Visual Confirmation/Description	n:
Suction Pump		Peristaltic Pump		Skimmer / Absorbert Ocal / //	
Grunatos Poristaltia Puma		QED Bladder Pump		Amt Removed from Skimmer	cie one)
OED Bladder Pump		Jtner:		Amt Removed from Well:	gal
Other:				Water Removed:	
				Product Transferred to:	
Sample Time/Dat Approx. Flow Rat Did well de-water Time (2400 hr.)	re: <u>1225 / 6-10 9</u> e: gpm. ? If yes, Time Volume (gal.) pH	Weather Color: Sediment De : Volur Conductivity (μπhos/cm - μS)	Chegenerature	Odor: VIN <u>Slight</u> moderati gal. DTW @ Sampling: D.O. ORP (mg/L) (mV)	-
		Hom-	in nu	11100	
		LABORATORY IN	FORMATION		
SÁMPLE ID	(#) CONTAINER REFRIG.	PRESERV. TYPE	LABORATORY	ANALYSES	
MW-81	6 x voa vial YES	HCL	LANCASTER	TPH-GRO(8015)/BTEX+MTBE(8260))
	X x 500ml ambers YES	NP	LANCASTER	TPH-DRO(8015)	
*	- Well dematered	with No	rechange		
	1100110 10 0000	hatte ad	laurent		
h	UNUTING TO MUC	Bottu re	Rosiements		
COMMENTS: <u>that casing</u> <u>Second</u> is to Available wa Add/Replaced Lo	has bubbled or make bubbled or make obstruction the column is ab	S in well deformed i n @ 2.62 6 ore screen in Replaced Plug:	. One c inside we clow TOC bloc itural.	Or 73 below TOC. 11 blocking use 1 no king water meter of Add/Replaced Bolt:	Appeans <u>mal ba</u> , len. om passing closon

Chevro	on Califo	rnia Reg	gion Ar	nalysis	s Request/	Chain of Custod
Lancaster Laboratories \$61189	-1\$	Acct. #:	12099	For Lan Sample # 5	caster Laboratories use	Group #: 017263
		le F		Analyses	Requested	76#1148871
Facility #: SS#211173-OML G-R#385866 Global ID#1 Site Address: 500 GRAND AVENUE, OAKLAND, CA Chevron PM:SHF Lead Consultant: RA Chevron PM:SHF Lead Consultant: RA	10600101355 VKJ		al Cleanup	Preserva	tion Codes	Preservative Codes $H = HCI$ $T = Thiosulfate$ $N = HNO_3$ $B = NaOH$ $S = H_2SO_4$ $O = Other$
Consultant/Office:	com) 51-7899	oil Containe Anno 1997	EX + MTBLE 8260 0 8021 □ H 8015 MOD GRO H 8015 MOD DRO □ Silica 0	K) full scan Oxyganatas al Lead Method	solved Lead Method	J value reporting needed Must meet lowest detection limits possible for 8260 compounds 8021 MTBE Confirmation Confirm highest hit by 8260 Confirm all hits by 8260 Run oxy's on highest hit
Sample identification GA- 6-10-9 MW-8F MW-8G MW-8H MW-8H MW-8T MW-8T MW-8T MW-8T MW-8T MW-8T	$\begin{array}{c} \text{Collected} \overleftarrow{o} & & \\ \hline & \hline & & \\ \hline & & \\ \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline$					Comments / Remarks
Turnaround Time Requested (TAT) (please circle)STD. TAT72 hour48 hour24 hour4 day5 day	Relinglished by: Relinguished by: A. Ana	all	LI TONA	ate Time	Received by: Received by: Received by:	Date Time
Data Package Options (please circle if required) QC Summary Type I - Full Type VI (Raw Data) □Ccelt Deliverable not nee EDD WIP (RWQCB) Disk	Relinquished by Relinquished by C UPS Re Temperature Upon	Commercial Carrier:	р	ate Time	Received by:	Date Time Date Time United Official Dates No

Lancaster Laboratories, Inc., 2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 (717) 656-2300 Copies: White and yellow should accompany samples to Lancaster Laboratories. The pink copy should be retained by the client.

4804.01 (north) Rev. 10/12/06

1

3

Analysis Report

2425 New Holland Fike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2661 • www.lancesterlabs.com

ANALYTICAL RESULTS

Prepared for:

Chevron c/o CRA Suite 110 2000 Opportunity Drive Roseville CA 95678

JUN-2 6 2009

GETTLER-RYAN INC. GENERAL CONTRACTORS

916-677-3407

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

June 25, 2009

SAMPLE GROUP

The sample group for this submittal is 1148871. Samples arrived at the laboratory on Friday, June 12, 2009. The PO# for this group is 211173 and the release number is MTI.

Client Description QA-T-090610 NA Water MW-8F-W-090610 Grab Water MW-8G-W-090610 Grab Water MW-8H-W-090610 Grab Water MW-8I-W-090610 Grab Water MW-8J-W-090610 Grab Water MW-8K-W-090610 Grab Water Lancaster Labs Number 5697718 5697719 5697720 5697721 5697722 5697722 5697723 5697724 5697725

METHODOLOGY

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Chronicle.

ELECTRONIC Gettler-Ryan, Inc. COPY TO

Attn: Cheryl Hansen

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 - 717-656-2300 Fax: 717-656-2661 - www.lancasterlabs.com

Questions? Contact your Client Services Representative Jill M Parker at (717) 656-2300

Respectfully Submitted,

Roha Cham

Robin C. Runkle Senior Specialist

Analysis Report

Group No. 1148871

Account Number: 12099

2000 Opportunity Drive Roseville CA 95678

Chevron c/o CRA

Suite 110

CA

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. WW 5697718

QA-T-090610 NA Water Facility# 211173 Job# 385866 GRD 500 Grand Avenue-Oakland T0600101355 QA

Collected: 06/10/2009

Submitted: 06/12/2009 09:05 Reported: 06/25/2009 at 16:07 Discard: 07/26/2009

GAOQA

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
SW-846	8260B GC/MS	Volatiles	ug/l	ug/l	
06054	Benzene	71-43-2	N.D.	0.5	1
06054	Ethylbenzene	100-41-4	N.D.	0.5	1
06054	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	1
06054	Toluene	108-88-3	N.D.	0.5	1
06054	Xylene (Total)	1330-20-7	N.D.	0.5	1
SW-846	8015B GC Vola	atiles	ug/l	ug/1	
01728	TPH-GRO N. CA water C6-C12	n.a.	N.D.	50	1

General Sample Comments

State of California Lab Certification No. 2116

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Chronicle

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution
01163	GC/MS VOA Water Prep BTEX+MTBE by 8260B	SW-846 5030B	1	Z091711AA	06/20/2009 11:46	Ginelle L Feister	1
01146	GC VOA Water Prep	SW-846 5030B	1	09169A20A	06/20/2009 11:46 06/18/2009 16:01	Ginelle L Feister Fanella S Zamcho	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	09169A20A	06/18/2009 16:01	Fanella S Zamcho	1

Analysis Report

Group No. 1148871

Account Number: 12099

2000 Opportunity Drive Roseville CA 95678

Chevron c/o CRA

Suite 110

CA

Page 1 of 1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Lancaster	Labora	tories	Sample	No.	WW	5697719	
MW-8F-W-09)0610 G	rab Wa	ter				

Facility# 211173 Job# 385866 GRD 500 Grand Avenue-Oakland T0600101355 MW-8F

Collected: 06/10/2009 14:10 by AC

Submitted: 06/12/2009 09:05 Reported: 06/25/2009 at 16:07 Discard: 07/26/2009

GAO8F

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
SW-846	8260B	GC/MS Vola	tiles	ug/l	ug/l	
06054	Benzene		71-43-2	N.D.	0.5	1
06054	Ethylbenzene		100-41-4	N.D.	0.5	1
06054	Methyl Tertiary Buty	yl Ether	1634-04-4	N.D.	0.5	1
06054	Toluene		108-88-3	N.D.	0.5	1
06054	Xylene (Total)		1330-20-7	N.D.	0.5	1
SW-846	8015B	GC Volatil	es	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	N.D.	50	1
SW-846	8015B	GC Extract	able TPH	ug/1	ug/l	
00009	IFA-DRO CA CIU-C28		n.a.	300	50	1

State of California Lab Certification No. 2116

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Chronicle

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution
01163	GC/MS VOA Water Prep	SW-846 5030B	1	Z091693AA	06/19/2009 03	50 Michael A Ziegler	· 1
06054	BTEX+MTBE by 8260B	SW-846 8260B	1	Z091693AA	06/19/2009 03	50 Michael A Ziegler	. 1
01146	GC VOA Water Prep	SW-846 5030B	1	09169A20A	06/18/2009 17	49 Fanella S Zamcho	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	09169A20A	06/18/2009 17	49 Fanella S Zamcho	1
02376	Extraction - Fuel/TPH (Waters)	SW-846 3510C	1	091640006A	06/15/2009 10:	15 Jessica Agosto	1
06609	TPH-DRO CA C10-C28	SW-846 8015B	1	091640006A	06/16/2009 19:	49 Diane V Do	1

Facility# 211173 Job# 385866 GRD

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

by AC

Lancaster	Laboratories	Sample	No.	WW	5697720	
-----------	--------------	--------	-----	----	---------	--

Group No. 1148871 CA .

500 Grand Avenue-Oakland T0600101355 MW-8G Account Number: 12099

Submitted: 06/12/2009 09:05 Reported: 06/25/2009 at 16:07 Discard: 07/26/2009

Collected: 06/10/2009 14:35

MW-8G-W-090610 Grab Water

Chevron c/o CRA Suite 110 2000 Opportunity Drive Roseville CA 95678

GA08G

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
SW-84	5 8260B GC/MS Vola	tiles	ug/1	ug/l	
06054	Benzene	71-43-2	N.D.	0.5	1
06054	Ethylbenzene	100-41-4	N.D.	0.5	1
06054	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	1
06054	Toluene	108-88-3	N.D.	0.5	1
06054	Xylene (Total)	1330-20-7	N.D.	0.5	1
volat to ac was p	tile nature of the analytes, it is djust the pH at the time of sample H = 3.	not appropriat receipt. The	e for the laboratory pH of this sample		
SW-846	8015B GC Volatil	es	ug/l	ug/l	
01728	TPH-GRO N. CA water C6-C12 Preservation requirements were no analysis did not have a pH < 2 at volatile nature of the analytes, to adjust the pH at the time of s was pH = 5.	50	1		
SW-846 06609	8015B GC Extracta	able TPH n.a.	ug/l 140	ug/1 50	1

General Sample Comments

State of California Lab Certification No. 2116

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Chronicle

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
01163	GC/MS VOA Water Prep	SW-846 5030B	1	Z091693AA	06/18/2009 22:4	8 Michael A Ziegler	1
06054	BTEX+MTBE by 8260B	SW-846 8260B	1	Z091693AA	06/18/2009 22:4	8 Michael A Ziegler	1
01146	GC VOA Water Prep	SW-846 5030B	1	09169A20A	06/18/2009 18-1	Fanella S Zamcho	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	09169A20A	06/18/2009 18-1	Fanella S Zamcho	1
02376	Extraction - Fuel/TPH (Waters)	SW-846 3510C	1	091640006A	06/15/2009 10:1	5 Jessica Agosto	1
06609	TPH-DRO CA C10-C28	SW-846 8015B	1	091640006A	06/16/2009 18:04	Diane V Do	1

Group No. 1148871

Account Number: 12099

2000 Opportunity Drive Roseville CA 95678

Chevron c/o CRA

Suite 110

CA

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. WW 5697721

MW-8H-W-090610 Grab Water Facility# 211173 Job# 385866 GRD 500 Grand Avenue-Oakland T0600101355 MW-8H

Collected: 06/10/2009 11:05 by AC

Submitted: 06/12/2009 09:05 Reported: 06/25/2009 at 16:07 Discard: 07/26/2009

GAO8H

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
SW-846	5 8260B	GC/MS Vola	tiles	ug/l	ug/l	
06054 06054 06054 06054 06054	Benzene Ethylbenzene Methyl Tertiary Buty Toluene Xylene (Total)	l Ether	71-43-2 100-41-4 1634-04-4 108-88-3 1330-20-7	N.D. N.D. 0.7 N.D. N.D.	0.5 0.5 0.5 0.5 0.5 0.5	1 1 1 1
SW-846 01728	8015B (TPH-GRO N. CA water (GC Volatil C6-C12	95 n.a.	ug/l N.D.	ug/1 50	1
SW-846 06609	8015B 0 TPH-DRO CA C10-C28	GC Extracta	ble TPH n.a.	ug/1 78	ug/1 50	1

State of California Lab Certification No. 2116

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Chronicle

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Tim	A	Analyst	Dilution
01163	GC/MS VOA Water Prep	SW-846 5030B	1	Z091693AA	06/19/2009	04 • 15	Michael & Ziegler	PACCOI
06054	BTEX+MTBE by 8260B	SW-846 8260B	1	Z091693AA	06/19/2009	04.15	Michael A Ziegler	1
01146	GC VOA Water Prep	SW-846 5030B	1	09169A20A	06/18/2009	18:33	Fanella S Zamcho	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	09169A20A	06/18/2009	18:33	Fanella S Zamcho	1
02376	Extraction - Fuel/TPH (Waters)	SW-846 3510C	1	091640006A	06/15/2009	10:15	Jessica Agosto	1
06609	TPH-DRO CA C10-C28	SW-846 8015B	1	091640006A	06/16/2009 1	18:46	Diane V Do	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Lancaster Laboratories Sample No. WW 5697722 Group No. 1148871 CA MW-8I-W-090610 Grab Water Facility# 211173 Job# 385866 GRD 500 Grand Avenue-Oakland T0600101355 MW-8I Collected: 06/10/2009 11:25 by AC Account Number: 12099 Submitted: 06/12/2009 09:05 Chevron c/o CRA Reported: 06/25/2009 at 16:07 Suite 110 Discard: 07/26/2009 2000 Chevron c/o CRA

GAO8I

CAT - No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
SW-846	5 8260B GC/MS	Volatiles	ug/l	ug/l	
06054 06054 06054 06054 06054	Benzene Ethylbenzene Methyl Tertiary Butyl Ethe Toluene Xylene (Total)	71-43-2 100-41-4 r 1634-04-4 108-88-3 1330-20-7	23 N.D. 5 N.D. N.D.	0.5 0.5 0.5 0.5 0.5 0.5	1 1 1 1
SW-846 01728	8015B GC Vo TPH-GRO N. CA water C6-C12	latiles n.a.	ug/1 420	ug/1 50	1
SW-846 06609	8015B GC Ex TPH-DRO CA C10-C28	n.a.	ug/l 360	ug/1 50	1

State of California Lab Certification No. 2116

General Sample Comments

Roseville CA 95678

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Chronicle									
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution		
01163	GC/MS VOA Water Prep	SW-846 5030B	1	Z091693AA	06/19/2009 04	.40 Michael & Ziegler	- 1		
06054	BTEX+MTBE by 8260B	SW-846 8260B	1	Z091693AA	06/19/2009 04	:40 Michael A Ziegler	• 1		
01146	GC VOA Water Prep	SW-846 5030B	1	09169A20A	06/18/2009 23	:37 Fanella S Zamcho	1		
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	09169A20A	06/18/2009 23	:37 Fanella S Zamcho	1		
02376	Extraction - Fuel/TPH (Waters)	SW-846 3510C	1	091640006A	06/15/2009 10	:15 Jessica Agosto	1		
06609	TPH-DRO CA C10-C28	SW-846 8015B	1	091640006A	06/16/2009 19	:07 Diane V Do	1		

Page 1 of 1

Page 1 of 1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Lancaster Laboratories Sample No. WW 5697723 MW-8J-W-090610 Grab Water Facility# 211173 Job# 385866 GRD 500 Grand Avenue-Oakland T0600101355 MW-8J Collected: 06/10/2009 10:10 by AC Account Number: 12099 Submitted: 06/12/2009 09:05 Chevron c/o CRA Reported: 06/25/2009 at 16:07 Suite 110 Discard: 07/26/2009 2000 2000 Opportunity Drive

GAO8J

CAT No. J	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
SW-846	8260B GC/MS Vola	atiles	ug/l	ug/l	
06054 E	Benzene	71-43-2	N.D.	0.5	1
06054 E	Ethylbenzene	100-41-4	N.D.	0.5	1
06054 M	Methyl Tertiary Butyl Ether	1634-04-4	10	0.5	1
06054 I	Toluene	108-88-3	N.D.	0.5	1
06054 X	Kylene (Total)	1330-20-7	N.D.	0.5	1
SW-846	8015B GC Volatil	es	ug/l	ug/l	
01728 T	TPH-GRO N. CA water C6-C12	n.a.	N.D.	50	1
SW-846	8015B GC Extract	able TPH	ug/l	ug/l	
06609 T	PH-DRO CA C10-C28	n.a.	400	50	1

State of California Lab Certification No. 2116

General Sample Comments

Roseville CA 95678

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Chronicle

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Tim	ne	Analyst	Dilution Factor
01163	GC/MS VOA Water Prep	SW-846 5030B	1	Z091693AA	06/19/2009	05:05	Michael A Ziegler	1
06054	BTEX+MTBE by 8260B	SW-846 8260B	1	Z091693AA	06/19/2009	05:05	Michael A Ziegler	1
01146	GC VOA Water Prep	SW-846 5030B	1	09169A20A	06/18/2009	19:16	Fanella S Zamcho	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	09169A20A	06/18/2009	19:16	Fanella S Zamcho	1
02376	Extraction - Fuel/TPH (Waters)	SW-846 3510C	1	091640006A	06/15/2009	10:15	Jessica Agosto	i
06609	TPH-DRO CA C10-C28	SW-846 8015B	1	091640006A	06/16/2009	19:28	Diane V Do	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Lancaster Laboratories Sample No. WW 5697724

Group No. 1148871 CA

Chevron c/o CRA

Suite 110

Account Number: 12099

2000 Opportunity Drive Roseville CA 95678

MW-8K-W-090610 Grab Water Facility# 211173 Job# 385866 GRD 500 Grand Avenue-Oakland T0600101355 MW-8K

Collected: 06/10/2009 13:25 by AC

Submitted: 06/12/2009 09:05 Reported: 06/25/2009 at 16:07 Discard: 07/26/2009

GAO8K

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
SW-846	6 8260B	GC/MS Vola	atiles	ug/l	ug/l	
06054 06054	Benzene Ethylbenzene		71-43-2	N.D.	0.5	1
06054	Methyl Tertiary But	yl Ether	100-41-4 1634-04-4	N.D. 2	0.5	1
06054	Toluene Xvlene (Total)		108-88-3	N.D.	0.5	1
00034	Aylene (IOCal)		1330-20-7	N.D.	0.5	1
SW-846	5 8015B	GC Volatil	es	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	N.D.	50	1
SW-846	5 8015B	GC Extract	able TPH	ug/l	ug/l	
06609	TPH-DRO CA C10-C28		n.a.	N.D.	50	1

General Sample Comments

State of California Lab Certification No. 2116

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Chronicle

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution
01163	GC/MS VOA Water Prep	SW-846 5030B	1	Z091693AA	06/19/2009 05.	30 Michael A Ziegler	1
06054	BTEX+MTBE by 8260B	SW-846 8260B	1	Z091693AA	06/19/2009 05:	30 Michael A Ziegler	1
01146	GC VOA Water Prep	SW-846 5030B	1	09169A20A	06/18/2009 19:	38 Fanella S Zamcho	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	09169A20A	06/18/2009 19:	38 Fanella S Zamcho	1
02376	Extraction - Fuel/TPH (Waters)	SW-846 3510C	1	091640006A	06/15/2009 10:	15 Jessica Agosto	1
06609	TPH-DRO CA C10-C28	SW-846 8015B	1	091640006A	06/16/2009 17:	01 Diane V Do	1

Page 1 of 1

Page 1 of 1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 *717-656-2300 Fax: 717-656-2681* www.lancasterlabs.com

Lancaster L	aboratories	Sample	No.	WW	5697725
-------------	-------------	--------	-----	----	---------

Group No. 1148871 CA

Chevron c/o CRA

Suite 110

Account Number: 12099

2000 Opportunity Drive Roseville CA 95678

MW-8L-W-090610 Grab Water Facility# 211173 Job# 385866 GRD 500 Grand Avenue-Oakland T0600101355 MW-8L

Collected: 06/10/2009 12:25 by AC

Submitted: 06/12/2009 09:05 Reported: 06/25/2009 at 16:07 Discard: 07/26/2009

GAO8L

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
SW-84	5 8260B	GC/MS Vola	tiles	ug/l	ug/l	
06054	Benzene		71-43-2	N.D.	0.5	1
06054	Ethylbenzene		100-41-4	N.D.	0.5	1
06054	Methyl Tertiary But	yl Ether	1634-04-4	N.D.	0.5	1
06054	Toluene		108-88-3	N.D.	0.5	1
06054	Xylene (Total)		1330-20-7	N.D.	0.5	1
analy volat to ac was p	ysis did not have a p tile nature of the an djust the pH at the f DH = 3.	pH < 2 at the malytes, it is time of sample	time of analy not appropria receipt. The	sis. Due to the ate for the laboratory e pH of this sample		
SW-846	8015B	GC Volatile	38	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	N.D.	50	1
SW-846	8015B	GC Extracta	able TPH	ug/l	ug/1	
06609	TPH-DRO CA C10-C28		n.a.	2,600	66	2

General Sample Comments

State of California Lab Certification No. 2116

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Chronicle

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	e	Analyst	Dilution
01163	GC/MS VOA Water Prep	SW-846 5030B	1	Z091693AA	06/19/2009 0	-	Michael & Ziegler	1
06054	BTEX+MTBE by 8260B	SW-846 8260B	1	Z091693AA	06/19/2009 0)5:56	Michael A Ziegler	1
01146	GC VOA Water Prep	SW-846 5030B	1	09169A20A	06/18/2009 2	20.00	Fanella S Zamcho	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	09169A20A	06/18/2009 2	20:00	Fanella S Zamcho	1
02376	Extraction - Fuel/TPH (Waters)	SW-846 3510C	1	091640006A	06/15/2009 1	L0:15	Jessica Agosto	1
06609	TPH-DRO CA C10-C28	SW-846 8015B	1	091640006A	06/16/2009 2	20:52	Diane V Do	2

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 3

Quality Control Summary

Client Name: Chevron c/o CRA Reported: 06/25/09 at 04:07 PM

Group Number: 1148871

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank <u>MDL</u>	Report <u>Units</u>	LCS <u>%REC</u>	LCSD <u>%REC</u>	LCS/LCSD <u>Limits</u>	RPD	<u>RPD Max</u>
Batch number: Z091693AA	Sample nu	mber(s): 56	97719-5693	725				
Benzene	N.D.	0.5	ug/1	86		80.116		
Ethylbenzene	N.D.	0.5	$u \sigma / 1$	95		80-110		
Methyl Tertiary Butyl Ether	N.D.	0.5	ug/1	27		20 112		
Toluene	N.D.	0.5	ug/1	05		/8-11/		
Xylene (Total)	ת א	0.5	ug/1	95		80-115		
,		0.5	ug/1	96		81-114		
Batch number: Z091711AA	Sample nu	mber(s): 56	97718					
Benzene	N.D.	0.5	ug/l	89		80-116		
Ethylbenzene	N.D.	0.5	ug/1	99		80-112		
Methyl Tertiary Butyl Ether	N.D.	0.5	ug/1	88		70-117		
Toluene	N.D.	0.5	ug/1	99		70-117 90 115		
Xylene (Total)	N.D.	0 5	ug/1	90		01 114		
-		0.5	49/1	25		01-114		
Batch number: 09169A20A	Sample nu	mber(s): 56	97718-5697	725				
TPH-GRO N. CA water C6-C12	N.D.	50.	ug/l	127	127	75-135	0	30
Batch number: 091640006A	Sample nur	mber(s): 569	97719-5697	725				
TPH-DRO CA C10-C28	N.D.	32.	ug/l	81	79	56-122	3	20

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

97725 UNSP1 30 30 30 30	K: 5697720			
30 30 30	. 3097720			
30 30 30				
30				
20				
30				
SPK · PE9763	16			
30	.0			
30				
30				
30				
30				
97725 UNSPK	: P697708			
3	30 30 PK: P69763 30 30 30 30 30 7725 UNSPK	30 30 PK: P697636 30 30 30 30 30 30 7725 UNSPK: P697708	30 30 PK: P697636 30 30 30 30 30 30 7725 UNSPK: P697708	30 30 PK: P697636 30 30 30 30 30 30 7725 UNSPK: P697708

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 3

Quality Control Summary

Client Name: Chevron c/o CRA Reported: 06/25/09 at 04:07 PM

Group Number: 1148871

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

TREE TIME TIME AFD MAK CONC CONC RPD MAX	Analysis Name	&REC	%REC	Limits	RPD	MAX	Conc	Conc	RPD	Max
--	---------------	------	------	--------	-----	-----	------	------	-----	-----

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Batch num	Name: BTEX+MTBE by 8260B			
Bucchi mun	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
5697719	83	82	93	87
5697720	84	82	92	86
5697721	83	83	92	85
5697722	82	79	90	89
5697723	81	83	88	94
5697724	83	84	90	85
5697725	83	83	90	05
Blank	82	83	91	00
LCS	82	84	92	87
MS	83	84	91	90
MSD	83	82	91 01	90
		52	21	88
Limits:	80-116	77-113	80-113	78-113
	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
5697718	82	82	91	86
Blank	81	79	92	80
LCS	81	82	92	80
MS	80	82	92	0.2
MSD	81	83	93	89
Limits:	80-116	77-113	80-113	78-113
Analysis N Batch numb	ame: TPH-GRO N. CA water (er: 09169A20A Trifluorotoluene-F	26-C12		
5697718	89			
5697719	88			
5697720	88			
5697721	87			
5697722	99			
5697723	88			

*- Outside of specification

88

87

128

5697725

Blank

LCS

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • WWW.lancasterlabs.com

Page 3 of 3

Quality Control Summary

Client Name: Chevron c/o CRA Reported: 06/25/09 at 04:07 PM

Group Number: 1148871

		Surrogate Quality Control
LCSD	133	
MS	128	
Limits:	63-135	
Analysis Nam Batch numbe:	me: TPH-DRO CA C10-C28 r: 091640006A	
	Orthoterphenyl	
5697719	85	
5697720	83	
5697721	85	
5697722	87	
5697723	85	
5697724	88	
5697725	71	
Blank	87	
LCS	112	
LCSD	106	
Limits:	59-131	

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

Lancaster Laboratories Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

N.D.	none detected	BMQL	Below Minimum Quantitation Level
TNTC	Too Numerous To Count	MPN	Most Probable Number
IU	International Units	CP Units	cobalt-chloroplatinate units
umhos/cm	micromhos/cm	NTU	nephelometric turbidity units
C	degrees Celsius	F	degrees Fahrenheit
Cal	(diet) calories	Ib.	pound(s)
meq	milliequivalents	kg	kilogram(s)
g	gram(s)	mg	milligram(s)
ug	microgram(s)	I	liter(s)
ug	milliliter(s)	ul	microliter(s)
m3	cubic meter(s)	fib >5 um/ml	fibers greater than 5 microns in length per mi

< less than – The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.

> greater than

ppm parts per million – One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.

ppb parts per billion

Dry weight basis Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture.

U.S. EPA data qualifiers:

Organic Qualifiers

- A TIC is a possible aldol-condensation product
- B Analyte was also detected in the blank
- **C** Pesticide result confirmed by GC/MS
- D Compound quatitated on a diluted sample
- E Concentration exceeds the calibration range of the instrument
- J Estimated value
- N Presumptive evidence of a compound (TICs only)P Concentration difference between primary and
- confirmation columns >25%
- U Compound was not detected
- X,Y,Z Defined in case narrative

Inorganic Qualifiers

- **B** Value is <CRDL, but \ge IDL
- E Estimated due to interference
- M Duplicate injection precision not met
- N Spike amount not within control limits
- S Method of standard additions (MSA) used for calculation
- U Compound was not detected
- W Post digestion spike out of control limits
 - Duplicate analysis not within control limits
- + Correlation coefficient for MSA < 0.995

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY – In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.

Table 3. Results of Groundwater Analyses Concentrations in µg/l (ppb)

.

.

	Oate			Ethyl-		TPH as	TPH as	TPH
Well	Sampled	<u>Benzene</u>	Toluene	benzene	<u>Xylenes</u>	<u>Gasoline</u>	<u>Diesel</u>	<u>Other</u> 2
MW-BA	06/14/88	<0.5 ¹	1.5	<2	6.6	••		
	10/28/88	<0.5	<1	<2	<1			
	09/28/89	<0.5	<0.5	<0.5	ও	<50		••
	11/29/89	<0.5	1.0	<0.5	<0.5	<50	1,200	<50
	01/24/90	<0.5	<0.5	<0.5	<0.5	<100		2,800
	04/26/90	<0.5	<0.5	<0.5	<0.5	<2,500	<50	890
	07/26/90	6.0	<0.5	<0.5	<0.5	<50	<50	<50
	10/18/90	<0,5	<0.5	<0.5	<0.5	<50	<50	<50
	01/08/91	<0.3	<0.3	<0.3	<0.3	<30	· <50	130 ³
	04/23/91	<0.5	<0.5	<0.5	<0.5	<50	<50	<500
	07/23/91	<0.5	<0.5	<0.5	<0.5	<50	<50	<500
	10/24/91	<0.5	<0.5	<0.5	<0.5	<50	<50	<500
	01/23/92	<0.5	<0.5	<0.5	<0.5	<50	700 ⁵	
	04/30/92	<0.5	<0.5	<0.5	<0.5	<50	<50	<500
MW-88	06/14/88	<0.5	<1	<2	<1		••	
	10/21/88	<0.5	<1	<2	3.1		••	
	09/28/89	<0.5	<0.5	<0.5	<3	<50		
	11/29/89	<0.5	<0.5	<0.5	<0.5	<50	<50	. 380
	01/24/90	<0.5	<0.5	<0.5	<0.5	<100		350
	04/26/90	<0.5	<0.5	<0.5	<0.5	<50	<50	110
	07/26/90	<0.5	<0.5	<0.5	<0,5	<50	<50	<50
	10/18/90	<0.5	<0.5	<0.5	<0.5	<50	<50	<50
	01/08/91	<0.3	<0.3	<0.3	<0.3	<30	<50	180 ³
	04/23/91	8.4	2.5	<0.5	5.1	<50	<50	<500
	07/23/91	<0.5	1.1	<0.5	2.0	<50	<50	<500
	10/24/91	<0.5	<0.5	<0.5	<0.5	<50	<50	<500
	01/23/92	<0.5	<0.5	<0.5	<0,5	<50	550 ⁵	••
	04/30/92	<0.5	<0.5	<0.5	<0.5	<50	<50	<500
MW-8C	06/14/88	5.3	3.5	2.6	13.0	••		
	10/21/88	<0.5	<1	<2	<1	••		
	09/28/89	<0.5	<0.5	<0,5	<3.0	<50		
	11/29/89	<0.5	<0.5	<0.5	<0.5	<50	<50	190
	01/24/90	0.9	<0.5	<0.5	<0.5	<100		480
	04/26/90	<0.5	<0.5	<0.5	<0.5	<50 ·	<50	160
	07/26/90	<0.5	<0.5	<0.5	<0.5	<50	<50	<50
	10/18/90	<0.5	<0.5	<0.5	<0.5	<50	⁻ <50	<50
	01/08/91	<0.3	<0.3	<0.3	<0.3	<30	76	1105
	04/23/91	12	25	3.7	19	800	<50	<500
	07/23/91	<0.5	0.6	<0.5	<0.5	<50	<50	<500
	10/24/91	<0.5	<0.5	<0.5	<0.5	<50	<50	<500
	01/23/92	1.2	<0.5	<0.5	<0.5	<50	840	* ==
	04/50/92	<0.5	<0.5	<0.5	<0.5	<50	150	<500

:

.

.

.

Table 3 (continued)

.

	Date			Ethyl-		TPH as	TPH as	TPH
<u>Well</u>	Sampled	Benzene	Toluene	<u>benzene</u>	<u>Xylenes</u>	Gasoline	<u>Diesel</u>	<u>Other</u> 2
							-	
MW-8E	10/25/88	1,400	510	2.9	420			
	09/28/89	5,600	3,100	<500	<3,000	22,000		••
	11/29/89	4,900	2,600	<250	1,490	15,000	6,800	<50
	01/24/90	10,100	3,340	540	1,790	36,000		4,900
	04/26/90	11,000	5,700	840	2,900	48,000	1,400	<50
	07/26/90	15,000	6,200	520	4,700	56,000	<50	<50
	(10/18/90)	1,500	1,300	170	1,800	15,000	620	<50
	01/08/91	14,000	5,400	860	1,700	51,000	17,000	520 3
	04/23/91	19,000	6,100	750	4,100	50,000	4,800	<500
	07/23/91	16,000	5,400	1,100	4,000	47,000	3,5004	<500
	10/24/91	19,000	6,100	1,100	4,900	40,000	9,400	<500
	01/23/92	3,800	2,800	610	4,800	38,000	9,8004	
	04/30/92	20,000	3,700	500	3,900	41,000	9,600	<500
MW-8F	04/14/89	<0.5	<1	<2	<1			
	09/28/89	<0.5	<0.5	<0.5	ব	<50		
	11/29/89	<0.5	<0.5	<0.5	<0.5	<50	<50	<50
	01/24/90	<0.5	<0.5	<0.5	<0.5	<100		<300
	04/26/90	<0.5	<0.5	<0.5	<0.5	<50	<50	110
	(07/26/90)	<0.5	<0.5	<0.5	<0.5	<50	<50	<50
	10/18/90	<0.5	<0.5	<0.5	<0.5	<50	360	<50
	01/08/91	<0.3	<0.3	<0.3	<0.3	<30	380	6203
	04/23/91	5.9	3.1	<0.5	2.7	<50	1,400	3,200
	07/23/91	<0.5	0.8	<0.5	<0.5	<50	60	<500
	10/24/91	<0.5	<0.5	<0.5	<0.5	<50	<50	<500
	01/23/92	4.0	1.3	<0.5	1.9	<50	1,300 ⁵	
	04/30/92	<0.5	<0.5	<0.5	<0.5	<50	<50	<500
MW-8G	04/14/89	<0.5	<1	<2	<1			
	09/28/89	<0.5	<0.5	<0.5	<3	<50		
	11/29/89	<0.5	<0.5	<0.5	<0.5	<50	<50	<50
	01/24/90	<0.5	<0.5	<0.5	<0.5	<100		650
	04/26/90	<0.5	<0.5	<0.5	<0.5	<50	<50	120
	(07/26/90)	<0.5	<0.5	<0.5	<0.5	<50	<50	<50
	10/18/90	<0.5	<0.5	<0.5	. <0.5	<50	460	<50
	01/08/91	<0.3	<0.3	<0.3	<0.3	<30	220	2603
	04/23/91	0.9	0.9	<0.5	<0.5	<50	1,100	<500
	07/23/91	0.5	1.5	<0.5	3.0	<50	<50	<500
	10/24/91	0.6	<0.5	<0.5	<0.5	<50		••
	01/24/92	<0.5	<0.5	<0.5	<0.5	<50	980 ⁵	
	04/30/92	1.7	<0.5	<0.5	<0.5	<50	<50	<500

•

Table 3 (continued)

~

.

	Date			Ethyl-		TPH as	TPH as	TPH
<u>Well</u>	<u>Sampled</u>	<u>Benzene</u>	<u>Toluene</u>	benzene	<u>Xylenes</u>	<u>Gasoline</u>	<u>Diesel</u>	<u>Other</u> 2
MV-8H	01/24/90	14.8	14.8	10.8	38.8	460	••	<300
	04/26/90	67	19	43	64	830	<50	820
	(07/26/90)	45	1.3	12	8.2	190	<50	<50
	10/18/90	17	2.5	14	8.5	300	<50	<50
	01/08/91	12	2.2	6.4	4.0	320	180	893
	04/23/91	1.5	<0.5	<0.5	<0.5	<50	730	<500
	07/23/91	21	1.8 ~	9.7	2.6	270	<50	<500
	10/24/91	7.6	1.0	3.5	2.4	120	70	<500
	01/23/92	7.2	1.2	4.7	3.2	110	60 ⁵	
-	04/30/92	11 .	1.5	5.6	3.6	1 90	90	<500
MW-81	01/24/90	116	2 .9	13	30.5	580	••	440
	04/26/90	2,400	100	230	350	4,400	<50	1,400
	(07/26/90)	<0.5	<0.5	<0.5	<0.5	<50	<50	<50
	10/18/90	92	4.1	37	21	530	<50	<50
-	01/08/91	500	4.3	36	26	1,300	710	2103
	04/23/91	1,600	17	100	86	1,500	1,100	900
	07/23/91	1,600	30	140	63	1,700	260	<500
	10/25/91	470	6.0	76	13	760	230	<500
	01/23/92	420	7.2	27	20	820	210 ⁴	••
	04/30/92	1,800	19	180	25	2,200	430	<500
MM-81	01/24/90	2.7	<0.5	1	2.6	<100		<300
	04/26/90	28	7.7	19	24	160	<50	320
	(07/26/90)	<0.5	<0.5	<0.5	<0.5	[.] <50	<50	<50
	10/18/90	8.3	<0,5	2.6	1.5	<50	<50	<\$0
	01/08/91	0.41	<0.3	<0.3	0,52	71	<50	693
	04/23/91	16	2.2	9.3	4.6	300	550	<500
	07/23/91	4.6	<0.5	3.1	<0.5	<50	<50	<500
	10/24/91	0.8	<0.5	<0,5	<0.5	. <50	<50	<500
	01/23/92	0.8	<0.5	<0.5	<0.5	<50	<50	••
	04/30/92	2.3	<0.5	<0.5	<0.5	<50	<50	<500
OB-3	11/06/89	420	8	6	64	4,000		
	04/26/90	160	19	5	8.6	1,000	3,200	<50
	(07/26/90)	<0 .5	<0.5	<0.5	0.9	68	1,200	<50
	10/18/90	260	69	35	490	3,200	2,100	<50

:•

٠

.

.

.

Harding Lawson Associates

<u>Well</u>	Date <u>Sampled</u>	Benzene	Toluene	Ethyl- <u>benzene</u>	<u>Xylenes</u>	TPH as <u>Gasoline</u>	TPH as <u>Diesel</u>	TPK <u>Other</u> 2
OB-4	11/06/89	500	11	10	24	4,000		
	04/26/90	360	10	10	18	460	3,900	<50
	(07/26/90)	23	3.7	1.6	5.9	200	1,600	<50
	10/18/90	600	540	83	840	4,300	330	<50
DWAL		1.0	1.0	680	100	1.750		

Table 3 (continued)

DWAL Drinking water action levels, State of California Department of Health Services (April, 1989). 1 <0.5 indicates that concentrations are below the reporting limit of 0.5 μ g/l. 2 "Heavy" petroleum hydrocarbons such as waste oil, mineral spirits, jet fuel, or fuel oil. 3 TPH as motor oil analyses; analyst did not feel that motor oil was indicted on the chromatogram. 4 Petroleum hydrocarbons quantified as diesel appear to be light hydrocarbons 5 Petroleum hydrocarbons quantified as diesel appear to be heavier hydrocarbons than diesel. (07/26/90) Sample not analyzed for BTEX and TPH as gasoline within 14-day holding time

--

~

Samples not collected/not analyzed for compound

Harding Lawson Associates

Table 1. Summary of Water Level Data

	Top of Casing Elevation*	Depth to Gro	ound Water et)
<u>Well</u>	(feet)	07/14/88	10/21/88
MW-8A	99.72	2.92	3.32
MW-8B	101.11	1,91	1.04
MW-8C	98.41	7.43	7.46
MW-8E	99.38		5.02

.*

. .

			Ta	ble 4. Histor	rical Record of	Depth to Groundw	later			
Well		<u>MW-8A</u>	<u>MW-88</u>	<u>MW-8C</u>	MW-BE	MV-8F	<u> MW-8G</u>	<u>MW-8H</u>	<u>MM-91</u>	<u>MW-8j</u>
Casing Elev.		99.72	101.11	98.41	99.38	97.94	97.24	98.57	97.94	97.38
Date										
JAN 24, 90	GV ELEV	91.47	100.60	90.87	96.07	88.06	86.57	94.97	91-94	91.44
FEB 27, 90	GW ELEV	95.21	100.73	91.15	96.13	87.95	86.68	95.06	92.03	91.60
MAR 27,90	GW ELEV	95.64	100.66	91.24	96.09	88.69	87.45	95.0 3	92.02	91.58
APR 24,90	GW ELEV	96.10	100.69	91.51	96-07	88.95	87.59	95.02	91.98	91.39
MAY 29, 90	GW ELEV	97.37	100.84	87.88	96.36	89.67	86.61	PAVED	PAVED .	PAVED
JUNE 28, 90	GW ELEV	97.37	100.71	89.79	96.24	88.95	87.45	PAVED	PAVED	PAVED
Well		<u>MW-8A</u>	<u>MW-8B</u>	<u>HW-8C</u>	<u>MW-8E</u>	<u>MW-8F</u>	MV-8G	MW-BH	<u>MW-81</u>	<u>HM-81</u>
Top of <u>Casing_Elev.</u>		99.72	101.11	98.41	99.38	97.94	97.24	98.90	98.27	97.69
Date										
JUL 24, 90	GW ELEV	97.31	100.62	90.98	96.06	88.74	87.54	95.14	92.05	91.21
AUG 24, 90	GW ELEV	94.74	100.60	90.30	95.90	87.13	86.08	92.14	91 .9 3	93.89
SEPT 25, 90	GW ELEV	95.24	100.56	91.05	95.94	87 .2 5	BLOCKED	95.10	91.90	91.01
OCT 18, 90	GW ELEV	96.11	100.55	90.92	95.86	86.89	85.62	95.07	91.85	90.96
NOV 28, 90	GW ELEV	89.69	100.54	88.60	96,00	87.02	85.57	94.94	92.16	91.D1

Table 4. Historical Record of Depth to Groundwater

All measurement are in feet

.

TOC = Top of casing elevation relative to arbitrary datum of 100 feet

GW Elev = Groundwater elevation relative to arbitrary datum

Harding Lawson Associates

.

Well		MW-BA	<u>MW-8B</u>	MW-8C	MW-8E	MW-8F	<u>MW-8G</u>	<u>MW-8H</u>	<u>MW~81</u>	<u>18-wm</u>
Top of <u>Casing Elev.</u>		99.72	101.11	98.41	99.38	97.94	97.24	98.90	98.27	97.69
Date										
MAR 29, 91	GW ELEV	97.40	100.85	91.94	96.10	89.35	BLOCKED	95.20	92.12	91.98
APR 23, 91	GW ELEV	97.41	100.80	91.74	96,36	89.09	87.80	92.87	91.98	93.88
JUN 10, 91	GW ELEV	96.90	100.69	90.33	96.30	88.36	86.95 .	95.22	92.16	91.52
JUN 28, 91	GW ELEV	97.19	100.70	91.05	96.13	88.46	86.94	95.07	91.97	91.38
JUL 23, 91	GW ELEV	97.37	100.59	91-04	96.14	88.15	86.50	95.05	91.86	91.02
AUG 22, 91	GW ELEY	97.04	100.49	89.62	95.90	86.50	84.68	95.10	91.83	90.94
OCT 03, 91	GW ELEV	97.26	100.59	90.48	96.06	86.36	84.15	95.11	91.80	90.92
OCT 24, 91	GW ELEV	97.19	100.49	90.73	95.93	86.19	83 - 82	94.88	91.70	90.81
NOV 26, 91	GW ELEV	96.69	100.38	90.82	96.04	86.31	84.22	95.02	91.69	91.10
DEC 30, 91	GW ELEV	97.44	100.81	91.26	95.85	87.43	85.30	95.06	91.86	91.28
JAN 23, 92	GW ELEV	97.15	100.57	91.53	95.81	87.70	85.94	95.16	91.94	91.38
FEB 28, 92	GW ELEV	97.24	100.82	91.72	96.03	88.01	86.41	94.46	91.72	91.41
MAR 26, 92	GW ELEV	97.59	101.04	91.72	96.37	89.16	88.04	94.69	91.82	91.49
APR 30, 92	GW ELEV	97.62	100.51	91.51	95.62	88.58	88.24	95.44	91.79	91.21

Table 4. Historical Record of Groundwater Elevations

,

All measurements are in feet

Top of casing elevation relative to arbitrary datum of 100 feet

GW Elev = Groundwater elevation relative to arbitrary datum of 100 feet

TABLE 1 GROUNDWATER ANALYTICAL RESULTS TRPH

Former Texaco Service Station 500 Grand Avenue at Euclid Avenue Oakland, California

Well	Date	TRPH						
Number	Sampled	(ppb)						
MW-8F	02/16/99	<1.000						
	06/04/99	<1.000						
	08/31/99	<5,000						
	11/03/99	<5,000						
	02/29/00	<5,000						
	04/24/00	<5,000						
	07/25/00	<5,000						
	11/06/00	<5,000						
MW-8G	02/16/99	<1,000						
	06/04/99	23,000						
	08/31/99	<5,000						
	11/03/99	<5,000						
	02/29/00	<5,000						
	04/24/00	<5,000						
	07/25/00	<5,000						
	11/06/00	<5,000						
MW-8H	11/03/99	24,000						
	04/24/00	35,200						
	07/25/00	13,200						
	11/06/00	<5,000						
MW-81	11/03/99	11,000						
	04/24/00	<5,000						
	07/25/00	11,100						
	11/06/00	<5,000						
MW-8J	11/03/99	10.000						
	04/24/00	<5,000						
	07/25/00	6,400						
	11/06/00	<5,000						
MW-8K	11/03/99	<5.000						
	04/24/00	<5.000						
	07/25/00	9,100						
	11/06/00	<5,000						
TRPH	= Total recoverable p	etroleum hydrocarbons						
	(quantified as oil an	(quantified as oil and grease)						
ppo	= Pans per billion	Its per billion						
	to the right	to the right						

APPENDIX D

SENSITIVE RECEPTOR AND WELL SURVEY INFORMATION

WELL SURVEY INFORMATION

FORMER TEXACO SERVICE STATION 21-1173 500 GRAND AVENUE OAKLAND, CALIFORNIA

Figure I.D.	Water Well Drillers Report Number	Township/Range Section/Tract	Well ID	Well Owner	Location	Well Type	Date Installed	Depth (fbg)	Screened Interval (fbg)	Approximate Distance from Site
1	425627A	01S-04W-26	C-1	Chevron	460 Grand Ave	Monitoring	12/14/92	15	5-15	1/8 mile
2	425627B	01S-04W-26	C-2	Chevron	460 Grand Ave	Monitoring	12/14/92	15	5-15	1/8 mile
3	425627C	01S-04W-26	C-3	Chevron	460 Grand Ave	Monitoring	12/14/92	15	5-15	1/8 mile
4	293467	01S-04W-25	MW-1	Quik Stop Markets	363 Grand Ave	Monitoring	11/10/88	27	16.5-26.5	1/4 mile
5	293470	01S-04W-25	MW-2	Quik Stop Markets	363 Grand Ave	Monitoring	11/11/88	35.5	15-35	1/4 mile
6	293469	01S-04W-25	MW-3	Quik Stop Markets	363 Grand Ave	Monitoring	11/16/88	36	24-34	1/4 mile
7	293442	01S-04W-25	MW-4	Quik Stop Markets	363 Grand Ave	Monitoring	3/5/90	31.5	15-30	1/4 mile
8	293371	01S-04W-25	MW-5	Quik Stop Markets	363 Grand Ave	Monitoring	3/5/90	31.5	15-30	1/4 mile
9	293354	01S-04W-25	MW-6	Quik Stop Markets	363 Grand Ave	Monitoring	3/6/90	30	15-30	1/4 mile
10	293355	01S-04W-25	MW-7	Quik Stop Markets	363 Grand Ave	Monitoring	3/7/90	23.5	13.5-23.5	1/4 mile
11	293356	01S-04W-25	MW-8	Quik Stop Markets	363 Grand Ave	Monitoring	3/7/90	31.5	18.5-28.5	1/4 mile
12	293474	01S-04W-25	RW-1	Quik Stop Markets	363 Grand Ave	Monitoring	8/14/90	35	25-35	1/4 mile
13	372178	01S-04W-25	S-1	Shell	350 Grand Ave	Monitoring	1/7/91	17	7-16.0	1/4 mile
14	372179	01S-04W-25	S-2	Shell	350 Grand Ave	Monitoring	1/7/91	15	7-15.0	1/4 mile
15	372180	01S-04W-25	S-3	Shell	350 Grand Ave	Monitoring	1/7/91	14.5	7-14.5	1/4 mile
16		01S-04W-25	MW-2	Chevron	3026 Lakeshore Blvd	Monitoring	8/7/91	12	2-12.0	1/4 mile
17		01S-04W-25	MW-3	Chevron	3026 Lakeshore Blvd	Monitoring	8/13/91	18	8-18.0	1/4 mile
18		01S-04W-25	MW-4	Chevron	3026 Lakeshore Blvd	Monitoring	8/13/91	15	5-15.0	1/4 mile
19		01S-04W-25	MW-1	Chevron	3026 Lakeshore Blvd	Monitoring	8/19/92	19	4-19.0	1/4 mile
20		01S-04W-25	MW-5	Chevron	3026 Lakeshore Blvd	Monitoring	6/12/92	35	15-35	1/4 mile
21		01S-04W-25	MW-6	Chevron	3026 Lakeshore Blvd	Monitoring	6/12/92	20	4-19.0	1/4 mile
22		01S-04W-25	MW-7	Chevron	3026 Lakeshore Blvd	Monitoring	6/12/92	19	4-19.0	1/4 mile
23		01S-04W-25	MW-8	Chevron	3026 Lakeshore Blvd	Monitoring	6/19/92	25	5-25.0	1/4 mile

Abbreviations/Notes:

- - = Information not available

fbg = feet below grade

Well location information obtained from California Department of Water Resources

APPENDIX E

PREFERENTIAL PATHWAY STUDY INFORMATION

APPENDIX F

PREVIOUS SITE PLANS

EXPLANATION

20

SCALE IN FEET

40

- Approximate boundary of excavation at the time of tank removal (April 14 and 15, 1992)
- Soil sample (SS) from bottom of tank excavation (approximately 10 feet below grade) Δ
- Soil sample (SS) from wall of tank excavation (5 to 10 feet below grade)

SUNGAN GARRO

- Approximate boundary of soil excavation (May 5 and 6, 1992)
- 0 Soil sample from pump island (PI) of fuel line (FL) prior to excavation (5 to 6 feet below grade)
- Soil sample (BE) from bottom of evcavation (4.5 to 9 feet below grade)
- Soil sample (WS) from wall of excavation (5 to 7.5 feet below grade)
- (2.3) Total petroleum hydrocarbons as gasoline, in mg/kg (ppm)

