ENTAL TION

97 MAR - 7 PM 3 48 Epigene International

CONSULTING GEOLOGISTS

February 7, 1997

Mr. J.W. Silveira
J.W. Silveira Company
499 Embarcadero
Oakland, CA 94606

Subject: Quarterly Monitoring Report for Site Located at 2301 East 12th Street, Oakland

The purpose of this report is to provide the results of the site investigations carried out in the first quarter of 1997 at the subject site. The site is located at the southwest corner of the intersection of East 12th Street and 23rd Avenue in Oakland. The site location is shown on Figure 1. A site plan is presented on Figure 2. The site is presently occupied by Discount Brake and Tire.

There are six monitoring wells and one extraction well located on or adjacent to the site. The well locations are shown on Figure 2. Gauging of the depth to groundwater was carried out for each project well on January 16, 1997 prior to any purging of the wells. An electronic probe was used to measure the depth to groundwater from the survey mark on the top of the casing. The probe is calibrated to hundredths of a foot. Several of the wells had significant vapor pressure and up to 2 hours were required for the water levels in the wells to stabilize. The groundwater elevations were calculated and are presented on Figure 3. Groundwater elevation contours are also plotted on Figure 3.

In addition to the contouring, a direction and slope of the gradient was also calculated by a graphical

Quarterly Monitoring Report 2301 East 12th Street, Oakland February 7, 1997 Page 2

solution to a three-point problem based on the groundwater elevations of MW-1, MW-5, AND MW-6. The results of this calculation are plotted on Figure 3. The direction of the gradient is generally consistent with the groundwater elevation contouring and most of the more recent previous calculations.

Groundwater samples were collected on January 16 from all of the project wells. The wells were purged of approximately five casing volumes prior to sampling by bailing or pumping with a purge pump. Purge water was placed in new 55 gallon drums. The samples were collected using a dedicated bailer for each well. The samples were placed in appropriate sample containers provided by the laboratory. After labeling each sample, it was stored in a cooled ice chest and transferred to a State certified laboratory under chain-of-custody control.

The requested analysis for each sample was based on the original Workplan, amendment, and the results of the past quarter sampling and analysis. The results of the analysis for water samples are summarized on Tables 1 through 7 for wells MW-1 through MW-6 and EW-1 respectively. Tables 1A, 2A, etc. present hydrocarbon contamination concentrations. Tables 1B, 2B, etc. present concentrations of compounds included in the EPA 8010 analysis that have been found at the site. The tables also include the results of previous data for each well. In addition, LUFT metals were run for the samples from MW-2, MW-3, AND EW-1. These results are included in Appendix A.

The Certified Laboratory Report and chain-of-custody documentation are included in Appendix A. Significant levels of contamination continue to be present in all of the project wells. Graphs showing summaries of concentrations of diesel and gasoline contamination for each well through time are presented on Figures 4 and 5 respectively. For the January analysis, concentrations of diesel, gasoline and benzene are plotted on Figure 6. Concentrations of Toluene, Ethyl benzene and xylenes are graphed on Figure 7. Concentrations of 8010 compounds are graphed on Figure 8.

Quarterly Monitoring Report 2301 East 12th Street, Oakland February 7, 1997 Page 3

At the request of Mr. Barney Chan, a workplan is being prepared as a separate document to carry out additional characterization of the site. We appreciate the opportunity to be of service to you on this project. Should you have any questions, please contact the undersigned.

Attachments

cc: Mr. Barney Chan, Alameda County Department of Environmental Health Mr. Robert Shapiro, Esquire

Table 1A-Summary of Hydrocarbon Concentrations (in PPB) Detected in MW-1

Sampling Date	TPH Diesel	TPH Gasoline	Benzene	Тојиене	Ethyl- benzene	Xylenes	TRPH*
7/27/92	360	1800	600	5.1	13	18	ND
11/6/92	670	8000	2400	6.1	41	ND	NA
3/2/93	1100	5600	3800	ND	120	ND	NA
5/26/93	1700	4800	3400	44	140	150	NA
8/27/93	1200	8400	2300	35	180	57	ND
12/23/93	ND	7800	29	16	5.8	26	NA
3/27/94	2600	10,000	2400	84	310	280	NA
6/24/94	1500	9000	2300	44	260	170	NA
10/16/94	2000	10,000	2100	35	250	140	NA
2/13/95	2500	16,000	3200	110	460	260	NA
6/20/95	3500	18,000	2600	87	450	220	NA
10/16/95	2700	13,000	2200	63	220	110	NA
2/15/96	16,000	11,000	1400	25	130	81	NA
6/18/96	8000	12,000	2500	72	190	130	NA
9/17/96	3100	7000	1200	29	86	55	NA
1/16/97	11,000	14,000	1500	47	190	130	NA

MW-1 is a 2 inch PVC well installed 12/23/91 to a total depth of 28 feet.

Table 1B-Summary of Volatile Halocarbon Concentrations (in PPB) Detected in MW-1

Sampling Date	Cliforo- benzene	Chiore- ethane	1,2-Di Chioro ethane	Ch 1.2 Exchloro- ethene	Frans 1,2 Dichlero- efficanc	PCB	TCE	Vinvi Chloride
7/27/92	NA	NA	NA	NA	NA	NA	NA	NA
11/6/92	NA	NA	NA	NA	NA	NA	NA	NA
3/2/93	ND	ND	ND	ND	ND	ND	5.8	ND
5/26/93	ND	ND	ND	ND	ND	ND	6.8	ND
8/27/93	ND	ND	ND	1.1	ND	5.4	ND	ND
12/23/94	NA	NA	NA	NA	NA	NA	NA	NA
3/27/94	NA	NA	NA	NA	NA	NA	NA	NA
6/24/94	NA	NA	NA	NA	NA	NA	NA	NA
10/16/94	NA	NA	NA	NA	NA	NA	NA	NA
2/13/95	ND	ND	ND	1.3	ND	ND	ND	ND
6/20/95	ND	1.1	ND	1.1	ND	ND	6.5	ND
10/16/95	ND	ND	ND	0.84	ND	ND	2.5	ND
2/15/96	ND	ND	ND	0.82	ND	ND	24	ND
6/18/96	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5
9/19/96	ND<3	ND<3	ND<3	ND<3	ND<3	ND<3	11	ND<3
1/16/97	ND	ND	ND	0.71	ND	ND	13	ND

NOTE: Table presents only those compounds that have been detected in any of the site wells; data from EPA Method either 8010 or 8240; NA is not analyzed; ND is not detected above detection limits which are typically 0.5 PPB.

Table 2A-Summary of Hydrocarbon Concentrations (in PPB) Detected in MW-2

Sampling Date	TPH Diesel	TPH Gasoline	Benzene	Toluene	Ethyl- benzene	Xylenes	TRPH*
7/27/92	1500	20,000	110	6	37	39	ND
11/6/92	17,000	19,000	2800	120	790	1100	NA
3/2/93	37,000	14,000	3800	110	950	1100	NA
5/26/93	6000	11,000	5200	140	1000	990	32
8/27/93	5400	16,000	1700	120	640	710	ND
12/23/93	720	18,000	87	79	42	400	NA
3/27/94	6100	17,000	2100	100	630	750	ND
6/24/94	3000	15,000	2000	72	550	520	7.9
10/16/94	5300	15,000	1500	81	410	520	13
2/13/95	4900	18,000	2000	120	660	900	20
6/20/95	6600	30,000	1300	85	510	520	11
10/16/95	31,000	19,000	1500	92	400	330	11
2/15/96	11,000	25,000	1700	93	490	440	20
6/13/96	5500	13,000	1400	75	460	410	10
9/17/96	13,000	15,000	1600	66	480	460	13
1/16/97	30,000	20,000	1800	150	670	780	95

MW-2 is a 2 inch PVC well installed 7/8/92 to a total depth of 19 feet.

Table 2B-Summary of Volatile Halocarbons Concentrations (in PPB) Detected in MW-2

Sampling Date	Chloro- benzene	Chloro- ethane	12-Dt Chloro ethane	Ch 1.2 Dichlere ethène	Trans 1,2 Dichlore- ethene	PCE	KE	Vinvi Chloride
7/27/92	NA	NA	NA	NA	NA	NA	NA	NA
11/6/92	NA	NA	NA	NA	NA	NA	NA	NA
3/2/93	ND	ND	ND	ND	ND	ND	ND	ND
5/26/93	9.8	ND	ND	2.7	2.7	ND	ND	ND
8/27/93	10	1.3	0.66	3.2	ND	ND	ND	2.2
12/23/93	4.3	ND	ND	1,0	ND	ND	ND	1.5
3/27/94	ND	ND	ND	ND	ND	ND	ND	ND
6/24/94	6.5	ND	ND	ND	ND	ND	ND	ND
10/16/94	5.7	1.1	ND	0.73	ND	ND	ND	1.0
2/13/95	12	ND	ND	ND	ND	ND	ND	ND
6/20/95	7.9	1.5	1.4	1.0	ND	ND	ND	2.1
10/16/95	5.1	ND	ND	ND	ND	ND	ND	ND
2/15/96	4.8	ND	ND	ND	ND	ND	ND	ND
6/13/96	5.6	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5
9/17/96	8.2	ND<4	ND<4	ND<4	ND<4	ND<4	ND<4	ND<4
1/16/97	ND	ND	ND	0.69	ND	ND	12	ND

NOTE: Table presents only those compounds that have been detected in any of the site wells; data from EPA Method either 8010 or 8240; NA is not analyzed; ND is not detected above detection limits which are typically 2.5 PPB for this well.

Table 3A-Summary of Hydrocarbon Concentrations (in PPB) Detected in MW-3

Sampling Date	TPH Diesel	TPH Gasoline	Benzene	Tokiene	Ethyl- benzene	Xylenes	TRPH*
7/27/92	4000	8800	150	8.6	88	13	ND
11/6/92	21,000	10,000	78	3.1	830	13	NA
3/2/93	9300	3900	120	ND	240	37	NA
5/26/93	4400	7400	570	4.1	640	8.4	ND
8/27/93	8200	7100	180	15	110	9.4	ND
12/23/93	230	7900	30	14	12	62	NA
3/27/94	4300	5700	180	10	100	24	ND
6/24/94	1500	8400	230	13	93	7.6	NA
10/16/94	2700	6300	140	8.7	68	25	7.3
2/13/95	1600	7500	220	17	110	22	8.3
6/20/95	13,000	11,000	310	23	160	63	8,5
10/16/95	1900	4700	120	6.7	32	16	8,3
2/15/96	9400	8100	62	13	50	33	12
6/13/96	5000	30,000	110	65	130	160	51
9/17/96	15,000	10,000	68	20	61	42	NA
1/16/97	57,000	9700	64	19	38	60	NA

MW-3 is a 2 inch PVC well installed 7/8/92 to a total depth of 19 feet.

Table 3B-Summary of Volatile Halocarbons Concentrations (in PPB) Detected in MW-3

Sampling Date	Chloro- bensene	Chioro- ethane	£3-D4 Chloro ethane	Cis L2 Hichloro efficis	Trans 1,2 Dichlora- etiscae	PCE	TCE	Vinyi Chioride
7/27/92	NA	NA	NA	NA	NA	NA	NA	NA
11/6/92	NA	NA	NA	NA	NA	NA	NA	NA
3/2/93	ND	ND	ND	ND	ND	ND	ND	ND
5/26/93	NA	NA	NA	NA	NA	NA	NA	NA
8/27/93	ND	ND	ND	ND	ND	ND	16	ND
12/23/93	NA	NA	NA	NA	NA	NA	NA	NA
3/27/94	ND	ND	ND	ND	ND	ND	6	ND
6/24/94	ND	ND	ND	6.0	1.5	ND	ND	ND
10/16/94	ND	ND	ND	8.4	2.1	ND	12	ND
2/13/95	ND	ND	ND	4.3	1.3	ND	5.1	ND
6/20/95	ND	0.5	ND	4.9	1.7	ND	5.7	ND
10/16/95	ND	ND	ND	7.1	2.0	ND	7.8	ND
2/15/96	ND	ND	ND	7.3	2.6	ND	9.3	ND
6/13/96	ND<1	ND<1	ND<1	6.9	2.5	ND<1	ND<1	ND<1
9/17/96	ND<5	ND<5	ND<5	11	ND<5	ND<5	13	ND<5
1/16/97	ND<2	ND<2	ND<2	4.9	2	ND<2	3.9	ND<2

NOTE: Table presents only those compounds that have been detected in any of the site wells; data from EPA Method either 8010 or 8240; NA is not analyzed; ND is not detected above detection limits which are typically 0.5 PPB.

Table 4A-Summary of Hydrocarbon Concentrations (in PPB) Detected in MW-4

Sampling Date	TPH Diesei	TPH Gasoline	Benzene	Toluene	Ethyl- benzene	Xylenes	TRPH*
3/27/94	1800	2200	19	1.2	2.9	12	NA
6/24/94	420	2300	2.9	1.6	2.8	4.6	NA
10/16/94	900	3500	3.8	2	5.2	24	NA
2/13/95	630	2600	100	100	3.8	7.1	NA
6/20/95	1100	3000	31	3.4	6.1	12	NA
10/16/95	1100	2000	43	2.3	8.4	6.9	NA
2/15/96	940	3400	ND	ND	ND	ND	NA
6/13/96	1100	1900	12	5.7	3.4	9.6	NA
9/17/96	2500	3100	ND<.5	15	78	12	NA
1/16/97	13,000	4000	ND	7	3	15	NA

MW-4 is a 2 inch PVC well installed 3/18/94 to a total depth of 20 feet.

Table 4B-Summary of Volatile Halocarbons Concentrations (in PPB) Detected in MW-4

Sampling Date	Chloro- benzene	Chloro- ethane	1.2-Di Chlore- ethane	Cis 1,2 Dichloro othene	Trans 1.2 Dictioro othene	PCE	TCE	Vinyl Chloride
3/27/94	NA	NA	NA	NA	NA	NA	NA	NA
6/24/94	NA	NA	NA	NA	NA	NA	NA	NA
10/16/94	ND	ND	0.67	0.71	ND	ND	ND	ND
2/13/95	ND	ND	ND	ND	ND	ND	ND	ND
6/20/95	ND	ND	ND	2.2	1.0	ND	ND	ND
10/16/95	ND	ND	ND	1.3	ND	ND	ND	ND
2/15/96	ND	ND	ND	1.8	0.79	ND	ND	ND
6/13/96	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND	ND
9/17/96	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5	ND	ND<5
1/16/97	ND	ND	ND	0.76	ND	ND	ND	ND

NOTE: Table presents only those compounds that have been detected in any of the site wells; data from EPA Method either 8010 or 8240; NA is not analyzed; ND is not detected above detection limits which are typically 0.5 PPB.

Table 5A-Summary of Hydrocarbon Concentrations (in PPB) Detected in MW-5

Sampling Date	TPH Diesel	TPH Gasoline	Benzene	Toluene	Ethyl- benzene	Xylenes	TRPH*
3/27/94	870	2900	71	ND	27	15	NA
6/24/94	950	6100	220	12	38	24	NA
10/16/94	1100	4300	120	5.1	27	13	NA
2/13/95	1200	4600	130	7.9	38	29	NA
6/20/95	1000	6000	140	6.7	27	29	NA
10/16/95	940	2000	43	2.3	8.4	6.9	NA
2/15/96	2200	4400	61	5.3	34	ND	NA
6/18/96	NA	7400	94	11	32	40	NA
9/17/96	1600	5200	140	7.5	18	21	NA
1/16/97	2500	4500	64	8.7	23	26	NA

MW-5 is a 2 inch PVC well installed 3/17/94 to a total depth of 20 feet.

Table 5B-Summary of Volatile Haolcarbons Concentrations (in PPB) Detected in MW-5

Sampling Date	Chloro- bensene	Chloro- ethane	1,2-Di Chloro- ethane	Cla 1.2 Dichlor orthere	Frans 1,2 Dichloro- ethene	PCE	FCB	Vinyi Chiaride
3/27/94	NA	NA	NA	NA	NA	NA	NA	NA
6/24/94	0.53	ND	ND	11	3.1	ND	ND	7,5
10/16/94	0.66	ND	ND	16	4.2	ND	ND	9.6
2/13/95	ND	ND	ND	20	5.1	ND	ND	8.4
6/20/95	0.95	ND	ND	12	4.1	ND	ND	10
10/16/95	0.54	ND	ND	9.8	2.9	ND	2.0	7.6
2/15/96	0.57	ND	ND	7.7	ND	ND	ND	5.3
6/18/96	ND<2.5	ND<2.5	ND<2.5	2.9	ND<2.5	ND<2.5	ND<2.5	ND<2.5
9/17/96	0.83	ND<0.5	ND<0.5	4.5	2.7	ND<0.5	ND<0.5	7.3
1/16/97	0.71	ND	ND	6.1	3.8	ND	ND	9.1

NOTE: Table presents only those compounds that have been detected in any of the site wells; data from EPA Method either 8010 or 8240; NA is not analyzed; ND is not detected above detection limits which are typically 0.5 PPB.

Table 6A-Summary of Hydrocarbon Concentrations (in PPB) Detected in MW-6

Sampling Date	TPH Diesel	TPH Gasoline	Benzene	Toluene	Ethyl- benzene	Xylenes	TRPH*
3/27/94	1000	5000	1100	17	180	41	NA
6/24/94	660	8000	1200	21	210	54	NA
10/16/94	850	6300	870	14	140	49	NA
2/13/95	1000	5500	1000	17	210	55	NA
6/20/95	1400	9100	1300	24	240	79	NA
10/16/95	770	3000	590	8.8	84	24	2.8
2/15/96	1500	3900	460	11	110	23	NA
6/13/96	1300	4800	630	14	140	37	4.1
9/17/96	1300	4700	550	14	120	38	NA
1/16/97	2200	5600	850	17	190	43	NA

MW-6 is a 2 inch PVC well installed 3/17/94 to a total depth of 20 feet.

Table 6B-Summary of Volatile Halocarbons Concentrations (in PPB) Detected in MW-6

Sampling Date	Chioro- benzene	Chioro ethane	1,2-Di Chinco ethane	Cis 1,2 Dictilore ethene	Trans 1,2 Dichlorn- efficie	PCE	TCE	Vieri Chioride
3/27/94	NA	NA	NA	NA	NA	NA	NA	NA
6/24/94	NA	NA	NA	NA	NA	NA	NA	NA
10/16/94	NA	NA	NA	NA	NA	NA	NA	NA
2/13/95	ND	ND	ND	40	13	ND	99	87
6/20/95	ND	ND	ND	26	17	ND	29	130
10/16/95	ND<5	ND<5	ND<5	75	16	ND<5	110	54
2/15/96	ND	ND	ND	110	25	ND	160	46
6/13/96	ND<2	ND<2	ND<2	72	20	ND<2	83	33
9/17/96	ND<1	2.7	ND<1	73	25	ND<1	59	48
1/16/97	ND<1	1.1	1.1	81	21	ND<1	82	(29)
				Ü				

NOTE: Table presents only those compounds that have been detected in any of the site wells; data from EPA Method either 8010 or 8240; NA is not analyzed; ND is not detected above detection limits which are typically 2.5 PPB for this well.

Table 7A-Summary of Hydrocarbon Concentrations (in PPB) Detected in EW-1

Sampling Date	TPH Dissel	TPH Gasoline	Benzene	Toluene	Ethyl- benzene	Xylenes	TRPH*
3/27/94	920	1200	270	6.2	30	13	ND
6/24/94	1200	4600	410	5.6	78	22	NA
10/16/94	1200	4900	310	5.2	30	32	6.4
2/13/95	1000	3900	380	5.9	41	22	ND
6/20/95	1800	7800	710	14	260	52	6.5
10/16/95	940	3200	310	3.3	32	16	5.5
2/15/96	2400	5000	270	7.5	50	20	4.2
6/13/96	1800	5700	450	11	75	19	8.3
9/17/96	1300	5300	300	15	67	29	7.2
1/16/97	2100	5800	480	8.6	100	30	99

EW-1 is a 4 inch PVC well installed 3/16/94 to a total depth of 30 feet.

Table 7B-Summary of Volatile Halocarbons Concentrations (in PPB) Detected in EW-1

Sampling Date	Chioro- benzene	Chloro- ethane	1.2-Di Chioco- ethane	Cis 1.2 Dichiero- ethene	Trans 1,2 Dichloru- ethens	PCE	TCE	Vinyi Chlorida
3/27/94	ND	ND	ND	ND	ND	ND	40	ND
6/24/94	ND	ND	1.3	42	11	ND	68	3.2
10/16/94	ND	ND	ND	36	ND	ND	74	ND
2/13/95	ND	ND	ND	13	4.4	ND	53	ND
6/20/95	ND	2.0	ND	4.3	2.0	ND	6.0	2.8
10/16/95	ND<2	ND<2	ND<2	24	7.1	ND<2	46	ND<2
2/15/96	ND	1.0	ND	17	6.4	ND	33	2.3
6/13/96	ND<1	ND<1	ND<1	25	9.8	ND<1	38	4.9
9/17/96	ND<2	2.3	ND<2	25	9.0	ND<2	39	5.4
1/16/97	ND	0.87	ND	14	5.2	ND	14	3.7
			<u>.</u>					

NOTE: Table presents only those compounds that have been detected in any of the site wells; data from EPA Method either 8010 or 8240; NA is not analyzed; ND is not detected above detection limits which are typically 2.0 PPB for this well.

Volatile Halocarbons in Groundwater

Chlorobenzene; Chloroethane; 1,2 Dichloroethane; Cis 1,2 Dichloroethene; Trans 1,2 Dichloroethene; Tetrachloroethene; Trichloroethene; Vinyl Chloride

Fig. 8

APPENDIX A

CERTIFIED LABORATORY REPORT

02/03/97

Dear John:

Enclosed are:

- 1). the results of 7 samples from your # 95-008; 2301 East 12th Street, Oakland project,
- 2), a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Yours truly,

Edward Hamilton, Lab Director

110 2nd Avenue South, #D7, Pacheco, CA 94553 Tele: 510-798-1620 Fax: 510-798-1622

Epigene International	Client Project ID: # 95-008; 2301 East 12th	Date Sampled: 01/16/97
38750 Paseo Padre Pkwy, # A-11	Street, Oakland	Date Received: 01/20/97
Fremont, CA 94536	Client Contact: John Alt	Date Extracted: 01/21-01/22/97
	Client P.O:	Date Analyzed: 01/21-01/22/97

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline*, with Methyl tert-Butyl Ether* & BTEX*

EPA methods 5030, modified 8015, and 8020 or 602; California RWQCB (SF Bay Region) method GCFID(5030) Ethylben-% Rec. Lab ID Client ID TPH(g)⁺ Matrix MTBE Benzene Toluene Xvlenes zene Surrogate 72997 MW-3 W 9700b,j,h 64 19 38 60 104 72998 MW-4 W 4000,b,j,h ND 7.0 3.0 15 103 72999 MW-5 W 4500,b,j 64 8.7 23 26 104 73000 MW-6 W 5600,a,h 850 17 190 43 105 73001 EW-1 W 5800,a,h 480 118# 8.6 100 30 73002 MW-1 W 108# 14,000,a,h 1500 47 190 130 73003 MW-2 W 20,000 a.h 1800 150 670 780 109# Reporting Limit unless W 50 ug/L 5.0 0.5 0.5 0.5 0.5 otherwise stated; ND means not detected S 1.0 mg/kg 0.05 0.005 above the reporting limit 0.005 0.005 0.005

^{*} water and vapor samples are reported in ug/L, soil and sludge samples in mg/kg, and all TCLP extracts in mg/L

cluttered chromatogram; sample peak coelutes with surrogate peak

[†] The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant (aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (?); f) one to a few isolated peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen is present; i) liquid sample that contains greater than ~ 5 vol. % sediment; j) no recognizable pattern.

Epigene Interna	ational		oject ID: # 95-008; 2301 East 12th	Date Sampled: 01/16/97 Date Received: 01/20/97 Date Extracted: 01/22/97		
38750 Paseo Pa	dre Pkwy, # A-11	Street, Oa	ikland			
Fremont, CA 94	1536	Client Co	ntact: John Alt			
		Client P.C);	Date Analyzed:	01/22-01/23/97	
EPA methods mod			23) Extractable Hydrocarbons as ia RWQCB (SF Bay Region) method GC		D(3510)	
Lab ID	Client ID	Matrix	TPH(d) ⁺		% Recovery Surrogate	
72997	MW-3	W	57,000,d,h		107	
72998	MW-4	w	13,000,d,h		100	
72999	MW-5	w	2500,d		108	
73000	MW-6	W	2200,b,d,h		100	
73001	EW-1	w	2100,d,h		107	
73002	MW-1	w	11,000,d,c/g,h		101	
73003	MW-2	w	30,000,d,h		107	
				· · · · · · · · · · · · · · · · · · ·		
Reporting Lir	nit unless other-	w	50 ug/L			
tected above the	D means not de- ne reporting limit	S	1,0 mg/kg			

^{*} water samples are reported in ug/L, soil and sludge samples in mg/kg, and all TCLP and STLC extracts in mg/L

[&]quot; cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

⁺ The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) medium boiling point pattern that does not match diesel (?); f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen is present; i) liquid sample that contains greater than ~ 5 vol. % sediment.

110 2nd Avenue South, #D7, Pacheco, CA 94553 Tele: 510-798-1620 Fax: 510-798-1622

Epigene International			oject ID: # 95-008; 2301 East 12th	Date Sampled: 01/16/97		
38750 Paseo P	adre Pkwy, # A-11	Street, Oa	kland	Date Received	i: 01/20/97	
Fremont, CA	94536	Client Co	ntact: John Alt	Date Extracted: 01/23/97		
		Client P.O):	Date Analyzed	1: 01/23/97	
Total Recover	rable Petroleum Hy	irocarbons	as Oil & Grease (with Silica Gel trometry*	Clean-up) by S	canning IR Spec-	
EPA method 418.	.1 or 9073; Standard Met	hods 5520 C&	•			
Lab ID	Client ID	Matrix	TRPH+		% Recovery Surrogate	
72997	MW-3	W	200,h		#	
73001	EW-1	W	7.5,h		99	
73003	MW-2	W	38,h		95	
		,				
	imit unless other-	w	1,0 mg/L	***************************************		
wise stated; r	ND means not de- the reporting limit	S	10 mg/kg			
* water sample	es are reported in m	g/L and soi	ls and sludges in mg/kg			
# surrogate di	luted out of range or	г not applic:	able to this sample			
	_		e sample may be run by direct injethis GC result: a) gasoline-range corresent; c) oil-range compounds are absent or insigni (lipids?) are the source of IR absent contains greater than ~ 5 vol.	ection chromate compounds (C6- s (> C18) are ficant relative t sorption; h) a l % sediment.	ography with FID -C12) are present; present: d) other o TRPH inferring lighter than water	

Epigene International		D: # 95-008; 2301 East	12th Date Sampled: 01/16/97
38750 Paseo Padre Pkwy, # A-11	Street, Oakland		Date Received: 01/20/97
Fremont, CA 94536	Client Contact:	John Alt	Date Extracted: 01/28/97
	Client P.O:		Date Analyzed: 01/28/97
	Volati	le Halocarbons	•
EPA method 601 or 8010		ı R	<u> </u>
Lab ID	73002	73003	
Client ID	MW-1	MW-2	
Matrix	W	W	
Compound		Concentra	ation
Bromodichloromethane	ND	ND	
Bromoform ^(b)	ND_	ND	
Bromomethane	ND	ND	
Carbon Tetrachloride ^(c)	ND	ND	
Chlorobenzene	ND	ND	
Chloroethane	ND	ND	
2-Chloroethyl Viny l Ether ^(d)	ND	ND	
Chloroform ^(e)	ND	ND	
Chloromethane	ND	ND	
Dibromochloromethane	ND	ND	
1,2-Dichlorobenzene	ND	ND	
1,3-Dichlorobenzene	ND	ND	
1,4-Dichlorobenzene	ND	ND	
Dichlorodifluoromethane	ND	ND	
1,1-Dichloroethane	ND	ND	
1,2-Dichloroethane	ND	ND	
1,1-Dichloroethene	ND	ND	
cis 1,2-Dichloroethene	0.71	0.69	
trans 1,2-Dichloroethene	ND	ND	
1,2-Dichloropropane	ND	ND	
cis 1,3-Dichloropropene	ND	ND	
trans 1,3-Dichloropropene	ND ND	ND	
Methylene Chloride ^(f)	ND ND	ND	
1,1,2,2-Tetrachloroethane	ND ND	ND	
Tetrachloroethene	ND ND	ND	
1,1,1-Trichloroethane	ND ND	ND ND	
1,1,2-Trichloroethane	ND ND	ND	
Trichloroethene	13	12	
Trichlorofluoromethane	ND 13	ND 12	
Vinyl Chloride (g)	ND ND	ND	
% Recovery Surrogate	104	103	
Comments	h	h	
* water and vapor samples are reported in			SED automaticus (I

^{*} water and vapor samples are reported in ug/L, soil and sludge samples in ug/kg and all TCLP extracts in ug/L.

Reporting limit unless otherwise stated: water/TCLP extracts, ND< 0.5ug/L; soil and sludge, ND< 5ug/kg

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis

⁽b) tribromomethane; (c) tetrachloromethane; (d) (2-chloroethoxy) ethene; (e) trichloromethane; (f) dichloromethane; (g) chloroethene; (h) a lighter than water immiscible sheen is present; (i) liquid sample that contains greater than ~ 5 vol. % sediment.

DHS Certification No. 1644

Edward Hamilton, Lab Director

DHS Certification No. 1644

Epigene International	Client Project II Street, Oakland	D: # 95-008; 2301 East 12th	Date Sampled: 01/16/97		
38750 Paseo Padre Pkwy, # A-11	Street, Oakiand		Date Receiv	/ed: 01/20/97	
Fremont, CA 94536	Client Contact: I	John Alt	Date Extracted: 01/21/97		
	Client P.O:		Date Analyz	zed: 01/21/97	
	Volatil	e Halocarbons	-		
EPA method 601 or 8010	7 2007			T	
Lab ID	72997				
Client ID	MW-3				
Matrix	W		4		
Compound	ND < 2	Concentration			
Bromodichloromethane Bromoform ^(b)	ND < 2				
	ND < 2				
Bromomethane	ND< 2				
Carbon Tetrachloride ^(c)	ND< 2				
Chlorobenzene	ND< 2				
Chloroethane	ND< 2				
2-Chloroethyl Viny l Ether (d)	ND< 2				
Chloroform (e)	ND< 2				
Chloromethane	ND< 2				
Dibromochloromethane	ND< 2				
1,2-Dichlorobenzene	ND< 2				
1,3-Dichlorobenzene	ND< 2				
1,4-Dichlorobenzene	ND< 2				
Dichlorodifluoromethane	ND< 2				
1,1-Dichloroethane	ND< 2				
1,2-Dichloroethane	ND< 2				
1,1-Dichloroethene	ND< 2		B		
cis 1,2-Dichloroethene	4.9				
trans 1,2-Dichloroethene	2.0				
1,2-Dichloropropane	ND< 2				
cis 1,3-Dichloropropene	ND< 2				
trans 1,3-Dichloropropene	ND< 2				
Methylene Chloride ^(f)	ND< 2.5		· · · · · ·		
1,1,2,2-Tetrachloroethane	ND< 2		•		
Tetrachloroethene	ND< 2				
1,1,1-Trichloroethane	ND< 2				
1,1,2-Trichloroethane	ND< 2		**		
Trichloroethene	3.9				
Trichlorofluoromethane	ND< 2		 		
Vinyl Chloride ^(g)	ND< 2		 -	·	
% Recovery Surrogate	104				
Comments	i,h				
* water and vapor samples are reported in		samples in valka and all TCLP as	stracts in 110/7	<u> </u>	

^{*} water and vapor samples are reported in ug/L, soil and sludge samples in ug/kg and all TCLP extracts in ug/L.

Reporting limit unless otherwise stated: water/TCLP extracts, ND< 0.5ug/L; soil and sludge, ND< 5ug/kg

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis

⁽b) tribromomethane; (c) tetrachloromethane; (d) (2-chloroethoxy) ethene; (e) trichloromethane; (f) dichloromethane; (g) chloroethene; (h) a lighter than water immiscible sheen is present; (i) liquid sample that contains greater than ~ 5 vol. % sediment.

DHS Certification No. 1644

Epigene International		D: # 95-008; 2301 Ea	st 12th Date Sample	d: 01/16/97		
38750 Paseo Padre Pkwy, # A-11	Street, Oakland		Date Receive	ed: 01/20/97		
Fremont, CA 94536	Client Contact:	John Alt	Date Extract	Date Extracted: 01/28/97		
	Client P.O:		Date Analyze	ed: 01/28/97		
	Volatil	e Halocarbons				
EPA method 601 or 8010 Lab ID	72998	72999	73000	73001		
Client ID	MW-4	MW-5	MW-6	EW-1		
Matrix	w	W	W	W		
Compound		Concent	<u></u>	**		
Bromodichloromethane	ND	ND	ND< 1	ND		
Bromoform ^(b)	ND	ND	ND< 1	ND		
Bromomethane	ND	ND	ND< 1	ND		
Carbon Tetrachloride ^(c)	ND	ND	ND< 1	ND		
Chlorobenzene	ND	0.71	ND< 1	ND		
Chloroethane	ND	ND	1,1	0.87		
2-Chloroethyl Viny l Ether ^(d)	ND	ND	ND< 1	ND		
Chloroform ^(e)	ND	ND	ND< 1	ND		
Chloromethane	ND	ND	ND< 1	ND		
Dibromochloromethane	ND	ND	ND< 1	ND		
1,2-Dichlorobenzene	ND	ND	ND< 1	ND		
1,3-Dichlorobenzene	ND	ND	ND< 1	ND		
1,4-Dichlorobenzene	ND	ND	ND< 1	ND		
Dichlorodifluoromethane	ND	ND	ND< 1	ND		
1,1-Dichloroethane	ND	ND	ND< 1	ND		
1,2-Dichloroethane	ND	ND	1.1	ND		
1,1-Dichloroethene	ND	ND	ND< 1	ND		
cis 1,2-Dichloroethene	0.76	6.1	81	14		
trans 1,2-Dichloroethene	ND	3.8	21	5.2		
1,2-Dichloropropane	ND	ND	ND< 1	ND		
cis 1,3-Dichloropropene	ND	ND	ND< 1	ND		
trans 1,3-Dichloropropene	ND	ND	ND< 1	ND		
Methylene Chloride ^(f)	ND	ND	ND< 1	ND		
1,1,2,2-Tetrachloroethane	ND	ND	ND< 1	ND		
Tetrachloroethene	ND	ND	ND< 1	ND		
1,1,1-Trichloroethane	ND	ND	ND< 1	0.57		
1,1,2-Trichloroethane	ND	ND	ND< 1	ND		
Trichloroethene	ND	ND	82	14		
Trichlorofluoromethane	ND	ND	ND< 1	ND		
Vinyl Chloride ^(g)	ND	9.1	29	3.7		
% Recovery Surrogate	104	103	99	101		
Comments	h		h	h		

^{*} water and vapor samples are reported in ug/L, soil and sludge samples in ug/kg and all TCLP extracts in ug/L.

Reporting limit unless otherwise stated: water/TCLP extracts, ND< 0.5ug/L; soil and sludge, ND< 5ug/kg

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis

⁽b) tribromomethane; (c) tetrachloromethane; (d) (2-chloroethoxy) ethene; (e) trichloromethane; (f) dichloromethane; (g) chloroethene; (h) a lighter than water immiscible sheen is present; (i) liquid sample that contains greater than ~ 5 vol. % sediment.

DHS Certification No. 1644

Epigene I	Epigene International				-008; 2301 E	ast 12th	Date Sampled: 01/16/97			
38750 Pas	eo Padre Pkwy, #	# A-11	Street, Oakland				Date Received: 01/20/97			
Fremont, CA 94536 Client Contact: John					lt		Date Extra	cted: 01/2	1/97	
	Client P.O:							zed: 01/22	2-01/27/97	
EPA analyti	cal methods 6010/200	0.7, 239.2 ⁺		LUFT Me	tals *					
Lab ID			Extraction ^o	Cadmium	Chromium	Lead	Nickel	Zinc	% Rec. Surrogate	
72997	MW-3	W	TTLC	ND	0.020	0.014	ND	0.069	107	
73001	EW-1	w	TTLC	ND	ND	ND	ND	ND	112	
73003	MW-2	w	TTLC	ND	ND	0.0076	0.10	ND	110	
								* **		
								:		
Reporting	Limit unless other-	S	TTLC	0.5 mg/kg	0.5	3.0	2.0	1.0		
	e the reporting limit	w	TTLC	0.005 mg/L	0.005	0.005	0.05	0.05		
			STLC,TCLP	0.01 mg/L	0.05	0.2	0.05	0.05		

^{*} soil samples and sludge are reported in mg/kg, and water samples and all STLC & TCLP extracts in mg/L

⁺ Lead is analysed using EPA method 6010 (ICP) for soils, STLC & TCLP extracts and method 239.2 (AA Furnace) for water samples

^o EPA extraction methods 1311(TCLP), 3010/3020(water,TTLC), 3040(organic matrices,TTLC), 3050(solids,TTLC); STLC from CA Title

surrogate diluted out of range; N/A means surrogate not applicable to this analysis

[&]amp; reporting limit raised due matrix interference

i) liquid sample that contains greater than ~ 2 vol. % sediment; this sediment is extracted with the liquid, in accordance with EPA methodologies and can significantly effect reported metal concentrations.

QC REPORT FOR HYDROCARBON ANALYSES

Date: 01/21/97-01/22/97 Matrix: Water

	Concent	ration	(mg/L)		% Reco	very	
Analyte	Sample			Amount			RPD
	(#72664) 	MS	MSD	Spiked	MS 	MSD	
TPH (gas)	0.0	107.0	105.6	100.0	107.0	105.6	1.3
Benzene	0.0	11.1	10.2	10.0	111.0	102.0	8.5
Toluene	0.0	11.1	10.4	10.0	111.0	104.0	6.5
Ethyl Benzene	0.0	10.8	10.3	10.0	108.0	103.0	4.7
Xylenes	0.0	31.4	30.1	30.0	104.7	100.3	4.2
TPH (diesel)	N/A	N/A	N/A	N/A	N/A	N/A	N/A
TRPH (oil & grease)	N/A	N/A	N/A	N/A	N/A	N/A	N/A

% Rec. = (MS - Sample) / amount spiked x 100

QC REPORT FOR HYDROCARBON ANALYSES

Date: 01/22/97-01/23/97 Matrix: Water

	Concentr	cation	(mg/L)		% Reco	very	
Analyte	Sample			Amount			RPD
	(#72842)	MS	MSD	Spiked 	MS	MSD	
TPH (gas)	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Benzene	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Toluene	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Ethyl Benzene	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Xylenes	N/A	N/A	N/A	N/A	N/A	N/A	N/A
TPH (diesel)	0	127	125	150	85	84	1.5
TRPH (oil & grease)	N/A	N/A	N/A	N/A	n/a	N/A	N/A

* Rec. = (MS - Sample) / amount spiked x 100

QC REPORT FOR HYDROCARBON ANALYSES

Date: 01/22/97-01/23/97 Matrix: Water

Concent:	ration	(mg/L)		% Reco	very	
Sample			Amount			RPD
(#73037)	MS	MSD	Spiked 	MS	MSD	
0.0	89.5	87.3	100.0	89.5	87.3	2.5
0.0	7.9	8.0	10.0	79.0	80.0	1.3
0.0	8.6	8.7	10.0	86.0	87.0	1.2
0.0	9.1	9.4	10.0	91.0	94.0	3.2
0.0	27.5	29.4	30.0	91.7	98.0	6.7
0	150	148	150	100	98	1.5
0	26400	24900	23700	111	105	5.8
	Sample (#73037) 0.0 0.0 0.0 0.0 0.0	Sample (#73037) MS 0.0 89.5 0.0 7.9 0.0 8.6 0.0 9.1 0.0 27.5 0 150	(#73037) MS MSD 0.0 89.5 87.3 0.0 7.9 8.0 0.0 8.6 8.7 0.0 9.1 9.4 0.0 27.5 29.4	Sample	Sample	Sample

% Rec. = (MS - Sample) / amount spiked x 100

QC REPORT FOR EPA 8010/8020/EDB

Date:

01/28/97

Matrix: Water

	l c	once	ntrat:	ion (ug/I	% Rec			
Analyte 	Sample (#72570) MS			MSD	Amount Spiked	 MS	MSD	RPD
 1,1-DCE	0	.0	10.4	11.0	1 10.0	104	110	5.6
Trichloroethene		.0	9.3	9.6	10.0	93	96	3.2
EDB	N/A	N,	/A	N/A	N/A	N/A	N/A	N/A
Chlorobenzene	0	. 0	9.7	10.0	10.0	97	100	3.0
Benzene	N/A	N,	/A	N/A	N/A	N/A	N/A	N/A
Toluene	N/A	N,	/A	N/A	N/A	N/A	N/A	N/A
Chlorobz (PID) 	N/A	N,	/A	N/A	N/A	N/A	N/A	N/A

% Rec. = (MS - Sample) / amount spiked x 100

QC REPORT FOR EPA 8010/8020/EDB

Date:

01/21/97

Matrix: Water

	Co	ncentrat	ion (ug/I	% Rec	% Recovery				
Analyte	Sampl (#7291		MSD	Amount Spiked	MS	MSD	RPD		
1,1-DCE	0.	0 10.8	11.3	10.0	108	113	4.5		
Trichloroethene	0.	0 9.5	10.0	10.0	95	100	5.1		
EDB	0.	0 8.5	8.8	10.0	85	88	3.5		
Chlorobenzene	0.	0 9.8	10.3	10.0	98	103	5.0		
Benzene	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
Toluene	N/A	N/A N/A		N/A	N/A	N/A	N/A		
Chlorobz (PID)	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
	İ		· 	.i					

% Rec. = (MS - Sample) / amount spiked x 100

QC REPORT FOR METALS

Date: 01/22/97 Matrix: Water

Extraction: TTLC

Analyte				. !	% Recovery						
	(mg	g/L)		Amount			RPD				
	Sample	MS	MSD	Spiked	MS	MSD					
Arsenic	0.0	5.0	4.8	5.0	100	96	2.0				
				•		· ·	3.8				
Selenium	0.0	4.8	4.8	5.0	97	95	1.9				
Molybdenum	0.0	4.9	4.9	5.0	99	98	1.2				
Silver	0.0	0.5	0.5	0.5	101	99	1.6				
Thallium	0.0	4.4	4.4	5.0	88	88	0.7				
Barium	0.0	4.3	4.2	5.0	86	84	2.5				
Nickel	0.0	4.6	4.6	5.0	93	93	0.0				
Chromium	0.0	4.7	4.6	5.0	93	92	1.0				
Vanadium	0.0	4.7	4.7	5.0	94	93	1.4				
Beryllium	0.0	4.9	4.8	5.0	97	96	1.6				
Zinc	0.0	5.0	5.0	5.0	100	99	0.8				
Copper	0.0	4.7	4.4	5.0	93	89	4.8				
Antimony	0.0	4.8	4.6	5.0	95	93	2.4				
Lead	0.0	4.5	4.4	5.0	91	89	2.3				
Cadmium	0.0	4.9	4.9	5.0	99	98	1.5				
Cobalt	0.0	4.5	4.5	5.0	91	90	0.4				
Mercury	0.000	0.002	0.002	0.002	100	100	0.0				

% Rec. = (MS - Sample) / amount spiked x 100

QC REPORT FOR ICP and/or AA METALS

Date:

01/27/97

Matrix: Water

Extraction:

TTLC

	Concent	ration	(mg/L)		% Reco	<u> </u>	
Analyte 	Sample	MS	MSD	Amount	MS	MSD	RPD
 Total Lead Total Cadmium Total Chromium Total Nickel Total Zinc	0.00 0.00 0.00 0.00	5.00 5.66 5.37 5.19 5.64	5.00 5.62 5.35 5.18 5.63	5.00 5.00 5.00 5.00 5.00	100 113 107 104 113	100 112 107 104 113	0.1 0.5 0.3 0.1
Total Copper	0.00	5.32	5.26	5.00	106	105	1.1
Organic Lead	N/A	N/A	N/A	N/A	N/A	N/A	N/A

[%] Rec. = (MS - Sample) / amount spiked x 100

 $RPD = (MS - MSD) / (MS + MSD) \times 2 \times 100$

Page

CHAIN OF CUSTOD YONDITION

110 2nd Avenue South, D-7

Pacheco, California 94553.

telephone: (510) 798-1620

Laboratory: McCampbell Analytical

Ed Hamilton

Contact:

Comments:

PRESERVATIVE **APPROPRIATE** CONTRINCIO

FAX: (510) 798-1622

VOAS | O&CHMETALS | OTHER pigene International

CONSULTING GEOLOGISTS

38750 Paseo Padre Parkway, Suite A-II Fremont, California, 94536 Business: (510) 791-1986 FAX: (510) 791-3306

Contact: Jihl N ALT Sampler: JDA / MO Project Name: 2344 Eng 17.46 Chikkind Project no. 75 TLS Date: 1/4 10 @

						سسا			(/ 1.1.				(SI 112 C	. ا	
										Ana	lyses	Requeste	e d		
			•				A16230	ino	SHIDIO S	11802	/20/	350	18 ×	$\overline{}$	
		-					(33)	876+	1010	180/1	8 ⁰ /_3				
Sample 1.D.	Date/Time Sampled	Matrix: Desc.		tainer Type	Comments	18	*1/	1/4	6. s.	601	(OCA) ON	Ling 199		Lab. ≠	
1. MW-3	1/16 pm	Water	(1	NoVe		χ	X		X			Grand Control of Contr	7	2997	
l. I			2	15E	cifies			X		1	Ċ		<u> </u>		
i. il)	pleistic Lettie						<u> </u>	<u> </u>				
·Mw-4			2	WAG		λ.	X				7	X		.	
. N			}	lite Cotte		1	(×					7	72998	
· MW-5			2	VUAS		1	X					X			
'• N			1	liter bu	tle			X					7	2999	
· M W-6			٧	Was		χ	λ					X			
. 11	*		1	liter Little				X					!	000	
o.		1											73	3000	
bedeiupnile	by:	<i>!</i>	Date	:1/20/97	Time: 7:500	Rec	elved	l by:	(J)	//.		Date	1/2010	Ţime: ٫ ,	
elinquished by: Date: Time:					Received by:						1	Date: //70/4 Jim			
elinquished	by:		Date	.	Time:	Received by: Date:					Time:				
urnaround Ti	me: Unima					:	101	л°. ∢			-	VÛAS	rae ment		
	AAS PRESUN		ا داد	Pizzi	ic better	1/1					PRESERV	ATIVE			

7969AEI107

CHAIN OF CUSTODY

Epigene International

CONSULTING GEOLOGISTS

38750 Paseo Padre Parkway, Suite A-II Fremont, California, 94536 Business: (510) 791-1986 FAX: (510) 791-3306

	talanta (C)						ontac		<u>- 1011/01 (</u>				sampler:	<u>:</u>
Contact:	telephone: (51 Ed Hamilton	0) 798-16	20	FAX: (5)	10) 798-1622	Рг	oject	Nam	10: 23i	11 EAS		214 Six	2551°	DAKLAPT
Contact:	Ed maniiton					Pr	oject	no.		· · · · · · · · · · · · · · · · · · ·		late: [1 J., 1	<u> </u>
												equest		
	•		-					IIno	100	/3/	~ 0/	39//	77	
							(333)	stet	/\di ^o /	180,00	/ 4	35 //		
Sample I.D.	Date/Time Sampled	Matrix.	Con No. of	tainer Type	Comments	1/18	H16336	1/4	PHIDIO 1	601/10	» 9°°°	Grease (//	Lab. #
1. Ew-1	ilie pm	Winter	2	Vens		X	×		X		\int			
2. ,			21	both	f			X		X	 		\$	73001
з. и			l	picistic				1	1-1		×			
4-11.11-1			2	VIA		文	7	-						
5. V			.	lite tett	ı			×						73002
6. MW-2			2-	VOA		×	7							
7. ((2	liter Lette				X		$\overline{\chi}$, Landergrand	
8. (t		THE STATE OF THE S		Plastic							X			73003
9.													-1	and the second of the second o
10.			_											
Relinquished	by:	>	Date	1 2 92	TIMe: 2:50pm	Rec	aivac	hu.						
					Time:	1				<u> </u>		l.		Time: 7.70
Relinquished	 					Received by:						Date	Date: Time:	
Tuesday	•••••				!	<u></u>								
Additional	rime: Norwo	<u> </u>							V01C	O&G METAL	STOTHER			
Additional Comments:	see bade				ICE/T°			ESERV						· 201 2.
<u> </u>					COOR CONDITIO	N	ΔD	DRADE	IATE -	_			rag	ا منت الاست