108 Cutting Boulevard Biotimond CA 91804

April 20, 1992

SIIP1109

Mr. Paul Smith Alameda County Environmental Health Department Hazardous Materials Division 80 Swan Way, Room 200 Oakland, CA 94621

Dear Mr. Smith:

Enclosed is a copy of our Quarterly Technical Report dated March 2, 1992 for our former Texaco Service Station located at 2225 Telegraph Avenue in Oakland, California. This report covers the period from October through December, 1991.

Please call me at (510) 236-3541 if you have any questions.

Best Regards,

upervisor

RRZ:pap

Enclosure

Mr. Tom Callaghan cc:

California Regional Water

Quality Control Board

San Francisco Bay Area Region 2101 Webster Street, Ste. 500

Oakland, CA 94612

pr: OKT

KEG

2225TA.PS

A Report Prepared for

Texaco Refining and Marketing, Inc. 10 Universal City Plaza Universal City, California 91608

QUARTERLY TECHNICAL REPORT
FOURTH QUARTER OF 1991
FORMER TEXACO STATION NO. 6248800235
500 GRAND AVENUE
OAKLAND, CALIFORNIA

HLA Job No. 2251,169.03 March 4, 1992 1991 Report No. 4 5112 1109

by

Jeanna S. Hudson Registered Geologist

Stephen J. Osborne Geotechnical Engineer JEANNA S. HUDSON
NO. 4492

PROFESSIONAL PROPERTY OF CALIFORNIA OF CALIFORNIA

Harding Lawson Associates 1355 Willow Way, Suite 109 Concord, California 94520 510/687-9660

INTRODUCTION

This Quarterly Technical Report (QTR) presents the results of investigation activities by Harding Lawson Associates (HLA) during the fourth quarter of 1991 at the former site of Texaco service station No. 6248800235, 500 Grand Avenue, Oakland, California (Plate 1). This station has been operated by Exxon Company U.S.A. (Exxon) since 1988. During the fourth quarter 1991, Exxon's lease expired and the station was closed. The site is currently enclosed by a locked chain-link fence. This report summarizes previous work at the site, presents fourth quarter activities, and describes planned activities for the first quarter of 1992.

SUMMARY OF PREVIOUS WORK

Texaco Refining and Marketing Inc. retained HLA to conduct a sensitive receptor survey at the subject location in May 1988. In June 1988, Texaco Refining and Marketing Inc. requested that HLA proceed with a subsurface investigation to evaluate whether hydrocarbons had affected shallow soil or groundwater. By the end of the second quarter of 1991, HLA had completed the following tasks in the site investigation:

- Conducted a soil-gas survey consisting of 18 soil-gas probe locations on or near the site.
- Installed and developed four 2-inch-diameter groundwater monitoring wells (MW-8A, MW-8B, MW-8C, and MW-8D) and six 4-inch-diameter monitoring wells (MW-8E, MW-8F, MW-8G, MW-8H, MW-8I, and MW-8J). Locations are shown on Plate 2.

- Obtained groundwater samples from each well on a quarterly basis and analyzed them for benzene, toluene, ethylbenzene, and total xylenes (BTEX), and total petroleum hydrocarbons (TPH) as gasoline and as diesel fuel.
- Gauged water levels and estimated the direction of groundwater flow.
- Performed slug tests in MW-8C and MW-8E to estimate hydraulic conductivity.
- Drilled and sampled 15 soil borings to delineate the extent of hydrocarbons in the vadose zone (Plate 2).
- Analyzed soil samples for BTEX and TPH as gasoline.
- Analyzed soil samples from B-6, B-7, B-8, B-9, B-10, B-11, B-12, B-13, B-14, and B-8K for TPH as diesel fuel.
- Analyzed a soil sample from B-13 for halogenated volatile organics, semi-volatile organics, oil and grease, and selected metals.
- Pumped and disposed of 5,000 gallons of water from the tank backfill as an interim remedial measure.
- Submitted an Environmental Assessment Report, dated
 September 22, 1989, to Texaco.
- Issued an Interim Remedial Plan, dated December 7, 1990, in lieu of a Third Quarter Technical Report.
- Excavated the clay sewer pipes and contaminated soil from an abandoned utility trench near the former waste oil tank location. Analyzed soil and water for hydrocarbons.

RESULTS OF PREVIOUS WORK

The results of the soil-gas survey indicated petroleum hydrocarbon vapors in the unsaturated zone near the underground storage tanks and dispenser islands. Analyses of water samples from the four observation wells in the storage tank backfill

showed the presence of dissolved petroleum hydrocarbons in groundwater adjacent to the underground tanks.

Soil samples and drill cuttings indicate that the subsurface materials at the site consist of clay and minor amounts of interbedded clayey sand. Analysis of slug test data obtained from MW-3C and MW-3E indicate a hydraulic conductivity of 0.02 to 0.03 foot/day. Groundwater would be expected to move through the soils relatively slowly.

Local groundwater flow is to the south and southeast, toward Lake Merritt (Plate 3). Historical water-level data from monitoring wells across the site show that, in most wells, the water table has fluctuated 2.5 to 3.0 feet since early 1988. Water levels in MW-8A fluctuated as much as 8 feet; those data are suspect and are often not used in contouring the potentiometric groundwater surface.

Results of Soil Analyses

Samples from 15 soil borings and seven monitoring well locations were chemically analyzed to evaluate the horizontal and vertical extent of petroleum hydrocarbons in the subsurface. The analytical data are summarized in Tables 1 and 2. A contour map showing concentrations of TPH as gasoline in the vadose-zone soil is presented on Plate 4. For this map, the vadose zone was defined by comparing sample depths to static water levels at the time of sampling.

Plate 4 depicts a vadose-zone hydrocarbon plume that apparently originates near the underground tanks and extends off site to MW-8J. Significant concentrations of TPH as gasoline are also found in the area of the dispenser islands. The highest concentration, 2900 parts per million (ppm), was found in a soil sample collected at a depth of 1.5 feet in B-11. In general, BTEX concentrations in the soil are either below detection limits or very low (Table 1).

The results of soil analyses for TPH as diesel fuel indicate concentrations ranging from nondetectable to 460 ppm (B-9); most of the soil samples with detectable concentrations contained less than 100 ppm TPH as diesel fuel.

One soil sample collected at 2.5 feet below grade in B-13 was analyzed for semi-volatile organic compounds, halogenated volatile organics, total oil and grease, and selected metals. A summary of the analytical results are presented in Table 2.

Results of Previous Groundwater Analyses

Table 3 presents the results of groundwater analyses obtained since 1988. Groundwater from monitoring wells MW-8E, MW-8H, MW-8I, and MW-8J, and observation wells OB-3 and OB-4 contained benzene in concentrations that exceed the Department of Health Services Drinking Water Action Levels (DWALs). In groundwater samples from wells MW-8A, MW-8B, and MW-8C, BTEX concentrations have typically been either nondetectable or below the DWALs.

A contour map showing benzene concentrations in groundwater is presented on Plate 5; Plate 6 is a contour map showing concentrations of TPH as gasoline. These maps suggest that hydrocarbons in groundwater may have originated near the dispenser islands. Water from monitoring well MW-8E, crossgradient and down-gradient of the dispenser islands, has the highest concentrations of BTEX, TPH as gasoline, and TPH as diesel fuel.

TPH as gasoline was detected in groundwater downgradient of MW-8E in samples from MW-8H, MW-8I, and MW-8J. Samples from MW-8F and MW-8G typically contained nondetectable concentrations of BTEX and TPH as gasoline. However, TPH as diesel fuel and "heavy" hydrocarbons, above the range of diesel fuel, have been detected in groundwater from these downgradient locations since the second quarter 1990.

Waste Oil Tank Removal

In the third quarter 1990, workers installing overfill containment devices on the underground storage tanks discovered floating hydrocarbons around the waste oil tank. Exxon removed this tank in September 1990. Waste oil and water were pumped from the tank backfill and disposed of by Exxon. Tank backfill material and affected soil were also excavated and disposed of by Exxon. Two vitrified clay sewer lines, apparently containing petroleum hydrocarbon products, were discovered adjacent to the tank pit during the excavation process. Texaco Environmental

Services excavated the clay lines and contaminated soil from the surrounding utility trench during the first quarter of 1991.

ACCOMPLISHMENTS DURING FOURTH OUARTER OF 1991

During the fourth quarter of 1991, HLA accomplished the following tasks at the 500 Grand Avenue site:

- Purged and sampled four on-site monitoring wells, and five off-site monitoring wells. Water samples were analyzed for BTEX, TPH as gasoline, TPH as diesel fuel, and TPH as motor oil.
- Measured water levels in nine monitoring wells (Table 4).

Groundwater Sampling

HLA continued to monitor water levels and groundwater quality at the subject location during the fourth quarter of 1991. Each well was purged while monitoring temperature, conductivity, and pH of the water. The water samples were collected and transported, under chain-of-custody, to NET Pacific, Inc. in Santa Rosa, California. All of the water samples were analyzed for BTEX and TPH as gasoline. All samples except MW-8G were analyzed for TPH as diesel fuel and TPH as motor oil; because of slow recharge, samples for diesel fuel and motor oil were not obtained from MW-8G.

Results of Recent Groundwater Analyses

Table 3 and Plates 5 and 6 summarize results of the third quarter groundwater analyses. Benzene concentrations exceeded

the DWAL (1.0 parts per billion [ppb]) in groundwater from MW-8E, MW-8H and MW-8I. Groundwater from monitoring wells MW-8E and MW-8I contained the highest concentrations of benzene, 19,000 ppb and 470 ppb, respectively. TPH as gasoline was detected in groundwater from monitoring wells MW-8E, MW-8H, and MW-8I. Concentrations ranged from 120 ppb in MW-8H to 40,000 ppb in MW-8E.

TPH as diesel fuel was detected in groundwater from three of the eight monitoring wells sampled. We are not aware of records of diesel fuel being sold at the site in the past. Some of the heavier hydrocarbons detected may therefore result from the presence of aged gasoline, or from hydrocarbons originating in the area of the former waste oil tank. Laboratory reports, included in the Appendix, indicate that the petroleum hydrocarbons quantified as diesel fuel in groundwater from MW-8E appear to be lighter hydrocarbons.

Plate 3 is the most recent contour map of the potentiometric groundwater surface, based on water levels measured on October 24, 1991. No significant changes in groundwater flow direction are apparent.

ANTICIPATED ACTIVITIES FOR FIRST QUARTER, 1992

Quarterly groundwater samples will be collected and analyzed for BTEX and TPH as gasoline, as diesel fuel, and as motor oil. Water levels will be measured on a monthly basis.

LIST OF TABLES

Table	1	Results of Soil Sample Analyses
Table	2	Summary of Chemical Analyses, Soil Sample B-13
Table	3	Results of Groundwater Analyses
Table	4	Historical Record of Depth to Groundwater

LIST OF ILLUSTRATIONS

Plate	1	Regional Map
Plate	2	Site Plan
Plate	3	Potentiometric Surface - October 24, 1991
Plate	4	TPH as gasoline Concentrations in Vadose Zone
Plate	5	Benzene Concentrations in Groundwater
Plate	6	TPH as gasoline Concentrations in Groundwater

LIST OF APPENDICES

LABORATORY RESULTS OF GROUNDWATER ANALYSES

Table 1. Results of Soil Sample Analyses (concentrations in mg/kg [ppm])

Boring/	Sample			_				
Well <u>Number</u>	Depth <u>(feet)</u>	Benzene	<u>Toluene</u>	Ethyl - <u>benzene</u>	<u>Xylenes</u>	TPH as <u>Gasoline</u>	TPH as <u>Diesel</u>	TPH Other**
B-1	6.5	ND	מא	ND	ND	12	NA	
B-3	4.0	ND	ND	ND	5	520	NA	
B-4	3.5	ND	1	3.5	13	510	NA	
B-5	5.5	NO	ND	ND	ND	<10	NA	
B-5	10.5	ND	ND	ND	ND	ND	NA	
B-5	16.0	ND	ND	ND	ND	ND	NA	
B-6	2.0	ND	0.08	ND	ND	1.0	<100*	<100*
B-6	4.5	ND	0.09	ND	ND	ND	<10	<10
B-7	3.0	ND	6.7	5.1	50	580	<100*	<100*
B-8	2.0	(0 <u>.05</u>)	ND	ND	0.34	3.4	<10	<10
8-9	2.5	0.05	0.32	0.81	6.4	100	460	<100*
B-8K	1.5	NO	ND	ND	ND	2.1		ND
	3.0	ND	0.05	ND	ND	6.6		ND
	5.5	ND	ND	0.08	0.05	84		20
B-10	1.5	0.28	ND	0.20	0.18	8.4		ND
	2.5	0.09	ND	ND	ND	ND		ND
	5.5	ND	ND	ND	ND	ND		ND
	8.5	ND	ND	ND	ND	ND		ND
B-11	1.5	ND	ND	5.4	1.6	2,900		30
	2.5	ND	ND	0.31	0.12	62		11
	5.5	ND	ND	0.06	ND	17		ND
	8.5	NO	NO	ND	ND	ND		ND
B-12	1.0	0.22	0.11	0.18	0.42	13		ND
	2.5	ND	ND	0.19	0.83	49		ND
	4.5	ND	ND	1.27	0.67	1,200		94
	6.0	ND	0.06	ND	ND	ND		ND
B-13	1.5	ND	ND	ND	ND	ND	ND	ND
	2.5	ND	ND	1.7	5.4	130	ND	1,000
	3.5	ND	0.06	0.06	0.30	26	ND	250
B-14	1.5	ND	ND	ND	ND	4.8	ND	85
	3.5	ND	ND	ND	ND	2.3	ND	62
MW-8D	1.3	ND	0.40	ND	0.50	10	NA.	
MW-8E	5.5	0.82	6.5	5.5	26	750	NA.	
MV-8F	11.0	ND -	ND	ND	ND	ND	NA	
M₩-8G	6.0	ND	ND	ND	ND	ND	NA	
MW-8H	1.5	ND	0.07	ND	ND	ND		ND
	3.0	ND	0.24	ND	ND	2.6		ND
	5.5	NĐ	ND	0.30	0.83	550		66
	10.5	ND	ND	ND	ND	ND		ND
MW-81	1.5	0.10	ND	ND	ND	3.0		ND
	3.5	0.06	ND	ND	0.02	ND		ND
	5.5	ND	ND	2.7	9.2	280		ND
	10.5	ND	ND	ND .	ND	ND		ND
MW-8J	1.5	0.18	0.09	0.06	0.05	24		ND
— -	3.0	0.08	8.14	0.04	ND	13		33
	5.5	ND	ND	25	9.2	2,100		83
	10.5	ND	0.02	ND	ND	8		ND
		- 		•••		-		nu

⁼

ND NA *

Not detected Not analyzed Laboratory increased reporting limits because of matrix interference. "Heavy" petroleum hydrocarbons such as waste oil, mineral spīrits, jet fuel, or fuel oil.

Harding Lawson Associates

Table 2. Summary of Chemical Analyses Soil Sample 8-13 (2.5 feet deep)

Semi-volatile Organics; EPA Test Method 8270

- Analyses for 55 semi-volatile organic compounds
- Results were below reporting limit on all except:

Naphthalene 2 Methylnapthalene Bis (2-ethylhexyl) phthalate

Halogenated Volatile Organics; EPA Test Method 8010

- Analyses for 29 compounds
- Results were below reporting limits on all except:

Trichloroethane

mqq 60.0

Total Oil and Grease (IR); EPA Test Method 413.2

Selected heavy metals - EPA Test Method 6010

Cadmium Chromium Lead Zinc Below reporting limit 36 ppm Below reporting limit 41 ppm

Table 3. Results of Groundwater Analyses
Concentrations in µg/l (ppb)

	Date			Ethyl-		TPH as	TPH as	TPH
<u>Well</u>	Sampled	Benzene	<u>Toluene</u>	<u>benzene</u>	<u>Xylenes</u>	Gasoline	Diesel	<u>Other</u> 2
MU-8A	06/14/88	<0.5 ¹	1.5	<2	6.6			
	10/28/88	<0.5	<1	<2	<1			
	09/28/89	<0.5	<0.5	<0.5	उ	<50		
	11/29/89	<0.5	1.0	<0.5	<0.5	<50	1,200	<50
	01/24/90	<0.5	<0.5	<0.5	<0.5	<100		2,800
	04/26/90	<0.5	<0.5	<0.5	<0.5	<2,500	<50	890
	07/26/90	6.9 *	<0.5	<0.5	<0.5	<50	<50	<50
	10/18/90	<0.5	<0.5	<0.5	<0.5	<50	<50	<50_
	01/08/91	<0.3	<0.3	<0.3	<0.3	<30	<50	130 ³
	04/23/91	<0.5	<0.5	<0.5	<0.5	<50	<50	<500
	07/23/91	<0.5	<0.5	<0.5	<0.5	<50	<50	<500
	10/24/91	<0.5	<0.5	<0.5	<0.5	<50	<50	<500
MW-8B	06/14/88	<0.5	<1	<2	<1			
	10/21/88	<0.5	<1	<2	3.1			
	09/28/89	<0.5	<0.5	<0.5	<3	<50		
	11/29/89	<0.5	<0.5	<0.5	<0.5	<50	<50	380
	01/24/90	<0.5	<0.5	<0.5	<0.5	<100		350
	04/26/90	<0.5	<0.5	<0.5	<0.5	<50	<50	110
	07/26/90	<0.5	<0.5	<0.5	<0.5	<50	<50	<50
	10/18/90	<0.5	<0.5	<0.5	<0.5	<50	<50	<50
	01/08/91	<0.3	<0.3	<0.3	<0.3	<30	<50	180 ³
	04/23/91	A124	2.5	<0.5	5.1	<50	<50	<500
	07/23/91	<0.5	1.1	<0.5	2.0	<50	<50	<500
	10/24/91	<0.5	<0.5	<0.5	<0.5	<50	<50	<500
		an Colad						
MW-8C	06/14/88		3.5	2.6	13.0	* *		
	10/21/88	<0.5	<1	<2	<1			
	09/28/89	<0.5	<0.5	<0.5	<3.0	<50	**	••
	11/29/89	<0.5	<0.5	<0.5	<0.5	<50	<50	190
	01/24/90		<0.5	<0.5	<0.5	<100		480
	04/26/90	₹0.5	<0.5	<0.5	<0.5	<50	<50	160
	07/26/90	<0.5	<0.5	<0.5	<0.5	<50	<50	<50
	10/18/90	<0.5	<0.5	<0.5	<0.5	<50	<50	<50 ₂
	01/08/91	<0.3	<0.3	<0.3	<0.3	<30	76	110 ³
	04/23/91	133)	25	3.7	19	800	<50	<500
	07/23/91	<0.5	0.6	<0.5	<0.5	<50	<50	<500
	10/24/91	<0.5	<0.5	<0.5	<0.5	<50	<50	<500

Table 3 (continued)

	Date			Ethyl-		TPH as	TPH as	TPH
Well	Sampled_	Benzene	<u>Toluene</u>	benzene	<u>Xylenes</u>	<u>Gasoline</u>	<u>Diesel</u>	Other ²
MW-8H	01/24/90	14.8	14.8	10.8	38.8	460		<300
	04/26/90	67	19	43	64	830	<50	820
	(07/26/90)	45	1.3	12	8.2	190	<50	<50
	10/18/90	17	2.5	14	8.5	300	<50	<50
	01/08/91	12	2.2	6.4	4.0	320	180	893
	04/23/91	1.5	<0.5	<0.5	<0.5	<50	730	<500
	07/23/91	21	1.8	9.7	2.6	270	<50	<500
	10/24/91	7.6	1.0	3.5	2.4	120	70	<500
MW-8I	01/24/90	116	2.9	13	30.5	580		440
	04/26/90	2,400	100	230	350	4,400	<50	1,400
	(07/26/90)	<0.5	<0.5	<0.5	<0.5	<50	<50	<50
	10/18/90	92	4.1	37	21	530	<50	<50
	01/08/91	500	4.3	36	26	1,300	710	210 ³
	04/23/91	1,600	17	100	86	1,500	1,100	900
	07/23/91	1,600	30	140	63	1,700	260	<500
	10/25/91	470	6.0	76	13	760	230	<500
MW-8J	01/24/90	2.7	<0.5	1	2.6	<100		<300
	04/26/90	28	7.7	19	24	160	<50	320
	(07/26/90)	<0.5	<0.5	<0.5	<0.5	<50	<50	<50
	10/18/90	8.3	<0.5	2.6	1.5	<50	<50	<50
	01/08/91	0.41	<0.3	<0.3	0.52	71	<50	693
	04/23/91	16	2.2	9.3	4.6	300	550	<500
	07/23/91	4.6	<0.5	3.1	<0.5	<50	<50	<500
	10/24/91	8.0	<0.5	<0.5	<0.5	<50	<50	<500
OB-3	11/06/89	420	8	6	64	4,000	••	••
	04/26/90	160	19	5	8.6	1,000	3,200	<50
	(07/26/90)	<0.5	<0.5	<0.5	0.9	68	1,200	<50
	10/18/90	260	69	35	490	3,200	2,100	<50
	01/08/91						•	
	04/23/91			••	••		••	
	07/23/91						••	••
	10/24/91		••					

Table 3 (continued)

<u>Well</u>	Date Sampled	Benzene	Toluene	Ethyl- <u>benzene</u>	<u>Xylenes</u>	TPH as <u>Gasoline</u>	TPH as	TPH Other ²
08-4	11/06/89	500	11	10	24	4,000	••	••
	04/26/90	360	10	10	18	460	3,900	<50
	(07/26/90)	23	3.7	1.6	5.9	200	1,600	<50
	10/18/90	600	540	83	840	4,300	330	<50
	01/08/91							
	04/23/91							
	07/23/91							
	10/24/91	••	••					
DWAL			1.0	680	100	1,750		

DWAL = Drinking water action levels, State of California Department of Health Services (April, 1989).

1 <0.5 indicates that concentrations are below the reporting limit of 0.5 μ g/l.

2 "Heavy" petroleum hydrocarbons such as waste oil, mineral spirits, jet fuel, or fuel oil. 3

TPH as motor oil analyses; analyst did not feel that motor oil was indicted on the chromatogram.

Petroleum hydrocarbons quantified as diesel appear to be light hydrocarbons

(07/26/90) Sample not analyzed for BTEX and TPH as gasoline within 14-day holding time -- = Samples not collected/not analyzed for compound

032597M/R53


Table 4. Historical Record of Depth to Groundwater

Well	MW-8A	<u>MW-8B</u>	MW-8C	MW-8E	MW-8F	MW-8G	<u>₩₩-8H</u>	<u>MW-81</u>	MW-8J
Top of Casing Elev.	99.72	101.11	98.41	99.38	97.94	97.24	98.90	98.27	97.69
Date									
NOV 28, 90 GW ELEV	89.69	100.54	88.60	96.00	87.02	85.57	94.94	92.16	91.01
JAN 08, 91 GW ELEV	93.63	100.57	90.81	95.90	87.98	86.44	94.91	92.10	91.30
FEB 02, 91 GW ELEV	96.98	100.58	91.56	95.93	87.93	86.56	94.89	91.96	91.67
MAR 29, 91 GW ELEV	97.40	100.85	91.94	96.10	89.35	BLOCKED	95.20	92.12	91.98
APR 23, 91 GW ELEV	97.41	100.80	91.74	96.36	89.09	87.80	92.87	91.98	93.88
JUN 10, 91 GW ELEV	96.90	100.69	90.33	96.30	88.36	86.95	95.22	92.16	91.52
JUN 28, 91 GW ELEV	97.19	100.70	91.05	96.13	88.46	86.94	95.07	91.97	91.38
JUL 23, 91 GW ELEV	97.37	100.59	91.04	96.14	88.15	86.50	95.05	91.86	91.02
AUG 22, 91 GW ELEV	97.04	100.49	89.62	95.90	86.50	84.68	95.10	91.83	90.94
OCT 03, 91 GW ELEV	97.26	100.59	90.48	96.06	86.36	84.15	9 5.11	91.80	90.92
OCT 24, 91 GW ELEV	97.19	100.49	90.73	95.93	86.19	83.82	94.88	91.70	90.81
NOV 26, 91 GW ELEV	96.69	100.38	90.82	96.04	86.31	84.22	95.02	91.69	91.10
DEC 30, 91 GW ELEV	97.44	100.81	91.26	95.85	87.43	85.30	95.06	91.86	91.28

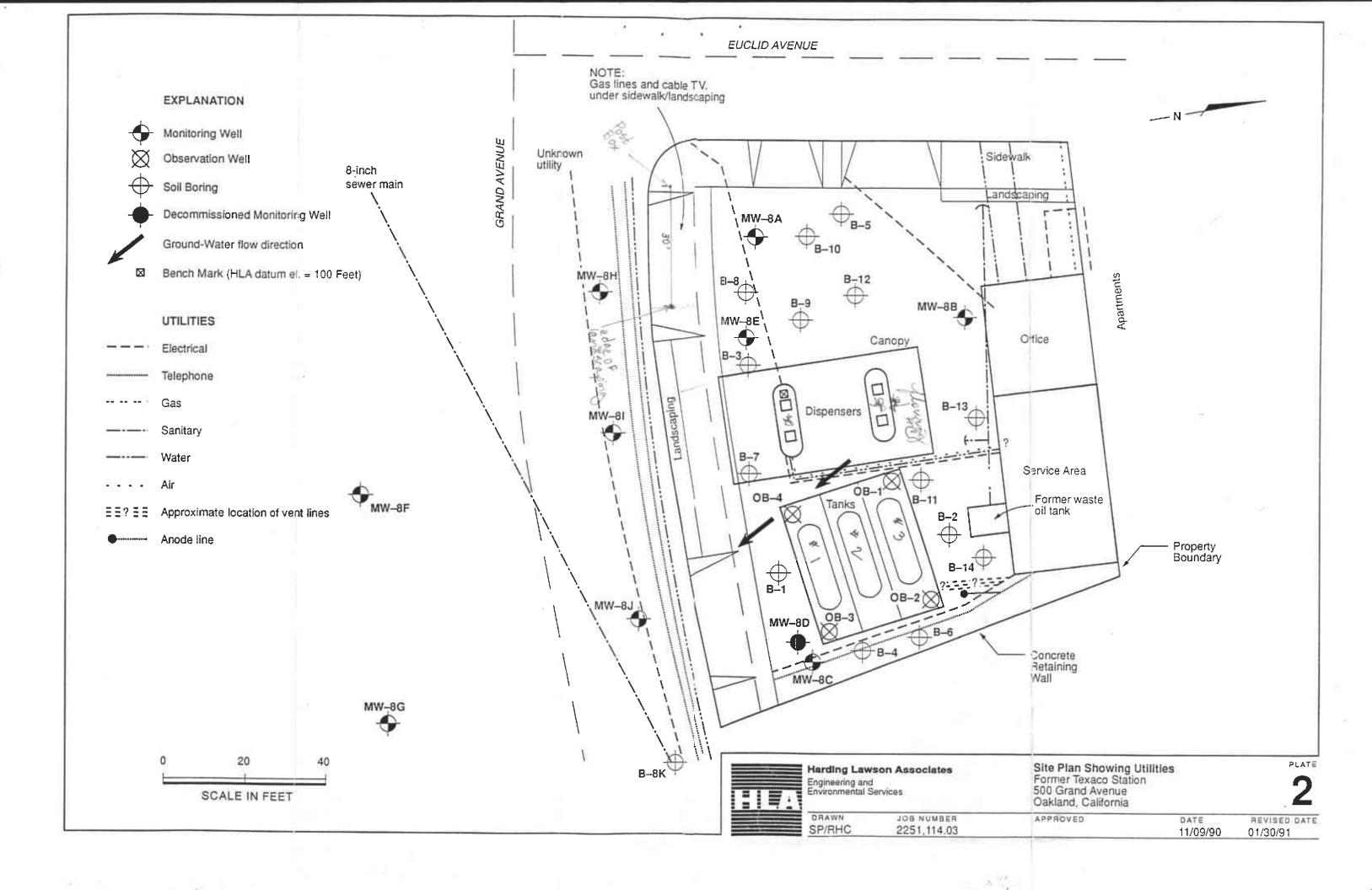
All measurements are in feet

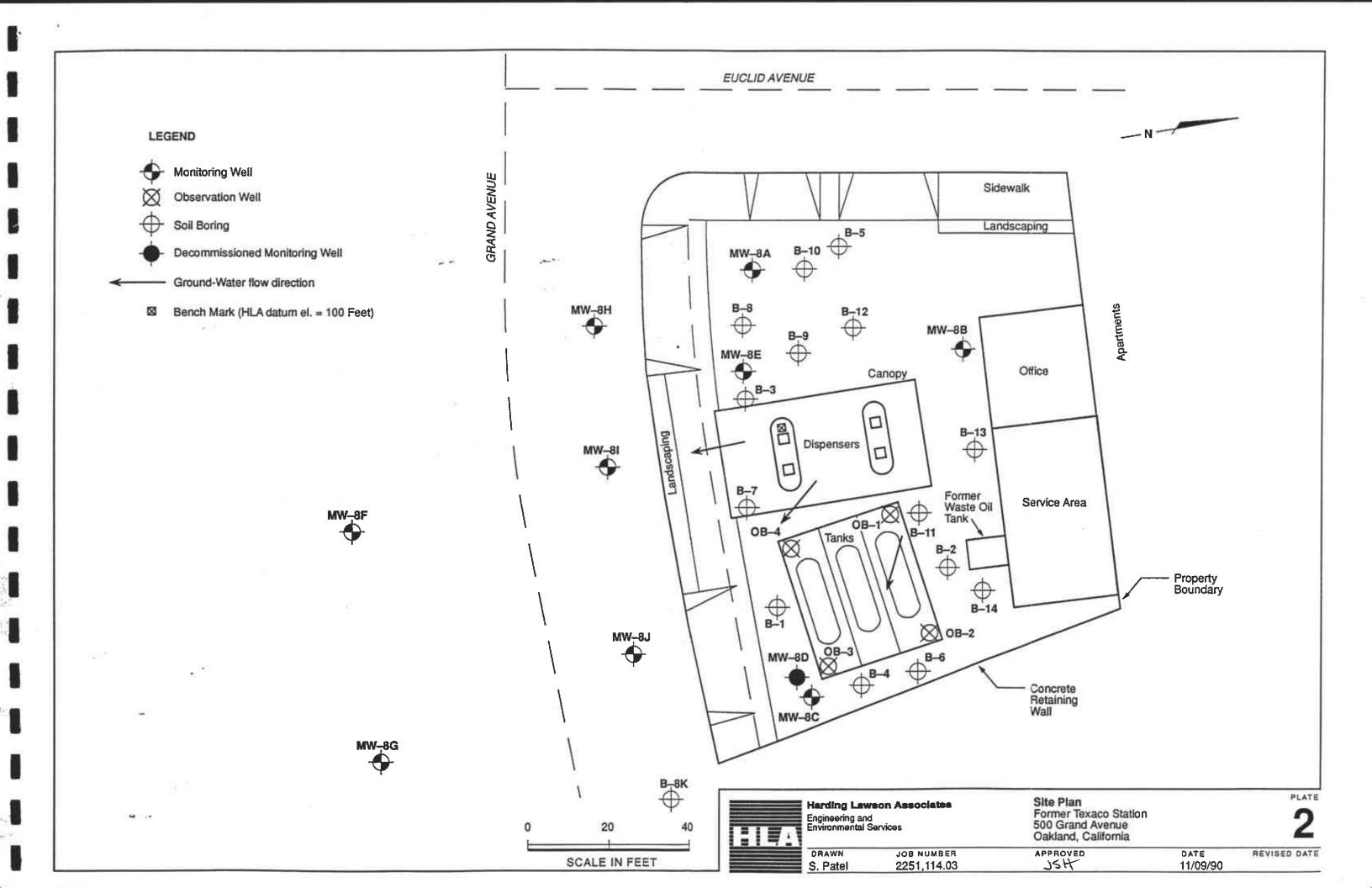
TOC = Top of casing elevation relative to arbitrary datum of 100 feet GW Elev = Groundwater elevation relative to arbitrary datum

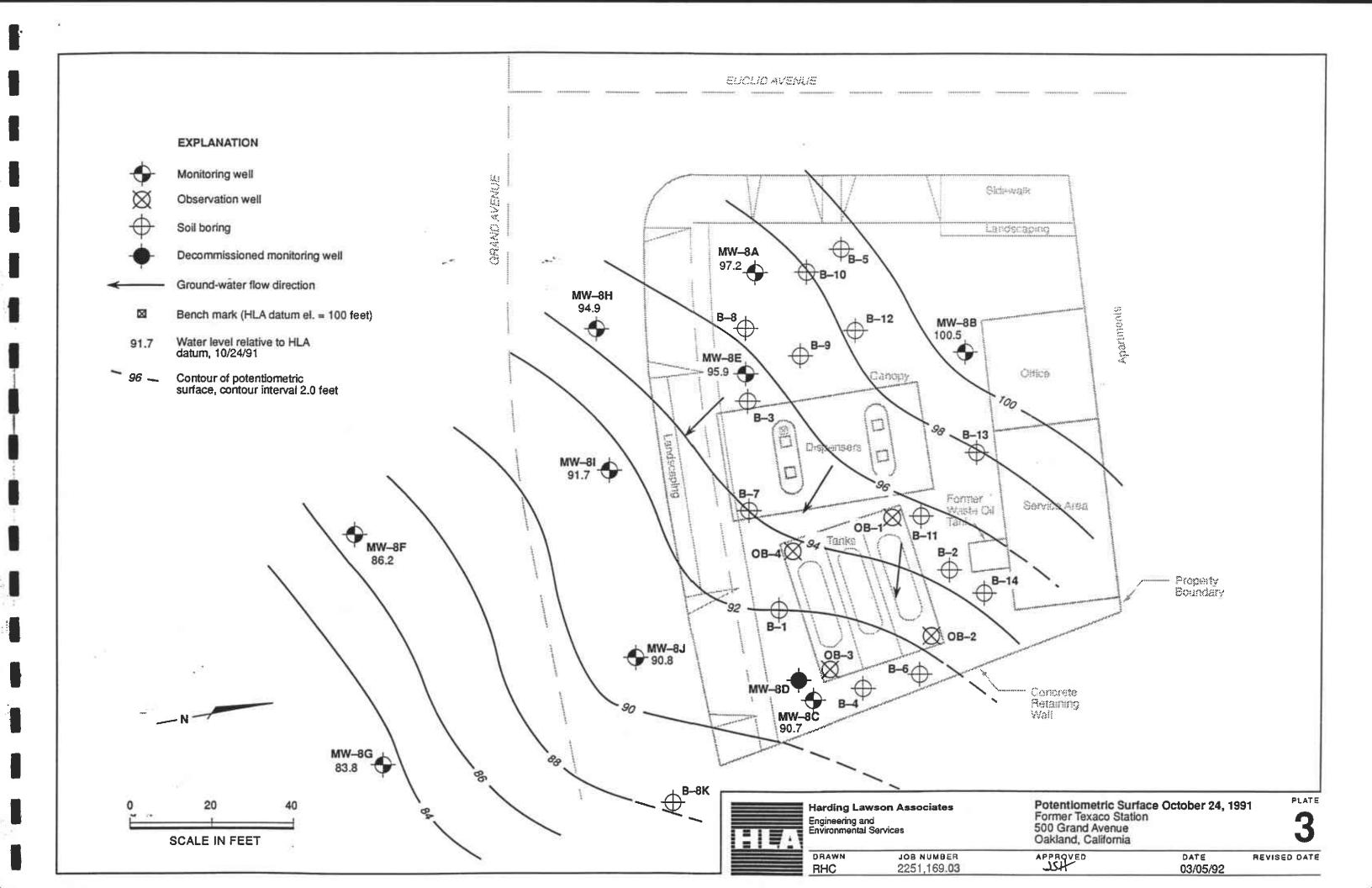
HLA

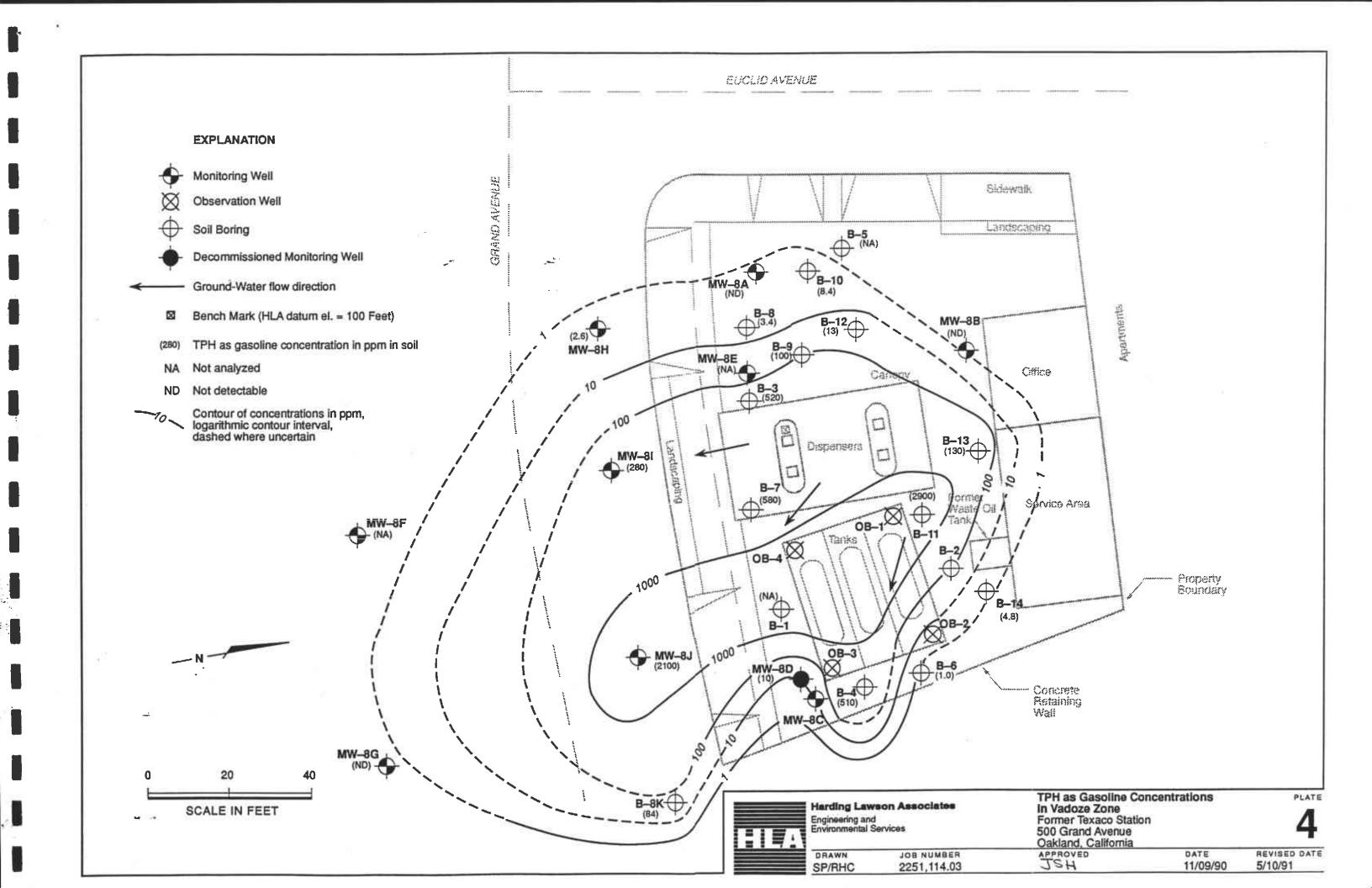
Harding Lawson Associates

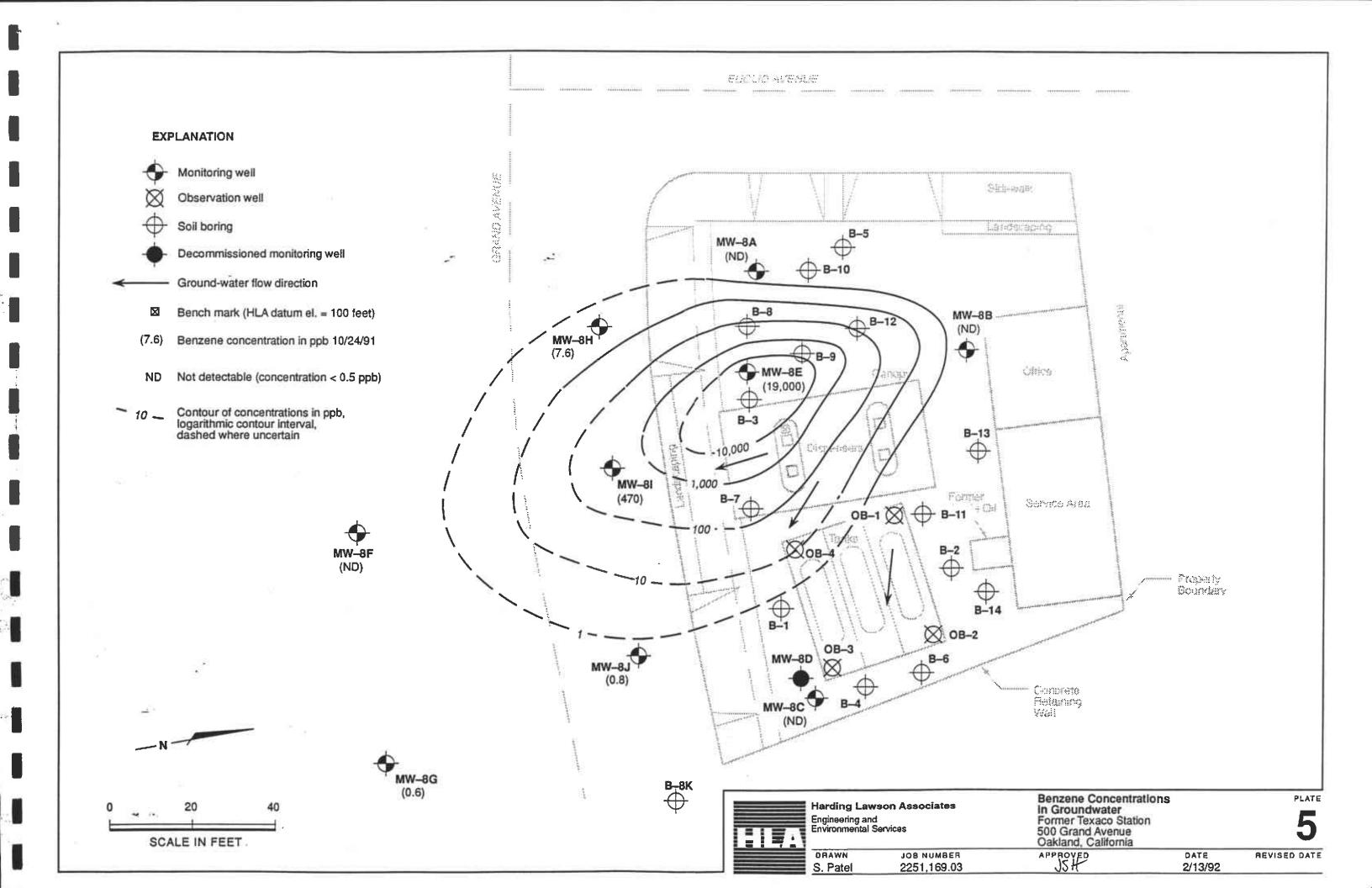
Engineers and Geoscientists


Regional Map


Former Texaco Service Station 500 Grand Avenue Oakland, California


1


PLATE


YC 2251,114.03 APPROVED DATE REVISED 5/89

MW-8A (ND)

B-8

(40,000)

MW-8E

⊕B-3

MW-8H (120) ;

MW-81 (760)

B-12

Tanks

OB-3

EXPLANATION

Monitoring well

Observation well

Soil boring

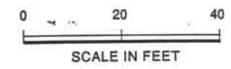
Decommissioned monitoring well

Ground-water flow direction

Bench mark (HLA datum el. = 100 feet)

(760)

TPH as gasoline concentration in ppb 10/24/91


Not detectable (concentration < 50 ppb)

Contour of concentrations in ppb, logarithmic contour interval, dashed where uncertain

> MW-8F (ND)

ORAND AVENUE

MW-8G (ND)

L8-WM

(ND)

Harding Lawson Associates

Engineering and Environmental Services

DRAWN JOB NUMBER RHC 2251,169.03

in Groundwater Former Texaco Station 500 Grand Avenue Oakland, California APPROVED

TPH as Gasoline Concentrations

Apartments

Skil-walk

MW-8B

1

(ND)

B-13

Former

Ø 08−2

B-11

Waste Oil Tank

B-14

Landscaping

Office

Service Area

Concrete Retaining Wall

JSH

DATE REVISED DATE 03/05/92

PLATE

6

Property Soundary

MW-8D

MW-8C (ND)

APPENDIX

LABORATORY RESULTS OF GROUNDWATER ANALYSES

NATIONAL ENVIRONMENTAL TESTING, INC.

NET Pacific, Inc. 435 Tesconi Circle Santa Rosa, CA 95401

Tel: (707) 526-7200 Fax: (707) 526-9623

HARDING ASSOC.

NOV 18 1991

Jeanna Hudson Harding Lawson Associates 1355 Willow Way, Ste. 109 Concord, CA 94520 Date: 11/14/1991

NET Client Acct. No: 34140 NET Pacific Log No: 91.0274

Received: 10/29/1991

Client Reference Information

TEXACO, 500 Grand, Job:2251,169.03

Sample analysis in support of the project referenced above has been completed and results are presented on following pages. Please refer to the enclosed "Key to Abbreviations" for definition of terms. Should you have questions regarding procedures or results, please feel welcome to contact Client Services.

Approved by:

Aules Skamarack Laboratory Manager

Enclosure(s)

Client Name: Harding Lawson Associates

NET Log No: 91.0274

Date: 11/14/1991

Page: 2

Ref: TEXACO, 500 Grand, Job:2251,169.03

SAMPLE DESCRIPTION: MW-8A

Date Taken: 10/24/1991

Time Taken:

LAB Job No: (-103218)

Parameter	Method	Reporting Limit	Results	Units
GC Ext. (Liquid, 3510)			10-31-91	
TPH (Gas/BTXE,Liquid) METHOD 5030 (GC,FID)				
DATE ANALYZED			11-06-91	•
DILUTION FACTOR*			1	
as Gasoline	5030	0.05	ND	mg/L
METHOD 8020 (GC, Liquid)				
DATE ANALYZED			11-06-91	
DILUTION FACTOR*			1	,
Benzene	8020	0.5	ND	ug/L
Ethylbenzene	8020	0.5	ND	ug/L
Toluene	8020	0.5	ND	ug/L
Xylenes (Total)	8020	0.5	ND	ug/L
METHOD 3510 (GC, FID)				
DILUTION FACTOR*			1	
DATE EXTRACTED			10-31-91	
DATE ANALYZED			11-07-91	
as Diesel	3510	0.05	ND	mg/L
as Motor Oil	3510	0.5	ND	mg/L

Client Name: Harding Lawson Associates

NET Log No: 91.0274

Date: 11/14/1991

Page: 3

Ref: TEXACO, 500 Grand, Job:2251,169.03

SAMPLE DESCRIPTION: MW-8B

Date Taken: 10/24/1991

Time Taken:

LAB Job No: (-103219)

Parameter	Method	Reporting Limit	Results	Units
GC Ext. (Liquid, 3510)			10-31-91	, <u>, , , , , , , , , , , , , , , , , , </u>
TPH (Gas/BTXE,Liquid) METHOD 5030 (GC,FID)				
DATE ANALYZED			11-06-91	
DILUTION FACTOR*			1	
as Gasoline	5030	0.05	ND	mg/L
METHOD 8020 (GC, Liquid)				
DATE ANALYZED			11-06-91	•
DILUTION FACTOR*	0000		1	
Benzene	8020	0.5	ND	ug/L
Ethylbenzene	8020	0.5	ND	ug/L
Toluene	8020	0.5	ND	ug/L
Xylenes (Total)	8020	0.5	ND	ug/L
METHOD 3510 (GC, FID)				
DILUTION FACTOR*			1	
DATE EXTRACTED			10-31-91	
DATE ANALYZED			11-07-91	
as Diesel	3510	0.05	ND	mg/L
as Motor Oil	3510	0.5	ND	mg/L

Client Acct: 34140 Client Name: Harding Lawson Associates

NET Log No: 91.0274

Date: 11/14/1991

Page: 4

Ref: TEXACO, 500 Grand, Job:2251,169.03

SAMPLE DESCRIPTION: MW-8C

Date Taken: 10/24/1991

Time Taken:

LAB Job No: (-103220)

Method	Reporting Limit	Results	Units
		10-31-91	
		11-06-91	
		1	
5030	0.05	ND	mg/L
		11-06-91	
		1	
8020	0.5	ND	ug/L
8020	0.5	ND	ug/L
8020	0.5	ND	ug/L
8020	0.5	ND ·	ug/L
		1	
		10-31-91	
		11-07-91	
_ - -	0.05	ND	mg/L
3510	0.5	ND	mg/L
	5030 8020 8020 8020	Method Limit 5030 0.05 8020 0.5 8020 0.5 8020 0.5 8020 0.5 8020 0.5	Method Limit Results 10-31-91 11-06-91 1 5030 0.05 ND 11-06-91 1 8020 0.5 ND 11-07-91 11-07-91 3510 0.05 ND

Client Name: Harding Lawson Associates

NET Log No: 91.0274

Date: 11/14/1991

Page: 5

Ref: TEXACO, 500 Grand, Job:2251,169.03

SAMPLE DESCRIPTION: MW-8E

Date Taken: 10/24/1991

Time Taken:

LAB Job No: (-103221**)

Parameter	Method	Reporting Limit	Results	Units
GC Ext. (Liquid, 3510) TPH (Gas/BTXE, Liquid)			10-31-91	
METHOD 5030 (GC, FID)				•
DATE ANALYZED			11-06-91	
DILUTION FACTOR*			100	
as Gasoline	5030	0.05	40	mg/L
METHOD 8020 (GC, Liquid)				
DATE ANALYZED			11-06-91	
DILUTION FACTOR*			100	
Benzene	8020	0.5	19,000	ug/L
Ethylbenzene	8020	0.5	1,100	ug/L
Toluene	8020	0.5	6,100	ug/L
Xylenes (Total)	8020	0.5	4,900	ug/L
METHOD 3510 (GC, FID)				
DILUTION FACTOR*			10	
DATE EXTRACTED			10-31-91	
DATE ANALYZED			11-07-91	
as Diesel	3510	0.05	9.4	mg/L
as Motor Oil	3510	0.5	ND	mg/L

^{**} Note: The positive result for the PETROLEUM HYDROCARBONS as Diesel analysis on this sample appears to be a lighter hydrocarbon than diesel.

Client Name: Harding Lawson Associates

NET Log No: 91.0274

Page: 8

Date: 11/14/1991

NET Pacific, Inc.

Ref: TEXACO, 500 Grand, Job:2251,169.03

SAMPLE DESCRIPTION: MW-8F

Date Taken: 10/24/1991

Time Taken:

LAB Job No: (-103224)

Parameter	Method	Reporting Limit	Results	Units
GC Ext. (Liquid, 3510) TPH (Gas/BTXE, Liquid)			10-31-91	
METHOD 5030 (GC, FID)				•
DATE ANALYZED DILUTION FACTOR*			11-06-91 1	
as Gasoline	5030	0.05	ND	mg/L
METHOD 8020 (GC, Liquid)				
DATE ANALYZED			11-06-91	
DILUTION FACTOR*			1	
Benzene	8020	0.5	ND	ug/L
Ethylbenzene	8020	0.5	ND	ug/L
Toluene	8020	0.5	ND	ug/L
Xylenes (Total)	8020	0.5	ND	ug/L
METHOD 3510 (GC,FID)				4.
DILUTION FACTOR*			1	
DATE EXTRACTED			10-31-91	
DATE ANALYZED			11-07-91	•
as Diesel	3510	0.05	ND	mg/L
as Motor Oil	3510	0.5	ND	mg/L

Client Name: Harding Lawson Associates

NET Log No: 91.0274

Date: 11/14/1991

Page: 10

Ref: TEXACO, 500 Grand, Job:2251,169.03

SAMPLE DESCRIPTION: MW-8G

> Date Taken: 10/24/1991

Time Taken:

LAB Job No: (-103226)

Parameter	Method	Reporting Limit	Results	Units
TPH (Gas/BTXE,Liquid)				
METHOD 5030 (GC, FID)				
DATE ANALYZED			11-06-91	•
DILUTION FACTOR*			1 .	
as Gasoline	5030	0.05	ND	mg/L
METHOD 8020 (GC, Liquid)				
DATE ANALYZED			11-06-91	
DILUTION FACTOR*			1	
Benzene	8020	0.5	0.6	ug/L
Ethylbenzene	8020	0.5	ND	ug/L
Toluene	8020	0.5	ND	ug/L
Xylenes (Total)	8020	0.5	ND	ug/L

Client Name: Harding Lawson Associates

NET Log No: 91.0274

Date: 11/14/1991

Page: 6

Ref: TEXACO, 500 Grand, Job:2251,169.03

SAMPLE DESCRIPTION: MW-8H

Date Taken: 10/24/1991

Time Taken:

LAB Job No: (-103222**)

Parameter	Method	Reporting Limit	Results	Units
GC Ext. (Liquid, 3510) TPH (Gas/BTXE, Liquid)			10-31-91	
METHOD 5030 (GC,FID)				•
DATE ANALYZED			11-06-91	•
DILUTION FACTOR*	5030	0.05	1	1
as Gasoline	5030	0.05	0.12	mg/L
METHOD 8020 (GC, Liquid) DATE ANALYZED			11-06-91	
DILUTION FACTOR*				
Benzene	8020	0.5	1 7.6	
Ethylbenzene	8020	0.5	3.5	ug/L
Toluene	8020	0.5	1.0	ug/L
Xylenes (Total)	8020	0.5	2.4	ug/L ug/L
METHOD 3510 (GC, FID)	5020	0.5	2.4	ug/L
DILUTION FACTOR*			1	
DATE EXTRACTED			10-31-91	
DATE ANALYZED	•		11-07-91	
as Diesel	3510	0.05	0.07	mg/L
as Motor Oil	3510	0.5	ND	mg/L

^{**} Note: The positive result for the PETROLEUM HYDROCARBONS as Diesel analysis on this sample appears to be a lighter hydrocarbon than diesel.

Client Name: Harding Lawson Associates

NET Log No: 91.0274

Date: 11/14/1991

Page: 7

Ref: TEXACO, 500 Grand, Job:2251,169.03

SAMPLE DESCRIPTION: I8-WM

> Date Taken: 10/24/1991

Time Taken:

LAB Job No: (-103223**)

Parameter	Method	Reporting Limit	Results	Units
GC Ext. (Liquid, 3510)			10-31-91	
TPH (Gas/BTXE,Liquid) METHOD 5030 (GC,FID)				
DATE ANALYZED			11-06-91	
DILUTION FACTOR*			1	
as Gasoline	5030	0.05	0.76	mg/L
METHOD 8020 (GC, Liquid)				
DATE ANALYZED DILUTION FACTOR*			11-06-91	e e
Benzene	8020	0.5	1 470	na/t
Ethylbenzene	8020	0.5	76	ug/L ug/L
Toluene	8020	0.5	6.0	ug/L
Xylenes (Total)	8020	0.5	13	ug/L
METHOD 3510 (GC, FID)				
DILUTION FACTOR*			1	
DATE EXTRACTED			10-31-91	
DATE ANALYZED	2510	0.05	11-07-91	/*
as Diesel as Motor O il	3510 3510	0.05 0.5	0.23 ND	mg/L mg/L

Note: The positive result for the PETROLEUM HYDROCARBONS as Diesel analysis on this sample appears to be a lighter hydrocarbon than diesel.

Client Name: Harding Lawson Associates

NET Log No: 91.0274

Date: 11/14/1991

Page: 9

Ref: TEXACO, 500 Grand, Job:2251,169.03

SAMPLE DESCRIPTION: L8-WM

10/24/1991 Date Taken:

Time Taken:

LAB Job No: (-103225)

Parameter	Method	Reporting Limit	Results	Units
GC Ext. (Liquid, 3510) TPH (Gas/BTXE, Liquid)			10-31-91	
METHOD 5030 (GC, FID)				
DATE ANALYZED			11-06-91	
DILUTION FACTOR*			1	_
as Gasoline	5030	0.05	ИD	mg/L
METHOD 8020 (GC, Liquid)				
DATE ANALYZED			11-06-91	
DILUTION FACTOR*			1	
Benzene	8020	0.5	0.8	ug/L
Ethylbenzene	8020	0.5	ND	ug/L
Toluene	8020	0.5	ND	ug/L
Xylenes (Total)	8020	0.5	ND	ug/L
METHOD 3510 (GC, FID)				
DILUTION FACTOR*			1	
DATE EXTRACTED			10-31-91	
DATE ANALYZED			11-07-91	
as Diesel	3510	0.05	ND	mg/L
as Motor Oil	3510	0.5	ND	mg/L

Client Name: Harding Lawson Associates

NET Log No: 91.0274

Date: 11/14/1991 Page: 11

Ref: TEXACO, 500 Grand, Job: 2251, 169.03

QUALITY CONTROL DATA

Parameter	Reporting Limits	Units	Cal Verf Stand % Recovery	Blank Data	Spike % Recovery	Duplicate Spike % Recovery	RPD
Diesel	0.05	mg/L	109	ND	55	60	8.7
Motor Oil	0.5	mg/L	128	ND	N/A	N/A	N/A
Gasoline	0.05	mg/L	116	ND	99	108	< 1
Benzene	0.5	ug/L	116	ND	79	88	11
Toluene	0.5	ug/L	116	ND	88	90	2.2

COMMENT: Blank Results were ND on other analytes tested.

KEY TO ABBREVIATIONS and METHOD REFERENCES

<	:	Less than; When appearing in results column indicates analyte	
		not detected at the value following. This datum supercedes the listed Reporting Limit.	

Reporting Limits are a function of the dilution factor for any given sample. To obtain the actual reporting limits for this sample, multiply the stated Reporting Limits by the dilution factor (but do not multiply reported values).

ICVS : Initial Calibration Verification Standard (External Standard).

mean : Average; sum of measurements divided by number of measurements.

mg/Kg (ppm) : Concentration in units of milligrams of analyte per kilogram of sample,

(parts per million).

mg/L : Concentration in units of milligrams of analyte per liter of sample.

mL/L/hr : Milliliters per liter per hour.

MPN/100 mL : Most probable number of bacteria per one hundred milliliters of sample.

N/A : Not applicable.

NA : Not analyzed.

ND : Not detected; the analyte concentration is less than applicable listed

reporting limit.

NTU : Nephelometric turbidity units.

RPD : Relative percent difference, 100 [Value 1 - Value 2]/mean value.

SNA : Standard not available.

ug/Kg (ppb) : Concentration in units of micrograms of analyte per kilogram of sample,

(parts per billion).

ug/L : Concentration in units of micrograms of analyte per liter of sample.

umhos/cm : Micromhos per centimeter.

Method References

Methods 100 through 493: see "Methods for Chemical Analysis of Water & Wastes", U.S. EPA, 600/4-79-020, rev. 1983.

Methods 601 through 625: see "Guidelines Establishing Test Procedures for the Analysis of Pollutants" U.S. EPA, 40 CFR, Part 136, rev. 1988.

Methods 1000 through 9999: see "Test Methods for Evaluating Solid Waste", U.S. EPA SW-846, 3rd edition, 1986.

 \underline{SM} : see "Standard Methods for the Examination of Water & Wastewater, $\underline{17}$ th Edition, APHA, 1989.

Harding Lawson Associates

1355 Willow Way, Suite 109 Concord, California 94520 415/687-9660 Telecopy: 415/687-9673

CHAIN OF CUSTODY FORM

Lab: NET

(1798)

	telecopy: 41a/c		:	Samplers: 5	teve Hanson	ANALYSIS REQUESTED
Job i	Kumber:	2251, 169	2.03			
			500 Grand	<u> </u>	-	_
		jer: <i>Teanna</i>		Recorder: 🚄	ten B. Henne	
SOURCE CODE	Water Sediment Soil	HONTAINERS PRESERV.	OR LAB NUMBER	DATE	STATION DESCRIPTION/ NOTES	601/8010 602/8020 624/8240 625/8270 WETALS 8015M/TPH
N O			Yr Wk Seq	Yr Mo Dy Time		EPA EPA EPA ICP I
21	 	3, 3	MW - 8A	911024	STANDARD	
23			MW - 88.		STANDARD TURNAROWND	
23	 	3. 3	NU - 8C			
	 	┃ ╦╂╼┞═╄╦╄═┥╌┤	MW - 8E			
23	 X 		4 ~ - 8 4			
실		▊┈┞═╏═╏ ┶╇═┛	MW - 8I			
151	 	2 3 0 3	44 - 85			
1	- 		11 11 - 86	$ \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1$		
231	X	3 3	M 나	<u> </u>		The state of the s
Ш						
Г	! AR	DEPTH COL	QA .	<u> </u>		

Yr	NUN Wk		R Sec			DEP II FEI	1		CC MT	0	C	Ω.Α ΙΟ:)E		MISCELLANEOUS	CHAIN OF CUSTODY REC	ORD	-	
H	<u>'''`</u>	1	360	T	\vdash			-	1	\dashv	T	7	T	-		RELINQUISHED BY: (Signature) RECEIVED BY: (Si	//- /	DATE	TIME
		П										1				BELINGUISHED BY: (Siggature) / olac RECEIVED BY: (S.	10/2 10/2	P/9,	/ユ,b o
	 	H	+	 	H		-	4	\dashv	-	4	4		-		feffamilla 12:00	g//dtu/ L/	DATE:	TINE
		\prod	\top				1			1	7	\dagger	+	1		RELÍNQUISHED BY: (Signature) RECEIVED BY: (S.	ignature)	DATE	TIME
			/		71	J.	5	Ī	כ	כ	Y	\$	E	A	LED of sely	RELINQUISHED BY: (Signature) RECEIVED BY: (S	ignature)	DATE	TIME
				-				Ī			7			<i>D</i>		(Signature)		DATE	TIME O EDW
			`													METHOD OF SHIPMENT	enyse (of	(37/11	<u>0 000</u>

DISTRIBUTION

Texaco Refining and Marketing, Inc. 108 Cutting Boulevard Richmond, California 94804 4 copies:

Attention: Mr. R. R. Zielinski

JSH/SJO/mlw 032597M/R53

QUALITY CONTROL REVIEWER

Edward R. Close

Principal Geologist