BALCO PROPERTIES

September 30, 2014

RECEIVED

By Alameda County Environmental Health at 11:04 am, Oct 03, 2014

Mr. Keith Nowell Alameda County Environmental Health 1131 Harbor Bay Parkway Alameda, CA 94502-6577

RE: Revised Work Plan for Additional Investigation, Balco Properties LLC, 2855 Mandela Parkway, Oakland, California (Fuel Leak Case Number RO0000378)

Dear Mr. Nowell:

The property located 2855 Mandela Parkway in Oakland, California (the Site) has been under the jurisdiction of Alameda County Department of Environmental Health's (ACEH) Local Oversight Program (LOP) Fuel Leak Case Number RO0000378 since December 2001. Balco Properties LLC (Balco) has been working with ACEH after acquiring the Site in 2006. A brief summary of recent correspondence between Balco and the ACEH is summarized as follows:

Balco submitted a Work Plan for Additional Investigation (Work Plan; prepared by Trihydro Corporation) to ACEH on August 14, 2012. The purpose of the Work Plan was to propose additional field activities to address remaining data gaps at the Site and supplement the Feasibility Study Corrective Action Plan (FS/CAP) dated August 23, 2011. The ACEH provided an August 6, 2013, electronic mail (e-mail) stating the Site had been re-classified under the State Water Resources Control Board's Low Threat Underground Storage Tank Case Closure Policy. Trihydro Corporation and the ACEH then participated in a teleconference on October 21, 2013, to discuss the Site. The ACEH requested that Balco submit a Focused Site Conceptual Model (SCM) as detailed in an October 28, 2013, e-mail, and the SCM was submitted on March 11, 2014. On August 27, 2014, ACEH concurred with the SCM and requested a revised sample location figure from the August 2012 Work Plan and an additional Work Plan for soil gas and sub-slab vapor investigation.

Please find an enclosed Revised Work Plan, with a revised sample location figure and proposed soil gas and sub-slab vapor sampling activities. Balco appreciates ACEH's continued assistance with this project. If you have any questions regarding this Work Plan, please free to call me at (510) 763-2911 or Matt Jones (Trihydro Corporation) at (360) 312-9109.

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document *Revised Work Plan for Additional Investigation, 2855 Mandela Parkway, Oakland, California,* are true and correct to the best of my knowledge.

Sincerely yours,

2

Mollie A. Westphal Balco Properties, LLC

21B-001-001

REVISED WORK PLAN FOR ADDITIONAL INVESTIGATION BALCO PROPERTIES LLC 2855 MANDELA PARKWAY OAKLAND, CALIFORNIA

September 30, 2014

Project #: 21B-001-001

SUBMITTED BY: Trihydro Corporation

1252 Commerce Drive, Laramie, WY 82070

PREPARED FOR: Balco Properties, LLC

1624 Franklin Street, Suite 310, Oakland CA 94612

ENGINEERING SOLUTIONS. ADVANCING BUSINESS. Home Office | 1252 Commerce Drive | Laramie, WY 82070 | phone 307/745.7474 | fax 307/745.7729 | www.trihydro.com

Table of Contents

1.0	INTRODUCTION					
	1.1	Organiz	zation of the Work Plan	1-1		
2.0	BACKGROUND INFORMATION					
	2.1	Site De	ite Description2			
	2.2	Site Ov	Site Ownership History			
	2.3	Summary of Investigation and Remediation History				
		2.3.1	1990 Phase I Environmental Site Assessment and 1991 Underground			
			Storage Tank Removal	2-1		
		2.3.2	1992 Soil and Soil Gas Investigation	2-2		
		2.3.3	1998 Subsurface Investigations	2-2		
		2.3.4	1999 Subsurface Investigations and LNAPL Removal	2-3		
		2.3.5	2000 Indoor Air Investigation	2-4		
		2.3.6	2001 Subsurface Investigation	2-4		
		2.3.7	2003 LNAPL Recovery Pilot Study	2-5		
		2.3.8	2004 to 2006 Draft Interim Corrective Action Plan and Permanent			
			System Installation	2-5		
		2.3.9	2007 Through 2008 Groundwater Monitoring and LNAPL Removal	2-6		
		2.3.10	2008 Soil Vapor Survey	2-7		
		2.3.11	2010 and 2011 Feasibility Study/Corrective Action Plan Reporting Activitie	es2-7		
		2.3.12	August 2012 Work Plan for Additional Investigation	2-7		
		2.3.13	March 2014 Focused Site Conceptual Model	2-7		
3.0	PROPOSED FIELD ACTIVITIES					
	3.1	LNAPI	APL Baildown Tests			
	3.2	UVOS	ST Survey Procedures			
	3.3	Ground	water Investigation Procedures	3-2		
		3.3.1	Grab Groundwater Sampling Procedures	3-3		
			3.3.1.1 Monitoring Well And Recovery Well Low Flow Groundwater			
			Sampling Procedures	3-3		
		3.3.2	Sample Shipment and Handling	3-4		
	3.4	Soil Vapor Well Installation and Sampling Procedures				
		3.4.1	Soil Sample Collection	3-5		

Table of Contents (cont.)

6.0	REFERENCES					
5.0	REPO	EPORTING AND FUTURE ACTIVITIES				
	4.3	Laboratory Quality Control Samples4				
	4.2	Blank Samples				
		4.1.3	Field Duplicates (Groundwater, Soil Gas, Sub-Slab Gas)	4-1		
		4.1.2	Helium Intrusion (Soil Gas, Sub-Slab Gas)	4-1		
		4.1.1	Canister Pressure (Soil Gas, Sub-Slab Gas, Ambient Air)	4-1		
	4.1	Field Quality Control Samples		4-1		
4.0	QUAL	ITY AS	SURANCE AND QUALITY CONTROL	4-1		
		3.6.2	Investigation-Derived Waste Management			
		3.6.1	Equipment Decontamination			
	3.6	Decont				
	3.5	Subsla				
		3.4.8	Ambient Air Sample Collection	3-7		
		3.4.7	Pneumatic Testing	3-7		
		3.4.6	Soil Gas Sample Collection	3-6		
		3.4.5	Helium Tracer Testing	3-6		
		3.4.4	Purging	3-5		
		3.4.3	Shut In Testing	3-5		
		3.4.2	Pressure Gradient Testing	3-5		

List of Figures

- 1. Site Location Map, 2855 Mandela Parkway, Oakland, California
- 2. Historical Sample Locations And Monitoring Well Network, 2855 Mandela Parkway, Oakland, California
- Proposed UVOST and Grab Groundwater Sampling Locations, 2855 Mandela Parkway, Oakland, California
- Proposed Soil Gas and Sub-Slab Vapor Sampling Locations, 2855 Mandela Parkway, Oakland, California
- 5. Typical Soil Vapor Well Diagram, 2855 Mandela Parkway, Oakland, California
- 6. General Soil Gas Sampling Train Schematic, 2855 Mandela Parkway, Oakland, California
- 7. Sub-Slab Sampling Point Detail, 2855 Mandela Parkway, Oakland, California

List of Appendices

- A. Focused Site Conceptual Model
- B. Groundwater Sampling Forms
- C. Soil Vapor Sampling Forms

CERTIFICATION STATEMENT WORK PLAN FOR ADDITIONAL INVESTIGATION BALCO PROPERTIES LLC 2855 MANDELA PARKWAY OAKLAND, CALIFORNIA

I certify that this Work Plan was prepared under my supervision. To the best of my knowledge, the data contained herein are true and accurate and the work plan was prepared in accordance with professional standards.

Dot

David Kleesattel, PG. California Registered Geologist #5136

9/30/2014

Date

1.0 INTRODUCTION

The Mandela Parkway Balco Properties, LLC (Balco) site is located at 2855 Mandela Parkway in Oakland, California (the Site; Figure 1). Current corrective action activities are conducted pursuant to Alameda County Department of Environmental Health's (ACEH) Local Oversight Program (LOP) via Fuel Leak Case Number RO0000378. Balco has been working with ACEH since 2006, after acquiring the property. The nature, degree, and extent of hydrocarbons in the subsurface at the Site are generally defined. In August 2012, Trihydro Corporation, Inc. (Trihydro) submitted a Work Plan for Additional Investigation. Following a meeting on October 21, 2013, between ACEH and Trihydro, ACEH requested the Balco prepare a focused site conceptual model (SCM) to further identify potential data gaps and evaluate the Site in accordance with the State Water Resources Control Board's (SWRCB) Low Threat Underground Storage Tank Case Closure Policy (LTCP). Balco submitted the SCM to ACEH on March 11, 2014, and ACEH concurred with the SCM via an electronic mail (e-mail) dated August 27, 2014. ACEH further requested that Balco submit a revised sample location figure from the August 2012 Work Plan and prepare an additional Work Plan to investigate current soil gas and sub-slab vapor quality. Trihydro has prepared this Revised Work Plan per ACEH's requests in the August 27, 2014 e-mail.

1.1 ORGANIZATION OF THE WORK PLAN

This section outlines the organization of the Work Plan. The following sections are summarized below:

- Section 2 Background Information
- Section 3 Proposed Field Activities
- Section 4 Quality Assurance and Quality Control
- Section 5 Reporting and Future Activities
- Section 6 References

2.0 BACKGROUND INFORMATION

Extensive activities to characterize the local geology/hydrogeology and determine the nature, degree, and extent of subsurface hydrocarbons have been performed at the Site. A brief description of the Site and previous investigation and remediation activities are summarized below.

2.1 SITE DESCRIPTION

The Site consists of an approximate 4-acre parcel, occupied by a 143,000 square foot building located in West Oakland (Figure 1). The Site is bordered by 32nd Street to the north, Mandela Parkway and Willow Street to the east and southeast, 26th Street to the southwest, and Wood Street to the northwest. Surrounding properties are predominantly light/heavy industrial and commercial (Treadwell and Rollo 2000).

2.2 SITE OWNERSHIP HISTORY

The building currently occupying the Site was constructed by International Harvester Company as the Branch House and Service Station in 1941. A construction drawing from 1941 showed a feature that included a possible fuel dispensing pump. Sometime after 1970 International Harvester vacated the premises. A property transfer document from 1982 indicated the property was still owned by International Harvester in 1982 when it was transferred to Cypress General Partnership (Cypress). In 1983 Cypress transferred the property to Wareham Property Group (Wareham), who in turn transferred the property in 1998 to 2855 Mandela Property, LLC. The property was transferred to the current owner, Balco, in late October 2006. Since the property transfer to Cypress in 1983, space at the property has been leased by the respective owners to third-party commercial tenants (Treadwell and Rollo 2000).

2.3 SUMMARY OF INVESTIGATION AND REMEDIATION HISTORY

Numerous investigation, remediation, and/or reporting activities have occurred at the site from 1990 through 2014. These activities are summarized below. Additional details are presented in the SCM, attached as Appendix A.

2.3.1 1990 PHASE I ENVIRONMENTAL SITE ASSESSMENT AND 1991 UNDERGROUND STORAGE TANK REMOVAL

In 1990, a Phase I Environmental Site Assessment (ESA) was performed at the Site by Harding Lawson Associates (HLA) on behalf of Wareham. In 1991 a 250-gallon waste oil underground storage tank (UST) and 350-gallon gasoline UST, located in the southeast portion of the Site (Figure 2), were removed by HLA. Upon removal, both

USTs were noted to be in a deteriorated condition with numerous holes and visibly stained soil observed surrounding the tank (Light, Air & Space Construction, 1997).

2.3.2 1992 SOIL AND SOIL GAS INVESTIGATION

An investigation was conducted at the site in 1992 by ATEC Environmental (ATEC) which focused on the collection of soil samples and soil vapor samples in the vicinity of the former USTs. Results of soil and soil vapor sampling showed the presence of total volatile petroleum hydrocarbons quantified as gasoline (TVPHg/TPHg) and benzene, toluene, ethyl-benzene, and xylenes (BTEX) present in shallow subsurface soil samples and soil gas samples collected from the interior of the building and from exterior locations in the yard. The highest concentrations of BTEX were detected from exterior locations, south of the former USTs (ATEC 2002).

2.3.3 1998 SUBSURFACE INVESTIGATIONS

Three additional investigations were conducted by Ceres Associates (Ceres) in 1998 which included soil vapor, soil, and groundwater sampling. A geophysical survey was also conducted to investigate the potential existence of additional USTs. Soil and groundwater sampling focused on areas south and southeast of the former USTs and included locations adjacent to the Site along Willow Street. The offsite property investigation was conducted in the vicinity of the former UST at 2607 Mandela Parkway, which had previously been closed in place, to assess the UST as a potential offsite source (Figure 2; Ceres 1998).

Soil vapor samples were collected from 20 locations and analyzed for BTEX and methyl tert-butyl ether (MTBE). Results from the soil gas survey confirmed the presence of BTEX at elevated concentrations. The highest concentrations of BTEX were detected outside the building southwest of the onsite former USTs (Treadwell and Rollo, 2000). MTBE was not detected in any of the samples. The validity of the soil vapor data collected during this investigation was later brought into question by ACEH and additional soil gas investigations were conducted in 2001 and 2008.

Soil samples were collected from 18 locations and analyzed for total petroleum hydrocarbons as gasoline (TPHg), BTEX, and MTBE. The highest hydrocarbon concentrations were detected offsite in Willow Street, southeast of the former USTs (Figure 2; Ceres 1998).

Grab groundwater samples were collected from several borings and analyzed for TPHg, BTEX, and MTBE. The highest concentrations of TPHg, benzene, toluene, ethyl-benzene, and xylenes in groundwater were detected east of the

former onsite USTs. LNAPL was observed in onsite borings SB-3, SB-3B, SB-3C, and SB-12 and offsite borings SB-8 and SB-9, located on Willow Street (Figure 2; Ceres 1998).

Ceres summarized the results of the 1998 investigations as inconclusive with respect to the former UST at 2607 Willow Street as a potential source of contamination. No additional USTs were discovered during the geophysical survey (Ceres 1998).

2.3.4 1999 SUBSURFACE INVESTIGATIONS AND LNAPL REMOVAL

Treadwell and Rollo, Inc. (T&R) submitted three separate work plans, between April 1999 and November 1999 to further define the nature, degree, and extent of subsurface hydrocarbons at the Site. The 1999 investigations included the collection of soil and groundwater samples, the installation of three temporary piezometers (TR-1 through TR-3), the installation of three 4-inch diameter monitoring wells (TR-4 through TR-6), and the extraction of LNAPL. Historical investigation locations are shown on Figure 2.

Soil samples were collected from eight onsite locations, TR-4 through TR-6, SB-25, SB-28, SB-31, SB-33A, and SB-34. Groundwater samples were collected onsite and offsite from 16 locations: TR-2 and TR-3, SB-17, SB-19 through SB-24, SB-26, SB-27, and SB-29 through SB-33. All soil and groundwater samples were submitted for analyses of TPHg, BTEX, and MTBE. In soil samples, TPHg and BTEX were detected in TR-5 (highest concentrations) and TR-6. No TPHg, BTEX, or MTBE were detected in other soil samples. MTBE was detected in TR-5, but was considered a likely false positive based on the analytical method used (Treadwell and Rollo 2000).

In groundwater, the highest concentration of TPHg, BTEX, and MTBE were detected in samples collected east of the UST on Willow Street along the perimeter of the eastern property boundary. MTBE was not detected in the groundwater samples collected.

During the 1999 investigation, LNAPL was observed in areas immediately southeast and east of the former UST (boring SB-18 and monitoring well TR-5) and within the building footprint (boring SB-34 and monitoring wells TR-4 through TR-6; Figure 2). LNAPL was sampled and analyzed for characterization and analytical results indicated the LNAPL was attributable to a leaded gasoline source. The 1999 investigation led to a LNAPL removal pilot-test to determine the potential for removal by bailing and/or passive skimming of wells TR-4 through TR-6. Between June and October 1999, a total of 98.1 gallons of LNAPL was removed from the wells and disposed offsite to a recycling facility via hazardous waste manifest protocols. Treadwell and Rollo's evaluation of results from the 1999 investigations included the following conclusions:

- The lateral extent of the plume was defined based on direct observation of LNAPL in 1998 and 1999 and where benzene concentrations in groundwater were greater than 1,800 micrograms per liter (µg/L) - an area of approximately 15,000 square feet (Figure 2).
- LNAPL was comprised of leaded gasoline without MTBE.
- LNAPL is located in a variable mud matrix but its distribution is affected by numerous thin zones of sandy and peaty soil.
- The closed in place UST across Willow Street does not appear to be the source because the only conclusively identified source is associated with the 350-gallon UST removal in 1991.

2.3.5 2000 INDOOR AIR INVESTIGATION

An indoor air investigation was conducted by SOMA Corporation (SOMA) in 2000, and consisted of collecting ambient air samples in 6-liter lab certified summa canisters from three locations inside the building and two locations outside of the building. Detectable concentrations of BTEX were measured both in indoor and outdoor samples. The BTEX numbers were compared to the Occupational Safety and Health Administration's (OSHA's) Permissible Exposure Limits (PELs) and were found to be 4 to 6 orders-of-magnitude below the PELs. Based on investigation results, it was concluded that gasoline vapors, and specifically BTEX, were not migrating in significant concentrations into the building from subsurface soil (Treadwell and Rollo 2001a).

2.3.6 2001 SUBSURFACE INVESTIGATION

A 2001 investigation, conducted by T&R, included installation of 10 permanent soil vapor probes (A through J) inside the building, and installing monitoring wells TR-7 through TR-9 (Figure 2; Treadwell and Rollo 2001b). Ten permanent soil vapor sampling wells were installed by advancing soil vapor probes (A through J) through the building floor slab to depths of approximately 2-3 feet below the bottom of the slab. Samples were collected in Summa canisters and results were reported in micrograms per meter cubed (μ g/m³) resolving issues that ACEH had brought up in response to the 1998 Ceres investigation sampling method of using Tedlar® bags instead of Summa canisters and using μ g/L instead of μ g/m³ to report data. Samples collected from the vapor wells did not contain concentrations of BTEX above laboratory reporting limits.

Three monitoring wells (TR-7 through TR-9) were installed to further evaluate the lateral extent of LNAPL in the subsurface. No LNAPL or hydrocarbon sheen was observed in wells TR-7 through TR-9 and it was concluded by Treadwell and Rollo that the plume had been defined. In December 2001, ACEH issued a notice of responsibility

bringing the Site under the jurisdiction of the LOP as Fuel Leak Case Number RO0000378 (ACEH 2001) and requested a Corrective Action Plan (CAP) be developed for the Site.

2.3.7 2003 LNAPL RECOVERY PILOT STUDY

In 2003, a pilot test was performed to determine the efficacy of utilizing a free product recovery system. The pilot test included using skimmer pumps placed inside monitoring well TR-4, and later TR-6, inside the building to remove LNAPL. Twenty-two gallons of LNAPL were recovered during the six day duration of the pilot test. It was determined that a full-scale system was feasible and that a permanent system would be proposed to ACEH (Treadwell and Rollo 2004b).

2.3.8 2004 TO 2006 DRAFT INTERIM CORRECTIVE ACTION PLAN AND PERMANENT SYSTEM INSTALLATION

In January 2004, a Draft Interim Corrective Action Plan (ICAP) was submitted to ACEH outlining historical onsite investigations, the results of the 2003 pilot test, and proposal of a permanent system in recovering additional LNAPL (Treadwell and Rollo, 2004a). In February 2004, ACEH provided a written response to the ICAP, approving the proposed system installation while requesting additional monitoring wells (TR-10 and TR-11) and future verification sampling of soil and groundwater, post interim remediation.

Between 2004 and 2006, an active pneumatic LNAPL skimming system was installed at the Site. A shallow trench for appurtenant piping (6-inches deep) was installed inside the building and two deeper recovery trenches (10 foot deep by 30 foot long) were installed near the former UST area (Figure 2) for LNAPL accumulation. PVC piping in the shallow interior trench was connected to monitoring wells TR-4 and TR-6. LNAPL was actively pumped from each well, into an above ground storage tank (AST) pending offsite disposal. No trenching was installed to connect monitoring well TR-5; to the LNAPL recovery system, however, TR-5 contained a dedicated passive skimmer for active LNAPL removal. The deeper exterior trenches were backfilled, from 5 to 10 ft bgs, with coarse drain rock in an effort to facilitate LNAPL accumulation. PVC piping was laid in the base of each trench and connected with two slotted vertical PVC risers, serving as recovery wells for the removal of the accumulated LNAPL (RW-1 and RW-2, Figure 2).

During trench installation in late 2005/early 2006 the Site received heavy rainfall. The rainfall recharged a shallow perched groundwater unit that kept the water level in the trenches higher than the LNAPL in the ground. This resulted in a hydrostatic pressure that was great enough to prevent the LNAPL from flowing into the trench. In March 2006, approximately 3,600-gallons of water were pumped from the trenches to promote a drop in the water zone and to allow

the migration of LNAPL into the trenches. The attempt was unsuccessful and the trenches re-filled with water from the perched-zone almost immediately.

Seventeen gallons of LNAPL were removed from TR-4 through TR-6 between June and July 2006. By the end of July 2006 the system was temporarily shut down due to slow LNAPL recharge rates in monitoring wells TR-4 through TR-6 and corresponding inability of the pumps to recover additional LNAPL (the pumps were left in the monitoring wells pending a potential system restart). It was concluded that LNAPL may eventually continue to be removed from TR-4 through TR-6 after LNAPL levels rebounded.

Per ACEH's request, two additional offsite monitoring wells (TR-10 and TR-11) were installed to evaluate potential presence of LNAPL along Willow Street. LNAPL was observed in well TR-10, but not in well TR-11. Removal of LNAPL from TR-10, located on the eastern edge of the LNAPL plume on Willow Street was implemented using a portable pump. Approximately 4 gallons of LNAPL were removed from TR-10 during August 2006. Manual removal of LNAPL (discussed below) was performed at the site from October 2007 through June 2008. In July 2008, skimmer pumps were removed from monitoring wells TR-4 through TR-6 (Treadwell and Rollo 2008b).

2.3.9 2007 THROUGH 2008 GROUNDWATER MONITORING AND LNAPL REMOVAL

Balco resumed site-wide fluid level measurements and initiated manual removal of LNAPL (via bailing techniques) in all Site monitoring and recovery wells in 2007, shortly after the property transaction. A total of ten events were performed, and 11.68 gallons of LNAPL were removed, between October 2007 and June 2008 (Treadwell and Rollo, 2008b).

During the ten events, between October 2007 and June 2008, LNAPL was observed in monitoring wells TR-4 through TR-6, and TR-10 while LNAPL was not observed in recovery wells RW-1 and RW-2 or monitoring well TR-11. During the October 2007 event, LNAPL thicknesses ranged from 0.01 feet in TR-5 to 7.45 feet in TR-10. Recharge rates were observed to be generally slow after LNAPL removal. In June 2008 LNAPL thickness ranged from 0.01 feet in TR-4 to 0.45 feet in TR-10. Historically, LNAPL thickness has been greatest in TR-6, northwest of the former UST.

Two groundwater sampling events were conducted at the Site in October 2007 and September 2008. Groundwater samples were collected from recovery wells RW-1 and RW-2, TR-4 through TR-6 and TR-10 and TR-11, after removing LNAPL by bailing, and submitted for analyses of volatile organic compounds (VOCs) and TPHg. Hydrocarbon concentrations were typically highest in samples collected in wells in the vicinity of the former UST area

(wells TR-4 and TR-6, and well TR-10, on Willow Street). The October 2007 and September 2008 monitoring results were consistent with historical results and data (Treadwell and Rollo 2009a).

2.3.10 2008 SOIL VAPOR SURVEY

ACEH submitted a memorandum (dated June 6, 2008) that included a request for an additional soil gas survey. Soil vapor sampling activities were conducted on October 12 and 15, 2008. Samples were collected in 1-liter summa canisters resolving issues that ACEH had brought up in response to the 1998 Ceres investigation regarding the use of Summa canisters and not Tedlar® bags (as Ceres had used) to assess potential human health risk to occupants of the Site. Samples were submitted for analysis of VOCs by EPA method TO-15. Results of soil vapor sampling showed the presence of toluene, xylenes, and 15 additional VOC compounds. However, VOCs were reported below California Regional Water Quality Control Board (RWQCB) Commercial and Residential Environmental Screening Levels (ESLs). Additionally; benzene, ethyl-benzene, and MTBE were not detected above laboratory reporting limits in samples. Treadwell and Rollo concluded that the extent of LNAPL and dissolved hydrocarbons in groundwater is limited to within the property boundary and did not pose a significant risk for a human health pathway (Treadwell and Rollo 2009b).

2.3.11 2010 AND 2011 FEASIBILITY STUDY/CORRECTIVE ACTION PLAN REPORTING ACTIVITIES

ACEH responded with a letter on May 27, 2010, generally concurring with conclusions from the 2008 soil gas vapor survey, and requested Balco prepare an FS/CAP (ACEH 2010). Between 2010 and 2011, several iterations of a FS/CAP were submitted to ACEH, with the most recent revision submitted on August 23, 2011 (Treadwell and Rollo 2011). The ACEH has not approved the previously proposed FS/CAP activities.

2.3.12 AUGUST 2012 WORK PLAN FOR ADDITIONAL INVESTIGATION

Trihydro submitted a Work Plan proposing additional investigation to ACEH on August 14, 2012. The August 2012 Work Plan included a proposed Ultraviolet Optical Screening Tool (UVOST) survey and groundwater sampling activities to further confirm/evaluate LNAPL and groundwater impacts. Balco is providing updated UVOST survey and groundwater sampling activities as part of this Revised Work Plan.

2.3.13 MARCH 2014 FOCUSED SITE CONCEPTUAL MODEL

On October 13, 2013, ACEH requested that Balco submit an updated SCM (Appendix A) to evaluate conditions at the Site with respect to the SWRCB LTCP criteria. Balco submitted the SCM to ACEH on March 11, 2014 and ACEH

concurred with the updated SCM via an August 27, 2014, e-mail. As part of the SCM acceptance, ACEH also requested that Balco submit a revised sample location figure from the August 2012 Work Plan on or before September 30, 2014. Additionally, ACEH requested an additional Work Plan to investigate current soil gas and sub-slab vapor quality. ACEH requested that this additional Work Plan be submitted by October 14, 2014.

3.0 PROPOSED FIELD ACTIVITIES

The purpose of proposed field activities is to evaluate the current degree and extent of LNAPL, associated dissolved hydrocarbons in groundwater, and potential impacts in soil gas and sub-slab soil vapor. Proposed activities include a LNAPL baildown test, UVOST survey, grab groundwater sampling, monitoring well sampling, installation and sampling of a soil gas well, and sub-slab vapor sampling inside the building.

ACEH noted in their August 27, 2014, correspondence, that a previously conducted well survey used a one-quarter mile radius, but, since the plume extent was undefined, the one-quarter mile radius would need to adequately evaluate impacts. Balco intends to re-evaluate the well survey radius following implementation of this Work Plan to incorporate new data collected in defining the plume.

Please note that several proposed sampling locations (UVOST, groundwater monitoring wells, and sub-slab samples) are located inside the subject property. Balco will attempt, to the extent practicable, to sample every proposed interior location. However, active tenant operations may present logistical challenges that result in adjusting locations and/or deferring certain activities. If this occurs, Balco will document necessary field revisions in the pending report to ACEH. Proposed activities are presented below.

3.1 LNAPL BAILDOWN TESTS

Evaluating LNAPL mobility within the soil–groundwater system helps determine the feasibility, efficiency, and appropriate endpoints for future potential hydrocarbon-recovery systems. For the current investigation, LNAPL baildown tests will be used to assess the in situ LNAPL mobility under ambient conditions.

LNAPL baildown tests will be conducted on existing monitoring wells and/or recovery wells with appreciable LNAPL thicknesses. Historically, monitoring wells TR-4, TR-5, TR-6, and TR-10 have contained a measurable amount of LNAPL. The most recent measurements of these four wells ranged from 0.05 to 0.83 feet of LNAPL (Trihydro, 2014). To conduct the LNAPL baildown test, the depth to LNAPL and depth to water will first be gauged prior to testing with an electronic oil/water interface probe. This will be followed by removal of LNAPL from the well as instantaneously as possible, with as little water removal as possible. LNAPL recharge to the well will then be tracked by gauging the well on an approximate logarithmic scale. This gauging will be conducted until the LNAPL thickness returns to 90% of the pre-stress conditions, or 120 hours, whichever comes first.

The data collected for the LNAPL baildown test will be analyzed using API guidance (Beckett and Lyverse, 2002) to estimate the LNAPL transmissivity and conductivity under ambient conditions. LNAPL properties will be used in support of evaluation of data collected during the UVOST survey discussed below.

3.2 UVOST SURVEY PROCEDURES

Thirteen proposed locations for the UVOST investigation are shown on Figure 3. Proposed locations were selected based on evaluation of historical soil and groundwater analytical data, and are located in the previously estimated extent of the LNAPL plume as well as around the perimeter of the benzene-impacted zone.

UVOST survey technology works by utilizing a direct-push drill rig to obtain data regarding the presence/absence of non-aqueous phase hydrocarbons. As the probe is advanced through the subsurface, ultraviolet light (UV) is emitted through a sapphire window mounted in the side of the probe. LNAPL in soil exposed to the UV light will produce a response (fluorescence) when irradiated by UV light. Fiber optic cables in the probe transmit response data for every two inches the probe is advanced. The response intensity and the specific wavelength is then compared to a calibrated standard. This results in the identification of the type and vertical location of the LNAPL, which is recorded as a real-time image on a computer in the drill rig and can be produced as a hard copy color-coded log (Dakota Technologies 2012).

Each location will be marked for underground utility clearance by the public underground service alert (USA) and by a private utility locator retained by Trihydro prior to the survey. At each location, the first five feet of subsurface material will be cleared using a hand auger, and where necessary, concrete will be saw-cut in a one-foot square to allow for subsurface access. After completion of hand auguring the UVOST probe will be advanced through the subsurface until an approximate depth of 15 feet below ground surface (ft bgs) is reached; the thickness of LNAPL has been defined; or until the drill rig encounters refusal. The depth selected has been determined based on the historical shallow depths at which groundwater and free-phase product have been encountered during previous site investigations. At each location, after an adequate ultraviolet informational log has been obtained from each boring, the drill rods will be retrieved from the subsurface and decontaminated. The boring will be backfilled with bentonite (or similar) grout to approximately 6 inches below ground surface. The remaining 6 inches will be backfilled with hydrated bentonite chips (or similar) and patched with asphalt or concrete as appropriate.

3.3 GROUNDWATER INVESTIGATION PROCEDURES

Trihydro proposes collecting grab groundwater samples from borings around the perimeter of the Site, as well as from existing monitoring wells where LNAPL is not present. Groundwater sampling procedures are discussed below.

3.3.1 GRAB GROUNDWATER SAMPLING PROCEDURES

Grab groundwater samples will be collected using a direct push rig, drilling to a total depth of approximately 15-ft bgs. The proposed grab groundwater locations are shown in Figure 3, and are generally around the perimeter of the Site. In borings without observable LNAPL, a five-foot section of decontaminated ³/₄-inch diameter factory slotted PVC pipe will be placed inside the rods and attached to a steel point. The rods will be re-lowered to approximately 5 feet below the water table where force will be exerted on the pointed PVC end with the rods slightly retracted to expose the slotted PVC screen to groundwater that will infiltrate hydrostatically from the formation into the PVC. A clean disposable bailer will be lowered inside the PVC screen to collect groundwater. In the event groundwater does not immediately infiltrate the PVC, the rods may be removed and temporary PVC casing and screen placed down-hole to allow groundwater time to exit the formation before collection with a clean disposable bailer and/or peristaltic pump. Upon completion, the boring will be backfilled with bentonite (or similar) grout to approximately 6 inches below ground surface. The remaining 6 inches will be backfilled with hydrated bentonite chips (or similar) and patched with asphalt or concrete as appropriate.

3.3.1.1 MONITORING WELL AND RECOVERY WELL LOW FLOW GROUNDWATER SAMPLING PROCEDURES

Groundwater samples from existing monitoring wells/recovery wells where no LNAPL is present (likely wells TR-5 and TR-11) will be collected via low flow sampling procedures using a peristaltic pump (or equivalent) at pumping rates ranging from 0.1 to 0.5 liters per minute (L/m). Dedicated pump discharge tubing will be connected to a flow-through cell and equipped with a meter to measure field parameters during well preparation activities. The sample tube for each well will be lowered to approximately two-feet below the water table. The pump will be turned on and operated at a low flow rate. After approximately one liter is purged from the well, parameters consisting of pH, specific conductance, temperature, dissolved oxygen (DO), turbidity, and oxidation/reduction potential (ORP) will be measured with a field meter once every three to five minutes.

Measurements will be recorded to document stabilization of field parameters; pumping rates will also be recorded on a routine basis to maintain the water level above the pump intake. A sample will be collected after the field parameters stabilize ($pH \pm 0.1 pH$ unit, specific conductance $\pm 3\%$, \pm millivolts for ORP, $\pm 10\%$ for DO, and $\pm 10\%$ for turbidity or maintained below 10 NTUs). The discharge tubing will then be disconnected from the flow-through cell and appropriate sample containers will be filled directly from the discharge tubing without disrupting the pump rate. Sample vials will be filled such that sample agitation is minimized. Care will be taken to prevent overfilling sample containers and to provide for proper preservation of the samples. Groundwater samples will only be collected from monitoring wells which do not contain free-phase product to determine the concentrations of VOCs, TPHg, TPHd, and

TPH as motor oil (TPHmo), if present. Groundwater sampling details will be recorded on groundwater monitoring field forms (Appendix B).

3.3.2 SAMPLE SHIPMENT AND HANDLING

Samples will be packed in a chilled container and submitted to a state-certified laboratory under chain-of-custody protocol. Each groundwater sample will be analyzed for volatile organic compounds (VOCs) by U.S.EPA Method 8260B and TPHg, TPHd, and TPHmo by EPA Method 8015B.

3.4 SOIL VAPOR WELL INSTALLATION AND SAMPLING PROCEDURES

In the August 27, 2014 e-mail, ACEH requested that the potential risk of vapor intrusion to indoor air be evaluated at 2607 Mandela Parkway near well TR-10. One soil vapor well will be installed with a target depth of five feet bgs. The location of the proposed soil vapor well is shown on Figure 4. The actual installation depth will be dependent on groundwater elevation, with the vapor sampling depth a minimum of two feet above the water table, and will not be installed shallower than three feet bgs. Installation of the soil vapor well will be performed using direct push drill methods by advancing a steel rod to the target depth. Soil will be continuously collected in acetate liners to total depth. An aliquot of each 2–foot interval will be sealed in a zip-lock bag to perform a headspace analysis for total organic vapors (TOV) using a photo-ionization detector (PID). Vapor concentrations and a description of the soil will be recorded on field boring logs in general accordance with the Unified Soil Classification System (USCS).

Upon reaching the target total depth, the drive rod and sampler will be removed. The sampler will be disconnected from the drive rods with an expendable drive point attached. The rods will be withdrawn approximately 12 inches, disengaging the expendable drive point. A ¹/₄-inch diameter Nylaflow tube, attached to a sample port, will be inserted into an open slotted PVC pipe and set approximately 6 inches off the bottom. Number 3 washed aquarium sand or equivalent will be placed through the steel rod, concurrent with its removal, so that sand extends from approximately 6 inches below to 6 inches above the soil vapor sampling point. A diagram of the typical vapor point construction is shown on Figure 5.

Approximately 12 inches of fine dry bentonite crumble will be placed in the hole as an annular seal and hydrated. Additional bentonite crumble will be alternately placed in the hole and hydrated concurrent with the removal of the drive rod. Once the probe is installed, and the annular seal placed, the drive rods will be removed from the hole. The remaining open hole will be filled with bentonite, hydrated in intervals, to the ground surface. The tops of the Nylaflow tubes will be equipped with a ball valve. Additional sampling procedures, as described below, will be

conducted a minimum of two hours after temporary monitoring point installation to allow time for the seals to hydrate and for subsurface conditions to stabilize.

3.4.1 SOIL SAMPLE COLLECTION

The bottom 2 feet of soil in the boring will be collected in an acetate liner and capped for shipment to PTS Laboratories, Inc. located in Santa Fe Springs, California. A completed COC will accompany the samples to the laboratory. Balco will request analysis of soil bulk density, grain density, total porosity, soil moisture content, fraction organic carbon, and grain size (methods ASTM D2937, D854, D2216, D422, and Walkeley-Black).

3.4.2 PRESSURE GRADIENT TESTING

Before initiating vapor sampling activities, the static pressure or vacuum within the soil gas probe will be assessed to determine whether there are any pressure gradients that might induce soil gas flow. A digital manometer will be connected to the soil gas and the measurement recorded on the soil vapor monitoring field form (Appendix C).

3.4.3 SHUT IN TESTING

Shut-in testing will be conducted to confirm the integrity of the sample train prior to conducting soil gas purging, and collecting the final sample for laboratory analysis. Shut-in testing will be performed by closing the ball valve to the soil gas probe, inducing a vacuum on the sample equipment, then closing valves at both ends, obtaining vacuum and observing the vacuum to ensure it does not dissipate. If the vacuum dissipates, the leaky component in the sample train will be identified and repaired, or replaced (if necessary) and the shut-in test will be performed again until the sample train can hold a constant vacuum. Shut-in test results will be recorded on the soil vapor monitoring field forms.

3.4.4 PURGING

After completion of shut-in testing, the soil vapor well will be purged using an approximate 200 milliliter per minute flow controller, vacuum pump, 3-liter Tedlar bag, and lung box. After each volume of soil gas is purged (approximately 5 to 8 minutes and 1 to 1.5 liters of soil vapor) the TOV concentration will be measured using a PID. In addition, oxygen, carbon dioxide, and methane concentrations in the purged sample will be measured using a fixed gas meter. Soil gases will be purged until general stabilization of parameters (i.e., relative percent difference less than about 10%) is achieved, with a minimum of three successive purging volumes.

3.4.5 HELIUM TRACER TESTING

Helium will be used as a tracer gas for measuring the potential for leakage of ambient air through the annular seal of the soil vapor probe or connections within the sampling equipment. A shroud will be placed around the well, flow controller, summa canister, and fittings during purging. Helium gas will be added to the shroud through a small port. The concentration of helium will be recorded using a multi-gas detector to confirm that a minimum helium content of 10% was maintained beneath the shroud during purging. The range of helium maintained in the shroud will be recorded during each purge interval.

3.4.6 SOIL GAS SAMPLE COLLECTION

Upon stabilization of TOV and fixed gas concentrations over three successive intervals and confirmation of the integrity of the probe and sampling equipment using helium as a tracer gas, the soil gas sample will be collected. The sample will be collected using the same methodology for purging the soil vapor probe. Note, if groundwater is pulled through the Nylaflow tubing during purging procedures, the boring location and/or depth will be deemed inadequate for soil gas sampling collection.

Samples for VOCs and laboratory confirmation of the helium concentration will be collected in a pre-evacuated 1-liter Summa® canister with a 5-micron in-line filter and flow controller (approximately 200 milliliters per minute). The Summa® canister, in-line filter, and flow controller will be placed beneath the shroud and a helium content of at least 10% will be maintained during collection of the final soil gas sample. A residual vacuum will be maintained in the Summa® canister (between 5 and 9 inches of mercury). Following completion of sampling activities, the ball valve on the Summa® canister will be closed and capped. A typical soil gas sampling train schematic is included as Figure 6.

Samples will be submitted to a state-certified laboratory under chain-of-custody protocol. Samples will be analyzed for VOCs using USEPA Method TO-15; and helium and fixed gases using USEPA Method 3C. The soil gas samples collected in each Summa[®] canister will have an attached label, including the following information:

- Site Name
- Date/Time
- Unique Summa[®] Canister ID
- Unique Sample ID
- Sampler Name
- Requested Laboratory Analyses

- Initial Summa[®] Canister Vacuum Upon Receipt from the Laboratory
- Final Summa[®] Canister Vacuum Following Collection of the Soil Gas Sample

Note, Balco is aware that ACEH, in the August 27, 2014, e-mail, has requested that naphthalene be analyzed via Method TO-17. However, as noted in the Active Soil Gas Investigation Advisory (California EPA, April 2012); many stationary laboratories are capable of obtaining naphthalene data of high quality via Method TO-15. Trihydro has ample experience collecting soil gas samples for analyses of naphthalene and have worked with laboratories following the recommended procedures for Method TO-15 discussed in the April 2012 Active Soil Gas Investigation Advisory. Therefore, Balco intends to submit soil gas samples for all VOCs, including naphthalene, for analyses via Method TO-15.

3.4.7 PNEUMATIC TESTING

The gas permeability of geologic materials around the soil gas probe will be estimated using data collected through pneumatic testing. Pneumatic testing consists of measuring the differential pressure over increasing soil vapor extraction rates. The flow rates applied will be low enough to minimize line losses (0.1, 0.2, and 0.5 liters per minute). The soil gas permeability in each probe will be calculated per equations provided in Johnson et al. (1990). The gas permeability values are useful for assessing whether there are depth intervals within the vadose zone that might provide preferential pathways or barriers for vapor movement.

3.4.8 AMBIENT AIR SAMPLE COLLECTION

One outdoor air sample will be collected the day of soil gas sampling activities in an attempt to characterize potential site-specific outdoor air concentrations present during sampling activities. The ambient air sample will be collected in an individually clean certified 6-liter summa canister and an 8-hour flow controller. Although background ambient air sampling may not typically be necessary in conjunction with subsurface soil gas sampling, background ambient air results may be beneficial in evaluating shallow subsurface soil quality at anticipated depths as shallow as those proposed in this work plan. Shipping and COC procedures are similar to those discussed in the previous section.

3.5 SUBSLAB AIR SAMPLING PROCEDURES

In the August 27, 2014 e-mail, ACEH also requested that Balco re-sample fixed sub-slab sample ports inside the 2855 Mandela Parkway building. However, as documented in the March 2014 SCM (Appendix A) these ports were installed approximately 2 feet below the concrete slab. The previously installed sub-slab points do not represent appropriate sampling depth for sub-slab sampling (Active Soil Gas Advisory, California EPA, April 2012). Balco proposes to install and sample six sub-slab sample locations as displayed on Figure 4.

The subslab probe (SSP) will consist of ¹/₄-inch diameter laboratory grade stainless steel tubing sealed within a 3/8-inch pilot hole installed using a rotary hammer drill. The pilot hole will be terminated at a depth coincident with the bottom of the building slab (anticipated to be no more than 6 inches). Quick-setting, hydrating (swelling) cement will be placed where the stainless steel tubing meets the slab to seal the probe to the concrete floor. The seal will be allowed to set before testing and sampling activities begin. A typical SSP completion diagram is included as Figure 7. Shut-in testing, purging, helium tracer gas sampling, and field measurements will be performed in the same manner as those proposed for soil gas sampling in Section 3.4.

3.6 DECONTAMINATION AND WASTE MANAGEMENT PROCEDURES

Equipment will be decontaminated between locations to prevent cross-contamination and ensure sample integrity. Waste generated during this investigation will be properly stored until it can be disposed of in accordance with all applicable laws. Details of the procedures for equipment decontamination and waste management are described below.

3.6.1 EQUIPMENT DECONTAMINATION

Prior to arriving at the site, drill rigs, tools, and accessories will be decontaminated. Downhole drilling tools and nondisposable sampling equipment will be manually washed and rinsed prior to use and between each drilling location. The decontamination procedure will include washing with non-phosphate based detergent such as Simple Green, a tapwater rinse, and a distilled (or de-ionized) water rinse. Decontamination/rinse water will be collected in buckets, and then containerized in 55-gallon drums.

3.6.2 INVESTIGATION-DERIVED WASTE MANAGEMENT

Investigation-derived waste (IDW) generated during groundwater and soil vapor sampling activities, including soil cuttings and decontamination water will be containerized in sealed and properly labeled 55-gallon drums. Drums will be stored in a secure location. Pending analytical results, the soil and water will be disposed in accordance with local, state, and federal regulations. During the advancement of the UVOST probe, soil is displaced laterally, so no soil is brought to the surface. Subsequently, no soil cuttings are produced as a result of the UVOST survey. LNAPL removed from wells will be placed either in the on-site above-ground storage tank or in a separate labeled drum, pending disposal by a licensed waste oil recycler. Trash, including personnel protective equipment (PPE) and disposable equipment generated during sampling activities, will be disposed as municipal solid waste.

4.0 QUALITY ASSURANCE AND QUALITY CONTROL

Quality assurance and quality control (QA/QC) will serve two purposes for field and laboratory sampling 1) documentation of data quality and 2) to identify areas of weakness within the measurement process that need correction. A discussion of the QA/QC elements to be implemented during the investigation for groundwater and soil gas samples is presented below.

4.1 FIELD QUALITY CONTROL SAMPLES

Field quality control samples include field duplicates and blank samples. The field quality control samples to be collected during the investigation and associated rationale are described in the following sections.

4.1.1 CANISTER PRESSURE (SOIL GAS, SUB-SLAB GAS, AMBIENT AIR)

The initial canister pressure difference from the laboratory to the field should be compared with the final canister pressure difference from the field to the laboratory. R-flags should be applied to all chemical analyses for samples where the canister vacuum varied an amount of 5 inches of mercury (in-Hg) or greater in addition to the pressure variation originally examined from the laboratory to the field. This information should be reported on the chain-of-custody (COC) forms.

4.1.2 HELIUM INTRUSION (SOIL GAS, SUB-SLAB GAS)

Typically, allowable limits are between 0 and 5 percent helium intrusion within the sample chamber. The laboratory samples will not be collected unless field helium readings are less than 5 percent of that in the sampling chamber.

4.1.3 FIELD DUPLICATES (GROUNDWATER, SOIL GAS, SUB-SLAB GAS)

Blind duplicate (field replicate) samples will be collected to evaluate precision associated with the reproducibility of sampling techniques and the homogeneity of sample matrices. For both groundwater and soil gas, replicate samples will be collected for each sample at a frequency of 10 percent or one for every 10 samples. If less than 10 samples are collected during a particular sampling event, one blind duplicate sample will be collected. Since the replicate will be "blind" to the laboratory, it will have a coded identity on its label and on the chain-of-custody record form. The actual sampling location and identification will be recorded on the daily log form and the sampling log form. Duplicate samples are collected to check sampling and laboratory analytical precision.

4.2 BLANK SAMPLES

Blank samples are collected to check for possible cross-contamination during sample collection and shipment to the laboratory. Blank samples include equipment blanks, and trip blanks. One trip blank will be included in each chilled container containing groundwater samples. Trip blanks will be provided by the laboratory. Equipment blanks will be collected at a rate of one per day of the sampling event, and will be collected by running laboratory provided deionized water through the sample equipment. Although equipment blanks and trip blanks are not applicable to soil vapor well sampling procedures proposed in this work plan, it has been proposed to collect ambient air samples to evaluate potential background air conditions that may affect vapor sampling results.

4.3 LABORATORY QUALITY CONTROL SAMPLES

Laboratories routinely perform matrix spike and matrix spike duplicate (MS/MSD) analysis to determine laboratory precision and method bias for sample matrices at the time of sample preparation and analysis. Matrix spike/matrix spike duplicates will be prepared and analyzed by the laboratory at a frequency of one per every 20 investigative samples received. MS/MSDs are samples in which compounds are added before extraction and analyses. The recoveries for spiked compounds can be used to assess how well the method for analysis recovers target compounds.

Analytes recovered below the lower recovery limit (above 30 percent) in the laboratory control samples (LCS) will be qualified in the associated samples. Analytes recovered below 30 percent in the LCS will be rejected if reported as non-detect in the associated samples and will be qualified if they are detected in the associated samples.

5.0 REPORTING AND FUTURE ACTIVITIES

Trihydro intends to submit a report summarizing activities and results to ACEH within 60 days following receipt of complete and accurate laboratory data. Groundwater results and the results of the UVOST survey will be used to confirm the estimated dissolved phase plume and LNAPL distribution. Soil gas and sub-slab vapor results will used to evaluate the risk of vapor intrusion into indoor air. Trihydro and Balco propose to discuss results of activities proposed in this Revised Work Plan with ACEH to develop potential future remediation activities.

6.0 REFERENCES

Alameda County Health Care Services. 2001. Personal Communication. December 7, 2001.
Alameda County Health Care Services. 2004. Personal Communication. February 10, 2004.
Alameda County Health Care Services. 2008a. Personal Communication. June 6, 2008.
Alameda County Health Care Services. 2008b. Personal Communication. October 24, 2008.
Alameda County Health Care Services. 2008c. Personal Communication. November 14, 2008.
Alameda County Health Care Services. 2010. Personal Communication. May 27, 2010.
Alameda County Health Care Services. 2011. Personal Communication. June 17, 2011.
Alameda County Health Care Services. 2013. Personal Communication. October 13, 2013.

Alameda County Health Care Services. 2014. Personal Communication. August 27, 2014.

ATEC Environmental Consultants. 1992. Subsurface Soil Investigation.

Beckett, G.D., Lyverse, M.A. 2002. A Protocol for Performing Field Tasks and Follow-up Analytical Evaluation for LNAPL Transmissivity Using Well Baildown Procedures. API Interactive LNAPL Guide, Version 2.0.4.

California Environmental Protection Agency, Department of Toxic Substances Control. 2012. Advisory: Active Soil Gas Investigations.

Ceres Associates. 1998. Phase II Subsurface Investigation Report.

Dakota Technologies. 2012. UVOST Ultra-Violet Optical Screening Tool. Available from: Dakota Technologies via the internet: (<u>http://www.dakotatechnologies.com/media/UVOST-Brochure-Eng.pdf)</u>.

- Light, Air and Space Construction. 1997. Underground Tank Technical Closure Report. Appendix A in Ceres 1998 report.
- Treadwell and Rollo Inc. 2000. 1999 Site Investigation and Remediation Activities, 2855 Mandela Parkway Property, Oakland, California.

Treadwell and Rollo Inc. 2001a. Ambient Air Sampling Results, 2855 Mandela Parkway Property, Oakland, California.

Treadwell and Rollo Inc. 2001b. Additional Remedial Investigation, 2855 Mandela Parkway, Oakland, California.

Treadwell and Rollo Inc. 2002. Addendum to the 1999 Remedial Investigation Report, 2855 Mandela Parkway Property, Oakland, California.

Treadwell and Rollo Inc. 2004a. Draft Interim Corrective Action Plan, 2855 Mandela Parkway, Oakland, California.

Treadwell and Rollo Inc. 2004. Free Product Recovery Pilot Test.

Treadwell and Rollo Inc. 2006. Personal Communication. 2006.

- Treadwell and Rollo Inc. 2008a. Interim Corrective Action Plan Implementation Project Status Report. 2855 Mandela Parkway Property, Oakland, California.
- Treadwell and Rollo Inc. 2008. Environmental Activities, First and Second Quarters 2008, 2855 Mandela Parkway Property, Oakland, California.

Treadwell and Rollo Inc. 2008c. Soil Vapor Sampling Work Plan, 2855 Mandela Parkway Property, Oakland, California.

- Treadwell and Rollo Inc. 2008d. Additional Purge Volume Calculations, 2855 Mandela Parkway Property, Oakland, California.
- Treadwell and Rollo Inc. 2009a. Groundwater Monitoring Report Third Quarter 2008, 2855 Mandela Parkway Property, Oakland, California.

Treadwell and Rollo Inc. 2009. Soil Vapor Sampling Report, 2855 Mandela Parkway Property, Oakland, California.

- Treadwell and Rollo, a Langan Company. 2011. Feasibility Study and Corrective Action Plan, 2855 Mandela Parkway, Oakland, California.
- Trihydro Corporation. 2012. Work Plan for Additional Investigation, Balco Properties LLC, 2855 Mandela Parkway, Oakland, California.
- Trihydro Corporation. 2014. Focused Site Conceptual Model, Balco Properties LLC, 2855 Mandela Parkway, Oakland, California.

FIGURES

APPENDIX A

TABLES

	CSM Sub-	Description		Deschution
CSM Element	Element	Description	Data Gap Item #	Resolution
Geology and Hydrogeology	Regional	The geologic formation underlying the San Francisco Bay is divided into two distinct units that differ greatly in age and rock type: an older bedrock formation overlain by a younger unconsolidated sediment unit. The bedrock underlying most of the San Francisco Bay is composed of Jurassic and Cretaceous sandstone, siltstone, chert, mélange, and ultramafic rocks of the Franciscan Complex. Total thickness of the Franciscan Complex is unknown. As described by Treadwell & Rollo, Inc. (2011), the area around the Site is located within the historical margins of the San Francisco Bay in an area formerly occupied by tidal flats and marshes. The location of the Site is shown in Figure 1. Regional groundwater in the Oakland area generally follows topography, from areas of higher elevation in the east toward lower elevation in the west and southwest. The lithology encountered in the subsurface beneath the Site during drilling activities consisted predominantly of brown sandy fill material (non-native) over the native bay margin deposits. The bay margin deposits consist generally of a soft, dark gray clay matrix known locally as Bay Mud.	None	NA
	CSM Sub-			-
CSM Element	Element	Description	Data Gap Item #	Resolution
Geology and Hydrogeology	Site	 The primary stratigraphic units at the Site are listed below, with the approximate ranges of depth below ground surface (bgs) for each unit encountered across the Site: 0 to 8 feet bgs: brown, poorly-graded, fine-grained sand (fill). Depth ranges from two to eight feet. 	None	NA
		• 8 to at least 24 feet bgs: soft, dark gray clay matrix. Within the Bay Mud is a mixture of other alluvial clays (brown to olive in color), peats, and sand present in relatively thin layers and zones.		
		Groundwater was encountered in direct-push boreholes at an average depth of 8.0 feet bgs, with depths ranging from 4.5 to 14.75 feet bgs. In boreholes where the groundwater level was allowed to stabilize, the average static groundwater level was 6.5 feet bgs, with depths ranging from 2.5 to 11.75 feet bgs. The wide variation in groundwater levels at the Site is likely due to the high		

COM Floment	CSM Sub-	Description	Data Can Itam #	Peoplution
CSIM Element	Element		Data Gap item #	Resolution
		variability of grain-size within the Bay Mud, including varying water		
		content and summess, as well as thin, discrete layers of salid and		
		ten of the Dev Mud. The shellow groundwater flow in		
		redominantly to the northeast, but, because of its discontinuous		
		predominantity to the normeast, but, because of its discontinuous		
		(Figure 2) from west-southwest with a gradient of 0.025 (May		
		1000) to north-north-east with a gradient of 0.052 (April 2008)		
		Groundwater flow characteristics may vary considerably on the		
		local scale and seasonally due to the highly beterogeneous		
		deology underground utilities the Site's low elevation and		
		proximity to the San Francisco Bay Monitoring well TR-4 has had		
		observed groundwater elevations significantly higher than other		
		wells nearby, such as TR-6, which is likely due to perched		
		groundwater. The boring log for TR-4 notes that first encountered		
		groundwater was only 4.5 feet bgs, but after a few hours the		
		groundwater level stabilized at 10.5 feet bgs. Cross-sections of the		
		Site are presented in Figures 3 and 4, and boring logs for the Site		
		are included as Appendix A.		
Surface Water		The closest surface water body is the San Francisco Bay, which is	None	NA
Bodies		0.6 miles northwest of the Site.		
Nearby Wells		Treadwell and Rollo, Inc. (2011) conducted a review of potential	None	NA
		water supply wells within a radius of approximately one-quarter mile		
		of the Site, using records from the State of California (Department		
		of Water Resources), Alameda County (Public Works Agency –		
		Water Resources Section), historical aerial photographs, Sanborn		
		maps and topographic maps (EDR). No water supply wells were		
		Identified within one-quarter mile of the Site. Wells identified were		
		largely groundwater monitoring wells, as well as one cathodic		
		24 th Street which were labeled as 10 feet doop extraction wells		
		24 Sueer which were labeled as 19-100 deep exitability wells. A		
		shallow aroundwater contamination and a number of well		
		installations in the area, making it likely that the groundwater wells		
		identified in the review are associated with monitoring or		
		remediation and not water supply.		

CSM Element	CSM Sub-	Description	Data Gan Item #	Resolution
Release Source and Volume	Element	A 250-gallon waste oil underground storage tank (UST and 350- gallon gasoline UST, located in the southeast portion of the Site, were removed in 1991. Both USTs were observed to be in a deteriorated condition upon removal with visible stained soils in the UST footprints. Product piping leading from the gasoline UST to a	None	NA
		concrete pump island that supported a former fuel dispenser directly inside the building was observed during excavation activities. A 1,000-gallon gasoline UST was below the Willow Street sidewalk in front of 2607 Mandela Parkway was closed in place in 1997 and was observed to be over 30 years old and in deteriorated		
		condition. Numerous investigations were completed at the Site from 1990 through 2009. Recent studies concluded that free phase light non-aqueous phase liquid (LNAPL) exists beneath the current building footprint and adjacent areas on the southeastern perimeter of the building. Treadwell & Bollo in their 2002 Addendum to the		
		1999 Remedial Investigation Report estimated that the residual free-phase volume was approximately 2,500 gallons.		
LNAPL		LNAPL has been observed in several monitoring wells at the Site. During the most recent groundwater monitoring event (2008), LNAPL was observed in monitoring wells TR-4, TR-6, and TR-10 at various thicknesses (LNAPL has been reported up to 7.5 feet in TR- 5 and 10.6 feet thick in TR-6), as shown in Table 1. LNAPL has been previously reported to be generally limited to a "peaty" zone within the Bay Mud, between six and eight feet bgs (Figure 3). No recent data (post-2008) has been collected from monitoring wells at the Site to determine current conditions. The approximate extent of LNAPL, based on observed free product and benzene concentrations over 1,800 micrograms per liter (ug/L) (10% of the effective solubility of benzene in groundwater) is shown on Figure 5.	1. Confirm current extent of LNAPL plume	A Work Plan for additional investigation (dated August 14, 2012) was submitted to ACEH proposing activities to further determine the extent of LNAPL and groundwater impacts.
		Monitoring wells TR-7 and TR-8 have well screens that begin at 5 feet bgs, while the well screen in TR-9 begins at 6 feet bgs. It is possible that these well screens are not shallow enough to capture free-product during periods where the groundwater table is elevated; however, historical depths to groundwater at other monitoring wells on the Site have generally been greater than 5 feet		

CSM Element	CSM Sub-	Description	Data Gan Item #	Resolution
	Liement	bgs (Table 2). Monitoring wells TR-10 and TR-11 also have well screens that begin at 5 feet bgs, but historical depths to free product/groundwater have never been less than 8 feet bgs. Additionally, well TR-10 contains free product, suggesting that it is properly screened to capture free product levels. A groundwater sample from well TR-11 did not have detectable concentrations of TPH or benzene, suggesting the groundwater there is not in contact with free product. Because the limit of the LNAPL plume shown on Figure 5 is based on a conservative estimate, it is likely that the maximum extent of LNAPL has been defined.		Resolution
Source Removal Activities		The two USTs suspected as the source were removed in 1991. Product piping was removed from the gasoline UST to the exterior wall of the building. Soil excavated during the tank removal was reportedly placed back in the excavation on top of a plastic liner pending soil sampling results. The fate of the soil has not been reported. A third UST in front of 2607 Mandela Parkway was closed in place in 1997. Free product was manually removed from monitoring wells TR-4, TR-5, and TR-6 in 1999, with a total of 98.2 gallons of LNAPL removed (Treadwell & Rollo 2000). An LNAPL skimmer system was operated at the Site from October 2007 to June 2008, which removed approximately 12 gallons of free product before being shutdown based on low, asymptotic levels of product recovery. Between 1999 and 2006, and additional 39 gallons of free product were manually removed from monitoring wells (Treadwell & Rollo 2008). From 2007 through 2008, a total of 11.7 gallons was manually removed from monitoring wells, for a total manual recovery of approximately 161 gallons of LNAPL. Treadwell & Rollo's <i>1999 Site Investigation and Remediation</i> <i>Activities</i> report mentions a 1941 construction drawing showing "what appears to be a fuel dispensing pump" in the eastern portion of the Site, near the intersection of Mandela Parkway and Willow Street. No evidence of this pump is currently visible and no information has been found regarding any tank associated with this area. Soil and groundwater samples collected from soil boring SB-	1. Further evaluation of current extent of LNAPL and/or dissolved impacts in groundwater	A Work Plan for additional investigation (dated August 14, 2012) was submitted to ACEH proposing activities to further determine the extent of LNAPL and groundwater impacts.

CSM Element	CSM Sub-	Description	Data Can Itam #	Peoplution
CSW Element	Element	31, located approximately 35 feet northeast of this possible former pump location showed no detections above laboratory reporting limits for TPH-g or BTEX compounds.	Data Gap item #	Resolution
Contaminants of Concern		Based on the historical investigations conducted at the Site, benzene, toluene, ethylbenzene, and xylenes (collectively known as BTEX compounds) and total petroleum hydrocarbons (TPH) represent the COCs. Soil impacts are generally limited to the former onsite UST footprint and/or defined by the extent of the LNAPL plume. BTEX, total petroleum hydrocarbons quantified as gasoline (TPH-g), and total petroleum hydrocarbons quantified as diesel (TPH-d) are present in groundwater above their respective ESLs. These contaminants of concern (COCs) are generally present above the screening levels in the southeastern portion of the Site, near the location of the former USTs. Figures showing the extent of benzene and TPH-g impacts on groundwater are presented as Figures 5 and 6, respectively. Benzene concentrations exceeding the ESLs were detected in both indoor air samples and outdoor ambient air samples, and are discussed later in this table.	None	NA
Petroleum Hydrocarbons in Soil		Of the 16 samples analyzed for TPH during the various investigations, 4 samples contained petroleum hydrocarbons above the applicable screening levels. At least one of the BTEX compounds was present in concentrations above the applicable screening levels in 12 of the 29 samples analyzed for BTEX compounds. These samples were all collected in the southeastern portion of the Site near the location of the former USTs, and were all collected between 5.0 and 11.0 feet bgs. Based on the historical investigation data, BTEX and TPH-g are the contaminants present in soil at concentrations exceeding their respective screening criteria. These contaminants are mainly present in the vicinity of the former UST location, as far north as TR-6, as far east as SB-3, as far south as B-1, and as far west as SB-4. Soil sample analytical results are presented in Tables 3A, 3B, and 3C, and sample location rationale is presented in Table 4A.	2. One soil sample has been analyzed for naphthalene. The extent of naphthalene in soil has not been determined.	Because naphthalene is a component of gasoline, it is assumed that previously defined soil impacts will contain naphthalene as well. Potential future analyses for VOCs will include naphthalene.

CSM Element	CSM Sub- Element	Description	Data Gap Item #	Resolution
		Given the nature of the petroleum hydrocarbons (mainly light fraction gasoline), the vertical extent of contamination beneath and in close proximity to the former tanks is likely limited to the lowest level of groundwater fluctuation.		
Petroleum Hydrocarbons in Groundwater		Groundwater samples have been collected from soil borings during various investigations in 1998 and 1999, and were also collected from monitoring wells at the Site in 2008. Of the 25 grab groundwater samples collected from soil borings, 7 samples exceeded the screening level for TPH-g, and 8 samples exceeded the screening level for one or more BTEX compounds. The samples exceeding their respective screening levels were mostly in the vicinity of the former USTs, with the exception of three samples collected in Willow Street (SB21 and SB-23) and Mandela Parkway (TR-2). Groundwater sample analytical results are presented in Tables 5A, 5B, 5C, and 5D. Well construction details are presented in Table 6 and sample location rationale is presented in Table 4B. Of the five groundwater samples collected from monitoring wells in 2008, four samples exceeded the respective screening levels for TPH-g, TPH-d, and the BTEX compounds. Prior to collection of these groundwater samples, free product was detected in four of the five monitoring wells (TR-4, TR-5, TR-6, and TR-11). Under the Low-Threat UST Closure Policy (LTCP), plume lengths are based on concentrations of benzene (5 ug/L), TPH-g (100 ug/L), and MTBE (5 ug/L). MTBE has not been detected in historical sampling at the Site. Figure 5 shows an isoconcentration map for benzene in groundwater, based on historical sampling data, and shows the approximate extent of the plume based on a concentration of 100 ug/L. As shown in the figures, the plume extent is similar whether based on benzene or TPH-g, and is somewhat larger than the extent of the LNAPL plume (discussed	1 Further evaluation of current extent of LNAPL and/or dissolved impacts in groundwater	A Work Plan for additional investigation (dated August 14, 2012) was submitted to ACEH proposing activities to further determine the extent of LNAPL and groundwater impacts

CSM Element	CSM Sub- Element	Description	Data Gan Item #	Resolution
	Lioinoin	above).		Resolution
Petroleum Hydrocarbons in Soil Vapor	Soil Gas	Since 1992, two soil gas investigations have taken place at the Site. The first soil vapor sample collection occurred in 1992 and was concentrated in the area around the location of the former USTs, while a second event in 1998 collected samples along the perimeter of the Site. Both of these events collected samples from temporary sampling points following contemporary protocols. The rationale for the selection of these sampling locations is presented in Table 4C. Samples were analyzed for BTEX compounds, and all samples were reported as having no detections above laboratory reporting limits. Analytical results from these investigations are presented in Tables 7A and 7B. No analysis for naphthalene was performed during either of these investigations, and no analysis for fixed gases was performed. The sampling methodology did not include the use of a tracer gas. These activities were reported to Alameda County Health Services following completion of field activities and analyses.	2. Site-wide soil gas sampling events were performed based on contemporary protocols, and did not use tracer gases or analyze for naphthalene.	Sub-slab sampling in 2009 was performed under a work plan approved by ACEH, and the final report was subsequently approved by ACEH in a letter dated May 27, 2010. Soil vapor sampling in 2009 utilized updated sampling protocols including analysis of tracer gas to confirm adequate representativeness of analytical results.
Petroleum Hydrocarbons in Soil Vapor	Sub-slab soil vapor	Two separate sub-slab soil vapor sampling events have been conducted at the Site. A Work plan for the first event was submitted to Alameda County Health Care Services Agency (ACHCS) prior to beginning field activities. The initial sub-slab investigation took place in 2001, which included the installation of 10 permanent sub- slab vapor monitoring points. Each monitoring point was installed two to three feet bgs to correspond to the middle of the sandy fill below the slab. The rationale for the selection of these sampling locations is presented in Table 4C. No BTEX compounds were detected in any of the 10 samples collected. A second sampling event at the same permanent monitoring points was performed in 2009. A work plan for this investigation was submitted and approved by the Alameda County Department of Environmental Health (ACDEH) prior to commencing field activities. Ten samples were collected in accordance with the work plan, using helium as a	3. Sub-slab samples were not analyzed for naphthalene, and neither sampling event analyzed fixed gases. The 2001 sampling event methodology did not include the use of a tracer gas. The permanent sub-slap sampling points were installed deeper than current protocol requires.	Sub-slab sampling in 2009 was performed under a work plan approved by ACEH, and the final report was subsequently approved by ACEH in a letter dated May 27, 2010. Vapor concentrations did not exceed appropriate soil gas screening levels.

	CSM Sub-			
CSM Element	Element	Description tracer gas, and were analyzed by modified TO-15. No VOCs were detected at concentrations above ESLs in any sample, and helium was not detected above laboratory reporting limits in any of the samples. Analytical results are presented in Tables 7A and 7B. No analysis for naphthalene was performed during either of these investigations, and no analysis for fixed gases was performed.	Data Gap Item #	Resolution Naphthalene will also be analyzed in groundwater samples as proposed in the August 2012 Work
Petroleum Hydrocarbons in Soil Vapor	Indoor Air	An indoor air investigation was performed in 2000, which included the collection of three indoor ambient air samples (A-1, A-2, A-3), one field duplicate indoor air sample, and two outdoor ambient air samples. The rationale for the selection of these sampling locations is presented in Table 4C. All six samples contained benzene concentrations exceeding the ESL for indoor air; however, it was noted in the report that motor vehicles were operating inside the warehouse during sample collection, and therefore the benzene concentrations were suspected to not be representative of intrusion from soil gas. This is further supported by the presence of low concentrations of MTBE in the indoor air samples, which is not present in the subsurface samples. 1,2 dichloroethane was detected at a concentration above the ESL in the field duplicate indoor air sample, but not in the parent sample, while 1,4-dioxane was detected at a concentration above the ESL in one outdoor air sample and the field duplicate sample, but not the parent sample. Analytical results are presented in Table 7C. No analysis for naphthalene was performed during this investigation.	4. Indoor air samples were not analyzed for naphthalene.	Naphthalene will also be analyzed in groundwater samples as proposed in the August 2012 Work Plan.
Risk Evaluation		The Site is a former truck assembly and sales facility that is currently occupied by several tenants conducting light industrial and commercial activities, and is covered with either asphalt or concrete building foundations. The plan for the Site is continued light industrial use. Potential receptor areas near the Site include the building occupants, nearby buildings, and the green spaces along Mandela Parkway (Figure 5). Previous sub-slab vapor investigations have found concentrations of VOCs to be below ESLs at all sample locations at the Site. An indoor air investigation found concentrations of benzene, but vapor intrusion was not suspected	1. Further evaluation of current extent of LNAPL and/or dissolved impacts in groundwater.	August 14, 2012) was submitted to ACEH proposing activities to further determine the extent of LNAPL and groundwater impacts. Proposed sampling locations are shown on Figure 7.

CSM Element	CSM Sub- Element	Description	Data Gap Item #	Resolution
		as the source.		

TABLE 1-2 DATA GAPS SUMMARY AND PROPOSED INVESTIGATION

Item	Data Gap Item #	Proposed Investigation	Rationale	Analyses		
1	 Current LNAPL and dissolved GW extent is not confirmed. LNAPL was present in the subsurface during the last groundwater monitoring event. 	- A Work Plan for additional investigation (dated August 14, 2012) was submitted to ACEH proposing activities to further determine the extent of LNAPL and groundwater impacts. Proposed activities include an Ultra-Violet Optical Screening Tool (UVOST) survey and collection of grab groundwater samples, as well as collection of groundwater samples from existing monitoring wells.	 The UVOST survey is a cost-efficient way to collect detailed data on free-phase impacts, and better define their extent. Collection of groundwater samples will provide updated information on dissolved phase impacts and extent. 	- UVOST qualitatively identifies petroleum products. Grab groundwater and groundwater samples will be analyzed for VOCs by EPA Method 8260B and TPH (quantified as gasoline, diesel, and motor oil) by EPA Method 8015B.		
2	- The specific extent of naphthalene in soil has not been confirmed.	- None at this time.	- The general extent of soil impacts is known and naphthalene is not a COC.	- NA		
3	- The specific extent of naphthalene in soil vapor has not been confirmed.	- None at this time.	- Soil vapor impacts during previous investigations did not exceed appropriate screening levels. Naphthalene is not a current COC and will be evaluated as part of the groundwater investigation proposed in the August 2012 Work Plan.	- NA		
4	- The presence/absence of naphthalene in indoor air has not been confirmed.	- None at this time.	- Soil vapor impacts during previous investigations did not exceed appropriate screening levels. Concentrations of VOCs in historical indoor air samples were generally similar to outside ambient air samples. Naphthalene is not a current COC and will be evaluated as part of the proposed groundwater investigation proposed in the August 2012 Work Plan.	- NA		

TABLE 2. FLUID LEVEL ELEVATION DATA 2855 MANDELA PARKWAY OAKLAND, CALIFORNIA

	RW-1	RW-1	RW-2	RW-2			Corrected	TR-5		Corrected	TR-6		Corrected	TR-10	TR-10	Corrected	TR-11	TR-11	GW
Date	DTP	DTW	DTP	DTW	TR-4 DTP	TR-4 DTW	GW	DTP	TR-5 DTW	GW	DTP	TR-6 DTW	GW	DTP	DTW	GW	DTP	DTW	Elevation
C/22/4000	NINA	NINA	NINA	NIM		40.74	Elevation'	N IN A	NIM	Elevation	0.00	44.05	Elevation	NINA	NIM	Elevation	NIM	NIM	
6/22/1999						10.71	-1.12			-	9.96	11.35	-0.43			-			-
6/23/1999					ND	9.71	-0.12		11.01	-2.32	7.54	17.38	-0.21			-			-
6/24/1999					ND	9.21	0.36	8.31	0.00	0.64	7.12	18.52	-0.19			-			-
6/25/1999						9.20	0.33	8.29	9.28	0.74	8.59	14.51	-0.24			-			-
6/28/1999					ND	9.27	0.32	0.15	9.81	0.71	7.54	17.55	-0.25			-			-
0/29/1999						9.32	0.27	0.27	9.00	0.00	0.77	14.17	-0.20		NIM	-	NIM		-
1/2/1999						9.21	0.30	7.59	1.92	0.22	4.01	19.27	2.04		NIM	-	NIM		-
10/4/1999					0.01	11.49	0.08	7.30	15.04	-0.23	7.0	10.37	-0.60			-			-
10/6/1999					7.65	11.04	0.78	7.54	15.02	-0.19	9.91	12.47	-0.09			-			-
10/6/1999					0.04	11.00	0.04	7.00	15.04	-0.19	10.44		-			-			-
10/11/1999					0.79	11.00	0.08	7.40	15.03	-0.13	10.54		-			-			-
10/13/1999					0.77	11.0	0.08	7.42	15.04	-0.11	10.53	10.74	-0.09			-			-
10/20/1999					0.03	10.06	0.00	7.52	10.09	-0.20	10.49	10.91	-0.73			-	NIM		-
10/25/1999					9.49	0.74	-0.03	0.31	12.07	-0.21	10.01	10.01	-0.77		NIM	-	NIM		-
10/27/1999					9.01	9.74	-0.03	9.10	10.49	-0.22	10.73	10.79	-0.80		NIM	-	NIM		-
10/29/1999					9.50 NM	9.04 NM	0.01	9.31 NM	10.30 NIM	-0.29	10.05 NIM	10.69	-0.77			-			-
2/12/2005		0.00		2.00			-			-			-			-			-
2/13/2005		0.16		2.00			-			-			-			-			-
3/13/2006		0.10		0.10		NIM	-		NIM	-			-		NIM	-	NIM		
3/21/2006		0.41		0.42	NM	NIM	-		NIM	-	NIM	NM	-	NIM	NIM	-	NIM	NIM	-
3/29/2006		0.00		0.20	NM	NIM	-	NIM	NIM	-	NIM	NM		NM	NIM	-	NIM	NIM	_
3/23/2000		0.00		0.00	NM	NM	_	NIM	NIM		NM	NM		NM	NM	_	NM	NM	
4/27/2006		1.07		1.06	NM	NM	_	NM	NM		NM	NM		NM	NM	_	NM	NM	
5/15/2006		1.07	ND	1.00	NM	NM	_	NM	NM		NM	NM		NM	NM	_	NM	NM	
7/11/2006		1.40	ND	2.02	3.82	6.77	5.00	NM	NM		7 77	13 35	0.67	NM	NM	_	NM	NM	
7/26/2006	NM	NM	NM	NM	NM	NM	0.00	NM	NM		8.86	9.25	0.93	NM	NM	_	NM	NM	
8/1/2006	NM	NM	NM	NM	NM	NM	_	7 58	10.88	0.85	NM	NM	-	NM	NM	_	NM	NM	-
8/4/2006	NM	NM	NM	NM	NM	NM	-	8.03	8.72	1.08	NM	NM	-	NM	NM	_	NM	NM	-
8/10/2006	NM	NM	NM	NM	NM	NM	-	8.13	8.82	0.98	NM	NM	-	NM	NM	-	NM	NM	-
8/25/2006	NM	NM	NM	NM	NM	NM	-	ND	8.17	1.12	NM	NM	-	9.73	16.30	-1.49	NM	NM	-
9/12/2006	ND	2.33	ND	2.47	NM	NM	-	8.39	9.03	0.73	NM	NM	-	NM	NM	-	NM	NM	-
9/21/2006	ND	2.38	ND	2.57	NM	NM	-	8.48	9.07	0.66	NM	NM	-	ND	9.49	-	NM	NM	-
10/3/2006	ND	2.34	ND	2.55	NM	NM	-	8.40	9.11	0.71	NM	NM	-	ND	9.25	-	NM	NM	-
10/13/2006	ND	2.10	ND	2.23	NM	NM	-	8.38	9.02	0.74	NM	NM	-	NM	NM	-	NM	NM	-
10/20/2006	ND	2.23	ND	2.36	NM	NM	-	8.56	9.16	0.57	NM	NM	-	NM	NM	-	NM	NM	-
10/24/2006	ND	2.29	ND	2.41	5.60	5.95	3.90	8.58	9.15	0.56	9.48	10.05	0.26	NM	NM	-	ND	10.62	-1.24
10/9/2007	ND	3.74	ND	2.83	5.66	5.82	3.89	8.65	8.66	0.64	9.46	10.24	0.23	8.98	16.43	-0.97	ND	10.97	-1.59
10/29/2007	ND	2.30	ND	2.37	5.37	5.53	4.18	8.50	8.90	0.69	9.31	9.77	0.46	10.25	12.83	-0.97	ND	10.17	-0.79
11/20/2007	ND	2.18	ND	2.24	5.30	5.45	4.25	8.51	8.71	0.73	9.31	9.56	0.52	10.59	11.6	-0.90	ND	9.07	0.31
12/28/2007	ND	1.12	ND	0.85	5.15	5.21	4.42	8.04	8.22	1.20	8.96	9.23	0.86	9.97	10.8	-0.24	ND	8.49	0.89
2/22/2008	ND	0.00	ND	0.00	4.44	4.49	5.14	7.28	7.47	1.96	8.54	8.72	1.30	NM	NM	-	NM	NM	-

TABLE 2. FLUID LEVEL ELEVATION DATA 2855 MANDELA PARKWAY OAKLAND, CALIFORNIA

Date	RW-1 DTP	RW-1 DTW	RW-2 DTP	RW-2 DTW	TR-4 DTP	TR-4 DTW	Corrected GW Elevation ¹	TR-5 DTP	TR-5 DTW	Corrected GW Elevation ¹	TR-6 DTP	TR-6 DTW	Corrected GW Elevation ¹	TR-10 DTP	TR-10 DTW	Corrected GW Elevation ¹	TR-11 DTP	TR-11 DTW	GW Elevation
3/19/2008	ND	1.61	ND	1.71	4.83	4.85	4.75	8.25	8.30	1.03	9.11	9.31	0.73	11.14	11.57	-1.30	ND	8.1	1.28
4/9/2008	ND	1.85	ND	1.96	4.95	4.96	4.64	8.42	8.43	0.87	9.31	9.47	0.54	11.88	12.24	-2.02	ND	8.02	1.36
5/5/2008	ND	1.99	ND	2.11	5.08	5.09	4.51	8.57	8.58	0.72	9.42	9.53	0.44	11.70	12.04	-1.84	ND	8.51	0.87
5/23/2008	ND	2.11	ND	2.24	5.10	5.11	4.49	8.40	8.41	0.89	9.37	9.48	0.49	12.02	12.51	-2.20	ND	8.51	0.87
6/16/2008	ND	2.32	ND	2.46	5.27	5.28	4.32	8.68	8.71	0.60	9.54	9.70	0.31	11.59	12.04	-1.76	ND	8.52	0.86
9/24/2008	NM	NM	NM	NM	5.38	5.41	4.20	ND	8.86	0.43	9.78	10.02	0.05	11.22	12.35	-1.56	ND	9.25	0.13
TOC elevatio	n (feet abov	ve MSL)			9.59			9.29			9.89			9.95			9.38		

Notes:

DTP - depth to product

DTW - depth to groundwater

GW - groundwater

ND - not detected

NM - not measured

- insufficient data to calculate

TOC - top of casing

MSL - mean sea level

¹ - Corrected groundwater elevation = TOC - (DTW-(0.74 x product thickness))

TABLE 3A. SOIL QUALITY SUMMARY, SELECTED VOCS AND SVOCS2855 MANDELA PARKWAY SITE, OAKLAND, CALIFORNIA

Date sampled	Sample Location	Sample depth (ft-bgs)	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE	Naphthalene	2-methylnapthalene	Chlorobenzene
6/20/1991	1	2.5	< 0.0025	< 0.0025	< 0.0025	< 0.0025	NA	ND	ND	ND
6/20/1991	2	2.5	< 0.0025	< 0.0025	< 0.0025	< 0.0025	NA	ND	ND	ND
6/20/1991	6	6.5	0.93	1.3	0.89	2.5	NA	0.87	0.44	0.012
6/20/1991	7	2.5	1.1	0.2 1.8 5.7 NA		NA	NA	NA		
6/20/1991	8	[composite]	< 0.0025	< 0.0025	0.5	3.6	NA	NA	NA	NA
6/19/1992	B-1	5	0.77	0.028	0.28	0.99	NA	NA	NA	NA
6/19/1992	B-1	10	7	41	21	96	NA	NA	NA	NA
6/19/1992	B-1	15	0.056	0.2	0.055	0.24	NA	NA	NA	NA
6/19/1992	B-2	5	0.57	< 0.080	< 0.080	< 0.080	NA	NA	NA	NA
6/19/1992	B-2	10	25	100	35	150	NA	NA	NA	NA
6/19/1992	B-3	5	6.9	18	5.8	21	NA	NA	NA	NA
6/19/1992	B-3	10	34	170	61	250	NA	15	11	NA
8/3/1998	SB-1	5	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	NA	NA	NA
8/3/1998	SB-1	10	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	NA	NA	NA
8/3/1998	SB-2	5	1.2	2	6.3	13	< 0.005	NA	NA	NA
8/3/1998	SB-2	11	13	17	2.1	8.6	< 0.005	NA	NA	NA
8/3/1998	SB-3	5	7.2	15	3	11	< 0.005	NA	NA	NA
8/3/1998	SB-3	10	9.1	14	5	17 < 0.005		NA	NA	NA
8/3/1998	SB-4	5	3.1	0.49	2.9	2.9	< 0.005	NA	NA	NA
8/3/1998	SB-4	11	1.6	0.12	1.1	4.3	< 0.005	NA	NA	NA
8/3/1998	SB-4	15	0.019	< 0.005	< 0.005	< 0.005	< 0.005	NA	NA	NA
8/3/1998	SB-5	5	0.56	0.011	0.46	0.041	< 0.005	NA	NA	NA
8/3/1998	SB-5	10	0.04	0.76	0.13	0.59	< 0.005	NA	NA	NA
8/3/1998	SB-6	5	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	NA	NA	NA
8/3/1998	SB-7	5	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	NA	NA	NA
6/22/1999	TR-4	5.5	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	NA	NA	NA
6/22/1999	TR-5	5.5	24	92	40	170	5.1	NA	NA	NA
6/22/1999	TR-6	6.0	2.2	2.9	1.3	2.6	< 0.62	NA	NA	NA
11/16/1999	SB-25	3.5	< 0.0050	< 0.0050	< 0.0050	< 0.0050	NA	NA	NA	NA
11/16/1999	SB-28	6.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050	NA	NA	NA	NA
11/16/1999	SB-28	16	< 0.0050	< 0.0050	< 0.0050	< 0.0050	NA	NA	NA	NA
11/16/1999	SB-31	5.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050	NA	NA	NA	NA
12/2/1999	SB-33A	5.5	< 0.0050	< 0.0050	< 0.0050	< 0.0050	NA	NA	NA	NA
12/2/1999	SB-34	3.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050	NA	NA	NA	NA
Commercial / Inc	dustrial Direct Contact S	Soil Screening Level	120					45		
	Tier 1 ESLs		1.2	9.3	4.7	11.0	8.4	4.8	0.250	1.5

NA - Not Analyzed

-- No ESL established

Analyte concentration (mg/kg)

Notes:

VOC - volatile organic compound

SVOC - semi-volatile organic compound

mg/kg - milligrams per kilogram

ESL - Environmental Screening Level

Direct Contact Screening Level from *Technical Justification for Soil Screening Levels for Direct Contact and Outdoor Air Exposure Pathways*, California State Water Resources Control Board, March 2012 Tier 1 ESL values from *Update to Environmental Screening Levels*, San Francisco Bay Regional Water Quality Control Board, December 2013, Table B (Commerical/Industrial values)

ft-bgs - feet below ground surface

< 0.080 - Not detected above the laboratory reporting limit

MTBE - methyl tert-butyl ether

 $M: \label{eq:linear} M: \label{eq:linear} M: \label{eq:linear} balance \label{eq:linear} M: \label{eq:linear} balance \l$

bold - value exceeding the Commercial/Industrial Environmental Screening Level

TABLE 3B. SOIL QUALITY SUMMARY, HYDROCARBONS2855 MANDELA PARKWAY SITE, OAKLAND, CALIFORNIA

	Analyte concentration (mg/kg)										
Date sampled	Sample Location	Sample depth (ft-bgs)	TPH-g	TPH-d	TPH-k	TPH-mo	O&G				
6/20/1991	1	2.5	< 1	< 1	-	14	85				
6/20/1991	2	2.5	16	11	-	32	370				
6/20/1991	6	6.5	41	12	-	14	120				
6/20/1991	7	2.5	240	1,800	-	2,000	NA				
6/20/1991	8	[composite]	81	230	-	410	NA				
6/19/1992	B-1	5	7	< 1	< 1	NA	NA				
6/19/1992	B-1	10	960	4	**	NA	NA				
6/19/1992	B-1	15	1	< 1	< 1	NA	NA				
6/19/1992	B-2	5	< 20	< 1	< 1	NA	NA				
6/19/1992	B-2	10	1,500	2	**	NA	NA				
6/19/1992	B-3	5	300	80	**	NA	NA				
6/19/1992	B-3	10	2,800	24	**	NA	NA				
8/3/1998	SB-1	5	< 1.0	NA	NA	NA	NA				
8/3/1998	SB-1	10	< 1.0	NA	NA	NA	NA				
8/3/1998	SB-2	5	130	NA	NA	NA	NA				
8/3/1998	SB-2	11	52	NA	NA	NA	NA				
8/3/1998	SB-3	5	68	NA	NA	NA	NA				
8/3/1998	SB-3	10	99	NA	NA	NA	NA				
8/3/1998	SB-4	5	21	NA	NA	NA	NA				
8/3/1998	SB-4	11	42	NA	NA	NA	NA				
8/3/1998	SB-4	15	< 1.0	NA	NA	NA	NA				
8/3/1998	SB-5	5	2.7	NA	NA	NA	NA				
8/3/1998	SB-5	10	3.4	NA	NA	NA	NA				
8/3/1998	SB-6	5	< 1.0	NA	NA	NA	NA				
8/3/1998	SB-7	5	< 1.0	NA	NA	NA	NA				
6/22/1999	TR-4	5.5	< 1.0	NA	NA	NA	NA				
6/22/1999	TR-5	5.5	2,100	NA	NA	NA	NA				
6/22/1999	TR-6	6	36	NA	NA	NA	NA				
11/16/1999	SB-25	3.5	< 1.0	NA	NA	NA	NA				
11/16/1999	SB-28	6	< 1.0	NA	NA	NA	NA				
11/16/1999	SB-28	16	< 1.0	NA	NA	NA	NA				
11/16/1999	SB-31	5	< 1.0	NA	NA	NA	NA				
12/2/1999	SB-33A	5.5	< 1.0	NA	NA	NA	NA				
12/2/1999	SB-34	3	< 1.0	NA	NA	NA	NA				
Tier 1 ESLs			500	110		500					

Notes:

mg/kg - milligrams per kilogram

ft-bgs - feet below ground surface

TPH-g - Total Petroleum Hydrocarbons quantified as gasoline

TPH-d - Total Petroleum Hydrocarbons quantified as diesel

TPH-k - Total Petroleum Hydrocarbons quantified as kerosene

TPH-mo - Total Petroleum Hydrocarbons quantified as motor oil

Tier 1 ESL values from Update to Environmental Screening Levels,

O&G - total oil and grease

bold = value exceeding the applicable Environmental Screening Lev

< 1 - not detected above the detection limit

** - out of kerosene range, quantitated in diesel range

ESL = Environmental Screening Level

San Francisco Bay Regional Water Quality Control Board, December 2013, Table B (Commerical/Industrial values)

TABLE 3C. SOIL QUALITY SUMMARY, METALS2855 MANDELA PARKWAY SITE, OAKLAND, CALIFORNIA

	Analyte concentration (mg/kg)											
	Sample	Sample depth										
Date sampled	Location	(ft-bgs)	Cadmium	Chromium	Lead	Organic Lead	Nickel	Zinc				
6/20/1991	1	2.5	ND	30	2.9	NA	27	19				
6/20/1991	2	2.5	ND	50	20	NA	48	42				
6/20/1991	6	6.5	ND	65	5.1	NA	70	57				
6/20/1991	7	2.5	NA	NA	NA	NA	NA	NA				
6/20/1991	8	[composite]	NA	NA	NA	NA	NA	NA				
6/19/1992	B-1	5	NA	NA	NA	NA	NA	NA				
6/19/1992	B-1	10	NA	NA	NA	NA	NA	NA				
6/19/1992	B-1	15	NA	NA	NA	NA	NA	NA				
6/19/1992	B-2	5	NA	NA	NA	NA	NA	NA				
6/19/1992	B-2	10	NA	NA	NA	NA	NA	NA				
6/19/1992	B-3	5	NA	NA	NA	NA	NA	NA				
6/19/1992	B-3	10	NA	NA	NA	0.65	NA	NA				
	Tier 1 ESLs			2,500	320	320 ¹	150	600				

Notes:

mg/kg - milligrams per kilogram

ft-bgs - feet below ground surface

NA - Not analyzed

¹ - Value for lead, no value for organic lead listed

ESL - Environmental Screening Level

Tier 1 ESL values from Update to Environmental Screening Levels, San Francisco Bay Regional Water Quality Control Board,

December 2013, Table B (Commerical/Industrial values)

TABLE 4C. SAMPLING LOCATION RATIONALE2855 MANDELA PARKWAY SITE, OAKLAND, CALIFORNIA

	Table of Sample	Location Rationa	ationale For Soil Vapor						
Source Area	Downgradient	Outer Extent	General Investigation						
A-1	SG-5	A-6	A-5						
A-2	SG-6	E	A-3						
A	SG-8	F	A-4						
В	SG-10	G	н						
С	SG-12	SG-3	I						
D	SG-13	SG-7	J						
SG-4			SG-1						
			SG-2						
			SG-9						
			SG-11						
			SG-14						
			SG-15						
			SG-16						
			SG-17						
			SV-1						
			SV-2						
			SV-3						
			SV-4						
			SV-5						
			SV-6						
			SV-7						
			SV-8						
			SV-9						
			SV-10						
			SV-11						
			SV-12						
			SV-13						
			SV-14						
			SV-15						
			SV-16						
			SV-17						
			SV-18						
			SV-19						
			SV-20						

Notes:

-Samples VP-A through VP-J were collected at the same locations as Samples A-J, respectively.

	Table of Sample	e Location Rationa	le For Soil
Source Area	Downgradient	Outer Extent	General Investigation
B-3	B-2	B-1	SB-19
SB-1	SB-6	SB-10	SB-20
SB-2	SB-7	SB-11	SB-25
SB-3		SB-12	SB-26
SB-3A		SB-13	SB-27
SB-3B		SB-14	SB-28
SB-3C		SB-15	SB-28
SB-3D		SB-16	SB-29
SB-4		SB-17	SB-30
SB-5		SB-18	SB-31
SB-8		SB-21	SB-32
SB-9		SB-22	SB-33/33A
SB-17		SB-23	
SB-18			
SB-24			
SB-34			

TABLE 4A. SAMPLING LOCATION RATIONALE2855 MANDELA PARKWAY SITE, OAKLAND, CALIFORNIA

TABLE 4B. SAMPLING LOCATION RATIONALE2855 MANDELA PARKWAY SITE, OAKLAND, CALIFORNIA

	Table of Sample I	_ocation Rationale For Groundwat	ter										
Recovery Well	Recovery Well Monitoring LNAPL Monitoring Dissolved Phase GW elevation												
RW-1	TR-4	TR-11	TR-1										
RW-2	TR-5		TR-2										
	TR-6		TR-3										
	TR-7												
	TR-8												
	TR-9												
	TR-10												

TABLE 5A. GROUNDWATER QUALITY SUMMARY, VOCS IN GRAB GROUNDWATER2855 MANDELA PARKWAY SITE, OAKLAND, CALIFORNIA

			Analyte con	centration (ug/l)		
Date sampled	Sample Location	Sample depth (ft-bgs)	Benzene	Toluene	Ethylbenzene	Total xylenes	MTBE
8/3/1998	SB-1	4	1	1	< 0.5	1.2	< 0.5
8/3/1998	SB-2	4	44,000	38,000	5,900	24,000	< 50
8/3/1998	SB-4	7.5	16,000	12,000	3,200	11,000	< 50
8/3/1998	SB-5	7.5	11,000	17,000	3,600	20,000	< 250
8/3/1998	SB-6	8	3.1	9.0	3.3	16.0	< 0.5
8/3/1998	SB-7	6.5	1.1	2.1	1.9	6.4	< 0.5
10/28/1998	SB-10	11	8,400	10,000	2,800	13,000	< 200
10/29/1998	SB-11	7	81	1.3	4.9	18	< 1
11/30/1998	SB-13	7.5	88	100	85	160	< 80
11/30/1998	SB-14	7.5	< 0.5	< 0.5	< 0.5	< 0.5	14
11/30/1998	SB-15	7	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
11/30/1998	SB-16	8	17,000	24,000	2,700	11,000	< 1,300
11/30/1998	SB-17	7.5	2,500	6,700	1,600	6,200	< 690
11/30/1998	SB-18	7	< 0.5	< 0.5	0.67	< 0.5	< 5.0
5/11/1999	TR-2	0-12	340	630	< 10	270	< 100
5/11/1999	TR-3	0-12	< 0.50	< 0.50	2.6	< 0.50	< 5.0
5/11/1999	SB-17	0-12	< 0.50	0.93	< 0.50	2.7	< 5.0
5/11/1999	SB-19	0-12	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0
5/11/1999	SB-20	0-12	12	38	< 0.50	30	< 5.0
5/11/1999	SB-21	0-12	40,000	120,000	57,000	240,000	< 10,000
5/11/1999	SB-22	0-12	< 0.50	2.2	< 0.50	< 0.50	< 5.0
5/11/1999	SB-23	0-12	5,000	11,000	2,800	11,000	< 500
5/11/1999	SB-24	0-12	6,400	9,200	2,700	9,400	< 1,000
11/16/1999	SB-26	0-16	< 0.50	< 0.50	< 0.50	< 0.50	NA
11/16/1999	SB-27	0-16	1.8	< 0.50	1.1	< 0.50	NA
11/16/1999	SB-28 (F/BM)	0-8	< 0.50	< 0.50	< 0.50	< 0.50	NA
12/2/1999	SB-29	0-24	< 0.50	< 0.50	< 0.50	< 0.50	NA
12/2/1999	SB-30	0-24	< 0.50	< 0.50	< 0.50	< 0.50	NA
11/16/1999	SB-31 (F/BM)	0-8	< 0.50	< 0.50	< 0.50	< 0.50	NA
11/16/1999	SB-31	0-16	< 0.50	< 0.50	< 0.50	< 0.50	NA
12/2/1999	SB-32	0-28	< 0.50	< 0.50	< 0.50	< 0.50	NA
11/16/1999	SB-33	0-16	31	71	16	68	NA
12/2/1999	SB-33A (F/BM)	0-8	< 0.50	< 0.50	< 0.50	< 0.50	NA
Tier 1 ESLs			27	130	43	100	1,800

Notes:

VOC - volatile organic compound

ug/L - micrograms per liter

ft-bgs - feet below ground surface

MTBE - methyl tert-butyl ether

< 0.5 - Not detected above the laboratory reporting limit

bold = value exceeding the Commercial/Industrial Environmental Screening Level

NA - Not Analyzed

ESL = Environmental Screening Level

Tier 1 ESL values from Update to Environmental Screening Levels, San Francisco Bay Regional Water Quality Control

Board, December 2013, Table B (Commercial/Industrial values)

			Analyte o	concentration (ug/L)
Date sampled	Sample Location	Sample depth (ft-bgs)	TPH-g	TPH-d
8/3/1998	SB-1	4	< 50	NA
8/4/1998	SB-2	4	160,000	NA
8/5/1998	SB-4	7.5	63,000	NA
8/6/1998	SB-5	7.5	72,000	NA
8/7/1998	SB-6	8	63	NA
8/8/1998	SB-7	6.5	< 50	NA
10/28/1998	SB-10	11	98,000	NA
10/29/1998	SB-11	7	780	NA
11/30/1998	SB-13	7.5	1,800	NA
11/30/1998	SB-14	7.5	< 50	NA
11/30/1998	SB-15	7	< 50	NA
11/30/1998	SB-16	8	110,000	NA
11/30/1998	SB-17	7.5	43,000	NA
11/30/1998	SB-18	7	< 50	NA
5/11/1999	SB-17	0-12	< 50	NA
5/11/1999	SB-19	0-12	< 50	NA
5/11/1999	SB-20	0-12	160	NA
5/11/1999	SB-21	0-12	360,000	NA
5/11/1999	SB-22	0-12	< 50	NA
5/11/1999	SB-23	0-12	11,000	NA
5/11/1999	SB-24	0-12	71,000	NA
11/16/1999	SB-26	0-16	< 50	NA
11/16/1999	SB-27 ¹	0-16	120	NA
11/16/1999	SB-28 (F/BM)	0-8	< 50	NA
12/2/1999	SB-29	0-24	< 50	NA
12/2/1999	SB-30	0-24	< 50	NA
11/16/1999	SB-31 (F/BM)	0-8	< 50	NA
11/16/1999	SB-31	0-16	< 50	NA
12/2/1999	SB-32	0-28	< 50	NA
11/16/1999	SB-33	0-16	450	NA
12/2/1999	SB-33A (F/BM)	0-8	< 50	NA
Tier 1 ESLs			500	640

TABLE 5B. GROUNDWATER QUALITY SUMMARY, HYDROCARBONS IN GRAB GROUNDWATER2855 MANDELA PARKWAY SITE, OAKLAND, CALIFORNIA

Notes:

ug/L - micrograms per liter

ft-bgs - feet below ground surface

TPH-g - Total Petroleum Hydrocarbons quantified as gasoline

TPH-d - Total Petroleum Hydrocarbons quantified as diesel

< 50 - Not detected above the laboratory reporting limit

NA - Not analyzed

bold = value exceeding the Commercial/Industrial Environmental Screening Level

¹ - Laboratory noted TPH-g result for SB-27 did not match the standard for gasoline

F/BM - perched water sample collected at the fill/Bay Mud interface

ESL = Environmental Screening Level

Tier 1 ESL values from Update to Environmental Screening Levels, San Francisco Bay Regional Water Quality Control Board,

December 2013, Table D (Commercial/Industrial values)

TABLE 5C. GROUNDWATER QUALITY SUMMARY, VOCS IN GROUNDWATER2855 MANDELA PARKWAY SITE, OAKLAND, CALIFORNIA

			Analyte concentration (ug/l)												
Date sampled	Sample Location	Well screen interval (ft-bgs)	Benzene	Toluene	Ethylbenzene	Total xylenes	MTBE	1,2,4-trimethylbenzene	1,3,5-trimethylbenzene	n-butylbenzene	n-propylbenzene	lsopropyl benzene	Naphthalene	Diisopropylether	Other VOCs
5/11/1999	TR-2	0-12	340	630	< 10	270	< 100	NA	NA	NA	NA	NA	NA	NA	NA
5/11/1999	TR-3	0-12	< 0.5	< 0.5	2.6	< 0.5	< 5.0	NA	NA	NA	NA	NA	NA	NA	NA
10/9/2007	RW-1	-	4.3	< 0.5	2.6	< 0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA
10/9/2007	RW-2	-	29	4.3	13	3.58	NA	NA	NA	NA	NA	NA	NA	NA	NA
9/24/2008	TR-4	2.25-20.5	670	170	1,400	1,800	< 50	2,500	680	89	290	110	400	< 50	ND
9/24/2008	TR-5	2.25-20.5	5,500	1,900	350	1,400	< 100	1,200	390	< 100	130	< 100	150	< 100	ND
9/24/2008	TR-6	2.25-20.5	8,400	17,000	6,300	25,000	< 500	4,200	1,100	< 500	< 500	< 500	930	< 500	ND
9/24/2008	TR-10	5.0-20.0	10,000	13,000	2,500	13,000	< 500	2,600	660	< 500	< 500	< 500	660	< 500	ND
9/24/2008	TR-11	5.0-20.0	< 0.5	1.0	0.6	1.4	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	1.7	ND
Tier 1 ESLs			27	130	43	10	1,800						24		

Notes:

VOC - volatile organic compound

ug/L - micrograms per liter

ft-bgs - feet below ground surface

MTBE - methyl tert-butyl ether

< 0.5 - Not detected above the laboratory reporting limit

NA - not analyzed

ND - not detected above laboratory reporting limits

bold = value exceeding the Commercial/Industrial Environmental Screening Level

ESL = Environmental Screening Level

Tier 1 ESL values from Update to Environmental Screening Levels, San Francisco Bay Regional Water Quality Control Board, December 2013, Table D (Commercial/Industrial values)

TABLE 5D. GROUNDWATER QUALITY SUMMARY, HYDROCARBONS IN GROUNDWATER2855 MANDELA PARKWAY SITE, OAKLAND, CALIFORNIA

			Analyte concentration (ug/L)						
Date sampled	Sample Location	Well screen interval (ft-bgs)	TPH-g	TPH-d	Organic lead				
5/11/1999	TR-2	0-12	2600	NA	NA				
5/11/1999	TR-3	0-12	< 50	NA	NA				
10/9/2007	RW-1	-	78	NA	< 300				
10/9/2007	RW-2	-	320	NA	< 300				
9/24/2008	TR-4	2.25-20.5	39,000	10,000	NA				
9/24/2008	TR-5	2.25-20.5	34,000	8,100	NA				
9/24/2008	TR-6	2.25-20.5	290,000	73,000	NA				
9/24/2008	TR-10	5.0-20.0	130,000	26,000	NA				
9/24/2008	TR-11	5.0-20.0	< 50	< 50	NA				
Tier 1 ESLs			500	640					

Notes:

ug/L - micrograms per liter

ft-bgs - feet below ground surface

TPH-g - total petroleum hydrocarbons quantified as gasoline

TPH-d - total petroleum hydrocarbons quantified as diesel

NA - not analyzed

< 50 - not detected above the laboratory reporting limit

bold - value exceeding the Commercial/Industrial Environmental Screening Level

- no screen interval data found

ESL - Environmental Screening Level

Tier 1 ESL values from Update to Environmental Screening Levels, San Francisco Bay Regional Water Quality Control Board,

December 2013, Table D (Commercial/Industrial values)

TABLE 6. WELL CONSTRUCTION DETAILS2855 MANDELA PARKWAY SITE, OAKLAND, CALIFORNIA

		Abandonment date		Screened interva	I
Installation date	Well ID	(if abandoned)	Total depth	(ft-bgs)	TOC elevation
5/11/1999	TR-1	5/12/1999	12	2.5-12	7.59
5/11/1999	TR-2	5/12/1999	12	2.5-12	9.06
5/11/1999	TR-3	5/12/1999	12	0-12	7.34
6/22/1999	TR-4	-	20.5	2.25-20.5	9.59
6/23/1999	TR-5	-	20.5	2.25-20.5	9.29
6/22/1999	TR-6	-	20.5	2.25-20.5	9.89
6/4/2001	TR-7	-	22	5.0-20.0	UNK
8/10/2001	TR-8	-	20	5.0-20.0	UNK
6/5/2001	TR-9	-	16	6.0-16.0	UNK
7/7/2004	TR-10 ¹	-	20	5.0-20.0	9.95
7/7/2004	TR-11 ¹	-	20	5.0-20.0	9.38
12/23/2005	RW-1 ¹	-	9	UNK	UNK
12/23/2005	RW-2 ¹	-	9.4	UNK	UNK

Notes:

ft-bgs - feet below ground surface

TOC - top of casing

- not applicable

¹ - details estimated from field notes, no published boring log or description available

UNK - unknown

Analyte Concentration (ug/L)									Analyte Co	oncentration	(ug/L)						Analyte Con	centration (ug/L)				Analyte Concentration (ug/L)				
		Sampla donth									Carbon						Methyl Ethyl				2.2.4-	1 1 1-	1 2 /-		Other	
Date sampled	Sample Location	(ft-bgs)	Benzene	Toluene	Ethylbenzene	m,p-xylenes	o-xylenes	Total xylenes	MTBE	Acetone	Disulfide	Chloroform	Ethanol	Freon 11	Hexane	Cyclohexane	Ketone	2-propanol	Tetrahydrofuran	Tetrachloroethene	trimethylpentane	trichloroethane	trimethylbenzene	4-ethyltoluene	VOCs	Helium %
S	oil Gas Sampling Eve	ents					-																			
6/17/1992	SG-01	5	95.1	49.2	2.1	NA	NA	29.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
6/17/1992	SG-02	5	< 0.1	< 0.1	< 0.1	NA	NA	< 0.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
6/17/1992	SG-03 SG-04	5	34.∠ ∠ 0 1	23.0 ~ 0.1	1.0	NA NA	NΑ NΔ	19.9	ΝΑ	ΝΑ	NΑ	NΑ	ΝΑ	NΑ NΔ	ΝΑ	NΑ	ΝΑ		NΑ		NΑ	ΝΑ		NA NA	ΝΑ	ΝΑ
6/17/1992	SG-05	5	18.5	17.2	1.5	NA	NA	22.8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
6/17/1992	SG-06	5	14.7	12.6	0.9	NA	NA	14.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
6/17/1992	SG-07	5	6.3	4.5	< 0.1	NA	NA	4.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
6/17/1992	SG-08	5	4.9	2.9	0.2	NA	NA	1.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
6/17/1992	SG-09	5	< 0.1	< 0.1	< 0.1	NA	NA	< 0.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
6/17/1992	SG-10	5	13.9	13.0	1.0	NA	NA	16.9		NA	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA		
6/17/1992	SG-12	5	< 0.9	< 0.1	< 0.1	NA	NA	< 0.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
6/17/1992	SG-13	5	13.5	14.9	1.8	NA	NA	26.3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
6/17/1992	SG-14	5	20.9	18.1	1.4	NA	NA	19.8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
6/17/1992	SG-15	5	4.5	5.6	0.6	NA	NA	8.7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
6/17/1992	SG-16	5	2.1	4.1	0.7	NA	NA	12.7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
6/17/1992	SG-17	5	< 0.1	< 0.1	< 0.1	NA	NA	< 0.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
8/4/1998	SV-1	3	< 1.0	< 1.0	< 1.0	NA	NA	< 1.0	< 1.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
8/4/1998	5V-2 SV-3	1	< 1.0	< 1.0	< 1.0		NA NA	< 1.0	< 1.0		NA NA	NA NA							NA NA		NA NA					
8/4/1998	SV-4	1.5	< 1.0	< 1.0	< 1.0 < 1.0	NA	NA	< 1.0	< 1.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
8/4/1998	SV-5	1.5	< 1.0	< 1.0	< 1.0	NA	NA	< 1.0	< 1.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
8/4/1998	SV-6	1.5	190	110	190	NA	NA	75	< 1.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
8/4/1998	SV-7	1.5	10	65	20	NA	NA	15	< 1.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
8/4/1998	SV-8	1.5	4.9	< 1.0	9.2	NA	NA	8.6	< 1.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
8/4/1998	SV-9	1.5	4.8	< 1.0	7.3	NA	NA	5.9	< 1.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
8/4/1998	SV-10	1.5	3.2	< 1.0	5.4	NA	NA	4.5	< 1.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
8/4/1998	SV-11 SV-12	1.5	1.1	< 1.0	1.6		NA NA	3.7	< 1.0	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA			NA	NA NA	NA NA
8/4/1998	SV-13	1.5	27	18	6.8	NA	NA	69	< 1.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
8/4/1998	SV-14	1.5	< 1.0	< 1.0	< 1.0	NA	NA	< 1.0	< 1.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
8/4/1998	SV-15	1.5	< 1.0	< 1.0	< 1.0	NA	NA	< 1.0	< 1.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
8/4/1998	SV-16	1.5	< 1.0	< 1.0	< 1.0	NA	NA	< 1.0	< 1.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
8/4/1998	SV-17	1.5	< 1.0	< 1.0	< 1.0	NA	NA	< 1.0	< 1.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
8/4/1998	SV-18	1.5	< 1.0	< 1.0	< 1.0	NA	NA	< 1.0	< 1.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
8/4/1998	SV-19	3	< 1.0	< 1.0	< 1.0	NA	NA	< 1.0	< 1.0		NA	NA	NA			NA		NA	NA	NA	NA	NA	NA	NA		
Sub-Sla	b Soil Vapor Samplin	a Events	< 1.0	< 1.0	< 1.0	NA	NA	< 1.0	< 1.0	INA	INA	INA	NA	NA	INA	INA	INA	INA.	NA NA	INA	NA NA	INA	IN/A	NA NA		
8/3/2001	A	2-3	< 5	< 5	< 5	< 10	< 5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
8/3/2001	В	2-3	< 5	< 5	< 5	< 10	< 5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
8/3/2001	С	2-3	< 5	< 5	< 5	< 10	< 5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
8/3/2001	D	2-3	< 5	< 5	< 5	< 10	< 5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
8/3/2001	E	2-3	< 5	< 5	< 5	< 10	< 5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
8/3/2001	F	2-3	< 5	< 5	< 5	< 10	< 5					NA		NA					NA	NA	NA					
8/3/2001	Н	2-3	< 5	< 5	< 5	< 10 < 10	< 5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
8/3/2001		2-3	< 5	< 5	< 5	< 10	< 5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
8/3/2001	J	2-3	< 5	< 5	< 5	< 10	< 5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
10/9/2009	VP-A	2-3	< 4.2	7.3	< 5.7	7.6	ND	NA	< 4.8	22	79	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	< 0.13
10/9/2009	VP-B	2-3	< 3.9	8.2	< 5.4	6.6	ND	NA	< 4.4	21	ND	ND	ND	ND	ND	ND	4.2	ND	ND	ND	ND	ND	ND	ND	ND	NA
10/9/2009	VP-C	2-3	< 39	ND	< 54	ND	ND	NA	< 44	ND	ND	ND	ND	ND	110	220	ND	ND	ND	ND	1600	ND	ND	ND	ND	< 0.12
10/9/2009	VP-D	2-3	< 3.4	9.4	< 4.7	6.9	ND	NA	< 3.9	21	ND	6.7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.8	5.8	ND	< 0.25
10/9/2009	ער-ט טעף עף₋⊏	∠-3 2-3	< 4.0	ל.ט חוא	< 5.5 ~ 5 5	6.3 ND		NA NA	< 4.6		4 ND	۵. <i>۲</i>											7.2 ND	7.1 D		< 0.13 - 0.12
10/9/2009	VP-F	2-3	< 4.0	ND	< 5.5	ND	ND	NA	< 4.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	< 0.26
10/9/2009	VP-G	2-3	< 4.2	9.1	< 5.7	8.5	ND	NA	< 4.8	33	ND	ND	ND	ND	ND	ND	5.7	13	4.1	ND	ND	ND	8.4	7.3	ND	< 0.13
10/9/2009	VP-H	2-3	< 4.0	16	< 5.4	6.8	ND	NA	< 4.5	24	ND	ND	130	ND	ND	ND	5.7	14	8.1	9.7	ND	8.6	7.4	ND	ND	< 0.12
10/9/2009	VP-I	2-3	< 4.2	7.3	< 5.7	6.6	ND	NA	< 4.8	60	ND	ND	16	ND	ND	ND	12	16	ND	ND	ND	40	7.9	7	ND	< 0.13
10/9/2009	VP-J	2-3	< 3.8	5.7	< 5.2	5.2	ND	NA	< 4.3	11	ND	ND	ND	11	ND	ND	ND	ND	ND	ND	ND	60	ND	ND	ND	< 0.12
Tier 1 ESLs			420	1.30E+06	4900			4.40E+05	47000	1.40E+08		2300					2.20E+07	·		2.10E+03		1.60E+03				

Notes:

VOC - volatile organic compound

ug/L - micrograms per liter

ft-bgs - feet below ground surface

MTBE - methyl tert-butyl ether

< 1.0 - Not detected above the laboratory reporting limit

NA - Not Analyzed

-- No ESL established

ESL = Environmental Screening Level

Tier 1 ESL values from Update to Environmental Screening Levels,

San Francisco Bay Regional Water Quality Control Board, December 2013, Table E (Commercial/Industrial values)

TABLE 7A. SOIL VAPOR QUALITY SUMMARY, VOCS 2855 MANDELA PARKWAY SITE, OAKLAND, CALIFORNIA

TABLE 7B. SOIL VAPOR QUALITY SUMMARY, HYDROCARBONS2855 MANDELA PARKWAY SITE, OAKLAND, CALIFORNIA

			Analyte concentration (ug/L)
Date Sampled	Sample Location	Sample depth (ft-bgs)	TPH-g
6/17/1992	SG-01	5	763
6/17/1992	SG-02	5	< 1.0
6/17/1992	SG-03	5	286
6/17/1992	SG-04	5	< 1.0
6/17/1992	SG-05	5	163
6/17/1992	SG-06	5	123
6/17/1992	SG-07	5	53
6/17/1992	SG-08	5	38
6/17/1992	SG-09	5	< 1.0
6/17/1992	SG-10	5	127
6/17/1992	SG-11	5	66
6/17/1992	SG-12	5	< 1.0
6/17/1992	SG-13	5	131
6/17/1992	SG-14	5	178
6/17/1992	SG-15	5	50
6/17/1992	SG-16	5	28
6/17/1992	SG-17	5	< 1.0
Tier 1 ESLs			2.50E+06

Notes:

ug/L - micrograms per liter

ft-bgs - feet below ground surface

< 1.0 - Not detected above the laboratory reporting limit

ESL = Environmental Screening Level

Tier 1 ESL values from Update to Environmental Screening Levels, San Francisco Bay Regional Water Quality Control

Board, December 2013, Table E (Commercial/Industrial values)

TABLE 7C. INDOOR AIR QUALITY SUMMARY, VOCS2855 MANDELA PARKWAY SITE, OAKLAND, CALIFORNIA

		Analyte cor	ncentration (ug/m3)									
Date Sampled	Sample Location	Freon 12	Chloromethane	Freon 11	Methylene Chloride	1,1,1-trichloroethane	Benzene	1,2-dichloroethane	Toluene	Ethylbenzene	m,p-xylene	o-xylene	Styrene
11/12/2000	A-1	6.6	2.5	1.2	2.0	0.82 J	10	< 0.61	56	4.4	17	4.3	0.96
11/12/2000	A-2	6.1	1.2	1.2	2.2	1.1	8.0	< 0.65	42	3.4	12	3.4	< 0.68
11/12/2000	A-3	6.1	1.4	1.1	5.8	1.3	7.4	< 0.66	18	2.0	6.4	1.9	< 0.70
11/12/2000	A-4	5.8	2.2	1.1	5.5	1.3	6.5	0.72	18	1.8	8.0	2.4	< 0.73
11/12/2000	A-5	4.8	1.3	1.2	0.70	< 0.93	3.7	< 0.69	6.4	0.82	2.8	1.2	< 0.73
11/12/2000	A-6	6.0	1.3	< 1.0	0.61 J	< 0.97	2.9	< 0.72	4.4	< 0.77	2.2	1.3	< 0.76
Tier 1 ESLs			390		26	2.20E+04	0.420	0.58	1.30E+03	4.9	440 ¹	440 ¹	3.90E+03

TABLE 7C. INDOOR AIR QUALITY SUMMARY, VOCS2855 MANDELA PARKWAY SITE, OAKLAND, CALIFORNIA

/ maryte concentration (ug/m	0)										
1,3,5-Trimethylbenzene	1,2,4-trimethylbenzene	1,2-dichlorobenzene	Acetone	2-propanol	Methyl Ethyl Ketone	Hexane	1,4-Dioxane	Cyclohexane	Ethanol	MTBE	Heptane
0.96	3.5	< 0.91	18	5.5	< 2.2	11	< 2.7	4.6	12	5.4	4.9
0.78 J	2.8	< 0.96	16	5.6	< 2.4	9.8	< 2.9	3.7	12	4.4	3.7
< 0.80	0.92	3	15	4.4	3.0	5.2	< 2.9	2.9	16	7.7	< 0.34
0.87	2.8	< 1.0	14	2.1 J	< 2.5	4.4	6.1	< 2.9	14	6.6	< 3.5
< 0.84	< 0.84	< 1.0	11	< 2.1	< 2.5	< 3.0	< 3.1	< 2.9	8.1	< 3.1	< 3.5
< 0.87	1.1	< 1.1	14	< 2.2	< 2.6	< 3.1	8.6	< 3.1	3.6	< 3.2	< 3.6
		8.80E+02	1.40E+05		2.20E+04		1.60			47	

Analyte concentration (ug/m3)

Notes:

ug/m3 - micrograms per cubic meter

MTBE - methyl tert-butyl ether

< 0.91 - Not detected above the laboratory reporting limit

J - estimated value

bold = value exceeding the Commercial/Industrial Environmental Screening Level

Sample A-4 was collected as a field duplicate of A-3. Samples A-5 and A-6 were collected outdoors as ambient background samples

-- No ESL established

ESL = Environmental Screening Level

Tier 1 ESL values from Update to Environmental Screening Levels, San Francisco Bay Regional Water Quality Control Board, December 2013, Table E (Commercial/Industrial values)

¹ - ESL is for total xylenes

FIGURES

APPENDIX A

BORING LOGS

RECORD OF SUBSURFACE EXPLORATION B-1

LITHOLOGY

TEST DATA

De (fe	et)	DESCRIPTION	Sample No)	READING (ppm)
(fe	FINE GRAINE FINE GRAINE to dork grou SANDY SILT moist, very CLAY (CH), very soft, h	D SANOY SILT (OL), (mud) dark olive gray y, very maist, medium to law plasticity, rank organic odor. WITH CLAY (OL), dark olive gray to dark gray, very soft, medium to low plasticity, rank organic odor. greenish gray with 10% very fine grained black flecks, lighty plastic.	Sample No 		(ppm) 138 59 45
				•	

Date Started: 6-19-92 Date Completed: 6-19-92

Alen RG: 5149 Approved By: τ L

NOTE: See Figure 2 for boring location.

CLIENT/PROJECT LOCATION: OAKLAND, CALIFORNIA

PROJECT NO: 43-07-9200385

RECORD OF SUBSURFACE EXPLORATION B-2

LITHOLOGY

TEST DATA

·	Depth (feet)	DESCRIPTION	Sample No.	READING (ppm)
	_	BACKFILL: FINE SAND AND SILT (SM), to 3 feet, dark brown.	_	
	—			1
			-	•
			-	
	5	FINE GRAINED SANDY SILT (OL), (mud) dark alive gray	5 8-2-5	114
		to dark gray, very maist, medium to low plasticity, rank organic odor.		
			_]	
	_		_	
	_			
	10	SINE CRAMER SAMPY SHT (OL) (and) dark plan orga	10	6 600
	•	to dark gray, very maist, medium to law plasticity, rank organic odor.	B-2-10	6,200
AT 11 FEET			<u> </u>	
	_			
	<u> </u>		_	
	15		15	

Date Started: 6-19-92 Date Campleted: 6-19-92

Allen Kars 199 Approved By:

NOTE: See Figure 2 for boring location.

CLIENT/PROJECT LOCATION: OAKLAND, CALIFORNIA

PROJECT NO: 43-07-9200385

.

RECORD OF SUBSURFACE EXPLORATION B-3

LITHOLOGY

TEST DATA

	Oepth (feet)	DESCRIPTION	Sample No.	READING (ppm)
		BACKFILL: SAND AND SILT (SM), to 4.5 feet, dark gray, strang		>10K
	—		-	
	—			
			-	
	5	FINE GRAINED SANDY SILT (OL), (mud) dork olive gray	5 8-3-5	3,888
		to dark gray, very moist, medium to low plasticity, rank organic and hydrocarbon odor.	· -	
	<u></u>			
			-	
	- -			
_	<u>10</u>	FINE GRAINED SANDY SILT (OL), (mud) dark alive gray	<u>10</u> 8~3-10	7,080
AT 11 FEET		to dark gray, very moist, medium to low plasticity, rank organic and hydrocarbon adar.		
	 ,		_	
			-	
	—			
	<u>15</u>		15.	

Date Started: 6-19-92 Date Completed: 6-19-92

Aden KES189 Approved By:

NOTE: See Figure 2 for boring location.

CLIENT/PROJECT LOCATION: OAKLAND, CALIFORNIA

PROJECT NO: 43-07-9200385

HOLE NO. SB-1	PROJECT NAME: Commercial Proper	ly	PR(285	DJECT ADDRESS: 3-2863 Mandela Parkway, Oakland, CA	DATE: August 3, 1998	SHEET 1 OF 1
Soil Boring Completion Details	Sampler Interval	PID Reading	uscs	LOG OF MATH	ERIAL	
Asphalt Asphalt I' Dia. Borehole Static GW Portland cement	1 - 2 - 3 - 4 - 5 - 4' to 6 6 - 7 - 8 -	0.5	CL	(4'-6') Silty Clay: Gray (7.5YR N5/0); soft; low plasticity (sticky); very moist: slight petroleum odor.		
TD 15'	9 - 9 - 9' to 11' 11 - 9' to 11' 12 - 9' to 11' 13 - 13 - 13 - 13 - 13 - 13 - 13 - 13 -		CL	(9'-11') Silty Clay: Gray (7.5YR N5/0); soft low plasticity (sticky); very moist; slight; no	odor.	
	31 32- 33-					-

HOLE NO. SB5	PROJECT NAME: Commercial Property	y P	ROJECT ADDRESS: DATE: S S33-2863 Mandela Parkway, Oakland, CA August 3, 1998 (SHEET 1
Soil Boring Completion Details	E Sampler G Interval	PID Reading T ISCS	LOG OF MATE	CRIAL	
Concrete Concrete l'Dia. Borehole	1	1.1 CL	(4'-6') Silty Clay: dark greenish gray (5GY 4 soft; low plasticity; moist to very moist; petro	/1) <u>;</u> leum odor.	
GŴ	9 10-5 9' to 11'	50 CL	(9'-11') Silty Clay: dark greenish gray (5GY soft; low plasticity; moist to very moist: petro	4/1); leum odor.	
TD 15'	12-12-12-12-12-12-12-12-12-12-12-12-12-1		•		
	18- 17- 18- 19_ 20-				,
	21- 22- 23-			•	. . .
	24- 25- 26- 27-			•	1.1.1
	28- 29- 30- 31- 32- 33-				
	33-				

HOLE NO, SB-6	PROJECT NAME: Commercial Property	PROJECT ADI 2853-2863 Mar	DRESS: Idela Parkway, Oakland, CA	DATE: August 3 1998	SHEET 1
Soil Boring Completion Details	E Sampler OF	USCS	LOG OF MATE	CRIAL	
Asphalt Portland cement Static GW TD 15	1 - 2 - 3 3 - 4 5 - 4 [*] to 6 [*] M ⁴ 6 - 7 7 - 8 9 - ^{Note} Classodium 10 - 11 - 12 - 11 11 - 12 - 11 12 - 11 13 - 14 14 - 15 - 16 17 - 18 19 - 20 - 21 13 - 14 15 - 16 17 - 18 19 - 20 - 21 21 - 22 23 - 24 24 - 25 26 - 27 - 28 - 29 - 30 - 31 - 32 33 - 31 - 32 34 - 31 - 32 35 - 31 - 32 35 - 31 - 32 35 - 31 - 32 37 - 31 - 32 37 - 31 - 32 37 - 31 - 32 37 - 31 - 32 38 - 31 - 31 - 32 38 - 31 - 31 - 32 38 - 31 - 31 - 31 - 31 - 31 - 31 - 31 -	CL (4'-5'' soft; i some no od	Silty Clay: gray (7.5YR N5:0): ow plasticity; some organic material; silty sand @ 5'); moist to very moist; or.		

HOLE NO. SB-7	PROJ Com	ECT NAME: mercial Propert	v	PRC 285	DJECT ADDRESS: 3-2863 Mandela Parkway, Oakland, CA	DATE: August 3, 1998	SHEET 1
Soil Boring Completion Details	IU/JAC	Sampler Interval	PID Reading	uscs	LOG OF MATH	ERIAL	
Asphalt ¹ Dia. Borehole Portland oment TD 15'	1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 - 21 - 22 - 23 - 24 - 25 - 25	Then portery 3.4" to the transmission of the t		CL	(4'-6') Silty Clay: gray (7.5YR N5/0); soft; low plasticity; some organic material; m no odor.	oist to very moist;	

H OLE NO. SB-8	PROJECT NAME: Commercial Property	.	PRC 285	PROJECT ADDRESS: DATE: SHEET 2853-2863 Mandela Parkway, Oakland, CA October 28, 1998 OF 1			
Soil Boring Completion Details	Sampler G Interval	Reading	USCS	LOG OF MATERIAL			
Concrete	1 - 2 - 0' to 4'		af	Asphalt and baserock (includes gravel, sand, sil	t and clay)		
1.5° Dia Borriote	3-		SP	Sand: variegated (brownish tint); firm; fine san no odor.	d:	-	
	5 4 6 4" to 8"	0		Silty Clay: Dark greenish gray (5GY 4/1); soft low plasticity (sticky); some orgnics and interbo sand (SP) lenses up to 2" thick; very moist to se	; edded sturated.		
product cement	8			8' - Petroleum odor.			
	9-7 10-8 to 12	105	CL			-	
	11-						
	13-			in sample tube.	ct	_	
	14- 12 to 16'		,				
TD 16 223	16 ₩ - 17 ∞	-			· ••		
· .	61					- - -	
	odine I					-	
	21-						
	23-			• .			
	25-					· -	
	27_						
	28- 29-						
}	30-					-	
	32-						
	33-	l					

Logged by: John Love RG 6315

. .

HOLE NO. SB-12	PROJECT NAME: Commercial Property	r I	PROJECT ADDRESS: 2853-2863 Mandela Parkway, Oakland, CA		DATE: October 28, 1998	SHEET 1 OF 1
Soil Boring Completion Details	E Sampier E Interval	PCD Reading	uscs	LOG OF M	ATERIAL	<u> </u>
Concrete L.5" Dia. Borehole	1 - 2 - 0' io 4' 3 - 4 -		aſ	Concrete (4" thick) and baserock (includes g	ravel, sand, silt and cla	(*)
Portland cement = Depth to product	5 6 7 8 9			No appende zonovore - Soundo tubo nov deb		
				16 feet bgs.	en irom + to	
TD 20'	16- 17- 18-2 16' to 20' 19-4 20-		Ľ	Silty Clay: Dark greenish gray (5GY 4/1); low plasticity (sticky); very moist; slight petroleum odor.	soft;	
10 20	21- 22- 23- 24- 25- 26- 27- 28- 29- 30- 31- 32- 33-				· · · · · · · · · · · · · · · · · · ·	

Gares Associates

.

Logged by: Mary Holland-Ford

BORING NO. SB-13	1	PROJECT NAME: Commercial Prope	rty	PR(285	DIECT ADDRESS: 3-2863 Mandela Parkway, Oakland, California	DATE: November 30, 1998	SHEET 1 OF 1
Soil Boring Completion Details	HLAIGO	Sample Interval	PID Reading	nsċs	·: DESCRIPTION OF MATER	IAL	
Asphalt 1.5" Dia. Borehole	1 2 3 4	0' to 4'		af SP	Asphalt and baserock(includes gravel, sand Sand: brown; firm; fine sand; no odor.	, silt and clay)	
Estimated Depth to OW	5 - 6 - 7 - 8 -	4' to 8'	0		Silty Clay: Very dark gray brown; firm; low plasticity; moist; no odor.		• • • •
	9 10 11 12	8' to 12'	0	CL	Olive brown; firm; low plasticity; moist; no odor.		
TD 16'	13- 14- 15- 16-	12'to 16'	12		low to medium plasticity; wet; petroleum odor.		- - - - - -
·	17- 18- 19- 20-			,			
	21- 22- 23- 24-						
	25- 26- 27- 28-						
	29- 30- 31- 32-						
	33-]				

-

Ceres Associates

Logged by: Mary Holland-Ford

BORING NO. SB-14	F	ROJECT NAME: Commercial Prope	rty	PR(285	DJECT ADDRESS: 3-2863 Mandela Parkway, Oakland, California	DATE: November 30, 1998	SHEET 1 OF 1
Soil Boring Completion Details	DEPTH	Sample Interval	PID Reading	uscs	C DESCRIPTION OF MATER	IAL	
Asphalt	1-2-	01		af	Asphalt and baserock (includes gravel, sand, silt a	and clay)	
1.5" Dia. Borehole	3 _ 4 _	4- 		SP	Sand: brown; firm; fine sand; no odor.		
Estimated Deptr to GW	5- 6-	4" to 8"	0		Silty Clay: Very dark gray brown; firm;		, i .
₩ ₩	7 -	XXXXX			low plasticity; moist; no odor.		
	9 - 10-	11 01 8 11 01 8	0	CL	Olive brown; firm; low plasticity; moist; no odos.		
	11- 12-						 - -
Portland cement	13- 14- 15-	12' to 16	27		Olive brown; firm; low to medium plasticity; wet; petroleum odor.		
TD 16'	16- 17-	X			· · · · ·		
	- 18- 19_						1 1 1
-	20- 21-						- - -
	22- 23-						
	24- 25-						·
	26- 27-						
	28- 29-						1 - T - T
	30- 31- - -			-			
	33-					•	

Ceres Associates Logged by: Mary Holland-Ford PROJECT NAME: Commercial Property PROJECT ADDRESS: 2853-2863 Mandela Parkway, Oakland, California DATE: SHEET 1 BORING NO. November 30, 1998 SB-15 OF L DEPTH uscs Soil Boring P1D Reading Sample Interval **Completion Details** DESCRIPTION OF MATERIAL 6-1 Asphalt Asphalt and baserock(includes gravel, sand, silt and clay) af 1 0' to 4' 2 Sand: brown; fimr; fine sand; no odor 3 SP 1.5" Dia. Borehole 4 Silty Clay: Very dark gray brown; firm; low plasticity; moist; no odor. XXXXXXXXX 0 5 Estimated Depth to GW 4 80' 6 Y Ξ 7 8 \mathbf{CL} 9 k Olive brown; 0 œ 10 đ 12 11 12 12' to 16' \$\$\$\$\$\$\$\$\$\$\$\$\$ 13--1 Portland 14cement Low to medium plasticity; wet; petroleum odor. 12 15-16-TD 16' 17-18-19-20-21-22-23-24-25-26-27 28-29-30-31-

32-33-

Ceres Associates

.

Logged by: Mary Holland-Ford

BORING NO. SB-17	PROJECT NAME: Commercial Property		OJECT NAME: PROJECT ADDRESS: 2853-2863 Mandela Parkway, Oakland, California DATE: November 30, 1998					
Soil Boring Completion Details	E Semple Interval	PID Reading	USCS	DESCRIPTION OF MATERI	AL			
Concrete			æf	Concrete and baserock(includes gravel, sand	, silt and clay)			
1.5" Dia. Borchole	3		SP	Sand: brown; fimr; fine sand; no odor				
Estimated	5	12		Silty Clay: Olive brown; firm; low plasticity; wet; petroleum odor.	-			
	7 - 8							
	9 10 - ∞ 10 - ∞	21	CL		- 			
	11-5 ¹⁵ 12-5 8				- 			
Portland								
TDIG	15- 5- 16-	27		Low to medium plasticity; wet; petroleum odor.				
	17-							
	19- 20-							
	21- 22-				•			
	23-				 - - - -			
	25-							
	28-				 - -			
,	29- 30-							
	32-							
	1-51	1						

BORING NO. SB-18	PRO Co	DJECT NAME: mmercial Proper	ty	PROJ 2853-	IECT ADDRESS: 2863 Mandela Parkway, Oakland, Califomia	DATE: November 30, 1998	SHEET OF 1
Soil Boring Completion Detalls	DEPTH	Sample Interval	PID Reading	uscs	DESCRIPTION OF MATER	IAL	1
Asphalt		8		af	Asphalt and baserock(includes gravel, sand,	silt and clay)	
	2	0' lo 4'		SP	Sand: brown; fimr; fine sand; no odor		
1.5" Dia. Borehole	4_	X	0		Silty Clay: Very dark gray brown; firm;		
timeted	5-	4' 10 8'					
	7 -						
×	9	× × ≈	0	CL	Olive brown		
×	10-	5 12 X					
	12	X X					
Portland cement	14-	12' to 10					
916	15- 16-		0		Medium plasticity; wet.		
	17-						
	19-						
•	20- 21-						
	22-						
x.	24-						-
	25- 26-				,		
	27-						
	28-						
	30- 31-						
	32-						

•

•

•

.

Borin		ation	I: Se	e Si	ite Pl	an. Figure 2		Logge	d by: M. Bancoort
Date	start	ed:	5/	11/9	9 (08	:40) Date finished: 5/1	1/99 (08:55)	Logge	и ру. м. паророп
Drillir	ng me	ethod	i: Di	rect	push	(DP), Vironex Macrocore, Truc	k Mounted		
Ham	mer v	veigh	nt/dro	p:	- Ibs.	/ inches Hammer type: P	neumatic		
Sam	oler:	Con	tinuc	us C	Core	· · · · · · · · · · · · · · · · · · ·			
PTH set)	SA jā a	MPLI 8	=S]	۸	000		MATERIAL DE	SCRIPTION	
Ľ,€	Samp Typ	Samp	Blow	0	Ē				
						Asphalt and baserock			
,						brown, moist, fine-graine	d, poorly graded,	no odor	
2					SP 	5/11/99 (16:05)			
3-	MC	\ge							
4-	NIC			0		-5B•17•4			
5—						i≚ wet			
6—									
7-									
8—									RECO
9—	İ								
10—									
11—									
12—									
13						Boring terminated at a de Boring backfilled with cen	pth of 12 feet. nent/bentonite gro	out.	
14—	•					Groundwater first encoun	tered at a depth o	of 5 feet.	
15									
16—									,
17-									
18—				i					
19—									
20-									
21									
22-									
23-									
24									
25-									
26-	ĺ								
27									
28								•	
207									
29									
30			!						· · · · · · · · · · · · · · · · · · ·

ļ

-

. .

.

1

4

•

Ì

ľ. . .

-

PRC	DJEC.	T:		285	5 м . Оа	ANDELA PARKWAY kland, California	Log of Bo	oring SB-	18 PAGE 1 OF 1
Borin	ig loc	ation	1: Se	ee Si	te Pl	an, Figure 2	·	Logged by: M.	Rapoport
Date	starte	ed:	5/	/11/9	9 (09	0.20) Date finished: 5/11	/99 (09:40)		
Drillir	ng me	ethoo	I: D	irect	pusł	(DP), Veronex Macrocore, Truc	k Mounted		
Ham	mer w	veigh	nt/dro	op:	bs.	/ inches Hammer type: Pr	neumatic		
Samp	oler:	Con	itinud	ous (iore				
PTH set)	호 호 ·	망마니	 	ĮΣ	DLOG		MATERIAL DESCRI	PTION	
Щ Щ Ш	Samp	Samp	Blow	0	Ĕ	· · · · · · · · · · · · · · · · · · ·			
		E. (& 1) 8 () ()		1	<u> </u>	Concrete and baserock			
1-						SAND (SP) brown, moist, poorly grade	ed, slight petroleum odd	or	
2-				0	.				
3—					SP	5/11/99 depth to product =	= 2.75 depth to water =	5.45 (13:55)	
4—									
5—						· · · · ·			
6-	MC			243		LSB-18-5 CLAY (CL)			A
7_				1		dark gray, moist, wet, sligl	nt petroleum odor		
						⊻ wet			
8-					CI				BÁY
9—									MUE
10-	MÇ					SB-18-10			
11-				040					
12—				243				<u> </u>	¥
13—						Boring terminated at a dep Boring backfilled with com	oth of 12 feet.		
14—						Groundwater first encount	ered at a depth of 7.5 f	eet.	
15									
16-									
17_									
"]									
18-									
19—									
20-									
21—									
22									
23—						•			
24-									
25-									
20									
26-									
27—									
28-									
29—									
30						·	<u> </u>		
				•	Tro	adwoll& Pollo	Proje	ct No. 2543 01	Attachment
									<u> </u>

. .

-

FROJEC	1.		200	o IVI. Oa	kland, California	LOG OT BO	ring SB-	PAGE 1
Boring loc	ation	: Se	e Si	te Pl	an, Figure 2		Logged by: M. F	Rapoport
Date start	ed:	5/	11/9	9 (11	:00) Date finished: 5/11	/99 (11:15)		
Drilling me	thod	: Di	rect	push	(DP), Vironex Macrocore, Truck	Mounted		-
Sampler:	Cont	tinuo	μ us (ore	/ Inches Hammer type. Pr			
I SA	MPLE	s		2		·····		
EPT (feet) mpler	mpte	ows/ oot	NNO	НОГО		MATERIAL DESCRIP	TION	
Normal D	ŝ	ы та та		5	Concrete and becareak			
1_					Crushed rock with sand, to	race gravel, concrete		
2					<u> </u>	·		
3-				SP	SAND (SP)	ad no odor		
				<u> </u>	CLAY (CL)			
			U		dark gray, moist to wet, no	odor [BAY MUD]		
° [™] MC	X				SB-19-5			
· <u>/</u>			n	CL	⊻ wet			
8								
9								
10-								
11								
12-	neinns		0		Boring terminated at a der	oth of 12 feet	<u> </u>	
13-					Boring backfilled with cem	ent/bentonite grout.		
14-					Groundwater first encount	ered at a depth of 7.5 fe	et.	
15								
16-								
17—								
18-								
19—								
20-								
21-								
22								
23-								
24-								
25-								
26								
27-								
28-								
29-								•
30								
JU					· · · ·			

ł

PROJEC	т:	285	55 M Oa	ANDELA PARKWAY akland, California	Log of	Boring SB-	-20 PAGE 1 O
Boring loc	ation:	See S	Site P	lan, Figure 2	I	Logged by: M.	Rapoport
Date start	éd: !	5/11/9	99 (1	1:25) Date finished: 5/	11/99 (11:45)		
Drilling me	thod:	Direct	t pus	h (DP), Vironex Macrocore, Tru	ck Mounted		
Hammer v	veight/d	rop:	lbs	./ inches Hammer type:	Pneumatic		
Sampler:	Contin	uous	Core	- <u> -</u>			
CEPTH (feet) (rype Type	HPLES	OVM 0	THOLOGY		MATERIAL DE	ESCRIPTION	
- <u>ö</u>	о С	-	1=	Concrete and baserock			·
1-			SP	SAND (SP)			
2—				brown, moist, poorly gra	ided, no odor		
3—				CLAY (CL)	strong netroleum (odor	
4-				[BAY MUD]	earing periodean		
5				└─ 5/11/99(15:19)			
	\ge			SB-20-5			F
6-							N
7-				⊻ wet			
8—							
9—							
10—							
11-							
12—		0				- ·	
13—				Boring terminated at a c Boring backfilled with ce	lepth of 12 feet.	out	
14—				Groundwater first encou	intered at a depth	of 7.5 feet.	
15							
16—							
17—							
18—							
19-							
20-							
21-							
22			1				
22							
23			ŀ				
24-							
25-							
26							
27-							
28-			1				
29-							
1 I	1	1	1				

• •

• {

.

1100201.		200		akland, California	Log of Bo	oring SB-	PAGE 1			
Boring locati	on: S	ee Si	ite P	lan, Figure 2	······································	Logged by: M. I	Rapoport			
Date started	: 5	/11/9	9 (11	1:50) Date finished: 5/1	1/99 (12:05)	- ·				
Drilling meth	od: D	irect	push	(Dp), Vironex Macrocore, truck	mounted					
Sampler: C	ontinu	ous (Core	I Inclies [hammer type. r						
T SAME	PLES		کو او		······					
DEPT (feet ype	ows/	N N	НОГС		MATERIAL DESCRIP	PTION				
		-	5	Concrete and baserock	·····					
1_				SAND (SP)						
2—			SP	brown, moist, poorly grad	brown, moist, poorly graded, no odor					
3				<u>▼</u> 5/11/99 (15:44)	•					
4-		0	<u> </u>	CLAY (CL)	··					
5- 100				dark gray, moist to wet, s	trong petroleum odor [E	BAY MUD]				
6				00-21-0						
7-										
8		237	CL	l⊻_ wet						
9—										
10-			ļ							
11_										
12-						· · · · · · · · · · · · · · · · · · ·				
13_				Boring terminated at a de	epth of 12 feet.					
14-				Boring backfilled with cer Groundwater first encour	nent/bentonite grout. Itered at a depth of 7.5 f	eet.				
15-										
16-			.							
17-					·					
18										
19_		1								
20-										
21-		1								
22										
23-										
24-										
25										
26										
27										
29										
29										
			Ire	eauweli&Rolio	Proje	ect No. 2543.01	Attachmen			

•

.....

1 .

...l...

:

4	PRC	OJEC.	Т:		285	5 M. Oa	ANDELA PARKWAY kland, California	Log of I	Boring SB-	22 PAGE 1 OF 1
	Borin	ig loca	ation	i: Se	e Si	te Pl	an, Figure 2	I,,	Logged by: M.	Rapoport
• }	Date	starte	ed:	5/	11/9	9 (12	2:12) Date finished: 5/11,	/99 (12:30)		
	Drillin	ng me mer w	thod (eigh	I: Di	rect	push Ibs	(DP), Vironex Microcore, Truck I	Mounted		
1	Sam	pler:	Con	tinuc	ous C	Core				
	Ξ₽	SA	MPLE	ES	5	067				
	DEP (fee	ampler Type	ample	slows/	٥ ٥	ITHOL				
		Ś	S S				Concrete and baserock	· · · · · · · · · · · · · · · · · · ·		
	1-						SAND (SP)	d fine-grained no	odor	-
	2					SP	brown, moist, poony grade	a, me granea, ne	,000,	-
	3—									_
)	4—		X		0		SB-22-4		······.	
	5—									
	6—									RECOVERY
1	7						<u> </u>			-
	8		k (*)							X
•	9—						dark gray, moist to wet, str	ong petroleum odo	or [BAY MUD]	
	10—	MC	X	-		CL	SB-22-10			MUD -
	11-				•					· _
	12				0			· · ·		·····
:	13-						Boring terminated at a dep Boring backfilled with ceme	th of 12 feet. ent/bentonite grout	t.	_
	14—				·		Groundwater first encounter	ered at a depth of	8 feet.	-
1	15—							·		-
	16-					:				-
	17-									-
7 1	18—									_
:	19—									-
s L	20									-
н -	21-									. –
	22—									
i	23-									-
	24—									-
1	25—									-
:	26-									-
x [27-			ļ						-
	28—									
:	29-									· _
	30								······································	
:					•	Tre	adwell&Rollo	F	Project No. 2543.01	Attachment
Ľ								I		· · · · · · · · · · · · · · · · · · ·

-

•

PRO	OJEC	:T:		285	5 M Oa	ANDELA PARKWAY Ikland, California	Log of Bo	ring SB-	23 PAGE 1 OF 1
Borir	ng loc	ation	: S	iee Si	ite P	lan, Figure 2	<u> </u>	Logged by: M. I	Rapoport
Date	start	ed:	5	/11/9	9 (12	2:40) Date finished: 5/11.	/99 (12:55)		
Drilli	ng me	ethoo	l: D)irect	pusł	1 (DP), Vironex Macrocore, Truck	Mounted		
Ham	mer v	veigh	nt/dr	op:	- Ibs	/ inches Hammer type: Pr	neumatic		
Sam	pier:		ninu ES		Jore ∑≿	1 ····			
DEPTH (feet)	Sampler Type	Sample	Blows/	MVO	гітногоо		MATERIAL DESCRIP	TION	
						Concrete and baserock		···	
1—						grav-brown, moist, poorly	araded. fine-arained. no	odor	
2—					SP	V 5/11/99 (14:12)		-	
3—						_			
4				0					
5—									
6—				239		strong petroleum odor			RECOVERY
7—									
8-		12.00				∽ wet			
9	мс	\ge				SB-23-8.5			Ţ
10						CLAY (CL) dark grav, wet, strong petr	oleum odor		BAY
11					 -	[BAY MUD]			MUE
12				164					
12						Boring terminated at a dep	th of 12 feet.		
14.						Boring backfilled with cem Groundwater first encount	ent/bentonite grout. ered at a depth of 8 feet		
14	i								
15-				ŀ					
16 <u>-</u>									
17									
18—									
19-									
20					L.				
21 —									
22									
23-									
24-									
25-						_			
26-									
27									
28.								<i>'</i> .	
20									
29						ł			
30		I		·	Tre	artwoli [®] . Dollo	Projec	t No. 2543 01	Attachment
					116		riojec		Audoration

ļ

PRC	OJEC	:Т:		285	5 M/ Oa	ANDELA PARKWAY kland, California	Log of	f Bor	ing SB-	24
Borir	ng loo	ation	n: Se	e Si	te Pl	an. Figure 2		······	l oaned by: Mill	Banonort
Date	star	ted:	5/	11/9	9 (13	:10) Date finished: 5/1*	1/99 (13:23)		Logged by: Mill	apopon
Drilli	ng m	ethoc	: Di	rect	push	(DP), Vironex Macrocore, Truck	< Mounted			
Ham	mer	weigł	nt/dro	p:	- Ibs.	/ inches Hammer type: P	neumatic			
Sam	pler:	Соп	itinuc	ous C	Core					
Ξ÷	S/		ES	5	οGY					
(fee	I ype	ample	lows/	8	THOL					
	ΰ.	ο Ο		[Concrete and baserock	<u></u>			
1—	-	a sector a regeler a regeler				SAND (SP)				
2						brown, moist, fine-grained	l, poorly graded,	, no odor		
-			· · · · · · · · · · · · · · · · · · ·				•			
3-										
4				0	SP					
5—										
6—			5 2							
7—						5/11/99 (16:40)				
8				238		👽 wet				
- -										•
9-						- 5/12/99 (09:45)				
10	MC	\ge			CL	SB-24-10				
11						⊻ 5/11/99 (13:45)				
12—				436		Boring terminated at a de	nth of 12 feet		· · · · · ·	
13—						Boring backfilled with cen	nent/bentonite gr	rout.		
14—						Groundwater first encoun	tered at a depth	of 8 feet.		
15-										
10										
10-										
17—										
18										
19—										
20 —										
21 -										
22-							,			
~~										
23—										
24—										
25—										
26—						4				
27						,				
20										
20							•			
29-										
30		1	 			······································		·	- · · ·	
					Тио	adwall [®] . Bollo		Broject	No. 0542.01	Attach

. 1

) <i>*</i>	PRO	DJEC.	T:		2855	5 M/ Oa	ANDELA PARKWAY kland, California	Log of I	Boring SB-	25	1
Ļ	Borir	ng loc	ation	: Se	e Sit	te Pl	an, Figure 2		Logged by: C. J	Austin	
;	Date	starte	ed:	11	/16/9	99	Date finished: 11/	6/99			
·i	Drillin	ng me	ethod	l: Di	irect p	oust	(DP), Vironex Macrocore (MC),	Truck Mounted			
	Ham	mer w	veigh	t/dro	op:	lbs.	/ inches Hammer type: H	ydraulic			
!	Sam	pler:	Con	tinuc	ous C	ore	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		
L ·	王을	SA	MPLE	ES	5	QGΥ					
	(fee	inple.	eldme	lows/	§	THOL					
:		Sa Va	Ŝ	<u> </u>		5		<u></u>		· · · · · · · · · · · · · · · · · · ·	
	1_										-
						CĹ			· ·		
	2-					<u> </u>	brown, yellow, and black,	stiff, moist			\int
	3—						SAND (SP)		_	·	. –
	4—	мС	${ } \ge$			SP	brown, moist, fine-grained	l, with shell fragmer	nts	FIL FIL	L _
•	5—		200-00							Ţ	_
	6-					/	CLAY (CL)		· · ·	¥	
							gray, very soft, moist				
•	']						saturated sand layer at 7	leet			
	8										
•	9-										
	10-									BA	Y _
	11_					CL				MU	D _
1							•				
	12-										
	13-					i					
	14-						occasional shell fragment	6			
	15-						Sun		·	•	
	16-			•		CL	CLAY (CL)	th group to 1/4-incl	h		_
i					ł				•		
	''						drav. saturated, verv soft				_
ł	18—						g,,,,,				
	19-		上洋				drier and sandier			BA	γ —
	20-			ľ		CL				MU	D _
	21-		5.000 1000			l					
							sandy, yellow-brown and	ray, fine sand and o	clay, very wet, liquid co	onsistency	
r	22-						SANDY GRAVELLY CLAY	(CL)			
r k	23-						yellow, red-yellow, and brown of the statistic states and brown of the states of th	wn gravelly sand, g	ravel to 1/2-inch some	e layers with	
	24-	ļ	1722		-		Boring terminated at a da	ath of 94 foot			
	25-						Boring tremie-grouted with	a Portland cement	t mixture.		·
)	26_			ľ			J				
	207										
•	27 –						, ,				_
- '	28-										_
	29-										
	30						• 				
ı. I					-			 			
						ITE			TOJECT NO. 2543.01	Attachment	

.

			285	5 M. Oa	ANDELA PA	ARKWAY ornia	Log of	BO	ring SB-	26 PAGE 1 O
Boring lo	cation	: Se	ee S	ite Pl	lan, Figure 2				Logged by: C. /	Austin
Date star	ted:	11	1/16/	99		Date finished: 11/1	6/99			
Drilling m	ethod	l: Di	irect	pust	n (DP), Virone	x Macrocore (MC),	Truck Mounted			
Hammer	weigh	t/dro	op:	- Ibs.	/ inches	Hammer type: Hy	draulic			
Sampler:	Con	tinuc	ous (1		 			
DEPTH (feet) ampler Type	AMPLE Pd	Blows/ C	MVO	THOLOGY			MATERIAL DE	SCRIPT		
<u></u> σ						ate				
1						overy				
2—				CL	CLAY	(CL)			• •••	
3_				SP	dark gi	ray, very soft, moist				
					SAND	(SP) joist_fine-grained [F	31 1 1			
4-										•
5-				CL		ery soft, moist, sand	llenses			
6-					BAY N	IUD]				
7-					L no reco	overy, saturated				
8					sand le	ens				۰.
				GC	SAND	and GRAVEL (GC)				
9					yellow-	brown and olive, sa	turated, gravel to	o 1/2-inc	h	
10					CLAY (CL)	•			
11-					gray, ve	ery soft, moist				·
12				CL						ľ
13-										•
14										
15				ec	SAND	and GRAVEL (GC)				
16-					gray ar	nd yellow-brown, mo	ist, gravels to 1/	2-inch		
17-	1				Boring	terminated at a dep	th of 16 feet.	ont mid		
					. вопид	tremie-grouted with	a Portiand cem	ent mixu	ure.	
18-										
19-										
20-										
21										
22										
23-										
24-										
25-										
26-		[
27-										
28										
29-										
30						•				

.

1

.

-| |

.

і. Ц

1

• |

.: j

- 1

.
PRO	OJEC.	T:		285	5 M. Oa	ANDELA PARKWAY kland, California	Log of	Bo	ring SB-	27
Borir	ng loca	ation	: Se	e Si	te P	an, Figure 2	l		Logged by: C. A	ustin
Date	starte	ed:	11	/16/	99	Date finished: 11/1	6/99		209900 59. 0.74	
Drilli	ng me	thod	: Di	rect	pust	(DP), Vironex Macrocore (MC),	Truck Mounted			
Ham	mer w	veigh	t/dro	p:	- Ibs.	/ inches Hammer type: Hy	draulic			···· · ••• ·
Sam	pler:	Cont	tinuo	us C	Core					
Εg	SA	MPLE	IS	Σ	0GY	、		יסומראי		
(fee	ample Type	ample	slows/ foot	8	10HTI					
	S	S I								
1—	-									
2	-					SAND (SP)				↑
3-						brown, gray, moist, fine-gra	ained			
4_						.*				EU 1
					SP	no recovery				
6-					<u> </u>	· · · · · ·				
7-						CLAY (CL) grav very soft moist				Ī
8—						gidy, very son, molar				
9		10								BAY
10—										MUD
11-										
12—			-			· · · · · · · · · · · · · · · · · · ·				¥
13					CL	CLAY (CL) olive-brown, moist, with co	arse sand to sm	all orave	el-sized rock fragr	nents
14					SP	SAND (SP)			j	/
15						gray, moist, with gravels to	1/4-inch			ВА́У /
16_						CLAY (CL)				MUD
17						gray, soit, moist, layers of t	prown, gray sand	a with gr	aveis to 1/2-inch	
1/		ľ				Boring terminated at a dep Boring tremie-grouted with	th of 16 feet. a Portland ceme	ent mixt	ure.	
18-					•					
19—										
20—										
21-										
22—										
23—										
24-										
25-									•	
26-									•	
27-										
20										
<u>_</u>										
29-										
30			l				i	_		
					ire	actwell&hollo		Projec	t No. 2543.01	Attachment

• 2

.

;

PR	OJEC	T:		285	5 M. Oa	ANDELA PARKWAY kland, California	Log of Bo	oring SB-	•28 PAGE 1 OF 1
Bori	ng loc	ation	n: Se	ee Si	ite Pl	an, Figure 2		Logged by: C.	Austin
Date	start	ed:	11	1/16/	99	Date finished: 11/1	5/99]	
Drilli	ng me	ethod	I: Di	irect	pust	(DP), Vironex Macrocore (MC), 7	ruck Mounted	<u> </u>	
Ham	mer v	veigh	nt/dro	op:	- Ibs.	/ inches Hammer type: Hy	draulic .		
Sam		MPLE	unuo ES		Jore ∑≿				·
DEPTH (feet)	ampler Type	Sampta	Blows/	MVO			MATERIAL DESCRIP	TION	
1-		Ĺ	-			Concrete, concrete rubble	to 1-inch		
						SANID (SD)	· · · · · · · · · · · · · · · · · · ·		· · · ·
3-						gray-brown, moist, fine-gra	ined, poorly graded		
4—					SP				FILL -
5	-					no recovery		-	
6	мс	X				SB-28-6			
7—						CLAY (CL)		·	1 -
8—		146388 (1863)				gandy liquid consistency fr	om 9 E to 11 fact		. –
9—						sanuy, iiquiu consistency ii			-
10—									BAY
11—					CL				MUD
12—									
13—						less sand			-
14—						less gravel			_
15—						CLAY (CL)			
16—	мс	\times			UL	yellow and gray, some moth	ling, stiff, drier		
17—					CL	gray, very soft, wet, lenses	of sand and gravel to 1	/2-inch	BAY MUD
18					\square				
19—						mottled olive and yellow-bro	own, moist, fine-graine	d sands with grav	els to 1/4-inch –
20—					sc				· _
21-									_
22—									
23-					CL	CLAY (CL) gray, very soft to liquid, wet	, with gravels to 1/4-inc	:h	BAY MUD
24-						Boring terminated at a dept	h of 24 feet.		·····
25-						Boring tremie-grouted with	a Portland cement mix	ture.	-
26-									_
27-									-
28-									-
29-			·						-
30-1						······································	<u> </u>		· · · · · · · · · · · · · · · · · · ·
		•		1	ire	aciweli&Rolio	Projec	ct No. 2543.01	Attachment

Boring location: See Site Plan, Figure 2 Logged by: C. Austin Date started: 11/16/99 Date finished: 11/16/99 Drilling method: Direct push (DP), Vironex Macrocore (MC), Truck Mounted Hammer weight/drop: lbs./ inches Hammer type: Hammer weight/drop: lbs./ inches Hammer type: Hydraulic Sampler: Continuous Core MATERIAL DESCRIPTION Image: Plane	
Date started: 11/16/99 Date finished: 11/16/99 Drilling method: Direct push (DP), Vironex Macrocore (MC), Truck Mounted Hammer weight/drop: Hammer type: Hydraulic Sampler: Continuous Core Hammer weight/drop: Sampler: Continuous Core Hammer weight/drop: Solution MATERIAL DESCRIPTION Hammer weight/drop: Solution Solution Sampler: Continuous Core Concrete Image: Solution Solution Solution Image: Solution Solution Solution <t< td=""><td></td></t<>	
Drilling method: Direct push (DP), Vironex Macrocore (MC), Truck Mounted Hammer weight/drop: lbs./ inches Hammer type: Hydraulic Sampler: Continuous Core MATERIAL DESCRIPTION Hammer weight/drop: MO Hammer weight/drop: lbs./ inches MATERIAL DESCRIPTION Hammer weight/drop: Sampler: Concrete No recovery Sampler: Sampler: Matterial diagon Sampler: Sampler: Sampler: Matterial diagon Sampler: Sampler: Sampler: <td></td>	
Hammer weight/drop: lbs./ inches Hammer type: Hydraulic Sampler: Continuous Core Hammer type: Hydraulic SAMPLES SAMPL	
Sampler: Continuous Core Had B SAMPLES No No No Material Description Had B Image: Sampler: Continuous Core Image: Sampler: Contract of the same state of the	
Herein SAMPLES Model Matterial Description 1 1 1 1 1 2 1 1 1 1 3 1 1 1 1 4 1 1 1 1 5 MC SP SAND (SP) gray-brown, moist, fine-grained, poorly graded	
Image: Second	
1- Concrete 2- no recovery 3- SAND (SP) 4- gray-brown, moist, fine-grained, poorly graded 5- MC	
SAND (SP) gray-brown, moist, fine-grained, poorly graded SP SB-31-5 MC SB-31-5 no recovery	
3- SAND (SP) 4- gray-brown, moist, fine-grained, poorly graded 5- MC SP SB-31-5 no recovery	FILL
4- 5- MC SP SB-31-5 	
$ \begin{bmatrix} 5 \\ MC \end{bmatrix} \xrightarrow{\text{SP}} \\ \xrightarrow{\text{SP}} \\ \xrightarrow{\text{SB-31-5}} \\ \xrightarrow{\text{no recovery}} \\ \xrightarrow{\text{no recovery}} \\ \xrightarrow{\text{covery}} \\ \text{$	
	<u>+</u>
7- CLAY (CL) grav. very soft, moist	- T
8 - fine-grained sand lens from 8 to 9 feet	_
9-	BAY -
	MUD _
olive and yellow-brown, soft, moist	
CLAY (CL)	
16- no recovery	
17- SAND (SP)	
18 SP yellow-brown and gray, moist	
19- CLAY (CL) CL vellow-brown stiff moist	_
20- SC CLAYEY SAND (SC)	
21- yellow-brown and gray, saturated, fine-grained sand and clay	
22- CLAY (CL)	
23 CL yellow-brown, stiff, moist gray and yellow brown at 21.5 feet	_
24 increasing stiffness, trace gravels to 1/8-inch, at 23.5 feet	_ ~
25- Boring terminated at a depth of 24 feet.	
26 Boring tremie-grouted with a Portland cement mixture.	_
27-	_
28-	_
29	-
30	_
Tropchuoll& Dollo Braiast No. 3543.01 Attachmai	

ł

e j

Borir	ng loc	ation	: Se	e Si	ite Pl	an, Figure 2	Logged by: M. Rapon
Date	start	ed:	12	2/2/9	9	Date finished: 12/2/99	
Drillin	ng me	ethod	l: Di	rect	push	(DP), Vironex Macrocore (MC), Truck Mounted	
Ham	mer v	veigh	t/dro	p:	- Ibs.	inches Hammer type: Hydraulic	
Sam	pier:	Con	tinuc	ous C	Core		
et (je	SA 8		ES	Σ	rogγ	MATERIAL DESCI	RIPTION
Ē (Ē	Type	Sampl	Blows	Q	OHIL		
	ļ				-	SAND (SP)	
1—		Katalari				gray, moist to wet, fine-grained, with shell frag	gments
2	DP			1	0.0	Concrete, no recovery	
з—					154		
4—							
5					ĺ		
6	ם ח	\leq		0	<u> </u>	<u>SB-33A-5.5</u> CLAY (CL)	
_	ייט				CI	gray, very soft, wet, high plasticity	
/							
8—						Boring terminated at 7.96 feet.	· · · · · · · · · · · · · · · · · · ·
9—						Boring tremie-grouted with a Portland cement	mixture.
10-	1						
11							
12_							
13							
14—							
15-							
16_	:						
<u>`</u>]							
"							
18-							
19-							
20-							
21-				-			
22-							
23-							
24							
25-							
10							
27-							
28-		ĺ					
29-						· · · ·	
30	l						·····
				7	ľ ro		oiect No. 2543 01 Atta

. .

PF	IOJE	СТ	:		285	5 M. Oa	ANDELA PARKWAY kland, California	og of Boring S	SB-34 PAGE 1 OF 1
Bor	ing l	oca	ition	: Se	ee Si	ite Pl	an, Figure 2	Logged b	y: M. Rapoport
Dat	e sta	arte	d:	12	2/2/9	9	Date finished: 12/2/99		
Dril	ling I	met	thod	l: Di	irect	pust	(DP), Vironex Macrocore (MC), Truck M	lounted	
Har	nme	r we	eign	tipur	op:	- Ibs.	/ inches Hammer type: Hydraulic	:	· · · · · ·
		SAN		ES					· · · · · · · · · · · · · · · · · · ·
EPTI feet	l la	8	ple	vis/	N		MATE	RIAL DESCRIPTION	
ā	Sam	5	San	ă ă		Ś			
1_							SAND (SP)		Ť.
		D O				0.0	gray-brown, moist, fine-grained		
- 2-	7				ĺ	SP	Concrete, no recovery		
3-					0		SB-34-4.5	· · ·	-
4-	1	1.000					CLAY (CL)		
5-	1					ſ	gray very soft, moist		
6-	- Di	P			0	CL			BAY MUD
7-	-	and the second s			143		strong hydrocarbon odor at 7.0 fe	eet	
8-	-	1945					Device terminated at 7.5 feat		¥
9-	-						Boring terminated at 7.5 leet. Boring tremie-grouted with a Port	tland cement mixture.	
10-	4								
11-	4		ĺ				Note:		
12-	4						soil sample SB-34-4.5 collected a	at depth interval of 3 to 3.5 f	eet.
13-	1								-
14-	1								
15-									
16_									
17-									-
18-	1						,		-
19-	1								
20-	1								
21-	1								
22-									
23-	-								
24-	-								
25-									
26-									
27–									
28-									
20-									
23-	.								
30-									
						ire		Project No. 2543.	01 Attachment

ļ.

PRO	DJEC	T:		285	5 M. Oa	ANDELA PARKWAY kland, California	Log of I	Boring SB-	34A PAGE 1 OF 1
Borir	ng loc	ation	: Se	ee Si	te Pl	an, Figure 2	۰ <u></u>	Logged by: M.	Rapoport
Date	start	ed:	12	2/2/9	9	Date finished: 12/2	/99		
Drillin	ng me	ethod	l: Di	irect	push	(DP), Vironex Macrocore (MC), T	ruck Mounted		
Ham	mer v	veigh	it/dro	op:	- Ibs.	/ inches Hammer type: Hy	draulic		
Sam	SA	MPLE	unuc ES		,ore ∑::	· · · · · · · · · · · · · · · · · · ·			
EPTH eet)	plar 6		<u>7</u>	M	0100		MATERIAL DESC	CRIPTION	
8G E)	Sam Tyr	Sam	19 to		Ē		· · ·		· · · · · ·
4						SAND (SP)			4
				0		gray-brown, moist, fine-gra	ained		
2	DP.				SP				F1LL-
3—									
4		- 254-52				Piston tip pushed to 5.5 fe	et.		¥
6				ĺ		Boring terminated at 5.5 fe	et.		
7						Boring tremie-grouted with	a Portland cemen	it mixture.	_
						No groundwater encounte	red.		
, in the second									
10									_
10						· ·			_
11-									
12-									
13-									-
14-									· -
15-									:
16-									-
17-									-
18									-
19									-
20-									_
21-									
22-									·
23-									
24									
 25	ĺ								
20-									1
20-									-
27-									• –
28-									
29-								<u></u>	
				 ¶	like	aduali 8. Dalla	D	roject No. 2543.01	Attachment
					II C		·	10,000110, 2040.01	7 maon mont

	PRC	JECT:				M. (AND Dakla	ELA PARKWAY and, California	Log of B	oring SB-3	D PAGE 1 OF 1
ł	Borin	g location	ר:	See	Site	Plan				Logged by: D. S	iutherland
ł	Date	started:	6/4/	01			<u> </u>	Date finished: 6/4/01		Reviewed by:	
ľ	Drillir	ng metho	d: C	irect	pusł	n-geo	prob	e			
	Ham	mer weig	ht/dr	op:				Hammer type:			
	Sam	pler: Co	ntinu	ious	core						
	Ξœ	SA	MPL	ES	-	(mg	J	MATERIA		TION	
	(fee	Sample	eldma	aunt ount	cover) chas)	MV (p	PDE				
ļ		NUMBER	Š	w o	ş÷	õ	5	Surface Conditi	ons: concret	e floor slab	<u> </u>
	1_							SAND (SW), 90% recovery		·	
	2							gray-brown, dense, moist, some	e fine to mediur	n gravel, shell fragm	ents
	2						sw				
	3-							wet, gray-brown to brown			_
	4—										
	5—							SANDY CLAY (CL) dark gray, soft, wet, soft to stiff,	no odor		_
	6—										-
	7—						ОН	PEATY CLAY (OH)	lino odor		
	8—					86					<u> </u>
	9_					227		dark gray, medium stiff, moist, g	gasoline odor,		-
	10_			ľ				soft, shell fragments at 9.0 feet			
						.	CL				
	11-									1	-
	12-										
	13-					210		SANDY CLAY (CL) light gray, stiff, moist, fine grave	el, gasoline odo	r	-
	14—	:				210	CL	gray to gray-brown, hard, increa	ase in medium (gravel	_
	15—										_
	16						SW	SAND (SW)			
	17—							brown, dense, moist, fine to me	dium sand, no	odor	/
	18-										_
	10										_
	19										_
	20-				:	1					-
/26/08	21-					:					-
DT 6	22-										-
R.G	23–										-
3PJ 1	24—										
4302.0	25—										-
Y 254	26—										-
VED B	27—										_
SVIEW	28_										-
WIRI	20_										_
INTAL	20										
RONME	Borin	g terminated	at a de	epth of	16.0 fe	et.	- I			Treader	
ENVIE	Borin Durin grour	ig backnilled v ig drilling, wei idwater enco	un gro t zone untere	or. potenti d at a c	ally ind lepth o	licating f 3.5 fe	perche	d		I REECIW	
TEST						-		·		2543.02	A-1

Borin	a locatio	n:	See	Site	Plan			I	Logged by: D. Sutherland
Date	started.	6/4/	01	516	1 10111		Date finished: 6/4/01		Reviewed by:
Drillin	a metho	<u>, -, ,</u> d: г)irect	pust	1-dec	proh	ê		4
Hamr	ner weid	ht/dr	op:	,			Hammer type:		I
Sam	oler: Co	ontinu	Jous	core					· · · · · · · · · · · · · · · · · · ·
<u>т</u> Т	S/		ES		Ê	5		AL DE2.5	
DEPT (feet)	Sample Number	Sampte	Blow Count	Recovery (inches)	ovM (pp.	гітного	MATERI Surface Conditi	AL DESCRIP	te pavement
		<u> </u>		_ <u>→</u>			6 inches concrete		
1-							CLAYEY GRAVEL (GC) grav. loose. moist 15% recover		
2-							a,, ,, ,, 1070 1000V8	· #	
3–						ദറ	SANDY CLAY (CL)		
4-					3.3		dark gray, soft, moist, with som	te gravel and w	ood fragments
5-									
6-					13.9			sthele	
7							concrete debris, refusal - end c	л поје	
<u>`</u>]					ĺ				
ຼີ				-					
9									
10-									
11-					ŀ				
12-									
13-									
14-									
15—									
16—									
17—									
18—									
19—									
20-									
21-					1				
-' - 22-					1				
22					.				
20-				1					
24									
25-									
26—									
27—									
28—									
29—									
30		<u>ار .</u>			l	I			
Boring Boring Group	g terminated g backfilled v ndwater not	at a d with gri encour-	epth of out. htered	o.U fee at time	st. of drilli-	າດ.			Treadwell&Rolk
ບາບປ		ະແບບຢ			ar ar Ittill	·3·			

PRC	DJEC.	T:		285	5 M. Oa	ANDELA PARKWAY kland, California	Log of I	Boring TR-	2 PAGE 1 OF 1
Borir	ng loc	ation	: Se	e Si	te Pl	an, Figure 2		Logged by: M.	Rapoport
Date	starte	ed:	5/	11/9	9 (09	:55) Date finished: 5/11/99	(10:12)		
Drillin	ng me	thod	: Di	rect	pusł	(DP), Vironex Macrocore, Truck Mo	ounted		1
Ham	mer v	/eigh	t/dro	p:	· Ibs.	/ inches Hammer type: Pneu	matic		
Sam	pler:	Con	tinuc	ous C	Core	···			WELL
DEPTH (feet)	ype Ype	MPLE Pdu	ows/ C	MVO	HOLOGY	MATERIAL [DESCRIPTION		CONSTRUCTION
	s –	ŝ	18 F		5	Ground Surface Elev	vation: 9.06 fee	et ¹	
1_1_						SAND (SP)			1-inch PV/C
					SP	brown, moist, fine-grained, po	orly graded		casing,
2-						CLAY (CL)		· · · · · · · · · · · · · · · · · · ·	perforated with 0.01-
3-					1	dark gray, moist to wet, slight	petroleum odo	r —	inch slots
4—				0		= 5/11/99 (14.29)			
5	MC	X	!			TR-2-5		<u> </u>	Monterey
6—									No. 2 sand
7_					CL			_	
				0		∑ wet			
								_	
9-								-	
10—	мс	X				TR-2-10		_	
11-								_	
12-				0		· · · · · · · · · · · · · · · · · · ·		· · · · ·	
13—						Boring terminated at a depth Boring backfilled with cement	of 12 feet. /bentonite grout		
14—						Groundwater first encountere	d at a depth of t	B feet	
15—						¹ Elevation referenced to Me	an Sea Level.		
16-								-	
17—								_	
18-									
19-		Ì							
20-									
21		}							
<u>_</u>									
22-								_	
23								_	
24 –								—	
25—									
26—								_	
27-								-	
28-								. –	
29								_	
20-								· · · · · · · · · · · · · · · · · · ·	
					Fre	adwell&Rollo	F	Project No. 2543.01	Attachment
									<u></u>

•

.

1

•••••

1

ł

. I

, 1 2 .

į

,

ļ

:

ł

ļ	r						
	PROJE	CT:	2855	5 MA Oal	NDELA PARKWAY land, California	oring TR-	- 4 PAGE 1 OF 1
i	Boring lo	cation:	See Si	ite Pl	an, Figure 2	Logged by: M.	Rapoport
4	Date star	rted:	6/22/9	9 (13	:40) Date finished: 6/22/99 (14:55)		••
i	Drilling m	nethod:	Hollow	/-stei	n auger		
	Hammer	weight/c	drop:	- Ibs.	/ inches Hammer type: Pneumatic		
}	Sampler:	Califor	rnia spl	lit-ba	rel		WELL
i	DEPTH (feet) mpter Soe	AMPLES	OVM 0	HOLOGY	MATERIAL DESCRIPTION		DETAILS
;	L Sa	S B	-	5	Ground Surface Elevation: 7.20 feet	t	K-X1K-X1
!			.		6 inches concrete		Grout
	2-			SP	SAND (SP) tan-brown, moist, medium-grained, slight petroleun odor	n HAND-	Bentonite 4-inch PVC
į	з—			<u> </u>		AUGEN	
	4		126		dark gray, wet, strong petroleum odor wet from hand auger		Monterey
	6-	×			TR-4-5.5		NO. 2 SAND
	7_					<u> </u>	
	8						Perforated
1	9					_	interval 0.01-
Ϋ́	10-	51 S (1)		CL		_	
	11		390		✓ sheen 6/22/99 (17:10)	_	
i	12						
	13					_	
1)	14						
	15	NT2053					
:	16—		242		saturated	_	
-	17-	Sabariti bilik					
ł.	18-			CI	CLAY (CL) light gray, stiff, wet to moist, trace medium-grained	•	
4	19				sand, strong petroleum odor		
	20		182	SP	 SAND (SP) brown, moist, medium- to coarse-grained, strong 		
•	21-				petroleum odor		
	22-				Boring terminated at a depth of 20.5 feet.	_	
	23				Groundwater first encountered at depth of 4.5 feet.		
	24				¹ Elevation referenced to Mean Sea Level.	_	
(25-						
· •	26-					_	
• 1	27_				· · · ·		·
	20						
						-	
	29-					_	
T.	30	I	! 				
i. N				ire	Proje	CT NO. 2543.01	Attachment

•

• •

PRC	JECT:				M	AND Oakla	ELA PARKWAY nd, California	Log of I	Boring TR-7	OF 1
Borin	g locatio	n:	See	Site	Plan				Logged by: D. Sutherland	
Date	started:	6/4/	01				Date finished: 6/4/01		Reviewed by:	
Drillir	ng metho	d: E	irect	pust	n-geo	oprob	9	· · · · · · · · · · · · · · · · · · ·		
Ham	mer weig	ht/dr	op:				Hammer type:			
Sam	oler: Co	ontinu	ious	core						
feet) H	Sample	AMPL 물	.ES ≳ ∓	very tes)	(mqq) M	IOLOGY	M	ATERIAL DESCRIF	PTION	
5	Number	San	щş	(inct	8	Ē	Sur	face Conditions: c	oncrete	
						GW	6 inches asphalt pavem	ient		
1							gray, loose, moist, with	some clay, (fill)		
2-							CLAY (CL)	ist becomes interbody		
3-							SAND (SW)	ist, becomes merbed		
4-						sw	red-brown, very dense,	moist, no odor		
5-							wet at 5.5 feet			
-6-							SILTY PEATY CLAY (C	pL)	· · · · ·	
7-						OL	medium stiff, wet, no oc	lor	· .	2
8–										
9_		1					CLAY (CL)	doctopeo in plant free	monte no odor	
10-							dark brown, moist, stin,	decrease in plant hay	inents, no odor	
11-										
12										
12-1							shell fragments at 12.0	feet		
13										
14-							GRAVELLY CLAY (CL)):	······	
15-							light gray, stiff, moist, n	o odor		
16—							SANDY CLAY (CL) light gray, very stiff, mo	ist, verv fine sand		
17-							decreasing sand gray to	o orange-brown mottlin	ng at 16.5 feet	
18										
19										
20-										
24										
<u></u>						sc	CLAYEY SAND (SC)	dense sand moist or	av mottling, no odor	
22-		1						conce ogna, molar, gi		
23-										
24-										
25-										
26-										
27-										
28-										
20.										
23		ĺ	.							
კე Borin	g terminated	at a de	opth of	22.0 fe	et.	·	¹ Note: 0.010 inch slotted PVC	casing with pre-pack sand.	Treadwell&Rol	 lo

.

•

Borin	g locatio	n:	See	Site	Plan				Logged by: D. Sutherland
Date	started:	8/10)/01				Date finished: 8/10/01		Reviewed by:
Drillir	g metho	d: C	Direct	push	-geo	prob	96		· · · · · · · · · · · · · · · · · · ·
Ham	ner weig	ht/dr	op:				Hammer type:		· · · · · · · · · · · · · · · · · · ·
Samp	oler: Co	ontinu	lous	соге					
ਤ _	SA	MPL	.ES		Ê	уGY	MATED		
EP 1	Sample	əldr	ont ort	overy ches)	M (PF	НОГС		AL DESCRIP	HON
	Number	Sai	∞ 3	Rec (inc	б	LIT	Surface C	onditions: Co	oncrete
1							6 inches concrete floor slab		
							SANDY CLAY (SC) 30% reco	very	
2-						sc	olive-gray, stiff, moist, with so	ne fine to mediu	m gravel
3—									
4—							wet at 4.5 feet		
5—							CLAY (CL) 100% recovery		·
6—							dark, gray, soft, wet		
7_									
<u>`</u>]									
8-									
9—		l							
10-							SANDY CLAY (SC)		
11-							light gray, moist, with trace fin	e sand, stiff	
12-						50	grow to grow brown, odor of gr	colino	
13-							∇ wet at 13.0 feet		
14							CLAY (CL) 100% recovery black soft wet some organic	matter	
						CL	black, solt, wet, some organic	maner	
15-							increased sand decrease in o	ganic matter 15	.5-16.5 slight odor gasoline
16-							SANDY CLAY (SC) 100% rec	overy	
17-			•				light brown, hard, moist, some	orange mottling]
18—						sc			
19—							1		
20-									
21_									
2									
22									
23-									
24-						ŀ			
25-									
26-									
27-									
28-							,		
20									
29-									
30-	a terminated	atad	enth of	20 0 f-	et.		¹ Note: 0.010 inch eletted PV/C posing w	ith nre-nack cond	
Durin	g drilling, we	t zone	potenti	ally ind	or icating	ground	dwater	a he have same.	Treadwell&R

Borir	ig locatio	n:	See	Site	Pian			Logged by: D. Sutherland
Date started: 6/5/01 Drilling method: Direct push-geoprob Hammer weight/drop:							Date finished: 6/5/01	Reviewed by:
							e	
							Hammer type:	
Sam	pler: Co	ontinı	lous	core		·		
H 💭	S.	AMP1	.ES	20	(mdc	OGY	MATE	RIAL DESCRIPTION
(fec	Sampte Number	ample	Blow	acovei) MVC	ITHOI		<u> </u>
		_ ~		23			6 inches concrete floor slab	Conditions: concrete
1							SANDY CLAY (CL)	
2—						CL	gray-brown, medium dense,	moist, with brick fragments, no odor
3-						<u> </u>	SAND (SW), 85% recovery	······································
4						SW	gray, dense, moist, fine to m	edium sand, with shell fragments, no odor
4			ļ				CLAY (CL)	
5-		ľ			ļ	CL	dark gray, very soft, moist, r	o odor
6—			1				1991 C.C. 19W	
7—							ORGANIC CLAY (OH)	
8—						Он	aan gray, son, moist, accor	
9—								
10—					0.0			
11—							dark gray, very soft, moist, v	ith trace fine sand, no odor
12—								
13—						CL		
14—								
15							<u> v</u> wet at 14.0 to 14.5 feet SANDY CLAY (CL)	
16							light gray, hard, dry, with find brown mottling, shell fragme	e to medium gravel, nts
10			-				gray to brown at 15.5 feet	
17-								
18-								
19—			1					·
20—								
21—								
22—			1					
23—								
24—								
25—			1					
26—								
27—								
28—								
29-								
30—								
Borir Durii	ng terminate ng drilling, w	d at a d et zone	epth of potenti	16.0 fe ially inc	et. licatino	ı groun	¹ Note: 0.010 inch slotted PVC casing dwater	with pre-pack sand.

					(Dakla	and, California		PAGE 1 OF 1			
Borin	ig locatio	n:	See	Site I	Plan		· · · ·		Logged by: D. Sutherland			
Date	started:	6/5/	01				Date finished: 6/5/01					
Drillir	ng metho	d: D	irect	pust	n-geo	prob	e		····			
Hami	mer weig	ht/dro	op:				Hammer type:					
Samp	pier: Co		IOUS (core		<u>ک</u>	- , , , , , , , , , , , , , , , , , , ,					
(feet)	Count Namper Sample Namper Ritow Namper Count Ritow Namper Count Count Namper Count Count Count Namper Count Count Namper Count Namper					LITHOLOG	MATERIAL DESCRIP	WELL COMPLETION INFORMATION				
					8		6 inches concrete floor slab		Grout From 0 To 1			
1-					1	CL	SANDY CLAY (CL) grav-brown, medium dense, m	oist, with brick	Feet			
2-							fragments, no odor	,	T I To 6 Feet			
3						sw	SAND (SW), 85% recovery gray, dense, moist, fine to med shell fragments, no odor	— Bentonite From 1 To — Feet				
5_							CLAY (CL)					
6						CL	dark gray, very soft, moist, no wet at 5.5 feet	odor				
7_									casing			
[]							dark gray, soft, moist, decomp	osing odor				
្តា						он						
9-												
10-					0.0		CLAY (CL)					
11							uark gray, very soπ, moist, with no odor	r trace tine sand	Sand From 6 To 16			
12-												
13—						CL						
14—												
15-							SANDY CLAY (CL) light grav, hard, drv, with fine t	o medium arave				
16-							- brown mottling, shell fragment	S				
17-							gray to blown at 15.5 leet		/ -			
18—												
19-									_			
20-									-			
21-									_			
22												
23												
24												
25- 25-												
20												
20												
27-									1			
28–												
29–												
30	_ 4 1						1					
Borin Durin	g terminated g drilling, we	ata de tzone s	pth of potentia	16.0 fe ally ind	et. icating	ground	Note: 0.010 inch slotted PVC casing wi water	n pre-pack sand.	Treadwell& Rollo			

Date started: 77/104 Date finished: 77/104 Reviewed by: Precision Hammer weight/drop: Hammer type: Sampler: SAMPLES Sampler: Sample:	Borir	g locatio	m:	See	Site F	Plan (Figur	2)		Logged by: E. Deratzian	
Drilling method: Hollow Stem Hammer weight/drop: Hammer type: Sample: SAMPLES Sample: Sample: Sample: GRAVELLY CLAY (CL) 1 GRAVELLY CLAY (CL) 1 GRAVELLY CLAY (CL) 2 GRAVELLY CLAY (CL) 3 GRAVELY 4 CLAY (CL) gray, losse, molist, extremely hard, poorly graded, weak hydrocarbo odor, 90 parcent fine to medium sand, 10 percent fines 5 V 6 V 7 CLAY (CL) 9 GLAY (CL) 9 CLAY (CL) 9 CLAY (CL) 9 CLAY (CL) 9 CLAY (CL) 9 CLA	Date	started:	7/7/	/04				Date finished: 7/7/04	Reviewed by: Precision		
Hammer weight/drop: Hammer type: Hammer type: Hammer type: Sampler: Split Spoon Summer type: MATERIAL DESCRIPTION Image: Sample Split Spoon Split Spoon Surface Conditions: Surface Conditions: Image: Split Spoon Split Spoon Split Spoon Surface Conditions: Image: Split Spoon Split	Drilli	ng metho	d: H	Hollov	v Ster	m					
SAMPLES SAMPLES MATERIAL DESCRIPTION SAMPLES Surface Conditions: 1- Asphalt GRAVELLY CLAY (CL) CRAVELLY CLAY (CL) GRAVELLY CLAY (CL) Sample: Sample: Sample: 2- CL GRAVELLY CLAY (CL) 3- SAND (SP) gray, loose, moist, subrounded to subangular, poorly graded, weak hydrocarbo odor, 30 percent fine to medium sand, 10 percent fines 4- CLAY (CL) Gray, very Soft, moist, extremely hard, poorly graded, no odor, 5 percent fine s 95 percent fines 5- V No recovery 8- V CLAY (CL) gray, very Soft, moist, extremely hard, poorly graded, strong hydrocarbon odor, 10 percent fines 9- V CLAY (CL) gray, medium stiff, moist, very plastic, poorly graded, strong hydrocarbon odor, 10 percent fines 9- CLAY (CL) gray, medium stiff, moist, very plastic, poorly graded, strong hydrocarbon odor percent sand, 90 percent fines 10- CLAY (CL) gray, medium stiff, moist, very plastic, poorly graded, strong hydrocarbon odor percent sand, 90 percent fines 11- CLAY (CL) gray, medium stiff, moist, very	Ham	mer weig	ght/dr	rop:				Hammer type:			
T SAMPLES Barelia Sample	Sam	oler: Sp	olit Sp	poon							
End of the second se	н (S		LES		Е́	δ			TION	
A Number 3 # 5 Surface Conditions: 1- Asphalt GRAVELLY CLAY (CL) GRAVELLY CLAY (CL) 2- GRAVELLY CLAY (CL) brown, stiff, moist, subrounded to subangular, slightly plastic, moderately grad no odor, 30 percent gravel, 10 percent sand, 60 percent fines 2- GRAVELLY CLAY (CL) GRAVELLY CLAY (CL) 3- GRAVELLY CLAY (CL) gray, toose, moist, subrounded to subangular, poorly graded, weak hydrocarb odor, 90 percent fine to medium sand, 10 percent fines 4- GLAY (CL) gray, toose, moist, extremely hard, poorly graded, no odor, 5 percent fine s 5- CLAY (CL) gray with black motiling, soft, wet, plastic, poorly graded, strong hydrocarbon odor, 10 percent fines 6- V CLAY (CL) gray with black motiling, soft, wet, plastic, poorly graded, strong hydrocarbon odor, 10 percent fines 8- No recovery GRAVELY (CL) gray, medium stiff, moist, very plastic, poorly graded, strong hydrocarbon odor, 10 percent fines 9- GRAVELY (CL) gray, medium stiff, moist, very plastic, poorly graded, strong hydrocarbon odor percent sand, 90 percent fines 11- GRAVELY (CL) gray, medium stiff, moist, very plastic, poorly graded, strong hydrocarbon odor percent sand, 90 percent fines	EPT (feet	Sample	nple	N II	overy hes)	id) Į	PLC	MATERIA	AL DESCRIP	TION	
1- Asphalt 1- GRAVELLY CLAY (CL) brown sift moist, subrounded to subangular, slightly plastic, moderately grad no ador, 30 percent gravel, 10 percent sand, 60 percent fines 2- CL 3- SAND (SP) gray, losse, moist, subrounded to subangular, poorly graded, weak hydrocarb odor, 90 percent fine to medium sand, 10 percent fines 4- CLAY (CL) gray, very soft, moist, extremely hard, poorly graded, no odor, 5 percent fine s 95 percent fines 5- V 8- V 8- V 9- CLAY (CL) gray, with black mottling, soft, wet, plastic, poorly graded, strong hydrocarbon odor, 10 percent fines 8- V 9- CLAY (CL) gray, medium stiff, moist, very plastic, poorly graded, strong hydrocarbon odor, 10 percent fines 10- CLAY (CL) gray, medium stiff, moist, very plastic, poorly graded, strong hydrocarbon odor percent sand, 90 percent fines 11- CLAY (CL) gray, medium stiff, moist, very plastic, poorly graded, strong hydrocarbon odor 11- Shell fragments at 11 to 12 feet	<u> م</u>	Number	Sai	^a ö	Ğ, Ç	6	1	Surfac	ce Conditions	5:	
1- GRAVELLY CLAY (CL) 1- brown, stiff, moist, subrounded to subangular, slightly plastic, moderately grad- no odor, 30 percent gravel, 10 percent sand, 60 percent fines 2- CL 3- CL 3- SAND (SP) gray, loose, moist, subrounded to subangular, poorly graded, weak hydrocarbo odor, 90 percent fine to medium sand, 10 percent fines 4- CLAY (CL) gray, voys oft, moist, extremely hard, poorly graded, no odor, 5 percent fine s B5 percent fines 5- V 6- V 7- CLAY (CL) gray with black mottling, soft, wet, plastic, poorly graded, strong hydrocarbon odor, 10 percent fines sand, 90 percent fines 8- No recovery 9- CLAY (CL) gray, wredum stiff, moist, very plastic, poorly graded, strong hydrocarbon odor, 10 percent fines 10- CLAY (CL) gray, medium stiff, moist, very plastic, poorly graded, strong hydrocarbon odor percent sand, 90 percent fines 11- CLAY (CL) gray, medium stiff, moist, very plastic, poorly graded, strong hydrocarbon odor percent sand, 90 percent fines								Asphalt			
2- CL 3- SAND (SP) gray, loose, moist, subrounded to subangular, poorly graded, weak hydrocarb odor, 90 percent fine to medium sand, 10 percent fines 4- CLAY (CL) gray, very soft, moist, extremely hard, poorly graded, no odor, 5 percent fine s 95 percent fines 5- V 6- V 7- CLAY (CL) gray with black mottling, soft, wet, plastic, poorly graded, strong hydrocarbon odor, 10 percent fines 8- No recovery 9- V 10- CLAY (CL) gray, medium stiff, moist, very plastic, poorly graded, strong hydrocarbon odor percent fines 10- CLAY (CL) gray, medium stiff, moist, very plastic, poorly graded, strong hydrocarbon odor percent sand, 90 percent fines 11- CLAY (CL) gray, medium stiff, moist, very plastic, poorly graded, strong hydrocarbon odor percent sand, 90 percent fines	1—							GRAVELLY CLAY (CL) brown, stiff, moist, subrounded no odor, 30 percent gravel, 10 p	to subangular, s percent sand, 6	slightly plastic, moderately grade 0 percent fines	
3- SAND (SP) gray, losse, moist, subrounded to subangular, poorly graded, weak hydrocarbo odor, 90 percent fine to medium sand, 10 percent fines 4- CLAY (CL) gray, very soft, moist, extremely hard, poorly graded, no odor, 5 percent fines 5- V 6- V 7- V 8- V 7- CLAY (CL) gray, very soft, moist, extremely hard, poorly graded, no odor, 5 percent fine s 9- V 10- CLAY (CL) 11- Shell fragments at 11 to 12 feet	2—						CL				
4- CLAY (CL) gray, very soft, moist, extremely hard, poorly graded, no odor, 5 percent fine s 5- ✓ 6- ✓ 7- ✓ 6- ✓ 7- ✓ 6- ✓ 7- ✓ CLAY (CL) gray with black mottling, soft, wet, plastic, poorly graded, strong hydrocarbon odor, 10 percent fine sand, 90 percent fines 8- No recovery 9- ✓ 10- ✓ 11- CLAY (CL) gray, medium stiff, moist, very plastic, poorly graded, strong hydrocarbon odor percent fines 11- CLAY (CL) gray, medium stiff, moist, very plastic, poorly graded, strong hydrocarbon odor percent fines	3—						SP	SAND (SP) gray, loose, moist, subrounded odor, 90 percent fine to medium	to subangular, n sand, 10 perce	poorly graded, weak hydrocarbo ent fines	
5- Image: Classifier of the second secon	4					CL	CLAY (CL) gray, very soft, moist, extremely 95 percent fines	y hard, poorly g	raded, no odor, 5 percent fine sa		
6- - 7- - 8- - 9- - 10- - 11- CLAY (CL) gray with black mottling, soft, wet, plastic, poorly graded, strong hydrocarbon odor, 10 percent fine sand, 90 percent fines 9- - 10- - 11- CLAY (CL) gray, medium stiff, moist, very plastic, poorly graded, strong hydrocarbon odor percent sand, 90 percent fines 11- CL	5—	•	+	t		F		No recovery			
7- Image: CLAY (CL) gray with black mottling, soft, wet, plastic, poorly graded, strong hydrocarbon odor, 10 percent fine sand, 90 percent fines 8- Image: CLAY (CL) gray with black mottling, soft, wet, plastic, poorly graded, strong hydrocarbon odor, 10 percent fines 9- Image: CLAY (CL) gray with black mottling, soft, wet, plastic, poorly graded, strong hydrocarbon odor, 10 percent fines 10- Image: CLAY (CL) gray, medium stiff, moist, very plastic, poorly graded, strong hydrocarbon odor percent fines 11- Image: CLAY (CL) gray, medium stiff, moist, very plastic, poorly graded, strong hydrocarbon odor percent fines 11- Image: CLAY (CL) gray, medium stiff, moist, very plastic, poorly graded, strong hydrocarbon odor percent fines 11- Image: CLAY (CL) gray, medium stiff, moist, very plastic, poorly graded, strong hydrocarbon odor percent fines 11- Image: CLAY (CL) gray, medium stiff, moist, very plastic, poorly graded, strong hydrocarbon odor percent fines 11- Image: CLAY (CL) gray, medium stiff, moist, very plastic, poorly graded, strong hydrocarbon odor percent fines	6—	·	6				x				
8- Image: No recovery 9- Image: No recovery 10- Image: CLAY (CL) gray, medium stiff, moist, very plastic, poorly graded, strong hydrocarbon odor percent sand, 90 percent fines 11- Image: CLAY (CL) gray, medium stiff, moist, very plastic, poorly graded, strong hydrocarbon odor percent sand, 90 percent fines 11- Image: CLAY (CL) gray, medium stiff, moist, very plastic, poorly graded, strong hydrocarbon odor percent fines 11- Image: CLAY (CL) gray, medium stiff, moist, very plastic, poorly graded, strong hydrocarbon odor percent fines 11- Image: CLAY (CL) gray, medium stiff, moist, very plastic, poorly graded, strong hydrocarbon odor percent fines 11- Image: CLAY (CL) gray, medium stiff, moist, very plastic, poorly graded, strong hydrocarbon odor percent fines 11- Image: CLAY (CL) gray, medium stiff, moist, very plastic, poorly graded, strong hydrocarbon odor percent fines 11- Image: CLAY (CL) gray, medium stiff, moist, very plastic, poorly graded, strong hydrocarbon odor percent fines 11- Image: CLAY (CL) gray, medium stiff, moist, very plastic, poorly graded, strong hydrocarbon odor percent fines 11- Image: CLAY (CL) gray, medium stiff, moist, very plastic, poorly graded, strong hydrocarbon odor percent fines	7	•				,	CL	CLAY (CL) gray with black mottling, soft, we odor, 10 percent fine sand, 90 p	et, plàstic, poor percent fines	ly graded, strong hydrocarbon	
9- 10- 11- 11- 9- 10- 11- 11- 9- 10- 11- 9- 10- 11- 11- 11- 11- 11- 11- 11	8	-		+				No recovery			
10- IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	9-	-	•								
11- CL shell fragments at 11 to 12 feet	10-							CLAY (CL) gray, medium stiff, moist, very p percent sand, 90 percent fines	plastic, poorly g	raded, strong hydrocarbon odor	
							CL	shell fragments at 11 to 12 feet			

......

PROJECT:

a 🖙 🖻

MANDELA PARKWAY Oakland, California

.

	84	MD					
DEPTH (feet)	Sample Number	Sample	Blow Count	Recovery (inches)	(mqq) MVO	гітногосу	MATERIAL DESCRIPTION
13—						CL	CLAY with SILT (CL) gray-green, very stiff, moist, plastic, poorly graded, moderate hydrocarbon odor,
14—			-				10 percent fine sand, 90 percent fines
15—							-
16—						CL	· _
17—							odor decreasing with depth no odor beginning at 17 feet
18—				•			-
19—							· · · · · · · · · · · · · · · · · · ·
20—	-		-			sw	GRAVELLY SAND (SW) brown, loose to medium dense, saturated, subangular, moderately graded, no odor, 30 percent gravel, 70 percent sand
21—							
22—							-
23—							
24-	ig terminated ig backfilled w	at a d vith gr	lepth of out.	20 feel			TreatuelleRollo
Grou	ndwater enco	unter	ed at a	depth c	of 5 to I	6.5 feet	Project No.: Figure:

PRC)JECT:				M/ C	AND Dakla	ELA PARKWAY and, California	Log of Mo	Ditoring Well TR-11
Borin	g locatio	า:	See	Site I	Plan	(Figu	ire 2)		Logged by: E. Deratzian
Date	started:	7/7/	′04		Reviewed by: Precision				
Drillir	ng metho	d: ł	lollov	v Ster	m		· • •		
Ham	mer weig	ht/dr	op:				Hammer type:		
Sam	oler: Sp	lit Sp	boon_						
)EPTH (feet)	Sample			TION					
	Number	ŝ	<u>во</u>	Reč (j)	ð 	5	Surfa	ce Condition	s:
							Asphalt		
1—					,	GW CI	SANDY GRAVEL (GW) brown, loose, moist, subangula percent sand	r, poorly graded	d, no odor, 75 percent gravel, 25
						01	Baserock		/_
2—						SW	GRAVELLY CLAY (CL) brown, medium stiff, moist, sub percent gravel, 75 percent fines	angular to angu s	ular, moderately graded, no odor, 25
3—						CL	GRAVELLY SAND (SW) orange-brown, medium dense, percent gravel, 70 percent fine SANDY CLAY (CL)	moist, subangu to medium san	ular, moderately graded, no odor, 25
4_							hydrocarbon odor, 30 percent f	ine sand, 60 pe	asilo, moderately graded, weak
7					-	SP	SAND (SP) gray, loose, wet, subrounded, p fine sand, 90 percent fines	boorly graded, v	weak hydrocarbon odor, 10 percent
5—						CL	CLAY (CL) gray, soft, wet, very plastic, poo fine sand, 90 percent fines	orly graded, we	ak hydrocarbon odor, 10 percent -
6—		•					No recovery		
7—	-		-		-	CL	CLAY (CL)		no odor. 10 percent sand 90
8—						он	PEATY CLAY (OH) black, medium stiff, wet, plastic	, poorly graded	l, weak organic odor, 20 percent fine
							sand, 80 percent fines Peat (abundant organics) GRAVELLY CLAY (CL)	- N-1 (k,) - K-	
9—						CL	gravel, 10 percent sand, 65 per	rcent fines	wen graded, no odor, 25 percent
10—					·	CL	CLAY (CL) gray, soft, wet, very plastic, poo percent fines shell fragments throughout	orly graded, no	odor, 10 percent fine sand, 90
11—					-				
12						CL	gray-green, very stiff, moist, ve	ry plastic, poorl	ly graded, no odor, 10 percent fine
									Project No.: 2542 02 Figure: 4.25
									2040.02 A-2a

PROJECT:

· · · ·

•

¥.

MANDELA PARKWAY Oakland, California

ł	Ξ	SA	MPL	ES		(mg	کم ا	
	DEP1 (feet	Sample Number	jample	Blow Count	ecovery inches)	(d) MVO	TOHU	
			μĨ	•	~~~	-		to medium sand, 90 percent fines
	13—							_
	14						CL	-
						1		
	15—							· _
						1		· ·
	16—					l		SANDY CLAY with GRAVEL (CL)
							CL	brown, medium stiff, moist, subrounded to subangular, slightly plastic, well graded, no odor, 10 percent gravel, 25 percent sand, 65 percent fines
	17							SILTY CLAY with SAND (CL)
								orange-brown, very stiff, moist, subrounded, plastic, poorly graded, no odor, 20 percent fine sand, 80 percent fines
	18—					l		_
	-						CL	
	19—							_
3/26/08	20-		Ш	Ļ		l		
COT 6						l		
PJ T&F	21_							
10-11 G						l		
02 TR-	22-					l		_
Y 2543						ł		
WED B	22					ļ		
WREVIE	23-		1			ł		-
INTAL V				.		ļ		
RONME	24 — Borin Borin	ig terminated	at a d	ieptin of out.	20 feet	` <u></u>	•	Treachuell® Bollo
ST ENVI	Grou	indwater encc	ounter	ed at a	depth c	of 4.5 fi	eet.	Project No.: Figure:
TES		-						2543.02 A-2b

APPENDIX B

FIELD RECORD

Site: Mandela Pkwy, Oakland, CA

GROUND-WATER SAMPLING

Job #: 21B-001-001

- 1. Well Designation:_____
- 2. Date of Fluid Measurement_____
- 3. Depth to Water:_____Ft.
- 4. Total Depth:_____Ft.
- 5. Well Purge Information and Field Parameters:

Volume Purged	Time	pH +- .1	Cond +- 10%	Turbidity +-10%	DO	Temp +- 1	Salinity	TDS	ORP
Sample									

- 6. Comments regarding physical characteristics of groundwater _____
- 7. Post Sampling Fluid Level _____ Ft.
- 8. Flow Rate____L/min.
- 9. Total liters purged from well:_____L.
- 10. Other comments affecting monitoring:

11. Field Personnel _____

APPENDIX C

SOIL VAPOR FIELD FORM

7
Trihydro

	Well ID	Sub-slab Probe Nested Probe
Date:	 PID (make/model/serial number):	
Project Name:	 Landtech (model/serial number):	
Project Number:	Helium Detector (make/model/serial number):	
Site Location:	Manometer (make/model/serial number):	
Field Personnel:	Weather:	
Recorded by:	Air Temperature (°C/°F):	
	Atmospheric Pressure (in. Hg):	

Surface Type:	Concrete	Asphalt	Grass	Other	
Surface Thickness (i	nches):		Unknown		

Initial Pressure/Vacuum (in	. H ₂ O):	Time:	Field Tubing blank reading	ng (ppm):	Time:			
	Shut-in Testing		Start of Pneumatic Testing:					
Prior to Pneumatic	ОК 🗌 @		Elapsed Time (min)	Pump Flow Rate (LPM)	Well Head Vacuum (in. H ₂ O)			
Prior to Purge	ок 🗌 @							
Prior to Sample Collection	ОК 🗌 @							

Date	Start Time	End Time	Elapsed Time	Bag Volume	Purge Rate	CH ₄ (%)	CO ₂ (%)	O ₂ (%)	Total Organic Vapors	Helium Shrou	Helium beneath Shroud (%)		
			(min)	(L)	(LPM)	. ,	. ,	. ,	(ppmv)	Min	Max	(%)	

Date	Time	Sample ID	Canister ID	Flow Controller #	Vacuum Gauge #	Initial Vacuum	Final Vacuum	Helium beneath Shroud (%)	
								Min	Max

Comments:		