

5900 Hollis Street, Suite A Emeryville, California 94608 Telephone: (510) 420-0700

www.CRAworld.com

Fax: (510) 420-9170

distribution and the second				TRANS	MITTAL		
DATE:	Octobe	r 5, 2010)	Refe	RENCE NO.:	629100	
				Proj	ест Nаме:	1436 Gra	nt Avenue, San Lorenzo
То:			erman nty Environme	ental Health	· · · · · · · · · · · · · · · · · · ·		RECEIVED
	1131 H	arbor B	ay Parkway, S	uite 250			4:00 pm, Oct 12, 2010
			fornia 94502				Alameda County Environmental Health
4					·		
Please fin	d enclose	d:	Draft Originals Prints		Final Other	· · · · · · · · · · · · · · · · · · ·	
Sent via:			Mail Overnight Co	ourier 🔀	Same Day Co Other <u>Geo</u>		ACEH ftp site
QUAN	TITY				DESCRIPT	TION	
1		Grour	dwater Monit	oring Report		······································	
	Requested Your Use			For Review	and Comment	:	
COMME Should yo (510) 420-	ou have a	nny ques	stions regardi	ng the content	s of this docu	ment, please	e contact Robert Foss at
	-					· · ·	
Copy to:		Phil Jab Robert I	er, Encinal Pro Joss [Please Print		Signed:	Robert	for2
Filing:	Correspo	ndence I	-	·)			

With respect to:

Groundwater Monitoring Report - Third Quarter 2010 Former Olympic Service Station 1436 Grant Avenue, San Lorenzo, CA

Dated October 5, 2010

ACEH Case No. RO0000373

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

George and Frida Jaber 1989 Family Trust

Philip Jaber, Trustee

GROUNDWATER MONITORING REPORT - THIRD QUARTER 2010

FORMER OLYMPIC SERVICE STATION 1436 GRANT AVENUE SAN LORENZO, CALIFORNIA

AGENCY CASE NO. RO0373

Prepared by: Conestoga-Rovers & Associates

5900 Hollis Street, Suite A Emeryville, California U.S.A. 94608

Office: 510-420-0700 Fax: 510-420-9170

web: http:\\www.CRAworld.com

OCTOBER 5, 2010
REF. NO. 629100 (7)
This report is printed on recycled paper.

TABLE OF CONTENTS

			<u>Page</u>
1.0	INTRO	DUCTION	1
	1.1	SITE BACKGROUND	1
	1.2	SITE INFORMATION	1
2.0	SITE A	CTIVITIES AND RESULTS	1
2.0	2.1	CURRENT QUARTER'S ACTIVITIES	
	2.2	CURRENT QUARTER'S RESULTS	
	2.2.1	GROUNDWATER FLOW DIRECTION	
	2.2.2	HYDROCARBON DISTRIBUTION IN GROUNDWATER	3
	2.3	PROPOSED ACTIVITIES	3

LIST OF FIGURES (Following Text)

FIGURE 1 VICINITY MAP

FIGURE 2 GROUNDWATER ELEVATION CONTOUR AND HYDROCARBON

CONCENTRATION MAP

LIST OF TABLES (Following Text)

TABLE 1 MONITORING WELL CONSTRUCTION DETAILS

TABLE 2 GROUNDWATER ANALYTICAL DATA

LIST OF APPENDICES

APPENDIX A STANDARD FIELD PROCEDURES FOR

GROUNDWATER MONITORING AND SAMPLING

APPENDIX B FIELD DATA SHEETS

APPENDIX C CERTIFIED ANALYTICAL REPORTS AND

CHAIN-OF-CUSTODY DOCUMENTATION

1.0 INTRODUCTION

Conestoga-Rovers & Associates (CRA), on behalf of the George and Frida Jaber 1989 Family Trust, has prepared the *Groundwater Monitoring Report - Third Quarter 2010* documenting the August 5, 2010 groundwater monitoring and sampling activities and analytic results for the former Olympic Service Station site located at 1436 Grant Avenue in San Lorenzo, California.

1.1 SITE BACKGROUND

The site is located at the southwest corner of the intersection of Channel Street and Grant Avenue in San Lorenzo, California (Figure 1). San Lorenzo Auto Repair currently operates on the site. Soil and groundwater investigations, as well as five quarterly groundwater monitoring and sampling events occurred on the site from 1999 to 2002. No documented additional work occurred between 2002 and 2007. Alameda County Environmental Health Department (ACEHD) requested reinstatement of the groundwater monitoring program in a letter dated December 4, 2006, and monitoring/sampling resumed in February 2007. The property is owned by the George and Frida Jaber 1989 Family Trust and Mr. Tony Malonzo operates the auto repair shop at the site. Commercial properties are located south and southwest of the site. A school is located north of the site and the remaining properties in the vicinity of the site are residential.

On July 10, 1998, four steel, single-walled underground storage tanks (USTs) were removed from the site. These USTs consisted of one 10,000-gallon gasoline, one 8,000-gallon gasoline, one 5,000-gallon diesel and one 250-gallon used-oil tank (Figure 2). Six dispensers, located on two islands north of the auto repair building, were also removed. The primary constituents of concern (COCs) in groundwater at the site are benzene and methyl tert-butyl ether (MTBE).

1.2 SITE INFORMATION

Site Address 1436 Grant Avenue, San Lorenzo

Site Use San Lorenzo Auto Repair

Client and Contact George and Frida Jaber 1989 Family Trust,

Philip Jaber

Consultant and Contact Person CRA, Robert Foss

Lead Agency and Contact ACEH, Mark Detterman

2.0 SITE ACTIVITIES AND RESULTS

2.1 <u>CURRENT QUARTER'S ACTIVITIES</u>

On May 5, 2010 and August 1, 2010, Muskan Environmental Sampling (MES) monitored and sampled groundwater at the site. On May 5, well MW-4 was monitored and sampled, and on August 5, all site wells, MW-1 through MW-4, were monitored and sampled. Figure 2 illustrates the site layout and location of all four wells. Depth to water in each well was monitored using an electric interface probe. A minimum of three casing volumes of groundwater were purged from each well prior to sampling. During purging, field parameters of temperature, pH, and electrical conductivity were monitored and recorded after the extraction of each successive casing volume. Purging was performed using a new disposable bailer for each well. Well purging continued until consecutive pH, specific conductance and temperature measurements appeared to stabilize. Groundwater sampling was performed using a new disposable bailer for each well. Monitoring well construction details are presented in Table 1. Monitoring and sampling activities were conducted following CRA's *Standard Field Procedures for Groundwater Monitoring and Sampling* included in Appendix A. Field data sheets for monitoring and sampling of each well are presented in Appendix B.

Groundwater samples were collected in laboratory-prepared containers, sealed, labeled and placed in an ice-cooled chest for subsequent delivery under chain-of-custody procedures to the analytical laboratory for chemical analysis. McCampbell Analytical, a state-certified laboratory, analyzed the groundwater samples for benzene, toluene, ethylbenzene, and xylenes (BTEX) by EPA Method 8021, MTBE by EPA Method 8260B, and total petroleum hydrocarbons as gasoline (TPHg) by EPA Method 8015M. Appendix C includes laboratory analytical reports of the two sampling events.

2.2 CURRENT QUARTER'S RESULTS

Groundwater Flow Direction West-Southwest

Hydraulic Gradient 0.004

Average Depth to Water 7.37 feet

Is Free Product Present on Site No

Current Remediation Techniques Monitored Natural Attenuation

2.2.1 GROUNDWATER FLOW DIRECTION

Based on the August 5, 2010 depth-to-water measurements, the overall groundwater flow direction and gradient beneath the site was calculated to the west-southwest at a gradient of 0.004 (Figure 2). The calculated groundwater flow direction and gradient are generally consistent with previous results, which indicate groundwater flow ranges from west to southwest. Depth-to-water and groundwater elevation data are presented in Table 2.

2.2.2 HYDROCARBON DISTRIBUTION IN GROUNDWATER

TPHg was detected in well MW-4 at a concentration of 13,000 micrograms per liter ($\mu g/L$) in the sample collected May 18, 2010. BTEX was also detected at concentrations of 620, 36, 170, and 12 $\mu g/L$, respectively. MTBE was detected at a concentration of 1,200 $\mu g/L$. Laboratory notes indicated the presence of sheen and that "weakly modified or unmodified gasoline was significant."

TPHg and BTEX were only detected in wells MW-3 and MW-4 during the August 5, 2010 sampling event. Reported TPHg concentrations in these wells were 450 μ g/L and 9,200 μ g/L, respectively. Reported benzene in well MW-3 was 110 μ g/L and 780 μ g/L in well MW-4. Toluene, ethylbenzene, and xylenes constituents were detected in well MW-3 at concentrations of 2.2 μ g/L, 0.76 μ g/L and 0.64 μ g/L, respectively. Reported concentrations of toluene, ethylbenzene, and xylenes in well MW-4 were 13 μ g/L, 230 μ g/L, and 4.3 μ g/L, respectively. Groundwater monitoring and analytical data are presented in Table 2 and the analytical laboratory report is presented as Appendix C.

2.3 PROPOSED ACTIVITIES

CRA will contract a groundwater sampling company to gauge and sample monitoring wells MW-1 through MW-4 according to the established semi-annual monitoring and reporting program for this site, with sampling activities conducted during the first and third quarters. Monitoring and sampling of well MW-4 only will occur during the fourth quarter of 2010. The fourth quarter 2010 data for MW-4 will be included in the First 2011 Semi-Annual Groundwater Monitoring and Sampling Report. Groundwater samples will be analyzed for TPHg by EPA Method 8015, BTEX by EPA Method 8021,

and MTBE by EPA Method 8260B. Following field activities, CRA will prepare a groundwater monitoring report that includes a groundwater contour map and tabulated analytical data.

All of Which is Respectfully Submitted, CONESTOGA-ROVERS & ASSOCIATES

Calvin Hee

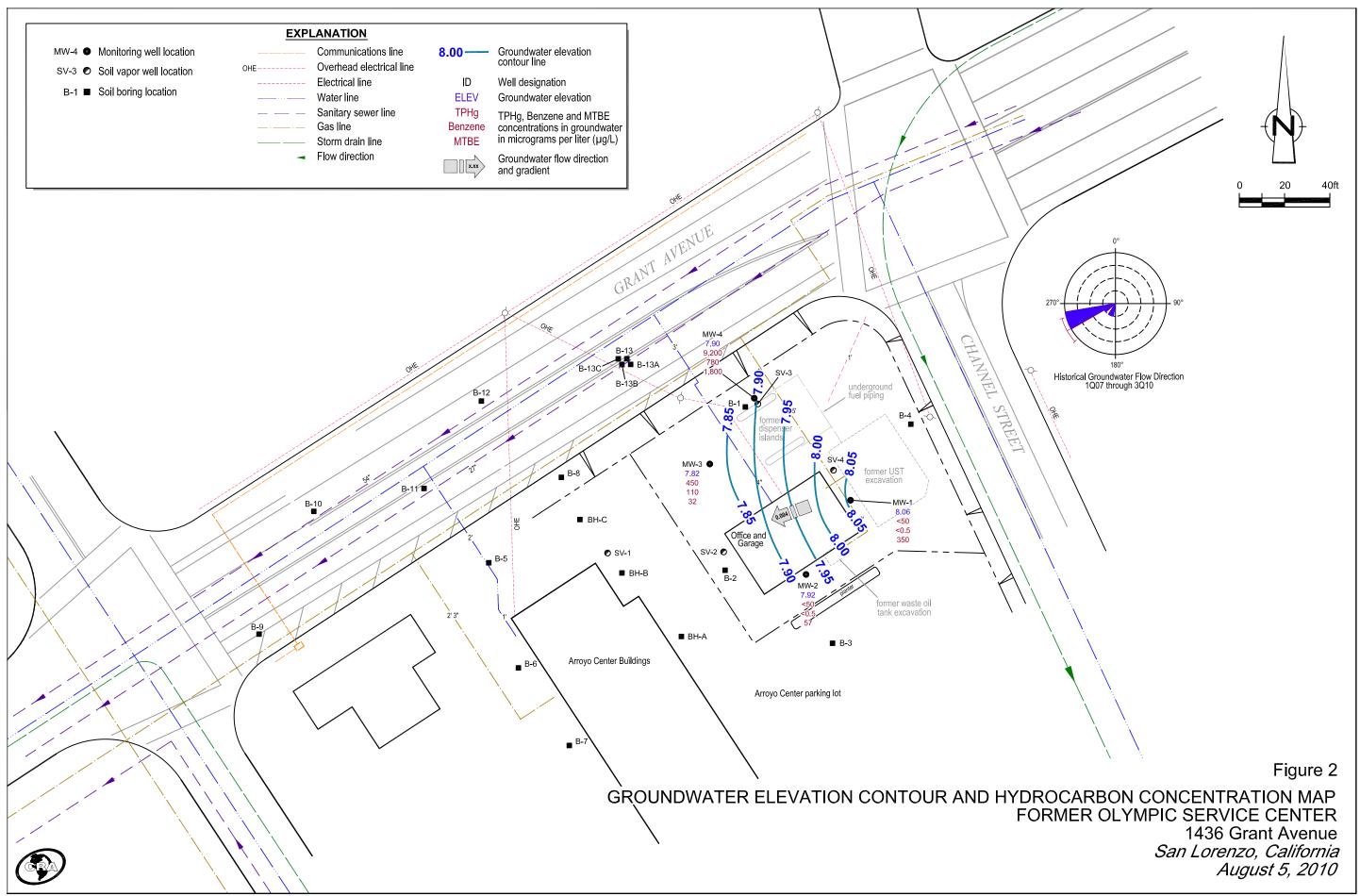
Robert Fors

No. 7445
No. 7445
PAP OS 17

PAP OF CALIFORNIA

Robert Foss, P.G. No. 7445

Conestoga-Rovers & Associates, Inc. (CRA) prepared this document for use by our client and appropriate regulatory agencies. It is based partially on information available to CRA from outside sources and/or in the public domain, and partially on information supplied by CRA and its subcontractors. CRA makes no warranty or guarantee, expressed or implied, included or intended in this document, with respect to the accuracy of information obtained from these outside sources or the public domain, or any conclusions or recommendations based on information that was not independently verified by CRA. This document represents the best professional judgment of CRA. None of the work performed hereunder constitutes or shall be represented as a legal opinion of any kind or nature.


FIGURES

Olympic Service Station

1436 Grant Avenue San Lorenzo, California

Vicinity Map

TABLES

TABLE 1 Page 1 of 1

MONITORING WELL CONSTRUCTION DETAILS FORMER OLYMPIC SERVICE STATON 1436 GRANT AVENUE SAN LORENZO, CALIFORNIA

Well ID	Date Installed	Borehole Diameter (in)	Depth of Borehole (ft)	Casing Diameter (in)	Screened Interval (ft bgs)	Slot Size (in)	Filter Pack (ft bgs)	Bentonite Seal (ft bgs)	Cement (ft bgs)	TOC Elevation (ft above msl)
MW-1	9/24/1999	8	26.5	2	5-26.5	0.020	3.5-26.5	3-3.5	1.5-3	15.71
MW-2	9/24/1999	8	20.0	2	5-20	0.020	3.5-20	3-3.5	1.5-3	15.17
MW-3	9/24/1999	8	21.5	2	5-21	0.020	3.5-21.5	3-3.5	1.5-3	15.13
MW-4	2/9/2010	10	10.0	4	5-10	0.010	4-10	3-4	0.5-3	15.15

Abbreviations / Notes

ft = feet

in = inches

ft bgs = feet below grade surface

ft above msl = feet above mean sea level

TOC = top of casing

TOC elevations were surveyed on March 8, 2007 and March 17, 2010 by Virgil Chavez Land Surveying.

Prior to this date, TOC elevation were relative to a project datum determined by Aqua Science Engineers, Inc. in 1998.

TABLE 2 Page 1 of 3

GROUNDWATER ANALYTICAL DATA ENCINAL PROPERTIES FORMER OLYMPIAN SERVICE STATION 1436 GRANT AVENUE SAN LORENZO, CALIFORNIA

Well ID TOC	Date Sampled	DTW (ft)	GWE (ft above msl)	Oil & Grease	ТРНто	TPHd	ТРНд	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	SVOCs & HVOCs	DIPE	TAME	ETBE	TBA	Ethanol	EDB	1,2- DCA	Notes
(ft above msi	1)	,	·	•				(Concentratio	ns in micrograms	per liter (µg	z/L)									
ESL ^a : Groundw	vater is not a curren	nt or potential	drinking water resource	NE	NE	210	210	46	130	43	100	1,800	-	NE	NE	NE	18,000	NE	NE	200	
Grab Groun	ıdwater Sample	's																			
Pit Water	9/13/1998					2,100	3,600	350	130	39	380	17,000									
BH-A	4/30/2002	17/8			<100	<100	180	< 0.50	< 0.50	8.8	< 0.50	82		< 0.50	< 0.50	< 0.50	< 5.0				
ВН-В	4/30/2002	16/8			<100	<200	2,300	120	11	60	150	2,000		< 5.0	< 5.0	< 5.0	< 50				
BH-C	4/30/2002	16/8			<100	<150	1,200	57	0.72	43	87	240		< 0.50	1.0	< 0.50	< 5.0				
B-1-gw	2/25/2008	3/3.95				260,000	4,600	330	< 5.0	33	< 5.0	370		< 5.0	< 5.0	< 5.0	<20	< 500	< 5.0	< 5.0	*
B-2-gw	2/25/2008	7.5/6.95				1,900	540	12	<2.5	<2.5	<2.5	220		<2.5	<2.5	<2.5	<10	<250	<2.5	<2.5	*
B-3-gw	2/26/2008	8/NA				<50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	4.0		< 0.5	< 0.5	< 0.5	< 2.0	< 50	< 0.5	< 0.5	*
B-4-gw	2/25/2008	7.5/7.80				6,800	7,300	150	< 50	150	< 50	2,700		< 50	< 50	< 50	1,700	<5,000	< 50	< 50	*
B-5-gw	2/26/2008	8/6.40				250	320	<10	<10	13	<10	630		<10	<10	<10	<40	<1,000	<10	<10	*
B-6-gw	2/26/2008	8/6.95				120	< 50	< 5.0	< 5.0	<5.0	< 5.0	240		< 5.0	< 5.0	< 5.0	<20	< 500	< 5.0	< 5.0	*
B-7-gw	2/26/2008	8/6.55				84	< 50	< 0.5	< 0.5	< 0.5	< 0.5	27		< 0.5	< 0.5	< 0.5	<2.0	< 50	< 0.5	< 0.5	*
B-8-gw	2/25/2008	8/6.10				1,000	930	37	<2.5	64	23	160		<2.5	<2.5	<2.5	<10	<250	<2.5	<2.5	*
B-9	2/11/2010	6.33				<50	< 50	<2.5	<2.5	<2.5	<2.5	160		<2.5	<2.5	<2.5	<10	<250	<2.5	<2.5	*
B-10	2/11/2010	6.89				<50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	5.1		< 0.5	< 0.5	< 0.5	<2.0	< 50	< 0.5	< 0.5	*
B-11	2/10/2010	5.20				3,700	130	0.69	< 0.5	< 0.5	< 0.5	25		< 0.5	< 0.5	< 0.5	<2.0	< 50	< 0.5	< 0.5	*
B-12	2/11/2010	6.65				<50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	1.2		< 0.5	< 0.5	< 0.5	<2.0	< 50	< 0.5	< 0.5	*
B-13C	2/12/2010	8.97				3,400	2,300	<2.5	<2.5	<2.5	<2.5	92		<2.5	<2.5	<2.5	92	<250	<2.5	<2.5	*
																					*
	Froundwater Sa	,																			
MW-1	10/6/1999	8.35	6.65			84	3,900	<25	<25	<25	<25	3,500									*
15.00	1/13/2000	7.90	7.10			<50	<1,300	18	<13	<13	<13	1,700									
	4/12/2000	7.08	7.92			56	<1,000	66	<10	<10	<10	1,600									*
	7/19/2000	7.66	7.34			52	<1,000	<10	<10	<10	<10	1,200									*
	10/25/2000	7.91	7.09			76	4,100	120	<25	<25	<25	6,100									*
	2/16/2007	6.32	8.68																		
	3/1/2007	5.88	9.12		<250	<50	<50	<1.2	<1.2	<1.2	<1.2	78		<1.2	<1.2	<1.2	<12	<120	<1.2	<1.2	*
15.71	5/1/2007	7.24	8.47		<250	<50	<50	< 5.0	< 5.0	<5.0	<5.0	250		<5.0	<5.0	< 5.0	<50	<500	<5.0	< 5.0	*
	8/1/2007	7.77	7.94			<50	<50	<25	<25	<25	<25	520		<25	<25	<25	<250	<2500	<25	<25	*
	11/1/2007	7.71	8.00			<50	<50	<12	<12	<12	<12	460		<12	<12	<12	<120	<1,200	<12	<12	
	2/1/2008	5.71	10.00			<50	<50	<2.5	<2.5	<2.5	<2.5	110		<2.5	<2.5	<2.5	<10	<250	<2.5	<2.5	*
	5/2/2008	7.52	8.19		<250	<50	<50	<5.0	< 5.0	<5.0	<5.0	240		<5.0	<5.0	<5.0	<20	<500	< 5.0	<5.0	
	8/1/2008	8.02	7.69			<50	<50	<10	<10	<10	<10	500		<10	<10	<10	<40	<1,000	<10	<10	*
	11/4/2008	7.28	8.43			<50	<50	<5.0	<5.0	<5.0	<5.0	260		<5.0	<5.0	<5.0	26	<500	< 5.0	<5.0	-
	8/11/2009	8.08	7.63			<50	<50	<5.0	<5.0	<5.0	<5.0	270		<5.0	<5.0	<5.0	<20	<500	< 5.0	<5.0	-
	2/3/2010	6.14	9.57				<50	< 0.5	< 0.5	<0.5	< 0.5	39									-
	5/18/2010	7.09	8.62																		

CRA 629100 (7)

TABLE 2 Page 2 of 3

GROUNDWATER ANALYTICAL DATA ENCINAL PROPERTIES FORMER OLYMPIAN SERVICE STATION 1436 GRANT AVENUE SAN LORENZO, CALIFORNIA

Min Min	Well ID TOC	Date Sampled	DTW (ft)	GWE (ft above msl)	Oil & Grease	ТРНто	TPHd	ТРНд	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	SVOCs & HVOCs	DIPE	TAME	ETBE	TBA	Ethanol	EDB	1,2- DCA	Notes
No. No.	(ft above m	sl)			•				(Concentratio	ons in micrograms	per liter (μ	g/L)									
Mary	ESLa: Ground	water is not a curren	t or potential	drinking water resource	NE	NE	210	210	46	130	43	100	1,800	-	NE	NE	NE	18,000	NE	NE	200	
14.6		8/5/2010	7.65	8.06				<50	<0.5	<0.5	<0.5	<0.5	350									-
	MW-2	10/6/1999	7.87	6.59	<1,000	<500	<50	70	<0.5	<0.5	<0.5	<0.5	11	ND								*
7/9/2000 7/25 7/25 7/25 1/300 5/50	14.46	1/13/2000	7.46	7.00	<1,000	< 500	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	6.2	ND								
10/25/2000 752 694		4/12/2000	6.67	7.79	1,100	< 500	< 50	< 50	< 0.5	< 0.5	<0.5	< 0.5	39									
2/16/2007 5.89 8.57		7/19/2000	7.23	7.23	1,300	< 500	< 50	<1,000	<10	<10	<10	<10	990									
31/1/2007 545 9.01 - - - - - - - - -		10/25/2000	7.52	6.94		< 500	<50	370	<2.5	<2.5	<2.5	<2.5	690									
15.17 5/1/2007 6.83 8.34		2/16/2007	5.89	8.57																		
8/1/2007 7.25 7.82		3/1/2007	5.45	9.01		<250	< 50	<50	< 0.5	< 0.5	<0.5	< 0.5	9.8		< 0.5	< 0.5	< 0.5	< 5.0	< 50	< 0.5	< 0.5	*
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	15.17	5/1/2007	6.83	8.34		<250	<50	<50	< 5.0	< 5.0	<5.0	< 5.0	120		< 5.0	< 5.0	< 5.0	< 50	< 500	< 5.0	< 5.0	*
1/1/2008 5.25 9.92 <- <- <- <- <- <		8/1/2007	7.35	7.82			< 50	<50	< 5.0	< 5.0	<5.0	< 5.0	130		< 5.0	< 5.0	< 5.0	< 50	< 500	< 5.0	< 5.0	*
5/2/2008 7.12 8.05		11/1/2007	7.27	7.90			<50	<50	< 0.5	< 0.5	<0.5	< 0.5	19		< 0.5	< 0.5	< 0.5	< 5.0	< 50	< 0.5	< 0.5	
8 / 1 / 2008 7.59 7.58 - - < 50 < 50 < 10 < 10 < 10 < 10 < 10 52 - < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 <		2/1/2008	5.25	9.92			< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	3.3		< 0.5	< 0.5	< 0.5	< 2.0	< 50	< 0.5	< 0.5	*
MW-2 11/4/2008 6.84 8.33 80 <		5/2/2008	7.12	8.05			<50	<50	<2.5	<2.5	<2.5	<2.5	83.0		<2.5	<2.5	<2.5	<10	<250	<2.5	<2.5	
cont. 8/11/2009 7.65 7.52 <50 <50 <50 <0.5 <0.5 <0.5 <0.5 <0.5 <0		8/1/2008	7.59	7.58			<50	<50	<1.0	<1.0	<1.0	<1.0	52		<1.0	<1.0	<1.0	<4.0	<100	<1.0	<1.0	*
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MW-2	11/4/2008	6.84	8.33			80	<50	< 0.5	< 0.5	<0.5	< 0.5	5.9		< 0.5	< 0.5	< 0.5	< 2.0	< 50	< 0.5	< 0.5	*
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	cont.	8/11/2009	7.65	7.52			<50	<50	< 0.5	< 0.5	<0.5	< 0.5	9.4		< 0.5	< 0.5	< 0.5	< 2.0	< 50	< 0.5	< 0.5	
MW-3		2/3/2010	5.75	9.42				<50	< 0.5	< 0.5	<0.5	< 0.5	0.86									
MW-3		5/18/2010	6.67	8.50																		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		8/5/2010	7.25	7.92				<50	<0.5	<0.5	<0.5	<0.5	57	-								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MW-3	10/6/1999	7.90	6.51			300	3,900	900	89	160	560	790									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14.41	1/13/2000	7.50	6.91			210	740	110	4.8	35	18	290									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		4/12/2000	6.61	7.80			640	2,200	650	9.7	180	24	140									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		7/19/2000	7.24	7.17			270	2,700	420	<2.5	160	<2.5	99									*
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		10/25/2000	7.52	6.89			150	710	180	<2.5	24	<2.5	71									*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2/16/2007	5.90	8.51																		
8/1/2007 7.40 7.73 <50		3/1/2007	5.44	8.97		<250	<50	82	20	<1.7	<1.7	<1.7	100		<1.7	<1.7	<1.7	<17	<170	<1.7	<1.7	*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15.13	5/1/2007	6.87	8.26		<250	< 50	<50	<5.0	<5.0	<5.0	<5.0	88		< 5.0	< 5.0	< 5.0	<50	< 500	< 5.0	<5.0	*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		8/1/2007	7.40	7.73			<50	130	12	<2.5	<2.5	<2.5	98		<2.5	<2.5	<2.5	<25	<250	<2.5	<2.5	*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		11/1/2007	7.35				<50	77				<2.5									<2.5	*
8/1/2008 7.66 7.47 <50		2/1/2008	5.28	9.85			<50	<50	<2.5	<2.5	<2.5	<2.5	97		<2.5	<2.5	<2.5	<10	<250	<2.5	<2.5	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		5/2/2008	7.15	7.98			<50	68	2.3	<1.7	<1.7	<1.7	86		<1.7	<1.7	<1.7	7.20	<170	<1.7	<1.7	
8/11/2009 7.72 7.41 <50 110 33 <0.5 <0.5 <0.5 28 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5		8/1/2008	7.66	7.47			<50	85	3.5	<1.0	<1.0	<1.0	66		<1.0	<1.0	<1.0	7.2	<100	<1.0	<1.0	*
2/3/2010 5.72 9.41 <50 0.55 <0.5 <0.5 <0.5 25		11/4/2008		8.17			<50	<50		<1.0	<1.0	<1.0	40		<1.0		<1.0	<4.0	<100	<1.0	<1.0	
		8/11/2009	7.72	7.41			<50	110	33	<0.5	<0.5	< 0.5	28		< 0.5	< 0.5	< 0.5	<2.0	<50	< 0.5	<0.5	*
5/18/2010 6.73 8.40								<50	0.55	<0.5	<0.5	<0.5	25									
		5/18/2010	6.73	8.40																		

CRA 629100 (7)

TABLE 2 Page 3 of 3

GROUNDWATER ANALYTICAL DATA ENCINAL PROPERTIES FORMER OLYMPIAN SERVICE STATION 1436 GRANT AVENUE SAN LORENZO, CALIFORNIA

Well ID TOC	Date Sampled	DTW (ft)	GWE (ft above msl)	Oil & Grease	ТРНто	TPHd	ТРНд	Benzene		v	J		SVOCs & HVOCs	DIPE	TAME	ЕТВЕ	TBA	Ethanol	EDB	1,2- DCA	Notes
(ft above me	sl)			+				(Concentratio	ons in micrograms	per liter (με	z/L)	•							→	
ESL ^a : Groundy	water is not a curren	t or potential	drinking water resource	NE	NE	210	210	46	130	43	100	1,800		NE	NE	NE	18,000	NE	NE	200	
	8/5/2010	7.31	7.82				450	110	2.2	0.76	0.64	32									*
MW-4	5/18/2010	6.68	8.47				13,000	620	36	170	12	1,200									*
15.15	8/5/2010	7.25	7.90				9,200	780	13	230	4.3	1,800					-			-	*

Abbreviations / Notes

a = San Francisco Bay Regional Waer Quality Control Board ESL for groundwater where groundwater is not a current or potential drinking water resource

NE = Not Evaluated

TOC = Top of casing

DTW = Depth to water

GWE = Groundwater elevation in feet above mean sea level

ft above msl = feet above mean sea level

17/8 = Depth to first encountered groundwater/depth of static groundwater

<n = Not detected above laboratory reporting limit

-- = Not sampled, not analyzed, not available

ND = Not detected above laboratory reporting limit

Oil and grease by EPA Method 5520 E&F

TPHd = Total Petroleum Hydrocarbons as diesel range by EPA Method 8015

TPHg = Total Petroleum Hydrocarbons as gasoline range by EPA Method 8015

TPHmo = Total Petroleum Hydrocarbons as motor oil by EPA Method 8015

Benzene, toluene, ethylbenzene, and xylenes (BTEX) by EPA Method 8020

MTBE = Methyl tertiary butyl ether by EPA Method 8260

Di-isopropyl ether (DIPE), tertiary-amyl methyl ether (TAME), ethyl tertiary-butyl ether (ETBE), tertiary-butyl alcohol (TBA) by EPA Method 8260B

SVOCs = Semi-volatile organic compounds by EPA Method 8270, refer to corresponding analytical laboratory report for a full list of compounds

HVOCs = Halogenated volatile organic compoundy by EPA Method 8010, refer to corresponding analytical laboratory report for a full list of compounds

1,2 DCA = 1,2 dichloroethane

EDB = 1,2-dibromoethane

TOC elevations were surveyed on March 8, 2007 by Virgil Chavez Land Surveying. Prior to this date, TOC elevation were relative to a project datum determined by Aqua Science Engineers, Inc. in 1998.

^{* =} See Analytical Laboratory Report for laboratory sample description and TPH chromatogram interpretation.

APPENDIX A

STANDARD FIELD PROCEDURES FOR GROUNDWATER MONITORING AND SAMPLING

Conestoga-Rovers & Associates

STANDARD FIELD PROCEDURES FOR GROUNDWATER MONITORING AND SAMPLING

This document presents standard field methods for groundwater monitoring, purging and sampling, and well development. These procedures are designed to comply with Federal, State and local regulatory guidelines. Cambria's specific field procedures are summarized below.

Groundwater Elevation Monitoring

Prior to performing monitoring activities, the historical monitoring and analytical data of each monitoring well shall be reviewed to determine if any of the wells are likely to contain non-aqueous phase liquid (NAPL) and to determine the order in which the wells will be monitored (i.e. cleanest to dirtiest). Groundwater monitoring should not be performed when the potential exists for surface water to enter the well (i.e. flooding during a rainstorm).

Prior to monitoring, each well shall be opened and the well cap removed to allow water levels to stabilize and equilibrate. The condition of the well box and well cap shall be observed and recommended repairs noted. Any surface water that may have entered and flooded the well box should be evacuated prior to removing the well cap. In wells with no history of NAPL, the static water level and total well depth shall be measured to the nearest 0.01 foot with an electronic water level meter. Wells with the highest contaminant concentrations shall be measured last. In wells with a history of NAPL, the NAPL level/thickness and static water level shall be measured to the nearest 0.01 foot using an electronic interface probe. The water level meter and/or interface probe shall be thoroughly cleaned and decontaminated at the beginning of the monitoring event and between each well. Monitoring equipment shall be washed using soapy water consisting of Liqui-noxTM or AlconoxTM followed by one rinse of clean tap water and then two rinses of distilled water.

Groundwater Purging and Sampling

Prior to groundwater purging and sampling, the historical analytical data of each monitoring well shall be reviewed to determine the order in which the wells should be purged and sampled (i.e. cleanest to dirtiest). No purging or groundwater sampling shall be performed on wells with a measurable thickness of NAPL or floating NAPL globules. If a sheen is observed, the well should be purged and a groundwater sample collected only if no NAPL is present. Wells shall be purged either by hand using a disposal or PVC bailer or by using an aboveground pump (e.g. peristaltic or WatteraTM) or down-hole pump (e.g. GrundfosTM or DC Purger pump).

Groundwater wells shall be purged approximately three to ten well-casing volumes (depending on the regulatory agency requirements) or until groundwater parameters of temperature, pH, and conductivity have stabilized to within 10% for three consecutive readings. Temperature, pH, and conductivity shall be measured and recorded at least once per well casing volume removed. The total volume of groundwater removed shall be recorded along with any other notable physical characteristic such as color and odor. If required, field parameters such as turbidity, dissolved oxygen (DO), and oxidation-reduction potential (ORP) shall also be measured prior to collection of each groundwater sample.

Groundwater samples shall be collected after the well has been purged. If the well is slow to recharge, a sample shall be collected after the water column is allowed to recharge to 80% of the pre-purging static water level. If the well does not recover to 80% in 2 hours, a sample shall be collected once there is enough groundwater in the well. Groundwater samples shall be collected using clean disposable bailers or pumps (if an operating remediation system exists on site and the project manager approves of its use for sampling) and shall be decanted into clean containers supplied by the analytical laboratory. New latex gloves and disposable tubing or bailers shall be

Conestoga-Rovers & Associates

used for sampling each well. If a PVC bailer or down-hole pump is used for groundwater purging, it shall be decontaminated before purging each well by using soapy water consisting of Liqui-noxTM or AlconoxTM followed by one rinse of clean tap water and then two rinses of distilled water. If a submersible pump with non-dedicated discharge tubing is used for groundwater purging, both the inside and outside of pump and discharge tubing shall be decontaminated as described above.

Sample Handling

Except for samples that will be tested in the field, or that require special handling or preservation, samples shall be stored in coolers chilled to 4° C for shipment to the analytical laboratory. Samples shall be labeled, placed in protective foam sleeves or bubble wrap as needed, stored on crushed ice at or below 4° C, and submitted under chain-of-custody (COC) to the laboratory. The laboratory shall be notified of the sample shipment schedule and arrival time. Samples shall be shipped to the laboratory within a time frame to allow for extraction and analysis to be performed within the standard sample holding times.

Sample labels shall be filled out using indelible ink and must contain the site name; field identification number; the date, time, and location of sample collection; notation of the type of sample; identification of preservatives used; remarks; and the signature of the sampler. Field identification must be sufficient to allow easy cross-reference with the field datasheet.

All samples submitted to the laboratory shall be accompanied by a COC record to ensure adequate documentation. A copy of the COC shall be retained in the project file. Information on the COC shall consist of the project name and number; project location; sample numbers; sampler/recorder's signature; date and time of collection of each sample; sample type; analyses requested; name of person receiving the sample; and date of receipt of sample.

Laboratory-supplied trip blanks shall accompany the samples and be analyzed to check for cross-contamination, if requested by the project manager.

Waste Handling and Disposal

Groundwater extracted during sampling shall be stored onsite in sealed U.S. DOT H17 55-gallon drums and shall be labeled with the contents, date of generation, generator identification, and consultant contact. Extracted groundwater may be disposed offsite by a licensed waste handler or may be treated and discharged via an operating onsite groundwater extraction/treatment system.

H:\- MGT IR Group Info\SOPs\Groundwater Monitoring and Sampling SOP 07-2005.doc

APPENDIX B

FIELD DATA SHEETS

WELL GAUGING SHEET

Client:	Conestoga-l	Royers and A	Associates					B/0f1
Site Address:			ı Lorenzo, C	A				BNI
Date:	8/5/2010			Signature:		15		
Well ID	Time	Depth to SPH	Depth to Water	SPH Thickness	Depth to Bottom		Comments	s
ML-1	9:25		765		24.38			
MW-2	9:15		7:25		19.35			
WH-3			7.31		19.05			
WHA	9:30		7.25		9.53			
						-		
								70

Date:		8/5/2010						
Client:		Conestoga-	Rovers and	d Associates	5			
Site Add	fress:			San Lorenzo				
Well ID:		MW-1						
Well Dia	meter:	211						
Purging 1	Device:	Disposal	le Rail	le "				
Sampling	g Method:	Disposable				Pre Purge	Post Purg	ge
Total We	ell Depth:			24.38	Fe=	mg/	L.	mg/L
Depth to	Water:			7.65	ORP=	mV		mV
Water Co	olumn Heigh	t:		16.73	DO=	mg/	L	mg/L
Gallons/f	n:			0.16				<u> </u>
1 Casing	Volume (ga	l):			COMM	ENTS:	11	
3 Casing	Volumes (ga	al):		8-01	very	turbid, s	ilty	
TIME: 115 11:20 1:25	CASING VOLUME (gal) 3.0 6.0	TEMP (Celsius) 18-7 18-9	6.78 6.78 6.80	COND. (µS) 948 1003 996				
Sample ID:	Sample Da	ite:	Sample Time:	Container	Туре	Preservative	Analytes	Method
ML-1	8/5/	10	11:30	40 mL VOA		HCI, ICE	TPHg, BTEN, MTBE	8015, 8260
						Sign	ature:	

Date:		8/5/2010							
Client:		Conestoga-	Rovers and	Associates					
Site Add	ress:	1436 Grant							
Well ID:		ML1-2							
Well Dia									
Purging D	Device:	Disposo	ble Bai	er					
Sampling	Method:	Disposable	Bailer			Pre Purge		Post Purg	e
Total We	ll Depth:			19.35	Fe=	1	ng/L		mg/L
Depth to	Water:			7.25	ORP=	r	nV		mV
Water Co	lumn Heigh	it.		12.10	DO=	ı	ng/L		mg/L
Gallons/fi	0			0.16					
1 Casing	Volume (ga	I):			сомм	ENTS:			
3 Casing	Volumes (g	al):		5.79		ry turb	1 6	121	
TIME:	CASING VOLUME (gal)	TEMP (Celsius)	рН	COND.	VO	17 mb	14, 21	117	
10:10	2.0	18.9	6.85	1195					
10:15	4.0	19.4	6.81	1210					
10:20	6.0	19.6	6.88	1216					
						,			
Sample ID:	Sample D	ate.	Sample Time:	Container	Tyne	Preservativ	VO.	Analytes	Mathod
	8/5/		10:25	40 ml. VOA		HCI, ICE	, ,	TPHg BTEX, MTBE,	8015, 8260
1. IM	0151	10	10.25	40 mt. VO/	\	HCI, ICE			
								//	4
						S	ignatur	e: K	

Date:		8/5/2010						
Client:		Conestoga-I	Rovers and	Associates				
Site Addre	ess:	1436 Grant	Avenue, S	an Lorenzo	, CA			
Well ID:		MW-3						
Well Diame	eter:	2"						
Purging De	vice:	Disposal	de Bo	iler				
Sampling N		Disposable				Pre Purge	Post Purg	e
Total Well	Depth:			19.05	Fe=	mg/L		mg/L
Depth to W	ater:			7.31	ORP=	mV		mV
Water Colu	ımn Height	fi e		11.74	DO=	mg/L		mg/L
Gallons/ft:				0.16				
1 Casing V	olume (gal):		1.87	сомм	ENTS:	100	
3 Casing V				561	VCV	y turkid,	silty	
TIME: 10:45 10:50 10:55	CASING VOLUME (gal) 2-0 4-0 5-5	TEMP (Celsius) 18.7 18.5 18.6	6.84 6.84 6.84	COND. (μS) 1175 1170 1172				
Sample ID: S	Sample Da	te:	Sample Time:	Containe	r Tyne	Preservative	Analytes	Method
MN-3	8/5/		11:00	40 ml. VOA		HCI, ICE	TPHg. BTEX, MTBE.	8015, 8260
						Signat	ure:	

Date:		8/5/2010						
Client:		Conestoga-	Rovers and	Associates				
Site Addi		1436 Grant	Avenue, Sa	an Lorenzo	, CA			
Well Diar		1	10	1				
Purging D	_	Disposa		ilev		n n		
Sampling	Method:	Disposable	Bailer			Pre Purge	Post Purg	e
Total Wel	ll Depth;			9.53	Fe=	mg/L		mg/L
Depth to	Water:			7.25	ORP=	mV		mV
Water Co	lumn Height	ž-		2.28	DO=	mg/L		mg/L
Gallons/ft				0.65				
1 Casing	Volume (gal):			сомм	ENTS:		
3 Casing	Volumes (ga	ıl):		4.44	COMM	rid		
TIME: 11:45 11:47 11:50	CASING VOLUME (gal) 1.5 3.0 4.5	TEMP (Celsius) 18.0 17.9	6.94 6.99	COND. (μS) 1070 1089 1085				
Sample ID:	Sample Da	ite:	Sample Time:	Container	r Type	Preservative	Analytes	Method
MN4	8/5/	10	11:55	40 mL VOA	1	HCI, ICE	TPHg BTEN, MTBE.	8015, 8260
								A
						Signat	ture:	

Client:	Conestoga-I	Rovers and A	Associates				
Site Address:	1436 Grant	Avenue, Sar	Lorenzo, C	A			
Date:	5/18/2010			Signature:	No	\$	
Well ID	Time	Depth to SPH	Depth to Water	SPH Thickness	Depth to Bottom	Comm	nents
MD-1	9210		7.09		24.37		
Wh-5	9:00		6.67		19:35		
MU-3	9:05		6.73		19.05		
MU-4	9:15		6.68		9,53		

Date:		5/18/2010				ING FORE		
Client:		Conestoga-l	Rovers and	Associates				
Site Addi	ess:	1436 Grant						
Well ID:		MN-4						
Well Diar		4"						
Purging D	evice: 3	3" Dispos	ableBa	lex				
Sampling		Disposable				Pre Purge	Post Purg	e
Total Wel	l Depth:			9.53	Fe=	mg/L		mg/L
Depth to V	Water:			6.68	ORP=	mV		mV
Water Co	lumn Heigh	it:		2.85	DO=	mg/L		mg/L
Gallons/ft	ž.			0.65				
1 Casing	Volume (ga	1):			COMM	ENTS:		
	Volumes (g			5.55	Just			
TIME:	CASING VOLUME (gal)	TEMP (Celsius)	рН	COND.				
9:40	2.0	17.4	6.98	1094				
9:45	4.0	17.7	7.02	1070				
9:50	5.0	17.5	7.10	1058				
Sample ID:	Sample D	ate:	Sample Time:	Containe	r Type	Preservative	Analytes	
MU4	5/18/	10	9:55	40 mL VOA	N ₂ .	HCl, ICE	TPHg. BTEX.	8015, 8021, 8260
						Signat	ure;	

APPENDIX C

CERTIFIED ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY DOCUMENTATION

McCampbell Analytical, Inc.
"When Quality Counts"

Conestoga-Rovers & Associates	Client Project ID: #629100; Encinal Properties-Former	Date Sampled: 05/18/10
5900 Hollis St, Suite A	Olympic Station	Date Received: 05/18/10
2500 1151115 25, 2410 11	Client Contact: Eric Syrstad	Date Reported: 05/21/10
Emeryville, CA 94608	Client P.O.:	Date Completed: 05/21/10

WorkOrder: 1005434

May 21, 2010

T .	T .
Dear	HTTC:

Enclosed within are:

- 1) The results of the 1 analyzed sample from your project: #629100; Encinal Properties-Former Olympic Statio
- 2) A QC report for the above sample,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager

McCampbell Analytical, Inc.

McCAMPBELL ANALYTICAL, INC.

1534 Willow Pass Road Pittsburg, CA 94565-1701

Website: www.mccampbell.com Email: main@mccampbell.com
Telephone: (877) 252-9262 Fax: (925) 252-9269

TURN AROUND TIME D D D

RUSH 24 HR 48 HR 72 HR 5 DAY

GeoTracker EDF PDF D Excel D Write On (DW)

Report To: Fo	r Suec	Lad	Bi	H To:		1		P.		bo	100	no. 20	Jec			_	_	_	Δ	naly	_	_		_	amp	10 15	en	nuen	it a	_	her	Comments
Report To: En	20/10	25 8 6	1conci	Jak	Lan	cs+	880	NO	rers		150	000	yes						- 13	II de l	-	XCU	uest		T		-		-		mer	Comment
EQ.	MILLIE	67 6	+6 · C	ME	>									13		(EF)					mer				1							Filter
Ent	WAOUS	(A)	E	-Mail	510 t Nan	£5	ad	30	rah	Joel	of.	CON	~	80159 / EE		E/B					guo				1		-		- 1			Samples
Tele: (510)47	20-3317	CI)	F	ax: (510	JLI.	20	0	71	D-C	940	4		138		5520			0		3/6			- 1			9020	020)				for Metals
Project #: 620	100		P	rojec	t Nan	lete	Enci	ino	2,4	606	7.90	tie	5-	80		5475	(1.81	OCS	802	_	oclor		ides)			As)	10/6	9/0				analysis: Yes / No
Project Location	1436 G	AFA	- IP (Ojec	1	+	4maps	N	0/3	- Pop	108	本	Ou	177		(16	s (4)	(HV	905 /	ides	Ar.	3	rbic	_	(8)	Na/	1 60	109	(02	9	- 1	165/140
Project Location: Sampler Signatur	re: Muska	E	VI.,	- L	S	a.	دری	1:		0	,			(602 / 8021	1	Grease (1664 / 5520 E/B&F)	rbos	021	PA	estite	YLY.	icide	3 He	OCS	VOC	AHs	8,00	8.00	/ 600	8260B		
Sumpler organica	T TUSK C	SAMP		Can AG			MA	TD	3	4	ME	THO	OD	09)	1	S G	roca	0/8	Y (E	0	0 8	Pest	die	V) 00	S) 0.	0 (P.	7/12	712	9010	326		
	1 2	SAMP	LING	90	ners	_	MA	IK	IA	P	RE	SER	VED	Gas	015)	100	Hyd	801	ONL	180	CB	(N)	(Act	826	1827	831	(200	200.	18	376		
SAMPLE ID	LOCATION/ Field Point Name	Date	Time	# Containers	Type Containers	Water	Soil	Air	Sludge	Other	ICE	HCL HNO.	Other	BTEX & TPH as	TPH as Diesel (8015)	Total Petroleum Oil &	Total Petroleum Hydrocarbons (418.1)	EPA 502.2 / 601 / 8010 / 8021 (HVOCs)	MTBE / BTEX ONLY (EPA 602 / 8021)	EPA 505/ 608 / 8081 (CI Pesticides)	EPA 608 / 8082 PCB's ONLY; Aroclors / Congeners	EPA 507 / 8141 (NP Pesticides)	EPA 515 / 8151 (Acidic Cl Herbicides)	EPA 524.2 / 624 / 8260 (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200,7 / 200,8 / 6010 / 6020)	LUFT 5 Metals (200.7 / 200.8 / 6010 / 6020)	Lead (200.7 / 200.8 / 6010 / 6020)	MTBE 5		
MW-4		5-18-10	9:55	4	VOA	×				1	X	1	\top	X	1				\vdash									-		X		
1.70-1	_	218-10	100	1	-017	-				+	1	1	+	1	1	+	-	1	-	+	\vdash				-	-	-	1	+	1	-	-
				-	-	\vdash			-	+	+	+	+	+	+	+	-	-	+	-	-	-	-	-	-	-	-	-	-	-	-	-
				-	-	-			-	+	-	-	+	-	+	+	+	-	-	-	-	-	-	-	-	-	-	-	-	-		
						1								1		1			1													
/																					1					1				1		
																		-														
						1	1					1			+	1				\top						1				1		
		-			1	+	+			\rightarrow		-	+	+	+	+	+		+	+	+	+	+	+	-	+	+	+	+	+	+	-
	_	-		-	-	+	+	-		\dashv	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	-
				-	-	-	1						_	1		1	4	1	_	1	1		1	-				1	1	-		
			1																									T				
								\top						1	F					1				1		1	1					
	-	1	1	1	-	+	+	+	-			-	+	-	+	+	+	-	+	+	+	+	+	+	+	+	+	+	+	-	1	-
-	-	-	-	-	-	+	+	+	-		-		+	-	+	+	-	+	-	+	+	+	+	+	-	+	+	+	+	-	1	-
	a															1	-	-		V									1			
Relinquished By	>	Date:	Time:	Re	ceived	By:	Car S	364	2010	e e	1	a	1	1	CO	P Q	ONIN	CETT	N.	V	/							C	OM	MEN	TS:	
	1	5/18/10	7						16		,		,)	_	HEA	DSF	ACE	EAB	SEN	T	V											
Relinquished Bor	11 1 +	Date:	Time:	Re	ceived	By	1							1	DEC	HLC	RIN	ATE	DIN	LA	EDG		1									
Environ	ach T.L	1181	160	4					>			=	=	1		ROP				AIN	ERS	-7	-									
Relimprished Be		Date:	Time:	Re	eceived	Hy:	0	1	1	N)								***						-	Terre a m						
	1	5/18/0	1630	2	U	1	K	1	2	1	1				PRE	SER	VAT	ION	VO	1	080		MET H<2		0	1111	K					
	-	1 1	1111	_	_	+	_	-	-	_		_			-				-	-	_	_	-		-	_	-	-			-	

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

	52-9262				1	WorkO	rder:	10054	134	ClientC	ode: CE	TE				
		WaterTrax	WriteOn	✓ EDF		Excel		Fax	✓ En	nail	HardCo	ору	Third	lParty	☐ J-f	lag
Report to:						В	sill to:					Requ	uested 1	ΓΑΤ:	5 d	lays
Eric Syrstad Conestoga- 5900 Hollis Emeryville, ((510) 420-332	Rovers & Associates St, Suite A CA 94608	•	esyrstad@cra #629100; Enc Olympic Statio	inal Properties-Fo	ormer		Con 590	estoga 0 Hollis	Payable a-Rovers & s St, Ste. A , CA 94608				Recei Printe		05/18/2 05/18/2	
									Request	ed Tests	(See lege	nd be	elow)			
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4 5	6	7	8	9	10	11	12
1005434-001	MW-4		Water	5/18/2010 9:55		Α	В	Α								

Test Legend:

1 G-MBTEX_W	2 MTBE_W	3 PREDF REPORT	4	5
6	7	8	9	10
11	12			
				Prepared by: Melissa Valles

Comments:

Sample Receipt Checklist

Client Name:	Conestoga-Rovers &	Associates				Date a	and Time Received:	5/18/2010	5:17:44 PM
Project Name:	#629100; Encinal Pro	perties-Forme	r Oly	mpic S	tatio	Check	klist completed and r	eviewed by:	Melissa Valles
WorkOrder N°:	1005434 Mate	rix <u>Water</u>				Carrie	r: <u>EnviroTech (M</u>	ITZ)	
		<u>Chain c</u>	of Cu	stody (C	OC) In	forma	ation		
Chain of custody	present?		Yes	✓	No	o 🗆			
Chain of custody	signed when relinquished	and received?	Yes	V	No	。 □			
Chain of custody	agrees with sample labels	?	Yes	✓	No	o 🗌			
Sample IDs noted	by Client on COC?		Yes	✓	N	o 🗆			
Date and Time of	collection noted by Client or	n COC?	Yes	✓	No	o 🗆			
Sampler's name r	noted on COC?		Yes	✓	No	o 🗆			
		<u>Sa</u>	mple	Receipt	Inforn	nation	ļ		
Custody seals in	tact on shipping container/c	cooler?	Yes		No	o 🗆		NA 🔽	
Shipping contain	er/cooler in good condition?		Yes	✓	N	o 🗆			
Samples in prope	er containers/bottles?		Yes	✓	N	o 🗆			
Sample containe	ers intact?		Yes	✓	No	o 🗆			
Sufficient sample	e volume for indicated test?		Yes	✓	N	o 🗌			
		Sample Preserv	<u>/atior</u>	n and Ho	old Tim	e (HT)) Information		
All samples recei	ived within holding time?		Yes	✓	No	o 🗆			
Container/Temp I	Blank temperature		Coole	er Temp:	6°C			NA \square	
Water - VOA via	ls have zero headspace / n	o bubbles?	Yes	✓	No	o 🗆	No VOA vials subm	itted 🗆	
Sample labels ch	necked for correct preserva	tion?	Yes	✓	N	o 🗌			
Metal - pH accep	stable upon receipt (pH<2)?		Yes		No	o 🗆		NA 🗹	
Samples Receive	ed on Ice?		Yes	✓	No	o 🗆			
		(Ice Type:	: WE	TICE)				
* NOTE: If the "N	No" box is checked, see co	mments below.							
						=	======		
Client contacted:		Date contacte	ed:				Contacted	by:	
Comments:									

Conestoga-Rovers & Associates	Client Project ID: #629100; Encinal Properties-Former Olympic Station	Date Sampled:	05/18/10
5900 Hollis St, Suite A	Properties-Former Orympic Station	Date Received:	05/18/10
	Client Contact: Eric Syrstad	Date Extracted:	05/20/10
Emeryville, CA 94608	Client P.O.:	Date Analyzed:	05/20/10

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

Extraction method: SW5030B Analytical methods: SW8021B/8015Bm Work Order: 1005434

Extraction	on method: SW5030B	Analytical methods: SW 8021B/8013Bm									1005434
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments
001A	MW-4	W	13,000		620	36	170	12	20	101	d1,b6
	rting Limit for DF =1;	W	50	5.0	0.5	0.5	0.5	0.5		μg/L	
	eans not detected at or we the reporting limit	S	1.0	0.05	0.005	0.005	0.005	0.005		mg/K	

* water and vapor samples are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all
TCLP & SPLP extracts in mg/L.

[#] cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference.

- b6) lighter than water immiscible sheen/product is present
- d1) weakly modified or unmodified gasoline is significant

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

Conestoga-Rovers & Associates	Client Project ID: #629100; Encinal Properties-Former Olympic Station	Date Sampled: 05/18/10
5900 Hollis St, Suite A	Properties-Former Orympic Station	Date Received: 05/18/10
	Client Contact: Eric Syrstad	Date Extracted: 05/21/10
Emeryville, CA 94608	Client P.O.:	Date Analyzed 05/21/10

Methyl tert-Butyl Ether*

Extraction method SW5030B Analytical methods SW8260B Work Order: 1005434

Extraction method SW 50	J30B	Analytical	methods SW8260B	W	ork Order:	1005434
Lab ID	Client ID	Matrix	Methyl-t-butyl ether (MTBE)	DF	% SS	Comment
001B	MW-4	W	1200	33	103	b6
Reportii	ng Limit for DF =1;	W	0.5		μg/L	
	ns not detected at or	S	NI A		NIA	

Reporting Limit for D1 =1,	w	0.5	μg/L
ND means not detected at or	c	NΑ	NI A
above the reporting limit		INA	INA

^{*} water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/wipe$.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

b6) lighter than water immiscible sheen/product is present

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 50693 WorkOrder 1005434

EPA Method SW8021B/8015Bm	Extra	ction SW	5030B					5	Spiked San	nple ID	: 1005426-0	05A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	1
7 tildiyte	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btexf)	ND	60	101	106	5.54	104	108	4.17	70 - 130	20	70 - 130	20
MTBE	ND	10	89.6	92.4	3.12	100	109	8.56	70 - 130	20	70 - 130	20
Benzene	ND	10	102	107	4.64	85.2	91.3	6.95	70 - 130	20	70 - 130	20
Toluene	ND	10	104	109	4.49	83.7	89.5	6.65	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	86.5	94.1	8.38	83.5	89.5	6.91	70 - 130	20	70 - 130	20
Xylenes	ND	30	106	114	7.37	84.4	89.6	5.99	70 - 130	20	70 - 130	20
%SS:	102	10	103	101	1.27	91	93	1.68	70 - 130	20	70 - 130	20

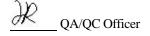
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 50693 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1005434-001A	05/18/10 9:55 AM	05/20/10	05/20/10 12:53 AM				•

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 50719 WorkOrder 1005434

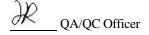
EPA Method SW8260B	Extrac	tion SW	5030B					8	Spiked San	nple ID:	: 1005444-0)14A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	١
y to	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Methyl-t-butyl ether (MTBE)	ND	10	118	121	2.66	102	99.4	3.01	70 - 130	30	70 - 130	30
%SS1:	101	25	116	117	1.11	94	94	0	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 50719 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1005434-001B	05/18/10 9:55 AM	05/21/10	05/21/10 5:02 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.


% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

McCampbell Analytical, I	lnc.
"When Quality Counte"	

Conestoga-Rovers & Associates	Client Project ID: #629100; Encinal Properties-Former	Date Sampled: 08/05/10
5900 Hollis St, Suite A	Olympic Station	Date Received: 08/05/10
2500 1151115 25, 2410 11	Client Contact: Eric Syrstad	Date Reported: 08/10/10
Emeryville, CA 94608	Client P.O.:	Date Completed: 08/10/10

WorkOrder: 1008125

August 10, 2010

D	T .
Dear	HMC

Enclosed within are:

- 1) The results of the 4 analyzed samples from your project: #629100; Encinal Properties-Former Olympic Statio
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius

Laboratory Manager

McCampbell Analytical, Inc.

McCAMPBELL ANALYTICAL, INC. 1534 WILLOW PASS ROAD 100812

Website: www.mccampbell.com Email: main@mccampbell.com Telephone: (877) 252-9262 Fax: (925) 252-9269

CHAIN OF CUSTODY RECORD

TURN AROUND TIME

RUSH 24 HR 48 HR 72 HR 5 DAY GeoTracker EDF PDF Excel Write On (DW)

1 1 1			111																		١,		Ch	eck	if s	amp	ole is	s eff	luen	it ar	nd "	J" fla	ag is r	equired
Report To Ecic	Syrsta)	Е	ill T	o: Co	nec	toot	ark	ave	rsc	A	\$50	cia	0						Α	nal	ysis	Re	que	st						C	ther	Co	mments
Tele: (5K) U Project #: 62 Project Location Sampler Signatu	: 1436 6	For	CASSI Ste	E-Ma ax:	ill: ET (510 ct Na	me:	sta	de 0-91	100 A	- CD	pic MI	ies SY	ėν	200 / 100 T 100 / 100	700) 8	9	l & Grease (1664 / 5520 E/B&F)	Total Petroleum Hydrocarbons (418.1)	EPA 502.2 / 601 / 8010 / 8021 (HVOCs)	MTBE / BTEX ONLY (EPA 602 / 8021)	I (Cl Pesticides)	EPA 608 / 8082 PCB's ONLY; Aroclors / Congeners	P Pesticides)	EPA 515 / 8151 (Acidic Cl Herbicides)	260 (VOCs)		10 (PAHs / PNAs)	CAM 17 Metals (200.7 / 200.8 / 6010 / 6020)	LUFT 5 Metals (200.7 / 200.8 / 6010 / 6020)	/ 6010 / 6020)	sample for DISSOLVED metals analysis	by 8260B	he sa	Indicate re if these mples are tentially ngerous to ndle:
SAMPLE ID	LOCATION/ Field Point Name	Date	Time	# Containers	Type Containers	Water	Soil	Air	Sludge	Other	ICE	HCL	Orber Orber	BTFV & TPH and	BIEA & ITH 18 G	TPH as Diesel (8015)	Total Petroleum Oil &	Total Petroleum Hy	EPA 502.2 / 601 / 80	MTBE / BTEX ON	EPA 505/ 608 / 8081 (Cl Pesticides)	EPA 608 / 8082 PC	EPA 507 / 8141 (NP Pesticides)	EPA 515 / 8151 (Au	EPA 524.2 / 624 / 8260 (VOCs)	EPA \$25.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (20	LUFT 5 Metals (20	Lend (200.7 / 200.8 / 6010 / 6020)	Filter sample for D	MTBE		
MUN		815/10	11:30	4	VOF	X	П			1	1	(×	(T	П													П		X		
WM-3			10:25			1				ľ				11												-								
MM+13			11:00			П			T	T			Т	11		T																J		
MAHM	*		11:55	1						1				V																		A		,
773		*	_	1	X	X				1	1	k		-	-	-											-		1,0		_	-	H	10
11/																																		
- 11																																		
**MAI clients MUST gloved, open air, sam allowing us to works	ple handling by																																	
Relinquished Bu	7	Date:	Time: 1243	Rece	eived H	W;	11	a	,-		2	-(5	G	GOO		ON	DÍTI		NI'E'	/	1			ī				CO	MM	ENT	S:		
Relinquished By:		Date:	Time:	Rece	eived B	y:				0			_	D A	PP	HLO	PRIA		CON	IN L	AB_	es_	V											
Relinquished By:		Date:	Time:	Rece	eived B	y:												TION	vo	DAS	08	&G	MI pH-		LS	от	HER							

McCampbell Analytical, Inc.

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

	rg, CA 94565-1701 52-9262					Work	Order	10081	125	ClientCode:			ETE				
		WaterTrax	WriteOn	✓ EDF		Excel		Fax	<u> </u>	✓ Email		Hard	Сору	Thir	dParty	☐ J-f	lag
Report to: Eric Syrstad Conestoga- 5900 Hollis Emeryville, (510) 420-33	Rovers & Associates St, Suite A CA 94608	cc: PO: ProjectNo: ;	esyrstad@cra #629100; Enc Olympic Statio	inal Properties-F	ormer		Co 59	counts l nestoga 00 Holli neryville	a-Rove s St, St	ers & As te. A	sociate	es	Date	uested Rece Print	ived:	5 d 08/05/2 08/05/2	
									Req	uested	Tests ((See leg	gend be	elow)			
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
1008125-001	MW-1		Water	8/5/2010 11:30	ΙПΙ	Α	В	Α									
1008125-002	MW-2		Water	8/5/2010 10:25	151	Α	В										
1008125-003	MW-3		Water	8/5/2010 11:00		Α	В										
1008125-004	MW-4		Water	8/5/2010 11:55		Α	В										
Test Legend: 1 G-MB	TEX_W 2 7	MTBE_	w	3 PRI	EDF RE	PORT		4 9						5 110			
11	12			0				<u> </u>	ı				L	101			
													Prepar	red by:	Maria	Venega	S

Comments:

Sample Receipt Checklist

Client Name:	Conestoga-F	Rovers & Asso	ciates		Date	and Time Received:	8/5/2010 1	12:49:46 PM
Project Name:	#629100; End	cinal Propertie	s-Former O	lympic S	Statio Chec	klist completed and	reviewed by:	Maria Venegas
WorkOrder N°:	1008125	Matrix Wat	<u>er</u>		Carrie	er: <u>Client Drop-In</u>		
			Chain of C	ustody (COC) Inform	<u>ation</u>		
Chain of custody	y present?		Yes	s V	No 🗆			
Chain of custody	y signed when re	linquished and rec	eived? Yes	s V	No 🗆			
Chain of custody	y agrees with sar	nple labels?	Yes	s V	No 🗌			
Sample IDs note	d by Client on CO	C?	Yes	s V	No 🗆			
Date and Time o	of collection noted	by Client on COC?	Yes	s V	No 🗆			
Sampler's name	noted on COC?		Yes	s V	No 🗆			
			Sampl	le Receip	t Informatio	<u>n</u>		
Custody seals in	ntact on shipping	container/cooler?	Yes		No 🗆		NA 🔽	
Shipping contain	ner/cooler in good	condition?	Yes	s V	No 🗆			
Samples in prop	er containers/bot	tles?	Yes	s V	No 🗆			
Sample containe	ers intact?		Yes	s V	No 🗆			
Sufficient sample	e volume for indic	cated test?	Yes	s V	No 🗌			
		<u>Sampl</u>	e Preservati	on and H	old Time (HT	<u>) Information</u>		
All samples rece	eived within holdin	ng time?	Yes	s V	No 🗆			
Container/Temp	Blank temperatur	е	Cod	oler Temp:	13.4°C		NA \square	
Water - VOA via	als have zero hea	dspace / no bubbl	es? Yes	s V	No 🗆	No VOA vials subr	mitted \square	
Sample labels c	hecked for correc	ct preservation?	Yes	s V	No 🗌			
Metal - pH accep	ptable upon receip	ot (pH<2)?	Yes	, 	No 🗆		NA 🗹	
Samples Receiv	red on Ice?		Yes		No 🗆			
			(Ice Type: W	/ET ICE)			
* NOTE: If the "	No" box is check	ed, see comments	below.					
====	=====	=====		===	====	=====	====	======
Client contacted	:	Date	e contacted:			Contacte	d by:	
Comments:								

1534 Willow Pass Road, Pittsburg, CA 94565-1701


Telephone: 877-252-9262 Fax: 925-252-9269

Conestoga-Rovers & Associates	Client Project ID: #629100; Encinal Properties-Former Olympic Station	Date Sampled:	08/05/10	
5900 Hollis St, Suite A	Properties-Pormer Orympic Station	Date Received:	08/05/10	
	Client Contact: Eric Syrstad	Date Extracted:	08/06/10-08/10/10	
Emeryville, CA 94608	Client P.O.:	Date Analyzed:	08/06/10-08/10/10	

	G	asoline R	ange (C6-C12)	Volatile Hy	drocarbons	as Gasoline	e with BTEX a	and MTBE ³	k		
Extraction n	nethod: SW5030B			Analy	tical methods:	SW8021B/8015	Bm		Wor	k Order:	1008125
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comment
001A	MW-1	W	ND		ND	ND	ND	ND	1	107	
002A	MW-2	W	ND		ND	ND	ND	ND	1	102	
003A	MW-3	W	450		110	2.2	0.76	0.64	1	97	d1
004A	MW-4	W	9200		780	13	230	4.3	5	98	d1,b6
				i		1		•		•	i
	g Limit for DF =1;	W	50	5.0	0.5	0.5	0.5	0.5		μg/I	
	s not detected at or he reporting limit	S	1.0	0.05	0.005	0.005	0.005	0.005		mg/k	<u>rg</u>

^{*} water and vapor samples are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts in mg/L.

- # cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference.
- %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor
- +The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:
- b6) lighter than water immiscible sheen/product is present
- d1) weakly modified or unmodified gasoline is significant

The state of the s		
Conestoga-Rovers & Associates	Client Project ID: #629100; Encinal Properties-Former Olympic Station	Date Sampled: 08/05/10
5900 Hollis St, Suite A	Properties-Pormer Orympic Station	Date Received: 08/05/10
	Client Contact: Eric Syrstad	Date Extracted: 08/06/10
Emeryville, CA 94608	Client P.O.:	Date Analyzed 08/06/10

Methyl tert-Butyl Ether*

Analytical methods SW8260B Extraction method SW5030B Work Order: 1008125

Extraction method SW5	030B	Analytical	methods SW8260B	Wo	ork Order:	1008125			
Lab ID	Client ID	Matrix	Methyl-t-butyl ether (MTBE)	DF	% SS	Comments			
001B	MW-1	W	350	10	111				
002B	MW-2	W	57	2	109				
003B	MW-3	W	32	1	122				
004B	MW-4	W	1800	50	117	b6			
	ng Limit for DF =1;	W	W 0.5			μg/L			
ND mea	ins not detected at or	S	NΔ		NΛ				

uoove me reporting mint	1		
above the reporting limit	5	NA	NA
ND means not detected at or	C	NI A	NI A
1		0.0	F8 2
Reporting Limit for Dr =1;	l W	0.5	пσ/Г,

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/\text{wipe}$.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

%SS = Percent Recovery of Surrogate Standard

DF = Dilution Factor

b6) lighter than water immiscible sheen/product is present

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 52265 WorkOrder 1008125

EPA Method SW8021B/8015Bm	Extra	ction SW	5030B					5	Spiked San	nple ID	: 1008041-0	06A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
Analyto	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex ^f)	ND	60	94.7	98.3	3.79	94.4	94	0.386	70 - 130	20	70 - 130	20
MTBE	ND	10	125	119	4.82	116	115	1.27	70 - 130	20	70 - 130	20
Benzene	ND	10	113	107	5.96	111	107	3.12	70 - 130	20	70 - 130	20
Toluene	ND	10	97.4	97.6	0.173	100	95.1	5.08	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	98.1	96.6	1.47	99	94.8	4.40	70 - 130	20	70 - 130	20
Xylenes	ND	30	110	110	0	111	107	3.78	70 - 130	20	70 - 130	20
%SS:	103	10	106	102	3.30	107	104	3.29	70 - 130	20	70 - 130	20

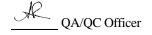
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 52265 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed	
1008125-001A	08/05/10 11:30 AM	08/06/10	08/06/10 1:42 PM	1008125-001A	08/05/10 11:30 AM	08/10/10	08/10/10 2:40 AM	
1008125-002A	08/05/10 10:25 AM	08/06/10	08/06/10 5:45 PM	1008125-003A	08/05/10 11:00 AM	08/10/10	08/10/10 1:12 AM	

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 52272 WorkOrder 1008125

EPA Method SW8021B/8015Bm Extraction SW5030B Spiked Sample ID: 1008051-										02A		
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
7 tildiyto	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btexf)	ND	60	99.7	94.2	5.73	93.9	102	8.25	70 - 130	20	70 - 130	20
MTBE	ND	10	106	101	5.09	108	99.3	8.18	70 - 130	20	70 - 130	20
Benzene	ND	10	97.2	94.9	2.38	94.4	92.8	1.73	70 - 130	20	70 - 130	20
Toluene	ND	10	95.6	95.4	0.208	93	92.5	0.589	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	96.4	94.4	2.12	93.7	93.6	0.182	70 - 130	20	70 - 130	20
Xylenes	ND	30	98.3	96.2	2.07	96.3	96.1	0.252	70 - 130	20	70 - 130	20
%SS:	99	10	97	99	1.80	96	97	0.749	70 - 130	20	70 - 130	20

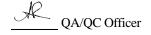
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 52272 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed	
1008125-004A	08/05/10 11:55 AM	08/06/10	08/06/10 2:42 PM	1008125-004A	08/05/10 11:55 AM	08/10/10	08/10/10 3:09 AM	

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 52328 WorkOrder 1008125

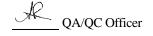
EPA Method SW8260B	Extraction SW5030B				Spiked Sample ID: 1008125-0						002B	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	S-LCSD Acceptance Criter			
Analyte	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Methyl-t-butyl ether (MTBE)	57	10	129	130	0.221	121	117	3.22	70 - 130	30	70 - 130	30
%SS1:	109	25	108	108	0	101	101	0	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 52328 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1008125-001B	08/05/10 11:30 AM	08/06/10	08/06/10 8:16 PM	1008125-002B	08/05/10 10:25 AM	08/06/10	08/06/10 8:58 PM
1008125-003B	08/05/10 11:00 AM	08/06/10	08/06/10 5:26 PM	1008125-004B	08/05/10 11:55 AM	08/06/10	08/06/10 9:43 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.


% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

