RECEIVED

By dehloptoxic at 1:04 pm, Jan 23, 2007

GROUNDWATER MONITORING REPORT

November 2006

California Evergreen Nursery 12671 Highway 92 Half Moon Bay, California

Prepared For:

Mr. Patrick Smailey PCS Realty Advisors P.O. Box 620186 Woodside, CA 94062

Prepared By:

Golden Gate Tank Removal, Inc 3730 Mission Street San Francisco, CA 94110

> SMCo Site #230034 GGTR Project No. 8286

Groundwater Monitoring Date: November 30, 2006 Report Submittal Date: January 17, 2007

No. 60888

Reviewed By:

Sami Malaeb/P.E.

Environmental Director

Prepared By:

Brent Wheeler Project Engineer

TABLE OF CONTENTS

INTRODUCT	<u>10n</u> 1
SITE DESCR	RIPTION 1
GROUNDW	ATER SETTING & CONDITIONS2
	<u>ISTORY</u> 3
GROUNDWA	ATER MONITORING & SAMPLING – OCTOBER 2006 4
RESULTS	6
CONCLUSIO	DNS / RECOMMENDATIONS8
	STRIBUTION9
LIMITATION	<u>S</u> 9
FIGURES	
1.	Site Location Map
2.	Site Plan
3.	Groundwater Gradient Data
4.	Regional Map of Creeks and Conduits
5.	Local Map of Storm Conduits
6.	Rose Diagram: Historical Hydraulic Gradient Well Grays divistor Consentration Mon
7.	Well Groundwater Concentration Map
TABLES	
1.	Historical Results of Groundwater Sample Hydrocarbon Analysis & Fluid-
	Level Data
2.	2004 - 2006 Groundwater VOC Sample Results
APPENDIX	
THI I LINDIA	Laboratory Certificates of Analysis, Chain of Custody Form
	Fluid-Level Monitoring Data Sheet
	Well Purging/Sampling Data Sheets
	Liquid Waste Manifest
	EPA On-Line Gradient Calculation Sheets
	GeoTracker AB2886 Upload Confirmation Forms

INTRODUCTION

This report presents the results and findings of the October 26, 2006 groundwater monitoring and sampling activities conducted by Golden Gate Tank Removal, Inc. (GGTR) at 5930 College Avenue in Oakland, California. The Alameda County Health Care Services Agency (ACHCSA) has designated the site as Fuel Leak Case No. RO000377. Figure 1, Site Location Map, shows the general location of the subject property in Oakland, California. The site, adjacent properties, and associated features are shown on the revised Figure 2, Site Plan. The groundwater gradient map is shown on Figure 3, Groundwater Elevation Potentiometric Map. Table 1, Historical Results of Groundwater Sample Analysis & Fluid-Level Data, provides a tabulated summary of the laboratory results of historical groundwater sample analyses and fluid-level monitoring data at the site. Table 2, 2004-2006 Groundwater Sampling Results for VOCs, provides a tabulated summary of sample analyses for VOCs

Gettler-Ryan, Inc. of Dublin, California is currently conducting a separate groundwater investigation for the former Chevron Station #20-9339 located adjacent to the north side of the subject property at 5940 College Avenue. Two groundwater monitoring wells (GR-MW1 & GR-MW2) are used to evaluate the hydrocarbon concentrations in groundwater at this site.

GGTR and Gettler-Ryan, Inc. have conducted joint monitoring and sampling activities at the associated sites on a quarterly basis since October 2000. As of the April 8, 2002 monitoring event, Gettler-Ryan has decreased their monitoring schedule to a biannual basis. Gettler-Ryan, Inc. performed their most recent joint/biannual monitoring and sampling of GR-MW1 & GR-MW2 on October 26, 2006. Figures 2 and 3 show the location of each Gettler-Ryan well relative to the subject wells at 5930 College Avenue.

SITE DESCRIPTION

The subject commercial property is located at 5930 College Avenue, along the east side of College Avenue between Harwood Street and Chabot Road in Oakland, California. The site lies approximately 2.5 miles east of Interstate 80 and the San Francisco Bay. The general location of the site is shown on the attached Figure 1, *Site Location Map*.

The property is currently occupied by Stoddard Automotive, for the service and repair of automobiles. No active fuel storage or distribution system currently occupies the site. The site is approximately 5,500 square feet in area with about 75% utilized by a covered warehouse/garage and 25% used as an exterior (uncovered) storage yard. The ground surface of the entire property is paved with concrete. The elevation of the site is approximately 195 feet above Mean Sea Level (Figure 1). Figure 2 presents a *Site Plan* showing pertinent site structures and adjacent properties.

The property is relatively flat lying with the topographic relief in the immediate vicinity of the site generally directed toward the southwest (Figure 1). Regional topographic relief appears to be directed toward the west-southwest in the general direction of the San

Francisco Bay. One 675-gallon gasoline UST and one 340-gallon waste oil UST were located beneath the sidewalk at the southwest corner of the site (Figure 2). The tanks were removed by GGTR in August 1996. A brief discussion of the tank removal activities is presented herein.

GROUNDWATER SETTING & CONDITIONS

The regional groundwater flow in the vicinity of the site is assumed to be towards the west-southwest in the direction of the San Francisco Bay and generally following the natural topographic relief of the area. The site is in the East Bay Plain Groundwater Basin according to the San Francisco Bay Basin Water Quality Control Plan prepared by the California Regional Water Quality Control Board – Region 2 (CRWQCB, 1995). Groundwater in this basin is designated beneficial for municipal and domestic water supply and industrial process, service water, and agricultural water supply. Although no domestic water supply wells are located in the site vicinity, the shallow groundwater beneath the site is considered a potential drinking water source by local regulatory agencies.

The nearest surface water body is Harwood Branch (aka Claremont Creek) that is the northernmost tributary of Temescal Creek / watershed. As shown on Figure 4, *Regional Map of Creeks and Conduits*, Harwood Branch flows via an intermittent underground culvert and an open surface channel in the vicinity of the site. Figure 5, *Local Map of Storm Conduits*, shows a detail map of the Harwood Branch drainage in the immediate vicinity of the site. As shown on these maps, flow from Harwood Branch is diverted into two conduits on both sides of the subject property. To the west along College Avenue, storm flow is directed within the Alameda County Flood Control District 90" RCP underground conduit. To the east of the site Harwood Branch flows within an open channel. To the south along Chabot Avenue, Harwood Branch flows within an underground box culvert. The two drainage systems apparently join at the intersection of College and Chabot Avenues. Flow lines in conduits at this intersection are listed on the map with elevations of about 180 feet.

As discussed in GGTR's August 2006 Report of Additional Site Characterization and Groundwater Monitoring, Historical groundwater flow directions and gradients have shown high variability at the site with historic flow directions varying widely from eastward to westward. In general, the data suggests that groundwater flow direction varies from westerly towards the 90" conduit within College Avenue and south / easterly towards Harwood Branch. Groundwater elevations at the site also show large seasonal variations. In well MW-1, the depth to water has historically varied from 3.08 feet in wet weather conditions to 11.04 feet in dry weather conditions. Similarly, in well MW-2, the depth to water has varied from 3.61 feet to 13.85 feet and well MW-3 has varied from 3.41 feet to 10.02 feet below top of casing. The lowest groundwater elevations measured at the site are approximately 183-184 feet. The nearby drainage conduits appear to have flow lines below the elevation of the onsite groundwater table. We surmise that groundwater flow at the site is significantly influenced by the 90" RCP conduit /

Harwood Branch drainage system as well as other subsurface utilities along College Avenue with inverts of 12 feet below grade (see Figure 6, *Subsurface Utility Map*).

PROJECT HISTORY

In August 1996, GGTR removed two underground storage tanks (USTs) and associated fuel dispenser from the site at the locations shown in Figure 2. The following table presents a summary of the tank designations, size, type of construction and contents:

Designation	Construction	Diameter (Fact)	Length		Contents
		(Feet)	(Feet)	(Gallons)	
TANK 1	Steel	4	7	675	Gasoline
TANK 2	Steel	4	3.5	340	Waste Oil

GGTR removed the residual fuel from the subsurface product piping (left in place), thoroughly flushed and drained the piping, and capped both ends. GGTR over-excavated the gasoline-contaminated soil surrounding the former UST location. The tank removal and over-excavation activities are documented in GGTR's *Tank Removal Report*, dated October 11, 1996.

Between May 1998 and October 1999, as requested by the ACHCSA, GGTR performed a preliminary subsurface soil boring investigation at the subject property and subsequently installed three groundwater monitor wells in the vicinity of the former UST cavity. Soil borings B1 to B3 were advanced immediately south, east, and west, respectively, of the former UST cavity. Following review and interpretation of all field and soil sample analytical data collected during these activities, additional soil borings B4 to B6 were then advanced at the site to further assess the extent of contamination in soil and the potential impact to groundwater. The latter borings were converted to 2-inch-diameter groundwater monitoring wells, MW-1 to MW-3. Boring and monitor well locations are shown in Figure 2.

In collaboration with Gettler-Ryan, Inc. of Dublin, California, which is conducting a separate groundwater investigation adjacent to the subject property (5940 College Avenue; Former Chevron Station), GGTR has jointly monitored and sampled each well on a quarterly basis between January 2000 and April 2002. The locations of the subject monitor wells as well as Gettler-Ryan's monitoring wells are shown on Figure 2.

Based on the residual elevated concentrations of gasoline-range hydrocarbons measured in the groundwater samples collected during the April 2001 quarterly monitoring activities, the ACHCSA, in a letter dated July 9, 2001, requested a work plan to assess whether any additional contaminant sources may potentially exist onsite that may be contributing to the elevated hydrocarbon concentration in groundwater. GGTR submitted the work plan on December 19, 2001, which was subsequently approved by the ACHCSA in a letter dated January 3, 2002. GGTR, in August, October, and November 2002, GGTR implemented the UST product line excavation/removal activities and

installed soil borings B7 to B11, the locations of which are shown in Figure 2. Details are presented in GGTR's June 10, 2003 Report of Additional Soil and Groundwater Investigation.

Based on review of GGTR's June 2003 report, the ACHCSA, in their letter dated September 8, 2003 requested a work plan addressing additional source and site characterization of contaminants in soil and groundwater at the subject property. GGTR submitted their Work Plan for Additional Site Characterization on December 29, 2003, and its Addendum on September 30, 2004, which were conditionally approved by the ACHCSA in letters dated June 3, 2004, and February 22, 2005. Between April and July 2005, GGTR installed additional borings B12 to B24 to approximately 25 fbg and Hydropunch borings HB-1 to HB-6 to approximately 15 fbg, and converted HB-2 to piezometer well PW-1. The location of each additional boring is shown in Figure 2. Details of this investigation are presented in GGTR's August 29, 2006 Report of Additional Site Characterization and Groundwater Monitoring.

Between October 15, 2003 and April 2006, GGTR conducted quarterly groundwater monitoring and sampling activities at the site and submitted their associated Groundwater Monitoring Reports to the ACHCSA. GGTR was not contracted to conduct the Third Quarter 2006 groundwater monitoring event at the site.

GROUNDWATER MONITORING & SAMPLING – OCTOBER 2006

The scope of the work for the groundwater monitoring and sampling includes the following:

- Monitoring, purging and sampling of three monitor wells (MW-1, MW-2 & MW-3) and one piezometer (PW-1)
- Groundwater sample laboratory analysis
- Waste management
- Electronic Data Upload to GeoTracker Database System (State Assembly Bill 2886)
- Data interpretation

Groundwater Sampling Field Procedures: On October 26, 2006 GGTR monitored and sampled MW-1 to MW-3 and PW-1. Prior to purging and sampling, GGTR removed the well cover and locking compression cap from each well and allowed the groundwater in each well column to stabilize for approximately 20 minutes. GGTR then measured and recorded the depth to groundwater and presence of floating product using a Keck[®] electronic oil/water interface probe. Fluid levels were measured relative to the north side of the top of each well casing to the nearest 0.01 foot.

GGTR then purged a minimum of three casing volumes from each well using a submersible pump, and simultaneously monitored and recorded the pH, temperature, and specific conductivity of the purged well water. Well purge water was transferred directly to a 55-gallon, D.O.T.-approved steel drum. After the groundwater in each well recharged to approximately 80% of its original level, GGTR collected a groundwater sample by lowering a disposable, bottom-fill, polyvinyl chloride (PVC) bailer within the well. The bailer was immediately removed from the well and the groundwater was carefully decanted from the bailer into pre-cleaned, laboratory-provided sample containers. All volatile organic analysis (VOA) vials were inverted and checked to insure that no entrapped air was present. The samples were sealed with Teflon caps, properly labeled, and stored in a cooler chilled to approximately 4°C.

Water Sample Analytical Methods: GGTR submitted the groundwater samples under formal chain of custody command to Entech Analytical Labs, Inc. State-certified, analytical laboratory (CA ELAP #2346) in Santa Clara, California for laboratory analysis of the following fuel constituents:

- Gasoline Range Organics (TPH-G; GC-MS)
- Benzene, Toluene, Ethylbenzene and total Xylenes (BTEX; EPA8260)
- Fuel Oxygenates, including Methyl Tertiary-Butyl Ether (MTBE; EPA8260)
- VOCs (GC/MS Method 8260B)

Entech completed all volatile organic analyses by October 31, 2006, which is in conformance with the 14-day required time limit for analysis. GGTR directed Entech to submit all analytical data in electronic deliverable format in accordance with the State Water Resources Control Board Assembly Bill 2886 for submission to the State's GeoTracker database system. The analytical results for this event as well as those reported during historical monitoring events at the site are presented in Tables 1 and 2. A copy of the Laboratory Certificate of Analysis, associated Chain of Custody Record, and Fluid-Level Monitoring and Well Purge/Sampling Data Sheets and Sampling Data Sheets are included in the Appendix.

Waste Management: The well purge and equipment wash and rinse water generated during the January 2006 monitoring event (@ 30 gallons) was transferred directly to a D.O.T.-approved, 55-gallon drum, appropriately labeled and temporarily stored onsite in a secure area. On November 7, 2006, Clearwater Environmental Management, Inc. pumped the purge and wash/rinse water from the drum and transported the Non RCRA Hazardous Waste Liquid under Uniform Waste Manifest No. 925192 to the Alviso Independent Oil facility. A copy of the liquid waste manifest is included in the appendix.

GeoTracker AB2886 Electronic Submittal: GGTR directed Entech to submit all analytical data in electronic deliverable format (EDF) via the Internet. GGTR uploaded the analytical data as well as the Fluid-Level Monitoring Data (GEO_WELL) to the State Water Resources Control Board's GeoTracker Database System pursuant to State

Assembly Bill 2886. GGTR also uploaded a copy of this report in Portable Data Format (PDF) to the GeoTracker Database. A copy of each associated GeoTracker AB2886 Upload Confirmation Form is included in the Appendix.

RESULTS

Groundwater Monitoring Results: The groundwater elevations measured relative to the top of well casing in MW-1 to MW-3 and PW-1 ranged between 186.65 (MW-3) and 186.87 (PW-1) feet above Mean Sea Level.

The groundwater levels measured in each well during the monitoring event were used to calculate an approximate groundwater gradient and flow direction across the site. The groundwater gradient data calculated for the October 26, 2006 monitoring event is shown on Figure 3, *Groundwater Gradient Data*. The table below presents the historical data on mean groundwater elevation, flow direction and gradient magnitude for the site since October 1999.

Mean Groundwater Elevation, Flow Direction, and Gradient

Measurement Date	Mean Groundwater Elevation (feet)	Groundwater Flow Direction	Gradient (feet / 100 feet)
10/07/99	39.87	11° west of south	0.67 foot / 100 feet
01/26/00	43.1	23° west of north	9.12 feet / 100 feet
10/25/00	39.96	40° east of north	0.64 foot / 100 feet
04/25/01	188.6	55° west of north	0.69 foot / 100 feet
07/10/01	186.26	4° east of north	0.5 foot / 100 feet
10/08/01	184.99	48° east of north	1.6 feet / 100 feet
01/07/02	191.63	52° west of south	2.3 feet / 100 feet
04/08/02	188.94	43° east of south	0.6 foot / 100 feet
07/09/02	186.63	51° west of north	0.7 foot / 100 feet
10/23/02	184.50	71° east of north	3.2 foot / 100 feet
10/15/03	185.14	28° east of north	1.0 foot / 100 feet
02/02/04	188.47	18° east of south	0.5 foot / 100 feet
04/23/04	189.00	77° east of south	0.5 foot / 100 feet
07/19/04	186.97	51° west of north	0.1 foot / 100 feet
10/22/04	186.49	82° west of north	2.9 foot / 100 feet
01/21/05	190.36	16° west of south	1.25 foot / 100 feet
04/14/05	190.01	13° east of south	1.10 foot / 100 feet
07/26/05	188.37	56° west of north	0.08 foot / 100 feet
10/14/05	186.38	27° west of north	0.2 foot / 100 feet
01/13/06	191.50	33° west of south	1.6 foot / 100 feet
04/14/06	193.3	37° west of south	2.5 foot / 100 feet
10/26/06	186.73	70° west of south	0.2 foot / 100 feet

The groundwater elevations are referenced to mean sea level (MSL) as determined by the April 26, 2001, Wellhead Elevation and Coordinate Survey conducted by Virgil Chavez Land Surveying. The benchmark for the survey was a City of Oakland benchmark being a cut square in the top of curb at the northeast corner of College Avenue and Miles Avenue (benchmark elevation is 179.075 feet MSL). The groundwater elevations prior to

April 26, 2001 are referenced to an arbitrary site-specific datum point (MW-1), with an assumed elevation of 50 feet.

Groundwater elevation data since April 2005 has incorporated data from the new piezometer PW-1. Beginning with the January 13 and April 14, 2006, measurements, the groundwater gradient and flow direction was calculated using the U.S. Environmental Protection Agency (EPA) On-Line Tools for Site Assessment Calculation – Gradient and Direction from Four or More Points. Groundwater elevations from the four onsite monitoring field points were utilized to calculate an overall site gradient and flow direction (See Appendix D - Groundwater Gradient Calculation Sheets). Figure 6 presents a Rose Diagram-Historical Hydraulic Gradients showing the historical hydraulic gradients (magnitude and direction) to date across the site. Based on review of Figure 5, the historic groundwater flow directions across the site measured during the October events since 1999, have fluctuated approximately 150°, ranging between 48° east of north to 70° west of south. The associated gradient magnitudes have fluctuated between 0.002 (October 2005/2006) to 0.032 (October 2002) foot per foot. The groundwater flow direction has generally been consistent across the site since January 2006, flowing towards MW-3 and College Avenue, and ranging between 33° and 70° west of south.

Again, GGTR calculated a flow direction and gradient to the north of the site at the former Chevron service station (5940 College Avenue) using Gettler-Ryan wells GR-MW1 and GR-MW2 and onsite well MW-1. This groundwater flow direction (81° west of north) is generally consistent with that of the April 2006 event (51° west of north), with flow directed further to the west. However, the gradient magnitude for the October 2006 gradient is again much steeper (0.022 ft/ft) than that measured for the subject property. The large difference in flow direction and gradient magnitude at the Gettler-Ryan site is again due to the lower groundwater elevations measured in the Gettler-Ryan wells. Both well surveys were based on the same benchmark and performed by Virgil Chavez Land Surveying.

To assess the historically fluctuating groundwater flow directions at the site, GGTR calculated the groundwater gradient for the January, April and October 2006 events using groundwater elevation data from both 1) MW-1 through MW-3 and 2) MW-1, MW-3, and PW-1. Both sets of data will again be calculated for the next monitoring event and compared to regional groundwater flow direction data (west-southwest) to assess potential consistency over a period of four consecutive quarters. The gradient and flow direction for the two sets of data measured during the October 2006 event were approximately 0.0008 ft/ft, directed 37° west of south, and 0.002 ft/ft directed 70° west of south, respectively. The associated groundwater gradient data calculated for the October 26, 2006 monitoring event (MW-1, MW-3, PW-1) is shown in Figure 3, *Groundwater Elevation Potentiometric Map*. The groundwater gradient data using all four subject property wells were calculated for comparison.

Results of Groundwater Sampling and Laboratory Analysis: Elevated concentrations of TPH as Gasoline as high as 34,000 ug/l, benzene as high as 12,000 ug/l, and other significant concentrations of VOCs, which continue to exceed applicable groundwater ESLs, were measured in MW-1 through MW-3 during this event. Elevated concentrations of TPH-G (2,800 ug/l) and benzene (61 ug/l) remain in Piezometer Well PW-1, and have fluctuated since April 2005 between 120 and 4,300 ug/l, and 2.3 and 93 ug/l, respectively. MTBE was detected in wells MW-2 and MW-3 only, at respective concentrations of 68 and 17 ug/l. Again, detectable concentrations of other gasoline-range VOCs (maximum concentrations of 180 ug/l n-propylbenzene and 2,400 ug/l 1,2,4-trimethylbenzene) were measured in MW-1 to MW-3, at levels relatively similar to those measured during previous events (Table 2). Tetrachloroethene (PCE) was again detected in PW-1 at 26 ug/l, which has decreased since the January 2006 event; Trichloroethene (6.2 ug/l) and cis-1,2-dichloroethene (32 ug/l) have increased in this well (historically high concentrations), signifying breakdown of the PCE constituent in groundwater.

Figure 7, Well Groundwater Concentration Map, illustrates the results of the October 2006 groundwater sample analytical results for the subject wells and Gettler-Ryan wells.

CONCLUSIONS / RECOMMENDATIONS

Groundwater monitoring and sampling of all site monitor wells / piezometer should be continued on a quarterly basis for analysis of TPH-G, BTEX, and MTBE by EPA Method 8260. If authorized by the ACHCSA, analysis for VOCs should be discontinued at the site, except for the groundwater sample collected in PW-1, which will further assess the presence of chlorinated solvents historically observed in this well. The top-of-casing elevation and coordinates for piezometer PW-1 should be professionally surveyed in relation to other site monitoring wells.

Additional recommendations from our August 29, 2006 Report of Additional Site Characterization & Groundwater Monitoring (January/April 2006) are as follows:

- Groundwater conditions have not been verified by an agency-approved groundwater monitoring well located to the south of the site along College Avenue. GGTR recommends the installation of an additional monitor well in the parking strip-sidewalk of College Avenue adjacent to the location of exploratory boring HB-6 and near the adjacent building at 5916-5920 College Avenue. The purpose of the well is to verify groundwater conditions in the down-gradient direction to the southwest of the site. The monitor well would also be used to estimate impact to groundwater beneath the adjacent building at 5916-5920 College Avenue.
- Five quarters of groundwater monitoring have revealed PCE contamination of groundwater at the location of piezometer PW-1. The PCE appears unrelated to the UST investigation at the site and may be related to an off-site source of PCE contamination. GGTR recommends two additional hand augur soil borings in the vicinity of the storm drain within the concrete-paved rear courtyard of the subject property. The purpose of the borings is to investigate for PCE contamination of

shallow soils within the courtyard as a potential source of PCE contamination. The soil sample collected from the boring would be analyzed for total petroleum hydrocarbons as gasoline and VOCs.

• GGTR recommends submitting a work plan to implement installation of the additional monitor well and two soil borings at the site. The results would be used to complete a Site Conceptual Model to assess all potential exposure pathways that may exist at the site and determine the risk, if any, to human health and the environment. Following completion of the Site Conceptual Model and review by the ACHCSA, GGTR recommends the preparation of a Corrective Action Plan and Feasibility Study for soil/groundwater abatement, if required by the ACHCSA.

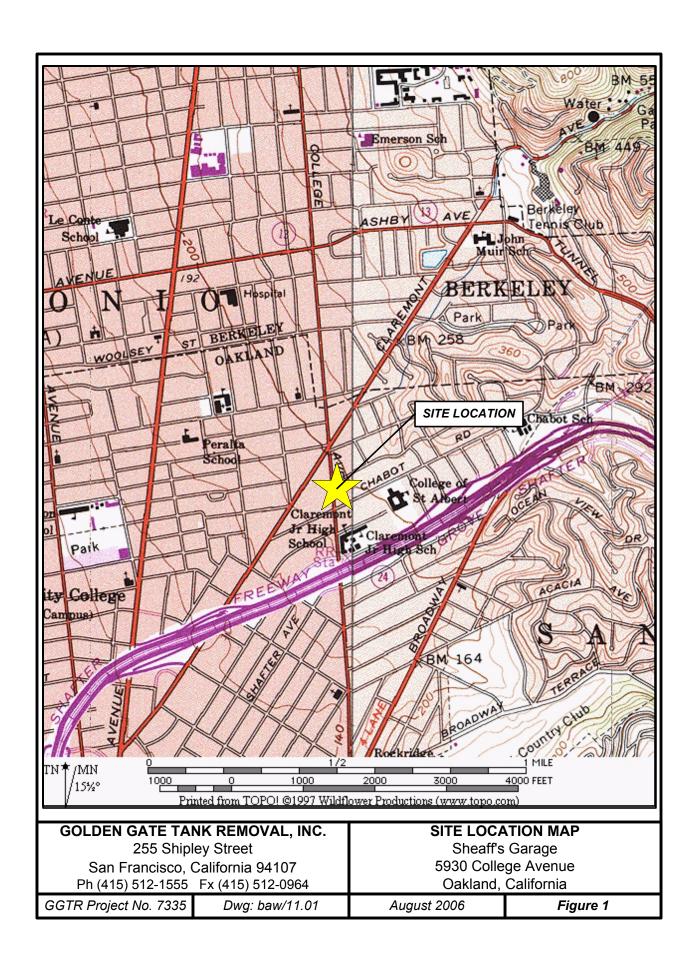
REPORT DISTRIBUTION

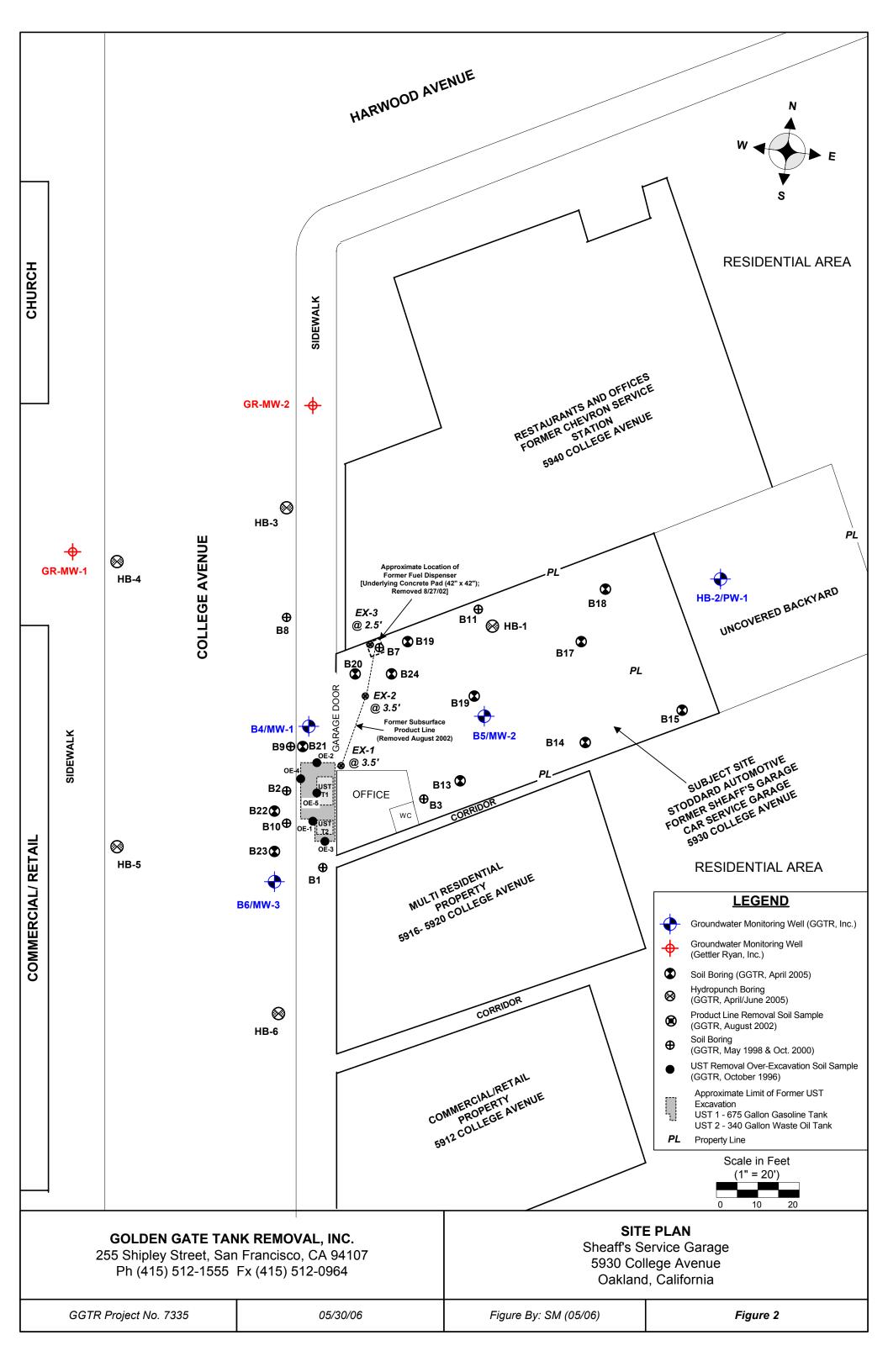
A copy of this quarterly groundwater monitoring report will be submitted to the following site representatives:

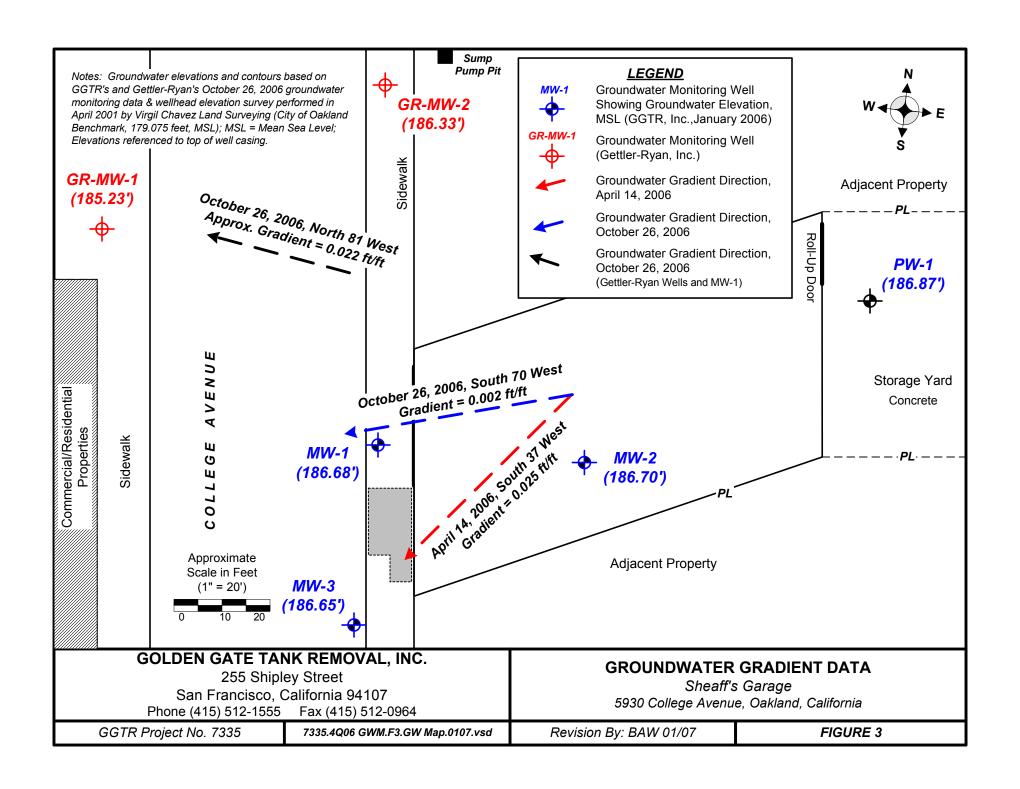
Alameda County Health Care Services Agency Environmental Health Services Environmental Protection 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 Attention: Mr. Don Hwang (1Electro

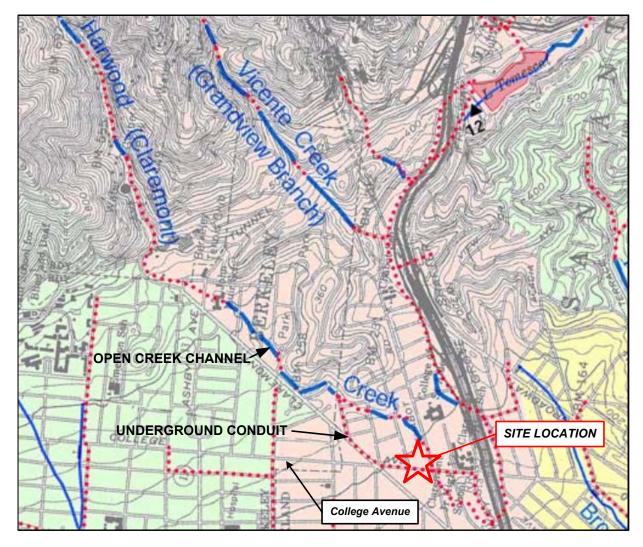
(1Electronic Copy via ACHCSA FTP Site)

Mr. Brian Sheaff William G. Sheaff Trust 1945 Parkside Drive Concord, CA 94519


(1 Copy; Bound)


LIMITATIONS


This report has been prepared in accordance with generally accepted environmental practices exercised by professional geologists, scientists, and engineers. No warranty, either expressed or implied, is made as to the professional advice presented herein. The findings contained in this report are based upon information contained in previous reports of corrective action activities performed at the subject property and based upon site conditions, as they existed at the time of the investigation, and are subject to change.


The scope of services conducted in execution of this phase of investigation may not be appropriate to satisfy the needs of other users and any use or reuse of this document and any of its information presented herein is at the sole risk of said user.

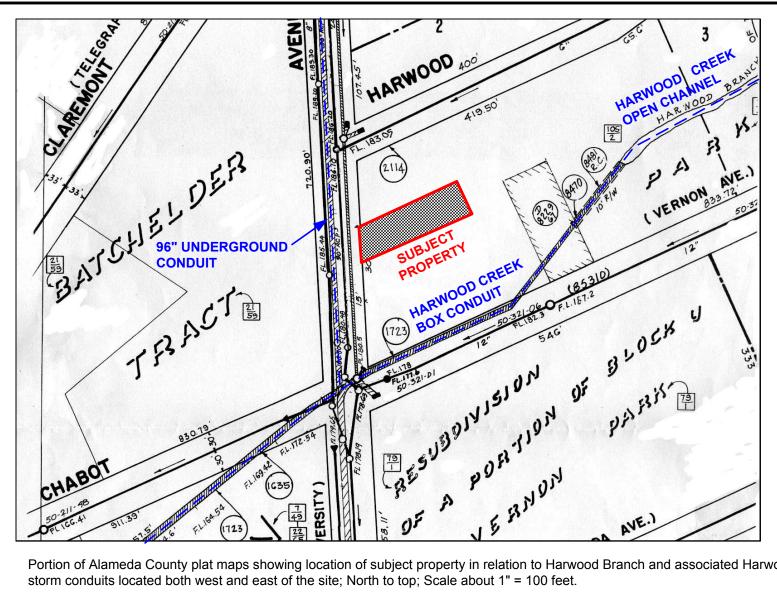
Golden Gate Tank Removal, Inc.

Portion of Guide to San Francisco Bay Area Creeks, Creek and Watershed Map of Oakland and Berkeley, rev. 2000, Janet M. Sowers, The Oakland Museum of California; North to left of map; Scale about 3 inches per mile.

GOLDEN GATE TANK REMOVAL, INC.

255 Shipley Street, San Francisco, CA 94107 Ph (415) 512-1555 Fx (415) 512-0964

REGIONAL MAP OF CREEKS & CONDUITS


Sheaff's Garage 5930 College Avenue, Oakland, California

GGTR Project No. 7335

Fn: 7335_Fig 5_ Creek Map_ASC_July 06.vsd

Drawn By: my/7-30-06

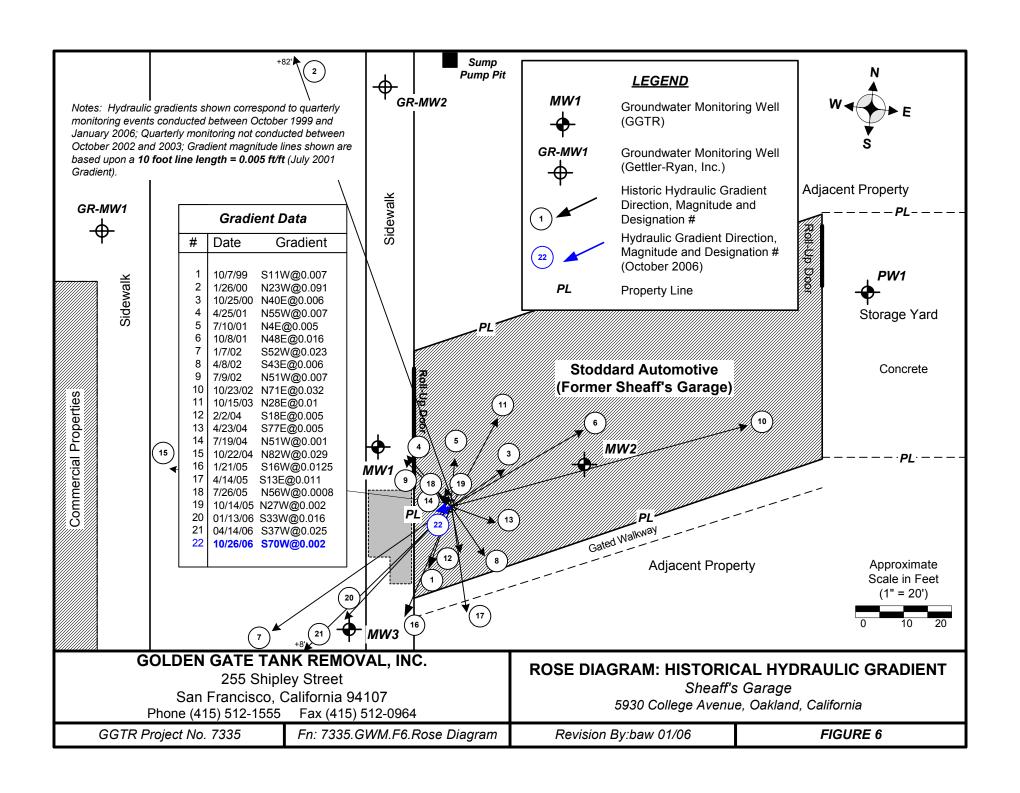
Figure 4

Portion of Alameda County plat maps showing location of subject property in relation to Harwood Branch and associated Harwood Creek storm conduits located both west and east of the site; North to top; Scale about 1" = 100 feet.

GOLDEN GATE TANK REMOVAL, INC.

255 Shipley Street, San Francisco, CA 94107 Ph (415) 512-1555 Fx (415) 512-0964

LOCAL MAP OF STORM CONDUITS


Sheaff's Garage 5930 College Avenue, Oakland, California

GGTR Project No. 7335

Fn: 7335 Fig 5 Creek Map ASC July 06.vsd

Drawn By: my/7-30-06

Figure 5

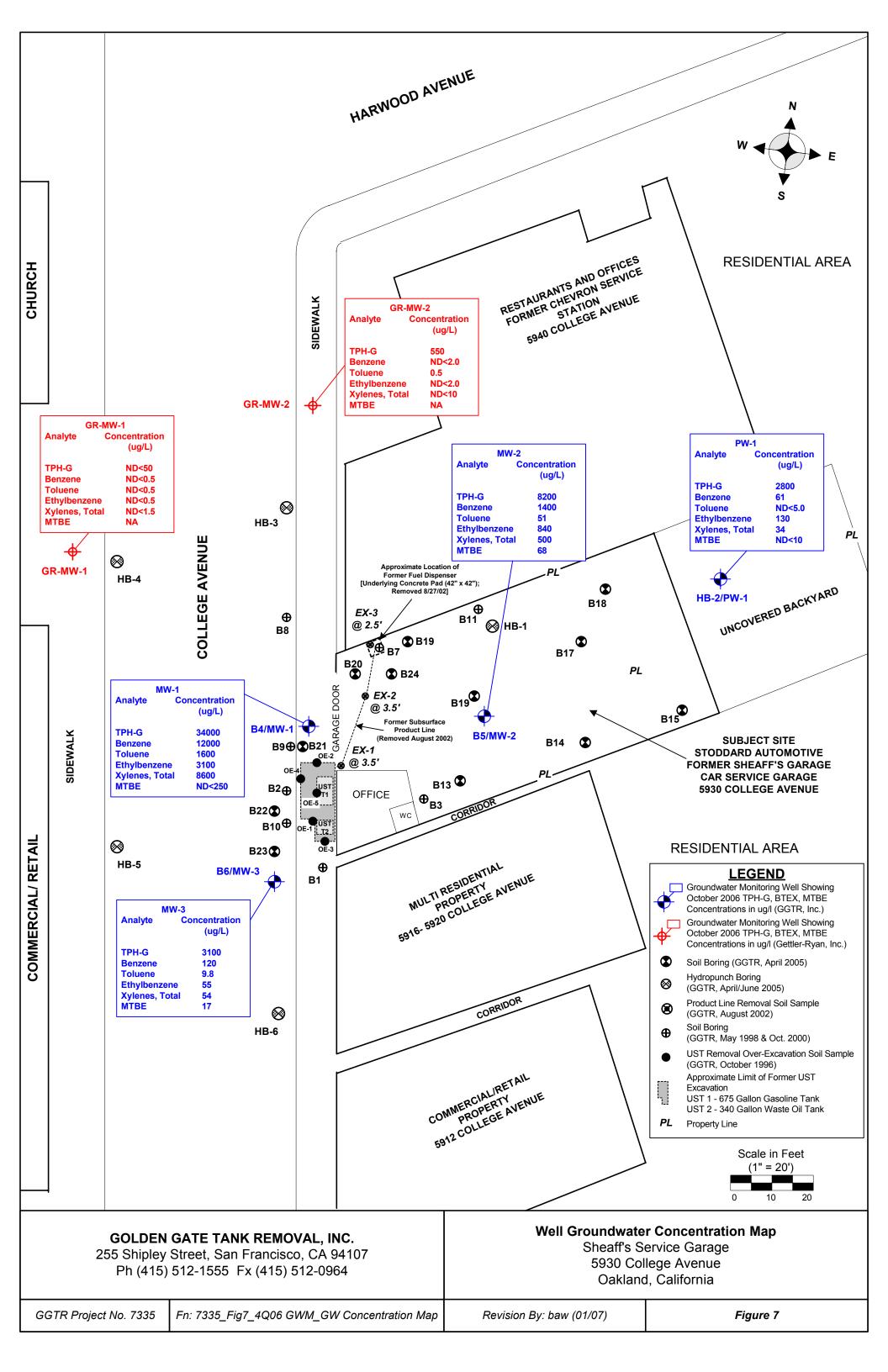


TABLE 1
Historical Results of Groundwater Sample Hydrocarbon Analysis & Fluid-Level Data
5930 College Avenue, Oakland, CA
MW-1

Well ID	Sample Date	Casing Elevation (MSL)	DTW (TOC)	Water Elevation (MSL)	Product Odor/ Sheen	TPH-G (ug/L)	TEPH (ug/L)	MTBE (ug/L)	BTEX (ug/L)
	6/1/1998	50.00 *	4.81	45.19	slight sheen	160000	ND	1900	28000 / 21000 / 3800 / 21000
	9/10/1998	50.00 *	7.5	42.5	odor	290000	ND	440	<50 / 25000 / 7100 / 32000
	10/7/1999	50.00 *	10.04	39.96	odor	85000	ND	1100	20000 / 13000 / 3800 / 17000
	1/26/2000	50.00 *	8.26	41.74	slight sheen	130000		470	25000 / 18000 / 4500 / 22000
	10/25/2000	50.00 *	10.1	39.9	odor	130000		1300	23000 / 12000 / 3900 / 18000
	2/2/2001	50.00 *	9.61	40.39	odor	128000		780	19000 / 11000 / 3800 / 18000
	4/25/2001	195.9	7.39	188.51	odor	120000		900	21000 / 13000 / 390 / 18000
	7/10/2001	195.9	9.72	186.18	odor	79000		660	15000 / 7800 / 3000 / 15000
	10/8/2001	195.9	10.88	185.02	sheen/ odor	112000		374	25300 / 11800 / 4280 / 20600
	1/7/2002	195.9	4.34	191.56	odor	96100		596	21100 / 13500 / 4160 / 21900
	4/8/2002	195.9	6.84	189.06	slight odor	111000		679	21200 / 13400 / 4230 / 21000
	7/9/2002	195.9	9.4	186.5	slight odor	110000		570	20300 / 13300 / 4060 / 19800
MW-1	10/23/2002	195.9	11.04	184.86	none	54100		1010 (1080)**	10800 / 3870 / 2320 / 9440
	10/15/2003	195.9	10.8	185.1	none	90700		724	17800 / 4740 / 3150 / 13900
	2/2/2004	195.9	7.35	188.55	none	108000		194	14200 / 7420 / 3450 / 19800
	4/23/2004	195.9	6.83	189.07	slight odor	49200		114	7910 / 1480 / 1810 / 10100
	7/19/2004	195.9	8.95	186.95	odor	63900		303	7260 /2270 / 2510 / 10100
	10/22/2004	195.9	10.15	185.75	None	80700		493 (296)**	13900 / 1670 / 3550 / 15200
	1/21/2005	195.9	5.45	190.45	odor	278000		271 (174)**	14700 / 25300 / 10800 / 73500
	4/14/2005	195.9	5.3	190.6	Odor /sheen	116000		366 (410)**	15100 / 7080 / 4220 / 20700
	7/26/2005	195.9	7.6	188.3	Odor	82000		ND<250	12000/4500/3300/14000
	10/14/2005	195.9	9.58	186.32	Odor/sheen	64000		ND<250	13000/5700/3400/16000
	1/13/2006	195.9	4.6	191.3	Odor/ sheen	49000		ND<250	12000/5300/3500/17000
	4/14/2006	195.9	3.08	192.82	Odor	51000		270	14000/5300/3500/17000
	10/26/2006	195.9	9.22	186.68	Odor	34000		ND<250	12000/1600/3100/8600
	(CRWQCB Febru	ary 2005 ESL			100	100	5	1.0 / 40 / 30 / 20

Table Notes Following

TABLE 1 (Cont.)

Historical Results of Groundwater Sample Hydrocarbon Analysis & Fluid-Level Data 5930 College Avenue, Oakland, CA

MW-2

Well ID	Sample Date	Casing Elevation (MSL)	DTW (TOC)	Water Elevation (MSL)	Product Odor/ Sheen	TPH-G (ug/L)	TEPH (ug/L)	MTBE (ug/L)	BTEX (ug/L)
	10/7/1999	51.42*	11.49	39.93	slight odor	18000	ND	490	3000 / 1700 / 1000 / 3900
	1/26/2000	51.42*	7.85	43.57	none	42000		560	9300 / 2200 / 2300 / 7700
	10/25/2000	51.42*	11.57	39.85	slight odor	31000		500	5500 / 370 / 1700 / 2600
	2/2/2001	51.42*	10.77	40.65	odor	36000		400	4300 / 530 / 1800 / 4500
	4/25/2001	197.28	8.52	188.76	odor	56000		460	6700 / 1700 / 2600 / 8200
	7/10/2001	197.28	11.05	186.23	odor	39000		180	6200 / 730 / 2300 / 6100
	10/8/2001	197.28	12.79	184.49	sheen odor	40700		6460	6310 / 399 / 2100 / 5320
	1/7/2002	197.28	4.92	192.36	odor	59600		366**	10300 / 3250 / 4180 / 14400
	4/8/2002	197.28	8.4	188.88	slight odor	66700		583**	10200 / 2670 / 3840 / 13200
	7/9/2002	197.28	10.55	186.73	slight odor	37100		303 (298)**	5340 / 890 / 2110 / 6920
	10/23/2002	197.28	13.85	183.43	none	13300		322 (360)**	2420 / 216 / 922 / 1470
	10/15/2003	197.28	12.38	184.9	none	11300		264 (322)**	2660 / 51 / 1180 / 1220
MW-2	2/2/2004	197.28	8.8	188.48	none	21700		168 (200)**	2130 / 51 / 1030 / 2060
	4/23/2004	197.28	8.4	188.88	Slight odor	30400		112 (203)**	3570 / 322 / 1620 / 4140
	7/19/2004	197.28	10.3	186.98	odor	28300		283 (373)**	2540 / 239 /1320 / 2300
	10/22/2004	197.28	10.25	187.03	Mod odor	13500		273 (229)**	1790 / 54 / 892 / 915
	1/21/2005	197.28	6.65	190.63	Mod odor	278000		161 (163)**	5980 / 1030 / 2890 / 9070
	4/14/2005	197.28	8.7	188.58	None	46100		155 (150)**	5170 / 787 / 2530 / 6010
	7/26/2005	197.28	8.95	188.33	Mod odor	41000		ND (ND)**	5600/550/2600/4600
	10/14/2005	197.28	10.92	186.36	Odor/ sheen	13000		130	2900/100/1300/1200
	1/13/2006	197.28	5.48	191.8	Odor	20000		ND<100	4900/490/2400/4200
	4/14/2006	197.28	3.61	193.67	Odor	21000		ND<100	4000/740/2300/5100
	10/26/2006	197.28	10.58	186.7	Odor	8200		68	1400/51/840/500
	(CRWQCB Febru	ary 2005 ESL		_	100	100	5	1.0 / 40 / 30 / 20

Table Notes Following

TABLE 1 (Cont.)

Historical Results of Groundwater Sample Hydrocarbon Analysis & Fluid-Level Data 5930 College Avenue, Oakland, CA

MW-3

Well ID	Sample Date	Casing Elevation (MSL)	DTW (TOC)	Water Elevation (MSL)	Product Odor/ Sheen	TPH-G (ug/L)	TEPH (ug/L)	MTBE (ug/L)	BTEX (ug/L)
	10/7/1999	49.39*	9.67	39.72	none	6600	ND	390	310 / 110 / 430 / 1000
	1/26/2000	49.39*	5.4	43.99	none	3300		40	110 / 8 / 100 / 32
	10/25/2000	49.39*	9.24	40.15	slight odor	4500		ND	100 / 2 / 120 / 130
	2/2/2001	49.39*	8.73	40.66	slight odor	2900		35	35 / 3 / 160 / 298
	4/25/2001	195.22	6.61	188.61	slight odor	8400		56	260 / 33 / 290 / 510
	7/10/2001	195.22	8.85	186.37	slight odor	12000		35	39 / 10 / 690 / 1600
	10/8/2001	195.22	9.75	185.47	sheen/ odor	4913		52	108 / 4 / 99 / 133
	1/7/2002	195.22	4.25	190.97	sheen/ odor	7260		81.7**	723 / 138 / 492 / 887
	4/8/2002	195.22	6.33	188.89	odor	11700		ND**	540 / 108 / 706 / 1710
	7/9/2002	195.22	8.56	186.66	odor	2320		28.3 (20)**	37.1 / 4.7 / 98.5 / 187
2000	10/23/2002	195.22	10.02	185.2	sheen/ odor	2830		ND (ND)**	46.8 / 4.7 / 43.6 / 65.5
MW-3	10/15/2003	195.22	9.8	185.42	sheen/ odor	3040		ND (ND)**	91.3 / 8.4 / 69.9 / 148
	2/2/2004	195.22	6.85	188.37	Sheen/ odor	5140		ND (ND)**	126 / 8.7 / 134 / 238
	4/23/2004	195.22	6.17	189.05	none	7210		ND (ND)**	227 / 39.5 / 448 / 879
	7/19/2004	195.22	8.25	186.97	Slight odor	9860		ND (ND)**	20.4 / 3.2 / 30.6 / 117
	10/22/2004	195.22	9.25	185.97	None	7420		96 (21)**	152 / 12.8 / 267 / 480
	1/21/2005	195.22	5.22	190	Slight odor	2420		ND (ND)**	111 / 11.4 / 139 / 265
	4/14/2005	195.22	6.64	188.58	Odor / sheen	5130		54 (41.4)**	357 / 19.4 / 287 / 510
	7/26/2005	195.22	6.9	188.32	none	9800		ND (21)**	200/23/220/360
	10/14/2005	195.22	8.83	186.39	Odor/ sheen	6100		ND	76/19/170/350
	1/13/2006	195.22	4.61	190.61	Odor	3900		24	380/17/230/300
	4/14/2006	195.22	3.41	191.81	Odor	5000		69	760/44/230/190
	10/26/2006	195.22	8.57	186.65	Odor	3100		17	120/9.8/55/54
		CRWQCB Febru	ary 2005 ESL			100	100	5	1.0 / 40 / 30 / 20

Table Notes Following

TABLE 1 (Cont.)

Historical Results of Groundwater Sample Hydrocarbon Analysis & Fluid-Level Data 5930 College Avenue, Oakland, CA

PW-1

Well ID	Sample Date	Casing Elevation (MSL)	DTW (TOC)	Water Elevation (MSL)	Product Odor/ Sheen	TPH-G (ug/L)	TEPH (ug/L)	MTBE (ug/L)	BTEX (ug/L)
	4/14/2005	197.17	6.4	190.77	none	3360	-	ND (ND**)	62.8 / 6.7 / 79.5/ 317
	7/26/2005	197.17	8.63	188.54	none	1300	-	ND (ND**)	22/ND/48/110
PW-1	10/14/2005	197.17	10.71	186.46	none	4300		ND	93/1.2/100/140
I W-1	1/13/2006	197.17	4.87	192.3	none	450	-	ND<2.0	10/ND/37/72
	4/14/2006	197.17	2.27	194.9	Odor	120	-	ND<2.0	2.3/ND<1.0/3.5/9.3
	10/26/2006	197.17	10.3	186.87	Odor	2800	-	ND<10	61/ND<5.0/130/34
	(CRWQCB Febru	ary 2005 ESL			100	100	5	1.0 / 40 / 30 / 20

TABLE 3A NOTES:

TOC - top of well casing (north side)

DTW - depth to water relative to TOC

ug/L - micrograms per liter (equivalent to parts per billion)

TPH-G - Total Petroleum Hydrocarbons as Gasoline (SW8020F)

TEPH - Total Extractable Petroleum Hydrocarbons [EPA Methods 5030/8015M]

Total VOCs - Total Volatile Organic Compounds by EPA Method 8260

MTBE - Methyl Tertiary Butyl Ether (EPA Method 8260)

BTEX - Benzene / Toluene / Ethylbenzene / Total Xylenes (SW8020F)

MSL - Mean Sea Level; TB = Trip Blank (7335-TB)

ND - not detected above laboratory reporting limit

NC - no criteria established; NA – not applicable

-- - not analyzed for this constituent

fbg - feet below grade surface

- * Arbitrary datum point with assumed elevation of 50 feet used prior to MSL survey on April 26, 2001
- ** Concentration confirmed by EPA Method 8260

CRWQCB/ESL = California Regional Water Quality Control Board's Interim Final - February 2005, Tier 1 Environmental Screening Level for groundwater that is a potential source of drinking water

TABLE 2 2004 -2006 Groundwater VOC Sample Results Sheaff's Garage, 5930 College Avenue, Oakland, CA

MW-1

Well ID	Sample Date	IPB	n-PB	1,3,5-TMB	1,2,4-TMB	Sec-BB	n-BB	Napthalene	TCE	MC	cis-1,2-DCE	Tri-CFM	PCE
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
	2/2/2004	116	342	701	2690	ND<10	66	992	ND<5	ND<50	ND<10	ND<10	ND<5
	4/23/2004	ND<100	180	417	1560	ND<100	ND<100	559	ND<10	1210	ND<100	ND<100	ND<50
	7/19/2004	89	239	507	1890	ND<20	ND<20	801	ND<10	ND<100	ND<20	ND<20	ND<10
	10/22/2004	ND<100	264	520	1990	ND<100	ND<100	700	ND<50	ND<500	ND<100	ND<100	ND<50
	1/21/2005	ND<200	271	525	2080	ND<200	ND<200	662	ND<100	ND<5000	ND<200	ND<200	ND<100
MW-1	4/14/2005	141	437	882	3450	ND	ND	1220	ND<50	ND<2500	ND<100	ND<100	ND<50
	7/26/2005	ND<500	ND<2500	ND<2500	ND<2500	ND<2500	ND<2500	ND<2500	ND<250	ND<2500	ND<250	ND<250	ND<250
	10/14//05	ND<250	ND<1200	ND<1200	2700	ND<1200	ND<1200	ND<1200	ND<120	ND<5000	ND<120	ND<120	ND<120
	1/13/2006	ND<250	ND<1200	ND<1200	2100	ND<1200	ND<1200	ND<1200	ND<120	ND<5000	ND<120	ND<120	ND<120
	4/14/2006	ND<250	ND<1200	ND<1200	2400	ND<1200	ND<1200	ND<1200	ND<120	ND<5000	ND<120	ND<120	ND<120
	10/26/2006	ND<250	ND<1200	ND<1200	2000	ND<1200	ND<1200	ND<1200	ND<120	ND<5000	ND<120	ND<120	ND<120
CR	WQCB ESL	NC	NC	NC	NC	NC	NC	17	5	5	6	NC	5

MW-2

Well ID	Sample Date	IPB	n-PB	1,3,5-TMB	1,2,4-TMB	Sec-BB	n-BB	Napthalene	TCE	MC	cis-1,2-DCE	Tri-CFM	PCE
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
	2/2/2004	73	186	306	1090	ND<10	66	413	ND<5	ND<50	ND<10	ND<10	ND<5
	4/23/2004	ND<100	215	469	1570	ND<100	ND<100	568	ND<5	ND<50	ND<100	ND<100	ND<50
	7/19/2004	73	173	316	1070	ND<10	74	475	ND<5	ND<50	ND<10	ND<10	ND<5
	10/22/2004	49	132	80	257	ND<10	44	227	ND<50	ND<50	ND<10	ND<10	ND<5
	1/21/2005	ND<100	239	371	1500	ND<100	ND<100	697	ND<50	ND<2500	ND<100	ND<100	ND<50
MW-2	4/14/2005	139	293	445	2390	ND	71	1490	ND<5	ND<250	ND<10	ND<10	ND<5
	7/26/2005	ND<500	ND<2500	ND<2500	ND<2500	ND<2500	ND<2500	ND<2500	ND<250	ND<2500	ND<250	ND<250	ND<250
	10/14//05	ND<100	ND<500	ND<500	770	ND<500	ND<500	ND<500	ND<50	ND<2000	ND<50	ND<50	ND<50
	1/13/2006	ND<100	ND<500	ND<500	1200	ND<500	ND<500	ND<500	ND<50	ND<2000	ND<50	ND<50	ND<50
	4/14/2006	ND<100	ND<500	ND<500	1200	ND<500	ND<500	680	ND<50	ND<2000	ND<50	ND<50	ND<50
	10/26/2006	ND<25	180	ND<120	320	ND<120	ND<120	210	ND<12	ND<500	ND<12	ND<12	ND<12
CR	WQCB ESL	NC	NC	NC	NC	NC	NC	17	5	5	6	NC	5

Table & Notes Following

TABLE 2 (Cont.)

2004 -2006 Groundwater VOC Sample Results Sheaff's Garage, 5930 College Avenue, Oakland, CA

MW-3

Well ID	Sample Date	IPB	n-PB	1,3,5-TMB	1,2,4-TMB	Sec-BB	n-BB	Napthalene	TCE	MC	cis-1,2-DCE	Tri-CFM	PCE
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
	2/2/2004	23	83	22	68	ND<1	38	33	ND<0.5	ND<5	ND<1	ND<1	ND<0.5
	4/23/2004	29	82	60	337	ND<1	24	160	ND<0.5	ND<5	ND<1	ND<1	ND<0.5
	7/19/2004	27	105	48	204	ND<1	34	16	ND<0.5	ND<5	ND<1	ND<1	ND<0.5
	10/22/2004	55	182	192	574	ND<10	42	76	ND<5	ND<50	ND<10	ND<10	ND<5
	1/21/2005	25	88	23	96	ND<1	15	43	ND<0.5	ND<25	ND<1	ND<1	ND<0.5
MW-3	4/14/2005	45	28	85	302	ND<10	28	121	ND<0.5	ND25	ND<1	ND<1	ND<0.5
	7/26/2005	ND<10	ND<50	120	250	ND<50	ND<50	60	ND<5	ND<50	ND<5	ND<5	ND<5
	10/14//05	ND<20	ND<100	ND<100	210	ND<100	ND<100	ND<100	ND<10	ND<400	ND<10	ND<10	ND<10
	1/13/2006	ND<10	120	ND<50	120	ND<50	ND<50	ND<50	ND<5	ND<200	ND<5	ND<5	ND<5
	4/14/2006	ND<20	170	ND<100	120	ND<100	ND<100	100	ND<10	ND<400	ND<10	ND<10	ND<10
	10/26/2006	ND<10	82	ND<50	62	ND<50	ND<50	ND<50	ND<5.0	ND<200	ND<5.0	ND<5.0	ND<5.0
CR.	WQCB ESL	NC	NC	NC	NC	NC	NC	17	5	5	6	NC	5

PW-1

Well ID	Sample Date	IPB	n-PB	1,3,5-TMB	1,2,4-TMB	Sec-BB	n-BB	Napthalene	TCE	MC	cis-1,2-DCE	Tri-CFM	PCE
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
	4/14/2005	11	22	110	100	ND,10	ND<10	43	3.3	ND<25	12	ND<1	84.9
	7/26/2005	7.3	17	37	100	ND<10	ND<10	43	ND<1	ND<10	7	1.5	48
PW-1	10/14//05	28	72	67	120	12	17	43	4.1	ND<40	29	ND<1	25
1 44-1	1/13/2006	ND<20	ND<10	ND<10	37	ND<10	ND<10	ND<10	1.4	ND<40	5	ND<1	95
	4/14/2006	ND<2	ND<10	ND<10	ND<10	ND<10	ND<10	ND<10	1.1	ND<40	2.8	ND<1	68
	10/26/2006	ND<10	ND<50	ND<50	ND<50	ND<50	ND<50	ND<50	6.2	ND<200	32	ND<5.0	26
CR'	WQCB ESL	NC	NC	NC	NC	NC	NC	17	5	5	6	NC	5

TABLE 2 NOTES:

IPB = Isopropylbenzene

n-PB = n-Propylbenzene

1,3,5-TMB = 1,3,5-Trimethylbenzene

1,2,4-TMB = 1,2,4-Trimethylbenzene

sec-BB = sec-Butylbenzene

n-BB = n-Butylbenzene

TCE = Trichloroethene

MC = Methylene Chloride

cis-1,2-DCE = cis-1,2-Dichloroethene

Tri-CFM = Trichloroflouromethane

PCE = Tetrachloroethene

ug/l = micrograms per liter

ND = Not detected above laboratory reporting limit

NC = No Criteria Listed

CRWQCB/ESL = California Regional Water Quality Control Board's Interim Final - February 2005, Tier 1 Environmental Screening Level for groundwater that is a potential source of drinking water

APPENDIX

LABORATORY CERTIFICATES OF ANALYSIS
CHAIN OF CUSTODY FORM
FLUID-LEVEL MONITORING DATA SHEET
WELL PURGING/SAMPLING DATA SHEETS
LIQUID WASTE MANIFEST
EPA ON-LINE GRADIENT CALCULATION SHEETS
GEOTRACKER AB2886 UPLOAD CONFIRMATION FORMS

3334 Victor Court, Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Brent Wheeler Lab Certificate Number: 52130

Golden Gate Tank Removal Issued: 10/31/2006

255 Shipley Street

San Francisco, CA 94107

Global ID: T0600102112

Project Name: 7335 Sheaff's Garage

Project Location: 5930 College Ave/Oakland, CA

Certificate of Analysis - Final Report

On October 27, 2006, samples were received under chain of custody for analysis. Entech analyzes samples "as received" unless otherwise noted. The following results are included:

Matrix Test / Comments

Liquid Electronic Deliverables for Geotracker

TPH-Purgeable: GC/MS

VOCs: EPA 5030C / EPA 8260B for Groundwater and Water - EPA 624 for Wastewater

Entech Analytical Labs, Inc. is certified for environmental analyses by the State of California (#2346). If you have any questions regarding this report, please call us at 408-588-0200 ext. 225.

tun Menshy

Sincerely,

Laurie Glantz-Murphy Laboratory Director

3334 Victor Court, Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Golden Gate Tank Removal 255 Shipley Street San Francisco, CA 94107

Project Location: 5930 College Ave/Oakland,CA **Attn: Brent Wheeler** GlobalID: T0600102112

Certificate of Analysis - Data Report

Samples Received: 10/27/2006 Sample Collected by: client

Project Name: 7335 Sheaff's Garage

Lab#: 52130-001 Sample ID: PW-1 Matrix: Liquid Sample Date: 10/26/2006 11:05 AM

1,1,2-Terachloroethane	VOCs: EPA 5030C / EPA 8260B	for Groundwater and '	Water -	EPA 624 for Waste	water				
1,1,1-Trichloroethane	Parameter	Result Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
I.I.I. Trickilorochane	1,1,1,2-Tetrachloroethane	ND	10	5.0	μg/L	N/A	N/A	10/30/2006	WM1061030
1,1,2-Trichloroethane	1,1,1-Trichloroethane	ND	10	5.0		N/A	N/A	10/30/2006	WM1061030
1,1-Dichloroethane	1,1,2,2-Tetrachloroethane	ND	10	5.0	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
1,1-Dichloroethene	1,1,2-Trichloroethane	ND	10	5.0	\mug/L	N/A	N/A	10/30/2006	WM1061030
1.1-Dichloropropene ND	1,1-Dichloroethane	ND	10	5.0	\mug/L	N/A	N/A	10/30/2006	WM1061030
1.2.3-Trinchlorobenzene ND 10 50 μg/L N/A N/A 10/30/2006 WMII 1.2.3-Trinchloropropane ND 10 50 μg/L N/A N/A 10/30/2006 WMII 1.2.4-Trinchloropropane ND 10 50 μg/L N/A N/A 10/30/2006 WMII 1.2.4-Trinchloropropane ND 10 50 μg/L N/A N/A 10/30/2006 WMII 1.2.1-Diromo-3-Chloropropane ND 10 50 μg/L N/A N/A 10/30/2006 WMII 1.2.1-Diromo-3-Chloropropane ND 10 5.0 μg/L N/A N/A 10/30/2006 WMII 1.2-Diromo-3-Chloropropane ND 10 5.0 μg/L N/A N/A 10/30/2006 WMII 1.2-Dirohorobenzene ND 10 5.0 μg/L N/A N/A 10/30/2006 WMII 1.2-Dirohorobenzene ND 10 5.0 μg/L N/A N/A 10/30/2006 WMII 1.2-Dirohorobenzene ND 10 5.0 μg/L N/A N/A 10/30/2006 WMII 1.3-Dirohorobenzene ND 10 5.0 μg/L N/A N/A 10/30/2006 WMII 1.3-Dirohorobenzene ND 10 5.0 μg/L N/A N/A 10/30/2006 WMII 1.3-Dirohorobenzene ND 10 5.0 μg/L N/A N/A 10/30/2006 WMII 1.3-Dirohorobenzene ND 10 5.0 μg/L N/A N/A 10/30/2006 WMII 1.4-Dirohorobenzene ND 10 5.0 μg/L N/A N/A 10/30/2006 WMII 1.4-Dirohorobenzene ND 10 5.0 μg/L N/A N/A 10/30/2006 WMII 1.4-Dirohorobenzene ND 10 5.0 μg/L N/A N/A 10/30/2006 WMII 1.4-Dirohorobenzene ND 10 5.0 μg/L N/A N/A 10/30/2006 WMII 1.4-Dirohorobenzene ND 10 5.0 μg/L N/A N/A 10/30/2006 WMII 1.4-Dirohorobenzene ND 10 5.0 μg/L N/A N/A 10/30/2006 WMII 1.4-Dirohorobenzene ND 10 5.0 μg/L N/A N/A 10/30/2006 WMII 1.4-Dirohorobenzene ND 10 5.0 μg/L N/A N/A 10/30/2006 WMII 1.4-Dirohorobenzene ND 10 5.0 μg/L N/A N/A 10/30/2006 WMII 1.4-Dirohorobenzene ND 10 5.0 μg/L N/A N/A 10/30/2006 WMII 1.4-Dirohorobenzene ND 10 5.0 μg/L N/A N/A 10/30/2006 WMII 1.4-Dirohorobenzene ND 10 5.0 μg/L N/A N/A 10/30/2006 WMII 1.4-D	1,1-Dichloroethene	ND	10	5.0	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
1,2,3-Trichloropropane	1,1-Dichloropropene	ND	10	5.0	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
1.2,4-Triehlorobenzene ND 10 50 μg/L N/A N/A 10/30/2006 WMI0 1.2,4-Trimethylbenzene ND 10 50 μg/L N/A N/A 10/30/2006 WMI0 1.2-Dibromo-3-Chloropropane ND 10 50 μg/L N/A N/A 10/30/2006 WMI0 1.2-Dibromo-3-Chloropropane ND 10 5.0 μg/L N/A N/A 10/30/2006 WMI0 1.2-Dichlorobenzene ND 10 5.0 μg/L N/A N/A 10/30/2006 WMI0 1.2-Dichloropenzene ND 10 5.0 μg/L N/A N/A 10/30/2006 WMI0 1.2-Dichloropropane ND 10 5.0 μg/L N/A N/A 10/30/2006 WMI0 1.3-Dichloropropane ND 10 5.0 μg/L N/A N/A 10/30/2006 WMI0 1.3-S-Trimethylbenzene ND 10 5.0 μg/L N/A N/A 10/30/2006 WMI0 1.3-Dichloropropane ND 10 5.0 μg/L N/A N/A 10/30/2006 WMI0 1.3-Dichloropropane ND 10 5.0 μg/L N/A N/A 10/30/2006 WMI0 1.3-Dichloropropane ND 10 5.0 μg/L N/A N/A 10/30/2006 WMI0 1.4-Dichlorobenzene ND 10 5.0 μg/L N/A N/A 10/30/2006 WMI0 1.4-Dichloropropane ND 10 5.0 μg/L N/A N/A 10/30/2006 WMI0 1.4-Dichloropropane ND 10 5.0 μg/L N/A N/A 10/30/2006 WMI0 1.4-Dichloropropane ND 10 5.0 μg/L N/A N/A 10/30/2006 WMI0 1.4-Dichloropropane ND 10 5.0 μg/L N/A N/A 10/30/2006 WMI0 1.4-Dichloropropane ND 10 5.0 μg/L N/A N/A 10/30/2006 WMI0 2-Dultonoropane ND 10 5.0 μg/L N/A N/A 10/30/2006 WMI0 2-Chlorotoluene ND 10 50 μg/L N/A N/A 10/30/2006 WMI0 4-Chlorotoluene ND 10 50 μg/L N/A N/A 10/30/2006 WMI0 4-Chlorotoluene ND 10 50 μg/L N/A N/A 10/30/2006 WMI0 4-Chlorotoluene ND 10 50 μg/L N/A N/A 10/30/2006 WMI0 4-Chlorotoluene ND 10 50 μg/L N/A N/A 10/30/2006 WMI0 4-Chlorotoluene ND 10 50 μg/L N/A N/A 10/30/2006 WMI0 4-Chlorotoluene ND 10 50 μg/L N/A N/A 10/30/2006 WMI0 4-Chlorotoluene ND 10 50 μg/L N/A N/A 10/30/	1,2,3-Trichlorobenzene	ND	10	50	\mug/L	N/A	N/A	10/30/2006	WM1061030
1.2,4-Trimethylbenzene ND 10 50 μg/L N/A N/A 10/30/2006 WM10 1.2-Dibromo-3-Chloropropane ND 10 50 μg/L N/A N/A 10/30/2006 WM10 1.2-Dibromoethane (EDB) ND 10 5.0 μg/L N/A N/A 10/30/2006 WM10 1.2-Dichloroperane ND 10 5.0 μg/L N/A N/A 10/30/2006 WM10 1.2-Dichloropropane ND 10 5.0 μg/L N/A N/A 10/30/2006 WM10 1.3-Dichloropropane ND 10 5.0 μg/L N/A N/A 10/30/2006 WM11 1.3-Dichlorobenzene ND 10 5.0 μg/L N/A N/A 10/30/2006 WM11 1.3-Dichlorobenzene ND 10 5.0 μg/L N/A N/A 10/30/2006 WM11 1.4-Dicknobenzene ND 10 5.0 μg/L N/A N/A 10	1,2,3-Trichloropropane	ND	10	50	\mug/L	N/A	N/A	10/30/2006	WM1061030
1.2-Dibromo-3-Chloropropane ND 10 50 μg/L N/A N/A 10/30/2006 WM16 1.2-Dibromoethane (EDB) ND 10 5.0 μg/L N/A N/A 10/30/2006 WM16 1.2-Dichloroperane ND 10 5.0 μg/L N/A N/A 10/30/2006 WM16 1.2-Dichloropropane ND 10 5.0 μg/L N/A N/A 10/30/2006 WM16 1.3-S-Trimethylbenzene ND 10 5.0 μg/L N/A N/A 10/30/2006 WM16 1.3-Dichloropropane ND 10 5.0 μg/L N/A N/A 10/30/2006 WM16 1.3-Dichloropropane ND 10 5.0 μg/L N/A N/A 10/30/2006 WM16 1.4-Dioxane ND 10 5.0 μg/L N/A N/A 10/30/2006 WM16 2-Dichloropropane ND 10 5.0 μg/L N/A N/A 10/30/200	1,2,4-Trichlorobenzene	ND	10		\mug/L	N/A	N/A	10/30/2006	WM1061030
1.2-Dibromoethane (EDB)	1,2,4-Trimethylbenzene	ND	10		\mug/L	N/A	N/A	10/30/2006	WM1061030
1,2-Dichlorobenzene	1,2-Dibromo-3-Chloropropane	ND	10	50	\mug/L	N/A	N/A	10/30/2006	WM1061030
1,2-Dichloroethane ND 10 5.0 μg/L N/A N/A 10/30/2006 WM10 1,2-Dichloropropane ND 10 5.0 μg/L N/A N/A 10/30/2006 WM10 1,3-5-Trimethylbenzene ND 10 5.0 μg/L N/A N/A 10/30/2006 WM10 1,3-Dichloropenzene ND 10 5.0 μg/L N/A N/A 10/30/2006 WM10 1,4-Dichlorobenzene ND 10 5.0 μg/L N/A N/A 10/30/2006 WM10 1,4-Dioxane ND 10 5.0 μg/L N/A N/A 10/30/2006 WM10 2,-Dichloropropane ND 10 5.0 μg/L N/A N/A 10/30/2006 WM10 2,-Dichloropropane ND 10 5.0 μg/L N/A N/A 10/30/2006 WM10 2,-Dichloropropane ND 10 5.0 μg/L N/A N/A 10/30/2006	1,2-Dibromoethane (EDB)				$\mu g/L$			10/30/2006	WM1061030
1,2-Dichloropropane	1,2-Dichlorobenzene				$\mu g/L$			10/30/2006	WM1061030
1,3,5-Trimethylbenzene ND 10 50 μg/L N/A N/A 10/30/2006 WM16 1,3-Dichlorobenzene ND 10 5.0 μg/L N/A N/A 10/30/2006 WM16 1,3-Dichloropropane ND 10 5.0 μg/L N/A N/A 10/30/2006 WM16 1,4-Dichlorobenzene ND 10 5.0 μg/L N/A N/A 10/30/2006 WM16 1,4-Dichlorobenzene ND 10 5.0 μg/L N/A N/A 10/30/2006 WM16 1,4-Dichlorobropropane ND 10 5.0 μg/L N/A N/A 10/30/2006 WM16 2,2-Dichloropropane ND 10 5.0 μg/L N/A N/A 10/30/2006 WM16 2,2-Dichloropropane ND 10 5.0 μg/L N/A N/A 10/30/2006 WM16 2,-Dichloropropane ND 10 5.0 μg/L N/A N/A 10/30/20	*							10/30/2006	WM1061030
1,3-Dichlorobenzene ND 10 5.0 μg/L N/A N/A 10/30/2006 WM10 1,3-Dichloropropane ND 10 5.0 μg/L N/A N/A 10/30/2006 WM10 1,4-Dichlorobenzene ND 10 5.0 μg/L N/A N/A 10/30/2006 WM10 1,4-Dioxane ND 10 5.0 μg/L N/A N/A 10/30/2006 WM10 2,2-Dichloropropane ND 10 5.0 μg/L N/A N/A 10/30/2006 WM10 2,2-Dichloropropane ND 10 200 μg/L N/A N/A 10/30/2006 WM10 2-Butanone (MEK) ND 10 200 μg/L N/A N/A 10/30/2006 WM10 2-Chlorocluene ND 10 50 μg/L N/A N/A 10/30/2006 WM10 4-Chlorotoluene ND 10 50 μg/L N/A N/A N/A 10/30/2006 <td>• •</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>WM1061030</td>	• •								WM1061030
1,3-Dichloropropane ND 10 5.0 μg/L N/A N/A 10/30/2006 WM 10 1,4-Dichlorobenzene ND 10 5.0 μg/L N/A N/A 10/30/2006 WM 10 1,4-Dichlorobenzene ND 10 5.0 μg/L N/A N/A 10/30/2006 WM 10 1,4-Dichloropropane ND 10 5.0 μg/L N/A N/A 10/30/2006 WM 10 1,4-Dichloropropane ND 10 5.0 μg/L N/A N/A 10/30/2006 WM 10 1,4-Dichloropropane ND 10 5.0 μg/L N/A N/A 10/30/2006 WM 10 1,4-Dichloropropane ND 10 5.0 μg/L N/A N/A N/A 10/30/2006 WM 10 1,4-Dichloropropane ND 10 5.0 μg/L N/A N/A N/A 10/30/2006 WM 10 1,4-Dichloropropane ND 10 5.0 μg/L N/A N/A N/A 10/30/2006 WM 10 1,4-Dichloropropane ND 10 200 μg/L N/A N/A 10/30/2006 WM 10 1,4-Dichloropropane ND 10 200 μg/L N/A N/A 10/30/2006 WM 10 1,4-Dichloropropane ND 10 200 μg/L N/A N/A 10/30/2006 WM 10 1,4-Dichloropropane ND 10 200 μg/L N/A N/A 10/30/2006 WM 10 1,4-Dichloropropane ND 10 200 μg/L N/A N/A 10/30/2006 WM 10 1,4-Dichloropropane ND 10 5.0 μg/L N/A N/A 10/30/2006 WM 10 1,4-Dichloropropane ND 10 5.0 μg/L N/A N/A 10/30/2006 WM 10 1,4-Dichloropropane ND 10 5.0 μg/L N/A N/A 10/30/2006 WM 10 1,4-Dichloropropane ND 10 5.0 μg/L N/A N/A 10/30/2006 WM 10 1,4-Dichloropropane ND 10 5.0 μg/L N/A N/A 10/30/2006 WM 10 1,4-Dichloropropane ND 10 5.0 μg/L N/A N/A 10/30/2006 WM 10 1,4-Dichloropropane ND 10 5.0 μg/L N/A N/A 10/30/2006 WM 10 1,4-Dichloropropane ND 10 5.0 μg/L N/A N/A 10/30/2006 WM 10 1,4-Dichloropropane ND 10 5.0 μg/L N/A N/A 10/30/2006 WM 10 1,4-Dichloropropane ND 10 5.0 μg/L N/A N/A 10/30/2006 WM 10 1,4-Dichloropropane ND 10 5.0 μg/L N/A N/A 10/30/2006 WM 10 1,4-Dichloropropane ND 10 5.0 μg/L N/A N/A 10/30/2006 WM 10	•								WM1061030
1,4-Dichlorobenzene ND 10 5.0 μg/L N/A N/A 10/30/2006 WM10 1,4-Dioxane ND 10 500 μg/L N/A N/A 10/30/2006 WM10 2,2-Dichloropropane ND 10 5.0 μg/L N/A N/A 10/30/2006 WM10 2-Butanone (MEK) ND 10 200 μg/L N/A N/A 10/30/2006 WM10 2-Chlorotely-vinyl Ether ND 10 50 μg/L N/A N/A 10/30/2006 WM10 2-Chlorotoluene ND 10 50 μg/L N/A N/A 10/30/2006 WM10 4-Chlorotoluene ND 10 200 μg/L N/A N/A 10/30/2006 WM10 4-Chlorotoluene ND 10 50 μg/L N/A N/A 10/30/2006 WM10 4-Methyl-2-Pentanone(MIBK) ND 10 200 μg/L N/A N/A 10/30/2006 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>WM1061030</td></t<>									WM1061030
1,4-Dioxane ND 10 500 µg/L N/A N/A 10/30/2006 WM 10 2,2-Dichloropropane ND 10 5.0 µg/L N/A N/A 10/30/2006 WM 10 2-Butanone (MEK) ND 10 200 µg/L N/A N/A 10/30/2006 WM 10 2-Chlorothyl-vinyl Ether ND 10 50 µg/L N/A N/A 10/30/2006 WM 10 2-Chlorotoluene ND 10 50 µg/L N/A N/A 10/30/2006 WM 10 2-Hexanone ND 10 200 µg/L N/A N/A 10/30/2006 WM 10 4-Chlorotoluene ND 10 50 µg/L N/A N/A 10/30/2006 WM 10 4-Chlorotoluene ND 10 50 µg/L N/A N/A 10/30/2006 WM 10 4-Methyl-2-Pentanone(MIBK) ND 10 200 µg/L N/A N/A 10/30/2006 W	• •								WM1061030
2,2-Dichloropropane ND 10 5.0 μg/L N/A N/A 10/30/2006 WM 10 2-Butanone (MEK) ND 10 200 μg/L N/A N/A 10/30/2006 WM 10 2-Chlorocthyl-vinyl Ether ND 10 50 μg/L N/A N/A 10/30/2006 WM 10 2-Chlorotoluene ND 10 50 μg/L N/A N/A 10/30/2006 WM 10 2-Hexanone ND 10 200 μg/L N/A N/A 10/30/2006 WM 10 4-Chlorotoluene ND 10 50 μg/L N/A N/A 10/30/2006 WM 10 4-Methyl-2-Pentanone(MIBK) ND 10 200 μg/L N/A N/A 10/30/2006 WM 10 Acetonic ND 10 200 μg/L N/A N/A 10/30/2006 WM 10 Acrolein ND 10 50 μg/L N/A N/A N/A 10/30/2006									WM1061030
2-Butanone (MEK) ND 10 200 μg/L N/A N/A 10/30/2006 WM10 2-Chloroethyl-vinyl Ether ND 10 50 μg/L N/A N/A 10/30/2006 WM10 2-Chlorotoluene ND 10 50 μg/L N/A N/A 10/30/2006 WM10 2-Hexanone ND 10 50 μg/L N/A N/A 10/30/2006 WM10 4-Chlorotoluene ND 10 50 μg/L N/A N/A 10/30/2006 WM10 4-Chlorotoluene ND 10 50 μg/L N/A N/A 10/30/2006 WM10 4-Chlorotoluene ND 10 50 μg/L N/A N/A 10/30/2006 WM10 4-Methyl-2-Pentanone(MIBK) ND 10 200 μg/L N/A N/A 10/30/2006 WM10 Acetone ND 10 200 μg/L N/A N/A 10/30/2006 WM10 Acetone ND 10 50 μg/L N/A N/A 10/30/2006 WM10 Acetone ND 10 50 μg/L N/A N/A 10/30/2006 WM10 Acetonitrile ND 10 50 μg/L N/A N/A 10/30/2006 WM10 Acrolein ND 10 50 μg/L N/A N/A 10/30/2006 WM10 Acrylonitrile ND 10 50 μg/L N/A N/A 10/30/2006 WM10 Acrylonitrile ND 10 50 μg/L N/A N/A 10/30/2006 WM10 Benzene 61 10 50 μg/L N/A N/A N/A 10/30/2006 WM10 Bromochloromethane ND 10 50 μg/L N/A N/A N/A 10/30/2006 WM10 Bromochloromethane ND 10 50 μg/L N/A N/A N/A 10/30/2006 WM10 Bromochloromethane ND 10 50 μg/L N/A N/A N/A 10/30/2006 WM10 Bromochloromethane ND 10 5.0 μg/L N/A N/A N/A 10/30/2006 WM10 Bromochloromethane ND 10 5.0 μg/L N/A N/A N/A 10/30/2006 WM10 Bromochloromethane ND 10 5.0 μg/L N/A N/A N/A 10/30/2006 WM10 Bromochloromethane ND 10 5.0 μg/L N/A N/A N/A 10/30/2006 WM10 Bromochloromethane ND 10 5.0 μg/L N/A N/A N/A 10/30/2006 WM10 Bromomethane ND 10 5.0 μg/L N/A N/A N/A 10/30/2006 WM10 Bromomethane ND 10 5.0 μg/L N/A N/A N/A 10/30/2006 WM10 Bromomethane ND 10 5.0 μg/L N/A N/A N/A 10/30/2006 WM10 Bromomethane ND 10 5.0 μg/L N/A N/A N/A 10/30/2006 WM10 Bromomethane ND 10 5.0 μg/L N/A N/A N/A 10/30/2006 WM10 Bromomethane ND 10 5.0 μg/L N/A N/A N/A 10/30/2006 WM10 Bromomethane ND 10 5.0 μg/L N/A N/A N/A 10/30/2006 WM10 Bromomethane ND 10 5.0 μg/L N/A N/A N/A 10/30/2006 WM10 Bromomethane ND 10 5.0 μg/L N/A N/A N/A 10/30/2006 WM10 Bromomethane ND 10 5.0 μg/L N/A N/A N/A 10/30/2006 WM10 Bromomethane ND 10 5.0 μg/L N/A N/A N/A 10/30/2006 WM10 Bromomethane ND 10 5.0 μg/L N/A N/A N/A 10/30/2006 WM10 Bromomethane ND 10 5.0 μg/L N/A N/A N/									WM1061030
2-Chloroethyl-vinyl Ether ND 10 50 μg/L N/A N/A 10/30/2006 WM 10 2-Chlorotoluene ND 10 50 μg/L N/A N/A 10/30/2006 WM 10 2-Hexanone ND 10 200 μg/L N/A N/A 10/30/2006 WM 10 4-Chlorotoluene ND 10 50 μg/L N/A N/A 10/30/2006 WM 10 4-Methyl-2-Pentanone(MIBK) ND 10 200 μg/L N/A N/A 10/30/2006 WM 10 Acetone ND 10 200 μg/L N/A N/A 10/30/2006 WM 10 Acetonitrile ND 10 50 μg/L N/A N/A 10/30/2006 WM 10 Acrolein ND 10 50 μg/L N/A N/A 10/30/2006 WM 10 Acrolein ND 10 50 μg/L N/A N/A 10/30/2006 WM 10 <t< td=""><td>• •</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>WM1061030</td></t<>	• •								WM1061030
2-Chlorotoluene ND 10 50 μg/L N/A N/A 10/30/2006 WM 10 2-Hexanone ND 10 200 μg/L N/A N/A 10/30/2006 WM 10 4-Chlorotoluene ND 10 50 μg/L N/A N/A 10/30/2006 WM 10 4-Methyl-2-Pentanone(MIBK) ND 10 200 μg/L N/A N/A 10/30/2006 WM 10 Acetone ND 10 200 μg/L N/A N/A 10/30/2006 WM 10 Acetonitrile ND 10 50 μg/L N/A N/A 10/30/2006 WM 10 Acrolein ND 10 50 μg/L N/A N/A 10/30/2006 WM 10 Acrolein ND 10 50 μg/L N/A N/A 10/30/2006 WM 10 Acrolein ND 10 50 μg/L N/A N/A 10/30/2006 WM 10 Be	· · · ·								WM1061030
2-Hexanone ND 10 200 μg/L N/A N/A 10/30/2006 WM 10/30/2006 4-Chlorotoluene ND 10 50 μg/L N/A N/A 10/30/2006 WM 10/30/2006 4-Methyl-2-Pentanone(MIBK) ND 10 200 μg/L N/A N/A 10/30/2006 WM 10/30/2006 Acetone ND 10 200 μg/L N/A N/A 10/30/2006 WM 10/30/2006 Acetonitrile ND 10 50 μg/L N/A N/A 10/30/2006 WM 10/30/2006 Acrylonitrile ND 10 50 μg/L N/A N/A 10/30/2006 WM 10/30/2006 Benzene 61 10 5.0 μg/L N/A N/A 10/30/2006 WM 10/30/2006 Benzyl Chloride ND 10 5.0 μg/L N/A N/A 10/30/2006 WM 10/30/2006 Bromobenzene ND 10 5.0 μg/L N/A N/A <	• •								WM1061030
4-Chlorotoluene ND 10 50 μg/L N/A N/A 10/30/2006 WM 10/30/2006 4-Methyl-2-Pentanone(MIBK) ND 10 200 μg/L N/A N/A 10/30/2006 WM 10/30/									WM1061030
4-Methyl-2-Pentanone(MIBK) ND 10 200 μg/L N/A N/A 10/30/2006 WM 10 Acetone ND 10 200 μg/L N/A N/A 10/30/2006 WM 10 Acetonitrile ND 10 50 μg/L N/A N/A 10/30/2006 WM 10 Acrolein ND 10 50 μg/L N/A N/A 10/30/2006 WM 10 Acrolein ND 10 50 μg/L N/A N/A 10/30/2006 WM 10 Acrylonitrile ND 10 50 μg/L N/A N/A 10/30/2006 WM 10 Benzene 61 10 5.0 μg/L N/A N/A 10/30/2006 WM 10 Benzyl Chloride ND 10 50 μg/L N/A N/A 10/30/2006 WM 10 Bromobenzene ND 10 5.0 μg/L N/A N/A 10/30/2006 WM 10 Bromochloromethane ND 10 5.0 μg/L N/A N/A 10/30/2006 WM 10 Bromochloromethane ND 10 5.0 μg/L N/A N/A 10/30/2006 WM 10 Bromochloromethane ND 10 5.0 μg/L N/A N/A 10/30/2006 WM 10 Bromochloromethane ND 10 5.0 μg/L N/A N/A 10/30/2006 WM 10 Bromochloromethane ND 10 5.0 μg/L N/A N/A 10/30/2006 WM 10 Bromochloromethane ND 10 5.0 μg/L N/A N/A 10/30/2006 WM 10 Bromomethane ND 10 5.0 μg/L N/A N/A 10/30/2006 WM 10 Bromomethane ND 10 5.0 μg/L N/A N/A 10/30/2006 WM 10 Bromomethane ND 10 5.0 μg/L N/A N/A 10/30/2006 WM 10 Bromomethane ND 10 5.0 μg/L N/A N/A 10/30/2006 WM 10 Bromomethane ND 10 5.0 μg/L N/A N/A N/A 10/30/2006 WM 10 Bromomethane ND 10 5.0 μg/L N/A N/A N/A 10/30/2006 WM 10 Bromomethane ND 10 5.0 μg/L N/A N/A N/A 10/30/2006 WM 10 Bromomethane ND 10 5.0 μg/L N/A N/A N/A 10/30/2006 WM 10 Bromomethane ND 10 5.0 μg/L N/A N/A N/A 10/30/2006 WM 10 Bromomethane ND 10 5.0 μg/L N/A N/A N/A 10/30/2006 WM 10 Bromomethane ND 10 5.0 μg/L N/A N/A N/A 10/30/2006 WM 10 Bromomethane ND 10 5.0 μg/L N/A N/A N/A 10/30/2006 WM 10 Bromomethane ND 10 5.0 μg/L N/A N/A N/A 10/30/2006 WM 10 Bromomethane ND 10 5.0 μg/L N/A N/A N/A 10/30/2006 WM 10 Bromomethane ND 10 5.0 μg/L N/A N/A N/A 10/30/2006 WM 10 Bromomethane ND 10 5.0 μg/L N/A N/A N/A 10/30/2006 WM 10 Bromomethane ND 10 5.0 μg/L N/A N/A N/A 10/30/2006 WM 10 Bromomethane ND 10 5.0 μg/L N/A N/A N/A 10/30/2006 WM 10 Bromomethane ND 10 5.0 μg/L N/A N/A N/A 10/30/2006 WM 10 Bromomethane ND 10 5.0 μg/L N/A N/A N/A 10/30/2006 WM 10 Bromomethane ND 10 5.0 μg/L N/A N/A N/A 10/30/2006 WM 10 Bromomethane ND 10 Bromomethane ND 10									WM1061030
Acetone ND 10 200 μg/L N/A N/A 10/30/2006 WM 10 Acetonitrile ND 10 50 μg/L N/A N/A 10/30/2006 WM 10 Acrolein ND 10 50 μg/L N/A N/A 10/30/2006 WM 10 Acrylonitrile ND 10 50 μg/L N/A N/A 10/30/2006 WM 10 Benzene 61 10 5.0 μg/L N/A N/A 10/30/2006 WM 10 Benzyl Chloride ND 10 50 μg/L N/A N/A 10/30/2006 WM 10 Bromobenzene ND 10 5.0 μg/L N/A N/A 10/30/2006 WM 10 Bromochloromethane ND 10 5.0 μg/L N/A N/A 10/30/2006 WM 10 Bromoform ND 10 5.0 μg/L N/A N/A 10/30/2006 WM 10 Bromomet									WM1061030
Acetonitrile ND 10 50 μg/L N/A N/A 10/30/2006 WM 10/30/2006 Acrolein ND 10 50 μg/L N/A N/A 10/30/2006 WM 10/30/2006 Acrylonitrile ND 10 50 μg/L N/A N/A 10/30/2006 WM 10/30/2006 Benzene 61 10 5.0 μg/L N/A N/A 10/30/2006 WM 10/30/2006 Bromobenzene ND 10 5.0 μg/L N/A N/A 10/30/2006 WM 10/30/2006 Bromochloromethane ND 10 5.0 μg/L N/A N/A 10/30/2006 WM 10/30/2006 Bromoform ND 10 5.0 μg/L N/A N/A 10/30/2006 WM 10/30/2006 Bromomethane ND 10 5.0 μg/L N/A N/A 10/30/2006 WM 10/30/2006 Carbon Disulfide ND 10 5.0 μg/L N/A N/A 10/30/2									WM1061030
Acrolein ND 10 50 μg/L N/A N/A 10/30/2006 WM 10/30/2006 Acrylonitrile ND 10 50 μg/L N/A N/A 10/30/2006 WM 10/30/2006 Benzene 61 10 5.0 μg/L N/A N/A 10/30/2006 WM 10/30/2006 Bromobenzene ND 10 5.0 μg/L N/A N/A 10/30/2006 WM 10/30/2006 Bromochloromethane ND 10 5.0 μg/L N/A N/A 10/30/2006 WM 10/30/2006 Bromoform ND 10 5.0 μg/L N/A N/A 10/30/2006 WM 10/30/2006 Bromomethane ND 10 5.0 μg/L N/A N/A 10/30/2006 WM 10/30/2006 Carbon Disulfide ND 10 5.0 μg/L N/A N/A 10/30/2006 WM 10/30/2006									WM1061030
Acrylonitrile ND 10 50 μg/L N/A N/A 10/30/2006 WM 10/30/2006 Benzene 61 10 5.0 μg/L N/A N/A 10/30/2006 WM 10/30/2006 Benzyl Chloride ND 10 50 μg/L N/A N/A 10/30/2006 WM 10/30/2006 Bromobenzene ND 10 5.0 μg/L N/A N/A 10/30/2006 WM 10/30/2006 Bromodichloromethane ND 10 5.0 μg/L N/A N/A 10/30/2006 WM 10/30/2006 Bromoform ND 10 5.0 μg/L N/A N/A 10/30/2006 WM 10/30/2006 Bromomethane ND 10 5.0 μg/L N/A N/A 10/30/2006 WM 10/30/2006 Carbon Disulfide ND 10 5.0 μg/L N/A N/A 10/30/2006 WM 10/30/2006									WM1061030
Benzene 61 10 5.0 μg/L N/A N/A 10/30/2006 WM 10/30/2006 Benzyl Chloride ND 10 50 μg/L N/A N/A 10/30/2006 WM 10/30/2006 Bromobenzene ND 10 5.0 μg/L N/A N/A 10/30/2006 WM 10/30/2006 Bromodichloromethane ND 10 5.0 μg/L N/A N/A 10/30/2006 WM 10/30/2006 Bromoform ND 10 5.0 μg/L N/A N/A 10/30/2006 WM 10/30/2006 Bromomethane ND 10 5.0 μg/L N/A N/A 10/30/2006 WM 10/30/2006 Carbon Disulfide ND 10 5.0 μg/L N/A N/A 10/30/2006 WM 10/30/2006									WM1061030
Benzyl Chloride ND 10 50 μg/L N/A N/A 10/30/2006 WM 10/30/2006 Bromobenzene ND 10 5.0 μg/L N/A N/A 10/30/2006 WM 10/30/2006 Bromochloromethane ND 10 5.0 μg/L N/A N/A 10/30/2006 WM 10/30/2006 Bromoform ND 10 5.0 μg/L N/A N/A 10/30/2006 WM 10/30/2006 Bromomethane ND 10 5.0 μg/L N/A N/A 10/30/2006 WM 10/30/2006 Carbon Disulfide ND 10 5.0 μg/L N/A N/A 10/30/2006 WM 10/30/2006	•								WM1061030
Bromobenzene ND 10 5.0 μg/L N/A N/A 10/30/2006 WM 10 Bromochloromethane ND 10 5.0 μg/L N/A N/A 10/30/2006 WM 10 Bromodichloromethane ND 10 5.0 μg/L N/A N/A 10/30/2006 WM 10 Bromoform ND 10 5.0 μg/L N/A N/A 10/30/2006 WM 10 Bromomethane ND 10 5.0 μg/L N/A N/A 10/30/2006 WM 10 Carbon Disulfide ND 10 5.0 μg/L N/A N/A 10/30/2006 WM 10									WM1061030 WM1061030
Bromochloromethane ND 10 5.0 μg/L N/A N/A 10/30/2006 WM 10 Bromodichloromethane ND 10 5.0 μg/L N/A N/A 10/30/2006 WM 10 Bromoform ND 10 5.0 μg/L N/A N/A 10/30/2006 WM 10 Bromomethane ND 10 5.0 μg/L N/A N/A 10/30/2006 WM 10 Carbon Disulfide ND 10 5.0 μg/L N/A N/A 10/30/2006 WM 10									WM1061030
Bromodichloromethane ND 10 5.0 μg/L N/A N/A 10/30/2006 WM10 Bromoform ND 10 5.0 μg/L N/A N/A 10/30/2006 WM10 Bromomethane ND 10 5.0 μg/L N/A N/A 10/30/2006 WM10 Carbon Disulfide ND 10 5.0 μg/L N/A N/A 10/30/2006 WM10									WM1061030
Bromoform ND 10 5.0 μg/L N/A N/A 10/30/2006 WM10 Bromomethane ND 10 5.0 μg/L N/A N/A 10/30/2006 WM10 Carbon Disulfide ND 10 5.0 μg/L N/A N/A 10/30/2006 WM10									WM1061030
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									WM1061030
Carbon Disulfide ND 10 5.0 μ g/L N/A N/A 10/30/2006 WM10									WM1061030
									WM1061030
Carbon Tetrachloride ND 10 5.0 µg/L N/A N/A 10/30/2006 WM10									WM1061030
									WM1061030
									WM1061030
									WM1061030
									WM1061030

Detection Limit = Detection Limit for Reporting.

ND = Not Detected at or above the Detection Limit.

D/P-F = Dilution and/or Prep Factor includes sample volume adjustments.

Qual = Data Qualifier

3334 Victor Court, Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Golden Gate Tank Removal 255 Shipley Street San Francisco, CA 94107 **Attn: Brent Wheeler**

Project Location: 5930 College Ave/Oakland,CA

GlobalID: T0600102112

Certificate of Analysis - Data Report

Samples Received: 10/27/2006 Sample Collected by: client

Project Name: 7335 Sheaff's Garage

Lab#: 52130-001 Sample ID: PW-1 Matrix: Liquid Sample Date: 10/26/2006 11:05 AM

VOCs: EPA 5030C / EPA 8260B	for Groundwater and	Water -	EPA 624 for Waste	water				
Parameter	Result Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
cis-1,2-Dichloroethene	32	10	5.0	μg/L	N/A	N/A	10/30/2006	WM1061030
cis-1,3-Dichloropropene	ND	10	5.0	μg/L	N/A	N/A	10/30/2006	WM1061030
Cyclohexanone	ND	10	200	μg/L	N/A	N/A	10/30/2006	WM1061030
Dibromochloromethane	ND	10	5.0	μg/L	N/A	N/A	10/30/2006	WM1061030
Dibromomethane	ND	10	5.0	μg/L	N/A	N/A	10/30/2006	WM1061030
Dichlorodifluoromethane	ND	10	5.0	μg/L	N/A	N/A	10/30/2006	WM1061030
Diisopropyl Ether	ND	10	50	μg/L	N/A	N/A	10/30/2006	WM1061030
Ethyl Benzene	130	10	5.0	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
Freon 113	ND	10	50	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
Hexachlorobutadiene	ND	10	50	\mug/L	N/A	N/A	10/30/2006	WM1061030
Iodomethane	ND	10	50	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
Isopropanol	ND	10	200	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
Isopropylbenzene	ND	10	10	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
Methyl-t-butyl Ether	ND	10	10	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
Methylene Chloride	ND	10	200	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
n-Butylbenzene	ND	10	50	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
n-Propylbenzene	ND	10	50	\mug/L	N/A	N/A	10/30/2006	WM1061030
Naphthalene	ND	10	50	\mug/L	N/A	N/A	10/30/2006	WM1061030
p-Isopropyltoluene	ND	10	50	\mug/L	N/A	N/A	10/30/2006	WM1061030
Pentachloroethane	ND	10	5.0	\mug/L	N/A	N/A	10/30/2006	WM1061030
sec-Butylbenzene	ND	10	50	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
Styrene	ND	10	5.0	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
tert-Amyl Methyl Ether	ND	10	50	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
tert-Butanol (TBA)	ND	10	100	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
tert-Butyl Ethyl Ether	ND	10	50	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
tert-Butylbenzene	ND	10	50	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
Tetrachloroethene	26	10	5.0	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
Tetrahydrofuran	ND	10	200	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
Toluene	ND	10	5.0	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
trans-1,2-Dichloroethene	ND	10	5.0	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
trans-1,3-Dichloropropene	ND	10	5.0	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
trans-1,4-Dichloro-2-butene	ND	10	50	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
Trichloroethene	6.2	10	5.0	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
Trichlorofluoromethane	ND	10	5.0	\mug/L	N/A	N/A	10/30/2006	WM1061030
Vinyl Acetate	ND	10	50	\mug/L	N/A	N/A	10/30/2006	WM1061030
Vinyl Chloride	ND	10	5.0	\mug/L	N/A	N/A	10/30/2006	WM1061030
Xylenes, Total	34	10	5.0	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030

Surrogate	Surrogate Recovery	Contro	l Li	mits (%)
4-Bromofluorobenzene	101	60	-	130	
Dibromofluoromethane	89.6	60	-	130	
Toluene-d8	97.5	60	_	130	

Analyzed by: XBian Reviewed by: TFulton

3334 Victor Court, Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Golden Gate Tank Removal 255 Shipley Street San Francisco, CA 94107 **Attn: Brent Wheeler**

Project Location: 5930 College Ave/Oakland,CA

GlobalID: T0600102112

Certificate of Analysis - Data Report

Samples Received: 10/27/2006 Sample Collected by: client

Project Name: 7335 Sheaff's Garage

Lab#: 52130-001 Sample ID: PW-1 Matrix: Liquid Sample Date: 10/26/2006 11:05 AM

TPH-Purgeable: GC/MS									
Parameter	Result Q	Qual D/	P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
TPH as Gasoline	2800	1	0	250	μg/L	N/A	N/A	10/30/2006	WM1061030
Surrogate	Surrogate Recovery	Con	trol l	Limits (%)				Analyzed by: XBia	n
4-Bromofluorobenzene	91.1	6	0 -	- 130				Reviewed by: TFul	ton
Dibromofluoromethane	93.7	6	0 -	- 130					
Toluene-d8	91.0	6	0 -	- 130					

3334 Victor Court, Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Golden Gate Tank Removal 255 Shipley Street San Francisco, CA 94107 Attn: Brent Wheeler

Project Name: 7335 Sheaff's Garage

Project Location: 5930 College Ave/Oakland,CA

GlobalID: T0600102112

Certificate of Analysis - Data Report

Samples Received: 10/27/2006 Sample Collected by: client

Lab #: 52130-002 **Sample ID: MW-1 Matrix:** Liquid **Sample Date:** 10/26/2006 1:00 PM

VOCs: EPA 5030C / EPA 8260B f	or Groundwater and	Water -	EPA 624 for Waste	water				
Parameter	Result Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
1,1,1,2-Tetrachloroethane	ND	250	120	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
1,1,1-Trichloroethane	ND	250	120	\mug/L	N/A	N/A	10/30/2006	WM1061030
1,1,2,2-Tetrachloroethane	ND	250	120	\mug/L	N/A	N/A	10/30/2006	WM1061030
1,1,2-Trichloroethane	ND	250	120	\mug/L	N/A	N/A	10/30/2006	WM1061030
1,1-Dichloroethane	ND	250	120	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
1,1-Dichloroethene	ND	250	120	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
1,1-Dichloropropene	ND	250	120	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
1,2,3-Trichlorobenzene	ND	250	1200	\mug/L	N/A	N/A	10/30/2006	WM1061030
1,2,3-Trichloropropane	ND	250	1200	\mug/L	N/A	N/A	10/30/2006	WM1061030
1,2,4-Trichlorobenzene	ND	250	1200	\mug/L	N/A	N/A	10/30/2006	WM1061030
1,2,4-Trimethylbenzene	2000	250	1200	\mug/L	N/A	N/A	10/30/2006	WM1061030
1,2-Dibromo-3-Chloropropane	ND	250	1200	\mug/L	N/A	N/A	10/30/2006	WM1061030
1,2-Dibromoethane (EDB)	ND	250	120	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
1,2-Dichlorobenzene	ND	250	120	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
1,2-Dichloroethane	ND	250	120	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
1,2-Dichloropropane	ND	250	120	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
1,3,5-Trimethylbenzene	ND	250	1200	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
1,3-Dichlorobenzene	ND	250	120	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
1,3-Dichloropropane	ND	250	120	\mug/L	N/A	N/A	10/30/2006	WM1061030
1,4-Dichlorobenzene	ND	250	120	\mug/L	N/A	N/A	10/30/2006	WM1061030
1,4-Dioxane	ND	250	12000	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
2,2-Dichloropropane	ND	250	120	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
2-Butanone (MEK)	ND	250	5000	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
2-Chloroethyl-vinyl Ether	ND	250	1200	μg/L	N/A	N/A	10/30/2006	WM1061030
2-Chlorotoluene	ND	250	1200	μg/L	N/A	N/A	10/30/2006	WM1061030
2-Hexanone	ND	250	5000	μg/L	N/A	N/A	10/30/2006	WM1061030
4-Chlorotoluene	ND	250	1200	μg/L	N/A	N/A	10/30/2006	WM1061030
4-Methyl-2-Pentanone(MIBK)	ND	250	5000	μg/L	N/A	N/A	10/30/2006	WM1061030
Acetone	ND	250	5000	μg/L	N/A	N/A	10/30/2006	WM1061030
Acetonitrile	ND	250	1200	μg/L	N/A	N/A	10/30/2006	WM1061030
Acrolein	ND	250	1200	μg/L	N/A	N/A	10/30/2006	WM1061030
Acrylonitrile	ND	250	1200	μg/L	N/A	N/A	10/30/2006	WM1061030
Benzene	12000	250	120	μg/L	N/A	N/A	10/30/2006	WM1061030
Benzyl Chloride	ND	250	1200	μg/L	N/A	N/A	10/30/2006	WM1061030
Bromobenzene	ND	250	120	μg/L	N/A	N/A	10/30/2006	WM1061030
Bromochloromethane	ND	250	120	μg/L	N/A	N/A	10/30/2006	WM1061030
Bromodichloromethane	ND ND	250	120	μg/L	N/A	N/A	10/30/2006	WM1061030
Bromoform	ND ND	250	120	μg/L	N/A	N/A	10/30/2006	WM1061030
Bromomethane Carbon Disulfide	ND ND	250	120	μg/L μg/I	N/A	N/A	10/30/2006 10/30/2006	WM1061030
	ND ND	250	120	μg/L μg/I	N/A	N/A		WM1061030 WM1061030
Carbon Tetrachloride Chlorobenzene	ND ND	250 250	120 120	μg/L μg/I	N/A N/A	N/A N/A	10/30/2006 10/30/2006	WM1061030 WM1061030
Chloroethane	ND ND	250	120	μg/L μg/I	N/A N/A	N/A N/A	10/30/2006	WM1061030 WM1061030
Chloroform	ND ND	250	120	μg/L μg/I	N/A N/A	N/A N/A	10/30/2006	WM1061030 WM1061030
Chloromethane				μg/L μg/I				WM1061030 WM1061030
Chioromethane	ND	250	120	μg/L	N/A	N/A	10/30/2006	W W11001030

3334 Victor Court, Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Golden Gate Tank Removal 255 Shipley Street San Francisco, CA 94107 **Attn: Brent Wheeler**

Project Name: 7335 Sheaff's Garage

Project Location: 5930 College Ave/Oakland,CA

GlobalID: T0600102112

Certificate of Analysis - Data Report

Samples Received: 10/27/2006 Sample Collected by: client

Lab#: 52130-002 Sample ID: MW-1 Matrix: Liquid Sample Date: 10/26/2006 1:00 PM

VOCs: EPA 5030C / EPA 8260B	for Groundwater and	Water -	EPA 624 for Waste	water				
Parameter	Result Qua	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
cis-1,2-Dichloroethene	ND	250	120	μg/L	N/A	N/A	10/30/2006	WM1061030
cis-1,3-Dichloropropene	ND	250	120	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
Cyclohexanone	ND	250	5000	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
Dibromochloromethane	ND	250	120	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
Dibromomethane	ND	250	120	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
Dichlorodifluoromethane	ND	250	120	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
Diisopropyl Ether	ND	250	1200	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
Ethyl Benzene	3100	250	120	\mug/L	N/A	N/A	10/30/2006	WM1061030
Freon 113	ND	250	1200	\mug/L	N/A	N/A	10/30/2006	WM1061030
Hexachlorobutadiene	ND	250	1200	\mug/L	N/A	N/A	10/30/2006	WM1061030
Iodomethane	ND	250	1200	\mug/L	N/A	N/A	10/30/2006	WM1061030
Isopropanol	ND	250	5000	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
Isopropylbenzene	ND	250	250	\mug/L	N/A	N/A	10/30/2006	WM1061030
Methyl-t-butyl Ether	ND	250	250	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
Methylene Chloride	ND	250	5000	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
n-Butylbenzene	ND	250	1200	\mug/L	N/A	N/A	10/30/2006	WM1061030
n-Propylbenzene	ND	250	1200	\mug/L	N/A	N/A	10/30/2006	WM1061030
Naphthalene	ND	250	1200	\mug/L	N/A	N/A	10/30/2006	WM1061030
p-Isopropyltoluene	ND	250	1200	\mug/L	N/A	N/A	10/30/2006	WM1061030
Pentachloroethane	ND	250	120	\mug/L	N/A	N/A	10/30/2006	WM1061030
sec-Butylbenzene	ND	250	1200	\mug/L	N/A	N/A	10/30/2006	WM1061030
Styrene	ND	250	120	\mug/L	N/A	N/A	10/30/2006	WM1061030
tert-Amyl Methyl Ether	ND	250	1200	\mug/L	N/A	N/A	10/30/2006	WM1061030
tert-Butanol (TBA)	ND	250	2500	\mug/L	N/A	N/A	10/30/2006	WM1061030
tert-Butyl Ethyl Ether	ND	250	1200	\mug/L	N/A	N/A	10/30/2006	WM1061030
tert-Butylbenzene	ND	250	1200	\mug/L	N/A	N/A	10/30/2006	WM1061030
Tetrachloroethene	ND	250	120	\mug/L	N/A	N/A	10/30/2006	WM1061030
Tetrahydrofuran	ND	250	5000	\mug/L	N/A	N/A	10/30/2006	WM1061030
Toluene	1600	250	120	\mug/L	N/A	N/A	10/30/2006	WM1061030
trans-1,2-Dichloroethene	ND	250	120	\mug/L	N/A	N/A	10/30/2006	WM1061030
trans-1,3-Dichloropropene	ND	250	120	\mug/L	N/A	N/A	10/30/2006	WM1061030
trans-1,4-Dichloro-2-butene	ND	250	1200	\mug/L	N/A	N/A	10/30/2006	WM1061030
Trichloroethene	ND	250	120	\mug/L	N/A	N/A	10/30/2006	WM1061030
Trichlorofluoromethane	ND	250	120	\mug/L	N/A	N/A	10/30/2006	WM1061030
Vinyl Acetate	ND	250	1200	\mug/L	N/A	N/A	10/30/2006	WM1061030
Vinyl Chloride	ND	250	120	\mug/L	N/A	N/A	10/30/2006	WM1061030
Xylenes, Total	8600	250	120	\mug/L	N/A	N/A	10/30/2006	WM1061030

Surrogate	Surrogate Recovery	Contro	l Li	mits (%)
4-Bromofluorobenzene	96.3	60	-	130
Dibromofluoromethane	84.9	60	-	130
Toluene-d8	99.6	60	-	130

Analyzed by: XBian Reviewed by: TFulton

3334 Victor Court , Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Golden Gate Tank Removal 255 Shipley Street San Francisco, CA 94107 Attn: Brent Wheeler

Project Name: 7335 Sheaff's Garage

Project Location: 5930 College Ave/Oakland,CA

GlobalID: T0600102112

Certificate of Analysis - Data Report

Samples Received: 10/27/2006 Sample Collected by: client

Lab #: 52130-002 **Sample ID: MW-1 Matrix:** Liquid **Sample Date:** 10/26/2006 1:00 PM

TPH-Purgeable: GC/MS									
Parameter	Result	Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
TPH as Gasoline	34000		250	6200	μg/L	N/A	N/A	10/30/2006	WM1061030
Surrogate	Surrogate Recovery		Control	Limits (%)				Analyzed by: XBian	n
4-Bromofluorobenzene	86.9		60	- 130				Reviewed by: TFul	ton
Dibromofluoromethane	88.9		60	- 130					
Toluene-d8	93.0		60	- 130					

3334 Victor Court, Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Golden Gate Tank Removal 255 Shipley Street San Francisco, CA 94107 Attn: Brent Wheeler

Project Name: 7335 Sheaff's Garage Project Location: 5930 College Ave/Oakland,CA

GlobalID: T0600102112

Certificate of Analysis - Data Report

Samples Received: 10/27/2006 Sample Collected by: client

Lab #: 52130-003 **Sample ID: MW-2 Matrix:** Liquid **Sample Date:** 10/26/2006 12:50 PM

VOCs: EPA 5030C / EPA 8260B f	or Groundwater and \	Water -	EPA 624 for Waste	water				
Parameter	Result Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
1,1,1,2-Tetrachloroethane	ND	25	12	μg/L	N/A	N/A	10/30/2006	WM1061030
1,1,1-Trichloroethane	ND	25	12	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
1,1,2,2-Tetrachloroethane	ND	25	12	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
1,1,2-Trichloroethane	ND	25	12	\mug/L	N/A	N/A	10/30/2006	WM1061030
1,1-Dichloroethane	ND	25	12	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
1,1-Dichloroethene	ND	25	12	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
1,1-Dichloropropene	ND	25	12	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
1,2,3-Trichlorobenzene	ND	25	120	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
1,2,3-Trichloropropane	ND	25	120	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
1,2,4-Trichlorobenzene	ND	25	120	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
1,2,4-Trimethylbenzene	320	25	120	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
1,2-Dibromo-3-Chloropropane	ND	25	120	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
1,2-Dibromoethane (EDB)	ND	25	12	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
1,2-Dichlorobenzene	ND	25	12	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
1,2-Dichloroethane	ND	25	12	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
1,2-Dichloropropane	ND	25	12	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
1,3,5-Trimethylbenzene	ND	25	120	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
1,3-Dichlorobenzene	ND	25	12	\mug/L	N/A	N/A	10/30/2006	WM1061030
1,3-Dichloropropane	ND	25	12	\mug/L	N/A	N/A	10/30/2006	WM1061030
1,4-Dichlorobenzene	ND	25	12	\mug/L	N/A	N/A	10/30/2006	WM1061030
1,4-Dioxane	ND	25	1200	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
2,2-Dichloropropane	ND	25	12	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
2-Butanone (MEK)	ND	25	500	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
2-Chloroethyl-vinyl Ether	ND	25	120	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
2-Chlorotoluene	ND	25	120	μg/L	N/A	N/A	10/30/2006	WM1061030
2-Hexanone	ND	25	500	μg/L	N/A	N/A	10/30/2006	WM1061030
4-Chlorotoluene	ND	25	120	μg/L	N/A	N/A	10/30/2006	WM1061030
4-Methyl-2-Pentanone(MIBK)	ND	25	500	μg/L	N/A	N/A	10/30/2006	WM1061030
Acetone	ND	25	500	μg/L	N/A	N/A	10/30/2006	WM1061030
Acetonitrile	ND	25	120	μg/L	N/A	N/A	10/30/2006	WM1061030
Acrolein	ND	25	120	μg/L	N/A	N/A	10/30/2006	WM1061030
Acrylonitrile	ND	25	120	μg/L	N/A	N/A	10/30/2006	WM1061030
Benzene	1400	25	12	μg/L	N/A	N/A	10/30/2006	WM1061030
Benzyl Chloride	ND	25	120	μg/L	N/A	N/A	10/30/2006	WM1061030
Bromobenzene	ND	25	12	μg/L	N/A	N/A	10/30/2006	WM1061030
Bromochloromethane	ND	25	12	μg/L	N/A	N/A	10/30/2006	WM1061030
Bromodichloromethane	ND	25	12	μg/L	N/A	N/A	10/30/2006	WM1061030
Bromoform	ND	25	12	μg/L	N/A	N/A	10/30/2006	WM1061030
Bromomethane	ND	25	12	μg/L	N/A	N/A	10/30/2006	WM1061030
Carbon Disulfide	ND	25	12	μg/L	N/A	N/A	10/30/2006	WM1061030
Carbon Tetrachloride	ND	25	12	μg/L	N/A	N/A	10/30/2006	WM1061030
Chlorobenzene	ND	25	12	μg/L	N/A	N/A	10/30/2006	WM1061030
Chloroethane	ND	25	12	μg/L	N/A	N/A	10/30/2006	WM1061030
Chloroform	ND	25	12	μg/L	N/A	N/A	10/30/2006	WM1061030
Chloromethane	ND	25	12	μg/L	N/A	N/A	10/30/2006	WM1061030

Detection Limit = Detection Limit for Reporting.

ND = Not Detected at or above the Detection Limit.

D/P-F = Dilution and/or Prep Factor includes sample volume adjustments.

Qual = Data Qualifier

3334 Victor Court, Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Golden Gate Tank Removal 255 Shipley Street San Francisco, CA 94107 **Attn: Brent Wheeler**

Project Location: 5930 College Ave/Oakland,CA

Project Name: 7335 Sheaff's Garage

GlobalID: T0600102112

Certificate of Analysis - Data Report

Samples Received: 10/27/2006 Sample Collected by: client

Lab#: 52130-003 Sample ID: MW-2 Matrix: Liquid Sample Date: 10/26/2006 12:50 PM

VOCs: EPA 5030C / EPA 8260B								
Parameter	Result Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
cis-1,2-Dichloroethene	ND	25	12	\mug/L	N/A	N/A	10/30/2006	WM1061030
cis-1,3-Dichloropropene	ND	25	12	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
Cyclohexanone	ND	25	500	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
Dibromochloromethane	ND	25	12	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
Dibromomethane	ND	25	12	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
Dichlorodifluoromethane	ND	25	12	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
Diisopropyl Ether	ND	25	120	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
Ethyl Benzene	840	25	12	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
Freon 113	ND	25	120	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
Hexachlorobutadiene	ND	25	120	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
Iodomethane	ND	25	120	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
Isopropanol	ND	25	500	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
Isopropylbenzene	ND	25	25	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
Methyl-t-butyl Ether	68	25	25	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
Methylene Chloride	ND	25	500	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
n-Butylbenzene	ND	25	120	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
n-Propylbenzene	180	25	120	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
Naphthalene	210	25	120	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
p-Isopropyltoluene	ND	25	120	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
Pentachloroethane	ND	25	12	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
sec-Butylbenzene	ND	25	120	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
Styrene	ND	25	12	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
tert-Amyl Methyl Ether	ND	25	120	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
tert-Butanol (TBA)	ND	25	250	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
tert-Butyl Ethyl Ether	ND	25	120	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
tert-Butylbenzene	ND	25	120	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
Tetrachloroethene	ND	25	12	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
Tetrahydrofuran	ND	25	500	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
Toluene	51	25	12	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
trans-1,2-Dichloroethene	ND	25	12	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
trans-1,3-Dichloropropene	ND	25	12	$\mu g/L$	N/A	N/A	10/30/2006	WM1061030
trans-1,4-Dichloro-2-butene	ND	25	120	\mug/L	N/A	N/A	10/30/2006	WM1061030
Trichloroethene	ND	25	12	\mug/L	N/A	N/A	10/30/2006	WM1061030
Trichlorofluoromethane	ND	25	12	μg/L	N/A	N/A	10/30/2006	WM1061030
Vinyl Acetate	ND	25	120	μg/L	N/A	N/A	10/30/2006	WM1061030
Vinyl Chloride	ND	25	12	μg/L	N/A	N/A	10/30/2006	WM1061030
Xylenes, Total	500	25	12	μg/L	N/A	N/A	10/30/2006	WM1061030

Surrogate	Surrogate Recovery	Contro	ol Li	mits (%	6)
4-Bromofluorobenzene	94.0	60	-	130	
Dibromofluoromethane	84.8	60	-	130	
Toluene-d8	96.7	60	_	130	

Analyzed by: XBian Reviewed by: TFulton

3334 Victor Court, Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Golden Gate Tank Removal 255 Shipley Street San Francisco, CA 94107 Attn: Brent Wheeler

Project Name: 7335 Sheaff's Garage

Project Location: 5930 College Ave/Oakland,CA

GlobalID: T0600102112

Certificate of Analysis - Data Report

Samples Received: 10/27/2006 Sample Collected by: client

Lab #: 52130-003 **Sample ID: MW-2 Matrix:** Liquid **Sample Date:** 10/26/2006 12:50 PM

TPH-Purgeable: GC/MS									
Parameter	Result (Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
TPH as Gasoline	8200		25	620	μg/L	N/A	N/A	10/30/2006	WM1061030
Surrogate	Surrogate Recovery		Control	Limits (%)				Analyzed by: XBian	n
4-Bromofluorobenzene	84.8		60	- 130				Reviewed by: TFult	ton
Dibromofluoromethane	88.7		60	- 130					
Toluene-d8	90.2		60	- 130					

3334 Victor Court, Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Golden Gate Tank Removal 255 Shipley Street San Francisco, CA 94107 Attn: Brent Wheeler

Project Name: 7335 Sheaff's Garage

Project Location: 5930 College Ave/Oakland,CA

GlobalID: T0600102112

Certificate of Analysis - Data Report

Samples Received: 10/27/2006 Sample Collected by: client

Lab #: 52130-004 **Sample ID: MW-3 Matrix:** Liquid **Sample Date:** 10/26/2006 12:40 PM

VOCs: EPA 5030C / EPA 8260B f	or Groundwater and V	Water -	EPA 624 for Waste	water				
Parameter	Result Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
1,1,1,2-Tetrachloroethane	ND	10	5.0	μg/L	N/A	N/A	10/31/2006	WM1061030
1,1,1-Trichloroethane	ND	10	5.0	$\mu g/L$	N/A	N/A	10/31/2006	WM1061030
1,1,2,2-Tetrachloroethane	ND	10	5.0	$\mu g/L$	N/A	N/A	10/31/2006	WM1061030
1,1,2-Trichloroethane	ND	10	5.0	$\mu g/L$	N/A	N/A	10/31/2006	WM1061030
1,1-Dichloroethane	ND	10	5.0	$\mu g/L$	N/A	N/A	10/31/2006	WM1061030
1,1-Dichloroethene	ND	10	5.0	\mug/L	N/A	N/A	10/31/2006	WM1061030
1,1-Dichloropropene	ND	10	5.0	\mug/L	N/A	N/A	10/31/2006	WM1061030
1,2,3-Trichlorobenzene	ND	10	50	\mug/L	N/A	N/A	10/31/2006	WM1061030
1,2,3-Trichloropropane	ND	10	50	\mug/L	N/A	N/A	10/31/2006	WM1061030
1,2,4-Trichlorobenzene	ND	10	50	\mug/L	N/A	N/A	10/31/2006	WM1061030
1,2,4-Trimethylbenzene	62	10	50	\mug/L	N/A	N/A	10/31/2006	WM1061030
1,2-Dibromo-3-Chloropropane	ND	10	50	\mug/L	N/A	N/A	10/31/2006	WM1061030
1,2-Dibromoethane (EDB)	ND	10	5.0	\mug/L	N/A	N/A	10/31/2006	WM1061030
1,2-Dichlorobenzene	ND	10	5.0	\mug/L	N/A	N/A	10/31/2006	WM1061030
1,2-Dichloroethane	ND	10	5.0	\mug/L	N/A	N/A	10/31/2006	WM1061030
1,2-Dichloropropane	ND	10	5.0	\mug/L	N/A	N/A	10/31/2006	WM1061030
1,3,5-Trimethylbenzene	ND	10	50	\mug/L	N/A	N/A	10/31/2006	WM1061030
1,3-Dichlorobenzene	ND	10	5.0	\mug/L	N/A	N/A	10/31/2006	WM1061030
1,3-Dichloropropane	ND	10	5.0	\mug/L	N/A	N/A	10/31/2006	WM1061030
1,4-Dichlorobenzene	ND	10	5.0	\mug/L	N/A	N/A	10/31/2006	WM1061030
1,4-Dioxane	ND	10	500	$\mu g/L$	N/A	N/A	10/31/2006	WM1061030
2,2-Dichloropropane	ND	10	5.0	$\mu g/L$	N/A	N/A	10/31/2006	WM1061030
2-Butanone (MEK)	ND	10	200	$\mu g/L$	N/A	N/A	10/31/2006	WM1061030
2-Chloroethyl-vinyl Ether	ND	10	50	\mug/L	N/A	N/A	10/31/2006	WM1061030
2-Chlorotoluene	ND	10	50	$\mu g/L$	N/A	N/A	10/31/2006	WM1061030
2-Hexanone	ND	10	200	$\mu g/L$	N/A	N/A	10/31/2006	WM1061030
4-Chlorotoluene	ND	10	50	$\mu g/L$	N/A	N/A	10/31/2006	WM1061030
4-Methyl-2-Pentanone(MIBK)	ND	10	200	\mug/L	N/A	N/A	10/31/2006	WM1061030
Acetone	ND	10	200	$\mu g/L$	N/A	N/A	10/31/2006	WM1061030
Acetonitrile	ND	10	50	$\mu g/L$	N/A	N/A	10/31/2006	WM1061030
Acrolein	ND	10	50	$\mu g/L$	N/A	N/A	10/31/2006	WM1061030
Acrylonitrile	ND	10	50	$\mu g/L$	N/A	N/A	10/31/2006	WM1061030
Benzene	120	10	5.0	$\mu g/L$	N/A	N/A	10/31/2006	WM1061030
Benzyl Chloride	ND	10	50	$\mu g/L$	N/A	N/A	10/31/2006	WM1061030
Bromobenzene	ND	10	5.0	$\mu g/L$	N/A	N/A	10/31/2006	WM1061030
Bromochloromethane	ND	10	5.0	μg/L	N/A	N/A	10/31/2006	WM1061030
Bromodichloromethane	ND	10	5.0	μg/L	N/A	N/A	10/31/2006	WM1061030
Bromoform	ND	10	5.0	$\mu g/L$	N/A	N/A	10/31/2006	WM1061030
Bromomethane	ND	10	5.0	$\mu g/L$	N/A	N/A	10/31/2006	WM1061030
Carbon Disulfide	ND	10	5.0	$\mu g/L$	N/A	N/A	10/31/2006	WM1061030
Carbon Tetrachloride	ND	10	5.0	$\mu g/L$	N/A	N/A	10/31/2006	WM1061030
Chlorobenzene	ND	10	5.0	μg/L	N/A	N/A	10/31/2006	WM1061030
Chloroethane	ND	10	5.0	μg/L	N/A	N/A	10/31/2006	WM1061030
Chloroform	ND	10	5.0	μg/L	N/A	N/A	10/31/2006	WM1061030
Chloromethane	ND	10	5.0	μg/L	N/A	N/A	10/31/2006	WM1061030

3334 Victor Court, Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Golden Gate Tank Removal 255 Shipley Street San Francisco, CA 94107 **Attn: Brent Wheeler**

Project Name: 7335 Sheaff's Garage

Project Location: 5930 College Ave/Oakland,CA

GlobalID: T0600102112

Certificate of Analysis - Data Report

Samples Received: 10/27/2006 Sample Collected by: client

Lab#: 52130-004 Sample ID: MW-3 Matrix: Liquid Sample Date: 10/26/2006 12:40 PM

VOCs: EPA 5030C / EPA 8260B	for Groundwater an	l Water -	EPA 624 for Waste	water				
Parameter	Result Qua	l D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
cis-1,2-Dichloroethene	ND	10	5.0	μg/L	N/A	N/A	10/31/2006	WM1061030
cis-1,3-Dichloropropene	ND	10	5.0	\mug/L	N/A	N/A	10/31/2006	WM1061030
Cyclohexanone	ND	10	200	\mug/L	N/A	N/A	10/31/2006	WM1061030
Dibromochloromethane	ND	10	5.0	\mug/L	N/A	N/A	10/31/2006	WM1061030
Dibromomethane	ND	10	5.0	$\mu g/L$	N/A	N/A	10/31/2006	WM1061030
Dichlorodifluoromethane	ND	10	5.0	$\mu g/L$	N/A	N/A	10/31/2006	WM1061030
Diisopropyl Ether	ND	10	50	\mug/L	N/A	N/A	10/31/2006	WM1061030
Ethyl Benzene	55	10	5.0	$\mu g/L$	N/A	N/A	10/31/2006	WM1061030
Freon 113	ND	10	50	$\mu g/L$	N/A	N/A	10/31/2006	WM1061030
Hexachlorobutadiene	ND	10	50	$\mu g/L$	N/A	N/A	10/31/2006	WM1061030
Iodomethane	ND	10	50	$\mu g/L$	N/A	N/A	10/31/2006	WM1061030
Isopropanol	ND	10	200	$\mu g/L$	N/A	N/A	10/31/2006	WM1061030
Isopropylbenzene	ND	10	10	$\mu g/L$	N/A	N/A	10/31/2006	WM1061030
Methyl-t-butyl Ether	17	10	10	$\mu g/L$	N/A	N/A	10/31/2006	WM1061030
Methylene Chloride	ND	10	200	μg/L	N/A	N/A	10/31/2006	WM1061030
n-Butylbenzene	ND	10	50	$\mu g/L$	N/A	N/A	10/31/2006	WM1061030
n-Propylbenzene	82	10	50	$\mu g/L$	N/A	N/A	10/31/2006	WM1061030
Naphthalene	ND	10	50	$\mu g/L$	N/A	N/A	10/31/2006	WM1061030
p-Isopropyltoluene	ND	10	50	$\mu g/L$	N/A	N/A	10/31/2006	WM1061030
Pentachloroethane	ND	10	5.0	$\mu g/L$	N/A	N/A	10/31/2006	WM1061030
sec-Butylbenzene	ND	10	50	\mug/L	N/A	N/A	10/31/2006	WM1061030
Styrene	ND	10	5.0	\mug/L	N/A	N/A	10/31/2006	WM1061030
tert-Amyl Methyl Ether	ND	10	50	$\mu g/L$	N/A	N/A	10/31/2006	WM1061030
tert-Butanol (TBA)	ND	10	100	$\mu g/L$	N/A	N/A	10/31/2006	WM1061030
tert-Butyl Ethyl Ether	ND	10	50	$\mu g/L$	N/A	N/A	10/31/2006	WM1061030
tert-Butylbenzene	ND	10	50	$\mu g/L$	N/A	N/A	10/31/2006	WM1061030
Tetrachloroethene	ND	10	5.0	$\mu g/L$	N/A	N/A	10/31/2006	WM1061030
Tetrahydrofuran	ND	10	200	$\mu g/L$	N/A	N/A	10/31/2006	WM1061030
Toluene	9.8	10	5.0	$\mu g/L$	N/A	N/A	10/31/2006	WM1061030
trans-1,2-Dichloroethene	ND	10	5.0	$\mu g/L$	N/A	N/A	10/31/2006	WM1061030
trans-1,3-Dichloropropene	ND	10	5.0	$\mu g/L$	N/A	N/A	10/31/2006	WM1061030
trans-1,4-Dichloro-2-butene	ND	10	50	μg/L	N/A	N/A	10/31/2006	WM1061030
Trichloroethene	ND	10	5.0	μg/L	N/A	N/A	10/31/2006	WM1061030
Trichlorofluoromethane	ND	10	5.0	μg/L	N/A	N/A	10/31/2006	WM1061030
Vinyl Acetate	ND	10	50	μg/L	N/A	N/A	10/31/2006	WM1061030
Vinyl Chloride	ND	10	5.0	μg/L	N/A	N/A	10/31/2006	WM1061030
Xylenes, Total	54	10	5.0	μg/L	N/A	N/A	10/31/2006	WM1061030

Surrogate	Surrogate Recovery	Contro	l Li	mits (%)
4-Bromofluorobenzene	92.2	60	-	130	
Dibromofluoromethane	85.6	60	-	130	
Toluene-d8	105	60	_	130	

Analyzed by: XBian Reviewed by: TFulton

3334 Victor Court, Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Golden Gate Tank Removal 255 Shipley Street San Francisco, CA 94107 Attn: Brent Wheeler

Project Name: 7335 Sheaff's Garage
Project Location: 5930 College Ave/Oakland,CA

Challe III. To control 12

GlobalID: T0600102112

Certificate of Analysis - Data Report

Samples Received: 10/27/2006 Sample Collected by: client

Lab #: 52130-004 **Sample ID: MW-3 Matrix:** Liquid **Sample Date:** 10/26/2006 12:40 PM

TPH-Purgeable: GC/MS								
Parameter	Result Q	Qual D/P	F Detection I	Limit Units	Prep Date	Prep Batch	Analysis Date	QC Batch
TPH as Gasoline	3100	10	250	$\mu g/L$	N/A	N/A	10/31/2006	WM1061030
Surrogate	Surrogate Recovery	Cont	ol Limits (%)				Analyzed by: XBia	n
4-Bromofluorobenzene	83.2	60	- 130				Reviewed by: TFul	ton
Dibromofluoromethane	89.6	60	- 130					
Toluene-d8	97.9	60	- 130					

3334 Victor Court , Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Method Blank - Liquid - VOCs: EPA 5030C / EPA 8260B for Groundwater and Water - EPA 624 for

Wastewater

QC Batch ID: WM1061030 Validated by: TFulton - 10/31/06

QC Batch Analysis Date: 10/30/2006

Parameter	Result	DF	PQLR	Units
1,1,1,2-Tetrachloroethane	ND	1	0.50	μg/L
1,1,1-Trichloroethane	ND	1	0.50	μg/L
1,1,2,2-Tetrachloroethane	ND	1	0.50	μg/L
1,1,2-Trichloroethane	ND	1	0.50	μg/L
1,1-Dichloroethane	ND	1	0.50	μg/L
1,1-Dichloroethene	ND	1	0.50	μg/L
1,1-Dichloropropene	ND	1	0.50	μg/L
1,2,3-Trichlorobenzene	ND	1	5.0	μg/L
1,2,3-Trichloropropane	ND	1	5.0	μg/L
1,2,4-Trichlorobenzene	ND	1	5.0	μg/L
1,2,4-Trimethylbenzene	ND	1	5.0	μg/L
1,2-Dibromo-3-Chloropropane	ND	1	5.0	μg/L
1,2-Dibromoethane (EDB)	ND	1	0.50	μg/L
1,2-Dichlorobenzene	ND	1	0.50	μg/L
1,2-Dichloroethane	ND	1	0.50	μg/L
1,2-Dichloropropane	ND	1	0.50	μg/L
1,3,5-Trimethylbenzene	ND	1	5.0	μg/L
1,3-Dichlorobenzene	ND	1	0.50	μg/L
1,3-Dichloropropane	ND	1	0.50	μg/L
1,4-Dichlorobenzene	ND	1	0.50	μg/L
1,4-Dioxane	ND	1	50	μg/L
2,2-Dichloropropane	ND	1	0.50	μg/L
2-Butanone (MEK)	ND	1	20	μg/L
2-Chloroethyl-vinyl Ether	ND	1	5.0	μg/L
2-Chlorotoluene	ND	1	5.0	μg/L
2-Hexanone	ND	1	20	μg/L
4-Chlorotoluene	ND	1	5.0	μg/L
4-Methyl-2-Pentanone(MIBK)	ND	1	20	μg/L
Acetone	ND	1	20	μg/L
Acetonitrile	ND	1	5.0	μg/L
Acrolein	ND	1	5.0	μg/L
Acrylonitrile	ND	1	5.0	μg/L
Benzene	ND	1	0.50	μg/L
Benzyl Chloride	ND	1	5.0	μg/L
Bromobenzene	ND	1	0.50	μg/L
Bromochloromethane	ND	1	0.50	μg/L
Bromodichloromethane	ND	1	0.50	μg/L
Bromoform	ND	1	0.50	μg/L
Bromomethane	ND	1	0.50	μg/L
Carbon Disulfide	ND	1	0.50	μg/L
Carbon Tetrachloride	ND	1	0.50	μg/L
Chlorobenzene	ND	1	0.50	μg/L
Chloroethane	ND	1	0.50	μg/L
Chloroform	ND	1	0.50	μg/L
Chloromethane	ND	1	0.50	μg/L
cis-1,2-Dichloroethene	ND	1	0.50	μg/L
cis-1,3-Dichloropropene	ND	1	0.50	μg/L
Cyclohexanone	ND	1	20	μg/L
Dibromochloromethane	ND	1	0.50	μg/L
Dibromomethane	ND	1	0.50	μg/L

3334 Victor Court, Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Method Blank - Liquid - VOCs: EPA 5030C / EPA 8260B for Groundwater and Water - EPA 624 for

Wastewater

QC Batch ID: WM1061030 Validated by: TFulton - 10/31/06

QC Batch Analysis Date: 10/30/2006

Parameter	Result	DF	PQLR	Units
Dichlorodifluoromethane	ND	1	0.50	μg/L
Diisopropyl Ether	ND	1	5.0	μg/L
Ethyl Benzene	ND	1	0.50	μg/L
Freon 113	ND	1	5.0	μg/L
Hexachlorobutadiene	ND	1	5.0	μg/L
Iodomethane	ND	1	5.0	μg/L
Isopropanol	ND	1	20	μg/L
Isopropylbenzene	ND	1	1.0	μg/L
Methylene Chloride	ND	1	20	μg/L
Methyl-t-butyl Ether	ND	1	1.0	μg/L
Naphthalene	ND	1	5.0	μg/L
n-Butylbenzene	ND	1	5.0	μg/L
n-Propylbenzene	ND	1	5.0	μg/L
Pentachloroethane	ND	1	0.50	μg/L
p-Isopropyltoluene	ND	1	5.0	μg/L
sec-Butylbenzene	ND	1	5.0	μg/L
Styrene	ND	1	0.50	μg/L
tert-Amyl Methyl Ether	ND	1	5.0	μg/L
tert-Butanol (TBA)	ND	1	10	μg/L
tert-Butyl Ethyl Ether	ND	1	5.0	μg/L
tert-Butylbenzene	ND	1	5.0	μg/L
Tetrachloroethene	ND	1	0.50	μg/L
Tetrahydrofuran	ND	1	20	μg/L
Toluene	ND	1	0.50	μg/L
trans-1,2-Dichloroethene	ND	1	0.50	μg/L
trans-1,3-Dichloropropene	ND	1	0.50	μg/L
trans-1,4-Dichloro-2-butene	ND	1	5.0	μg/L
Trichloroethene	ND	1	0.50	μg/L
Trichlorofluoromethane	ND	1	0.50	μg/L
Vinyl Acetate	ND	1	5.0	μg/L
Vinyl Chloride	ND	1	0.50	μg/L
Xylenes, Total	ND	1	0.50	μg/L

Surrogate for Blank	% Recovery	Cont	rol	Limits
4-Bromofluorobenzene	103	70	-	125
Dibromofluoromethane	89.3	70	-	125
Toluene-d8	100	70	-	125

Method Blank - Liquid - TPH-Purgeable: GC/MS

93.8

60 - 130

QC Batch ID: WM1061030 Validated by: TFulton - 10/31/06

QC Batch Analysis Date: 10/30/2006

Toluene-d8

Parameter TPH as Gasoline			Result ND	DF 1	PQLR 25	Units μg/L
Surrogate for Blank	% Recovery	Control Limits				
4-Bromofluorobenzene	93.3	60 - 130				
Dibromofluoromethane	93.5	60 - 130				

3334 Victor Court, Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

LCS / LCSD - Liquid - VOCs: EPA 5030C / EPA 8260B for Groundwater and Water - EPA 624 for

Wastewater

QC Batch ID: WM1061030 Reviewed by: TFulton - 10/31/06

QC Batch ID Analysis Date: 10/30/2006

	\sim	c
ᆫ	v	J

Parameter	Method Blank	Spike Amt	SpikeResult	Units	% Recovery	Recovery Limits
1,1-Dichloroethene	< 0.50	20	17.9	μg/L	89.5	70 - 130
Benzene	< 0.50	20	20.6	μg/L	103	70 - 130
Chlorobenzene	< 0.50	20	21.1	μg/L	106	70 - 130
Methyl-t-butyl Ether	<1.0	20	21.7	μg/L	108	70 - 130
Toluene	< 0.50	20	18.8	μg/L	94.0	70 - 130
Trichloroethene	<0.50	20	21.1	μg/L	106	70 - 130
Surrogate	% Recovery C	ontrol Limits				
4-Bromofluorobenzene	117.0	60 - 130				
Dibromofluoromethane	103.0	50 - 130				

LCSD

Toluene-d8

Parameter	Method Blank	Spike Amt	SpikeResult	Units	% Recovery	RPD	RPD Limits	Recovery Limits
1,1-Dichloroethene	< 0.50	20	17.8	μg/L	89.0	0.56	25.0	70 - 130
Benzene	< 0.50	20	19.2	μg/L	96.0	7.0	25.0	70 - 130
Chlorobenzene	< 0.50	20	19.9	μg/L	99.5	5.9	25.0	70 - 130
Methyl-t-butyl Ether	<1.0	20	20.4	μg/L	102	6.2	25.0	70 - 130
Toluene	< 0.50	20	18.5	μg/L	92.5	1.6	25.0	70 - 130
Trichloroethene	<0.50	20	19.5	μg/L	97.5	7.9	25.0	70 - 130

Surrogate	% Recovery	Control Limit
4-Bromofluorobenzene	105.0	60 - 130
Dibromofluoromethane	97.4	60 - 130
Toluene-d8	97.3	60 - 130

LCS / LCSD - Liquid - TPH-Purgeable: GC/MS

98.5

60 - 130

QC Batch ID: WM1061030 Reviewed by: TFulton - 10/31/06

QC Batch ID Analysis Date: 10/30/2006

LCS

Parameter	Method BI	ank Spike Amt	SpikeResult	Units	% Recovery	Recovery Limits
TPH as Gasoline	<25	120	150	μg/L	120	65 - 135
Surrogate	% Recovery	Control Limits				
4-Bromofluorobenzene	94.1	60 - 130				
Dibromofluoromethane	93.7	60 - 130				
Toluene-d8	93.3	60 - 130				

LCSD

Parameter	Method BI	ank Spike Amt	SpikeResult	Units	% Recovery	RPD	RPD Limits	Recovery Limits
TPH as Gasoline	<25	120	148	μg/L	119	0.94	30.0	65 - 135
Surrogate	% Recovery	Control Limits						
4-Bromofluorobenzene	92.6	60 - 130						
Dibromofluoromethane	96.8	60 - 130						
Toluene-d8	95.3	60 - 130						

Entech .				s, I	nc.	C	ha		of	C	us	to	dy		An	aly	/si	S	Re	qu	168	î		
Santa Clara, CA	urt (40 \ 95054 (40)	o, 500-u 3) 588-0	200 201 - Fa	ax			EL/	AP N	o. 23	46														
Attention to: TWAT	Calculation of the control of the second control of the control of	Phone No.:			4144	Purcha	ise Orde	r No.:	72	35 35			Invoic	e to: (if	Differe	nt)						********	Phone:	
Company Name: COCCUGATE IN	NOCHONII	Fax No.:) () () () () () () () () () (205 -0011	/	Projec	t No. / I	Name:	<u> </u>		CAGE	- 1	Comp	any:		-							1	
Padallina Address	•	Email Addr	5).DIL ess: 1	OIG	Ť		241	- /// -	ts (JHK	CHY	7/ 7/	Billing	Addres	s: (If Di	fferent)	ı					·····		
Cibs	LEY St.	State:	Zio Corie:	<u>ે. લ્હે </u>	~	Projec	t Locati	on:				<u>35</u>	City;										State: Z	ip:
	ANCISCO	CONTRACTOR OF THE PARTY OF THE	3410	tepatricularity and the water facilities;		59	<u>30(</u>	<u> </u>	29E	XH.	5,0	AKL	<u> </u>	ÇΔ	5	7							<u>l, , , , , , , , , , , , , , , , , , , </u>	
Entech Order ID: 5	2130		n Arour				Appli	Circle] 3 \$	/ /	/ /	/	/ _/	/ /	/ .	/2/	/ /	/ ,	/ /		///	
CI-1-110-		Q 2 E	me Day)ay	Q 1 Da	aý i		Libbu	Cabic			\$				\$ \\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \									. /
EDF Global ID:	102112	X 4 E)ay □ 10 □	Q 5 Da Day	ay	-		h			<i>"</i>	/ ,	/ ,	100 0 200 0			\\ \sigma_{\delta}^{\delta} \)		/	/ ,	/ ,	/ ,		7
Sampler EV/S	nple Information	n				ntainers			1 (E.)														1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Client ID	Field Point	Date	Time	Entech Lab. No.	Matrix	No. of Containers		25 W Full List															\$\frac{1}{2} In	Remarks structions
BW-1	PW-1	10-26-01	1105	PD	ĠW	ı	X	X				dane na morani								ĺ				
MU0-1	inu-ì	0206	1300	000		4	X	X				<u> </u>		<u> </u>	ļ.,				ļ	<u> </u>		ļ		
MM-5	MW-2	107600	1250	003		4	X	X		ļ		<u> </u>	ļ	<u> </u>	ļ				ļ			ļ	_	
MW-3	mw3	10-260	<u> 1240</u>	004	V	4	X	\times	<u> </u>	<u> </u>	ļ		ļ	<u> </u>	-				-	-		<u> </u>	ļ	
				<u> </u>			<u> </u>	ļ	ļ	<u> </u>	-		<u> </u>	ļ				1_	-	ऻ		-	<u> </u>	······································
			ļ	ļ			ļ	 					-					1	╂	╂	-	<u> </u>		
							 						<u> </u>		1	J			1	-	-	-		
				<u> </u>		1	<u> </u>		7	7					-	-	 	+-	 	╂		-		······
		-	ļ									1		 	<u> </u>		1	-	†	+	 	ļ		
		 		-		4	1	<u> </u>			 		۲	-	1	-		T	1	†	†	 		
							1		1	1	1	†	1					1	-	1	1	1		•
Relinquished by	Maceive of the		Date:	Time:	∠	Lab l	Jse:	ikameannea	а <i>бост</i> иченоськия	и <i>дом</i> ически коми	- 	1,		.1				antamento.	***************************************		-2	40,		
refineuschools:	Received by:	\overline{X}	Date: 10/21/01/0	Time:	i																			
Relinquished by:	S BONNEY	bed)	Date	Time:		Meta	ls:		s, Sb, E Platir			d, Ca, LUFT		, Cu, Fo		i, Mg, I RCR/		, Mo, N		Ag, Na PPM-		l, Sn, T	i, Zn, V	CAM-17
1	ntainers/Preservat		N		Ship Cust	tody	: Meth Seals?	od: _ ' Y/N						if a	ny N's	-								october et transversion en exclusive et e
Labels match C	oC? Y/N	Headspa	ice? Y/P	4	Sep	erate	Recei	pt Lo	g Y/i	V.	************	***********		***********		-	eldmented to .					-	wcar-scattered	

-	FLUID-L	EVEL MO	ONITORE	NG DATA		Dysert Environmental,
	Project Nam	ne: <u>1335</u>	SHEA	FF'S GA	RAGE Date	10-26-06
					uē	
		RV/C				ELECTRONIC
	7-1	<u>'</u>				Comments
	Boring/ Well	Depth to Water (feet)	Depth to Product (feet)	Product Thickness (feet)	Total Well Depth (feet)	Comments
(74×1)	PW-1	10.30			18,20	@0150
	MW-1		•.		14.64	61005
10 Malbe	MW-2	19.58			19.63	@ 0155
ST.	MW-3	8 57			18.93	H20 IN WELL BOX, BOXON CASING.
		THE STATE OF THE S				J

Measurements referenced to top of well casing.

Page ___ of ___

DYSERT ENVIRONMENTAL, INC. WELL PURGING / SAMPLING DATA

Dysert Environmental, Inc.

PROJECT: SHEAFF'S GARAGE/7395 SITE LOCATION: 5930 COLLEGE ANE.

DATE: 10-26-05

STATE: CA CITY: CAKLAND **PURGE DEVICE** disposable bailer bladder pump peristaltic pump 12volt submersible pump circle one SAMPLING DEVICE other disposable bailer peristaltic pump bladder pump circle one 6 0.75 casing diameter (inches) circle one 1.52 0.7 0.02 casing volumes (gailons) circle one WELL DATA SAMPLER/S: WELL NUMBER / FIELD POINT ID: MW-A. TOTAL WELL DEPTH: 14,64 B. DEPTH TO WATER: C. WATER HEIGHT (A-B): D. WELL CASING DIAMETER: E. CASING VOLUME: F. SINGLE CASE VOLUME (CXE): G. CASE VOLUME (s) (CxEx 3): H: 80% RECHARGE LEVEL (F+B): PURGE DATA START TIME: 1217 PUMP DEPTH: 10-FINISH TIME: 1229 PUMP DEPTH: 11-RECHARGE / SAMPLE TIME TIME MEASURED: 1235 DEPTH TO WATER: 10.27 GREATER THAN OR EQUAL TO 80% RECHARGE LEVEL (H): circle one (YES) DEPTH TO WATER: 9 22 SAMPLE TIME: 1300 SAMPLE APPEARANCE / ODOR: CLEAR Fuel TOTAL GALLONS PURGED: WELL FLUID PARAMETERS 2.5 3 POST 1 1,5 2 0.5 CASE VOL. 6.48 6.49 G 44 6.44 6.44 6.45 6.46 Ph 1816 18.5 184 179 19.0 185 12.6 13.6 ۱**43**% TEMP in *C 524 **933** ... 927 913 929 933 939 922 97.7 COND / SC DTW 1 11 11 1.5 11.0 11 10 10.0 Pump Depth i LTK. 14 U 11 1 (11 Pump Rate PER MIN. 11 11

OF

PAGE

MW-2

DYSERT ENVIRONMENTAL, INC. WELL PURGING / SAMPLING DATA

Dysert Environmental, Inc.

PROJECT: SHEAFF'S GARAGE/7335 SITE LOCATION: 5930 COLLEGE AVE. DATE: 10-26-06

STATE: CA CITY: OAKLAND PURGE DEVICE disposable bailer bladder pump peristaltic pump (12volt submersible pump) circle_one SAMPLING DEVICE other disposable bailer peristaltic pump bladder pump airale one 0.75 circle one casing diameter (inches) 0.7 1.52 0.02 casing volumes (gallons) circle one WELL DATA SAMPLER/S: WELL NUMBER / FIELD POINT ID: MW-2 A. TOTAL WELL DEPTH: 14.63 B. DEPTH TO WATER: 0.58 C. WATER HEIGHT (A-B): 105 D. WELL CASING DIAMETER: E, CASING VOLUME: F. SINGLE CASE VOLUME (CXE): G. CASE VOLUME (s) (CXEX 3): H: 80% RECHARGE LEVEL (F+B): PURGE DATA 1146 START TIME: PUMP DEPTH: 14-FINISH TIME: 1203 PUMP DEPTH: 14-RECHARGE / SAMPLE TIME TIME MEASURED: 1210 DEPTH TO WATER: 16.29 GREATER THAN OR EQUAL TO 80% RECHARGE LEVEL (H): circle one (ES) ŃÓ DEPTH TO WATER: 12.35 SAMPLE TIME: 1250 SAMPLE APPEARANCE / ODOR: CLEAR TOTAL GALLONS PURGED: 5 4 WELL FLUID PARAMETERS 2 2.5 3 POST 1.5 CASE VOL. Û 0.5 643 6.44 6.33 6.39 6.38 6.45 6.40 6.41 Ph 12.3 18.8 193 183 19.5 17.9 16.8 176 TEMP in °C 92¢ 929 188 985 961 952 963 961 COND/SC DTW 15.0 14.0 ٠, 11 11 11 11 H Pump Depth 1 LTR. Lι 1.7 11 \mathbf{H} (1 EL . (Pump Rate PER MIN.

PAGE 3 OF 4

MW-3

DYSERT ENVIRONMENTAL, INC. WELL PURGING / SAMPLING DATA

Dysert Environmenta Inc.

PROJECT: SHEAFP'S GARGE / 7335 SITE LOCATION: 5930 COLLEGE AVE.

	400			STATE: C	Δ			
CITY: OAKL			PURG	E DEVICE				
circle one (12	volt submer	sible oumpi	peristalt		bladder pu	mp disp	osable baile	7
THOR ONE			SAMPL	ING DEVIC	E			
circle <u>ane</u>	bladder pu	roo	peristaltic p		(sposable	bailer)`	other	
casing diameter		circie one	0.75	72)	6		
casing volumes		circle one	0.02	6.2) 0.7	1.52		
CS2m2 Agranges	(Bemous)			L DATA				
SAMPLER/S:	5 CASSADY	/ /2 0	ASCILLEZ					
WELL NUMBER								
A. TOTAL WEL		18.93						
B. DEPTH TO V		8.57						
C. WATER HER			,					
D. WELL CASIN		150 36 R: Z						<u> </u>
E. CASING VOL		0.	7.					
F. SINGLE CAS		(CxE):	2.(
G. CASE VOLU		x 3): 4	3 6.3					
H: 80% RECHA	RGE LEVEL	(F+B): {	0.67					
	1		PUR	GE DATA				
START TIME:	1107							
PUMP DEPTH:								
FINISH TIME:	1127							
PUMP DEPTH:	12	····	· · · · · · · · · · · · · · · · · · ·					
PUMP DEPTH:		- F	RECHARGE					
DEPTH TO WA	12	15		TIME MEA	SURED:	(130		
DEPTH TO WA	12	15		TIME MEA	SURED: i): circle (one (YES		
DEPTH TO WA GREATER THA SAMPLE TIME:	12- TER: 12 - UN OR EQUA	15 UL TO 80% I	RECHARG	TIME MEA E LEVEL (F DEPTH TO	SURED:			
DEPTH TO WA GREATER THA SAMPLE TIME:	12- TER: 12 - UN OR EQUA	15 UL TO 80% I	RECHARG	TIME MEA E LEVEL (F DEPTH TO	SURED: i): circle (one (YES		
DEPTH TO WA GREATER THA SAMPLE TIME: SAMPLE APPE	TER: 12 IN OR EQUA 1240 ARANCE / C	15 ML TO 80% I DDOR: (2)	rechargi	TIME MEA E LEVEL (H DEPTH TO FUEL	ASURED: i): circle () WATER:	one (YES		
	TER: 12 IN OR EQUA 1240 ARANCE / C	15 ML TO 80% I DDOR: (2)	RECHARG	TIME MEA E LEVEL (H DEPTH TO FUEL	ASURED: i): circle () WATER:	one (YES		
SAMPLE TIME: SAMPLE APPE TOTAL GALLO	TER: 12 IN OR EQUA 1240 ARANCE / C	DDOR: 0.	rechargi	TIME MEA E LEVEL (H DEPTH TO FUEL	ASURED: i): circle () WATER:	one (YES		POST
DEPTH TO WA GREATER THA SAMPLE TIME: SAMPLE APPE TOTAL GALLO	TER: 12 TIN OR EQUA 1240 ARANCE / C NS PURGEI	DDOR: CAD: (4.5)	RECHARGI SAR / WELL FLUI	TIME MEA E LEVEL (F DEPTH TO FUEL. D PARAME	SURED: i): circle () WATER: TERS	one (YES \(\O,\d\)\(\O\)	3	
DEPTH TO WA GREATER THA SAMPLE TIME: SAMPLE APPE TOTAL GALLO CASE VOL.	12- TER: 12- IN OR EQUA 12-40 ARANCE / C INS PURGEI	DDOR: 0.	RECHARGI	TIME MEA E LEVEL (F DEPTH TO FUEL	SURED: i): circle () WATER:	one (YES		POST 6.62_
DEPTH TO WA GREATER THA SAMPLE TIME: SAMPLE APPE TOTAL GALLO CASE VOL.	TER: 12 TIN OR EQUA 1740 ARANCE / C INS PURGEI	0,5 0,5 0,5	RECHARGI VELL FLUI 1 6.62	DEPTH TO	SURED: i): circle i): WATER: TERS 2	2.5	3	6.62
DEPTH TO WA GREATER THA SAMPLE TIME: SAMPLE APPE TOTAL GALLO CASE VOL.	TER: 12 TIN OR EQUA 1240 ARANCE / C NS PURGEI	DDOR: CAD: (4.5)	RECHARGI SAR / WELL FLUI	TIME MEA E LEVEL (F DEPTH TO FUEL. D PARAME	SURED: i): circle () WATER: TERS	one (YES \(\O,\d\)\(\O\)	3	
DEPTH TO WA GREATER THA SAMPLE TIME: SAMPLE APPE TOTAL GALLO CASE VOL.	TER: 12 FIN OR EQUAL 1240 ARANCE / CONS PURGER	DDOR: CADO CADO CADO CADO CADO CADO CADO CADO	RECHARGI VELI FLUI 1 6.62 11.8	DEPTH TO FUEL. D PARAME 1.5 G.65	SURED: D: circle D: WATER: TERS 2 6.69	2.5 6.61 16.8	3 6.61 18.17.3	6.62
DEPTH TO WA GREATER THA SAMPLE TIME: SAMPLE APPE TOTAL GALLO CASE VOL. Ph	TER: 12 TIN OR EQUA 1740 ARANCE / C INS PURGEI	0,5 0,5 0,5	RECHARGI VELL FLUI 1 6.62	DEPTH TO	SURED: i): circle i): WATER: TERS 2	2.5	3	6.62
DEPTH TO WA GREATER THA SAMPLE TIME: SAMPLE APPE TOTAL GALLO CASE VOL. Ph TEMP in °C	TER: 12 FIN OR EQUAL 1240 ARANCE / CONS PURGER	DDOR: CADO CADO CADO CADO CADO CADO CADO CADO	RECHARGI VELI FLUI 1 6.62 11.8	DEPTH TO FUEL. D PARAME 1.5 G.65	SURED: D: circle D: WATER: TERS 2 6.69	2.5 6.61 16.8	3 6.61 18.17.3	6.62
DEPTH TO WA GREATER THA SAMPLE TIME: SAMPLE APPE TOTAL GALLO CASE VOL. Ph TEMP in °C	TER: 12 FIN OR EQUAL 1240 ARANCE / CONS PURGER	DDOR: CADO CADO CADO CADO CADO CADO CADO CADO	RECHARGI VELI FLUI 1 6.62 11.8	DEPTH TO FUEL. D PARAME 1.5 G.65	SURED: D: circle D: WATER: TERS 2 6.69	2.5 6.61	3 6.61 18.17.3	6.62
DEPTH TO WA GREATER THA SAMPLE TIME: SAMPLE APPE TOTAL GALLO CASE VOL. Ph TEMP in °C COND / SC	TER: 12 TIN OR EQUA 1240 ARANCE / CONS PURGEI	0.5 0.5 0.5 17.4 354	RECHARGI VELIL FLUI 1 6.62 171.8 358	DEPTH TO FUEL. D PARAME 1.5 G.65 1.5 356	SURED: i): circle () WATER: TERS 2 6.59 17.7 339	2.5 6.61 16.8	3 6.61 (8,17.3 3.85	6.62
DEPTH TO WA GREATER THA SAMPLE TIME: SAMPLE APPE TOTAL GALLO CASE VOL. Ph TEMP in °C COND / SC	12 TER: 12 IN OR EQUA 12-40 ARANCE / C INS PURGEI 0 6.41 12.6 481	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	RECHARGI VELI FLUI 1 6.62 11.8	DEPTH TO FUEL. D PARAME 1.5 G.65	SURED: D: circle D: WATER: TERS 2 6.69	2.5 6.61	3 6.61 18.17.3	6.62 16.9 410
DEPTH TO WA GREATER THA SAMPLE TIME: SAMPLE APPE TOTAL GALLO CASE VOL. Ph TEMP in °C COND / SC DTW Pump Depth	TER: 12 TIN OR EQUA 1240 ARANCE / CONS PURGEI	0.5 0.5 0.5 17 4 354	RECHARGI VELI FLUI 1 6.62 11.8 353	DEPTH TO FUEL DEPTH TO FUEL D. PARAME 1.5 G. 65 115 356	SURED: (): circle () WATER: () WATER: () () () () () () () () () () () () () (2.5 6.61 16.8	3 6.61 18.17.3 3.85	6.62 16.9 410
DEPTH TO WA GREATER THA SAMPLE TIME: SAMPLE APPE TOTAL GALLO GASE VOL. Ph TEMP in °C COND / SC	12 TER: 12 IN OR EQUA 12-40 ARANCE / C INS PURGEI 0 6.41 12.6 481	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	RECHARGI VELIL FLUI 1 6.62 171.8 358	DEPTH TO FUEL. D PARAME 1.5 G.65 1.5 356	SURED: i): circle () WATER: TERS 2 6.59 17.7 339	2.5 6.61 16.8	3 6.61 (8,17.3 3.85	6.62 16.9 410
DEPTH TO WA GREATER THA SAMPLE TIME: SAMPLE APPE TOTAL GALLO CASE VOL. Ph TEMP in °C COND / SC DTW Pump Depth	TER: 12 TIN OR EQUA 1240 ARANCE / CINS PURGEI 0 6.41 12.6 481	0.5 0.5 0.5 17 4 354	RECHARGI VELI FLUI 1 6.62 11.8 353	DEPTH TO FUEL DEPTH TO FUEL D. PARAME 1.5 G. 65 115 356	SURED: (): circle () WATER: () WATER: () () () () () () () () () () () () () (2.5 6.61 16.8	3 6.61 18.17.3 3.85	6.62 16.9 410

DYSER'T ENVIRONMENTAL, INC. WELL PURGING / SAMPLING DATA

Dysert Environmental, Inc.

DATE: 10-26-06

PROJECT: SHEAFF'S GARGE / 7305 SITE LOCATION: 5980 COLLEGE ANE.

STATE: CL CITY: OAKLAND **PURGE DEVICE** disposable bailer bladder pump peristallic pump 12volt submersible pump circle one SAMPLING DEVICE -(disposable bailer) other peristaltic pump bladder oump circle one 6 0.75 casing diameter (inches) circle one (0.2 0.7 1.52 0.02 circle one casing volumes (gallons) WELL DATA SAMPLERIS: 5 CASSARY PW. WELL NUMBER / FIELD POINT ID: A. TOTAL WELL DEPTH: 10.30 B. DEPTH TO WATER: C. WATER HEIGHT (A-B): D. WELL CASING DIAMETER: E. CASING VOLUME: 0.2 F. SINGLE CASE VOLUME (CXE): 1.5% G. CASE VOLUME (s) (CXEx 3): 4.74 H: 80% RECHARGE LEVEL (F+B): 11. 42 **PURGE DATA** START TIME: 1035 PUMP DEPTH: PETE 12" FINISH TIME: 1055 PUMP DEPTH: RECHARGE / SAMPLE TIME TIME MEASURED: NCC DEPTH TO WATER: 11,44 GREATER THAN OR EQUAL TO 80% RECHARGE LEVEL (H): circle one (YES NO DEPTH TO WATER: 11.17 SAMPLE TIME: 1(05 SAMPLE APPEARANCE / ODOR: Fue.c. BROWN TOTAL GALLONS PURGED: 4, 75 WELL FLUID PARAMETERS POST 2.5 3 1.5 2 0.5 0 CASE VOL. 6.32 6 54 6.49 653 (B & C 6.26 6.30 631 ₽ħ 18.5 186 18.4 183 18.9 15.વ 19.1 184 TEMP in °C 418 321 476 414 316 298 421 304 CONDISC DTW ŧξ ŕξ 12.O W 1 žχ 4 ‡ H Pump Depth I LTR. t ı 11 11 11 11 H 11 Pump Rate PER MIN. OF Į PAGE

Scanned

Form Approved, OMB No. 2050-0039 Please print or type. (Form designed for use on elite (12-pitch) typewriter.) 2. Page 1 of | 3. Emergency Response Phone 4. Manifest Tracking Number 1. Generator ID Number UNIFORM HAZARDOUS 000925192 **JJK** CAL000003165 (510)476-1740 WASTE MANIFEST Generator's Site Address (if different than mailing address) 5. Generator's Name and Mailing Address
WILLIAM G. SHEAFF TRUST C/O BRIAN SHEAFF 5930 COLLEGE (GEOTECH) 1945 PARKSIDE DR CA 94618 OAKLAND 94519 CA CONCORD Generator's Phone: 925 689-3450 U.S. EPA ID Number 6. Transporter 1 Company Name CAR000007013 CLEARWATER ENVIRONMENTAL ILS EPAID Number 7. Transporter 2 Company Name U.S. EPA ID Number 8. Designated Facility Name and Site Address
ALVISO INDEPENDENT OIL **5002 ARCHER STREET** CA 95002 CAL000161743 **ALVISO** (510)476-1740 10, Containers 9b. U.S. DOT Description (including Proper Shipping Name, Hazard Class, ID Number, 11. Total 12. Unit 13. Waste Codes Quantity Wt./Vol. Nó. Type and Packing Group (if any)) НМ 223 GENERATOR (OIL & WATER) NON RCRA HAZARDOUS WASTE LIQUID 30 TT G 001 14. Special Handling Instructions and Additional Information **GOLDEN GATE TANK REMOVAL JOB # 7335** WEAR PPE, EMERGENCY CONTACT: KIRK HAYWARD, ERG # 171 15. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment are fully and accurately described above by the proper shipping name, and are classified, packaged, marked and labeled/placarded, and are in all respects in proper condition for transport according to applicable international and national governmental regulations. If export shipment and I am the Primary Exporter, I certify that the contents of this consignment conform to the terms of the attached EPA Acknowledgment of Consent. I certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a large quantity generator) or (b) (if I am a small quantity generator) is true. Generator's/Offeror's Printed/Typed Name 06 UGENIO Port of entry/exit: Import to U.S. Date-leaving U.S.: Transporter signature (for exports only): 17. Transporter Acknowledgment of Receipt of Materials Year Transporter 1 Printed/Typed Name 06 Month 18. Discrepancy 18a. Discrepancy Indication Space Full Rejection ____ Type Residue Partial Rejection Quantity Manifest Reference Number U.S. EPA ID Number 18b. Alternate Facility (or Generator) Facility's Phone: Month Year Day 18c. Signature of Alternate Facility (or Generator) 19. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposal, and recycling systems) 20. Designated Facility Owner or Operator: Certification of receipt of hazardous materials covered by the manifest except as noted in Item 18a Year Month Day Printed/Typed Name Signature

Home Preview

How To

Developers

What's New

Site Map

U.S. Environmental Protection Agency EPA On-line Tools for Site Assessment Calculation

Recent Additions | Contact Us | Print Version

GQ

EPA Home > > Ecosystems Research > Modeling Subsurface Petroleum Hydrocarbon Transport > OnSite on-line calculators > Gradient and Direction from Three Points

Gradient and Direction from Three Points

Module Home Objectives Table of Contents Previous < Next >

Hydraulic Gradient

Gradient Calculation from fitting a plane to three points

$$a x_1 + b y_1 + c = h_1$$

 $a x_2 + b y_2 + c = h_2$

$$a x_3 + b y_3 + c = h_3$$

where (x_i, y_i) are the coordinates of the well and h_i is the head

$$i = 1,2,3$$

The gradient is calculated from the square root of $(a^2 + b^2)$ and the angle from the arctangent of a/b or b/a depending on the quadrant

Example Data Set 1	Calculate Clear
Save Data	Recall Data Go Back

Site Name Sheaff's Garage

Date 10/26/06 Current Date

Calculation basis Head

Coordinates ft

	x-coordinate	y-coordinate	head ft
Mw-1	65	51	186.68
PW-1	164	88	186.87
MW-3	63	8	186.65

Gradient Magnitude (i) 0.001798

Degrees from North (+ y axis) 249.9

Previous Top ^ Next

Home Preview

How To

Developers

What's New

Site Map

U.S. Environmental Protection Agency EPA On-line Tools for Site Assessment Calculation

Recent Additions | Contact Us | Print Version

GQ

EPA Home > > Ecosystems Research > Modeling Subsurface Petroleum Hydrocarbon Transport > OnSite on-line calculators > Gradient and Direction from Three Points

Gradient and Direction from Three Points

Module Home Objectives Table of Contents Previous < Next >

Hydraulic Gradient

Gradient Calculation from fitting a plane to three points

$$a x_1 + b y_1 + c = h_1$$

 $a x_2 + b y_2 + c = h_2$
 $a x_3 + b y_3 + c = h_3$

where (x_i, y_i) are the coordinates of the well and h_i is the head

i = 1,2,3

The gradient is calculated from the square root of $(a^2 + b^2)$ and the angle from the arctangent of a/b or b/a depending on the quadrant

Example Data Set 1 Calculate Clear

Save Data Recall Data Go Back

Site Name Sheaff's Garage

Date 10/26/06

Current Date

Calculation basis Head

Coordinates ft

	x-coordinate	y-coordinate	head ft
MW-1	65	51	186.68
MW-2	111	46	186.70
mw-3	63	8	186.65

Gradient Magnitude (i) 0.0008441

Degrees from North (+ y axis) 217.0

Previous Top ^ Next

Home

Icons

Developers

What's New

Site Map

Preview How To

U.S. Environmental Protection Agency EPA On-line Tools for Site Assessment Calculation

Recent Additions

EPA Home > > <u>Ecosystems Research</u> > <u>Modeling Subsurface Petroleum Hydrocarbon Transport</u> > <u>OnSite on-line calculators</u> > <u>Gradient and Direction from Four or More Points</u>

Gradient and Direction from Four or More Points

Module Home Objectives Table of Contents Previous < Next >

Hydraulic Gradient

Gradient Calculation from fitting a plane to as many as fifteen points

$$a x_1 + b y_1 + c = h_1$$

 $a x_2 + b y_2 + c = h_2$
 $a x_3 + b y_3 + c = h_3$
...
 $a x_{15} + b y_{15} + c = h_{15}$

where (x_i, y_i) are the coordinates of the well and h_i is the head

i = 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
The coefficients a, b, and c are calculated by a least-squares fitting of the the data to a plane

The gradient is calculated from the square root of (a^2+b^2) and the angle from the arctangent of a/b or b/a depending on the quadrant

Example I	Data Set 1 Example	e Data Set 2	Calculate Clear
	Save Data Recall Da	la Go Back	
	Site Name Sheaff's Gar	age	
•	Date 10/26/06		Current Date
C	alculation basis Head	1 (190 m) 1 (190 m) 2 (190 m) 2 (190 m) 3 (190 m)	
	Coordinates	ft 🚉	
I.D.	x-coordinate	y-coordinate	head ft
MW-1	65	51	186.68
MW-2	111	46	186.70
MW-3	63	8	186.65
PW-1	164	88	186.87

;	•	
	1	
:		
	1	:
	: :	
		<u></u>
	No. 1 Constitute the disc Colombia	
	Number of Points Used in Calculation	1 4
		`
	Max. Difference Between Head Values	0.06706
	Max. Difference Between Head Values Gradient Magnitude (i	
Flow direct		0.001722
Flow direct	Gradient Magnitude (i tion as degrees from North (positive y axis	0.001722
Flow direct	Gradient Magnitude (i	0.001722
Flow direct	Gradient Magnitude (i tion as degrees from North (positive y axis	0.001722
Flow direct	Gradient Magnitude (ition as degrees from North (positive y axis ${\sf Coefficient}$ of Determination (${\sf R}^2$) 0.001722) 231.2) 0.932
Flow direct	Gradient Magnitude (ition as degrees from North (positive y axis ${\sf Coefficient}$ of Determination (${\sf R}^2$	0.001722
	Gradient Magnitude (i tion as degrees from North (positive y axis Coefficient of Determination (R ²	0.001722) 231.2) 0.932 ous Top ^ Next
	Gradient Magnitude (ition as degrees from North (positive y axis ${\sf Coefficient}$ of Determination (${\sf R}^2$	0.001722) 231.2) 0.932 ous Top ^ Next
	Gradient Magnitude (i tion as degrees from North (positive y axis Coefficient of Determination (R ²	0.001722) 231.2) 0.932 ous Top ^ Next
	Gradient Magnitude (i tion as degrees from North (positive y axis Coefficient of Determination (R ²	0.001722) 231.2) 0.932 ous Top ^ Next
Home Gloss	Gradient Magnitude (i tion as degrees from North (positive y axis Coefficient of Determination (R ²	0.001722) 231.2) 0.932 Dus Top ^ Next Calculators
Home Gloss	Gradient Magnitude (i tion as degrees from North (positive y axis Coefficient of Determination (R ² Previously Ary Notation Links References	0.001722) 231.2) 0.932 Dus Top ^ Next Calculators

EPA Home | Privacy and Security Notice | Contact Us

Home Preview

How To

Developers

What's New

Site Map

U.S. Environmental Protection Agency EPA On-line Tools for Site Assessment Calculation

Recent Additions | Contact Us | Print Version

GO

EPA Home > > Ecosystems Research > Modeling Subsurface Petroleum Hydrocarbon Transport > OnSite on-line calculators > Gradient and Direction from Three Points

Gradient and Direction from Three Points

Module Home Objectives Table of Contents Previous < Next >

Hydraulic Gradient

Gradient Calculation from fitting a plane to three points

$$a x_1 + b y_1 + c = h_1$$

 $a x_2 + b y_2 + c = h_2$
 $a x_3 + b y_3 + c = h_3$

where (x_i, y_i) are the coordinates of the well and h_i is the head

$$i = 1,2,3$$

The gradient is calculated from the square root of $(a^2 + b^2)$ and the angle from the arctangent of a/b or b/a depending on the quadrant

Gradient Magnitude (i)

Degrees from North (+ y axis)

G	xample Data Set 1	Calculate Clear	
***************************************	Save Data	Recall Data Go Back]
	Site Name	5940 College Avenue	
	Date	10/26/06	Current Date
	Calculation basis	Head	
	1	Coordinates ft	
	x-coordinate	y-coordinate	head ft
62-MW-1	4	86	185.23
GR. MW-Z	60	121	186.33
MW-1	65	51	186.68

Previous Top Next

0.02207

279.0

Electronic Submittal Information

Main Menu | View/Add Facilities | Upload EDD | Check EDD

Your EDF file has been successfully uploaded!

Confirmation Number: 6043400526

Date/Time of Submittal: 1/11/2007 2:00:02 PM

Facility Global ID: T0600102112

Facility Name: SHEAFFS SERVICE GARAGE

Submittal Title: 52130 - 4Q06 GW Analytical Data (10/26/06)

Submittal Type: GW Monitoring Report

Click here to view the detections report for this upload.

Regional Board - Case #: 01-2296 SHEAFFS SERVICE GARAGE SAN FRANCISCO BAY RWQCB (REGION 2) 5930 COLLEGE Local Agency (lead agency) - Case #: RO0000377 OAKLAND, CA 94618 ALAMEDA COUNTY LOP - (DH) QUARTER CONF# 6043400526 52130 - 4Q06 GW Analytical Data (10/26/06) Q4 2006 SUBMITTED BY SUBMIT DATE **STATUS** PENDING REVIEW Brent Wheeler 1/11/2007 SAMPLE DETECTIONS REPORT # FIELD POINTS SAMPLED # FIELD POINTS WITH DETECTIONS # FIELD POINTS WITH WATER SAMPLE DETECTIONS ABOVE MCL WATER SAMPLE MATRIX TYPES METHOD QA/QC REPORT 8260TPH,SW8260B METHODS USED TESTED FOR REQUIRED ANALYTES? MISSING PARAMETERS NOT TESTED: - SW8260B REQUIRES EDB TO BE TESTED Ν LAB NOTE DATA QUALIFIERS QA/QC FOR 8021/8260 SERIES SAMPLES 0 TECHNICAL HOLDING TIME VIOLATIONS n METHOD HOLDING TIME VIOLATIONS O LAB BLANK DETECTIONS ABOVE REPORTING DETECTION LIMIT O LAB BLANK DETECTIONS DO ALL BATCHES WITH THE 8021/8260 SERIES INCLUDE THE FOLLOWING? - LAB METHOD BLANK - MATRIX SPIKE N - MATRIX SPIKE DUPLICATE Ν - BLANK SPIKE - SURROGATE SPIKE

n/a

n/a

MATRIX SPIKE / MATRIX SPIKE DUPLICATE(S) RPD LESS THAN 30%

MATRIX SPIKE / MATRIX SPIKE DUPLICATE(S) % RECOVERY BETWEEN 65-135%

WATER SAMPLES FOR 8021/8260 SERIES

SURROGATE SPIKES % RECOVERY BETWEEN 85-115%

BLANK SPIKE / BLANK SPIK	E DUPLICATES % RECOVERY BET	WEEN 70-130%	Y
SOIL SAMPLES FOR 8	021/8260 SERIES		
MATRIX SPIKE / MATRIX SF	PIKE DUPLICATE(S) % RECOVERY	BETWEEN 65-135%	n/a
	PIKE DUPLICATE(S) RPD LESS TH		n/a
SURROGATE SPIKES % REC	COVERY BETWEEN 70-125%		n/a
BLANK SPIKE / BLANK SPIK	E DUPLICATES % RECOVERY BET	rween 70-130%	n/a
BLANK SPIKE / BLANK SPIK	E DUPLICATES % RECOVERY BE	TWEEN 70-130%	n/a
BLANK SPIKE / BLANK SPIK FIELD QC SAMPLES	(E DUPLICATES % RECOVERY BE	TWEEN 70-130%	n/a
	COLLECTED	DETECTIONS	
FIELD QC SAMPLES	материальных это постору с учение на него на предоставления постору с него на него на него на него на него на н	ART SERVICE TO SERVICE SHIPM MAN HELD HELD SERVICE SER	
FIELD QC SAMPLES SAMPLE	COLLECTED	ART SERVICE TO SERVICE SHIPM MAN HELD HELD SERVICE SER	

Logged in as GGTR (AUTH_RP)

CONTACT SITE ADMINISTRATOR.

Electronic Submittal Information

Main Menu | View/Add Facilities | Upload EDD | Check EDD

UPLOADING A GEO WELL FILE

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Title:

Fluid-Level Monitoring Data MW-1 to MW-3, PW-1

(10/26/06)

Submittal Date/Time: 1/11/2007 3:15:53 PM

Confirmation

9846653819

Number:

Back to Main Menu

Logged in as GGTR (AUTH RP)

CONTACT SITE ADMINISTRATOR.