RECEIVED

1:18 pm, Jun 01, 2007

Alameda County
Environmental Health

May 31, 2007

Mr. Jerry Wickham Hazardous Materials Specialist Alameda County Environmental Health Services 1131 Harbor Bay Parkway Suite 250 Alameda, CA 94502

Re: Response to Agency Comments Former 76 Service Station #7004 15599 Hesperion Boulevard San Leandro, Alameda County, CA

Dear Mr. Wickham:

I declare under penalty of perjury that to the best of my knowledge the information and/or recommendations contained in the attached report is/are true and correct.

If you have any questions or need additional information, please call me at (916) 558-7604.

Sincerely,

Eric G. Hetrick Site Manager

Risk Management & Remediation

SECOR INTERNATIONAL INCORPORATED

www.secor.com 3017 Kilgore Road, Suite 100 Rancho Cordova, CA 95670 916-861-0400 TEL 916-861-0430 FAX

May 31, 2007

Mr. Jerry Wickham Hazardous Materials Specialist Alameda County Health Care Services Agency Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

RE: Response to ACHCSA's Comments and Request for Site Closure

Former 76 Service Station No. 7004 15599 Hesperian Boulevard San Leandro, California 94579 Fuel Leak Case No. RO0000371/Geotracker Global ID T0600101451

Dear Mr. Wickham:

On behalf of ConocoPhillips, SECOR International, Incorporated (SECOR) has prepared this response to comments presented in a letter by the Alameda County Health Care Services Agency (ACHCSA) dated April 5, 2007 (Attachment 1) in reference to former 76 Service Station No. 7004 (the "site"), located at 15599 Hesperian Boulevard, San Leandro, California (Figure 1). The ACHCSA's comments were authored in response to the submittal of SECOR's *No Further Action Analysis and Human Health Risk Assessment* dated October 6, 2006, and *No Further Action Required (NFAR) and Request for Site Closure* report dated November 6, 2006. SECOR has addressed each of the ACHCSA's comments numerically below.

(1) **Downgradient Irrigation Well.** A Caltrans irrigation well that was recently identified by field observation near the intersection of Lewelling Boulevard and Interstate 880, is a potential receptor for groundwater contamination from the site. We request that you evaluate whether this well is currently impacted by groundwater contamination and the potential for this well to be further affected in the future. MTBE was detected at concentrations ranging from 16 to 57 micrograms per liter (µg/L) in grab groundwater samples collected from each of the soil borings in the downgradient transect (SB34 through SB37). These borings (SB-34 through SB37) appear to be approximately 100 to 200 feet upgradient from the irrigation well, which appears to be located approximately 400 feet west of the fuel release. In order to more accurately define the location of the irrigation well, we request that you show the Caltrans irrigation well on a more detailed site map with a scale similar to Figure 2 – Site Plan in the "No Further Action Required (NFAR) and Request for Site Closure", dated November 6, 2006. No well construction details are presented in the reports that identify this well to indicate the vertical interval from which this well extracts groundwater. The evaluation of the potential for the irrigation well to be a receptor is to include information on well construction and the current and projected future use of the well. The evaluation may also include sounding of the well to confirm the total depth and collection and analysis of a water sample from the well to evaluate whether the well is currently impacted. Updating of fate and transport estimations to specifically consider the irrigation well may also be considered in

SECOR

Mr. Jerry Wickham May 31, 2007 Page 2

the evaluation. Please present the results of this evaluation in the Response to Agency Comments requested below.

On April 11, 2007, SECOR contacted the State of California, Department of Transportation (Cal-Trans) Maintenance Division of Alameda County for additional information pertaining to the construction, status, and location of the Cal-Trans well that was observed in the field, and for permission to access the well to measure groundwater levels and collect a groundwater sample. Mr. Jerry Cooper, Landscape Supervisor of the area, confirmed that what was previously observed by SECOR personnel in the field (above-ground piping cased in concrete with an electrical feed connected to the piping) was actually piping connected to an eight-inch diameter water line historically used to transport reclaimed water to the area adjacent to the Target Property for irrigation purposes. The pump station for this reclaimed water is still present, and is located near the north-bound Interstate 880 on-ramp from Lewelling Boulevard. The pump, however, was disconnected and capped in place about four to five years ago. The source of this reclaimed water was located in the City of Pleasanton, and the reclaimed water was historically pipelined from that area to the Cal-Trans right-of-way adjacent to the Target Property.

Because it has been discovered that there is no Cal-Trans irrigation well located in the vicinity of the site, the submittal of information requested by the ACHCSA (a figure further detailing the location of the Cal Trans irrigation well in proximity of the site, well construction details, current and projected use of the well, obtaining measurements of depth to groundwater and depth to bottom of the well and a groundwater sample for laboratory analysis, and fate and transport estimations) is not applicable.

(2) **Locations of Former Gas Dispensers and USTs.** USTs and fuel distribution systems appear to have operated at the site since 1967. Please describe the historic locations of USTs, dispensers, and product piping since 1967.

On April 18, 2007, SECOR researched the City of San Leandro Community Development Department's (CSLCDD) files in search of historical information pertaining to the locations of previous generations of subsurface fuel-related structures. SECOR additionally contacted the Alameda County Fire Department (ACFD), the ACHCSA, and the City of San Leandro Fire Department (CSLFD). The ACFD indicated that any historical records that they would have possessed for the site would have been turned over to the ACHCSA, and the ACHCSA indicated that they did not have any historical records for the site that predated the opening of the active case at the site in 1990. The CSLFD indicated that any historical records that they would have possessed pertaining to the site would have been turned over to the City of San Leandro. On May 1, 2007, SECOR researched the City of San Leandro Environmental Services' (CSLES) files in search of historical information pertaining to the locations of previous generations of subsurface fuel-related structures. Plans obtained from the CSLCDD and CSLES dated March 29, 1966; April 26, 1973; June 30, 1976; February 9, 1990; and October 6, 1991 for the former station that was previously operated by Gemco Department Stores, and subsequently operated by UNOCAL, show that the general locations of the former gasoline USTs and product dispensers did not change throughout the historical operation of the site as a gasoline service station since 1967. Product piping was shown on the plans dated April 26, 1973 and February 9, 1990 in the same approximate location depicted by Gettler-Ryan in their

Mr. Jerry Wickham May 31, 2007 Page 3

September 8, 2000 Underground Storage Tank and Product Piping Removal Report for Former Tosco 76 Service Station No. 7004, 15599 Hesperian Boulevard, San Leandro, California. Copies of the historical plans for the former service station are included in Attachment 2.

(3) Lead in Groundwater. Lead was detected in grab groundwater samples collected from borings SB1 through SB23 at concentrations ranging from less than 5 to 430 μg/L. The California Primary Maximum Contaminant Level for lead in drinking water is 15 μg/L. The lowest aquatic habitat goal for lead in water is 2.5 μg/L (San Francisco Bay Regional Water Quality Control Board Environmental Screening Levels February 2005). Lead was not detected in groundwater samples collected from several monitoring wells in December 2005; however, the reporting limit was 50 μg/L. In the Response to Agency Comments requested below, please discuss these results and evaluate whether elevated concentrations of lead are present in site groundwater and whether lead in groundwater poses a potential risk to human health or the environment.

As stated in SECOR's October 5, 2005 Site Assessment Report Dated October 5, 2005, the results of total lead (Environmental Protection Agency [EPA] Method 6010B) for grab groundwater samples collected from borings SB-1 through SB-21 and SB-23 were not considered representative of subsurface site conditions. These groundwater samples were improperly submitted to the laboratory in preserved hydrochloric acid vials. SECOR recommended the collection and analysis of groundwater samples from the monitoring well network in appropriate unpreserved containers for filtration in the laboratory and analysis for total lead by EPA Method 6010B during the fourth quarter 2005. Groundwater samples were subsequently collected from wells MW-1 through MW-6 and RW-1 in December 2005, and properly submitted for analysis of total lead by EPA Method 6010B. The analyte was not present in the wells at or above a reporting limit of 50 μ g/L.

To further evaluate the presence of dissolved lead in groundwater, groundwater samples were collected from the current monitoring well network by TRC Solutions as part of the second quarter 2007 monitoring and sampling event on April 24, 2007. The groundwater samples were properly collected and analyzed in accordance with the sampling methodology communicated by the laboratory, including delivery to the laboratory within 24 hours of collection for filtration and preservation. The samples were submitted for analysis of dissolved lead by EPA Method 6020, and the laboratory was requested to report results at or above 1.0 microgram per liter (μ g/L), which is below the California Primary Maximum Contaminant Level of 15 μ g/L and below the Regional Water Quality Control Board – San Francisco Bay Region's (RWQCB-SFBR) lowest aquatic habitat goal of 2.5 μ g/L. Results indicated that dissolved lead was not present in the samples at or above the laboratory method detection limit of 1.0 μ g/L. The certified laboratory analytical report and chain-of-custody documentation are included in Attachment 3. These results are considered representative of groundwater conditions.

SECOR submits that the three issues identified by the ACHCSA as requiring further investigation have been satisfactorily evaluated, and this site presents low risk to human health and the environment. Subsequent quarterly monitoring data since the initial closure request indicates generally declining concentrations of petroleum hydrocarbons and MTBE, and the most recent concentrations are below both primary and secondary MCLs. Therefore, SECOR

Mr. Jerry Wickham May 31, 2007 Page 4

requests that the site be granted closure. Upon approval of closure, SECOR will properly destroy the site groundwater monitoring wells, and request a final closure letter.

LIMITATIONS AND CERTIFICATION

This report was prepared in accordance with the scope of work outlined in SECOR's contract and with generally accepted professional engineering and environmental consulting practices existing at the time this report was prepared and applicable to the location of the site. It was prepared for the exclusive use of ConocoPhillips, for the express purpose stated above. Any reuse of this report for a different purpose or by others not identified above shall be at the user's sole risk without liability to SECOR. To the extent that this report is based on information provided to SECOR by third parties, SECOR may have made efforts to verify this third party information, but SECOR cannot guarantee the completeness or accuracy of this information. The opinions expressed and data collected are based on the conditions of the site existing at the time of the field investigation. No other warranties, expressed or implied, are made by SECOR.

Prepared by:

?. Buthin bor

Associate Scientist

Information, conclusions, and recommendations provided by SECOR in this document regarding the Former 76 Service Station 7004, 15599 Hesperian Boulevard, San Leandro, California have been prepared under the supervision of and reviewed by the Licensed professional whose signature appears below.

Licensed Approver:

Name: **Diane Barclay** Signature:

Certified Hydrogeologist No. 34

Date:

May 31, 2007

Stamp:

Attachments: Figure 1

Site Plan

Attachment 1

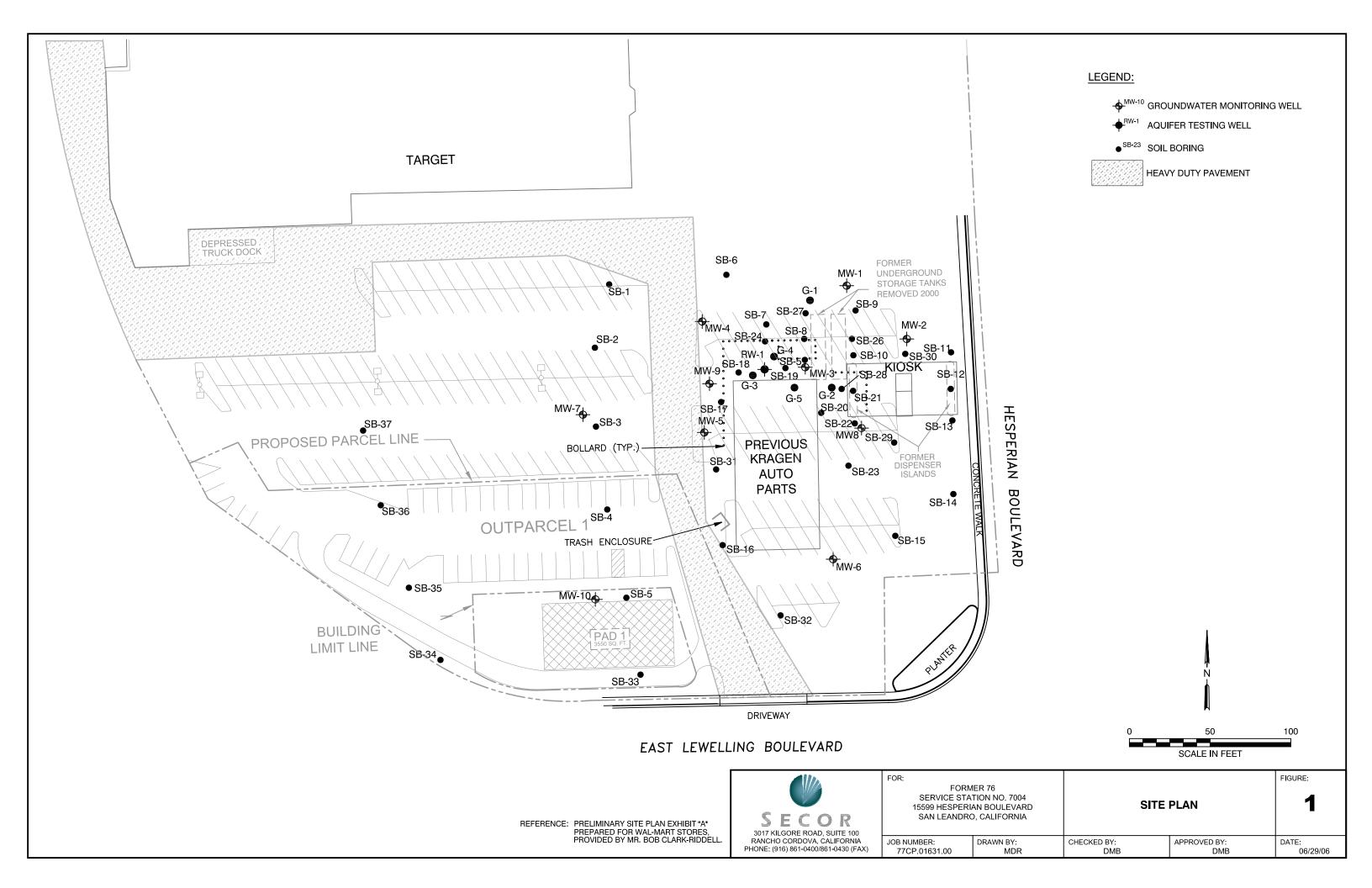
Regulatory Correspondence

Attachment 2

Plans Depicting Historical Service Station Layout

Attachment 3

Certified Laboratory Analytical Report and Chain-of-Custody


Documentation

CC:

Erik Hetrick, ConocoPhillips Company

GEOLOGIS'

FIGURE

ATTACHMENT 1 REGULATORY CORRESPONDENCE

Response to ACHCSA's Comments and Request for Site Closure
Former 76 Service Station No. 7004
15599 Hesperian Boulevard
San Leandro, California
SECOR Project No.: 77CP.01631.14

ALAMEDA COUNTY

HEALTH CARE SERVICES

AGENCY

ENVIRONMENTAL HEALTH SERVICES

ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

April 5, 2007

Mr. Erik Hetrick ConocoPhillips Company 76 Broadway Sacramento, CA 95818 Ms. Paula Kamena Kamena, Maionchi, and Freschi 11 Sagebrush Court San Rafael, CA 94901

Ms. Shelly Eisaman Wells Fargo Bank, N.A. Brunetti Trust 420 Montgomery Street, 3rd Floor San Francisco, CA 94104

Subject: Fuel Leak Case No. RO0000371 and Geotracker Global ID T0600101451, Unocal #7004, 15599 Hesperian Boulevard, San Leandro, CA 94579

Dear Mr. Hetrick, Ms. Kamena, and Ms. Eisaman:

Alameda County Environmental Health (ACEH) staff has reviewed the case file for the above-referenced site including the recently submitted correspondence entitled, "No Further Action Analysis and Human Health Risk Assessment," dated October 6, 2006, and "No Further Action Required (NFAR) and Request for Site Closure," dated November 6, 2006. The "No Further Action Required (NFAR) and Request for Site Closure," dated November 6, 2006 presents a summary of site background, historic investigation and cleanup data and presents the rationale for site closure. Based on our review of the case file, three issues were identified which require further information and evaluation prior to consideration of case closure. Therefore, we request that you address the following technical comments and send us the reports described below.

TECHNICAL COMMENTS

1. Downgradient Irrigation Well. A Caltrans irrigation well that was recently identified by field observation near the intersection of Lewelling Boulevard and Interstate 880, is a potential receptor for groundwater contamination from the site. We request that you evaluate whether this well is currently impacted by groundwater contamination and the potential for this well to be further affected in the future. MTBE was detected at concentrations ranging from 16 to 57 micrograms per liter (μg/L) in grab groundwater samples collected from each of the soil borings in the downgradient transect (SB34 through SB37). These borings (SB34 through SB37) appear to be approximately 100 to 200 feet upgradient from the irrigation well, which appears to be located approximately 400 feet west of the fuel release. In order to more accurately define the location of the irrigation well, we request that you show the Caltrans irrigation well on a more detailed site map with a scale similar to Figure 2 - Site Plan in the "No Further Action Required (NFAR) and Request for Site Closure," dated November 6, 2006. No well construction details are presented in the reports that identify this well to

Mr. Eric Hetrick Ms. Paula Kamena Ms. Shelly Eisaman April 5, 2007 Page 2

indicate the vertical interval from which this well extracts groundwater. The evaluation of the potential for the irrigation well to be a receptor is to include information on well construction and the current and projected future use of the well. The evaluation may also include sounding of the well to confirm the total depth and collection and analysis of a water sample from the well to evaluate whether the well is currently impacted. Updating of fate and transport estimations to specifically consider the irrigation well may also be considered in the evaluation. Please present the results of this evaluation in the Response to Agency Comments requested below.

- Locations of Former Gas Dispensers and USTs. USTs and fuel distribution systems
 appear to have operated at the site since 1967. Please describe the historic locations of
 USTs, dispensers, and product piping since 1967.
- 3. Lead in Groundwater. Lead was detected in grab groundwater samples collected from borings SB1 through SB23 at concentrations ranging from less than 5 to 430 μg/L. The California Primary Maximum Contaminant Level for lead in drinking water is 15 μg/L. The lowest aquatic habitat goal for lead in water is 2.5 μg/L (San Francisco Bay Regional Water Quality Control Board Environmental Screening Levels February 2005). Lead was not detected in groundwater samples collected from several monitoring wells in December 2005; however, the reporting limit was 50 μg/L. In the Response to Agency Comments requested below, please discuss these results and evaluate whether elevated concentrations of lead are present in site groundwater and whether lead in groundwater poses a potential risk to human health or the environment.

TECHNICAL REPORT REQUEST

Please submit technical reports to Alameda County Environmental Health (Attention: Jerry Wickham), according to the following schedule:

June 5, 2007 – Response to Agency Comments

These reports are being requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request.

ELECTRONIC SUBMITTAL OF REPORTS

The Alameda County Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of all reports in electronic form to the county's ftp site. Paper copies of reports will no longer be accepted. The electronic copy replaces the paper copy and will be used for all public information requests, regulatory review, and compliance/enforcement activities. Instructions for submission of electronic documents to the Alameda County Environmental Cleanup Oversight Program ftp site are provided on the attached "Electronic Report Upload (ftp) Instructions." Please do not submit reports as attachments to electronic mail.

Mr. Eric Hetrick Ms. Paula Kamena Ms. Shelly Eisaman April 5, 2007 Page 3

Submission of reports to the Alameda County ftp site is an addition to existing requirements for electronic submittal of information to the State Water Resources Control Board (SWRCB) Geotracker website. Submission of reports to the Geotracker website does not fulfill the requirement to submit documents to the Alameda County ftp site. In September 2004, the SWRCB adopted regulations that require electronic submittal of information for groundwater cleanup programs. For several years, responsible parties for cleanup of leaks from underground storage tanks (USTs) have been required to submit groundwater analytical data, surveyed locations of monitor wells, and other data to the Geotracker database over the Internet. Beginning July 1, 2005, electronic submittal of a complete copy of all necessary reports was required in Geotracker (in PDF format). Please visit the SWRCB website for more information on these requirements (http://www.swrcb.ca.gov/ust/cleanup/electronic_reporting).

PERJURY STATEMENT

All work plans, technical reports, or technical documents submitted to ACEH must be accompanied by a cover letter from the responsible party that states, at a minimum, the following: "I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge." This letter must be signed by an officer or legally authorized representative of your company. Please include a cover letter satisfying these requirements with all future reports and technical documents submitted for this fuel leak case.

PROFESSIONAL CERTIFICATION & CONCLUSIONS/RECOMMENDATIONS

The California Business and Professions Code (Sections 6735, 6835, and 7835.1) requires that work plans and technical or implementation reports containing geologic or engineering evaluations and/or judgments be performed under the direction of an appropriately registered or certified professional. For your submittal to be considered a valid technical report, you are to present site specific data, data interpretations, and recommendations prepared by an appropriately licensed professional and include the professional registration stamp, signature, and statement of professional certification. Please ensure all that all technical reports submitted for this fuel leak case meet this requirement.

UNDERGROUND STORAGE TANK CLEANUP FUND

Please note that delays in investigation, later reports, or enforcement actions may result in your becoming ineligible to receive grant money from the state's Underground Storage Tank Cleanup Fund (Senate Bill 2004) to reimburse you for the cost of cleanup.

AGENCY OVERSIGHT

If it appears as though significant delays are occurring or reports are not submitted as requested, we will consider referring your case to the Regional Board or other appropriate agency, including the County District Attorney, for possible enforcement actions. California Health and Safety Code, Section 25299.76 authorizes enforcement including administrative action or monetary penalties of up to \$10,000 per day for each day of violation.

Mr. Eric Hetrick Ms. Paula Kamena Ms. Shelly Eisaman April 5, 2007 Page 4

If you have any questions, please call me at (510) 567-6791.

Sincerely,

Jerry Wickham

Hazardous Materials Specialist

Enclosure: ACEH Electronic Report Upload (ftp) Instructions

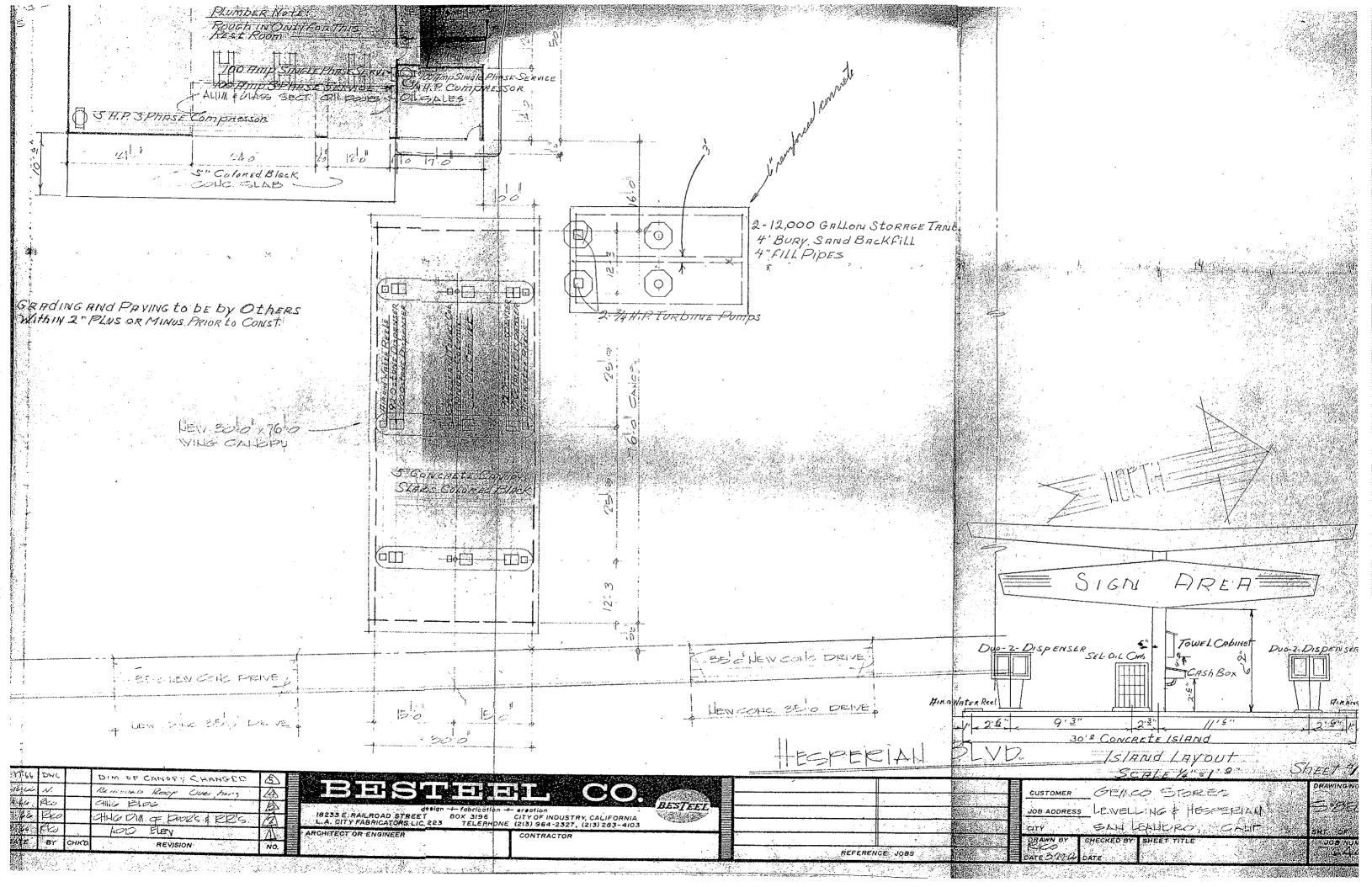
cc: Gary Ragghianti, Ragghianti Freitas LLP, 874 Fourth Street, Suite D, San Rafael, CA 94903

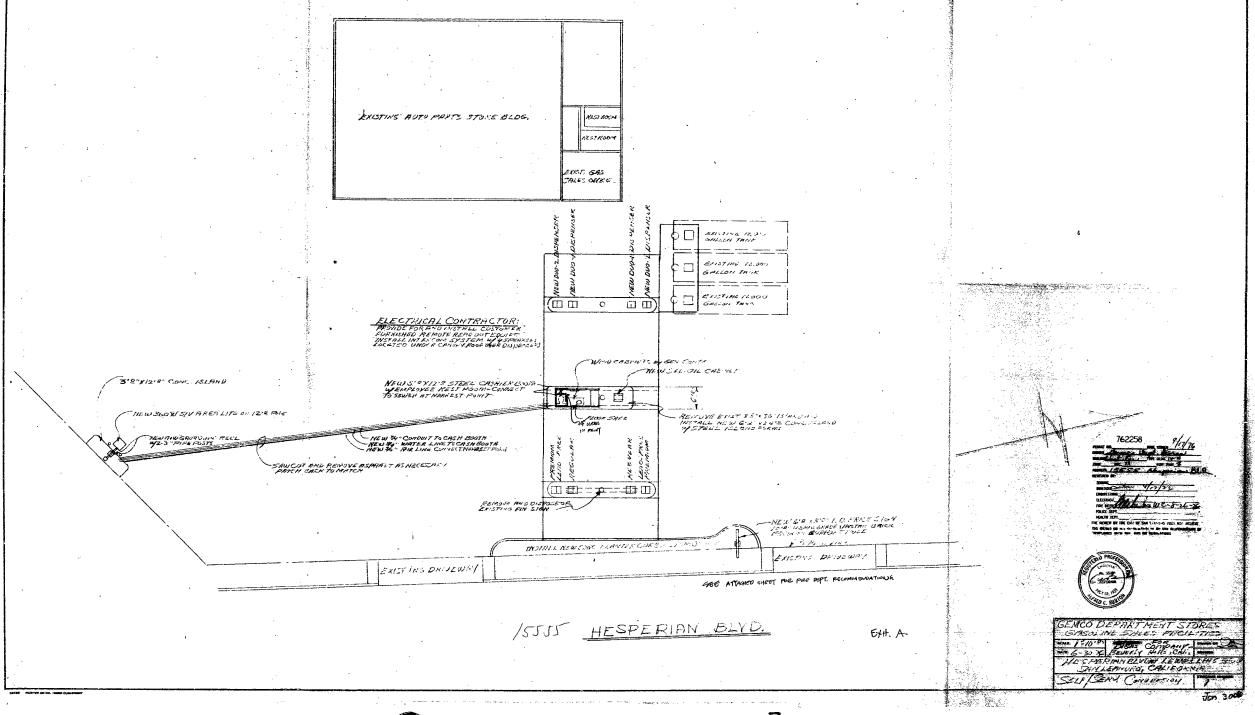
Alan Guttenberg, Guttenberg, Rapson, and Colvin LLP, 101 Lucas Valley Road, Suite 216, San Rafael, CA 94903

Ladd Calhoun, Law Office of John D. Edgcomb, 115 Sansome Street, Suite 805, San Francisco, CA 94104

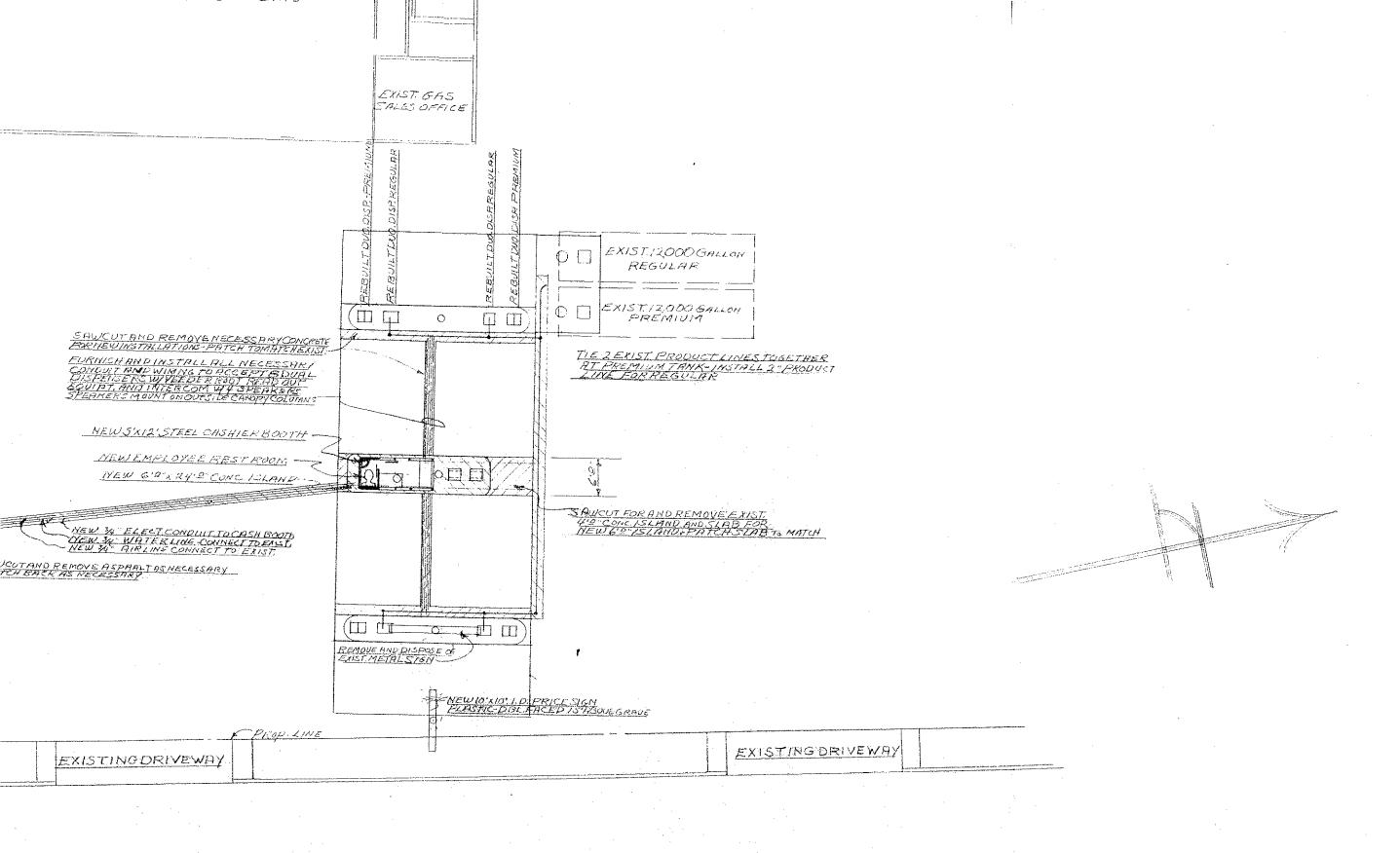
Daniel J. Barry, Stein & Lubin, LLP, Transamerica Pyramid, 600 Montgomery Street, $14^{\rm th}$ Floor, San Francisco, CA 94111

Michael DiGeronimo, Esq., Miller Starr & Regalia, 1331 N. California Blvd., Fifth Floor, Walnut Creek, CA 94596


Diane Barclay, SECOR International, Inc., 3017 Kilgore Road, Suite 100, Rancho Cordova, CA 95670


Bob Clark-Ridell, Pangea Environmental Services, Inc., 1710 Franklin Street, Suite 200, Oakland, CA 94612

Donna Drogos, ACEH Jerry Wickham, ACEH File


ATTACHMENT 2 PLANS DEPICTING HISTORICAL SERVICE STATION LAYOUT

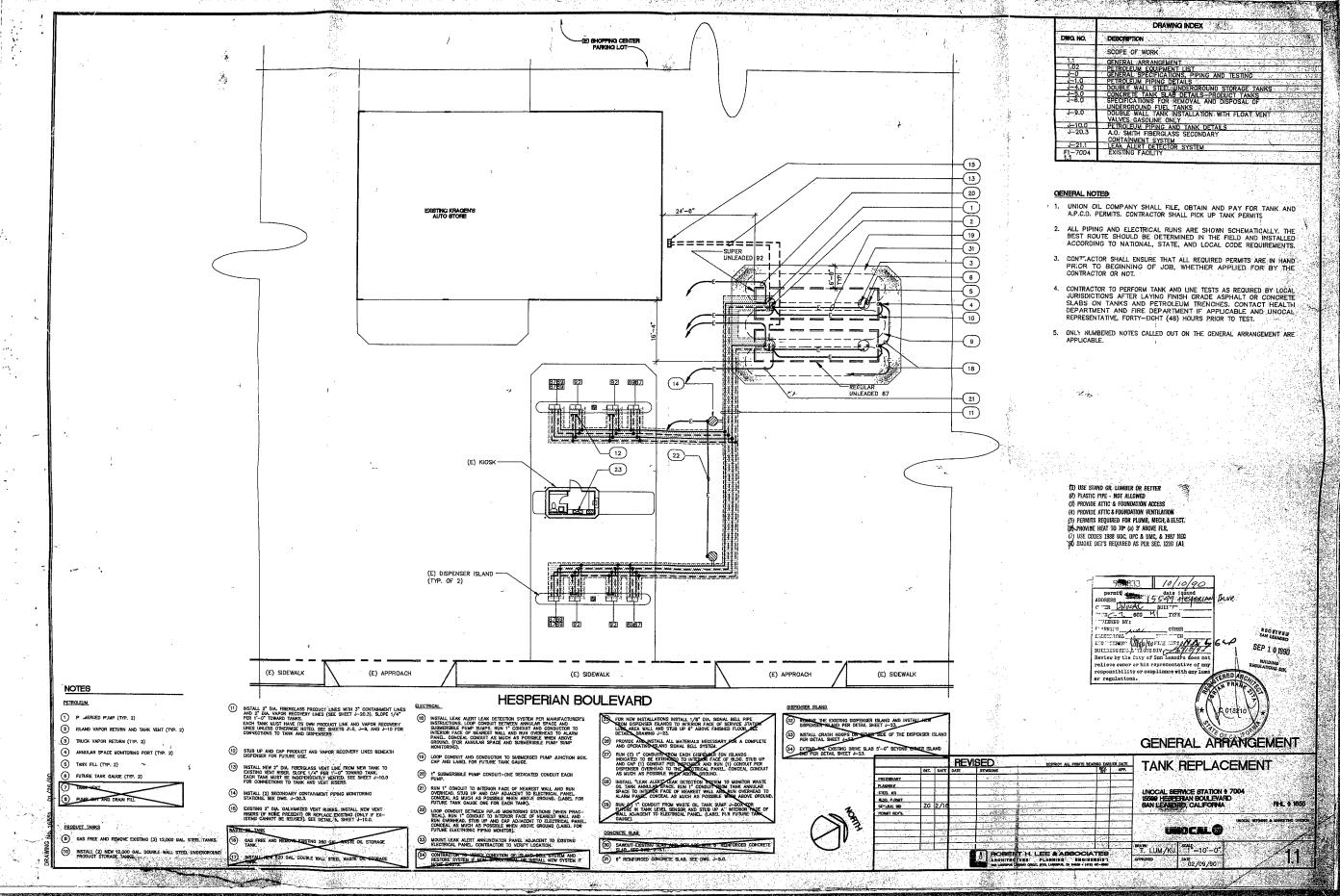
Response to ACHCSA's Comments and Request for Site Closure Former 76 Service Station No. 7004 15599 Hesperian Boulevard San Leandro, California SECOR Project No.: 77CP.01631.14

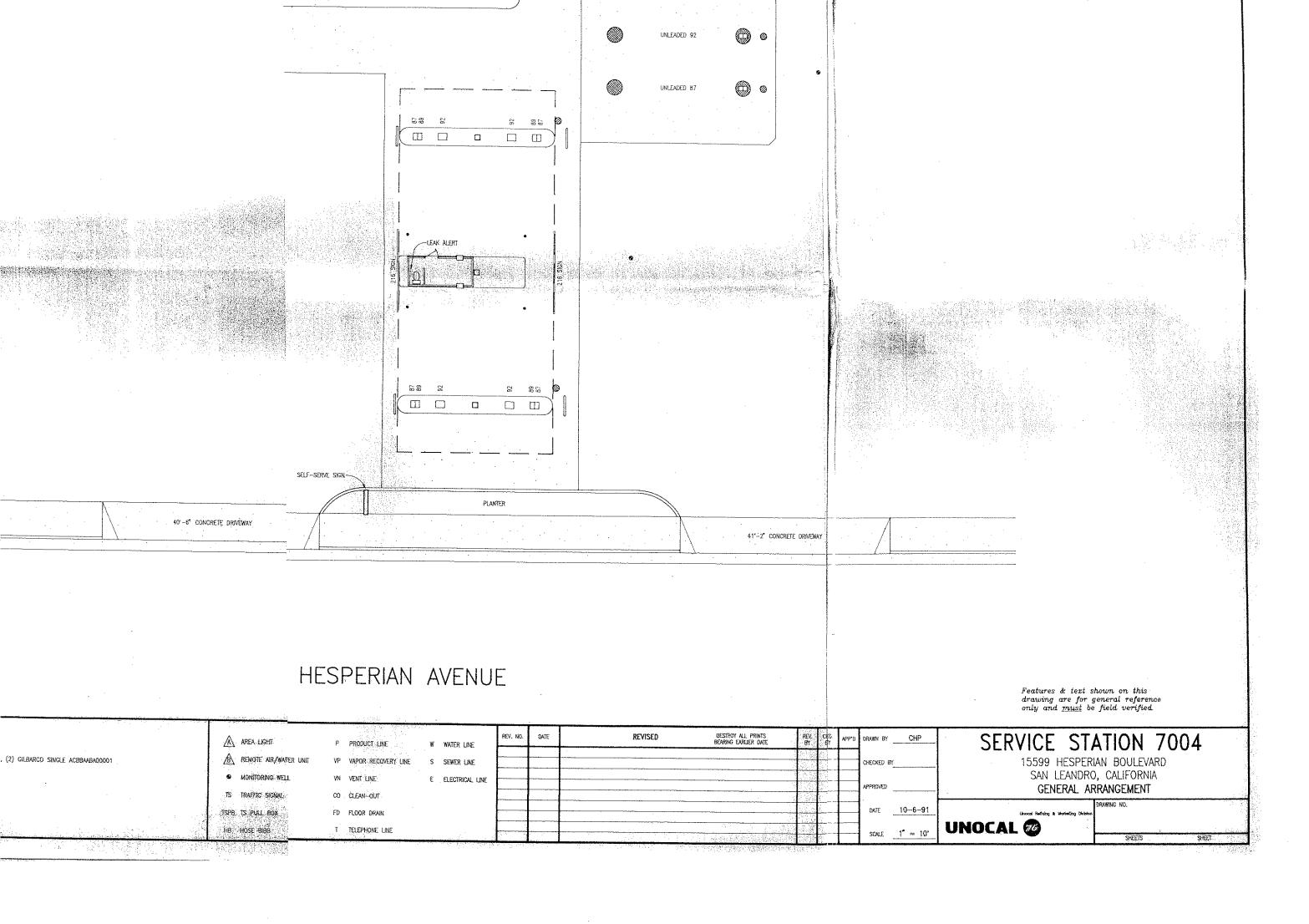
762258

HESPERIAN BLVD.

GEMICO DEPARTMENT STORES

GASOLINE SALES FACILITY


BCALE: /= 10'9 DISAS CEMBRAY


DATE: 4-26-77 BEVERLY HILLS, CALIA REVISED

15555 HESPERIAN BLYO. AT LEWELLING BIRCL

SAN LEANDRO, CALIFORNIA

SELF/SERV. CONVERSION DRAWING NUMBER

ATTACHMENT 3 CERTIFIED LABORATORY ANALYTICAL REPORT AND CHAINOF-CUSTODY DOCUMENTATION

Response to ACHCSA's Comments and Request for Site Closure Former 76 Service Station No. 7004 15599 Hesperian Boulevard San Leandro, California SECOR Project No.: 77CP.01631.14

Date of Report: 05/11/2007

Anju Farfan

TRC Alton Geoscience 21 Technology Drive Irvine, CA 92618-2302

RE: 7004

BC Work Order: 0704768

Enclosed are the results of analyses for samples received by the laboratory on 04/24/2007 22:35. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Contact Person: Vanessa Hooker

Client Service Rep

Authorized Signature

\$ 07-04768

BC LABORATORIES, INC.

4100 Atlas Court □ Bakersfield, CA 93308 (661) 327-4911 □ FAX (661) 327-1918

CHAIN OF CUSTODY

			(001) 021 4011	□ FAX (661) 327-1918			er sere	erere er	/sis	20020000	*******	eren eren	d		
Address:	noco Phillips/ TRC	21 T	sultant Firm: TF Techology Drive ne, CA 92618-230 :: Anju Farfan	<u> </u>	MATRIX (GW) Ground- water (S)	Gas by 8015				8260B	8.0000	389336	8		nested
City: San	Leandro	4-di Woı	git site#: 700 rkorder#	4 4507 923498	Soil (WW) Waste-	y 8021B,	GAS by 8016M	by 8015	8260 full list w/ oxygenates	BTEX/MTBE/OXYS BY	ETHANOL by 8260B	/MS	EDB/FIL 6x 8260	ead	Turnaround Time Requested
State: CA	Zip:	Pro	ject #: 410 6000	1	water (SL)	BE by	b γ8	ËL b	list w	BE/O	by 8	by GC/MS	24	7/12	nd T
Conoco P	hillips Mgr:Enic Hetric	i	npler Name: Ro	/	Sludge	/MT	3AS	SIES	fill i	MT	Ş	Q Q	ED.	lve	Irou
Lab#	Sample Description	1	Point Name	Date & Time Sampled		BTEX/MTBE	TPH (TPH DIESEL	8260	BTEX	ETHA	TPH-	EDB/	Pissolved	Turng
		Mh	J-7 ~1		GW					X	X	X	X	K	ST
		Mh	1-8-2)					X	X	X	X	X	
		MW	-9 -3							X	X	X	X	X	
		MW	-10-4		V					X	X	X	X	x	1
	TION											L	ļ		
and A	DISTRIBUTION	1							<u> </u>	<u></u>			ļ		
100	DIE SUR DUI						_	·		ļ			ļ		
1															
Comments/	limit A. Star Local Li	a. /s. A		- Sont			B	150	d by:	ka		4-		17/	420_
	limit for dissouled le	to 2.5ppb		Signature) Washay 4/2	Soz		Re 20	ceive Ru	d by: مر	X_		HDa Te	te & T -{-0	ime 7 \	930
GLOBAL II	Signature)	100		+		d by:	1		Da	te & 7	ime				
T06001			(P) = PRESE	1 4.24.07	2235			HZ.	5				1/24	<u>''2</u>	2235

\$ 07-04768

BC LABORATORIES, INC.

4100 Atlas Court □ Bakersfield, CA 93308 (661) 327-4911 □ FAX (661) 327-1918

CHAIN OF CUSTODY

						Anal	ysis	Re	que	este	đ	
Address:	Sperian Boulevard	Consultant Firm: TR 21 Techology Drive Irvine, CA 92618-230 Attn: Anju Farfan		MATRIX (GW) Ground- water (S)	Gas by 8015		ates	8260B			A by 8260	ested
City: San l	eandro		507923498	Soil (WW) Waste- water	BTEX/MTBE by 8021B,	TPH GAS by 8015M TPH DIESEL by 8016	3260 full list w/ oxygenates	BTEX/MTBE/OXYS BY 8260B	ETHANOL by 8260B	by GC/MS	IMTBE/TBA	Turnaround Time Requested
State: CA	Zip:	Project #: 410 60001	△	(SL)	TBE	s by	list	18E/	Ē by	by G		PE
Conoco Ph	nillips Mgr: Hetrick	Sampler Name: Ra	y/chnis	Sludge	5	GAS	f I	₹	S S	9	/ S	arot
Lab#	Sample Description	Field Point Name	Date & Time Sampled		вте	T T	8260	BTE)	ETH/	TPH -G	BTEX/MT Dissolved	Turn
		Mw-1-5	04-24-07	Gw					X	X	XX	ST
		mw-2-6										
		mr-3-7										
		MY-4 -8										
		Mn-5 -9										
		mw-6 -10										
	,	RW-1-11	V	V			<u> </u>		V	\ <u>\</u>	77	
Comments (Hection limit for a	Relinquished by: (S	ignature)			ROGIV	ed by	isto	4	1	& Time	1430
GLOBAL ID	:	Relinquished by: (S	ignature)	24/07		Receiv RUR		8		Date	& Time	1930
_	01451 (C) = CONTAINE	Relinquished by: (S	ignature) 4-24-67	2235	-	Receiv	ed by:				& Time.	22

Integs? Yes DNo D	MATION Hand Del General None Containe	Ilvery	ther None intact? Y heat ID	Comme Comme	ents:	SHIPPI	Othe	e 🛘 or 🔾 (Spe		
SHIPPING INFORF Federal Express	MATION Hand Del ISpecify None Containe Intact? Ye All sample	ilvery [] //)O rs	ther None intact? Y heat ID	Comme	Box ents:	0	Non Othe	e 🛘 or 🔾 (Spe		
Refrigerant: Ice Blue Ice Custody Seals: Ice Chest Intect? Yes No Intert No Int	Containe intect? Ye All sample	s container	None Desirator Y	Comme	ents:		- In the state of	h COC? V	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Custody Seals: Ice Chest Integt? Yes	All sample	s container lce Cl	s Intact? Y	No No	0	Descript	ion(s) matcl	h COC? M		
COC Received YES NO SAMPLE CONTAINERS OT GENERAL MINERAL/ GENERAL PHYSICAL PT PE UNPRESERVED	1	ice Ci Tempe	hest ID			Descript	ion(s) matcl	LCCC2 V		
SAMPLE CONTAINERS OT GENERAL MINERAL/ GENERAL PHYSICAL PT PE UNPRESERVED		Tempe	rature: <u> </u>	Mu					OS NO	
OT GENERAL MINERAL/ GENERAL PHYSICAL PT PE UNPRESERVED		1		Vy C		sivity	•	Date/T Analys	lme <u>4//2</u> t Init	417 *
OT GENERAL MINERAL/ GENERAL PHYSICAL PT PE UNPRESERVED					SAMPLE I	IUMBERS				
PT PE UNPRESERVED	B	2	3	4	8	6	7		. 9	10
		6	6	•	В	В	2	B	R	P-
OI INUKGANIC CHEMICAL METALS			-	5	12		P		->	
PT INORGANIC CHEMICAL METALS PT CYANIDE										
PT NITROGEN FORMS									· · · · · · · · · · · · · · · · · · ·	
PT TOTAL SULFIDE										
291. NITRATE / NITRITE										
100ml TOTAL ORGANIC CARBON										<u> </u>
OT TOX										
PT CHEMICAL OXYGEN DEMAND					·				···	
PIA PHENOLICS							-			
40ml VOA VIAL TRAVEL BLANK 40ml VOA VIAL	\Z\	4:3:	1-3	4.7	A (3)	A-3.	N-13	A . Z .	k /3	1
OT EPA 413.1, 413.2, 418.1	7-3	7 7	-	<u> </u>		19			-	-
PT ODOR										
RADIOLOGICAL										
BACTERIOLOGICAL				-					_	<u> </u>
40 ml VQA VIALe 504			[
OT EPA 508/608/8080				•		,				<u> </u>
OT EPA 515,1/8150										ļ <u>.</u>
OT EPA 525										
OT EPA 525 TRAYEL BLANK						- : -	-			
100ml EPA 547 100ml EPA 531.1							+			
OT EPA 548			l	•		· · · · · · · · · · · · · · · · · · ·				
OT EPA 549										
OT EPA 632										
QT EPA 8015M										
QT QA/QC										
OT AMBER										<u> </u>
8 OZ. JAR										
32 OZ. JAR										
SOIL SLEEVE					-					1
PCB VIAL										
PLASTIC BAG			+				}-			
FERROUS IRON			+	-	-					
ENCORE			+							
Omments:	YML	Date/								

BC LABORATORIES INC.				CEIPT FOI		Rev. No.		21/04 i	Page	Of _
Submission #: <u>17-04768</u>		Project C	Code:			TB	Batch #			Nation .
SHIPPING INFOR	RMATIO					SHIPP	ING CON	TAINER		
Federal Express 🛛 💮 UPS 🗆 💮	Hand De	elivery 🗆			Ice Ches	ستلز		ne 🖸		
BC Lab Field Service O Other	□ (Specif	[y)		1	Вох		Oth	ier 🗆 (Sp	ecify)	
				1						
Refrigerant: Ice Blue Ice			Other 🗆	Comme						
Custody Seals: Ice Chest []	Containe Intest? Y	ers [] es [] No [Comme	onts:					
M samples received? Yes 2 No 🗆	All sampl	es containe	rs intact?	Y No	0	Descrip	tion(s) mat	ch COC? 1	OSE NO	0
COC Received			Chest ID	Klu	Emis	sivity	2-48	Date/1	Ime <u>4/</u>	24/7
ØYES □ NO		Temp		3. c	Cont	ainer	4i	1	st Init	,
	T	Thermom	eter D:					- Alleria		
SAMPLE CONTAINERS		1 . "	7			NUMBERS	 	1 .		T .
T GENERAL MINERAL/ GENERAL PHYSICAL) and al	2] 3	1 4		 	 	1 8	9	1 10
T PE UNTRESERVED	82	1	1					1	1	
I INORGANIC CHEMICAL METALS									1	
INORGANIC CHEMICAL METALS						<u> </u>		<u> </u>		
CYANIDE										<u> </u>
NITROGEN FORMS										
TOTAL SULFIDE										
NITRATE (NITRITE										
mi TOTAL ORGANIC CARBON										
тох										
CHEMICAL OXYGEN DEMAND										
A PHENOLICS		1	<u></u>	<u> </u>						
ni Yoa vial travel blank	<u></u> .		1						<u> </u>	
ni voa vial	<u>- 24</u>	()			()	t 1	()	()	1	
EPA 413.1, 413.2, 418.1									1	
ODOR			ļ							1
DIOLOGICAL						····				<u> </u>
CTERIOLOGICAL				<u> </u>			ļ	174		<u> </u>
mi VOA VIAL- 504	_					·			<u> </u>	
EPA 508/608/8080				,						1
EPA 515,1/8150						,, , , , , , , , , , , , , , , , , , ,	· · · · · · · · · · · · · · · · · · ·	·		
EPA 525									<u> </u>	<u> </u>
EPA 525 TRAVEL BLANK									 	1 .
ni EPA 547									<u> </u>	
nl RPA 531.1									ļ <u>.</u>	
EPA 548						 			 	
EPA 549									ļ	
SPA 632									ļ	
EPA 8015M		<u></u>							ļ	
DAVOC				ļ						
AMBER										
, JAR									ļ	
Z. JAR						:				
SLEEVE					·			_		
VIAL										
TIC BAG]								1
ROUS IRON .					[; <u>-</u>		· - · · · · · ·		
ORE										1
									<u> </u>	1
ents:		Date/			_					

Project: 7004

Project Number: [none] Project Manager: Anju Farfan Reported: 05/11/2007 13:08

Page 1 of 32

Laboratory / Client Sample Cross Reference

Laboratory	Client Sample Informa	tion			
0704768-01	COC Number: Project Number:		Receive Date: Sampling Date:	04/24/2007 22:35 04/24/2007 00:00	Delivery Work Order: Global ID: T0600101451
	Sampling Location:	MW-7	Sample Depth:	_	Matrix: W
	Sampling Point:	MW-7	Sample Matrix:	Water	Samle QC Type (SACode): CS
	Sampled By:	Chris/Ray of TRCI		· · · · · · · · · · · · · · · · · · ·	Cooler ID:
0704768-02	COC Number:		Receive Date:	04/24/2007 22:35	Delivery Work Order:
	Project Number:	7004	Sampling Date:	04/24/2007 00:00	Global ID: T0600101451
	Sampling Location:	MW-8	Sample Depth:	_	Matrix: W
	Sampling Point:	MW-8	Sample Matrix:	Water	Samle QC Type (SACode): CS
	Sampled By:	Chris/Ray of TRCI			Cooler ID:
0704768-03	COC Number:		Receive Date:	04/24/2007 22:35	Delivery Work Order:
	Project Number:	7004	Sampling Date:	04/24/2007 00:00	Global ID: T0600101451
	Sampling Location:	MW-9	Sample Depth:	_	Matrix: W
	Sampling Point:	MW-9	Sample Matrix:	Water	Samle QC Type (SACode): CS
	Sampled By:	Chris/Ray of TRCI			Cooler ID:
0704768-04	COC Number:		Receive Date:	04/24/2007 22:35	Delivery Work Order:
	Project Number:	7004	Sampling Date:	04/24/2007 00:00	Global ID: T0600101451
	Sampling Location:	MW-10	Sample Depth:		Matrix: W
	Sampling Point	MW-10	Sample Matrix:	Water	Samle QC Type (SACode): CS
_	Sampled By:	Chris/Ray of TRCI	·		Cooler ID:
0704768-05	COC Number:	_	Receive Date:	04/24/2007 22:35	Delivery Work Order:
	Project Number:	7004	Sampling Date:	04/24/2007 00:00	Global ID: T0600101451
	Sampling Location:	MW-1	Sample Depth:		Matrix: W
	Sampling Point	MW-1	Sample Matrix:	Water	Samle QC Type (SACode): CS
	Sampled By:	Chris/Ray of TRCI	•		Cooler ID:

Project: 7004

Project Number: [none]

Project Manager: Anju Farfan

Reported: 05/11/2007 13:08

Laboratory / Client Sample Cross Reference

Laboratory	Client Sample Informat	lion			
0704768-06	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 7004 MW-2 MW-2 Chris/Ray of TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	04/24/2007 22:35 04/24/2007 00:00 Water	Delivery Work Order: Global ID: T0600101451 Matrix: W Samle QC Type (SACode): -CS Cooler ID:
0704768-07	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	— 7004 MW-3 MW-3 Chris/Ray of TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	04/24/2007 22:35 04/24/2007 00:00 — Water	Delivery Work Order: Global ID: T0600101451 Matrix: W Samle QC Type (SACode): CS Cooler ID:
0704768-08	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	— 7004 MW-4 MW-4 Chris/Ray of TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	04/24/2007 22:35 04/24/2007 00:00 — Water	Delivery Work Order: Global ID: T0600101451 Matrix: W Samle QC Type (SACode): CS Cooler ID:
0704768-09	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	— 7004 MW-5 MW-5 Chris/Ray of TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	04/24/2007 22:35 04/24/2007 00:00 — Water	Delivery Work Order: Global ID: T0600101451 Matrix: W Samle QC Type (SACode): CS Cooler ID:
0704768-10	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	— 7004 MW-6 MW-6 Chris/Ray of TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	04/24/2007 22:35 04/24/2007 00:00 — Water	Delivery Work Order: Global ID: T0600101451 Matrix: W Samle QC Type (SACode): CS Cooler ID:

Project: 7004

Project Number: [none]

Project Manager: Anju Farfan

Reported: 05/11/2007 13:08

Laboratory / Client Sample Cross Reference

Laboratory **Client Sample Information** 0704768-11 **COC Number:** Receive Date: 04/24/2007 22:35 Delivery Work Order: Project Number: 7004 Sampling Date: 04/24/2007 00:00 Global ID: T0600101451 Sampling Location: RW-1 Sample Depth: Matrix: W Sampling Point: RW-1 Samle QC Type (SACode): CS Sample Matrix: Water Sampled By: Chris/Ray of TRCI Cooler ID:

Project: 7004

Project Number: [none]

Project Manager: Anju Farfan

Reported: 05/11/2007 13:08

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 0704768-01	Client Sam	F. 5 (10/11)	: 7004, MW-7, M\	1, 7/27/200		<u>`</u>						
Constituent	Result	Units	PQL MDI	Mathad	Prep	Run		Instru-		QC	MB	Lab
Benzene	ND	Ug/L	PQL MDI 0.50		Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Blas	Quals
· · · · · · · · · · · · · · · · · · ·		<u>-</u> -		EPA-8260	04/25/07	04/25/07 17:14	SDU	MS-V10	1	BQD1317	ND	
1,2-Dibromoethane	ND	ug/L	0.50	EPA-8260	04/25/07	04/25/07 17:14	SDU	MS-V10	1	BQD1317	ND	
1,2-Dichloroethane	ND	ug/L	0.50	EPA-8260	04/25/07	04/25/07 17:14	SDU	MS-V10	1	BQD1317	ND	
Ethylbenzene	ND	ug/L	0.50	EPA-8260	04/25/07	04/25/07 17:14	SDU	MS-V10	1	BQD1317	ND	
Methyl t-butyl ether	4.1	ug/L	0.50	EPA-8260	04/25/07	04/25/07 17:14	SDU	MS-V10	1	BQD1317	ND	— - - - ·
Toluene	ND	ug/L	0.50	EPA-8260	04/25/07	04/25/07 17:14	SDU	MS-V10	1	BQD1317	ND	
Total Xylenes	ND	ug/L	0.50	EPA-8260	04/25/07	04/25/07 17:14	SDU	MS-V10	1	BQD1317	ND ND	
t-Armyl Methyl ether	ND	ug/L	0.50	EPA-8260	04/25/07	04/25/07 17:14	SDU	MS-V10	1	BQD1317	ND	
t-Butyl alcohol	ND	ug/L	10	EPA-8260	04/25/07	04/25/07 17:14	SDU	MS-V10	1	BQD1317	ND	— · · · · · · · · · · · · · · · · ·
Disopropyl ether	ND	ug/L	0.50	EPA-8260	04/25/07	04/25/07 17:14	SDU	MS-V10	1	BQD1317	ND	
Ethanol	ND	ug/L	250	EPA-8260	04/25/07	04/25/07 17:14	SDU	MS-V10	1	BQD1317	ND	
Ethyl t-butyl ether	ND	ug/L	0.50	EPA-8260	04/25/07	04/25/07 17:14	SDU	MS-V10	1	BQD1317	ND	
Total Purgeable Petroleum Hydrocarbons	ND	ug/L	50	EPA-8260	04/25/07	04/25/07 17:14	SDU	MS-V10	1	BQD1317	ND	
1,2-Dichloroethane-d4 (Surrogate)	98.1	%	76 - 114 (LCL - UCL	.) EPA-8260	04/25/07	04/25/07 17:14	SDU	MS-V10	1	BQD1317		
Toluene-d8 (Surrogate)	95.7	%	88 - 110 (LCL - UCL	.) EPA-8260	04/25/07	04/25/07 17:14	SDU	MS-V10	1	BQD1317		
4-Bromofluorobenzene (Surrogate)	105	%	86 - 115 (LCL - UCL	.) EPA-8260	04/25/07	04/25/07 17:14	SDU	MS-V10	1	BQD1317		

Project: 7004

Project Number: [none] Project Manager: Anju Farfan Reported: 05/11/2007 13:08

Water Analysis (Metals)

BCL Sample ID:	0704768-01	Client Samp	ole Name:	7004, M\	N-7, MW-	7, 4/24/200	7 12:00:0	0AM, Chris/Ray						
							Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Lead		ND	ug/L	1.0		EPA-6020	05/10/07	05/10/07 09:46	PPS	PE-EL1	1	BQE0596	ND	

Project: 7004

Project Number: [none]

Reported: 05/11/2007 13:08

Project Manager: Anju Farfan

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 0704768-02	Client Sam	ple Name	e: 7004, MW-8, MV	/-8, 4/24/200	7 12:00:0	0AM, Chris/Ray	•					
					Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene	ND ND	ug/L	0.50	EPA-8260	04/25/07	04/25/07 17:31	SDU	MS-V10	1	BQD1317	ND	
1,2-Dibromoethane	ND	ug/L	0.50	EPA-8260	04/25/07	04/25/07 17:31	SDU	MS-V10	1	BQD1317	ND	
1,2-Dichloroethane	ND	ug/L	0.50	EPA-8260	04/25/07	04/25/07 17:31	SDU	MS-V10	1	BQD1317	ND	
Ethylbenzene	ND	ug/L	0.50	EPA-8260	04/25/07	04/25/07 17:31	SDU	MS-V10	1	BQD1317	ND	
Methyl t-butyl ether	ND	ug/L	0.50	EPA-8260	04/25/07	04/25/07 17:31	SDU	MS-V10	1	BQD1317	ND	
Toluene	ND	ug/L	0.50	EPA-8260	04/25/07	04/25/07 17:31	SDU	MS-V10	1	BQD1317	ND	
Total Xylenes	ND	ug/L	0.50	EPA-8260	04/25/07	04/25/07 17:31	SDU	MS-V10	1	BQD1317	ND	
t-Amyl Methyl ether	ND	ug/L	0.50	EPA-8260	04/25/07	04/25/07 17:31	SDU	MS-V10	1	BQD1317	ND	
t-Butyl alcohol	ND	ug/L	10	EPA-8260	04/25/07	04/25/07 17:31	SDU	MS-V10	1	BQD1317	ND	
Diisopropyl ether	ND	ug/L	0.50	EPA-8260	04/25/07	04/25/07 17:31	SDU	MS-V10	1	BQD1317	ND	
Ethanol	ND	ug/L	250	EPA-8260	04/25/07	04/25/07 17:31	SDU	MS-V10	1	BQD1317	ND	
Ethyl t-butyl ether	ND	ug/L	0.50	EPA-8260	04/25/07	04/25/07 17:31	SDU	MS-V10	1	BQD1317	ND	
Total Purgeable Petroleum Hydrocarbons	ND	ug/L	50	EPA-8260	04/25/07	04/25/07 17:31	SDU	MS-V10	1	BQD1317	ND	
1,2-Dichloroethane-d4 (Surrogate)	98.9	%	76 - 114 (LCL - UCL	EPA-8260	04/25/07	04/25/07 17:31	SDU	MS-V10	1	BQD1317		
Tokuene-d8 (Surrogate)	97.9	%	88 - 110 (LCL - UCL	EPA-8260	04/25/07	04/25/07 17:31	SDU	MS-V10	1	BQD1317		—·· · ·
4-Bromofluorobenzene (Surrogate)	99.1	%	86 - 115 (LCL - UCL	EPA-8260	04/25/07	04/25/07 17:31	SDU	MS-V10	1	BQD1317		

Project: 7004

Project Number: [none]

Project Manager: Anju Farfan

Reported: 05/11/2007 13:08

Water Analysis (Metals)

BCL Sample ID:	0704768-02	Client Samp	ple Name:	7004, MV	V-8, MW-	8, 4/24/200	7 12:00:0	0AM, Chris/Ray					-	
1							Prep	Run		Instru-		QC	MB	Lab
Constituent		<u>Result</u>	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Lead	-	ND	ug/L	1.0	_	EPA-6020	05/10/07	05/10/07 09:57	PPS	PE-EL1	1	BQE0596	ND	

Project: 7004

Project Number: [none]

Project Manager: Anju Farfan

Reported: 05/11/2007 13:08

Page 8 of 32

Volatile Organic Analysis (EPA Method 8260)

			e: 7004, MW-9,	·	Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL M	DL Method		Date/Time	Analyst		Dilution	Batch ID	Bias	Quals
Benzene	ND	ug/L	0.50	EPA-8260	04/25/07	04/25/07 17:49	SDU	MS-V10	1	BQD1317	ND	4,000,0
1,2-Dibromoethane	ND	ug/L	0.50	EPA-8260	04/25/07	04/25/07 17:49	SDU	MS-V10	1	BQD1317	ND	
1,2-Dichloroethane	ND ND	ug/L	0.50	EPA-8260	04/25/07	04/25/07 17:49	SDU	MS-V10	1	BQD1317	ND	
Ethylbenzene	ND	ug/L	0.50	EPA-8260	04/25/07	04/25/07 17:49	SDU	MS-V10	1	BQD1317	ND	
Methyl t-butyl ether	2.5	ug/L	0.50	EPA-8260	04/25/07	04/25/07 17:49	SDU	MS-V10	1	BQD1317	ND	
Toluene	ND	ug/L	0.50	EPA-8260	04/25/07	04/25/07 17:49	SDU	MS-V10	1	BQD1317	ND	
Total Xylenes	ND	ug/L	0.50	EPA-8260	04/25/07	04/25/07 17:49	SDU	MS-V10	1	BQD1317	ND	
t-Amyl Methyl ether	ND	ug/L	0.50	EPA-8260	04/25/07	04/25/07 17:49	SDU	MS-V10	1	BQD1317	ND	
t-Butyl alcohol	ND	ug/L	10	EPA-8260	04/25/07	04/25/07 17:49	SDU	MS-V10	1	BQD1317	ND	
Diisopropyl ether	ND	ug/L	0.50	EPA-8260	04/25/07	04/25/07 17:49	SDU	MS-V10	1	BQD1317	ND	
Ethanol	ND	ug/L	250	EPA-8260	04/25/07	04/25/07 17:49	SDU	MS-V10	1	BQD1317	ND	
Ethyl t-butyl ether	ND	ug/L	0.50	EPA-8260	04/25/07	04/25/07 17:49	SDU	MS-V10	1	BQD1317	ND	
Total Purgeable Petroleum Hydrocarbons	ND	ug/L	50	EPA-8260	04/25/07	04/25/07 17:49	SDU	MS-V10	1	BQD1317	ND	
1,2-Dichloroethane-d4 (Surrogate)	98.5	%	76 - 114 (LCL - L	JCL) EPA-8260	04/25/07	04/25/07 17:49	SDU	MS-V10	1	BQD1317		
Toluene-d8 (Surrogate)	96.6	%	88 - 110 (LCL - L	JCL) EPA-8260	04/25/07	04/25/07 17:49	SDU	MS-V10	1	BQD1317		
4-Bromofluorobenzene (Surrogate)	99.0	%	86 - 115 (LCL - U	JCL) EPA-8260	04/25/07	04/25/07 17:49	SDU	MS-V10	1	BQD1317		

Project: 7004

Project Number: [none]

Project Manager: Anju Farfan

Reported: 05/11/2007 13:08

Water Analysis (Metals)

BCL Sample ID:	0704768-03	Client Sam	ent Sample Name: 7004, MW-9, MW-9, 4/24/2007 12:00:00AM, Chris/Ray											
							Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	_Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Lead		ND	ug/L	1.0	<u>-</u>	EPA-6020	05/10/07	05/10/07 10:00	PPS	PE-EL1	1	BQE0596	ND	

Project: 7004

Project Number: [none] Project Manager: Anju Farfan Reported: 05/11/2007 13:08

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 070	04768-04	Client Sam	ple Name	: 7004, MW-10, M	7004, MW-10, MW-10, 4/24/2007 12:00:00AM, Chris/Ray										
						Prep	Run		Instru-		QC	MB	Lab		
Constituent		Result	Units	PQL MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias_	Quais		
Benzene		ND	ug/L	0.50	EPA-8260	04/25/07	04/25/07 18:07	SDU	MS-V10	1	BQD1317	ND			
1,2-Dibromoethane		ND	ug/L	0.50	EPA-8260	04/25/07	04/25/07 18:07	SDU	MS-V10	1	BQD1317	ND			
1,2-Dichloroethane		ND	ug/L	0.50	EPA-8260	04/25/07	04/25/07 18:07	SDU	MS-V10	1	BQD1317	ND			
Ethylbenzene		ND	ug/L	0.50	EPA-8260	04/25/07	04/25/07 18:07	SDU	MS-V10	1	BQD1317	ND			
Methyl t-butyl ether		0.76	ug/L	0.50	EPA-8260	04/25/07	04/25/07 18:07	SDU	MS-V10	1	BQD1317	ND			
Toluene		ND	ug/L	0.50	EPA-8260	04/25/07	04/25/07 18:07	SDU	MS-V10	1	BQD1317	ND			
Total Xylenes		ND	ug/L	0.50	EPA-8260	04/25/07	04/25/07 18:07	SDU	MS-V10	1	BQD1317	ND			
t-Amyl Methyl ether		ND	ug/L	0.50	EPA-8260	04/25/07	04/25/07 18:07	SDU	MS-V10	1	BQD1317	ND			
t-Butyl alcohol		ND	ug/L	10	EPA-8260	04/25/07	04/25/07 18:07	SDU	MS-V10	1	BQD1317	ND			
Diisopropyl ether		ND	ug/L	0.50	EPA-8260	04/25/07	04/25/07 18:07	SDU	MS-V10	1	BQD1317	ND			
Ethanol		ND	ug/L	250	EPA-8260	04/25/07	04/25/07 18:07	SDU	MS-V10	1	BQD1317	ND			
Ethyl t-butyl ether		ND	ug/L	0.50	EPA-8260	04/25/07	04/25/07 18:07	SDU	MS-V10	1	BQD1317	ND			
Total Purgeable Petroleum Hydrocarbons		ND	ug/L	50	EPA-8260	04/25/07	04/25/07 18:07	SDU	MS-V10	1	BQD1317	ND			
1,2-Dichloroethane-d4 (Sui	rrogate)	97.9	%	76 - 114 (LCL - UCL	EPA-8260	04/25/07	04/25/07 18:07	SDU	MS-V10	1	BQD1317				
Toluene-d8 (Surrogate)		96.2	%	88 - 110 (LCL - UCL)	EPA-8260	04/25/07	04/25/07 18:07	SDU	MS-V10	1	BQD1317				
4-Bromofluorobenzene (Su	irrogate)	99.5	%	86 - 115 (LCL - UCL)	EPA-8260	04/25/07	04/25/07 18:07	SDU	MS-V10	1	BQD1317				

Project: 7004

Project Number: [none]

Project Manager: Anju Farfan

Reported: 05/11/2007 13:08

Water Analysis (Metals)

BCL Sample ID:	0704768-04	Client Sam	ole Name:	7004, MV	V-10, MW	/-10, 4/24/20	007 12:00	0:00AM, Chris/R	ay					· · · · · · · · · · · · · · · · · · ·
							Prep	Run		Instru-		QC	MB	Lab
Constituent		Result_	Units	PQL	MDL_	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Lead		ND	ug/L	1.0		EPA-6020	05/10/07	05/10/07 10:03	PPS	PE-EL1	1	BQE0596	ND	

Project: 7004

Project Number: [none]
Project Manager: Anju Farfan

Reported: 05/11/2007 13:08

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 0704768-05	Client Sam	ple Name	e: 7004, MW-1, M	N-1, 4/24/200	7 12:00:0	0AM, Chris/Ray						
Constituent	D H	11.74	DOI 140		Prep	Run		Instru-	•	QC	MB	Lab
	Result	<u>Units</u>	PQL MD	_ Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene	ND	ug/L	0.50	EPA-8260	04/25/07	04/25/07 18:24	SDU	MS-V10	1	BQD1317	ND	-
Ethylbenzene	ND	ug/L	0.50	EPA-8260	04/25/07	04/25/07 18:24	SDU	MS-V10	1	BQD1317	ND	
Methyl t-butyl ether	ND	ug/L	0.50	EPA-8260	04/25/07	04/25/07 18:24	SDU	MS-V10	1	BQD1317	ND	- -
Toluene	ND	ug/L	0.50	EPA-8260	04/25/07	04/25/07 18:24	SDU	MS-V10	1	BQD1317	ND	
Total Xylenes	ND	ug/L	0.50	EPA-8260	04/25/07	04/25/07 18:24	SDU	MS-V10	1	BQD1317	ND	
t-Butyl alcohol	ND	ug/L	10	EPA-8260	04/25/07	04/25/07 18:24	SDU	MS-V10	1	BQD1317	ND	
Ethanol	ND	ug/L	250	EPA-8260	04/25/07	04/25/07 18:24	SDU	MS-V10	1	BQD1317	ND	=
Total Purgeable Petroleum Hydrocarbons	ND	ug/L	50	EPA-8260	04/25/07	04/25/07 18:24	SDU	MS-V10	1	BQD1317	ND	
1,2-Dichloroethane-d4 (Surrogate)	98.0	%	76 - 114 (LCL - UC	.) EPA-8260	04/25/07	04/25/07 18:24	SDU	MS-V10	1	BQD1317		
Toluene-d8 (Surrogate)	96.9	%	88 - 110 (LCL - UC	.) EPA-8260	04/25/07	04/25/07 18:24	SDU	MS-V10	1	BQD1317		
4-Bromofluorobenzene (Surrogate)	99.9	%	86 - 115 (LCL - UC	.) EPA-8260	04/25/07	04/25/07 18:24	SDU	MS-V10	1	BQD1317	<u>-</u>	· .=

Project: 7004

Project Number: [none]

Project Manager: Anju Farfan

Reported: 05/11/2007 13:08

BCL Sample ID:	0704768-05	Client Sam	ple Name:	7004, MN	W-1, MW-	1, 4/24/200	7 12:00:0	0AM, Chris/Ray						
							Prep	Run		Instru-		QC	MB	Lab
Constituent		Result_	<u>Units</u>	PQL	<u>M</u> DL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Lead		ND	ug/L	1.0		EPA-6020	05/10/07	05/10/07 10:06	PPS	PE-EL1	1	BQE0596	ND	

Project: 7004

Project Number: [none]
Project Manager: Anju Farfan

Reported: 05/11/2007 13:08

BCL Sample ID: 0704768-06	Client Sam			_,	_,		0AM, Chris/Ray		In a torre				
Constituent	Result	Units	PQL	MDL	Method	Prep Date	Run Date/Time	Anahest	Instru- ment ID	Dilution	QC Botob ID	MB	Lab
Benzene	ND ND	ug/L	0.50		EPA-8260	04/25/07	04/25/07 18:42	Analyst SDU	MS-V10	1	Batch ID BQD1317	Bias ND	Quals
Ethylbenzene	ND	ug/L	0.50		EPA-8260	04/25/07	04/25/07 18:42	SDU	MS-V10	1	BQD1317	ND	
Methyl t-butyl ether	ND	ug/L	0.50		EPA-8260	04/25/07	04/25/07 18:42	SDU	MS-V10	1	BQD1317	ND	
Toluene	ND	ug/L	0.50		EPA-8260	04/25/07	04/25/07 18:42	SDU	MS-V10	1	BQD1317	ND	
Total Xylenes	ND	ug/L	0.50		EPA-8260	04/25/07	04/25/07 18:42	SDU	MS-V10	1	BQD1317	ND	
t-Butyl alcohol	ND	ug/L	10		EPA-8260	04/25/07	04/25/07 18:42	SDU	MS-V10	1	BQD1317	ND	
Ethanol	ND	ug/L	250		EPA-8260	04/25/07	04/25/07 18:42	SDU	MS-V10	1	BQD1317	ND -	
Total Purgeable Petroleum Hydrocarbons	ND	ug/L	50	-	EPA-8260	04/25/07	04/25/07 18:42	SDU	MS-V10	1	BQD1317	ND	·
1,2-Dichloroethane-d4 (Surrogate)	99.3	%	76 - 114 (LCL	UCL)	EPA-8260	04/25/07	04/25/07 18:42	SDU	MS-V10	1	BQD1317		
Гoluene-d8 (Surrogate)	96.6	%	88 - 110 (LCL	UCL)	EPA-8260	04/25/07	04/25/07 18:42	SDU	MS-V10	1	BQD1317	-	
4-Bromofluorobenzene (Surrogate)	99.7	%	86 - 115 (LCL	UCL)	EPA-8260	04/25/07	04/25/07 18:42	SDU	MS-V10	1	BQD1317		

Project: 7004

Project Number: [none] Project Manager: Anju Farfan Reported: 05/11/2007 13:08

BCL Sample ID:	0704768-06	Client Sam	ole Name:	7004, M\	W-2, MW-	2, 4/24/2007	7 12:00:0	0AM, Chris/Ray						
	-						Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Lead		ND	ug/L	1.0		EPA-6020	05/10/07	05/10/07 10:14	PPS	PE-EL1	1	BQE0596	ND	

Project: 7004

Project Number: [none]

Project Manager. Anju Farfan

Reported: 05/11/2007 13:08

BCL Sample ID: 0704768-07	Client Sam	ple Name	e: 7004, MW-3,	MW-3	, 4/24/200	7 12:00:0	0AM, Chris/Ray						
			-		•	Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL M	<u>IDL</u>	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene	0.55	ug/L	0.50		EPA-8260	04/25/07	04/26/07 10:49	SDU	MS-V10	1	BQD1317	ND	
Ethylbenzene	9.1	ug/L	0.50		EPA-8260	04/25/07	04/26/07 10:49	SDU	MS-V10	1	BQD1317	ND	
Methyl t-butyl ether	ND	ug/L	0.50		EPA-8260	04/25/07	04/26/07 10:49	SDU	MS-V10	1	BQD1317	ND	
Toluene	ND	ug/L	0.50		EPA-8260	04/25/07	04/26/07 10:49	SDU	MS-V10	1	BQD1317	ND	
Total Xylenes	ND	ug/L	0.50		EPA-8260	04/25/07	04/26/07 10:49	SDU	MS-V10	1	BQD1317	ND	
t-Butyl alcohol	ND	ug/L	10		EPA-8260	04/25/07	04/26/07 10:49	SDU	MS-V10	1	BQD1317	ND	
Ethanol	ND	ug/L	250		EPA-8260	04/25/07	04/26/07 10:49	SDU	MS-V10	1	BQD1317	ND	
Total Purgeable Petroleum Hydrocarbons	870	ug/L	50	-	EPA-8260	04/25/07	04/26/07 10:49	SDU	MS-V10	1	BQD1317	ND	
1,2-Dichloroethane-d4 (Surrogate)	97.4	%	76 - 114 (LCL - U	UCL)	EPA-8260	04/25/07	04/26/07 10:49	SDU	MS-V10	1	BQD1317		
Toluene-d8 (Surrogate)	95.4	%	88 - 110 (LCL - L	UCL)	EPA-8260	04/25/07	04/26/07 10:49	SDU	MS-V10	1	BQD1317		– . – – – – – – – – – – – – – – – –
4-Bromofluorobenzene (Surrogate)	95.8	%	86 - 115 (LCL - U	JCL)	EPA-8260	04/25/07	04/26/07 10:49	SDU	MS-V10	1	BQD1317	-	

Project: 7004

Project Number: [none]

Project Manager: Anju Farfan

Reported: 05/11/2007 13:08

BCL Sample ID:	0704768-07	Client Sam	ple Name:	7004, M	W-3, MW-	3, 4/24/200	7 12:00:0	0AM, Chris/Ray						
							Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	<u>Units</u>	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Lead		ND	ug/L	1.0		EPA-6020	05/10/07	05/10/07 10:17	PPS	PE-EL1	1	BQE0596	ND	

Project: 7004

Project Number: [none] Project Manager: Anju Farfan Reported: 05/11/2007 13:08

BCL Sample ID: 0704768-08	Client Sam	ple Name	e: 7004, MW-4, MW	-4, 4/24/200	7 12:00:0	0AM, Chris/Ray						
					Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene	ND	ug/L	0.50	EPA-8260	04/25/07	04/25/07 18:59	SDU	MS-V10	1	BQD1317	ND	
Ethylbenzene	ND	ug/L	0.50	EPA-8260	04/25/07	04/25/07 18:59	SDU	MS-V10	1	BQD1317	ND	
Methyl I-butyl ether	0.94	ug/L	0.50	EPA-8260	04/25/07	04/25/07 18:59	SDU	MS-V10	1	BQD1317	ND	
Toluene	ND	ug/L	0.50	EPA-8260	04/25/07	04/25/07 18:59	SDU	MS-V10	1	BQD1317	ND	
Total Xylenes	ND	ug/L	0.50	EPA-8260	04/25/07	04/25/07 18:59	SDU	MS-V10	1	BQD1317	ND	
t-Butyl alcohol	ND	ug/L	10	EPA-8260	04/25/07	04/25/07 18:59	SDU	MS-V10	1	BQD1317	ND	
Ethanol	ND	ug/L	250	EPA-8260	04/25/07	04/25/07 18:59	SDU	MS-V10	1	BQD1317	ND	
Total Purgeable Petroleum Hydrocarbons	ND	ug/L	50	EPA-8260	04/25/07	04/25/07 18:59	SDU	MS-V10	1	BQD1317	ND	
1,2-Dichloroethane-d4 (Surrogate)	99.1	%	76 - 114 (LCL - UCL)	EPA-8260	04/25/07	04/25/07 18:59	SDU	MS-V10	1	BQD1317		
Toluene-d8 (Surrogate)	97.0	%	88 - 110 (LCL - UCL)	EPA-8260	04/25/07	04/25/07 18:59	SDU	MS-V10	1	BQD1317		
4-Bromofluorobenzene (Surrogate)	100	%	86 - 115 (LCL - UCL)	EPA-8260	04/25/07	04/25/07 18:59	SDU	MS-V10	1	BQD1317		

Project: 7004

Project Number: [none]

Project Manager: Anju Farfan

Reported: 05/11/2007 13:08

BCL Sample ID:	0704768-08	Client Samp	ole Name:	7004, MV	ν-4, Μ W-	4, <i>4/</i> 24/2007	7 12:00:0	DAM, Chris/Ray						
							Prep	Run		instru-		QC	MB	Lab
Constituent		Result	Units	PQL	<u>M</u> DL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Lead		ND	ug/L	1.0		EPA-6020	05/10/07	05/10/07 10:20	PPS	PE-EL1	1	BQE0596	ND	

Project: 7004

Project Number: [none] Project Manager: Anju Farfan Reported: 05/11/2007 13:08

Page 20 of 32

BCL Sample ID: 0704768-09	Client Sam	ре наш	e: 7004, MW-5, MV	V-5, 47247200				Inch:			- MD	Lak
Constituent	Result	Units	PQL MDL	Method	Prep Date	Run Date/Time	Anaiyst	instru- ment ID	Dilution	QC Batch ID	MB Blas	Lab Quals
Benzene	ND	ug/L	0.50	EPA-8260	04/25/07	04/25/07 19:17	SDU	MS-V10	1	BQD1317	ND	
Ethylbenzene	ND	ug/L	0.50	EPA-8260	04/25/07	04/25/07 19:17	SDU	MS-V10	1	BQD1317	ND	
Methyl t-butyl ether	1.7	ug/L	0.50	EPA-8260	04/25/07	04/25/07 19:17	SDU	MS-V10	1	BQD1317	ND	
Toluene	ND	ug/L	0.50	EPA-8260	04/25/07	04/25/07 19:17	SDU	MS-V10	1	BQD1317	ND	
Total Xylenes	ND	ug/L	0.50	EPA-8260	04/25/07	04/25/07 19:17	SDU	MS-V10	1	BQD1317	ND	
t-Butyl alcohol	ND	ug/L	10	EPA-8260	04/25/07	04/25/07 19:17	SDU	MS-V10	1	BQD1317	ND	
Ethanol	ND	ug/L	250	EPA-8260	04/25/07	04/25/07 19:17	SDU	MS-V10	1	BQD1317	ND	
Total Purgeable Petroleum Hydrocarbons	ND	ug/L	50	EPA-8260	04/25/07	04/25/07 19:17	SDU	MS-V10	1	BQD1317	ND	
1,2-Dichloroethane-d4 (Surrogate)	98.6	%	76 - 114 (LCL - UCL) EPA-8260	04/25/07	04/25/07 19:17	SDU	MS-V10	1	BQD1317		
Toluene-d8 (Surrogate)	97.1	%	88 - 110 (LCL - UCL) EPA-8260	04/25/07	04/25/07 19:17	SDU	MS-V10	1	BQD1317	·——·	
4-Bromofluorobenzene (Surrogate)	101	%	86 - 115 (LCL - UCL) EPA-8260	04/25/07	04/25/07 19:17	SDU	MS-V10	1	BQD1317		

Project: 7004

Project Number: [none]

Project Manager. Anju Farfan

Reported: 05/11/2007 13:08

BCL Sample ID:	0704768-09	Client Sam	ple Name:	7004, M	W-5, MW-	5, 4/24/200	7 12:00:0	0AM, Chris/Ray			•			
Competitus		.					Prep	Run	-	Instru-		QC	MB	Lab
Constituent		Result	<u>Units</u>	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Lead		ND ————————————————————————————————————	ug/L	1.0		EPA-6020	05/10/07	05/10/07 10:23	PPS	PE-EL1	1	BQE0596	ND	

Project: 7004

Project Number: [none]
Project Manager: Anju Farfan

Reported: 05/11/2007 13:08

BCL Sample ID: 070476	38-10 C	lient Samp	le Name	: 7004, MW-6, MW	-6, 4/24/200	7 12:00:0	0AM, Chris/Ray						
						Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Blas	Quals
Benzene		ND	ug/L	0.50	EPA-8260	04/25/07	04/25/07 19:35	SDU	MS-V10	1	BQD1317	ND	
Ethylbenzene		ND	ug/L	0.50	EPA-8260	04/25/07	04/25/07 19:35	SDU	MS-V10	1	BQD1317	ND	
Methyl t-butyl ether		ND	ug/L	0.50	EPA-8260	04/25/07	04/25/07 19:35	SDU	MS-V10	1	BQD1317	ND	
Toluene		ND	ug/L	0.50	EPA-8260	04/25/07	04/25/07 19:35	SDU	MS-V10	1	BQD1317	ND	
Total Xylenes		ND	ug/L	0.50	EPA-8260	04/25/07	04/25/07 19:35	SDU	MS-V10	1 .	BQD1317	ND	
t-Butyl alcohol		ND	ug/L	10	EPA-8260	04/25/07	04/25/07 19:35	SDU	MS-V10	1	BQD1317	ND	
Ethanol		ND	ug/L	250	EPA-8260	04/25/07	04/25/07 19:35	SDU	MS-V10	1	BQD1317	ND	
Total Purgeable Petroleum Hydrocarbons		ND	ug/L	50	EPA-8260	04/25/07	04/25/07 19:35	SDU	MS-V10	1	BQD1317	ND	
1,2-Dichloroethane-d4 (Surroga	te)	98.7	%	76 - 114 (LCL - UCL)	EPA-8260	04/25/07	04/25/07 19:35	SDU	MS-V10	1	BQD1317		
Toluene-d8 (Surrogate)		97.5	%	88 - 110 (LCL - UCL)	EPA-8260	04/25/07	04/25/07 19:35	SDU	MS-V10	1	BQD1317	·	
4-Bromofluorobenzene (Surroga	ate)	99.7	%	86 - 115 (LCL - UCL)	EPA-8260	04/25/07	04/25/07 19:35	SDU	MS-V10	1	BQD1317		

Project: 7004

Project Number: [none] Project Manager: Anju Farfan Reported: 05/11/2007 13:08

BCL Sample ID:	0704768-10	Client Samp	ole Name:	7004, MN	W-6, MW-	6, 4/24/200	7 12:00:0	0AM, Chris/Ray						
							Prep	Run		Instru-		QC	MB	Lab
Constituent		Resuit	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Blas	Quals
Lead		ND	ug/L	1.0		EPA-6020	05/10/07	05/10/07 10:26	PPS	PE-EL1	1	BQE0596	ND	

Project: 7004

Project Number: [none]

Project Manager: Anju Farfan

Reported: 05/11/2007 13:08

BCL Sample ID: 0704768-11	Client Sam	ple Name	: 7004, RW-1, RW-	1, 4/24/200	7 12:00:00	OAM, Chris/Ray			· ·- ·			
					Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene	ND	ug/L	0.50	EPA-8260	04/25/07	04/25/07 21:21	SDU	MS-V10	1	BQD1317	ND	
Ethylbenzene	0.78	ug/L	0.50	EPA-8260	04/25/07	04/25/07 21:21	SDU	MS-V10	1	BQD1317	ND	
Methyl t-butyl ether	ND	ug/L	0.50	EPA-8260	04/25/07	04/25/07 21:21	SDU	MS-V10	1	BQD1317	ND	
Toluene	ND	ug/L	0.50	EPA-8260	04/25/07	04/25/07 21:21	SDU	MS-V10	1	BQD1317	ND	
Total Xylenes	ND	ug/L	0.50	EPA-8260	04/25/07	04/25/07 21:21	SDU	MS-V10	1	BQD1317	ND	
t-Butyl alcohol	ND	ug/L	10	EPA-8260	04/25/07	04/25/07 21:21	SDU	MS-V10	1	BQD1317	ND	
Ethanol	ND	ug/L	250	EPA-8260	04/25/07	04/25/07 21:21	\$DU	MS-V10	1	BQD1317	ND	
Total Purgeable Petroleum Hydrocarbons	190	ug/L	50	EPA-8260	04/25/07	04/25/07 21:21	SDU	MS-V10	1	BQD1317	ND	
1,2-Dichloroethane-d4 (Surrogate)	103	%	76 - 114 (LCL - UCL)	EPA-8260	04/25/07	04/25/07 21:21	SDU	MS-V10	1	BQD1317		
Toluene-d8 (Surrogate)	97.6	%	88 - 110 (LCL - UCL)	EPA-8260	04/25/07	04/25/07 21:21	SDU	MS-V10	1	BQD1317		
4-Bromofluorobenzene (Surrogate)	101	%	86 - 115 (LCL - UCL)	EPA-8260	04/25/07	04/25/07 21:21	SDU	MS-V10	1	BQD1317		

Project: 7004

Project Number: [none]

Project Manager: Anju Farfan

Reported: 05/11/2007 13:08

BCL Sample ID:	0704768-11	Client Sam	ple Name:	7004, RV	V-1, RW-	1, <i>4/</i> 24 <i>/</i> 2007	12:00:00	DAM, Chris/Ray						
						·	Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Lead		ND	ug/L	1.0		EPA-6020	05/10/07	05/10/07 10:28	PPS	PE-EL1	1	BQE0596	ND	

Project: 7004

Project Number: [none] Project Manager: Anju Farfan Reported: 05/11/2007 13:08

Page 26 of 32

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Precision & Accuracy

										Contr	ol Limits
Constituent	Batch ID	QC Sample Type	Source Sample ID	Source Result	Result	Spike Added	Units	RPD	Percent Recovery	RPD	Percent Recovery Lab Quals
Benzene	BQD1317	Matrix Spike	0704709-03	0	24.970	25.000	ug/L		99.9		70 - 130
		Matrix Spike Duplicat	e 0704709-03	0	24.770	25.000	ug/L	0.8	99.1	20	70 - 130
Toluene	BQD1317	Matrix Spike	0704709-03	0	24.560	25.000	ug/L		98.2		70 - 130
		Matrix Spike Duplicate	e 0704709-03	0	24.360	25.000	ug/L	0.8	97.4	20	70 - 130
1,2-Dichloroethane-d4 (Surrogate)	BQD1317	Matrix Spike	0704709-03	ND	9.5700	10.000	ug/L		95.7		76 - 114
		Matrix Spike Duplicat	e 0704709-03	ND	9.6700	10.000	ug/L		96.7		76 - 114
Toluene-d8 (Surrogate)	BQD1317	Matrix Spike	0704709-03	ND	9.9000	10.000	ug/L		99.0		88 - 110
		Matrix Spike Duplicate	e 0704709-03	ND	9.7700	10.000	ug/L		97.7		88 - 110
4-Bromofluorobenzene (Surrogate)	BQD1317	Matrix Spike	0704709-03	ND	9.9700	10.000	ug/L		99.7		86 - 115
		Matrix Spike Duplicat	e 0704709-03	ND	10.010	10.000	ug/L		100		86 - 115

Project: 7004

Project Number: [none]

Project Manager: Anju Farfan

Reported: 05/11/2007 13:08

Water Analysis (Metals)

Quality Control Report - Precision & Accuracy

		<u> </u>		·					Control Limits				
			Source	Source		Spike			Percent		Percent		
Constituent	Batch ID	QC Sample Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery L	ab Quals	
Lead	BQE0596	Duplicate	0704768-01	-0.0080000	ND		ug/L			20			
		Matrix Spike	0704768-01	-0.0080000	88.092	102.04	u g/ L		86 .3		75 - 125		
		Matrix Spike Duplicat	e 0704768-01	-0.0080000	87.807	102.04	ug/L	0.2	86.1	20	75 - 125		

Project: 7004

Project Number: [none]
Project Manager: Anju Farfan

Reported: 05/11/2007 13:08

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Laboratory Control Sample

							-		-	Control	Limits	
Constituent	Batch ID	QC Sample ID	QC Type	Result	Spike Level	PQL	Units	Percent Recovery	RPD	Percent Recovery	RPD	Lab Quals
Benzene	BQD1317	BQD1317-BS1	LCS	24.700	25.000	0.50	ug/L	98.8		70 - 130		
Toluene	BQD1317	BQD1317-BS1	LCS	24.570	25.000	0.50	ug/L	98.3		70 - 130		
1,2-Dichloroethane-d4 (Surrogate)	BQD1317	BQD1317-BS1	LCS	9.6000	10.000		ug/L	96.0		76 - 114		
Toluene-d8 (Surrogate)	BQD1317	BQD1317-BS1	LCS	9.9500	10.000		ng/L	99.5		88 - 110		
4-Bromofluorobenzene (Surrogate)	BQD1317	BQD1317-BS1	LCS	9.9900	10.000		ug/L	99.9		86 - 115		

Project: 7004

Project Number: [none]

Project Manager: Anju Farfan

Reported: 05/11/2007 13:08

Water Analysis (Metals)

Quality Control Report - Laboratory Control Sample

	<u> </u>			,				Control Limits						
Constituent	Batch ID QC Sample ID	QC Type	Result	Spike Level	PQL	Units	Percent Recovery	RPD	Percent Recovery	RPD	Lab Quals			
Lead	BQE0596 BQE0596-BS1	LCS	90.811	100.00	1.0	ug/L	90.8		75 - 125					

Project: 7004

Project Number: [none]
Project Manager: Anju Farfan

Reported: 05/11/2007 13:08

Page 30 of 32

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Method Blank Analysis

Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
Benzene	BQD1317	BQD1317-BLK1	ND	ug/L	0.50		
1,2-Dibromoethane	BQD1317	BQD1317-BLK1	ND	ug/L	0.50		
1,2-Dichloroethane	BQD1317	BQD1317-BLK1	ND	ug/L	0.50		
Ethylbenzene	BQD1317	BQD1317-BLK1	ND	ug/L	0.50		
Methyl t-butyl ether	BQD1317	BQD1317-BLK1	ND	ug/L	0.50		
Toluene	BQD1317	BQD1317-BLK1	ND	ug/L	0.50		
Total Xylenes	BQD1317	BQD1317-BLK1	ND	ug/L	0.50		
t-Amyl Methyl ether	BQD1317	BQD1317-BLK1	ND	ug/L	0.50		
t-Butyl alcohol	BQD1317	BQD1317-BLK1	ND	ug/L	10		
Diisopropyl ether	BQD1317	BQD1317-BLK1	ND	ug/L	0.50		·
Ethanol	BQD1317	BQD1317-BLK1	ND	ug/L	250		
Ethyl t-butyl ether	BQD1317	BQD1317-BLK1	ND	ug/L	0.50		
Total Purgeable Petroleum Hydrocarbons	BQD1317	BQD1317-BLK1	ND	ug/L	50		
1,2-Dichloroethane-d4 (Surrogate)	BQD1317	BQD1317-BLK1	100	%	76 - 114 (LCL - UCL)	
Toluene-d8 (Surrogate)	BQD1317	BQD1317-BLK1	96.7	%	88 - 110 (LCL - UCL)	
4-Bromofluorobenzene (Surrogate)	BQD1317	BQD1317-BLK1	101	%	86 - 115 (LCL - UCL)	

Project: 7004

Project Number: [none] Project Manager: Anju Farfan Reported: 05/11/2007 13:08

Water Analysis (Metals)

Quality Control Report - Method Blank Analysis

Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
Lead	BQE0596	BQE0596-BLK1	ND	ug/L	1.0		

Project: 7004

Reported: 05/11/2007 13:08

Project Number: [none]
Project Manager: Anju Farfan

Notes And Definitions

MDL Method Detection Limit

ND Analyte Not Detected at or above the reporting limit

PQL Practical Quantitation Limit
RPD Relative Percent Difference