5900 Hollis Street, Suite A Emeryville, California 94608 **CONESTOGA-ROVERS** Telephone: (510) 420-0700 Fax: (510) 420-9170 & ASSOCIATES www.CRAworld.com TRANSMITTAL DATE: May 12, 2011 **REFERENCE NO.:** 240612 1784 150th Avenue, San Leandro **PROJECT NAME:** 2 To: Jerry Wickham RECEIVED Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 11:18 am, May 13, 2011 Alameda County Alameda, California 94502 Environmental Health **Please find enclosed:** Draft \boxtimes Final Originals Other **Prints** Same Day Courier Sent via: Mail **Overnight** Courier \boxtimes Other GeoTracker and Alameda County FTP **QUANTITY** DESCRIPTION Groundwater Monitoring Report - First Quarter 2011 1 As Requested \boxtimes For Review and Comment For Your Use **COMMENTS:** If you have any questions regarding the content of this document, please contact Peter Schaefer at (510) 420-3319. Copy to: Denis Brown, Shell Oil Products US (electronic copy) SF Data Room (electronic copy) Signed: Jefer Sol Completed by: Peter Schaefer **Correspondence** File Filing:

Denis L. Brown Shell Oil Products US HSE – Environmental Services 20945 S. Wilmington Ave. Carson, CA 90810-1039 Tel (707) 865 0251 Fax (707) 865 2542 Email denis.1.brown@shel1.com

Jerry Wickham Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Re: Shell-branded Service Station 1784 150th Avenue San Leandro, California SAP Code 136019 Incident No. 98996068 ACEH Case No. RO0000367

Dear Mr. Wickham:

The attached document is provided for your review and comment. Upon information and belief, I declare, under penalty of perjury, that the information contained in the attached document is true and correct.

If you have any questions or concerns, please call me at (707) 865-0251.

Sincerely,

Denis L. Brown Senior Program Manager

GROUNDWATER MONITORING REPORT – FIRST QUARTER 2011

SHELL-BRANDED SERVICE STATION 1784 150TH AVENUE SAN LEANDRO, CALIFORNIA

 SAP CODE
 136019

 INCIDENT NO.
 98996068

 AGENCY NO.
 RO0000367

Prepared by: Conestoga-Rovers & Associates

5900 Hollis Street, Suite A Emeryville, California U.S.A. 94608

Office: (510) 420-0700 Fax: (510) 420-9170

web: http://www.CRAworld.com

MAY 12, 2011 REF. NO. 240612 (21) This report is printed on recycled paper.

TABLE OF CONTENTS

<u>Page</u>

1.0	INTRODU	JCTION	1
	1.1	SITE INFORMATION	1
2.0	SITE ACT	IVITIES, FINDINGS, AND DISCUSSION	1
	2.1	CURRENT QUARTER'S ACTIVITIES	1
	2.2	CURRENT QUARTER'S FINDINGS	2
	2.3	PROPOSED ACTIVITIES	2

LIST OF FIGURES (Following Text)

FIGURE 1 VICINITY MAP

FIGURE 2 GROUNDWATER CONTOUR AND CHEMICAL CONCENTRATION MAP

LIST OF TABLES (Following Text)

TABLE 1GROUNDWATER DATA

LIST OF APPENDICES

- APPENDIX A BLAINE TECH SERVICES, INC. FIELD NOTES
- APPENDIX B TEST AMERICA LABORATORY REPORT

1.0 INTRODUCTION

Conestoga-Rovers & Associates (CRA) prepared this report on behalf of Equilon Enterprises LLC dba Shell Oil Products US (Shell).

1.1 <u>SITE INFORMATION</u>

Site Address	1784 150th Avenue, San Leandro
Site Use	Shell-branded Service Station
Shell Project Manager	Denis Brown
CRA Project Manager	Peter Schaefer
Lead Agency and Contact	ACEH, Jerry Wickham
Agency Case No.	RO0000367
Shell SAP Code	136019
Shell Incident No.	98996068

Date of most recent agency correspondence was April 4, 2011.

2.0 <u>SITE ACTIVITIES, FINDINGS, AND DISCUSSION</u>

2.1 <u>CURRENT QUARTER'S ACTIVITIES</u>

CRA's January 27, 2011 *Soil Vapor Probe Installation and Sampling Report* provided details of the installation of two soil vapor probes (SVP-6 and SVP-7), reinstallation of one soil vapor probe (SVP-4), and results from our November 2, 2010 soil vapor sampling event. Reinstalled soil vapor probe SVP-4 could not be sampled during this sampling event because it contained water.

CRA's January 31, 2011 *Air Sparge and Soil Vapor Extraction Well Installation and Pilot Test Report* provided details of the installation of a soil vapor extraction well (SVE-1) and results of our November 2010 air sparge and soil vapor extraction (AS/SVE) pilot test. The test results demonstrated that AS/SVE is not feasible.

Blaine Tech Services, Inc. (Blaine) gauged and sampled the wells according to the established monitoring program for this site.

CRA prepared a vicinity map (Figure 1), a groundwater contour and chemical concentration map (Figure 2), and a groundwater data table (Table 1). Blaine's field notes are presented in Appendix A, and the laboratory report is presented in Appendix B.

2.2 <u>CURRENT QUARTER'S FINDINGS</u>

Groundwater Flow Direction	Variable
Hydraulic Gradient	Variable
Depth to Water	11.08 to 23.17 feet below top of well casing

2.3 <u>PROPOSED ACTIVITIES</u>

On May 6, 2011, CRA conducted a soil vapor sampling event as requested in Alameda County Environmental Health's April 4, 2011 letter. Soil vapor probes SVP-4 and SVP-5 could not be sampled during this sampling event because they contained water. CRA will submit a soil vapor sampling report by July 16, 2011.

Blaine will gauge and sample wells according to the established monitoring program. This site is monitored during the first and third quarters, and CRA will issue groundwater monitoring reports semiannually following the sampling events.

All of Which is Respectfully Submitted, CONESTOGA-ROVERS & ASSOCIATES

Pohn Schaf

Peter Schaefer, CHG, CEG

Anney K Corl Aubrey K. Cool, PG

FIGURES

1784 150th Avenue San Leandro, California

								MTBE	MTBE					1,2-			Depth to	GW	SPH	DO
Well ID	Date	TPPH	TEPH	В	Т	Ε	X	8020	8260	DIPE	ETBE	TAME	TBA	DCA	EDB	тос	Water	Elevation	Thickness	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)
EW-1	9/15/2008															48.44	23.26	25.18		
EW-1	1/6/2009	43,000		1,600	860	1,500	3,800		500							48.44	22.51	25.93		0.18
EW-1	3/10/2009	39,000		2,500	1,300	1,700	5,300		390							48.44	19.58	28.86		1.21
EW-1	6/3/2009	26,000		540	220	1,300	2,600		210							48.44	21.80	26.64		1.09
EW-1	9/30/2009	48,000		390	140	1,900	4,200		210	<40	<40	<40	740			48.44	23.74	24.70		0.09
EW-1	3/5/2010	28,000		1,300	260	1,000	1,900		200							48.44	19.13	29.31		1.22
EW-1	9/16/2010	35,000		2,400	650	1,700	2,300		290	<20	<20	<20	650			48.44	22.07	26.37		0.21
EW-1	3/18/2011	9,300		140	23	490	680		68							48.44	20.09	28.35		0.30
EW-2	9/15/2008															44.52	19.35	25.17		
EW-2	1/6/2009	85,000		970	1,400	3,200	20,000		150							44.52	18.63	25.89		0.22
EW-2	3/10/2009	67,000		190	650	3,100	21,000		<100							44.52	16.21	28.31		0.76
EW-2	6/3/2009	62,000		560	490	3,000	18,000		<100							44.52	17.90	26.62		0.03
EW-2	9/30/2009	67,000	9,700 t, u	480	330	3,300	17,000		110	<100	<100	<100	540			44.52	19.84	24.68		0.20
EW-2	3/5/2010	63,000		150	320	2,400	13,000		64							44.52	15.10	29.42		0.21
EW-2	9/16/2010	42,000		160	670	2,400	12,000		60	<50	<50	<50	330			44.52	18.25	26.27		0.22
EW-2	3/18/2011	44,000		310	1,100	2,700	14,000		<50							44.52	16.41	28.11		0.31
MW-1	3/8/1990	510	120	1.5	0.8	< 0.5	5.4									49.13	25.29	23.84		
MW-1	6/12/1990	390	100	86	1.3	0.7	6.2									49.13	25.85	23.28		
MW-1	9/13/1990	100	130	56	0.75	2.4	2.8									49.13	27.49	21.64		
MW-1	12/18/1990	480	<50	54	1.7	3.3	3.7									49.13	27.41	21.72		
MW-1	3/7/1991	80	<50	266	< 0.5	1.2	<1.5									49.13	25.79	23.34		
MW-1	6/7/1991	510	<50	130	3.8	6.1	11									49.13	25.64	23.49		
MW-1	9/17/1991	330	120 a	67	< 0.5	3.0	2.2									49.13	27.54	21.59		
MW-1	12/9/1991	140a	80	< 0.5	< 0.5	1.7	4.7									49.13	27.81	21.32		
MW-1	2/13/1992															49.13	25.57	23.56		
MW-1	2/24/1992															49.13	22.83	26.30		
MW-1	2/27/1992															49.13	23.09	26.04		
MW-1	3/1/1992	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5									49.13	23.26	25.87		
MW-1	6/3/1992	1,500		520	180	72	230									49.13	24.64	24.49		
MW-1	9/1/1992	130		16	1.4	1.8	3.4									49.13	26.74	22.39		
MW-1	10/6/1992															49.13	27.18	21.95		
MW-1	11/11/1992															49.13	27.99	21.14		

								MTBE	MTBE					1,2-			Depth to	GW	SPH	DO
Well ID	Date	TPPH	TEPH	В	Т	Ε	X	8020	8260	DIPE	ETBE	TAME	TBA	DCA	EDB	TOC	Water	Elevation	Thickness	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)
MW-1	12/4/1992	150		360	0.7	1.8	2.1									49.13	27.14	21.99		
MW-1	1/22/1993															49.13	20.09	29.04		
MW-1	2/10/1993															49.13	24.26	24.87		
MW-1	3/3/1993	<50		1.5	< 0.5	< 0.5	< 0.5									49.13	20.50	28.63		
MW-1	5/11/1993															49.13	21.70	27.43		
MW-1	6/17/1993	1,600		340	120	120	440									49.13	22.42	26.71		
MW-1	9/10/1993	2,600		670	340	310	730									49.13	24.11	25.02		
MW-1	12/13/1993	11,000		470	320	380	2,300									49.13	23.73	25.40		
MW-1	3/3/1994	16,000		700	690	480	3,200									49.13	22.08	27.05		
MW-1	6/6/1994	7,500		420	280	200	1,000									49.13	23.10	26.03		
MW-1	9/12/1994	1,200		110	21	3.3	420									49.13	25.19	23.94		
MW-1	12/19/1994	4,600		470	330	230	1,300									49.13	23.06	26.07		
MW-1	2/28/1995	500		59	32	6.8	68									49.13	20.90	28.23		
MW-1	3/24/1995															49.13	18.28	30.85		
MW-1	6/26/1995	5,500		740	420	300	1,800									49.13	20.40	28.73		
MW-1	9/13/1995	84,000		1,900	2,600	3,000	14,000									49.13	22.62	26.51		
MW-1	12/19/1995	80,000		660	350	170	18,000									49.13	22.10	27.03		
MW-1	3/7/1996															49.13	18.83	30.34	0.05	
MW-1	6/28/1996	270,000		2,800	820	1,000	16,000	< 0.5								49.13	21.46	27.67		
MW-1 (D)	6/28/1996	790,000		2,200	780	1,000	13,000	15,000								49.13	21.46	27.67		
MW-1	9/26/1996	29,000		1,100	260	270	1,900	<1,000								49.13	23.57	25.57	0.01	
MW-1	9/26/1996	25,000		1,200	320	240	1,900	<1,000								49.13				
MW-1	12/10/1996	13,000		510	240	230	1,200	100								49.13	21.43	27.70		1.0
MW-1 (D)	12/10/1996	8,400		420	130	140	680	81								49.13	21.43	27.70		1.0
MW-1	3/10/1997	4,200		13	8.8	16	74	<12								49.13	20.08	29.05		2.0
MW-1 (D)	3/10/1997	5,100		12	8.9	17	79	<25								49.13	20.08	29.05		2.0
MW-1	6/30/1997	5,700		320	120	140	700	47								49.13	21.68	27.45		1.6
MW-1 (D)	6/30/1997	5,300		300	95	120	580	45								49.13	21.68	27.45		1.6
MW-1	9/12/1997	6,300		120	26	82	260	30								49.13	21.78	27.35		2.1
MW-1 b	12/18/1997															49.13	20.78	28.35		1.3
MW-1	2/2/1998	84		5.1	< 0.50	< 0.50	2.1	2.5								49.13	19.65	29.48		2.0
MW-1	6/24/1998	13,000		3,000	260	410	1,400	<250								49.13	19.65	29.48		2.5
MW-1 (D)	6/24/1998	12,000		3,800	250	47	1,400	710								49.13	19.65	29.48		2.5
MW-1	8/26/1998	3,100		1,200	27	170	50	88								49.13	20.49	28.64		2.1

								MTBE	MTBE					1,2-			Depth to	GW	SPH	DO
Well ID	Date	TPPH	TEPH	В	Т	Ε	X	8020	8260	DIPE	ETBE	TAME	TBA	DCA	EDB	TOC	Water	Elevation	Thickness	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)
MW-1	12/23/1998	45,000		5,300	220	1,000	3,600	970								49.13	21.22	27.91		3.8
MW-1	3/1/1999	22,300		2,540	436	753	3,370	<400								49.13	19.27	29.86		1.8
MW-1	6/14/1999	18,800		6,820	210	436	958	1,360								49.13	20.80	28.33		2.2
MW-1	9/28/1999	21,500		7,470	281	467	927	1,800								49.13	22.55	26.58		2.0
MW-1	12/8/1999	22,300		6,140	135	256	367	232								49.13	23.12	26.01		2.1
MW-1	3/14/2000	6,690		1,880	63.5	134	307	460								49.13	18.87	30.26		2.3
MW-1	6/28/2000	8,080		2,690	85.1	149	514	701								49.13	21.12	28.01		2.4
MW-1	9/6/2000	17,800		7,390	212	329	1,270	<1,000								49.13	21.90	27.23		3.0
MW-1	12/14/2000	8,900		4,870	79.2	106	370	1,840	673*							49.13	22.60	26.53		2.0
MW-1	3/5/2001	7,520		2,120	66.0	107	129	668								49.13	20.06	29.07		0.4
MW-1	6/11/2001	30,000		7,400	390	600	2,300		170							49.13	22.39	26.74		1.6
MW-1	9/12/2001	23,000		7,500	120	280	910		320							49.13	23.37	25.76		2.2
MW-1	12/27/2001	16,000		2,400	190	330	1,500		350							49.13	20.97	28.16		1.3
MW-1	2/27/2002	26,000		6,100	330	510	2,000		210							49.10	20.47	28.63		1.3
MW-1	6/18/2002	29,000		8,100	280	510	1,800		140							49.10	21.99	27.11		2.2
MW-1	9/18/2002	34,000		5,900	350	700	3,000		<250							49.10	23.21	25.89		0.8
MW-1	12/27/2002	7,500		1,200	30	120	410		230	<5.0	<5.0	<5.0	310	31	<5.0	49.10	20.10	29.00		0.6
MW-1	3/5/2003	17,000		1,600	88	400	1,400		230			<10	290	<10		49.10	21.05	28.05		1.7
MW-1	6/24/2003	Well inad	ccessible													49.10				
MW-1	6/25/2003	14,000		5,300	250	440	2,100		100			<200	<500	<50		49.10	21.93	27.17		0.9
MW-1	9/25/2003	33,000		7,700	250	860	3,400		130			<200	<500	<50		49.10	23.21	25.89		1.7
MW-1	12/15/2003	63,000		14,000	360	1,300	3,900		150			<400	<1000	<100		49.10	22.08	27.02		1.5
MW-1	3/4/2004	28,000		8,000	180	640	2,100		79			<200	<500	<50		49.10	19.85	29.25		0.2
MW-1	5/27/2004	33,000		8,700	260	840	2,700		81			<200	<500	<50		49.10	22.15	26.95		0.2
MW-1	9/24/2004	26,000		5,700	210	830	2,900		<50	<200	<200	<200	<500	<50	<50	49.10	23.69	25.41		1.5
MW-1	11/22/2004	100,000		2,500	920	4,100	22,000		130			<200	<500	<50		49.10	23.19	25.91		
MW-1	3/2/2005	110,000		1,300	670	4,000	23,000		87			<100	<500	<25		49.10	19.35	29.75		
MW-1	6/30/2005	94,000		6,500	1,100	3,900	21,000		900			<1,000	<2,500	<250		49.10	20.64	28.46		0.6
MW-1	9/20/2005	63,000		3,900	540	2,000	14,000		1,100	<800	<800	<800	<2,000	<200		49.10	22.06	27.04		
MW-1	12/5/2005															49.10	21.90	27.25	0.06	
MW-1	3/2/2006															49.10	17.54	31.60	0.05	
MW-1 (n)	6/29/2006															49.10				
MW-1 (o)	6/30/2006															49.10	20.16	28.97	0.04	
MW-1	7/6/2006															49.10	20.26	28.86	0.03	

								MTBE	MTBE					1,2-			Depth to	GW	SPH	DO
Well ID	Date	TPPH	TEPH	В	Т	Ε	X	8020	8260	DIPE	ETBE	TAME	TBA	DCA	EDB	тос	Water	Elevation	Thickness	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)
MW-1	9/11/2006															49.10	21.24	27.91	0.06	
MW-1	12/28/2006															49.10	20.83	28.30	0.04	
MW-1	3/20/2007	43,600		11,900 l	3481	9641	1,4501		9,1801			<2001	<10,0001	<100 l		49.10	20.88	28.22		0.26
MW-1	6/1/2007	22,000 q		7,900	120	310	424 r		7,800							49.10	21.93	27.17		0.72
MW-1	6/26/2007	20,000 q		6,700	110	360	730		6,500			<200	2,200	<50		49.10	22.30	26.80		1.33
MW-1	7/19/2007	26,000 q		6,100	92 r	180	523 r		7,100							49.10	22.70	26.40		2.89
MW-1	8/14/2007	44,000 q		6,300	130	910	4,100		6,300							49.10	22.90	26.20		1.9
MW-1	9/11/2007	38,000 q		8,100	140	670	1,770		5,700	<100	<100	<100	3,000	<25		49.10	23.65	25.45		0.84
MW-1	10/26/2007	40,000 q		9,500	120	540	1,370		6,300							49.10	23.04	26.06		0.9
MW-1	11/13/2007	36,000 q		8,400	110	480	1,400		7,100							49.10	22.99	26.11		0.30
MW-1	12/26/2007	33,000 q		8,600	120	550	1,330		5,300			<100	2,500	<25		49.10	22.37	26.73		0.5
MW-1	1/3/2008	42,000 q		9,900	170	810	2,140		5,300							49.10	22.53	26.57		1.63
MW-1	2/21/2008	32,000 q		9,900	540	1,100	2,260		5,500							49.10	20.42	28.68		2.1
MW-1	3/19/2008	41,000 q		9,900	620	1,300	2,280		5,600				6,900	<50		49.10	21.01	28.09		0.24
MW-1	4/16/2008	53,000		10,000	430	1,100	2,200		5,500							49.10	21.49	27.61		1.70
MW-1	5/29/2008	47,000		9,100	670	1,100	2,270		4,600							49.10	22.17	26.93		1.10
MW-1	6/5/2008	51,000		7,900	660	1,100	2,780		4,600	<200	<200	<200	3,700	<50		49.10	22.31	26.79		0.19
MW-1	7/22/2008	69,000		8,700	510	1,400	3,480		3,100							49.10	23.13	25.98	0.01	1.64
MW-1	9/29/2008	61,000		7,900	560	1,400	2,480		2,300	<200	<200	<200	4,100	<50		49.10	24.04	25.06		0.69
MW-1	Well destroye	ed																		
MW-1A	9/15/2008															48.99	23.78	25.21		
MW-1A	12/19/2008	320		0.54	<1.0	<1.0	<1.0		12							48.99	23.61	25.38		0.38
MW-1A	3/10/2009	570		8.0	<1.0	1.5	1.2		16							48.99	20.15	28.84		1.80
MW-1A	6/3/2009	200		< 0.50	<1.0	<1.0	<1.0		12							48.99	22.30	26.69		1.71
MW-1A	9/30/2009	140		< 0.50	<1.0	<1.0	<1.0		6.0	<2.0	<2.0	<2.0	66			48.99	24.28	24.71		0.38
MW-1A	3/5/2010	540		30	<1.0	2.3	2.8		22							48.99	19.66	29.33		0.48
MW-1A	9/16/2010	120		< 0.50	<1.0	<1.0	<1.0		9.7	<2.0	<2.0	<2.0	42			48.99	22.69	26.30		0.22
MW-1A	3/18/2011	110		17	<0.50	<0.50	<1.0		11							48.99	20.60	28.39		0.62
MW-1B	10/31/2008															49.07	24.25	24.82		
MW-1B	12/19/2008	980		14	<1.0	3.8	15		440							49.07	23.71	25.36		0.42
MW-1B	3/10/2009	790		11	<5.0	<5.0	8.4		450							49.07	20.36	28.71		1.22
MW-1B	6/3/2009	470		<2.5	<5.0	<5.0	<5.0		460							49.07	22.38	26.69		2.37

								MTBE	MTBE					1,2-			Depth to	GW	SPH	DO
Well ID	Date	TPPH	TEPH	В	Т	Ε	X	8020	8260	DIPE	ETBE	TAME	TBA	DCA	EDB	ТОС	Water	Elevation	Thickness	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)
MW-1B	9/30/2009	<50		< 0.50	<1.0	<1.0	<1.0		3.2	<2.0	<2.0	<2.0	<10			49.07	24.35	24.72		0.42
MW-1B	3/5/2010	<50		< 0.50	<1.0	<1.0	<1.0		4.3							49.07	19.82	29.25		0.15
MW-1B	9/16/2010	<50		< 0.50	<1.0	<1.0	<1.0		1.2	<2.0	<2.0	<2.0	<10			49.07	22.79	26.28		0.25
MW-1B	3/18/2011	<50		<0.50	<0.50	<0.50	<1.0		1.6							49.07	19.00	30.07		0.77
MW-2	2/13/1992															45.83	22.22	23.61		
MW-2	2/24/1992	17,000	2,700 a	6,200	1,600	550	1,900									45.83	19.61	26.22		
MW-2	2/27/1992															45.83	19.92	25.91		
MW-2	3/1/1992	86,000	1,000 a	30,000	34,000	2,300	16,000									45.83	21.11	24.72		
MW-2	6/3/1992	87,000		28,000	18,000	2,000	10,000									45.83	21.58	24.25		
MW-2	9/1/1992	110,000		21,000	13,000	1,900	7,800									45.83	23.46	22.37		
MW-2	10/6/1992															45.83	23.99	21.84		
MW-2	11/11/1992															45.83	24.25	21.58		
MW-2	12/4/1992	42,000		15,000	2,400	960	2,900									45.83	23.89	21.94		
MW-2	1/22/1993															45.83	17.03	28.80		
MW-2	2/10/1993															45.83	18.08	27.75		
MW-2	3/3/1993	160,000		36,000	3,800	32,000	21,000									45.83	17.28	28.55		
MW-2 (D)	3/3/1993	150,000		31,000	3,100	20,000	14,000									45.83	17.28	28.55		
MW-2	5/11/1993															45.83	18.41	27.42		
MW-2	6/17/1993	65,000		34,000	15,000	3,200	11,000									45.83	19.06	26.77		
MW-2 (D)	6/17/1993	62,000		28,000	14,000	2,700	10,000									45.83	19.06	26.77		
MW-2	9/10/1993	72,000		24,000	16,000	2,300	11,000									45.83	20.88	24.95		
MW-2 (D)	9/10/1993	71,000		23,000	15,000	2,300	10,000									45.83	20.88	24.95		
MW-2	12/13/1993	19,000		5,400	4,900	680	3,100									45.83	20.42	25.41		
MW-2 (D)	12/13/1993	17,000		6,200	5,500	720	3,500									45.83	20.42	25.41		
MW-2	3/3/1994	110,000		21,000	24,000	2,000	13,000									45.83	18.48	27.35		
MW-2 (D)	3/3/1994	93,000		19,000	22,000	1,800	12,000									45.83	18.48	27.35		
MW-2	6/6/1994	10,000		1,900	3,300	2,500	13,000									45.83	20.26	25.57		
MW-2 (D)	6/6/1994	99,000		9,900	12,000	2,400	12,000									45.83	20.26	25.57		
MW-2	9/12/1994	160,000		22,000	33,000	3,400	23,000									45.83	21.80	24.03		
MW-2 (D)	9/12/1994	150,000		23,000	34,000	3,500	23,000									45.83	21.80	24.03		
MW-2	12/19/1994	80,000		17,000	16,000	2,300	14,000									45.83	19.66	26.17		
MW-2 (D)	12/19/1994	100,000		28,000	26,000	3,400	20,000									45.83	19.66	26.17		
MW-2	2/28/1995	100,000		24,000	18,000	2,300	17,000									45.83	17.51	28.32		

								MTBE	MTBE					1,2-			Depth to	GW	SPH	DO
Well ID	Date	TPPH	TEPH	В	Т	Ε	X	8020	8260	DIPE	ETBE	TAME	TBA	DCA	EDB	TOC	Water	Elevation	Thickness	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)
MW-2 (D)	2/28/1995	100,000		31,000	21,000	3,200	18,000									45.83	17.51	28.32		
MW-2	3/24/1995															45.83	14.88	30.95		
MW-2	6/26/1995	45,000		14,000	12,000	1,500	7,500									45.83	17.58	28.25		
MW-2 (D)	6/26/1995	68,000		13,000	11,000	1,800	7,700									45.83	17.58	28.25		
MW-2	9/13/1995	110,000		19,000	19,000	2,800	15,000									45.83	19.28	26.55		
MW-2 (D)	9/13/1995	120,000		20,000	20,000	2,900	15,000									45.83	19.28	26.55		
MW-2	12/19/1995	180,000		18,000	29,000	4,100	24,000									45.83	18.61	27.22		
MW-2 (D)	12/19/1995	160,000		18,000	28,000	3,800	24,000									45.83	18.61	27.22		
MW-2	3/6/1996	120,000		28,000	15,000	3,900	17,000									45.83	15.41	30.42		
MW-2	6/28/1996	96,000		20,000	20,000	4,100	22,000	2,400								45.83	17.84	27.99		
MW-2	9/26/1996	87,000		7,600	11,000	2,500	15,000	990	840							45.83	19.60	26.23		
MW-2	12/10/1996															45.83	18.15	27.88	0.25	
MW-2	3/10/1997															45.83	17.02	28.97	0.20	
MW-2	6/30/1997	57,000		3,600	4,600	1,300	9,700	2,300								45.83	19.42	26.41		2.4
MW-2	9/12/1997	88,000		7,800	8,800	2,600	16,000	3,200								45.83	19.40	26.43		1.7
MW-2 (D)	9/12/1997	90,000		8,300	9,400	2,700	17,000	3,400								45.83	19.40	26.43		1.7
MW-2 b	12/18/1997															45.83	17.56	28.27		1.3
MW-2	2/2/1998	<50		0.6	1.9	0.93	6.0	9.3								45.83	18.14	27.69		2
MW-2 (D)	2/2/1998	56		1.0	2.8	1.4	9.3	13								45.83	18.14	27.69		2
MW-2	6/24/1998	20,000		<200	620	560	4,500	<1,000								45.83	16.08	29.75		2.4
MW-2	8/26/1998	22,000		380	1,100	560	4,400	330								45.83	19.25	26.58		
MW-2 (D)	8/26/1998	11,000		180	130	290	500	1,400								45.83	19.25	26.58		
MW-2	12/23/1998	100,000		4,100	6,500	2,400	16,000	<500								45.83	18.29	27.54		3.8
MW-2	3/1/1999	50,800		3,910	7,480	1,890	13,100	9,620								45.83	22.81	23.02		2.0
MW-2	6/14/1999	4,930		128	270	139	1,040	2,200	2,540*							45.83	18.86	26.97		1.6
MW-2	9/28/1999	16,200		647	1,070	542	4,130	5,320	4,790							45.83	21.41	24.42		1.8
MW-2	12/8/1999	25,700		1,670	2,110	977	6,600	6,190	5,970							45.83	21.89	23.94		1.8
MW-2	3/14/2000	45,100		2,070	4,710	1,920	12,800	16,700	18,300*							45.83	15.57	30.26		2.0
MW-2	6/28/2000	52,100		5,150	4,200	1,880	13,300	15,500	13,500*							45.83	17.79	28.04		1.9
MW-2	9/6/2000	39,500		4,490	3,290	2,100	14,000	18,500	9,060*							45.83	18.65	27.18		3.5
MW-2	12/14/2000	209		3.51	1.11	1.00	64.4	79.4								45.83	19.00	26.83		1.5
MW-2	3/5/2001	38,200		2,010	927	1,250	8,300	13,100	15,400							45.83	16.66	29.17		1.0
MW-2	6/11/2001	50,000		4,400	2,200	1,800	11,000		26,000							45.83	18.93	26.90		1.7
MW-2	9/12/2001	59,000		6,100	2,800	2,300	14,000		21,000							45.83	19.85	25.98		1.6
MW-2	12/27/2001	74,000		8,600	2,500	2,500	17,000		25,000							45.83	17.85	27.98		2.6

								MTBE	MTBE					1,2-			Depth to	GW	SPH	DO
Well ID	Date	TPPH	TEPH	В	Т	Ε	X	8020	8260	DIPE	ETBE	TAME	TBA	DCA	EDB	TOC	Water	Elevation	Thickness	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)
MW-2	2/27/2002	70,000		8,100	2,600	2,100	13,000		32,000							45.79	17.15	28.64		2.0
MW-2	6/18/2002	72,000		9,500	3,000	2,200	13,000		29,000							45.79	18.49	27.30		0.6
MW-2	9/18/2002	48,000		7,600	850	1,300	6,300		8,700							45.79	19.95	25.84		1.0
MW-2	12/27/2002	40,000		5,900	1,200	1,400	7,800		19,000	<50	<50	55	10,000	<50	<50	45.79	16.71	29.08		1.0
MW-2	3/5/2003	62,000		13,000	1,400	2,000	7,900		21,000			<50	10,000	<50		45.79	17.72	28.07		1.4
MW-2	6/24/2003	19,000		9,500	530	700	2,900		14,000			<400	6,000	<100		45.79	18.30	27.49		1.4
MW-2	9/25/2003	65,000		24,000	1,500	2,400	9,700		19,000			<1,000	6,400	<250		45.79	20.05	25.74		1.3
MW-2	12/15/2003	67,000		18,000	1,800	1,900	7,200		11,000			<400	3,700	<100		45.79	18.80	26.99		0.1
MW-2	3/4/2004	72,000		27,000	1,200	2,100	7,600		13,000			<400	6,800	<100		45.79	16.75	29.04		0.2
MW-2	5/27/2004	74,000		6,000	2,000	2,500	15,000		19,000			<400	8,500	<100		45.79	18.85	26.94		0.8
MW-2	9/24/2004	<100		<1.0	<1.0	<1.0	<2.0		130	<4.0	<4.0	<4.0	46	19	<1.0	45.79	16.10	29.69		5.1
MW-2	11/22/2004	8,800		1,200	230	350	1,900		2,200			<40	1,300	<10		45.79	19.83	25.96		0.3
MW-2	3/2/2005	960		150	21	30	220		630			<10	460	<2.5		45.79	15.90	29.89		0.5
MW-2	6/30/2005	970		130	19	27	210		320 e			<2.0	220	0.98		45.79	17.14	28.65		0.7
MW-2	9/20/2005	890		320	10	35	190		440	<10	<10	<10	570	<2.5		45.79	18.66	27.13		0.9
MW-2	12/5/2005	690		150	6.1	21	130		450			<5.0	520	<5.0		45.79	18.58	27.21		0.51
MW-2	3/2/2006	11,000 g		2,700 g	150 g	440 g	2,300 g		1,600 g			5.7	3,800 g	<0.50 j		45.79	16.30	29.49		1.2
MW-2 (n)	6/29/2006															45.79				
MW-2 (o)	6/30/2006	3,870		177	33.1	55.5	311		1,560			4.90	1,180	< 0.500		45.79	16.72	29.07		0.58
MW-2	7/6/2006															45.79	16.86	28.93		
MW-2	9/11/2006	10,700		1,010	134	211	1,280		2,780	< 0.500	< 0.500	45.7	1,850	< 0.500		45.79	17.86	27.93		1.03
MW-2	12/28/2006	29,000		2,600	550	1,000	5,600		2,500			<50	3,300	<12		45.79	17.45	28.34		1.09
MW-2	3/20/2007	57,600		14,2001	4,1501	4,3101	22,4001		6,2401			<2001	<10,0001	<100 l		45.79	17.28	28.51		0.18
MW-2	6/26/2007	39,000 q		3,400	2,300	2,200	12,900		3,300			<100	3,400	<25		45.79	18.64	27.15		0.30
MW-2	9/11/2007	30,000 q		4,000	2,500	2,500	13,000		2,600	<100	<100	<100	2,600	<25		45.79	19.57	26.22		1.14
MW-2	12/26/2007	43,000 q		6,200	2,200	2,800	17,600		2,200			<50	2,000	<12		45.79	18.78	27.01		3.2
MW-2	3/19/2008	19,000 q		2,400	1,800	1,200	6,000		910			<200	1,000	<50		45.79	17.32	28.47		0.06
MW-2	5/29/2008															45.79	18.40	27.39		
MW-2	6/5/2008	68,000		7,400	2,600	2,800	14,100		2,600	<100	<100	<100	1,800	<25		45.79	18.71	27.08		0.28
MW-2	7/22/2008															45.79	19.48	26.31		
MW-2	9/29/2008	84,000		2,600	6,900	3,400	19,300		620	<100	<100	<100	<500	<25		45.79	24.50	21.29		1.37
MW-2	Well destroye	ed																		
MW-2B	10/31/2008															44.96	20.20	24.76		
MW-2B	12/19/2008	1,300		43	2.0	<1.0	65		50							44.96	19.60	25.36		0.48
MW-2B	3/10/2009	800		58	1.3	<1.0	4.2		110							44.96	16.10	28.86		0.69

								MTBE	MTBE					1,2-			Depth to	GW	SPH	DO
Well ID	Date	TPPH	TEPH	В	Т	Ε	X	8020	8260	DIPE	ETBE	TAME	TBA	DCA	EDB	TOC	Water	Elevation	Thickness	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)
MW-2B	6/3/2009	28,000		8,600	<500	<500	<500		5,000							44.96	18.36	26.60		0.06
MW-2B	6/26/2009	12,000		3,100	5.2	<2.0	11		3,600							44.96	18.84	26.12		0.76
MW-2B	9/30/2009	10,000	270 t, u	1,500	<25	<25	<25		3,300	<50	<50	<50	2,700			44.96	20.30	24.66		0.26
MW-2B	3/5/2010	6,400		210	<20	<20	<20		2,400							44.96	15.56	29.40		0.16
MW-2B	9/16/2010	1,300		16	<10	<10	<10		1,600	<20	<20	<20	310			44.96	18.69	26.27		1.50
MW-2B	3/18/2011	270		1.0	37	9.0	72		5.1							44.96	16.78	28.18		0.91
MW-3	2/13/1992															51.97	27.97	24.00		
MW-3	2/24/1992	4,500	1,300a	97	<5	78	18									51.97	25.60	26.37		
MW-3	2/27/1992															51.97	25.88	26.09		
MW-3	3/1/1992	2,200	440	69	< 0.5	< 0.5	< 0.5									51.97	26.00	25.97		
MW-3	6/3/1992	4,100		13	72	44	65									51.97	27.70	24.27		
MW-3	9/1/1992	1,900		20	6.8	5.5	<5									51.97	29.46	22.51		
MW-3 (D)	9/1/1992	1,900		21	6.6	3.4	<5									51.97	29.46	22.51		
MW-3	10/6/1992															51.97	30.01	21.96		
MW-3	11/11/1992															51.97	30.26	21.71		
MW-3	12/4/1992	2,400		8.2	<5	<5	<5									51.97	29.93	22.04		
MW-3 (D)	12/4/1992	2,100		11	< 0.5	5.7	< 0.5									51.97	29.93	22.04		
MW-3	1/22/1993															51.97	22.76	29.21		
MW-3	2/10/1993															51.97	21.40	30.57		
MW-3	3/3/1993	5,100		63	61	75	150									51.97	23.08	28.89		
MW-3	5/11/1993															51.97	24.51	27.46		
MW-3	6/17/1993	4,000		94	140	82	150									51.97	25.21	26.76		
MW-3	9/10/1993	3,200		140	12.5	12.5	12.5									51.97	26.95	25.02		
MW-3	12/13/1993	6,200		<12.5	<12.5	<12.5	<12.5									51.97	26.52	25.45		
MW-3	3/3/1994	4,500		73	<5	<5	<5									51.97	24.50	27.47		
MW-3	6/6/1994	3,200		< 0.5	< 0.5	3.1	< 0.5									51.97	26.33	25.64		
MW-3	9/12/1994	3,900		< 0.5	< 0.5	9.6	4.1									51.97	27.98	23.99		
MW-3	12/19/1994	2,400		21	22	4.2	2.6									51.97	25.63	26.34		
MW-3	2/28/1995	4,000		58	< 0.5	7.1	3.5									51.97	23.45	28.52		
MW-3	3/24/1995															51.97	21.07	30.90		
MW-3	6/26/1995	3,900		8.1	< 0.5	12	2.4									51.97	23.64	28.33		
MW-3	9/13/1995	4,100		58	5.5	5.5	< 0.5									51.97	25.40	26.57		
MW-3	12/19/1995	3,600		< 0.5	4.3	2.1	1.1									51.97	24.53	27.44		
MW-3	3/7/1996															51.97	21.59	30.41	0.04	

								MTBE	MTBE					1,2 -			Depth to	GW	SPH	DO
Well ID	Date	TPPH	TEPH	В	Т	Ε	X	8020	8260	DIPE	ETBE	TAME	TBA	DCA	EDB	ТОС	Water	Elevation	Thickness	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)
MW-3	6/28/1996	2,400		55	<0.5	<0.5	11	120								51.97	23.95	28.02		
MW-3	9/26/1996	2,500		<5.0	<5.0	<5.0	<5.0	160								51.97	25.89	26.08		
MW-3	12/10/1996	1,600		28	4.2	<2.0	3.9	110								51.97	24.22	27.75		0.8
MW-3	3/10/1997	130		< 0.50	< 0.50	< 0.50	1.4	4.2								51.97	23.05	28.92		2.8
MW-3	6/30/1997	1,200		21	2.3	<2.0	<2.0	69								51.97	24.34	27.63		2.3
MW-3	9/12/1997	440		8.3	0.82	< 0.50	1.9	3.4								51.97	24.47	27.50		1.9
MW-3 b	12/18/1997															51.97	23.54	28.43		0.8
MW-3	2/2/1998	400		9.3	0.68	< 0.50	< 0.50	9								51.97	21.92	30.05		1.5
MW-3	6/24/1998	<50		< 0.50	< 0.50	< 0.50	< 0.50	<2.5								51.97	22.35	29.62		1.9
MW-3	8/26/1998	140		7.4	< 0.50	< 0.50	2.5	13								51.97	23.45	28.52		1.3
MW-3	12/23/1998	1,200		50	<2.0	<2.0	<2.0	69								51.97	24.01	27.96		4.2
MW-3	3/1/1999	2,550		< 0.500	< 0.500	< 0.500	0.658	32.4								51.97	22.08	29.89		2.0
MW-3	6/14/1999	514		18.1	0.728	< 0.500	< 0.500	15.9								51.97	23.15	28.82		1.7
MW-3	9/28/1999	1,180		<1.00	<1.00	<1.00	<1.00	<10.0								51.97	25.36	26.61		1.2
MW-3	12/8/1999	1,740		71.5	23.0	24.2	61.3	103								51.97	25.75	26.22		2.0
MW-3	3/14/2000	1,410		5.63	35.6	<5.00	8.41	38.7								51.97	21.64	30.33		2.1
MW-3	6/28/2000	2,460		<5.00	9.48	<5.00	28.4	64.0								51.97	23.84	28.13		2.87
MW-3	9/6/2000	887		<1.00	<1.00	<1.00	<1.00	<10.0								51.97	24.73	27.24		2.0
MW-3	12/14/2000	955		25.4	1.96	< 0.500	1.13	10.2								51.97	25.45	26.52		2.1
MW-3	3/5/2001	2,100		4.90	56.5	<2.00	3.62	261								51.97	22.83	29.14		0.8
MW-3	6/11/2001	2,000		1.0	< 0.50	< 0.50	< 0.50		< 0.50							51.97	25.20	26.77		0.7
MW-3	9/12/2001	1,500		0.50	0.54	< 0.50	1.8		<5.0							51.97	26.15	25.82		1.5
MW-3	12/27/2001	2,100		< 0.50	< 0.50	< 0.50	< 0.50		<5.0							51.97	23.67	28.30		1.9
MW-3	2/27/2002	2,300		< 0.50	< 0.50	< 0.50	< 0.50		<5.0							51.92	23.23	28.69		1.5
MW-3	6/18/2002	2,000		< 0.50	< 0.50	< 0.50	< 0.50		< 0.50							51.92	24.74	27.18		2.0
MW-3	9/18/2002	2,600		< 0.50	< 0.50	< 0.50	< 0.50		<5.0							51.92	26.05	25.87		1.4
MW-3	12/27/2002	Well inad	ccessible													51.92				
MW-3	3/5/2003	2,300		< 0.50	< 0.50	< 0.50	< 0.50		<5.0			<2.0	<50	13		51.92	23.84	28.08		1.3
MW-3	6/24/2003	Well inad	ccessible													51.92				
MW-3	6/25/2003	1,800 c		0.71	< 0.50	< 0.50	<1.0		0.54			<2.0	<5.0	1.1		51.92	24.48	27.44		1.3
MW-3	9/25/2003															51.92	25.99	25.93		
MW-3	12/15/2003															51.92	24.94	26.98		
MW-3	3/4/2004															51.92	22.50	29.42		
MW-3	5/27/2004	2,500		< 0.50	< 0.50	< 0.50	<1.0		1.1			<2.0	<5.0	0.82		51.92	24.94	26.98		0.5

								MTBE	MTBE					1,2-			Depth to	GW	SPH	DO
Well ID	Date	TPPH	TEPH	В	Т	Ε	X	8020	8260	DIPE	ETBE	TAME	TBA	DCA	EDB	ТОС	Water	Elevation	Thickness	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)
MW-3	9/24/2004															51.92	26.55	25.37		
MW-3	11/22/2004															51.92	25.92	26.00		
MW-3	3/2/2005															51.92	22.12	29.80		
MW-3	6/30/2005	3,700		<2.0	2.4	<2.0	<4.0		<2.0	<8.0	<8.0	<8.0	<20	<2.0		51.92	23.31	28.61		1.2
MW-3	9/20/2005															51.92	24.78	27.14		
MW-3	12/5/2005															51.92	24.65	27.27		
MW-3	3/2/2006															51.92	22.56	29.36		
MW-3 (n)	6/29/2006															51.92				
MW-3 (o)	6/30/2006	1,580		< 0.500	< 0.500	< 0.500	< 0.500		< 0.500	< 0.500	< 0.500	< 0.500	<10.0	5.95		51.92	22.89	29.03		0.49
MW-3	7/6/2006															51.92	22.99	28.93		
MW-3	9/11/2006															51.92	23.92	28.00		
MW-3	12/28/2006															51.92	23.68	28.24		
MW-3	3/20/2007															51.92	23.91	28.01		
MW-3	6/26/2007	1,400 q		< 0.50	<1.0	<1.0	<1.0		<1.0	<2.0	<2.0	<2.0	<10	44		51.92	25.10	26.82		1.77
MW-3	9/11/2007															51.92	23.41	28.51		
MW-3	12/26/2007															51.92	25.15	26.77		
MW-3	3/19/2008															51.92	23.81	28.11		
MW-3	6/5/2008	3,600		< 0.50	<1.0	<1.0	<1.0		<1.0	<2.0	<2.0	<2.0	<10	33		51.92	25.08	26.84		0.10
MW-3	9/29/2008															51.92	26.85	25.07		
MW-3	12/19/2008															51.92	26.47	25.45		
MW-3	3/10/2009															51.92	23.13	28.79		
MW-3	6/3/2009	2,000		< 0.50	<1.0	<1.0	<1.0		<1.0	<2.0	<2.0	<2.0	<10	12		51.92	25.24	26.68		1.11
MW-3	9/30/2009															51.92	27.16	24.76		
MW-3	3/5/2010	2,300		< 0.50	<1.0	<1.0	<1.0		<1.0	<2.0	<2.0	<2.0	<10	9.9		51.92	22.54	29.38		0.14
MW-3	9/16/2010															51.92	25.75	26.17		
MW-3	3/18/2011	1,800		<0.50	<0.50	<0.50	<1.0		1.5	<1.0	<1.0	<1.0	<10	15		51.92	23.17	28.75		0.48
MW-4	3/24/1995	<50		< 0.5	< 0.5	<0.5	< 0.5									40.51	9.16	31.35		
MW-4	6/26/1995	<50		< 0.5	< 0.5	< 0.5	< 0.5									40.51	12.06	28.45		
MW-4	9/13/1995	<50		< 0.5	< 0.5	< 0.5	< 0.5									40.51	13.90	26.61		
MW-4	12/19/1995	<50		< 0.5	< 0.5	< 0.5	< 0.5									40.51	12.90	27.61		
MW-4	3/6/1996	<50		< 0.5	< 0.5	< 0.5	< 0.5									40.51	9.63	30.88		
MW-4	6/28/1996	40		< 0.5	0.59	0.97	3.8	26								40.51	12.30	28.21		
MW-4	9/26/1996	<50		< 0.5	< 0.5	< 0.5	< 0.5	<2.5								40.51	14.12	26.39		

								MTBE	MTBE					1,2-			Depth to	GW	SPH	DO
Well ID	Date	TPPH	TEPH	В	Т	Ε	X	8020	8260	DIPE	ETBE	TAME	TBA	DCA	EDB	тос	Water	Elevation	Thickness	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)
MW-4	12/10/1996	<50		<0.5	<0.5	<0.5	< 0.5	<2.5								40.51	12.31	28.20		1.2
MW-4	3/10/1997	<50		< 0.50	< 0.50	< 0.50	< 0.50	<2.5								40.51	11.34	29.17		
MW-4	6/30/1997	<50		< 0.50	< 0.50	< 0.50	< 0.50	<2.5								40.51	13.80	26.71		1.9
MW-4	9/12/1997	<50		< 0.50	< 0.50	< 0.50	< 0.50	<2.5								40.51	13.99	26.52		1.7
MW-4 b	12/18/1997															40.51	12.02	28.49		1.8
MW-4	2/2/1998	<50		< 0.50	< 0.50	< 0.50	< 0.50	<2.5								40.51	11.23	29.28		1
MW-4	6/24/1998	<50		< 0.50	< 0.50	< 0.50	< 0.50	<2.5								40.51	10.58	29.93		1.9
MW-4	8/26/1998	<50		< 0.50	< 0.50	< 0.50	< 0.50	<2.5								40.51	11.75	28.76		1.2
MW-4	12/23/1998	<50		0.60	< 0.50	< 0.50	< 0.50	<2.5								40.51	12.41	28.10		4.2
MW-4	3/1/1999	<50.0		< 0.500	< 0.500	< 0.500	< 0.500	<2.00								40.51	10.38	30.13		2.1
MW-4	6/14/1999	<50.0		< 0.500	< 0.500	< 0.500	< 0.500	<2.50								40.51	11.91	28.60		2.4
MW-4	9/28/1999	<50.0		< 0.500	< 0.500	< 0.500	< 0.500	<5.00								40.51	10.19	30.32		2.2
MW-4	12/8/1999	<50.0		< 0.500	< 0.500	< 0.500	< 0.500	<2.50								40.51	10.67	29.84		1.8
MW-4	3/14/2000	<50.0		< 0.500	< 0.500	< 0.500	< 0.500	<2.50								40.51	9.95	30.56		2.5
MW-4	6/28/2000	<50.0		< 0.500	< 0.500	< 0.500	< 0.500	<2.50								40.51	12.22	28.29		0.9
MW-4	9/6/2000															40.51	13.17	27.34		3.0
MW-4	12/14/2000															40.51	8.65	31.86		
MW-4	3/5/2001															40.51	11.07	29.44		
MW-4	6/11/2001	<50		< 0.50	< 0.50	< 0.50	< 0.50		< 0.50							40.51	13.62	26.89		1.3
MW-4	9/12/2001															40.51	14.61	25.90		
MW-4	12/27/2001															40.51	12.19	28.32		
MW-4	2/27/2002															40.45	11.64	28.81		
MW-4	6/18/2002	<50		< 0.50	< 0.50	< 0.50	< 0.50		< 0.50							40.45	13.22	27.23		0.6
MW-4	9/18/2002															40.45	14.46	25.99		
MW-4	12/27/2002															40.45	11.23	29.22		
MW-4	3/5/2003															40.45	12.22	28.23		
MW-4	6/24/2003	57 c		< 0.50	< 0.50	< 0.50	<1.0		12							40.45	12.79	27.66		1.6
MW-4	9/25/2003															40.45	14.45	26.00		
MW-4	12/15/2003															40.45	13.24	27.21		
MW-4	3/4/2004															40.45	10.93	29.52		
MW-4	5/27/2004	<50		< 0.50	< 0.50	< 0.50	<1.0		< 0.50							40.45	13.42	27.03		0.5
MW-4	9/24/2004															40.45	15.11	25.34		
MW-4	11/22/2004															40.45	14.42	26.03		
MW-4	3/2/2005															40.45	10.17	30.28		

								MTBE	MTBE					1,2-			Depth to	GW	SPH	DO
Well ID	Date	TPPH	TEPH	В	Т	Ε	X	8020	8260	DIPE	ETBE	TAME	TBA	DCA	EDB	TOC	Water	Elevation	Thickness	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)
MW-4	6/30/2005	<50 d		< 0.50	< 0.50	< 0.50	<1.0		< 0.50	<2.0	<2.0	<2.0	<5.0			40.45	11.60	28.85		0.8
MW-4	9/20/2005															40.45	13.18	27.27		
MW-4	12/5/2005															40.45	13.08	27.37		
MW-4	3/2/2006															40.45	10.62	29.83		
MW-4 (n)	6/29/2006															40.45				
MW-4 (o)	6/30/2006	<50.0		< 0.500	< 0.500	< 0.500	< 0.500		< 0.500	< 0.500	< 0.500	< 0.500	<10.0			40.45	11.20	29.25		0.44
MW-4	7/6/2006															40.45	11.22	29.23		
MW-4	9/11/2006															40.45	12.29	28.16		
MW-4	12/28/2006															40.45	11.71	28.74		
MW-4	3/20/2007															40.45	11.99	28.46		
MW-4	6/26/2007	59 q		< 0.50	<1.0	<1.0	<1.0		<1.0	<2.0	<2.0	<2.0	<10			40.45	13.60	26.85		3.69
MW-4	9/11/2007															40.45	11.61	28.84		
MW-4	12/26/2007															40.45	13.72	26.73		
MW-4	3/19/2008															40.45	12.19	28.26		
MW-4	6/5/2008	<50		< 0.50	<1.0	<1.0	<1.0		<1.0	<2.0	<2.0	<2.0	<10			40.45	13.62	26.83		0.09
MW-4	9/29/2008															40.45	15.55	24.90		
MW-4	12/19/2008															40.45	15.03	25.42		
MW-4	3/10/2009															40.45	11.55	28.90		
MW-4	6/3/2009	<50		< 0.50	<1.0	<1.0	<1.0		<1.0	<2.0	<2.0	<2.0	<10			40.45	13.78	26.67		0.05
MW-4	9/30/2009															40.45	15.76	24.69		
MW-4	3/5/2010	<50		< 0.50	<1.0	<1.0	<1.0		<1.0	<2.0	<2.0	<2.0	<10			40.45	10.85	29.60		0.25
MW-4	9/16/2010															40.45	14.10	26.35		
MW-4	3/18/2011	<50		<0.50	<0.50	<0.50	<1.0		<1.0	<1.0	<1.0	<1.0	<10			40.45	11.08	29.37		0.89
MW-5	1/29/2002															41.46	12.82	28.64		
MW-5	2/27/2002	190		< 0.50	< 0.50	0.85	1.5		<5.0							41.46	12.85	28.61		1.9
MW-5	6/18/2002	650		1.4	3.0	52	28		< 0.50							41.46	13.65	27.81		0.8
MW-5	9/18/2002	390		0.72	0.51	< 0.50	< 0.50		<5.0							41.46	15.57	25.89		1.1
MW-5	12/27/2002	380		< 0.50	< 0.50	0.56	< 0.50		< 0.50	<2.0	<2.0	<2.0	<50	<2.0	<2.0	41.46	12.51	28.95		1.9
MW-5	3/5/2003	290		< 0.50	1.7	9.4	22		<5.0							41.46	13.39	28.07		2.6
MW-5	6/24/2003	220		< 0.50	1.0	19	1.3		< 0.50							41.46	13.91	27.55		1.7
MW-5	9/25/2003	<50		< 0.50	< 0.50	< 0.50	<1.0		< 0.50							41.46	15.58	25.88		2.1
MW-5	12/15/2003	200 c		< 0.50	< 0.50	< 0.50	<1.0		< 0.50							41.46	14.45	27.01		0.21
MW-5	3/4/2004	170 c		< 0.50	< 0.50	< 0.50	<1.0		< 0.50							41.46	12.52	28.94		0.1

								MTBE	MTBE					1,2-			Depth to	GW	SPH	DO
Well ID	Date	TPPH	TEPH	В	Т	Ε	X	8020	8260	DIPE	ETBE	TAME	TBA	DCA	EDB	TOC	Water	Elevation	Thickness	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)
MW-5	5/27/2004	<50		< 0.50	< 0.50	< 0.50	<1.0		< 0.50							41.46	14.49	26.97		0.5
MW-5	9/24/2004	<50		0.71	< 0.50	< 0.50	<1.0		< 0.50	<2.0	<2.0	<2.0	<5.0			41.46	16.08	25.38		1.7
MW-5	11/22/2004	<50 d		< 0.50	< 0.50	< 0.50	<1.0		< 0.50							41.46	15.48	25.98		0.3
MW-5	3/2/2005	190		< 0.50	<1.0	<1.0	<1.0		<1.0			<2.0	<10	< 0.50		41.46	11.52	29.94		0.4
MW-5	6/30/2005	3,200		<5.0	25	200	270		<5.0							41.46	12.33	29.13		0.9
MW-5	9/20/2005	310		< 0.50	1.3	47	2.5		< 0.50	<2.0	<2.0	<2.0	<5.0			41.46	14.36	27.10		0.5
MW-5	12/5/2005	250		< 0.50	0.94	26	< 0.50		< 0.50							41.46	14.25	27.21		0.58
MW-5	3/2/2006	3,000 g		< 0.50	17	230 g	390 g		< 0.50							41.46	11.87	29.59		0.7
MW-5 (n)	6/29/2006															41.46				
MW-5 (o)	6/30/2006	729		< 0.500	1.00	43.2	21.7		< 0.500							41.46	12.49	28.97		0.67
MW-5	7/6/2006															41.46	12.58	28.88		
MW-5	9/11/2006	<50.0		< 0.500	< 0.500	< 0.500	1.29		< 0.500	< 0.500	< 0.500	< 0.500	<10.0			41.46	13.54	27.92		0.78
MW-5	12/28/2006	330		< 0.50	< 0.50	8.6	<1.0		< 0.50							41.46	13.25	28.21		0.59
MW-5	3/20/2007	358		< 0.500	< 0.500	< 0.500	<1.00		< 0.500							41.46	13.28	28.18		0.11
MW-5	6/26/2007	120 q		< 0.50	<1.0	<1.0	<1.0		<1.0							41.46	14.68	26.78		4.72
MW-5	9/11/2007	<50 q		0.19 r	<1.0	<1.0	<1.0		<1.0	<2.0	<2.0	<2.0	<10			41.46	15.57	25.89		0.84
MW-5	12/26/2007	110 q, t		< 0.50	<1.0	<1.0	<1.0		<1.0							41.46	14.76	26.70		0.8
MW-5	3/19/2008	2,000		< 0.50	<1.0	<1.0	<1.0		<1.0							41.46	13.34	28.12		0.31
MW-5	6/5/2008	2,000		< 0.50	<1.0	<1.0	<1.0		<1.0							41.46	14.63	26.83		0.10
MW-5	9/29/2008	830		< 0.50	<1.0	<1.0	<1.0		<1.0	<2.0	<2.0	<2.0	<10			41.46	16.45	25.01		1.13
MW-5	12/19/2008	58		< 0.50	<1.0	<1.0	<1.0		<1.0							41.46	16.04	25.42		0.62
MW-5	3/10/2009	820		< 0.50	<1.0	13	10		<1.0							41.46	12.77	28.69		0.37
MW-5	6/3/2009	1,300		< 0.50	1.1	68	94		<1.0							41.46	14.83	26.63		0.86
MW-5	9/30/2009	1,500		< 0.50	<1.0	<1.0	<1.0		<1.0	<2.0	<2.0	<2.0	<10			41.46	16.72	24.74		0.14
MW-5	3/5/2010	190		< 0.50	<1.0	<1.0	<1.0		<1.0							41.46	11.96	29.50		0.28
MW-5	9/16/2010	700		< 0.50	<1.0	<1.0	<1.0		<1.0	<2.0	<2.0	<2.0	<10			41.46	15.24	26.22		0.47
MW-5	3/18/2011	230		<0.50	<0.50	<0.50	<1.0		<1.0							41.46	12.41	29.05		0.58
MW-6	1/29/2002															41.50	3.88	37.62		
MW-6	1/31/2002															41.50	12.43	29.07		
MW-6	2/27/2002	<50		< 0.50	< 0.50	< 0.50	< 0.50		<5.0							41.50	12.82	28.68		4.1
MW-6	6/18/2002	<50		< 0.50	< 0.50	< 0.50	< 0.50		< 0.50							41.50	4.26	37.24		3.9
MW-6	9/18/2002	<50		< 0.50	< 0.50	< 0.50	< 0.50		<5.0							41.50	5.26	36.24		4.2
MW-6	12/27/2002	<50		< 0.50	< 0.50	< 0.50	< 0.50		< 0.50	<2.0	<2.0	<2.0	<50	<2.0	<2.0	41.50	12.11	29.39		3.0

								MTBE	MTBE					1,2-			Depth to	GW	SPH	DO
Well ID	Date	TPPH	TEPH	В	Т	Ε	X	8020	8260	DIPE	ETBE	TAME	TBA	DCA	EDB	TOC	Water	Elevation	Thickness	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)
MW-6	3/5/2003	<50		< 0.50	< 0.50	< 0.50	< 0.50		<5.0							41.50	13.47	28.03		4.9
MW-6	6/24/2003	<50		< 0.50	< 0.50	< 0.50	<1.0		< 0.50							41.50	13.71	27.79		5.8
MW-6	9/25/2003	Well ina	ccessible													41.50				
MW-6	12/15/2003	<50		< 0.50	< 0.50	< 0.50	<1.0		< 0.50							41.50	13.17	28.33		5.7
MW-6	3/4/2004	<50		< 0.50	< 0.50	< 0.50	<1.0		< 0.50							41.50	11.15	30.35		1.0
MW-6	5/27/2004	<50		0.50	< 0.50	< 0.50	<1.0		< 0.50							41.50	13.68	27.82		1.0
MW-6	9/24/2004	<50		< 0.50	< 0.50	< 0.50	<1.0		< 0.50							41.50	10.71	30.79		3.1
MW-6	11/22/2004	<50 d		0.65	< 0.50	< 0.50	<1.0		< 0.50							41.50	7.60	33.90		6.5
MW-6	3/2/2005	<100		< 0.50	<1.0	<1.0	<1.0		<1.0			<2.0	<10	< 0.50		41.50	6.77	34.73		6.2
MW-6	6/30/2005	<50		< 0.50	< 0.50	< 0.50	<1.0		< 0.50							41.50	12.87	28.63		1.2
MW-6	9/20/2005	<50		< 0.50	< 0.50	< 0.50	<1.0		< 0.50							41.50	14.16	27.34		5.5
MW-6	12/5/2005	<50		< 0.50	< 0.50	< 0.50	< 0.50		< 0.50							41.50	14.23	27.27		2.40
MW-6	3/2/2006	58 i		< 0.50	< 0.50	0.73	1.5		< 0.50							41.50	11.40	30.10		1.2
MW-6 (m)	6/29/2006															41.50	12.49	29.01		0.41
MW-6 (o)	6/30/2006															41.50	12.35	29.15		
MW-6 (p)	7/6/2006	<50.0		< 0.500	< 0.500	< 0.500	< 0.500		< 0.500							41.50	12.66	28.84		0.30
MW-6	9/11/2006	<50.0		< 0.500	< 0.500	< 0.500	0.530		< 0.500							41.50	13.33	28.17		1.16
MW-6	12/28/2006	<50		< 0.50	< 0.50	< 0.50	<1.0		< 0.50							41.50	13.15	28.35		1.0
MW-6	3/20/2007	<50.0		< 0.500	< 0.500	< 0.500	<1.00		< 0.500							41.50	13.24	28.26		5.60
MW-6	6/26/2007	60 q		< 0.50	<1.0	<1.0	<1.0		<1.0							41.50	14.60	26.90		5.46
MW-6	9/11/2007	<50 q		< 0.50	<1.0	<1.0	<1.0		<1.0							41.50	15.39	26.11		1.16
MW-6	12/26/2007	<50 q		0.27 r	<1.0	<1.0	<1.0		<1.0							41.50	14.69	26.81		3.1
MW-6	3/19/2008	1,500		< 0.50	<1.0	<1.0	<1.0		<1.0							41.50	12.93	28.57		0.30
MW-6	6/5/2008	<50		< 0.50	<1.0	<1.0	<1.0		<1.0							41.50	14.61	26.89		0.09
MW-6	9/29/2008	<50		< 0.50	<1.0	<1.0	<1.0		<1.0							41.50	15.62	25.88		2.26
MW-6	12/19/2008	<50		< 0.50	<1.0	<1.0	<1.0		<1.0							41.50	14.45	27.05		1.82
MW-6	3/10/2009	76		< 0.50	<1.0	<1.0	<1.0		<1.0							41.50	11.58	29.92		0.57
MW-6	6/3/2009	<50		< 0.50	<1.0	<1.0	<1.0		<1.0							41.50	14.19	27.31		2.25
MW-6	9/30/2009	<50		< 0.50	<1.0	<1.0	<1.0		<1.0							41.50	14.95	26.55		0.32
MW-6	3/5/2010	57		< 0.50	<1.0	<1.0	<1.0		<1.0							41.50	10.98	30.52		1.12
MW-6	9/16/2010	<50		< 0.50	<1.0	<1.0	<1.0		<1.0							41.50	15.00	26.50		3.65
MW-6	3/18/2011	<50		<0.50	<0.50	<0.50	<1.0		<1.0							41.50	12.04	29.46		2.01
MW-7	10/21/2002															44.45	18.90	25.55		

								MTBE	MTBE					1,2-			Depth to	GW	SPH	DO
Well ID	Date	TPPH	TEPH	В	Т	Ε	X	8020	8260	DIPE	ETBE	TAME	TBA	DCA	EDB	тос	Water	Elevation	Thickness	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)
MW-7	12/27/2002	49,000		830	980	2,000	5,200		<10	<10	<10	<10	<100	<10	<10	44.45	15.43	29.02		2.1
MW-7	3/5/2003	32,000		370	490	1,600	2,900		<100							44.45	16.34	28.11		2.6
MW-7	6/24/2003	Well inac	cessible													44.45				
MW-7	9/25/2003	8,700		57	34	450	290		<5.0							44.45	18.36	26.09		1.2
MW-7	12/15/2003	27,000		170	260	1,200	1,500		<10							44.45	17.44	27.01		1.3
MW-7	3/4/2004	13,000		200	190	1,200	1,200		<5.0							44.45	15.45	29.00		0.1
MW-7	5/27/2004	16,000		76	56	860	420		<5.0							44.45	17.50	26.95		0.5
MW-7	9/24/2004	8,400		26	14	340	200		<5.0	<20	<20	<20	<50			44.45	18.94	25.51		1.1
MW-7	11/22/2004	14,000		92	60	790	730		<5.0							44.45	18.47	25.98		0.2
MW-7	3/2/2005	13,000		130	140	740	980		<10			<20	<100	<5.0		44.45	14.53	29.92		0.7
MW-7	6/30/2005	9,900		27	48	380	520		<10							44.45	15.92	28.53		0.9
MW-7	9/20/2005	7,700		30	53	380	570		<5.0	36	<20	<20	<50			44.45	17.28	27.17		1.4
MW-7	12/5/2005	2,900		20	<2.5	270	19		<2.5							44.45	17.40	27.05		0.56
MW-7	3/2/2006	3,900 g		27	31	240 g	190		1.1							44.45	15.00	29.45		0.9
MW-7 (n)	6/29/2006															44.45				
MW-7 (o)	6/30/2006	10,800		13.8	49.4	474	640		< 0.500							44.45	15.35	29.10		0.54
MW-7	7/6/2006															44.45	15.41	29.04		
MW-7	9/11/2006	7,210		4.38	3.96	188	91.6		< 0.500	< 0.500	< 0.500	< 0.500	<10.0			44.45	16.33	28.12		0.82
MW-7	12/28/2006	3,100		4.8	5.2	190	160		<1.0							44.45	16.22	28.23		0.78
MW-7	3/20/2007	5,960		11.3	20.6	223	291		< 0.500							44.45	16.26	28.19		1.10
MW-7	6/26/2007	7,900 q		5.3	15	410	459		<5.0							44.45	17.60	26.85		0.83
MW-7	9/11/2007	4,100 q		1.9	0.66 r	130	25.6		<1.0	0.42 r	<2.0	<2.0	<10			44.45	18.63	25.82		0.97
MW-7	12/26/2007	6,100 q		5.9	7.6	290	348		<5.0							44.45	17.72	26.73		1.3
MW-7	3/19/2008	2,700		5.0	2.4	110	97.9		<1.0							44.45	16.36	28.09		0.47
MW-7	6/5/2008	6,400		3.8	<5.0	220	253		<5.0							44.45	17.65	26.80		0.09
MW-7	9/29/2008	2,500		1.6	<1.0	40	8.1		<1.0	<2.0	<2.0	<2.0	<10			44.45	19.40	25.05		1.26
MW-7	12/19/2008	5,600		5.4	<5.0	110	97.0		<5.0							44.45	19.17	25.28		2.11
MW-7	3/10/2009	3,400		22	<5.0	94	92		<5.0							44.45	16.21	28.24		1.85
MW-7	6/3/2009	3,500		6.3	1.5	71	78		<1.0							44.45	17.75	26.70		0.62
MW-7	9/30/2009	7,900		5.1	1.2	84	98		<1.0	<2.0	<2.0	<2.0	<10			44.45	19.64	24.81		0.15
MW-7	3/5/2010	3,800		12	2.0	66	100		<1.0							44.45	15.37	29.08		0.26
MW-7	9/16/2010	2,900		3.2	1.5	70	120		<1.0	<2.0	<2.0	<2.0	<10			44.45	18.28	26.17		0.45
MW-7	3/18/2011	Well inad	ccessible													44.45				
MW-7	3/31/2011	2,600		4.4	1.4	55	100		<1.0							44.45	14.95	29.50		2.99

								MTBE	MTBE					1,2-			Depth to	GW	SPH	DO
Well ID	Date	TPPH	TEPH	В	Т	Ε	X	8020	8260	DIPE	ETBE	TAME	TBA	DCA	EDB	TOC	Water	Elevation	Thickness	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)
MW-8	10/21/2002															43.27	17.70	25.57		
MW-8	12/27/2002	30,000		280	220	2,000	5,300		<10	<10	<10	<10	<100	<10	<10	43.27	14.25	29.02		1.2
MW-8	3/5/2003	30,000		220	150	2,100	4,200		<100							43.27	15.36	27.91		1.3
MW-8	6/24/2003	Well inac	cessible													43.27				
MW-8	9/25/2003	26,000		240	53	1,600	2,600		<50							43.27	17.43	25.84		1.0
MW-8	12/15/2003	38,000		290	140	2,200	5,200		<13							43.27	16.24	27.03		0.4
MW-8	3/4/2004	19,000		180	95	1,400	3,900		<13							43.27	14.63	28.64		0.1
MW-8	5/27/2004	19,000		230	41	1,100	2,200		<13							43.27	16.41	26.86		0.5
MW-8	9/24/2004	21,000		270	42	1,200	2,600		<13	<50	<50	<50	<130			43.27	18.10	25.17		0.7
MW-8	11/22/2004	24,000		200	64	1,400	4,100		<13							43.27	17.28	25.99		1.0
MW-8	3/2/2005	16,000		100	44	890	2,300		<10			<20	<100	<5.0		43.27	13.35	29.92		0.6
MW-8	6/30/2005	19,000		110	41	700	2,100		<10							43.27	14.91	28.36		0.8
MW-8	9/20/2005	10,000		86	25	600	1,400		<10	<40	<40	<40	<100			43.27	16.11	27.16		0.8
MW-8	12/5/2005	9,900		130	16	600	1,300		<10							43.27	16.20	27.07		0.56
MW-8	3/2/2006	13,000 g		130 g	45	790 g	2,000 g		0.54							43.27	14.28	28.99		1.1
MW-8 (n)	6/29/2006															43.27				
MW-8 (o)	6/30/2006	14,900		71.8	14.1	622	1,390		< 0.500							43.27	14.18	29.09		0.50
MW-8	7/6/2006															43.27	14.39	28.88		
MW-8	9/11/2006	18,700		94.2	11.2	683	1,280		< 0.500	< 0.500	< 0.500	< 0.500	<10.0			43.27	15.10	28.17		0.92
MW-8	12/28/2006	9,000		54	7.1	430	980		<2.5							43.27	15.15	28.12		0.93
MW-8	3/20/2007	7,780		40.4	9.21	230	499		0.840							43.27	15.01	28.26		0.11
MW-8	6/26/2007	7,500 q		36	5.5	360	860		<5.0							43.27	16.40	26.87		0.59
MW-8	9/11/2007	10,000 q		55	7.0	420	1,140		<5.0	<10	<10	<10	<50			43.27	17.42	25.85		1.07
MW-8	12/26/2007	10,000 q		54	12 r	490	1,740		<20							43.27	16.61	26.66		1.4
MW-8	3/19/2008	5,800		20	<5.0	200	600		<5.0							43.27	15.30	27.97		0.24
MW-8	6/5/2008	7,600		27	<5.0	240	750		<5.0							43.27	16.53	26.74		0.10
MW-8	9/29/2008	5,600		47	<5.0	120	287		<5.0	<10	<10	<10	<50			43.27	18.13	25.14		1.04
MW-8	12/19/2008	6,900		40	<5.0	110	374		<5.0							43.27	18.01	25.26		0.74
MW-8	3/10/2009	7,400		38	<5.0	210	780		<5.0							43.27	15.45	27.82		2.40
MW-8	6/3/2009	6,400		24	<5.0	210	840		<5.0							43.27	16.64	26.63		0.84
MW-8	9/30/2009	9,200		42	<5.0	120	460		<5.0	<10	<10	<10	<50			43.27	18.20	25.07		0.09
MW-8	3/5/2010	6,600		15	2.7	100	440		<1.0							43.27	15.22	28.05		0.36
MW-8	9/16/2010	5,900		22	4.0	130	570		<2.0	<4.0	<4.0	<4.0	<20			43.27	16.98	26.29		0.26

								MTBE	MTBE					1,2-			Depth to	GW	SPH	DO
Well ID	Date	TPPH	TEPH	В	Т	Ε	X	8020	8260	DIPE	ETBE	TAME	TBA	DCA	EDB	тос	Water	Elevation	Thickness	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)
MW-8	3/18/2011	Well ina	ccessible													43.27				
MW-8	3/31/2011	4,900		13	3.8	130	520		<4.0							43.27	13.61	29.66		2.88
MW-9	12/10/2003															41.65	15.15	26.50		
MW-9	12/15/2003	<50		< 0.50	< 0.50	< 0.50	1.3		2.5							41.65	14.48	27.17		0.9
MW-9	3/4/2004	<50		< 0.50	< 0.50	< 0.50	<1.0		< 0.50							41.65	12.15	29.50		0.2
MW-9	5/27/2004	<50		< 0.50	< 0.50	< 0.50	<1.0		< 0.50							41.65	14.55	27.10		0.5
MW-9	9/24/2004	<50		< 0.50	< 0.50	< 0.50	<1.0		< 0.50	<2.0	<2.0	<2.0	<5.0			41.65	16.37	25.28		1.0
MW-9	11/22/2004	<50 d		< 0.50	< 0.50	< 0.50	<1.0		< 0.50							41.65	15.62	26.03		0.3
MW-9	3/2/2005	100		< 0.50	<1.0	1.4	3.8		<1.0			<2.0	<10	< 0.50		41.65	11.40	30.25		0.4
MW-9	6/30/2005	<50		< 0.50	< 0.50	< 0.50	<1.0		< 0.50							41.65	12.70	28.95		1.3
MW-9	9/20/2005	<50		< 0.50	< 0.50	< 0.50	1.8		< 0.50	<2.0	<2.0	<2.0	<5.0			41.65	14.38	27.27		1.2
MW-9	12/5/2005	<50		< 0.50	< 0.50	< 0.50	0.65		< 0.50							41.65	14.25	27.40		1.13
MW-9	3/2/2006	<50 h		< 0.50	< 0.50	<0.50 h	<0.50 h		< 0.50							41.65	11.87	29.78		0.9
MW-9 (m)	6/29/2006															41.65	12.35	29.30		0.55
MW-9 (o)	6/30/2006															41.65	12.37	29.28		
MW-9 (p)	7/6/2006	<50.0		< 0.500	< 0.500	< 0.500	< 0.500		< 0.500							41.65	12.46	29.19		0.58
MW-9	9/11/2006	<50.0		< 0.500	< 0.500	< 0.500	< 0.500		< 0.500	< 0.500	< 0.500	< 0.500	<10.0			41.65	13.42	28.23		0.79
MW-9	12/28/2006	<50		< 0.50	< 0.50	< 0.50	<1.0		< 0.50							41.65	13.23	28.42		0.73
MW-9	3/20/2007	<50.0		< 0.500	< 0.500	< 0.500	<1.00		< 0.500							41.65	13.35	28.30		1.20
MW-9	6/26/2007	86 q		< 0.50	<1.0	<1.0	<1.0		<1.0							41.65	14.80	26.85		0.91
MW-9	9/11/2007	<50 q		0.15 r	<1.0	<1.0	<1.0		<1.0	<2.0	<2.0	<2.0	<10			41.65	15.70	25.95		1.04
MW-9	12/26/2007	<50 q		< 0.50	<1.0	<1.0	<1.0		<1.0							41.65	14.86	26.79		2.0
MW-9	3/19/2008	<50		< 0.50	<1.0	<1.0	<1.0		<1.0							41.65	13.39	28.26		0.27
MW-9	6/5/2008	<50		< 0.50	<1.0	<1.0	<1.0		<1.0							41.65	14.77	26.88		1.34
MW-9	9/29/2008	<50		< 0.50	<1.0	<1.0	<1.0		<1.0	<2.0	<2.0	<2.0	<10			41.65	16.62	25.03		1.10
MW-9	12/19/2008	<50		< 0.50	<1.0	<1.0	<1.0		<1.0							41.65	16.26	25.39		0.66
MW-9	3/10/2009	<50		< 0.50	<1.0	<1.0	<1.0		<1.0							41.65	13.22	28.43		1.58
MW-9	6/3/2009	<50		< 0.50	<1.0	<1.0	<1.0		<1.0							41.65	14.84	26.81		0.55
MW-9	9/30/2009	<50		< 0.50	<1.0	<1.0	<1.0		<1.0	<2.0	<2.0	<2.0	<10			41.65	16.91	24.74		0.18
MW-9	3/5/2010	<50		< 0.50	<1.0	<1.0	<1.0		<1.0							41.65	11.96	29.69		0.22
MW-9	9/16/2010	<50		< 0.50	<1.0	<1.0	<1.0		<1.0	<2.0	<2.0	<2.0	<10			41.65	15.28	26.37		0.74
MW-9	3/18/2011	<50		< 0.50	<0.50	< 0.50	<1.0		<1.0							41.65	11.30	30.35		0.71

								MTBE	MTBE					1,2-			Depth to	GW	SPH	DO
Well ID	Date	TPPH	TEPH	В	Т	Ε	X	8020	8260	DIPE	ETBE	TAME	TBA	DCA	EDB	TOC	Water	Elevation	Thickness	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)
MW-10	12/10/2003															50.64	24.33	26.31		
MW-10	12/15/2003	6,400		3.1	<1.0	33	20		<1.0			<4.0	<10	<1.0		50.64	23.58	27.06		0.3
MW-10	3/4/2004	1,400		1.2	<1.0	16	3.4		<1.0			<4.0	<10	<1.0		50.64	21.20	29.44		0.1
MW-10	5/27/2004	810		<1.0	<1.0	8.3	<2.0		<1.0			<4.0	<10	<1.0		50.64	23.63	27.01		0.5
MW-10	9/24/2004	790		1.2	<1.0	7.3	<2.0		<1.0	<4.0	<4.0	<4.0	<10	<1.0	<1.0	50.64	25.30	25.34		1.5
MW-10	11/22/2004	1,100		1.1	< 0.50	17	<1.0		< 0.50			<2.0	<5.0	< 0.50		50.64	24.62	26.02		0.4
MW-10	3/2/2005	920		0.60	<1.0	3.5	<1.0		<1.0			<2.0	<10	< 0.50		50.64	20.72	29.92		0.4
MW-10	6/30/2005	470 f		< 0.50	< 0.50	1.4	<1.0		< 0.50			<2.0	<5.0	< 0.50		50.64	21.48	29.16		1.4
MW-10	9/20/2005	420		< 0.50	< 0.50	1.2	2.1		< 0.50	<2.0	<2.0	<2.0	<5.0	< 0.50		50.64	23.45	27.19		2.0
MW-10	12/5/2005	420		< 0.50	< 0.50	1.1	< 0.50		< 0.50			< 0.50	<5.0	< 0.50		50.64	23.42	27.22		0.97
MW-10	3/2/2006	230 h		<0.50 h	< 0.50	0.83 h	<0.50 h		< 0.50			< 0.50	<5.0 h	<0.50 j		50.64	21.13	29.51		1.1
MW-10 (n)	6/29/2006															50.64				
MW-10 (o)	6/30/2006	<50.0		< 0.500	< 0.500	< 0.500	< 0.500		< 0.500			< 0.500	<10.0	< 0.500		50.64	21.49	29.15		0.37
MW-10	7/6/2006															50.64	21.60	29.04		
MW-10	9/11/2006	250		< 0.500	< 0.500	< 0.500	< 0.500		< 0.500	< 0.500	< 0.500	< 0.500	<10.0	< 0.500		50.64	22.62	28.02		0.98
MW-10	12/28/2006	Well inac	cessible													50.64				
MW-10	3/20/2007	158		< 0.500	< 0.500	< 0.500	<1.00		< 0.500			<1.00	<50.0	< 0.500		50.64	22.30	28.34		0.10
MW-10	6/26/2007	230 q		0.15 r	<1.0	0.43 r	<1.0		<1.0			<2.0	<10	< 0.50		50.64	23.75	26.89		1.54
MW-10	9/11/2007	62 q		< 0.50	<1.0	<1.0	<1.0		<1.0	<2.0	<2.0	<2.0	<10	< 0.50		50.64	24.78	25.86		0.98
MW-10	12/26/2007	200 q, t		0.15 r	<1.0	0.30 r	<1.0		<1.0			<2.0	<10	< 0.50		50.64	23.86	26.78		0.9
MW-10	3/19/2008	170 q		< 0.50	<1.0	<1.0	<1.0		<1.0			<2.0	<10	< 0.50		50.64	22.46	28.18		0.10
MW-10	6/5/2008	150		< 0.50	<1.0	<1.0	<1.0		<1.0	<2.0	<2.0	<2.0	<10	< 0.50		50.64	23.76	26.88		0.11
MW-10	9/29/2008	130		< 0.50	<1.0	<1.0	1.4		<1.0	<2.0	<2.0	<2.0	<10	< 0.50		50.64	25.59	25.05		0.91
MW-10	12/19/2008	220		1.6	1.4	1.9	4.3		<1.0			<2.0	<10	< 0.50		50.64	22.39	28.25		0.26
MW-10	3/10/2009	120		< 0.50	<1.0	<1.0	1.8		<1.0			<2.0	<10	< 0.50		50.64	21.79	28.85		0.40
MW-10	6/3/2009	130		< 0.50	<1.0	<1.0	<1.0		<1.0	<2.0	<2.0	<2.0	<10	< 0.50		50.64	23.85	26.79		2.11
MW-10	9/30/2009	59		< 0.50	<1.0	<1.0	<1.0		<1.0	<2.0	<2.0	<2.0	<10	< 0.50		50.64	25.86	24.78		0.11
MW-10	3/5/2010	380		< 0.50	<1.0	<1.0	<1.0		<1.0	<2.0	<2.0	<2.0	<10	< 0.50		50.64	21.11	29.53		0.14
MW-10	9/16/2010	180		< 0.50	<1.0	<1.0	<1.0		<1.0	<2.0	<2.0	<2.0	<10	< 0.50		50.64	24.45	26.19		0.17
MW-10	3/18/2011	74		<0.50	<0.50	<0.50	<1.0		<1.0			<1.0	<10	<0.50		50.64	21.49	29.15		1.86
MW-11	12/10/2003															45.58	19.10	26.48		
MW-11	12/15/2003	110.000		9,900	3,300	3,900	23.000		20.000			<800	18.000	<200		45.58	18.50	27.08		0.3
MW-11	3/4/2004	68.000		5,300	3.000	3.600	23.000		8.300			<200	12.000	<50		45.58	16.67	28.91		0.1
1,1,1,1,11	2/1/2001	50,000		5,000	5,000	5,000	_0,000		0,000			-200	12,000	-00		10.00	10.07	20.71		0.1

								MTBE	MTBE					1,2 -			Depth to	GW	SPH	DO
Well ID	Date	TPPH	TEPH	В	Т	Ε	X	8020	8260	DIPE	ETBE	TAME	TBA	DCA	EDB	TOC	Water	Elevation	Thickness	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)
MW-11	5/27/2004	86,000		8,500	3,200	13,000	22,000		25,000			<400	18,000	<100		45.58	18.60	26.98		1.6
MW-11	9/24/2004	63,000		7,200	2.000	3,000	15,000		26.000	<400	<400	<400	17,000	<100	<100	45.58	20.22	25.36		2.2
MW-11	11/22/2004	96.000		7.100	3.700	2.800	15.000		20.000			<400	14.000	<100		45.58	19.56	26.02		0.3
MW-11	3/2/2005	63,000		6,200	6,800	2,200	15,000		16,000			<200	7,800	<50		45.58	15.75	29.83		4.6
MW-11	6/30/2005	100,000		4,200	18,000	3,800	25,000		2,500			<400	3,400	<100		45.58	16.92	28.66		1.0
MW-11	9/20/2005	65,000		3,800	10,000	3,100	19,000		3,900	<400	<400	<400	4,600	<100		45.58	18.43	27.15		
MW-11	12/5/2005	69,000		4,000	10,000	3,100	16,000		7,400			<50	4,400	<50		45.58	18.26	27.32		0.70
MW-11	3/2/2006	76,000 g		4,000 g	13,000 g	2,900 g	16,000 g		6,100 g			36	420 k	<0.50 j		45.58	16.13	29.45		0.9
MW-11	4/19/2006	116,000		4,780	12,000	3,280	20,200		5,550			34.6	4,010	< 0.500		45.58	15.30	30.28		0.86
MW-11	5/1/2006	129,000		4,180	15,100	3,180	18,700		4,510			28.9	3,130	92.1		45.58	15.43	30.15		0.97
MW-11 (n)	6/29/2006															45.58				
MW-11 (o)	6/30/2006	119,000		4,420	11,300	2,650	17,200		4,490			22.8	2,700	< 0.500		45.58	15.49	30.09		0.49
MW-11	7/6/2006															45.58	16.61	28.97		
MW-11	7/31/2006	<50.0		4,870	11,400	2,890	20,400		4,880			27.2	3,120	< 0.500		45.58	17.00	28.58		0.36
MW-11	8/23/2006	115,000		5,230	8,720	2,680	16,900		4,860			29.6	3,670	<10.0		45.58	17.28	28.30		0.7
MW-11	9/11/2006	9,090		5,140	8,400	3,040	17,700		5,310	< 0.500	< 0.500	134	4,240	< 0.500		45.58	17.62	27.96		0.63
MW-11	10/18/2006	193,000		4,930	9,700	3,920	21,000		4,300			< 0.500	2,530	< 0.500		45.58	18.08	27.50		0.51
MW-11	11/22/2006	3,600		3,600	9,300	2,800	16,000		2,800			<10	4,000	<2.5		45.58	18.06	27.52		0.4
MW-11	12/28/2006	75,000		2,700	9,800	1,900	13,000		2,500			<200	2,500	<50		45.58	17.20	28.38		0.9
MW-11	1/25/2007	68,000		2,900	9,600	2,200	13,000		2,400			<200	2,400	<50		45.58	18.10	27.48		0.7
MW-11	2/19/2007	88,000		3,600	17,000	3,200	20,000		2,200			25	4,000	<5.0		45.58	17.89	27.69		0.2
MW-11	3/20/2007	77,600		3,140 l	12,8001	3,060 1	17,6001		1,9301			<2001	<10,0001	<100 l		45.58	17.30	28.28		0.38
MW-11	4/5/2007	67,000 q		3,200	9,600	3,200	14,300		1,800			<100	2,900	<25		45.58	17.50	28.08		0.72
MW-11	6/1/2007	65,000 q		3,100	11,000	3,200	17,900		1,700							45.58	18.32	27.26		1.18
MW-11	6/26/2007	52,000 q		2,200	8,000	2,200	13,700		1,300			<200	2,300	<50		45.58	18.70	26.88		0.24
MW-11	7/19/2007	62,000 q		2,500	9,600	2,400	16,300		1,500							45.58	18.10	27.48		3.42
MW-11	8/14/2007	65,000 q		3,000	11,000	3,000	17,600		1,000							45.58	19.30	26.28		1.1
MW-11	9/11/2007	45,000 q		2,000	6,300	2,100	11,900		960	<100	<100	<100	2,100	<25		45.58	19.65	25.93		0.86
MW-11	10/26/2007	58,000 q		2,500	9,300	3,200	17,700		900							45.58	19.42	26.16		1.2
MW-11	11/13/2007	64,000 q		2,400	9,500	3,300	18,000		1,200							45.58	19.34	26.24		0.32
MW-11	12/26/2007	56,000 q		2,300	11,000	3,800	23,400		1,300			<40	1,400	<10		45.58	18.68	26.90		0.9
MW-11	1/3/2008	64,000 q		2,600	10,000	4,400	23,600		1,300							45.58	18.86	26.72		1.65
MW-11	2/21/2008	70,000 q		2,400	9,200	3,700	18,700		440							45.58	16.70	28.88		0.9
MW-11	3/19/2008	65,000 q		2,500	7,700	3,700	19,700		520			<100	810	<25		45.58	17.34	28.26	0.02	0.07

								MTBE	MTBE					1,2-			Depth to	GW	SPH	DO
Well ID	Date	TPPH	TEPH	В	Т	Ε	X	8020	8260	DIPE	ETBE	TAME	TBA	DCA	EDB	TOC	Water	Elevation	Thickness	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)
MW-11	4/16/2008	86,000		3,000	8,200	4,500	24,300		280							45.58	17.78	27.80		1.40
MW-11	5/29/2008	70,000		1,900	6,000	3,200	16,500		110							45.58	18.52	27.06		0.43
MW-11	6/5/2008	72,000		1,800	6,700	3,300	18,000		120	<100	<100	<100	<500	<25		45.58	18.63	26.95		0.21
MW-11	7/22/2008	100,000		1,100	9,200	3,800	24,900		<100							45.58	19.41	26.17		1.31
MW-11	9/29/2008	110,000		1,500	10,000	4,300	27,200		210	<100	<100	<100	<500	<25		45.58	20.21	25.37		0.79
MW-11	12/19/2008	110,000		1,000	9,600	3,700	24,600		<100			<200	<1,000	<50		45.58	19.75	25.83		0.52
MW-11	3/10/2009	92,000		490	11,000	4,000	30,000		<100			<200	<1,000	<50		45.58	16.40	29.18		0.50
MW-11	6/3/2009	74,000		120	6,900	3,500	24,000		<100	<200	<200	<200	<1,000	<50		45.58	18.91	26.67		0.10
MW-11	9/30/2009	86,000	6,800 t, u	100	6,200	4,100	26,000		<100	<200	<200	<200	<1,000	<50		45.58	20.84	24.74		0.27
MW-11	3/5/2010	75,000		240	4,800	2,600	17,000		<50	<100	<100	<100	<500	<25		45.58	16.08	29.50		0.89
MW-11	9/16/2010	43,000		760	3,400	2,300	13,000		<50	<100	<100	<100	550	<25		45.58	19.34	26.24		0.26
MW-11	3/18/2011	38,000		470	4,100	2,200	13,000		<100			<100	<1000	<50		45.58	11.08	34.50		0.66
MW-12	6/26/2006															44.10	14.75	29.35		
MW-12 (n)	6/29/2006															44.10				
MW-12 (o)	6/30/2006	95,000		3,930	8,900	2,110	10,400		< 0.500							44.10	15.00	29.10		0.62
MW-12	7/6/2006															44.10	15.10	29.00		
MW-12	9/11/2006	5,110		3,930	3,290	2,710	8,060		8.50							44.10	15.91	28.19		1.09
MW-12	12/28/2006	31,000		2,400	1,100	1,500	2,900		<2.5							44.10	15.85	28.25		0.82
MW-12	3/20/2007	30,100		508	352	341	748		< 0.500							44.10	15.81	28.29		1.44
MW-12	6/26/2007	32,000 q		2,700	1,200	2,100	3,700		<20							44.10	17.29	26.81		0.40
MW-12	9/11/2007	21,000 q		810	720	860	1,950		<20							44.10	18.08	26.02		1.21
MW-12	12/26/2007	20,000 q		2,000	600	1,400	2,870		<20							44.10	17.44	26.66		1.3
MW-12	3/19/2008	12,000		1,000	460	630	1,490		<20							44.10	15.97	28.13		0.28
MW-12	6/5/2008	22,000		860	530	930	2,340		<10							44.10	17.28	26.82		0.10
MW-12	9/29/2008	23,000		1,800	820	1,300	2,900		<10							44.10	19.10	25.00		0.76
MW-12	12/19/2008	12,000		850	240	530	930		<10							44.10	18.68	25.42		0.47
MW-12	3/10/2009	6,400		720	110	450	570		<10							44.10	15.55	28.55		2.25
MW-12	6/3/2009	14,000		1,000	370	800	2,400		<10							44.10	17.47	26.63		1.03
MW-12	9/30/2009	27,000		1,100	260	930	2,800		<10							44.10	19.44	24.66		0.01
MW-12	3/5/2010	6,500		630	47	220	390		<5.0							44.10	14.65	29.45		0.11
MW-12	9/16/2010	7,500		490	83	200	720		<5.0							44.10	18.16	25.94		0.21
MW-12	3/18/2011	Well Ina	accessible													44.10				
MW-12	3/31/2011	6,400		760	98	190	550		<10							44.10	13.48	30.62		2.20

								MTBE	MTBE					1,2-			Depth to	GW	SPH	DO	
Well ID	Date	TPPH	TEPH	В	Т	Ε	X	8020	8260	DIPE	ETBE	TAME	TBA	DCA	EDB	TOC	Water	Elevation	Thickness	Reading	
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)	
MW-13	6/26/2006															41.59	12.10	29.49			
MW-13 (m)	6/29/2006															41.59	12.47	29.12		0.61	
MW-13 (o)	6/30/2006															41.59	12.25	29.34			
MW-13 (p)	7/6/2006	<50.0		< 0.500	< 0.500	< 0.500	< 0.500		< 0.500	< 0.500	< 0.500	< 0.500	<10.0	< 0.500		41.59	12.35	29.24		0.24	
MW-13	9/11/2006	<50.0		< 0.500	< 0.500	< 0.500	< 0.500		< 0.500							41.59	13.33	28.26		1.02	
MW-13	12/28/2006	<50		< 0.50	< 0.50	< 0.50	<1.0		< 0.50							41.59	13.12	28.47		0.81	
MW-13	3/20/2007	<50.0		1.41	2.36	2.20	6.29		< 0.500							41.59	13.12	28.47		0.14	
MW-13	6/26/2007	58 g		0.20 r	<1.0	<1.0	<1.0		<1.0							41.59	14.68	26.91		0.38	
MW-13	9/11/2007	<50 q		0.69	0.30 r	<1.0	<1.0		<1.0							41.59	15.51	26.08		0.92	
MW-13	12/26/2007	<50 q		0.24 r	<1.0	<1.0	<1.0		<1.0							41.59	14.74	26.85		1.0	
MW-13	3/19/2008	<50		< 0.50	<1.0	<1.0	<1.0		<1.0							41.59	13.28	28.31		0.34	
MW-13	6/5/2008	<50		< 0.50	<1.0	<1.0	<1.0		<1.0							41.59	14.65	26.94		0.15	
MW-13	9/29/2008	<50		0.53	<1.0	<1.0	<1.0		<1.0							41.59	16.50	25.09		1.59	
MW-13	12/19/2008	<50		< 0.50	<1.0	<1.0	<1.0		<1.0							41.59	16.12	25.47		0.49	
MW-13	3/10/2009	<50		< 0.50	<1.0	<1.0	<1.0		<1.0							41.59	12.75	28.84		1.52	
MW-13	6/3/2009	<50		< 0.50	<1.0	<1.0	<1.0		<1.0							41.59	14.90	26.69		0.99	
MW-13	9/30/2009	<50		< 0.50	<1.0	<1.0	<1.0		<1.0							41.59	16.82	24.77		0.20	
MW-13	3/5/2010	<50		< 0.50	<1.0	<1.0	<1.0		<1.0							41.59	11.87	29.72		0.18	
MW-13	9/16/2010	<50		< 0.50	<1.0	<1.0	<1.0		<1.0							41.59	15.10	26.49		0.20	
MW-13	3/18/2011	<50		<0.50	<0.50	<0.50	<1.0		<1.0							41.59	12.12	29.47		0.68	
P-1A	9/15/2008															47.74	22.49	25.25			
P-1A	12/19/2008	13,000		90	24	1,100	893		190							47.74	22.23	25.51		0.54	
P-1B	9/15/2008															47.65	22.50	25.15			
P-1B	12/19/2008	82,000		5,200	3,300	3,000	9,600		1,300							47.65	22.25	25.40		0.66	
P-2A	9/15/2008															48.81	23.58	25.23			
P-2A	12/19/2008	1,900		70	<2.0	19	<2.0		94							48.81	23.49	25.32		3.92	
P-2B	9/15/2008															49.02	23.40	25.62			
P-2B	12/19/2008	7,500		450	<5.0	93	81		410							49.02	23.61	25.41		0.17	

GROUNDWATER DATA SHELL-BRANDED SERVICE STATION 1784 150th AVENUE, SAN LEANDRO, CALIFORNIA

								MTBE	MTBE					1,2-			Depth to	GW	SPH	DO
Well ID	Date	TPPH	TEPH	В	Т	Ε	X	8020	8260	DIPE	ETBE	TAME	TBA	DCA	EDB	TOC	Water	Elevation	Thickness	Reading
		(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)													
P-3A	9/15/2008															44.56	19.21	25.35		
P-3A	12/19/2008	64,000		1,900	1,900	3,600	12,300		170							44.56	19.03	25.53		0.37
P-3B	9/15/2008															44.62	19.02	25.60		
P-3B	12/19/2008	70,000		5,700	2,300	3,300	11,600		1,100							44.62	19.26	25.36		
P-4A	9/15/2008															45.00	19.95	25.05		
P-4A	10/2/2008															45.00	19.63	25.37		
P-4A	12/19/2008	80,000		330	9,300	3,800	14,300		130							45.00	19.32	25.68		0.76
P-4B	9/15/2008															44.93	19.30	25.63		
P-4B	12/19/2008	81,000		1,100	5,800	4,000	17,500		390							44.93	19.50	25.43		0.52

Abbreviations:

TPPH = Total petroleum hydrocarbons as gasoline by EPA Method 8260B; prior to June 11, 2001, analyzed by EPA Method 8015.

TEPH = Total petroleum hydrocarbons as diesel by modified EPA Method 8015.

BTEX = Benzene, toluene, ethylbenzene, xylenes by EPA Method 8260B; prior to June 11, 2001, analyzed by EPA Method 8020.

MTBE = Methyl tertiary-butyl ether

DIPE = Di-isopropyl ether, analyzed by EPA Method 8260

ETBE = Ethyl tertiary-butyl ether, analyzed by EPA Method 8260

TAME = Tertiary-amyl methyl ether, analyzed by EPA Method 8260

TBA = Tertiary-butyl alcohol, analyzed by EPA Method 8260

1,2-DCA = 1,2-dichloroethane, analyzed by EPA Method 8260

EDB = 1,2-dibromomethane or ethylene dibromide, analyzed by EPA Method 8260

TOC = Top of casing elevation

SPH = Separate-phase hydrocarbons

- GW = Groundwater
- DO = Dissolved oxygen
- ug/L = Parts per billion
- ppm = Parts per million
- MSL = Mean sea level

ft. = Feet

<n = Below detection limit

(D) = Duplicate sample

GROUNDWATER DATA SHELL-BRANDED SERVICE STATION 1784 150th AVENUE, SAN LEANDRO, CALIFORNIA

								MTBE	MTBE					1,2-			Depth to	GW	SPH	DO
Well ID	Date	TPPH	TEPH	В	Т	Ε	X	8020	8260	DIPE	ETBE	TAME	TBA	DCA	EDB	TOC	Water	Elevation	Thickness	Reading
		(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)													

--- = Not applicable

Notes:

a = Chromatogram pattern indicates an unidentified hydrocarbon.

b = Samples not analyzed due to laboratory oversight.

c = Hydrocarbon does not match pattern of laboratory's standard.

d = The concentration reported reflects individual or discrete unidentified peaks not matching a typical fuel pattern.

e = Estimated value. The concentration exceeded the calibration of analysis.

f = Quantity of unknown hydrocarbon(s) in sample based on gasoline.

g = Sample was originally analyzed within the EPA recommended hold time. Re-analysis for dilution was performed past the recommended hold time.

h = Sample was originally analyzed within the EPA recommended hold time. Re-analysis for confirmation was performed past the recommended hold time.

i = The result for this hydrocarbon is elevated due to the presence of single analyte peak(s) in the quantitation range.

j = Result was reported with a possible low bias due to the continuing calibration verification falling outside the acceptance criteria.

k = The result was reported with a possible low bias due to the continuing calibration verification falling outside the acceptance criteria.

l = Sample required dilution due to high concentrations of target analyte.

m = Well resampled on July 6, 2006 due to laboratory error.

n = Well not accessed due to equipment malfunction.

o = All wells re-gauged on June 30, 2006 prior to sampling.

p = Wells resampled for 2Q06 event due to laboratory error.

q = Analyzed by EPA Method 8015B (M).

r = Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.

t = The sample chromatographic pattern for TPH does not match the chromatographic pattern of the specified standard. Quantitation of the unknown hydrocarbon(s) in the sample was based upon the specified standard.

u = the sample extract was subjected to Silica Gel treatment prior to analysis

* = Sample analyzed out of EPA recommended hold time.

When Separate-Phase Hydrocarbons are present, the groundwater elevation is adjusted using the following formula: GWE = TOC – DTW + 0.8 * SPH thickness.

Site surveyed January 23, 2002 by Virgil Chavez Land Surveying of Vallejo, CA.

Wells MW-7 and MW-8 surveyed by Virgil Chavez Land Surveying of Vallejo, CA

Wells MW-9, MW-10, and MW-11 surveyed December 11, 2003 by Virgil Chavez Land Surveying of Vallejo, CA.

Wells MW-12 and MW-13 surveyed on June 9, 2006 by Virgil Chavez Land Surveying of Vallejo, CA.

APPENDIX A

BLAINE TECH SERVICES, INC. – FIELD NOTES
WELL GAUGING DATA

Project	# <u>103</u>	195-30		Date	3-19-11		Client _	Shell		
Site	<u>→84</u>	150+	h ^{To} Ave	Su	1 Jeile	doco.				
Well ID	Time	Well Size (in.)	Sheen / Odor	Depth to Immiscible Liquid (ft.)	Thickness of Immiscible Liquid (ft.)	Volume of Immiscibles Removed (ml)	Depth to water (ft.)	Depth to well bottom (ft.)	Survey Point: TOB or TOG	Notes
MW-1A	6 <i>490</i>	÷					2.0.60	26.26		
NW-1B	5950	2					191.00	49.65		e et
NW-23	0-105	Ц					16,78	49.96		
NU-3	0915	Ц		,	~~~~	Care war	23.17	41.50		
42-64	NOU	2					11.08	24,65		(11)
NW-5	1140	2					12.41	24.95		(11)
NW-6	1205	2					12.04	19.49	and the second processor	(11)
NV-7			not	Acces	red 8	ve to	vet w	enthor		An
NW-8		: 	į c	<u>y</u>		Ţ.	ž			(77)
NW-9	1010	2				.4	11.30	37-75	and the second	(1)
NW-10	1155		Park	ed ove	X.		21.49	31.63		
144-11	NØ	and the second	Noto	(phater 1500p	v dans tič _i .	-	11.08	24.6		
NW- 12		Mot 1	ceesser	Dre b	, vet	whenAl	L.			Gro
NW-13	1005	L					12.12	23,84		(Tre)
2~-1	0920	1					20,09	34.91	- Production of the Production	
EW-2	0425	Ц			:		16,41	32.63	and the second	
V AI	(Cap	<u>s (</u>	pened	15	with	privé	to Gra	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		

BLAINE TECH SERVICES, INC. SAN JOSE SACRAMENTO LOS ANGELES SAN DIEGO SEATTLE www.blainetech.com

Å 1

SHELL WELL	MONITORING DATA SHEET
BTS #: 103(0- 10)	Site: 1284 150th Ave
Sampler: JO(JP	Date: $3-10\%$
Well I.D.: MW- NA	Well Diameter: 2 3 4 6 8
Total Well Depth (TD): 26.26	Depth to Water (DTW): 20.66
Depth to Free Product:	Thickness of Free Product (feet):
Referenced to: (PVC) Grade	e D.O. Meter (if req'd): (YS) HACH
DTW with 80% Recharge [(Height of V	Water Column x 0.20) + DTW]: 2179
Purge Method: Bailer Disposable Bailer Positive Air Displacement Electric Submersible Othe	Waterra Sampling Method: Bailer Peristaltic Disposable Bailer Extraction Pump Extraction Port er Dedicated Tubing Other:
	Well Diameter Multiplier Well Diameter Multiplier 1" 0.04 4" 0.65
$\frac{3.9}{1 \text{ Case Volume}} (\text{Gals.}) \times \frac{3}{\text{Specified Volumes}} = \frac{11}{\text{Calculation}}$	Gals. 2" 0.16 6" 1.47 ated Volume 3" 0.37 Other radius ² * 0.163
TimeTemp (°F)pHCondTimeTemp (°F)pH(mS or (l. Turbidity μS) (NTUs) Gals. Removed Observations
1135 64.6 691 1420	1238
perusal c	4 gallos
1200 64.6 6.93 1431	16 -
Did well dewater? (Yes) No	Gallons actually evacuated:
Sampling Date: 3-18-11 Sampling	g Time: 1200 Depth to Water: 212
Sample I.D.: MW- 197	Laboratory: (Test America) Other
Analyzed for: TPH-G BTEX MTBE TF	PH-D Oxygenates (5) Other: See coc
EB I.D. (if applicable):	Duplicate I.D. (if applicable):
Analyzed for: TPH-G BTEX MTBE TP	PH-D Oxygenates (5) Other:
D.O. (if req'd): Pre-purge:	^{mg} / _L Post-purge 0.62 ^{mg} / _L
O.R.P. (if req'd): Pre-purge:	mV Post-purge: mV

		SHEL	L WELL MO	NITOI	RING D.	ATA SHEET	· · · · · · · · · · · · · · · · · · ·			
BTS #: 110	2319-10	1		Site: 1784 150th AVE						
Sampler:	4L) 0L			Date: $3 - 10 - 10$						
Well I.D.:	MW-A	460- IT	2	Well I	Diameter	: 2 3 👍	68			
Total Well Depth (TD): 49.65					Depth to Water (DTW): 19.00					
Depth to Fr	Depth to Free Product:					Thickness of Free Product (feet):				
Referenced	Referenced to: (PVC) Grade					req'd):	YSI HACH			
DTW with	80% Rech	arge [(H	leight of Water	Colum	n x 0.20)) + DTW]:	25.13			
Purge Method:	Bailer Disposable B Positive Air I Electric Subn	ailer Displaceme iersible	nt Extrac Other	Waterra Peristaltic tion Pump	a C D	Sampling Method	Bailer Disposable Bailer Extraction Port Dedicated Tubing			
1 Case Volume	Gals.) X Speci	3 fied Volum	$= \frac{59.1}{\text{Calculated Vo}}$	_ Gals. lume	Well Diamete 1" 2" 3"	rr Multiplier Well 0.04 4" 0.16 6" 0.37 Othe	Diameter Multiplier 0.65 1.47 ar radius ² * 0.163			
Time	Temp (°F)	pН	Cond. (mS or(µŠ)	Tur (N	bidity TUs)	Gals. Removed	Observations			
1208	66.0	6-93	142G	7600	R	19.9				
1212	659	6.97	1420	200	2V	39.8				
1214	65.9	6-93	42	>100	<u>で</u>	59-7				
		-				, , , , , , , , , , , , , , , ,				
Did well de	water?	Yes (No	Gallon	is actuall	y evacuated:	597			
Sampling D	ate: 3-18-		Sampling Time	s: [2	20	Depth to Wate	r: 21,29			
Sample I.D.	: MW-1	B		Labora	atory: 🤇	Test America	Other			
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygen	ates (5)	Other: See	2000			
EB I.D. (if a	pplicable)	e *	@ Time	Duplic	ate I.D. ((if applicable):				
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygen	ates (5)	Other:				
D.O. (if req'	d): Pr	e-purge:		^{mg} /L	P	ost-purge:	0.77 ^{mg} /L			
O.R.P. (if re	q'd): Pro	e-purge:		mV	Po	ost-purge:	mV			

		SHEL	L WELL MO	NITORING D	ATA SHEET			
BTS #: NC	310-101			Site: 1704 150th AVE				
Sampler:	4L) 0L			Date: 3-18	Date: 3-18-11			
Well I.D.:	MW-2	B		Well Diamete	r: 2 3 4	68		
Total Well I	Depth (TD)): 49	3.Ho	Depth to Water (DTW): 16-78				
Depth to Fre	ee Product	s ^utions	tanggupangangangang	Thickness of I	Thickness of Free Product (feet):			
Referenced	to:	(PVC)	Grade	D.O. Meter (if	freq'd): (YSI HACH		
DTW with 8	30% Recha	urge [(H	eight of Water	Column x 0.20)) + DTW]: 23	3.19 ⁻		
Purge Method:	Bailer Disposable Ba Positive Air D Electric Subm	ailer Displacemen ersible	nt Extrac Other	Waterra Peristaltic ction Pump	Sampling Method:	Bailer Disposable Bailer Extraction Port Dedicated Tubing		
				Well Diame	ter Multiplier Well I 0.04 4"	Diameter Multiplier 0.65		
1 Case Volume	Gals.) X Specii	3 fied Volum	$\frac{1}{es} = \frac{62.4}{Calculated Vc}$	Gals. 2" olume 3"	0.16 6" 0.37 Other	1.47 r radius ² * 0.163		
Time	Temp (°F)	pН	Cond. (mS or(µŠ)	Turbidity (NTUs)	Gals. Removed	Observations		
1255	66.0	2.29	FR	106	20.8			
1259	65.9	7.25	1225	121	41.6			
1303	659	7.23	17-29	113	62.4			
					-			
Did well de	water?	Yes (No	Gallons actua	lly evacuated:	62.4		
Sampling D	ate: 3-18-	L	Sampling Tim	ie: 1310	Depth to Wate	r: 19,25		
Sample I.D.	: MW-2	 R		Laboratory:	Test America	Other		
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: See	2.000		
EB I.D. (if a	applicable)):	@ Time	Duplicate I.D	. (if applicable):			
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:			
D.O. (if req'	'd): Pr	e-purge:	yzan zakodni kina prosedni prosedni kana na prosedni prosedni kana kina kana kana kana kana kana ka	^{mg} / _L	Post-purge	0,¶ ^{mg} / _L		
O.R.P. (if re	eq'd): Pr	e-purge:		mV	Post-purge:	mV		

-		SHEL	L WELL MO	NITOR	ING D.	ATA SHEET	~.	
BTS #: 11 0	0510-Ju	Š.		Site: 1784 150th AVE				
Sampler:	9210L			Date: $3 - 10 - 10$				
Well I.D.:	MW-3	, }		Well D	iameter	: 2 3 4	68	
Total Well	Depth (TE): 41	.50	Depth t	o Wate	r (DTW): 2	3,17	
Depth to Fr	ee Product			Thickness of Free Product (feet):				
Referenced	to:	PVC	Grade	D.O. M	eter (if	req'd): <	YSI) HACH	
DTW with 80% Recharge [(Height of Water Column x 0.20) + DTW							26,83	
Purge Method:	Bailer Disposable B Positive Air I Electric Subn	ailer Displaceme nersible	nt Extrac Other	Waterra Peristaltic tion Punp		Sampling Method Other	Bailer Disposable Bailer Extraction Port Dedicated Tubing	
11, 9 1 Case Volume	Gals.) X Speci	<u>3</u> fied Volum	= 35.7 $Calculated Vo$	Gals. lume	1" 2" 3"	0.04 4" 0.16 6" 0.37 Othe	$\begin{array}{c} 0.65 \\ 1.47 \\ r \\ r \\ radius^2 * 0.163 \end{array}$	
Time	Temp (°F)	pH	Cond. (mS or(µŠ)	Turb (NT	idity Us)	Gals. Removed	Observations	
1317	65.1	6.53	1536	-6	2	11.9		
1320	66-2	6.51	1547	4.	7	23.8		
1323	06.4	6.51	1534	3	3	<u>35.7</u>		
Did well de	water?	Yes (No	Gallons	actuall	y evacuated:	35.7	
Sampling D	ate: 3-18-	i (Sampling Time	: 133	0	Depth to Wate	r: <u>24.58</u>	
Sample I.D.	: MW-3	3		Laborate	ory: 🤇	Test America	Other	
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenat	es (5)	Other: See	200	
EB I.D. (if a	pplicable)	•	@ Time	Duplica	te I.D. ((if applicable):		
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenat	es (5)	Other:		
D.O. (if req'	d): Pr	e-purge:	an	^{mg} /L	Pe	ost-purge:	0.48 ^{mg} /L	
O.R.P. (if re	q'd): Pr	e-purge:		mV	Po	ost-purge:	mV	

~		SHEL	L WELL MO	NITORING D	ATA SHEET		
BTS #: 🍴	0310-10	Ì		Site: 1284 150th AVE			
Sampler:	5L) 0L			Date: $3 - (g - ($			
Well I.D.:	MW-			Well Diameter	: 2 3 4	6 8	
Total Well	Depth (TI	D): <u>Z</u> L	1.65	Depth to Wate	r (DTW):	OR	
Depth to F	ree Produc	t:. 🛸	on and the second se	Thickness of F	ree Product (fe	eet):	
Referenced	l to:	(PVC)	Grade	D.O. Meter (if	req'd):	(YSI) HACH	
DTW with	80% Rech	arge [(H	leight of Water	Column x 0.20) + DTW]: 🕲	13.79	
Purge Method:	Bailer Disposable E Positive Air I Electric Subr	Bailer Displaceme nersible	nt Extrac Other	Waterra Peristaltic tion Pump <u>Well Diamete</u>	Sampling Method Other er Multiplier Well	: Bailer Disposable Bailer Extraction Port Dedicated Tubing : Diameter Multiplier	
2.1 1 Case Volume	Gals.) X Speci	3 ified Volum	$= \frac{6.3}{\text{Calculated Vo}}$	_ Gals. 2" Jume 3"	0.04 4" 0.16 6" 0.37 Othe	0.65 1.47 er radius ² * 0.163	
Time	Temp (°F)	pН	Cond. (mS or(µŠ)	Turbidity (NTUs)	Gals. Removed	Observations	
1005	65.0	7.61	1040	4:24	721		
	64.8	7.3i	LO 24	6124	HI	2 - 2 ⁻¹ 2 P	
	647	7,28	10 20	79N	6.5		
						189	
Did well de	water?	Yes (No	Gallons actuall	y evacuated:	6.3	
Sampling D	ate: 3-18-	i(Sampling Time	: 1120	Depth to Wate	r: 12.2(
Sample I.D.	: MW-	i.f		Laboratory:	Test America)	Other	
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: See	200	
EB I.D. (if a	pplicable)	*	@ Time	Duplicate I.D. ((if applicable):		
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:		
D.O. (if req'	d): Pr	e-purge:		^{mg} / _L (Po	ost-purge:	0,9/ ^{mg} / _L	
O.R.P. (if re	q'd): Pr	e-purge:		mV Po	ost-purge:	mV	

·		SHEL	L WELL MC	DNITORING D	ATA SHEET				
BTS #: 1	0310-10	1		Site: 1284 150th Ave					
Sampler:	5L)0L			Date: $3-10$ (
Well I.D.:	MW-	5		Well Diameter	Well Diameter: 2 3 4 6 8				
Total Well	Depth (TI)): 24	.85	Depth to Wate	Depth to Water (DTW): 12,41				
Depth to Fi	ree Produc	t:		Thickness of Free Product (feet):					
Referenced	to:	PVC	Grade	D.O. Meter (if	freq'd): (YSI) HACH			
DTW with	80% Rech	arge [(H	eight of Water	Column x 0.20) + DTW]: /	4,89			
Purge Method:	Bailer Disposable B Positive Air I Electric Subn	ailer Displacemer nersible	nt Extra Other	Waterra Peristaltic ction Pump	Sampling Method Other	l: Bailer Disposable Bailer Extraction Port Dedicated Tubing			
	· · · ·			Well Diamet	er Multiplier Well 0.04 4"	Diameter Multiplier			
<u>2,0</u> 1 Case Volume	Gals.) X Speci	<u>3</u> fied Volume	$= \frac{6.0}{\text{Calculated Volume}}$	Gals. 2" olume 3"	0.16 6" 0.37 Oth	1.47 er radius ² * 0.163			
Time	Temp (°F)	pН	Cond. (mS or(µŠ)	Turbidity (NTUs)	Gals. Removed	Observations			
1145	61.2	6.85	1966	38	2,0				
1/48	64.3	6.97	888, Z	55	4,0				
1151	65,1	6.98	\$47.5	86	6.0				
Did well dev	water?	Yes	NO)	Gallons actual	ly evacuated:	6.0			
Sampling D	ate: 3-18-1	- [Sampling Tim	e: /155	Depth to Wate	r: 13.25			
Sample I.D.	: MW-5	-71		Laboratory: (Test America	Other			
Analyzed fo	r: TPH-G	BTEX I	MTBE TPH-D	Oxygenates (5)	Other: See	200			
EB I.D. (if a	pplicable)	· · ·	@ Time	Duplicate I.D.	(if applicable):				
Analyzed for	r: TPH-G	BTEX N	MTBE TPH-D	Oxygenates (5)	Other:				
D.O. (if req'o	d): Pro	e-purge:		^{mg} / _L P	ost-purge:	0.58 ^{mg} /L			
O.R.P. (if red	q'd): Pro	e-purge:		mV P	ost-purge:	mV			

• •	,	SHEL	L WELL MO	NITORING I	DATA SHEET	<u>-</u> .		
BTS #: 1	03100-10	1	· ,	Site: 1294 150th AVE				
Sampler:	5L10L			Date: $3 - 10 - 10$				
Well I.D.:	MW-	5		Well Diamete	r: 2 3 4	6 8		
Total Well	Depth (TI): 19,	49	Depth to Wate	er (DTW): 17	04		
Depth to Fi	ree Produc	t:		Thickness of Free Product (feet):				
Referenced	l to:	(PVC)	Grade	D.O. Meter (i	f req'd):	YSD HACH		
DTW with	80% Rech	arge [(H	leight of Water	Column x 0.20)) + DTW]:	13.53		
Purge Method:	Baile Disposable B Positive Air I Electric Subn	ailer Displaceme nersible	nt Extrac Other	Waterra Peristaltic tion Pump	Sampling Method Other ter Multiplier Well	E: Disposable Bailer Extraction Port Dedicated Tubing Diameter Multiplier		
<u> </u>	Gals.) X Speci	<u> </u>	$= \frac{5 \cdot \cancel{b}}{\text{Calculated Vo}}$	_ Gals. 3"	0.04 4" 0.16 6" 0.37 Oth	0.65 1.47 er radius ² * 0.163		
Time	Temp (°F)	pН	Cond. (mS or(µŠ)	Turbidity (NTUs)	Gals. Removed	Observations		
1212	551	6.99	475,5	71000	1,2			
1215	54.5	6.31	4203	71000	2,4			
1217	56.3	674	417,8	71000	3.6			
Did well de	water?	Yes	No	Gallons actual	ly evacuated:	3.6		
Sampling D	ate: 3-18-1		Sampling Time	:: 1220	Depth to Wate	r: 12.37		
Sample I.D.	: MW- 3	Ø		Laboratory:	Test America	Other		
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: See	2.00		
EB I.D. (if a	pplicable)	•	@ Time	Duplicate I.D.	(if applicable):			
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:			
D.O. (if req'	d): Pro	e-purge:		^{mg} / _L I	ost-purge:	2,0/. mg/L		
D.R.P. (if re	q'd): Pre	e-purge:		mV F	ost-purge:	mV		

								-
BTS #: \	BTS #: 110318 - JO1				Site: 98996068			
Sampler:	<i>J0</i>			Date:	Date: $3 18 11$			
Well I.D.:	mui-7			Well D	Jiameter	: 2 3	4	6 8
Total Well	Depth (TD):		Depth	to Water	r (DTW):	مر مربعی	
Depth to Fr	ee Product			Thickn	Thickness of Free Product (feet):			
Referenced	to:	PVC	Grade	D.O. N	leter (if	req'd):		YSI HACH
DTW with	80% Rech	arge [(H	leight of Water	Columr	n x 0.20)) + DTW]:		
Purge Method: Bailer Waterra Sampling Method: Bailer Disposable Bailer Perietaltic Disposable Bailer Positive Air Displacement Extraction Pump Extraction Port Electric Submersible Other Dedicated Tubing Other:							Bailer Disposable Bailer Extraction Port Dedicated Tubing	
					<u>well Diamete</u> 1" 2"	0.04 0.16	<u>weii L</u> 4" 6"	0.65
1 Case Volume	Gals.) X Speci	fied Volum	nes Calculated Ve	Gals.	3"	0.37	Other	radius ² * 0.163
			Cond.	Turl	oidity			
Time	Temp (°F)	pH	$(mS \text{ or } \mu S)$	(N)	rUs)	Gals. Rem	loved	Observations
	- WNY	<u>sie r</u>	ALLESS L	ser a	<u>07 yr</u>	HEAVY	RAIN	<u>)/</u>
• •••••••		UNISA	FE WEATHI	ER CO	NDITION	5		
			NO.	SAMPLE	E TAI	FEN		
Did well de	water?	Yes	No	Gallons	s actuall	y evacuate	ed:	
Sampling D	ate:		Sampling Tim	e:		Depth to	Water	•
Sample I.D.	:			Labora	tory:	Test Americ	a (Dther
Analyzed fo	F. TPH-G	BTEX	MTBE TPH-D	Oxygena	ites (5)	Other:	******	/
EB I.D. (if a	applicable)	•	@ Time	Duplica	ate I.D. ((if applica	ble):	
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Øxygena	ites (5)	Other:	/	/
D.O. (if req'	d): Pr	e-purge:		^{mg} /L	Po	ost-purge:		mg/L
O.R.P. (if re	eq'd): Pr	e-purge:		mV	Pe	ost-purge:	ľ	mV

SHELL WELL MONITORING DATA SHEET

						÷	
BTS #: \	10318	J0 (Site: 9899	6068		
Sampler:	0L			Date: 3/18	11(
Well I.D.:	MW - 8			Well Diameter	: 2 3 4	6 8	
Total Well	Depth (TD): -		Depth to Water	r (DTW):	Ribina,	
Depth to Fr	ee Product			Thickness of Free Product (feet):			
Referenced	to:	PVC	Grade	D.O. Meter (if	req'd):	YSI HACH	
DTW with	80% Rech	arge [(H	leight of Water	Column x 0.20)) + DTW]:		
Purge Method:	Bailer Disposable B Positive Air I Electric Subn	ailer Displaceme nersible	nt Extrac Other	Waterra Peristaltic tion Pump	Sampling Method	Bailer Disposable Bailer Extraction Port Dedicated Tubing	
() 1 Case Volume	Gals.) X Speci	fied Volum	es Calculated Vo	_ Gals. lume	multiplier Well 0.04 4" 0.16 6" 0.37 Other	Diameter Multiplier 0.65 1.47 er radius ² * 0.163	
Time	Temp (^o F)	nU	Cond.	Turbidity	Cola Domoriad	Observations	
	Temp (T)	pri		(1105)	Gais. Reinoveu		
· ·	-UNAB	<u>ve r</u>	ALLESS WE	LL DHE B	HEAVE RAI	Ν/	
		UNSA	FE WEATHE	R CONDITION	5		
				7			
			NO GAMI	RE TAKEN			
Did well de	water?	Yes	No	Gallons actuall	y evacuated:		
Sampling D	ate:		Sampling Time	2 ° ~ •	Depth to Wate	r:	
Sample I.D.	:			Laboratory:	Test America	Other	
Analyzed fo	TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:		
EB I.D. (if a	EB I.D. (if applicable): [@] _{Time} Duplicate I.D. (if applicable):						
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:		
D.O. (if req'	d): Pr	e-purge:		^{mg} / _L P	ost-purge:	^{mg} /L	
O.R.P. (if re	q'd): Pr	e-purge:		mV P	ost-purge:	mV	

SHELL WELL MONITORING DATA SHEET

SHELL WEL	L MONITORING	DATA SHEET					
BTS #: 1103(0- 10)	Site: 1284	Site: 12024 150th AVE					
Sampler: J0/JP	Date: 3-1	Date: $3-10-10$					
Well I.D.: MW-9	Well Diamet	er: (2) 3 4	68				
Total Well Depth (TD): 47,75	Depth to Wa	Depth to Water (DTW): 11.30					
Depth to Free Product:	Thickness of	Thickness of Free Product (feet): 🛀					
Referenced to: (PVC) Grad	de D.O. Meter (D.O. Meter (if req'd): (Ysty HACH					
DTW with 80% Recharge [(Height of	DTW with 80% Recharge [(Height of Water Column x 0.20) + DTW]: 16.57						
Purge Method: Bailer Disposable Bailer Positive Air Displacement Electric Submersible Ot	Waterra Peristaltic Extraction Pump her	Sampling Method Other	l: Bailer (Disposable Batter, Extraction Port Dedicated Tubing				
	Well Dian	neter Multiplier Well 0.04 4 ^u	Diameter Multiplier 0.65				
$\frac{4.1}{1 \text{ Case Volume}} (\text{Gals.}) \times \frac{3}{\text{Specified Volumes}} = \frac{1}{\text{Calculus}}$	Gals. 2" alated Volume 2"	0.16 6" 0.37 Oth	1.47 er radius ² * 0.163				
Time Temp (°E) all (mS or	d. Turbidity	Gala Pornovad	Observations				
	(1105)	(1.7					
1033 64.9 7.21 1131	Se	<u> </u>					
1040 65.2 7.19 1098	2	<u> </u>					
1047 65-1 2.18 1086	<u>, 10</u>	17.6					
Did well dewater? Ves (No	Gallons actu	ally evacuated:	<u> </u>				
Sampling Datas 7	α Time: IA	Dopth to Wate					
Sampling Date: 5-18-11 Sampling			1. 11-76				
Sample I.D.: MW- 9	Laboratory:	Test America)	Other				
Analyzed for: TPH-G BTEX MTBE T	PH-D Oxygenates (5)	Other: Set	2 6 0 6				
EB I.D. (if applicable):	EB I.D. (if applicable):						
Analyzed for: TPH-G BTEX MTBE T	PH-D Oxygenates (5)	Other:	- Norman				
D.O. (if req'd): Pre-purge:	mg/L	Post-purge:	0.71 mg/L				
O.R.P. (if req'd): Pre-purge:	mV	Post-purge:	mV				

	x	SHEL		MIORING D	AIASHEEI	<u>-</u>		
BTS #: 110	2510-10			Site: 1284	4 150th AVE			
Sampler:	5L10L		••••••••••••••••••••••••••••••••••••••	Date: 3-10-11				
Well I.D.:	MW-	0		Well Diameter	: 2 3 4	6 8		
Total Well	Depth (TE)): 3	1.63	Depth to Water	r (DTW): 2	-1.49		
Depth to Fr	ee Product	t:	<u>, , , , , , , , , , , , , , , , , , , </u>	Thickness of F	ree Product (fe	et):		
Referenced	to:	(PVC)	Grade	D.O. Meter (if	D.O. Meter (if req'd): (YSI) HACH			
DTW with	80% Rech	arge [(H	leight of Water	Column x 0.20)) + DTW]:	23.51		
Purge Method:	Bailer Disposable B Positiye Air I Electric Subn	ailer Displaceme nersible	nt Extrac Other	Waterra Peristaltic ction Pump	Sampling Method Other	: Bailer Disposable Bailer Extraction Port Dedicated Tubing		
<u>(j) , jy</u> 1 Case Volume	Gals.) X Speci	3 fied Volum	$= \underbrace{19.8}_{\text{Calculated Vo}}$	_ Gals. hume	r <u>Multiplier</u> well 0.04 4" 0.16 6" 0.37 Othe	0.65 1.47 er radius ² * 0.163		
Time	Temp (°F)	pН	Cond. (mS or(µŠ)	Turbidity (NTUs)	Gals. Removed	Observations		
1250	69.0	655	732.6	11:7	\$,6			
1252	663	6.49	1054	37	13.2			
1253	well	Dew	stered @	14.59 als	14,5	078/5 26.96		
1305	62:7	6.65	1008	19				
Did well dev	water?	(Tes)	No	Gallons actuall	y evacuated:	14.5		
Sampling D	ate: 3-18-	i(Sampling Time	: 1305	Depth to Wate	r: <u>23-/2</u>		
Sample I.D.	: MW-11	0		Laboratory:	Test America	Other		
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: See	200		
EB I.D. (if a	pplicable)	•	@ Time	Duplicate I.D. (if applicable):			
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:			
D.O. (if req'	d): Pr	e-purge:		^{mg} / _L Po	ost-purge:	1.86 ^{mg} /L		
O.R.P. (if re	q'd): Pr	e-purge:		mV Po	ost-purge:	mV		

NOINC DATA CUEFT CITER D.

 ,	·.	SHEL	LI WELL MO	NITORING D	ATA SHEET	-			
BTS #: 116	5310 - 10	<u>}</u>		Site: 1794	150th AVE				
Sampler:	9L)0L			Date: $3 - 10 - 11$					
Well I.D.:	Mu1-1	*		Well Diameter: 2 3 4 6 8					
Total Well Depth (TD): 24,65 Depth to Water (DTW): 11.08									
Depth to Fr	ee Produc			Thickness of I	Free Product (fe	eet):			
Referenced	to:	PVC	Grade	D.O. Meter (if	req'd):	YSI) HACH			
DTW with a	80% Rech	arge [(H	leight of Water	Column x 0.20) + DTW]:	13.79			
Purge Method: Bailer Waterra Sampling Method: Bailer Disposable Bailer Peristaltic Disposable Bailer Positive Air Displacement Extraction Pump Extraction Port Electric Submersible Other Dedicated Tubing									
$\frac{4.8}{1 \text{ Case Volume}} (\text{Gals.}) \times \frac{3}{\text{Specified Volumes}} = \frac{26.4}{\text{Calculated Volume}} (\text{Gals.}) \times \frac{3}{\text{Calculated Volume}} = \frac{26.4}{\text{Calculated Volume}} (\text{Gals.}) \times \frac{3}{\text{Calculated Volume}} = \frac{26.4}{\text{Calculated Volume}} (\text{Gals.}) \times \frac{3}{\text{Calculated Volume}} (\text{Gals.}) \times \frac{3}{\text{Calculated Volume}} = \frac{26.4}{\text{Calculated Volume}} (\text{Gals.}) \times \frac{3}{\text{Calculated Volume}} \times $									
Time	Temp (°F)	pH	Cond. (mS or(µŠ)	Turbidity (NTUs)	Gals. Removed	Observations			
1350	63.8	7.13	679,1	92	8,3				
1352	Well D	Pesset	ured @15	.5 gals-	15.5	\$TW: 19.17			

1430	63.6	7.12	555.2	61	(Sary)shinesana				
Did well dev	water?	Yes	No	Gallons actual	y evacuated:	15.5			
Sampling Da	ate: 3-18-1		Sampling Time	: 1430	Depth to Wate	r: 13.6/			
Sample I.D.: MW- Laboratory: Test America Other									
Analyzed for: TPH-G BTEX MTBE TPH-D Oxygenates (5) Other: See Coc									
EB I.D. (if applicable): [@] Duplicate I.D. (if applicable):									
Analyzed for: TPH-G BTEX MTBE TPH-D Oxygenates (5) Other:									
D.O. (if req'c	i): Pro	e-purge:		^{mg} / _L P	ost-purge:	0.66 ^{mg} /L			
O.R.P. (if rec	q'd): Pre	e-purge:		mV P	ost-purge:	mV			

							÷		
BTS #: \	10318- 7	10		Site:	98991	6068			
Sampler:	JG			Date: $3(18)$					
Well I.D.:	ML-12	~~~		Well I	Diameter	: 2 3 4	6 8		
Total Well	Depth (TD); —		Depth to Water (DTW):					
Depth to Fr	ee Product	- +		Thickness of Free Product (feet):					
Referenced	to:	PVC	Grade	D.O. N	leter (if	req'd):	YSI HACH		
DTW with	80% Rech	arge [(H	leight of Water	Colum	n x 0.20)) + DTW]:			
Purge Method:	Bailer Disposable B Positive Air I Electric Subn	ailer Displaceme nersible	ent Extrac Other	Waterra Peristaltic	Well Diamete	Sampling Method	Bailer Disposable Bai ler Extraction Port Dedicated Tubing		
(($\begin{array}{ c c c c c c c c c c c c c c c c c c c$								
·			Cond				1		
Time	Temp (°F)	pН	(mS or µS)	(N	σιαity ΓUs)	Gals. Removed	Observations		
	-UNA	BLE	TO ALCESS	WELL	- DUE	TO L'EAVY R	AIN /		
		WSTF	F. WEATHER	Cer	איינדוטי	2			
			NO SAMPLA	- - -	the N				
Did well de	water?	Yes	No	Gallon	s actuall	y evacuated:			
Sampling D	ate:	and the second se	Sampling Tim	e:		Depth to Wate	r:		
Sample I.D.	:			Labora	tory.	Test America	Other		
Analyzed for: TPH-G BTEX MTBE TPH-D Oxygenates (5) Other:									
EB J.D. (if applicable):									
Analyzed for: TPH-G BTEX MTBE 779H-D Oxygenates (5) Other:									
D.O. (if req'	d): Pr	e-purge:		^{mg} /L	Po	ost-purge:	mg/L		
O.R.P. (if re	q'd): Pr	e-purge:		mV	Po	ost-purge:	mV		

SHELL WELL MONITORING DATA SHEET

						•			
BTS #: NC	310-101			Site: 1784 150th Ave					
Sampler:	4L10L			Date: $3 - i \partial \gamma ($					
Well I.D.:	MW-	(~~,		Well Diameter: 2 3 4 6 8					
Total Well I	Depth (TD): 7	3.94	Depth to Water (DTW): 12.17					
Depth to Fr	ee Product	•		Thickness of F	ree Product (fee	et):			
Referenced	to:	(PVC)	Grade	D.O. Meter (if	req'd):	YSI) HACH			
DTW with 8	80% Recha	urge [(H	eight of Water	$Column \ge 0.20) + DTW]: 14.46$					
Purge Method:	Bailer Disposable Ba Positive Air I Electric Subr	ailes Displacemen ersible	nt Extrac Other	Waterra Sampling Method: Bailer Peristaltic Disposable Bailer ction Pump Extraction Port Other: Dedicated Tubing					
$\frac{1}{1 \text{ Case Volume}} (\text{Gals.}) \times \frac{3}{\text{Specified Volumes}} = \frac{5.4}{\text{Calculated Volume}} (\text{Gals.}) \times \frac{3}{\text{Gals.}} = \frac{5.4}{\text{Calculated Volume}} (\text{Gals.}) \times \frac{3}{\text{Gals.}} = \frac{5.4}{\text{Gals.}} = \frac{5.4}$									
Time	Temp (°F)	pН	Cond. (mS or $(\mu \hat{S})$	Turbidity (NTUs)	Gals. Removed	Observations			
FJUI	isso	7.48	1131	21600	1.8				
1019	64.9	7.46	140	214	3.6				
1024	649	7.44		190	5.4				
		Ň							
Did well de	water?	Yes (No	Gallons actuall	y evacuated:	54			
Sampling D	ate: 3-18-	i (Sampling Time	e: 1075	Depth to Wate	r: 12,72			
Sample I.D.: MW-13 Laboratory: Test America Other									
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: See	2600			
EB I.D. (if a	pplicable)	*	@ Time	Duplicate I.D.	(if applicable):				
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:				
D.O. (if req'	d): Pr	e-purge:	n an	^{mg} /L P	ost-purge?	0.68 ^{mg} /L			
O.R.P. (if re	eq'd): Pr	e-purge:		mV P	ost-purge:	mV			

SHELL WELL MONITORING DATA SHEET

		SHEL	L WELL MO	NITOR	RING D	ATA SHEET	·		
BTS #: \\\	2310-10	\		Site:	784	150th AVE			
Sampler:	9L10L			Date: $3 - 10^{-1}$					
Well I.D.:	Hto=	EW-		Well E	Jiameter	: 2 3 (4)	68		
Total Well	Depth (TE)): +Z	,4.91	Depth to Water (DTW): 2009					
Depth to Fr	ee Product	t:	harageneret	Thickn	ess of F	ree Product (fe	et): <		
Referenced	to:	PVC	Grade	D.O. N	leter (if	req'd):	(YSI) HACH		
DTW with	80% Rech	arge [(H	leight of Water	Colum	n x 0.20)) + DTW]: 23	3.05		
Purge Method:	Bailer Disposable B Positive Air I Élèctric Subn	ailer Displaceme nersible	nt Extrac Other	Waterra Peristaltic tion Pump	Well Diamete	Sampling Method Other	: Bailer Disposable Bailer Extraction Port Dedicated Tubing : Diameter Multiplier		
$\frac{2 \cdot (Gals.) \times 3}{1 \cdot Case \ Volume} = \frac{2 \cdot 3 \cdot 3}{Calculated \ Volume} Gals.$ $\frac{1"}{2"} = 0.04 4" = 0.65$ $\frac{2"}{2"} = 0.16 6" = 1.47$ $3" = 0.37 Other radius^2 * 0.163$									
Time	Temp (°F)	pH	Cond. (mS or(µŠ)	Turl (N	oidity TUs)	Gals. Removed	Observations		
1320	66.6	6.89	847.9	72	29	9.6			
1522	65.8	6.87	800.2	64	2	19.2			
13-24	65-7	6.98	796.3	62	<u> </u>	29.8			
Did well de	water?	Yes (No	Gallons	s actuall	y evacuated:	28.8		
Sampling D	ate: 3-18-	ι(Sampling Time	: 133	<i>3</i> 0	Depth to Wate	r: 22.42		
Sample I.D.	: +Abor-	EW-1		Labora	tory: 🤇	Test America	Other		
Analyzed for: TPH-G BTEX MTBE TPH-D Oxygenates (5) Other: See Coc									
EB I.D. (if a	pplicable)	-	@ Time	Duplica	ate I.D. ((if applicable):			
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygena	tes (5)	Other:			
D.O. (if req'	D.O. (if req'd): Pre-purge: $0.30^{mg/L}$ Post-purge: $0.30^{mg/L}$								
O.R.P. (if re	q'd): Pr	e-purge:		mV	P	ost-purge:	mV		

۰.		SHEL	L WELL MO	NITOI	RING D.	ATA SHEET	-	
BTS #: 1	0318-10	•		Site:	1784	150 ⁴⁴ AUE		
Sampler:	9L) 0L			Date:	3-18	~((
Well I.D.:	MUT=	E.	-2	Well I	Diameter	: 2 3 🗳	> 6 8	
Total Well	Depth (TE)): 33	2.63	Depth	to Water	r (DTW): 1(6.4/	
Depth to Fi	ree Product	t:	time i	Thickr	ness of F	ree Product (fe	et): ~-	
Referenced	l to:	PVC	Grade	D.O. N	Aeter (if	req'd):	YSI HACH	
DTW with	80% Rech	arge [(H	leight of Water	Colum	n x 0.20)) + DTW]:	Ħ.65	
Purge Method:	Bailer Disposable B Positive Air I Electric Subr	ailer Displaceme nersible	nt Extrac Other	Waterra Peristaltic ction Pump	-	Sampling Method Other	: Bailer Disposable Bailer Extraction Port Dedicated Tubing	
$\frac{\cancel{0.5}}{(\text{Gals.}) \times \underbrace{3}_{\text{Specified Volumes}}} = \underbrace{\underbrace{51.5}_{\text{Calculated Volume}}}_{\text{Calculated Volume}} \underbrace{1^{"}}_{0.04} \underbrace{1^{"}}_{0.04} \underbrace{4^{"}}_{0.65} \underbrace{0.65}_{1.47}$								
Time	Temp (°F)	pH	Cond. (mS or(µŠ)	Tur (N	bidity TUs)	Gals. Removed	Observations	
1346	65.8	6.84	45	2	6	10.5		
1348	66-0	6.89	7497	18	3	24.6		
1390	66-1	6,91	707	L LQ		315		
						(
Did well de	water?	Yes	Ng	Gallon	s actuall	y evacuated:	315	
Sampling D)ate: 3-18-	ίι	Sampling Time	e: 1855	}	Depth to Wate	r: (8.18	
Sample I.D.	.: Albert- (w-2		Labora	tory: (Test America	Other	
Analyzed for: TPH-G BTEX MTBE TPH-D Oxygenates (5) Other: See coc								
EB I.D. (if applicable): ^(a) _{Time} Duplicate I.D. (if applicable):								
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygena	ates (5)	Other:		
D.O. (if req	'd): Pr	e-purge:	· · · · · · · · · · · · · · · · · · ·	^{mg} /L	<u> </u>	ost-purge:	0.31 ^{mg} /L	
O.R.P. (if re	eq'd): Pr	e-purge:		mV	P	ost-purge:	mV	

SHELL WELLHEAD INSPECTION FORM (FOR SAMPLE TECHNICIAN)

Site Address	17-9	34	150	>* ⁴ ~	AW	¢	Sun	Leand	hp 4Date 3-19-11
Job Number	<u>10</u>	<u>310-</u>	01			Tec	hnician	1405	<u>ST∯ Ĵ⊘</u> Page <u></u> of
Well ID	Welt Inspected - No Corrective Action Required	Well Box Meets Compliance Requirements *See Below	Water Bailed From Wellbox	Cap Replaced	Lock Replaced	Well Not Inspected (explain in notes)	New Deficiency Identified	Previously Identified Deficiency Persists	Notes
MW-1A	X	×							
MW-1B	$\left \right\rangle$	×							
MW-2B	>-	X							
MW-3	2	\times							
MW-4	\otimes	6							
MW-5	X	8							
MW-6	×	K							
MW-7						X			UNABLE TO ALLESS
mir 8						X			UNABLE TO ALLESS
mw-9	X	×							
MW-10	\mathbb{N}								portral over
MW-11	$\left \right\rangle$	\times							
MW-12						\times			WASLE TO ALLESS
MW-13	K	X							·
E2- 1	×	X							
Ew-2	X	4							
*Mall box must man			toho		oliant				ESIGN (12"or less) 2) WEIL IS MARKED WITH THE WORDS

"Well box must meet all three criteria to be compliant: 1) WELL IS SECURABLE BY DESIGN (12"or less) 2) WELL IS MARKED WITH THE WOR "MONITORING WELL" (12"or less) 3) WELL TAG IS PRESENT, SECURE, AND CORRECT

Notes:

WELL GAUGING DATA

Projec	t#LC	1331-1	3	Date	3-31-		Client _	shell		
										1997. 1997.
Site	1794	150 m	Ave	Sun	Leand	40 (24.			·
1					Thickness	Volume of			Survey	1.
		Size	Sheen /	Immiscible	of Immiscible	Removed	Depth to water	Depth to well	TOB or	
Well ID	Time	(in.)	Odor	Liquid (ft.)	Liquid (ft.)	(ml)	(ft.)	bottom (ft.)	TOO	Notes
MW-7	1250	2		· .			14.95	26.85		
MW-12	1315	2		-		6	13,48	27.60		
MW-B	1310	2					13.61	24.10		
1	¢					-				
	-									
								:		
					- 			-		
										
							\$			
******			s ***** **** *************************							
	 							с.		

BLAINE TECH SERVICES, INC. SAN JOSE SACRAMENTO LOS ANGELES SAN DIEGO SEATTLE

SHELL WELL MONITORING DATA SHEET

BTS #: 110	0331-b	3		Site: 1794	150th ave 5	ian Leandro CM.			
Sampler:	OL			Date: 3-31	- 1(
Well I.D.:	MU1-7			Well Diameter	: 2 3 4	6 8			
Total Well	Depth (TD): 20	5. 85	Depth to Water (DTW): 14.95					
Depth to Fr	ee Product	*		Thickness of F	ree Product (fe	et):			
Referenced	to:	PVs	Grade	D.O. Meter (if	req'd):	(YSI) HACH			
DTW with a	80% Recha	arge [(H	leight of Water	Column x 0.20) + DTW]: (4.33			
Purge Method:	Bailer Disposable B Positive Air I Electric Subn	aller Displaceme nersible	nt Extrac Other	Waterra Peristaltic etion Pump Well Diameter 1" 2"	Sampling Method Other The Multiplier Well 0.04 4" 0.16 6"	Bailer Disposable Batter Extraction Port Dedicated Tubing Diameter Multiplier 0.65 1.47			
1 Case Volume	Sais.) A Speci:	fied Volum	nes Calculated Vo	lume 3"	0.37 Othe	r radius ² * 0.163			
Time	Temp (°F)	pН	Cond. (mS or (µS))	Turbidity (NTUs)	Gals. Removed	Observations			
1255	70.2	6.74	2429	88	1.9				
1258	693	6.26	2510	121	3.8				
1301	69.8	6.69	2500	129	5.7				
Did well dev	water?	Yes (No	l Gallons actuall	y evacuated:	L			
Sampling D	ate: 3-31		Sampling Time	e: 1305	Depth to Wate	r: 15.56			
Sample I.D.	: Mu.	7	······································	Laboratory:	Test America	Other			
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: See	Cac			
EB I.D. (if a	pplicable)	•	@ Time	Duplicate I.D.	(if applicable):				
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:				
D.O. (if req'	d): Rr	e-purge:		^{mg} / _L P	ost-purge:	2.99 ^{mg} /L			
O.R.P. (if re	q'd): Pr	e-purge:		mV P	ost-purge:	mV			

- `		SHEL	L WELL MO	NITOI	RING DA	ATA SHEET	-			
BTS #: 1	0331-k	23	,	Site:	1794	150th ave 5	ian Leandro CM.			
Sampler:	OL			Date:	3-31	- 1(<u>8</u>			
Well I.D.:	M41-8			Well Diameter: 2 3 4 6 8						
Total Well	Depth (TD)): 24	10	Depth to Water (DTW): 13.6						
Depth to Fr	ee Product	t:		Thickr	ness of F	ree Product (fe	et <u>)</u> :			
Referenced	to:	PVS	Grade	D.O. N	Aeter (if	req'd):	(YSI) HACH			
DTW with	80% Rech	arge [(H	leight of Water	Colum	n x 0.20)) + DTW]: \	5.21			
Purge Method:	Bailer Disposable B Positive Air I Electric Subn	ailer Displaceme nersible	nt Extrac Other	Waterra Peristaltic ction Pump	l ; ,	Sampling Method	Bailer Disposable Batter Extraction Port Dedicated Tubing			
$\frac{1}{1 \text{ Case Volume}} (Gals.) \times \frac{3}{\text{Specified Volumes}} = \frac{4.6}{\text{Calculated Volume}} Gals.$ $\frac{Well Diameter Multiplier}{1" 0.04 4" 0.65}$ $\frac{1" 0.04}{3" 0.37 0 \text{ Other radius}^2 * 0.163}$										
Time	Temp (°F)	pH	Cond. (mS or (µS)	Tur (N	bidity TUs)	Gals. Removed	Observations			
1337	68.1	6.82	1390	8	00	1.6				
1340	67.7	6.76	1296	710	00	3.2				
1343	67.5	6.74	1292	71000 4.8						
Did well dev	water?	Yes 🤇	No	Gallon	s actuall	y evacuated:	4.8			
Sampling D	ate: 3-3	[-1]	Sampling Time	e: 13	50	Depth to Wate	r: 15.07			
Sample I.D.	: MW-	B		Labora	tory: c	Test America	Other			
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygena	ates (5)	Other: See	Coc			
EB I.D. (if a	pplicable)	*	(a) Time	Duplic	ate I.D. (if applicable):				
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygena	ates (5)	Other:				
D.O. (if req'	d): Pr	e-purge:		^{mg} / _L Post-purge. 1.98			1.98 ^{mg} /L			
O.R.P. (if re	q'd): Pr	e-purge:		mV	Ро	ost-purge:	mV			

<i></i>		SHEL	L WELL MO	NITORING D	ATA SHEET	~ .				
BTS #: 1	0331-1	23		Site: 1794	150th ave 5	san Leandro cra.				
Sampler:	<u> </u>			Date: 3.31	<u>~-\(</u>					
Well I.D.:	M41 - 1	2		Well Diameter: 2 3 4 6 8						
Total Well	Depth (TI)): 27	.60	Depth to Water	r (DTW): 13.4	18				
Depth to Fi	ee Produc	t: .	and the second se	Thickness of Free Product (feet):						
Referenced	to:	PVS	Grade	D.O. Meter (if	req'd):	(SI) HACH				
DTW with	80% Rech	arge [(H	leight of Water	Column x 0.20) + DTW]: 6.30						
Purge Method:	Bailer Disposable F Positive Air Electric Subr	ailer Displaceme nersible	nt Extrac Other	Waterra Peristaltic otion Pump	Sampling Method	Bailer Disposable Batter Extraction Port Dedicated Tubing				
2.2 (1 1 Case Volume	Gals.) X Speci	3 fied Volum	= 6.6 $Extreme Calculated Vo$	Gals. hume	r Multiplier Well 0.04 4" 0.16 6" 0.37 Othe	Diameter Multiplier 0.65 1.47 er radius ² * 0.163				
Time	Temp (°F)	pН	Cond. (mS or(µS))	Turbidity (NTUs)	Gals. Removed	Observations				
1317	69.8	6.84	2494.	234	- 2.2	aler				
1320	69.3	6.60	2814	.71000	Ч.4	oder				
1323	69.1	6.૬૫	\$A 2900	0001	6.6	alar				
<u>, yan yan yan di kan ya</u> ka ka ana ana ana										
Did well de	water?	Yes (ŇÒ	Gallons actually	y evacuated: .	6.6				
Sampling D	ate: 3-3	-11	Sampling Time	: 1325	Depth to Wate	r: 13.99				
Sample I.D.	Mw-	12		Laboratory: (Test America	Other				
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: See	Coc				
EB I.D. (if a	pplicable)	•	@ Time	Duplicate I.D. (if applicable):	n,995,17,19 900 - 1 mmmmmmmm 10 / (n + 1 m − non-son son son son son son son son son son				
Analyzed for	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:					
D.O. (if req'o	d): Pr	e-purge:		^{mg} / _L Pc	ost-purge:	2.20 ^{mg} /L				
O.R.P. (if re	q'd): Pro	e-purge:		mV Po	ost-purge:	mV				
			1. A.A.							

SHELL WELLHEAD INSPECTION FORM

(FOR SAMPLE TECHNICIAN)

Site Address	174	84	150	rt,	M	e	Sum	le	andr	7)		Dat	e	<u>3- S</u>			·····
Job Number	110	<u>1331- c</u>	<u>K</u>			_ Teo	hnician		02			Pag	je _		_of _		
Well ID	Well Inspected - No Corrective Action Required	Weil Box Meets Compliance Requirements *See Relow	Water Bailed From Weilbox	Cap Replaced	Lock Replaced	Well Not Inspected (explain in notes)	New Deficiency Identified	Previously Identified Deficiency Persists				Nc	otes		-		
MW-7		\swarrow	X						1/2	Bolks	Missi	*	Tel	i By	shan	ù	well
MW-12	8	X										8			<u></u>		<u> </u>
MW-B	\sim	F	X							· .		-			»		
											11-1-1-1			····			
		ļ	ļ	[,
															-		

												10-11-11-11-11-11-11-11-11-11-11-11-11-1					

*Well box must meet all three criteria to be compliant: 1) WELL IS SECURABLE BY DESIGN (12"or less) 2) WELL IS MARKED WITH THE WORDS "MONITORING WELL" (12"or less) 3) WELL TAG IS PRESENT, SECURE, AND CORRECT

Notes:

APPENDIX B

TEST AMERICA – LABORATORY REPORT

THE LEADER IN ENVIRONMENTAL TESTING

LABORATORY REPORT

Prepared For: Blaine Tech San Jose/CRA Shell 1680 Rogers Avenue San Jose, CA 95112-1105 Attention: Lorin King Project: 1784 150th Ave., San Leandro, CA

Sampled: 03/18/11 Received: 03/22/11 Issued: 04/04/11 19:29

NELAP #01108CA California ELAP#2706 CSDLAC #10256 AZ #AZ0671 NV #CA01531

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain(s) of Custody, 2 pages, are

included and are an integral part of this report.

This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

LABORATORY ID	CLIENT ID	MATRIX
IUC2448-01	MW-1A	Water
IUC2448-02	MW-1B	Water
IUC2448-03	MW-2B	Water
IUC2448-04	MW-3	Water
IUC2448-05	MW-4	Water
IUC2448-06	MW-5	Water
IUC2448-07	MW-6	Water
IUC2448-08	MW-9	Water
IUC2448-09	MW-10	Water
IUC2448-10	MW-11	Water
IUC2448-11	MW-13	Water
IUC2448-12	EW-1	Water
IUC2448-13	EW-2	Water

Reviewed By:

TestAmerica Irvine Pat Abe For Philip Sanelle Project Manager

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Blaine Tech San Jose/CRA Shell 1680 Rogers Avenue San Jose, CA 95112-1105 Attention: Lorin King Project ID: 1784 150th Ave., San Leandro, CA

Report Number: IUC2448

Sampled: 03/18/11 Received: 03/22/11

VOLATILE FUEL HYDROCARBONS BY GC/MS (CA LUFT)

Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IUC2448-01 (MW-1A - Water)								
Reporting Units: ug/l Volatile Fuel Hydrocarbons (C4-C12) Surrogate: Dibromofluoromethane (80-120%) Surrogate: Toluene-d8 (80-120%) Surrogate: 4-Bromofluorobenzene (80-120%)	TPH by GC/MS	11C3488	50	110 102 % 104 % 95 %	1	3/27/2011	3/27/2011	
Sample ID: IUC2448-02 (MW-1B - Water)								
Reporting Units: ug/l Volatile Fuel Hydrocarbons (C4-C12) Surrogate: Dibromofluoromethane (80-120%) Surrogate: Toluene-d8 (80-120%) Surrogate: 4-Bromofluorobenzene (80-120%)	TPH by GC/MS	11C3488	50	ND 102 % 102 % 93 %	1	3/27/2011	3/27/2011	
Sample ID: IUC2448-03 (MW-2B - Water)								
Reporting Units: ug/l Volatile Fuel Hydrocarbons (C4-C12) Surrogate: Dibromofluoromethane (80-120%) Surrogate: Toluene-d8 (80-120%) Surrogate: 4-Bromofluorobenzene (80-120%)	TPH by GC/MS	11C3488	50	270 100 % 104 % 94 %	1	3/27/2011	3/27/2011	
Sample ID: IUC2448-04 (MW-3 - Water)								
Reporting Units: ug/l Volatile Fuel Hydrocarbons (C4-C12) Surrogate: Dibromofluoromethane (80-120%) Surrogate: Toluene-d8 (80-120%) Surrogate: 4-Bromofluorobenzene (80-120%)	TPH by GC/MS	11C3488	50	1800 99 % 105 % 96 %	1	3/27/2011	3/28/2011	
Sample ID: IUC2448-05 (MW-4 - Water)								
Reporting Units: ug/l Volatile Fuel Hydrocarbons (C4-C12) Surrogate: Dibromofluoromethane (80-120%) Surrogate: Toluene-d8 (80-120%) Surrogate: 4-Bromofluorobenzene (80-120%)	TPH by GC/MS	11C3488	50	ND 101 % 102 % 92 %	1	3/27/2011	3/28/2011	
Sample ID: IUC2448-06 (MW-5 - Water)								
Reporting Units: ug/l Volatile Fuel Hydrocarbons (C4-C12) Surrogate: Dibromofluoromethane (80-120%) Surrogate: Toluene-d8 (80-120%) Surrogate: 4-Bromofluorobenzene (80-120%)	TPH by GC/MS	11C3488	50	230 102 % 105 % 95 %	1	3/27/2011	3/28/2011	

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Blaine Tech San Jose/CRA Shell 1680 Rogers Avenue San Jose, CA 95112-1105 Attention: Lorin King Project ID: 1784 150th Ave., San Leandro, CA

Report Number: IUC2448

Sampled: 03/18/11 Received: 03/22/11

VOLATILE FUEL HYDROCARBONS BY GC/MS (CA LUFT)

Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IUC2448-07 (MW-6 - Water)								
Reporting Units: ug/l Volatile Fuel Hydrocarbons (C4-C12) Surrogate: Dibromofluoromethane (80-120%) Surrogate: Toluene-d8 (80-120%) Surrogate: 4-Bromofluorobenzene (80-120%)	TPH by GC/MS)	11C3560	50	ND 101 % 101 % 94 %	1	3/28/2011	3/28/2011	
Sample ID: IUC2448-08 (MW-9 - Water)								
Reporting Units: ug/l Volatile Fuel Hydrocarbons (C4-C12) Surrogate: Dibromofluoromethane (80-120%) Surrogate: Toluene-d8 (80-120%) Surrogate: 4-Bromofluorobenzene (80-120%)	TPH by GC/MS)	11C3560	50	ND 99 % 100 % 90 %	1	3/28/2011	3/28/2011	
Sample ID: IUC2448-09 (MW-10 - Water)								
Reporting Units: ug/l Volatile Fuel Hydrocarbons (C4-C12) Surrogate: Dibromofluoromethane (80-120%) Surrogate: Toluene-d8 (80-120%) Surrogate: 4-Bromofluorobenzene (80-120%)	TPH by GC/MS)	11C3577	50	74 101 % 100 % 90 %	1	3/29/2011	3/29/2011	
Sample ID: IUC2448-10 (MW-11 - Water)								
Reporting Units: ug/l Volatile Fuel Hydrocarbons (C4-C12) Surrogate: Dibromofluoromethane (80-120%) Surrogate: Toluene-d8 (80-120%) Surrogate: 4-Bromofluorobenzene (80-120%)	TPH by GC/MS)	11C3577	5000	38000 97 % 97 % 94 %	100	3/29/2011	3/29/2011	
Sample ID: IUC2448-11 (MW-13 - Water)								
Reporting Units: ug/l Volatile Fuel Hydrocarbons (C4-C12) Surrogate: Dibromofluoromethane (80-120%) Surrogate: Toluene-d8 (80-120%) Surrogate: 4-Bromofluorobenzene (80-120%)	TPH by GC/MS)	11C3577	50	ND 100 % 95 % 89 %	1	3/29/2011	3/29/2011	
Sample ID: IUC2448-12 (EW-1 - Water)								
Reporting Units: ug/l Volatile Fuel Hydrocarbons (C4-C12) Surrogate: Dibromofluoromethane (80-120%) Surrogate: Toluene-d8 (80-120%) Surrogate: 4-Bromofluorobenzene (80-120%)	TPH by GC/MS)	11C3577	500	9300 94 % 99 % 92 %	10	3/29/2011	3/29/2011	

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Blaine Tech San Jose/CRA Shell 1680 Rogers Avenue San Jose, CA 95112-1105 Attention: Lorin King Project ID: 1784 150th Ave., San Leandro, CA

Report Number: IUC2448

Sampled: 03/18/11 Received: 03/22/11

VOLATILE FUEL HYDROCARBONS BY GC/MS (CA LUFT)

Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IUC2448-13 (EW-2 - Water)								
Reporting Units: ug/l								
Volatile Fuel Hydrocarbons (C4-C12)	TPH by GC/MS	11C3577	2500	44000	50	3/29/2011	3/30/2011	
Surrogate: Dibromofluoromethane (80-120%))			101 %				
Surrogate: Toluene-d8 (80-120%)				96 %				
Surrogate: 4-Bromofluorobenzene (80-120%)				92 %				

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Blaine Tech San Jose/CRA Shell 1680 Rogers Avenue San Jose, CA 95112-1105 Attention: Lorin King Project ID: 1784 150th Ave., San Leandro, CA

Report Number: IUC2448

Sampled: 03/18/11 Received: 03/22/11

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IUC2448-01 (MW-1A - Water)								
Reporting Units: ug/l								
Benzene	EPA 8260B	11C3488	0.50	17	1	3/27/2011	3/27/2011	
Ethylbenzene	EPA 8260B	11C3488	0.50	ND	1	3/27/2011	3/27/2011	
Toluene	EPA 8260B	11C3488	0.50	ND	1	3/27/2011	3/27/2011	
Xylenes, Total	EPA 8260B	11C3488	1.0	ND	1	3/27/2011	3/27/2011	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	11C3488	1.0	11	1	3/27/2011	3/27/2011	
Surrogate: 4-Bromofluorobenzene (80-120%)				95 %				
Surrogate: Dibromofluoromethane (80-120%)				102 %				
Surrogate: Toluene-d8 (80-120%)				104 %				
Sample ID: IUC2448-02 (MW-1B - Water)								
Reporting Units: ug/l								
Benzene	EPA 8260B	11C3488	0.50	ND	1	3/27/2011	3/27/2011	
Ethylbenzene	EPA 8260B	11C3488	0.50	ND	1	3/27/2011	3/27/2011	
Toluene	EPA 8260B	11C3488	0.50	ND	1	3/27/2011	3/27/2011	
Xylenes, Total	EPA 8260B	11C3488	1.0	ND	1	3/27/2011	3/27/2011	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	11C3488	1.0	1.6	1	3/27/2011	3/27/2011	
Surrogate: 4-Bromofluorobenzene (80-120%)				93 %				
Surrogate: Dibromofluoromethane (80-120%)				102 %				
Surrogate: Toluene-d8 (80-120%)				102 %				
Sample ID: IUC2448-03 (MW-2B - Water)								
Reporting Units: ug/l								
Benzene	EPA 8260B	11C3488	0.50	1.0	1	3/27/2011	3/27/2011	
Ethylbenzene	EPA 8260B	11C3488	0.50	9.0	1	3/27/2011	3/27/2011	
Toluene	EPA 8260B	11C3488	0.50	37	1	3/27/2011	3/27/2011	
Xylenes, Total	EPA 8260B	11C3488	1.0	72	1	3/27/2011	3/27/2011	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	11C3488	1.0	5.1	1	3/27/2011	3/27/2011	
Surrogate: 4-Bromofluorobenzene (80-120%)				94 %				
Surrogate: Dibromofluoromethane (80-120%)				100 %				
Surrogate: Toluene-d8 (80-120%)				104 %				

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Blaine Tech San Jose/CRA Shell 1680 Rogers Avenue San Jose, CA 95112-1105 Attention: Lorin King Project ID: 1784 150th Ave., San Leandro, CA

Report Number: IUC2448

Sampled: 03/18/11 Received: 03/22/11

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IUC2448-04 (MW-3 - Water)							•	-
Reporting Units: ug/l								
Benzene	EPA 8260B	11C3488	0.50	ND	1	3/27/2011	3/28/2011	
1,2-Dichloroethane	EPA 8260B	11C3488	0.50	15	1	3/27/2011	3/28/2011	
Ethylbenzene	EPA 8260B	11C3488	0.50	ND	1	3/27/2011	3/28/2011	
Toluene	EPA 8260B	11C3488	0.50	ND	1	3/27/2011	3/28/2011	
Xylenes, Total	EPA 8260B	11C3488	1.0	ND	1	3/27/2011	3/28/2011	
Di-isopropyl Ether (DIPE)	EPA 8260B	11C3488	1.0	ND	1	3/27/2011	3/28/2011	
Ethyl tert-Butyl Ether (ETBE)	EPA 8260B	11C3488	1.0	ND	1	3/27/2011	3/28/2011	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	11C3488	1.0	1.5	1	3/27/2011	3/28/2011	
tert-Amyl Methyl Ether (TAME)	EPA 8260B	11C3488	1.0	ND	1	3/27/2011	3/28/2011	
tert-Butanol (TBA)	EPA 8260B	11C3488	10	ND	1	3/27/2011	3/28/2011	
Surrogate: 4-Bromofluorobenzene (80-120%)				96 %				
Surrogate: Dibromofluoromethane (80-120%)				99 %				
Surrogate: Toluene-d8 (80-120%)				105 %				
Sample ID: IUC2448-05 (MW-4 - Water)								
Reporting Units: ug/l								
Benzene	EPA 8260B	11C3488	0.50	ND	1	3/27/2011	3/28/2011	
Ethylbenzene	EPA 8260B	11C3488	0.50	ND	1	3/27/2011	3/28/2011	
Toluene	EPA 8260B	11C3488	0.50	ND	1	3/27/2011	3/28/2011	
Xylenes, Total	EPA 8260B	11C3488	1.0	ND	1	3/27/2011	3/28/2011	
Di-isopropyl Ether (DIPE)	EPA 8260B	11C3488	1.0	ND	1	3/27/2011	3/28/2011	
Ethyl tert-Butyl Ether (ETBE)	EPA 8260B	11C3488	1.0	ND	1	3/27/2011	3/28/2011	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	11C3488	1.0	ND	1	3/27/2011	3/28/2011	
tert-Amyl Methyl Ether (TAME)	EPA 8260B	11C3488	1.0	ND	1	3/27/2011	3/28/2011	
tert-Butanol (TBA)	EPA 8260B	11C3488	10	ND	1	3/27/2011	3/28/2011	
Surrogate: 4-Bromofluorobenzene (80-120%)				92 %				
Surrogate: Dibromofluoromethane (80-120%)				101 %				
Surrogate: Toluene-d8 (80-120%)				102 %				

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Blaine Tech San Jose/CRA Shell 1680 Rogers Avenue San Jose, CA 95112-1105 Attention: Lorin King Project ID: 1784 150th Ave., San Leandro, CA

Report Number: IUC2448

Sampled: 03/18/11 Received: 03/22/11

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IUC2448-06 (MW-5 - Water)								
Reporting Units: ug/l								
Benzene	EPA 8260B	11C3488	0.50	ND	1	3/27/2011	3/28/2011	
Ethylbenzene	EPA 8260B	11C3488	0.50	ND	1	3/27/2011	3/28/2011	
Toluene	EPA 8260B	11C3488	0.50	ND	1	3/27/2011	3/28/2011	
Xylenes, Total	EPA 8260B	11C3488	1.0	ND	1	3/27/2011	3/28/2011	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	11C3488	1.0	ND	1	3/27/2011	3/28/2011	
Surrogate: 4-Bromofluorobenzene (80-120%)				95 %				
Surrogate: Dibromofluoromethane (80-120%)				102 %				
Surrogate: Toluene-d8 (80-120%)				105 %				
Sample ID: IUC2448-07 (MW-6 - Water)								
Reporting Units: ug/l								
Benzene	EPA 8260B	11C3560	0.50	ND	1	3/28/2011	3/28/2011	
Ethylbenzene	EPA 8260B	11C3560	0.50	ND	1	3/28/2011	3/28/2011	
Toluene	EPA 8260B	11C3560	0.50	ND	1	3/28/2011	3/28/2011	
Xylenes, Total	EPA 8260B	11C3560	1.0	ND	1	3/28/2011	3/28/2011	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	11C3560	1.0	ND	1	3/28/2011	3/28/2011	
Surrogate: 4-Bromofluorobenzene (80-120%)				94 %				
Surrogate: Dibromofluoromethane (80-120%)				101 %				
Surrogate: Toluene-d8 (80-120%)				101 %				
Sample ID: IUC2448-08 (MW-9 - Water)								
Reporting Units: ug/l								
Benzene	EPA 8260B	11C3560	0.50	ND	1	3/28/2011	3/28/2011	
Ethylbenzene	EPA 8260B	11C3560	0.50	ND	1	3/28/2011	3/28/2011	
Toluene	EPA 8260B	11C3560	0.50	ND	1	3/28/2011	3/28/2011	
Xylenes, Total	EPA 8260B	11C3560	1.0	ND	1	3/28/2011	3/28/2011	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	11C3560	1.0	ND	1	3/28/2011	3/28/2011	
Surrogate: 4-Bromofluorobenzene (80-120%)				90 %				
Surrogate: Dibromofluoromethane (80-120%)				99 %				
Surrogate: Toluene-d8 (80-120%)				100 %				

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Blaine Tech San Jose/CRA Shell 1680 Rogers Avenue San Jose, CA 95112-1105 Attention: Lorin King

Project ID: 1784 150th Ave., San Leandro, CA

Report Number: IUC2448

Sampled: 03/18/11 Received: 03/22/11

			Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: IUC2448-09 (MW-10 - Water)								
Reporting Units: ug/l								
Benzene	EPA 8260B	11C3577	0.50	ND	1	3/29/2011	3/29/2011	
1,2-Dichloroethane	EPA 8260B	11C3577	0.50	ND	1	3/29/2011	3/29/2011	
Ethylbenzene	EPA 8260B	11C3577	0.50	ND	1	3/29/2011	3/29/2011	
Toluene	EPA 8260B	11C3577	0.50	ND	1	3/29/2011	3/29/2011	
Xylenes, Total	EPA 8260B	11C3577	1.0	ND	1	3/29/2011	3/29/2011	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	11C3577	1.0	ND	1	3/29/2011	3/29/2011	
tert-Amyl Methyl Ether (TAME)	EPA 8260B	11C3577	1.0	ND	1	3/29/2011	3/29/2011	
tert-Butanol (TBA)	EPA 8260B	11C3577	10	ND	1	3/29/2011	3/29/2011	
Surrogate: 4-Bromofluorobenzene (80-120%)				90 %				
Surrogate: Dibromofluoromethane (80-120%)				101 %				
Surrogate: Toluene-d8 (80-120%)				100 %				
Sample ID: IUC2448-10 (MW-11 - Water)								
Reporting Units: ug/l								
Benzene	EPA 8260B	11C3577	50	470	100	3/29/2011	3/29/2011	
1,2-Dichloroethane	EPA 8260B	11C3577	50	ND	100	3/29/2011	3/29/2011	
Ethylbenzene	EPA 8260B	11C3577	50	2200	100	3/29/2011	3/29/2011	
Toluene	EPA 8260B	11C3577	50	4100	100	3/29/2011	3/29/2011	
Xylenes, Total	EPA 8260B	11C3577	100	13000	100	3/29/2011	3/29/2011	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	11C3577	100	ND	100	3/29/2011	3/29/2011	
tert-Amyl Methyl Ether (TAME)	EPA 8260B	11C3577	100	ND	100	3/29/2011	3/29/2011	
tert-Butanol (TBA)	EPA 8260B	11C3577	1000	ND	100	3/29/2011	3/29/2011	
Surrogate: 4-Bromofluorobenzene (80-120%)				94 %				
Surrogate: Dibromofluoromethane (80-120%)				97 %				
Surrogate: Toluene-d8 (80-120%)				97 %				
Sample ID: IUC2448-11 (MW-13 - Water)								
Reporting Units: ug/l								
Benzene	EPA 8260B	11C3577	0.50	ND	1	3/29/2011	3/29/2011	
Ethylbenzene	EPA 8260B	11C3577	0.50	ND	1	3/29/2011	3/29/2011	
Toluene	EPA 8260B	11C3577	0.50	ND	1	3/29/2011	3/29/2011	
Xylenes, Total	EPA 8260B	11C3577	1.0	ND	1	3/29/2011	3/29/2011	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	11C3577	1.0	ND	1	3/29/2011	3/29/2011	
Surrogate: 4-Bromofluorobenzene (80-120%)				89 %				
Surrogate: Dibromofluoromethane (80-120%)				100 %				
Surrogate: Toluene-d8 (80-120%)				95 %				

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Blaine Tech San Jose/CRA Shell 1680 Rogers Avenue San Jose, CA 95112-1105 Attention: Lorin King Project ID: 1784 150th Ave., San Leandro, CA

Report Number: IUC2448

Sampled: 03/18/11 Received: 03/22/11

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IUC2448-12 (EW-1 - Water)								
Reporting Units: ug/l								
Benzene	EPA 8260B	11C3577	5.0	140	10	3/29/2011	3/29/2011	
Ethylbenzene	EPA 8260B	11C3577	5.0	490	10	3/29/2011	3/29/2011	
Toluene	EPA 8260B	11C3577	5.0	23	10	3/29/2011	3/29/2011	
Xylenes, Total	EPA 8260B	11C3577	10	680	10	3/29/2011	3/29/2011	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	11C3577	10	68	10	3/29/2011	3/29/2011	
Surrogate: 4-Bromofluorobenzene (80-120%)				92 %				
Surrogate: Dibromofluoromethane (80-120%)				94 %				
Surrogate: Toluene-d8 (80-120%)				99 %				
Sample ID: IUC2448-13 (EW-2 - Water)								
Reporting Units: ug/l								
Benzene	EPA 8260B	11C3577	25	310	50	3/29/2011	3/30/2011	
Ethylbenzene	EPA 8260B	11C3577	25	2700	50	3/29/2011	3/30/2011	
Toluene	EPA 8260B	11C3577	25	1100	50	3/29/2011	3/30/2011	
Xylenes, Total	EPA 8260B	11C3577	50	14000	50	3/29/2011	3/30/2011	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	11C3577	50	ND	50	3/29/2011	3/30/2011	
Surrogate: 4-Bromofluorobenzene (80-120%)				92 %				
Surrogate: Dibromofluoromethane (80-120%)				101 %				
Surrogate: Toluene-d8 (80-120%)				96 %				

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Blaine Tech San Jose/CRA Shell 1680 Rogers Avenue San Jose, CA 95112-1105 Attention: Lorin King Project ID: 1784 150th Ave., San Leandro, CA

Report Number: IUC2448

Sampled: 03/18/11 Received: 03/22/11

METHOD BLANK/QC DATA

VOLATILE FUEL HYDROCARBONS BY GC/MS (CA LUFT)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 11C3488 Extracted: 03/27/11										
Blank Analyzed: 03/27/2011 (11C3488	3-BLK1)									
Volatile Fuel Hydrocarbons (C4-C12)	ND	50	ug/l							
Surrogate: Dibromofluoromethane	24.7		ug/l	25.0		99	80-120			
Surrogate: Toluene-d8	25.3		ug/l	25.0		101	80-120			
Surrogate: 4-Bromofluorobenzene	23.4		ug/l	25.0		94	80-120			
LCS Analyzed: 03/27/2011 (11C3488-	BS2)									
Volatile Fuel Hydrocarbons (C4-C12)	591	50	ug/l	500		118	55-130			
Surrogate: Dibromofluoromethane	25.2		ug/l	25.0		101	80-120			
Surrogate: Toluene-d8	25.7		ug/l	25.0		103	80-120			
Surrogate: 4-Bromofluorobenzene	23.6		ug/l	25.0		95	80-120			
Matrix Spike Analyzed: 03/27/2011 (1	1C3488-MS1)				Source: I	UC2073-0	1			
Volatile Fuel Hydrocarbons (C4-C12)	1290	50	ug/l	1720	34.4	73	50-145			
Surrogate: Dibromofluoromethane	25.6		ug/l	25.0		102	80-120			
Surrogate: Toluene-d8	25.8		ug/l	25.0		103	80-120			
Surrogate: 4-Bromofluorobenzene	24.4		ug/l	25.0		97	80-120			
Matrix Spike Dup Analyzed: 03/27/20	011 (11C3488-M	ISD1)			Source: I	UC2073-0	1			
Volatile Fuel Hydrocarbons (C4-C12)	1300	50	ug/l	1720	34.4	73	50-145	0.8	20	
Surrogate: Dibromofluoromethane	25.6		ug/l	25.0		102	80-120			
Surrogate: Toluene-d8	25.3		ug/l	25.0		101	80-120			
Surrogate: 4-Bromofluorobenzene	24.6		ug/l	25.0		98	80-120			
Batch: 11C3560 Extracted: 03/28/11										
Blank Analyzed: 03/28/2011 (11C356)-BLK1)									
Volatile Fuel Hydrocarbons (C4-C12)	ND	50	ug/l							
Surrogate: Dibromofluoromethane	24.6		ug/l	25.0		98	80-120			
Surrogate: Toluene-d8	24.5		ug/l	25.0		98	80-120			
Surrogate: 4-Bromofluorobenzene	23.5		ug/l	25.0		94	80-120			

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Blaine Tech San Jose/CRA Shell 1680 Rogers Avenue San Jose, CA 95112-1105 Attention: Lorin King Project ID: 1784 150th Ave., San Leandro, CA

Report Number: IUC2448

Sampled: 03/18/11 Received: 03/22/11

METHOD BLANK/QC DATA

VOLATILE FUEL HYDROCARBONS BY GC/MS (CA LUFT)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 11C3560 Extracted: 03/28/11										
LCS Analyzed: 03/28/2011 (11C3560-	·BS2)									
Volatile Fuel Hydrocarbons (C4-C12)	438	50	ug/l	500		88	55-130			
Surrogate: Dibromofluoromethane	24.3		ug/l	25.0		97	80-120			
Surrogate: Toluene-d8	24.7		ug/l	25.0		99	80-120			
Surrogate: 4-Bromofluorobenzene	23.6		ug/l	25.0		94	80-120			
Matrix Spike Analyzed: 03/28/2011 (1	11C3560-MS1)				Source: I	UC2448-0	7			
Volatile Fuel Hydrocarbons (C4-C12)	1190	50	ug/l	1720	ND	69	50-145			
Surrogate: Dibromofluoromethane	24.9		ug/l	25.0		100	80-120			
Surrogate: Toluene-d8	25.5		ug/l	25.0		102	80-120			
Surrogate: 4-Bromofluorobenzene	23.2		ug/l	25.0		93	80-120			
Matrix Spike Dup Analyzed: 03/28/20)11 (11C3560-M	ISD1)			Source: I	UC2448-0	7			
Volatile Fuel Hydrocarbons (C4-C12)	1130	50	ug/l	1720	ND	65	50-145	5	20	
Surrogate: Dibromofluoromethane	24.9		ug/l	25.0		99	80-120			
Surrogate: Toluene-d8	25.1		ug/l	25.0		101	80-120			
Surrogate: 4-Bromofluorobenzene	23.2		ug/l	25.0		93	80-120			
Batch: 11C3577 Extracted: 03/29/11										
Blank Analyzed: 03/29/2011 (11C357	7-BLK1)									
Volatile Fuel Hydrocarbons (C4-C12)	ND	50	ug/l							
Surrogate: Dibromofluoromethane	23.9		ug/l	25.0		95	80-120			
Surrogate: Toluene-d8	24.2		ug/l	25.0		97	80-120			
Surrogate: 4-Bromofluorobenzene	22.2		ug/l	25.0		89	80-120			
LCS Analyzed: 03/29/2011 (11C3577-	-BS2)									
Volatile Fuel Hydrocarbons (C4-C12)	354	50	ug/l	500		71	55-130			
Surrogate: Dibromofluoromethane	24.9		ug/l	25.0		99	80-120			
Surrogate: Toluene-d8	24.8		ug/l	25.0		99	80-120			
Surrogate: 4-Bromofluorobenzene	23.0		ug/l	25.0		92	80-120			

TestAmerica Irvine

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Blaine Tech San Jose/CRA Shell 1680 Rogers Avenue San Jose, CA 95112-1105 Attention: Lorin King Project ID: 1784 150th Ave., San Leandro, CA

Report Number: IUC2448

Sampled: 03/18/11 Received: 03/22/11

METHOD BLANK/QC DATA

VOLATILE FUEL HYDROCARBONS BY GC/MS (CA LUFT)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 11C3577 Extracted: 03/29/11										
Matrix Spike Analyzed: 03/29/2011 (110	C3577-MS1)				Source: I	UC2448-0	9			
Volatile Fuel Hydrocarbons (C4-C12)	1140	50	ug/l	1720	73.5	62	50-145			
Surrogate: Dibromofluoromethane	25.4		ug/l	25.0		102	80-120			
Surrogate: Toluene-d8	24.4		ug/l	25.0		98	80-120			
Surrogate: 4-Bromofluorobenzene	23.8		ug/l	25.0		95	80-120			
Matrix Spike Dup Analyzed: 03/29/2011	(11C3577-N	ISD1)			Source: I	UC2448-0	9			
Volatile Fuel Hydrocarbons (C4-C12)	1110	50	ug/l	1720	73.5	60	50-145	3	20	
Surrogate: Dibromofluoromethane	25.2		ug/l	25.0		101	80-120			
Surrogate: Toluene-d8	24.2		ug/l	25.0		97	80-120			
Surrogate: 4-Bromofluorobenzene	23.0		ug/l	25.0		92	80-120			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Blaine Tech San Jose/CRA Shell 1680 Rogers Avenue San Jose, CA 95112-1105 Attention: Lorin King Project ID: 1784 150th Ave., San Leandro, CA

Report Number: IUC2448

Sampled: 03/18/11 Received: 03/22/11

METHOD BLANK/QC DATA

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 11C3488 Extracted: 03/27/11	<u>1</u>									
Blank Analyzed: 03/27/2011 (11C34	88-BLK1)									
Benzene	ND	0.50	ug/l							
1,2-Dichloroethane	ND	0.50	ug/l							
Ethylbenzene	ND	0.50	ug/l							
Toluene	ND	0.50	ug/l							
m,p-Xylenes	ND	1.0	ug/l							
o-Xylene	ND	0.50	ug/l							
Xylenes, Total	ND	1.0	ug/l							
Di-isopropyl Ether (DIPE)	ND	1.0	ug/l							
Ethyl tert-Butyl Ether (ETBE)	ND	1.0	ug/l							
Methyl-tert-butyl Ether (MTBE)	ND	1.0	ug/l							
tert-Amyl Methyl Ether (TAME)	ND	1.0	ug/l							
tert-Butanol (TBA)	ND	10	ug/l							
Surrogate: 4-Bromofluorobenzene	23.4		ug/l	25.0		94	80-120			
Surrogate: Dibromofluoromethane	24.7		ug/l	25.0		99	80-120			
Surrogate: Toluene-d8	25.3		ug/l	25.0		101	80-120			
LCS Analyzed: 03/27/2011 (11C3488	8-BS1)									
Benzene	24.2	0.50	ug/l	25.0		97	70-120			
1,2-Dichloroethane	24.0	0.50	ug/l	25.0		96	60-140			
Ethylbenzene	25.5	0.50	ug/l	25.0		102	75-125			
Toluene	25.1	0.50	ug/l	25.0		100	70-120			
m,p-Xylenes	49.7	1.0	ug/l	50.0		99	75-125			
o-Xylene	25.2	0.50	ug/l	25.0		101	75-125			
Xylenes, Total	74.9	1.0	ug/l	75.0		100	70-125			
Di-isopropyl Ether (DIPE)	23.8	1.0	ug/l	25.0		95	60-135			
Ethyl tert-Butyl Ether (ETBE)	29.1	1.0	ug/l	25.0		116	65-135			
Methyl-tert-butyl Ether (MTBE)	24.4	1.0	ug/l	25.0		98	60-135			
tert-Amyl Methyl Ether (TAME)	31.5	1.0	ug/l	25.0		126	60-135			
tert-Butanol (TBA)	122	10	ug/l	125		97	70-135			
Surrogate: 4-Bromofluorobenzene	23.6		ug/l	25.0		95	80-120			
Surrogate: Dibromofluoromethane	24.9		ug/l	25.0		100	80-120			
Surrogate: Toluene-d8	25.6		ug/l	25.0		102	80-120			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Blaine Tech San Jose/CRA Shell 1680 Rogers Avenue San Jose, CA 95112-1105 Attention: Lorin King Project ID: 1784 150th Ave., San Leandro, CA

Report Number: IUC2448

Sampled: 03/18/11 Received: 03/22/11

METHOD BLANK/QC DATA

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 11C3488 Extracted: 03/27/11	<u>L</u>									
Matrix Spike Analyzed: 03/27/2011	(11C3488-MS1)				Source: I	UC2073-0	1			
Benzene	25.3	0.50	ug/l	25.0	ND	101	65-125			
1,2-Dichloroethane	29.5	0.50	ug/l	25.0	ND	118	60-140			
Ethylbenzene	26.5	0.50	ug/l	25.0	ND	106	65-130			
Toluene	26.4	0.50	ug/l	25.0	ND	106	70-125			
m,p-Xylenes	51.5	1.0	ug/l	50.0	ND	103	65-130			
o-Xylene	26.5	0.50	ug/l	25.0	ND	106	65-125			
Xylenes, Total	78.0	1.0	ug/l	75.0	ND	104	60-130			
Di-isopropyl Ether (DIPE)	26.5	1.0	ug/l	25.0	ND	106	60-140			
Ethyl tert-Butyl Ether (ETBE)	32.9	1.0	ug/l	25.0	ND	131	60-135			
Methyl-tert-butyl Ether (MTBE)	28.1	1.0	ug/l	25.0	ND	112	55-145			
tert-Amyl Methyl Ether (TAME)	36.1	1.0	ug/l	25.0	ND	144	60-140			M1
tert-Butanol (TBA)	128	10	ug/l	125	ND	103	65-140			
Surrogate: 4-Bromofluorobenzene	24.4		ug/l	25.0		97	80-120			
Surrogate: Dibromofluoromethane	25.6		ug/l	25.0		102	80-120			
Surrogate: Toluene-d8	25.8		ug/l	25.0		103	80-120			
Matrix Spike Dup Analyzed: 03/27/2	2011 (11C3488-M	(SD1)			Source: I	UC2073-0	01			
Benzene	25.5	0.50	ug/l	25.0	ND	102	65-125	0.9	20	
1,2-Dichloroethane	26.8	0.50	ug/l	25.0	ND	107	60-140	10	20	
Ethylbenzene	27.2	0.50	ug/l	25.0	ND	109	65-130	3	20	
Toluene	26.2	0.50	ug/l	25.0	ND	105	70-125	0.6	20	
m,p-Xylenes	52.6	1.0	ug/l	50.0	ND	105	65-130	2	25	
o-Xylene	27.3	0.50	ug/l	25.0	ND	109	65-125	3	20	
Xylenes, Total	79.8	1.0	ug/l	75.0	ND	106	60-130	2	20	
Di-isopropyl Ether (DIPE)	26.8	1.0	ug/l	25.0	ND	107	60-140	1	25	
Ethyl tert-Butyl Ether (ETBE)	32.7	1.0	ug/l	25.0	ND	131	60-135	0.5	25	
Methyl-tert-butyl Ether (MTBE)	27.4	1.0	ug/l	25.0	ND	109	55-145	3	25	
tert-Amyl Methyl Ether (TAME)	35.7	1.0	ug/l	25.0	ND	143	60-140	1	30	<i>M1</i>
tert-Butanol (TBA)	131	10	ug/l	125	ND	105	65-140	2	25	
Surrogate: 4-Bromofluorobenzene	24.6		ug/l	25.0		98	80-120			
Surrogate: Dibromofluoromethane	25.6		ug/l	25.0		102	80-120			
Surrogate: Toluene-d8	25.3		ug/l	25.0		101	80-120			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Blaine Tech San Jose/CRA Shell 1680 Rogers Avenue San Jose, CA 95112-1105 Attention: Lorin King Project ID: 1784 150th Ave., San Leandro, CA

Report Number: IUC2448

Sampled: 03/18/11 Received: 03/22/11

METHOD BLANK/QC DATA

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 11C3560 Extracted: 03/28/11	-									
Blank Analyzed: 03/28/2011 (11C356	0-BLK1)									
Benzene	ND	0.50	ug/l							
Ethylbenzene	ND	0.50	ug/l							
Toluene	ND	0.50	ug/l							
m,p-Xylenes	ND	1.0	ug/l							
o-Xylene	ND	0.50	ug/l							
Xylenes, Total	ND	1.0	ug/l							
Methyl-tert-butyl Ether (MTBE)	ND	1.0	ug/l							
Surrogate: 4-Bromofluorobenzene	23.5		ug/l	25.0		94	80-120			
Surrogate: Dibromofluoromethane	24.6		ug/l	25.0		98	80-120			
Surrogate: Toluene-d8	24.5		ug/l	25.0		98	80-120			
LCS Analyzed: 03/28/2011 (11C3560	-BS1)									
Benzene	19.4	0.50	ug/l	25.0		78	70-120			
Ethylbenzene	21.6	0.50	ug/l	25.0		86	75-125			
Toluene	20.8	0.50	ug/l	25.0		83	70-120			
m,p-Xylenes	41.4	1.0	ug/l	50.0		83	75-125			
o-Xylene	21.6	0.50	ug/l	25.0		87	75-125			
Xylenes, Total	63.1	1.0	ug/l	75.0		84	70-125			
Methyl-tert-butyl Ether (MTBE)	20.7	1.0	ug/l	25.0		83	60-135			
Surrogate: 4-Bromofluorobenzene	23.4		ug/l	25.0		94	80-120			
Surrogate: Dibromofluoromethane	24.0		ug/l	25.0		96	80-120			
Surrogate: Toluene-d8	25.0		ug/l	25.0		100	80-120			
Matrix Spike Analyzed: 03/28/2011 (11C3560-MS1)				Source: 1	IUC2448-0	7			
Benzene	21.1	0.50	ug/l	25.0	ND	84	65-125			
Ethylbenzene	22.2	0.50	ug/l	25.0	ND	89	65-130			
Toluene	22.6	0.50	ug/l	25.0	ND	90	70-125			
m,p-Xylenes	43.5	1.0	ug/l	50.0	ND	87	65-130			
o-Xylene	22.7	0.50	ug/l	25.0	ND	91	65-125			
Xylenes, Total	66.2	1.0	ug/l	75.0	ND	88	60-130			
Methyl-tert-butyl Ether (MTBE)	23.3	1.0	ug/l	25.0	ND	93	55-145			
Surrogate: 4-Bromofluorobenzene	23.2		ug/l	25.0		<i>93</i>	80-120			
Surrogate: Dibromofluoromethane	24.9		ug/l	25.0		100	80-120			
Surrogate: Toluene-d8	25.5		ug/l	25.0		102	80-120			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Blaine Tech San Jose/CRA Shell 1680 Rogers Avenue San Jose, CA 95112-1105 Attention: Lorin King Project ID: 1784 150th Ave., San Leandro, CA

Report Number: IUC2448

Sampled: 03/18/11 Received: 03/22/11

METHOD BLANK/QC DATA

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 11C3560 Extracted: 03/28/11	<u>L</u>									
Matrix Spike Dup Analyzed: 03/28/2	2011 (11C3560-M	(SD1)			Source: I	UC2448-0	7			
Benzene	20.3	0.50	ug/l	25.0	ND	81	65-125	4	20	
Ethylbenzene	22.0	0.50	ug/l	25.0	ND	88	65-130	1	20	
Toluene	21.6	0.50	ug/l	25.0	ND	86	70-125	4	20	
m,p-Xylenes	42.8	1.0	ug/l	50.0	ND	86	65-130	2	25	
o-Xylene	22.0	0.50	ug/l	25.0	ND	88	65-125	3	20	
Xylenes, Total	64.8	1.0	ug/l	75.0	ND	86	60-130	2	20	
Methyl-tert-butyl Ether (MTBE)	21.1	1.0	ug/l	25.0	ND	84	55-145	10	25	
Surrogate: 4-Bromofluorobenzene	23.2		ug/l	25.0		93	80-120			
Surrogate: Dibromofluoromethane	24.9		ug/l	25.0		99	80-120			
Surrogate: Toluene-d8	25.1		ug/l	25.0		101	80-120			
Batch: 11C3577 Extracted: 03/29/11	<u>L</u>									
Blank Analyzed: 03/29/2011 (11C35'	77-BLK1)									
Benzene	ND	0.50	ug/l							
1,2-Dichloroethane	ND	0.50	ug/l							
Ethylbenzene	ND	0.50	ug/l							
Toluene	ND	0.50	ug/l							
m,p-Xylenes	ND	1.0	ug/l							
o-Xylene	ND	0.50	ug/l							
Xylenes, Total	ND	1.0	ug/l							
Methyl-tert-butyl Ether (MTBE)	ND	1.0	ug/l							
tert-Amyl Methyl Ether (TAME)	ND	1.0	ug/l							
tert-Butanol (TBA)	ND	10	ug/l							
Surrogate: 4-Bromofluorobenzene	22.2		ug/l	25.0		89	80-120			
Surrogate: Dibromofluoromethane	23.9		ug/l	25.0		95	80-120			
Surrogate: Toluene-d8	24.2		ug/l	25.0		97	80-120			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Blaine Tech San Jose/CRA Shell 1680 Rogers Avenue San Jose, CA 95112-1105 Attention: Lorin King Project ID: 1784 150th Ave., San Leandro, CA

Report Number: IUC2448

Sampled: 03/18/11 Received: 03/22/11

METHOD BLANK/QC DATA

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 11C3577 Extracted: 03/29/11	<u>L</u>									
LCS Analyzed: 03/29/2011 (11C3577	7-BS1)									
Benzene	24.3	0.50	ug/l	25.0		97	70-120			
1,2-Dichloroethane	25.0	0.50	ug/l	25.0		100	60-140			
Ethylbenzene	25.1	0.50	ug/l	25.0		100	75-125			
Toluene	25.4	0.50	ug/l	25.0		102	70-120			
m,p-Xylenes	51.1	1.0	ug/l	50.0		102	75-125			
o-Xylene	26.1	0.50	ug/l	25.0		104	75-125			
Xylenes, Total	77.2	1.0	ug/l	75.0		103	70-125			
Methyl-tert-butyl Ether (MTBE)	24.1	1.0	ug/l	25.0		97	60-135			
tert-Amyl Methyl Ether (TAME)	24.2	1.0	ug/l	25.0		97	60-135			
tert-Butanol (TBA)	129	10	ug/l	125		103	70-135			
Surrogate: 4-Bromofluorobenzene	23.5		ug/l	25.0		94	80-120			
Surrogate: Dibromofluoromethane	25.3		ug/l	25.0		101	80-120			
Surrogate: Toluene-d8	25.0		ug/l	25.0		100	80-120			
Matrix Spike Analyzed: 03/29/2011 ((11C3577-MS1)				Source: I	UC2448-0	9			
Benzene	24.3	0.50	ug/l	25.0	ND	97	65-125			
1,2-Dichloroethane	25.6	0.50	ug/l	25.0	ND	102	60-140			
Ethylbenzene	25.5	0.50	ug/l	25.0	ND	102	65-130			
Toluene	25.6	0.50	ug/l	25.0	ND	102	70-125			
m,p-Xylenes	52.4	1.0	ug/l	50.0	ND	105	65-130			
o-Xylene	27.0	0.50	ug/l	25.0	ND	108	65-125			
Xylenes, Total	79.5	1.0	ug/l	75.0	ND	106	60-130			
Methyl-tert-butyl Ether (MTBE)	25.0	1.0	ug/l	25.0	ND	100	55-145			
tert-Amyl Methyl Ether (TAME)	25.1	1.0	ug/l	25.0	ND	100	60-140			
tert-Butanol (TBA)	139	10	ug/l	125	ND	111	65-140			
Surrogate: 4-Bromofluorobenzene	23.8		ug/l	25.0		95	80-120			
Surrogate: Dibromofluoromethane	25.4		ug/l	25.0		102	80-120			
Surrogate: Toluene-d8	24.4		ug/l	25.0		<u>98</u>	80-120			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Blaine Tech San Jose/CRA Shell 1680 Rogers Avenue San Jose, CA 95112-1105 Attention: Lorin King Project ID: 1784 150th Ave., San Leandro, CA

Report Number: IUC2448

Sampled: 03/18/11 Received: 03/22/11

METHOD BLANK/QC DATA

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 11C3577 Extracted: 03/29/1	<u>1</u>									
Matrix Spike Dup Analyzed: 03/29/2	2011 (11C3577-M	ISD1)			Source: I	UC2448-0	9			
Benzene	22.8	0.50	ug/l	25.0	ND	91	65-125	6	20	
1,2-Dichloroethane	24.9	0.50	ug/l	25.0	ND	99	60-140	3	20	
Ethylbenzene	24.4	0.50	ug/l	25.0	ND	98	65-130	4	20	
Toluene	24.6	0.50	ug/l	25.0	ND	98	70-125	4	20	
m,p-Xylenes	49.4	1.0	ug/l	50.0	ND	99	65-130	6	25	
o-Xylene	25.3	0.50	ug/l	25.0	ND	101	65-125	7	20	
Xylenes, Total	74.7	1.0	ug/l	75.0	ND	100	60-130	6	20	
Methyl-tert-butyl Ether (MTBE)	25.0	1.0	ug/l	25.0	ND	100	55-145	0.04	25	
tert-Amyl Methyl Ether (TAME)	24.9	1.0	ug/l	25.0	ND	100	60-140	0.6	30	
tert-Butanol (TBA)	132	10	ug/l	125	ND	105	65-140	6	25	
Surrogate: 4-Bromofluorobenzene	23.0		ug/l	25.0		92	80-120			
Surrogate: Dibromofluoromethane	25.2		ug/l	25.0		101	80-120			
Surrogate: Toluene-d8	24.2		ug/l	25.0		97	80-120			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Blaine Tech San Jose/CRA Shell 1680 Rogers Avenue San Jose, CA 95112-1105 Attention: Lorin King Project ID: 1784 150th Ave., San Leandro, CA

Report Number: IUC2448

Sampled: 03/18/11 Received: 03/22/11

DATA QUALIFIERS AND DEFINITIONS

- M1 The MS and/or MSD were above the acceptance limits due to sample matrix interference. See Blank Spike (LCS).
- ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
- **RPD** Relative Percent Difference

ADDITIONAL COMMENTS

For 8260 analyses:

Due to the high water solubility of alcohols and ketones, the calibration criteria for these compounds is <30% RSD. The average % RSD of all compounds in the calibration is 15%, in accordance with EPA methods.

For Volatile Fuel Hydrocarbons (C4-C12):

Volatile Fuel Hydrocarbons (C4-C12) are quantitated against a gasoline standard. Quantitation begins immediately before TBA-d9.

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Blaine Tech San Jose/CRA Shell 1680 Rogers Avenue San Jose, CA 95112-1105 Attention: Lorin King Project ID: 1784 150th Ave., San Leandro, CA

Report Number: IUC2448

Sampled: 03/18/11 Received: 03/22/11

Certification Summary

TestAmerica Irvine

Method	Matrix	Nelac	California
EPA 8260B	Water	Х	Х
TPH by GC/MS	Water	Х	Х

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

_	LAB (LOCATION))		Sh	ell	Oi	I P	roo	duc	ts (Ch	ain	Of	Cu	sto	ody	Re	eco	ord						
	LSCIENCE ()		Ple	ase Chec	k Ap	prop	iate E	Box:			Prir	nt Bil	ll To	Cont	act N	ame		1.11			IN	DIDE	NT #	(EN)	V SE	RVICE	S)	Сн	CK IF NO INCIDENT	# APPLIES
	NCO (IV. SERVICES		MOTIV	RETAIL		🗆 зн	ELL RE	TAIL	Pete	r Sch	aefer	24061	2					-	9	8	g	9	6	0 6	8	DA	TE: 3-19	ッ~11
				OTIVA SD&CM		CONSU	LTANT		🗆 ເບ	BES			4. (m	4.5		- PC) #							<u> </u>	SAP	 #	ب ت		2,,,	<u>،</u>	
	THER ()	🗆 зн			OTHER						<u></u>	İT		<u> </u>	T	T T	1	$\frac{\gamma}{1}$	T ···		Ī			T	<u> </u>	-	<u> </u>	PA	GE:	of <u> </u>
SAMPLING	G COMPANY:					LOGIC	ODE					SITE	ADDRE	ESS: Str	reet and	l				1	L	State		L	GLOBAL						
Blaine	Tech Services					втя	s					1784	150t	h Ave	, Sar	Leand	ro			_		ĊA			T0600	10123	0				
ADDRES	ss: Rògers Avenue, San Jo	se, CA										EDF DE	LIVERAE	BLE TO (N	lame, Con	pany, Office	Location	1):		PHONE	NO.:			l	E-MAJL:					LO 318-	DIECT NO.:
PROJECT Lorin I	T CONTACT (Hardcopy or PDF Report to King	0):										Bren	Ida Ca	arter, ME(S) (Pri	CRA,	Emery	ville			510-4	20-33	43			sheileo	lf@cra	aworld.c	OM LAE	UBEC	NLY	
TELEPHO 3	ONE: 810-995-4455 x 108	FAX: 310-637-58	802	E-MAIL:	lki	ing@b	laineteo	ch.com				15.	.0	1	٦Ż													I	U	(2445	(
	IAROUND TIME (CALENDAR ANDARD (14 DAY) [: DAYS): 5 DAYS 3 D	AYS		24 H0	OURS		C RES	ON WE	EDED	D		<u> </u>	`	· · · ·						REC	UES	TED	ANAI	YSIS	;					· •
ι	- RWQCB REPORT FORMAT	UST AGENCY:		·····														ų	Τ									\square		TEMPERATURE	ON RECEIL-1
SPE Em:	ECIAL INSTRUCTIONS ail invoice and copy of fir	OR NOTES :	.Billing@cra	aworld.com	SHEL	l cont Te reimi Not ne Eipt ver	RACT RA BURSEMI EDED RIFICATI	NTE APPL ENT RAT ON REQI	ies e applie Jested	is		Purgeable (8260B)	Extractable (8015M)	M)		e) BE (8260B)	BE + TBA (8260B)	XYs (MTBE, TBA, DI E) 8260B	t (8260B)	(8260B)	(80B)	(60B)	015M)	(2160)	(0928)				с С5 3.	6°
	Field Comple	. I de utifice tie u	SAN			<u> </u>	6 PRE	ESERVAT	IVE	,	NO. OF	ЗRО,	о ^у	8015			TW +	+ 5 O.	C IIS	puno	A (82	3260E	ol (82	nol (8	Ę	-					
LAB USE ONLY	Field Sample	algenuncation	DATE	TIME	MAIKIX	HCL	HNO3 H	12SO4 N		HER	CONT,	трн -(J- H dT	TPHg		BTEX	BTEX	BTEX	Full VC	Single	1,2-DC	EDB (Ethan	Metha	A.	B				Container PID or Laborato	Readings y Notes
	MLJ-1A		3-19-	1200	W	3	Ì				3	X				X			1							1					
	MU-1B		<u> </u>	220								X				X															1
	nu-28			1310								\mathbf{k}	·			×														\land	N A
<i></i>	MW-3			1330							ŀ	$\left \right\rangle$						X			X							\square		0.35	5
•	MW-4			1170	T						Π	\mathbf{V}						X	Τ									\square		3.1	1
	MW-5			1155		$\uparrow\uparrow$				-+	\top	$\widehat{\mathbf{\nabla}}$				$\overline{\mathbf{v}}$	+		1							+					
	MILL- 6			17202		++		_		-		$\hat{\mathbf{n}}$				$\overline{\mathbf{x}}$	ł		1			-+				+		i+	+		
	MW-9			1050				-				Ŷ				∇	╁─									-			-		
-	MW-10			1205		††					ŀ	\mathbf{k}				Ŕ					X				\mathbf{x}^{\dagger}	\overline{c}	+				
· · ·	MW-11			1430		++				\uparrow	Y.	λ					╁╴		+		X	-		·	Ż	Ż				. <u> </u>	
Relinqui	ished by: (Signature)	7		1	Received by: (S	Signature	, , ,	$\int $	 >								<u>t</u>			1	L]	. 1		Date:			<u> </u>	\neg	Time:		
Paliagui	() A	/			L	\square	en	Z																3	-19	6-11				600	
4	initial dy. (Ciginature)				Received by ro	signature	" /	SA	/ 1	М	_				RT	ĀSF	$\overline{\mathbf{C}}$							Jate:	-2	۱-۱			Nime:	0 P3C	
Relinqui	ished by: (Signature)	mit			Received by (S	inter er	al	K	1	ae	l	1	,		Ċ									Date:	3/2	<u>ili</u>			Time:	8920	
	Serale 1	kyln	3-21-16%	-(;;0	Re	ća	e b	y :'		ŀ	n	Be	m	h		_		Ċ	Ð	3.6	2	C		2/2	12	1	J	1	^ <i>0</i> _	05/2/08 Revision	
	N N	1																27	$^{2}\mathcal{V}$	08	3										

."

LAB	(LOCATION)
-----	------------

Shell Oil Products Chain Of Custody Record

	_SCIENCE ()	r	Pie	aso Choc	k An	proprie	ato P			Tp,	rint	Ditt	Tai	Cont	of N			: :		A. 1				T 4	/		55777		<u>.</u>			
🗍 SPI	- ()					proprie				יור		DIII	100	Jong	ICL IN	ame			an an		1			1 # 		VSE	RVIC	123)	<u> </u>		IF NO INCIDENT # APP	PLIES
🗆 XEI	NCO ()		V. SERVICES		MOTIVA		!		RETAIL	Pe	ter	Scha	efer 2	40612	2							9	8	9	9	6	0 1	6 1	8	DATE	<u>: 3-10-1</u>	
🖸 те	ST AMERICA (IRVINE)		TIVA SD&CM		CONSUL	TANT				<u>]</u>	2	• C .			PC	D #				,				S	AP	#					0 -	,
பள	HER (🗆 зна			OTHER					1	Ť	<u> </u>	<u> </u>	<u></u>	<u> </u>	<u></u>	<u> </u>	<u> </u>	<u> </u>	Ť		1000	<u> </u>	- T	Ť		<u></u>	- <u>-</u>		PAGE	$\therefore _ _ _ _ of _ _$	
SAMPLING	COMPANY:				LOG C	ODE:	_			1 50		DDDER	C. Ctra		<u>.</u>												<u> </u>		⊥			
Blaine	Tech Services				BTS	s						UNES	s: suee								s	ate			GLOBAL	. 10 NO.:						
ADDRES	S:				1					EDF	DELIN	ERABLE	AVe E TO (Nar	., San me, Comp	Leand any, Office	tro Locatio	on):		РНС	DNE NO	<u>lc</u>	A			0600	10123	30				CONSULTANT PROJECT F	NO.:
1680 F	Rogers Avenue, San Jose, CA									-																					110710 1	
PROJECT	CONTACT (Hardcopy or PDF Report to):									Bre	end	a Car	rter, C	RA, E	mery	ville			51	0-42	0-334	3		s	helled	df@cr	aworl	d.con	<u>n</u>		10-20-61	
TELEPHO	DNE: FAX:		E-MAIL:							_ ~~		IN NAME	-(37 (F111)															1	LAB	USE ONI	Y	
3	10-995-4455 x 108 310-637-5802			<u>iki</u>	ng@bl	lainetech	n.com					., (M	42																		
	AROUND TIME (CALENDAR DAYS):					[RESU	LTS NEED	ED	+	~~~				-							IFOT			VEIO	·					<u></u>	
D-STA	INDARD (14 DAY)		_ 2 DAYS	24 HC	OURS			ON WEEK	END											1		JE 310	:D A	NAL	1313	•						
	- RWQCB REPORT FORMAT																щ															ECH
enr				C SHELL	L CONTR	RACT RAT	E APPLIE	S		٦ ₪	-	2					Ē			Ω.										''	C°	
300	CIAL INSTRUCTIONS OR NOTES :				E REIME	BURSEMEN	IT RATE	APPLIES		260		8				E0E	TBA			260										1	a) o 1	00
Ema	all invoice and copy of final report to Shell.Lab.Bill	ing@cra	world.com	🗍 EDD I	NOT NE	EDED) = =		e l			â	8	Ш	_	_	۳I										1	23.6	
					IPT VER	RIFICATIO	N REOUE	STED		eab		gcta			1260	18	EW)	809	608		_			ç								
	· · · · · · · · · · · · · · · · · · ·									1 a			ŝ	a a	1 1	÷	ξ	8	82		808			154								
ł		SAM	PLING			PRES	ERVATIV	'E		٦₫		ġ	0151	2601	MTE	I H	6	Ē		ë	<u>8</u>	809		8								
LAB	Field Sample Identification	DATE	TIME	MATRIX					NO. OI	ΓÖ		ξį i	8	8	÷ ×	+ ×	1 ±	шĩ	Š 🛓	2 2	8	8		and a							Container PID Read	lings
ONLY.		DAIL	T MIC		HCL	HNO3 H2	504 NO		2	H		E i	Ē		BTE	BTE	BTE	TAN TAN	Sing Full	5	2			Meth							or Laboratory Not	tes
	MW-13	3-19-1	1025	ĩ	3				3	$\overline{\mathbf{x}}$	~				X					-	1					+	+	+	+		<u> </u>	
	Ew-1	1	1230		T					た	-				\overline{x}	-				+			\uparrow		-		-	-	+			
	20-2	6	1355	0	5				1	TX	1	\uparrow			<u>``</u>		-	+			+		╡		+		+	+				
				¥						1'-	╈	-+		+-	+	<u>}</u>			-†	+	+							+	-+-		<u></u>	
										+				-		+	+		+				+	-				+-	+		···· ···	
	· · · · · · · · · · · · · · · · · · ·						-+-				╈				+						-		_					+	+	+		
					+				1						+	-	+	-		-						-+-			+	+-		
									+		+				+	+		+		+	-		╉			+	+					
										+	╇	-			+	+	+										+		+		<u> </u>	
															<u> </u>		<u> </u>			_									_			
Delingui	had by (Classifica)												_																			:
Keiinquis	shed by (Sunature)			Received by: (8	ignature)	•	\int).															[Date:		~				Fime:		
	(hul)			-1	$h \mathcal{E}$	7				1														5	- 14	タート	4			- U	60()	
Relinqui	shed by: (Signature)	-		Received by: (S	ignature)	'	∇	1		11				1	2								C	Date:			-		-	lime:	¥	
	PAR C			1/	$\overline{\ }$		A	4-6	~	M			(< <	I A	49	P))						3	2	1-1	1			0	8412	
Relinqui	shed by: (Signature)			Received by: /S	ighatu dh		\sim		7	\rightarrow	$\overline{\mathbf{x}}$	/		~	<u> </u>)ate [.]			<u> </u>			Time	•	
	Atural			1	Ŋ	er al	H	41	701		/ n				-									03	12	ali	(1	920	
<u> </u>	A Alim	~			$\frac{1}{5}$	·	+-	<u>/ A</u>	<u>~</u> _	$\frac{1}{2}$	<u>'</u>	<u> </u>													t	4	<u></u>			05	/2/06 Revision	
\wedge	least the	50	1-11		Ka	c'd	6	4 5	L	U.	l	7 5 A	en	l.										/کر	22	2/1	۲.	10	0 ;	:4	о '	
\nearrow	angen hugh	11	im				-	JĽ			_			- L							_			·		-				, ,	-	
	/	/ (10100 22008																													
	1																_															

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

LABORATORY REPORT

Prepared For: Blaine Tech San Jose/CRA Shell 1680 Rogers Avenue San Jose, CA 95112-1105 Attention: Lorin King Project: 1784 150th Ave., San Leandro, CA

Sampled: 03/31/11 Received: 04/02/11 Issued: 04/17/11 15:33

NELAP #01108CA California ELAP#2706 CSDLAC #10256 AZ #AZ0671 NV #CA01531

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain of Custody, 1 page, is included and

is an integral part of this report.

This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

CLIENT ID	MATRIX
MW-8	Water
MW-7	Water
MW-12	Water
	CLIENT ID MW-8 MW-7 MW-12

Reviewed By:

TestAmerica Irvine Pat Abe For Philip Sanelle Project Manager

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Blaine Tech San Jose/CRA Shell 1680 Rogers Avenue San Jose, CA 95112-1105 Attention: Lorin King Project ID: 1784 150th Ave., San Leandro, CA

Report Number: IUD0109

Sampled: 03/31/11 Received: 04/02/11

VOLATILE FUEL HYDROCARBONS BY GC/MS (CA LUFT)

Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IUD0109-01 (MW-8 - Water)								
Reporting Units: ug/l Volatile Fuel Hydrocarbons (C4-C12)	TPH by GC/MS	11D0969	200	4900	4	4/8/2011	4/9/2011	
Surrogate: Dibromofluoromethane (80-120%))			100 %				
Surrogate: Toluene-d8 (80-120%)				105 %				
Surrogate: 4-Bromofluorobenzene (80-120%)				98 %				
Sample ID: IUD0109-02 (MW-7 - Water)								
Reporting Units: ug/l								
Volatile Fuel Hydrocarbons (C4-C12)	TPH by GC/MS	11D0969	50	2600	1	4/8/2011	4/9/2011	
Surrogate: Dibromofluoromethane (80-120%))			105 %				
Surrogate: Toluene-d8 (80-120%)				106 %				
Surrogate: 4-Bromofluorobenzene (80-120%)				99 %				
Sample ID: IUD0109-03 (MW-12 - Water)								
Reporting Units: ug/l								
Volatile Fuel Hydrocarbons (C4-C12)	TPH by GC/MS	11D0969	500	6400	10	4/8/2011	4/9/2011	
Surrogate: Dibromofluoromethane (80-120%))			102 %				
Surrogate: Toluene-d8 (80-120%)				105 %				
Surrogate: 4-Bromofluorobenzene (80-120%)				98 %				

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Blaine Tech San Jose/CRA Shell 1680 Rogers Avenue San Jose, CA 95112-1105 Attention: Lorin King Project ID: 1784 150th Ave., San Leandro, CA

Report Number: IUD0109

Sampled: 03/31/11 Received: 04/02/11

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IUD0109-01 (MW-8 - Water)								
Reporting Units: ug/l								
Benzene	EPA 8260B	11D0969	2.0	13	4	4/8/2011	4/9/2011	
Ethylbenzene	EPA 8260B	11D0969	2.0	130	4	4/8/2011	4/9/2011	
Toluene	EPA 8260B	11D0969	2.0	3.8	4	4/8/2011	4/9/2011	
Xylenes, Total	EPA 8260B	11D0969	4.0	520	4	4/8/2011	4/9/2011	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	11D0969	4.0	ND	4	4/8/2011	4/9/2011	
Surrogate: 4-Bromofluorobenzene (80-120%)				98 %				
Surrogate: Dibromofluoromethane (80-120%)				100 %				
Surrogate: Toluene-d8 (80-120%)				105 %				
Sample ID: IUD0109-02 (MW-7 - Water)								
Reporting Units: ug/l								
Benzene	EPA 8260B	11D0969	0.50	4.4	1	4/8/2011	4/9/2011	
Ethylbenzene	EPA 8260B	11D0969	0.50	55	1	4/8/2011	4/9/2011	
Toluene	EPA 8260B	11D0969	0.50	1.4	1	4/8/2011	4/9/2011	
Xylenes, Total	EPA 8260B	11D0969	1.0	100	1	4/8/2011	4/9/2011	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	11D0969	1.0	ND	1	4/8/2011	4/9/2011	
Surrogate: 4-Bromofluorobenzene (80-120%)				99 %				
Surrogate: Dibromofluoromethane (80-120%)				105 %				
Surrogate: Toluene-d8 (80-120%)				106 %				
Sample ID: IUD0109-03 (MW-12 - Water)								
Reporting Units: ug/l								
Benzene	EPA 8260B	11D0969	5.0	760	10	4/8/2011	4/9/2011	
Ethylbenzene	EPA 8260B	11D0969	5.0	190	10	4/8/2011	4/9/2011	
Toluene	EPA 8260B	11D0969	5.0	98	10	4/8/2011	4/9/2011	
Xylenes, Total	EPA 8260B	11D0969	10	550	10	4/8/2011	4/9/2011	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	11D0969	10	ND	10	4/8/2011	4/9/2011	
Surrogate: 4-Bromofluorobenzene (80-120%)				98 %				
Surrogate: Dibromofluoromethane (80-120%)				102 %				
Surrogate: Toluene-d8 (80-120%)				105 %				

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Blaine Tech San Jose/CRA Shell 1680 Rogers Avenue San Jose, CA 95112-1105 Attention: Lorin King Project ID: 1784 150th Ave., San Leandro, CA

Report Number: IUD0109

Sampled: 03/31/11 Received: 04/02/11

METHOD BLANK/QC DATA

VOLATILE FUEL HYDROCARBONS BY GC/MS (CA LUFT)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 11D0969 Extracted: 04/08/11										
Blank Analyzed: 04/08/2011 (11D0969	9-BLK1)									
Volatile Fuel Hydrocarbons (C4-C12)	ND	50	ug/l							
Surrogate: Dibromofluoromethane	25.4		ug/l	25.0		101	80-120			
Surrogate: Toluene-d8	26.2		ug/l	25.0		105	80-120			
Surrogate: 4-Bromofluorobenzene	24.0		ug/l	25.0		96	80-120			
LCS Analyzed: 04/08/2011 (11D0969-	BS2)									
Volatile Fuel Hydrocarbons (C4-C12)	400	50	ug/l	500		80	55-130			
Surrogate: Dibromofluoromethane	25.6		ug/l	25.0		102	80-120			
Surrogate: Toluene-d8	26.1		ug/l	25.0		105	80-120			
Surrogate: 4-Bromofluorobenzene	24.8		ug/l	25.0		99	80-120			
Matrix Spike Analyzed: 04/08/2011 (1	1D0969-MS1)				Source: I	UD0169-0	1			
Volatile Fuel Hydrocarbons (C4-C12)	2550	50	ug/l	1720	1400	67	50-145			
Surrogate: Dibromofluoromethane	26.0		ug/l	25.0		104	80-120			
Surrogate: Toluene-d8	26.0		ug/l	25.0		104	80-120			
Surrogate: 4-Bromofluorobenzene	24.9		ug/l	25.0		100	80-120			
Matrix Spike Dup Analyzed: 04/08/20)11 (11D0969-N	(ISD1)			Source: I	UD0169-0	1			
Volatile Fuel Hydrocarbons (C4-C12)	2500	50	ug/l	1720	1400	64	50-145	2	20	
Surrogate: Dibromofluoromethane	26.1		ug/l	25.0		104	80-120			
Surrogate: Toluene-d8	26.1		ug/l	25.0		104	80-120			
Surrogate: 4-Bromofluorobenzene	24.7		ug/l	25.0		99	80-120			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Blaine Tech San Jose/CRA Shell 1680 Rogers Avenue San Jose, CA 95112-1105 Attention: Lorin King Project ID: 1784 150th Ave., San Leandro, CA

Report Number: IUD0109

Sampled: 03/31/11 Received: 04/02/11

METHOD BLANK/QC DATA

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 11D0969 Extracted: 04/08/1	<u>1</u>									
Blank Analyzed: 04/08/2011 (11D09	69-BLK1)									
Benzene	ND	0.50	ug/l							
Ethylbenzene	ND	0.50	ug/l							
Toluene	ND	0.50	ug/l							
m,p-Xylenes	ND	1.0	ug/l							
o-Xylene	ND	0.50	ug/l							
Xylenes, Total	ND	1.0	ug/l							
Methyl-tert-butyl Ether (MTBE)	ND	1.0	ug/l							
Surrogate: 4-Bromofluorobenzene	24.0		ug/l	25.0		96	80-120			
Surrogate: Dibromofluoromethane	25.4		ug/l	25.0		101	80-120			
Surrogate: Toluene-d8	26.2		ug/l	25.0		105	80-120			
LCS Analyzed: 04/08/2011 (11D096)	9-BS1)									
Benzene	24.6	0.50	ug/l	25.0		99	70-120			
Ethylbenzene	26.3	0.50	ug/l	25.0		105	75-125			
Toluene	25.4	0.50	ug/l	25.0		101	70-120			
m,p-Xylenes	52.0	1.0	ug/l	50.0		104	75-125			
o-Xylene	26.3	0.50	ug/l	25.0		105	75-125			
Xylenes, Total	78.3	1.0	ug/l	75.0		104	70-125			
Methyl-tert-butyl Ether (MTBE)	26.3	1.0	ug/l	25.0		105	60-135			
Surrogate: 4-Bromofluorobenzene	24.6		ug/l	25.0		98	80-120			
Surrogate: Dibromofluoromethane	25.8		ug/l	25.0		103	80-120			
Surrogate: Toluene-d8	26.3		ug/l	25.0		105	80-120			
Matrix Spike Analyzed: 04/08/2011	(11D0969-MS1)				Source: I	UD0169-0	1			
Benzene	50.1	0.50	ug/l	25.0	28.5	87	65-125			
Ethylbenzene	92.6	0.50	ug/l	25.0	75.6	68	65-130			
Toluene	64.1	0.50	ug/l	25.0	45.5	74	70-125			
Methyl-tert-butyl Ether (MTBE)	26.9	1.0	ug/l	25.0	ND	108	55-145			
Surrogate: 4-Bromofluorobenzene	24.9		ug/l	25.0		100	80-120			
Surrogate: Dibromofluoromethane	26.0		ug/l	25.0		104	80-120			
Surrogate: Toluene-d8	26.0		ug/l	25.0		104	80-120			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Blaine Tech San Jose/CRA Shell 1680 Rogers Avenue San Jose, CA 95112-1105 Attention: Lorin King Project ID: 1784 150th Ave., San Leandro, CA

Report Number: IUD0109

Sampled: 03/31/11 Received: 04/02/11

METHOD BLANK/QC DATA

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

		Reporting		Spike	Source		%REC		RPD	Data	
Analyte	Result	Result Limit		Level	Result	%REC	Limits	RPD	Limit	Qualifiers	
Batch: 11D0969 Extracted: 04/08/1	<u>1</u>										
Matrix Spike Dup Analyzed: 04/08/2	2011 (11D0969-M	(SD1)			Source: I	UD0169-0	1				
Benzene	48.9	0.50	ug/l	25.0	28.5	82	65-125	2	20		
Ethylbenzene	89.6	0.50	ug/l	25.0	75.6	56	65-130	3	20	M2	
Toluene	62.0	0.50	ug/l	25.0	45.5	66	70-125	3	20	M2	
Methyl-tert-butyl Ether (MTBE)	27.2	1.0	ug/l	25.0	ND	109	55-145	1	25		
Surrogate: 4-Bromofluorobenzene	24.7		ug/l	25.0		99	80-120				
Surrogate: Dibromofluoromethane	26.1		ug/l	25.0		104	80-120				
Surrogate: Toluene-d8	26.1		ug/l	25.0		104	80-120				

TestAmerica Irvine Pat Abe For Philip Sanelle Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Blaine Tech San Jose/CRA Shell 1680 Rogers Avenue San Jose, CA 95112-1105 Attention: Lorin King Project ID: 1784 150th Ave., San Leandro, CA

Report Number: IUD0109

Sampled: 03/31/11 Received: 04/02/11

DATA QUALIFIERS AND DEFINITIONS

- M2 The MS and/or MSD were below the acceptance limits due to sample matrix interference. See Blank Spike (LCS).
- ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.
- **RPD** Relative Percent Difference

ADDITIONAL COMMENTS

For Volatile Fuel Hydrocarbons (C4-C12):

Volatile Fuel Hydrocarbons (C4-C12) are quantitated against a gasoline standard. Quantitation begins immediately before TBA-d9.

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Blaine Tech San Jose/CRA Shell 1680 Rogers Avenue San Jose, CA 95112-1105 Attention: Lorin King Project ID: 1784 150th Ave., San Leandro, CA

Report Number: IUD0109

Sampled: 03/31/11 Received: 04/02/11

Certification Summary

TestAmerica Irvine

Method	Matrix	Nelac	California
EPA 8260B	Water	Х	Х
TPH by GC/MS	Water	Х	Х

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

LAB (LOCATION)

- N	

Shell Oil Products Chain Of Custody Record

	SCIENCE ()	Please Check Appropriate Box:								Print Bill To Contact Name:																					
🗋 SPL	- ()		V. SERVICES		MOTTV		11	٦٦		FTAIL												CHECK IF NO INCIDENT # APPL						K IF NO INCIDENT # APPLIES			
	NCO ()										Peter Schaefer 240612								9	8	9	9	6	0	6	8	DAT	E: 3.31-11			
🗹 TES	ST AMERICA (IRVINE)			ITVA SD&C		CONSU	LTANT			LUBES				1.1	÷.,		PO	#	e lant				1.1			SAF	?#			.		
🗆 ന	HER ()	🗆 зн	ELL PIPELIN		OTHER							Γ							[1		T I				PAG	
SAMPLING COMPANY:											SITE	ADDF	RESS: S	treet and	d City				I	L		State		1	GLO	BAL ID NO	D.:				•	
Blaine Tech Services BTSS										1784	4 150	0th Av	e Sa	in Lea	ndro	0					CA			T06	00101	230						
ADORESS: 1680 Rogers Avenue, San Jose, CA										EDF D	ELIVER	ABLE TO	(Name, Co	ompeny, C	Office Lo	cation):			PHONE	NO.:				E-MAIL						CONSULTANT PROJECT NO.:		
										Bre SAM	nda (Carter	, CRA	., Eme	ryvi	lle			510-4	20-33	43			shel	ledf@	craw	orld.co	om I Af	USE O			
TELEPHO	HONE: 310-995-4455 x 108 310-637-5802 E-MAIL:																-	tuc	2009													
	AROUND TIME (CALENDAR NDARD (14 DAY)	DAYS):] 5 DAYS] 3 DAY:	AYS): S DAYS S DAYS C 2 DAYS C 24 HOURS C N WEEKEND										rsis																			
	- RWQCB REPORT FORMAT	UST AGENCY:					_												Р.										\square			TEMPERATURE ON RECEIPT
SPE Ema	ECIAL INSTRUCTIONS (OR NOTES : al report to Shell.Lab.B	lling@cra	world.com		l cont E reimi Not ne Ipt vef	RACT R BURSEN EDED	VATE AP	PLIES ATE APF	PLIES		rgeable (8260B)	ractable (8015M)				(8260B)	+ TBA (8260B)	s (MTBE, TBA, DI 3260B	1260B)	(8260B)	B)		3)	5M)							3.6 <i>(</i> 1
-			SAN	PLING	1	T	PF	RESERV	ATIVE		-	Į Ž	μX.	ISM)		(B)	8	H	сх ВЕ)	lst (8		8260	â	260E	801							
LAB USE ONLY	Field Sample	Identification	DATE	ТІМЕ	MATRIX	40			NONE	OTUED	NO. OF CONT.	PH -GRO	PH -DRO	PHg (801		3TEX (526	BTEX + M	BTEX + M	3TEX + 5		tingle	,2-DCA (EDB (8260	thanol (8	Aethanol							Container PID Readings or Laboratory Notes
	MW-B		3-31-1	1350	W	3	niv03	12304	NONE	UTHER	3	$\frac{1}{\gamma}$					X	-	<u> </u>		0.0	+			2							
	MW-7		1	1305								X				ľ	X									1						
	M101-17-			137.5		t					1	$\mathbf{\dot{r}}$				-	X															\frown
			•			+					_¥		1	1							-				1							
						-																				†						Viel.
		· · · ·														_																4121/
			<u> </u>				<u> </u>																						\square			
													_																			
																			_													
Relinguis	shed by: (Signature)				Bassived by /S																											
F	3 Rul	L			P) 	P	P	R	L		ſ	<u>5</u> cu	mf	sle	-	c	vsta	d	ion	\cdot	I		Date	3	31,	/1	l		Time:	500
Relinquis	sned by: (Signature)		<	-	Received by: (S	ignature)	1	Å	n	M		$\overline{\mathbf{C}}$		1	1 4	43	F	$\overline{)}$						Date	4	$\sqrt{1}$	11			Time:	435
Relinquis	shed by: (Signature)	And	FURSY)	Received by: (S	ignature)	$\overline{\langle}$		L	C	5		l	R		_	, 	0	<u>ر</u> ر ر	પ્રા	()	: - {	آ	Date	oy/	01	<u> </u>			Time:	1620
		<i>,</i>												•		0										τ	Т					25/2/06 Revision