RECEIVED

By dehloptoxic at 8:53 am, Nov 09, 2006

ConocoPhillips Company 1230 W. Washington Street, Suite 212 Tempe, AZ 85281

November 6, 2006

Mr. Donald Hwang Alameda County Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

RE: Document Transmittal

Fuel Leak Case 76 Station # 7004

15599 Hesperian Blvd., San Leandro, CA

Dear Mr. Hwang:

Please find attached SECOR's Quarterly Status and Remediation Summary Report - Third Quarter 2006 dated November 6, 2006 for the above referenced site. I declare under penalty of perjury that to the best of my knowledge the information and/or recommendations contained in the attached proposal or report are true and correct.

If you have any questions or need additional information, please call me at (602) 452-2507.

Sincerely,

James F. Trotter

Site Manager

Risk Management & Remediation

ConocoPhillips Company

James F. Frotter

Enclosure

cc: Diane Barclay, SECOR

SECOR INTERNATIONAL INCORPORATED www.secor.com 3017 Kilgore Road, Surie 100 Rancho Cordova, CA 95670 916-861-0400 TEL 916-961-0430 FAX

November 6, 2006

Mr. Donald Hwang Alameda County Environmental Health Services 1131 Harbor Bay Parkway Suite 250 Alameda, CA 94502

RE: Quarterly Status and Remediation Summary Report – Third Quarter 2006

SECOR Project No.: 77CP.01631,00.0304

Dear Mr. Hwang:

On behalf of ConocoPhillips, SECOR International Incorporated (SECOR) is forwarding the quarterly summary report for the following location:

Service Station

Location

Former 76 Service Station No. 7004

in M. Barclay

15599 Hesperian Boulevard San Leandro, California

If you have questions or comments regarding this quarterly summary report, please do not hesitate to contact me at (916) 861-0400.

Sincerely,

SECOR International Incorporated

Diane M. Barclay

Senior Geologist, C.H.G.

Attachments: SECOR's Quarterly Status and Remediation Summary Report - Third

Quarter 2006

Mr. Donald Hwang November 6, 2006 Page 2

- CC:
- Mr. Thomas Kosel, ConocoPhillips
- Ms. Rebecca Seevers, Target Corporation -- Environmental Services, 33 South 6th Street, CC—3425 Minneapolis, MN 55402
- Mr. Alan Guttenberg, Guttenberg, Rapson and Colvin LLP, 101 Lucas Valley Road Suite 216, San Rafael, CA 94903
- Mr. Gary Ragghianti, Ragghianti Freitas LLP, 874 Fourth Street, Suite D, San Rafael CA 94901
- Ms. Shelly Eisaman, Wells Fargo Bank, N.A., Brunetti Trust, 420 Montgomery Street, 3rd Fl., San Francisco, CA 94104
- Mr. Ladd Cahoon, Law Office of John D. Edgcomb, 115 Sansome St., Suite 805, San Francisco, CA 94104
- Mr. Daniel J. Barry, Stein & Lubin, LLP, Transamerica Pyramid, 600 Montgomery St., 14th Floor, San Francisco, CA 94111
- Mr. Michael DiGeronimo, Esq., Miller Starr & Regalia, 1331 N. California Blvd., Fifth Floor, Walnut Creek, CA 94596
- Mr. Steve Osborne, Fugro West, Inc., 1000 Broadway, Suite 200, Oakland, CA 94607
- Mr. Bob Clark-Riddell, Pangea Environmental Services, Inc, 1710 Franklin Street, Suite 200, Oakland, CA 94612

QUARTERLY STATUS AND REMEDIATION SUMMARY REPORT Third Quarter 2006

76 Service Station No. 7004 15599 Hesperian Blvd San Leandro, CA

City/County ID #:

San Leandro

County:

Alameda

SITE DESCRIPTION

The site is located at the northwest corner of Hesperian Boulevard and Lewelling Boulevard in San Leandro, California. The site is a former 76 Service Station which was abandoned in May of 2000. At that time, the subsurface tanks, piping and aboveground components were removed. The station building was converted into a Kragen auto parts store, but is no longer open as a retail store, and is currently used by the adjacent Target store for storage. The site is currently within a paved parking lot in a Target department store complex. Currently, TRC performs quarterly monitoring and sampling of ten monitoring wells and one recovery well at the above referenced site (Attachment 1).

PREVIOUS ASSESSMENT

In October 1990, Kaprealian Engineering, Inc (KEI) observed the removal of three single-walled underground storage tanks (USTs) and removal and replacement of product piping at the site. The tanks included one steel 12,000-gallon super unleaded fuel tank and two steel 12,000-gallon regular unleaded fuel tanks, and were replaced with two double-walled 12,000-gallon USTs. No holes or cracks were observed in the tanks. Fifteen confirmation soil samples were collected from the tank pit and analyzed for total petroleum hydrocarbons as gasoline (TPHg), and benzene, toluene, ethylbenzene, and xylenes (BTEX). Soil samples collected from the final tank excavation contained up to 30 parts per million (ppm) TPHg, 0.054 ppm benzene, 0.047 ppm toluene, 0.46 ppm ethylbenzene, and 0.054 ppm xylenes. A water sample collected from the tank pit contained 4,300 parts per billion (ppb) TPHg, 40 ppb benzene, 1.9 ppb toluene, 0.54 ppb ethylbenzene, and 520 ppb xylenes. Samples collected from the final pipeline trenches contained up to 20 ppm TPHg, 0.015 ppm benzene, 0.15 ppm toluene, 0.13 ppm ethylbenzene, and 1.3 ppm xylenes (KEI, 1990). The former USTs were replaced with two 12,000-gallon, double-walled, glasteel unleaded USTs within the same excavation (GR, 2000).

In April and July 1991, KEI supervised the installation of six 2-inch diameter monitoring wells (MW1 through MW6). Groundwater was encountered at depths of 16.5 to 20.5 feet below ground surface (bgs). The wells were completed to 25 to 26 feet bgs. Selected soil samples and grab groundwater samples from each well were analyzed for TPHg and BTEX. Soil samples contained up to 4,800 parts per million (ppm) TPHg and 23 ppm benzene, 9.1 ppm toluene, 63 ppm ethylbenzene, and 290 ppm xylenes (17.5 feet bgs in MW3). Post development groundwater samples from these wells contained up to 34,000 ppb TPHg and 6,100 ppb benzene (MW3; KEI, 1991a and KEI 1991b).

Mr. Donald Hwang November 6, 2006 Page 2

In December 1991, KEI conducted water recovery tests in wells MW-3 and MW-5. The tests indicated a minimal influence in water levels. KEI installed recovery well RW-1 in April 1992 (KEI, 1992a).

In May 1992, KEI conducted an aquifer test using RW-1 for extraction and MW-2, MW3, MW4, and MW5 for observation. The saturated zone was described as semi-confined, and aquifer parameters evaluated from the test were as follows:

Transmissivity: 16-700 ft²/day

Storativity: 6.3E⁻⁶ - 1.4E⁻²

Hydraulic Conductivity: 0.3 ft/day to 76 ft/day (KEI, 1992b)

Pacific Environmental Group (PEG) performed a water supply well survey within a ¼-mile radius of the site. Four documented wells were identified, including two domestic irrigation wells, one industrial well, and one well of unknown use. The closest of these wells was approximately 2000 feet south of the site (PEG, 1996).

In May 2000, Gettler-Ryan (GR) observed the removal of two 12,000-gallon, double-walled glasteel USTs and fiberglass product piping and dispensers at the site. The USTs were in good condition with no observed cracks or holes. At this time, station-related structures were also demolished and removed. Four soil samples were collected from the tank pit excavation, and four were collected from the pipeline trenches. The samples were analyzed for TPHg, BTEX, and methyl tertiary butyl ether (MTBE). Tank pit samples contained up to 350 ppm TPHg, 4.8 ppm ethylbenzene, and 0.81 ppm xylenes, but were non-detectable for benzene and MTBE. Pipeline trench samples were non-detectable for the analytes requested. Oxygen releasing compound (360 pounds) was placed in the bottom of the UST pit during tank removal (GR, 2000).

In 2001 GR conducted a limited Phase I Environmental Assessment to assess the potential for environmental impact to the site from current or past usage or other properties in the vicinity. Six petroleum hydrocarbon impacted sites were identified within ¼-mile of the site (GR, 2001a).

In 2001 GR performed a ½-mile radius well survey, and found that three domestic wells were present within 2,500 feet of the site. Two of the wells were located 1,650 and 2,300 feet potentially down gradient of the site. The third was located approximately 2,275 feet upgradient. GR recommended that the site be considered for low-risk case closure (GR, 2001b).

In November 2001, SECOR conducted a 5 day dual phase extraction (DPE) test at the site. The test utilized MW-3 and RW-1 for extraction. During the test, applied vacuum was approximately 25 inches of mercury, vapor extraction flow rates ranged from approximately 20 to 155 cubic feet per minute, and groundwater extraction flow rates ranged from 0.25 to 3.0 gallons per minute. Influent vapor concentrations dropped from a high of 5,200 parts per million by volume (ppmv) TPHg at the start of the test to 440 ppmv TPHg at the end of test. Based on the data collected during the test, approximately 36.55 pounds of vapor phase TPHg, 0.56 pounds of vapor phase benzene, and 0.47 pounds of vapor phase

Mr. Donald Hwang November 6, 2006 Page 3

MTBE were removed from the subsurface. The radius of influence was estimated at 15 to 55 feet for MW-3 and 48 to 85 feet for RW-1 (SECOR, 2002).

In September 2002, Gettler-Ryan drilled and sampled five direct push soil borings (G-1 through G-5) in the vicinity of the Kragen Auto Parts building and the former USTs. Soil and groundwater samples were collected from each boring and analyzed for TPHg, BTEX, and fuel oxygenates. Soil samples were below detection for the analytes requested, except for sample GP-3 @13.5 feet which contained 0.051 mg/kg MTBE and 0.083 mg/kg tertiary butyl alcohol (TBA). Groundwater samples contained up to 96,000 ppb TPHg (G-4W), 4,300 ppb ethylbenzene (G-5W), 300 ppb TBA (G-3W), and 360 ppb MTBE (G-5W) (GR, 2002).

In March 2005, SECOR performed a preferential pathway survey to delineate underground utilities with the potential to transport groundwater beneath the site. Utilities were identified to be underground at depths ranging from 20 inches bgs to 4 feet bgs. Off-site utilities, including sewer and storm drain, were identified on the east side of Hesperian Boulevard between 6 and 7 feet bgs. The groundwater level over the last five years had varied from 12 to 16 feet bgs. Data presented did not identify utilities and associated utility trenches with the potential to act as a preferential groundwater pathway, based on historical depths to groundwater (SECOR, 2005a).

In August 2005, SECOR conducted an investigation at the site which included drilling and sampling 23 direct push soil borings (SB-1 through SB-23), at total depths of 19 feet bgs to 28 feet bgs. Soil and groundwater samples were collected from each boring and analyzed for TPHg, BTEX, and fuel oxygenates. Laboratory analysis of the soil samples indicated detections for the requested constituents in 7 of the 23 soil borings at maximum concentrations of 0.024 mg/kg ethylbenzene (SB-21), 0.022 MTBE (SB-18), and 0.024 mg/kg TBA (SB-18). Groundwater samples contained up to 4,100 μg/L TPHg (SB-17), 14 μg/L benzene (SB-21), 1.4 μg/L toluene (SB-4), 340 μg/L ethylbenzene (SB-21), 9.4 μg/L xylenes (SB-4), 180 μg/L MTBE (SB-4), 71 μg/L TBA (SB-17), and 1,100 μg/L ethanol (SB-4; SECOR, 2005b).

In January 2006, SECOR advanced an additional 14 soil borings (SB24 through SB-37) and installed an additional 4 groundwater monitoring wells (MW-7 through MW-10). At least one soil sample was collected from each borehole, and groundwater samples were collected from the boreholes except SB24, SB25, SB26, SB28, and SB31. The samples were analyzed for TPHg, BTEX, fuel oxygenates, and lead scavengers. Maximum concentrations in the soil were reported as 46 mg/kg TPHg (SB-30 at 5.5 feet bgs), 0.29 mg/kg toluene (SB-30 at 5.5 feet bgs), 1.2 mg/kg ethylbenzene (SB-30 at 2.5 feet bgs), 7.8 mg/kg xylenes (SB-30 at 2.5 feet bgs), 0.0058 mg/kg MTBE (SB-34 at 19 feet bgs), and 0.010 mg/kg TBA (SB-24 at 2.5 feet bgs). No detectable concentrations of benzene, DIPE, TAME, ETBE, ethanol, 1,2-DCA, or ethylene dibromide (EDB) were reported (SECOR, 2006a).

In April 2006, SECOR prepared a startup report for the portable DPE system at the site (SECOR, 2006b). The system was started on March 20, 2006, and continues to operate.

Mr. Donald Hwang November 6, 2006 Page 4

In June 2006, SECOR prepared a work plan for additional offsite assessment (SECOR 2006c). This work was proposed in the event that additional assessment to the southeast became necessary.

In October 2006, SECOR submitted the results of a human health risk assessment (SECOR, 2006d). Based on the current and future land use, which consisted of and would likely remain primarily commercial/industrial in nature, SECOR evaluated the following exposure pathways: (1) commercial/industrial workers' and customers' inhalation of vapors emanating from soil and/or groundwater to indoor and outdoor air, and (2) direct contact of commercial/industrial workers with shallow impacted soil (less than 10 feet bgs). Results of the human health risk assessment indicated that residual petroleum hydrocarbons, MTBE, and tertiary butyl alcohol (TBA) in soil, groundwater, and soil vapor beneath the site and site vicinity do not pose a risk to human health or the environment (SECOR, 2006d). SECOR evaluated natural attenuation and migration of the dissolved MTBE plume beneath the site and site vicinity using the BIOSCREEN model. Three scenarios were examined: (1) solute transport with no decay, (2) solute transport with first order decay, and (3) solute transport with instantaneous biodegradation reaction. Results of the modeling indicated that the downgradient wells would not be impacted by the migration of the dissolved MTBE plume within at least 200 years (SECOR, 2006d).

The site has been monitored and sampled since the 2nd quarter, 1991. Between 1991 and 1995, monitoring was conducted quarterly. Between 1996 and 2001, the site was monitored semiannually. From January 2002 to July 2003, the site was monitored monthly. Currently, ten wells (MW-1 through MW-10 and RW-1) are sampled quarterly. Samples are analyzed for total purgeable petroleum hydrocarbons (TPPH), BTEX, and fuel oxygenates. The groundwater gradient has been mainly to the southwest and east-southeast, with variations to the north/northeast and northwest.

SENSITIVE RECEPTORS

Pacific Environmental Group (PEG) performed a water supply well survey within a ¼-mile radius of the site. Four documented wells were identified, including two domestic irrigation wells, one industrial well, and one well of unknown use. The closest of these wells was approximately 2000 feet south of the site (PEG, 1996). In 2001, GR performed a ½ mile radius well survey for the site. The survey identified three domestic water supply wells located within 2,500 feet of the site. One of the wells was located 2,275 feet from the site in the upgradient direction. Two of the wells were located within 2,300 feet of the site in the downgradient direction.

SECOR performed an updated sensitive receptor survey during the fourth quarter 2006. Results of this survey will be submitted with the no further action required request

Mr. Donald Hwang November 6, 2006 Page 5

MONITORING AND SAMPLING

The site has been monitored and sampled since the second quarter 1991. Between 1991 and 1995, monitoring was conducted quarterly. Between 1996 and 2001, the site was monitored semiannually. From January 2002 to July 2003, the site was monitored monthly. Currently, eleven wells (MW-1 through MW-10, and RW-1) are sampled quarterly. Groundwater samples from the eleven wells are analyzed for total purgeable petroleum hydrocarbons (TPPH), BTEX, MTBE, TBA, and ethanol by EPA Method 8260B, and groundwater samples from monitoring wells MW-7 through MW-10 are additionally analyzed for the fuel oxygenates ethylene dibromide (EDB), 1,2-dichloroethane (1,2-DCA), di-isopropyl ether DIPE), ethyl tertiary butyl ether (ETBE) and tertiary amyl ether (TAME) by EPA Method 8260B.

During the third quarter 2006, depth to groundwater ranged between 12.32 and 13.83 feet bgs. The groundwater flow direction this quarter was to the northwest at an average gradient of 0.01 foot/foot. Historically, the flow direction has varied, but has been predominantly to the southwest (5 events) and the east-southeast (6 events). The average groundwater gradient has been 0.005 foot/foot. Historical groundwater gradients and flow directions are included in Table 1 and illustrated on Figure 1.

Laboratory analysis of groundwater samples collected from the eleven site wells is summarized below:

Constituents	Number of Detections Above PQL of the Samples Collected	Minimum Concentration * (Sample ID)	Maximum Concentration * (Sample ID)
TPPH	4/11	56 (RW-1)	2,900 (MW-3)
Benzene	2/11	0.75 (MW-3)	1.2 (MW-5)
Toluene	1/11	1.2 (MW-3)	1.2 (MW-3)
Ethylbenzene	2/11	5.0 (MW-5)	57 (MW-3)
MTBE	7/11	0.90 (MW-3)	31 (MW-5)

Explanations:

PQL = Practical quantitation limit MTBE = Methyl tertiary buty! ether TPPH = Total purgeable petroleum hydrocarbons

DISCUSSION

The groundwater gradient evaluation included depth to water information from MW-5, which according to TRC's notes was gauged after purging and sampling the other site wells. The water elevation from MW-5 may not be representative of the pre-purge groundwater surface in this well; however, because this only occurred in one well and the water elevation was similar to nearby wells, SECOR believes that this had a negligible effect on the results.

Between the second quarter 2006 and the third quarter 2006, dissolved phase hydrocarbon concentrations generally decreased, with the following exceptions: a slight increase in

^{* =} Concentrations are reported in units of µg/L, unless otherwise noted

Mr. Donald Hwang November 6, 2006 Page 6

benzene in well MW-3, a slight increase in ethylbenzene in MW-5, a slight increase in TPPH in MW-7, and increases in MTBE concentrations in wells MW-1, MW-2, MW-3, MW-6, and MW-8 (which were all reported as non-detect for MTBE during the second quarter 2006).

In general, due in part to the DPE and other remedial efforts at the site, a historical trend of decreasing dissolved-phase hydrocarbons has been seen at the site. More recently, MTBE concentrations have remained relatively stable around 10 μ g/L. The highest dissolved phase concentrations of TPPH at the site remain in monitoring well MW-3, and the highest dissolved-phase concentrations of benzene and MTBE are in well MW-5. Although increases in MTBE concentrations were observed, only the concentrations in wells MW-2, MW-5, and MW-8 were greater than the secondary maximum contaminant limit (MCL) of 5 μ g/L, and only the concentration in well MW-5 was above the primary MCL of 13 μ g/L, as established by the California Department of Health Services.

CHARACTERIZATION STATUS

Based on the results of recent assessments, residual concentrations of petroleum hydrocarbons and fuel oxygenates within the source area (former USTs) and vicinity have naturally attenuated over time and are relatively low, and the lateral extent of impacts in soil have been delineated. The vertical extent of impact in soil has been delineated with the non-detectable results from the sample from boring SB-10 at 28 feet bgs. The majority of petroleum hydrocarbon mass within the source area was removed during the removal and replacement of the USTs in October 1990.

Review of groundwater analytical results from groundwater monitoring events, soil boring assessments, and the recent installation of additional groundwater monitoring wells (MW-7 through MW-10) indicated that the lateral extent of TPHg, BTEX, and MTBE has been delineated by relatively low to non-detectable concentrations in borings G-1, SB-6, SB-7, SB-9, wells MW-1 and MW-2 to the north, borings SB-11 through SB-16 and well MW-6 to the east and south, and borings SB-1 through SB-4, SB-16, SB-32, and SB-33 to the west and southwest. Grab samples from borings SB-34 through SB-37, and recently installed wells MW-7 and MW-10, which are situated further to the west/southwest, contained relatively low levels of MTBE up to a maximum concentration of 57 μ g/L. Groundwater samples collected following purging from wells MW-7 and MW-10 during the second and third quarter 2006, which may be considered more representative of subsurface conditions, contained low levels of TPHg (95 μ g/L in MW-7, third quarter 2006) and MTBE (17 μ g/L in MW-7 and 3.9 μ g/L in MW-10 in the second quarter 2006).

REMEDIAL PERFORMANCE SUMMARY

Oxygen releasing compound was placed in MW-5 in 1999. Oxygen releasing compound (360 pounds) was also placed in the bottom of the UST pit during the tank removal in 2000.

SECOR performed a DPE Pilot Test at the site on November 5 through November 10, 2001. DPE was performed using a 20-hp liquid-ring vacuum pump connected to an H2Oil Thermal Oxidizer (Therm-ox) for abatement of the extracted soil vapors prior to discharge to the atmosphere. DPE tests were performed on well MW-3 for 5.5 hours, RW-1 for 14

Mr. Donald Hwang November 6, 2006 Page 7

hours, and simultaneously on wells MW-3 and RW-1 for 72 hours. The total DPE time was approximately 100 hours. Applied vacuum was approximately 25 inches of mercury, and maximum vapor flow rates ranged from 51.25 cubic feet per minute (cfm) for MW-3 to 155.22 cfm for MW-3 plus RW-1. Groundwater extraction flow rates ranged from 0.05 to 0.5 gallons per minute. Influent vapor concentrations ranged from 5,200 parts per million by volume (ppmv) of TPHg, 150 ppmv of benzene, and 370 ppmv of MTBE at the start of the test (from well RW-1) to 440 ppmv of TPHg, 1.2 ppmv of benzene, and 8.1 of ppmv MTBE near the end of the test (well RW-1). Based on influent vapor concentrations, average flow rates, and the duration of the test an estimated 36.55 pounds of TPHg, 0.56 pounds of benzene, and 0.47 pounds of MTBE were removed from the subsurface. The estimated radii of influence for MW-3 and RW-1 ranged from 15 to 55 feet and 48 to 85 feet, respectively.

SECOR installed a portable DPE system during the first quarter of 2006. The DPE system well network consists of wells MW-3, MW-5, and RW-1. The DPE system consists of a 100-gallon liquid/vapor separator, a Solleco 350- standard cubic feet per minute (scfm) thermo/catalytic oxidizer with a Travani 25-hp liquid ring pump, a 6,500 gallon Baker tank with secondary containment, and a 1,000 gallon propane tank for the generator and abatement of the oxidizer. The system was connected to electrical power from the vacant Kragen building on July 25, 2006. The system operates under Bay Area Unified Air Quality Management District Permit to Operate (PTO) for Plant #13708, issued on October 26, 2005. Currently, the DPE system is operating at the site, and will continue to operate during the fourth quarter of 2006 until permission is granted to shut the system down.

The system was started up on March 20, 2006. Near the end of the Third quarter 2006, the system had removed approximately 397,450 gallons of groundwater from beneath the site. During the third quarter 2006, the DPE system was approximately 89% operational, and ran for approximately 1451 hours.

On July 11, August 1, and September 5, 2006, samples were collected from the groundwater influent. After collection, the samples were placed in an ice chilled cooler for transport under chain-of-custody (CoC) documentation to a California State-certified analytical laboratory (Severn-Trent). The samples were analyzed for TPHg, benzene, toluene, ethylbenzene, total xylenes, MTBE, DIPE, ETBE, TAME, TBA, ethanol, 1,2-DCA, and EDB by EPA Method 8260.

On July 11, 2006, laboratory vapor samples were collected from the well field influent and oxidizer effluent vapor streams for analysis of TPHg, benzene, toluene, ethylbenzene, total xylenes, and MTBE under EPA Method TO-3. The air samples were sent under CoC documentation to a California State-Certified analytical laboratory (Severn-Trent). On July 17, laboratory samples were collected from MW-3, MW-5, and RW-1 influent streams for SECOR's *No Further Action Analysis and Human Health Risk Assessment* report, dated October 5, 2006. These samples were analyzed for TPHg, benzene, toluene, ethylbenzene, total xylenes, and MTBE by EPA Method 8260. On August 1, and September 5, 2006, laboratory vapor samples were collected from the well field influent and oxidizer effluent vapor streams for analysis of TPHg, benzene, toluene, ethylbenzene, total xylenes, and MTBE under EPA Method 8260. The air samples were sent under COC documentation to a California State-Certified analytical laboratory (Severn-Trent).

Mr. Donald Hwang November 6, 2006 Page 8

During the third quarter 2006, through groundwater extraction (GWE), the system removed an approximate total of 0.076 pounds (0.0012 gallons) of TPHg, 0.015 pounds (0.002 gallons) of MTBE, and 0.014 pounds (0.002 gallons) of TBA. Soil vapor extraction (SVE) removed approximately 4.74 pounds (0.78 gallons) of TPHg, and 0.05 pounds (0.01 gallons) of MTBE.

Through GWE, a total of approximately 397,450 gallons of water have been removed since system start-up. The DPE system (GWE and SVE combined) has removed approximately 6.793 pounds (1.11 gallons) of TPHg, 0.154 pounds (0.025 gallons) of MTBE, and 0.023 pounds (0.003 gallons) of TBA.

DPE system operation and analytical data are presented in Tables 2 through 7. Illustrations of chemical concentrations and mass removal versus time are shown on Figures 2 through 5. DPE O&M analytical data and field data sheets are included in Attachment 2.

REMEDIAL PERFORMANCE DISCUSSION

Mass recovery rates from the remediation system are low for feasible DPE and are likely to continue to be low due to residual levels of hydrocarbon constituents in the groundwater and soil vapors. DPE is an effective strategy for removing residual contamination underneath the site; however, influent vapor and groundwater concentrations are low despite a high vapor radius of influence. The low mass removal rates indicate a low mass of contaminants below the site. SECOR recommends shutting the DPE system down during the fourth quarter, and allowing natural attenuation of residual contamination.

During the third quarter 2006, the system was 89% operational. Target recently granted access to electrical power at the vacant Kragen building. On July 25, the generator was removed, and the system was restarted with electrical power accessed from the vacant Kragen building. Downtime for the DPE system was attributed to oil in the generator crankcase, high level shut-offs from the sensors in the receiving tank containing the effluent water, and an air pressure alarm. Extracted groundwater was held on site in a large tank which was emptied and transported offsite daily for proper disposal.

RECENT SUBMITTALS/CORRESPONDENCE

Submitted:

Quarterly Summary and Monitoring Report - Second Quarter 2006, dated August 30, 2006.

No Further Action Analysis and Human Health Risk Assessment, dated October 6, 2006.

WASTE DISPOSAL SUMMARY

The disposal of purged groundwater during the quarterly groundwater monitoring event was documented in TRC's Quarterly Monitoring Report, July through September 2006, dated September 20, 2006 (Attachment 1). Approximately 242,690 gallons of water removed by the DPE system were transported by Veolia Environmental Services to the ConocoPhillips

Mr. Donald Hwang November 6, 2006 Page 9

refinery in Rodeo, California. A log of the volume of transported water in contained in Attachment 3.

THIS QUARTER ACTIVITIES (Third Quarter 2006)

- 1. TRC conducted quarterly groundwater monitoring and sampling.
- 2. SECOR prepared and submitted quarterly summary report.
- 3. SECOR operated dual-phase extraction system.
- SECOR submitted a human health risk assessment and no further action analysis report.

NEXT QUARTER ACTIVITIES (Fourth Quarter 2006)

- 1. TRC to perform quarterly groundwater monitoring and sampling.
- 2. SECOR to prepare and submit quarterly summary and monitoring report.
- 3. SECOR to perform an updated sensitive receptor survey.
- SECOR to request site closure.

Mr. Donald Hwang November 6, 2006 Page 10

LIMITATIONS

This report has been prepared for the exclusive use of ConocoPhillips and its representatives as it pertains to the property located at 15599 Hesperian Drive, San Leandro, California. The evaluation of subsurface conditions at the site for the purpose of this investigation is inherently limited due to the number of points of investigation. There are no representations, warranties, or guarantees that the results are representative of the entire site. Data from this report reflects the conditions at locations at a specified time. No other interpretation, representations, warranties, guarantees, express or implied, are included or intended in the report findings. SECOR makes no warranties or guarantees for the groundwater monitoring report (Attachment 1) prepared by TRC, and work performed by other consultants.

Sincerely, SECOR International Incorporated

M. Boulu

Matthew Battin Project Scientist

Diane M. Barclay, C.H.G.

Senior Geologist

Adrian Pérez, P.E. Associate Engineer

Mr. Donald Hwang November 6, 2006 Page 11

Enclosures:

Figures:	Figure 1	Groundwater Flow Direction Rose Diagram
_	Figure 2	Temporary DPE Influent Soil Vapor Concentrations
	Figure 3	Temporary DPE Soil Vapor Mass Recovery
	Figure 4	Temporary DPE Influent Groundwater Concentrations
	Figure 5	Temporary DPE Groundwater Mass Recovery
Tables:	Table 1	Historical Groundwater Gradient and Flow Direction
	Table 2	Temporary Dual Phase Extraction System-Operating Data
	Table 3	Temporary Dual Phase Extraction System - Soil Vapor
		Influent Analytical Data and Mass Recovery
	Table 4	Temporary Dual Phase Extraction System - Soil Vapor
		Emissions Data
	Table 5	Temporary Dual Phase Extraction System-Well Status Data
	Table 6	Temporary Dual Phase Extraction System – Groundwater Analytical Data
	Table 7	Temporary Dual Phase Extraction System - Groundwater Mass Recovery
Attachments:	Attachment 1	TRC's Quarterly Monitoring Report – July Through September 2006, dated October 18, 2006
		•
	Attachment 2	O&M Analytical Data, Field Data Sheets, and Laboratory Reports

Mr. Donald Hwang November 6, 2006 Page 12

REFERENCES CITED

- Gettler-Ryan, Incorporated. 2000. Underground Storage Tank and Product Piping Removal Report for Former Tosco 76 Service Station No. 7004, 15599 Hesperian Boulevard, San Leandro, California. September 8
- Gettler-Ryan, Incorporated. 2001a. Limited Phase I Environmental Site Assessment at Former Tosco (76) Service Station #7004, 15599 Hesperian Boulevard, San Leandro, California. June 8.
- Gettler-Ryan, Incorporated. 2001b. Transmittal of Well Survey Results, Site Information Summary, and Request For Closure for the Tosco (76) Service Station No. 7004, 15599 Hesperian Boulevard, San Leandro, California. September 27.
- Gettler-Ryan, Incorporated. 2002. Subsurface Investigation Report for Former Tosco (76) Service Station No. No. 7004, 15599 Hesperian Boulevard, San Leandro, California. November 26.
- Kaprealian Engineering, Incorporated. 1990. Soil Sampling Report, Unocal Service Station #7004, 15599 Hesperian Boulevard, San Leandro, California, November 26.
- Kaprealian Engineering, Incorporated. 1991a. Preliminary Groundwater Investigation at Unocal Service Station #7004, 15599 Hesperian Boulevard, San Leandro, California, May 31.
- Kaprealian Engineering Incorporated. 1991b. Continuing Groundwater Investigation at Unocal Service Station #7004, 15599 Hesperian Boulevard, San Leandro, California. August 16.
- Kaprealian Engineering Incorporated. 1992a. Continuing Groundwater Investigation and Quarterly Report, Unocal Service Station #7004, 15599 Hesperian Boulevard, San Leandro, California, May 29.
- Kaprealian Engineering Incorporated. 1992b. Aquifer Pumping Test Report at Unocal Service Station #7004, 15599 Hesperian Boulevard, San Leandro, California. November 16.
- Pacific Environmental Group. 1996. Well Survey Results, Unocal Service Station 7004, 15599 Hesperian Boulevard, San Leandro, California, June 24.
- SECOR International Incorporated. 2002. Dual-Phase Extraction Summary Report. Former Tosco Station #7004, 15599 Hesperian Boulevard, San Leandro, California. January 3.
- SECOR International Incorporated. 2005a. Addendum to October 14, 2004 Work Plan for Additional Off-Site Monitoring Well Installation, Former 76 Service Station No. 7004, 15599 Hesperian Boulevard, San Leandro, California. May 12.

Mr. Donald Hwang November 6, 2006 Page 13

- SECOR International Incorporated. 2005b. Site Assessment Report for Former 76 Service Station No. 7004, 15599 Hesperian Boulevard, San Leandro, California. October 5.
- SECOR International Incorporated. 2006a. Additional Site Assessment Report for Former 76 Service Station No. 7004, 15599 Hesperian Boulevard, San Leandro, California. April 3.
- SECOR International Incorporated, 2006b. Initial Start-up Report, Former ConocoPhillips Site No. 7004, 15599 Hesperian Boulevard, San Leandro, California. April 17.
- SECOR International Incorporated. 2006c. Work Plan For Offsite Assessment. Former 76 Service Station No. 7004, 15599 Hesperian Boulevard, San Leandro, California. June 30.
- SECOR International Incorporated. 2006d. No Further Action Analysis and Human Health Risk Assessment. Former 76 Service Station No. 7004, 15599 Hesperian Boulevard, San Leandro, California. October 5.

FIGURES

Figure 1
Groundwater Flow Direction Rose Diagram

Former 76 Service Station No. 7004 15599 Hesperian Boulevard San Leandro, California

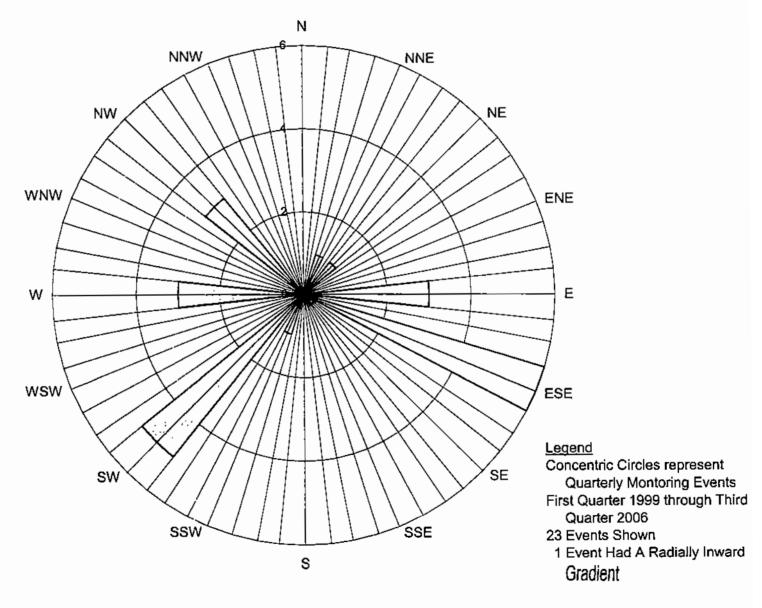
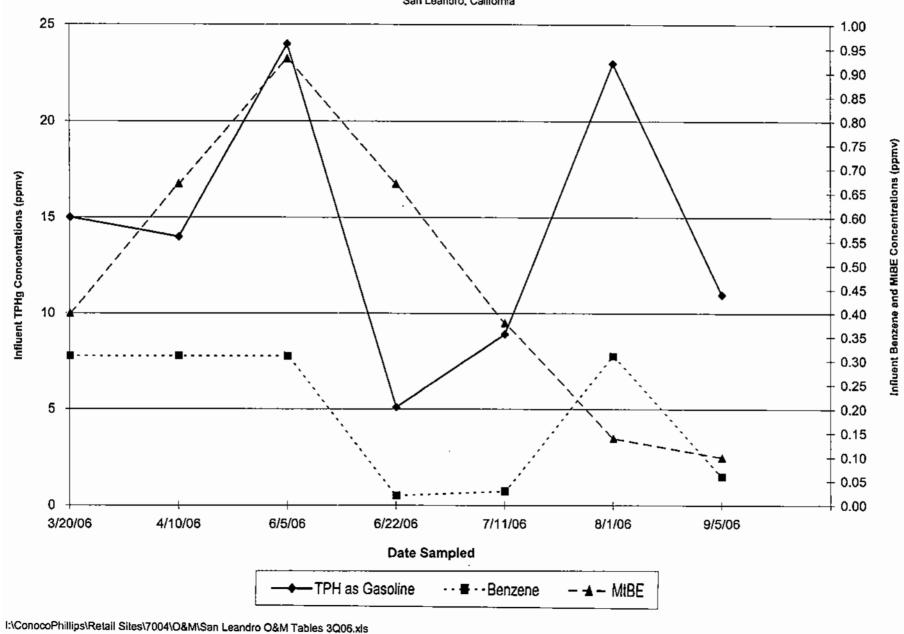



Figure 2
Temporary DPE Influent Soil Vapor Concentrations

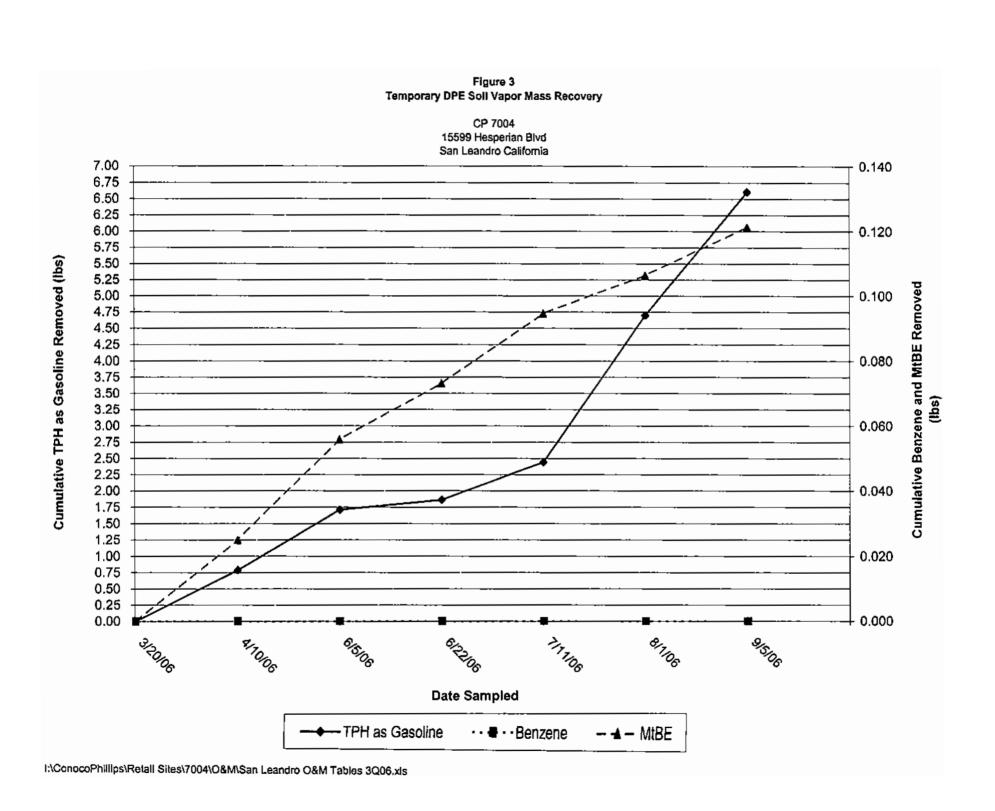
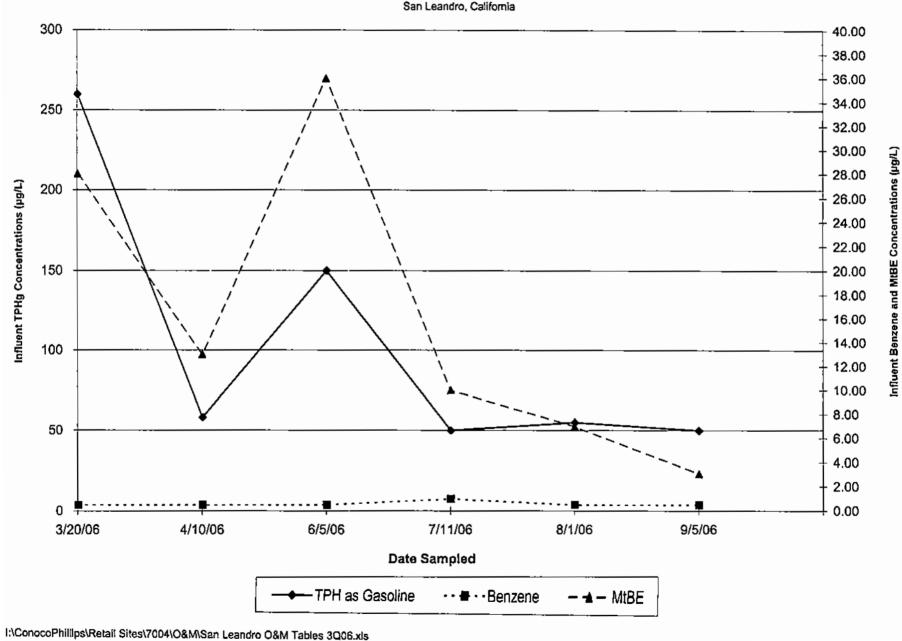
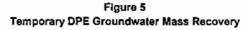
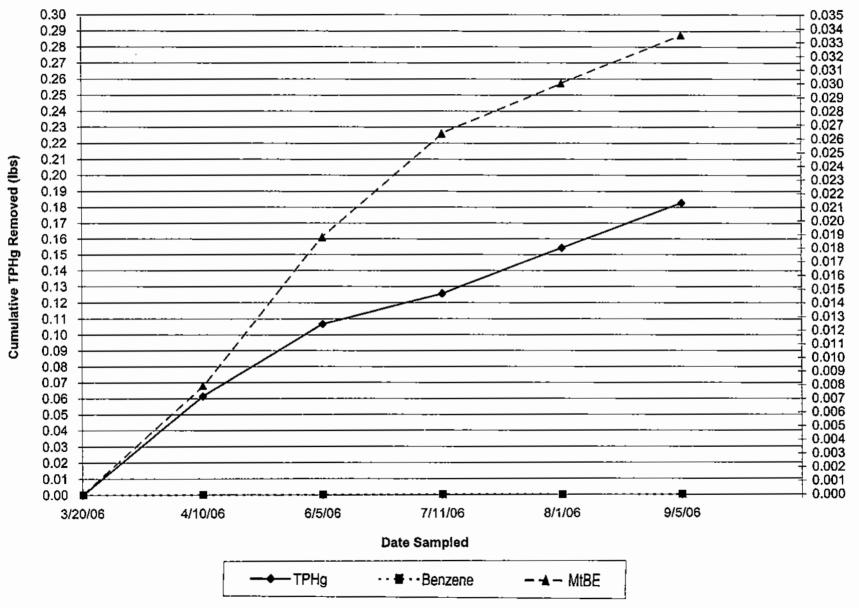





Figure 4
Temporary DPE Influent Groundwater Concentrations

Cumulative Benzene and MTBE Removed (lbs)

TABLES

TABLE 1 Historical Groundwater Gradient and Flow Direction

Former 76 Service Station No. 7004 15599 Hesperian Boulevard San Leandro, California

Well No.	Monitoring Date	Average - GWE	Groun			3		Z. 26			Ground	water l	Flow D		i di					
1.5				er foot)	i N资	NNE	ENE:			ESE	SE	SSE	_s.					WNW		NNW
	01/11/99	22.59	0.003	-	0	0	0	0	0	1	0	0	Q	0	0	0	0	0	0	0
	01/04/00	22.56	0.006		0	1	0	0	0	0	0	٥	0	0	0	0	Ō	0	٥	٥
	07/15/00	22.92	0.010	_	0	0	٥	0	1	0	0	0	0	0	0	0	0	0	Ō	٥
	01/19/01	23.37	0.007	_	0	0	0	0	1	0	٥	0	0	0	0	0	o	0	ō	ō
	07/31/01	21.89	0.003	-	0	0	0	0	1	0	0	0	0	0	0	Ô	0	Ö	Ô	0
	01/28/02	23.38	0.003		0	0	0	0	0	1	0	0	0	0	0	0	0	0	٥	Ó
	04/22/02	23.47	0.006		0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	05/24/02	23.10	0.005	-	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
	08/29/02	22.18	0.003	-	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
	01/24/03	24.26	0.002		0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
	04/18/03	23.83	0.003	- '	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
	07/18/03	22.40	0.005	'	0	0	0	0	0	0	0	0	0	1	0	0	0	0	٥	0
	10/01/03	21.70	0.004		0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
	01/30/04	23.08	0.004	-	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
	04/26/04	23.53	0.004		0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
	07/28/04	22.46	0.003		0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
	10/19/04	21.93	0.005	-	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
	01/05/05	23.34	0.001	-	0	0	0	0	0	0	0	0	0	0	0	0	٥	0	1	0
	06/14/05	24.66	0.003	-	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
	09/29/05	23.02	0.003	-	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
	12/02/05	22.68	0.006		0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
	03/21/06	24.74	0.010	-	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
	05/25/06	26.09	0.020	•	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	08/25/06	24.16	0.010	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
		23.22	0.005	Average	0	1	1	0	3	6	0	0	0	1	5	0	3	0	3	0

Explanation

Number of Events 24 Events, one with (*) radially inward gradient.

Source: Historical Groundwater Gradient Maps from TRC and Gettler-Ryan Inc.

Table 2 Temporary Qual Phase Extraction System-Operating Data

Former 76 Station #7004 15599 Hesperian Blvd San Leandro, California

Date	Notes	Hourmeter Reading	Totalizer Reading	Well Fleid Temperature	System Vacuum	Flow	Flow Rate	MW-3 FID	MW-5 FID	RW-1	Well Fleid	Marie
		(hours)	(gallons)		(InHo)	(actm)	(ecim)	(comv)	(рртту)	(ppmy)	(ppmy)	
3/20/06	a	12,076.5	43,900	60	26	57,0	8	51.1	60.2	15.0	60	
3/27/06	i	12,099,8	54,000	60	26	62.9	9	398	167	17.9	389	
4/10/06	b,c	12,345.4	90,210	60	25	79.5	13	51	365	87.2	59.1	
4/17/06	d	12,464.8	114,700	_		_		_	_			
6/1/06	8	12,464.8	114,700	79.1	25	77.2	13	380.2	140.0	14.0	375	
6/5/06	1.1	12,557.7	126,390	78.1	25	70.1	11	109	75 F/Q	25 F/Q	100 F/O	
6/9/06		12,581,9	131,450					! -		_	_	
6/12/06		12,604.2	136,030			_						· ··——
6/22/06	8	12,650,0	145,670	75.2	25	68.2	11	104.2	4.2	7.5	103	
6/26/06	h_	12,725.8	159,240	98	25	71.2	11					<u>-</u>
7/6/06		12,963,1	198,660	70,2	25	69.2	11	39	22		20	
7/11/06		13,085.4	217,320	70	_25	69.2	11	21.2	15,9	9	20	
7/17/06	ƙ	13,123,7	224,120	87.2	25	77.2	12	90 F/O	72.1 F/O	12.5 F/O	80 F/O	
7/25/06	[-T]	13,311.0	254,500	_		_	-					l——
8/1/06		13,476,4	279,870	72.1	24	79.9	16	21.2	19.5	11.0	14.7	
8/8/06		13,644.9	301,300	77.2	26	60.2	8	30.5	10,2	5,1	27.1	
8/24/06		14,028,0	383,550	87,2	25	68.0	11	361.5	38.2	66.7	311.5	
8/29/06	m	14,078.5	391,404	59	24	38.8	8	28	4		3	·
9/5/06		14,247.5	415,990	79,9	24	72,5	14	77.3	54.3	62.1		
9/12/06		14,414.0	441,350	87.2	23	81.2	18	71.2	47,5	60.5	65	
								-		<u> </u>		_

		Third	

۱	Period Operation (hours):			1,451
ı	Period Operation (hours): Period Operational (%): Period Extracted (gale):			89%
ı	Period Extracted (gals):	المرواز والإيران سود	100	242,69

Period Average Discharge Rate (gpm): Total Operation (hours):

Total Operational (%): 55% Total Liquid Extracted Historical (gais): 397,45 Average Historical Discharge Rate (gpm): 2.2

	-	7.1	_		=
De	ш	เหน	OΓ	15	:

InHg

ppmv

scſm

gals

[]

gpm

muuona.		Equations.	
	Data not available or not applicable	[1]	$ACFM \cdot T_{ud} \cdot (P_{abs})$
acím	Actual cubic feet per minute	SCF	
*F	Degrees Fahrenheit		$n = \frac{1}{(460+T) \cdot P_{aim}}$
EIO	Flores Indication Detactor	T Tamas	rature of alandord acadition

FID Flame fortization Detector T_{std} Temperature at standard conditions (528 Rankine)
F/O Flame Out P_{***} Atmospheric pressure at standard conditions minus

P₈₀₀ Atmospheric pressure at standard conditions minus manifold vacuum (inHg)

P_{stm} Atmospheric pressure at slandard conditions (29.92 InHg).

T Manifold vapor temperature reading (°F).

Notes:

a = system start-up on 3/20/06

Parts per million by volume

Standard cubic feet per minute

Indicates reference to equation

Inches of mercury

Gallons Per Minute

- b = effluent reporting limits are assumed as the effluent concentration; vapor control system efficiency equation is not an accurate reflection of actual system efficiency
- c = system down and restarted, set slurp tubes to top of casing
- d = system down, generator unoperational and needs to be replaced
- e = new generator installed and system restarted
- f = system down, high level switch on baker tank triggered shut down of system on 6/4/06, system restarted
- g = system resampled on 6/21/06 w/ less 10 ppmv reporting limits
- h = system down, generator shut down due to high water temperature, system cooled down and restarted
-) =system down upon arrival due to oil/water in generator crankcase, system restarted
- k =system down upon arrival, high level switch on baker tank triggered shut down, system restarted
- I =new PG&E electrical connection installed and generalor removed
- m =system down upon arrival due to air pressure alarm, system restarted

Permits:

Air emissions are permitted under Bay Area Air Quality Management District Application Number 13031 and MTS Plant Number 13708.

Table 3 Temporary Dual Phase Extraction System - Soil Vapor Influent Analytical Data and Mass Recovery

Former 76 Station #7004 15599 Hesperian Blvd San Leandre, California

2.50		: 1	397 N	Wel	1,550	er ez lintk	ent Con	contration	10	77. · · ·	/*: * .?	ost forth	PHg Reco	very.	Size 1800	zane Rac	overy V	2806	IBE RACO	MEV.
Deta Sampled	Sample ID	Notes	Hour Meter Reading (hours)	Field Flow Rate (scim)	TP74g (omego)	Benzene (ppmv)	Toluene (ppmv)	Ethyl- benzone (ppmv)	Total Xylenes (ppmv)	Minise (Opiniv)	VOC (Spiny)	Recovery Rate (the/day)	Period Net Recovery (to) [2]	Qumillative Recoverey (be) [3]	Racovery Raje (toe/day)	Period Ne Recovery (toe) [2]	Cumulative Recovery (toe) [3]	Recovery Rule		Cumulative
3/20/2008	INF		12076.5	12	15	40,31	<0.26	40 23	<0.23	0.40	18.43	0.00	0.00	0,00	0.00	0.00	0.00	0.00	0.00	0 00
4/10/2006	INF		12,345 4	13	<14	40,3f	<0.28	0.27	<0.23	0.67	15.74	0.07	0.79	0.79	0.00	0.00	000	0.00	0.03	0.03
8/5/2006	IÑF		12,557,7	11	24	40.31	<0.26	€0.23	<0.23	0.93	25 24	0,10	0.92	1.71	0.00	0,00	0.00	0.00	0.03	0.08
6/22/2008	INF		12,725 8	11	5.1	<0.02	0.031	<0.02	<0.02	0,87	5.66	0.02	0.15	1.66	0.00	0.00	0.00	0.00	0 02	0.07
7/11/2008	INF		13,085.4	11	8.9	0.029	0,051	0,14	0,030	0.38	9.53	0.04	0.58	2.45	0.00	0.00	0.00	0.00	0.02	0.09
B/1/2006	INE		13,478.4	16	23,0	<0.31	<0.26	<0.23	<0.23	<0.14	23.45	0.14	2 26	4.70	0.00	0.00	0.00	0.00	9.01	0.11
9/5/2008	INF		14,247.5	14	11.0	<0.08	<0.05	<0.05	0.05	0.10	11,21	80.0	1.90	6.61	0 00	0.00	0.00	0.00	0.01	0.12
REPORTING	,							•		, .		.,	•	·· ,	7.7	10/21				· · ·
Period Pour Period Gallo				, 0		रे क्या दुवस्तु इ.स. १९५५	ئىلمۇندۇمۇر	وران جرو		Sp. Los	uga d	÷(yora, in	0.78	en jagg	10 9/40	0.00	January.	. 5- .	0.05 0.012	والمرافق والمواجع
Total Pound: Total Gallery					٠						z_{i}, \hat{Q}		6.61		134	0.00	1.7	-:;	0.12	

Definitions:

Ibs MIBE

Methyl lort-butyl ether Parts per million by volume DOMY Standard cubic feet per minute

scim TPHo Total petroloum hydrocarbons as pasoline

VOC Volable organic compound

Notes:

Molecular Weiehla: TPHQ Benzene 102 g/mol 78 g/mol MtBE

Densities:

Density of Gasoling 6.1 (b)gal Density of Senzence 7.4 (bigal Density of MtBE= 6.18 lb/gal

Equations:

[1] Recovery Rate
$$\left(\frac{Ib}{day}\right)$$
 = $\frac{\text{Concentrat ion (ppmv)} \cdot \text{Molecular Weight } \cdot \text{Flow}\left(\frac{R^3}{\min}\right) \cdot 60\left(\frac{\min}{\text{hour}}\right) \cdot 24\left(\frac{\text{hour}}{\text{day}}\right)}{V_{\text{Mol}}\left(R^3\right) \cdot 10^4}$

[2] Period Net Recovery (lbs) =
$$\frac{\text{Recovery Rate}\left\{\frac{\text{lb}}{\text{day}}\right\} \left(\text{How Meter Reading , - How Meter Reading }_{1-1}\right) \left(\text{how}\right)}{24 \left(\frac{\text{hour}}{\text{day}}\right)}$$

- [3] Cumulative Recovery (lbs) = Period Net Recovery (lbs)
- [4] Period Pounds Removed (lbs)=Reporting Period Net Recovery (lbs)
- Period Gallons Removed (gallons) = $\frac{\text{Period Pounds Removed (lbs)}}{\text{Density}\left(\frac{\text{lb}}{\text{gal}}\right)}$ [5]
- [6] Total Pounds Removed (lbs) = Cumulative Recovery (lbs)
- Total Gallons Removed (gallons) = $\frac{\text{Total Pounds Removed (lbs)}}{\text{Density}\left(\frac{\text{lb}}{\text{gal}}\right)}$ [7]

V = Valume of 1.0 mole of an ideal gas is 386.6 ft³ at 70° F and 29.92 in lig

Table 4 Temporary Dual Phase Extraction System - Soil Vapor Emissions Data

Former 76 Station #7004 15599 Hesperian Blvd San Leandro, California

			-	Total		•						VOC En	nissions	Веплепе	Emissions
Date Sampled	Sample ID	Notes	Meter Reading	System Flow Rate (scfm)		Benzene (ppmv)	Toluene (ppmv)	Ethyl- benzene (ppmv)		I		Emissions Rate (lbs/day)	Cumulative Emissions (lbs)	Emissions Rate (lbs/day)	Cumulative Emissions (lbs)
3/20/2006	EFF	a,b	12,076.5	12	<14	<0.31	<0.26	<0.23	<0.23	<0.14	15.17	0	0	0	0
4/10/2006	EFF		12,345.4	13	<14	<0.31	<0.26	<0.23	<0.23	<0.14	15.17	0.07	0.82	0.001	0.01
6/5/2006	ËFF		12,557.7	11	<14	<0.31	<0.26	<0.23	<0.23	<0.14	15.17	0.07	1.46	0.001	0.02
6/22/2006	EFF	С	12,725.8	11	1.8	<0.020	0.022	<0.020	<0.020	<0.020	1.90	0.01	1.59	0.000	0.02
7/11/2006	EFF		13,085.4	11	2.4	0.030	0.040	<0.020	0.025	<0.020	2.54	0.01	1.83	0.000	0.03
8/1/2006	EFF		13,476.4	16	<5	<0.31	<0.26	<0.23	<0.23	<0.14	6.17	0.04	2.99	0.001	0.07
9/5/2006	EFF	ı	14,247.5	14	<1.0	<0.062	<0.052	<0.046	<0.046	<0.028	1.23	0.01	3.31	0.000	0.08

Definitions: lbs

Pounds

MTBE Methyl tert-butyl ether

Parts per million by volume ppmv Standard cubic feet per minute scfm

TPHa Total petroleum hydrocarbons as gasoline VOCs Total Number of Volatile organic compounds Permit Conditions (Application No. 13031):

VOC Control Efficiency > 98.5% (For inlet concetrations ≥ 2000 ppmv)

VOC Control Efficiency > 97% (For inlet concetrations > 200 ppmv and < 2000 ppmv)

VOC Control Efficiency > 90% (For inlet concetrations < 200 ppmy)

VOC Control Efficiency Waived for Outlet Efficiencies < 10 ppmv

Notes:

a = system start-up

b = effluent reporting limits are assumed as effluent concentration; vapor control system efficiency is not an accurate reflection of system efficiency

c = outlet efficiencies less than 10 ppmv

* Detection limits assumed to provide a maximum estimate for vapor emissions to the atmosphere, which is a conservative estimate

Table 5
Temporary Dual Phase Extraction System-Well Status Data

			MW-3							MV	/-5					RW-	-1		
		Status	System	Well	Slurp	Flow		Status	System	Weli	Slurp	Flow		Status	System	Well	Slurp	Flow	
		(%	Vacuum	Vacuum	Tube	Rate	FID	(%	Vacuum	Vacuum	Tube	Rate	FID	(%	Vacuum	Vacuum		Rate	FID
Date	Notes	Open)	(in Hg)	(In Hg)	Depth	(gpm)	(ppmv)	Open)	(in Hg)	(In Hg)	Depth	(gpm)	(ppmv)	Open)	(in Hg)	(in Hg)	Depth	(gpm)	(ppmv)
3/20/2006		С			- :			O-100	25	25	20	3	60	С					
3/27/2006		O-100	26	25	TOC	3.9	389	Č.			• •-	·	··]	C		· ·		· ·	··
4/10/2006		C			!			O-100	25	23	TOC	3	365	0-10	25	1.9	TOC	3 ′	87
6/1/2006	<u> }</u>	0-100	26	24	TOC	1	375	O-10	26	2.7	TÔC	0.1	140	C	·			 ·	
6/5/2006		O-10	25	1	TOC	0.1	100 (F/O)	O-100	25	20	TOC	2.9	75 (F/O)	Ç	••		<u>-</u>	· – ·	
6/22/2006		O-100					104.2	O-10		_		•••	4.2	0-10	· · · ·		••	· <u></u>	7.5
6/26/2006		P	20	20	TOC	1.2		0	20		TOC			Р	20		TOC	·-· <u></u> ·	·
7/6/2006		O-100	25	23	TOC	3	39	0-10	25	2	TOC	. 0	22	Q-10	25	2	TÖC	0	- 5 \
7/11/2006		O-100					21.2	O-10					15.9	O-10	·			••	· 9
7/17/2006		O-100	25	20	TOC	2.5	90 (F/O)	Q-20	25	8	TOC	2.5	72.1 (F/O)	C	·	·		· ·	12.5 (F/O)
8/1/2006	a_,	O-100	26	22	1 ft	2.5	32.7	С	-					C		••			· · · · · · · · · · · · · · · · · · ·
8/8/2006		O-100	26	24	Bottom	2.5	30	0-10	26	4	TOC	0.1	10	0-10	26	4	TOC	0.1	-5
8/24/2006		O-100	25	20	Bottom	3	360	С	·					0-30	25	4	TOC	0.5	65
8/29/2006		O-50	24	13.5	Bottom	0.5	28	O-100	24	23.12	TOC	2	4	Ċ	•••				
9/5/2006		0-100	. 23	20	Bottom		70	O-10	23	1	TOC	· ·	50	O-10	23 -	1	TOC	·	60
9/12/2006		O-100	23	20	Bottom		70	O-20	23	4	TOC		50	O-20	23	4	TOC	••	· 60 · \

<u>Definitions:</u>	
_	Not measured or not applicable
С	Closed
FID	Flame Ionization Detector
F/O	FID flame out
gpm	Gallons per minute
in Ha	Inches of mercury

O Open
P Partially Open

ppmv Parts per million by volume

Notes:

Slurp tube located 1 ft from bottom

Table 6 Temporary Dual Phase Extraction System - Groundwater Analytical Data

CP 7004 15599 Hesperian Blvd San Leandro, California

Date Sampled	Sample ID	Notes	TPHg (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)	MTBE (µg/L)	DIPE (µg/L)	ETBE (µg/L)	TAME (µg/L)	TBA (µg/L)	EDB (μg/L)	1,2-DCA (μg/L)	Ethanol (µg/L)
3/20/2006	KO	!	260	<0.50	<0.50	1.6	<1.0	28	<1.0	<0.50	<0.50	18			
4/10/2006	КО		58	<0.50	<0.50	0.58	<1.0	13	<1.0	< 0.50	<0.50	14		· ·	
6/5/2006	КО		150	<0.50	<0.50	1.6	<1.0	36	<1.0	<0.50	<0.50	10	<u></u>	•	·
7/11/2006	KO		<50	<1.0	<1.0	<1.0	<1.0	10	<2.0	<2.0	<2.0	<25	<1.0	<1.0	<500
8/1/2006	КО	<u> </u>	55	<0.50	<0.50	<0.50	<1.0	7.0	<1.0	<0.50	<0.50	<5.0	<0.50	0.85	<100
9/5/2006	КО		<50	<0.50	<0.50	<0.50	<1.00	3.1	<1.0	<0.50	<0.50	<5.0	<0.50	<0.50	<250

ef	į	ni	tic	n	:
			_	_	_

1,2-DCA
DIPE
Diisopropyl ether
EDB
Ethylene dibromide
ETBE
Ethyl tertiary-butyl ether
ug/L
Micrograms per liter
MTBE
Methyl tert-butyl ether

TAME Tertiary-amyl methyl ether TBA Tertiary-butyl alcohol

TPHg Total petroleum hydrocarbons as gasoline (gasoline range organics)

KO Knockout

Table 7 Temporary Dual Phase Extraction System - Groundwater Make Recovery

CP 7004 15599 Hosperian Blvd San Leandro, Catifornia

1.5	1	riilaant, ju	14.3.500	(24)	WO WELL	illoria Co	needback	70 <u></u>	4600000	PHg Recov	O VER NO TO	ელე ტ. Be	zana Recov	ery.	la de Serial	HE RECOVE	(Y	Co (275)	TBA RECOVE	William I
Data Sampled	Sample ID	Sall Republic	Page 1							Rembries (Sept.)	Curtulative Refroored (tra) , (3)	Partoval Rate (tokiny) [1]	Removed	Curredative Rigneyved (0x) [3]	Response	Period Net Removed (the) 21	Cuminative	Polynoval Poda	Rancyed	Cumilative Removed (0s) [3]
3/20/2008	KO	12076.5			260	<0.5	28	18	0.000	0.000	0.000	0.000	0,000	0 000	0.0000	0.000	0.000	0,0000	0.000	0.000
4/10/2006	ко	12345.4		48,310	54	₹0.50	13	14	0.005	0.001	0.061	0.000	0.000	0.000	0.0007	0.008	0.008	0,0006	0.000	0.008
6/5/2006	<u> </u>	12557.7	126,390	36,180	150	<0.50	36	10	0.005	0.045	0.107	0.000	0.000	0.000	0.0012	0.011	0.018	0,0000	0.000	0.009
7/11/2006	KO	13086.4		90,830	450	₹1.0	10	*25	0.001	0.019	0.126	0.000	0,000	0.000	0.0003	0,008	0.026	0,0004	0.009	0.019
8/1/2095	KO .	13478.4		62,350	55	40.5	7.0	- 45	0.002	0.029	0.154	0.000	0.000	0 000	0.0002	0.004	0 030	0,0001	0.001	0.020
B/5/2006	ко	14247.5	415,890	136,320	<50	40.5	3.1	<\$	0.001	0.028	0,183	0.000	0.000	0.000	0.0001	0.004	0 004	0.0001	0.000	6.023
REPORTING PE Partod Pounds i Partod Galliona i Total Pounds Re Total Galliona Re	Removed (5): ecnowed (6):								The Control of the Co	0.076 0.612 0.183 0.050			0,000 0,000 0,000 0,000			0.015 0.002 0.004 0.005			0.014 0.000 0.025 0.003	AND STATE OF THE S

Definitions:

Pounds MIBE

Motinyl tort-buryl other Not sampled or not analyzed

NA TEA Ten-buryl alcohol

TPHg

Total potroloum hydrocarpons as gasoline

(pg1.) micrograms per Liter

Knockout

Noiss:

Physical Properties: Density of gasoline = 8.1 pounds per gallon Density of classi = 7,18 pounds per gation Density of motor oil = 7,62 pounds per gallon Density of benzone = 7.4 pounds per gallon Density of MIBE = 8.18 pounds per gallon Density of YBA = 6.8 pounds per gallen

Equations:

[1] Removal Rate
$$\left(\frac{\text{lbs}}{\text{day}}\right) = \frac{\text{Period Net Removed (lbs)} \cdot 24 \left(\frac{\text{bour}}{\text{day}}\right)}{(\text{Hour Meter Reading , --Hour Meter Reading , o})}$$

[2] Period Net Removed (lbs) = (Concentrat ion)
$$\left(\frac{\mu g}{L}\right) \cdot 3.785 \left(\frac{L}{gallon}\right) \cdot 2.205 \times 10^{-1} \left(\frac{lbs}{\mu g}\right) \cdot Period Extracted (gallons)$$

- [3] Camulative Removed (lbs) = (Period Net Removed)(lbs) + Camulative Removed (lbs)
- Period Pounds Removed (lbs)= \(\sum \) Period Net Removed (lbs)
- Period Gallons Removed (gallons)= Period Pounds Removed (lbs)

 Density of Constituen t | lbs gallon
- Total Pounds Removed (lbs)=Cumulative Adsorbed (lbs)
- Total Gallons Removed (gallons) = Total Pounds Removed (lbs)

 Density of Constituen 1 | lbs gallon

in order to show boat estimate, recovery calculations assume one-half of the laboratory reporting limit when an analyte is reported as non-detect.

ATTACHMENT 1 TRC'S QUARTERLY MONITORING REPORT JULY THROUGH SEPTEMBER 2006

Quarterly Status and Remediation Summary Report – Third Quarter 2006 Former 76 Service Station No. 7004 15599 Hesperian Boulevard

San Leandro, California

SECOR Project No.: 77CP.01631.00.0304

November 6, 2006

SEE TRC's 2Q06 QSR & QRSR

ATTACHMENT 2 O&M ANALYTICAL DATA, FIELD DATA SHEETS, AND LABORATORY REPORTS

Quarterly Status and Remediation Summary Report - Third Quarter 2006 Former 76 Service Station No. 7004 15599 Hesperian Boulevard San Leandro, California

SECOR Project No.: 77CP.01631.00.0304 November 6, 2006 Project Number: 77CP.67004.03.0006

Temporary DPE System-O&M

Field Data Sheet

CP 70 **Q**4 15555 Hesperian B**i** ∨d San Leandro, Califormia

DO NOT OPERATE PAST - Pending Permit To Operate

Part A: System Information

Soil Vapor Abatement Equipment: Solleco 350 TCAT (MTS) (Plant No. 13708)

Liquid Ring Blower: Travaini TRO400S

(Maximum Flow Rate: 350 cfm; Maximum Vacuum: 28 inHg)

Baker Tank: 6500 Gal Tank w/ Secondary Containment

Propane Tank: Amerigas 1000 gallon Tank

Telemetry: NA

Electrical Power: <u>Liquid Propane Generator</u> Supplemental Fuel: <u>Propane Gas at 5 psi</u>

Part B: Permit Information

Air Permit: Bay Area Air Quality Management District; Application No. 13031

Plant Number 13708

Conditions: ·VOC control efficiency > 98% (for influent >2000 ppmv)

·Minimum combustion temperature 1,400 °F

-Propane Gas meter reading obtained weekly.

·Estimated Percent Volume of Baker Tank weekly.

·Monthly effluent FID samples

·Benzene Emissions shall not exceed .25 lbs/day (6.4 lbs/year)

·Chart recorder is recording temperature at all times

and changed as needed.

Part C: System Data

	Upon Arrival	Upon Departure
Date:	7-6-06	
Time:	10:30	

General Data	Upon Arrival	Upon Departure
System Status (Up/Down):	UP	
Hourmeter Reading:	129671	
Totalizer Reading (gallons):	198166	
Estimated % Volume of Baker Tank(%):	7-00/0	
Propane (x1000 ft³)	55%0 (50094)	
Blower Vacuum (inHg):	25	

Completed By:

Date: 7/

Temporary DPE System-O&M

Field Data Sheet

CP 70 04 15555 Hesperian BI√d San Leandro, Californa ia

Thermal Oxidizer Data	Upon Arrival	Upon Departur∙e
Oxidizer Setpoint (°F):	14/0	
Operating Temperature: (°F)	1401	
High Temp Setpoint: (°F)	1550	
Auto Dilution Set Point (°F)	15-64	
Oxidizer Inlet Temperature: (°F)	12107	
Oxidizer Exhaust Temperature: (°F)	120	

Soil Vapor Flow Data	Before Adjustment	After Adjustmernt
Well Field		_
·Temperature (°F):	70.2	
·Vacuum (inHg):	75	
·Flow Rate (acfm):	65.2	
Dilution		
·% Open:	0	
·Temperature (°F):		
·Vacuum (inHg):		
Flow Rate (acfm):		
Total System	·	
·Temperature (°F):	70.2	
·Vacuum (inHg):	75	
·Flow Rate (acfm):	G1. 2	
Effluent	4/	
Temperature (°F):	MA	
·Pressure (inHg):		
·Flow Rate (acfm):		

FID Data	Before Adjustment	After Adjustment
Well Field (ppmv):	20.0	700
Dilution (ppmv):	.0	4
Total System (ppmv):	20.0	٥ . ن
Effluent (ppmv):	0.0	00
Control Efficiency: (1-(FID Out/FID In))		

Completed By:

Date:

Page 2 of 3

Project Number: 77CP.67004.03.0006

Completed By:

Temporary DPE System-O&M Field Data Sheet

CP 70O4 15555 Hesperian Bl√d San Leandro, Californ ia

Page 3 of 3

Part D: Troubleshooting (Complete if system down on arrival)				
a: Give details of system status (why was system down?):				
b: Give details of actions taken to correct problem:				

Date:

Temporary DPE System-O&M Well Data Sheet

CP 7004 15555 Hesperian Blvd San Leandro, California

Well	FID	Valve Position	Manifold Vacuum (inHg)	System Vacuum (inHg)	Flow Rate (acfm)	Approximate GPM	Line Vacuum (inHg)	Casing Vacuum (inHg)	Slurp Tube Depth	DTP	DTW
						nitial					<u></u>
MW-3	33-01000/	1 ai	25	25	11/4	30	25	11.0	Tu-		
MW-5	12.0	10	3			Ü	2	1.0	1		
RW-1	10	10	3	<u>/</u>		O	7	1.4	0-		
						inal					
MW-3	39.0	100	25	75	MA	3.0	7.3	110	700		
MW-5	22.0	10	75	1	/_	U	·Z.	٠ . ر			
RW-1	5.0	10	3	3/		C.	₹	1.0			

Temporary DPE System-O&M Maintenance Data

CP 70 €04 15555 Hesperian Bl vd San Leandro, California

System Maintenance

	Yes _	No	Corrective Action
Leaks?		×	
Rattles?		~	
Excessive Noise?			
·dB Reading:		×	
Indicator Lights Out?		×	·
Any Faulty Gauges?		Χ̈́	
Abnormal wear and tear?			
Blower Oil Low?	-		122 13
Process Filter Dirty?	apr		1
Dilution Filter Dirty?	بعند		
Linkage and Bearings Greased?			
Bag Filters Replaced?		11/2	
System Automatic Shutdown Activated?			
Did Shutdown Activate Autodialer?	4	5_	
Inspected and Cleaned Pitot Tube(s)?	~		
Chart Paper/Pens Replaced?	4		
Other?			

Compound Maintenance

	Yes	No	Corrective Action
Compound Secure?	≥	_	
Any Debris?		8	
Compound Cleaned?	<u>خ</u>		
Prop 65 Sign Posted?	.×		
Emergency Contact Sign Posted?	×		
Air Permit Posted?	ઍ.		
Discharge Permit Posted?	%/4		
HASP Posted?	χ.		
Fire Extinguisher on site? Date last serviced:	ð		

SERVICE GETI La = 5035.0

_			_
(\cdot, \cdot)	mn	leted	H1/-
VU.	HID.	CCU	DV.

Temporary DPE System-O&M Field Data Sheet

CP 70 04 15555 Hesperian B vd San Leandro, Califor ia

DO NOT OPERATE PAST - Pending Permit To Operate

Part A:	System	Inform	ation

Soil Vapor Abatement Equipment: Solleco 350 TCAT (MTS) (Plant No. 13708)

Liquid Ring Blower: <u>Travaini TRO400S</u>

(Maximum Flow Rate: 350 cfm; Maximum Vacuum: 28 inHg)

Baker Tank: 6500 Gal Tank w/ Secondary Containment

Propane Tank: Amerigas 1000 gallon Tank

Telemetry: NA

Electrical Power: Liquid Propane Generator

Supplemental Fuel: Propane Gas at 5 psi

DUE to DIL/WATER

Part B: Permit Information

Air Permit: Bay Area Air Quality Management District; Application No. 13031
Plant Number 13708

Conditions: ·VOC control efficiency > 98% (for influent >2000 ppmv)

·Minimum combustion temperature 1,400 °F

·Propane Gas meter reading obtained weekly.

·Estimated Percent Volume of Baker Tank weekly.

-Monthly effluent FID samples

·Benzene Emissions shall not exceed .25 lbs/day (6.4 lbs/year)

·Chart recorder is recording temperature at all times

and changed as needed.

Part C: System Data

GEN 1/2 5156

	Upon Arrival	Upon Departure
Date:	3-11-56	7-11-66
Time:	12:w/~	

General Data	Upon Arrival	Upon Departure
System Status (Up/Down):	JP	J / 2
Hourmeter Reading:	130854	
Totalizer Reading (gallons):	217320	
Estimated % Volume of Baker Tank(%):	3040	
Propane (x1000 ft ³):	560 9	8009
Blower Vacuum (inHg):	75	

Photose bois 610 - AMA 30% 2.599

Completed By:

Date:

Page 1 of 3

Temporary DPE System-O&M Field Data Sheet

CP 70▶04 15555 Hesperian B ■vd San Leandro, Califor ia

Thermal Oxidizer Data	Upon Arrival	Upon Departu re
Oxidizer Setpoint (°F):		1400
Operating Temperature: (°F)		1400
High Temp Setpoint: (°F)		1600
Auto Dilution Set Point (°F)		1500
Oxidizer Inlet Temperature: (°F)		1402
Oxidizer Exhaust Temperature: (°F)		1250

Soil Vapor Flow Data	Before Adjustment	After Adjustment
Well Field		
·Temperature (°F):		70.0
·Vacuum (inHg):		75
·Flow Rate (acfm):		69.2
Dilution		4
·% Open:		
·Temperature (°F):		
·Vacuum (inHg):		
·Flow Rate (acfm):		
Total System		
·Temperature (°F):		7 8.0
·Vacuum (inHg):		25
·Flow Rate (acfm):		61.2
Effluent		
·Temperature (°F):		
Pressure (inHg):		
·Flow Rate (acfm):		

FID Data	Before Adjustment	After Adjustment
Well Field (ppmv):		20.0
Dilution (ppmv):		
Total System (ppmv):		20.0
Effluent (ppmv):		0.0
Control Efficiency: (1-(FID Out/FID In))		

Completed By:

Date:

Page 2 of 3

Temporary DPE System-O&M Field Data Sheet

CP 7004 15555 Hesperian B Ivd San Leandro, Califor mia

<u>P</u>	art D: Troubleshooting (Complete if system down on arrival)
a:	Give details of system status (why was system down?):
_	
b:	Give details of actions taken to correct problem:

Completed By:

Date:

Page 3 of 3

Temporary DPE System-O&M Well Data Sheet

CP 7004 15555 Hesperian Blvd San Leandro, California

Well	FID	Valve Position	Manifold Vacuum (inHg)	System Vacuum (inHg)	Flow Rate (ac(m)	Approximate GPM	Line Vacuum (inHg)	Casing Vacuum (inHg)	Slurp Tube Depth	DTP	DTW
	<u> </u>	<u>'</u>			<u> </u>	nitial	-		· · · · · · · · · · · · · · · · · · ·		
MW-3	21.2	1000/0									
MW-5	151	10		· · · · · · · · · · · · · · · · · · ·							
RW-1	9.0	10									
					l	Final			-		
MW-3											
MW-5										<u> </u>	
RW-1_			_								<u> </u>

INF 1616 1617

Temporary DPE System-O&M Maintenance Data

CP 70 •04 15555 Hesperian Bl ∨d San Leandro, Califormia

System Maintenance

	Yes	No	Corrective Action
Leaks?		~	
Rattles?		~	
Excessive Noise?			
dB Reading:		~	
Indicator Lights Out?		V	
Any Faulty Gauges?			
Abnormal wear and tear?		L	
Blower Oil Low?		\	
Process Filter Dirty?	·· <u> </u>	~	
Dilution Filter Dirty?		1	
Linkage and Bearings Greased?			
Bag Filters Replaced?		14-14	
System Automatic Shutdown Activated?		~	
Did Shutdown Activate Autodialer?		NA	
Inspected and Cleaned Pitot Tube(s)?			
Chart Paper/Pens Replaced?		L	
Other?			

Compound Maintenance

	Yes	No	Corrective Action
Compound Secure?	7 2		
Any Debris?		V	
Compound Cleaned?		×	
Prop 65 Sign Posted?		1	
Emergency Contact Sign Posted?	<u>×</u>		
Air Permit Posted?	- X		
Discharge Permit Posted?	N/A	1 -1-	
HASP Posted?			
Fire Extinguisher on site? Date last serviced:	<i>></i>		

Control of Day	Doto	Daga 1 of 1
Completed By:	Date:	Page 1 of 2

Temporary DPE System-O&M

Field Data Sheet

CP 700-4 15555 Hesperian Blv**⊲** San Leandro, Californi**⇒**

DO NOT OPERATE PAST - Pending Permit To Operate

Part A: System Information

Soil Vapor Abatement Equipment: Solleco 350 TCAT (MTS) (Plant No. 13708)

Liquid Ring Blower: Travaini TRO400S

:(Maximum Flow Rate: 350 cfm; Maximum Vacuum: 28 inHg)

Baker Tank: 6500 Gal Tank w/ Secondary Containment

Propane Tank: Amerigas 1000 gallon Tank

SAMPLEZ

Telemetry: NA

Electrical Power: <u>Liquid Propane Generator</u> Supplemental Fuel: <u>Propane Gas at 5 psi</u>

Part B: Permit Information

Air Permit: Bay Area Air Quality Management District; Application No. 13031

Plant Number 13708

Conditions: ·VOC control efficiency > 98% (for influent >2000 ppmv)

Minimum combustion temperature 1,400 °F
 Propane Gas meter reading obtained weekly.
 Estimated Percent Volume of Baker Tank weekly.

·Monthly effluent FID samples

·Benzene Emissions shall not exceed .25 lbs/day (6.4 lbs/year)

·Chart recorder is recording temperature at all times

and changed as needed.

Part C: System Data

	Upon Arrival	Upon Departure
Date:	7-17-06	1-17-00
Time:	1100	<u>(</u>

General Data	Upon Arriva!	Upon Departure
System Status (Up/Down):	POUN	U'
Hourmeter Reading:	13123.7	13125.7
Totalizer Reading (gallons):	22412D	\
Estimated % Volume of Baker Tank(%):	0	· \
Propane (x1000 ft ³):	Carrier 2 500 1100	
Blower Vacuum (inHg):	در مال 🕁	

Completed By:

Date: //

Page 1 of 3

ToP609 15440

Temporary DPE System-O&M Field Data Sheet

CP 700-4 15555 Hesperian Blv**⊲** San Leandro, Californiæ

Thermal Oxidizer Data	Upon Arrival	Upon Departure
Oxidizer Setpoint (°F):	DOWN	1450
Operating Temperature: (°F)	\	1451
High Temp Setpoint: (°F)		1760
Auto Dilution Set Point (°F)		150
Oxidizer Inlet Temperature: (°F)		1451
Oxidizer Exhaust Temperature: (°F)		140

Soil Vapor Flow Data	Before Adjustment	After Adjustmen t
Well Field		· · · · · · · · · · · · · · · · · · ·
·Temperature (°F):		87.2
·Vacuum (inHg):		75.0
·Flow Rate (acfm):		77.2
Dilution		
·% Open:		8
Temperature (°F):		X
Vacuum (inHg):		
Flow Rate (acfm):		
Total System		
·Temperature (°F):		97 1
·Vacuum (inHg):		25.0
·Flow Rate (acfm):		71.2
Effluent		
Temperature (°F):		
·Pressure (inHg):		
·Flow Rate (acfm):		/

FID Data	Before Adjustn	nent After Adjustment
Well Field (ppmv):		84.5 //0
Dilution (ppmv):		
Total System (ppmv):		80.3 1/0
Effluent (ppmv):		0.0
Control Efficiency: (1-(FID Out/FID In))		

flo FID Floria

Completed By:

Date:

Page 2 of 3

Temporary DPE System-O&M

Field Data Sheet

CP 700◀ 15555 Hesperian Blv ♂ San Leandro, Californi ⊜

Part D: Troubleshooting (Complete if system down on arrival)

	or oyotom ou	atus (why was syste	ili dowii: j.	
1 Ligarie	2000	GEN 6WD	Water True	O Salllanj
_	/			
5 TANK	MUST	hAUE high L	EVELEN	
	· · · · · · · · · · · · · · · · · · ·	<i>II.</i>		
				<u> </u>
	of actions tal	ken to correct proble	em.	
: Give details	ui aliiuns (ai			
: Give details	Or actions tal	Restau		
: Give details 	- GEN	Ristai	····	
: Give details <u>SENVICE</u>	- GEN	Ristai	······································	·
: Give details 	- GEN	Ristan		
: Give details 	GEN	Ristan		

Ø

A

1/1

Completed By:

Date:

Page 3 of 3

Temporary DPE System-O&M Well Data Sheet

CP 7004 15555 Hesperian Blvd San Leandro, California

Well	_FID	Valve Position	Manifold Vacuum (inHg)	System Vacuum (inHg)	Flow Rate (acfm)	Approximate GPM	Line Vacuum (inHg)	Casing Vacuum (inHg)	Slurp Tube Depth	DTP	DTW
					11	nitial					
MW-3	10.0	1010	'Z'\(\sigma'\)								
MW-5	72.1	110	5-			T					<u> </u>
RW-1	12.5	10	7						1		
						Final					· -
MW-3	90-0 1/0	1.65	23	23		12.5	20	//	NE		<u> </u>
MW-5	7211	2บ	10	1/		1/	8	7.5	725		
RW-1	12.5 4	0	ن	· V							

Fo: Flac . T

SAMPREL INDU RAW INDU FOR BONINGERICS

INF-MU3 INF-MUS INF-MUS

Completed By:

Date:

Temporary DPE System-O&M Maintenance Data

CP 700-4 15555 Hesperian Blvc San Leandro, Californiæ

System Maintenance

	Yes	No	Corrective Action
Leaks?		1	
Rattles?			
Excessive Noise?			
·dB Reading:			
Indicator Lights Out?		v	
Any Faulty Gauges?			
Abnormal wear and tear?			
Blower Oil Low?			
Process Filter Dirty?		~	
Dilution Filter Dirty?		~	
Linkage and Bearings Greased?	V	_	
Bag Filters Replaced?	n	10	
System Automatic Shutdown Activated?	,		
Did Shutdown Activate Autodialer?	NH		
Inspected and Cleaned Pitot Tube(s)?	V		
Chart Paper/Pens Replaced?	-		
Other?			

Compound Maintenance

	Yes	No	Corrective Action
Compound Secure?	1 25/		
Any Debris?		1	
Compound Cleaned?		>	
Prop 65 Sign Posted?			
Emergency Contact Sign Posted?	25		
Air Permit Posted?	3 ,		
Discharge Permit Posted?	NI		
HASP Posted?	25		
Fire Extinguisher on site? Date last serviced:	8		

Date:

Completed By:

Page 1 of 2

Temporary DPE System-O&M

Field Data Sheet

CP 7004 15555 Hesperian Blvd San Leandro, California

DO NOT OPERATE PAST - Pending Permit To Operate

Part A: System Information

Soil Vapor Abatement Equipment: Solleco 350 TCAT (MTS) (Plant No. 13708)

Liquid Ring Blower: Travaini TRO400S

:(Maximum Flow Rate: 350 cfm; Maximum Vacuum: 28 inHg)

Baker Tank: 6500 Gal Tank w/ Secondary Containment

Propane Tank: Amerigas 1000 gallon Tank

Telemetry: NA

Electrical Power: <u>Liquid Propane Generator</u> Supplemental Fuel: <u>Propane Gas at 5 psi</u>

Part B: Permit Information

Air Permit: Bay Area Air Quality Management District; Application No. 13031

Plant Number 13708

Conditions: VOC control efficiency > 98% (for influent > 2000 ppmv)

·Minimum combustion temperature 1,400 °F

·Propane Gas meter reading obtained weekly.

·Estimated Percent Volume of Baker Tank weekly.

·Monthly effluent FID samples

·Benzene Emissions shall not exceed .25 lbs/day (6.4 lbs/year)

·Chart recorder is recording temperature at all times

and changed as needed.

Part C: System Data

	Upon Arrival	Upon Departure
Date:	8-1-ch	8-1-06
ime:	9 40	-7-w 11

eneral Data	Upon Arrival	Upon Departure
System Status (Up/Down):	UP	UP .
lourmeter Reading:	13476. 4	
otalizer Reading (gallons):	279676	
stimated % Volume of Baker Tank(%):	50%	
'ropane (x 1000 fb)	70%	acil
Hower Vacuum (inHg):	Z4 11	de

Completed	By:
-----------	-----

Temporary DPE System-O&M Field Data Sheet

CP 7004 15555 Hesperian Blvd San Leandro, California

Thermal Oxidizer Data	Upon Arrival	Upon Departure
Oxidizer Setpoint (°F):	1450	1450
Operating Temperature: (°F)	1451	1461
High Temp Setpoint: (°F)	1700	170
Auto Dilution Set Point (°F)	150	1500
Oxidizer Inlet Temperature: (°F)	14/5/	1441
Oxidizer Exhaust Temperature: (°F)	14ω	1431

Soil Vapor Flow Data	Before Adjustment	After Adjustment
Nell Field		
Temperature (°F):	72.1	77.1
Vacuum (inHg):	24	<u> </u>
Flow Rate (acfm):	755	60 O
Dilution	•	
% Open:	· C	0
Temperature (°F):		
√acuum (inHg):		
Flow Rate (acfm):		
otal System		
Femperature (°F):	721	77 (
/acuum (inHg):	24	76
Flow Rate (acfm):	799	600
iffluent	m/a	61/41
remperature (°F):		
Pressure (inHg):		
low Rate (acfm):		

ID Data	Before Adjustment	After Adjustment
/ell Field (ppmv):	14.7	70.0
ilution (ppmv):	5	-t-
otal System (ppmv):	147	300
ffluent (ppmv):	() · ()	0.0
ontrol Efficiency: (1-(FID Out/FID In))		

Completed By:

Date:

Page 2 of 3

Temporary DPE System-O&M Field Data Sheet

CP 7004 15555 Hesperian Blvd San Leandro, California

Part D: Troubleshooting	(Complete if system)	down on arrival)
Tartor Housestonia	Tooliibrara II alaraiii	401111 011 41111411

a: G	Give details of s	ystem status	s (why was	s system do	own?):			
								<u>-</u>
	·-							
b: G	ive details of a	ctions taken	to correct	problem:				
			-					
	 . <u>-</u>				<u> </u>		 .	

279800

Well	FID	Valve Position	Manifold Vacuum (InHg)	System Vacuum (InHg)	Flow Rate (acfm)	Approximate GPM	Line Vacuum (inHg)	Casing Vacuum (inHg)	Slurp Tube Depth	DTP	DTW
					- 10	nitial			· · · ·	-	·
MW-3	21.2	100%	24	74	11/10	2.0	20	12	TOC-		
MW-5	15.5	20%	5)	1	- مرح ،	-5		···		 -
RW-1	11.0	2090	5	1	<u></u>	. 15	3	7	V		
		,				inal	· · · · · · · · · · · · · · · · · · ·			 .	
MW-3	32.7	10090	26	26	60.0	2.5	ZZ	15	1'050 00	TTing	γ
MW-5		0	011	-		_			 		
RW-1		0	UM						-		

SEX STURE ON MU-3 to 1' OFF BOTTLY

Temporary DPE System-O&M Maintenance Data

CP 7004 15555 Hesperian Blvd San Leandro, California

System Maintenance

	Yes	No	Corrective Action
Leaks?			
Rattles?		X	
Excessive Noise?			
·dB Reading:		\times	
Indicator Lights Out?		7	
Any Faulty Gauges?		8	
Abnormal wear and tear?		×	
Blower Oil Low?		\nearrow	
Process Filter Dirty?		×	
Dilution Filter Dirty?		8	
Linkage and Bearings Greased?	>		
Bag Filters Replaced?	1 10/A	4	
System Automatic Shutdown Activated?	→		
Did Shutdown Activate Autodialer?	W/K		
Inspected and Cleaned Pitot Tube(s)?	1×		
Chart Paper/Pens Replaced?			
Other?			

Compound Maintenance

	Yes	No	Corrective Action
Compound Secure?	1 %	1	
ny Debris?		$\overline{}$	
Compound Cleaned?	,	X	
Prop 65 Sign Posted?	1 /2/		
mergency Contact Sign Posted?	Ž,		
Vir Permit Posted?	7		
Discharge Permit Posted?	WA		
fASP Posted?	- X/		
ire Extinguisher on site? Date last serviced:	18		

Completed By:

Date:

Page 1 of 2

Temporary DPE System-O&M Field Data Sheet

CP 7004 15555 Hesperian Blvd San Leandro, California

DO NOT OPERATE PAST - Pending Permit To Operate

Part A: System Information

Soil Vapor Abatement Equipment: Solleco 350 TCAT (MTS) (Plant No. 13708)

Liquid Ring Blower: Travaini TRO400S

·(Maximum Flow Rate: 350 cfm; Maximum Vacuum: 28 inHg)

Baker Tank: 6500 Gal Tank w/ Secondary Containment

Propane Tank: Amerigas 1000 gallon Tank

Telemetry: NA

Electrical Power: <u>Liquid Propane Generator</u> Supplemental Fuel: <u>Propane Gas at 5 psi</u>

Part B: Permit Information

Air Permit: Bay Area Air Quality Management District; Application No. 13031

Plant Number 13708

Conditions: VOC control efficiency > 98% (for influent >2000 ppmv)

- ·Minimum combustion temperature 1,400 °F
- Propane Gas meter reading obtained weekly.
- ·Estimated Percent Volume of Baker Tank weekly.
- ·Monthly effluent FID samples
- ·Benzene Emissions shall not exceed .25 lbs/day (6.4 lbs/year)
- ·Chart recorder is recording temperature at all times

and changed as needed.

Part C: System Data

	Upon Arrival	Upon Departure
Date:		8-8-06
ime:		

Seneral Data	Upon Arrival	Upon Departure
System Status (Up/Down):	UP	UP
lourmeter Reading:	13644.9	
otalizer Reading (gallons):	301300	
stimated % Volume of Baker Tank(%):	30%	
ropane (x 1000ft)	70% 70090113	
Hower Vacuum (inHg):	26	

Com	pleted	Bv:
~ OIII	Piotoa	~,

Temporary DPE System-O&M Field Data Sheet

CP 7004 15555 Hesperian Blvd San Leandro, California

Thermal Oxidizer Data	Upon Arrival	Upon Departure
Oxidizer Setpoint (°F):		1450
Operating Temperature: (°F)		14/62
High Temp Setpoint: (°F)		16.00
Auto Dilution Set Point (°F)		1485
Oxidizer Inlet Temperature: (°F)		1-162
Oxidizer Exhaust Temperature: (°F)		146

Soil Vapor Flow Data	Before Adjustment	After Adjustment
Well Field		
Temperature (°F):		77.2
Vacuum (inHg):		26
Flow Rate (acfm):		60 2
Dilution		
% Open:		6
Temperature (°F):		
Vacuum (inHg):		
Flow Rate (acfm):		
Fotal System		
Temperature (°F):		77.2
Vacuum (inHg):		26
Flow Rate (acfm):		602
Effluent		
Temperature (°F):		
Pressure (inHg):		
Flow Rate (acfm):		

ID Data	Before Adjustment	After Adjustment
Vell Field (ppmv):		27.1
Hution (ppmv):		'&-
otal System (ppmv):		27.1
ffluent (ppmv):		ن.ن
control Efficiency: (1-(FID Out/FID In))		

Completed By:

Date:

Page 2 of 3

Temporary DPE System-O&M Field Data Sheet

CP 7004 15555 Hesperian Blvd San Leandro, California

Part D: Troubleshooting (Complete if system down on arrival)
a: Give details of system status (why was system down?):
b: Give details of actions taken to correct problem:

Completed By:

Date:

Page 3 of 3

Well Data Sheet

15555 Hesperiah Blvd San Leandro, California

Well	FID	Valve Position	Manifold Vacuum (inHg)	System Vacuum (InHg)	Flow Rate (acfm)	Approximate GPM	Line Vacuum (InHg)	Casing Vacuum (InHg)	Slurp Tube Depth	DTP	DTW
				,	li	nitiai					
MW-3	80.5	100%	26.	76		Z.5	24	1 Z_	130+100		
MW-5	10.2	5-	ي چ]		.10	7		705		
RW-1	5.1	5	3	4		. , U	7		74-		
		·				Final			<u> </u>		<u> </u>
MW-3	30	100%	. 26	26		7.5	Z4	1 7	Builty		1
MW-5	10	10	5)		. 10	4_		TUT		
RW-1	5	10	5	<u> </u>		/ 0		· I	765		

Temporary DPE System-O&M Maintenance Data

CP 7004 15555 Hesperian Blvd San Leandro, California

System Maintenance

	Yes	No	Corrective Action
Leaks?		2	
Rattles?		V	
Excessive Noise?			
·dB Reading:		· ·	
Indicator Lights Out?			
Any Faulty Gauges?		v	
Abnormal wear and tear?			
Blower Oil Low?		سسن .	
Process Filter Dirty?		21	
Dilution Filter Dirty?		1	
Linkage and Bearings Greased?	~		
Bag Filters Replaced?	У.	1/6	
System Automatic Shutdown Activated?	i/	16	step Floris ox
Did Shutdown Activate Autodialer?	nh		
Inspected and Cleaned Pitot Tube(s)?	/		
Chart Paper/Pens Replaced?	/		
Other?			

Compound Maintenance

	Yes	No _	Corrective Action
Compound Secure?	1 1	1	
Iny Debris?		2	
Compound Cleaned?		<i>i</i> '	
Prop 65 Sign Posted?	· ·		
mergency Contact Sign Posted?	· ·		
Vir Permit Posted?	~		
Discharge Permit Posted?	Wh		······································
IASP Posted?	V		
Tre Extinguisher on site? Date last serviced:	V		

Com	pleted	Bv:

Temporary DPE System-O&M

Field Data Sheet

CP 7004-15555 Hesperian Blvdf San Leandro, California

DO NOT OPERATE PAST - Pending Permit To Operate

Part A: System Information

Soil Vapor Abatement Equipment: Solleco 350 TCAT (MTS) (Plant No. 13708)

Liquid Ring Blower: Travaini TRO400S

:(Maximum Flow Rate: 350 cfm; Maximum Vacuum: 28 inHg)

Baker Tank: 6500 Gal Tank w/ Secondary Containment

Propane Tank: Amerigas 1000 gallon Tank

Telemetry: NA

Electrical Power: <u>Liquid Propane Generator</u> Supplemental Fuel: <u>Propane Gas at 5 psi</u>

Part B: Permit Information

Air Permit: Bay Area Air Quality Management District; Application No. 13031

Plant Number 13708

Conditions: VOC control efficiency > 98% (for influent >2000 ppmv)

·Minimum combustion temperature 1,400 °F

·Propane Gas meter reading obtained weekly. ·Estimated Percent Volume of Baker Tank weekly.

Monthly effluent FID samples

·Benzene Emissions shall not exceed .25 lbs/day (6.4 lbs/year)

·Chart recorder is recording temperature at all times

and changed as needed.

Part C: System Data

	Upon Arrival	Upon Departure
Date:	8/24/01	
Time:	65.8	

General Data	Upon Arrival	Upon Departure
System Status (Up/Down):	VP	UP
Hourmeter Reading:	14028.0	
Totalizer Reading (gallons):	343550	
Estimated % Volume of Baker Tank(%):	70%	
Propane (x 000 ft)	75%	
Blower Vacuum (inHg):	24	25

Completed By

Temporary DPE System-O&M Field Data Sheet

CP 7004-15555 Hesperian Blvdf San Leandro, California

Thermal Oxidizer Data	Upon Arrival	Upon Departure
Oxidizer Setpoint (°F):		/430
Operating Temperature: (°F)		1431
High Temp Setpoint: (°F)		174
Auto Dilution Set Point (°F)		1550
Oxidizer Inlet Temperature: (°F)		1431
Oxidizer Exhaust Temperature: (°F)		1401

Soil Vapor Flow Data	Before Adjustment	After Adjustment
Well Field		 -
·Temperature (°F):		87.2
·Vacuum (inHg):		25
·Flow Rate (acfm):		(20
Dilution		
·% Open:		
·Temperature (°F):		
·Vacuum (inHg):		
·Flow Rate (acfm):		\
Total System		
·Temperature (°F):		g7.1
·Vacuum (inHg):		75
·Flow Rate (acfm):		66.0
Effluent		
·Temperature (°F):		
·Pressure (inHg):		X
·Flow Rate (acfm):		

FID Data	Before Adjustment	After Adjustment
Well Field (ppmv):	3/1.5	344.1
Dilution (ppmv):		
Total System (ppmv):	11.5	344.1
Effluent (ppmv):	5.0	0.0
Control Efficiency: (1-(FID Out/FID In))		

Completed By:

Date:

Page 2 of 3

Temporary DPE System-O&M Field Data Sheet

CP 7004 15555 Hesperian Blvd San Leandro, California

Part D: Troubleshooting (C	Complete if system down on arriv	<u>/al)</u>				
a: Give details of system sta	a: Give details of system status (why was system down?):					
		<u> </u>				
b: Give details of actions take	en to correct problem:					
<u>• • • • • • • • • • • • • • • • • • • </u>						
0	5.4					
Completed By:	Date:	Page 3 of 3				

Temporary DPE System-O&M Well Data Sheet

CP 7004 15555 Hesperiah Blvd San Leandro, California

Well	FID	Valve Position	Manifold Vacuum (InHg)	System Vacuum (inHg)	Flow Rate (acfm)	Approximate GPM	Line Vacuum (inHg)	Casing Vacuum (inHg)	Slurp Tube Depth	DTP	DTW
·	Initial										
MW-3	361.5	160	24	74	70	3.0	20	10	Bolton	B	Γ
MW-5	38.2	20	Z .		111	.25	1.5	1.5	705	Ø	
RW-1	106.7	7.3	2	4	4	.25	1-7	1.5	TOT	B	<u> </u>
					<u></u>	inal					'''
MW-3	360.0	100 90	. 25	75	68-2	3-0	10	//	Botte		T
MW-5	×	0			1						
RW-1	65.0	30%	5-	4	1_4	5	<u>/</u>	-21	705		

Temporary DPE System-O&M Maintenance Data

CP 7004 15555 Hesperian Blvd San Leandro, California

System Maintenance

	Yes	No	Corrective Action
Leaks?		125	
Rattles?		_ >	
Excessive Noise?		Ţ	
·dB Reading:		8	
Indicator Lights Out?		×	
Any Faulty Gauges?		8	
Abnormal wear and tear?		8	
Blower Oil Low?		8	
Process Filter Dirty?		8	
Dilution Filter Dirty?		8	
Linkage and Bearings Greased?	. X		
Bag Filters Replaced?		Not	
System Automatic Shutdown Activated?		8	
Did Shutdown Activate Autodialer?	WIR	·	
Inspected and Cleaned Pitot Tube(s)?		8	
Chart Paper/Pens Replaced?	<u> </u>	,	
Other?		<u> </u>	

Compound Maintenance

(Yes	No	Corrective Action
Compound Secure?	1 8		
Any Debris?		8	
Compound Cleaned?	- X		
Prop 65 Sign Posted?	8		
Emergency Contact Sign Posted?	X		
Air Permit Posted?	Α		
Discharge Permit Posted?			
HASP Posted?	У		
Fire Extinguisher on site? •Date last serviced:	X		

Temporary DPE System-O&M

Field Data Sheet

CP 700-4 15555 Hesperian Blv-d San Leandro, Californi⇒

DO NOT OPERATE PAST - Pending Permit To Operate

Part A: System Information

Soil Vapor Abatement Equipment: Solleco 350 TCAT (MTS) (Plant No. 13708)

Liquid Ring Blower: Travaini TRO400S

·(Maximum Flow Rate: 350 cfm; Maximum Vacuum: 28 inHg)

Baker Tank: 6500 Gal Tank w/ Secondary Containment

Propane Tank: Amerigas 1000 gallon Tank

Telemetry: NA

Electrical Power: <u>Liquid Propane Generator</u> Supplemental Fuel: <u>Propane Gas at 5 psi</u>

Part B: Permit Information

Air Permit: Bay Area Air Quality Management District; Application No. 13031

Plant Number 13708

Conditions: ·VOC control efficiency > 98% (for influent >2000 ppmv)

Minimum combustion temperature 1,400 °F
 Propane Gas meter reading obtained weekly.
 Estimated Percent Volume of Baker Tank weekly.

·Monthly effluent FID samples

·Benzene Emissions shall not exceed .25 lbs/day (6.4 lbs/year)

·Chart recorder is recording temperature at all times

and changed as needed.

Part C: System Data

	Upon Arrival	Upon Departure
Date: \$/29/06	8/29	8/29
Time: 0934	0934	1134

General Data	Upon Arrival	Upon Departure
System Status (Up/Down):	down	UP
Hourmeter Reading:	14077,1	14078,5
Totalizer Reading (gallons):		391404
Estimated % Volume of Baker Tank(%):	O	190
Propane (x1000 ft ³):	72%	72%
Blower Vacuum (inHg):	0	25

Completed By:	Date:	Page 1 of 3

Temporary DPE System-O&M Field Data Sheet

CP 700-4 15555 Hesperian Blv d San Leandro, Californi €

Thermal Oxidizer Data	Upon Arrival	Upon Departure
Oxidizer Setpoint (°F):	1400	
Operating Temperature: (°F)	1423	02
High Temp Setpoint: (°F)	1550	2
Auto Dilution Set Point (°F)	1485	1
Oxidizer Inlet Temperature: (°F)	1132	10
Oxidizer Exhaust Temperature: (°F)	1132	1/

Soil Vapor Flow Data	Before Adjustment	After Adjustmen t
Well Field		
·Temperature (°F):	59	
·Vacuum (inHg):	59 24 38,8	
Flow Rate (acfm):	38,8	
Dilution		Z
·% Open:	0	
Temperature (°F):		
·Vacuum (inHg):		
·Flow Rate (acfm):	Ŏ	
Total System		
·Temperature (°F):	59	
·Vacuum (inHg):	24	
·Flow Rate (acfm):	38,8	
Effluent From LRP		
·Temperature (°F):	115	
Pressure (inHg): バカガラの・Flow Rate (acfm):		
·Flow Rate (acfm):	3618	

FID Data	Before Adjustment	After Adjustment
Well Field (ppmv):	\$ 3	
Dilution (ppmv):	Ŏ	<i>N</i>
Total System (ppmv):	3	ŭ
Effluent (ppmv):	Ď	Q_z
Control Efficiency: (1-(FID Out/FID In))	/00	

Completed By:

Date:

Page 2 of 3

Temporary DPE System-O&M Field Data Sheet

CP 700-4 15555 Hesperian Blv € San Leandro, Californi €

Part D: Troubleshooting	(Complete if sys	stem down on arrival)

a:	Give details of system status (why was system down?): Down A Mir Pressure Alarm
	DOWN WITH THE AIR PRESSURE HORM
_	
b:	Give details of actions taken to correct problem: Neck Your Stord UP OK (6) 0945

Temporary DPE System-O&M Well Data Sheet

CP 7004 15555 Hesperian Blvd San Leandro, California

Weli	FID	Valve Position	Manifold (Vacuum (inHg)	System Vacuum (inHg)		GPM	Line Vacuum (inHg)	Casing Vacuum (inHg)	Slurp Tube Depth	DTP	DTW
					11	nitial				-	·
MW-3	<i>⊊</i> \$	50	24	24		1.5	A 13,5	10,0	NOT Changed		
MW-5	4	100	24	24		211	23/12	810	MOTCHONIZA		- "
RW-1	·			<u>~~</u>		105	<u>]</u>	_	not chorsel		
						Final			·		
MW-3	_										
MW-5					<u> </u>					-	
RW-1									!		

Project Number: 77CP.67004.03.0006 8129/04

Temporary DPE System-O&M Maintenance Data

CP 700-4 15555 Hesperian Blv-d San Leandro, Californi-a

System Maintenance

	Yes	No	Corrective Action
Leaks?		1/	
Rattles?			
Excessive Noise?		~	-
·dB Reading:		V/	
Indicator Lights Out?			
Any Faulty Gauges?		V/	
Abnormal wear and tear?		V/	
Blower Oil Low?			
Process Filter Dirty?			
Dilution Filter Dirty?			
Linkage and Bearings Greased?			
Bag Filters Replaced?		NIA	
System Automatic Shutdown Activated?			
Did Shutdown Activate Autodialer?		\	
Inspected and Cleaned Pitot Tube(s)?	·		
Chart Paper/Pens Replaced?		MA	Most Paser restocat
Other?			

Compound Maintenance

	Yes No	Corrective Action
Compound Secure?		
Any Debris?		
Compound Cleaned?		
Prop 65 Sign Posted?		
Emergency Contact Sign Posted?		
Air Permit Posted?		
Discharge Permit Posted?		
HASP Posted?	1 1/1	
Fire Extinguisher on site?		· · · · ·
·Date last serviced:		

Completed By: Date: Page 1 of 2

Temporary DPE System-O&M Field Data Sheet

m-O&M CP 700⊄ t 15555 Hesperian Blv⊄ San Leandro, Californiæ

DO NOT OPERATE PAST - Pending Permit To Operate

Part A: System Information

Soil Vapor Abatement Equipment: Solleco 350 TCAT (MTS) (Plant No. 13708)

Liquid Ring Blower: Travaini TRO400S

(Maximum Flow Rate: 350 cfm; Maximum Vacuum: 28 inHg)

Baker Tank: 6500 Gal Tank w/ Secondary Containment

Propane Tank: Amerigas 1000 gallon Tank

Telemetry: NA

Electrical Power: <u>Liquid Propane Generator</u> Supplemental Fuel: Propane Gas at 5 psi

Part B: Permit Information

Air Permit: Bay Area Air Quality Management District; Application No. 13031

Plant Number 13708

Conditions: VOC control efficiency > 98% (for influent > 2000 ppmv)

Minimum combustion temperature 1,400 °F Propane Gas meter reading obtained weekly.

·Estimated Percent Volume of Baker Tank weekly.

·Monthly effluent FID samples

·Benzene Emissions shall not exceed .25 lbs/day (6.4 lbs/year)

·Chart recorder is recording temperature at all times

and changed as needed.

Part C: System Data

	Upon Arrival	Upon Departure
Date:	25/06	
Time:	16:30	

General Data	Upon Arrival	Upon Departure
System Status (Up/Down):	υp	U
Hourmeter Reading:	14247.5	
Totalizer Reading (gallons):	415990	
Estimated % Volume of Baker Tank(%):	25,90	
Propane (x1000ff)	600/0	
Blower Vacuum (inHg):		4

Completed	By:
-----------	-----

Temporary DPE System-O&M Field Data Sheet

CP 700-4 15555 Hesperian Blv€d San Leandro, Californiæ

Thermal Oxidizer Data	Upon Arrival	Upon Departure
Oxidizer Setpoint (°F):	1450	
Operating Temperature: (°F)	1450	
High Temp Setpoint: (°F)	1550	A
Auto Dilution Set Point (°F)	1485	1 /
Oxidizer Inlet Temperature: (°F)	1450	
Oxidizer Exhaust Temperature: (°F)	1300	

Soil Vapor Flow Data	Before Adjustment	After Adjustment
Well Field		
·Temperature (°F):	79.8	
·Vacuum (inHg):	24.0	7
·Flow Rate (acfm):	72.5	
Dilution		
·% Open:	-0	
·Temperature (°F):		7
·Vacuum (inHg):		
·Flow Rate (acfm):		
Total System		
·Temperature (°F):	78.8	
·Vacuum (inHg):	24.0	7
·Flow Rate (acfm):	78.9	
Effluent		
·Temperature (°F):		
·Pressure (inHg):		
·Flow Rate (acfm):		

FID Data	Before Adjustment	After Adjustment
Well Field (ppmv):		
Dilution (ppmv):		
Total System (ppmv):		
Effluent (ppmv):		
Control Efficiency: (1-(FID Out/FID In))		

Completed By:

Date:

Page 2 of 3

Temporary DPE System-O&M Field Data Sheet

CP 7004 15555 Hesperian Blvc San Leandro, California

Part D: Troubleshooting (Complete if system down on arrival)
a: Give details of system status (why was system down?):
b: Give details of actions taken to correct problem:
· · · · · · · · · · · · · · · · · · ·

Completed By:

Date:

Page 3 of 3

Temporary DPE System-O&M Well Data Sheet

CP 7004 15555 Hesperian Blvd San Leandro, California

FID	Valve Position	Manifold Vacuum (InHg)	System Vacuum (inHg)	Flow Rate (acfm)	Approximate GPM	Line Vacuum (InHg)		Slurp Tube Depth	DTP	DTW
				1	nitial			<u> </u>		
77.3	100%			<u> </u>				 		
54.3	C10560			† <u>-</u>	 			 		
62-1	20%0				··			╄		
				·	Final	<u> </u>				<u> </u>
つりつ	100%	25.0	230			200	171	T 2542 7 T		
500	10	2.0	j	 		 +				
60.0	/0	4	V-	1		1.5				
	77.3 54.3 62.1 70.0 50.0	FID Position 77.3 /00% 54.3 c/050 62.1 20% 70.0 /00% 50.0 /0	FID Position (InHg) 77.3 /00% 54.3 c/050 62.1 20% 70.0 /00% 23.0 50.0 /0 2.0	Valve Vacuum Va	Valve Vacuum Vacuum Flow Rate	Valve Vacuum Vacuum Vacuum Flow Rate Approximate GPM	Valve	Valve Position Vacuum Vacuum Flow Rate Approximate Line Vacuum Vacuum Vacuum Initial Vacuum Initial Vacuum Vacuum Vacuum Initial Vacuum Vacuum Vacuum Initial Vacuum Vacuum Vacuum Initial Vacuum Initial Vacuum Vacuum Initial Vacuum Vacuum Initial Vacuu	Valve Vacuum Va	Valve Vacuum Va

Completed By:

Date:

Temporary DPE System-O&M Maintenance Data

CP 700-4 15555 Hesperian Blv⊂ San Leandro, Californi⇔

System Maintenance

	Yes	No	Corrective Action
Leaks?		V	
Rattles?		4	
Excessive Noise?		\ \ \	
·dB Reading:		۲	
Indicator Lights Out?		X	·
Any Faulty Gauges?		X,	
Abnormal wear and tear?		, A	
Blower Oil Low?		4	
Process Filter Dirty?		×	
Dilution Filter Dirty?		X	
Linkage and Bearings Greased?	×		
Bag Filters Replaced?	 - -	UP.	
System Automatic Shutdown Activated?	Υ.		VIIND ONTRKOK
Did Shutdown Activate Autodialer?	NA		
Inspected and Cleaned Pitot Tube(s)?	Y	.,	
Chart Paper/Pens Replaced?	Y		
Other?			l

Compound Maintenance

	Yes	No	Corrective Action
Compound Secure?	1 ×]	
Any Debris?		X	
Compound Cleaned?	X		PU Trush
Prop 65 Sign Posted?	X		INSINIED NEW SIEL
Emergency Contact Sign Posted?	Y		
Air Permit Posted?	_ X		
Discharge Permit Posted?	8		
HASP Posted?	7		
Fire Extinguisher on site? -Date last serviced:	7		

Completed By:

Date:

Page 1 of 2

Temporary DPE System-O&M Field Data Sheet

CP 700 **4** 15555 Hesperian Blvc**3** San Leandro, California

DO NOT OPERATE PAST - Pending Permit To Operate

Part A: System Information

Soil Vapor Abatement Equipment: Solleco 350 TCAT (MTS) (Plant No. 13708)

Liquid Ring Blower: Travaini TRO400S

·(Maximum Flow Rate: 350 cfm; Maximum Vacuum: 28 inHg)

Baker Tank: 6500 Gal Tank w/ Secondary Containment

Propane Tank: Amerigas 1000 gallon Tank

Telemetry: NA

Electrical Power: <u>Liquid Propane Generator</u> Supplemental Fuel: Propane Gas at 5 psi

Part B: Permit Information

Air Permit: <u>Bay Area Air Quality Management District</u>; <u>Application No. 13031</u> Plant Number 13708

Conditions: VOC control efficiency > 98% (for influent >2000 ppmv)

Minimum combustion temperature 1,400 °F

Propane Gas meter reading obtained weekly.

·Estimated Percent Volume of Baker Tank weekly.

·Monthly effluent FID samples

·Benzene Emissions shall not exceed .25 lbs/day (6.4 lbs/year)

·Chart recorder is recording temperature at all times

and changed as needed.

Part C: System Data

	Upon Arrival	Upon Departure
Date:		9/12
Time:		S:30

General Data	Upon Arrival	Upon Departure
System Status (Up/Down):	UP	UP
Hourmeter Reading:		144140
Totalizer Reading (gallons):		44/1350
Estimated % Volume of Baker Tank(%):		10%
Propane (x 1000 ft)		50%
Blower Vacuum (inHg):		.23

Completed i	Ву:
-------------	-----

Temporary DPE System-O&M Field Data Sheet

CP 700⊄ 15555 Hesperian Blvcd San Leandro, Californiæ

Thermal Oxidizer Data	Upon Arrival	Upon Departure
Oxidizer Setpoint (°F):		1450
Operating Temperature: (°F)		1451
High Temp Setpoint: (°F)		7550
Auto Dilution Set Point (°F)		1900
Oxidizer Inlet Temperature: (°F)		1451
Oxidizer Exhaust Temperature: (°F)		1211

Soil Vapor Flow Data	Before Adjustment	After Adjustment
Well Field		
·Temperature (°F):		87.2
·Vacuum (inHg):		73
·Flow Rate (acfm):		81.2
Dilution		4
·% Open:		1
·Temperature (°F):		
·Vacuum (inHg):		<u></u>
·Flow Rate (acfm):		
Total System		
·Temperature (°F):		67.2
·Vacuum (inHg):		23
·Flow Rate (acfm):		81.2
Effluent		
·Temperature (°F):		
·Pressure (inHg):		X
·Flow Rate (acfm):		

FID Data	Before Adjustment	After Adjustment
Well Field (ppmv):		65.0
Dilution (ppmv):		×
Total System (ppmv):		65.0
Effluent (ppmv):		0.0
Control Efficiency: (1-(FID Out/FID In))		

Completed By:

Date:

Page 2 of 3

Temporary DPE System-O&M Field Data Sheet

CP 7004-15555 Hesperian Blvcf San Leandro, California

Part D: Troubleshooting ((Complete if sy:	stem down on arrival)

a: Give details of system st	atus (why was system do	own?):	
Give details of actions ta	cen to correct problem:		

Completed By:

Date:

Page 3 of 3

Temporary DPE System-O&M Well Data Sheet

CP 7004 15555 Hesperiah Blvd San Leandro, California

Well	FID	Valve Position	Manifold Vacuum (InHg)	System Vacuum (InHg)	Flow Rate (acfm)	Approximate GPM	Line Vacuum (InHg)	Casing Vacuum (InHg)	Slurp Tube Depth	DTP	DTW
					lı	nitlal					
MW-3	71.2	10	2.5	24							
MW-5	47.5	10	之								
RW-1	60.5	10	2	K							
						Final					· -
MW-3	70_	100	77.7	23			20	11.0	aliting !		<u> </u>
MW-5	50	20	2				. <i>''</i>	4	70-		
RW-1	60_	20_	5	V-			4	~/	705		

Temporary DPE System-O&M Maintenance Data

CP 7004 15555 Hesperian Blvc San Leandro, California

System Maintenance

	Yes	No	Corrective Action
Leaks?	1	75	
Rattles?		1	
Excessive Noise?			
·dB Reading:			
Indicator Lights Out?		4	
Any Faulty Gauges?		3/	
Abnormal wear and tear?		13/	
Blower Oil Low?			
Process Filter Dirty?		8	
Dilution Filter Dirty?		\ \rangle	
Linkage and Bearings Greased?			
Bag Filters Replaced?	M+	1	
System Automatic Shutdown Activated?		17	
Did Shutdown Activate Autodialer?	ع[امر	1	
Inspected and Cleaned Pitot Tube(s)?	->5'		
Chart Paper/Pens Replaced?	X		
Other?			

Compound Maintenance

	Yes	No	Corrective Action
Compound Secure?	73	1	
Any Debris?	,		
Compound Cleaned?			
Prop 65 Sign Posted?	\overline{X}		
Emergency Contact Sign Posted?	X		
Air Permit Posted?	X.		
Discharge Permit Posted?	N X		
HASP Posted?	×		
Fire Extinguisher on site? -Date last serviced:	×		

Completed By:

Date:

Page 1 of 2

July 17, 2006

SEVERN STL

STL Los Angeles 1721 South Grand Avenue Santa Ana, CA 92705

Tel: 714 258 8610 Fax: 714 258 092 3 www.sti-inc.com

STL LOT NUMBER: E6G120239

Diane Barclay SECOR International Inc 3017 Kilgore Road Suite 100 Rancho Cordova, CA 95670

Dear Diane Barclay,

This report contains the analytical results for the three samples received under chain of custody by STL Los Angeles on July 12, 2006. These samples are associated with your ConocoPhillips SITE#7004 project.

STL Los Angeles certifies that the test results provided in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in the case narrative. The case narrative is an integral part of the report. NELAP Certification Number for STL Los Angeles is 01118CA / E87652.

Any matrix related anomaly is footnoted within the report. A cooler receipt temperature between 2-6 degrees Celsius is within EPA acceptance criteria. The temperature(s) of the cooler received for this project can be found on the Project Receipt Checklist. Historical control limits for the LCS are used to define the estimate of uncertainty for a method. All applicable quality control procedures met method-specified acceptance criteria except as noted on the following page.

This report shall not be reproduced except in full, without the written approval of the laboratory.
This report contains pages.
f you have any questions, please feel free to call me at (714) 258-8610.

Sincerely,

Project Manager

cc: Project File

CASE NARRATIVE

LOT NUMBER E6G120239

Nonconformance 05-16916

Affected Samples: E6G120239 (3): KO

Details:

The sample was received at 18.7 degrees C.

120224

STL- Santa Ana

ConocoPhillips Chain Of Custody Record

											•				 ,									_		
4704 0 - 15 0 - 15	ConocoPhillips Site Manage								coPhi	hillips Work Order Number					-											
1721 South Grand Avenue	INVOI	ICE REI	REMITTANCE ADDRESS: CONOCOPHILLIPS								0,	ATE: 7	7-//	-05												
Santa Ana, CA 92705	i								Dee H South				00		Ī		2onot	Pirit	pe C	ost O	bject					
714.258.8610	i				3611 South Harbor, Suite 200 Santa Ana, CA. 92704					DATE: 7-11-05 ScoPhililips Cost Object PAGE:																
SAMPLING COMPANY:	Valid Valu	ie ID;			CONO	соркі	LLIPS 8	ITE NU	PER									are	BAL ID	NO.	· -					
SECOR International Inc				7004	•												<u> </u>									
ADDRESS:			SITE	ADDRE.	.35 (Stn	et and (ityj;					•				COI	ЮСОРЬ	dLLIPS	SITEM	IANAG	ER	}	[
3017 Kilgore Rd Sulte 100, Rancho Cordova, CA 95670 PROJECT CONTACT (Hardcopy or PDF Report to):			1555	55 He	speri	an Bo	ulevar	d, Sa	n Lea	andro	9457	79				Th	omas	Kose) 1			,	}			
Diane Barciay					EDF 0	EÚVE	RABLE	10 (FP)	or Dealgr	100):				PHONE	NO.:			E-40	UL:		- 1	LA	B USE	ONLY		
TELEPHONE: FAX:	E-MAIL:	-			l _{Diar}	ıo Ra	ırclay							(916)	861-	0400	ext 30) <u>db</u>	erclay	<u>@sec</u>	:OT.CO					
(916) 861-0400 x300 (916) 861-0430		sv@seco∣					nciay						_					Ш								
SAMPLER NAME(S) (Print):	CONSULT		ECT NUMBES 01630.01	1					•						REC	UES	TED A	NAL	YSES	5						
TURNAROUND TIME (CALENDAR DAYS):					┼		,		1	Γ.						Т		$\overline{}$	-	1	$\overline{}$		$\overline{}$			
☐ 14 DAYS ☐ 7 DAYS ☐ 72 HOURS ☐ 48 HOURS	🖵 24 HO	ᅊᄆᇉ	SS THAN 24	HOURS			1	€	ž:	1		ا ہ ا						1					i '	1		
					1		l.	15	8.			TCLP				- 1				1	'				FIELD N	OTES:
SPECIAL INSTRUCTIONS OR NOTES:	CHECK BO	OX IF EDD	IS NEEDED	₽.	물	H	l	88) (9		Щ]	- 1		ŀ			1			ے ا	ontology/R	evitevnoson
Regulred Reporting Limit: <10 ppm(v)			_	뛽	\$	× '	an X	ဗို့္ဘ	ies i	뿔	일				- 1					j '	Ì		~	or PID Ro		
			- TPHd Extractable	82608 - TPH9/BTEX/MUBE	вте	eth de	8260B - Full Scan VOCs (does Include oxygenates)	8270C - Semi-Votatiles	то-3 - ТРНф/ВТЕХ/МТВЕ	⊐ѕтс										1		,	or Laborate	ary Notes		
Please send EDF and PDF to kwong@se	cor com	dhamley	തരെന്ന് സ	om.	ই	흏	Hg7	구.	15. P	글	E	□Total											'			
			gacon.a	oiti	₽	Ē	E şë	E a	를 N	8	준	<u> </u>							}							
* Field Point name only required if different fro SAB: Sample Identification/Field Point		B IU IPLING		NO. OF	J.Ę	8	8	8 8	83	ġ		ַ פַּ			- 1							1	\ \ \	TEMPER	ATURE ON	RECEIPT C*
Name"		TIME	MATRIX	CONT.	8	828	82 Q	8260B - TPHg / BTEX / 8 oyxgenales + methanol (8015M)	826 F	827	2	Lead										L				
INF	71/00	3:40	Air	. 1							×							$\perp \! \! \! \! \! \! \! \perp$						<u> </u>		
EFF	<u> </u>	331	Air	1	Π				7		x							Ţ	T	Т	\Box					
ко	17	320	Water	3	Ì		х								-			T	\top	1		\Box	\top			
			······································																1			П				
		 			1	 	 	_		1	 									1	1	1	1			
	 	1			╁	十	1			╁							\top		┪╌	†	 	一	1		-	
		+		 	十	 	1		-	\dagger		-		H			-	+	1	┪┈	 	\vdash	 -			
	 	- 	1		+	 	╁╌		 	╁	 	-	-				\top	+	+-	T	 	\top	†			
	+	+	 	 	+	\vdash	+		\vdash	+-	\vdash	╁	-	\vdash	-		+	+	+	T	1		+			
	1	+	 	┼-	+	-	\vdash		\vdash	\vdash	\vdash	-		\vdash	_	$\vdash \vdash$		+	+	+	+	+-	+			
Fjelingstetigt tyly(Signature)		J	Received	y: (Signatur	<u> </u>				<u> </u>	٠		i	٠	<u></u>	Ц.,	ш	- -	ero:		_!			Tama	<u>1</u>		
HAVES TO FEDX								1									ļ						$oldsymbol{\perp}$			
Figure (Signature)			Received i	by: (Signatur	re)		all.	in Ki	Va					•			10	7-12-06 Time: 10 50-0								
Rollinguished by, (Signature)		·	 	·		U		-VW	- W	~ <u>%</u>	600								~ (· 				

18.0-,3=18.7

3/8/06 Revision

STL LOS ANGELES - PROJECT RECEIPT CHECKLIST Date: 1/2/04							
Single Cooler Only							
LIMS Lot #: E66120239 Quote #: 61017							
Client Name: VCOV— Project: Project:							
Received by: Date/Time Received:							
Received by: Date/Time Received: 1/12/01. /000 Delivered by: Client STL DHL Fed Ex UPS Other							
Initial / Date							
Custody Seal Status Cooler: Intact Broken None							
Custody Seal Status Samples: Intact Broken None							
Custody Seal #(s):N No Seal #							
Sampler Signature on COC Yes No N/A							
IR Gun # _A_ Correction Factor3_°C IR passed daily verification YesNo							
Temperature - BLANK 19,0°C3 CF = 18.7 °C Cooler #1 ID N							
Temperature - COOLER (°C°C°C°C) =avg °C3 _ CF =°C							
Samples outside temperature criteria but received within 6 hours of final sampling Yes							
1/ -							
Sample Container(s): STL-LA Client							
pH measured: Yes Anomaly (if checked, notify lab and file NCM)							
Anomalies: No Yes - complete CUR and Create NCM							
Complete chiement received in and an dition with accordance to the control of the							
Complete shipment received in good condition with correct temperatures, containers, labels, volumes preservatives and within method specified holding times. Yes No							
Labeled by:							

\mathbb{V} ,							
Turn Around Time: RUSH-24HR RUSH-48HR RUSH-72HR NORMAL							
Tuni Albunu Tune: []KUSH-24FIK []KUSH-48FIK []KUSH-72FIK []NOKWAL							

Headspace Anomaly SES N/A SO 1 1 2 0 0							
Lab ID Container(s) # Headspace Lab ID Container(s) # Headspace							
□ > 6mm □ > 6mm							
> 6mm							
> 6mm > 6mm > 6mm							
□ > 6mm □ > 6mm							

raction	1-2	3										
OAH		3			1							
roan rollar bag												
- , , ,	-				 				_			
					 			1.				
	1						.1	11.17	9		 	
. '		-		-		,	1	10				
'					 	1/1	1					
						7						
						1						
			Ì]					
										·		
]						

H: HCL, S: H2SO4, N: HNO3, V: VOA, SL, Sleeve, E: Encore, PB: Poly Bottle, CGB: Clear Glass Bottle, AGJ: Amber Glass Jar, T: Terracore AGB: Amber Glass Bottle, n/f/I:HNO3-Lab filtered, n/f:HNO3-Field filtered, znna: Zinc Acetate/Sodium Hydroxide, NaZs2o3: sodium thiosulfate

Condition Upon Passint Anoma	Ny Form Anomalies NVES ONE A 7/0/M
Condition Upon Receipt Anoma COOLERS Not Received (received COC only) Leaking Other: TEMPERATURE (SPECS 4 ± 2°C) Cooler Temp(s) Temperature Blank(s) Samples CONTAINERS Leaking Voa Vials with Bubbles > 6mm Broken Extra Without Labels Other: SAMPLES Samples NOT RECEIVED but listed on COC Samples received but NOT LISTED on COC Logged based on Label Information Logged based on info from other samples on COC	- CUSTODY SEALS (COOLER(S) CONTAINER(S) None
Corrective Action Implemented: Client Informed: verbally on By: Logged by/Date: Laged in by other STL	In writing on By: ample(s) processed "as is)" PM Review/Date

Analytical Report

ANALYTICAL REPORT

PROJECT NO. SAN LEANDRO, CA

ConocoPhillips SITE#7004

Lot #: E6G120239

Diane Barclay

SECOR International Inc

SEVERN TRENT LABORATORIES, INC.

Beth Riley Project Manager

July 14, 2006

170274

EXECUTIVE SUMMARY - Detection Highlights

E6G120239

	PARAMETER	RESULT	REPORTING LIMIT	UNITS	ANALYTICAL METHOD
INF 07	//11/06 15:40 001				
	Benzene	0.029	0.020	ppm(v/v)	EPA-19 TO-3
	Toluene	0.051	0.020	ppm(v/v)	EPA-19 TO-3
	Ethylbenzene	0.14	0.020	ppm(v/v)	EPA-19 TO-3
	Xylenes (total)	0.030	0.020	ppm(v/v)	EPA-19 TO-3
	Methyl tert-butyl ether (MTBE)	0.38	0.020	ppm(v/v)	EPA-19 TO-3
	TPH (as Gasoline)	8.9	1.0	ppm(v/v)	EPA-19 TO-3
EFF 07	//11/06 15:35 002				
	Benzene	0.030	0.020	ppm(v/v)	EPA-19 TO-3
	Toluene	0.040	0.020	ppm(v/v)	EPA-19 TO-3
	Xylenes (total)	0.025	0.020	ppm(v/v)	EPA-19 TO-3
	TPH (as Gasoline)	2.4	1.0	ppm(v/v)	EPA-19 TO-3
KO 07/	11/06 15:20 003				
	Methyl tert-butyl ether	10	1.0	ug/L	SW846 8260B

20219

METHODS SUMMARY

B6G120239

PARAMETER	ANALYTICAL METHOD	PREPARATION METHOD
BTEX by TO-3 TPH by TO-3 Volatile Organics by GC/MS	EPA-19 TO-3 EPA-19 TO-3 SW846 8260B	SW846 5030B/825
References:	2	

120220

SW846 "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 and its updates.

SAMPLE SUMMARY

E6G120239

WO # SAMPLE#	CLIENT SAMPLE ID	SAMPLED DATE	SAMP TIME
H83JJ 001	INF	07/11/0 6	15:35
H83JN 002	EFF	07/11/0 6	
H83JQ 003	KO	07/11/0 6	

NOTE(S):

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results.
- Results noted as "ND" were not detected at or above the stated limit.
- This report must not be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, sollds, solubility, temperature, viscosity, and weight.

Client Sample ID: INF

GC Volatiles

Lot-Sample #...: E6G120239-001 Work Order #...: H83JJ1AC Matrix....... V

Date Sampled...: 07/11/06 15:40 Date Received..: 07/12/06 10:00 MS Run #.....:

 Prep Date....:
 07/12/06
 Analysis Date..:
 07/12/06

 Prep Batch #...:
 6195162
 Analysis Time..:
 17:10

Dilution Factor: 1

120210

Analyst ID....: 402431 Instrument ID..: GC7

Method EPA-19 TO-3

REPORTING

PARAMETER	RESULT	LIMIT	UNITS	MDL
Benzene	0.029	0.020	ppm (v/v)	0.0050
Toluene	0.051	0.020	ppm(v/v)	0.0060
Ethylbenzene	0.14	0.020	ppm(v/v)	0.0040
Xylenes (total)	0.030	0.020	ppm(v/v)	0.0060
Methyl tert-butyl ether	0.38	0.020	ppm(v/v)	0.010
(MTBR)				

Client Sample ID: INF

GC Volatiles

Lot-Sample #:	E6G120239-001	Work Order #	: H83JJ1AD	Matrix ∨

Date Sampled...: 07/11/06 15:40 Date Received..: 07/12/06 10:00 MS Run #.....:

Prep Date....: 07/12/06 Analysis Date..: 07/12/06 Prep Batch #...: 6195161 Analysis Time..: 17:10

Dilution Factor: 1

Analyst ID...: 402431 Instrument ID..: GC7

Method..... EPA-19 TO-3

REPORTING

PARAMETER	RESULT	LIMIT	UNITS	MDL
TPH (as Gasoline)	8.9	1.0	$\nabla \nabla v$)	0.30

NOTE(S):

120276

This sample has GC/FID characteristics for which reliable identification of a product could not be achieved.

1.

17

Client Sample ID: EFF

GC Volatiles

Lot-Sample #...: E6G120239-002 Work Order #...: H83JN1AC Matrix...... V

Date Sampled...: 07/11/06 15:35 Date Received..: 07/12/06 10:00 MS Run #......

 Prep Date.....: 07/12/06
 Analysis Date..: 07/12/06

 Prep Batch #...: 6195162
 Analysis Time..: 16:50

Dilution Factor: 1

Analyst ID....: 402431 Instrument ID..: GC7

Method..... EPA-19 TO-3

REPORTING

PARAMETER	RESULT	LIMIT	UNITS	MDL
Benzene	0.030	0.020	ppm(v/v)	0.0050
Toluene	0.040	0.020	ppm(v/v)	0.0060
Ethylbenzene	ND	0.020	ppm(v/v)	0.0040
Xylenes (total)	0.025	0.020	ppm(v/v)	0.0060
Methyl tert-butyl ether	ND	0.020	ppm(v/v)	0.010
(MTBE)				

Client Sample ID: BFF

GC Volatiles

Lot-Sample #:	E6G120239-002	Work Order #:	H83JNLAD	Matrix		v
Date Sampled:	07/11/06 15:35	Date Received:	07/12/06 1	0:00 MS Rum	#	
Prep Date:	07/12/06	Analysis Date:	07/12/06			
Prep Batch #:	6195161	Analysis Time:	16:50			
Dilution Factor:	1					
Analyst ID:	402431	Instrument ID:	GC7			
		Method	EPA-19 TO-	3		
			REPORTING			
PARAMETER		RESULT	LIMIT	UNITS	MDL	
TPH (as Gasoline))	2.4	1.0	ppm(v/v)	0.30	_

This sample has GC/FID characteristics for which reliable identification of a product could not be achieved.

NOTE(S):

120270

١,

Client Sample ID: KO

GC/MS Volatiles

Lot-Sample #...: E6G120239-003 Work Order #...: H83JQ1AA Matrix...... W

Date Sampled...: 07/11/06 15:20 Date Received..: 07/12/06 10:00 MS Run #...... 6195 095

Prep Date....: 07/13/06 Analysis Date..: 07/13/06 Prep Batch #...: 6195146 Analysis Time..: 13:50

Dilution Factor: 1

Analyst ID....: 000038 Instrument ID..: MSQ

Method.....: SW846 8260B

REPORTING

PARAMETER	RESULT	LIMIT	UNITS	MDL
Benzene	ND	1.0	ug/L	0.30
tert-Butyl alcohol	ND	25	ug/L	6.0
1,2-Dibromoethane (EDB)	ND	1.0	ug/L	0.30
1,2-Dichloroethane	ND	1.0	ug/L	0 - 40
Ethanol	ИD	500	ug/L	74
Tert-amyl methyl ether	ND	2.0	ug/L	0.50
Ethyl-t-Butyl Ether (ETBE)	ND	2.0	ug/L	0.50
Ethylbenzene	ND	1.0	ug/L	0.30
Diisopropyl Ether (DIPE)	ND	2.0	ug/L	0.50
Methyl tert-butyl ether	10	1.0	ug/L	0.50
Toluene	NĎ	1.0	ug/L	0.30
TPH (as Gasoline)	ND	50	ug/L	20
m-Xylene & p-Xylene	MD	1.0	ug/L	0.50
o-Xylene	ЙD	1.0	ug/L	0.20
	PERCENT	RECOVERY		

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
Bromofluorobenzene	81	(75 - 120)
1,2-Dichloroethane-d4	83	(65 - 130)
Toluene-d8	83	(80 - 130)

QA/QC

.

QC DATA ASSOCIATION SUMMARY

B6G120239

Sample Preparation and Analysis Control Numbers

SAMPLE#	MATRIX	ANALYTICAL METHOD	LEACH BATCH #	PREP BATCH #	MS RUN#
001	v	EPA-19 TO-3		6195162	
	v	EPA-19 TO-3		6195161	
002	v	EPA-19 TO-3		6195162	
	ν	EPA-19 TO-3		6195161	
003	W	SW846 8260B		6195146	6195095

METHOD BLANK REPORT

GC/MS Volatiles

Client Lot #...: E6G120239

Work Order #...: H88EF1AA

Matrix..... WATER_

MB Lot-Sample #: E6G140000-146

Prep Date....: 07/13/06

Analysis Time..: 11:19

Analysis Date..: 07/13/06

Dilution Factor: 1

Prep Batch #...: 6195146

Instrument ID.:: MSQ

Analyst ID....: 000038

REPORTING

PARAMETER	RESULT	LIMIT	UNITS	METHOD
Benzene	ND	1.0	ug/L	SW846 8260B
tert-Butyl alcohol	ND	25	ug/L	SW846 8260B
1,2-Dibromoethane (EDB)	ND .	1.0	ug/L	SW846 8260B
1,2-Dichloroethane	CIM	1.0	ug/L	SW846 8260B
Ethanol	ND	500	ug/L	SW846 8260B
Tert-amyl methyl ether	ND	2.0	ug/L	SW846 8260B
Ethyl-t-Butyl Ether (ETBE	ND	2.0	ug/L	SW846 8260B
Ethylbenzene	ND	1.0	ug/L	SW846 8260B
Diisopropyl Ether (DIPE)	ND	2.0	ug/L	SW846 8260B
Methyl tert-butyl ether	ND	1.0	ug/L	SW846 8260B
Toluene	ND	1.0	ug/L	SW846 8260B
TPH (as Gasoline)	ND	50	ug/L	SW846 8260B
m-Xylene & p-Xylene	ND	1.0	ug/L	SW846 8260B
o-Xylene	ND	1.0	ug/L	SW846 8260B
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Bromofluorobenzene	75	(75 - 12	0)	
1,2-Dichloroethane-d4	87	(65 - 13	0)	
Toluene-d8	85	(80 - 13	0)	

NOTE(S):

120220

Calculations are performed before rounding to avoid round-off errors in calculated results.

METHOD BLANK REPORT

GC Volatiles

Client Lot #...: E6G120239

Work Order #...: H88GD1AA

Matrix..... AIR

MB Lot-Sample #: M6G140000-161

Prep Date....: 07/12/06

Analysis Time..: 09:28

Analysis Date..: 07/12/06

Instrument ID..: GC7

Prep Batch #...: 6195161

Dilution Factor: 1

Analyst ID....: 402431

REPORTING

PARAMETER RESULT UNITS TPH (as Gasoline) ND ppm(v/v)EPA-19 TO-3

NOTE(S):

120220

Calculations are performed before rounding to avoid round-off errors in calculated results.

METHOD BLANK REPORT

GC Volatiles

Client Lot #...: E6G120239

Work Order #...: H88GA1AA

Matrix....: AIR

MB Lot-Sample #: M6G140000-162

Prep Date....: 07/12/06

Analysis Time..: 09:28

Analysis Date..: 07/12/06

Prep Batch #...: 6195162

Instrument ID..: GC7

Dilution Factor: 1

Analyst ID....: 402431

REPORTING

		TOT OILT THO		
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Benzene	ND	0.020	ppm(v/v)	EPA-19 TO-3
Toluene	ND	0.020	ppm(v/v)	EPA-19 TO-3
Ethylbenzene	ND	0.020	ppm(v/v)	EPA-19 TO-3
Xylenes (total)	ND	0.020	(v/v) mgg	EPA-19 TO-3
Methyl tert-butyl ether	ND	0.020	ppm(v/v)	EPA-19 TO-3
(MTBE)				

NOTE(S):

120724

Calculations are performed before rounding to avoid round-off errors in calculated results.

LABORATORY CONTROL SAMPLE DATA REPORT

GC/MS Volatiles

Client Lot #...: E6G120239 Work Order #...: H88EF1AC Matrix.....: WATER

LCS Lot-Sample#: E6G140000-146

Prep Date....: 07/13/06 Analysis Date..: 07/13/06
Prep Batch #...: 6195146 Analysis Time..: 10:57
Dilution Factor: 1 Instrument ID..: MSQ

Analyst ID....: 000038

	SPIKE	MEASURED		PERCENT		
PARAMETER	AMOUNT	AMOUNT	UNITS	RECOVERY	METHOL	<u> </u>
Benzene	10.0	9.94	ug/L	99	SW846	\$ 260B
tert-Butyl alcohol	50. 0	46.2	ug/L	92	SW846	₹ 3260B
1,2-Dibromoethane (KDB)	10.0	9.27	ug/L	93	SW846	4 8260B
1,2-Dichloroethane	30.0	9.19	ug/L	92	SW846	₩260B
Ethanol	2000	3380 HS	ug/L	169	SW846	48 260B
Tert-amyl methyl ether	10.0	8.31	ug/L	83	SW846	₽260B
Ethyl-t-Butyl Ether (ETBE	10.0	9.14	ug/L	91	SW846	8 260B
Bthylbenzene	10.0	10.2	ug/L	102	SW846	€260B
Diisopropyl Ether (DIPE)	10.0	9.09	ug/L	91	SW846	€ 260B
Methyl tert-butyl ether	10.0	8.31	ug/L	83	SW846	8 260B
Toluene	10.0	10.2	ug/L	102	SW846	8 260B
m~Xylene & p-Xylene	20.0	20.4	ug/L	102	SW846	8 260B
o-Xylene	10.0	9.88	ug/L	99	SW846	8260B
		PERCENT	RECOVERY			
SURROGATE		RECOVERY	LIMITS			
Bromofluorobenzene		84	(75 - 120	1)		
1,2-Dichloroethane-d4		90	(65 - 13 0	1)		
Toluene-d8		88	(80 - 130	1)		

NOTE(S):

120220

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

^{&#}x27;HS Spike analyte recovery is outside statedcontrol limits.

LABORATORY CONTROL SAMPLE DATA REPORT

GC Volatiles

Client Lot #...: E6G120239 Work Order #...: H08GD1AC-LCS Matrix...... AIR

LCS Lot-Sample#: M6G140000~161 H88GD1AD-LCSD

Prep Date....: 07/12/06 Analysis Date..: 07/12/06 Prep Batch #...: 6195161 Analysis Time..: 07:34 Dilution Factor: 1 Instrument ID..: GC7

Analyst ID....: 402431

	SPIKE	MEASURED)	PERCENT		
PARAMETER	AMOUNT	TRUOMA	UNITS	RECOVERY	RPD	METHOD
TPH (as Gasoline)	10.7	11.0	ppm(v/v)	103		RPA-19 TO-3
	10.7	10.9	ppm(v/v)	102	1.1	RPA-19 TO-3

NOTE(S):

170770

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

LABORATORY CONTROL SAMPLE DATA REPORT

GC Volatiles

Client Lot #...: E6G120239 Work Order #...: H88GA1AC-LCS Matrix...... AIR

LCS Lot-Sample#: M6G140000-162 H88GA1AD-LCSD

Prep Date....: 07/12/06 Analysis Date..: 07/12/06
Prep Batch #...: 6195162 Analysis Time..: 08:38
Dilution Factor: 1 Instrument ID.:: GC7

Analyst DD....: 402431

	SPIKE	MEASUREL)	PERCENT		
PARAMETER	AMOUNT	AMOUNT	UNITS	RECOVERY	RPD	METHOD
Benzene	0.0679	0.0700	ppm(v/v)	103		BPA-19 TO-3
	0.0679	0.0708	ppm(v/v)	104	1.1	BPA-19 TO-3
Toluene	0.0675	0.0712	ppm(v/v)	105		EPA-19 TO-3
	0.0675	0.0702	ppm(v/v)	104	1.4	BPA-19 TO-3

NOTE(S):

פולתכו

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

MATRIX SPIKE SAMPLE DATA REPORT

GC/MS Volatiles

Client Lot #...: E6G120239 Work Order #...: H8W9E1AC-MS Matrix.....: WATER_

MS Lot-Sample #: E6G100142-001 H8W9E1AD-MSD

SAMPLE SPIKE

Date Sampled...: 07/06/06 09:40 Date Received..: 07/10/06 10:00 MS Run #.....: 61950 95

MEASRD

PERCNT

Prep Date....: 07/13/06 Analysis Date..: 07/13/06 Prep Batch #...: 6195146 Analysis Time..: 16:32

Dilution Factor: 50 Analyst ID....: 000038 Instrument ID..: MSQ

	SULLEDE	SEXIL	HEROKO		PERCNI			
PARAMETER	AMOUNT	AMT	AMOUNT	UNITS	RECVRY	RPD	METHOI	
Benzene	ND	500	495	ug/L	99		SW846	8260B
	ND	500	500	ug/L	100	1.0	SW846	8260B
tert-Butyl alcohol	ND	2500	3070	ug/Ն	1.23		SW846	8260B
	ND	2500	3050	ug/L	122	0.58	SW846	8260B
1,2-Dibromoethane (KDB)	ND	500	501	ug/L	100		SW846	8260B
	ND	500	512	ug/L	102	2.2	SW846	8260B
1,2-Dichloroethane	ND	500	516	ug/L	103		SWB46	8260B
	ND	500	521	ug/L	104	1.1	SW846	8260B
Ethanol	ND	100000	189000	ug/L	189 HS		SW846	8260B
	ND	100000	177000	ug/L	177 HS	6.4	SW846	8260B
Tert-amyl methyl ether	160	500	56 0	ug/L	79		SW846	8260B
	160	500	580	ug/L	83	3.6	SW846	8260B
Ethyl-t-Butyl Ether (ETBE	ND	500	464	ug/L	80		\$\#846	8260B
	ND	500	503	ug/L	87	8.0	SW846	8260B
Bthylbenzene	ND	500	480	ug/L	96		SW846	8260B
	ND	500	474	ug/L	9 5	1.2	SW846	8260B
Diisopropyl Ether (DIPE)	ND	500	492	ug/L	98		SW846	8260B
	ND	500	510	ug/L	102	3.5	SW846	8260B
Methyl tert-butyl etber	4400	500	4670	սց/Ն	54		SW846	8260B
	Qua:	lifiers:	HS,MSB					
	4400	500	5010	սց/ե	121	7.0	SW846	8260B
Toluene	ND	500	480	սց/Ն	96		SW846	8260B
	ND	500	476	ug/L	95	0.64	SW846	8260B
m-Xylene & p-Xylene	ND	1000	953	ug/L	95		SW846	8260B
	ND	1000	938	ug/L	94	1.6	SW846	8260B
o-Xylene	ND	500	473	ug/L	95		SW846	8260B
	ND	500	466	ug/L	93	1.6	SW846	8260B
			RCENT		RECOVERY			
SURROGATE		_	COVERY		LIMITS	-		
Bromofluorobenzene		88			(75 - 120)			
		87			(75 - 120))		

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
Bromofluorobenzene	88	(75 - 120)
	87	(75 - 120)
1,2-Dichloroethane-d4	85	(65 - 1 30)
	78	(65 - 130)
Toluene-d8	86	(80 - 130)
	86	(80 - 130)

NOTE(S):

120239

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

HS Spike analyte recovery is outside stated control limits.

MSB The recovery and RPD were not calculated because the sample amount was greater than four times the spike amount.

ANALYTICAL REPORT

Job Number: 720-4631-1

Job Description: Conoco Phillips #7004

For: SECOR International, Inc. 3017 Kilgore Road Suite 100 Rancho Cordova, CA 95670

Attention: Ms. Diane Barclay

melissa Brewer

Melissa Brewer Project Manager ! mbrewer@stl-inc.com 07/20/2006

cc: K Wong

Project Manager: Dimple Sharma

EXECUTIVE SUMMARY - Detections

Client: SECOR International, Inc.

Job Number: 720-4631-1

Lab Sample ID Analyte	Client Sample ID	Result / Qualifier	Reporting Limit	Units	Method	
720-4631-1	INF MW-3					
Gasoline Range Or	ganics (GRO)-C6-C12	16	5.0	ppm v/v	8260B	
720-4631-2	INF MW-5					
Methyl tert-butyl eth	ner	0.24	0.14	ppm v/v	8260B	
Gasoline Range Or	ganics (GRO)-C6-C12	20	5.0	ppm v/v	8260B	
720-4631-3	INF RW-1					
Methyl tert-butyl eth	ner	0.19	0.14	ppm v/v	8260B	
, .	ganics (GRO)-C6-C12	19	5.0	ppm v/v	8260B	

METHOD SUMMARY

Client: SECOR International, Inc.

Job Number: 720-46531-1

Description	on	Lab Location	Method	Preparation Method
Matrix:	Air-Florida			
Volatile Compounds by GC/MS		STL-SF	SW846 82	260B
	Purge and Trap with Tedlar Bags (72 Hour Hold	STL-SF		SW846 5030B

LAB REFERENCES:

STL-SF = STL-San Francisco

METHOD REFERENCES:

SW846 - "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

SAMPLE SUMMARY

Client: SECOR International, Inc.

Job Number: 720-4631-1

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
720-4631-1	INF MW-3	Air-Florida Tedlar	07/17/2006 1655	07/19/2006 0935
720-4631-2	INF MW-5	Air-Florida Tedlar	07/17/2006 1725	07/19/2006 0935
720-4631-3	INF RW-1	Air-Florida Tedlar	07/17/2006 1800	07/19/2006 0935

Analytical Data

Job Number: 720-46-31-1 Client: SECOR International, Inc.

Client Sample ID:

INF MW-3

Lab Sample ID:

720-4631-1

Client Matrix:

Air-Florida

Date Sampled:

07/17/2006 1655

Date Received:

07/19/2006 0935

8260B Volatile Compounds by GC/MS

Method:

8260B

Analysis Batch: 720-11129

Instrument ID:

Saturn 2100

Preparation:

5030B

Lab File ID: N/A

Dilution:

1.0

Initial Weight/Volume:

10 mL

Date Analyzed:

07/19/2006 1203

Final Weight/Volume:

10 mL

Date Prepared:

07/19/2006 1203

Injection Volume:

Analyte	Result (ppm v/v)	Qualifier	RL
Benzene	ND		0.31
Toluene	ND		0.26
Ethylbenzene	ND		0.23
Xylenes, Total	ND		0.23
Methyl tert-butyl ether	NĐ		0.14
Gasoline Range Organics (GRO)-C6-C12	16		5.0
Surrogate	%Rec		Acceptance Limits
Toluene-d8	93		77 - 121

73 - 130 1,2-Dichloroethane-d4 95

Analytical Data

Job Number: 720-46-31-1 Client: SECOR International, Inc.

Client Sample ID:

INF MW-5

Lab Sample ID:

720-4631-2

Client Matrix:

Air-Florida

Date Sampled:

07/17/2006 1725

Date Received:

07/19/2006 0935

8260B Volatile Compounds by GC/MS

Method:

8260B

Analysis Batch: 720-11129

Instrument ID:

Salum 2100

Preparation:

5030B

Lab File ID: N/A

Dilution:

1.0

Initial Weight/Volume:

10 mL

Date Analyzed: Date Prepared:

07/19/2006 1229 07/19/2006 1229 Final Weight/Volume:

10 mL

Injection Volume:

Analyte Result (ppm v/v) Qualifier RL Benzene ND 0.31 Toluene ND 0.26 Ethylbenzene ND 0.23 Xylenes, Total ND 0.23 Methyl tert-butyl ether 0.24 0.14 Gasoline Range Organics (GRO)-C6-C12 20 5.0

%Rec

Surrogate Acceptance Limits Toluene-d8 96 77 - 121 1,2-Dichloroethane-d4 92 73 - 130

Client: SECOR International, Inc. Job Number: 720-46-31-1

Client Sample ID:

INF RW-1

Lab Sample ID:

720-4631-3

Client Matrix:

Air-Florida

Date Sampled:

07/17/2006 1800

Date Received:

07/19/2006 0935

8260B Volatile Compounds by GC/MS

Method:

8260B

Analysis Batch: 720-11129

Instrument ID:

Saturn 2100

Preparation:

5030B

Lab File ID: N/A

Dilution:

Initial Weight/Volume:

10 mL

Date Analyzed:

1.0

Final Weight/Volume:

10 mL

Date Prepared:

07/19/2006 1255 07/19/2006 1255

Injection Volume:

Analyte Result (ppm v/v) Qualifier RL Benzene ND 0.31 Toluene ND 0.26 Ethylbenzene ND 0.23 Xylenes, Total 0.23 ND Methyl tert-butyl ether 0.19 0.14 Gasoline Range Organics (GRO)-C6-C12 19 5.0 Surrogate %Rec Acceptance Limits

Toluene-d8 97 77 - 121 73 - 130 1,2-Dichloroethane-d4 89

DATA REPORTING QUALIFIERS

Lab Section Qualifier Description

Client: SECOR International, Inc.

Job Number: 720-46**≈**31-1

QC Association Summary

Lab Sample ID	Lab Sample ID Client Sample ID		Method	Prep Batch
Air Toxics				
Analysis Batch:720-1	1129			
LCS 720-11129/1	Lab Control Spike	Air-Florida	8260B	
LCSD 720-11129/2	Lab Control Spike Duplicate	Air-Florida	8260B	
MB 720-11129/3	Method Blank	Air-Florida	8260B	
720-4631-1	INF MW-3	Air-Florida	8260B	
720-4631-2	INF MW-5	Air-Florida	8260B	
720-4631-3	INF RW-1	Air-Florida	8260B	

Job Number: 720-46 31-1 Client: SECOR International, Inc.

Method Blank - Batch: 720-11129 Method: 8260B Preparation: 5030B

Analysis Batch: 720-11129 Instrument ID: Saturn 2100 Lab Sample ID: MB 720-11129/3

Client Matrix: Air-Florida Tedlar Bag Prep Batch: N/A Lab File ID: N/A

Units: ppm v/v Dilution: 1.0

Initial Weight/Volume: 10 mL Final Weight/Volume: 10 mL Date Analyzed: 07/19/2006 0951

Date Prepared: 07/19/2006 0951 Injection Volume:

Analyte	Result	Qual	RL
Benzene	ND		0.31
Toluene	ND		0.26
Ethylbenzene	ND		0.23
Xylenes, Total	ND		0.23
Methyl tert-butyl ether	ND		0.14
Gasoline Range Organics (GRO)-C6-C12	ND		5.0

Surrogate	% Rec	Acceptance Limits
Toluene-d8	94 94	77 - 121 73 - 130
1,2-Dichloroethane-d4	94	73 - 130

Client: SECOR International, Inc. Job Number: 720-46-31-1

Laboratory Control/ Method: 8260B
Laboratory Control Duplicate Recovery Report - Batch: 720-11129 Preparation: 5030B

LCS Lab Sample ID: LCS 720-11129/1 Analysis Batch: 720-11129 Instrument ID: Saturn 2100

Client Matrix; Air-Florida Tedlar Bag Prep Batch: N/A Lab File ID: N/A

Dilution: 1.0 Units: ppm v/v Initial Weight/Volume: 10 mL

 Date Analyzed:
 07/19/2006 0858
 Final Weight/Volume:
 10 mL

 Date Prepared:
 07/19/2006 0858
 Injection Volume:

mjoston 151200

LCSD Lab Sample ID: LCSD 720-11129/2 Analysis Batch: 720-11129 Instrument ID: Saturn 2100

Client Matrix: Air-Florida Tedlar Bag Prep Batch: N/A Lab File ID: N/A

Dilution: 1.0 Units:ppm v/v Initial Weight/Volume: 10 mL Date Analyzed: 07/19/2006 0925 Final Weight/Volume: 10 mL

Date Prepared: 07/19/2006 0925 Injection Volume:

	<u>9</u>	6 Rec.					
Analyte	LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual
Benzene	87	92	69 - 129	5	20		
Toluene	99	96	70 - 130	3	20		
Methyl tert-butyl ether	86	85	66 - 126	1	20		
Surrogate	U	CS % Rec	LCSD %	Rec	Accep	tance Limits	:
Toluene-d8	9	6	91		7	7 - 121	
1,2-Dichloroethane-d4	8	3	84		7	3 - 130	

Calculations are performed before rounding to avoid round-off errors in calculated results.

Received by: (Signatury)

Reinquiried by (Signature)

LOGIN SAMPLE RECEIPT CHECK LIST

Client: SECOR International, Inc.

Job Number: 720-463 1-1

Login Number: 4631

Question	T/F/NA	Comment
Radioactivity either was not measured or, if measured, is at or below background	NA	
The cooler's custody seal, if present, is intact.	NA	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	

ANALYTICAL REPORT

Job Number: 720-4837-1

Job Description: Conocp Phillips #7004

For:

SECOR International, Inc. 3017 Kilgore Road Suite 100 Rancho Cordova, CA 95670

Attention: Mr. Thomas M Potter

Dimple Sharma

Project Manager I

dsharma@stl-inc.com

08/07/2006

Project Manager: Dimple Sharma

METHOD SUMMARY

Client: SECOR International, Inc.

Job Number: 720-48-37-1

Description		Lab Location	Method	Preparation Method
Matrix:	Air-Florida		_	
Volatile C	compounds by GC/MS	STL-SF	SW846 82	60B
	Purge and Trap with Tedlar Bags (72 Hour Hold	STL-SF		SW846 5030B
Matrix:	Water			
Volatile O	rganic Compounds by GC/MS	STL-SF	SW846 82	60B
	Purge-and-Trap	STL-SF		SW846 5030B

LAB REFERENCES:

STL-SF ≈ STL-San Francisco

METHOD REFERENCES:

SW846 - "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

SAMPLE SUMMARY

Client: SECOR International, Inc.

Job Number: 720-48 -37-1

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
720-4837-1	INF	Air-Florida Tedlar	08/01/2006 1100	08/01/2006 1134
720-4837-2	EFF	Air-Florida Tedlar	08/01/2006 1055	08/01/2006 1134
720-4837-3	ко	Water	08/01/2006 1030	08/01/2006 1134

Job Number: 720-48 37-1 Client: SECOR International, Inc.

Client Sample ID:

ко

Lab Sample ID:

720-4837-3

Client Matrix:

Water

Date Sampled:

08/01/2006 1030

Date Received:

08/01/2006 1134

8260B Volatile Organic Compounds by GC/MS

Method:

8260B

Analysis Batch: 720-11681

Instrument ID:

Saturn 2100

Preparation:

5030B

Lab File ID:

c:\saturnws\data\200608\08

Dilution:

1.0

Initial Weight/Volume:

10 mL

Date Analyzed:

08/03/2006 1848

Final Weight/Volume:

10 mL

Date Prepared:

08/03/2006 1848

Analyte	Result (ug/L)	Qualifier	RL
1,2-Dichloroethane	0.85		0.50
Benzene	ND		0.50
Ethanol	ND		100
Ethylbenzene	ND		0.50
MTBE	7.0		0.50
TAME	ND		0.50
Toluene	ND		0.50
Xylenes, Total	ND		1.0
TBA	ND		5.0
DIPE	ND		1.0
ED8	ND		0.50
Gasoline Range Organics (GRO)-C6-C12	55		50
Ethyl tert-butyl ether	ND		0.50
Surrogate	%Rec		Acceptance Limits
Toluene-d8	78		77 - 121
1,2-Dichloroethane-d4	101		73 - 130

Job Number: 720-48-37-1

Client Sample ID:

INF

Client: SECOR International, Inc.

Lab Sample ID:

720-4837-1

Client Matrix:

Air-Florida

Date Sampled:

08/01/2006 1100

Date Received:

08/01/2006 1134

8260B Volatile Compounds by GC/MS

Method:

8260B

Analysis Batch: 720-11610

Instrument ID:

Saturn 2100

Preparation:

5030B

Lab File ID: N/A

Dilution:

1.0

Initial Weight/Volume:

10 mL

Date Analyzed:

08/01/2006 1440

Final Weight/Volume:

10 mL

Date Prepared:

08/01/2006 1440

Injection Volume:

RL Result (ppm v/v) Qualifier Analyte 0.31 Benzene ND ND 0.26 Toluene 0.23 ND Ethylbenzene 0.23 Xylenes, Total ND 0.14 Methyl tert-butyl ether ND 5.0 Gasoline Range Organics (GRO)-C6-C12 23 Acceptance Limits Surrogate %Rec Toluene-d8

1,2-Dichloroethane-d4

88 93 77 - 121 73 - 130

Job Number: 720-48 37-1

Client Sample ID:

EFF

Client: SECOR International, Inc.

Lab Sample ID:

720-4837-2

Client Matrix:

Air-Florida

Date Sampled:

08/01/2006 1055

Date Received:

08/01/2006 1134

8260B Volatile Compounds by GC/MS

Method:

8260B

Analysis Batch: 720-11610

Instrument ID:

Saturn 2100

Preparation:

5030B

N/A Lab File ID:

Dilution:

1.0

Initial Weight/Volume:

10 mL

Date Analyzed:

08/01/2006 1414

Final Weight/Volume: Injection Volume:

10 mL

Date Prepared:

08/01/2006 1414

Qualifier

RL

0.31

0.26

0.23

0.23

0.14

5.0

Analyte Benzene Toluene

Ethylbenzene Xylenes, Total Methyl tert-butyl ether

Gasoline Range Organics (GRO)-C6-C12 Surrogate

Toluene-d8 1.2-Dichloroethane-d4 Result (ppm v/v) NĎ ND ND ND ND ND

%Rec 87 92

Acceptance Limits

77 - 121 73 - 130

DATA REPORTING QUALIFIERS

Lab Section Qualifier Description

Client: SECOR International, Inc.

Job Number: 720-48 37-1

QC Association Summary

Lab Sample ID	Client Sample ID	Client Matrix	Method	Prep Batch
GC/MS VOA				
Analysis Batch:720-116	581			
LCS 720-11681/16	Lab Control Spike	Water	8260B	
LCSD 720-11681/15	Lab Control Spike Duplicate	Water	8260B	
MB 720-11681/17	Method Blank	Water	8260B	
720-4837-3	ко	Water	8260B	
720-4856-A-4 MS	Matrix Spike	Water	8260B	
720-4856-A-4 MSD	Matrix Spike Duplicate	Water	8260B	
Air Toxics				
Analysis Batch:720-116	S10			
LCS 720-11610/1	Lab Control Spike	Air-Florida	8260B	
LCSD 720-11610/2	Lab Control Spike Duplicate	Air-Florida	8260B	
MB 720-11610/3	Method Blank	Air-Florida	8260B	
720-4837-1	INF	Air-Florida	8260B	
720-4837-2	EFF	Air-Florida	8260B	

Client: SECOR International, Inc. Job Number: 720-48 37-1

Method Blank - Batch: 720-11681 Method: 8260B Preparation: 5030B

Date Prepared: 08/03/2006 1004

Lab Sample ID: MB 720-11681/17 Analysis Batch: 720-11681 Instrument ID: Saturn 2100

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturmws\data\2006 \O8\08

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 10 mL

Date Analyzed: 08/03/2006 1004 Final Weight/Volume: 10 mL

Analyte	Result	Qual	RL
1,2-Dichloroethane	ND		0.50
Benzene	ND		0.50
Ethanol	ND		100
Ethylbenzene	ND		0.50
MTBE	ND		0.50
TAME	ND		0.50
Toluene	ND		0.50
Xylenes, Total	ND		1.0
TBA	ND		5.0
DIPE	ND		1.0
EDB	ND		0.50
Gasoline Range Organics (GRO)-C6-C12	ND		50
Ethyl tert-butyl ether	ND		0.50
Surrogate	% Rec	Acceptar	ice Limits
Toluene-d8	88	77 -	121
1,2-Dichloroethane-d4	92	73 -	

Catculations are performed before rounding to avoid round-off errors in calculated results.

Client: SECOR International, Inc. Job Number: 720-48 37-1

Laboratory Control/ Method: 8260B
Laboratory Control Duplicate Recovery Report - Batch: 720-11681 Preparation: 5030B

LCS Lab Sample ID: LCS 720-11681/16 Analysis Batch: 720-11681 Instrument ID: Saturn 2100

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\2006-08\0\

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 10 mL

Date Analyzed: 08/03/2006 0911 Final Weight/Volume: 10 mL Date Prepared: 08/03/2006 0911

LCSD Lab Sample ID: LCSD 720-11681/15 Analysis Batch: 720-11681 Instrument ID: Saturn 2100

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturmws\data\20060=8\08(

Dilution; 1.0 Units: ug/L Initial Weight/Volume: 10 mL
Date Analyzed; 08/03/2006 0937 Final Weight/Volume: 10 mL

% Rec. LCS RPD RPD Limit LCS Qual LCSD Qual Analyte LCSD Limit 100 100 69 - 129 25 Benzene 0 MTBE 87 92 65 - 165 5 25 104 100 70 - 130 25 Toluene 4 Surrogate LCS % Rec LCSD % Rec Acceptance Limits 77 - 121 88 87 Toluene-d8 88 73 - 130 86 1,2-Dichloroethane-d4

Date Prepared:

08/03/2006 0937

Client: SECOR International, Inc. Job Number: 720-48\$37-1

Matrix Spikel

Matrix Spike Duplicate Recovery Report - Batch: 720-11681

Method: 8260B Preparation: 5030B

MS Lab Sample ID:

720-4856-A-4 MS

Analysis Batch: 720-11681

Instrument ID: Saturn 2100

Client Matrix:

Water

Lab File ID:

c:\saturnws\data\20O608\t

Dilution:

1.0

Prep Batch: N/A

Initial Weight/Volume: 10 mL Final Weight/Volume: 10 mL

Date Analyzed: Date Prepared: 08/03/2006 1030 08/03/2006 1030

MSD Lab Sample ID: 720-4856-A-4 MSD

1,2-Dichloroethane-d4

Analysis Batch: 720-11681

Instrument ID: Saturn 2100

Client Matrix:

Water

Prep Batch: N/A

Lab File ID: c:\satumws\data\2006\08\08

73 - 130

Dilution: Date Analyzed: 1.0 08/03/2006 1056

88

Initial Weight/Volume: 10 mL Final Weight/Volume: 10 mL

Date Prepared:

08/03/2006 1056

% Rec. MS RPD RPD Limit MS Qual MSD Qual MSD Limit Analyte 92 20 Benzene 107 69 - 129 15 MTBE 100 89 65 - 165 11 20 Toluene 111 94 70 - 13016 20 MS % Rec Surrogate MSD % Rec Acceptance Limits Toluene-d8 88 88 77 - 121

95

Calculations are performed before rounding to avoid round-off errors in calculated results.

Client: SECOR International, Inc. Job Number: 720-48 37-1

Method Blank - Batch: 720-11610 Method: 8260B Preparation: 5030B

Lab Sample ID: MB 720-11610/3 Analysis Batch: 720-11610 Instrument ID: Saturn 2100

Client Matrix: Air-Florida Tedlar Bag Prep Batch: N/A Lab File ID: N/A

Dilution: 1.0 Units: ppm v/v Initial Weight/Volume: 10 mL Date Analyzed: 08/01/2006 1033 Final Weight/Volume: 10 mL

Date Prepared: 08/01/2006 1033 Injection Volume:

Qual RL Analyte Result ND 0.31 Benzene 0.26 Toluene ND 0.23 Ethylbenzene ND Xylenes, Total ND 0.23 Methyl tert-butyl ether ND 0.14 Gasoline Range Organics (GRO)-C6-C12 ND 5.0

 Surrogate
 % Rec
 Acceptance Limits

 Toluene-d8
 88
 77 - 121

 1,2-Dichloroethane-d4
 97
 73 - 130

Calculations are performed before rounding to avoid round-off errors in calculated results.

Client: SECOR International, Inc. Job Number: 720-48≤ 37-1

Laboratory Control/ Method: 8260B Laboratory Control Duplicate Recovery Report - Batch: 720-11610 Preparation: 5030B

LCS Lab Sample ID: LCS 720-11610/1 Instrument ID: Saturn 2100 Analysis Batch: 720-11610

Client Matrix: Air-Florida Tedlar Bag Prep Batch: N/A Lab File ID: N/A

Dilution: 1.0

Units: ppm v/v Initial Weight/Volume: 10 mL Date Analyzed: 08/01/2006 0941 Final Weight/Volume: 10 mL

Date Prepared: 08/01/2006 0941 Injection Volume:

LCSD Lab Sample ID: LCSD 720-11610/2 Analysis Batch: 720-11610 Instrument ID: Saturn 2100

Client Matrix: Prep Batch: N/A Air-Florida Tedlar Bag Lab File ID: N/A

Dilution: 1.0 Units:ppm v/v Initial Weight/Volume: 10 mL

Date Analyzed: 08/01/2006 1007 Final Weight/Volume: 10 mL

Date Prepared: 08/01/2006 1007 Injection Volume:

	2	6 Rec.					
Analyte	LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual
Benzene	100	84	69 - 129	17	20		
Toluene	95	83	70 - 130	13	20		
Methyl tert-bulyl ether	93	85	66 - 126	9	20		
Surrogate	L	CS % Rec	LCSD %	Rec	Accep	tance Limits	i
Toluene-d8	8	7	89		7	7 - 121	
1,2-Dichloroethane-d4	8	5	88		7.	3 - 130	

1220 Quarry Pleasanton, C/ 925) 484-1919 (925 UNA COMPANT: OR International, Inc. RESS: Y Kilgora Rd., Suite 100 DUECT CONTACT (Mandcopy of F mas M. Potter EPHONE: 861-0400 ex. 288 LER NAME(S) (PMR): Brian Hende	A 94566	INVO		IIPS Site MITTAN												,				<u> </u>	
925) 484-1919 (925) LING COMPANY: OR International, Inc. PRESA: Y Kilgore Rd., Suite 100 DIECT CONTACT PLANCEOPY OF F MAR M. POTTER PHONE: 861-0400 ex. 288							SS:		CONC	СОРН	IIC 7 4E	2				1		161	₹1SF	- CO	12
COMPANY: COR International, Inc. RESA: Y Kilgore Rd., Suite 100 DECT CONTACT Plantcopy or F mas M. Potter EPHONE: 861-0400 ex. 288	i) 484-1096 fax	<u> </u>	Attn: Dee Hutchinson 3611 South Harbor, Suite 200						Attn:	Dee H	utchi	1307		0			1631SE C013 ConocaPhillips Cost Object				
OR International, Inc. RESA: Y Kilgore Rd., Suite 100 DECT CONTACT Mandcopy or F THE MANUAL PROPERTY OF THE PHONE: 861-0400 ex. 288		L								Ans, (-				GALES CO		V	VNO ·	1 631	72010202
RESS: Y Kilgore Rd., Suite 100 DUECT CONTACT (Mandcopy of F MAB M. POTTET EPHONE: 861-0400 ex. 288		Valid Valu	iD:			1			SITE NUI									$\neg \tau$	ÇLOBA	ID HO	
7 Kilgore Rd., Suite 100 DUECT CONTACT (Mardcopy of F MBB M. Potter EPHONE: 861-0400 ex. 288		<u> </u>							Stati	on N	<u>o. 7</u>	004						_	T060	Q 010)145°
DJECT CONTACT (Mardcopy of F mas M. Potter EPHONE: 861-0400 ex. 288	l																	l			
EPHONE: 861-0400 ex. 288		_			•	155	599 EL ME	Hes	peria	n Biv	/d.,	San	Lea	ndro,	CA TE HO:				EMM:		
861-0400 ex. 288	FAX	E-WATL:				1	mas M			, Design					-861-	0400		- 1		<u>[@sec</u>	-or ~oo
•	916-861-0430	toottene	secor.o	<u>on</u>				1-1 - •												-1030	
	<i>X</i>	•		004.08.00											RE	QUE	STE) AN	ALYS	E\$	
RNAROUND TIME (CALENDA	IR DAYS):	_				-						ы	Т	\top	T			7		\neg	\top
14 DAYS 2 7 DAYS 2 72	HOURS A8 HOURS	24 HOU	RS □ UE	SS THAN 24	HOURS				Ē	8250B - Full Scan VOCs (does not Include oxygenates)		· TPH9/BTEX/MIBE	او	- 1							1
							ы		lg / BTEX / 8 + methanol (8015M)	ФФ			OTCLP.								1
CIAL INSTRUCTIONS OR	NOTES:	HECK BO	X IF EOD I	IS NEEDED	1	- TPHd Extractable	Į į	₽ .	8 등	ő	. I	퇿									
						tac	3	ĬĮ		5 8	a Ele	핅	пѕпс		1	193	3	. 1		1	
						ŭ	E F	- TPHg/BTEX/8 nates	8 6	can	Semi-Volaties	:	_			1			.]		
						뭁	[동		유	ult S cyge	Ē	7	Total	- 1		i i	3				
Field Point name only re-	nuired if different from	Sample	:D			֓֞֞֞֞֜֞֞֩֓֞֩֞֩֞֩֞֞֩֓֓֞֩֞֩֓֓֡֞֞֩֞֡֡	F	Jan S	I-T	F .		2	6		ĺ	Rad	(Residute Fuels)		1		
Sample Identifica	ation/Field Point	SAMI	PLING	MATRIX	NO, OF CONT,	8015m	82608 • TPH9/BTEX/MIBE	8260B - TPF Oxygonates	9260B - TPHg / BTEX / 8 oyxgenates + methanol	8250B - Full Scan VC include oxygenatos)	8270C	8015M / 8021B	Lead	R-149		TPH (Middle Distilates)	TPH (F				1
Sample Identifica Nan	ne*	DATE O//	TIME			<u>.</u>		∞ 0	80 0	æ <u>⊁</u>	60	-	4	 «	┼	F	F	\vdash		-	
INF	<u>.</u>	9//06	$//\omega$	Air_	1	ļ	X	<u> </u>					_		╄	ļ.,		Щ	\rightarrow		
EFF			105	Air	_1_	<u> </u>	×							\perp	<u> </u>		Ш			\perp	\perp
ко		4	j 630	Water	3	L		х													
						ļ									Τ						T
		_		_		1			•				\dashv	_				\Box	ightharpoonup	\top	+-
	· -	 				-		<u> </u>						\top	 -	-	Н		1		_
=									-				一†	+	╫		\vdash		\dashv	+	+
3 3		-									\dashv		}	+	+		H		\dashv	\dashv	+
			<u> </u>			┡							\perp	-	 -	<u> </u>		\square	\dashv	\bot	Щ-
11 11																			\Box		T^{-}
nquished by Signature)				Received by	y (Signature)		١.		i!								Dete:	ú/		
() () \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				Danit at	- IFIA			· 75	Ly	يلا	w	Ų(لعم	_					7//	Ь	
equished by (Signature)				ranceived by	k (S _r õunture	,								`				Onla:			
requisited by (Signature)				Retained by														1			

LOGIN SAMPLE RECEIPT CHECK LIST

Client: SECOR International, Inc.

Job Number: 720-483-7-1

Login Number: 4837

Question	T/F/NA	Comment
Radioactivity either was not measured or, if measured, is at or below background	NA	
The cooler's custody seal, if present, is intact.	NA	
The cooler or samples do not appear to have been compromised or tampered with,	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded,	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	

ANALYTICAL REPORT

Job Number: 720-5358-1

Job Description: Conocp Phillips #7004

For:

SECOR International, Inc. 3017 Kilgore Road Suite 100 Rancho Cordova, CA 95670

Attention: Mr. Thomas M Potter

Dimple Sharma

Project Manager I dsharma@stl-inc.com

09/15/2006

Project Manager: Dimple Sharma

METHOD SUMMARY

Client: SECOR International, Inc.

Job Number: 720-53-58-1

Description		Lab Location Method		Preparation Method
Matrix:	Air-Florida			
Volatile C	ompounds by GC/MS	STL SF	SW846 8	260B
	Purge and Trap with Tedlar Bags (72 Hour Hold	STL SF		SW846 5030B
Matrix:	Water			
Volatile O	rganic Compounds by GC/MS	STL SF	SW846 8	260B
	Purge-and-Trap	STL SF		SW846 5030B

LAB REFERENCES:

STL SF = STL San Francisco

METHOD REFERENCES:

SW846 - "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

SAMPLE SUMMARY

Client: SECOR International, Inc.

Job Number: 720-53-58-1

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
720-5358-1	INF	Air-Florida Tedlar Bag	09/05/2006 1230	09/05/2006 1307
720-5358-2	EFF	Air-Florida Tedlar Bag	09/05/2006 1225	09/05/2006 1307
720-5358-3	ко	Water	09/05/2006 1215	09/05/2006 1307

Client: SECOR International, Inc. Job Number: 720-5358-1

Client Sample ID:

KO

Lab Sample ID: Client Matrix:

720-5358-3

Water

Date Sampled:

09/05/2006 1215

Date Received:

09/05/2006 1307

8260B Volatile Organic Compounds by GC/MS

Method:

8260B

Instrument ID:

Salurn 2100

77 - 121

73 - 130

Preparation:

5030B

Analysis Batch: 720-12943

Lab File ID:

c:\saturnws\data\2006O 9\09

Dilution:

1.0

Initial Weight/Volume:

10 mL

Date Analyzed:

09/08/2006 1201

Final Weight/Volume:

10 mL

Date Prepared:

Toluene-d8 (Surr)

1,2-Dichloroethane-d4 (Surr)

09/08/2006 1201

Analyte	Result (ug/L)	Qualifier	RL
1,2-Dichloroethane	ПU		0.50
Benzene	ND		0.50
Ethanol	ND		250
Ethylbenzene	ND		0.50
MTBE	3.1		0.50
TAME	ND		0.50
Toluene	ND		0.50
Xylenes, Total	ND		1.0
TBA	ND		5.0
DIPE	ND		1.0
EDB	ND		0.50
Gasoline Range Organics (GRO)-C6-C12	ND		50
Ethyl tert-butyl ether	ND		0.50
Surrogate	%Rec		Acceptance Limits

96

107

Client: SECOR International, Inc.

Job Number: 720-5358-1

Client Sample ID:

INF

Lab Sample ID:

720-5358-1

Client Matrix:

Air-Florida Tedlar Bag

Date Sampled:

09/05/2006 1230

Date Received:

09/05/2006 1307

8260B Volatile Compounds by GC/MS

Method:

82608

Analysis Batch: 720-12827

Instrument ID:

Varian 3900C N/A

Preparation:

5030B

Lab File ID:

Dilution:

1.0

Initial Weight/Volume:

50 mL 50 mL

Date Analyzed: Date Prepared: 09/05/2006 1944

Final Weight/Volume:

09/05/2006 1944

Injection Volume:

Qualifier RL Result (ppm v/v) Analyte 0.062 ND Benzene 0.052 ND Toluene 0.046 ND Ethylbenzene 0.050 0.046 Xylenes, Total 0.028 Methyl tert-butyl ether 0.10 1.0 Gasoline Range Organics (GRO)-C6-C12 11 %Rec Acceptance Limits Surrogate 77 - 121 Toluene-d8 (Surr)

1,2-Dichloroethane-d4 (Surr)

91 110

73 - 130

Job Number: 720-5358-1 Client: SECOR International, Inc.

Client Sample ID:

EFF

Lab Sample ID:

720-5358-2

Client Matrix:

Air-Florida Tedlar Bag

Date Sampled:

09/05/2006 1225

Date Received:

09/05/2006 1307

8260B Volatile Compounds by GC/MS

Method:

8260B

Analysis Batch: 720-12827

Instrument ID: Varian 3900C

N/A

Preparation: 5030B Dilution:

1.0

Lab File ID: Initial Weight/Volume:

50 mL 50 mL

Date Analyzed: Date Prepared: 09/05/2006 1917 09/05/2006 1917

Final Weight/Volume:

Injection Volume:

Analyte	Result (ppm v/v)	Qualifier	RL
Benzene	ND		0.062
Toluene	ND		0.052
Ethylbenzene	ND		0.046
Xylenes, Total	ND		0.046
Methyl tert-butyl ether	ND		0.028
Gasoline Range Organics (GRO)-C6-C12	ND		1.0
Surrogate	%Rec		Acceptance Limits
Toluene-d8 (Suп)	99		77 - 121
1,2-Dichloroethane-d4 (Surr)	109		73 - 130

DATA REPORTING QUALIFIERS

Lab Section Qualifier Description

Client: SECOR International, Inc. Job Number: 720-53 58-1

QC Association Summary

		Report			
Lab Sample ID	Client Sample ID	Basis	Client Matrix	Method	Prep Batch
GC/MS VOA					
Analysis Batch:720-12	943				
LCS 720-12943/2	Lab Control Spike	Ŧ	Water	8260B	
LCSD 720-12943/1	Lab Control Spike Duplicate	Т	Water	8260B	
MB 720-12943/3	Method Blank	Т	Water	8260B	
720-5358-3	KO	Т	Water	8260B	
720-5358-3MS	Matrix Spike	Т	Water	8260B	
720-5358-3MSD	Matrix Spike Duplicate	T	Water	8260B	
Report Basis T = Total					
Air Toxics	947				
Analysis Batch:720-128 LCS 720-12827/2	Lab Control Spike	т	Air-Florida	8260B	
LCSD 720-12827/3	Lab Control Spike Duplicate	Ť	Air-Florida	8260B	
MB 720-12827/1	Method Blank	Ϋ́	Air-Florida	8260B	
720-5358-1	INF	T	Air-Florida	8260B	
720-5358-2	EFF	Ť	Air-Florida	8260B	
720-3330-2	LII	•	711-1 101100	02005	
Report Basis T = Total					

STL San Francisco

Client: SECOR International, Inc. Job Number: 720-5358-1

Method Blank - Batch: 720-12943 Method: 8260B Preparation: 5030B

Lab Sample ID: MB 720-12943/3 Analysis Batch: 720-12943 Instrument ID: Saturn 2100

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200609\09

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 10 mL

Date Analyzed: 09/08/2006 1104 Final Weight/Volume: 10 mL

Analyte	Result	Qual	RL
1,2-Dichloroethane	ND		0.50
Benzene	ND		0.50
Ethanol	ND		250
Ethylbenzene	ND		0.50
MTBE	ND		0.50
TAME	ND		0.50
Toluene	ND		0.50
Xylenes, Total	ND		1.0
TBA	ND		5.0
DIPE	ND		1.0
EDB	ND		0.50
Gasoline Range Organics (GRO)-C6-C12	ND		50
Ethyl tert-butyl ether	ND		0.50

 Surrogate
 % Rec
 Acceptance Limits

 Toluene-d8 (Surr)
 99
 77 - 121

 1,2-Dichloroelhane-d4 (Surr)
 109
 73 - 130

Calculations are performed before rounding to avoid round-off errors in calculated results.

Date Prepared: 09/08/2006 1104

73 - 130

Client: SECOR International, Inc. Job Number: 720-5358-1

Lab Control Spike/ Method: 8260B
Lab Control Spike Duplicate Recovery Report - Batch: 720-12943 Preparation: 5030B

LCS Lab Sample ID: LCS 720-12943/2 Analysis Batch: 720-12943 Instrument ID: Saturn 2100

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200609\09

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 10 mL

Date Analyzed: 09/08/2006 0938 Final Weight/Volume: 10 mL Date Prepared: 09/08/2006 0938

LCSD Lab Sample ID: LCSD 720-12943/1 Analysis Batch: 720-12943 Instrument ID: Saturn 2100

100

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\2006O9\090

Dilution: 1,0 Units: ug/L Initial Weight/Volume: 10 mL Date Analyzed: 09/08/2006 1004 Final Weight/Volume: 10 mL

% Rec. LCS **RPD** RPD Limit LCS Qual LCSD Qual Analyte LCSD Limit Benzene 93 94 69 - 129 2 25 MTBE 109 123 65 - 165 12 25 Toluene 102 103 70 - 130 1 25 Surrogate LCS % Rec LCSD % Rec Acceptance Limits 77 - 121 100 98 Toluene-d8 (Surr)

103

Calculations are performed before rounding to avoid round-off errors in calculated results.

Date Prepared:

1,2-Dichloroethane-d4 (Surr)

09/08/2006 1004

73 - 130

Client: SECOR International, Inc. Job Number: 720-5358-1

Matrix Spike/ Method: 8260B
Matrix Spike Duplicate Recovery Report - Batch: 720-12943 Preparation: 5030B

MS Lab Sample ID: 720-5358-3 Analysis Batch: 720-12943 Instrument ID: Saturn 2100

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\20\infty609\t

Dilution: 1.0 Initial Weight/Volume: 10 mL

Date Analyzed: 09/08/2006 1227 Final Weight/Volume: 10 mL Date Prepared: 09/08/2006 1227

MSD Lab Sample ID: 720-5358-3 Analysis Batch: 720-12943 Instrument ID: Saturn 2100

100

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\2006 09\0\$

Dilution: 1.0 Initial Weight/Volume: 10 mL Date Analyzed: 09/08/2006 1254 Final Weight/Volume: 10 mL

Date Prepared: 09/08/2006 1254

	%	Rec.				
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual MSD Qual
Benzene	96	89	69 - 129	7	20	
MTBE	123	114	65 - 165	6	20	
Toluene	103	99	70 - 130	4	20	
Surrogate		MS % Rec	MSD %	% Rec	Acce	eptance Limits
Toluene-d8 (Surr)		101	99		7	7 - 121

102

Calculations are performed before rounding to avoid round-off errors in calculated results.

1,2-Dichloroethane-d4 (Surr)

Client: SECOR International, Inc. Job Number: 720-53-58-1

Method Blank - Batch: 720-12827 Method: 8260B
Preparation: 5030B

Lab Sample ID: MB 720-12827/1 Analysis Batch: 720-12827 Instrument ID: Varian 3900C

Client Matrix: Air-Florida Tedlar Bag Prep Batch: N/A Lab File ID: N/A

Dilution: 1.0 Units: ppm v/v Initial Weight/Volume: 40 mL Date Analyzed: 09/05/2006 1250 Units: ppm v/v Initial Weight/Volume: 40 mL

Date Prepared: 09/05/2006 1250 Injection Volume:

Analyle	Result	Qual	ŔĹ
Benzene	ND		0.062
Toluene	ND		0.052
Ethylbenzene	ND		0.046
Xylenes, Total	ND		0.046
Methyl tert-butyl ether	ND		0.028
Gasoline Range Organics (GRO)-C6-C12	ND		1.0

Surrogate	% Rec	Acceptance Limits
Toluene-d8 (Surr)	108	77 - 121
1,2-Dichloroethane-d4 (Surr)	112	73 - 130

Calculations are performed before rounding to avoid round-off errors in calculated results.

Client: SECOR International, Inc. Job Number: 720-53-58-1

Lab Control Spike/ Method: 8260B
Lab Control Spike Duplicate Recovery Report - Batch: 720-12827 Preparation: 5030B

LCS Lab Sample ID: LCS 720-12827/2 Analysis Batch: 720-12827 Instrument ID: Varian 3900C

Client Matrix: Air-Florida Tedlar Bag Prep Batch; N/A Lab File ID: N/A

Dilution: 1.0 Units: ppm v/v Initial Weight/Volume: 40 mL

 Date Analyzed:
 09/05/2006 1130
 Final Weight/Volume:
 40 mL

 Date Prepared:
 09/05/2006 1130
 Injection Volume:

•

LCSD Lab Sample ID: LCSD 720-12827/3 Analysis Batch: 720-12827 Instrument ID: Varian 3900C

Client Matrix: Air-Florida Tedlar Bag Prep Batch: N/A Lab File ID: N/A

Dilution: 1.0 Units: ppm v/v Initial Weight/Volume: 40 mL
Date Analyzed: 09/05/2006 1157 Final Weight/Volume: 40 mL

Date Prepared: 09/05/2006 1157 Injection Volume:

		% Rec.			
Analyte	I.CS	LCSD	Limit	RPD	RPD Limit LCS Qual LCSD Qual
Веплепе	99	100	69 - 129	1	20
Toluene	107	88	70 - 130	19	20
Methyl tert-butyl ether	94	91	66 - 126	3	20
Surrogate	- 1	LCS % Rec	LCSD %	Rec	Acceptance Limits
Toluene-d8 (Surr)		107	94		77 - 121
1,2-Dichloroethane-d4 (Surr)		107	107		73 - 130

Calculations are performed before rounding to avoid round-off errors in calculated results.

								_	١		- DI	_ : : : :	:		h = i	<i>(</i>	7	٠.	(.	4	D.		
	STL-San F	Francisco	Conc	coPhil	lips Site	Mana	105	_	01	100	OPI	781	1bs	5 C	naı	<u> </u>								
	1220 Qua	arry Lane			MITTAN		DDECC.							120	Correccehalips W. ork Order Nur 1631S EC013									
	Pleasanton,	CA 94566			_	-		•••		CONC Attri:	Dee H	utchi	กรงก					GonocoPhillips Cost Object						
(9	925) 484-1919 (9	925) 484-1096 fax	1	720-					2	3611. Sam.	South Ana		or, Sı 12704	uite 20	0						16:514.E	.1631		idat
	HO COMPANY;	- '-	Vella Vell	velid Value X);					nı.	S(TE MU	IBER	-						_		<u> </u>	GLO E	ALIDN	10.	_
SECO	OR International, inc	<u>c</u>								Stati		o. 7	004						<u>_</u>		106	3001	014	<u>51</u>
	Kilgore Rd., Suite 1								•		•		_			_				- 1				
ı.	ECT CONTACT (Hardcopy 185 M. Potter	or POF Report Lej:					115:	599 *****	He:	peria	an Bl' ∞ Design	vd.,	Sar	Lea	ndra F	D, C/	^		_		É-MAR	-		_
TELE	PHONE: 61-0400 ex. 288	FAX:	E-MAX	: @secor.c			Tho	mas i	М. Ро	Her					9	16-86	1-040	0		- 1	tpotte	er@s	ecor.c	om
	ER MAME(S) (Print);	916-861-0430	—		ECT MUMBES	3	┡											_						—
<u> </u>	Brian Her			77CP.67	004.08.00	09										F	REQU	ES ⁻	ΓED	ANA	ALY:	SES		
	VAROUND TIME (CALE)	NDAR DAYS); 72 Hours 🔲 48 Hours	□ 24 HO	uec □ re	SS THAN 24	HQ IDS					ot		띪	\Box	Т	T		Т	Т	П	\Box			
	DAIS EL FORIS EL		-		33 110/1 21	nouid	ł	1		/ BTEX / 8 methanol (8015M)	es n]	SME	OTCLP.	- 1			1			ì			
SFEC	AL INSTRUCTIONS	OR NOTES:	CHECK BO	X IF EDD	IS NEEDED	নি	鲁	닒		_ <u>@</u>	(g)		<u> </u>		- 1		İ	Ì						
						_	acta	1	X	X S	δ, 2	Se .	H ₀ /	OSTC			1,			1	- 1			
							뷺	빎	7 9 T		nete.	§	F	8	-	ļ			Fuels)					
							- TPHd Extractable	· TPHg/BTEX/MtBE	भूष	是:	S II	· Somi-Volatilos	218	□Total	-	- {	1		3	-	. !			
		required if different from		e tO			<u>:</u>	=		and the	3.F.F.	Š)8 2	1 1		-			ž					
(AB		Tcation/Field Point		PLING	MATRIX	NO. OF	8015m	82608	8260B - TPHg / 6TEX / 8	8260B - TPHg / BTEX / 8 oyxgenetes + methanol (8260B - Full Scan VOCs (does not Include oxygenates)	9270C	8015M / 8021B - TPHg/BTEX/MLBE	Lead		R-149		<u>-</u>	TPH (Residute	ļ				
ONLY	-	iame"	PATE	123 U			L	x	-	₩.0	<u>∞ =</u>	╠		-	┪	* †	+	+	ᅱ	\dashv	\Box			_
	INF		706		Air	 			├	├				⊢	\dashv	\dashv		╌┼	\dashv	-		Н	\dashv	
	EFF	-	/-	1227	Air .	1_1_	-	<u> </u>	╁—	ļ		 	┡	\vdash		-	-	4	\dashv	-	$\vdash \vdash$	$\vdash\vdash$	\dashv	_
	ко		4	1215	Water	3	 _	$oxed{oxed}$	×	ļ	ļ	_	匚		_	_	_	4	_			\square	\dashv	
				<u></u>		<u> </u>		Ŀ	<u>1</u>	1		L	_	Ш		\perp		↲	\Box	لــــا	<u> </u>			
														1 1				-						
							Γ	Г				1					\top	╗				$\lceil - \rceil$		
				\vdash			1-	\top	1	 		┼┈	T	П			\neg	7				П		
			 	1	 	 	╂─-	╁╌	┾╸	1		╁			一	十	_	†	\neg	\Box	-	H	一	
-			 			-	\vdash	├	+		\vdash	╀					\dashv	\dashv			\vdash		\vdash	
		/	 -	 	 	_	╀	┝	╀	-	├	-	┼	\vdash		+	+	\dashv		\vdash	\vdash			
Reliev	nsþsgrbyr (Saghature)		1,,,/	<u> </u>	Received	y, (Signatuh	بِـلِ	<u>.</u> :	_	<u>Ļ</u> _	٠,,	<u></u>	<u></u>				L	_		Date				
المير	47/10 1	him 9	1/1/0/			.t. fradustin		11 1	i	771	0									"	7/°	5/1	6	
Radical)	Tished by. (Signature)				Received t	y (Signillin	n	,,,	7	7,00	$\overline{}$		_					_		Calé	,-	_		
Relingu	rished by (Signature)				Received to	y: (Signature														D=10	,			

LOGIN SAMPLE RECEIPT CHECK LIST

Client: SECOR International, Inc. Job Number: 720-535 &-1

Login Number: 5358

Question	T/F/NA	Comment
Radioactivity either was not measured or, if measured, is at or below background	NA	
The cooler's custody seal, if present, is intact.	NA	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	

ATTACHMENT 3 VEOLIA TRANSPORTATION LOG

Quarterly Status and Remediation Summary Report – Third Quarter 2006
Former 76 Service Station No. 7004
15599 Hesperian Boulevard
San Leandro, California

SECOR Project No.: 77CP.01631.00.0304 November 6, 2006 Site #: 257004

15599 Hesperian Blvd. Address:

Conoco Contact: Thomas Kosel

Consultant: SECOR, Diane Barclay

VEOLIA TRANSPORTATION LOG

Summary of Gallons Transported

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
2006	0	0	19,500	50,000	0	58,200	85,600	112,500	89,700		0	O	415,500
Detall													

Date	Gallone	Comments
3/28/2006	5000	
3/29/2006	6500	
3/30/2006	4000	
3/31/2006	4000	
4/1/2006	4000	
4/5/2006	3000	
4/7/2006	3500	
4/8/2006	3500	
4/9/2006	4500	
4/10/2006	4000	
4/11/2006	5000	
4/12/2006	5500	
4/13/2006	5500	
4/14/2006	5000	
4/15/2006	5000	
4/16/2006	1500	
6/1/2006	5500	
6/5/2006	5000	· · · · · · · · · · · · · · · · · · ·
6/7/2006	5400	
6/12/2006	5400	· · · · · · · · · · · · · · · · · · ·
		· · · · · · · · · · · · · · · · · · ·
6/19/2006	1000	
6/20/2006	1000	<u> </u>
6/21/2006	5000	
6/22/2006	5000	
6/23/2006	5000	
6/24/2006	5400	
6/25/2006	4000	
6/26/2006	1500	· · · · · · · · · · · · · · · · · · ·
6/27/2006	4000	
6/28/2006	5000	
6/29/2006	4000	
6/30/2006	4000	
7/1/2006	5000	
7/2/2006	5000	
7/3/2006	5000	
7/5/2006	5000	
7/6/2006	5000	
7/7/2006	5000	
7/9/2006	5000	
7/10/2006	5000	
7/11/2006	8500	
7/14/2006	4200	
7/15/2006	4200	1. <u>L.L.</u>
7/18/2006	2400	
7/19/2006	5000	
7/20/2006	3500	
	2300	

Site #: 257004

Address: 15599 Hesperian Blvd.

Conoco Contact: Thomas Kosel

Consultant: SECOR, Diane Barclay

VEOLIA TRANSPORTATION LOG

Summary of Gallons Transported

ſ	Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
I	2006	0	0	19,500	50,000	. 0	58,200	85,600	112,500	89,700		0	0	415,500
٦	Detail													

Date	Gallons	Comments
3/28/2006	5000	
3/29/2006	6500	
7/21/2006	5000	
7/22/2006	2400	
	2400	
7/23/2006		
7/24/2006	5000	
7/25/2006	2500	
8/2/2006	4000	
8/3/2006	3500	
8/4/2006	3000	
8/5/2006	3500	
8/6/2006	3000	
8/7/2006	3000	
8/8/2006	3000	
8/9/2006	4500	
8/10/2006	4000	·
8/11/2006	5000	
8/12/2006	5000	
8/13/2006	5000	
8/14/2006	4500	
8/15/2006	5000	
8/16/2006	5000	
8/17/2006	4500	
8/18/2006	4500	
8/19/2006	4500	
8/20/2006	4500	
8/21/2006	5000	
8/22/2006	5000	· ··
8/23/2006	4500	
8/24/2006	4500	
8/25/2006	4000	· · · · · · · · · · · · · · · · · · ·
8/26/2006	3000	
8/30/2006	5000	
8/31/2006	4500	
9/1/2006	2400	
9/2/2006	4000	
9/3/2006	2400	
9/4/2006	2400	
9/5/2006	3500	
9/6/2006	2500	
9/7/2006	3000	
9/8/2006	4000	
9/9/2006	3000	
9/10/2006	3000	
9/11/2006	3500	
9/12/2006	4000	,

Site #:

257004

Address:

15599 Hesperian Blvd.

Conoco Contact: Thomas Kosel

Consultant:

SECOR, Diane Barclay

VEOLIA TRANSPORTATION LOG

Summary of Gallons Transported

Γ	Year	Jan	Feb	Mar	Apr	May	Jun	Jül	Aug	Sep	Oct	Nov	Dec	Total
Ţ	2006	0	0	19,500	50,000	0	58,200	85,600	112,500	89,700		0	O	415,500

Detail Date Gallons Comments 3/28/2006 5000 6500 3/29/2006 9/13/2006 4000 3500 9/14/2006 3500 9/15/2006 9/16/2006 3500 9/17/2006 3500 9/18/2006 4000 9/19/2006 4000 9/20/2006 4000 9/21/2006 3000 9/22/2006 3000 6500 9/23/2006 9/26/2006 3000 9/30/2006 4500