RECEIVED

By Alameda County Environmental Health at 8:57 am, Apr 29, 2013

Mr. Mark Detterman
Alameda County Environmental Health Care Services
Department of Environmental Health
1131 Harbor Bay Parkway, Suite 250
Alameda, California 94502

Re: Former Olympic Service Station

1436 Grant Avenue San Lorenzo, California

ACEHD Case No. RO0000373, GeoTacker No. T0600102256

Dear Mr. Detterman:

I declare, under penalty of perjury, that the information and or recommendations contained in the attached document are true and correct to the best of my knowledge.

Sincerely,

George and Frida Jaber 1989 Family Trust

Philip Jaber, Trustee

April 23, 2013 Project No. 2115-1436-01

Mr. Mark Detterman Alameda County Health Care Services Agency Environmental Health Department 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Re: Semi-Annual Groundwater Monitoring Report – First Quarter 2013

Former Olympic Station
1436 Grant Avenue
San Lorenzo, California
ACEHD Casa No. P. 00000373. Goo Tracker N

ACEHD Case No. RO0000373, GeoTracker No. T0600102256

Dear Mr. Detterman:

Stratus Environmental, Inc. (Stratus), on behalf of Mr. Philip Jaber and the George and Frida Jaber 1989 Family Trust, is submitting the attached report, for the former Olympic Station located at 1436 Grant Avenue in San Lorenzo, California (Figure 1). If you have any questions or comments concerning this report, please contact Steve Carter at scarter@stratusinc.net or (530) 676-6008.

Sincerely,

STRATUS ENVIRONMENTAL. INC.

Stephen J. Carter, P.G.

Project Manager

Scott G. Bittinger, P.G.

Project Geologist

Attachment: Semi Annual Groundwater Monitoring Report, First Quarter 2013

eghan J. Cartes

cc: Mr. Philip Jaber

Ms. Cherie McCaulou, RWQCB

FORMER OLYMPIC STATION SEMI-ANNUAL GROUNDWATER MONITORING REPORT

Facility Address: 1436 Grant Avenue, San Lorenzo, CA

Consulting Co. / Contact Person: Stratus Environmental, Inc. / Steve Carter, P.G.

Consultant Project No: 2115-1436-01

Primary Agency/Regulatory ID No: Mark Detterman, Alameda County Environmental Health Department (ACEHD) / Case No. R00000373

WORK PERFORMED THIS QUARTER (Fourth Quarter 2012 & First Quarter 2013):

- On February 27, 2013, Stratus conducted semi-annual groundwater monitoring and sampling activities. During this event, all wells (MW-1 through MW-4 and EX-1 through EX-3) were gauged for depth to water and evaluated for the presence of free product. Following gauging, all wells were purged, and groundwater samples were collected. Field data sheets, sampling procedures and laboratory analytical reports are included as Appendices A, B and C, respectively. Analytical results for sampled wells and depth to groundwater measurements have been uploaded to the State of California's GeoTracker database. Documentation of these data uploads is attached in Appendix D.
- 2. Received ACEHD correspondence, dated March 5, 2013, regarding Stratus' Corrective Action Plan (CAP, dated September 30, 2012). The letter concurred in general with Stratus' recommendation to implement Dual Phase Extraction (DPE) at this site, but disagreed with the number of proposed additional monitoring wells and the proposed well screen intervals. The letter requested a draft Fact Sheet for public distribution, a revised draft CAP, a data gap work plan, and a proposed path to closure timeline.
- 3. Stratus submitted a draft Fact Sheet on Environmental Assessment to ACEHD on March 19, 2013.

WORK PROPOSED FOR NEXT QUARTER (Second & Third Quarters 2013):

- In accordance with the ACEHD letter of January 28, 2011, routine groundwater monitoring and sampling activities are not scheduled for this site during second quarter 2013. Groundwater monitoring and sampling will be conducted in the third quarter 2013.
- 2. Stratus will submit the requested revised draft CAP. Upon completion of the public notification period and receipt of ACEHD's approval of the revised draft CAP, Stratus will initiate implementation of the scope of work outlined in the revised draft CAP.
- 3. Stratus will submit a data gap work plan and proposed path to closure timeline as requested in the ACEHD letter.

Current Phase of Project:	CAP/REM (Start-up)
Frequency of Groundwater Monitoring:	All Wells = Semi-Annual (1 st & 3 rd)
Frequency of Groundwater Monitoring and Sampling:	All Wells = (Semi-Annual 1 st and 3 rd)
Groundwater Sampling Date:	February 27, 2013
Is Free Product (FP) Present on Site:	No
Approximate Depth to Groundwater:	6.63 to 7.32 ft bgs

Groundwater Flow Direction:	Southwest	
Groundwater Gradient:	0.004 ft/ft	

DISCUSSION:

On February 27, 2013, first quarter 2013 groundwater monitoring and sampling activities were conducted at the site. During this event, all monitoring and extraction wells were gauged for depth to water and evaluated for the presence of free product. Following gauging, these wells were purged, and groundwater samples were collected. Well MW-4 purged dry before three casing volumes could be removed. Groundwater samples were analyzed at a state-certified analytical laboratory for gasoline range organics (GRO) by EPA Method SW/8015B/SW8260B and for benzene, toluene, ethylbenzene, total xylenes (BTEX) and methyl tert-butyl ether (MTBE) by EPA Method SW8260B. Well construction details are summarized in Table 1, and historical groundwater elevation and analytical data are summarized in Table 2.

At the time of the first quarter 2013 monitoring event, depth-to-water was measured between 6.63 and 7.32 feet below ground surface. Groundwater elevations increased between 0.48 and 0.55 feet in all wells since the previous monitoring event (August 28, 2012). Depth-to-water measurements were converted to feet above mean sea level (MSL) and used to construct a groundwater elevation contour map (Figure 2). Groundwater flow beneath the site was to the southwest with a calculated gradient of 0.004 ft/ft. Historically, groundwater flow beneath the site has been toward the west-southwest and southwest. Groundwater flow during the first quarter 2013 event was generally consistent with historical data.

Concentrations of GRO were reported in four of the wells, with the maximum concentration reported in well MW-4 (2,400 micrograms per liter [μ g/L]). Benzene was reported in three of the wells, with the maximum concentration reported in well MW-4 ($160~\mu$ g/L). Concentrations of MTBE were reported in all wells, with a maximum concentration reported in well MW-4 ($1,400~\mu$ g/L). Analytical results from the February 27, 2013, sampling event are generally consistent with historical analytical data. Figure 3 summarizes GRO, benzene and MTBE analytical results from the first quarter 2013 sampling event.

ATTACHMENTS:

•	Table 1	Well Construction Details
•	Table 2	Groundwater Elevation and Analytical Summary
•	Figure 1	Site Location Map
•	Figure 2	Groundwater Elevation Contour Map (First Quarter 2013)
•	Figure 3	Groundwater Analytical Summary (First Quarter 2013)
•	Appendix A	Field Data Sheets
•	Appendix B	Sampling and Analyses Procedures
•	Appendix C	Laboratory Analytical Reports and Chain-of-Custody Documentation

TABLE 1 WELL CONSTRUCTION DETAILS

Former Olympic Service Station, 1436 Grant Avenue, San Lorenzo, CA

Boring/Well I.D.	Date	Boring Depth	U	Well Diameter	Well Depth	Screen Interval	Slot Size	Drilling Method	Consultant
		(feet)	(inches)	(inches)	(feet)	(feet bgs)			
Groundwater	Monitorin	g Wells	-			<u> </u>			
MW-1	09/24/99	26.5	8	2	26.5	5 - 26.5	0.020	HSA	Conestoga-Rovers & Associates
MW-2	09/24/99	20.0	8	2	20	5-20	0.020	HSA	Conestoga-Rovers & Associates
MW-3	09/24/99	21.5	8	2	21	5-21	0.020	HSA	Conestoga-Rovers & Associates
MW-4	02/09/10	10.0	10	4	10	5-10	0.020	Air Knife	Conestoga-Rovers & Associates
Extraction We	ells								
EX-1	05/19/11	20.0	10	4	20	5-20	0.020	HSA	Stratus Environmental
EX-2	05/19/11	20.0	10	4	20	5-20	0.020	HSA	Stratus Environmental
EX-3	05/19/11	20.0	10	4	20	5-20	0.020	HSA	Stratus Environmental
Notes:									

HSA = Hollow Stem Auger

TABLE 2
GROUNDWATER ELEVATION AND ANALYTICAL SUMMARY
Former Olympic Service Station, 1436 Grant Avenue, San Lorenzo, CA

Well ID	Date Collected	Depth to Water (feet)	Top of Casing Elevation (ft msl)	Grouwater Elevation (ft msl)	Oil & Grease (µg/L)	TPHmo (μg/L)	TPHd (μg/L)	GRO (µg/L)	Benzene (µg/L)	Toluene (μg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)	MTBE (µg/L)	DIPE (µg/L)	TAME (μg/L)	ETBE (µg/L)	TBA (μg/L)	Ethanol (μg/L)	EDB (μg/L)	1,2-DCA (μg/L)
MW-1	10/06/99	8.35	15.00	6.65		-	84**	3,900*	<25	<25	<25	<25	3,500							
	01/13/00	7.90		7.10	-	_	<50	<1,300	18	<13	<13	<13	1,700	_			_	_	_	_
	04/12/00	7.08		7.92	_	_	56***	<1,000	66	<10	<10	<10	1,600	_		_	_	_	_	
	07/19/00	7.66		7.34	_		52**	<1,000	<10	<10	<10	<10	1,200	_			_	_		_
	10/25/00	7.91		7.09		_	76***	4,100*	120	<25	<25	<25	6,100	_	_	_	-	-		_
	02/16/07	6.32		8.68		_		-			_	_	_				_	_		
	03/01/07	5.88		9.12	_	<250	<50	<50	<1.2	<1.2	<1.2	<1.2	78	<1.2	<1.2	<1.2	<12	<120	<1.2	<1.2
	05/01/07	7.24	15.71	8.47		<250	<50	<50	<5.0	<5.0	<5.0	<5.0	250	<5.0	<5.0	<5.0	<50	<500	<5.0	<5.0
	08/01/07	7.77		7.94	_		<50	<50	<25	<25	<25	<25	520	<25	<25	<25	<250	<2,500	<25	<25
	11/01/07	7.71		8.00	_	_	<50	<50	<12	<12	<12	<12	460	<12	<12	<12	<120	<1,200	<12	<12
	02/01/08	5.71		10.00		_	<50	<50	<2.5	<2.5	<2.5	<2.5	110	<2.5	<2.5	<2.5	<10	<250	<2.5	<2.5
	05/02/08	7.52		8.19	_	<250	<50	<50	<5.0	<5.0	<5.0	<5.0	240	<5.0	<5.0	<5.0	<20	<500	<5.0	<5.0
	08/01/08	8.02		7.69	-		<50	<50	<10	<10	<10	<10	500	<10	<10	<10	<40	<1,000	<10	<10
	11/04/08	7.28		8.43	-		<50	<50	<5.0	<5.0	<5.0	<5.0	260	<5.0	<5.0	<5.0	26	<500	<5.0	<5.0
	08/11/09	8.08		7.63		_	<50	<50	< 5.0	<5.0	<5.0	<5.0	270	<5.0	<5.0	<5.0	<20	<500	<5.0	<5.0
	02/03/10	6.14		9.57			_	<50	< 0.5	< 0.5	< 0.5	< 0.5	39	_	_	_	_	_	_	
	05/18/10	7.09		8.62	_			_	_			_			_					_
	08/05/10	7.65		8.06		_	_	<50	< 0.5	< 0.5	< 0.5	< 0.5	350		_					_
	02/04/11	7.20		8.51	-	-	_	<50	0.90	< 0.5	< 0.5	< 0.5	62				_			_
	06/03/11	7.28	18.60	11.32		-		_		_	_			_			_	_		_
	08/02/11	7.47		11.13			_	120	< 0.50	< 0.50	< 0.50	< 0.50	160	_			_	_		_
	09/29/11	7.83		10.77	_	-	-		_		_		_	_			_			
	10/12/11	7.03		11.57	_	_	-	_		_			_	_				_		_
	11/09/11	7.55		11.05		_		_	_	_	_	_		_			_	_	_	
	12/12/11	7.81		10.79		_		-	_		_	_		_	_	_	_	_		_
	03/15/12	6.45		12.15	-	_	_	55	< 0.50	< 0.50	< 0.50	< 0.50	71	-	_	_	-			
	08/28/12	7.81		10.79		-		120	< 0.50	< 0.50	< 0.50	< 0.50	240			_			_	
	02/27/13	7.32		11.28				61	< 0.50	< 0.50	<0.50	< 0.50	69	_		_			_	_

TABLE 2
GROUNDWATER ELEVATION AND ANALYTICAL SUMMARY
Former Olympic Service Station, 1436 Grant Avenue, San Lorenzo, CA

Well ID	Date Collected	Depth to Water (feet)	Top of Casing Elevation (ft msl)	Grouwater Elevation (ft msl)	Oil & Grease (µg/L)	TPHmo (µg/L)	TPHd (µg/L)	GRO (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (μg/L)	Total Xylenes (µg/L)	MTBE (μg/L)	DIPE (µg/L)	TAME (µg/L)	ETBE (µg/L)	TBA (μg/L)	Ethanol (µg/L)	EDB (µg/L)	1,2-DCA (μg/L)
MW-2	10/06/99	. 7.87	14.46	6.59	<1,000	500[3]	<50	70*	<0.5	<0.5	<0.5	<0.5	11					••		
	01/13/00	7.46		7.00	<1,000	500[3]	<50	<50	< 0.5	<0.5	< 0.5	< 0.5	6,2		_					
1	04/12/00	6.67		7.79	1,100	<500	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	39	_		_	_		_	
	07/19/00	7.23		7.23	1,300	<500	<50	<1,000	<10	<10	<10	<10	990			_	_			_
	10/25/00	7.52		6.94	_	<500	<50	370	<2.5	<2.5	<2.5	<2.5	690	_		_		_		_
	02/16/07	5.89		8.57	-	_					-			_	_	_	_	_	_	_
	03/01/07	5.45		9.01	-	<250	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	9.8	< 0.5	< 0.5	< 0.5	<5.0	<50	<0.5	<0.5
	05/01/07	6.83	15.17	8.34	_	<250	<50	<50	<5.0	<5.0	<5.0	<5.0	120	<5.0	<5.0	<5.0	<50	<500	<5.0	<5.0
	08/01/07	7.35		7.82	_	_	<50	<50	<5.0	<5.0	<5.0	<5.0	130	<5.0	<5.0	<5.0	<50	<500	<5.0	<5.0
	11/01/07	7.27		7.90	-		<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	19	<0.5	<0.5	<0.5	<5.0	<50	<0.5	<0.5
	02/01/08	5.25		9.92	_		<50	<50	< 0.5	< 0.5	< 0.5	<0.5	3,3	<0.5	<0.5	<0.5	<2.0	<50	<0.5	<0.5
	05/02/08	7.12		8.05	_		<50	<50	<2.5	<2.5	<2.5	<2.5	83	<2.5	<2.5	<2.5	<10	<250	<2.5	<2.5
	08/01/08	7.59		7.58	_	_	<50	<50	<1.0	<1.0	<1.0	<1.0	52	<1.0	<1.0	<1.0	<4.0	<100	<1.0	<1.0
ĺ	11/04/08	6.84		8.33	_		80	<50	< 0.5	< 0.5	< 0.5	< 0.5	5.9	< 0.5	<0.5	<0.5	<2.0	<50	<0.5	<0.5
	08/11/09	7.65		7.52		_	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	9.4	< 0.5	< 0.5	< 0.5	<2.0	<50	<0.5	<0.5
	02/03/10	5.75		9.42	_		_	<50	< 0.5	< 0.5	<0.5	< 0.5	0.86	_		_	_		_	_
	05/18/10	6.67		8.50	_		_	_	_		_	-	_	_		_	_		_	_
	08/05/10	7.25		7.92	_			<50	< 0.5	< 0.5	< 0.5	< 0.5	57	_	_	_		_		_
	02/04/11	6.79		8.38		_	_	<50	< 0.50	< 0.50	< 0.50	< 0.50	4.4		_	_		_		_
	06/03/11	6.82	18.00	11.18	-	-	_	_	_	_		_	_			_	_	_		_
	08/02/11	7.06		10.94	_			<50	< 0.50	< 0.50	< 0.50	< 0.50	46	_			_		_	
	09/29/11	7.39		10.61				<50	< 0.50	< 0.50	< 0.50	< 0.50	41	<1.0	<1.0	<1.0	<10	-		<1.0
	10/12/11	6.62		11.38				<50	< 0.50	< 0.50	< 0.50	< 0.50	37	<1.0	<1.0	<1.0	<10			<1.0
	11/09/11	7.11		10.89		-		<50	< 0.50	< 0.50	< 0.50	< 0.50	33	<1.0	<1.0	<1.0	<10			<1.0
	12/12/11	7.35		10.65	_	_		_			-		-	_	_		_			
	03/15/12	5.98		12.02	_			<50	< 0.50	< 0.50	< 0.50	< 0.50	4.3		_	_	**	_	_	_
	08/28/12	7.39		10.61	_		-	<50	<0.50	< 0.50	< 0.50	< 0.50	35	_	_	_		_	_	_
	02/27/13	6.91		11.09		-		<50	<0.50	<0.50	<0.50	<0.50	12		-	-		-	-	-

TABLE 2
GROUNDWATER ELEVATION AND ANALYTICAL SUMMARY
Former Olympic Service Station, 1436 Grant Avenue, San Lorenzo, CA

Well ID	Date Collected	Depth to Water (feet)	Top of Casing Elevation (ft msl)	Grouwater Elevation (ft msi)	Oil & Grease (µg/L)	TPHmo (µg/L)	TPHd (µg/L)	GRO (µg/L)	Benzene (μg/L)	Toluene (μg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)	MTBE (µg/L)	DIPE (µg/L)	TAME (µg/L)	ETBE (µg/L)	TBA (μg/L)	Ethanol (µg/L)		1, 2-D CA (μg/L)
MW-3	10/06/99	7.90	14.41	6.51			300**	3,900	900	89	160	560	790							
	01/13/00	7.50		6.91	_		210**	740	110	4.8	35	18	290	_				_		_
	04/12/00	6.61		7.80	_	_	640***	2,200	650	9.7	180	24	140	_					_	_
	07/19/00	7.24		7.17		-	270**	2,700*	420	<2.5	160	<2.5	99	-					_	_
	10/25/00	7.52		6.89	_		150	710*	180	<2.5	24	<2.5	71	_	-	_	_		_	
	02/16/07	5.90		8.51		_			-		_		_					_	_	
	03/01/07	5.44		8.97		<250	<50	82	20	<1.7	<1.7	<1.7	100	<1.7	<1.7	<1.7	<17	<170	<1.7	<1.7
	05/01/07	6.87	15.13	8.26	_	<250	<50	<50	<5.0	<5.0	<5.0	<5.0	88	<5.0	<5.0	<5.0	<50	<500	<5.0	<5.0
	08/01/07	7.40		7.73	_	_	<50	130	12	<2.5	<2.5	<2.5	98	<2.5	<2.5	<2.5	<25	<250	<2.5	<2.5
	11/01/07	7.35		7.78			<50	77	<2.5	<2.5	<2.5	<2.5	68	<2.5	<2.5	<2.5	<25	<250	<2.5	<2.5
	02/01/08	5.28		9.85		_	<50	<50	<2.5	<2.5	<2.5	<2.5	97	<2.5	<2.5	<2.5	<10	<250	<2.5	<2.5
	05/02/08	7.15		7.98	_		<50	68	2.3	<1.7	<1.7	<1.7	86	<1.7	<1.7	<1.7	7.2	<170	<1.7	<1.7
	08/01/08	7.66		7.47		_	<50	85	3.5	<1.0	<1.0	<1.0	66	<1.0	<1.0	<1.0	7.2	<100	<1.0	<1.0
	11/04/08	6.96		8.17		_	<50	<50	<1.0	<1.0	<1.0	<1.0	40	<1.0	<1.0	<1.0	<4.0	<100	<1.0	<1.0
	08/11/09	7.72		7.41			<50	110	33	< 0.50	<0.50	<0.50	28	< 0.50	<0.50	<0.50	<2.0	<50	<0.50	<0.50
	02/03/10	5.72		9.41	_		_	<50	0.55	< 0.50	< 0.50	< 0.50	25			-0.50	-2.0		VO.50	
	05/18/10	6.73		8,40	_		_		_				_		_		_		_	
	08/05/10	7.31		7.82	_	_	_	450	110	2.2	0.76	0.64	32	-	_	_	_	_	_	
	02/04/11	6.80		8.33	_		_	220[1]	64	1.6	<0.5	<0.5	36		_	_		_	_	
	06/03/11	6.87	17.95	11.08		_		200	26	<0.50	<0.50	<0.50	34	_	_	_		_	_	
	08/02/11	7.07		10.88	_		_	<50	2.5	< 0.50	<0.50	<0.50	36	_			_	_		
	09/29/11	7.43		10.52	_	_		<50	< 0.50	<0.50	<0.50	<0.50	28	<1.0	<1.0	<1.0		_		-
	10/12/11	6.67		11.28				<50	0.91	<0.50	<0.50	<0.50	32	<1.0			<10		_	<1.0
	11/09/11	7.16		10.79			_	<50	1.8	<0.50	<0.50	<0.50	31	<1.0	<1.0	<1.0	<10	_	_	<1.0
	12/12/11	7.42		10.73	_	_	_			~0.30 	-0.50				<1.0	<1.0	<10			<1.0
	03/15/12	6.21		11.74	_		_	<50	<0.50	<0.50	<0.50	<0.50	24	_		_	-		_	
	08/28/12	7.44		10.51			_	<50	6.5	<0.50	<0.50	<0.50	24	_		_				
	02/27/13	6.90		11.05	_	_	_	<50	<0.50	<0.50	<0.50	<0.50	24 18	-	_	_			_	_
	02/27/13	0.70		11.05		_	_	~ 0	~0.50	~0.50	\0.30	~0.30	18	-	••	_	_			
MW-4	05/18/10	6.68	15.15	8.47				13,000	620	36	170	12	1,200	_		_		_	_	_
	08/05/10	7.25		7.90		_	-	9,200	780	13	230	4.3	1,800	_		_			_	_
	02/04/11	6.71		8.44		_		4,800[1]	350	7.1	23	<2.5	440	_		_	_			_
	06/03/11	6.78	17.99	11.21			_	4,700	350	2.6	19	<2.5[2]	670				_			
	08/02/11	7.01		10.98	_	_	_	4,700	290	<2.5[2]	12	<2.5[2]	970	_		_	_			_
	09/29/11	7.37		10.62			_	8,700	590	<5.0[2]	34	<5.0[2]	1,500	<10[2]	28	<10[2]	<100[2]	_	_	<10[2]
	10/12/11	6.61		11.38		_		1,500	160	<1.0[2]	1.8	<1.0[2]	1,300	<2.0[2]	8.6	<2.0[2]	42	_	_	<2.0[2]
	11/09/11	7.18		10.81			_	2,800	190	1.4	9.6	1.3	720	<2.0[2]	3.6	<2.0[2]	270		_	<2.0[2]
	12/12/11	7.36		10.63				3,800	300	2.4	11	2.5	1,200				_		_	
	03/15/12	6.15		11.84		_		8,300	530	<5.0[2]	120	72	3,700	_	_		_		_	
	08/28/12	7.40		10.59		_		2,400	250	<4.0[2]	14	<4.0[2]	1,400	_		_	_	_	_	
	02/27/13	6.85		11.14		_		2,400	160	2.5	8.2	<2.0[2]	1,400				_	_	_	_

TABLE 2 GROUNDWATER ELEVATION AND ANALYTICAL SUMMARY

Former Olympic Service Station, 1436 Grant Avenue, San Lorenzo, CA

Well ID	Date Collected	Depth to Water (feet)	Top of Casing Elevation (ft msl)	Grouwater Elevation (ft msl)	Oil & Grease (µg/L)	TPHmo (µg/L)	TPHd (µg/L)	GRO (µg/L)	Benzene (µg/L)	Toluene (μg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)	MTBE (μg/L)	DIPE (µg/L)	TAME (µg/L)	ETBE (µg/L)	TBA (μg/L)	Ethanol (µg/L)	EDB (µg/L)	1,2-DCA (μg/L)
EX-1	06/03/11	6.96	18.14	11.18		_	_	76	8.3	<0.50	<0.50	0.99	37							
	08/02/11	7.20		10.94	_	_	_	420	37	0.65	3.5	2.9	32	_		_	_	_	_	-
	09/29/11	7.53		10.61			_	150	13	< 0.50	3.2	1.1	23	<1.0	1.2	<1.0	<10	_	_	<1.0
	10/12/11	6.63		11.51	_	_	_	180	23	0.51	2.8	0.97	27	<1.0	1.0	<1.0	<10	_		<1.0
	11/09/11	7.28		10.86	_	_	_	<50	4.3	< 0.50	< 0.50	< 0.50	34	<1.0	<1.0	<1.0	<10		_	<1.0
	12/12/11	7.50		10.64				520	32	1.3	13	5.58	20	_			-10		_	-1.0
	03/15/12	6.19		11.95	_	_	-	<50	2.6	< 0.50	< 0.50	< 0.50	8.4					_	_	
l	08/28/12	7.53		10.61	-	_	-	410	88	1.2	36	1.4	42		_	_		_		
	02/27/13	7.02		11.12	_	_	-	<50	0.75	<0.50	<0.50	<0.50	14			-	_	_	_	_
EX-2	06/03/11	6.81	18.14	11.33		_	_	760	<1.5[2]	<1.5[2]	<1.5[2]	<1.5[2]	1,100	_	_	_		_		_
	08/02/11	7.03		11.11	_	_	_	920	8.7	<1.0[2]	<1.0[2]	<1.0[2]	920	_	_	_				
	09/29/11	7.37		10.77	_	_	_	_	_	_		[-]	_	_			_	_	_	_
	10/12/11	6.65		11.49	_	_	_		_	_	_	_	_	_	_			_	_	_
	11/09/11	7.08		11.06					_	_		_				_	_		_	
	12/12/11	7.35		10.79				590	5.6	<1.0[2]	<1.0[2]	<1.0[2]	920			_	_	_		_
	03/15/12	6.58		11.56			_	100	< 0.50	<0.50	< 0.50	< 0.50	130	_						_
	08/28/12	7.35		10.79	-	-		<300[2]	2.5	<1.5[2]	<1.5[2]	<1.5[2]	540	_		-	_	_	_	_
	02/27/13	6.82		11.32			-	320	0.51	<0.50	<0.50	<0.50	420	-	-	_		-	_	_
EX-3	06/03/11	6.55	17.63	11.08	_	_	_	95	0.93	<0.50	<0.50	<0.50	78	_	_	_			_	_
	08/02/11	6.82		10.81		_	_	130	1.5	< 0.50	< 0.50	< 0.50	150	_			_	_	_	
	09/29/11	7.15		10.48		_	-			_		_	_	_				_		_
	10/12/11	6.37		11.26	_	-										_				_
	11/19/11	6.89		10.74		_		_		_	_		_	_	_			_	_	
	12/12/11	7.12		10.51		_	_	100	2.4	< 0.50	< 0.50	< 0.50	84		_		_	_		_
	03/15/12	5.70		11.93				<50	< 0.50	< 0.50	< 0.50	< 0.50	30			_			_	_
	08/28/12	7.15		10.48			-	100	< 0.50	< 0.50	< 0.50	< 0.50	190	_	_	_	_	_	_	
	02/27/13	6.63		11.00		_	-	84	<0.50	<0.50	<0.50	<0.50	93	_	-		-	_	_	

Legend/Key:

ft msi = feet above mean sea level μg/L = micrograms per liter

TPH - mo = total petroleum hydrocarbons as motor oil

TPHd = total petroleum hydrocarbons as diesel

NM = Not measured

GRO = gasoline range organics C6-C12

MTBE - methyl tertiary butyl ether

DIPE = di isopropyl ether

ETBE = ethyl tertiary butyl ether

TAME = tert amyl methyl ether TBA = tert butyl ether EDB = 1,2-dibromoethane 1,2-DCA = 1,2-dichloroethane

Analytical Methods:

GRO analyzed by EPA Method

SW8015B/SW8260B, all other analytes analyzed by

SW8260B.

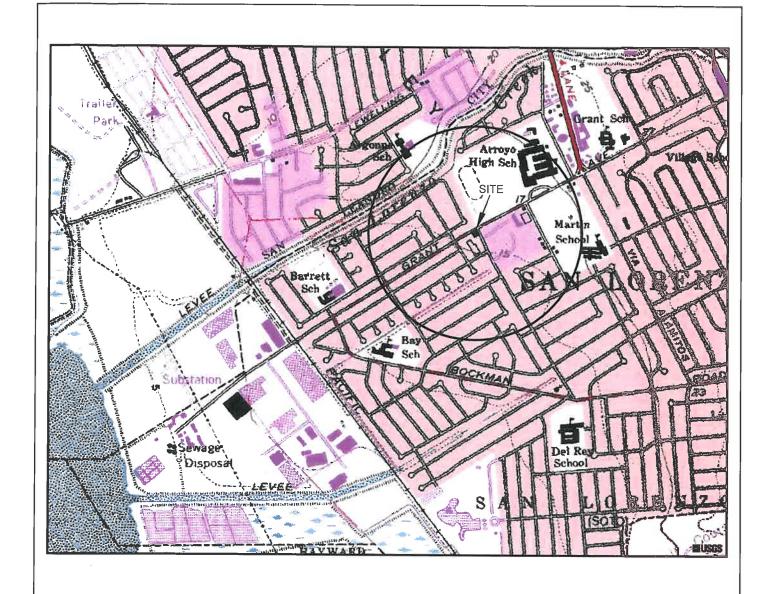
Analytical methods prior to February 2011, are available in various reports on the Alameda County Environmental Health Department files.

[1] Weakly modified or unmodified gasoline is significant.

[2] = Reporting limits were increased due to high concentrations of target analytes.

*** = Hydrocarbon reported does not match the pattern of the diesel standard.

* = Hydrocarbon reported in the gasoline range does not match the gasoline standard.


** = Hydrocarbon reported is in the early diesel range and does not match the diesel standard.

[3] = Sample also analyzed for halogenated volatile organic compounds (EPA Method 8010) and semivolatile organic compounds (EPA Method 8270A); all analytes reported as none detected,

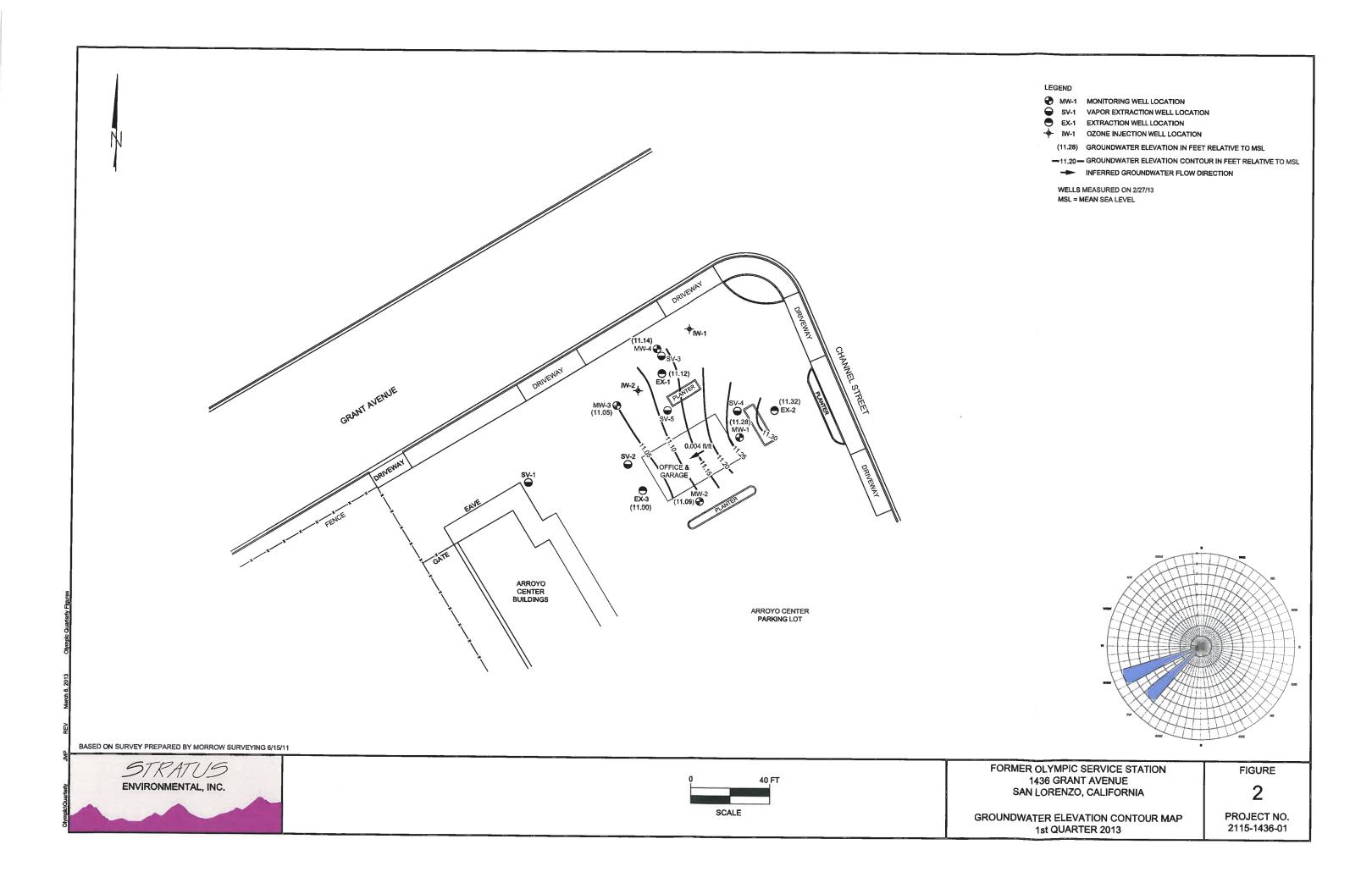
Analytical data for samples collected prior to 2011 are obtained from documents available in the Alameda County Environmental Health Department files.

*Well elevations and locations surveyed by Morrow Surveying on June 15, 2011.

Page 4 of 4

GENERAL NOTES: BASE MAP FROM U.S.G.S. SAN LORENZO, CA. 7.5 MINUTE TOPOGRAPHIC PHOTOREVISED 1978

APPROXIMATE SCALE


FORMER OLYMPIC SERVICE STATION 1436 GRANT AVENUE SAN LORENZO, CALIFORNIA

SITE LOCATION MAP

FIGURE

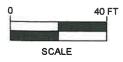
TOJECT 1

PROJECT NO. 2115-1436-01

2,400 160 1,400 320 **0.51** 420 MW-3 **⊕** <50 <0.50 18 OFFICE & GARAGE EX-3 84 <0.50 93 <50 <0.50 12 ARROYO CENTER BUILDINGS ARROYO CENTER PARKING LOT

♠ MW-1 MONITORING WELL LOCATION SV-1 VAPOR EXTRACTION WELL LOCATION EX-1 EXTRACTION WELL LOCATION OZONE INJECTION WELL LOCATION

GASOLINE RANGE ORGANICS (GRO) CONCENTRATION IN $\mu g/L$ BENZENE CONCENTRATION IN $\mu g/L$ <0.50


METHYL TERTIARY BUTYL ETHER (MTBE) IN $\mu g/L$

WELLS SAMPLED ON 2/27/13

GRO ANALYZED BY EPA METHOD SW8015B/SW8260B MTBE & BENZENE ANALYZED BY EPA METHOD SW8260B

BASED ON SURVEY PREPARED BY MORROW SURVEYING 6/15/11

STRATUS ENVIRONMENTAL, INC.

FORMER OLYMPIC SERVICE STATION 1436 GRANT AVENUE SAN LORENZO, CALIFORNIA

GROUNDWATER ANALYTICAL SUMMARY 1st QUARTER 2013

FIGURE

PROJECT NO. 2115-1436-01

APPENDIX A FIELD DATA SHEETS

Site Address	1436 Grant Avenue
City	San Lorenzo
Sampled by:	Carl Schulze
Signature	(2) 2/2

Site Number	Olympic Jaber
Project Number	2115-1436-01
Project PM	Steve Carter
DATE	02/27/13

	Wa	ater Level D	ata			Purge V	olume Calc	ulations	·		Purge	Metho	d	S	Field Data		
Well ID	Time	Depth to Product (feet)	Depth to Water (feet)	Total Depth (feet)	Water column (feet)	Diameter (inches)	Multiplier	3 casing volumes (gallons)	Actual water purged (gallons)	No Purge	Bailer	Pump	other	DTW at sample time (feet)	Sample I.D	Sample Time	DO (mg/L)
MW-1	0936		7.32	24.17	16.85	Zʻʻ	0.5	8.43	8.5		¥			7.37	mw-1	0954	1.62
MW-Z	1007		6.91	18.24	11.33	2"	0.5	5.67	6		×			6.91	MW-2	1021	1.66
Mw-3	0704		6.90	। ৪ ৪৭	11,94	٤*	0.5	5.9b	6		X			6.98	MW-3	6718	3.01
nw-4	3733		6.85	18.8	2.46	۲"	2.0	4.92	4.5		X		dry	7.35	MW-4	0842	2.78
EX-1	0853		7.02	19.80	12.78	44	2.0	25.56	26		χ			7.20	EX-1	0925	1.97
EX-Z	0806		6.82.	19.20	12.48	4"	٤.٥	24.96	28		к			6.34	EX-Z	0825	1.97
EX-3	1047		6.63	1978	13.15	4 "	2.0	26.30	26		X			6.86	Ex-3	8011	1.84
L									_								
<u></u>																	
										•							

Multiplier 2" = 0.5 3" = 1.0 4" = 2.0 6" = 4.4 Please refer to groundwater sampling field procedures
pH/Conductivity/temperature Meter - Oakton Model PC-10
DO Meter - Oakton 300 Series (DO is always measured before purge)

(CALIBRATION DATE
pH	02/20/13
Conductivity	1
DO	+

Site Address 1436 Grant Ave
City San Lorenzo
Sampled By: Carl Schulze
Signature

Site Number Olympic Jaber
Project Number 2115-1436-01
Project PM S. Carter
DATE ©Z/Z7/i3

	Charles											
Well ID MW-	3				Well ID MU-4							
Purge start time			Odor	Y (8)	Purge start time			Odor				
	Temp C	рН	cond	gallons		Temp C	рН	cond	gallons			
time 0708	17. 2	7.63	825 m	O	time 0'746	14.9	7.48	765,2	٥			
time on 2	18.8	7.61	359	2	time 0733	15.7	7.38	740	2.5			
time 0.715	18.8	7.62	871	4	time 0847	14.6	7.72	734	4.5 dr			
time 0719	17.9	7.79	877	6	time							
purge stop time	Do:	3.01	ORP 9	4	purge stop time	50: 2,78	}	ORP 48				
Well ID EX-Z					Well ID EX-(· · · · · · · · · · · · · · · · · · ·	<u> </u>		Commence of the Commence of th			
Purge start time			Odor	Ø N	Purge start time			Odor				
	Temp C	рН	cond	gallons		Temp C	рН	cond	gallons			
time 0310	16.6	7.95	776	0	time 6960	11.8	7.90	804 h	0			
time 0815	17.0	7.61	797	8	time a 9 b S	18.4	7.66	812	٩			
time 0818	16.5	7.67	796	16	time ogog	13.6	7.70	826	18			
time 0325	8.11	7.58	807	25	time 0925	17. 8	8.08	837	26			
purge stop time	100: 1.9	7	ORP	60	purge stop time	00: 1	97		16			
Well ID ww.	1				Well ID Mw-	7						
Purge start time			Odor	Y 🔞	Purge start time			Odor Y				
	Temp C	рH	cond	gallons		Temp C	pН	cond	gallons			
lime 6942	17.7	7.83	836 pc	0	time 101(18-0	7.69	839 µ	0			
time 0945	19.1	7.62	872	2	time 1015	19.0	7.58	837	2			
time 0956	19.2	7.58	838	5	time 1018-	19.2	7.58	838	4			
time 0954	18.8	7.82	835	8.5	time lozl	18.9	7.76	837	6			
purge stop time	00 · 1.	62	ORP 3	0	purge stop time	00:1.6		ORP	33			
Well ID Ex-3					Well ID							
Purge start time			Odor	YN	Purge start time			Odor	YN			
	Temp C	рН	cond	galions		Temp C	рН	cond	gallons			
time 1057	19.5	7.78	846 pc	0	time				0			
	19.6	7.63	847	٩	time							
time 1059			ncl	18	time							
time 1059	19.6	7.59	821	10	1							
	19.6	7.59	844	27	time							

gu

APPENDIX B SAMPLING AND ANALYSES PROCEDURES

SAMPLING AND ANALYSIS PROCEDURES

The sampling and analysis procedures as well as the quality assurance plan are contained in this appendix. The procedures and adherence to the quality assurance plan will provide for consistent and reproducible sampling methods; proper application of analytical methods; accurate and precise analytical results; and finally, these procedures will provide guidelines so that the overall objectives of the monitoring program are achieved.

Ground Water and Liquid-Phase Petroleum Hydrocarbon Depth Assessment

A water/hydrocarbon interface probe is used to assess the liquid-phase petroleum hydrocarbon (LPH) thickness, if present, and a water level indicator is used to measure the ground water depth in monitoring wells that do not contain LPH. Depth to ground water or LPH is measured from a datum point at the top of each monitoring well casing. The datum point is typical a notch cut in the north side of the casing edge. If a water level indicator is used, the tip is subjectively analyzed for hydrocarbon sheen.

Subjective Analysis of Ground Water

Prior to purging, a water sample is collected from the monitoring well for subjective assessment. The sample is retrieved by gently lowering a clean, disposable bailer to approximately one-half the bailer length past the air/liquid interface. The bailer is then retrieved, and the sample contained within the bailer is examined for floating LPH and the appearance of a LPH sheen.

Monitoring Well Purging and Sampling

Monitoring wells are purged using a pump or bailer until pH, temperature, and conductivity of the purge water has stabilized and a minimum of three well volumes of water have been removed. If three well volumes can not be removed in one half hour's time the well is allowed to recharge to 80% of original level. After recharging, a ground water sample is then removed from each of the wells using a disposable bailer.

A Teflon bailer, electric submersible or bladder pump will be the only equipment used for well sampling. When samples for volatile organic analysis are being collected, the pump flow will be regulated at approximately 100 milliliters per minute to minimize pump effluent turbulence and aeration. Glass bottles of at least 40-milliliters volume and fitted with Teflon-lined septa will be used in sampling for volatile organics. These bottles will be filled completely to prevent air from remaining in the bottle. A positive meniscus forms when the bottle is completely full. A convex Teflon septum will be placed over the positive meniscus to eliminate air. After the bottle is capped, it is inverted and tapped to verify that it contains no air bubbles. The sample containers for other parameters will be filled, filtered as required, and capped.

The water sample is collected, labeled, and handled according to the Quality Assurance Plan. Water generated during the monitoring event is disposed of accruing to regulatory accepted method pertaining to the site.

QUALITY ASSURANCE PLAN

Procedures to provide data quality should be established and documented so that conditions adverse to quality, such as deficiencies, deviations, nonconforments, defective material, services, and/or equipment, can be promptly identified and corrected.

General Sample Collection and Handling Procedures

Proper collection and handling are essential to ensure the quality of a sample. Each sample is collected in a suitable container, preserved correctly for the intended analysis, and stored prior to analysis for no longer than the maximum allowable holding time. Details on the procedures for collection and handling of samples used on this project can be found in this section.

Soil and Water Sample Labeling and Preservation

Label information includes a unique sample identification number, job identification number, date, and time. After labeling all soil and water samples are placed in a Ziploc[®] type bag and placed in an ice chest cooled to approximately 4° Celsius. Upon arriving at Stratus' office the samples are transferred to a locked refrigerator cooled to approximately 4° Celsius. Chemical preservation is controlled by the required analysis and is noted on the chain-of-custody form. Trip blanks supplied by the laboratory accompany the groundwater sample containers and groundwater samples.

Upon recovery, the sample container is sealed to minimize the potential of volatilization and cross-contamination prior to chemical analysis. Soil sampling tubes are typically closed at each end with Teflon® sheeting and plastic caps. The sample is then placed in a Ziploc® type bag and sealed. The sample is labeled and refrigerated at approximately 4° Celsius for delivery, under strict chain-of-custody, to the analytical laboratory.

Sample Identification and Chain-of-Custody Procedures

Sample identification and chain-of-custody procedures document sample possession from the time of collection to ultimate disposal. Each sample container submitted for analysis has a label affixed to identify the job number, sampler, date and time of sample collection, and a sample number unique to that sample. This information, in addition to a description of the sample, field measurements made, sampling methodology, names of on-site personnel, and any other pertinent field observations, is recorded on the borehole log or in the field records. The samples are analyzed by a California-certified laboratory.

A chain-of-custody form is used to record possession of the sample from time of collection to its arrival at the laboratory. When the samples are shipped, the person in custody of them relinquishes the samples by signing the chain-of-custody form and

noting the time. The sample-control officer at the laboratory verifies sample integrity and confirms that the samples are collected in the proper containers, preserved correctly, and contain adequate volumes for analysis. These conditions are noted on a Laboratory Sample Receipt Checklist that becomes part of the laboratory report upon request.

If these conditions are met, each sample is assigned a unique log number for identification throughout analysis and reporting. The log number is recorded on the chain-of-custody form and in the legally-required log book maintained by the laboratory. The sample description, date received, client's name, and other relevant information is also recorded.

Equipment Cleaning

Sample bottles, caps, and septa used in sampling for volatile and semivolatile organics will be triple rinsed with high-purity deionized water. After being rinsed, sample bottles will be dried overnight at a temperature of 200°C. Sample caps and septa will be dried overnight at a temperature of 60°C. Sample bottles, caps, and septa will be protected from solvent contact between drying and actual use at the sampling site. Sampling containers will be used only once and discarded after analysis is complete.

Plastic bottles and caps used in sampling for metals will be soaked overnight in a 1-percent nitric acid solution. Next, the bottles and caps will be triple rinsed with deionized water. Finally, the bottles and caps will be air dried before being used at the site. Plastic bottles and caps will be constructed of linear polyethylene or polypropylene. Sampling containers will be used only once and discarded after analysis is complete. Glass and plastic bottles used by Stratus to collect groundwater samples are supplied by the laboratory.

Before the sampling event is started, equipment that will be placed in the well or will come in contact with groundwater will be disassembled and cleaned thoroughly with detergent water, and then steam cleaned with deionized water. Any parts that may absorb contaminants, such as plastic pump valves, etc. will be cleaned as described above or replaced.

During field sampling, equipment surfaces that are placed in the well or contact groundwater will be steam cleaned with deionized water before the next well is purged or sampled. Equipment blanks will be collected and analyzed from non-disposable sampling equipment that is used for collecting groundwater samples at the rate of one blank per twenty samples collected.

Internal Quality Assurance Checks

Internal quality assurance procedures are designed to provide reliability of monitoring and measurement of data. Both field and laboratory quality assurance checks are necessary to evaluate the reliability of sampling and analysis results. Internal quality assurance procedures generally include:

- Laboratory Quality Assurance

- Documentation of instrument performance checks
- Documentation of instrument calibration
- Documentation of the traceability of instrument standards, samples, and data
- Documentation of analytical and QC methodology (QC methodology includes use
 of spiked samples, duplicate samples, split samples, use of reference blanks, and
 check standards to check method accuracy and precision)

- Field Quality Assurance

- Documentation of sample preservation and transportation
- Documentation of field instrument calibration and irregularities in performance

Internal laboratory quality assurance checks will be the responsibility of the contract laboratories. Data and reports submitted by field personnel and the contract laboratory will be reviewed and maintained in the project files.

Types of Quality Control Checks

Samples are analyzed using analytical methods outlined in EPA Manual SW 846 and approved by the California Regional Water Quality Control Board-Central Valley Region in the Leaking Underground Fuel Tanks (LUFT) manual and appendices. Standard contract laboratory quality control may include analysis or use of the following:

- Method blanks reagent water used to prepare calibration standards, spike solutions, etc. is analyzed in the same manner as the sample to demonstrate that analytical interferences are under control.
- Matrix spiked samples a known amount of spike solution containing selected
 constituents is added to the sample at concentrations at which the accuracy of the
 analytical method is to satisfactorily monitor and evaluate laboratory data quality.
- Split samples a sample is split into two separate aliquots before analysis to assess the reproducibility of the analysis.
- Surrogate samples samples are spiked with surrogate constituents at known concentrations to monitor both the performance of the analytical system and the effectiveness of the method in dealing with the sample matrix.
- Control charts graphical presentation of spike or split sample results used to track the accuracy or precision of the analysis.
- Quality control check samples when spiked sample analysis indicates atypical
 instrument performance, a quality check sample, which is prepared independently
 of the calibration standards and contains the constituents of interest, is analyzed to
 confirm that measurements were performed accurately.

 Calibration standards and devices – traceable standards or devices to set instrument response so that sample analysis results represent the absolute concentration of the constituent.

Field QA samples will be collected to assess sample handling procedures and conditions. Standard field quality control may include the use of the following, and will be collected and analyzed as outlined in EPA Manual SW 846.

- Field blanks reagent water samples are prepared at the sampling location by the same procedure used to collect field groundwater samples and analyzed with the groundwater samples to assess the impact of sampling techniques on data quality. Typically, one field blank per twenty groundwater samples collected will be analyzed per sampling event.
- Field replicates duplicate or triplicate samples are collected and analyzed to
 assess the reproducibility of the analytical data. One replicate groundwater
 sample per twenty samples collected will be analyzed per sampling event, unless
 otherwise specified. Triplicate samples will be collected only when specific
 conditions warrant and generally are sent to an alternate laboratory to confirm the
 accuracy of the routinely used laboratory.
- Trip blanks reagent water samples are prepared before field work, transported
 and stored with the samples and analyzed to assess the impact of sample transport
 and storage for data quality. In the event that any analyte is detected in the field
 blank, a trip blank will be included in the subsequent groundwater sampling
 event.

Data reliability will be evaluated by the certified laboratory and reported on a cover sheet attached to the laboratory data report. Analytical data resulting from the testing of field or trip blanks will be included in the laboratory's report. Results from matrix spike, surrogate, and method blank testing will be reported, along with a statement of whether the samples were analyzed within the appropriate holding time.

Stratus will evaluate the laboratory's report on data reliability and note significant QC results that may make the data biased or unacceptable. Data viability will be performed as outlined in EPA Manual SW 846. If biased or unacceptable data is noted, corrective actions (including re-sample/re-analyze, etc.) will be evaluated on a site-specific basis.

APPENDIX C

LABORATORY ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY DOCUMENTATION

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861

Attn: Steve Carter Phone: (530) 676-6008

Fax: (530) 676-6005 Date Received: 02/28/13

Job: 2115-1436-01/Olympic Station

Total Petroleum Hydrocarbons - Purgeable (TPH-P) EPA Method SW8015B / SW8260B Volatile Organic Compounds (VOCs) EPA Method SW8260B

		Parameter	Concentration	Reporting Limit	Date Extracted	Date Analyzed
Client ID:	MW-1			Limit	Extracted	Allalyzed
Lab ID :	STR13022843-01A	TPH-P (GRO)	61	50 μg/L	03/04/13	03/04/13
	02/27/13 09:54	Methyl tert-butyl ether (MTBE)	69	0.50 μg/L	03/04/13	03/04/13
-		Benzene	ND	0.50 μg/L 0.50 μg/L	03/04/13	03/04/13
		Toluene	ND	0.50 μg/L 0.50 μg/L	03/04/13	03/04/13
		Ethylbenzene	ND	0.50 μg/L 0.50 μg/L	03/04/13	03/04/13
		m,p-Xylene	ND	0.50 μg/L 0.50 μg/L	03/04/13	03/04/13
		o-Xylene	ND	0.50 µg/L	03/04/13	03/04/13
Client ID:	MW-2	0.11,10110	ND	0.50 μg/L	03/04/13	03/04/13
Lab ID:	STR13022843-02A	TPH-P (GRO)	ND	50 μg/L	03/04/13	03/04/13
Date Sampled	02/27/13 10:21	Methyl tert-butyl ether (MTBE)	12	0.50 μg/L	03/04/13	03/04/13
•		Benzene	ND	0.50 μg/L 0.50 μg/L	03/04/13	03/04/13
		Toluene	ND	0.50 μg/L 0.50 μg/L	03/04/13	03/04/13
		Ethylbenzene	ND	0.50 μg/L 0.50 μg/L	03/04/13	03/04/13
		m,p-Xylene	ND	0.50 μg/L	03/04/13	03/04/13
		o-Xylene	ND	0.50 μg/L 0.50 μg/L	03/04/13	03/04/13
Client ID:	MW-3		ND	0.50 pg D	03/04/13	03/04/13
Lab ID :	STR13022843-03A	TPH-P (GRO)	ND	50 μg/L	03/04/13	03/04/13
Date Sampled	02/27/13 07:18	Methyl tert-butyl ether (MTBE)	18	0.50 μg/L	03/04/13	03/04/13
		Benzene	ND	0.50 μg/L	03/04/13	03/04/13
		Toluene	ND	0.50 μg/L	03/04/13	03/04/13
		Ethylbenzene	ND	0.50 μg/L	03/04/13	03/04/13
		m,p-Xylene	ND	0.50 μg/L	03/04/13	03/04/13
		o-Xylene	ND	0.50 μg/L	03/04/13	03/04/13
Client ID:	MW-4	•			V3.0 11.10	VO. U 12
Lab ID:	STR13022843-04A	TPH-P (GRO)	2,400	400 μg/L	03/04/13	03/04/13
Date Sampled	02/27/13 08:42	Methyl tert-butyl ether (MTBE)	1,400	2.0 μg/L	03/04/13	03/04/13
-		Benzene	160	2.0 μg/L	03/04/13	03/04/13
		Toluene	2.5	2.0 μg/L	03/04/13	03/04/13
		Ethylbenzene	8.2	2.0 μg/L	03/04/13	03/04/13
		m,p-Xylene	ND V	2.0 μg/L	03/04/13	03/04/13
		o-Xylene	ND V	2.0 μg/L	03/04/13	03/04/13
Client ID:	EX-1					
Lab ID:	STR13022843-05A	TPH-P (GRO)	ND	50 μg/L	03/04/13	03/04/13
Date Sampled	02/27/13 09:25	Methyl tert-butyl ether (MTBE)	14	0.50 μg/L	03/04/13	03/04/13
		Benzene	0.75	0.50 μg/L	03/04/13	03/04/13
		Toluene	ND	0.50 μg/L	03/04/13	03/04/13
		Ethylbenzene	ND	0.50 μg/L	03/04/13	03/04/13
		m,p-Xylene	ND	0.50 μg/L	03/04/13	03/04/13
		o-Xylene	ND	0.50 μg/L	03/04/13	03/04/13

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Client ID: EX-2					
Lab ID: STR13022843-06A	TPH-P (GRO)	320	100 μg/L	03/04/13	03/04/13
Date Sampled 02/27/13 08:25	Methyl tert-butyl ether (MTBE)	420	0.50 μg/L	03/04/13	03/04/13
	Benzene	0.51	0.50 μg/L	03/04/13	03/04/13
	Toluene	ND	0.50 μg/L	03/04/13	03/04/13
	Ethylbenzene	ND	0.50 μg/L	03/04/13	03/04/13
	m,p-Xylene	ND	0.50 μg/L	03/04/13	03/04/13
	o-Xylene	ND	0.50 μg/L	03/04/13	03/04/13
Client ID: EX-3					
Lab ID: STR13022843-07A	TPH-P (GRO)	84	50 μg/L	03/04/13	03/04/13
Date Sampled 02/27/13 11:08	Methyl tert-butyl ether (MTBE)	93	0.50 μg/L	03/04/13	03/04/13
	Benzene	ND	0.50 μg/L	03/04/13	03/04/13
	Toluene	ND	0.50 μg/L	03/04/13	03/04/13
	Ethylbenzene	ND	0.50 μg/L	03/04/13	03/04/13
	m,p-Xylene	ND	0.50 μg/L	03/04/13	03/04/13
ы.	o-Xylene	ND	0.50 μg/L	03/04/13	03/04/13

Gasoline Range Organics (GRO) C4-C13

V = Reporting Limits were increased due to high concentrations of target analytes.

ND = Not Detected

Reported in micrograms per Liter, per client request.

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com Alpha Analytical, Inc. certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Statement of Data Authenticity: Alpha Analytical, Inc. attests that the data reported has not been altered an any way.

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported se

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

VOC Sample Preservation Report

Work Order: STR13022843

Job:

2115-1436-01/Olympic Station

Alpha's Sample ID	Client's Sample ID	Matrix	рН				
13022843-01A	MW-1	Aqueous	2				
13022843-02A	MW-2	Aqueous	2				
13022843-03A	MW-3	Aqueous	2	٠. ا			
13022843-04A	MW-4	Aqueous	2				
13022843-05A	EX-1	Aqueous	2				
13022843-06A	EX-2	Aqueous	2				
13022843-07A	EX-3	Aqueous	2				

3/7/13

Report Date

Page 1 of 1

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 07-Mar-13	QC Summary Report										
Method Blank File ID: 13030404.D Sample ID: MBLK MS09W0304B	Units : μg/L		Ba Run ID: M	atch ID: MS0 SD_09_1303	9W030)4B	Prep Date:	: 03/04/2013 10:26 03/04/2013 10:26			
Analyte TPH-P (GRO) Surr: 1,2-Dichloroethane-d4 Surr: Toluene-d8 Surr: 4-Bromofluorobenzene	ND 9.25 11.2 9.81	PQL 50		SpkRefVal	93 112 98	70 70 70 70	130 130 130 130	fVal %RPD(Limit)	Qual		
Laboratory Control Spike File ID: 13030405.D Sample ID: GLCS MS09W0304B	Units : μg/L		Ba Run ID: M	atch ID: MS0 SD_09_1303	9W030 04A	14B	Prep Date:	: 03/04/2013 10:49 03/04/2013 10:49			
Analyte TPH-P (GRO) Surr: 1,2-Dichloroethane-d4 Surr: Toluene-d8 Surr: 4-Bromofluorobenzene	452 9.09 11.2 9.92	PQL 50		SpkRefVal	%REC 113 91 112 99	70 70 70 70 70	UCL(ME) RPDRe 130 130 130 130	Wał %RPD(Limit)	Qual		
Sample Matrix Spike File ID: 13030417.D Sample ID: 13022843-01AGS Analyte	Units : µg/L Result	Type M	Ba Run ID: M	ntch ID: MS0 SD_09_1303	9W030 04A	4B	Prep Date:	3 : 03/04/2013 15:46 03/04/2013 15:46 (Val %RPD(Limit)	Qual		
TPH-P (GRO) Surr: 1,2-Dichloroethane-d4 Surr: Toluene-d8 Surr: 4-Bromofluorobenzene	2460 47.2 54.4 49	250	2000 50 50 50	60.58	120 94 109 98	54 70 70 70	143 130 130 130	vai mir b(Einit)	Quai		
Sample Matrix Spike Duplicate File ID: 13030418.D Sample ID: 13022843-01AGSD	Units : µg/L		Ва	est Code: EP atch ID: MS0 SD_09_1303	9 W 030		15B/C / SW8260E Analysis Date Prep Date:	3 : 03/04/2013 16:10 03/04/2013 16:10			
Analyte TPH-P (GRO) Surr: 1,2-Dichloroethane-d4 Surr: Toluene-d8 Surr: 4-Bromofluorobenzene	2500 48.3 54.9 47.1	PQL 250	2000 50 50 50	SpkRefVal 60.58	122 93 110 94	54 70 70 70	UCL(ME) RPDRe 143 246 130 130 130	Val %RPD(Limit) 3 1.4(23)	Qual		

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Reported in micrograms per Liter, per client request.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 05-Mar-13	(Work Order: 13022843							
Method Blank File ID: 13030404.D Sample ID: MBLK MS09W0304A	l loite : uall	Туре МЕ	В	est Code: El	9 W 030		Analys		03/04/2013 10:26	_
Analyte	Units : µg/L Result	PQL		SD_09_130 : SpkRefVal		LCL(ME)	Prep D		03/04/2013 10:26 /al %RPD(Limit)	Qual
Methyl tert-butyl ether (MTBE) Benzene Toluene	ND ND ND	0.5 0.5 0.5	Opicvai	Оркі чег чаг	MINEO	LOC(WIL)	OOL(ML)	VI DIVOIT	vai 70131 D(LIIIII)	Quai
Ethylbenzene m,p-Xylene o-Xylene Surr: 1,2-Dichloroethane-d4	ND ND ND 9.25	0.5 0.5 0.5	10		93	70	130			
Surr: Toluene-d8 Surr: 4-Bromofluorobenzene	11.2 9.81		10 10		112 98	70 70 70	130 130			
Laboratory Control Spike		Type LC		est Code: El						_
File ID: 13030402.D			Ва	atch ID: MS()50We)4A	Analys	is Date:	03/04/2013 09:40	
Sample ID: LCS MS09W0304A	Units : µg/L			SD_09_130			Prep D		03/04/2013 09:40	
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME) I	RPDRef\	/al %RPD(Limit)	Qual
Methyl tert-butyl ether (MTBE) Benzene Toluene	7.29 9.36 10.2	0.5 0.5 0.5	10 10 10		73 94 102	63 70 80	137 130 120			
Ethylbenzene m,p-Xylene o-Xylene	10.3 10.4 10.9	0.5 0.5 0.5	10 10 10		103 104 109	80 65 70	120 139 130			
Surr: 1,2-Dichloroethane-d4 Surr: Toluene-d8 Surr: 4-Bromofluorobenzene	9.58 10.7 8.46		10 10 10		96 107 85	70 70 70	130 130 130	-		
Sample Matrix Spike		Type MS	T	est Code: El	PA Met	hod SW82	60B			
File ID: 13030415.D		_		atch ID: MS(04A	•		03/04/2013 14:59	
Sample ID: 13022843-01AMS Analyte	Units : µg/L Result	PQL		SD_09_130 ; SpkRefVal		LCI(ME)	Prep D		03/04/2013 14:59 Val %RPD(Limit)	Qual
Methyl tert-butyl ether (MTBE)	87.2	1.3	50	69.09	36	56	140		701 0 0 (2.000.0)	M2
Benzene	50.5	1.3	50	0	101	67	134			
Toluene Ethylbenzene	50.4 53	1.3 1.3	50 50	0	101 106	38 70	130 130			
m,p-Xylene	52.7	1.3	50	Ö	105	65	139			
o-Xylene Surr: 1,2-Dichloroethane-d4	53 50.7	1.3	50 50	0	106 101	69 . 70	130 130			
Surr: Toluene-d8	50.7		50		101	70	130			
Surr: 4-Bromofluorobenzene	41.8	-	50		84	70	130			
Sample Matrix Spike Duplicate File ID: 13030416.D		Type MS		est Code: El atch ID: MS(is Date:	03/04/2013 15:23	
Sample ID: 13022843-01AMSD	Units : µg/L	F		SD_09_130			Prep D		03/04/2013 15:23	
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME) I	RPDRef	Val %RPD(Limit)	Qual
Methyl tert-butyl ether (MTBE)	94.1	1.3	50	69.09		56	140	87.2		M2
Benzene Toluene Ethylbenzene	50.8 51.1 51.9	1.3 1.3 1.3	50 50 50	0		67 38 70	134 130 130	50.45 50.45 52.98	3 1.2(20)	
m.p-Xylene o-Xylene Surr: 1,2-Dichloroethane-d4	52.8 53.5 50	1.3 1.3	50 50 50	0	106 107 100	65 69 70	139 130 130	52.69 52.99		
Surr: Toluene-d8 Surr: 4-Bromofluorobenzene	51.4 42.1		50 50		103 84	70 70	130 130			

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 05-Mar-13

QC Summary Report

Work Order: 13022843

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

M2 = Matrix spike recovery was low, the method control sample recovery was acceptable.

Billing Information:

Stratus Environmental

3330 Cameron Park Drive

CHAIN-OF-CUSTODY RECORD

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778

scarter@stratusinc.net

TEL: (775) 355-1044 FAX: (775) 355-0406

Report Attention **Phone Number EMail Address** Steve Carter (530) 676-6008 x

EDD Required: Yes

Sampled by: Carl Schulze

WorkOrder: STR13022843

Report Due By: 5:00 PM On: 07-Mar-13

Cameron Park, CA 95682-8861

Job: 2115-1436-01/Olympic Station

Cooler Temp 0°C

Samples Received 28-Feb-13

Date Printed 28-Feb-13

Page: 1 of 1

QC Level: S3

Client's COC #: 61314

Suite 550

Client:

PO:

= Final Rpt, MBLK, LCS, MS/MSD With Surrogates

Alpha	Client	Collection	n No. o	f Bottles	S	TPH/P_W	VOC_W	\top		
Sample ID	Sample ID Matr	Matrix Date	Alpha	Sub	TAT					Sample Remarks
STR13022843-01A	MW-1	AQ 02/27/13 09:54	4	0	5	GAS-C	BTXE/M_C			
STR13022843-02A	MW-2	AQ 02/27/13 10:21	4	0	5	GAS-C	BTXE/M_C			
STR13022843-03A	MW-3	AQ 02/27/13 07:18	4	0	5	GAS-C	BTXE/M_C			
STR13022843-04A	MW-4	AQ 02/27/13 08:42	4	0	5	GAS-C	BTXE/M_C			
STR13022843-05A	EX-1	AQ 02/27/13 09:25	4	0	5	GAS-C	BTXE/M_C			
STR13022843-06A	EX-2	AQ 02/27/13 08:25	4	0	5	GAS-C	BTXE/M_C			· · · · · · · · · · · · · · · · · · ·
STR13022843-07A	EX-3	AQ 02/27/13 11:08	4	0	5	GAS-C	BTXE/M_C			

Co	mm	en	ts:

Security seals intact. Frozen ice, :

	Signature	Print Name	Company	Date/Time
Logged in by:		Sand Nen	Alpha Analytical, Inc.	2/28/13 1035

Billing Information:												61314
Company Name Stratus Environmental Attn:		Alpha A	nalytic	al, li	nc.	Sa	mple	es Co	llecte	d Fron	n Which	State 2
Attn:		255 Glenda Sparks, Nev	le Avenue	. Suite	21	A4	E .	C	A X		1.	I/A
Address 3330 Comeron Park Dr.		Phone (775	355-104	91-5/7 14	8	ID		_ UH		OTH	ER	Page # of
City, State, Zip Concron Park CA 95687		Fax (775) 3	55-0406		J		Γ	-				
Phone Number Fax							/		Analys	ses Re	quired	
Consultant / Client Name	Job#	Jole	Name				<u> </u>					Data Valla si
Address Station	2115 - 1436-01					/		/	/ /		7	Data Validation Level: III or IV
City, State, Zip	Name: Steve Carter	ion / Project I	Manager			7	/ کی		. /		//	
Jan Lorenzo, CA	Email: scarter@ stratusine	net				- /	Solem	8240	B/		/ /	/
Time Date Matrix* P.O. #	1	Phone:						×/	w/		/ /	EDD/EDF? @ NO
Sampled Sampled See Key Below Lab ID Number (Use Only)	Sample Description			Field		_/ Ş	7/ 2	7 / E	?/	/ /	/ /	Global 10 # 10 600 102256
0954 0427 AQ 9023072843-01A	MW-1		TAT	Filtered	# Containers**	1					_/_	REMARKS .
1021 02/27 AQ			249	^	47	×	` X	×				
0718 02/27 AQ	MW-Z			1				1				
V/K	mw-3									_		
	MW-4						_	++1				
0925 02/27 AQ 1 1 DSA	EX-1					 	-	-+-				
0825 02/27 AQ	EX-2			+		┦-┤-┤	-	Ш				
1108 02/27 AQ D7A	€X-3					$\sqcup \sqcup$	\perp					
7 2 2000	=X - S			*	4	1	_↓]	7				
The Survey											+ +	
									-+		+	
							-+					
						-+		-+				
								\rightarrow				
ADDITIONAL INSTRUCTIONS:						\bot						
4												
I, (field sampler), attest to the validity and authenticity of grounds for legal action. Sampled By:	this sample. I am aware that tamperin	ng with or int	entionally	miolo	h o li 4b							
Polinguished by (Size) (1977)	ulze	·9 ······ Or int	Cittorially	misia	neing me sa	ample id	cation	i, date	or time	of collec	ction is co	nsidered fraud and may be
1 - 1 - 1	Received by:	Signature/Affilia	ition)							Date:		
Relinquished by: (Signature/Affiliation)	E + Y	MUW	w							Date.	1/52/20	Time: 14:41
	Received by: (S	signature/Affilia	±ion)		11.0	1				Date:	مام	
Relinquished by: (Signature/Affiliation)	Panairod by 10	Received by: (Signature/Affiliation)								29	813	1026
	neceived by: (5	ngriature/Aπilia	uon)		٧					Date:	(Time:
OV. AO. Aguarda												
ey: AQ - Aqueous SO - Soil WA - Waste	OT - Other AR - Air	**: L-Liter	V-Voa	1 5	S-Soil Jar	O- ∩ r	tho	T.To	dia-	D.D		

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense. The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this coc. The liability of the laboratory is limited to the amount paid for the report.

APPENDIX D

GEOTRACKER ELECTRONIC SUBMITTAL CONFIRMATIONS

STATE WATER RESOURCES CONTROL BOARD

GEOTRACKER ESI

UPLOADING A GEO_WELL FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type: GEO_WELL

Report Title: 1Q13 QMR Geowell 2-27-13

Facility Global ID: T0600102256

Facility Name: OLYMPIC STATION File Name: GEO_WELL.zip

Organization Name: Stratus Environmental, Inc.

<u>Username:</u> STRATUS NOCAL <u>IP Address:</u> 50.192.223.97

Submittal Date/Time: 3/8/2013 1:39:14 PM

Confirmation Number: 7242490649

Copyright © 2013 State of California

GeoTracker ESI Page 1 of 1

STATE WATER RESOURCES CONTROL BOARD

GEOTRACKER ESI

UPLOADING A EDF FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type: EDF

Report Title: Analytical 1Q13 QMR

Report Type: Monitoring Report - Quarterly

Facility Global ID: T0600102256

Facility Name: OLYMPIC STATION File Name: 13022843_EDF.zip

Organization Name: Stratus Environmental, Inc.

<u>Username:</u> STRATUS NOCAL IP Address: 50.192.223.97

Submittal Date/Time: 4/25/2013 8:03:45 AM

Confirmation Number: 1520124316

VIEW QC REPORT

VIEW DETECTIONS REPORT

Copyright © 2013 State of California