CONESTOGA-ROVERS & ASSOCIATES

5900 Hollis Street, Suite A Emeryville, California 94608 Telephone: (510) 420-0700 www.CRAworld.com

Fax: (510) 420-9170

			TRANSMITTAL						
	A for the star of the								
DATE:	Februa	ry 5, 2009	R EFERENCE NO.:	240612 1784 150th Avenue, San Leandro					
			PROJECT NAME:						
То:	Jerry W	lickham							
	Alame	la County Health Car	e Services Agency	RECEIVED					
	1131 H	arbor Bay Parkway, Si	uite 250	2:17 pm, Feb 09, 2009					
	Alame	la, California 94502		Alameda County					
				Environmental Health					
Please find	d enclosed	l: Draft Driginals Prints	⊠ Final □ Other						
Sent via:		Mail Overnight Co	urier Same Day Cou	rier Tracker and ACHCSA ftp uploads					
QUAN	ΤΙΤΥ		DECONDEN						
1		Aquifer Pumping Te	DESCRIPTI st and Multi-Phase Extraction						
				1					
		· · · · · · · · · · · · · · · · · · ·							
				· · · · · · · · · · · · · · · · · · ·					
	equested (our Use		For Review and Comment						
COMMEI		options recording the							
(510) 420-3	3319.	esuons regarding the	coment of this document, p	lease contact Peter Schaefer at					
Copy to:	I	Denis Brown		1 000					
Complete	d by: _I	Peter Schaefer	Signed:	The Solfen					
Filing: C	Correspor	[Please Print] dence File							

Denis L. Brown Shell Oil Products US HSE - Environmental Services 20945 S. Wilmington Ave. Carson, CA 90810-1039 Tel (707) 865 0251 Fax (707) 865 2542 Email denis.l.brown@shell.com

Jerry Wickham Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Re: Shell-branded Service Station 1784 150th Avenue San Leandro, California SAP Code 136019 Incident No. 98996068 Agency Case No. RO0000367

Dear Mr. Wickham:

The attached document is provided for your review and comment. Upon information and belief, I declare, under penalty of perjury, that the information contained in the attached document is true and correct.

If you have any questions or concerns, please call me at (707) 865-0251.

Sincerely,

Denis L. Brown Project Manager

AQUIFER PUMPING TEST AND MULTI-PHASE EXTRACTION PILOT TEST REPORT

SHELL-BRANDED SERVICE STATION 1784 150TH AVENUE SAN LEANDRO, CALIFORNIA

 SAP CODE
 136019

 INCIDENT NO.
 98996068

 AGENCY NO.
 RO0000367

Prepared by: Conestoga-Rovers & Associates

5900 Hollis Street, Suite A Emeryville, California U.S.A. 94608

Office: (510) 420-0700 Fax: (510) 420-9170

web: http://www.CRAworld.com

FEBRUARY 5, 2009 REF. NO. 240612 (4) This report is printed on recycled paper.

Worldwide Engineering, Environmental, Construction, and IT Services

TABLE OF CONTENTS

1.0	INTRODU	JCTION1
2.0	SITE BAC	KGROUND
	2.1	GEOLOGY AND HYDROGEOLOGY2
	2.1.1	TOPOGRAPHY2
	2.1.2	GEOGRAPHY2
	2.1.3	GROUNDWATER
	2.2	EXTENT OF PETROLEUM HYDROCARBON IMPACT
	2.2.1	DELINEATION OF IMPACTED SOIL
	2.2.2	DELINEATION OF SMEAR ZONE
	2.2.3	HORIZONTAL DELINEATION OF IMPACTED GROUNDWATER
	2.2.4	VERTICAL DELINEATION OF IMPACTED GROUNDWATER
3.0	AQUIFER	PUMPING TEST4
	3.1	TEST EQUIPMENT AND PROCEDURES
	3.2	PERFORMANCE AND DATA COLLECTION
	3.3	AQUIFER ANALYSES
	3.4	CAPTURE ANALYSES
4.0	MULTI-P	HASE EXTRACTION PILOT TEST10
	4.1	TEST EQUIPMENT AND PROCEDURES
	4.2	PERFORMANCE AND DATA COLLECTION
	4.2.1	EW-1 AND EW-2 MPE STEP TEST
	4.2.2	COMBINED-WELL MPE CONSTANT-RATE TEST
	4.3	ANALYSES
	4.3.1	EW-1 AND EW-2 STEP TESTS
	4.3.2	COMBINED-WELL MPE CONSTANT-RATE TEST
	4.3.3	CAPTURE ANALYSES
5.0	CONCLU	SIONS AND RECOMMENDATIONS16

<u>Page</u>

LIST OF FIGURES (Following Text)

- FIGURE 1 VICINITY MAP
- FIGURE 2 SITE PLAN
- FIGURE 3 GEOLOGIC CROSS-SECTION A-A'
- FIGURE 4 GEOLOGIC CROSS-SECTION C-C'
- FIGURE 5 EW-1 DRAWDOWN VS. DISTANCE GRAPH
- FIGURE 6 EW-2 DRAWDOWN VS. DISTANCE GRAPH
- FIGURE 7 MASS REMOVAL RATE AND FLOW/VACUUM VS. TIME GRAPH

LIST OF TABLES (Following Text)

- TABLE 1WELL AND BORING DATA
- TABLE 2DRAWDOWN DATA AQUIFER PUMPING TEST
- TABLE 3GROUNDWATER PRODUCTION DATA AQUIFER
PUMPING TEST AND DUAL-PHASE EXTRACTION PILOT TEST
- TABLE 4DRAWDOWN AND INDUCED VACUUM DATA -
DUAL-PHASE EXTRACTION PILOT TEST
- TABLE 5VAPOR SAMPLE ANALYTICAL RESULTS -
DUAL-PHASE EXTRACTION PILOT TEST
- TABLE 6DUAL-PHASE EXTRACTION PERFORMANCE DATA -
DUAL-PHASE EXTRACTION PILOT TEST
- TABLE 7PILOT TEST VACUUM RADIUS OF INFLUENCE ESTIMATES -
DUAL-PHASE EXTRACTION PILOT TEST

LIST OF APPENDICES (Following Text)

APPENDIX A	REGULATORY CORRESPONDENCE
APPENDIX B	SITE HISTORY
APPENDIX C	FIELD DATA SHEETS
APPENDIX D	CERTIFIED ANALYTICAL REPORTS
APPENDIX E	AQUIFER ANALYSIS

Conestoga-Rovers & Associates (CRA), prepared this Aquifer Pumping Test and Multi-Phase Extraction Pilot Test Report on behalf of Equilon Enterprises LLC dba Shell Oil Products US (Shell) for the referenced site, as requested in Alameda County Health Care Services Agency's (ACHCSA) January 18, 2008 correspondence to Shell. The aquifer pumping test (APT) and multi-phase extraction (MPE) test were performed to provide information needed to evaluate the appropriate interim remedial option to address dissolved-phase petroleum hydrocarbons detected in groundwater. The APT and MPE test were performed in accordance with CRA's April 23, 2008 Pilot Test Work Plan approved by ACHCSA in a June 27, 2008 correspondence to Shell. Copies of the above-referenced ACHCSA letters are provided in Appendix A. The following sections discuss the site background, the local and regional hydrogeology, the extent of hydrocarbon impact, and the APT and MPE data and conclusions.

2.0 SITE BACKGROUND

The subject site is an active Shell-branded Service Station located on the southern side of 150th Avenue in a primarily residential area of San Leandro, California (Figure 1). The site layout includes three fuel underground storage tanks (USTs), two fuel dispenser islands, a former waste oil UST, and a station building (Figure 2). A summary of previous work performed at the site and additional background information is contained in Appendix B.

2.1 <u>GEOLOGY AND HYDROGEOLOGY</u>

2.1.1 <u>TOPOGRAPHY</u>

The site is at about 50 feet above mean sea level and is located at the base of the San Leandro Hills, which lie northeast of the site across Highway 580 (Figure 1). Local topography slopes westward.

2.1.2 <u>GEOGRAPHY</u>

Sediments in the vicinity are Quaternary alluvial deposits derived from Mesozoic marine and Pliocene and Mesozoic intrusive rocks of the Diablo Range. The site is located on the western edge of the Hayward Fault Zone. Previous investigations indicate that the site is underlain by unconsolidated sediments which are predominantly fine-grained, low permeability clay and silt, interbedded with moderate to high permeability sand and gravel lenses.

2.1.3 <u>GROUNDWATER</u>

Local drinking water is supplied by the East Bay Municipal Utility District, not groundwater. An area well survey conducted in 1992 identified 21 wells within ½ mile, but none of the wells was directly down gradient from the site. Groundwater depths generally range between 17 and 30 feet below grade (fbg) onsite and 4 to 20 fbg in off-site wells. Groundwater level measurements have not shown a consistent or reliable gradient or flow direction, although the predominant flow direction since 1999 has been to the northwest. In September 2008, depth to water measurements ranged from approximately 15 to 27 fbg and the general groundwater flow direction was to the northwest.

2.2 EXTENT OF PETROLEUM HYDROCARBON IMPACT

2.2.1 DELINEATION OF IMPACTED SOIL

Elevated concentrations of petroleum constituents in the vadose zone soils have been found beneath dispensers and product piping, in boring SB-23 from 5 fbg to groundwater, and at lower concentrations around the tank complex in borings B-19, B-21, and B-21. Some vadose zone impact is also apparent at offsite boring MW-12. The other borings installed both on and off of this site have not indicated vadose zone soil impact; rather, the soil impact observed is at the soil/water interface which is more representative of groundwater impact. Thus, impacted soil is adequately delineated and appears to be in close proximity to the fueling equipment at this site.

2.2.2 DELINEATION OF SMEAR ZONE

Elevated concentrations of petroleum constituents sorbed to the soil in the smear zone, at and below the water table, have generally been found between 25 and 30 fbg. The smear-zone contamination is presented in the site cross-sections (Figures 3 and 4).

2.2.3 HORIZONTAL DELINEATION OF IMPACTED GROUNDWATER

Horizontally, the first encountered groundwater at this site appears to be adequately defined by MW-5, BH-7, MW-4, MW-13, SB-13, BH-5, and SB-12 to the west, northwest, and north of the site. Further delineation is provided by MW-6, SB-17, SB-18, MW-3, and MW-10 to the southwest, south, southeast, and east.

2.2.4 VERTICAL DELINEATION OF IMPACTED GROUNDWATER

Vertical groundwater data from CPT-1 and CPT-2 onsite indicate that the majority of groundwater impact is concentrated at the shallower depths. There is an upward vertical gradient at this site which helps minimize vertical migration downward. Data from CPT-3, CPT-5, CPT-6, and MW-9 show that the deeper zone is not impacted to the northeast, southeast, southwest, or northwest of the site.

3.0 AQUIFER PUMPING TEST

As discussed, the APT was performed to evaluate remedial options to achieve migration control of dissolved hydrocarbon impacts from the site. CRA conducted the field activities for the APT from November 5th to November 7th, 2008. A site-specific health and safety plan was prepared for the pilot test and maintained on site throughout the test.

3.1 <u>TEST EQUIPMENT AND PROCEDURES</u>

At extraction wells EW-1 and EW-2, CRA performed separate step-drawdown tests followed by rising-head groundwater-recovery tests. The step-drawdown tests consisted of three steps to estimate the maximum sustainable groundwater extraction During the step-drawdown tests, the GWE rate was incrementally (GWE) rate. increased (stepped) after the groundwater level in the pumping well stabilizes. Flow steps were predicated on data collected from the previous step and the height of the remaining water column in the well. After the completion of a step-drawdown tests, a rising-head groundwater-recovery test was conducted. The purpose of rising-head groundwater-recovery tests is to obtain additional data to estimate the hydraulic conductivity and transmissivity of soil in the immediate site vicinity. A rising-head groundwater-recovery test was performed by measuring the rising groundwater level at regular intervals in the extraction and observation wells until the extraction well had recovered to 90% of its pre-pumping water level. The construction of the extraction and observation wells is presented in Table 1.

Groundwater was extracted from each well using an electric submersible pump. The following parameters were monitored and recorded during each test: elapsed time, GWE flow rate, volume extracted, well drawdown, and recharge. Except well recharge, this data was collected approximately every 30 minutes. Drawdown and recharge were calculated from pressure head measurements collected from the extraction and observation wells using MiniTroll[™] pressure transducer/data loggers. One day before the APT, the transducers were installed and programmed to record background static water levels. During the APT, water levels in the extraction and observation wells were checked manually with an electronic water level indicator to provide water level data for additional observation wells, confirm pressure transducer readings, and provide backup documentation. Test data was compiled on test-specific field data sheets.

The extracted groundwater is temporarily stored in an on-site Baker tank until a vacuum truck is coordinated to remove and transport water from the Baker tank to the Shell's Martinez Refinery in Martinez, California for recycling.

3.2 PERFORMANCE AND DATA COLLECTION

As previously discussed, CRA performed step-drawdown tests followed by rising-head groundwater recovery tests. The step-drawdown tests consisted of three steps to estimate the maximum sustainable GWE rate. The step tests for EW-1 and EW-2 are summarized below.

The step-drawdown test of EW-1 occurred on November 6, 2008. Extraction from EW-1 began at a GWE rate of approximately 2.0 gallon per minute (gpm), followed by 2.5 gpm and then 3.0 gpm. Prior to beginning the step test, approximately 11.24 feet of water column was measured at EW-1. At flow rates of 2.0, 2.5, and 3.0 gpm the water column was reduced to 8.09, 5.98, and 2.23 feet, respectively. The maximum observed drawdown in EW-1 was 9.01 feet and the water level recharged to 90% of static conditions in approximately 10 minutes. The observed drawdown is graphed relative to the distance from EW-1 in Figure 5.

Following the completion of the recovery test of EW-1 and observations wells on November 6th, a step-drawdown test was performed at EW-2 on November 7th. Extraction from EW-2 began at a GWE rate of approximately 1.0 gpm, followed by 1.5 gpm and then 2.5 gpm. Prior to beginning the step test, approximately 14.05 feet of water column was measured at EW-2. At flow rates of 1.0, 1.5, and 2.5 gpm the water column was reduced to 10.50, 10.41, and 6.24 feet, respectively. The maximum observed drawdown in EW-2 was 7.81 feet and the water level recharged to 90% of static conditions in approximately 6 minutes. The observed drawdown is graphed relative to the distance from EW-2 in Figure 6. The APT drawdown and recovery data is presented in Table 2. Copies of the data forms used during testing are included in Appendix C.

During the step-drawdown test of EW-1, approximately 1,112 gallons of groundwater were extracted resulting in the recovery of approximately 0.761 pound (lb) of total petroleum hydrocarbons as gasoline (TPHg), 0.012 lb of methyl tertiary butyl ether (MTBE), and 0.048 lb of benzene in the dissolved phase. During the step-drawdown test of EW-2, approximately 975 gallons of groundwater were extracted resulting in the recovery of approximately 0.555 lb of TPHg, 0.009 lb of MTBE, and 0.045 lb of benzene in the dissolved phase. The mass-removal calculations are based on laboratory analytical results from the December 19, 2008 quarterly samples. Extraction wells EW-1 and EW-2

were not sampled during this sampling event therefore the results of the nearest piezometer samples, P-1B and P-3B, were used. The groundwater production and mass removal data are presented in Table 3. The lab report is included in Appendix D.

3.3 AQUIFER ANALYSES

CRA analyzed the pump test results using AquiferTest for Windows® version 3.01 software from Waterloo Hydrogeologic, Inc. CRA used the AquiferTest program to analyze the drawdown and recovery data observed in onsite wells using the Cooper-Jacob Steptest method and the Theis Steptest method to estimate the transmissivity and hydraulic conductivity of this water-bearing zone. The program was used to analyze the post step-test recovery data from observation wells by the Theis Recovery method to estimate the transmissivity and hydraulic conductivity of this water-bearing zone. Appendix E presents the pump test analysis reports.

The Cooper-Jacob method assumes the following:

- 1. The aquifer is confined and has an apparent infinite extent;
- 2. The aquifer is homogenous, isotropic, and of uniform thickness over the area influenced by pumping;
- 3. The piezometric surface was horizontal prior to pumping;
- 4. The well is pumped step-wise or intermittently at a variable rate, or it pumped intermittently at a constant discharge rate;
- 5. The well is fully penetrating;
- 6. Water removed from storage is discharged instantaneously with decline in head;
- 7. The well diameter is small, so well storage is negligible; and
- 8. Flow toward the well is at an unsteady state.

The Theis Steptest method assumes the following:

- 1. The aquifer is confined and has an apparent infinite extent;
- 2. The aquifer is homogenous, isotropic, and of uniform thickness over the area influenced by pumping;
- 3. The piezometric surface was horizontal prior to pumping;
- 4. The well is pumped at a variable rate;
- 5. The well is fully penetrating;

- 6. Water removed from storage is discharged instantaneously with decline in head; and
- 7. The well diameter is small, so well storage is negligible.

Since the aquifer may not be of uniform thickness, and the wells may not fully penetrate the water-bearing zone, the assumptions are not completely satisfied, and the results should be considered approximate.

The Theis Recovery method assumes the following:

- 1. The aquifer is confined and has an apparent infinite extent;
- 2. The aquifer is homogenous, isotropic, and of uniform thickness over the area influenced by pumping;
- 3. The piezometric surface was horizontal prior to pumping;
- 4. The well is fully penetrating and pumped at a constant rate;
- 5. Water removed from storage is discharged instantaneously with decline in head; and
- 6. The well diameter is small, so well storage is negligible.

These assumptions are similar to those made for the Cooper-Jacob and Theis Steptest analyses discussed above, and similarly, may not be entirely fulfilled by site conditions. Consequently, the results should be considered approximate.

From both extraction wells, the maximum observed well yield was approximately 2.5 gpm. At 2.5 gpm the water level stabilized in EW-1 after 485 minutes of pumping and in EW-2 after 450 minutes of pumping.

While extracting from EW-1, drawdown was observed in EW-1 and observation wells EW-2, P-1A, P-1B, P-2A, P-4A, P-4B, MW-1A, MW-1B, and MW-12. While extracting from EW-2, drawdown was observed in EW-2 and observation wells P-1A, P-1B, P-2A, P-2B, P-3A, P-3B, P-4A, P-4B, MW-11, MW-2B, and MW-12. Any drawdown observed in other observation wells was negligible compared with the natural background groundwater fluctuation.

The EW-1 step-test water-level drawdown and recovery data from observation wells P-1A, P-1B, and P-2A and the EW-2 step-test water-level drawdown and recovery data from observation wells P-1A, P-1B, and P-2A was deemed sufficient for formal analysis and validation of the capture zone model. The piezometer well (P wells) data was chosen for analysis over the monitoring wells (MW) data because the piezometer wells were installed with screens targeting the smear zone.

CONESTOGA-ROVERS & ASSOCIATES

Pumping	Analysis	Transmissivity	Conductivity (ft/s)		
Test	Method	(ft²/s)			
Ston	Cooper-Jacob	4 64F-03	3.50E-04		
Step	Theis	2.84E-03	2.14E-04		
Recovery	Theis	3.68E-03	2.77E-04		
Step	Cooper-Jacob	3.16E-03	2.23E-04		
Step	Theis	4.82E-03	3.39E-04		
Recovery	Theis	4.35E-03	3.07E-04		
Average Values for	3.72E-03	2.80E-04			
Average Values for	4.11E-03 2.90E-04				
	Test Step Step Recovery Step Step Recovery Average Values for	TestMethodStepCooper-JacobStepTheisRecoveryTheisStepCooper-JacobStepTheis	TestMethod(ft²/s)StepCooper-Jacob4.64E-03StepTheis2.84E-03RecoveryTheis3.68E-03StepCooper-Jacob3.16E-03StepTheis4.82E-03RecoveryTheis4.35E-03RecoveryTheis3.72E-03		

The table below presents the results of the analyses of the step and recovery tests.

 $ft^2/s = feet squared per second$

ft/s = feet per second

The Cooper-Jacob Steptest, Theis Steptest, and Theis Recovery Analysis of both extraction wells are consistent with the hydraulic conductivity of clay (Todd, 1980). Historical geological investigation has identified that the site is underlain by unconsolidated sediments which are predominantly fine-grained, low permeability clay and silt, interbedded with moderate to high permeability sand and gravel lenses.

3.4 <u>CAPTURE ANALYSES</u>

Using the aquifer pump test data and analysis results, the theoretical capture zone created by continuous and infinite extraction was calculated using the following equations (Javendal & Tsang, Ground Water, Vol. 24, No. 5, p616-625, 1986):

$Y_{MAX.}$ Upgradii	ENT	= Q/(Bu)
Yperpendicula	R WIDTH TO PUMPING WELL	= Q/(2Bu)
YSTAGNATION P	JINT	= Q/(2*pi*Bu)
where;	Q = flow rate	
	K = hydraulic conductivity	
	B = aquifer thickness	
	I = gradient	
	u = KI	

The estimated capture zones from the APT are presented in Appendix E and summarized below. The flow rate used in this conceptual model is considered the long-term aquifer yield. The aquifer thickness and groundwater gradient were calculated from the most recent groundwater monitoring event data. This capture zone model assumes infinitely long and continuous extraction. CRA believes this conceptual model is appropriate for the site and for evaluating the appropriate remedial option.

Results:	EW-1	<i>EW-2</i>
Maximum up-gradient width of capture zone (feet)	188	166
Capture zone perpendicular to pumping well (feet)	94	83
Distance to down-gradient stagnation point (feet)	30	26
Optimal distance between two wells on a line (feet)	60	53
Optimal distance between three or more wells on a line (feet)	75	66

4.0 MULTI-PHASE EXTRACTION PILOT TEST

The MPE pilot test was performed to provide information needed to evaluate remedial options to remove hydrocarbons that are apparently sorbed into the soil matrix beneath the site. From November 11th through November 19th, 2008, CRA performed a MPE pilot test at the referenced site. With MPE, both groundwater and soil vapors are extracted. Groundwater is extracted using a submersible pump installed in the extraction well. Soil vapors are extracted by applying a vacuum directly to the well casing. MPE was evaluated as a possible remedial technology because previous assessments demonstrated that petroleum hydrocarbons are likely present below the water table and soil vapor extraction without water table depression would not be sufficient to remove these hydrocarbons.

4.1 TEST EQUIPMENT AND PROCEDURES

At extraction wells EW-1 and EW-2, CRA performed individual-well step tests followed by a combined-well constant-rate test. As during the APT, groundwater was extracted from each well using an electric submersible pump. The initial GWE rate for the respective well was based on the maximum sustainable yield determined during the aquifer pump test. A vacuum was applied to the extraction well to remove hydrocarbon-bearing soil vapor. During the step test, the applied extraction-well casing-vacuum was systematically increased (steps) to determine the optimum casing vacuum that would yield the highest obtainable mass-removal rate. After each extraction well was tested individually, a combined-well constant rate test using both wells was performed for a 48-hour period. The combined-well constant rate test was performed with the casing vacuum set as close to optimum as the equipment allow with extraction occurring from two wells.

Critical components for MPE testing included an extraction device, water storage, and a vapor abatement device. A mobile unit equipped with a liquid-ring pump as a vacuum source and a thermal oxidizer to abate vapors prior to discharge to the atmosphere was used for testing. The mobile unit was powered by a diesel-fired generator and propane was used as an auxiliary fuel for the thermal oxidizer. The mobile unit was equipped with a vapor-liquid separator to remove entrained groundwater from the vapor stream. Groundwater was pumped to the temporary storage tank for storage during the test.

Following the APT, the submersible pressure transducers remained in the piezometers and other observation wells to continue gathering water table elevation data prior to and during MPE testing. During the test, CRA measured parameters such as elapsed time, GWE flow rate, groundwater volume extracted, applied wellhead vacuum, hydrocarbon concentration in extracted vapor, extracted vapor flow rate, and induced vacuum at the piezometers and other observation wells. A Horiba gas analyzer, calibrated to isobutylene, was used to field measure hydrocarbon vapor concentrations from the extraction wells. A Thomas Industries vacuum pump was used to collect soil vapor samples in one-liter Tedlar bags for laboratory analysis to compare with field readings. A TSI thermoanemometer was used to measure vapor extraction airflow rates and air temperature. A manometer was used to measure the vacuum applied at the extraction wellheads and induced in the observation wells. Water level was checked manually at the observation wells periodically with an electronic water level indicator to confirm pressure transducer readings and provide backup documentation. Test data was compiled on test-specific field data sheets.

Operational data parameters were initially collected every 30 minutes during the individual-well step testing, then in 60 minute intervals during the combined-well constant-rate testing. While the equipment operated continuously during the 48 hour constant rate testing period, data parameters were only monitored during typical working hours (approximately 7 am to 5 pm).

4.2 <u>PERFORMANCE AND DATA COLLECTION</u>

As previously discussed, CRA performed a MPE step test for each extraction well followed by a combined-well constant-rate test. The step tests for EW-1, EW-2 and the combined-well constant-rate test are summarized below. The data for the tests can be found in Tables 4 through 7.

4.2.1 <u>EW-1 AND EW-2 MPE STEP TEST</u>

On November 10th, 2008, prior to beginning the test, depth to water measurements were collected from extraction wells and observation wells. The observation wells were used to monitor water table drawdown and induced vacuum during the test. Observation well drawdown was measured every minute for the duration of the test using submersible pressure transducers and field measurements were collected every half hour. A summary of the groundwater drawdown and induced vacuum data is presented in Table 4.

CRA performed step tests on EW-1 on November 11th and on EW-2 on November 12th to determine the optimal settings to attain the highest vapor phase mass removal rate. Soil

vapor samples were collected in Tedlar bags at the influent sample port of the thermal oxidizer during the pilot test. The soil vapor samples were analyzed for TPHg, benzene, toluene, ethylbenzene, and xylenes (BTEX), and MTBE at a California certified laboratory. Soil vapor analytical reports are included in Appendix D and summarized in Table 5.

Throughout the test, CRA measured the cumulative groundwater extraction volume, the applied vacuum at the manifold and well casing, air flow rates on the influent side and pressure (discharge) side of the blower, vapor concentrations at the oxidizer inlet and outlet, induced vacuum at the observation wells, and water levels in the observation wells.

Copies of the data forms used during testing are included in Appendix C. The groundwater extraction and mass removal data is presented in Table 3 and the soil vapor extraction and mass removal data is presented in Table 6.

4.2.2 <u>COMBINED-WELL MPE CONSTANT-RATE TEST</u>

On November 13th, 2008, CRA began the combined-well MPE constant-rate test extracting from EW-1 and EW-2.

CRA was unable to continue testing when the onsite generator shut off due to a shortage of fuel. The generator was refueled and restarted, but shut off shortly after due to additional mechanical malfunctions. CRA postponed further testing to the following week in order to test the system continuously for 48 hours.

On November 17th, 2008, CRA restarted the combined-well MPE constant-rate test. CRA performed the constant rate test, to determine the feasibility of a vapor phase remediation system.

Throughout the test, CRA measured the cumulative groundwater extraction volume; the applied vacuum at the manifold and well casing; air flow rates on the influent, from both EW-1 and EW-2, and the pressure (discharge) side of the blower; vapor concentrations at the oxidizer inlet (including EW-1 and EW-2) and outlet; induced vacuum at the observation wells; and water levels in the observation wells.

Observation well drawdown was measured every minute for the duration of the test using submersible pressure transducers. The water level was checked manually at the observation wells periodically with an electronic water level indicator to confirm pressure transducer readings and provide backup documentation. Induced vacuum measurements were periodically collected at the observation wells. A summary of the groundwater drawdown and induced vacuum data is presented in Table 4.

Soil vapor samples were collected in Tedlar bags from the oxidizer influent sample port, EW-1, and EW-2. The soil vapor samples were analyzed for TPHg, BTEX, and MTBE at a California certified laboratory. Soil vapor analytical results are included in Appendix D and summarized in Table 5.

The groundwater extraction and mass removal data is presented in Table 3 and the soil vapor extraction and mass removal data is presented in Table 6.

4.3 <u>ANALYSES</u>

CRA analyzed the MPE pilot test data to determine the feasibility of MPE as an appropriate interim remedial option to address dissolved-phase petroleum hydrocarbons detected in groundwater at the site.

4.3.1 <u>EW-1 AND EW-2 STEP TESTS</u>

Soil vapor well flow rates measured during the EW-1 step test varied from 18.1 to 33.6 standard cubic feet per minute (scfm). The soil vapor extraction rate was generally constant from the beginning to the end of the step test period, with an average flow of approximately 24.4 scfm. The applied casing vacuum steps were 50, 75, 100, and 150 inches of water column (in. H2O) during the EW-1 step test.

Soil vapor well flow rates measured during the EW-2 step test varied from 11.9 to 35.0 scfm. The soil vapor extraction rate generally increased from the beginning to the end of the step test, with an average flow of approximately 24.3 scfm. The applied casing vacuum steps were 50, 100, 150, and 200 inches H2O during the EW-2 step test.

Based on the observed flow rates, temperature, pressure, and laboratory analytical data, an estimated 4.25 lb of TPHg was removed in soil vapor at an average mass removal rate of 13.6 lb/day during the EW-1 step test. Following the EW-1 step test and before the EW-2 step test, the mobile unit was allowed to continue extraction from EW-1 overnight, removing an estimated additional 9.4 lb of vapor-phase TPHg from EW-1. An estimated 3.4 lb of vapor-phase TPHg was removed during the EW-2 step test at an average mass removal rate of 11.9 lb/day. During the EW-1 and EW-2 step-test activities

approximately 17.1 lb of vapor-phase TPHg was removed. The flow, applied casing vacuum, and mass removal rate are graphed over time in Figure 7.

During the step tests, CRA periodically measured vacuum at nearby observation wells. During the EW-1 step test induced vacuum was measured in only one well, MW-1A, at 6.9 in. H2O. During the EW-2 step test induced vacuum was measured at two observation wells, MW-11 and MW-2B, at 20.9 and 0.5 inches H2O, respectively.

During the step tests the drawdown observed in the observation wells ranged between negligible and 1.5 feet. The limited drawdown did not result in the water levels falling to the top of the smear zone at 25 fbg in observation wells. The observed drawdown during the step tests is presented on Figures 5 and 6.

During the EW-1 and EW-2 step-test activities 7,494 gallons of groundwater were extracted resulting in the recovery of approximately 4.92 lb of TPHg, 0.078 lb of MTBE, and 0.334 lb of benzene in the dissolved phase. As calculated for the mass-removal during the APT, the laboratory results of December 19, 2008 samples from P-1B and P-3B were used in the calculations. The groundwater production and mass removal data are presented in Table 3.

4.3.2 COMBINED-WELL MPE CONSTANT-RATE TEST

The soil-vapor combined-well flow rate measured during the test varied from 43.3 to 51.7 scfm. The soil-vapor extraction flow rate was generally constant from the beginning to the end of the constant-rate test period, with an average flow of approximately 47.7 scfm. The applied casing vacuum was set to approximately 220 inches H2O at EW-1 and 200 inches H2O at EW-2.

Based on the observed flow rates, temperature, pressure, and laboratory analytical data, an estimated 58.9 lb of TPHg was removed in soil vapor at an average mass removal rate of 31.6 lb/day during the combined-well constant-rate test.

Theoretical effective radii of influence (ROI) were calculated, and are presented in Table 7, using the Johnson-Kemblowski equation. The effective radius of influence is typically defined as an observed vacuum that is greater than or equal to 1% of the vacuum applied to the extraction well. Using this equation, the EW-1 vacuum ROI was estimated to be 32.2 feet and the EW-2 vacuum ROI was estimated to be between 19.5 and 21.8 feet.

During the combined-well constant-rate test the drawdown observed in the observation wells ranged between negligible and 2.2 feet. The limited drawdown resulted in the water level barely reaching the very top of the smear zone at 25 fbg in some observation wells.

During the combined-well constant-rate test 29,631 gallons of groundwater were extracted resulting in the recovery of approximately 18.7 lb of TPHg, 0.394 lb of MTBE, and 1.35 lb of benzene in the dissolved phase. As calculated for the mass-removal during the APT and MPE step tests, the laboratory results of December 19, 2008 samples from P-1B and P-3B were used in the calculations. The groundwater production and mass removal data are presented in Table 3.

4.3.3 <u>CAPTURE ANALYSES</u>

Using the aquifer pump test data and analysis results, the theoretical capture zone created by continuous and infinite extraction was calculated using the following equations (Javendal & Tsang, Ground Water, Vol. 24, No. 5, p616-625, 1986):

$Y_{MAX. UPGRADIE}$	INT	= Q/(Bu)
YPERPENDICULA	R WIDTH TO PUMPING WELL	= Q/(2Bu)
Y _{STAGNATION} PC	DINT	= Q/(2*pi*Bu)
where;	Q = flow rate	
	K = hydraulic conductivity	
	B = aquifer thickness	
	I = gradient	
	u = KI	

This estimated capture zone from the DPE tests are presented in Appendix E and summarized below. The flow rate used in this conceptual model is considered the long-term aquifer yield. The aquifer thickness and groundwater gradient were calculated from the most recent groundwater monitoring event data. This capture zone model assumes infinitely long and continuous extraction. CRA believes this conceptual model is appropriate for the site and for evaluating the appropriate remedial option.

Results:	EW-1	<i>EW-2</i>
Max up-gradient width of capture zone (feet)	276	401
Capture zone perpendicular to pumping well (feet)	138	201
Distance to down-gradient stagnation point (feet)	44	64
Optimal distance between two wells on a line (feet)	88	128
Optimal distance between three or more wells on a line (feet)	110	160

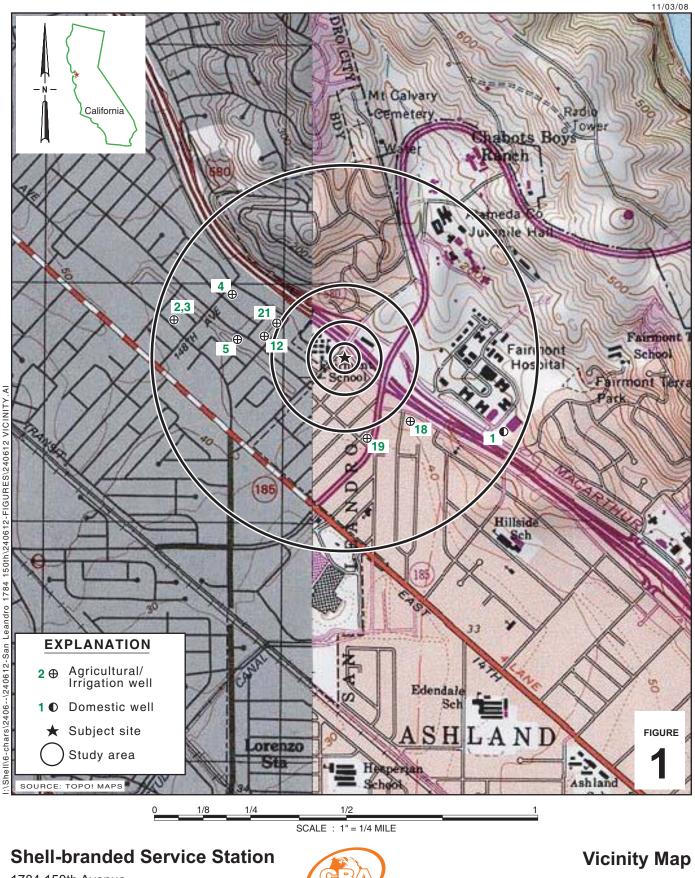
5.0 CONCLUSIONS AND RECOMMENDATIONS

The following conclusions have been made relating to the APT and DPE pilot-test activities conducted between November 5 and 19, 2008:

- The groundwater capture zone, with and without MPE, is quite good indicating that dissolved-phase plume migration can be controlled through groundwater extraction;
- The pilot test groundwater production rate was high, which is not favorable for DPE;
- The dual-phase extraction pilot test activities did not effectively dewater the smear zone in and around the extraction wells; and
- The vapor-phase hydrocarbon concentrations and mass removal rate dropped significantly during the test, but this is likely due to the limited volume of smear zone that was dewatered.

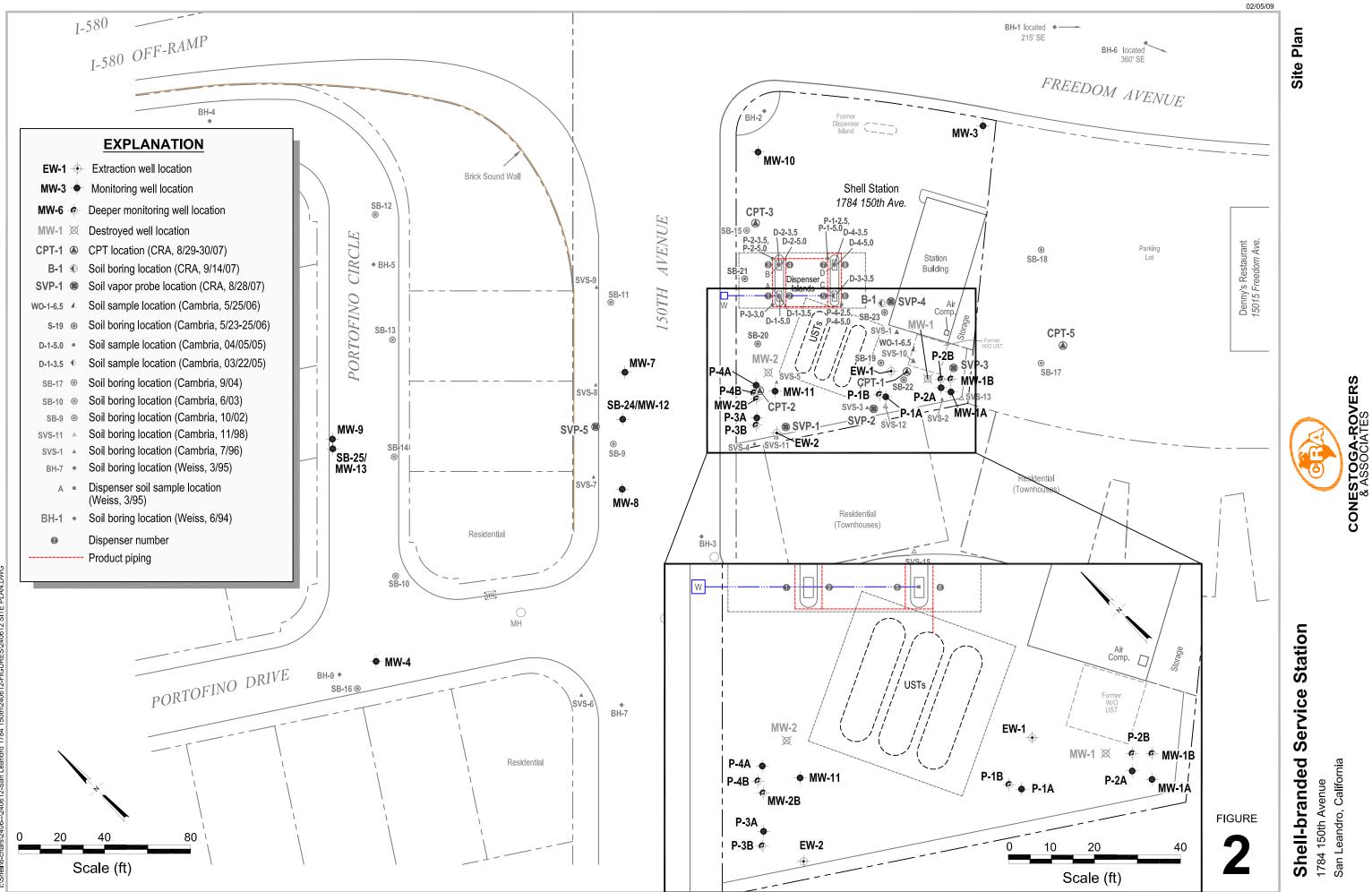
These conclusions suggest that GWE can control dissolved-phase plume migration; and DPE will not be an effective method for removing the hydrocarbon mass remaining in the saturated soils in the source area.

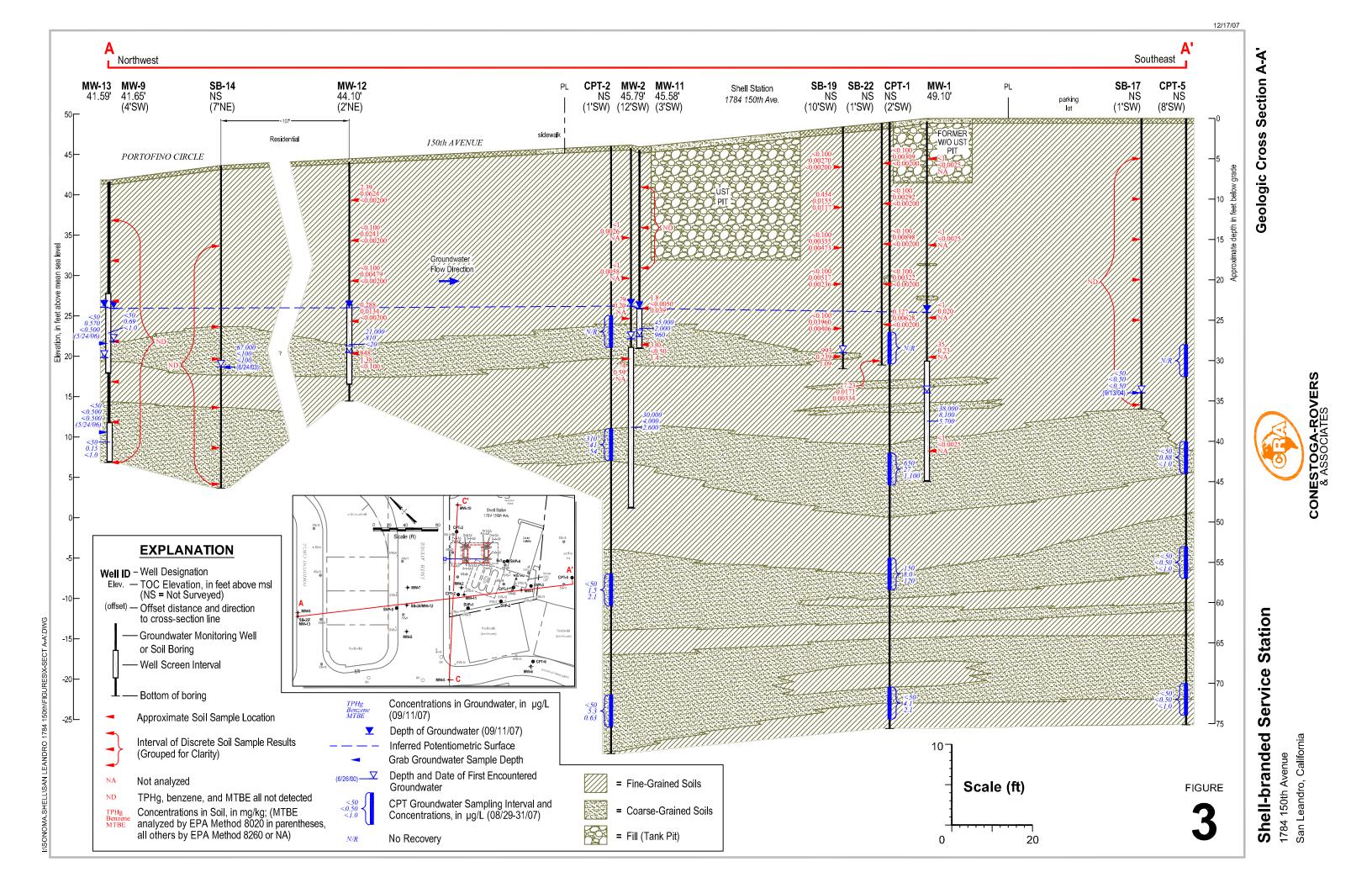
All of Which is Respectfully Submitted, CONESTOGA-ROVERS & ASSOCIATES

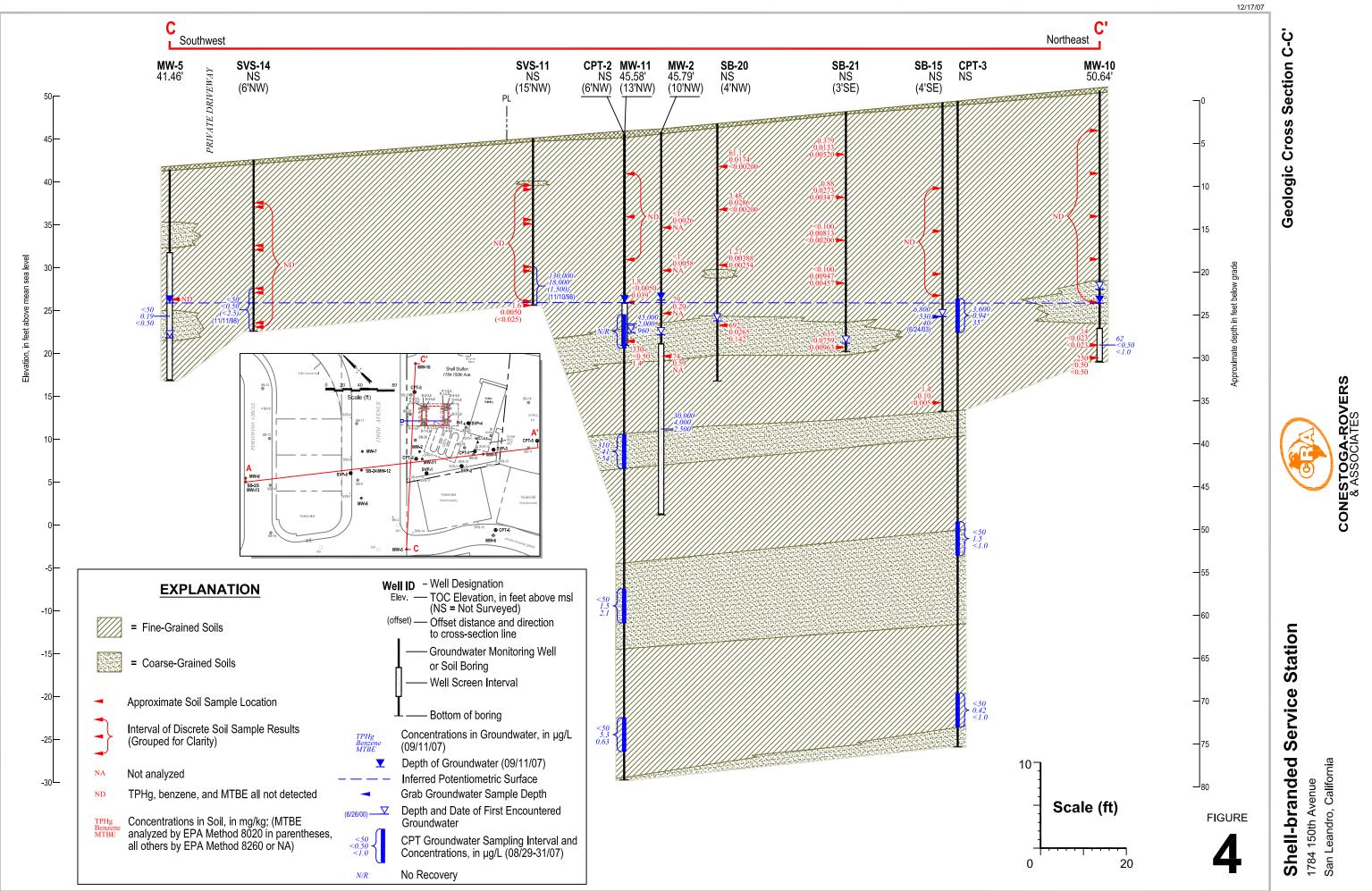

Peter Schaefer, CHG, CEG

l

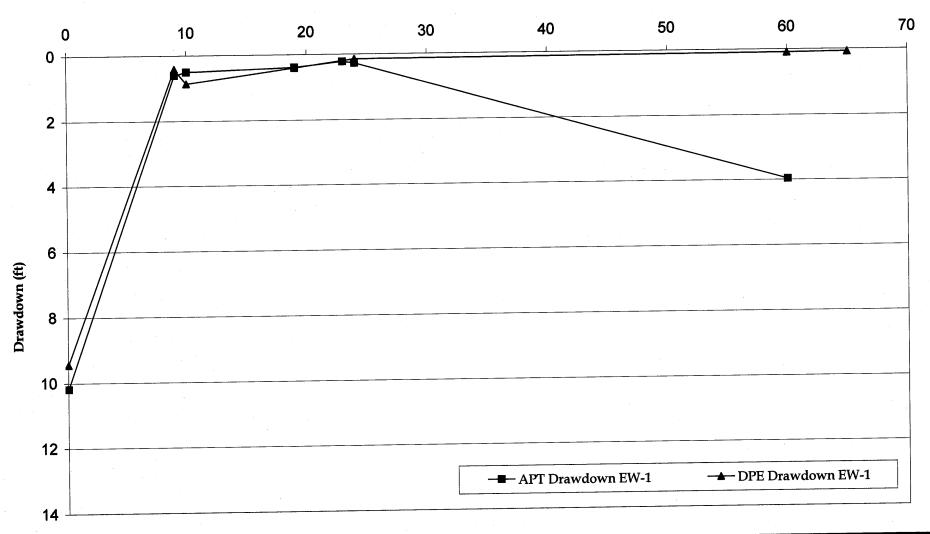
Trey Jackson


FIGURES



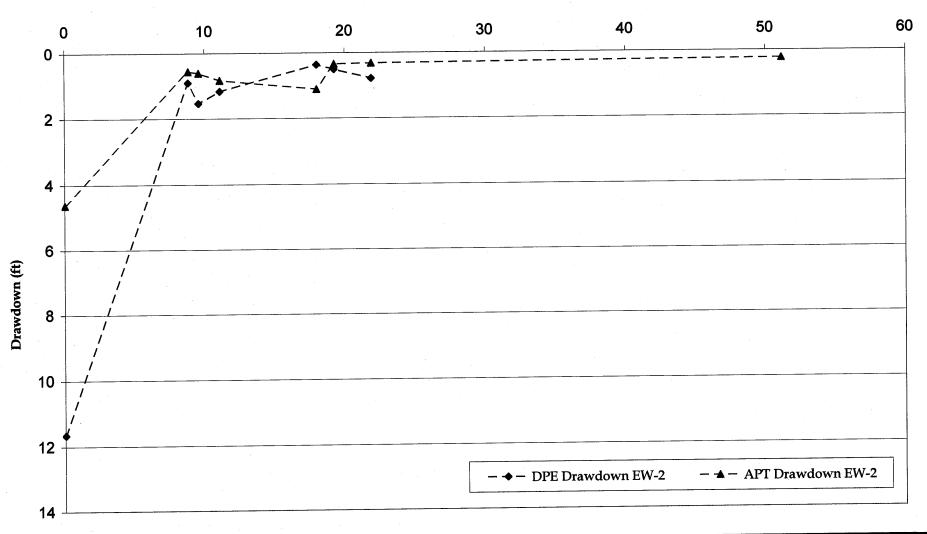

1784 150th Avenue

San Leandro, California



I:SONOMA SHELLISAN LEANDRO 1784 150th/FIGURESIX-SECT C-C' DW

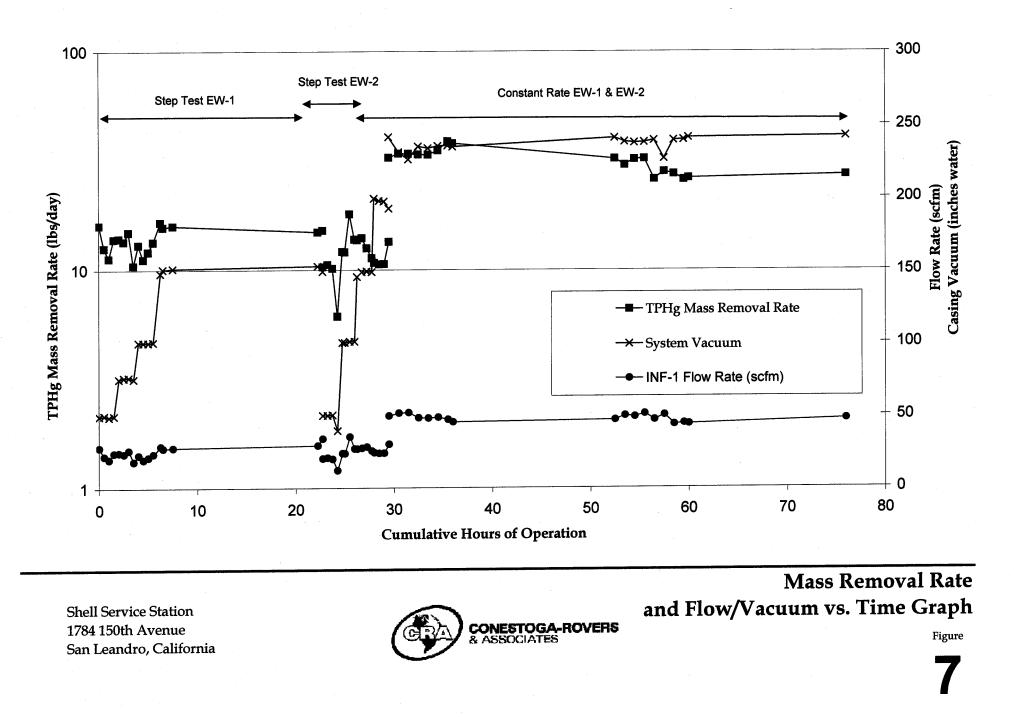
Distance From Extraction Well (ft)


EW-1 Drawdown vs. Distance Graph

Shell Service Station 1784 150th Avenue San Leandro, California

Figure

Distance From Extraction Well (ft)



EW-2 Drawdown vs. Distance Graph

Shell Service Station 1784 150th Avenue San Leandro, California

Figure

CRA 240612(4)

TABLES

Page 1 of 3

TABLE 1

WELL AND BORING DATA SHELL-BRANDED SERVICE STATION 1784 150TH STREET, SAN LEANDRO, CALIFORNIA

Mall on Doning	Doning	Comulation	TOC Elevation	Total Douth	Sample Interval	GW Depth First	GW Depth Static	Screen Diameter	Screen Depth	Screen Depth	
Well or Boring ID	вотіпд Туре	Completion Date	(ft msl)	Depth (fbg)	Interout (ft)	(fbg)	(fbg)	(In)	Беріт Тор	Bottom	Comments
MW-1 (BH-A)	HSA	3/5/1986	49.10	45.0	5'	33.5		4	30.0	45.0	
MW-2 (BH-B)	HSA	2/3/1988	45.79	45.0	5'	24.00		4	25.0	45.0	
MW-3 (BH-C)	HSA	2/4/1988	51.92	42.0	5'	29.00		4	22.0	42.0	
MW-4 (BH-10)	HSA	3/2/1991	40.45	30.0	5'	23.0		2	5.0	27.0	grouted bottom from 27 to 30 fbg
MW-5	HSA	10/23/1997	41.46	25.0	5'	20.0		2	10.0	25.0	
MW-6	HSA	10/23/1997	41.50	20.0	5'	8.0		2	5.0	20.0	
MW-7	HSA	3/14/1998	44.45	32.0	cont	24.5		2	22.0	27.0	
MW-8	HSA	10/3/1998	43.27	27.5	cont	21.0		2	19.0	24.0	
MW-9	HSA	11/18/1999	41.65	35.0	cont	20.0		2	30.0	35.0	
MW-10	HSA	11/19/1999	50.64	32.0	cont	23.5		2	28.0	32.0	
MW-11	HSA	11/19/1999	45.58	25.0	cont	23.5		2	15.0	25.0	
MW-12 (SB-24)	HSA	2/24/2002	44.10	30.0	cont	24.0		2	18.0	28.0	
MW-13 (SB-25)	HSA	5/23/2002	41.59	35	cont	22		2	14	24	hydropunch 20-24' & 31-35'
EW-1	HSA	9/2/2004	48.44	36	cont	33		4	21	36	
EW-2	HSA	9/3/2004	44.52	34	cont	20		4	18	33	
P-1A	HSA	9/7/2004	47.74	27	none	NA		4	12	27	
P-2A	HSA	9/1/2004	47.65	27	cont	NA		4	12	27	
P-3A	HSA	9/7/2004	48.81	23	none	NA		4	8	23	
P-4A	HSA	9/26/2004	49.02	23	none	NA		4	8	23	
P-1B	HSA	9/3/2004	44.56	36	cont	34		4	26	36	
P-2B	HSA	9/3/2004	44.62	36	cont	NA		4	26	36	
P-3B	HSA	9/4/2004	45.00	33	cont	NA		4	23	33	
P-4B	HSA	9/4/2004	44.93	33	cont	NA		4	23	33	
MW-1A	HSA	9/1/2004	48.99	27	cont	NA		4	17	27	
	11011	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			5' to 40',						
MW-1B	HSA	10/27/2004	49.07	50	cont 40'-50'	NA		4	45	50	
					5' to 35',						
MW-2B	HSA	10/27/2004	44.96	50	cont 35'-50'	NA		4	45	50	
BH-1	HSA	6/5/1990	NA	25.5	5'	24.0	NA	NA	NA	NA	hydropunch to 27.3'
BH-2	HSA	6/5/1990	NA	34.0	5'	34.0	NA	NA	NA	NA	hydropunch 23-27'; no water

CRA 240612-Master

TABLE 1

WELL AND BORING DATA SHELL-BRANDED SERVICE STATION 1784 150TH STREET, SAN LEANDRO, CALIFORNIA

			TOC	Total	Sample	GW Depth	GW Depth		Screen		
Well or Boring	-	Completion		Depth	Interval	First	Static	Diameter	Depth	Screen Depth	
ID	Type	Date	(ft msl)	(fbg)	(ft)	(fbg)	(fbg)	(In)	Тор	Bottom	Comments
BH-3	HSA	6/5/1990	NA	25.0	5'	25.0	NA	NA	NA	NA	hydropunch 18-22'; no water
BH-4	HSA	6/6/1990	NA	30	5'	30	NA	NA	NA	NA	hydropunch 21.5-25'; no water
BH-5	HSA	6/6/1990	NA	20.0	5'	20.00	NA	NA	NA	NA	hydropunch 20-24'
BH-6	HSA	6/6/1990	NA	25.0	5'	24.50	NA	NA	NA	NA	hydropunch 25-27'
BH-7	GP	2/13/1991	NA	20.0	cont.	17.0	NA	NA	NA	NA	hydropunch 17-20'
BH-8	GP	2/13/1991	NA	25.0	cont.	None	NA	NA	NA	NA	hydropunch 16-20' & 20-25'; no water.
BH-9	GP	2/14/1991	NA	23.0	cont.	19.5	NA	NA	NA	NA	hydropunch 20-23'
SB-10	GP	6/22/1999	NA	40.0	cont.	25.0	13.3	NA	NA	NA	
SB-11	GP	6/23/1999	NA	32.0	cont.	28.0	19.9	NA	NA	NA	
SB-12	GP	6/23/1999	NA	40.0	cont.	25.0	10.8	NA	NA	NA	
SB-13	GP	6/24/1999	NA	40.0	cont.	24.0	NA	NA	NA	NA	
SB-14	GP	6/23/1999	NA	40.0	cont.	24.0	7.6	NA	NA	NA	
SB-15	GP	6/25/1999	NA	36.0	cont.	25.0	NA	NA	NA	NA	
SB-16	GP	6/22/1999	NA	40.0	cont.	24.0	14.2	NA	NA	NA	
SB-17	GP	9/12/2000	NA	36.0	cont.	34.0	28.5	NA	NA	NA	
SB-18	GP	9/12/2000	NA	32.0	cont.	32.0	27.6	NA	NA	NA	
SB-19	GP	5/23/2002	NA	30.0	cont.	28.0	NA	NA	NA	NA	
SB-20	GP	5/24/2002	NA	30.0	cont.	23.0	NA	NA	NA	NA	
SB-21	GP	5/23/2002	NA	28.0	cont.	27.0	NA	NA	NA	NA	
SB-22	GP	5/24/2002	NA	30.0	cont.	NA	NA	NA	NA	NA	
SB-23	GP	5/23/2002	NA	30.0	cont.	15.5	NA	NA	NA	NA	

Notes:

TOC = Top of casing elevation relative to mean sea level

ft = Feet

msl = Mean sea level

fbg = feet below grade

GW = Groundwater

CRA 240612-Master

TABLE 1

WELL AND BORING DATA SHELL-BRANDED SERVICE STATION 1784 150TH STREET, SAN LEANDRO, CALIFORNIA

			тос	Total	Sample	GW Depth	GW Depth	Screen	Screen		
Well or Boring	Boring	Completion	Elevation	Depth	Interval	First	Static	Diameter	Depth	Screen Depth	
ID	Type	Date	(ft msl)	(fbg)	(ft)	(fbg)	(fbg)	(In)	Тор	Bottom	Comments

in = Inches

HSA = Hollow stem auger

GP = Geoprobe

cont. = continuous sampling

NA = Not available

5' = sample collection at 5 foot intervals

TABLE 2

DRAWDOWN DATA AQUIFER PUMPING TEST SHELL SERVICE STATION 1784 150th AVENUE SAN LEANDRO, CALIFORNIA

		Flow	Totalizer	Flow	EW-1	EW-2	P-1A	P-1B	P-2A	P-2B	P-3A	P-3B	P-4A	P-4B	MW- 1A	MW-1B	MW-11	MW-2B	MW-12	Notes
Date	Time	Rate	Reading	Total	DTW	DTW	DTW	DTW	DTW	DTW	DTW	DTW	DTW	DTW	DTW	DTW	DTW	DTW	DTW	
	(min)	(gpm)	EW-1 or EW-2	(gal)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
11/5/08 Static					23.82	18.86	22.02	22.12	23.23	23.47	18.86	19.04	19.17	19.30	23.39	23.50	19.56	18.55	18.59	
Total Depth					35.06	32.91	27.13	35.29	26.94	35.16	22.51	32.43	22.65	32.85	26.27	49.71	24.84	48.65	27.76	
APT Step Test I	EW-1																		10 50/	
11/6/08 8:10	0	0.0	155916.0	0.0	22.638	18.759	21.926	21.959	23.118	23.301	18.907	19.069	19.211	19.326	23.39	23.50			18.586	Start of test
9:15	1	2.0	156061.5	145.5	26.863	18.739	22.008	22.355	23.277	23.375	18.914	19.090	19.215	19.344	23.57	23.70			18.581	
9:45	95	2.0	156122.6	206.6	26.974	18.797	22.041					19.082			23.58	23.70			18.575	
10:15	125	2.0	156153.8	237.8	26.975	18.732	18.732	22.106	22.375	23.326	23.381	18.918	19.088		18.58	23.70			19.344	
10:45	155	2.0	156212.6	296.6	26.887	18.682	22.121	22.377	23.345			19.078		19.348	23.60	23.70			18.577 18.569	
11:15	185	2.0	156271.1	355.1	26.912	18.671	22.159	22.379				19.080			23.61	23.70			10.509	
11:45	215	2.0	156275.0	359.0	26.902	18.723	22.214	22.405	23.366			19.073			23.61	23.70			18.561	and of stop 1
12:15	245	2.0	156385.1	469.1	26.966	22.736	22.245	22.401				19.075			23.61	23.70			18.552 18.548	end of step 1
12:30	260	2.5	156454.5	538.5	28.780	22.719	22.245	22.495	23.398	23.397	18.903	19.078	19.203	19.333	23.63	23.70			18.548	
13:15	305	2.5	156539.2	623.2	28.922	22.616	22.290	22.520	23.440	23.409	18.910	19.078	19.209	19.340	22.65	22 71			18.552	
13:45	335	2.5	156600.4	684.4	28.976	22.651	22.319	22.545	23.455	23.433		19.077			23.65	23.71			18.546	
14:15	365	2.5	156671.0	755.0	28.992	22.199	22.341	22.570							23.65	23.71			18.544 18.546	
14:45	395	2.5	156757.5	841.5	29.004	22.033	22.364	22.549	23.492			19.073			23.65	23.71 23.72			18.546	
15:15	425	2.5	156828.5	912.5	29.002	22.009	22.378	22.573	23.491	23.430	18.914	19.080	19.213	19.344	23.66	1			18.552	
15:45	455	2.5	156887.3	971.3	29.063	22.397	22.399	22.557		23.446					23.67	23.73			18.550	end of step 2
16:15	485	2.5	156966.2	1050.2	29.081	22.195	22.411	22.568	23.508										18.552	end test
16:45	515	3.0	157027.5	1111.5	32.833	21.957	22.418		23.511	23.422									18.557	enutest
17:20	550	0.0	157027.5	1111.5	32.833	21.928		22.573	23.515	23.456	18.928	19.092								0% recharge in EW
17:30	560	0.0	157027.5	1111.5	23.564	21.789	22.431	22.486	23.518	23.427	18.928	19.094	19.232	19.356					10.577	0% lecharge in Ew
APT Step Test E						6.247	00.050	00.000	1 00 040	00.017	10 001	10.050	10 1001	10 212				r	18.560	η
11/7/08 7:00	0	0.0	82561.7	0.0	22.516	22.036		22.075	23.248		10.001	19.052	19.190	19.512					18.567	Start of test
7:30	30	1.0	82602.0	40.3	22.531	23.926	22.047										19.98	19.56	18.579	Start of test
8:00	60	1.0	82636.1	74.4	22.534	24.046	22.055	22.100	23.259 23.265	23.320							20.10	19.57	18.581	
8:30	90	1.0	82672.0	110.3	22.516	24.222	22.065	22.113		23.290	19.217	10 242	10 3 3 8	19.400			20.10	15.57	18.575	end of step 1
9:00	120	1.0	82697.2	135.5	22.529	22.411	22.069	22.100	25.262	25.525	19.215	19.242	19.550	19.450		l			10.070	chu dr didp 1
Stopped test to s				1000		17 -01	00	00116	23.295	122222	10 007	10 0/8	10 2071	10 313			r		18.548	1 ·····
11/7/08 11:30	120	1.5	82697.6	135.9	22.565	17.581	22.086	22.116	23.293	23.323	10.09/	19.048	19.207	19 476					18.557	
12:00	150	1.5	82755.4	193.7	22.597	21.574	22.121												18.542	
12:30	180	1.5	82814.0	252.3	22.614	21.952	22.132	22.200 22.224	23.328	23.340	19.202						20.24	19.60	18.544	
13:00	210	1.5	82873.0	311.3	22.626	22.125	22.150						10 385	19 544			20.21	19.60	18.548	
13:30	240	1.5	82932.3	370.6	22.670	22.339	22.167 22.184	22.240	23.368 23.367	23.330	19.002	19.409					20.28	19.61	18.554	end of step 2
14:00	270	1.5	82992.3	430.6	22.663	22.503 23.262	22.184 22.198	22.265	23.387	23.354	10 261	19.475					20.20		18.558	r -
14:30	300	2.5	83101.7	540.0	22.672		22.198	22.260	23.403	23.366							20.35	19.67	18.565	
15:00	330	2.5	83160.0	598.3	22.698	26.484	22.224	22.287	23.403		19.419	19 581	19 460	19 624			20.00		18.569	
15:30	360	2.5	83222.3	660.6	22.692	26.437	22.212	22.288	23.409								20.39	19.67	18.581	
16:00	390	2.5	83303.0	741.3	22.712	26.663	22.225	22.297	23.415								20.40	19.67	18.587	
16:30	420	2.5	83389.0	827.3 901.3	22.723 22.721	26.640 26.548	22.232	22.314	23.420	23 336	19 476	19 610	19,510	19.656			20.40	19.67	18.596	
17:00	450	2.5	83463.0	901.3	22.721	20.340	22.240	44.012	20.417	20.000	17.170	17.010	17.010	17:000	· · · · · · · · · · · · · · · · · · ·	L				1

CRA 240612 (4)

DRAWDOWN DATA AQUIFER PUMPING TEST SHELL SERVICE STATION 1784 150th AVENUE SAN LEANDRO, CALIFORNIA

		Flow	Totalizer	Flow	EW-1	EW-2	P-1A	P-1B	P-2A	P-2B	P-3A	P-3B	P-4 A	P-4B		MW-1B	MW-11	MW-2B	<i>MW-12</i>	Notes
Date	Time (min)	Rate (gpm)	Reading EW-1 or	Total (gal)	DTW (ft)	DTW (ft)	DTW (ft)	DTW (ft)	DTW (ft)	DTW (ft)	DTW (ft)	DTW (ft)	DTW (ft)	DTW (ft)	DTW (ft)	DTW (ft)	DTW (ft)	DTW (ft)	DTW (ft)	
17.00	480	Ű.	EW-2 83537.0	975.3	22.720	26.402	y .		<i>y</i> .					19.658		, ,			18.602	end of step 3
17:30 17:36	480 486	2.5 0.0	83537.0 83537.0	975.3 975.3		20.402														0% recharge in EW-
	1 TA7-	ter Level	Electrotion	(64)	0.185	0.806	0.125	0.149							-	T			0.073	
11/5/08 Backgro	ound wa	ter Level	Fluctuation	(11)	0.165	0.000	0.125	0.147	0.151	0.140	0.050	0.001	0.000	0.010		L				
APT Step Test	EW-1			·																
`	Distanc	e from E	W-1 (ft)		0.0		10	9	19	20	68	69	60	65	24	23	55	63	125	
		pth to W			32.833	22.736	22.436	22.573	23.515	23.456	18.928	19.092	19.230	19.358	23.67	23.73			18.567	
		awdown			10.195	3.977	0.510	0.614	0.397	0.155	0.021	0.023	0.019	0.032	0.28	0.23			-0.019	
APT Step Test	FW-2																			
AIT Step Test		o from F	W_2 (ft)			0.0	48.5	51.2			9.6	8.8	21.9	19.3		T	11.1	18	75	
	Distance from EW-2 (ft) Max Depth to Water (ft)					26.663	22.248	22.314	23.433	23.371				19.658			20.40	19.67	18.602	
		awdown			22.723 0.207	4.627	0.196	0.239				0.562					0.840	1.120	0.042	
Abbreviations/	Notes:																			

Abbreviations/Notes:

APT = aquifer pump test min = minutes gpm = gallons per minute gal = gallons DTW = depth to water (feet below top of casing) ft = feet

"Blank" cell = No measurement

Extraction well drawdown data measured automatically using a pressure transducer. Extraction well drawdown data measured manually using a water level meter.

GROUNDWATER PRODUCTION DATA AQUIFER PUMPING TEST AND DUAL-PHASE EXTRACTION PILOT TEST SHELL SERVICE STATION 1784 150th AVENUE SAN LEANDRO, CALIFORNIA

			-	· · · · · · · · · · · · · · · · · · ·				TPHg					MTBE			I		Benzen	ρ	
	5 8 -					1	EW-1	j	EW-2	EW-1 & EW-2	· ·	EW-1		EW-2	EW-1 & EW-2		EW-1		EW-2	EW-1 & EW-2
	Cumulative	Groundwater	Groundwater	Cumulative		Mass	Cumulative	Mass	Cumulative	Cumulative	Mass	Cumulative	Mass	Cumulative	Cumulative	Mass	Cumulative	Mass	Cumulative	Cumulative
Date:Time	Operation Time		Totalizer EW-2	Volume	Extraction Rate	Removed	Mass Removed			Mass Removed		Mass Removed	1	Mass Removed	1 · · ·	1				Mass Removed
(mm/dd/yy hh:mm) APT EW-1 Step	(hours)	(gallons)	(gallons)	(gallons)	(gpm)	(lb)	(<i>lb</i>)	(lb)	(lb)	(<i>lb</i>)	(<i>lb</i>)	(lb)	(lb)	(1b)	(1b)	(lb)	(lb)	(lb)	(<i>lb</i>)	(<i>lb</i>)
11/6/08 8:15	0.00	155,916		0	0.00	0.000	0.000			0.000	0.000	0.000			0.000	0.000	0.000	1	· · · · · · · · · · · · · · · · · · ·	0.000
9:15	1.00	156,062		146	2.43	0.100	0.100			0.100	0.002	0.002			0.002	0.006	0.006		. •	0.006
9:45	1.50	156,123	· ·	207	2.04	0.042	0.141			0.141	0.001	0.002			0.002	0.003	0.009			0.009
10:15 10:45	2.00 2.50	156,154 156,213		238 297	1.04 1.96	0.021 0.040	0.163 0.203			0.163 0.203	0.000	0.003			0.003	0.001	0.010			0.010
11:15	3.00	156,271		355	1.95	0.040	0.243			0.203	0.001 0.001	0.003 0.004			0.003 0.004	0.003	0.013 0.015			0.013 0.015
11:45	3.50	156,275		359	0.13	0.003	0.246		· ·	0.245	0.001	0.004			0.004	0.003	0.015			0.015
12:15	4.00	156,385		469	3.67	0.075	0.321		•	0.321	0.001	0.005			0.005	0.005	0.020			0.020
12:45 13:15	4.50 5.00	156,455 156,539		539 623	2.31 2.82	0.047	0.368			0.368	0.001	0.006			0.006	0.003	0.023			0.023
13:45	5.50	156,600		625 684	2.04	0.058	0.426 0.468			0.426 0.468	0.001 0.001	0.007 0.007			0.007	0.004 0.003	0.027			0.027
14:15	6.00	156,671		755	2.35	0.048	0.517			0.400	0.001	0.008			0.008	0.003	0.030 0.033			0.030 0.033
14:45	6.50	156,758		842	2.88	0.059	0.576			0.576	0.001	0.009	1	· · · · · · · · ·	0.009	0.004	0.037		· · ·	0.037
15:15 15:45	7.00 7.50	156,829		913 071	2.37	0.049	0.624			0.624	0.001	0.010		,	0.010	0.003	0.040			0.040
16:15	8.00	156,887 156,966		971 1,050	1.96 2.63	0.040 0.054	0.665 0.719		1	0.665 0.719	0.001 0.001	0.011	· ·		0.011	0.003	0.042			0.042
16:45	8.50	157,028		1,112	2.03	0.034	0.761			0.761	0.001	0.011 0.012			0.011 0.012	0.003	0.046 0.048			0.046 0.048
APT EW-2 Step		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·										<u></u>		1 0.014	1 0.005	0.040			0.040
11/7/08 7:00	8.50 9.00		82,562	1,112	0.00			0.000	0.000	0.761			0.000	0.000	0.012			0.000	0.000	0.048
7:30 8:00	9.50		82,602 82,636	1,152 1,186	1.34 1.14			0.024 0.020	0.024 0.043	0.784 0.804			0.000	0.000 0.001	0.012 0.013		·	0.002	0.002	0.050
8:30	10.00		82,672	1,222	1.20	•		0.020	0.045	0.804		- -	0.000	0.001	0.013			0.002	0.004 0.005	0.052 0.053
Stopped test to swi										· · · · · · · · · · · · · · · · · · ·					0.010	•		0.002	0.000	0.000
11/7/08 11:30 12:00	10.00 10.50		82,698 82,755	1,247	0.00			0.000	0.064	0.825			0.000	0.001	0.013		,	0.000	0.005	0.053
12:30	11.00		82,814	1,305 1,364	1.93 1.95			$0.034 \\ 0.034$	0.098 0.132	0.859 0.893	1. A.		0.001 0.001	0.002	0.014			0.003	0.008	0.056
13:00	11.50		82,873	1,423	1.97			0.034	0.167	0.993		· · · · · · · · · · · · · · · · · · ·	0.001	0.002	0.014 0.015			0.003 0.003	0.011 0.014	0.059 0.062
13:30	12.00	an a	82,932	1,482	1.98		:	0.035	0.202	0.962			0.001	0.003	0.015			0.003	0.014	0.065
14:00 14:30	12.50 13.00		82,992	1,542	2.00			0.035	0.237	0.997		•	0.001	0.004	0.016			0.003	0.019	0.067
15:00	13.50		83,102 83,160	1,652 1,710	3.65 1.94			0.064 0.034	0.300 0.335	1.06 1.10	. •		0.001 0.001	0.005	0.017			0.005	0.024	0.073
15:30	14.00		83,222	1,772	2.08			0.034	0.371	1.10			0.001	0.005 0.006	0.017 0.018	1. A.		0.003	0.027	0.075
16:00	14.50		83,303	1,853	2.69			0.047	0.418	1.18			0.001	0.007	0.019			0.003	0.034	0.078
16:30	15.00		83,389	1,939	2.87		7	0.050	0.468	1.23		1. A.	0.001	0.007	0.019			0.004	0.038	0.086
17:00 17:30	15.50 16.00		83,463 83,537	2,013 2,087	2.47 2.47		1 - A.	0.043 0.043	0.512 0.555	1.27 1.32			0.001	0.008	0.020			0.004	0.042	0.090
DPE EW-1 Step Te		•	00,007	2,007	2.47	····		0.045	0.555	1.32			0.001	0.009	0.021			0.004	0.045	0.093
11/11/08 9:00	16.00	157,491	-	2,087	0.00	0.000	0.761			1.32	0.000	0.012	· · · · · · · · · · · · · · · · · · ·		0.021	0.000	0.048			0.093
9:30	16.50	157,591		2,187	3.33	0.068	0.829			1.38	0.001	0.013		· .	0.022	0.004	0.053			0.098
10:00	17.00	157,691	•	2,286	3.32	0.068	0.897			1.45	0.001	0.014			0.023	0.004	0.057			0.102
10:30	17.50	157,791		2,387	3.34	0.069	0.966	1		1.52	0.001	0.015			0.024	0.004	0.061			0.106
11:00 11:30	18.00 18.50	157,866 157,963		2,462 2,559	2.51	0.052	1.017			1.57	0.001	0.016			0.025	0.003	0.065			0.110
12:00	19.00	158,071		2,559 2,667	3.23 3.60	0.066 0.074	1.083 1.157			1.64 1.71	0.001	0.017			0.026	0.004	0.069			0.114
12:30	19.50	158,190		2,786	3.97	0.074 0.081	1.137		×.	1.71	0.001 0.001	0.018 0.020			0.027	0.005	0.073			0.119
13:00	20.00	158,270	•	2,866	2.67	0.055	1.294			1.79	0.001	0.020			0.028	0.005	0.079			0.124 0.127
13:30	20.50	158,400		2,996	4.33	0.089	1.383			1.00	0.001	0.021			0.029	0.003	0.082			0.127 0.133
14:00	21.00	158,500		3,096	3.33	0.068	1.451			2.01	0.001	0.023			0.032	0.000	0.092			0.135
14:30	21.50	158,621		3,216	4.02	0.082	1.533			2.09	0.001	0.024			0.033	0.005	0.092			0.142
15:15	22.25	158,853		3,449	5.17	0.159	1.692	· · · · ·		2.25	0.003	0.027			0.036	0.010	0.107			0.152
15:30	22.50	158,903		3,499	3.33	0.034	1.727			2.28	0.001	0.027			0.036	0.002	0.109	1	·	0.155
16:30	23.50	159,064		3,660	2.68	0.110	1.837			2.39	0.002	0.029	1997 - 19		0.038	0.007	0.116	1		0.162
11/12/08 7:15 7:45	38.25 38.75	162,780 162,864		7,376 7,460	4.20 2.80	2.543 0.057	4.38 4.44			4.93	0.040	0.07			0.078	0.161	0.28			0.323
DPE EW-2 Step Te		102,004	· · · · · · · · · · · · · · · · · · ·	7,400	2.00	0.057	4.44			4.99	0.001	0.07		· · · · · · · · · · · · · · · · · · ·	0.079	0.004	0.28	<u> </u>		0.327
11/12/08 9:00	38.75		83,716	7,460	0.00		· · · · · · · · · · · · · · · · · · ·	0.000	0.555	4.99			0.000	0.009	0.079	1		0.000	0.045	0.327
9:30	39.25		83,815	7,559	3.30			0.058	0.613	5.05			0.000	0.010	0.080			0.005	0.045	0.327
10:00	39.75		83,926	7,670	3.70		÷	0.065	0.677	5.11			0.001	0.010	0.081	· · ·		0.005	0.055	0.337
10:30	40.25		84,050	7,794	4.13			0.072	0.750	5.19			0.001	0.012	0.082			0.006	0.061	0.342
10:45	40.50		84,125	7,869	5.00			0.044	0.794	5.23			0.001	0.012	0.083			0.004	0.065	0.346
11:15	41.00		84,276	8,020	5.03			0.088	0.882	5.32		-	0.001	0.014	0.084	. · · · ·		0.007	0.072	0.353
4																		·		

CRA 240612 (4)

GROUNDWATER PRODUCTION DATA AQUIFER PUMPING TEST AND DUAL-PHASE EXTRACTION PILOT TEST SHELL SERVICE STATION 1784 150th AVENUE SAN LEANDRO, CALIFORNIA

	Groundwater Extraction Rate (gpm) 5.13 5.20 6.07 5.13 5.63 5.88 4.90 6.43 6.47 6.67 0.00 6.80 0.00 14.2 10.0 8.90 8.92 8.48	Mass	W-1 Cumulative Mass Removed (lb) 4.44 7.23 7.23 7.23 7.55 7.76 7.95	Mass	EW-2 Cumulative Mass Removed (Ib) 0.972 1.063 1.116 1.206 1.305 1.408 1.451 1.563 1.677 1.794 4.53 4.53 4.76 4.92	EW-1 & EW-2 Cumulative Mass Removed (Ib) 5.41 5.50 5.55 5.64 5.74 5.84 5.89 6.00 6.11 6.23 6.23 11.8 11.8 12.3	Removed M (lb) 0.000 0.044	7-1 Cumulative lass Removed (lb) 0.070 0.115 0.115	Mass Removed I (Ib) 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002	Cumulative	EW-1 & EW-2 Cumulative Mass Removed (Ib) 0.086 0.087 0.088 0.089 0.091 0.092 0.093 0.095 0.097 0.099 0.099 0.186	Mass	W-1 Cumulative Mass Removed (lb) 0.28 0.46	Mass	W-2 Cumulative Mass Removed (Ib) 0.079 0.087 0.091 0.098 0.106 0.115 0.118 0.127 0.137 0.137 0.146 0.369	EW-1 & EW- Cumulative Mass Remove (lb) 0.360 0.368 0.372 0.380 0.388 0.396 0.399 0.409 0.418 0.427 0.427 0.427
Totalizer EW-2 Volume Ex (gallons) (gallons) (gallons) 84,430 8,174 8,430 84,430 8,174 8,430 84,586 8,330 8,677 84,677 8,421 8,4831 84,677 8,421 8,4831 85,000 8,744 85,177 85,000 8,744 85,177 85,250 8,994 85,443 85,637 9,381 85,637 85,637 9,381 85,837 90,741 18,350 7/08 708 708 708 91,191 19,201 91,472 91,732 20,333 91,992 91,732 20,333 91,992 91,992 20,868 92,251	Extraction Rate (gpm) 5.13 5.20 6.07 5.13 5.63 5.88 4.90 6.43 6.47 6.67 0.00 6.80 0.00 14.2 10.0 8.90 8.92	Removed (Ib) 0.000 2.794 0.000 0.317 0.217 0.187	Mass Removed (Ib) 4.44 7.23 7.23 7.25 7.76	Removed (lb) 0.090 0.091 0.053 0.090 0.099 0.103 0.043 0.113 0.113 0.117 0.000 2.74	Mass Removed (<i>Ib</i>) 0.972 1.063 1.116 1.206 1.305 1.408 1.451 1.563 1.677 1.794 4.53 4.53 4.53 4.76	Mass Removed (Ib) 5.41 5.50 5.55 5.64 5.74 5.84 5.89 6.00 6.11 6.23 6.23 11.8	Removed M (Ib) 0.000 0.044 0.000	lass Removed (Ib) 0.070 0.115	Removed 1 (lb) 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002	Aass Removed (lb) 0.015 0.017 0.018 0.021 0.022 0.023 0.025 0.026 0.028	Mass Removed (Ib) 0.086 0.087 0.088 0.089 0.091 0.092 0.093 0.095 0.097 0.099	Removed (Ib)	Mass Removed (Ib) 0.28	Removed (Ib) 0.007 0.007 0.004 0.007 0.008 0.008 0.003 0.009 0.009 0.010	Mass Removed (Ib) 0.079 0.087 0.091 0.098 0.106 0.115 0.118 0.127 0.137 0.137 0.146	Mass Remove (Ib) 0.360 0.368 0.372 0.380 0.388 0.396 0.399 0.409 0.418 0.427
(gallons) (gallons) 84,430 8,174 84,586 8,330 84,677 8,421 84,831 8,575 85,000 8,744 85,177 8,920 85,250 8,994 85,443 9,187 85,637 9,381 85,837 9,581	(gpm) 5.13 5.20 6.07 5.13 5.63 5.88 4.90 6.43 6.47 6.67 0.00 6.80 0.00 14.2 10.0 8.90 8.92	(<i>Ib</i>) 0.000 2.794 0.000 0.317 0.217 0.187	(<i>Ib</i>) 4.44 7.23 7.23 7.55 7.76	(<i>Ib</i>) 0.090 0.091 0.053 0.090 0.099 0.103 0.043 0.113 0.113 0.117 0.000 2.74 0.000 0.227	(<i>Ib</i>) 0.972 1.063 1.116 1.206 1.305 1.408 1.451 1.563 1.677 1.794 4.53 4.53 4.53	(<i>Ib</i>) 5.41 5.50 5.55 5.64 5.74 5.84 5.89 6.00 6.11 6.23 6.23 11.8	(<i>Ib</i>) 0.000 0.044 0.000	(<i>Ib</i>) 0.070 0.115	(<i>Ib</i>) 0.001 0.001 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002	(<i>Ib</i>) 0.015 0.017 0.018 0.021 0.022 0.023 0.025 0.026 0.028	(<i>Ib</i>) 0.086 0.087 0.088 0.091 0.092 0.093 0.095 0.097 0.099	<i>(16)</i> 0.000	(1b)	(<i>Ib</i>) 0.007 0.004 0.007 0.008 0.008 0.008 0.003 0.009 0.009 0.009 0.010	(<i>Ib</i>) 0.079 0.087 0.091 0.098 0.106 0.115 0.118 0.127 0.137 0.137 0.146	(<i>1b</i>) 0.360 0.368 0.372 0.380 0.388 0.396 0.399 0.409 0.418 0.427
84,430 8,174 84,586 8,330 84,677 8,421 84,831 8,575 85,000 8,744 85,177 8,920 85,250 8,994 85,443 9,187 85,637 9,381 85,837 9,581	5.13 5.20 6.07 5.13 5.63 5.88 4.90 6.43 6.47 6.67 0.00 6.80 0.00 14.2 10.0 8.90 8.92	0.000 2.794 0.000 0.317 0.217 0.187	4.44 7.23 7.23 7.55 7.76	0.090 0.091 0.053 0.090 0.099 0.103 0.043 0.113 0.113 0.117 0.000 2.74 0.000 0.227	$\begin{array}{c} 0.972 \\ 1.063 \\ 1.116 \\ 1.206 \\ 1.305 \\ 1.408 \\ 1.451 \\ 1.563 \\ 1.677 \\ 1.794 \\ \hline \\ 1.794 \\ \hline \\ 4.53 \\ \hline \\ 4.53 \\ 4.76 \end{array}$	5.41 5.50 5.55 5.64 5.74 5.84 5.89 6.00 6.11 6.23 6.23 11.8	0.000 0.044 0.000	0.070 0.115	0.001 0.001 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.000 0.04	0.015 0.017 0.018 0.019 0.021 0.022 0.023 0.025 0.026 0.028	0.086 0.087 0.088 0.091 0.092 0.093 0.095 0.097 0.099	0.000	0.28	0.007 0.007 0.004 0.007 0.008 0.008 0.003 0.009 0.009 0.009 0.010	0.079 0.087 0.091 0.098 0.106 0.115 0.118 0.127 0.137 0.137 0.146	0.360 0.368 0.372 0.380 0.388 0.396 0.399 0.409 0.418 0.427
84,586 8,330 84,677 8,421 84,831 8,575 85,000 8,744 85,177 8,920 85,250 8,994 85,443 9,187 85,637 9,381 85,837 9,581	5.20 6.07 5.13 5.63 5.88 4.90 6.43 6.47 6.67 0.00 6.80 0.00 14.2 10.0 8.90 8.92	2.794 0.000 0.317 0.217 0.187	7.23 7.23 7.55 7.76	0.091 0.053 0.090 0.099 0.103 0.043 0.113 0.113 0.117 0.000 2.74 0.000 0.227	$1.063 \\ 1.116 \\ 1.206 \\ 1.305 \\ 1.408 \\ 1.451 \\ 1.563 \\ 1.677 \\ 1.794 \\$	5.50 5.55 5.64 5.74 5.84 5.89 6.00 6.11 6.23 6.23 11.8 11.8	0.000 0.044 0.000	0.115	0.001 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002	0.017 0.018 0.019 0.021 0.022 0.023 0.025 0.026 0.028	0.087 0.088 0.091 0.092 0.093 0.095 0.097 0.099			0.007 0.004 0.007 0.008 0.008 0.003 0.009 0.009 0.009 0.010	0.087 0.091 0.098 0.106 0.115 0.118 0.127 0.137 0.137 0.146	0.368 0.372 0.380 0.388 0.396 0.399 0.409 0.418 0.427
84,677 8,421 84,831 8,575 85,000 8,744 85,177 8,920 85,250 8,994 85,443 9,187 85,637 9,381 85,837 9,581 90,741 18,350 /08 91,191 91,472 19,799 91,732 20,333 91,992 20,868 92,251 21,377	6.07 5.13 5.63 5.88 4.90 6.43 6.47 6.67 0.00 6.80 0.00 14.2 10.0 8.90 8.92	2.794 0.000 0.317 0.217 0.187	7.23 7.23 7.55 7.76	0.053 0.090 0.099 0.103 0.043 0.113 0.113 0.117 0.000 2.74 0.000 0.227	$1.116 \\ 1.206 \\ 1.305 \\ 1.408 \\ 1.451 \\ 1.563 \\ 1.677 \\ 1.794 \\ \hline 1.794 \\ 4.53 \\ \hline 4.53 \\ 4.53 \\ 4.76 \\ \hline$	5.55 5.64 5.74 5.84 5.89 6.00 6.11 6.23 6.23 11.8 11.8	0.000 0.044 0.000	0.115	0.001 0.001 0.002 0.002 0.001 0.002 0.002 0.002 0.002 0.000 0.004	0.018 0.019 0.021 0.022 0.023 0.025 0.026 0.028	0.088 0.089 0.091 0.092 0.093 0.095 0.097 0.099			0.004 0.007 0.008 0.008 0.003 0.009 0.009 0.009 0.010	0.091 0.098 0.106 0.115 0.118 0.127 0.137 0.137 0.146	0.372 0.380 0.388 0.396 0.399 0.409 0.418 0.427
84,831 8,575 85,000 8,744 85,177 8,920 85,250 8,994 85,443 9,187 85,637 9,381 85,837 9,581	5.13 5.63 5.88 4.90 6.43 6.47 6.67 0.00 6.80 0.00 14.2 10.0 8.90 8.92	2.794 0.000 0.317 0.217 0.187	7.23 7.23 7.55 7.76	0.090 0.099 0.103 0.043 0.113 0.113 0.117 0.000 2.74 0.000 0.227	1.206 1.305 1.408 1.451 1.563 1.677 1.794 4.53 4.53 4.53 4.76	5.64 5.74 5.84 5.89 6.00 6.11 6.23 6.23 11.8	0.000 0.044 0.000	0.115	0.001 0.002 0.002 0.001 0.002 0.002 0.002 0.002 0.000 0.04	0.019 0.021 0.022 0.023 0.025 0.026 0.028	0.089 0.091 0.092 0.093 0.095 0.097 0.099			0.007 0.008 0.008 0.003 0.009 0.009 0.009 0.010	0.098 0.106 0.115 0.118 0.127 0.137 0.137 0.146	0.380 0.388 0.396 0.399 0.409 0.418 0.427
85,000 8,744 85,177 8,920 85,250 8,994 85,443 9,187 85,637 9,381 85,837 9,581	5.63 5.88 4.90 6.43 6.47 6.67 0.00 6.80 0.00 14.2 10.0 8.90 8.92	2.794 0.000 0.317 0.217 0.187	7.23 7.23 7.55 7.76	0.099 0.103 0.043 0.113 0.113 0.117 0.000 2.74 0.000 0.227	1.305 1.408 1.451 1.563 1.677 1.794 4.53 4.53 4.53 4.76	5.74 5.84 5.89 6.00 6.11 6.23 6.23 11.8 11.8	0.000 0.044 0.000	0.115	0.002 0.002 0.001 0.002 0.002 0.002 0.002 0.000 0.04	0.021 0.022 0.023 0.025 0.026 0.028	0.091 0.092 0.093 0.095 0.097 0.099			0.008 0.008 0.003 0.009 0.009 0.010 0.000	0.106 0.115 0.118 0.127 0.137 0.146 0.146	0.388 0.396 0.399 0.409 0.418 0.427
85,177 8,920 85,250 8,994 85,443 9,187 85,637 9,381 85,837 9,581	5.88 4.90 6.43 6.47 6.67 0.00 6.80 0.00 14.2 10.0 8.90 8.92	2.794 0.000 0.317 0.217 0.187	7.23 7.23 7.55 7.76	0.103 0.043 0.113 0.113 0.117 0.000 2.74 0.000 0.227	1.408 1.451 1.563 1.677 1.794 4.53 4.53 4.53	5.84 5.89 6.00 6.11 6.23 6.23 11.8	0.044	0.115	0.002 0.001 0.002 0.002 0.002 0.002 0.000 0.04	0.022 0.023 0.025 0.026 0.028	0.092 0.093 0.095 0.097 0.099			0.008 0.003 0.009 0.009 0.010 0.000	0.115 0.118 0.127 0.137 0.146 0.146	0.396 0.399 0.409 0.418 0.427
85,250 8,994 85,443 9,187 85,637 9,381 85,837 9,581	4.90 6.43 6.47 6.67 0.00 6.80 0.00 14.2 10.0 8.90 8.92	2.794 0.000 0.317 0.217 0.187	7.23 7.23 7.55 7.76	0.043 0.113 0.113 0.117 0.000 2.74 0.000 0.227	1.451 1.563 1.677 1.794 4.53 4.53 4.76	5.89 6.00 6.11 6.23 6.23 11.8	0.044	0.115	0.001 0.002 0.002 0.002 0.002 0.000 0.04	0.023 0.025 0.026 0.028	0.093 0.095 0.097 0.099 0.099			0.003 0.009 0.009 0.010 0.010	0.118 0.127 0.137 0.146	0.399 0.409 0.418 0.427 0.427
85,443 9,187 85,637 9,381 85,837 9,581 90,741 18,350 /08	6.43 6.47 6.67 0.00 6.80 0.00 14.2 10.0 8.90 8.92	2.794 0.000 0.317 0.217 0.187	7.23 7.23 7.55 7.76	0.113 0.113 0.117 0.000 2.74 0.000 0.227	1.563 1.677 1.794 1.794 4.53 4.53 4.76	6.00 6.11 6.23 6.23 11.8 11.8	0.044	0.115	0.002 0.002 0.002 0.000 0.04	0.025 0.026 0.028	0.095 0.097 0.099 0.099			0.009 0.009 0.010 0.000	0.127 0.137 0.146 0.146	0.399 0.409 0.418 0.427 0.427
85,637 9,381 85,837 9,581 86,056 9,581 90,741 18,350 /08 90,803 18,350 91,191 19,201 91,472 19,799 91,732 20,333 91,992 20,868 92,251 21,377	6.47 6.67 0.00 6.80 0.00 14.2 10.0 8.90 8.92	2.794 0.000 0.317 0.217 0.187	7.23 7.23 7.55 7.76	0.113 0.117 0.000 2.74 0.000 0.227	1.677 1.794 1.794 4.53 4.53 4.76	6.11 6.23 6.23 11.8 11.8	0.044	0.115	0.002 0.002 0.000 0.04	0.026 0.028	0.097 0.099 0.099			0.009 0.010 0.000	0.137 0.146 0.146	0.409 0.418 0.427 0.427
85,837 9,581 86,056 9,581 90,741 18,350 /08 90,803 18,350 91,191 19,201 91,472 19,799 91,732 20,333 91,992 20,868 92,251 21,377	6.67 0.00 6.80 0.00 14.2 10.0 8.90 8.92	2.794 0.000 0.317 0.217 0.187	7.23 7.23 7.55 7.76	0.117 0.000 2.74 0.000 0.227	1.794 1.794 4.53 4.53 4.76	6.23 6.23 11.8 11.8	0.044	0.115	0.002 0.000 0.04	0.028	0.099			0.010	0.146	0.427
86,056 9,581 90,741 18,350 /08 90,803 18,350 91,191 19,201 91,472 19,799 91,732 20,333 91,992 20,868 92,251 21,377 21,377	0.00 6.80 0.00 14.2 10.0 8.90 8.92	2.794 0.000 0.317 0.217 0.187	7.23 7.23 7.55 7.76	0.000 2.74 0.000 0.227	1.794 4.53 4.53 4.76	6.23 11.8 11.8	0.044	0.115	0.000 0.04	0.028	0.099			0.000	0.146	0.427
90,741 18,350 /08 90,803 18,350 91,191 19,201 91,472 19,799 91,732 20,333 91,992 20,868 92,251 21,377	6.80 0.00 14.2 10.0 8.90 8.92	2.794 0.000 0.317 0.217 0.187	7.23 7.23 7.55 7.76	0.000 0.227	4.53 4.53 4.76	11.8 11.8	0.044	0.115	0.04							
90,741 18,350 /08 90,803 18,350 91,191 19,201 91,472 19,799 91,732 20,333 91,992 20,868 92,251 21,377	6.80 0.00 14.2 10.0 8.90 8.92	2.794 0.000 0.317 0.217 0.187	7.23 7.23 7.55 7.76	0.000 0.227	4.53 4.53 4.76	11.8 11.8	0.044	0.115	0.04							
90,803 18,350 91,191 19,201 91,472 19,799 91,732 20,333 91,992 20,868 92,251 21,377	0.00 14.2 10.0 8.90 8.92	0.000 0.317 0.217 0.187	7.23 7.55 7.76	0.000 0.227	4.53 4.76	11.8	0.000	· · · · · · · · · · · · · · · · · · ·		0.071	0.186	0.177	0.46		0.369	0.007
90,803 18,350 91,191 19,201 91,472 19,799 91,732 20,333 91,992 20,868 92,251 21,377	14.2 10.0 8.90 8.92	0.317 0.217 0.187	7.55 7.76	0.227	4.76			0.115	0.000							0.827
91,19119,20191,47219,79991,73220,33391,99220,86892,25121,377	14.2 10.0 8.90 8.92	0.317 0.217 0.187	7.55 7.76	0.227	4.76			0.115	0.000							
91,472 19,799 91,732 20,333 91,992 20,868 92,251 21,377	10.0 8.90 8.92	0.217 0.187	7.76	1		12.3			0.000	0.071	0.186	0.000	0.46	0.000	0.369	0.827
91,73220,33391,99220,86892,25121,377	8.90 8.92	0.187		0.164	4.02		0.005	0.120	0.004	0.075	0.194	0.020	0.48	0.018	0.387	0.866
91,99220,86892,25121,377	8.92		7.95			12.7	0.003	0.123	0.003	0.077	0.200	0.014	Ó.49	0.013	0.401	0.893
92,251 21,377		0.188		0.152	5.07	13.0	0.003	0.126	0.002	0.080	0.206	0.012	0.50	0.012	0.413	0.917
	8.48		8.14	0.152	5.22	13.4	0.003	0.129	0.002	0.082	0.211	0.012	0.52	0.012	0.425	0.942
92,493 21,867		0.171	8.31	0.151	5.38	13.7	0.003	0.132	0.002	0.084	0.216	0.011	0.53	0.012	0.438	0.965
	8.17	0.170	8.48	0.141	5.52	14.0	0.003	0.134	0.002	0.087	0.221	0.011	0.54	0.012	0.449	0.987
92,615 22,120	8.43	0.090	8.57	0.071	5.59	14.2	0.001	0.136	0.001	0.088	0.224	0.006	0.54	0.006	0.455	1.00
96,411 29,436	7.39	2.409	11.0	2.217	7.81	18.8	0.038	0.174	0.035	0.123	0.297	0.153	0.70	0.181	0.636	1.33
96,639 29,867	7.18	0.139	11.1	0.133	7.94	·19.1	0.002	0.176	0.002	0.125	0.301	0.009	0.71	0.011	0.646	1.35
96,842 30,257	6.49	0.128	11.2	0.118	8.06	19.3	0.002	0.178	0.002	0.127	0.305	0.008	0.71	0.010		1.37
97,065 30,675	6.98	0.133	11.4	0.131	8.19	19.6	0.002	1								1.39
97,280 31,081	6.77	0.131	11.5	0.126	8.31	19.8	0.002	and the second								1.41
97,500 31,495	6.90	0.133	11.6	0.129	8.44	20.1	0.002									1.41
97,720 31,908	6.88	0.132	11.8	0.129	8.57											1.45
97,942 32,327	6.98	0.135	11.9	0.130	8.70	20.6										1.44
98,046 32,521	6.47	0.062	12.0	0.061	8.76	20.7										1.46 1.47
101,632 39,073	6.82	2.029	14.0	2.095												1.47
101,742 39,212	2.32	0.020	14.0	0.064	10.9	24.9	0.000	0.222	0.001	0.172	0.394	0.001	0.89	0.005	0.889	1.78
	T	TPHg Conce	82,000 a		70,000 b		MTBE Conc	1.300 a		1.100 h		Benzene Coi	5 200 a		5 700 h	
Total Gallons Extr. 39,212					10.9			0.222	•	0.172	0.394	Total Pound	0.89		0.889	
Тс	97,065 30,675 97,280 31,081 97,500 31,495 97,720 31,908 97,942 32,327 98,046 32,521 101,632 39,073 101,742 39,212	97,065 30,675 6.98 97,280 31,081 6.77 97,500 31,495 6.90 97,720 31,908 6.88 97,942 32,327 6.98 98,046 32,521 6.47 101,632 39,073 6.82 101,742 39,212 2.32	97,065 30,675 6.98 0.133 97,280 31,081 6.77 0.131 97,500 31,495 6.90 0.133 97,720 31,908 6.88 0.132 97,942 32,327 6.98 0.135 98,046 32,521 6.47 0.062 101,632 39,073 6.82 2.029 101,742 39,212 2.32 0.020	97,065 30,675 6.98 0.133 11.4 97,280 31,081 6.77 0.131 11.5 97,500 31,495 6.90 0.133 11.6 97,720 31,908 6.88 0.132 11.8 97,942 32,327 6.98 0.135 11.9 98,046 32,521 6.47 0.062 12.0 101,632 39,073 6.82 2.029 14.0 101,742 39,212 2.32 0.020 14.0	97,065 30,675 6.98 0.133 11.4 0.131 97,280 31,081 6.77 0.131 11.5 0.126 97,500 31,495 6.90 0.133 11.6 0.129 97,720 31,908 6.88 0.132 11.8 0.129 97,942 32,327 6.98 0.135 11.9 0.130 98,046 32,521 6.47 0.062 12.0 0.061 101,632 39,073 6.82 2.029 14.0 2.095 101,742 39,212 2.32 0.020 14.0 0.064	97,065 30,675 6.98 0.133 11.4 0.131 8.19 97,280 31,081 6.77 0.131 11.5 0.126 8.31 97,500 31,495 6.90 0.133 11.6 0.129 8.44 97,720 31,908 6.88 0.132 11.8 0.129 8.57 97,942 32,327 6.98 0.135 11.9 0.130 8.70 98,046 32,521 6.47 0.062 12.0 0.061 8.76 101,632 39,073 6.82 2.029 14.0 2.095 10.9 101,742 39,212 2.32 0.020 14.0 0.064 10.9	97,065 30,675 6.98 0.133 11.4 0.131 8.19 19.6 97,280 31,081 6.77 0.131 11.5 0.126 8.31 19.8 97,500 31,495 6.90 0.133 11.6 0.129 8.44 20.1 97,720 31,908 6.88 0.132 11.8 0.129 8.57 20.3 97,942 32,327 6.98 0.135 11.9 0.130 8.70 20.6 98,046 32,521 6.47 0.062 12.0 0.061 8.76 20.7 101,632 39,073 6.82 2.029 14.0 2.095 10.9 24.9 101,742 39,212 2.32 0.020 14.0 0.064 10.9 24.9	97,065 30,675 6.98 0.133 11.4 0.131 8.19 19.6 0.002 97,280 31,081 6.77 0.131 11.5 0.126 8.31 19.8 0.002 97,500 31,495 6.90 0.133 11.6 0.129 8.44 20.1 0.002 97,720 31,908 6.88 0.132 11.8 0.129 8.57 20.3 0.002 97,942 32,327 6.98 0.135 11.9 0.130 8.70 20.6 0.002 98,046 32,521 6.47 0.062 12.0 0.061 8.76 20.7 0.001 101,632 39,073 6.82 2.029 14.0 2.095 10.9 24.9 0.032 101,742 39,212 2.32 0.020 14.0 0.064 10.9 24.9 0.000	97,065 30,675 6.98 0.133 11.4 0.131 8.19 19.6 0.002 0.180 97,280 31,081 6.77 0.131 11.5 0.126 8.31 19.8 0.002 0.182 97,500 31,495 6.90 0.133 11.6 0.129 8.44 20.1 0.002 0.182 97,720 31,908 6.88 0.132 11.8 0.129 8.57 20.3 0.002 0.187 97,942 32,327 6.98 0.135 11.9 0.130 8.70 20.6 0.002 0.189 98,046 32,521 6.47 0.062 12.0 0.061 8.76 20.7 0.001 0.190 101,632 39,073 6.82 2.029 14.0 2.095 10.9 24.9 0.032 0.222 101,742 39,212 2.32 0.020 14.0 0.064 10.9 24.9 0.000 0.222	97,065 30,675 6.98 0.133 11.4 0.131 8.19 19.6 0.002 0.180 0.002 97,280 31,081 6.77 0.131 11.5 0.126 8.31 19.8 0.002 0.180 0.002 97,500 31,495 6.90 0.133 11.6 0.129 8.44 20.1 0.002 0.185 0.002 97,720 31,908 6.88 0.132 11.8 0.129 8.57 20.3 0.002 0.187 0.002 97,942 32,327 6.98 0.135 11.9 0.130 8.70 20.6 0.002 0.189 0.002 98,046 32,521 6.47 0.062 12.0 0.061 8.76 20.7 0.001 0.190 0.001 101,632 39,073 6.82 2.029 14.0 2.095 10.9 24.9 0.032 0.222 0.033 101,742 39,212 2.32 0.020 14.0 0.064 10.9 24.9 0.000 0.222 0.001	97,065 30,675 6.98 0.133 11.4 0.131 8.19 19.6 0.002 0.170 0.002 0.129 97,280 31,081 6.77 0.131 11.5 0.126 8.31 19.8 0.002 0.180 0.002 0.131 97,500 31,495 6.90 0.133 11.6 0.129 8.44 20.1 0.002 0.185 0.002 0.133 97,720 31,908 6.88 0.132 11.8 0.129 8.57 20.3 0.002 0.185 0.002 0.133 97,942 32,327 6.98 0.135 11.9 0.130 8.70 20.6 0.002 0.189 0.002 0.137 98,046 32,521 6.47 0.062 12.0 0.061 8.76 20.7 0.001 0.190 0.001 0.138 101,632 39,073 6.82 2.029 14.0 2.095 10.9 24.9 0.032 0.222 0.033 0.171 101,742 39,212 2.32 0.020 14.0 0.064 10.9	97,065 30,675 6.98 0.133 11.4 0.131 8.19 19.6 0.002 0.170 0.002 0.129 0.309 97,280 31,081 6.77 0.131 11.5 0.126 8.31 19.8 0.002 0.180 0.002 0.129 0.309 97,280 31,081 6.77 0.131 11.5 0.126 8.31 19.8 0.002 0.182 0.002 0.131 0.313 97,500 31,495 6.90 0.133 11.6 0.129 8.44 20.1 0.002 0.185 0.002 0.133 0.317 97,720 31,908 6.88 0.132 11.8 0.129 8.57 20.3 0.002 0.187 0.002 0.135 0.321 97,942 32,327 6.98 0.135 11.9 0.130 8.70 20.6 0.002 0.189 0.002 0.137 0.326 98,046 32,521 6.47 0.062 12.0 0.061 8.76 20.7 0.001 0.190 0.001 0.138 0.327	97,065 30,675 6.98 0.133 11.4 0.131 8.19 19.6 0.002 0.180 0.002 0.129 0.309 0.008 97,280 31,081 6.77 0.131 11.5 0.126 8.31 19.8 0.002 0.182 0.002 0.129 0.309 0.008 97,500 31,495 6.90 0.133 11.6 0.129 8.44 20.1 0.002 0.182 0.002 0.131 0.313 0.008 97,720 31,908 6.88 0.132 11.8 0.129 8.57 20.3 0.002 0.187 0.002 0.135 0.321 0.008 97,942 32,327 6.98 0.135 11.9 0.130 8.70 20.6 0.002 0.189 0.002 0.137 0.326 0.009 98,046 32,521 6.47 0.062 12.0 0.061 8.76 20.7 0.001 0.190 0.001 0.138 0.327 0.004 101,632 39,073 6.82 2.029 14.0 2.095 10.9 24	97,065 30,675 6.98 0.133 11.4 0.131 8.19 19.6 0.002 0.180 0.002 0.127 0.309 0.008 0.72 97,280 31,081 6.77 0.131 11.5 0.126 8.31 19.8 0.002 0.180 0.002 0.129 0.309 0.008 0.72 97,500 31,495 6.90 0.133 11.6 0.129 8.44 20.1 0.002 0.185 0.002 0.133 0.313 0.008 0.74 97,720 31,908 6.88 0.132 11.8 0.129 8.57 20.3 0.002 0.187 0.002 0.135 0.321 0.008 0.75 97,942 32,327 6.98 0.135 11.9 0.130 8.70 20.6 0.002 0.189 0.002 0.137 0.326 0.009 0.76 98,046 32,521 6.47 0.062 12.0 0.061 8.76 20.7 0.001 0.190 0.001 0.138 0.327 0.004 0.76 101,632 39,073	97,065 30,675 6.98 0.133 11.4 0.131 8.19 19.6 0.002 0.180 0.002 0.129 0.309 0.008 0.72 0.011 97,280 31,081 6.77 0.131 11.5 0.126 8.31 19.8 0.002 0.180 0.002 0.129 0.309 0.008 0.72 0.011 97,280 31,081 6.77 0.131 11.5 0.126 8.31 19.8 0.002 0.182 0.002 0.131 0.313 0.008 0.73 0.010 97,500 31,495 6.90 0.133 11.6 0.129 8.44 20.1 0.002 0.185 0.002 0.131 0.313 0.008 0.74 0.010 97,720 31,908 6.88 0.132 11.8 0.129 8.57 20.3 0.002 0.187 0.002 0.135 0.321 0.008 0.75 0.010 97,942 32,327 6.98 0.135 11.9 0.130 8.70 20.6 0.002 0.189 0.002 0.137 0.326	97,065 30,675 6.98 0.133 11.4 0.131 8.19 19.6 0.002 0.180 0.002 0.127 0.309 0.008 0.71 0.010 0.686 97,280 31,081 6.77 0.131 11.5 0.126 8.31 19.8 0.002 0.182 0.002 0.131 0.313 0.008 0.72 0.011 0.667 97,280 31,081 6.77 0.131 11.5 0.126 8.31 19.8 0.002 0.182 0.002 0.131 0.313 0.008 0.72 0.010 0.667 97,200 31,495 6.90 0.133 11.6 0.129 8.44 20.1 0.002 0.185 0.002 0.133 0.317 0.008 0.74 0.010 0.687 97,720 31,908 6.88 0.132 11.8 0.129 8.57 20.3 0.002 0.187 0.002 0.135 0.321 0.008 0.75 0.010 0.698 97,942 32,327 6.98 0.135 11.9 0.130 8.76 20.7

DRAWDOWN AND INDUCED VACUUM DATA DUAL-PHASE EXTRACTION PILOT TEST SHELL SERVICE STATION 1784 150th AVENUE SAN LEANDRO, CALIFORNIA

	I	Carl	Gail	l	14		10	T -						· · · · ·				r		·				· · · · · · · · · · · · · · · · · · ·						
Date	Hour	Casing Vac	Casing Vac	P	P-1A		-1B	P-	2A	. P.	-2B		-3A	P-	3B	P-	4A	P-	-4B	МИ	V-1A	MV	V-1B	MV	V-11	MW	-2B	MW-	12	Notes
Duie	Meter (Hrs)	(in WC) (EW-1)	(in WC) (EW-2)	DTW (ft)	Vac (in WC)	DTW (ft)	Vac (in WC)	DTW (ft)	Vac (in WC)	DTW (ft)	Vac (in WC)	DTW (ft)	Vac (in WC)	DTW (ft)	Vac (in WC)	DTW (ft)	Vac (in WC)	DTW (ft)	Vac (in WC)	DTW (ft)	Vac (in WC)									
Total Depth		35.06 ft	32.91 ft	27.13	·····	35.29		26.94		35.16		22.51		32.43		22.65		32.85		26.27		49.71		24.84		27.76		y -7		Total Depth
PE Step Test EW- 11/11/08 Static	1		DTW=20.46 ft	22.460	······	00.7770		00.740																		<u></u>		····	I	roui Depii
11/11/08 9:00	10146.1	50.0	D111 20.40 H	22.460		22.770 22.777		23.740 23.739		23.440 23.449		19.030 19.036		19.210 19.211		19.330 19.339		19.460 19.468		23.46 23.52		23.50	1. S.			·		18.690 18.697		Static level
9:30	10146.7	50.0	· · ·	22.560	0.00	22.744	0.000	23.756	0.00	23.425	0.00	19.046	· .	19.217		19.349	0.00	19.472	0.00	20.02	2.5 ·							18.697		Start of test
10:00 10:30	10147.2 10147.6	49.5 49.7		22.623	0.00	22.724	0.000	23.752	0.00	23.430		19.056		19.230		19.362		19.483		23.61				-				18.712		
11:00	10148.2	75.0		22.682 22.733	0.00	22.721	0.000	23.764 23.770	0.00	23.409 23.431	0.00	19.058 19.058		19.222 19.224		19.366 19.368	0.00	19.481 19.483	0.00	23.62	2.5							18.708		end of step 1
° 11:30	10148.6	75.8		22.801	0.00	22.826	0.000	23.816	0.00	23.447	0.00	19.052		19.224		19.366	0.00	19.485	0.00	23.02	3.4							18.706 18.695		
12:00 12:30	10149.1 10149.6	76.3 75.2		22.868	0.00	22.834		23.835		23.454		19.048		19.222		19.362		19.477		23.65								18.687		•
13:00	10145.0	100.0		22.909	0.00	22.840 22.925	0.000	23.853 23.881	0.00	23.454 23.458	0.00	19.050 19.052		19.222 19.230		19.361 19.366	0.00	19.477 19.483	0.00	23.61	3.5		· · ·			· · ·		18.699		end of step 2
13:30	10150.6	100.0		23.020	0.00	22.932	0.000	23.924	0.00	23.483	0.00	19.056		19.224		19.370	0.00	19.487	0.00	23.01	4.3							18.683 18.682		
14:00 14:30	10151.1 10151.7	100.0 100.4		23.054		22.947		23.943		23.487		19.064	·	19.235		19.378		19.497		23.61								18.691		
15:15	10151.7	147.5		23.084 23.204	0.00	22.968 23.191	0.000	23.957 24.085	0.00	23.486 23.534	0.00	19.072 19.092		19.241 19.267 -		19.387 19.409	0.00	19.502	0.00	00.57	4.3							18.697		end of step 3
15:30	10152.6	150.2		23.243	0.00	23.193	0.000	24.123	0.00	23.540	0.00	19.101		19.207		19.409	0.00	19.529 19.533	0.00	23.57	6.8							18.712 18.715		
15:45	10152.8	150.3		23.285		23.170		24.130		23.550	-	19.109		19.278		19.426		19.541		23.61	6.8							18.717		
16:00 DPE Step Test EW-	10153.1 2	150.9	· · · · · ·	23.334	0.00	23.160	0.000	24.151	0.00	23.547	0.00	19.109		19.274		19.424	0.00	19.539	0.00	L	6.9	<u> </u>	· · · · · · · · · · · · · · · · · · ·		:			18.718		end of step 4
11/12/08 Static		DTW=23.82 ft	DTW=19.25 ft	23.068		22.296		23.590		23.321		19.402		19.820		19.534		19.821		•		r		19.95		19.70		10 701		Charlie James
11/12/08 9:00	10169.2		50.0	23.068		22.296		23.590		23.321		19.402		19.820	•	19.534		19.821						20.51		19.70		18.781 18.781	1	Static level Start of test
9:30 10:00	10169.6 10170.2		49.9 50.3	22.935 22.814		22.306 22.320		23.560		23.322		19.913	0.00	20.023	0.00	19.739	0.00	19.937	0.00				÷ .	1	4.6		0.0	18.794		
10:30	10170.6		39.3	22.014		22.305		23.327		23.325 23.306		20.010 19.988	0.00	20.119 20.020	0.00	19.821 19.834	0.00	19.994 19.963	0.00					20.72	4.0	19.94		18.805	·	
10:45	10170.8		100.0	22.716		22.323		23.498		23.310		20.081		20.177		19.873	0.00	20.037	0.00					20.72	4.8	19.96	0.0	18.805 18.807		end of step 1
11:15 11:45	10171.4 10171.9		100.0 100.8	22.674		22.322 22.377		23.486		23.308		20.267	0.00	20.274	0.00	19.965	0.00	20.097	0.00		· .				9.9		0.5	18.811		
12:15	10172.4		98.6	22.635 22.612		22.377		23.493 23.513		23.324 23.332		20.308 20.312	0.00	20.279 20.261	0.00	20.000	0.00	20.104 20.092	0.00					20.90		19.98		18.802	· .	•
12:30	10172.6		149.2	22.596		22.379		23.505		23.334		20.326	0.00	20.350	0.00	20.010	0.00	20.092	0.00					20.89	9.4	19.99	0.0	18.796 18.799		end of step 2
13:00 13:30	10173.1 10173.6		148.5	22.593		22.407	•	23.514		23.363		20.539	0.00	20.491	0.00	20.109	0.00	20.209	0.00						14.5		0.0	18.807		
13:50	10173.0		149.1 148.7	22.563 22.549		22.424 22.449		23.534 23.539		23.363 23.356		20.593 20.604	0.00	20.499 20.469	0.00	20.147 20.165	0.00	20.222	0.00				• .	21.02		20.02		18.806		
14:15	10174.4	1	199.0	22.556		22.455		23.553		23.363		20.620	0.00	20.409	0.00	20.165	0.00	20.216 20.260	0.00					20.96	14.8	20.05	0.0	18.798 18.811		end of step 3
14:45	10174.9		197.4	22.556		22.455		23.553		23.363		20.620	0.00	20.570	0.00	20.180	0.00	20.260	0.00					20.70	19.7	20.05	0.0	18.811	· ·]	
15:15 15:45	10175.4 10175.9		197.0 192.2	22.543 22.536		22.509 22.498		23.570 23.578		23.375 23.381		20.894 20.943	0.00	20.693 20.727	0.00	20.304 20.323	0.00	20.331						21.12		20.07		18.831		
OPE Constant Rate	Test EW-1							1 20:07 0	1			20.940	0.00	20.727	0.00	20.525	0.00	20.329	0.00		·····			Ļ	20.9		0.0	18.840		end of step 4
11/12/08 16:30 17:00	10176.6 10177.1	159 159.6	147.3	22.839	0.00	23.567		23.995		23.611		20.922		20.663		20.350		20.340		23.51		24.18		21.11		20.10		18.860	· · · · ·	
18:00	10178.1	159.0	147.5 147	23.056 23.438	0.00	23.476 23.382	0.00	24.197 24.314	0.00	23.616 23.609	0.00	20.900 20.855	0.00	20.635	0.00	20.364 20.370	0.00	20.338 20.336	0.00		8.40		0.00		19.40		0.00	18.879		*
19:00	10179.1	159	147	23.641		23.338		24.339		23.618		20.833		20.568		20.370		20.336				· .					•	18.898 18.906		
20:00 21:00	10180.1 10181.1	159 159	147 147	23.745		23.308		24.335		23.611		20.817		20.552		20.375	÷	20.328										18.919		
22:00	10181.1	159	147	23.798 23.829		23.272 23.248		24.338 24.335		23.596 23.592		20.810 20.806		20.541 20.515		20.383		20.332						•				18.934		
23:00	10183.1	159	147	23.865		23.253		24.314		23.591		20.810		20.513		20.379		20.322										18.934 18.938		
11/13/08 0:00	10184.1	159	. 147	23.872		23.210		24.314		23.584		20.788		20.494		20.376		20.318										18.936		
1:00 2:00	10185.1 10186.1	159 159	147 147	23.900 23.923		23.192 23.202		24.325 24.308		23.586 23.592		20.770 20.729		20.472		20.373		20.311								- -		18.943		
3:00	10187.1	159	147	23.930		23.196		24.308	κ.	23.592 23.579		20.729	t	20.435 20.420		20.358 20.350		20.296 20.293										18.929		
4:00	10188.1	159	147	23.917		23.163		24.290		23.593		20.684		20.401		20.344		20.295		· ·		· .					1	18.941 18.944		
5:00 6:00	10189.1 10190.1	159 159	147 147	23.927 23.925		23.169 23.181		24.292		23.575		20.680		20.400		20.335		20.281										18.939		
7:00	10191.1	159	147	23.923		23.181		24.299 24.294		23.585 23.573		20.751 20.767		20.429 20.429		20.358 20.373		20.291 20.297										18.941		
8:00	10192.1	159	147	23.650		22.452		23.868		23.406		19.914		19.640		19.934		20.297 19.840										18.952 18.921		
11/13/08 13:00 11/13/08 14:00	10191.6 10192.7	206.5 214.5	192.3 196	22.751 23.356	0.60	23.078 23.748	0.00	23.706 24.409	0.00	23.495 23.712	0.00	19.387 20.702	0.00	19.745 20.453	0.00	19.609 20.205	0.00	19.812 20.265	0.00	23.76	10.10	24.01	0.00	20.21	21.10	20.02	0.00	18.781 18.839		· .
11/17/08				22.403	•	23.097		23.656		23.517	÷	19.116	•	19.658		19.434		19.715		23.51		24.18		21.11		20.10		18.829		Static level
11/17/08 8:00 9:00	10193.5 10194.5	23.89	20.75	22.920 23.380		23.610	· · · ·	24.180		24.500		19.550		19.860		19.800	<u> </u>	19.660		23.71		23.89		19.89		19.75				
10:00	10194.5	206.4	197.1	23.380	0.50	24.300	0.000	25.000	0.70	25.070	0.00	21.140	0.00	20.990	0.00	20.500	0.00	20.330	0.00	23.55	6 70	24.29	0.00	20.90	00.00	20.09		1		
11:00	10196.5	213.4	194.6		1.40		0.000	· ·	0.80		0.00		0.00		0.00		0.00		0.00		6.70 10.50		0.00 0.00		20.90 21.50		0.00 0.00			
12:00 13:00	10197.4 10198.5	210 210	194 194	24.510		24.140	· · ·	25.180		25.020		21.350		21.020		20.780		20.470		23.73		24.29		21.15	_1.00	20.14	0.00			•
14:00	10198.5	207.8	194 193.8	24.570 22.448	2.20	24.100 22.437	0.000	25.150 23.646	0.70	25.000 23.418	0.00	21.350 19.017	0.00	21.010 19.214		20.790	0.00	20.480	0.00	23.73	10.00	24.24	0.00	21.02		20.15		1		
							0.000			-0.110	0.00	19.017	0.00	1 17.414		19.344	0.00	19.469	0.00	l .	10.30		0.00		20.50	I.	(a)	18.709		

DRAWDOWN AND INDUCED VACUUM DATA DUAL-PHASE EXTRACTION PILOT TEST SHELL SERVICE STATION 1784 150th AVENUE SAN LEANDRO, CALIFORNIA

	Hour	Casing	Casing	Р	-1A	P-	18	P-2	?A	Р-	2B	Р	-3A	P-3	3B	P-4	4A	P	-4B	МИ	/-1A	MV	V-1B	MW	V-11	MV	V-2B	MW	-12	Notes
Date	Meter (Hrs)	Vac (in WC) (EW-1)	Vac (in WC) (EW-2)	DTW (ft)	Vac (in WC)	DTW * (ft)	Vac (in WC)	DTW (ft)	Vac (in WC)	DTW (ft)	Vac (in WC)	DTW (ft)	Vac (in WC)	DTW (ft)	Vac (in WC)	DTW (ft)	Vac (in WC)	DTW (ft)	Vac (in WC)	DTW (ft)	Vac (in WC)	DTW (ft)	Vac (in WC)	DTW (ft)	Vac (in WC)	DTW (ft)	Vac (in WC)	DTW (ft)	Vac (in WC)	
14:30	10200.0	213.7	196.6	22.440	3.00	22.470	0.000	23.646	1.30	23.418	0.00	19.015	0.00	19.213		19.340	0.00	19.465	0.00		10.90	V*/	0.00		22.40		(<i>in WC</i>) (a)	18.713	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
15:00	10201.0	215	200	22.444		22.478		23.663	- -	23.420		19.017		19.216		19.340		19.467			,						(/	18.713		
16:00 17:00	10202.0 10203.0	215 215	200 200	22.429 22.427		22.452		23.656		23.438		19.022	a de la Color	19.220		19.344		19.469										18.725		•
18:00	10203.0	215	200	22.427		22.465 22.439		23.655 23.637		23.439 23.430		19.028 19.040		19.222 19.239		19.350 19.359		19.482 19.487										18.735		
19:00	10205.0	215	200	22.414		22.432		23.647		23.411		19.040		19.237		19.361		19.487										18.750 18.754		
20:00	10206.0	215	200	22.409		22.438		23.630		23.422		19.038		19.237		19.357		19.485										18.754		
21:00	10207.0	215	200	22.398		22.439		23.630		23,401		19.042		19.242		19.361		19.489			· ·							18.756		
22:00 23:00	10208.0 10209.0	215 215	200	22.384		22.435		23.612		23.425		19.050		19.248		19.369		19.496										18.767		
/18/08 0:00	10203.0	215	200 200	22.385 22.370		22.432 22.403		23.618 23.607		23.428 23.410		19.052 19.056	1.1	19.250 19.255		19.372 19.376		19.498 19.504										18.769		
1:00	10211.0	215	200	22.373		22.400		23.602		23.403		19.054		19.255		19.373	· .	19.504						1				18.775 18.771		
2:00	10212.0	. 215	200	22.385		22.420		23.609		23.395		19.044		19.252		19.363		19.495									· · · ·	18.762		
3:00	10213.0	215	200	22.385		22.420		23.607		23.405		19.040	*	19.244		19.361		19.491										18.756		
4:00 5:00	10214.0	215	200	22.380		22.405		23.608		23.409		19.044		19.250	'	19.365		19.495						ł.				18.763		
5:00 6:00	10215.0 10216.0	215 215	200 200	22.375 22.377	-	22.419 22.403		23.608 23.598		23.417 23.408		19.046 19.044		19.250		19.365		19.497										18.763		
7:00	10216.6	213	202.9	22.358	2.70	22.396	0.000	23.602	0.90	23.395	0.00	19.044		19.248 19.259	0.00	19.363 19.376	0.00	19.495	0.00		10.10		0.00		20.40		0.00	18.763		
8:00	10217.5	219.6	201.8	22.350	2.70	22.390	0.000	23.580	0.90	23.393	0.00	19.058		19.259	0.00	19.376	0.00	19.506 19.509	0.00	23.73	10.10	24.25	0.00	21.04	20.40	(a)	0.00	18.779 18.783		
9:00	10218.5	218.3	201.4	22.348		22.375		23.591	1	23.414		19.056		19.267		19.376		19.505		24.70		23.96		22.04		20.19		18.777		
10:00	10219.5	220.6	201.8	22.354	3.10	22.384	0.000	23.573	1.30	23.397	0.00	19.056		19.272	0.00	19.378	0.00	19.509	0.00		9.70		0.00	i.	19.80		0.00	18.775		
11:00	10220.5	219.3	199.1	22.357	3.30	22.380	0.000	23.587	1.20	23.406	0.00	19.050		19.256	0.00	19.369	0.00	19.503	0.00		10.00		0.00		20.20		0.00	18.771		
12:00 13:00	10221.5 10222.5	218.8	201.4	22.373		22.406		23.594		23.411		19.030		19.243		19.351		19.487		23.70		24.23		(a)		(a)		18.744		
13:00	10222.5	219.9 221.5	202.7 204.1	22.380 22.392	3.30	22.421 22.445	0.000	23.608 23.626	1.20	23.406 23.428	0.00	19.022 19.019		19.244	0.00	19,343	0.00	19.482	0.00	24.29	10.00	24.26	0.00	20.84	10.00	20.15		18.736		
14:30	10224.0	221.9	204.9	22.399	3.30	22.445	0.000	23.629	1.00	23.428	0.00	19.019		19.228 19.230	0.00 0.00	19.340 19.340	0.00 0.00	19.478 19.474	0.00 0.00		10.00 10.00		0.00		19.80 19.80		0.00	18.735		
15:00	10225.0	223	205	24.365		23.404		24.610	1.00	23.705	0.00	20,672		20.298	0.00	20.407	0.00	20.304	0.00		10.00	1	0.00		19.60		0.00	.18.737 19.041		
16:00	10226.0	223	205	24.349		23.408		24.615		23.716		20.672		20.302		20.418		20.308				Ì						19.047		
17:00	10227.0	223	205	24.314		23.437		24.605		23.736		20.698		20.331		20.436		20.325			•							19.063		
18:00	10228.0	223	205	24.311		23.398		24.610		23.729		20.720		20.324		20.447		20.327								1		19.070		
19:00 20:00	10229.0 10230.0	223 223	205 205	24.308 24.297		23.390 23.406		24.608 24.606		23.716 23.724		20.716 20.725		20.320		20.447		20.327	· · ·									19.070		
21:00	10231.0	223	205	24.237		23.400		24.500		23.724 23.718		20.725		20.337		20.457 20.465		20.338										19.084		
22:00	10232.0	223	205	24.268		23.372		24.577		23.699		20.731		20.344		20.467		20.342										19.093 19.091	· · ·	
23:00	10233.0	223	205	24.272		23.387		24.575		23.698		20.718		20.330		20.465		20.338										19.091		
/19/08 0:00	10234.0	223	205	24.261		23.338		24.563		23.693		20.720		20,333		20.465	· · · ·	20.338						1				19.095		
1:00	10235.0	223	205	24.264		23.350		24.560		23.701		20.710		20.330		20.457		20.336		-								19.086		
2:00 3:00	10236.0 10237.0	223 223	205 205	24.257 24.265		23.364 23.353		24.563 24.568		23.706 23.696		20.720		20.331		20.467	·	20.342										19.096		
4:00	10238.0	223	205	24.265)	23.335		24.560	1	23.696		20.712 20.712		20.326 20.330		20.464 20.468		20.336 20.340										19.090		
5:00	10239.0	223	205	24.253		23.359		24.555		23.685		20.710		20.338		20.468		20.340										19.096 19.097		
6:00	10240.0	223	205	24.254		23.339		24.563		23.702		20.706		20.321		20.462		20.334				- A.					-	19.037		
6:30	10240	224,7	206.2	24.256	2.60	23.322	0.000	24.590		23.710	0.00	20.712	0.00	20.328	0.00	20.470	0.00	20.342	0.00	23.76	9.50	24.28	0.00	21.21	18.80	20.24	0.00	19.101		•
7:00 7:30	10240.7 10241.1	224.7	206.2	24.253 23.994	2.70	23.332 23.279	0.000	24.560 24.514		23.714 23.696	0.00	20.712 20.716	0.00	20.318 20.304	0.00	20.474 20.486	0.00	20.340 20.344	0.00	а —	9.60		0.00		18.90		0.00	19.119 19.111		
8 Background	l Water Level	Fluctuation		0.	125	0.1	49	0.1	31	0.1	148	0.	.038	0.0	54	0.0)50	0.	043									0.0	073	
Step Test of E		·····)											·			······································								<i></i>		· · · · · ·		<u>.</u>	. <u>.</u>
Distance fro					0.0	9		19		20			65			60			5.0		1.0					1			25	
Max Depth	to Water (ft) awdown (ft)				.334	23.		24.1			550		0.109	19.2		19.4			.541		.61								718	
Step Test of E				0.	874	0.4	23	0.4	<u>11</u>	0.1	110	0.	.079	0.06		0.0	196	0.	.081	0.	150				·			0.0	28	
Distance fro				4	8.5	51	.2	75	.8	74	1.0		9.6	8.6	8	21	9	1	9.3	r - 2		γ 		1 1	1.1		10	<u> </u>		
Max Depth	. ,		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		.068	22.		23.5			381		.943	20.7		20.3			.331						1.12		18 0.07		5 840	
	awdown (ft)			0.	000	0.2	13	0.0			060		.541	0.90		0.7			510						.170		.370)59	
	Test of EW-1	and EW-2																		•				·			·····	d		
Distance fro				1	0.0	9.		19).0		8.0	69.		60.			5.0		1.0		3.0		5.0		i3.0		25	
Distance fro Max Depth				1	8.5 .570	51		75 25.1			1.0		9.6	8.8		21.		a .	9.3	1	0		35		1.1	1	18		5	
-	awdown (ft)				.570 167	24.		25.		25. 1.5	070 553		.350 .234	21.0 1.36		20.7		1	.480 .765		.70 19		1.29		2.08		0.24		119	
viations/Not		······································	· · · · · · · · · · · · · · · · · · ·			L1.2		1.5		1.0			· ~ 7	1	04	L1.3	000	<u>I</u> 0.	.703	<u>i 1</u>	13	L0	.11	1 0	.97	1 0).14	<u> 0.</u>	:90	
= depth to wa	iter (feet belov	v top of casing)																												
k" cell = No m	easurement		•	1.1																						1. T.				
		neasured in the fiel	ld.		•																									
dual phase e	veraction																													

DPE = dual phase extraction ft = feet in WC = inches of water column (a) = PCS vacuum truck blocking wells, no measurements collected

VAPOR SAMPLE ANALYTICAL RESULTS DUAL-PHASE EXTRACTION PILOT TEST SHELL SERVICE STATION 1784 150th AVENUE SAN LEANDRO, CALIFORNIA

Sample	Sampling	Sampling	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Methane (%v)
ID	Date	Time	◀			— рртv _			>
EW-1M EW-1	11/11/08 11/11/08	16:20 16:30	 1,800	0.58	0.70	 1.4	2.3	<0.90	2.15
INF-2	11/11/08	16:40	590	0.18	0.25	0.46	1.09	<0.30	
EW-1	11/12/08	7:30	1,400	2.6	0.73	2.7	5.4	<0.60	
EW-2	11/12/08	10:20	1,600	1.0	1.1	3.4	4.99	<0.90	
EW-2 EW-2 INF-1	11/12/08 11/12/08 11/12/08	15:40 15:45 16:20	1,400 1,600	3.2 2.8	1.3 	7.9 4.7	16.7 9.9	<0.80 <0.80	 <0.50
EW-1 EW-2	11/12/08 11/12/08	16:25 16:40	61 1,100	0.070 2.5	0.012 1.1	0.082 7.1	0.163 15.5	<0.032 <0.60	
EW-2 EW-1 INF-1	11/13/08 11/13/08 11/13/08	14:25 14:30 14:35	690 1,300 990	1.4 3.7 2.5	1.3 0.69 0.97	4.2 4.0 3.6	12.4 9.0 9.2	<0.40 <0.60 <0.50	
INF-1 INF-2 EW-1 EW-2	11/17/08 11/17/08 11/17/08 11/17/08	9:25 9:30 9:35 9:40	1,100 1,200 1,200 750	1.7 1.8 2.7 0.84	0.85 0.79 0.87 1.0	2.0 2.2 2.1 2.4	5.63 5.96 5.23 7.3	<0.60 <0.60 <0.60 <0.60	
EW-1 EW-2 INF-2	11/17/08 11/17/08 11/17/08	14:30 14:35 14:40	1,200 590 1,200	3.1 0.96 2.3	0.74 0.99 1.0	2.9 3.4 3.1	4.02 11.7 9.0	<0.60 <0.30 <0.60	
EW-1 EW-2 INF-2	11/18/08 11/18/08 11/18/08	7:30 7:35 7:40	1,000 430 920	3.5 1.3 2.9	1.1 1.5 1.4	3.3 3.4 3.9	9.23 12.4 12.7	<0.60 0.25 <0.50	
EW-1 EW-2	11/18/08 11/18/08	14:40 14:45	890 370	3.0 1.1	1.0 1.1	2.5 2.5	6.91 8.6	<0.50 0.21	

CRA 240612 (4)

VAPOR SAMPLE ANALYTICAL RESULTS DUAL-PHASE EXTRACTION PILOT TEST SHELL SERVICE STATION 1784 150th AVENUE SAN LEANDRO, CALIFORNIA

Sample	Sampling	Sampling	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Methane (%v)
ID	Date	Time	4			— рртv _			
INF-2	11/18/08	14:50	810	3.3	0.92	4.1	7.2	0.31	
EW-1	11/19/08	6:55	890	3.7	1.2	3.2	9.1	< 0.50	· · ·
EW-2	11/19/08	7:00	340	1.2	1.2	2.6	9.4	0.21	· · · · · · · · · · · · · · · · · · ·
INF-2	11/19/08	7:05	770	2.7	1.1	2.5	7.6	<0.40	

Abbreviations/Notes:

TPHg analyzed by method TO-3M BTEX analyzed by method TO-15

MTBE analyzed by method TO-15

ppmv = Parts per million by volume

TPHg = C2-C10 Hydrocarbons as hexane

INF-1 = The undiluted vapor stream from the well field containing entrained water

INF-2 = Post-knockout vapor stream that may have been diluted as necessary

---- = Sample not analyzed for the constituent

DUAL-PHASE EXTRACTION PERFORMANCE DATA DUAL-PHASE EXTRACTION PILOT TEST SHELL SERVICE STATION 1784 150th AVENUE SAN LEANDRO, CALIFORNIA

						·· · · · ·		· · ·		1										· · · · ·				TPHg	· · · · · · · · · · · · · · · · · · ·	1	Benzene	,
	Hours									Influent 2					EW-1		EW-1	EW-2		EW-2	EW-2	Effluent			Cumulative		Denzem	Cumulative
Date	On (hours)	Meter (hours)	Vacuum	Flow	TPHg Cond	c. Vacuum ("H2O)	Flow Rate	Temp.	Flow Rate	TPHg Conc.		Temp.	Flow Rate		c. Vacuum	Temp.					Flow Rate				Mass Removed			5 a.a
Step Test EW-		(nours)	(11χ)	(())	_(<i>ppmv</i>)	(1120)	(ucjm)	(°F)	(scfm)	(ppmv)	("H2O)	(°F)	(scfm)	(ppmV)	("H2O)	(°F)	(scfm)	(ppmV)	("H2O)	(°F)	(scfm)	("F)	(ppmv)	(lbs/day)	(lbs)	(ppmv)	(lbs/day)	(lbs)
11/11/08 9:00	0.0	10146.1		over		49.5	31.9	67.6	27.6		3.3	129.5	101		49.5	67.6	27.6					1,669	-	15.9	0.000	1	0.005	0.000
9:30	0.5	10146.6		over		50.0	25.4	72.4	21.8		3.4	133.9	106	,	50.0	72.4	21.8					1,656		12.6	0.262	- e-	0.004	0.000
10:00 10:30	1.0 1.5	10147.1 10147.6		over		49.0 49.7	22.8 27.8	73.9 70.9	19.5	1997 - 19	3.5	134.0	106		49.0	73.9	19.5					1,654		11.3	0.497		0.003	0.000
11:00	2.0	10147.0	16.5	over over		75.2	30.2	70.9 71.5	23.9 24.1		3.4 3.0	136.8 134.0	103 93		49.7 75.2	70.9 71.5	23.9 24.1					1,634 1,671		13.8 13.9	0.784		0.004	0.000
11:30	2.5	10148.6	16.5	over		76.0	29.3	71.7	23.3		2,7	137.1	94	1	76.0	71.7	23.3					1,506		13.5	1.07 1.35		0.004 0.004	0.000 0.000
12:00	3.0	10149.1		over		76.3	32.5	73.8	25.7		2.7	138.4	95		76.3	73.8	25.7					1,470		14.9	1.66		0.004	0.000
12:30	3.5	10149.6		over		75.2	22.8	74.4	18.1		2.6	139.2	94		75.2	74.4	18.1					1,463		10.4	1.88		0.003	9.001
13:00 13:30	4.0 4.5	10150.1 10150.6		82.5 79.0		$100.0 \\ 100.0$	30.7 26.3	75.2 74.1	22.5 19.3		2.1 2.0	134.4 133.9	77 74		100.0 100.0	75.2 74.1	22.5 19.3					1,537		13.0	2.15		0.004	0.001
14:00	5.0	10151.1	18.5	83.5		100.0	28.4	72.6	20.9		2.0	133.1	74		100.0	72.6	20.9					1,535 1,541		11.2 12.1	2.38 2.64		0.003 0.004	0.001 0.001
14:30	5.5	10151.6	18.5	82.5		100.4	31.6	73.8	23.2		2.0	133.0	74		100.4	73.8	23.2					1,545		13.4	2.92		0.004	0.001
15:15	6.2	10152.4	22.5	20.7		147.5	45.7	70.7	28.5		1.1	119.1	44		147.5	70.7	28.5					1,671		16.5	3.43		0.005	0.001
15:30 16:30	6.5 7.5	10152.7 10153.1	19.0 19.0	55.5 53.0	1,800	150.2	43.7	68.9	27.1	500	1.8	126.9	73	1 000	150.2	68.9	27.1					1,651		15.7	3.59		0.005	0.001
11/12/08 7:15		10155.1		59.1	1,000	150.8 152.5	44.5 46.8	70.6 65.4	27.4 29.0	590	1.8 1.8	128.6 127.7	72 69	1,800	150.8 152.5	70.6 65.4	27.4 29.0					1,627	1,800	15.8	4.25	0.58	0.005	0.001
7:45		10168.9		58.7	1,400	148.8	54.2	71.2	33.6		2.1	127.6	64	1,400	148.8	71.2	33.6					1,588 1,583	1,400	14.9 15.1	13.4 13.7	2.6	0.013 0.025	0.009 0.010
Step Test EW-	2																	<u> </u>				1,000	1,100	10.1	10.7	20	0.020	0.010
11/12/08 9:00		10169.1		over		50.0	23.1	64.6	20.1		0.0	96.5	17						50.0	64.6	20.1	1,448		10.3	13.7		0.006	0.010
9:30 10:00	23.3 23.7	10169.6 10170.1	27.5 28.0	over over		50.0 50.3	23.7 23.2	65.8 75.5	20.6 19.7		0.1	98.0 104.6	17 16				•		50.0	65.8	20.6	1,461		10.6	13.9		0.006	0.010
10:30	24.2	10170.6	28.5	over	1,600	39.3	13.4	68.3	19.7	1	0.0 0.0	104.6 102.0	16 17					1,600	50.3 39.3	75.5 68.3	19.7 11.9	1,619 1,735	1,600	10.1	14.1	10	0.006	0.010
11:00	24.8	10170.9	23.0	28.1		100.0	31.8	68.5	23.6		1.0	119.6	48			· · ·		1,000	100.0	68.5	23.6	1,641	1,000	6.12 12.1	14.3 14.5	1.0	0.003 0.007	0.010 0.010
11:15	25.0	10171.4	23.0	35.5		100.0	31.8	71.7	23.5		0.8	123.3	47						100.0	71.7	23.5	1,627		12.0	14.6		0.007	0.010
11:45	25.5 26.0	10171.5		33.9		100.8	47.2	66.9	35.0		0.9	125.3	46						100.8	66.9	35.0	1,622		18.0	15.0		0.010	0.011
12:15 12:30	26.0	10172.4 10172.6	23.0 19.0	38.8 69.4		100.8 145.2	36.3 42.1	69.9 68.5	26.8 26.6		0.9 1.9	128.5 132.7	47 72					1	100.8	69.9	26.8	1,615		13.8	15.3		0.008	0.011
13:00	26.7	10173.1	19.0	73.1		148.5	43.6	68.8	20.0		1.9	132.9	72						145.2 148.5	68.5 68.8	26.6 27.2	1,550 1,516		13.7 14.0	15.4 15.7		0.008 0.008	0.011 0.011
13:30	27.2	10173.6	19.0	66.8		148.9	45.0	70.2	28.0		1.8	131.4	72						148.9	70.2	- 28.0	1,502		14.0	16.0		0.008	0.011
14:00	27.7	10174.1	19.0	68.4		148.5	40.2	67.3	25.2		2.0	132.6	71						148.5	67.3	25.2	1,496		11.3	16.2		0.023	0.012
14:15 14:45	28.0 28.5	10174.4 10174.9	17.5 17.5	73.5 74.7		199.0 197.4	47.6 46.5	67.7 67.5	24.0 23.6	1	2.1	134.2	84 87						199.0	67.7	24.0	1,476		10.8	16.3		0.022	0.012
15:15	28.5 29.0	10174.9	17.5	75.1		197.4	46.4	65.8	23.8		2.2 2.4	133.7 133.4	87 92						197.4 197.0	67.5 65.8	23.6 23.7	1,455 1,450		10.6	16.6		0.022	0.013
15:45	29.5	10175.9	17.5	67.3	1,400	192.0	57.2	66.0	29.9		2.5	132.2	92					1,400	197.0	66.0	29.9	1,450	1,400	10.6 13.4	16.8 17.1	3.2	0.022 0.028	0.013 0.014
Constant Rate											· · · ·													2012			0.020	0.011
11/17/08 8:00 9:00	29.5 30.5	10193.5 10194.5		0.0 0.0	1,100	241.5 231.1	123.0	65.3	49.5	1 200	2.1	117.4	85	1.000	221.2	62.2	27.8		209.1	61.1	18.8	1,492		32.8	17.1		0.045	0.014
10:00	31.5	10194.5		0.0	1,100	231.1 226.1	121.5 119.0	71.4 71.6	51.4 51.7	1,200	2.3 2.3	135.5 142.1	89 89	1,200	209.4 206.4	68.4 69.3	30.9 31.4	750	196.2	66.5	19.6	1,514	1,200	34.1	18.5	1.8	0.046	0.016
11:00	32.5	10196.5		0.0		235.0	116.5	72.2	48.1		2.2	141.0	88		200.4 213.4	69.9	32.7		197.1 194.6	67.3 67.8	19.6 24.3	1,469 1,469		34.1 33.8	19.9 21.3		0.046 0.046	0.018 0.020
12:00	33.5	10197.5	18.0	0.0		233.7	115.5	74.1	47.8		2.1	142.3	88		214.4	69.4	30.0		196.7	68.3	28.0	1,466		33.7	22.7	м	0.046	0.020
13:00	34.5	10198.5	18.0	0.0		235.3	118.0	73.9	48.5		2.0	144.5	92		214.8	70.9	35.2		199.2	70.3	23.6	1,465		35.3	24.2		0.061	0.024
14:00 14:30	35.5 36.0	10199.5 10200.0		0.0		235.5 234.7	114.0 109.0	72.4 71 5	46.9 45 1	1 200	2.3	141.3	101	1 200	207.8	69.4	33.5	500	193.8	69.6	21.9	1,435	4.000	38.8	25.8		0.068	0.027
14.50	50.0 52.5	10200.0		0.0		234.7	109.0	71.5 60.0	45.1 46.5	1,200	2.2	143.4 128.1	99 109	1,200	213.7 221.2	72.5 58.2	29.5 29.5	590	196.6 202.9	72.7 56.1	21.5 21.3	1,654 1,602	1,200	38.0	26.6	2.3	0.066	0.028
8:00	53.5	10217.5	18.5	0.0		238.1	120.5	65.6	49.4	920	2.4	132.1	102	1,000	217.2	63.9	30.7	430	202.9	58.5	21.3	1,502	920	32.3 30.2	48.8 50.1	2.9	0.092 0.086	0.092 0.095
9:00	54.5	10218.5		0.0		237.5	118.5	67.7	48.6		2.2	135.0	109		218.3	65.5	29.3		201.4	65.2	22.4	1,573		32.2	51.4		0.092	0.099
10:00 11:00	55.5 56 5	10219.5		0.0		237.8	125.5	74.8	50.7		2.0	140.4	110	-	220.6	70.2	30.5		201.8	64.7	32.7	1,555		32.4	52.7		0.093	0.103
11:00	56.5 57.5	10220.5 10221.5		0.0 0.0		239.1 226.7	115.5 115.0	71.9 71.1	46.5 49.8		2.0 2.0	141.0 138.1	100 108		219.3 218.8	70.3 67.8	30.0 31.5	-	199.1	66.8 67.0	22.8	1,553		26.0	53.8		0.096	0.107
13:00	58.5	10222.5		0.0		239.2	107.0	69.2	43.3		2.0	138.6	108		218.8	67.8 67.4	31.5 27.9		201.4 203.1	67.0 65.3	22.5 21.6	1,553 1,547		28.2 27.4	55.0 56.1		0.104 0.101	0.111 0.116
14:00	59.5	10223.5	19.0	0.0		239.6	109.5	69.3	44.2		2.0	133.3	100		221.5	67.8	28.5		204.1	66.3	21.0	1,555		25.9	57.2		0.096	0.110
14:30	60.0	10224.0		0.0		241.0	109.0	69.4	43.6	810	2.0	133.3	101	890	221.5	67.8	28.3	370	204.1	66.5	21.6	1,554	810	26.3	57.8	3.3	0.097	0.122
11/19/08 6:30	76.0	10240.0	19.0	0.0		242.0	118.0	66.7	47.2	770	2.2	128.0	110	890	224.7	58.9	25.6	340	206.2	59.2	22.9	1,582	770	27.2	75.9	2.7	0.087	0.179
Totalar				<u> </u>						1																1.1.1		
Totals:										· .					1.5										75.9			0.179
L.,							-		-																			

DUAL-PHASE EXTRACTION PERFORMANCE DATA DUAL-PHASE EXTRACTION PILOT TEST SHELL SERVICE STATION 1784 150th AVENUE SAN LEANDRO, CALIFORNIA

Notes and Abbreviations:	DPE = two-phase extraction
Influent 1 = The undiluted vapor stream from the well field containing entrained water	"Hg = inches of mercury
Influent $2 = Post-knockout vapor stream that may have been diluted as necessary$	ctm = cubic teet per minute
Over Range = reading too high to be read by measuring device	Conc. = concentraion
scfm = acfm((406.8-discharge pressure in"H2O)/406.9)((528/(discharge temperature in degF + 460))	"H2O = inches of water column
degF = 1.8(degC)+32	actm = actual cubic feet per minute
Hydrocarbon Removal/Emission Rate = Rate based on Bay Area Air Quality Management District's Manual of Procedures for	S scfm = standard cubic feet per minute
TPHg Removal Rate = lab concentration (ppmv) x system flowrate (scfm) x (11b-mole/386 ft ³) x molecular weight (86 lb/ll	b- F = degrees Fahrenheit
Benzene Removal Rate = same equation as above using a molecular weight of 78.11 lb/lb-mole for Benzene	ppmv = parts per million by volume
"Blank" cell = No measurement	lbs = pounds
TPHg analyzed by Method TO-3M	TPHg = Total Petroleum Hydrocarbons as Gasoline
BTEX and MTBE analyzed by method TO-15	MIBE = Methyl tertiary butyl ether

PILOT TEST VACUUM RADIUS OF INFLUENCE ESTIMATES DUAL-PHASE EXTRACTION PILOT TEST SHELL SERVICE STATION 1784 150th AVENUE SAN LEANDRO, CALIFORNIA

Extraction Well	Monitorins Wells	Rw (ft)	r (ft)			•	Pr (abs) (psi)	Ri ¹ (ft)
EX-1	MW-1A	0.166	24	150.9	9.2	6.90	14.4	32.2
EX-2 EX-2	MW-11 MW-2B	0.166 0.166	11.1 19	192.2 100.00	8 11	20.9 0.5	13.9 14.7	21.8 19.5

Abbreviations & Notes:

Rw = Radius of extraction well (feet)

r = Distance of monitoring well from extraction well (feet)

Pw = Gauge pressure (vacuum) measured at extraction well (measured in inches of mercury and converted to inches of water column). Extraction

Pw(abs) = Absolute pressure at extraction well (calculated in pounds per square inc

- Pr = Gauge pressure (vacuum) measured at respective observation well (measured in inches of water column). The values used were the maximum observed vacuums measured at that respective well during
- Pr (abs) = Absolute pressure at observation well (calculated in pounds per square i
 - Patm = Standard atmospheric pressure (14.696 psia or 406.8 inches of water colu
 - Ri = Calculated radius of influence (feet)
 - ¹ Based on the steady-state radial pressure distribution equation from "A Practical Approach to the Design, Operation, and Monitoring of In Situ Soil Venting Systems", P.C. Johnson, C.C. Stanley, M.W. Kemblowski, D.L. Byers, and J.D. Cothart, Groundwater Monitor and Review, Spring 1990:

 $Ri = [Rw] / [r/Rw]^{(1-(Patm/Pw(abs))^2)/(((Pr/Pw(abs))^2)-1)]}$

ft = feet

- $"H_2O =$ inches of water
- psi = pounds per square inch

APPENDIX A

REGULATORY CORRESPONDENCE

ALAMEDA COUNTY HEALTH CARE SERVICES

JAN 2 2 2008

RECEIVED

DAVID J. KEARS, Agency Director

AGENCY

January 18, 2008

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

Mr. Denis Brown Shell Oil Products US 20945 S. Wilmington Ave. Carson, CA 90810-1039

Bhushan K. Bansal Bansal, Inc. 1784 150th Avenue San Leandro, CA 94578-1826

Subject: Fuel Leak Case No. RO0000367 and Geotracker Global ID T0600101230, Shell#13-6017, 1784 150th Avenue, San Leandro, CA 94578

Dear Mr. Brown and Mr. Bansal:

Alameda County Environmental Health (ACEH) staff has reviewed the fuel leak case file for the above-referenced site including the documents entitled, "Supplemental Subsurface Investigation Report," dated December 17, 2007 and "Groundwater Monitoring and Remediation Report – Third Quarter 2007," dated November 9, 2007. Both reports were prepared on Shell's behalf by Conestoga-Rovers & Associates.

The Supplemental Subsurface Investigation Report presents results from five cone penetration test (CPT) borings, one direct push soil boring, and five soil vapor probes. Total petroleum hydrocarbons as gasoline (TPHg) were detected in soil vapor from three of the five soil vapor probes at concentrations that exceed Environmental Screening Levels (San Francisco Bay Regional Water Quality Control Board November 2007) for residential land use. TPHg, benzene, and MTBE were detected in grab groundwater samples collected from the CPT borings at concentrations up to 3,600, 41, and 1,100 micrograms per liter (µg/L), respectively. The Supplemental Subsurface Investigation Report recommends destruction and replacement of wells MW-1 and MW-2, installation of a shallow zone monitoring well near boring B-1, and re-sampling vapor probes SVP-1 through SVP-5. As discussed in the technical comments below, we generally concur with these recommendations.

Interim groundwater extraction was conducted periodically at the site from July 2002 to August 2007. Periodic groundwater extraction was discontinued at the site because periodic extraction was not effective in reducing the concentrations of dissolved hydrocarbons and oxygenates. ACEH concurred with discontinuation of periodic groundwater extraction on August 14, 2007. During the most recently reported groundwater sampling event on September 11, 2007, TPHg, benzene, and MTBE were detected in groundwater at concentrations up to 45,000, 8,100, and 5,700 μ g/L, respectively. Remediation is required for this site in order to address the elevated concentrations of fuel hydrocarbons and oxygenates that persist in soil and groundwater at the site. We request that you submit a Pilot Test Work Plan or Draft Corrective Action Plan **by April** 25, 2008.

Denis Brown Bhushan K. Bansal RO0000367 January 18, 2008 Page 2

We request that you address the following technical comments, perform the proposed work, and send us the reports described below.

TECHNICAL COMMENTS

- Destruction and Replacement of Wells MW-1 and MW-2. We concur with the proposed destruction and replacement of long screen wells MW-1 and MW-2. Please present plans for these activities in the Work Plan for Well Decommissioning and Well Installation requested below.
- Installation of Additional Monitoring Well near Boring B-1. We have no objection to installation of an additional monitoring well to monitor shallow groundwater near boring B-1. Please present plans for well installation in the Work Plan for Well Decommissioning and Well Installation requested below.
- Re-Sampling of Soil Vapor Probes. Based on the elevated concentrations of TPHg detected in soil vapor samples from probes SVP-1 through SVP-5, additional sampling of soil vapor probes SVP-1 through SVP-5 is required. Please present the results from re-sampling of the probes no later than March 28, 2008.
- 4. TPHg Concentration in Soil Vapor from SVP-5. We do not agree with the conclusion in the Executive Summary of the Supplemental Subsurface Investigation Report that the UST system at the site is not the likely source of the elevated concentration of TPHg detected in soil vapor from probe SVP-5. The Supplemental Subsurface Investigation Report postulates that an unknown source of petroleum contamination exists in the vadose zone in the area of MW-12. In reviewing historical data for the site, we find little indication of a separate source of contamination in this area. Five soil samples were collected on May 26, 2006 from soil. boring SB-24, which is the soil boring associated with well MW-12. The highest concentration of TPHg (848 mg/kg) was detected in the soil sample collected from the capillary fringe at a depth of 24 feet bgs. Soil samples collected at shallower depths contained less than 2.39 mg/kg of TPHg. These results indicate that soil contamination in this off-site area is more likely the result of groundwater migration from the site. Elevated concentrations of BTEX were detected in soil vapor samples previously collected from locations SVS-7 through SVS-9 in the off-site area west of 150th Avenue. Soil vapor samples were collected from four depths in SVS-9. The highest concentrations of benzene were detected in the two lowermost soil vapor samples. These results are also consistent with contamination that has migrated with groundwater rather than a separate vadose zone source.
- 5. Site Remediation. Interim groundwater extraction has not reduced the concentrations of dissolved hydrocarbons at the site. Based on both historic and recent site assessment activities, a significant source of fuel hydrocarbons and oxygenates remains at the site. Therefore, we request that you submit a Pilot Test Work Plan or Draft Corrective Action Plan by April 25, 2008 to initiate site cleanup.

Denis Brown Bhushan K. Bansal RO0000367 January 18, 2008 Page 3

TECHNICAL REPORT REQUEST

Please submit technical reports to Alameda County Environmental Health (Attention: Jerry Wickham), according to the following schedule:

- March 28, 2008 Work Plan for Well Decommissioning and Well Installation and Sampling Results from Soil Vapor Probes SVP-1 through SVP-5
- April 25, 2008 Pilot Test Work Plan or Draft Corrective Action Plan
- 45 days after end of each quarter Quarterly Monitoring Reports

These reports are being requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request.

ELECTRONIC SUBMITTAL OF REPORTS

The Alameda County Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of all reports in electronic form to the county's ftp site. Paper copies of reports will no longer be accepted. The electronic copy replaces the paper copy and will be used for all public information requests, regulatory review, and compliance/enforcement activities. Instructions for submission of electronic documents to the Alameda County Environmental Cleanup Oversight Program ftp site are provided on the attached "Electronic Report Upload (ftp) Instructions." Please do not submit reports as attachments to electronic mail.

Submission of reports to the Alameda County ftp site is an addition to existing requirements for electronic submittal of information to the State Water Resources Control Board (SWRCB) Geotracker website. Submission of reports to the Geotracker website does not fulfill the requirement to submit documents to the Alameda County ftp site. In September 2004, the SWRCB adopted regulations that require electronic submittal of information for groundwater cleanup programs. For several years, responsible parties for cleanup of leaks from underground storage tanks (USTs) have been required to submit groundwater analytical data, surveyed locations of monitor wells, and <u>other</u> data to the Geotracker database over the Internet. Beginning July 1, 2005, electronic submittal of a complete copy of all necessary reports was required in Geotracker (in PDF format). Please visit the SWRCB website for more information on these requirements (http://www.swrcb.ca.gov/ust/cleanup/electronic reporting).

PERJURY STATEMENT

All work plans, technical reports, or technical documents submitted to ACEH must be accompanied by a cover letter from the responsible party that states, at a minimum, the following: "I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge." This letter must be signed by an officer or legally authorized representative of your company. Please include a cover letter satisfying these requirements with all future reports and technical documents submitted for this fuel leak case.

Denis Brown Bhushan K. Bansal RO0000367 January 18, 2008 Page 4

PROFESSIONAL CERTIFICATION & CONCLUSIONS/RECOMMENDATIONS

The California Business and Professions Code (Sections 6735, 6835, and 7835.1) requires that work plans and technical or implementation reports containing geologic or engineering evaluations and/or judgments be performed under the direction of an appropriately registered or certified professional. For your submittal to be considered a valid technical report, you are to present site specific data, data interpretations, and recommendations prepared by an appropriately licensed professional and include the professional registration stamp, signature, and statement of professional certification. Please ensure all that all technical reports submitted for this fuel leak case meet this requirement.

UNDERGROUND STORAGE TANK CLEANUP FUND

Please note that delays in investigation, later reports, or enforcement actions may result in your becoming ineligible to receive grant money from the state's Underground Storage Tank Cleanup Fund (Senate Bill 2004) to reimburse you for the cost of cleanup.

AGENCY OVERSIGHT

If it appears as though significant delays are occurring or reports are not submitted as requested, we will consider referring your case to the Regional Board or other appropriate agency, including the County District Attorney, for possible enforcement actions. California Health and Safety Code, Section 25299.76 authorizes enforcement including administrative action or monetary penalties of up to \$10,000 per day for each day of violation.

If you have any questions, please call me at (510) 567-6791 or send me an electronic mail message at jerry.wickham@acgov.org.

Sincerely,

Jerry Wickham, California PG 3766, CEG 1177, and CHG 297 Senior Hazardous Materials Specialist

Enclosure: ACEH Electronic Report Upload (ftp) Instructions

cc: Peter Schaefer, Conestoga-Rovers & Associates, 5900 Hollis Street, Suite A Emeryville, CA 94608

Ana Friel, Conestoga-Rovers & Associates, 19449 Riverside Drive, Suite 230 Sonoma, CA 95476

Donna Drogos, ACEH Jerry Wickham, ACEH File

ALAMEDA COUNTY HEALTH CARE SERVICES

DAVID J. KEARS, Agency Director

AGENCY

June 27, 2008

JUL 1 - 2008

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

Mr. Denis Brown Shell Oil Products US 20945 S. Wilmington Ave. Carson, CA 90810-1039

Bhushan K. Bansal Bansal, Inc. 1784 150th Avenue San Leandro, CA 94578-1826

Subject: Fuel Leak Case No. RO0000367 and Geotracker Global ID T0600101230, Shell#13-6017, 1784 150th Avenue, San Leandro, CA 94578

Dear Mr. Brown and Mr. Bansal:

Alameda County Environmental Health (ACEH) staff has reviewed the fuel leak case file for the above-referenced site including the documents entitled, "*Well Destruction and Installation Work Plan*," dated March 17, 2008, "*Soil Vapor Probe Sampling Report*," dated March 25, 2008, and "*Pilot Test Work Plan*," dated April 23, 2008. All three documents were prepared on Shell's behalf by Conestoga-Rovers & Associates.

The "Well Destruction and Installation Work Plan," proposes the destruction of wells MW-1 and MW-2, installing two replacement wells near MW-1, and installing a groundwater monitoring well near boring B-1. The "Soil Vapor Probe Sampling Report," presents the results from sampling of the five soil vapor probes at the site. The "Pilot Test Work Plan," proposes the installation of additional groundwater extraction wells and piezometers to conduct pilot tests for groundwater extraction and Installation Work Plan," and "Pilot Test Work Plan," may be implemented provided that the technical comments below are addressed and incorporated during the proposed field investigation. Submittal of a revised Work Plan or Work Plan Addendum is not required unless an alternate scope of work outside that described in the Work Plan and technical comments below is proposed.

We request that you address the following technical comments, perform the proposed work, and send us the reports described below.

TECHNICAL COMMENTS

- 1. **Replacement for Well MW-2**. The "*Well Destruction and Installation Work Plan*," does not propose well replacement following destruction of well MW-2 since nearby well MW-11 is screened within the shallow water-bearing zone. We concur that a replacement well within
 - the shallow water-bearing zone is not necessary based on the proximity of well MW-11. However, a well is needed to monitor the water-bearing zone between approximately 45 and

Denis Brown Bhushan K. Bansal RO0000367 June 27, 2008 Page 2

50 feet bgs that was observed and sampled in boring CPT-2. Therefore, we request that you install a replacement well within this lower water-bearing interval following destruction of well MW-2. Please present the results in the Pilot Test report requested below.

- Sampling Soil Vapor Probes. The "Soil Vapor Probe Sampling Report," recommends an additional soil vapor sampling event. Based on the elevated concentrations of TPHg detected in soil vapor samples from probes SVP-1 through SVP-5, we concur with the proposal to conduct an additional sampling event for soil vapor probes SVP-1 through SVP-5. Please present the results from soil vapor sampling of the probes no later than October 27, 2008.
- 3. **Pilot Testing.** The proposed pilot test scope of work is generally acceptable. Please present results from the pilot testing in the Pilot Test Report requested below.
- 4. Electronic Submittal of Documents. We note that the "*Pilot Test Work Plan*," dated April 23, 2008 was submitted in hard copy to ACEH and in electronic format to the State Water 2006 Resource Control Board's Geotracker website but was not submitted in electronic format to the ACEH ftp site. ACEH maintains our case files online in electronic format and requires and electronic submittal of documents for the case files. Therefore, please submit an electronic format to the Pilot Test Work Plan," dated April 23, 2008 to the ACEH ftp site according to the Pilot Test Work Plan," dated April 23, 2008 to the ACEH ftp site according to the Pilot Test Work Plan," dated April 23, 2008 to the ACEH ftp site according to the Pilot Test Work Plan," dated April 23, 2008 to the ACEH ftp site according to the Pilot Test Work Plan, " dated April 23, 2008 to the ACEH ftp site according to the Pilot Test Work Plan," dated April 23, 2008 to the ACEH ftp site according to the Pilot Test Work Plan, " dated April 23, 2008 to the ACEH ftp site according to the Pilot Test Work Plan," dated April 23, 2008 to the ACEH ftp site according to the Pilot Test Work Plan, " dated April 23, 2008 to the ACEH ftp site according to the Pilot Pilot

1. A. P.

TECHNICAL REPORT REQUEST

Please submit technical reports to Alameda County Environmental Health (Attention: Jerry Wickham), according to the following schedule:

- October 27, 2008 Sampling Results from Soil Vapor Probes SVP-1 through SVP-5
- December 12, 2008 Pilot Test Report
- 45 days after end of each quarter Quarterly Monitoring Reports

These reports are being requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request.

ELECTRONIC SUBMITTAL OF REPORTS

ACEH's Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of reports in electronic form. The electronic copy replaces paper copies and is expected to be used for all public information requests, regulatory review, and compliance/enforcement activities. Instructions for submission of electronic documents to the Alameda County Environmental Cleanup Oversight Program FTP site are provided on the attached "Electronic Report Upload Instructions." Submission of reports to the Alameda County FTP site is an addition to existing

Denis Brown Bhushan K. Bansal RO0000367 June 27, 2008 Page 3

requirements for electronic submittal of information to the State Water Resources Control Board (SWRCB) Geotracker website. In September 2004, the SWRCB adopted regulations that require electronic submittal of information for all groundwater cleanup programs. For several years, responsible parties for cleanup of leaks from underground storage tanks (USTs) have been required to submit groundwater analytical data, surveyed locations of monitoring wells, and <u>other</u> data to the Geotracker database over the Internet. Beginning July 1, 2005, these same reporting requirements were added to Spills, Leaks, Investigations, and Cleanup (SLIC) sites. Beginning July 1, 2005, electronic submittal of a complete copy of all reports for all sites is required in Geotracker (in PDF format). Please visit the SWRCB website for more information on these requirements (<u>http://www.swrcb.ca.gov/ust/cleanup/electronic reporting</u>).

PERJURY STATEMENT

All work plans, technical reports, or technical documents submitted to ACEH must be accompanied by a cover letter from the responsible party that states, at a minimum, the following: "I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge." This letter must be signed by an officer or legally authorized representative of your company. Please include a cover letter satisfying these requirements with all future reports and technical documents submitted for this fuel leak case.

5.7

PROFESSIONAL CERTIFICATION & CONCLUSIONS/RECOMMENDATIONS

The California Business and Professions Code (Sections 6735, 6835, and 7835.1) requires that work plans and technical or implementation reports containing geologic or engineering evaluations and/or judgments be performed under the direction of an appropriately registered or certified professional. For your submittal to be considered a valid technical report, you are to present site specific data, data interpretations, and recommendations prepared by an appropriately licensed professional and include the professional registration stamp, signature, and statement of professional certification. Please ensure all that all technical reports submitted for this fuel leak case meet this requirement.

UNDERGROUND STORAGE TANK CLEANUP FUND

Please note that delays in investigation, later reports, or enforcement actions may result in your becoming ineligible to receive grant money from the state's Underground Storage Tank Cleanup Fund (Senate Bill 2004) to reimburse you for the cost of cleanup.

AGENCY OVERSIGHT

If it appears as though significant delays are occurring or reports are not submitted as requested, we will consider referring your case to the Regional Board or other appropriate agency, including the County District Attorney, for possible enforcement actions. California Health and Safety Code, Section 25299.76 authorizes enforcement including administrative action or monetary penalties of up to \$10,000 per day for each day of violation.

Denis Brown Bhushan K. Bansal RO0000367 June 27, 2008 Page 4

If you have any questions, please call me at (510) 567-6791 or send me an electronic mail message at jerry.wickham@acgov.org.

Sincerely,

Jerry Wickham, California PG 3766, CEG 1177, and CHG 297 Senior Hazardous Materials Specialist

Enclosure: ACEH Electronic Report Upload (ftp) Instructions

cc: Peter Schaefer, Conestoga-Rovers & Associates, 5900 Hollis Street, Suite A Emeryville, CA 94608

Ana Friel, Conestoga-Rovers & Associates, 19449 Riverside Drive, Suite 230 Sonoma, CA 95476

· · · ·

Donna Drogos, ACEH Jerry Wickham, ACEH File

 $g_{1} \in \mathbb{R}^{n}$

Alameda County Environmental Cleanup	ISSUE DATE: July 5, 2005].
Oversight Programs	REVISION DATE: December 16, 2005	
(LOP and SLIC)	PREVIOUS REVISIONS: October 31, 2005	
SECTION: Miscellaneous Administrative Topics & Procedures	SUBJECT: Electronic Report Upload (ftp) Instructions	1

Effective January 31, 2006, the Alameda County Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of all reports in electronic form to the county's ftp site. Paper copies of reports will no longer be accepted. The electronic copy replaces the paper copy and will be used for all public information requests, regulatory review, and compliance/enforcement activities.

REQUIREMENTS

- Entire report including cover letter must be submitted to the ftp site as a single portable document format (PDF) with no password protection. (Please do not submit reports as attachments to electronic mail.)
- It is preferable that reports be converted to PDF format from their original format, (e.g., Microsoft Word) rather than scanned.
- Signature pages and perjury statements must be included and have either original or electronic signature.
- Do not password protect the document. Once indexed and inserted into the correct electronic case file, the document will be secured in compliance with the County's current security standards and a password. Documents with password protection will not be accepted.
- Each page in the PDF document should be rotated in the direction that will make it easiest to read on a computer monitor.
 - Reports must be named and saved using the following naming convention:
 - RO#_Report Name_Year-Month-Date (e.g., RO#5555_WorkPlan_2005-06-14)

Additional Recommendations

A separate copy of the tables in the document should be submitted by e-mail to your Caseworker in Excel format. These are for use by assigned Caseworker only.

Submission Instructions

- 1) Obtain User Name and Password:
 - a) Contact the Alameda County Environmental Health Department to obtain a User Name and Password to upload files to the ftp site.
 - i) Send an e-mail to <u>dehloptoxic@acgov.org</u>
 - or
 - ii) Send a fax on company letterhead to (510) 337-9335, to the attention of Alicia Lam-Finneke.
 - b) In the subject line of your request, be sure to include "ftp PASSWORD REQUEST" and in the body of your request, include the Contact Information, Site Addresses, and the Case Numbers (RO# available in Geotracker) you will be posting for.

2) Upload Files to the ftp Site

- a) Using Internet Explorer (IE4+), go to ftp://alcoftp1.acgov.org
 - (i) Note: Netscape and Firefox browsers will not open the FTP site.
- b) Click on File, then on Login As.
- c) Enter your User Name and Password. (Note: Both are Case Sensitive.)
- d) Open "My Computer" on your computer and navigate to the file(s) you wish to upload to the ftp site.
- e) With both "My Computer" and the ftp site open in separate windows, drag and drop the file(s) from "My Computer" to the ftp window.
- 3) Send E-mail Notifications to the Environmental Cleanup Oversight Programs
 - a) Send email to <u>dehloptoxic@acgov.org</u> notify us that you have placed a report on our ftp site.
 - b) Copy your Caseworker on the e-mail. Your Caseworker's e-mail address is the entire first name then a period and entire last name at acgov.org. (e.g., firstname.lastname@acgov.org)
 - c) The subject line of the e-mail must start with the RO# followed by Report Upload. (e.g., Subject: RO1234 Report Upload)

APPENDIX B

SITE HISTORY

SITE HISTORY

1986 *Waste Oil Tank Removal:* According to an October 13, 1989 letter from Weiss Associates (Weiss) of Emeryville, California to Shell, Petroleum Engineering of Santa Rosa, California removed a 550-gallon waste-oil tank from the site in November 1986). Immediately following the tank removal, Blaine Tech Services, Inc. (Blaine) of San Jose, California collected soil samples (Soil #1 and Soil #2) beneath the former tank at 8 and 11 feet below grade (fbg). Soil #1 and Soil #2 contained petroleum oil and grease at 196 and 167 milligrams per kilogram (mg/kg), respectively. The tank pit was over-excavated to a total depth of 16 fbg, but no additional soil samples were reportedly collected. Groundwater was not encountered in the tank excavation. A new 550-gallon fiberglass waste-oil tank was installed in the same location.

1990 Well Installation: In March 1990, Weiss advanced soil boring BH-A, which was converted to groundwater monitoring well MW-1, adjacent to the waste-oil tank. In a soil sample collected at 29 fbg, 35 mg/kg total petroleum hydrocarbons as gasoline (TPHg) and 0.23 mg/kg benzene were detected.

1992 *Well Installations:* In February 1992, Weiss advanced soil borings BH-B and BH-C, which were converted to monitoring wells MW-2 and MW-3. A soil sample collected near the water table from the boring for well MW-2 (21.5 fbg) contained 79 mg/kg TPHg. Soil samples from boring BH-C, which is located over 100 feet cross-gradient of the tanks, contained up to 68 mg/kg TPHg at 31.5 fbg.

1992 Well Survey: In 1992, Weiss reviewed the California Department of Water Resources (DWR) and Alameda County records to identify water wells within a ¹/₂-mile radius of the site. A total of 21 wells were identified: 12 monitoring wells, eight irrigation wells and one domestic well. No municipal wells were identified. The eight irrigation wells and one domestic well are more than 1,000 feet from the site.

1994 Subsurface Investigation: In June 1994, Weiss advanced six soil borings (BH-1 through BH-6) on and off site. No hydrocarbons were detected in soil samples from any borings, except for 0.013 mg/kg benzene in boring BH-3 at 16 fbg. No hydrocarbons were detected in grab groundwater samples from borings BH-1, BH-4, BH-5, and BH-6. The maximum concentrations of 120,000 micrograms per liter (μ g/l) TPHg and 25,000 μ g/l benzene were detected in the grab groundwater sample collected from boring BH-3. These results were presented in Weiss' October 13, 1994 Subsurface Investigation report.

1995 Well Installation: In February and March 1995, Weiss advanced four soil borings (BH-7 through BH-10) and converted BH-10 to monitoring well MW-4. No petroleum hydrocarbons were detected in any of the soil samples. Up to $100 \mu g/1$ TPHg and $1.0 \mu g/1$ benzene were detected in grab groundwater samples from BH-7 and BH-9. No TPHg or benzene was detected in the grab groundwater sample from BH-10. Groundwater was not encountered in soil boring BH-8. These results were presented in Weiss' June 13, 1995 Subsurface Investigation Report and First Quarter 1995 Monitoring Results.

1996 Soil Vapor Survey and Soil Sampling: In July 1996, Weiss conducted a subsurface investigation to obtain site-specific data for a risk-based corrective action (RBCA) evaluation of the site. Soil vapor and soil samples were collected from the vadose zone at 10 on- and off-site locations (SVS-1 through SVS-10). The highest soil vapor hydrocarbon concentrations were detected near the northwest corner of the UST complex (sample SVS-5 at 3.0 fbg, which contained 7,600 parts per million by volume [ppmv] benzene). No TPHg, benzene, toluene, ethylbenzene, and xylenes (BTEX), or methyl tertiary-butyl ether (MTBE) was detected in any of the soil samples except for 1.1 mg/kg TPHg detected in sample SVS-5 at 18 to 20 fbg. Weiss concluded that depleted oxygen concentrations and elevated carbon dioxide and methane concentrations in the vadose zone indicated that biodegradation was occurring. These results were presented in Weiss' February 7, 1997 Soil Vapor Survey Report.

1997 RBCA Evaluation: In 1997, Weiss prepared a RBCA evaluation for the site. RBCA analysis results indicated that BTEX, MTBE, 1,2-dichloroethane, and tetrachloroethylene concentrations detected in soil and groundwater beneath the site did not exceed a target risk level of 10⁻⁵ for residential indoor or outdoor air exposure pathways. However, a risk threshold exceedance was identified associated with ingestion of groundwater from a hypothetical well 25 feet down gradient of the source. These results were presented in Weiss' April 27, 1998 *RBCA Summary Report*.

1997 Dispenser and Turbine Sump Upgrade: The dispensers and turbine sumps at the station were upgraded in December 1997. Cambria Environmental Technology, Inc. (Cambria) collected soil samples Disp-A through Disp-D from beneath the dispenser islands during upgrade activities. Up to 590 mg/kg TPHg (Disp-C at 4.5 fbg), 1.8 mg/kg benzene (Disp-C at 2.0 fbg), and 1.4 mg/kg MTBE (Disp-C at 2.0 fbg) were detected. These results were presented in Cambria's March 27, 2008 Dispenser Soil Sampling report.

Page B1-2

1998 Soil Vapor Survey and Soil Sampling: In November 1998, Cambria conducted a subsurface investigation to obtain site-specific data for an updated RBCA evaluation of the site. Soil samples, soil vapor samples, and grab groundwater samples were collected from the vadose zone at three on-site and three off-site locations (SVS-11 through SVS-16). In soil vapor, maximum concentrations of 2.7 ppmv TPHg (C5+ hydrocarbons) and 0.17 ppmv TPHg (C2-C4 hydrocarbons) were detected at 10 fbg in borings SVS-14 and SVS-15, respectively. A maximum concentration of 0.0099 ppmv benzene was detected in SVS-16 at 5 fbg. In soil, 1.6 mg/kg TPHg and 0.0050 mg/kg benzene were detected in boring SVS-11 at 19.5 fbg. No TPHg or benzene was detected in any other soil samples. TPHg and benzene were detected using EPA Method 8020 in groundwater from borings SVS-11 and SVS-12 at concentrations up to 130,000 μ g/l TPHg and 18,000 μ g/l benzene. These results were presented in Cambria's September 17, 1999 *Risk-Based Corrective Action* report.

1999 RBCA Evaluation: In September 1999, Cambria prepared a RBCA evaluation for the site. Cambria analyzed the following potential exposure pathways: off-site ingestion of groundwater, on-site ingestion of surficial soil, volatilization of benzene from soil or groundwater into on-site or off-site indoor air, and migration of benzene soil vapor to on-site or off-site outdoor air. Results of Tier 1 and Tier 2 RBCA analyses indicated that contaminants within soil and groundwater did not present significant health risks. These results were presented in Cambria's September 17, 1999 *Risk-Based Corrective Action* report.

2001 *Off-Site Monitoring Well Installation:* Two monitoring wells (MW-5 and MW-6) were installed off site to the southwest. Soil sample results from this investigation indicated only minimal MTBE impact (0.012 mg/kg) to off-site soil southwest of the site. This finding was corroborated by Cambria's 1998 subsurface investigation, in which no TPHg or benzene and only low MTBE concentrations were detected in soil from three borings (SVS-14 through SVS-16) along the private driveway. These results were presented in Cambria's December 20, 2001 *Offsite Monitoring Well Installation Report.*

2002-2004 Mobile Groundwater Extraction (GWE): In July 2002, semi-monthly GWE was begun using monitoring well MW-2, and it continued on a monthly basis until March 2004. Beginning in March 2004, monthly GWE was performed using well MW-2 and MW-11 once per month each, so that GWE was conducted twice per month at the site. The GWE frequency was increased to weekly (from both MW-2 and MW-11) beginning in May 2004. Mobile GWE ceased on August 24, 2004. Approximately 19.6 pounds of TPHg, 3.45 pounds of benzene, and 5.12 pounds of MTBE had been removed during these activities.

2002 *Off-Site Monitoring Well Installation:* Two monitoring wells (MW-7 and MW-8) and one soil boring (SB-9) were installed off-site and northwest of the site in 150th Avenue. Soil sample results collected during this investigation indicated minimal TPHg and BTEX impact to off-site soil northwest of the site. Grab groundwater samples indicated elevated TPHg and benzene concentrations were present in groundwater northwest of the site beneath 150th Avenue. These results were presented in Cambria's November 18, 2002 *Offsite Monitoring Well Installation Report*.

2003 Soil and Groundwater Investigation: Six soil borings (SB-10 through SB-14 and SB-16) were advanced to the northwest of the site in both 150th Avenue and Portofino Circle; one boring (SB-15) was advanced on site. Initial groundwater was encountered between 24 and 28 fbg during drilling activities. During the investigation, MTBE was only detected in on-site grab groundwater sample SB-15-W at 40 μ g/l. The highest TPHg concentration was detected in SB-14-W at 67,000 μ g/l, and the highest benzene concentration was detected in SB-15-W at 530 μ g/l. TPHg was detected only in soil samples SB-11-30' and SB-15-36' at concentrations of 650 mg/kg and 1.4 mg/kg, respectively. Benzene was detected only in soil sample SB-15-35' at 0.10 mg/kg. Based on typical groundwater depths in nearby well MW-7, it was determined that samples SB-11-30' and SB-15-36' were saturated, and results may be more indicative of chemical concentrations in groundwater. These results were presented in Cambria's August 28, 2008 Soil and Water Investigation Report and Work Plan.

2003 Sensitive Receptor Survey (SRS): In October 2003, Cambria completed an SRS at Shell's request. The SRS targeted the following as potential sensitive receptors: basements within 200 feet, surface water and sensitive habitats within 500 feet, hospitals, residential care, and childcare facilities within 1,000 feet, and water wells within ½ mile. No basements, surface water, sensitive habitats, or educational and childcare facilities were identified within the search radius. The Fairmont Hospital campus, located at 15400 Foothill Boulevard, is located approximately 1,100 feet from the site, just outside the target radius of 1,000 feet.

CONESTOGA-ROVERS & ASSOCIATES

To update the 1992 well survey performed by Weiss, Cambria researched DWR records in September 2003 and located no additional well records for locations within ½ mile of the site. The closest identified water well potentially used for drinking water is a well installed in 1952 and listed as a "domestic well." This well is located at Fairmont Hospital, approximately 2,445 feet east-southeast of the site. The well is reportedly 138 feet deep and has a screened interval between 62 and 95 fbg. The well's status and operation frequency are unknown. Due to the well's distance from the site and the site's observed groundwater flow directions, it is unlikely that this well would be impacted by groundwater from the site.

2003 *Monitoring Well Installation:* On November 19 and 20, 2003, Cambria installed on-site and off-site wells MW-9, MW-10, and MW-11. Proposed off-site soil borings were not completed due to access agreement issues. MTBE was detected in two soil samples (MW-11-20' and MW-11-24.5') at concentrations of 0.039 and 1.4 mg/kg, respectively. TPHg was detected in four soil samples (MW-10-30', MW-10-31.5', MW-11-20', and MW-11-24.5') at concentrations of 14, 230, 1.8, and 330 mg/kg, respectively. All soil samples with detectable hydrocarbon and MTBE concentrations were saturated soil samples, so identified results appeared more indicative of chemical concentrations in groundwater than soil. These results were presented in Cambria's January 12, 2004 *Soil and Water Investigation and Monitoring Well Installation Report*.

September 2004 Off-Site Investigation: Two soil borings (SB-17 and SB-18) were installed southeast of the site. No TPHg, BTEX, or fuel oxygenates were detected in soil samples from the borings. Grab groundwater samples collected contained up to $55 \mu g/l$ TPHg, and no benzene or fuel oxygenates. Results of the investigation are reported in Cambria's December 17, 2004 Soil and Water Investigation Report.

2004 *Temporary GWE System Installation:* On September 13, 2004, Cambria completed installation and began operation of a temporary GWE system. The temporary GWE system was installed as an interim remedial measure to address the elevated petroleum hydrocarbon and MTBE concentrations in groundwater near the west corner of the site. On November 8, 2004, Cambria stopped the temporary GWE system to conduct interim remediation by dual phase extraction (DPE). During these temporary GWE activities approximately 0.448 pounds of TPHg, 0.036 pounds of benzene, and 0.121 pounds of MTBE were removed from the subsurface.

2004 DPE: During the period November 8 through November 13, 2004, DPE was conducted in on-site wells MW-2 and MW-11 as an interim remedial action to reduce hydrocarbon concentrations in groundwater near the western corner of the site and to

progress the site toward closure. Based on operating parameters and vapor sample analytical results, the total TPHg, benzene, and MTBE vapor-phase masses removed from well MW-11 are estimated at 165 pounds, 0.291 pounds, and 0.063 pounds, respectively. The total TPHg, benzene, and MTBE vapor-phase masses removed from well MW-2 are estimated at 0.073 pounds, 0.0002 pounds, and 0.001 pounds, respectively. The total TPHg, benzene and MTBE liquid-phase masses removed from wells MW-2 and MW-11 during interim remediation are estimated at 5.31 pounds, 0.193 pounds, and 0.143 pounds, respectively.

2005 *Temporary GWE System:* Upon completing the interim remedial action, Cambria intended to immediately resume operating the temporary GWE system. However, the restart was delayed due to repaying the site's parking lot. The temporary GWE system operated between January 10 and April 13, 2005. Because detected TPHg and MTBE concentrations were higher in well MW-11 than in well MW-2, MW-11 was chosen for extraction. During these activities, approximately 19.04 pounds of TPHg, 1.69 pounds of benzene, and 3.94 pounds of MTBE were removed from the subsurface. Because of facility upgrades work, Cambria removed the temporary GWE system between March and June 2005. These results were presented in Cambria's June 23, 2005 Interim Remediation Report.

2005 Fuel System Upgrade: Under contract to Shell, Armer Norman of Pacheco, California replaced the fuel dispensers and piping and upgraded UST sumps between March and May 2005. On March 22 and April 4, 2005, soil samples were collected beneath each of the four dispensers and the product piping joints. TPHg was detected in 11 samples, with a maximum concentration of 4,100 mg/kg in sample P-4-5.0. Benzene was detected in six samples, with a maximum concentration of 11 mg/kg in sample P-4-2.5. MTBE was detected in five samples, with a maximum concentration of 0.18 mg/kg in sample D-1-3.5. Tertiary-butyl alcohol (TBA) was detected in sample D-3-3.5 at a concentration of 0.023 mg/kg. Lead was detected in four samples, with a maximum concentration of 75.7 mg/kg in sample D-1-3.5. These results were presented in Cambria's June 1, 2005 Dispenser and Piping Upgrade Sampling Report.

2005 *Periodic GWE Restart:* In September 2005, monthly GWE was re-instated using monitoring well MW-11, and because of the observed presence of SPH in well MW-1, bimonthly extraction from MW-1 was initiated in September 2006. These activities are ongoing as of December 2006 and are reported in the monitoring reports.

May 2006 Waste Oil Tank Removal: On May 25, 2006, Wayne Perry, Inc. (Wayne Perry) of Sacramento, California removed one 550-gallon, dual-wall fiberglass waste oil UST.

Cambria collected one soil sample (WO-1-6.5) from the sidewall of the UST excavation at a depth of 6.5 fbg. The soil sample contained up to 45 mg/kg oil and grease, 4.3 mg/kg TPHd, 25.4 mg/kg chromium, 7.09 mg/kg lead, 19.0 mg/kg nickel, and 58.4 mg/kg zinc. Based on these concentrations, Shell submitted an Underground Storage Tank Unauthorized Release (Leak)/Site Contamination Report (Unauthorized Release Report) on June 6, 2006. All detections were below SFBRWQCB environmental screening levels for shallow soil (fewer than 3 meters below grade) where groundwater is a current or potential drinking water source for residential land use areas. Based on these results, no further investigation of waste oil constituents was conducted. These results were presented in Cambria's August 4, 2006 Underground Storage Tank Removal Report.

May 2006 Subsurface Investigation (SB-19 through SB-25; MW-12 & MW-13): The purpose of this investigation was to determine the vertical and horizontal extent of soil and groundwater impact. Seven soil borings were advanced, two of which were converted to groundwater monitoring wells. Shallow soil samples collected from borings SB-19, SB-20, SB-21, SB-22, and SB-24 did not contain TPHg or BTEX concentrations exceeding applicable published San Francisco Bay Regional Water Quality Control Board environmental screening levels (ESLs). Up to 1,060 mg/kg TPHg and 1.38 μ g/l benzene were detected in soil samples collected from the capillary fringe zone in borings SB-19, SB-20, SB-21, SB-23, and SB-24. These detections are considered to be more indicative of groundwater conditions. Fuel oxygenate concentrations were near or below their respective reporting limits in all soil samples collected, and none of the low detections exceeded applicable ESLs. Based on this, the horizontal extent of petroleum hydrocarbons has been defined at the site, and the vertical extent has been TPHg, BTEX, and fuel oxygenate defined to the typical groundwater table. concentrations in grab groundwater samples collected from approximately 20 and 31 fbg in boring SB-25 were also near or below their respective reporting limits. None of the low detections in the grab groundwater samples collected exceed applicable ESLs. Based on this, the vertical extent of petroleum hydrocarbons in groundwater northwest of the site is defined. These results were presented in Cambria's July 26, 2006 Subsurface Investigation Report.

February 2007 Agency Response with Proposed Future Actions: Cambria responded to ACEH's August 29, 2006 letter which requested updated cross-sections and discussion of other issues. Cambria provided revised cross-sections A-A' and C-C', a discussion of delineation of the extent of petroleum hydrocarbons in soil and groundwater, and a risk evaluation based on these delineations. In addition, Cambria proposed delineation of the vertical extent of petroleum hydrocarbons in groundwater and a shallow soil vapor investigation at the site. These materials and discussions were presented in Cambria's February 14, 2007 *Agency Response with Proposed Future Actions*.

October 2007 Cone-Penetrometer Test Borings and Soil Vapor Probe Installation and Sampling: Conestoga-Rovers & Associates (CRA) drilled and sampled five CPT borings (CPT-1 through CPT-3, CPT-5, and CPT-6), drilled and sampled one geoprobe boring (B-1), and installed five soil vapor probes (SVP-1 through SVP-5). Vertical groundwater data from CPT-1 and CPT-2 onsite indicated that the majority of groundwater impact is concentrated at the shallower depths. Data from CPT-3, CPT-6, and MW-9 shows that the deeper zone is not impacted to the northeast, southeast, or southwest of the site. Soil vapor samples from SVP-1, SVP-4, and SVP-5 exceeded the San Francisco Bay Regional Water Quality Control Board (RWQCB) environmental screening levels (ESLs) for TPHg for residential indoor air, and the TPHg concentration in SVP-5 exceeded the commercial ESL. None of the BTEX or MTBE concentrations exceeded any of the indoor air ESLs. These results were presented in CRA's December 19, 2007 *Supplemental Subsurface Investigation Report*.

2008 Additional Soil Vapor Monitoring: CRA conducted three rounds of soil vapor sampling in 2008. In off-site probe SVP-5 TPHg concentrations exceeded residential and commercial land use RWQCB ESLs in two of the four events, ethylbenzene concentrations exceeded residential and commercial land use RWQCB ESLs during the September 17, 2008 event, and benzene and xylenes concentrations exceeded residential land use RWQCB ESLs during the September 17, 2008 event, and benzene and xylenes concentrations exceeded residential land use RWQCB ESLs during the September 17, 2008 event. The results from these sampling events are presented in CRA's October 24, 2008 Soil Vapor Probe Sampling Report.

Groundwater Monitoring Program: Groundwater quarterly groundwater sampling began in March 1990. Historically, the maximum concentrations of TPHg have been observed in well MW-1 (up to 790,000 μ g/l in June 1996); maximum concentrations of benzene have been observed in well MW-2 (up to 36,000 μ g/l in March 1993); and maximum concentrations of MTBE have been observed in well MW-2 (up to 32,000 μ g/l in February 2002). Separate phase hydrocarbons (SPH) have been observed intermittently in wells MW-1 and MW-2 historically. SPH re-occurred in well MW-1 in July 2008 and was present in well MW-11 in March 2008. During the September 29, 2008 sample event no SHP was observed and the maximum dissolved phase concentrations of TPHg, benzene, and MTBE observed in on-site wells were 110,000 (MW-11), 7,900 (MW-1), and 2,300 (MW-1) μ g/l, respectively.

Page B1-8

APPENDIX C

FIELD DATA SHEETS

EW-1 AND EW-2 COMBINED DPE TEST DATA FORM

Site Address:		San Leandro, CA			Date:	LIVOS/08			<u>À</u>					· · · · ·
Project No.	240612-2008-1	3			Technician: Project Mgr:	Kyan Me Potor Schaoffer		, addro 1	Mark Je	thnson				
Date Hou Dime (dhimith) (thrs	r Casing r Vac) (inf WC) (EWct)	sie (in WC).		P 1A		E-24		P 3A	Vac Rohili	WC)/DTW P-4A			MW1B	
Collect Data Hourly	tat DTW: 23.82													
105/08 08:00		1	DTW	22.02	22.12	23.23	23.47	18.86	19,04	19.17	19,30	23,39	23,50	19.56
.00			DTW						1					
:00	4		VAC						1	100 C		i, i		
:00			VAC											
:00:			DTW			•								

		· ·	1			· · · · · · · · · · · · · · · · · · ·								1	1	1 - C - C - C - C - C - C - C - C - C -
7	0			DTW									1.0	1.		11 A.
	0			DTW		-			1				2 5			
	10			VAC												
1	10			VAC												
:	0			DTW	14.00				1. A.	and the second		All and the second	1.	G.		
	0		•	DTW	1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -								1 			
				VAC	· · · ·			· · · · · · · · ·	1							
				DTW-									2 . L	52		
				VAC	L							-				
				VAC							5 m - 1		J.	1 - 1 - 4 - E		
	1.			DTW	· ·			1 1 A								
				DTW			8 .									
3				VAC			·		· · ·		· · · · ·	1. 1.	3000	· · · ·		
				VAC			1			1.		×.			10-1-1-	
•				DTW								4.5			1.00	
				DTW				1								
				VAC			-						·			1. A.
				VAC		1							1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -			
				DTW												
1	1.1.1			DTW						۳ ا الم			N			
				VAC									÷			
NOTES:		,									- 	· · ·		· · · · · ·		· · · · · · · · · · · · · · · · · · ·
Check LPG tank level. Call	for refill.	1			11											
Check Baker tank level. Ca	I for pump-out.				6		<u> </u>					· · · ·			· · · ·	
S=sample							· · ·		- 1947 		· · · ·				<u> </u>	
* Transducer			· · · · · · · · · · · · · · · · · · ·		· ·					·		$f = \pm \frac{1}{2}$	1.		· · ·	

Destruction Efficiency = (Inf-2 - Eff)/(Inf-2)

()

 $\left(\begin{array}{c} 0 \end{array} \right)$

DPE Data Form

EW-1 and 2 DPE CR Test (OBS)

S

MW-12-5

18.55

EW-1 AND EW-2 COMBINED DPE TEST DATA FORM

Site Address: $J^{*} T E$

١.

 (\cdot)

DPE Data Form

ių.

1784 150th St, San Leandro, CA

Project No. $\delta < \varepsilon$

240612-2008-13

Date:

11/05/08 Messinger; 2000 Mark Johnson Ryan Mer Potor Schaoffer Technician: Project Mgr:

ð

Date/ Line Colling	Hour Meter	Gasing Vac (in WC)	vac				i se ser s			19997 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1		1.5.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.		
(bhimin)	(tirs)	(in,WG) (EW-1)	- (in:WC).	545.0	- 	P/R	P.76	P.28	- D'38	Vac.ROI()	WC) / DTW		NAVA 1		The RALAS AND	LINK CO
lect Data Hou		DTW: 23.82	18.86	and an operation of the second	1 - Constant of the second second	Carrier of the second of the	Internet and a second second	P2B	Del anno se cristi a stor.	7 . ref. 14 . e	a nanana ana ana ana ana ana ana ana an	The State of Control o	Total South a second	POPULATION AND A STORE	ISSUE TO A CONTRACTOR	<u>4.55.5.10004512</u>
105/08 0				DTW	22.02	22.12	23.23	23.47	18.86	19.04	19.17	19,30	23,39	23,50	19.56	18.55
	:00	•		DTW				1								
	:00			VAC								-	1			1
	.00		1.1	VAC									1			
1. A.	:00			DTW						far a				· . /		
	:00			DTW						1. A.						
	:00			VAC	1.2.1										3.00 (1.
	.00			VAC					14 A.	•		1.1.1				
	:00			DTW					and the second sec							1 1 1
	:00		× 1	DTW			•							2 ⁻¹⁰		
				VAC	· · · · · · · · · · · · · · · · · · ·			1	1							
• 				DTW	··								2			-
• •				VAC										<i>.</i> , <i>.</i> ,		1
	1. S.			VAC			1	1								1
				DTW								5				1
		1		DTW			3					3	1		1	
				VAC		1					1 · · · ·		5			
•				VAC	• •				1	1.		14			100	
	1	_	-	DTW								- 			Alge 1	
· •				DTW												
				VAC												1.2
		1.		VAC						· .						
				DTW		1. A.										1
				DTW		· · · ·			1. C. 1.	· · · · ·			A State			1
				VAC		· _ ·										1
8										1.1	4					
PG tank level. C	all for refill.				1.1							and the second			· · · ·	
Baker tank level.	Call for pump-out.			فلنبرز	2 ¹					· · · · · · · · · · · · · · · · · · ·						
ble		<u> </u>						<u> </u>							1	
sducer					•							·			· · · · · ·	

14

Site Address: Project No.	· · · ·	1784 150th St, Sa	in Leandro, CA) ee	Date: Technician:	<u></u> ,		·····			•				·
	MW-2	EW-1	JEW Z	Ti Henree	Project Mgr:	Peter Schaeffer								Auguster of Malacenet Pro-	There a containe
Date/ Time (bb:min)	Hour Meter	Casing Vao UnVCi EW-1	Casing Vac UNICI (EW-2)			STREET ST	0109 P-28		ATT LANSA TO THE OWNER	State of the second	desition P4B	1	24 July 578-13	L MW1T	
Collect Data Hourly		000	Sat									_			,
00		pros		wta	0	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -					Ø.	4		4.0.51	ļ
DTW :00	20.24	23.28	19.58	DW 2265	23.50	23.67	23,91	19.59	19.59		19.79	23.85	23.96	20.51	<u> </u>
 TD00:		35.06	32.91	VAC 27.13	35.29	26.94	35.10	22.51	32.43		32.85	26.45	24.80	24.8402	ļ
Trall Depth :00		34,50	32.50	VAC 2050	34.50	26.50	34.5	22,00	32.00	Γ.Ι	32.50	26.00	74.50	24.50°	
Troll Serial # :00		01/30		otw		81.47	.8693	125746	126245		11273	1234		1234 **	L
				Drw				-		damaged					1
Programmed :00				VAC						0		-	l		1
.00				VAC						- 14	125713		· .		۰.
Distance from 2:00		1.00		bTW											
EW-2:00				DTW TOBE	+ 51'2"	75'9"	741	917"	8'10"	21/11	19'3"	1			
<u>FW-Z</u> :00			··	DTW TOME											1
				DTW	-	<u> </u>	·								
			<u> </u>	VAC											
	· · · · · · · · · · · · · · · · · · ·			IVAC				-			· · · ·				1
				DTW	-									1.1.1.1	·
				DTW .				······				9			
· · · · · · · · · · · · · · · · · · ·										4					•
	· · · · ·												-	·	
				DTW	· · · ·			+			1	1.1		, je	
	· · ·	-		DTW						<u> </u>		1			·
			<u> </u>						·	<u> </u>			1		
		<u> </u>					 								
		· · · · ·	· · · · ·		· · ·			-	<u> </u>		1		· · · · ·		1
	·		·												
				DIW								1.1	1		
	· ·		l	VAC		1	<u> </u>	<u> </u>	L		<u></u>			- •	· · · · · ·
NOTES:					·					<u> </u>		· · · · · · · · · · · · · · · · · · ·			
Check LPG tank level. Call for				<u> </u>											· · · · · · · · · · · · · · · · · · ·
Check Baker tank level. Call	for pump-out.											1			
S=sample		<u> </u>	· · · · · · · · · · · · · · · · · · ·				·,		1.11			· · ·		·····	-

EW-1 and 2 DPE CR Test (C

1

	dro, CA	np Test -		Pump OD: 3 Pump Pipe (Well Casing TD: 36' Screened In Pump Intake	OD g ID: 4-inch nterval 21-3 te Depth:			Observatio	Q: t: X Well: EW- ion Wells/D	Distance	e from Pumpi	ing Wel	l:		
Froll ID# : Froll Depth	h (fha)	TARTINA	TOTALIZ	Available Dv zzk Resn		<u>55916</u>	0	EW-2	Start D Start 1	110:25 DTW:	3.82				
	The state of the		T			<u>.</u>			O WATER				<u> </u>		
DATE /	ELAP. TIME (min.)	FLOW RATE (gpm)	FLOW TOTAL (gal)	P-1A	P-1B	P-2A	P-2B	P-4A	P-4B	MW-1 A	1 MW214	MW-1		Ewl-1 Mark	
105/0800	An NA	W/A	N/A	22,02	2012	23.23	23:47	19.17	19.30	23.39 23		18 5	55		
1-6-08		0	155916-0	the second se								N	A	22.91	
09:15		2	1560615	The Private And the second of the second	22.47			[9.3]	19.37	23.5				27.72	
09:45	1.1.1	2	156212.a	and the second	22.48			19.32	19.38	23.5		· · · · · · · · · · · · · · · · · · ·		27, 27	
10:15	The second second second second second	2	7561538	22.28	22.50	2344			15.40	23.60				27-33	
10:45	150	2	1562126	a) A. S. Market, Nucl. And Math. Appl. 10 (19)	22,52		23.67	19.34	15.40	والمراجع المراجع	0 23.70			27.35	
11:15	180	2~	156271.1		1.00	Contraction and the second	23.67	19.35	19,90	23/6		CALL STREET		27.18	
11:45	210	2	1562753		22.50		23.67	and the second	17,40	236				21.38	
12.15	240	2	1563851		22.57					23 6		100 No. 100		27.38 19 20	
12:45		2,5	1564545	1	22.60	23.55	23.69		19.38	23.6	3 23.70		<u></u>	29.29	-
131.15	300	2.5	156539.2					the call	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		1-2-7	<u>가 한국하</u> 다. 전국: 100 - 100		29.43	
13:45	330	2.~	156600 H				23,72		1	236				29.44	
14:15	360	2.5	156671.0		22.63			19.28	15.36	23.4	6 E 11			and the second second	
14:45	420	2.5	1567575	22.43	22.63		23.74	19.29	17.35	23.4		-		29,44	1
15:15	480	2.5	156828.5	22.45				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	19.35	23.60				27.51	-
15:45	510	2.5		22.46	22.65	23.52	23.76	19.33	17.36	23 6	67 23.73			29.48	- 29.4
16:15	540	2.5	1569662	A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		<u>[]]</u>	<u>(****</u>]					+ +		29.49	
<u>76:45</u>	600	3.0	157027.1			0 1			1.7.7	10,	0 <=	mis		Coge a se	
17:00		im ^o	STOPPERD		2:04 1	PimP	START	<u>ل د ک</u>	17:06	Per	pm 3-0	1/4m			
17130	-660	<u></u>	153134,0	<u>p</u>	<u> </u>					\mathbf{f}				<u> </u>	
<u></u>]		<u> </u>		<u> </u>											
					<u></u>				100 - 100 -						
		<u>(</u>			f and the second	<u>(33) - 53</u> Factor (22)			<u></u>	1.0					
		<u>Anger Refleter</u> Engen and		r		en an		 	<u> </u>			121		<u>i de la compo</u> La composition La composition	
	r DTW for M	ANN 197	lycwher	thore are	two per	onle on	site		()	<u> </u>		+ V -		 	
	GPM Set				LWV P	<u></u>									

.

Project Nam Project No.: Cocation: 1784 150th San Leandu Personnel: Troll ID# : Troll Depth	St ro, CA	p Test - B		Pump OD: 3 Pump Pipe Well Casing TD: Screened Ir Pump Intak Available D	OD: g ID: 4-inch nterval: 18-3 <e depth:<="" th=""><th></th><th></th><th>¥ MW-</th><th>Well: EW- on Wells/I て rち</th><th>Distance fro D<51/10</th><th>yes.</th><th></th><th>×9<i>C</i>7</th><th>7.</th></e>			¥ MW-	Well: EW- on Wells/I て rち	Distance fro D<51/10	yes.		×9 <i>C</i> 7	7.
	(109).			· · ·			<u> </u>	<u> </u>	ing 7	OTALIZE	<u> (Cea</u>	Nng c	32561.	<u>.</u>
														· ~
DATE /	ELAP. TIME	FLOW	FLOW		 ,				O WATER				Ew-z	
TIME	(min.)	RATE (gpm)	TOTAL (gal)	P-1A	P-1B	P-3A	P-3B	P-4A	P-4B	¥-MW-2 ₿∕	MW-11	MW-12**	Fue-	
7~	D	(gpiii)	82561.7									N/m		22.03
07:30	30		826020	22.42	22.78	19.55	19.82	19.65	19.54		19.98		22.70	
08:00	60	<u> </u>	826361	22.73	22.78		19.85	19.68	19.55				22.24	27.28
08:30	90	$\overline{1}$	82672.0			PRIVACE	will	Return		Vorer			1	
09:00	STOP	A	82697.2		Comp	STOPP	20	moulu	e Sen	Pull	Ew-1	7 500	p Rumps	
111	1	D						<u> </u> '				22 ⁻	20.51	- 154
11:30	0	1.5	82697.6	_				ļ!	<u> </u>				24,65	
12:00	30	1.5	82755.										N/W	1
12:30	60	1.1	82814.0		'	!	0		in id	1.61.0	20.24		25.11	
13:00	50	1.5	82 873.0	22.70	22.80	19.76	19.98	19.75		19.60	20.26		25.28	
13:30	120	1.5	82932.3		22.79	19,77		19.76			20.28	1	25.40	1
14:00	150	1.5	82992.3		22.79	19.79		19.78	19.65					
14:45	195	2.5	83101.7	STEP	up To		10.00			17.67	20,35	012 6,1445	29.49	
15:00	210	2.5		22.73	22.82	19,87	20,11	19.83	19.73	11,51	040100		29.59	1
15:30	240	2.5	83222.3			11 07	20.14	19.87	19,73	19.67	20.39		27.70	
16:00	270	Z.5	83303.0		22.82			19.88	19.75	19.67	20.40		29.81	
16:33	300	2.5	83389.0	22.75	22,83		20.15	19.98	19.75		20.40		29.85	1
11:00	330	2.5		22.75	22.85		1 20.15	11.00	1 10	1 1 1			29.92	
17.28	300		83537.0	Skizi	7 70	nn	+							
				<u></u>				+						
	′			<u></u>			 							
	1			<u> </u>		<u> </u>	 							i
<u></u>				<u> </u>										
	'	<u> </u>					1		<u> </u>			The second	<u> </u>	
A 10 State State				A BAR SHE		eople on								

. 2

\\Sfo-s1\shared\Shell TFMP\6-chars\2406--\240612-San Leandro 1784 150th\240612 - Pre September 1-2008\Remediation\APT and DPE Test Sept08\Field Forms\Pump Test

A.

CONESTOGA-ROVERS & ASSOCIATES

DAILY FIELD REPORT

Submit copy to Company Safety Officer

Project Name: Barfine	CRA Mgr: Retac	Field Rep: Mank
Project Number: 240612	Date: 11/5/08	Site Address: 1784 150 Th
General Tasks: 5. & wp	7m Pilor Testing	JAN LEONITRO
Emergency Drill Conducted:	with the second s	
HASP Meeting Conducted (Y/N)	: V Equipment Checked (Y/N): Y	PID Calibrated (Y/N): N/A
Time	Activity/Comments	SWA
51.30 IN MANOT	wer For PARTS PICK up.	Well Seres Flants Rosa
1:25 ON STOR.		
START LAY	we out MINI-TROLS 7 4	
Mersune 7	STW'S START Jetting 4	in Tizanstilucins
well Lora	TIONS ON MAP DO NOT	COINSIDE WITH ACTUAL
WELL LOCATI	1 ZVN	
· bene RATAR	- ON SITE. (RED-D-ARL	KASP
Contrare	MINI-TROL INSTALL	*
3:00 SWA 5	TAR, SPSA - REVNEW TH	EAFFIC SAFETY HANDGOOK SWA
WITH RY	AN. CREATE A PLAN OF	Action for MINI-
-TROL IN:	TALLATION INTO MIW-12	LOOSTED IN STReet, ON
150 Th AV.	L. Wall is LOCATED ON TO	he Litt. Size OF # 1
Lane U	SLD COLVES, ROAD WAX	IC AHEAD SIGN. AND
BOTH STER	ILL TRUCKS FOR PROFEC	TION. TERAFFIC APPURED
TO Br LO	W. Set up. MINI-THOL	INSTALIATION GUERT Well
WITH out	incinut, trouble w) Br	LEAR DOWN, AS Uchicles
	sing Close To The BA	
Vehicles	AT 40-50 MPH. I	NEULR FRANCED My
BALR TO	TRAFFIC: ONE Vehicle	WAS KADID TOWARDS
The LAST	CONTES & BARACADLE A	5 I WAS PICKING
Thum in	. The Vehicle Did N	of move FRom The
BLOCK-15	ALC UNITIL I STARTED	SWINSING The
DeLINHATO	n at The behicle . Th	he Vehice Passed 3-4
trom M	L AND The SURVICE V.	chicle.
Set up 2	EXTRACTION PUNPS, Wiell,	Manos & TRANSPURERS,
6 Secure	A Decal	

A Key:	1: SPSA/Task Change	2: Pedestrian in Proximity	3: Unauthorized Personnel	4: Review Work Process
5: Inspection	6: Safety Orientation	7: Uncontrollable Factor	8: Minor First Ald	9: Major (explain in notes)

Hours'

Miles ____

· · · ·

Other

Shared

C:\Documents and Settings\ericketts\Desktop\Daily Field Report - Chevron 3.7.07.doc

CONESTOGA-ROVERS & ASSOCIATES

DAILY FIELD REPORT

Submit copy to Company Safety Officer

Project Nam	e: BAYTAIR	CRAMBr: REVICE	Field Rep: Manue	
	ber: 240612	Date: 11/1./04	Site Address: 1784 1501	4
	ks: Purmp Trest	······································	SAN LEANIMO	
	Drill Conducted:			
	ng Conducted (Y/N): Y	Equipment Checked (Y/N): 1/	PID Calibrated (Y/N): N/A	
		/		· · ·
Time		Activity/Comments		SWA
<u>i na secola de la composición de</u>	144	and the second secon	· · · · · · · · · · · · · · · · · · ·	
5:30		INAS TO PICK UP M	11551NG FLOAT DWITCH	
6:25	ON SIFL S.		• ¥ • •	
	MOD TO OKCHY	IND Supply For Nose	CLAMPS.	
		- up Prep For	START up	
8:15	START APT	•••		
	STAVETORS TEST			
7:00		50W, Finles Forms Do		
		FREQUENCY, NOTIFICS		
,		e 2 6Pm colum		
		ST-UP T-EST AND EVERY	60 MININERS FOR	
	THE CONSTRUCT	The state of th		
		C CONTROL WILL BE NO		in th
	MW-12 DATA/	TRANSDUCER RETRIEVAL	& Removal, 11	
N158		mp. And Mensure C:		
	to masune Pe	unif Longth, WATER	Guil probie	
	HANGING Up. 4	ABove Top of Pum	P. IN EW-1	
1999 - 19	Continue Sata	Collection, Call TRey	4	
	-		· · · · · · · · · · · · · · · · · · ·	
L				

A Key:	1: SPSA/Task Change	2: Pedestrian in Proximity	.3: Unauthorized Personnel	4: Review Work Process			
5: Inspection	6: Safety Orientation	7: Uncontrollable Factor	8: Minor First Aid	9: Major (explain in notes)			
Hours	Miles	Other	Shared				

C:\Documents and Settings\ericketts\Desktop\Daily Field Report - Chevron 3.7.07.dcc

DAILY FIELD REPORT

Submit copy to Company Safety Officer

Project Nam	e: BAJTANE	CRAMOR: Perm 5	Field Rep: MARK	
	ber: 240612	Date: 11 7 09	Site Address: /784 / <0 2	ł
General Tas	ks:	······································	JAN LEANSILO	
Emergency l	Drill Conducted:			· · · ·
HASP Meeti	ng Conducted (Y/N): Y	Equipment Checked (Y/N): Y	PID Calibrated (Y/N): NA	
	<u> </u>			n an
Time		Activity/Comments		SWA
5;28	FILL UP PRESS	use Switch Fresh MAI	40. MOR TO 512	175. <u>- 2012 - 2</u> 88999
<u>5,25</u> 6	AFRINC ON 30			
	check Equips			· · · · · · · · · · · · · · · · · · ·
7-	START EW-2	APT		
	DAN L. ON Si			
		Ture, For Pecisback Session		
- c1 -	PUNE STOPPID			
	PSC ON ST			
11:30		ust (APT) on TEN-2		
		Ren Frield Forenis		
61 -	1.4			
n Carlos		······································		ļ
				<u> </u>
· · ·				
		<u></u>	<u> </u>	
		2 2		
			•	: · ·
<u></u>				
				<u> </u>

A Key:	1: SPSA/Task Change	2: Pedestrian in Proximity	3: Unauthorized Personnel	4: Review Work Process
5: Inspection	6: Safety Orientation	7: Uncontrollable Factor	8: Minor First Ald	9: Major (explain in notes)
Hours	Miles	Other	Shared	

C:\Documents and Settings\ericketts\Desktop\Daily Field Report - Chevron 3.7.07.dcc

CONESTOGA-ROVERS & ASSOCIATES

Sec. Sec. 4

Submit copy to Company Safety Officer

Project Name: Brytane 51	ull CRA Mgr: Perre 5.	Field Rep. Mark
Project Number: 240612	Date: ///13/08	Site Address: 1784 150 TH Ave-
General Tasks:		SAN Lennons
Emergency Drill Conducted:		
HASP Meeting Conducted (Y/N): 1	/ Equipment Checked (Y/N): Y	PID Calibrated (Y/N): y
1	· · · · · · · · · · · · · · · · · · ·	
Time	Activity/Comments	SWVA
<u> na ser an </u>	System on BAKER JAN	VR & 1/2 Full.
	6 A	
BOTTO PUNNPS Generation 34		
Server Allin Jo	CALIBRATE MONITORING 1	
7 PSC ARRI	was an Site.	HA JP
7815 RALIFIC STAT	us Rotrobenm or Site	
1115 MELTIC OM	2. Shut Doyn. She	
OVER CIZANI		
	Low NUMATOR, Mac STREED	NO HE ISID NOT
ACTUR STU	unal Albernipits. to STAR	T I CALLO RED. D-ARC.
7-08 5-181	u/ Nuchs Germanaron	
COLL RUN	2, CALLAS MATT.	
Ren-n-Anc	DN JUFE, GEMY RANG	not of Firel, Loose Mose
PREMERINES	Me Ipom ACHIVING	PRIME.
G:77 START Gue	MERATOR START GUDEN 1	ump), recallorare
lasa () mand a la	izzurament. START	Solleco
DALAA NOTLA NO	15 - FROM (MENVERATOR	DAM DOWN GENY,
open up to	invitation, Belt Comming	UN RAVECTED,
CALL VOLATT,	LALL RED-B-ARC. 1	
R-10-DIAKE		
	chaplacy on Sitte	
12:40 517/21 0		Sollico, Recordibate
Mon Tool.		
2: TRUE CAL		STANT. FETT on Montry
3:30 Secure	1 Depart	

A Key:	1: SPSA/Task Change	2: Pedestrian in Proximity	3: Unauthorized Personnel	4: Review Work Process		
5: Inspection		7: Uncontrollable Factor	8: Minor First Aid 9: Major (explain			
Hours	Miles	Other	Shared			

C:\Documents and Settings\ericketts\Desktop\Daily Field Report - Chevron 3.7.07 doc

DAILY FIELD REPORT

Submit copy to Company Safety Officer

Project Nam	0. D . E.	CRAMER: PUTIN 5	Field Rep: Mark Lu	ike
	10: BAYFAIR	/ / / /	Site Address: (762/	
	ber: 240612	Date: 11 17 24		
General Tas			SAN Leans	£79
	Drill Conducted:			·····
HASP Meet	ng Conducted (Y/N):	Equipment Checked (Y/N): 4	PID Calibrated (Y/N):	/
				1
Time		Activity/Comments		SWA
6:20	an SIFL Rein	NOW MASP & SOW	SIEN in	
	Set up + CAL	ibrate Manitoring	Ephioment.	
2.54	Set up Exit	ALTION PUNKS (10 4 VI 1 3 F F 0	
	Mensure 751			
		Punts & Dewn	the curlls	
	START JOLLICO			
8-	STANT VAROK		Τ.,	
	COLLECT DATA	and the second		
~		JAMPLAS		
	CONTINUE DATA			
2	PJL ARRIVES		TER \$ 7-49 MAN. HASS	2
2 -		ARRIVES ON SITU	Por BAMPLIS PICK	
		TA COLLECTION AS A		
	COLUCT END O			
3:15	Secure # Do	·····		
		1		
				4
L				

A Key:	1: SPSA/Task Change	2: Pedestrian in Proximity	3: Unauthorized Personnel	4: Review Work Process				
5: Inspection	6: Safety Orientation	7: Uncontrollable Factor	8: Minor First Aid	9: Major (explain in notes)				

Shared

Other

C:\Documents and Settings\ericketts\Desktop\Daily Field Report - Chevron 3.7.07.doc

Miles

Hours

CONESTOGA-ROVERS & ASSOCIATES

DAILY FIELD REPORT

Submit copy to Company Safety Officer

			· · · · · · · · · · · · · · · · · · ·			
Project Name:	BANTAIR	CRA Mgr: PLETER		Field Rep:	ink / /k	2L135A
Project Numbe	1: 240612	Date: 11/18/08	CONTRACTOR OF THE OWNER	Site Address: 17	84 150	THE AVE
General Tasks		•		5m Le	ALTSVED	
Emergency Dri	II Conducted:		· · · · · · · · · · · · · · · · · · ·			
HASP Meeting	Conducted (Y/N):	Equipment Checked (Y/	N): 🗸	PID Calibrated (Y	/N): \ /	
			-1		1.	
		Activity/Com	ments			SWA
Time				A.m		
6:30	~ · · · · ·	System Runn		AVCRIVAC		
	Review Hos-		8			
		Librate Manit				
6:55		inc - HASP +	son ker	Kew, Sign	104	
7	START DATA	COMPTION				
1:30	Collect VAP	or Samplis				
	Continue D	ATTA Collection)	AS RUR	Jow.	· · ·	
			·		· .	
[2-	P3C AREV	us on Jire	- · · · · · · · · · · · · · · · · · · ·	·		
1-1	and the second se	R.173-	1 w			
		ATTA CONCETION				
	Caller Margare	Samples - END	of Day			
	CONCERT WATER	- Mingiles - Litte				
Z ~	Same A No	and & Maria				
<u> </u>	John VI Hadan Star 1201	prav - System	0705			
		. <u></u>				
						-
					· 	-
						+
	·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		
	· ·		11. 	- 		
		· · · · · · · · · · · · · · · · · · ·				
1				· · · · · · · · · · · · · · · · · · ·		

A Kev:	1: SPSA/Task Change	2: Pedestrian in Proximity	3: Unauthorized Personnel	4: Review Work Process
Inspection	6: Safety Orientation	7: Uncontrollable Factor	8: Minor First Aid	9; Major (explain in notes)
	L			

Miles

Hours

_____ Shared

C:\Documents and Settings\tjackson\Local Settings\Temporary Internet Files\OLK3A\Daily Field Report - Chevron 3 7 07 (2).doc

Other

EW-1 DPE TEST DATA FORM

Site Address:	1784 150th St, San Leandro, CA		Date:	11-11-08		 5		 <u> </u>	<u> </u>
Project No.	240612-2008-13		Technician:	Mark Johnson		 	<u></u>	 	<u> </u>
			Project Mgr:	Peter Schaeffer	and the second			 	<u>.</u>
		1.00				5	·		

, Time Meter + i (min) (hrs) =	Pump Vac	Elow	Vapor Conc.				1000 2 4 4 4 5 50	System .	NO SECTION AND A POINT		the second states and the second states and the	Sector Sector	DAQ Flow	Efficiency	Flow	Elow-
2 V	1	(cfn)	(ppmv)	₩ac Vac (in WC)	(Temp (Deg C)	Contract (cfm)	Vapor Conc (ppmv)	/Vac/Press (In WC)	Temp	Flow (cfm)	Vapor Conc	Temp (deg C)	c How (cfm)	+ - (Inf-2 - EEE)	Totalizer	Tötälizer
Contraction of the Automatic Automatic Automatics	(insHg)		(EW-1)		1999 - 1999 -		(ppmv)		e ser k	NAT ST	(ppmy)	English and the		(int-2)	(gallons)	(gallons),
18/08 STATIC 10145.0	16									<u> </u>		<u> </u>	L	<u> </u>	1	
ollect data every half hour	•									4	H20					· · · ·
TEP TEST #1		· · · · · · · · · · · · · · · · · · ·				32.9				114. 3	;	1669	199		ø	157491.0
9 0 10146.1	15.5	OVER SLICE	- 4340	49.5	67.6		535	51.2	129.5		CONCEPTION OF A DESCRIPTION OF A DESCRIP	1654	179	winder		157571,
9 30 10146.6	15.5	OVOR	4920	50.0	72.1	25.4	414	1 53.1	133.9	120. 3	A STREET ST	1654			- 0	157690
00 10147.1	7.2.0	over	4850	49.0	73.9	22.8	485	52.9	134,0		.5	1634	199		0	
13090 10147.6	15.5	OVER	4950	49.7	70.9	27.8	466	53.4	136.8	117. 3		1637	1 1/1		·	157 790.
	· · ·	1			844 1				1.3 8					÷ .		· · ·
TEP TEST #2						a de la compañía de l	.		· · ·	1		1171	1 100		0	1.0000
100 0 10148.1	12.5	over	6000	75.2	71.5	30.2	688	179.0	134.0		3,0	[67]	129		~	157866.
30 30 10149.6	16.5	over	4670	76.0	7/7	29.3	675	77.8	137,1	107	2.7	1506	187	Constant and a second second second second	0	157963
10149	16 5	OVER	4.850	76.3	73.9	32.5	640	179.8	138.4		2.7	1470	189		0	158071.
10117.6	1615	over	4590	75.2	74.4	22.1	688	1.34.7	139.2	108 2	₹ــــــــــــــــــــــــــــــــــــ	1463	[7]		0	158190.
								1							an a	
TEP TEST #3										1.25 (1997) 1.162 - Artholic Art				In the second second second		150250
3.00 10150.1	185	825	4150	0.00	75.2	39.7	950	103,1	134.4	87.0	2.1	1537	199		0	158270
3:1030 10150.6	18.5	79.0 -	4370	100.9	74.1	263	935	103.2	133-9	84.5	2.6	1535	195		0	158490
4 60 10151.1	18.5	83.5	4080	100.0	72.0	284	915	193.4	133.1	83.5	2.1	1541	1.74		0	158,500
4:3390 1015116	18.5	82.5	4040	100.4	73.8	31.6	914	- 103.0	133.0	83.5 _2	2.0	1545	194		. • 0	158 620
		「いい」の														14 N. J.
TEP TEST #4	1	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1												1. C. S. Martines and Providence and the	F . 76 1	
180 10152.4	22.5	20.7	3840	147.5	70.7	-45.7	2210	252.0	119.1		1.1	1671	/65		0	158853
34 30	19.	\$5.5	3760	150.2	68.9	43.7	1622	155.7	1269	81.5	1.8	1651	188		0	158903
5 60 S		1	1. A.		70.0	44.5			P	212				And the second s		
90 10153.1	19.	53.0	3400	1508	70.6	44.5	1500	155.6	128.6	\$1.	18	1627	189	*	2	159064
		1 02.0				512412513	C. F. Stander Z. C. A.								<i>94</i> -	
													×	•		

NOTES				
Check LPG tank level. Call for refill.				
Check Baker tank level. Call for pump-out.				
S≕sample				
* Transducer				
			· 동안에 가장 수가 있는 것 같아요. 이 것 같아요.	

Destruction Efficiency = (Inf-2 - Eff)/(Inf-

Data Form

EW-1 DPE Step Test

EW-1 DPE	TEST DA	TA FO	DRM

¢) (

***	Site Address:		1784 150th St, S	an Lean	dro, CA	Date:	WII T	isday	- 		1997. 1997. – Jan	
	Project No.	1. S. C.	240612-2008-13			Technician:	Mark Johnson					E
		1.74				Project Mgr:	Peter Schaeffer					1
									1			
	Date	Hour	Casing Vacity	13		1	s i Di	stance from ext	raction well (f	et)		
	Time Sarah (min)	Meter (hrs)	(in WC) 👳					proved a second second second	WCIZDTW			
	a section of	2.46	(EW-1)	S 1 3 5	P 1A -	P.18	P-2A	P-28	P-4A	P:4B	MW-1A	. Marti
Ju 11/10	9/18/98 STATIC	EW-28-20-46		DTW	22.64	\$ 22.72	23.91	24.13	19.55	19.40	23.46	
Tresday - # VIII	Collect data STEP TEST #1	every half hou	ir — Solik	٥٦٠	23.09	33.39	24.36	24.49	19.67	19.52	23.52	
Jar		10 45	- F# # 60"	- mw	23.79	12375	24.66	7411-1	19-42	19 48	-23:47-	2
10146.7		Protection of	ANY & SAT	VAC		3	0	0	O''	0	25	
Jeim.	<u>30</u> 60	10147.2	447/445	DTW	23,26	23.34	84.38	24.49	19.18	19.52	23.61	<u> </u>
also i de	90	UNAT.6	49.1"	VAC	0	0	0	S I I I		10	2.5	
	1	1101-11-0		VAC	L <u> </u>				<u> </u>			
· · · ·	STEP TEST #2				23.37			ter,		<u> </u>		
CTT.	8	16148.2	75	DTW	2257	23.45	24.40	24.51	19.09	19.55	23,62	
$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$	30	101 48.6	75,8ª	VAC	0	0	0	0		U	3,4	
	12:00 60	101 49.1	76.3	DTW	23.48	23.48	24.45	24.52	19.67	19.53	23.63	
	\$0	101 49.6	42	VAC	0	0	0	$ 0 \rangle$	0	0	3.5	
	STEP TEST #3	<u>j</u>									4	
13	31EF (E31 #3	10150.2	400 **	DTW	23.56	23.55	24.49	24.56	19.69	19.52	2361	
ور ا	-	10150.6	100.0	VAC	.0	0	0	0	Ō,	0	43	a Sara
		101511	100.0"		23.65	23.57	24.52	23.58	1970	1955	23.61	
		10131.7	160.4"	VAC	Ő	O .	0	0	Ö	1.9	4.3	
		<u>11- «1</u>	·····		L					. 5		
	STEP EST #4		1. J. 1			1. p. 1. s	• • •				-	
- 		10152+	147.5"	DTW	23.81	23,80	124.67	29.71	[9.73	19.58	23.57	
, ··	10 B	101526		VAC	0	0	0	0	600	0	6.8	
	5830	10152.8	150.31	DTW	23, 88	23,80	24.70	24,72	1.75	19.59	23.61	
1.1	30 45	10153.1	150.9"	VAC	0	σ	8	0	0	0	6.9	1
التجريق أرا		<u> </u>										1
	7			· · · · ·		N IN			and the second			ane.
i sing s	NOTES:	11 11 N			2 2 1 × 1		1 × 1 × _					
		level: Call for refil	1	• •					8			
	Check Baker tar	k level. Call for pu	mp-out			all the second sec		<u> </u>	1. 1967 s			
A second s	S=sample	1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 - 1911 -					· · · · · · · · · · · · · · · · · · ·					<u> </u>
19 (19) 19 (19)	Transducer			2				<u></u>				
	Destruction Effic	ciency = (Inf-2 - Eff)/(inf-2)			· · · · · · · · ·						<u> </u>
6. M.					ça este s	1947 - 19	la-					· · · ·
						у.						
	- diverse	\$		н. 1910 г.		· 11	1					

ŚŻ

EW-1 DPE Step Test (OBS)

DPE Data Form

EW-1 DPE TEST DATA FORM Site Address: 1784 150th, St, San	Loandro CA		11-11-08	and a second	1.1			
	Loanulo, CA	Date:	10.00	1. N. 19		<u> </u>		րեւս
Project No. 240612-2008-13		Technician:	Mark Johnson			 <u> </u>	*	
		Project Mgr:	Peter Schaeffer			 ``:		•

		1 A A					Peter Schaeffer				· · · · · ·						· .	
e D J	ately met nin):	Hour Metar (hrs)	LR Pump Vac (in: Hg):	Dilution Flow (cfm)	Well	Casing Vac (in WC)	Well (INF-1) Temp (Deg C)	Wellt(INE 1) Flow 5+ (cfm)	Inf-2 Vapor Conc (ppmy)	System Vac/Press • (tin-WC)	Inf-2/System Temp (Deg C)	- Inf-2 Elow (cfm)	EFE Vapor Conc (ppmv)	Combustion Temp (degiC)	DAG. Flow (cfm)	Destruction Efficiency = (Inf-2 - EFF) - (Inf-2)	Knockout Előw Totalizer Gallóns)	Pump Flow Totalizer (gallons
	ta Hourly	10145.0	PAR SA CARLES AND	2000-200-200 State 10-00-200	The second se	No receipt of Second rel	ner sog tig nover gave e	mund Service and a service service of	In a startigeneration of		The second s			}				
	8:30 00		21	56.5	5750	100 "	67.4	27.5	1346	101.4	1239/3.3	101.	1	1720	179		, Ø	1574.10
	.00							· · ·									لنصينا	<u> </u>
1/12/08		12168.3	195	59.1	2610	152.5	65.4	46.8	1115	153.5	127.7 1.8	78.2		1588	188			16278
	7:45 00	10/68,9	19.5	58.7	2700	148.8	71.2	54,2	1092	162.1	129.6 2.1	71.8	Contraction of the local division of the loc	1583	187		8	162864
· · · ·	:00							1		<u> </u>					· .		⊢−−−− ┦	
	:00		· · · · · · · · · · · · · · · · · · ·		<u> </u>				<u> </u>	et de la companya				<u>í</u>				······
	.00				· · ·		<u> </u>		<u> </u>									i
	:00		1.1.		· · ·				<u> </u>					1				<u> </u>
<u> </u>	:00									· · ·				1				1.
	:00	P												· · · · · · · · · · · · · · · · · · ·			,	· · · · · ·
							· · · ·						· · ·					
<u> </u>							1	1						· · · · ·			1	
1.1																		
																·		í .
	· •							t_{i}	¢								· · · ·	
				1				3	<u> </u>			<u> </u>			L			<u> </u>
TES:		1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		· .					*								<u>-</u>	,
	k level: Call for			<u></u>										· · · · · · · · · · · · · · · · · · ·		<u>_</u>		· ·
	ank level. Call fo	pr pump-out.												· · · · · · · · · · · · · · · · · · ·			i	
sample									2		··· ·							
Transducer	iciency = (Inf-2 -					······································			<u> </u>	· · · · · · · · · · · · · · · · · · ·				<u>.</u>				
suucuon En	releacy = (Inf-2 -	(uu-2)							<u>×</u>									

and the second states of the

2 4 1

ζ H

EW-1 DPE TEST DATA FORM

Project No.		240612-2008-13			Technician:	Mark Johnson		· · ·				
					Project Mgr:	Peter Schaeffer				<u> </u>		
Date/ Zurine	Hour Hour	Casing Vac				An and the second s	15 (16 6 6 - Sec. 26	traction.well.(fe	1.7	1. A. A. A.		
(his)	(hts)	(in:WC); (EW:1);	138-14 138-14	P.1A	: P-18 .'	P_2A	P-2B	WC)//DTW=1		MW	1A/18	. Mvv4
Collect Data Hourly			NAC						· · · · · · · · · · · · · · · · · · ·		<u> </u>	
11/12 = 7	10168-3	152.5	DTW	2.0	0.0	0.6	0.0	truck	truck	10.2	0.0	<u></u> .
7 K	00 101100.9	148.8	DTW	24.19	23.69	24.74	24.72	truck	truck	23.71	24.02	· · · · ·
·	00		VAC									
	00		VAC									
	00		DTW		· · · ·		· ·		1			
	00		DTW	1				·			ļļ	
4	00		VAC					· · · ·				
	00		VAC				•	:		1		
	00	·	DTW									
	00		DTW		· · · ·					<u></u>	L	<u> </u>
								· · · · · · · · · · · · · · · · · · ·		<u> </u>		•
· · · ·										4		
2						· .	·					
					ļ	· · · · · · · · · · · · · · · · · · ·		· · · ·				
	<u> </u>				L	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			· · ·		<u> </u>	
	-	· .	ļ	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·		+		
				· · · ·	<u> </u>	<u> </u>	l		l			
NOTES:						· · ·						
Check LPG tank level. Call										<u></u>		<u>.</u>
Check Baker tank level. Cal	for pump-out.	<u></u>		· · · · · · · · · · · · · · · · · · ·		<u> </u>			<u> </u>		<u></u>	
S=sample	· · · ·		<u></u>		· · · · · · · · · · · · · · · · · · ·					<u> </u>	- <u>-</u>	· · ·
* Transducer								<u> </u>				

EW-1 DPE CR Test (OBS)

EW-2 DPE TEST DATA FORM

Site Address: Project No.	· · · · ·	1784 150th St, 5 240612-2008-13	San Leandro, CA			Date: Technician:	Mark Johnson					- 4. 1170				*
Project No.		240612-2000-14		INE-1		Project Mgr:	Peter Schaeffer					- HZO -/ INF2	(;		F	
Date/	Hours	Reserved	Dilution	Well	Casing S	ver weller.	Weil .	a inf-2	System			EFF.	Combustion		struction Knocko	jut /
Time	Neter	Pump	Flow	Vapor Conc	Vac	Temp: 3	Flow	Vapor	Vac/Press	, Temp	Flow	Vapor Gonc	Temp	Flow Eff (cfm) (n	iciency = Flow	
(min)	Mater (firs)	Vac (in Hg)	(cfm)	(ppmv) (EW-2)	- (Iŋ:WC),	(DegiC)	(cfm) : TAUE : 17-*	Conc (ppmv)	(in Wo)	(Deg p)	Flow Flow (cfm)	(ppmy)	(degiC)		2 ERE) Meter (Inf 2) (gallors	<u>s</u>
18/08 STATIC		**************************************		The second s	10. 14 MIL 1941	C C MARCIN SECURI									ø	·
	every half hou				N											
STEP TEST #			n <u>di kanga</u>	n an										Same State		
901	10/69.1	28	ø	2010	50"	64.6	231	2060	50,1	96.5	/8.7 .)()()	t y448	144	terres p	8
7:30	1016926	27.5	ø	2540	50	65.8	23.7	2100	51.3	780	18.6 .1		M61	1 7 3 13605099	P D	
10:0060	10170.1	38	<u> </u>	9210	70 / 50.3		23.2	2380	70.1	104.6.	77.7 ,0	0	1735	<u> </u>	p	
10:3:090	10170-6	28.5	1 D	3020	39.3	68.3	13.4	2170	35.7	102.0	11.0	0	1 // 3 34		<u> </u>	
	90. N. A.				ار از این معید از این از ای این معید از این این این این از این					a sec					假 资产为	
STEP TEST #		1 5-0	<u></u>	3510	100.0	68.5	31.9	1277	104,2	119.6	53,511		1241	113	1. Jan 1. 18	
10:450	10170,9	23 23	28.1	2710	100.0	71.7	31.8	982	1075	/23.3	52.5		7627	/63	e de la compañía de	
11:1530	10171-9	23	33.9	2860	102.9	66.9	47.2	974	104,2	125.3		SHEET STREET	1622	-164	A strange of	
12/150	10172 4	23.	38.8	2700	103.1	69.9	36.3	\$84	105.4	12.8.5	530	7 0	1615	-764	2 15 C P	
1-11,00	110172 4	1	<u> </u>					· · · · · · · · · · · · · · · · · · ·								
STEP TEST #	3														1000 <u></u>	
2:30 0	10172.6	19	69.4	2419	149.2	68.5	42.1	824	163.3	132.7	81.5 1.	<u> </u>	1556	19/	7	
3:00 30	10173-1	19	73.1	2180	1485	68.8	43.6	784	1631	132.9	82.0 1		151601	171		
13:3060	101736	19	66.8	2080	1489	70.2	45.0	77.8	163.4	131.4	81.5 1		1502	192		5
14:0090	10174.1	19_	68.4	2200	148.5	67.3	402	736	163.2	132.6	81.0 2		1496	192		E
													이 같은 [1]			
STEP TEST #		<u> </u>	+	1.0.00	1 100 0	177	1.1-7.1	792	2266	134.2	96.0 12		1-1471	1.29	e de constante de c	6
14:150 2	10174.4	17.5	73.5	2120	199.0	67.7	47.6	818	223.7	133.7	99.0 2	A DESCRIPTION OF A DESC	434	192	g in the second se	
14:4530	10174,9	17.5	74,7	1840	197.0	67.5	46.4	751	226.5	133,4	104.0 2		1450	199	0	\sim
15:15:60	10175.4	17.5	67.3	1911 2070	1921	66.0	57.2	900	223.8	/32.2	10402		14/3	191		
90	10175.9	11.5		100	1		1 0 1 2	<u> </u>					THE A			
					а											
NOTES:		2				Sec. Sec.							<u> </u>			-
	k level. Call for ret	W.							<u></u>							
	ank level. Call for p				1.5 전 1.4 1.4								<u></u>	<u> </u>		- <u>35</u> - 57
S=sample	5. at .									<u>en en e</u>		<u>a an ann an a</u>				7
* Transducer		<u></u>			<u> </u>	<u> </u>										172
Destruction Ef	iciency = (Inf-2 - Ef	f)/(inf-2)				9				<u></u>					M	
	<u> </u>	<u></u>						1			- 1.					
					a de la composición d										<u> </u>	
				KJ - 8	00 675 1				e de la composición d En composición de la c						يور موريد رور موريد	ane ^{te}
				·	00,000,000		1.	See al	lates :	· · ·				\sim		
۰.		A 16	at a second second	in the second	Acres for a			i i	. · · ·		1.1	- 1		1	· · · · ·	/-2 DF

EW-2 DPE TEST DATA FORM

Site Address: Project No.		1784 150th St, S 240612-2008-13	an Lean	dro, CA			Date: Technician: Project Mgr:	Mark Johnson & Peter Schaeffer	Matt Lundperg	
		<u> </u>		· · · · ·						
	Hours	Casing Vac				Distance:	rom extraction	well (feet)	Tel a new series	30 - 2 - 2 - 2
Time (bh:mm):	Meter (hrs)	1(in WC)	1.	and the first street				TW -	a a state a st	
11/10 83	9	(EW-2)		😤 P-3A	P-3B	P-4A	24B	MW-11	MW-12	MW-2
118408 STATIC		19.251	DTW	19.59	19.84	19.86	19.66	19.95	٩X ا	19270
Collect data e	very half hou	r 33.05T	<u>, , ,</u>		, , ,	1				
STEP TEST #1					41 . · · ·	·				
0 00.5	10169.2	50.0-deva	vð₩	26.19	20.31	20.04	20.01	20.51	Street	19.91
N. 2030	10169.6	49.9	VAC	0.0	0.0	0.0	0.0	4.6	street	0.0
10:060	10170.1	50.3	DTW	20.47	20.63	20.21	20.09	20.72	street	19.94
NS SECON	10170.6	39.13	VAC	0.0	0.0	0.0	0.0	4.8	area	0.0
		(11	de la compañía de la				·	
STEP TEST #2	· · ·								· · · · · · · · · · · · · · · · · · ·	
0	1070.3	100.D	DTW	20.48	20-69	20.25	20-15	20.72	street.	19.96
30	10171.4	100.0	VAC	0.0	0.Ò	0.0	0.0	7.9	N/m	.5
60	10171.9	100.8	DTW	20.77	20.92	20.39	20.22	20.90	Nym	19.98
90	10172.4	98.6	VAC	0.0	0.0	0.0	0.0	9,4	N/M	0.0
				••••					e	•
STEP TEST #3	· · · ·		•		<u> </u>					·
0	10172.6	149,2	DTW	26.79	20.91	20.41	20,27	20.89	street	19.99
30	10173.1	148.5	VAC	0.0	0.0	0.0	0,0	14.5	street	00
60	101 73.6	149.1	DTW	21.0	21.05	20.45	20.35	21.02	1	20,0
90	101 74.1	148.7	VAC	0.0	8.8	6.6	0.0	14.8	1. A. A. A.	0.0
STEP TEST #4			-			20.56	20.34		÷	
0	10174.4	199.0	DTW	21.09	21.15	23,58	23.40	20.96		20.00
30	10174.9	197.4	VAC	0.0	0.0	0.0	0.0	- 19.7	1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6.0
60	NAL 75.4	197.0.	DTW	21.35	21.26	20.71	20.41	21,12	1	20.0
90	10173.9	192,2	VAC	0.0	0.0	0.0	0.0	20.1		0.0
		47								
	1 A.			1						- 1
NOTES:								<u>. </u>		
	level. Call for refi	I					·	· · · · · · · · · · · · · · · · · · ·		
Check LPG tank								· · · · · · · · · · · · · · · · · · ·		
Check LPG tank Check Baker tank					*			· · · · · · · · · · · · · · · · · · ·		
Check LPG tank Check Baker tank										
Check LPG tank Check Baker tank S=sample Transducer	(level. Call for pu	mp-out.								
NOTES: Check LPG tank Check Baker tank S=sample * Transducer Destruction Effici	(level. Call for pu	mp-out.								
Check LPG tank Check Baker tank S=sample Transducer	< level. Cali for pu encyr∰ (inf-2 - Eff)	mp-out.		2						
Check LPG tank Check Baker tank S=sample Transducer	< level. Cali for pu encyr∰ (inf-2 - Eff)	mp-out.								
Check LPG tank Check Baker tank S=sample Transducer	< level. Cali for pu encyr∰ (inf-2 - Eff)	mp-out.								
Check LPG tank Check Baker tank S=sample Transducer	< level. Cali for pu encyr∰ (inf-2 - Eff)	mp-out.								

MWS-1A

EW-2 DPE Step Test (OBS)

- , 8

DPE Data Form

APPENDIX D

CERTIFIED ANAYTICAL REPORTS

November 21, 2008

Matthew Lundberg Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Subject: Calscience Work Order No.: 08-11-1074 Client Reference: 1784 150th Ave., San Leandro, CA

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 11/12/2008 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

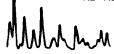
Sincerely,

Calscience Environmental Laboratories, Inc. Jessie Kim Project Manager

CA-ELAP ID: 1230 · NELAP ID: 03220CA · CSDLAC ID: 10109 · SCAQMD ID: 93LA0830 7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

Page 2 of 8

Page 1 of 1


Sone ac

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Date Received:	11/12/08
Work Order No:	08-11-1074
Preparation:	N/A
Method:	EPA TO-3M

Project: 1784 150th Ave., San Leandro, CA

								-
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
EW-1		08-11-1074-1-A	11/11/08 10:45	Air	GC 13	N/A	11/12/08 15:03	081112L02
Parameter	<u>Result</u>	RL	DF	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	2200	24	8		ppm (v/v))		
Method Blank		098-01-005-1,557	N/A	Air	GC 13	N/A	11/12/08 13:09	081112L02
Parameter	<u>Result</u>	<u>RL</u>	DF	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	ND	3.0	1		ppm (v/v))		

alscience nvironmental aboratories, Inc.

Page 3 of 8

N ACCORD

Conestoga-Rovers &	Associates				Date Red	ceived:				11	/12/08
5900 Hollis Street, Su	ite A				Work Or	der No:			C	8-11	-1074
Emeryville, CA 94608	-2008				Preparat	ion [.]					N/A
	2000				Method:					Л. Л. Г.	TO-15
									C		
					Units:					ppi	n (v/v)
Project: 1784 150th A	Ave., San Le	andro,	CA						F	age	1 of 1
Client Sample Number				ab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Tim Analyze	· ~	C Batch ID
EW-1				1074-1-A	11/11/08 10:45	Air	GC/MS YY		11/13/08 03:45		31112L01
Parameter	<u>Result</u>	<u>RL</u>	DF	Qual	Parameter			<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>
Benzene	0.43	0.30	600		p/m-Xylene			ND	1.2	600	
Toluene	0.78	0.30	600		o-Xylene			ND	0.30	600	
Ethylbenzene	0.41	0.30	600		Methyl-t-Butyl	Ether (MTB	SE)	ND	1.2	600	
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits		<u>Qual</u>	Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits	<u>(</u>	Qual
1,4-Bromofluorobenzene	99	57-129			1,2-Dichloroet	hane-d4		98	47-137		
Toluene-d8	82	78-156									
Method Blank			097-09	-002-7,849	9 N/A	Air	GC/MS YY	N/A	11/12/08 13:37	3 08	31112L01
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
Benzene	ND	0.00050	1		p/m-Xylene			ND	0.0020	1	
Toluene	ND	0.00050	1		o-Xylene			ND	0.00050	1	
Ethylbenzene	ND	0.00050	1		Methyl-t-Butyl	Ether (MTB	SE)	ND	0.0020	1	
Surrogates:	<u>REC (%)</u>	Control	-	Qual	Surrogates:	`	,	<u>REC (%)</u>	Control		Qual
		Limits							Limits	_	
1,4-Bromofluorobenzene	91	57-129			1,2-Dichloroet	hane-d4		98	47-137		

RL - Reporting Limit , DF - Dilution Factor Qual - Qualifiers ,

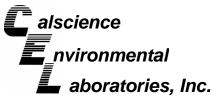
98

78-156

n M

Toluene-d8

Page 4 of 8


Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method:

11/12/08 08-11-1074 N/A EPA TO-3M

Project: 1784 150th Ave., San Leandro, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared:	Date Analyzed:	Duplicate Batch Number
08-11-1073-1	Air	GC 13	N/A	11/12/08	081112D02
Parameter	Sample Conc	DUP Conc	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
TPH as Gasoline	410	390	4	0-20	

Conestoga-Rovers & Associates	
5900 Hollis Street, Suite A	

C 5 Emeryville, CA 94608-2008

Date Received:	N/A
Work Order No:	08-11-1074
Preparation:	N/A
Method:	EPA TO-15

Project: 1784 150th Ave., San Leandro, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyze	ed	LCS/LCSD Batcl Number	ı
097-09-002-7,849	Air	GC/MS YY	N/A	11/12/08	3	081112L01	
Parameter	LCS %	REC LCSD	<u>%REC %I</u>	REC CL	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
Benzene	109	108		60-156	1	0-40	
Toluene	102	101	:	56-146	1	0-43	
Ethylbenzene	111	111	:	52-154	0	0-38	
p/m-Xylene	100	100		42-156	0	0-41	
o-Xylene	106	105		52-148	0	0-38	

RPD - Relative Percent Difference, CL - Control Limit

h M

hM

Glossary of Terms and Qualifiers

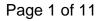
Work Order Number: 08-11-1074

<u>Qualifier</u>	Definition
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
А	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
Е	Concentration exceeds the calibration range.
Н	Sample received and/or analyzed past the recommended holding time.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ME	LCS Recovery Percentage is within LCS ME Control Limit range.
Ν	Nontarget Analyte.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
U	Undetected at the laboratory method detection limit.
Х	% Recovery and/or RPD out-of-range.

Z Analyte presence was not confirmed by second column or GC/MS analysis.

	LAB (LOCATION)						€W	2		She	əll (Dil	Pr	od	uct	s C	ha	in (Of	Cu	sto	ody	r Re	BC	orc						
C	CIENCE (ase Che	ck Ap	prop	riate				Prin	nt Bil	ll To	Coni	act N	ame					IN	CIDE	NT	# (E	NV S	SER	VIC	ES)	Πc	HECK IF NO UNCIDENT + AP
	(C ENV	. Services	[0	MOTEVA	RETAIL	L		SHEELL RE	TAIL	Deni	s Bro	ND								9							8	0,	ATE: 11/11/08
	lamerica (🛛 мо	tiva sdacm		CONSUL	TANS			LUBES						PC	#								SA	P#		-		1_	
	ER (□ s4	IL PIPELINE		OTHER								T		Τ	Т							Γ	T	T	Τ	1	T	- P#	4GE: 1 of 1
SAMPLING CO	ONPURY:		l			100.00									est and	-	-	- <u>.</u>	<u> </u>	للسبب		9াগান্ড		1	1	1 801134		1			
Coneste Acoresa:	oga-Rovers & Associates					CRA	W					178 1099	4 15 (interve	Oth A	ve, l	an L	eanc	iro 1	·····	PHONEN	R .:	CA			TO:		012	30			COHSUL TAST FRA. ECT I
	Ilis St. Ste A, Emeryville, CA 94608														C.0.4		حالقه			640 A	nn 41					.		المامحي			
PROPER CI	n an un thansachtas ann achainn a'	Ma	atthew L	undberg								3.U.#F	LER HAV	içisi (Pri	ý.	Emery				510-4	20-33	43			Jsne	neang	òcray	Kana.		18 USE	240612-2008-13 ONLY
TELEPHONI		420.9170		EADU:	ការែ	ndberg	1@cray	world.co	วกา			1	N,	4Řĺ	C -	Jol	iNS	ion	/												11- 107
TURNAF	ROUND TIME (CALENDAR DAYS).		r	1	····				SULTS	NEEDED											RF	QUF	STED		ALY	sis			<u> </u>		
	IDARD (34 DAY) 🛛 5 DAYS RWOCE REPORT FORMAT 🗍 UST	3 DAYS	L	2 DAYS	□ 24 H	UURS			ONY	VEEKENI	p 	⊢		<u> </u>			T	1	I					T		1	1	<u> </u>			TEMPERATURE ON R
			<u> </u>		ા સાદ્ય	LCONT	RACT R	ATE APPI	LIES				_					Í							1	1	1	1	1		TEMPERATURE ON R Cº
	CIAL INSTRUCTIONS OR NOTES :	choolar®	الدامدين ومع	69 00						JES		TPH - Purgeable (TO-3M)	TPH - Extractable (8015M)											6							
. .	ports to tjackson@oravorid.com & pa Its should be reported in ppmv	-			C EDO	NOT NB						£	8		5 Oxygenatas (8260B)								_	D1946)				ĺ			
PLe	ASC RUN ONLY ON PLICITE ONLY IF O	K SA	mpic	* USC		eip'i ver D	UFICATI	ION REQ	UESTER	3		엄마	臣		8 (8)	~		â	~	80	_	ନ୍ତି	1514	TW							Note-Only process the duplicate bag if the firs
<u>1301</u>	PLICILE ONCY IT O	NGC M	SAM	PLING	And the second	<u>'</u>	PR	ESERVA	TRVE			5 D	trac	5	nate	5 8		1260	2605	E	60B)	(826	Se)	(AS							arrives dellated.
цав	Field Sample Identificat	tion	DATE	TIME	MATRIX					· · · · · ·	NO. OF CONT.	H H	Ш +	BTEX (TO-15)	×yge	MI DE (10-13) TBA (32608)	DIPE (8260B)	TAME (8260B)	ETRE (8260B)	1,2 DCA (8260B)	EDB (8260B)	Ethanoi (8260B)	Methanof (8015M)	Methane (ASTM			1				Container PID Read
USE ONLY			DRIE	I JUSIC		HCL	ныса	H2504	NKONE	OTHER		4T	1 di	E	9 9	a A	6	TA	Ľ.	1,2	ũ	臣	Met	Met							or Laboratory No
							$\left - \right $		×		2	x		-*	-+-	-	╂	\vdash		-†				-	-	┼─	-		╞		Tedlar Bag
					VA						-2	x		х		×													F	\square	Tedlar Bag
1	EVV-1		11/11/10	10:45	VA						2	X		×	-	$\overline{\mathbf{t}}$		 		-				$\overline{\mathbf{x}}$	<u> </u>		1	\mathbf{T}	1		Tediar Bag
1	<u> </u>		/ /////		VA	-			x		2	<u> </u>		ć †		+	+							\vdash	17	4		+		+	
														+								.		 	+				+	┼╌┦	
									· · ·		• •													 			1		∔	┥┈┦	
							[~~							-		ļ											ļ	\bot	<u> </u>	······
-					*****				I [[
	·····	·.			*****					i i														┨					1	F '	~
																					1				1		1				
																	ļ							<u> </u>		ļ					· · · ·
																													-		
Reinquety	All by (Signaluug)				Received by:	Sigrature																		Dale						Тінта	
Rabitguah	Alty (Standurg) and Schmuen				Received by:						 			 												/	- 7¢			Time	> 00
M.	ark Johnwon				Received by, f	X					>		(<u>)</u> 										Dale		(Time:) ())
M.	ark Johnwon					X				5	>			1												(2		Time:	> 00

-



-

Calscience ·	WORK C	RDER #: 08-	•[][]=[1074
Laboratories, inc.	SAMPLE REC	FIPT FOR		ler of
			DATE: _//	1 12 08
TEMPERATURE: (Criteria:	0.0 °C – 6.0 °C, not frozen)			
Temperature•	°C - 0.2 °C (CF) =	•°C □	Blank] Sample
Sample(s) outside tempera	ture criteria (PM/APM contact	ed by:).		
□ Sample(s) outside tempera	ture criteria but received on ic	e/chilled on same da	y of sampling.	
□ Received at ambient tem	perature, placed on ice fo	r transport by Coເ	ırier.	_
Ambient Temperature: 🗹 A	ir 🗆 Filter 🗆 Metals	Only 🛛 PCBs O	nly	Initial: <u>J.C.</u>
CUSTODY SEALS INTACT	Г:			
□ Cooler □	□ No (Not Intact)	Not Present	N/A	Initial:
□ Sample □	Do (Not Intact)	Not Present		Initial:
SAMPLE CONDITION:				
		Yes	No	N/A
Chain-Of-Custody document(s	-			
Sampler's name indicated on				
Sample container label(s) con	sistent with COC			
Sample container(s) intact and	good condition			
Correct containers and volume	e for analyses requested			
Analyses received within hold	ng time			· 🗖
Proper preservation noted on	sample label(s)	🛛		ø
Volatile analysis container(s) f	ree of headspace			Ø
Tedlar bag(s) free of condense	ation			
CONTAINER TYPE:				
Solid: □4ozCGJ □8ozCGJ	□16ozCGJ □Sleeve [∃EnCores® □Te	rraCores® [
Water: □VOA □VOAh [∃VOAna₂ □125AGB □	125AGBh 🗆 125A	.GBpo₄ □1A	GB □1AGBna₂
□1AGBs □500AGB □500	AGBs □250CGB □250	CGBs □1PB □5	00PB 🗆 500	PBna □250PB
□250PBn □125PB □125F	Bznna □100PBsterile	□100PBna₂ □	□	
Air: ☐Tedlar® □Summa®			Checked/Lab	eled by:
	ly/Plastic G :Glass J :Jar B :Bottle			ewed by: <u>UB</u>
Preservative: h:HCL n:HNO ₃ na ₂ :Na	120203 na:INAOH po4:H3PO4 s	.:□2304 znna: ∠nAc ₂ +Na 	auh Scai	nned by: <u>w.S.C.</u>

(1,2,2) , (1,2

SOP T100_090 (11/06/08)

December 01, 2008

Matthew Lundberg Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Subject: Calscience Work Order No.: 08-11-1147 Client Reference: 1784 150th Ave., San Leandro, CA

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 11/13/2008 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Calscience Environmental Laboratories, Inc. Jessie Kim Project Manager

CA-ELAP ID: 1230 · NELAP ID: 03220CA · CSDLAC ID: 10109 · SCAQMD ID: 93LA0830 7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

Page 2 of 11

N/A

Page 1 of 1

ACCOA

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Date Received: 11/13/08 Work Order No: 08-11-1147 Preparation: Method: ASTM D-1946

Project: 1784 150th Ave., San Leandro, CA

Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
EW-1M		08-11-1147-3-A	11/11/08 16:20	Air	GC 34	N/A	11/13/08 13:23	081113L01
Parameter	<u>Result</u>	<u>RL</u>	DF	<u>Qual</u>	<u>Units</u>			
Methane	2.15	0.500	1		%v			
Method Blank		099-03-002-684	N/A	Air	GC 34	N/A	11/13/08 08:56	081113L01
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
Methane	ND	0.500	1		%v			

n M

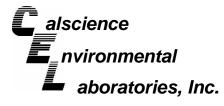
Page 3 of 11

Page 1 of 1

THE IN ACCORDANCE

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Date Received:	11/13/08
Work Order No:	08-11-1147
Preparation:	N/A
Method:	EPA TO-3M


Project: 1784 150th Ave., San Leandro, CA

,								0
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument F	Date Prepared	Date/Time Analyzed	QC Batch ID
EW-1		08-11-1147-1-A	11/11/08 16:30	Air	GC 13	N/A	11/13/08 15:28	081113L01
Parameter	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	1800	12	4		ppm (v/v)			
INF-2		08-11-1147-2-A	11/11/08 16:40	Air	GC 13	N/A	11/13/08 14:19	081113L01
Parameter	<u>Result</u>	<u>RL</u>	DF	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	590	3.0	1		ppm (v/v)			
EW-1		08-11-1147-4-A	11/12/08 07:30	Air	GC 13	N/A	11/13/08 15:12	081113L01
Parameter	<u>Result</u>	<u>RL</u>	DF	Qual	<u>Units</u>			
TPH as Gasoline	1400	12	4		ppm (v/v)			
EW-2		08-11-1147-5-A	11/12/08 10:20	Air	GC 13	N/A	11/13/08 15:02	081113L01
Parameter	<u>Result</u>	<u>RL</u>	DF	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	1600	12	4		ppm (v/v)			
Method Blank		098-01-005-1,555	N/A	Air	GC 13	N/A	11/13/08 09:42	081113L01
Parameter	<u>Result</u>	<u>RL</u>	DF	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	ND	3.0	1		ppm (v/v)			

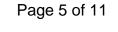
Page 4 of 11

11/13/08

Date Received:

Conestoga-Rovers & Associates 59 ~ · · E

					Date Net					11/10/00
5900 Hollis Street, Su	ite A				Work Ord	der No:			30	3-11-1147
Emeryville, CA 94608-	-2008				Preparati	ion:				N/A
,,					Method:				C 1	PA TO-15
					Units:					
					Units.					ppm (v/v)
Project: 1784 150th A	ve., San Le	andro,	CA						Pa	age 1 of 2
Client Sample Number				b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
EW-1				147-1-A	11/11/08	Air	GC/MS NN		11/13/08	081113L01
LW-1			00-11-1	14/-1-A	16:30	~	GC/MIS NIN	N/A	23:58	UUTTIJEUT
Parameter	Result	<u>RL</u>	DF	Qual	Parameter			<u>Result</u>	<u>RL [</u>	<u>DF Qual</u>
Benzene	0.58	0.22	450		p/m-Xylene			2.3	0.90	150
Toluene	0.70	0.22	450		o-Xylene			ND	0.22	450
Ethylbenzene	1.4	0.22	450		Methyl-t-Butyl	Ether (MTE	BE)	ND	0.90 4	150
Surrogates:	<u>REC (%)</u>	<u>Control</u>		Qual	Surrogates:			<u>REC (%)</u>	<u>Control</u>	<u>Qual</u>
		<u>Limits</u>							<u>Limits</u>	
1,4-Bromofluorobenzene	98	57-129			1,2-Dichloroeth	nane-d4		101	47-137	
Toluene-d8	100	78-156								
INF-2			08-11-1	147-2-A	11/11/08 16:40	Air	GC/MS NN	N/A	11/14/08 00:45	081113L01
Parameter	Result	<u>RL</u>	DF	Qual	Parameter			Result	<u>RL</u>	DF Qual
Benzene	0.18	0.075	150		p/m-Xylene			0.94		150
Toluene	0.25	0.075	150		o-Xylene			0.15		150
Ethylbenzene	0.46	0.075	150		Methyl-t-Butyl	Ether (MTE	BE)	ND		150
Surrogates:	REC (%)	Control		Qual	Surrogates:	,		REC (%)	Control	Qual
		Limits							Limits	
1,4-Bromofluorobenzene Toluene-d8	99 98	57-129 78-156			1,2-Dichloroeth	nane-d4		99	47-137	
EW-1			08-11-1	147-4-A	11/12/08 07:30	Air	GC/MS NN	N/A	11/14/08 01:35	081113L01
Parameter	Result	<u>RL</u>	DF	Qual	Parameter			Result	<u>RL</u>	<u>DF Qual</u>
Benzene	2.6	0.15	300	<u></u>	p/m-Xylene			5.1		300
Toluene	0.73	0.15	300		o-Xylene			0.30		300
Ethylbenzene	2.7	0.15	300		Methyl-t-Butyl	Ether (MTF	3F)	ND		300
Surrogates:	<u>REC (%)</u>	<u>Control</u>	000	Qual	Surrogates:			<u>REC (%)</u>	Control	Qual
<u></u>	<u></u>	Limits			<u>eanegateen</u>			<u></u>	Limits	<u></u>
1,4-Bromofluorobenzene	99	57-129			1,2-Dichloroeth	nane-d4		100	47-137	
Toluene-d8	99	78-156								
EW-2			08-11-1	147-5-A	11/12/08 10:20	Air	GC/MS NN	N/A	11/14/08 02:23	081113L01
Parameter	Result	<u>RL</u>	DF	Qual	Parameter			Result	<u>RL [</u>	<u>DF Qual</u>
Benzene	1.0	0.22	450	<u></u>	p/m-Xylene			4.3		450
Toluene	1.0	0.22	450 450		o-Xylene			4.3 0.69		+50 450
Ethylbenzene	3.4	0.22	450 450		Methyl-t-Butyl	Ether (MTF	3F)	ND		450 450
Surrogates:	REC (%)	Control	+50	Qual	Surrogates:			<u>REC (%)</u>	Control	Qual
<u></u>		Limits		0,000	20.10 30.00.				Limits	
1,4-Bromofluorobenzene	99	57-129			1,2-Dichloroeth	nane-d4		100	47-137	
Toluene-d8	101	78-156								


RL - Reporting Limit ,

DF - Dilution Factor ,

Qual - Qualifiers

h.M

*C*alscience *I*nvironmental *aboratories, Inc.*

A DE DE LA ACCORDANCE

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

	Date Received:	11/13/08
	Work Order No:	08-11-1147
	Preparation:	N/A
	Method: Units:	EPA TO-15 ppm (v/v)
A		Page 2 of 2

Project: 1784 150th Ave., San Leandro, CA

Client Sample Number				b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepare	Date/T d Analyz		QC Batch ID
Method Blank			097-09	-002-7,850	N/A	Air	GC/MS NN	N/A	11/13/ 13:4		081113L01
Parameter	<u>Result</u>	<u>RL</u>	DF	Qual	Parameter			<u>Result</u>	<u>RL</u>	DF	Qual
Benzene	ND	0.00050	1		p/m-Xylene			ND	0.0020	1	
Toluene	ND	0.00050	1		o-Xylene			ND	0.00050	1	
Ethylbenzene	ND	0.00050	1		Methyl-t-Butyl E	ther (MTB	E)	ND	0.0020	1	
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits		<u>Qual</u>	Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits		<u>Qual</u>
1,4-Bromofluorobenzene Toluene-d8	95 94	57-129 78-156			1,2-Dichloroeth	ane-d4		96	47-137		

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

Mulhan

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: 11/13/08 08-11-1147 N/A EPA TO-3M

Project: 1784 150th Ave., San Leandro, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared:	Date Analyzed:	Duplicate Batch Number
08-11-1108-2	Air	GC 13	N/A	11/13/08	081113D01
Parameter	Sample Conc	DUP Conc	<u>RPD</u>	RPD CL	Qualifiers
TPH as Gasoline	69	69	0	0-20	

RPD - Relative Percent Difference, CL - Control Limit

A DITED IN ACCORDANCE

Conestoga-Rovers & Associates	Date Received:	N/A
5900 Hollis Street, Suite A	Work Order No:	08-11-1147
Emeryville, CA 94608-2008	Preparation:	N/A
	Method:	ASTM D-1946

Project: 1784 150th Ave., San Leandro, CA

Quality Control Sample ID 099-03-002-684	Matrix Air	Instrument GC 34	Date Prepared N/A	Da Anal <u>-</u> 11/13	yzed	LCS/LCSD Bato Number 081113L01	h
Parameter		LCS	<u>Conc</u>	CSD Conc	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
Carbon Dioxide		9.2	90	9.656	4	0-30	
Oxygen + Argon		3.24	49	3.521	8	0-30	
Nitrogen		9.4	71	10.35	9	0-30	

RPD - Relative Percent Difference, CL - Control Limit

hm

A DE DIN ACCORDANCE

Conestoga-Rovers & Associates	Date Received:	N/A
5900 Hollis Street, Suite A	Work Order No:	08-11-1147
Emeryville, CA 94608-2008	Preparation:	N/A
	Method:	EPA TO-15

Project: 1784 150th Ave., San Leandro, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyze	ed	LCS/LCSD Batc Number	n
097-09-002-7,850	Air	GC/MS NN	N/A	11/13/08	3	081113L01	
Parameter	LCS %	REC LCSD	<u>%REC %I</u>	REC CL	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
Benzene	100	102		60-156	2	0-40	
Toluene	97	100	:	56-146	3	0-43	
Ethylbenzene	94	97	:	52-154	3	0-38	
p/m-Xylene	93	95		42-156	3	0-41	
o-Xylene	92	94	4	52-148	3	0-38	

RPD - Relative Percent Difference, CL - Control Limit

MM

hM

Work Order Number: 08-11-1147

<u>Qualifier</u>	Definition
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
А	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
Е	Concentration exceeds the calibration range.
Н	Sample received and/or analyzed past the recommended holding time.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ME	LCS Recovery Percentage is within LCS ME Control Limit range.
Ν	Nontarget Analyte.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
U	Undetected at the laboratory method detection limit.
Х	% Recovery and/or RPD out-of-range.

Z Analyte presence was not confirmed by second column or GC/MS analysis.

----- [·

	l.										I	((
	LAB (LOCATION)					I		2		She	ell (Dil	Pr	odi	ici	ls (<u>Ch</u>	ain	Of	C	iet/	velu	R	-	ord				٩	
🛛 CAI	SCIENCE (יד נ		pt	open Cho	ak åm	اسما مرتبع	rinta C														-							·	
🗗 SP	· () ir	F FNN	SERVICES		ase Check Appropriate Box: P			Print Bill To Contact Name: INCIL						CIDE	DENT # (ENV SERVICES)														
🗆 XE	ю <u>(</u>) tř						<u> </u>				Denis	Denis Brown 9					8 9 9 6 0 6 8				0 6	5 8	DATE:						
🛛 ТВ	ST AMERICA (IVA SD&O		CONSULT	TANT			UBES						P	0#								SAP	2#				
10 🛛	HER (_) [[🗌 shel	l Pipelin		OTHER _					-				T		Τ	1		1	<u> </u>							- T	PAGE:	t of 1
	COUPAINY:					100 000	DE .					8+TE /	DDR	SS: Sire	el and	City					<u> </u>	Siste		i	GLCB	HL IDAG		i		
Cones ACCRES	toga-Rovers & Associates					CRA	N.					1784	1 15	0th A	ve, i	San I	Lear	1dro				GA			106	0010	1230			
5900 H	ollis St, Ste A, Emeryville, CA 94608											EDF DEL	NERQ	LE TO (Ha	me, Con	ndery Of	fice (coa	loni		PHONE	WCL:				EVAL:				•	CONSULTANT PROJECTING:
PROJECT	CONSACT (Nanksay or PEF Report to)											Brene	da Ci	arler, C	RA,	Emery	ellivy			510-	420-33	43			shell	ണ്ണും	raworld	l.com		240612-2008-13
TELEPHO	45: FAX	Mau	ew Lui	ENRL	·												. .											LAI	USEOWL	
		.420.9170			miy	ndberg(Beraw	orki.cor	<u>nn</u>				V[AR)	۷	-	[a]	1	KOA.	/									11	1-1147
	ARCUND TIME (CALENDAR DAYS); NDARD (14 DAY) 5 DAYS	13 DAYS		2 DAYS	C 24 H			[] R∈S	ULTS N	IEEDED EEKENI				<u> </u>							RE	OUF	STED	AN						
	RWOOB REPORT FORMAT			1 4110					UN VI	EERENI			7	·							,				1					
					SHEL	I COMTRA	10°T PA	TE ADD/	(65					1							!								TE	MPERATURE ON RECEIN C°
	CIAL INSTRUCTIONS OR NOTES :				STAT					ES		ĨŇ	(8015M)												[]					C°
CC 1 Res	ports to tjackson@craworkt.com & ps //is should be reported in ppmv	chaeter@cra	world.co	om								é	8		(570928)									946)	Εĺ					· .
								ON RECU	JESTED											5		_	Ŵ	10					Note	Only process the
												TPH - Purgea BTEX (TO-15) BTEX (TO-15) MTBE (TO-15) MTBE (TO-15) DIPE (8260B) DIPE (8260B) DIPE (8260B) 1.2 DCA (8260B) 1.2 DCA (8260B) 1.2 DCA (8260B) 1.2 DCA (8260B) 6thanol (8260B) 6thano							dupi	icate bag if the first bag										
			SAMPI	LING			PRE	SERVATI	N/E	<u> </u>	XQ. OF	Par		É		Ê S	1968	828	828	¥ (8)	2601	1 (8)	0	e (A					anriv	es dofialed.
lab Use Oxiliy	Field Sample Identificati	ion b	MTE	TIME	MATRIX	HCLH	1103	R2504 5		· ·	QONT.	TPH - Purgeable (TO-3M)	TPH - Extractable	BTEX (TO-15)	SAXD C	MIBE (TQ-15) TRA (R2KARI	DIPE (8760B)	TAME (82608)	ETBE (8260B)	1,2 DCA (8260B)	EDB (\$260B)	Ethanol (8260B)	Methanol (8015M)	Methane (ASTM D1946)			ļ			Container PID Readings or Laboratory Notes
1	EW-1	•	Infes 1	16:31	VA				×		2	×		×		x													Ted	ar Bag
	INFIL			1 L:11	VA				×		2	x		X		×		Τ	Τ										Ted	ar Bag
	EW- EW-IM	"		16:20	VA				×		2													×			-	+	Tedi	ar Bag
4	EW-1		1120		VA.				7		2	×		X		x													Te	DIAR BAG
<u>S</u>	EW-2	<u>н</u>	/n	10;20	VA			`	>		2	¥		×		X														SLAR BAL
								1	ł																					1940
															╈			<u> </u>										┼╌╂		
			+		· · · ·	+			[-				-+		+-															
	· · · · · · · · · · · · · · · · · · ·																													
																														· · · · · · · · · · · · · · · · · · ·
																												┉┥───┥		
Patro	Ad in 10 million									_																			Į	
11	7 7 7 6 /				Received by: (S	Sere Dires	へ	$\overline{}$	/								~		/	î				Date:	ي المصودية		~		Táme:	
<u> </u>	n & man				_	Ň	T	\gg	_		~~	\sim		>			(`/F	_ر	\mathcal{V}				1	<u>\- \</u>	β	-DH	\mathbf{y}	17	1472
Reinquis	Ind ty: (Signaliger)	1	1/12	108	Received by: (S	gnalure)						$\overline{\ }$						<u></u>	<u> </u>		• •			Deta:	·		<u> </u>	<u>'</u>	Tima:	ΔIV
Ta	- Omally TO	6.50	177	1							\subseteq	\mathcal{I}																		-
aitpatel	ted by: [Stgiture]				Received by: (S	gnalundy		<u></u>																Care:		<u>.</u>			Time:	۔ یں ر
	65051073016	а			1	Ud	Nc.	t	\cap	B															10	100	~			(
		- 1				$\sim $	ju j	\sim		\sim			_					-				····-		N	No	108	5	ľ	1000	

067i 11

Page 11 of
C alscience · WORK ORDER #: 08 - □ □ - □ □ 4 7
Box Box
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $
CLIENT: CLA DATE: 11 / 13 / 08
TEMPERATURE: (Criteria: 0.0 °C – 6.0 °C, not frozen)
Temperature°C − 0.2 °C (CF) =°C □ Blank □ Sample
□ Sample(s) outside temperature criteria (PM/APM contacted by:).
□ Sample(s) outside temperature criteria but received on ice/chilled on same day of sampling.
☐ Received at ambient temperature, placed on ice for transport by Courier.
Ambient Temperature: Air Differ Differ Metals Only DecBs Only Initial:
CUSTODY SEALS INTACT:
□ Cooler □ □ No (Not Intact) ☑ Not Present □ N/A Initial: ₩3
□ Sample □ □ No (Not Intact) ⊡ Not Present Initial:
SAMPLE CONDITION:
Yes No N/A
Chain-Of-Custody document(s) received with samples
Sampler's name indicated on COC
Sample container label(s) consistent with COC
Sample container(s) intact and good condition
Correct containers and volume for analyses requested
Analyses received within holding time
Proper preservation noted on sample label(s)
Volatile analysis container(s) free of headspace
Tedlar bag(s) free of condensation
CONTAINER TYPE:
Solid: □4ozCGJ □8ozCGJ □16ozCGJ □Sleeve □EnCores® □TerraCores® □
Water: DVOA DVOAh DVOAna ₂ D125AGB D125AGBh D125AGBpo ₄ D1AGB D1AGBna ₂
Water: DVOA DVOAh DVOAna2 D125AGB D125AGBh D125AGBpo4 D1AGB D1AGBna2 D1AGBs D500AGB D500AGBs D250CGB D250CGBs D1PB D500PB D500PBna D250PB
Water: UVOA UVOAh UVOAna2 125AGB 125AGBh 125AGBpo4 1AGB 1AGBna2 1AGBs 500AGB 500AGBs 250CGB 250CGBs 1PB 500PB 500PBna 250PB 250PBn 125PB 125PBznna 100PBsterile 100PBna2
Water: UVOA UVOAh UVOAha2 1125AGB 1125AGBh 1125AGBpo4 11AGB 11AGBna2 11AGBs 1500AGB 1500AGBs 1250CGB 1250CGBs 11PB 1500PB 1500PBna 1250PB 1250PBn 1125PB 1125PBznna 1100PBsterile 1100PBna2

SOP T100_090 (11/06/08)

,

1

1000

n in the second of the

December 02, 2008

Matthew Lundberg Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Subject: Calscience Work Order No.: 08-11-1364 Client Reference: 1784 150th Ave., San Leandro, CA

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 11/14/2008 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Calscience Environmental Laboratories, Inc. Jessie Kim Project Manager

 CA-ELAP ID: 1230
 NELAP ID: 03220CA
 CSDLAC ID: 10109
 SCAQMD ID: 93LA0830

 7440 Lincoln Way, Garden Grove, CA 92841-1427
 TEL:(714) 895-5494
 FAX: (714) 894-7501

Page 2 of 12

Page 1 of 1

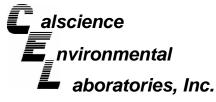
A DE DE DANO

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008
 Date Received:
 11/14/08

 Work Order No:
 08-11-1364

 Preparation:
 N/A

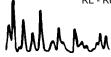
 Method:
 ASTM D-1946


Project: 1784 150th Ave., San Leandro, CA

Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
EW-2 (15:45)		08-11-1364-2-A	11/12/08 15:45	Air	GC 34	N/A	11/14/08 14:14	081114L02
Parameter	<u>Result</u>	<u>RL</u>	DF	<u>Qual</u>	<u>Units</u>			
Methane	ND	0.500	1		%v			
Method Blank		099-03-002-687	N/A	Air	GC 34	N/A	11/14/08 08:50	081114L02
Parameter	<u>Result</u>	<u>RL</u>	DF	Qual	<u>Units</u>			
Methane	ND	0.500	1		%v			

Page 3 of 12

Page 1 of 2



Conestoga-Rovers & AssociatesDate Received:11/14/085900 Hollis Street, Suite AWork Order No:08-11-1364Emeryville, CA 94608-2008Preparation:N/AMethod:EPA TO-3M

Project: 1784 150th Ave., San Leandro, CA

	on, Can Ecanaro	,						ge i ei z
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
EW-2 (15:40)		08-11-1364-1-A	11/12/08 15:40	Air	GC 39	N/A	11/14/08 18:03	081114L02
Parameter	Result	<u>RL</u>	DF	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	1400	12	4		ppm (v/v	<i>'</i>)		
INF-1 (16:20)		08-11-1364-3-A	11/12/08 16:20	Air	GC 39	N/A	11/14/08 19:11	081114L02
Parameter	<u>Result</u>	<u>RL</u>	DF	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	1600	12	4		ppm (v/v	')		
EW-1 (16:25)		08-11-1364-4-A	11/12/08 16:25	Air	GC 39	N/A	11/14/08 19:41	081114L02
Parameter	<u>Result</u>	<u>RL</u>	DF	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	61	3.0	1		ppm (v/v	')		
EW-2 (16:40)		08-11-1364-5-A	11/12/08 16:40	Air	GC 39	N/A	11/14/08 18:13	081114L02
Parameter	<u>Result</u>	<u>RL</u>	DF	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	1100	12	4		ppm (v/v	')		
EW-1 (14:30)		08-11-1364-6-A	11/13/08 14:30	Air	GC 39	N/A	11/14/08 18:22	081114L02
Parameter	<u>Result</u>	<u>RL</u>	DF	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	1300	12	4		ppm (v/v	')		
EW-2 (14:25)		08-11-1364-7-A	11/13/08 14:25	Air	GC 39	N/A	11/14/08 17:42	081114L02
Parameter	<u>Result</u>	<u>RL</u>	DF	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	690	3.0	1		ppm (v/v	<i>'</i>)		

 $\label{eq:RL-Reporting Limit} RL - Reporting Limit \ , \qquad DF - Dilution Factor \ , \qquad Qual - Qualifiers$

Page 4 of 12

Page 2 of 2

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Date Received:	11/14/08
Work Order No:	08-11-1364
Preparation:	N/A
Method:	EPA TO-3M

Project: 1784 150th Ave., San Leandro, CA

								e
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
INF-1 (14:35)		08-11-1364-8-A	11/13/08 14:35	Air	GC 39	N/A	11/14/08 18:31	081114L02
Parameter	<u>Result</u>	<u>RL</u>	DF	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	990	12	4		ppm (v/v)			
Method Blank		098-01-005-1,565	N/A	Air	GC 39	N/A	11/14/08 13:32	081114L02
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	ND	3.0	1		ppm (v/v))		

M. ~

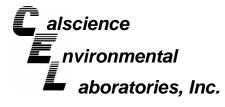
Page 5 of 12

11/14/08

Date Received:

Conestoga-Rovers & Associates 59 E

5900 Hollis Street, Suite Emeryville, CA 94608-20	008	on dro	C A		Work Ore Preparat Method: Units:				E	8-11-1364 N/A PA TO-15 ppm (v/v)
Project: 1784 150th Ave	e., San Le	andro,						Data		age 1 of 2
Client Sample Number				b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time d Analyzed	
EW-2 (15:40)			08-11- 1	1364-1-A	11/12/08 15:40	Air	GC/MS YY	N/A	11/15/08 12:40	081115L01
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	Parameter			<u>Result</u>	<u>RL</u>	<u>DF Qual</u>
Benzene	3.2	0.20	400		p/m-Xylene			14	0.80	400
Toluene	1.3	0.20	400		o-Xylene			2.7		400
Ethylbenzene	7.9	0.20	400		Methyl-t-Butyl	Ether (MTE	BE)	ND	0.80	400
Surrogates:	<u>REC (%)</u>	<u>Control</u>		Qual	Surrogates:			<u>REC (%)</u>	<u>Control</u>	Qual
-		Limits 1			-				<u>Limits</u>	
1,4-Bromofluorobenzene	102	57-129			1,2-Dichloroet	hane-d4		103	47-137	
Toluene-d8	85	78-156								
INF-1 (16:20)			08-11- 1	1364-3-A	11/12/08 16:20	Air	GC/MS YY	'N/A	11/15/08 13:24	081115L01
Parameter	Result	<u>RL</u>	DF	Qual	Parameter			Result	RL	DF Qual
Benzene	2.8	0.20	400		p/m-Xylene			8.5		400
Toluene	0.85	0.20	400		o-Xylene			1.4		400
Ethylbenzene	4.7	0.20	400		Methyl-t-Butyl	Ether (MTE	3E)	ND		400
Surrogates:	<u>REC (%)</u>	Control		Qual	Surrogates:	,	,	<u>REC (%)</u>	Control	Qual
		Limits							Limits	
1,4-Bromofluorobenzene Toluene-d8	100 86	57-129 78-156			1,2-Dichloroet	hane-d4		101	47-137	
EW-1 (16:25)			08-11- 1	1364-4-A	11/12/08 16:25	Air	GC/MS YY	'N/A	11/15/08 14:07	081115L01
Parameter	<u>Result</u>	<u>RL</u>	DF	Qual	Parameter			<u>Result</u>	RL	DF Qual
Benzene	0.070	0.0080	16		p/m-Xylene			0.15	0.032	16
Toluene	0.012	0.0080	16		o-Xylene			0.013	0.0080	16
Ethylbenzene	0.082	0.0080	16		Methyl-t-Butyl	Ether (MTE	3E)	ND	0.032	16
Surrogates:	REC (%)	Control		Qual	Surrogates:	,	,	REC (%)	Control	Qual
		Limits			•				Limits	
1,4-Bromofluorobenzene Toluene-d8	100 87	57-129 78-156			1,2-Dichloroet	hane-d4		101	47-137	
EW-2 (16:40)			08-11- 1	1364-5-A	11/12/08 16:40	Air	GC/MS YY	'N/A	11/15/08 14:51	081115L01
Parameter	<u>Result</u>	<u>RL</u>	DF	Qual	Parameter			Result	<u>RL</u>	<u>DF Qual</u>
Benzene	2.5	0.15	300		p/m-Xylene			13		300
Toluene	1.1	0.15	300		o-Xylene			2.5		300
Ethylbenzene	7.1	0.15	300		Methyl-t-Butyl	Ether (MTE	3E)	ND		300
Surrogates:	<u>REC (%)</u>	Control Limits	200	<u>Qual</u>	Surrogates:	, · · -	,	<u>REC (%)</u>	<u>Control</u> Limits	Qual
1,4-Bromofluorobenzene Toluene-d8	102 82	57-129 78-156			1,2-Dichloroet	hane-d4		101	47-137	


RL - Reporting Limit ,

DF - Dilution Factor Qual - Qualifiers ,

n M

Page 6 of 12

11/14/08

Date Received:

Conestoga-Rovers & Associates 59 E

Conesioga-Novers & Ass					Date Net					11/14/00
5900 Hollis Street, Suite	A				Work Ord	der No:			C	8-11-1364
Emeryville, CA 94608-20	08				Preparati	ion:				N/A
,,					Method:				5	EPA TO-15
					Units:				Ľ	ppm (v/v)
					Units.					ppm (v/v)
Project: 1784 150th Ave	., San Le	eandro,	CA						F	Page 2 of 2
				b Sample	Date/Time	Motrix	Instrument	Date	Date/Tim	
Client Sample Number				Number	Collected	Matrix	Instrument	Tropulo		u
EW-1 (14:30)			08-11-1	1364-6-A	11/13/08 14:30	Air	GC/MS YY	′ N/A	11/15/0 15:35	8 081115L01
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual	Parameter			<u>Result</u>	<u>RL</u>	<u>DF Qual</u>
Benzene	3.7	0.15	300		p/m-Xylene			8.2	0.60	300
Toluene	0.69	0.15	300		o-Xylene			0.80	0.15	300
Ethylbenzene	4.0	0.15	300		Methyl-t-Butyl	Ether (MTE	3E)	ND	0.60	300
Surrogates:	<u>REC (%)</u>	<u>Control</u>		<u>Qual</u>	Surrogates:			<u>REC (%)</u>	<u>Control</u>	<u>Qual</u>
		<u>Limits</u>							<u>Limits</u>	
1,4-Bromofluorobenzene	102	57-129			1,2-Dichloroeth	nane-d4		100	47-137	
Toluene-d8	82	78-156								-
EW-2 (14:25)			08-11-1	I364-7-A	11/13/08 14:25	Air	GC/MS YY	′ N/A	11/15/0 16:19	8 081115L01
Parameter	Result	<u>RL</u>	DF	Qual	Parameter			Result	<u>RL</u>	DF Qual
Benzene	1.4	0.10	200		p/m-Xylene			10	0.40	200
Toluene	1.3	0.10	200		o-Xylene			2.4	0.10	200
Ethylbenzene	4.2	0.10	200		Methyl-t-Butyl	Ether (MTE	BE)	ND	0.40	200
Surrogates:	<u>REC (%)</u>	Control		<u>Qual</u>	Surrogates:			<u>REC (%)</u>	<u>Control</u>	Qual
		<u>Limits</u>							Limits	
1,4-Bromofluorobenzene	104	57-129			1,2-Dichloroet	nane-d4		100	47-137	
Toluene-d8	84	78-156								_
INF-1 (14:35)			08-11-1	1364-8-A	11/13/08 14:35	Air	GC/MS YY	/ N/A	11/15/0 17:03	8 081115L01
Parameter	<u>Result</u>	<u>RL</u>	DF	Qual	Parameter			<u>Result</u>	<u>RL</u>	<u>DF Qual</u>
Benzene	2.5	0.12	250		p/m-Xylene			7.9	0.50	250
Toluene	0.97	0.12	250		o-Xylene			1.3	0.12	250
Ethylbenzene	3.6	0.12	250		Methyl-t-Butyl	Ether (MTE	BE)	ND	0.50	250
Surrogates:	<u>REC (%)</u>	<u>Control</u>		<u>Qual</u>	Surrogates:			<u>REC (%)</u>	Control	<u>Qual</u>
1.4 Dromoflyorobonzono	102	Limits			1.2 Diablaraat	aana d4		100	Limits	
1,4-Bromofluorobenzene Toluene-d8	103 83	57-129 78-156			1,2-Dichloroeth	nane-04		100	47-137	
	03	76-100								0
Method Blank			097-09	-002-7,890	6 N/A	Air	GC/MS YY	/ N/A	11/15/0 11:56	8 081115L01
Parameter	<u>Result</u>	<u>RL</u>	DF	Qual	Parameter			<u>Result</u>	<u>RL</u>	<u>DF Qual</u>
Benzene	ND	0.00050	1		p/m-Xylene			ND	0.0020	1
Toluene	ND	0.00050	1		o-Xylene			ND	0.00050	1
Ethylbenzene	ND	0.00050	1		Methyl-t-Butyl	Ether (MTE	BE)	ND	0.0020	1
Surrogates:	<u>REC (%)</u>	<u>Control</u>		<u>Qual</u>	Surrogates:			<u>REC (%)</u>	<u>Control</u>	<u>Qual</u>
1.4 Dramafluarah	07	Limits						400	Limits	
1,4-Bromofluorobenzene	97	57-129			1,2-Dichloroet	nano-d/l		100	47-137	
Toluene-d8	99	78-156						100	47-107	

RL - Reporting Limit ,

DF - Dilution Factor ,

Qual - Qualifiers

7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

Page 7 of 12

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method:

11/14/08 08-11-1364 N/A EPA TO-3M

Project: 1784 150th Ave., San Leandro, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared:	Date Analyzed:	Duplicate Batch Number
08-11-1365-2	Air	GC 39	N/A	11/14/08	081114D02
Parameter	Sample Conc	DUP Conc	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
TPH as Gasoline	8.4	8.3	1	0-20	

RPD - Relative Percent Difference, CL - Control Limit

n . M

7440 Lincoln Way, Garden Grove, CA 92841-1427 . TEL:(714) 895-5494 . FAX: (714) 894-7501

Conestoga-Rovers & Associates	Date Received:	N/A
5900 Hollis Street, Suite A	Work Order No:	08-11-1364
Emeryville, CA 94608-2008	Preparation:	N/A
	Method:	ASTM D-1946

Project: 1784 150th Ave., San Leandro, CA

Quality Control Sample ID 099-03-002-687	Matrix Air	Instrument GC 34	Date Prepared	Da Anal 11/14	yzed	LCS/LCSD Bato Number 081114L02	h
Parameter		LCS		CSD Conc	RPD	RPD CL	Qualifiers
Carbon Dioxide		8.8		9.610	8	0-30	duamoro
Oxygen + Argon Nitrogen		3.2 9.6		3.759 11.20	14 15	0-30 0-30	

RPD - Relative Percent Difference, CL - Control Limit

hm

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 • FAX: (714) 894-7501

Conestoga-Rovers & Associates	Date Received:	N/A
5900 Hollis Street, Suite A	Work Order No:	08-11-1364
Emeryville, CA 94608-2008	Preparation:	N/A
	Method:	EPA TO-15

Project: 1784 150th Ave., San Leandro, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyz		LCS/LCSD Bate Number	:h
097-09-002-7,896	Air	GC/MS YY	N/A	11/15/	08	081115L01	
Parameter	LCS %	REC LCSD	<u>%REC %F</u>	REC CL	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
Benzene	114	108	6	60-156	5	0-40	
Toluene	104	101	Ę	56-146	3	0-43	
Ethylbenzene	114	109	Ę	52-154	4	0-38	
p/m-Xylene	102	98	2	42-156	4	0-41	
o-Xylene	108	104	Ę	52-148	4	0-38	

RPD - Relative Percent Difference, CL - Control Limit

hM

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 • FAX: (714) 894-7501

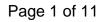
MM

Work Order Number: 08-11-1364

<u>Qualifier</u>	Definition
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
А	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
Е	Concentration exceeds the calibration range.
Н	Sample received and/or analyzed past the recommended holding time.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ME	LCS Recovery Percentage is within LCS ME Control Limit range.
Ν	Nontarget Analyte.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
U	Undetected at the laboratory method detection limit.
Х	% Recovery and/or RPD out-of-range.

Z Analyte presence was not confirmed by second column or GC/MS analysis.

_	LAB (LOCATION)							Sh	ell (Dil	Pr	od	uc	ts	Cł	nai	n (Of (Cus	sto	dy	Re	eco	ord					
	LSCIENCE ()		Pl	ease Cheo	k Ap	propriate	Box:			Pri	nt Bi	ill To	Co	ntaci	t Na	me:					INC	CIDE	NT #	EN	V SE	RVIC	CES)		HECK IF NO INCIDENT # APPLIES
🗌 SP			/. SERVICES		MOTIVA	RETAIL		SHELL F	RETAIL	Don	is Bro										9	8	9	9	6	0 6	5 8		ATE: 11/12/08
	ENCO ()	Пмо	TIVA SD&C	<u></u>	CONSULT	TANT		LUBES		Den	is Bro	wn			PO	#						0		SAP					NIE///_/ _/ _/ _/
	EST AMERICA ()									<u> </u>	1	1				# 		— T							*		· _	— Р/	AGE: 1 of 1
_	THER ()		ELL PIPELIN		OTHER _	<u> </u>																							
					LOG COL											1-					State			GLOBA		1000			
ADDRES	stoga-Rovers & Associates				CRA	~~					B4 15 ELIVERA						ro	1	HONE NO		CA			E-MAIL:	010	1230			CONSULTANT PROJECT NO.:
	Hollis St, Ste A, Emeryville, CA 94608													_															
PROJEC	T CONTACT (Hardcopy or PDF Report to):	tthew l	undberg								nda C			, Eme	eryvi	le];	510-42	20-334	.3			shelle	df@ci	raworld		AB USE	240612-2008-13 ONLY
TELEPH	ONE: FAX:		E-MAIL:						• • • • •	L	1//	1			11			/									ľ	78.	-11-1364
TUDN	510-420-3346 510.420.9170 WAROUND TIME (CALENDAR DAYS):			<u>mlu</u>	ndberg(@craworld.co				/	$\gamma \nu_{l}$	Å IL	R		16h	وسر	102	/										20	
	ANDARD (14 DAY) 5 DAYS 3 DAYS	[2 DAYS	🗌 24 HC	OURS		SULTS ON V	NEEDEL			r	1						<u> </u>		RE		STED		LYSI	s		-1-		· · · · · · · · · · · · · · · · · · ·
	- RWQCB REPORT FORMAT UST AGENCY:																												TEMPERATURE ON RECEIPT
SPI	ECIAL INSTRUCTIONS OR NOTES :					ACT RATE APP				Î	2M)																		C°
	reports to tjackson@craworld.com & pschaefer@c	raworld	com			URSEMENT RA	TE APPL	JES		Purgeable (TO-3M)	(8015M)		ß										D1946)						
Res	sults should be reported in ppmv							_		E L			(8260B)									Σ	ē						Note-Only process the
				I <u>√</u> I RECE	IPT VERI	IFICATION REC	QUESTED	D		eabl	Extractable	5)	es (I	15)	<u>_</u>	<u>ه</u>	â	<u>ه</u>	608	<u>م</u>	60B	115	(ASTM						duplicate bag if the first bag
		SAM	PLING			PRESERVA	TIVE			۱.	xtra	ē	enat	è	260E	2601	826(8260	82	260E	1 (82	9							arrives deflated.
LAB	Field Sample Identification	DATE	TIME	MATRIX					NO. OF CONT.		ļ.	втех (то-15)	5 Oxygenates	MTBE (TO-15)	TBA (8260B)	DIPE (8260B)	TAME (8260B)	ETBE (8260B)	1,2 DCA (8260B)	EDB (8260B)	Ethanol (8260B)	Methanol (8015M)	Methane						Container PID Readings
USE ONLY					HCL H	HNO3 H2SO4	NONE	OTHER		ТРН	- HqT	BTI	50	μ	TB/	B	TAI	E	1,2	â	튋	Me	Me						or Laboratory Notes
1	EW-2	1/2	15:4	VA			x		2	x		x		x													_		Tedlar Bag
		-1-		VA	┿╍╍┥		- <u>×</u>			-×-	+	-x-		-x-				_						+		-+-			Tedlar-Bag
2	EW-2 EW-2		15:45	VA			x		2														x						Tedlar Bag
3	INF-1		16:20				×		2	X		×		7															
4	ĒW-1		16:25	' VA			¥		2	×		×		*															
5	EW-2		16:40	VA			×		2	٢		×		8															Y
4	EW-P			-																									
4	EW-I	11/13	14:30	VA			X		Z	X		*		\times															
7	EW-Z	11/13	14:2s	- 1/A			メ		2	X		X		$\mathbf{\lambda}$															
8		11/13	14:35	V/	1-11		\star		Z	×		Х		¥															Ý
	sped by: (Signature)			Received by: (S	ignature)	>		11	ļ														Date:		7	1	~	Time	
1	ans Johnston			Received by: (S	m/	În	'nl	[]b.	y (Ĺ	72												1	//	12	3/0	8	· .	1440 .
Relinqui	shed by: (Signature)	773	30	Received by: (S	ignature)		5613		-														Dale:	/		_		Time	P
Ta	Malley TO GSO.							/															Det-					T	Page
	510738767	•	'	Received by: (S		rnnc	. 6	,	Cz	ΞL	_												Date:	11	14	10	8	Time	10:30 -
	NOU 3101 JO 101				~		re	-	- (-						•	- 1	<u>'</u>		-		05/2/06 Revision


1 11

_
N

Calscience - WORK ORDER #	#: 08- [7 []-[Page 12 of 12
Environmental aboratories, Inc. SAMPLE RECEIPT	FORM	Coo	ler <u>0</u> of <u>0</u>
	D	ATE: _/	1114108
TEMPERATURE: (Criteria: 0.0 °C - 6.0 °C, not frozen) Temperature °C - 0.2 °C (CF) = Sample(s) outside temperature criteria (PM/APM contacted by: Sample(s) outside temperature criteria but received on ice/chilled on Received at ambient temperature, placed on ice for transpo Ambient Temperature: Image: Air). n same day o rt by Couri e	er.] Sample Initial:りし
	Present Present	l2′ N/A	Initial: <u>P.()</u> Initial: <u>P.()</u>
SAMPLE CONDITION:		<u></u>	· · · · · · · · · · · · · · · · · · ·
Chain-Of-Custody document(s) received with samples	Yes	No □	N/A □
Sampler's name indicated on COC	,		
Sample container label(s) consistent with COC			
Sample container(s) intact and good condition			
Correct containers and volume for analyses requested			
Analyses received within holding time			
Proper preservation noted on sample label(s)			
Volatile analysis container(s) free of headspace			
Tedlar bag(s) free of condensation			
CONTAINER TYPE: Solid: □4ozCGJ □8ozCGJ □16ozCGJ □Sleeve □EnCores	® □Terra	Cores® [
Water: □VOA □VOAh □VOAna₂ □125AGB □125AGBh	□125AG	Зро₄ □1А	GB □1AGBna₂
□1AGBs □500AGB □500AGBs □250CGB □250CGBs □	1PB □500	PB □500	PBna □250PB
□250PBn □125PB □125PBznna □100PBsterile □100PBn	a₂ □	□	□
Air: Tedlar® Summa® Container: C:Clear A:Amber P:Poly/Plastic G:Glass J:Jar B:Bottle Preservative: h:HCL n:HNO3 na2:Na2S2O3 na:NaOH po4:H3PO4 s:H2SO4 zn			eled by: ewed by: nned by:

--

SOP T100_090 (11/06/08)

December 03, 2008

Matthew Lundberg Conestoga-Rovers & Associates 19449 Riverside Drive, Suite 230 Sonoma, CA 95476-6955

Subject: Calscience Work Order No.: 08-11-1592 Client Reference: 1784 150th Ave., San Leandro, CA

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 11/18/2008 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

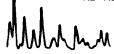
Sincerely,

Calscience Environmental Laboratories, Inc. Jessie Kim Project Manager

CA-ELAP ID: 1230 · NELAP ID: 03220CA · CSDLAC ID: 10109 · SCAQMD ID: 93LA0830 7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

Page 2 of 11

Page 1 of 1


N ACCORD

Conestoga-Rovers & Associates 19449 Riverside Drive, Suite 230 Sonoma, CA 95476-6955

Date Received:	11/18/08
Work Order No:	08-11-1592
Preparation:	N/A
Method:	EPA TO-3M

Project: 1784 150th Ave., San Leandro, CA

	ei, ean Eeanare,	0,1					1.5	gorori
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
INF-1		08-11-1592-1-A	11/17/08 09:25	Air	GC 39	N/A	11/18/08 14:02	081118L01
Parameter	Result	<u>RL</u>	DF	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	1100	30	10		ppm (v/v	v)		
INF-2		08-11-1592-2-A	11/17/08 09:30	Air	GC 39	N/A	11/18/08 14:20	081118L01
Parameter	Result	<u>RL</u>	DF	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	1200	30	10		ppm (v/v	v)		
EW-1		08-11-1592-3-A	11/17/08 09:35	Air	GC 39	N/A	11/18/08 14:29	081118L01
Parameter	Result	<u>RL</u>	DF	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	1200	30	10		ppm (v/v	v)		
EW-2		08-11-1592-4-A	11/17/08 09:40	Air	GC 39	N/A	11/18/08 14:38	081118L01
Parameter	<u>Result</u>	<u>RL</u>	DF	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	750	30	10		ppm (v/v	v)		
Method Blank		098-01-005-1,570	N/A	Air	GC 39	N/A	11/18/08 09:04	081118L01
Parameter	Result	<u>RL</u>	DF	Qual	<u>Units</u>			
TPH as Gasoline	ND	3.0	1		ppm (v/v	v)		

7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

alscience nvironmental aboratories, Inc.

Date Received:

Page 3 of 11

11/18/08

N ACCORD

Conestoga-Rovers & Associates 1 S

19449 Riverside Drive, S Sonoma, CA 95476-695	5				Work Orc Preparati Method: Units:	EI	08-11-1592 N/A EPA TO-15 ppm (v/v)			
Project: 1784 150th Ave	e., San Le	eandro,	CA						Pa	age 1 of 2
Client Sample Number				b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time d Analyzed	QC Batch ID
INF-1			08-11- 1	I592-1-A	11/17/08 09:25	Air	GC/MS DI	D N/A	11/18/08 22:16	081118L01
<u>Parameter</u> Benzene Toluene Ethylbenzene	<u>Result</u> 1.7 0.85 2.0	<u>RL</u> 0.15 0.15 0.15	<u>DF</u> 300 300 300	<u>Qual</u>	<u>Parameter</u> p/m-Xylene o-Xylene Methyl-t-Butyl I	Ether (MTE	3E)	<u>Result</u> 4.9 0.73 ND	0.60 3 0.15 3	<u>DF Qual</u> 300 300 300
Surrogates: 1,4-Bromofluorobenzene Toluene-d8	<u>REC (%)</u> 92 111	<u>Control</u> <u>Limits</u> 57-129 78-156		<u>Qual</u>	Surrogates: 1,2-Dichloroeth	nane-d4	-	<u>REC (%)</u> 126	<u>Control</u> Limits 47-137	<u>Qual</u>
INF-2			08-11- 1	1592-2-A	11/17/08 09:30	Air	GC/MS DI	D N/A	11/18/08 23:06	081118L01
Parameter Benzene Toluene Ethylbenzene <u>Surrogates:</u> 1,4-Bromofluorobenzene Toluene-d8	<u>Result</u> 1.8 0.79 2.2 <u>REC (%)</u> 90 101	RL 0.15 0.15 <u>Control</u> Limits 57-129 78-156	<u>DF</u> 300 300 300	<u>Qual</u> <u>Qual</u>	Parameter p/m-Xylene o-Xylene Methyl-t-Butyl I Surrogates: 1,2-Dichloroeth		BE)	Result 5.2 0.76 ND <u>REC (%)</u> 99	0.60 3 0.15 3	0F Qual 300 300 300 Qual
EW-1			08-11-1	1592-3-A	11/17/08 09:35	Air	GC/MS DI	D N/A	11/18/08 23:55	081118L01
Parameter Benzene Toluene Ethylbenzene <u>Surrogates:</u> 1,4-Bromofluorobenzene Toluene-d8	<u>Result</u> 2.7 0.87 2.1 <u>REC (%)</u> 76 98	<u>RL</u> 0.15 0.15 <u>0.15</u> <u>Control</u> <u>Limits</u> 57-129 78-156	<u>DF</u> 300 300 300	<u>Qual</u> <u>Qual</u>	Parameter p/m-Xylene o-Xylene Methyl-t-Butyl I <u>Surrogates:</u> 1,2-Dichloroeth		BE)	Result 4.8 0.43 ND REC (%) 93	0.60 3 0.15 3	2 <u>F Qual</u> 300 300 300 <u>Qual</u>
EW-2			08-11- 1	1592-4-A	11/17/08 09:40	Air	GC/MS DI	D N/A	11/19/08 00:44	081118L01
Parameter Benzene Toluene Ethylbenzene <u>Surrogates:</u> 1,4-Bromofluorobenzene Toluene-d8	<u>Result</u> 0.84 1.0 2.4 <u>REC (%)</u> 77 96	RL 0.12 0.12 0.12 <u>Control Limits</u> 57-129 78-156	<u>DF</u> 250 250 250	<u>Qual</u> <u>Qual</u>	Parameter p/m-Xylene o-Xylene Methyl-t-Butyl I <u>Surrogates:</u> 1,2-Dichloroeth	,	BE)	Result 6.0 1.3 ND REC (%) 90	0.50 2 0.12 2	250 250 250 250 <u>Qual</u>

RL - Reporting Limit ,

DF - Dilution Factor ,

Qual - Qualifiers

n M

> 7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

alscience nvironmental aboratories, Inc.

Page 4 of 11

N ACCORD

Conestoga-Rovers & Associates 19449 Riverside Drive, Suite 230 Sonoma, CA 95476-6955

Date Received:	11/18/08
Work Order No:	08-11-1592
Preparation:	N/A
Method:	EPA TO-15
Units:	ppm (v/v)
	Page 2 of 2

Project: 1784 150th Ave., San Leandro, CA

Client Sample Number				ıb Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepare	Date/Ti d Analyz		QC Batch ID	
Method Blank			097-09-002-7,881		N/A	Air	GC/MS DD	N/A	11/18/08 14:30		081118L01	
Parameter	<u>Result</u>	<u>RL</u>	DF	Qual	Parameter			<u>Result</u>	<u>RL</u>	DF	Qual	
Benzene	ND	0.00050	1		p/m-Xylene			ND	0.0020	1		
Toluene	ND	0.00050	1		o-Xylene			ND	0.00050	1		
Ethylbenzene	ND	0.00050	1		Methyl-t-Butyl E	Ether (MTE	E)	ND	0.0020	1		
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits		<u>Qual</u>	Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits		<u>Qual</u>	
1,4-Bromofluorobenzene Toluene-d8	87 94	57-129 78-156			1,2-Dichloroeth	ane-d4		109	47-137			

Page 5 of 11

11/18/08

N/A

Conestoga-Rovers & Associates 19449 Riverside Drive, Suite 230 Sonoma, CA 95476-6955

Date Received: Work Order No: 08-11-1592 Preparation: Method: EPA TO-3M

Project: 1784 150th Ave., San Leandro, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared:	Date Analyzed:	Duplicate Batch Number
INF-1	Air	GC 39	N/A	11/18/08	081118D01
Parameter	Sample Conc	DUP Conc	<u>RPD</u>	RPD CL	Qualifiers
TPH as Gasoline	1100	1100	3	0-20	

RPD - Relative Percent Difference, CL - Control Limit

A DE DIN ACCORDANCE

Conestoga-Rovers & Associates	Date Received:	N/A
19449 Riverside Drive, Suite 230	Work Order No:	08-11-1592
Sonoma, CA 95476-6955	Preparation:	N/A
	Method:	EPA TO-15

Project: 1784 150th Ave., San Leandro, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Batc Number	:h
097-09-002-7,881	Air	GC/MS DD	N/A	11/18/08	081118L01	
Parameter	LCS %	REC LCSD	<u>%REC %F</u>	REC CL RPD	RPD CL	<u>Qualifiers</u>
Benzene	102	105	6	60-156 2	0-40	
Toluene	105	105	Ę	56-146 0	0-43	
Ethylbenzene	104	104	Ę	52-154 0	0-38	
p/m-Xylene	103	102	2	42-156 1	0-41	
o-Xylene	104	103	Ę	52-148 1	0-38	

RPD - Relative Percent Difference, CL - Control Limit

MM

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 • FAX: (714) 894-7501

hM

Work Order Number: 08-11-1592

<u>Qualifier</u>	Definition
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
А	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
Е	Concentration exceeds the calibration range.
Н	Sample received and/or analyzed past the recommended holding time.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ME	LCS Recovery Percentage is within LCS ME Control Limit range.
Ν	Nontarget Analyte.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
U	Undetected at the laboratory method detection limit.
Х	% Recovery and/or RPD out-of-range.

Z Analyte presence was not confirmed by second column or GC/MS analysis.

From:	Lundberg, Matthew
То:	Jessie Kim;
cc:	Jackson, Treysa;
Subject: Date:	RE: Leaking tedlar bags from 1784 150th Ave., San Leandro, CA Tuesday, November 18, 2008 11:38:02 AM

Ok. Please do all you can to run these samples. Thanks! Thanks, Matthew Lundberg Conestoga-Rovers & Associates (CRA) 5900 Hollis Street, Suite A Emeryville, CA 94608 P.510.420.3346 F.510.420.9170

-----Original Message-----From: Jessie Kim [mailto:JKim@calscience.com] Sent: Tuesday, November 18, 2008 11:37 AM To: Lundberg, Matthew Cc: Jackson, Treysa Subject: RE: Leaking tedlar bags from 1784 150th Ave., San Leandro, CA I think so. When we received them, they were leaking. -----Original Message-----From: Lundberg, Matthew [mailto:mlundberg@craworld.com] Sent: Tuesday, November 18, 2008 11:32 AM To: Jessie Kim Cc: Jackson, Treysa Subject: RE: Leaking tedlar bags from 1784 150th Ave., San Leandro, CA

Hi Jessie, Did these break during transit? Thanks, Matthew Lundberg Conestoga-Rovers & Associates (CRA) 5900 Hollis Street, Suite A Emeryville, CA 94608 P.510.420.3346 F.510.420.9170

-----Original Message-----From: Jessie Kim [mailto:JKim@calscience.com] Sent: Tuesday, November 18, 2008 11:31 AM To: Lundberg, Matthew Subject: Leaking tedlar bags from 1784 150th Ave., San Leandro, CA Importance: High Hi Matthew, We received the tedlar bags from the above referenced site today. I got informed that both tedlar bags for sample EW-2 are leaking. I just like to let you know that we try to transfer those to other bags.

Thanks! Best Regards,

I CAI	LAB (LOCATION) LSCIENCE ())		nell								Of C	ust	-								
	L ()			ase Cheo				SHELL		Pri	nt Bi	III TO	o Cor	ntact	Nam	;					1		/ SER		T 1	-	IF NO INCIDENT # APPLIE
	INCO ()		V. SERVICES			RETAIL				Den	nis Bro	wn							9	8	9	9	6 () 6	8	DATE	<u>- 11-17-08</u>
	ST AMERICA ()		DTIVA SD&CM		ONSUL					ļ				P	0#							SAP #	¥			DAGE	:1 of 1
	THER ()	🗆 SH	ÉLL PIPELÍNE		THER -						1													1		FAGE	. 1011
MPLING	S COMPANY:				LOG CO					SITE	EADDR	ESS: St	treet an	i City	(-	State	L		GLOBAL	IÐ NO.:		L L		·
ODRES	stoga-Rovers & Associates				CRA	W				178	84 15	50th /	Ave,	San	Lean	dro	Inuo	E NO.:	CA			TOGO	01012	230			CONSULTANT PROJECT NO.:
9449	Riverside Drive, Suite 230, Sonoma, Californ	ia 95476																									CONSULTAINT PROJECT NO.
ROJECT	CONTACT (Hardcopy or PDF Report to):	Matthew L	undberg							SAM	PLER NA	ME(S) (Pr	rint):	, Emer	•			-420-3	343			shelled	lf@crav	world.c		ÙSE ONL	240612-2008-13 V
ELÉPHO	DNE: FAX:		E-MAIL:							1 .	11	Λ	o Is		. (alar	30л)									
URN	510-420-3346 510.420.917 AROUND TIME (CALENDAR DAYS):			mlur	dberg			TS NEEDE	0	_	VV	(20)					2000									<u> </u>	1 - 1592
	ANDARD (14 DAY) 5 DAYS 3 DAY	S	2 DAYS	🗌 24 HO	URS			DN WEEKE							,			R	EQUE	STED		LYSIS	; 				
] LA	- RWQCB REPORT FORMAT													•												π	MPERATURE ON RECI
SPE	ECIAL INSTRUCTIONS OR NOTES :			SHELL						l s	Ŵ.																C°
	eports to tjackson@craworld.com & pschaefer@	Dcraworld	.com				NT RATE A	APPLIES		0	(8015M)		<u>ه</u>								946)						
Res	sults should be reported in ppmv									E I	ole ((8260B)							ŝ	<u>ة</u>					Not	te-Only process the
				🗹 RECEI	PT VER	IFICATIO	N REQUES	SIED		jeab	Ictab	15)	tes (l	15)	~ £	E E	3B) 260B	m	60B	3015	(ASTM D1946)					dup	llcate bag if the first ba
		SAN	IPLING			PRES	SERVATIVE	2	1	- Lug	Extra	è	enat	È	2001 2001	826(8260 A (82	260E	1 (82		⊻ 					arri	ves deflated.
AB SE VLY	Field Sample Identification	DATE	ТІМЕ	MATRIX	HCL	ниоз на	2SO4 NO		NO. OF CONT.	TPH - Purgeable (TO-3M)	TPH - Extractable	BTEX (TO-15)	5 Oxygenates	MTBE (TO-15)		TAME (8260B)	ETBE (8260B) 1,2 DCA (8260B)	EDB (8260B)	Ethanol (8260B)	Methanol (8015M)	Methane						Container PID Reading or Laboratory Notes
1	INF-1	11/17/2	05:25	VA				×	2	x		x		x												Tec	llar Bag
2	INF.2	11.17	09:30	VA				x	2	x		x		x												Tec	ilar Bag
3	EW-1	11-17	07135	VA			2		2	8		×	-	×	-			1								Tt	DUR BAG
1	EW-Z	11-17	05:40	VA			7	4	2	×		×		×												ア	EDLAR BAS
	·																										
															\top									1			
-															-	+								-			
\downarrow															_	\downarrow \downarrow										\square	
	<u> </u>	-																						+			
inquiş	rheid by∯: (Signatur)e) / / /		<u> </u>	Received by: (Sig	nature)				<u> </u>		_	{							<u> </u>		Date:		,		Цļ	Time:	
V	Marke Johnson			10	~	N	in	<u>II</u>	ls l	C	te	Z									11	(אי	7/2	18	i	1	348
linquis	hed by: (Signature)	ארואי	78 1	Received by: (Sig	inature)		r p	v v v) —		-										Date:	· / ·	., .	•	-+	Time:	· (•
, M	milles TO GE	[]/[]/[[730	5	,				5																			
inquisl	hed by: (Signature)		- F	Received by: (Sig	inature)																Date:					Time:	
	0 # 510755752		1	pre				<i>a</i> -													1	1	10	2		10	:15

_

. _

÷

<u>.</u>

. .

.

~

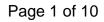
		Page 10 of 11
WORK ORDER #: 08	3-	1392
Environmental Laboratories, Inc. SAMPLE RECEIPT FOR	RM Coe	⟨ ler_
CLIENT: CRA	DATE: <u>//</u>	
TEMPERATURE: (Criteria: 0.0 °C – 6.0 °C, not frozen)		
Temperature°C - 0.2°C (CF) =°C	🗆 Blank 🛛	☐ Sample
□ Sample(s) outside temperature criteria (PM/APM contacted by:).		۲.
□ Sample(s) outside temperature criteria but received on ice/chilled on same of	_	
□ Received at ambient temperature, placed on ice for transport by Co	ourier.	
Ambient Temperature: Air D Filter D Metals Only D PCBs	Only	Initial: <u>×</u>
CUSTODY SEALS INTACT:		
□ Cooler	□ N/A	Initial:
□ Sample □ □ No (Not Intact) ☑ Not Present		Initial: <u>\L</u>
SAMPLE CONDITION:		
Yes	No	N/A
Chain-Of-Custody document(s) received with samples	·	
Sampler's name indicated on COC		
Sample container label(s) consistent with COC		
Sample container(s) intact and good condition		
Analyses received within holding time		
Proper preservation noted on sample label(s)		
Volatile analysis container(s) free of headspace		
Tedlar bag(s) free of condensation		
	_	
Solid: 4ozCGJ 8ozCGJ 16ozCGJ Sleeve EnCores®		□
Water: □VOA □VOAh □VOAna ₂ □125AGB □125AGBh □125		
□1AGBs □500AGB □500AGBs □250CGB □250CGBs □1PB □		PBna ∐250PB
\Box 250PBn \Box 125PB \Box 125PBznna \Box 100PBsterile \Box 100PBna ₂ \Box Air: 2 ZTedlar® \Box Summa® \Box		U
Container: C:Clear A:Amber P:Poly/Plastic G:Glass J:Jar B:Bottle	Checked/Lab	eled by: <u>YL</u>

SOP T100_090 (11/06/08)

÷

* **	
A lscience	-
Environmental	
aboratories ,	Im

Page 11 of 11
WORK ORDER #: **08-**


SAMPLE ANOMALY FORM

CHAIN OF CUSTO	DY (COC):			Comm	nents:							
 □ Not relinquished □ No date/time reli □ COC not receive □ Incomplete infor 	nquished d with sample	s – notify F	νM									
SAMPLES - CONT	AINERS & LA	BELS:		Comr	nents:							
 Samples NOT RE Samples receive Holding time exp Insufficient quart Insufficient quart Improper containt No preservative Sample labels ill Sample labels do Sample labels do Sample labels do Date and Ti Project Info # of containt Xample containt Sample containt Sample containt Broken Without Lat Other: 	d but NOT LIS nired – list sam tities for analy ner(s) used – li noted on label egible – note te o not match CO me Collected rmation ners rs compromis	TED on C(ole ID(s) ar /sis – list te st test – list test a est/containe DC – Note	<u>t</u> o) two ing, one ne	Tedlar transf Tedlar	en en eag						
HEADSPACE – Co	ntainers with	Bubble >	6mm or ¼	inch:								
Sample Containe # ID(s)	r # of Vials Received	Sample #	Container ID(s)	# of Vials Received	Sample #	Container ID(s)	# of RSK or CO₂ or DO or Organic Lead Received					
Comments:												
			<u></u>		Initial / Da	/	18/08					

SOP T100_081 (09/19/08)

1994 - L

1

December 01, 2008

Matthew Lundberg Conestoga-Rovers & Associates 19449 Riverside Drive, Suite 230 Sonoma, CA 95476-6955

Subject: Calscience Work Order No.: 08-11-1712 Client Reference: 1784 150th Ave., San Leandro, CA

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 11/19/2008 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Calscience Environmental Laboratories, Inc. Jessie Kim Project Manager

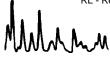
 CA-ELAP ID: 1230
 NELAP ID: 03220CA
 CSDLAC ID: 10109
 SCAQMD ID: 93LA0830

 A
 7440 Lincoln Way, Garden Grove, CA 92841-1427
 TEL:(714) 895-5494
 FAX: (714) 894-7501

Page 2 of 10

Page 1 of 2

A DE DE LA ACCORDANCE


Conestoga-Rovers & Associates 19449 Riverside Drive, Suite 230 Sonoma, CA 95476-6955

Date Received:	11/19/08
Work Order No:	08-11-1712
Preparation:	N/A
Method:	EPA TO-3M

Project: 1784 150th Ave., San Leandro, CA

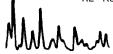
		,					.ge : e: =
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Da Instrument Prepa		QC Batch ID
EW-1		08-11-1712-1-A	11/17/08 14:30	Air	GC 39 N	/A 11/19/08 15:37	081119L01
Parameter	Result	<u>RL</u>	DF	<u>Qual</u>	<u>Units</u>		
TPH as Gasoline	1200	15	5		ppm (v/v)		
EW-2		08-11-1712-2-A	11/17/08 14:35	Air	GC 39 N/	/A 11/19/08 15:50	081119L01
Parameter	Result	<u>RL</u>	DF	<u>Qual</u>	<u>Units</u>		
TPH as Gasoline	590	15	5		ppm (v/v)		
INF-2		08-11-1712-3-A	11/17/08 14:40	Air	GC 39 N/	/A 11/19/08 16:02	081119L01
Parameter	<u>Result</u>	<u>RL</u>	DF	<u>Qual</u>	<u>Units</u>		
TPH as Gasoline	1200	15	5		ppm (v/v)		
EW-1		08-11-1712-4-A	11/18/08 07:30	Air	GC 39 N/	/A 11/19/08 16:14	081119L01
Parameter	<u>Result</u>	<u>RL</u>	DF	<u>Qual</u>	<u>Units</u>		
TPH as Gasoline	1000	15	5		ppm (v/v)		
EW-2		08-11-1712-5-A	11/18/08 07:35	Air	GC 39 N/	/A 11/19/08 16:25	081119L01
Parameter	<u>Result</u>	<u>RL</u>	DF	<u>Qual</u>	<u>Units</u>		
TPH as Gasoline	430	15	5		ppm (v/v)		
INF-2		08-11-1712-6-A	11/18/08 07:40	Air	GC 39 N/	/A 11/19/08 16:35	081119L01
Parameter	Result	<u>RL</u>	DF	<u>Qual</u>	<u>Units</u>		
TPH as Gasoline	920	15	5		ppm (v/v)		

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

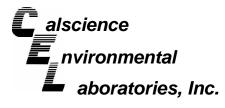
Page	3	of	10
------	---	----	----

Page 2 of 2



Conestoga-Rovers & Associates 19449 Riverside Drive, Suite 230 Sonoma, CA 95476-6955

Date Received:	11/19/08
Work Order No:	08-11-1712
Preparation:	N/A
Method:	EPA TO-3M


Project: 1784 150th Ave., San Leandro, CA

								<u> </u>
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank		098-01-005-1,569	N/A	Air	GC 39	N/A	11/19/08 08:41	081119L01
Parameter	Result	<u>RL</u>	DF	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	ND	3.0	1		ppm (v/v	/)		

Page 4 of 10

11/19/08

Date Received:

Conestoga-Rovers & Associates 19449 Riverside Drive, Suite 230 S

19449 Riverside Drive, S	Suite 230				Work Orc	ler No:			08	-11-1712
Sonoma, CA 95476-695	5				Preparati	on:				N/A
,	-				Method:					PA TO-15
					Units:				I	opm (v/v)
Project: 1784 150th Ave	e., San Le	andro,	CA						Pa	ge 1 of 2
Client Sample Number				b Sample	Date/Time	Matrix	Instrument	Date	Date/Time	QC Batch ID
Client Sample Number				Number	Collected			Tropuloe		
EW-1			08-11-1	1712-1-A	11/17/08 14:30	Air	GC/MS ZZ	N/A	11/19/08 20:41	081119L01
Parameter	<u>Result</u>	<u>RL</u>	DF	Qual	Parameter			<u>Result</u>	<u>RL D</u>	<u>F Qual</u>
Benzene	3.1	0.15	300		p/m-Xylene			3.4		00
Toluene	0.74	0.15	300		o-Xylene			0.62		00
Ethylbenzene	2.9	0.15	300		Methyl-t-Butyl E	Ether (MTE	BE)	ND		00
Surrogates:	<u>REC (%)</u>	Control		<u>Qual</u>	Surrogates:	``		REC (%)	<u>Control</u>	<u>Qual</u>
-	. ,	<u>Limits</u>			-			. ,	<u>Limits</u>	
1,4-Bromofluorobenzene	109	57-129			1,2-Dichloroeth	ane-d4		126	47-137	
Toluene-d8	95	78-156								
EW-2			08-11-1	1712-2-A	11/17/08 14:35	Air	GC/MS ZZ	N/A	11/19/08 21:25	081119L01
					. .					
Parameter	<u>Result</u>	<u>RL</u>	DF	<u>Qual</u>	Parameter			<u>Result</u>	<u>RL D</u>	
Benzene	0.96	0.075	150		p/m-Xylene			9.6		50
Toluene	0.99	0.075	150		o-Xylene			2.1		50
Ethylbenzene	3.4	0.075	150	<u> </u>	Methyl-t-Butyl E	ther (MTE	,	ND		50
Surrogates:	<u>REC (%)</u>	<u>Control</u>		<u>Qual</u>	Surrogates:			<u>REC (%)</u>	<u>Control</u>	<u>Qual</u>
1,4-Bromofluorobenzene	111	Limits			1.2 Diablaraath	ono d4		115	Limits	
Toluene-d8	111 89	57-129 78-156			1,2-Dichloroeth	ane-u4		115	47-137	
INF-2			08-11- 1	1712-3-A	11/17/08 14:40	Air	GC/MS ZZ	N/A	11/19/08 22:09	081119L01
				<u> </u>	. .					
Parameter	<u>Result</u>	<u>RL</u>	DF	<u>Qual</u>	Haramotor			<u>Result</u>	<u>RL D</u>	
Benzene					Parameter					
Toluene	2.3	0.15	300		p/m-Xylene			7.9	0.60 3	00
	1.0	0.15	300		p/m-Xylene o-Xylene			7.9 1.1	0.60 3 0.15 3	00 00
-	1.0 3.1	0.15 0.15			p/m-Xylene o-Xylene Methyl-t-Butyl E	Ether (MTB	,	7.9 1.1 ND	0.60 3 0.15 3 0.60 3	00 00 00
Ethylbenzene <u>Surrogates:</u>	1.0	0.15 0.15 <u>Control</u>	300	<u>Qual</u>	p/m-Xylene o-Xylene	Ether (MTB	,	7.9 1.1	0.60 3 0.15 3 0.60 3 <u>Control</u>	00 00
-	1.0 3.1 <u>REC (%)</u>	0.15 0.15 <u>Control</u> <u>Limits</u>	300	Qual	p/m-Xylene o-Xylene Methyl-t-Butyl E Surrogates:	,	,	7.9 1.1 ND <u>REC (%)</u>	0.60 3 0.15 3 0.60 3 <u>Control</u> <u>Limits</u>	00 00 00
Surrogates: 1,4-Bromofluorobenzene	1.0 3.1 <u>REC (%)</u> 108	0.15 0.15 <u>Control</u> <u>Limits</u> 57-129	300	<u>Qual</u>	p/m-Xylene o-Xylene Methyl-t-Butyl E	,	,	7.9 1.1 ND	0.60 3 0.15 3 0.60 3 <u>Control</u>	00 00 00
Surrogates:	1.0 3.1 <u>REC (%)</u>	0.15 0.15 <u>Control</u> <u>Limits</u>	300 300	Qual	p/m-Xylene o-Xylene Methyl-t-Butyl E <u>Surrogates:</u> 1,2-Dichloroeth 11/18/08	,	,	7.9 1.1 ND <u>REC (%)</u> 113	0.60 3 0.15 3 0.60 3 <u>Control</u> <u>Limits</u> 47-137 11/19/08	00 00 00
Surrogates: 1,4-Bromofluorobenzene Toluene-d8	1.0 3.1 <u>REC (%)</u> 108	0.15 0.15 <u>Control</u> <u>Limits</u> 57-129	300 300		p/m-Xylene o-Xylene Methyl-t-Butyl E <u>Surrogates:</u> 1,2-Dichloroeth	ane-d4		7.9 1.1 ND <u>REC (%)</u> 113	0.60 3 0.15 3 0.60 3 <u>Control</u> <u>Limits</u> 47-137	00 00 <u>Qual</u>
Surrogates: 1,4-Bromofluorobenzene Toluene-d8 EW-1 Parameter	1.0 3.1 <u>REC (%)</u> 108 91 <u>Result</u>	0.15 0.15 <u>Control</u> <u>Limits</u> 57-129 78-156 <u>RL</u>	300 300 08-11- 1		p/m-Xylene o-Xylene Methyl-t-Butyl E <u>Surrogates:</u> 1,2-Dichloroeth 11/18/08 07:30	ane-d4		7.9 1.1 ND <u>REC (%)</u> 113 N/A <u>Result</u>	0.60 3 0.15 3 0.60 3 <u>Control</u> <u>Limits</u> 47-137 11/19/08 22:54	00 00 <u>Qual</u> 081119L01 <u>E Qual</u>
Surrogates: 1,4-Bromofluorobenzene Toluene-d8 EW-1 Parameter Benzene	1.0 3.1 <u>REC (%)</u> 108 91 <u>Result</u> 3.5	0.15 0.15 <u>Control</u> <u>Limits</u> 57-129 78-156 <u>RL</u> 0.15	300 300 08-11- 1	1712-4-A	p/m-Xylene o-Xylene Methyl-t-Butyl E <u>Surrogates:</u> 1,2-Dichloroeth 11/18/08 07:30 Parameter p/m-Xylene	ane-d4		7.9 1.1 ND <u>REC (%)</u> 113 3 <u>Result</u> 8.3	0.60 3 0.15 3 0.60 3 <u>Control</u> <u>Limits</u> 47-137 11/19/08 22:54 <u>RL</u> <u>D</u> 0.60 3	00 00 <u>Qual</u> 081119L01
Surrogates: 1,4-Bromofluorobenzene Toluene-d8 EW-1 Parameter Benzene Toluene	1.0 3.1 <u>REC (%)</u> 108 91 <u>Result</u> 3.5 1.1	0.15 0.15 <u>Control</u> <u>Limits</u> 57-129 78-156 <u>RL</u> 0.15 0.15	300 300 08-11- 1 <u>DF</u> 300 300	1712-4-A	p/m-Xylene o-Xylene Methyl-t-Butyl E <u>Surrogates:</u> 1,2-Dichloroeth 11/18/08 07:30 Parameter p/m-Xylene o-Xylene	ane-d4	GC/MS ZZ	7.9 1.1 ND <u>REC (%)</u> 113 N/A <u>Result</u> 8.3 0.93	0.60 3 0.15 3 0.60 3 <u>Control</u> <u>Limits</u> 47-137 11/19/08 22:54 <u>RL D</u> 0.60 3 0.15 3	00 00 <u>Qual</u> 081119L01 E <u>Qual</u> 00 00
Surrogates: 1,4-Bromofluorobenzene Toluene-d8 EW-1 Parameter Benzene Toluene Ethylbenzene	1.0 3.1 <u>REC (%)</u> 108 91 <u>Result</u> 3.5 1.1 3.3	0.15 0.15 <u>Control</u> <u>Limits</u> 57-129 78-156 <u>RL</u> 0.15 0.15 0.15	300 300 08-11- 1 <u>DF</u> 300	Qual	p/m-Xylene o-Xylene Methyl-t-Butyl E <u>Surrogates:</u> 1,2-Dichloroeth 11/18/08 07:30 Parameter p/m-Xylene o-Xylene Methyl-t-Butyl E	ane-d4	GC/MS ZZ	7.9 1.1 ND <u>REC (%)</u> 113 3 N/A Result 8.3 0.93 ND	0.60 3 0.15 3 0.60 3 <u>Control</u> <u>Limits</u> 47-137 11/19/08 22:54 <u>RL D</u> 0.60 3 0.15 3 0.60 3	00 00 <u>Qual</u> 081119L01 E <u>Qual</u> 00 00 00
Surrogates: 1,4-Bromofluorobenzene Toluene-d8 EW-1 Parameter Benzene Toluene	1.0 3.1 <u>REC (%)</u> 108 91 <u>Result</u> 3.5 1.1	0.15 0.15 <u>Control</u> <u>Limits</u> 57-129 78-156 <u>RL</u> 0.15 0.15 0.15 0.15 <u>Control</u>	300 300 08-11- 1 <u>DF</u> 300 300	1712-4-A	p/m-Xylene o-Xylene Methyl-t-Butyl E <u>Surrogates:</u> 1,2-Dichloroeth 11/18/08 07:30 Parameter p/m-Xylene o-Xylene	ane-d4	GC/MS ZZ	7.9 1.1 ND <u>REC (%)</u> 113 N/A <u>Result</u> 8.3 0.93	0.60 3 0.15 3 0.60 3 <u>Control</u> <u>Limits</u> 47-137 11/19/08 22:54 <u>RL</u> <u>D</u> 0.60 3 0.15 3 0.60 3 <u>Control</u>	00 00 <u>Qual</u> 081119L01 E <u>Qual</u> 00 00
Surrogates: 1,4-Bromofluorobenzene Toluene-d8 EW-1 Parameter Benzene Toluene Ethylbenzene Surrogates:	1.0 3.1 <u>REC (%)</u> 108 91 <u>Result</u> 3.5 1.1 3.3 <u>REC (%)</u>	0.15 0.15 <u>Control</u> <u>Limits</u> 57-129 78-156 <u>RL</u> 0.15 0.15 0.15 0.15 <u>Control</u> <u>Limits</u>	300 300 08-11- 1 <u>DF</u> 300 300	Qual	p/m-Xylene o-Xylene Methyl-t-Butyl E <u>Surrogates:</u> 1,2-Dichloroeth 11/18/08 07:30 <u>Parameter</u> p/m-Xylene o-Xylene Methyl-t-Butyl E <u>Surrogates:</u>	ane-d4 Air Ether (MTE	GC/MS ZZ	7.9 1.1 ND <u>REC (%)</u> 113 N/A <u>Result</u> 8.3 0.93 ND <u>REC (%)</u>	0.60 3 0.15 3 0.60 3 <u>Control</u> <u>Limits</u> 47-137 11/19/08 22:54 <u>RL</u> <u>D</u> 0.60 3 0.15 3 0.60 3 <u>Control</u> <u>Limits</u>	00 00 <u>Qual</u> 081119L01 E <u>Qual</u> 00 00 00
Surrogates: 1,4-Bromofluorobenzene Toluene-d8 EW-1 Parameter Benzene Toluene Ethylbenzene	1.0 3.1 <u>REC (%)</u> 108 91 <u>Result</u> 3.5 1.1 3.3	0.15 0.15 <u>Control</u> <u>Limits</u> 57-129 78-156 <u>RL</u> 0.15 0.15 0.15 0.15 <u>Control</u>	300 300 08-11- 1 <u>DF</u> 300 300	Qual	p/m-Xylene o-Xylene Methyl-t-Butyl E <u>Surrogates:</u> 1,2-Dichloroeth 11/18/08 07:30 Parameter p/m-Xylene o-Xylene Methyl-t-Butyl E	ane-d4 Air Ether (MTE	GC/MS ZZ	7.9 1.1 ND <u>REC (%)</u> 113 3 N/A Result 8.3 0.93 ND	0.60 3 0.15 3 0.60 3 <u>Control</u> <u>Limits</u> 47-137 11/19/08 22:54 <u>RL</u> <u>D</u> 0.60 3 0.15 3 0.60 3 <u>Control</u>	00 00 <u>Qual</u> 081119L01 E <u>Qual</u> 00 00 00

RL - Reporting Limit ,

DF - Dilution Factor Qual - Qualifiers ,

```
n M
```

7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

alscience nvironmental aboratories, Inc.

Page 5 of 10

N ACCORD

Conestoga-Rovers & Ass 19449 Riverside Drive, S Sonoma, CA 95476-6955 Project: 1784 150th Ave	Suite 230 5	eandro,		Work Orc Preparati Method: Units:									
Client Sample Number				b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time d Analyzed	QC Batch ID			
EW-2			08-11-1	1712-5-A	11/18/08 07:35	Air	GC/MS ZZ	N/A	11/19/08 23:39	081119L01			
Parameter Benzene Toluene Ethylbenzene <u>Surrogates:</u> 1,4-Bromofluorobenzene Toluene-d8	<u>Result</u> 1.3 1.5 3.4 <u>REC (%)</u> 110 85	RL 0.050 0.050 0.050 <u>Control</u> Limits 57-129 78-156	<u>DF</u> 100 100 100	<u>Qual</u> <u>Qual</u>	Parameter p/m-Xylene o-Xylene Methyl-t-Butyl I <u>Surrogates:</u> 1,2-Dichloroeth	,	,	Result 9.9 2.5 0.25 REC (%) 107	0.20 1 0.050 1	<u>F Qual</u> 00 00 00 <u>Qual</u>			
INF-2			08-11- 1	1712-6-A	11/18/08 07:40	Air	GC/MS ZZ	N/A	11/20/08 00:24	081119L01			
Parameter Benzene Toluene Ethylbenzene <u>Surrogates:</u> 1,4-Bromofluorobenzene Toluene-d8	<u>Result</u> 2.9 1.4 3.9 <u>REC (%)</u> 108 89	<u>RL</u> 0.12 0.12 <u>0.12</u> <u>Control</u> <u>Limits</u> 57-129 78-156	<u>DF</u> 250 250 250	<u>Qual</u> <u>Qual</u>	Parameter p/m-Xylene o-Xylene Methyl-t-Butyl I <u>Surrogates:</u> 1,2-Dichloroeth			<u>Result</u> 11 1.7 ND REC (%) 106	0.50 2 0.12 2	<u>F Qual</u> 50 50 50 <u>Qual</u>			
Method Blank			097-09	-002-7,874	4 N/A	Air	GC/MS ZZ	N/A	11/19/08 11:17	081119L01			
Parameter Benzene Toluene Ethylbenzene <u>Surrogates:</u> 1,4-Bromofluorobenzene Toluene-d8	<u>Result</u> ND ND <u>REC (%)</u> 107 98	<u>RL</u> 0.00050 0.00050 <u>0.00050</u> <u>Control</u> <u>Limits</u> 57-129 78-156	<u>DF</u> 1 1	<u>Qual</u> <u>Qual</u>	Parameter p/m-Xylene o-Xylene Methyl-t-Butyl I <u>Surrogates:</u> 1,2-Dichloroeth			Result ND ND REC (%) 131	0.0020 0.00050	F <u>Qual</u> 1 1 1 <u>Qual</u>			

RL - Reporting Limit , DF - Dilution Factor Qual - Qualifiers ,

hM

7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

Page 6 of 10

N/A

Conestoga-Rovers & Associates 19449 Riverside Drive, Suite 230 Sonoma, CA 95476-6955

Date Received: 11/19/08 Work Order No: 08-11-1712 Preparation: Method: EPA TO-3M

Project: 1784 150th Ave., San Leandro, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared:	Date Analyzed:	Duplicate Batch Number
08-11-1713-1	Air	GC 39	N/A	11/19/08	081119D01
Parameter	Sample Conc	DUP Conc	<u>RPD</u>	<u>RPD CL</u>	<u>Qualifiers</u>
TPH as Gasoline	300	320	4	0-20	

RPD - Relative Percent Difference, CL - Control Limit

A DEPOIN ACCORDANCE

Conestoga-Rovers & Associates	Date Received:	N/A
19449 Riverside Drive, Suite 230	Work Order No:	08-11-1712
Sonoma, CA 95476-6955	Preparation:	N/A
	Method:	EPA TO-15

Project: 1784 150th Ave., San Leandro, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed		LCS/LCSD Batc Number	ו
097-09-002-7,874	Air	GC/MS ZZ	N/A	11/19/08		081119L01	
Parameter	LCS %	REC LCSD	<u>%REC %F</u>	REC CL	RPD	RPD CL	<u>Qualifiers</u>
Benzene	89	101	6	60-156	13	0-40	
Toluene	90	105	Ę	56-146	15	0-43	
Ethylbenzene	103	118	Ę	52-154	13	0-38	
p/m-Xylene	106	121	2	42-156	13	0-41	
o-Xylene	109	123	Ę	52-148	13	0-38	

RPD - Relative Percent Difference, CL - Control Limit

MM

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 • FAX: (714) 894-7501

hM

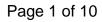
Work Order Number: 08-11-1712

<u>Qualifier</u>	Definition
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
А	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
Е	Concentration exceeds the calibration range.
Н	Sample received and/or analyzed past the recommended holding time.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ME	LCS Recovery Percentage is within LCS ME Control Limit range.
Ν	Nontarget Analyte.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
U	Undetected at the laboratory method detection limit.
Х	% Recovery and/or RPD out-of-range.

Z Analyte presence was not confirmed by second column or GC/MS analysis.

	LAB (LOCATION)				Ę			Sh	ell (Oil	Pr	od	uc	ts (Cł	nair	۱C)f C	ust	ody	/ Re	ecc	ord	I					
	_SCIENCE ()	Please Check Appropriate Box:							Pri	nt Bi	ili To	Co	ntact	Na	me:				- IN	ICIDE	ENT i	# (El	NV S	SER	VICE	S) [🗆 сн	ECK IF NO INCIDENT # APPLIES	
	L ()		/. SERVICES		MOTIVA RE	TAIL		SHELL R	ETAIL	Den	is Bro	wn								9	8	9	9	6	0	6	8	DA	те: <u>11/17/04</u>
	NCO ()	П мо	TIVA SD&CM	1 0	CONSULTA	NT		LUBES						F	20	#				-		J	SAF	-	1		~		. /
	ST AMERICA ()				OTHER							r—1			1				1			<u> </u>			Τ			PA	GE: 1 of 1
SAMPLING	HER ()			\	LOG CODE:					SITE	ADDRI	ESS: SI	treet an	d City						State	t		GLOE	BAL ID N	10.:				
	toga-Rovers & Associates				CRAW											andro)			CA					012	30			
19449	ADDRESS: 19449 Riverside Drive, Suite 230, Sonoma, California 95476										eliverai nda C								NE NO.: 0-420- :	1742			E-MAIL			vorld.co	om		CONSULTANT PROJECT NO.: 240612-2008-13
PROJECT	CONTACT (Hardcopy or PDF Report to):	atthew L	undberg							SAM	PLER NA	ME(S) (P	rint):						0-420-				lane	ieune	ocian			ÚSE (
TELÉPHO	510-420-3346 510.420.9170		E-MAIL:	mlui	ndberg@	craworid.c	<u>om</u>			Ĺ	W	lar	e <u>k</u>	1	10	hn	50.	\sim											11-1712
	AROUND TIME (CALENDAR DAYS): INDARD (14 DAY) 5 DAYS 3 DAYS	Į	2 DAYS	🗌 24 HC	- DURS	🗋 RI		NEEDED			=					<u> </u>			۹ -		STEC	AN/	ALYS	sis					
	- RWQCB REPORT FORMAT UST AGENCY:																												TEMPERATURE ON RECEIPT
1	ECIAL INSTRUCTIONS OR NOTES :					T RATE APP		LIES		3M)	15M)		_									(9)							C°
	eports to tjackson@craworld.com & pschaefer@ sults should be reported in ppmv	craworid.	com	🗍 EDD I		ED				Ê	(80		(8260B)									194							
					IPT VERIFI	CATION REC	QUESTE	D		- Purgeable (TO-3M)	Extractable (8015M)	15)	tes (82	-15)	6	B	(8)	ETBE (8260B) 1 2 DCA (8260B)		Ethanol (8260B)	Methanol (8015M)	(ASTM D1946)						-	Note-Only process the duplicate bag if the first bag arrives deflated.
		SAM	PLING			PRESERV			NO. OF	Pu	Extr	Ŀ	gena	Ê	3260	8260	826	(826 A (8	8260	0 (8	Por	ne (
LAB USE ONLY	Field Sample Identification	DATE	TIME	MATRIX	HCL HN	IO3 H2SO4	NONÉ	OTHER	CONT.	HdT	- H4T	BTEX (TO-15)	5 Oxygenates (MTBE (TO-15)	TBA (8260B)	DIPE (8260B)	TAME (8260B)	ETBE (8260B)	EDB (8260B)	Ethan	Metha	Methane							Container PID Readings or Laboratory Notes
I	EW-1	11-17:	14:30	VA			×		2	×		x		x												\square			Tedlar Bag
2	EW-2	11-17	14:31	VA			x		2	×		x		x															Tedlar Bag
3	INF-2	11-17	14:40	VA			X		2	×		×		×															Tenlar bab
4	EW-1	11-18	07:30	VA			×		2	7		x		*															1
5	EW-2	-	07:35	VA			*		2	Ł		X		×						1									•
6	INF-2	11-18	07:40	VA			t		2	Ъ		X		X															V
	• • • • • • • • • • • • • • • • • • •						•						-																
														+		-	\uparrow				<u> </u>	+							
Relinquis	shedyby: (Signature)	1	ł	Received by: (S	ignature)		1	<u></u>		<u> </u>							. I.		1		I	Date		ļ	/	4	-+	Time:	
	and for the second			Received by: (S	OT	no	ļ	24,	\mathcal{C}	FC	_											1	[[8/	00	8		1	340
Relinquis	and by (signature)		13 P/08	Received by: (S	lignature)		1															Date	¢					Time:	Гаде
Relinquis	shed by: (Signature)	.//	<u>/ · · · </u>	Received by: (S	ignaturé				0													Date	:				\neg	Time:	۵
6	4.0. 510762333			N	Un	st	\mathcal{S}	ÞC,	Ź	>												14	410	ő				(0:	20 Q
						0		2	0																				05/2/06 Revision

. kilo – 1. s. ki


-

WORK ORDER #: 08- 1 .	Page 10 of 10 [1] [7] [1] [2]
Laboratories, Inc. SAMPLE RECEIPT FORM	∦ ∞Ter _ / _ of _ / _
CLIENT: <u>Concestoga-Rovers</u> DATE: <u>1</u>	1 19 08
TEMPERATURE: (Criteria: 0.0 °C – 6.0 °C, not frozen)	
Temperature°C - 0.2°C (CF) =°C \Box Blank	□ Sample
□ Sample(s) outside temperature criteria (PM/APM contacted by:).	
\Box Sample(s) outside temperature criteria but received on ice/chilled on same day of sampling	1.
\Box Received at ambient temperature, placed on ice for transport by Courier.	
Ambient Temperature: Z Air D Filter D Metals Only D PCBs Only	Initial: <u>W.S.C</u>
CUSTODY SEALS INTACT:	
□ Cooler	Initial:
□ Sample □ □ No (Not Intact) □ Not Present	Initial: <u>WB</u>
SAMPLE CONDITION:	
Yes No	N/A
Chain-Of-Custody document(s) received with samples	· 🗆
Sampler's name indicated on COC	
Sample container label(s) consistent with COC	
Sample container(s) intact and good condition	
Correct containers and volume for analyses requested	
Analyses received within holding time	
Proper preservation noted on sample label(s)	
Volatile analysis container(s) free of headspace	E
Tedlar bag(s) free of condensation	
CONTAINER TYPE:	
Solid: 4ozCGJ 8ozCGJ 16ozCGJ Sleeve EnCores® TerraCores®	
Water: □VOA □VOAh □VOAna2 □125AGB □125AGBh □125AGBpo4 □	AGB □1AGBna₂
□1AGBs □500AGB □500AGBs □250CGB □250CGBs □1PB □500PB □5	
□250PBn □125PB □125PBznna □100PBsterile □100PBna₂ □ □	
	abeled by:
	viewed by:

e se se contracta e la contracta de la della della

SOP T100_090 (11/06/08)

particular production of the state of the state

December 03, 2008

Matthew Lundberg Conestoga-Rovers & Associates 19449 Riverside Drive, Suite 230 Sonoma, CA 95476-6955

Subject: Calscience Work Order No.: 08-11-1829 Client Reference: 1784 150th Ave., San Leandro, CA

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 11/20/2008 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

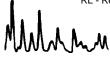
Sincerely,

Calscience Environmental Laboratories, Inc. Jessie Kim Project Manager

CA-ELAP ID: 1230 · NELAP ID: 03220CA · CSDLAC ID: 10109 · SCAQMD ID: 93LA0830 7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

Page 2 of 10

Page 1 of 2


Conestoga-Rovers & Associates 19449 Riverside Drive, Suite 230 Sonoma, CA 95476-6955

Date Received:	11/20/08
Work Order No:	08-11-1829
Preparation:	N/A
Method:	EPA TO-3M

Project: 1784 150th Ave., San Leandro, CA

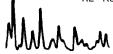
	.,	,						.90 . 0
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
EW-1 (11/18)		08-11-1829-1-A	11/18/08 14:40	Air	GC 13	N/A	11/20/08 15:03	081120L01
Parameter	Result	<u>RL</u>	DF	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	890	15	5		ppm (v/v))		
EW-2 (11/18)		08-11-1829-2-A	11/18/08 14:45	Air	GC 13	N/A	11/20/08 13:45	081120L01
Parameter	Result	<u>RL</u>	DF	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	370	3.0	1		ppm (v/v))		
INF-2 (11/18)		08-11-1829-3-A	11/18/08 14:50	Air	GC 13	N/A	11/20/08 14:43	081120L01
Parameter	Result	<u>RL</u>	DF	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	810	7.5	2.5		ppm (v/v))		
EW-1 (11/19)		08-11-1829-4-A	11/19/08 06:55	Air	GC 13	N/A	11/20/08 15:13	081120L01
Parameter	Result	<u>RL</u>	DF	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	890	15	5		ppm (v/v))		
EW-2 (11/19)		08-11-1829-5-A	11/19/08 07:00	Air	GC 13	N/A	11/20/08 14:14	081120L01
Parameter	<u>Result</u>	<u>RL</u>	DF	Qual	<u>Units</u>			
TPH as Gasoline	340	3.0	1		ppm (v/v))		
INF-2 (11/19)		08-11-1829-6-A	11/19/08 07:05	Air	GC 13	N/A	11/20/08 14:53	081120L01
Parameter	<u>Result</u>	RL	DF	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	770	7.5	2.5		ppm (v/v))		

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

Page	3	of	10
------	---	----	----

Page 2 of 2



Conestoga-Rovers & Associates 19449 Riverside Drive, Suite 230 Sonoma, CA 95476-6955

Date Received:	11/20/08
Work Order No:	08-11-1829
Preparation:	N/A
Method:	EPA TO-3M

Project: 1784 150th Ave., San Leandro, CA

-								<u> </u>
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank		098-01-005-1,577	N/A	Air	GC 13	N/A	11/20/08 08:37	081120L01
Parameter	Result	<u>RL</u>	DF	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	ND	3.0	1		ppm (v/v	/)		

alscience nvironmental aboratories, Inc.

Date Received:

Page 4 of 10

11/20/08

IN ACCORDA

Conestoga-Rovers & Associates 10/10 Riverside Drive Suite 230

	1000010100				Duiched					11/20/00
19449 Riverside Drive	, Suite 230				Work Ord	der No:			30	3-11-1829
Sonoma, CA 95476-69	55				Preparati	ion.				N/A
					•	011.			-	
					Method:					PA TO-15
					Units:					ppm (v/v)
Project: 1784 150th A	ve., San Le	andro,	CA						Pa	age 1 of 2
Client Sample Number				b Sample	Date/Time	Matrix	Instrument	Date Prepared	Date/Time	QC Batch ID
				Number	Collected			Troparec		
EW-1 (11/18)			08-11-1	1829-1-A	11/18/08 14:40	Air	GC/MS DD) N/A	11/21/08 14:42	081121L01
Parameter	<u>Result</u>	<u>RL</u>	DF	Qual	Parameter			<u>Result</u>	<u>RL</u>	<u>DF Qual</u>
Benzene	3.0	0.12	250		p/m-Xylene			6.1	0.50 2	250
Toluene	1.0	0.12	250		o-Xylene			0.81	0.12 2	250
Ethylbenzene	2.5	0.12	250		Methyl-t-Butyl	Ether (MTE	BE)	ND	0.50 2	250
Surrogates:	<u>REC (%)</u>	<u>Control</u>		<u>Qual</u>	Surrogates:			<u>REC (%)</u>	<u>Control</u>	<u>Qual</u>
		<u>Limits</u>							<u>Limits</u>	
1,4-Bromofluorobenzene	96	57-129			1,2-Dichloroeth	nane-d4		92	47-137	
Toluene-d8	95	78-156	00.44.4		44/40/00	A !	00/110 00	N1/A	11/21/08	004404104
EW-2 (11/18)			08-11-1	1829-2-A	11/18/08 14:45	Air	GC/MS DD) N/A	15:31	081121L01
Parameter	Result	<u>RL</u>	DF	Qual	Parameter			<u>Result</u>	<u>rl</u> [<u>DF Qual</u>
Benzene	1.1	0.050	100		p/m-Xylene			7.0	0.20 1	100
Toluene	1.1	0.050	100		o-Xylene			1.6	0.050	100
Ethylbenzene	2.5	0.050	100		Methyl-t-Butyl	Ether (MTE	BE)	0.21	0.20 1	100
Surrogates:	<u>REC (%)</u>	<u>Control</u>		<u>Qual</u>	Surrogates:			<u>REC (%)</u>	<u>Control</u>	<u>Qual</u>
		Limits							Limits	
1,4-Bromofluorobenzene Toluene-d8	96 99	57-129 78-156			1,2-Dichloroeth	nane-d4		86	47-137	
INF-2 (11/18)			08-11- 1	1829-3-A	11/18/08 14:50	Air	GC/MS DD) N/A	11/21/08 16:18	081121L01
Parameter	Result	<u>RL</u>	DF	Qual	Parameter			<u>Result</u>	<u>RL D</u>	<u>DF Qual</u>
Benzene	3.3	0.050	100		p/m-Xylene			5.4		400
Toluene	0.92	0.050	100		o-Xylene			1.8		100
Ethylbenzene	4.1	0.050	100		Methyl-t-Butyl	Ether (MTE	BE)	0.31		100
Surrogates:	<u>REC (%)</u>	Control		<u>Qual</u>	Surrogates:			<u>REC (%)</u>	<u>Control</u>	Qual
		<u>Limits</u>							Limits	
1,4-Bromofluorobenzene Toluene-d8	99 91	57-129 78-156			1,2-Dichloroeth	nane-d4		84	47-137	
EW-1 (11/19)			08-11- 1	829-4-A	11/19/08 06:55	Air	GC/MS DD) N/A	11/21/08 17:54	081121L01
Parameter	Result	<u>RL</u>	DF	Qual	Parameter			Result	<u>RL</u>	DF Qual
Benzene	3.7	0.12	250	<u>scuul</u>	p/m-Xylene			8.0		250
Toluene	3.7 1.2	0.12	250 250		o-Xylene			8.0 1.1		250 250
Ethylbenzene	3.2	0.12	250 250		Methyl-t-Butyl	Ether (MTF	SE)	ND		250 250
Surrogates:	<u>REC (%)</u>	Control	200	Qual	Surrogates:		/	<u>REC (%)</u>	Control	Qual
<u></u>	1120 (70)	Limits		<u>Quu</u>	<u>canogatos.</u>			<u></u>	Limits	Gua
1,4-Bromofluorobenzene	94	57-129			1,2-Dichloroeth	nane-d4		80	47-137	
Toluene-d8	97	78-156								

RL - Reporting Limit ,

DF - Dilution Factor

Qual - Qualifiers ,

nM

7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

alscience nvironmental aboratories, Inc.

IN ACCORD

Conestoga-Rovers & Ass 19449 Riverside Drive, S Sonoma, CA 95476-6955 Project: 1784 150th Ave	uite 230 5	andro,		b Sample	Date Rec Work Orc Preparati Method: Units: Date/Time	der No:		Date	EF	11/20/08 -11-1829 N/A PA TO-15 ppm (v/v) age 2 of 2
Client Sample Number				Number	Collected	Matrix	Instrument	Preparec		QC Batch ID
EW-2 (11/19)			08-11- 1	1829-5-A	11/19/08 07:00	Air	GC/MS DD	N/A	11/21/08 18:43	081121L01
Parameter Benzene Toluene Ethylbenzene <u>Surrogates:</u> 1,4-Bromofluorobenzene Toluene-d8	Result 1.2 1.2 2.6 REC (%) 96 98	RL 0.050 0.050 0.050 <u>Control</u> Limits 57-129 78-156	<u>DF</u> 100 100 100	<u>Qual</u> <u>Qual</u>	Parameter p/m-Xylene o-Xylene Methyl-t-Butyl Surrogates: 1,2-Dichloroeth	·	,	Result 7.6 1.8 0.21 REC (%) 83	0.050 1	<u>F Qual</u> 00 00 00 <u>Qual</u>
INF-2 (11/19)			08-11- 1	1829-6-A	11/19/08 07:05	Air	GC/MS DD	N/A	11/21/08 19:30	081121L01
Parameter Benzene Toluene Ethylbenzene <u>Surrogates:</u> 1,4-Bromofluorobenzene Toluene-d8	<u>Result</u> 2.7 1.1 2.5 <u>REC (%)</u> 91 97	<u>RL</u> 0.10 0.10 <u>Control</u> <u>Limits</u> 57-129 78-156	<u>DF</u> 200 200 200	<u>Qual</u> <u>Qual</u>	Parameter p/m-Xylene o-Xylene Methyl-t-Butyl Surrogates: 1,2-Dichloroeth	,	,	<u>Result</u> 6.5 1.1 ND <u>REC (%)</u> 84	0.40 2 0.10 2	<u>F Qual</u> 00 00 00 <u>Qual</u>
Method Blank			097-09	-002-7,901	N/A	A.'		N/A	11/21/08	081121L01
			001-00			Air	GC/MS DD	IN/A	13:20	001121201

RL - Reporting Limit , DF - Dilution Factor Qual - Qualifiers ,

hM

7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

Page 6 of 10

11/20/08

N/A

Conestoga-Rovers & Associates 19449 Riverside Drive, Suite 230 Sonoma, CA 95476-6955

Date Received: Work Order No: 08-11-1829 Preparation: Method: EPA TO-3M

Project: 1784 150th Ave., San Leandro, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared:	Date Analyzed:	Duplicate Batch Number
08-11-1783-6	Air	GC 13	N/A	11/20/08	081120D01
Parameter	Sample Conc	DUP Conc	<u>RPD</u>	<u>RPD CL</u>	<u>Qualifiers</u>
TPH as Gasoline	33000	32000	4	0-20	

RPD - Relative Percent Difference, CL - Control Limit

7440 Lincoln Way, Garden Grove, CA 92841-1427 . TEL:(714) 895-5494 · FAX: (714) 894-7501

A DEPOIN ACCORDANCE

Conestoga-Rovers & Associates	Date Received:	N/A
19449 Riverside Drive, Suite 230	Work Order No:	08-11-1829
Sonoma, CA 95476-6955	Preparation:	N/A
	Method:	EPA TO-15

Project: 1784 150th Ave., San Leandro, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Bato Number	:h
097-09-002-7,901	Air	GC/MS DD	N/A	11/21/08	081121L01	
Parameter	LCS %	REC LCSD S	<u>%REC %F</u>	REC CL RPD	RPD CL	Qualifiers
Benzene	99	107	6	60-156 8	0-40	
Toluene	98	109	Ę	56-146 10	0-43	
Ethylbenzene	92	102	Ę	52-154 10	0-38	
p/m-Xylene	89	98	2	42-156 9	0-41	
o-Xylene	87	96	Ę	52-148 10	0-38	

RPD - Relative Percent Difference, CL - Control Limit

MM

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 • FAX: (714) 894-7501

MM

Work Order Number: 08-11-1829

<u>Qualifier</u>	Definition
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
А	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
Е	Concentration exceeds the calibration range.
Н	Sample received and/or analyzed past the recommended holding time.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ME	LCS Recovery Percentage is within LCS ME Control Limit range.
Ν	Nontarget Analyte.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
U	Undetected at the laboratory method detection limit.
Х	% Recovery and/or RPD out-of-range.

Z Analyte presence was not confirmed by second column or GC/MS analysis.

Image: Service 1 Image: Service 1 <td< th=""><th>CHECK IF NO INCIDENT # #</th><th>ES)</th><th>RVICE</th><th>SER</th><th>(ENV</th><th>NT #</th><th>CIDÉ</th><th>IN</th><th></th><th></th><th></th><th></th><th>me:</th><th>t Na</th><th>ontac</th><th>o Co</th><th>Bill T</th><th>rint </th><th> I</th><th colspan="8">Please Check Appropriate Box:</th><th colspan="7"></th></td<>	CHECK IF NO INCIDENT # #	ES)	RVICE	SER	(ENV	NT #	CIDÉ	IN					me:	t Na	ontac	o Co	Bill T	rint	I	Please Check Appropriate Box:														
IT IS MARCO (Image: Control (Control	CHECK IF NO INCIDENT # A	3 8			· · ·			71							TAIL						I ENV. SERVICES													
Options Options <t< td=""><td></td><td colspan="4"></td><td colspan="7"></td><td>f</td><td colspan="5"></td><td colspan="5"></td><td></td></t<>													f																					
Construction CRAW The above and the construction of the construline construction of the c	PAGE: 1 of 1												╶┐ [╴] ┝						PIPELINE	SHEL	s													
Content Oracle Point, Salle 230, Sonoma, California 5475 Production Control Salle 230, Sonona, California 5475 Production Cont				D NO.:	GLOBALI	-+		State			L				 and City	Street a	RESS: S	E ADI	-+				ODE:	LOG C				1				<i>t</i> :	COMP/	SAMPLING
14449 Revise Drive, Suite 230, Socona, California 5476 Interface Criter, Suite 230, Socona, California 5476 Interface Criter, CRA, Emryolia Inter			230)1012				СА				го	and	n Le	e, Sa	Áve	50th	'84 [·]																
Metthew Lundlerg Data Landlerg Data Landlerg <th< td=""><td>CONSULTANT PROJECT</td><td></td><td></td><td></td><td>E-MAIL:</td><td>E</td><td></td><td></td><td>NO.:</td><td>PHONE 1</td><td></td><td></td><td>.ocation):</td><td>, Office I</td><td>Company</td><td>) (Name,</td><td>RABLE TC</td><td>DELIVE</td><td>E</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>6</td><td>95476</td><td>oma, Californi</td><td></td><td></td><td></td><td>Rive</td><td>19449</td></th<>	CONSULTANT PROJECT				E-MAIL:	E			NO.:	PHONE 1			.ocation):	, Office I	Company) (Name,	RABLE TC	DELIVE	E								6	95476	oma, Californi				Rive	19449
Планине Гланине <	240612-2008-13		world.c	f@crav	shelled	1		43	20-33	510-4		-				Print):	NAME/S) /		- r			<u> </u>				dhero		atthow	N	sort to):	F Report t	(Hardcopy or PDF	CONT/	PROJECT
UDERAGOND THE CALEMOND VALUES REQUESTED ANALYSIS REQUESTED ANALYSIS REQUESTED ANALYSIS Comparison of the product room of a post-and end of the product room of the product room of a post-and end of the product room of the product roo	-	LABU									./	C 4		1		o K	1.	M								-				FAX:				TELEPH
Bit MALLY SIX Davis Davis <thdavis< th=""> Davis <thdavis< th=""></thdavis<></thdavis<>	11-182						• ··				~	30,	n N	101			(A V	//			_		(@cray	Idberg	mlu				510.420.9170	DAR DAYS):	ENDA			TURN
SPECIAL INSTRUCTIONS OR NOTES: Image: special contract rank expression of the sp				I.	LYSIS	ANAI	STED	QUES	RE															JURS	🗋 24 HC	2 DAYS			🗌 3 DAYS					
SPECIAL INSTRUCTIONS OR NOTES :	TEMPERATURE ON F			T																									UST AGENCY:		ORMAT	B REPORT FO	- RW(
$ \frac{1}{2} \underbrace{E}_{W-1} \\ \frac{1}{2} \underbrace{E}_{W-2} \\ \frac{1}{3} \underbrace{I_{V}}_{Z} \\ $	C°														.		·	ŝ											ES :	NS OR NOT	IONS	NSTRUCTI		SPE
1 E.W1 II-18 III-18 IIII-18 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII						46)												015		IES	e appl	IENT RAT				m	orld.co	craworl		craworld.com	@cra	to tjackson(eport	CC I
$ \frac{1}{2} \underbrace{E}_{W-1} \\ \frac{1}{2} \underbrace{E}_{W-2} \\ \frac{1}{3} \underbrace{I_{V}}_{Z} \\ $						D19	6									260E	•	. 8 8											_					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Note-Only process the duplicate bag if the first					MT	015N	(B)	_	(B)	_ ش	ا ھ	-		2)	8) 8)	2	tabl)	JESTEC	ION REQU	(IFICAT!	.PT Vef	🗹 RÉCE									
$ \frac{1}{2} \underbrace{EW-1}_{N} \underbrace{ 1,18}_{V,14} \underbrace{ 44}_{VA} \\ 2 \underbrace{EW-2}_{N} \underbrace{ 1,18}_{V,14} \underbrace{ 44}_{VA} \\ 1 \underbrace{ 1,18}_{V,14} \underbrace{ 44}_{VA} \\ 2 \underbrace{ 1,18}_{V} \underbrace{ 1,18}_{VA} \\ 2 \underbrace{ 1,18}_{V} \underbrace{ 1,18}_{VA} \\ 2 \underbrace{ 1,18}_{V} \underbrace{ 1,18}_{VA} \\ 2 \underbrace{ 1,18}_{V} \underbrace{ 1,18}_{V} \underbrace{ 1,18}_{VA} \\ 2 \underbrace{ 1,18}_{V} \underbrace{ 1,18}_{V} \underbrace{ 1,18}_{VA} \\ 2 \underbrace{ 1,18}_{V} 1,$	arrives deflated.					SA)	0 (8	(826	608	(82(260	3260	2608	60B	5	nate	0-1-0	xtrac			IVE	ESERVAT	PF		•••	ING	AMPI	SA			-		<u> </u>	
$ \frac{1}{2} \underbrace{EW-1}_{N} \underbrace{ 1,18}_{V,14} \underbrace{ 44}_{VA} \\ 2 \underbrace{EW-2}_{N} \underbrace{ 1,18}_{V,14} \underbrace{ 44}_{VA} \\ 1 \underbrace{ 1,18}_{V,14} \underbrace{ 44}_{VA} \\ 2 \underbrace{ 1,18}_{V} \underbrace{ 1,18}_{VA} \\ 2 \underbrace{ 1,18}_{V} \underbrace{ 1,18}_{VA} \\ 2 \underbrace{ 1,18}_{V} \underbrace{ 1,18}_{VA} \\ 2 \underbrace{ 1,18}_{V} \underbrace{ 1,18}_{V} \underbrace{ 1,18}_{VA} \\ 2 \underbrace{ 1,18}_{V} \underbrace{ 1,18}_{V} \underbrace{ 1,18}_{VA} \\ 2 \underbrace{ 1,18}_{V} 1,$	Container PID Rea or Laboratory No					Methane	Methanc	Ethanol	EDB (82	1,2 DCA	ETBE (8	TAME (DIPE (8:	TBA (82	MTBE (5 Oxyge	втех (1	TPH - E	O, OF ONT.	. (NONE	H2SO4	ноз	HCL	MATRIX	TIME			ication	ple Identi	mpi	Field Sa		USE
$ \frac{2}{3} \frac{5W-2}{2} \frac{11-18}{1/19} \frac{1/4}{1/25} \frac{1}{\sqrt{2}} \frac{1}{$	Tedlar Bag	+-+-						\rightarrow				-				İ		1	2				\square		VA	4:40	8	11-18	· · · · ·			W-1	l	١
$\frac{4}{5} \frac{EW-1}{1} \frac{11.19}{07:05} \frac{11.19}{07:07} \frac{11.19}{$	Tedlar Bag	+++	+			\neg				\neg					×		×	+										11-)				w.2	E	2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1		+		+	-+				-+						† -			<u> -</u>			<u>+</u>		\mathbf{T}						-	2	NF +2	T	
$\frac{5}{6} \frac{EW-2}{1 \times F-2} \qquad \begin{array}{c c c c c c c c c c c c c c c c c c c $		++	+					-+				_			<u> </u>	\vdash						 	┢──┨	+	-							W-1	-	
6 INF-2 11-19 07: NA X Z & X K I I I I I I I I I I I I I I I I I I		+-+	+							-+		+			!		_	+				 	\vdash	<u>+</u> '				11619				•		-
Reinquished by (Signature) Received by (Signature) Rec		<u> </u>	+	_											+				-				├	\vdash					• ··					
Relinquished by (Signature) Received by (S															17		8	•	2		*				VA	17:05	17 6	11-19			<u> </u>	Nr-2	1	6
Received by (Signature) 1730 Received by (Signature) Date: Time: 1/20/08 1//20/08																																		
Relinquished by: (Signature) 1730 Received by: (Signature) Date: Time: 100 Concentration of the second by: (Signature) Received by: (Signature) Received by: (Signature) Date: Time: 100 Relinquished by: (Signature) Received by: (Signatu																					Τ													
Relinquished by (Signature) Received by (S		+ +	+	+		-+-				+		-			$\left \right $			+	+		-+	-+	<u> </u>	┢╌┉┥	-		+							
Received by (Signature) 1730 Received by (Signature) Date: Time: 1/20/08 1//20/08												$ \downarrow$				L	1	_		\square										<u></u>				
Relinquished by (Signature) Received by (S				ļ		Į																1								Λ				
Relinquished by (Signature) Received by (S			{			Date:				I		1			L	·		.1				L		unature) ≁	eceived by: (Si	1			3.4	Janna .	L	Signature)	hed by	Relinquis
Relinquished by (Signature) Received by (S	0928		8	10	1,91	11											-	2	Cl	II A		20	1p	C	Ton				Y.C.	TVVVVVV	<u>7</u> 01	k /	V [l	V
Ton-Omalley TO 650 11/19/08 Received by (Signature) Received by (Signature) Received by (Signature) Date: Time:	ime:		<u> </u>	~	- 17	Date:		1												7	$\overline{\mathcal{V}}$	1 Cer		jnature)	eceived by: (Si	F	0	730		,	11			
Relinquished by: (Signature) Date: Time:	1000	-	OF	1	120	İ1		6	- 4]	1/	ΔI	1								1	0					<u>م</u>			•	WTX.	la	Noli	./.	on.
E10770070	ime:	<u></u> π	/ 8	10	120	Date:	\rightarrow	V	N	/	¥ j	\neq						<u> </u>						jnature)	eceived by: (Si			<u>· 4</u>		1	1	ignature)	hed by:	Relinquis
$\neg_1 \wedge r + \langle r \rangle + \langle r \rangle$											//	1																-	7700	510	1			
	05/2/06 Revision		<u> </u>																	<u></u>						ł	2	<u>. 7</u>					-	

~

Page 10 of 10 WORK ORDER #: 08-11
$\begin{array}{c} & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & &$
CLIENT:CRA DATE: 11 / 20/08
TEMPERATURE: (Criteria: 0.0 °C - 6.0 °C, not frozen) Temperature °C - 0.2 °C (CF) = °C □ Blank □ Sample □ Sample(s) outside temperature criteria (PM/APM contacted by:). □ Sample(s) outside temperature criteria but received on ice/chilled on same day of sampling.
Received at ambient temperature, placed on ice for transport by Courier. Ambient Temperature: Air Filter Metals Only PCBs Only Initial: 1
CUSTODY SEALS INTACT: Cooler Imitial: Sample Imitial: No (Not Intact) Imitial: No (Not Intact) Imitial:
SAMPLE CONDITION:YesNoN/AChain-Of-Custody document(s) received with samples.IIISampler's name indicated on COC.IIISample container label(s) consistent with COC.IIISample container(s) intact and good condition.IIICorrect containers and volume for analyses requested.IIIAnalyses received within holding time.IIIProper preservation noted on sample label(s).IIIVolatile analysis container(s) free of headspace.IIITedlar bag(s) free of condensation.III
CONTAINER TYPE: Solid: 4ozCGJ 8ozCGJ 16ozCGJ Sleeve EnCores® TerraCores®

n all han besternessadane to solve the difference of the solve of th

SOP T100_090 (11/06/08)

APPENDIX E

AQUIFER ANALYSIS

ĺ

Pumping Test Analysis Report Conestoga-Rovers & Associates, Inc. Project: 1784 150th St, San Leandro, CA 5900 Hollis Street, Suite A Emeryville, California No: 240612 Phone 510-420-0700 Shell OPUS Client: STEP TEST EW-2 (Theis Steptest) 1/u 1E-1 1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+2

P-3A P-3B P-4A 1E+1 P-4B THEIS 1E+1 1E+0 , e zad **`**-' 1E+0-s/Q [min/ft²] W(u) -1E-1 В 1E-1 -1E-2 1E-2 1E-3 1E-3 1Ė-3 1Ė-2 1Ė-1 1E+0 1E+1 1E+2 1E+3 1E+4 t(adj)/r² [min/ft²] Test name: **STEP TEST EW-2** Analysis method: **Theis Steptest** Analysis results: Conductivity: 3.39E-4 [ft/s] Transmissivity: 4.82E-3 [ft²/s] Storativity: 2.90E-3 Test parameters: Pumping well: EW-2 Aquifer thickness: 14.19 [ft]

Comments:

Screen radius:

Screen length:

Casing radius:

Discharge rate:

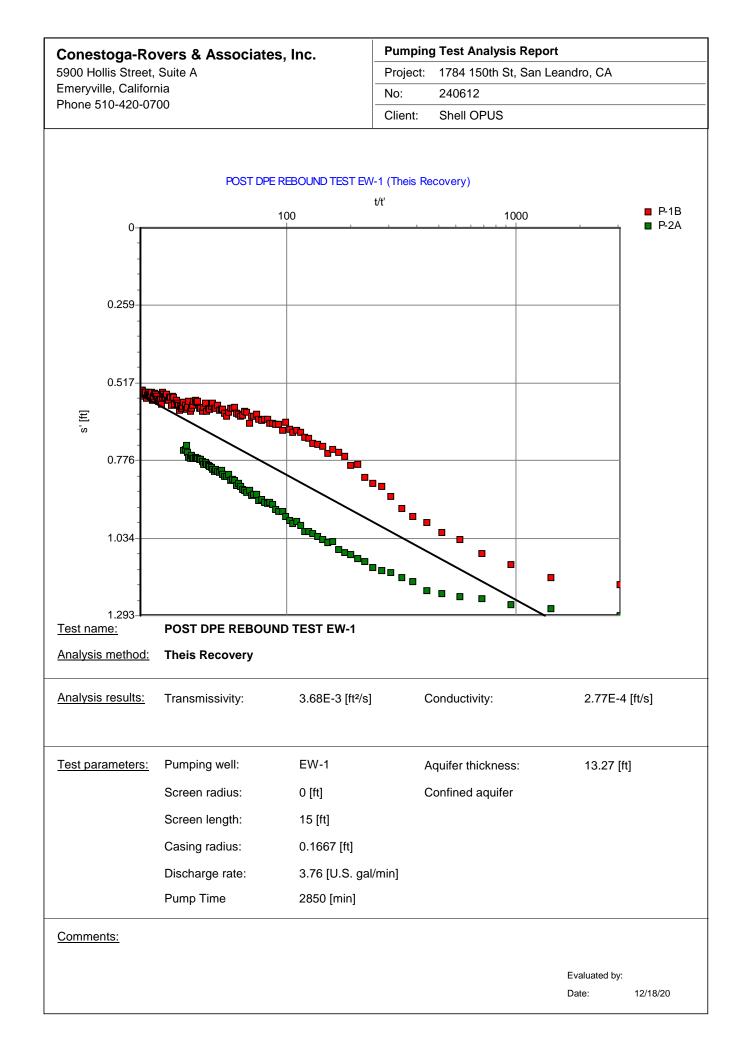
0 [ft]

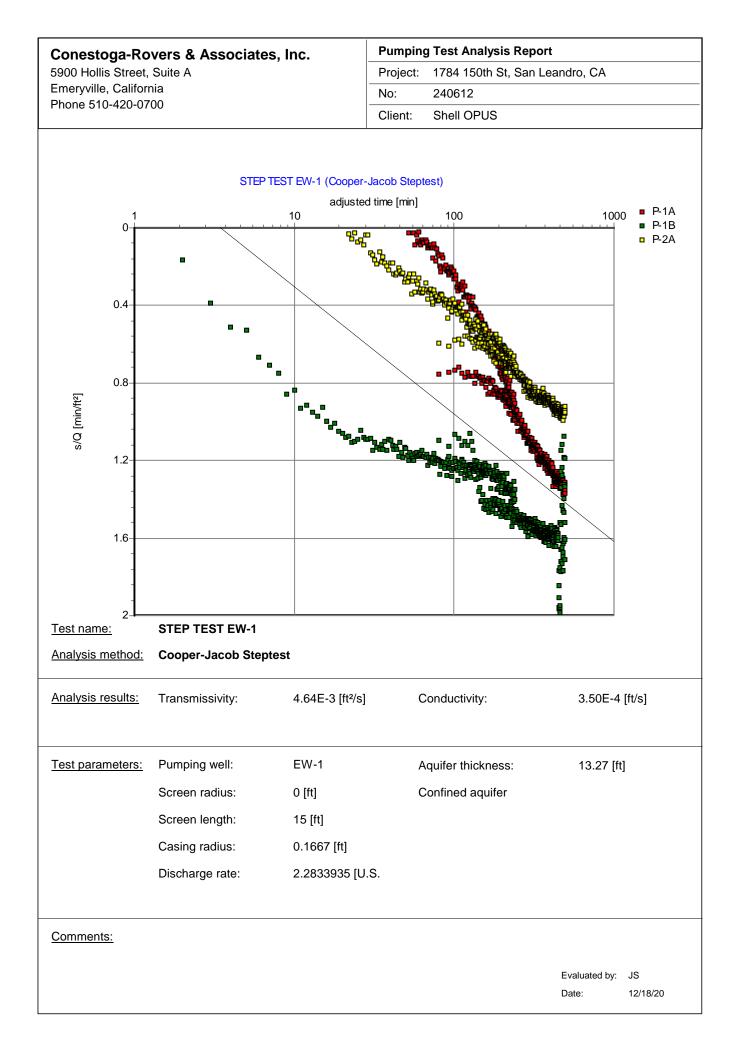
15 [ft]

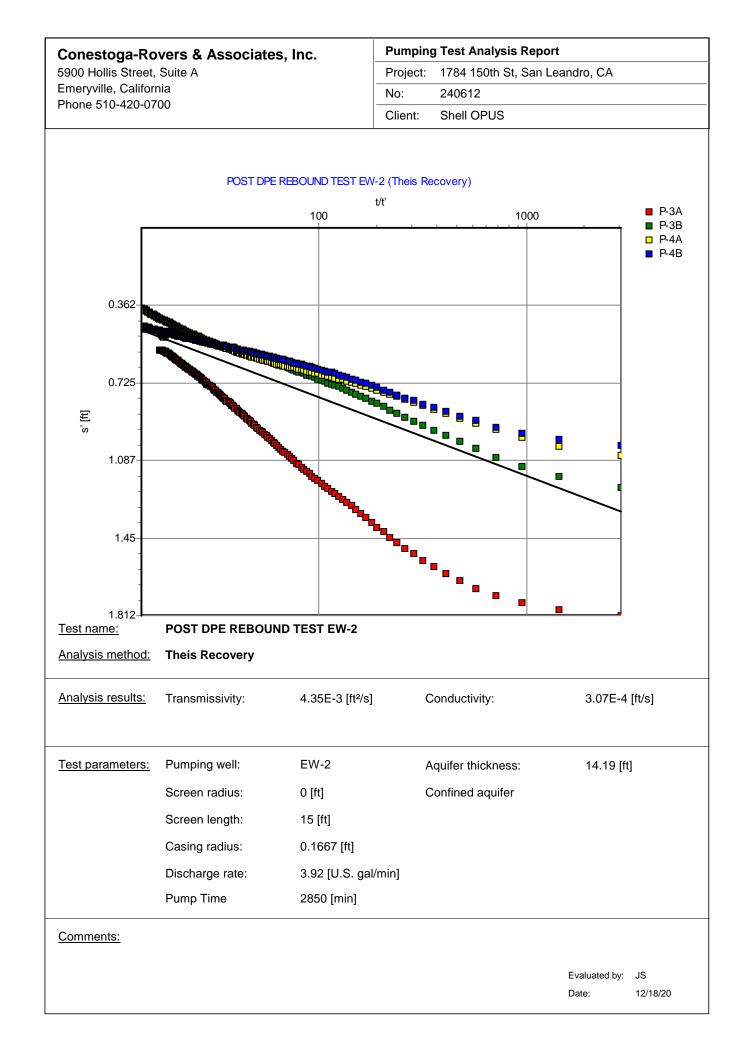
0.1667 [ft]

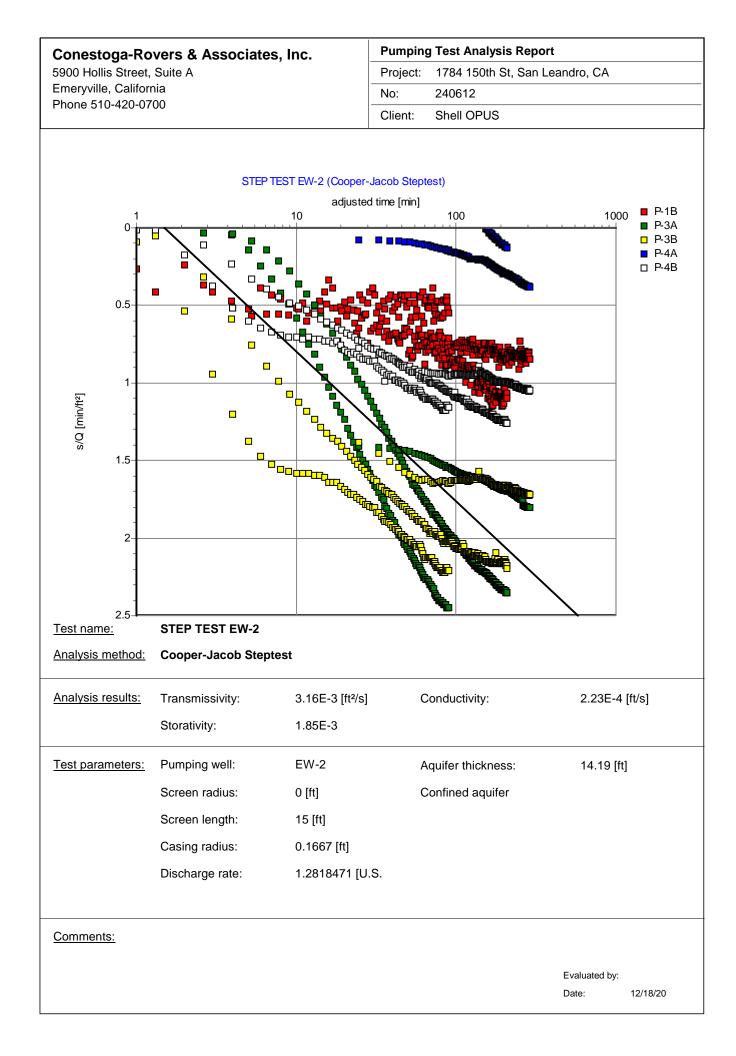
1.2818471 [U.S.

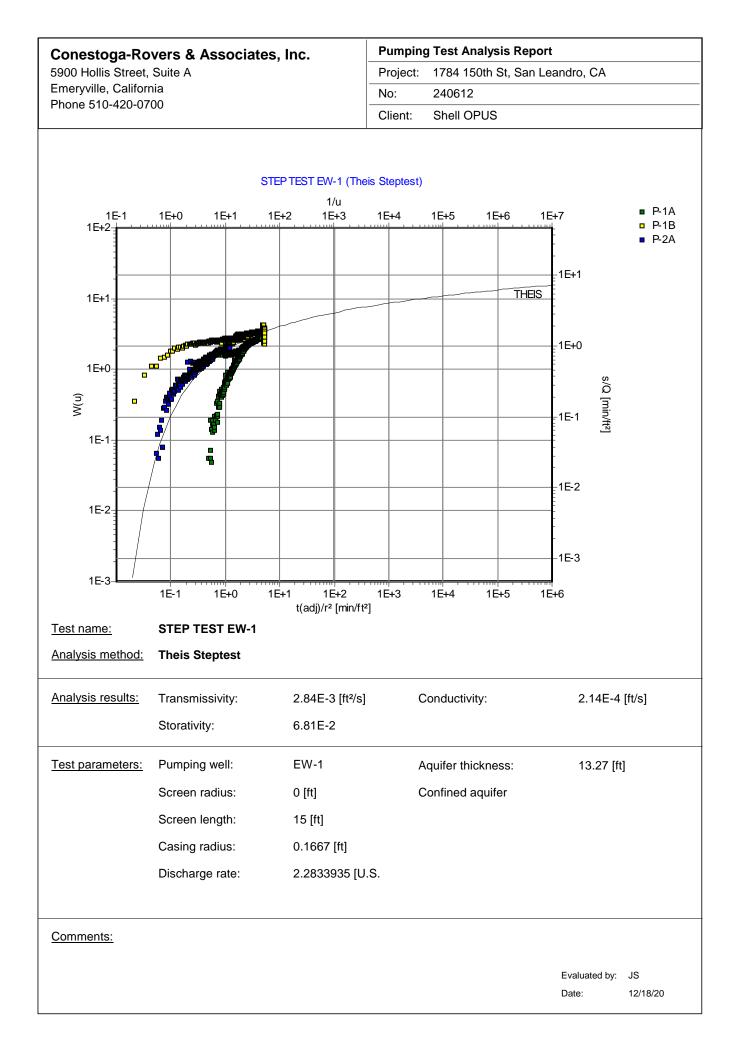
Evaluated by:

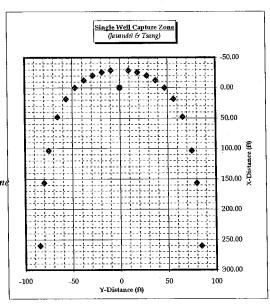

Date: 12/18/20


P-1B


1E+6


Confined aquifer


1E+7

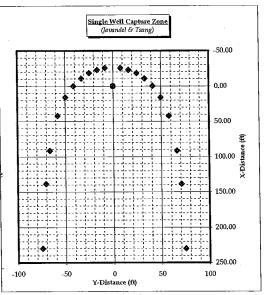


EW-1 Aquifer Pump Test

Javendal & Tsang, Ground Water, Vol.24, No.5, p.616-625, 1986 <u>Capture zone from a single GW extraction wel</u>l

Q =	2.16 gpm	Enter values in gray boxes. Others are calculated
Kh =	32.3136 ft/day	
Gradient (I) =	0.005 ft/ft	
Aq.Thkness (B):	13.7 feet	
u=Kh*I=	1.12E-04 ft/min	
Bu=	1.54E-03 sq.ft/mir	1
Q/Bu =	188 feet	Max upgradient width of capture zone
Q/2Bu=	94 feet	Capture zone width perpendicular to pumping well
Q/(2*pi*Bu)=	30 feet	Distance to downgradient Stagnation Point
0.32Q/Bu=	60 feet	Optimal Distance between two wells on a line
0.4Q/Bu=	75 feet	Optimal Distance between three or more wells on a lin

NOTE: Model assumes infinte and continuous extraction

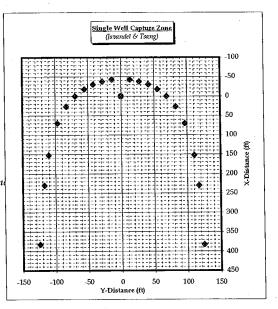


EW-2 Aquifer Pump Test

Javendal & Tsang, Ground Water, Vol.24, No.5, p.616-625, 1986 Capture zone from a single GW extraction well

Q = Kh =	2.11 gpm 34.4736 ft/day	Enter values in gray boxes. Others are calculated
Gradient (I) =	0:005 ft/ft	
Aq.Thkness (B):	14.19 feet	
u=Kh*I=	1.20E-04 ft/min	
Bu=	1.70E-03 sq.ft/min	
Q/Bu =	166 feet	Max upgradient width of capture zone
Q/2Bu=	83 feet	Capture zone width perpendicular to pumping well
Q/(2*pi*Bu)=	26 feet	Distance to downgradient Stagnation Point
0.32Q/Bu=	53 feet	Optimal Distance between two wells on a line
0.4Q/Bu=	66 feet	Optimal Distance between three or more wells on a line

NOTE: Model assumes infinte and continuous extraction

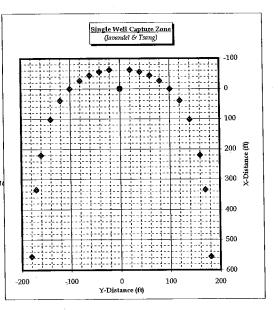


EW-1 Dual-phase Extraction Test

Javendal & Tsang, Ground Water, Vol.24, No.5, p.616-625, 1986 <u>Capture zone from a single GW extraction wel</u>l

Q = Kh = Gradient (I) =	3.49 gpm 35.5104 ft/day 0.005 ft/ft	Enter values in gray boxes. Others are calculated
Aq.Thkness (B):	13.7 feet	
u=Kh*I=	1.23E-04 ft/min	
Bu=	1.69E-03 sq.ft/min	
Q/Bu =	276 feet	Max upgradient width of capture zone
Q/2Bu=	138 feet	Capture zone width perpendicular to pumping well
Q/(2*pi*Bu)=	44 feet	Distance to downgradient Stagnation Point
0.32Q/Bu=	88 feet	Optimal Distance between two wells on a line
0.4Q/Bu=	110 feet	Optimal Distance between three or more wells on a lin

NOTE: Model assumes infinte and continuous extraction



EW-2 Dual-phase Extraction Test

Javendal & Tsang, Ground Water, Vol.24, No.5, p.616-625, 1986 <u>Capture zone from a single GW extraction well</u>

Q =	5.25 gpm	Enter values in gray boxes. Others are calculated
Kh =	35.5104 ft/day	
Gradient (I) =	0.005 ft/ft	
Aq.Thkness (B):	14.19 feet	
u=Kh*I=	1.23E-04 ft/min	·
Bu=	1.75E-03 sq.ft/min	
Q/Bu =	401 feet	Max upgradient width of capture zone
Q/2Bu=	201 feet	Capture zone width perpendicular to pumping well
Q/(2*pi*Bu)=	64 feet	Distance to downgradient Stagnation Point
0.32Q/Bu=		Optimal Distance between two wells on a line
0.4Q/Bu=	160 feet	Optimal Distance between three or more wells on a line
		·

NOTE: Model assumes infinte and continuous extraction

