

Carryl MacLeod Project Manager Marketing Business Unit Chevron Environmental Management Company 6001 Bollinger Canyon Road San Ramon, CA 94583 Tel (925) 842-3201 cmacleod@chevron.com

RECEIVED By Alameda County Environmental Health 8:16 am, Sep 16, 2016

September 15, 2016

Ms. Karel Detterman Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502 Dear Mr. Awwad:

Attached for your review is the *Third Quarter 2016 Groundwater Monitoring Report* for 670 98th Avenue, Oakland, California 94603 (RO0000379). This report was prepared by Stantec Consulting Services Inc. (Stantec), upon whose assistance and advice I have relied. I declare under penalty of perjury that the information and/or recommendations contained in the attached report are true and correct, to the best of my knowledge.

If you should have any further questions, please do not hesitate to contact me or the Stantec project manager, Travis Flora, at (408) 827-3876 or <u>travis.flora@stantec.com</u>.

Sincerely,

Camp Macheol

Carryl MacLeod Project Manager

Third Quarter 2016 Groundwater Monitoring Report

Chevron Facility No. 376584 RO0000379 670 98th Avenue, Oakland, California 94603

Submitted to: Ms. Karel Detterman Alameda County Environmental Health Department 1131 Harbor Bay Parkway Alameda, California 94602

Prepared for: Chevron Environmental Management Company 6001 Bollinger Canyon Road San Ramon, California 94583

Prepared by: Stantec Consulting Services Inc. 15575 Los Gatos Blvd., Building C Los Gatos, California 95032

September 15, 2016

September 15, 2016

Attention: Ms. Karel Detterman Alameda County Environmental Health Department 1131 Harbor Bay Parkway Alameda, California 94602

Reference: Third Quarter 2016 Groundwater Monitoring Report 670 98th Avenue Oakland, California 94603

Dear Ms. Detterman:

On behalf of Chevron Environmental Management Company (CEMC), Stantec Consulting Services Inc. (Stantec) is pleased to submit the *Third Quarter 2016 Groundwater Monitoring Report* for 670 98th Avenue, Oakland, California (Site shown on **Figure 1**). This report is presented in three sections: Site Background, Third Quarter 2016 Groundwater Monitoring and Sampling Program, and Conclusions.

SITE BACKGROUND

The Site is located on the northeast corner at the intersection of 98th Avenue and Edes Avenue (**Figure 1**). The site was occupied by Union 76 service station from approximately 1947 through 1983. An old station building and an underground tank that occupied the site were removed in 1966. During that same year, a new station building, two 10,000-gallon underground gasoline tanks, and one 230-gallon waste oil tank were installed at the site. The station building was demolished and the underground storage tanks were removed in 1983.

Immediately adjacent to the Site is a former Richfield service station located, at 692 98th Avenue, which is northeast of the site. This property was occupied by a Richfield service station from approximately 1949 to 1963. In 1970, four 1,000-gallon underground fuel storage tanks were removed; the contents and former tank locations are not known.

THIRD QUARTER 2016 GROUNDWATER MONITORING AND SAMPLING PROGRAM

Gettler-Ryan, Inc. (G-R) performed the well development event on June 17, 2016, and the Third Quarter 2016 groundwater monitoring and sampling event on June 24, 2016. G-R's standard operating procedures (SOPs) and field data sheets are included in **Attachment A**. G-R gauged depth-to-groundwater (DTW) in 6 Site wells (MW-1 through MW-5 and Well-18) prior to collecting groundwater samples for laboratory analysis. Groundwater monitoring wells MW-1 through MW-5 and Well-18 were purged and sampled.

Investigation-derived waste (IDW) generated during the third quarter 2016 groundwater monitoring and sampling event was transported by Clean Harbors Environmental Services to Seaport Environmental in Redwood City, California.

Groundwater Elevation and Gradient

A groundwater elevation contour map (based on Third Quarter 2016 data) is shown on **Figure 2**. The direction of groundwater flow at the time of sampling was west-northwest at an average hydraulic gradient of approximately 0.19 feet per foot (ft/ft).

Chevron Facility No. 376584 September 15, 2016 Page 2 of 5

Schedule of Laboratory Analysis

Groundwater samples were analyzed for total petroleum hydrocarbons (TPH) as gasoline range organics (TPH-GRO), TPH as diesel range organics (TPH-DRO), and TPH-DRO with silica gel cleanup using United States Environmental Protection Agency (US EPA) Method 8015B. Additionally, samples were analyzed for volatile organic compounds (VOCs), including benzene, toluene, ethylbenzene, and total xylenes (BTEX compounds) and methyl *tertiary*-butyl ether (MtBE) by US EPA Method 8260B.

Groundwater Analytical Results

During third quarter 2016, groundwater samples were collected from six Site wells (MW-1 through MW-5 and Well-18). Current groundwater analytical results are included in **Table 1**. A figure showing the latest groundwater analytical data plotted on a Site map is included as **Figure 3**. A TPH-GRO isoconcentration map is shown on **Figure 4**, and a TPH-DRO isoconcentration map is shown on **Figure 5**. Isoconcentration maps for BTEX compounds and MtBE were not created, because there were no detections above laboratory method detection limits (MDL) or environmental screening levels.

Certified laboratory analysis reports and chain-of-custody documents are presented as **Attachment B**. A summary of third quarter 2016 groundwater analytical results follows:

- **TPH-GRO** was detected above the MDL in two Site wells, at concentration of 3,400 (MW-1) and 890 (Well-18) micrograms per liter (µg/L).
- TPH-DRO was detected above the MDL in two Site wells, at concentration of 480 (MW-1) and 120 (Well-18) μg/L. TPH-DRO with silica gel cleanup was detected in three Site wells, at concentrations ranging between 95 (MW-5) and 920 (MW-1) μg/L.
- Benzene was not detected above the MDL in any of the Site wells sampled.
- **Toluene** was not detected above the MDL in any of the Site wells sampled.
- **Ethylbenzene** was detected above the MDL in two Site wells, at concentration of 0.8 μ g/L (MW-1) and 1 μ g/L (Well-18).
- Total Xylenes were not detected above the MDL in any of the Site wells sampled.
- MTBE was not detected above the MDL in any of the Site wells sampled.
- **TBA** was not detected above the MDL in any of the Site wells sampled.

Additional VOCs, including n-butylbenzene, sec-butylbenzene, cis-1,2-eichloroethene, isopropylbenzene, naphthalene, n-propylbenzene, tetrachloroethene, and trichloroethene were also detected in Site wells as noted in **Table 1**. Laboratory notes indicate quality control discrepancies associated with the analysis for TPH-DRO with and without silica gel cleanup for the groundwater sample collected from well MW-1.

Chevron Facility No. 376584 September 15, 2016 Page 3 of 5

CONCLUSIONS AND RECOMMENDATIONS

Maximum concentrations were observed in the wells MW-1 and Well-18. TPH-GRO and TPH-DRO were both reported above their respective ESLs in well MW-1, and TPH-GRO was reported above its ESL in Well-18. BTEX compounds and MtBE were not detected above laboratory MDLs or ESLs.

Alameda County Environmental Health Department requested that a Site Conceptual Model (SCM) and Data Gap Work Plan be submitted in October 2016; however, the current data set is limited to only one round of groundwater sampling, which is insufficient to evaluate the Site and prepare a SCM. In addition, further investigation into Richfield operations is warranted to ensure that there is not a commingled plume. Therefore, Stantec proposes to submit the SCM after the second round of groundwater sampling, which is scheduled to occur First Quarter 2017.

Chevron Facility No. 376584 September 15, 2016 Page 4 of 5

LIMITATIONS

This document entitled Third Quarter 2016 Groundwater Monitoring Report was prepared by Stantec Consulting Services Inc. ("Stantec") for the account of Chevron Environmental Management Company (the "Client"). Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

(signature)

Ruthie Chhoeun Project Scientist

Prepared by

Reviewed by (signature)

Travis L. Flora Senior Project Manager

Licensed Approver (signature)

JAFFREY S. AUCHTERLONIE 11.30.40 NO.7816

Jaff Auchterlonie, P.G. Managing Principal Geologist

cc:

Ms. Carryl MacLeod, EMC (via electronic copy) Ms. Linda Hothem, Linda Hothem Trust, 104 Caledonia Street, #C, Sausalito, CA 94965-1952 Ms. Roslyn Danforth, c/o Rocklin Industries, 11120 Queensland St., #H51, Los Angeles, CA 90034 City of Oakland Dept. of Public Works, c/o Mr. Mark Johannes Arniola, 250 Frank H. Ogawa

Plaza, Suite 5301, Oakland, CA 94612 (via email)

Chevron Facility No. 376584 September 15, 2016 Page 5 of 5

Attachments:

Table 1 - Current Groundwater Monitoring Data & Analytical Data

- Figure 1 Site Location
- Figure 2 Site Plan and Groundwater Elevation Contour Map June 24, 2016
- Figure 3 Groundwater Concentration Map June 24, 2016
- Figure 4 GRO Groundwater Isoconcentration Map June 24, 2016
- Figure 5 DRO Groundwater with Silica Gel Cleanup Isoconcentration Map June 24, 2016
- Attachment A Gettler-Ryan Inc.'s Groundwater Monitoring and Sampling Data Package Well Development Event of June 17, 2016 and First Semi-Annual Event of June 24, 2016.
- Attachment B Certified Laboratory Analysis Reports and Chain-of-Custody Documents

TABLE

TABLE 1 Current Groundwater Monitoring & Analytical Data Chevron Facility No. 376584 (Former Union Oil Service Station) 670 98th Avenue, Oakland, California

Well No.	Date	Notes	TOC (ft-MSL)	DTW (ft)	SPH (ft)	GWE (ft-MSL)	TPH- GRO (μg/L)	TPH-DRO (µg/L)	TPH-DRO w/ SG (µg/L)	B (µg/L)	T (µg/L)	E (µg/L)	Х (µg/L)	MTBE (µg/L)	TBA (µg/L)	BTBZN (µg/L)	BTBZS (µg/L)	Chloroform (µg/L)	DCE12C (µg/L)	IPBZ (µg/L)	NAPH (µg/L)	PBZN (µg/L)	PCE (µg/L)	TCE (µg/L)	Comments
MW-1	06/17/16	NSP	16.18	8.43	0.00	7.75																			Well re-developed
MW-1	06/24/16		16.18	8.48	Sheen	7.70	3,400	480	920	<0.5	<0.5	0.8	<0.5	<0.5	<5	27	18	<0.5	<0.5	15	7	55	<0.5	<0.5	
MW-2	06/17/16	NSP	16.50	8.28	0.00	8.22																			Well re-developed
MW-2	06/24/16		16.50	8.32	0.00	8.18	<50	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<5	<1	<1	<0.5	<0.5	<1	<1	<1	2	2	
MW-3	06/17/16	NSP	16.54	8.62	0.00	7.92																			Well re-developed
MW-3	06/24/16		16.54	8.68	0.00	7.86	<50	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<5	<1	<1	0.5	<0.5	<1	<1	<1	1	1	
MW-4	06/17/16	NSP	18.40	10.18	0.00	8.22																			Well re-developed
MW-4	06/24/16		18.40	10.25	0.00	8.15	<50	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<5	<1	<1	<0.5	<0.5	<1	<1	<1	140	1	
MW-5	06/17/16	NSP	17.35	9.08	0.00	8.27																			Well re-developed
MW-5	06/24/16		17.35	9.12	0.00	8.23	<50	<50	95	<0.5	<0.5	<0.5	<0.5	<0.5	<5	<1	<1	<0.5	<0.5	<1	<1	<1	<0.5	<0.5	
Well-18	06/17/16	NSP	15.97	8.03	0.00	7.94																			Well re-developed
Well-18	06/24/16		15.97	8.05	0.00	7.92	890	120	96	<0.5	<0.5	1	<0.5	<0.5	<5	1	<1	<0.5	0.6	4	5	5	2	2	
QA	06/24/16						<50			<0.5	<0.5	<0.5	<0.5	<0.5											

Notes:

TPH-GRO = Total petroleum hydrocarbons as gasoline

TPH-DRO = Total petroleum hydrocarbons as diesel

TPH-DRO w/ SG = Total petroleum hydrocarbons as diesel with Silica Gel

B = Benzene

T = Toluene

E = Ethylbenzene

X = Total xylenes

MTBE = Methyl tert-butyl ether

TBA = Tert-butyl alcohol

BTBZN = n-Butylbenzene

BTBZS = sec-Butylbenzene

DCE12C = cis-1,2-Dichloroethene

IPBZ = Isopropylbenzene

FIGURES

FILEPATH:M:\CHEVRON\376584\AUTOPOST 2016\3Q 2016\FIG 2_CH-376584_SITE PLAN AND GW ELEVATION.dwg | Layout Tab: 11X17L | Drafter: saguinaldo | Sep 08, 2016 at 15:33

MW-1 • GROUNDWATER MONITORING WELL LOCATION

- APPROXIMATE GROUNDWATER FLOW DIRECTION AND GRADIENT (FT/FT)
- GROUNDWATER ELEVATION CONTOUR (FEET ABOVE MEAN SEA LEVEL)
- GROUNDWATER ELEVATION (FEET ABOVE MEAN SEA LEVEL)

No warranty is made by Stantec Consulting Services Inc. as to the accuracy, reliability, or completeness of these data. Original data were compiled from various sources. This information may not meet National Map Accuracy Standards. This product was developed electronically, and may be updated without notification. Any reproduction may result in a loss of scale and or information.

SERVICE 6854 JE DRNIA	SITE PLAN AND ELEVATION C JUNE 2	GROUNDWATER ONTOUR MAP 4, 2016	FIGURE: 2
BY:	CHECKED BY:	APPROVED BY:	DATE:
STA	BR	AP	08/24/16

FILEPATH:M:\CHEVRON\376584\AUTOPOST 2016\3Q 2016\FIG 3_CH-376584_CONCENTRATION MAP.dwg | Layout Tab: 11X17L | Drafter: saguinaldo | Sep 08, 2016 at 15:36

MW-1
GROUNDWATER MONITORING WELL LOCATION

GASOLINE RANGE ORGANICS

GRO ISOCONCENTRATION CONTOUR

GRO CONCENTRATION (µg/L)

MICROGRAMS PER LITER

No warranty is made by Stantec Consulting Services Inc. as to the accuracy, reliability, or completeness of these data. Original data were compiled from various sources. This information may not meet National Map Accuracy Standards. This product was developed electronically, and may be updated without notification. Any reproduction may result in a loss of scale and or information.

Service 6584 Je Drnia	GRO GROL ISOCONCE CONTO JUNE 2	INDWATER INTRATION UR MAP 24, 2016	FIGURE: 4
I BY:	CHECKED BY:	APPROVED BY:	DATE:
STA	l RC	BW	08/24/16

MW-1 • GROUNDWATER MONITORING WELL LOCATION

DIESEL RANGE ORGANICS

DRO ISOCONCENTRATION CONTOUR

DRO CONCENTRATION WITH SILICA GEL (µg/L)

MICROGRAMS PER LITER

SERVICE 6584 JE DRNIA	DRO WITH S ISOCONCE CONTO JUNE 2	SILICA GEL NTRATION UR MAP 4, 2016	FIGURE: 5
I BY:	CHECKED BY:	APPROVED BY:	DATE:
STA	RC	BW	08/24/16

ATTACHMENT A Gettler-Ryan Inc.'s Groundwater Monitoring and Sampling Data Package Well Development Event of June 17, 2016 and First Semi-Annual Event of June 24, 2016.

TRANSMITTAL

July 1, 2016 G-R #385903

- TO: Mr. Brian Westhoff Stantec 3875 Atherton Road Rocklin, California, 95765
- FROM: Deanna L. Harding Project Coordinator Gettler-Ryan Inc. 6805 Sierra Court, Suite G Dublin, California 94568
- RE: Chevron Facility #376584 Former Union Oil Service Station 670 98th Avenue Oakland, California

WE HAVE ENCLOSED THE FOLLOWING:

COPIES	DESCRIPTION
VIA PDF	Groundwater Monitoring and Sampling Data Package Well Development Event of June 17, 2016 and First Semi-Annual Event of June 24, 2016

COMMENTS:

Pursuant to your request, we are providing you with a copy of the above referenced data for your use.

Please provide us the updated historical data prior to the next monitoring and sampling event for our field use.

Please feel free to contact me if you have any comments/questions.

Chevron # 376584 Event of June 17, 2016

WELL CONDITION STATUS SHEET

Client/ Facility #: Site Address: City:	Chevror 670 98T Oakland	n #376584 h Avenue I, CA				-	Job #: Event Date: Sampler:	385903 6.17.16 FT JH					
WELL ID	Vault Frame Condition	Gasket/ O-Ring (M) Missing (R) Replaced	Bolts (M) Missing (R) Replaced	Bolt Flanges B=Broken S=Stripped R=Retaped	Apron Condition C=Cracked B=Broken G=Gone	Grout Seal (Deficient) Inches from TOC	Casing (Condition prevents tight cap seal)		REPLACE	WELL VAULT Manufacture/Size/ # of Bolts	Pictures Taken Y Or		
MWJ	OL	NH		\rightarrow	Or.		\rightarrow		1	CHUIST BOX	$\left \varphi \right $		
MW-5	OK									Emel 12" h			
WEU-1B	OL	NA		\uparrow	Ob			4	A	CHUISTY BOX			
mw-1	BPile	M	m	D	C	ok	501.7			12" em co			
MU-2	olc	NA			σίς					CHRIST			
MW-3	610	Nor			on		9	F	1 t	F	F		
····													
Comments	MW-	4 - 5	teel	plate	Coven	ing t	aven -	Vaul	F BPS/	re - casmy split			

STANDARD OPERATING PROCEDURE – WELL DEVELOPMENT GROUNDWATER SAMPLING

Gettler-Ryan Inc. (GR) field personnel adhere to the following procedures for the collection and handling of groundwater samples prior to analysis by the analytical laboratory. All work is performed in accordance with the GR Health & Safety Plan and all client-specific programs. The scope of work and type of analysis to be performed is determined prior to commencing field work.

Prior to well development, each well is monitored for the presence of free-phase hydrocarbons and the depth to water is recorded. Wells are then developed by alternately surging the well with the bailer, then purging the well with a pump to remove accumulated sediments and draw groundwater into the well. Development continues until the groundwater parameters (temperature, pH, and conductivity) have stabilized.

Prior to sampling, the presence or absence of free-phase hydrocarbons is determined using an interface probe. Product thickness, if present, is measured to the nearest 0.01 foot and is noted in the field notes. In addition, all depth to water level measurements are collected with a static water level indicator and are also recorded in the field notes, prior to purging and sampling any wells.

After water levels are collected and prior to sampling, if purging is to occur, each well is purged a minimum of three well casing volumes of water using pre-cleaned pumps (stack, peristaltic or Grundfos), or disposable bailers. Temperature, pH and electrical conductivity are measured a minimum of three times during the purging (additional parameters such as dissolved oxygen, oxidation reduction potential, turbidity may also be measured, depending on specific scope of work.). Purging continues until these parameters stabilize.

Groundwater samples are collected using disposable bailers. The water samples are transferred from the bailer into appropriate containers. Pre-preserved containers, supplied by analytical laboratories, are used. When pre-preserved containers are not available, the laboratory is instructed to preserve the sample as appropriate. Duplicate samples are collected for the laboratory to use in maintaining quality assurance/quality control standards, as directed by the scope of work. The samples are labeled to include the job number, sample identification, collection date and time, analysis, preservation (if any), and the sample collector's initials. The water samples are placed in a cooler, maintained at 4°C for transport to the laboratory. Once collected in the field, all samples are maintained under chain of custody until delivered to the laboratory.

The chain of custody document includes the job number, type of preservation, if any, analysis requested, sample identification, date and time collected, and the sample collector's name. The chain of custody is signed and dated (including time of transfer) by each person who receives or surrenders the samples, beginning with the field personnel and ending with the laboratory personnel.

A laboratory supplied trip blank accompanies each sampling set. The trip blank is analyzed for some or all of the same compounds as the groundwater samples.

As requested by Chevron Environmental Management Company, the purge water and decontamination water generated during sampling activities is transported by Clean Harbors Environmental Services to Seaport Environmental located in Redwood City, California.

Client/Facility#:	Chevron #376584		Job Number:	385903	
Site Address:	670 98Th Avenue		Event Date:	6-17.1h	(inclusive)
City:	Oakland, CA	. 1925	Sampler:	Fr	
	·····		-		
Well ID	4w-1		Date Monitored:	6.1.16	
Well Diameter	2 in.				
Initial Total Dept	h 19.63 ft.		Volume 3	/4"= 0.02 1"= 0.04 2"= 0.17	3"= 0.38
Final Total Deptl	19.69 ft		Factor (VF)	4"= 0.66 5"= 1.02 6"= 1.50	12"= 5.80
Depth to Water	8.43 ft.	Check if water colu	mn is less then 0.50	ft.	
	11.20 XVF .	17 = 1.90	x10 case volume :	= Estimated Purge Volume: 19.	ogal.
Depth to Water w	v/ 80% Recharge [(Height o	of Water Column x 0.20)	+ DTW]:		
				Time Started:	(2400 hrs)
Purge Equipment:	/	Sampling Equipment	t :	Depth to Product:	(2400 fits)
Disposable Bailer	. —/_	Disposable Bailer		Depth to Water:	ft
Stack Pump	·	Metal Filters	-	Hydrocarbon Thickness:	ft
Peristaltic Pump		Peristaltic Pump	/	Visual Confirmation/Description	ו:
QED Bladder Pump		QED Bladder Pymp	<u></u>		
Other:		Other:		Amt Removed from Skimmer	cle one)
				Amt Removed from Well:	Itr
				Water Removed:	ltr
Start Time (purge): <u>0927</u>	_ Weather Co	onditions:	CLOUDY SUN	н,
Sample Time/Da	te: /	_ Water Colo	r: Clean	Odor: Y / 👧 '	
Approx. Flow Ra	te: 🔽 1.0 gpm.	Sediment D	escription:	Nove	
Did well de-water	r? If yes, Tin	ne: Volu	ume: g	al. DTW @ Sampling:	
Time	Volume	Conductivity	Tomporatura		
(2400 hr.)	(gal.) pH	(ASV mS	$(\mathbf{O} / \mathbf{F})$	(mg/L) (mV)	
0928	1.9 6.70	380	20.2		
0929	3.8 6.69	382	20.3		
0930	5.7 6.69	383	20.3		
0931	7.6 6.70	38	20.2	/	
0932	9.5 6.7	383	20.3		_
<u>D955</u> 0634	12 2 0. 11	$-\frac{7}{2}$	20.5		
0935	15.2 6.72	- 392	<u> </u>		
0936	17.1 6.7	382	20.3		<u></u>
0937	19.0 6.71	382	20.3		
SAMPLE ID	(#) CONTAINER REFRI	LABORAIORY		ANALYSES	1
				ARAETOEO	
COMMENTO.			0		
	INITIAL GGI READI	NG: D PI	M	· •	
DEVELOP UNL)		CHIA	-ISTY POY		
			<u> </u>		
Add/Replaced Ga	sket: Add/Repl	aced Bolt:	Add/Replaced Loc	k: Add/Replaced Pl	ug: (2"/

Client/Facility#:	Chevron #37	6584		Job Number:	385903	
Site Address:	670 98Th Av	enue		Event Date:	6/17/16	(inclusive)
City:	Oakland, CA	•	· · · ····	Sampler:	JU	······································
Well ID	MW-2	-	D	ate Monitored:	6/17/16	
Well Diameter	2 in					
Initial Total Dept	h <u>27.54</u> ft.	_		Volume 3	3/4"= 0.02 1"= 0.04 2"= 0.17	3"= 0.38
Final Total Dept	h <u>28.25 ft</u> .	-		Factor (VF)	4=0.66 5=1.02 6= 1.50	12"= 5.80
Depth to Water	8.28 ft.		heck if water column	is less then 0.50	ft.	
	19.26	xVF	<u>7 = 3.27</u>	x10 case volume	= Estimated Purge Volume: <u>32.</u>	. 74 gal.
Depth to Water w	v/ 80% Recharge	[(Height of W	/ater Column x 0.20) +	DTWJ: 12.13		(2.1.2.1)
					Time Started:	(2400 hrs)
Purge Equipment:		S	ampling Equipment:		Depth to Product:	(2400 fit
Disposable Bailer		D	isposable Bailer		Depth to Water:	ft
Stack Pump	' 	M	letal Filters	<u> </u>	Hydrocarbon Thickness:	ft
Peristaltic Pump		P	eristaltic Pump		Visual Confirmation/Description	on:
QED Bladder Pump	<u></u>	Q	ED Bladder Pump			
Other:		0	ther:	7	Skimmer / Absorbant Sock (ci	rcle one)
					Amt Removed from Well:	IU
					Water Removed:	ltr
		37.1				
Start Time (purge	e): 0650		Weather Con	ditions:	Cloudy	
Sample Time/Da	ite: /		Water Color:	Bean	Odor: W/ d List	1
Approx. Flow Ra	te:	gpm.	Sediment De	scription:	Lutto	
Did well de-wate	r? <u>///</u> If	yes, Time:	Volum	ne: g	gal. DTW @ Sampling:	
Time	Volume		Conductivity	Temperature		
(2400 hr.)	(gal.)	pН	(µS⊁mS	$(\mathbf{O} / \mathbf{F})$	(mg/L) (mV)	
0700	3	8.02	540	17.7		
0710	6	8.04	544	17.8	/	7
6715	٩	8.07	547	17.9		<u> </u>
0718	<u> 12</u>	8.08	552	<u> </u>		
6721	15	8.09	5.60	17.9		<u></u>
0727	21	8.01	<u> </u>	17.5	<u> </u>	
0730	24	7.57	579	17.5		
073)	27	7.94	580	17.6		
0739	33	7.52	589	17.6		
					1 '	
	(#) CONTAINER	REFRIG	LABORATORY IN	FORMATION		1
	(#) CONTAINER		TREOLINY. TITL	LABORATORT	ANALISES	
					0	
			(X and	I	1	·····
COMMENTS:	INITIAL CGI F	READING	<u>s: p ppm</u>			
DEVELOP ONLY			- 	. <u></u>		
••••••••••••••••••••••••••••••••••••••						
Add/Replaced Ga	sket:	Add/Replace	d Bolt:	Add/Replaced Loc	k: Add/Replaced F	Plug:

		<u> </u>	JOD NUMBER:	385903	
Site Address:	670 98Th Aver	lue	Event Date:	6/17/16	(inclusive)
City:	Oakland, CA		Sampler:	<u></u>	
Well ID	MW-3		Date Monitored:	6/1/16	
weil Diameter			Mahama	////= 0.00 ///= 0.04 0// 0// 0/7	
Tinitial Total Dept	n <u>42.55 tt.</u>		Factor (VF)	4"= 0.66 5"= 1.02 6"= 1.50	3"= 0.38 12"= 5.80
Final Total Deptr	1 <u>22.80 ft.</u>	_			
Depth to Water	8,62 ft.	Check if water colur	mn is less then 0.50	ft.	• -
	<u>13.43</u> ×	VF=	x10 case volume =	Estimated Purge Volume: 23.6	gal.
Depth to Water v	v/ 80% Recharge [(H	leight of Water Column x 0.20)	+ DTW]: 11.40	Time Started:	(2400 bm)
Dunna Frankriger				Time Completed:	(2400 hrs) (2400 hrs)
Purge Equipment:		Sampling Equipment	t:	Depth to Product:	(2400 fit
Disposable Baller Steiplose Steel Baile		Disposable Bailer		Depth to Water:	ft
Stack Pump	·	Metal Filters		Hydrocarbon Thickness:	ft
Peristaltic Pump		Peristaltic Pump		Visual Confirmation/Descriptio	n:
QED Bladder Pump	<u> </u>	QED Bladder Pump			
Other:		Other:		Skimmer / Absorbant Sock (cir	cle one)
				Amt Removed from Skimmer:	ltr
		2		Water Removed	ICF
					IU
Approx. Flow Rat Did well de-water (2400 hr.)	te: <u> </u>	PM Water Colo pm. Sediment D ss, Time: Volu Conductivity pH (/DS//mS unable/cm)	Description:	Odor: Q Im L.o. Im Ial. DTW @ Sampling: D.O. ORP (mg/L) (mV)	
0525 0535 0535 0535 0537 0538 0541 0543 0545 0545 0545	$ \begin{array}{c} 2 \\ - 4 \\ - 7 \\ - 6 \\ - 7 \\ $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10.6 18.4 18.4 18.5 18.6 18.6 18.5 18.4 18.4 18.3 18.4		Z
0525 0530 0535 0535 0535 0535 0545 0545 054	2 4 7 6 7 10 12 12 14 20 7 24 (#) CONTAINER		10.6 18.4 18.4 18.5 18.5 18.5 18.5 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.5 18.4 18.5 18.4 18.5 18.4 18.5 18.4 18.5 18.4 18.5 18.4 18.5 18.4 18.5 18.4 18.5 18.4 18.5 18.5 18.4 18.5 18.4 18.5 18.4 18.5 18.4 18.5 18.4 18.5 18.4 18.5 18.4 18.5 18.4 18.5 18.4 18.5 18.4 18.5 18.4 18.5 18.4 18.5 18.5 18.4 18.5 18.5 18.5 18.4 18.5		Ź
0525 0535 0737 0539 0547 0543 0545 0545 0545 0545 0545 0545 0545	2 4 7 6 7 10 7 7 10 7 7 10 7 10 7 7 10 10 7 7 10 10 10 10 10 10 10 10 10 10	1.52 51 7.51 512 7.45 51 7.47 581 7.47 584 7.47 584 7.40 580 7.33 574 LABORATORY I REFRIG. PRESERV. TYPE	10.6 18.4 18.4 18.5 18.6 18.5 18.6 18.5 18.4 18.4 18.4 18.4 18.4 18.3 18.4 IS.4 IS.4 IS.4 IS.4 IS.4 IS.4 IS.4 IS.4 IS.4 IS.4 IS.4 IS.5 IS.6 IS.5 IS.6 IS.7 IS.7 IS.6 IS IS IS IS IS IS.6		Z
0525 0530 0530 0537 0537 0537 0537 0547 0543 0545 0545 0545 0545 0545 0555	2 4 7 6 7 10 12 7 14 12 7 14 14 20 7 24 (#) CONTAINER		10.6 18.4 18.4 18.5 18.6 18.6 18.5 18.4 18.5 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.5 18.5		Z
0525 0530 0535 0737 0539 0541 0543 0545 0545 0545 0545 0545 0545 0545	$ \begin{array}{c} 2 \\ - 4 \\ - 7 \\ - 6 \\ 7 \\ - $		10.6 18.4 18.4 18.5 18.5 18.5 18.6 18.5 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.5 18.5		
0525 0535 0535 0535 0537 0539 0547 0543 0545 0545 0545 0545 0545 0545 0545	$ \begin{array}{c} 2 \\ - 4 \\ 7 \\ - 6 \\ 7 \\ - 7 \\ - 10 \\ - 7 \\ - 12 \\ - 7 \\ - $		10.6 18.4 18.4 18.5 18.5 18.5 18.5 18.5 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.5 18.4 18.5 18.4 18.5 18.4 18.5 18.5 18.4 18.5 18.4 18.5 18.4 18.5 18.4 18.5 18.4 18.5 18.4 18.5 18.4 18.5 18.4 18.5 18.5 18.4 18.5 18.4 18.5 18.4 18.5 18.5 18.4 18.5 18.4 18.5 18.4 18.5 18.5 18.5 18.4 18.5		Z
0925 0935 0935 0937 0937 0941 0941 0941 0941 0945 0945 0945 0947 0945 0945 0945	$ \begin{array}{c} 2 \\ - 4 \\ 7 \\ - 6 \\ 7 \\ - 10 \\ 7 \\ - 10 \\ 7 \\ - 12 \\ - 7 \\ - 14 \\ - 7 \\ - 20 \\ 7 \\ - 24 \\ - 7 $		10.6 18.4 18.4 18.5 18.6 18.5 18.6 18.5 18.4 18.4 18.4 18.4 18.3 18.4 IS.4 IS.4 IS.4 IS.4 IS.4 IS.4 IS.4 IS.4 IS.4 IS.4 IS.4 IS.4 IS.4 IS.5 IS.4 IS.5 IS.6 IS.5 IS.6 IS.6 IS.6 IS.6 IS.6 IS.6 IS.6 IS.6 IS.6 IS.6 IS.6 IS.6 IS.6 IS.6 IS.6 IS.6 IS.6 IS.6 IS.6 IS.7 IS.6 IS.7 IS.6 IS.6 IS.6 IS.7 IS.6 IS.7 IS.6 IS.6 IS.6 IS.7 IS.6 IS.6 IS.7 IS.6 IS.6 IS.7 IS.6 IS.7 I		Z
0925 0935 0935 0937 0941 0941 0941 0943 0947 0947 0947 0947 0955			10.6 18.4 18.4 18.5 18.6 18.6 18.5 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.5 18.4 18.4 18.5 18.4 18.4 18.5 18.4 18.5 18.4 18.5 18.4 18.5 18.4 18.5 18.4 18.5 18.4 18.5 18.4 18.5 18.4 18.5 18.4 18.5 18.4 18.5 18.4 18.5 18.4 18.5 18.4 18.5 18.4 18.5 18.4 18.5 18.4 18.5 18.4 18.5 18.4 18.5 18.4 18.4 18.5 18.4 18.4 18.5 18.4 18.5 18.4 18.5 18.4 18.5		
0525 0535 0535 0535 0537 0537 0537 0547 0543 0545 0545 0545 0545 0545 0545 0545 0545 0545 0545 055 COMMENTS:	2 4 7 6 7 10 7 10 7 12 7 14 12 7 20 7 24 (#) CONTAINER (#) CONTAINER	ADING:	10.6 18.4 18.4 18.5 18.6 18.6 18.5 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.5 18.4 18.4 18.5 18.4 18.4 18.5 18.4 18.5 18.4 18.5 18.4 18.5 18.4 18.5 18.4 18.5 18.4 18.5 18.4 18.5 18.4 18.5 18.4 18.5 18.4 18.5 18.4 18.4 18.5 18.4 18.5 18.4 18.5 18.4 18.5 18.4 18.5 18.4 18.5 18.4 18.5 18.4 18.5 18.4 18.4 18.5 18.4 18.5 18.4 18.5 18.4 18.5 18.4 18.5		
0525 0535 0535 0537 0537 0537 0537 0547 0547 0547 0547 0547 0547 0545 0545 0545 0545 0545 0545 0545 0545 055 05	2 4 7 6 7 10 12 7 10 7 10 7 20 7 20 7 20 7 24 (#) CONTAINER (#) CONTAINER	ADING:	10.6 18.4 18.4 18.5 18.5 18.6 18.5 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.5 18.4 18.5 18.4 18.5 18.4 18.5 18.4 18.5 18.4 18.5 18.4 18.5 18.4 18.5 18.4 18.4 18.5 18.4 18.5 18.4 18.5 18.4 18.4 18.4 18.5 18.4 18.5 18.4 18.4 18.5 18.4 18.4 18.4 18.4 18.5 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.5 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.5		Z

Client/Facility#:	Chevron #376584		Job Number:	385903	
Site Address:	670 98Th Avenue	•	Event Date:	6/17/16	(inclusive)
City:	Oakland, CA		Sampler:	JH	
Well ID Well Diameter Initial Total Dept Final Total Dept Depth to Water Depth to Water w Purge Equipment: Disposable Bailer Stainless Steel Baile Stack Pump Peristattic Pump QED Bladder Pump Other:	<i>MW</i> - <i>Y</i> 2 in. 21.10 ft. 22.75 ft. 10.18 ft. 10.42 xVF w/ 80% Recharge [(Height of the second seco	Check if water column ./7_ = <u>1.85</u> of Water Column x 0.20) + Sampling Equipment: Disposable Bailer Pressure Bailer Metal Filters Peristaltic Pump QED Bladder Pump Other:	Date Monitored: Volume 3 Factor (VF) this less then 0.50 x10 case volume = DTW]:	6/17/16 /4"= 0.02 1"= 0.04 2"= 0.17 4"= 0.66 5"= 1.02 6"= 1.50 ft.	3"= 0.38 12"= 5.80 56 gal. (2400 hrs) (2400 hrs) (2400 hrs) ft ft ft ft ft ft ft ft ft ft ft ft ft
Start Time (purge Sample Time/Da Approx. Flow Ra Did well de-water (2400 hr.) 0825 0835 0835 0837 0835 0837 0835 0837 0835 0847 0847 0847 0847	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Weather Cor Water Color: Sediment De me: Volum Conductivity (µS) mS µmmos/cm) S31 S37 S37 S37 S37 S37 S37 S37 S37 S37 S37	$\begin{array}{c} \hline C & o \\ \hline C & o \\ \hline Scription: \\ ne: \\ \hline me: \\ \hline me: \\ \hline me: \\ \hline merrature \\ (C) / F) \\ \hline g & g \\ g & g \\ \hline g & g \\ g & $	Cloud Odor: L.oldor L.oldor L.oldor Jal. DTW @ Sampling: D.O. ORP (mg/L) (mV)	
SAMPLE ID	(#) CONTAINER REFRI	LABORATORY IN IG. PRESERV. TYPE	FORMATION LABORATORY	ANALYSES	
COMMENTS: DEVELOP ONLY Casing Add/Replaced Gas	INITIAL CGI READI	NG: BAM 2 Missin - St Down laced Bolt:	لسوا حدا ماراح Add/Replaced Lock	1 Bor Dangsel - 1 Covery Well - W k: Add/Replaced P	lug:

Client/Facility#: Chevron #376584	Job Number:	385903	
Site Address: 670 98Th Avenue	Event Date:	6.17.16	(inclusive)
City: Oakland, CA	Sampler:	FT	
Well ID Image: Second seco	Date Monitored: Volume 3 Factor (VF) 3 blumn is less then 0.50 10 case volume = 20) + DTW]:	G 17.1L 0/4"= 0.02 1"= 0.04 2"= 0.17 4"= 0.66 5"= 1.02 6"= 1.50 ft. = Estimated Purge Volume: 22 ft. = Depth to Purge Volume: 21 Time Started:	3"= 0.38 12"= 5.80 (2400 hrs) (2400 hrs) (2400 hrs) ft ft ft rcle one) ltr ltr ltr
Start Time (purge): 0740 Weather Sample Time/Date: / Water Colspan="2">Water Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2" Time (2400 hr.) Volume (gal.) pH Conductivity Time (2400 hr.) Volume (gal.) pH Conductivity O 741 2.2 6.45 380 O 741 2.2 6.45 380 O 741 2.2 6.45 380 O 741 2.2 6.45 382 O 741 3.2 Sedimen O 741 2.2 Conductivity O 744 6.44 382 380 380 380 381 381 382 381 382 381 382 382 382 381	Conditions: plor: $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$	С Lov Ф. Odor: Y / Ø ploy E gal. DTW @ Sampling: D.O. ORP (mg/L) (mV)	
LABORATOR SAMPLE ID (#) CONTAINER REFRIG. PRESERV. TO Image: Contrained and the second se		ANALYSES	
COMMENTS: INITIAL CGI READING: Description DEVELOP ONLY E	MLO 124 OK		
Add/Replaced Gasket: Add/Replaced Bolt:	Add/Replaced Loci	k: Add/Replaced P	Plug: (2")

Client/Facility#: C	hevron #376584		Job Number:	385903	
Site Address: 6	70 98Th Avenue		Event Date:	6-17-16	(inclusive)
City: O	akland, CA		Sampler:	Rr	
Well ID Well Diameter Initial Total Depth Final Total Depth	WELL 18 2 in. 16.58 ft. 16.69 ft.		Date Monitored: Volume Factor (VF)	6 - 17.16 3/4"= 0.02 1"= 0.04 2"= 0.17 4"= 0.66 5"= 1.02 6"= 1.50	3"= 0.38 12"= 5.80
Depth to Water	<u>8.03 ft.</u>	Check if water colur	nn is less then 0.50	D ft.	
Depth to Water w/ 8	XVF	$\frac{12}{12} = \frac{1.45}{1.45}$ Water Column x 0.20)	_ x10 case volume + DTW]:	= Estimated Purge Volume: 14,5	gal. (2400 hrs)
Purge Equipment: Disposable Bailer Stainless Steel Bailer Stack Pump Peristaltic Pump QED Bladder Pump Other:		Sampling Equipment Disposable Bailer Pressure Bailer Metal Filters Peristaltic Pump QED Bladder Pump Other:		Time Completed: Depth to Product: Depth to Water: Hydrocarbon Thickness: Visual Confirmation/Description Skimmer / Absorbant Sock (cirr Amt Removed from Skimmer: Amt Removed from Well: Water Removed:	(2400 hrs) ft ft ft ft ft ft ft ttr ltr ltr
Start Time (purge): Sample Time/Date: Approx. Flow Rate: Did well de-water? Time (2400 hr.) 082(082(082(0825 0825 0825 0825 0825 0825 0825 0826 0826 0826 0826 0826	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Weather Co Water Colo Sediment D Volu Conductivity 42.3 42.4	$\begin{array}{c c} & & & & \\ \hline \\ \text{r:} & & & \\ \hline \\ \text{rescription:} & & \\ \text{lescription:} & & \\ \text{lescription:} & & \\ \text{lescription:} & & \\ \hline \\ \ \\ \text{lescription:} & & \\ \hline \\ \ \\ \text{lescription:} & & \\ \hline \\ \ \\ \ \\ \ \\ \ \\ \ \\ \ \\ \ \\ \ \\ \$	C LOL Odor: Y / () S. SILT- gal. DTW @ Sampling: D.O. ORP (mg/L) (mV)	
·········	· · · · · · · · · · · · · · · · · · ·	LABORATORY	NFORMATION		
SAMPLE ID (#	CONTAINER REFRIG	. PRESERV. TYPE		ANALYSES	
COMMENTS: IN DEVELOP ONLY	ITIAL CGI READIN	IG: OI	P.P.M. Box	01L	
Add/Replaced Gasket	: Add/Repla	ced Bolt:	Add/Replaced Loc	ck: Add/Replaced Pl	ug:(_21°)

Chevron # 376584 Event of June 24, 2016

WELL CONDITION STATUS SHEET

3

Client/ Facility #: Site Address: City:	Chevror 670 98TI Oakland	n #376584 h Avenue I, CA			·		Job #: Event Date: Sampler:	385903	6.24 FT	-16 3H	
WELL ID	Vault Frame Condition	Gasket/ O-Ring (M) Missing (R) Replaced	Bolts (M) Missing (R) Replaced	Bolt Flanges B=Broken S=Stripped R=Retaped	Apron Condition C=Cracked B=Broken G=Gone	Grout Seal (Deficient) Inches from TOC	Casing (Condition prevents tight cap seal)		E REPLACE CAP Y Ø	WELL VAULT Manufacture/Size/ # of Bolts	Pictures Taken Y
MW-1	DIL	NA		\rightarrow	OL		->		1	CHUISTY Box	
MW-5	OL	OK		\rightarrow	OIL		\rightarrow			Emilia	
NELL 18	or	NA		\rightarrow	øĸ		>			CHMER BOX	
mw-2	ØK	NA			GK						
MW-3	ylc	NIS	-		ore						
mw-4	Bpolle	m	m	ß	C	?	BRoke	¥		12" emco	
									<u> </u>		
							·			8	
										·····	
<u></u>										······	
Comments	m	W-4 L	.2 Missing	- steel	plate	covery h	/e[

Client/Facility#:	Chevron #376	6584		Job Number:	385903	
Site Address:	670 98Th Ave	nue		Event Date:	10.29.1	(inclusive)
City:	Oakland, CA			Sampler:	FT	
Well ID	Hw-1		D	ate Monitored:	6.24.	16
Well Diameter	2 in.		Volur	ne 3/4"= 0.	02 1"= 0.04 2"= () 17 3"= 0.38
Total Depth	19.68 ft.		Facto	or (VF) 4"= 0.	66 5"= 1.02 6"= 1	1.50 12"= 5.80
Depth to Water	<u>8.48 ft.</u>		neck if water column	is less then 0.50 x3 case volume =	ft. Estimated Purge Volum	e: 6.0 gal
Depth to Water	w/ 80% Recharge [(Height of Wa	ater Column x 0.20) +	DTW]: 10-72	Time Started:	gun (2400 hrs)
Purge Equipment:	/	Sa	mpling Equipment:	/	Time Completed	d:(2400 hrs)
Disposable Bailer		Dis	posable Bailer		Depth to Produc	t:ft
Stainless Steel Baile		Pre	essure Bailer	¥	Depth to Water:	ft
Stack Pump		Me	tal Filters		Hydrocarbon Th	ickness:ft
Peristaltic Pump		Pe	ristaltic Pump	·····	Visual Confirma	tion/Description:
QED Bladder Pump	<u></u>	QE	D Bladder Pump		Skimmer / Aleo	thant Sock (circle and)
Other:		Oth	ner:		Amt Removed fr	om Skimmer:
					Amt Removed fr	om Well: Itr
					Water Removed	:itr
Sample Time/Da Approx. Flow Ra Did well de-wate Time (2400 hr.)	ate: 0827 /6 ate: r? Volume (gal.)	<u>•24.</u>]6 gpm. If yes, Tim pH	Water Color: Sediment Des e: Vol Conductivity () mS umhos/cm)	LT. BLJ scription: lume: Temperature (Ø / F)	Odor: ② / N gal. DTW @ Sar D.O. (mg/L)	<u>۲۲ میلا</u> npling: <u>8.51</u> ORP (mV)
0809	20	6.74	391	19.9		
0813	4.0 6	0.77	347	19.6		
0817	6.0 4	<u>2.7</u> 5	402	19.4	\leq	
		L	ABORATORY IN	FORMATION		
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY		ANALYSES
Mw-1	🖌 x voa vial	YES	HCL	LANCASTER	TPH-GRO(8015)/BTEX	(+MTBE(8260)/
	C x 500ml amba		NO		FULL SCAN(8260)/NAI	PHTHALENE(8260)
	x soumi ampers	YES	NP	LANCASTER	IPH-DRO w/sgc/TPH-I	DRO(8015)
<u> </u>	+		•• •• ••		· · · · · · · · · · · · · · · · · · ·	, , <u>, , , , , , , , , , , , , , , , , </u>

COMMENTS:

SHEEN PRESENT IN H20

Client/Facility#:	Chevron #3	76584		Job Ni	umber: 🕄	385903				
Site Address:	670 98Th Av	venue		Event	Event Date:		6/24/16		 (inclusive)	
City:	Oakland, C	A		Sampl	Sampler:		HC		-	
Well ID	MW-2			Date Mor	itored:	6/24	1116			
Well Diameter	2 i	n.	ſ	Volume	3/4"= 0.02	1"= 0.04	2"= 0.17	3"= 0.3	38	
Total Depth	28.23		L		4"= 0.66	5"= 1.02	6"= 1.50	12"= 5.8	80	
Depth to water	19.91		7 = 3.39		nen 0.50 π. volumo - Eo	timated Dura	Noluma: 1	0.15	aal	
Depth to Water Purge Equipment: Disposable Bailer Stainless Steel Bailer Stack Pump Peristaltic Pump QED Bladder Pump Other:	w/ 80% Recharg	ampling Equipmo sposable Bailer ressure Bailer etal Filters eristaltic Pump ED Bladder Pump ther:	20) + DTWJ: //	2.30	Time Started: Time Completed: Depth to Product: Depth to Water: Hydrocarbon Thickness: Visual Confirmation/Descriptio Skimmer / Absorbant Sock (cir Amt Removed from Skimmer: Amt Removed from Well: Water Removed:			(2400 hrs) (2400 hrs) ft ft ft ft pn: ft pr: ft rcle one) itr itr		
Start Time (purge	e): <u>0640</u>		Weather	Conditions:		Forsy				
Sample Time/Da	ate: 0710 /	6 24116	Water Co	olor: <u> </u>	goin (dor: Y /				
Approx. Flow Ra	ate:	gpm.	Sediment	t Description			Light		6 71	
Did well de-wate		_ iryes, rin	ne:	_ volume:		gal. DIW	@ Samplir	ng:	1./6	
Time	Volume (gal.)	pН	Conductivity (aS) mS	Temper (O /	rature F)	D.O. (mg/L)	C (r	DRP mV)		
(2400 hr.)			unnos/cm)		•					
(2400 hr.) 0693		7.55	<u>638</u>		<u></u>				_	

	LABORATORY INFORMATION										
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	ANALYSES						
MILT	x voa vial	YES	HCL	LANCASTER	TPH-GRO(8015)/BTEX+MTBE(8260)/						
			115		FULL SCAN(8260)/NAPHTHALENE(8260)						
	7 x 500ml ambers	YES	NP	LANCASTER	TPH-DRO w/sgc/TPH-DRO(8015)						
	81										

COMMENTS: CHRIST BOX

Client/Facility#:	Chevron #376584	Job Number:	385903	
Site Address:	670 98Th Avenue	Event Date:	6 24 16	 (inclusive)
City:	Oakland, CA	Sampler:	H	
Well ID	MW-3	Date Monitored:	6 124 116	
Well Diameter Total Depth	2 in. 22.3.9 ft	Volume 3/4"= 0.02 Factor (VF) 4"= 0.66	2 1"= 0.04 2"= 0.17 3"= 0. 6 5"= 1.02 6"= 1.50 12"= 5.	38 80
Depth to Water	8.68 ft. ↓3.71 xVF .17 =	water column is less then 0.50 ft 2.33 x3 case volume = E	t. Estimated Purge Volume: 6.99	
Depth to Water w Purge Equipment: Disposable Bailer Stainless Steel Baile Stack Pump Peristaltic Pump QED Bladder Pump Other:	w/ 80% Recharge [(Height of Water Colu Sampling Disposable Pressure E Metal Filter Peristaltic QED Blade Other:	umn x 0.20) + DTWJ: <u>11. 42</u> Equipment: e Bailer Bailer rs Pump der Pump	Time Started: Time Completed: Depth to Product: Depth to Water: Hydrocarbon Thickness: Visual Confirmation/Description Skimmer / Absorbant Sock (ci Amt Removed from Skimmer: Amt Removed from Well: Water Removed:	(2400 hrs) (2400 hrs) ft ft ft on: ft on: ttr itr
Start Time (purge Sample Time/Da Approx. Flow Ra Did well de-wate	e): <u>0800</u> W ate: <u>0830 / 6/24//6</u> W ate: <u> gpm.</u> Se r? <u> V</u> If yes, Time:	/eather Conditions: /ater Color: <u> </u>	Claudy Odor: @/N Lutr gal. DTW @ Sampling:	10.70
Time (2400 hr.) 6805 0810 6817	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ductivity S/mS Temperature (C / F) $ros/cm)$ (C / F) $ros/cm)$ $I F \cdot f$ $I 7$ $I F \cdot f$ $I 7$ $I F \cdot f$ $I 7$ $I F \cdot f$ $I 8 \cdot f$ $I 8 \cdot f$	D.O. ORP (mg/L) (mV)	- -

	LABORATORY INFORMATION											
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	ANALYSES							
MIJ-7	6 x voa vial	YES	HCL	LANCASTER	TPH-GRO(8015)/BTEX+MTBE(8260)/							
1.100 5					FULL SCAN(8260)/NAPHTHALENE(8260)							
) x 500ml ambers	YES	NP	LANCASTER	TPH-DRO w/sgc/TPH-DRO(8015)							

COMMENTS:

Client/Facility#:	Chevron #3	376584		Job Nu	ımber: 3	85903			
Site Address:	670 98Th A	venue		Event	Date:	6/2	4/16		(inclusive)
City:	Oakland, C	Α	· · · · · · · · · · · · · · · · · · ·	Sampler:		J	Н	、 ,	
Well ID	MW-4			Date Mon	itored:	61	24/16		
Well Diameter	2	in.	ſ	Volume	3/4"= 0.02	1"= 0.04	2"= 0.17	3"= 0.38	3
Total Depth	21.70	<u>ft.</u>		Factor (VF)	4"= 0.66	5"= 1.02	6"= 1.50	12"= 5.80)
Depth to Water	10.25	ft. 🔲 Che	ck if water co	olumn is less tl	nen 0.50 ft.				
	11.45	xVF .17	_= <u>1.99</u>	x3 case	volume = Es	timated Purg	e ∨olume: <u>Š</u>	r. 83 🛛	gal.
Depth to Water w	v/ 80% Recharg	e [(Height of Wate	r Column x 0.	20) + DTW]: 📕	2.54			·····	
						Time St	arted:		(2400 hrs)
Purge Equipment:		Sam	pling Equipm	ent:		Time Co	ompleted:		(2400 hrs)
Disposable Bailer	<u> </u>	Dispo	osable Bailer	<u> </u>		Depth to	Product:		ft
Stainless Steel Bailer		Press	sure Bailer			Depth to	vvater:		π
Stack Pump		Meta	Filters			Visual C	onfirmation/	ess Description	n
Peristaltic Pump		Peris	taltic Pump			Visual	ommadorin	Description	
QED Bladder Pump		QED	Bladder Pump	p		Skimme	r / Absorban	t Sock (circ	le one)
Other:		Other				Amt Rer	noved from S	Skimmer:	ltr
						Amt Rer	noved from \	Vell:	ltr
						Water R	emoved:		itr
			· · · · · · · · · · · · · · · · · · ·				,		
Start Time (purge): <u>0845</u>		Weather	Conditions:			early		
Sample Time/Dat	te: <u>0915 /</u>	6/24/16	Water Co	olor: <u>Cla</u>	<u>uh</u> 0	dor: 🎱 / 🖞		588	
Approx. Flow Rat	ie:	gpm.	Sedimen	t Description	:		544		
Did well de-water	? No	If yes, Time:		_ Volume:	9	gal. DTW	@ Samplii	ng:	
Time (2400 hr.)	Volume (gal.)	pН	Conductivity	Temper (Ø : /	ature F)	D.O. (ma/L)	C	DRP mV)	
0850	2	722		10	n [′]	,	,		
0855	<u> </u>	1.00 -	531	<u> </u>	<u> </u>		-/		
	<u> </u>	7.50 -	640	<u> </u>			< →		
	6	1.64	04/						

	LABORATORY INFORMATION											
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	ANALYSES							
MILI	6 x voa vial	YES	HCL	LANCASTER	TPH-GRO(8015)/BTEX+MTBE(8260)/							
11/10 9					FULL SCAN(8260)/NAPHTHALENE(8260)							
	2 x 500ml ambers	YES	NP	LANCASTER	TPH-DRO w/sgc/TPH-DRO(8015)							

COMMENTS:

Client/Facility#:	Chevron #376	584	Job Numb	ber: 3859	03		
Site Address:	670 98Th Aven	lue	Event Dat	ie:	6.24.16	(ir	iclusive)
City:	Oakland, CA		Sampler:		FT	``	,
Well ID	MW-5		Date Monitor	ed:	6-24.1	6	
Well Diameter Total Depth	<u>2</u> in. <u>11.58</u> ft.		Volume 3/ Factor (VF)	'4"= 0.02 1"= 4"= 0.66 5"=	= 0.04 2"= 0.17 = 1.02 6"= 1.50	7 3"= 0.38 0 12"= 5.80	
Depth to Water	9-12 ft. 12 4L	Check if water $\sqrt{5}$	column is less then	0.50 ft.		70	
Depth to Water v	w/ 80% Recharge [(H	leight of Water Column x (0.20) + DTWJ: <u> -</u>		ime Started:	9	(2400 brs)
Purge Equipment:	/	Sampling Equip	ment:	1	ime Completed:		(2400 hrs)
Disposable Bailer		Disposable Bailer	. /		Depth to Product:_		ft
Stainless Steel Baile	۲ <u> </u>	Pressure Bailer			Depth to Water:		ft
Stack Pump		Metal Filters		_ K	lydrocarbon Thick	ness:	ft
Peristaltic Pump		Peristaltic Pump		_ ``		viescription.	
QED Bladder Pump		QED Bladder Pur	mp	s	kimmer / Absorba	int Sock (circle	one)
Other:		Other:	·····	A	mt Removed from	Skimmer:	ltr
				A	mt Removed from	ı Well:	ltr
				Ľ	Vater Removed:		ltr
Start Time (purge): 0645	Weathe	er Conditions:		Fou		
Sample Time/Da	te: 0710 /6.	24.16 Water (Color: Ber	Odor:	Y / 🚯		<u></u>
Approx. Flow Rat	te: gi	om. Sedime	nt Description:		SILTY		<u></u>
Did well de-water	r? N s If	yes, Time:	Volume:	gal.	DTW @ Samp	ling: 9	.16
Time (2400 hr.)	Volume (gal.)	Conductivit pH () / mS µmhos/cm	y Temperatur (Ø / F	e D) (m	.O. g/L)	ORP (mV)	
0650	2.5 6	.64 394	18.8				
0655	5.0 6	.68 399	18.3				
0659	7.0 6	71 405	18.2		$<$ $_$		
				/			

	LABORATORY INFORMATION											
SAMPLE ID	(#) CO	NTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	ANALYSES						
hw-s	6	x voa vial	YES	HCL	LANCASTER	TPH-GRO(8015)/BTEX+MTBE(8260)/						
						FULL SCAN(8260)/NAPHTHALENE(8260)						
	2 × 50	0ml ambers	YES	NP	LANCASTER	TPH-DRO w/sgc/TPH-DRO(8015)						
	4											

COMMENTS:

Client/Facility#:	Chevron #3	76584		Job N	umber: 3	85903				
Site Address:	670 98Th Av	venue		Event	Date:	6.2	24.16		 (inclus	sive)
City:	Oakland, C	A		Samp	Sampler:		FT		_`	,
Well ID	WEULIS	È.		Date Mo	nitored:	6.	24.16			
Well Diameter Total Depth	16.68	<u>n.</u> ît.		Volume Factor (VF)	3/4"= 0.02 4"= 0.66	1"= 0.04 5"= 1.02	2"= 0.17 6"= 1.50	3"= 0 12"= 5	.38 .80	
Depth to Water	8.05	<u>.</u> Ch	eck if water c	olumn is less	then 0.50 ft.			Δ		
Depth to Water	w/ 80% Recharg	XVF e [(Height of Wa	= 1.4 ter Column x 0	.20) + DTW]:	volume = Es	timated Purg	e Volume:	4.0	gal.	
Durge Equipments			wallas Faulas			Time St	arted:		(2 [,] (2	400 hrs) (400 hrs)
Disposable Bailer		Sai Die	npiing Equipn nosable Bailer	nent:		Depth to	Product:			ft
Stainless Steel Bail	er	Pre	ssure Bailer			Depth to	Water:		_/	ft
Stack Pump		Me	tal Filters			Hydroca	arbon Thickne	ess:		ft
Peristaltic Pump		Per	istaltic Pump			Visual C	onfirmation/	Descripti	on:	
QED Bladder Pump	,	QE	D Bladder Pum	ıp		Skimme	r / Absorban	t Sock (c	ircle one)	— I
Other:		Oth	er:			Amt Rer	moved from s	Skimmer		ltr
						Amt Rer	moved from \	Nell:		ltr
						Water R	emoved:			ltr
Start Time (purg	e): 0727		Weathe	r Conditions:		For	le			
Sample Time/Da	ate: 0746/	24.16	Water C	olor: <u>LT.</u>	Bar O	dor: Y / 🕻	Ø			
Approx. Flow Ra	ate:	gpm.	Sedimer	nt Description	n:	<u>S</u> .	SIL	1		
Did well de-wate	er? <u>No</u>	_ If yes, Tim	e:	_ Volume: _	9	gal. DTW	@ Sample	ng:	8.10)
Time (2400 hr.)	Volume (gal.)	рН	Conductivity (19)/mS µmhos/cm)	/ Tempe (🙆 /	F)	D.O. (mg/L)	(DRP mV)		
0730	1.5	(0.62	<u>422</u>	19	.6				_	
0733	3.0	6.67	424	19	.3 _	_/	\leq $_$		_	
0736	4.0	<u>6.70</u>	43		<u> </u>				-	

	LABORATORY INFORMATION											
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	ANALYSES							
WELL 18	6 x voa vial	YES	HCL	LANCASTER	TPH-GRO(8015)/BTEX+MTBE(8260)/							
					FULL SCAN(8260)/NAPHTHALENE(8260)							
	2 x 500ml ambers	YES	NP	LANCASTER	TPH-DRO w/sgc/TPH-DRO(8015)							
			l									

COMMENTS:

_

Che	vro	n Ca	alifo	orni	a l	70	gi	or	1 A	4 <i>n</i>	al	ys	sis	;	le	qι	Ie	st	/C	h	ai	n of Cu	stody
Seurofins 500 DG2416-02 Lancaste Laborato	er ries		A	.cct. #		*:		Grou	ForE p# nstructi	urofina ons on r	s Lane	castei side co	r Labo Sa rrespon	oratorie Imp ie d with d	9S US # Incled n	e only	, 						
1 Client In	formatic	S n	tana dininana mat	201306 WEINT 121	4) M	atrix		A DEC ALL	(6)		á mene	A	nalys	ses	Requ	uest	ed		्			
Facily \$#376584-OML 0-R#38590	3 Glob	al ^W ID#TC	6001014	142	Τ	T		T	1				Γ					-			Τ	SCR #:	
Ste 67098th Avenue, Oaklan	D, CA					3 B	ł 🗆					团	Ø	8266)								Results in Dry W	leight needed
Chevron PM STANTECWB		Lead Con	ullant CNOT		men	pund	face			团		Cleanu	dnut	6								Musl meet lowes	t detection
Consultant/Office Oetter-Ryan Inc., 6605 Sierra	Court, s	Sulte G,	Dublin,	CA 94	ied S	υ	Sul		ainers	826	826	a Gel (iel Clea	2]6								compounds	(impation
Consultant Project Mgr Deanna L. Harding, deanna@	grinc.co	om		. 1		∣⊏			Conta		X	ut Silic	Silica G	онтн		Vethod	Vethod					Confirm highest	hit by 8260
Consultant Phone # (923) 551-7444 x180				ſ	7	table	DES	Ąi	er of	802	801	5 witho	5 with (Wes	enates		~						s on highest hit is on all bits
Sampler Jin H	Res			3] 6	¶Z ∎		qunn	MTBE	õ	30 801	10 801	dl Scan	O	ġ	ed Leac					L.J. 1000 044	
② Sample Identification	Soil Depth	Col Date	ected Time	Grab	Soil Soil		Water	5	Total I	STEX +	IPH-GF	LPH-DF	TPH-DF	3260 Fu		fotal Le	Dissolve					(f) Rema	rke
GA .	and the feature of the second s	160624		X		X			2			-			-1	-		_					
mw-1			0827			1			8	X	X	X	X	X								Ding	NON
mw-2			0710	Π			_		1	Ĩ	1	1	1	1								MMM	ma
mw.3			0830																			no.	R
mw-y	•		0915	Ш		· · ·		-	Ц	-	-			-									···· · · · · · · · · · · · · · · · · ·
mw-s		1	0710	\square						4		N	. 4									0	AURIC
Well-18		4	0746	1	_	11				M	Q.	V.	V	d.	-+	_		_				- ana	LYSI
					t							_							_			add	ed
					-	-			_					-	_			_	_			111	/
					1									_		_						Toria	124/16
7) Turnaround Time Requested (T	AT) (pleas	e circle)		Relinquis	ned by	-	7			Date			Tîme			Receiv	ed by	┦		_		Dale	Time (
Standard 5 day		4 day				6/24/16				09	145		Th	2	1	-			6.24.16	0945			
72 hour 48 hour		24 hogu	F/EDD	Relingers	ied by	ed by				Dale 52	4.16			25	-	Received by		_	24. Jus Illa	Time 162.5			
8 Data Package (circle If required)	EDD	(circle If r	equired)	Reinqu	ished by commercial Carrier:			rier:				F	Received by				Date	Time					
Type I - Full	EDF	ELAT (defa	uit)	UPS			S FedEx Other																
Type VI (Raw Data)	Other				Temp	eratu	ire U	pon	Rec	eipt _			0 053799678		Paterates	Cu	stod	/ Se	als I	ntac	t?	Yes	No

Eurofins Lancaster Laboratories, Inc. • 2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 The white copy should accompany samples to Eurofins Lancaster Laboratories. The yellow copy should be relained by the client. issued by Dept. 40 Management 7050.03

.

ATTACHMENT B Certified Laboratory Analysis Reports and Chain-of-Custody Documents

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

ANALYTICAL RESULTS

Prepared by:

Prepared for:

Eurofins Lancaster Laboratories Environmental 2425 New Holland Pike Lancaster, PA 17601 Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

Report Date: August 02, 2016

Project: 376584

Submittal Date: 06/25/2016 Group Number: 1676196 PO Number: 0015188594 Release Number: CMACLEOD

State of Sample Origin: CA

	Lancaster Labs
Client Sample Description	<u>(LL) #</u>
QA-T-160624 NA Water	8445594
MW-1-W-160624 Grab Groundwater	8445595
MW-2-W-160624 Grab Groundwater	8445596
MW-3-W-160624 Grab Groundwater	8445597
MW-4-W-160624 Grab Groundwater	8445598
MW-5-W-160624 Grab Groundwater	8445599
Well-18-W-160624 Grab Groundwater	8445600

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

Regulatory agencies do not accredit laboratories for all methods, analytes, and matrices. Our scopes of accreditation can be viewed at <u>http://www.eurofinsus.com/environment-testing/laboratories/eurofins-lancaster-laboratories-environmental/resources/certifications/</u>.

Electronic Copy ToStantecElectronic Copy ToStantecElectronic Copy ToGettler-Ryan Inc.

Attn: Brian Westhoff Attn: Laura Viesselman Attn: Gettler Ryan

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Respectfully Submitted,

amek Carts

Amek Carter Specialist

(717) 556-7252

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: QA-T-160624 NA Water Facility# 376584 Job# 385903 GRD 670 98th Avenue-Oakland T0600101442 LL Sample # WW 8445594 LL Group # 1676196 Account # 10906

Project Name: 376584

Collected: 06/24/2016

Submitted: 06/25/2016 09:30 Reported: 08/02/2016 13:13

980QA					
CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l	ug/l	
10945	Benzene	71-43-2	N.D.	0.5	1
10945	Ethylbenzene	100-41-4	N.D.	0.5	1
10945	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	1
10945	Toluene	108-88-3	N.D.	0.5	1
10945	Xylene (Total)	1330-20-7	N.D.	0.5	1
GC Vol	Latiles SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water C6-C12	n.a.	N.D.	50	1

Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

CA ELAP Lab Certification No. 2792

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

Sample Comments

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10945	BTEX/MTBE	SW-846 8260B	1	F161891AA	07/07/2016 11:2	7 Daniel H Heller	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	F161891AA	07/07/2016 11:2	7 Daniel H Heller	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	16182A20A	06/30/2016 13:3	2 Jeremy C Giffin	1
01146	GC VOA Water Prep	SW-846 5030B	1	16182A20A	06/30/2016 13:3	2 Jeremy C Giffin	1

Analysis Report

LL Sample # WW 8445595 LL Group # 1676196 Account # 10906

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-1-W-160624 Grab Groundwater Facility# 376584 Job# 385903 GRD 670 98th Avenue-Oakland T0600101442

Project Name: 376584

COTTCCCCCC, OO/24/2010 00.27 Dy Di	Collected:	06/24/	/2016	08:27	by	JH
------------------------------------	------------	--------	-------	-------	----	----

Submitted: 06/25/2016 09:30 Reported: 08/02/2016 13:13

98001

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l	ug/l	
10335	Acetone	67-64-1	N.D.	6	1
10335	t-Amyl methyl ether	994-05-8	N.D.	0.5	1
10335	Benzene	71-43-2	N.D.	0.5	1
10335	Bromobenzene	108-86-1	N.D.	1	1
10335	Bromochloromethane	74-97-5	N.D.	1	1
10335	Bromodichloromethane	75-27-4	N.D.	0.5	1
10335	Bromoform	75-25-2	N.D.	0.5	1
10335	Bromomethane	74-83-9	N.D.	0.5	1
10335	2-Butanone	78-93-3	N.D.	3	1
10335	t-Butyl alcohol	75-65-0	N.D.	5	1
10335	n-Butylbenzene	104-51-8	27	1	1
10335	sec-Butylbenzene	135-98-8	18	1	1
10335	tert-Butylbenzene	98-06-6	N.D.	1	1
10335	Carbon Disulfide	75-15-0	N.D.	1	1
10335	Carbon Tetrachloride	56-23-5	N.D.	0.5	1
10335	Chlorobenzene	108-90-7	N.D.	0.5	1
10335	Chloroethane	75-00-3	N.D.	0.5	1
10335	2-Chloroethyl Vinyl Ether	110-75-8	N.D.	2	1
	2-Chloroethyl vinyl ether ma preserve this sample.	y not be recovered	if acid was used to		
10335	Chloroform	67-66-3	N.D.	0.5	1
10335	Chloromethane	74-87-3	N.D.	0.5	1
10335	2-Chlorotoluene	95-49-8	N.D.	1	1
10335	4-Chlorotoluene	106-43-4	N.D.	1	1
10335	1,2-Dibromo-3-chloropropane	96-12-8	N.D.	2	1
10335	Dibromochloromethane	124-48-1	N.D.	0.5	1
10335	1,2-Dibromoethane	106-93-4	N.D.	0.5	1
10335	Dibromomethane	74-95-3	N.D.	0.5	1
10335	1,2-Dichlorobenzene	95-50-1	N.D.	1	1
10335	1,3-Dichlorobenzene	541-73-1	N.D.	1	1
10335	1,4-Dichlorobenzene	106-46-7	N.D.	1	1
10335	Dichlorodifluoromethane	75-71-8	N.D.	0.5	1
10335	1,1-Dichloroethane	75-34-3	N.D.	0.5	1
10335	1,2-Dichloroethane	107-06-2	N.D.	0.5	1
10335	1,1-Dichloroethene	75-35-4	N.D.	0.5	1
10335	cis-1,2-Dichloroethene	156-59-2	N.D.	0.5	1
10335	trans-1,2-Dichloroethene	156-60-5	N.D.	0.5	1
10335	1,2-Dichloropropane	78-87-5	N.D.	0.5	1
10335	1,3-Dichloropropane	142-28-9	N.D.	0.5	1
10335	2,2-Dichloropropane	594-20-7	N.D.	0.5	1
10335	1,1-Dichloropropene	563-58-6	N.D.	1	1
10335	cis-1,3-Dichloropropene	10061-01-5	N.D.	0.5	1
10335	trans-1,3-Dichloropropene	10061-02-6	N.D.	0.5	1
10335	Ethanol	64-17-5	N.D.	50	1
10335	Ethyl t-butyl ether	637-92-3	N.D.	0.5	1
10335	Ethylbenzene	100-41-4	0.8	0.5	1
10335	Freon 113	76-13-1	N.D.	2	1
10335	Hexachlorobutadiene	87-68-3	N.D.	2	1
10335	2-Hexanone	591-78-6	N.D.	3	1
10335	di-Isopropyl ether	108-20-3	N.D.	0.5	1

Chevron 6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Analysis Report

LL Sample # WW 8445595

LL Group # 1676196 Account # 10906

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-1-W-160624 Grab Groundwater Facility# 376584 Job# 385903 GRD 670 98th Avenue-Oakland T0600101442

Project Name: 376584

Collected:	06/24/2016	08:27	by JH
------------	------------	-------	-------

Submitted: 06/25/2016 09:30 Reported: 08/02/2016 13:13

98001

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-84	6 8260B	ug/l	ug/l	
10335	Isopropylbenzene	98-82-8	15	1	1
10335	p-Isopropyltoluene	99-87-6	N.D.	1	1
10335	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	1
10335	4-Methyl-2-pentanone	108-10-1	N.D.	3	1
10335	Methylene Chloride	75-09-2	N.D.	2	1
10335	Naphthalene	91-20-3	7	1	1
10335	n-Propylbenzene	103-65-1	55	1	1
10335	Styrene	100-42-5	N.D.	1	1
10335	1,1,1,2-Tetrachloroethane	630-20-6	N.D.	0.5	1
10335	1,1,2,2-Tetrachloroethane	79-34-5	N.D.	0.5	1
10335	Tetrachloroethene	127-18-4	N.D.	0.5	1
10335	Toluene	108-88-3	N.D.	0.5	1
10335	1,2,3-Trichlorobenzene	87-61-6	N.D.	1	1
10335	1,2,4-Trichlorobenzene	120-82-1	N.D.	1	1
10335	1,1,1-Trichloroethane	71-55-6	N.D.	0.5	1
10335	1,1,2-Trichloroethane	79-00-5	N.D.	0.5	1
10335	Trichloroethene	79-01-6	N.D.	0.5	1
10335	Trichlorofluoromethane	75-69-4	N.D.	0.5	1
10335	1,2,3-Trichloropropane	96-18-4	N.D.	1	1
10335	1,2,4-Trimethylbenzene	95-63-6	N.D.	1	1
10335	1,3,5-Trimethylbenzene	108-67-8	N.D.	1	1
10335	Vinyl Chloride	75-01-4	N.D.	0.5	1
10335	m+p-Xylene	179601-23-1	N.D.	0.5	1
10335	o-Xylene	95-47-6	N.D.	0.5	1
GC Vo	latiles SW-84	6 8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water C6-C12	n.a.	3,400	250	5
GC Pet	troleum SW-84	6 8015B	ug/l	ug/l	
Hydrod	arbons				
06600		n 2	480	E O	1
06609	The response for a target a calibration verification st limits. Sufficient sample analysis. The following co The sample was re-extracted time and the continuing cal bracketing the sample on th limits. The first trial re- result is 2,200 ug/l.	nalyte(s) in the co andard is outside t was not available t prrective action was loutside the method ibration verificati e second trial are sult is reported.	ntinuing he QC acceptance o repeat the taken: required holding on standards within method The re-extracted	50	Ţ
GC Pet	troleum SW-84	6 8015B	ug/l	ug/l	
Hydrod	carbons w/Si				
06610	TPH-DRO CA C10-C28 w/ Si Ge	el n.a.	920	50	1

Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

Analysis Report

LL Sample # WW 8445595

LL Group # 1676196

Account # 10906

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-1-W-160624 Grab Groundwater Facility# 376584 Job# 385903 GRD 670 98th Avenue-Oakland T0600101442

Project Name: 376584

Collected: 06/24/2016 08:27 by JH

Submitted: 06/25/2016 09:30 Reported: 08/02/2016 13:13

98001

CAT No.	Analysis Name		CAS Numbe	er Result	Method Detection Limit	Dilution Factor
GC Pe	troleum	SW-846	8015B	ug/l	ug/l	
Hydro	carbons w/Si					
	The reverse surroga The silica gel samp	te, caprio le extract	c acid, is pre t has extraneo	esent at <1%. Dus peaks that were	not present	

The silica gel sample extract has extraneous peaks that were not present in the non-silica gelled extract. The sample was re-extracted outside method holding time and the extraneous peaks were not seen. Similar sample patterns were seen in both trials. The DRO result is reported from the first trial. The re-extracted silica gel DRO result is 1,800 ug/l.

Sample Comments

CA ELAP Lab Certification No. 2792

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Tim	ie	Analyst	Dilution Factor
10335	8260 Full List w/ Sep. Xylenes	SW-846 8260B	1	N161891AA	07/07/2016	10:11	Nicole S Lamoreaux	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	N161891AA	07/07/2016	10:11	Nicole S Lamoreaux	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	16182A20A	06/30/2016	22:18	Jeremy C Giffin	5
01146	GC VOA Water Prep	SW-846 5030B	1	16182A20A	06/30/2016	22:18	Jeremy C Giffin	5
06609	TPH-DRO CA C10-C28	SW-846 8015B	1	161780012A	06/30/2016	04:08	Christine E Dolman	1
06610	TPH-DRO CA C10-C28 w/ Si Gel	SW-846 8015B	1	161780013A	06/29/2016	19:24	Thomas C Wildermuth	1
02376	Extraction - Fuel/TPH (Waters)	SW-846 3510C	1	161780012A	06/28/2016	20:35	Karen L Beyer	1
11180	Low Vol Ext(W) w/SG	SW-846 3510C	1	161780013A	06/28/2016	20:35	Karen L Beyer	1

Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

Analysis Report

LL Sample # WW 8445596 LL Group # 1676196 Account # 10906

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-2-W-160624 Grab Groundwater Facility# 376584 Job# 385903 GRD 670 98th Avenue-Oakland T0600101442

Project Name: 376584

	Collected:	06/24	/2016	07:10	by JH
--	------------	-------	-------	-------	-------

Submitted Reported:

98002

CAT

ly	sis Name		CAS Number	Result	Method		Dilution Factor
	08/02/2016	13:13					
l:	06/25/2016	09:30			San Ramon CA 94583		
					6001 Bollinger Canyo	n Rd L4310)
l:	06/24/2016	07:10	by JH		Chevron		

No.	Analysis Name	CAS Number	Result	Method Detection Limit	Factor	Factor	
GC/MS	Volatiles SW-846	8260B	ug/l	ug/l			
10335	Acetone	67-64-1	N.D.	6	1		
10335	t-Amyl methyl ether	994-05-8	N.D.	0.5	1		
10335	Benzene	71-43-2	N.D.	0.5	1		
10335	Bromobenzene	108-86-1	N.D.	1	1		
10335	Bromochloromethane	74-97-5	N.D.	1	1		
10335	Bromodichloromethane	75-27-4	N.D.	0.5	1		
10335	Bromoform	75-25-2	N.D.	0.5	1		
10335	Bromomethane	74-83-9	N.D.	0.5	1		
10335	2-Butanone	78-93-3	N.D.	3	1		
10335	t-Butyl alcohol	75-65-0	N.D.	5	1		
10335	n-Butylbenzene	104-51-8	N D	1	1		
10335	sec-Butylbenzene	135-98-8	N D	1	1		
10335	tert-Butylbenzene	98-06-6	N D	1	1		
10225	Carbon Digulfide	75-15-0	N D	⊥ 1	⊥ 1		
10335	Carbon Tetrachloride	56-23-5	N.D.	 0 5	⊥ 1		
10225	Chlorobongono	108 00 7	N.D.	0.5	1		
10335	Chlorosthana	108-90-7	N.D.	0.5	1		
10225	2 Chloroothul Minul Ethor	110 75 9	N.D.	0.5	1		
10333	2-Chioroechyr Vinyr Echer	110-75-8		Z	T		
	2-Chloroethyl vinyl ether ma	ly not be recovered	a if acid was used to				
10005	ghlassfass		ND	0 F	-		
10335	Chloroform	67-66-3	N.D.	0.5	1		
10335	Chloromethane	74-87-3	N.D.	0.5	1		
10335	2-Chlorotoluene	95-49-8	N.D.	1	1		
10335	4-Chlorotoluene	106-43-4	N.D.		1		
10335	1,2-Dibromo-3-chloropropane	96-12-8	N.D.	2	1		
10335	Dibromochloromethane	124-48-1	N.D.	0.5	1		
10335	1,2-Dibromoethane	106-93-4	N.D.	0.5	1		
10335	Dibromomethane	74-95-3	N.D.	0.5	1		
10335	1,2-Dichlorobenzene	95-50-1	N.D.	1	1		
10335	1,3-Dichlorobenzene	541-73-1	N.D.	1	1		
10335	1,4-Dichlorobenzene	106-46-7	N.D.	1	1		
10335	Dichlorodifluoromethane	75-71-8	N.D.	0.5	1		
10335	1,1-Dichloroethane	75-34-3	N.D.	0.5	1		
10335	1,2-Dichloroethane	107-06-2	N.D.	0.5	1		
10335	1,1-Dichloroethene	75-35-4	N.D.	0.5	1		
10335	cis-1,2-Dichloroethene	156-59-2	N.D.	0.5	1		
10335	trans-1,2-Dichloroethene	156-60-5	N.D.	0.5	1		
10335	1,2-Dichloropropane	78-87-5	N.D.	0.5	1		
10335	1,3-Dichloropropane	142-28-9	N.D.	0.5	1		
10335	2,2-Dichloropropane	594-20-7	N.D.	0.5	1		
10335	1,1-Dichloropropene	563-58-6	N.D.	1	1		
10335	cis-1,3-Dichloropropene	10061-01-5	N.D.	0.5	1		
10335	trans-1,3-Dichloropropene	10061-02-6	N.D.	0.5	1		
10335	Ethanol	64-17-5	N.D.	50	1		
10335	Ethyl t-butyl ether	637-92-3	N.D.	0.5	1		
10335	Ethylbenzene	100-41-4	N.D.	0.5	1		
10335	Freon 113	76-13-1	N.D.	2	1		
10335	Hexachlorobutadiene	87-68-3	N.D.	2	1		
10335	2-Hexanone	591-78-6	N.D.	3	1		
10335	di-Isopropyl ether	108-20-3	N.D.	0.5	1		

Analysis Report

LL Sample # WW 8445596

LL Group # 1676196

Account # 10906

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-2-W-160624 Grab Groundwater Facility# 376584 Job# 385903 GRD 670 98th Avenue-Oakland T0600101442

Project Name: 376584

Collected:	06/24/2016	07:10	by JH
------------	------------	-------	-------

Submitted: 06/25/2016 09:30 Reported: 08/02/2016 13:13

98002

CAT No.	Analysis Name		CAS Number	Result	Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	
10335	Isopropylbenzene		98-82-8	N.D.	1	1
10335	p-Isopropyltoluene		99-87-6	N.D.	1	1
10335	Methyl Tertiary Buty	/l Ether	1634-04-4	N.D.	0.5	1
10335	4-Methyl-2-pentanone	2	108-10-1	N.D.	3	1
10335	Methylene Chloride		75-09-2	N.D.	2	1
10335	Naphthalene		91-20-3	N.D.	1	1
10335	n-Propylbenzene		103-65-1	N.D.	1	1
10335	Styrene		100-42-5	N.D.	1	1
10335	1,1,1,2-Tetrachloroe	ethane	630-20-6	N.D.	0.5	1
10335	1,1,2,2-Tetrachloroe	ethane	79-34-5	N.D.	0.5	1
10335	Tetrachloroethene		127-18-4	2	0.5	1
10335	Toluene		108-88-3	N.D.	0.5	1
10335	1,2,3-Trichlorobenze	ene	87-61-6	N.D.	1	1
10335	1,2,4-Trichlorobenze	ene	120-82-1	N.D.	1	1
10335	1,1,1-Trichloroethar	ıe	71-55-6	N.D.	0.5	1
10335	1,1,2-Trichloroethar	ne	79-00-5	N.D.	0.5	1
10335	Trichloroethene		79-01-6	2	0.5	1
10335	Trichlorofluorometha	ane	75-69-4	N.D.	0.5	1
10335	1,2,3-Trichloropropa	ane	96-18-4	N.D.	1	1
10335	1,2,4-Trimethylbenze	ene	95-63-6	N.D.	1	1
10335	1,3,5-Trimethylbenze	ene	108-67-8	N.D.	1	1
10335	Vinyl Chloride		75-01-4	N.D.	0.5	1
10335	m+p-Xylene		179601-23-1	N.D.	0.5	1
10335	o-Xylene		95-47-6	N.D.	0.5	1
GC Vol	atiles	SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	N.D.	50	1
GC Pet Hydrod	roleum arbons	SW-846	8015B	ug/l	ug/l	
06609	TPH-DRO CA C10-C28		n.a.	N.D.	50	1
GC Pet	roleum	SW-846	8015B	ug/l	ug/l	
Hydrod	arbons w/Si					
06610	TPH-DRO CA C10-C28 v The reverse surrogat	w/ Si Gel ce, capri	n.a. c acid, is present	N.D. at <1%.	50	1

Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Sample Comments

CA ELAP Lab Certification No. 2792

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Analysis Report

LL Sample # WW 8445596 LL Group # 1676196 Account # 10906

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-2-W-160624 Grab Groundwater Facility# 376584 Job# 385903 GRD 670 98th Avenue-Oakland T0600101442

Project Name: 376584

Collected: 06/24/2016 07:10 by JH

Submitted: 06/25/2016 09:30 Reported: 08/02/2016 13:13 Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

98002

	Laboratory Sample Analysis Record								
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor	
10335	8260 Full List w/ Sep. Xylenes	SW-846 8260B	1	N161891AA	07/07/2016	10:34	Nicole S Lamoreaux	1	
01163	GC/MS VOA Water Prep	SW-846 5030B	1	N161891AA	07/07/2016	10:34	Nicole S Lamoreaux	1	
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	16182A20A	06/30/2016	21:51	Jeremy C Giffin	1	
01146	GC VOA Water Prep	SW-846 5030B	1	16182A20A	06/30/2016	21:51	Jeremy C Giffin	1	
06609	TPH-DRO CA C10-C28	SW-846 8015B	1	161780012A	06/30/2016	19:21	Christine E Dolman	1	
06610	TPH-DRO CA C10-C28 w/ Si Gel	SW-846 8015B	1	161780013A	06/29/2016	19:45	Thomas C Wildermuth	1	
02376	Extraction - Fuel/TPH (Waters)	SW-846 3510C	1	161780012A	06/28/2016	20:35	Karen L Beyer	1	
11180	Low Vol Ext(W) w/SG	SW-846 3510C	1	161780013A	06/28/2016	20:35	Karen L Beyer	1	

Analysis Report

LL Sample # WW 8445597 LL Group # 1676196 Account # 10906

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-3-W-160624 Grab Groundwater Facility# 376584 Job# 385903 GRD 670 98th Avenue-Oakland T0600101442

Project Name: 376584

Collected:	06/24,	/2016	08:30	by JH
------------	--------	-------	-------	-------

Submitted: 06/25/2016 09:30 Reported: 08/02/2016 13:13

98003

Cl	hevi	ron				
6	001	Bollinger	Canyon	Rd	L4310	

San Ramon CA 94583

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846 8	260B	ug/l	ug/l	
10335	Acetone	67-64-1	N.D.	6	1
10335	t-Amyl methyl ether	994-05-8	N.D.	0.5	1
10335	Benzene	71-43-2	N.D.	0.5	1
10335	Bromobenzene	108-86-1	N.D.	1	1
10335	Bromochloromethane	74-97-5	N.D.	1	1
10335	Bromodichloromethane	75-27-4	N.D.	0.5	1
10335	Bromoform	75-25-2	N.D.	0.5	1
10335	Bromomethane	74-83-9	N.D.	0.5	1
10335	2-Butanone	78-93-3	N.D.	3	1
10335	t-Butyl alcohol	75-65-0	N.D.	5	1
10335	n-Butylbenzene	104-51-8	N.D.	1	1
10335	sec-Butylbenzene	135-98-8	N.D.	1	1
10335	tert-Butylbenzene	98-06-6	N.D.	1	1
10335	Carbon Disulfide	75-15-0	N.D.	1	1
10335	Carbon Tetrachloride	56-23-5	N.D.	0.5	1
10335	Chlorobenzene	108-90-7	N.D.	0.5	1
10335	Chloroethane	75-00-3	N.D.	0.5	1
10335	2-Chloroethyl Vinyl Ether	110-75-8	N.D.	2	1
	2-Chloroethyl vinyl ether may a preserve this sample.	not be recovered	if acid was used to		
10335	Chloroform	67-66-3	0.5	0.5	1
10335	Chloromethane	74-87-3	N.D.	0.5	1
10335	2-Chlorotoluene	95-49-8	N.D.	1	1
10335	4-Chlorotoluene	106-43-4	N.D.	1	1
10335	1,2-Dibromo-3-chloropropane	96-12-8	N.D.	2	1
10335	Dibromochloromethane	124-48-1	N.D.	0.5	1
10335	1,2-Dibromoethane	106-93-4	N.D.	0.5	1
10335	Dibromomethane	74-95-3	N.D.	0.5	1
10335	1,2-Dichlorobenzene	95-50-1	N.D.	1	1
10335	1,3-Dichlorobenzene	541-73-1	N.D.	1	1
10335	1,4-Dichlorobenzene	106-46-7	N.D.	1	1
10335	Dichlorodifluoromethane	75-71-8	N.D.	0.5	1
10335	1,1-Dichloroethane	75-34-3	N.D.	0.5	1
10335	1,2-Dichloroethane	107-06-2	N.D.	0.5	1
10335	1,1-Dichloroethene	75-35-4	N.D.	0.5	1
10335	cis-1,2-Dichloroethene	156-59-2	N.D.	0.5	1
10335	trans-1,2-Dichloroethene	156-60-5	N.D.	0.5	1
10335	1,2-Dichloropropane	78-87-5	N.D.	0.5	1
10335	1,3-Dichloropropane	142-28-9	N.D.	0.5	1
10335	2,2-Dichloropropane	594-20-7	N.D.	0.5	1
10335	1,1-Dichloropropene	563-58-6	N.D.	1	1
10335	cis-1,3-Dichloropropene	10061-01-5	N.D.	0.5	1
10335	trans-1,3-Dichloropropene	10061-02-6	N.D.	0.5	1
10335	Ethanol	64-17-5	N.D.	50	1
10335	Ethyl t-butyl ether	637-92-3	N.D.	0.5	1
10335	Ethylbenzene	100-41-4	N.D.	0.5	1
10335	Freon 113	76-13-1	N.D.	2	1
10335	Hexachlorobutadiene	87-68-3	N.D.	2	1
10335	2-Hexanone	591-78-6	N.D.	3	1
10335	di-Isopropyl ether	108-20-3	N.D.	0.5	1

Analysis Report

LL Sample # WW 8445597 LL Group # 1676196 Account # 10906

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-3-W-160624 Grab Groundwater Facility# 376584 Job# 385903 GRD 670 98th Avenue-Oakland T0600101442

Project Name: 376584

Collected:	06/24/2016	08:30	by JH
------------	------------	-------	-------

Submitted: 06/25/2016 09:30 Reported: 08/02/2016 13:13

98003

CAT No.	Analysis Name		CAS Number	Result	Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	
10335	Isopropylbenzene		98-82-8	N.D.	1	1
10335	p-Isopropyltoluene		99-87-6	N.D.	1	1
10335	Methyl Tertiary Buty	yl Ether	1634-04-4	N.D.	0.5	1
10335	4-Methyl-2-pentanone	9	108-10-1	N.D.	3	1
10335	Methylene Chloride		75-09-2	N.D.	2	1
10335	Naphthalene		91-20-3	N.D.	1	1
10335	n-Propylbenzene		103-65-1	N.D.	1	1
10335	Styrene		100-42-5	N.D.	1	1
10335	1,1,1,2-Tetrachloroe	ethane	630-20-6	N.D.	0.5	1
10335	1,1,2,2-Tetrachloroe	ethane	79-34-5	N.D.	0.5	1
10335	Tetrachloroethene		127-18-4	1	0.5	1
10335	Toluene		108-88-3	N.D.	0.5	1
10335	1,2,3-Trichlorobenze	ene	87-61-6	N.D.	1	1
10335	1,2,4-Trichlorobenze	ene	120-82-1	N.D.	1	1
10335	1,1,1-Trichloroetham	ne	71-55-6	N.D.	0.5	1
10335	1,1,2-Trichloroetham	ne	79-00-5	N.D.	0.5	1
10335	Trichloroethene		79-01-6	1	0.5	1
10335	Trichlorofluorometha	ane	75-69-4	N.D.	0.5	1
10335	1,2,3-Trichloropropa	ane	96-18-4	N.D.	1	1
10335	1,2,4-Trimethylbenze	ene	95-63-6	N.D.	1	1
10335	1,3,5-Trimethylbenze	ene	108-67-8	N.D.	1	1
10335	Vinyl Chloride		75-01-4	N.D.	0.5	1
10335	m+p-Xylene		179601-23-1	N.D.	0.5	1
10335	o-Xylene		95-47-6	N.D.	0.5	1
GC Vol	latiles	SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	N.D.	50	1
GC Pet	croleum	SW-846	8015B	ug/l	ug/l	
Hydrod	carbons					
06609	TPH-DRO CA C10-C28		n.a.	N.D.	50	1
GC Pet	croleum	SW-846	8015B	ug/l	ug/l	
Hydrod	carbons w/Si					
06610	TPH-DRO CA C10-C28 T The reverse surrogat	w/ Si Gel ce, capri	n.a. c acid, is present	N.D. at <1%.	50	1

Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Sample Comments

CA ELAP Lab Certification No. 2792

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-3-W-160624 Grab Groundwater Facility# 376584 Job# 385903 GRD 670 98th Avenue-Oakland T0600101442

Project Name: 376584

Collected: 06/24/2016 08:30 by JH

Submitted: 06/25/2016 09:30 Reported: 08/02/2016 13:13 Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

98003

	Laboratory Sample Analysis Record								
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor	
10335	8260 Full List w/ Sep. Xylenes	SW-846 82601	3 1	N161891AA	07/07/2016	10:57	Nicole S Lamoreaux	1	
01163	GC/MS VOA Water Prep	SW-846 50301	3 1	N161891AA	07/07/2016	10:57	Nicole S Lamoreaux	1	
01728	TPH-GRO N. CA water C6-C12	SW-846 8015	3 1	16185A20A	07/08/2016	00:26	Jeremy C Giffin	1	
01146	GC VOA Water Prep	SW-846 50301	3 1	16185A20A	07/08/2016	00:26	Jeremy C Giffin	1	
06609	TPH-DRO CA C10-C28	SW-846 80151	3 1	161780012A	06/30/2016	19:43	Christine E Dolman	1	
06610	TPH-DRO CA C10-C28 w/ Si Gel	SW-846 8015	3 1	161780013A	06/29/2016	20:07	Thomas C Wildermuth	1	
02376	Extraction - Fuel/TPH (Waters)	SW-846 35100	2 1	161780012A	06/28/2016	20:35	Karen L Beyer	1	
11180	Low Vol Ext(W) w/SG	SW-846 35100	C 1	161780013A	06/28/2016	20:35	Karen L Beyer	1	

LL Sample # WW 8445597 LL Group # 1676196 Account # 10906

Analysis Report

LL Sample # WW 8445598 LL Group # 1676196 Account # 10906

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-4-W-160624 Grab Groundwater Facility# 376584 Job# 385903 GRD 670 98th Avenue-Oakland T0600101442

Project Name: 376584

Collected:	06/24/2016	09:15	by JH
------------	------------	-------	-------

Submitted: 06/25/2016 09:30 Reported: 08/02/2016 13:13

Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

98004

CAT No.	Analysis Name	rsis Name CAS Number Result		Method Detection Limit	Dilution Factor	
GC/MS	Volatiles SW-84	6 8260B	ug/l	ug/l		
10335	Acetone	67-64-1	N.D.	6	1	
10335	t-Amvl methvl ether	994-05-8	N.D.	0.5	1	
10335	Benzene	71-43-2	N.D.	0.5	1	
10335	Bromobenzene	108-86-1	N.D.	1	1	
10335	Bromochloromethane	74-97-5	N.D.	1	1	
10335	Bromodichloromethane	75-27-4	N.D.	0.5	1	
10335	Bromoform	75-25-2	N.D.	0.5	1	
10335	Bromomethane	74-83-9	N.D.	0.5	1	
10335	2-Butanone	78-93-3	N.D.	3	1	
10335	t-Butyl alcohol	75-65-0	N.D.	5	1	
10335	n-Butvlbenzene	104-51-8	N.D.	1	1	
10335	sec-Butvlbenzene	135-98-8	N.D.	1	1	
10335	tert-Butylbenzene	98-06-6	N.D.	1	1	
10335	Carbon Disulfide	75-15-0	N.D.	1	1	
10335	Carbon Tetrachloride	56-23-5	N.D.	0.5	1	
10335	Chlorobenzene	108-90-7	N.D.	0.5	1	
10335	Chloroethane	75-00-3	N.D.	0.5	-	
10335	2-Chloroethyl Vinyl Ether	110-75-8	N.D.	2	1	
10000	2-Chloroethyl vinyl ether m	may not be recovered	l if acid was used to	-	-	
10005	preserve this sample.		N. D.	0.5	-	
10335	Chloroform	67-66-3	N.D.	0.5	1	
10335	Chloromethane	74-87-3	N.D.	0.5	1	
10335	2-Chlorotoluene	95-49-8	N.D.	1	1	
10335	4-Chlorotoluene	106-43-4	N.D.	1	1	
10335	1,2-Dibromo-3-chloropropane	96-12-8	N.D.	2	1	
10335	Dibromochloromethane	124-48-1	N.D.	0.5	1	
10335	1,2-Dibromoethane	106-93-4	N.D.	0.5	1	
10335	Dibromomethane	74-95-3	N.D.	0.5	1	
10335	1,2-Dichlorobenzene	95-50-1	N.D.	1	1	
10335	1,3-Dichlorobenzene	541-73-1	N.D.	1	1	
10335	1,4-Dichlorobenzene	106-46-7	N.D.	1	1	
10335	Dichlorodifluoromethane	75-71-8	N.D.	0.5	1	
10335	1,1-Dichloroethane	75-34-3	N.D.	0.5	1	
10335	1,2-Dichloroethane	107-06-2	N.D.	0.5	1	
10335	1,1-Dichloroethene	75-35-4	N.D.	0.5	1	
10335	cis-1,2-Dichloroethene	156-59-2	N.D.	0.5	1	
10335	trans-1,2-Dichloroethene	156-60-5	N.D.	0.5	1	
10335	1,2-Dichloropropane	78-87-5	N.D.	0.5	1	
10335	1,3-Dichloropropane	142-28-9	N.D.	0.5	1	
10335	2,2-Dichloropropane	594-20-7	N.D.	0.5	1	
10335	1,1-Dichloropropene	563-58-6	N.D.	1	1	
10335	cis-1,3-Dichloropropene	10061-01-5	N.D.	0.5	1	
10335	trans-1,3-Dichloropropene	10061-02-6	N.D.	0.5	1	
10335	Ethanol	64-17-5	N.D.	50	1	
10335	Ethyl t-butyl ether	637-92-3	N.D.	0.5	1	
10335	Ethylbenzene	100 - 41 - 4	N.D.	0.5	1	
10335	Freon 113	76-13-1	N.D.	2	1	
10335	Hexachlorobutadiene	87-68-3	N.D.	2	1	
10335	2-Hexanone	591-78-6	N.D.	3	1	
10335	di-Isopropyl ether	108-20-3	N.D.	0.5	1	

Analysis Report

LL Sample # WW 8445598 LL Group # 1676196 Account # 10906

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-4-W-160624 Grab Groundwater Facility# 376584 Job# 385903 GRD 670 98th Avenue-Oakland T0600101442

Project Name: 376584

Collected:	06/24/2016	09:15	by JH
------------	------------	-------	-------

Submitted: 06/25/2016 09:30 Reported: 08/02/2016 13:13

98004

CAT No.	Analysis Name		CAS Number	Result	Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	
10335	Isopropylbenzene		98-82-8	N.D.	1	1
10335	p-Isopropyltoluene		99-87-6	N.D.	1	1
10335	Methyl Tertiary Buty	yl Ether	1634-04-4	N.D.	0.5	1
10335	4-Methyl-2-pentanone	e	108-10-1	N.D.	3	1
10335	Methylene Chloride		75-09-2	N.D.	2	1
10335	Naphthalene		91-20-3	N.D.	1	1
10335	n-Propylbenzene		103-65-1	N.D.	1	1
10335	Styrene		100-42-5	N.D.	1	1
10335	1,1,1,2-Tetrachloroe	ethane	630-20-6	N.D.	0.5	1
10335	1,1,2,2-Tetrachloroe	ethane	79-34-5	N.D.	0.5	1
10335	Tetrachloroethene		127-18-4	140	0.5	1
10335	Toluene		108-88-3	N.D.	0.5	1
10335	1,2,3-Trichlorobenze	ene	87-61-6	N.D.	1	1
10335	1,2,4-Trichlorobenze	ene	120-82-1	N.D.	1	1
10335	1,1,1-Trichloroetha	ne	71-55-6	N.D.	0.5	1
10335	1,1,2-Trichloroetha	ne	79-00-5	N.D.	0.5	1
10335	Trichloroethene		79-01-6	1	0.5	1
10335	Trichlorofluorometha	ane	75-69-4	N.D.	0.5	1
10335	1,2,3-Trichloropropa	ane	96-18-4	N.D.	1	1
10335	1,2,4-Trimethylbenze	ene	95-63-6	N.D.	1	1
10335	1,3,5-Trimethylbenze	ene	108-67-8	N.D.	1	1
10335	Vinyl Chloride		75-01-4	N.D.	0.5	1
10335	m+p-Xylene		179601-23-1	N.D.	0.5	1
10335	o-Xylene		95-47-6	N.D.	0.5	1
GC Vol	atiles	SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	N.D.	50	1
GC Pet	roleum	SW-846	8015B	ug/l	ug/l	
Hydroc	arbons					
06609	TPH-DRO CA C10-C28		n.a.	N.D.	50	1
GC Pet	roleum	SW-846	8015B	ug/l	ug/l	
Hydroc	arbons w/Si					
06610	TPH-DRO CA C10-C28 The reverse surrogat	w/ Si Gel te, capri	n.a. c acid, is present	N.D. at <1%.	50	1

Chevron

San Ramon CA 94583

6001 Bollinger Canyon Rd L4310

Sample Comments

CA ELAP Lab Certification No. 2792

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Analysis Report

LL Sample # WW 8445598 LL Group # 1676196 Account # 10906

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-4-W-160624 Grab Groundwater Facility# 376584 Job# 385903 GRD 670 98th Avenue-Oakland T0600101442

Project Name: 376584

Collected: 06/24/2016 09:15 by JH

Submitted: 06/25/2016 09:30 Reported: 08/02/2016 13:13 Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

98004

		Laborat	cory Sa	mple Analysis	s Record			
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Tim	me	Analyst	Dilution Factor
10335	8260 Full List w/ Sep. Xylenes	SW-846 8260B	1	N161891AA	07/07/2016	11:21	Nicole S Lamoreaux	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	N161891AA	07/07/2016	11:21	Nicole S Lamoreaux	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	16185A20A	07/08/2016	00:54	Jeremy C Giffin	1
01146	GC VOA Water Prep	SW-846 5030B	1	16185A20A	07/08/2016	00:54	Jeremy C Giffin	1
06609	TPH-DRO CA C10-C28	SW-846 8015B	1	161780012A	06/30/2016	20:48	Christine E Dolman	1
06610	TPH-DRO CA C10-C28 w/ Si Gel	SW-846 8015B	2	161780013A	07/27/2016	11:01	Christine E Dolman	1
02376	Extraction - Fuel/TPH (Waters)	SW-846 3510C	1	161780012A	06/28/2016	20:35	Karen L Beyer	1
11180	Low Vol Ext(W) w/SG	SW-846 3510C	1	161780013A	06/28/2016	20:35	Karen L Beyer	1

Analysis Report

LL Sample # WW 8445599 LL Group # 1676196 Account # 10906

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-5-W-160624 Grab Groundwater Facility# 376584 Job# 385903 GRD 670 98th Avenue-Oakland T0600101442

Project Name: 376584

Collected:	06/24,	/2016	07:10	by JH
------------	--------	-------	-------	-------

Submitted: 06/25/2016 09:30 Reported: 08/02/2016 13:13

98005

Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l	ug/l	
10335	Acetone	67-64-1	N.D.	6	1
10335	t-Amyl methyl ether	994-05-8	N.D.	0.5	1
10335	Benzene	71-43-2	N.D.	0.5	1
10335	Bromobenzene	108-86-1	N.D.	1	1
10335	Bromochloromethane	74-97-5	N.D.	1	1
10335	Bromodichloromethane	75-27-4	N.D.	0.5	1
10335	Bromoform	75-25-2	N.D.	0.5	1
10335	Bromomethane	74-83-9	N.D.	0.5	1
10335	2-Butanone	78-93-3	N.D.	3	1
10335	t-Butyl alcohol	75-65-0	N.D.	5	1
10335	n-Butylbenzene	104-51-8	N.D.	1	1
10335	sec-Butylbenzene	135-98-8	N.D.	1	1
10335	tert-Butylbenzene	98-06-6	N.D.	1	1
10335	Carbon Disulfide	75-15-0	N.D.	1	1
10335	Carbon Tetrachloride	56-23-5	N.D.	0.5	1
10335	Chlorobenzene	108-90-7	N.D.	0.5	1
10335	Chloroethane	75-00-3	N.D.	0.5	1
10335	2-Chloroethyl Vinyl Ether	110-75-8	N.D.	2	1
10225	2-Chloroethyl vinyl ether may preserve this sample.	not be recovered	if acid was used to		1
10335	Chlementhane	07-00-3	N.D.	0.5	1
10335		74-07-3	N.D.	1	1
10335	2-Chiorotoluene	95-49-8 106 43 4	N.D.	1	1
10335	1 2 Dibromo 2 chloropropano	100-43-4	N.D.	1 2	1
10335	Dibromochloromothano	104 49 1	N.D.	2	1
10335	1 2-Dibromoethane	106-93-4	N.D.	0.5	1
10335	Dibromomethane	74-95-3	N.D.	0.5	1
10335	1 2-Dichlorobenzene	95-50-1	N.D.	1	1
10335	1 3-Dichlorobenzene	541=73=1	N.D.	1	1
10225	1, J-Dichlorobenzene	106-46-7	N.D.	1	1
10335	Dichlorodifluoromethane	75-71-9	N.D.	 0	1
10335	1 1-Dichloroethane	75-34-3	N.D.	0.5	1
10335	1,2-Dichloroethane	107-06-2	N D	0.5	± 1
10335	1 1-Dichloroethene	75-35-4	N D	0.5	± 1
10335	cis-1 2-Dichloroethene	156-59-2	N D	0.5	± 1
10335	trang_1 2-Dichloroethene	156-60-5	N D	0.5	± 1
10335	1 2-Dichloropropage	78-87-5	N D	0.5	± 1
10335	1 3-Dichloropropane	142-28-9	N D	0.5	± 1
10335	2 2-Dichloropropane	594-20-7	N D	0.5	± 1
10335	1 1-Dichloropropene	563-58-6	N D	1	1
10335	cis-1 3-Dichloropropene	10061-01-5	N D	0 5	± 1
10335	trans-1 3-Dichloropropene	10061-02-6	N D	0.5	1
10335	Ethanol	64-17-5	N D	50	1
10335	Ethyl t-butyl ether	637-92-3	N.D.	0.5	- 1
10335	Ethylbenzene	100-41-4	N.D.	0.5	- 1
10335	Freon 113	76-13-1	N.D.	2	- 1
10335	Hexachlorobutadiene	87-68-3	N.D.	2	1
10335	2-Hexanone	591-78-6	N.D.	3	1
10335	di-Isopropyl ether	108-20-3	N.D.	0.5	1

Analysis Report

LL Sample # WW 8445599 LL Group # 1676196 Account # 10906

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-5-W-160624 Grab Groundwater Facility# 376584 Job# 385903 GRD 670 98th Avenue-Oakland T0600101442

Project Name: 376584

Collected:	06/24/2016	07:10	by JH
------------	------------	-------	-------

Submitted: 06/25/2016 09:30 Reported: 08/02/2016 13:13

98005

CAT No.	Analysis Name		CAS Number	Result	Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	
10335	Isopropylbenzene		98-82-8	N.D.	1	1
10335	p-Isopropyltoluene		99-87-6	N.D.	1	1
10335	Methyl Tertiary Buty	l Ether	1634-04-4	N.D.	0.5	1
10335	4-Methyl-2-pentanone	9	108-10-1	N.D.	3	1
10335	Methylene Chloride		75-09-2	N.D.	2	1
10335	Naphthalene		91-20-3	N.D.	1	1
10335	n-Propylbenzene		103-65-1	N.D.	1	1
10335	Styrene		100-42-5	N.D.	1	1
10335	1,1,1,2-Tetrachloroe	thane	630-20-6	N.D.	0.5	1
10335	1,1,2,2-Tetrachloroe	thane	79-34-5	N.D.	0.5	1
10335	Tetrachloroethene		127-18-4	N.D.	0.5	1
10335	Toluene		108-88-3	N.D.	0.5	1
10335	1,2,3-Trichlorobenze	ene	87-61-6	N.D.	1	1
10335	1,2,4-Trichlorobenze	ene	120-82-1	N.D.	1	1
10335	1,1,1-Trichloroethan	ie	71-55-6	N.D.	0.5	1
10335	1,1,2-Trichloroethan	ie	79-00-5	N.D.	0.5	1
10335	Trichloroethene		79-01-6	N.D.	0.5	1
10335	Trichlorofluorometha	ine	75-69-4	N.D.	0.5	1
10335	1,2,3-Trichloropropa	ine	96-18-4	N.D.	1	1
10335	1,2,4-Trimethvlbenze	ene	95-63-6	N.D.	1	1
10335	1,3,5-Trimethylbenze	ene	108-67-8	N.D.	1	1
10335	Vinvl Chloride		75-01-4	N.D.	0.5	1
10335	m+p-Xvlene		179601-23-1	N.D.	0.5	1
10335	o-Xylene		95-47-6	N.D.	0.5	1
GC Vol	atiles	SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	N.D.	50	1
GC Pet	roleum	SW-846	8015B	ug/l	ug/l	
пуагос	arbons					
06609	TPH-DRO CA C10-C28		n.a.	N.D.	50	1
GC Pet	roleum	SW-846	8015B	ug/l	ug/l	
Hydrod	arbons w/Si					
06610	TPH-DRO CA C10-C28 w The reverse surrogat	/ Si Gel ce, capri	n.a. c acid, is present	95 at <1%.	50	1

Chevron

San Ramon CA 94583

6001 Bollinger Canyon Rd L4310

Sample Comments

CA ELAP Lab Certification No. 2792

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Analysis Report

LL Sample # WW 8445599 LL Group # 1676196 Account # 10906

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-5-W-160624 Grab Groundwater Facility# 376584 Job# 385903 GRD 670 98th Avenue-Oakland T0600101442

Project Name: 376584

Collected: 06/24/2016 07:10 by JH

Submitted: 06/25/2016 09:30 Reported: 08/02/2016 13:13 Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

98005

		Labora	tory Sa	ample Analysia	s Record			
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Tir	ne	Analyst	Dilution Factor
10335	8260 Full List w/ Sep. Xylenes	SW-846 8260B	1	N161891AA	07/07/2016	11:44	Nicole S Lamoreaux	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	N161891AA	07/07/2016	11:44	Nicole S Lamoreaux	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	16185A20A	07/08/2016	01:21	Jeremy C Giffin	1
01146	GC VOA Water Prep	SW-846 5030B	1	16185A20A	07/08/2016	01:21	Jeremy C Giffin	1
06609	TPH-DRO CA C10-C28	SW-846 8015B	1	161780012A	06/30/2016	20:04	Christine E Dolman	1
06610	TPH-DRO CA C10-C28 w/ Si Gel	SW-846 8015B	1	161780013A	06/29/2016	20:51	Thomas C Wildermuth	1
02376	Extraction - Fuel/TPH (Waters)	SW-846 3510C	1	161780012A	06/28/2016	20:35	Karen L Beyer	1
11180	Low Vol Ext(W) w/SG	SW-846 3510C	1	161780013A	06/28/2016	20:35	Karen L Beyer	1

Analysis Report

LL Sample # WW 8445600 LL Group # 1676196 Account # 10906

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: Well-18-W-160624 Grab Groundwater Facility# 376584 Job# 385903 GRD 670 98th Avenue-Oakland T0600101442

Project Name: 376584

Collected:	06/24	/2016	07:46	by	JH
------------	-------	-------	-------	----	----

Submitted: 06/25/2016 09:30 Reported: 08/02/2016 13:13

98018

Chevron
6001 Bollinger Canyon Rd L4310
San Ramon CA 94583

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l	ug/l	
10335	Acetone	67-64-1	9	6	1
10335	t-Amvl methvl ether	994-05-8	N.D.	0.5	1
10335	Benzene	71-43-2	N.D.	0.5	1
10335	Bromobenzene	108-86-1	N.D.	1	1
10335	Bromochloromethane	74-97-5	N.D.	1	1
10335	Bromodichloromethane	75-27-4	N.D.	0.5	1
10335	Bromoform	75-25-2	N.D.	0.5	1
10335	Bromomethane	74-83-9	N.D.	0.5	1
10335	2-Butanone	78-93-3	N.D.	3	1
10335	t-Butyl alcohol	75-65-0	N.D.	5	1
10335	n-Butylbenzene	104-51-8	1	1	1
10335	sec-Butylbenzene	135-98-8	N.D.	1	1
10335	tert-Butylbenzene	98-06-6	N.D.	1	1
10335	Carbon Disulfide	75-15-0	N.D.	1	1
10335	Carbon Tetrachloride	56-23-5	N.D.	0.5	1
10335	Chlorobenzene	108-90-7	N.D.	0.5	1
10335	Chloroethane	75-00-3	N.D.	0.5	1
10335	2-Chloroethyl Vinyl Ether	110-75-8	N.D.	2	1
	2-Chloroethyl vinyl ether may	not be recovered	if acid was used to		
10335	Chloroform	67-66-3	N.D.	0.5	1
10335	Chloromethane	74-87-3	N.D.	0.5	1
10335	2-Chlorotoluene	95-49-8	N.D.	1	1
10335	4-Chlorotoluene	106-43-4	N.D.	1	1
10335	1,2-Dibromo-3-chloropropane	96-12-8	N.D.	2	1
10335	Dibromochloromethane	124-48-1	N.D.	0.5	1
10335	1,2-Dibromoethane	106-93-4	N.D.	0.5	1
10335	Dibromomethane	74-95-3	N.D.	0.5	1
10335	1,2-Dichlorobenzene	95-50-1	N.D.	1	1
10335	1,3-Dichlorobenzene	541-73-1	N.D.	1	1
10335	1,4-Dichlorobenzene	106-46-7	N.D.	1	1
10335	Dichlorodifluoromethane	75-71-8	N.D.	0.5	1
10335	1,1-Dichloroethane	75-34-3	N.D.	0.5	1
10335	1,2-Dichloroethane	107-06-2	N.D.	0.5	1
10335	1,1-Dichloroethene	75-35-4	N.D.	0.5	1
10335	cis-1,2-Dichloroethene	156-59-2	0.6	0.5	1
10335	trans-1,2-Dichloroethene	156-60-5	N.D.	0.5	1
10335	1,2-Dichloropropane	78-87-5	N.D.	0.5	1
10335	1,3-Dichloropropane	142-28-9	N.D.	0.5	1
10335	2,2-Dichloropropane	594-20-7	N.D.	0.5	1
10335	1,1-Dichloropropene	563-58-6	N.D.	1	1
10335	cis-1,3-Dichloropropene	10061-01-5	N.D.	0.5	1
10335	trans-1,3-Dichloropropene	10061-02-6	N.D.	0.5	1
10335	Ethanol	64-17-5	N.D.	50	1
10335	Ethyl t-butyl ether	637-92-3	N.D.	0.5	1
10335	Ethylbenzene	100-41-4	1	0.5	1
10335	Freon 113	76-13-1	N.D.	2	1
10335	Hexachlorobutadiene	87-68-3	N.D.	2	1
10335	2-Hexanone	591-78-6	N.D.	3	1
10335	di-Isopropyl ether	108-20-3	N.D.	0.5	1

Analysis Report

LL Sample # WW 8445600

LL Group # 1676196

Account # 10906

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: Well-18-W-160624 Grab Groundwater Facility# 376584 Job# 385903 GRD 670 98th Avenue-Oakland T0600101442

Project Name: 376584

COTTCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	Collected:	06/24/	2016	07:46	by	JH
--	------------	--------	------	-------	----	----

Submitted: 06/25/2016 09:30 Reported: 08/02/2016 13:13

98018

CAT No.	Analysis Name		CAS Number	Result	Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	
10335	Isopropylbenzene		98-82-8	4	1	1
10335	p-Isopropyltoluene		99-87-6	N.D.	1	1
10335	Methyl Tertiary Buty	/l Ether	1634-04-4	N.D.	0.5	1
10335	4-Methyl-2-pentanone	e	108-10-1	N.D.	3	1
10335	Methylene Chloride		75-09-2	N.D.	2	1
10335	Naphthalene		91-20-3	5	1	1
10335	n-Propylbenzene		103-65-1	5	1	1
10335	Styrene		100-42-5	N.D.	1	1
10335	1,1,1,2-Tetrachloroe	ethane	630-20-6	N.D.	0.5	1
10335	1,1,2,2-Tetrachloroe	ethane	79-34-5	N.D.	0.5	1
10335	Tetrachloroethene		127-18-4	2	0.5	1
10335	Toluene		108-88-3	N.D.	0.5	1
10335	1,2,3-Trichlorobenze	ene	87-61-6	N.D.	1	1
10335	1,2,4-Trichlorobenze	ene	120-82-1	N.D.	1	1
10335	1,1,1-Trichloroetham	ıe	71-55-6	N.D.	0.5	1
10335	1,1,2-Trichloroethar	ıe	79-00-5	N.D.	0.5	1
10335	Trichloroethene		79-01-6	2	0.5	1
10335	Trichlorofluorometha	ane	75-69-4	N.D.	0.5	1
10335	1,2,3-Trichloropropa	ane	96-18-4	N.D.	1	1
10335	1,2,4-Trimethylbenze	ene	95-63-6	N.D.	1	1
10335	1,3,5-Trimethylbenze	ene	108-67-8	N.D.	1	1
10335	Vinyl Chloride		75-01-4	N.D.	0.5	1
10335	m+p-Xylene		179601-23-1	N.D.	0.5	1
10335	o-Xylene		95-47-6	N.D.	0.5	1
the f the f the f allow	LCS and/or LCSD recov narginal exceedance a WELAC/DoD Standards. wance: Acetone	eries are llowance The foll	outside the state of +/- 4 standard lowing analytes are	ed QC window but with deviations as define e accepted based on t	in d in his	
GC Vol	atiles	SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	890	50	1
GC Pet Hydroc	roleum arbons	SW-846	8015B	ug/l	ug/l	
06609	TPH-DRO CA C10-C28		n.a.	120	50	1
GC Pet	roleum	SW-846	8015B	ug/l	ug/l	
Hydroc	arbons w/Si					
06610	TPH-DRO CA C10-C28 v	v/ Si Gel	n.a.	96	50	1
	The reverse surrogat	ce, caprio	c acid, is present	at <1%.		

Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Sample Comments

CA ELAP Lab Certification No. 2792

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Analysis Report

LL Sample # WW 8445600 LL Group # 1676196 Account # 10906

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: Well-18-W-160624 Grab Groundwater Facility# 376584 Job# 385903 GRD 670 98th Avenue-Oakland T0600101442

Project Name: 376584

Collected: 06/24/2016 07:46 by JH

Submitted: 06/25/2016 09:30 Reported: 08/02/2016 13:13 Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

98018

		Labora	atory Sa	mple Analysis	s Record			
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor
10335	8260 Full List w/ Sep. Xylenes	SW-846 8260B	1	N161891AA	07/07/2016	12:07	Nicole S Lamoreaux	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	N161891AA	07/07/2016	12:07	Nicole S Lamoreaux	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	16185A20A	07/08/2016	01:49	Jeremy C Giffin	1
01146	GC VOA Water Prep	SW-846 5030B	1	16185A20A	07/08/2016	01:49	Jeremy C Giffin	1
06609	TPH-DRO CA C10-C28	SW-846 8015B	1	161780012A	06/30/2016	20:26	Christine E Dolman	1
06610	TPH-DRO CA C10-C28 w/ Si Gel	SW-846 8015B	1	161780013A	06/29/2016	21:13	Thomas C Wildermuth	1
02376	Extraction - Fuel/TPH (Waters)	SW-846 3510C	1	161780012A	06/28/2016	20:35	Karen L Beyer	1
11180	Low Vol Ext(W) w/SG	SW-846 3510C	1	161780013A	06/28/2016	20:35	Karen L Beyer	1

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: Chevron Reported: 08/02/2016 13:13 Group Number: 1676196

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

Method Blank

Analysis Name	Result	MDL	
	ug/l	ug/l	
Batch number: F161891AA Benzene Ethylbenzene Methyl Tertiary Butyl Ether Toluene Xylene (Total)	Sample N.D. N.D. N.D. N.D. N.D.	number(s): 0.5 0.5 0.5 0.5 0.5	8445594
	0 1 -		0445505 0445600
Acetone t-Amyl methyl ether Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Promomethane	N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.	6 0.5 1 1 0.5 0.5	
	N.D.	0.5	
t-Butyl alcohol	N.D.	5	
n-Butylbenzene	N.D.	1	
sec-Butylbenzene	N.D.	1	
tert-Butylbenzene	N.D.	1	
Carbon Disulfide	N.D.	1	
Carbon Tetrachloride	N.D.	0.5	
Chlorobenzene	N.D.	0.5	
Chloroethane	N.D.	0.5	
2-Chloroethyl Vinyl Ether	N.D.	2	
Chloroform	N.D.	0.5	
Chloromethane	N.D.	0.5	
2-Chlorotoluene	N.D.	1	
4-Chlorotoluene	N.D.	1	
L, 2-Dibromo-3-chioropropane	N.D.	2 0 F	
1 2-Dibromoethane	N.D.	0.5	
Dibromomethane	ND.	0.5	
1.2-Dichlorobenzene	N.D.	1	
1,3-Dichlorobenzene	N.D.	1	
1,4-Dichlorobenzene	N.D.	1	
Dichlorodifluoromethane	N.D.	0.5	
1,1-Dichloroethane	N.D.	0.5	
1,2-Dichloroethane	N.D.	0.5	
1,1-Dichloroethene	N.D.	0.5	
cis-1,2-Dichloroethene	N.D.	0.5	
trans-1,2-Dichloroethene	N.D.	0.5	
1,2-Dichloropropane	N.D.	0.5	

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: Chevron Reported: 08/02/2016 13:13 Group Number: 1676196

Analysis Name	Result	MDL	
	ug/l	ug/	1
1,3-Dichloropropane 2,2-Dichloropropane	N.D. N.D. N.D	0.5	
cis-1,3-Dichloropropene trans-1,3-Dichloropropene	N.D. N.D.	0.5	
Ethanoi	N.D.	50	
Ethyl t-butyl ether	N.D.	0.5	
Ethylbenzene	N.D.	0.5	
Freon 113	N.D.	2	
Hexachlorobutadiene	N.D.	2	
di-Isopropyl ether Isopropylbenzene	N.D. N.D. N.D.	0.5 1	
p-Isopropyltoluene	N.D.	1	
Methyl Tertiary Butyl Ether	N.D.	0.5	
4-Methyl-2-pentanone	N.D.	3	
Methylene Chloride	N.D.	2	
Naphthalene	N.D.	1	
n-Propylbenzene	N.D.	1	
Styrene	N.D.	1	
1,1,1,2-Tetrachloroethane	N.D.	0.5	
1,1,2,2-Tetrachloroethane Tetrachloroethene	N.D. N.D.	0.5	
1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene	N.D. N.D. N.D.	1 1	
1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene	N.D. N.D. N.D	0.5	
Trichlorofluoromethane	N.D.	0.5	
1,2,3-Trichloropropane	N.D.	1	
1,2,4-Trimethylbenzene	N.D.	1	
1,3,5-Trimethylbenzene	N.D.	1	
Vinyl Chloride	N.D.	0.5	
m+p-Xylene	N.D.	0.5	
o-Xylene	N.D.	0.5	
- Batch number: 16182A20A TPH-GRO N. CA water C6-C12	Sample numbe N.D.	er(s): 50	8445594-8445596
Batch number: 16185A20A	Sample numbe	er(s):	8445597-8445600
TPH-GRO N. CA water C6-C12	N.D.	50	
Batch number: 161780012A	Sample numbe	er(s):	8445595-8445600
TPH-DRO CA C10-C28	N.D.	50	
Batch number: 161780013A	Sample numbe	er(s):	8445595-8445600
TPH-DRO CA C10-C28 w/ Si Gel	N.D.	50	

Method Blank (continued)

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: Chevron Reported: 08/02/2016 13:13 Group Number: 1676196

LCS/LCSD

Analysis Name	LCS Spike Added	LCS Conc	LCSD Spike Added	LCSD Conc	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
	ug/l	ug/l	ug/l	ug/l					
Batch number: F161891AA	Sample numbe	r(s): 84455	594						
Benzene	20	18.41	20	18.66	92	93	78-120	1	30
Ethylbenzene	20	18.22	20	18.65	91	93	78-120	2	30
Methyl Tertiary Butyl Ether	20	19.44	20	19.17	97	96	75-120	1	30
Toluene	20	18.32	20	18.67	92	93	80-120	2	30
Xylene (Total)	60	54.77	60	55.8	91	93	80-120	2	30
Batch number: N161891AA	Sample numbe	r(s): 84455	595-8445600						
Acetone	150	169.18	150	214.37	113	143*	58-138	24	30
t-Amyl methyl ether	20	18.19	20	18.04	91	90	75-120	1	30
Benzene	20	22.59	20	22.62	113	113	78-120	0	30
Bromobenzene	20	18.69	20	18.57	93	93	80-120	1	30
Bromochloromethane	20	22.87	20	22.69	114	113	80-125	1	30
Bromodichloromethane	20	20.47	20	20.45	102	102	80-120	0	30
Bromoform	20	18.24	20	18.09	91	90	67-120	1	30
Bromomethane	20	17.33	20	16.84	87	84	53-130	3	30
2-Butanone	150	139.75	150	154.4	93	103	62-131	10	30
t-Butyl alcohol	200	183.46	200	185.67	92	93	78-121	1	30
n-Butvlbenzene	20	18.32	20	18.4	92	92	68-120	0	30
sec-Butvlbenzene	20	18.69	20	18.67	93	93	68-124	0	30
tert-Butylbenzene	20	18.05	20	18.75	90	94	74-121	4	3.0
Carbon Disulfide	20	20.51	20	20.48	103	102	58-120	0	30
Carbon Tetrachloride	20	22.2	20	21.87	111	109	74-130	1	3.0
Chlorobenzene	20	20.68	20	20.58	103	103	80-120	0	30
Chloroethane	20	16.91	20	16.82	85	84	56-120	1	30
2-Chloroethyl Vinyl Ether	20	17 17	20	17 69	86	88	65-120	3	30
Chloroform	20	21	20	21 07	105	105	80-120	0	30
Chloromethane	20	19 12	20	19 47	96	97	65-129	2	30
2-Chlorotoluene	20	18 56	20	18 98	93	95	80-120	2	30
4-Chlorotoluene	20	18 99	20	18 91	95	95	78-120	0	30
1 2-Dibromo-3-chloropropage	20	13 51	20	13 43	68	67	59-120	1	30
Dibromochloromethane	20	19 42	20	19.15	97	98	78-120	1	30
1 2-Dibromoethane	20	19.12	20	19.30	96	96	80-120	0	30
Dibromomethane	20	21 57	20	21 52	108	108	80-120	0	30
1 2-Dichlorobenzene	20	18 85	20	18 76	94	94	80-120	0	30
1 3-Dichlorobenzene	20	18 87	20	18 69	94	93	80-120	1	30
1 4-Dichlorobenzene	20	19 22	20	19 1	96	96	80-120	1	30
Dichlorodifluoromethane	20	19 73	20	19 73	99	99	49-127	0	30
1 1-Dichloroethane	20	22 12	20	21 94	111	109	90-120	1	30
1, 2-Dichloroethane	20	22.12	20	21.04	100	100	72-127		30
1,2-Dichloroethene	20	20.00	20	20.03	100	107	76-124	2	30
aig_1_2_Dichloroethene	20	21.09	20	21.35	107	109	90-120	0	30
trang_1 2-Dichloroethene	20	21.44	20	21.54	111	110	80-120	1	30
1 2 Dichleropropage	20	22.19	20	22.05	111	110	80 120	1	20
1,2-Dichleropropane	20	10 12	20	10 00	111	110	80 120	1	20
2 2 Dichloropropane	20	19.13	20	10.90	96	95	40 150		20
1 1 Dichloropropane	20	19.20	20	17.24	101	20 100	40-100	1	20
aig 1 2 Digblowermeners	20	20.14 10.00	20	20.44	TUT	102	00-120	T C	30
trang 1 2 Dichloropropene	20	19.22	20	15.2	90	90	8U-12U 76 120	1	30
Ethanol	20	10./1	20	10.19	100	04	10-12U	1	30
Echalloi	500	17 00	500	024.00	⊥∠∪ cc	125	4/-155	4	30
Echyl t-Dutyl ether	20	I/.29	20	⊥/.⊥4	86	86	69-120	T	30

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: Chevron Reported: 08/02/2016 13:13 Group Number: 1676196

LCS/LCSD (continued)

Analysis Name	LCS Spike Added ug/l	LCS Conc ug/l	LCSD Spike Added ug/l	LCSD Conc ug/l	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Ethylbenzene	20	19.56	20	19.72	98	99	78-120	1	30
Freon 113	20	22.61	20	22.55	113	113	64-136	0	30
Hexachlorobutadiene	20	17	20	16.09	85	80	61-127	6	30
2-Hexanone	100	80.43	100	83.3	80	83	35-138	4	30
di-Isopropyl ether	20	18.47	20	18.51	92	93	70-124	0	30
Isopropylbenzene	20	19.4	20	19.38	97	97	80-120	0	30
n-Isopropyltoluene	20	18.31	20	18.21	92	91	76-120	1	30
Methyl Tertiary Butyl Ether	20	19.68	20	19.45	98	97	75-120	1	30
4-Methyl-2-pentanone	100	87.99	100	89.16	88	89	47-133	1	30
Methylene Chloride	20	21 72	20	21 58	109	108	77-121	1	30
Naphthalene	20	15 45	20	14 6	77	73	59-120	6	30
n-Propylbenzene	20	18.89	20	19.04	94	95	75-130	1	30
Styrene	20	18 08	20	18 14	90	91	80-120	0	30
1 1 1 2-Tetrachloroethane	20	18 78	20	18 68	94	93	80-120	1	30
1 1 2 2-Tetrachloroethane	20	17 06	20	16 98	85	85	72-120	1	30
Tetrachloroethene	20	20 97	20	20.93	105	105	80-129	0	30
Toluene	20	20.57	20	20.35	101	101	80-120	0	30
1 2 3-Trichlorobenzene	20	16 25	20	15 38	81	77	69-120	6	30
1 2 4-Trichlorobenzene	20	16 27	20	15 99	81	80	66-120	2	30
1 1 1-Trichloroethane	20	20.89	20	20.9	104	105	66-126	0	30
1 1 2-Trichloroethane	20	18 59	20	18 99	93	95	80-120	2	30
Trichloroethene	20	22 06	20	22 17	110	111	80-120	1	30
Trichlorofluoromethane	20	22.00	20	22.17	112	112	67-129	0	30
1 2 3-Trichloropropage	20	18 35	20	18 23	92	91	76-120	1	30
1 2 4-Trimethylbenzene	20	18 29	20	18 44	91	92	75-120	1	30
1 2 5-Trimethylbenzene	20	19 / 2	20	10.11	92	92	75-120	1	30
Vinyl Chloride	20	20 43	20	20.45	102	102	69-120	0	30
min-Yulene	20	40.15	20	40.45	102	102	80-120	0	30
	20	18 86	20	19	94	95	80-120	1	30
o Ayrene	20	10.00	20	10	24	20	00 120	T	50
	ug/1	ug/l	ug/1	ug/1					
Batch number: 16182A20A	Sample numb	er(s): 84455	594-8445596						
TPH-GRO N. CA water C6-C12	1100	1014.48	1100	996.56	92	91	77-120	2	30
Batch number: 16185A20A	Sample numb	er(s): 84455	597-8445600						
TPH-GRO N. CA water C6-C12	1100	1158.76	1100	1100.62	105	100	77-120	5	30
	ug/l	ug/l	ug/l	ug/l					
Batch number: 161780012A	Sample numb	er(s): 84455	595-8445600						
TPH-DRO CA C10-C28	1600	1286.55	1600	1343.91	80	84	53-115	4	20
	ug/l	ug/l	ug/l	ug/l					
Batch number: 161780013A	Sample numb	er(s): 84455	595-8445600						
TPH-DRO CA C10-C28 w/ Si Gel	1600	1143.02	1600	1370.52	71	86	40-105	18	20

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: Chevron Reported: 08/02/2016 13:13 Group Number: 1676196

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report. Analysis Name: BTEX/MTBE Batch number: F161891AA Dibromofluoromethane 1,2-Dichloroethane-d4 Toluene-d8 4-Bromofluorobenzene 8445594 99 98 98 98 97 100 97 Blank 99

LCS	98	101	100	100
LCSD	96	100	101	101
Limits:	80-116	77-113	80-113	78-113

Analysis Name: 8260 Full List w/ Sep. Xylenes Batch number: N161891AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
8445595	103	104	94	98
8445596	108	108	92	95
8445597	108	106	92	95
8445598	109	107	92	93
8445599	109	107	92	93
8445600	106	106	93	99
Blank	106	108	92	95
LCS	105	105	96	100
LCSD	103	104	97	100
Limits:	80-116	77-113	80-113	78-113

Analysis Name: TPH-GRO N. CA water C6-C12 Batch number: 16182A20A

	I rifluorotoluene-F
8445594	89
8445595	87
8445596	78
Blank	86
LCS	97
LCSD	96
Limits:	63-135

Analysis Name: TPH-GRO N. CA water C6-C12 Batch number: 16185A20A Trifluorotoluene-F

8445597	92
8445598	91
8445599	92
8445600	96
Blank	92
LCS	100
LCSD	100

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: Chevron Reported: 08/02/2016 13:13 Group Number: 1676196

Surrogate Quality Control (continued)

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Limits: 63-135

Analysis Name: TPH-DRO CA C10-C28 Batch number: 161780012A Orthoternhanvl

	oranotorphonyn
8445595	109
8445596	105
8445597	104
8445598	103
8445599	92
8445600	95
Blank	104
LCS	103
LCSD	111
Limits:	50-124

Analysis Name: TPH-DRO CA C10-C28 w/ Si Gel Batch number: 161780013A Orthotorphonyl

	Orthoterphenyl
8445595	102
8445596	89
8445597	102
8445598	91
8445599	78
8445600	87
Blank	102
LCS	95
LCSD	104
Limits:	42-126

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

କ୍ରାଡ଼	VACU	0.12	2///0	Igall	20	i (2)	ЭЦ) [M.	ЦÁ	ΕŲ	I	<u>IE</u>	Ĩ	E	o fi	Ð	31	G	Ð	in of Custoc	狄
steurofins Solution Solution Lancaste	ries		A	.cc1. #	09	06)	l Group Ir	For E	urolin 16	s Lan 76 reveise	caster 190 side co	Labo	ratorie mple i s with cl	s uer #		45	59	4-	(<i>d</i> C	0	
1) Client in	formatio	n		aliates and	(4) M:	atrix	-		(5)	SURGEO (CARA	Set ranz	Ar	nalvs	es F	Real	lest	əd				
aciiys#376584-OML G-R#38590	3 Globa	al MIS#TO	6001014	142				Γ	1			T				W.Bartons			Ť		SCR #:	
Na 64098th AVENUE, OAKLAN	D, CA	Lead Cons	ullant				r □ ø					da da	Z	(8260)							Results in Dry Welght	
CM STANTECWB Consultant/Office Consultant/Office Consultant/Office	Court, S	Suite G,	Dublin,	CA 945	Sedimo	Groun	Surfac		ners	8260 K	8260	Gel Clea	el Cleanup	Jeve							Musi meet lowest detection limits possible (or 8260 compounds	
Consuliant Project May Doanna L. Harding, deanna@	grinc.co	om			-				Contai		ß	rt Silica	dica Ge	HTHa		ethod _	ethod				B021 MTBE Confirmation	
Consultant Phone # (923) 551-7444 x(180				 ۳۳		table	DES	Air	er of (8021	8015	5 withou	5 with S	WED	penates	Σ	2				Confirm all hits by 8260	hít
iampler Jin H	RRex] 8	L L L L		Numb	+ MTBE	Р. С	RO 801	RO 801	ull Scan	Oxyg	ead	ed Leac					
2) Sample Identification	Soll Depth	Coll Date	lected Time	Grab	Soil		Wate	ii	Total	BTEX	р-нат	D-H-T	D-H-T	8260 F		Total L	Dissolv				6 Remarks	
OA DA		160624	0.000	$ \times $		X			2				~+	<u></u>								
mh1-2			0710	┠┼┼╴	-{	┼╌┼			8	Ι Υ	X	Ă	쉬	X					-+		- I MARADIA	Ľ
mw.j			0830	╏╎┼┈	+	++							╺╍┽┼	+	\rightarrow		+	+				
mw-y			0915		\top			-			1.			†.†							- 1:0 C	
MW-5			0710							\Box_{I}							-+					2
Well-18		4	0746						4	M	M	V.	V	d/] - [Walys	1
											·										added	
																_					AM	
																					- () 424/1	16
7) Turnaround Time Requested (T	AT) (pleas	e circle) A dou		Relinquish	ed by	\leq	2			Date	4/16		lime 09	4	я У	lacely	ed by	T			Date Time	0
72 hour 48 hour		24 hogin	F/EDD	Relingensh	ed by	ļ.)			Date	4.16		ilme 1 1 2	15	R C	iechiv	ad by	4.1	n		Date Time 24. JUX/16 (62.5	2
Data Package (circle If required)	EDD	(circle if re	equired)	Inquished by Commercial Carrier: Redeved by									Date Time	7								
Type I - Full	EDFF	LAT (dela	ult)											- TRAINE CBC	4							
Type VI (Raw Data)	Other		14192 1927 229 West		əmp	eratu	re U	pon i	Hect	eipt_	-		°() 	ľ	Cu	stody	Sea	ls Int	act?	Yes No	
The	E white copy	urofins La should acc	ncaster Lat company se	oratories, amples to	Inc. • Eurofi	2425 ns Lan	New H Icasler	iollanc r Labo	d Pike orator	e, Lan les. T	caster he ye	r, PA [·] Now c	17601 opy st	• 717- 10uld 1	656-2	2300 aineo	i by th	e clier	t.		Issued by Depl. 40 Manage	ment Si os

2,22.2

2.47 x 0 F

Che	vroi	n Ca	allifo	ľħ	ia	1 la	Rej	<i>ji</i> e	Dh		M	al	ys	sie	3 <i>[</i> ,	Re	ğΠ	Je	st	/C	ha	air	n of Custoa	Ŋ
SG2416-\$2 Lancaste	er ries		Ad	ct. #	10	9(Ho	(F Group In	or Eu # structio		Land Ol	side co	Labc Sa rrespon	oratorio Imple d with c	es use #(ircled n	only 54 umbers	45 3.	59	Ц -	60	0		
1 Client Int	formatio	n				(4)	Ma	trix			(5)			A	nalys	ses I	Req	uesi	ed					
Facilly\$#376584-OML G-R#38590)3 Globa	a ^W B#TO	6001014	42																			SCH #:	
^{Site} ଚୈଡ଼ି 98th AVENUE, OAKLAN	D, CA		*				8						D	স্থ	8260								☐ Results in Dry Weight ☐ J value reporting needed	
Chevron PM STANTECWB		Lead Consi West	hoff			dimen	round	urface		ري ا	X 8		Clean	eanup	eve (Must meet lowest detection limits possible for 8260	
Consultant/Office Getter-Ryan Inc., 6805 Sierra	Court, S	Suite G,	Dublin,	CAS)4561	Se	ß	SI		ainer	82	82	ca Gel	Gel Cl	tale		9						compounds	
Consultant Project Mgr. Deanna L. Harding, deanna@	grinc.co	om								Cont		22	out Sili	Silica (РНТІ	s	Metho	Metho					☐ Confirm highest hit by 8260 ☐ Confirm all hits by 8260	
Consultant Phone # (925) 551-7444 x180					r		table	DES	Air	ier of	802	801	5 with	5 with	/Na.	genate:		g					Run oxy's on highest	ıit
Sampler Jin H	ezze			3	osite		Pod .	NF		Numb	- MTBE	0° D	70 801	70 801	uli Scar	Oxy	ead	ed Lea						
2	Soil	Coll	ected	ab	dmg					tal	т ХШ	U U U U	Î Î-H	Ē	90 Fi		al Le	solv						
Sample Identification	Depth	Date	Time	ΰ	1 ŭ	ပိ	Ì	~ ~	ō	To	BT	LP	4T	I d I	826		Tot	Dis					6 Remarks	Defense menter
<u> </u>		160624		$ \times $		<u> </u>	×			2														
<u></u>	ļ		0827	\downarrow	ļ	Į	└──			8	<u> </u>													
MW-2			0710	\square			┝╌┠╌																	
			0830	\square		<u> </u>																		
776.9			0415	⊢										ļ										
			0110	\square	 	<u> </u>													ļ					
Well-18		4	0746	4						4														
-				<u> </u>																				
7 Turnaround Time Requested (T	AT) (pleas	se circle)	1	Relin	l quishe	d by	\sim	/			Date	 /	,	Time	لــــــــــــــــــــــــــــــــــــ		Recei	ved by					Date Time	9
Standard 5 day		4 day		Belin		d by					6/2 Date	24 / 16	>	0 Time	945	-	Pachived by			St	Total and the		Di 24.16 099	5
72 hour 48 hour		24 hogi	F/EDD	\square	24.16 1125 a. Alan								- 1	24/ JUNILO 1/23	-									
8 Data Package (circle if required)	EDE) (circle if r	equired)	Rèir	nquish	ied by	Com	norei	al Ca r	rier:	er,	<u>A</u> ei	typ	2)	LYJR	741G	Recei	ved by			/		Date Time	
Type I - Full EDFFLAT (default)						PSFedExOther639 FX01261110 09								6/2/110 093	<u>ッ</u>									
Type VI (Raw Data)	Othe	r:			Te	emp	eratu	re U	pon	Hec	eipt .	<i>U</i>	· 02	() v	чС 		Cu	usto	y Se	ais I	ntac	ť?	Yes No	

The white copy should accompany samples to Eurofins Lancast PAGE 200 A The yellow copy should be retained by the client.

ļ....

🔅 eurofins |

Lancaster Laboratories Environmental

Sample Administration Receipt Documentation Log

Doc Log ID:

151679

Group Number(s): 1676196

Client: Chevron

Delivery and Receipt Information								
Delivery Method:	BASC	Arrival Timestamp: 06/25/2	2016 9:30					
Number of Packages:	2	Number of Projects: <u>1</u>						
State/Province of Origin:	CA							
Arrival Condition Summary								
Shipping Container Sealed:	Yes	Sample IDs on COC match Conta	iners: Yes					
Custody Seal Present:	Yes	Sample Date/Times match COC:	Yes					
Custody Seal Intact:	Yes	VOA Vial Headspace ≥ 6mm:	No					
Samples Chilled:	Yes	Total Trip Blank Qty:	4					
Paperwork Enclosed:	Yes	Trip Blank Type:	HCI					
Samples Intact:	Yes	Air Quality Samples Present:	No					
Missing Samples:	No							
Extra Samples:	No							
Discrepancy in Container Qty	on COC: No							

Unpacked by Karen Diem (3060) at 12:13 on 06/25/2016

	Samples Chilled Details										
The	ermometer Types	s: DT = Digi	tal (Temp. Bottle) IR =	Infrared (Sur	All Temperatures in °C.					
0	The second sector ID	O and a tool Town	The sure 'To us a	les Ture	les Dresent?	las Containor	Elevated Temp?				
<u>Cooler #</u>				<u>ice iype</u> Wet	<u>ice Plesent/</u> Y	Bagged	<u>Elevated Temp?</u>				
2	DT131	0.9	DT	Wet	· Y	Bagged	N				
-						66					

🔅 eurofins

Lancaster Laboratories Environmental

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

RL	Reporting Limit	BMQL	Below Minimum Quantitation Level					
N.D.	none detected	MPN	Most Probable Number					
TNTC	Too Numerous To Count	CP Units	cobalt-chloroplatinate units					
IU	International Units	NTU	nephelometric turbidity units					
umhos/cm	micromhos/cm	ng	nanogram(s)					
С	degrees Celsius	F	degrees Fahrenheit					
meq	milliequivalents	lb.	pound(s)					
g	gram(s)	kg	kilogram(s)					
μg	microgram(s)	mg	milligram(s)					
mL	milliliter(s)	L	liter(s)					
m3	cubic meter(s)	μL	microliter(s)					
		pg/L	picogram/liter					
<	less than							
>	greater than							
ppm	parts per million - One ppm is equivalent to one milligram per kilogram (mg/kg) or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter per liter of gas.							
ppb	parts per billion							
Dry weight basis	Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture. All other results are reported on an							

Laboratory Data Qualifiers:

- B Analyte detected in the blank
- C Result confirmed by reanalysis

as-received basis.

E - Concentration exceeds the calibration range

J (or G, I, X) - estimated value \geq the Method Detection Limit (MDL or DL) and < the Limit of Quantitation (LOQ or RL)

P - Concentration difference between the primary and confirmation column >40%. The lower result is reported.

U - Analyte was not detected at the value indicated

V - Concentration difference between the primary and confirmation column >100%. The reporting limit is raised due to this disparity and evident interference...

Additional Organic and Inorganic CLP qualifiers may be used with Form 1 reports as defined by the CLP methods. Qualifiers specific to Dioxin/Furans and PCB Congeners are detailed on the individual Analysis Report.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Times are local to the area of activity. Parameters listed in the 40 CFR Part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL, LLC BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL AND (B) WHETHER EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client.