

RECEIVED By lopprojectop at 9:55 am, Feb 01, 2006

Denis L. Brown

January 31, 2006

Shell Oil Products US HSE – Environmental Services

Tel (707) 865 0251

Fax (707) 865 2542

20945 S. Wilmington Ave. Carson, CA 90810-1039

Email denis.1.brown@shell.com

Jerry Wickham Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Re: Fourth Quarter 2005 Monitoring Report Shell-branded Service Station 1784 150th Avenue San Leandro, California SAP Code 136019 Incident #98996068

Dear Mr. Wickham:

Attached for your review and comment is a copy of the *Fourth Quarter 2005 Monitoring Report* for the above referenced site. Upon information and belief, I declare, under penalty of perjury, that the information contained in the attached document is true and correct.

If you have any questions or concerns, please call me at (707) 865-0251.

Sincerely,

Denis L. Brown Sr. Environmental Engineer

CAMBRIA

January 31, 2006

Jerry Wickham Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Re: Fourth Quarter 2005 Monitoring Report

Shell-branded Service Station 1784 150th Avenue San Leandro, California Incident #98996068 Cambria Project #248-0612-002 Fuel Leak Case No. RO0000367

Dear Mr. Wickham:

On behalf of Equilon Enterprises LLC dba Shell Oil Products US (Shell), Cambria Environmental Technology, Inc. (Cambria) is submitting this groundwater monitoring report in accordance with the reporting requirements of 23 CCR 2652d.

REMEDIATION SUMMARY

Mobile Groundwater Extraction (GWE): In July 2002, Onyx Industrial Services (Onyx) of Benicia, California began conducting semi-monthly GWE using monitoring well MW-2 for three events and continued on a monthly basis until March 2004. In March 2004, Onyx commenced monthly GWE using well MW-2 once per month and well MW-11 once per month, so that GWE was conducted twice per month at the site. However, due to an error during March 2004, Onyx conducted GWE twice from well MW-2 and once from MW-11. Beginning in May 2004, the GWE frequency was increased to weekly from both MW-2 and MW-11. Mobile GWE ceased following startup of a temporary GWE system. Table 1 presents mobile GWE mass removal data.

Temporary GWE System Installation: On September 13, 2004, Shell completed installation and began operation of a temporary GWE system. The temporary GWE system was installed as an interim remedial measure to address the elevated petroleum hydrocarbon and methyl-tertiary butyl ether (MTBE) concentrations in groundwater near the west corner of the site. Groundwater was extracted from monitoring well MW-2 using a pneumatic submersible pump. Extracted

Cambria Environmental Technology, Inc.

5900 Hollis Street Suite A Emeryville, CA 94608 Tel (510) 420-0700 Fax (510) 420-9170

CAMBRIA

groundwater was pumped from the well into a 6,500-gallon storage tank located in the south corner of the site. The extracted water was periodically transported to Shell's Martinez Refinery located in Martinez, California for reclamation.

On November 11, 2004, Shell shut down the temporary GWE system to conduct an interim remediation test using dual-phase extraction (DPE).

Dual-Phase Extraction (DPE): Because hydrocarbon concentrations in groundwater near the west corner of the site remained elevated, Cambia conducted four days of interim remediation testing using DPE on wells MW-11 and MW-2 between November 8 and 13, 2004. DPE involves applying a vacuum to a well to dewater the formation to a target elevation and extract hydrocarbon-bearing vapors from the dewatered zone. A dedicated extraction "stinger" installed through an airtight well seal allows DPE at target elevations. Cambria's June 23, 2005 Interim Remediation Report presents a description of the field activities, tabulated field data, calculations of the contaminant mass removed through DPE, and a summary of the results and findings of this interim remedial action.

Temporary GWE System: Upon completing the interim remedial action, Shell intended to immediately resume operating the temporary GWE system. However, the restart was delayed because the site's parking lot was being repaved. On January 10, 2005, the temporary GWE system was reactivated at well MW-11. Well MW-11 was chosen due to the higher TPHg and MTBE concentrations detected in this well during the most recent sampling events. Approximately 24.8 pounds of TPHg, approximately 1.9 pounds of benzene, and approximately 4.2 pounds of MTBE were removed from the subsurface by DPE and the temporary GWE system. Table 2 presents historical temporary GWE data. Due to concern over possible damage during site upgrade activities, the temporary GWE system was shut down on March 14, 2005. The system was removed from the site on June 6, 2005 pending a determination of future remediation activities at the site.

FOURTH QUARTER 2005 ACTIVITIES

Groundwater Monitoring: Blaine Tech Services, Inc. (Blaine) of San Jose gauged and sampled selected wells, calculated groundwater elevations, and compiled the analytical data. Monitoring wells MW-3 and MW-4 are not sampled during the fourth quarter; a measurable quantity of separate-phase hydrocarbons (SPH) was detected in monitoring well MW-1, so no groundwater sample was collected from this well. Cambria prepared a vicinity map which includes previously

submitted well survey information (Figure 1) and a groundwater elevation contour map (Figure 2). Blaine's report, presenting the laboratory report and supporting field documents, is included as Attachment A.

Additional Oxygenate Analysis: At Shell's request, in addition to MTBE, groundwater samples from on-site wells MW-2, MW-10, and MW-11 were analyzed for tertiary amyl methyl ether (TAME), tertiary butyl alcohol (TBA), and 1,2-dichloroethane (1,2-DCA). Analytical results showed MTBE concentrations of 450 parts per billion (ppb) in well MW-2 and 7,400 ppb in well MW-11. TBA was detected above the laboratory detection limit in wells MW-2 and MW-11 only, at concentrations of 520 ppb and 4,400 ppb, respectively. Neither TAME nor 1,2-DCA were detected in any of the groundwater samples.

Mobile GWE: In a July 21, 2005 letter, the Alameda County Health Care Services Agency (ACHCSA) requested that interim remediation using GWE be reinitiated at the site. In September 2005, Onyx began conducting monthly GWE using monitoring well MW-11. As of January 18, 2006, mobile GWE has removed approximately 19.9 pounds of total petroleum hydrocarbons as gasoline (TPHg), approximately 3.5 pounds of benzene, and approximately 5.1 pounds of MTBE from the subsurface. Table 1 presents mobile GWE mass removal data.

Subsurface Investigation Work Plan: On January 9, 2006, Cambria submitted a work plan to ACHCSA proposing the advancement of six on-site borings to investigate the vertical and lateral extent of petroleum hydrocarbons in soil beneath the site. The work plan also proposes to advance one off-site boring adjacent to well MW-9 to investigate the dissimilar groundwater sampling results observed at MW-9 compared to those observed at nearby boring SB-14. Shell will initiate the investigation upon receiving written work plan approval.

ANTICIPATED FIRST QUARTER 2006 ACTIVITIES

Groundwater Monitoring: Blaine will gauge all wells, sample selected wells, and tabulate the data. Due to the observation of SPH during the fourth quarter sampling event, Blaine will also monitor well MW-1 for SPH during the first quarter sampling event. Cambria will prepare a monitoring report.

GWE: Mobile GWE will continue using well MW-11.

Subsurface Investigation: As discussed above, Shell will proceed with the proposed investigation upon receiving approval from ACHCSA.

CAMBRIA

Jerry Wickham January 31, 2006

CLOSING

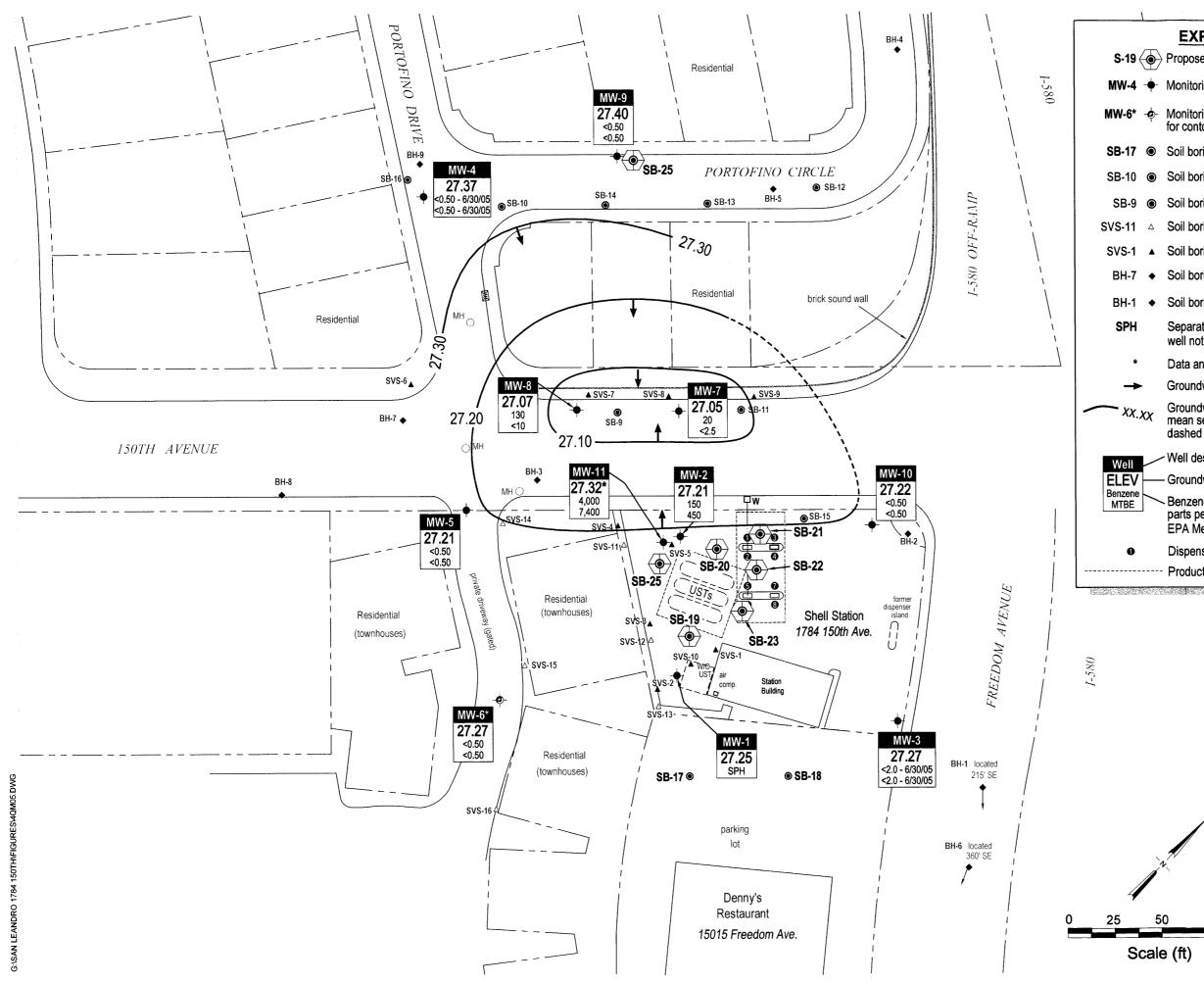
We appreciate the opportunity to work with you on this project. Please call David Gibbs at (510) 420-3363 if you have any questions or comments.

Sincerely,

David M. Gibbs, P.G. Project Geologist

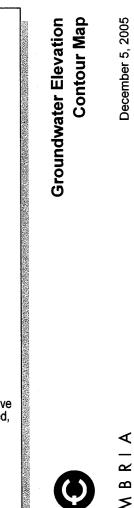
ubrey K Cool

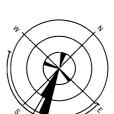
Aubrey K. Cool, P.G. Senior Project Geologist



- Figures:1 Vicinity/Sensitive Receptor Survey Map2 Groundwater Elevation Contour Map
- Tables:1 Groundwater Extraction Mass Removal Data2 Temporary Groundwater Extraction System Mass Removal Data

Attachment: A - Blaine Groundwater Monitoring Report and Field Notes


cc: Denis Brown, Shell Oil Products US, 20945 S. Wilmington Ave., Carson, CA 90810

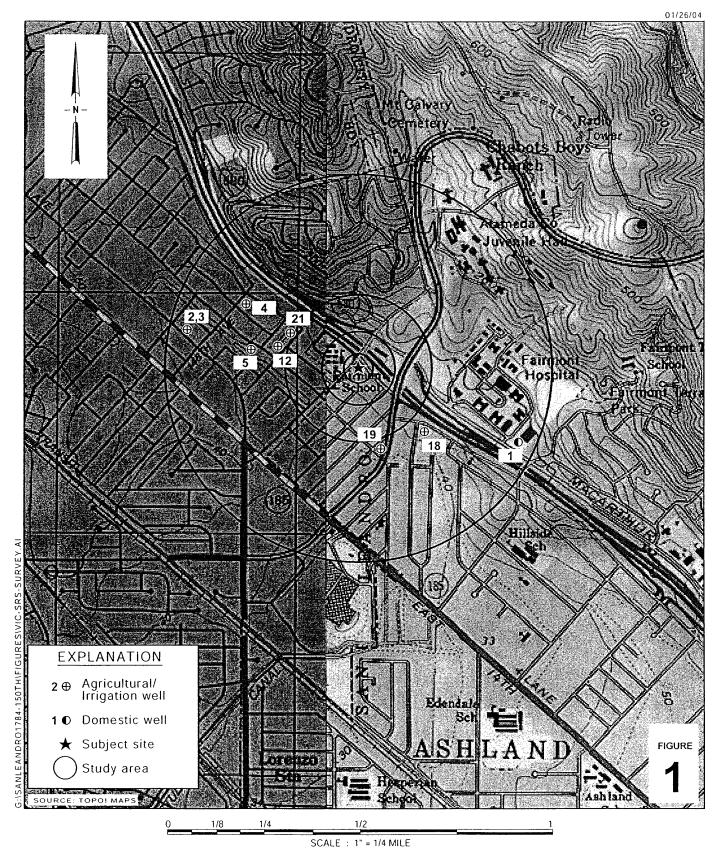

G:\San Leandro 1784 150th\QM\4q05\4q05qm.doc

EXPLANATION

- **S-19** $\langle \bullet \rangle$ Proposed soil boring location
- MW-4 + Monitoring well location
- MW-6* - Monitoring well location not used for contouring
- SB-17 Soil boring location (Cambria, 9/04)
 - Soil boring location (Cambria, 6/03)
 - Soil boring location (Cambria, 10/02)
- SVS-11 △ Soil boring location (Cambria, 11/98)
 - Soil boring location (Cambria, 7/96)
 - Soil boring location (Weiss, 3/95)
 - Soil boring location (Weiss, 6/94)
 - Separate-phase hydrocarbons present, well not sampled
 - Data anomalous, not used for contouring
 - Groundwater flow direction
 - Groundwater elevation contour, in feet above mean sea level (msl), approximately located, dashed where inferred
 - Well designation
 - Groundwater elevation, in feet above msl
 - Benzene and MTBE concentrations are in parts per billion and are analyzed by EPA Method 8260
 - Dispenser number
 - Product piping

Groundwater Flow Direction (12/15/03 through 12/05/05)

100



Shell-branded Service Station

1784 150th Avenue San Leandro, California Incident No.98996068

MBRIA ∢

υ

Shell-branded Service Station

1784 150th Avenue San Leandro, California Incident #98996068

Vicinity/Sensitive Receptor Survey Map

CAMBRIA

(1/2-Mile Radius)

Table 1:	Groundwater Extraction	- Mass Removal Data	- Shell-branded Service Station,	Incident #98996068, 17	784 150th Avenue, San Leandro, California
----------	-------------------------------	---------------------	----------------------------------	------------------------	---

					I			1			1		
						<u>TPPH</u>	TODIX		<u>Benzene</u>	n		<u>MTBE</u>	
		Volume	Cumulative Volume		ТРРН	TPPH	TPPH Removed	Benzene	Benzene	Benzene Removed	MTBE	MTBE	MTBE
Date	Well	Pumped	Pumped	Date	Concentration	Removed	To Date	Concentration	Removed	To Date	Concentration	Removed	Removed To Date
Purged	ID	(gal)	(gal)	Sampled	(ppb)	(pounds)	(pounds)	(ppb)	(pounds)	(pounds)	(ppb)		
I urgeu	ID	(gai)	(gai)	Sampicu	(ppo)	(pounds)	(pounds)	(pp0)	(pounds)	(pounds)	(ppo)	(pounds)	(pounds)
07/03/02	MW-2	482	482	06/18/02	72,000	0.28958	0.28958	9,500	0.03821	0.03821	29,000	0.11664	0.11664
07/17/02	MW-2	834	1,316	06/18/02	72,000	0.50106	0.79064	9,500	0.06611	0.10432	29,000	0.20182	0.31845
07/31/02	MW-2	213	1,529	06/18/02	72,000	0.12797	0.91861	9,500	0.01688	0.12121	29,000	0.05154	0.37000
08/14/02	MW-2	664	2,193	06/18/02	72,000	0.39893	1.31754	9,500	0.05264	0.17384	29,000	0.16068	0.53068
09/16/02	MW-2	662	2,855	06/18/02	72,000	0.39773	1.71527	9,500	0.05248	0.22632	29,000	0.16019	0.69087
10/14/02	MW-2	501	3,356	09/18/02	48,000	0.20067	1.91593	7,600	0.03177	0.25809	8,700	0.03637	0.72724
11/11/02	MW-2	547	3,903	09/18/02	48,000	0.21909	2.13502	7,600	0.03469	0.29278	8,700	0.03971	0.76695
12/09/02	MW-2	106	4,009	09/18/02	48,000	0.04246	2.17748	7,600	0.00672	0.29950	8,700	0.00770	0.77465
01/08/03	MW-2	652	4,661	12/27/02	40,000	0.21762	2.39510	5,900	0.03210	0.33160	19,000	0.10337	0.87802
02/04/03	MW-2	326	4,987	12/27/02	40,000	0.10881	2.50391	5,900	0.01605	0.34765	19,000	0.05168	0.92970
03/05/03	MW-2	647	5,634	03/05/03	62,000	0.33473	2.83863	13,000	0.07018	0.41784	21,000	0.11337	1.04308
04/08/03	MW-2	434	6,068	03/05/03	62,000	0.22453	3.06316	13,000	0.04708	0.46491	21,000	0.07605	1.11913
05/06/03	MW-2	736	6,804	03/05/03	62,000	0.38077	3.44393	13,000	0.07984	0.54475	21,000	0.12897	1.24810
06/06/03	MW-2	348	7,152	03/05/03	62,000	0.18004	3.62397	13,000	0.03775	0.58250	21,000	0.06098	1.30908
07/14/03	MW-2	391	7,543	06/24/03	19,000	0.06199	3.68596	9,500	0.03100	0.61350	14,000	0.04568	1.35475
08/12/03	MW-2	591	8,134	06/24/03	19,000	0.09370	3.77966	9,500	0.04685	0.66035	14,000	0.06904	1.42380
09/12/03	MW-2	399	8,533	06/24/03	19,000	0.06326	3.84292	9,500	0.03163	0.69198	14,000	0.04661	1.47041
10/10/03	MW-2	837	9,370	09/25/03	65,000	0.45397	4.29689	24,000	0.16762	0.85960	19,000	0.13270	1.60311
11/12/03	MW-2	259	9,629	09/25/03	65,000	0.14048	4.43737	24,000	0.05187	0.91147	19,000	0.04106	1.64417
12/05/03	MW-2	727	10,356	09/25/03	65,000	0.39431	4.83168	24,000	0.14559	1.05706	19,000	0.11526	1.75943
01/02/04	MW-2	1,168	11,524	12/15/03	67,000	0.65300	5.48468	18,000	0.17543	1.23249	11,000	0.10721	1.86664
02/03/04	MW-2	962	12,486	12/15/03	67,000	0.53783	6.02251	18,000	0.14449	1.37698	11,000	0.08830	1.95494
03/02/04	MW-2	343	12,829	12/15/03	67,000	0.19176	6.21427	18,000	0.05152	1.42850	11,000	0.03148	1.98642
03/16/04	MW-2	856	13,685	03/04/04	72,000	0.51428	6.72855	27,000	0.19285	1.62136	13,000	0.09286	2.07928
04/06/04	MW-2	652	14,337	03/04/04	72,000	0.39172	7.12026	27,000	0.14689	1.76825	13,000	0.07073	2.15001
04/28/04	MW-2	400	14,737	03/04/04	72,000	0.24032	7.36058	27,000	0.09012	1.85837	13,000	0.04339	2.19340

						mppu					-	MODI	
			Cumulative			<u>TPPH</u>	ТРРН		<u>Benzene</u>	Benzene		<u>MTBE</u>	MTBE
		Volume	Volume		ТРРН	ТРРН	Removed	Benzene	Benzene	Removed	MTBE	MTBE	Removed
Date	Well	Pumped	Pumped	Date	Concentration	Removed	To Date	Concentration	Removed	To Date	Concentration	Removed	To Date
Purged	ID	(gal)	(gal)	Sampled	(ppb)	(pounds)	(pounds)	(ppb)	(pounds)	(pounds)	(ppb)	(pounds)	(pounds)
1 01800		(8)	(8)	<u>I</u>		(r)	4		(I)	(I /		<u> </u>	4
05/04/04	MW-2	700	15,437	03/04/04	72,000	0.42056	7.78114	27,000	0.15771	2.01608	13,000	0.07593	2.26933
05/11/04	MW-2	600	16,037	03/04/04	72,000	0.36048	8.14161	27,000	0.13518	2.15126	13,000	0.06509	2.33442
05/18/04	MW-2	1,169	17,206	03/04/04	72,000	0.70233	8.84394	27,000	0.26337	2.41463	13,000	0.12681	2.46122
05/25/04	MW-2	867	18,073	03/04/04	72,000	0.52089	9.36483	27,000	0.19533	2.60996	13,000	0.09405	2.55527
06/02/04	MW-2	1,533	19,606	05/27/04	74,000	0.94660	10.31143	6,000	0.07675	2.68671	19,000	0.24305	2.79832
06/08/04	MW-2	809	20,415	05/27/04	74,000	0.49954	10.81097	6,000	0.04050	2.72722	19,000	0.12826	2.92658
06/15/04	MW-2	1,462	21,877	05/27/04	74,000	0.90276	11.71373	6,000	0.07320	2.80041	19,000	0.23179	3.15837
06/22/04	MW-2	1,720	23,597	05/27/04	74,000	1.06207	12.77580	6,000	0.08611	2.88653	19,000	0.27269	3.43106
06/29/04	MW-2	1,100	24,697	05/27/04	74,000	0.67923	13.45503	6,000	0.05507	2.94160	19,000	0.17440	3.60546
07/06/04	MW-2	1,595	26,292	05/27/04	74,000	0.98488	14.43992	6,000	0.07986	3.02145	19,000	0.25288	3.85834
07/16/04	MW-2	1,643	27,935	05/27/04	74,000	1.01452	15.45444	6,000	0.08226	3.10371	19,000	0.26049	4.11882
07/20/04	MW-2	1,578	29,513	05/27/04	74,000	0.97439	16.42883	6,000	0.07900	3.18272	19,000	0.25018	4.36900
07/27/04	MW-2	1,660	31,173	05/27/04	74,000	1.02502	17.45385	6,000	0.08311	3.26583	19,000	0.26318	4.63218
08/10/04	MW-2	28	31,201	05/27/04	74,000	0.01729	17.47114	6,000	0.00140	3.26723	19,000	0.00444	4.63662
08/24/04	MW-2	1,273	32,474	05/27/04	74,000	0.78606	18.25719	6,000	0.06373	3.33096	19,000	0.20182	4.83845
03/23/04	MW-11	142	142	03/04/04	68,000	0.08057	0.08057	5,300	0.00628	0.00628	8,300	0.00983	0.00983
04/20/04	MW-11	122	264	03/04/04	68,000	0.06922	0.14980	5,300	0.00540	0.01168	8,300	0.00845	0.01828
04/28/04	MW-11	101	365	03/04/04	68,000	0.05731	0.20711	5,300	0.00447	0.01614	8,300	0.00700	0.02528
05/04/04	MW-11	216	581	03/04/04	68,000	0.12256	0.32967	5,300	0.00955	0.02569	8,300	0.01496	0.04024
05/11/04	MW-11	268	849	03/04/04	68,000	0.15207	0.48174	5,300	0.01185	0.03755	8,300	0.01856	0.05880
05/18/04	MW-11	200	1,049	03/04/04	68,000	0.11348	0.59522	5,300	0.00885	0.04639	8,300	0.01385	0.07265
05/25/04	MW-11	60	1,109	03/04/04	68,000	0.03404	0.62926	5,300	0.00265	0.04905	8,300	0.00416	0.07681
06/02/04	MW-11	100	1,209	05/27/04	86,000	0.07176	0.70103	8,500	0.00709	0.05614	25,000	0.02086	0.09767
06/08/04	MW-11	250	1,459	05/27/04	86,000	0.17940	0.88043	8,500	0.01773	0.07387	25,000	0.05215	0.14982
06/15/04	MW-11	150	1,609	05/27/04	86,000	0.10764	0.98807	8,500	0.01064	0.08451	25,000	0.03129	0.18111

Table 1: Groundwater Extraction - Mass Removal Data - Shell-branded Service Station, Incident #98996068, 1784 150th Avenue, San Leandro, California

Table 1:	Groundwater Extraction - Mass	Removal Data - Shell-branded	Service Station, Incident #98996068	, 1784 150th Avenue, San Leandro, California
----------	-------------------------------	------------------------------	-------------------------------------	--

						<u>TPPH</u>			<u>Benzene</u>			<u>MTBE</u>	
			Cumulative				TPPH			Benzene			MTBE
		Volume	Volume		TPPH	TPPH	Removed	Benzene	Benzene	Removed	MTBE	MTBE	Removed
Date	Well	Pumped	Pumped	Date	Concentration	Removed	To Date	Concentration	Removed	To Date	Concentration	Removed	To Date
Purged	ID	(gal)	(gal)	Sampled	(ppb)	(pounds)	(pounds)	(ppb)	(pounds)	(pounds)	(ppb)	(pounds)	(pounds)
06/22/04	MW-11	50	1,659	05/27/04	86,000	0.03588	1.02395	8,500	0.00355	0.08806	25,000	0.01043	0.19154
								· ·					
06/29/04	MW-11	100	1,759	05/27/04	86,000	0.07176	1.09571	8,500	0.00709	0.09515	25,000	0.02086	0.21240
07/06/04	MW-11	52	1,811	05/27/04	86,000	0.03732	1.13303	8,500	0.00369	0.09884	25,000	0.01085	0.22325
07/16/04	MW-11	100	1,911	05/27/04	86,000	0.07176	1.20479	8,500	0.00709	0.10593	25,000	0.02086	0.24411
07/20/04	MW-11	50	1,961	05/27/04	86,000	0.03588	1.24067	8,500	0.00355	0.10948	25,000	0.01043	0.25454
07/27/04	MW-11	50	2,011	05/27/04	86,000	0.03588	1.27655	8,500	0.00355	0.11302	25,000	0.01043	0.26497
08/10/04	MW-11	15	2,026	05/27/04	86,000	0.01076	1.28732	8,500	0.00106	0.11409	25,000	0.00313	0.26810
08/24/04	MW-11	80	2,106	05/27/04	86,000	0.05741	1.34473	8,500	0.00567	0.11976	25,000	0.01669	0.28479
09/02/05	MW-11	146	2,252	08/20/05	86,000	0.10477	1.44950	3,800	0.00463	0.12439	3,900	0.00475	0.28954
11/10/05	MW-11	46	2,298	08/20/05	86,000	0.03301	1.48251	3,800	0.00146	0.12585	3,900	0.00150	0.29104
12/20/05	MW-11	144	2,442	12/06/05	69,000	0.08291	1.56542	4,000	0.00481	0.13065	7,400	0.00889	0.29993
01/18/06	MW-11	112	2,554	12/06/05	69,000	0.06449	1.62990	4,000	0.00374	0.13439	7,400	0.00692	0.30685
Total Gallons	Extracted:		35,028		Total Pound	ls Removed:	19.88710			3.46536			5.14529
					Total Gallon	s Removed:	3.26018			0.47471			0.82989

Abbreviations & Notes:

TPPH = Total purgeable hydrocarbons as gasoline

MTBE = Methyl tert-butyl ether

ppb = Parts per billion

gal = Gallon

Mass removed based on the formula: volume extracted (gal) x Concentration ($\mu g/L$) x ($g/10^6\mu g$) x (pound/453.6g) x (3.785 L/gal)

Volume removal data based on the formula: density (in gms/cc) x 9.339 (ccxlbs/gmsxgals)

TPPH, benzene, and MTBE analyzed by EPA Method 8260

If concentration is less than the laboratory detection limit, one half of the detection limit concentration is used in the mass removal calculation.

Groundwater extracted by vacuum trucks provided by Onyx. Water disposed at the Shell Refinery in Martinez, CA.

Date Baker Tank Purged	Extraction Well	Purged Volume (gal)	Cumulative Volume Pumped (gal)	Estimated System Flow Rate (gpm)	Sample Date	TPHg Concentration (ppb)	TPHg Removed (pounds)	Cumulative TPHg Removed (pounds)	Benzene Concentration (ppb)	Benzene removed (ppb)	Cumulative Benzene Removed (ppb)	MTBE Concentration (ppb)	MTBE Removed (pounds)	Cumulative MTBE Removed (pounds)
09/15/04	MW-2	385	385	0.05	5/27/2004 ¹	74.000	0.238	0.238	6.000	0.019	0.019	19,000	0.061	0.061
09/13/04	MW-2 MW-2	653	1,038	0.05	9/24/2004 ²	<100	0.202	0.440	<1.0	0.016	0.036	130	0.052	0.113
10/14/04	MW-2 MW-2	0	1,038	0.00	10/14/04	360	0.000	0.440	<2.5	0.000	0.036	330	0.000	0.113
10/28/04	MW-2	2,958	3,996	0.15			0.009	0.448		0.00003	0.036		0.008	0.121
10/20/04	1111 2	2,,50	5,770	0.120			subtotal	0.448		subtotal	0.036		subtotal	0.121
November 200	04 Dual-Phase	Extraction												
11/11/04	MW-2	7,445 a	11,441	1.85	11/22/20043	8,800	0.55	1.00	1,200	0.075	0.110	2,200	0.14	0.258
11/13/04	MW-1	5,714 a	17,155	3.34	11/22/2004 ³	100,000	4.77	5.76	2,500	0.119	0.229	130	0.006	0.264
		-,-					subtotal	5.31		subtotal	0.194		subtotal	0.143
01/26/05	MW-11	4,845	22,000	0.05	1/14/05	96,000	3.88	9.64	8,300	0.336	0.565	20,000	0.809	1.07
02/18/05	MW-11	4,809	26,809	0.15	2/17/05	11,000	0.441	10.1	520	0.021	0.586	270	0.011	1.08
03/02/05	MW-11	5,746	32,555	0.33	3/1/05	83,000	3.98	14.1	7,700	0.369	0.955	18,000	0.863	1.95
03/16/05	MW-11	5,022	37,577	0.25	3/1/05	83,000	3.48	17.5	7,700	0.323	1.28	18,000	0.754	2.70
03/30/05	MW-11	4,725	42,302	0.23	3/1/05	83,000	3.27	20.8	7,700	0.304	1.58	18,000	0.710	3.41
04/06/05	MW-11	5,022	47,324	0.50	3/1/05	83,000	3.48	24.3	7,700	0.323	1.90	18,000	0.754	4.16
04/13/05	MW-11	540	47,864	0.05	4/14/05	120,000	0.541	24.8	3,400	0.015	1.92	8,500	0.038	4.20
			Total Gallon	s Extracted:	47,864	Total Pounds Total Gallons		24.8 4.07	Total Pounds Total Gallons		1.92 0.263	Total Pounds Total Gallons		4.20 0.678

Table 2. Temporary Groundwater Extraction System Mass Removal Data, Shell-branded Service Station, 1784 150th Ave, San Leandro, CA

Abbreviations & Notes:

TPHg = Total purgeable hydrocarbons as gasoline MTBE = Methyl tertiary butyl ether ppb = Parts per billion, equivalent to $\mu g/L$ µg/L = Micrograms per liter L = Litergal = Gallon g = Gram NA = Not Available Extracted groundwater transported by Onyx-Industrial to Martinez Refinery Corporation for disposal. TPHg, benzene, and MTBE analyzed by EPA Method 8260b. 1. TPHg, benzene, and MTBE concentration from 2Q04 groundwater monitoring event. 2. TPHg, benzene, and MTBE concentration from 3Q04 groundwater monitoring event. 3. TPHg, benzene, and MTBE concentration from 4Q04 groundwater monitoring event. a- Purged volume totals reflect multiple truckloads When constituents are not detected, the concentration is assumed to be equal to half the detection limit in subsequent calculations. Mass removed (pounds) based on the formula: volume(gal) x concentration(μ g/L) x (g/10⁶ μ g) x (pound/453.6g) x (3.785 L/gal) Volume removed (gallons) based on the formula: [mass(pounds) x 453.6(g/pound) x (gal/3.785L) x (L/1000cm³)] / density(g/cm³) Density inputs: TPHg = 0.73 g/cc, benzene = 0.88 g/cc, MTBE = 0.74 g/cc

ATTACHMENT A

Blaine Groundwater Monitoring Report and Field Notes

BLAINE TECH SERVICES INC.

GROUNDWATER SAMPLING SPECIALISTS SINCE 1985

December 23, 2005

Denis Brown Shell Oil Products US 20945 South Wilmington Avenue Carson, CA 90810

> Fourth Quarter 2005 Groundwater Monitoring at Shell-branded Service Station 1784 150th Avenue San Leandro, CA

Monitoring performed on December 5, 2005

Groundwater Monitoring Report 051205-WC-2

This report covers the routine monitoring of groundwater wells at this Shell-branded facility. In accordance with standard procedures that conform to Regional Water Quality Control Board requirements, routine field data collection includes depth to water, total well depth, thickness of any separate immiscible layer, water column volume, calculated purge volume (if applicable), elapsed evacuation time (if applicable), total volume of water removed (if applicable), and standard water parameter instrument readings. Sample material is collected, contained, stored, and transported to the laboratory in conformance with EPA standards. Purgewater (if applicable) is, likewise, collected and transported to the Shell Martinez Manufacturing Complex.

Basic field information is presented alongside analytical values excerpted from the laboratory report in the cumulative table of **WELL CONCENTRATIONS**. The full analytical report for the most recent samples and the field data sheets are attached to this report.

At a minimum, Blaine Tech Services, Inc. field personnel are certified on completion of a fortyhour Hazardous Materials and Emergency Response training course per 29 CFR 1910.120. Field personnel are also enrolled in annual eight-hour refresher courses. Blaine Tech Services, Inc. conducts sampling and documentation assignments of this type as an independent third party. Our activities at this site consisted of objective data and sample collection only. No interpretation of analytical results, defining of hydrological conditions or formulation of recommendations was performed.

Please call if you have any questions.

Yours truly,

Mike Ninokata Project Coordinator

MN/ks

attachments: Cumulative Table of WELL CONCENTRATIONS Certified Analytical Report Field Data Sheet

cc: Anni Kreml
Cambria Environmental Technology, Inc.
5900 Hollis Street, Suite A
Emeryville, CA 94608

								MTBE	MTBE				-	[Depth to	GW	SPH	DO
Well ID	Date	TPPH	TEPH	В	Т	E	X	8020	8260	DIPE	ETBE	TAME	TBA	1,2-DCA	EDB	тос	Water	Elevation	Thickness	Reading
		(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)												
MW-1	03/08/1990	510	120	1.5	0.8	<0.5	5.4	NA	NA	49.13	25.29	23.84	NA	NA						
MW-1	06/12/1990	390	100	86	1.3	0.7	6.2	NA	NA	49.13	25.85	23.28	NA	NA						
MW-1	09/13/1990	100	130	56	0.75	2.4	2.8	NA	NA	49.13	27.49	21.64	NA	NA						
MW-1	12/18/1990	480	<50	54	1.7	3.3	3.7	NA	NA	49.13	27.41	21.72	NA	NA						
MW-1	03/07/1991	80	<50	266	<0.5	1.2	<1.5	NA	NA	49.13	25.79	23.34	NA	NA						
MW-1	06/07/1991	510	<50	130	3.8	6.1	11	NA	NA	49.13	25.64	23.49	NA	NA						
MW-1	09/17/1991	330	120a	67	<0.5	3.0	2.2	NA	NA	49.13	27.54	21.59	NA	NA						
MW-1	12/09/1991	140a	80	<0.5	<0.5	1.7	4.7	NA	NA	49.13	27.81	21.32	NA	NA						
MW-1	02/13/1992	NA	NA	49.13	25.57	23.56	NA	NA												
MW-1	02/24/1992	NA	NA	49.13	22.83	26.30	NA	NA												
MW-1	02/27/1992	NA	NA	49.13	23.09	26.04	NA	NA												
MW-1	03/01/1992	<50	<50	<0.5	<0.5	<0.5	<0.5	NA	NA	49.13	23.26	25.87	NA	NA						
MW-1	06/03/1992	1,500	NA	520	180	72	230	NA	NA	49.13	24.64	24.49	NA	NA						
MW-1	09/01/1992	130	NA	16	1.4	1.8	3.4	NA	NA	49.13	26.74	22.39	NA	NA						
MW-1	10/06/1992	NA	NA	49.13	27.18	21.95	NA	NA												
MW-1	11/11/1992	NA	NA	49.13	27.99	21.14	NA	NA												
MW-1	12/04/1992	150	NA	360	0.7	1.8	2.1	NA	NA	49.13	27.14	21.99	NA	NA						
MW-1	01/22/1993	NA	NA	49.13	20.09	29.04	NA	NA												
MW-1	02/10/1993	NA	NA	49.13	24.26	24.87	NA	NA												
MW-1	03/03/1993	<50	NA	1.5	<0.5	<0.5	<0.5	NA	NA	49.13	20.50	28.63	NA	NA						
MW-1	05/11/1993	NA	NA	49.13	21.70	27.43	NA	NA												
MW-1	06/17/1993	1,600	NA	340	120	. 120	440	NA	NA	49.13	22.42	26.71	NA	NA						
MW-1	09/10/1993	2,600	NA	670	340	310	730	NA	NA	49.13	24.11	25.02	NA	NA						
MW-1	12/13/1993	11,000	NA	470	320	380	2,300	NA	NA	49.13	23.73	25.40	NA	NA						
MW-1	03/03/1994	16,000	NA	700	690	480	3,200	NA	NA	49.13	22.08	27.05	NA	NA						
MW-1	06/06/1994	7,500	NA	420	280	200	1,000	NA	NA	49.13	23.10	26.03	NA	NA						
MW-1	09/12/1994	1,200	NA	110	21	3.3	420	NA	NA	49.13	25.19	23.94	NA	NA						
MW-1	12/19/1994	4,600	NA	470	330	230	1,300	NA	NA	49.13	23.06	26.07	NA	NA						
MW-1	02/28/1995	500	NA	59	32	6.8	68	NA	NA	49.13	20.90	28.23	NA	NA						
MW-1	03/24/1995	NA	NA	49.13	18.28	30.85	NA	NA												
MW-1	06/26/1995	5,500	NA	740	420	300	1,800	NA	NA	49.13	20.40	28.73	NA	NA						
MW-1	09/13/1995	84,000	NA	1,900	2,600	3,000	14,000	NA	NA	49.13	22.62	26.51	NA	NA						
MW-1	12/19/1995	80,000	NA	660	350	170	18,000	NA	NA	49.13	22.10	27.03	NA	NA						

								MTBE	MTBE							· · · · · · · · · · · · · · · · · · ·	Depth to	GW	SPH	DO
Well ID	Date	TPPH	TEPH	В	Т	Е	Х	8020	8260	DIPE	ETBE	TAME	ТВА	1,2-DCA	EDB	тос	Water	Elevation	Thickness	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)
				-																
MW-1	03/07/1996	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	49.13	18.83	30.34	0.05	NA
MW-1	06/28/1996	270,000	NA	2,800	820	_1,000	16,000	<0.5	NA	NA	NA	NA	NA	NA	NA	49.13	21.46	27.67	NA	NA
MW-1 (D)	06/28/1996	790,000	NA	2,200	780	1,000	13,000	15,000	NA	NA	NA	NA	NA	NA	NA	49.13	21.46	27.67	NA	NA
MW-1	09/26/1996	29,000	NA	1,100	260	270	1,900	<1,000	NA	NA	NA	NA	NA	NA	NA	49.13	23.57	25.57	0.01	NA
MW-1	09/26/1996	25,000	NA	1,200	320	240	1,900	<1,000	NA	NA	NA	NA	NA	NA	NA	49.13	NA	NA	NA	NA
MW-1	12/10/1996	13,000	NA	_ 510	240	230	1,200	100	NA	NA	NA	NA	NA	NA	NA	49.13	21.43	27.70	NA	1.0
MW-1 (D)	12/10/1996	8,400	NA	420	130	140	680	81	NA	NA	NA	NA	NA	NA	NA	49.13	21.43	27.70	NA	1.0
MW-1	03/10/1997	4,200	NA	13	8.8	16	74	<12	NA	NA	NA	NA	NA	NA	NA	49.13	20.08	29.05	NA	2.0
MW-1 (D)	03/10/1997	5,100	NA	12	8.9	17	79	<25	NA	NA	NA	NA	NA	NA	NA	49.13	20.08	29.05	NA	2.0
MW-1	06/30/1997	5,700	NA	320	120	140	700	47	NA	NA	NA	NA	NA	NA	NA	49.13	21.68	27.45	NA	1.6
MW-1 (D)	06/30/1997	5,300	NA	300	95	120	580	45	NA	NA	NA	NA	NA	NA	NA	49.13	21.68	27.45	NA	1.6
MW-1	09/12/1997	6,300	NA	120	26	82	260	30	NA	NA	NA	NA	NA	NA	NA	49.13	21.78	27.35	NA	2.1
MW-1 b	12/18/1997	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	49.13	20.78	28.35	NA	1.3
MW-1	02/02/1998	84	NA	5.1	<0.50	<0.50	2.1	2.5	NA	NA	NA	NA	NA	NA	NA	49.13	19.65	29.48	NA	2.0
MW-1	06/24/1998	13,000	NA	3,000	260	410	1,400	<250	NA	NA	NA	NA	NA	NA	NA	49.13	19.65	29.48	NA	2.5
MW-1 (D)	06/24/1998	12,000	NA	3,800	_250	47	1,400	710	NA	NA	NA	NA	NA	NA	NA	49.13	19.65	29.48	NA	2.5
MW-1	08/26/1998	3,100	NA	1,200	27	170	50	88	NA	NA	NA	NA	NA	NA	NA	49.13	20.49	28.64	NA	2.1
MW-1	12/23/1998	45,000	NA	5,300	220	1,000	3,600	970	NA	NA	NA	NA	NA	NA	NA	49.13	21.22	27.91	NA	3.8
MW-1	03/01/1999	22,300	NA	2,540	436	753	3,370	<400	NA	NA	NA	NA	NA	NA	NA	49.13	19.27	29.86	NA	1.8
<u>MW-1</u>	06/14/1999	18,800	NA	6,820	210	436	958	1,360	NA	NA	NA	NA	NA	NA	NA	49.13	20.80	28.33	NA	2.2
MW-1	09/28/1999	21,500	NA	7,470	281	467	927	1,800	NA	NA	NA	NA	NA	NA	NA	49.13	22.55	26.58	NA	2.0
MW-1	12/08/1999	22,300	NA	6,140	135	256	367	232	NA	_ NA	NA	NA	NA	NA	NA	49.13	23.12	26.01	NA	2.1
MW-1	03/14/2000	6,690	NA	1,880	63.5	134	307	460	NA	NA	NA	NA	NA	NA	NA	49.13	18.87	30.26	NA	2.3
MW-1	06/28/2000	8,080	NA	2,690	85.1	149	514	701	NA	NA	NA	NA	NA	NA	NA	49.13	21.12	28.01	NA	2.4
MW-1	09/06/2000	17,800	NA	7,390	212	329	1,270	<1,000	NA	NA	NA	NA	NA	NA	NA	49.13	21.90	27.23	NA	3.0
MW-1	12/14/2000	8,900	NA	4,870	79.2	106	370	1,840	673*	NA	NA	NA	NA	NA	NA	49.13	22.60	26.53	NA	2.0
MW-1	03/05/2001	7,520	NA	2,120	66.0	107	129	668	NA	_ NA	NA	NA	NA	NA	NA	49.13	20.06	29.07	NA	0.4
MW-1	06/11/2001	30,000	NA	7,400	390	600	2,300	NA	170	NA	NA	NA	NA	NA	NA	49.13	22.39	26.74	NA	1.6
MW-1	09/12/2001	23,000	NA	7,500	120	280	910	NA	320	NA	NA	NA	NA	NA	NA	49.13	23.37	25.76	NA	2.2
MW-1	12/27/2001	16,000	NA	2,400	190	330	1,500	NA	350	NA	NA	NA	NA	NA	NA	49,13	20.97	28.16	NA	1.3
MW-1	02/27/2002	26,000	NA	6,100	330	510	2,000	NA	210	NA	NA	NA	NA	NA	NA	49.10	20.47	28.63	NA	1.3
MW-1	06/18/2002	29,000	NA	8,100	280	510	1,800	NA	140	NA	NA	NA	NA	NA	NA	<u>4</u> 9.10	21.99	27.11	NA	2.2
MW-1	09/18/2002	34,000	NA	5,900	350	700	3,000	NA	<250	NA	NA	NA	NA	NA	NA	49.10	23.21	25.89	NA	0.8

								MTBE	MTBE								Depth to	GW	SPH	DO
Well ID	Date	ТРРН	ТЕРН	В	Т	Е	х	8020	8260	DIPE	ETBE	TAME	ТВА	1,2-DCA	EDB	тос	Water	Elevation	Thickness	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)
MW-1	12/27/2002	7,500	NA	1,200	30	120	410	NA	230	<5.0	<5.0	<5.0	310	31	<5.0	49.10	20.10	29.00	NA	0.6
MW-1	03/05/2003	17,000	NA	1,600	88	400	1,400	NA	230	NA	NA	<10	290	<10	NA	49.10	21.05	28.05	NA	1.7
MW-1	06/24/2003	Well inacc	essible	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	49.10	NA	NA	NA	NA
MW-1	06/25/2003	14,000	NA	5,300	250	440	2,100	NA	100	NA	NA	<200	<500	<50	NA	49.10	21.93	27.17	NA	0.9
MW-1	09/25/2003	33,000	NA	7,700	250	860	3,400	NA	130	NA	NA	<200	<500	<50	NA	49.10	23.21	25.89	NA	1.7
MW-1	12/15/2003	63,000	NA	14,000	360	1,300	3,900	NA	150	NA	NA	<400	<1000	<100	NA	49.10	22.08	27.02	NA	1.5
MW-1	03/04/2004	28,000	NA	8,000	180	640	2,100	NA	79	NA	NA	<200	<500	<50	NA	49.10	19.85	29.25	NA	0.2
MW-1	05/27/2004	33,000	NA	8,700	260	840	2,700	NA	81	NA	_ NA	<200	<500	<50	NA	49.10	22.15	26.95	NA	0.2
MW-1	09/24/2004	26,000	NA	5,700	210	830	2,900	NA	<50	<200	<200	<200	<500	<50	<50	49.10	23.69	25.41	NA	1.5
MW-1	11/22/2004	100,000	NA	2,500	920	4,100	22,000	NA	130	NA	NA	<200	<500	<50	NA	49.10	23.19	25.91	NA	NA
MW-1	03/02/2005	110,000	NA	1,300	670	4,000	23,000	NA	87	NA	NA	<100	<500	<25	NA	49.10	19.35	29.75	NA	NA
MW-1	06/30/2005	94,000	NA	6,500	1,100	3,900	21,000	NA	900	NA	NA	<1,000	<2,500	<250	NA	49.10	20.64	28.46	NA	0.6
MW-1	09/20/2005	63,000	NA	3,900	540	2,000	14,000	NA	1,100	<800	<800	<800	<2,000	<200	NA	49.10	22.06	27.04	NA	NA
MW-1	12/05/2005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	49.10	21.90	27.25	0.06	. NA
MW-2	02/13/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	45.83	22.22	23.61	NA	NA
MW-2	02/24/1992	17,000	2,700a	6,200	1,600	550	1,900	NA	NA	45.83	19.61	26.22	NA	NA						
MW-2	02/27/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	45.83	19.92	25.91	NA	NA
MW-2	03/01/1992	86,000	1,000a	30,000	34,000	2,300	16,000	NA	NA	45.83	21.11	24.72	NA	NA						
MW-2	06/03/1992	87,000	NA	28,000	18,000	2,000	10,000	NA	NA	NA	NA	ŅA	NA	NA	NA	45.83	21.58	24.25	NA	NA
MW-2	09/01/1992	110,000	NA	21,000	13,000	1,900	7,800	NA	NA	45.83	23.46	22.37	NA	NA						
MW-2	10/06/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	45.83	23.99	21.84	NA	NA
MW-2	11/11/1992	NA	NA	NA	NA	NA	NA ⁻	NA	NA	45.83	24.25	21.58	NA	NA						
MW-2	12/04/1992	42,000	NA	15,000	2,400	960	2,900	NA	NA	45.83	23.89	21.94	NA	NA						
MW-2	01/22/1993	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	45.83	17.03	28.80	NA	NA
MW-2	02/10/1993	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	45.83	18.08	27.75	NA	NA
MW-2	03/03/1993	160,000	NA	36,000	3,800	32,000	21,000	NA	NA	45.83	17.28	28.55	NA	NA						
MW-2 (D)	03/03/1993	150,000	NA	31,000	3,100	20,000	14,000	NA	NA	45.83	17.28	28.55	NA	NA						
MW-2	05/11/1993	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	45.83	18.41	27.42	NA	NA
MW-2	06/17/1993	65,000	NA	34,000	15,000	3,200	11,000	NA	NA	45.83	19.06	26.77	NA	NA						
MW-2 (D)	06/17/1993	62,000	NA	28,000	14,000	2,700	10,000	NA	NA	45.83	19.06	26.77	NA	NA						
MW-2	09/10/1993	72,000	NA	24,000	16,000	2,300	11,000	NA	NA	45.83	20.88	24.95	NA	NA						
MW-2 (D)	09/10/1993	71,000	NA	23,000	15,000	2,300	10,000	NA	NA	45.83	20.88	24.95	NA	NA						

								MTBE	MTBE								Depth to	GW	SPH	DO
Well ID	Date	TPPH	TEPH	В	Т	Е	X	8020	8260	DIPE	ETBE	TAME	TBA	1,2-DCA	EDB	тос	Water	Elevation	Thickness	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)
MW-2	12/13/1993	19,000	NA	5,400	4,900	680	3,100	NA	NA	45.83	20.42	25.41	NA	NA						
MW-2 (D)	12/13/1993	17,000	NA	6,200	5,500	720	3,500	NA	NA	45.83	20.42	25.41	NA	NA						
MW-2	03/03/1994	110,000	NA	21,000	24,000	2,000	13,000	NA	NA	45.83	18.48	27.35	NA	NA						
MW-2 (D)	03/03/1994	93,000	NA	19,000	22,000	1,800	12,000	NA	NA	45.83	18.48	27.35	NA	NA						
MW-2	06/06/1994	10,000	NA	1,900	3,300	2,500	13,000	NA	NA	45.83	20.26	25.57	NA	NA						
MW-2 (D)	06/06/1994	99,000	NA	9,900	12,000	2,400	12,000	NA	NA	45.83	20.26	25.57	NA	NA						
MW-2	09/12/1994	160,000	NA	22,000	33,000	3,400	23,000	NA	NA	45.83	21.80	24.03	NA	NA						
MW-2 (D)	09/12/1994	150,000	NA	23,000	34,000	3,500	23,000	NA	NA	45.83	21.80	24.03	NA	NA						
MW-2	12/19/1994	80,000	NA	17,000	16,000	2,300	14,000	NA	NA	45.83	19.66	26.17	NA	NA						
MW-2 (D)	12/19/1994	100,000	NA	28,000	26,000	3,400	20,000	NA	NĂ	45.83	19.66	26.17	NA	NA						
MW-2	02/28/1995	100,000	NA	24,000	18,000	2,300	17,000	NA	NA	45.83	17.51	28.32	NA	NA						
MW-2 (D)	02/28/1995	100,000	NA	31,000	21,000	3,200	18,000	NA	NA	45.83	17.51	28.32	NA	NA						
MW-2	03/24/1995	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	45.83	14.88	30.95	NA	NA
MW-2	06/26/1995	45,000	NA	14,000	12,000	1,500	7,500	NA	NA	45.83	17.58	28.25	NA	NA						
MW-2 (D)	06/26/1995	68,000	NA	13,000	11,000	1,800	7,700	NA	NA	45.83	17.58	28.25	NA	NA						
MW-2	09/13/1995	110,000	NA	19,000	19,000	2,800	15,000	NA	NA	45.83	19.28	26.55	NA	NA						
MW-2 (D)	09/13/1995	120,000	NA	20,000	20,000	2,900	15,000	NA	NA	45.83	19.28	26.55	NA	NA						
MW-2	12/19/1995	180,000	NA	18,000	29,000	4,100	24,000	NA	NA	45.83	18.61	27.22	NA	NA						
MW-2 (D)	12/19/1995	160,000	NA	18,000	28,000	3,800	24,000	NA	NA	45.83	18.61	27.22	NA	NA						
MW-2	03/06/1996	120,000	NA	28,000	15,000	3,900	17,000	NA	NA	45.83	15.41	30.42	NA	NA						
MW-2	06/28/1996	96,000	NA	20,000	20,000	4,100	22,000	2,400	NA	NA	NA	NA	NA	NA	NA	45.83	17.84	27.99	NA	NA
MW-2	09/26/1996	87,000	NA	7,600	11,000	2,500	15,000	990	840	NA	NA	NA	NA	NA	NA	45.83	19.60	26.23	NA	NA
MW-2	12/10/1996	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	45.83	18.15	27.88	0.25	NA
MW-2	03/10/1997	NA	NA	NA	NA	_ NA	NA	NA	NA	NA	NA_	NA	NA	NA	NA	45.83	17.02	28.97	0.20	NA
MW-2	06/30/1997	57,000	NA	3,600	4,600	1,300	9,700	2,300	NA	NA	NA	NA	NA	NA	NA	45.83	19.42	26.41	NA	2.4
MW-2	09/12/1997	88,000	NA	7,800	8,800	2,600	16,000	3,200	NA	NA	NA	NA	NA	NA	NA	45.83	19.40	26.43	NA	1.7
MW-2 (D)	09/12/1997	90,000	NA	8,300	9 <u>,</u> 400	2,700	17,000	3,400	NA	NA	NA	NA	NA	NA	NA	45.83	19.40	26.43	NA	1.7
MW-2 b	12/18/1997	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	45.83	17.56	28.27	NA	1.3
MW-2	02/02/1998	<50	NA	0.6	1.9	0.93	6.0	9.3	NA	NA	NA	NA	NA	NA	NA	45.83	18.14	27.69	NA	2
MW-2 (D)	02/02/1998	56	NA	1.0	2.8	1.4	9.3	13	NA	NA	NA	NA	NA	NA	NA	45.83	18.14	27.69	NA	2
MW-2	06/24/1998	20,000	NA	<200	620	560	4,500	<1,000	NA	NA	NA	NA	NA	NA	NA	45.83	16.08	29.75	NA	2.4
MW-2	08/26/1998	22,000	NA	380	1,100	560	4,400	330	NA	NA	NA	NA	NA	NA	NA	45.83	19.25	26.58	NA	NA
MW-2 (D)	08/26/1998	11,000	NA	180	130	290	500	1,400	NA	NA	NA	NA	NA	NA	NA	45.83	19.25	26.58	NA	NA

								MTBE	MTBE		-						Depth to	GW	SPH	DO
Well ID	Date	ТРРН	TEPH	В	т	Ë	X	8020	8260	DIPE	ETBE	TAME	ТВА	1,2-DCA	EDB	тос	Water	Elevation	Thickness	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)
								· · · -												
MW-2	12/23/1998	100,000	NA	4,100	6,500	2,400	16,000	<500	NA	NA	NA	NA	NA	NA	NA	45.83	18.29	27.54	NA	3.8
MW-2	03/01/1999	50,800	NA	3,910	7,480	1,890	13,100	9,620	NA	NA	NA	NA	NA	NA	NA	45.83	22.81	23.02	NA	2.0
MW-2	06/14/1999	4,930	NA	128	270	139	1,040	2,200	2,540*	NA	NA	NA	NA	NA	NA	45.83	18.86	26.97	NA	1.6
MW-2	09/28/1999	16,200	NA	647	1,070	542	4,130	5,320	4,790	NA	NA	NA	NA	NA	NA	45.83	21.41	24.42	NA	1.8
MW-2	12/08/1999	25,700	NA	1,670	2,110	977	6,600	6,190	5,970	NA	ŇA	NA	NA	NA	NA	45.83	21.89	23.94	NA	1.8
MW-2	03/14/2000	45,100	NA	2,070	4,710	1,920	12,800	16,700	18,300*	NA	NA	NA	NA	NA	NA	45.83	15.57	30.26	NA	2.0
MW-2	06/28/2000	52,100	NA	5,150	4,200	1,880	13,300	15,500	13,500*	NA	NA	NA	NA	NA	NA	45.83	17.79	28.04	NA	1.9
MW-2	09/06/2000	39,500	NA	4,490	3,290	2,100	14,000	18,500	9,060*	NA	NA	NA	NA	NA	NA	45.83	18.65	27.18	NA	3.5
MW-2	12/14/2000	209	NA	3.51	1.11	1.00	64.4	79.4	NA	NA	NA	NA	NA	NA	NA	45.83	19.00	26.83	NA	1.5
MW-2	03/05/2001	38,200	NA	2,010	927	1,250	8,300	13,100	15,400	NA	NA	NA	NA	NA	NA	45.83	16.66	29.17	NA	1.0
MW-2	06/11/2001	50,000	NA	4,400	2,200	1,800	11,000	NA	26,000	NA	NA	NA	NA	NA	NA	45.83	18.93	26.90	NA	1.7
MW-2	09/12/2001	59,000	NA	6,100	2,800	2,300	14,000	NA	21,000	NA	NA	NA	NA	NA	NA	45.83	19.85	25.98	NA	1.6
MW-2	12/27/2001	74,000	NA	8,600	2,500	2,500	17,000	NA	25,000	NA	NA	NA	NA	NA	NA	45.83	17.85	27.98	NA	2.6
MW-2	02/27/2002	70,000	NA	8,100	2,600	2,100	13,000	NA	32,000	NA	NA	NA	NA	NA	NA	45.79	17.15	28.64	NA	2.0
MW-2	06/18/2002	72,000	NA	9,500	3,000	2,200	13,000	NA	29,000	NA	NA	NA	NA	NA	NA	45.79	18.49	27.30	NA	0.6
MW-2	09/18/2002	48,000	NA	7,600	850	1,300	6,300	NA	8,700	NA	NA	NA	NA	NA	NA	45.79	19.95	25.84	NA	1.0
MW-2	12/27/2002	40,000	NA	5,900	1,200	1,400	7,800	NA	19,000	<50	<50	55	10,000	<50	<50	45.79	16.71	29.08	NA	1.0
MW-2	03/05/2003	62,000	NA	13,000	1,400	2,000	7,900	NA	21,000	NA	NA	<50	10,000	<50	NA	45.79	17.72	28.07	NA	1.4
MW-2	06/24/2003	19,000	NA	9,500	530	700	2,900	NA	14,000	NA	NA	<400	6,000	<100	NA	45.79	18.30	<u>27.</u> 49	NA	1.4
MW-2	09/25/2003	65,000	NA	24,000	1,500	2,400	9,700	NA	19,000	NA	NA	<1,000	6,400	<250	NA	45.79	20.05	25.74	NA	1.3
MW-2	12/15/2003	67,000	NA	18,000	1,800	1,900	7,200	NA	11,000	NA	NA	<400	3,700	<100	NA	45.79	18.80	26.99	NA	0.1
MW-2 MW-2	03/04/2004	72,000	NA NA	27,000	1,200	2,100	7,600	NA	13,000	NA	NA	<400	6,800	<100	NA	45.79	16.75	29.04	NA	0.2
MW-2	05/27/2004 09/24/2004	74,000 <100	NA NA	6,000 <1.0	2,000 <1.0	2,500 <1.0	15,000 <2.0	NA NA	19,000 130	NA <4.0	NA <4.0	<400 <4.0	8,500 46	<100 19	NA <1.0	45.79	18.85	26.94	NA	0.8
MW-2	11/22/2004	8,800	NA	1,200	230	350	1,900	NA	2,200	~4.0 NA	<4.0 NA	<40	1,300	<10	NA	45.79 45.79	16.10 19.83	29.69 25.96	NA NA	5.1 0.3
MW-2	03/02/2005	960	NA	1,200	230	30	220	NA	630	NA	NA	<10	460	<2.5	NA	45.79	19.83	29,89	NA NA	0.3
MW-2	06/30/2005	970	NA NA	130	19	27	220	NA	320 e	NA	NA	<2.0	220	0.98	NA	45.79	17.14	29.69	NA	0.5
MW-2	09/20/2005	890	NA	320	10	35	190	NA	440	<10	<10	<2.0 <10	570	<2.5	NA	45.79	18.66	20.03	NA	0.7
MW-2	12/05/2005	690	NA	150	6.1	21	130	NA	450	NA	NA	<5.0	520	<5.0	NA	45.79	18.58	27.13	NA	0.51
														1						
MW-3	02/13/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	51.97	27.97	24.00	NA	NA
MW-3	02/24/1992	4,500	1,300a	97	<5	78	18	NA	NA	NA	NA	NA	NA	NA	NA	51.97	25.60	26.37	NA	NA
MW-3	02/27/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	51.97	25.88	26.09	NA	NA
MW-3	03/01/1992	2,200	440	69	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	51.97	26.00	25.97	NA	NA

								MTBE	MTBE								Depth to	GW	SPH	DO
Well ID	Date	TPPH	TEPH	В	т	Е	X	8020	8260	DIPE	ETBE	TAME	TBA	1,2-DCA	EDB	тос	Water	Elevation	Thickness	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)
MW-3	06/03/1992	4,100	NA	13	72	44	65	NA	NA	51.97	_ 27.70	24.27	NA	NA						
MW-3	09/01/1992	1,900	NA	20	6.8	5.5	<5	NA	NA	51.97	29.46	22.51	NA	NA						
MW-3 (D)	09/01/1992	1,900	NA	21	6.6	3.4	<5	NA	NA	51.97	29.46	22.51	NA	NA						
MW-3	10/06/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	51.97	30.01	21.96	NA	NA
MW-3	11/11/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	51.97	30.26	21.71	NA	NA
MW-3	12/04/1992	2,400	NA	8.2	<5	<5	<5	NA	NA	NA	NA	NA .	NA	NA	NA	51.97	29.93	22.04	NA	NA
MW-3 (D)	12/04/1992	2,100	NA	1 1	<0.5	5.7	<0.5	NA	NA	51.97	29.93	22.04	NA	NA						
MW-3	01/22/1993	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	51.97	22.76	29.21	NA	NA
MW-3	02/10/1993	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	51.97	21.40	30.57	NA	NA
MW-3	03/03/1993	5,100	NA	63	61	75	150	NA	NA	51.97	23.08	28.89	NA	NA						
MW-3	05/11/1993	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	51.97	24.51	27.46	NA	NA
MW-3	06/17/1993	4,000	NA	94	140	82	150	NA	NA	51.97	25.21	26.76	NA	NA						
MW-3	09/10/1993	3,200	NA	140	12.5	12.5	12.5	NA	NA	51.97	26.95	25.02	NA	NA						
MW-3	12/13/1993	6,200	NA	<12.5	<12.5	<12.5	<12.5	NA	NA	51.97	26.52	25.45	NA	NA						
MW-3	03/03/1994	4,500	NA	73	<5	<5	<5	NA	NA	51.97	24.50	27.47	NA	NA						
MW-3	06/06/1994	3,200	NA	<0.5	<0.5	3.1	<0.5	NA	NA	51.97	26.33	25.64	NA	NA						
MW-3	09/12/1994	3,900	NA	<0.5	<0.5	9.6	4.1	NA	NA	51.97	27.98	23.99	NA	NA						
MW-3	12/19/1994	2,400	NA	21	22	4.2	2.6	NA	NA	_ NA	NA	NA	NA	NA	NA	51.97	25.63	26.34	NA	NA
MW-3	02/28/1995	4,000	NA	58	<0.5	7.1	3.5	NA	NA	51.97	23.45	28.52	NA	NA						
MW-3	03/24/1995	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	51.97	21.07	30.90	NA	NA
MW-3	06/26/1995	3,900	NA	8.1	<0.5	12	2.4	NA	NA	51.97	23.64	28.33	NA	NA						
MW-3	09/13/1995	4,100	NA	58	5.5	5.5	<0.5	NA	NA	51.97	25.40	26.57	NA	NA						
MW-3	12/19/1995	3,600	NA	<0.5	4.3	2,1	1.1	NA	NA	51.97	24.53	27.44	NA	NA						
MW-3	03/07/1996	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	51.97	21.59	30.41	0.04	NA
MW-3	06/28/1996	2,400	NA	55	<0.5	<0.5	11	120	NA	NA	NA	NA	NA	NA	NA	51.97	23.95	28.02	NA	NA
MW-3	09/26/1996	2,500	NA	<5.0	<5.0	<5.0	<5.0	160	NA	NA	NA	NA	NA	NA	NA	51.97	25.89	26.08	NA	NA
MW-3	12/10/1996	1,600	NA	28	4.2	<2.0	3.9	110	NA	_ NA	NA	NA	NA	NA	NA	51.97	24.22	27.75	NA	0.8
MW-3	03/10/1997	130	NA	<0.50	<0.50	<0.50	1,4	4.2	NA	NA	NA	NA	NA	NA	NA	51.97	23.05	28.92	NA	2.8
MW-3	06/30/1997	1,200	NA	21	2.3	<2.0	<2.0	69	NA	NA	NA	NA	NA	NA	NA	51.97	24.34	27.63	NA	2.3
MW-3	09/12/1997	440	NA	8.3	0.82	<0.50	1.9	3.4	NA	NA	NA	NA	NA	NA	NA	51.97	24.47	27.50	NA	1.9
MW-3 b	12/18/1997	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	51.97	23.54	28.43	NA	0.8
MW-3	02/02/1998	400	NA	9.3	0.68	<0.50	<0.50	9	NA	NA	NA	NA	NA	NA	NA	51.97	21.92	30.05	NA	1.5
MW-3	06/24/1998	<50	NA	<0.50	<0.50	<0.50	<0.50	<2.5	NA	NA	NA	NA	NA	NA	NA	51.97	22.35	29.62	NA	1.9

MW-3 08/ MW-3 12/ MW-3 03/ MW-3 06/ MW-3 09/	Date 8/26/1998 2/23/1998	TPPH (ug/L) 140	TEPH (ug/L)	В	т				MTBE								Depth to	GW	SPH	DO
MW-3 12/ MW-3 03/ MW-3 06/ MW-3 09/			(ug/L)			E	X	8020	8260	DIPE	ETBE	TAME	TBA	1,2-DCA	EDB	TOC	Water	Elevation	Thickness	Reading
MW-3 12/ MW-3 03/ MW-3 06/ MW-3 09/		140		(ug/L)	(ug/L)	(ug/L)	_(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)						
MW-3 12/ MW-3 03/ MW-3 06/ MW-3 09/		140																	_	
MW-3 03/ MW-3 06/ MW-3 09/	2/23/1998	140	NA	7.4	<0.50	<0.50	2.5	13	NA	NA	NA	NA	NA	NA	NA	51.97	23.45	28.52	NA	_ 1.3
MW-3 06/ MW-3 09/		1,200	NA	50	<2.0	<2.0	<2.0	69	NA	NA	NA	NA	NA	NA	NA	51.97	24.01	27.96	NA	4.2
MW-3 09/	3/01/1999	2,550	NA	<0.500	<0.500	<0.500	0.658	32.4	NA	NA	NA	NA	NA	NA	NA	51.97	22.08	29.89	NA	2.0
	6/14/1999	514	NA	18.1	0.728	<0.500	<0.500	15.9	NA	NA	NA	NA	NA	NA	NA	51.97	23.15	28.82	NA	1.7
	9/28/1999	1, 18 0	NA	<1.00	<1.00	<1.00	<1.00	<10.0	NA	NA	NA	NA	NA	NA	NA	51.97	25.36	26.61	NA	1.2
MW-3 12/	2/08/1999	1,740	NA	71.5	23.0	24.2	61.3	103	NA	NA	NA	NA	NA	NA	NA	51.97	25.75	26.22	NA	2.0
MW-3 03/	3/14/2000	1,410	NA	5.63	35.6	<5.00	8.41	38.7	NA	NA	NA	NA	NA	NA	NA	51.97	21.64	30.33	NA	2.1
MW-3 06/	6/28/2000	2,460	NA	<5.00	9.48	<5.00	28.4	64.0	NA	NA	NA	NA	NA	NA	NA	51.97	23.84	28.13	NA	2.87
MW-3 09/	9/06/2000	887	NA	<1.00	<1.00	<1.00	<1.00	<10.0	NA	NA	NA	NA	NA	NA	NA	51.97	24.73	27.24	NA	2.0
MW-3 12/	2/14/2000	955	NA	25.4	1.96	<0.500	1.13	10.2	NA	NA	NA	NA	NA	NA	NA	51.97	25.45	26.52	NA	2.1
MW-3 03/	3/05/2001	2,100	NA	4.90	56.5	<2.00	3.62	261	NA	NA	NA	NA	NA	NA	NA	51.97	22.83	29.14	NA	0.8
MW-3 06/	6/11/2001	2,000	NA	1.0	<0.50	<0.50	<0.50	NA	<0.50	NA	NA	NA	NA	NA	NA	51.97	25.20	26.77	NA	0.7
MW-3 09/	9/12/2001	1,500	NA	0.50	0.54	<0.50	1.8	NA	<5.0	NA	NA	NA	NA	NA	NA	51.97	26.15	25.82	NA	1.5
MW-3 12/	2/27/2001	2,100	NA	<0.50	<0.50	<0.50	<0.50	NA	<5.0	NA	NA	NA	NA	NA	NA	51.97	23.67	28.30	NA	1.9
MW-3 02/	2/27/2002	2,300	NA	<0.50	<0.50	<0.50	<0.50	NA	<5.0	NA	NA	NA	NA	NA	NA	51.92	23.23	28.69	NA	1.5
MW-3 06/	6/18/2002	2,000	NA	<0.50	<0.50	<0.50	<0.50	NA	<0.50	NA	NA	ŅA	NA	NA	NA	51.92	24.74	27.18	NA	2.0
MW-3 09/	9/18/2002	2,600	NA	<0.50	<0.50	<0.50	<0.50	NA	<5.0	NA	NA	NA	NA	NA	NA	51.92	26.05	25.87	NA	1.4
MW-3 12/	2/27/2002	Well inacce	essible	NA	NA	NA	NA	NA	NA	NA	_NA	NA	NA	NA	NA	51.92	NA	NA	NA	NA
MW-3 03/	3/05/2003	2,300	NA	<0.50	<0.50	<0.50	<0.50	NA	<5.0	NA	NA	<2.0	<50	13	NA	51.92	23.84	28.08	NA	1.3
MW-3 06/	6/24/2003	Well inacce	essible	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	51.92	NA	NA	NA	NA
MW-3 06/	6/25/2003	1,800 c	NA	0.71	<0.50	<0.50	<1.0	NA	0.54	NA	NA	<2.0	<5.0	1.1	NA	51.92	24.48	27.44	NA	1.3
MW-3 09/	9/25/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	51.92	25.99	25.93	NA	NA
MW-3 12/	2/15/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	51.92	24.94	26.98	NA	NA
MW-3 03/	3/04/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	51.92	22.50	29.42	NA	NA
MW-3 05/	5/27/2004	2,500	NA	<0.50	<0.50	<0.50	<1.0	NA	1.1	NA	NA	<2.0	<5.0	0.82	NA	51.92	24.94	26.98	NA	0.5
MW-3 09/	9/24/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	51.92	26.55	25.37	NA	NA
MW-3 11/	1/22/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	51.92	25.92	26.00	NA	NA
MW-3 03/	3/02/2005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	51.92	22.12	29.80	NA	NA
MW-3 06/	6/30/2005	3,700	NA	<2.0	2.4	<2.0	<4.0	NA	<2.0	<8.0	<8.0	<8.0	<20	<2.0	NA	51.92	23.31	28.61	NA	1.2
	9/20/2005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	51.92	24.78	27.14	NA	NA
<u>MW-3</u> 12/	2/05/2005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	51.92	24.65	27.27	NA	NA
·																				
MW-4 03/	3/24/1995	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	NA	40.51	9.16	31.35	NA	NA						

								MTBE	MTBE								Depth to	GW	SPH	DO
Well ID	Date	TPPH	TEPH	В	Т	Е	Х	8020	8260	DIPE	ETBE	TAME	TBA	1,2-DCA	EDB	тос	Water	Elevation	Thickness	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)
		_																		
MW-4	06/26/1995	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	NA	40.51	12.06	28.45	NA	NA						
MW-4	09/13/1995	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	NA	40.51	13.90	26.61	NA	NA						
MW-4	12/19/1995	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	NA	40.51	12.90	27.61	NA	NA						
MW-4	03/06/1996	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	NA	40.51	9.63	30.88	NA	NA						
MW-4	06/28/1996	40	NA	<0.5	0.59	0.97	3.8	26	NA	NA	NA	NA	NA	NA	NA	40.51	12.30	28.21	NA	NA
MW-4	09/26/1996	<50	NA	<0.5	<0.5	<0.5	<0.5	<2.5	NA	NA	NA	NA	NA	NA	NA	40.51	14.12	26.39	NA	NA
MW-4	12/10/1996	<50	NA	<0.5	<0.5	<0.5	<0.5	<2.5	NA	NA	NA	NA	NA	NA	NA	40.51	12.31	28.20	NA	1.2
MW-4	03/10/1997	<50	NA	<0.50	<0.50	<0.50	<0.50	<2.5	NA	NA	NA	NA	NA	NA	NA	40.51	11.34	29.17	NA	NA
MW-4	06/30/1997	<50	NA	<0.50	<0.50	<0.50	<0.50	<2.5	NA	NA	NA	NA	NA	NA	NA	40.51	13.80	26.71	NA	1.9
MW-4	09/12/1997	<50	NA	<0.50	<0.50	<0.50	<0.50	<2.5	NA	NA	NA	NA	NA	NA	NA	40.51	13.99	26.52	NA	1.7
MW-4 b	12/18/1997	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	40.51	12.02	28.49	NA	1.8
MW-4	02/02/1998	<50	NA	<0.50	<0.50	<0.50	<0.50	<2.5	NA	NA	NA	NA	NA	NA	NA	40.51	11.23	29.28	NA	1
MW-4	06/24/1998	<50	NA	<0.50	<0.50	<0.50	<0.50	<2.5	NA_	NA	NA	NA	NA	NA	NA	40.51	10.58	29.93	NA	1.9
MW-4	08/26/1998	<50	NA	<0.50	<0.50	<0.50	<0.50	<2.5	NA	NA	NA	NA	NA	NA	NA	40.51	11.75	28.76	NA	1.2
MW-4	12/23/1998	<50	NA	0.60	<0.50	<0.50	<0.50	<2.5	NA	NA	NA	NA	NA	NA	NA	40,51	12,41	28.10	NA	4.2
MW-4	03/01/1999	<50.0	NA	<0.500	<0.500	<0.500	<0.500	<2.00	NA	NA	NA	NA	NA	NA	NA	40.51	10.38	30.13	NA	2.1
MW-4	06/14/1999	<50.0	NA	<0.500	<0.500	<0.500	<0.500	<2.50	NA	NA	NA	NA	NA	NA	NA	40.51	11.91	28.60	NA	2.4
MW-4	09/28/1999	<50.0	NA	<0.500	<0.500	<0.500	<0.500	<5.00	NA	NA	NA	NA	NA	NA	NA	40.51	10.19	30.32	NA	2.2
MW-4	12/08/1999	<50.0	NA	<0.500	<0.500	<0.500	<0.500	<2.50	NA	NA	NA	NA	NA	NA	NA	40.51	10.67	29.84	NA	1.8
MW-4	03/14/2000	<50.0	NA	<0.500	<0.500	<0.500	<0.500	<2.50	NA	NA	NA	NA	NA	NA	NA	40.51	9.95	30.56	NA	2.5
MW-4	06/28/2000	<50.0	NA	<0.500	<0.500	<0.500	<0.500	<2.50	NA	NA	NA	NA	NA	NA	NA	40.51	12.22	28.29	NA	0.9
MW-4	09/06/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	40.51	13,17	27.34	NA	3.0
MW-4	12/14/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	40.51	8.65	31.86	NA	NA
MW-4	03/05/2001	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	40.51	11.07	29.44	NA	NA
MW-4	06/11/2001	<50	NA	<0.50	<0.50	<0.50	<0.50	NA	<0.50	NA	NA	NA	NA	NA	NA	40.51	13.62	26.89	NA	1.3
MW-4	09/12/2001	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	40.51	14.61	25.90	NA	NA
MW-4	12/27/2001	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	_ NA	NA	NA	40.51	12,19	28.32	NA	NA
MW-4	02/27/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NĄ	NA	40.45	11.64	28.81	NA	NA
MW-4	06/18/2002	<50	NA	<0.50	<0.50	<0.50	<0.50	NA	<0.50	NA	NA	NA	NA	NA	NA	40.45	13.22	27.23	NA	0.6
MW-4	09/18/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	40.45	14.46	25.99	NA	NA
MW-4	12/27/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	40.45	11.23	29.22	NA	NA
MW-4	03/05/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	40.45	12.22	28.23	NA	NA
MW-4	06/24/2003	57 c	NA	<0.50	<0.50	<0.50	<1.0	NA	12	NA	NA	NA	NA	NA	NA	40.45	12.79	27.66	NA	1.6

								MTBE	MTBE								Depth to	GW	SPH	DO
Well ID	Date	ТРРН	ТЕРН	в	Т	Е	x	8020	8260	DIPE	ETBE	TAME	ТВА	1,2-DCA	EDB	тос	Water	Elevation	Thickness	· ·
		(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)												
MW-4	09/25/2003	NA	NA	40.45	14.45	26.00	NA	NA												
MW-4	12/15/2003	NA	NA	NA	NA	NA .	NA	NA	40.45	13.24	27.21	NA	NA							
MW-4	03/04/2004	NA	NA	40.45	10.93	29.52	NA	NA												
MW-4	05/27/2004	<50	NA	<0.50	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	NA	NA	NA	40.45	13.42	27.03	NA	0.5
MW-4	09/24/2004	NA	NA	40.45	15.11	25.34	NA	NA												
MW-4	11/22/2004	NA	NA	40.45	14.42	26.03	NA	NA												
MW-4	03/02/2005	NA	NA	40.45	10.17	30.28	NA	NA												
MW-4	06/30/2005	<50 d	NA	<0.50	<0.50	<0.50	<1.0	NA	<0.50	<2.0	<2.0	<2.0	<5.0	NA	NA	40.45	11.60	28.85	NA	0.8
MW-4	09/20/2005	NA	NA	40.45	13.18	27.27	NA	NA												
MW-4	12/05/2005	NA	NA	40.45	13.08	27.37	NA	NA												
MW-5	01/29/2002	NA	NA	41.46	12.82	28.64	NA	NA												
MW-5	02/27/2002	190	NA	<0.50	<0.50	0.85	1.5	NA	<5.0	NA	NA	NA	NA	NA	NA	41.46	12.85	28.61	NA	1.9
MW-5	06/18/2002	650	NA	1.4	3.0	52	28	NA	<0.50	NA	NA	NA	NA	NA	NA	41.46	13.65	27.81	NA	0.8
MW-5	09/18/2002	390	NA	0.72	0.51	<0.50	<0.50	NA	<5.0	NA	NA	NA	NA	NA	NA	41.46	15.57	25.89	NA	1.1
MW-5	12/27/2002	380	NA	<0.50	<0.50	0.56	<0.50	NA	<0.50	<2.0	<2.0	<2.0	<50	<2.0	<2.0	41.46	12.51	28.95	NA	1.9
MW-5	03/05/2003	290	NA	<0.50	1.7	9.4	22	NA	<5.0	NA	NA	NA	NA	NA	NA	41.46	13.39	28.07	NA	2.6
MW-5	06/24/2003	220	NA	<0.50	1.0	19	1.3	NA	<0.50	NA	NA	NA	NA	NA	NA	41.46	13.91	27.55	NA	1.7
MW-5	09/25/2003	<50	NA	<0.50	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	NA	NA	NA	41.46	15.58	25.88	NA	2.1
MW-5	12/15/2003	200 c	NA	<0.50	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	NA	NA	NA	41.46	14.45	27.01	NA	0.21
MW-5	03/04/2004	170 c	NA	<0.50	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	NA	NA	NA	41.46	12.52	28. 9 4	NA	0.1
MW-5	05/27/2004	<50	NA	<0.50	<0.50	<0.50	<1.0	NA	<0.50	NA .	NA	NA	NA	NA	NA	41.46	14.49	26.97	NA	0.5
MW-5	09/24/2004	<50	NA	0.71	<0.50	<0.50	<1.0	NA	<0.50	<2.0	<2.0	<2.0	<5.0	NA	NA	41.46	16.08	25.38	NA	1.7
MW-5	11/22/2004	<50 d	NA	<0.50	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	NA	NA	NA	41.46	15.48	25.98	NA	0.3
MW-5	03/02/2005	190	NA	<0.50	<1.0	<1.0	<1.0	NA	<1.0	NA	NA	<2.0	<10	<0.50	NA	41.46	11.52	29.94	NA	0.4
MW-5	06/30/2005	3,200	NA	<5.0	25	200	270	NA	<5.0	NA	NA	NA	NA	NA	NA	41.46	12.33	29.13	NA	0.9
MW-5	09/20/2005	310	NA	<0.50	1.3	47	2.5	NA	<0.50	<2.0	<2.0	<2.0	<5.0	NA	NA	41.46	14.36	27.10	NA	0.5
MW-5	12/05/2005	250	NA	<0.50	0.94	26	<0.50	NA	<0.50	NA	NA	NA	NA	NA	NA	41.46	14.25	27.21	NA	0.58
MW-6	01/29/2002	NA	NA	41.50	3.88	37.62	NA	NA												
MW-6	01/31/2002	NA	NA	41.50	12.43	29.07	NA	NA												
MW-6	02/27/2002	<50	NA	<0.50	<0.50	<0.50	<0.50	NA	<5.0	NA	NA	NA	NA	NA	NA	41.50	12.82	28.68	NA	4.1
MW-6	06/18/2002	<50	NA	<0.50	<0.50	<0.50	<0.50	NA	<0.50	NA	NA	NA	NA	NA	NA	41.50	4.26	37,24	NA	3.9

					<u> </u>			MTBE	MTBE								Depth to	GW	SPH	DO
Well ID	Date	ТРРН	TEPH	в	Т	E	x	8020	8260	DIPE	ETBE	TAME	TBA	1,2-DCA	EDB	тос	Water	Elevation	Thickness	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)
									-											
MW-6	09/18/2002	<50	NA	<0.50	<0.50	<0.50	<0.50	NA	<5.0	NA	NA	NA	NA	NA	NA	41.50	5.26	36.24	NA	4.2
MW-6	12/27/2002	<50	NA	<0.50	<0.50	<0.50	<0.50	NA	<0.50	<2.0	<2.0	<2.0	<50	<2.0	<2.0	41.50	12.11	29.39	NA	3.0
MW-6	03/05/2003	<50	NA	<0.50	<0.50	<0.50	<0.50	NA	<5.0	NA	NA	NA	NA	NA	NA	41.50	13.47	28.03	NA	4.9
MW-6	06/24/2003	<50	NA	<0.50	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	NA	NA	NA	41.50	13.71	27.79	NA	5.8
MW-6	09/25/2003	Well inacc	essible	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	41.50	NA	NA	NA	NA
MW-6	12/15/2003	<50	NA	<0.50	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	NA	NA	NA	41.50	13.17	28.33	NA	5.7
MW-6	03/04/2004	<50	NA	<0.50	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	NA	NA	NA	41.50	11.15	30.35	NA	1.0
MW-6	05/27/2004	<50	NA	0.50	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	NA	NA	NA	41.50	13.68	27.82	NA	1.0
MW-6	09/24/2004	<50	NA	<0.50	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NĂ	NA	NA	NA	41.50	10.71	30.79	NA	3.1
MW-6	11/22/2004	<50 d	NA	0.65	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	NA	NA	NA	41.50	7.60	33.90	NA	6.5
MW-6	03/02/2005	<100	NA	<0.50	<1.0	<1.0	<1.0	NA_	<1.0	NA	NA	<2.0	<10	<0.50	NA NA	41.50	6.77	34.73	NA	6.2
MW-6	06/30/2005	<50	NA _	<0.50	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	NA	NA	NA	41.50	12.87	28.63	NA	1.2
MW-6	09/20/2005	<50	NA	<0.50	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	NA	NA	NA	41.50	14.16	27.34	NA	5.5
MW-6	12/05/2005	<50	NA	<0.50	<0.50	<0.50	<0.50	NA	<0.50	NA	NA	NA	NA	NA	NA	41.50	14.23	27.27	NA	2.40
MW-7	10/21/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	44.45	18.90	25.55	NA	NA
MW-7	12/27/2002	49,000	NA	830	980	2,000	5,200	NA	<10	<10	<10	<10	<100	<10	<10	44.45	15.43	29.02	NA	2.1
MW-7	03/05/2003	32,000	NA	370	490	1,600	2,900	NA	<100	NA	NA	NA	NA	NA	NA	44.45	16.34	28.11	NA	2.6
MW-7	06/24/2003	Well inacc	essible	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	44.45	NA	NA	NA	NA
MW-7	09/25/2003	8,700	NA	57	34	450	290	NA	<5.0	NA	NA	NA	NA	NA	NA	44.45	18.36	26.09	NA	1.2
MW-7	12/15/2003	27,000	NA	170	260	1,200	1,500	NA	<10	NA	NA	NA	NA	NA	NA	44.45	17.44	27.01	NA	1.3
MW-7	03/04/2004	13,000	NA	200	190	1,200	1,200	NA	<5.0	NA	NA	NA	NA	NA	NA	44.45	15.45	29.00	NA	0.1
MW-7	05/27/2004	16,000	NA	76	56	860	420	NA	<5.0	NA	NA	NA	NA	NA	NA	44.45	17.50	26.95	NA	0.5
MW-7	09/24/2004	8,400	NA	26	14	340	200	NA	<5.0	<20	<20	<20	<50	NA	NA	44.45	18.94	25.51	NA	1.1
MW-7	11/22/2004	14,000	NA	92	60	790	730	NA	<5.0	NA	NA	NA	NA	NA	NA	44.45	18.47	25.98	NA	0.2
MW-7	03/02/2005	13,000	NA	130	140	740	980	NA	<10	NA	NA	<20	<100	<5.0	NA	44.45	14.53	29.92	NA	0.7
MW-7	06/30/2005	9,900	NA	27	48	380	520	NA	<10	NA	NA	NA	NA	NA	NA	44.45	15.92	28.53	NA	0.9
MW-7	09/20/2005	7,700	NA	30	.53	380	570	NA_	<5.0	36	<20	<20	<50	NA	NA	44.45	17.28	27.17	NA	1.4
MW-7	12/05/2005	2,900	NA	20	<2.5	270	19	NA	<2.5	NA	NA	NA	NA	NA	NA	44.45	17.40	27.05	NA	0.56
MW-8	10/21/2002	NÁ	NA .	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	43.27	17.70	25.57	NA	NA
MW-8	12/27/2002	30,000	NA	280	220	2,000	5,300	NA	<10	<10	<10	<10	<100	<10	<10	43.27	14.25	29.02	NA	1.2
MW-8	03/05/2003	30,000	NA	220	150	2,100	4,200	NA	<100	NA	NA	NA	NA	NA	NA	43.27	15.36	27.91	NA	1.3

								МТВЕ	MTBE								Depth to	GW	SPH	DO
Well ID	Date	тррн	TEPH	в	т	Е	x	8020	8260	DIPE	ETBE	TAME	тва	1,2-DCA	EDB	тос	Water	Elevation	Thickness	
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	_(ppm)
	,																	· · · · · ·	<u> </u>	
MW-8	06/24/2003	Well inacc	essible	NA	NA	NA	43.27	NA	NA	NA	NA									
MW-8	09/25/2003	26,000	NA	240	53	1,600	2,600	NA	<50	NA	NA	NA	NA	NA	NA	43.27	17.43	25.84	NA	1.0
MW-8	12/15/2003	38,000	NA	290	140	2,200	5,200	NA	<13	NA	NA	NA	NA	NA	NA	43.27	16.24	27.03	NA	0.4
MW-8	03/04/2004	19,000	NA	180	95	1,400	3,900	NA	<13	NA	NA	NA	NA	NA	NA	43.27	14.63	28.64	NA	0.1
MW-8	05/27/2004	19,000	NA	230	41	1,100	2,200	NA	<13	NA	NA	NA	NA	NA	NA	43.27	16.41	26.86	NA	0.5
 MW-8	09/24/2004	21,000	NA	270	42	1,200	2,600	NA	<13	<50	<50	<50	<130	NA	NA	43.27	18.10	25.17	NA	0.7
MW-8	11/22/2004	24,000	NA	200	64	1,400	4,100	NA	<13	NA	NA	NA	_ NA	NA	NA	43.27	17.28	25.99	NA	1.0
MW-8	03/02/2005	16,000	NA	100	44	890	2,300	NA	<10	NA	NA	<20	<100	<5.0	NA	43.27	13.35	29.92	NA	0.6
MW-8	06/30/2005	19,000	NA	110	41	700	2,100	NA	<10	NA	NA	NA	NA	NA	NA	43.27	14.91	28.36	NA	0.8
MW-8	09/20/2005	10,000	NA	86	25	600	1,400	NA	<10	<40	<40	<40	<100	NA	NA	43.27	16.11	27.16	NA	0.8
MW-8	12/05/2005	9,900	NA	130	16	600	1,300	NA	<10	NA	NA	NA	NA	NA	NA	43.27	16.20	27.07	NA	0.56
MW-9	12/10/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	41.65	15.15	26.50	NA	NA
MW-9	12/15/2003	<50	NA	<0.50	<0.50	<0.50	1.3	NA	2.5	NA	NA	NA	NA	NA	NA	41.65	14.48	27.17	NA	0.9
MW-9	03/04/2004	<50	NA	<0.50	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	NA	NA	NA	41.65	12.15	29.50	NA	0.2
MW-9	05/27/2004	<50	NA	<0.50	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	NA	NA	NA	41.65	14.55	27.10	NA	0.5
MW-9	09/24/2004	<50	NA	<0.50	<0.50	<0.50	<1.0	NA	<0.50	<2.0	<2.0	<2.0	<5.0	NA	NA	41.65	16.37	25.28	NA	1.0
MW-9	11/22/2004	<50 d	NA	<0.50	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	NA	NA	NA	41.65	15.62	26.03	NA	0.3
MW-9	03/02/2005	100	NA	<0.50	<1.0	1.4	3.8	NA	<1.0	NA	NA	<2.0	<10	<0.50	NA	41.65	11.40	30.25	NA	0.4
MW-9	06/30/2005	<50	NA	<0.50	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	NA	NA	NA	41.65	12.70	28.95	NA	1.3
MW-9	09/20/2005	<50	NA	<0.50	<0.50	<0.50	1.8	NA	<0.50	<2.0	<2.0	<2.0	<5.0	NA	NA	41.65	14.38	27.27	NA	1.2
MW-9	12/05/2005	<50	NA	<0.50	<0.50	<0.50	0.65	NA	<0.50	NA	NA	NA	NA	NA	NA	41.65	14.25	27.40	NA	1.13
											T							1	-	
MW-10	12/10/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	50.64	24.33	26.31	NA	NA
MW-10	12/15/2003	6,400	NA	3.1	<1.0	33	20	NA	<1.0	NA	NA	<4.0	<10	<1.0	NA	50.64	23.58	27.06	NA	0.3
MW-10	03/04/2004	1,400	NA	1.2	<1.0	16	3.4	NA	<1.0	NA	NA	<4.0	<10	<1.0	NA	50.64	21.20	29.44	NA	0.1
MW-10	05/27/2004	810	NA	<1.0	<1.0	8.3	<2.0	NA	<1.0	NA	NA	<4.0	<10	<1.0	NA	50.64	23.63	27.01	NA	0.5
MW-10	09/24/2004		NA	1.2	<1.0	7.3	<2.0	NA	<1.0	<4.0	<4.0	<4.0	<10	<1.0	<1.0	50.64	25.30	25.34	NA	1.5
MW-10	11/22/2004	1,100	NA	1.1	<0.50	17	<1.0	NA	<0.50	NA	NA	<2.0	<5.0	<0.50	NA	50.64	24,62	26.02	NA	0.4
MW-10	03/02/2005	920	NA	0.60	<1.0	3.5	<1.0	NA	<1.0	NA	NA	<2.0	<10	<0.50	NA	50.64	20.72	29.92	NA	0.4
MW-10	06/30/2005	470 f	NA	<0.50	<0.50	1.4	<1.0	NA	<0.50	NA	NA	<2.0	<5.0	<0.50	NA	50.64	21.48	29.16	NA	1.4
MW-10	09/20/2005	420	NA	<0.50	<0.50	1.2	2.1	NA	<0.50	<2.0	<2.0	<2.0	<5.0	<0.50	NA	50.64	23.45	27.19	NA	2.0
MW-10	12/05/2005	420	NA	<0.50	<0.50	1.1	<0.50	NA	<0.50	NA	NA	<0.50	<5.0	<0.50	NA	50.64	23.42	27.22	NA	0.97

Well ID	Date	TPPH (ug/L)	TEPH (ug/L)	B (ug/L)	T (ug/L)	E (ug/L)	X (ug/L)	MTBE 8020 (ug/L)	MTBE 8260 (ug/L)	DIPE (ug/L)	ETBE (ug/L)	TAME (ug/L)	TBA (ug/L)	1,2-DCA (ug/L)	EDB (ug/L)	TOC (MSL)	Depth to Water (ft.)	GW Elevation (MSL)	SPH Thickness (ft.)	DO Reading (ppm)
MW-11	12/10/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	45.58	19.10	26.48	NA	NA
MW-11	12/15/2003	110,000	NA	9,900	3,300	3,900	23,000	NA	20,000	NA	NA	<800	18,000	<200	NA	45.58	18.50	27.08	NA	0.3
MW-11	03/04/2004	68,000	NA	5,300	3,000	3,600	23,000	NA	8,300	NA	NA	<200	12,000	<50	NA	45.58	16.67	28.91	NA	0.1
MW-11	05/27/2004	86,000	NA	8,500	3,200	13,000	22,000	NA	25,000	NA	NA	<400	18,000	<100	NA	45.58	18.60	26.98	NA	1.6
MW-11	09/24/2004	63,000	NA	7,200	2,000	3,000	15,000	NA	26,000	<400	<400	<400	17,000	<100	<100	45.58	20.22	25.36	NA	2.2
MW-11	11/22/2004	96,000	NA	7,100	3,700	2,800	15,000	NA	20,000	NA	NA	<400	14,000	<100	NA	45.58	19.56	26.02	NA	0.3
MW-11	03/02/2005	63,000	NA	6,200	6,800	2,200	15,000	NA	16,000	NA	NA	<200	7,800	<50	NA	45.58	15.75	29.83	NA	4.6
MW-11	06/30/2005	100,000	NA	4,200	18,000	3,800	25,000	NA	2,500	NA	NA	<400	3,400	<100	NA	45.58	16.92	28.66	NA	1.0
MW-11	09/20/2005	65,000	NA	3,800	10,000	3,100	19,000	NA	3,900	<400	<400	<400	4,600	<100	NA	45.58	18.43	27.15	NA	NA
MW-11	12/05/2005	69,000	NA	4,000	10,000	3,100	16,000	NA	7,400	NA	NA	<50	4,400	<50	NA	45.58	18.26	27.32	NA	0.70

							-	MTBE	MTBE								Depth to	GW	SPH	DO
Well ID	Date	ТРРН	TEPH	в	т	Е	X	8020	8260	DIPE	ETBE	TAME	TBA	1,2-DCA	EDB	тос	Water	Elevation	Thickness	Reading
		(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)												

Abbreviations:

TPPH = Total petroleum hydrocarbons as gasoline by EPA Method 8260B; prior to June 11, 2001, analyzed by EPA Method 8015.

TEPH = Total petroleum hydrocarbons as diesel by modified EPA Method 8015.

BTEX = Benzene, toluene, ethylbenzene, xylenes by EPA Method 8260B; prior to June 11, 2001, analyzed by EPA Method 8020.

MTBE = Methyl tertiary butyl ether

DIPE = Di-isopropyl ether, analyzed by EPA Method 8260

ETBE = Ethyl tertiary butyl ether, analyzed by EPA Method 8260

TAME = Tertiary amyl methyl ether, analyzed by EPA Method 8260

TBA = Tertiary butyl alcohol, analyzed by EPA Method 8260

1,2-DCA = 1,2-dichloroethane, analyzed by EPA Method 8260

EDB = 1,2-dibromomethane or ethlyene dibromide, analyzed by EPA Method 8260

TOC = Top of Casing Elevation

SPH = Separate-Phase Hydrocarbons

GW = Groundwater

DO = Dissolved Oxygen

ug/L = Parts per billion

ppm = Parts per million

MSL = Mean sea level

ft. = Feet

<n = Below detection limit

(D) = Duplicate sample

NA = Not applicable

Well I	Date	ТРРН	ТЕРН	В	т	E	x	MTBE 8020	MTBE 8260	DIPE	ETBE	TAME	ТВА	1,2-DCA	EDB	тос	Depth to Water	GW Elevation	SPH Thickness	DO Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)						

Notes:

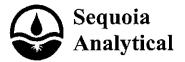
a = Chromatogram pattern indicates an unidentified hydrocarbon.

b = Samples not analyzed due to laboratory oversight.

c = Hydrocarbon does not match pattern of laboratory's standard.

d = The concentration reported reflects individual or discrete unidentified peaks not matching a typical fuel pattern.

e = Estimated value. The concentration exceeded the calibration of analysis.


f = Quantit. of unknown hydrocarbon(s) in sample based on gasoline.

* = Sample analyzed out of EPA recommended hold time.

Site surveyed January 23, 2002 by Virgil Chavez Land Surveying of Vallejo, CA.

Survey data for wells MW-7 and MW-8 provided by Cambria Environmental Technology.

Wells MW-9, MW-10, and MW-11 surveyed December 11, 2003 by Virgil Chavez Land Surveying of Vallejo, CA.

885 Jarvis Drivc Morgan Hill, CA 95037 (408) 776-9690 FAX (408) 782-6308 www.sequoialabs.com

; . <u>.</u>

21 December, 2005

Michael Ninokata Blaine Tech Services - San Jose (Shell) 1680 Rogers Avenue San Jose, CA 95112

RE: 1784 150th Ave., San Leandro Work Order: MOL0341

Enclosed are the results of analyses for samples received by the laboratory on 12/06/05 16:10. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

There aller

Theresa Allen Project Manager

CA ELAP Certificate #1210

Page 1 of 10

Blaine Tech Services - San Jose (Shell)	Project: 1784 150th Ave., San Leandro	MOL0341
1680 Rogers Avenue	Project Number:051205-WC-2	Reported:
San Jose CA, 95112	Project Manager: Michael Ninokata	12/21/05 12:55

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-2	MOL0341-01	Water	12/05/05 14:25	12/06/05 16:10
MW-5	MOL0341-02	Water	12/05/05 12:05	12/06/05 16:10
MW-6	MOL0341-03	Water	12/05/05 11:27	12/06/05 16:10
MW-7	MOL0341-04	Water	12/05/05 13:41	12/06/05 16:10
MW-8	MOL0341-05	Water	12/05/05 14:03	12/06/05 16:10
MW-9	MOL0341-06	Water	12/05/05 10:55	12/06/05 16:10
MW-10	MOL0341-07	Water	12/05/05 14:48	12/06/05 16:10
MW-11	MOL0341-08	Water	12/05/05 15:00	12/06/05 16:10

Blaine Tech Services - San Jose (Shell)	Project: 1784 150th Ave., San Leandro	MOL0341
1680 Rogers Avenue	Project Number:051205-WC-2	Reported:
San Jose CA, 95112	Project Manager: Michael Ninokata	12/21/05 12:55

Purgeable Hydrocarbons and Volatile Organic Compounds by EPA method 8260B Sequoia Analytical - Morgan Hill

Analyzcd 12/16/05 " " " " " " " 12/16/05	Method EPA 8260B " " " " " " " " " " " "	Note
11 11 11 11 11	0 11 12 12 14 14 14 14 14 14 14 14 14 14 14 14 14	
11 11 11 11 11	0 11 12 12 14 14 14 14 14 14 14 14 14 14 14 14 14	
11 11 11 11	11 12 14 14 14 17	
11 11 11 11	1) 11 11	
11 11 <i>11</i>	n n 11	
11 11	H H	
"	"	
10/16/05		
10/16/05	EDA 83/00	
12/10/05	EPA 8260B	
11	11	
0	н	
h	н	
	н	
м		
"	tf.	
12/16/05	EPA 8260B	
11	11	
	n	
**	н	
"	н	
n	u	
"	11	
_	12/16/05 " " "	12/16/05 EPA 8260B

Blaine Tech Services - San Jose (Shell)	Project:1784 150th Ave., San Leandro	MOL0341
1680 Rogers Avenue	Project Number:051205-WC-2	Reported:
San Jose CA, 95112	Project Manager: Michael Ninokata	12/21/05 12:55

Purgeable Hydrocarbons and Volatile Organic Compounds by EPA method 8260B Sequoia Analytical - Morgan Hill

Analyic	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-8 (MOL0341-05) Water	Sampled: 12/05/05 14:03	Received:	12/06/0	5 16:10					
Methyl tert-butyl ether	ND	10	ug/l	20	5L16036	12/16/05	12/17/05	EPA 8260B	
Gasoline Range Organics (C4-C	12) 9900	1000		11	11	11	11	11	
Benzene	130	10		'n	11		н	17	
Toluene	16	10		н		н	11	н	
Ethylbenzene	600	10		IF.	н	н	n	и	
Xylenes (total)	1300	10		U.	u.	"	П	11	
Surrogate: 1,2-Dichloroethane-d4	1	82 %	60	-135	"	"	n	"	
MW-9 (MOL0341-06) Water	Sampled: 12/05/05 10:55	Received:	12/06/0	5 16:10					
Methyl tert-butyl ether	ND	0.50	ug/l	1	5L16036	12/16/05	12/17/05	EPA 8260B	
Gasoline Range Organics (C4-C1)	2) ND	50			0		н	11	
Benzene	ND	0.50				н	н	11	
Toluene	ND	0.50					11	н	
Ethylbenzene	ND	0.50	н	H	4		te	п	
Xylenes (total)	0.65	0.50	u	11	11		N	ц	
Surrogate: 1,2-Dichloroethane-d4	1	74 %	60	-135	"	r#	"	11	

885 Jarvis Drive Morgan Hill, CA 95037 (408) 776-9600 FAX (408) 782-6308 www.sequoialabs.com

Blaine Tech Services - San Jose (Shell) 1680 Rogers Avenue San Jose CA, 95112	Project:1784 150th Ave., San Leandro Project Number:051205-WC-2 Project Manager:Michael Ninokata							MOL0341 Reported: 12/21/05 12:55	
Ve	latile Orgar	ic Com	pounds	by EPA	A Metho	od 8260]	B		
	Sequ	oia Ana	lytical	- Morg	an Hill				
Analyic	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-2 (MOL0341-01) Water Sampled	12/05/05 14:25	Received:	12/06/05	5 16:10					
Gasoline Range Organics (C4-C12)	690	500	ug/l	10	5L15027	12/15/05	12/15/05	EPA 8260B	
Benzene	150	5.0	11	M	н		17	н	
Toluene	6.1	5.0		•)	r=	**		11	
Ethylbenzene	21	5.0	11	"	и	11	0		
Xylenes (total)	130	5.0	11	11	11	и	U	n	
Methyl tert-butyl ether	450	5.0	"	"	"	"			
tert-Amyl methyl ether	ND	5.0	"		и и	"			
tert-Butyl alcohol	520	50			 11		-,		
1,2-Dichloroethane	ND	5.0				"		"	
Surrogate: 1,2-Dichloroethane-d4		109 %		135	.,			"	
MW-10 (MOL0341-07) Water Sample			I: 12/06/0	05 16:10					
Gasoline Range Organics (C4-C12)	420	50	ug/l	I	5L15027	12/15/05	12/15/05	EPA 8260B	
Benzene	ND	0.50			11	"	и 11		
Toluene	ND	0.50	"	n 0	"	11 17	11 12	"	
Ethylbenzene	1.1	0.50	" "		.,	"		11	-
Xylenes (total)	ND	0.50		"				n N	
Methyl tert-butyl ether	ND	0.50			11		u.	ш	
tert-Amyl methyl ether	ND ND	0.50 5.0		ш	11	н		υ	
tert-Butyl alcohol 1,2-Dichloroethane	ND	0.50		п	11	"		н	
Surrogate: 1,2-Dichloroethane-d4		110 %	60	135	"		"	"	
-	1 12/05/05 15-0								
· · · · · · · · · · · · · · · · · · ·	d: 12/05/05 15:00								
Gasoline Range Organics (C4-C12)	69000	5000	ug/l "	100	5L15027 "	12/15/05	12/15/05	EPA 8260B	
Benzene	4000	50 50						u	
Toluene	10000	50 50			ir				
Ethylbenzene Xylenes (total)	3100 16000	50		"	ħ	п	11	u	
Methyl tert-butyl ether	7400	50				u	п	u	
tert-Amyl methyl ether	ND	50	P	11		u	11	17	
tert-Butyl alcohol	4400	500	u	п	u		ш	-	
1,2-Dichloroethane	ND	50	ir	п	11	н	н	"	
Surrogate: 1,2-Dichloroethane-d4		108 %	60-	135	"	"		"	
Barrogaie, 1,2-Diemoroemane-ut		100 /0	00						

The results in this report apply to the samples analyzed in accordance with the chain of custody document. Unless otherwise stated, results are reported on a wet weight basis. This analytical report must be reproduced in its entirety.

Ч.

Blaine Tech Services - San Jose (Shell)	Project: 1784 150th Ave., San Leandro	MOL0341
1680 Rogers Avenue	Project Number:051205-WC-2	Reported:
San Jose CA, 95112	Project Manager: Michael Ninokata	12/21/05 12:55

Purgeable Hydrocarbons and Volatile Organic Compounds by EPA method 8260B - Quality Control Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5L15021 - EPA 5030B P/T / E	PA 8260B									
Blank (5L15021-BLK1)				Prepared:	12/15/05	Analyzed	l: 12/16/05			
Methyl tert-butyl ether	ND	0.50	ug/i							
Gasoline Range Organics (C4-C12)	ND	50								
Benzene	ND	0.50								
Toluene	ND	0.50								
Ethylbenzene	ND	0.50								
Xylenes (total)	ND	0.50								
Surrogate: 1,2-Dichloroethane-d4	2.16		H	2.50		86	60-135			
Laboratory Control Sample (5L15021-B	S1)			Prepared:	12/15/05	Analyzed	l: 12/16/05			
Methyl tert-butyl ether	5.96	0.50	ug/l	7.02		85	65-125			
Gasoline Range Organics (C4-C12)	462	50	•	440		105	53-126			
Benzene	5.58	0.50	•	5.16		108	65-115			
Toluene	39.8	0.50	11	37.2		107	85-120			
Ethylbenzene	7.45	0.50	н	7.54		99	75-135			
Xylenes (total)	37.6	0.50		41.2		91	85-125			
Surrogate: 1,2-Dichloroethane-d4	2.28		п	2.50		91	60-135			
Matrix Spike (5L15021-MS1)	Source: M	OL0341-04		Prepared:	12/15/05	Analyzed	1: 12/16/05			
Methyl tert-butyl ether	30.0	2.5	ug/l	35.1	ND	85	65-125			
Gasoline Range Organics (C4-C12)	4450	250		2200	2900	70	53-126			
Benzene	44.6	2.5	м	25.8	20	95	65-115			
Tolucne	206	2.5	69	186	2.2	110	85-120			
Ethylbenzene	268	2.5	н	37.7	270	0	75-135			QM05
Xylenes (total)	198	2.5	"	206	19	87	85-125			
Surrogate: 1,2-Dichloroethane-d4	2.37		"	2.50		95	60-135			
Matrix Spike Dup (5L15021-MSD1)	Source: M	OL0341-04		Prepared:	12/15/05	Analyzed	1: 12/16/05			
Methyl tert-butyl ether	31.4	2.5	ug/l	35.1	ND	89	65-125	5	20	
Gasoline Range Organics (C4-C12)	4500	250	п	2200	2900	73	53-126	1	20	
Benzene	45.0	2.5	и	25.8	20	97	65-115	0.9	20	
Toluene	206	2.5		186	2.2	110	85-120	0	20	
Ethylbenzene	274	2,5	"	37.7	270	11	75-135	2	15	QM0
Xylenes (total)	201	2.5	"	206	19	88	85-125	2	20	
Surrogate: 1,2-Dichloroethane-d4	2.24		ti	2.50		90	60-135			

Sequoia Analytical - Morgan Hill

The results in this report apply to the samples analyzed in accordance with the chain of custody document. Unless otherwise stated, results are reported on a wet weight basis. This analytical report must be reproduced in its entirety.

÷

Blaine Tech Services - San Jose (Shell)	Project: 1784 150th Ave., San Leandro	MOL0341
1680 Rogers Avenue	Project Number:051205-WC-2	Reported:
San Jose CA, 95112	Project Manager: Michael Ninokata	12/21/05 12:55

Purgeable Hydrocarbons and Volatile Organic Compounds by EPA method 8260B - Quality Control Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5L16036 - EPA 5030B P/T / EPA 8	3260B									
Blank (5L16036-BLK1)	•			Prepared a	& Analyze	ed: 12/16/0	05			_
Methyl tert-butyl ether	ND	0.50	ug/l	· · · · ·						
Gasoline Range Organics (C4-C12)	ND	50								
Benzene	ND	0.50	11							
Toluene	ND	0.50								
Ethylbenzene	ND	0.50	te.							
Xylenes (total)	ND	0.50								
Surrogate: 1,2-Dichloroethane-d4	3.75		"	5.00		75	60-135			
Laboratory Control Sample (5L16036-BS1)				Prepared	& Analyze	ed: 12/16/	05			
Methyl tert-butyl ether	7.10	0.50	ug/l	7.02		101	65-125			
Gasoline Range Organics (C4-C12)	410	50	н	440		93	53-126			
Benzene	4.98	0.50	и	5.16		97	65-115			
Toluene	38.4	0.50	11	37.2		103	85-120			
Ethylbenzene	6.62	0.50	u	7.54		88	75-135			
Xylenes (total)	38.5	0.50	n	41.2		93	85-125			
Surrogate: 1,2-Dichloroethane-d4	3.89		"	5.00		78	60-135			
Matrix Spike (5L16036-MS1)	Source: M	OL0562-01		Prepared:	12/16/05	Analyzed	l: 12/17/05			
Mcthyl tert-butyl ether	192	2.5	ug/l	35.1	170	63	65-125			QM05
Gasoline Range Organics (C4-C12)	3060	250	11	2200	860	100	53-126			
Benzene	47.6	2.5		25.8	21	103	65-115			
Tolucne	198	2.5	н	186	4.0	104	85-120			
Ethylbenzene	45.0	2.5	71	37.7	10	93	75-135			
Xylenes (total)	278	2.5		206	90	91	85-125			
Surrogate: 1,2-Dichloroethane-d4	4.20		"	5.00		84	60-135			-
Matrix Spike Dup (5L16036-MSD1)	Source: M	OL0562-01		Prepared:	12/16/05	Analyzed	1: 12/17/05			
Methyl tert-butyl ether	170	2.5	ug/l	35.1	170	0	65-125	12	20	QM0
Gasoline Range Organics (C4-C12)	2780	250		2200	860	87	53-126	10	20	
Benzene	47.8	2.5		25.8	21	104	65-115	0.4	20	
Toluene	205	2.5	"	186	4.0	108	85-120	3	20	
Ethylbenzene	46.7	2.5		37.7	10	97	75-135	4	15	
Xylenes (total)	283	2.5	n	206	90	94	85-125	2	20	
Surrogate: 1,2-Dichloroethane-d4	3.69		н	5.00		74	60-135			

Sequoia Analytical - Morgan Hill

Blaine Tech Services - San Jose (Shell) 1680 Rogers Avenue San Jose CA, 95112	Project: 1784 150th Ave., San Leandro Project Number: 051205-WC-2 Project Manager: Michael Ninokata								MOL0341 Reported: 12/21/05 12:55		
Volatile Org		pounds by uoia Ana	-			- Qual	ity Con	trol			
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch 5L15027 - EPA 5030B P/T / EP	A 8260B										
Blank (5L15027-BLK1)				Prepared	& Analyze	ed: 12/15/	05				
Gasoline Range Organics (C4-C12)	ND	50	ug/l	· ·							
Benzene	ND	0.50	14								
Тоциене	ND	0.50	"								
Ethylbenzene	ND	0.50	м								
Xylencs (total)	ND	0.50	el								
Methyl tert-butyl ether	ND	0.50	"								
Di-isopropyl ether	ND	0.50	a								
Ethyl tert-butyl ether	ND	0.50	11								
tert-Amyl methyl ether	ND	0.50	"								
tert-Butyl alcohol	ND	5.0	11								
1,2-Dichloroethanc	ND	0.50	11								
Ethanol	ND	100	11								
Surrogate: 1,2-Dichloroethane-d4	2.68		"	2.50		107	60-135				
Laboratory Control Sample (5L15027-BS	51)			Prepared	& Analyze	d: 12/15/	05				
Gasoline Range Organics (C4-C12)	474	50	ug/l	440		108	60-140				
Вепzепе	4.48	0.50	17	5.16		87	65-115				
Tolucne	33.8	0.50	0	37.2		91	85-120				
Ethylbenzene	6.68	0.50	11	7.54		89	75-135				
Xylenes (total)	38.0	0.50	"	41.2		92	85-125				
Methyl tert-butyl ether	7.89	0.50	"	7.02		112	65-125				
Di-isopropyl ether	16.4	0.50	41	15.1		109	75-125				
Ethyl tert-butyl ether	16.5	0.50	u	15.0		110	75-130				
tert-Amyl methyl ether	16.2	0.50	11	15.0		108	80-115				
tert-Butyl alcohol	145	5.0	н	143		101	75-150				
1,2-Dichloroethane	15.1	0.50	п	14.7		103	85-130				
Ethanol	126	100	п	142		89	70-135				
Surrogate: 1,2-Dichloroethane-d4	2.57		a	2.50	_	103	60-135				

Blaine Tech Services - San Jose (Shell)	Project: 1784 150th Ave., San Leandro	MOL0341
1680 Rogers Avenue	Project Number:051205-WC-2	Reported:
San Jose CA, 95112	Project Manager: Michael Ninokata	12/21/05 12:55

Volatile Organic Compounds by EPA Method 8260B - Quality Control Sequoia Analytical - Morgan Hill

			v							
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5L15027 - EPA 5030B P/T /	EPA 8260B									
Laboratory Control Sample Dup (5L1)	5027-BSD1)			Prepared	& Analyze	ed: 12/15/	05			
Gasoline Range Organics (C4-C12)	497	50	ug/l	440		113	60-140	5	25	
Benzene	4.71	0.50		5.16		91	65-115	5	20	
Toluene	35.7	0.50	11	37.2		96	85-120	5	20	
Ethylbenzene	7.11	0.50	11	7.54		94	75-135	6	15	
Xylenes (total)	40.2	0.50	"	41.2		98	85-125	6	20	
Methyl tert-butyl ether	8.52	0.50	"	7.02		121	65-125	8	20	
Di-isopropyl ether	17.0	0.50	"	15.1		113	75-125	4	15	
Ethyl tert-butyl ether	17.3	0.50	11	15.0		115	75-130	5	25	
tert-Amyl methyl ether	17.2	0.50	11	15.0		115	80-115	6	15	
tert-Butyl alcohol	167	5.0	11	143		117	75-150	14	25	
I,2-Dichloroethane	15.8	0.50	11	14.7		107	85-130	5	20	
Ethanol	151	100	11	142		106	70-135	18	35	
Surrogate: 1,2-Dichloroethane-d4	2.64		"	2.50		106	60-135			
Surrogate: 1,2-Dichloroethane-d4	2.64		"	2.50		106	60-135			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. Unless otherwise stated, results are reported on a wet weight basis. This analytical report must be reproduced in its entirety.

1680 Ro	ech Services - San Jose (Shell) gers Avenue CA, 95112	Project:1784 150th Ave., San Leandro Project Number:051205-WC-2 Project Manager:Michael Ninokata	MOL0341 Reported: 12/21/05 12:55
		Notes and Definitions	
QM05		limits for the MS and/or MSD due to analyte concentration at 4 tim pted based on LCS and/or LCSD recoveries within the acceptance is	
DET	Analyte DETECTED		
ND	Analyte NOT DETECTED at or above the	reporting limit or MDL, if MDL is specified	
NR	Not Reported		
dry	Sample results reported on a dry weight bas	sis	
RPD	Relative Percent Difference		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. Unless otherwise stated, results are reported on a wet weight basis. This analytical report must be reproduced in its entirety.

LAB: Test America SIL Otrivi	· ••••		-	-	a da S	SH	EĽ	.L (Ch	ai	'nĈ)f (Cu	sto	dy	Reco	Brd		• .	
TA - Irvine, California	Shell Project	Manager to b	e Inv	oice	d:		-					-		E BIN	HOPN	NUMBÉ	enes:	ONIN		i,
TA - Morgan Hill, California	l		C 1111	0100									ŀ		775 20141414	Treat Cald Ship		1	<u>tantsi</u>	
TA - Nashville, Tennesce	ENVIRONMENT	AL SERVICES	Den	lis E	Bro∖	wn		•						9	8 9	9	6 0	6	8	DATE: 1215/05
	TECHNICAL SER	VICES			•											ATENUME				
Other (location)		<u> </u>											. [影響			EN UU		黫	PAGE: of
			t for e	NV. RE	EMEDIA	NOITA	1 - NO E	ЕПМ -	- SEND) PAPE	r invo	DICE			- C.					· · · · · · · · · · · · · · · · · · ·
AAPLING COMPANY:	LOG CODE:		SITEA	ODRES	59: Str	eet and	City						-	State		GLOBAL .	DNO.;			·
Blaine Tech Services	BTSS		178	4 15	50th	۰Δ۱	/e !	Sar	a i e	an	Iro			СА		T060	0104	230		
ADORESS:		<u> </u>	EDF DEL	IVERAB	LE TO (Respon	nible Par	rty or De	esignee):	-un		PHONE				E-MAIL	0101	200		CONSULTANT PROJECT NO.
680 Rogers Avenue, San Jose, CA 95112																				051205-000
PROJECT CONTACT (Herdcopy or PDF Report to):			Annl									(510)	420-	3335		Shell.er	n.edf@)cambi	ria-en	
Michael Ninokata					AE(S) (Pr														UAB	USE ONLY IN SUCCESSION SUCCESSION
TELEPHONE: FAX: 408-573-0555 408-573-7771	ENAL: mninokata@blain			μ):(l		C	50	S l	\sim).								
TURNAROUND TIME (STANDARD IS 10 CALENDAR DAYS		SULTS NEEDED						_					RE	QUE	STED	ANALYS	is			MOL0341)
LA - RWQCB REPORT FORMAT UST AGENCY:				Ţ			- 1					-	T				<u> </u>	T7	$\overline{1}$	
				Í			- 1	·		:				1				$ \rangle$		
	HEST per BORING	ALL			Í														T	FIELD NOTES:
SPECIAL INSTRUCTIONS OR NOTES: CHEC	K BOX IF EDD IS NOT			£																
			Purgeable (8260B)	(8015M)		~		- 1				1								or PiD Readings or Laboratory Notes
			826	ĕ		(8260B)		1											1	e or Laboratory Notes
			e (Pe		8					:	ଳ	- 1		Ξ				- l	1 Hunder of the second s
			eap	뭥		3	ĝ	<u>_</u>	â	(8)	â	60	2	80	5					
			- Di	Extractable	290	la l	220	8	2601	3260	260	ଞ୍ଚ	808	8	8			1		(82608)
LAB	EIPT VERIFICATION R		إبا	Ш	۳.	ğ	<u></u>	8	(8	9) E	8	8	8	ē						
Field Sample Identification	DATE TIME	MATRIX NO. OF	H	- Hat	BTEX (8260B)	6 Oxygenates	MTBE (82608)	TBA (8250B)	DIPE (8260B)	TAME (8260B)	ETBE (8260B)	1,2 DCA (8260B)	EDB (8260B)	Ethanol (8260B)	Mathanol (8016M)					TEMPÉRATURE ON RÉCÉIPT C°
MW-2 01 12	5/05 4251		<u>لم</u>	-	× 1	<u>v</u>	<u></u>	ঈ		Ž		Ż	<u> </u>	<u> </u>	2			┼╌┼	\rightarrow	
MW-2 01 121 MW-5 02	1205		K	Ť	X		Æ	<u>z</u> [<u>י</u>	1		\frown				╎╎	+		┈┼	<u> </u>
MWG of	1127		٢Ì	Ť	X	-	ŚÌ							-+	+	+ +	+	<u> </u>	\neg	<u> </u>
MW-7 by	1341		Ŕ	ľ	X	Ť	Ż										┥╴	╏──┼		
MW-8 or	1403		Ζſ	Ť	X		ঠ					-				┼─┼╌		┨──┤		
mut-9	1055	1 -	X	1	A	ĺ	X	\square					+			┼┼-	+			
MW-10 07	1448	1 1 1			X	-{	之	X		X		\mathbf{X}					+			
			ĭ√†		\checkmark	-#	($\leftarrow \dagger$			- 6	र्तने	╶╌╂	-+		┼─┼─	+	┢┼┤	-+	
mw-ll of	1500	Ψ Ψ	\Box		\mathbf{V}	,	Δ	N		X		\mathbf{N}							1	· ·
						T		1							_					
	┟──┼╶─┼		┠─┤	-+	 -			[-+	-+		[╆╌┟╴				
		I																		1
Relinquished by: (Signature)		Received by: (Signature)		0		~		<u> </u>		7	5.		e,	· ' •	Date	2/5/		-	-+	Terne: 1619
'biahed by: (Signature)	······	Received by: (Signature)	C	<u> </u>		0				<u> </u>		Lis	hee	500			20			
Stepte aso		UMAM	11	/	1	-	~~~										1951			
T(Sippelus)	1010	Received by: (Signalure)		10									-			16/6	<u>``</u>			
"ILL T	["							1							100	11/	and the second s			Time:
Vinal report, Green to File (S-2001)/2018/17-19, 5	warrie	******			7	an	<u>n d</u>	120	é.	-	QLI BOR				17	010	<u>۲</u>		an l	1410

÷

SEQUOIA ANALYTICAL SAMPLE RECEIPT LOG

CLIENT NAME: <u>Shall</u> REC. BY (PRINT) <u>ST</u> WORKORDER: <u>MOLD</u>		-	DATE REC'D AT LAB TIME REC'D AT LAB DATE LOGGED IN:		-	•	For Regulatory Purposes? DRINKING WATER YES NO WASTE WATER YES NO		
CIRCLE THE APPROPRIATE RESPONSE	LAB SAMPLE#	DASH #	CLIENT ID .	CONTAINER DESCRIPTION	PRESERV ATIVE	pH ·	SAMPLE MATRIX	DATE . SAMPLED	REMARKS: CONDITION (ETC.)
1. Custody Seal(s) Present / (bsenf) Intact / Broken*									
2. Chain-of-Custody (Present)/ Absent*	· ·				ļ	· · · ·	·	· · · ·	
3. Traffic Reports or Packing List: Present / Absent		· · ·	· · ·	· <u>·</u> ·· ····			· ·	·	
4. Airbill: Airbill / Sticker		<u></u> 					· · · · · · · · · · · · · · · · · · ·	. /	Z
Present/Absent)	·			ļ			·		· · · · · · · · · · · · · · · · · · ·
5. Airbill #: 6. Sample Labels: Present / Absent	· · · ·	<u> </u>		<u> </u>			105	·/	}
7. Sample Labers: Present Absent	<u> </u>					101		1	<u> </u>
on Chain-of-Custody		<u> </u>				10/04	<u> </u> ,∕	<u> </u>	· · · · · · · · · · · · · · · · · · ·
8. Sample Condition: (intact// Broken* /	· · ·						<u> </u>	1	· · · · · · · · · · · · · · · · · · ·
Leaking*					20	/	1	<u> </u>	·····
9. Does information on chain-of-custody,								· · ·	· · ·
traffic reports and sample labels			·	\	ν		· ·		
agree? (Yes) No*		ŀ	· · · · · · · · · · · · · · · · · · ·	0	Z .				
10. Sample received within				0/					
hold time? (Yes) No*		ļ		B		· · ·			
11. Adequate sample volume							· .	••	· · · · · · · · · · · · · · · · · · ·
received? (Yes) No*	ļ	· .	· · · ·	<u>K. </u>			ļ.		
12. Proper preservatives used? Yes/ No*	····	<u> </u>					<u> </u>	· ·	
13. Trip Blank / Temp Blank Received?	ļ	<u> </u>			ļ	•		ļ	
(circle which, if yes)	· ·		· · / ·		<u>.</u>		· ·	<u> </u>	
14. Read Temp:		ļ	· · · ·					1	
Corrected Temp:						•		· ·	
Is corrected temp 4 +/-2°C? (Yes)/ No**		/							
(Acceptance range for samples requiring thermal pres.)		K				•	1.	· ·	·····
**Exception (if any): METALS / DFF ON ICE						•	· .		`.
or Problem COC				· · · · · · · · · · · · · · · · · · ·			 		
Contraction of the second s			CONTACT PROJECT N	ANAGED AND		RECOD			****
• Revision 7 •es Rev 5 (07/13/04) 97/19/05				IANAGED ANE		, 			Page <u></u> of

WELL GAUGING DATA

Project # 05 1205 - WL-2 Date 12/5/05 Client Shell

Site 1784 150th Ave, San Landro

						·				
		Well Size	S hare (Depth to	Thickness of	Volume of Immiscibles			Survey	
	Well ID	(in.)	Sheen / Odor		Immiscible Liquid (ft.)	Removed (ml)	Depth to water (ft.)	Depth to well bottom (ft.)	or 20C	
¥	mw-1	4	se	bel			21.92	44.63		sph V
	mw.2	4					18.58	45.95		
	MW.3	4	· · · · · ·				24.65	41.60		9.0
	MW-4	2	-			pruz 13.08	14.25	34:82	8-24.96	<u>s.o</u>
	mw-5	2					14:25	24.89		3 .
	mw-6	2	· .	·			14.23	19.48		
5	pw.7	2		· ·			17.40	26.87		
	m 8	2	•••				16.20	24.12		
	mu-9	2		· ·			14.25	34.85		
	MW-10	4					23.42	31.65		
	mw-11	4		· · .	· · ·		18.26.	24.78	J.	· · · ·
				-		<u> </u>				· ·
R	MW-I	Ц		21.84	0.06		21.90	، هميني من	Toc	
Ļ	Dre	gasa	ed w	1 min	stace	o per	Sou)		
	 					- B				
								, <u></u>		

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

Ż

	_				•					
BTS #:0512	35 · WC.	2	Site: 1784 150th Aver Subardo							
Sampler: WC			Date: 1215/05							
Well I.D.: Mu	N-1		Well Diameter	r: 2 3 🖉	6 8					
Total Well Dept	h (TD):		Depth to Wate	er (DTW): 21	.લ૦					
Depth to Free Pr	oduct: 21	.84	Thickness of F	Free Product (fee	t): 0.06					
Referenced to:	<u> </u>	Grade	D.O. Meter (if req'd): YSI HACH							
	sable Bailer		Waterra Peristaltic	Sampling wood	Bailer Disposable Bailer					
	ve tin Displacente ic Submerstation	ent Extra Other	Ction Pump	ter Multiplier Welth	Extraction Port Dedicated Tubing					
(Gals.)) Case Volume	Spectred Volum	Tes Calculated V	Gals.	0.04 0.16 0.37 0.16	iameter Multiplier 0.65 1.47 radius ² * 0.163					
Time Tem	р ([°] F) рН	Cond. (mS or µS)	Turbidity (NTUs)	Gals. Removed	Observations					
	0.06	spho	retected	w/ Int	urface Prot					
> N	o act	ion ta	ken.							
				mewaquated						
mpling Date:		Sampling Tin		Depth to Water						
Sample I.D.:			Laboratory:	STL Other						
	TPH-G BTEX	MTBE TPH-D	Other:							
EB I.D. (if applie		Time		(if applicable):						
nalyzed for:	NH-G BTEX	MTBE TPH-D	Other:							
D.O. (if req'd):	Propurge:			Post-purge:	mg					
D.R.P. (M.req'd):	Pre-pur,		mV I	Post-purge:	m\					

SHELL WELL MONITORING DATA SHEET

BTS #: 05	1205-000	.2		Site: 178	ા	soth	Ave., So	nheardro		
Sampler:	we			Date: 121						
Well I.D.:	mw.2			Well Dian	neter:	2	3 🏘	6 8		
Total Well	Depth (TD	1): 43	,95	Depth to V	Vater	(DTV	V): 18.	SV		
Depth to Fr	ee Product			Thickness of Free Product (feet):						
Referenced	to:	PYC	Grade	D.O. Meter (if req'd): 351 HACH						
DTW with	80% Rech	arge [(H	leight of Water	Column x	0.20)	+ DT	W]: 🤇	23.65		
Purge Method:	Bailer Disposable B Positive Air I Electric Guo n	Displaceme	nt Extrac Other	Waterra Peristaltic tion Pump Well	Diameter	-	ing Method: Other:	Disposable Bailer Extraction Port Dedicated Tubing		
16.5 1 Case Volume	Gals.) X Speci	3 fied Volum		_Gals. 2 Jume 3	"	0.04 0.16 0.37	4" 6" Other	0.65 1.47		
Time	Temp (°F)	pН	Cond. (mS or 🔊)	Turbidit (NTUs)		Gals.	Removed	Observations		
14 114	623	7.1	1327	27		16	.5	odor/clear		
1417	624	2.1	1405	21		3	3			
1420	67.8	7.1	1459	17		56	5	√		
								· · · · · · · · · · · · · · · · · · ·		
Did well de	water?	Yes	A A	Gallons ac	tually	/ evac	uated:	56		
Sampling D	ate: 12/5/	65	Sampling Time	e: 1425		Depth	to Wate	r: 23,60		
Sample I.D.	: MW-2	٤		Laboratory	<u>/:</u>	STL	Other 7	· · · · · · · · · · · · · · · · · · ·		
Analyzed fo	Analyzed for: TRA-G ETEX MOBE TPH-D Other: 781-7AME, 1,20CA 5268									
EB I.D. (if	applicable)	:	@ Time	Duplicate I.D. (if applicable):						
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Other:						
D.O. (if req	'd): P1	re-purge:		^{mg} /L	Pe	ost-purg	ge:	0.61 mg		
O.R.P. (if re	eq'd): Pi	te-purge:		mV	Po	ost-purg	ge:	m		

1

SHELL WELL MONITORING DATA SHEET

BTS #: 05	1205-10	10-2		Site: 1784 150th Arks, Son Leado							
Sampler: t				Date: 12		•					
Well I.D.: y	mw.5			Well Diam	eter: Ø	3 4	68				
Total Well	Depth (TD): 2L	1.89	Depth to Water (DTW): 14.25							
Depth to Fr	ee Product	:		Thickness of Free Product (feet):							
Referenced	to:	rve_	Grade	D.O. Meter (if req'd): HACH							
DTW with	80% Rech	arge [(H	leight of Water	Column x 0	.20) + D	TW]:] (6.38				
Purge Method: Bailer Waterra Sampling Method: Bailer Disposable Bailer Disposable Bailer Peristaltic Disposable Bailer Positive Air Displacement Extraction Pump Extraction Port Electric Submersible Other Other Well Diameter Multiplier Multiplier I · 7 Gals.) X = 5 · 1 Gals.											
1 Case Volume	0.65 1.47 r radius ² * 0.163										
Time	Temp (°F)	pH	Cond. (mS or pS)	Turbidity (NTUs)		. Removed	Observations				
1153	67.4 .	\$7.6	1376	638	<u> </u>	.7	Cloudy				
1157	67.1	7.7	1424	714	2	5.4	Lt				
1200	67.1	7.7	1416	701	5	5.1	V				
Did well de	water?	Yes	6%	Gallons act			5-1				
Sampling D	ate 12/5/	5	Sampling Tim	e: 1205	Dep	th to Wate	r: 14-1.40				
Sample I.D.	: mw.e	~ 7		Laboratory	STL	Other	<u>1A-</u>				
Analyzed fo	or: TPH-G	≥ BOOR (TBE TPH-D	Other:							
EB I.D. (if a	applicable)):	@ Time	Duplicate I	.D. (if ap	plicable):					
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Other:							
D.O. (if req	'd): P1	e-purge:		^{mg} /L	Post-	lrge:	O.58 ^{mg} /1				
O.R.P. (if re	R.P. (if req'd): Pre-purge: mV Post-purge: mV										

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (800) 545-7558

BTS #: 0	51205-6	ec-2	·	Site: 1784 1	50th Ave. S	an Loardra				
Sampler: w	50			Date: 12/5	105					
Well I.D.:	mw-G			Well Diameter: Ø 3 4 6 8						
Total Well	Depth (TD): 19.0	48	Depth to Water (DTW): 14.23						
Depth to Fr	ree Product			Thickness of Free Product (feet):						
Referenced	to:	Ple	Grade	D.O. Meter (if req'd): CSSI HACH						
DTW with	80% Rech	arge [(H	leight of Water	Column x 0.20)) + DTW]:	5.27				
Purge Method: Bailer Waterra Sampling Method: Bailer Disprovable Bailer Peristaltic Disprovable Bailer Disprovable Bailer Positive Air Displacement Extraction Pump Extraction Port Electric Submersible Other Dedicated Tubing Other: Well Diameter Multiplier Multiplier 1" 0.04 4" 0.65 2" 0.16 6" 147										
O·S (1 Case Volume	Gals.) X Speci	fied Volun	$\frac{1}{\text{nes}} = \frac{2.9}{\text{Calculated Vol}}$	_ Gals. 2" Nume 3"	0.16 6" 0.37 Other	1.47 radius ² * 0.163				
Time	Temp (°F)	pН	Cond. (mS or (18)	Turbidity (NTUs)	Gals. Removed	Observations				
1120	63.3	7.5	450	216	0.9	Clovely				
1122	640	7.3	433	278	16					
1123	AU.1	7.3	432	309	2.4					
Did well de			Rø	Gallons actuall	y evacuated:	24				
Sampling D	Date: 12/6	.105	Sampling Time	e: 1127	Depth to Wate	r: 14.87				
Sample I.D	.: mu-	6		Laboratory:	STL Other Z	2				
Analyzed for	Analyzed for: TPH-G BEEX MODE TPH-D Other:									
EB I.D. (if	applicable)	:	@ Time	Duplicate I.D.	(if applicable):	-				
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Other:						
D.O. (if req	'd): Pr	e-purge:		^{mg} /L P	ost-purge:	2.40 "B/L				
O.R.P. (if r	eq'd): Pr	e-purge:		mV P	ost-purge:	mV				

BTS #: ن ع	Site: 1784 150th Art. San Landro									
Sampler: 4	ĸ			Date: 1	215	105				
Well I.D.:	nu-7	7		Well D	iameter	: 🗳 3	4	68		
Total Well	Depth (TD	1): 2G	.47	Depth t	o Water	r (DTW):	17	.48		
Depth to Fr	ee Product	:		Thickness of Free Product (feet):						
Referenced	to:	ry)c	Grade	D.O. Meter (if req'd): YSI HACH						
DTW with	80% Rech	arge [(H	leight of Water	Column	x 0.20)) + DTW]:		19.29		
Purge Method:	Bailer Dispost ble Bailer Extraction Port Dedicated Tubing									
1.5 (0 1 Case Volume	Gals.) X Speci	2 fied Volum	$=\frac{45}{\text{Calculated Vc}}$	_Gals.	Well Diamete 1" 2" 3"	n Multiplier 0.04 0.16 0.37	4" 6" Other	0.65		
Time	Temp (°F)	pH	Cond. (mS or μ	Turb (NT	-	Gals. Rem	oved	Observations		
1232	672	6.6	3101	51		1.5		odor/clear		
1235	676	GR	3206	63		3				
1237	67.6	6.9	3198	85	-	4.5	-	J. J.		
Did well de	water?	Yes	25	Gallons	actuall	y evacuate	ed:	4.5		
Sampling D	ate: 12/9	5/05	Sampling Time	e:124	1	Depth to	Wate	r. 17.43		
Sample I.D.	: mo	·7		Laborat	ory:	STL Oth	ler_ 7	<u>/</u>		
Analyzed fo	Analyzed for: TPH-G) BTEX MTBE TPH-D Other:									
EB I.D. (if a):	@ Time	te I.D. ((if applica	ble):					
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Other:						
D.O. (if req	d): Pi	re-purge:		^{mg} /L	P	ost-purge:		0.56 mg/L		
O.R.P. (if re	eq'd): Pr	re-purge:		mV	P	ost-purge:		mV		

BTS #: 🔿 🛎	BTS #: 051205-wc.2					Site: 1784 150th Ave., San Leandro							
Sampler: V	১০			Date: \			/						
Well I.D.: 🗸	nw.g			Well Dia	ameter:	i Ø 3	4	68					
Total Well	Depth (TD	1): ZL	1.12	Depth to	Water	: (DTW):	16.	20					
Depth to Fre	ee Product	••		Thickness of Free Product (feet):									
Referenced	to:	<u>r</u> vd	Grade	D.O. Meter (if req'd): Osi HACH									
DTW with	80% Rech	arge [(H	eight of Water	Column	x 0.20)) + DTW]:	ļ	7.78					
Purge Method: Bailer Waterra Sampling Method: Bailer Dispose Bailer Peristaltic Dispose Bailer Positive Air Displacement Extraction Pump Extraction Port Electric Submersible Other Dedicated Tubing Other:													
1.3 ((1 Case Volume	Gals.) X Speci	3 fied Volum	$= \frac{3.9}{\text{Calculated Vo}}$	_ Gals. Jume	1" 2" 3"	0.04 0.16 0.37	4" 6" Other	0.65 1.47 radius ² + 0.163					
Time 1355,	Temp (°F)	_{рн} 7.2	Cond. (mS or µ3)		•	Gals, Rem	oved	Observations					
1357		6.9	1392	33		2-6		(Icar/odor					
1359	67.5	69	1399	37		3.9		U U					
						[
Did well de	water?	Yes	0	Gallons	actuall	y evacuate	d:	3.9					
Sampling D	ate: 12	45/05	Sampling Time	e: 140	3	Depth to	Water	- 16.24					
Sample I.D.	: MW	- B		Laborate	ory:	STL Oth	er_ _	<u>A</u>					
Analyzed fo	Analyzed for: TPH-GOBTER MTBE TPH-D Other:												
EB I.D. (if a	applicable)):	@ Time	Duplicate I.D. (if applicable):									
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Other:									
D.O. (if req	'd): P1	re-purge:		^{mg} /L	Р	ost-purge:		O .5.6 ""g/L					
O.R.P. (if re	eq'd): Pi	re-purge:		mV	P	ost-purge:		mV					

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (800) 545-7558

BTS #: 051205-wc-2				Site: 1784 150th Ave. Son Leander				
Sampler: we				Date: 12				
Well I.D.: mw-9				Well Diameter: Ø 3 4 6 8				
Total Well	1.42	Depth to Water (DTW): 14.25						
Depth to Free Product:					Thickness of Free Product (feet):			
Referenced to: Brc Grade					D.O. Meter (if req'd):			
DTW with 80% Recharge [(Height of Water Column x 0.20) + DTW]:								
Purge Method: Bailer Waterra Sampling Method: Bober Disposable Bailer Peristaltic Disposable Bailer Positive Arr Displacement Extraction Pump Extraction Port Electric Submersible Other Dedicated Tubing Other:								
$\frac{3.3}{1 \text{ Case Volume}} (Gals.) X = \frac{3}{2} \frac{3}{2$								
Time	Temp (°F)	pH	Cond. (mS or 🕰)	Turb (NT	-	Gals. Removed	Observations	
1044	64.9	7.7	1015	41	3	3.3	Jover	
1047	45.7	7.6	1017	10	<u>م</u>	3.6		
1050	69.2	7.6	10>1	29	· · · ·	10	CIEN	
				i 			· · · · · · · · · · · · · · · · · · ·	
				-				
Did well dewater? Yes So Gallons actually evacuated:								
Sampling Date: 12/5/05 Sampling Time: 1055 Depth to Water: 15.06								
Sample I.D.: Mu-q Laboratory: STL Other TA								
Analyzed for: TPH-G PTEX MTBE TPH-D Other:								
EB I.D. (if applicable):								
Analyzed for: TPH-G BTEX MTBE TPH-D Other:								
D.O. (if req'd): Pre-purge: Mg/L Post-purge: 1.3								
O.R.P. (if req'd): Pre-purge:				mV	P	ost-purge:	mV	

١٠.

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (800) 545-7558

.

BTS #: 051205 - wc · 2				Site: 1784	150m Au	a Sonbandio	
				Date: 1215105			
Well I.D.: MW. · 10				Well Diameter: 2 3 👁 6 8			
Total Well I	Depth (TD): 2	.65	Depth to Water (DTW): 23.42			
Depth to Fro	ee Product			Thickness of Free Product (feet):			
Referenced	to:	eve	Grade	D.O. Meter (if req'd): A HACH			
DTW with 80% Recharge [(Height of Water Column x 0.20) + DTW]: 25.07							
Purge Method:	Bailer Disposable Ba Positive Air I Electric Subr	Displaceme	nt Extrac Other	Waterra Peristaltic ction Pump 	Sampling Method: 	Disposable Bailer Extraction Port Dedicated Tubing	
<u>5.</u> <u>L</u> (0 1 Case Volume	Jals.) X Speci	<u>S</u> fied Volum	$\underline{=} \frac{16.2}{Calculated Vol$	Gals.	0,04 4" 0.16 6" 0.37 Othe	0.65 1.47	
Time	Temp (°F)	pH	Cond. (mS or µ S)	Turbidity (NTUs)	Gals. Removed	Observations	
1245	66.3	20	(171	39	6	chear lada	
1246	675	69	1192	21	1	41	
1246 1	rell (he wa	stered @	~N go	Maras		
1446	648	70	1142	0		adorlated	
Did well dewater? So Gallons actually evacuated:							
Sampling Date: 12/5/05 Sampling Time: 1448 Depth to Water: 26.13							
Sample I.D.: WW-10 Laboratory: STL Other							
Analyzed for	or: WHG	Dex	итве трн-д	Other: 7A	ME, 7BA	1,2 OCA (5260	
EB I.D. (if applicable): @ Duplicate I.D. (if applicable):							
Analyzed for: TPH-G BTEX MTBE TPH-D Other:							
D.O. (if req	'd): Pi	e-purge:		^{mg} /L	Post-purge:	0.97 ^{mg} / _L	
O.R.P. (if req'd): Pre-purge: mV Post-purge: mV							

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (800) 545-7558 1

۰**.** .

٠.

:

ଷ୍

BTS #: C S	1205-w	·c·2		Site: 1784 150th Ave. garhandes				
Sampler: we				Date: 1215105				
Well I.D.: MW · M				Well Diameter: 2 3 🗿 6 8				
Total Well Depth (TD): 24.78				Depth to Water (DTW): 18.26				
Depth to Fre	e Product	:		Thickness of Free Product (feet):				
Referenced	to:	Øc	Grade	D.O. Meter (if req'd):				
DTW with 8	DTW with 80% Recharge [(Height of Water Column x 0.20) + DTW]: 19.5-6							
· •	Bailer Disposable Ba Positive Air D Electric Second	isplaceme		Waterra Peristaltic tion Pump 	Sampling Method: Other:	Bailer Disposable Bailer Extraction Port Dedicated Tubing		
<u>4.2</u> 1 Case Volume	Jais.) X Specif	<u>S</u> fied Volum	$\frac{12}{\text{Calculated Vc}}$	Gals, 2" olume 3"	0.04 4" 0.16 6" 0.37 Other	0.65 1.47		
Time	Temp (°F)	pН	Cond. (mS or AS)	Turbidity (NTUs)	Gals. Removed	Observations		
1256	685	69	929	46	5	Clean		
1259	686	69	938	467	9	cloudy (white)		
12:59 0	vella	leise	ibered (p-10	allons			
1459	66.6	70	935	37	<u> </u>	odor/dear		
Did well de	Did well dewater? (Yes) No Gallons actually evacuated:							
Sampling Date: 2/5/05 Sampling Time: 1500 Depth to Water: 19.06								
Sample I.D.: WW-11 Laboratory: STL Other 7								
Analyzed for: ppH-G BEEX MOBE TPH-D Other: 7 AME, 12, DCA, 7BA 8266								
EB I.D. (if applicable): [@] Duplicate I.D. (if applicable):								
Analyzed for: TPH-G BTEX MTBE TPH-D Other:								
D.O. (if req	'd): P1	re-purge:		^{mg} /L	ost-purge:	0.70 mg/1		
O.R.P. (if req'd): Pre-purge:				mV	Post-purge:	mV		

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (800) 545-7558

.