	CONESTOGA-ROVERS & ASSOCIATES
--	---

10969 Trade Center Drive, Suite 107 Rancho Cordova, California 95670 Telephone: (916) 889-8900 Fax: (916) 889-8999 www.CRAworld.com

TRANSMITTAL

_		10		_			(4.4	
DATE:	12/17/	10			EFERENCE N		611	
				PR	OJECT NAM	IE:	Che	evron 9-8139 (RO368)
To:	Mr. Ma	rk Dette	erman					
	Alamed	la Coun	ty Environmen	tal Healtl	h			RECEIVED
	1131 Ha	arbor Ba	y Parkway, Sui	te 250				9:29 am, Dec 20, 2010
	Alamed	ła, CA 9	4502-6577					Alameda County
		,						Environmental Health
Please fine	d enclosed	l:	Draft Originals		Final Other			
			Prints					
Sent via:			Mail Overnight Cou	rier	Same Da	5		ACEH FTP site
QUAN	TITY				DESC	RIPT	ION	
1		Case C	losure Request					
	Requested Your Use			For Revie Final rep	ew and Com port	ment		
		opporte	inity to work w	ith you o	n this proje	ot Dl		ontact Jamos Kiornan at

We appreciate the opportunity to work with you on this project. Please contact James Kiernan at (916) 889-8917 if you have any questions or require additional information.

Copy to:	Ms. Stacie Frerichs, Chevron Mr. Harv Dhaliwal		AK
Completed by:	James Kiernan	Signed:	T
	[Please Print]		

Filing: Correspondence File

Stacie H. Frerichs Team Lead Marketing Business Unit Chevron Environmental Management Company 6001 Bollinger Canyon Road San Ramon, CA 94583 Tel (925) 842-9655 Fax (925) 842-8370

December 17, 2010

Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Re: Chevron Facility #_9-8139____

Address: 16304 Foothill Boulevard, San Leandro, California

I have reviewed the attached report titled *Case Closure Request_____* and dated December 17, 2010.

I agree with the conclusions and recommendations presented in the referenced report. The information in this report is accurate to the best of my knowledge and all local Agency/Regional Board guidelines have been followed. This report was prepared by Conestoga-Rovers & Associates, upon whose assistance and advice I have relied.

This letter is submitted pursuant to the requirements of California Water Code Section 13267(b)(1) and the regulating implementation entitled Appendix A pertaining thereto.

I declare under penalty of perjury that the foregoing is true and correct.

Sincerely,

SHFrencho

Stacie H. Frerichs Project Manager

Enclosure: Report

CASE CLOSURE REQUEST

Chevron Service Station 9-8139 16304 Foothill Boulevard San Leandro, California LOP Case No. RO0000368

Prepared for:

Mr. Mark Detterman, P.G., C.E.G. Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Prepared by: Conestoga-Rovers & Associates

10969 Trade Center Drive, #107 Rancho Cordova, California U.S.A. 95670

Office: (916) 889-8900 Fax: (916) 889-8999

web: http://www.CRAworld.com

DECEMBER 17, 2010 REF. NO. 611971 (11) This report is printed on recycled paper.

CASE CLOSURE REQUEST

Chevron Service Station 9-8139 16304 Foothill Boulevard San Leandro, California LOP Case No. RO0000368

Christopher J. Benedict

James P. Kiernan, P.E.

Prepared by: Conestoga-Rovers & Associates

10969 Trade Center Drive, #107 Rancho Cordova, California U.S.A. 95670

Office: (916) 889-8900 Fax: (916) 889-8999

web: http://www.CRAworld.com

DECEMBER 17, 2010 REF. NO. 611971 (11) This report is printed on recycled paper.

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	SITE DESCRIPTION AND BACKGROUND	1
3.0	SITE GEOLOGY AND HYDROGEOLOGY	2
4.0	RELEASE INFORMATION	3
5.0	PETROLEUM HYDROCARBONS IN SOIL	3
6.0	PETROLEUM HYDROCARBONS IN GROUNDWATER	5
7.0	PETROLEUM HYDROCARBONS IN SOIL VAPOR	7
8.0	RECOMMENDED LOW-RISK CRITERIA	7
9.0	CONCLUSIONS AND RECOMMENDATIONS	9

LIST OF FIGURES (Following Text)

FIGURE 1VICINITY MAPFIGURE 2SITE PLANFIGURE 3TPHG GROUNDWATER ISOCONCENTRATION MAPFIGURE 4MTBE GROUNDWATER ISOCONCENTRATION MAP

LIST OF TABLES (Following Text)

- TABLE 1SOIL SAMPLE ANALYTICAL RESULTS
- TABLE 2GROUNDWATER SAMPLE ANALYTICAL RESULTS
- TABLE 3SOIL VAPOR SAMPLE ANALYTICAL RESULTS

LIST OF APPENDICES

- APPENDIX A SUMMARY OF ENVIRONMENTAL INVESTIGATION AND REMEDIATION
- APPENDIX B HISTORICAL BORING LOGS AND PREVIOUS CROSS-SECTIONS
- APPENDIX C SECOND SEMI-ANNUAL 2010 GROUNDWATER MONITORING REPORT
- APPENDIX D CONCENTRATION VERSUS TIME GRAPHS
- APPENDIX E TREND GRAPHS AND DEGRADATION CALCULATIONS
- APPENDIX F MASS CALCULATIONS
- APPENDIX G WELL SURVEY INFORMATION

1.0 INTRODUCTION

Conestoga-Rovers & Associates (CRA) has prepared this *Case Closure Request* on behalf of Chevron Environmental Management Company (Chevron) for Chevron service station 9-8139 located at 16304 Foothill Boulevard in San Leandro, California. Based on our review of the site background and conditions, this site meets the criteria for closure as a low-risk fuel site; as recommended to the State Water Resources Control Board (SWRCB) by the UST Cleanup Program Task Force in their January 13, 2010 report per Resolution 2009-0042. Presented below are the site description and background, site conditions and discussion of remaining impacts, and our rationale for closure based on the low-risk criteria.

2.0 SITE DESCRIPTION AND BACKGROUND

The site is an active Chevron-branded gasoline station located on the northeast side of Foothill Boulevard just northwest of the intersection with Miramar Avenue (Figure 1). Current station facilities include a station building, two gasoline underground storage tanks (USTs), and two dispenser islands. Land use in the site vicinity is mixed commercial and residential. The site is bounded by Foothill Boulevard to the southwest, a church to the northwest, apartment buildings to the northeast, and a motel to the southeast. The northwest portion of the site is also used for access to the apartment buildings. Interstate 580 is located adjacent to the southwest of Foothill Boulevard. Because of the Interstate and feeder roads, the nearest downgradient buildings are approximately 600 feet from the site.

The date the site was first occupied by a service station is unknown; however, based on previous tank testing documentation, steel USTs were installed in 1965. In an aerial photograph dated 1968, the site appears to be occupied by a service station in the former configuration. Former station facilities at that time included at least a 7,500-gallon steel gasoline UST; the details of other former USTs are unknown. In the early 1980s, the USTs and piping were replaced with fiberglass equipment. In 1998, due to Chevron's planned sale of the property, the existing station was demolished including the removal of three 10,000-gallon gasoline USTs, a 1,000-gallon used-oil UST, two dispenser islands and associated product piping, three hydraulic hoists, and a clarifier (oil/water separator). The property was sold and subsequently redeveloped with the existing station. Vehicle maintenance is no longer performed onsite. Current and former station facilities are shown on Figure 2.

Environmental work has been ongoing since 1982, and has included the installation of monitoring wells MW-1 through MW-14 and groundwater extraction wells E-1, E-2 (formerly MW-5), and E-3 (formerly MW-4), the drilling of exploratory borings GP-1 through GP-5, and a soil vapor survey. Wells MW-1 through MW-3, MW-6, MW-7, and E-1 were destroyed prior to station demolition in 1998. Groundwater has been monitored since 1989.

Remedial activities have included excavation of approximately 1,110 cubic yards of soil and groundwater pumping (approximately 3,000 gallons) during UST removal/station construction activities. Light non-aqueous phase liquid (LNAPL) was extracted from MW-5 in 1990 and 1991. A groundwater extraction (GWE) system operated from 1991 through 1994 and removed approximately 666,500 gallons of groundwater (7.3 pounds of aqueous-phase hydrocarbons). Oxygen Release Compound® (ORC) socks reportedly also were placed in wells E-3, MW-8, and MW-9 for some time beginning in 1999.

The approximate well, boring, and soil sample locations and the approximate extent of over-excavation are shown on Figure 2. A summary of the environmental work is presented in Appendix A. The soil, groundwater, and soil vapor analytical results are presented in Tables 1 through 3, respectively.

3.0 SITE GEOLOGY AND HYDROGEOLOGY

The site is located at the western edge of the San Leandro Hills approximately 4 miles east of San Francisco Bay and approximately 1.25 miles south of Lake Chabot. The site is relatively flat at an elevation of approximately 125 feet above mean sea level. Soil encountered beneath the site has generally consisted of clay with varying amounts of silt, sand, and gravel to the maximum explored depth of 67.5 feet below grade (fbg); layers of clayey, silty, or gravelly sand were also observed in some borings. Copies of the historical boring logs and previous geologic cross-sections are presented in Appendix B.

Groundwater was encountered in the exploratory and well borings at depths of 15 to 37 fbg. The depth to groundwater in the wells has ranged from approximately 8 to 22.5 feet below top of casing (TOC). The groundwater flow direction is generally to the southwest following the local topography. A groundwater rose diagram is presented on Figure 2. The nearest surface water body is San Lorenzo Creek located approximately 1 mile south of the site.

4.0 <u>RELEASE INFORMATION</u>

- *Tanks:* Three 10,000-gallon gasoline USTs and a 1,000-gallon used-oil UST were removed in 1998. Previous steel USTs (installed 1965) reportedly were replaced in the early 1980s.
- *Release Type:* Gasoline and related constituents.
- *Release Source:* Previous UST system(s). During system testing in 1982, a leaking regular gasoline vapor line was identified. Approximately 25 gallons of product reportedly were lost during the test, and the tanks replaced shortly thereafter. In 1986, the station reported product inventory losses. Testing revealed a leak in the 10,000-gallon regular gasoline tank. The tank was subsequently repaired and retested tight (Appendix A).
- *Release Discover Date:* Releases reported during UST system testing in 1982 and 1986.
- *Affected Media:* Soil and groundwater.
- *Free Product:* Observed in MW-5 at thicknesses ranging from 0.04 to 1.3 feet from September 1990 to May 1991; hand bailing performed; not observed following conversion of 2-inch diameter MW-5 to 4-inch diameter E-2 in June 1991 and subsequent groundwater extraction. The wells were similarly screened.
- *Corrective Actions:* UST system replacement/repair/removal; hand bailing of LNAPL in MW-5 in late-1990 and early 1991; GWE system operation from 1991 to 1994; soil over-excavation/groundwater pumping during station demolition in 1998; and ORC placed in wells E-3, MW-8, and MW-9 for some time beginning in July 1999.

5.0 <u>PETROLEUM HYDROCARBONS IN SOIL</u>

The primary constituents of concern (COCs) remaining in soil are total petroleum hydrocarbons as gasoline (TPHg), benzene, and methyl tertiary butyl ether (MTBE). The highest TPHg concentration detected in soil that was not excavated was 710 milligrams per kilogram (mg/kg) in the sample collected at 10 fbg from boring GP-4 drilled just downgradient of the former southwestern dispenser island. The highest benzene concentration detected in unexcavated soil was 1.5 mg/kg in the sample collected at 15 fbg in the boring for well MW-5. MTBE was detected in the majority of the soil samples analyzed at concentrations up to 12.7 mg/kg. However, many of the samples were analyzed for MTBE using EPA Method 8020 which was less reliable. The maximum concentration detected using EPA Method 8260 was 2.5 mg/kg in the sample collected at

17 fbg from boring GP-3. Other constituents either were not detected or were only detected at low concentrations, and therefore are not COCs.

Table A below presents a comparison of the maximum detected COC concentrations in soil remaining at the site to the corresponding San Francisco Bay Regional Water Quality Control Board (RWQCB) environmental screening levels (ESLs) at commercial/industrial sites where groundwater is a current or potential source of drinking water. As stated by the RWQCB, the ESLs are considered to be conservative. The presence of a chemical at a concentration above an ESL does not necessarily indicate that adverse impacts to human health or the environment are occurring; rather exceeding ESLs indicates that the potential for impacts may exist and additional evaluation may be needed.

TABLE A COMPARISON OF MAXIMUM CONCENTRATIONS IN SOIL TO ESLs (concentrations in mg/kg)										
Constituent	Highest Detected Concentration in Soil (sample ID; depth; date)	Shallow Soil ESLs ^a	Deep Soil ESLs ^b							
TPHg	710 (GP-4; 10 fbg; 11-5-09)	83								
Benzene	1.5 (MW-5; 15 fbg; 5-17-90)		0.044							
MTBE	2.5° (GP-3; 17 fbg; 11/4/09)		0.023							
	om Table A-2, Shallow Soil Screening Le									
 Use, (groundwater is a current or potential drinking water resource), RWQCB, May 2008. ESLs from Table C-2, Deep Soil Screening Levels, Commercial/Industrial Land Use, (groundwater is a current or potential drinking water resource), RWQCB, May 2008. 										
c Maximum concentration detected using EPA Method 8260.										

Soil with residual COC concentrations remains in the area of the former gasoline USTs and dispensers; however, concentrations are generally low. Low concentrations were also detected in a few of the samples collected offsite. Based on the analytical results (Table 1), the extent of hydrocarbons in soil is adequately defined. As shown above, the maximum detected concentrations exceed the ESLs; however, these final ESL values are associated with groundwater protection (soil leaching) concerns. The declining trends observed in groundwater indicate that residual hydrocarbon mass flux to groundwater is decreasing. Therefore, although the maximum detected concentrations exceed ESLs, it does not appear that residual hydrocarbon mass is causing a sustainable high strength plume. Rather, residual hydrocarbon mass and concentrations.

6.0 <u>PETROLEUM HYDROCARBONS IN GROUNDWATER</u>

Groundwater has been monitored for over 20 years. Onsite wells E-2 and E-3 and offsite well MW-14 are currently sampled semi-annually during the first and third quarters, and offsite wells MW-8 and MW-12 are sampled annually during the first quarter. The remaining wells (MW-9, MW-10, MW-11, and MW-13) are no longer sampled. The primary COCs remaining in groundwater are TPHg and MTBE; however, concentrations have decreased and only low concentrations of TPHg (up to 830 micrograms per liter $[\mu g/L]$) remain. BTEX and other fuel oxygenates are less significant COCs in groundwater as generally only low concentrations remain. A copy of the second semi-annual 2010 groundwater monitoring report is presented in Appendix C; please note that in this attached report, the data for E-2 and E-3 is reversed due to incorrect labeling of the wells. This error has been corrected on the CRA figures and tables included herein. The most recent concentrations in groundwater and the associated ESLs are presented in Table B below.

М	TABLE B MOST RECENT CONCENTRATIONS IN GROUNDWATER AND COMPARISON TO ESLs (concentrations in µg/L)												
Well ID	TPHg	Benzene	Toluene	Ethyl-ben zene	Xylenes	MTBE							
MW-8	830	<1	<1	<1	<1	3,900							
	(2/3/10)	(2/3/10)	(2/3/10)	(2/3/10)	(2/3/10)	(2/3/10)							
MW-12	<50	<0.5	1	0.9	3	<0.5							
	(2/3/10)	(2/3/10)	(2/3/10)	(2/3/10)	(2/3/10)	(2/3/10)							
MW-14	100	<0.5	<0.5	<0.5	<0.5	640							
	(8/23/10)	(8/23/10)	(8/23/10)	(8/23/10)	(8/23/10)	(8/23/10)							
E-2	520	<0.5	<0.5	4	0.7	<0.5							
	(8/23/10)	(8/23/10)	(8/23/10)	(8/23/10)	(8/23/10)	(8/23/10)							
E-3	550	<0.5	<0.5	<0.5	<0.5	170							
	(8/23/10)	(8/23/10)	(8/23/10)	(8/23/10)	(8/23/10)	(8/23/10)							
ESL 100 1.0 40 30 20 5.0													
 Not detected at or above stated laboratory reporting limit ESL Groundwater environmental screening level at sites where groundwater is a current or potential source of drinking water (Table A), RWQCB-May 2008 													

Groundwater containing the COCs remains in the area of the former gasoline USTs and dispensers (borings GP-3 through GP-5) and downgradient of these areas (wells E-2 and E-3). TPHg and MTBE were detected in the shallow groundwater samples collected from borings GP-3 through GP-5 at concentrations up to $650 \,\mu\text{g/L}$ and $920 \,\mu\text{g/L}$, respectively; benzene was only detected up to $3 \,\mu\text{g/L}$. The concentrations significantly decreased with depth in the borings (Table 2). As these were grab samples, the detected concentrations

are likely higher than actual conditions due to the presence of sediment in the samples. As described in the January 26, 2010 *Additional Site Investigation Report* that documented the drilling of GP-3 through GP-5, it appears cross-contamination occurred during the drilling of previous borings GP-1 and GP-2, thus the results from these two borings are suspect. The results from GP-4 and GP-5 drilled adjacent to these locations using dual-tube methodology appear to confirm this. These two borings also define the vertical extent of hydrocarbons in groundwater.

During the most recent monitoring event, MTBE was detected at $170 \,\mu g/L$ in well E-3. Low concentrations of TPHg are also present in groundwater downgradient of the site in the area of wells MW-8 (830 $\mu g/L$) and MW-14 (100 $\mu g/L$); as well as higher concentrations of MTBE (3,900 $\mu g/L$ and 640 $\mu g/L$, respectively). Isoconcentration maps of TPHg and MTBE in groundwater are presented on Figures 3 and 4, respectively.

Dissolved Hydrocarbon Trends

Plots of TPHg and MTBE concentrations over time in wells MW-8, MW-14, E-2, and E-3 are presented in Appendix D. As shown on the graphs, although fluctuations occur, the TPHg and MTBE concentrations are generally declining. In MW-14, following an increase during third quarter 2008, concentrations have resumed declining.

The highest concentrations remaining in groundwater are offsite beneath Foothill Boulevard, indicating that the source area has been depleted of hydrocarbons. Decreasing concentrations in MW-8 and MW-14 indicate that the downgradient extent of hydrocarbons is retreating toward the site. Although the dissolved hydrocarbon plume likely extends beyond furthest downgradient well MW-14, the nearest property is 500 feet downgradient of MW-14 and the concentration reductions between MW-8 and MW-14 indicate that hydrocarbons would not reach downgradient receptors. Concentrations are declining, indicating that the plume is decreasing in size and mass due to source removal and natural attenuation.

Trend analysis was performed to estimate when the TPHg and MTBE concentrations in MW-8, MW-14, E-2, and E-3 would reach the ESLs (Appendix E). As shown in Table C below, TPHg and MTBE are expected to reach the ESLs by 2015 (5 years) and 2048 (38 years) at the latest, respectively, which are reasonable amounts of time as it is highly unlikely the water will get used within that time period.

	TABLE C SUMMARY OF DEGRADATION CALCULATIONS												
Well	COC	Peak Concentration (µg/L)	ESL	Most Recent Concentration (µg/L)	Estimated Date to Reach ESL								
MW-8	TPHg	4,000	100	830	Mar. 2014								
101 0 -0	MTBE	25,000	5	3,900	Aug. 2026								
MW-14	MTBE	1,000	5	640	Oct. 2048								
E-2	TPHg	9,000	100	520	Sep. 2015								
E-3	TPHg	1,700	100	550	May 2015								
Е-Э	MTBE	860	5	170	Jun. 2021								

Residual Mass

The masses of TPHg and MTBE remaining in groundwater were estimated to be approximately 0.37 and 0.55 kilograms, respectively. The mass calculations are presented in Appendix F.

7.0 <u>PETROLEUM HYDROCARBONS IN SOIL VAPOR</u>

The previous soil vapor survey at the site was performed in 1989. Although elevated concentrations of total hydrocarbons were detected in several of the samples (Table 3), these samples were collected prior to source removal (UST removal) and remedial activities (over-excavation, GWE system, LNAPL bailing, etc.). Based on this information, the age of the data, and the sampling techniques, these results are not considered representative of current conditions and therefore not considered with regards to evaluating potential risk at the site.

No concentrations in groundwater from shallow grab samples and/or site wells exceed the groundwater ESLs associated with vapor intrusion concerns at residential sites. Therefore, vapor intrusion is not a concern at the site.

8.0 <u>RECOMMENDED LOW-RISK CRITERIA</u>

Based on the information presented above, the site meets the recommended criteria for closure as a low-risk fuel site. Each of these criteria as they pertain to the site is discussed below.

1. The site is not located in a managed groundwater recharge area, or impacted groundwater does not discharge to a surface water body

The local water supply is provided by East Bay Municipal Utility District (EBMUD); the source is the Mokelumne River Basin in the Sierra Nevada range. Shallow groundwater in the site area is not likely to be used as a drinking water source within the time frame during which hydrocarbons in groundwater are predicted to reach water quality objectives. The nearest surface water body is San Lorenzo Creek located approximately 1 mile south (crossgradient) of the site; based on this distance and the hydrogeologic position relative to the site, it is unlikely that hydrocarbons from the site would impact the creek.

2. The current and reasonably anticipated future land use is not residential

The site is currently an active gasoline station, and this land use is expected to remain for the foreseeable future. Potential future use is commercial based on the current land use in the site vicinity and the immediately adjacent freeway.

3. The plume is not migrating and the closest water well is more than 1,000 feet from the site

Concentrations are declining demonstrating that the plume is shrinking.

A 1989 well survey identified nine active water-supply wells (one domestic, one municipal, and seven irrigation) within ½ mile of the site. The well locations were generally identified as to the west/southwest of the site. However, during review of the survey results as part of the March 16, 2004 *Site Conceptual Model* prepared by Cambria Environmental Technology, Inc. (now CRA), it was determined that the previously presented locations of three of the wells (including the municipal and domestic wells) were incorrect (they were outside the ½ mile radius). Based on the updated results, five irrigation wells were located to the southwest and south-southwest of the site; the closest well to the site was approximately 1,000 feet southwest (downgradient). An irrigation well was also located approximately 2,000 feet northwest (crossgradient) of the site. The well survey results and a figure showing the identified wells are presented in Appendix G.

4. The maximum concentrations in groundwater are less than 10,000 μg/L for TPHg, 1,000 μg/L for BTEX, and 500 μg/L for oxygenates

TPHg concentrations in MW-8, MW-14, E-2, and E-3 are well below $10,000 \mu g/L$; the BTEX concentrations in MW-12 and E-2 are well below $1,000 \mu g/L$. The MTBE concentrations in MW-8 and MW-14 are above $500 \mu g/L$, but analysis of the declining trends estimates concentrations will reach this level within a reasonable amount of time (38 years at the latest). The most recent tertiary butyl alcohol (TBA) concentration detected in MW-8 (840 $\mu g/L$) exceeded $500 \mu g/L$; however, the extent of the higher concentrations appears limited (not detected in MW-14). As TBA is a breakdown product of MTBE, its presence indicates natural biodegradation of MTBE. As MTBE concentrations continue to decrease, TBA is expected to follow.

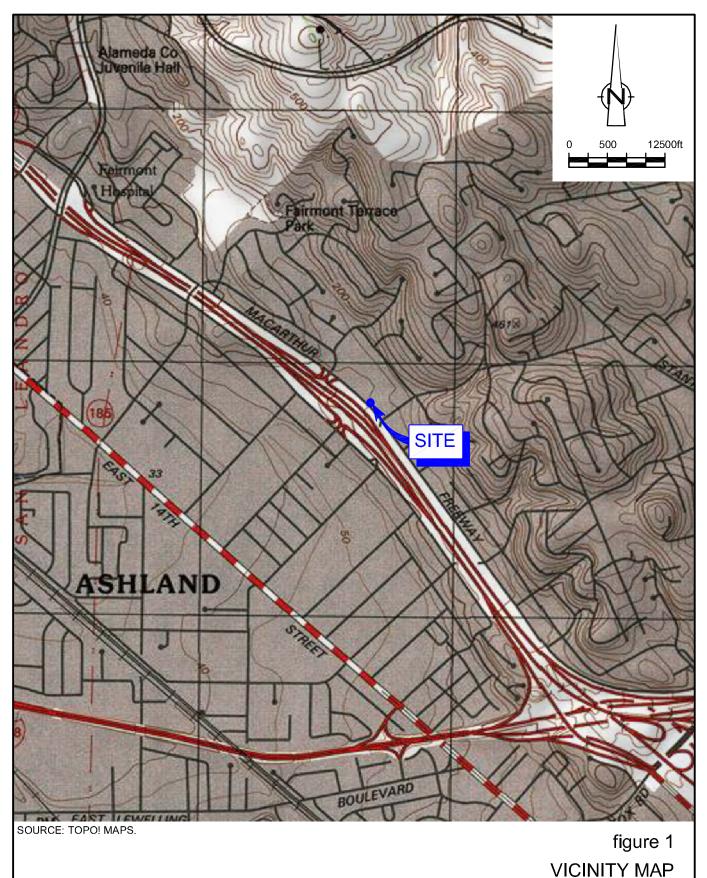
5. Benzene concentrations in soil are less than 12 mg/kg to protect future construction workers

As shown in the attached Table 1 and in Table A above, the maximum benzene concentration detected in soil was 1.5 mg/kg.

6. The impacted groundwater is at a depth of 50 feet or less

As described in Section 3.0, groundwater was encountered in the borings at depths ranging from 15 to 37 fbg and the depth to groundwater in the wells has ranged from approximately 8 to 22.5 feet below TOC.

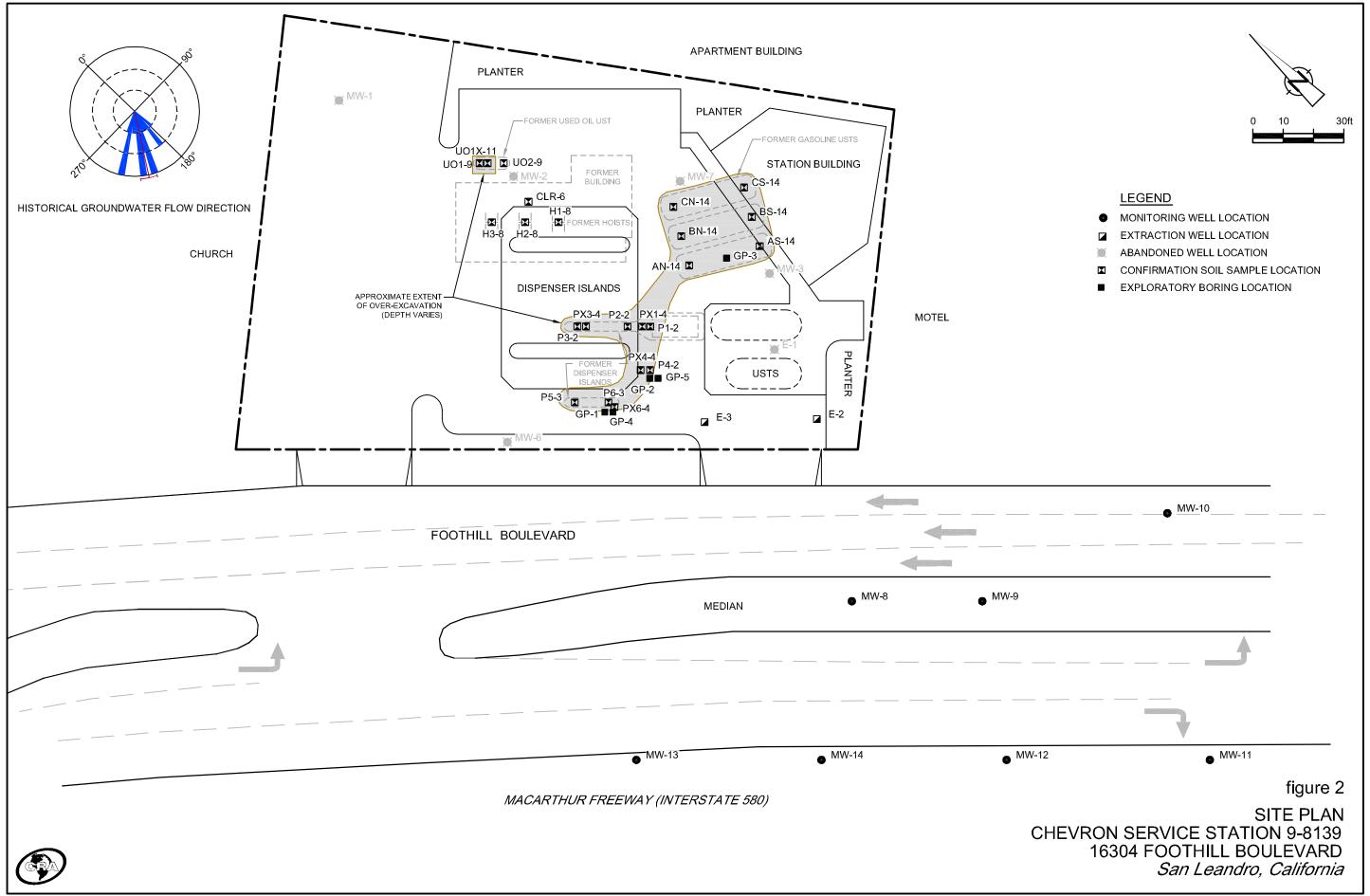
7. The release occurred more than 5 years ago

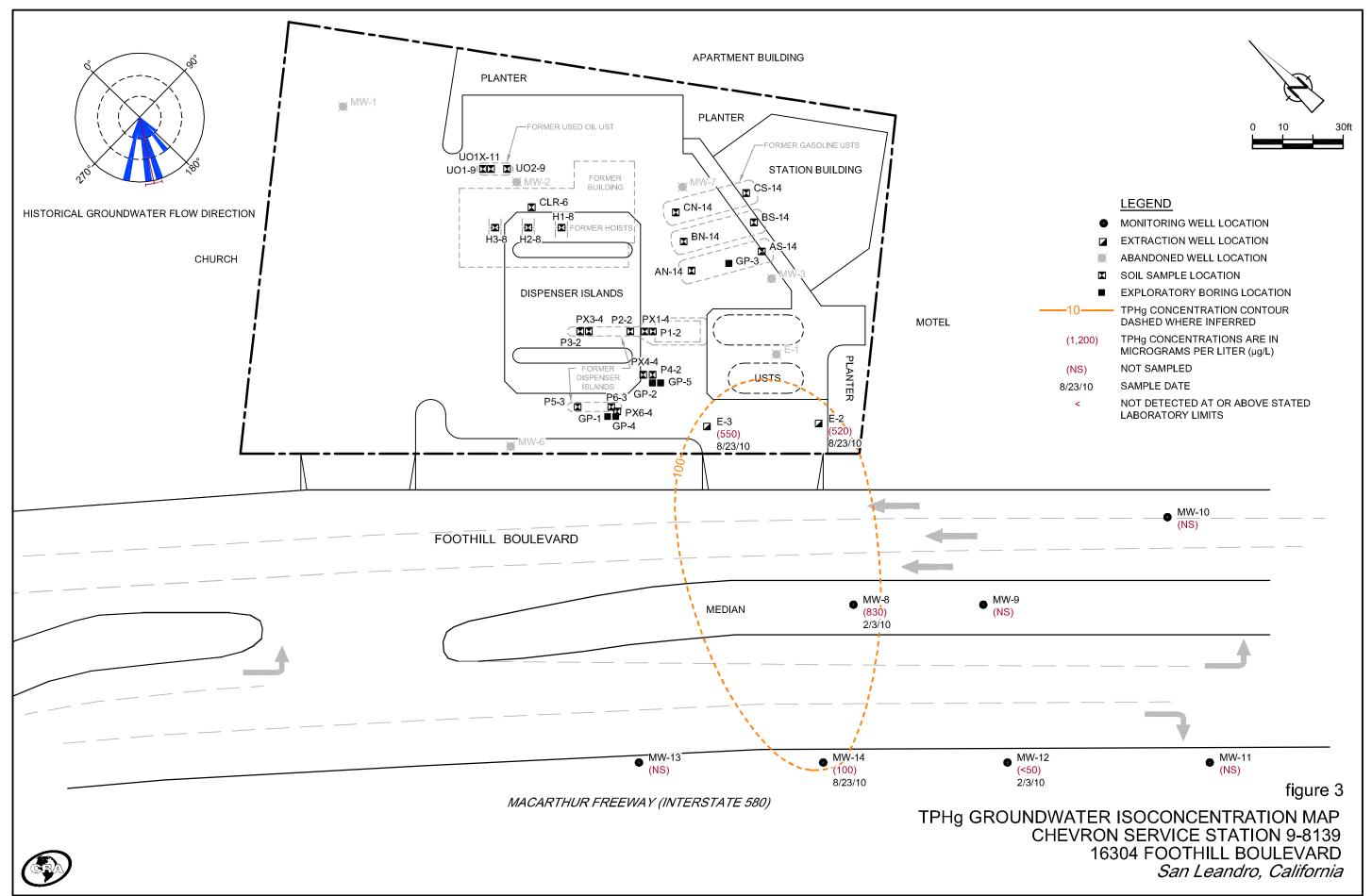

The last known release at the site was in 1986 documented from a product loss report, and the previous UST system was removed during station demolition in 1998.

9.0 <u>CONCLUSIONS AND RECOMMENDATIONS</u>

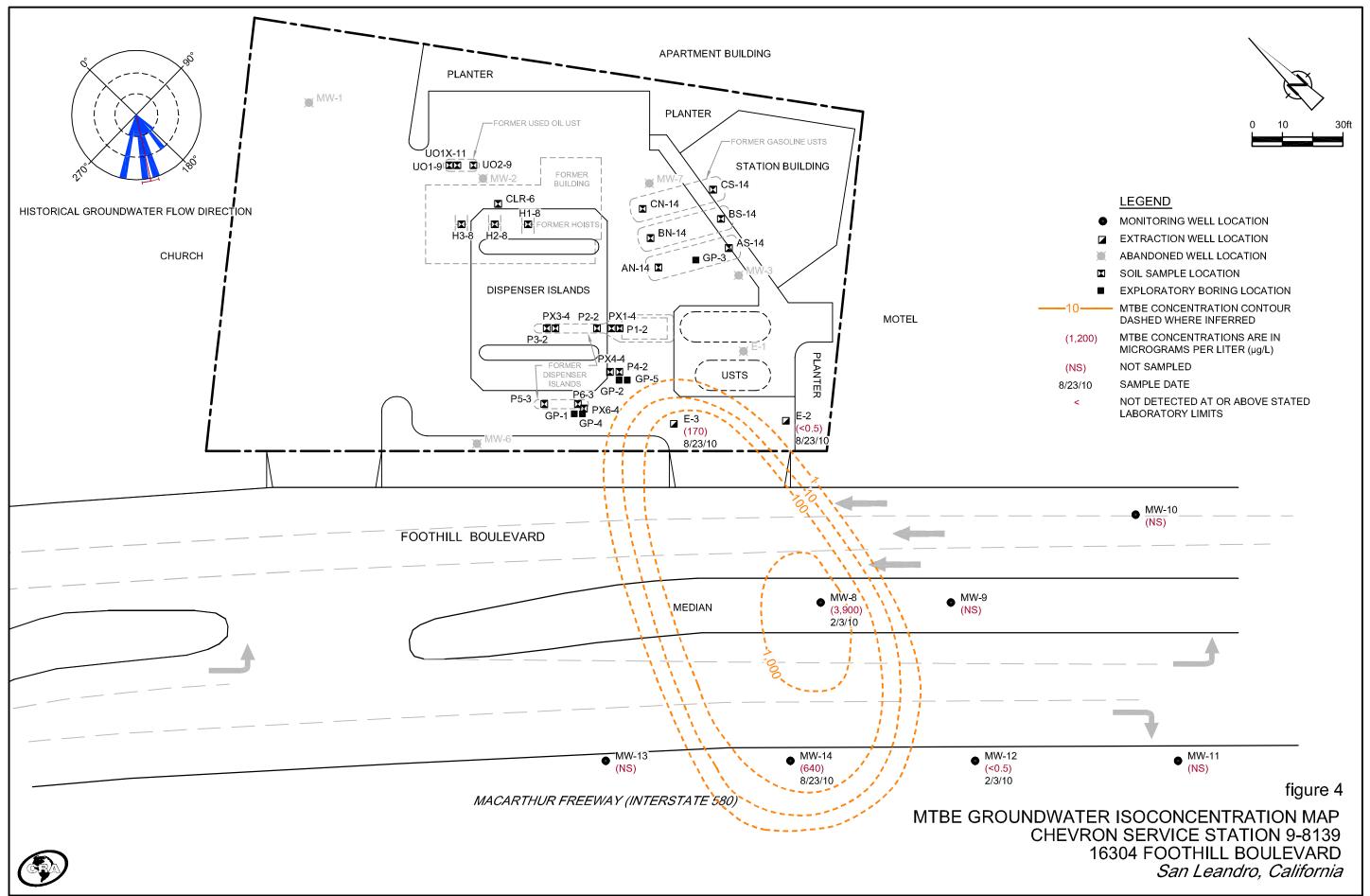
Based on the site conditions and analytical data, this site satisfies the recommended criteria for closure as a low-risk groundwater case. The extent of hydrocarbons in soil and groundwater has been adequately defined and no further work is necessary to make remedial decisions. The dissolved hydrocarbon plume is decreasing and remaining COC concentrations are expected to reach ESLs by 2048 at the latest. Therefore, there is no need for active remediation to accelerate natural attenuation.

Residual hydrocarbon concentrations in soil and groundwater are below regulatory risk thresholds for human health or the environment currently, or will be below in the foreseeable future. The site is expected to remain in operation as a gasoline station for the foreseeable future and is unlikely to be redeveloped as residential. Therefore, on behalf of Chevron, CRA respectfully requests the site be considered for low-risk case closure.


FIGURES



CHEVRON SERVICE STATION 9-8139 16304 FOOTHILL BOULEVARD San Leandro, California


611971-400(011)GN-WA001 SEP 30/2010

611971-400(011)GN-WA002 OCT 26/2010

611971-400(011)GN-WA003 OCT 27/2010

611971-400(011)GN-WA004 OCT 27/2010

TABLES

Boring/ Sample ID	Sample Depth (fbg)	Sample Date	TOG	TPHhf	TPHd	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	TAME	TBA	ETBE	DIPE	HVOCs	SVOCs	Lead	Chromium	Cadmium	Zinc	Nickel
			←						(Concentration	ns reported	in milligrar	ns per kilo	gram (mg/1	<g) th="" —<=""><th></th><th></th><th></th><th></th><th></th><th></th><th>→</th></g)>							→
Monitoring	and Extractio	on Well Borin	gs																			
MW-1	25	11/29/89	20	NA	<10	<1	< 0.05	< 0.05	<0.05	< 0.05	NA	NA	NA	NA	NA	NA	NA	20	50	1.3	31	31
MW-2	5 25	11/29/89 11/29/89	<20 <20	NA NA	<10 <10	<1 <1	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	20 20	28 33	0.9 1.1	48 32	48 32
MW-3	5 15	12/1/89 12/1/89	NA NA	NA NA	NA NA	<1 6	<0.05 1.1	<0.05 0.64	<0.05 0.08	<0.05 0.44	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
MW-4 (E-3)	20 10	12/1/89 11/30/89	NA NA	NA NA	NA NA	<1 <1	0.14 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
WIVV-4 (L-0)	15 25	11/30/89 11/30/89	NA NA	NA NA	NA NA	24 <1	0.05 <0.05	3.1 <0.05	3.3 <0.05	16 <0.05	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
MW-5 (E-2)	10 15	5/17/90 5/17/90	NA NA	NA NA	NA NA	<1 130	<0.05 1.5	<0.05 3	<0.05 1.2	<0.05 7.4	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
MW-6	10.5 15.5	5/14/90 5/14/90	NA NA	NA NA	NA NA	2 5	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	0.16 0.11	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
MW-7	5.5 10.5	5/15/90 5/15/90	NA NA	NA NA	NA NA	<1 <1	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	0.06 <0.05	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<5 NA	NA NA	NA NA	NA NA	NA NA
E-1	10.5 15.5	5/16/90 5/16/90	NA NA	NA NA	NA NA	<1 37	<0.05 0.69	<0.05 2.8	<0.05 0.76	<0.05 4.2	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
MW-8	25	8/30/90	NA	NA	NA	<1	<0.05	<0.05	<0.05	<0.05	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-9	15	6/11/91	NA	NA	NA	43	0.08	0.11	0.26	1.9	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-10	15	4/21/92	NA	NA	NA	<1.0	<0.005	<0.005	<0.005	< 0.005	NA	NA	NA	NA	NA	NA	NA	6	NA	NA	NA	NA
MW-11	15	4/21/92	NA NA	NA NA	NA	<1.0	<0.005	< 0.005	<0.005	< 0.005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-12	11	8/18/00	NA	NA	NA	<1.0	< 0.005	<0.005	< 0.005	< 0.005	<0.05	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-13	16 21	8/18/00 8/18/00	NA NA	NA NA	NA NA	<1.0 <1.0	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.05 <0.05	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
MW-14	16 21	8/18/00 8/18/00	NA NA	NA NA	NA NA	<1.0 <1.0	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	2.9 0.13	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
GP-1	5	11/16/07	NA	NA	NA	21	0.0009	<0.0005	0.015	0.024	0.13	0.005	0.25	NA	NA	NA	NA	NA	NA	NA	NA	NA

TABLE 1

SOIL SAMPLE ANALYTICAL RESULTS CHEVRON STATION 9-8139 16304 FOOTHILL BOULEVARD SAN LEANDRO, CALIFORNIA

Boring/ Sample ID	Sample Depth (fbg)	Sample Date	TOG	TPHhf	TPHd	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	TAME	TBA	ETBE	DIPE	HVOCs	SVOCs	Lead	Chromium	Cadmium	Zinc	Nickel
									(Concentratio	ns reported	in milligrar	ns per kilog	gram (mg/k	(g) —							→
GP-1	15	11/16/07	NA	NA	NA	41	0.006	<0.0009	0.11	0.54	0.13	0.012	0.056	NA	NA	NA	NA	NA	NA	NA	NA	NA
(cont.)	25	11/16/07	NA	NA	NA	27	0.014	< 0.001	0.10	0.25	0.29	0.013	< 0.019	NA	NA	NA	NA	NA	NA	NA	NA	NA
. ,	35	11/16/07	NA	NA	NA	<1.0	0.002	< 0.001	0.006	0.014	0.044	0.003	< 0.020	NA	NA	NA	NA	NA	NA	NA	NA	NA
GP-2	10	11/16/07	NA	NA	NA	<1.0	< 0.005	<0.0009	<0.0009	< 0.0009	0.091	0.05	0.062	NA	NA	NA	NA	NA	NA	NA	NA	NA
	20	11/16/07	NA	NA	NA	200	0.067	< 0.051	0.61	0.74	0.18	0.091	<1.0	NA	NA	NA	NA	NA	NA	NA	NA	NA
	35	11/16/07	NA	NA	NA	14	0.003	<0.001	0.031	0.042	1.3	0.17	0.18	NA	NA	NA	NA	NA	NA	NA	NA	NA
GP-3	10	11/4/09	NA	NA	NA	5.1	< 0.0005	< 0.001	< 0.001	< 0.001	0.008	<0.001	0.14	< 0.001	< 0.001	NA	NA	NA	NA	NA	NA	NA
	15	11/4/09	NA	NA	NA	2.1	< 0.0005	< 0.001	< 0.001	< 0.001	0.013	0.001	0.037	< 0.001	< 0.001	NA	NA	NA	NA	NA	NA	NA
	17	11/4/09	NA	NA	NA	35	< 0.026	< 0.052	0.055	< 0.052	2.5	0.35	1.2	< 0.052	< 0.052	NA	NA	NA	NA	NA	NA	NA
	20	11/4/09	NA	NA	NA	210	0.13	< 0.053	5.9	2.7	1.6	0.25	<1.1	< 0.053	< 0.053	NA	NA	NA	NA	NA	NA	NA
	25	11/4/09	NA	NA	NA	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	0.34	0.038	< 0.020	< 0.001	< 0.001	NA	NA	NA	NA	NA	NA	NA
	30	11/4/09	NA	NA	NA	<1.1	< 0.0005	< 0.0009	< 0.0009	< 0.0009	0.0008	< 0.0009	< 0.019	< 0.0009	< 0.0009	NA	NA	NA	NA	NA	NA	NA
	35	11/4/09	NA	NA	NA	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	0.0007	< 0.001	< 0.021	< 0.001	< 0.001	NA	NA	NA	NA	NA	NA	NA
	40	11/4/09	NA	NA	NA	<0.9	< 0.0005	< 0.001	< 0.001	< 0.001	0.002	< 0.001	< 0.021	< 0.001	< 0.001	NA	NA	NA	NA	NA	NA	NA
	45	11/4/09	NA	NA	NA	<1	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	< 0.001	< 0.021	< 0.001	< 0.001	NA	NA	NA	NA	NA	NA	NA
	50	11/4/09	NA	NA	NA	<1.1	< 0.0005	< 0.001	< 0.001	< 0.001	0.003	< 0.001	<0.019	< 0.001	< 0.001	NA	NA	NA	NA	NA	NA	NA
GP-4	10	11/5/09	NA	NA	NA	710	0.1	<0.049	6.7	13	0.63	< 0.049	<0.98	< 0.049	< 0.049	NA	NA	NA	NA	NA	NA	NA
GP-5	20	11/6/09	NA	NA	NA	350	0.046	< 0.053	4.1	4	0.15	0.067	<1.1	<0.053	<0.053	NA	NA	NA	NA	NA	NA	NA
Station Der	nolition and (Over-Excavati	on																			
AN-14	14	10/26/98	NA	NA	NA	<200	<1	<1	<1	<2	8.9	NA	NA	NA	NA	NA	NA	3.9	NA	NA	NA	NA
AS-14	14	10/26/98	NA	NA	NA	28.8	< 0.1	< 0.1	< 0.1	0.726	12.7	NA	NA	NA	NA	NA	NA	3.6	NA	NA	NA	NA
BN-14	14	10/26/98	NA	NA	NA	154	< 0.1	< 0.1	0.875	9.86	1.41	NA	NA	NA	NA	NA	NA	4.3	NA	NA	NA	NA
BS-14	14	10/26/98	NA	NA	NA	<20	< 0.1	< 0.1	< 0.1	< 0.2	7.69	NA	NA	NA	NA	NA	NA	3.2	NA	NA	NA	NA
CN-14	14	10/26/98	NA	NA	NA	<1	< 0.005	< 0.005	0.00622	0.0177	< 0.025	NA	NA	NA	NA	NA	NA	5.1	NA	NA	NA	NA
CS-14	14	10/26/98	NA	NA	NA	<20	<0.1	<0.1	<0.1	<0.2	7.51	NA	NA	NA	NA	NA	NA	4.6	NA	NA	NA	NA
P1-2	2	10/26/98	NA	NA	NA	11.4	0.434	0.359	0.268	1.29	3.47	NA	NA	NA	NA	NA	NA	8.5	NA	NA	NA	NA
P2-2	2	10/26/98	NA	NA	NA	<2	< 0.01	< 0.01	< 0.01	< 0.02	0.778	NA	NA	NA	NA	NA	NA	6.7	NA	NA	NA	NA
P3-2	2	10/26/98	NA	NA	NA	<200	<1	<1	<1	<2	8.61	NA	NA	NA	NA	NA	NA	6.4	NA	NA	NA	NA
P4-2	2	10/26/98	NA	NA	NA	1,560	<1	5.24	30.6	8.46	<5	NA	NA	NA	NA	NA	NA	11	NA	NA	NA	NA
P5-3	3	10/26/98	NA	NA	NA	1.06	0.028	< 0.005	0.00749	< 0.01	0.283	NA	NA	NA	NA	NA	NA	6.7	NA	NA	NA	NA
P6-3	3	10/26/98	NA	NA	NA	13.3	0.372	0.09	0.248	1.15	2.26	NA	NA	NA	NA	NA	NA	5.5	NA	NA	NA	NA
H1-8	8	10/26/98	NA	220	59	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
H2-8	8	10/26/98	NA	<10	<1.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
H3-8	8	10/26/98	NA	<10	<1.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CLR-6	6	10/26/98	44.3	NA	7.3	4.72	<0.01	<0.01	<0.01	< 0.02	<0.05	NA	NA	NA	NA	ND	ND^1	7.2	41	<0.5	50	37

TABLE 1

SOIL SAMPLE ANALYTICAL RESULTS CHEVRON STATION 9-8139 16304 FOOTHILL BOULEVARD SAN LEANDRO, CALIFORNIA

Boring/ Sample ID	Sample Depth (fbg)	Sample Date	TOG	TPHhf	TPHd	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	TAME	TBA	ETBE	DIPE	HVOCs	SVOCs	Lead	Chromium	Cadmium	Zinc	Nickel
			◀						(Concentratio	ns reported	in milligrar	ns per kiloş	gram (mg/k	.g) —							→
UO1-9	9	10/26/98	3,460	NA	410	3.9	< 0.005	< 0.005	< 0.005	< 0.01	< 0.025	NA	NA	NA	NA	ND	ND^{2}	20	29	< 0.5	51	38
UO2-9	9	10/26/98	<33.3	NA	<1.0	<1	< 0.005	< 0.005	< 0.005	< 0.01	0.0364	NA	NA	NA	NA	ND	ND	6.7	31	< 0.5	44	30
UO1X-11	11	10/26/98	476	NA	38	<1	< 0.005	< 0.005	< 0.005	< 0.01	< 0.025	NA	NA	NA	NA	ND	ND^3	3.5	73	<0.5	43	63
PX1-4	4	11/2/98	NA	NA	NA	2.49	0.0881	< 0.01	0.0494	0.166	2.9	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PX3-4	4	11/2/98	NA	NA	NA	1.03	< 0.005	< 0.005	0.00851	< 0.01	1.3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PX4-4	4	11/2/98	NA	NA	NA	<1.0	< 0.005	< 0.005	< 0.005	< 0.01	0.0407	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PX6-4	4	11/2/98	NA	NA	NA	<1.0	< 0.005	< 0.005	< 0.005	< 0.01	0.555	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Abbreviations/Notes:

fbg = feet below grade

TOG = Total oil and grease

TPHhf/TPHd/TPHg = Total petroleum hydrocarbons as hydraulic fluid, diesel, and gasoline, respectively

MTBE = Methyl tertiary butyl ether

TAME = Tertiary amyl methyl ether

TBA = Tertiary butyl alcohol

ETBE = Ethyl tertiary butyl ether

DIPE = Di-isopropyl ether

<x = Not detected at or above stated laboratory reporting limit

NA = Not analyzed

ND = Not detected (reporting limits vary)

HVOCs = Halogenated volatile organic compounds

SVOCs = Semi-volatile organic compounds

1 = SVOCs not detected except Bis(2-ethylhexyl)phthalate at 0.924 mg/kg

2 = SVOCs not detected except Bis(2-ethylhexyl)phthalate at 0.533 mg/kg and fluorene at 0.379 mg/kg

3 = SVOCs not detected except Bis(2-ethylhexyl)phthalate at 3.42 mg/kg

Note: Shaded samples were collected from soil that was later excavated

SOIL SAMPLE ANALYTICAL RESULTS CHEVRON STATION 9-8139 16304 FOOTHILL BOULEVARD SAN LEANDRO, CALIFORNIA

TABLE 2

GROUNDWATER SAMPLE ANALYTICAL RESULTS CHEVRON STATION 9-8139 16304 FOOTHILL BOULEVARD SAN LEANDRO, CALIFORNIA

Boring ID	Sample Depth (fbg)	Sample Date	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	TAME	TBA	ETBE	DIPE
			•		(Concentrations rep	ported in mic	rograms per l	iter (μg/L)			
GP-1	32	11/16/07	6,500	110	5	280	740	890	88	11	NA	NA
	45	11/16/07	110	<0.5	<0.5	1	3	11	2	<2.0	NA	NA
GP-2	32	11/16/07	13,000	<10	<10	40	53	49,000	7,300	360	NA	NA
	45	11/16/07	11,000	48	<5	270	350	6,100	1,500	910	NA	NA
GP-3	15	11/4/09	650	3	<0.5	11	3	490	75	190	<0.5	<0.5
GP-4	32	11/5/09	180	0.8	< 0.5	1	1	920	120	5	<0.5	<0.5
	47	11/5/09	130	0.6	< 0.5	0.6	0.6	13	1	<2	< 0.5	< 0.5
	65	11/5/09	55	3	<0.5	6	9	10	<0.5	<2	<0.5	<0.5
GP-5	37	11/6/09	100	0.5	<0.5	0.9	0.5	460	54	7	<0.5	<0.5
	46	11/6/09	<50	< 0.5	< 0.5	1	< 0.5	2	< 0.5	<2	< 0.5	< 0.5
	63	11/6/09	<50	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	<2	< 0.5	<0.5

Abbreviations/Notes:

fbg = feet below grade

TPHg = Total petroleum hydrocarbons as gasoline

MTBE = Methyl tertiary butyl ether

TAME = Tertiary amyl methyl ether

TBA = Tertiary butyl alcohol

ETBE = Ethyl tertiary butyl ether

DIPE = Di-isopropyl ether

NA = Not analyzed

<x = Not detected at or above stated laboratory reporting limit

TABLE 3

SOIL VAPOR SAMPLE ANALYTICAL RESULTS CHEVRON STATION 9-8139 16304 FOOTHILL BOULEVARD SAN LEANDRO, CALIFORNIA

Boring/Sample ID	Sample Depth (fbg)	Sample Date	Total Volatile Hydrocarbons Benzer		Toluene	Ethylbenzene	Total Xylenes
			← (Concentrations	reported in pa	rts per million (ppm	a)►
V1/A	3	6/29/89	1	<1	<1	<1	<1
V1/B	8	6/29/89	<1	<1	<1	<1	<1
V1/C	10.5	6/29/89	<1	<1	<1	<1	<1
V2/A	3	6/29/89	<1	<1	<1	<1	<1
V2/B	8	6/29/89	1	<1	<1	<1	<1
V2/C	10.5	6/29/89	1	<1	<1	<1	<1
V3/A	3	6/29/89	<1	<1	<1	<1	<1
V3/B	8	6/29/89	<1	<1	<1	<1	<1
V3/C	10.5	6/29/89	<1	<1	<1	<1	<1
V4/A	3	6/29/89	3	<1	<1	<1	<1
V4/B	8	6/29/89	5	<1	<1	<1	<1
V4/C	10.5	6/29/89	39	1	<1	<1	<1
V5	3	6/29/89	16	<1	<1	<1	<1
V6	3	6/29/89	3	<1	<1	<1	<1
V7	3	6/29/89	4	<1	<1	<1	<1
V8	3	6/29/89	48	<1	<1	<1	<1
V9/A	3	6/29/89	<1	<1	<1	<1	<1
V9/B	8	6/29/89	5	<1	<1	<1	<1
V9/C	10.5	6/29/89	10	<1	<1	<1	<1

Abbreviations/Notes:

fbg = feet below grade

Total Volatile Hydrocarbons = summation of all detected constituents

<x = Not detected at or above stated reporting limit

APPENDIX A

SUMMARY OF ENVIRONMENTAL INVESTIGATION AND REMEDIATION

SUMMARY OF ENVIRONMENTAL INVESTIGATION AND REMEDIATION CHEVRON STATION 9-8139 16304 FOOTHILL BLVD, SAN LEANDRO, CA

April 1982 Leak Confirmation and Well Installation

In April 1982, the underground storage tanks (USTs) and lines were pressure tested. The tanks tested tight, but a leak was found due to a highly corroded vapor line for the regular gasoline piping. Approximately 25 gallons of product were lost during the test and a temporary spot repair was reportedly made. The regular gasoline UST was noted as a 7,500-gallon steel tank that had been installed approximately 17 years earlier. Shortly thereafter, the USTs and product piping at the site reportedly were replaced. Two observation wells (W-1 and W-2) were installed in the tank backfill.

December 1986 Product Loss, UST System Repair, and Testing

In December 1986, the station reported product inventory losses. A tightness test was performed and a leak in the regular gasoline system (10,000-gallon fiberglass UST) was confirmed and subsequently repaired. The system was retested tight in December 1986 by Gettler-Ryan, Inc. (G-R).

June 1989 Soil Vapor Survey

EA Engineering, Science, and Technology, Inc. (EA) conducted a soil vapor survey in June 1989. A total of 19 soil vapor samples were collected at various depths (3, 8, and/or 10.5 feet below grade [fbg]) from locations V1 through V9. The deeper samples were collected near the gasoline and used-oil USTs. The samples were analyzed for total volatile hydrocarbons (TVH) and benzene, toluene, ethylbenzene, and xylenes (BTEX). TVH was detected in 12 of the samples at concentrations ranging up to 48 parts per million by volume (ppmv). Benzene was only detected in one of the samples (1 ppmv). No toluene, ethylbenzene, or xylenes were detected. Details are presented in EA's July 1989 Report of Investigation, Soil Vapor Contaminant Assessment.

November and December 1989 Well Installation and Well Survey

In November and December 1989, Chemical Processors, Inc. (Chempro) installed groundwater monitoring wells MW-1 through MW-4. Soil samples were collected at various depths (ranging from 5 to 25 fbg) from the well borings and analyzed for total petroleum hydrocarbons as gasoline (TPHg) and BTEX; the three samples collected from borings MW-1 and MW-2 near the used-oil UST were additionally analyzed for TPH as diesel (TPHd), total oil and grease (TOG), and the metals lead, chromium, cadmium, and zinc. The highest concentrations detected included 20 milligrams per kilogram (mg/kg) TOG, 24 mg/kg TPHg, and 1.1 mg/kg benzene. No TPHd was detected.

The initial groundwater samples collected from the wells were analyzed for TPHg, BTEX, and ethylene dibromide (EDB). The highest hydrocarbon concentrations detected were 24,000 micrograms per liter (μ g/L) TPHg, and 2,400 μ g/L benzene. No EDB was detected. No TPHd or TOG was detected in wells MW-1 and MW-2.

Information on water production wells within ½-mile of the site was requested from the Alameda County Flood Control and Water Conservation District. Nine active water-supply wells (one domestic, one municipal, seven irrigation) were identified within the search radius.

The wells were generally located to the west/southwest of the site. The municipal well was located to the northeast (upgradient), and one of the irrigation wells was located to the northwest (crossgradient) of the site. Details are presented in Chempro's February 21, 1990 Soil and Groundwater Investigation report.

May through August 1990 Well Installation and Hydraulic Testing

In May 1990, Chempro installed monitoring wells MW-5 through MW-7 and 6-inch diameter extraction well E-1. In August 1990, Chempro installed offsite monitoring well MW-8 within the Foothill Boulevard median. The highest hydrocarbon concentrations detected in soil included 130 mg/kg TPHg and 1.5 mg/kg benzene. The initial groundwater samples contained up to 28,000 µg/L TPHg, 920 µg/L benzene, and 2.4 µg/L EDB. Groundwater samples from wells MW-5, MW-6, MW-7, and E-1 were also analyzed for chlorinated hydrocarbons; none were detected.

Hydraulic testing was also performed to evaluate aquifer transmissivity, hydraulic conductivity, and storage coefficient. The testing was performed by pumping from well E-1 and monitoring the response in wells MW-3, MW-5, and MW-7. Based on the testing results, the transmissivity was approximately 550 gallons per day per foot (gpd/ft), the hydraulic conductivity was approximately 4.3x10-3 centimeters per second (cm/s), the storage coefficient was approximately 2.6x10-3, and the average groundwater flow velocity was 5.2x10-4 cm/s (540 feet/year). The radius of influence for well E-1 was determined to be approximately 100 ft. During the September 7, 1990 monitoring event, approximately 0.04 feet of light non-aqueous phase liquid (LNAPL) was observed in well MW-5; on September 25, 1990, the thickness of LNAPL in MW-5 was measured at 1.3 feet. Details are presented in Chempro's November 7, 1990 Remedial Investigation Report.

1990-1991 Remedial Activities

Chempro installed a groundwater extraction (GWE) system in September 1990. The system initially extracted groundwater from well E-1 and treated it using two 1,000-pound carbon vessels. The GWE system began operation in January 1991; however, the system was shut down due to excessive LNAPL production. Chempro hand bailed LNAPL from MW-5 from October 1990 until January 1991. Details are presented in Chempro's April 1, 1991 Quarterly Summary Report.

June 1991 Well Installation and Reconstruction

In June 1991, Burlington Environmental, Inc. (Burlington) installed offsite monitoring well MW-9 in the median of Foothill Boulevard and converted 2-inch monitoring wells MW-4 and MW-5 into 4-inch extraction wells E-3 and E-2, respectively. The highest hydrocarbon concentrations detected in soil were 43 mg/kg TPHg and 0.08 mg/kg benzene. Initial groundwater samples from MW-9, E-2, and E-3 contained up to 16,000 µg/L TPHg and 460 µg/L benzene. Wells E-2 and E-3 were connected to the GWE system. Details are presented in Burlington's September 23, 1991 Additional Soil and Groundwater Investigation Report.

August 1991 to June 1994 Groundwater Extraction

An oil/water separator was added to the GWE system and it was restarted in August 1991. The system operated almost continuously until June 1994. Treated groundwater was discharged under permit to the sanitary sewer. The system removed approximately 666,500 gallons of

groundwater; however, only 7.3 pounds of aqueous-phase TPHg were removed. No hydrocarbons were detected in the influent GWE groundwater starting in July 1993 and the system was shut off in June 1994 with Alameda County Environmental Health (ACEH) approval. Details are presented in the December 20, 1994 Comprehensive Site Evaluation and Proposed Future Action Plan prepared by Weiss Associates.

April and May 1992 Subsurface Investigation

In April 1992, Burlington installed offsite monitoring wells MW-10 and MW-11. No TPHg or BTEX were detected in soil or groundwater. Details are presented in Burlington's July 28, 1992 Supplemental Soil and Groundwater Investigation Report.

September 1998 Well Destructions

In September 1998, G-R destroyed wells MW-1, MW-2, MW-3, MW-6, and MW-7 (via over-drilling) prior to site renovation. This work was documented in a letter from G-R dated October 26, 1998.

October 1998 Well Destruction

In October 1998, G-R destroyed extraction well E-1 via over-drilling. This work was documented in G-R's November 17, 1998 Well Destruction Report.

October and November 1998 Station Demolition

In October and November 1998, the station was demolished. As part of these activities, three 10,000-gallon, fiberglass gasoline USTs, a 1,000-gallon, fiberglass used-oil UST, associated product piping, three hydraulic hoists, and one clarifier were removed. Groundwater was encountered in the gasoline UST excavation at approximately 12 fbg and a sheen was noted. The highest hydrocarbon concentrations detected in soil from samples beneath the piping, hydraulic hoists, and in the UST excavations were 3,460 mg/kg TOG, 220 mg/kg TPH as hydraulic fluid (TPHhf, detected beneath the hydraulic hoists), 410 mg/kg TPHd, 1,560 mg/kg TPHg, 0.434 mg/kg benzene, and 12.7 mg/kg methyl tert-butyl ether (MTBE).

The former product piping trenches were widened to approximately 6 feet and deepened to approximately 4 fbg to remove source area hydrocarbon mass. Samples PX1-4, PX3-4, PX4-4, and PX6-4 were collected from the bottom of the remedial excavation and the highest concentrations detected were 2.49 mg/kg TPHg, 0.0881 mg/kg benzene and 2.9 mg/kg MTBE.

Soil samples UO1-9 and UO2-9 were collected at approximately 9 fbg beneath the used-oil UST and analyzed for TPHg, TPHd, BTEX, MTBE, TOG, halogenated volatile organic compounds (HVOCs), semi-VOCs, and the metals cadmium, chromium, lead, nickel, and zinc. Analytes detected included 3.9 mg/kg TPHg, 410 mg/kg TPHd, and 3,460 mg/kg. No BTEX were detected and the only MTBE detection was 0.0364 mg/kg MTBE at in sample UO2-9. The only chlorinated compounds detected were up to 0.533 mg/kg bis(2-ethylhexyl)phthalate and 0.379 mg/kg fluorene in sample UO1-9. The half of the excavation where sample UO1-9 was collected was subsequently over-excavated to approximately 11 fbg and sample UO1X-11 was collected at 38 mg/kg and 476 mg/kg, respectively. The only chlorinated compound detected was 3.42 mg/kg bis(2-ethylhexyl)phthalate.

Approximately 3,000 gallons of water were removed from the UST excavations and treated prior to discharge. Approximately 80 cubic yards of hydrocarbon-bearing soil was removed and disposed offsite. Approximately 100 cubic yards of material (mainly pea gravel) was sampled and re-used as backfill. Details are presented in Touchstone's January 19, 1999 UST *Removal and Sampling Report*.

1999 Soil Removal During New Station Construction

In July 1999, approximately 900 cubic yards of soil that had been excavated from the new gasoline UST pit was sampled and disposed offsite. In September 1999, approximately 130 cubic yards of soil that had been generated during excavation of utility trenches and site grading activities was sampled and disposed offsite. This work was documented in a letter prepared by G-R dated November 8, 1999.

August 2000 Well Installations

In August 2000, G-R installed offsite monitoring wells MW-12 through MW-14. No TPHg or BTEX were detected in soil. MTBE was detected in the soil samples collected from boring MW-14 at 16 fbg (2.9 mg/kg) and 21 fbg (0.13 mg/kg). Details are presented in G-R's September 26, 2000 Off-Site Well Installation Report.

November 2007 Subsurface Investigation

In November 2007, CRA advanced onsite exploratory borings GP-1 and GP-2 to approximately 45 fbg downgradient of the former dispenser islands to evaluate the vertical extent of hydrocarbons in soil and groundwater. Hydrocarbons detected in soil included up to 200 mg/kg TPHg, 0.067 mg/kg benzene, 1.3 mg/kg MTBE, and 0.17 mg/kg tertiary amyl methyl ether (TAME), and 0.25 mg/kg tertiary butyl alcohol (TBA). Hydrocarbon concentrations detected in soil samples at 35 fbg were an order of magnitude or more below the shallower samples and most were approaching detection limits.

Groundwater samples were also collected from each boring at approximate depths of 32 and 45 fbg and analyzed for the same constituents. The highest concentrations detected in the 45 fbg samples included 11,000 μ g/L TPHg, 48 μ g/L benzene, 6,100 μ g/L MTBE, 1,500 μ g/L TAME, and 910 μ g/L TBA. Details are presented in CRA's February 1, 2008 Subsurface Investigation Report and Well Destruction Workplan.

November 2009 Additional Subsurface Investigation

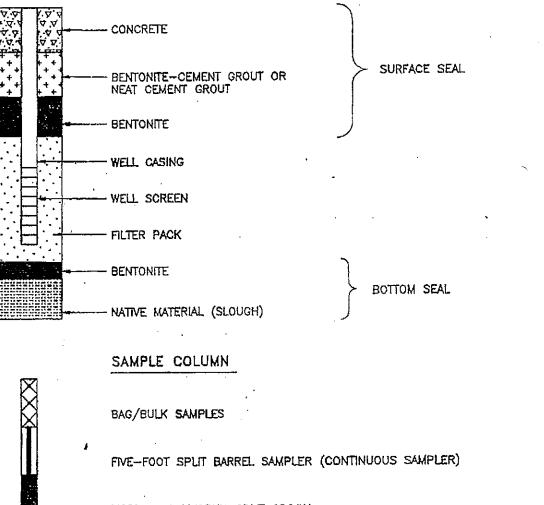
In November 2009, CRA advanced onsite exploratory borings GP-3 through GP-5. Boring GP-3 was drilled within the former gasoline UST pit to further evaluate current soil and groundwater quality in this area, and borings GP-4 and GP-5 were drilled adjacent to previous borings GP-1 and GP-2, respectively, to collect deeper groundwater samples. The borings were drilled using dual-tube technology to minimize the risk of cross-contamination.

The highest hydrocarbon concentrations detected in soil included 710 mg/kg TPHg, 0.13 mg/kg benzene, 2.5 mg/kg MTBE, 0.35 mg/kg TAME, and 1.2 mg/kg TBA. No TPHg or BTEX were detected below 20 fbg. MTBE was detected below 20 fbg, but the concentrations were near the detection limit.

Groundwater samples were also collected from borings GP-3 (15 fbg), GP-4 (32, 47, and 65 fbg) and GP-5 (37, 46, and 63 fbg) and analyzed for the same constituents as the soil samples. No

analytes were detected at 63 fbg in GP-5. Groundwater from 65 fbg in GP-4 contained 55 μ g/L TPHg, 3 μ g/L benzene, and 10 μ g/L MTBE. No TAME or TBA was detected.

Based on the investigation results, the vertical extent of the hydrocarbons in soil in the former UST pit area, and the vertical extent of hydrocarbons in soil and groundwater in the former dispenser island area have been adequately defined. Details are presented in CRA's January 26, 2010 *Additional Site Investigation Report*.


APPENDIX B

HISTORICAL BORING LOGS AND PREVIOUS CROSS-SECTIONS

EXPLANATION OF SYMBOLS ON EXPLORATORY BORING LOGS

WELL DETAIL COLUMN

MODIFIED CALIFORNIA SPLIT SPOON

OTHER SAMPLERS (SEE REMARKS FOR TYPE AND SIZE)

PITCHER BARREL

ROCK CORE (SEE REMARKS FOR TYPE AND SIZE)

SHELBY TUBE SAMPLER

STANDARD PENETRATION TEST SPLIT SPOON SAMPLER (2" OD)

(OVER)

EXPLANATION OF SYMBOLS ON EXPLORATORY BORING LOGS (CONTINUED)

Ground-Water Level Column

DEPTH TO FIRST OBSERVED GROUND WATER

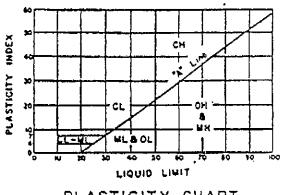
DEPTH TO STABILIZED GROUND WATER

Miscellaneous

2.5 YR 6/2

 Σ

Color as field checked to Munsell Soil Color Chart (1975 Edition)


PENETRATION Blows required to drive sampler 1 foot into soil. Standard drive hammer weight: 140 pounds. Standard drop: 30 inches

M	AJOR DIVISIONS	SYM80	LS	TYPICAL SOIL DESCRIPTIONS
		GW		Well grøded gravels ar grever—sené mistures, little ar no fines
IL.S uieve alza)	<u>GRAVELS</u>	GP		Poorly graded gravels or graval-sand mestures, little or no fines
88	(More than 1/2 of coarse frection) no. 4 steve size)	GM		Silfy gravels, grevel+send-wit mixtures
NED 0 00		GC		Clayey grevels, grevel-sene-clay mistures
		S₩		Well graded sunda ar gravelly sends, little or no fines
COARSE Ihan 1/2 c	SANDS	SP		Poorly graded sends or gravely sames, little or no lines
C More I	(More than 1/2 ef coerse treation (no. 4 slove size)	SM		Silly sands, sand-silt mixtures
		SC		Clayey sands, sand-clay mestures
.S sieve size)	SILTS & CLAYS	ML		Inorganic silts and very fine sends, rach flour, silly or clayey fine sonds or clayey silts was slight plasticity
SOILS 2004iev	LL (50	CL		Inorganic clays of law to modium plasticity, gravally clays, sandy clays, silly clays, loan clays
4E0 S		OL		Organic silts and argonic silly clays of low plasticity
GRAINED	SILTS & CLAYS	мн		Inorganic silts, miceceous or distanaceous fine sendy or silty soils elessic silts.
FINE (<u>LL)50</u>	сн		Inorganic clays of high plasticity, fat clays
(More	, Linixii i	он		Organic clays of medium to high plasticity, organic silly clays, organic sills
	SHLY ORGANIC SOILS	Pt	24	Post and other highly organic sails

CLASSIFICATION CHART (Unified Soil Clossification System)

CLASSIFICATION		
	U.S. Slandard Sieve Size	Groin Size in Millimeters
BOULDERS	Above 12"	Above 305
COBBLES	12" to 3"	305 10 76.2
GRAVEL codrie fine	3" to No. 4 3" to 34" 34" to He. 4	76,2 10 4,76 76,2 10 19,1 19,1 10 4,76
SAND coarse medium fine	Na. 4. 10 Na. 200 No. 4. 10 No. 10 No. 10 10 Na. 40 No. 40 10 No. 200	4.75 to 0.074 476 to 2.00 2.00 to 0.420 0.420 to 0.074
SILT & CLAY	Below Na 200	Below 0.074

W 10 D

PLASTICITY CHART

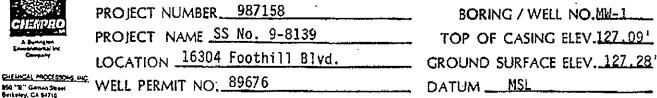
METHOD OF SOIL CLASSIFICATION

	OJECT NI OJECT NA		9871	58		DF EX	E STATION NO. 9-8139	BORING NO. PAGE	MW-1 1 OF 3	
BY	K. Ellic	ot	DAT	E 1	11/	29/89		SURFACE ELEV.	127.28	ħ.
PID (ppm)	RECOVERY	BLOW CT.	ground Water Levels	DEPTH IN FT.	SAMPLES	LITHO- GRAPHIC COLUMN	DES	CRIPTION	-	
	,				<u>.</u>		ASPHALT AND GRAVE	LFIL		Ī
				-			SANDY CLAY (CL), very	dark gray (5YR, 3/1); nes; 15-25% coarse sand;		
9.1	18/18	5 7 14	- - - -	5-	-			,		
8.2	18/18	4 8 15	 12/4/	10- 89			@ 10': dark grayish bra fine sand.	оwп (10YR, 4/3); trace		
9.1	18/18	5 11 18					@ 15': dark yellowish f 5-10% fine sand; very s			
	E	REMARKS Foring drilled	1/29/ ↓ ↓ using eig	- 20-		uneter holl	ow-stem augers. Soil samples were	collected using a two-inch-diame	ter	
					ter:		boring was scaled with neat-comen off. See attached Well Detail.	it grout from 30 to 41.5 feet, and		

BY	OJECT NA K. Ellic		DATE 11/29/89		2 OF 3 127.28 f
PID (ppa)	RECOVERY (in/in)	BLOW CT. (blws/6")	CHARTER COLUMN	DESCRIPTION	
7.3	18/18	4 8 13		SANDY CLAY (CL), dark yellowish brown (10 YR, 4/4); 70-80% medium plasticity fines; 20-30% fine sand; stiff; damp.	
3.5	17/18	6 10 25		@ 25-32': 1/2" to 3/4" diameter caliche clasts.	
5.2	17/18	6 9 15		@ 29-30': water-bearing zone.	
6.0	16/18	6 11 23		@ 35-36': yellowish brown (10 YR, 5/4); 80-90% low plasticity fines; 10-20% fine sand; very stiff; damp.	

•

.....

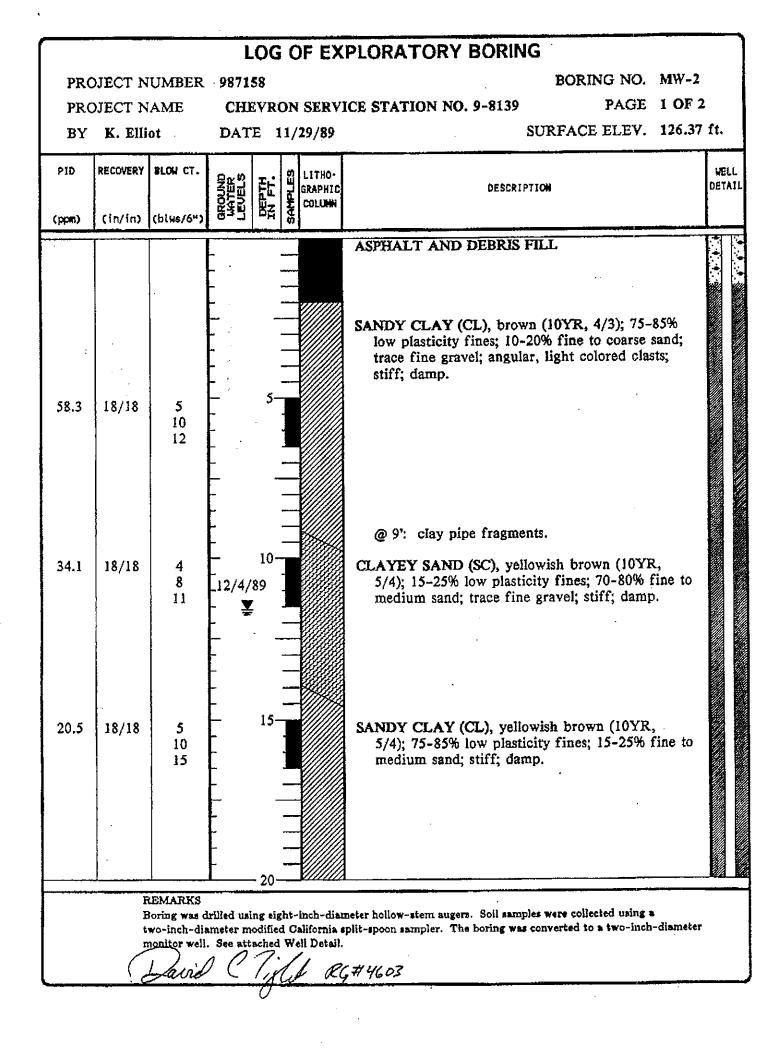

			1	.0G	OF EX	PLORATORY BORIN	IG		
PRO	OJECT N	IUMBER	9871	58			BORING NO.	MW-1	
PRO	OJECT N	IAME	CH	EVRO	N SERV	ICE STATION NO. 9-8139	PAGE	3 OF 3	
BY	K. Elli	iot	DAT	E 11	/29/89		SURFACE ELEV.	127.28	ft.
PID	RECOVERY	BLOW CT.	GROUND WATER LEVELS	DEPTH IN FT.	GRAPHIC	DESCRI	PTION		WELL DETAIL
(ppn)	(in/in)	(b(ws/6*)	문국귀						
4.6	16/18	5	 			SANDY CLAY (CL) (cont	inued).		
		6 11	F	-		BORING TERMINATED	AT 41.5 FEET.		
		·	F		-				
			-						
			-		-				
			-		-				
			-	45					
			╞		-				
			-						
				<u> </u>	-				
			F		-				
			~	_					
				50	-				
			-		-				
:			-	·	-				
			-						
			-						
			- -		-				
			-						
			-		-				
	-		-						
					-				
]		-						
			-	_					
			- -		+				
	R	EMARKS		60—					
	. 18- ກາ	oring drilled odified Cali	fornia sp	lit-spoo:	n sampler.	hollow-stem augers. Soil samples w The boring was sealed with nest-cer or well. See attached Well Detail.			
			<u>*</u>						
						•			

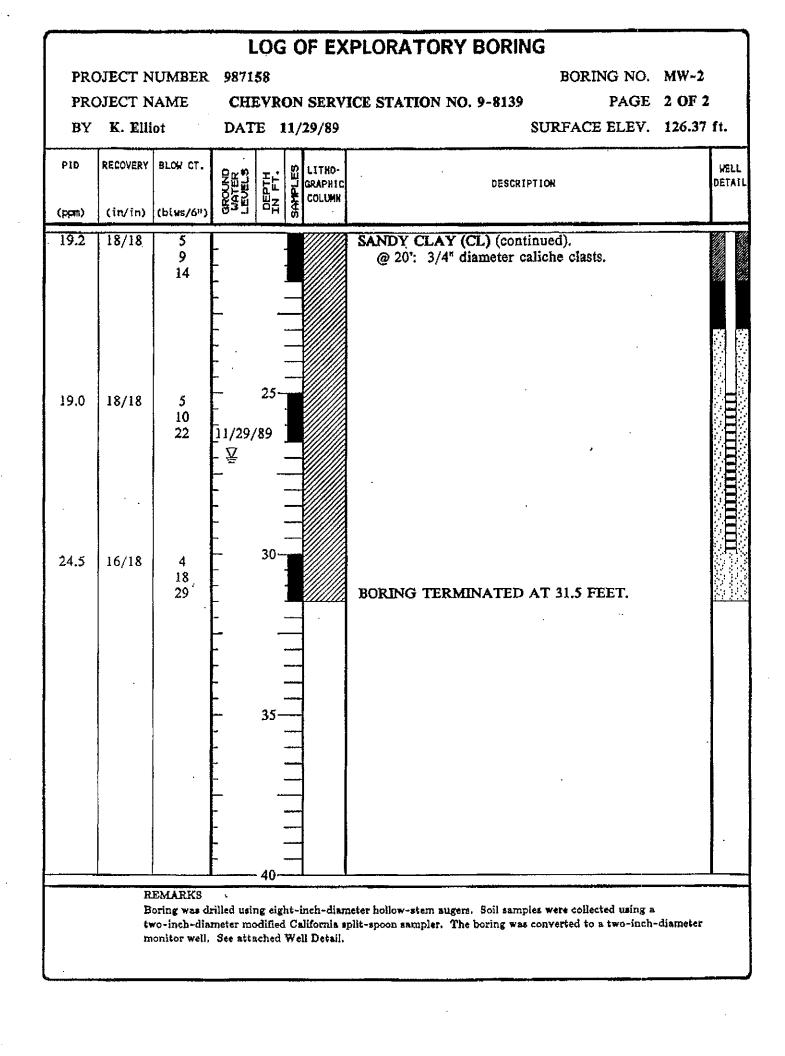
950 "B" Gaman Steel Beikeley, CA 94710

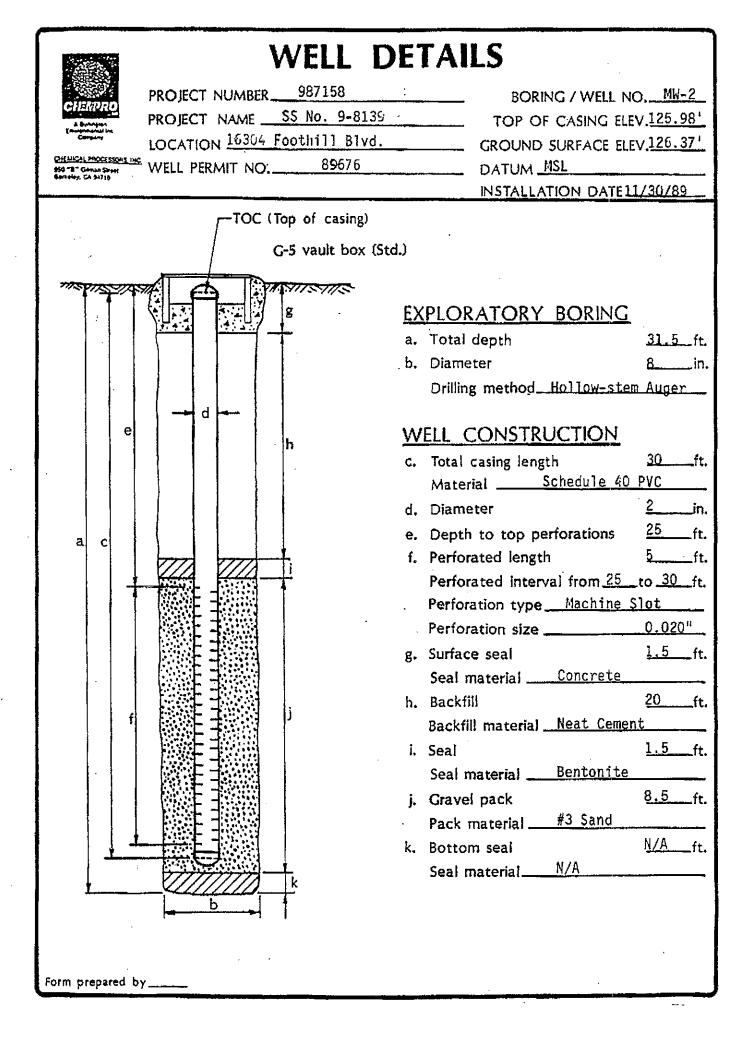
a ¢

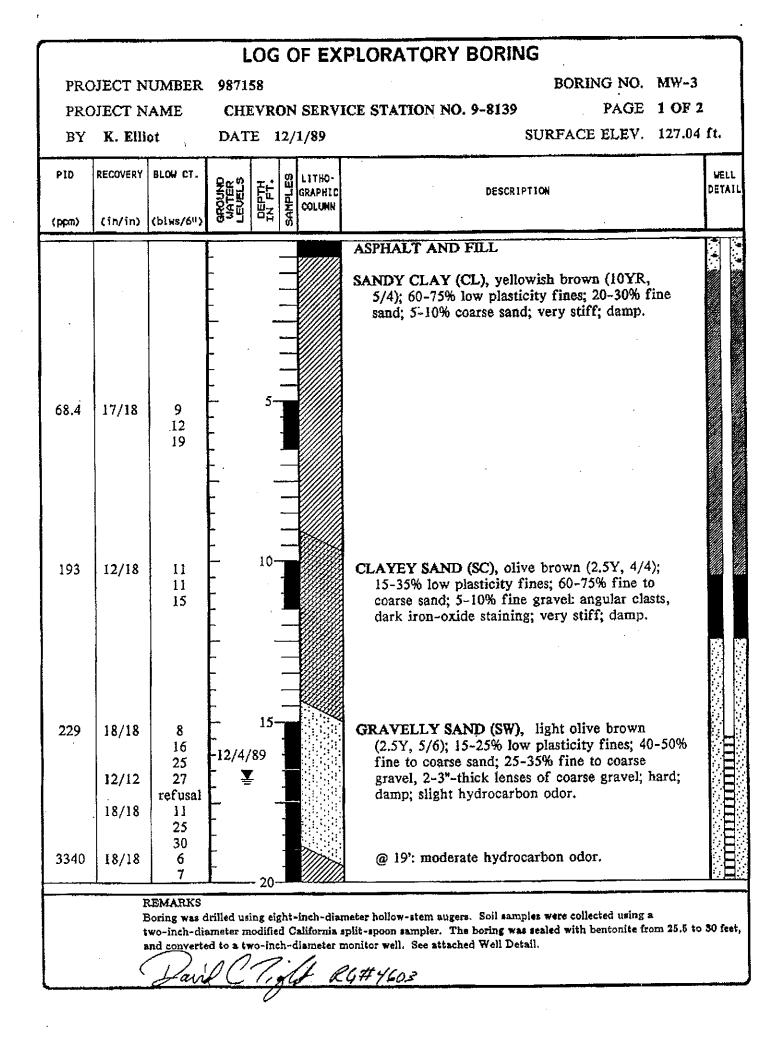
Form prepared by_

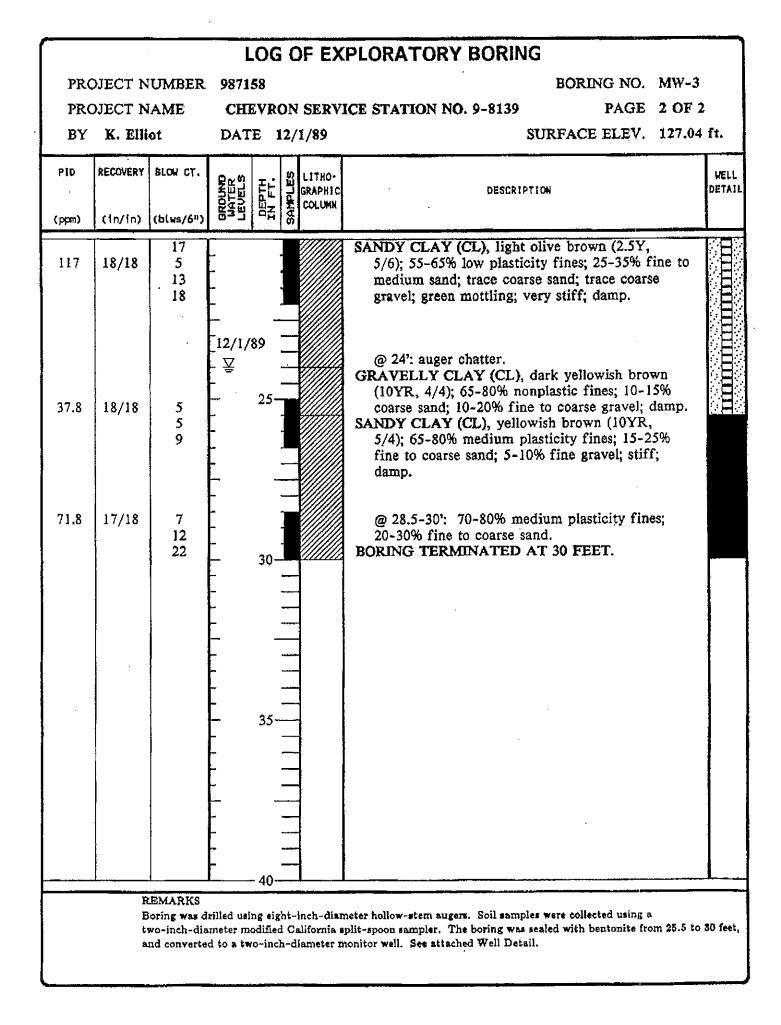
WELL DETAILS

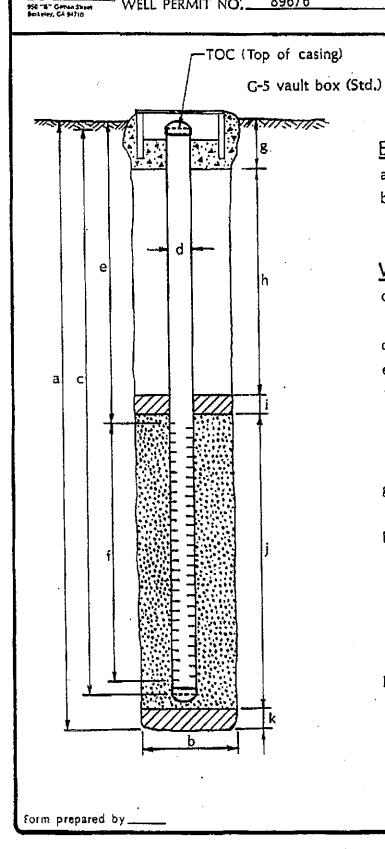

BORING / WELL NO.MW-1 _____ TOP OF CASING ELEV.127.091

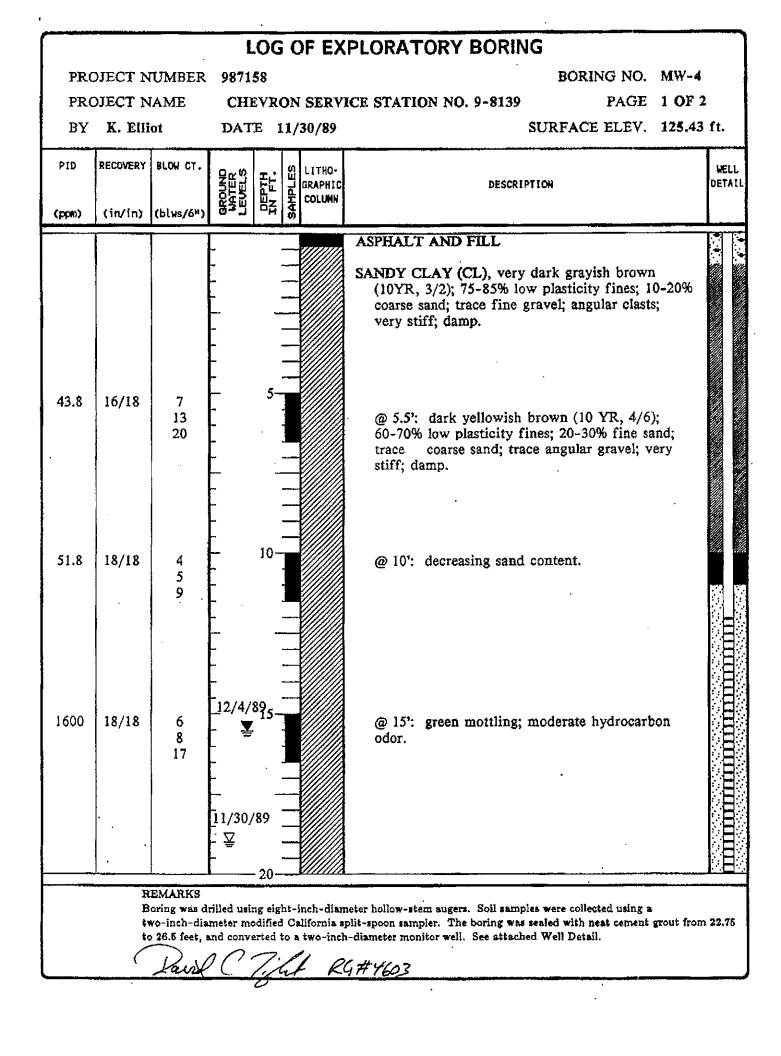

INSTALLATION DATE 12/1/89

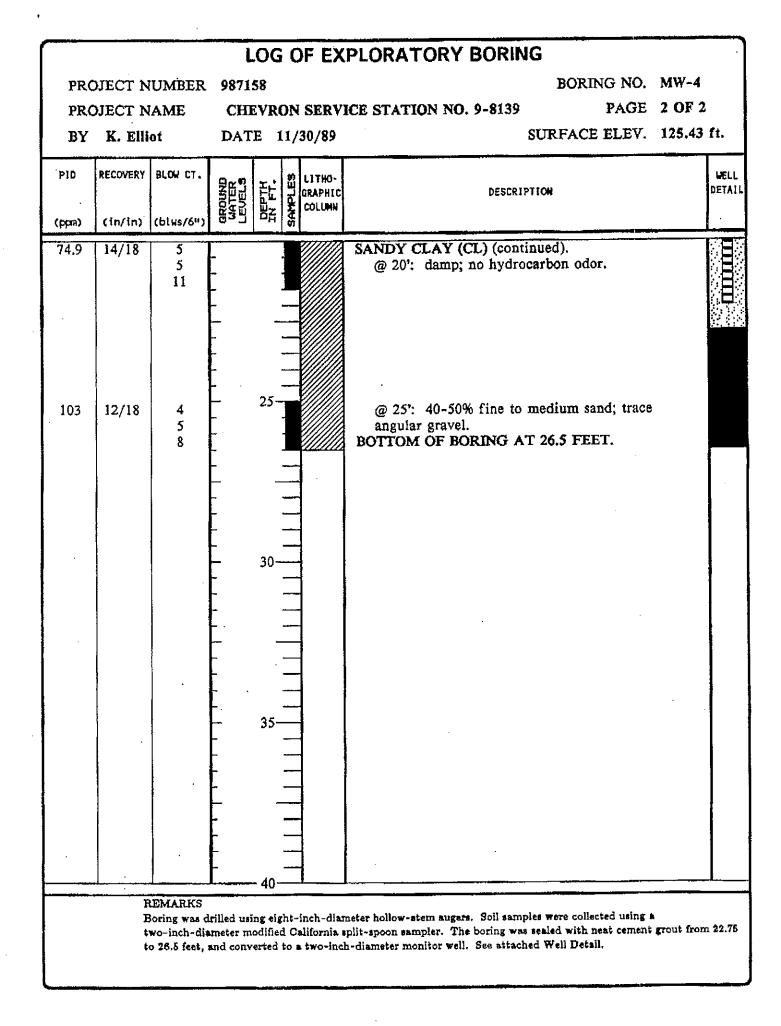

-TOC (Top of casing) G-5 vault box (Std.) STISTIS g d e lh.


ь


<u>ÈX</u>	PLORATORY BORING	
a,	Total depth	<u>41.5</u> ft.
ь.	Diameter	<u>8</u> in.
	Drilling method Hollow-ster	<u>1 Auger</u>
	N.	
W	ELL CONSTRUCTION	
c.	Total casing length	<u>30ft.</u>
	Material Schedule 40 PV(
d.	Diameter	in.
e.	Depth to top perforations	<u>25</u> _ft.
f.	Perforated length	<u>5</u> _ft.
	Perforated interval from 25 t	o <u>30</u> ft,
	Perforation type Machine Slot	
	Perforation size 0.020"	
	Perforation size 0.020	
g٠	Surface seal	<u> </u>
g۰	Surface seal	
-		
-	Surface seal Seal material <u>Concrete</u>	
h.	Surface seal Seal material <u>Concrete</u> Backfill	<u>19.3</u> ft.
h.	Surface seal Seal material <u>Concrete</u> Backfill Backfill material <u>Neat Cement</u>	<u>19.3</u> ft.
h. ī.	Surface seal Seal material <u>Concrete</u> Backfill Backfill material <u>Neat Cement</u> Seal	<u>19.3</u> ft.
h. ī.	Surface seal Seal material <u>Concrete</u> Backfill Backfill material <u>Neat Cement</u> Seal Seal material <u>Bentonite</u>	<u>19.3</u> ft. <u>1.5</u> ft.
h. ī. ĵ.	Surface seal Seal material <u>Concrete</u> Backfill Backfill material <u>Neat Cement</u> Seal Seal material <u>Bentonite</u> Gravel pack	<u>19.3</u> ft. <u>1.5</u> ft.



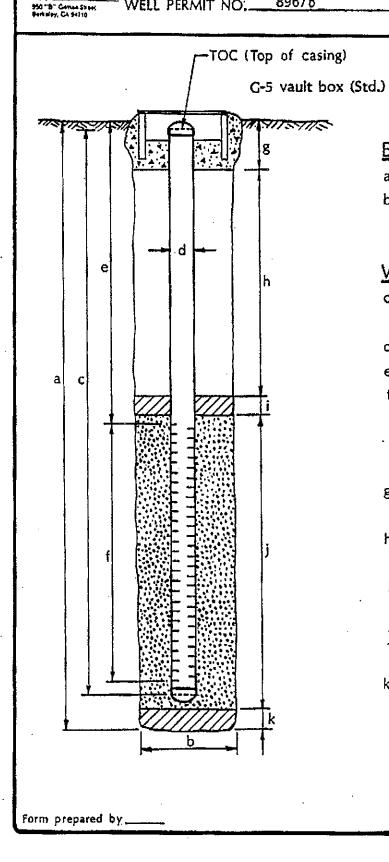

PROJECT NUMBER 987158 PROJECT NAME SS #9-8139 LOCATION 16304 Foothill Blvd. CHEMICAL MOCESSONS INC. WELL PERMIT NO: 89676


BORING / WELL NO.MW-3_ TOP OF CASING ELEV. 126.84 GROUND SURFACE ELEV. 127.04 DATUM MSL

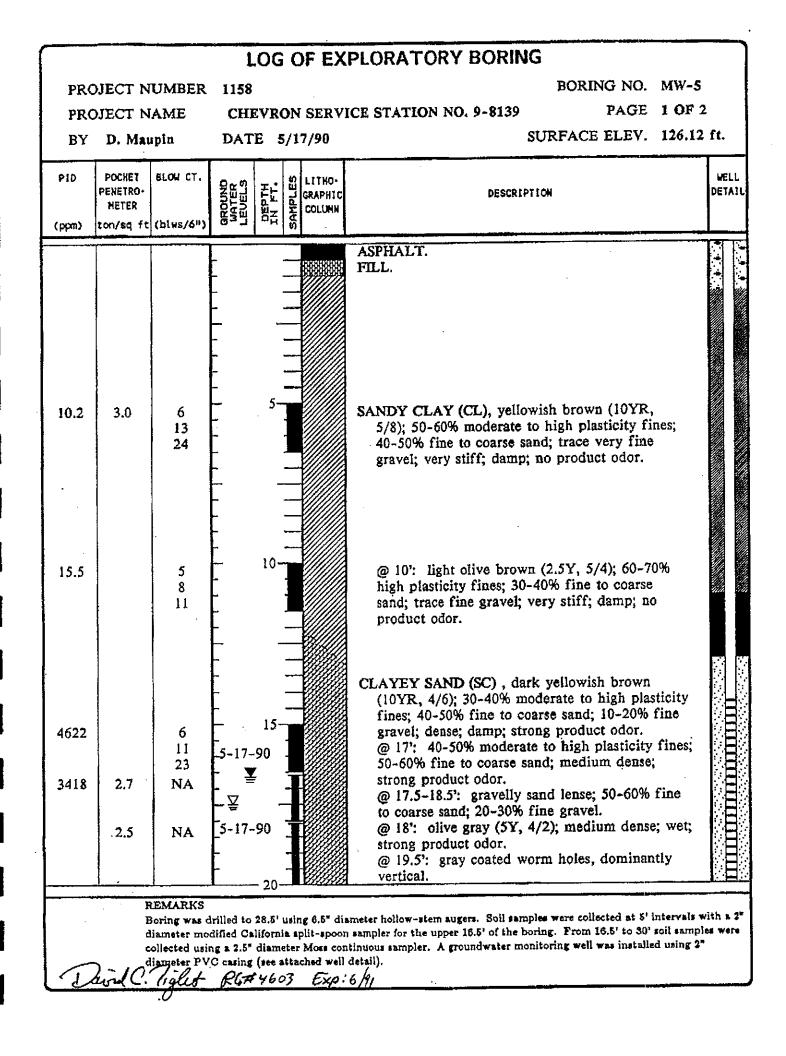
INSTALLATION DATE 12/1/89

.,											
<u>EX</u>	PLORATORY BOR	RING									
a.	Total depth	<u>30</u> ft.									
b.	Diameter <u>8</u> in.										
	Drilling method Holl	ow-stem Auger									
	•										
<u>W</u>	<u>ELL CONSTRUCTI</u>										
C.	Total casing length	<u>25.5</u> ft.									
	Material Sche										
d.	Diameter	<u>2in</u> ,									
e,	Depth to top perforat	ions <u>15.5</u> ft.									
f.	Perforated length	<u>10</u> ft.									
	Perforated interval fro										
	Perforation type <u>Mach</u>	<u>ine Slot</u>									
	Perforation size	20"									
g.	Surface seal	<u>1ft.</u>									
	Seal material <u>Conc</u>	rete									
ħ.	Backfill	<u>9.5</u> ft.									
	Backfill material <u>Neat</u>	<u>Cement</u>									
i.	Seal	<u>2ft</u> .									
	Seal materialBent	conite									
j,	Gravel pack	<u>13</u> ft.									
	Pack material#3_S	and									
k.	Bottom seal	<u>4.5</u> ft,									
	Seal material Bent	onite									

CIEMPRO

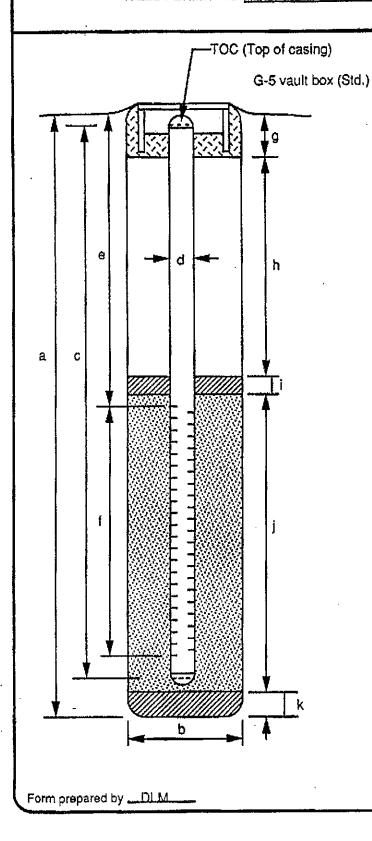

DHENICAL MOCESSONS

WELL DETAILS


PROJECT NUMBER.	987158
PROJECT NAME	<u>SS #9-8139</u>
	4 Foothill Blvd.
WELL PERMIT NO:	

BORING / WELL NO, MW-4_____ TOP OF CASING ELEV. 125, 22' GROUND SURFACE ELEV. 125, 43' DATUM ______MSL

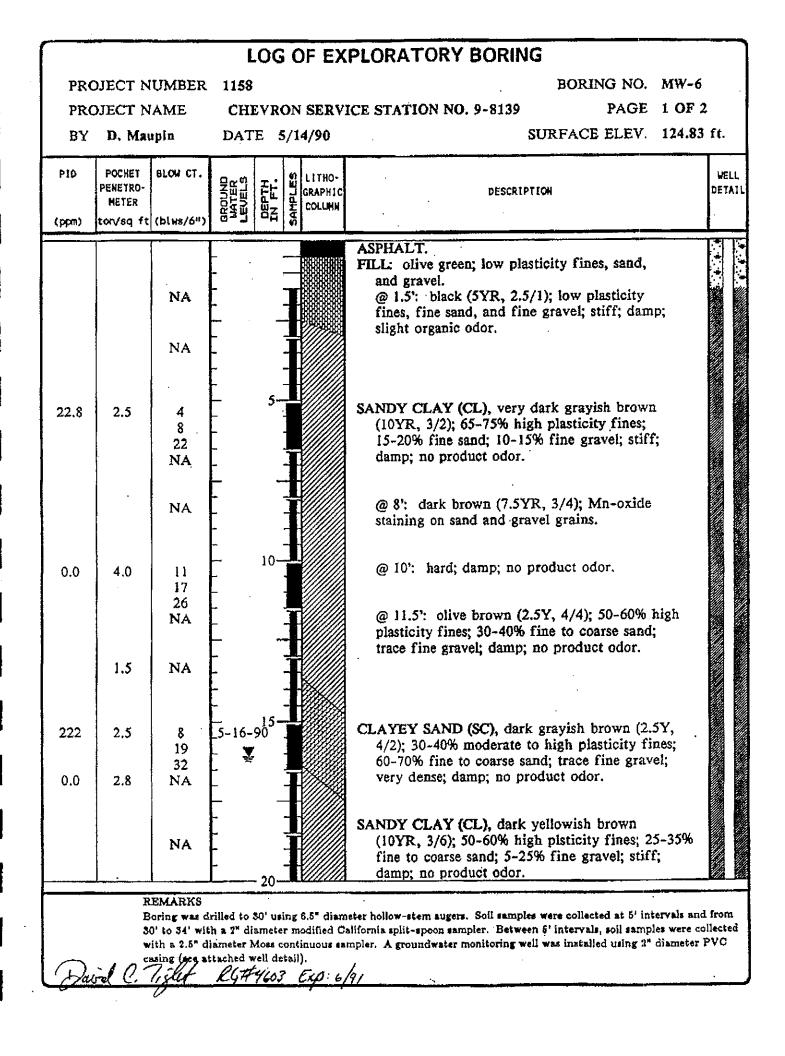
INSTALLATION DATE _12/1/89


ΕX	PLORATORY BORING
a,	Total depth <u>26.5</u> ft.
b.	·
	Drilling method Hollow-stem Auger
	.
W	ELL CONSTRUCTION
с.	Total casing length <u>22ft</u> .
	Material Schedule 40_PVC
d,	Diameter <u>2</u> in.
e,	Depth to top perforations $\frac{12}{12}$ ft.
f.	Perforated length <u>10</u> ft.
	Perforated interval from 12 to 22 ft.
	Perforation type <u>Machine Slot</u>
	Perforation size0.020"
g.	Surface seal
	Seal material <u>Concrete</u>
h.	Backfill <u>9ft</u> .
	Backfill material <u>Neat Cement</u>
i.	Seal 1ft.
	Seal materialBentonite
j.	Gravel pack <u>11.75</u> ft.
-	Pack material#3 Sand
k.	Bottom seal <u>3.75</u> ft.
	Seal material <u>Neat Cement</u>

\bigcap			L	.0G	С	F EX	PLORATORY BORING	
PRO	JECT N	UMBER	1158		•		BORING NO. MW-5	
PRO	DJECT N	IAME	CHJ	EVRC)N	SERV	ICE STATION NO. 9-8139 PAGE 2 OF 2	
BY	D. Mai	upin	DAT	E 5	/1	7/90	SURFACE ELEV. 126.12 ft.	
PID	POCHET PENETRO- METER	BLOW CT.	GROUND WATER LEVELS	DEPTH IN FT.	MPLES	LITHO- GRAPHIC COLUMN	DESCRIPTION	ELL TATL
(ppm)	ton/sq ft	(blws/6")	833	μ <u>μ</u> μ	ສ			
37.2	2.5	NA	-	-			CLAYEY SAND (SC), continued. @ 20': yellowish brown (10YR, 5/6); 35-45%	
		NA	-	-			moderate to high plasticity fines; 40-50% fine to coarse sand; 10-15% fine to medium gravel; Mn-oxide staining in soil; medium dense; damp	
40.4		NA	-	-	وي المرجعة المرجعة		to moist; no product odor. @ 21.5': damp to moist, no product odor.	
40.7	1.5	NA	 	25				
	3.8	NA	- - -	-			SANDY CLAY (CL), dark yeilowish brown (10YR, 4/4); 65-75% high plasticity fines; 25-35% fine to coarse sand; trace fine gravel, subrounded to rounded; very stiff; moist; no	
22.1	>4.0	NA	-	-			product odor. @ 28.5': hard; no product odor.	
				30			BORING TERMINATED AT 28.5' AND SAMPLED TO 30'.	
				-	-			
			-	-				
			-	35—				
			- 	 	_		• .	
			-				· .	
			-	-				
			-	40			<u> </u>	
	B) di co	ameter mod	ified Cali g a 2.5" d	fornia liamete	apl ar l	it-spoon Aoss coni	mater hollow-stem augers. Soil samples were collected at 5' intervals with a sampler for the upper 16.5' of the boring. From 16.5' to 30' soil samples we ilnuous sampler. A groundwater monitoring well was installed using 2" letail).	

PROJECT NUMBER 1158 PROJECT NAME Chevron SS No. 9-8139 TOP OF CASING ELEV. 125.85 LOCATION 16304 Foothill Boulevard, San Leandro GROUND SURFACE ELEV. 126.12 WELL PERMIT NO. ___90281

BORING / WELL NO. MW-5 DATUM MSL INSTALLATION DATE ___________


EXPLORATORY BORING

a. Total depth 30 Ħ. 6.5 iπ. b. Diameter Drilling method Hollow-Stem Auger

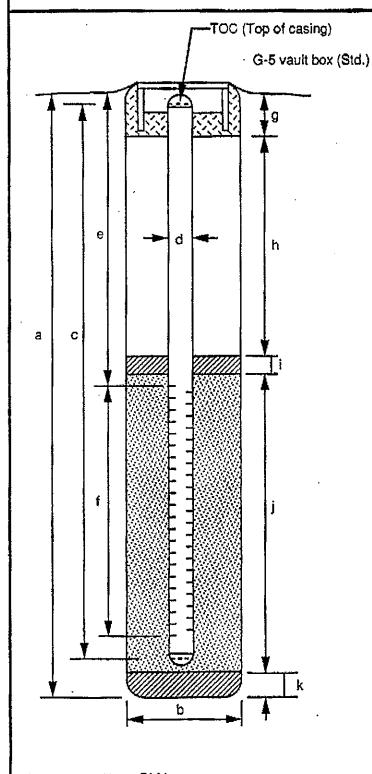
WELL CONSTRUCTION

Ċ.	Total casing length	23.9	ft.
	MaterialSchedule 40 PVC		
d.	Diameter	2	in.
e.	Depth to top perforations	14.3	ft.
f.	Perforated length	9.4	ft.
	Perforated interval from 14.3 to	<u>23.7</u>	Ħ.
	Perforation type	PVC	
	Perforation size 0.020 inch		
g.	Surface seal	1.5	ft.
	Material <u>Concrete</u>		
h.	Backfill	9.5	ft.
	Material Bentonite-Cement.G	rout	
i.	Seal	2	ft.
	MaterialBentonite		
j.	Gravel pack	12.5	ft.
	Gravel pack interval from 13 to	25.5	ft.
	Material#3 Sand		
k.	Bottom seal/fill	4.5	ft.
	Material Bentonite		

PCT

PRC	DJECT N DJECT N D. Mai		1158 CHI	EVRO		EVALUATE OF 2 OF 2 SURFACE ELEV. 124.83	2
91D (ppm)	POCHET PENETRO- METER ton/sq ft	BLOW CT. (blws/6")	around MATER LEVELS	DEPTH IN FT.	S LITHO- LIGRAPHIC COLUMN	DESCRIPTION	WELL DETAI
0.0		6 10 21 NA		-		 @ 20': 60-70% high plasticity fines; 30-40% fine to medium sand; very stiff; damp; no product odor. @ 21.5': sand grains Mn-oxide stained. 	55
0.0 0.0	4.0	NA 5	-5-14- [¥ 	90 - - 25		CLAYEY SAND (SC), yellowish brown (10YR, 5/8); 25-35% moderate to high plasticity fines; 50-60% fine to coarse sand; trace fine gravel; sand and gravel Mn-oxide stained; dense; damp;	
0.0		15 18 NA	r 1 f r r	-		no product odor. @ 25': dense; moist; no product odor. @ 26.5': 20-30% moderate to high plasticity fines; 50-60% fine to coarse sand; 20-30% fine to medium gravel; Fe- and Mn-oxide staining.	
0.0	4.0	NA 7 14 25 NA		- 30- -		SANDY CLAY (CL), dark yellowish brown (10YR, 4/4); 60-70% high plasticity fines; 20-30% fine to coarse sand; 5-10% fine gravel; stiff; damp; no product odor.	
	3.0	17 27 33		35 -		 GRAVELLY CLAY (CL), yellowish brown (10yr, 5/4); 45-55% high plasticity fines; 20-30% fine to coarse sand; 25-30% fine to medium gravel; Fe- and Mn-oxide stained sand and gravel; hard, damp to wet; no product odor. BORING TERMINATED AT 30' AND SAMPLED TO 34'. 	
			-	- 			

Boring was drilled to 30' using 5.5" diameter hollow-stem augers. Soil samples were collected at 5' intervals and from 30' to 34' with a 2" diameter modified California split-spoon sampler. Between 5' intervals, soil samples were collected with a 2.5" diameter Moss continuous sampler. A groundwater monitoring well was installed using 2" diameter PVC casing (see attached well detail).

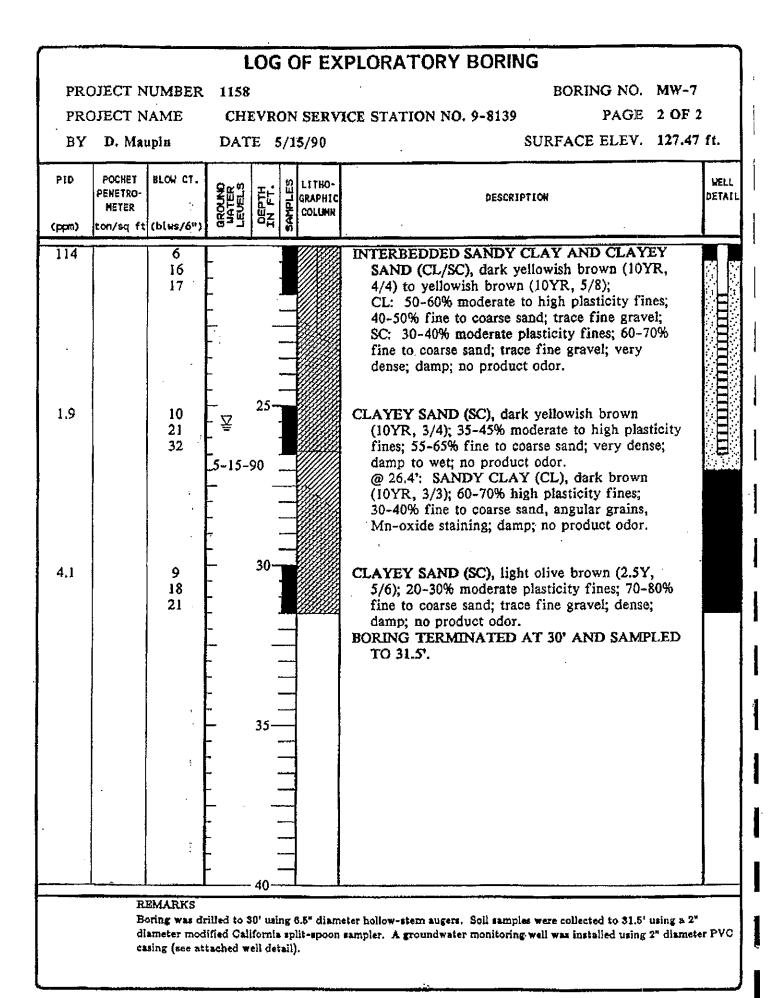


- ----

.

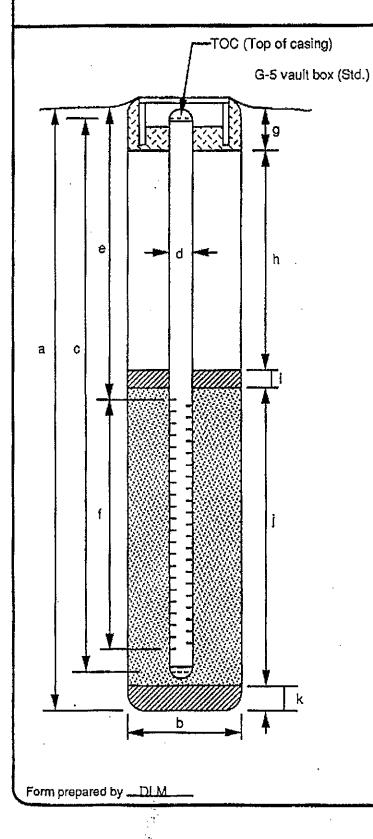
PROJECT NUMBER	1158
PROJECT NAME	Chevron SS No. 9-8139
LOCATION 16304 Fo	othill Boulevard, San Leandro
	90281

BORING / WELL NO. <u>MW-6</u> TOP OF CASING ELEV. <u>124.18'</u> GROUND SURFACE ELEV. <u>124.83'</u> DATUM <u>MSL</u> INSTALLATION DATE <u>5-14-90</u>


EXPLORATORY BORING

- a. Total depth <u>34</u> ft. b. Diameter <u>6.5</u> in.
- b. Diameter <u>6.</u> Drilling method <u>Hollow-Stem Auger</u>

WELL CONSTRUCTION


C,	Total casing length	<u>29.2</u> ft.
	Material Schedule 40 PVC	·
d.	Diameter	<u>2</u> in.
e.	Depth to top perforations	<u>24.6</u> ft.
f.	Perforated length	<u> </u>
	Perforated interval from 24.6 to	<u>29.6</u> ft.
	Perforation typeMachine Slotted	PVC
	Perforation size0.020.inch	
g.	Surface seal	<u> 1,5 ft</u> .
	Material Concrete	
h.		<u> 19.5 </u> ft.
	Material Bentonite-Cement G	rout
i.	Seal	
	MaterialBentonite	
j.	Gravel pack	<u>11</u> ft.
	Gravel pack interval from 23 to	<u>. 34</u> ft.
	Material #3 Sand	
k.	Bottom seal/fill	<u> </u>
	Material None	•

		LOG OF EX	PLORATORY BORING	
PRO	DJECT NUMBER	1158	BORING NO. MW-7	
PRO	DJECT NAME	CHEVRON SERV	ICE STATION NO. 9-8139 PAGE 1 OF 2	
BY	D. Maupin	DATE 5/15/90	SURFACE ELEV. 127.47	ft.
Р10 (ррл)	POCHET BLOW CT. PENETRO: METER ton/sq ft (blws/6")	GROUND GROUND GRAPHIC COLLS GAMPLES GAMPLES GAMPLES	DESCRIPTION	WELL DETAIL
1155	18 32 44		 ASPHALT. FILL: olive green; low plasticity fines, sand, and gravel. CLAYEY SAND (SC), dark yellowish brown (10YR, 4/4); 30-40% moderate to high plasticity fines; 60-70% fine to coarse sand; very dense; damp; no product edor. 	
339	8 12 15		SANDY CLAY (CL), mottled dark yellowish brown (10YR, 4/6) and olive (5Y, 4/4); 50-60% high plasticity fines; 35-45% fine to coarse sand; 5-10% fine gravel; very stiff; damp; no product odor.	
430	7 10 19	- 15 	@ 15': yellowish brown (10YR, 5/4); 50-60% moderate to high plasticity fines; 40-50% fine to coarse sand; trace fine gravel. INTERBEDDED SANDY CLAY AND CLAYEY	
		20	SAND (CL/SC).	
	diameter mod	lified California split-spoon tached well detail).	eter hollow-stem augers. Soil samples were collected to $31.5'$ using a 2" sampler. A groundwater monitoring well was installed using 2" diamet EXP. 6/11	

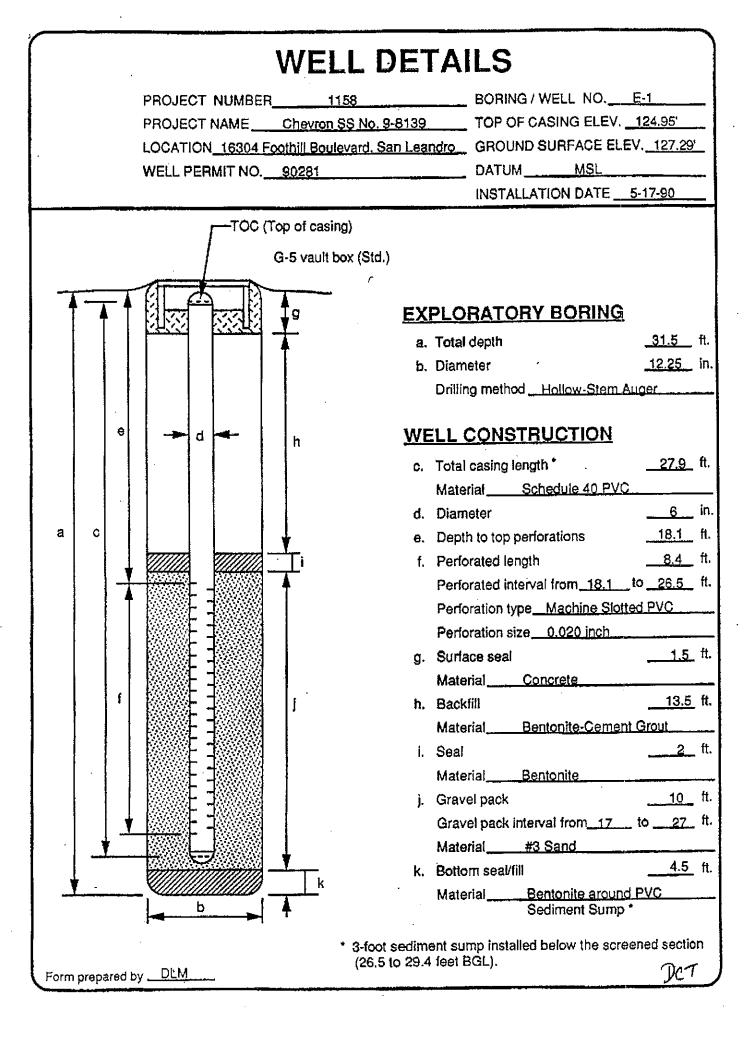
PROJECT NUMBER 1158 PROJECT NAME Chevron SS No. 9-8139 TOP OF CASING ELEV. 126.86 LOCATION 16304 Foothill Boulevard, San Leandro _ GROUND SURFACE ELEV. 127.47 WELL PERMIT NO. 90281

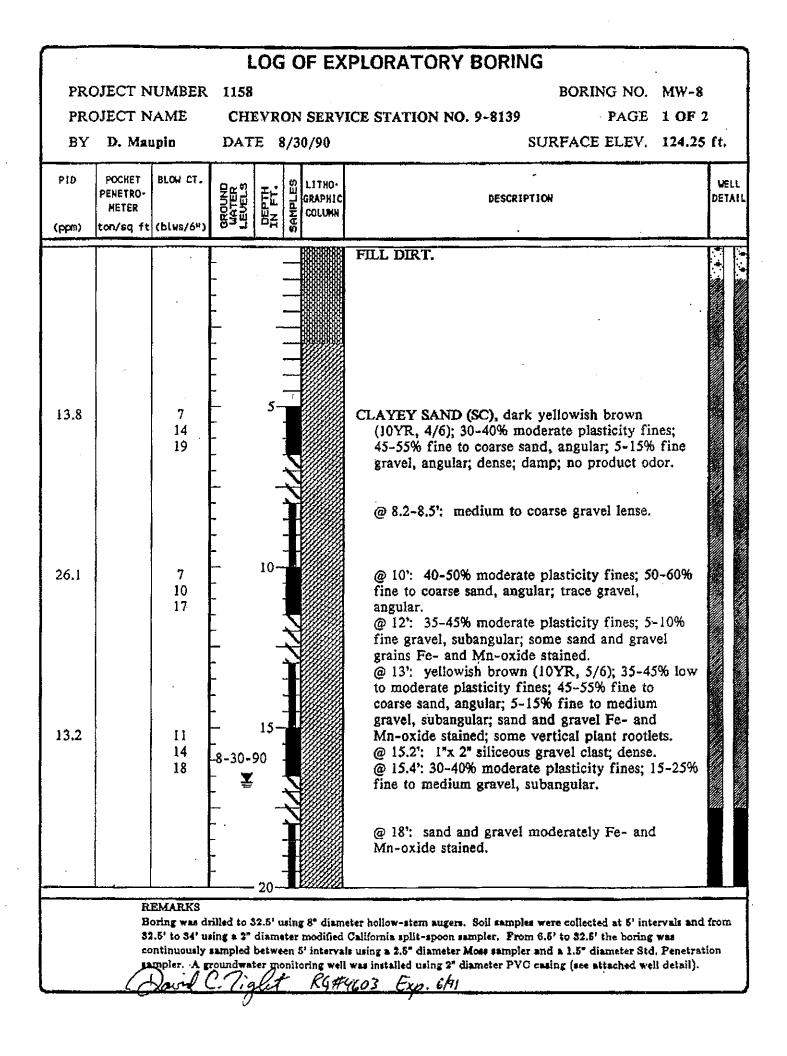
__ BORING / WELL NO. ___ MW-7_ DATUM MSL INSTALLATION DATE 5-15-90

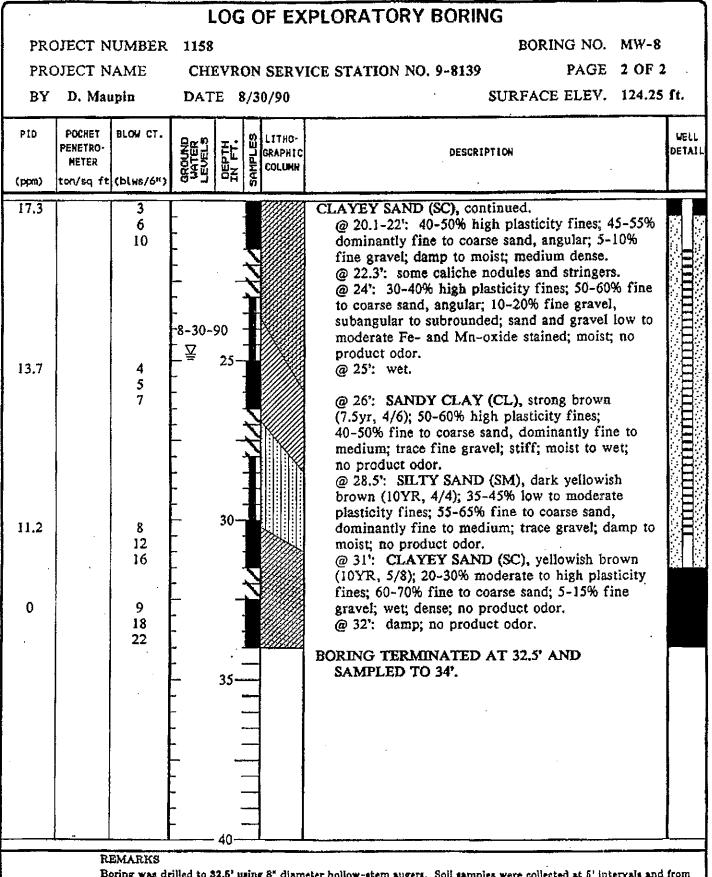
EXPLORATORY BORING

a. Total depth <u>31.5</u> ft. <u>6.5</u> in. b. Diameter Drilling method Hollow-Stem Auger

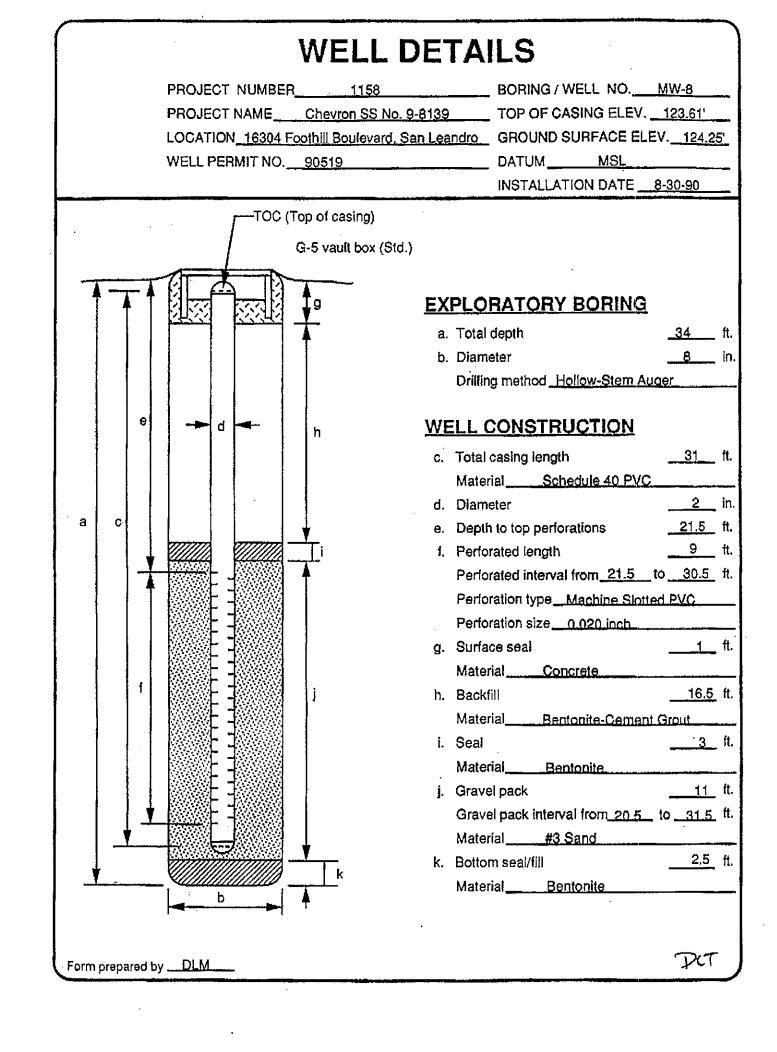
WELL CONSTRUCTION

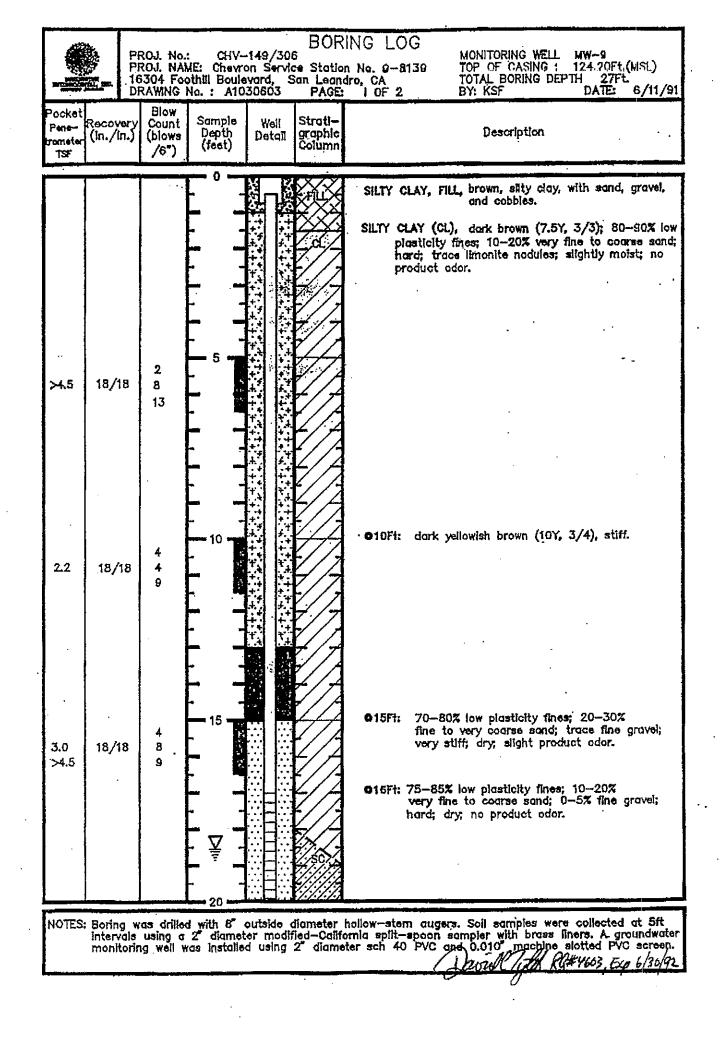

c.	Total casing length	<u>26</u> ft.
	Material Schedule 40 PVC	
d,	Diameter	<u>2</u> in.
e,	Depth to top perforations	<u>21.5</u> ft.
ŧ.	Perforated length	<u> </u>
	Perforated interval from 21.5 to	<u>26.5</u> ft.
	Perforation type <u>Machine Slotted</u>	PVC
	Perforation size 0.020 inch	
g.	Surface seal	<u>1.5</u> ft.
	Material <u>Concrete</u>	
h.	Backfill	<u> </u>
	Material Bentonite-Cement G	rout
i,	Seal	<u> 2 ft</u> .
	Material Bentonite	· · · · · · · · · · · · · · · · · · ·
ļ.	Gravel pack	<u>6.5</u> ft.
	Gravel pack interval from 20.5 to	<u> </u>
	Material #3 Sand	
k.	Bottom seal/fill	<u>4.5</u> ft.
	Material <u>Bentonite</u>	

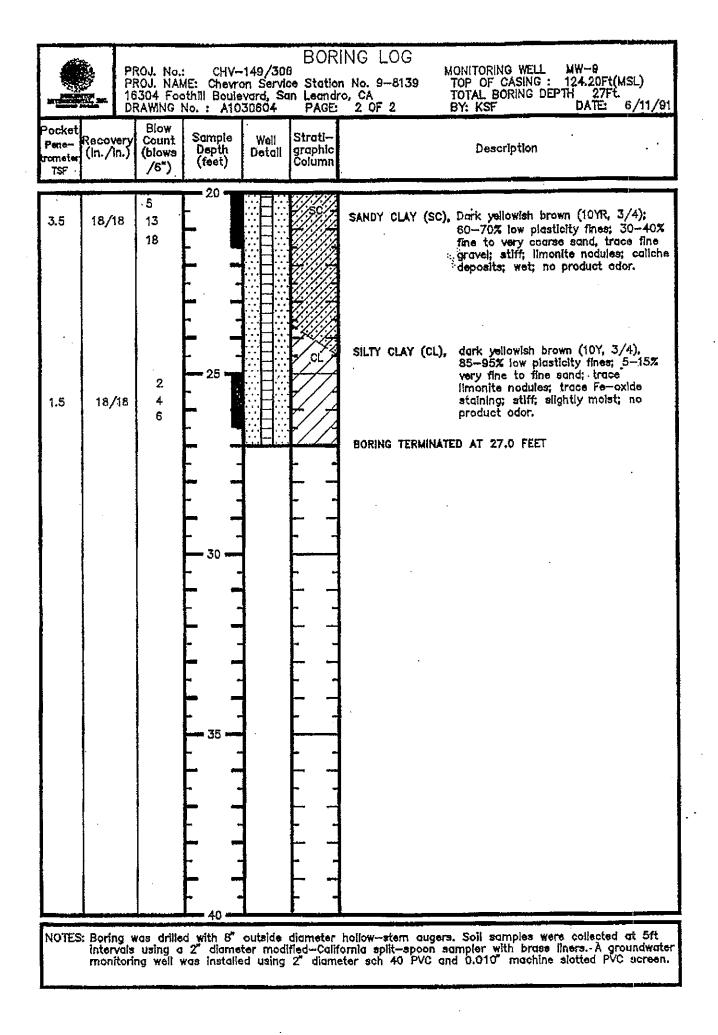

			L	.OG	ìO	FEX	PLORATORY BORING	
PRO	JECT N	UMBER	1158				BORING NO. E-1	
PRO	JECT N	AME	CHI	EVR	ON	SERV	ICE STATION NO. 9-8139 PAGE 1 OF 2	
BY	D. Mai	ıpin	DAT	E S	5/17	7/90	SURFACE ELEV. 127.29	ft.
910 (ppm)	POCHET PENETRO- HETER	BLOW CT.	GROUND WATER LEVELS	DEPTH IN FT.	SAMPLES	LITHO- GRAPHIC COLUMN	DESCRIPTION	WELL DETAIL
(pp)							ACDITAT T	
			- - - -				ASPHALT. FILL. CLAYEY SAND (SC), dark yellowish brown (10YR, 4/4); 40-50% moderate to high plasticity fines; 50-60% fine to coarse sand; trace fine	
54.8	3.2	NA	-	جــ			gravel; worm borrows upper 4-8"; medium dense; damp; no product odor. @ 5': 25-35% moderate to high plasticity fines;	
21.7	3.2	NA	-	2	I		50-60% fine to coarse sand; 10-20% fine gravel. @ 6.5': thin lenses of high plasticity fines; some highly altered sandstone gravel.	
47.6		NA	- 	_			@ 8': dark yellowish brown (10YR, 3/6); 35-45% moderate to high plasticity fines; 55-65% fine to coarse sand; trace Mn-oxide stained fine gravel;	
39.6	1.3 2.3	NA	-	10-			damp; weak product odor. @ 10': olive brown (2.5Y, 4/4); 25-35% moderate to high plasticity fines; 65-75% fine to coarse sand, subangular to subrounded; trace fine to medium gravel; organic odor.	
	3.5	NA	- -	. <u>–</u>			SANDY CLAY (CL), mottled olive (5Y, 4/3) and dark yellowish brown (10YR, 4/6); 55-65% high plasticity fines; 25-35% fine to medium sand;	
	3.5	NA		16			10-15% fine gravel; very stiff; damp; no product odor. @ 13': moderate product odor.	
405	2.2	NA		15- 90	-	Ű	CLAYEY SAND (SC), dark yellowish brown (10YR, 4/4); 20-30% moderate to high plasticity	
	1.5	NA	-¥	-			fines; 60-70% fine to coarse sand; 5-15% fine to coarse gravel; medium dense; damp; moderate to strong product odor.	
295	3.0	NA	[5-16- - -				GRAVELLY SAND (SP), light olive brown (2.5Y, 5/4); 10-20% moderate plasticity fines; 40-50% fine to coarse sand; 30-40% fine to coarse	
Ú	B	2.5" diamet roundwater	ter Moss extractio	contir In wel	nuou II wa	s sample s installe	ameter hollow-stem augers. Soil samples were collected from 3.5' to 31.5 r. Boring was redrilled with 12.25" diameter hollow-stem augers. A ed using 6" diameter PVC casing (see attached well detail). Exp Bale: 6/91	' using

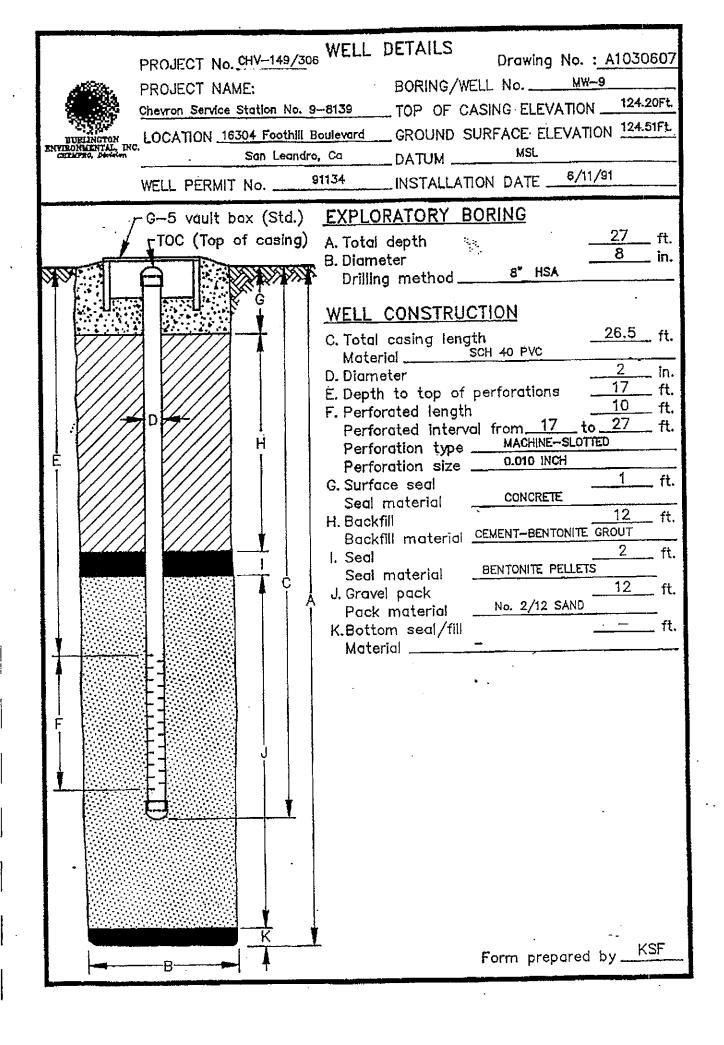

•

.

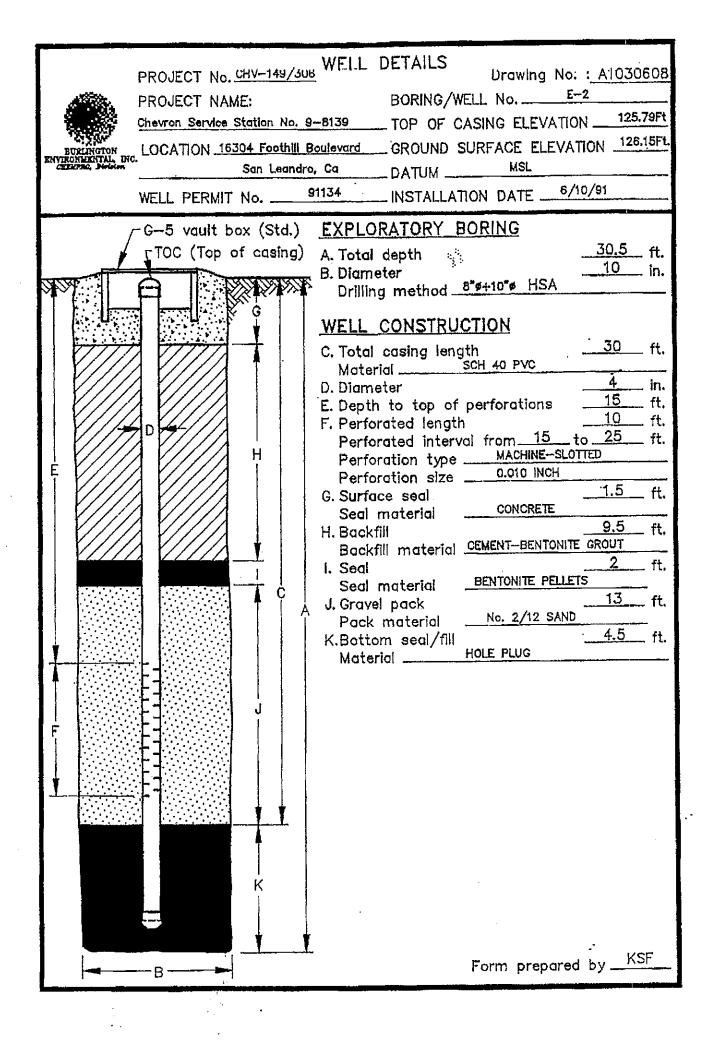

			L	.OG	OF EX	PLORATORY BORING							
PRO	DJECT N	UMBER	1158			BORING NO. E-1							
PRO	DJECT N	IAME 👘	CHJ	evro	N SERV	ICE STATION NO. 9-8139 PAGE 2 OF 2							
BY	D. Mai	upin	DAT	E 5,	/17/90	SURFACE ELEV. 127.29 ft.							
PID	POCKET PERETRO- METER	BLOW CT.	GROUND WATER LEVELS	DEPTH IN FT.	ELITHO- LIGRAPHIC COLUMN	DESCRIPTION DETAIL							
(ppm)	ton/sq ft	(blws/6")			ហ៊								
61.5	1.3	NA				gravel, one quartz clast >2" diameter; medium dense; damp to moist; moderate to strong product odor.							
	4.1	NA	-			@ 17.5': graded to dark olive gray (5Y, 3/2); wet; strong product odor.							
352	2,8	NÀ				CLAYEY SAND (SC), abundant olive mottling; trace medium gravel; strong product odor. @ 20': yellowish brown (10YR, 5/6); 25-35% moderate to high plasticity fines; 60-70% fine to							
18.2	0.5	NA	-			coarse sand; 5-10% fine gravel; medium dense; damp to wet; no product odor.							
5.0	2.4	NA	• •			SANDY CLAY (CL), yellowish brown (10YR, 5/6); 55-65% high plasticity fines; 30-40% fine to coarse sand; 5-10% fine gravel; very stiff to							
5.1	2.5 No	NA Recovery	, <u>, , , , , , , , , , , , , , , , , , </u>	30-1									hard; moist; weak product odor. CLAYEY SAND (SC), dark yellowish brown. (10YR, 4/6); 25-35% moderate to high plasticity fines; 50-60% fine to coarse sand; 10-15% fine gravel, angular; loose; damp; weak product odor. @ 25': 10-20% low to moderate plasticity fines; 60-70% fine to coarse sand; 10-20% fine gravel; moist to wet; no product odor.
										 SANDY CLAY (CL), dark yellowish brown (10YR, 4/4); 55-65% high plasticity fines; 35-45% fine to coarse sand, rounded; trace fine gravel; very stiff; damp; no product edor. @ 29': sandy lense; 50-60% high plasticity fines; 40-50% fine to coarse sand; trace fine gravel. TERMINATED BORING AT 30' AND SAMPLED TO 31.5'. 			
	B *	2.5" diamet	er Moss o	31.6' us	ous sample	umeter hollow-stem augers. Soil samples were collected from 3.5' to 31.5' using r. Boring was redrilled with 12.25" diameter hollow-stem augers. A d using 6" diameter PVC casing (see attached well detail).							

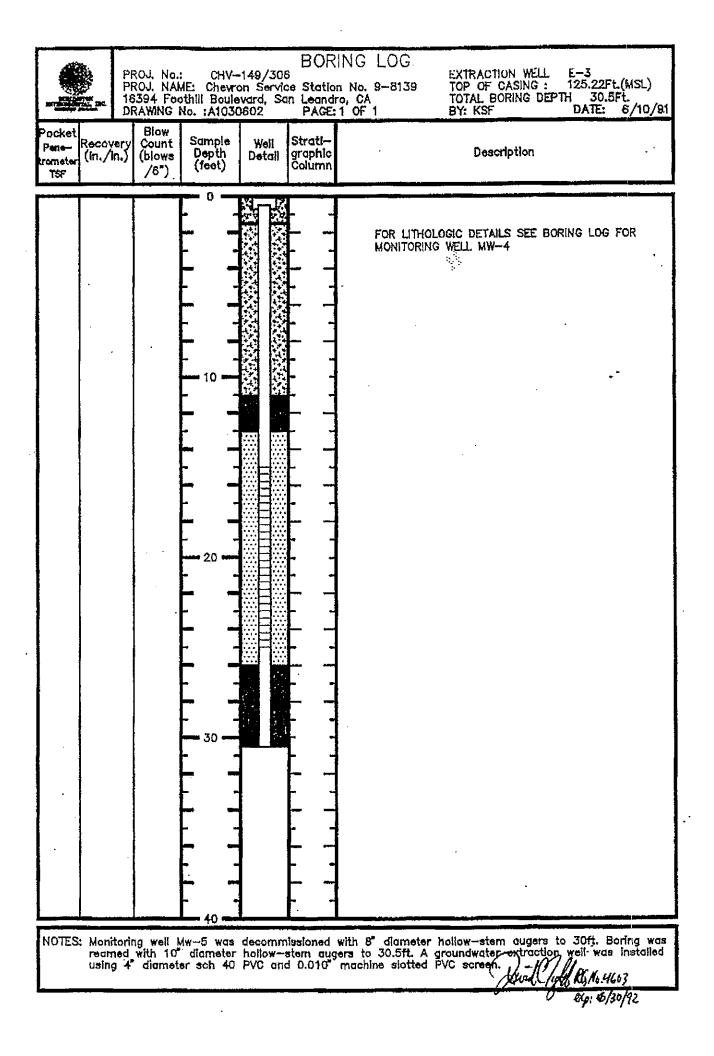


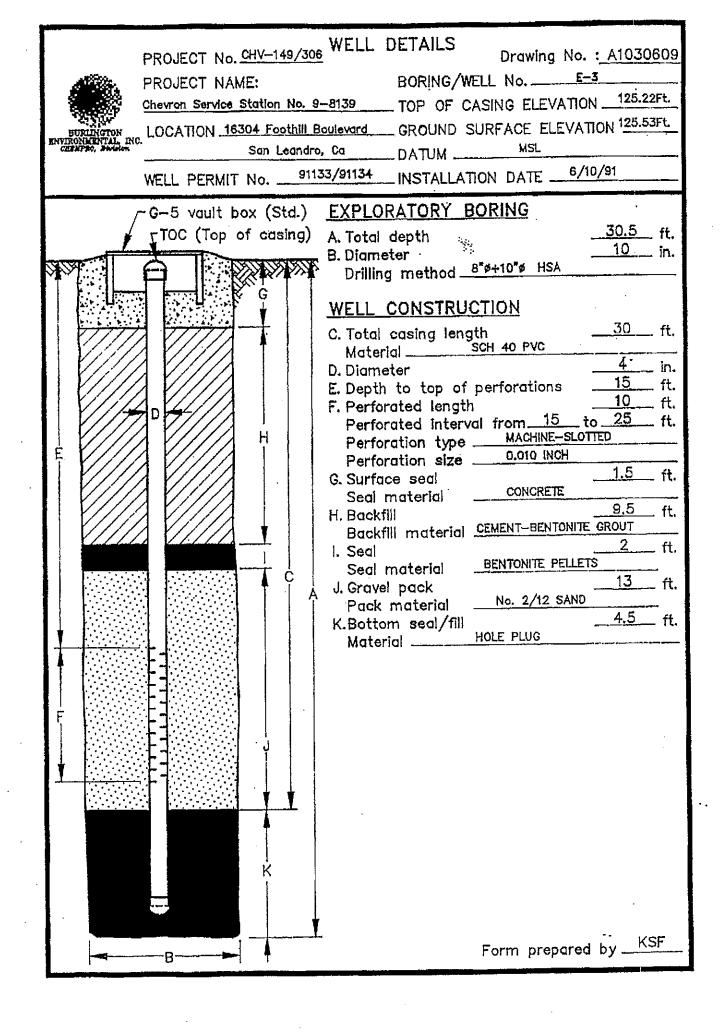


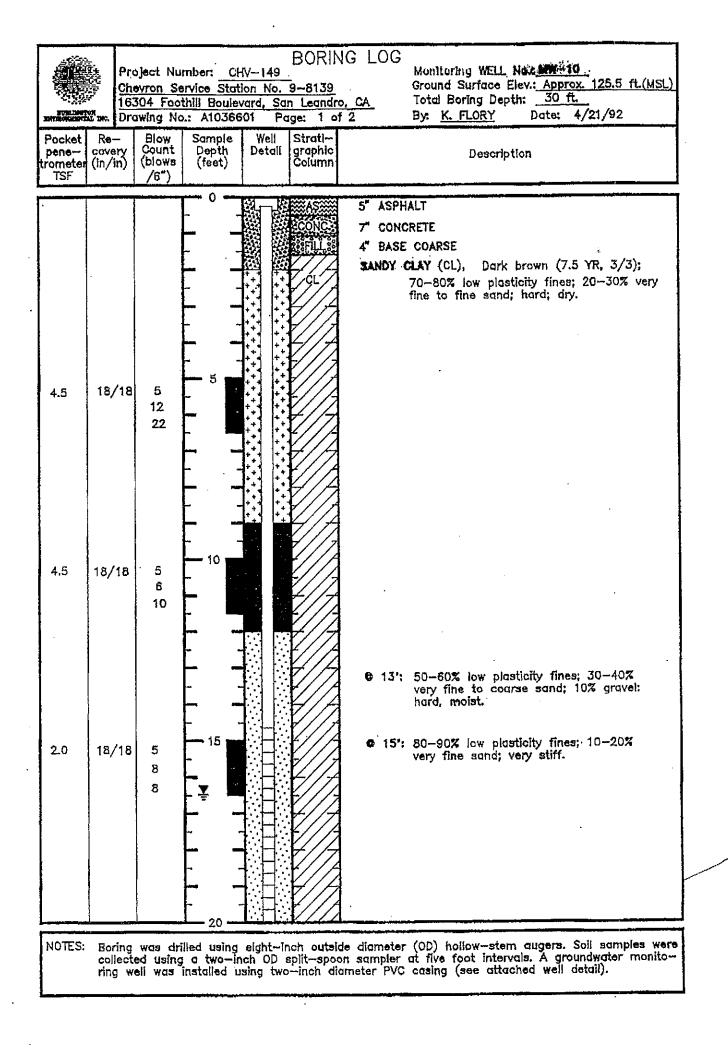


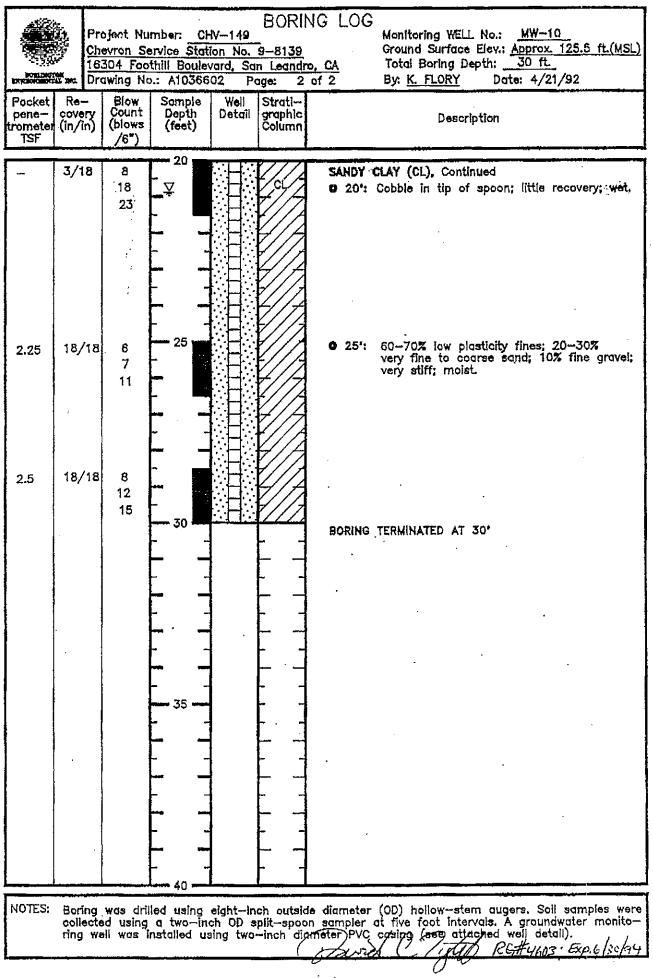
Boring was drilled to 32.5' using 8" diameter hollow-stem augers. Soil samples were collected at 5' intervals and from 32.5' to 34' using a 2" diameter modified California split-spoon sampler. From 5.5' to 32.5' the boring was continuously sampled between 5' intervals using a 2.5" diameter Moss sampler and a 1.5" diameter Std. Penetration sampler. A groundwater monitoring well was installed using 2" diameter PVC casing (see attached well detail).

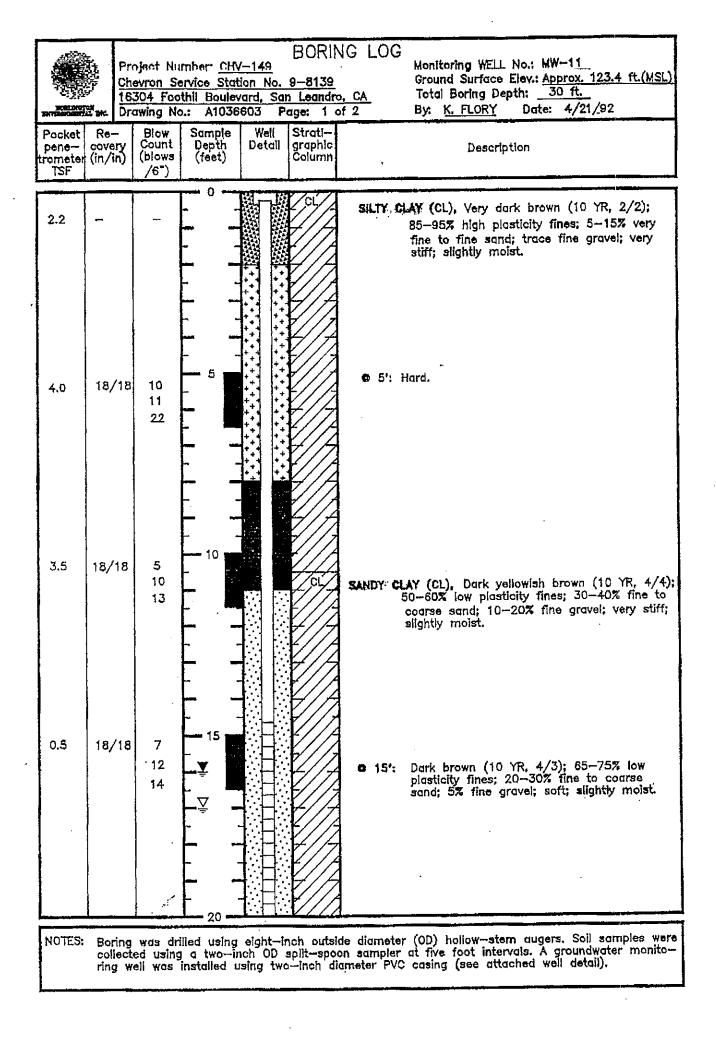


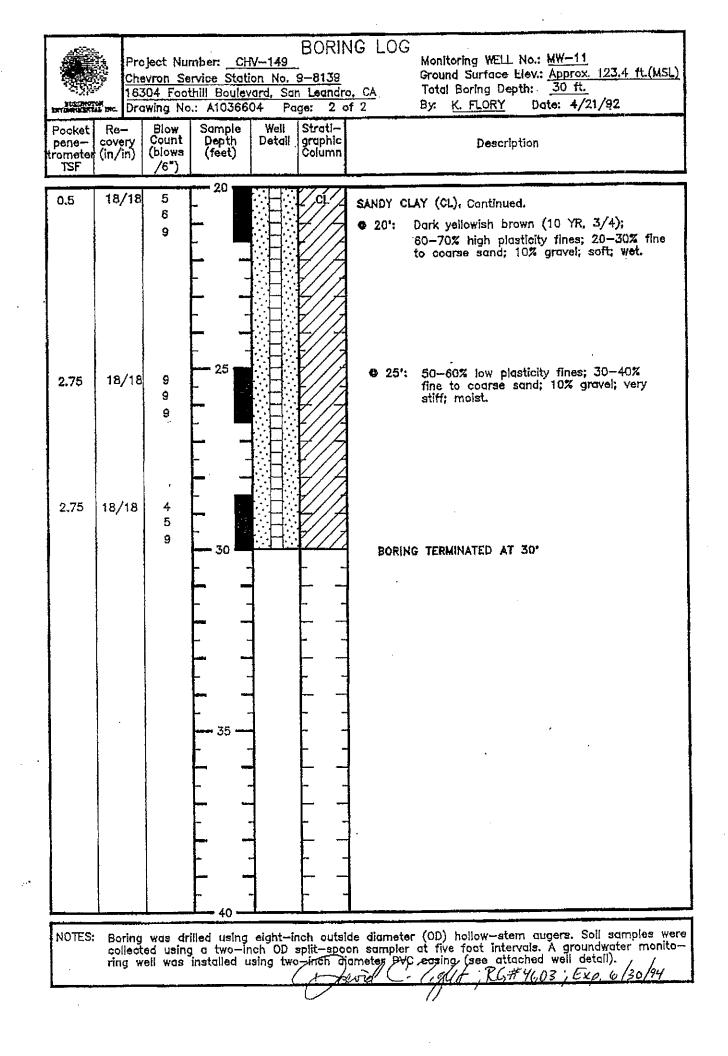


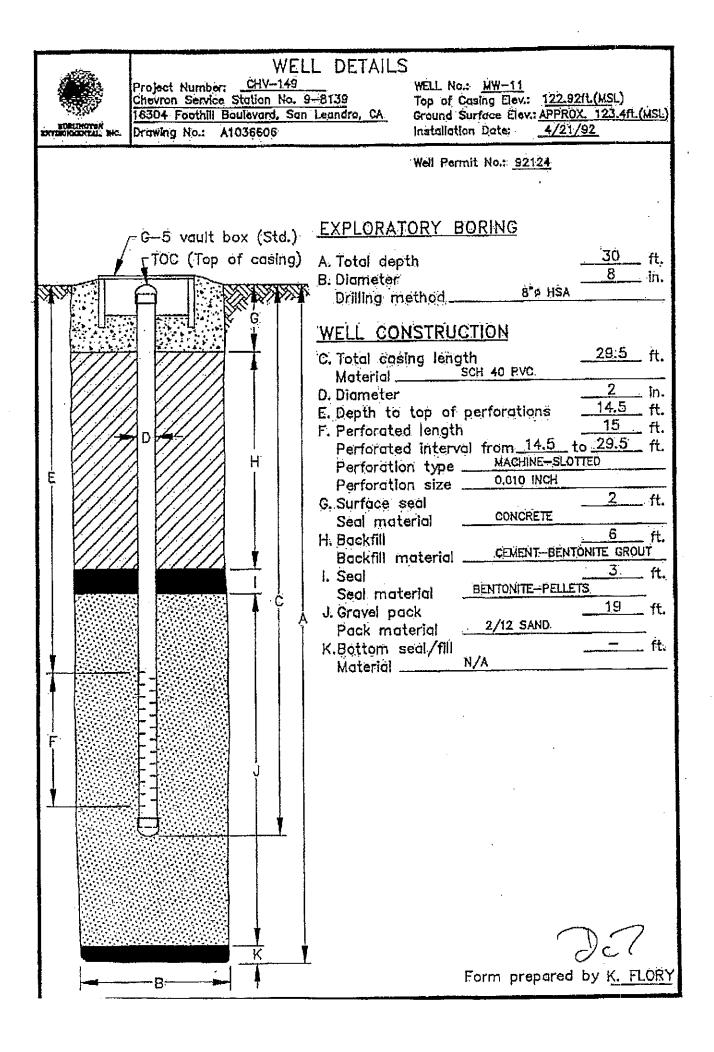




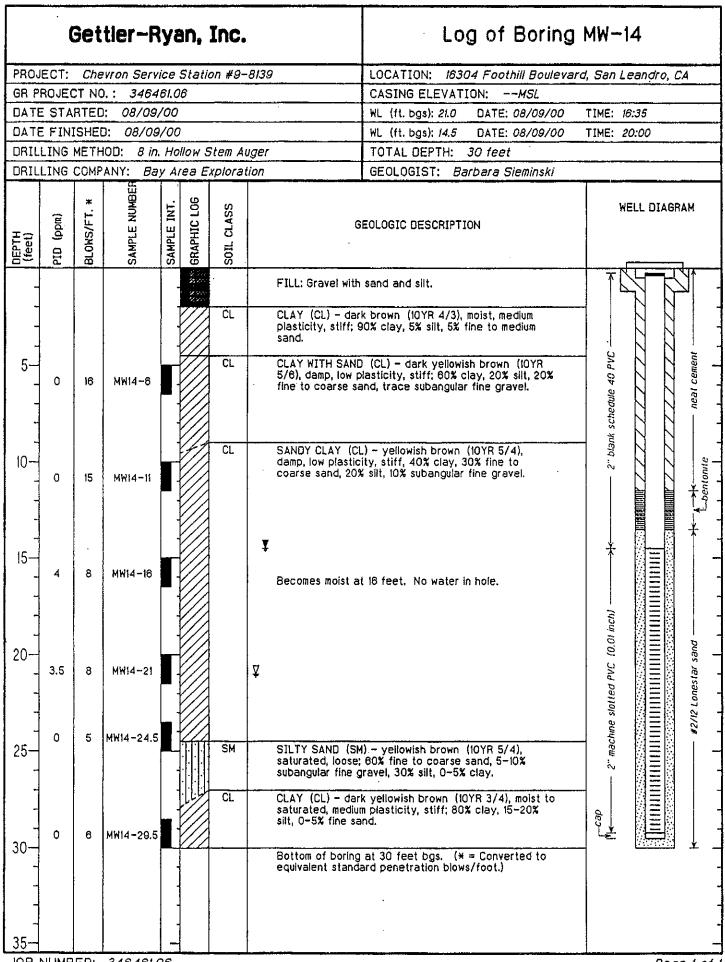

ens- Recovery Count Sample Well Strati- meter (in./in.) (blows Depth Detail graphic Description	ocket	PROJ. No. PROJ. NAI 16304 Foo DRAMING Blow	: CHV- ME: Chevro Sthill Boule No. : A103	149/300 on Servic vard, Sa 0601	s a Statlu n Leand PAGE:	ING LOG EXTRACTION WELL E-2 TOP OF CASING : 125.79Ft (MSL) TOTAL BORING DEPTH 30.5Ft. 1 OF 1 BY: KSF DATE: 6/10/91
POR LITHOLOGIC DETAILS SEE BORING LOG FOR MONITORING WELL MW-5	New IRecov	very Count In.) (blows	Depth (feet)	Well Dətail	graphic	Description
	NOTES: Mor	altoring well med with 10				MONITORING WELL WW-5







	WEI	L DETAIL	S
	Project Number: CHV-149		WELL No .: MW-10
	Chevron Service Station No. 9 16304 Foothill Boulevard, San		Top of Casing Elev.: <u>125.03 FT (MSL)</u> Ground Surface Elev.: APPROX. <u>125.5ft.(MSL)</u>
HURLINGTON INVERSENTIAL, INC.		Loandroj vi	Installation Date: 4/21/92
	<u>P</u>		Well Permit No.: 92124
	∕−G−5 vault box (Std.)	EXPLORA	TORY BORING
1	TOC (Top of casing)	A. Total dep	$\frac{30}{\text{ft.}}$
	The second second	8 Diameter	<u>8</u> in.
		Drilling n	nethod8*ø HSA
		WELL CO	NSTRUCTION
77777		C. Total cas	sing lengthft.
			SCH 40 PVC 2 In.
		D. Diameter	top of perforations $\frac{14.5}{14.5}$ ft.
		E Perforate	$\frac{15}{15}$ ft.
		Perforate	ad interval from <u>14.5</u> to <u>29.5</u> ft.
E		Perforati	on typeACHINE-SLUTIED
1		Perforati G. Surface	
		G. Surface Seal ma	
		H. Backfill	<u> </u>
		÷ ·· ·	material <u>CEMENT-BENTONITE GROUT</u> 3 ft
	1	I. Seal Seal ma	
	Ċ	J. Gravel p	19 (1
		Pack mo	aterial2/12 SAND
		K.Bottom	seal/fill ft. N/A
		Material	
F			
	K K	.	· der
	B	_	Form prepared by K. FLOR
l			



	-		ler-R					Log of Borin				
PROJE	ECT:	Chev	ron Servi	ce S	Statio	on #9−.	9139	LOCATION: 16304 Foothill Boule	vard, San Leandro, C			
GR PF	ROJEC	T NO.	: 3464	61.0	6		······································	CASING ELEVATION:MSL				
DATE	STAF	RTED:	08/18/	00				WL (ft. bgs): 15.0 DATE: 08/18/00				
			: 08/18/	_				WL (ft. bgs): 11.8 DATE: 08/18/00 TIME: 14:00				
			D: 8 in.	_				TOTAL DEPTH: 28.50 feet				
DRILL	ING (COMP	NY: Ba	y Ar	ea E.	plorat	ion	GEOLOGIST: Barbara Sieminski				
DEPTH (feet)	PID (ppa)	BLOWS/FT. *	SAMPLE NUMBER	SAMPLE INT.	GRAPHIC LOG	SOIL CLASS		GEOLOGIC DESCRIPTION	WELL DIAGF			
<u> </u>	-	<u></u>	0,		2000 2000 2000		FILL: Gravel wi	th sand and silt.				
-				-		CL	CLAY (CL) – d plasticity, stiff sand.	ark brown (10YR 4/3), moist, medium ; 90% clay, 5% silt, 5% fine to medium	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			
5	0	14	MW12-6			CL	CLAY WITH SA damp, low plas to medium sand	ND (CL) – yellowish brown (10YR 4/4), ticity, stiff; 80% clay, 20% silt, 20% fine 1.	- 2" blank schedule 40 PVC			
- 10	1.2	10	MW12-11			CL	moist, low plas	(CL) – yellowish brown (10YR 4/4), ticity, stiff; 50% clay, 30% fine to 20% silt, trace subangular fine gravel.				
- 15 -	0	5	MW12~18			CL/SC	yellowish brow	NITH CLAYEY SAND LENSES (CL/SC) – n (10YR 5/4), saturated, low plasticity, 0% clay, 30% fine to coarse sand, 5–10% e gravel, 20–25% silt.	01 inch/			
- 20 -	0	8	MW12-21				Gravel decrea	ses to trace, clay increases to 50%.	-cap -cap			
- 25-	0	7	MW12-24.	5		SM	(10YR 5/4), s 5-10% subang	NITH GRAVEL (SM) - yellowish brown aturated, loose; 60% fine to coarse sand ular fine gravel, 30% silt, 5-10% clay.				
	0	4	MW12-27.	5			saturated, me silt, 5-10% fin	dark yellowish brown (10YR 3/4), dium plasticity, soft; 80% ciay, 10–15% e to coarse sand. ing at 28.5 feet bgs.				
30-				-			(* = Convert blows/foot.)	ed to equivalent standard penetration				

	C	Set	tler–R	yan	, Inc.		Log a	of Boring	MW13		
PROJ	ECT:	Che	vron Servi	ce Sta	ation #9-	·8139	LOCATION: 16304 F	oothill Boulevar	d, San Leandro, C.	4	
GR PI	ROJEC	T NO	.: 3464	61.08			CASING ELEVATION:	MSL			
	STA						WL (ft. bgs): 25.0 DA	ATE: 08/09/00	TIME: 12:00		
DATE	FINI	SHED): 08/09	/00			WL (ft. bgs): 12.1 DA	ATE: 08/09/00	TIME: 17:50		
	LING		······		v Stem A	uger	TOTAL DEPTH: 34 1	feet			
DRIL	LING	COMP	ANY: Ba	v Area	Explora	tion	GEOLOGIST: Barbai	ra Sieminski			
DEPTH (feet)	PID (ppm)	BLOWS/FT. *	SAMPLE NUMBER	SAMPLE INT.		G	GEOLOGIC DESCRIPTION				
1					CL	FILL: Gravel with CLAY (CL) – dar plasticity, stiff; (sand.	sand and silt. k brown (10YR 4/3), mois 90% clay, 5% silt, 5% fine f	t, medium to medium			
5	0	9	MW13-8			50114.			2" blank schedule 40 PVC	- neat cement	
10	0	13	MW13-11		CL	(10YR 5/6), silt i sand, 60% clay a ¥	color changes to yellowish ncreases to 30%, 10% fine t 10 feet.) (CL) - yellowish brown	e to coarse	- 2" blank sche	- - -	
15	0	12	MW13-16			damp, low plastic to coarse sand,	tity, stiff; 50% clay, 25% s 5% subangular fine gravel at 15 feet after pulling a	silt, 20% fine			
20	0	11	MW13-21		CL	low plasticity, st	L) – yellowish brown (10Y iff, 40% clay, 30% fine to ubangular fine gravel.	(R 5/4), moist, o coarse sand,	Ch) → + 1	-	
25	0	6	MW13-28			Clay decreases becomes medium	to 35%, gravel increases stiff and saturated at 25	to 5%,, 5 feet.	cap - 2" machine slotted PVC (0.01 inch)	#2/12 Lonestar sand	
- - 30	. 0	6	MW13-31		SW-SN	5/4), saturated, subangular fine		e sand, 20%	- 2" machine : 	* - -	
-					CL	medium plasticity	llowish brown (10YR 5/8), y, medium stiff: 100% clay.	• ••••	cap		
35		1	<u> </u>				g at 34 feet bgs. (* = C lard penetration blows/fo			-	

.

.

JOB NUMBER: 346461.06

Page 1 of 1

	Conestoga-Rovers & Associates 2000 Opportunity Drive, Suite 110 Roseville, CA 95678 Telephone: (916) 677-3407 Fax: (916) 677-3687	BORING/WELL LOG
CLIENT NAME	Chevron Environmental Management Co.	BORING/WELL NAME GP-1
JOB/SITE NAME	9-8139	DRILLING STARTED 15-Nov-07
	16304 Foothills Boulevard	DRILLING COMPLETED 16-Nov-07
PROJECT NUMBE		WELL DEVELOPMENT DATE (YIELD) NA
DRILLER	Gregg Drilling & Testing, Inc.	GROUND SURFACE ELEVATION Not Surveyed
DRILLING METHO		TOP OF CASING ELEVATION Not Surveyed
BORING DIAMETE		SCREENED INTERVAL NA
LOGGED BY	C. Benedict	DEPTH TO WATER (First Encountered) 32.0 fbg (16-Nov-07)
REVIEWED BY	B. Carey, P.G. 7820	DEPTH TO WATER (Static) NA

REMARKS CONTACT DEPTH (fbg) SAMPLE ID GRAPHIC LOG BLOW U.S.C.S. P1D (ppm) DEPTH (fbg) EXTENT WELL DIAGRAM LITHOLOGIC DESCRIPTION 0.5 Asphalt Gravelly Lean CLAY:brown; moist; 50% clay, 30% gravel, 10% sand, 10% silt; moderate plasticity; medium estimated permeability. GP-1-5 24.1 8.0 Gravelly Lean CLAY:dark brown; moist; 50% clay, 20% silt, 20% gravel, 10% sand; moderate plasticity; medium 1.7 estimated permeability. Lean CLAY: light brown; moist; mottling; 60% clay, 25 % silt, 10% sand, 5% gravel; moderate plasticity; medium estimated permeability. 10.0 12.0 Gravelly Lean CLAY:brown; dry; 45% clay, 25% gravel, 20% silt, 10% sand; moderate plasticity; medium 28 estimated permeability. AFLL LOG (PID) %SAC-S1\SHAREDIROCKL-1.CHE9-8139-1\GINT(8-119-8139.GPJ DEFAULT.GDT 1/30/08 GP-1-15 Color change to brown with mottling 235 18.0 Color Change to grey brown Lean CLAY with sand:light brown; dry; 60% clay, 25% silt, 15% sand; moderate plasticity; low estimated 101 permeability. 20 21.0 Gravelly Lean CLAY:brown; dry; 40% clay, 30% gravel, 20% silt, 10% sand; moderate plasticity; medium Portland Type estimated permeability. CL 1/11 25.0 GP-1-25 Lean CLAY with sand:brown; dry; 60% clay, 25% silt, 15% sand; moderate plasticity; low estimated permeability. A . 15.4 Color change to grey brown. 30.0 Loan CLAY with sand:grey brown; wet; 60% clay, 25% silt, 15% sand; moderate plasticity; low estimated 33.6 permeability. Ż 33.0 Sandy Lean CLAY with gravel;brown; wet; 30% clay, 30% sand, 20% silt, 20% gravel; low plasticity; high estimated permeability. GP-1-35

35

Conestoga-Rovers & Associates 2000 Opportunity Drive, Suite 110 Roseville, CA 95678 Telephone: (916) 677-3407 Fax. (910) 077-3007

BORING/WELL LOG

	CLIENT	NAME	<u> </u>	hev	ron Eny	ironm	ental M	anagement Co.	BORING/WELL NAME	GP-1				
	JOB/SIT	E NAME		-813					DRILLING STARTED	15-Nov-07				
	LOCATI	NC	1	6304	4 Footh	ills Bo	ulevard		DRILLING COMPLETED	<u>16-Nov-07</u>		<i>•. •</i> ····		
							//	Continued fro	m Previous Page					
	PID (ppm)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (fbg)	U.S.C.S.	GRAPHIC LOG	LITHC	DLOGIC DESCRIPTION		CONTACT DEPTH (fbg)	WEL	L DIAGRAM	
WELL LOG (PID) \\SAC-\$1\SHARED\ROCKLI-1.CHEQ-8139-\\GINT(B-119-8139.GPJ) DEFAULT.CDT 1130/08	3.3								Wet medium to coarse grain oprobe sleeve. water sample collected	ned sand	45.0		Bottom of Boring @ 45 fbg	

Conestoga-Rovers & Associates 2000 Opportunity Drive, Suite 110 Roseville, CA 95678 Telephone: (916) 677-3407 Fax. (910) 677-3087

BORING/WELL LOG

GP-2 BORING/WELL NAME Chevron Environmental Management Co. CLIENT NAME 15-Nov-07 DRILLING STARTED JOB/SITE NAME 9-8139 LOCATION 16304 Foothills Boulevard WELL DEVELOPMENT DATE (YIELD)_ NA · PROJECT NUMBER Not Surveyed GROUND SURFACE ELEVATION Gregg Drilling & Testing, Inc. DRILLER TOP OF CASING ELEVATION Not Surveyed Hydraulic push DRILLING METHOD SCREENED INTERVAL NA BORING DIAMETER 2 Ā DEPTH TO WATER (First Encountered) 32.0 fbg (16-Nov-07) C. Benedict LOGGED BY Ţ NA **DEPTH TO WATER (Static)** B. Carey, P.G. 7820_ REVIEWED BY

REMARKS

PID (ppm)	BLOW	SAMPLE ID	EXTENT	DEPTH (fbg)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (fbg)	WELL DIAGRAM
					CL.		Asphait <u>Filli</u> brown; moist; 40% clay, 30% sand, 30% silt; low plasticity; high estimated permeability. <u>Fat CLAY:</u> dark brown; moist; 70% clay, 20% silt, 10% sand; high plasticity; low estimated permeability.	0.5 2.0	
⁻ 6.0				- 5-	сн				
1.8		GP-2- 10		 			Sandy Lean CLAY;brown; moist; 40% clay, 35% sand, 25% silt; moderate plasticity, medium estimated permeability.	8.0	
				 			Mottling Lean CLAY with sand: brown; moist; 60% clay, 25% silt, 15% sand; moderate plasticity, low estimated permeability.	12.0	
109 345 276				—15— 					
345		GP-2- 20		 	CL			22.0	
				 			Sandy Lean CLAY with gravel: grey-green, molst, 50% – ciay, 20% sand, 20% gravel, 10% silt, moderate plasticity, medium estimated permeability. Lean CLAY with sand: brown, molst, 60% clay, 25% silt, 15% sand, moderate plasticity, medium estimated	23.0 25.0	Portland Type
276							permeability. Lean CLAY with sand: brown with grey mottling, moist, 60% clay, 25% silt, 15% sand, moderate plasticity, medium estimated permeability. Black Mottling		
				 				32.0	
		GP-2- 35		 			Clayey Sand with gravel: brown, wet, 30 % gravel, 30% sand, 20% silt, 20% clay; low plasticity; high estimated permeability. Continued Next Page		PAGE 1 OF

Conestoga-Rovers & Associates 2000 Opportunity Drive, Suite 110 Roseville, CA 95678 Telephone: (916) 677-3407 Fax: (916) 677-3087

BORING/WELL LOG

,

CLIENT NAME	Chevron Environmental M	lanagement Co.	BORING/WELL NAME	GP-2 15-Nov-07				
JOB/SITE NAME	9-8139		DRILLING STARTED	<u>15-Nov-07</u>		<u> </u>		
LOCATION	16304 Foothills Boulevare		-		_			
		Continued fr	rom Previous Page			<u></u>		
PID (ppm) BLOW COUNTS	SAMPLE ID EXTENT DEPTH (fbg) U.S.C.S. LOG	LITH	IOLOGIC DESCRIPTION		CONTACT DEPTH (fbg)	WEL	L DIAGRAM	
WELL LOG (PID) IISAC STISHAREDIROCKLI-1.CHEIB-4139-1IGINT(B-119-8139.GPJ DEFAULT.GDT 1/30/08		Hydropunch groun	dwater sample collected.		40.0		Bottom of Boring @ 45 fbg	

Conestoga-Rovers & Associates 10969 Trade Center Drive Suite 107 **BORING/WELL LOG** Rancho Cordova, CA 95670 Telephone: (916) 889-8900 Fax. (916) 889-8999 BORING/WELL NAME GP-3 CLIENT NAME Chevron Environmental Management Co. 9-8139 DRILLING STARTED 04-Nov-09 JOB/SITE NAME 16304 Foothill Boulevard. San Leandro DRILLING COMPLETED ___04-Nov-09 LOCATION WELL DEVELOPMENT DATE (YIELD) NA 611971 PROJECT NUMBER Not Surveyed PeneCore Drilling GROUND SURFACE ELEVATION DRILLER DRILLING METHOD Hydraulic push - Dual-tube TOP OF CASING ELEVATION Not Surveyed BORING DIAMETER 2.5 inches SCREENED INTERVAL NA 15.0 fbg (04-Nov-09) C. Benedict **DEPTH TO WATER (First Encountered)** LOGGED BY Ţ J. Kiernan. PE# C68498 **DEPTH TO WATER (Static)** NA REVIEWED BY REMARKS Cleared for utilities to 5 fbg using hand-auger. CONTACT DEPTH (fbg) ≙ BLOW GRAPHIC PID (ppm) U.S.C.S. EXTENT DEPTH (fbg) SAMPLE LOG LITHOLOGIC DESCRIPTION WELL DIAGRAM Concrete 0.8 Asphalt FILL: Sandy SILT with gravel: Brown; moist; 1/8" to 1/2" angular gravel. FILL: Sandy CLAY with gravel: Greenish gray; moist; medium plasticity; 1/8" to 1/2" gravel. GP-3-10 0 FILL: GRAVEL: Gray; moist; 1/8 to 1/2" gravel.

<u>7</u> GP-3-15 0 15.5 Wet at 15-15.5 fbg. CLAY: Brown; moist; high plasticity; very stiff. MELL LOG (PID) 11CHEVRON/6119-4611971-11611971-20611971-1.GPJ DEFAULT.GDT 12/17/09 GP-3-17 208 Color change to gray. GP-3-20 1071 26 CH Color change to brown. 1.5 GP-3-25 25 26.0 Gravelly SILT: Brown; moist; medium plasticity; soft. Portland Type ML 27.5 1/8 CLAY: Brown; moist; high plasticity; stiff. GP-3-30 0 30 C⊢ CLAY with sand: Brown; moist; medium plasticity; well graded sand; medium stiff. 34.0 SILT with sand: Brown; moist; medium plasticity; medium GP-3-35 Continued Next Page PAGE 1 OF 2 Conestoga-Rovers & Associates 10969 Trade Center Drive Suite 107 Rancho Cordova, CA 95670 Telephone: (916) 889-8900 Fax. (910) 009-0999

BORING/WELL LOG

	NAME	Chevron Environmental Man					anagement Co.				GP-3			
	TE NAME		813						04-Nov-09 04-Nov-09					
LOCAT	ION	10	<u>530</u>	4 Footh	ill Boul	evard,	San Leandro	DRILLING COMPLETED	04-1100-03					
<u> </u>							Continued	d from Previous Page						
PID (ppm)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (fbg)	U.S.C.S.	GRAPHIC	L	ITHOLOGIC DESCRIPTION		CONTACT DEPTH (fbg)	WEL	L DIAGRAM		
WELL LOG (PUD) 1/ICHEVRON6119-611971-1/611971-2/611971-1.GPJ DEFAULT.GDT 12/17/09 O PID (ppm) O PID (ppm)	BLOW	GP-3- 40 GP-3- 45 GP-3- 50	EXTENT		SUS N ML SM ML		L Stiff. <u>CLAY with sand</u> <u>Silty SAND:</u> Ligh <u>SILT with sand:</u> Color change to li <u>Silty SAND:</u> Ligi	ITHOLOGIC DESCRIPTION Brown; moist; high plasticity; stil t brown; dry; well-graded sand. Light Gray; dry; low plasticity; fine ght brown ht brown; moist; fine to medium s ay; dry; low plasticity.		1000 37.0 38.0 41.0 44.0 45.0 53.0	WEL	L DIAGRAM Bottom of Boring @ 53 fbg		
4ELL LOG (PID) 11CHEVRON6119-611971-116												PAGE 2 OF		

Conestoga-Rovers & Associates 10969 Trade Center Drive Suite 107 Rancho Cordova, CA 95670 Telephone: (916) 889-8900 Fax: (916) 880-8000

BORING/WELL LOG

CLIENT NAME	Chevron Environmental Management Co.	BORING/WELL NAME	GP-4		
JOB/SITE NAME	9-8139	DRILLING STARTED	05-Nov-09		
LOCATION _	16304 Foothill Boulevard, San Leandro	DRILLING COMPLETED	05-Nov-09		
PROJECT NUMBER	611971	WELL DEVELOPMENT DA	TE (YIELD)	NA	
DRILLER _	PeneCore Drilling	GROUND SURFACE ELEV	ATION	Not Surveyed	
DRILLING METHOD	Hydraulic push - Dual-tube	TOP OF CASING ELEVATION	ON Not Surv	eved	
BORING DIAMETER	2.5 inches	SCREENED INTERVAL	NA		
LOGGED BY	C, Benedict	DEPTH TO WATER (First E	Incountered)	31.0 fbg (05-Nov-09)	<u> </u>
REVIEWED BY	J. Kiernan, PE# C68498	DEPTH TO WATER (Static))	NA	Ţ

REMARKS

Cleared for utilities to 5 fbg using hand-auger.

(mqq) CII9	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (fbg)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (fbg)	WELL DIAGRAM
			ł	 			Ashpalt. FILL: Silty SAND with gravel: Aggregate base; brown; moist. CLAY: Dark gray; moist; high plasticity; stiff.	0.5 2.0	Concrete
				 - 5 -			Color change to brown with green mottling.		
238		GP-4- 10		 	CL		Very stiff. Color change to brown.		
								15.0	
75 28.5 16.4 22.2 2.7 9.6 3.6 0				— 15— —			<u>CLAY with sand:</u> Brown; moist, high plasticity; very stiff. Trace fine gravel.		
16.4				 	СН		Color change to light brown. Green mottling present. Thin (<1 inch) layer of increased fine gravel and sand; greenish gray; wet; medium plasticity; soft.		
22.2				 —25—			Color change to brown; stiff.		
9.6				 	 CL		Color change to light brown. <u>CLAY with sand:</u> Light brown; moist; medium plasticity.	_28.5	
3,6				—30— 			Sandy CLAY with gravel: Light brown; moist; medium plasticity.	30.0 32.5	
0				 - 35	 		CLAY with sand: Light brown; moist; medium plasticity; stiff.		Portland Type

Conestoga-Rovers & Associates 10969 Trade Center Drive Suite 107 Rancho Cordova, CA 95670 Telephone: (916) 889-8900 Fax: (916) 809-8999

CLIENT NAME

Chevron Environmental Management Co.

BORING/WELL LOG

		JOB/SITE NAME 9-8139 _OCATION 16304 Foothill Boulevard, San Leandro							DRILLING STARTED DRILLING COMPLETED	05-Nov-09 05-Nov-09			<u> </u>
	LOCAT	ION		1630	4 Footh	II Boule	evard, S			03-1100-09			· · · · · · · · · · · · · · · · · · ·
								Continued fro	m Previous Page				
	PID (ppm)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (fbg)	U.S.C.S.	GRAPHIC LOG	LITH	OLOGIC DESCRIPTION		CONTACT DEPTH (fbg)	WELI	LDIAGRAM
WELL FOR (PD) FOR PARTO-PARTO-201321-201321-201321-4, GPJ DEFAULT, GPT 12717,09	0		SAM			CL		Wet at 47 fbg. Increase clay; light bi		s stiff.	65.0 67.5		Bottom of Boring @ 67.5 fbg
WELLING (PID)			-										
													PAGE 2 OF

BORING/WELL NAME

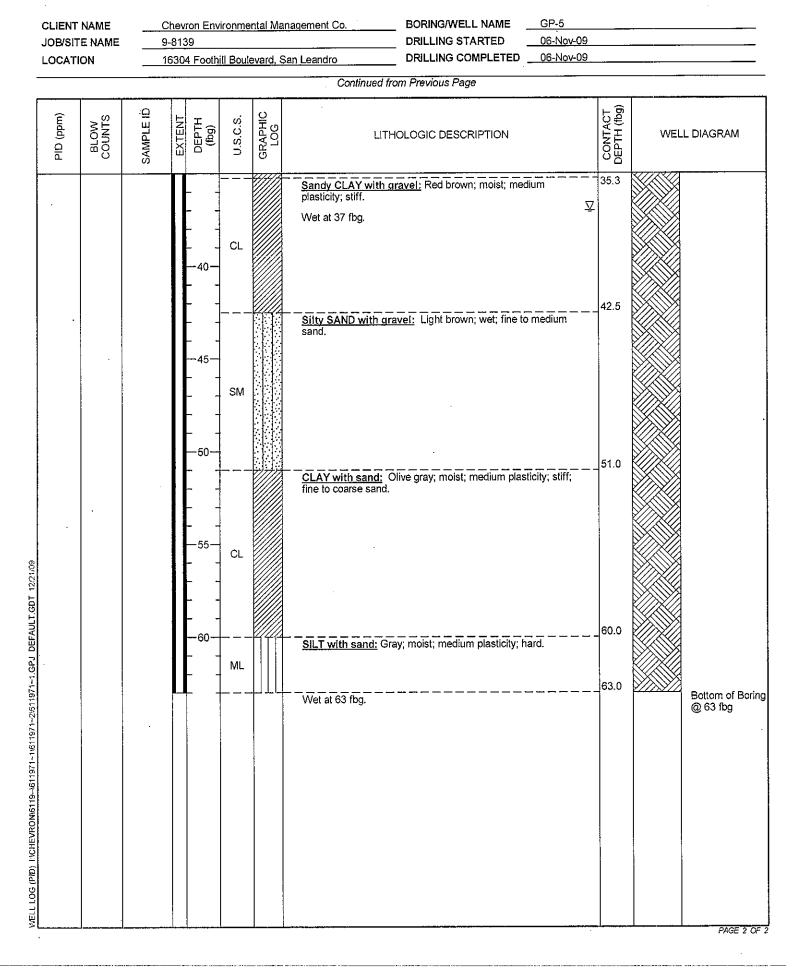
GP-4

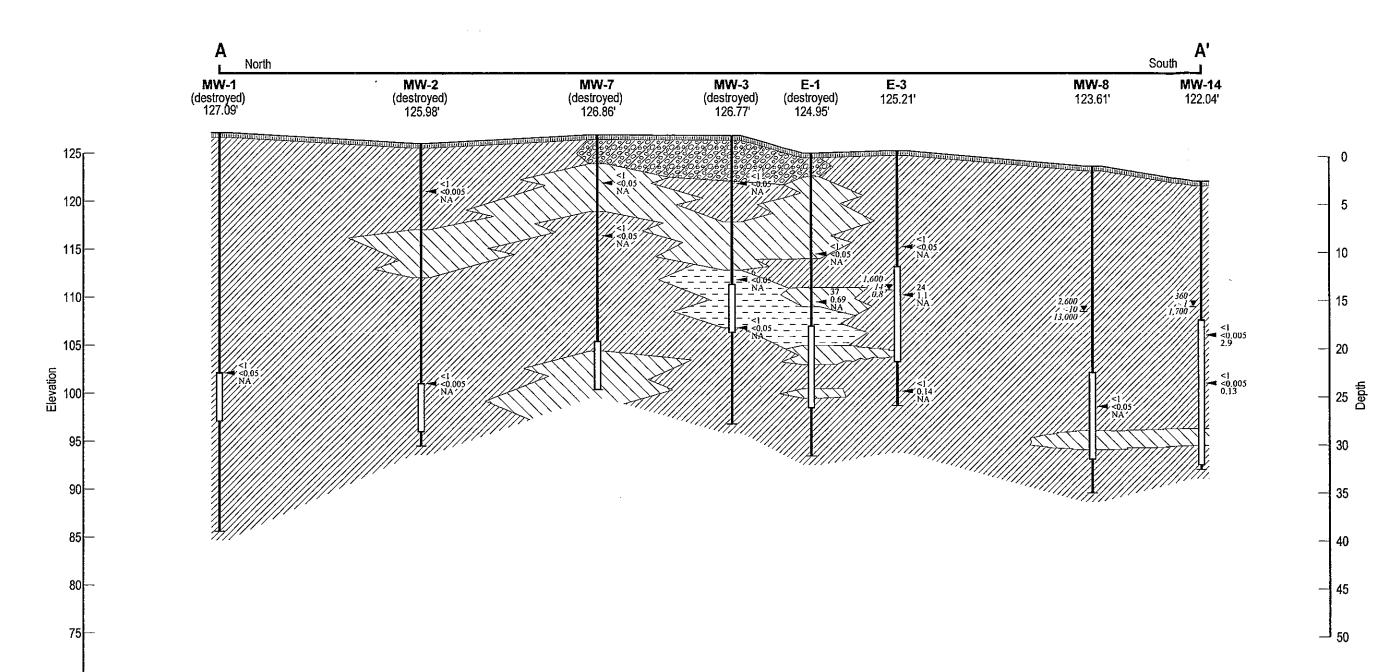
Conestoga-Rovers & Associates 10969 Trade Center Drive Suite 107 Rancho Cordova, CA 95670 Telephone: (916) 889-8900 Fox: (016) 880 8000

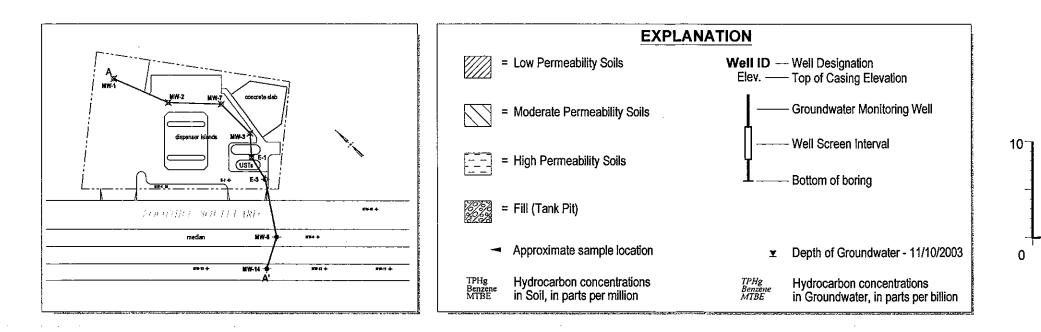
Cleared for utilities to 5 fbg using hand-auger.

REMARKS

BORING/WELL LOG


CLIENT NAME	Chevron Environmental Management Co.	BORING/WELL NAMEGP-5
JOB/SITE NAME	9-8139	DRILLING STARTED
LOCATION	16304 Foothill Boulevard. San Leandro	DRILLING COMPLETED06-Nov-09
PROJECT NUMBER	611971	WELL DEVELOPMENT DATE (YIELD) NA
DRILLER	PeneCore Drilling	GROUND SURFACE ELEVATION Not Surveyed
DRILLING METHOD	Hydraulic push - Duai-tube	TOP OF CASING ELEVATION Not Surveyed
BORING DIAMETER	2.5 inches	SCREENED INTERVAL NA
LOGGED BY	C. Benedict	DEPTH TO WATER (First Encountered) 37.0 fbg (06-Nov-09)
REVIEWED BY	J. Kiernan, PE# C68498	DEPTH TO WATER (Static) NA


CONTACT DEPTH (fbg) SAMPLE ID PID (ppm) GRAPHIC LOG BLOW COUNTS U.S.C.S. DEPTH (fbg) EXTENT LITHOLOGIC DESCRIPTION WELL DIAGRAM Concrete Asphalt FILL: Sandy CLAY with gravel: Brown; moist. 0.5 3.0 CLAY: Brown with green mottling; moist; high plasticity; very stiff. GP-5- 20 1200 15 CL WELL LOG (PID) /1CHEVRON6119-4611971~1611971~2611971~1.GPJ DEFAULT.GDT 12/21/09 Color change to olive gray. Color change to brown. Color change to light brown. 28.0 Sandy CLAY with gravel: Light brown; moist; medium plasticity; soft. CL 30 Portland Type 32.0 CLAY: Red brown; moist; medium plasticity; stiff. ÇL 35 PAGE 1 OF 2

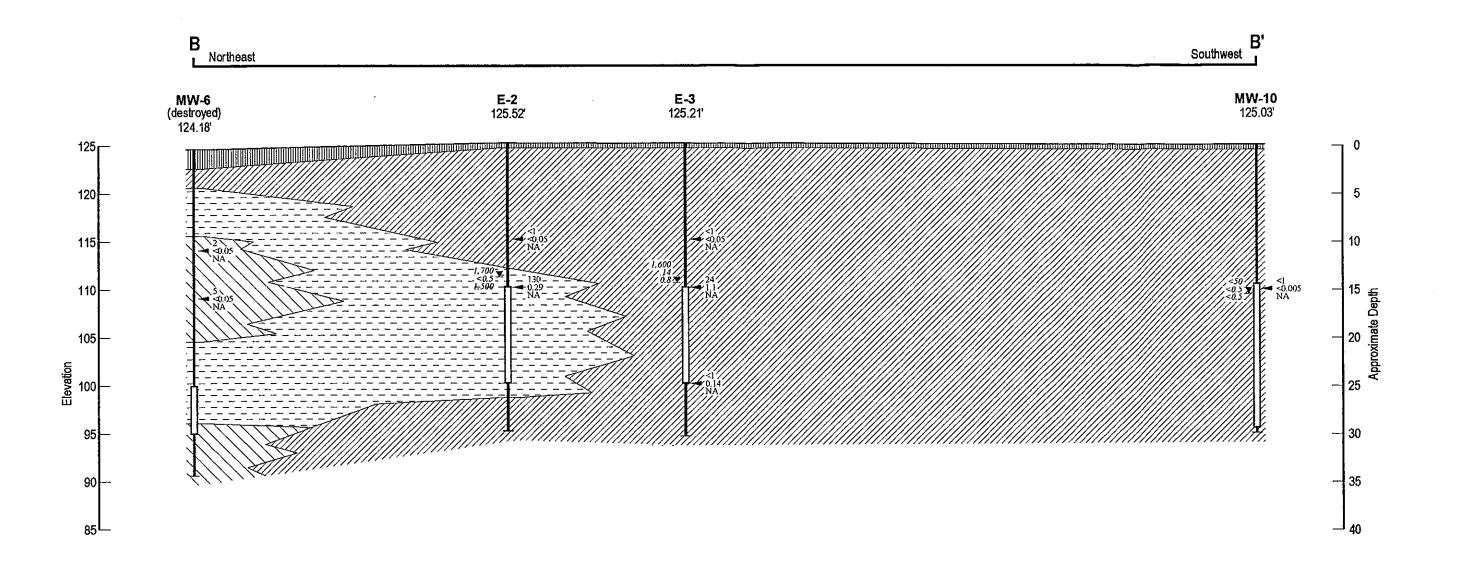

Continued Next Page

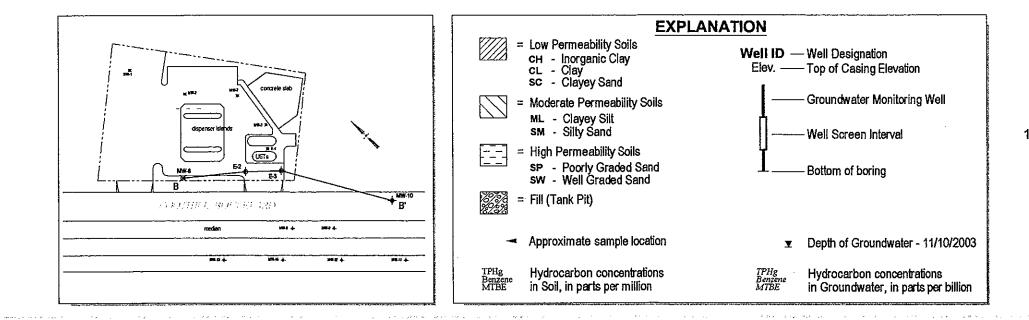
Conestoga-Rovers & Associates 10969 Trade Center Drive Suite 107 Rancho Cordova, CA 95670 Telephone: (916) 889-8900 Fax: (016) 880 8000

BORING/WELL	LOG

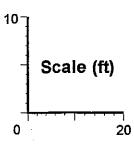
I:0-ROCKLIN9-8139 SAN LEANDROFIGURESIX-SECTION-A.DW

70L


Geologic Cross Section A-A'


C A M B R I A

Scale (ft)



ପ୍ର 26304 Foothill Boulevard &an Leandro, California ସୁ

Chevron Service Station 9-8139 16304 Foothill Boulevard San Leandro, California

FIGURE

APPENDIX C

SECOND SEMI-ANNUAL 2010 GROUNDWATER MONITORING REPORT

TRANSMITTAL

September 17, 2010 G-R #386461

- TO: Mr. James Kiernan Conestoga-Rovers & Associates 10969 Trade Center Drive, Suite 107 Rancho Cordova, CA 95670
- FROM: Deanna L. Harding Project Coordinator Gettler-Ryan Inc. 6747 Sierra Court, Suite J Dublin, California 94568

RE: Chevron Service Station #9-8139 (MTI) 16304 Foothill Boulevard San Leandro, California RO 0000368 RWQCB-Case No. 01-0330

WE HAVE ENCLOSED THE FOLLOWING:

1000	COPIES	DATED	DESCRIPTION
	2	September 14, 2010	Groundwater Monitoring and Sampling Report Second Semi-Annual Event of August 23, 2010

COMMENTS:

Pursuant to your request, we are providing you with copies of the above referenced report for <u>your</u> <u>use and distribution to the following (including PDF submittal of the entire report to</u> <u>GeoTracker):</u>

- Ms. Stacie H. Frerichs, Chevron Environmental Management Company, 6111 Bollinger Canyon Road, Room 3596, San Ramon, CA 94583(PDF ONLY)
- Mr. Harv Dahliwal, P.E., G&S Associates, Inc., 4430 Deerfield Way, Danville, CA 94506

Please provide any comments/changes and propose any groundwater monitoring modifications for the next event prior to **October 1**, 2010, at which time this final report will be distributed to the following:

cc: Mr. Mark Detterman, Alameda County Health Care Services, Dept. of Environmental Health, 1131 Harbor Bay Parkway, Suite 250, Alameda, CA 94502-6577 (No Hard Copy-CRA UPLOAD TO ALAMEDA CO.)

Enclosures

trans/9-8139

Stacie H. Frerichs Team Lead Marketing Business Unit Chevron Environmental Management Company 6001 Bollinger Canyon Road San Ramon, CA 94583 Tel (925) 842-9655 Fax (925) 842-8370

September 17, 2010 (date)

Alameda County Health Care Services 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Re: Chevron Facility # 9-8139

Address: 16304 Foothill Boulevard, San Leandro, California

I have reviewed the attached routine groundwater monitoring report dated September 17, 2010

I agree with the conclusions and recommendations presented in the referenced report. The information in this report is accurate to the best of my knowledge and all local Agency/Regional Board guidelines have been followed. This report was prepared by Gettler-Ryan, Inc., upon whose assistance and advice I have relied.

This letter is submitted pursuant to the requirements of California Water Code Section 13267(b)(1) and the regulating implementation entitled Appendix A pertaining thereto.

I declare under penalty of perjury that the foregoing is true and correct.

Sincerely,

Frencho

Stacie H. Frerichs Project Manager

Enclosure: Report

WELL CONDITION STATUS SHEET

Client/Facility #:	Chevron	#9-8139					Job #	386461			
Site Address:	16304 Fo	oothill Blv	vd.			•	Event Date:		23/10)	
City:	San Lea	ndro, CA					Sampler:		KE		
WELL ID	Vauit Frame Condition	Gasket/ O-Ring (M)missing	BOLTS (M) Missing (R) Replaced	Bolt Flanges B= Broken S= Stripped R=Retap	APRON Condition C=Cracked B=Broken G=Gone	Grout Seal (Deficient) inches from TOC	Casing (Condition prevents tight cap seal)	REPLACE LOCK Y / N	REPLACE CAP Y / N	WELL VAULT Manufacture/Size/ # of Bolts	Pictures Taken Yes / No
mu-12	oK	m	oK	ok	ok	qK	0,K	n	5	Boarthon 18/03	
ma-14		*		1(5)	C			4	V	Boart Longypur 8/03	
ww-14 Ew-2 Ew-3		oK		257	aK			4	Y Y	morrissonli2/2	
EW-3	\checkmark	m	4	13)		Y	\checkmark	Y.		· · ·	
									7		
							1 P				
			=								

Comments _____

September 14, 2010 G-R Job #386461

Ms. Stacie H. Frerichs Chevron Environmental Management Company 6111 Bollinger Canyon Road, Room 3596 San Ramon, CA 94583

RE: Second Semi-Annual Event of August 23, 2010 Groundwater Monitoring & Sampling Report Chevron Service Station #9-8139 16304 Foothill Boulevard San Leandro, California

Dear Ms. Frerichs:

This report documents the most recent groundwater monitoring and sampling event performed by Gettler-Ryan Inc. (G-R) at the referenced site. All field work was conducted in accordance with G-R Standard Operating Procedure - Groundwater Sampling (attached).

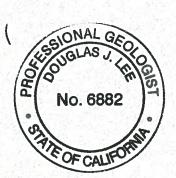
Static groundwater levels were measured and the wells were checked for the presence of separate-phase hydrocarbons. Static water level data, groundwater elevations and separate-phase hydrocarbon thickness (if any) are presented in the attached Table 1. A Potentiometric Map is included as Figure 1.

Groundwater samples were collected from the monitoring wells and submitted to a state certified laboratory for analyses. The field data sheets for this event are attached. Analytical results are presented in the table(s) listed below. The chain of custody document and the laboratory analytical reports are also attached. All groundwater and decontamination water generated during sampling activities was removed from the site, per the Standard Operating Procedure.

Please call if you have any questions or comments regarding this report. Thank you.

Sincerely,

1. Hardin,


Deanna L. Harding Project Coordinator

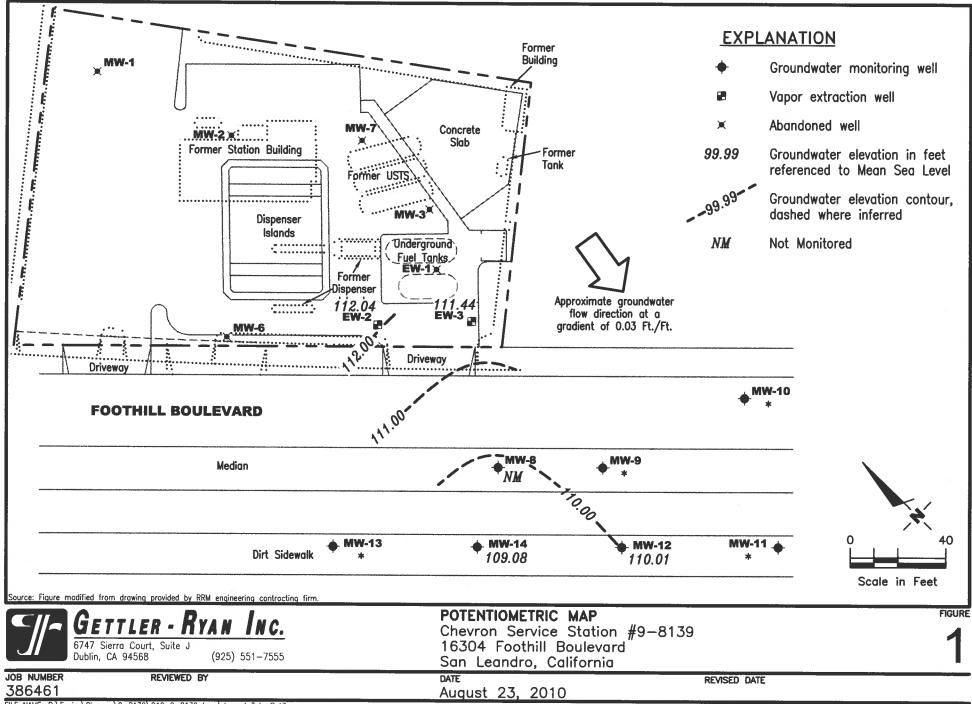

Douglas J. Lee Senior Geologist, P.G. No. 6882

Figure 1: Potent Table 1: Groun Table 2: Groun

Attachments:

Potentiometric Map Groundwater Monitoring Data and Analytical Results Groundwater Analytical Results - Oxygenate Compounds Standard Operating Procedure - Groundwater Sampling Field Data Sheets Chain of Custody Document and Laboratory Analytical Reports

FILE NAME: P:\Enviro\Chevron\9-8139\Q10-9-8139.dwg | Layout Tab: Pot3

							dro, California					
WELL ID/		TOC*	DTW	S.I ,	GWE	SPHT	TPH-GRO	В	Т	E	X	MTBE
DATE		(fi.)	(fi.)	(ft.bgs)	(msl)	(ft.)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-8												
09/07/90 ³		123.61	16.07		107.54		<50	<0.5	<0.5	<0.5	<0.5	< 0.05
09/25/90		123.61	16.20		107.41							-0.05
11/29/90		123.61	16.30		107.31		<50	<0.5	<0.5	<0.5	< 0.5	
11/29/90	(D)	123.61					<50	<0.5	<0.5	<0.5	<0.5	
02/20/91		123.61	16.32		107.29		<50	<0.5	<0.5	<0.5	<0.5	
04/19/91		123.61	14.71		108.90							
05/22/91		123.61	15.42		108.19		<50	0.6	<0.5	<0.5	1.0	
08/22/91		123.61	17.15		106.46		<50	<0.5	<0.5	< 0.5	<0.5	
11/14/91		123.61	16.99		106.62		<50	< 0.5	<0.5	< 0.5	< 0.5	
01/30/92		123.61	16.30		107.31		<50	1.0	0.7	<0.5	1.1	
04/23/92		123.61	15.05		108.56		<50	<0.5	<0.5	<0.5	<0.5	
07/27/92		123.61	16.08		107.53		<50	< 0.5	<0.5	< 0.5	< 0.5	
10/26/92		123.61	16.72		106.89		<50	< 0.5	<0.5	< 0.5	< 0.5	
)1/29/93		123.61	12.82		110.79		1,400	470	470	37	160	
)4/30/93		123.61	13.54		110.07		1,600	<13	15	18	29	
)7/14/93		123.61	14.65		108.96		<50	< 0.5	0.7	<0.5	2.0	
10/27/93		123.61	15.04		108.57		<50	3.0	4.0	2.0	4.0	
)1/13/94		123.61	15.14		108.47		<50	<0.5	4.0	< 0.5	<0.5	
)4/22/94		123.61	15.01		108.60		<50	< 0.5	<0.5	< 0.5	< 0.5	
)7/28/94		123.61	14.70		108.91		69	7.3	18	3.3	12	
0/25/94		123.61	15.20		108.41		<50	<0.5	0.8	< 0.5	1.6	
)1/19/95		123.61	12.00		111.61		<50	<0.5	3.1	<0.5	0.7	
5/01/95		123.61	11.40		112.21		<50	<0.5	<0.5	<0.5	<0.5	
4/03/97		123.61	11.72		111.89		<200	<2.0	<2.0	<2.0	<2.0	610
0/07/97		123.61	13.60		110.01		<50	<0.5	<0.5	< 0.5	<0.5	500
4/14/98		123.61	8.75		114.86		<50	< 0.5	<0.5	<0.5	<0.5	120
0/13/98		123.61	12.72		110.89		270	<0.5	<0.5	<0.5	< 0.5	2,600
)4/16/99		123.61	11.55		112.06		480	<2.0	<2.0	<2.0	<2.0	5,000
)7/29/99 ⁶		123.61	12.35		111.26							
0/26/99		123.61	12.68		110.93		1,890	<5.0	12.1	<5.0	<5.0	39,000
4/07/00 ⁹		123.61	11.24		112.37		<500	<5.0	<5.0	<5.0	<5.0	2,500
0/10/00 ⁹		123.61	12.76		110.85		295 ¹¹	< 0.500	<0.500	< 0.500	< 0.500	19,500
)4/03/01 ⁹		123.61	12.09		111.52		3,340	2.84	3.05	< 0.500	2.58	21,500
)8/14/01 ¹³		123.61	13.06		110.55		2,800 ¹⁴	<20	<20	<20	<20	25,000
1/16/01		123.61	13.07		110.54		3,000	<1.0	1.1	<1.0	<3.0	16,000/19,000 ¹
)2/15/02		123.61	12.71		110.90		2,000	< 0.50	< 0.50	<0.50	<1.5	15,000/19,000 ¹⁵

Table 1

Groundwater Monitoring and Analytical Results

Chevron Service Station #9-8139

16304 Foothill Boulevard

WELL ID/	TOC*	DTW	S.I. GWE	SPHT	TPH-GRO	В	T	E	X	MTBE
DATE	(fi.)	(fl.)	(ft.bgs) (msl)	(ft.)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-8 (cont)					_					
05/09/02	123.61	12.95	110.66		3,900	<1.0	<1.0	<1.0	<3.0	16,000/15,000 ¹⁵
08/05/02	123.61	13.51	110.10		4,000	<1.0	<1.0	<1.0	<3.0	16,000/15,000 ¹⁵
11/04/02	123.61	13.85	109.76		2,800	<0.50	0.77	<0.50	<1.5	15,000/17,000 ¹⁵
02/05/03	123.61	12.60	111.01		3,600	<20	<2.5	<2.5	<7.5	16,000/18,000 ¹⁵
05/07/03	123.61	12.00	111.61		2,800	<2.5	<2.5	<2.5	<7.5	14,000/13,000 ¹⁵
08/11/03 ¹⁶	123.61	13.12	110.49		2,400	<10	<10	<10	<10	13,000
11/10/03 ¹⁶	123.61	15.16	108.45		2,600	<10	<10	<10	<10	13,000
02/09/0416,17	123.61	13.16	110.45		<50	<0.5	<0.5	<0.5	<0.5	140
05/10/04 ¹⁶	123.61	12.75	110.86		1,900	<5	<5	<5	<5	12,000
08/09/04 ¹⁶	123.61	13.32	110.29		1,200	<10	<10	<10	<10	7,200
11/08/04 ¹⁶	123.61	13.50	110.11		710	<1	<1	<1	<1	3,900
02/07/0516,17	123.61	12.13	111.48		<50	<0.5	<0.5	<0.5	<0.5	12
05/06/05 ¹⁶	123.61	12.15	111.46		770	<5	<5	<5	<5	5,100
08/05/05 ¹⁶	123.61	13.49	110.12		660	<3	<3	<3	<3	3,600
11/04/05 ¹⁶	123.61	13.03	110.58		210	<0.5	<0.5	<0.5	<0.5	1,600
02/01/06 ¹⁶	123.61	11.22	112.39		170	<0.5	<0.5	<0.5	<0.5	1,800
05/03/06 ¹⁶	123.61	10.15	113.46		210	<1	<1	<1	<1	3,500
08/02/06 ¹⁶	123.61	11.81	111.80		480	<1	<1	<1	<1	3,800
10/31/06 ¹⁶	123.61	12.75	110.86		540	<0.5	<0.5	<0.5	<0.5	3,200
01/30/07 ¹⁶	123.61	12.81	110.80		<50	<0.5	<0.5	<0.5	<0.5	2
05/01/07 ¹⁶	123.61	12.60	111.01		500	<0.5	<0.5	<0.5	< 0.5	2,300
07/31/07 ¹⁶	123.61	13.30	110.31		280	<0.5	<0.5	<0.5	<0.5	1,300
11/01/07 ¹⁶	123.61	13.72	109.89		160	<0.5	<0.5	<0.5	<0.5	940
02/12/08 ¹⁶	123.61	13.02	110.59		130	<0.5	<0.5	<0.5	<0.5	1,000
05/13/08 ¹⁶	123.61	13.11	110.50	j	460	<0.5	<0.5	<0.5	< 0.5	3,300
08/19/08 ¹⁶	123.61	13.80	109.81		79	<1	<1	<1	<1	4,500
11/18/08 ¹⁶	123.61	13.71	109.90		860	<5	<5	<5	<5	5,000
03/13/09 ¹⁶	123.61	11.88	111.73		800	<1	<1	<1	<1	3,100
05/04/09	123.61	NOT MONITO	ORED/SAMPLED							
08/18/09	123.61	MONITORED	SAMPLED ANNUALLY	•						
11/23/09	123.61	MONITORED	SAMPLED ANNUALLY	,						
02/03/10 ¹⁶	123.61	11.84	111.77		830	<1	<1	<1	<1	3,900
08/23/10	123.61	MONITOREI	D/SAMPLED ANNUALL	.Y						

WELL ID/	TOC*	DTW	S.I .	GWE	SPHT	TPH-GRO	В	Т	E	X	MTBE
DATE	(ft.)	(ft.)	(ft.bgs)	(msl)	(ft.)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-9											
08/22/91 ³	124.20	17.60		106.60		• 9,600	46	170	98	1,200	< 0.05
11/14/91 ³	124.20	17.48		106.72		11,000	130	58	86	1,500	< 0.05
01/30/92	124.20	16.71		107.49		11,000	210	29	110	1,900	
04/23/92	124.20	15.23		108.97		17,000	180	25	100	1,900	
07/27/92	124.20	16.72		107.48		2,800	59	1.6	18	280	
10/26/92	124.20	17.22		106.98		3,200	38	< 0.5	19	200	
01/29/93	124.20	13.39		110.81		1,300	23	6.0	8.0	100	
04/30/93	124.20	14.00		110.20		<1,300	<13	<13	<13	58	
07/14/93	124.20	15.08		109.12		1,300	25	4.0	15	120	
10/27/93	124.20	15.62		108.58		1,100	21	10	19	73	
01/13/94	124.20	15.59		108.61		80	0.7	3.0	0.6	3.0	
04/22/94	124.20	15.43		108.77		<50	<0.5	<0.5	<0.5	< 0.5	
07/29/94	124.20	15.20		109.00		1,400	19	11	11	69	
10/25/94	124.20	15.70		108.50		1,200	11	2.0	7.6	28	
)1/19/95	124.20	12.58		111.62		380	1.6	4.3	1.5	11	
)5/01/95	124.20	11.96		112.24		350	1.1	<0.5	1.8	2.3	
10/12/95	124.20	13.85		110.35		1,700	3.8	<2.5	5.3	7.8	18
)4/11/96	124.20	11.87		112.33		140	<0.5	<0.5	<0.5	< 0.5	2.8
10/03/96	124.20	14.07		110.13		53	<0.5	<0.5	< 0.5	< 0.5	<2.5
04/03/97	124.20	12.38		111.82		<50	<0.5	<0.5	<0.5	< 0.5	<2.5
10/07/97	124.20	14.14		110.06		66	1.3	<0.5	<0.5	< 0.5	<2.5
)4/14/98	124.20	9.55		114.65		<50	<0.5	<0.5	<0.5	< 0.5	<2.5
0/13/98	124.20	12.61		111.59		190	<0.5	<0.5	<0.5	<0.5	1,900
)4/16/99	124.20	11.01		113.19		3,800	<12	<12	<12	<12	4,400
)7/29/99 ⁶	124.20	12.85		111.35							
0/26/99	124.20	13.24		110.96		88.6	<0.5	<0.5	<0.5	<0.5	530
04/07/00 ⁹	124.20	11.68		112.52		<5,000	<50	<50	<50	<50	27,000
10/10/00 ⁹	124.20	13.30		110.90		<50.0	< 0.500	< 0.500	< 0.500	< 0.500	322
04/03/01 ⁹	124.20	12.69		111.51		258	< 0.500	< 0.500	< 0.500	0.743	1,300
8/14/01 ¹³	124.20	13.60		110.60		170 ¹⁴	< 0.50	< 0.50	< 0.50	< 0.50	1,300
1/16/01	124.20	13.81		110.39		100	< 0.50	0.99	<0.50	<1.5	330/330 ¹⁵
2/15/02	124.20	13.32		110.88		<50	< 0.50	< 0.50	< 0.50	<1.5	220/240 ¹⁵
5/09/02	124.20	13.50		110.70		300	< 0.50	< 0.50	< 0.50	<1.5	970/940 ¹⁵
08/05/02	124.20	14.10		110.10		110	< 0.50	< 0.50	< 0.50	<1.5	470/420 ¹⁵
1/04/02	124.20	14.41		109.79		110	< 0.50	0.67	< 0.50	<1.5	530/520 ¹⁵
02/05/03	124.20	13.17		111.03		70	< 0.50	<0.50	< 0.50	<1.5	320/340 ¹⁵

Table 1Groundwater Monitoring and Analytical ResultsChevron Service Station #9-8139

16304 Foothill Boulevard

						dro, California					
WELL ID/	TOC*	DTW	S.L	GWE	SPHT	TPH-GRO	В	Т	E	X	MTBE
DATE	(ft.)	(ft.)	(ft.bgs)	(mst)	(fi.)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-9 (cont)											
05/07/03	124.20	12.65		111.55		87	<0.5	0.7	<0.5	<1.5	440/390 ¹⁵
08/11/03 ¹⁶	124.20	13.71		110.49		74	<0.5	<0.5	<0.5	<0.5	370
11/10/03 ¹⁶	124.20	14.27		109.93		53	< 0.5	<0.5	< 0.5	<0.5	190
02/09/0416,17	124.20	12.72		111.48		1,600	<5	<5	<5	<5	8,100
05/10/04 ¹⁶	124.20	13.35		110.85		<50	<0.5	<0.5	<0.5	<0.5	120
08/09/04 ¹⁶	124.20	13.95		110.25		<50	<0.5	<0.5	<0.5	< 0.5	61
11/08/04 ¹⁶	124.20	14.11		110.09		<50	<0.5	<0.5	<0.5	<0.5	74
02/07/0516,17	124.20	11.69		112.51		600	<3	<3	<3	<3	3,200
05/06/05 ¹⁶	124.20	11.73		112.47		<50	<0.5	<0.5	<0.5	<0.5	45
08/05/05 ¹⁶	124.20	14.15		110.05		<50	<0.5	<0.5	<0.5	<0.5	1
11/04/05 ¹⁶	124.20	13.60		110.60		<50	<0.5	< 0.5	<0.5	< 0.5	130
02/01/06 ¹⁶	124.20	11.90		112.30		<50	<0.5	<0.5	<0.5	<0.5	27
05/03/06 ¹⁶	124.20	10.89		113.31		<50	< 0.5	<0.5	<0.5	<0.5	82
08/02/06 ¹⁶	124.20	11.45		112.75	·	<50	<0.5	<0.5	<0.5	<0.5	85
10/31/06 ¹⁶	124.20	13.41		110.79		60	< 0.5	<0.5	<0.5	<0.5	280
01/30/07 ¹⁶	124.20	13.46		110.74		<50	<0.5	<0.5	<0.5	<0.5	2
05/01/07 ¹⁶	124.20	13.16	•	111.04		140	<0.5	<0.5	<0.5	<0.5	480
07/31/07 ¹⁶	124.20	13.92		110.28		<50	<0.5	<0.5	<0.5	<0.5	3
11/01/07 ¹⁶	124.20	14.31		109.89		<50	<0.5	<0.5	<0.5	<0.5	170
02/12/08 ¹⁶	124.20	13.02		111.18		<50	<0.5	<0.5	<0.5	<0.5	56
05/13/08 ¹⁶	124.20	13.68		110.52		<50	< 0.5	<0.5	1	3	35
08/19/08 ¹⁶	124.20	14.39		109.81		<50	<0.5	<0.5	<0.5	<0.5	29
11/18/08 ¹⁶	124.20	14.18		110.02		<50	<0.5	<0.5	< 0.5	<0.5	45
03/13/09 ¹⁶	124.20	12.43		111.77		<50	<0.5	<0.5	<0.5	<0.5	23
05/04/09	124.20	13.45		110.75							
08/18/09	124.20	14.51		109.69							
MONITORING/SA	AMPLING DISC	ONTINUED									
MW-10											
07/27/92	125.03	17.52		107.51		<50	<0.5	<0.5	<0.5	<0.5	
10/27/92	125.03	18.06		106.97		<50	<0.5	<0.5	<0.5	<0.5	
01/29/93	125.03	14.15		110.88		<50	<0.5	<0.5	<0.5	0.7	
04/30/93	125.03	14.68		110.35		<50	<0.5	<0.5	<0.5	<0.5	
07/14/93	125.03	15.80		109.23		<50	<0.5	<0.5	<0.5	<0.5	
10/27/93	125.03	16.33		108.70		<50	<0.5	<0.5	<0.5	<0.5	
01/13/94	125.03	16.29		108.74		<50	<0.5	0.5	<0.5	<0.5	

						ndro, California					
WELL ID/	TOC*	DTW	S.I .	GWE	SPHT	TPH-GRO	В	Т	E	X	МТВЕ
DATE	(ft.)	(fl.)	(ft.bgs)	(msl)	(ft.)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-10 (cont)											
04/22/94	125.03	16.15		108.88		<50	< 0.5	<0.5	<0.5	1.1	
07/29/94	125.03	15.85		109.18		<50	0.8	2.1	0.5	1.3	
10/25/94	125.03	16.41		108.62		<50	< 0.5	<0.5	<0.5	<0.5	
01/19/95	125.03	13.29		111.74		<50	< 0.5	<0.5	< 0.5	<0.5	
05/01/95	125.03	12.60		112.43		<50	<0.5	<0.5	< 0.5	<0.5	
10/11/95	125.03	14.54		110.49		<50	<0.5	<0.5	<0.5	<0.5	<2.5
04/11/96	125.03	12.47		112.56		<50	< 0.5	<0.5	< 0.5	<0.5	<2.5
10/03/96	125.03	14.74		110.29		<50	<0.5	<0.5	<0.5	<0.5	<2.5
04/03/97	125.03	12.99		112.04		<50	< 0.5	<0.5	< 0.5	< 0.5	<2.5
10/07/97	125.03	14.86		110.17		<50	<0.5	<0.5	<0.5	<0.5	<2.5
04/14/98	125.03	10.24		114.79		<50	< 0.5	<0.5	< 0.5	<0.5	<2.5
10/13/98 ⁷	124.69	13.06		111.63		<50	< 0.5	<0.5	<0.5	<0.5	<2.5
04/16/99	124.69	11.80		112.89		<50	< 0.5	<0.5	< 0.5	<0.5	<2.5
10/26/99	124.69	13.43		111.26		<50	<0.5	<0.5	< 0.5	<0.5	<2.5
04/07/00	124.69	12.00		112.69							
10/10/00	124.69	13.59		111.10		<50.0	< 0.500	< 0.500	< 0.500	< 0.500	<2.50
04/03/01	124.69	13.00		111.69		<50.0	< 0.500	<0.500	< 0.500	0.580	< 0.500
08/14/01	124.69	13.91		110.78		<50	< 0.50	<0.50	< 0.50	< 0.50	<2.5
11/16/01	124.69	13.94		110.75		<50	< 0.50	<0.50	< 0.50	<1.5	<2.5/<215
02/15/02	124.69	13.65		111.04		<50	<0.50	<0.50	<0.50	<1.5	<2.5
05/09/02	124.69	13.87		110.82		<50	<0.50	<0.50	< 0.50	<1.5	<2.5
08/05/02 ·	124.69	14.45		110.24		<50	< 0.50	<0.50	< 0.50	<1.5	<2.5
11/04/02	124.69	14.77		109.92		<50	< 0.50	1.2	<0.50	<1.5	<2.5/<215
02/05/03	124.69	13.49		111.20		<50	< 0.50	<0.50	<0.50	<1.5	<2.5
05/07/03	124.69	12.99		111.70		<50	<0.5	<0.5	<0.5	<1.5	<2.5
08/11/03 ¹⁶	124.69	14.04		110.65		<50	<0.5	<0.5	<0.5	<0.5	<0.5
11/10/03 ¹⁶	124.69	15.54		109.15		<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/09/04 ¹⁶	124.69	13.46		111.23		<50	<0.5	<0.5	<0.5	<0.5	<0.5
05/10/04 ¹⁶	124.69	13.69		111.00		<50	<0.5	<0.5	<0.5	<0.5	<0.5
08/09/04 ¹⁶	124.69	14.30		110.39		<50	<0.5	<0.5	<0.5	< 0.5	<0.5
11/08/04 ¹⁶	124.69	14.45		110.24		<50	< 0.5	<0.5	<0.5	<0.5	<0.5
02/07/0516	124.69	12.41		112.28		<50	<0.5	<0.5	<0.5	<0.5	<0.5
05/06/05 ¹⁶	124.69	12.35		112.34		<50	<0.5	<0.5	<0.5	<0.5	<0.5
08/05/05 ¹⁶	124.69	14.44		110.25		<50	<0.5	<0.5	<0.5	<0.5	<0.5
11/04/05	124.69	13.96		110.73						••	
02/01/06	124.69	12.19		112.50							

WELL ID/	TOC*	DTW	S.I.	GWE	SPHT	TPH-GRO	В	Т	E	X	MTBE
DATE	(ft.)	(fl.)	(ft.bgs)	(msl)	(ft.)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-10 (cont)											
05/03/06	124.69	11.25		113.44							
08/02/06	124.69	12.42		112.27							
10/31/06	124.69	13.72		110.97							
01/30/07	124.69	13.80		110.89							
05/01/07	124.69	13.50		111.19							
07/31/07	124.69	13.97		110.72							
11/01/07	124.69	14.66		110.03							
02/12/08	124.69	12.90		111.79							
05/13/08	124.69	13.99		110.70							
08/19/08	124.69	14.71		109.98							
08/19/08	124.69	14.51		110.18							
03/13/09	124.69	11.87		112.82							
05/04/09	124.69	13.58		111.11							
08/18/09	124.69	14.84		109.85							
MONITORING/S	AMPLING DISC	CONTINUED									
MW-11											
07/27/92	122.92	15.38		107.54		<50	<0.5	<0.5	<0.5	<0.5	
10/26/92	122.92	15.97		106.95		<50	<0.5	<0.5	<0.5	<0.5	
01/29/93	122.92	12.24		110.68		<50	8.0	16	2.0	10	
04/30/93	122.92	12.77		110.15		<50	<0.5	<0.5	<0.5	<0.5	
07/14/93	122.92	13.84		109.08		<50	<0.5	0.7	<0.5	1.0	
10/27/93	122.92	14.23		108.69		<50	<0.5	<0.5	<0.5	<0.5	
01/13/94	122.92	14.24		108.68		<50	<0.5	1.0	<0.5	<0.5	
04/22/94	122.92	14.08		108.84		<50	<0.5	0.5	<0.5	1.4	
07/29/94	122.92	13.90		109.02		<50	<0.5	<0.5	<0.5	<0.5	
10/25/94	122.92	14.38		108.54		<50	<0.5	<0.5	< 0.5	<0.5	
01/19/95	122.92	11.45		111.47		<50	<0.5	1.8	< 0.5	<0.5	
05/01/95	122.92	11.10		111.82		<50	<0.5	<0.5	<0.5	<0.5	
10/11/95	122.92	12.57		110.35		<50	<0.5	<0.5	<0.5	<0.5	<2.5
04/11/96	122.92	11.05		111.87		<50	<0.5	<0.5	<0.5	<0.5	<2.5
10/03/96	122.92	12.92		110.00		<50	<0.5	<0.5	<0.5	<0.5	<2.5
04/03/97	122.92	11.22		111.70		<50	<0.5	<0.5	<0.5	<0.5	<2.5
10/07/97	122.92	13.05		109.87		<50	<0.5	<0.5	<0.5	<0.5	<2.5
04/14/98	122.92	9.05		113.87		<50	<0.5	<0.5	<0.5	<0.5	<2.5
10/13/98	122.92	12.34		110.58		<50	<0.5	< 0.5	<0.5	<0.5	<2.5

WELL ID/	TOC*	DTW	S.I .	GWE	SPHT	TPH-GRO	B	Ţ	E	X	МТВЕ
DATE	(fi.)	(ft.)	(ft.bgs)	(msl)	(ft.)	(μg/L)	(µg/L)	ι (μg/L)	ь (µg/L)	х (µg/L)	MIBE (µg/L)
MW-11 (cont)	· · · · · · · · · · · · · · · · · · ·			<u></u>		1 -8		·····	·····	(#5/L/	(µg/L)
04/16/99	122.92	10.73		112.19		-50	-0 F	-0.5			
10/26/99	122.92	10.73		112.19		<50	< 0.5	<0.5	<0.5	<0.5	<2.5
04/07/00	122.92	10.90		110.95		<50	< 0.5	<0.5	<0.5	< 0.5	<2.5
10/10/00	122.92	10.90				<50	< 0.50	< 0.50	< 0.50	<0.50	<2.5
04/03/01	122.92	12.09		110.83		<50.0	< 0.500	< 0.500	<0.500	< 0.500	<2.50
08/14/01				111.33		<50.0	<0.500	< 0.500	<0.500	< 0.500	<0.500
	122.92	12.40		110.52		<50	< 0.50	<0.50	< 0.50	<0.50	<2.5
11/16/01	122.92	13.45		109.47		<50	< 0.50	0.73	<0.50	<1.5	<2.5/<2 ¹⁵
02/15/02	122.92	12.24		110.68		<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
05/09/02	122.92	12.44		110.48		<50	<0.50	1.0	<0.50	<1.5	<2.5
08/05/02	122.92	12.97		109.95		<50	<0.50	<0.50	<0.50	<1.5	<2.5
11/04/02	122.92	13.28		109.64		<50	<0.50	<0.50	<0.50	<1.5	<2.5/<2 ¹⁵
02/05/03	122.92	12.07		110.85		<50	<0.50	< 0.50	< 0.50	<1.5	<2.5
05/07/03	122.92	11.58		111.34		<50	<0.5	<0.5	<0.5	<1.5	<2.5
08/11/03 ¹⁶	122.92	12.61		110.31		<50	<0.5	<0.5	<0.5	<0.5	<0.5
11/10/03 ¹⁶	122.92	13.06		109.86		<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/09/04 ¹⁶	122.92	12.04		110.88		<50	<0.5	<0.5	<0.5	<0.5	<0.5
05/10/04 ¹⁶	122.92	12.24		110.68		<50	<0.5	<0.5	<0.5	<0.5	< 0.5
08/09/04 ¹⁶	122.92	12.85		110.07		<50	<0.5	<0.5	<0.5	<0.5	<0.5
11/08/04 ¹⁶	122.92	12.99		109.93		<50	<0.5	<0.5	<0.5	. <0.5	<0.5
02/07/05 ¹⁶	122.92	11.87		111.05		<50	<0.5	<0.5	<0.5	<0.5	<0.5
05/06/05 ¹⁶	122.92	11.82		111.10		<50	<0.5	<0.5	<0.5	<0.5	<0.5
08/05/05 ¹⁶	122.92	12.98		109.94		<50	<0.5	<0.5	<0.5	<0.5	< 0.5
11/04/05	122.92	12.50		110.42							
02/01/06	122.92	10.75		112.17							
05/03/06	122.92	10.22		112.70							
08/02/06	122.92	11.91		111.01							
10/31/06	122.92	12.28		110.64							
01/30/07	122.92	12.25		110.67							
05/01/07	122.92	12.08		110.84							
07/31/07	122.92	12.57		110.35							
11/01/07	122.92	13.20		109.72							
02/12/08	122.92	11.55		111.37							
05/13/08	122.92	12.63		110.29							
08/19/08	122.92	13.26		109.66							
11/18/08	122.92	13.10		109.82							

Table 1Groundwater Monitoring and Analytical ResultsChevron Service Station #9-8139

16304 Foothill Boulevard

~		
San	Leandr	o California

.

					San Lea	ndro, California	L				
WELL ID/	TOC*	DTW	S.I.	GWE	SPHT	TPH-GRO	В	T	E	X	MTBE
DATE	(j1.)	(ft.)	(ft.bgs)	(msl)	(fi.)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-11 (cont)											
03/13/09	122.92	11.53		111.39							
05/04/09	122.92	12.37		110.55							
08/18/09	122.92	13.39		109.53							
MONITORING/SA											
MW-12											
09/01/00 ¹⁰		11.69	10-28.5								
10/10/00		12.13				<50.0	< 0.500	< 0.500	< 0.500	<0.500	<2.50
04/03/01		11.35				<50.0	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500
08/14/01	122.36	12.21		110.15		<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5
11/16/01	122.36	12.72		109.64		<50	< 0.50	0.59	< 0.50	<1.5	<2.5/<2 ¹⁵
02/15/02	122.36	11.98		110.38		<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
05/09/02	122.36	12.17		110.19		<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
08/05/02	122.36	12.69		109.67		<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
11/04/02	122.36	12.98		109.38		<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5/<2 ¹⁵
02/05/03	122.36	11.81		110.55		<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
05/07/03	122.36	11.28		111.08		<50	<0.5	<0.5	< 0.5	<1.5	<2.5
08/11/03 ¹⁶	122.36	12.33		110.03		<50	<0.5	<0.5	<0.5	<0.5	<0.5
11/10/03 ¹⁶	122.36	12.77		109.59		<50	<0.5	<0.5	<0.5	< 0.5	<0.5
02/09/04 ¹⁶	122.36	11.66		110.70		<50	<0.5	<0.5	<0.5	< 0.5	<0.5
05/10/04 ¹⁶	122.36	11.90		110.46		<50	<0.5	<0.5	<0.5	< 0.5	<0.5
08/09/04 ¹⁶	122.36	12.56		109.80		<50	<0.5	<0.5	<0.5	< 0.5	<0.5
11/08/04 ¹⁶	122.36	12.70		109.66		<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/07/0516	122.36	11.48		110.88		<50	<0.5	<0.5	<0.5	<0.5	<0.5
05/06/0516	122.36	11.41		110.95		<50	<0.5	<0.5	<0.5	<0.5	<0.5
08/05/0516	122.36	12.70		109.66		<50	<0.5	<0.5	<0.5	<0.5	<0.5
11/04/05	122.36	12.40		109.96							
02/01/0618	122.36	10.69		111.67							
05/03/0616	122.36	9.60		112.76		<50	<0.5	<0.5	<0.5	<0.5	<0.5
08/02/06	122.36	11.50		110.86							
10/31/06	122.36	12.18		110.18							
01/30/07 ¹⁶	122.36	12.12		110.24		<50	<0.5	<0.5	<0.5	<0.5	<0.5
05/01/07	122.36	11.90		110.46							
07/31/07	122.36	12.26		110.10							
11/01/07	122.36	12.88		109.48		SAMPLED AN	NUALLY				
02/12/08 ¹⁶	122.36	12.21		110.15		<50	<0.5	<0.5	<0.5	< 0.5	<0.5

Table 1
Groundwater Monitoring and Analytical Results
Chevron Service Station #9-8139

16304 Foothill Boulevard

-	and the second second	-		
San	Leandro.	(2	litornia	
Jan	L'unuru.	va	uiviina	

San Leandro, California											
WELL ID/	TOC*	DTW	S.I.	GWE	SPHT	TPH-GRO	В	T	E	X	MTBE
DATE	(fi.)	(ft.)	(ft.bgs)	(msl)	(fi.)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-12 (cont)											
05/13/08	122.36	12.34	10-28.5	110.02		SAMPLED AN	NNUALLY				
08/19/08	122.36	12.98		109.38		SAMPLED AN					
11/18/08	122.36	12.76		109.60		SAMPLED A			1.12. 		
03/13/0916	122.36	11.15		111.21		<50	<0.5	<0.5	<0.5	<0.5	<0.5
05/04/09	122.36	12.08		110.28		SAMPLED AN					
08/18/09	122.36	13.09		109.27		SAMPLED AN			22		
11/23/09	122.36	12.84		109.52	222	SAMPLED AN					
02/03/10 ¹⁶	122.36	11.05		111.31		<50	<0.5	1	0.9	3	<0.5
08/23/10	122.36	12.35		110.01		SAMPLED A		-		-	
MW-13											
09/01/00 ¹⁰		11.57	19-34							(<u></u>))	
10/10/00		11.83				<50.0	< 0.500	< 0.500	< 0.500		
04/03/01		11.46			1222	<50.0	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500
08/14/01	121.49	12.36		109.13	1000	<50	< 0.50	<0.50	< 0.50	< 0.50	<2.5
11/16/01	121.49	12.08		109.41		<50	<0.50	0.64	< 0.50	<1.5	<2.5/<215
02/15/02	121.49	11.81		109.68		<50	< 0.50	<0.50	<0.50	<1.5	<2.5
05/09/02	121.49	12.00		109.49		<50	< 0.50	<0.50	< 0.50	<1.5	<2.5
08/05/02	121.49	12.48		109.01		<50	<0.50	< 0.50	< 0.50	<1.5	<2.5/<215
11/04/02	121.49	12.71		108.78		<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5/<2 ¹⁵
02/05/03	121.49	11.51		109.98		<50	< 0.50	<0.50	< 0.50	<1.5	<2.5
05/07/03	121.49	10.81		110.68		<50	< 0.5	0.6	<0.5	<1.5	<2.5
08/11/03 ¹⁶	121.49	12.15		109.34		<50	<0.5	<0.5	<0.5	<0.5	<0.5
11/10/03 ¹⁶	121.49	12.51		108.98		<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/09/04 ¹⁶	121.49	11.56		109.93		<50	<0.5	<0.5	<0.5	<0.5	<0.5
05/10/04 ¹⁶	121.49	11.87		109.62		<50	< 0.5	<0.5	<0.5	<0.5	<0.5
08/09/04 ¹⁶	121.49	12.37		109.12		<50	<0.5	<0.5	<0.5	<0.5	< 0.5
11/08/04 ^{16,17}	121.49	13.00		108.49		75	<0.5	<0.5	<0.5	<0.5	400
02/07/05 ¹⁶	121.49	10.49		111.00		<50	< 0.5	<0.5	<0.5	<0.5	<0.5
05/06/05 ¹⁶	121.49	10.45		111.04		60	<1	<1	<1	<1	570
08/05/05 ¹⁶	121.49	12.50		108.99		<50	<0.5	<0.5	<0.5	<0.5	470
11/04/05	121.49	12.18		109.31							
02/01/06	121.49	10.43		111.06							
05/03/06	121.49	8.87		112.62	-						
08/02/06	121.49	10.55		110.94							

					Т	able 1					
				Groundwa	ter Monito	ring and Ana	lytical Result	S			
				С	hevron Serv	ice Station #9-	-8139				
					16304 Fo	othill Boulevar	rd				
					San Lear	dro, California	a				
WELL ID/	TOC*	DTW	S.I ,	GWE	SPHT	TPH-GRO	B	Т	E	X	MTBE
DATE	(fi.)	(ft.)	(ft.bgs)	(msl)	(ft.)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-13 (cont)											
10/31/06	121.49	11.95	19-34	109.54					1 <u>44</u> 0		
01/30/07	121.49	11.90	21.322	109.59			22				
05/01/07	121.49	11.65		109.84							
07/31/07	121.49	12.08		109.41							
11/01/07	121.49	13.19		108.30				<u></u> *			
02/12/08	121.49	10.64		110.85					8. 19 78 0		
05/13/08	121.49	11.88		109.61							
08/19/08	121.49	12.69		108.80					i i		
11/18/08	121.49	12.55		108.94				<u></u>		(111	
03/13/09	121.49	10.55		110.94			22				
05/04/09	121.49	11.92		109.57							
08/18/09	121.49	12.81		108.68							
MONITORING/SA											
MW-14											
09/01/00 ¹⁰		11.96	15-30								
10/10/00		12.33				79.9 ¹¹	< 0.500	< 0.500	< 0.500	< 0.500	854
04/03/01		11.62			550	494	< 0.500	< 0.500	< 0.500	< 0.500	3,150
08/14/01	122.04	12.55		109.49		<1,000	<10	<10	<10	<10	2,600
11/16/01	122.04	12.55		109.49		1,500	< 0.50	0.84	< 0.50	<1.5	7,800/8,20015
02/15/02	122.04	12.31		109.73		1,100	< 0.50	< 0.50	< 0.50	<1.5	6,300/6,000 ¹⁵
05/09/02	122.04	12.52		109.52		1,500	< 0.50	< 0.50	< 0.50	<1.5	6,900/6,300 ¹⁵
08/05/02	122.04	12.94		109.10		870	< 0.50	< 0.50	< 0.50	<1.5	3,700/3,60015
11/04/02	122.04	13.17		108.87		890	< 0.50	<0.50	< 0.50	<1.5	4,400/4,700 ¹⁵
02/05/03	122.04	12.41		109.63		880	<0.50	<0.50	< 0.50	<1.5	4,500/4,500 ¹⁵
05/07/03	122.04	11.50		110.54		530	< 0.5	0.6	<0.5	<1.5	2,400/1,800 ¹⁵
08/11/03 ¹⁶	122.04	12.63		109.41		290	<1	<1	<1	<1	1,500
11/10/03 ¹⁶	122.04	13.06		108.98		360	<1	<1	<1	<1	1,700
02/09/04 ¹⁶	122.04	12.11		109.93		300	<1	<1	<1	<1	1,700
05/10/04 ¹⁶	122.04	12.38		109.66		130	<0.5	<0.5	<0.5	<0.5	630
08/09/04 ¹⁶	122.04	12.88		109.16		94	<1	<1	<1	<1	570
11/08/04 ^{16,17}	122.04	12.49		109.55		<50	<0.5	<0.5	<0.5	< 0.5	<0.5
02/07/05 ¹⁶	122.04	11.46		110.58		51	<0.5	<0.5	<0.5	<0.5	280
05/06/05 ¹⁶	122.04	11.39		110.65		<50	<0.5	<0.5	<0.5	<0.5	55
08/05/05 ¹⁶	122.04	12.97		109.07		<50	<0.5	<0.5	<0.5	<0.5	69

					hevron Serv 16304 Fo	Table 1 pring and Analy vice Station #9-8 wothill Boulevard ndro, California	139	S			
WELL ID/ DATE	TOC*	DTW	S.1.	GWE	SPHT	TPH-GRO	B	Т	E	X	MTBE
<u> </u>	(ft.)	(ft.)	(ft.bgs)	(msl)	(ft.)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-14 (cont)	100 04										
11/04/05 ¹⁶	122.04	12.67	15-30	109.37		<50	<0.5	<0.5	<0.5	<0.5	32
02/01/06 ¹⁶	122.04	10.75		111.29		<50	<0.5	<0.5	<0.5	<0.5	34
05/03/06 ¹⁶	122.04	9.80		112.24		<50	<0.5	<0.5	<0.5	<0.5	260
08/02/06 ¹⁶	122.04	11.48		110.56		<50	<0.5	<0.5	<0.5	<0.5	74
10/31/06 ¹⁶	122.04	12.50		109.54		<50	<0.5	<0.5	<0.5	<0.5	6
01/30/07 ¹⁶	122.04	12.57		109.47		<50	<0.5	<0.5	<0.5	<0.5	4
05/01/07 ¹⁶	122.04	12.15		109.89		<50	<0.5	<0.5	<0.5	<0.5	3
07/31/07 ¹⁶	122.04	12.75		109.29		<50	<0.5	<0.5	<0.5	<0.5	<0.5
11/01/07 ¹⁶	122.04	12.71		109.33		<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/12/0816	122.04	11.37		110.67		<50	<0.5	<0.5	<0.5	<0.5	<0.5
05/13/08 ¹⁶	122.04	12.67		109.37	70	<50	<0.5	<0.5	<0.5	<0.5	14
08/19/08 ¹⁶	122.04	13.15		108.89		140	<0.5	<0.5	<0.5	<0.5	1,000
11/18/08 ¹⁶	122.04	13.03		109.01		<50	<0.5	<0.5	<0.5	<0.5	140
03/13/09 ¹⁶	122.04	11.37		110.67		<50	<0.5	<0.5	<0.5	<0.5	150
05/04/0916	122.04	12.41		109.63		93	<0.5	<0.5	<0.5	<0.5	590
08/18/0916	122.04	13.30		108.74		66	<0.5	<0.5	<0.5	<0.5	360
11/23/0916	122.04	13.08		108.96		<50	<0.5	<0.5	<0.5	<0.5	110
02/03/1016	122.04	11.21		110.83		<50	<0.5	<0.5	<0.5	<0.5	160
08/23/10 ¹⁶	122.04	12.96		109.08	-	100	<0.5	<0.5	<0.5	<0.5	640
EW-2											
08/01/91	125.79	18.07		107.72							7
04/22/94	125.79					<50	<0.5	<0.5	<0.5	< 0.5	
10/25/94	125.79	16.69		109.10							
01/19/95	125.79	12.20		113.59		1,700	540	69	56	400	
05/01/95	125.79	12.16		113.63		<50	13	<0.5	<0.5	2.1	
04/16/99	125.79	10.04		115.75		3,500	350	160	130	550	3,800
07/29/99	125.79	INACCESSII	BLE		8 <u>99</u> 8						
10/26/99	125.79	13.82		111.97		2,760	20.6	17.8	40.2	196	13,300
04/07/00	125.79	10.94		114.85		4,100 ⁸	480	21	310	560	6,8 00
10/10/00	125.79	13.32		112.47		3,010 ¹²	14.4	<5.00	61.0	28.2	15,700
04/03/01	125.79	12.57		113.22		2,870	11.2	5.63	50.2	35.3	5,140
08/14/01	125.52	14.31		111.21		<5,000	<50	<50	<50	<50	16,000
11/16/01	125.52	14.21		111.31		2,300	3.2	0.58	13	<30 6.3	
02/15/02	125.52	13.74		111.78		3,500	26	<0.50	13 74	33	4,100/5,300 ¹⁵ 6,900/8,200 ¹⁵

Table 1Groundwater Monitoring and Analytical ResultsChevron Service Station #9-813916304 Foothill Boulevard

San Leandro, California

WELL ID/	TOC*	DTW	S.I.	GWE	SPHT	TPH-GRO	B	T	E		
DATE	(fi.)	(ft.)	5.1. (ft.bgs)	G W E (msl)	5FH1 (fl.)	ι μg/L)	в (µg/L)		* * * * * * * * * * * * * * * *	X	MTBE
	()	<u> </u>	(1:025)		<u></u>	(μg/L)		(µg/L)	(µg/L)	(µg/L)	(µg/L)
EW-2 (cont)											
05/09/02	125.52	13.98		111.54		3,900	11	<0.50	14	2.5	24,000/22,000 ¹⁵
08/05/02	125.52	14.11		111.41		3,600	<20	<1.0	20	6.5	15,000/14,000 ¹⁵
11/04/02	125.52	14.97		110.55		3,100	7.1	<1.0	1.4	2.1	5,400/5,600 ¹⁵
02/05/03	125.52	13.41		112.11		1,300	4.7	<2.0	0.65	<1.5	1,600/1,700 ¹⁵
05/07/03	125.52	12.61		112.91		1,200	3.6	<2.0	6.5	2.5	1,900/2,400 ¹⁵
08/11/03 ¹⁶	125.52	13.95		111.57		980	<0.5	<0.5	0.5	< 0.5	350
11/10/03 ¹⁶	125.52	13.93		111.59		1,700	<0.5	<0.5	3	< 0.5	1,500
02/09/04 ¹⁶	125.52	13.59		111.93		1,100	<0.5	<0.5	<0.5	<0.5	840
05/10/04 ¹⁶	125.52	13.32		112.20		1,100	<2	<2	<2	<2	3,800
08/09/04 ¹⁶	125.52	14.05		111.47		930	<5	<5	<5	<5	3,000
11/08/04 ¹⁶	125.52	14.31		111.21		1,200	<0.5	<0.5	0.5	<0.5	240
02/07/05 ¹⁶	125.52	12.72		112.80		510	<0.5	<0.5	<0.5	<0.5	390
05/06/05 ¹⁶	125.52	13.02		112.50		890	<1	<1	<1	<1	430
08/05/05 ¹⁶	125.52	14.23		111.29		1,300	1	<0.5	2	<0.5	1,300
11/04/05 ¹⁶	125.52	13.86		111.66		1,000	<0.5	<0.5	<0.5	<0.5	1,200
02/01/06 ¹⁶	125.52	11.75		113.77		700	<0.5	<0.5	<0.5	< 0.5	1,400
05/03/06 ¹⁶	125.52	8.00		117.52		1,200	2	<0.5	<0.5	< 0.5	440
08/02/0616	125.52	11.45		114.07		1,000	<0.5	<0.5	<0.5	<0.5	350
10/31/06 ¹⁶	125.52	13.70		111.82		1,200	<0.5	<0.5	3	3	910
01/30/07 ¹⁶	125.52	13.78		111.74		200	<0.5	<0.5	<0.5	<0.5	330
05/01/0716	125.52	13.40		112.12		510	<0.5	<0.5	<0.5	< 0.5	690
07/31/07 ¹⁶	125.52	14.03		111.49		1,100	<0.5	<0.5	0.6	<0.5	860
11/01/07 ¹⁶	125.52	14.54		110.98		1,700	<0.5	<0.5	0.6	<0.5	760
02/12/08 ¹⁶	125.52	12.31		113.21		510	<0.5	<0.5	<0.5	< 0.5	110
05/13/08 ¹⁶	125.52	13.96		111.56		740	<0.5	<0.5	<0.5	< 0.5	310
08/19/08 ¹⁶	125.52	14.81		110.71		860	<0.5	< 0.5	<0.5	< 0.5	430
11/18/08 ¹⁶	125.52	14.15		111.37		980	< 0.5	<0.5	<0.5	<0.5	210
03/13/09 ¹⁶	125.52	12.45		113.07		380	< 0.5	<0.5	<0.5	< 0.5	26
05/04/09 ¹⁶	125.52	13.13		112.39		730	<0.5	<0.5	< 0.5	< 0.5	170
08/18/09 ¹⁶	125.52	14.82		110.70		760	<0.5	<0.5	< 0.5	<0.5	57
11/23/09	125.52	13.46		112.06		SAMPLED SEM					
02/03/10 ¹⁶	125.52	10.71		114.81		280	< 0.5	<0.5	<0.5	< 0.5	14
08/23/10 ¹⁶	125.52	13.48		112.04		550	<0.5	<0.5	<0.5	<0.5	170

Table 1Groundwater Monitoring and Analytical ResultsChevron Service Station #9-8139

16304 Foothill Boulevard San Leandro, California

WELL ID/	TOC*	DTW	S.I.	GWE	SPHT	TPH-GRO	В	Т	E	X	MTBE
DATE	(ft.)	(fl.)	(ft.bgs)	(msl)	(ft.)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
EW-3											
08/01/91	125.22	17.49		107.73							
10/27/93	125.22					<50	< 0.5	<0.5	<0.5	<0.5	
01/13/94	125.22					<50	<0.5	<0.5	< 0.5	< 0.5	
04/22/94	125.22					<50	<0.5	<0.5	< 0.5	<0.5	
07/29/94	125.22					<50	1.3	1.3	0.6	5.3	
10/25/94	125.22	16.20		109.02							
01/19/95	125.22	12.71		112.51		240	45	0.8	22	48	
04/03/97	125.22	12.33		112.89		450	140	<1.2	4.3	3.9	17
10/07/97	125.22	14.58		110.64		1,900	510	<5.0	26	8.7	12
04/14/98	125.22	INACCESSIBL	Е								
10/13/98	125.22	12.48		112.74		1,500	130	<2.5	9.0	4.7	3,600
04/16/99	125.22	11.55		113.67		3,800	280	37	270	300	2,800
07/29/99	125.22	INACCESSIBL	Е								
10/26/99	125.22	13.49		111.73		710	204	2.87	7.31	11.8	3,760
04/07/00	125.22	11.41		113.81		$1,100^{8}$	30	<5.0	20	48	2,800
10/10/00	125.22	13.55		111.67		119 ¹²	2.77	< 0.500	4.65	2.77	172
04/03/01	125.22	12.73		112.49		1,910	22.3	7.23	136	116	16.1
08/14/01	125.21	13.98		111.23		1,900 ⁸	130	<5.0	39	84	710
11/16/01	125.21	14.03		111.18		8,800	110	20	530	840	99/99 ¹⁵
02/15/02	125.21	13.51		111.70		1,300	18	1.1	33	27	600/600 ¹⁵
05/09/02	125.21	13.75		111.46		740	22	<0.50	15	10	390/360 ¹⁵
08/05/02	125.21	14.28		110.93		8,200	77	21	480	710	<20
11/04/02	125.21	14.92		110.29		4,300	45	2.9	110	83	<2.5/<215
02/05/03	125.21	13.34		111.87		1,800	45	1.7	32	16	<20
05/07/03	125.21	12.87		112.34		860	14	<2.0	5.3	1.6	180/170 ¹⁵
08/11/03 ¹⁶	125.21	13.86		111.35		2,500	7	5	190	130	0.7
11/10/03 ¹⁶	125.21	14.53		110.68		1,600	14	1	43	10	0.8
02/09/04 ¹⁶	125.21	13.44		111.77		550	1	<0.5	0.6	<0.5	<0.5
05/10/04 ¹⁶	125.21	13.49		111.72		170	<0.5	<0.5	<0.5	<0.5	2
08/09/04 ¹⁶	125.21	14.08		111.13	-1	710	14	<0.5	8	6	190
11/08/04 ¹⁶	125.21	14.37		110.84		3,300	10	2	280	19	<0.5
02/07/05 ¹⁶	125.21	12.47		112.74		400	<0.5	<0.5	<0.5	<0.5	<0.5
05/06/05 ¹⁶	125.21	12.87		112.34		590	0.6	0.5	9	21	<0.5
08/05/05 ¹⁶	125.21	14.27		110.94		1,700	2	2	97	34	5
11/04/05 ¹⁶	125.21	13.79		111.42		1,700	4	2	150	170	0.8
02/01/06 ¹⁶	125.21	11.68		113.53		85	<0.5	<0.5	<0.5	<0.5	5

Table 1 Groundwater Monitoring and Analytical Results Chevron Service Station #9-8139

16304 Foothill Boulevard

San Leandro, California

TOTA	Three is	0.1			ndro, California					
								• • • • • • • • • • • • • • • • • • • •		MTBE
()1.)	()1.)	(jt.bgs)	(<i>msl</i>)	(ft.)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
125.21	10.34		114.87		560	4	<0.5	7	4	43
125.21	12.27		112.94		1,000	2	<0.5	10	11	10
125.21	13.57		111.64		9,000	15	6	540	460	12
125.21	13.65		111.56		720	2	<0.5	4	<0.5	<0.5
125.21	13.22		111.99	3-2	220	<0.5	<0.5	<0.5	<0.5	3
125.21	13.80		111.41		11,000	4	2	650	700	<1
125.21	14.59		110.62		2,300	0.7	< 0.5			0.5
125.21	12.60		112.61		860	<0.5	<0.5	1	3	<0.5
125.21	13.91		111.30		1,000	0.7	<0.5	2	<0.5	<0.5
125.21	14.42		110.79		5,500	1	0.7	380	430	<0.5
125.21	14.28		110.93		9,300	1	0.6			<0.5
125.21	12.73		112.48		520	<0.5	<0.5			<0.5
125.21	13.42		111.79		1,300	0.9	<0.5			<0.5
125.21	14.61		110.60		7,600	0.7	<0.5			<0.5
125.21	13.89		111.32		SAMPLED SEM	I-ANNUALL'			())	
125.21	12.08		113.13		370	<0.5	<0.5	7	2	<0.5
125.21	13.77		111.44		520	<0.5				<0.5
127.09					<500	<0 5	<0.5	<0.5	<0.5	<0.5
										<0.5
127.09	12.22		112.30		<50	<0.5	<0.5	<0.5	<0.5	
127 09	14 30		112 79		<50	<0.5	<0.5	<05	~0 5	
127.09 127.09	14.30 15.90		112.79 111.19		<50 <50	<0.5 0.6	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	
	125.21 127.09 127.09	O(L) $O(L)$ 125.2110.34125.2112.27125.2113.57125.2113.65125.2113.22125.2113.80125.2114.59125.2112.60125.2114.42125.2114.42125.2114.42125.2113.42125.2113.42125.2113.42125.2113.89125.2113.89125.2113.77127.09127.09127.0914.68127.0915.01127.0914.68127.0914.62127.0914.63127.0915.01127.0915.01127.0915.01127.0915.01127.0915.01127.0915.01127.0915.38127.0915.38127.0915.80127.0915.80127.0915.80127.0915.80127.0915.80127.0915.80127.0915.80127.0915.80127.0915.80127.0914.71	(fi.) $(fi.)$ $(fi.bgs)$ 125.2110.34125.2112.27125.2113.57125.2113.65125.2113.80125.2114.59125.2114.59125.2114.42125.2114.42125.2114.42125.2113.42125.2113.42125.2113.42125.2113.89125.2112.08125.2113.77127.09127.0914.68127.0915.01127.0914.82127.0914.82127.0915.01127.0914.82127.0915.01127.0915.38127.0915.38127.0915.80127.0914.71	Ol. $Ol.$ $Ol.$ $Ol.$ $Ol.$ $Ol.$ 125.2110.34114.87125.2112.27112.94125.2113.57111.64125.2113.65111.56125.2113.22111.99125.2113.80111.41125.2114.59110.62125.2112.60112.61125.2114.42110.79125.2114.42110.79125.2114.42110.79125.2114.42110.60125.2113.42111.79125.2113.42111.32125.2113.42111.32125.2113.77111.44127.09127.0912.92114.17127.0914.68112.41127.0914.68112.27127.0914.68112.27127.0914.82112.27127.0914.82112.27127.0914.82112.27127.0915.38111.71127.0915.38111.71127.0915.80111.29127.0915.80111.29127.0914.71112.38	(f.) $(f.)$ $(f.hgs)$ (nsl) $(f.)$ 125.2110.34114.87125.2113.57111.64125.2113.65111.56125.2113.22111.99125.2113.80111.41125.2113.80111.41125.2113.91111.30125.2112.60112.61125.2114.42110.79125.2114.42110.62125.2114.42110.60125.2114.42110.93125.2113.42111.79125.2113.42111.32125.2113.89113.13125.2112.92114.17125.2112.92114.17125.2113.77111.44127.09127.0914.68112.41127.0915.01112.08127.0915.01112.08127.0914.68112.27127.0914.69-1127.0915.01112.08127.0915.60113.40127.0913.69113.40127.0915.8011.29127.0915.8011.29127.0915.8011.29127.0915.80 <td>(h) $(h + hgg)$ (msl) (h) $(\mu g/L)$ 125.21 10.34 114.87 560 125.21 12.27 112.94 1,000 125.21 13.57 111.64 9,000 125.21 13.65 111.56 720 125.21 13.22 111.99 220 125.21 13.80 111.41 11,000 125.21 14.59 10.62 2,300 125.21 14.49 110.79 5,500 125.21 14.42 110.79 5,500 125.21 14.42 110.79 1,300 125.21 12.73 112.48 520 125.21 13.42 111.79 1,300 125.21 13.89 111.32 SAMPLED SEM 125.21 12.08 112.44 520 <t< td=""><td>(h.) $(h.bgs)$ $(h.c)$ $(h.g.t.)$ $(h.g.t.)$ $(h.g.t.)$ 125.21 10.34 114.87 560 4 125.21 12.27 112.94 1,000 2 125.21 13.57 111.64 9,000 15 125.21 13.65 111.56 720 2 125.21 13.22 111.99 220 <0.5</td> 125.21 13.80 111.41 11,000 4 125.21 12.60 112.61 860 <0.5</t<></td> 125.21 13.91 111.30 1,000 0.7 125.21 13.91 111.30 1,000 0.7 125.21 14.42 110.79 5,500 1 125.21 13.42 111.79 1,300 0.9 125.21 13.42 111.32 - SAMPLED SEMI-ANNUALL' <	(h) $(h + hgg)$ (msl) (h) $(\mu g/L)$ 125.21 10.34 114.87 560 125.21 12.27 112.94 1,000 125.21 13.57 111.64 9,000 125.21 13.65 111.56 720 125.21 13.22 111.99 220 125.21 13.80 111.41 11,000 125.21 14.59 10.62 2,300 125.21 14.49 110.79 5,500 125.21 14.42 110.79 5,500 125.21 14.42 110.79 1,300 125.21 12.73 112.48 520 125.21 13.42 111.79 1,300 125.21 13.89 111.32 SAMPLED SEM 125.21 12.08 112.44 520 <t< td=""><td>(h.) $(h.bgs)$ $(h.c)$ $(h.g.t.)$ $(h.g.t.)$ $(h.g.t.)$ 125.21 10.34 114.87 560 4 125.21 12.27 112.94 1,000 2 125.21 13.57 111.64 9,000 15 125.21 13.65 111.56 720 2 125.21 13.22 111.99 220 <0.5</td> 125.21 13.80 111.41 11,000 4 125.21 12.60 112.61 860 <0.5</t<>	(h.) $(h.bgs)$ $(h.c)$ $(h.g.t.)$ $(h.g.t.)$ $(h.g.t.)$ 125.21 10.34 114.87 560 4 125.21 12.27 112.94 1,000 2 125.21 13.57 111.64 9,000 15 125.21 13.65 111.56 720 2 125.21 13.22 111.99 220 <0.5	(t_1) (t_2) $(t_2/2)$ $(t_2/2)$ $(t_2/2)$ 125.21 10.34 114.87 560 4 <0.5	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	θ_1 θ_2 $(\eta_2 t)$ $(\eta_2$

Table 1

Groundwater Monitoring and Analytical Results Chevron Service Station #9-8139

					San Lean	dro, California					
WELL ID/	TOC*	DTW	S.I ,	GWE	SPHT	TPH-GRO	В	T	E	x	MTBE
DATE	(ft.)	(ft.)	(ft.bgs)	(msl)	(ft.)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-1 (cont)								18 D2-		9	
04/30/93	127.09	9.90		117.19		<50	<0.5	0.7	<0.5	1.0	
07/14/93	127.09	12.28		114.81		<50	0.7	1.0	<0.5	3.0	
10/27/93	127.09	15.53		111.56		<50	0.9	2.0	<0.5	2.0	
01/13/94	127.09	12.24		114.85		<50	<0.5	0.9	<0.5	<0.5	
04/22/94	127.09	12.91		114.18		<50	1.1	2.6	1.0	5.5	
07/29/94	127.09	12.75		114.34		<50	<0.5	0.9	<0.5	<0.5	
10/25/94	127.09	13.63		113.46		100	0.6	1.6	<0.5	4.1	
01/19/95	127.09	9.93		117.16		<50	<0.5	<0.5	<0.5	<0.5	
ABANDONED										0.5	
MW-2											
12/05/89 ^{1,3}	1722					<500	<0.5	<0.5	<0.5	0.9	<0.5
03/23/90	125.98	12.40		113.58						0.9	~0.5
05/24/90	125.98					<50	<0.5	<0.5	<0.5	<0.5	
09/06/90 ³	125.98	14.85		111.13		<50	<0.5	<0.5	<0.5	<0.5	<0.5
09/25/90	125.98	14.80		111.18							-0.5
11/29/90	125.98	14.40		111.58		<50	<0.5	<0.5	<0.5	<0.5	
02/20/91	125.98	14.09		111.89		<50	<0.5	<0.5	<0.5	<0.5	
04/19/91	125.98	12.62		113.36					-0.5	-0.5	
05/22/91	125.98	12.98		113.00	¥	<50	<0.5	<0.5	<0.5	<0.5	
1/13/91	125.98	15.42		110.56		58	<0.5	0.5	0.7	2.3	
01/30/92	125.98	14.70		111.28		<50	<0.5	<0.5	<0.5	<0.5	
04/23/92	125.98	13.83		112.15		<50	<0.5	<0.5	<0.5	<0.5	
07/27/92	125.98	15.30		110.68		<50	<0.5	<0.5	<0.5	1.1	
10/26/92	125.98	15.62		110.36		<50	<0.5	<0.5	<0.5	<0.5	
01/29/93	125.98	9.26		116.72		<50	3.0	8.0	1.0	5.0	
04/30/93	125.98	9.66		116.32		<1,300	<13	<13	<13	<13	
07/14/93	125.98	11.90		114.08		<50	0.8	2.0	0.8	4.0	
0/27/93	125.98	13.49		112.49		<50	1.0	2.0	1.0	2.0	
01/13/94	125.98	11.99		113.99		<50	<0.5	0.6	<0.5	<0.5	
04/22/94	125.98	12.73		113.25	-	<50	0.6	<0.5	<0.5 <0.5	<0.3 1.7	2.2 5
07/29/94	125.98	12.30		113.68		<50	<0.5	0.9	<0.5	<0.5	
0/25/94	125.98	13.39		112.59		<50	<0.5	0.9	<0.5 <0.5	<0.5 2.1	
)1/19/95	125.98	8.71		117.27		<50	<0.5	2.3	<0.5	2.1 <0.5	
ABANDONED	120100	0.71		117.27		-50	-0.5	2.3	~0.5	~0.5	

Table 1
Groundwater Monitoring and Analytical Results
Chevron Service Station #9-8139
16304 Foothill Boulevard

San	Leandro.	California
Dan	Louidio.	Camornia

VELL ID/		TOC*	DTW	S.I ,	GWE	SPHT	TPH-GRO	B	T	E	X	MTBE
DATE		(ft.)	(ft.)	(ft.bgs)	(msl)	(fi.)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
WW-3												
2/05/89 ^{2,3}							24,000	2,400	1,800	360	2,600	<0.5
2/05/89 ³	(D)						24,000	2,500	1,900	390	2,600	<0.5
3/23/90		127.84	17.50		110.34							
5/24/90		127.84					9,000	2,600	1,700	250	1,500	
5/24/90	(D)	127.84					10,000	2,600	1,800	260	1,600	
9/06/90 ³		126.77	18.72		108.05		3,500	900	550	110	460	<0.5
9/25/90		126.77	18.40		108.37							
1/29/90		126.77	18.97		107.80		9,200	1,100	1,100	210	1,100	
2/20/91		126.77	19.20		107.57		8,800	960	780	200	920	
4/19/91		126.77	17.81		108.96							
5/22/91		126.77	17.88		108.89		28,000	5,800	1,200	460	2,300	
8/01/91		126.77	19.23		107.54							
8/22/91		126.77	20.17		106.60		21,000	3,100	2,000	480	2,000	
8/22/91	(D)	126.77					19,000	2,700	1,800	420	1,700	
1/13/91		126.77	19.95		106.82		18,000	2,400	1,200	450	2,200	
1/30/92		126.77	19.14		107.63		18,000	3,800	920	700	2,600	
4/23/92		126.77	17.75		109.02		46,000	5,000	1,900	1,000	3,500	
7/27/92		126.77	19.00		107.77		26,000	4,900	1,100	1,200	3,600	
0/26/92		126.77	19.62		107.15		6,600	1,100	41	220	570	
1/29/93		126.77	15.95		110.82		32,000	5,900	2,900	1,300	5,000	
4/30/93		126.77	15.67		111.10		14,000	6,100	98	870	2,400	
7/14/93		126.77	16.83		109.94		12,000	3,100	1,100	720	2,900	
0/27/93		126.77	17.70		109.07		19,000	7,800	400	1,500	3,400	
1/13/94		126.77	16.54		110.23		51,000	3,700	140	· 720	1,800	
4/22/94		126.77	17.02		109.75		22,000	9,300	89	1,200	2,400	
7/29/94		126.77	16.95		109.82		13,000	4,700	44	580	420	
0/25/94		126.77	17.66		109.11		24,000	8,700	52	1,500	1,400	
1/19/95		126.77	13.87		112.90		17,000	9,300	36	1,600	740	
0/12/95		126.77	14.23		112.54		37,000	12,000	180	1,800	1,500	13,000
4/11/96		126.77	11.04		115.73		19,000	2,400	81	1,400	1,500	6,800
0/03/96		126.77	14.62		112.15						-	

Table 1						
Groundwater Monitoring and Analytical Results						
Chevron Service Station #9-8139						
16304 Foothill Boulevard						

San Leandro, California

							idro, California					
WELL ID/		TOC*	DTW	S.I.	GWE	SPHT	TPH-GRO	В	Т	E	X	MTBE
DATE		(ft.)	(fi.)	(ft.bgs)	(msl)	(ft.)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-4												
12/05/89 ³							19,000	390	1,300	460	1,800	<0.5
03/23/90		125.22	16.02		109.20							
05/24/90		125.22					4,500	210	440	140	480	
09/06/90 ³		125.22	17.35		107.87		6,000	680	520	170	580	< 0.5
09/25/90		125.22	17.48		107.74							
11/29/90		125.22	17.61		107.61		15,000	800	1,000	430	1,700	
02/20/91		125.22	17.81		107.41		15,000	640	390	420	1,600	
02/20/91	(D)	125.22					15,000	680	410	430	1,600	
04/19/91		125.22	15.80		109.42							
05/22/91		125.22	16.68		108.54		9,800	580	140	310	740	
05/22/91	(D)	125.22					7,200	520	130	270	670	
REDESIGNA	ATED E	W-3										
MW-5												
03/23/90		125.85	16.89		108.96							
)5/25/90 ⁴		125.85					28,000	920	1,100	460	1,300	2.4
9/07/90		125.85	18.46		107.42	0.04						
9/25/90		125.85	18.87		108.02	1.30						
1/29/90		125.85	18.91		107.51	0.71						
)2/20/91		125.85	16.99		109.24	0.47						
)4/19/91		125.85	19.30		106.93	0.48						
5/22/91		125.85	17.69		108.42	0.33						
REDESIGNA	ATED E	W-2										
MW-6												
3/23/90		124.18	18.51		105.67				7			
)5/25/90 ⁵		124.18					<50	<2.0	<3.0	<3.0	<3.0	< 0.02
9/07/90 ³		124.18	16.18		108.00		<50	<2.0	<3.0	<3.0	<3.0	< 0.05
9/25/90		124.18	16.42		107.76							
1/29/90 ³		124.18	16.11		108.07		<50	<0.5	<0.5	<0.5	<0.5	< 0.05
2/20/91		124.18	16.09		108.09		<50	<0.5	<0.5	< 0.5	<0.5	
4/19/91		124.18	15.15		109.03							
5/22/91		124.18	15.41		108.77		<50	0.5	0.7	<0.5	1.1	
8/23/91		124.18	17.80		106.38		<50	<0.5	<0.5	<0.5	<0.5	
1/14/915		124.18	16.52		107.66		<50	<0.5	<0.5	<0.5	<0.5	< 0.02
1/14/91 ³	(D)	124.18					<50	<0.5	0.6	<0.5	1.1	< 0.05

Table 1
Groundwater Monitoring and Analytical Results
Chevron Service Station #9-8139

San	Leandro	California	
San	Leandro.	California	

							dro, California					
WELL ID/	•••••	TOC*	DTW	S.I .	GWE	SPHT	TPH-GRO	В	Т	E	X	MTBE
DATE		(ft.)	(ft.)	(ft.bgs)	(msl)	(ft.)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-6 (con	nt)											
01/31/92	·	124.18	16.48		107.70		<50	<0.5	<0.5	<0.5	<0.5	
01/31/92	(D)	124.18					<50	<0.5	<0.5	<0.5	<0.5	
04/23/92		124.18	16.20		107.98		<50	<0.5	< 0.5	<0.5	<0.5	
04/23/92	(D)	124.18										
07/27/92		124.18	16.52		107.66		<50	1.2	0.6	<0.5	1.9	
0/26/92		124.18	17.12		107.06		<50	<0.5	< 0.5	< 0.5	<0.5	
)1/29/93		124.18	13.13		111.05		<50	<0.5	<0.5	<0.5	<0.5	
)4/30/93		124.18	14.86		109.32		<50	<0.5	< 0.5	<0.5	0.6	
)7/14/93		124.18	14.61		109.57		<50	<0.5	<0.5	<0.5	<0.5	
0/27/93		124.18	15.38		108.80		<50	0.9	1.0	0.6	1.0	
)1/13/94		124.18	15.34		108.84		<50	<0.5	< 0.5	<0.5	<0.5	
)4/22/94		124.18	15.07		109.11		<50	<0.5	< 0.5	<0.5	2.5	
)7/29/94		124.18	15.30		108.88		<50	7.5	1.2	1.0	1.1	
10/25/94		124.18	15.69		108.49		<50	<0.5	<0.5	<0.5	1.2	
1/19/95		124.18	11.49		112.69		<50	<0.5	3.1	<0.5	0.6	
0/11/95		124.18	14.16		110.02		**					
1/07/95		124.18	14.30		109.88	~-	<50	<0.5	< 0.5	<0.5	<0.5	<2.5
)4/11/96		124.18	10.63		113.55		<50	<0.5	<0.5	<0.5	<0.5	<2.5
0/03/96		124.18	13.34		110.84						-0.5	
ABANDON	NED											
MW-7												
)3/23/90		126.86	21.40		105.46						**	
5/25/90 ⁵		126.86					<50	<2.0	<3.0	<3.0	<3.0	< 0.02
9/07/90		126.86	18.38		108.48					-5.0	-5.0	-0.02
9/25/90		126.86	19.25		107.61							
9/27/90 ³		126.86					<50	<2.0	<3.0	<3.0	<3.0	< 0.05
$9/27/90^3$	(D)	126.86					<50	<2.0	<3.0	<3.0	<3.0	< 0.05
1/29/90	. /	126.86	18.55		108.31		<50	<0.5	<0.5	<0.5	<0.5	~0.05
2/20/91		126.86	18.55		108.31		<50	<0.5	<0.5	<0.5	<0.5	
4/19/91		126.86	17.33		109.53					-0.5		
5/22/91		126.86	17.42		109.44		<50	< 0.5	<0.5	< 0.5	<0.5	
8/22/91		126.86	19.05		107.81	: 	<50	<0.5	<0.5	<0.5	<0.5	
1/13/91		126.86	21.84		105.02		<50	<0.5	<0.5	<0.5	<0.5 <0.5	
1/30/92		126.86	22.42		103.02		<50	<0.5	<0.5	<0.5	<0.5 <0.5	
)4/23/92		126.86	22.04		104.82		<50	<0.5	<0.5	<0.5		
		140.00	22.07		104.02		~ 50	<u>∖0.</u> J	\U.J	<0.5	<0.5	

	Table 1 Groundwater Monitoring and Analytical Results Chevron Service Station #9-8139 16304 Foothill Boulevard San Leandro, California WELL ID/ TOC* DTW SPHT TPH CBO												
WELL ID/	TOC*	DTW	S.I ,	GWE	SPHT	TPH-GRO	B	Т	E	X	МТВЕ		
DATE	(ft.)	(ft.)	(ft.bgs)	(msl)	(ft.)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)		
MW-7 (cont)													
07/27/92	126.86	22.24		104.62		<50	<0.5	<0.5	<0.5	<0.5			
10/26/92	126.86	22.11		104.75		<50	<0.5	<0.5	<0.5	<0.5			
01/29/93	126.86	17.07		109.79		<50	4.0	13	2.0	8.0			
04/30/93	126.86	14.86		112.00		<50	< 0.5	<0.5	<0.5	0.6			
07/14/93	126.86	16.10		110.76		<50	<0.5	1.0	<0.5	2.0			
10/27/93	126.86	18.71		108.15		<50	<0.5	<0.5	<0.5	<0.5			
01/13/94	126.86	17.89		108.97		<50	<0.5	0.9	<0.5	1.0			
04/22/94	126.86	16.94		109.92		<50	<0.5	<0.5	<0.5	1.3	(<u></u>)(
07/29/94	126.86	16.70		110.16		74	19	8.2	7.8	11			
10/25/94	126.86	17.42		109.44		<50	<0.5	0.6	<0.5	1.6			
01/19/95	126.86	13.66		113.20		<50	<0.5	1.4	<0.5	<0.5			
ABANDONED													
EW-1													
05/25/90				(<u></u>)	1 <u></u> 1	3,900	260	430	64	340	0.03		
08/01/91	124.95	17.54		107.41	11.000 (i)	17 55 1	(.)						
10/27/93	124.95	<u></u>			3 90 0	350	<0.5	<0.5	<0.5	<0.5			
01/13/94	124.95				(1	<50	<0.5	<0.5	<0.5	<0.5			
04/22/94	124.95	1000 100			5,220	<50	<0.5	<0.5	<0.5	<0.5			
07/29/94	124.95	 .				97	0.6	0.5	0.6	5.1			
01/19/95	124.95	12.63		112.32		3,000	1,600	100	350	760			
ABANDONED													
TRIP BLANK													
TB-LB													
02/20/91						<50	<0.5	<0.5	-0.5	<0.5			
05/22/91						<50	<0.5 <0.5	<0.5	<0.5	< 0.5			
05/22/91		5- 3 -5-				<50	<0.5	<0.5 <0.5	<0.5	< 0.5			
11/13/91						<50	<0.5 <0.5	<0.5 <0.5	<0.5	< 0.5	1000		
01/30/92						<50	<0.5	<0.5	<0.5	< 0.5			
04/23/92						<50	<0.5 <0.5		<0.5	<0.5			
07/27/92	-					<0.5		<0.5	<0.5	< 0.5			
10/26/92						<0.5 <0.5	<0.5	<0.5	< 0.5	< 0.5			
01/29/93							<0.5	<0.5	< 0.5	<0.5			
S X, 29, 90		- 12				<50	<0.5	< 0.5	<0.5	< 0.5			

Table 1 Groundwater Monitoring and Analytical Results Chevron Service Station #9-8139

San Leandro, California					
	Can	I ann dana	C-1	:	- * -

						dro, California					
WELL ID/	TOC*	ÐTW	S.I.	GWE	SPHT	TPH-GRO	В	Т	E	X	MTBE
DATE	(fl.)	(ft.)	(ft.bgs)	(msl)	(ft.)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
TRIP BLANK (co	nt)										
07/14/93						<50	<0.5	<0.5	<0.5	<0.5	
10/27/93				(<50	<0.5	<0.5	<0.5	<0.5	
01/13/94						<50	<0.5	<0.5	<0.5	<0.5	
04/22/94					1	<50	<0.5	<0.5	<0.5	<0.5	
07/29/94						<50	<0.5	<0.5	<0.5	<0.5	
10/25/94					(),	<50	<0.5	<0.5	<0.5	<0.5	
01/19/95						<50	<0.5	<0.5	<0.5	<0.5	
05/01/95					100	<50	<0.5	<0.5	<0.5	<0.5	
10/12/95	 .					<50	<0.5	<0.5	<0.5	<0.5	<2.5
04/11/96	3. -1					<50	<0.5	<0.5	<0.5	<0.5	<2.5
10/03/96						<50	<0.5	<0.5	<0.5	<0.5	
04/03/97				000		<50	<0.5	<0.5	<0.5	<0.5	<2.5
10/07/97	1.000					<50	<0.5	<0.5	<0.5	<0.5	<2.5
04/14/98						<50	<0.5	<0.5	<0.5	<0.5	<2.5
10/13/98	1.000	0.000				<50	<0.5	<0.5	<0.5	<0.5	<2.5
04/16/99						<50	<0.5	<0.5	<0.5	<0.5	<2.5
04/07/00	1 					<50	<0.50	< 0.50	<0.50	<0.50	<2.5
10/10/00						<50.0	<0.500	< 0.500	< 0.500	< 0.500	<2.50
04/03/01						<50.0	<0.500	< 0.500	<0.500	< 0.500	< 0.500
08/14/01					1	<50	<0.50	<0.50	< 0.50	<0.50	<2.5
QA											
11/16/01						<50	<0.50	<0.50	<0.50	<1.5	<2.5
02/15/02		1.44				<50	< 0.50	<0.50	<0.50	<1.5	<2.5
05/09/02						<50	<0.50	<0.50	<0.50	<1.5	<2.5
08/05/02	2					<50	<0.50	<0.50	<0.50	<1.5	<2.5
11/04/02	((***)				<50	<0.50	<0.50	<0.50	<1.5	<2.5
02/05/03		19 <u>21-</u> 17				<50	< 0.50	<0.50	<0.50	<1.5	<2.5
05/07/03		20 00- 3				<50	<0.5	<0.5	<0.5	<1.5	<2.5
08/11/03 ¹⁶						<50	<0.5	<0.5	<0.5	<0.5	<0.5
1/10/03 ¹⁶		10				<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/09/04 ¹⁶						<50	<0.5	<0.5	<0.5	<0.5	<0.5
05/10/04 ¹⁶						<50	<0.5	<0.5	<0.5	<0.5	<0.5
08/09/04 ¹⁶						<50	<0.5	<0.5	<0.5	<0.5	<0.5
11/08/04 ¹⁶						<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/07/05 ¹⁶						<50	<0.5	<0.5	<0.5	<0.5	<0.5
05/06/05 ¹⁶						<50	<0.5	<0.5	<0.5	<0.5	<0.5

Table 1 Groundwater Monitoring and Analytical Results Chevron Service Station #9-8139

San Leandro, California				
	Cam	I age dag	California	2

WELL ID/	TOC*	DTW	S.I.	GWE	SPHT	TPH-GRO	B	T	E	X	MTBE
DATE	(ft.)	(f1.)	(ft.bgs)	(msl)	(ft.)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
QA (cont)				2						145	
08/05/05 ¹⁶					()	<50	<0.5	<0.5	<0.5	<0.5	<0.5
11/04/0516						<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/01/06 ¹⁶		31 77 7				<50	<0.5	<0.5	<0.5	<0.5	<0.5
05/03/06 ¹⁶					200	<50	<0.5	<0.5	<0.5	<0.5	<0.5
08/02/06 ¹⁶						<50	<0.5	<0.5	<0.5	<0.5	<0.5
10/31/06 ¹⁶					1	<50	<0.5	<0.5	<0.5	<0.5	<0.5
01/30/07 ¹⁶						<50	<0.5	<0.5	<0.5	<0.5	<0.5
05/01/07 ¹⁶						<50	<0.5	<0.5	<0.5	<0.5	<0.5
07/31/07 ¹⁶						<50	<0.5	<0.5	<0.5	<0.5	<0.5
11/01/07 ¹⁶						<50	<0.5	<0.5	<0.5	<0.5	<0.5
02/12/0816						<50	<0.5	<0.5	<0.5	<0.5	<0.5
05/13/08 ¹⁶				200		<50	<0.5	<0.5	<0.5	<0.5	<0.5
08/19/08 ¹⁶						<50	<0.5	<0.5	<0.5	<0.5	<0.5
11/18/08 ¹⁶						<50	<0.5	<0.5	<0.5	<0.5	<0.5
03/13/09 ¹⁶	2 2					<50	<0.5	<0.5	<0.5	<0.5	<0.5
05/04/09 ¹⁶		1.000		222		<50	<0.5	<0.5	<0.5	<0.5	<0.5
08/18/09 ¹⁶						<50	<0.5	<0.5	<0.5	<0.5	<0.5
DISCONTINUED										128 CT /	

Table 1 Groundwater Monitoring and Analytical Results Chevron Service Station #9-8139 16304 Foothill Boulevard San Leandro, California

EXPLANATIONS:

Groundwater monitoring data and laboratory analytical results prior to April 7, 2000, were compiled from reports prepared by Blaine Tech Services, Inc.

(TPH-D) = Total Petroleum Hydrocarbons as Diesel	MTBE = Methyl Tertiary Butyl Ether
TPH = Total Petroleum Hydrocarbons	$(\mu g/L) =$ Micrograms per liter
GRO = Gasoline Range Organics	(ppb) = Parts per billion
$\mathbf{B} = \mathbf{Benzene}$	= Not Measured/Not Analyzed
T = Toluene	(D) = Duplicate
E = Ethylbenzene	ND = Not Detected
X = Xylenes	QA = Quality Assurance/Trip Blank
EDB = 1,2-Dibromoethane	
	TPH = Total Petroleum Hydrocarbons GRO = Gasoline Range Organics B = Benzene T = Toluene E = Ethylbenzene X = Xylenes

* TOC elevations were surveyed on September 16, 2000, by Virgil Chavez Land Surveying. The benchmark used for the survey was a copper disc set in the top of headwall on the east side of Foothill, approximately 158 feet south of Miramar Avenue, stamped EBMUD 17B, (Benchmark Elev. = 127.162 feet, NAVD 29).

¹ Total Petroleum Hydrocarbons as Diesel (TPH-D) was ND with a detection limit of 1,000 ppb and Total Oil and Grease (TOG) was ND with a detection limit of 5,000 ppb.

- ² TOG was ND with a detection limit of 5,000 ppb.
- ³ Ethylene dibromide (EDB) was detected at <0.05 ppb.
- ⁴ EDB was detected at 2.4 ppb.
- ⁵ EDB was detected at <0.02 ppb.
- ⁶ ORC installed.
- ⁷ TOC altered due to wellhead maintenance.
- ⁸ Laboratory report indicates gasoline C6-C12.
- ⁹ ORC in well.
- ¹⁰ Well development performed.
- ¹¹ Laboratory report indicates unidentified hydrocarbons C6-C8.
- ¹² Laboratory report indicates weathered gasoline C6-C12.
- ¹³ ORC removed from well.
- ¹⁴ Laboratory report indicates unidentified hydrocarbons C6-C12.
- ¹⁵ MTBE by EPA Method 8260.
- ¹⁶ BTEX and MTBE by EPA Method 8260.
- ¹⁷ Current laboratory analytical results do not coincide with historical data, and although the laboratory results were confirmed; it appears that the samples were switched.
- ¹⁸ Due to an oversight; this well was not sampled.

Table 2

Groundwater Analytical Results - Oxygenate Compounds

Chevron Service Station #9-8139

					San Leandro, California					
WELL ID	DATE	ETHANOL	ТВА	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	<u>(µg/L)</u>	(µg/L)	(µg/L)	(µg/L)	
MW-8	11/04/02		250	17,000	<3.0	<3.0	2,600	<3.0	<3.0	
	02/05/03			18,000						
	05/07/03	()		13,000			1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.			
	08/11/03	<1,000	<100	13,000	<10	<10	2,200	<10	<10	
	11/10/03 ¹	5 11		13,000		-			~10	
	02/09/04 ²	<50	<5	140	<0.5	<0.5	22	<0.5	< 0.5	
	05/10/04	<500	<50	12,000	<5	<5	1,900	<5	< <u>0.3</u>	
	08/09/04	<1,000	<100	7,200	<10	<10	1,100	<10		
	11/08/04	<130	<13	3,900	<1	<10	540	<10 <1	<10 <1	
	02/07/05 ²	<50	<5	12	<0.5	<0.5	2			
	05/06/05	<500	<50	5,100	<5	<5	2 740	<0.5	<0.5	
	08/05/05	<250	<25	3,600	<3	<3	510	<5	<5	
	11/04/05		<5	1,600			210	<3	<3	
	02/01/06		86	1,800						
	05/03/06	880 	40	3,500			260			
	08/02/06		<10	3,800	1000 1000		500		100	
	10/31/06		<5				460			
	01/30/07		<2	3,200			440			
	05/01/07		<2	2 2,300			<0.5		<u>111</u>	
	07/31/07		6	1,300			380			
	11/01/07		<2	940			180			
	02/12/08		6	1,000			170 160		**	
	05/13/08		<2	3,300			450			
	08/19/08		8	4,500			700			
	11/18/08		<20	5,000			700			
	03/13/09		58	3,100			550		100	
	05/04/09	SAMPLED ANNUA								
	02/03/10		840	3,900	() == ()		500	-		
				12,000						
4W-9	11/04/02	(1))	<100	520	<2	<2	88	<2	<2	
	02/05/03			340				(.)		
	05/07/03			390				33 44 0		
	08/11/03	<50	<5	370	<0.5	<0.5	69	<0.5	< 0.5	
	11/10/031	N RE S	;	190	(-)			1		
	$02/09/04^2$	<500	<50	8,100	<5	<5	1,400	<5	<5	
	05/10/04	<50	<5	120	<0.5	<0.5	14	<0.5	<0.5	
	08/09/04	<50	<5	61	<0.5	<0.5	7	<0.5	<0.5	

Table 2 Groundwater Analytical Results - Oxygenate Compounds Chevron Service Station #9-8139

16304 Foothill Boulevard San Leandro, California

				San Leandro	Contract of the local division of the local				
WELL ID	DATE	ETHANOL	TBA	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB
		(µg/L)	(µg/L)	(pg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-9 (cont)	11/08/04	<50	<5	74	<0.5	<0.5	9	<0.5	<0.5
	02/07/05 ²	<250	<25	3,200	<3	<3	520	<3	<3
	05/06/05	<50	<5	45	<0.5	<0.5	6	<0.5	<0.5
	08/05/05	<50	<5	1	<0.5	<0.5	<0.5	<0.5	<0.5
	11/04/05		<5	130			15		
	02/01/06		<5	27		()	0.9		
	05/03/06		<5	82			12		
	08/02/06		<5	85			12	(22	
	10/31/06		<5	280	1203		54		
	01/30/07		<2	2			<0.5		
	05/01/07		<2	480			120		
	07/31/07		<2	3	-		<0.5		
	11/01/07		<2	170	<u> 23 1</u>		41		
	02/12/08	<u></u>	<2	56			11		
	05/13/08	2	<2	35	40.00 		5		
	08/19/08		<2	29			5		
	11/18/08		<2	45			7		
	03/13/09		<2	23		5 21 0	4		
	05/04/09	NOT SAMPLED							
	MONITORING/S	AMPLING DISCON	TINUED						
W -10	11/04/02		<100	<2	<2	<2	<2	<2	<2
	00/11/00		<5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5
	08/11/03	<50	-0	-0.5					
	08/11/03 11/10/03 ¹	<50	-	<0.5					
				<0.5				-	
	11/10/031			<0.5 <0.5	 <0.5	<0.5	<0.5	 <0.5	 <0.5
	11/10/03 ¹ 02/09/04	 <50	 <5 <5	<0.5 <0.5 <0.5	 <0.5 <0.5	 <0.5 <0.5	 <0.5 <0.5	 <0.5 <0.5	 <0.5 <0.5
	11/10/03 ¹ 02/09/04 05/10/04 08/09/04	 <50 <50	 <5 <5	<0.5 <0.5 <0.5 <0.5	 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5	 <0.5 <0.5 <0.5	 <0.5 <0.5 <0.5	 <0.5 <0.5 <0.5
	11/10/03 ¹ 02/09/04 05/10/04	<50 <50 <50 <50	 <5 <5 <5	<0.5 <0.5 <0.5 <0.5 <0.5	 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5	 <0.5 <0.5 <0.5 <0.5	 <0.5 <0.5 <0.5 <0.5	 <0.5 <0.5 <0.5 <0.5
	11/10/03 ¹ 02/09/04 05/10/04 08/09/04 11/08/04 02/07/05	 <50 <50 <50 <50	 <5 <5 <5 <5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	 <0.5 <0.5 <0.5 <0.5 <0.5	 <0.5 <0.5 <0.5 <0.5 <0.5	 <0.5 <0.5 <0.5 <0.5
	11/10/03 ¹ 02/09/04 05/10/04 08/09/04 11/08/04 02/07/05 05/06/05	 <50 <50 <50 <50 <50	 <5 <5 <5 <5 <5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5
	11/10/03 ¹ 02/09/04 05/10/04 08/09/04 11/08/04 02/07/05 05/06/05 08/05/05	 <50 <50 <50 <50	 <5 <5 <5 <5 <5 <5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	 <0.5 <0.5 <0.5 <0.5 <0.5	 <0.5 <0.5 <0.5 <0.5 <0.5	 <0.5 <0.5 <0.5 <0.5
MW-11	11/10/03 ¹ 02/09/04 05/10/04 08/09/04 11/08/04 02/07/05 05/06/05 08/05/05 MONITORING/S.	 <50 <50 <50 <50 <50 <50 <50	 <5 <5 <5 <5 <5 <5 <5 TINUED	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5
MW-11	11/10/03 ¹ 02/09/04 05/10/04 08/09/04 11/08/04 02/07/05 05/06/05 08/05/05 MONITORING/S. 11/04/02	 <50 <50 <50 <50 <50 <50 <50 AMPLING DISCON	 <5 <5 <5 <5 <5 <5 TINUED <100	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <2.5	 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5
/IW -11	11/10/03 ¹ 02/09/04 05/10/04 08/09/04 11/08/04 02/07/05 05/06/05 08/05/05 MONITORING/S. 11/04/02 08/11/03	 <50 <50 <50 <50 <50 <50 <50 AMPLING DISCONT	 <5 <5 <5 <5 <5 <5 TINUED <100 <5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5
MW-11	11/10/03 ¹ 02/09/04 05/10/04 08/09/04 11/08/04 02/07/05 05/06/05 08/05/05 MONITORING/S. 11/04/02	 <50 <50 <50 <50 <50 <50 <50 AMPLING DISCON	 <5 <5 <5 <5 <5 <5 TINUED <100	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <2.5	 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5

Table 2 Groundwater Analytical Results - Oxygenate Compounds Chevron Service Station #9-8139

/*		alta fastivati at la la tata de		San Leandro	the second s				
WELL ID	DATE	ETHANOL	ТВА	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB
		(µg/L)	(µg/L)	(pg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-11 (cont)	08/09/04	<50	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	11/08/04	<50	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	02/07/05	<50	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	05/06/05	<50	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	08/05/05	<50	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	MONITORING/S	AMPLING DISCON	TINUED						
MW-12	11/04/02		<100	<2	<2	<2	<2	<2	<2
	08/11/03	<50	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	11/10/03 ¹	-		<0.5					
	02/09/04	<50	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	05/10/04	<50	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	08/09/04	<50	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	11/08/04	<50	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	02/07/05	<50	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	05/06/05	<50	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	08/05/05	<50	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	02/01/06 ³		8000					10.00°	
	05/03/06		<5	<0.5			<0.5		
	01/30/07		<2	<0.5		-	<0.5		
	11/01/07	SAMPLED ANNUA	ALLY						
	02/12/08		<2	<0.5			<0.5		
	03/13/09		<2	<0.5	<u></u>		<0.5		
	02/03/10		<2	<0.5			<0.5		177
MW-13	11/04/02		<100	<2	~2				
11 11 - 1J	08/11/03	<50	<5	<2 <0.5	<2	<2	<2	<2	<2
	11/10/03 ¹	-50		<0.5 <0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	02/09/04	<50	 <5	<0.5 <0.5					
	05/10/04	<50	<5	<0.5 <0.5	<0.5 <0.5	<0.5	<0.5	<0.5	<0.5
	08/09/04	<50	<5	<0.5 <0.5	<0.5 <0.5	<0.5	<0.5	<0.5	<0.5
	11/08/04	<50	<5	<0.3 400		<0.5	<0.5	<0.5	<0.5
	02/07/05	<50	<5	<0.5	<0.5	<0.5	59	<0.5	< 0.5
	05/06/05	<100	<10	<0.5 570	< 0.5	<0.5	<0.5	<0.5	<0.5
	08/05/05	<50	<5	570 470	<1	<1	48	<1	<1
		AMPLING DISCON		470	<0.5	<0.5	52	<0.5	<0.5

Table 2

Groundwater Analytical Results - Oxygenate Compounds Chevron Service Station #9-8139

				San Leandro	o, California				
WELL ID	DATE	ETHANOL	TBA	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-14	11/04/02		<100	4,700	<2	<2	680	<2	<2
	02/05/03			4,500					-
	05/07/03			1,800					
	08/11/03	<100	<10	1,500	<1	<1	270	<1	<1
	11/10/031			1,700					
	02/09/04	<100	<10	1,700	<1	<1	230	<1	<1
	05/10/04	<50	<5	630	<0.5	<0.5	96	<0.5	<0.5
	08/09/04	<100	<10	570	<1	<1	76	<1	<1
	11/08/04	<50	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	02/07/05	<50	<5	280	<0.5	<0.5	41	<0.5	<0.5
	05/06/05	<50	<5	55	<0.5	<0.5	6	<0.5	<0.5
	08/05/05	<50	<5	69	<0.5	<0.5	8	<0.5	<0.5
	11/04/05		<5	32		-0.5	4		
	02/01/06		<5	34			3		1000
	05/03/06		<5	260			34	19 20 75 2	
	08/02/06		<5	74			8		
	10/31/06		<5	6			<0.5		
	01/30/07		<2	4					
	05/01/07	-	<2	3			<0.5		
	07/31/07		<2	<0.5			<0.5		
	11/01/07		<2	<0.5			<0.5 <0.5		
	02/12/08		<2	<0.5			<0.5		
	05/13/08		<2	14			2		
	08/19/08		<2	1,000			160		
	11/18/08		<2	140			19		
	03/13/09		<2	150	2 -2 3		18		
	05/04/09		<2	590			83		
	08/18/09		<2	360			50		
	11/23/09		<2	110	5 		15		
	02/03/10		18	160	5 		24		
	08/23/10		<2	640			110	8. 	
EW-2	11/04/02		550	5,600	<2.0	<2.0	850	<2.0	~2.0
	02/05/03			1,700	-2.0	-2.0			<2.0
	05/07/03			2,400					
	08/11/03	<50	47	350	<0.5	<0.5			
							120	<0.5	<0.5
	11/10/03 ¹			1,500					

Table 2

Groundwater Analytical Results - Oxygenate Compounds Chevron Service Station #9-8139

San Leandro, California												
WELL ID	DATE	ETHANOL	TBA	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB			
		(µg/L)	(µg/L)	(pg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)			
EW-2 (cont)	02/09/04	<50	110	840	<0.5	<0.5	250	<0.5	<0.5			
	05/10/04	<200	300	3,800	<2	<2	640	<2	<2			
	08/09/04	<500	<50	3,000	<5	<5	480	<5	<5			
	11/08/04	<50	33	240	<0.5	<0.5	110	<0.5	<0.5			
	02/07/05	<50	42	390	<0.5	<0.5	140	<0.5	<0.5			
	05/06/05	<100	120	430	<1	<1	160	<1	<1			
	08/05/05	<50	360	1,300	<0.5	<0.5	390	<0.5	<0.5			
	11/04/05		210	1,200		19680 	340					
	02/01/06		130	1,400			290					
	05/03/06		260	440		2004 B	120	-				
	08/02/06		120	350			76	2				
	10/31/06		130	910			210					
	01/30/07		13	330			46					
	05/01/07		44	690			130					
	07/31/07	<u> 2</u> 21	100	860			200					
	11/01/07		120	760			200					
	02/12/08		8	110		22	200					
	05/13/08	2 4 4	35	310			70					
	08/19/08		59	430			120		2 7.7 .			
	11/18/08		29	210			49					
	03/13/09		5	26			7					
	05/04/09		31	170			44					
	08/18/09		10	57			13					
	11/23/09	SAMPLED SEMI-A	NNUALLY		() ()		(
	02/03/10	() 	<2	14			2					
	08/23/10	-	34	170	-	-	37		-			
W-3	11/04/02		<100	<2	<2	<2	<2	<2	~2			
	05/07/03			170					<2			
	08/11/03	<50	<5	0.7	<0.5	<0.5						
	11/10/03 ¹	-50		0.8	<0.5 		<0.5	<0.5	<0.5			
	02/09/04	<50	<5	<0.5								
	05/10/04	<50	<5	<0.3 2	<0.5 <0.5	<0.5	<0.5	<0.5	<0.5			
	08/09/04	<50	<5	2 190		<0.5	0.6	<0.5	<0.5			
	11/08/04	<50 <50			< 0.5	<0.5	51	<0.5	<0.5			
	02/07/05	<50	<5	< 0.5	<0.5	<0.5	<0.5	<0.5	< 0.5			
			<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			
	05/06/05	<50	<5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5			

Table 2 Groundwater Analytical Results - Oxygenate Compounds Chevron Service Station #9-8139 16304 Foothill Boulevard

16304	Foothil	l Boulevard	
San I	oandro	California	

WELL ID	DATE	ETHANOL	TBA	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB
		(µg/L)	(µg/L)	(<i>pg/L</i>)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
EW-3 (cont)	08/05/05	<50	<5	5	<0.5	<0.5	0.7	<0.5	<0.5
	11/04/05		<5	0.8			<0.5		
	02/01/06		<5	5			0.6		
	05/03/06		<5	43			10		
	08/02/06		<5	10	2 2		1	5. 	
	10/31/06	30 111 5	<5	12			2		100 m
	07/31/07	<4 <1		<1			<1		
	01/30/07		<2	<0.5	<0.5		<0.5		
	05/01/07		<2	3	20 0		<0.5		
	11/01/07		<2	0.5			<0.5		
	02/12/08	-	<2	0.5	11 <u>222</u> 01		0.5		
	05/13/08		<2	<0.5			<0.5		
	08/19/08	3 711 33	<2	< 0.5			<0.5		
	11/18/08	())	<2	<0.5			<0.5		he former
	03/13/09		<2	<0.5			<0.5		
	05/04/09		<2	<0.5			<0.5	2- 1-1 -1	
	08/18/09		5	<0.5			<0.5		
	11/23/09	SAMPLED SEMI-A	NNUALLY						
	02/03/10		<2	<0.5			<0.5		
	08/23/10		<2	<0.5			<0.5		

Table 2 Groundwater Analytical Results - Oxygenate Compounds Chevron Service Station #9-8139 16304 Foothill Boulevard San Leandro, California

EXPLANATIONS:

TBA = t-Butyl alcohol MTBE = Methyl Tertiary Butyl Ether DIPE = di-Isopropyl ether ETBE = Ethyl t-butyl ether TAME = t-Amyl methyl ether

1,2-DCA = 1,2-Dichloroethane EDB = 1,2-Dibromoethane $(\mu g/L) =$ Micrograms per liter -- = Not Analyzed

ANALYTICAL METHOD:

EPA Method 8260 for Oxygenate Compounds

¹ Analysis inadvertently omitted.

² Current laboratory analytical results do not coincide with historical data, and although the laboratory results were confirmed; it appears that the samples were switched.

³ Due to an oversight; this well was not sampled.

STANDARD OPERATING PROCEDURE -GROUNDWATER SAMPLING

Gettler-Ryan Inc. (GR) field personnel adhere to the following procedures for the collection and handling of groundwater samples prior to analysis by the analytical laboratory. All work is performed in accordance with the GR Health & Safety Plan and all client-specific programs. The scope of work and type of analysis to be performed is determined prior to commencing field work.

Prior to sampling, the presence or absence of free-phase hydrocarbons is determined using an interface probe. Product thickness, if present, is measured to the nearest 0.01 foot and is noted in the field notes. In addition, all depth to water level measurements are collected with a static water level indicator and are also recorded in the field notes, prior to purging and sampling any wells.

After water levels are collected and prior to sampling, if purging is to occur, each well is purged a minimum of three well casing volumes of water using pre-cleaned pumps (stack, peristaltic or Grundfos), or disposable bailers. Temperature, pH and electrical conductivity are measured a minimum of three times during the purging (additional parameters such as dissolved oxygen, oxidation reduction potential, turbidity may also be measured, depending on specific scope of work.). Purging continues until these parameters stabilize.

Groundwater samples are collected using disposable bailers. The water samples are transferred from the bailer into appropriate containers. Pre-preserved containers, supplied by analytical laboratories, are used. When pre-preserved containers are not available, the laboratory is instructed to preserve the sample as appropriate. Duplicate samples are collected for the laboratory to use in maintaining quality assurance/quality control standards, as directed by the scope of work. The samples are labeled to include the job number, sample identification, collection date and time, analysis, preservation (if any), and the sample collector's initials. The water samples are placed in a cooler, maintained at 4°C for transport to the laboratory. Once collected in the field, all samples are maintained under chain of custody until delivered to the laboratory.

The chain of custody document includes the job number, type of preservation, if any, analysis requested, sample identification, date and time collected, and the sample collector's name. The chain of custody is signed and dated (including time of transfer) by each person who receives or surrenders the samples, beginning with the field personnel and ending with the laboratory personnel.

A laboratory supplied trip blank accompanies each sampling set. The trip blank is analyzed for some or all of the same compounds as the groundwater samples.

As requested by Chevron Environmental Management Company, the purge water and decontamination water generated during sampling activities is transported by IWM to Chemical Waste Management located in Kettleman Hills, California.

N;\California\forms\chevron-SOP-Sept. 2009

Client/Facility#:	Chevron #9-8139	Job Nur	mber: 386461	
Site Address:	16304 Foothill Blvd.	Event D	01 -1	(inclusive)
City:	San Leandro, CA	Sample		(
Well ID	Mcc-12	Date Monit	ored: 823/10	
Well Diameter	2214 in.		/4"= 0.02 1"= 0.04 2"= 0.17 3	3"= 0.38
Total Depth	28.10 ft.			2"= 5.80
Depth to Water		eck if water column is less the		
Depth to Water	15.75 xVF	= x3 case vo	lume = Estimated Purge Volume:	gal.
	w/80% Recharge [(Height of Wa	ater Column x 0.20) + DTW]:		
Purge Equipment:	Sar	npling Equipment:	Time Started:	(2400 hrs) (2400 hrs)
Disposable Bailer	Dis	posable Bailer	Depth to Product:	ft
Stainless Steel Bailer	Pre Pre	ssure Bailer	Depth to Water:	ft
Stack Pump		crete Bailer	Hydrocarbon Thickness: Visual Confirmation/Desc	ft
Suction Pump Grundfos		istaltic Pump	Skimmer / Absorbant Soc	k (airala ana)
Peristaltic Pump		D Bladder Pump	Amt Removed from Skim	mer: gal
QED Bladder Pump		er:	Amt Removed from Well: Water Removed:	gal
Other:		\sim	Product Transferred to:	
Start Time (purge) Sample Time/Dat Approx. Flow Rat Did well de-water Time (2400 hr.)	re: /	Conductivity Temperatu (µmhos/cm-µS) (C / F) (mg/L) /mq/.)
SAMPLE ID	(#) CONTAINER REFRIG.	BORATORY INFORMATH	ORY ANALYSES	
	x voa vial YES	HCL LANCAST		
			TAME+TBA (8260)	
COMMENTS:	m	10		
······				

Add/Replaced Lock: _____

Add/Replaced Plug: _____ Add/Replaced Bolt: _____

Client/Facility#: Site Address: City:	Chevron #9-8139 16304 Foothill Blvd. San Leandro, CA	Job Number: 386461 Event Date:
Depth to Water	13,45 xVF / 80% Recharge [(Height of Washington Content of Washington Con	Date Monitored: $3/4" = 0.02$ $1"= 0.04$ $2"= 0.17$ $3"= 0.38$ Volume $3/4" = 0.66$ $5"= 1.02$ $6"= 1.50$ $12"= 5.80$ Sheck if water column is less then 0.50 ft. $7 = 2.2$ x3 case volume = Estimated Purge Volume: 6.8 gal.Vater Column x 0.20) + DTWJ: 15.65 ampling Equipment:sposable Bailer(2400 hrs)sposable Bailerftessure Bailerftsposable Bailerftbit bit bit bit bit bit bit bit bit bit
Start Time (purge): Sample Time/Date Approx. Flow Rate Did well de-water? Time (2400 hr.) 0850 6855 0859	2 0 1 8 7 3 10 : gpm. If yes, Time:	Weather Conditions: $\mathcal{L}_{H,H,H}$ Water Color: $(10, J_{4})$ Sediment Description: $(1.2, H_{4})$

	LABORATORY INFORMATION												
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	ANALYSES								
mu - 14	💪 x voa vial	YES	HCL	LANCASTER	TPH-GRO(8015)/BTEX+MTBE(8260)/ TAME+TBA (8260)								
-													

Add/Replaced Plug: ____/(

COMMENTS:

Add/Replaced Lock: X

Add/Replaced Bolt:

Client/Facility#: Site Address: City:	Chevron #9-8139 16304 Foothill Blvd. San Leandro, CA	Job Number: Event Date: Sampler:	386461 タマション・ メモ	(inclusive)	
Well ID Well Diameter Total Depth Depth to Water Depth to Water w Purge Equipment: Disposable Bailer Stainless Steel Bailer Stack Pump Suction Pump Grundfos Peristaltic Pump QED Bladder Pump Other:	13-48 ft. Check if water colum 10,8 xVF -66 = H 180% Recharge [(Height of Water Column x 0.20] Sampling Equipment Disposable Bailer Pressure Bailer Discrete Bailer Peristaltic Pump QED Bladder Pump Other:	or (VF) 4"= 0.66 mn is less then 0.50 f 	Estimated Purge Volume: 33,2	_ gal. (2400 hrs) (2400 hrs) ft ft ft ft ft ft ft ft ft	
Approx. Flow Rate	e: <u>1040 / 8 23 10</u> Water Colo e: <u>2</u> gpm. Sediment D	r: <u>Clear</u> escription: <u>C</u>	Sunny Odor: (P)N <u>Slight</u> <i>Ieqv</i> al. DTW @ Sampling: <u>16</u> D.O. ORP (mg/L) (mV)	-84	

				ABORATORY IN	FORMATION	
SAMPLE ID	(#) CONTAINER		REFRIG.	PRESERV. TYPE	LABORATORY	ANALYSES
Ewrz	6	x voa vial	YES	HCL	LANCASTER	TPH-GRO(8015)/BTEX+MTBE(8260)/ TAME+TBA (8260)
		-				

COMMENTS:

_

Add/Replaced Lock:

Add/Replaced Plug: ___ 41

Add/Replaced Bolt: ____

Client/Facility#: Site Address: City:	Chevron #9-8139 16304 Foothill Blvd. San Leandro, CA	Job Number: Event Date: Sampler:	386461 8123110 KE	_ (inclusive) _
Well ID Well Diameter Total Depth Depth to Water Depth to Water war Purge Equipment: Disposable Bailer Stainless Steel Bailer Stack Pump Suction Pump Grundfos Peristaltic Pump QED Bladder Pump Other:	$ \frac{1}{2} \frac{3}{4} \frac{3}{12} \frac{1}{11} $ in. $ \frac{3}{2} \frac{1}{4} \frac{1}{10} $ in. $ \frac{3}{2} \frac{1}{4} \frac{1}{10} $ in. $ \frac{3}{2} \frac{1}{12} \frac{1}{10} $ in. $ \frac{3}{2} \frac{1}{12} \frac{1}{10} $ Check if water $ \frac{1}{12} \frac{1}{2} \frac{1}{10} $ Check if water $ \frac{1}{12} \frac{1}{2} \frac{1}{10} $ With the second sec	ipment: ler p ump	1"= 0.04 2"= 0.17 3"= 0.38 5"= 1.02 6"= 1.50 12"= 5.80 stimated Purge Volume: 3"2.3 Time Started:	_ gal. (2400 hrs) (2400 hrs) ft ft ft ft ft gal gal
Start Time (purge): Sample Time/Date Approx. Flow Rate Did well de-water? Time (2400 hr.)	<u>0950 / 8 23</u> 10 Water	Color: <u>Cloxdy</u> O lent Description: Volume: <u>14</u> gal	Danny pdor: ()/ N <u>5(i,ht</u> /i,ht DTW @ Sampling: <u>17</u> D.O. ORP (mg/L) (mV)	2.04

	LABORATORY INFORMATION													
SAMPLE ID	(#) CONTAINER		REFRIG.	PRESERV. TYPE	LABORATORY	ANALYSES								
EW-3	6 x voa vial		YES	HCL	LANCASTER	TPH-GRO(8015)/BTEX+MTBE(8260)/								
						TAME+TBA (8260)								
	ļ													
	ļ													
	<u> </u>													
<u> </u>														
	I													

Add/Replaced Plug: 2411

COMMENTS:

Add/Replaced Lock:

Add/Replaced Bolt: _

		Chevi	ron Co	alifo	rn	ia	Re	ea	io	n /	And	alv	sis	s R	$\tilde{\rho}_{0}$	γ_{LI}	0	:t/(Chain of Custoc
Lancaster Laboratories	082	410-0	ð																only Group #:018617
			CRA M	TI Proj	ect #	K 61	H-19	71				Anal	yses	Rec	lnes	ted			Grp # 120 939:
Facility #:						Matri	x			.		Pres	erva			88			Preservative Codes
Site Address: 16304 FOOTHILL B									¥	H++		+	$\left \cdot \right $		4			+	H = HCI T = Thiosulfate
Chevron PM: MTI	lieman	┢	<u> </u>	Н				Innea								$N = HNO_3$ $B = NaOH$ $S = H_2SO_4$ $O = Other$			
Consultant/Office: G-R, Inc., 6747	94568		eldi Sig		sieu			Gel Cleanup				Ő				J value reporting needed			
Consultant Prj. Mgr.:						Potable NPDES		ntai	8021		Silos				2				SPMust meet lowest detection limit
Consultant Phone #: 925-551-7555 Fax #: 925-551-7899 Sampler:								ğ	N				8	B	Ž				possible for 8260 compounds
Sampler: KuleE	dland				1	ĺ		Der c	83	0 B B	ğ	a set	Method	Method	+ TB4 (8260)				8021 MTBE Confirmation
· · · · ·				osite			i≱	Tun	E E	Ň.	NO S	Oxygenates		Leed					Confirm all hits by 8260
Sample Identification		Date	Time	Grab Composite		Water	0 I	Total Number of Containers	BTEX + MTBE 8260 2 8021	TPH 8015 MOD GRO	TPH 8015 MOD DRO R280 full even	ð	Total Lead		म भर				Run oxy's on highest hit
Sample Menuncation	mu-14	Collected	Collected 0910	<u></u>	Soil	1 X	اق ا	f	E.	Ê,			뤋		E				Run oxy's on all hits
	Eurz	0 18310	1040			1 T	+	$\frac{\omega}{1}$	$\overline{\mathbf{A}}$	鈌			-		X			+	Comments / Remarks
	EW-3		0950		1	X	†-†	4	X	5		+			子			+-	-
						<u> </u>	$\uparrow \uparrow$	7		4				-+	4		+	+	-
																	+-	+	
				┠─┼─			\downarrow							-			\uparrow		
				┠─┼─	\vdash		┢╌┝	-+		\rightarrow									
				┢╌┼╌			┝╌┠╴			-+		$\left - \right $		\rightarrow			+		
							╞╌┠╴							-+-		╉	+	+	
														1		+		+	
							┣┃-												
Turneround Time Desured (TA)			Belingu	stracy by:		8	Ц,	1 م				┯┓							
Turnaround Time Requested (TA (STD. TAT) 72 hour	(please cin 48 hour			<u>17</u> Ç	h		K				80	1	ime KR	Re	Ceive	d by: 77/2	R-	RY	ADFRIDCE OF-24-10 1430
24 hour · 4 day	5 day		Relingu	ished by	71	\swarrow		4		-	Date	Т	ime	Re	beiva	d by:			Date Time
Data Paakaga Ontiona (slove siste			Relinqui	ished by:	17		Ŧ		4	1-4	<u>Ger</u> Date	α_{II}	<u>75</u> ime	- Bo	1	a by:	-0	\mathcal{O}	ant 8/26/10 1115
Data Package Options (please circle QC Summary Type I - Full	er required	DF/EDD	a.	Aa	h	n			2	GA	UL	u i	630			e dy: SD	E	-	Date Time
Type VI (Raw Data) Coelt Deliverable not needed Relinquished by																d by			Date Time
WIP (RWQCB) Disk			UPS	<u> </u>	edEx	/		ther_	1.4						2	1	\leq		- 827/10 0900
				ature Upo	n Re	ceipt (7.4	- 5	-4				_ C°	Ču	stody	Seals	Inta	ct?	Yes No

Lancaster Laboratories, Inc., 2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 (717) 656-2300 Copies: White and yellow should accompany samples to Lancaster Laboratories. The pink copy should be retained by the client.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2800 Fax: 717-656-2661 • www.lancesterlabs.com

ANALYTICAL RESULTS

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425 Prepared for:

Chevron c/o CRA Suite 110 2000 Opportunity Drive Roseville CA 95678

September 02, 2010

Project: 98139

Submittal Date: 08/27/2010 Group Number: 1209393 PO Number: 98139 Release Number: MTI State of Sample Origin: CA RECENVED

AUG Ja 2013

GENTLER-RYAN INC GENERAL CONTRACTORS

Lancaster Labs (LLI) # 6071137 6071138 6071139

EW-3-W-100823 Grab Water 60

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

ELECTRONIC Gettler-I COPY TO ELECTRONIC Chevron COPY TO

Client Sample Description

MW-14-W-100823 Grab Water

EW-2-W-100823 Grab Water

Gettler-Ryan, Inc.

Chevron c/o CRA

Attn: Rachelle Munoz

Attn: Report Contact

2425 New Holland Piles, PO Box 12425, Lancester, PA 17605-2425 *717-656-2800 Fax: 717-656-2681* www.lancesterlabs.com

Questions? Contact your Client Services Representative Jill M Parker at (717) 656-2300 Ext. 1241

Respectfully Submitted,

Roh CM

Robin C. Runkle Senior Specialist

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 *717-656-2300 Fax: 717-656-2681 * www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-14-W-100823 Grab Water Facility# 98139 Job# 386461 MTI# 61H-1971 GRD 16304 Foothill-San Leandr T0600100303 MW-14

LLI Sample # WW 6071137 LLI Group # 1209393 Account # 12099

Project Name: 98139

Collected: 08/23/2010 09:10 by KE

Submitted: 08/27/2010 09:00 Reported: 09/02/2010 09:14 Discard: 10/03/2010

RSL14

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor	
GC/MS	Volatiles SW-8	46 8260B	ug/l	ug/l		
10943	t-Amyl methyl ether	994-05-8	110	0.5	1	
10943	Benzene	71-43-2	N.D.	0.5	1	
10943	t-Butyl alcohol	75-65-0	N.D.	2	1	
10943	Ethylbenzene	100-41-4	N.D.	0.5	1	
10943	Methyl Tertiary Butyl Eth	er 1634-04-4	640	0.5	1	
10943	Toluene	108-88-3	N.D.	0.5	1	
10943	Xylene (Total)	1330-20-7	N.D.	0.5	1	
GC Vol	latiles SW-8	46 8015B	ug/l	ug/l		
01728	TPH-GRO N. CA water C6-C1	2 n.a.	100	50	1	

Chevron c/o CRA

2000 Opportunity Drive

Roseville CA 95678

Suite 110

General Sample Comments

State of California Lab Certification No. 2501 Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
01163	GC/MS VOA Water Prep	SW-846 5030B	1	D102431AA	08/31/2010 16:07	Ginelle L Feister	1
10943	BTEX/MTBE/TAME/TBA - Water	SW-846 8260B	1	D102431AA	08/31/2010 16:07		
01146	GC VOA Water Prep	SW-846 5030B	1	10242A20A	08/30/2010 19:00	Tyler O Griffin	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	10242A20A	08/30/2010 19:00		1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description:	EW-2-W-100823 Grab Water	LLI Sample	# WW 6071138
	Facility# 98139 Job# 386461 MTI# 61H-1971 GRD	LLI Group	# 1209393
	16304 Foothill-San Leandr T0600100303 EW-2	Account	# 12099

Chevron c/o CRA

2000 Opportunity Drive

Roseville CA 95678

Suite 110

Project Name: 98139

Collected: 08/23/2010 10:40 by KE

Submitted: 08/27/2010 09:00 Reported: 09/02/2010 09:14 Discard: 10/03/2010

RSLE2

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor	
GC/MS	Volatiles SW-846	8260B	ug/l	ug/1		
10943	t-Amyl methyl ether	994-05-8	37	0.5	1	
10943	Benzene	71-43-2	N.D.	0.5	1	
10943	t-Butyl alcohol	75-65-0	34	2	1	
10943	Ethylbenzene	100-41-4	N.D.	0.5	1	
10943	Methyl Tertiary Butyl Ether	1634-04-4	170	0.5	1	
10943	Toluene	108-88-3	N.D.	0.5	1	
10943	Xylene (Total)	1330-20-7	N.D.	0.5	1	
GC Vol	atiles SW-846	8015B	ug/l	ug/l		
01728	TPH-GRO N. CA water C6-C12	n.a.	550	50	1	

General Sample Comments

State of California Lab Certification No. 2501 Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
01163	GC/MS VOA Water Prep	SW-846 5030B	1	D102431AA	08/31/2010 16:30	Ginelle L Feister	1
10943	BTEX/MTBE/TAME/TBA - Water	SW-846 8260B	1	D102431AA		Ginelle L Feister	
01146	GC VOA Water Prep	SW-846 5030B	1	10242A20A	08/30/2010 19:21		1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	10242A20A	08/30/2010 19:21		1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 *717-656-2300 Fax: 717-656-2681* www.lancasterlabs.com

Page 1 of 1

Sample Description: EW-3-W-100823 Grab Water LLI Sample # WW 6071139 Facility# 98139 Job# 386461 MTI# 61H-1971 GRD LLI Group # 1209393 16304 Foothill-San Leandr T0600100303 EW-3 Account # 12099

Project Name: 98139

Collected: 08/23/2010 09:50 by KE

Submitted: 08/27/2010 09:00 Reported: 09/02/2010 09:14 Discard: 10/03/2010

RSLE3

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-84	5 8260B	ug/l	ug/l	
10943	t-Amyl methyl ether	994-05-8	N.D.	0.5	1
10943	Benzene	71-43-2	N.D.	0.5	1
10943	t-Butyl alcohol	75-65-0	N.D.	2	1
10943	Ethylbenzene	100-41-4	4	0.5	1
10943	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	1
10943	Toluene	108-88-3	N.D.	0.5	-
10943	Xylene (Total)	1330-20-7	0.7	0.5	1
GC Vol	atiles SW-846	5 8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water C6-C12	n.a.	520	50	1

Chevron c/o CRA

2000 Opportunity Drive

Roseville CA 95678

Suite 110

General Sample Comments

State of California Lab Certification No. 2501 Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
01163	GC/MS VOA Water Prep	SW-846 5030B	1	D102431AA	08/31/2010 11:35	Ginelle L Feister	1
10943	BTEX/MTBE/TAME/TBA - Water	SW-846 8260B	1	D102431AA		Ginelle L Feister	-
01146	GC VOA Water Prep	SW-846 5030B	1	10242A20A	08/30/2010 19:43	Tyler O Griffin	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	10242A20A	08/30/2010 19:43		1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Quality Control Summary

- -

Client Name: Chevron c/o CRA Reported: 09/02/10 at 09:14 AM

Group Number: 1209393

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank <u>MDL</u>	Report <u>Units</u>	LCS <u>%REC</u>	LCSD %REC	LCS/LCSD <u>Limits</u>	RPD	RPD Max
Batch number: D102431AA	Sample nur	mber(s): 60	71137-6071	139				
t-Amyl methyl ether	N.D.	0.5	ug/l	92		77-120		
Benzene	N.D.	0.5	ug/l	102		79-120		
t-Butyl alcohol	N.D.	2.	ug/l	97		62-129		
Ethylbenzene	N.D.	0.5	ug/l	106		79-120		
Methyl Tertiary Butyl Ether	N.D.	0.5	ug/l	90		76-120		
Toluene	N.D.	0.5	ug/l	105		79-120		
Xylene (Total)	N.D.	0.5	ug/l	109		80-120		
Batch number: 10242A20A	Sample num	mber(s): 60	71137-6071	139				
TPH-GRO N. CA water C6-C12	N.D.	50.	ug/l	100	91	75-135	10	30

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	MS <u>%REC</u>	MSD <u>%REC</u>	MS/MSD Limits	RPD	RPD <u>MAX</u>	BKG <u>Conc</u>	DUP <u>Conc</u>	DUP RPD	Dup RPD <u>Max</u>
Batch number: D102431AA	Sample	number(s)	: 6071137	-607113	39 UNSP	K: 6071139			
t-Amyl methyl ether	98	91	75-122	7	30				
Benzene	109	100	80-126	9	30				
t-Butyl alcohol	100	89	67-119	11	30				
Ethylbenzene	120	109	71-134	8	30				
Methyl Tertiary Butyl Ether	92	84	72-126	9	30				
Toluene	111	102	80-125	9	30				
Xylene (Total)	117	108	79-125	9	30				
Batch number: 10242A20A TPH-GRO N. CA water C6-C12	Sample 127	number(s)	: 6071137 63-154	-607113	9 UNSP	K: P066004			

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: UST VOCs by 8260	0B - Water		
Batch number: D102431AA			
Dibromofluoromethane 1,2-Di	Dichloroethane-d4 Tolue	ene-d8	4-Bromofluorobenzene

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Quality Control Summary

Client Name: Chevron c/o CRA Reported: 09/02/10 at 09:14 AM

Group Number: 1209393

			Surrogate	Quality	Control
6071137	99	95	99	98	· · · · · ·
6071138	98	93	99	103	
6071139	99	97	99	101	
Blank	99	97	99	100	
LCS	99	99	99	102	
MS	98	100	100	103	
MSD	97	97	100	102	
Limits: Analysis	80-116	77-113	80-113	78-113	
Analysis		O N. CA water C6-0		78-113	
Analysis Batch num	Name: TPH-GRO mber: 10242A20	O N. CA water C6-0		78-113	
Analysis Batch nur	Name: TPH-GRO mber: 10242A20 Trifluorotoluene-F	O N. CA water C6-0		78-113	
Analysis Batch nur 5071137 5071138	Name: TPH-GR(nber: 10242A2(Trifluorotoluene-F 94	O N. CA water C6-0		78-113	
Analysis Batch nur 071137 071138 071139	Name: TPH-GR(mber: 10242A2(Trifluorotoluene-F 94 109	O N. CA water C6-0		78-113	
Analysis	Name: TPH-GR(nber: 10242A2(Trifluorotoluene-F 94 109 109	O N. CA water C6-0		78-113	

Limits: 63-135

130

LCSD MŞ

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

RL	Reporting Limit	BMQL	Below Minimum Quantitation Level
N.D.	none detected	MPN	Most Probable Number
TNTC	Too Numerous To Count	CP Units	cobalt-chloroplatinate units
IU	International Units	NTU	nephelometric turbidity units
umhos/cm	micromhos/cm	ng	nanogram(s)
С	degrees Celsius	Ē	degrees Fahrenheit
meq	milliequivalents	lb.	pound(s)
g	gram(s)	kg	kilogram(s)
ug	microgram(s)	mg	milligram(s)
ml	milliliter(s)	Ĩ	liter(s)
m3	cubic meter(s)	ul	microliter(s)

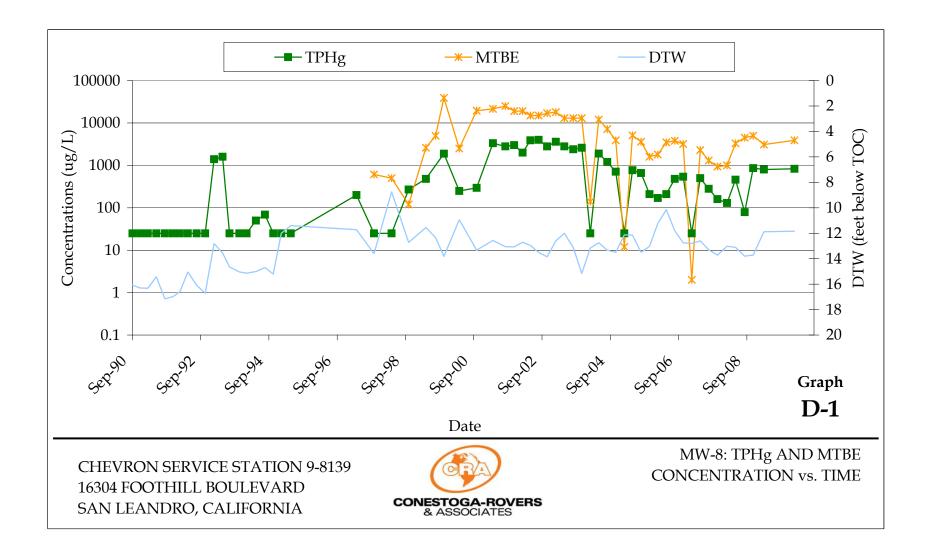
- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- J estimated value The result is \geq the Method Detection Limit (MDL) and < the Limit of Quantitation (LOQ).
- **ppm** parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.
- ppb parts per billion
- **Dry weight** basis Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture. All other results are reported on an as-received basis.
- U.S. EPA CLP Data Qualifiers:

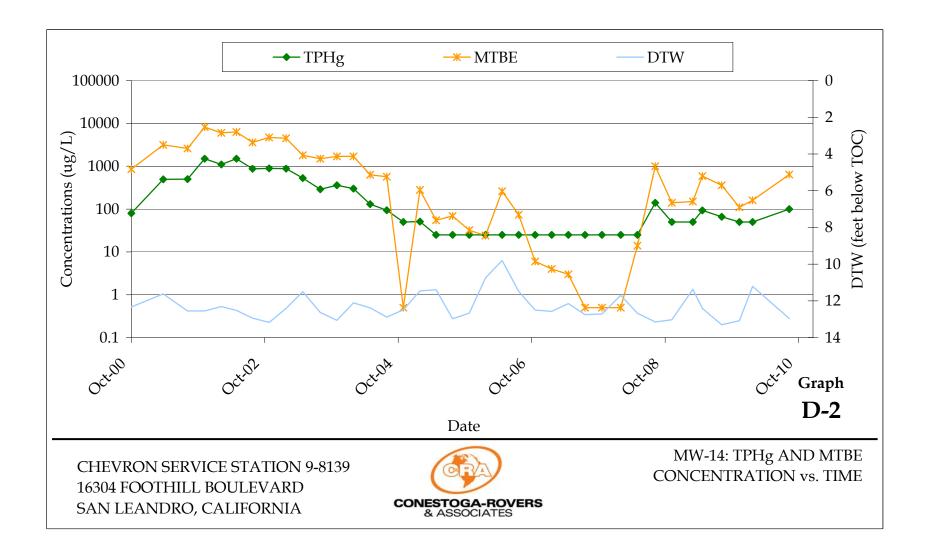
Organic Qualifiers

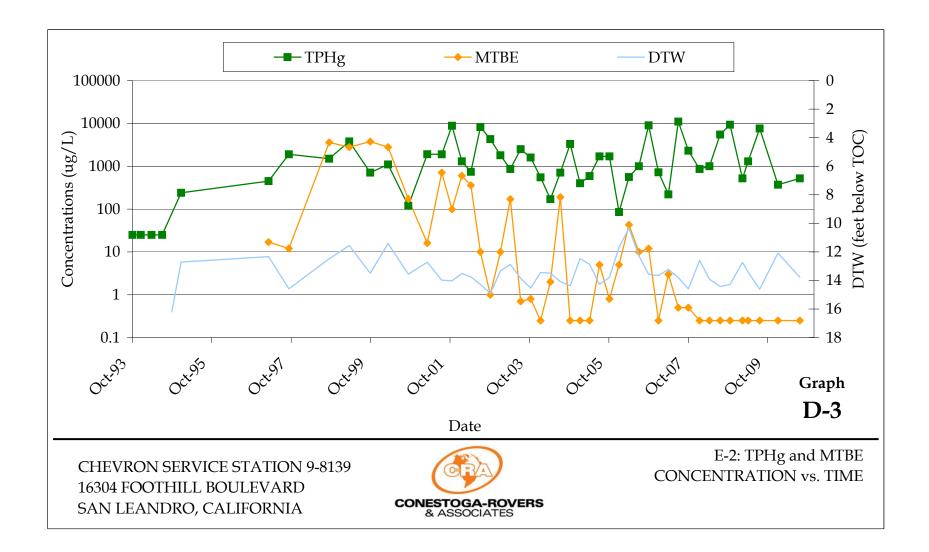
- A TIC is a possible aldol-condensation product
- B Analyte was also detected in the blank
- C Pesticide result confirmed by GC/MS
- D Compound quantitated on a diluted sample
- E Concentration exceeds the calibration range of the instrument
- Presumptive evidence of a compound (TICs only)
 Concentration difference between primary and confirmation columns >25%
- U Compound was not detected
- X,Y,Z Defined in case narrative

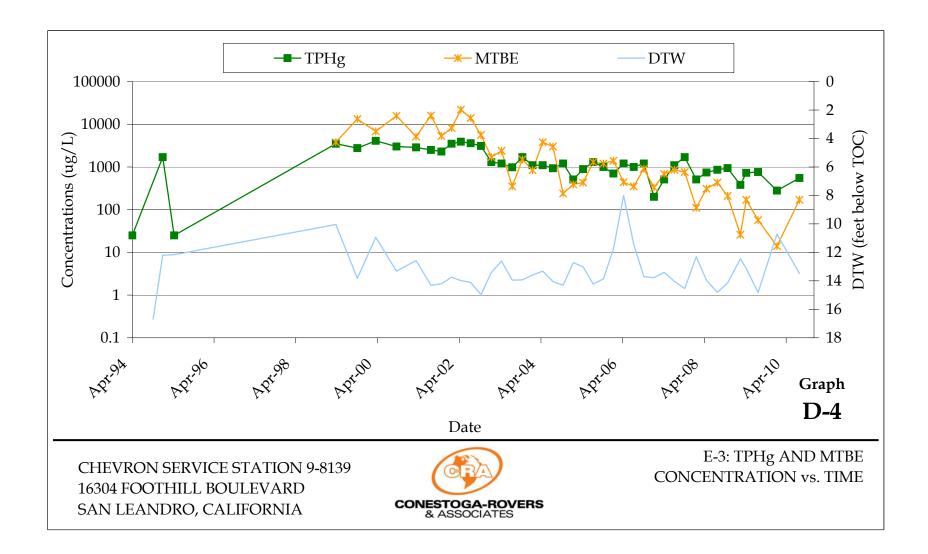
Inorganic Qualifiers

- B Value is <CRDL, but ≥IDL
- E Estimated due to interference
- M Duplicate injection precision not met
- N Spike sample not within control limits
- S Method of standard additions (MSA) used for calculation
- U Compound was not detected
- W Post digestion spike out of control limits
- * Duplicate analysis not within control limits
- + Correlation coefficient for MSA < 0.995


Analytical test results meet all requirements of NELAC unless otherwise noted under the individual analysis.


Measurement uncertainty values, as applicable, are available upon request.


Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

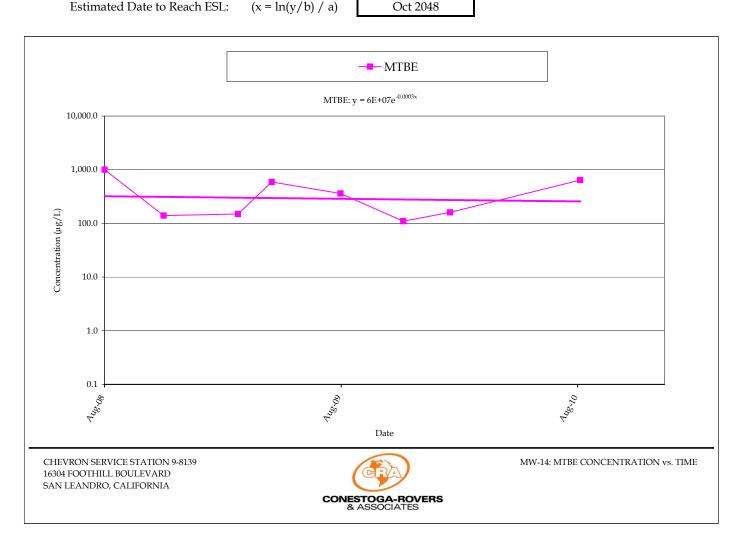

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions, and Lancaster hereby objects to any conflicting terms contained in any acceptance or order submitted by client. APPENDIX D

CONCENTRATION VERSUS TIME GRAPHS

APPENDIX E

TREND GRAPHS AND DEGRADATION CALCULATIONS

PREDICTED TIME TO REACH TPHg AND MTBE ESLs IN MW-8 CHEVRON STATION 9-8139 16304 FOOTHILL BOULEVARD SAN LEANDRO, CALIFORNIA


v	where: y = concentration in μg b = concentration at tir	5	= decay constant = time in days
n	Constituent	Total Petroleum Hydrocarbons as Gasoline (TPHg)	MTBE
	ESL: y	100	5
Cor	nstant: b	2.00E+18	6.00E+18
Con	nstant: a	-9.00E-04	-9.00E-04
Starting date for current	trend:	7/31/2007	7/31/2007
ılate			
Attenuation Half Life (years): (-ln(2)/a)/365.25	2.11	2.11
Estimated Date to Reac	h ESL: $(x = \ln(y/b) / a)$	Mar 2014	Aug 2026
0.000,001 100,000,001 10,000,001 1,000,001 0.000,001 0.000,001 0.000,001	TPHg: y = 2E+18e ^{-0.00}	MTBE: y = 6	
Ū 10.0			

PREDICTED TIME TO REACH MTBE ESL IN MW-14 CHEVRON STATION 9-8139 16304 FOOTHILL BOULEVARD SAN LEANDRO, CALIFORNIA

y =	$b e^{ax} ==>$	$x = \ln(y/b) / a$		
wh	here: $y = concentration in \mu$	ıg/L	a = decay constant	
	b = concentration at t	ime (x)	x = time in days	

MTBE

	Constituent	
Given		
ESL:	у	5
Constant:	b	6.00E+07
Constant:	а	-3.00E-04
Starting date for current trend:		8/19/2008
Calculate		
Attenuation Half Life (years):	(-ln(2)/a)/365.25	6.33
	(1 - 1 - (- 1))	0-1-2049

PREDICTED TIME TO REACH TPHg ESL IN E-2 CHEVRON STATION 9-8139 16304 FOOTHILL BOULEVARD SAN LEANDRO, CALIFORNIA

		$v = \text{concentration in } \mu_{g}$ v = concentration at tir		a = decay constant x = time in days	
n	ESL: Constant: Constant:	Constituent y b a	Total Petroleum Hydrocarbons as Gasoline (TPHg) <u>100</u> 7.00E+14 -7.00E-04]	
	ing date for current trend:		7/31/2007		
	enuation Half Life (years): mated Date to Reach ESL:	$(-\ln(2)/a)/365.25$ (x = ln(y/b) / a)	2.71 Sep 2015		
Concentra	0.0		PHg: y = 7E+14e ^{-0.0007x}		
			Š. Date	ng ng ng ng ng ng ng ng ng ng ng ng ng n	⁴ u ^{6,1} 0 .

PREDICTED TIME TO REACH TPHg AND MTBE ESLs IN E-3 CHEVRON STATION 9-8139 16304 FOOTHILL BOULEVARD SAN LEANDRO, CALIFORNIA

	y = concentration in μg o = concentration at tir		a = decay constant x = time in days
	Constituent	Total Petroleum Hydrocarbons as Gasoline (TPHg)	MTBE
ESL:	у	100	5
Constant:	b	3.00E+18	1.00E+45
Constant:	a	-9.00E-04	-2.30E-03
Starting date for current trend:		7/31/2007	7/31/2007
ate			
Attenuation Half Life (years):	(-ln(2)/a)/365.25	2.11	0.83
Estimated Date to Reach ESL:	$(x = \ln(y/b) / a)$	May 2015	Jun 2021
100,000.0	→ TPHg	- ■- M	ГВЕ
10,000.0			
			$y = 3E + 18e^{-0.0009x}$
0.000, 100, 100, 100, 100, 100, 100, 100			$y = 3E+18e^{-0.009x}$ $y = 1E+45e^{-0.025x}$

APPENDIX F

MASS CALCULATIONS

ESTIMATED TPHg MASS REMAINING IN GROUNDWATER CHEVRON STATION 9-8139 16304 FOOTHILL BOULEVARD SAN LEANDRO, CALIFORNIA

Impacted GW Thickness (ft)	Impacted GW Area (sq-ft)	Aquifer Volume (cu-ft)	Estimated Aquifer Porosity	Impacted GW Volume (gallons)	Representative TPHg Concentration (ug/l)	Total Dissolved TPHg Mass (kg)	Total Dissolved TPHg Volume (gallons)
10.0	6,500	65,000	0.4	194,480	500	0.368	0.132
				Total Es	timated Residual TPHg:	0.368	0.132

Notes:

Aquifer Volume = Impacted GW thickness x impacted GW area [excludes aquifer volume of greater impact]

Impacted GW Volume = Aquifer volume (cu-ft) x est. porosity (%) x 7.48 (gals/cu-ft)

Total Dissolved TPHg Mass = Impacted GW volume (gals) x 3.785 (l/gal) x Concentration (ug/l) / 1,000,000,000 (ug/kg)

Total Dissolved TPHg Volume = (Mass (kg) *2.205 lbs/kg) / 6.14 (lbs/gal)

Approximate density TPHg (gasoline) = 6.14 lb/gal

Abbreviations:

GW = Groundwater		
ft = feet		
sq-ft = square feet	Soil Type:	Porosity
cu-ft = cubic feet	Gravel	25-40
gals = gallons	Sand	25-50
kg = kilograms	Silt	35-50
lb = pound	Clay	40-70
ug/l = micrograms per liter		

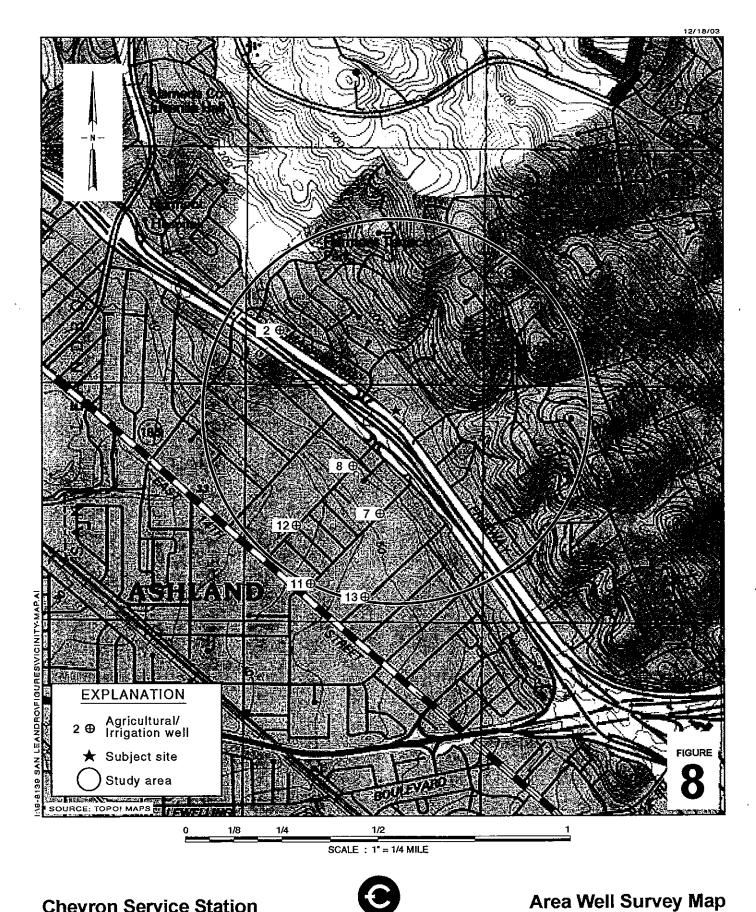
From: Groundwater; Freeze & Cherry, 1979, Prentice-Hall, Inc., pg. 37. (based on Davis, 1969)

ESTIMATED MTBE MASS REMAINING IN GROUNDWATER CHEVRON STATION 9-8139 16304 FOOTHILL BOULEVARD SAN LEANDRO, CALIFORNIA

Impacted GW Thickness (ft)	Impacted GW Area (sq-ft)	Aquifer Volume (cu-ft)	Estimated Aquifer Porosity	Impacted GW Volume (gallons)	Representative MTBE Concentration (ug/l)	Total Dissolved MTBE Mass (kg)	Total Dissolved MTBE Volume (gallons)
10.0	1,080	10,800	0.4	32,314	2,000	0.245	0.087
10.0	5,184	51,840	0.4	155,105	500	0.294	0.105
10.0	1,917	19,170	0.4	57,357	50	0.011	0.004
10.0	2,088	20,880	0.4	62,473	5	0.001	0.000
				Total Est	imated Residual MTBE:	0.550	0.196

Notes:

Aquifer Volume = Impacted GW thickness x impacted GW area [excludes aquifer volume of greater impact] Impacted GW Volume = Aquifer volume (cu-ft) x est. porosity (%) x 7.48 (gals/cu-ft) Total Dissolved MTBE Mass = Impacted GW volume (gals) x 3.785 (l/gal) x Concentration (ug/l) / 1,000,000,000 (ug/kg) Total Dissolved MTBE Volume = (Mass (kg) * 2.205 lbs/kg) / 6.19 (lbs/gal) Approximate density of MTBE = 6.19 lb/gal


Abbreviations:

GW = Groundwater		
ft = feet		
sq-ft = square feet	Soil Type:	Porosity
cu-ft = cubic feet	Gravel	25-40
gals = gallons	Sand	25-50
kg = kilograms	Silt	35-50
lb = pound	Clay	40-70
ug/l = micrograms per liter		

From: Groundwater; Freeze & Cherry, 1979, Prentice-Hall, Inc., pg. 37. (based on Davis, 1969)

APPENDIX G

WELL SURVEY INFORMATION

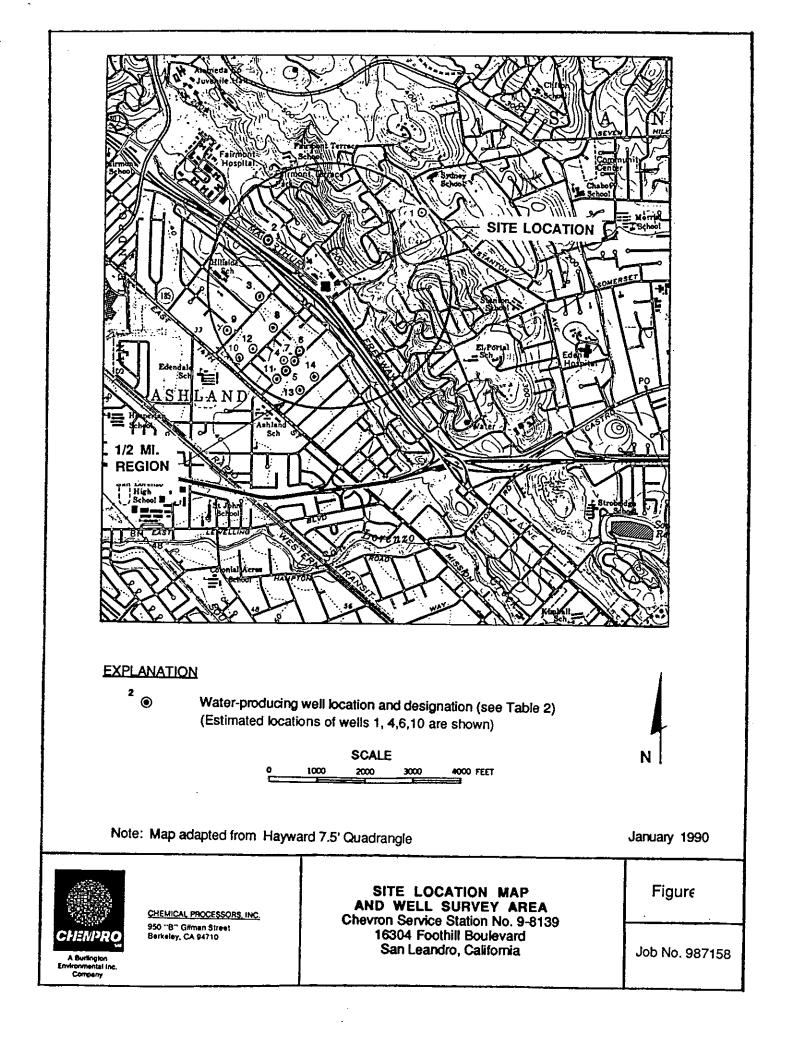
Chevron Service Station

16304 Foothill Boulevard San Leandro, California

CAMBRIA

1/2 Mile Radius

Table 3WATER SUPPLY WELLSChevron Service Station No. 9-8139


<u>ow</u>	F R	WELLLOCATION		WELL DESIGNATION		
1)	Hayward Municipal Water System	Julia Street, Castro Valley	3S/2W	5A	14	MUN
2)	UMEKI Nursery	16001 Foothill Blvd,San Leandro	3S/2W	5E	1	IRR
3)	U.S. Nursery	1767 162nd Ave., San Leandro	3S/2W	5E	2	ABN
4)	?	Foothill Blvd., San Leandro	3S/2W	5L	1	ABN
5)	Frank Martinez	1570 164th Ave., San Leandro	3S/2W	5L	2	ABN
6)	A.J. Pitcka	Gravel Rd., San Leandro	3S/2W	5L	3	IRR
7ί	Woodward	1595 164th Ave., San Leandro	3S/2W	5L	4	IRR
8)	A. Quilici	1700 163rd Ave., San Leandro	3S/2W	5L	5	IRR
9)	Protez	1480 162nd Ave., San Leandro	3S/2W	5M	2	ABN
10)	Medina	?, San Leandro	3S/2W	5N	1	DOM
11)	Selin	1414 164th Ave., San Leandro	3S/2W	5N	2	IRR
12)	Namura Nursery	1501 163rd Ave., San Leandro	3S/2W	5N	3	IRR
13)	S. Nieda	1537 165th Ave., San Leandro	3S/2W	5P	1	IRR
	Nelson Nursery	1601 165th Ave., San Leandro	3S/2W	5P	2	ABN

.

.

*USE:

ABN - Abandoned Well DOM - Domestic Well IRR - Irrigation Well MUN - Municipal Well

