RECEIVED

1:13 pm, Jun 01, 2007

Alameda County Environmental Health

May 30, 2007

Mr. Jerry Wickham Hazardous Materials Specialist Alameda County Environmental Health Services 1131 Harbor Bay Parkway Suite 250 Alameda, CA 94502

Re: Quarterly Report Transmittal First Quarter – 2007 Former 76 Service Station #7004 15599 Hesperion Boulevard San Leandro, Alameda County, CA

Dear Mr. Wickham:

I declare under penalty of perjury that to the best of my knowledge the information and/or recommendations contained in the attached report is/are true and correct.

If you have any questions or need additional information, please call me at (916) 558-7604.

Sincerely,

2-A-2

Eric G. Hetrick Site Manager Risk Management & Remediation

SECOR INTERNATIONAL INCORPORATED www.secor.com 3017 Kilgore Road, Suite 100 Rancho Cordova, CA 95670 916-861-0400 TEL 916-861-0430 FAX

May 29, 2007

Mr. Jerry Wickham Hazardous Materials Specialist Alameda County Environmental Health Services 1131 Harbor Bay Parkway Suite 250 Alameda, CA 94502

RE: Quarterly Status and Remediation Summary Report – First Quarter 2007 SECOR Project No.: 77CP.01631.14

Dear Mr. Wickham:

On behalf of ConocoPhillips, SECOR International Incorporated (SECOR) is forwarding the quarterly summary report for the following location:

Service Station

Location

Former 76 Service Station No. 7004

15599 Hesperian Boulevard San Leandro, California

If you have questions or comments regarding this quarterly summary report, please do not hesitate to contact me at (916) 861-0400 x 300.

Sincerely, SECOR International Incorporated

one Bard

Diane M. Barclay, C.H.G. Senior Geologist

Attachments: SECOR's Quarterly Status and Remediation Summary Report – First Quarter 2007

SECOR

Mr. Jerry Wickham May 18, 2007 Page 2

- cc: Mr. Eric Hetrick, ConocoPhillips Company
 - Mr. Alan Guttenberg, Guttenberg, Rapson and Colvin LLP, 101 Lucas Valley Road Suite 216, San Rafael, CA 94903
 - Mr. Gary Ragghianti, Ragghianti Freitas LLP, 874 Fourth Street, Suite D, San Rafael, CA 94901
 - Ms. Shelly Eisaman, Wells Fargo Bank, N.A., Brunetti Trust, 420 Montgomery Street, 3rd Fl., San Francisco, CA 94104
 - Mr. Ladd Cahoon, Law Office of John D. Edgcomb, 115 Sansome St., Suite 805, San Francisco, CA 94104
 - Mr. Daniel J. Barry, Stein & Lubin, LLP, Transamerica Pyramid, 600 Montgomery St., 14th Floor, San Francisco, CA 94111
 - Mr. Michael DiGeronimo, Esq., Miller Starr & Regalia, 1331 N. California Blvd., Fifth Floor, Walnut Creek, CA 94596
 - Mr. Steve Osborne, Fugro West, Inc., 1000 Broadway, Suite 200, Oakland, CA 94607
 - Mr. Bob Clark-Riddell, Pangea Environmental Services, Inc. 1710 Franklin Street, Suite 200, Oakland, CA 94612

QUARTERLY STATUS AND REMEDIATION SUMMARY REPORT First Quarter 2007

Former 76 Service Station No. 7004 15599 Hesperian Blvd San Leandro, CA

City/County ID #: San Leandro

County: <u>Alameda</u>

SITE DESCRIPTION

The site is located at the northwest corner of Hesperian Boulevard and East Lewelling Boulevard in San Leandro, California. The site is a former 76 Service Station which was abandoned in May of 2000. At that time, the subsurface tanks, piping and aboveground components were removed. The station building was converted into a Kragen auto parts store, but is no longer open as a retail store, and it was used as a storage building. The site is currently within a paved parking lot in a department store complex that was vacated by Target and is planned for occupancy by Wal-Mart. Currently, TRC performs quarterly monitoring and sampling of ten monitoring wells and one recovery well at the above referenced site (Figure 1 and 2 in Attachment 1).

PREVIOUS ASSESSMENT

In October 1990, Kaprealian Engineering, Inc (KEI) observed the removal of three single-walled underground storage tanks (USTs) and removal and replacement of product piping at the site. The tanks included one steel 12,000-gallon super unleaded fuel UST and two steel 12,000-gallon regular unleaded fuel USTs, and were replaced with two double-walled 12,000-gallon USTs. No holes or cracks were observed in the USTs. Fifteen confirmation soil samples were collected from the tank pit and analyzed for total petroleum hydrocarbons as gasoline (TPHg), and benzene, toluene, ethylbenzene, and xylenes (BTEX). Soil samples collected from the final tank excavation contained up to 30 parts per million (ppm) TPHg, 0.054 ppm benzene, 0.047 ppm toluene, 0.46 ppm ethylbenzene, and 0.054 ppm xylenes. A water sample collected from the tank pit contained 4,300 parts per billion (ppb) TPHg, 40 ppb benzene, 1.9 ppb toluene, 0.54 ppb ethylbenzene, and 520 ppb xylenes. Samples collected from the final pipeline trenches contained up to 20 ppm TPHg, 0.015 ppm benzene, 0.15 ppm toluene, 0.13 ppm ethylbenzene, and 1.3 ppm xylenes (KEI, 1990). The former USTs were replaced with two 12,000-gallon, double-walled, glasteel unleaded USTs within the same excavation (Gettler-Ryan, Inc. [GR], 2000).

In April and July 1991, KEI supervised the installation of six 2-inch diameter monitoring wells (MW-1 through MW-6). Groundwater was encountered at depths of 16.5 to 20.5 feet below ground surface (bgs). The wells were completed to 25 to 26 feet bgs. Selected soil samples and grab groundwater samples from each well were analyzed for TPHg and BTEX. Soil samples contained up to 4,800 ppm TPHg and 23 ppm benzene, 9.1 ppm toluene, 63 ppm ethylbenzene, and 290 ppm xylenes (17.5 feet bgs in MW3). Post development groundwater

samples from these wells contained up to 34,000 ppb TPHg and 6,100 ppb benzene (MW-3; KEI, 1991a and KEI 1991b).

In December 1991, KEI conducted water recovery tests in wells MW-3 and MW-5. The tests indicated a minimal influence in water levels. KEI installed recovery well RW-1 in April 1992 (KEI, 1992a).

In May 1992, KEI conducted an aquifer test using RW-1 for extraction and MW-2, MW-3, MW-4, and MW-5 for observation. The saturated zone was described as semi-confined, and aquifer parameters evaluated from the test were as follows:

- Transmissivity: 16 to 700 ft²/day
- Storativity: $6.3E^{-6}$ to $1.4E^{-2}$
- Hydraulic Conductivity: 0.3 ft/day to 76 ft/day (KEI, 1992b).

In May 2000, GR observed the removal of two 12,000-gallon, double-walled glasteel USTs and fiberglass product piping and dispensers at the site. The USTs were in good condition with no observed cracks or holes. At this time, station-related structures were also demolished and removed. Four soil samples were collected from the tank pit excavation, and four were collected from the pipeline trenches. The samples were analyzed for TPHg, BTEX, and methyl tertiary butyl ether (MTBE). Tank pit samples contained up to 350 ppm TPHg, 4.8 ppm ethylbenzene, and 0.81 ppm xylenes, but were non-detectable for benzene and MTBE. Pipeline trench samples were non-detectable for the analytes requested. Based on the good condition of the removed USTs, with the approval of the San Leandro Fire Department, the majority of the stockpiled pea gravel was reused as backfill material for the excavation. Prior to backfilling, oxygen releasing compound (360 pounds) was placed at the bottom of the UST pit, and additional pea gravel was emplaced to a depth of 12 feet bgs. With regulatory approval, the excavation was brought to grade using properly compacted, engineering fill. Approximately 200 cubic yards of excess pea gravel were removed from the site for disposal (GR, 2000).

In 2001, GR conducted a limited Phase I Environmental Assessment to assess the potential for environmental impact to the site from current or past usage or other properties in the vicinity. Six petroleum hydrocarbon impacted sites were identified within ¼-mile of the site (GR, 2001a).

In November 2001, SECOR conducted a 5-day dual phase extraction (DPE) test at the site. The test utilized MW-3 and RW-1 for extraction. During the test, applied vacuum was approximately 25 inches of mercury; soil vapor extraction (SVE) flow rates ranged from approximately 20 to 155 cubic feet per minute (cfm), and groundwater extraction (GWE) flow rates ranged from 0.25 to 3.0 gallons per minute (gpm). Influent vapor concentrations dropped from a high of 5,200 parts per million by volume (ppmv) TPHg at the start of the test to 440 ppmv TPHg at the end of test. Based on the data collected during the test, approximately 36.55 pounds of vapor phase TPHg, 0.56 pounds of vapor phase benzene, and 0.47 pounds of vapor phase MTBE were removed from the subsurface. The radius of influence was estimated at 15 to 55 feet for MW-3, and 48 to 85 feet for RW-1 (SECOR, 2002).

In September 2002, GR drilled and sampled five direct push soil borings (G-1 through G-5) in the vicinity of the Kragen Auto Parts building and the former USTs. Soil and groundwater samples were collected from each boring and analyzed for TPHg, BTEX, and fuel oxygenates.

Soil samples were below detection limits for the analytes requested, except for sample GP-3 @13.5 feet, which contained 0.051 milligrams per kilogram (mg/kg) MTBE and 0.083 mg/kg tertiary butyl alcohol (TBA). Groundwater samples contained up to 96,000 ppb TPHg (G-4W), 4,300 ppb ethylbenzene (G-5W), 300 ppb TBA (G-3W), and 360 ppb MTBE (G-5W, GR, 2002).

In March 2005, SECOR performed a preferential pathway survey to delineate underground utilities with the potential to transport groundwater beneath the site. Underground utilities were identified at depths ranging from 20 inches bgs to 4 feet bgs. Off-site utilities, including sewer and storm drain, were identified on the east side of Hesperian Boulevard between 6 and 7 feet bgs. The groundwater level over the last five years had varied from 12 to 16 feet bgs. Data presented did not identify utilities and associated utility trenches with the potential to act as a preferential groundwater pathway, based on historical depths to groundwater (SECOR, 2005a).

In August 2005, SECOR conducted an investigation at the site which included drilling and sampling 23 direct push soil borings (SB-1 through SB-23), at total depths of 19 feet bgs to 28 feet bgs. Soil and groundwater samples were collected from each boring and analyzed for TPHg, BTEX, and fuel oxygenates. Laboratory analysis of the soil samples indicated detections for the requested constituents in 7 of the 23 soil borings at maximum concentrations of 0.024 mg/kg ethylbenzene (SB-21), 0.022 mg/kg MTBE (SB-18), and 0.024 mg/kg TBA (SB-18). Groundwater samples contained up to 4,100 micrograms per liter (μ g/L) TPHg (SB-17), 14 μ g/L benzene (SB-21), 1.4 μ g/L toluene (SB-4), 340 μ g/L ethylbenzene (SB-21), 9.4 μ g/L xylenes (SB-4), 180 μ g/L MTBE (SB-4), 71 μ g/L TBA (SB-17), and 1,100 μ g/L ethanol (SB-4; SECOR, 2005b).

In January 2006, SECOR advanced an additional 14 soil borings (SB-24 through SB-37) and installed an additional 4 groundwater monitoring wells (MW-7 through MW-10). At least one soil sample was collected from each borehole, and groundwater samples were collected from the boreholes except from SB-24, SB-25, SB-26, SB-28, and SB-31. The samples were analyzed for TPHg, BTEX, fuel oxygenates, and lead scavengers. Maximum concentrations in the soil were reported as 46 mg/kg TPHg (SB-30 at 5.5 feet bgs), 0.29 mg/kg toluene (SB-30 at 5.5 feet bgs), 1.2 mg/kg ethylbenzene (SB-30 at 2.5 feet bgs), 7.8 mg/kg xylenes (SB-30 at 2.5 feet bgs), 0.0058 mg/kg MTBE (SB-34 at 19 feet bgs), and 0.010 mg/kg TBA (SB-24 at 2.5 feet bgs). No detectable concentrations of benzene, diisopropyl ether (DIPE), tertiary amyl methyl ether (TAME), ethyl tertiary butyl ether (ETBE), ethanol, 1,2-dichloroethane (1,2-DCA), or ethylene dibromide (EDB) were reported (SECOR, 2006a).

In April 2006, SECOR prepared a startup report for the portable DPE system at the site (SECOR, 2006b). The system was started on March 20, 2006, and operated through February 7, 2007.

In June 2006, SECOR prepared a work plan for additional offsite assessment (SECOR 2006c). This work was proposed in the event that additional assessment to the southeast became necessary.

In October 2006, SECOR submitted the results of a human health risk assessment (SECOR, 2006d). Based on the current and future land use, which consisted of and would likely remain primarily commercial/industrial in nature, SECOR evaluated the following exposure pathways: (1) commercial/industrial workers' and customers' inhalation of vapors emanating from soil

and/or groundwater to indoor and outdoor air, and (2) direct contact of commercial/industrial workers with shallow impacted soil (less than 10 feet bgs). Results of the human health risk assessment indicated that residual petroleum hydrocarbons, MTBE, and TBA in soil, groundwater, and soil vapor beneath the site and site vicinity did not pose a risk to human health or the environment (SECOR, 2006d). SECOR evaluated natural attenuation and migration of the dissolved MTBE plume beneath the site and site vicinity using the BIOSCREEN model. Three scenarios were examined: (1) solute transport with no decay, (2) solute transport with first order decay, and (3) solute transport with instantaneous biodegradation reaction. Results of the modeling indicated that the downgradient wells would not be impacted by the migration of the dissolved MTBE plume within at least 200 years (SECOR, 2006d).

In November 2006, SECOR submitted a *No Further Action Required (NFAR) Report and Request for Case Closure* to assist the Alameda County Environmental Health Services (ACEHS) in its review of the site for case closure. That report was prepared in accordance with the NFAR and site closure reporting criteria outlined in Sections 6.5 and 6.6 of the Regional Water Quality Control Board – Central Valley Region's (RWQCB-CVR) document entitled *California Environmental Protection Agency, Regional Water Quality Control Board Central Valley Region, Appendix A Tri-Regional Board Staff Recommendations for Preliminary Investigation and Evaluation of Underground Tank Sites.* A summary of the site background, results of previous investigations and corrective action, estimated residual mass calculations in soil and groundwater, other pertinent information, and rationale for site closure were presented in SECOR's *No Further Action Analysis and Human Health Risk Assessment* dated October 6, 2006 (SECOR, 2006e).

SENSITIVE RECEPTORS

In 1996, Pacific Environmental Group (PEG) performed a ¼-mile radius water supply well survey. Four documented wells were identified, including two domestic irrigation wells, one industrial well, and one well of unknown use. The closest of these wells was approximately 2,000 feet south of the site (PEG, 1996).

In 2001, GR performed a ½-mile radius sensitive receptor survey. Three domestic wells were identified within 2,500 feet of the site. Two of the wells were located 1,650 and 2,300 feet south and west-northwest of the site. The third well was located approximately 2,275 feet east-southeast of the site. GR also indicated that the closest surface water bodies were the San Lorenzo Creek, situated approximately 800 feet southwest of the site, and Estudillo Canal, located approximately 2,300 feet northwest of the site. Water within the San Lorenzo Creek and Estudillo Canal flows westerly/southwesterly toward the San Francisco Bay. According to GR, the City of Oakland and surrounding areas of San Leandro and San Lorenzo obtained their drinking water supply from an aqueduct from the Pardee or Comanche Reservoirs in Northern California (GR, 2001b).

In October 2006, SECOR updated the sensitive receptor survey to locate receptors within 2,000 feet of the site. SECOR reviewed well drillers' logs on file at the State of California Department of Water Resources (DWR); contacted the ACEHS, East Bay Municipal Utilities District (EBMUD), City of San Leandro Public Works Department (CSLPWD), and Alameda County Public Works Department (ACPWD) for additional information pertaining to the existence of

water wells within 2,000 feet of the site; and conducted field reconnaissance of the area. Fourteen wells at 12 locations were identified within the search radius. Another eight wells at five locations were identified just outside of the search radius. Three additional wells with unspecified addresses or locations were also found during the survey. Information obtained from the DWR, ACEHS, ACPWD, EBMUD, and CSLPWD did not indicate the presence of water production wells in the site vicinity that were operated by municipal or utility district agencies. Results of the sensitive receptor survey indicated that existing receptors and other water supply wells that were not recently verified in the field were not likely to be impacted by the dissolved phase plume beneath the site. Detailed information about this survey is included in SECOR's report entitled *No Further Action Required (NFAR) Report and Request for Site Closure*, dated November 6, 2006 (SECOR, 2006e).

MONITORING AND SAMPLING

Monitoring and sampling of the site has been performed since the second quarter 1991. Between 1991 and 1995, monitoring and sampling was conducted quarterly. Between 1996 and 2001, the site was monitored semiannually. From January 2002 to July 2003, the well network was monitored monthly. Currently, eleven wells (MW-1 through MW-10 and RW-1) are monitored and sampled quarterly by TRC. Groundwater samples from the eleven wells were analyzed for total purgeable petroleum hydrocarbons (TPPH), BTEX, MTBE, TBA, and ethanol using EPA Method 8260B, and groundwater samples from monitoring wells MW-7 through MW-10 were additionally analyzed for the fuel oxygenates ethylene dibromide EDB, 1,2-DCA, DIPE, ETBE, and TAME using Environmental Protection Agency (EPA) Method 8260B. The groundwater gradient has been mainly to the east-southeast and southwest with variations to the west, northwest and east, and has been relatively flat (average 0.007 feet per foot [ft/ft]). Historical groundwater gradients are included in Table 1 and illustrated on Figure 1. TRC's monitoring and sampling report is included as Attachment 1.

During the first quarter 2007, depth to groundwater ranged between 12.84 and 14.38 feet bgs. The groundwater flow direction this quarter was to the north at an average gradient of 0.020 ft/ft.

Constituents	Number of Detections Above PQL of the Samples Collected	Minimum Concentration (Sample ID)	Maximum Concentration (Sample ID)
TPPH	3/11	230 µg/L (MW-5)	1,800 µg/L (MW-3)
Benzene	1/11	0.63 µg/L (MW-3)	0.63 µg/L (MW-3)
Toluene	1/11	0.58 µg/L (MW-3)	0.58 μg/L (MW-3)
Ethylbenzene	2/11	0.83 μg/L (RW-1)	15 μg/L (MW-3)
MTBE	6 / 11	0.69 μg/L (MW-10)	11 μg/L (MW-5)

Laboratory analyses of groundwater samples collected from the eleven site wells are summarized below:

Explanations:

PQL = Practical quantitation limit

TPPH = Total purgeable petroleum hydrocarbons

MTBE = Methyl tertiary butyl ether

DISCUSSION

Between the fourth quarter 2006 and first quarter 2007, dissolved phase TPPH and benzene concentrations remained non-detect in wells MW-1, MW-2, MW-4, and MW-6 through MW-10. Dissolved phase MTBE concentrations remained non-detect in wells MW-1, MW-2, MW-6, and MW-8, and decreased in wells MW-4, MW-7, MW-9, and MW-10. Because the fourth quarter 2006 dissolved phase petroleum hydrocarbon concentrations in wells MW-3, MW-5, and RW-1 were most likely not representative (due to being sampled within 1 hour of remediation system shutdown), the first quarter 2007 concentrations were compared to the third quarter 2006 concentrations. Between the third quarter 2006 and the first quarter 2007, dissolved phase petroleum hydrocarbon concentrations in wells MW-3, MW-1 generally decreased, with the exception of TPPH and ethylbenzene in RW-1, which increased. Ethanol and TBA were not present in the wells, and TAME, DIPE, ETBE, 1,2-DCA, and EDB were not detected in wells MW-7 through MW-10.

In general, due in part to DPE and other remedial efforts at the site, historical trends of decreasing dissolved-phase hydrocarbons and MTBE have been observed at the site. The highest dissolved phase concentrations of TPPH, benzene, and MTBE historically have been present in well MW-3. The benzene concentration in well MW-3 was below the maximum contaminant level (MCL) of 1.0 μ g/L established by the California Department of Health Services. MTBE concentrations in the site wells this quarter did not exceed the primary MCL of 13 μ g/L, while two wells (MW-5 and MW-9) contained MTBE at concentrations greater than the secondary MCL of 5 μ g/L.

CHARACTERIZATION STATUS

Based on the results of recent assessments, residual concentrations of petroleum hydrocarbons and fuel oxygenates within the source area (former USTs) and vicinity have been removed or naturally attenuated over time and are relatively low, and the lateral extent of impacts in soil have been delineated. The vertical extent of impact in soil has been delineated by nondetectable results from the sample from boring SB-10 at 28 feet bgs. The majority of petroleum hydrocarbon mass within the source area was removed during the removal and replacement of the USTs in October 1990.

Review of groundwater analytical results from historical groundwater monitoring events and assessments indicated that the lateral extent of TPHg, BTEX, and MTBE has been delineated by relatively low to non-detectable concentrations in borings G-1, SB-6, SB-7, SB-9, wells MW-1 and MW-2 to the north, borings SB-11 through SB-16 and well MW-6 to the east and south, and borings SB-1 through SB-4, SB-16, SB-32, and SB-33 to the west and southwest. Grab samples from borings SB-34 through SB-37, and wells MW-7 and MW-10, which are situated further to the west/southwest, contained relatively low levels of MTBE up to a maximum concentration of 57 μ g/L. With the exception of a concentration of 17 μ g/L (MW-7) in May 2006, concentrations of MTBE in downgradient wells MW-7 and MW-10 after four consecutive quarters of sampling have not exceeded the primary MCL of 13 μ g/L.

REMEDIAL PERFORMANCE SUMMARY

Oxygen releasing compound was placed in MW-5 in 1996, and was removed from the well in 1999 (GR, 2001b). Oxygen releasing compound (360 pounds) was also placed in the bottom of the UST pit during the tank removal in 2000 (GR, 2000).

SECOR performed a DPE pilot test at the site on November 5 through November 10, 2001. DPE was performed using a 20-hp liquid-ring vacuum pump connected to an H2Oil Thermal Oxidizer (Therm-ox) for abatement of the extracted soil vapors prior to discharge to the atmosphere. DPE tests were performed on well MW-3 for 5.5 hours, RW-1 for 14 hours, and simultaneously on wells MW-3 and RW-1 for 72 hours. The total DPE time was approximately 100 hours. Applied vacuum was approximately 25 inches of mercury, and maximum SVE flow rates ranged from 51.25 cfm during extraction from MW-3 to 155.22 cfm during simultaneous extraction from MW-3 and RW-1. Groundwater extraction flow rates ranged from 0.05 to 0.5 gpm. Influent vapor concentrations ranged from 5,200 ppmv of TPHg, 150 ppmv of benzene, and 370 ppmv of MTBE at the start of the test (RW-1) to 440 ppmv of TPHg, 1.2 ppmv of benzene, and 8.1 of ppmv MTBE near the end of the test (RW-1). Based on influent vapor concentrations, average flow rates, and the duration of the test, an estimated 36.55 pounds of TPHg, 0.56 pounds of benzene, and 0.47 pounds of MTBE were removed from the subsurface. The estimated radii of influence for MW-3 and RW-1 ranged from 15 to 55 feet and 48 to 85 feet, respectively.

SECOR installed a portable DPE system during the first quarter of 2006. The DPE system well network consisted of wells MW-3, MW-5, and RW-1. The DPE system was comprised of a 100-gallon liquid/vapor separator, a Solleco 350-scfm thermo/catalytic oxidizer with a Travani 25-hp liquid ring pump, a 6,500 gallon holding tank with secondary containment, and a 1,000 gallon propane tank for the generator and abatement of the oxidizer. The system was connected to electrical power from the vacant Kragen building on July 25, 2006. The system operated under Bay Area Unified Air Quality Management District (BAAQMD) Permit to Operate (PTO) for Plant #13708, issued on October 26, 2005. The DPE system operated at the site from March 20, 2006 through the first quarter 2007, and was shut down on February 7, 2007. The BAAQMD PTO requires that a portable DPE system be shut down before it has been operating at a single location for 12 consecutive months or the portable DPE system loses its portability status.

As of system shut down during the first quarter 2007, the system had removed approximately 814,860 gallons of groundwater from beneath the site. During the first quarter 2007, the DPE system was approximately 67% operational, removed approximately 122,340 gallons of groundwater, and ran for approximately 728 hours.

On January 9 and February 7, 2007, samples were collected from the groundwater influent. After collection, the samples were placed in an ice chilled cooler for transport under chain-ofcustody (CoC) documentation to a California State-certified analytical laboratory (KIFF Analytical LLC). The samples were analyzed for TPHg, BTEX, MTBE, DIPE, ETBE, TAME, and TBA by EPA Method 8260B.

On January 9 and February 7, 2007, laboratory vapor samples were collected from the well field influent vapor and oxidizer effluent vapor streams for analysis of TPHg, BTEX, and MTBE by

EPA Method 8260. The air samples were sent under COC documentation to a California State-Certified analytical laboratory (KIFF Analytical LLC).

During the first quarter 2007, the system removed approximately 0.03 pounds (0.00 gallons) of TPHg, 0.00 pounds (0.00 gallons) of MTBE, and 0.00 pounds (0.00 gallons) of TBA by GWE. The system removed approximately 2.18 pounds (0.36 gallons) of TPHg and 0.02 pounds (0.00 gallons) of MTBE by SVE.

Through GWE, a total of approximately 814,860 gallons of water have been removed since system start-up. The DPE system (GWE and SVE combined) has removed approximately 14.36 pounds (2.36 gallons) of TPHg, 0.24 pounds (0.04 gallons) of MTBE and 0.03 pounds (0.00 gallons) of TBA.

DPE system operation and analytical data are presented in Tables 2 through 7. Illustrations of chemical concentrations and mass removal versus time are shown on Figures 2 through 5. DPE operation and maintenance (O&M) analytical data and field data sheets are included in Attachment 2.

REMEDIAL PERFORMANCE DISCUSSION

Although DPE has historically proven to be an effective strategy for removing residual contamination beneath the site, this remedial technology is no longer effective due to the low influent vapor and groundwater concentrations and decreasing concentrations of dissolved phase petroleum hydrocarbons and MTBE in the site monitoring wells. The low mass removal rates indicate the presence of a low residual mass of contaminants beneath the site.

During the first quarter 2007, the system was 67% operational. Downtime for the DPE system was attributed to vandalism of electrical equipment, namely extension cords, from within the remedial system compound. The extension cords were replaced after the vandalism was discovered during subsequent site visits. Due to the low hydrocarbon concentrations and the BAAQMD PTO requirement that a portable DPE system be shut down before it has been operating at a single location for 12 consecutive months or the portable DPE system loses its portability, SECOR shut the system down on February 7, 2007. Between March 12 and March 15, 2007, the mobile DPE system, along with the associated remediation equipment, was deconstructed and removed from the site. A completion of treatment operation report was submitted to the BAAQMD.

RECENT SUBMITTALS/CORRESPONDENCE

Submitted:

- 1. 2006 PDPES Summary Report, dated January 23, 2007.
- 2. PDPES End of Operation Report, dated March 8, 2007.
- 3. Quarterly Status and Remediation Summary Report Fourth Quarter 2006, dated March 15, 2007.

WASTE DISPOSAL SUMMARY

The disposal of purged groundwater during the quarterly groundwater monitoring event was documented in TRC's *Quarterly Monitoring Report, January through March 2007*, dated February 13, 2007 (Attachment 1). Approximately 122,340 gallons of water removed by the DPE system were transported by Veolia Environmental Services to the ConocoPhillips refinery in Rodeo, California. A log of the volume of transported water is contained in Attachment 3.

THIS QUARTER ACTIVITIES (First Quarter 2007)

- 1. TRC conducted quarterly groundwater monitoring and sampling.
- 2. SECOR prepared and submitted quarterly summary report.
- 3. SECOR operated the DPE system.
- 4. SECOR prepared and submitted an end of calendar year portable DPE system report to BAAQMD.
- 5. SECOR shut down the DPE system on February 7, 2007. SECOR prepared and submitted a portable DPE system completion of treatment operation report to the BAAQMD.
- 6. SECOR removed the portable DPE system and dismantled site equipment associated with the DPE system.

NEXT QUARTER ACTIVITIES (Second Quarter 2007)

- 1. TRC to perform quarterly groundwater monitoring and sampling.
- 2. SECOR to prepare and submit quarterly summary and monitoring report.
- 3. SECOR awaits a response from ACEHS regarding the submittal of the *No Further Action Required (NFAR) Report and Request for Site Closure* dated November 6, 2006.

LIMITATIONS

This report was prepared in accordance with the scope of work outlined in SECOR's contract and with generally accepted professional engineering and environmental consulting practices existing at the time this report was prepared and applicable to the location of the site. It was prepared for the exclusive use of the ConocoPhillips Company for the express purpose stated above. Any re-use of this report for a different purpose or by others not identified above shall be at the user's sole risk without liability to SECOR. To the extent that this report is based on information provided to SECOR by third parties, SECOR may have made efforts to verify this third party information, but SECOR cannot guarantee the completeness or accuracy of this information. The opinions expressed and data collected are based on the conditions of the site existing at the time of the field investigation. No other warranties, expressed or implied are made by SECOR.

Prepared by:

Matthew Battin Project Scientist Reviewed by:

Kristen Flesoras Associate Scientist

Information, conclusions, and recommendations provided by SECOR in this document have been prepared under the supervision of and reviewed by the licensed professionals whose signatures appear below.

Licensed Approver, Geology Name: Diane Barclay, C.H.G. Signature: Dime Barclay

Senior Geologist

Date: May 29, 2007

Licensed Approver, Engineering

Name: Adrian Pérez, P.E. Associate Engineer

Date: May 29, 2007

Stamp:

Signature:

Stamp:

SSIONAL GA

DIANE M. BARCLAY No. HG 34 CERTIFIED HYDRO GEOLOGIST

CALIFO

SECOR —

Mr. Jerry Wickham May 29, 2007 Page 11

Enclosures:

Figures:	Figure 1 Figure 2	Groundwater Flow Direction Rose Diagram Temporary DPE Influent Soil Vapor Concentrations
	Figure 3	Temporary DPE Soil Vapor Mass Recovery
	Figure 4	Temporary DPE Influent Groundwater Concentrations
	Figure 5	Temporary DPE Groundwater Mass Recovery
Tables:	Table 1	Historical Groundwater Gradient and Flow Direction
	Table 2	Temporary Dual Phase Extraction System - Operating Data
	Table 3	Temporary Dual Phase Extraction System - Soil Vapor Influent Analytical Data and Mass Recovery
	Table 4	Temporary Dual Phase Extraction System - Soil Vapor Emissions Data
	Table 5	Temporary Dual Phase Extraction System - Well Status Data
	Table 6	Temporary Dual Phase Extraction System - Groundwater Analytical Data
	Table 7	Temporary Dual Phase Extraction System - Groundwater Mass Recovery
Attachments:	Attachment 1	TRC's Quarterly Monitoring Report – January Through March 2007, dated February 13, 2007
	Attachment 2	O&M Analytical Data, Field Data Sheets, and Laboratory Reports
	Attachment 3	Veolia Transportation Log

REFERENCES CITED

- Gettler-Ryan, Incorporated. 2000. Underground Storage Tank and Product Piping Removal Report for Former Tosco 76 Service Station No. 7004, 15599 Hesperian Boulevard, San Leandro, California. September 8.
- Gettler-Ryan, Incorporated. 2001a. Limited Phase I Environmental Site Assessment at Former Tosco (76) Service Station #7004, 15599 Hesperian Boulevard, San Leandro, California. June 8.
- Gettler-Ryan, Incorporated. 2001b. Transmittal of Well Survey Results, Site Information Summary, and Request For Closure for the Tosco (76) Service Station No. 7004, 15599 Hesperian Boulevard, San Leandro, California. September 27.
- Gettler-Ryan, Incorporated. 2002. Subsurface Investigation Report for Former Tosco (76) Service Station No. No. 7004, 15599 Hesperian Boulevard, San Leandro, California. November 26.
- Kaprealian Engineering, Incorporated. 1990. Soil Sampling Report, Unocal Service Station #7004, 15599 Hesperian Boulevard, San Leandro, California. November 26.
- Kaprealian Engineering, Incorporated. 1991a. Preliminary Groundwater Investigation at Unocal Service Station #7004, 15599 Hesperian Boulevard, San Leandro, California. May 31.
- Kaprealian Engineering Incorporated. 1991b. Continuing Groundwater Investigation at Unocal Service Station #7004, 15599 Hesperian Boulevard, San Leandro, California. August 16.
- Kaprealian Engineering Incorporated. 1992a. Continuing Groundwater Investigation and Quarterly Report, Unocal Service Station #7004, 15599 Hesperian Boulevard, San Leandro, California. May 29.
- Kaprealian Engineering Incorporated. 1992b. Aquifer Pumping Test Report at Unocal Service Station #7004, 15599 Hesperian Boulevard, San Leandro, California. November 16.
- Pacific Environmental Group. 1996. Well Survey Results, Unocal Service Station 7004, 15599 Hesperian Boulevard, San Leandro, California. June 24.
- SECOR International Incorporated. 2002. Dual-Phase Extraction Summary Report. Former Tosco Station #7004, 15599 Hesperian Boulevard, San Leandro, California. January 3.
- SECOR International Incorporated. 2005a. Addendum to October 14, 2004 Work Plan for Additional Off-Site Monitoring Well Installation, Former 76 Service Station No. 7004, 15599 Hesperian Boulevard, San Leandro, California. May 12.
- SECOR International Incorporated. 2005b. Site Assessment Report for Former 76 Service Station No. 7004, 15599 Hesperian Boulevard, San Leandro, California. October 5.

SECOR-

Mr. Jerry Wickham May 29, 2007 Page 13

- SECOR International Incorporated. 2006a. Additional Site Assessment Report for Former 76 Service Station No. 7004, 15599 Hesperian Boulevard, San Leandro, California. April 3.
- SECOR International Incorporated. 2006b. Initial Start-up Report, Former ConocoPhillips Site No. 7004, 15599 Hesperian Boulevard, San Leandro, California. April 17.
- SECOR International Incorporated. 2006c. Work Plan For Offsite Assessment. Former 76 Service Station No. 7004, 15599 Hesperian Boulevard, San Leandro, California. June 30.
- SECOR International Incorporated. 2006d. No Further Action Analysis and Human Health Risk Assessment. Former 76 Service Station No. 7004, 15599 Hesperian Boulevard, San Leandro, California. October 6.
- SECOR International Incorporated. 2006e. No Further Action Required (NFAR) Report and Request for Site Closure, 76 Service Station No. 7004, 15599 Hesperian Boulevard, San Leandro, California. November 6.

SECOR _____

FIGURES

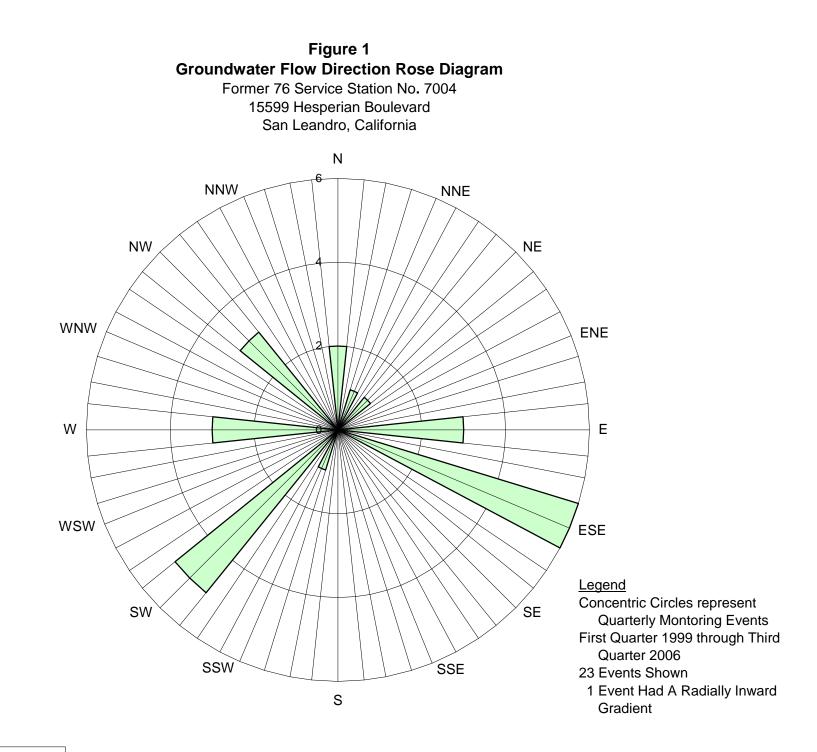


Figure 2 Temporary DPE Influent Soil Vapor Concentrations

Former 76 Service Station No. 7004 15599 Hesperian Boulevard San Leandro, California

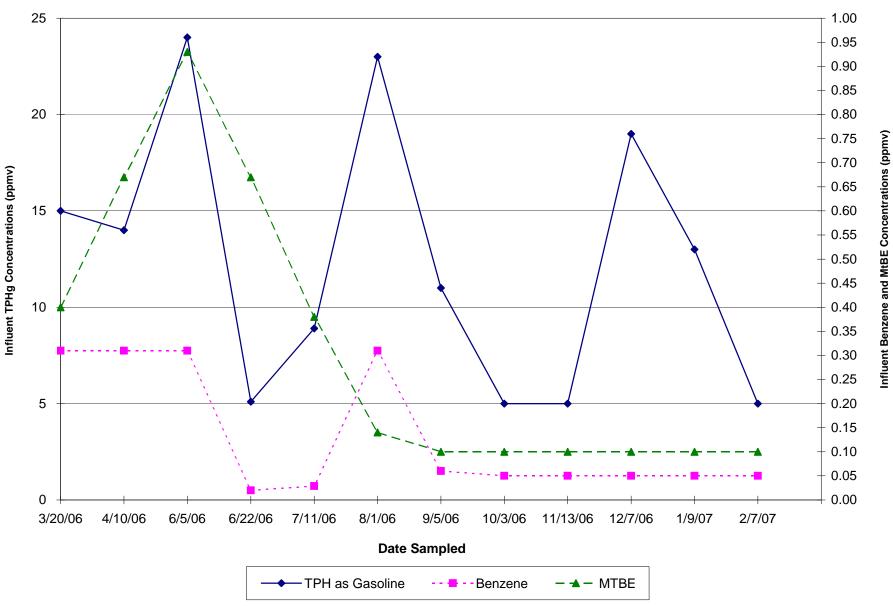
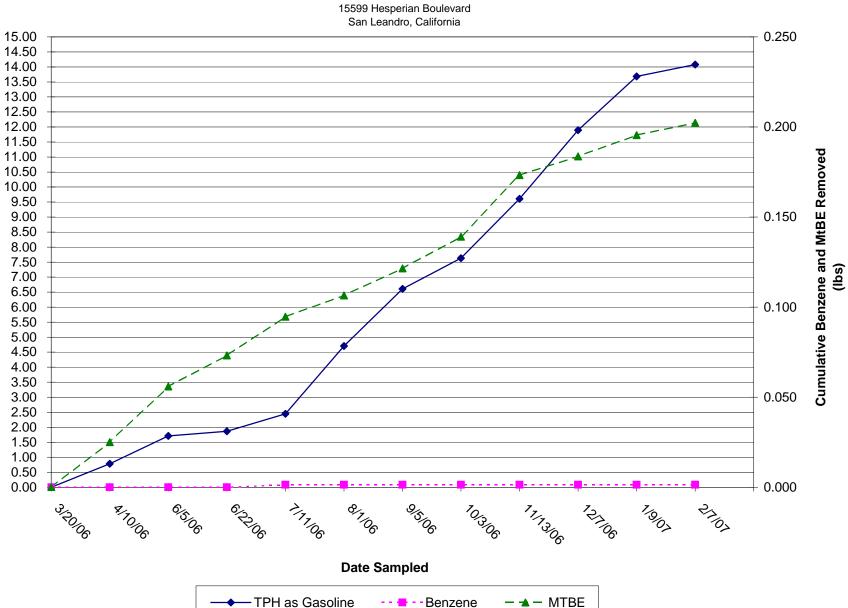



Figure 3 Temporary DPE Soil Vapor Mass Recovery

Former 76 Service Station No. 7004

Figure 4 Temporary DPE Influent Groundwater Concentrations

Former 76 Service Station No. 7004 15599 Hesperian Boulevard San Leandro, California

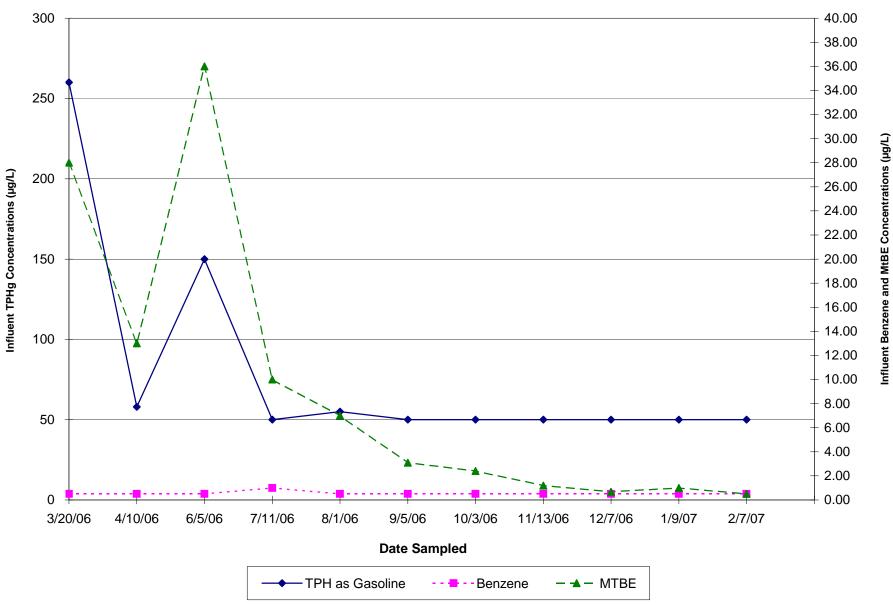
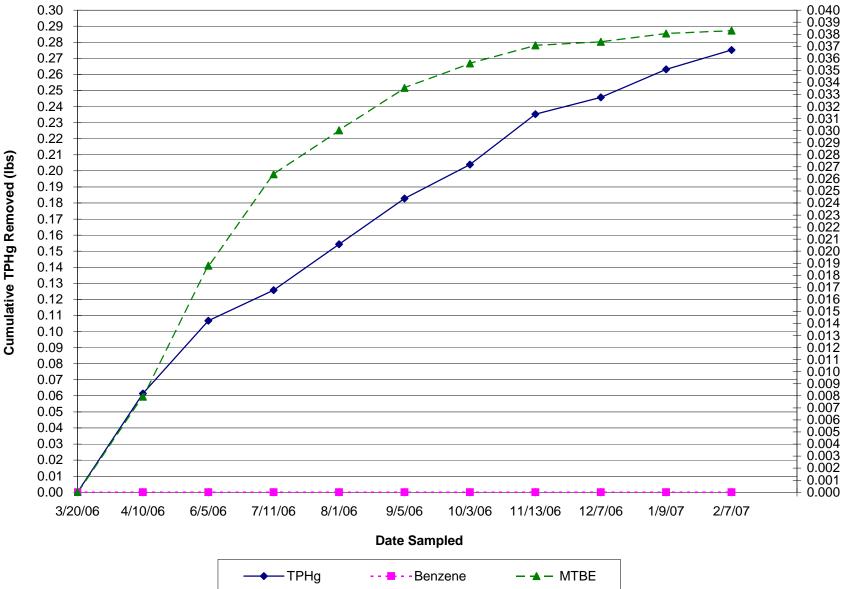


Figure 5 Temporary DPE Groundwater Mass Recovery

Former 76 Service Station No. 7004 15599 Hesperian Boulevard San Leandro, California

(sql)


Removed

MTBE

and

Benzene

Cumulative

SECOR _____

TABLES

TABLE 1 Historical Groundwater Gradient and Flow Direction Former 76 Service Station No. 7004

15599 Hesperian Boulevard

San Leandro, California

Monitoring Date	Average GWE	Ground								Ground	dwater	Flow D	irectior	ı					
	(ft msl)	(foot pe	er foot)	Ν	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW
01/11/99	22.59	0.003		0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
01/04/00	22.56	0.006		0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07/15/00	22.92	0.010		0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
01/19/01	23.37	0.007		0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
07/31/01	21.89	0.003		0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
01/28/02	23.38	0.003		0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
04/22/02	23.47	0.006		0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
05/24/02	23.10	0.005		0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
08/29/02	22.18	0.003		0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
01/24/03	24.26	0.002		0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
04/18/03	23.83	0.003		0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
07/18/03	22.40	0.005		0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
10/01/03	21.70	0.004		0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
01/30/04	23.08	0.004		0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
04/26/04	23.53	0.004														0			
07/28/04	22.46	0.003		0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
10/19/04	21.93	0.005		0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
01/05/05	23.34	0.001		0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
06/14/05	24.66	0.003		0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
09/29/05	23.02	0.003		0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
12/02/05	22.68	0.006		0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
03/21/06	24.74	0.010		0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
05/25/06	26.09	0.020	*	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08/25/06	24.16	0.010		0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
10/18/06	23.46	0.030		1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
01/18/07	23.47	0.020		1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	23.24	0.007	Average	2	1	1	0	3	6	0	0	0	1	5	0	3	0	3	0
Explanation																			
Number of Events		Events, one	.,		Ū														
Source: Historical G	roundwater (adient Map	os trom TRC	and Ge	ettler-Ry	an Inc.													

Table 2 Temporary Dual Phase Extraction System - Operating Data

Former 76 Service Station No. 7004 15599 Hesperian Blvd San Leandro, California

Date	Notes	Hourmeter Reading (hours)	Totalizer Reading (gallons)	Well Field Temperature (°F)	System Vacuum (inHg)	Flow Rate (acfm)	Flow Rate (scfm) [1]	MW-3 FID (ppmv)	MW-5 FID (ppmv)	RW-1 FID (ppmv)	Well Field FID (ppmv)
3/20/06	а	12,076.5	43,900	60	26	57.0	8	51.1	60.2	15.0	60
3/27/06		12,099.8	54,000	60	26	62.9	9	398	187	17.9	389
4/10/06	b,c	12,345.4	90,210	60	25	79.5	13	51	365	87.2	59.1
4/17/06	d	12,464.8	114,700								
6/1/06 6/5/06	e f	12,464.8 12,557.7	114,700 126,390	79.1 78.1	25 25	77.2 70.1	13	380.2 109	140.0 75 F/O	14.0 25 F/O	375 100 F/O
6/9/06	T	12,557.7	131,450	78.1		70.1	11		75 F/U 	25 F/U 	100 F/O
6/12/06		12,604.2	136,030								
6/22/06	g	12,650.0	145,670	75.2	25	68.2	11	104.2	4.2	7.5	103
6/26/06	h	12,725.8	159,240	98	25	71.2	11				
7/6/06		12,963.1	198,660	70.2	25	69.2	11	39	22		20
7/11/06	j	13,085.4	217,320	70	25	69.2	11	21.2	15.9	9	20
7/17/06	k	13,123.7	224,120	87.2	25	77.2	12	90 F/O	72.1 F/O	12.5 F/O	80 F/O
7/25/06	1	13,311.0	254,500								
8/1/06		13,476.4	279,670	72.1	24	79.9	16	21.2	19.5	11.0	14.7
8/8/06		13,644.9	301,300	77.2	26	60.2	8	30.5	10.2	5.1	27.1
8/24/06		14,028.0	383,550	87.2	25	68.0	11	361.5	38.2	66.7	311.5
8/29/06 9/5/06	m	14,078.5	391,404 415,990	59 79.9	24 24	38.8 72.5	8 14	28 77.3	4 54.3	62.1	3
9/5/06		14,247.5 14,414.0	415,990	87.2	24	72.5 81.2	14	71.2	54.3 47.5	62.1	65
9/12/06		14,414.0	517,340	70.2	23	70.2	10	30	47.5		21.2
10/3/06	n	14,840.0	524,548								
10/17/06		15,151.4	562,070	72.1	22	81.5	22	11.6	7.7	7.7	7.1
10/24/06	0	15,318.5	591,380					29.2	3.6	7.1	
11/13/06		15,794.0	667,400	69.2	20	79.3	26	9.1	9	9	9
11/21/06		15,984.7	683,450					10.9	9.2	7.2	10.1
12/7/06		16,367.9	717,870	67.2	24	66.1	13	20.2	0	0	20.1
12/19/06	р	16,590.9	736,420								
1/5/07		16,809.3	777,430	61.1	23	72.5	17	9.9	1.1	0	4
1/9/07	~	16,903.5	801,020	69.2	23	69.7	16	9.1	2	2.2	7.2
2/7/07	q	17,318.6	858,760	62.7	25	69.0	12	10.1	8.5	9.2	
Period Operat Period Extract Period Extract Period Averag Total Operatio Total Operatio Total Liquid Average Histo Definitions: 	ional (% ed (gals e Disch n (hours nal (%): xtracted rical Dis Data no Actual c Degrees Flame IC Flame IC Inches c Parts pe Standars Indicate): arge Rate (gp s): Historical (g ccharge Rate t available or rr ubic feet per n s Fahrenheit ponization Dete	als): (gpm): not applicable ninute ctor ctor	728 61% 122,34 2.8 5,242 67% 814,86 2.6	0	SCFM Tempera Atmosph Atmosph	eric press eric press	ure at standa	,) ons (528 Ran rd conditions r rd conditions r ding (°F).	minus manifo	ld vacuum (i
b c d f f y h j k l m n o P	 effluer actual syster 	system efficie n down and re n down, gener enerator instal n down, high l n resampled o n down upon a d down upon a	hits are assumed incy started, set slur, ator unoperation led and system evel switch on b n 6/21/06 w/ les ator shut down rrival due to oil/ rrival, high level connection inst rrival due to air rrival system re grab samples for	aker tank triggen as 10 ppmv repor due to high water water in generato switch on baker alled and genera pressure alarm, s	casing be replace ed shut doo ting limits temperatu or crankcas tank trigge tor remove system rest ampling	d wn of syste ire, system red shut d d tarted	em on 6/4/ n cooled d restarted lown, syste	/06, system re own and rest em restarted	estarted		

Table 3

Temporary Dual Phase Extraction System - Soil Vapor Influent Analytical Data and Mass Recovery

Former 76 Service Station No. 7004 15599 Hesperian Boulevard San Leandro, California

				Well		Influ	ent Cond	entration	IS			T	PHg Reco	very	Ber	nzene Rec	overy	N	tBE Reco	very
			Hour	Field								Recovery	Period		Recovery	Period		Recovery	Period	
Date	Sample		Meter Reading	Flow	TPHg	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	VOC	Rate (lbs/day)	Net Recovery	Cumulative Recoverey	Rate (lbs/day)	Net Recovery	Cumulative Recovery	Rate (lbs/day)	Net Recovery	Cumulative Recovery
Sampleo		Notes		Rate (scfm)	(ppmv)	(ppmv)	(ppmv)	(ppmv)	(ppmv)	(ppmv)	(ppmv)	(iDS/day) [1]	(lbs) [2]	(lbs) [3]	(iDS/day) [1]	(lbs) [2]	(lbs) [3]	(iDS/day) [1]	(lbs) [2]	(lbs) [3]
3/20/200			12076.5	12	15	<0.310	<0.260	<0.230	<0.230	0.4	16.43	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4/10/200	-		12,345.4	13	<14	<0.310	<0.260	0.27	<0.230	0.67	15.74	0.07	0.79	0.79	0.00	0.00	0.00	0.00	0.03	0.03
6/5/2006 6/22/200			12,557.7 12,725.8	11 11	24 5.1	<0.310 <0.020	<0.260 0.031	<0.230 <0.020	<0.230 <0.020	0.93 0.67	25.96 5.86	0.10 0.02	0.92 0.15	1.71 1.86	0.00	0.00	0.00	0.00	0.03	0.06
7/11/200			13,085.4	11	8.9	0.020	0.051	0.14	0.030	0.38	9.53	0.02	0.58	2.45	0.00	0.00	0.00	0.00	0.02	0.07
8/1/2006			13,476.4	16	23.0	<0.310	<0.260	<0.230	<0.230	<0.14	24.17	0.14	2.26	4.70	0.00	0.00	0.00	0.00	0.01	0.11
9/5/2006			14,247.5 14,846.0	14 22	11.0 <5.0	<0.060 <0.050	<0.050 <0.050	<0.050 <0.050	0.05 <0.050	0.10 <0.10	11.31 5.30	0.06	1.90 1.02	6.61 7.63	0.00	0.00	0.00	0.00	0.01	0.12 0.14
11/13/200			15,794.0	26	<5.0	<0.050	<0.050	<0.050	<0.050	<0.10	5.30	0.05	1.98	9.61	0.00	0.00	0.00	0.00	0.02	0.17
12/7/200			16,367.9	13	19	< 0.050	< 0.050	< 0.050	< 0.050	<0.10	19.30	0.10	2.29	11.90	0.00	0.00	0.00	0.00	0.01	0.18
1/9/2007		INF 16,903.5 16 13.0 <0.050 <0.050 <0.050 <0.050 <0.050 <0.01 13.30 0.08 1.79 13.68 0.00 0.00 0.00 0.00 0.01 0.20 INF 17,318.6 12 <5.0										0.20								
2/1/2001	1150											0.20								
		PERIOD: First Quarter 07																		
		s Removed [4]: 2.18 0.00 0.02																		
		s Removed [5]: 0.36 0.00 0.00 Removed [6]: 14.08 0.00 0.20																		
		Removed [7]: 2.31 0.00 0.03																		
Definition		Younds																		
lbs MtBE	Pounds Methyl t	ounds lethyl tert-butyl ether																		
ppmv		Parts per million by volume																		
scfm		Standard cubic feet per minute																		
TPHg VOC		otal petroleum hydrocarbons as gasoline /olatile organic compound																		
Notes:	, oldino	organi	oompound	-																
Molecular TPHg	Weights:	102 q/	mol																	
Benzene	•	78 g/n																		
MtBE		88 g/n																		
Densities:																				
	Gasoline=																			
	Benzene= MtBE= 6.18																			
Density of	IVILDE= 0.10	sib/yai																		
Equation	<u>s:</u>																			
		Concentration (ppmy) Molecular Weight Flow $\left(\frac{\text{ft}^3}{1000}\right) \cdot 60 \left(\frac{\text{min}}{10000}\right) \cdot 24 \left(\frac{\text{hour}}{100000000000000000000000000000000000$																		
		Concentrat ion (ppmv) · Molecular Weight · Flow $\left(\frac{\pi}{\min}\right) \cdot 60 \left(\frac{\min}{\max}\right) \cdot 24 \left(\frac{\log \pi}{\log 2}\right)$																		
[1]	Recovery	decovery Rate $\left(\frac{lb}{day}\right) = \frac{\text{Concentrat ion (ppmv)} \cdot \text{Molecular Weight} \cdot \text{Flow}\left(\frac{\text{ft}^3}{\text{min}}\right) \cdot 60\left(\frac{\text{min}}{\text{hour}}\right) \cdot 24\left(\frac{\text{hour}}{\text{day}}\right)}{V_{\text{ideal}}\left(\text{ft}^3\right) \cdot 10^6}$																		
1		'	(aay)					v _{ideal} (II	J. 10											
i																				
1				Po	COVERY D	ate	How	Metor D	eading	- How	r Meter	Reading)(hour)						
[2]	Denie 1 M	4 P		.)	covery K	day	J.(mour	MCCCI K	caung	t - 110U	wieter	Reading	t-1 Muon	,						
[2]	Period Ne	t Rec	overy (lbs	;)=					<i>.</i>					-						
i								24	$\left(\frac{\text{hour}}{\text{day}}\right)$											ľ
								(uay)											
				_			,													
[3]	Cumulativ	e Rec	covery (lt	$(s) = \sum_{n=1}^{\infty} (s) = \sum_{n$	Period	Net Reco	very (lbs)												
1																				
[4]	Period Po	Period Pounds Removed (lbs) = Reporting Period Net Recovery (lbs)																		
r.1				(100)=	reportin				,											
						. 15	1 5	1 /11	``											
[5]	Period Ga	llons	Removed	(gallo	$ns) = \frac{Per}{r}$	iod Poun	ds Remo	oved (lbs	<u>s)</u>											
				00	.,	Den	$\frac{1b}{1}$	_)												
						Den	$\frac{d}{d}$	J												
[6]	Total Pou	nds P	emoved ((hs) = 0	Jumplati	Recor	ery (the)												
[0]	iotai rou	nus K	cinoveu (105) - (camarath	NE RECOV		,												
							_	. (
[7]	Total Gal	ons R	emoved	(gallon	$s = \frac{\text{Tota}}{1}$	1 Pounds	Remove	d (lbs)												
1,1	iotai Odi	ions P	emo veu	Ganon		D	$\left(\frac{1b}{1b} \right)$													
1						Densi	$y\left(\frac{1}{\text{gal}}\right)$													
v	Voluer	610	nolo - f	i da -1		C 64 ³	0 ⁰ E 1	20.02.	II.											
$V_{ideal} =$	Volume o	1 1.0 n	note of an	ideal g	gas 15386	on It" at 7	U F and	29.92 in	нg											

Table 4 Temporary Dual Phase Extraction System - Soil Vapor Emissions Data

Former 76 Service Station No. 7004 15599 Hesperian Boulevard San Leandro, California

			Total								VOC En	nissions	Benzene	Emissions
		Hour	System											
		Meter	Flow				Ethyl-	Total			Emissions	Cumulative	Emissions	Cumulative
Sample		Reading	Rate	TPHg	Benzene	Toluene	benzene	Xylenes	MTBE	VOC	Rate	Emissions	Rate	Emissions
ID	Notes	(hours)	(scfm)	(ppmv)	(ppmv)	(ppmv)	(ppmv)	(ppmv)	(ppmv)	(ppmv)	(lbs/day)	(lbs)	(lbs/day)	(lbs)
EFF	a,b	12,076.5	12	<14	<0.31	<0.26	<0.23	<0.23	<0.14	15.17	0	0	0	0
		12,345.4		<14							0.07	0.82	0.00	0.01
		12,557.7		<14							0.07	1.46	0.00	0.02
	С	12,725.8				0.022					0.01	1.59	0.00	0.02
		13,085.4				0.040					0.01	1.83	0.00	0.03
		13,476.4		<5	<0.31	<0.26		<0.23	<0.14	6.17	0.04	2.99	0.00	0.07
		14,247.5	14	<1.0	<0.062	<0.052	<0.046	<0.046	<0.028	1.23	0.01	3.31	0.00	0.08
		14,846.0		<5.0	<0.050	<0.050	<0.050	<0.050	<0.10	5.30	0.04	5.79	0.00	0.10
EFF		15,794.0	26	<5.0	<0.050	<0.050	<0.050	<0.050	<0.10	5.30	0.05	9.22	0.00	0.13
EFF		16,367.9	13	<5.0	<0.050	<0.050	<0.050	<0.050	<0.10	5.30	0.03	10.91	0.00	0.14
EFF		16,903.5	16	<5.0	<0.050	<0.050	<0.050	<0.050	<0.10	5.30	0.03	12.42	0.00	0.15
EFF		17,318.6	12	<5.0	<0.050	<0.050	<0.050	<0.050	<0.10	5.30	0.02	13.38	0.00	0.16
						Permit C	onditions	s (Applic	ation N	o. 1303	1):			
Pounds						VOC Cor	ntrol Efficie	ency > 98	8.5% (Fo	or inlet o	oncetrations	s <u>></u> 2000 ppn	nv)	
Methyl ter	t-butyl	ether				VOC Cor	ntrol Efficie	ency > 97	7% (For	inlet co	ncetrations >	<u>-</u> 200 ppmv a	nd < 2000 p	omv)
Parts per	million	by volume	;			VOC Cor	trol Efficie	ency > 90	0% (For	inlet co	ncetrations <	< 200 ppmv)		
Standard	cubic fo	eet per mi	nute			VOC Cor	trol Efficie	ency Wai	ived for	Outlet E	fficiencies <	10 ppmv		
Total petr	oleum l	hydrocarb	ons as g	asoline										
•					ls									
			0	•										
= system	start-up	0												
•	•		re assur	ned as e	ffluent cor	ncentratio	n; vapor d	control sv	stem ef	ficiencv	is not an aco	curate reflecti	on of system	efficiencv
	•	•					,	·,						J
	ID EFF EFF EFF EFF EFF EFF EFF EFF EFF EF	IDNotesEFFa,bEFFEFFEFFcEFFCEFFEFFEFFEFFEFFDEFFDEFFDEFFDEFFDEFFDEFFDEFFDEFFDEFFDDoundsMethyl tert-butylPoundsMethyl tert-butylParts per millionStandard cubic for Total petroleum ITotal Number of= system start-up= effluent reporti	Sample IDMeter Reading (hours)EFFa,b12,076.5EFFa,b12,076.5EFF12,345.4EFF12,557.7EFFc12,725.8EFF13,085.4EFF13,476.4EFF14,247.5EFF14,846.0EFF16,367.9EFF16,367.9EFF16,903.5EFF16,903.5EFF17,318.6PoundsMethyl tert-butyl ether Parts per million by volume Standard cubic feet per mi Total petroleum hydrocarbo Total Number of Volatile or= system start-up = effluent reporting limits a	Hour MeterSystem Flow Reading 	Hour System Sample Hour Flow Notes (hours) Rate TPHg ID Notes (hours) (scfm) (ppmv) EFF a,b 12,076.5 12 <14	Sample ID Hour Meter Notes System (hours) (sofm) TPHg (ppmv) Benzene (ppmv) EFF a,b 12,076.5 12 <14	Sample ID Hour Meter Notes System (hours) TPHg (scfm) Benzene (ppmv) Toluene (ppmv) EFF a,b 12,076.5 12 <14	Sample ID Hour Notes System Reading (hours) TPHg (scfm) Benzene (ppmv) Toluene (ppmv) Ethyl- benzene (ppmv) EFF a,b 12,076.5 12 <14	Sample ID Hour Meter Notes System Flow (hours) TPHg (scfm) Benzene (ppmv) Toluene (ppmv) Ethyl- benzene (ppmv) Total benzene (ppmv) EFF a,b 12,076.5 12 <14	Hour Sample Hour Meter System Flow (nours) TPHg (scfm) Benzene (ppmv) Toluene (ppmv) Ethyl- benzene (ppmv) Total (ppmv) MTBE EFF a,b 12,076.5 12 <14	Sample Hour Meter Reading System Rate (scfm) TPHg (ppmv) Benzene (ppmv) Total (ppmv) Total	Sample ID Hour Meter System Flow Reading (hours) TPHg (sofm) Benzene (ppmv) Total benzene (ppmv) Total benzene (ppmv) Ethyl- (ppmv) Total benzene (ppmv) Emissions (ppmv) EFF a.b 12,076.5 12 <14	Hour Meter System Hour Reading (scm) Hour Rate System Flow Rate TPHg (ppmv) Benzene (ppmv) Ethyl- (ppmv) Total (ppmv) Emissions (ppmv) Cumulative (ppmv) EFF a,b 12,076.5 12 <14	Sample ID Hour Meter System Rate (scm) TPHg (ppmv) Benzene (ppmv) Ethyl- (ppmv) Total (ppmv) Total (ppmv) Emissions (ppmv) Cumulative (ppmv) Emissions (bs/day) EFF a,b 12,076.5 12 <14

* Detection limits assumed to provide a maximum estimate for vapor emissions to the atmosphere, which is a conservative estimate

Table 5 Temporary Dual Phase Extraction System - Well Status Data

Former 76 Service Station No. 7004 15599 Hesperian Boulevard San Leandro, California

				MW	-3					MW	-5					RW	/-1		
		Status	System	Well	Slurp	Flow		Status	System	Well	Slurp	Flow		Status	System	Well	Slurp	Flow	
		(%	Vacuum	Vacuum	Tube	Rate	FID	(%	Vacuum	Vacuum	Tube	Rate	FID	(%	-	Vacuum	Tube	Rate	FID
Date	Notes	Open)	(in Hg)	(in Hg)	Depth	(gpm)	(ppmv)	Open)	(in Hg)	(in Hg)	Depth	(gpm)	(ppmv)	Open)	(in Hg)	(in Hg)	Depth	(gpm)	(ppmv)
3/20/2006		C						O-100	25	25	20	3	60	C					
3/27/2006		O-100	26	25	TOC	3.9	389	С						C					
4/10/2006		С						O-100	25	23	TOC	3	365	O-10	25	1.9	TOC	3	87
6/1/2006		O-100	26	24	TOC	1	375	O-10	26	2.7	TOC	0.1	140	С					
6/5/2006		O-10	25	1	TOC	0.1	100 (F/O)	O-100	25	20	TOC	2.9	75 (F/O)	С					
6/22/2006		O-100					104.2	O-10					4.2	O-10					7.5
6/26/2006		Р	20	20	TOC	1.2		0	20		TOC			Р	20		TOC		
7/6/2006		O-100	25	23	TOC	3	39	O-10	25	2	TOC	0	22	O-10	25	2	TOC	0	5
7/11/2006		O-100					21.2	O-10					15.9	O-10					9
7/17/2006		O-100	25	20	TOC	2.5	90 (F/O)	O-20	25	8	TOC	2.5	72.1 (F/O)	С					12.5 (F/O)
8/1/2006	а	O-100	26	22	а	2.5	32.7	С						С					
8/8/2006		O-100	26	24	Bottom	-	30	O-10	26	4	TOC	0.1	10	O-10	26	4	TOC	0.1	5
8/24/2006		O-100	25	20	Bottom	-	360	С						O-30	25	4	TOC	0.5	65
8/29/2006		O-50	24	13.5	Bottom		28	O-100	24	23.12	TOC	2	4	С					
9/5/2006		O-100	23	20	Bottom		70	O-10	23	1	TOC		50	O-10	23	1	TOC		60
9/12/2006		O-100	23	20	Bottom		70	O-20	23	4	TOC		50	O-20	23	4	TOC		60
10/3/2006		O-100	24	21	Bottom		30	O-50	20	17	а		15	С					
10/6/2006		O-100						O-50						С					
10/17/2006		O-100	22	20	Bottom	1	11.6	O-100	22	19	Bottom	1	7.7	O-100	22	20	Bottom	1	7.7
10/24/2006		O-100			Bottom		29.2	O-100			Bottom		3.6	O-100			а		7.1
11/13/2006		0-100	20	17.1	Bottom		9.1	O-100	20	17.2	Bottom		9	O-100	20	17.5	Bottom		9
11/21/2006		0-100			b		10.9	O-100			b		9.2	O-100			d		7.2
12/7/2006		0-100	24	21	Bottom		20.2	0-10	24	2	С		0	0-10	24	2	С		0
1/5/2007		0-100	23	20	Bottom	3	9.9	O-100	23	19 19	Bottom	3	1.1	0-5	23	3	Bottom	3	0
1/7/2007		O-100	23 25	20 20	a TOC	1	9.1	O-100	23	20	a TOC	1	2 8.5	O-100	23 25	20	C TOC	0	2.2 9.2
2/7/2007		O-100	25	20	IUC	0	10.1	O-100	25	20	100	0	8.5	O-100	25	20	TOC	0	9.2
Definitioner																			
Definitions:		Not moor	sured or n	ot opplig	blo														
C		Closed			able														
FID			nization D	atactor															
F/O		FID flame		elector															
gpm			per minute																
in Hg		Inches of		•															
O		Open	mercury																
P		Partially (Onen																
ppmv			million by	/ volume															
TOC		Top of Ca																	
Notes:			20119																
a		Slurp tub	e located	1 ft from	bottom														
b			e located																
c			e located																
d			e located																
~																			

Table 6 Temporary Dual Phase Extraction System - Groundwater Analytical Data

Former 76 Service Station No. 7004
15599 Hesperian Boulevard
San Leandro, California

						Ethyl-	Total								
			TPHg	Benzene	Toluene	benzene	Xylenes	MTBE	DIPE	ETBE	TAME	TBA	EDB	1,2-DCA	Ethanol
Date Sampled	Sample ID	Notes	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
3/20/2006	KO		260	<0.50	<0.50	1.6	<1.0	28	<1.0	<0.50	<0.50	18			
4/10/2006	KO		58	<0.50	<0.50	0.58	<1.0	13	<1.0	<0.50	<0.50	14			
6/5/2006	KO		150	<0.50	<0.50	1.6	<1.0	36	<1.0	<0.50	<0.50	10			
7/11/2006	KO		<50	<1.0	<1.0	<1.0	<1.0	10	<2.0	<2.0	<2.0	<25	<1.0	<1.0	<500
8/1/2006	KO		55	<0.50	<0.50	<0.50	<1.0	7.0	<1.0	<0.50	<0.50	<5.0	<0.50	0.85	<100
9/5/2006	KO		<50	<0.50	<0.50	<0.50	<1.00	3.1	<1.0	<0.50	<0.50	<5.0	<0.50	<0.50	<250
10/3/2006	KO		<50	<0.50	<0.50	<0.50	<0.50	2.4	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	
11/13/2006	KO		<50	<0.50	<0.50	<0.50	<0.50	1.2	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	<5.0
12/7/2006	KO		<50	<0.50	<0.50	<0.50	<0.50	0.68	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	
1/9/2007	KO		<50	<0.50	<0.50	<0.50	<0.50	1.0	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	
2/7/2007	KO		<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.5	<0.50	<0.50	<5.0	<0.50	<0.50	
Definition:															
1,2-DCA	1,2-dichloroethan														
DIPE	Di-isopropyl ether														
EDB	Ethylene dibromic														
ETBE	Ethyl tertiary-buty	l ether													
µg/L	Micrograms per li	ter													
MTBE	Methyl tert-butyl e	ether													
TAME	Tertiary-amyl met	thyl ethe	er												
TBA	Tertiary-butyl alco	bhol													
TPHg	Total petroleum h	nydrocar	bons as g	gasoline (g	asoline ra	inge orgar	nics)								
KO	Knockout														

Table 7 Temporary Dual Phase Extraction System - Groundwater Mass Recovery

Former 76 Service Station No. 7004 15599 Hesperian Boulevard San Leandro, California

		Influe	nt			In	fluent Co	ncentratio	ns	Т	PHg Recove	ery	Bei	nzene Recov	ery	м	TBE Recove	ry	٦	FBA Recove	ry
Date Sampled	Sample ID	Notes	Hour Meter Reading (hours)	Totalizer Reading (gallons)	Period Volume Extracted (gallons)	TPHg (µg/L)	Benzene (µg/L)	MtBE (µg/L)	TBA (µg/L)	Removal Rate (Ibs/day) [1]	Removed		Removal Rate (lbs/day) [1]	Removed	Cumulative Removed (lbs) [3]	Removal Rate (lbs/day) [1]		Cumulative Removed (lbs) [3]	Removal Rate (lbs/day) [1]		Cumulative Removed (Ibs) [3]
3/20/2006	KO		12076.5	43,900		260	< 0.50	28	18	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4/10/2006	KO		12345.4	90,210	46,310	58	< 0.50	13	14	0.01	0.06	0.06	0.00	0.00	0.00	0.00	0.01	0.01	0.00	0.01	0.01
6/5/2006	KO		12557.7	126,390	36,180	150	< 0.50	36	10	0.01	0.05	0.11	0.00	0.00	0.00	0.00	0.01	0.02	0.00	0.00	0.01
7/11/2006	KO		13085.4	217,320	90,930	<50	<1.0	10	<25	0.00	0.02	0.13	0.00	0.00	0.00	0.00	0.01	0.03	0.00	0.01	0.02
8/1/2006	KO		13476.4	279,670	62,350	55	<0.50	7.0	<5	0.00	0.03	0.15	0.00	0.00	0.00	0.00	0.00	0.03	0.00	0.00	0.02
9/5/2006	KO		14247.5	415,990	136,320	<50	<0.50	3.1	<5	0.00	0.03	0.18	0.00	0.00	0.00	0.00	0.00	0.03	0.00	0.00	0.02
10/3/2006	KO		14846.0	517,340	101,350	<50	< 0.50	2.4	<5	0.00	0.02	0.20	0.00	0.00	0.00	0.00	0.00	0.04	0.00	0.00	0.02
11/13/2006	KO		15794.0	667,400	150,060	<50	<0.50	1.2	<5	0.00	0.03	0.24	0.00	0.00	0.00	0.00	0.00	0.04	0.00	0.00	0.03
12/7/2006	KO		16367.9	717,870	50,470	<50	< 0.50	0.7	<5	0.00	0.01	0.25	0.00	0.00	0.00	0.00	0.00	0.04	0.00	0.00	0.03
1/9/2007	KO		16903.5	801,020	83,150	<50	< 0.50	1.0	<5	0.00	0.02	0.26	0.00	0.00	0.00	0.00	0.00	0.04	0.00	0.00	0.03
2/7/2007	KO		17318.6	858,760	57,740	<50	<0.50	<0.50	<5	0.00	0.01	0.28	0.00	0.00	0.00	0.00	0.00	0.04	0.00	0.00	0.03
Period Pounds R Period Gallons R Total Pounds Re	PORTING PERIOD: First Quarter 07 riod Pounds Removed [4]: riod Gallons Removed [5]: tal Gallons Removed [6]:							0.03 0.00 0.28 0.05			0.00 0.00 0.00 0.00			0.00 0.00 0.04 0.01			0.00 0.00 0.03 0.00				

lbs Pounds MtBE NA

Methyl tert-butyl ether Not sampled or not analyzed Tert-butyl alcohol

TBA

TPHg Total petroleum hydrocarbons as gasoline

micrograms per Liter

(µg/Ľ) KO Knockout

Notes:

Physical Properties: Density of gasoline = 6.1 pounds per gallon Density of diesel = 7.18 pounds per gallon Density of motor oil = 7.62 pounds per gallon Density of benzene = 7.4 pounds per gallon Density of MtBE = 6.18 pounds per gallon Density of TBA = 6.8 pounds per gallon

Equations:

[1] Removal Rate
$$\left(\frac{lbs}{day}\right) = \frac{Period Net Removed (lbs) \cdot 24 \left(\frac{hour}{day}\right)}{(Hour Meter Reading_{1} - Hour Meter Reading_{0})}$$

[2] Period Net Removed (lbs) = (Concentrat ion) $\left(\frac{\mu g}{L}\right) \cdot 3.785 \left(\frac{L}{gallon}\right) \cdot 2.205 \times 10^{-9} \left(\frac{lbs}{\mu g}\right) \cdot Period Extracted (gallons)$
[3] Cumulative Removed (lbs) = (Period Net Removed) (lbs) + Cumulative Removed (lbs)
[4] Period Pounds Removed (lbs) = \sum Period Net Removed (lbs)
[5] Period Gallons Removed (gallons) = $\frac{Period Pounds Removed (lbs)}{Density of Constituen t \left(\frac{lbs}{gallon}\right)}$
[6] Total Pounds Removed (lbs) = Cumulative Adsorbed (lbs)
[7] Total Gallons Removed (gallons) = $\frac{Total Pounds Removed (lbs)}{Density of Constituen t \left(\frac{lbs}{gallon}\right)}$

SECOR

ATTACHMENT 1 TRC'S QUARTERLY MONITORING REPORT JANUARY THROUGH MARCH 2007

Quarterly Status and Remediation Summary Report – First Quarter 2007 Former 76 Service Station No. 7004 15599 Hesperian Boulevard San Leandro, California SECOR Project No.: 77CP.01631.14 May 29, 2007

21 Technology Drive Irvine, CA 92618

949.727.9336 PHONE 949.727.7399 FAX

www.TRCsolutions.com

- DATE:February 13, 2007TO:ConocoPhillips Company
76 Broadway
Sacramento, CA 95818ATTN:MR. ERIC HETRICK
- SITE: FORMER 76 STATION 7004 15599 HESPERIAN BOULEVARD SAN LEANDRO, CALIFORNIA
- RE: QUARTERLY MONITORING REPORT JANAURY THROUGH MARCH 2007

Dear Mr. Hetrick:

Please find enclosed our Quarterly Monitoring Report for Former 76 Station 7004, located at 15599 Hesperian Boulevard, San Leandro, California. If you have any questions regarding this report, please call us at (949) 727-9336.

Sincerely,

TRC

Anju Farfan Groundwater Program Operations Manager

CC: Mr. Diane Barclay, SECOR International, Inc. (2 copies)

Enclosures 20-0400/7004R013.QMS

QUARTERLY MONITORING REPORT JANUARY THROUGH MARCH 2007

FORMER 76 STATION 7004 15599 Hesperian Boulevard San Leandro, California

Prepared For:

Mr. Eric Hetrick CONOCOPHILLIPS COMPANY 76 Broadway Sacramento, California 95818

By:

Senior Project Geologist, Irvine Operations February 7, 2007

	LIST OF ATTACHMENTS	
Summary Sheet	Summary of Gauging and Sampling Activities	
Tables	Table Key	
	Contents of Tables	
	Table 1: Current Fluid Levels and Selected Analytical Results	
	Table 1a: Additional Current Analytical Results	
	Table 2: Historic Fluid Levels and Selected Analytical Results	
	Table 2a: Additional Historic Analytical Results	
Figures	Figure 1: Vicinity Map	
	Figure 2: Groundwater Elevation Contour Map	
	Figure 3: Dissolved-Phase TPH-G (GC/MS) Concentration Map	
	Figure 4: Dissolved-Phase Benzene Concentration Map	
	Figure 5: Dissolved-Phase MTBE Concentration Map	
Graphs	Groundwater Elevations vs. Time	
	MTBE Concentrations vs. Time	
Field Activities	General Field Procedures	
	Field Monitoring Data Sheet – 1/18/07	
	Groundwater Sampling Field Notes – 1/18/07	
Laboratory	Official Laboratory Reports	
Reports	Quality Control Reports	
	Chain of Custody Records	
Statements	Purge Water Disposal	
	Limitations	

.

Summary of Gauging and Sampling Activities January 2007 through March 2007 Former 76 Station 7004 15599 Hesperian Boulevard San Leandro, CA

Project Coordinator: Eric Hetrick Telephone: 916-558-7604	Water Sampling Contractor: <i>TRC</i> Compiled by: Daniel Lee
Date(s) of Gauging/Sampling Event: 01/18/07	,
Sample Points	
Groundwater wells: 11 onsite, 0 offsite Purging method: Submersible pump/bailer Purge water disposal: Onyx/Rodeo Unit 100 Other Sample Points: 0 Type: n/a	Wells gauged: 11 Wells sampled: 11
Liquid Phase Hydrocarbons (LPH)	
Wells with LPH: 0 Maximum thickness (feet LPH removal frequency: n/a Treatment or disposal of water/LPH: n/a): n/a Method: n/a
Hydrogeologic Parameters	
 Depth to groundwater (below TOC): Minimum Average groundwater elevation (relative to availate Average change in groundwater elevation since prevented groundwater gradient and flow direct Current event: 0.02 ft/ft, north Previous event: 0.03 ft/ft, north (10/18/ 	ble local datum): 23.47 feet previous event: 0.13 feet cion:
Selected Laboratory Results	
Wells with detected Benzene: 1 Maximum reported benzene concentration: (Wells above MCL (1.0 μg/l): 0 0.63 μg/l (MW-3)
Wells withTPH-G by GC/MS3Wells withMTBE6	Maximum: 1,800 µg/l (MW-3) Maximum: 11 µg/l (MW-5)

Notes:

TABLES

TABLE KEY

STANDARD ABBREVIATIONS

	=	not analyzed, measured, or collected
LPH	=	liquid-phase hydrocarbons

- Trace = less than 0.01 foot of LPH in well
- ug/l = micrograms per liter (approx. equivalent to parts per billion, ppb)
- mg/l = milligrams per liter (approx. equivalent to parts per million, ppm)
- ND< = not detected at or above laboratory detection limit
- TOC = top of casing (surveyed reference elevation)

ANALYTES

ANALIILS		
BTEX		benzene, toluene, ethylbenzene, and (total) xylenes
DIPE	=	di-isopropyl ether
ETBE	=	ethyl tertiary butyl ether
MTBE	=	methyl tertiary butyl ether
PCB	<u></u>	polychlorinated biphenyls
PCE	<u></u>	tetrachloroethene
TBA	=	tertiary butyl alcohol
TCA	=	trichloroethane
TCE	-	trichloroethene
TPH-G	=	total petroleum hydrocarbons with gasoline distinction
TPH-G (GC/MS)	=	total petroleum hydrocarbons with gasoline distinction utilizing EPA Method 8260B
TPH-D	=	total petroleum hydrocarbons with diesel distinction
TRPH		total recoverable petroleum hydrocarbons
TAME	=	tertiary amyl methyl ether
1,1-DCA		1,1-dichloroethane
1,2-DCA	-	1,2-dichloroethane (same as EDC, ethylene dichloride)
1,1-DCE		1,1-dichloroethene
1, 2- DCE	=	1,2-dichloroethene (cis- and trans-)

NOTES

- 1. Elevations are in feet above mean sea level. Depths are in feet below surveyed top-of-casing.
- Groundwater elevations for wells with LPH are calculated as: <u>Surface Elevation Measured Depth to Water + (Dp x LPH Thickness</u>), where Dp is the density of the LPH, if known. A value of 0.75 is used for gasoline and when the density is not known. A value of 0.83 is used for diesel.
- 3. Wells with LPH are generally not sampled for laboratory analysis (see General Field Procedures).
- 4. Comments shown on tables are general. Additional explanations may be included in field notes and laboratory reports, both of which are included as part of this report.
- 5. A "J" flag indicates that a reported analytical result is an estimated concentration value between the method detection limit (MDL) and the practical quantification limit (PQL) specified by the laboratory.
- 6. Other laboratory flags (qualifiers) may have been reported. See the official laboratory report (attached) for a complete list of laboratory flags.
- Concentration graphs based on tables (presented following Figures) show non-detect results prior to the Second Quarter 2000 plotted at fixed values for graphical display. Non-detect results reported since that time are plotted at reporting limits stated in the official laboratory report.
- 8. Groundwater vs. Time graphs may be corrected for apparent level changes due to resurvey.

REFERENCE

TRC began groundwater monitoring and sampling for 76 Station 7004 in October 2003. Historical data compiled prior to that time were provided by Gettler-Ryan Inc.

Contents of Tables 1 and 2 Site: Former 76 Station 7004

Current Event

Table 1	Well/ Date	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G (8015M)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
Table 1a	Well/ Date	TBA	Ethanol (8260B)	Ethylene- dibromide (EDB)	1,2-DCA (EDC)	DIPE	ETBE	TAME						
Historic Da	ata													
Table 2	Well/ Date	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G (8015M)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
Table 2a	Well/ Date	TBA	Ethanol (8260B)	Ethylene- dibromide (EDB)	1,2-DCA (EDC)	DIPE	ETBE	TAME	Lead (total)	Post-purge Dissolved Oxygen	Pre-purge Dissolved Oxygen			

Table 1CURRENT FLUID LEVELS AND SELECTED ANALYTICAL RESULTSJanuary 18, 2007

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness		Change in Elevation		TPH-G (GC/MS)		Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-1		(Screen I	nterval in fe	et: 10.0-2	5.0)									
01/18/0	7 36.39	13.49	0.00	22.90	0.21		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
MW-2		(Screen I	nterval in fe	et: 10.0-2	5.0)									
01/18/0	7 37.07	14.14	0.00	22.93	0.13		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
MW-3		(Screen I	nterval in fe	et: 10.0-2	5.0)									
01/18/0	7 36.79	14.02	0.00	22.77			1800	0.63	0.58	15	ND<0.50		ND<0.50	
			nterval in fe											
01/18/0	7 35.44	13.79	0.00	21.65	-0.72		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		0.95	
MW-5			nterval in fe		6.0)									
01/18/0	7 36.81	13.64	0.00	23.17			230	ND<0.50	ND<0.50	ND<0.50	ND<0.50		11	
			nterval in fe		•									
01/18/0	7 37.13	14.38	0.00	22.75	0.21		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
	a	-	nterval in fe	,										
01/18/0	7 37.39	12.84	0.00	24.55	0.34		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		1.7	
MW-8	a	-	nterval in fe											
01/18/0		14.01		24.90	0.26		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
MW-9			nterval in fe										• •	
01/18/0	7 38.39	13.68		24.71	0.39		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		5.9	
MW-10	7 2010		nterval in fe	-			200 -50	NID -0 -00	ND 40 50	NID -0.50	NID 40 60		0.00	
01/18/0		13.76			0.24		ND<30	ND<0.30	ND<0.50	ND<0.50	ND<0.50		0.69	
RW-1 01/18/0		(Screen I 13.82	nterval in fe 0.00	et: 12.5-2	7.5)		240	ND<0.50	ND<0.50	0.83	ND<0.50		1.4	

Table 1 aADDITIONAL CURRENT ANALYTICAL RESULTSFormer 76 Station 7004

Date Sampled	TBA	Ethanol (8260B)	Ethylene- dibromide (EDB)	1,2-DCA (EDC)	DIPE	ETBE	TAME
	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)
MW-1 01/18/07	ND<10	ND<250					54 56
MW-2 01/18/07	ND<10	ND<250					
MW-3 01/18/07	ND<10	ND<250					
MW-4 01/18/07	ND<10	ND<250					
MW-5 01/18/07	ND<10	ND<250					
MW-6 01/18/07	ND<10	ND<250					
MW-7 01/18/07	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
MW-8 01/18/07	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
MW-9 01/18/07	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
MW-10 01/18/07	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
RW-1 01/18/07	ND<10	ND<250					

Table 2HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTSMay 1991 Through January 2007

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation		TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-1	(Screen Int	erval in feet	t: 10.0-25.0	0)									······
05/04/9	10				-+	ND		ND	ND	ND	ND			
07/23/9	91					ND		ND	ND	ND	ND			
10/14/9	91					ND		ND	ND	ND	ND			
01/14/9						ND		ND	ND	ND	ND			
04/14/9	92					76		ND	ND	ND	ND			
07/09/9)2					70		ND	ND	ND	ND	130		
10/28/9	92													Sampled Semi-Annually
01/21/9	93					ND		ND	ND	ND	ND	42		
04/20/9	36.89	14.89	0.00	22.00								56		
07/22/9	3 36.89	14.34	0.00	22.55	0.55	ND		ND	ND	ND	ND	77		
10/06/9	36.39	14.87	0.00	21.52	-1.03									
01/11/9	94 36.39	15.14	0.00	21.25	-0.27	ND		ND	ND	ND	ND	-+		
04/06/9	36.39	14.19	0.00	22.20	0.95									
07/08/9	94 36.39	14.66	0.00	21.73	-0.47	ND		ND	ND	ND	ND		~~	
10/06/9	94 36.39	16.71	0.00	19.68	-2.05									
01/05/9	95 36.39	14.68	0.00	21.71	2.03	ND		ND	ND	ND	ND			
04/05/9	5 36.39	11.76	0.00	24.63	2.92									
07/14/9	95 36.39	12.93	0.00	23.46	-1.17	ND	~-	0.65	2.2	ND	2.3			
10/12/9	36.39	14.29	0.00	22.10	-1.36									
01/08/9	96 36.39	14.18	0.00	22.21	0.11	ND		ND	ND	ND	ND			
07/08/9	96 36.39	12.74	0.00	23.65	1.44	ND		ND	ND	ND	ND	ND		
01/03/9	97 36.39	12.89		23.50	-0.15	87		ND	ND	ND	ND	ND		
07/02/9	97 36.39	13.66	0.00	22.73	-0.77	ND		ND	ND	ND	ND	ND		

HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS

May 1991 Through January 2007

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation		TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
01/15/9				23.31	0.58	ND		ND	ND	ND	ND	ND		
07/08/9			0.00	25.14	1.83	ND		ND	ND	ND	ND	ND		
01/11/9		13.68	0.00	22.71	-2.43	51		ND	ND	ND	ND	4.8		
07/07/9	9 36.39	12.15	0.00	24.24	1.53	ND		ND	ND	ND	ND	ND		
01/04/0		13.95		22.44	-1.80	ND		ND	ND	ND	ND	ND		
07/15/0		13.46	0.00	22.93	0.49	ND		ND	0.86	ND	ND	ND		
01/19/0		12.96	0.00	23.43	0.50	ND		ND	ND	ND	ND	ND		
07/31/0	36.39	14.36	0.00	22.03	-1.40	ND		ND	ND	ND	ND	ND		
01/28/0			0.00	23.50	1.47	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.5		
04/22/0		12.86		23.53	0.03	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.5		
05/24/0		13.16	0.00	23.23	-0.30		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1		ND<0.50	
06/21/0	36.39	13.52	0.00	22.87	-0.36		76	ND<0.50	ND<0.50	ND<0.50	ND<1		0.59	
07/29/0		13.76		22.63	-0.24		54	ND<0.50	ND<0.50	ND<0.50	ND<1		ND<2	
08/29/0	36.39	14.10	0.00	22.29	-0.34		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1		ND<2	
09/14/0	36.39	14.18	0.00	22.21	-0.08		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1		ND<2	
10/25/0)2 36.39	14.63	0.00	21.76	-0.45		ND<50	0.91	ND<0.50	ND<0.50	ND<1		ND<2	
11/27/0	36.39	14.34	0.00	22.05	0.29		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1		ND<2	
12/19/0)2 36.39	13.60	0.00	22.79	0.74		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1		ND<2	
01/24/0	36.39	12.03	0.00	24.36	1.57		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1		ND<2	
02/15/0	36.39	12.42	0.00	23.97	-0.39		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1		ND<2	
03/17/0	36.39	12.54	0.00	23.85	-0.12		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1		ND<2	
04/18/0		12.43	0.00	23.96	0.11		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1		ND<2	
05/19/0	36.39	12.38	0.00	24.01	0.05		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1		ND<2	
06/16/0	36.39	13.02	0.00	23.37	-0.64		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1		ND<2	

Table 2 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS May 1991 Through January 2007 Former 76 Station 7004

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation		TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-1	continued													
07/18/0	36.39	13.66	0.00	22.73	-0.64		56	ND<0.50	ND<0.50	ND<0.50	ND<1		ND<2	
10/01/0)3 36.39	14.47	0.00	21.92	-0.81		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
01/30/0)4 36.39	13.14	0.00	23.25	1.33		120	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
04/26/0)4 36.39	12.68	0.00	23.71	0.46		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
07/28/0)4 36.39	13.79	0.00	22.60	-1.11		73	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
10/19/0)4 36.39	14.04	0.00	22.35	-0.25		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
01/05/0)5 36.39	13.11	0.00	23.28	0.93		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
06/14/(36.39	11.58	0.00	24.81	1.53		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
09/29/0)5 36.39	13.22	0.00	23.17	-1.64		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
12/02/0	36.39	13.74	0.00	22.65	-0.52		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
03/21/0	6 36.39	11.39	0.00	25.00	2.35		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
05/25/()6 36.39	10.70	0.00	25.69	0.69		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
08/25/0	06 36.39	13.29	0.00	23.10	-2.59		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		2.8	
10/18/0	06 36.39	13.70	0.00	22.69	-0.41		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
01/18/0	07 36.39	13.49	0.00	22.90	0.21		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
MW-2	G	Screen Inte	erval in feet	: 10.0-25.0))									
05/04/9						ND		ND	ND	ND	ND			
07/23/9	91			~~		ND		ND	ND	ND	ND			
10/14/9	91		~~			ND		ND	ND	ND	ND			
01/14/9	92					ND		ND	ND	ND	ND			
04/14/9	92					45		ND	ND	ND	ND			
07/09/9	92					ND		ND	ND	ND	ND	49		
10/28/9	92													Sampled Semi-Annually
01/21/9	93					ND		ND	ND	ND	ND	17		
7004								Page 3	of 19					

HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS

May 1991 Through January 2007

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation		TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-2	continued													
04/20/9	3 37.35	15.20	0.00	22.15								80		
07/22/9	3 37.35	14.75	0.00	22.60	0.45	62		ND	ND	ND	ND	42		
10/06/9	3 37.07	15.49	0.00	21.58	-1.02									
01/11/9	94 37.07	15.77	0.00	21.30	-0.28	120		ND	ND	ND	ND			
04/06/9	94 37.07	14.83	0.00	22.24	0.94									
07/08/9	94 37.07	15.28	0.00	21.79	-0.45	140		ND	ND	ND	ND			
10/06/9	94 37.07	16.32	0.00	20.75	-1.04									
01/05/9	95 37.07	15.30	0.00	21.77	1.02	310		ND	ND	ND	ND			
04/05/9	95 37.07	12.12	0.00	24.95	3.18									
07/14/9	95 37.07	13.55	0.00	23.52	-1.43	86		ND	ND	ND	ND			
10/12/9	95 37.07	14.88	0.00	22.19	-1.33									
01/08/9	96 37.07	14.81	0.00	22.26	0.07	91		ND	ND	ND	ND			
07/08/9	96 37.07	13.37	0.00	23.70	1.44	100		ND	ND	ND	ND	ND		
01/03/9	97 37.07	13.14	0.00	23.93	0.23	160		ND	ND	ND	ND	ND		
07/02/9	97 37.07	14.26	0.00	22.81	-1.12	91		ND	ND	ND	ND	ND		
01/15/9	98 37.07	13.31	0.00	23.76	0.95	ND		ND	ND	ND	ND	ND		
07/08/9	98 37.07	11.57	0.00	25.50	1.74	ND		ND	ND	ND	ND	ND		
01/11/9	9 37.07	14.26	0.00	22.81	-2.69	ND		ND	ND	ND	ND	9.8		
07/07/9	99 37.07	12.24	0.00	24.83	2.02	ND		ND	ND	ND	ND	9.4		
01/04/(0 37.07	14.14	0.00	22.93	-1.90	ND		ND	0.518	ND	ND	9.07		
07/15/0	0 37.07	13.75	0.00	23.32	0.39	ND		ND	0.51	ND	ND	6.0		
01/19/(01 37.07	13.37	0.00	23.70	0.38	ND		ND	ND	ND	ND	6.84		
07/31/0	01 37.07	14.96	0.00	22.11	-1.59	ND		ND	ND	ND	ND	ND	~~	
01/28/0	02 37.07	13.51	0.00	23.56	1.45	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.5		

Table 2 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS May 1991 Through January 2007

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness		Change in Elevation		TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
	continued							·						
04/22/0		13.48		23.59	0.03	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.5		
05/24/(13.78		23.29	-0.30		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1		ND<0.50	
06/21/0		14.11	0.00	22.96	-0.33		100	ND<0.50	ND<0.50	ND<0.50	ND<1		ND<0.50	
07/29/(02 37.07	14.36	0.00	22.71	-0.25		60	ND<0.50	ND<0.50	ND<0.50	ND<1		ND<2	
08/29/(02 37.07	14.71	0.00	22.36	-0.35		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1		ND<2	
09/14/(02 37.07	14.81	0.00	22.26	-0.10		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1		ND<2	
10/25/()2 37.07	15.23	0.00	21.84	-0.42		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1		ND<2	
11/27/()2 37.07	14.95	0.00	22.12	0.28		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1	~~	ND<2	
12/19/()2 37.07	14.10	0.00	22.97	0.85		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1		ND<2	
01/24/(37.07	12.64	0.00	24.43	1.46		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1		ND<2	
02/15/0	37.07	13.06	0.00	24.01	-0.42		64	ND<0.50	ND<0.50	ND<0.50	ND<1		ND<2	
03/17/(37.07	13.18	0.00	23.89	-0.12		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1		ND<2	
04/18/0	3 37.07	13.06	0.00	24.01	0.12		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1		ND<2	
05/19/0	37.07	13.07	0.00	24.00	-0.01		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1		ND<2	
06/16/(3 37.07	13.72	0.00	23.35	-0.65		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1		ND<2	
07/18/()3 37.07	14.35	0.00	22.72	-0.63		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1		ND<2	
10/01/0	3 37.07	15.10	0.00	21.97	-0.75		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
01/30/()4 37.07	13.78	0.00	23.29	1.32		130	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
04/26/()4 37.07	13.31	0.00	23.76	0.47		53	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
07/28/(04 37.07	14.39	0.00	22.68	-1.08		63	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
10/19/0	04 37.07	14.99	0.00	22.08	-0.60		56	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
01/05/0	05 37.07	13.70	0.00	23.37	1.29		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
06/14/0	05 37.07	12.21	0.00	24,86	1.49		96	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
09/29/0	05 37.07	13.83	0.00	23.24	-1.62		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	

HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS

May 1991 Through January 2007

Former 76 Station 7004

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation		TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
<u>.</u>	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-2	continued													
12/02/0	05 37.07	14.17	0.00	22.90	-0.34		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
03/21/0	06 37.07	12.04	0.00	25.03	2.13		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
05/25/0	06 37.07	11.35	0.00	25.72	0.69		57	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
08/25/0	06 37.07	12.35	0.00	24.72	-1.00		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		8.8	
10/18/0	06 37.07	14.27	0.00	22.80	-1.92		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
01/18/0	07 37.07	14.14	0.00	22,93	0.13		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
MW-3	6	Screen Inte	erval in feet	: 10.0-25.0	0)									
05/04/9	91					34000		6100	32	1200	6100			
07/23/9	91					17000		5500	26	1800	2800			
10/14/9	91					25000		6300	78	2000	1400			
01/14/9	92					13000		6600	19	2600	1800			
04/14/9	92					16000		3400	19	1400	1300			
07/09/9	92					13000		3200	12	1900	1100			
10/28/9	92					15000		4400	15	2400	800			
01/21/9	93					12000		2800	11	1600	590			
04/20/9	93 37.22	15.13	0.00	22.09		18000		3700	11	2300	1300	410		
07/22/9	93 37.22	13.52	0.00	23.70	1.61	16000		4500	17	3600	1900	440		
10/06/9	93 36.79	15.41	0.00	21.38	-2.32	24000		4100	ND	3600	2000	ND	~~	
01/11/9	94 36.79	15.66	0.00	21.13	-0.25	19000		3300	31	3300	890			
04/06/9	94 36.79	14.72	0.00	22.07	0.94	24000		3100	ND	3300	820			
07/08/	94 36.79	15.20	0.00	21.59	-0.48	18000		2200	25	2500	860			
10/06/9	94 36.79	16.23	0.00	20.56	-1.03	20000		2100	26	3000	900			
01/05/	95 36.79	15.12	0.00	21.67	1.11	20000		2100	ND	3200	3800			
04/05/	95 36.79	12.03	0.00	24.76	3.09	18000		2100	ND	3700	690			

HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS

May 1991 Through January 2007

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation		TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	_
MW-3	continued													
07/14/9	95 36.79	13.46	0.00	23.33	-1.43	21000		1600	ND	3900	1500			
10/12/9	95 36.79	14.81	0.00	21.98	-1.35	17000		1000	ND	3600	1000			
01/08/9	96 36.79	14.70	0.00	22.09	0.11	14000		760	ND	3100	380			
07/08/9	96 36.79	13.29	0.00	23.50	1.41	16000		470	45	4400	1000	340		
01/03/9	97 36.79	13.09	0.00	23.70	0.20	14000		160	ND	2100	120	620		
07/02/9	97 36.79	13.96	0.00	22.83	-0.87	23000		110	ND	3600	1600	1200		
01/15/9	98 36.79	13.26	0.00	23.53	0.70	12000		33	ND	2800	120	1100		
07/08/9	98 36.79	11.64	0.00	25.15	1.62	20000		76	ND	4100	1400	750		
01/11/9	99 36.79	14.17	0.00	22.62	-2.53	23000		ND	ND	4100	460	920		
07/07/9	99 36.79	13.18	0.00	23.61	0.99	15000		35	ND	3400	470	1700		
01/04/0	00 36.79	14.27	0.00	22.52	-1.09	15500	~~	ND	ND	3330	191	827		
07/15/0	00 36.79	13.91	0.00	22.88	0.36	15000		ND	ND	3400	420	3300		
08/25/0	00 36.79	14.24	0.00	22.55	-0.33							1920		
01/19/0	01 36.79	13.42	0.00	23.37	0.82	11100		38.4	ND	1760	38.8	ND		
07/31/0	01 36.79	14.90	0.00	21.89	-1.48	13000		ND	ND	1600	63	ND		
01/28/0	02 36.79	13.41	0.00	23.38	1.49	82		ND<0.50	ND<0.50	10	ND<0.50	ND<2.5		
04/22/0	02 36.79	13.41	0.00	23.38	0.00	7300		39	ND<25	970	ND<25	ND<120		
05/24/0	02 36.79	13.69	0.00	23.10	-0.28		8500	ND<5	ND<5	1200	ND<10		12	
06/21/0	02 36.79	14.04	0.00	22.75	-0.35		11000	ND<5	ND<5	690	ND<10		17	
07/29/0	02 36.79	14.28	0.00	22.51	-0.24		6800	ND<5	ND<5	1100	ND<10		ND<20	
08/29/0	02 36.79	14.62	0.00	22.17	-0.34		7200	ND<25	ND<25	1200	ND<50		ND<100	
09/14/	02 36.79	14.72	0.00	22.07	-0.10		180	ND<0.50	ND<0.50	20	ND<1		ND<2	
10/25/	02 36.79	15.13	0.00	21.66	-0.41		1000	ND<0.50	ND<0.50	110	ND<1	~~	ND<2	
11/27/	02 36.79	14.85	0.00	21.94	0.28		7600	ND<10	ND<10	1200	ND<20		ND<40	

HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS

May 1991 Through January 2007

Former 76 Station 7004

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation		TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-3	continued													
12/19/0	36.79	13.83	0.00	22.96	1.02		6400	ND<10	ND<10	810	ND<20		ND<40	
01/24/0	3 36.79	12.52	0.00	24.27	1.31		6600	ND<25	ND<25	930	ND<50		ND<100	
02/15/0	36.79	12.96	0.00	23.83	-0.44		8400	ND<10	ND<10	970	ND<20		ND<40	
03/17/0	3 36.79	13.08	0.00	23.71	-0.12		7900	ND<5	ND<5	1100	ND<10		ND<20	
04/18/0	36.79	12.95	0.00	23.84	0.13		6700	ND<5	ND<5	1100	ND<10		ND<20	
05/19/0	3 36.79	13.10	0.00	23.69	-0.15		8700	ND<5	ND<5	1100	ND<10		ND<20	
06/16/0	3 36.79	13.75	0.00	23,04	-0.65		7700	ND<10	ND<10	1000	ND<20		ND<40	
07/18/(3 36.79	14.43	0.00	22.36	-0.68		11000	ND<10	ND<10	1800	1300		ND<40	
10/01/(3 36.79	15.12	0.00	21.67	-0.69		9000	ND<10	ND<10	820	ND<20		ND<10	
01/30/0)4 36.79	13.70	0.00	23.09	1.42		7800	ND<5.0	ND<5.0	670	ND<10		ND<20	
04/26/0)4 36.79	13.23	0.00	23.56	0.47		9800	ND<5.0	ND<5.0	470	ND<10		ND<5.0	
07/28/()4 36.79	14.35	0.00	22.44	-1.12		10000	ND<5.0	ND<5.0	450	ND<10		ND<5.0	
10/19/0	94 36.79	14.90	0.00	21.89	-0.55		5700	3.2	ND<2.5	210	ND<5.0		ND<2.5	
01/05/0)5 36.79	13.44	0.00	23.35	1.46		4600	0.96	0.73	42	1.4		ND<2.5	
06/14/()5 36.79	12.09	0.00	24.70	1.35	140 M	8400	ND<5.0	ND<5.0	180	ND<10		ND<5.0	
09/29/0	95 36.79	13.78	0.00	23.01	-1.69		670	ND<5.0	ND<5.0	22	ND<10		ND<5.0	
12/02/0	5 36.79	14.21	0.00	22.58	-0.43		190	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
03/21/0	6 36.79	12.29	0.00	24.50	1.92		4400	1.1	1.5	86	4.6		ND<0.50	
05/25/0	6 36.79	11.24	0.00	25.55	1.05		3200	0.53	1.3	59	ND<1.0		ND<0.50	
08/25/0	6 36.79						2900	0.75	1.2	57	ND<0.50		0.90	Port sample
10/24/()6 36.79					~~	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	Sampled by SECOR
01/18/0)7 36.79	14.02	0.00	22.77			1800	0.63	0.58	15	ND<0.50		ND<0.50	
MW-4	(Screen Int	erval in feet	: 10.0-26.0))									
07/23/9	91					ND		ND	ND	ND	ND			

7004

Page 8 of 19

.

Table 2 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS May 1991 Through January 2007

Former 76 Station 7004

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation		TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
•	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
	continued													
10/14/9						ND		ND	ND	ND	ND			
01/14/9	92					ND		ND	ND	ND	ND			
04/14/9	2				**	ND		ND	ND	ND	ND			
07/09/9	92					ND		ND	ND	ND	ND		***	
10/28/9	92											~~		Sampled Semi-Annually
01/21/9	23					ND		ND	ND	ND	ND			
04/20/9	35.81	13.84	0.00	21.97							·	65		
07/22/9	3 35.81	13.52	0.00	22.29	0.32	ND		ND	ND	ND	ND	54		
10/06/9	3 35.44	14.17	0.00	21.27	-1.02									
01/11/9	94 35.44	14.42	0.00	21.02	-0.25	ND		ND	ND	ND	ND			
04/06/9	94 35.44	13.44	0.00	22.00	0.98									
07/08/9	94 35.44	13.96	0.00	21.48	-0.52	ND		ND	ND	ND	ND			
10/06/9	94 35.44	15.00	0.00	20.44	-1.04									
01/05/9	95 35.44	13.83	0.00	21.61	1.17	ND		ND	ND	ND	ND			
04/05/	95 35.44	11.05	0.00	24.39	2.78									
07/14/9	95 35.44	12.23	0.00	23.21	-1.18	ND		ND	ND	ND	ND		~~	
10/12/9	95 35.44	13.59	0.00	21.85	-1.36								~~	
01/08/9	96 35.44	13.43	0.00	22.01	0.16	ND		ND	ND	ND	ND			
07/08/9	96 35.44	12.04	0.00	23.40	1.39	ND	***	ND	ND	ND	ND	ND		
01/03/9	97 35.44	12.38	0.00	23.06	-0.34	80		ND	ND	ND	ND	ND		
07/02/9	97 35.44	13.00	0.00	22.44	-0.62	ND		ND	ND	ND	ND	25		
01/15/	98 35.44	12.50	0.00	22.94	0.50	ND		ND	ND	ND	ND	ND		
07/08/	98 35.44	10.53	0.00	24.91	1.97	ND		ND	ND	· ND	ND	25		
01/11/	99 35.44	12.95	0.00	22.49	-2.42	ND		ND	ND	ND	ND	23		

Page 9 of 19

HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS

May 1991 Through January 2007

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation		TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-4 07/07/9	continued 9 35.44		0.00	23.68	1.19	ND		ND	ND	ND	ND	15		
01/04/0	0 35.44	13.17	0.00	22.27	-1.41	ND		ND	ND	ND	ND	13.2		
07/15/0	0 35.44	13.04	0.00	22.40	0.13	ND		ND	ND	ND	ND	11		
01/19/0	35.44	12.65	0.00	22.79	0.39	ND		ND	ND	ND	ND	9.97		
07/31/0	35.44	13.69	0.00	21.75	-1.04	ND		ND	ND	ND	ND	6.0		
01/28/0	35.44	12.17	0.00	23.27	1.52	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	13		
04/22/0	35.44	12.18	0.00	23.26	-0.01	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	5.7		
05/24/0	35.44	12.45	0.00	22.99	-0.27		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1		2.9	
06/21/0	35.44	12.48	0.00	22.96	-0.03		54	ND<0.50	ND<0.50	ND<0.50	ND<1		3.6	
07/29/0	35.44	13.08	0.00	22.36	-0.60		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1		5.7	
08/29/0	35.44	13.39	0.00	22.05	-0.31		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1		8.5	
09/14/0	35.44	13.49	0.00	21.95	-0.10		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1		4.8	
10/25/0	35.44	13.93	0.00	21.51	-0.44		ND<50	0.82	ND<0.50	ND<0.50	ND<1		7.1	
11/27/0)2 35.44	13.62	0.00	21.82	0.31		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1		7.3	
12/19/0	35.44	12.56	0.00	22.88	1.06		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1		8.1	
01/24/0	3 35.44	11.26	0.00	24.18	1.30		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1		8.4	
02/15/0	3 35.44	11.71	0.00	23.73	-0.45		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1		6.2	
03/17/0	3 35.44	11.82	0.00	23.62	-0.11		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1		7.3	
04/18/0	3 35.44	11.70	0.00	23.74	0.12		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1		6.2	
05/19/0	3 35.44	11.74	0.00	23.70	-0.04		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1		3.2	
06/16/0	35.44	12.35	0.00	23.09	-0.61		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1		4.3	
07/18/0	35.44	13.06	0.00	22.38	-0.71		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1		ND<2	
10/01/0	35.44	13.81	0.00	21.63	-0.75		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		0.89	
01/30/0)4 35.44	12.42	0.00	23.02	1.39		55	ND<0.50	ND<0.50	ND<0.50	ND<1.0		2.2	

Table 2HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTSMay 1991 Through January 2007Former 76 Station 7004

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation		TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-4	continued													
04/26/0	35.44	11.99	0.00	23.45	0.43		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		2.0	
07/28/0)4 35.44	13.12	0.00	22.32	-1.13		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		5.8	
10/19/0	35.44	13.78	0.00	21.66	-0.66		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		2.4	
01/05/0	5 35.44	12.21	0.00	23.23	1.57		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		2.7	
06/14/0	5 35.44	10.99	0.00	24.45	1.22		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		4.1	
09/29/0)5 35.44	12.57	0.00	22.87	-1.58		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		7.0	
12/02/0)5 35.44	13.01	0.00	22.43	-0.44		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		5.6	
03/21/0	6 35.44	10.82	0.00	24.62	2.19		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		3.9	
05/25/0	6 35.44	10.01	0.00	25.43	0.81		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		3.9	
08/25/0	6 35.44	13.83	0.00	21.61	-3.82		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
10/18/0	6 35.44	13.07	0.00	22.37	0.76		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		2.2	
01/18/0)7 35.44	13.79	0.00	21.65	-0.72		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	20 42	0.95	
MW-5	(Screen Int	erval in feet	: 10.0-26.0))									
07/23/9						260		1.2	0.39	10	0.71			
10/14/9	91					140		0.72	ND	1.3	0.89			
01/14/9	2					60		ND	ND	ND	ND			
04/14/9	92					86		ND	ND	ND	ND			
07/09/9						ND		ND	ND	ND	ND	71		
10/28/9	92					ND		ND	ND	ND	ND	45		
01/21/9	93					100		ND	ND	ND	ND	160		
04/20/9	3 37.01	14.87	0.00	22.14		99		ND	ND	ND	ND	120		
07/22/9	3 37.01	14.82	0.00	22.19	0.05	59		ND	ND	2.6	ND	42		
10/06/9	36.81	15.61	0.00	21.20	-0.99	150		1.1	ND	3.1	0.85	57		
01/11/9	94 36.81	15.84	0.00	20.97	-0.23	160		ND	0.79	0.54	ND			
								n 1	1 . 6 10					

Page 11 of 19

HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS

May 1991 Through January 2007

Former 76 Station 7004

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation		TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-5	continued													
04/06/9		14.90		21.91	0.94	260		1.4	ND	0.88	ND			
07/08/9	36.81	15.38	0.00	21.43	-0.48	200		ND	ND	ND	ND			
10/06/9	36.81	16.42	0.00	20.39	-1.04	350		1.3	ND	ND	ND			
01/05/9	36.81	15.20	0.00	21.61	1.22	85		ND	ND	ND	ND			
04/05/9	36.81	11.72	0.00	25.09	3.48	ND		ND	ND	ND	ND			
07/14/9	36.81	13.69	0.00	23,12	-1.97	180		1.3	ND	7.9	ND			
10/12/9	36.81	15.02	0.00	21.79	-1.33	310		ND	ND	31	1.2			
01/08/9	36.81	14.85	0.00	21.96	0.17	ND		· 0.55	ND	ND	0.58			
07/08/9	96 36.81	13.52	0.00	23.29	1.33	140		2.1	1.4	5.6	0.51	110		
07/12/9				22.31	-0.98									
. 01/03/9	36.81	12.85	0.00	23.96	1.65	12000		150	ND	2100	120	660		
07/02/9	36.81	13.79	0.00	23.02	-0.94	ND		ND	ND	ND	ND	72		
01/15/9	98 36.81	13.03	0.00	23.78	0.76	69		ND	ND	ND	ND			
07/08/9	36.81	12.05	0.00	24.76	0.98	ND		0.74	ND	ND	ND	95		
01/11/9	9 36.81	14.41	0.00	22.40	-2.36	ND		1.0	ND	ND	ND	170		
07/07/9	9 36.81	12.38	0.00	24,43	2.03	130		0.64	ND	ND	ND	330		
01/04/0	36.81	14.33	0.00	22.48	-1.95	ND		ND	ND	ND	ND	183		
07/15/0	0 36.81	13.88	0.00	22.93	0.45	ND		0.68	ND	ND	ND	350		
01/19/0	36.81	13.41	0.00	23.40	0.47	ND		ND	ND	ND	ND	195		
07/31/0	36.81	15.12	0.00	21.69	-1.71	ND		ND	ND	ND	ND	190		
01/28/0			0.00	23.22	1.53	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	97		
04/22/0	36.81	13.61	0.00	23.20	-0.02	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	160		
05/24/0	36.81	13.89	0.00	22.92	-0.28		89	ND<0.50	ND<0.50	ND<0.50	ND<1		180	
06/21/0)2 36.81	14,22	0.00	22.59	-0.33		190	ND<0.50	ND<0.50	ND<0.50	ND<1		85	

Page 12 of 19

HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS

May 1991 Through January 2007

Former 76 Station 7004

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G (8015M)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-5	continued	l												
07/29/0	36.81	14.48	0.00	22.33	-0.26		120	ND<0.50	ND<0.50	ND<0.50	ND<1		76	
08/29/0	36.81	14.80	0.00	22.01	-0.32		ND<500	ND<5	ND<5	ND<5	ND<10		380	
09/14/0	36.81	14.91	0.00	21.90	-0.11		130	ND<0.50	ND<0.50	ND<0.50	ND<1		91	
10/25/0	36.81	15.32	0.00	21.49	-0.41		ND<200	ND<2	ND<2	ND<2	ND<4.0		270	
11/27/0	36.81	15.03	0.00	21.78	0.29		ND<250	ND<2.5	ND<2.5	ND<2.5	ND<5		330	
12/19/(36.81	13.75	0.00	23.06	1.28		290	ND<2.5	ND<2.5	ND<2.5	ND<5		320	
01/24/(36.81	12.68	0.00	24.13	1.07		ND<250	ND<2.5	ND<2.5	ND<2.5	ND<5		200	
02/15/0	36.81	13.15	0.00	23.66	-0.47		82	ND<0.50	ND<0.50	ND<0.50	ND<1		180	
03/17/(03 36.81	13.26	0.00	23.55	-0.11		400	ND<2.5	ND<2.5	ND<2.5	ND<5		510	
04/18/0	03 36.81	13.14	0.00	23.67	0.12		140	ND<0.50	ND<0.50	ND<0.50	ND<1		170	
05/19/0	03 36.81	13.45	0.00	23.36	-0.31		ND<500	ND<5	ND<5	ND<5	ND<10		1000	
06/16/0	03 36.81	14.07	0.00	22.74	-0.62		ND<500	ND<5	ND<5	ND<5	ND<10		730	
07/18/0	36.81	14.71	0.00	22.10	-0.64		ND<250	ND<2.5	ND<2.5	ND<2.5	ND<5		260	
10/01/0	36.81	15.36	0.00	21.45	-0.65		220	ND<0.50	ND<0.50	ND<0.50	ND<1.0		100	
01/30/(04 36.81	14.05	0.00	22.76	1.31		460	ND<1.0	ND<1.0	ND<1.0	ND<2.0		210	
04/26/0	04 36.81	13.60	0.00	23.21	0.45		260	ND<1.0	ND<1.0	ND<1.0	ND<2.0		200	
07/28/0	04 36.81	14.53	0.00	22.28	-0.93		140	ND<1.0	ND<1.0	ND<1.0	ND<2.0		130	
10/19/0	04 36.81	15.13	0.00	21.68	-0.60		120	0.53	ND<0.50	ND<0.50	ND<1.0		76	
01/05/0	05 36.81	13.48	0.00	23.33	1.65		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	, 	89	
06/14/0	05 36.81	12.31	0.00	24.50	1.17	 '	230	0.70	ND<0.50	ND<0.50	ND<1.0		110	
09/29/0	05 36.81	13.96	0.00	22.85	-1.65		270	0.56	ND<0.50	ND<0.50	ND<1.0		55	
12/02/0	05 36.81	14.37	0.00	22.44	-0.41		50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		9.4	
03/21/0	06 36.81	12.20	0.00	24.61	2.17		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		4.3	
05/25/	06 36.81	12.07	0.00	24.74	0.13		1100	1.5	ND<0.50	3.5	ND<1.0		72	
								D 1	2 - 6 10					

.

.

•

HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS

May 1991 Through January 2007

Former 76 Station 7004

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation		TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-5	continued									· · ·				
08/25/0	6 36.81	13.20	0.00	23.61	-1.13		790	1.2	ND<0.50	5.0	ND<0.50		31	
10/24/0)6 36.81						ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		2.7	Sampled by SECOR
01/18/0	36.81	13.64	0.00	23.17			230	ND<0.50	ND<0.50	ND<0.50	ND<0.50		11	
MW-6	(Screen Inte	erval in feet	: 10.0-26.0))									
07/23/9	01		0.00		`	ND		ND	ND	ND	ND			
10/14/9	10		0.00			ND		ND	ND	ND	ND			
01/14/9	92		0.00			ND		ND	ND	ND	ND			
04/14/9			0.00			ND		ND	ND	ND	ND			
07/09/9			0.00			ND		ND	ND	ND	ND			
10/28/9	92	~~	0.00											Sampled Semi-Annually
01/21/9	93		0.00			ND		ND	ND	ND	ND			
04/20/9	3 37.55	15.27	0.00	22.28								ND	No 400	
07/22/9	3 37.55	15.20	0.00	22.35	0.07	ND		ND	ND	ND	ND	ND		
10/06/9	93 37.13	15.75	0.00	21.38	-0.97									
01/11/9	94 37.13	16.02	0.00	21.11	-0.27	ND		ND	ND	ND	ND			
04/06/9	94 37.13	15.07	0.00	22.06	0.95									
07/08/9	94 37.13	15.55	0.00	21.58	-0.48	ND		ND	ND	ND	ND			
10/06/9	94 37.13	16.58	0.00	20.55	-1.03									
01/05/9	95 37.13	15.42	0.00	21.71	1.16	ND		ND	ND	ND	ND			
04/05/9	95 37.13	12.14	0.00	24.99	3.28									
07/14/9	95 37.13	13.87	0.00	23.26	-1.73	ND		ND	ND	ND	ND			
10/12/9	95 37.13	15.17	0.00	21.96	-1.30									
01/08/9	96 37.13	15.05	0.00	22.08	0.12	ND		ND	ND	ND	ND			
07/08/9	96 37.13	13.71	0.00	23.42	1.34	ND		ND	ND	ND	ND	ND		
7004								Page 1	4 of 19					

HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS

May 1991 Through January 2007

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation		TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
	continued													
01/03/9				24.01	0.59	97		ND	ND	ND	ND	ND		
07/02/9	97 37.13	14.57	0.00	22.56	-1.45	ND		ND	ND	ND	ND	ND		
01/15/9	98 37.13	13.30	0.00	23.83	1.27	ND		ND	ND	ND	ND	ND		
07/08/9	98 37.13	12.33	0.00	24.80	0.97	ND		ND	ND	ND	ND	ND		
01/11/9	99 37.13	14.60	0.00	22.53	-2.27	ND		ND	ND	ND	ND	ND		
07/07/9	99 37.13	13.23	0.00	23.90	1.37	ND		ND	ND	ND	ND	ND		
01/04/(0 37.13	14.41	0.00	22.72	-1.18	ND		ND	ND	ND	ND	ND		
07/15/(0 37.13	14.05	0.00	23.08	0.36	ND		ND	ND	ND	ND	ND		
01/19/()1 37.13	13.58	0.00	23.55	0.47	ND		ND	ND	ND	ND	ND		
07/31/(01 37.13	15.24	0.00	21.89	-1.66	ND		ND	ND	ND	ND	ND		
01/28/0)2 37.13	13.80	0.00	23.33	1.44	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.5		
04/22/0)2 37.13	13.22	0.00	23.91	0.58	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.5		
05/24/0	02 37.13	14.07	0.00	23.06	-0.85		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1		ND<0.50	
06/21/0	02 37.13	14.38	0.00	22.75	-0.31		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1		ND<0.50	
07/29/0)2 37.13	14.64	0.00	22.49	-0.26		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1		ND<2	
08/29/0)2 37.13	14.97	0.00	22.16	-0.33		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1		ND<2	
09/14/()2 37.13	15.04	0.00	22.09	-0.07		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1		ND<2	
10/25/0)2 37.13	15.46	0.00	21.67	-0.42		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1		ND<2	
11/27/()2 37.13	15.17	0.00	21.96	0.29		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1		ND<2	
12/19/0)2 37.13	13.88	0.00	23.25	1.29		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1		ND<2	
01/24/(37.13	12.91	0.00	24.22	0.97		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1		ND<2	
02/15/0	3 37.13	13.38	0.00	23.75	-0.47		ND<50	ND<0.50	ND<0.50	0.98	3.6		ND<2	
03/17/0	03 37.13	13.49	0.00	23.64	-0.11		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1		ND<2	
04/18/0	03 37.13	13.33	0.00	23.80	0.16		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1		ND<2	

Table 2 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS May 1991 Through January 2007 Former 76 Station 7004

Date TOC Depth to LPH Ground- Change in TPH-G TPH-G Benzene Toluene Ethyl-Total MTBE MTBE Comments Sampled Elevation Water Thickness water Elevation (8015M) (GC/MS) benzene Xylenes (8021B) (8260B) Elevation (feet) (feet) (feet) (feet) (feet) (µg/l) (µg/l) (µg/l) $(\mu g/l)$ $(\mu g/l)$ $(\mu g/l)$ $(\mu g/l)$ (µg/l) MW-6 continued 05/19/03 37.13 13.73 0.00 23.40 -0.40ND<50 ND<0.50 ND<0.50 ND<0.50 ND<1 ND<2 ------06/16/03 37.13 14.41 0.00 22.72 -0.68 97 --ND<0.50 ND<0.50 ND<0.50 ND<1 ND<2 ---07/18/03 37.13 15.01 0.00 22.12-0.60ND<50 ND<0.50 ND<0.50 ND<0.50 ND<1 ND<2 __ 10/01/03 37.13 15.58 0.00 21.55 -0.57ND<50 ND<0.50 ND<0.50 ND<0.50 ND<1.0 ND<0.50 -----01/30/04 37.13 0.00 14.05 23.08 1.53 ND<50 ND<0.50 ND<0.50 ND<0.50 ND<1.0 ND<2.0 ------04/26/04 37.13 13.64 0.00 23.49 0.41 ND<0.50 ND<0.50 ND<0.50 ND<50 ---ND<1.0 ND<0.50 ----07/28/04 37.13 0.00 14.68 22.45 -1.04ND<50 ND<0.50 ND<0.50 ND<0.50 ----ND<1.0 ND<0.50 ---10/19/04 37.13 0.00 15.21 21.92 -0.53 ND<50 ND<0.50 ND<0.50 ND<0.50 ND<1.0 -------ND<0.50 01/05/05 37.13 13.68 0.00 23.45 1.53 ND<50 ND<0.50 ND<0.50 ND<0.50 ND<1.0 ND<0.50 ----..... 06/14/05 37.13 12.52 0.00 24.61 1.16 ND<50 ND<0.50 ND<0.50 ND<0.50 ---ND<1.0 ND<0.50 ----09/29/05 37.13 14.12 0.00 23.01 -1.60ND<50 ND<0.50 ND<0.50 ND<0.50 ND<1.0 ___ ND<0.50 ---12/02/05 37.13 14.04 0.00 23.09 0.08 ND<50 ND<0.50 ND<0.50 ND<0.50 ---ND<1.0 ND<0.50 ---03/21/06 37.13 12.42 0.00 24.711.62 ND<50 ----ND<0.50 ND<0.50 ND<0.50 ND<1.0 ND<0.50 ••• 05/25/06 37.13 11.71 0.00 25.42 0.71 ND<50 ND<0.50 ND<0.50 ND<0.50 ----ND<L0 ND<0.50 ---08/25/06 37.13 12.32 0.00 24.81 -0.61ND<50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 2.1 ------10/18/06 37.13 14.59 0.00 22.54 -2.27 ND<50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ---ND<0.50 ---01/18/07 37.13 14.38 0.00 22.75 0.21 ND<50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 --ND<0.50 ---**MW-7** (Screen Interval in feet: 20-25) 05/25/06 37.39 11.01 0.00 26.38 --ND<50 ND<0.50 ND<0.50 ND<0.50 ND<1.0 **--**+ ---17 08/25/06 37.39 13.53 0.00 23.86 -2.5295 ND<0.50 ND<0.50 ----ND<0.50 ND<0.50 ND<0.50 ----10/18/06 37.39 13.18 0.00 24.21 0.35 ND<50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 --8.3 ---01/18/07 37.39 12.84 0.00 24.55 0.34 --ND<50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 1.7

MW-8 (Screen Interval in feet: 20-25)

7004

Table 2 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS May 1991 Through January 2007

Former 76 Station 7004

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation		TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-8	continued						•							
05/25/0	6 38.91	11.31	0.00	27.60			ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
08/25/0	6 38.91	13.25	0.00	25.66	-1.94		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	H	11	
10/18/0	6 38.91	14.27	0.00	24.64	-1.02		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
01/18/0	38.91	14.01	0.00	24.90	0.26		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
MW-9	(5	Screen Inte	rval in feet	: 20-25)										
05/25/0	6 38.39	11.02	0.00	27.37			54	ND<0.50	ND<0.50	ND<0.50	ND<1.0		10	
08/25/0	6 38.39	13.51	0.00	24.88	-2.49		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
10/18/0	6 38.39	14.07	0.00	24.32	-0.56		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		. 8.2	
01/18/0	7 38.39	13.68	0.00	24.71	0.39		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		5.9	
MW-10	(5	Screen Inte	erval in feet	: 20-25)										
05/25/0			0.00	27.03			ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		3.9	
08/25/0	6 38.12	12.93	0.00	25.19	-1.84		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
10/18/0	6 38.12	14.00	0.00	24.12	-1.07		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		2.2	
01/18/0	7 38.12	13.76	0.00	24.36	0.24		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		0.69	
RW-1	(5	Screen Inte	rval in feet	: 12.5-27.5	5)									
07/08/9	8	11.72	0.00			80		1.7	ND	ND	ND	1300		
01/11/9	9	14.05	0.00			ND		3.0	ND	ND	ND	1200		
07/07/9	9	13.05	0.00			ND		ND	ND	ND	ND	590		
01/04/0	0	14.26	0.00			ND		ND	ND	ND	ND	270		
07/15/0	0	13.77	0.00			ND		0.55	ND	ND	ND	460		
01/19/0	11	13.29	0.00			ND		ND	ND	ND	ND	338		
07/31/0	10	14.72	0.00			ND		ND	ND	ND	ND	1900		
01/28/0		13.21	0.00			72		0.98	ND<0.50	ND<0.50	ND<0.50	460		

.

Table 2HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTSMay 1991 Through January 2007Former 76 Station 7004

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness		Change in Elevation		TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
	continued													
04/22/0		13.22	0.00			ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	290		
05/24/0)2	13.51	0.00				1200	ND<1	ND<1	30	ND<2		300	
06/21/0)2	13.85	0.00				400	ND<0.50	ND<0.50	ND<0.50	ND<1		130	
07/29/0)2	14.11	0.00				130	ND<0.50	ND<0.50	ND<0.50	ND<1		91	
08/29/0)2	14.43	0.00				2400	ND<2	ND<2	47	ND<4.0		210	
09/14/0	02	14.54	0.00				390	ND<0.50	ND<0.50	ND<0.50	ND<1		120	
10/25/0)2	14.95	0.00				2700	0.96	1.1	51	ND<1		160	
11/27/0	02	14.66	0.00				1800	0.91	0.82	31	ND<1		170	
12/19/0	02	13.60	0.00				2900	ND<5	ND<5	50	ND<10		200	
01/24/0	03	12.31	0.00				1800	0.88	0.69	29	ND<1		140	
02/15/0	03	12.88	0.00				480	ND<0.50	ND<0.50	6.8	ND<1		88	
03/17/0	03	12.88	0.00				ND<50	0.62	ND<0.50	21	ND<1		86	
04/18/0	03	12.76	0.00				1600	0.76	0.92	34	ND<1		62	
05/19/0	03	12.91	0.00				1200	0.60	ND<0.50	15	ND<1.5		76	
06/16/0	03	13.55	0.00				760	0.60	0.64	4.1	ND<1		100	
07/18/0	03	14.33	0.00				620	0.61	1.8	3.6	ND<1		60	
10/01/0	03	14.90	0.00				490	0.56	ND<0.50	1.7	ND<1.0		15	
01/30/0)4	13.46	0.00				1400	ND<2.5	ND<2.5	8.6	ND<5.0		38	
04/26/0)4	13.03	0.00				1100	ND<2.5	ND<2.5	ND<2.5	ND<5.0		30	
07/28/0)4	14.15	0.00				1200	ND<2.5	ND<2.5	15	ND<5.0		24	
10/19/0)4	14.34	0.00	~~			680	0.99	ND<0.50	16	ND<1.0		15	
01/05/0	05	13.23	0.00				160	ND<0.50	ND<0.50	2.2	ND<1.0		2.5	
06/14/0	05	11.91	0.00				1300	0.61	ND<0.50	14	ND<1.0		10	
09/29/(05	13.58	0.00				1000	0.53	ND<0.50	16	ND<1.0		4.7	
7000								Dece 1	0 . 6 1 0					

Page 18 of 19

Table 2 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS May 1991 Through January 2007 Former 76 Station 7004

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness		Change in Elevation		TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
RW-1	continued													
12/02/0)5	14.02	0.00				ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		2.3	
03/21/0)6	12.74	0.00				440	ND<0.50	ND<0.50	4.2	ND<1.0		6.8	
05/25/0)6	11.05	0.00				930	ND<0.50	ND<0.50	3.7	ND<1.0		7.6	
08/25/0)6						56	ND<0.50	ND<0.50	ND<0.50	ND<0.50		3.9	Port sample
10/24/0)6						ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	Sampled by SECOR
01/18/0)7	13.82	0.00				240	ND<0.50	ND<0.50	0.83	ND<0.50		1.4	

						F	ormer 76 S	Station 700	4			
Date Sampled	TBA	Ethanol (8260B)	Ethylene- dibromide (EDB)	1,2-DCA (EDC)	DIPE	ETBE	TAME	Lead (total	Post-purge Dissolved Oxygen	Pre-purge Dissolved Oxygen		
	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/I)	(µg/l)	(mg/l)	(mg/l)	 	
MW-1 07/02/97										2.02		
06/16/03										3.82		
07/18/03		ND<500 ND<500										
10/01/03												
01/30/04		ND<50 ND<500										
04/26/04		ND<50										
07/28/04		ND<50										
10/19/04		ND<50										
01/05/05		ND<50										
06/14/05		ND<50										
09/29/05		ND<250	~~~									
12/02/05		ND<250						ND<50				
03/21/06		ND<250										
05/25/06		ND<250										
08/25/06	ND<10	ND<250	~~									
10/18/06	ND<10	ND<250										
01/18/07	ND<10	ND<250	~~									
MW-2												
06/16/03		ND<500										
07/18/03		ND<500										
10/01/03		ND<50										
01/30/04		ND<500										
04/26/04		ND<50										
07/28/04		ND<50										
10/19/04		ND<50										
01/05/05		ND<50										

Table 2 a ADDITIONAL HISTORIC ANALYTICAL RESULTS Former 76 Station 7004

٠

	Former 76 Station 7004													
Date Sampled	TBA	Ethanol (8260B)	Ethylene- dibromide (EDB)	1,2-DCA (EDC)	DIPE	ETBE	TAME	Lead (total	Post-purge Dissolved Oxygen	Pre-purge Dissolved Oxygen				
	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(mg/l)	(mg/l)				
MW-2 c	ontinued													
06/14/05		ND<50												
09/29/05		ND<250												
12/02/05		ND<250						ND<50						
03/21/06		ND<250												
05/25/06		ND<250												
08/25/06	ND<10	ND<250												
10/18/06	ND<10	ND<250								-				
01/18/07	ND<10	ND<250												
MW-3														
08/25/00	ND		ND	ND	ND	ND	ND							
06/16/03		ND<10000												
07/18/03		ND<10000												
10/01/03		ND<50												
01/30/04		ND<5000												
04/26/04		ND<500												
07/28/04		ND<500												
10/19/04		ND<250												
01/05/05		ND<250												
06/14/05		ND<500												
09/29/05		ND<2500					~ ~							
12/02/05		ND<250						ND<50						
03/21/06		ND<250		·										
05/25/06		ND<250												
08/25/06	ND<10	ND<250												
10/24/06	ND<10	ND<250												
01/18/07	ND<10	ND<250												

Table 2 a ADDITIONAL HISTORIC ANALYTICAL RESULTS Formor 76 Station 7001

Former 76 Station 7004										
Date Sampled	TBA	Ethanol (8260B)	Ethylene- dibromide (EDB)	1,2-DCA (EDC)	DIPE	ETBE	TAME	Lead (total	Post-purge Dissolved Oxygen	Pre-purge Dissolved Oxygen
	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(mg/l)	(mg/l)
MW-4										
06/16/03		ND<500								~-
07/18/03		ND<500								
10/01/03		ND<50								
01/30/04		ND<500								
04/26/04		ND<50								
07/28/04		ND<50								-
10/19/04		990								
01/05/05		ND<50								
06/14/05		ND<50								
09/29/05		ND<250								
12/02/05		ND<250						ND<50		
03/21/06		ND<250								
05/25/06		ND<250								
08/25/06	ND<10	ND<250								
10/18/06	ND<10	ND<250								
01/18/07	ND<10	ND<250								
MW-5										
07/12/96					~~~				3.67	3.44
01/03/97									4.27	4.35
07/02/97									3.97	3.82
01/15/98									4.38	4.19
07/08/98									4.60	4.67
06/16/03		ND<5000								
07/18/03		ND<2500								
10/01/03	* =	ND<50								
01/30/04		ND<1000								

Table 2 a ADDITIONAL HISTORIC ANALYTICAL RESULTS Former 76 Station 7004

Date Sampled	TBA	Ethanol (8260B)	Ethylene- dibromide (EDB)	1,2-DCA (EDC)	DIPE	ETBE	TAME	Lead (total	Post-purge Dissolved Oxygen	Pre-purge Dissolved Oxygen		
	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(mg/l)	(mg/l)		
MW-5 c	ontinued											
04/26/04		ND<100						P . P .				
07/28/04		ND<100										
10/19/04		ND<50		~~								
01/05/05		ND<50										
06/14/05		ND<50		**								
09/29/05		ND<250										
12/02/05		ND<250						ND<50				
03/21/06		ND<250										
05/25/06		ND<250				~~						
08/25/06	ND<10	ND<250	~~									
10/24/06	ND<10	ND<250										
01/18/07	ND<10	ND<250										
MW-6												
06/16/03		ND<500		~~								
07/18/03		ND<500										
10/01/03		ND<50										
01/30/04		ND<500										
04/26/04		ND<50										
07/28/04		ND<50		50						'		
10/19/04		ND<50										
01/05/05		ND<50								~~		
06/14/05		ND<50										
09/29/05		ND<250							**			
12/02/05		ND<250					****	ND<50				
03/21/06		ND<250		~~								
05/25/06		ND<250										

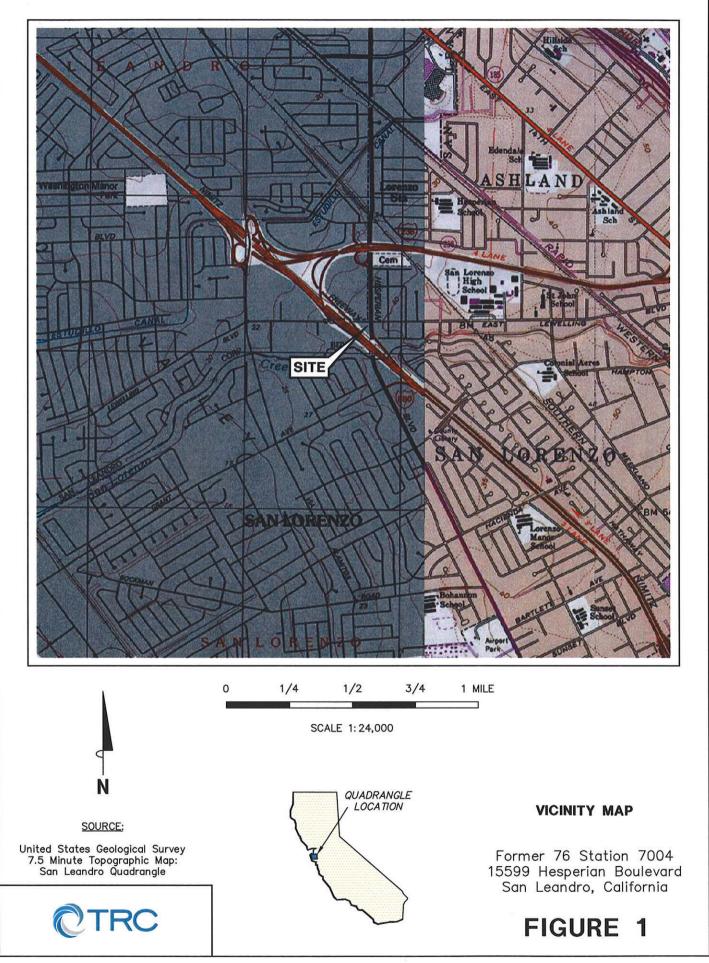
Table 2 a ADDITIONAL HISTORIC ANALYTICAL RESULTS

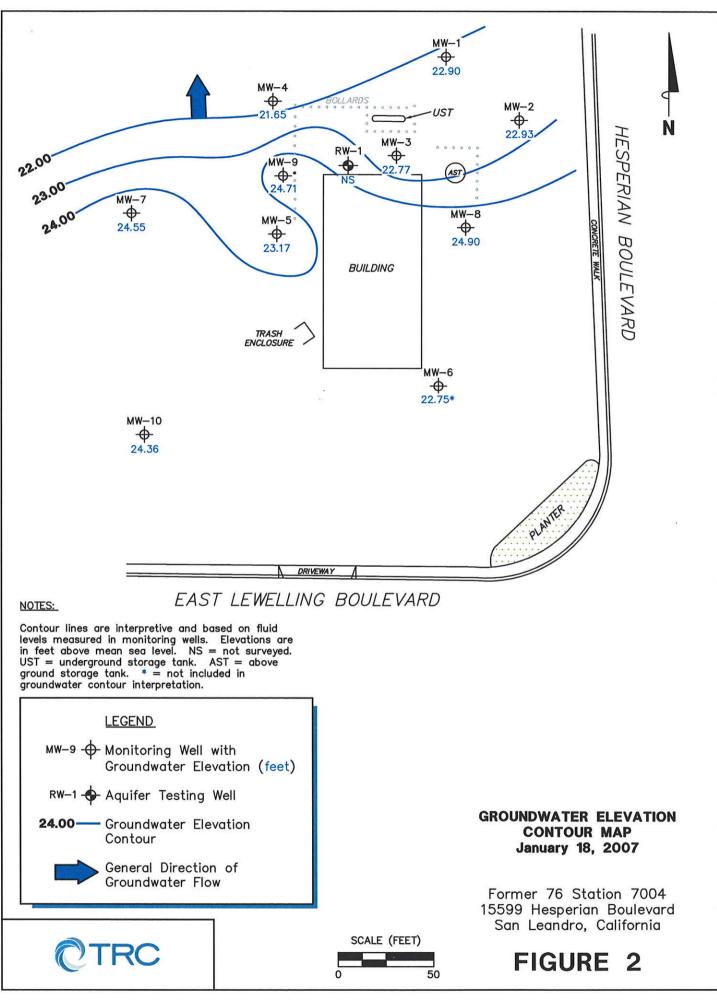
•

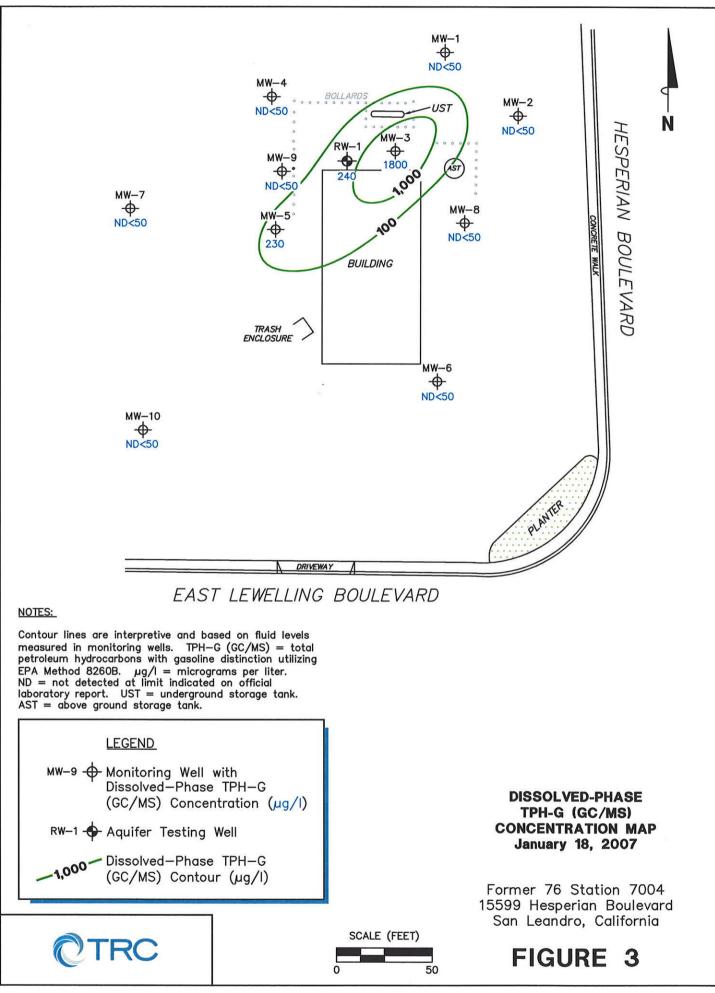
Former 76 Station 7004													
Date Sampled	TBA	Ethanol (8260B)	Ethylene- dibromide (EDB)	1,2-DCA (EDC)	DIPE	ETBE	TAME	Lead (total	Post-purge Dissolved Oxygen	Pre-purge Dissolved Oxygen			
	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(mg/l)	(mg/l)			
MW-6 c 08/25/06	ontinued ND<10	ND<250											
10/18/06	ND<10	ND<250											
01/18/07	ND<10	ND<250											
MW-7 05/25/06	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50						
08/25/06	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50						
10/18/06	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50						
01/18/07	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50						
MW-8													
05/25/06	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0,50		~~				
08/25/06	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50						
10/18/06	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50						
01/18/07	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0,50						
3.4337.0													
MW-9 05/25/06	ND<10	ND<250	ND<0,50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		**				
08/25/06	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50						
10/18/06	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50						
01/18/07	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50						
MW-10 05/25/06	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50						
08/25/06	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0,50						
10/18/06	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0,50						
01/18/07	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50						
	-	-											
RW-1 05/24/02	ND<10	ND<50	ND<0.5	ND<0.5	ND<2	ND<1	ND<1						

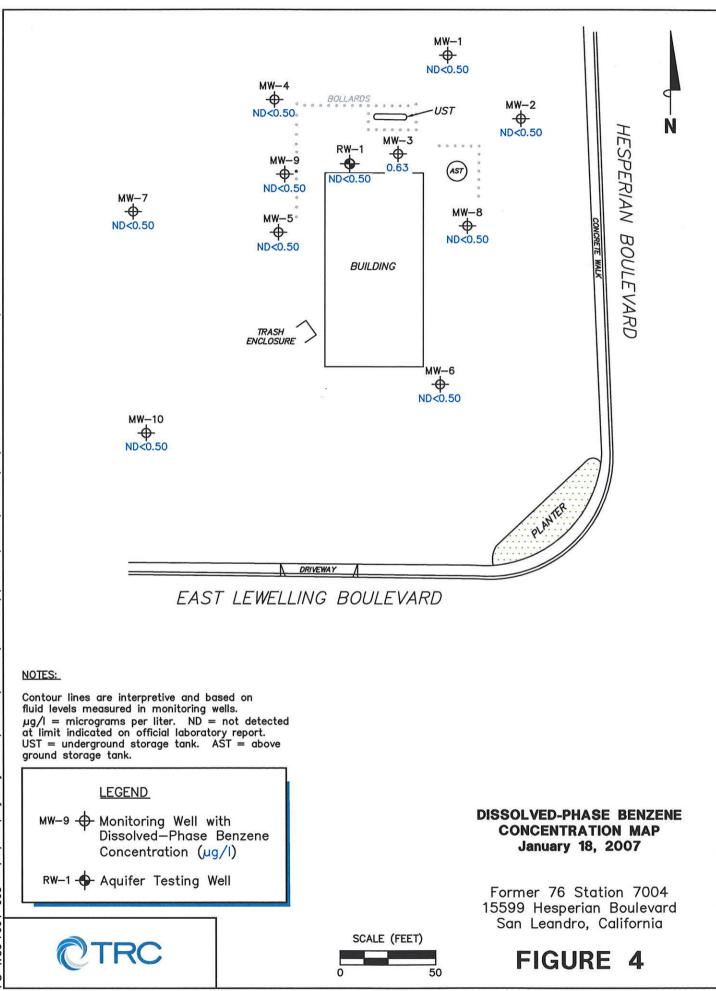
Table 2 a ADDITIONAL HISTORIC ANALYTICAL RESULTS Former 76 Station 7004

.

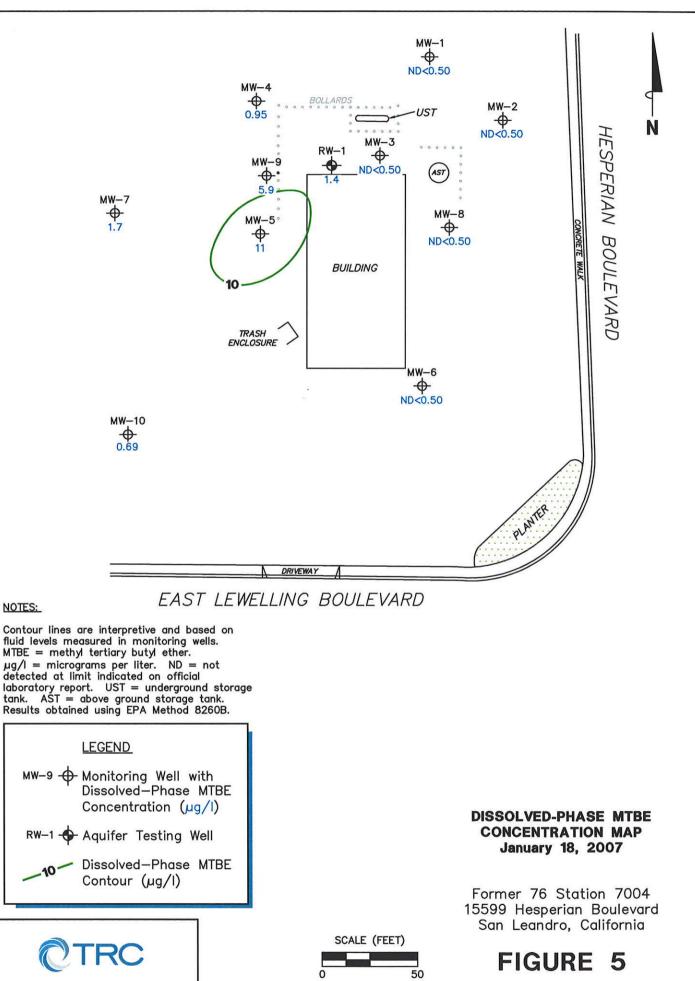

	Former 76 Station 7004														
Date Sampled	TBA	Ethanol (8260B)	Ethylene- dibromide (EDB)	1,2-DCA (EDC)	DIPE	ETBE	TAME	Lead (total	Post-purge Dissolved Oxygen	Pre-purge Dissolved Oxygen					
	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(mg/l)	(mg/l)					
RW-1 co	ontinued														
06/16/03		ND<500	**												
07/18/03		ND<500						~ -							
10/01/03		ND<50													
01/30/04		ND<2500								*-					
04/26/04		ND<250		* *											
07/28/04		ND<250													
10/19/04		ND<50	~-					***		·					
01/05/05		ND<50						-							
06/14/05		ND<50													
09/29/05		ND<250													
12/02/05		ND<250			 '			ND<50							
03/21/06	*-	ND<250													
05/25/06		ND<250													
08/25/06	ND<10	ND<250													
10/24/06	ND<10	ND<250	~~							~~					
01/18/07	ND<10	ND<250													

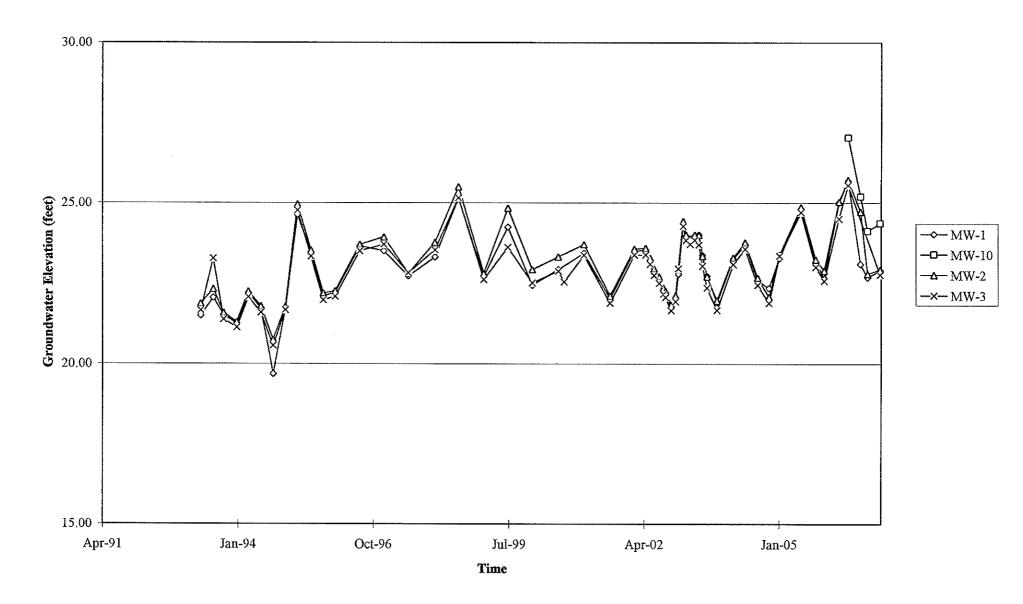

Table 2 aADDITIONAL HISTORIC ANALYTICAL RESULTSFormer 76 Station 7004

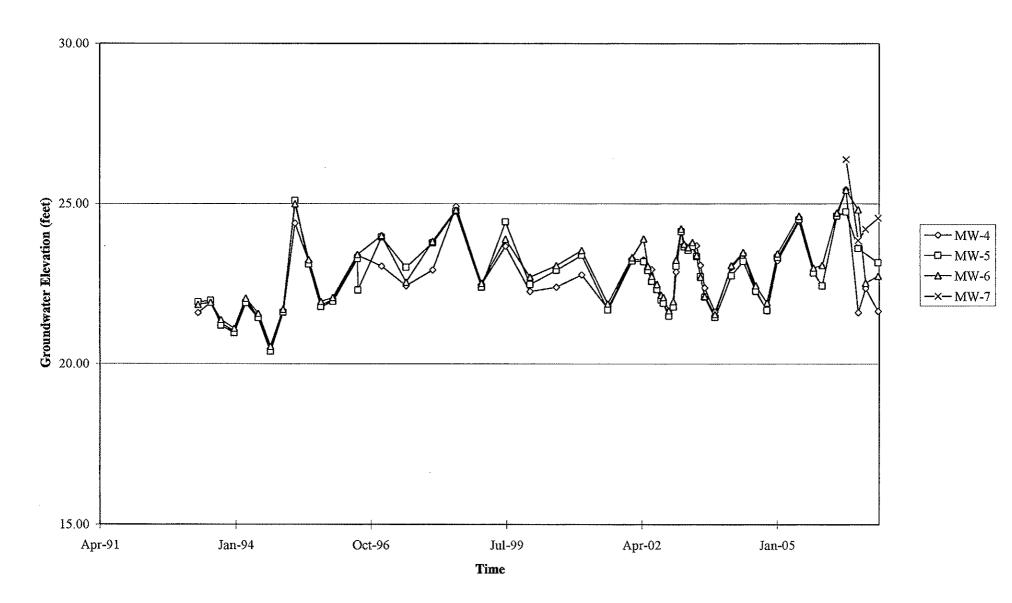

.


.

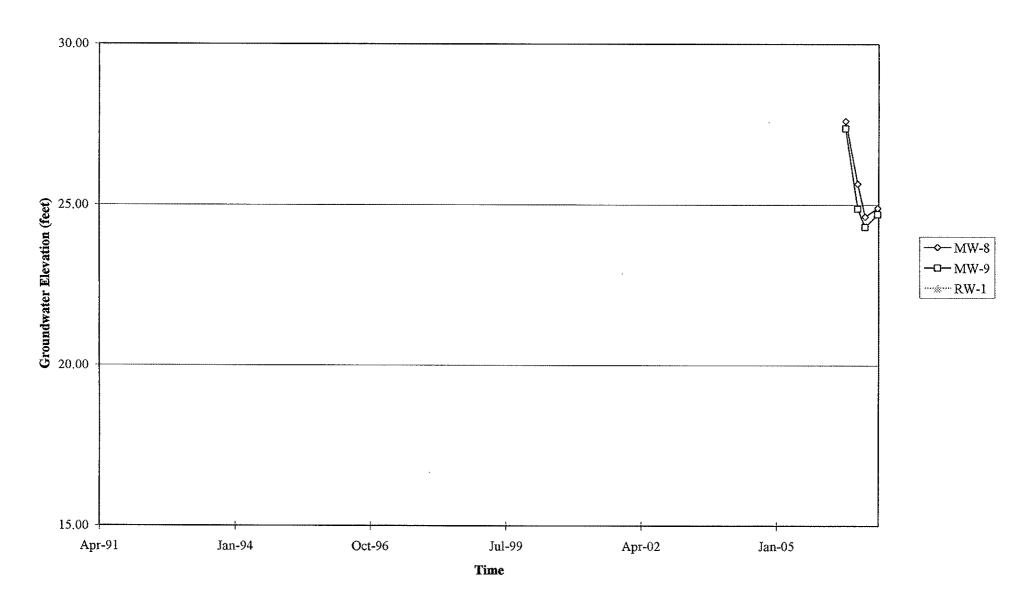
FIGURES



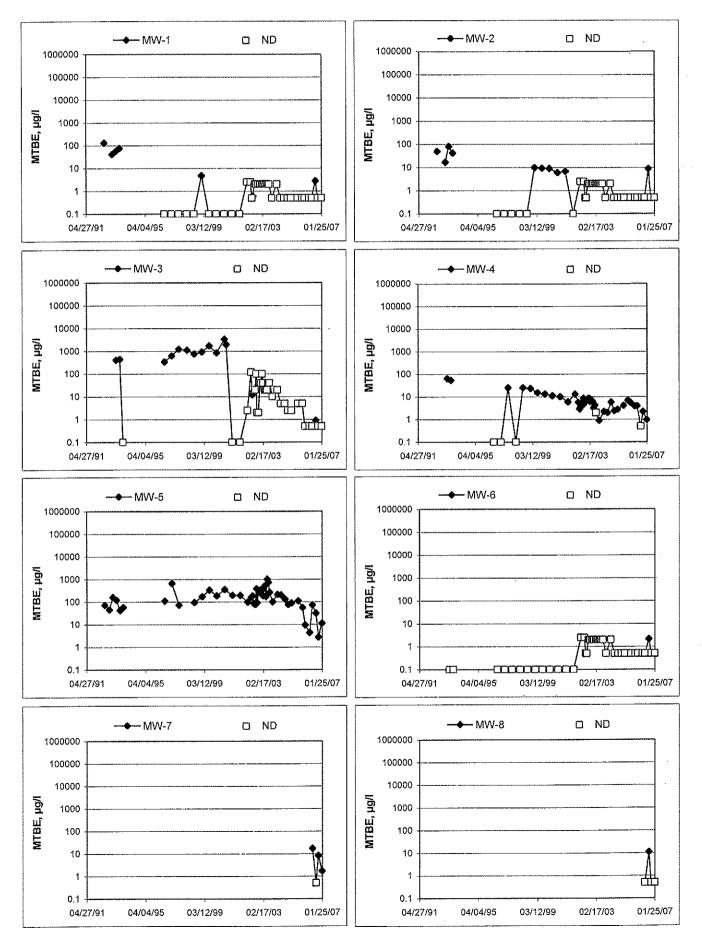




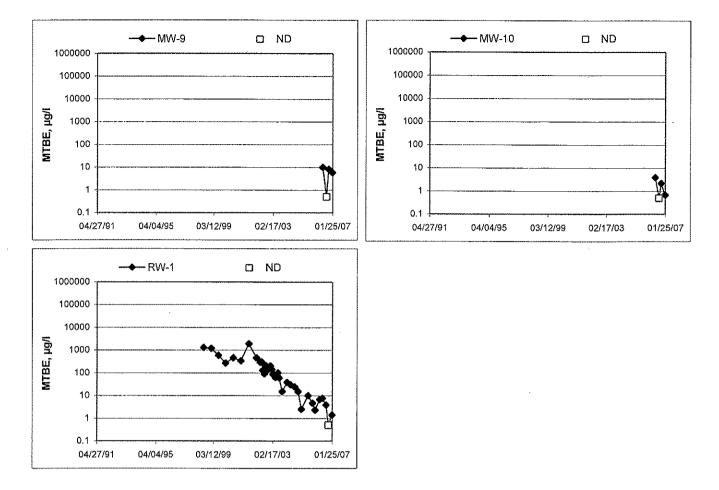
GRAPHS


Groundwater Elevations vs. Time Former 76 Station 7004

Groundwater Elevations vs. Time Former 76 Station 7004



Groundwater Elevations vs. Time Former 76 Station 7004


MTBE Concentrations vs Time

Former 76 Station 7004

MTBE Concentrations vs Time

Former 76 Station 7004

GENERAL FIELD PROCEDURES

Groundwater Monitoring and Sampling Assignments

For each site, TRC technicians are provided with a Technical Service Request (TSR) that specifies activities required to complete the groundwater monitoring and sampling assignment for the site. TSRs are based on client directives, instructions from the primary environmental consultant for the site, regulatory requirements, and TRC's previous experience with the site.

Fluid Level Measurements

Initial site activities include determination of well locations based on a site map provided with the TSR. Well boxes are opened and caps are removed. Indications of well or well box damage or of pressure buildup in the well are noted.

Fluid levels in each well are measured using a coated cloth tape equipped with an electronic interface probe, which distinguishes between liquid phase hydrocarbon (LPH) and water. The depth to LPH (if it is present), to water, and to the bottom of the well are measured from the top of the well casing (surveyors mark or notch if present) to the nearest 0.01 foot. Unless otherwise instructed, a well with less than 0.67 foot between the measured top of water and the measured bottom of the well casing is considered dry, and is not sampled. If the well contains 0.67 foot or more of water, an attempt is made to bail and/or sample as specified on the TSR.

Wells that are found to contain LPH are not purged or sampled. Instead, one casing volume of fluid is bailed from the well and the well is re-sealed. Bailed fluids are placed in a container separate from normal purge water, and properly disposed.

Purging and Groundwater Parameter Measurement

TSR instructions may specify that a well not be purged (no-purge sampling), be purged using low-flow methods, or be purged using conventional pump and/or bail methods. Conventional purging generally consists of pumping or bailing until a minimum of three casing volumes of water have been removed or until the well has been pumped dry. Pumping is generally accomplished using submersible electric or pneumatic diaphragm pumps.

During conventional purging, three groundwater parameters (temperature, pH, and conductivity) are measured after removal of each casing volume. Stabilization of these parameters, to within 10 percent, confirm that sufficient purging has been completed. In some cases, the TSR indicates that other parameters are also to be measured during purging. TRC commonly measures dissolved oxygen (DO), oxidation-reduction potential (ORP), and/or turbidity. Instruments used for groundwater parameter measurements are calibrated daily according to manufacturer's instructions.

Low-flow purging utilizes a bladder or peristaltic pump to remove water from the well at a low rate. Groundwater parameters specified by the TSR are measured continuously until they become stable in general accordance with EPA guidelines.

Purge water is generally collected in labeled drums for disposal. Drums may be left on site for disposal by others, or transported to a collection location for eventual transfer to a licensed treatment or recycling facility. In some cases, purge water may be collected directly from the site by a licensed vacuum truck company, or may be treated on site by an active remediation system, if so directed.

Groundwater Sample Collection

After wells are purged, or not purged, according to TSR instructions, samples are collected for laboratory analysis. For wells that have been purged using conventional pump or bail methods, sampling is conducted after the well has recovered to 80 percent of its original volume or after two hours if the well does not recover to at least 80 percent. If there is insufficient recharge of water in the well after two hours, the well is not sampled.

Samples are collected by lowering a new, disposable, ½-inch to 4-inch polyethylene bottom-fill bailer to just below the water level in the well. The bailer is retrieved and the water sample is carefully transferred to containers specified for the laboratory analytical methods indicated by the TSR. Particular care is given to containers for volatile organic analysis (VOAs) which require filling to zero headspace and fitting with Teflon-sealed caps.

After filling, all containers are labeled with project number (or site number), well designation, sample date, sample time, and the sampler's initials, and placed in an insulated chest with ice. Samples remain chilled prior to and during transport to a state-certified laboratory for analysis. Sample container descriptions and requested analyses are entered onto a chain-of-custody form in order to provide instructions to the laboratory. The chain-of-custody form accompanies the samples during transportation to provide a continuous record of possession from the field to the laboratory. If a freight or overnight carrier transports the samples, the carrier is noted on the form.

For wells that have been purged using low-flow methods, sample containers are filled from the effluent stream of the bladder or peristaltic pump. In some cases, if so specified by the TSR, samples are taken from the sample ports of actively pumping remediation wells.

Sequence of Gauging, Purging and Sampling

The sequence in which monitoring activities are conducted are specified on the TSR. In general, wells are gauged beginning with the least affected well and ending with the well that has the highest concentration based on previous analytic results. After all gauging for the site is completed, wells are purged and/or sampled from the least-affected to the most-affected well.

Decontamination

In order to reduce the possibility of cross contamination between wells, strict isolation and decontamination procedures are observed. Portable pumps are not used in wells with LPH. Technicians wear nitrile gloves during all gauging, purging and sampling activities. Gloves are changed between wells and more often if warranted. Any equipment that could come in contact with fluids are either dedicated to a particular wells, decontaminated prior to each use, or discarded after a single use. Decontamination consists of washing in a solution of Liqui-nox and water and rinsing twice. The final rinse is in deionized water.

Exceptions

Additional tasks or non-standard procedures, if any, that may be requested or required for a particular site, and noted on the site TSR, are documented in field notes on the following pages.

1/5/04 version

	т	echnician:	Anth	ony	Job	#/Task #:	410600	N/ FA20	0	Date: 01-18-07
Well # Time Gauged Total Toc Total Depth to Water Thickness Product Time (text) Time Sampled Misc. Well Notes R iv-1 0594 786.65 382 0824 6 M w73 657 24.35 14.02 082.0 2 M w73 657 24.32 14.02 082.0 2 M w74 657 24.32 14.07 082.0 2 M w75 0603 24.32 14.07 - 0904 2 M w76 0608 24.73 14.07 - 0904 2 M w76 0608 24.73 14.07 - 0904 2 M w76 0630 24.93 14.07 - 0917 2 M w76 0630 25.95 13.64 - 1013 2 M w79 0632 25.95 13.68 - 1047 2 M w79 0638 24.99 12.94 - </td <td></td> <td>Site #</td> <td>7004</td> <td>/</td> <td>Project</td> <td>t Manager</td> <td>A.Coll.</td> <td>1.1.5</td> <td></td> <td>Page <u>/</u> of <u>/</u></td>		Site #	7004	/	Project	t Manager	A.Coll.	1.1.5		Page <u>/</u> of <u>/</u>
Well # Gauged TOC Depth Water Product (feet) Sampled Misc. Well Notes $RW-1$ 3544 16.65 282 082.9 6 MW^3 6828 24.35 14.02 082.0 $2^ MW^-1$ 6877 24.35 14.02 082.0 $2^ MW^-2$ 0603 244.32 14.07 -0.0904 $2^ MW^-2$ 0603 244.32 14.07 -0.0904 $2^ MW^-6$ 0614 25555 14.38 -0.0914 $2^ MW^-6$ 0614 25555 14.38 -0.0947 $2^ MW^-6$ 0647 25555 13.647 -0.0957 $2^ MW^-9$ 0632 25.08 13.647 -10930 $2^ MW^-9$ 0634 25.08 13.647 -10047 $2^ MW^-9$ 0634 24.99 12.844 -10045 <					Total		-		Time	i s
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Well#	1	тос		1		(feet)		
$ \frac{1}{10000000000000000000000000000000000$	ľ		r	/	16.65	13.82				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		MW-3	1050	~	24.35	14.02			0820	<u></u>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				/	24.01	1349		-	0843	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					2432	14.14	-	-	0904	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	R				2473	14.01	-	_	0922	2.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 11				-				0940	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 11	•		w		}			0957	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		•	······································					-	10/3	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				1		1 -			1030	
		PAW-9	0634						1047	2"
									1106	2
FIELD DATA COMPLETE QA/QC COC WELL BOX CONDITION SHEETS								1		
FIELD DATA COMPLETE QA/QC COC WELL BOX CONDITION SHEETS						1	-	1		
FIELD DATA COMPLETE QA/QC COC WELL BOX CONDITION SHEETS				<u>+</u>						
FIELD DATA COMPLETE QA/QC COC WELL BOX CONDITION SHEETS				+	-			_	1	
FIELD DATA COMPLETE QA/QC COC WELL BOX CONDITION SHEETS						+			-	······································
FIELD DATA COMPLETE QA/QC COC WELL BOX CONDITION SHEETS										
FIELD DATA COMPLETE QA/QC COC WELL BOX CONDITION SHEETS				<u></u>		+				
FIELD DATA COMPLETE QA/QC COC WELL BOX CONDITION SHEETS		 		-						
FIELD DATA COMPLETE QA/QC COC WELL BOX CONDITION SHEETS			-	+						
FIELD DATA COMPLETE QA/QC COC WELL BOX CONDITION SHEETS		ļ								
FIELD DATA COMPLETE QA/QC COC WELL BOX CONDITION SHEETS										
FIELD DATA COMPLETE QA/QC COC WELL BOX CONDITION SHEETS			<u></u>							
FIELD DATA COMPLETE QA/QC COC WELL BOX CONDITION SHEETS					ļ					
FIELD DATA COMPLETE QA/QC COC WELL BOX CONDITION SHEETS		<u> </u>		<u> </u>						
		FIELD DAT	TA COMPI	LETE	QA/Q	С	00	<u> </u>	WELL BOX	CONDITION SHEETS
		·								~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
WTT CERTIFICATE MANIFEST DRUM INVENTORY TRAFFIC CONTROL		WTT CER	TIFICATE		MANIFI	EST	DRUM I	VENTORY	TR	AFFIC CONTROL

FIELD MONITORING DATA SHEET

GROUNDWATER SAMPLIN	G FIEL	D NOTES
---------------------	--------	---------

Technician: Anthony

Project No .:

26.65

16.04

12

Site: Well No Depth to Water (feet): 13.82

Total Depth (feet)

Water Column (feet):_

80% Recharge Depth(feet):

HIDHODDI

Date: 01-1

506 Purge Method: Depth to Product (feet): LPH & Water Recovered (gallons): Casing Diameter (Inches): 19 1 Well Volume (gailons):

0727			(gallons)	(uS/cm)	(F,C)	рH	D.0.	ORP	Turbidity
			19	1172	16.4	17.25			
•••••			38	1115	19.0	7.06			
0	752		57	1112	18.9	712		1	<u></u>
•			• "						
Static a	it Time Sar	npled	Tota	al Gallons Pur	ged	····	Sample	Time	.
	16.31		5	7				924	
Comments:	· · · · · · · ·		······································						

MW-3 Well No. 14.02 Depth to Water (feet): 24.35 Total Depth (feet) Water Column (feet): 10.33 80% Recharge Depth(feet): 16-09

Purge Method:

Depth to Product (feet):_____

LPH & Water Recovered (gallons):_

Casing Diameter (Inches): 2"

1 Well Volume (gallons): 2

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conduc- tivity (uS/cm)	Temperature	рН	D.O.	ORP	Turbidity
0806			2	966	13.2	7-31			
			4	975	18.1	7-16			
	0816		6	988	17.5	7.16			
		·····	 						
Stati	ic at Time Sa	moled	Tot	l al Gallons Pu			Consta		<u> </u>
	114		100	ſ	iyeu		Sample	$\frac{11me}{7}$	<u></u>
Comments	<u>fert 1</u>		1	<u> </u>	l		DB	_0	
Comments			·····		······				

. ...

GROUNDWATER S	AMPLING FIEL	D NOTES
----------------------	--------------	---------

Technician: Anthony Project No.: 41060001 Date: 01-18-07

Depth to Water (feet): 1349 Total Depth (feet) 24-01 Water Column (feet): 10-52 80% Recharge Depth(feet): 15-59 Purge Method:

Depth to Product (feet): LPH & Water Recovered (gallons): Casing Diameter (Inches): 2.*

sub

1 Well Volume (gallons): Z

Time Start	Time Stop	Depth to Water (feet)	Volume Purgeđ (gallons)	Conduc- tivity (uS/cm)	Temperature (FC)	рН	D.0.	ORP	Turbidity
0893			2	986	12-7	7.35			
sue :			9	984	15.4	7.18			
	0838		6	979	18.1	6.97			
······			-			<u> </u>			
Stat	ic at Time S	ampled	Tota	al Gallons Pu	rged		Sample	Time	
	3-52			6			084	3	
Comments	:								

Well No. MW-2 Depth to Water (feet): 14.14 24.3z Total Depth (feet) Water Column (feel): 10-18 80% Recharge Depth(feet): 16-18

Purge Method: ______

Depth to Product (feet):

LPH & Water Recovered (gallons):

Casing Diameter (Inches): 2." 1 Well Volume (gallons); 2

...... Depth to Volume Conduc-Time Time Temperature Water Purged tivity pН D.O. ORP Turbidity Start Stop (F,C) (feet) (gallons) (uS/cm) 91B 13.4 2 2.03 ٩B 4 18.9 6.98 0900 97.0 20.0 6.45 Static at Time Sampled Total Gallons Purged Sample Time 14.23 DADY h,

Comments:

DESH

Technician: Anthony

Site: 7004

Project No.:_41060001

Date:

MW-8 Well No.

Depth to Water (feet): <u>14-01</u> Total Depth (feet): <u>24.73</u> Water Column (feet): <u>10-72</u> 80% Recharge Depth(feet): <u>16-15</u> Purge Method:___

Depth to Product (feet):______ LPH & Water Recovered (gallons):_____ Casing Diameter (Inches):____2 1 Well Volume (gallons):____2

506

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conduc- tivity (uS/cm)	Temperature (F,C)	рН	D.O.	ORP	Turbidity
0913			2	109B	17.2	7.15	1		
			4	1110	16-8.	6.98			
~~~~~	0918		6	1104	18.6	6.99			
			· ·						
Stai	tic at Time S	ampled	Tota	al Gallons Pu	rged	I	Sample	Time	I
	14.08	>						22	
Comments	5:		•				······································		

Well No._____MW-6 Depth to Water (feet): 14.38 25.55 Total Depth (feet) Water Column (feet): lal 80% Recharge Depth(feet): 16-61

Purge Method:

Depth to Product (feet):_____

LPH & Water Recovered (gallons):_____

506

Casing Diameter (Inches): 2 -

1 Well Volume (gallons): 2 "

Time	Time	Depth to	Volume	Conduc-		[	l	I	1
Start	Stop	Water	Purged	tivity	Temperature	рН	D.0.	ORP	Turbidity
	0.09	(feet)	(gallons)	(uS/cm)	(F.C)				· · · · · · · · · · · · · · · · · · ·
0931			2	1123	17.8	7.21			1
			4	1130	19.7	7.02			1
	0936		6	1148	20.5	6.98		[	1
									1
	<u> </u> ]								
Stati	ic at Time Sa		Tota	al Gallons Pu	rged		Sample	Time	
	14-82			6		·····	094	0	·······
Comments	;				<b></b>	·	<u> </u>		

. ...

Purge Method:

Technician: Anthony

Site: 7004

41060001 Project No.:

Date: 01-10

Well No. MW-10

Depth to Water (feel): 13.76 Total Depth (feet) 24.99 Water Column (feet): 11.23 80% Recharge Depth(feet): 16.01

SUB

null		(feet)	(gallons)	tivity (uS/cm)	Temperature (FC)	рН	D.O.	ORP	Turbidity
11-12-1			2	1134	18-9	7.1Z			
<u>E</u>			Ц	1133	20.3	6.90			
04	52		6	1129	21.4	6.87			
Static at	Time Sam	npled	Tota	l Il Gallons Pu	ged		Sample	Time	
(	3.79		******	6			3957		
Comments:				· · · · <b>Be</b> T. · · ·	Ł				

Well No. MW-4 Depth to Water (feet): 13,79 Total Depth (feet) 2.5.58 Water Column (feet): 11.79 80% Recharge Depth(feet): 16-15

Purge Method:

Depth to Product (feet):

sub

LPH & Water Recovered (gallons):

Casing Diameter (Inches): 2"

1 Well Volume (gallons): 2

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conduc- tivity (uS/cm)	Temperature (F,C)	рН	D.O.	ORP	Turbidity
1005			2	1068	20.2	7.19			1
ļ			4	1062	21.0	7.00	<u> </u>	<u> </u>	1
	1009		6	1058	20.9	6-93			1
·									1
<u> </u>	<u>}</u>				<u></u>				
Stat	ic at Time Sa	Impled	Tota	al Gallons Pu	rged		Sample	Time	
	13.8	38		6		······	101	73 73	
Comments	i:				······································				
								_~~	

## Technician: Anthony

Site: 7004

Project No .: 41060001

Well No. MW-S

Depth to Water (feet): 13.64Total Depth (feet) 25.45Water Column (feet): 11-B180% Recharge Depth(feet): 16-00

Date: 01-18-0

102/ 102/ 1026 4 1125 4 1133 6 1144	
	19.8 7.13
1026 6 1144	20.6 6.43
	21.0 6.88
Static at Time Sampled Total Gallons	ns Purged Sample Time
15.71 6	1030
Comments:	

Well No.MW-9Depth to Water (feet):13.6BTotal Depth (feet)2.5.0BWater Column (feet):11-4080% Recharge Depth(feet):15-96

Purge Method:

Depth to Product (feet):

505

LPH & Water Recovered (gallons):

Casing Diameter (Inches): 2

1 Well Volume (gallons): 2

Time	Time	Depth to	Volume	Conduc-	Temperature			1	1
Start	Stop	Water	Purged	tīvīty		pН	D.O.	ORP	Turbidity
		(feet)	(gallons)	(uS/cm)	(F,C)				
1038			2	1192	19.7	7.11	•		
			4	1190	21-2	6-92			<b>+</b>
	1043		6	1190	21.6	6-90			
			 						1
	1								
Stati	ic at Time Sa	Impled	Tota	I Gallons Pu	rged		Sample	Time	<b></b>
	15.75			6			1DH	7	······
Comments	:		· · · · · · · · · · · · · · · · · · ·		·····				

. ....

# Technician: Anthony

Site: 7004

Project No.: 41060001

Date: 01-18--07

MW-7 Well No.

Depth to Water (feet):12-84Total Depth (feet)2-4-59Water Column (feet):11-7580% Recharge Depth(feet):15-19

Purge Method:

Depth to Product (feet):______ LPH & Water Recovered (gallons):_____ Casing Diameter (Inches):____2" 1 Well Volume (gallons):___2"

501

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conduc- tivity (uS/cm)	Temperature (FC)	pН	D.O.	ORP	Turbidity		
1056			2	1223	20.7	7.04	,				
•••• • • _{••}			4	1220	21-6	6.97					
	1100		6	1214	22.1	6.82					
		]		L							
Stat	tic at Time S	ampled	Tota	al Gallons Pu	rged		Sample	Time			
	12.39		6			1106					
Comments	5:										
		·····	· · · · · · · · · · · · · · · · · · ·								

Well No	Purge Method:
Depth to Water (feet):	Depth to Product (feet):
Total Depth (feet)	LPH & Water Recovered (gallons):
Water Column (feet):	Casing Diameter (Inches):
80% Recharge Depth(feet):	1 Well Volume (gallons):

**\$.**4

Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conduc- tivity (uS/cm)	Temperature (F,C)	pН	D.O.	ORP	Turbidity
						1		
					······································	-		
					·····	[	1	
c at Time Sa	mpled	Tota	I Gallons Pu	rged		Sample	Time	d
	- -	<u> </u>			·			
	Stop ^{***}	Stop Water (feet)	Time     Water     Purged       Stop     (feet)     (gallons)	Time     Water (feet)     Purged (gallons)     tivity (uS/cm)	Mater     Purged     tivity     Temperature       Stop     (feet)     (gallons)     (uS/cm)     (F.C)	Mater     Purged     tivity     Temperature       Stop     (feet)     (gallons)     (uS/cm)     (F.C)	Mater     Purged     tivity     Temperature     pH     D.O.       Stop     (feet)     (gallons)     (uS/cm)     (F.C)     pH     D.O.	Mater     Purged     tivity     Temperature     pH     D.O.     ORP       Stop     (feet)     (gallons)     (uS/cm)     (F,C)     pH     D.O.     ORP

- 63



Date of Report: 01/29/2007

Anju Farfan

TRC Alton Geoscience 21 Technology Drive Irvine, CA 92618-2302

RE: 7004 BC Work Order: 0700736

Enclosed are the results of analyses for samples received by the laboratory on 01/18/2007 21:25. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Contact Person. Vanessa Hooker **Client Service Rep** 

Authorized Signature



TRC Alton Geo 21 Technology Irvine, CA 9261	Drive		Reported: 01/29/2007 13:11		
		Laborate	ry / Client Sample Cross Re	ference	
Laboratory	Client Sample Informa	tion			
0700736-01	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 7004 MW-1 MW-1 Anthony of TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	01/18/2007 21:25 01/18/2007 08:43  Water	Delivery Work Order: Global ID: T0600101451 Matrix: W Samle QC Type (SACode): CS Cooler ID:
0700736-02	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 7004 MW-2 MW-2 Anthony of TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	01/18/2007 21:25 01/18/2007 09:04  Water	Delivery Work Order: Global ID: T0600101451 Matrix: W Samle QC Type (SACode): CS Cooler ID:
0700736-03	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 7004 MW-3 MW-3 Anthony of TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	01/18/2007 21:25 01/18/2007 08:20  Water	Delivery Work Order: Global ID: T0600101451 Matrix: W Samle QC Type (SACode): CS Cooler ID:
0700736-04	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	7004 MW-4 MW-4 Anthony of TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	01/18/2007 21:25 01/18/2007 10:13  Water	Delivery Work Order: Global ID: T0600101451 Matrix: W Samle QC Type (SACode): CS Cooler ID:
0700736-05	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 7004 MW-5 MW-5 Anthony of TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	01/18/2007 21:25 01/18/2007 10:30  Water	Delivery Work Order: Global ID: T0600101451 Matrix: W Samle QC Type (SACode): CS Cooler ID:

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

*



 TRC Alton Geoscience
 Project: 7004
 Reported: 01/29/2007 13:11

 21 Technology Drive
 Project Number: [none]
 Project Number: [none]

 Irvine, CA 92618-2302
 Project Manager: Anju Farfan
 Anju Farfan

 Laboratory
 Client Sample Information
 Receive Date:
 01/18/2007 21:25
 Delivery Work Order:

0700736-06	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 7004 MW-6 MW-6 Anthony of TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	01/18/2007 21:25 01/18/2007 09:40  Water	Delivery Work Order: Global ID: T0600101451 Matrix: W Samle QC Type (SACode): CS Cooler ID:
0700736-07	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 7004 RW-1 RW-1 Anthony of TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	01/18/2007 21:25 01/18/2007 08:24  Water	Delivery Work Order: Global ID: T0600101451 Matrix: W Samle QC Type (SACode): CS Cooler ID:
0700736-08	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 7004 MW-7 MW-7 Anthony of TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	01/18/2007 21:25 01/18/2007 11:06  Water	Delivery Work Order: Global ID: T0600101451 Matrix: W Samle QC Type (SACode): CS Cooler ID:
0700736-09	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 7004 MW-8 MW-8 Anthony of TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	01/18/2007 21:25 01/18/2007 09:22  Water	Delivery Work Order: Global ID: T0600101451 Matrix: W Samle QC Type (SACode): CS Cooler ID:
0700736-10	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	7004 MW-9 MW-9 Anthony of TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	01/18/2007 21:25 01/18/2007 10:47  Water	Delivery Work Order: Global ID: T0600101451 Matrix: W Samle QC Type (SACode): CS Cooler ID:

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



TRC Alton Geo 21 Technology Irvine, CA 9261	Drive	ł P	Project: 7004 Project Number: [none] Project Manager: Anju Farfan					
Laboratory	Client Sample Informa		Client Sample Cross Ref	ference				
0700736-11	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 7004 MW-10 MW-10 Anthony of TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	01/18/2007 21:25 01/18/2007 09:57  Water	Delivery Work Order: Global ID: T0600101451 Matrix: W Samle QC Type (SACode): CS Cooler ID:			

Reported: 01/29/2007 13:11

TRC Alton Geoscience 21 Technology Drive Irvine, CA 92618-2302 Project: 7004 Project Number: [none]

Project Manager: Anju Farfan

# Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 0700736-01	Client Sam	ple Name	: 7004, MW-1, MW	-1, 1/18/200	7 8:43:00	)AM, Anthony						
					Prep	Run		Instru-		QĊ	MB	Lab
Constituent	Result	Units	PQL MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene	ND	ug/ኒ	0.50	EPA-8260	01/22/07	01/23/07 16:21	SDU	MS-V6	1	BQA1189	ND	
Ethylbenzene	ND	ug/L	0.50	EPA-8260	01/22/07	01/23/07 16:21	SDU	MS-V6	1	BQA1189	ND	
Methyl t-butyl ether	ND -	ug/L	0.50	EPA-8260	01/22/07	01/23/07 16:21	SDU	MS-V6	1	BQA1189	ND	
Toluene	ND	ug/L	0.50	EPA-8260	01/22/07	01/23/07 16:21	SDU	MS-V6	1	BQA1189	ND	
Total Xylenes	ND	ug/L	0.50	EPA-8260	01/22/07	01/23/07 16:21	SDU	MS-V6	1	BQA1189	ND	
t-Butyl alcohol	ND	ug/L	10	EPA-8260	01/22/07	01/23/07 16:21	SDU	MS-V6	1	BQA1189	ND	
Ethanol	ND	ug/L	250	EPA-8260	01/22/07	01/23/07 16:21	SDU	MS-V6	1	BQA1189	ND	
Total Purgeable Petroleum Hydrocarbons	ND	ug/L	50	EPA-8260	01/22/07	01/23/07 16:21	SDU	MS-V6	1	BQA1189	ND	A53
1,2-Dichloroethane-d4 (Surrogate)	106	%	76 - 114 (LCL - UCL)	EPA-8260	01/22/07	01/23/07 16:21	SDU	MS-V6	1	BQA1189		
Toluene-d8 (Surrogate)	101	%	88 - 110 (LCL - UCL)	EPA-8260	01/22/07	01/23/07 16:21	SDU	MS-V6	1	BQA1189	* ******	
4-Bromofluorobenzene (Surrogate)	98.4	%	86 - 115 (LCL - UCL)	EPA-8260	01/22/07	01/23/07 16:21	SDU	MS-V6	1	BQA1189		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



TRC Alton Geoscience 21 Technology Drive Irvine, CA 92618-2302	Project: 7004 Reporte Project Number: [none] Project Manager: Anju Farfan											
	Vol	atile	Organic				thod	8260	)			
BCL Sample ID: 0700736-02	1		e: 7004, MW-2, N			DAM, Anthony						
Constituent	Result	Units	PQL MD	L Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB	Lab
Benzene	ND	ug/L	0.50	EPA-8260		01/23/07 16:47	SDU	MS-V6	1	BQA1189	Bias ND	Quals
Ethylbenzene	ND	ug/L	0.50	EPA-8260	01/22/07	01/23/07 16:47	SDU	MS-V6	1	BQA1189	ND	
Methyl t-butyl ether	ND	ug/L	0.50	EPA-8260	01/22/07	01/23/07 16:47	SDU	MS-V6	, 1	BQA1189	ND	
Toluene	ND	ug/L	0.50	EPA-8260	01/22/07	01/23/07 16:47	SDU	MS-V6	1	BQA1189		
Total Xylenes	ND	ug/L	0.50	EPA-8260	01/22/07	01/23/07 16:47	SDU	MS-V6	4		ND	
t-Butyl alcohol	ND	ug/L	10	EPA-8260	01/22/07	01/23/07 16:47	SDU		1	BQA1189	ND	·····
Ethanol	ND	ug/L	250	EPA-8260				MS-V6	1	BQA1189	ND	
Total Purgeable Petroleum Hydrocarbons	ND	ug/L	50	EPA-8260			SDU SDU	MS-V6 MS-V6	1	BQA1189 BQA1189	ND ND	A53
1,2-Dichloroethane-d4 (Surrogate)	103	%	76 - 114 (LCL - UC	L) EPA-8260	01/22/07	01/23/07 16:47	SDU	MS-V6	4			
Toluene-d8 (Surrogate)	101	%	88 - 110 (LCL - UC			01/23/07 16:47			 	BQA1189		
4-Bromofluorobenzene (Surrogate)	101	%	86 - 115 (LCL - UC				SDU SDU	MS-V6 MS-V6	1	BQA1189 BQA1189		4

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation,, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com

.



TRC Alton Geoscience 21 Technology Drive Irvine, CA 92618-2302		Project: 7004 Project Number: [none] Project Manager: Anju Farfan								Repo	orted: 01/2	29/2007 13: <i>1</i>
	Vol	atile	Organic .	Analys	sis (E	EPA Met	hod	8260	))	****		
BCL Sample ID: 0700736-03	Client Sam	ple Name	. 7004, MW-3, M	V-3, 1/18/200	7 8:20:00	DAM, Anthony						
Constituent	Result	Units	PQL MDI	. Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
Benzene	0.63	ug/L	0.50	EPA-8260	01/22/07	01/23/07 17:13	SDU	MS-V6	1	BQA1189	ND	
Ethylbenzene	15	ug/L	0.50	EPA-8260	01/22/07	01/23/07 17:13	SDU	MS-V6	1	BQA1189	ND	
Methyl t-butyl ether	ND	ug/L	0.50	EPA-8260	01/22/07	01/23/07 17:13	SDU	MS-V6	1	BQA1189	ND	
Toluene	0.58	ug/L	0.50	EPA-8260	01/22/07	01/23/07 17:13	SDU	MS-V6	1	BQA1189	ND	
Total Xylenes	ND	ug/L	0.50	EPA-8260	01/22/07	01/23/07 17:13	SDU	MS-V6	1	BQA1189	ND	<u></u>
t-Butyl alcohol	ND	ug/L	10	EPA-8260	01/22/07	01/23/07 17:13	SDU	MS-V6	1	BQA1189	ND	
Ethanol	ND	ug/L	250	EPA-8260	01/22/07	01/23/07 17:13	SDU	MS-V6	1	BQA1189	ND	
Total Purgeable Petroleum Hydrocarbons	1800	ug/L	50	EPA-8260	01/22/07	01/23/07 17:13	SDU	MS-V6	1	BQA1189	ND	
1,2-Dichloroethane-d4 (Surrogate)	104	%	76 - 114 (LCL - UCL	) EPA-8260	01/22/07	01/23/07 17:13	SDU	MS-V6	1	BQA1189		
Toluene-d8 (Surrogate)	104	%	88 - 110 (LCL - UCL	) EPA-8260	01/22/07	01/23/07 17:13	SDU	MS-V6	1	BQA1189		
4-Bromofluorobenzene (Surrogate)	102	%	86 - 115 (LCL - UCL	) EPA-8260	01/22/07	01/23/07 17:13	SDU	MS-V6	1	BQA1189		

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



TRC Alton Geoscience 21 Technology Drive Irvine, CA 92618-2302	Project: 7004 Project Number: [none] Project Manager: Anju Farfan									Rep	Reported: 01/29/2007 13:1				
	Vol	atile	Organic				hod	8260	))						
BCL Sample ID: 0700736-04	1		e: 7004, MW-4,						- /						
Constituent	Result	Units		DL Method	Prep	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals			
Benzene	ND	ug/L	0.50	EPA-8260	01/22/07	01/23/07 17:39	SDU	MS-V6	1	BQA1189	ND	Quais			
Ethylbenzene	ND	ug/L	0.50	EPA-8260	01/22/07	01/23/07 17:39	SDU	MS-V6	1	BQA1189	ND				
Methyl t-butyl ether	0.95	ug/L	0.50	EPA-8260	01/22/07	01/23/07 17:39	SDU	MS-V6	 1	BQA1189	ND				
Toluene	ND	ug/L	0.50	EPA-8260	01/22/07	01/23/07 17:39	SDU	MS-V6	, 1	BQA1189					
Total Xylenes	ND	ug/L	0.50	EPA-8260	01/22/07		SDU	MS-V6	۱ م		ND				
t-Butyl alcohol	ND	ug/L	10	EPA-8260		01/23/07 17:39			1	BQA1189	ND	181			
Ethanol	ND ,	ug/L	250	EPA-8260	0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		SDU	MS-V6	1	BQA1189	ND				
Total Purgeable Petroleum Hydrocarbons	ND	ug/L	50	EPA-8260	0.022.01	01/23/07 17:39 01/23/07 17:39	SDU SDU	MS-V6 MS-V6	1 1	BQA1189 BQA1189	ND ND				
1,2-Dichloroethane-d4 (Surrogate)	105	%	76 - 114 (LCL - U	CL) EPA-8260	01/22/07	01/23/07 17:39	80U								
Toluene-d8 (Surrogate)	102	%	88 - 110 (LCL - U			01/23/07 17:39	SDU	MS-V6	1	BQA1189	·····				
4-Bromofluorobenzene (Surrogate)	95.2	%	86 - 115 (LCL - U			01/23/07 17:39	SDU SDU	MS-V6 MS-V6	1 1	BQA1189 BQA1189					

.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com

TRC Alton GeoscienceProject: 7004Reported: 01/29/2007 13:1121 Technology DriveProject Number:[none]Irvine, CA 92618-2302Project Manager:Anju Farfan

# Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 0700736-05	Client Sam	ple Name	e: 7004, MW-5, MW-	5, 1/18/200	7 10:30:0	0AM, Anthony						
					Prep	Run		Instru-	A	QC	MB	Lab
Constituent	<u>Result</u>	<u>Units</u>	<u>PQL MDL</u>	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene	ND	ug/L	0.50	EPA-8260	01/22/07	01/23/07 18:04	SDU	MS-V6	1	BQA1189	ND	
Ethylbenzene	ND	ug/L	0.50	EPA-8260	01/22/07	01/23/07 18:04	SDU	MS-V6	1	BQA1189	ND	
Methyl t-butyl ether	11	ug/L	0.50	EPA-8260	01/22/07	01/23/07 18:04	SDU	MS-V6	1	BQA1189	ND	
Toluene	ND	ug/L	0.50	EPA-8260	01/22/07	01/23/07 18:04	SDU	MS-V6	1	BQA1189	ND	
Total Xylenes	ND	ug/L	0.50	EPA-8260	01/22/07	01/23/07 18:04	SDU	MS-V6	1	BQA1189	ND	
t-Butyl alcohol	ND	ug/L	10	EPA-8260	01/22/07	01/23/07 18:04	SDU	MS-V6	1	BQA1189	ND	4
Ethanol	ND	ug/L	250	EPA-8260	01/22/07	01/23/07 18:04	SDU	MS-V6	1	BQA1189	ND	
Total Purgeable Petroleum Hydrocarbons	230	ug/L	50	EPA-8260	01/22/07	01/23/07 18:04	SDU	MS-V6	1	BQA1189	ND	
1,2-Dichloroethane-d4 (Surrogate)	104	%	76 - 114 (LCL - UCL)	EPA-8260	01/22/07	01/23/07 18:04	SDU	MS-V6	1	BQA1189		
Toluene-d8 (Surrogate)	101	%	88 - 110 (LCL - UCL)	EPA-8260	01/22/07	01/23/07 18:04	SDU	MS-V6	1	BQA1189		646-666 (1996)
4-Bromofluorobenzene (Surrogate)	101	%	86 - 115 (LCL - UCL)	EPA-8260	01/22/07	01/23/07 18:04	SDU	MS-V6	1	BQA1189		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



TRC Alton Geoscience 21 Technology Drive Irvine, CA 92618-2302	Project: 7004 Project Number: [none] Project Manager: Anju Farfan										Reported: 01/29/2007 13:1				
	Vol	atile	Organic				thod	826	0)						
BCL Sample ID: 0700736-06	Client Sam	ple Nam	e: 7004, MW-6, N	1W-6, 1/18/200	9:40:0	DAM, Anthony			/			<b></b>			
Constituent	Result	Units	PQL ME	L Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals			
Benzene	ND	ug/L	0.50	EPA-8260	01/22/07	01/23/07 18:30	SDU	MS-V6	1	BQA1189	ND	Quais			
Ethylbenzene	ND	ug/L	0.50	EPA-8260	01/22/07	01/23/07 18:30	SDU	MS-V6	1	BQA1189	ND	na parte de la companya de la que a proprie d'a de la debard colonica			
Methyl t-butyl ether	ND	ug/L	0.50	EPA-8260	01/22/07	01/23/07 18:30	SDU	MS-V6	1	BQA1189	ND				
Toluene	ND	ug/L	0.50	EPA-8260	01/22/07	01/23/07 18:30	SDU	MS-V6	1	BQA1189	ND				
Total Xylenes	ND	ug/L	0.50	EPA-8260	01/22/07	01/23/07 18:30	SDU	MS-V6		BQA1189	ND				
t-Butyl alcohol	ND	ug/L	10	EPA-8260	01/22/07	01/23/07 18:30	SDU	MS-V6	1	BQA1189	ND	· · · · · · · · · · · · · · · · · · ·			
Ethanol	ND	ug/L	250	EPA-8260	01/22/07	01/23/07 18:30	SDU	MS-V6		BQA1189					
Total Purgeable Petroleum Hydrocarbons	ND	ug/L	50	EPA-8260	01/22/07	01/23/07 18:30	SDU	MS-V6	1	BQA1189 BQA1189	ND ND				
1,2-Dichloroethane-d4 (Surrogate)	106	%	76 - 114 (LCL - UC	L) EPA-8260	01/22/07	01/23/07 18:30	SDU	MS-V6	1			. Part / Martine a construction of the state			
Toluene-d8 (Surrogate)	101	%	88 - 110 (LCL - UC	L) EPA-8260	01/22/07	01/23/07 18:30	SDU	MS-V6		BQA1189					
4-Bromofiuorobenzene (Surrogate)	96.5	%	86 - 115 (LCL - UC			01/23/07 18:30	SDU	MS-V6	1	BQA1189 BQA1189					



 TRC Alton Geoscience
 Project: 7004
 Reported: 01/29/2007 13:11

 21 Technology Drive
 Project Number: [none]
 Project Manager: Anju Farfan

 Volatile Organic Analysis (EPA Method 8260)

 BCL Sample ID:
 0700736-07
 Client Sample Name: 7004, RW-1, RW-1, 1/18/2007 8:24:00AM, Anthony

Onent Dani	pie Maine	. 7004,1004,100	1, 110/2001	0.24.00							· · · · · · · · · · · ·
				Prep	Run		Instru-		QC	MB	Lab
Result	Units	PQL MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
ND	ug/L	0.50	EPA-8260	01/22/07	01/23/07 18:56	SDU	MS-V6	1	BQA1189	ND	
0.83	ug/L	0.50	EPA-8260	01/22/07	01/23/07 18:56	SDU	MS-V6	1	BQA1189	ND	
1.4	ug/L	0.50	EPA-8260	01/22/07	01/23/07 18:56	SDU	MS-V6	1	BQA1189	ND	
ND	ug/L	0.50	EPA-8260	01/22/07	01/23/07 18:56	SDU	MS-V6	1	BQA1189	ND	
ND	ug/L	0.50	EPA-8260	01/22/07	01/23/07 18:56	SDU	MS-V6	1	BQA1189	ND	
ND	ug/L	10	EPA-8260	01/22/07	01/23/07 18:56	SDU	MS-V6	1	BQA1189	ND	
ND	ug/L	250	EPA-8260	01/22/07	01/23/07 18:56	SDU	MS-V6	1	BQA1189	ND	
240	ug/L	50	EPA-8260	01/22/07	01/23/07 18:56	SDU	MS-V6	1	BQA1189	ND	
104	%	76 - 114 (LCL - UCL)	EPA-8260	01/22/07	01/23/07 18:56	SDU	MS-V6	1	BQA1189		
105	%	88 - 110 (LCL - UCL)	EPA-8260	01/22/07	01/23/07 18:56	SDU	MS-V6	1	BQA1189		
98.9	%	86 - 115 (LCL - UCL)	EPA-8260	01/22/07	01/23/07 18:56	SDU	MS-V6	1	BQA1189		
	Result           ND           0.83           1.4           ND           ND           ND           ND           ND           104           105	Result         Units           ND         ug/L           0.83         ug/L           1.4         ug/L           ND         ug/L           104         %           105         %	Result         Units         PQL         MDL           ND         ug/L         0.50           0.83         ug/L         0.50           1.4         ug/L         0.50           ND         ug/L         10           ND         ug/L         50           240         ug/L         50           104         %         76 - 114 (LCL - UCL)           105         %         88 - 110 (LCL - UCL)	Result         Units         PQL         MDL         Method           ND         ug/L         0.50         EPA-8260           0.83         ug/L         0.50         EPA-8260           1.4         ug/L         0.50         EPA-8260           ND         ug/L         0.50         EPA-8260           ND         ug/L         0.50         EPA-8260           ND         ug/L         0.50         EPA-8260           ND         ug/L         10         EPA-8260           ND         ug/L         250         EPA-8260           ND         ug/L         50         EPA-8260           104         %         76 - 114 (LCL - UCL)         EPA-8260           105         %         88 - 110 (LCL - UCL)         EPA-8260	Result         Units         PQL         MDL         Method         Date           ND         ug/L         0.50         EPA-8260         01/22/07           0.83         ug/L         0.50         EPA-8260         01/22/07           1.4         ug/L         0.50         EPA-8260         01/22/07           ND         ug/L         10         EPA-8260         01/22/07           ND         ug/L         250         EPA-8260         01/22/07           240         ug/L         50         EPA-8260         01/22/07           104         %         76 - 114 (LCL - UCL)         EPA-8260         01/22/07           105         %         88 - 110 (LCL - UCL)         EPA-8260         01/22/07	Result         Units         PQL         MDL         Method         Date         Date/Time           ND         ug/L         0.50         EPA-8260         01/22/07         01/23/07         18:56           0.83         ug/L         0.50         EPA-8260         01/22/07         01/23/07         18:56           1.4         ug/L         0.50         EPA-8260         01/22/07         01/23/07         18:56           ND         ug/L         10         EPA-8260         01/22/07         01/23/07         18:56           ND         ug/L         250         EPA-8260         01/22/07         01/23/07         18:56           ND         ug/L         50         EPA-8260         01/22/07         01/23/07         18:56           104<	Result         Units         PQL         MDL         Method         Date         Date/Time         Analyst           ND         ug/L         0.50         EPA-8260         01/22/07         01/23/07         18:56         SDU           0.83         ug/L         0.50         EPA-8260         01/22/07         01/23/07         18:56         SDU           1.4         ug/L         0.50         EPA-8260         01/22/07         01/23/07         18:56         SDU           ND         ug/L         0.50         EPA-8260         01/22/07         01/23/07         18:56         SDU           1.4         ug/L         0.50         EPA-8260         01/22/07         01/23/07         18:56         SDU           ND         ug/L         0.50         EPA-8260         01/22/07         01/23/07         18:56         SDU           ND         ug/L         0.50         EPA-8260         01/22/07         01/23/07         18:56         SDU           ND         ug/L         10         EPA-8260         01/22/07         01/23/07         18:56         SDU           ND         ug/L         250         EPA-8260         01/22/07         01/23/07         18:56         SDU	Result         Units         PQL         MDL         Method         Date         Date/Time         Analyst         ment ID           ND         ug/L         0.50         EPA-8260         01/22/07         01/23/07         18:56         SDU         MS-V6           0.83         ug/L         0.50         EPA-8260         01/22/07         01/23/07         18:56         SDU         MS-V6           1.4         ug/L         0.50         EPA-8260         01/22/07         01/23/07         18:56         SDU         MS-V6           ND         ug/L         0.50         EPA-8260         01/22/07         01/23/07         18:56         SDU         MS-V6           ND         ug/L         0.50         EPA-8260         01/22/07         01/23/07         18:56         SDU         MS-V6           ND         ug/L         0.50         EPA-8260         01/22/07         01/23/07         18:56         SDU         MS-V6           ND         ug/L         10         EPA-8260         01/22/07         01/23/07         18:56         SDU         MS-V6           ND         ug/L         250         EPA-8260         01/22/07         01/23/07         18:56         SDU         MS-V6	Result         Units         PQL         MDL         Method         Date         Date/Time         Analyst         Instrument ID         Dilution           ND         ug/L         0.50         EPA-8260         01/22/07         01/23/07         18:56         SDU         MS-V6         1           0.83         ug/L         0.50         EPA-8260         01/22/07         01/23/07         18:56         SDU         MS-V6         1           1.4         ug/L         0.50         EPA-8260         01/22/07         01/23/07         18:56         SDU         MS-V6         1           ND         ug/L         0.50         EPA-8260         01/22/07         01/23/07         18:56         SDU         MS-V6         1           ND         ug/L         0.50         EPA-8260         01/22/07         01/23/07         18:56         SDU         MS-V6         1           ND         ug/L         0.50         EPA-8260         01/22/07         01/23/07         18:56         SDU         MS-V6         1           ND         ug/L         10         EPA-8260         01/22/07         01/23/07         18:56         SDU         MS-V6         1           ND         ug/L	Result         Units         PQL         MDL         Method         Date         Date/Time         Analyst         ment ID         Dilution         Batch ID           ND         ug/L         0.50         EPA-8260         01/22/07         01/23/07         18:56         SDU         MS-V6         1         BQA1189           0.83         ug/L         0.50         EPA-8260         01/22/07         01/23/07         18:56         SDU         MS-V6         1         BQA1189           1.4         ug/L         0.50         EPA-8260         01/22/07         01/23/07         18:56         SDU         MS-V6         1         BQA1189           ND         ug/L         0.50         EPA-8260         01/22/07         01/23/07         18:56         SDU         MS-V6         1         BQA1189           ND         ug/L         0.50         EPA-8260         01/22/07         01/23/07         18:56         SDU         MS-V6         1         BQA1189           ND         ug/L         0.50         EPA-8260         01/22/07         01/23/07         18:56         SDU         MS-V6         1         BQA1189           ND         ug/L         10         EPA-8260         01/22/07	ResultUnitsPQLMDLMethodDateDate/TimeAnalystment IDDilutionBatch IDBiasNDug/L0.50EPA-826001/22/0701/23/0718:56SDUMS-V61BQA1189ND0.83ug/L0.50EPA-826001/22/0701/23/0718:56SDUMS-V61BQA1189ND1.4ug/L0.50EPA-826001/22/0701/23/0718:56SDUMS-V61BQA1189NDNDug/L0.50EPA-826001/22/0701/23/0718:56SDUMS-V61BQA1189NDNDug/L0.50EPA-826001/22/0701/23/0718:56SDUMS-V61BQA1189NDNDug/L0.50EPA-826001/22/0701/23/0718:56SDUMS-V61BQA1189NDNDug/L0.50EPA-826001/22/0701/23/0718:56SDUMS-V61BQA1189NDNDug/L0.50EPA-826001/22/0701/23/0718:56SDUMS-V61BQA1189NDNDug/L10EPA-826001/22/0701/23/0718:56SDUMS-V61BQA1189NDNDug/L50EPA-826001/22/0701/23/0718:56SDUMS-V61BQA1189ND240ug/L50EPA-826001/22/0701/23/0718:56SDU

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



TRC Alton Geoscience 21 Technology Drive Irvine, CA 92618-2302			· Pr	Projec oject Numbe oject Manage	r: 7004 r: [none] r: Anju Fa	arfan				Repo	orted: 01/2	29/2007 13:11
	Vol	atile	Organic /			the second s	hod	826	0)		·····.	
BCL Sample ID: 0700736-08	1		e: 7004, MW-7, MV									
Constituent	Result	Units	PQL MDL		Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab
Benzene	ND	ug/L	0.50	EPA-8260		01/23/07 19:22	SDU	MS-V6	1	BQA1189	ND	Quals
1,2-Dibromoethane	ND	ug/L	0.50	EPA-8260	01/22/07	01/23/07 19:22	SDU	MS-V6	1	BQA1189	ND	
1,2-Dichloroethane	ND	ug/L	0.50	EPA-8260	01/22/07	01/23/07 19:22	SDU	MS-V6	1	BQA1189	ND	· · · · · · · · · · · · · · · · · · ·
Ethylbenzene	ND	ug/L	0.50	EPA-8260	01/22/07	01/23/07 19:22	SDU	MS-V6	1	BQA1189	ND	174
Methyl t-butyl ether	1.7	ug/L	0.50	EPA-8260	01/22/07	01/23/07 19:22	SDU	MS-V6	1	BQA1189	ND	
Toluene	ND	ug/L	0.50	EPA-8260	01/22/07	01/23/07 19:22	SDU	MS-V6	1	BQA1189	ND	
Total Xylenes	ND	ug/L	0.50	EPA-8260	01/22/07	01/23/07 19:22	SDU	MS-V6	1	BQA1189	ND	
t-Amyl Methyl ether	ND	ug/L	0.50	EPA-8260	01/22/07	01/23/07 19:22	SDU	MS-V6	1	BQA1189	ND	
t-Butyl alcohol	ND	ug/L	10	EPA-8260	01/22/07	01/23/07 19:22	SDU	MS-V6	1	BQA1189	ND	·
Diisopropyl ether	ND	ug/L	0.50	EPA-8260	01/22/07	01/23/07 19:22	SDU	MS-V6	 1	BQA1189	ND	
Ethanol	ND	ug/L	250	EPA-8260		01/23/07 19:22	SDU	MS-V6		BQA1189	ND	
Ethyl t-butyl ether	ND	ug/L	0.50	EPA-8260	01/22/07		SDU	MS-V6	 1	BQA1189	ND	
Total Purgeable Petroleum Hydrocarbons	ND	ug/L	50	EPA-8260	01/22/07		SDU	MS-V6	1	BQA1189	ND	A53
1,2-Dichloroethane-d4 (Surrogate)	101	%	76 - 114 (LCL - UCL)	EPA-8260	01/22/07	01/23/07 19:22	SDU	MS-V6	1	BQA1189		
Toluene-d8 (Surrogate)	101	%	88 - 110 (LCL - UCL)	EPA-8260	01/22/07	01/23/07 19:22	SDU	MS-V6	 1	BQA1189		
4-Bromofluorobenzene (Surrogate)	94.0	%	86 - 115 (LCL - UCL)		01/22/07		SDU	MS-V6	1	BQA1189		



TRC Alton Geoscience 21 Technology Drive				Proi	Project ect Number						Repo	orted: 01/2	9/2007 13:11
Irvine, CA 92618-2302					ct Manager		rfan						
	Vol	atile	Orga	nic A	nalys	is (E	PA Met	hod	8260	))			
BCL Sample ID: 0700736-09	Client Sam	ple Name	e: 7004, N	1W-8, MW-	8, 1/18/200	7 9:22:00	AM, Anthony						
Constituent	Result	Units	PQL	MDL	Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
Benzene	ND	ug/L	0.50		EPA-8260	01/22/07	01/23/07 19:47	SDU	MS-V6	1	BQA1189	ND	
1,2-Dibromoethane	ND	ug/L	0.50		EPA-8260	01/22/07	01/23/07 19:47	SDU	MS-V6	1	BQA1189	ND	
1,2-Dichloroethane	ND	ug/L	0.50		EPA-8260	01/22/07	01/23/07 19:47	SDU	MS-V6	1	BQA1189	ND	
Ethylbenzene	ND	ug/L	0.50		EPA-8260	01/22/07	01/23/07 19:47	SDU	MS-V6	1	BQA1189	ND	
Methyl t-butyl ether	ND	ug/Ն	0.50		EPA-8260	01/22/07	01/23/07 19:47	SDU	MS-V6	1	BQA1189	ND	
Toluene	ND	ug/L	0.50		EPA-8260	01/22/07	01/23/07 19:47	SDU	MS-V6	1	BQA1189	ND	
Total Xylenes	ND	ug/L	0.50		EPA-8260	01/22/07	01/23/07 19:47	SDU	MS-V6	1	BQA1189	ND	
t-Amyl Methyl ether	ND	ug/L	0.50		EPA-8260	01/22/07	01/23/07 19:47	SDU	MS-V6	1	BQA1189	ND	
t-Butyl alcohol	ND	ug/L	. 10		EPA-8260	01/22/07	01/23/07 19:47	SDU	MS-V6	1	BQA1189	ND	is is is is is
Diisopropyl ether	ND	ug/L	0.50		EPA-8260	01/22/07	01/23/07 19:47	SDU	MS-V6	1	BQA1189	ND	
Ethanol	ND	ug/i_	250		EPA-8260	01/22/07	01/23/07 19:47	SDU	MS-V6	1	BQA1189	ND	
Ethyl t-butyl ether	ND	ug/L	0.50		EPA-8260	01/22/07	01/23/07 19:47	SDU	MS-V6	1	BQA1189	ND	
Total Purgeable Petroleum Hydrocarbons	ND	ug/L	50		EPA-8260	01/22/07	01/23/07 19:47	SDU	MS-V6	1	BQA1189	ND	
1,2-Dichloroethane-d4 (Surrogate)	107	%	76-114 (	LCL - UCL)	EPA-8260	01/22/07	01/23/07 19:47	SDU	MS-V6	1	BQA1189		
Toluene-d8 (Surrogate)	101	%	88 - 110 (	LCL - UCL)	EPA-8260	01/22/07	01/23/07 19:47	SDU	MS-V6	1	BQA1189		
4-Bromofluorobenzene (Surrogate)	98.1	%	86 - 115 (	LCL - UCL)	EPA-8260	01/22/07	01/23/07 19:47	SDU	MS-V6	1	BQA1189		



TRC Alton Geoscience 21 Technology Drive Irvine, CA 92618-2302			Pro Proj	Projec ject Numbe ect Manage	t: 7004 r: [none] r: Anju Fa	rfan				Rep	orted: 01/2	29/2007 13:1
	Vol	atile	Organic A				hod	826	 ))			
BCL Sample ID: 0700736-10	ł		e: 7004, MW-9, MW									
Constituent	Result	Units	PQL MDL	Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Detati ID	MB	Lab
Benzene	ND	ug/L	0.50	EPA-8260		01/23/07 20:13	SDU	MS-V6	1	Batch ID BQA1189	Bias ND	Quals
1,2-Dibromoethane	ND	ug/L	0.50	EPA-8260	01/22/07	01/23/07 20:13	SDU	MS-V6	 1	BQA1189	ND	
1,2-Dichloroethane	ND	ug/L	0.50	EPA-8260	01/22/07	01/23/07 20:13	SDU	MS-V6	1	BQA1189	ND	
Ethylbenzene	ND	ug/L	0.50	EPA-8260	01/22/07	01/23/07 20:13	SDU	MS-V6	1	BQA1189	ND	
Methyl t-butyl ether	5.9	ug/L	0.50	EPA-8260	01/22/07	01/23/07 20:13	SDU	MS-V6	1	BQA1189	ND	
Toluene	ND	ug/L	0.50	EPA-8260	01/22/07	01/23/07 20:13	SDU	MS-V6	1	BQA1189	ND	
Total Xylenes	ND	ug/L	0.50	EPA-8260	01/22/07	01/23/07 20:13	SDU	MS-V6	1	BQA1189	ND	
t-Amyl Methyl ether	ND	ug/L	0.50	EPA-8260	01/22/07	01/23/07 20:13	SDU	MS-V6		BQA1189	ND	
t-Butyl alcohol	ND	ug/L	10	EPA-8260	01/22/07	01/23/07 20:13	SDU	MS-V6	 1	BQA1189	ND	
Diisopropyl ether	ND	ug/L	0.50	EPA-8260	01/22/07	01/23/07 20:13	SDU	MS-V6	1	BQA1189	ND	
Ethanol	ND	ug/L	250	EPA-8260	01/22/07	01/23/07 20:13	SDU	MS-V6		BQA1189	ND	·····
Ethyl t-butyl ether	ND	ug/L	0.50	EPA-8260	01/22/07	01/23/07 20:13	SDU	MS-V6	1	BQA1189	ND	
Total Purgeable Petroleum Hydrocarbons	ND	ug/L	50	EPA-8260	01/22/07	01/23/07 20:13	SDU	MS-V6	1	BQA1189 BQA1189	ND	A53
1,2-Dichloroethane-d4 (Surrogate)	109	%	76 - 114 (LCL - UCL)	EPA-8260	01/22/07	01/23/07 20:13	SDU	MS-V6	1	BQA1189		
Toluene-d8 (Surrogate)	101	%	88 - 110 (LCL - UCL)	EPA-8260	01/22/07	01/23/07 20:13	SDU	MS-V6		BQA1189		
4-Bromofluorobenzene (Surrogate)	96.8	%		EPA-8260		01/23/07 20:13	SDU	MS-V6	، 1	BQA1189 BQA1189	. <i>19 de 1</i> au de autor de la constance de la const	



TRC Alton Geoscience 21 Technology Drive Irvine, CA 92618-2302

Project: 7004 Project Number: [none] Reported: 01/29/2007 13:11

### Project Manager: Anju Farfan

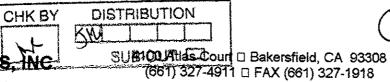
# Volatile Organic Analysis (EPA Method 8260)

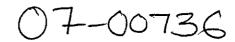
BCL Sample ID:	0700736-11	Client Sam	ple Name	: 7004, MW-10, MV	V-10, 1/18/2	007 9:57	:00AM, Anthony						
						Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	<u>PQL MDL</u>	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene		ND	ug/L	0.50	EPA-8260	01/22/07	01/24/07 16:36	SDU	MS-V6	1	8QA1189	ND	
1,2-Dibromoethane		ND	ug/L	0.50	EPA-8260	01/22/07	01/24/07 16:36	SDU	MS-V6	1	BQA1189	ND	
1,2-Dichloroethane		ND	ug/L	0.50	EPA-8260	01/22/07	01/24/07 16:36	SDU	MS-V6	1	BQA1189	ND	
Ethylbenzene		ND	ug/L	0.50	EPA-8260	01/22/07	01/24/07 16:36	SDU	MS-V6	1	BQA1189	ND	
Methyl t-butyl ether		0.69	ug/L	0.50	EPA-8260	01/22/07	01/24/07 16:36	SDU	MS-V6	1 `	BQA1189	ND	
Toluene	·	ND	ug/L	0.50	EPA-8260	01/22/07	01/24/07 16:36	SDU	MS-V6	1	BQA1189	ND	
Total Xylenes		ND	ug/L	0.50	EPA-8260	01/22/07	01/24/07 16:36	SDU	MS-V6	1	BQA1189	ND	
t-Amyl Methyl ether		ND	ug/L	0.50	EPA-8260	01/22/07	01/24/07 16:36	SDU	MS-V6	1	BQA1189	ND	
t-Butyl alcohol		ND	ug/L	10	EPA-8260	01/22/07	01/24/07 16:36	SDU	MS-V6	1	BQA1189	ND	
Diisopropyl ether		ND	ug/L	0.50	EPA-8260	01/22/07	01/24/07 16:36	SDU	MS-V6	1	BQA1189	ND	#/#\$\$\$
Ethanol		ND	ug/L	250	EPA-8260	01/22/07	01/24/07 16:36	SDU	MS-V6	1	BQA1189	ND	
Ethyl t-butyl ether		ND	ug/L	0.50	EPA-8260	01/22/07	01/24/07 16:36	SDU	MS-V6	1	BQA1189	ND	
Total Purgeable Petrol Hydrocarbons	eum	ND	ug/L	50	EPA-8260	01/22/07	01/24/07 16:36	SDU	MS-V6	1	BQA1189	ND	*****
1,2-Dichloroethane-d4	(Surrogate)	98.6	%	76 - 114 (LCL - UCL)	EPA-8260	01/22/07	01/24/07 16:36	SDU	MS-V6	1	BQA1189		
Toluene-d8 (Surrogate	)	103	%	88 - 110 (LCL - UCL)	EPA-8260	01/22/07	01/24/07 16:36	SDU	MS-V6	1	BQA1189		
4-Bromofluorobenzene	(Surrogate)	101	%	86 - 115 (LCL - UCL)	EPA-8260	01/22/07	01/24/07 16:36	SDU	MS-V6	1	BQA1189		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

BC LABORATORIES INC.		SAN	IPLE REC	EIPT FOI	RM	Rev. No.	10 01/2	1/04 P	age	Of
Submission #: ()7-007	36 F	Project C	ode:		······	ТВ	Batch #			· · · · · · · · · · · · · · · · · · ·
SHIPPING INFOR				1			NG CON			
Pederal Express CI UPS CI	Hand De	livery ()			lce Ches Box	t 🖬 🕹	No	er () (Spe	ecify)	
Refrigerant: Ice 🗹 Blue Ice 🗆	l Non	e 🖸 🛛 🖸	ther 🛙	Comme	nts:					
Custody Seals: Ice Chest D	Containe		None 🗄	Comme	ents:					
All samples received? Yes D No D	All sample	s container	s intact? '	res 🗗 No	0	Descrip	tion(s) mate	:h COC? Y	es 🗆 / No	0
COC Received				<u>R/W</u> +-9-c		sivity	0.98 009	1	ime t Init	
	I			+1 417						
SAMPLE CONTAINERS	1	2	3	4	SAMPLE	<b>i</b>	7	8	9	1
OT GENERAL MINERAL/ GENERAL PHYSICAL	Í	1		<u>i                                     </u>	3	6	<u> </u>		9	10
PT PE UNPRESERVED										
OT INORGANIC CHEMICAL METALS										
PT INORGANIC CHEMICAL METALS										
PT CYANIDE										
PT NITROCEN FORMS										
PT TOTAL SULFIDE									-	
202_NITRATE/NITRITE			······							
100ml TOTAL ORGANIC CARBON										
<u>OT TOX</u>						·				
PT CHEMICAL OXYGEN DEMAND										ļ
PLA PHENOLICS							· · · · ·			
40ml VOA VIAL TRAVEL BLANK	A_7									
40mi YOA VIAL	_AB	A.S	A·Z	AS	AS	A-3	A.3	n.3	<u>A-3</u>	17-13
QT EPA 4(3.1, 4(3.2, 418.1										
PT ODOR									· · · · ·	
RADIOLOGICAL								·····		
BACTERIOLOGICAL				•						e 1968. (1940)
60 m1 VOA VIAL- 504									······	
DT EPA 508/608/8080 DT EPA 515.1/8150			~~~~~	·····						
T EPA 525						· · · · · ·				
T EPA 525 TRAVEL BLANK			······					· .	· · · · · · · · · · · · · · · · · · ·	<u> </u>
00ml EPA 547								-		
<del>0</del> 0ml EPA 531.1										1
)T EPA 548									·····	
DT EPA 549	·····				,	······································				+
рт Ерл 632					~ ~					
DT EPA 8015M		1								1
DT QA/QC										
T AMBER										1
OZ. JAR	S7									1
2 OZ. JAR										1
OIL SLEEVE					1					1
CB VIAL			1				, ,			1
LASTIC BAG										1
ERROUS IRON					1			<u>, 94</u>	· · ·	1
NCORE								l		1
								1997 - S. A.		1

.


BC LABORATORIES INC. Submission #: <u>7-007</u> SHIPPING INFORM Federal Express D UPS D I BC Lab Field Service D Other D	<u> </u>	SAM roject C		EIPT FOR	M	Rev. No. 10	*****	04 Pag	je 0	)f
SHIPPING INFORM	<u> </u>	roject C	ode:			1 70 0				
SHIPPING INFORM	ATION					100	atch #			
Enderal Express [] UPS []				[		SHIPPIN	IG CONTA	AINER		
BC Lab Field Service 🖯 Other 🗆	Hand Del	ivery ()			Ice Chest		None	• <b>O</b>		
	Specify	)			Box	0	Other	🛛 (Spec	fy)	
Refrigerant: Ice 🗹 Blue Ice 🗆	None	0 0	)ther 🛛	Comme	nts:					<u>.</u>
Custody Seals: Ice Chest 🗆 🛛	Containe	rs 🗋	None 🛛	Comme	nts:					
Intact? Yes C No D	Intact? Ye:	<u>s [] No []</u>								
All samples received? Yes D No D	All sample	s containe	rs intact?	(es D/ No	0	Descripti	on(s) match	COC? Yes	⊡⁄ No	a
COC Received	1	ice C	hest ID	RW	Emis	sivity(	89.	Date/Tim	ie <u>1/18</u>	107
I YES INO		Tempo	erature: <u> </u>	<u>+ 9</u> • c	Cont	ainer <u>V</u> (	209-	Analyst		3
	1	Thermom	eter (D;	#4 <u>12</u>				1	<u>,</u>	
		1	<u>r</u>	7	SAMPLE I	1				
SAMPLE CONTAINERS	1	2	3	4	5	<u>6</u>	7	<u> </u>	9	10
AT GENERAL MINERAL/ GENERAL PHYSICAL										
PT PE UNPRESERVED	<u>_</u>									
OT INORGANIC CHEMICAL METALS		· ·····								
PT INORGANIC CHEMICAL METALS			+	ζ						
PT CYANIDE										
PT NITROGEN FORMS					}					
PT TOTAL SULFIDE										1
202. NITRATE / NITRITE										<u> </u>
100ml TOTAL ORGANIC CARBON		<b> </b>		<u> </u>		1			······	1
<u>OT TOX</u>	·		-{							1
PT CHEMICAL OXYGEN DEMAND	<u>.</u>			1		1				1
PLA PHENOLICS			1	1	· ·					1
40mi VOA VIAL TRAVEL BLANK	AC	<u>Б</u>		, ,	,		( )	1 1	,	
40ml VOA VIAL	- <u>F</u> \	¥								1
QT EPA 413.1, 413.2, 418.1		1	1							1
PT ODOR										
RADIOLOGICAL		1	1	<u> </u>		1		. Ange	1	
BACTERIOLOGICAL						1				
40 mt VOA VIAL- 504			1	,' ,						
OT EPA 508/608/8080				1						
OT EPA 515.1/8150				1	1					
QT EPA 525				1						·
OT EPA 525 TRAVEL BLANK					1					
100ml EPA 547										
100mt EPA 531.1		1	1	1		1				
<u>OT EPA 548</u>	·····			1						
<u>QT EPA 549</u>										
<u>QT EPA 632</u>			~	1	-					
<u>OT EPA 8015M</u>					1					
<u>QT QA/QC</u>		1		1						
QT AMBER	1.298			1	1	1	1			
8 QZ. JAR		1			1		1			
<u>32 OZ. JAR</u>		1	1	1	1		1			
SOIL SLEEVE		1		1	1	1				
PCB VIAL		1	1	-	1					
PLASTIC BAG		1	1			-1	1	. · · · · ·		
FERROUS IRON		1	-1	+	-	-1				
ENCORE							1	0 ( <u>8</u> 8	· · · · · · · · · · · · · · · · · · ·	


omments: ample Numbering Completed By:____

Date/Time: 1119107-0130 IH: DOCSIWPBOILAB, DOCSIFORMSISAMARC2.WI

**SI**E

BC LABORATORIES, INC





CHAIN OF CUSTODY

							A		/SiS	Re	U	sted			
Bill to: C	Conoco Phillips/ TRC	Consultant Firm: TI	RC		MATR	X 10			ŝ						
Address   5599	Hesperian blud	21 Techology Drive Irvine, CA 92618-23 Attn: Anju Farfan			(GW) Ground water (S) Soil	Gas b'			& oxygenates	8260B					Requested
City:		4-digit site#: 700			(WW)	21B	5	15	8	BY	6				led.
San	leandro	Workorder # <i>61631</i> -	4506936	258	Waste	. 80 × 80	0151	y 80	LM /		260	GC/MS			Time
State: C		Project #: 4106	.0001		water (SL)	В Б	ο Υ 8	ц Ц	st w		by 8	00			
Conoco	Phillips Mgr:	Sampler Name: A	orthony	• • • • • • • • • • • • • • • • • • •	Sludge	MTE	AS I	ES!	ull li	MTE	<b>V</b>	G by			uno
Lab#	Sample Description	Field Point Name	Date	e & Time mpled		BTEX/MTBE by 8021B.	TPH GAS by 8015M	TPH DIESEL by 8015	8260 full list w/ MTBE	BTEX/MTBE/OXYOS	ETHANOL by 8260B	TPH			Turnaround
-1	MW-1		1-1B	0843	Gu					2	$\boldsymbol{\lambda}$	X			
-2	MW-2		1	0904	1					(			-		
-3	MW-3			0820									-		
<u> </u>	mw-4			1DI3											
-5	Mw-5			1030								- + - +	-		
-6	MW6			0940							-+-+	-+			
- 7	RW-1			0824						<b>1</b>	$\overline{\mathbf{A}}$	V			
Comments	:	Relinquished by: (Si	ignature)		· · · · · · · · · · · · · · · · · · ·		1	eived				Date & T	Time	I	
		Daling (2011)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~				e te	···· • ••••••	<del></del>		01-18-		12	15
GLOBAL I	D:	Relinquished by: (Si	UCE				Re	eived,	De	day	, [	Date & 1	lime = /4	y	
	600101451	Relinquished Mr. (Si	Wich	ay 1/18/0	/		Rec	veð 11.	by	lup		Date & 1		- 17	In
A) = ANAL	YSIS (C) = CONTAINE	R (P)=PRESER	VATIVE (	118/17/-	2210	$\sim$		Te	, Ni				8/0:		السام میں ت سر در 2

Page 1 of 1

073607 - 0

## BC LABORATORIES, INC.

4100 Atlas Court D Bakersfield, CA 93308 (661) 327-4911 D FAX (661) 327-1918

CHAIN OF CUSTODY

						Ana	livsi	Re	que	ste	d		
Bill to: C	onoco Phillips/ TRC	Consultant Firm: TR	IC .	MATRIX (GW)	8015		tes						
Address: 15599 H	lesperson blud	21 Techology Drive Irvine, CA 92618-230 Attn: Anju Farfan		Ground- water (S) Soil	Gas by		& oxygenates	BTEX/MTBE/OXYS BY 8260B			82608		Turnaround Time Requested
City:		4-digit site#: 700	4	(WW)	)21B	N	TBE 15	S BY	B				7 Fed
San le	eandro	Workorder #01635-	4506936258	Waste- water	y 8(	015	N 20	XX	826(	SM/S	10		jine
State: C/	A Zip:	Project #: 4(Dbooc		(SL)		By B		BEC	by .	γ GC	EDG		hdT
Conoco	Phillips Mgr:	Sampler Name: A	thony	Sludge	MT	SAS	CIES CIES	TW/	NOL	q Q			Iroui
Lab#	Sample Description	Field Point Name	Date & Time Sampled		BTEX/MTBE by 8021B,	TPH GAS by 8015M	TPH DIESEL by 8015 8260 full list w/ MTBE	BTEX	ETHANOL by 8260B	TPHG by GC/MS	EDR		Turne
-8	MW-7		0418-07 1106	64				X	X		入		
9	Mw-8		0922	j j				Ĩ	ł				
-10	Mw-9		1047										
-11	MW-10		0957	d					$  \downarrow \rangle$		1		
Comments:		Relinquished by: (Si	ignature)				ived by:		_	1	e & Tin 18-07		215
GLOBAL I	D:	Relinquished by: (Si	ulo			Ko	ived by	ije	7,	Date	e & Tin 8/67	ne - 19	40
+0600	(61451	Relinquished by (Si	ns werkey	1/18/07-		Réce	ved by	fu	Ľ	Date	e & Tin 7/17		<u>700</u>
A) = ANAL'	rsis (C) = Containe	= R  (P) = PREXER (P) = PRE	ATIVE	200	>		eni	06	aten	, ,	181	07	2125

Page2 of 2

#### STATEMENTS

#### Purge Water Disposal

Non-hazardous groundwater produced during purging and sampling of monitoring was accumulated at TRC's groundwater monitoring facility at Concord, California, for transportation by a licensed carrier, to the ConocoPhillips Refinery at Rodeo, California. Disposal at the Rodeo facility was authorized by ConocoPhillips in accordance with "ESD Standard Operating Procedures – Water Quality and Compliance", as revised on February 7, 2003. Documentation of compliance with ConocoPhillips requirements is provided by an ESD Form R-149, which is on file at TRC's Concord Office. Purge water suspected of containing potentially hazardous material, such as liquid-phase hydrocarbons, was accumulated separately in a drum for transportation and disposal by others.

### Limitations

The fluid level monitoring and groundwater sampling activities summarized in this report have been performed under the responsible charge of a California Registered Geologist or Registered Civil Engineer and have been conducted in accordance with current practice and the standard of care exercised by geologists and engineers performing similar tasks in this area. No warranty, express or implied, is made regarding the conclusions and professional opinions presented in this report. The conclusions are based solely upon an analysis of the observed conditions. If actual conditions differ from those described in this report, our office should be notified.

## SECOR

## ATTACHMENT 2 O&M ANALYTICAL DATA, FIELD DATA SHEETS, AND LABORATORY REPORTS

Quarterly Status and Remediation Summary Report – First Quarter 2007 Former 76 Service Station No. 7004 15599 Hesperian Boulevard San Leandro, California SECOR Project No.: 77CP.01631.14 May 29, 2007

## DO NOT OPERATE PAST - Pending Permit To Operate

### Part A: System Information

Soil Vapor Abatement Equipment: <u>Solleco 350 TCAT (MTS) (Plant No. 13708)</u> Liquid Ring Blower: <u>Travaini TRO400S</u> <u>(Maximum Flow Rate: 350 cfm; Maximum Vacuum: 28 inHg)</u> Baker Tank: <u>6500 Gal Tank w/ Secondary Containment</u> Propane Tank: <u>Amerigas 1000 gallon Tank</u> Telemetry: <u>NA</u> Electrical Power: <u>Liquid Propane Generator</u> Supplemental Fuel: Propane Gas at 5 psi

### Part B: Permit Information

Air Permit: Bay Area Air Quality Management District; Application No. 13031

Plant Number 13708

*Conditions:* •VOC control efficiency > 98% (for influent > 2000 ppmv) •Minimum combustion temperature 1,400 °F

·Propane Gas meter reading obtained weekly.

·Estimated Percent Volume of Baker Tank weekly.

·Monthly effluent FID samples

•Benzene Emissions shall not exceed .25 lbs/day (6.4 lbs/year) •Chart recorder is recording temperature at all times and changed as needed.

### Part C: System Data

	Upon Arrival	Upon Departure
Date:	1-5-07	1-5-67
Time:	9:00	1850

General Data	Upon Arrival	Upon Departure
System Status (Up/Down):	0//	VIC
Hourmeter Reading:		16808.3
Totalizer Reading (gallons):		777430
Estimated % Volume of Baker Tank(%):		10 0/6
Propane (x1000 ft³)		30%
Blower Vacuum (inHg):		23



Date:

Thermal Oxidizer Data	Upon Arrival	Upon Departure
Oxidizer Setpoint (°F):		1400
Operating Temperature: (°F)		14/02
High Temp Setpoint: (°F)		1550
Auto Dilution Set Point (°F)		1445
Oxidizer Inlet Temperature: (°F)		1462
Oxidizer Exhaust Temperature: (°F)		1160

Soil Vapor Flow Data	Before Adjustment	After Adjustment
Well Field		
·Temperature (°F):		61.1
·Vacuum (inHg):		230
·Flow Rate (acfm):		72.5
Dilution		
·% Open:		Ú
·Temperature (°F):		À.
·Vacuum (inHg):		
·Flow Rate (acfm):		
Total System		
·Temperature (°F):		61.1
·Vacuum (inHg):		230
·Flow Rate (acfm):		72.5
Effluent		
·Temperature (°F):		$\sim$ /
·Pressure (inHg):		X
·Flow Rate (acfm):		

FID Data	Before Adjustment	After Adjustment
Well Field (ppmv):		4.0
Dilution (ppmv):		<
Total System (ppmv):		21.6
Effluent (ppmv):		Ø. 0
Control Efficiency: (1-(FID Out/FID In))		

Temporary DPE System-O&M Field Data Sheet CP 7004 15555 Hesperian Blvd San Leandro, California

# Part D: Troubleshooting (Complete if system down on arrival)

a: Give details of system status (why was system down?):

b: Give details of actions taken to correct problem:

### Temporary DPE System-O&M Well Data Sheet

Well	FID	Valve Position	Manifold Vacuum (inHg)	System Vacuum (inHg)	Flow Rate (acfm)	Approximate GPM	Line Vacuum (inHg)	Casing Vacuum (inHg)	Slurp Tube Depth	DTP	DTW
					l	nitial					
MW-3	9.4	10040	23 .	73	-70	.5.0	20	12	Pording	• • • • • • • • • • • • • • • • • • • •	I
MW-5	1.1	10040	73	2	2	1	12	/ 0	1 1		
RW-1	Q.	5 %/0	4	¥	4	V.	33				
					·;	inal					L
MW-3	$\sim$ 7				1				T		
MW-5	$\sim$				<u> </u>						<u> </u>
RW-1									+		<u> </u>
	/		·		<u> </u>						1

## System Maintenance

	Yes	No	Corrective Action
Leaks?			
Rattles?		4	
Excessive Noise?		/	
·dB Reading:			
Indicator Lights Out?			· · ·
Any Faulty Gauges?			
Abnormal wear and tear?			
Blower Oil Low?			
Process Filter Dirty?			
Dilution Filter Dirty?			
Linkage and Bearings Greased?			
Bag Filters Replaced?			
System Automatic Shutdown Activated?			
Did Shutdown Activate Autodialer?			
Inspected and Cleaned Pitot Tube(s)?			
Chart Paper/Pens Replaced?			
Other?			

## **Compound Maintenance**

	Yes	No	Corrective Action
Compound Secure?			
Any Debris?			······
Compound Cleaned?		,	
Prop 65 Sign Posted?			
Emergency Contact Sign Posted?			
Air Permit Posted?			
Discharge Permit Posted?			
HASP Posted?			
Fire Extinguisher on site? ·Date last serviced:			

## DO NOT OPERATE PAST - Pending Permit To Operate

## Part A: System Information

Soil Vapor Abatement Equipment: <u>Solleco 350 TCAT (MTS) (Plant No. 13708)</u> Liguid Ring Blower: Travaini <u>TRO400S</u>

<u>(Maximum Flow Rate: 350 cfm; Maximum Vacuum: 28 inHg)</u> Baker Tank: <u>6500 Gal Tank w/ Secondary Containment</u>

Propane Tank: Amerigas 1000 gallon Tank

Telemetry: <u>NA</u>

Electrical Power: Liquid Propane Generator

Supplemental Fuel: Propane Gas at 5 psi

## Part B: Permit Information

Air Permit: Bay Area Air Quality Management District; Application No. 13031

Plant Number 13708

Conditions: ·VOC control efficiency > 98% (for influent >2000 ppmv)

·Minimum combustion temperature 1,400 °F

·Propane Gas meter reading obtained weekly.

·Estimated Percent Volume of Baker Tank weekly.

·Monthly effluent FID samples

Benzene Emissions shall not exceed .25 lbs/day (6.4 lbs/year)

•Chart recorder is recording temperature at all times and changed as needed.

## Part C: System Data

	Upon Arrival	Upon Departure		
Date:	UP to	UP 43		
Time:	11:05	2:0		

General Data	Upon Arrival	Upon Departure		
System Status (Up/Down):	UP	UP		
Hourmeter Reading:	16903 5			
Totalizer Reading (gallons):	801020			
Estimated % Volume of Baker Tank(%):	710%	20		
Propane (x1000 ft³)	40%	410		
Blower Vacuum (inHg):	73	23		



Thermal Oxidizer Data	Upon Arrival	Upon Departure
Oxidizer Setpoint (°F):		1450
Operating Temperature: (°F)		14150
High Temp Setpoint: (°F)		1550
Auto Dilution Set Point (°F)		15W
Oxidizer Inlet Temperature: (°F)		1456
Oxidizer Exhaust Temperature: (°F)		1200

Soil Vapor Flow Data	Before Adjustment	After Adjustment
Well Field		
·Temperature (°F):		69.2
·Vacuum (inHg):		23
·Flow Rate (acfm):		6.9.7
Dilution		
·% Open:		Ö
·Temperature (°F):		
·Vacuum (inHg):		
·Flow Rate (acfm):		<u> </u>
Total System		
·Temperature (°F):		68.2
·Vacuum (inHg):		23
·Flow Rate (acfm):		61.7
Effluent		
·Temperature (°F):		
·Pressure (inHg):		χ
·Flow Rate (acfm):		$\sim$

FID Data	Before Adjustment	After Adjustment
Well Field (ppmv):	7.2	7.2
Dilution (ppmv):	ß	Ŵ.
Total System (ppmv):	7.2	7. 2
Effluent (ppmv):	0.0	0. ()
Control Efficiency: (1-(FID Out/FID In))		

# Part D: Troubleshooting (Complete if system down on arrival)

a: Give details of system status (why was system down?): レア AIL OK

b: Give details of actions taken to correct problem:

Well	FID	Valve Position	Manifold Vacuum (inHg)	System Vacuum (inHg)	Flow Rate (acfm)	Approximate GPM	Line Vacuum (inHg)	Casing Vacuum (inHg)	Slurp Tube Depth	DTP	DTW
		,			lr	nitial					
MW-3	9.1	100%	23	20	70	i .	20	11	1 ore be	i d cing	<b>1</b>
MW-5	Z.0	1	i	)	j	1	19	12	11 1		
RW-1	2,2	K	V	V.	K	1	20	10	4 ×		
		2			F	Final					
MW-3	Ŝ	1610	•								
MW-5		)									
RW-1	2										

A NO CLANSES



## System Maintenance

	Yes	No	Corrective Action
Leaks?		X	
Rattles?		8	
Excessive Noise?			
·dB Reading:		<u> </u>	
Indicator Lights Out?		X	
Any Faulty Gauges?		$\mathcal{X}$	
Abnormal wear and tear?		X	
Blower Oil Low?	~		/dl , S Pall
Process Filter Dirty?	non	$\mathcal{X}$	
Dilution Filter Dirty?	P	X	
Linkage and Bearings Greased?	:		
Bag Filters Replaced?	m/10		
System Automatic Shutdown Activated?	V		
Did Shutdown Activate Autodialer?	NIA		
Inspected and Cleaned Pitot Tube(s)?	V		
Chart Paper/Pens Replaced?	in		
Other?			

## **Compound Maintenance**

	Yes	No	Corrective Action
Compound Secure?			
Any Debris?		8	
Compound Cleaned?	¥		
Prop 65 Sign Posted?			
Emergency Contact Sign Posted?	×.		
Air Permit Posted?	Ý,		
Discharge Permit Posted?	MA		
HASP Posted?	7		
Fire Extinguisher on site? ·Date last serviced:	× ×		

Completed By:

KIFF (		D L	795 2n Javis, C ab: 53 Jax: 53	A 95 30.29 30.2	5616 97.48 97.4	300 802							S	RG	#/La	b No	o										F	Page	<u> </u>	of		
Project Contact (Hardcopy o	r PDF To):			Cali	forni	a EDF	Rep	ort?			] Yes		[]]!	Vo				Ch	nain-	of-C	usto	ody	Rec	ord	and	l An	alys	sis R	lequ	est		
Diane Barclay Company / Address:	- <u></u>			San	nplin	g Com	рапу	/ Log	Cod	e:										<u>, ,</u>	Ana	alysis	Rec	uest	t			·		TAT	1	1
SECOR International Inc;	3017 Kilgo	ore Ro	ad		•	-		-														•										
Suite 100, Rancho Cordo	va, CA 956																Π															
Phone #:	Fax #:	1 0420		Glo	ball	D:																								12 h	i ≥	
(916) 861-0400 ext.300 Project #:	(916) 86 P.O. #:	1-0430	5	ED	- De	liverab	le To	) (Em	nail A	ddre	ss):																				ğ	ુટ્લ
CP 7004	77CP.01	631.02.	2060			v@se					,-																			24 h	n S	Ktr /
Project Name:		·····		Sar	nple	Signa	ture;	2	11	/						414															For Lab Use Only	5.
Temporary DPE System		<u> </u>					$\geq$	//		$\sim$						ATB(														□ 48h	Ŀ Ŀ	$\langle \Lambda \rangle$
Project Address: 15555 Hesperian Bouleva		Sampli	ing	.1		ontaine	≥r I T	+	Pre	serv	ative			Matri		X														4016		
San Leandro,CA 94579				72N AO												PHg/BTI														□ 72 h		
Sample Designation	1	Date	Time	40 ml VOA	Tedlar				None				Water	Air		8260B-TPHg/BTEX/MTBE														۲	$\mathbb{D}$	
a INF			ાન્ડ		1				$\overline{\mathbf{y}}$	1				×	1	1															<b>-</b>	601
EFF EFF			140		1		<b> </b>		<del>7</del>		┢┈┢		+	$\overline{\mathbf{v}}$		$\overline{\mathcal{V}}$									1					12ch	F-	102
				3	-						+		×	+				-+		+										-12-h	ε	4103
	V		<u>i 30</u>	ř	_						┼─┼	┥	+		+	-									+					1	1	1
							$\left  \right $	-+	_			-		+											+						+	1
												-	_													<u> </u>						4
																								_						_		1
										$\uparrow$	1	1	╡		$\top$																	1
A									_	-	+	╉	+		+	$\vdash$				+	-				-	+				1		1
<u> </u>							$\left  \right $	+				-	+		+	-	+							1						╋	1	1
Relinquished by			Date	<b></b>		Time	Rec	eived	by:	_						<u> </u>		Rem	arks:		1				.1		<u> </u>				1	1
Quy			10/0	i i		<u>750</u>												<b>`</b>		Re	equire	d Re	portin	g Lin	nit: <	10 pp	om (v	r)				
Relinquished by:			<u>C.</u> Date			Time	Rec	eived	by:																							
<u>š</u>		†															-	Bill to	0:													1
Relinquished by:			Date			Time	Rec	eived	by La	abora	itory:			1	<u> </u>	<i>f_</i> +	$\langle  $				F	or La	b Us	e On	ly:	Samp	ole R	eceip				1
····· • •			0110	00	7	1530	K	2	$\gamma$	06	2			Á.	à	, -1 ≮₹₹	al	Te	mp °C		Initia	İs		Date		Ti	me	Ther	m. ID i		int Presen	· ·
							¥ `	-		<i>،</i>		<u>ب</u>	- /	· /* \	<u>`~Y</u>		-1			1						_ <u></u>	i			165	/ No	1

Distribution: White - Lab; Copy - Originator Rev: 051805 Project Number: 77CP 67004.03.0006 Temporary DPE System-O&M Field Data Sheet

CP 7004 15555 Hesperian Blvd San Leandro, California

# **DO NOT OPERATE PAST - Pending Permit To Operate**

## Part A: System Information

Soil Vapor Abatement Equipment: Solleco 350 TCAT (MTS) (Plant No. 13708) Liquid Ring Blower: Travaini TRO400S

·(Maximum Flow Rate: 350 cfm; Maximum Vacuum: 28 inHg)

Baker Tank: 6500 Gal Tank w/ Secondary Containment

Propane Tank: Amerigas 1000 gallon Tank

**Telemetry: NA** 

Electrical Power: Liquid Propane Generator

Supplemental Fuel: Propane Gas at 5 psi

# Part B: Permit Information

Air Permit: Bay Area Air Quality Management District; Application No. 13031

Plant Number 13708

*Conditions:* •VOC control efficiency > 98% (for influent >2000 ppmv)

•Minimum combustion temperature 1,400 °F

·Propane Gas meter reading obtained weekly.

·Estimated Percent Volume of Baker Tank weekly.

·Monthly effluent FID samples

·Benzene Emissions shall not exceed .25 lbs/day (6.4 lbs/year)

·Chart recorder is recording temperature at all times and changed as needed.

# Part C: System Data

	Upon Arrival	Upon Departure
Date:	21/- 7	24-7
Time:	2:30	56

General Data	Upon Arrival	Upon Departure
System Status (Up/Down):	UP	
Hourmeter Reading:	173160	17318.6
Totalizer Reading (gallons):	858710	858760
Estimated % Volume of Baker Tank(%):	0,	APX 100
Propane (x1000 ft ³ )	4090	4696
Blower Vacuum (inHg): Blown cloke on	25 0 L1	2569

System Sut up to MOT PULL WALL DUE to THEFT OF WHALL LEVEL FLOATS 4 HIMES, FINAL OT WILL

Thermal Oxidizer Data	Upon Arrival	Upon Departure
Oxidizer Setpoint (°F):	14/50	1450
Operating Temperature: (°F)	1450	1450
High Temp Setpoint: (°F)	1660	1605
Auto Dilution Set Point (°F)	150	1500
Oxidizer Inlet Temperature: (°F)	1450	14,0
Oxidizer Exhaust Temperature: (°F)	1200	1202

Soil Vapor Flow Data	Before Adjustment	After Adjustment
Well Field		
·Temperature (°F):	62.0	62.7
·Vacuum (inHg):	25	25
·Flow Rate (acfm):	70.0	68.0
Dilution		
·% Open:	Ø	
·Temperature (°F):	Ì.	
·Vacuum (inHg):		
·Flow Rate (acfm):		
Total System		
·Temperature (°F):		62.7
·Vacuum (inHg):		25
·Flow Rate (acfm):		68.0
Effluent		<u>\</u>
·Temperature (°F):		
·Pressure (inHg):		$\Delta$
·Flow Rate (acfm):		

FID Data	Before Adjustment	After Adjustment
Well Field (ppmv):		
Dilution (ppmv):		
Total System (ppmv):		
Effluent (ppmv):		
Control Efficiency: (1-(FID Out/FID In))		

Well	FID	Valve Position	Manifold Vacuum (inHg)	System Vacuum (inHg)	Flow Rate (acfm)	Approximate GPM	Line Vacuum (inHg)	Casing Vacuum (inHg)	Slurp Tube Depth	DTP	DTW
					I.	nitial					
MW-3	10.1	16140	25	25	76	Ø	2.0	2.17)	17001		
MW-5	8.5	$\gamma$	1	/	1	)	./	1	1,/ 1		
RW-1	3.2	4	¥	¥	¥	(	K	¥	¥		
					[	Final					· · · · · · · · · · · · · · · · · · ·
MW-3	10,1	1440	75	75	70	C	20	70	TOE		
MW-5	ક. જ		.1		d-	1	. /	./			
RW-1	5.2	¥	4	V	. Yr	4	4-	¥	$\checkmark$		

## System Maintenance

	Yes	No	Corrective Action
Leaks?			
Rattles?		$\sim$	
Excessive Noise?		1	
·dB Reading:		×	
Indicator Lights Out?		$\checkmark$	
Any Faulty Gauges?		×	
Abnormal wear and tear?		$\times$	
Blower Oil Low?		X	
Process Filter Dirty?		l ×	
Dilution Filter Dirty?			
Linkage and Bearings Greased?	$\times$		
Bag Filters Replaced?		Np	
System Automatic Shutdown Activated?	$\times$		
Did Shutdown Activate Autodialer?	No		
Inspected and Cleaned Pitot Tube(s)?	$\sim$		
Chart Paper/Pens Replaced?	×		
Other?	1		

## **Compound Maintenance**

	Yes	No	Corrective Action
Compound Secure?	$\neg \neg \varkappa$		
Any Debris?	/	X ²	
Compound Cleaned?	- I - I	4	
Prop 65 Sign Posted?	¥		
Emergency Contact Sign Posted?	Y I		
Air Permit Posted?	$\hat{\mathcal{N}}_{i}$		
Discharge Permit Posted?	Nr		
HASP Posted?	ý		
Fire Extinguisher on site? •Date last serviced:	×		

				2795 2n Davis, C Lab: 53 Fax: 5	CA 95 30.29 30.2	5616 97.48 97.4	300 802									#/La	b No.										_	e	of		
roject Colact (Hardo	copy or P	DF T	o):		Cali	iforni	a EDf	= R	eport	?	Ľ	] Yes			ю			1	Chair	1-of-	Custo	ody R	leco	rd ai	nd A	naly	/sis l	Requ	est		
iane Barclay					<u> </u>					- 0-	dai						Analysis Request								TAT						
Company / Address:					San	nplin	g Con	npa	iny Lo	g Co	ae.																				
ECOR Internationa	al Inc; 30	)17 ł	Kilgore R	oad													<b></b> _	<u> </u>							<u> </u>		TT		<b>_</b> _		
Suite 100, Rancho O	Cordova,	<u>, CA</u>	95670		<u> </u>																								12 hr		
hone #:		Fax		20	Gio	bal II	D:																							Only	
916) 861-0400 ext.			<u>) 861-04:</u> "	30			livera	hla		mail	Addr	ecc).																		e	
roject #:		P.O.	. #: 9.01631.02	2 2060			ivera v@s				nuon	0007.																	24 hr		
P 7004		//Gr	.01031.0	2.2000			r Sign			<u>"</u> A		$\Lambda$					1			1										Lab	
Project Name:	tom				Juan	npie	, oign	ala	φ.	h	l.		. Marken				H													Forl	
emporary DPE Sy	steni		Com	aling	+		ontair	her		Ъþ	rese	vative	e T	_	Matri	x	Įξ						1						48hr	Ľ.	<u>م</u> /
Project Address:	م رام، رمار		Sam	Jing	+			Ť	- <u>1</u>	ΗŤ	Ť		r-t	T		1	12														
15555 Hesperian B		<b>,</b>			205	1								1			E														$\mathcal{A}$
San Leandro,CA 94					X								l				ĬĨ								Į				72 hr		[ ]
	million i			1	N	_		1				ļ		اير اير			H-									1			$\langle n \rangle$	V	I I
Sample Designation	Field Poi Name	IN			40 ml VOA	dla				None		1		Water	Air		8260B-TPHg/BTEX/MTBE						1						1 Xie	1	
	1101110		Date	Time	<u> ₹</u>	<del>ا "</del> ا		+		Ż	_	_	┼╌┨				1 [∞]	-+		$\vdash$		┝━╋╴	_	╂╍╌┨					1200	1	hi
INF	1		2/1	441		V								ŀ	1									<b> </b>				┨──┤──		Ť.	PC
EFF			1	4410		4									Ý		1											╞╾┼╍	120	- D	
ко			V	430	2																							<b></b>	12)nr	<b>_</b>	4
			·					╈			-			7																	
			ļ	<b> </b>						$\left  - \right $	-+		+		+					<del>  </del>										Ī	1
																		$\square$		╏──╁											-
								Т		Τ																					
			<b> </b>					╉		+-							┨─┤														
								_							_					┼╌┼							_	┼┈┼╴			-
· ·						ļ			1																					<u> </u>	4
					-	+		Ť						1										Ì							1
<u> </u>	<u> </u>		<u> </u>	<u> </u>				_						<b> </b>			-			╂━╉		┼──┼		+						1 -	
	$  \land  $			•																				1						1	-
Relinquished/by:			<u> </u>	Datej	1		Time		Receiv	ed by	<i> </i> :								Remark	s:											
		<b>\</b> .		1910		N.	bil	21				amy'at.et.s'37.														• • • • • •					
(X -	·H			11	<b>ٽ</b> [ن	[ \^ _	\$7`											>			Requir	ed Rej	portin	g Lim	lt: <10	חקק נ	1 (V)				
Relinquished by:				Date		•	Time	1	Recei	/ed b	y:																				1
								_											<b>D</b> (1)												-
																+		<u>_</u>	Bill to:					<u> </u>			- D	nint			-
Relinquished by:				Date			Time	T	Recei	ved b	y Lab	orator	y:	//	1	)	~ /	K	<u>/~</u>			For La			/: S:	·····	Rec				-
				020	85	7	155	ا ۾	0	ر مز			1		11	h	1.	1	Temp	°C	lniti	ais		Date		Tim	e   Ti	herm. IC		ni Presor	-1
				102"	ų-	'	1>>	۶° }	25	r	~	- /	n				HH	fa	10										Yes	/ N	0



Report Number : 54261 Date : 04/03/2007

Diane Barclay SECOR International, Inc. 3017 Kilgore Road, Suite 100 Rancho Cordova, CA 95670

Subject : 1 Water Sample and 2 Vapor Samples Project Name : Temporary DPE System Project Number : CP 7004

Dear Ms. Barclay,

Chemical analysis of the samples referenced above has been completed. Summaries of the data are contained on the following pages. Sample(s) were received under documented chain-of-custody. US EPA protocols for sample storage and preservation were followed.

Kiff Analytical is certified by the State of California (# 2236). If you have any questions regarding procedures or results, please call me at 530-297-4800.

Sincerely,

bel Kiff



Project Number : CP 7004

Report Number : 54261 Date : 04/03/2007

Sample : INF		Matrix :	Air	Lab Number : 54261-01					
Sample Date :01/09/2007 Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed				
Benzene	< 0.050	0.050	ppmv	EPA 8260B	01/11/2007				
Toluene	< 0.050	0.050	ppmv	EPA 8260B	01/11/2007				
Ethylbenzene	< 0.050	0.050	ppmv	EPA 8260B	01/11/2007				
Total Xylenes	< 0.050	0.050	ppmv	EPA 8260B	01/11/2007				
Methyl-t-butyl ether (MTBE)	< 0.10	0.10	ppmv	EPA 8260B	01/11/2007				
TPH as Gasoline	13	5.0	ppmv	EPA 8260B	01/11/2007				
Toluene - d8 (Surr)	98.5		% Recovery	EPA 8260B	01/11/2007				
4-Bromofluorobenzene (Surr)	111		% Recovery	EPA 8260B	01/11/2007				

	Jace vill
Approved By:	Joel Kiff
2795 2nd St., Suite 300 Davis, CA 95616 530-29	97-4800 🗸



Project Number : CP 7004

Report Number : 54261 Date : 04/03/2007

Sample : EFF		Matrix :	Air	Lab Number : 54261-02					
Sample Date :01/09/2007 Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed				
Benzene	< 0.050	0.050	ppmv	EPA 8260B	01/11/2007				
Toluene	< 0.050	0.050	ppmv	EPA 8260B	01/11/2007				
Ethylbenzene	< 0.050	0.050	ppmv	EPA 8260B	01/11/2007				
Total Xylenes	< 0.050	0.050	ppmv	EPA 8260B	01/11/2007				
Methyl-t-butyl ether (MTBE)	< 0.10	0.10	ppmv	EPA 8260B	01/11/2007				
TPH as Gasoline	< 5.0	5.0	ppmv	EPA 8260B	01/11/2007				
Toluene - d8 (Surr)	101		% Recovery	EPA 8260B	01/11/2007				
4-Bromofluorobenzene (Surr)	97.2		% Recovery	EPA 8260B	01/11/2007				

	Jour vill
Approved By:	Joel Kiff
2795 2nd St., Suite 300 Davis, CA 95616 530-29	97-4800 🗸



Report Number : 54261 Date : 04/03/2007

Project Name : Temporary DPE System
Project Number : CP 7004

Sample : KO		Matrix : V	261-03		
Sample Date :01/09/2007		Method			
Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.50	0.50	ug/L	EPA 8260B	01/10/2007
Toluene	< 0.50	0.50	ug/L	EPA 8260B	01/10/2007
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	01/10/2007
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	01/10/2007
Methyl-t-butyl ether (MTBE)	1.0	0.50	ug/L	EPA 8260B	01/10/2007
Diisopropyl ether (DIPE)	< 0.50	0.50	ug/L	EPA 8260B	01/10/2007
Ethyl-t-butyl ether (ETBE)	< 0.50	0.50	ug/L	EPA 8260B	01/10/2007
Tert-amyl methyl ether (TAME)	< 0.50	0.50	ug/L	EPA 8260B	01/10/2007
Tert-Butanol	< 5.0	5.0	ug/L	EPA 8260B	01/10/2007
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	01/10/2007
1,2-Dichloroethane	< 0.50	0.50	ug/L	EPA 8260B	01/10/2007
1,2-Dibromoethane	< 0.50	0.50	ug/L	EPA 8260B	01/10/2007
Toluene - d8 (Surr)	105		% Recovery	EPA 8260B	01/10/2007
4-Bromofluorobenzene (Surr)	87.7		% Recovery	EPA 8260B	01/10/2007
1,2-Dichloroethane-d4 (Surr)	94.8		% Recovery	EPA 8260B	01/10/2007

	X	nı W	4	
Approved By:	Joel	Kiff	i	_
2795 2nd St., Suite 300 Davis, CA 95616 530-297-4	800 \	)		

#### **QC Report : Method Blank Data**

Project Name : **Temporary DPE System** 

Project Number : CP 7004

Parameter	Measured Value	Method Reportin Limit	g Units	Analysis Method	Date Analyzed
Benzene	< 0.50	0.50	ug/L	EPA 8260B	01/10/2007
Toluene	< 0.50	0.50	ug/L	EPA 8260B	01/10/2007
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	01/10/2007
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	01/10/2007
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	01/10/2007
Diisopropyl ether (DIPE)	< 0.50	0.50	ug/L	EPA 8260B	01/10/2007
Ethyl-t-butyl ether (ETBE)	< 0.50	0.50	ug/L	EPA 8260B	01/10/2007
Tert-amyl methyl ether (TAME)	< 0.50	0.50	ug/L	EPA 8260B	01/10/2007
Tert-Butanol	< 5.0	5.0	ug/L	EPA 8260B	01/10/2007
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	01/10/2007
1,2-Dichloroethane	< 0.50	0.50	ug/L	EPA 8260B	01/10/2007
1,2-Dibromoethane	< 0.50	0.50	ug/L	EPA 8260B	01/10/2007
Toluene - d8 (Surr)	105		%	EPA 8260B	01/10/2007
4-Bromofluorobenzene (Surr)	87.7		%	EPA 8260B	01/10/2007
1,2-Dichloroethane-d4 (Surr)	95.8		%	EPA 8260B	01/10/2007
Benzene	< 0.050	0.050	ppmv	EPA 8260B	01/11/2007
Toluene	< 0.050	0.050	ppmv	EPA 8260B	01/11/2007
Ethylbenzene	< 0.050	0.050	ppmv	EPA 8260B	01/11/2007
Total Xylenes	< 0.050	0.050	ppmv	EPA 8260B	01/11/2007
Methyl-t-butyl ether (MTBE)	< 0.10	0.10	ppmv	EPA 8260B	01/11/2007
TPH as Gasoline	< 5.0	5.0	ppmv	EPA 8260B	01/11/2007
Toluene - d8 (Surr)	101		%	EPA 8260B	01/11/2007
4-Bromofluorobenzene (Surr)	96.2		%	EPA 8260B	01/11/2007

Report Number : 54261 Date : 04/03/2007

	Measured	Method Reportin	g	Analysis	Date
Parameter	Value	Limit	Units	Method	Analyzed
Benzene	< 0.050	0.050	ppmv	EPA 8260B	01/10/2007
Toluene	< 0.050	0.050	ppmv	EPA 8260B	01/10/2007
Ethylbenzene	< 0.050	0.050	ppmv	EPA 8260B	01/10/2007
Total Xylenes	< 0.050	0.050	ppmv	EPA 8260B	01/10/2007
Methyl-t-butyl ether (MTBE)	< 0.10	0.10	ppmv	EPA 8260B	01/10/2007
TPH as Gasoline	< 5.0	5.0	ppmv	EPA 8260B	01/10/2007
Toluene - d8 (Surr)	100		%	EPA 8260B	01/10/2007
4-Bromofluorobenzene (Surr)	110		%	EPA 8260B	01/10/2007

N 4 - 41- - -1

Approved By: Joel Kiff

KIFF ANALYTICAL, LLC

2795 2nd Street, Suite 300 Davis, CA 95618 530-297-4800

### Project Name : Temporary DPE System

Project Number : CP 7004

Parameter	Spiked Sample	Sample Value	Spike Level	Spike Dup. Level	Spiked Sample Value	Duplicate Spiked Sample Value	e Units	Analysis Method	Date Analyzed		Duplicat Spiked Sample Percent Recov.	Relative	Spiked Sample Percent Recov. Limit	Relative Percent Diff. Limit
Benzene	54187-05	<0.50	40.0	40.0	39.6	38.7	ug/L	EPA 8260B	1/10/07	99.1	96.8	2.36	70-130	25
Toluene	54187-05	<0.50	40.0	40.0	40.3	39.7	ug/L	EPA 8260B	1/10/07	101	99.3	1.50	70-130	25
Tert-Butanol	54187-05	<5.0	200	200	203	215	ug/L	EPA 8260B	1/10/07	101	108	6.05	70-130	25
Methyl-t-Butyl Ethe	er 54187-05	<0.50	40.0	40.0	35.6	35.3	ug/L	EPA 8260B	1/10/07	89.1	88.2	1.04	70-130	25

Approved By: Joe Kiff

KIFF ANALYTICAL, LLC

2795 2nd Street, Suite 300 Davis, CA 95618 530-297-4800

## Project Name : Temporary DPE System

Project Number : CP 7004

Parameter	Spike Level	Units	Analysis Method	Date Analyzed	LCS Percent Recov.	LCS Percent Recov. Limit		
Benzene	40.0	ug/L	EPA 8260B	1/10/07	99.8	70-130		
Toluene	40.0	ug/L	EPA 8260B	1/10/07	104	70-130		
Tert-Butanol	200	ug/L	EPA 8260B	1/10/07	98.2	70-130		
Methyl-t-Butyl Ether	40.0	ug/L	EPA 8260B	1/10/07	83.5	70-130		



	KIFF Analytical LLC			2795 2r Davis, ( Lab: 5 Fax: 5	CA 98 30.29 530.2	5616 97.48 97.4	6 800 802							SRO	G#/L	ab No.		54	-26	[				Paç	ge	<u> </u>		
	Project Contact (Hard Diane Barclay	copy or PDF	То):		Cal	iforn	ia EDF	Rep	ort?			Yes		No				Chain-o	f-Custo	dy Re	ecord	and	Ana	lysis	Requ	uest		
_	Company / Address:				Sar	nolin	ig Corr	nany		Code	a.								Δna	lysis R	001100	+				TAT	1	
	SECOR Internation	al Inc: 3017	Kilgore F	heo?			.g 0011	.punj	Log		φ.									19313 13	eques	•						
	Suite 100, Rancho (			loau																		ТТ			ГГ			
	Phone #:	Fax			Glo	bal I	D.		•							1												
	(916) 861-0400 ext.		5) <b>8</b> 61-04	130			2.																			12 h		
	Project #:	P.C			EDI	F De	liverat	le To	(Em	ail A	ddres	s):															For Lab Use Only	Ι,
	CP 7004	77C	P.01631.0	02.2060			iy@se																			24 h	Ūse	14 2
Ī	Project Name:				Sar	nple	r Signa	ature/	7	N	1					1											q	14
ľ	Temporary DPE Sys	stem						$\searrow$		b	0					ШШ											Ľ.	ーズベ
ľ	Project Address:		Sam	pling	t –	С	ontain	er		Pre	serva	tive	T	Ma	trix	Įξį										48hr	L L	O
	15555 Hesperian Be	oulevard,		<u> </u>	1.7			TT		T		T				ΠÂ.								1				
	San Leandro,CA 94				2											μų.												
	Samala Designation 1	Field Point Name			40 mi VOA h 26	dlar			Mono	2			ater	Air		8260B-TPHg/BTEX/MTBE										72 hi	$\mathcal{H}$	
		Name	Date	Time	\$	Ψ́			ź				Š	Ϋ́		82											19	
•	INF		1-9-07	148					Š	,			Γ	×										Т			<b>r</b>	HC
ł	EEE							+	-t		╉┈╋		╉─			11	+					+	-		+ + -	101		
ין	EFF			140		(		$\square$		1				ľ		М										124		410
	ко		V	135	3								X			4										424		K10
Ī																							-					
ł		-						╉╌╂			+	_	╋	$\left  \right $			-		+ + +				_		$\vdash$	_		-
																											1	1
ł					┨╴┨			+	-		╉╌╂					╉┈┼	-+		┠──┼			+	_	_	- + -			4
l																												
ľ	Λ					├─†					<del>   </del>		1			<u>†</u> †						+		1-				1
ł				<b> </b>	+			┼╌┼	-	_	+ +		-		_		$\rightarrow$		+ + +			+					<b> </b>	4
ſ	Relinquished by			Date	/		Time	Rece	eived	by:							F	Remarks:										1
	phy	0		10/0	7	\$	<u>_</u> *										╉		Required	Report	ing Lin	nit: <1(	) ppm	(v)				
Î	Relinquished by:			Date	•		Time	Rec	eived	by:																		
	[	·		╉────						<u> </u>							-											J
																	Ē	Bill to:										
ſ	Relinquished by:			Date			Time	Rec	eived	by La	borato	ory:			1/.	12:			Fo	or Lab L	se On	y: Sa	ample	Rece	ipt			1
				0110	207	7	1530	11	1	$\mathbf{b}$	$\sim$			Å	/<: nalx	TT	, t	Temp °C	Initials		Date		Time	The	erm. ID	# Coolan	t Present	1
								1/8	<i>n</i> 1	V 1.																		

Rev: 051805



Report Number : 54753 Date : 04/03/2007

Diane Barclay SECOR International, Inc. 3017 Kilgore Road, Suite 100 Rancho Cordova, CA 95670

Subject : 1 Water Sample and 2 Vapor Samples Project Name : Temporary DPE System Project Number : CP 7004 P.O. Number : 77CP.01631.02.2060

Dear Ms. Barclay,

Chemical analysis of the samples referenced above has been completed. Summaries of the data are contained on the following pages. Sample(s) were received under documented chain-of-custody. US EPA protocols for sample storage and preservation were followed.

Kiff Analytical is certified by the State of California (# 2236). If you have any questions regarding procedures or results, please call me at 530-297-4800.

Sincerely,

ŧI Kiff I



Project Number : CP 7004

Report Number : 54753 Date : 04/03/2007

Sample : INF		Matrix :	Air	Lab Number : 54753-01					
Sample Date :02/07/2007 Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed				
Benzene	< 0.050	0.050	ppmv	EPA 8260B	02/08/2007				
Toluene	< 0.050	0.050	ppmv	EPA 8260B	02/08/2007				
Ethylbenzene	< 0.050	0.050	ppmv	EPA 8260B	02/08/2007				
Total Xylenes	< 0.050	0.050	ppmv	EPA 8260B	02/08/2007				
Methyl-t-butyl ether (MTBE)	< 0.10	0.10	ppmv	EPA 8260B	02/08/2007				
TPH as Gasoline	< 5.0	5.0	ppmv	EPA 8260B	02/08/2007				
Toluene - d8 (Surr)	98.4		% Recovery	EPA 8260B	02/08/2007				
4-Bromofluorobenzene (Surr)	103		% Recovery	EPA 8260B	02/08/2007				

	Jul iff	
Approved By:	Joel Kiff	
2795 2nd St., Suite 300 Davis, CA 95616 530-29	97-4800 🗸	



Project Number : CP 7004

Report Number : 54753 Date : 04/03/2007

Sample : EFF		Matrix :	Air	Lab Number : 54	753-02
Sample Date :02/07/2007 Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.050	0.050	ppmv	EPA 8260B	02/08/2007
Toluene	< 0.050	0.050	ppmv	EPA 8260B	02/08/2007
Ethylbenzene	< 0.050	0.050	ppmv	EPA 8260B	02/08/2007
Total Xylenes	< 0.050	0.050	ppmv	EPA 8260B	02/08/2007
Methyl-t-butyl ether (MTBE)	< 0.10	0.10	ppmv	EPA 8260B	02/08/2007
TPH as Gasoline	< 5.0	5.0	ppmv	EPA 8260B	02/08/2007
Toluene - d8 (Surr)	99.3		% Recovery	EPA 8260B	02/08/2007
4-Bromofluorobenzene (Surr)	100		% Recovery	EPA 8260B	02/08/2007

	Jack vill
Approved By:	Joel Kiff
2795 2nd St., Suite 300 Davis, CA 95616 530-29	97-4800 🗸



Report Number : 54753 Date : 04/03/2007

Project Name : Temporary DPE System
Project Number : CP 7004

Sample : KO		Matrix : V	Nater	Lab Number : 54	753-03
Sample Date :02/07/2007	Measured	Method Reporting		Analysis	Date
Parameter	Value	Limit	Units	Method	Analyzed
Benzene	< 0.50	0.50	ug/L	EPA 8260B	02/08/2007
Toluene	< 0.50	0.50	ug/L	EPA 8260B	02/08/2007
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	02/08/2007
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	02/08/2007
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	02/08/2007
Diisopropyl ether (DIPE)	< 0.50	0.50	ug/L	EPA 8260B	02/08/2007
Ethyl-t-butyl ether (ETBE)	< 0.50	0.50	ug/L	EPA 8260B	02/08/2007
Tert-amyl methyl ether (TAME)	< 0.50	0.50	ug/L	EPA 8260B	02/08/2007
Tert-Butanol	< 5.0	5.0	ug/L	EPA 8260B	02/08/2007
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	02/08/2007
1,2-Dichloroethane	< 0.50	0.50	ug/L	EPA 8260B	02/08/2007
1,2-Dibromoethane	< 0.50	0.50	ug/L	EPA 8260B	02/08/2007
Toluene - d8 (Surr)	99.4		% Recovery	EPA 8260B	02/08/2007
4-Bromofluorobenzene (Surr)	102		% Recovery	EPA 8260B	02/08/2007
1,2-Dichloroethane-d4 (Surr)	98.9		% Recovery	EPA 8260B	02/08/2007

Jul in	
Approved By: Joel Kiff	
2795 2nd St., Suite 300 Davis, CA 95616 530-297-4800 🕖	

#### **QC Report : Method Blank Data**

## Project Name : **Temporary DPE System**

### Project Number : CP 7004

Parameter	Measured Value	Method Reporting Limit	g Units	Analysis Method	Date Analyzed
Benzene	< 0.050	0.050	ppmv	EPA 8260B	02/08/2007
Toluene	< 0.050	0.050	ppmv	EPA 8260B	02/08/2007
Ethylbenzene	< 0.050	0.050	ppmv	EPA 8260B	02/08/2007
Total Xylenes	< 0.050	0.050	ppmv	EPA 8260B	02/08/2007
Methyl-t-butyl ether (MTBE)	< 0.10	0.10	ppmv	EPA 8260B	02/08/2007
TPH as Gasoline	< 5.0	5.0	ppmv	EPA 8260B	02/08/2007
Toluene - d8 (Surr)	98.2		%	EPA 8260B	02/08/2007
4-Bromofluorobenzene (Surr)	101		%	EPA 8260B	02/08/2007
Benzene	< 0.50	0.50	ug/L	EPA 8260B	02/08/2007
Toluene	< 0.50	0.50	ug/L	EPA 8260B	02/08/2007
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	02/08/2007
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	02/08/2007
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	02/08/2007
Diisopropyl ether (DIPE)	< 0.50	0.50	ug/L	EPA 8260B	02/08/2007
Ethyl-t-butyl ether (ETBE)	< 0.50	0.50	ug/L	EPA 8260B	02/08/2007
Tert-amyl methyl ether (TAME)	< 0.50	0.50	ug/L	EPA 8260B	02/08/2007
Tert-Butanol	< 5.0	5.0	ug/L	EPA 8260B	02/08/2007
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	02/08/2007
1,2-Dichloroethane	< 0.50	0.50	ug/L	EPA 8260B	02/08/2007
1,2-Dibromoethane	< 0.50	0.50	ug/L	EPA 8260B	02/08/2007
Toluene - d8 (Surr)	99.1		%	EPA 8260B	02/08/2007
4-Bromofluorobenzene (Surr)	101		%	EPA 8260B	02/08/2007
1,2-Dichloroethane-d4 (Surr)	98.7		%	EPA 8260B	02/08/2007

## Report Number: 54753 Date : 04/03/2007

		Method			
	Measured	Reporti	ng	Analysis	Date
Parameter	Value	Limit	Units	Method	Analyzed

Approved By: Joel Kiff 2795 2nd Street, Suite 300 Davis, CA 95618 530-297-4800

### Project Name : Temporary DPE System

Project Number : CP 7004

Parameter	Spiked Sample	Sample Value	Spike Level	Spike Dup. Level	Spiked Sample Value	Duplicate Spiked Sample Value	e Units	Analysis Method	Date Analyzed	Percent		Relative	Spiked Sample Percent Recov. Limit	Relative Percent Diff. Limit
Benzene	54723-02	<0.50	40.0	40.0	39.7	38.6	ug/L	EPA 8260B	2/8/07	99.2	96.4	2.82	70-130	25
Toluene	54723-02	<0.50	40.0	40.0	39.4	38.7	ug/L	EPA 8260B	2/8/07	98.4	96.8	1.64	70-130	25
Tert-Butanol	54723-02	<5.0	200	200	188	188	ug/L	EPA 8260B	2/8/07	94.0	94.1	0.0644	70-130	25
Methyl-t-Butyl Ethe	er 54723-02	<0.50	40.0	40.0	37.9	37.6	ug/L	EPA 8260B	2/8/07	94.8	94.0	0.745	70-130	25

Approved By: Joe Kiff

KIFF ANALYTICAL, LLC

2795 2nd Street, Suite 300 Davis, CA 95618 530-297-4800

## Project Name : Temporary DPE System

Project Number : CP 7004

Parameter	Spike Level	Units	Analysis Method	Date Analyzed	LCS Percent Recov.	LCS Percent Recov. Limit		
Benzene	40.0	ug/L	EPA 8260B	2/8/07	99.2	70-130		
Toluene	40.0	ug/L	EPA 8260B	2/8/07	101	70-130		
Tert-Butanol	200	ug/L	EPA 8260B	2/8/07	94.7	70-130		
Methyl-t-Butyl Ether	40.0	ug/L	EPA 8260B	2/8/07	96.2	70-130		



KIFF Analytical LLC				2795 2r Davis, C Lab: 5 Fax: 5	CA 95 30.29	5616 97.48	00	300					:	SRG	6#/La	ab No.	4	547	53				Pa	je	t of	/	
Project Contact (Hard	copy or PIC	)F To):					a EDF	Rep	ort?		🗌 Yes	5.		No				Chain-of	f-Custod	/ Record	d and	d Ana	alvsis	Requ	est		1
Diane Barclay				•	0				<u></u>							<b> </b>									-		4
Company / Address:					San	nplin	g Com	npany	Log (	;ode:									Analys	sis Reque	SI				TAT		
SECOR Internation				oad												┝╌	<b>—</b>		<u> </u>			<b>T</b> T					
Suite 100, Rancho ( Phone #:		CA 956	/0			bal I[	<u>.</u>									4											
916) 861-0400 ext.		916) 861	-043	30			<i>.</i>																		12 hr	Only	
Project #:		P.O. #:			EDF	- Del	iverab	le To	(Ema	il Ado	dress):															Ō	
CP 7004		7CP.016	31.02	2.2060			y@se																1		24 hr	For Lab Use	
Project Name:							Signa			5	-11					1										ap	
emporary DPE Sy	stem						-		r	χ.	17					H										L L	1
Project Address:	i		Samp	oling	t –	Co	ontaine	er	-16	Pres	ervativ	e	<u>د</u>	Mat	rix	ξ									48hr	ц	
15555 Hesperian B	oulevard,		j	<b>*</b>	N	T	T									8260B-TPHg/BTEX/MTBE											l I
San Leandro,CA 94					3											<u>ه</u>											1 /
					8											ΤĔ									72 hr		Ł′_
	Field Point	t			40 ml VOA	E		1					ž			La la									$\langle \cdot \rangle$		
	Name			<b>-</b>	E O	ed			None				Water	.5		စ္ထ										ľ	
				Time	4			┼╌┼		┥┥			2	<u> </u>						+ $+$		╉╌╂					
INF		2/-	)	441		$ \psi $				1 1				¥		И											11/
EFF		1		440		4								¥											Т <b>у</b> ст	${\cal P}$	14
КО		$\downarrow$	/	430	2								<u>,</u>	<u>-</u>		<b>1</b>									12)hr		1 -
					P			1 1	+		_		7			┞┼						╀╌╂					1
		_			┨┤			┼╌┼	_	$\left  \right $						+	_			╏╶┨╾┠		┨╌┨		┨──┨──			┨
										1																	
· · · · · · · · · · · · · · · · · · ·	·····																-+			+						-	1
		_			$\mathbf{H}$			++								╉─┼				┼╌┼╌┼				++			-
<b>•</b> •																											
	$\wedge$						<u> </u>	+								╉┤	+					+			1		1
	₩ →		_	5.1.1	Ļ			Ļ	<u> </u>																		4
Relinquished by:	11.			Date	1		Time	Rece	eived b	<b>y</b> :								Remarks:									
$\sim$	LIV			144	1.	17	7ζ0	-					-	-		-											
<u> </u>	<u>p</u> ~	<u>ງ</u>		-	10	1-2	. /										<u>`</u>		Required F	leporting L	imit: <	10 pp	m (v)				
Relinquished by:				Date		ſ	Time	Rece	eived b	y:																	
								+										Bill to:									-
Relinquished by:				Date			Time	Rece	eived b	y Lab	oratory	:		,			5	16	For	Lab Use O	nly:	Samp	le Rece	eipt		<del></del>	1
				0208	2.7					•	- /				6	~ [[	-01	Temp °C	Initials	Dai		Tin	T	erm. ID #	Coolan	t Present	1
e				1020	ז ~ נ		1550	12		~	/	11	Λ	TU		TAA	1.	1-5	DA	1 50						/ No	1

# SECOR

# ATTACHMENT 3 VEOLIA TRANSPORTATION LOG

Quarterly Status and Remediation Summary Report – First Quarter 2007 Former 76 Service Station No. 7004 15599 Hesperian Boulevard San Leandro, California SECOR Project No.: 77CP.01631.14 May 29, 2007

Site #:	257004
Address:	15599 Hesperian Blvd.
Conoco Contact:	Eric Hetrick
Consultant:	SECOR, Diane Barclay

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
2006	0	0	19,500	50,000	0	66,200	85,100	114,500	87,700	112,000	71,700	57,100	663,800
2007	72,600	0	600	0	0	0	0	0	0	0	0	0	73,200
											Grand T	otal	737,000

		Grand Total
Detail		
Date	Gallons	Comments
3/28/2006	5000	
3/29/2006	6500	
3/30/2006	4000	
3/31/2006	4000	
4/1/2006	4000	
4/5/2006	3000	
4/7/2006	3500	
4/8/2006	3500	
4/9/2006	4500	
4/10/2006	4000	
4/11/2006	5000	
4/12/2006	5500	
4/13/2006	5500	
4/14/2006	5000	
4/15/2006	5000	
4/16/2006	1500	
6/1/2006	5500	
6/5/2006	5000	
6/7/2006	5400	
6/12/2006	5400	
6/19/2006	1000	
6/20/2006	1000	
6/21/2006	5000	
6/22/2006	5000	
6/23/2006	5000	
6/24/2006	5400	
6/25/2006	4000	
6/26/2006	1500	
6/27/2006	4000	
6/28/2006	5000	
6/29/2006	4000	
6/30/2006	4000	
7/1/2006	5000	
7/2/2006	5000	
7/3/2006	5000	
7/5/2006	5000	
7/6/2006	5000	
7/7/2006	5000	
7/9/2006	5000	
7/10/2006	5000	
7/11/2006	8500	
7/14/2006	4200	
7/15/2006	4200	
7/18/2006	2400	
7/19/2006	5000	

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
2006	0	0	19,500	50,000	0	66,200	85,100	114,500	87,700	112,000	71,700	57,100	663,800
2007	72,600	0	600	0	0	0	0	0	0	0	0	0	73,200
											Grand T	otal	737,000

<b>D</b> ( 11		
Detail		
	Gallons	Comments
7/20/2006	3500	
7/21/2006	5000	
7/22/2006	2400	
7/23/2006	2400	
7/24/2006	5000	
7/25/2006	2500	
8/2/2006	4000	
8/3/2006	3500	
8/4/2006	3000	
8/5/2006	3500	
8/6/2006	3000	
8/7/2006	3000	
8/8/2006	3000	
8/9/2006	4500	
8/10/2006	4000	
8/11/2006	5000	
8/12/2006	5000	
8/13/2006	5000	
8/14/2006	4500	
8/15/2006	5000	
8/16/2006	5000	
8/17/2006	4500	
8/18/2006	4500	
8/19/2006	4500	
8/20/2006	4500	
8/21/2006	5000	
8/22/2006	5000	
8/23/2006	4500	
8/24/2006	4500	
8/25/2006	4000	
8/26/2006	3000	
8/30/2006	5000	
8/31/2006	4500	
9/1/2006	2400	
9/2/2006	4000	
9/3/2006	2400	
9/4/2006	2400	
9/5/2006	3500	
9/6/2006	2500	
9/7/2006	3000	
9/8/2006	4000	
9/9/2006	3000	
9/10/2006	3000	
9/11/2006	3500	
9/12/2006	4000	
0,12,2000	1000	

Site #:	257004
Address:	15599 Hesperian Blvd.
Conoco Contact:	Eric Hetrick
Consultant:	SECOR, Diane Barclay

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
2006	0	0	19,500	50,000	0	66,200	85,100	114,500	87,700	112,000	71,700	57,100	663,800
2007	72,600	0	600	0	0	0	0	0	0	0	0	0	73,200
											Grand T	otal	737,000

		Grand Total
Detail		
		Comments
9/13/2006	4000	
9/14/2006	3500	
9/15/2006	3500	
9/16/2006	3500	
9/17/2006	3500	
9/18/2006	4000	
9/19/2006	4000	
9/20/2006	4000	
9/21/2006	3000	
9/22/2006	3000	
9/23/2006	6500	
9/26/2006 9/30/2006	3000 4500	
10/1/2006	4000	
10/2/2006	3500	
10/3/2006	4000	
10/4/2006	2500	
10/5/2006	4000	
10/7/2006	3000	
10/8/2006	3500	
10/9/2006	3000	
10/10/2006	3000	
10/11/2006	4000	
10/12/2006	2500	
10/13/2006	3000	
10/14/2006	3000	
10/15/2006	2500	
10/16/2006	3000	
10/17/2006	3000	
10/18/2006 10/19/2006	4000	
10/19/2006	16000	
10/21/2006	3000	
10/22/2006	3000	
10/23/2006	4000	
10/24/2006	5000	
10/26/2006	5000	
10/27/2006	3000	
10/28/2006	3000	
10/29/2006	4000	
10/30/2006	3000	
10/31/2006	3500	
11/1/2006	4000	
11/2/2006	4000	
11/3/2006	3000	

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
2006	0	0	19,500	50,000	0	66,200	85,100	114,500	87,700	112,000	71,700	57,100	663,800
2007	72,600	0	600	0	0	0	0	0	0	0	0	0	73,200
											Grand T	otal	737,000

Detail		
	Gallons	Comments
11/4/2006	3000	
11/5/2006	3500	
11/6/2006	3000	
11/7/2006	3500	
11/8/2006	3000	
11/9/2006	3500	
11/10/2006	2200	
11/11/2006	3500	
11/12/2006	3000	
11/13/2006	3000	
11/14/2006	2500	
11/15/2006	2500	
11/16/2006	2500	
11/21/2006	3000	
11/22/2006	2000	
11/24/2006	5000	
11/25/2006	2500	
11/26/2006	2500	
11/27/2006	3000	
11/28/2006	2000	
11/29/2006	2000	
12/2/2006	4000	
12/3/2006	1000	
12/5/2006	4000	
12/7/2006	3000	
12/8/2006	2000	
12/9/2006	2000	
12/12/2006	5000	
12/14/2006	3000	
12/16/2006	3000	
12/17/2006	3000	
12/20/2006	2800	
12/21/2006	2500	
12/22/2006	3150	
12/23/2006	3150	
12/24/2006	5000	
12/26/2006	5500	
12/27/2006	5000	
1/5/2007	5500	
1/6/2007	5500	
1/7/2007	5500	
1/8/2007	5000	
1/9/2007 1/10/2007	3500 5000	
1/10/2007	5000	
1/11/2007	5000	

Site #:	257004
Address:	15599 Hesperian Blvd.
Conoco Contact:	Eric Hetrick
Consultant:	SECOR, Diane Barclay

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
2006	0	0	19,500	50,000	0	66,200	85,100	114,500	87,700	112,000	71,700	57,100	663,800
2007	72,600	0	600	0	0	0	0	0	0	0	0	0	73,200
											Grand T	otal	737,000

Detail		
Date	Gallons	Comments
1/12/2007	5200	
1/13/2007	5200	
1/14/2007	5200	
1/15/2007	5000	
1/16/2007	1500	
1/19/2007	1500	
1/20/2007	2000	
1/21/2007	2500	
1/22/2007	1500	
1/25/2007	5000	
1/26/2007	3000	
3/13/2007	600	Empty and clean tank