

RECEIVED

1:39 pm, Jan 06, 2009

Alameda County Environmental Health

GROUNDWATER MONITORING REPORT - FOURTH QUARTER 2008

FORMER OLYMPIC SERVICE STATION 1436 GRANT AVENUE SAN LORENZO, CALIFORNIA

AGENCY CASE NO. RO0373

Prepared by: Conestoga-Rovers & Associates

5900 Hollis Street, Suite A Emeryville, California U.S.A. 94608

Office: 510-420-0700 Fax: 510-420-9170

web: http:\\www.CRAworld.com

JANUARY 5, 2009 REF. NO. 629100 (2) This report is printed on recycled paper.

TABLE OF CONTENTS

			<u>Page</u>
1.0	INTRO	DDUCTION	1
	1.1	SITE INFORMATION	1
2.0	SITE A	CTIVITIES AND RESULTS	2
	2.1	CURRENT QUARTER'S ACTIVITIES	2
	2.2	CURRENT QUARTER'S RESULTS	2
3.0	ACTIV	TTIES PLANNED FOR THE FIRST OUARTER OF 2009	3

LIST OF FIGURES (Following Text)

FIGURE 1 VICINITY MAP

FIGURE 2 GROUNDWATER ELEVATION CONTOUR AND HYDROCARBON

CONCENTRATION MAP

LIST OF TABLES

TABLE 1 MONITORING WELL CONSTRUCTION DETAILS

TABLE 2 GROUNDWATER ANALYTICAL DATA

LIST OF APPENDICES

APPENDIX A FIELD DATA SHEETS

APPENDIX B LABORATORY ANALYTICAL REPORT

APPENDIX C STANDARD FIELD PROCEDURES

1.0 INTRODUCTION

On behalf of George Jaber of Encinal Properties, Conestoga-Rovers & Associates (CRA) has prepared this monitoring report for the site referenced. The site is a former Olympic Oil service station located at 1436 Grant Avenue in San Lorenzo, California (Figure 1). San Lorenzo Auto Repair currently operates on the site. Soil and groundwater investigations, as well as five quarterly groundwater monitoring and sampling events occurred on the site from 1999 to 2002. No additional work appears to have occurred between 2002 and 2007. Alameda County Environmental Health Department (ACEHD) requested reinstatement of the groundwater monitoring program in a letter dated December 4, 2006, and monitoring/sampling resumed in February 2007. The property is owned by Mr. George Jaber of Encinal Properties and Mr. Tony Malonzo operates the auto repair shop at the site. Commercial properties are located south and southwest of the site. A school is located north of the site and the remaining properties in the vicinity of the site are residential.

On July 10, 1998, four (4) steel, single-walled underground storage tanks (USTs) were removed from the site. These USTs consisted of one (1) 10,000-gallon gasoline, one (1) 8,000-gallon gasoline, one (1) 5,000-gallon diesel and one (1) 250-gallon used-oil tank (Figure 2). Six (6) dispensers, located on two islands north of the auto repair building, were also removed. Fourth Quarter 2008 activities are summarized below.

1.1 <u>SITE INFORMATION</u>

Site Address 1436 Grant Avenue, San Lorenzo

Site Use San Lorenzo Auto Repair

Client and Contact Encinal Properties, George Jaber

Consultant and Contact Person CRA, Robert C. Foss and Eric A. Syrstad

Lead Agency and Contact ACEH, Steven Plunkett

Agency Case No. RO#0373

2.0 SITE ACTIVITIES AND RESULTS

2.1 <u>CURRENT QUARTER'S ACTIVITIES</u>

On November 4, 2008, Muskan Environmental Sampling (Muskan) monitored and sampled groundwater in wells MW-1, MW-2 and MW-3 (Figure 2). Monitoring well construction details are presented in Table 1. Groundwater monitoring and analytical data are summarized in Table 2. The associated field data sheets are presented as Appendix A. The laboratory analytical report is presented as Appendix B. CRA's standard field procedures for groundwater monitoring and sampling are presented as Appendix C.

2.2 CURRENT QUARTER'S RESULTS

Groundwater Flow Direction West-southwest

Hydraulic Gradient 0.004

Average Depth to Water 7.03 ft

Is Free Product Present on Site No

Current Remediation TechniquesMonitored Natural Attenuation

During the Fourth Quarter 2008 event, groundwater was measured between 6.84 and 7.28 feet below top of casing and flowed toward the west-southwest at a gradient of approximately 0.004 foot per foot (ft/ft) (Figure 2). As illustrated by the rose diagram on Figure 2, the First Quarter 2007 through Fourth Quarter 2008 groundwater flow direction has been consistently toward the west-southwest.

Total petroleum hydrocarbons as gasoline (TPHg) was not detected in any of the wells. TPH as diesel (TPHd) was detected only in well MW-2 at a concentration of 80 micrograms per Liter ($\mu g/L$). No BTEX constituents were detected in any of the wells. MTBE was detected at concentrations of 260 $\mu g/L$ (MW-1), 5.9 $\mu g/L$ (MW-2), and 40 $\mu g/L$ (MW-3). The only other fuel oxygenate detected was 26 $\mu g/L$ of TBA in well MW-1. CRA recommends a continuation of the groundwater monitoring program to track petroleum hydrocarbon concentration trends as site delineation continues. However, CRA also proposes a reduction to the analytical program based on recent and historical data reported below the laboratory detection limit. The details of this request will be described in a forthcoming letter.

3.0 ACTIVITIES PLANNED FOR THE FIRST QUARTER OF 2009

Muskan will monitor depth to water and collect samples from all three (3) wells at the site. CRA will prepare a table summarizing the groundwater elevation and analytical data and a generate a potentiometric map that will be submitted in a monitoring report along with the field data sheets, standard field procedures and the laboratory analytical report.

CRA, under its former name of Cambria Environmental Technology, Inc., submitted the *Site Assessment and Preferential Pathway Study Workplan* to ACEHD on March 2, 2007. On May 31, 2007, CRA submitted the *Site Assessment Workplan Addendum* requested by the ACEHD. CRA submitted the *Site Assessment Workplan, Addendum* 2 as requested by ACEHD on September 28, 2007 and received approval of the scope of work in an ACEHD letter dated January 22, 2008. Results of the investigation are documented in the CRA report titled, *Site Investigation, Preferential Pathway and Workplan Report*, dated April 29, 2008. CRA and Mr. Jaber are awaiting response from ACEHD on the workplan before proceeding with scheduling of additional investigation activities.

All of Which is Respectfully Submitted, CONESTOGA-ROVERS & ASSOCIATES

Michael Werner

Mal win

Staff Geologist

Robert C. Foss, P.G.

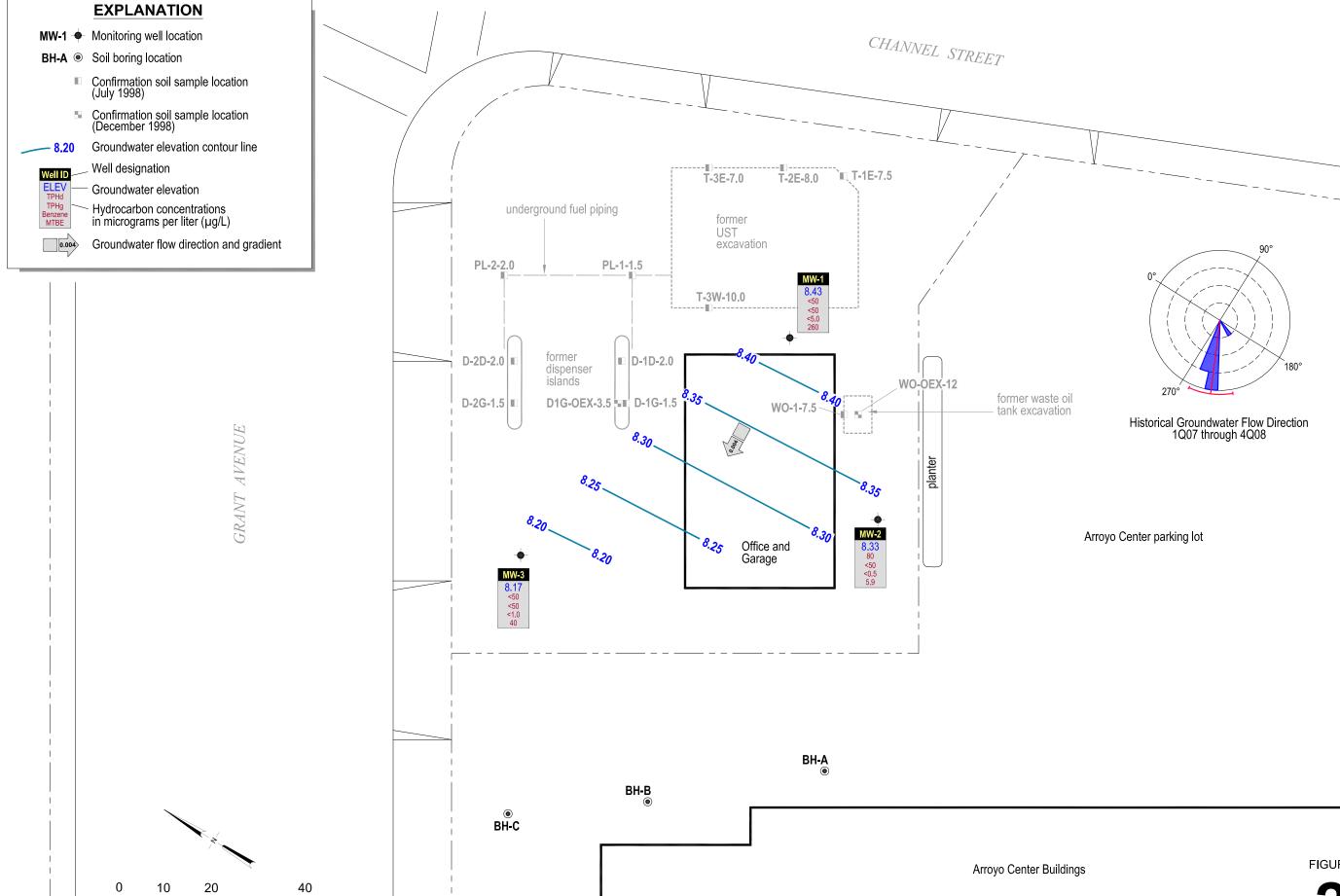
Senior Project Geologist

Robert C. Joss

Conestoga-Rovers & Associates, Inc. (CRA) prepared this document for use by our client and appropriate regulatory agencies. It is based partially on information available to CRA from outside sources and/or in the public domain, and partially on information supplied by CRA and its subcontractors. CRA makes no warranty or guarantee, expressed or implied, included or intended in this document, with respect to the accuracy of information obtained from these outside sources or the public domain, or any conclusions or recommendations based on information that was not independently verified by CRA. This document represents the best professional judgment of CRA. None of the work performed hereunder constitutes or shall be represented as a legal opinion of any kind or nature.

FIGURES

Olympic Service Station


1436 Grant Avenue San Lorenzo, California

Vicinity Map

FIGURE

Arroyo Center Buildings

Scale (ft)

TABLES

TABLE 1 Page 1 of 2

MONITORING WELL CONSTRUCTION DETAILS ENCINAL PROPERTIES FORMER OLYMPIC SERVICE STATON 1436 GRANT AVENUE SAN LORENZO, CALIFORNIA

Well ID	Date Installed	Borehole diameter (in)	Depth of borehole (ft)	Casing diameter (in)	Screened interval (ft bgs)	Slot Size (in)	Filter Pack (ft bgs)	Bentonite seal (ft bgs)	Cement (ft bgs)
MW-1	9/24/1999	8	26.5	2	5-26.5	0.020	3.5-26.5	3-3.5	1.5-3
MW-2	9/24/1999	8	20.0	2	5-20	0.020	3.5-20	3-3.5	1.5-3
MW-3	9/24/1999	8	21.5	2	5-21	0.020	3.5-21.5	3-3.5	1.5-3

Abbreviations / Notes

ft = feet

in = inches

ft bgs = feet below grade surface

ft above msl = feet above mean sea level

TOC = top of casing

TOC elevations were surveyed on March 8, 2007 by Virgil Chavez Land Surveying.

Prior to this date, TOC elevation were relative to a project datum determined by Aqua Science Engineers, Inc. in 1998.

TABLE 1 Page 2 of 2

MONITORING WELL CONSTRUCTION DETAILS ENCINAL PROPERTIES FORMER OLYMPIC SERVICE STATON 1436 GRANT AVENUE SAN LORENZO, CALIFORNIA

TOC elevation (ft above msl)

15.71

15.17

15.13

TABLE 2

GROUNDWATER ANALYTICAL DATA ENCINAL PROPERTIES FORMER OLYMPIAN SERVICE STATION 1436 GRANT AVENUE, SAN LORENZO, CALIFORNIA

Well ID TOC	Date Sampled	DTW (ft)	GWE (ft above msl)	Oil & Grease	ТРНто	TPHd	ТРНд	Benzene	Toluene l	Ethylbenzen	e Xylenes	MTBE	SVOCs & HVOCs	DIPE	TAME	ЕТВЕ	TBA	Ethanol	EDB	1,2- DCA	Notes
(ft above m	ısl)			←					Concentra	tions in micro	ograms per li	iter (μg/L)									
Final ESL (F- water resource	·1a) : Groundwater :	is a current or	potential drinking	NE	NE	100	100	1	40	30	20	5		NE	NE	NE	NE	NE	NE	0.5	
Final ESL (E-	1) Groundwater	Re	sidential	NE	NE	use soil gas	use soil gas	540	380,000	170,000	160,000	24,000	-	NE	NE	NE	use soil gas	NE	NE	200	
	vels for Evaluation Vapor Intrusion		mmercial	NE	NE	use soil gas	use soil gas	1,800	530,000	170,000	160,000	80,000		NE	NE	NE	use soil gas	NE	NE	690	
Grab Groi	ındwater Sampl	'es																			
Pit Water	9/13/1998					2,100	3,600	350	130	39	380	17,000									
BH-A	4/30/2002	17/8			<100	<100	180	< 0.50	< 0.50	8.8	< 0.50	82		< 0.50	< 0.50	< 0.50	< 5.0				
ВН-В	4/30/2002	16/8			<100	<200	2,300	120	11	60	150	2,000		< 5.0	< 5.0	< 5.0	< 50				
BH-C	4/30/2002	16/8			<100	<150	1,200	57	0.72	43	87	240		< 0.50	1.0	< 0.50	< 5.0				
B-1-gw	2/25/2008	3/3.95				260,000	4,600	330	< 5.0	33	< 5.0	370		< 5.0	< 5.0	< 5.0	<20	< 500	< 5.0	< 5.0	*
B-2-gw	2/25/2008	7.5/6.95				1,900	540	12	<2.5	<2.5	<2.5	220		<2.5	<2.5	<2.5	<10	<250	<2.5	<2.5	*
B-3-gw	2/26/2008	8/NA				< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	4.0		< 0.5	< 0.5	< 0.5	<2.0	<50	< 0.5	< 0.5	*
B-4-gw	2/25/2008	7.5/7.80				6,800	7,300	150	< 50	150	< 50	2,700		< 50	< 50	< 50	1,700	<5,000	< 50	<50	*
B-5-gw	2/26/2008	8/6.40				250	320	<10	<10	13	<10	630		<10	<10	<10	<40	<1,000	<10	<10	*
B-6-gw	2/26/2008	8/6.95				120	< 50	< 5.0	<5.0	< 5.0	< 5.0	240		< 5.0	< 5.0	< 5.0	<20	< 500	< 5.0	< 5.0	*
B-7-gw	2/26/2008	8/6.55				84	<50	< 0.5	<0.5	< 0.5	<0.5	27		< 0.5	< 0.5	< 0.5	<2.0	<50	< 0.5	< 0.5	*
B-8-gw	2/25/2008	8/6.10				1,000	930	37	<2.5	64	23	160		<2.5	<2.5	<2.5	<10	<250	<2.5	<2.5	*
																					*
	Groundwater Si	,																			
MW-1	10/6/1999	8.35	6.65			84	3,900	<25	<25	<25	<25	3,500									*
15.00	1/13/2000	7.90	7.10			<50	<1,300	18	<13	<13	<13	1,700									
	4/12/2000	7.08	7.92			56	<1,000	66	<10	<10	<10	1,600									*
	7/19/2000	7.66	7.34			52	<1,000	<10	<10	<10	<10	1,200									*
	10/25/2000	7.91	7.09			76	4,100	120	<25	<25	<25	6,100									*
	2/16/2007	6.32	8.68																		
	3/1/2007	5.88	9.12		<250	<50	<50	<1.2	<1.2	<1.2	<1.2	78		<1.2	<1.2	<1.2	<12	<120	<1.2	<1.2	*
15.71	5/1/2007	7.24	8.47		<250	<50	<50	<5.0	<5.0	<5.0	<5.0	250		<5.0	<5.0	<5.0	<50	<500	<5.0	<5.0	*
	8/1/2007	7.77	7.94			<50	<50	<25	<25	<25	<25	520		<25	<25	<25	<250	<2500	<25	<25	*
	11/1/2007	7.71	8.00			<50	<50	<12	<12	<12	<12	460		<12	<12	<12	<120	<1,200	<12	<12	
	2/1/2008	5.71	10.00			<50	<50	<2.5	<2.5	<2.5	<2.5	110		<2.5	<2.5	<2.5	<10	<250	<2.5	<2.5	*
	5/2/2008	7.52	8.19		<250	<50	<50	<5.0	<5.0	<5.0	<5.0	240		<5.0	<5.0	<5.0	<20	<500	<5.0	<5.0	
	8/1/2008	8.02	7.69			<50	<50	<10	<10	<10	<10	500		<10	<10	<10	<40	<1,000	<10	<10	*
	11/4/2008	7.28	8.43			<50	<50	<5.0	<5.0	<5.0	<5.0	260		<5.0	<5.0	<5.0	26	<500	<5.0	<5.0	
MW-2	10/6/1999	7.87	6.59	<1,000	<500	<50	70	< 0.5	<0.5	<0.5	<0.5	11	ND								*
14.46	1/13/2000	7.46	7.00	<1,000	<500	<50	<50	<0.5	<0.5	<0.5	<0.5	6.2	ND								
	4/12/2000	6.67	7.79	1,100	<500	<50	<50	<0.5	<0.5	<0.5	<0.5	39									
	7/19/2000	7.23	7.23	1,300	<500	<50	<1,000	<10	<10	<10	<10	990									
	10/25/2000	7.52	6.94		<500	<50	370	<2.5	<2.5	<2.5	<2.5	690									
	, -,																				

TABLE 2

GROUNDWATER ANALYTICAL DATA ENCINAL PROPERTIES FORMER OLYMPIAN SERVICE STATION 1436 GRANT AVENUE, SAN LORENZO, CALIFORNIA

Well ID TOC	Date Sampled	DTW (ft)	GWE (ft above msl)	Oil & Grease	ТРНто	TPHd	ТРНд	Benzene	Toluene	Ethylbenzer	e Xylenes	MTBE	SVOCs & HVOCs	DIPE	TAME	ETBE	TBA	Ethanol	EDB	1,2- DCA	Notes
(ft above m	sl)			←					Concentra	tions in micr	ograms per li	ter (μg/L)	-							<u> </u>	
Final ESL (F- water resource	1a) : Groundwater i: e	s a current or	potential drinking	NE	NE	100	100	1	40	30	20	5		NE	NE	NE	NE	NE	NE	0.5	
Final ESL (E-1	l) Groundwater	Re	sidential	NE	NE	use soil gas	use soil gas	540	380,000	170,000	160,000	24,000		NE	NE	NE	use soil gas	NE	NE	200	
	vels for Evaluation apor Intrusion	Co	mmercial	NE	NE	use soil gas	use soil gas	1,800	530,000	170,000	160,000	80,000		NE	NE	NE	use soil gas	NE	NE	690	
MW-2	2/16/2007	5.89	8.57																		
(cont.)	3/1/2007	5.45	9.01		<250	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	9.8		< 0.5	< 0.5	< 0.5	< 5.0	< 50	< 0.5	< 0.5	*
15.17	5/1/2007	6.83	8.34		<250	< 50	< 50	< 5.0	< 5.0	< 5.0	< 5.0	120		< 5.0	< 5.0	< 5.0	<50	< 500	< 5.0	< 5.0	*
	8/1/2007	7.35	7.82			< 50	< 50	< 5.0	< 5.0	< 5.0	< 5.0	130		< 5.0	< 5.0	< 5.0	<50	< 500	< 5.0	< 5.0	*
	11/1/2007	7.27	7.90			< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	19		< 0.5	< 0.5	< 0.5	< 5.0	< 50	< 0.5	< 0.5	
	2/1/2008	5.25	9.92			< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	3.3		< 0.5	< 0.5	< 0.5	<2.0	< 50	< 0.5	< 0.5	*
	5/2/2008	7.12	8.05			< 50	< 50	<2.5	<2.5	<2.5	<2.5	83.0		<2.5	<2.5	<2.5	<10	<250	<2.5	<2.5	
	8/1/2008	7.59	7.58			< 50	< 50	<1.0	<1.0	<1.0	<1.0	52		<1.0	<1.0	<1.0	<4.0	<100	<1.0	<1.0	*
	11/4/2008	6.84	8.33			80	<50	<0.5	<0.5	<0.5	<0.5	5.9		<0.5	<0.5	<0.5	<2.0	<50	<0.5	<0.5	*
MW-3	10/6/1999	7.90	6.51			300	3,900	900	89	160	560	790									
14.41	1/13/2000	7.50	6.91			210	740	110	4.8	35	18	290									
	4/12/2000	6.61	7.80			640	2,200	650	9.7	180	24	140									
	7/19/2000	7.24	7.17			270	2,700	420	<2.5	160	<2.5	99									*
	10/25/2000	7.52	6.89			150	710	180	<2.5	24	<2.5	71									*
	2/16/2007	5.90	8.51																		
	3/1/2007	5.44	8.97		<250	<50	82	20	<1.7	<1.7	<1.7	100		<1.7	<1.7	<1.7	<17	<170	<1.7	<1.7	*
15.13	5/1/2007	6.87	8.26		<250	< 50	< 50	< 5.0	< 5.0	< 5.0	< 5.0	88		< 5.0	< 5.0	< 5.0	<50	< 500	< 5.0	< 5.0	*
	8/1/2007	7.40	7.73			< 50	130	12	<2.5	<2.5	<2.5	98		<2.5	<2.5	<2.5	<25	<250	<2.5	<2.5	*
	11/1/2007	7.35	7.78			< 50	77	<2.5	<2.5	<2.5	<2.5	68		<2.5	<2.5	<2.5	<25	<250	<2.5	<2.5	*
	2/1/2008	5.28	9.85			< 50	<50	<2.5	<2.5	<2.5	<2.5	97		<2.5	<2.5	<2.5	<10	<250	<2.5	<2.5	
	5/2/2008	7.15	7.98			< 50	68	2.3	<1.7	<1.7	<1.7	86		<1.7	<1.7	<1.7	7.20	<170	<1.7	<1.7	
	8/1/2008	7.66	7.47			< 50	85	3.5	<1.0	<1.0	<1.0	66		<1.0	<1.0	<1.0	7.2	<100	<1.0	<1.0	*
	11/4/2008	6.96	8.17			<50	< 50	<1.0	<1.0	<1.0	<1.0	40		<1.0	<1.0	<1.0	<4.0	<100	<1.0	<1.0	

TABLE 2

GROUNDWATER ANALYTICAL DATA ENCINAL PROPERTIES FORMER OLYMPIAN SERVICE STATION 1436 GRANT AVENUE, SAN LORENZO, CALIFORNIA

Well ID TOC	Date Sampled	DTW (ft)	GWE (ft above msl)	Oil & Grease	ТРНто	TPHd	ТРНд	Benzene	Toluene E	Ethylbenzen	e Xylenes	MTBE	SVOCs & HVOCs	DIPE	TAME	ETBE	TBA	Ethanol	EDB	1,2- DCA	Notes
(ft above ms	sl)			•					Concentrat	ions in micro	grams per li	ter (µg/L)								→	
Final ESL (F-1 water resource	,	is a current o	or potential drinking	NE	NE	100	100	1	40	30	20	5		NE	NE	NE	NE	NE	NE	0.5	
) Groundwater		Residential	NE	NE	use soil gas	use soil gas	540	380,000	170,000	160,000	24,000		NE	NE	NE	use soil gas	NE	NE	200	
Screening Leve of Potential Va	els for Evaluation apor Intrusion		Commercial	NE	NE	use soil gas	use soil gas	1,800	530,000	170,000	160,000	80,000		NE	NE	NE	use soil gas	NE	NE	690	

Abbreviations / Notes

TOC = Top of casing

DTW = Depth to water

GWE = Groundwater elevation in feet above mean sea level

ft above msl = feet above mean sea level

17/8 = Depth to first encountered groundwater/depth of static groundwater

<n = Not detected above laboratory reporting limit</p>

-- = Not sampled, not analyzed, not available

Oil and grease by EPA Method 5520 E&F

TPHd = Total Petroleum Hydrocarbons as diesel range by EPA Method 8015

TPHg = Total Petroleum Hydrocarbons as gasoline range by EPA Method 8015

TPHmo = Total Petroleum Hydrocarbons as motor oil by EPA Method 8015

Benzene, toluene, ethylbenzene, and xylenes (BTEX) by EPA Method 8020

MTBE = Methyl tertiary butyl ether by EPA Method 8260

Di-isopropyl ether (DIPE), tertiary-amyl methyl ether (TAME), ethyl tertiary-butyl ether (ETBE), tertiary-butyl alcohol (TBA) by EPA Method 8260I

SVOCs = Semi-volatile organic compounds by EPA Method 8270, refer to corresponding analytical laboratory report for a full list of compounds

HVOCs = Halogenated volatile organic compoundy by EPA Method 8010, refer to corresponding analytical laboratory report for a full list of compounds

* = See Analytical Laboratory Report for laboratory sample description and TPH chromatogram interpretation.

TOC elevations were surveyed on March 8, 2007 by Virgil Chavez Land Surveying. Prior to this date, TOC elevation were relative to a project datum determined by Aqua Science Engineers, Inc. in 1998

- 1,2 dichloroethane (1,2 DCA), and Ethanol
- 1,2-dibromoethane (EDB)

APPENDIX A

FIELD DATA SHEETS

WELL GAUGING SHEET

			** I	LL GA	UGIN	G SHEET
Client:	Conestoga-F	Rovers and A	ssociates			
Site Address:		Avenue, San		A		
Date:	11/4/2008			Signature:		7
Well ID	Time	Depth to SPH	Depth to Water	SPH Thickness	Depth to Bottom	Comments
MW-1	9:10		7.28		24.36	
MW-2	9:00		6.84		19.35	
MW-3	9:05		6.96		19.05	
		·				
			·			

WELL SAMPLING FORM

						ING PORM		
Date:		11/4/2008						
Client:		Conestoga-	Rovers and	l Associate	S			
Site Addı	ess:	1436 Grant	Avenue, S	San Lorenzo	o, CA			
Well ID:		MW-1						
Well Diar	neter:	2"						
Purging D	evice:	Disposable	Bailer					
Sampling	Method:	Disposable	Bailer					
Total Wel	l Depth:			24.36	Fe=	mg/L		
Depth to V	Water:			7.28	ORP=	mV		
Water Co	umn Heigh	t:		17.08	DO=	mg/L		
Gallons/ft	•			0.16				
1 Casing	Volume (ga	 l):		2.73	COMMI	ENTS:		
	Volumes (ga	<u> </u>		8.20	very turb			
TIME:	CASING VOLUME (gal)	TEMP (Celsius)	pН	COND. (µS)				
10:25	2.7	21.2	7.43	1804				
10:30	5.5	21.2	7.50	1809	_			
10:35	8.2	21.1	7.49	1804	1			
Sample ID:	Sample Da	ate:	Sample Time:	Containe	r Type	Preservative	Analytes	Method
MW-1	11/4	/2008	10:40	40 ml VO Amber	OA, 1 L	HCI, ICE	TPHg TPHd -9 Oxy's	8015 with silica gel clean up, 8021, 8260
						Signatu	ra. K	L

WELL SAMPLING FORM

Date:		11/4/2008						
Client:		Conestoga-l	Rovers and	l Associate	s			
Site Addı	ess:	1436 Grant	Avenue, S	an Lorenzo	o, CA	-		
Well ID:		MW-2						
Well Diar	neter:	2"						
Purging D	evice:	Disposable	Bailer			•	···	
Sampling	Method:	Disposable	Bailer					
Total Wel	l Depth:			19.35	Fe=	mg/L		
Depth to \	Water:			6.84	ORP=	mV		
Water Co	lumn Heigh	t:		12.51	DO=	mg/L		
Gallons/ft	· •			0.16				
1 Casing	Volume (ga	1):		2.00	COMME	ENTS:		-
3 Casing	Volumes (ga	al):		6.00	very turbi	d, silty		
TIME:	CASING VOLUME (gal)	TEMP (Celsius)	pН	COND.				
9:30	2.0	20.6	7.25	1568				
9:35	4.0	20.7	7.23	1566				
9:40	6.0	21.0	7.30	1580				
Sample			Sample					
ID:	Sample Da	ate:	Time:	Containe	r Type	Preservative	Analytes	
MW-2	11/4	/2008	9:45	40 ml VC Amber	OA, 1 L	HCl, ICE	TPHg TPHd 9 Oxy's	8015 with silica gel clean up, 8021, 8260
						Signatu	ıre:	

WELL SAMPLING FORM

Date:		11/4/2008						
Client:		Conestoga-I	Rovers and	Associates	S			
Site Addr	ess:	1436 Grant	Avenue, S	an Lorenzo	o, CA			
Well ID:		MW-3						
Well Dian	neter:	2"						
Purging D	evice:	Disposable	Bailer		**************************************			
Sampling	Method:	Disposable	Bailer			•		
Total Wel	l Depth:			19.05	Fe=	mg/L	****	
Depth to V	Water:			6.96	ORP=	mV		
Water Col	umn Height	•		12.09	DO=	mg/L		
Gallons/ft				0.16				
1 Casing V	Volume (gal):		1.93	СОММІ	ENTS:		
3 Casing V	Volumes (ga	ıl):		5.80	very turbi	d, silty		
TIME:	CASING VOLUME (gal)	TEMP (Celsius)	pН	COND.	-			
9:55	1.9	20.3	7.44	1475				
10:00	3.9	20.9	7.41	1473				
10:05	5.8	20.5	7.46	1501				
Sample ID:	Sample Da	ıte:	Sample Time:	Containe	r Type	Preservative	Analytes	Method
MW-3	11/4	/2008	10:10	40 ml VO Amber	OA, 1 L	HCl, ICE	TPHg TPHd ——9 Oxy's	8015 with silica gel clean up, 8021, 8260
						~-		
		,				Signat	ture:	

APPENDIX B

LABORATORY ANALYTICAL REPORT

McCampbell Analytical, Inc. "When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

Conestoga-Rovers & Associates	Client Project ID: #629100; Encinal	Date Sampled:	11/04/08
5900 Hollis St, Suite A	Properties Former Olympic Station	Date Received:	11/04/08
Emeryville, CA 94608	Client Contact: Bob Foss	Date Reported:	11/10/08
2.1.2.1 > 1000	Client P.O.:	Date Completed:	11/07/08

WorkOrder: 0811084

November 10, 2008

Dear	Bo	b:
------	----	----

Enclosed within are:

- 3 analyzed samples from your project: #629100; Encinal Properties Former 1) The results of the
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager

McCampbell Analytical, Inc.

McCAMPBELL ANALYTICAL, INC. 1534 WILLOW PASS ROAD 08 1108 PITTSBURG, CA 94565-1701

Website: www.mccampbell.com Email: main@mccampbell.com Telephone: (877) 252-9262 Fax: (925) 252-9269

CHAIN OF CUSTODY RECORD

TURN AROUND TIME

4	1	1
RUSH	24 HR	48 HR

72 HR 5 DAY

GeoTracker EDF 🚨 PDF 🖵 Excel 🖵 Write On (DW) 🖵

Report To: Bob	FOSC		В	ill To	: San	ne	S. Sim	ete	00-	low	eco	1	Ad	soci	ate	(0)			A	hal	ysis	Rec	ues	t						Other	r	Comments
Report To: Bob Company: 596 Froject (510) 4 Project #: 6291 Project Location: Sampler Signatur	20-334 00 HONG erxville 20-334 00 1436 G		wixon		tag	Las	S HEV	-	pl	12	VIE	THO	Ď	PH as Gas (602 / 8021 + 8015)	X (EPA 602 / 8021)		Total Petroleum Oil & Grease (1664 / 5520 E/B&F)	drocarbons (418.1)	10 / 8021 (HVOCs)		EPA 608 / 8082 PCB's ONLY; Arodors / Congeners	Pesticides)	idic Cl Herbicides)	60 (VOCs)	70 (SVOCs)	10 (PAHs / PNAs)	CAM 17 Metals (200.7 / 200.8 / 6010 / 6020)			DC,MYBE, TAME, TBA, FFOH by 8260B	2	Filter Samples for Metals analysis: Yes / No
SAMPLE ID	LOCATION/ Field Point Name	Date	Time	# Containers	Type Containers	Water	П	T	Sludge	T	Ι,	HNO	Other	MTBE / BTEX & T	MTBE / BTEX ONLY (EPA 602 / 8021)	TPH as Diesel Allan	Total Petroleum Oil	Total Petroleum Hydrocarbons (418.1)	EPA 502.2 / 601 / 8010 / 8021 (HVOCs)	8081 (Cl Pesticides)	EPA 608 / 8082 PCB	EPA 507 / 8141 (NP Pesticides)	EPA 515 / 8151 (Acidic Cl Herbicides)	EPA 524.2 / 624 / 8260 (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200	Lead	THY 8015	ETEROPOBJE ETER, DTRE,		
MUN	1000	11-408	10:40	4	Am	X				×	X					×													X	×		
MW-2 MW-3			9:45	1	1	X				X	1	1				X													x	X		+
MN-3	THE STATE OF THE S		10:10	1	1	X				1	1					X													X	X		
TB		*		i	VOA	1		1	_	K	1	1		-														-	-			12019
				_	-	1		-	-	+	1	+	_	_	-	-	-		-	-			-		_	-	-	-	+			
4					-	1		4	4	-	+	-		_		-	-	_		1					-	-		-	-			
					_	1			4	1	-	-		_			-			-					_		-		-			
				_	_	1		-	1	+	-	-	-		-	-			-	-	- 1	-		-	_	-		-	+			
				_	_	1		-	-	+	-	-		-	-	-	-		-	-	-			_	-	-	-		-			
						_			4	_	1	_					_		_	_			-					_	+			
				_		_			_																				1			130000
						_							L																1			
																		1	- 20							-			1			
10															_	-	1				-											
Relinquished By:		11/4/08	Time: 1209	Rec	cived l	By:	in	a	u	/	2	-	_	IC G	E/t°	CO	NDI	TION	ENT	LAB							14	C	MN	MENTS:		
Relinquished By:		Date:	Time:	Rec	eived l	By:								D	ECH PPR	LOR	IATI	TED E CO	IN ONT	LAB	RS_	7										
Relinquished By:		Date:	Time:	Rec	cived	By:									RESI			v		s o			ETA	LS	01	HEI	R					

McCampbell Analytical, Inc.

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Prepared by: Samantha Arbuckle

	rg, CA 94565-1701 52-9262				V	VorkO	rder: 0	81108	34	ClientC	ode: CEI	Œ				
			WriteOn	✓ EDF		Excel		Fax	✓ Em	nail	HardCo	ру	Third	dParty	J-	flag
Report to:						В	ill to:					Requ	ested	TAT:	5	days
Bob Foss Conestoga- 5900 Hollis Emeryville, (510) 420-07	CA 94608	Email: cc: PO: ProjectNo:	bfoss@crawo #629100; Enc Olympic Statio	cinal Properties Fo	rmer		Cone 5900	Hollis	,				Recei Print		11/04/ 11/11/	
									Request	ed Tests ((See lege	nd be	low)			
Lab ID	Client ID		Matrix	Collection Date	H <u>ol</u> d	1	2	3	4 5	6	7	8	9	10	11	12
0811084-001	MW-1		Water	11/4/2008 10:40		Α	В	Α								
0811084-002	MW-2		Water	11/4/2008 9:45		Α	В									

Test Legend:

0811084-003

1 G-MBTEX_W	2 MBTEXOXY-8260B_W	3 PREDF REPORT	4	5	
6	7	8	9	10	
11	12				

The following SampIDs: 001A, 002A, 003A contain testgroup.

MW-3

Water

11/4/2008 10:10

Comments:

Sample Receipt Checklist

Client Name:	Conestoga-Rove	rs & Associates			Date	e and Time Receive	d: 11/4/2008	3:33:29 PM
Project Name:	#629100; Encinal	Properties Form	er Oly	mpic S	tatio Che	cklist completed ar	nd reviewed by:	Samantha Arbuckle
WorkOrder N°:	0811084	Matrix Water			Carı	rier: <u>Client Drop</u> -	<u>-In</u>	
		<u>Chain</u>	of Cu	stody (C	OC) Inforn	nation		
Chain of custody	present?		Yes	V	No 🗆			
Chain of custody	signed when relinquis	shed and received?	Yes	V	No 🗆			
Chain of custody	agrees with sample la	abels?	Yes	✓	No 🗌			
Sample IDs noted	I by Client on COC?		Yes	V	No 🗆			
Date and Time of	collection noted by Cli	ent on COC?	Yes	✓	No 🗆			
Sampler's name r	noted on COC?		Yes	✓	No 🗆			
		<u>S</u>	ample	Receipt	Information	<u>on</u>		
Custody seals int	tact on shipping contai	ner/cooler?	Yes	V	No 🗆		NA \square	
Shipping containe	er/cooler in good condi	tion?	Yes	V	No 🗆			
Samples in prope	er containers/bottles?		Yes	✓	No 🗆			
Sample containe	rs intact?		Yes	✓	No 🗆			
Sufficient sample	volume for indicated	test?	Yes	✓	No 🗌			
		Sample Prese	vatio	n and Ho	old Time (H	IT) Information		
All samples recei	ved within holding time	e?	Yes	✓	No 🗌			
Container/Temp E	Blank temperature		Coole	er Temp:	7°C		NA \square	
Water - VOA vial	ls have zero headspac	ce / no bubbles?	Yes	✓	No 🗆	No VOA vials su	ıbmitted	
Sample labels ch	necked for correct pres	servation?	Yes	✓	No 🗌			
TTLC Metal - pH	acceptable upon recei	ot (pH<2)?	Yes		No 🗆		NA 🔽	
Samples Receive	ed on Ice?		Yes	V	No 🗆			
		(Ice Type	e: WE	TICE)			
* NOTE: If the "N	lo" box is checked, se	e comments below.						
	======	======		===		=====	=====	======
Client contacted:		Date contact	ed:			Contac	ted by:	
Comments:								

	·	
Conestoga-Rovers & Associates	Client Project ID: #629100; Encinal Properties Former Olympic Station	Date Sampled: 11/04/08
5900 Hollis St, Suite A	Properties Former Orympic Station	Date Received: 11/04/08
	Client Contact: Bob Foss	Date Extracted: 11/07/08
Emeryville, CA 94608	Client P.O.:	Date Analyzed 11/07/08

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline*

Extraction method: SW5030B Analytical methods: SW8015Cm Work Order: 0811084

Extraction method: SW	75030B	Analytic	al methods: SW8015Cm Work O	rder: 081	1084
Lab ID	Client ID	Matrix	TPH(g)	DF	% SS
001A	MW-1	W	ND	1	96
002A	MW-2	W	ND	1	100
003A	MW-3	W	ND	1	103
	ting Limit for DF =1;	W	50	με	g/L
	eans not detected at or te the reporting limit	S	NA	N	A

* water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe,	,
product/oil/non-aqueous liquid samples in mg/l	

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

"When Ouality	Counts"		Telephone: 877-252-9262 Fax: 925-252-9269								
Conestoga-Rovers & Associates		oject ID: #62910		Date Sampled:	11/04/08						
5900 Hollis St, Suite A	Propertie	es Former Olympi	c Station	Date Received:	11/04/08						
5,00 110ms 54, 54mc 11	Client Co	ontact: Bob Fos	s	Date Extracted:	11/06/08						
Emeryville, CA 94608	Client P.0	O.:	11/06/08								
	Oxygen	ates and BTEX b	y GC/MS*								
Extraction Method: SW5030B	Ana	lytical Method: SW826	0B		Work Order:	0811084					
Lab ID	0811084-001B	0811084-002B	0811084-003B								
Client ID	MW-1	MW-2	MW-3		Reporting	Limit for					
Matrix	W	W	W			-1					
DF	10	1	2		S	W					
Compound	Conce	entration		ug/kg	μg/L						
tert-Amyl methyl ether (TAME)	ND<5.0	ND	ND<1.0		NA	0.5					
Benzene	ND<5.0	ND	ND<1.0		NA	0.5					
t-Butyl alcohol (TBA)	26	ND	ND<4.0		NA	2.0					
1,2-Dibromoethane (EDB)	ND<5.0	ND	ND<1.0		NA	0.5					
1,2-Dichloroethane (1,2-DCA)	ND<5.0	ND	ND<1.0		NA	0.5					
Diisopropyl ether (DIPE)	ND<5.0	ND	ND<1.0		NA	0.5					
Ethanol	ND<500	ND	ND<100		NA	50					
Ethylbenzene	ND<5.0	ND	ND<1.0		NA	0.5					
Ethyl tert-butyl ether (ETBE)	ND<5.0	ND	ND<1.0		NA	0.5					
Methyl-t-butyl ether (MTBE)	260	5.9	40		NA	0.5					
Toluene	ND<5.0	ND	ND<1.0		NA	0.5					
Xylenes	ND<5.0	ND	ND<1.0		NA	0.5					
	Surr	ogate Recoverie	s (%)								
%SS1:	100	103	100								
%SS2:	87	84	87								

^{*} water and vapor samples are reported in μ g/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in μ g/wipe.

81

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

82

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

%SS3:

Comments

Conestoga-Rovers & Associates	Client Project ID: #629100; Encinal Properties Former Olympic Station	Date Sampled: 11/04/08
5900 Hollis St, Suite A	Properties Former Orympic Station	Date Received: 11/04/08
	Client Contact: Bob Foss	Date Extracted: 11/04/08
Emeryville, CA 94608	Client P.O.:	Date Analyzed 11/06/08

Total Extractable Petroleum Hydrocarbons with Silica Gel Clean-Up*

Extraction method SW3510C/3630C Analytical methods: SW8015B Work Order: 0811084

Lab ID	Client ID	Matrix	TPH-Diesel (C10-C23)	DF	% SS
0811084-001A	MW-1	W	ND	1	112
0811084-002A	MW-2	w	80,e10/e1	1	93
0811084-003A	MW-3	W	ND	1	113

Reporting Limit for DF =1;	W	50	μg/L
ND means not detected at or above the reporting limit	S	NA	NA

^{*} water samples are reported in μ g/L, wipe samples in μ g/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in μ g/L.

e10) fuel oil; and/or e1) unmodified or weakly modified diesel is significant

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract/matrix interference.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 39405 WorkOrder: 0811084

EPA Method: SW8021B/8015Cm Extraction: SW5030B Spiked Sample ID: 08												0811091-001A		
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	ceptance Criteria (%)				
, mayte	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD		
TPH(btex) [£]	ND	60	91.1	93	1.98	87.9	91.4	3.91	70 - 130	20	70 - 130	20		
MTBE	ND	10	97.7	97	0.713	95.2	99.3	4.25	70 - 130	20	70 - 130	20		
Benzene	ND	10	93	90.7	2.53	89.9	91.3	1.65	70 - 130	20	70 - 130	20		
Toluene	ND	10	93.2	91	2.38	89.6	90.7	1.28	70 - 130	20	70 - 130	20		
Ethylbenzene	ND	10	97.4	95.2	2.33	93.4	94.9	1.62	70 - 130	20	70 - 130	20		
Xylenes	ND	30	106	106	0	103	105	1.36	70 - 130	20	70 - 130	20		
%SS:	97	10	98	94	4.38	93	92	1.55	70 - 130	20	70 - 130	20		

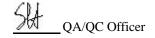
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 39405 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0811084-001A	11/04/08 10:40 AM	11/07/08	11/07/08 3:42 AM	0811084-002A	11/04/08 9:45 AM	11/07/08	11/07/08 4:12 AM
0811084-003A	11/04/08 10:10 AM	11/07/08	11/07/08 4:42 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 39406 WorkOrder: 0811084

EPA Method: SW8260B Extraction: SW5030B Spiked Sample ID: 0811158-001									001B			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%))
7 mary to	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND	10	109	104	4.29	112	111	0.161	70 - 130	30	70 - 130	30
Benzene	ND	10	113	111	1.63	117	115	1.87	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	50	105	98.4	6.59	95.1	98.5	3.59	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	10	124	120	3.63	114	112	2.08	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	10	117	112	4.32	121	120	0.971	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	10	102	100	2.08	107	106	0.832	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	10	117	112	4.19	123	123	0	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND	10	102	98.9	3.10	104	105	0.441	70 - 130	30	70 - 130	30
Toluene	ND	10	118	113	4.43	123	120	2.36	70 - 130	30	70 - 130	30
%SS1:	101	25	102	101	1.43	97	99	1.24	70 - 130	30	70 - 130	30
%SS2:	87	25	91	89	1.95	86	86	0	70 - 130	30	70 - 130	30
%SS3:	85	2.5	96	92	4.96	92	92	0	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 39406 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0811084-001B	11/04/08 10:40 A	11/06/08	11/06/08 5:08 PN	0811084-002B	11/04/08 9:45 Al	11/06/08	11/06/08 4:00 AN
0811084-003B	11/04/08 10:10 A	11/06/08	11/06/08 5:51 PN				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND cont significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QA/QC Officer

QC SUMMARY REPORT FOR SW8015B

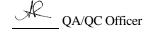
W.O. Sample Matrix: Water QC Matrix: Water BatchID: 39341 WorkOrder 0811084

EPA Method SW8015B Extraction SW3510C/3630C								Spiked Sample ID: N/A				
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	CSD Acceptance Criter		Criteria (%))
, many to	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH-Diesel (C10-C23)	N/A	1000	N/A	N/A	N/A	83.4	85.7	2.81	N/A	N/A	70 - 130	30
%SS:	N/A	2500	N/A	N/A	N/A	108	111	2.47	N/A	N/A	70 - 130	20

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 39341 SUMMARY

Lab ID		Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
08110	84-001A	11/04/08 10:40 AM	11/04/08	11/06/08 2:46 AM	0811084-002A	11/04/08 9:45 AM	11/04/08	11/06/08 8:38 PM
08110	84-003A	11/04/08 10:10 AM	11/04/08	11/06/08 5:03 AM				


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

APPENDIX C

STANDARD FIELD PROCEDURES

Conestoga-Rovers & Associates

STANDARD FIELD PROCEDURES FOR GROUNDWATER MONITORING AND SAMPLING

This document presents standard field methods for groundwater monitoring, purging and sampling, and well development. These procedures are designed to comply with Federal, State and local regulatory guidelines. Cambria's specific field procedures are summarized below.

Groundwater Elevation Monitoring

Prior to performing monitoring activities, the historical monitoring and analytical data of each monitoring well shall be reviewed to determine if any of the wells are likely to contain non-aqueous phase liquid (NAPL) and to determine the order in which the wells will be monitored (i.e. cleanest to dirtiest). Groundwater monitoring should not be performed when the potential exists for surface water to enter the well (i.e. flooding during a rainstorm).

Prior to monitoring, each well shall be opened and the well cap removed to allow water levels to stabilize and equilibrate. The condition of the well box and well cap shall be observed and recommended repairs noted. Any surface water that may have entered and flooded the well box should be evacuated prior to removing the well cap. In wells with no history of NAPL, the static water level and total well depth shall be measured to the nearest 0.01 foot with an electronic water level meter. Wells with the highest contaminant concentrations shall be measured last. In wells with a history of NAPL, the NAPL level/thickness and static water level shall be measured to the nearest 0.01 foot using an electronic interface probe. The water level meter and/or interface probe shall be thoroughly cleaned and decontaminated at the beginning of the monitoring event and between each well. Monitoring equipment shall be washed using soapy water consisting of Liqui-noxTM or AlconoxTM followed by one rinse of clean tap water and then two rinses of distilled water.

Groundwater Purging and Sampling

Prior to groundwater purging and sampling, the historical analytical data of each monitoring well shall be reviewed to determine the order in which the wells should be purged and sampled (i.e. cleanest to dirtiest). No purging or groundwater sampling shall be performed on wells with a measurable thickness of NAPL or floating NAPL globules. If a sheen is observed, the well should be purged and a groundwater sample collected only if no NAPL is present. Wells shall be purged either by hand using a disposal or PVC bailer or by using an aboveground pump (e.g. peristaltic or WatteraTM) or down-hole pump (e.g. GrundfosTM or DC Purger pump).

Groundwater wells shall be purged approximately three to ten well-casing volumes (depending on the regulatory agency requirements) or until groundwater parameters of temperature, pH, and conductivity have stabilized to within 10% for three consecutive readings. Temperature, pH, and conductivity shall be measured and recorded at least once per well casing volume removed. The total volume of groundwater removed shall be recorded along with any other notable physical characteristic such as color and odor. If required, field parameters such as turbidity, dissolved oxygen (DO), and oxidation-reduction potential (ORP) shall also be measured prior to collection of each groundwater sample.

Groundwater samples shall be collected after the well has been purged. If the well is slow to recharge, a sample shall be collected after the water column is allowed to recharge to 80% of the pre-purging static water level. If the well does not recover to 80% in 2 hours, a sample shall be collected once there is enough groundwater in the well. Groundwater samples shall be collected using clean disposable bailers or pumps (if an operating remediation system exists on site and the project manager approves of its use for sampling) and shall be decanted into clean containers supplied by the analytical laboratory. New latex gloves and disposable tubing or bailers shall be

Conestoga-Rovers & Associates

used for sampling each well. If a PVC bailer or down-hole pump is used for groundwater purging, it shall be decontaminated before purging each well by using soapy water consisting of Liqui-noxTM or AlconoxTM followed by one rinse of clean tap water and then two rinses of distilled water. If a submersible pump with non-dedicated discharge tubing is used for groundwater purging, both the inside and outside of pump and discharge tubing shall be decontaminated as described above.

Sample Handling

Except for samples that will be tested in the field, or that require special handling or preservation, samples shall be stored in coolers chilled to 4° C for shipment to the analytical laboratory. Samples shall be labeled, placed in protective foam sleeves or bubble wrap as needed, stored on crushed ice at or below 4° C, and submitted under chain-of-custody (COC) to the laboratory. The laboratory shall be notified of the sample shipment schedule and arrival time. Samples shall be shipped to the laboratory within a time frame to allow for extraction and analysis to be performed within the standard sample holding times.

Sample labels shall be filled out using indelible ink and must contain the site name; field identification number; the date, time, and location of sample collection; notation of the type of sample; identification of preservatives used; remarks; and the signature of the sampler. Field identification must be sufficient to allow easy cross-reference with the field datasheet.

All samples submitted to the laboratory shall be accompanied by a COC record to ensure adequate documentation. A copy of the COC shall be retained in the project file. Information on the COC shall consist of the project name and number; project location; sample numbers; sampler/recorder's signature; date and time of collection of each sample; sample type; analyses requested; name of person receiving the sample; and date of receipt of sample.

Laboratory-supplied trip blanks shall accompany the samples and be analyzed to check for cross-contamination, if requested by the project manager.

Waste Handling and Disposal

Groundwater extracted during sampling shall be stored onsite in sealed U.S. DOT H17 55-gallon drums and shall be labeled with the contents, date of generation, generator identification, and consultant contact. Extracted groundwater may be disposed offsite by a licensed waste handler or may be treated and discharged via an operating onsite groundwater extraction/treatment system.

H:\- MGT IR Group Info\SOPs\Groundwater Monitoring and Sampling SOP 07-2005.doc