RECEIVED

10:40 am, Oct 19, 2009

Alameda County Environmental Health

October 16, 2009

Re: 2009 Offsite Soil Vapor Gas Investigation Report

Former Shell-Branded Service Station 15275 Washington Avenue San Leandro, California

Dear Mr. Jerry Wickham:

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

Sincerely, Shell Oil Products US

Denis L. Brown Project Manager October 16, 2009 Delta Project SCA152751

SAP: 129460

Mr. Jerry Wickham Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

RE: 2009 Offsite Soil Vapor Gas Investigation Report

Former Shell-Branded Service Station 15275 Washington Avenue San Leandro, California

Dear Mr. Wickham:

On behalf of Shell Oil Products US (Shell), Delta Consultants (Delta) has prepared this 2009 Offsite Soil Vapor Gas Investigation Report for work completed at the site referenced above. Alameda County Health Care Services Agency (ACHCSA), in a letter dated March 31, 2009, requested that an additional soil vapor investigation be conducted at the site in order to further evaluate the vapor intrusion potential offsite from impacted soils. Work was completed under a work plan dated May 29, 2009 and approved by ACHCSA in a letter dated July 14, 2009 (Appendix A).

SITE DESCRIPTION AND BACKGROUND

The subject site is located on the northwest corner of the intersection of Washington Avenue and Lewelling Boulevard in San Leandro (Figure 1). The area is a mix of residential (predominantly multi-family units) and commercial properties. A mobile home park is directly adjacent the site to the west. An Arco service station is still in operation across Lewelling Boulevard at the southwest corner of the intersection, and is currently an open leaking underground fuel tank (LUFT) case. The subject site, formerly a Shell-branded service station, currently has two businesses, an automotive emission testing facility (Speedy Smog Check) and tire service center (Big O Tires). Site details are shown on Figure 2. Soil vapor samples have been collected previously on and near the site in 1988, 1997, and 2008.

SOIL VAPOR GAS INVESTIGATION

The following sections describe work that was completed during the soil vapor gas investigation conducted on September 23 and 24, 2009. Delta collected soil vapor samples at six locations, P-24 through P-29, indicated on Figure 2. Soil gas samples were collected from three discrete depths at each location, 3 feet below ground surface (bgs), 5 feet bgs, and 8 feet bgs. The locations were selected in order to meet the ACHCSA request to review the site assessment data and propose additional soil vapor sampling as necessary to identify the extent of potential offsite vapor intrusion concerns. All samples were collected as per the approved work plan and under Department of Toxic Substance Control (DTSC) guidelines.

Prefield Activities

Delta obtained the necessary drilling and installation permits from the Alameda County Public Works Agency (Appendix B). Delta marked the location of each proposed soil vapor boring and contacted Underground Service Alert a minimum of 48 hours prior to drilling. In addition, a utility locating contractor was utilized to perform a geophysical survey of the proposed boring locations.

Boring Advancement and Soil Sampling Activities

On September 8 and 9, 2009, air knife equipment operated by RSI Drilling was used to clear the sample boreholes in order to minimize the possibility of encountering unidentified underground utilities or hazards during vapor probe advancement. The boreholes were cleared to depths of 3, 5, and 8 feet bgs, and then backfilled with the soil cuttings. The sample boreholes were given two weeks to equilibrate in order to provide representative soil vapor conditions for sampling.

On September 23 and 24, 2009, Geoprobe drilling equipment operated by Gregg Drilling & Testing, Inc. (Gregg) was used to advance the soil vapor probe boreholes, which were 3-inches in diameter. A soil vapor probe was advanced at each boring location to depths of 3, 5, and 8 feet bgs using the Geoprobe equipment.

Soil Vapor Gas Sampling

Soil vapor gas samples were collected on September 23 and 24, 2009. During sample collection, a Tedlar® bag was connected to a pump set at a flow rate of approximately 200 milliliters per minute, which was connected to Teflon tubing. The Teflon tubing was attached to the probe tip before advancing the tip to depth in order to minimize leaks.

Vapor Purging

Prior to sample collection, the pump was turned on and three casing volumes of air from the sample tubing (dead air volume) was purged in order to remove any stagnant, non-representative air that existed within the sample tubing and equipment with minimal subsurface air influence, in accordance with DTSC guidelines. The purge time for one casing volume was calculated based on the length and diameter of the tubing and the flow rate, preset by the laboratory at an average of 200 milliliters/minute. Upon completion of purging, the pump was turned off.

Leak Test

Delta field staff continually applied a vapor leak tracer compound (1,1-difluoroethane [Dust Off[®]) during sample collection in order to evaluate the integrity of the system. Dust Off[®] was sprayed in the vicinity of all tubing joints within the sampling system, and an extension tube was placed on the spray-can in order to apply the tracer gas into the void space of the probe. Laboratory analytical results for 1,1-difluoroethane were used to determine the air-tightness of the sampling system. Tracer gas results are included in Table 1.

Soil Vapor Gas Sample Collection

Following purging and leak detection, sample collection began by attaching the Tedlar® bag to the vacuum pump. After turning on the pump, the soil gas vapors were collected . When the Tedlar® bag was filled to capacity, the pump was turned off and the valve to the Tedlar® bag was closed. Approximately 1 liter of soil gas vapor was collected from each soil vapor probe location.

Soil Vapor Gas Analytical Results

Tedlar® sample bags were submitted within 24 hours of sample collection to Calscience Environmental Laboratories, Inc., a California state-certified laboratory, under proper chain-of-custody documentation. Samples were analyzed for total petroleum hydrocarbon calculated as gasoline (TPH-g) by EPA Method TO-3M and

for benzene, toluene, ethylbenzene and total xylenes (BTEX compounds), methyl tert-butyl ether (MTBE), tert-butyl alcohol (TBA) and the leak test compound 1,1-difluoroethane by EPA Method TO-15M. Analyses for carbon dioxide and oxygen were omitted from the chain-of-custody in error, so results are not available. Vapor results from the latest sampling event were compared to Table E-2, shallow soil gas screening levels for evaluation of potential vapor intrusion concerns, from the Interim Final *Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater*, issued November 2007 by the California Regional Water Quality Control Board, San Francisco Bay Region. The certified laboratory reports with chain-of-custody documentation are included as Appendix C. Historical soil vapor analytical results are included as Appendix D and Table E-2 is included as Appendix E.

Soil vapor gas results included the following:

- Petroleum hydrocarbons were detected in fifteen soil vapor gas samples. TPH-g was detected at concentrations ranging from 46,000 micrograms per cubic meter (μg/m³) to 2,900,000 μg/m³ (Figure 3). All reported concentrations were above both the lowest residential and commercial environmental screening levels (ESLs) of 10,000 and 29,000 μg/m³, respectively. 2008 soil vapor concentrations collected in 2008 ranged from 450 to 9,000,000 μg/m³ and historical concentrations from the initial soil vapor sampling events in 1988 and 1997 ranged from 660 to 130,000,000 μg/m³.
- Benzene was detected in four soil vapor gas samples at concentrations ranging from 1.7 to 1.9 μg/m³ (Figure 4); all other samples reported no detectable concentration at detection limits ranging from 1.6 to 64 μg/m³. No benzene sample results exceeded the lowest residential and commercial ESLs of 84 and 280 μg/m³, respectively. 2008 soil vapor concentrations for benzene collected in 2008 ranged from not detected (ND) to 12,000 μg/m³ and historical concentrations of benzene from the initial soil vapor sampling events in 1988 and 1997 ranged from ND at a reporting limit of 6.7 μg/m³ to 750,000 μg/m³. Toluene was reported in two samples at concentrations of 21 and 25 μg/m³ and no detectable concentrations of ethylbenzene or total xylenes were reported.
- MTBE was not reported in any sample above the detection limit, which ranged from 7.2 to 350 μg/m³. 2008 soil vapor sample concentrations for MTBE were all reported as ND ranging from reporting limits of 2.8 to 600 μg/m³ and historical concentrations of MTBE from the initial soil vapor sampling events in 1988 and 1997 ranged from ND at a reporting limit of 7.5 μg/m³ to 700,000 μg/m³.
- The tracer gas 1,1-difluoroethane was detected in all soil vapor gas samples at concentrations ranging from 28 μg/m³ to 4,800,000 μg/m³. In general, concentrations exceeding 10,000 μg/m³ are considered to indicate a potential concern with sampling integrity; all but 3 samples reported concentrations of concern.

Soil vapor gas analytical results for all compounds are summarized in Table 1.

CONCLUSIONS AND RECOMMENDATIONS

Soil vapor samples collected from depths of 3, 5, and 8 feet bgs at each sample location were collected to evaluate the potential for indoor air intrusion from additional shallow offsite soils. TPH-g was detected in fifteen of the eighteen samples and benzene was detected in four samples; MTBE was not detected in any samples. Mean concentrations were generally lower than previous samples collected nearer to the source material; however, it is likely the majority of samples may have reported lower concentrations than would be considered representative due to possible leaks in the sampling system setup or the introduction of trace amounts of 1,1-difluoroethane (tracer gas) into the sample connections during setup. The samples also show variation in vertical profile; some samples demonstrated attenuation at depth (P-25 and P-29); samples collected at P-28 and P-24 showed the highest values at depths of 3 feet and 5 feet, respectively, but didn't have a linear vertical profile. One sample reported a reverse attenuation trend with the highest concentration at 8 feet (P-26). Sample P-27 reported similar concentrations at 3 feet and 8 feet, with a lower concentration at 5 feet. Because of the ambiguity in sample results, Delta recommends a repeated sampling event with the following changes:

- Install soil vapor implants (three nested in each borehole at depths of 3, 5 and 8 feet) to allow for subsequent sampling to determine if attenuation is occurring.
- Install nested soil vapor implants (SVG-1 through SVG-9) in the vicinity of historic high concentrations of soil vapor and groundwater, with coverage of both onsite and offsite locations. Proposed sample locations are included on Figure 5. An effort will be made to locate the samples so they are accessible but not in high-traffic areas, and provide good representative samples. The nested probes will be placed in well boxes to protect them.
- Initiate field work to install new probes in the proposed sample locations within 45 days of approval of this recommendation; soil vapor probes will be left in place and sampled following stabilization. A second sampling event is not scheduled at this time and may be determined based on an eventual schedule for additional site activities. A guideline for soil gas collection using Tedlar® bags is included as Appendix F.

A soil vapor extraction pilot test was completed at the site and a report is currently in progress, to be issued by mid-November. At that time, Delta will make a recommendation for active remedial measures to address persistent soil vapor gas concerns at the site and adjacent trailer park. Following remediation, re-sampling for soil vapor is recommended to determine the effectiveness of the suggested remedial measures.

REMARKS

The recommendations contained in this document represent Delta's professional opinions based upon the currently available information and are arrived at in accordance with currently acceptable professional standards. This document is based upon a specific scope of work requested by the client. The Contract between Delta and its client outlines the scope of work, and only those tasks specifically authorized by that contract or outlined in this document were performed. This document is intended only for the use of Delta's Client and anyone else specifically listed on this document. Delta will not and cannot be liable for unauthorized reliance by any other third party. Other than as contained in this paragraph, Delta makes no express or implied warranty as to the contents of this document.

If you have any questions or comments regarding this report, please contact Suzanne McClurkin-Nelson (Delta) at (408) 826-1875 or Denis Brown (Shell) at (707) 865-0251.

Sincerely,

Delta Consultants, Inc.

Abhik Dutta

Senior Staff Geologist

Suzanne McClurkin-Nelson Senior-Project Manager

in Millel Ful

Regina Bussard, P.G. Senior Project Specialist

cc: Denis Brown, Shell Oil Products US, Carson

Mike Bakaldin, San Leandro Fire Department, San Leandro

BUSSARD No. 8288

OF CALTED

Salel Enterprises c/o Foothill Hardware, Oakland

ATTACHMENTS:

Table 1 - Soil Vapor Sampling Analytical Data

Figure 1 – Site Location Map

Figure 2 - Site Layout with Soil Vapor Sample Locations

Figure 3 – TPH-g Concentration Map

Figure 4 – Benzene Concentration Map

Figure 5 – Proposed Soil Vapor Gas Sample Probe Locations

Appendix A - Alameda County Health Care Services Agency Letter

Appendix B - Alameda County Public Works Well Permit

Appendix C - Certified Analytical Reports with Chain-of-Custody Documentation

Appendix D – Historical Soil Vapor Data

Appendix E – Table E-2 - Shallow Soil Gas Screening Levels for Evaluation of Potential Vapor Intrusion Concerns

Appendix F - Guidelines for Soil Gas Collection in Tedlar® Bags

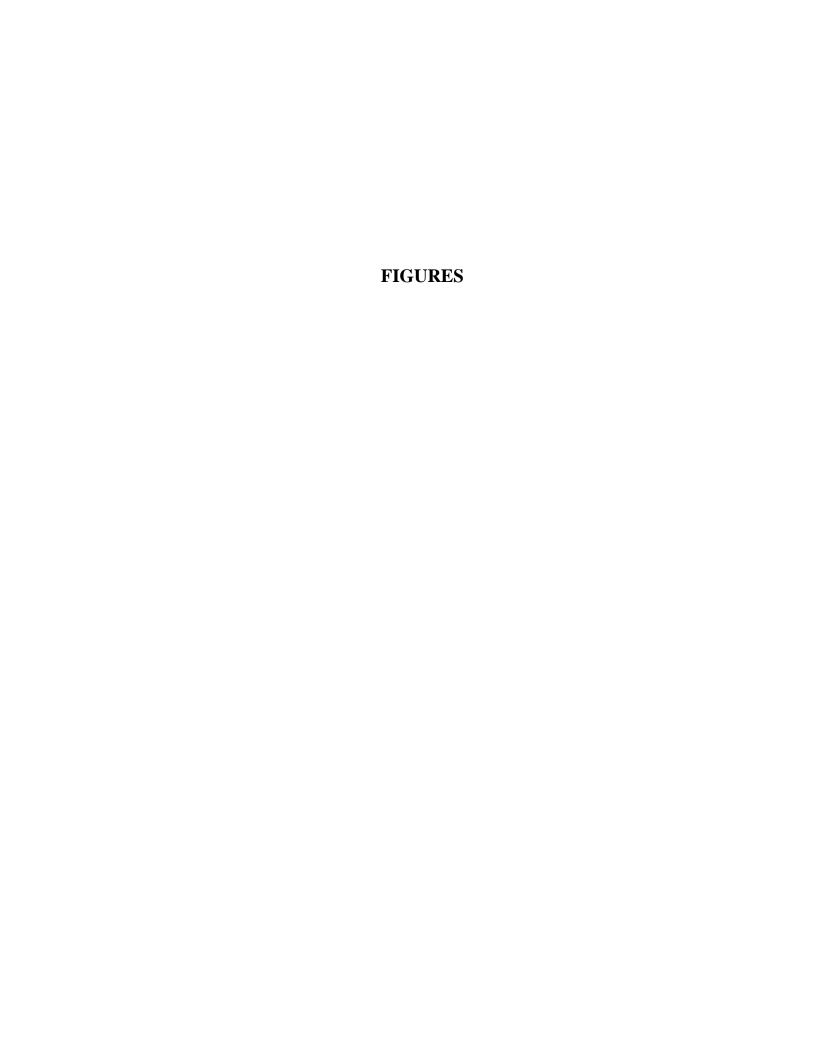
Table 1 Soil Vapor Sampling Analytical Data

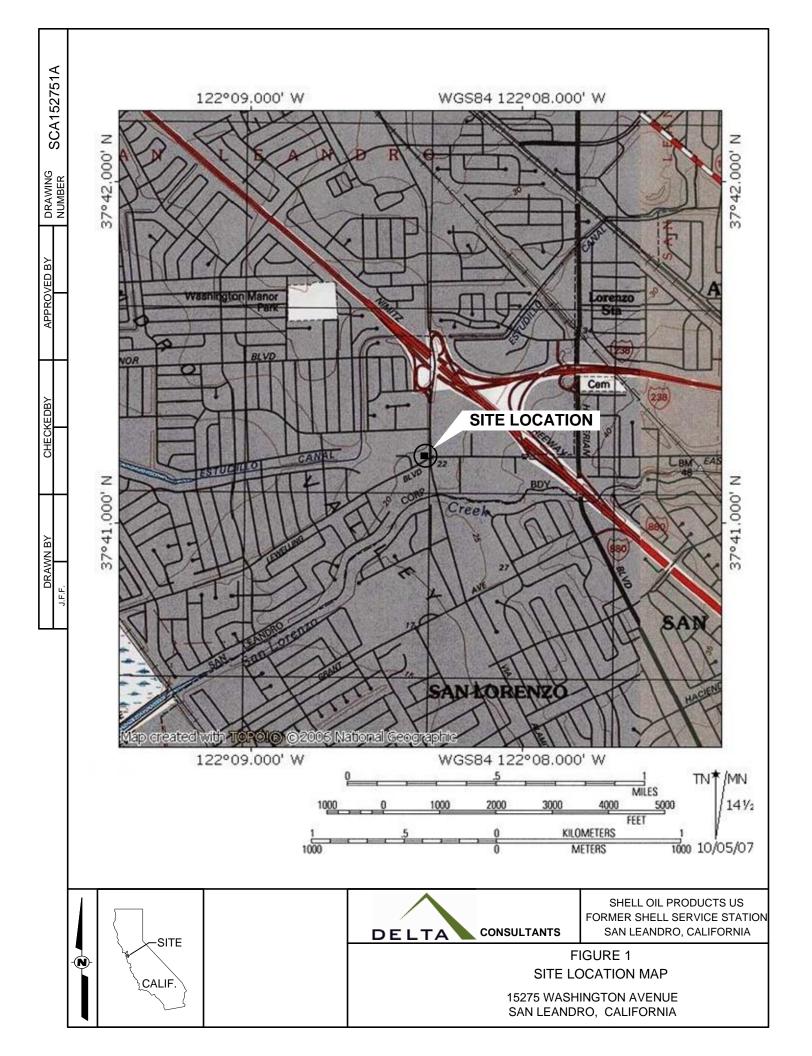
Former Shell Service Station 15275 Washington Avenue San Leandro, California

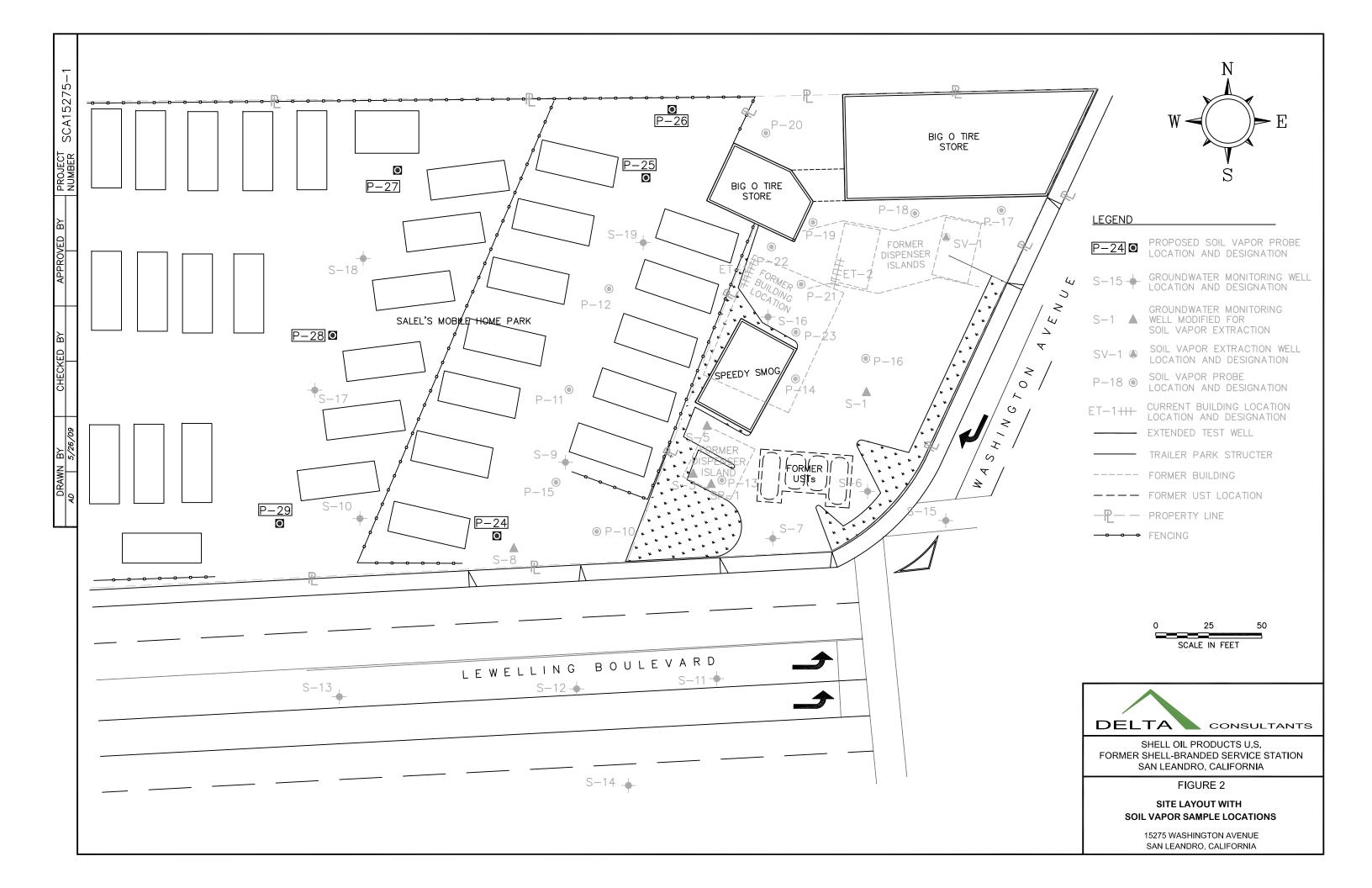
Sample Location (depth, feet)	Date	TPH-g (µg/m³)	Benzene (µg/m³)	Toluene (µg/m³)	Ethyl- benzene (µg/m³)	Total Xylenes (µg/m³)	MTBE (µg/m³)	ΤΒΑ (μg/m³)	1,1-difluoro- ethane (µg/m³) ^a
P-24 (3)	09/23/09	160,000	1.9	25	ND<2.2	ND<8.7	ND<7.2	ND<15	570,000
P-24 (5)	09/23/09	340,000	ND<3.2	ND<38	ND<4.3	ND<17	ND<14	ND<30	1,000,000
P-24 (8)	09/23/09	48,000	1.7	ND<19	ND<2.2	ND<8.7	ND<7.2	ND<15	3,900,000
P-25 (3)	09/23/09	2,900,000	ND<64	ND<750	ND<87	ND<350	ND<7.2	ND<610	2,600,000
P-25 (5)	09/23/09	ND<5,700	ND<1.6	ND<19	ND<2.2	ND<8.7	ND<19	ND<15	4,300
P-25 (8)	09/23/09	ND<5,700	ND<1.6	ND<19	ND<2.2	ND<8.7	ND<7.2	ND<15	210
P-26 (3)	09/23/09	ND<5,700	1.8	21	ND<2.2	ND<8.7	ND<7.2	ND<15	28
P-26 (5)	09/23/09	610,000	ND<6.4	ND<75	ND<8.7	ND<35	ND<29	ND<61	1,300,000
P-26 (8)	09/23/09	2,600,000	ND<64	ND<750	ND<87	ND<350	ND<350	ND<610	4,800,000
P-27 (3)	09/24/09	410,000	ND<4.0	ND<47	ND<5.4	ND<22	ND<18	ND<38	710,000
P-27 (5)	09/24/09	120,000	ND<1.6	ND<19	ND<2.2	ND<8.7	ND<7.2	ND<15	14,000
P-27 (8)	09/24/09	570,000	ND<4.0	ND<47	ND<5.4	ND<22	ND<18	ND<38	860,000
P-28 (3)	09/24/09	1,200,000	ND<8.0	ND<94	ND<11	ND<43	ND<36	ND<76	2,200,000
P-28 (5)	09/24/09	58,000	1.8	ND<19	ND<2.2	ND<8.7	ND<7.2	ND<15	11,000
P-28 (8) b	09/24/09	270,000	ND<3.2	ND<38	ND<4.3	ND<17	ND<14	ND<30	42,000
P-29 (3)	09/24/09		ND<8.0	ND<94	ND<11	ND<43	ND<36	ND<76	2,000,000
P-29 (5)	09/24/09		ND<6.4	ND<75	ND<8.7	ND<35	ND<29	ND<61	1,300,000
P-29 (8) b	09/24/09		ND<1.6	ND<19	ND<2.2	ND<8.7	ND<7.2	ND<15	83,000

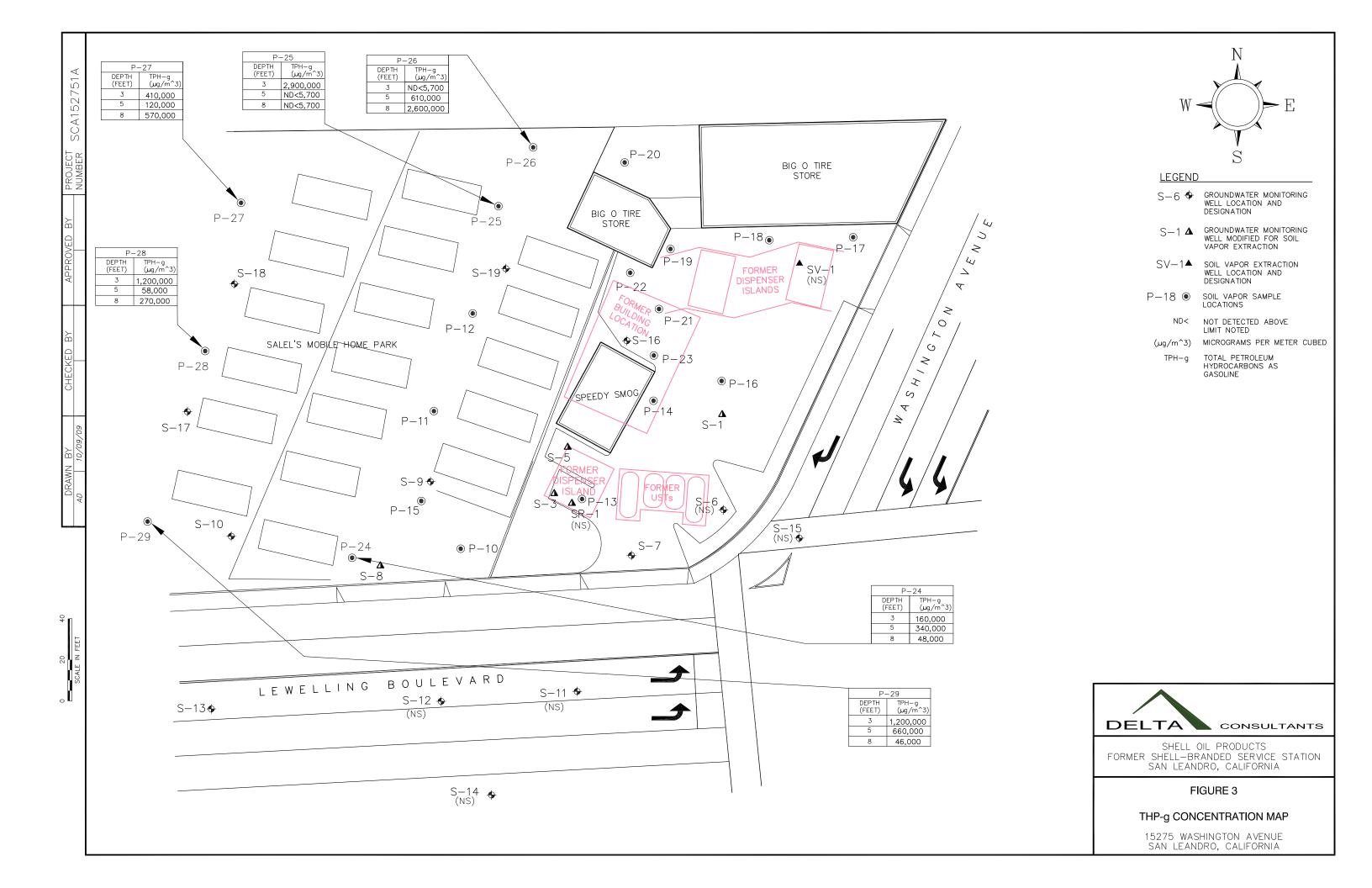
Abbreviations and Notes:

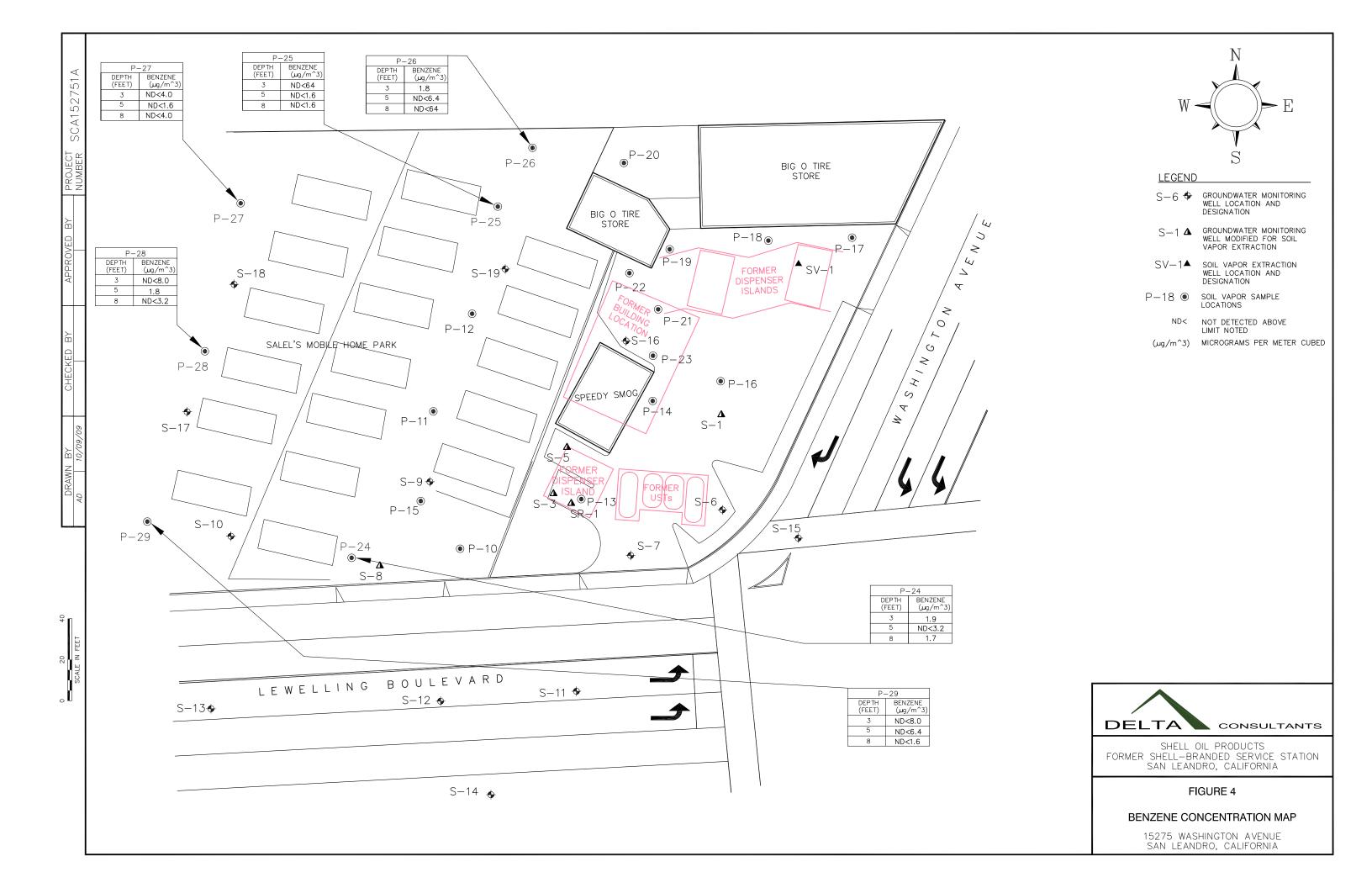
TPH-g - Total petroleum hydrocarbons as gasoline

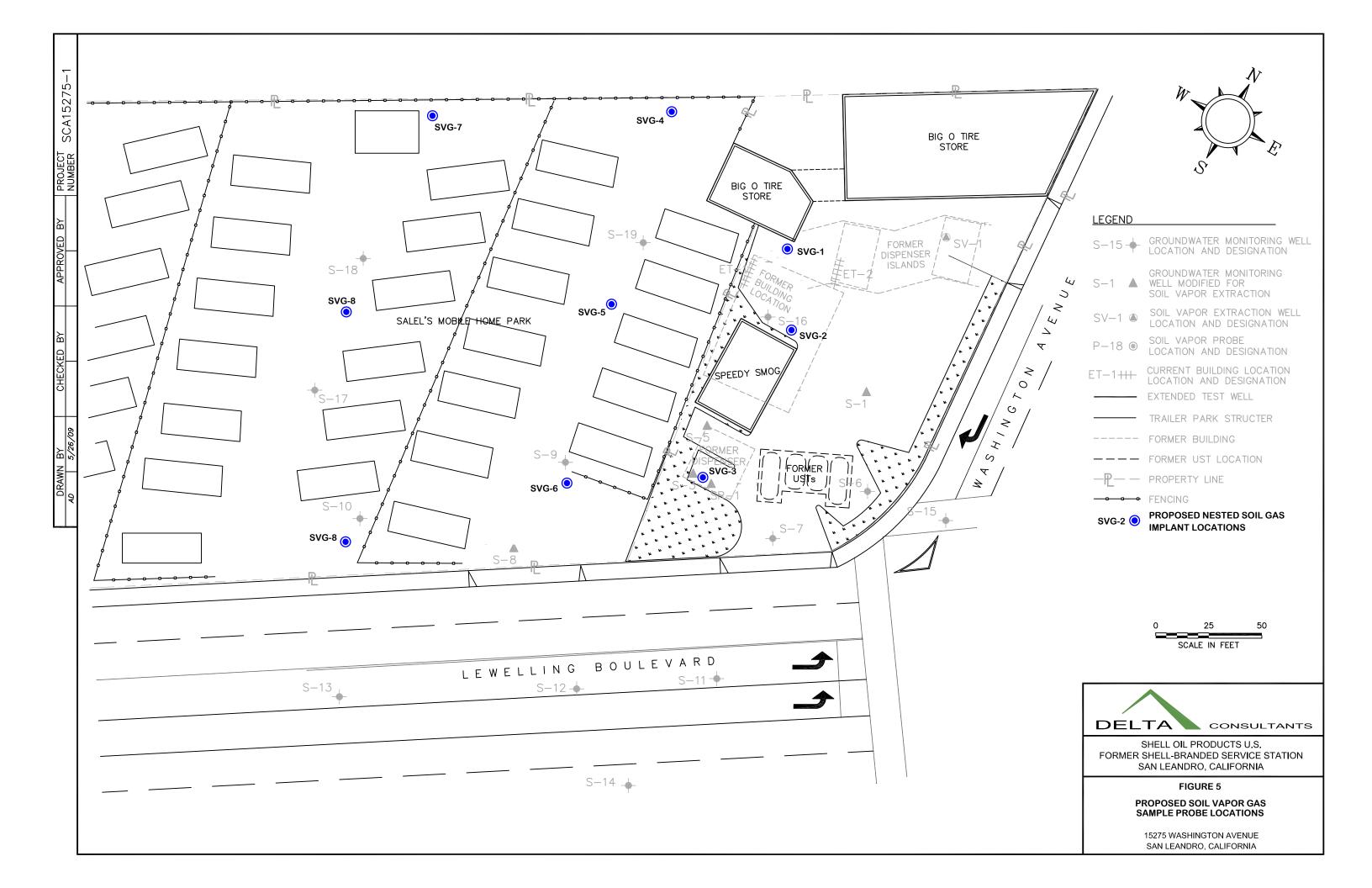

MTBE - Methyl-tert butyl ether


TBA - Tert-butyl alcohol


(µg/m³) - micrograms per cubic meter


ND - Not detected above shown detection limit


- a. Concentrations exceeding 10,000 $\mu\text{g/m}^3$ generally indicate the presence of a leak
- b. Dilution analysis was performed outside the recommended holding time for tracer gas compound (1,1-diflurorethane)



APPENDIX A ALAMEDA COUNTY HEALTH CARE SERVICES AGENCY LETTER

ALAMEDA COUNTY HEALTH CARE SERVICES AGENCY

DAVID J. KEARS, Agency Director

DECLIVED JUL 172009 BY: 4401.CO..... ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-93

July 14, 2009

Mr. Denis Brown Shell Oil Products US 20945 S. Wilmington Ave. Carson, CA 90810-1039

Mr. Frank Salel Salel Enterprises P.O. Box 5099 Oakland, CA 94605

Subject: Fuel Leak Case No. RO0000372 and Geotracker Global ID T0600101226, Shell#129460, 15275 Washington Avenue, San Leandro, CA 94579 – Work Plan Approval

Dear Mr. Brown and Mr. Salel:

Alameda County Environmental Health (ACEH) staff has reviewed the fuel leak case file for the above-referenced site including the work plans entitled, "Revised Groundwater Sampling Work Plan, Former Shell-Branded Service Station, 15275 Washington Avenue, San Leandro, California," dated May 21, 2009, "Revised Soil Vapor Extraction Pilot Test Work Plan, Former Shell-Branded Service Station, 15275 Washington Avenue, San Leandro, California," dated May 21, 2009 and. "Additional Soil Vapor Survey Work Plan, Former Shell-Branded Service Station, 15275 Washington Avenue, San Leandro, California," dated May 29, 2009 The work plans were prepared on Shell's behalf by Delta Environmental.

We request that you address the following technical comments, perform the proposed work, and send us the reports described below.

TECHNICAL COMMENTS

- Proposed Purge and No Purge Sampling. The proposal in the "Revised Groundwater Sampling Work Plan," to conduct both purge and no purge sampling in selected wells to assure that representative samples are being collected is acceptable. Please present the results of the purge and no purge sampling in the Semi-Annual Groundwater Monitoring Report – Third Quarter 2009 requested below.
- Soil Vapor Extraction (SVE) Pilot Test. The proposed scope of work in the "Revised Soil Vapor Extraction Pilot Test Work Plan," dated May 29, 2009 is acceptable and may be implemented as proposed. Please present results from the pilot test in the SVE Pilot Test Report requested below.

Denis Brown Frank Salei RO0000088 July 14, 2009 Page 2

 Additional Soil Vapor Sampling. The proposed scope of work in the "Additional Soil Vapor Survey Work Plan," dated May 29, 2009 is acceptable and may be implemented as proposed. Please present results from the pilot test in the SVE Pilot Test Report requested below.

TECHNICAL REPORT REQUEST

Please submit technical reports to Alameda County Environmental Health (Attention: Jerry Wickham), according to the following schedule:

- October 16, 2009 Soil Vapor Sampling Report
- October 31, 2009 Semi-Annual Groundwater Monitoring Report Third Quarter 2009
- November 19, 2009 SVE Pilot Test Report

These reports are being requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request.

ELECTRONIC SUBMITTAL OF REPORTS

ACEH's Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of reports in electronic form. The electronic copy replaces paper copies and is expected to be used for all public information requests, regulatory review, and compliance/enforcement activities. Instructions for submission of electronic documents to the Alameda County Environmental Cleanup Oversight Program FTP site are provided on the attached "Electronic Report Upload Instructions." Submission of reports to the Alameda County FTP site is an addition to existing requirements for electronic submittal of information to the State Water Resources Control Board (SWRCB) Geotracker website. In September 2004, the SWRCB adopted regulations that require electronic submittal of information for all groundwater cleanup programs. For several years, responsible parties for cleanup of leaks from underground storage tanks (USTs) have been required to submit groundwater analytical data, surveyed locations of monitoring wells, and other data to the Geotracker database over the Internet. Beginning July 1, 2005, these same reporting requirements were added to Spills, Leaks, Investigations, and Cleanup (SLIC) sites. Beginning July 1, 2005, electronic submittal of a complete copy of all reports for all sites is required in Geotracker (in PDF format). Please visit the SWRCB website for more information on these requirements (http://www.swrcb.ca.gov/ust/cleanup/electronic reporting).

PERJURY STATEMENT

All work plans, technical reports, or technical documents submitted to ACEH must be accompanied by a cover letter from the responsible party that states, at a minimum, the following: "I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge." This letter must be signed by an officer or legally authorized representative of your company. Please include a cover

Denis Brown Frank Salel RO0000088 July 14, 2009 Page 3

letter satisfying these requirements with all future reports and technical documents submitted for this fuel leak case.

PROFESSIONAL CERTIFICATION & CONCLUSIONS/RECOMMENDATIONS

The California Business and Professions Code (Sections 6735, 6835, and 7835.1) requires that work plans and technical or implementation reports containing geologic or engineering evaluations and/or judgments be performed under the direction of an appropriately registered or certified professional. For your submittal to be considered a valid technical report, you are to present site specific data, data interpretations, and recommendations prepared by an appropriately licensed professional and include the professional registration stamp, signature, and statement of professional certification. Please ensure all that all technical reports submitted for this fuel leak case meet this requirement.

UNDERGROUND STORAGE TANK CLEANUP FUND

Please note that delays in investigation, later reports, or enforcement actions may result in your becoming ineligible to receive grant money from the state's Underground Storage Tank Cleanup Fund (Senate Bill 2004) to reimburse you for the cost of cleanup.

AGENCY OVERSIGHT

If it appears as though significant delays are occurring or reports are not submitted as requested, we will consider referring your case to the Regional Board or other appropriate agency, including the County District Attorney, for possible enforcement actions. California Health and Safety Code, Section 25299.76 authorizes enforcement including administrative action or monetary penalties of up to \$10,000 per day for each day of violation.

If you have any questions, please call me at (510) 567-6791 or send me an electronic mail message at jerry.wickham@acgov.org.

Sincerely,

Derry Wickham, California PG 3766, CEG 1177, and CHG 297

Senior Hazardous Materials Specialist

Enclosure: ACEH Electronic Report Upload (ftp) Instructions

cc: Suzanne McClurkin-Nelson

Denis Brown Frank Salel RO0000088 July 14, 2009 Page 4

> Delta Environmental 312 Piercy Road San Jose, CA 95138

> Regina Bussard Delta Environmental 312 Piercy Road San Jose, CA 95138

Donna Drogos, ACEH Jerry Wickham, ACEH File

Alameda County Environmental Cleanup Oversight Programs (LOP and SLIC)

ISSUE DATE: July 5, 2005

REVISION DATE: March 27, 2009

PREVIOUS REVISIONS: December 16, 2005,

October 31, 2005

SECTION: Miscellaneous Administrative Topics & Procedures

SUBJECT: Electronic Report Upload (ftp) Instructions

The Alameda County Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of all reports in electronic form to the county's ftp site. Paper copies of reports will no longer be accepted. The electronic copy replaces the paper copy and will be used for all public information requests, regulatory review, and compliance/enforcement activities.

REQUIREMENTS

- Entire report including cover letter must be submitted to the ftp site as a single portable document format (PDF) with no password protection. (Please do not submit reports as attachments to electronic mail.)
- It is preferable that reports be converted to PDF format from their original format, (e.g., Microsoft Word) rather than scanned.
- Signature pages and perjury statements must be included and have either original or electronic signature.
- Do not password protect the document. Once indexed and inserted into the correct electronic case file, the
 document will be secured in compliance with the County's current security standards and a password.
 Documents with password protection will not be accepted.
- Each page in the PDF document should be rotated in the direction that will make it easiest to read on a computer monitor.
- Reports must be named and saved using the following naming convention:

RO#_Report Name_Year-Month-Date (e.g., RO#5555_WorkPlan_2005-06-14)

Additional Recommendations

A separate copy of the tables in the document should be submitted by e-mail to your Caseworker in Excel format. These are for use by assigned Caseworker only.

Submission Instructions

- 1) Obtain User Name and Password:
 - a) Contact the Alameda County Environmental Health Department to obtain a User Name and Password to upload files to the ftp site.
 - i) Send an e-mail to dehloptoxic@acgov.org

Or

- Send a fax on company letterhead to (510) 337-9335, to the attention of My Le Huynh.
- b) In the subject line of your request, be sure to include "ftp PASSWORD REQUEST" and in the body of your request, include the Contact Information, Site Addresses, and the Case Numbers (RO# available in Geotracker) you will be posting for.
- 2) Upload Files to the ftp Site
 - a) Using Internet Explorer (IE4+), go to ftp://alcoftp1.acgov.org
 - (i) Note: Netscape and Firefox browsers will not open the FTP site.
 - b) Click on File, then on Login As.
 - c) Enter your User Name and Password. (Note: Both are Case Sensitive.)
 - d) Open "My Computer" on your computer and navigate to the file(s) you wish to upload to the ftp site.
 - e) With both "My Computer" and the ftp site open in separate windows, drag and drop the file(s) from "My Computer" to the ftp window.
- 3) Send E-mail Notifications to the Environmental Cleanup Oversight Programs
 - a) Send email to dehloptoxic@acgov.org notify us that you have placed a report on our ftp site.
 - b) Copy your Caseworker on the e-mail. Your Caseworker's e-mail address is the entire first name then a period and entire last name @acgov.org. (e.g., firstname.lastname@acgov.org)
 - c) The subject line of the e-mail must start with the RO# followed by Report Upload. (e.g., Subject: RO1234 Report Upload) If site is a new case without an RO# use the street address instead.
 - d) If your document meets the above requirements and you follow the submission instructions, you will receive a notification by email indicating that your document was successfully uploaded to the ftp site.

APPENDIX B ALAMEDA COUNTY PUBLIC WORKS WELL PERMIT

Alameda County Public Works Agency - Water Resources Well Permit

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 09/24/2009 By jamesy Permit Numbers: W2009-0894
Permits Valid from 09/23/2009 to 09/24/2009

Application Id: 1251506410701 City of Project Site:San Leandro

Site Location: 747 Lewelling Blvd.

San Leandro

Project Start Date: 09/23/2009 Completion Date:09/24/2009

Assigned Inspector: Contact James Yoo at (510) 670-6633 or jamesy@acpwa.org

Applicant: Delta Consultants - Abhik Dutta Phone: 408-826-1869

312 Piercy Rd, San Jose, CA 95138

Property Owner: Frank Salel

Property Owner: Frank Salel Phone: -- 871 38th Ave, Santa Cruz, CA 95062

Client: Abhik Dutta Phone: 408-826-1869

312 Piercy Rd, San Jose, CA 95138

Contact: Abhik Dutta Phone: --

Cell: --

Total Due: \$265.00
Receipt Number: WR2009-0353 Total Amount Paid: \$265.00

Payer Name : Regigna Bussard Paid By: MC PAID IN FULL

Works Requesting Permits:

Borehole(s) for Geo Probes-Sampling 24 to 72 hours only - 18 Boreholes

Driller: GREGG Drilling - Lic #: 485165 - Method: DP Work Total: \$265.00

Specifications

Permit	Issued Dt	Expire Dt	#	Hole Diam	Max Depth
Number			Boreholes		
W2009-	09/24/2009	12/22/2009	18	4.00 in.	8.00 ft
0894					

Specific Work Permit Conditions

- 1. Backfill bore hole by tremie with cement grout or cement grout/sand mixture. Upper two-three feet replaced in kind or with compacted cuttings. All cuttings remaining or unused shall be containerized and hauled off site. The containers shall be clearly labeled to the ownership of the container and labeled hazardous or non-hazardous.
- 2. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time.
- 3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.
- 4. Applicant shall contact James Yoo for an inspection time at 510-670-6633 at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.
- 5. Permitte, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled,

Alameda County Public Works Agency - Water Resources Well Permit

properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.

- 6. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.
- 7. Prior to any drilling activities onto any public right-of-ways, it shall be the applicants responsibilities to contact and coordinate a Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits required for that City or to the County and follow all City or County Ordinances. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County a Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.
- 8. Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this permit application. Boreholes shall not be converted to monitoring wells, without a permit application process.

APPENDIX C

CERTIFIED ANALYTICAL REPORTS WITH CHAIN-OF-CUSTODY DOCUMENTATION

October 06, 2009

Sunzanne McClukin Delta Environmental Consultants, Inc. 312 Piercy Rd. San Jose, CA 95138-1401

Subject: Calscience Work Order No.: 09-09-1804

Client Reference: 15275 Washington, San Leandro, CA

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 9/24/2009 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Calscience Environmental


Philip Samelle for

Laboratories, Inc.

Xuan H. Dang Project Manager

CA-ELAP ID: 1230 · NELAP ID: 03220CA · CSDLAC ID: 10109 · SCAQMD ID: 93LA0830

7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

Delta Environmental Consultants, Inc. 312 Piercy Rd.

San Jose, CA 95138-1401

Date Received: Work Order No: Preparation:

09-09-1804 N/A EPA TO-3M

09/24/09

Method: EPA TO-3M

Proiect:	15275	Washington,	San	Leandro.	CA
1 101001.	10210	V V GOI III I GLOI I,	Oui	Louisaio,	· ·

Page 1 of 2

Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument I	Date Prepared	Date/Time Analyzed	QC Batch ID
P-24 (3)		09-09-1804-1-A	09/23/09 10:20	Air	GC 39	N/A	09/24/09 13:52	090924L02
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	43	1.5	1		ppm (v/v)			
P-24 (5)		09-09-1804-2-A	09/23/09 10:25	Air	GC 39	N/A	09/24/09 14:10	090924L02
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	89	1.5	1		ppm (v/v)			
P-24 (8)		09-09-1804-3-A	09/23/09 10:30	Air	GC 39	N/A	09/24/09 14:19	090924L02
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	13	1.5	1		ppm (v/v)			
P-25 (3)		09-09-1804-4-A	09/23/09 12:10	Air	GC 39	N/A	09/24/09 15:28	090924L02
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	770	3.8	2.5		ppm (v/v)			
P-25 (5)		09-09-1804-5-A	09/23/09 12:15	Air	GC 39	N/A	09/24/09 14:37	090924L02
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	ND	1.5	1		ppm (v/v)			
P-25 (8)		09-09-1804-6-A	09/23/09 12:20	Air	GC 39	N/A	09/24/09 16:12	090924L02
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	ND	1.5	1		ppm (v/v)			

RL - Reporting Limit

DF - Dilution Factor ,

Qual - Qualifiers

Delta Environmental Consultants, Inc. 312 Piercy Rd.

San Jose, CA 95138-1401

Date Received: Work Order No: Preparation: 09/24/09 09-09-1804 N/A

Method: EPA TO-3M

Project: 15275 Washington, San Leandro, CA

Page 2 of 2

Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
P-26 (3)		09-09-1804-7-A	09/23/09 14:05	Air	GC 39	N/A	09/24/09 14:57	090924L02
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	ND	1.5	1		ppm (v/v))		
P-26 (5)		09-09-1804-8-A	09/23/09 14:10	Air	GC 39	N/A	09/24/09 15:06	090924L02
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	160	1.5	1		ppm (v/v))		
P-26 (8)		09-09-1804-9-A	09/23/09 14:15	Air	GC 39	N/A	09/24/09 15:39	090924L02
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	690	3.8	2.5		ppm (v/v))		
Method Blank		098-01-005-1,965	N/A	Air	GC 39	N/A	09/24/09 09:30	090924L02
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	ND	1.5	1		ppm (v/v))		

Delta Environmental Consultants, Inc.

Date Received:

09/24/09
312 Piercy Rd.

Work Order No:

09-09-1804

Preparation:

N/A

Method:

EPA TO-15M

Units: ppm (v/v)

Project: 15275 Washington, San Leandro, CA

Page	1	of	

Project. 15275 Washin	gion, San	Leanur	J, CA							ray	JE 1 01 4
Client Sample Number				ab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Ti I Analyz		QC Batch ID
P-24 (3)			09-09-	1804-1-A	09/23/09 10:20	Air	GC/MS K	N/A	09/25/ 13:2		090925L01
Comment(s): -The method has b	een modified to	o use Tedla	ır bags i	nstead of S	Summa Canisters	S.					
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>			Result	<u>RL</u>	DF	Qual
Benzene	0.0006	0.00050	1		Tert-Butyl Alco	hol (TBA)		ND	0.0050	1	
Ethylbenzene	ND	0.00050	1		Toluene	, ,		0.0066	0.0050	1	
Methyl-t-Butyl Ether (MTBE)	ND	0.0020	1		1,1-Difluoroeth	ane		210	8.0	400	0
Xylenes (total)	ND	0.0020	1								
Surrogates:	REC (%)	Control Limits		<u>Qual</u>	Surrogates:		<u>1</u>	REC (%)	Control Limits		<u>Qual</u>
1,4-Bromofluorobenzene	102	57-129			1,2-Dichloroeth	ane-d4		102	47-137		
Toluene-d8	97	78-156									
P-24 (5)			09-09-	1804-2-A	09/23/09 10:25	Air	GC/MS K	N/A	09/25/ 14:0		090925L01
Comment(s): -The method has b	een modified to	o use Tedla	ır bags i	nstead of S	Summa Canisters	S.					
Parameter	Result	RL	DF	Qual	<u>Parameter</u>			Result	RL	DF	Qual
Benzene	ND	0.0010	2		Tert-Butyl Alco	hol (TBA)		ND	0.010	2	
Ethylbenzene	ND	0.0010	2		Toluene	(ND	0.010	2	
Methyl-t-Butyl Ether (MTBE)	ND	0.0040	2		1,1-Difluoroeth	ane		380	8.0	400	0
Xylenes (total)	ND	0.0040	2		,				0.0		•
Surrogates:	REC (%)	Control	_	Qual	Surrogates:		F	REC (%)	Control		Qual
		Limits					_		Limits		
1,4-Bromofluorobenzene	106	57-129			1,2-Dichloroeth	ane-d4		95	47-137		
Toluene-d8	100	78-156									
P-24 (8)			09-09-	1804-3-A	09/23/09 10:30	Air	GC/MS K	N/A	09/25/ 14:5		090925L01
Comment(s): -The method has b	een modified to	o use Tedla	ır baas i	nstead of S	Summa Canisters	S.					
Parameter	Result	<u>RL</u>	DF	Qual	Parameter			Result	RL	DF	Qual
Benzene	0.0005	0.00050			Tert-Butyl Alco	hol (TBA)		ND	0.0050	1	
Ethylbenzene	ND	0.00050	-		Toluene	(10/1)		ND	0.0050	1	
Methyl-t-Butyl Ether (MTBE)	ND	0.0000	1		1,1-Difluoroeth	ane		1400	40	2000	00
Xylenes (total)	ND	0.0020	1		.,. 2					2000	
Surrogates:	REC (%)	Control	•	Qual	Surrogates:		F	REC (%)	Control		<u>Qual</u>
		Limits					-	- (/	Limits		
1,4-Bromofluorobenzene	104	57-129			1,2-Dichloroeth	ane-d4		96	47-137		
Toluene-d8	99	78-156									

RL - Reporting Limit , DF - Dilution Factor

Qual - Qualifiers

Page 2 of 4

Analytical Report

Delta Environmental Consultants, Inc.

Date Received:

09/24/09
312 Piercy Rd.

Work Order No:

09-09-1804

Preparation:

N/A

Method:

EPA TO-15M

Units: ppm (v/v)

Project: 15275 Washington, San Leandro, CA

-,	. 9,		-,								9
Client Sample Number				ab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/1 I Analy		QC Batch ID
P-25 (3)			09-09-	1804-4-A	09/23/09 12:10	Air	GC/MS K	N/A	09/25 15:4		090925L01
Comment(s): -The method has	been modified to	o use Tedla	ar bags i	nstead of S	Summa Canister	S.					
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>			Result	<u>RL</u>	DF	Qual
Benzene	ND	0.020	40		Tert-Butyl Alco	hol (TBA)		ND	0.20	40)
Ethylbenzene	ND	0.020	40		Toluene			ND	0.20	40)
Methyl-t-Butyl Ether (MTBE)	ND	0.080	40		1,1-Difluoroeth	ane		9700	340	1700	000
Xylenes (total)	ND	0.080	40								
Surrogates:	REC (%)	<u>Control</u>		Qual	Surrogates:			REC (%)	<u>Control</u>		<u>Qual</u>
		<u>Limits</u>							<u>Limits</u>		
1,4-Bromofluorobenzene	104	57-129			1,2-Dichloroeth	nane-d4		96	47-137		
Toluene-d8	97	78-156									
P-25 (5)			09-09-	1804-5-A	09/23/09 12:15	Air	GC/MS K	N/A	09/25 03:1		090924L01
Comment(s): -The method has	been modified to	o use Tedla	ar bags i	nstead of S	Summa Canister	s.					
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
Benzene	ND	0.00050	1		Tert-Butyl Alco	hol (TBA)		ND	0.0050	1	
Ethylbenzene	ND	0.00050	1		Toluene	(. =, .,		ND	0.0050	1	
Methyl-t-Butyl Ether (MTBE)	ND	0.0020	1		1,1-Difluoroeth	ane		1.6	0.080	4(
Xylenes (total)	ND	0.0020	1		,				0.000		
Surrogates:	REC (%)	Control	•	Qual	Surrogates:			REC (%)	Control		Qual
		Limits			•				Limits		
1,4-Bromofluorobenzene	111	57-129			1,2-Dichloroeth	nane-d4		101	47-137		
Toluene-d8	98	78-156									
P-25 (8)			09-09-	1804-6-A	09/23/09 12:20	Air	GC/MS K	N/A	09/25 04:0		090924L01
Comment(s): -The method has	heen modified to	n use Tedla	ar bags i	nstead of S	Summa Canister	s					
Parameter	Result	RL	DF	Qual	Parameter	.		Result	<u>RL</u>	DF	Qual
Benzene	ND	0.00050	1	Q ddi	Tert-Butyl Alco	hal (TRA)		ND	0.0050	1	
DC	ואט	0.00030	- 1		Butyl Alcc	iioi (TBA)		ND	0.0050	1	

Ethylbenzene	ND	0.00050	1		Toluene	ND	0.0050	1
Methyl-t-Butyl Ether (MTBE)	ND	0.0020	1		1,1-Difluoroethane	0.079	0.0020	1
Xylenes (total)	ND	0.0020	1					
Surrogates:	REC (%)	Control		Qual	Surrogates:	REC (%)	Control	Qual
		<u>Limits</u>					<u>Limits</u>	
1,4-Bromofluorobenzene	110	57-129			1,2-Dichloroethane-d4	100	47-137	
Toluene-d8	99	78-156						

Muha

DF - Dilution Factor , Qual - Qualifiers

Delta Environmental Consultants, Inc.

Date Received:

09/24/09

312 Piercy Rd.

Work Order No:

09-09-1804

San Jose, CA 95138-1401 Preparation: N/A Method: EPA TO-15M

Units: ppm (v/v)

Project: 15275 Washington, San Leandro, CA

Page 3 of	4
-----------	---

on, San	Leanun	0, CA							гаς	Je 3 01 4
				Date/Time Collected	Matrix	Instrument	Date Prepared			QC Batch ID
		09-09-	1804-7-A	09/23/09 14:05	Air	GC/MS K	N/A			090924L01
n modified to	use Tedla	ar bags in	nstead of S	Summa Canisters	s.					
Result	RL	<u>DF</u>	Qual	<u>Parameter</u>			Result	RL	DF	Qual
0.00055	0.00050	1		Tert-Butyl Alco	hol (TBA)		ND	0.0050	1	
ND	0.00050	1		Toluene	` ,		0.0056	0.0050	1	
ND	0.0020	1		1,1-Difluoroeth	ane		0.010	0.0020	1	
ND	0.0020	1		•						
REC (%)	Control Limits		Qual	Surrogates:		<u> </u>	REC (%)	Control Limits		<u>Qual</u>
109	57-129			1,2-Dichloroeth	nane-d4		95	47-137		
99	78-156									
		09-09-	1804-8-A	09/23/09 14:10	Air	GC/MS K	N/A			090925L01
n modified to	use Tedla	ar bags ir	nstead of S	Summa Canisters	s.					
Result	<u>RL</u>	DF	Qual	<u>Parameter</u>			Result	<u>RL</u>	DF	<u>Qual</u>
ND	0.0020	4		Tert-Butvl Alco	hol (TBA)		ND	0.020	4	
				•						
ND				1,1-Difluoroeth	ane		480			00
ND		4		•						
REC (%)	Control	•	Qual	Surrogates:		ı	REC (%)	Control		Qual
	Limits			<u> </u>		-		Limits		
104	57-129			1,2-Dichloroeth	nane-d4		95	47-137		
98	78-156									
		09-09-	1804-9-A	09/23/09 14:15	Air	GC/MS K	N/A			090925L01
n modified to	use Tedla	ar bags in	nstead of S	Summa Canisters	S.					
		_					Result	RL	DF	Qual
· · · · · · · · · · · · · · · · · · ·					hol (TRA)					
				•	(10/1)					
					ono			68		
ND	0.080	40			ane					
ND ND	0.080			i, i-billaoioetti	ane		1000	00	340	50
ND ND <u>REC (%)</u>	0.080 0.080 Control Limits	40	Qual	Surrogates:	ane	<u>!</u>	REC (%)	Control Limits	340	<u>Qual</u>
	m modified to Result 0.00055 ND ND ND REC (%) 109 99 m modified to Result ND	m modified to use Tedla Result RL 0.00055 0.00050 ND 0.0020 ND 0.0020 REC (%) Control Limits 109 57-129 99 78-156 m modified to use Tedla Result RL ND 0.0020 ND 0.0080 ND 0.0080 ND 0.0080 REC (%) Control Limits 104 57-129 98 78-156 m modified to use Tedla Result RL ND 0.020 ND 0.020	m modified to use Tedlar bags in Result RL DF 0.00055 0.00050 1 ND 0.0020 1 ND 0.0020 1 ND 0.0020 1 Limits 109 57-129 99 78-156	Lab Sample Number	Lab Sample Number	Lab Sample Number Collected Matrix	Lab Sample Number	Lab Sample Number Collected Matrix Instrument Prepared	Lab Sample Number Collected Natrix Instrument Date Prepared Prepared Analyz	Lab Sample Number Collected Matrix Instrument Date Date/Time Analyzed

RL - Reporting Limit

DF - Dilution Factor

Qual - Qualifiers

Delta Environmental Consultants, Inc.

312 Piercy Rd.

San Jose, CA 95138-1401

Date Received: Work Order No: Preparation:

09-09-1804

Method: Units:

EPA TO-15M ppm (v/v)

09/24/09

N/A

Project: 15275 Washington, San Leandro, CA

Page 4 of 4

Client Sample Number				ab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/T d Analyz		QC Batch ID
Method Blank			099-12	2-981-24	N/A	Air	GC/MS K	N/A	09/24/ 14:2		090924L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>			Result	<u>RL</u>	DF	<u>Qual</u>
Benzene	ND	0.00050	1		Tert-Butyl Alco	hol (TBA)		ND	0.0050	1	
Ethylbenzene	ND	0.00050	1		Toluene			ND	0.0050	1	
Methyl-t-Butyl Ether (MTBE)	ND	0.0020	1		1,1-Difluoroeth	ane		ND	0.0020	1	
Xylenes (total)	ND	0.0020	1								
Surrogates:	REC (%)	Control		<u>Qual</u>	Surrogates:			REC (%)	Control		<u>Qual</u>
		<u>Limits</u>							<u>Limits</u>		
1,4-Bromofluorobenzene	100	57-129			1,2-Dichloroeth	nane-d4		96	47-137		
Toluene-d8	98	78-156									
Method Blank			099-12	2-981-40	N/A	Air	GC/MS K	N/A	09/25/		090925L01
									11:5	1	
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
				Qual		Lal (TDA)					Quai
Benzene Ethylbenzene	ND ND	0.00050	1		Tert-Butyl Alco Toluene	noi (TBA)		ND ND	0.0050 0.0050	1	
Methyl-t-Butyl Ether (MTBE)	ND ND	0.00050 0.0020	1		1,1-Difluoroeth	000		ND ND	0.0050	1	
Xylenes (total)	ND ND	0.0020	1 1		i, i-Dilluoloetti	ane		ND	0.0020	'	
Surrogates:	REC (%)	Control	1	Qual	Surrogates:			REC (%)	Control		Qual
Surrogates.	IXEC (78)	Limits		Quai	Surrogates.			IXEC (70)	Limits		Qual
1,4-Bromofluorobenzene	100	57-129			1,2-Dichloroeth	nane-d4		98	47-137		
Toluene-d8	98	78-156			.,						
Method Blank			000-12	2-981-41	N/A	Air	GC/MS V	N/A	09/26/	/09	090926L01
Method Blank			000-12	-301-41	IVA	Λ"	GC/WG V	IVA	14:1		030320201
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>			Result	<u>RL</u>	DF	<u>Qual</u>
Benzene	ND	0.00050	1		Tert-Butyl Alco	hol (TBA)		ND	0.0050	1	
Ethylbenzene	ND	0.00050	1		Toluene			ND	0.0050	1	
Methyl-t-Butyl Ether (MTBE)	ND	0.0020	1		1,1-Difluoroeth	ane		ND	0.0020	1	
Xylenes (total)	ND	0.0020	1		_				_		
Surrogates:	REC (%)	Control		<u>Qual</u>	Surrogates:			REC (%)	Control		<u>Qual</u>
4.4 Danieralli in anhanana	00	<u>Limits</u>			4.0 Diables of			00	<u>Limits</u>		
1,4-Bromofluorobenzene	93	57-129			1,2-Dichloroeth	nane-d4		99	47-137		
Toluene-d8	98	78-156									

DF - Dilution Factor

Qual - Qualifiers

Quality Control - Duplicate

Delta Environmental Consultants, Inc. 312 Piercy Rd.

San Jose, CA 95138-1401

Date Received: Work Order No: Preparation: Method: 09/24/09 09-09-1804 N/A EPA TO-3M

Project: 15275 Washington, San Leandro, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared:	Date Analyzed:	Duplicate Batch Number
P-24 (3)	Air	GC 39	N/A	09/24/09	090924D02
Parameter	Sample Conc	DUP Conc	<u>RPD</u>	RPD CL	Qualifiers
TPH as Gasoline	<u>Sample Conc.</u> 43	45	6	0-20	Qualificis

Quality Control - LCS/LCS Duplicate

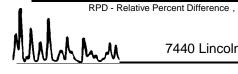
Delta Environmental Consultants, Inc. 312 Piercy Rd.

San Jose, CA 95138-1401

Date Received: Work Order No: Preparation: Method: N/A 09-09-1804 N/A

EPA TO-15M

Project: 15275 Washington, San Leandro, CA


Quality Control Sample ID	Matrix	Instrument GC/MS K	Date Prepared	Date Analyzed 09/24/09		LCS/LCSD Batch Number	
099-12-981-24	Air		N/A			090924L	01
<u>Parameter</u>	LCS %REC	LCSD %REC	%REC CL	ME CL	RPD	RPD CL	Qualifiers
Benzene	104	118	60-156	44-172	13	0-40	
Carbon Tetrachloride	98	110	64-154	49-169	12	0-32	
1,2-Dibromoethane	109	121	54-144	39-159	10	0-36	
1,2-Dichlorobenzene	109	121	34-160	13-181	10	0-47	
1,2-Dichloroethane	97	107	69-153	55-167	9	0-30	
1,2-Dichloropropane	109	125	67-157	52-172	13	0-35	
1,4-Dichlorobenzene	106	118	36-156	16-176	11	0-47	
c-1,3-Dichloropropene	127	144	61-157	45-173	13	0-35	
Ethylbenzene	113	126	52-154	35-171	10	0-38	
o-Xylene	111	123	52-148	36-164	10	0-38	
p/m-Xylene	90	100	42-156	23-175	11	0-41	
Tetrachloroethene	104	115	56-152	40-168	10	0-40	
Toluene	110	122	56-146	41-161	10	0-43	
Trichloroethene	102	115	63-159	47-175	12	0-34	
1,1,2-Trichloroethane	109	126	65-149	51-163	14	0-37	
Vinyl Chloride	101	110	45-177	23-199	9	0-36	

Total number of LCS compounds: 16

Total number of ME compounds: 0

Total number of ME compounds allowed:

LCS ME CL validation result : Pass

Quality Control - LCS/LCS Duplicate

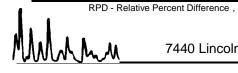
Delta Environmental Consultants, Inc. 312 Piercy Rd.

San Jose, CA 95138-1401

Date Received: Work Order No: Preparation: Method: N/A 09-09-1804 N/A

EPA TO-15M

Project: 15275 Washington, San Leandro, CA


Quality Control Sample ID	Matrix	Instrument GC/MS K	Date Prepared	Date Analyzed 09/25/09		LCS/LCSD Batch Number	
099-12-981-40	Air		N/A			090925L	01
<u>Parameter</u>	LCS %REC	LCSD %REC	%REC CL	ME CL	RPD	RPD CL	Qualifiers
Benzene	105	124	60-156	44-172	16	0-40	
Carbon Tetrachloride	106	123	64-154	49-169	15	0-32	
1,2-Dibromoethane	113	130	54-144	39-159	14	0-36	
1,2-Dichlorobenzene	117	134	34-160	13-181	14	0-47	
1,2-Dichloroethane	104	116	69-153	55-167	11	0-30	
1,2-Dichloropropane	111	130	67-157	52-172	16	0-35	
1,4-Dichlorobenzene	113	131	36-156	16-176	15	0-47	
c-1,3-Dichloropropene	130	154	61-157	45-173	17	0-35	
Ethylbenzene	116	135	52-154	35-171	15	0-38	
o-Xylene	117	134	52-148	36-164	14	0-38	
p/m-Xylene	94	109	42-156	23-175	14	0-41	
Tetrachloroethene	107	123	56-152	40-168	15	0-40	
Toluene	111	128	56-146	41-161	14	0-43	
Trichloroethene	105	124	63-159	47-175	17	0-34	
1,1,2-Trichloroethane	112	134	65-149	51-163	18	0-37	
Vinyl Chloride	106	119	45-177	23-199	12	0-36	

Total number of LCS compounds: 16

Total number of ME compounds: 0

Total number of ME compounds allowed:

LCS ME CL validation result: Pass

Quality Control - LCS/LCS Duplicate

Delta Environmental Consultants, Inc. 312 Piercy Rd.

San Jose, CA 95138-1401

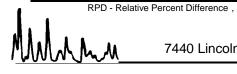
Date Received: Work Order No: Preparation: Method:

09-09-1804 N/A

N/A

EPA TO-15M

Project: 15275 Washington, San Leandro, CA


Quality Control Sample ID	Matrix	Instrument GC/MS V	Date Prepared	Date Analyzed 09/26/09		LCS/LCSD Batch Number	
099-12-981-41	Air		N/A			090926L	01
<u>Parameter</u>	LCS %REC	LCSD %REC	%REC CL	ME CL	RPD	RPD CL	Qualifiers
Benzene	101	102	60-156	44-172	1	0-40	
Carbon Tetrachloride	117	122	64-154	49-169	4	0-32	
1,2-Dibromoethane	114	114	54-144	39-159	0	0-36	
1,2-Dichlorobenzene	111	108	34-160	13-181	3	0-47	
1,2-Dichloroethane	105	107	69-153	55-167	2	0-30	
1,2-Dichloropropane	109	103	67-157	52-172	6	0-35	
1,4-Dichlorobenzene	109	106	36-156	16-176	2	0-47	
c-1,3-Dichloropropene	129	122	61-157	45-173	6	0-35	
Ethylbenzene	106	107	52-154	35-171	1	0-38	
o-Xylene	107	108	52-148	36-164	0	0-38	
p/m-Xylene	107	109	42-156	23-175	2	0-41	
Tetrachloroethene	110	110	56-152	40-168	1	0-40	
Toluene	105	105	56-146	41-161	0	0-43	
Trichloroethene	117	114	63-159	47-175	2	0-34	
1,1,2-Trichloroethane	117	111	65-149	51-163	5	0-37	
Vinyl Chloride	110	111	45-177	23-199	2	0-36	

Total number of LCS compounds: 16

Total number of ME compounds: 0

Total number of ME compounds allowed: 1

LCS ME CL validation result : Pass

CL - Control Limit

Glossary of Terms and Qualifiers

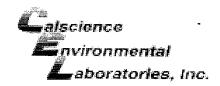
Work Order Number: 09-09-1804

Qualifier	<u>Definition</u>
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out or control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
Α	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
E	Concentration exceeds the calibration range.
Н	Sample received and/or analyzed past the recommended holding time.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ME	LCS Recovery Percentage is within LCS ME Control Limit range.
N	Nontarget Analyte.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
U	Undetected at the laboratory method detection limit.
X	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture.

	LAB (LOCATION)		Shell Oil Products Chain Of Custody Record																								
SPL				Check:Ap						int l	Bill:T	o:C	ontac	t Na	me:				: INC	IDEN	IT # (E	ΝV	SEF	VICE	≘s) :	СН	ECK IF NO INCIDENT # APPLIES
☐ XEN		■ ENV. SERVICE	S		MOTIVA RE	TAIL	□ s	HELL RETA	(L.		SL	IZAN	NE M	CCLL	JRKIN-I	NELSC	N		9	7	0 9	1	1	l l		1	ATE: 9/23/2009
	T AMERICA ()	■ MOTIVA SD&C	СМ		CONSULTAN	ΝT		UBES						PO:	~ ~ ~ ~ ~							(P#]	
ОТН		SHELL PIPELIN	NE		OTHER					Ť		T	1			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<u> </u>		<u> </u>	·······	1 2	1111	Ϊ.	6	0	PA	AGE:1 of1
	G COMPANY:	-I			LOG CODE:				sn	E ADD	DRESS:	Street	and City						State			OBAL ID		- 6	10		
Delta C	consultants										1527	5 W	ashi	ngto	n, San	Lear				CA		60010	1220	6			
312 Pie	rcy Rd, San Jose, CA. 95138								An	gela	RABLETO PICO,	Delt					PHONE				E-MA	_					CONSULTANT PROJECT NO:
	e McClurkin-Nelson										se, C/		(Print):				408-	326-18	62		api	ico@	delta	env.co		B USE (SCA152751A
TELEPHON 408-826	5-1869 408-225-8 506		smccluri	kin-nelson@c	deltaenv.c	<u>com</u>			Ab	hik	Dutt	а															9- 1804
TURNA STAN	ROUND TIME (CALENDAR DAYS): IDARD (14 DAY) 5 DAYS 3 DAYS	2 DAYS		□ 24 HC	OURS		ESULTS I											RE	QUES	TED	ANALY	'SIS					
□ IA -	RWQCB REPORT FORMAT UST AGENCY:										Air A	naiys	sis		+ dies	iel						Wa	aste (Charac	cteriza	tion	
SPE	CIAL INSTRUCTIONS OR NOTES :			_	CONTRAC				\Box						ŝ										T		TEMPERATURE ON RECEIPT C°
					E REIMBUR		ATE APP	LIES	0-15						3015	1					İ		als/C		١.	_	
	please also email results to: adutta@d	eltaenv.com			NOT NEEDE			-	E)	-					Extractable (8015M)	- [96	Met		1	į	
				LI RECE.	IPT VERIFI	CATION R	EQUESTE	ט	jeab		15)	_	٦	30B)	acta							als (길		<u>2</u>	3	
		SAMPLI	NG			PRESERV	ATIVE		Pur	<u> </u>		15-	79E	(826	8	į						Me	5	ਰ	assa	Ď	
LAB USE ONLY	Field Sample Identification	DATE	TIME	MATRIX	HCL HN	103 H2SO4	NONE (NO CO OTHER	جَاجً TPH-G Purgeable (TO-15)	BTEX (to-15)	MTBE (TO-15)	TBA (TO-15)	EDC (8260B)	Ethanol (8260B)	TPH-D							CAM 17 Metals (6010)	Run ST	Pb if needed	Run Bioassay	0 C C C C C C C C C C C C C C C C C C C	Container PID Readings or Laboratory Notes
1	P-24 (3)	9/23/09	10:20				х		х	x	(X	х							\top			Ť	╁	Ī	1	H	·
2.	P-24 (5)	9/23/09	10:25				х		х	X	(x	х													\Box		ø
3	P-24 (8)	9/23/09	10:30				х	_	х	х	(x	х													\Box	П	⊒ a
4	P-25 (3)	9/23/09	12:10				х		х	X	(X	х										Ī				П	etha
5	P-25 (5)	9/23/09	12:15				х		х	Х	(X	х										T					used 1,1-difluoroethane as leak tracer
6	P-25 (8)	9/23/09	12:20				x		x	x	∢ x	x												·			ea Aii
7	P-26 (3)	9/23/09	14:05				х		х	х	(X	х										T					6 7.
8	P-26 (5)	9/23/09	14:10				x		x	х	ι x	x															nse
9	P-26 (8)	9/23/09	14:15				х		х	х	ιx	х															
			1									† -					Ħ					╁	+-			_	
Relinquish	ed by: (Signature)	<u></u>	<u> </u>	Received by: (Si	Ignature)					Щ.			Т	l	<u> </u>						Date:				Ц,	Time:	
	litt	9/23/	109																							ĺ	
Reinquist	ed by: (Signature)	17052	<u> </u>	Received by: (Si	ignature)			_													Date:				\dashv	Time;	
Relinquish	ed by: (Signature)			Received by: (SI	ignature)															\dashv	Date:					Time:	
	105723788					/	DA.D .	cy	,	2		d	12								9/2	~ y	10	9			10:30
							···									-											05/2/06 Revision

Page 13 of 15

Calscience
Environmental
Laboratories, Inc.


WORK ORDER #: **09-09-** 1 Page 14 of 15

Sooler /

SAMPLE RECEIPT FORM

Cooler / of /

CLIENT: DELTA CONSULTANTS	DATE:	09 12	+ 1 09
TEMPERATURE: (Criteria: 0.0 °C − 6.0 °C, not frozen) Temperature °C − 0.2 °C (CF) = °C □ Sample(s) outside temperature criteria (PM/APM contacted by:). □ Sample(s) outside temperature criteria but received on ice/chilled on same data ambient temperature, placed on ice for transport by Co Ambient Temperature: □ Air □ Filter □ Metals Only □ PCBs Co	urier.		ole al: <u>/</u> /S
CUSTODY SEALS INTACT: Cooler	□ N/A	Initia Initia	6.6
SAMPLE CONDITION:	Yes	No	N/A
Chain-Of-Custody (COC) document(s) received with samples	. 🗷		
COC document(s) received complete			
Collection date/time, matrix, and/or # of containers logged in based on sample labels.			
☐ COC not relinquished. ☐ No date relinquished. ☐ No time relinquished.			y.
Sampler's name indicated on COC			
Sample container label(s) consistent with COC			, 🗆
Sample container(s) intact and good condition			
Correct containers and volume for analyses requested	F		
Analyses received within holding time			
Proper preservation noted on COC or sample container			
☐ Unpreserved vials received for Volatiles analysis			
Volatile analysis container(s) free of headspace			
Tedlar bag(s) free of condensation			
CONTAINER TYPE:			
Solid: □4ozCGJ □8ozCGJ □16ozCGJ □Sleeve □EnCores® □]TerraCore	,s® □	
Water: □VOA □VOAh □VOAna₂ □125AGB □125AGBh □125AGBp	□1AGB [∃1AGB na ₂	□1AGB s
□500AGB □500AGJ □500AGJs □250AGB □250CGB □250CGBs	□1PB [⊒500PB □{	500PB na
□250PB	□		
Air: 🗹 Tedlar® 🗆 Summa® 🗆 Other: 🗆		/Labeled by:	: P(_
Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag E: E Preservative: h: HCL n: HNO3 na::Na:S>O3 Na: NaOH p: H3:PO4 s: H3:PO4 znna: ZnAca+NaOH f:	Envelop R	Reviewed by:	: <u>-48</u>

WORK ORDER #: 09-09- 1 8 0 1

SAMPLE ANOMALY FORM

SAMPLES - CONTAINERS & LABELS	i:	Comi	nents:		
☐ Samples NOT RECEIVED but listed o	on COC	(-9) P	-26 (8)	COLLECTI	ON TUNE
☐ Samples received but NOT LISTED o	n COC	C // -	LABE	LED AS 1	
☐ Holding time expired – list sample ID(s) and test				<u> </u>
☐ Insufficient quantities for analysis –	list test				
☐ Improper container(s)/preservative u	sed – list test				·
☐ No preservative noted on COC or lab	el – list test & not	fy lab			
☐ Sample labels illegible – note test/cor	tainer type				
☑Sample labels do not match COC – N	lote in comments				
☐ Sample ID					
☐ Date and/or Time Collected					
☐ Project Information					
☐ # of Containers					
☐ Analysis					
☐ Sample containers compromised – N	lote in comments				
☐ Leaking					
☐ Broken					
\square Without Labels					-
Air sample containers compromised	I – Note in comme	nts			
☐ Flat		<u></u>			
\square Very low in volume					
☐ Leaking (transferred into Calsci	ence Tedlar [®] Baલ્	J*)	· · · · · · · · · · · · · · · · · ·		
☐ Leaking (transferred into Client'	's Tedlar [®] Bag*)				
Other:					
HEADSPACE – Containers with Bubb	le > 6mm or ¼ i	nch:			
Sample Container # of Vials Sample ID(s) Received #	Container ID(s)	# of Vials Received	Sample #	Container ID(s)	# of RSK or CO ₂ or DO Received
				<u>-</u>	
Comments:					
*Transferred at Client's request.			nitial / Da	te <i>fs 9/2</i>	4/09

October 07, 2009

Suzanne McClurkin-Nelson Delta Environmental Consultants, Inc. 312 Piercy Rd. San Jose, CA 95138-1401

Subject: Calscience Work Order No.: 09-09-1884

Client Reference: 15275 Washington, San Leandro, CA

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 9/25/2009 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Calscience Environmental

Laboratories, Inc.

Xuan H. Dang Project Manager

CA-ELAP

NELAP ID: 03220CA

CSDLAC ID: 10109

SCAQMD ID: 93LA0830

7440 Lincoln Way, Garden Grove, CA 92841-1427 ·

TEL:(714) 895-5494 ·

FAX: (714) 894-7501

CASE NARRATIVE

Calscience Work Order No.: 09-09-1884

EPA TO-15M

There was insufficient sample volume to perform dilutions on samples P-27 (5) and P-28(5). 1,1-Difluoroethane was reported with an E qualifier for both samples which indicated that the concentration reported for this compound exceeds the calibration range.

Delta Environmental Consultants, Inc. 312 Piercy Rd.

San Jose, CA 95138-1401

Date Received: Work Order No: Preparation: Method:

09-09-1884 N/A

09/25/09

EPA TO-3M

	Proiect:	15275	Washington,	San	Leandro.	CA
--	----------	-------	-------------	-----	----------	----

F	Pag	e 1	O	f 2
	ч	~ .	_	-

· · · · · · · · · · · · · · · · · · ·		•						<u> </u>
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument P	Date Prepared	Date/Time Analyzed	QC Batch ID
P-27 (3)		09-09-1884-1-A	09/24/09 09:25	Air	GC 13	N/A	09/25/09 10:47	090925L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	110	1.5	1		ppm (v/v)			
P-27 (5)		09-09-1884-2-A	09/24/09 09:20	Air	GC 13	N/A	09/25/09 10:57	090925L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	33	1.5	1		ppm (v/v)			
P-27 (8)		09-09-1884-3-A	09/24/09 09:15	Air	GC 13	N/A	09/25/09 11:08	090925L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	150	1.5	1		ppm (v/v)			
P-28 (3)		09-09-1884-4-A	09/24/09 11:10	Air	GC 13	N/A	09/25/09 11:17	090925L01
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	310	1.5	1		ppm (v/v)			
P-28 (5)		09-09-1884-5-A	09/24/09 11:00	Air	GC 13	N/A	09/25/09 11:27	090925L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	15	1.5	1		ppm (v/v)			
P-28 (8)		09-09-1884-6-A	09/24/09 11:05	Air	GC 13	N/A	09/25/09 11:38	090925L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	71	1.5	1		ppm (v/v)			

DF - Dilution Factor ,

Delta Environmental Consultants, Inc.

312 Piercy Rd.

San Jose, CA 95138-1401

Date Received:

Work Order No:

Preparation:

Method:

09/25/09

09-09-1884

N/A

EPA TO-3M

Project: 15275 Washington, San Leandro, CA Page 2 of 2

1 Tojoot. Tozro Washing	jion, Can Loana	10, 07 (90 2 01 2
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument F	Date Prepared	Date/Time Analyzed	QC Batch ID
P-29 (3)		09-09-1884-7-A	09/24/09 12:35	Air	GC 13	N/A	09/25/09 11:47	090925L01
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	310	1.5	1		ppm (v/v)			
P-29 (5)		09-09-1884-8-A	09/24/09 12:25	Air	GC 13	N/A	09/25/09 11:58	090925L01
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	170	1.5	1		ppm (v/v)			
P-29 (8)		09-09-1884-9-A	09/24/09 12:30	Air	GC 13	N/A	09/25/09 12:08	090925L01
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	12	1.5	1		ppm (v/v)			
Method Blank		098-01-005-1,966	N/A	Air	GC 13	N/A	09/25/09 08:50	090925L01
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	ND	1.5	1		ppm (v/v)			

Delta Environmental Consultants, Inc.

312 Piercy Rd.

San Jose, CA 95138-1401

Date Received:

Work Order No: Preparation:

Matrix

Date

Instrument

Date/Time

N/A EPA TO-15M ug/L

Method:

Units:

Date/Time

Page 1 of 5

QC Batch ID

Qual

09/25/09

09-09-1884

Project: 15275 Washington, San Leandro, CA

Client Sample Number			Ni	umber .	Collected	Matrix	Instrument	Prepared	Analyze	_d QC	Batch ID
P-27 (3)			09-09-18	384-1-A	09/24/09 09:25	Air	GC/MS K	N/A	09/25/09 18:01	9 090	0925L01
Comment(s): -The method has be	en modified to	o use Tedla	ar bags ins	stead of S	Summa Canisters	S.					
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	Qual
Benzene	ND	0.0040	2.5		Tert-Butyl Alcol	nol (TBA)		ND	0.038	2.5	
Ethylbenzene	ND	0.0054	2.5		Toluene			ND	0.047	2.5	
Methyl-t-Butyl Ether (MTBE)	ND	0.018	2.5		1,1-Difluoroetha	ane		710	22	4000	
Xylenes (total)	ND	0.022	2.5								
Surrogates:	<u>REC (%)</u>	Control		Qual	Surrogates:		<u> </u>	REC (%)	Control	<u>Q</u>	ual
		<u>Limits</u>							<u>Limits</u>		
1,4-Bromofluorobenzene	100	57-129			1,2-Dichloroeth	ane-d4		97	47-137		
Toluene-d8	98	78-156									
P-27 (5)			09-09-18	884-2-A	09/24/09 09:20	Air	GC/MS K	N/A	09/25/09 18:46	9 090	0925L01

Lab Sample

					09:20		10.4	Ю		
Comment(s): -The method has be										
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	
Benzene	ND	0.0016	1		Tert-Butyl Alcohol (TBA)	ND	0.015	1		
Ethylbenzene	ND	0.0022	1		Toluene	ND	0.019	1		
Methyl-t-Butyl Ether (MTBE)	ND	0.0072	1		1,1-Difluoroethane	14	0.0054	1	Е	
Xylenes (total)	ND	0.0087	1							

Ayleries (total)	שמו	0.0087	1			
Surrogates:	REC (%)	Control	<u>Qual</u>	Surrogates:	REC (%)	Control
		<u>Limits</u>				<u>Limits</u>
1,4-Bromofluorobenzene	104	57-129		1,2-Dichloroethane-d4	94	47-137
Toluene-d8	97	78-156				

P-27 (8)	09-09-1884-3-A	09/24/09 09:15	Air	GC/MS K	N/A	09/25/09 19:32	090925L01	

Comment(s): -The method has been modified to use Tedlar bags instead of Summa Canisters.

<u>Parameter</u>	Result	<u>RL</u>	DF	Qual	<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual
Benzene	ND	0.0040	2.5		Tert-Butyl Alcohol (TBA)	ND	0.038	2.5	
Ethylbenzene	ND	0.0054	2.5		Toluene	ND	0.047	2.5	
Methyl-t-Butyl Ether (MTBE)	ND	0.018	2.5		1,1-Difluoroethane	860	43	8000	
Xylenes (total)	ND	0.022	2.5						
Surrogates:	REC (%)	Control		Qual	Surrogates:	REC (%)	Control	<u>C</u>	<u>)ual</u>
		<u>Limits</u>					<u>Limits</u>		
1,4-Bromofluorobenzene	105	57-129			1,2-Dichloroethane-d4	94	47-137		
Toluene-d8	96	78-156							

DF - Dilution Factor

Delta Environmental Consultants, Inc.

312 Piercy Rd.

San Jose, CA 95138-1401

Date Received:
Work Order No:

Preparation:
Method:
Units:

N/A EPA TO-15M

ug/L

09/25/09

09-09-1884

Project: 15275 Washington, San Leandro, CA

Page 2 of 5

Client Sample Number				b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Tim Analyze		QC Batch ID
P-28 (3)			09-09-	1884-4-A	09/24/09 11:10	Air	GC/MS K	N/A	09/25/09 20:19	9	090925L01
Comment(s): -The method has b	een modified to	use Tedla	ar bags ir	nstead of S	Summa Canister	S.					
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	Qual
Benzene	ND	0.0080	5		Tert-Butyl Alco	hol (TBA)		ND	0.076	5	
Ethylbenzene	ND	0.011	5		Toluene	` ,		ND	0.094	5	
Methyl-t-Butyl Ether (MTBE)	ND	0.036	5		1,1-Difluoroeth	ane		2200	54	1000	0
Xylenes (total)	ND	0.043	5								
Surrogates:	REC (%)	Control		Qual	Surrogates:		<u>.</u>	REC (%)	Control		Qual
		<u>Limits</u>							<u>Limits</u>		
1,4-Bromofluorobenzene	101	57-129			1,2-Dichloroeth	ane-d4		93	47-137		
Toluene-d8	97	78-156									
P-28 (5)			09-09-	1884-5-A	09/24/09 11:00	Air	GC/MS K	N/A	09/25/09 21:05	9	090925L01
Comment(s): -The method has b	een modified to	use Tedla	ar bags ir	nstead of S	Summa Canister	S.					
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>
Benzene	0.0018	0.0016	1		Tert-Butyl Alco	hol (TBA)		ND	0.015	1	
Ethylbenzene	ND	0.0022	1		Toluene	` ,		0.019	0.019	1	
Methyl-t-Butyl Ether (MTBE)	ND	0.0072	1		1,1-Difluoroeth	ane		11	0.0054	1	E
Xylenes (total)	ND	0.0087	1								
Surrogates:	REC (%)	Control		Qual	Surrogates:			REC (%)	Control		Qual
-	, —	<u>Limits</u>						,	<u>Limits</u>		
1,4-Bromofluorobenzene	102	57-129			1,2-Dichloroeth	ane-d4		91	47-137		
Toluene-d8	99	78-156									
P-28 (8)			09-09-	1884-6-A	09/24/09 11:05	Air	GC/MS K	N/A	09/25/09 21:52	9	090925L01

 $\label{lem:comment} \mbox{Comment}(s): \ \mbox{-Dilution analysis was performed outside the recommended holding time.}$

-The method has been modified to use Tedlar bags instead of Summa Canisters.

			Ū						
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual
Benzene	ND	0.0032	2		Tert-Butyl Alcohol (TBA)	ND	0.030	2	
Ethylbenzene	ND	0.0043	2		Toluene	ND	0.038	2	
Methyl-t-Butyl Ether (MTBE)	ND	0.014	2		1,1-Difluoroethane	42	1.4	250	
Xylenes (total)	ND	0.017	2						
Surrogates:	REC (%)	Control		Qual	Surrogates:	REC (%)	Control	<u>(</u>	Qual
		<u>Limits</u>					<u>Limits</u>		
1,4-Bromofluorobenzene	104	57-129			1,2-Dichloroethane-d4	91	47-137		
Toluene-d8	98	78-156							

RL - Reporting Limit

DF - Dilution Factor

Units:

Delta Environmental Consultants, Inc.

312 Piercy Rd.

San Jose, CA 95138-1401

Date Received: Work Order No:

Preparation:

Method: EPA TO-15M

ug/L

09/25/09

N/A

09-09-1884

Project: 15275 Washington, San Leandro, CA

Page 3 of 5

Client Sample Number				b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Ti I Analyz		QC Batch ID
P-29 (3)			09-09-	1884-7-A	09/24/09 12:35	Air	GC/MS K	N/A	09/25/ 22:39		090925L01
Comment(s): -The method has be	en modified to	use Tedla	ar bags in	nstead of S	Summa Canisters	S.					
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>			Result	<u>RL</u>	DF	Qual
Benzene	ND	0.0080	5		Tert-Butyl Alcol	hol (TBA)		ND	0.076	5	
Ethylbenzene	ND	0.011	5		Toluene	, ,		ND	0.094	5	
Methyl-t-Butyl Ether (MTBE)	ND	0.036	5		1,1-Difluoroetha	ane		2000	54	1000	00
Xylenes (total)	ND	0.043	5								
Surrogates:	REC (%)	Control		Qual	Surrogates:			REC (%)	Control		Qual
		<u>Limits</u>							<u>Limits</u>		
1,4-Bromofluorobenzene	101	57-129			1,2-Dichloroeth	ane-d4		92	47-137		
Toluene-d8	97	78-156									
P-29 (5)			09-09-	1884-8-A	09/24/09 12:25	Air	GC/MS K	N/A	09/25/ 23:23		090925L01
Comment(s): -The method has be	en modified to	use Tedla	ar bags in	nstead of S	Summa Canisters	S.					
Parameter	Result	RL	DF	Qual	<u>Parameter</u>			Result	RL	DF	Qual
Benzene	ND	0.0064	4		Tert-Butyl Alcol	hol (TBA)		ND	0.061	4	
Ethylbenzene	ND	0.0087	4		Toluene	- (ND	0.075	4	
Methyl-t-Butyl Ether (MTBE)	ND	0.029	4		1,1-Difluoroetha	ane		1300	54	1000	00
Xylenes (total)	ND	0.035	4								
Surrogates:	REC (%)	Control		Qual	Surrogates:			REC (%)	Control		Qual
		<u>Limits</u>			-				<u>Limits</u>		
1,4-Bromofluorobenzene	99	57-129			1,2-Dichloroeth	ane-d4		91	47-137		
Toluene-d8	98	78-156									
P-29 (8)			09-09-	1884-9-A	09/24/09 12:30	Air	GC/MS K	N/A	09/26/ 00:1		090925L01

Comment(s): -Dilution analysis was performed outside the recommended holding time.

-The method has been modified to use Tedlar bags instead of Summa Canisters.

<u>Parameter</u>	Result	<u>RL</u>	DF	<u>Qual</u>	<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual
Benzene	ND	0.0016	1		Tert-Butyl Alcohol (TBA)	ND	0.015	1	
Ethylbenzene	ND	0.0022	1		Toluene	ND	0.019	1	
Methyl-t-Butyl Ether (MTBE)	ND	0.0072	1		1,1-Difluoroethane	83	2.7	500	
Xylenes (total)	ND	0.0087	1						
Surrogates:	REC (%)	Control		<u>Qual</u>	Surrogates:	REC (%)	Control	<u>(</u>	<u>Qual</u>
		<u>Limits</u>					<u>Limits</u>		
1,4-Bromofluorobenzene	103	57-129			1,2-Dichloroethane-d4	89	47-137		
Toluene-d8	99	78-156							

DF - Dilution Factor

Delta Environmental Consultants, Inc.

312 Piercy Rd.

San Jose, CA 95138-1401

Date Received: Work Order No:

Vork Order No:

Preparation:
Method:
Units:

Project: 15275 Washington, San Leandro, CA

Page 4 of 5

09/25/09

N/A

ug/L

09-09-1884

EPA TO-15M

Client Sample Number				ab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Ti I Analyz		QC Batch ID
Method Blank			099-12	2-981-28	N/A	Air	GC/MS K	N/A	09/29/0 12:01		090929L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>			Result	<u>RL</u>	DF	<u>Qual</u>
Benzene	ND	0.0016	1		Tert-Butyl Alco	hol (TBA)		ND	0.015	1	
Ethylbenzene	ND	0.0022	1		Toluene			ND	0.019	1	
Methyl-t-Butyl Ether (MTBE)	ND	0.0072	1		1,1-Difluoroeth	ane		ND	0.0054	1	
Xylenes (total)	ND	0.0087	1								
Surrogates:	REC (%)	Control Limits		<u>Qual</u>	Surrogates:			REC (%)	Control Limits		<u>Qual</u>
1,4-Bromofluorobenzene	91	57-129			1.2-Dichloroeth	ano-d4		85	47-137		
Toluene-d8	95	78-156			1,2-Dichioloeth	iai ic-u4		05	47-137		
Method Blank			099-12	2-981-40	N/A	Air	GC/MS K	N/A	09/25/0 11:51		090925L01
<u>Parameter</u>	Result	RL	DF	Qual	<u>Parameter</u>			Result	RL	DF	Qual
Benzene	ND	0.0016	1		Tert-Butyl Alco	hol (TBA)		ND	0.015	1	
Ethylbenzene	ND	0.0022	1		Toluene	- ()		ND	0.019	1	
Methyl-t-Butyl Ether (MTBE)	ND	0.0072	1		1,1-Difluoroeth	ane		ND	0.0054	1	
Xylenes (total)	ND	0.0087	1								
Surrogates:	REC (%)	Control		Qual	Surrogates:			REC (%)	Control		Qual
		<u>Limits</u>							<u>Limits</u>		
1,4-Bromofluorobenzene	100	57-129			1,2-Dichloroeth	ane-d4		98	47-137		
Toluene-d8	98	78-156									
Method Blank			099-12	2-981-41	N/A	Air	GC/MS V	N/A	09/26/0 14:16		090926L01
Parameter	Result	<u>RL</u>	DF	Qual	Parameter			Result	<u>RL</u>	DF	Qual
Benzene	ND	0.0016	1		Tert-Butyl Alco	hol (TRA)		ND	0.015	1	<u> </u>
Ethylbenzene	ND	0.0010	1		Toluene	iioi (TDA)		ND	0.019	1	
Methyl-t-Butyl Ether (MTBE)	ND	0.0022	1		1,1-Difluoroeth	ane		ND	0.019	1	
Xylenes (total)	ND	0.0072	1		.,. 5				5.000-	'	
Surrogates:	REC (%)	Control	•	Qual	Surrogates:			REC (%)	Control		Qual
4.4 Barras (harraharras	00	<u>Limits</u>			4.0 Diables (1	14		00	<u>Limits</u>		
1,4-Bromofluorobenzene	93	57-129			1,2-Dichloroeth	ane-d4		99	47-137		
Toluene-d8	98	78-156									

DF - Dilution Factor

Delta Environmental Consultants, Inc.

312 Piercy Rd.

San Jose, CA 95138-1401

Date Received:

Work Order No:

Preparation: Method:

Units:

09/25/09 09-09-1884

N/A

EPA TO-15M

ug/L

5

Project: 15275 Washington, San Leandro, CA

Client Sample Number				ab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Ti I Analyz		QC Batch ID
Method Blank			099-12	2-981-42	N/A	Air	GC/MS V	N/A	09/28/ 15:23		090928L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>
Benzene	ND	0.0016	1		Tert-Butyl Alcoh	nol (TBA)		ND	0.015	1	
Ethylbenzene	ND	0.0022	1		Toluene			ND	0.019	1	
Methyl-t-Butyl Ether (MTBE)	ND	0.0072	1		1,1-Difluoroetha	ane		ND	0.0054	1	
Xylenes (total)	ND	0.0087	1								
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>	Surrogates:		1	REC (%)	Control Limits		<u>Qual</u>
1,4-Bromofluorobenzene	96	57-129			1,2-Dichloroetha	ane-d4		102	47-137		
Toluene-d8	100	78-156									

Quality Control - Duplicate

Delta Environmental Consultants, Inc. 312 Piercy Rd.

San Jose, CA 95138-1401

Date Received: Work Order No: Preparation: Method: 09/25/09 09-09-1884 N/A EPA TO-3M

Project: 15275 Washington, San Leandro, CA

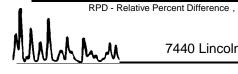
Quality Control Sample ID	Matrix	Instrument	Date Prepared:	Date Analyzed:	Duplicate Batch Number
P-28 (3)	Air	GC 13	N/A	09/25/09	090925D01
					_
<u>Parameter</u>	Sample Conc	DUP Conc	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
TPH as Gasoline	310	310	1	0-20	

Delta Environmental Consultants, Inc. 312 Piercy Rd.

San Jose, CA 95138-1401

Date Received: Work Order No: Preparation: Method:

N/A 09-09-1884 N/A


EPA TO-15M

Project: 15275 Washington, San Leandro, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed		LCS/LCSD I Numbe	
099-12-981-40	Air	GC/MS K	N/A	09/25	/09	090925L	01
<u>Parameter</u>	LCS %REC	LCSD %REC	%REC CL	ME CL	RPD	RPD CL	Qualifiers
Benzene	105	124	60-156	44-172	16	0-40	
Carbon Tetrachloride	106	123	64-154	49-169	15	0-32	
1,2-Dibromoethane	113	130	54-144	39-159	14	0-36	
1,2-Dichlorobenzene	117	134	34-160	13-181	14	0-47	
1,2-Dichloroethane	104	116	69-153	55-167	11	0-30	
1,2-Dichloropropane	111	130	67-157	52-172	16	0-35	
1,4-Dichlorobenzene	113	131	36-156	16-176	15	0-47	
c-1,3-Dichloropropene	130	154	61-157	45-173	17	0-35	
Ethylbenzene	116	135	52-154	35-171	15	0-38	
o-Xylene	117	134	52-148	36-164	14	0-38	
p/m-Xylene	94	109	42-156	23-175	14	0-41	
Tetrachloroethene	107	123	56-152	40-168	15	0-40	
Toluene	111	128	56-146	41-161	14	0-43	
Trichloroethene	105	124	63-159	47-175	17	0-34	
1,1,2-Trichloroethane	112	134	65-149	51-163	18	0-37	
Vinyl Chloride	106	119	45-177	23-199	12	0-36	

Total number of LCS compounds: 16 Total number of ME compounds: 0 Total number of ME compounds allowed:

LCS ME CL validation result: Pass

Delta Environmental Consultants, Inc. 312 Piercy Rd.

San Jose, CA 95138-1401

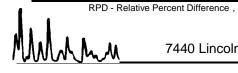
Date Received: Work Order No: Preparation: Method:

09-09-1884 N/A

N/A

EPA TO-15M

Project: 15275 Washington, San Leandro, CA


Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Anal		LCS/LCSD E Number	
099-12-981-41	Air	GC/MS V	N/A	09/26/	09	090926L0)1
Parameter	LCS %REC	LCSD %REC	%REC CL	ME CL	RPD	RPD CL	Qualifiers
Benzene	101	102	60-156	44-172	1	0-40	
Carbon Tetrachloride	117	122	64-154	49-169	4	0-32	
1,2-Dibromoethane	114	114	54-144	39-159	0	0-36	
1,2-Dichlorobenzene	111	108	34-160	13-181	3	0-47	
1,2-Dichloroethane	105	107	69-153	55-167	2	0-30	
1,2-Dichloropropane	109	103	67-157	52-172	6	0-35	
1,4-Dichlorobenzene	109	106	36-156	16-176	2	0-47	
c-1,3-Dichloropropene	129	122	61-157	45-173	6	0-35	
Ethylbenzene	106	107	52-154	35-171	1	0-38	
o-Xylene	107	108	52-148	36-164	0	0-38	
p/m-Xylene	107	109	42-156	23-175	2	0-41	
Tetrachloroethene	110	110	56-152	40-168	1	0-40	
Toluene	105	105	56-146	41-161	0	0-43	
Trichloroethene	117	114	63-159	47-175	2	0-34	
1,1,2-Trichloroethane	117	111	65-149	51-163	5	0-37	
Vinyl Chloride	110	111	45-177	23-199	2	0-36	

Total number of LCS compounds: 16

Total number of ME compounds: 0

Total number of ME compounds allowed:

LCS ME CL validation result: Pass

CL - Control Limit

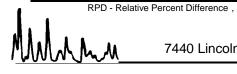
Delta Environmental Consultants, Inc. 312 Piercy Rd.

San Jose, CA 95138-1401

Date Received: Work Order No: Preparation: Method: N/A 09-09-1884 N/A

EPA TO-15M

Project: 15275 Washington, San Leandro, CA


Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed		LCS/LCSD Numbe	
099-12-981-42	Air	GC/MS V	N/A	09/28	/09	090928L	01
<u>Parameter</u>	LCS %REC	LCSD %REC	%REC CL	ME CL	RPD	RPD CL	Qualifiers
Benzene	98	95	60-156	44-172	3	0-40	
Carbon Tetrachloride	117	113	64-154	49-169	4	0-32	
1,2-Dibromoethane	110	106	54-144	39-159	4	0-36	
1,2-Dichlorobenzene	110	108	34-160	13-181	2	0-47	
1,2-Dichloroethane	104	100	69-153	55-167	4	0-30	
1,2-Dichloropropane	101	98	67-157	52-172	4	0-35	
1,4-Dichlorobenzene	109	108	36-156	16-176	1	0-47	
c-1,3-Dichloropropene	120	115	61-157	45-173	4	0-35	
Ethylbenzene	103	101	52-154	35-171	2	0-38	
o-Xylene	107	106	52-148	36-164	1	0-38	
p/m-Xylene	106	104	42-156	23-175	1	0-41	
Tetrachloroethene	104	101	56-152	40-168	3	0-40	
Toluene	100	97	56-146	41-161	3	0-43	
Trichloroethene	110	106	63-159	47-175	4	0-34	
1,1,2-Trichloroethane	110	106	65-149	51-163	3	0-37	
Vinyl Chloride	104	103	45-177	23-199	1	0-36	

Total number of LCS compounds: 16

Total number of ME compounds: 0

Total number of ME compounds allowed: 1

LCS ME CL validation result: Pass

CL - Control Limit

Delta Environmental Consultants, Inc. 312 Piercy Rd.

San Jose, CA 95138-1401

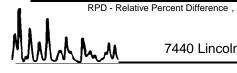
Date Received: Work Order No: Preparation: Method:

09-09-1884 N/A

N/A

EPA TO-15M

Project: 15275 Washington, San Leandro, CA


Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed 09/29/09		LCS/LCSD E Number	
099-12-981-28	Air	GC/MS K	N/A			090929L0	01
<u>Parameter</u>	LCS %REC	LCSD %REC	%REC CL	ME CL	<u>RPD</u>	RPD CL	Qualifiers
Benzene	92	91	60-156	44-172	2	0-40	
Carbon Tetrachloride	83	82	64-154	49-169	2	0-32	
1,2-Dibromoethane	98	97	54-144	39-159	1	0-36	
1,2-Dichlorobenzene	108	106	34-160	13-181	2	0-47	
1,2-Dichloroethane	78	78	69-153	55-167	1	0-30	
1,2-Dichloropropane	98	97	67-157	52-172	1	0-35	
1,4-Dichlorobenzene	104	102	36-156	16-176	2	0-47	
c-1,3-Dichloropropene	110	108	61-157	45-173	2	0-35	
Ethylbenzene	101	101	52-154	35-171	1	0-38	
o-Xylene	101	100	52-148	36-164	2	0-38	
p/m-Xylene	81	80	42-156	23-175	1	0-41	
Tetrachloroethene	92	92	56-152	40-168	1	0-40	
Toluene	97	98	56-146	41-161	0	0-43	
Trichloroethene	90	88	63-159	47-175	2	0-34	
1,1,2-Trichloroethane	99	97	65-149	51-163	2	0-37	
Vinyl Chloride	82	82	45-177	23-199	0	0-36	

Total number of LCS compounds: 16

Total number of ME compounds: 0

Total number of ME compounds allowed: 1

LCS ME CL validation result: Pass

CL - Control Limit

Glossary of Terms and Qualifiers

Work Order Number: 09-09-1884

Qualifier	<u>Definition</u>
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
Α	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
E	Concentration exceeds the calibration range.
Н	Sample received and/or analyzed past the recommended holding time.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ME	LCS Recovery Percentage is within LCS ME Control Limit range.
N	Nontarget Analyte.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
U	Undetected at the laboratory method detection limit.
X	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture.

	LAB (LOCATION)						W	She	ell Oi	l Pr	rod	luc	cts	C	nai	n O	f C	ust	ody	/R	ec	ord						
	CIENCE ()		Please	Check Ap	propria	ite Box.			Prin	nt Bil	l To	Cor	ıtact	Nan	ie::::				İŃC	IDEN	IT # (I	ENV.	SE	RVIC	ES)	□ cr	HECK IF NO INCIDENT # APPLIES
SPL	•		ENV. SERVICE			MOTIVA RET		SHEL	L RETAIL										· · · ·		7	- 1	l	- 1				
☐ XEN)	☐ MOTIVA SD&C	:M'		CONSULTAN	IT	LUBE	s :	12.55		SUZ	ANN		O #	KIN-N	LSO			9	<u>/ </u>) 3 AP#	, ; ,	4 1 	2	: 04	ATE: 9/24/2009
_	T AMERICA ()	E augus program		=					1 1 1 1 1					· · · ·	**************************************				::::::::::::::::::::::::::::::::::::::		- 3/	AF #:	· · · · ·	1	<u> </u>	P#	AGE:1 of1
Потн)	SHELL PIPELIN	<u> </u>		OTHER																1 2	2 9		4 6	0		
	G COMPANY: Consultants					LOG CODE:				SITE	ADDRE			-		C		d	S	tate	CA	G	OBAL ID	NO.:				
ADDRESS:						Ь				EDF DEL				mpany, Off		San	Learic	PHONENC	<u></u>		CA	E-M	60010	U122	.6			CONSULTANT PROJECT NO.:
	rcy Rd, San Jose, C										ela Pi Jose,)elta	Cons	ultant	t		408-82	36 4 9 6	2			ioo@.	dalta	env.co			SCA152751A
	ie McClurkin-Nelsoi										APLER		(S) (P	rint):				400-02	20-100			Iar	nco(w	ueite	zenv.co		AB USE	
TELEPHON 408-826	_	FAX: 408-225-8506		E-MAIL: SMCClurk	kin-nelson@c	leitaeny c	:om			Abh	ik Dı	utta														C) <i>G</i>	-09 -1884
TURNA	ROUND TIME (CALENDA:	1	S 2 DAYS	<u> </u>	□ 24 HC		☐ RE	SULTS NEE	DED	T					-				REC	UES	TED	ANAL'	/SIS			1885		
	RWQCB REPORT FORMA	_	5 <u> </u>				Old AA	ECKCIND		1	A	Air An:	alvsis		Т	+ diese	ı						w	aste	Chara	acteriza	ration	
0.05	OLAL INCTRUCTION	10 OR HOTEO -			☐ SHELL	CONTRACT	T RATE APP	LIES							\neg								T.,	\neg			4.50.7	TEMPERATURE ON RECEIPT C°
SPE	CIAL INSTRUCTION	IS OK NOTES :			☐ STATE	E REIMBURS	SEMENT RA	TE APPLIES	5	Purgeable (TO-15)				-15)		Extractable (8015M)	1							\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	2			
	please also	email results to: adutta@	deltaenv.com		☐ EDD N	NOT NEEDE	D			E			ļ	(TC		e (8							010		S Merc		ppm,	
					RECE:	IPT VERIFIC	CATION REC	QUESTED		apple		്ര		hane		ctab							sis (6	2 2	5		000	
			SAMPLI	NG		T	PRESERVA	TIVE	Т	 ∰	-15)	6	15)	oroet		<u> </u>							Met	1 5		issa	je X	
LAB USE ONLY	Field Samp	le Identification	DATE	TIME	MATRIX		103 H2SO4	NOVE OF	NO. OF CONT.	TPH-G	BTEX (to-15)	MTBE (TO-15)	TBA (TO-15)	1,1-difluoroethane (TO-15)		모							CAM 17 Metals (6010)	To and	Rull 3 LO/ LOLP Metals/Olg Pb if needed	Run Bioassay	f Benzei	Container PID Readings or Laboratory Notes
Y	P	27 (3)	9/24/09	9:25	AIR	INCL PIN	U3 H2SU4	X	ER .	x	Х	x	x	x			T						Ť				T	
2	P	27 (5)	9/24/09	9:20	AIR			x		х	х	х	х	х												T		Ω
34	P	27 (8)	9/24/09	9:15	AIR			х	:	х	х	x	X	х														ane a
4	P	·28 (3)	9/24/09	11:10	AIR			х		х	х	х	X	х														oeth; er
5	Р	·28 (5)	9/24/09	11:00	AIR			х		х	х	х	X	х														-difluoroef leak fracer
b	Р	-28 (8)	9/24/09	11:05	AIR			х		х	х	х	х	х									┸					used 1,1-difluoroethane as leak tracer
7	P	29 (3)	9/24/09	12:35	AIR	$\perp \perp$		х		x	х	X	Х	х			-						1			\perp		8 1,
8	P	-29 (5)	9/24/09	12:25	AIR			x		х	x	X	X	х														n s
0	P	·29 (8)	9/24/09	12:30	AIR			x		x	x	х	х	x									ı					
,																												
Relinquis	had by: (Signature)		Olado	'	Received by: (S	ignature)																Date:					Time:	
Relinguis	hed by: (Signature)		9/24/09		Received by: (S	Signatura		<u></u>														Date:	•				Time:	
. comiquia		AB# 105	723787			guiui 0)	T	tro	u)(·····				Ć	EL.	_				9/	25	70	29			0920
Relinquis	hed by: (Signature)				Received by: (S	Signature)																Date:		-			Time:	

Page 16 of 18

05/2/06 Revision

work order #: 09-09- \(\text{ \ \text{ \text{ \text{ \text{ \text{ \text{ \text{ \text{ \text{ \text{ \text{ \text{ \text{ \text{ \text{ \text{ \text{ \text{ \ \etitt{ \text{ \text{ \text{ \text{ \text{ \text{ \text{ \text{

nvironmental

aboratories, Inc. SAMPLE RECEIPT FORM Cooler ___ of ____

CLIENT: Delta	DATE: _	9/25/09
TEMPERATURE: (Criteria: 0.0 °C - 6.0 °C, not frozen) Temperature °C - 0.2 °C (CF) = °C Sample(s) outside temperature criteria (PM/APM contacted by:). Sample(s) outside temperature criteria but received on ice/chilled on same definition.	□ Blank lay of sampli	□ Sample ng.
☐ Received at ambient temperature, placed on ice for transport by Co		
Ambient Temperature: ☑ Air ☐ Filter ☐ Metals Only ☐ PCBs (Only	Initial:
CUSTODY SEALS INTACT: Cooler	□ N/A	Initial: M
SAMPLE CONDITION:	Yes	No N/A
Chain-Of-Custody (COC) document(s) received with samples	. 🗹	
COC document(s) received complete	. 🗆 🏢	
Collection date/time, matrix, and/or # of containers logged in based on sample labels.	•	
☐ COC not relinquished. ☐ No date relinquished. ☐ No time relinquished.		
Sampler's name indicated on COC		
Sample container label(s) consistent with COC		
Sample container(s) intact and good condition		
Correct containers and volume for analyses requested		
Analyses received within holding time		
Proper preservation noted on COC or sample container	. 🗆	
☐ Unpreserved vials received for Volatiles analysis		
Volatile analysis container(s) free of headspace	. 🗆	
Tedlar bag(s) free of condensation	. 🗹	
CONTAINER TYPE:		
Solid: □4ozCGJ □8ozCGJ □16ozCGJ □Sleeve □EnCores® □	∃TerraCore	s® □
Water: □VOA □VOAh □VOAna₂ □125AGB □125AGBh □125AGBp	□1AGB □	1AGB na₂ □1AGBs
□500AGB □500AGJ □500AGJs □250AGB □250CGB □250CGBs		
□250PB		
Air: ☑Tedlar® □Summa® □ Other: □		
Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag E:		eviewed by:
Proservative: h: HCI n: HNO3 naa: Naa-SaOa Na: NaOH n: HaPO4 s: HaSO4 znna: ZnAca+NaOH f	: Field-filtered	Scanned by: 🖟 🦯

WORK ORDER #: **09-09-** 1 8 4

aboratories, Inc. SAMPLE ANOMALY FORM

SAMPLES - CONTAINE	ERS & LAI	BELS:		Comn	nents:		
□ Samples NOT RECEI □ Samples received bu □ Holding time expired □ Insufficient quantitie □ Improper container(s □ No preservative note □ Sample labels illegib □ Sample labels do not □ Sample ID □ Date and/or Tim □ Project Informat □ # of Containers □ Analysis	VED but list It NOT LIST I – list samp Is for analy Is)/preserva It on COC It – note te It match CO	sted on CO TED on CO DIE ID(s) and sis – list te tive used - or label – est/containe OC – Note i	DC ad test est – list test list test & notif er type	(-3		(8) - half 5) - V3	Full
☐ Sample containers c	ompromis	ed – Note i	n comments			•	
☐ Leaking							
☐ Broken							
☐ Without Labels							
☐ Air sample containe	rs compro	mised – N	ote in comme	nts			
☐ Flat							
☐ Very low in volu			0 _				
☐ Leaking (transfe			-	*)			
☐ Leaking (transfe	,		· - V.				· · · ·
Other: Taped Sinha	cles w/	WATER	clean tap	<u> </u>			
HEADSPACE – Contain	ners with	Bubble >	6mm or ¼ i	nch:			
Sample Container ID(s)	# of Vials Received	Sample #	Container ID(s)	# of Vials Received	Sample #	Container ID(s)	# of RSK or CO ₂ or DO Received
				-			,]
							
Comments:							
*Transferred at Client's reque	est.				Initial / Da	te_NCG	125109

APPENDIX D HISTORICAL SOIL VAPOR DATA

TABLE 1

SOIL VAPOR SAMPLING ANALYTICAL DATA

Former Shell Service Station 15275 Washington Boulevard San Leandro, CA

Well ID	Date	Depth	TPH-g	В	Т	E	Х	MTBE	ТВА	2-Propanol
		•								
		(feet)	(ug/m3)	(ug/m3)	(ug/m3)	(ug/m3)	(ug/m3)	(ug/m3)	(ug/m3)	
P-10	6/11/2008	5.5 ft	100,000	<2.7	14	3.9	11.8	<3.0	43	<8.2
P-11	6/11/2008	5.5 ft	8,000,000	1,100	240	<180	<180	<150	<520	<420
P-12	611/2008	5.5 ft	7,800,000	810	<630	<730	<730	<600	<5,100	<1,600
P-13	6/10/2008	5.5 ft	5,300	<2.5	5.6	<3.4	3.6	<2.8	<24	<7.8
P-14	6/10/2008	5.5 ft	2,100,000	1400	<130	4,700	280	<120	<1,000	<340
P-15	6/11/2008	5.5 ft	160,000	<54	<63	<73	<73	<60	<150	<160
P-16	6/10/2008	5.5 ft	130,000	<13	<15	26	<17	<14	<120	<120
P-17	6/10/2008	5.5 ft	450	<2.5	5.4	<3.4	3.6	<2.8	<23	<7.6
P-17D	6/10/2008	5.5 ft	1,100	<2.5	4.0	<3.4	<3.4	<2.8	<24	<7.8
P-18	6/10/2008	5.5 ft	13,000	3.2	6.0	<3.6	4.0	<3.0	36	<8.2
P-19	6/10/2008	5.5 ft	9,000,000	600	270	<180	<180	<150	<510	<410
P-20	6/10/2008	5.5 ft	26,000	<2.5	240	<3.4	<3.4	<2.8	55	27
P-20LD	6/10/2008	5.5 ft	26,000	<2.5	230	<3.4	<3.4	<2.8	52	29
P-21	6/10/2008	5.5 ft	8,200,000	6,400	280	27,000	3,500	<100	<340	<280
P-22	6/10/2008	5.5 ft	8,200,000	1,400	<320	14,000	<360	<300	<1,000	<820
P-23	6/10/2008	5.5 ft	6,500,000	12,000	190	46,000	25,120	<56	<190	<150
P-23LD	6/10/2008	5.5 ft	6,500,000	11,000	180	44,000	23,110	<56	<190	<150

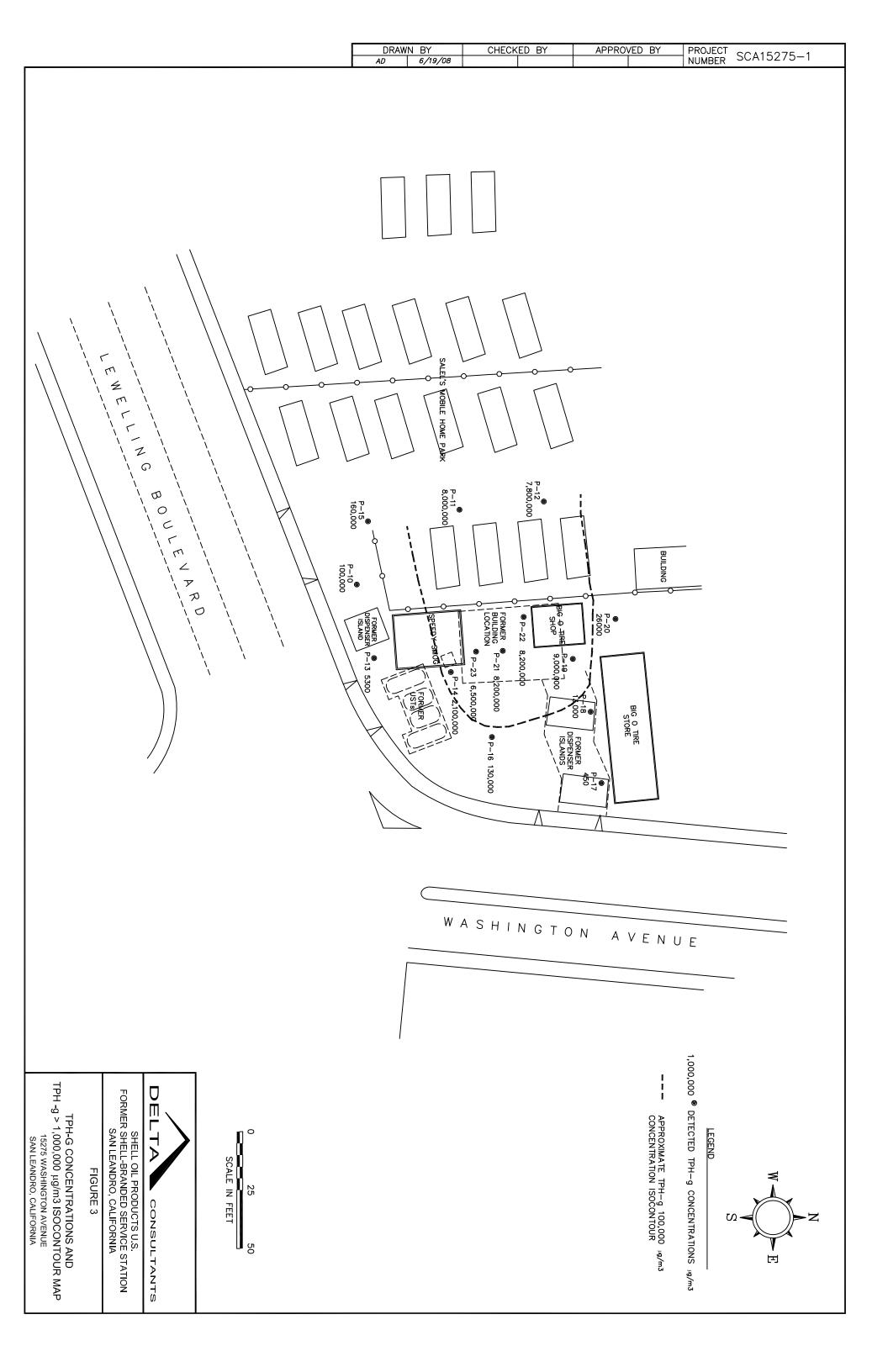
Abbreviations:

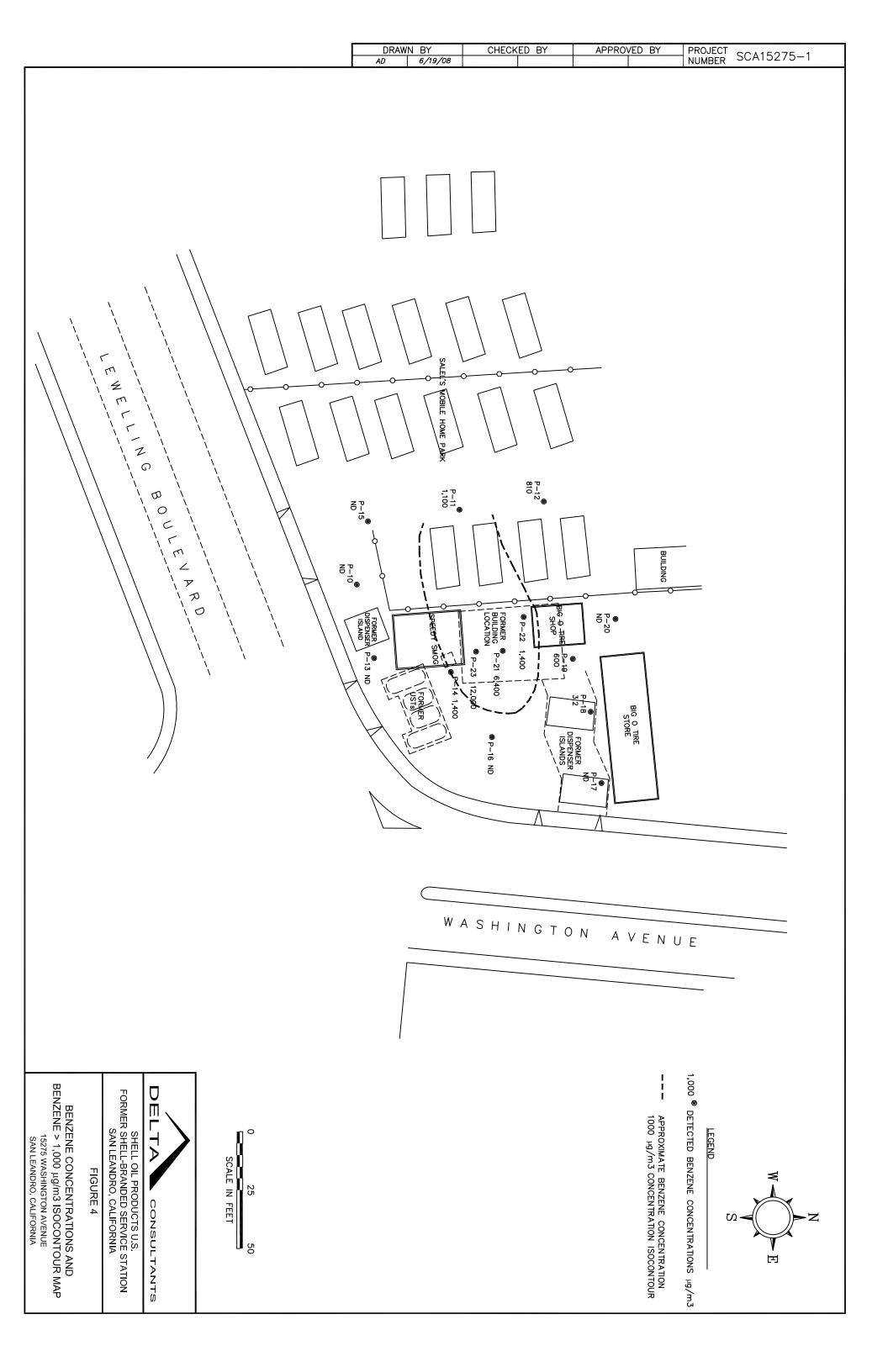
TPH-g = Total petroleum hydrocarbons as gasoline by EPA Method T0-14/T0-15

BTEX = Benzene, toluene, ethylbenzene, total xylenes by EPA Method T0-14A/T0-15

MTBE = Methyl tert-butyl ether

TBA = Tert-butyl-alcohol


2-Propanol= Isopropyl alcohol


ug/m3 = Microgram per cubic meter

<n = Not detected, below method detection limit

D = Duplicate sample

LD = Lab duplicate

TABLE 5

SOIL GAS SURVEY ANALYTICAL DATA

Shell Oil Products Company 15275 Washington Avenue San Leandro, CA WIC# 204-6852-1008

Sample	Date	TPPH	В	T	Е	х	MT8E	Comments
Depth (ft)	Sampled	(μg/m³)	(µg/m³)	(μg/m³)	(µg/m³)	(μg/m³)	(μ g/m³)	
SG-10-4								
4	31-Jul-97	1700	<7.0	11	<9.5	22	11	<u></u>
SG-11-4							<u> </u>	
4	31-Jul-97	660	<6.7	<7.9	<9.0	<9.0	<7.5	
SG-12-4								
4	31-Jul-97	5000	16	<8.3	13	22	29	
								·
SG-13-4		••						,,
4	31-Jul-97	5000	 <71	<84	<97	<97	<81	

Abbreviations:

<x = Not detected at detection limit of x NA = Not analyzed or not available

Table 2. Soil Vapor Survey Data: Sorted by Depth

	Former Shell Service Station WiC #204-6852-1008, 15275 Washington Avenue, San Leandro, California Depth below ground sarface Air Toxics LTD Data (ug/m²) InterPhase Data (%) Former Shell Service Station WiC #204-6852-1008, 15275 Washington Avenue, San Leandro, California Physical Republic Physical Republic Republi													
WA Sample ID	Depth below ground	(C ₆ + as gas)		-	•									
		Air Toxics L	ID Data (ug/m³)					InterPh	ase Do	sta (%)		Comments	
SG-02-2ft	1 2ff (46,000	73	250	96	250	880	7 [9.2%	11.3%		< 0.1%	No flow, sample collected at 2 ft	
SG-03-2ft	2 ft	54,000,000	260,000	390,000	190,000	370,000	310,000	11	15.8%	3.8%	78.9%	1.6%	Good flow, gravel	
SG-04-2ft	2#	220,000	310	420	150	1,700	3,200	11	0.7%	19.8%	79.4%	<0.1%	Pretty good/medium flow	
SG-07-2ff	2 ft	62,000,000	330,000	220,000	210,000	230,000	110,000	71	0.9%	19.7%	79.4%	<0.1%	Good flow	
SG-08-2ft	2 #	15,000	22	10	38	190	220	71	0.1%	20.6%	79.3%	< 0.1%	Good flow	
Med	n 2ft	23,256,200	118,081	122,136.	80,057	120,428	84.860		5.3%	15.0%	79.3%	0.4%	•	
	1.									- Constitution of the Cons	04004000			
SG-01-4ff	4ft	100,000,000	700,000	750,000	280,000	370.00G	1,300,000	٦1	19.7%	3.9%	68.6%	7.8%	Good flow, tight soil	
SG-03-4ff	4 11	33.000,000	150,000	230,000	110,000	210,000	330,000	١١	1,6%	18.1%	80.3%		Somewhat restricted flow	
SG-04-4ff	4 ft	350,000	550	1.000	2,300	2,600	4,400	11	1.4%	19.2%		< 0.1%		
SG-05-4ff	4 ff	8,700,000	6,200	20,000	42,000	75,000	130,000	٦1	0.3%	20.3%	79.4%		Very light	
SG-06 4ft	4ff	66.000	22	8	150	380	790	٦1	9.5%	19.9%	79.6%		Good flow	
SG-07-4ft	4ft	130,000,000	510,000	450,000	420,000	440,000	180,000	71	13.4%	9.5%	67.9%	9.3%	Good flow, high permeability	
SG-08-4ft	411	7,100,000	3,200	15,000	46,000	44,000	62,000	11	12.5%	4.8%	82.7%	< 0.1%	Good flow	
SG-09-4ft	4 ft	540,000	1.600	18,000	610	17,000	15,000	٦!	0.9%	20.0%	79.1%	< 0.1%	Pretty good flow	
										***************************************	/			
Me	on 4ft	34,969,500	171,447	185,501	112.633	144.873	252,774		6,3%	14.5%	77.1%	2.2%		
	Dec									173030	////			
SG-03-6ff	6ft	5,000,000	16,000	39,000	18,000	71,000	- 190,000	7	4.7%	16.4%	78.9%	< 0.1%	Somewhat restricted flow	
SG-04-6ft *	6ft	310,000	200	1,000	2.200	4.000	4.800	-1	1.2%	19.5%			Medum flow	
SG-04-6ft (dup)		NA	NA.	NA.	NA.	NA NA	NA NA		1.0%	19.2%			Medken flow	
SG-07-6ft ·	6ft	3,000,000	17,000	19,000	6,500	20,000	6,600	-	1.9%	18.7%			Low flow/very low permeability .	
SG-07-6ff (dup)		3,400,000	19,000	21,000	7,300	22.000	7,500	┥.	NA.	NA.	NA.	NA :	Low flow/very low permeability	
SG-08-6ft	6 ff	20,000,000	8,400	49,000	130,000	140,000	290,000	7	0.3%	20.0%			Low flow, a little tighter than 2 ft and 4 ft depths	
5G-08-6f7 (dup)		NA	NA	NA.	NA.	NA NA	NA.	7	0.2%	20.0%		< 0.1%	Low flow, a little fighter than 2 ft and 4 ft depths	
	·····	· · · · · · · · · · · · · · · · · · ·								1	1	1	The second of the second secon	
Mo	om óff	6,342,003	12,120	25.800	32,800	51,400	99,780		7.6%	19.09	79.39	0.3%		

Notes: < - Below the method detection limit.

M - reported value may be blased due to appearent matrix interferences.

Table 3. Soil Vapor Survey Data: Sorted by Location

	Former	Sheli Servic	e Station	WIC #20	14-6852-	1008, 15	275 Washi	ÍΩ	gion A	venue	, San L	eandr	o, California
WA Sample ID	Depth below ground surface	IPH (C _t + os gas)	MTBE	вегхепе	Tokvene	Elhylberzene	m,p,o-Xylene		Corbon Dioxids	Охудал	Nirogen	Methane	<i>:</i>
		Air Toxics L	ID Data	(ug/m³)				_	InterPh	ase Do	ıta (%)		Comments :
SG-01-4ft	4 ft	100,000,000	700,000	750,000	280,000	370,000	1,300,000	ŀŢ	19.7%		%6.86	7.8%	Good Bow, fight soil
100000													
SG-02-2 11	2#	46.000	73	250	96	250	883	l	9.2%	11.3%	79.5%	< 0.1%	No flow, sample collected at 2 ft
SG-03-2ff	2 ft	54,800,000	260,000	390,0001	190,000	370,000	370,000	1 6	15.8%	3.8%	78.9%	7 (0/	Condition
SG-03-4ff	4#	33,000,000	150,000	230,000	170,000	210,000	330,000	H	7.6%	18.1%		7.6% < 0.1%	Good flow, gravel Somewhat restricted flow
SG-03-6ft	6ft	5,000,000	16,000	39,000	18,000	73,000	190.000	H	4.7%	16.4%		< 0.1%	Somewhat restricted flow
00 00 011	1 0 11	, 0,000,000	10,000	Orocci i	10,000	71,000	170,000	3 L	447 76	10000	70.7%	C 0.18	goornewria restrated flow
SG-04-2ft	.2fr	220,000	370	420	150	1,700	3,200	1 7	0.7%	19.8%	79.4%	< 0.1%	Pretty good/medium flow
SG-04-4ft	4ff	350,000	550	1,000	2300	2,600	4,400	H	1.4%	· 19.2%		< 0.1%	
5G-04-6ft	óft	310.000	200	1,000	2.200	4,000	4.800	H	1.2%	19.5%		< 0.1%	Medium flow
SG-04-6ft (dup)	6ft	NA	NA NA	NA .	NA.	NA	NA NA	H	1.0%	19.2%		< 0.1%	Medium flow
T													
SG-05-4ff	48	8,700,000	6,200	20,000	42,000	75,000	130,000	Н	0.3%	20.3%	79.4%	< 0.1%	Very fight
1	·····							-					
SG-06 4ft	4 ft	66,000	22	8	150	380	790	11	0.5%	19.9%	79.6%	< 0.1%	Good flow
ISG-07-2ff	1 64	1 (0.000,000	000 000	500.000	010.000	200.000	1 110 220	4 1	0.504				
SG-07-4ft	2ff 4ff	62,000,000 130,000,000	330,000 510,000	220,000 450,000	210.000 420.000	230,000		11	0.9%	19.7%	79.4%	<0.1%	Good flow
SG-07-6ft	6ff	3.000.000	17,000	19,000	6,500	440,000 20,000	180,000	П	13:4%	9.5% 18.7%	67.9% 78.5%	9.3% 1.0%	Good flow, high permeability
SG-07-6ft (dup)	6ff	3,400,000	19,000	21,000	7,300	22.003	7,500	11	NA.	NA	NA NA	NA NA	Low flow/very low permeability Low flow/very low permeability
land or our (carp)	1 0 1		1,5000	21,000	7,000	22.000	7,000	1 1		100	14-	164	tow towards to a bettied back
SG-08-2ft	2ft	15,000	22 .	10	38	190	220	1 1	0.1%	20.6%	70.3%	< 0.1%	Good flow
SG-08-4ff	4ft	7,100,000	3,200	15,000	46.000	44,000	62,000	11	12.6%	4.8%		< 0.1%	Good flow
SG-08-6ft	6ft	20,000,000	8,400	49,000	130,000	140,000		11	0.3%	20.0%		< 0.1%	Low flow, a little tighter than 2 ft and 4 ft dept
SG-08-6ff (dup)	6ft	NA	NA	NA.	NA	NΑ	NA	1	0.2%	20.0%		< 0.1%	Low flow, a little tighter than 2ft and 4ft dep
SG-09-4ft	4ft	540,000	1,600	18,000	610	17,000	15,000	1	0.9%	20.0%	79.1%	< 0.1%	Pretty good flow
Notes: <	- Relow th	e method detec	tion limit					•					,

Notes: < - Below the method detection limit.

M - reported value may be biased due to apparent matrix interferences.

APPENDIX E

TABLE E-2 - SOIL GAS SCREENING LEVELS FOR EVALUATION OF POTENTIAL VAPOR INTRUSION CONCERNS

Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater

Prepared by:

California Regional Water Quality Control Board San Francisco Bay Region 1515 Clay Street, Suite 1400 Oakland, California 94612

INTERIM FINAL - November 2007 (Revised May 2008)

				Residential Expos	ure	Commercial/Industrial Land Use			
			Lowest	Carcinogenic	Noncarcinogenic	Lowest	Carcinogenic	Noncarcinogenic	
	Phy	sical	Residential	Effects	Effects	C/I	Effects	Effects	
Chemcial		ate	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	
Acenaphthene	V	S	4.4E+04	, <u> </u>	4.4E+04	1.2E+05		1.2E+05	
Acenaphthylene	V	S	2.2E+04		2.2E+04	6.1E+04		6.1E+04	
Acetone	V	L	6.6E+05		6.6E+05	1.8E+06		1.8E+06	
Aldrin	NV	S							
Anthracene	V	S	2.2E+05		2.2E+05	6.1E+05		6.1E+05	
Antimony	NV	S							
Arsenic	NV	S							
Barium	NV	S							
Benzene	V	L	8.4E+01	8.4E+01	6.3E+03	2.8E+02	2.8E+02	1.8E+04	
Benzo(a)anthracene	NV	S							
Benzo(b)fluoranthene	NV	S							
Benzo(k)fluoranthene	NV	S							
Benzo(g,h,i)perylene	NV	S							
Benzo(a)pyrene	NV	S							
Beryllium	NV	S							
1,1-Biphenyl	V	S							
Bis(2-chloroethyl) ether	V	L	7.4E+00	7.4E+00		2.5E+01	2.5E+01		
Bis(2-chloroisopropyl) ether	V	L	3.4E+00	3.4E+00	2.9E+04	1.2E+01	1.2E+01	8.2E+04	
Bis(2-ethylhexyl) phthalate	NV	S							
Boron	NV	S							
Bromodichloromethane	V	L	1.4E+02	1.4E+02	1.5E+04	4.6E+02	4.6E+02	4.1E+04	
Bromoform (Tribromomethane)	NV	S							
Bromomethane	V	G	1.0E+03		1.0E+03	2.9E+03		2.9E+03	
Cadmium	NV	S							
Carbon tetrachloride	V	L	1.9E+01	1.9E+01	8.3E+03	6.3E+01	6.3E+01	2.3E+04	
Chlordane	NV	S							
p-Chloroaniline	NV	S							
Chlorobenzene	V	L	2.1E+05		2.1E+05	5.8E+05		5.8E+05	
Chloroethane	V	G	2.1E+04		2.1E+04	5.8E+04		5.8E+04	
Chloroform	V	L	4.6E+02	4.6E+02	6.3E+04	1.5E+03	1.5E+03	1.8E+05	
Chloromethane	V	G	1.9E+04		1.9E+04	5.3E+04		5.3E+04	
2-Chlorophenol	V	L	3.7E+03		3.7E+03	1.0E+04		1.0E+04	
Chromium (total)	NV	S							
Chromium III	NV	S							
Chromium VI	NV	S							

				Residential Expos	ure	Commercial/Industrial Land Use				
			Lowest	Carcinogenic	Noncarcinogenic	Lowest	Carcinogenic	Noncarcinogenic		
	Phy	sical	Residential	Effects	Effects	C/I	Effects	Effects		
Chemcial	St	ate	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)		
Chrysene	NV	S								
Cobalt	NV	S								
Copper	NV	S								
Cyanide	NV	S	1.5E+04		1.5E+04	4.1E+04		4.1E+04		
Dibenz(a,h)anthracene	NV	S								
Dibromochloromethane	V	S								
1,2-dibromo-3-chloropropane	V	L	1.3E+00	1.3E+00	4.2E+01	4.3E+00	4.3E+00	1.2E+02		
1,2-Dibromoethane	V	S	4.1E+00	4.1E+00	1.9E+03	1.4E+01	1.4E+01	5.3E+03		
1,2-Dichlorobenzene	V	L	4.2E+04		4.2E+04	1.2E+05		1.2E+05		
1,3-Dichlorobenzene	V	L	2.2E+04		2.2E+04	6.1E+04		6.1E+04		
1,4-Dichlorobenzene	V	S	2.2E+02	2.2E+02	1.7E+05	7.4E+02	7.4E+02	4.7E+05		
3,3-Dichlorobenzidine	NV	S								
Dichlorodiphenyldichloroethane (DDD)	NV	S								
Dichlorodiphenyldichloroethene (DDE)	NV	S								
Dichlorodiphenyltrichloroethane (DDT)	NV	S								
1,1-Dichloroethane	V	L	1.5E+03	1.5E+03	1.0E+05	5.1E+03	5.1E+03	2.9E+05		
1,2-Dichloroethane	V	L	9.4E+01	9.4E+01	1.0E+03	3.1E+02	3.1E+02	2.9E+03		
1,1-Dichloroethene	V	L	4.2E+04		4.2E+04	1.2E+05		1.2E+05		
cis-1,2-Dichloroethene	V	L	7.3E+03		7.3E+03	2.0E+04		2.0E+04		
trans-1,2-Dichloroethene	V	L	1.5E+04		1.5E+04	4.1E+04		4.1E+04		
2,4-Dichlorophenol	NV	S								
1,2-Dichloropropane	V	L	2.4E+02	2.4E+02	8.3E+02	8.2E+02	8.2E+02	2.3E+03		
1,3-Dichloropropene	V	L	1.5E+02	1.5E+02	4.2E+03	5.1E+02	5.1E+02	1.2E+04		
Dieldrin	NV	S								
Diethyl phthalate	NV	S								
Dimethyl phthalate	NV	S								
2,4-Dimethylphenol	V	S								
2,4-Dinitrophenol	NV	S								
2,4-Dinitrotoluene	NV	S								
1,4-Dioxane	NV	L								
Dioxin (2,3,7,8-TCDD)	NV	S								
Endosulfan	NV	S								
Endrin	NV	S								
Ethylbenzene	V	L	9.8E+02	9.8E+02	2.1E+05	3.3E+03	3.3E+03	5.8E+05		
Fluoranthene	NV	S								

				Residential Expos	ure	Commercial/Industrial Land Use				
			Lowest	Carcinogenic	Noncarcinogenic	Lowest	Carcinogenic	Noncarcinogenic		
	Phy	sical	Residential	Effects	Effects	C/I	Effects	Effects		
Chemcial	St	ate	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	Carcinogenic	(µg/m³)		
Fluorene	V	S	2.9E+04		2.9E+04	8.2E+04		8.2E+04		
Heptachlor	NV	S								
Heptachlor epoxide	NV	S								
Hexachlorobenzene	NV	S								
Hexachlorobutadiene	NV	S								
γ-Hexachlorocyclohexane (Lindane)	NV	S								
Hexachloroethane	NV	S								
Indeno(1,2,3-c,d)pyrene	NV	S								
Lead	NV	S								
Mercury (elemental)	V	S	1.9E+01		1.9E+01	5.3E+01		5.3E+01		
Methoxychlor	NV	S								
Methylene chloride	V	L	5.2E+03	5.2E+03	8.3E+04	1.7E+04	1.7E+04	2.3E+05		
Methyl ethyl ketone	V	L	1.0E+06		1.0E+06	2.9E+06		2.9E+06		
Methyl isobutyl ketone	V	L	6.3E+05		6.3E+05	1.8E+06		1.8E+06		
Methyl mercury	NV	S								
2-Methylnaphthalene	V	S								
tert-Butyl methyl ether	V	L	9.4E+03	9.4E+03	6.3E+05	3.1E+04	3.1E+04	1.8E+06		
Molybdenum	NV	S								
Naphthalene	V	S	7.2E+01	7.2E+01	6.3E+02	2.4E+02	2.4E+02	1.8E+03		
Nickel	NV	S								
Pentachlorophenol	NV	S								
Perchlorate	NV	S								
Phenanthrene	V	S	2.2E+04		2.2E+04	6.1E+04		6.1E+04		
Phenol	NV	S								
Polychlorinated biphenyls (PCBs)	NV	S								
Pyrene	V	S	2.2E+04		2.2E+04	6.1E+04		6.1E+04		
Selenium	NV	S								
Silver	NV	S								
Styrene	V	L	1.9E+05		1.9E+05	5.3E+05		5.3E+05		
tert-Butyl alcohol	V	L								
1,1,1,2-Tetrachloroethane	V	L	3.2E+02	3.2E+02		1.1E+03	1.1E+03			
1,1,2,2-Tetrachloroethane	V	L	4.2E+01	4.2E+01	4.4E+04	1.4E+02	1.4E+02	1.2E+05		
Tetrachloroethene	V	L	4.1E+02	4.1E+02	8.3E+04	1.4E+03	1.4E+03	2.3E+05		
Thallium	NV	S								
Toluene	V	L	6.3E+04		6.3E+04	1.8E+05		1.8E+05		

				Residential Expos	ure	Con	nmercial/Industrial L	and Use	
	l		Lowest	Carcinogenic	Noncarcinogenic	Lowest	Carcinogenic	Noncarcinogenic	
		sical	Residential	Effects	Effects	C/I	Effects	Effects	
Chemcial	St	ate	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	
Toxaphene	NV	S							
TPH (gasolines)	V	L	1.0E+04		1.0E+04	2.9E+04		2.9E+04	
TPH (middle distillates)	V	L	1.0E+04		1.0E+04	2.9E+04		2.9E+04	
TPH (residual fuels)	NV	L/S							
1,2,4-Trichlorobenzene	V	L	8.3E+02		8.3E+02	2.3E+03		2.3E+03	
1,1,1-Trichloroethane	V	L	4.6E+05		4.6E+05	1.3E+06		1.3E+06	
1,1,2-Trichloroethane	V	L	1.5E+02	1.5E+02	2.9E+03	5.1E+02	5.1E+02	8.2E+03	
Trichloroethene	V	L	1.2E+03	1.2E+03	1.3E+05	4.1E+03	4.1E+03	3.5E+05	
2,4,5-Trichlorophenol	V	S	7.3E+04		7.3E+04	2.0E+05		2.0E+05	
2,4,6-Trichlorophenol	NV	S							
Vanadium	NV	S							
Vinyl chloride	V	G	3.1E+01	3.1E+01	2.1E+04	1.0E+02	1.0E+02	5.8E+04	
Xylenes	V	L	2.1E+04		2.1E+04	5.8E+04		5.8E+04	
Zinc	NV	S							

Notes:

Soil gas screening levels intended to be protective of indoor air quality, calculated for volatile chemicals only.

Physical state of chemical at ambient conditions (V - volatile, NV - nonvolatile, S - solid, L - liquid, G - gas).

Chemical considered to be volatile if Henry's Law constant (atm m³/mole) >10⁻⁵ and molecular weight <200 (see Table E-1).

Dibromochloromethane, dibromochloropropane and pyrene considered volatile for purposes of modeling (USEPA 2004).

Target cancer risk = 1E-06, Target Hazard Quotient = 0.2 for all chemicals.

Residential soil gas:indoor air attenuation factor = 0.001 (1/1000). Commercial/industrial soil gas:indoor air attenuation factor = 0.0005 (1/2000).

Soil gas screening level for ethanol based on potential indoor air nuisance concerns (refer to Section 5.3.3 and Table H series).

soils or limited soil impacts and no groundwater source of VOCs.

$\label{eq:appendix} \textbf{APPENDIX} \ \textbf{F}$ GUIDELINES FOR SOIL GAS COLLECTION IN TEDLAR $^{\otimes}$ BAGS

INSTRUCTIONS FOR SOIL GAS COLLECTION IN TEDLAR BAGS FULFILLING MISSOURI DNR GUIDELINES

Collecting Samples into Tedlar Bags

1. Connect a 2-way valve on to the soil gas probe using flex tubing. Connect the vacuum gauge to the 2-way valve and to a 3-way valve on 60 cc syringe as shown in Figure 1. BEWARE, STEM ON 3-WAY VALVE POINTS TO THE OFF DIRECTION.

Fig 1: Attach syringe & vacuum gauge to soil gas probe tubing using 2-way & 3-vay valves. Be sure to zip tie the connections.

- 3. Turn the 3-way valve on the syringe so that the flow-path to the vacuum gauge is off. Watch the vacuum gauge. If vacuum remains steady for 30 seconds, sampling train is leak-tight. If the vacuum does not remain steady, find the leak, correct, and repeat leak test.
- 4. Open the 3-way and 2-way valves so that the soil gas probe is open to the syringe and purge appropriate volume from probe using 60 cc syringe). Use 3 internal dead-volumes unless otherwise instructed to do so. Dead volume of 1/8" nylaflow is 1 cc per foot. Dead volume of 1/4" tubing is 5 cc/foot.

5. After purging, leave the syringe connected to the vapor gauge & vapor probe and connect a tedlar bag to the side port of the 3-way valve using flex tubing (figure 2).

Fig 2: Connect tedlar to the side port of the 3-way valve and fill bag with 300-450 cc vapor sample.

- 6. If a leak/tracer compound is required, place leak compound around base of probe where it enters the ground. An easy way to do this is to dampen a paper towel with isopropyl alcohol (rubbing alcohol) or difluoroethane (duster spray) and place around the base of probe.
- 7. Open valve on the tedlar bag. Fill tedlar bag with 300 cc to 400 cc using the syringe and switching the position of the 3-way valve from the probe to the tedlar bag. Note: if tedlar bags are to be shipped by air, only fill them with 300 cc. If the samples in the tedlar will be transferred to mini-canisters on-site, put 450 cc into the tedlar.
- 8. Once filled, close valve on tedlar bag and remove from 3-way valve.

Note: When filling with a syringe, you control the flow rate by how fact you pull on the syringe. Hence, a flow meter should not be necessary. If you wish to install a flow meter, place it between the 60 cc syringe and the vacuum gauge.