5900 Hollis Street, Suite A Emeryville, California 94608 Telephone: (510) 420-0700 Fax: (5 www.CRAworld.com

Fax: (510) 420-9170

					WWW.CRAW	oria.com
		o v Pře	Ţ	RANSI	MITTAL	
Date:	August	: 13, 2009	9	Refer	ENCE NO.:	240612
. * .				Proje	CT NAME:	1784 150th Avenue, San Leandro
То:	Jerry W	/ickham	· · · · · · · · · · · · · · · · · · ·			RECEIVED
	Alame	la Coun	ty Health Care Se	ervices Age	ncy	
	1131 H	arbor Ba	y Parkway, Suite	250		9:04 am, Aug 17, 2009
	Alamed	1a, Calif	ornia 94502			Alameda County Environmental Health
Please fine	d enclosed	1: [] []	Draft Originals Prints		Final Other	
Sent via:			Mail Overnight Courie		Same Day Cou Other <u>Geo</u>	urier Tracker and Alameda County FTP
QUAN	TITY				DESCRIPT	ION
1		Ground	dwater Monitorir	ng Report –	Second Quar	rter 2009
	Requested Your Use	L		or Review a	nd Comment	
COMME If you hav		iestions	regarding the cor	ntent of this	document, p	please contact Peter Schaefer at
(510) 420-	3319.					· · · · · · · · · · · · · · · · · · ·
Copy to:		•		oducts US,		mington Avenue, Carson, CA 90810
Complete	ed by: _l	Peter Sch	naefer		Signed:	and f
Filing:	Correspor	ndence Fi	ile			

CONESTOGA-ROVERS & ASSOCIATES

Denis L. Brown Shell Oil Products US HSE - Environmental Services 20945 S. Wilmington Ave. Carson, CA 90810-1039 Tel (707) 865 0251 Fax (707) 865 2542 Email denis.l.brown@shell.com

Jerry Wickham Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Re: Shell-branded Service Station 1784 150th Avenue San Leandro, California SAP Code 136019 Incident No. 98996068 Agency Case No. RO0000367

Dear Mr. Wickham:

The attached document is provided for your review and comment. Upon information and belief, I declare, under penalty of perjury, that the information contained in the attached document is true and correct.

If you have any questions or concerns, please call me at (707) 865-0251.

Sincerely,

Denis L. Brown Project Manager

GROUNDWATER MONITORING REPORT – SECOND QUARTER 2009

SHELL-BRANDED SERVICE STATION 1784 150TH AVENUE SAN LEANDRO, CALIFORNIA

 SAP CODE
 136019

 INCIDENT NO.
 98996068

 AGENCY NO.
 RO0000367

Prepared by: Conestoga-Rovers & Associates

5900 Hollis Street, Suite A Emeryville, California U.S.A. 94608

Office: (510) 420-0700 Fax: (510) 420-9170

web: http://www.CRAworld.com

AUGUST 13, 2009 REF. NO. 240612 (9) This report is printed on recycled paper.

TABLE OF CONTENTS

<u>Page</u>

1.0	INTRODU	JCTION	.1
	1.1	SITE INFORMATION	.1
2.0	SITE ACT.	IVITIES, FINDINGS, AND DISCUSSION	.2
	2.1	CURRENT QUARTER'S ACTIVITIES	.2
	2.2	CURRENT QUARTER'S FINDINGS	.2
	2.3	PROPOSED ACTIVITIES FOR NEXT QUARTER	.2

LIST OF FIGURES (Following Text)

FIGURE 1 VICINITY MAP

FIGURE 2 GROUNDWATER CONTOUR AND CHEMICAL CONCENTRATION MAP

LIST OF APPENDICES

APPENDIX A BLAINE TECH SERVICES, INC. – GROUNDWATER MONITORING REPORT

1.0 INTRODUCTION

Conestoga-Rovers & Associates (CRA) prepared this report on behalf of Equilon Enterprises LLC dba Shell Oil Products US (Shell) in accordance with the quarterly reporting requirements of 23 CCR 2652d.

1.1 SITE INFORMATION

Site Address	1784 150th Avenue, San Leandro
Site Use	Shell-branded Service Station
Shell Project Manager	Denis Brown
CRA Project Manager	Peter Schaefer
Lead Agency and Contact	ACHCSA, Jerry Wickham
Agency Case No.	RO0000367
Shell SAP Code	136019
Shell Incident No.	98996068

Date of most recent agency correspondence was July 24, 2009.

2.0 <u>SITE ACTIVITIES, FINDINGS, AND DISCUSSION</u>

2.1 <u>CURRENT QUARTER'S ACTIVITIES</u>

Blaine Tech Services, Inc. (Blaine) gauged and sampled the wells according to the established monitoring program for this site. Based on the initial analytical results for well MW-2B, which were outside of historical norms, CRA resampled well MW-2B on June 26, 2009 and determined that the initial results are likely valid.

CRA prepared a vicinity map (Figure 1) and a groundwater contour and chemical concentration map (Figure 2). Blaine's report, presenting the analytical data, is included in Appendix A.

Alameda County Health Care Services Agency's (ACHCSA's) April 21, 2009 letter requested a feasibility study including additional analysis of the pilot test data and resampling of soil vapor probe SVP-5.

CRA submitted a *Feasibility Study/Corrective Action Plan (FS/CAP)* on July 20, 2009 which recommended conducting a pilot test to evaluate remediation using air sparging combined with soil vapor extraction (AS/SVE) to address known petroleum hydrocarbon impacts.

CRA attempted to resample soil vapor probe SVP-5 on July 14, 2009 but could not, because water was present in the probe's Teflon tubing. Several attempts were made to clear the water without success. Approximately two-thirds of a liter of water were purged from the soil vapor probe. As discussed below, CRA will submit a report describing these activities.

2.2 <u>CURRENT QUARTER'S FINDINGS</u>

Groundwater Flow Direction	Generally southerly
Hydraulic Gradient	Variable
Depth to Water	13.78 to 25.24 feet below top of well casing

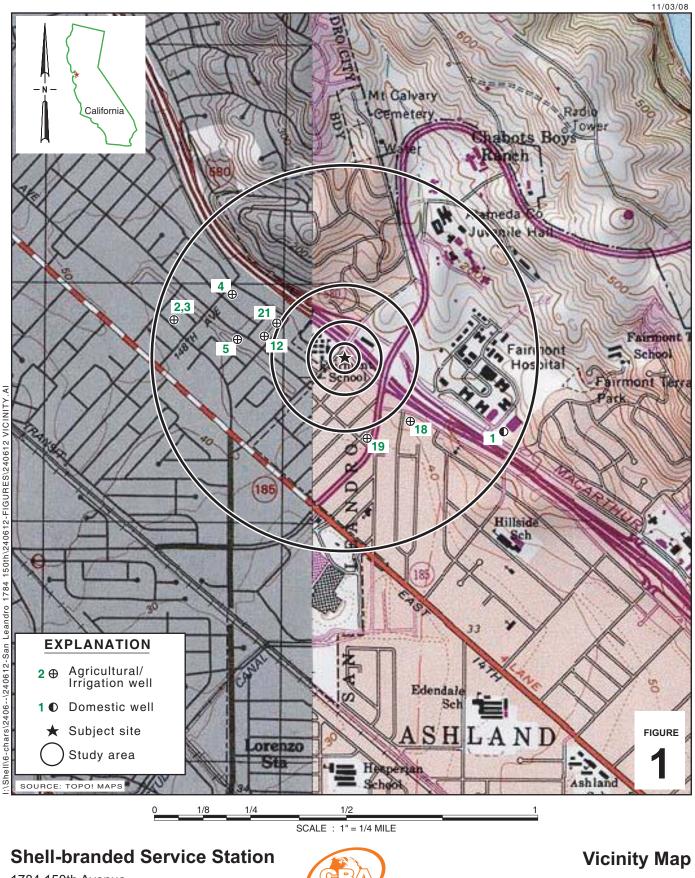
2.3 <u>PROPOSED ACTIVITIES FOR NEXT QUARTER</u>

CRA will submit a soil vapor probe sampling report by August 17, 2009 as requested in ACHCSA's April 21, 2009 letter.

Blaine will gauge and sample wells according to the revised monitoring program detailed below. Per Alameda County Health Care Services Agency's July 24, 2009 letter and State Water Resources Control Board Resolution 2009-0042 adopted May 19, 2009, we will implement a semiannual monitoring and reporting schedule at the site, with sampling activities conducted during the first and third quarters. CRA anticipates increasing the frequency of groundwater monitoring in selected wells to monitor the effectiveness of the AS/SVE pilot test and any subsequent remediation.

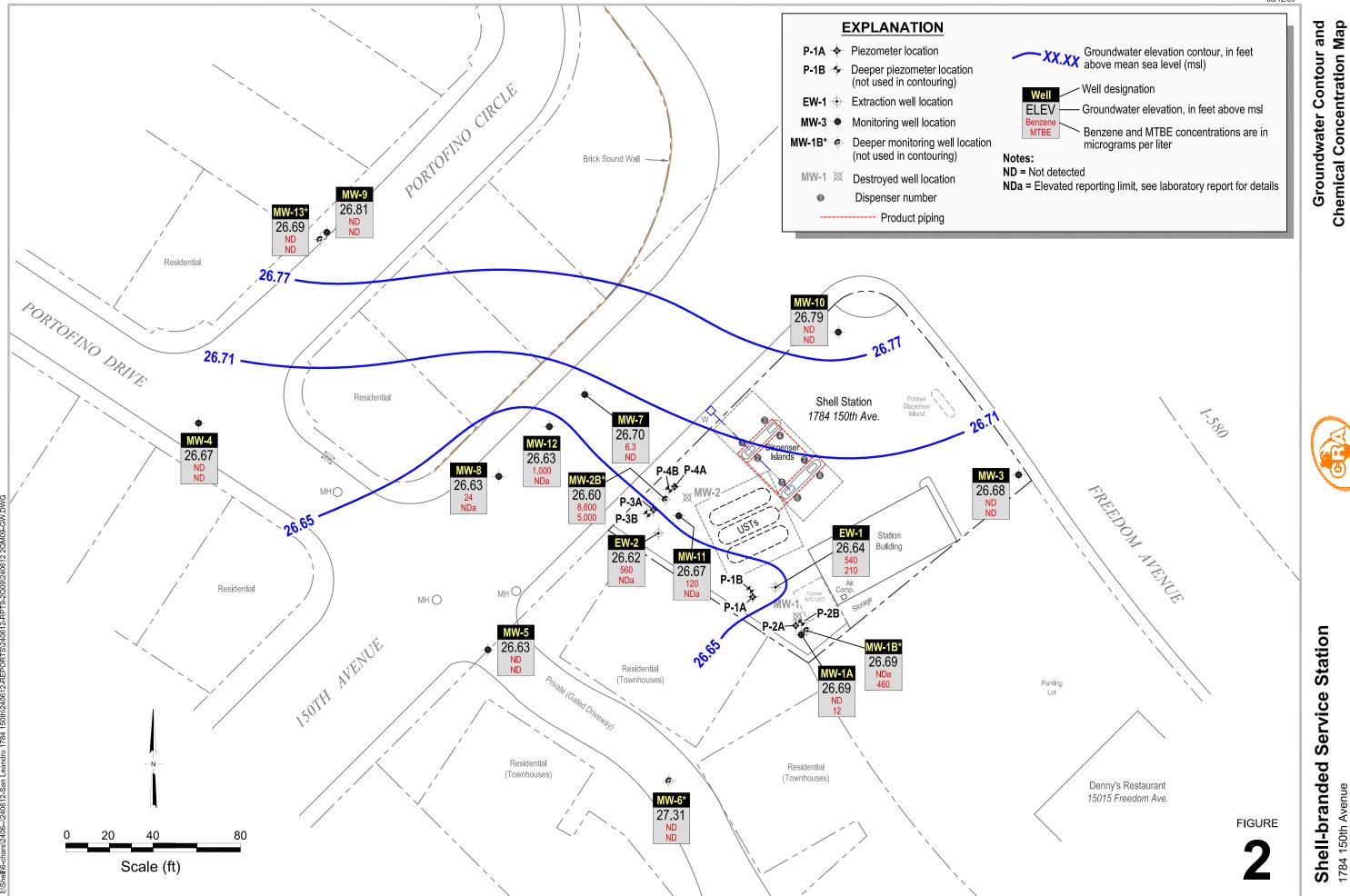
CRA will implement the AS/SVE pilot test upon ACHCSA's approval of the FS/CAP.

All of Which is Respectfully Submitted, CONESTOGÀ-ROVERS & ASSOCIATES


Peter Schaefer, CHG, CEG

Aubrey K. Cool, PG

Ĉ


FIGURES

1784 150th Avenue

San Leandro, California

2009

ς. June

APPENDIX A

BLAINE TECH SERVICES, INC. – GROUNDWATER MONITORING REPORT BLAINE TECH SERVICES INC.

GROUNDWATER SAMPLING SPECIALISTS SINCE 1985

July 15, 2009

Denis Brown Shell Oil Products US 20945 South Wilmington Avenue Carson, CA 90810

> Second Quarter 2009 Groundwater Monitoring at Shell-branded Service Station 1784 150th Avenue San Leandro, CA

Monitoring performed on June 3 and 26, 2009

Groundwater Monitoring Report 090603-WW-1 Reissue

This report covers the routine monitoring of groundwater wells at this Shell-branded facility. In accordance with standard procedures that conform to Regional Water Quality Control Board requirements, routine field data collection includes depth to water, total well depth, thickness of any separate immiscible layer, water column volume, calculated purge volume (if applicable), elapsed evacuation time (if applicable), total volume of water removed (if applicable), and standard water parameter instrument readings. Sample material is collected, contained, stored, and transported to the laboratory in conformance with EPA standards. Purgewater (if applicable) is, likewise, collected and transported to the Shell Martinez Manufacturing Complex.

Basic field information is presented alongside analytical values excerpted from the laboratory report in the cumulative table of **WELL CONCENTRATIONS**. The full analytical report for the most recent samples and the field data sheets are attached to this report.

At a minimum, Blaine Tech Services, Inc. field personnel are certified on completion of a fortyhour Hazardous Materials and Emergency Response training course per 29 CFR 1910.120. Field personnel are also enrolled in annual eight-hour refresher courses.

SAN JOSE	SACRAMENTO		LOS ANGELES	SAN DIEGO	SEATTLE
1680 ROGERS AVENUE	SAN JOSE, CA	(408) 573-0555	FAX (408) 573-7771	LIC. 746684	www.blainetech.com

Blaine Tech Services, Inc. conducts sampling and documentation assignments of this type as an independent third party. Our activities at this site consisted of objective data and sample collection only. No interpretation of analytical results, defining of hydrological conditions or formulation of recommendations was performed.

Please call if you have any questions.

Yours truly,

Mike Ninokata **Project Manager**

MN/jb

attachments: Cumulative Table of WELL CONCENTRATIONS Certified Analytical Report Field Data Sheet

Anni Kreml cc: Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608

SEATTLE LOS ANGELES SAN DIEGO SAN JOSE SACRAMENTO (408) 573-0555 FAX (408) 573-7771 LIC. 746684 www.blainetech.com 1680 ROGERS AVENUE SAN JOSE, CA

		TODU	TEDU	B	т	Е	x	MTBE 8020	MTBE 8260	DIPE	ЕТВЕ	TAME	тва	1,2- DCA	EDB	тос	Depth to Water	GW Elevation	SPH Thickness	DO Reading
Well ID	Date	TPPH (ug/L)	TEPH (ug/L)	ы (uq/L)	uq/L)	ug/L)	(uq/L)	(ug/L)	(ug/L)	(ug/L)		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)
		(ug/L)	(ug/L)	(49/2)		(09.2)	(-3/_	<u>(-5</u> -7	<u> </u>											
	00// 5/0000		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	48.44	23.26	25.18	NA	NA
EW-1	09/15/2008	NA 42.000	NA NA	1,600	860	1,500	3,800	NA	500	NA	NA	NA	NA	NA	NA	48.44	22.51	25.93 •	NA	0.18
EW-1	01/06/2009	43,000				1,700	5,300	NA	390	NA	NA	NA	NA	NA	NA	48.44	19.58	28.86	NA	1.21
EW-1	03/10/2009 06/03/2009	39,000 26,000	NA NA	2,500 540	1,300 220	1,700	2,600	NA	210	NA	NA	NA	NA	NA	NA	48.44	21.80	26.64	NA	1.09
E44-1	00/03/2003	20,000		340	110															
EW-2	09/15/2008	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	44.52	19.35	25.17	NA	NA
EW-2	01/06/2009	85,000	NA	970	1,400	3,200	20,000	NA	150	NA	NA	NA	NA	NA	NA	44.52	18.63	25.89	NA	0.22
EW-2	03/10/2009	67,000	NA	190	650	3,100	21,000	NA	<100	NA	NA	NA	NA	NA	NA	44.52	16.21	28.31	NA	0.76
EW-2	06/03/2009	62,000	NA	560	490	3,000	18,000	NA	<100	NA	NA	NA	NA	NA	NA	44.52	17.90	26.62	NA	0.03
		,			<u> </u>				<u> </u>											
MW-1	03/08/1990	510	120	1.5	0.8	<0.5	5.4	NA	NA	NA	NA	NA	NA	NA	NA	49.13	25.29	23.84	NA	NA
MW-1	06/12/1990	390	100	86	1.3	0.7	6,2	NA	NA	NA	NA	NA	NA	NA	NA	49.13	<u>25.85</u>	23.28	NA	NA
MW-1	09/13/1990	100	130	56	0.75	2.4	2.8	NA	NA	NA	NA	NA	NA	NA	NA	49.13	27.49	21.64	NA	NA
MW-1	12/18/1990	480	<50	54	1.7	3.3	3.7	NA	NA	NA	NA	NA	NA	NA	NA	49.13	27.41	21.72	NA	NA
MW-1	03/07/1991	80	<50	266	<0.5	1.2	<1.5	NA	NA	NA	NA	NA	NA	NA	NA	49.13	25.79	23.34	NA	NA
MW-1	06/07/1991	510	<50	130	3.8	6.1	11	NA	NA	NA	NA	NA	NA	NA	NA	49.13	25.64	23.49	NA	NA
MW-1	09/17/1991	330	120 a	67	< 0.5	3.0	2.2	NA	NA	NA	NA	NA	NA	NA	NA	49.13	27.54	21.59	NA	NA ·
MW-1	12/09/1991	140a	80	<0.5	<0.5	1.7	4.7	NA	NA	NA	NA	NA	NA	NA	NA	49.13	27.81	21.32	NA	NA
MW-1	02/13/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	49.13	25.57	23.56	NA	NA
MW-1	02/24/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	49.13	22.83	26.30	NA	NA
MW-1	02/27/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	49.13	23.09	26.04	NA	NA
MW-1	03/01/1992	<50	<50	<0.5	<0.5	< 0.5	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	49.13	23.26	25.87	NA	NA
MW-1	06/03/1992	1,500	NA	520	180	72	230	NA	NA	NA	NA	NA	NA	NA	NA	49.13	24.64	24.49	NA	NA
MW-1	09/01/1992	130	NA	16	1.4	1.8	3.4	NA	NA	NA	NA	NA	NA	NA	NA	49.13	26.74	22.39	NA	NA
MW-1	10/06/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	49.13	27.18	21.95	NA NA	NA
MW-1	11/11/1992	NA	NA	NA	NĂ	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	49.13	27.99	21.14	NA	NA
MW-1	12/04/1992	150	NA	360	0.7	1.8	2.1	NA	NA	NA	NA	NA	NA	NA	NA	49.13	27.14	21.99	NA	NA
MW-1	01/22/1993	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	49.13	20.09	29.04	NA	NA
MW-1	02/10/1993	NA	NA	NA	NA	NA	NA	NA	NA	NA_	NA	NA	NA	NA	NA	49.13	24.26	24.87	NA	NA
MW-1	03/03/1993	<50	NA	1.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	49.13	20.50	28.63	NA	<u>NA</u>
MW-1	05/11/1993	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA_	49.13	21.70	27.43	NA	NA
MW-1	06/17/1993	1,600	NA	340	120	120	440	NA	NA	NA	NA	NA	NA	NA	NA	49.13	22.42	26.71	NA	NA
MW-1	09/10/1993	2,600	NA	670	340	310	730	NA	NA	NA	NA	NA	NA	NA_	NA	49.13		25.02	NA	NA
MW-1	12/13/1993	11,000	NA	470	320	380	2,300	NA	NA	NA	NA	NA	NA	NA	NA	49.13	23.73	25.40	NA NA	NA
MW-1	03/03/1994	16,000	NA	700	690	480	3,200	NA	NA	NA	NA	NA	NA	NA	NA	49.13	22.08	27.05	NA	NA

<u></u>								MTBE	MTBE	-	1.5			1,2-			Depth to	GW	SPH	DO
Well ID	Date	ТРРН	ТЕРН	в	т	Е	x	8020	8260	DIPE	ETBE	TAME	TBA	DCA	EDB	тос	Water		Thickness	1 1
Weilin	Date	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)
L		(ug/L)	(ugit)	(«g/=/	(49,2)	(+ <u>3</u> , <u>-</u>)	(-3,-)	(-3,-)	(3/-/	<u> </u>	<u> (</u>		, <u>/</u>							
MW-1	06/06/1994	7,500	NA	420	280	200	1,000	NA	NA	NA	NA	NA	NA	NA	NA	49.13	23.10	26.03	NA	NA
MW-1	09/12/1994	1.200	NA	110	21	3.3	420	NA	NA	NA	NA	NA	NA	NA	NA	49.13	25.19	23.94	NA	NA
MW-1	12/19/1994	4,600	NA	470	330	230	1,300	NA	NA	NA	NA	NA	NA	NA	NA	49.13	23.06	26.07	NA	NA
MW-1	02/28/1995	500	NA	59	32	6.8	68	NA	NA	NA	NA	NA	NA	NA	NA	49.13	20.90	28.23	NA	NA
MW-1	03/24/1995	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	49.13	18.28	30.85	NA	NA
MW-1	06/26/1995	5,500	NA	740	420	300	1,800	NA	NA	NA	NA	NA	NA	NA	ŇA	49.13	20.40	28.73	NA	NA
MW-1	09/13/1995	84,000	NA	1,900	2,600	3,000	14,000	NA	NA	NA	NA	NA	NA	NA	NA	49.13	22.62	26.51	NA	NA
MW-1	12/19/1995	80,000	NA	660	350	170	18,000	, NA	NA	NA	NA	NA	NA	NA	NA	49.13	22.10	27:03	NA	NA
MW-1	03/07/1996	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	49.13	18.83	30.34	0.05	NA
MVV-1	06/28/1996	270,000	NA	2,800	820	1,000	16,000	<0.5	NA	NA	NA	NA	NA	NA	NA	49.13	21.46	27.67	NA	NA
MW-1 (D)	06/28/1996	790,000	NA	2,200	780	1,000	13,000	15,000	NA	NA	NA	NA	NA	NA	NA	49.13	21.46	27.67	NA	NA
MW-1	09/26/1996	29,000	NA	1,100	260	270	1,900	<1,000	NA	NA	NA	NA	NA	NA	NA	49.13	23.57	25.57	0.01	NA
MW-1	09/26/1996	25,000	NA	1,200	320	240	1,900	<1,000	NA	NA	NA	NA	NA	NA	NA	49.13	NA	NA	NA	NA
MW-1	12/10/1996	13,000	NA	510	240	230	1,200	100	NA	NA	NA	NA	NA	NA	NA	49.13	21.43	27.70	NA	1.0
MW-1 (D)	12/10/1996	8,400	NA	420	130	140	680	81	NA	NA	NA	NA	NA	NA	NA	49.13	21.43	27.70	NA	1.0
MW-1	03/10/1997	4,200	NA	13	8.8	16	74	<12	NA	NA	NA	NA	NA	NA	NA	49.13	20.08	29.05	NA	2.0
MW-1 (D)	03/10/1997	5,100	NA	12	8.9	17	79	<25	NA	NA	NA	NA	NA	NA	NA	49.13	20.08	29.05	NA	2.0
MW-1	06/30/1997	5,700	NA	320	120	140	700	47	NA	NA	NA	NA	NA	NA	NA	49.13	21.68	27.45	NA	1.6
MW-1 (D)	06/30/1997	5,300	NA	300	95	120	580	45	NA	NA	NA	NA	NA	NA	NA	49.13	21.68	27.45	NA	1.6
MW-1	09/12/1997	6,300	NA	120	26	82	260	30	NA	NA	NA	NA	NA	NA	NA	49.13	21.78	27.35	NA	2.1
MW-1 b	12/18/1997	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	49.13	20.78	28.35	NA	1.3
MW-1	02/02/1998	84	NA	5.1	<0.50	<0.50	2.1	2.5	NA	NA	NA	NA	NA	NA	NA	49.13	19.65	29.48	NA	2.0
MW-1	06/24/1998	13,000	NA	3,000	260	410	1,400	<250	NA	NA	NA	NA	NA	NA	NA	49.13	19.65	29.48	NA	2.5
MW-1 (D)	06/24/1998	12,000	NA	3,800	250	47	1,400	710	NA	NA	NA	NA	NA	NA	NA	49.13	19.65	29.48	NA	2.5
MW-1	08/26/1998	3,100	NA	1,200	27	170	50	88	NA	NA	NA	NA	NA	NA	NA	49.13	20.49	28.64	NA	2.1
MW-1	12/23/1998	45,000	NA	5,300	220 *	1,000	3,600	970	NA	NA	NA	NA	NA	NA	NÀ	49.13	21.22	27.91	NA	3.8
MW-1	03/01/1999	22,300	NA	2,540	436	753	3,370	<400	NA	NA	NA	NA	NA	NA	NA	49.13	19.27	29.86	NA	1.8
MW-1	06/14/1999	18,800	NA	6,820	210	436	958	1,360	NA	NA	NA	NA	NA	NA	NA	49.13	20.80	28.33	NA	2.2
MW-1	09/28/1999	21,500	NA	7,470	281	467	927	1,800	NA	NA	NA	NA	NA	NA	NA	49.13	22.55	26.58	NA	2.0
MW-1	12/08/1999	22,300	NA	6,140	135	256	367	232	NA	NA	NA	NA	NA	NA	NA	49.13	23.12	26.01	NA	2.1
MW-1	03/14/2000	6,690	NA	1,880	63.5	134	307	460	NA	NA	NA	NA	NA	NA	NA	49.13	18.87	30.26	NA	2.3
MW-1	06/28/2000	8,080	NA	2,690	85.1	149	514	701	NA	NA	NA	NA	NA	NA	NA	49.13	21.12	28.01	NA	2.4
MW-1	09/06/2000	17,800	NA	7,390	212	329	1,270	<1,000	NA	NA	NA	NA	NA	NA	NA	49.13	21,90	27.23	NA	3,0
MW-1	12/14/2000	8,900	NA	4,870	79.2	106	370	1,840	673*	NA	NA	NA	NA	NA	NA	49.13	22.60	26.53	NA NA	2.0
MW-1	03/05/2001	7,520	NA	2,120	66.0	107	129	668	NA	NA	NA	NA	NA	NA	NA	49.13	20.06	29.07	NA	0.4

								MTBE	MTBE					1,2-			Depth to	GW	SPH	DO
Well ID	Date	тррн	TEPH	в	т	Е	x	8020	8260	DIPE	ETBE	TAME	TBA	DCA	EDB	тос	Water	Elevation	Thickness	Reading
	Duto	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)
			<u> </u>	<u> </u>																
MW-1	06/11/2001	30,000	NA	7,400	390	600	2,300	NA	170	NA	NA	NA	NA	NA	NA	49.13	22.39	26.74 -	NA	1.6
MW-1	09/12/2001	23,000	NA	7,500	120	280	910	NA	320	NA	NA	NA	NA	NA	NA	49.13	23.37	25.76	NA	2.2
MW-1	12/27/2001	16,000	NA	2,400	190	330	1,500	NA	350	NA	NA	NA	NA	NA	NA	49.13	20.97	28.16	NA	1.3
MW-1	02/27/2002	26,000	NA	6,100	330	510	2,000	NA	210	NA	NA	NA	NA	NA	NA	49.10	20.47	28.63	NA	1.3
MW-1	06/18/2002	29,000	NA	8,100	280	510	1,800	NA	140	NA	NA	NA	NA	NA	NA	49.10	21.99	27.11	NA	2.2
MW-1	09/18/2002	34,000	NA	5,900	350	700	3,000	NA	<250	NA	NA	NA	NA	NA	NA	49.10	23.21	25.89	NA	0.8
MW-1	12/27/2002	7,500	NA	1,200	30	120	410	NA	230	<5.0	<5.0	<5.0	310	31	<5.0	49.10	20.10	29.00	NA	0.6
MW-1	03/05/2003	17,000	NA	1,600	88	400	1,400	NA	230	NA	NA	<10	290	<10	NA	49.10	21.05	28.05	NA	1.7
: MW-1	06/24/2003	Well inacc	essible	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	49.10	NA	NA	NA	NA
MW-1	06/25/2003	14,000	NA	5,300	250	440	2,100	NA	100	NA	NA	<200	<500	<50	NA	49.10	21.93	27.17	NA	0.9
MW-1	09/25/2003	33,000	NA	7,700	250	860	3,400	NA	130	NA	NA	<200	<500	<50	NA	49.10	23.21	25.89	NA	1.7
MW-1	12/15/2003	63,000	NA	14,000	360	1,300	3,900	NA	150	NA	NA	<400	<1000	<100	NA	49.10	22.08	27.02	NA	1.5
MW-1	03/04/2004	28,000	NA	8,000	180	640	2,100	NA	79	NA	NA	<200	<500	<50	NA	49.10	19.85	29.25	NA	0.2
MW-1	05/27/2004	33,000	NA	8,700	260	840	2,700	NA	81	NA	NA	<200	<500	<50	NA	49.10	22.15	26.95	NA	0.2
MW-1	09/24/2004	26,000	NA	5,700	210	830	2,900	NA	<50	<200	<200	<200	<500	<50	<50	49.10	23.69	25.41	NA	1.5
MW-1	11/22/2004	100,000	NA	2,500	920	4,100	22,000	NA	130	NA	NA	<200	<500	<50	NA	49.10	23.19	25.91	NA	NA
MW-1	03/02/2005	110,000	NA	1,300	670	4,000	23,000	NA	87	NÁ	NA	<100	<500	<25	NA	49.10	19.35	29.75	NA	NA
MW-1	06/30/2005	94,000	NA	6,500	1,100	3,900	21,000	NA	900	NA	NA	<1,000	<2,500	<250	NA	49.10	20.64	28.46	NA	0.6
MW-1	09/20/2005	63,000	NA	3,900	: 540	2,000	14,000	NA	1,100	<800	<800	<800	<2,000	<200	NA	49.10	22.06	27.04	NA	NA
MW-1	12/05/2005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	49.10	21.90	27.25	0.06	. NA
MW-1	03/02/2006	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	49.10	17.54	31.60	0.05	NA
MW-1 (n)	06/29/2006	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	49.10	NA	NA	NA	NA
MW-1 (0)	06/30/2006	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	49.10	20.16	28.97	0.04	NA
MW-1	07/06/2006	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	49.10	20.26	28.86	0.03	NA
MW-1	09/11/2006	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	49.10	21.24	27.91	0.06	NA
MW-1	12/28/2006	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA _	NA	NA	49.10	20.83	28.30	0.04	NA
MW-1	03/20/2007	43,600	NA	11,900	3481	964	1,450	NA	9,1801	NA	NA	<200 I	<10,000	<100 I	NA	49.10	20.88	28.22	NA	0.26
MW-1	06/01/2007	22,000 q	NA	7,900	120	310	424 r	NA	7,800	NA	NA	NA	NA	NA	NA	.49.10	21.93	27.17	NA	0.72
MW-1	06/26/2007	20,000 q	NA	6,700	110	360	730	NA	6,500	NA	NA	<200	2,200	<50	NA_	49.10	22.30	26.80	NA	1.33
MW-1	07/19/2007	26,000 q	NA	6,100	92 r	180	523 r	NA	7,100	NA	NA	NA	NA	NA	NA	49.10	22.70	26.40	NA	2.89
MW-1	08/14/2007	44,000 q	NA	6,300	130	910	4,100	NA	6,300	NA	NA	NA	NA	NA	NA	49.10	22.90	26.20	NA	1.9
MW-1	09/11/2007	38,000 q	NA	8,100	140	670	1,770	NA	5,700	<100	<100	<100	3,000	<25	NA	49.10	23.65	25.45	NA	0.84
MW-1	10/26/2007	40,000 q	NA	9,500	120	540	1,370	NA	6,300	NA	NA	NA	NA	NA	NA	49.10	23.04	26.06	NA	0.9
MW-1	11/13/2007	36,000 q	NA	8,400	110	480	1,400	NA	7,100	NA	NA	NA	NA	NA	NA	49.10	22.99	26.11	NA	0.30
MW-1	12/26/2007	33,000 q	NA	8,600	120	550	1,330	NA	5,300	NA	NA	<100	2,500	<25	NA	49.10	22.37	26.73	NA	0.5

· · · · · · · · · · · · · · · · · · ·								MTBE	MTBE					1,2-			Depth to	GW	SPH	DO
Well ID	Date	тррн	TEPH	в	т	E	X	8020	8260	DIPE	ETBE	TAME	TBA	DCA	EDB	тос	Water		Thickness	
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)
<u> </u>																				·
MW-1	01/03/2008	42,000 q	NA	9,900	170	810	2,140	NA	5,300	NA	NA	NA	NA _	NA	NA	49.10	22.53	26,57	NA	1.63
MW-1	02/21/2008	32,000 q	NA	9,900	540	1,100	2,260	NA	5,500	NA	NA	NA	NA	NA	NA	49.10	20.42	28.68	NA	2.1
MW-1	03/19/2008	41,000 q	NA	9,900	620	1,300	2,280	NA	5,600	NA	NA	NA	6,900	<50	NA	49.10	21.01	28.09	NA	0.24
MW-1	04/16/2008	53,000	NA	10,000	430	1,100	2,200	NA	5,500	NA	NA	NA	NA	NA	NA	49.10	21.49	27.61	NA	1.70
MW-1	05/29/2008	47,000	NA	9,100	670	1,100	2,270	NA	4,600	NA	NA	NA	NA	NA	NA	49.10	22.17	26.93	NA	1.10
MW-1	06/05/2008	51,000	NA	7,900	660	1,100	2,780	NA	4,600	<200	<200	<200	3,700	<50	NA	49.10	22.31	26.79	NA	0.19
MW-1	07/22/2008	69,000	NA	8,700	510	1,400	3,480	NA	3,100	NA	NA	NA	NA	NA	NA	49.10	23.13	25.98	0.01	1.64
MW-1	09/29/2008	61,000	NA	7,900	560	1,400	2,480	NA	2,300	<200	<200	<200	4 <u>,</u> 100	<50	NA	49.10	24.04	25.06	NA	0.69
MW-1	Well destroye	d	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-1A	09/15/2008	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	48.99	23.78	25.21	NA	NA
MW-1A	12/19/2008	320	NA	0.54	<1.0	<1.0	<1.0	NA	12	NA	NA	NA	NA	NA	NA	48.99	23.61	25.38	NA	0.38
MW-1A	03/10/2009	570	NA	8.0	<1.0	1.5	1.2	NA	16	NA	NA	NA	NA	NA	NA	48.99	20.15	28.84	NA	1.80
MW-1A	06/03/2009	200	NA	<0.50	<1.0	<1.0	<1.0	NA	12	NA	NA	NA	NA	NA	NA	48.99	22.30	26.69	NA	1.71
	· · · · · · · · · · · · · · · · · · ·				-		•													
MW-1B	10/31/2008	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	49.07	24.25	24.82	NA	NA
MW-1B	12/19/2008	980	NA	14	<1.0	3.8	15	NA	440	NA	NA	NA	NA	NA	NA	49.07	23.71	25.36	NA	0.42
MW-1B	03/10/2009	790	NA	11	<5.0	<5.0	8.4	NA	450	NA	NA	NA	NA	NA	NA	49.07	20.36	28.71	NA	1.22
MW-1B	06/03/2009	470	NA	<2.5	<5.0	<5.0	<5.0	NA	460	NA	NA	NA	NA	NA	NA	49.07	22.38	26.69	NA	2.37
												_								
MW-2	02/13/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	45.83	22.22	23.61	NA	NA
MW-2	02/24/1992	17,000	2,700 a	6,200	1,600	550	1,900	NA	NA	NA	NA	NA_	NA	NA	NA	45.83	19.61	26.22	NA	NA
MW-2	02/27/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	45.83	19.92	25.91	NA	NA
MW-2	03/01/1992	86,000	1,000 a	30,000	34,000	2,300	16,000	NA	NA	NA	NA	NA	NA	NA	NA	45.83	21.11	24.72	NA	NA
MW-2	06/03/1992	87,000	NA	28,000	18,000	2,000	10,000	NA	NA	NA	NA	NA	NA	NA	NA	45.83	21.58	24.25	NA	NA
MW-2	09/01/1992	110,000	NA	21,000	13,000	1,900	7,800	NA	NA	NA	NA	NA	NA	NA	NA	45.83	23.46	22.37	NA	NA
MW-2	10/06/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	45.83	23.99	21.84	NA	NA
MW-2	11/11/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	45.83	24.25	21.58	NA	NA
MW-2	12/04/1992	42,000	NA	15,000	2,400	960	2,900	NA	NA	NA	NA	NA	NA	NA	NA	45.83	23.89	21.94	NA	NA
MW-2	01/22/1993	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	45.83	17.03	28.80	NA	NA
MW-2	02/10/1993	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	45.83	18.08	27.75	NA	NA
MW-2	03/03/1993	160,000	NA	36,000	3,800	32,000	21,000	NA	NA	NA	NA	NA	NA	NA	NA	45.83	17.28	28.55	NA	NA
MW-2 (D)	03/03/1993	150,000	NA	31,000	3,100	20,000	14,000	NA	NA	NA	NA	NA	NA	NA	NA	45.83	17.28	28.55	NA	NA
MW-2	05/11/1993	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	45.83	18.41	27.42	NA	NA
MW-2	06/17/1993	65,000	NA	34,000	15,000	3,200	11,000	NA	NA	NA	NA	NA	NA	NA	NA	45.83	19.06	26.77	NA	NA

·								МТВЕ	МТВЕ					1,2-			Depth to	GW	SPH	DO
		TOOL	TEDU		т	E	x	8020	8260	DIPE	ETBE	TAME	тва	DCA	EDB	тос	Water	Elevation	Thickness	Reading
Well ID	Date	TPPH (ug/L)	TEPH (ug/L)	B (ug/L)	ı (ug/L)	·⊏ (ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	<u>(ug/L)</u>	(ug/L)	(49/1)	(ug/L)	(49/2/	(4912)	((3)			<u> </u>		<u> </u>		
	06/17/1993	62,000	NA	28,000	14,000	2,700	10,000	NA	NA	NA	NA	NA	NA	NA	NA	45.83	19.06	26.77	NA	NA
MW-2 (D)			NA	28,000	16,000	2,700	11,000	NA	NA	NA	NA	NA	NA	NA	NA	45.83	20.88	24.95	NA	NA
MW-2	09/10/1993	72,000 71,000	NA	23,000	15,000	2,300	10,000	NA	NA	NA	NA	NA	NA	NA	NA	45.83	20.88	24.95	NA	NA
MW-2 (D)	09/10/1993		NA	5,400	4,900	2,300 680	3,100	NA	NA	NA	NA	NA	NA	NA	NA	45.83	20.42	25.41	NA	NA
MW-2	12/13/1993	19,000			5,500	720	3,500	NA	NA	NA	NA	NA	NA	NA	NA	45.83	20.42	25.41	NA	NA
MW-2 (D)	12/13/1993	17,000	NA	6,200		2,000	13.000	NA	NA NA	NA	NA	NA	NA	NA	NA	45.83	18.48	27.35	NA	NA
MW-2	03/03/1994	110,000	NA	21,000	24,000	<u> </u>	12,000	NA	NA	NA	NA	NA	NA	NA	NA	45.83	18.48	27.35	NA	NA
MW-2 (D)	03/03/1994	93,000	NA	19,000	22,000	1,800	13,000	NA	NA NA	NA	NA	NA NA	<u>NA</u>	NA	NA	45.83	20.26	25.57	NA	NA
MW-2	06/06/1994	10,000	NA	1,900	3,300	2,500	<u> </u>	NA	NA	NA	NA	NA	NA	NA	NA	45.83	20.26	25.57	NA	NA
MW-2 (D)	06/06/1994	99,000	NA	9,900	12,000	2,400	12,000	NA	NA	NA	NA NA	NA		NA	NA	45.83	21.80	24.03	NA	NA
MW-2	09/12/1994	160,000	NA	22,000	33,000	3,400	23,000		NA	NA	NA	NA	NA	NA	NA	45.83	21.80	24.03	NA	NA
MW-2 (D)	09/12/1994	150,000	NA	23,000	34,000	3,500	23,000	NA				NA	NA NA	NA	NA	45.83	19.66	26.17	NA	NA
MW-2	12/19/1994	80,000	NA	17,000	16,000	2,300	14,000	NA	NA	NA	NA	NA	NA NA	NA	NA	45.83	19.66	26.17	NA	NA
MW-2 (D)	12/19/ <u>1</u> 994	100,000	NA	28,000	26,000	3,400	20,000	NA	NA	NA	NA		NA NA	NA	NA	45.83	17.51	28.32	NA	NA
MW-2	02/28/1995	100,000	NA	24,000	18,000	2,300	17,000	NA	NA	NA	NA NA	NA			NA NA	45.83	17.51	28.32	NA	NA
MW-2 (D)	02/28/1995	100,000	NA	31,000	21,000	3,200	18,000	NA	NA	NA	NA	NA	NA	NA			14.88	30.95	NA	NA
MW-2	03/24/1995	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	45.83 45.83	14.68	28.25	NA	NA
MW-2	06/26/1995	45,000	NA	14,000	12,000	1,500	7,500	NA	NA	NA	NA	NA	NA	NA	NA	45.83	17.58	28.25	NA	NA
MW-2 (D)	06/26/1995	68,000	NA	13,000	11,000	1,800	7,700	NA .	NA	NA	NA	NA	NA	NA	NA		17.56	26.55	NA	NA
MW-2	09/13/1995	110,000	NA	19,000	19,000	2,800	15,000	NA	NA	NA	NA_	NA	NA	NA	NA	45.83		26.55	NA	NA
MW-2 (D)	09/13/1995	120,000	NA	20,000	20,000	2,900	15,000	NA	NA	NA	NA	NA	NA	NA	NA	45.83	19.28	26.55	NA NA	NA
MW-2	12/19/1995	180,000	NA	18,000	29,000	4,100	24,000	NA	NA	NA	NA	NA_	NA	NA	NA_	45.83	18.61			NA NA
MW-2 (D)	12/19/1995	160,000	NA	18,000	28,000	3,800	24,000	NA	NA	NA	NA	NA	NA	NA	NA _	45.83	18.61	27.22	NA NA	NA
MW-2	03/06/1996	120,000	NA	28,000	15,000	3,900	17,000	NA	NA	NA	NA	NA	NA	NA	NA	45.83	15.41	30.42		NA
MW-2	06/28/1996	96,000	NA	20,000	20,000	4,100	22,000	2,400	NA	NA	NA	NA	NA	NA	NA	45.83	17.84	27.99	NA	
MW-2	09/26/1996	87,000	NA	7,600	11,000	2,500	15,000	990	840	NA	NA	NA	NA	NA	NA	45.83	19.60	26.23	NA	NA
MW-2	12/10/1996	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	45.83	18.15	27.88	0.25	NA
MW-2	03/10/1997	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA_	NA	NA	NA	45.83	17.02	28.97	0.20	NA
MW-2	06/30/1997	57,000	ŇĂ	3,600	4,600	1,300	9,700	2,300	NA	NA	NA	NA	NA	NA	NA	45.83	19.42	26.41	NA	2.4
MW-2	09/12/1997	88,000	NA	7,800	8,800	2,600	16,000	3,200	NA	NA	NA	NA _	NA	NA	NA	45.83	19.40	26.43	NA	1.7
MW-2 (D)	09/12/1997	90,000	NA	8,300	9,400	2,700	17,000	3,400	NA	NA	NA	NA	NA	NA	NA	45.83	19.40	26.43	NA	1.7
MW-2 b	12/18/1997	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	45.83	17.56	28.27	NA	1.3
MW-2	02/02/1998	<50	NA	0.6	1.9	0.93	6.0	9.3	NA	NA	NA	NA	NA	NA	NA	45.83	18.14	27.69	NA	2
MW-2 (D)	02/02/1998	56	NA	1.0	2.8	1.4	9.3	13	NA	NA	NA	NA	NA	NA	NA	45.83	18.14	27.69	NA	2
MW-2	06/24/1998	20,000	NA	<200	620	560	4,500	<1,000	NA	NA	NA	NA	NA	NA	NA	45.83	16.08	29.75	NA	2.4
MW-2	08/26/1998	22,000	NA	380	1,100	560	4,400	330	NA	NA	NA	NA	NA	NA	NA	45.83	19.25	26.58	NA	NA

~

					· <u>·</u> ····			MATOF	MATRE					1,2-			Depth to	GW	SPH	DO
				_	-	_	v	MTBE 8020	MTBE 8260	DIPE	ETBE	TAME	TBA	DCA	EDB	тос	Water		Thickness	
Well ID	Date	TPPH	TEPH	B	T (urefl)	E (ug/L)	X (ug/L)	8020 (ug/L)	0200 (ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	<u>(ug/L)</u>	(49/2)	(49/2)	(-9/ !	(-3/	<u> </u>		<u> </u>		ال
				100	(00	000	600	1 400	NA	NA	NA	NA	NA	NA	NA	45.83	19,25	26.58	NA	NA
MW-2 (D)	08/26/1998	11,000	NA	180	130	290	500	1,400		NA	NA	NA	NA	NA	NA	45.83	18.29	27.54	NA	3.8
MW-2	12/23/1998	100,000	NA_	4,100	6,500	2,400	16,000	<500	NA			NA	NA	NA	NA	45.83	22.81	23.02	NA	2.0
MW-2	03/01/1999	50,800	NA	3,910	7,480	1,890	13,100	9,620	NA	NA	NA		NA	NA	NA	45.83	18.86	26.97	NA	1.6
MW-2	06/14/1999	4,930	NA	128	270	139	1,040	2,200	2,540*	NA	NA	NA		NA	NA NA	45.83	21.41	24.42	NA	1.8
MW-2	09/28/1999	16,200	NA	647	1,070	542	4,130	5,320	4,790	NA	NA	NA	NA				21.41	23.94	NA	1.8
MW-2	12/08/1999	25,700	NA	1,670	2,110	977	6,600	6,190	5,970	NA	NA	NA	NA	NA	NA	45.83	·		NA NA	2.0
MW-2	03/14/2000	45,100	NA	2,070	4,710	1,920	12,800	16,700	18,300*	NA	NA	NA	NA	NA	NA	45.83	15.57	30.26		
MW-2	06/28/2000	52,100	NA	5,150	4,200	1,880	13,300	15,500	13,500*	NA	NA .	NA	NA	NA	NA	45.83	17.79	28.04	NA	1.9
MW-2	09/06/2000	39,500	NA	4,490	3,290	2,100	14,000	18,500	9,060*	NA	NA	NA	NA	_NA_	NA	45.83	18.65	27.18	NA	3.5
MW-2	12/14/2000	209	NA	3.51	1.11	1.00	64.4	79.4	NA	NA	NA	NA	NA	NA	NA	45.83	19.00	26.83	NA	1.5
MW-2	03/05/2001	38,200	NA	2,010	927	1,250	8,300	13,100	15,400	NA	NA	NA	NA	NA_	NA	45.83	16.66	29.17	NA	1.0
MW-2	06/11/2001	50,000	NA	4,400	2,200	1,800	11,000	NA	26,000	NA	NA	NA	NA	NA	NA	45.83	18.93	26.90	NA	1.7
MW-2	09/12/2001	59,000	NA	6,100	2,800	2,300	14,000	NA	21,000	NA	NA	NA_	NA	NA	NA	45.83	19.85	25.98	NA	1.6
MW-2	12/27/2001	74,000	NA	8,600	2,500	2,500	17,000	NA	25,000	NA	NA	NA	NA	NA	NA	45.83	17.85	27.98	NA	2.6
MW-2	02/27/2002	70,000	NA	8,100	2,600	2,100	13,000	NA	32,000	NA	NA	NA	NA	NA ·	NA_	45.79	17.15	28.64	NA	2.0
MW-2	06/18/2002	72,000	NA	9,500	3,000	2,200	13,000	NA	29,000	NA	NA	NA	NA	NA	NA	45.79	18.49	27.30	NA	0.6
MW-2	09/18/2002	48,000	NA	7,600	850	1,300	6,300	NA	8,700	NA	NA	NA	NA	NA	NA	45.79	19.95	25.84	NA	1.0
MW-2	12/27/2002	40,000	NA	5,900	1,200	1,400	7,800	NA	19,000	<50	<50	55	10,000	<50	<50	45.79	16.71	29.08	NA	1.0
MW-2	03/05/2003	62,000	NA	13,000	1,400	2,000	7,900	NA	21,000	NA	NA	<50	10,000	<50	NA	45.79	17.72	28.07	NA	1.4
MW-2	06/24/2003	19,000	NA	9,500	530	700	2,900	NA	14,000	NA	NA	<400	6,000	<100	NA	45.79	18.30	27.49	NA	1.4
MW-2	09/25/2003	65,000	NA	24,000	1,500	2,400	9,700	NA	19,000	NA	NA	<1,000	6,400	<250	NA	45.79	20.05	25.74	NA	1.3
MW-2	12/15/2003	67,000	NA	18,000	1,800	1,900	7,200	NA	11,000	NA	NA	<400	3,700	<100	NA	45.79	18.80	26.99	NA	0.1
MW-2	03/04/2004	72,000	NA	27,000	1,200	2,100	7,600	NA	13,000	NA	NA	<400	6,800	<100	NA	45.79	16.75	29.04	NA	0.2
MW-2	05/27/2004	74,000	NA	6,000	2,000	2,500	15,000	NA	19,000	NA	NA	<400	8,500	<100	NA	45.79	18.85	26.94	NA	0.8
MW-2	09/24/2004	<100	NA	<1.0	<1.0	<1.0	<2.0	NA_	130	<4.0	<4.0	<4.0	46	19	<1.0	45.79	16.10	29.69	NA	5.1
MW-2	11/22/2004	8,800	NA	1,200	230	350	1,900	NA	2,200	NA_	NA	<40	1,300	<10	NA	45.79	19.83	25.96	NA	0.3
MW-2	03/02/2005	960	NA	150	21	30	220	NA	630	NA	NA	<10	460	<2.5	NA	45.79	15.90	29.89	NA	0.5
MW-2	06/30/2005	970	NA	130	19	27	210	NA	320 e	NA	NA	<2.0	220	0.98	NA	45.79	17.14	28.65	NA	0.7
MW-2	09/20/2005	890	NA	320	10	35	190	NA	440	<10	<10	<10	570	<2.5	NA	45.79	18.66	27.13	NA	0.9
MW-2	12/05/2005	690	NA	150	6.1	21	130	NA	450	NA	NA	<5.0	520	<5.0	NA	45.79	18.58	27.21	NA	0.51
MW-2	03/02/2006	11,000 g	NA	2,700 g	150 g	440 g	2,300 g	NA	1,600 g	NA	NA	5.7	3,800 g	<0.50 j	NA	45.79	16.30	29.49	NA	1.2
MW-2 (n)	06/29/2006	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	45.79	NA	NA	NA	NA
MW-2 (0)	06/30/2006	3,870	NA	177	33.1	55.5	311	NA	1,560	NA	NA	4.90	1,180	<0.500	NA	45.79	16.72	29.07	NA	0.58
MW-2	07/06/2006	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA _	NA	45.79	16.86	28.93	NA	NA
MW-2	09/11/2006	10,700	NA	1,010	134	211	1,280	NA	2,780	<0.500	<0.500	45.7	1,850	<0.500	NA	45.79	17.86	27.93	NA NA	1.03
MW-2	12/28/2006	29,000	NA	2,600	550	1,000	5,600	NA	2,500	NA	NA	<50	3,300	<12	NA	45.79	17.45	28.34	NA	1.09

								MATOR	MTDE	-				1,2-			Depth to	GW	SPH	DO
			TEDU	_	т	-	x	MTBE 8020	MTBE 8260	DIPE	ETBE	TAME	ТВА		EDB	тос	Water		Thickness	Reading
Well ID	Date	TPPH	TEPH	B (ug/L)		E (ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(uy/L)	(ug/L)_	(ug/c)	(ug/L)	(ug/L)	(49/1)		(49/2)	(49/2)	((<u> </u>		
	00/00/0007	<u> </u>		44.000 1	4,150 [4.3101	22,4001	NA	6,2401	NA	NA	<2001	<10.000	<1001	NA	45.79	17.28	28.51	NA	0.18
MW-2	03/20/2007	57,600	NA	14,200		2,200	12,900	NA NA	3,300	NA	NA	<100	3,400	<25	NA	45.79	18.64	27.15	NA	0.30
MW-2	06/26/2007	39,000 q	NA	3,400	2,300			NA NA	2,600	<100	<100	<100	2,600	<25	NA	45.79	19.57	26.22	NA	1.14
MW-2	09/11/2007	30,000 q	NA	4,000	2,500	2,500	13,000	NA	2,800	NA	NA	<50	2,000	<12	NA	45.79	18.78	27.01	NA	3.2
MW-2	12/26/2007	43,000 q	NA	6,200	2,200	2,800	17,600	NA	910	NA	NA	<200	1.000	<50	NA	45.79	17.32	28.47	NA	0.06
MW-2	03/19/2008	19,000 q	NA NA	2,400	1,800	1,200 NA	6,000 NA	NA	NA	NA	NA	NA	NA	NA	NA	45.79	18,40	27.39	NA	NA
MW-2	05/29/2008	NA	NA	NA	NA			NA NA	2.600	<100	<100	<100	1.800	<25	NA	45.79	18,71	27.08	NA	0.28
MW-2	06/05/2008	68,000	NA	7,400	2,600	2,800	14,100 NA	NA	2,800 NA	NA	NA	NA	NA	NA	NA	45.79	19.48	26.31	NA	NA
MW-2	07/22/2008	NA	NA	NA	NA	NA		NA	620	<100	<100	<100	<500	<25	NA	45.79	24.50	21.29	NA	1.37
MW-2	09/29/2008	84,000	NA NA	2,600 NA	6,900 NA	3,400 NA	19,300 NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-2	Well destroye		NA	NA .	NA		N/A	11/4												
MALOD	40/24/2008	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	44.96	20.20	24,76	NA	NA
MW-2B	10/31/2008		NA	43	2.0	<1.0	65	NA	50	NA	NA	NA	NA	NA	NA	44.96	19.60	25.36	NA	0.48
MW-2B	12/19/2008 03/10/2009	1,300	NA	43 58	1.3	<1.0	4.2	NA	110	NA	NA	NA	NA	NA	NA	44.96	16.10	28.86	NA	0.69
MW-2B	03/10/2009	28.000	NA NA	8.600	<500	<500	<500	NA	5.000	NA	NA	NA	NA	NA	NA	44.96	18.36	26.60	NA	0.06
MW-2B MW-2B	06/03/2009	12,000	NA	3,100	5.2	<2.0	11	NA	3,600	NA	NA	NA	NA	NA	NA	44.96	18.84	26.12	NA	0.76
IVIVY-2D	00/20/2003	12,000		3,100	, ,				- 0,000						· · · ·		<u> </u>			
MW-3	02/13/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	51.97	27.97	24.00	NA	NA
MW-3	02/24/1992	4,500	1.300a	97	<5	78	18	NA	NA	NA	NA	NA	NA	NA	NA	51.97	25.60	26.37	NA	NA
		4,500 NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	51.97	25.88	26.09	NA	NA
MW-3	02/27/1992				<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	51.97	26.00	25.97	NA	NA
MW-3	03/01/1992	2,200	440	69		44	65	NA	NA	NA	NA	NA	NA	NA	NA	51.97	27.70	24.27	NA	NA
MW-3	06/03/1992	4,100	NA	13	72					NA	NA	NA	NA NA	NA	NA	51.97	29.46	22.51	NA	NA
MW-3	09/01/1992	1,900	NA_	20	6.8	5.5	<5	NA	NA	NA NA	NA	NA	NA NA	NA	NA	51.97	29.46	22.51	NA	NA
MW-3 (D)	09/01/1992	1,900	NA	21	6.6	3.4	<5	NA	NA			NA	NA	NA	NA	51.97	30.01	21.96	NA	NA
MW-3	10/06/1992	NA	NA _	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA	NA	51.97	30.26	21.70	NA	NA
MW-3	11/11/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA	51.97	29.93	22.04	NA	NA
MW-3	12/04/1992	2,400	NA	8.2	<5	<5	<5	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA NA	51.97	29.93	22.04	NA	NA
MW-3 (D)	12/04/1992	2,100	NA	11	<0.5	5.7	< 0.5	NA	NA _	NA	NA	NA		NA	NA	51.97	29.95	22.04	NA	NA
MW-3	01/22/1993	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA			51.97	22.76	30.57	NA	NA
MW-3	02/10/1993	NA	NA_	NA	NA	NA	NA	NA	NA_	NA	NA	NA_	NA	NA	NA			28.89	NA	NA
MW-3	03/03/1993	5,100	NA	63	61	75	150	NA	NA	NA	NA	NA	NA	NA	NA	51.97	23.08		NA	NA NA
MW-3	05/11/1993	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA_	NA	NA	NA	NA	51.97	24.51	27.46		NA NA
MW-3	06/17/1993	4,000	NA	94	140	82	150	NA	NA	NA	NA	NA	NA	NA	NA	51.97	25.21	26.76	NA	
MW-3	09/10/1993	3,200	NA	140	12.5	12.5	12.5	NA	NA	NA	NA	NA	NA	NA	NA_	51.97	26.95	25.02	NA	NA
MW-3	12/13/1993	6,200	NA	<12.5	<12.5	<12.5	<12.5	NA	NA	NA	NA	NA	<u>NA</u>	NA	NA	51.97	26.52	25.45	NA	NA
	t	4,500	NA	73	<5	<5	<5	NA	NA	Γ NA	NA	NA	NA	NA	NA NA	51.97	24.50	27.47	NA	NA

					<u> </u>			MTBE	MTBE					1,2-			Depth to	GW	SPH	DO
Well ID	Date	тррн	TEPH	в	т	E	х	8020	8260	DIPE	ETBE	TAME	ТВА	DCA	EDB	тос	Water	Elevation	Thickness	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)
MW-3	06/06/1994	3,200	NA	<0.5	<0.5	3.1	<0.5	NA	51.97	26.33	25.64	NA	NA							
MW-3	09/12/1994	3,900	NA	<0.5	<0.5	9.6	4.1	NA	51.97	27.98	23.99	NA	NA							
MW-3	12/19/1994	2,400	NA	21	22	4.2	2.6	NA	NA.	NA	NA	NA	NA	NA	NA	51.97	25.63	26.34	NA	NA
MW-3	02/28/1995	4,000	NA	58	<0.5	7.1	3.5	NA	51.97	23.45	28.52	NA	NA							
MW-3	03/24/1995	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	51.97	21.07	30.90	NA	NA
MW-3 -	06/26/1995	3,900	NA	8.1	<0.5	12	2.4	NA	51.97	23.64	28.33	NA	NA							
MW-3	09/13/1995	4,100	NA	58	5.5	5.5	<0.5	NA	51.97	25.40	26.57	NA	NA							
MW-3	12/19/1995	3,600	NA	<0.5	4.3	2.1	1.1	NA	51.97	24.53	27.44	NA	NA							
MW-3	03/07/1996	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	. NA	NA	51.97	21.59	30.41	0.04	NA
MW-3	06/28/1996	2,400	NA	55	<0.5	<0.5	11	120	NA	51.97	23.95	28.02	NA	NA						
MW-3	09/26/1996	2,500	NA	<5.0	<5.0	<5.0	<5.0	160	NA	NA	NA	NA	NA	NA	NAS	51.97	25.89	26.08	NA	NA
MW-3	12/10/1996	1,600	NA	28	4.2	<2.0	3.9	110	NA	51.97	24.22	27.75	NA	0.8						
MW-3	03/10/1997	130	NA	<0.50	<0.50	<0.50	1.4	4.2	NA	51.97	23.05	28.92	NA	2.8						
MW-3	06/30/1997	1,200	NA	21	2.3	<2.0	<2.0	69	NA	51.97	24.34	27.63	NA	2.3						
MW-3	09/12/1997	440	NA	8.3	0.82	<0.50	1.9	3.4	NA	51.97	24.47	27.50	NA	1.9						
MW-3 b	12/18/1997	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	51.97	23.54	28.43	NA	0.8
MW-3	02/02/1998	400	NA	9.3	0.68	<0.50	<0.50	9	NA	51.97	21.92	30.05	NA	1.5						
MW-3	06/24/1998	<50	NA	<0.50	<0.50	<0.50	<0.50	<2.5	NA	51.97	22.35	29.62	NA	1.9						
MW-3	08/26/1998	140	NA	7.4	<0.50	<0.50	2.5	13	NA	51.97	23.45	28.52	NA	1.3						
MW-3	12/23/1998	1,200	NA	50	<2.0	<2.0	<2.0	69	NA	51.97	24.01	27.96	NA	4.2						
MW-3	03/01/1999	2,550	NA	<0.500	<0.500	<0.500	0.658	32.4	NA	NA.	NA	NA	NA	NA	NA	51.97	22.08	29.89	NA	2.0
MW-3	06/14/1999	514	NA	18.1	0.728	<0.500	<0.500	15.9	NA	NA	NA	NA -	NA	NA	NA	51.97	23.15	28.82	NA	1.7
MW-3	09/28/1999	1,180	NA	<1.00	<1.00	<1.00	<1.00	<10.0	NA	NA	NA	ŇA	NA	NA	NA	51.97	25.36	26.61	NA	1.2
MW-3	12/08/1999	1,740	NA	71.5	23.0	24.2	61.3	103	NA	51.97	25.75	26.22	NA	2.0						
MW-3	03/14/2000	1,410	NA	5.63	35.6	<5.00	8.41	38.7	NA	51.97	21.64	30.33	NA	2.1						
MW-3	06/28/2000	2,460	NA	<5.00	9.48	<5.00	28.4	64.0	NA	51.97	23.84	28.13	NA	2.87						
MW-3	09/06/2000	887	NA	<1.00	<1.00	<1.00	<1.00	<10.0	NA	51.97	24.73	27.24	NA	2.0						
MW-3	12/14/2000	955	NA	25.4	1.96	<0.500	1.13	10.2	NA	51.97	25.45	26.52	NA	2.1						
MW-3	03/05/2001	2,100	NA	4.90	56.5	<2.00	3.62	261	NA	51.97	22.83	29.14	NA	0.8						
MW-3	06/11/2001	2,000	NA	1.0	<0.50	<0.50	<0.50	NA	<0.50	NA	NA	NA	NA	NA	NA	51.97	25.20	26.77	NA	0.7
MW-3	09/12/2001	1,500	NA	0.50	0.54	<0.50	1.8	NA	<5.0	NA	NA	NA	NA	NA	NA	51.97	26.15	25.82	NA	1.5
MW-3	12/27/2001	2,100	NA	<0.50	<0.50	<0.50	<0.50	NA	<5.0	NA	NA	NA	NA	NA	NA	51.97	23.67	28.30	NA	1.9
MW-3	02/27/2002	2,300	NA	<0.50	<0.50	<0.50	<0.50	NA -	<5.0	NA	NA	NA	NA	NA	NA	51.92	23.23	28.69	NA	1.5
MW-3	06/18/2002	2,000	NA	<0.50	<0.50	<0.50	<0.50	NA	<0.50	NA	NA	NA	NA	NA	NA	51.92	24.74	27.18	NA	2.0
MW-3	09/18/2002	2,600	NA	<0.50	<0.50	<0.50	<0.50	NA	<5.0	NA	NA	NA	NA	NA	NA	51.92	26.05	25.87	NA	1.4

								MATOR	MTDE					1,2-			Depth to	GW	SPH	DO
	_			_	_	_	X	MTBE	MTBE		ETDE	TAME	тва	DCA	EDB	тос	Water		Thickness	
Well ID	Date	TPPH	TEPH	B	T	E	X	8020	8260	DIPE (ug/L)	ETBE (ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(49/1)	(ug/L)	(ug, L)	(1102)		(
								<u></u>		NIA	NIA	NIA	NA	NA	NA	51.92	NA	NA	NA	NA
MW-3		Well inacc		NA	NA	NA	NA	NA	NA	NA	NA	NA	<50		NA	51.92	23.84	28.08	NA	1.3
MW-3	03/05/2003	2,300	NA	<0.50	<0.50	<0.50	<0.50	NA	<5.0	NA	NA	<2.0		13		51.92	NA	28.00 NA	NA	NA
MW-3	06/24/2003	Well inacc	· · · ·	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA			27.44	NA NA	1.3
MVV-3	06/25/2003	1,800 c	NA	0.71	<0.50	<0.50	<1.0	NA	0.54	NA	NA	<2.0	<5.0	1.1	NA	51.92	24.48		NA	NA
MW-3	09/25/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA_	NA	51.92	25.99	25.93		NA NA
MW-3	12/15/2003	NA	NA	NA	NA	NA	NA	NA	NA_	NA_	NA_	NA	NA	NA	NA	51.92	24.94	26.98	NA	
MW-3	03/04/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA_	NA	NA	NA	NA	NA	51.92	22.50	29.42	NA	NA
MW-3	05/27/2004	2,500	NA	<0.50	<0.50	<0.50	<1.0	NA	1.1	NA	NA	<2.0	<5.0	0.82	NA	51.92	24.94	26,98	NA	0.5
MW-3	09/24/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	51.92	26.55	25.37	NA	NA
MW-3	11/22/2004	NA	NA	NA	NA	NA	NA	ŅA	NA	NA	NA	NA	NA	NA	NA	51.92	25.92	26.00	NA	NA
MW-3	03/02/2005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	51.92	22.12	29.80	NA	NA
MW-3	06/30/2005	3,700	NA	<2.0	2.4	<2.0	<4.0	NA	<2.0	<8.0	<8.0	<8.0	<20	<2.0	NA	51.92	23.31	28.61	NA	1.2
MW-3	09/20/2005	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	51.92	24.78	27.14	NA	NA
MW-3	12/05/2005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	51.92	24.65	27.27	NA	NA .
MW-3	03/02/2006	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	51.92	22.56	29.36	NA	NA
MW-3 (n)	06/29/2006	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	51.92	NA	NA	NA	NA
MW-3 (o)	06/30/2006	1,580	NA	<0.500	<0.500	<0.500	<0.500	NA	<0.500	<0.500	<0.500	<0.500	<10.0	5.95	NA	51.92	22.89	29.03	NA	0.49
MW-3	07/06/2006	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	51.92	22.99	28.93	NA	NA
MW-3	09/11/2006	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	51.92	23.92	28.00	NA	NA
MW-3	12/28/2006	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	51.92	23.68	28.24	NA	NA
MW-3	03/20/2007	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	51.92	23.91	28.01	NA	NA
MW-3	06/26/2007	1,400 g	NA	<0.50	<1.0	<1.0	<1.0	NA	<1.0	<2.0	<2.0	<2.0	<10	44	NA	51.92	25.10	26.82	NA	1.77
		NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	51.92	23.41	28.51	NA	NA
MW-3	09/11/2007		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ŇA	51.92	25.15	26.77	NA	NA
MW-3	12/26/2007	NA		NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	51.92	23.81	28.11	NA	NA
MW-3	03/19/2008	NA 2.000	NA			<1.0	<1.0	NA	<1.0	<2.0	<2.0	<2.0	<10	33	NA	51.92	25.08	26.84	NA	0.10
MW-3	06/05/2008	3,600	NA	< 0.50	<1.0	<1.0	 NA	NA NA	NA	NA	NA	NA	NA	NA	NA	51.92	26.85	25.07	NA	NA
MW-3	09/29/2008	NA	NA	NA	NA			NA NA	NA NA	NA NA	NA	NA	NA	NA	NA	51.92	26.47	25.45	NA	NA
MW-3	12/19/2008	NA	NA	NA.	NA	NA	NA			NA NA	NA	NA	NA NA	NA	NA	51.92	23.13	28.79	NA	NA
MW-3	03/10/2009	NA	NA	NA	NA	NA	NA	NA NA	NA <	<2.0	<2.0	<2.0	<10	12	NA	51.92	25.24	26.68	NA	1.11
MW-3	06/03/2009	2,000	NA	<0.50	<1.0	<1.0	<1.0	NA	1 ~ 1.0	~2.0	~2.0		-10							<u></u>
		r	r							NI 0	NIA	NA	NA	NA	NA	40.51	9,16	31.35	NA	NA
MW-4	03/24/1995	<50	<u>NA</u>	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA		NA NA	NA	NA	40.51	12.06	28.45	NA	NA
MW-4	06/26/1995	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA NA	NA		NA NA	NA	40.51	13.90	26.61	NA	NA
MW-4	09/13/1995	<50	NA	<0.5	<0.5	<0.5	<0.5	NA NA	NA	NA	NA	NA	NA	÷ · · · · · · · · · · · · · · · · · · ·	NA NA	40.51	12.90	27.61	NA NA	NA
MW-4	12/19/1995	<50	NA	< 0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA_	NA	NA		40.51	12.90	1		

1

								MTBE	MTBE					1,2-			Depth to	GW	SPH	DO
Well ID	Date	TPPH	TEPH	В	Т	E	Х	8020	8260	DIPE	ETBE	TAME	TBA	DCA	EDB	TOC	Water	(MSL)	Thickness (ft.)	Reading (ppm)
4		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	<u>(ft.)</u>		<u>(IL)</u>	<u>(ppm)</u>									
											<u> </u>	<u> </u>				10.54	0.02	30.88	NA	NA
MW-4	03/06/1996	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	NA	<u>NA</u>	40.51	9.63		NA	NA
MW-4	06/28/1996	40	NA	<0.5	0.59	0.97	3.8	26	NA	NA	NA	NA	NA	NA_	NA	40.51	12.30	28.21	NA NA	NA
MW-4	09/26/1996	<50	NA	<0.5	<0.5	<0.5	<0.5	<2.5	NA	NA	NA	NA	NA	NA	NA_	40.51	14.12	26.39	NA NA	1.2
MW-4	12/10/1996	<50	NA	<0.5	<0.5	<0.5	<0.5	<2.5	NA	NA	NA	NA	NA	NA_	NA	40.51	12.31	28.20	NA NA	NA
MW-4	03/10/1997	<50	NA	<0.50	<0.50	<0.50	<0.50	<2.5	NA	NA	NA_	NA	NA	NA	NA _	40.51	11.34	29.17	NA NA	1.9
MW-4	06/30/1997	<50	NA	<0.50	<0.50	<0.50	<0.50	<2.5	NA	NA	NA	NA	NA	NA	NA	40.51	13.80	26.71	NA	1.7
MW-4	09/12/1997	<50	NA	<0.50	<0.50	<0.50	<0.50	<2.5	NA	NA	NA	NA	NA	NA	NA	40.51	13.99	26.52		
MW-4 b	12/18/1997	NA	NA	NA	NA	NA_	40.51	12.02	28.49	NA	1.8									
MW-4	02/02/1998	<50	NA	<0.50	< 0.50	<0.50	<0.50	<2.5	NA	NA	NA	NA	NA	NA	NA	40.51	11.23	29.28	NA NA	1
MW-4	06/24/1998	<50	NA	<0.50	<0.50	<0.50	<0.50	<2.5	NA	NA	NA	NA	<u>NA</u>	<u>NA</u>	NA	40.51	10.58	29.93	NA NA	1.9
MW-4	08/26/1998	<50	NA	<0.50	<0.50	<0.50	<0.50	<2.5	NA	NA	NA	NA	NA	NA	NA	40.51	11.75	28.76	NA	<u>1.2</u> 4.2
MW-4	12/23/1998	<50	NA	0.60	<0.50	<0.50	<0.50	<2.5	NA	NA	NA	NA	NA	NA	NA	40.51	12.41	28.10	NA NA	<u>4.2</u> 2.1
MW-4	03/01/1999	<50.0	NA	<0.500	<0.500	<0.500	<0.500	<2.00	NA	NA	NA	NA	NA	NA	NA	40.51	10.38	30.13	NA NA	2.1
MW-4	06/14/1999	<50.0	NA	<0.500	<0.500	<0.500	<0.500	<2.50	NA	NA	NA	NA	NA	NA	NA	40.51	11.91	28.60	NA	2.4
MW-4	09/28/1999	<50.0	NA	<0.500	<0.500	<0.500	<0.500	<5.00	NA	NA	NA	NA	NA	NA	NA	40.51	10.19	30.32	NA NA	1.8
MW-4	12/08/1999	<50.0	NA	<0.500	<0.500	<0.500	<0.500	<2.50	NA_	NA	NA	NA	NA	NA	NA	40.51	10.67	29.84	NA NA	2.5
MW-4	03/14/2000	<50.0	NA	<0.500	<0.500	<0.500	<0.500	<2.50	NA	NA	NA	NA	NA	NA	NA_	40.51	9.95	30.56	NA	0.9
MW-4	06/28/2000	<50.0	NA	<0.500	<0.500	<0.500	<0.500	<2.50	NA	NA_	NA	NA	NA	NA NA	NA	40.51	12.22	28.29 27.34	NA NA	3.0
MW-4	09/06/2000	NA	NA	NA .	NA	NA	NA	NA	NA	NA		NA	NA	NA	NA	40.51	13.17	31.86	NA NA	NA NA
MW-4	12/14/2000	NA	NA	NA	NA	NA	40.51	8.65	29.44	NA NA	NA									
MW-4	03/05/2001	NA	NA .	NA	NA_	NA_	NA	NA	40.51	11.07	29.44	NA NA	1.3							
MW-4	06/11/2001	<50	NA	<0.50	<0.50	<0.50	<0.50	NA	<0.50			NA	NA	NA	NA	40.51	13.62	25.90	NA NA	NA
MW-4	09/12/2001	NA	NA_	NA	NA	NA	NA_	NA	40.51	14.61		NA	NA							
MW-4	12/27/2001	NA	NA _	NA	NA	NA	NA	NA NA	NA	40.51	12.19	28.32 28.81	NA	NA						
MW-4	02/27/2002	NA	NA	NA	NA_	NA	40.45	11.64	27.23	NA NA	0.6									
MW-4	06/18/2002	<50	NA	<0.50	<0.50	<0.50	<0.50	NA_	<0.50	NA	NA	NA	NA	NA	NA NA	40.45	13.22	25.99	NA	NA
MW-4	09/18/2002	NA	NA	NA	NA	NA NA	40.45	14.46	25.99	NA NA	NA									
MW-4	12/27/2002	NA	NA_	NA	NA	NA	NA	NA	40.45	11.23	29.22	NA NA	NA NA							
MW-4	03/05/2003	NA	NA	NA_	NA	NA NA	40.45	12.22	28.23	NA NA	1.6									
MW-4	06/24/2003	57 c	NA	<0.50	<0.50	<0.50	<1.0	NA	12	NA	NA	NA_	NA	NA	NA	40.45	12.79 14.45	26.00	NA NA	NA
MW-4	09/25/2003	NA	NA_	NA	NA	NA	NA	NA NA		40.45	13.24	27.21	NA NA	NA						
MW-4	12/15/2003	NA	NA	NA	NA	NA	NA_	NA	NA	NA	NA	NA_	NA_		NA	40.45	10.93	29.52		NA
MW-4	03/04/2004	NA	NA	NA	NA	NA	NA	NA_	NA	NA_	NA	NA	NA	NA NA	NA	40.45	10.93	29.52	NA NA	0.5
MW-4	05/27/2004	<50	NA	<0.50	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	NA	NA	NA NA	40.45		25.34	NA NA	NA NA
MW-4	09/24/2004	NA	NA	NA	NA	NA_	40.45	15.11	20.04		1									

								MTBE	MTBE					1,2-			Depth to	GW	SPH	DO
Well ID	Date	TPPH	ТЕРН	в	т	Έ	X	8020	8260	DIPE	ETBE	TAME	TBA	DCA	EDB	тос	Water		Thickness	
		(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)													
																				_
MW-4	11/22/2004	NA	40.45	14.42	26.03	NA	NA													
MW-4	03/02/2005	NA	40.45	10.17	30.28	NA	NA													
MW-4	06/30/2005	<50 d	NA	<0.50	<0.50	<0.50	<1.0	NA	<0.50	<2.0	<2.0	<2.0	<5.0	NA	NA	40.45	11.60	28.85	NA	0.8
MW-4	09/20/2005	NA	40.45	13.18	27.27	NA	NA													
MW-4	12/05/2005	NA	40.45	13.08	27.37	NA	NA													
MW-4	03/02/2006	NA	40.45	10.62	29.83	NA	NA													
MW-4 (n)	06/29/2006	NA	40.45	NA	NA	NA	NA													
MW-4 (o)	06/30/2006	<50.0	NA	<0.500	<0.500	<0.500	<0.500	NA	<0.500	<0.500	<0.500	<0.500	<10.0	NA	NA	40.45	11.20	29.25	NA	0.44
MW-4	07/06/2006	NA	40.45	11.22	29.23	NA	NA													
MW-4	09/11/2006	NA	40.45	12.29	28.16	NA	NA													
MW-4	12/28/2006	NA	40.45	11.71	28.74	NA	NA													
MW-4	03/20/2007	NA	NA_	NA_	NA	NA	NA	40.45	11.99	28.46	NA	NA								
MW-4	06/26/2007	59 q	• NA	<0.50	<1.0	<1.0	<1.0	NA_	<1.0	<2.0	<2.0	<2.0	<10	NA	NA	40.45	13.60	26.85	NA	3.69
MW-4	09/11/2007	NA	40.45	11.61	28.84	NA	NA													
MW-4	12/26/2007	NA	40.45	13.72	26.73	NA	NA													
MW-4	03/19/2008	NA	40.45	12.19	28.26	NA	NA													
MW-4	06/05/2008	<50	NA	<0.50	<1.0	<1.0	<1.0	NA	<1.0	<2.0	<2.0	<2.0	<10	NA	NA	40.45	13.62	26.83	NA	0.09
MW-4	09/29/2008	NA	40.45	15.55	24.90	NA	NA													
MW-4	12/19/2008	NA	40.45	15.03	25.42	NA NA	NA													
MW-4	03/10/2009	NA	40.45	11.55	28.90	NA NA	NA													
MW-4	06/03/2009	<50	NA	<0.50	<1.0	<1.0	<1.0	NA	<1.0	<2.0	<2.0	<2.0	<10	NA	NA	40.45	13.78	26.67	NA	0.05
																		,		
MW-5	01/29/2002	NA	ŇA	NA	41.46	12.82	28.64	NA	NA											
MW-5	02/27/2002	190	NA	<0.50	<0.50	0.85	1.5	NA	<5.0	NA	NA	NA	NA	NA	NA	41.46	12.85	28.61	NA	1.9
MW-5	06/18/2002	650	NA	1.4	3.0	52	28	NA	<0.50	NA	NA	NA	NA	NA	NA	41.46	13.65	27.81	NA	0.8
MW-5	09/18/2002	390	NA	0.72	0.51	<0.50	<0.50	NA	<5.0	NA	NA	NA	NA	NA	NA	41.46	15.57	25.89	NA	1.1
MW-5	12/27/2002	380	NA	<0.50	<0.50	0.56	<0.50	NA	<0.50	<2.0	<2.0	<2.0	<50	<2.0	<2.0	41.46	12.51	28.95	NA	1.9
MW-5	03/05/2003	290	NA	<0.50	1.7	9.4	22	NA	<5.0	NA	NA	NA	NA	NA	NA	41.46	13.39	28.07	NA	2.6
MW-5	06/24/2003	220	NA	<0.50	1.0	19	1.3	' NA	<0.50	NA	NA	NA	NA	NA	NA	41.46	13.91	27.55	NA	1.7
MW-5	09/25/2003	<50	NA	<0.50	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	NA	NA	NA	41.46	15.58	25.88	NA	2.1
MW-5	12/15/2003	200 c	NA	<0.50	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	NA	NA	NA	41.46	14.45	27.01	NA	0.21
MW-5	03/04/2004	170 c	NA	<0.50	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	NA	NA	NA	41.46	12.52	28.94	NA	0.1
MW-5	05/27/2004	<50	NA	<0.50	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	NA	NA	NA	41.46	14.49	26.97	NA	0.5
MW-5	09/24/2004	<50	NA	0.71	<0.50	<0.50	<1.0	NA	<0.50	<2.0	<2.0	<2.0	<5.0	NA	NA	41.46	16.08	25.38	NA	1.7
MW-5	11/22/2004	<50 d	NA	<0.50	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	NA	NA	NA	41.46	15.48	25.98	NA	0.3

	-							MTBE	MTBE				2	1,2-			Depth to	GW	SPH	DO
Well ID	Date	ТРРН	TEPH	в	т	Е	X	8020	8260	DIPE	ETBE	TAME	TBA	DCA	EDB	тос	Water		-	ł I
	Dutt	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)
Į	1						<u> </u>	<i></i>												
MW-5	03/02/2005	190	NA	<0.50	<1.0	<1.0	<1.0	NA	<1.0	NA	NA	<2.0	<10	<0.50	NA	41.46	11.52	29.94	NA	0.4
MW-5	06/30/2005	3,200	NA	<5.0	25	200	270	NA	<5.0	NA	NA	NA	NA	NA	NA	41.46	12.33	29.13	NA	0.9
MW-5	09/20/2005	310	NA	<0.50	1.3	47	2.5	NA	<0.50	<2.0	<2.0	<2.0	<5.0	NA	NA	41.46	14.36	27.10	NA	0.5
MW-5	12/05/2005	250	NA	<0.50	0.94	26	<0.50	NA	<0.50	NA	NA	NA	NA	NA	NA	41.46	14.25	27.21	NA	0.58
MW-5	03/02/2006	3,000 g	NA	<0.50	17	230 g	390 g	NA	<0.50	NA	NA	NA	NA	NA	NA	41.46	11.87	29.59	NA	0.7
MW-5 (n)	06/29/2006	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	41.46	NA	NA	NA	NA
MW-5 (o)	06/30/2006	729	NA	<0.500	1.00	43.2	21.7	NA	<0.500	NA	NA	NA	NA	NA	NA	41.46	12.49	28.97	NA	0.67
MVV-5	07/06/2006	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	41.46	12.58	28.88	NA	NA
MW-5	09/11/2006	<50.0	NA	<0.500	<0.500	<0.500	1.29	NA	<0.500	<0.500	<0.500	<0.500	<10.0	NA_	NA	41.46	13.54	27.92	NA	0.78
MW-5	12/28/2006	330	NA	<0.50	<0.50	8.6	<1.0	NA	<0.50	NA	NA	NA	NA	NA	NA	41.46	13.25	28.21	NA	0.59
MW-5	03/20/2007	358	NA	<0.500	<0.500	<0.500	<1.00	NA	<0.500	NA	NA	NA	NA	NA	NA	41.46	13.28	28.18	NA	0.11
MVV-5	06/26/2007	120 q	NA	<0.50	<1.0	<1.0	<1.0	NA	<1.0	NA	NA	NA	NA	NA	NA	41.46	14.68	26.78	NA	4.72
MW-5	09/11/2007	<50 q	NA	0.19 r	<1.0	<1.0	<1.0	NA	<1.0	<2.0	<2.0	<2.0	<10	NA	NA	41.46	15.57	25.89	NA	0.84
MW-5	12/26/2007	. 110 q, t	NA	<0.50	<1.0	<1.0	<1.0	NA	<1.0	NA	NA	NA	NA	NA	NA	41.46	14.76	26.70	NA	0.8
MW-5	03/19/2008	2,000	NA	<0.50	<1.0	<1.0	<1.0	NA	<1.0	NA	NA	NA	NA	NA	NA	41.46	13.34	28.12	NA	0.31
MW-5	06/05/2008	2,000	NA	<0.50	<1.0	<1.0	<1.0	NA	<1.0	NA	NA	NA	NA	NA	NA	41.46	14.63	26.83	NA	0.10
MW-5	09/29/2008	830	NA	<0.50	<1.0	<1.0	<1.0	NA	<1.0	<2.0	<2.0	<2.0	<10	NA	NA	41.46	16.45	25.01	NA	1.13
MW-5	12/19/2008	[:] 58	NA	<0.50	<1.0	<1.0	<1.0	NA	<1.0	NA	NA	NA	NA	NA	NA	41.46	16.04	25.42	NA	0.62
MW-5	03/10/2009	820	NA	<0.50	<1.0	13	10	NA	<1.0	NA	NA	NA	NA	NA	NA	41.46	12.77	28.69	NA	0.37
MW-5	06/03/2009	1,300	NA	<0.50	1.1	68	94	NA	<1.0	NA	NA	NA	NA	NA	NA	41.46	14.83	26.63	NA	0.86
MW-6	01/29/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	41.50	3.88	37.62	NA	NA
MW-6	01/31/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	41.50	12.43	29.07	NA	NA
MW-6	02/27/2002	<50	NA	<0.50	<0.50	<0.50	<0.50	NA	<5.0	NA	NA	NA	NA	NA	NA	41.50	12.82	28.68	NA	4.1
MW-6	06/18/2002	<50	NA	<0.50	<0.50	<0.50	<0.50	NA	<0.50	NA	NA	NA	NA	NA	NA	41.50	4.26	37.24	NA	3.9
MW-6	09/18/2002	<50	NA	<0.50	<0.50	<0.50	<0.50	NA	<5.0	NA	NA	NA	NA	NA	NA	41.50	5.26	36.24	NA	4.2
MW-6	12/27/2002	<50	NA	<0.50	<0.50	<0.50	<0.50	NA	<0.50	<2.0	<2.0	<2.0	<50	<2.0	<2.0	41.50	12.11	29.39	NA	3.0
MW-6	03/05/2003	<50	NA	<0.50	<0.50	<0.50	<0.50	NA	<5.0	NA	NA	NA	NA	NA	NA	41.50	13.47	28.03	NA	4.9
MW-6	06/24/2003	<50	NA	<0.50	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	NA	NA	NA	41.50	13.71	27.79	NA	5.8
MW-6	09/25/2003	Well inacc	essible	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	41.50	NA	NA	NA	NA
MW-6	12/15/2003	<50	NA	<0.50	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	NA	NA	NA	41.50	13.17	28.33	NA	5.7
MW-6	03/04/2004	<50	NA	<0.50	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	NA	NA	NA	41.50	11.15	30.35	NA	1.0
MW-6	05/27/2004	<50	NA	0.50	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	NA	NA	NA	41.50	13.68	27.82	NA	1.0
MW-6	09/24/2004	<50	NA	<0.50	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	NA	NA	NA	41.50	10.71	30.79	NA	3.1
MW-6	11/22/2004	<50 d	NA	0.65	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	NA	NA	NA	41.50	7.60	_33.90	NA	6.5

								MTBE	MTBE					1,2-			Depth to	GW	SPH	DO
Well ID	Date	TPPH	TEPH	в	·т	Е	х	8020	8260	DIPE	ETBE	TAME	TBA	DCA	EDB	тос	Water	Elevation	Thickness	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)
<u>(</u>						-					· · · · · ·									
MW-6	03/02/2005	<100	NA	<0.50	<1.0	<1.0	<1.0	NA	<1.0	NA	NA	<2.0	<10	<0.50	NA	41.50	6.77	34.73	NA	6.2
MW-6	06/30/2005	<50	NA	<0.50	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	NA	NA	NA	41.50	12.87	28.63	NA	1.2
MW-6	09/20/2005	<50	NA	<0.50	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	NA	NA	NA	41.50	14.16	27.34	NA	5.5
MW-6	12/05/2005	<50	NA	<0.50	<0.50	<0.50	<0.50	NA	<0.50	NA	NA	NA	NA	NA	NA	41.50	14.23	27.27	NA	2.40
MW-6	03/02/2006	58 i	NA	<0.50	<0.50	0.73	1.5	NA	<0.50	NA	NA	NA	NA	NA	NA	41.50	11.40	30.10	NA	1.2
MW-6 (m)	06/29/2006	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	41.50	12.49	29.01	NA	0.41
MW-6 (o)	06/30/2006	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	41.50	12.35	29.15	NA	NA
MW-6 (p)	07/06/2006	<50.0	NA	<0.500	<0.500	<0.500	<0.500	NA	<0.500	NA	NA	NA	NA	NA	ŅA	41.50	12.66	28.84	NA	0.30
MW-6	09/11/2006	<50.0	NA	<0.500	<0.500	<0.500	0.530	NA	<0.500	NA	NA	NA	NA	NA	NA	41.50	13.33	28.17	NA	1.16
MW-6	12/28/2006	<50	NA	<0.50	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	NA	NA	NA	41.50	13.15	28.35	NA	1.0
MW-6	03/20/2007	<50.0	NA	<0.500	<0.500	<0.500	<1.00	NA	<0.500	NA	NA	NA	NA	NA	NA	41.50	13.24	28.26	NA	5.60
MW-6	06/26/2007	60 q	NA	<0.50	<1.0	<1.0	<1.0	NA	<1.0	NA	NA	NA	NA	NA	NA	41.50	14.60	26.90	NA	5,46
MW-6	09/11/2007	<50 q	NA	<0.50	<1.0	<1.0	<1.0	NA	<1.0	NA	NA	NA	NA	NA	NA	41.50	15.39	26.11	NA	1.16
MW-6	12/26/2007	<50 q	NA	0.27 r	<1.0	<1.0	<1.0	NA	<1.0	NA	NA	NA	NA	NA	NA	41.50	14.69	26.81	NA	3.1
MW-6	03/19/2008	1,500	NA	<0.50	<1.0	<1.0	<1.0	NA	<1.0	NA	NA	NA	NA	NA	NA	41.50	12.93	28.57	NA	0.30
MW-6	06/05/2008	<50	NA	<0.50	<1.0	<1.0	<1.0	NA	<1.0	NA	NA	NA	NA	NA	NA	41.50	14.61	26.89	NA	0.09
MW-6	09/29/2008	<50	NA	<0.50	<1.0	<1.0	<1.0	NA	<1.0	NA	NA	NA	NA	NA	NA	41.50	15.62	25.88	NA	2.26
MW-6	12/19/2008	<50	NA	<0.50	<1.0	<1.0	<1.0	NA	<1.0	NA	NA	NA _	NA	NA	NA	41.50	14.45	27.05	NA	1.82
MW-6	03/10/2009	76	NA	<0.50	<1.0	<1.0	<1.0	NA	<1.0	NA	NA_	NA	NA	NA	NA	41.50	11.58	29.92	NA	0.57
MW-6	06/03/2009	<50	NA	<0.50	<1.0	<1.0	<1.0	NA	<1.0	NA	NA	NA	NA	NA	NA	41.50	14.19	27.31	NA	2.25
MW-7	10/21/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	44.45	18.90	25.55	NA	NA
MW-7	12/27/2002	49,000	NA	830	980	2,000	5,200	NA	<10	<10	<10	<10	<100	<10	<10	44.45	15.43	29.02	NA	2.1
MW-7	03/05/2003	32,000	NA	370	490	1,600	2,900	NA	<100	NA	NA	NA	NA	NA	NA	44.45	16.34	28.11	NA	2.6
MW-7	06/24/2003	Well inacc	essible	NA	NA	NA	NA	NA	44.45	NA	NA	NA	NA							
MW-7	09/25/2003	8,700	NA	57	34	450	290	NA	<5.0	NA	NA	NA	NA	NA	NA	44.45	18.36	26.09	NA	1.2
MW-7	12/15/2003	27,000	NA	170	260	1,200	1,500	NA	<10	NA	NA	NA	NA	NA	NA	44.45	17.44	27.01	NA	1.3
MW-7	03/04/2004	13,000	NA	200	190	1,200	1,200	NA	<5.0	NA	NA	NA	NA	NA	NA	44.45	15.45	29.00	NA	0.1
MW-7	05/27/2004	16,000	NA	76	56	860	420	NA	<5.0	NA	NA	NA	NA	NA	NA	44.45	17.50	26.95	NA	0.5
MW-7	09/24/2004	8,400	NA	26	14	340	200	NA	<5.0	<20	<20	<20	<50	NA	NA	44.45	18.94	25.51	NA ·	1.1
MW-7	11/22/2004	14,000	NA	92	60	790	730	NA	<5.0	NA	NA	NA	NA	NA	NA	44.45	18.47	25.98	NA	0.2
MW-7	03/02/2005	13,000	NA	130	140	740	980	NA	<10	NA	NA	<20	<100	<5.0	NA	44.45	14.53	29.92	NA	0.7
MW-7	06/30/2005	9,900	NA	27	48	380	520	NA	<10	NA	NA	NA	NA	NA	NA	44.45	15.92	28.53	NA	0.9
MW-7	09/20/2005	7,700	NA	30	53	380	570	NA	<5.0	36	<20	<20	<50	NA	NA	44.45	17.28	27.17	NA	1.4
MW-7	12/05/2005	2,900	NA	20	<2.5	270	19	NA	<2.5	NA	NA	NA	NA	NA	NA	44.45	17.40	27.05	NA	0.56

Page 13

								MTBE	MTBE		1			1,2-			Depth to	GW	SPH	DO
Well ID	Date	TPPH	TEPH	В	т	E	х	8020	8260	DIPE	ETBE	TAME	ТВА	DCA	EDB	тос	Water		Thickness	
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)
														·						
MW-7	03/02/2006	3,900 g	NA	27	31	240 g	190	NA	1.1	NA	NA	NA	NA	NA	NA	44.45	15.00	29.45	NA	0.9
MW-7 (n)	06/29/2006	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	44.45	NA	NA	NA	NA
MW-7 (o)	06/30/2006	10,800	NA	13.8	49.4	474	640	NA	<0.500	NA	NA	NA	NA	NA	NA	44.45	15.35	29.10	NA	0.54
MW-7	07/06/2006	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	44.45	15.41	29.04	NA	NA
MW-7	09/11/2006	7,210	NA	4.38	3.96	188	91.6	NA	<0.500	<0.500	<0.500	<0.500	<10.0	NA	NA	44.45	16.33	28.12	NA	0.82
MW-7	12/28/2006	3,100	NA	4.8	5.2	190	160	NA	<1.0	NA	NA	NA	NA	NA	NA	44.45	16.22	28.23	NA	0.78
MW-7	03/20/2007	5,960	NA	11.3	20.6	223	291	NA	<0.500	NA	NA	NA	NA	NA	NA	44.45	16.26	28.19	NA	1.10
MW-7	06/26/2007	7,900 q	NA	5.3	15	410	459	NA	<5.0	NA	NA	NA	NA	NA	NA	44.45	17.60	26.85	NA	0.83
MW-7	09/11/2007	4,100 q	NA	1.9	0.66 r	130	25.6	NA	<1.0	0.42 r	<2.0	<2.0	<10	NA	NA	44.45	18.63	25.82	NA	0.97
MW-7	12/26/2007	6,100 q	NA	5.9	7.6	290	348	NA	<5.0	NA	NA	NA	NA	NA	NA	44.45	17.72	26.73	NA	1.3
MW-7	03/19/2008	2,700	NA	5.0	2.4	110	97.9	NA	<1.0	NA	NA	NA	NA	NA	NA	44.45	16.36	28.09	NA	0.47
MW-7	06/05/2008	6,400	NA	3.8	<5.0	220	253	NA	<5.0	NA	NA	NA	NA	NA	NA	44.45	17.65	26.80	NA	0.09
MW-7	09/29/2008	2,500	NA	1.6	<1.0	40	8.1	NA	<1.0	<2.0	<2.0	<2.0	<10	NA	NA	44.45	19.40	25.05	NA	1.26
MW-7	12/19/2008	5,600	NA	5.4	<5.0	110	97.0	'NA	<5.0	NA	NA	NA	NA	NA	NA	44.45	19.17	25.28	NA	2.11
MW-7	03/10/2009	3,400	NA	22	<5.0	94	92	NA	<5.0	NA	NA	NA	NA	NA	NA	44.45	16.21	28.24	NA	1.85
MW-7	06/03/2009	3,500	NA	6.3	1.5	71	78	NA	<1.0	NA	NA	NA	NA	NA	NA	44.45	17.75	26.70	NA	0.62
MW-8	10/21/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	43.27	17.70	25.57	NA	NA
MW-8	12/27/2002	30,000	NA	280	220	2,000	5,300	NA	<10	<10	<10	<10	<100	<10	<10	43.27	14.25	29.02	NA	1.2
MW-8	03/05/2003	30,000	NA	220	150	2,100	4,200	NA	<100	NA	NA	NA	NA	NA	NA	43.27	15.36	27.91	NA	1.3
MW-8	06/24/2003	Well inacc	essible	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	43.27	NA	NA	NA ·	NA
MW-8	09/25/2003	26,000	NA	240	53	1,600	2,600	NA	<50	NA	NA	NA	NA	NA	NA	43.27	17.43	25.84	NA	1.0
MW-8	12/15/2003	38,000	NA	290	140	2,200	5,200	NA	<13	NA	NA	NA	NA	NA	NA	43.27	16.24	27.03	NA	0.4
MVV-8	03/04/2004	19,000	NA	180	95	1,400	3,900	NA	<13	NA	NA	NA	NA	NA	NA	43.27	14.63	28.64	NA	0.1
MW-8	05/27/2004	19,000	NA	230	41	1,100	2,200	NA	<13	NA	NA	NA	NA	NA	NA	43.27	16.41	26.86	NA	0.5
MW-8	09/24/2004	21,000	NA	270	42	1,200	2,600	NA	<13	<50	<50	<50	<130	NA	NA	43.27	18.10	25.17	NA	0.7
MVV-8	11/22/2004	24,000	NA	200	64	1,400	4,100	NA	<13	NA	NA	NA	NA	NA	NA	43.27	17.28	25.99	NA	1.0
MW-8	03/02/2005	16,000	NA	100	44	890	2,300	NA	<10	NA	NA	<20	<100	<5.0	NA	43.27	13.35	29.92	NA	0.6
MW-8	06/30/2005	19,000	NA	110	41	700	2,100	NA	<10	NA	NA	NA	NA	NA	NA	43.27	14.91	28.36	NA	0.8
MW-8	09/20/2005	10,000	NA _	86	25	600	1,400	NA	<10	<40	<40	<40	<100	NA	NA	43.27	16.11	27.16	NA	0.8
MW-8	12/05/2005	9,900	NA	130	16	600	1,300	NA	<10	NA	NA	NA	NA	NA	NA	43.27	16.20	27.07	NA	0.56
MW-8	03/02/2006	13,000 g	NA	130 g	45 ´	790 g	2,000 g	NA	0.54	NA	NA	NA	NA	NA	NA	43.27	14.28	28.99	NA	1.1
MW-8 (n)	06/29/2006	NA	NA	NĄ	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	43.27	NA	NA	NA	NA
MW-8 (o)	06/30/2006	14,900	NA	71.8	14.1	622	1,390	NA	<0.500	NA	NA	NA	NA	NA	NA	43.27	14.18	29.09	NA	0.50
MW-8	07/06/2006	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	43.27	14.39	28.88	NA	NA

	<u> </u>			-		· .		MTBE	MTBE	1				1,2-			Depth to	GW	SPH	DO
Well ID	Date	ТРРН	TEPH	в	т	۰E	х	8020	8260	DIPE	ETBE	TAME	ТВА	DCA	EDB	тос	Water	Elevation	Thickness	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)
<u>ı </u>		<u> </u>	<u></u>	/	. <u> </u>															
MW-8	09/11/2006	18,700	NA	94.2	11.2	683	1,280	NA	<0.500	<0.500	<0.500	<0.500	<10.0	NA	NA	43.27	15.10	28.17	NA	0.92
MW-8	12/28/2006	9,000	NA	54	7.1	430	980	NA	<2.5	NA	NA	NA	NA	NA	NA	43.27	15.15	28.12	NA	0.93
MW-8	03/20/2007	7,780	NA	40.4	9.21	230	499	NA	0.840	NA	NA	NA	NA	NA	NA	43.27	15.01	28.26	NA	0.11
MW-8	06/26/2007	7,500 q	NA	36	5.5	360	860	NA	<5.0	NA	NA	NA	NA	NA	NA	43.27	16.40	26.87	NA	0.59
MW-8	09/11/2007	10,000 q	NA	55	7.0	420	1,140	NA	<5.0	<10	<10	<10	<50	NA	NA	43.27	17.42	25.85	NA	1.07
MW-8	12/26/2007	10,000 q	NA	54	12 r	490	1,740	NA	<20	NA	NA	NA	NA	NA	NA	43.27	16.61	26.66	NA	1.4
MW-8	03/19/2008	5,800	NA	20	<5.0	200	600	NA	<5.0	NA	NA	NA	NA	NA	NA	43.27	15.30	27.97	NA	0.24
MW-8	06/05/2008	7,600	NA	27	<5.0	240	750	NA	<5.0	NA	NA	NA	NA	NA	NA	43.27	16.53	26.74	NA	0.10
MW-8	09/29/2008	5,600	NA	47	<5.0	120	287	NA	<5.0	<10	<10	<10	<50	NA	NA	43.27	18.13	25.14	NA	1.04
MW-8	12/19/2008	6,900	NA	40	<5.0	110	374	NA	<5.0	NA	NA	NA	NA	NA	NA	43.27	18.01	25.26	NA	0.74
MW-8	03/10/2009	7,400	NA	38	<5.0	210	780	NA	<5.0	NA	NA	NA	NA	NA	NA	43.27	15.45	27.82	NA	2.40
MW-8	06/03/2009	6,400	NA	24	<5.0	210	840	NA	<5.0	NA	NA	NA	NA	NA	NA	43.27	16.64	26.63	NA	0.84
					1															
MW-9	12/10/2003	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA	41.65	15.15	26.50	NA	NA
MW-9	12/15/2003	<50	NA	<0.50	<0.50	<0.50	1.3	NA	2.5	NA	NA	NA	NA	NA	NA	41.65	14.48	27.17	NA	0.9
MW-9	03/04/2004	<50	NA	<0.50	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	NA	NA	NA	41.65	12.15	29,50	NA	0.2
MW-9	05/27/2004	<50	NA	<0.50	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	NA	NA	NA	41.65	14.55	27.10	NA	0.5
MW-9	09/24/2004	<50	NA	<0.50	<0.50	<0.50	<1.0	NA	<0.50	<2.0	<2.0	<2.0	<5.0	NA	NA	41.65	16.37	25.28	NA	1.0
MW-9	11/22/2004	<50 d	NA	<0.50	<0,50	<0.50	<1.0	NA	<0.50	NA	NA	NA	NA	NA	NA	41.65	15.62	26.03	NA	0.3
MW-9	03/02/2005	100	NA	<0.50	<1.0	1.4	3.8	NA	<1.0	NA	NA	<2.0	<10	<0.50	NA	41.65	11.40	30.25	NA	0.4
MW-9	06/30/2005	<50	NA	<0.50	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	NA	NA	NA	41.65	12.70	28.95	NA	1.3
MW-9	09/20/2005	<50	NA	<0.50	<0.50	<0.50	1.8	NA	<0.50	<2.0	<2.0	<2.0	<5.0	NA	NA	41.65	14.38	27.27	NA	1.2
MW-9	12/05/2005	<50	NA_	<0.50	<0.50	<0.50	0.65	NA	<0.50	NA	NA	NA	NA	NA	NA	41.65	14.25	27.40	NA	1.13
MW-9	03/02/2006	<50 h	NA	<0.50	<0.50	<0.50 h	<0.50 h	NA	<0.50	NA	NA	NA	NA	NA	NA	41.65	11.87	29.78	NA	0.9
MW-9 (m)	06/29/2006	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	41.65	12.35	29.30	NA	0.55
MW-9 (o)	06/30/2006	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<u>NA</u>	41.65	12.37	29.28	NA	NA 0.59
MW-9 (p)	07/06/2006	<50.0	NA	<0.500	<0.500	<0.500	<0.500	NA	<0.500	NA	NA	NA	NA	NA	NA	41.65	12.46	29.19	NA	0.58
MW-9	09/11/2006	<50.0	NA	<0.500	<0.500	<0.500	<0.500	NA	<0.500	<0.500	< 0.500	< 0.500	<10.0	NA	NA	41.65	13.42	28.23	NA	0.79
MW-9	12/28/2006	<50	NA	<0.50	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	NA	NA	<u>NA</u>	41.65	13.23	28.42	NA	0.73
MW-9	03/20/2007	<50.0	NA	<0.500	<0.500	<0.500	<1.00	NA	<0.500	NA	NA	NA	NA	NA	NA	41.65	13.35	28.30	NA	1.20
MW-9	06/26/2007	86 q	NA	<0.50	<1.0	<1.0	<1.0	NA	<1.0	NA	NA	NA	NA	NA	NA	41.65	14.80	26.85	NA	0.91
MW-9	09/11/2007	<50 q	NA	0.15 r	<1.0	<1.0	<1.0	NA	<1.0	<2.0	<2.0	<2.0	<10	NA	NA	41.65	15.70	25.95	NA	1.04
MW-9	12/26/2007	<50 q	NA	<0.50	<1.0	<1.0	<1.0	NA	<1.0	NA	NA	NA	NA	NA	<u>NA</u>	41.65	14.86	26.79	NA	2.0
MW-9	03/19/2008	<50	NA	<0.50	< <u>1.0</u>	<1.0	<1.0	NA	<1.0	NA	NA	NA	NA	NA	NA	41.65	13.39	28.26	NA NA	0.27
MW-9	06/05/2008	<50	NA	<0.50	<1.0	<1.0	<1.0	NA	<1.0	NA	NA	NA	NA	NA	NA	41.65	14.77	26.88	I NA	1.34

								MTBE	MTBE					1,2-	7.00		Depth to	GW	SPH	DO
Well ID	Date	TPPH	ТЕРН	в	Т	E	х	8020	8260	DIPE	ETBE	TAME	TBA	DCA	EDB	TOC	Water	Elevation	Thickness	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)
	2 101-11-11																			
MW-9	09/29/2008	<50	NA	<0.50	<1.0	<1.0	<1.0	NA	<1.0	<2.0	<2.0	<2.0	<10	NA	NA	41.65	16.62	25.03	NA	1.10
MW-9	12/19/2008	<50	NA	<0.50	<1.0	<1.0	<1.0	NA	<1.0	NA	NA	NA	NA	NA	NA	41.65	16.26	25.39	NA	0.66
MW-9	03/10/2009	<50	• NA	<0.50	<1.0	<1.0	<1.0	NA	<1.0	NA	NA	NA	NA	NA	NA	41.65	13.22	28.43	NA	1.58
MW-9	06/03/2009	<50	NA	<0.50	<1.0	<1.0	<1.0	NA	<1.0	NA	NA	NA	NA	NA	NA	41.65	14.84	26.81	NA	0.55
																* .				
MW-10	12/10/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	50.64	24.33	26.31	NA	NA
MW-10	12/15/2003	6,400	NA	3.1	<1.0	33	20	NA	<1.0	NA	NA	<4.0	<10	<1.0	NA	50.64	23.58	27.06	NA	0.3
MW-10	03/04/2004	1,400	NA	1.2	<1.0	16	3.4	NA	<1.0	NA	NA	<4.0	<10	<1.0	NA	50.64	21.20	29.44	NA	0.1
MW-10	05/27/2004	810	NA	<1.0	<1.0	8.3	<2.0	NA	<1.0	NA	NA	<4.0	<10	<1.0	NA	50.64	23.63	27.01	NA	0.5
MW-10	09/24/2004	790	NA	1.2	<1.0	7.3	<2.0	NA	<1.0	<4.0	<4.0	<4.0	<10	<1.0	<1.0	50.64	25.30	25.34	NA	1.5
MW-10	11/22/2004	1,100	NA	1.1	<0.50	17	<1.0	NA	<0.50	NA	NA	<2.0	<5.0	<0.50	NA	50.64	24.62	26.02	NA	0.4
MW-10	03/02/2005	920	NA	0.60	<1.0	3.5	<1.0	NA	<1.0	NA	NA	<2.0	<10	<0.50	NA	50.64	20.72	29.92	NA	0.4
MW-10	06/30/2005	470 f	NA	<0.50	<0.50	1.4	<1.0	NA	<0.50	NA	NA	<2.0	<5.0	<0.50	NA	50.64	21.48	29.16	NA	1.4
MW-10	09/20/2005	420	NA	<0.50	<0.50	1.2	2.1	NA	<0.50	<2.0	<2.0	<2.0	<5.0	<0.50	NA	50.64	23.45	27.19	NA	2.0
MW-10	12/05/2005	420	NA	<0.50	<0.50	1.1	<0.50	NA	<0.50	NA	NA	<0.50	<5.0	<0.50	NA	50.64	23.42	27.22	NA	0.97
MW-10	03/02/2006	230 h	NA	<0.50 h	<0.50	0.83 h	<0.50 h	NA	<0.50	NA	NA	<0.50	<5.0 h	<0.50 j	NA	50.64	21.13	29.51	NA	1.1
MW-10 (n)	06/29/2006	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	50.64	NA	NA	NA	NA
MW-10 (o)	06/30/2006	<50.0	NA	<0.500	<0.500	<0.500	<0.500	NA	<0.500	NA	NA	<0.500	<10.0	<0.500	NA	50.64	21.49	29.15	NA	0.37
MW-10	07/06/2006	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	50.64	21.60	29.04	NA	NA
MW-10	09/11/2006	250	NA	<0.500	<0.500	<0.500	<0.500	NA	<0.500	<0.500	<0.500	<0.500	<10.0	<0.500	NA	50.64	22.62	28.02	NA	0.98
MW-10	12/28/2006	Well inacc	essible	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	50.64	NA	NA	NA	NA
MW-10	03/20/2007	158	NA	<0.500	<0.500	<0.500	<1.00	NA	<0.500	NA	NA	<1.00	<50.0	<0.500	NA	50.64	22.30	28.34	NA	0.10
MW-10	06/26/2007	230 q	NA	0.15 r	<1.0	0.43 r	<1.0	NA	<1.0	NA	NA	<2.0	<10	<0.50	NA	50.64	23.75	26.89	NA	1.54
MW-10	09/11/2007	62 q	NA	<0.50	<1.0	<1.0	<1.0	NA	<1.0	<2.0	<2.0	<2.0	<10	<0.50	NA	50,64	24.78	25.86	NA	0.98
MW-10	12/26/2007	200 q, t	NA	0.15 r	<1.0	0.30 r	<1.0	NA	<1.0	NA	NA	<2.0	<10	<0.50	NA	50.64	23.86	26.78	NA	0.9
MW-10	03/19/2008	170 q	NA	<0.50	<1.0	<1.0	. <1.0	NA	<1.0	NA	NA	<2.0	<10	<0.50	NA	50.64	22.46	28.18	NA	0.10
MW-10	06/05/2008	150	NA	<0.50	<1.0	<1.0	<1.0	NA	<1.0	<2.0	<2.0	<2.0	<10	<0.50	NA	50.64	23,76	26.88	NA	0.11
MW-10	09/29/2008	130	NA	<0.50	<1.0	<1.0	1.4	NA	<1.0	<2.0	<2.0	<2.0	<10	<0.50	NA	50.64	25.59	25.05	NA	0.91
MW-10	12/19/2008	220	NA	1.6	1.4	1.9	4.3	NA	<1.0	NA	NA	<2.0	<10	<0.50	NA	50.64	22.39	28.25	NA	0.26
MW-10	03/10/2009	120	NA	<0.50	<1.0	<1.0	1.8	NA	<1.0	NA	NA	<2.0	<10	<0.50	NA	50.64	21.79	28.85	NA	0.40
MW-10	06/03/2009	130	NA	<0.50	<1.0	<1.0	<1.0	NA	<1.0	<2.0	<2.0	<2.0	<10	<0.50	NA	50.64	23.85	26.79	NA	2.11
											_						· · · · ·		· · · · ·	·····
MW-11	12/10/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	45.58	19.10	26.48	NA	NA
MW-11	12/15/2003	110,000	NA	9,900	3,300	3,900	23,000	NA	20,000	NA	NA	<800	18,000	<200	NA	45.58	18.50	27.08	NA	0.3
MW-11	03/04/2004	68,000	NA	5,300	3,000	3,600	23,000	NA	8,300	NA	NA	<200	12,000	<50	NA	45.58	16.67	28.91	NA	0.1

								MTBE	MTBE					1,2-			Depth to	GW	SPH	DO
Well ID	Date	тррн	TEPH	в	т	Е	x	8020	8260	DIPE	ETBE	TAME	ТВА	DCA	EDB	тос	Water	Elevation	Thickness	Reading
Weilin	Date	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)
		(09/2)	(-9/		(<u>(</u>	<u> </u>		/	(
MW-11	05/27/2004	86,000	NA	8,500	3,200	13,000	22,000	NA	25,000	NA	NA	<400	18,000	<100	NA	45.58	18.60	26.98	NA	1.6
MW-11	09/24/2004	63,000	NA	7,200	2,000	3.000	15,000	NA	26.000	<400	<400	<400	17,000	<100	<100	45.58	20.22	25.36	NA	2.2
MW-11	11/22/2004	96,000	NA	7,100	3,700	2,800	15,000	NA	20,000	NA	NA	<400	14,000	<100	NA	45.58	19.56	26.02	NA	0.3
MW-11	03/02/2005	63,000	NA	6,200	6,800	2,200	15,000	NA	16,000	NA	NA	<200	7,800	<50	NA	45.58	15.75	29,83	NA	4.6
MW-11	06/30/2005	100,000	NA	4,200	18,000	3,800	25,000	NA	2,500	NA	NA	<400	3,400	<100	NA	45.58	16.92	28.66	NA	1.0
MW-11	09/20/2005	65,000	NA	3,800	10,000	3,100	19,000	NA	3,900	<400	<400	<400	4,600	<100	NA	45.58	18.43	27.15	NA	NA
MW-11	12/05/2005	69,000	NA	4.000	10,000	3,100	16,000	NA	7,400	NA	NA	<50	4,400	<50	NA	45.58	18.26	27.32	NA	0.70
MW-11	03/02/2006	76.000 q	NA	4.000 g	13,000 g	2,900 g	16,000 g	NA	6,100 g	NA	NA	36	420 k	<0.50 j	NA	45.58	16.13	29.45	NA	0.9
MW-11	04/19/2006	116,000	NA	4,780	12,000	3,280	20,200	NA	5,550	NA	NA	34.6	4,010	<0.500	NA	45.58	15.30	30.28	NA	0.86
MW-11	05/01/2006	129,000	NA	4,180	15,100	3,180	18,700	NA	4,510	NA	ŇA	28.9	3,130	92.1	NA	45.58	15.43	30.15	NA	0.97
MW-11 (n)	06/29/2006	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	45.58	NA	NA	NA	NA
MW-11 (0)	06/30/2006	119,000	NA	4,420	11,300	2,650	17,200	NA	4,490	NA	NA	22.8	2,700	<0.500	NA	45.58	15.49	30.09	NA	0.49
MW-11	07/06/2006	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	45.58	16.61	28.97	NA	NA
MW-11	07/31/2006	<50.0	NA	4,870	11,400	2,890	20,400	NA	4,880	NA	NA	27.2	3,120	<0.500	NA .	45.58	17.00	28.58	NA	0,36
MW-11	08/23/2006	115,000	NA	5,230	8,720	2,680	16,900	NA	4,860	NA	NĄ	29.6	3,670	<10.0	NA	45.58	17.28	28.30	NA	0.7
MW-11	09/11/2006	9,090	NA	5,140	8,400	3,040	17,700	NA	5,310	<0.500	<0.500	134	4,240	<0.500	NA	45.58	17.62	27.96	NA	0.63
MW-11	10/18/2006	193,000	NA	4,930	9,700	3,920	21,000	NA	4,300	NA	NA	<0.500	2,530	<0.500	NA	45.58	18.08	27.50	NA	0.51
MW-11	11/22/2006	3,600	NA	3,600	9,300	2,800	16,000	NA	2,800	NA	NA	<10	4,000	<2.5	NA	45.58	18.06	27.52	NA	0.4
MW-11	12/28/2006	75,000	NA	2,700	9,800	1,900	13,000	NA	2,500	NA	NA	<200	2,500	<50	NA	45.58	17.20	28.38	NA	0.9
MW-11	01/25/2007	68,000	NA	2,900	9,600	2,200	13,000	NA	2,400	NA	NA	<200	2,400	<50	NA	45.58	18.10	27.48	NA	0.7
MW-11	02/19/2007	88,000	NA	3,600	17,000	3,200	20,000	NA	2,200	NA	NA	25	4,000	<5.0	NA	45.58	17.89	27.69	NA	0.2
MW-11	03/20/2007	77,600	NA	3,1401	12,800 I	3,0601	17,600	NA	1,9301	NA	NA	<200 I	<10,000	<100 i	NA	45.58	17.30	28.28	NA	0.38
MW-11	04/05/2007	67,000 q	NA	3,200	9,600	3,200	14,300	NA	1,800	NA	NA	<100	2,900	<25	NA	45.58	17.50	28.08	NA	0.72
MW-11	06/01/2007	65,000 q	NA	3,100	11,000	3,200	17,900	NA	1,700	NA	NA	NA	NA	NA	NA	45.58	18.32	27.26	NA	1.18
MW-11	06/26/2007	52,000 q	NA	2,200	8,000	2,200	13,700	NA	1,300	NA	NA	<200	2,300	<50	NA	45.58	18.70	26.88	NA	0.24
MW-11	07/19/2007	62,000 q	NA	2,500	9,600	2,400	16,300	NA	1,500	NA	NA	NA	NA	NA	NA	45.58	18.10	27.48	NA	3.42
MW-11	08/14/2007	65,000 q	NA	3,000	11,000	3,000	17,600	NA	1,000	NA	NA	NA	NA	NA	NA	45.58	19.30	26.28	NA	1.1
MW-11	09/11/2007	45,000 q	NA	2,000	6,300	2,100	11,900	NA	960	<100	<100	<100	2,100	<25	NA	45.58	19.65	25.93	NA	0.86
MW-11	10/26/2007	58,000 q	NA	2,500	9,300	3,200	17,700	NA	900	NA	NA	NA	NA	NA	NA	45.58	19.42	26.16	NA	1.2
MW-11	11/13/2007	64,000 q	NA	2,400	9,500	3,300	18,000	NA	1,200	NA	NA	NA	NA	NA	NA	45.58	19.34	26.24	NA	0.32
MW-11	12/26/2007	56,000 q	NA	2,300	11,000	3,800	23,400	NA	1,300	NA	NA	<40	1,400	<10	NA	45.58	18.68	26.90	NA	0.9
MW-11	01/03/2008	64,000 q	NA	2,600	10,000	4,400	23,600	NA	1,300	NA	NA_	NA	NA	NA	NA	45.58	18.86	26.72	NA	1.65
MW-11	02/21/2008	70,000 q	NA	2,400	9,200	3,700	18,700	NA	440	NA	NA	NA	NA	NA	NA	45.58	16.70	28.88	NA	0.9
MW-11	03/19/2008	65,000 q	NA	2,500	7,700	3,700	19,700	NA	520	NA	NA	<100	810	<25	NA	45.58	17.34	28.26	0.02	0.07
MW-11	04/16/2008	86,000	NA	3,000	8,200	4,500	24,300	NA	280	NA	NA	NA	NA	NA	NA	45.58	17.78	27.80	NA	1.40

								MTBE	MTBE		1			1,2-			Depth to	GW	SPH	DO
Well ID	Date	тррн	TEPH	в	т	E	х	8020	8260	DIPE	ETBE	TAME	ТВА	DCA	EDB	тос	Water	Elevation	Thickness	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)
·								<u> </u>												
MW-11	05/29/2008	70,000	NA	1,900	6,000	3,200	16,500	NA	110	NA	NA	NA	NA	NA	NA	45.58	18.52	27.06	NA	0.43
MW-11	06/05/2008	72,000	NA	1,800	6,700	3,300	18,000	NA	120	<100	<100	<100	<500	<25	NA	45.58	18.63	26.95	NA	0.21
MW-11	07/22/2008	100,000	NA	1,100	9,200	3,800	24,900	NA	<100	NA	NA	NA ·	NA	NA	NA	45.58	19.41	26.17	NA	1.31
MW-11	09/29/2008	110,000	NA	1,500	10,000	4,300	27,200	NA	210	<100	<100	<100	<500	<25	NA	45.58	20.21	25.37	NA	0.79
MW-11	12/19/2008	110,000	NA	1,000	9,600	3,700	24,600	NA	<100	NA	NA_	<200	<1,000	<50	NA	45.58	19.75	25.83	NA	0.52
MW-11	03/10/2009	92,000	NA	490	11,000	4,000	30,000	NA	<100	NA	NA	<200	<1,000	<50	NA	45.58	16.40	29.18	NA	0.50
MW-11	06/03/2009	74,000	NA	120	6,900	3,500	24,000	NA ·	<100	<200	<200	<200	<1,000	<50	NA	45.58	18.91	26.67	NA	0.10
														·		-		· · · · · · · · · · · · · · · · · · ·		
MW-12	06/26/2006	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	44.10	14.75	29.35	NA	NA
MW-12 (n)	06/29/2006	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	44.10	NA	NA	NA	NA
MW-12 (0)	06/30/2006	95,000	NA	3,930	8,900	2,110	10,400	NA	<0.500	NA	NA	NA	NA	NA	NA	44.10	15.00	29.10	NA 👘	0.62
MW-12	07/06/2006	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	44.10	15.10	29.00	NA	NA
MW-12	09/11/2006	5,110	NA	3,930	3,290	2,710	8,060	NA	8.50	NA	NA	NA	NA	NA	NA	44.10	15.91	28.19	NA	1.09
MW-12	12/28/2006	31,000	NA	2,400	1,100	1,500	2,900	NA	<2.5	NA	NA	NA	NA	NA	NA	44.10	15.85	28.25	NA	0.82
MW-12	03/20/2007	30,100	NA	508	352	341	748	NA	<0.500	NA	NA	NA	NA	NA	NA	44.10	15.81	28.29	NA	1.44
MW-12	06/26/2007	32,000 q	NA	2,700	1,200	2,100	3,700	NA	<20	NA	NA	NA	NA	NA	NA	44.10	17.29	26.81	NA	0.40
MW-12	09/11/2007	21,000 q	NA	810	720	860	1,950	NA	<20	NA	NA	NA	NA	NA	NA	44.10	18.08	26.02	NA	1.21
MW-12	12/26/2007	20,000 q	NA	2,000	600	1,400	2,870	NA	<20	NA	NA .	NA	NA	NA	NA	44.10	17.44	26.66	NA	1.3
MW-12	03/19/2008	12,000	NA	1,000	460	630	1,490	NA	<20	NA	NA	NA	NA	NA	NA	44.10	15.97	28.13	NA	0.28
MW-12	06/05/2008	22,000	NA	860	530	930	2,340	NA	<10	NA .	NA	NA	NA	NA	NA	44.10	17.28	26.82	NA	0.10
MW-12	09/29/2008	23,000	NA	1,800	820	1,300	2,900	NA	<10	NA	NA	NA	NA	NA	NA	44.10	19.10	25.00	NA	0.76
MW-12	12/19/2008	12,000	NA	850	240	530	930	NA	<10	NA	NA_	NA	NA	NA	NA	44,10	18.68	25.42	NA	0.47
MW-12	03/10/2009	6,400	NA	720	110	450	570	NA	<10	NA	NA	NA	NA	NA	NA	44.10	15.55	28.55	NA	2.25
MW-12	06/03/2009	14,000	NA	1,000	370	800	2,400	NA	<10	NA	NA	NA	NA	NĂ	NA	44.10	17.47	26.63	NA	1.03
								· · ·								44.50	10.10	00.40	NIA	
MW-13	06/26/2006	NA	NA	NA	NA	NA	NA	NA_	NA	41.59	12.10	29.49	NA	NA 0.61						
MW-13 (m)	06/29/2006	NA	NA_	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	41.59	12.47	29.12	NA	0.61
MW-13 (0)	06/30/2006	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	41.59	12.25	29.34	NA	NA 0.24
MW-13 (p)	07/06/2006	<50.0	NA	<0.500	<0.500	<0.500	<0.500	NA	<0.500	<0.500	<0.500	<0.500	<10.0	<0.500	NA	41.59	12.35	29.24	NA NA	1.02
MW-13	09/11/2006	<50.0	NA	<0.500	<0.500	<0.500	<0.500	NA	<0.500	NA	NA	NA	NA	NA	NA	41.59	13.33	28.26	NA NA	0.81
MW-13	12/28/2006	<50	NA	<0.50	<0.50	<0.50	<1.0	NA_	<0.50	NA	NA	NA	NA	NA	NA	41.59	13.12	28.47	NA NA	0.81
MW-13	03/20/2007	<50.0	NA	1.41	2.36	2.20	6.29	NA	<0.500	NA	NA_	NA	NA	NA	NA_	41.59	13.12	28.47 26.91	NA NA	0.14
MW-13	06/26/2007	58 q	NA	0.20 r	<1.0	<1.0	<1.0	NA	<1.0	NA	NA	NA	NA	NA	NA	41.59	14.68		NA	0.38
MW-13	09/11/2007	<50 q	NA	0.69	0.30 r	<1.0	<1.0	NA	<1.0	NA	NA	NA	ŃA	NA	NA	41.59	15.51 14.74	26.08 26.85	NA	1.0
MW-13	12/26/2007	<50 q	NA	0.24 r	<1.0	<1.0	<1.0	NA	<1.0	NA	NA	NA	NA	NA	NA	41.59	14.74	20.00	19/4	1.0

 \sim

Well ID	Date	T PPH (uq/L)	TEPH (ug/L)	B (ug/L)	T (uq/L)	E (ug/L)	X (ug/L)	MTBE 8020 (ug/L)	MTBE 8260 (ug/L)	DIPE (ug/L)	ETBE (ug/L)	TAME (ug/L)	TBA (ug/L)	1,2- DCA (ug/L)	EDB (ug/L)	TOC	Depth to Water (ft.)	GW Elevation (MSL)	SPH Thickness (ft.)	DO Reading (ppm)
	<u> </u>	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(49/2)	(ug/L)	(19/1/	(49/2)	((((), ())))	(49/2)	(49,2/		(<u>(</u>	(((((((((((((((((((((((((((((((((((((((0.27			
MW-13	03/19/2008	<50	NA	<0.50	<1.0	<1.0	<1.0	NA	<1.0	NA	NA	NA	NA	NA	NA	41.59	13.28	28.31	NA	0.34
MW-13	06/05/2008	<50	NA	<0.50	<1.0	<1.0	<1.0	NA	<1.0	NA	NA	NA	NA	NA	NÁ	41.59	14.65	26.94	NA	0.15
MW-13	09/29/2008	<50	NA	0.53	<1.0	<1.0	<1.0	NA	<1.0	NA	NA	NA	NA	NA	NA	41.59	16.50	25.09	NA	1.59
MW-13	12/19/2008	<50	NA	<0.50	<1.0	<1.0	<1.0	NA	<1.0	NA	NA	NA	NA	NA	NA	41.59	16.12	25.47	NA	0.49
MW-13	03/10/2009	<50	NA	<0.50	<1.0	<1.0	<1.0	NA	<1.0	NA	NA	NA	NA	NA	NA	41.59	12.75	28.84	NA	1.52
MW-13	06/03/2009	<50	NA	<0.50	<1.0	<1.0	<1.0	NA	<1.0	NA	NA	NA	NA	NA	NA	41.59	14.90	26.69	NA	0.99
														·		·		1		
P-1A	09/15/2008	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	47.74	22.49	25.25	NA	NA
P-1A	12/19/2008	13,000	NA	90	24	1,100	893	NA	190	NA	NA	NA	NA	NA	NA	47.74	22.23	25.51	NA	0.54
					•															
P-1B	09/15/2008	NA	NA	NA _	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	47.65	22.50	25.15	NA	NA
P-1B	12/19/2008	82,000	NA _	5,200	3,300	3,000	9,600	NA	1,300	NA	NA	NA	NA	NA	NA	47.65	22.25	25.40	NA	0.66
				_		1				-										
P-2A	09/15/2008	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	48.81	23.58	25.23 25.32	NA NA	NA 3.92
P-2A	12/19/2008	1,900	NA	70	<2.0	19	<2.0	NA	94	NA	NA	NA	NA	NA	NA	48.81	23.49	25.32	NA	3.92
	· · ·				·-								N10		N/A	40.02	02.40	25.62	NIA	NA
P-28	09/15/2008	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA NA	49.02 49.02	23.40	25.62 25.41	NA NA	0.17
P-2B	12/19/2008	7,500	NA	450	<5.0	93	81	NA	410	NA	NA	NA	NA	INA	NA	49.02	23.01	23.41	IN/A	0.17
													NIA	NA	NA	44.56	19.21	25.35	NA	NA
P-3A	09/15/2008	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA NA	NA	44.56	19.21	25.53	NA	0.37
P-3A	12/19/2008	64,000	NA	1,900	1,900	3,600	12,300	NA	170	NA	NA	NA	IN/A		11/4	44.00	10.00	20.00	101	0.07
					NIA	NIA	NI A	NA	NIA	NA	NA	NA	NA	NA	NA	44.62	19.02	25.60	NA	NA
P-3B	09/15/2008	NA 70,000	NA NA	NA 5.700	NA 2,300	NA 3,300	NA 11.600	NA NA	NA 1,100	NA	NA	NA	NA NA	NA	NA	44.62	19.26	25.36	NA	NA
P-3B	12/19/2000	70,000	NA	5,700	2,300	3,300	11,000		1,100	025				1 1						
P-4A	09/15/2008	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	45.00	19,95	25.05	NA	NA
<u>P-4A</u>	10/02/2008	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	45.00	19.63	25.37	NA	NA
	12/19/2008	80,000	NA	330	9,300	3,800	14,300	NA	130	NA	NA	NA	NA	NA	NA	45.00	19.32	25.68	ŇA	0.76
Г- ч / л	12/10/2000	50,000			0,000	0,000	11,000	1			1			1						
P-4B	09/15/2008	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	44.93	19.30	25.63	NA	NA
P-4B	12/19/2008	81,000	NA	1,100	5,800	4,000	17,500	NA	390	NA	NA	NA	NA	NA	NA	44.93	19.50	25.43	NA	0.52

									MTBE	MTBE					1,2-			Depth to	GW	SPH	DO
	Well ID	Date	TPPH	TEPH	в	Т	E	X	8020	8260	DIPE	ETBE	TAME	TBA	DCA	EDB	тос	Water	Elevation	Thickness	Reading
1			(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)													

Abbreviations:

TPPH = Total petroleum hydrocarbons as gasoline by EPA Method 8260B; prior to June 11, 2001, analyzed by EPA Method 8015.

TEPH = Total petroleum hydrocarbons as diesel by modified EPA Method 8015.

BTEX = Benzene, toluene, ethylbenzene, xylenes by EPA Method 8260B; prior to June 11, 2001, analyzed by EPA Method 8020.

MTBE = Methyl tertiary butyl ether

DIPE = Di-isopropyl ether, analyzed by EPA Method 8260

ETBE = Ethyl tertiary butyl ether, analyzed by EPA Method 8260

TAME = Tertiary amyl methyl ether, analyzed by EPA Method 8260

TBA = Tertiary butyl alcohol, analyzed by EPA Method 8260

1,2-DCA = 1,2-dichloroethane, analyzed by EPA Method 8260

EDB = 1.2-dibromomethane or ethlyene dibromide, analyzed by EPA Method 8260

TOC = Top of Casing Elevation

SPH = Separate-Phase Hydrocarbons

GW = Groundwater

DO = Dissolved Oxygen

ug/L = Parts per billion

ppm = Parts per million

MSL = Mean sea level

ft. = Feet

<n = Below detection limit

(D) = Duplicate sample

NA = Not applicable

ſ									MTBE	MTBE					1,2-			Depth to	GW	SPH	DO
	Well ID	Date	TPPH	TEPH	в	т	Е	Х	8020	8260	DIPE	ETBE	TAME	TBA	DCA	EDB	тос	Water	Elevation	Thickness	Reading
			(ug/L)	(MSL)	(ft.)	(MSL)	(ft.)	(ppm)													

Notes:

a = Chromatogram pattern indicates an unidentified hydrocarbon.

b = Samples not analyzed due to laboratory oversight.

c = Hydrocarbon does not match pattern of laboratory's standard.

d = The concentration reported reflects individual or discrete unidentified peaks not matching a typical fuel pattern.

e = Estimated value. The concentration exceeded the calibration of analysis.

f = Quantity of unknown hydrocarbon(s) in sample based on gasoline.

g = Sample was originally analyzed within the EPA recommended hold time. Re-analysis for dilution was performed past the recommended hold time.

h = Sample was originally analyzed within the EPA recommended hold time. Re-analysis for confirmation was performed past the recommended hold time.

i = The result for this hydrocarbon is elevated due to the presence of single analyte peak(s) in the quantitation range.

j = Result was reported with a possible low bias due to the continuing calibration verification falling outside the acceptance criteria.

k = The result was reported with a possible low bias due to the continuing calibration verification falling outside the acceptance criteria.

I = Sample required dilution due to high concentrations of target analyte.

m = Well resampled on July 6, 2006 due to laboratory error.

n = Well not accessed due to equipment malfunction.

o = All wells regauged on June 30, 2006 prior to sampling.

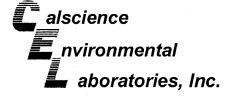
p = Wells resampled for 2Q06 event due to laboratory error.

q = Analyzed by EPA Method 8015B (M).

r = Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.

t = the sample chromatographic pattern for TPH does not match the chromatographic pattern of the specified standard. Quantitation of the unknown hydrocarbon(s) in the sample was based upon the specified standard.

* = Sample analyzed out of EPA recommended hold time.


When Separate-Phase Hydrocarbons are present, the groundwater elevation is adjusted using the following formula: GWE = TOC - DTW + 0.8 * SPH thickness.

Site surveyed January 23, 2002 by Virgil Chavez Land Surveying of Vallejo, CA.

Wells MW-7 and MW-8 surveyed by Virgil Chavez Land Surveying of Vallejo, CA

Wells MW-9, MW-10, and MW-11 surveyed December 11, 2003 by Virgil Chavez Land Surveying of Vallejo, CA.

Wells MW-12 and MW-13 surveyed on June 9, 2006 by Virgil Chavez Land Surveying of Vallejo, CA.

June 17, 2009

Michael Ninokata Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105

Subject: Calscience Work Order No.: Client Reference:

09-06-0501 1784 150th Ave., San Leandro, CA

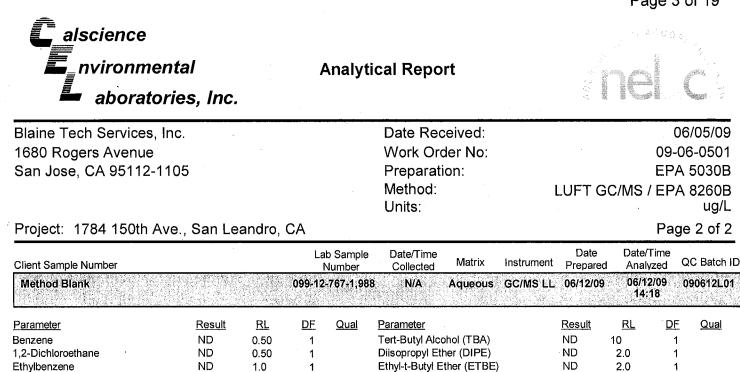
Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 6/5/2009 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,


Philp Samelle for

Calscience Environmental Laboratories, Inc. Jessie Lee Project Manager

D: 1230 • NELAP ID: 03220CA • CSDLAC ID: 10109 • SCAQMD ID: 93LA0830 7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 • FAX: (714) 894-7501

<u> </u>					,			Р	age 2	of 19
<i>Calscience</i> <i>R</i> nvironmenta	al		Δ	nalyti	cal Repor	-t			ar co _s	an San San San San San San San San San San
aboratorie	s, Inc.								2	
Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105 Project: 1784 150th Ave.,	5	andro			Date Rec Work Ord Preparatio Method: Units:	er No:	LUF	T GC/MS	09-0 EPA 5 / EPA	6/05/09 6-0501 5030B 8260B ug/L e 1 of 2
				o Sample	Date/Time	Maduis I.			e/Time	
Client Sample Number MW-3			۸ 09-06-0	lumber 501-4-B	Collected 06/03/09 14:50	- Color See Set Strandshift	strument Pre C/MS LL 06/1	3/09 06/		2C Batch ID 090613L01
Parameter Benzene I,2-Dichloroethane Ethylbenzene Foluene Kylenes (total) Methyl-t-Butyl Ether (MTBE) <u>Surrogates:</u> Dibromofluoromethane Foluene-d8	Result ND 12 ND ND ND REC (%) 108 100	RL 0.50 0.50 1.0 1.0 1.0 <u>1.0</u> <u>Control</u> Limits 74-140 88-112	DF 1 1 1 1	Qual Qual	Parameter Tert-Butyl Alcol Diisopropyl Eth Ethyl-t-Butyl Et Tert-Amyl-Meth TPPH Surrogates: 1,2-Dichloroeth Toluene-d8-TP	er (DIPE) her (ETBE) lyl Ether (TAM ane-d4	Resu ND ND E) ND 2000 <u>REC</u> 106 99	10 2.0 2.0 2.0 50	<u>1</u> 5	<u>Qual</u> Qual
,4-Bromofluorobenzene MW-10	102	74-110	09-06-0	501-11-A	06/03/09 14:30	Aqueous G	C/MS.LL 06/		12/09 1:00	090612L01
Parameter Benzene 1,2-Dichloroethane Ethylbenzene Toluene Kylenes (total) Methyl-t-Butyl Ether (MTBE) Surrogates:	Result ND ND ND ND ND ND REC (%)	<u>RL</u> 0.50 0.50 1.0 1.0 1.0 1.0 <u>Control</u>	DF 1 1 1 1 1	<u>Qual</u>	Parameter Tert-Butyl Alco Diisopropyl Eth Ethyl-t-Butyl Et Tert-Amyl-Meth TPPH Surrogates:	er (DIPE) her (ETBE)	Res ND ND ND E) ND 130 REC	10 2.0 2.0 2.0 50	DF 1 1 1 1 1	<u>Qual</u> Qual
Dibromofluoromethane Toluene-d8 1,4-Bromofluorobenzene	106 102 100	Limits 74-140 88-112 74-110		<u>.</u>	1,2-Dichloroeth Toluene-d8-TP		106 101	Limits 74-146	<u></u> <u>3</u> 3	
MW-11			09-06-0	501-12-A	06/03/09 13:50	Aqueous G	C/MS LL 06/		/12/09 1:26	090612L01
<u>Parameter</u> 3enzene I ,2-Dichloroethane Ethylbenzene Foluene Kylenes (total) Vethyl-t-Butyl Ether (MTBE)	Result 120 ND 3500 6900 24000 ND	RL 50 100 100 100 100 100	<u>DF</u> 100 100 100 100 100	Qual	Parameter Tert-Butyl Alco Diisopropyl Eth Ethyl-t-Butyl Et Tert-Amyl-Meth TPPH	er (DIPE) her (ETBE)	Res ND ND ND E) ND 740	1000 200 200 200	DF 100 100 100 100 100)))
Surrogates: Dibromofluoromethane Foluene-d8 I,4-Bromofluorobenzene	REC (%) 106 103 102	<u>Control</u> <u>Limits</u> 74-140 88-112 74-110	100	Qual	<u>Surrogates:</u> 1,2-Dichloroeth Toluene-d8-TF		<u>REC</u> 105 102	<u>Limit</u> 74-14	5	Qual
RL - Reporting Limit	DF - Dilutio	on Factor	, Qu	al - Qualifie	ers		··········			

1,4-Bromofluorobenzene	-100	74-110			ď				
Method Blank	n selection of the sele	a dan seria dan karatan karata Karatan karatan karatan Karatan karatan	099-12	-767-1,99	95 N/A Aqueous GC/MS	LL 06/13/09) 06/13 12:1		090613L01
		10.645							
Parameter	<u>Result</u>	<u>RL</u>	DF	Qual	Parameter	Result	<u>RL</u>	<u>DF</u>	Qual
Benzene	ND	0.50	1		Tert-Butyl Alcohol (TBA)	ND	10	1	
1,2-Dichloroethane	ND	0.50	1		Diisopropyl Ether (DIPE)	ND	2.0	1	
Ethylbenzene	ND	1.0	1		Ethyl-t-Butyl Ether (ETBE)	ND	2.0	1	
Toluene	ND	1.0	1		Tert-Amyl-Methyl Ether (TAME)	ND	2.0	1	
Xylenes (total)	ND	1.0	1		TPPH	ND	50	1	
Methyl-t-Butyl Ether (MTBE)	ND	1.0	1						
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits		<u>Qual</u>	Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits		<u>Qual</u>
Dibromofluoromethane	105	74-140			1,2-Dichloroethane-d4	105	74-146		
Toluene-d8	100	88-112			Toluene-d8-TPPH	99	88-112		
1,4-Bromofluorobenzene	101	74-110							

TPPH

Surrogates:

1,2-Dichloroethane-d4

Toluene-d8-TPPH

Tert-Amyl-Methyl Ether (TAME)

ND

ND

REC (%)

105

100

2.0

<u>Control</u> Limits

74-146

88-112

50

ND

ND

ND

103

101

REC (%)

1.0

1.0

1.0

<u>Control</u>

<u>Limits</u>

74-140

88-112

1

1

1

<u>Qual</u>

Toluene

Xylenes (total)

Surrogates:

Toluene-d8

Methyl-t-Butyl Ether (MTBE)

Dibromofluoromethane

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 •

FAX: (714) 894-7501

Page 3 of 19

ug/L

<u>Qual</u>

1

1

Qual

								Pag	e 4 c	of 19
C _alscience									50 ₃ .	
📕 nvironmenta	al		A	nalyti	cal Report		3 3		6	p ^{are} a
📕 aboratorie	s, Inc.									
Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1108 Project: 1784 150th Ave.	5	andro, (CA		Date Received: Work Order No: Preparation: Method: Units:		LUFT G	C/MS /	09-06 EPA : EPA :	/05/09 5-0501 5030B 8260B ug/L 1 of 5
Client Sample Number				o Sample lumber	Date/Time Collected Matrix	Instrument	Date Prepared	Date/Ti Analyz	0	C Batch ID
MW-1A			1	501-1-A	06/03/09 Aqueous 14:00	GC/MS LL	electro de States altas	06/12/ 14:44		90612L01
<u>Parameter</u> Benzene Ethylbenzene Toluene <u>Surrogates:</u>	<u>Result</u> ND ND ND <u>REC (%)</u>	<u>RL</u> 0.50 1.0 1.0 <u>Control</u> <u>Limits</u>	<u>DF</u> 1 1	<u>Qual</u> Qual	Parameter Xylenes (total) Methyl-t-Butyl Ether (MTE TPPH <u>Surrogates:</u>		<u>Result</u> ND 12 200 <u>REC (%)</u>	RL 1.0 1.0 50 <u>Control</u> Limits	DF 1 1	Qual Qual
Dibromofluoromethane Foluene-d8 I,4-Bromofluorobenzene MW-1B	106 101 101	74-140 88-112 74-110	09-06-0	9501-2-A	1,2-Dichloroethane-d4 Toluene-d8-TPPH 06/03/09 Aqueous 13:25	GC/MS LL	104 100 . 06/12/09	74-146 88-112 06/12/ 16:5		90612L01
P <u>arameter</u> Benzene Ethylbenzene Toluene <u>Surrogates:</u>	Result ND ND ND REC (%)	RL 2.5 5.0 5.0 <u>Control</u> Limits	<u>DF</u> 5 5 5	Qual Qual	Parameter Xylenes (total) Methyl-t-Butyl Ether (MTI TPPH <u>Surrogates:</u>	BE)	Result ND 460 470 REC (%)	<u>RL</u> 5.0 5.0 250 <u>Control</u> Limits	DF 5 5 5 5	<u>Qual</u> Qual
Dibromofluoromethane Toluene-d8 1,4-Bromofluorobenzene MW-2B	105 101 99	74-140 88-112 74-110	09-06-()501-3-B	1,2-Dichloroethane-d4 Toluene-d8-TPPH 06/03/09 Aqueous 14:15	GC/MS LI	107 100 _ 06/13/09	74-146 88-112 06/13 14:0		90613L01
<u>Parameter</u> Benzene Ethylbenzene Toluene <u>Surrogates:</u> Dibromofluoromethane	Result 8600 ND ND REC (%) 111	<u>RL</u> 250 500 500 <u>Control</u> <u>Limits</u> 74-140	DF 500 500 500	Qual Qual	Parameter Xylenes (total) Methyl-t-Butyl Ether (MT TPPH <u>Surrogates:</u> 1.2-Dichloroethane-d4	BE)	Result ND 5000 28000 REC (%) 106	<u>RL</u> 500 500 25000 <u>Control</u> <u>Limits</u> 74-146	<u>DF</u> 500 500 500	Qual Qual
Toluene-d8 1,4-Bromofluorobenzene	100 101	88-112 74-110			Toluene-d8-TPPH		99	88-112		

hm

M

						Page 5 of 19
alsciene	Ce					$= \frac{1}{2} \sum_{i=1}^{n} $
📕 nviror	nmental		Analyt	ical Report		
abo	ratories, Inc.					
Blaine Tech Servi 1680 Rogers Ave San Jose, CA 957	nue 112-1105			Date Received: Work Order No: Preparation: Method: Units:	LUFT G	06/05/09 09-06-0501 EPA 5030B C/MS / EPA 8260B ug/L
Project: 1784 15	0th Ave., San Lea	andro, CA				Page 2 of 5
Client Sample Number	oly, where the state of the state		Lab Sample Number	Date/Time Collected Matrix	Date Instrument Prepared	Date/Time Analyzed QC Batch ID
MW-5		09	-06-0501-6-B	06/03/09 Aqueous 12:15	GC/MS LL 06/12/09	06/13/09 090613L01 14:58
Parameter Benzene Ethylbenzene Toluene <u>Surrogates:</u> Dibromofluoromethane Toluene-d8 1,4-Bromofluorobenzene	Result ND 68 1.1 REC (%) 109 101 102	0.50 1.0 1.0 <u>Control</u> <u>Limits</u> 74-140 88-112 74-110	DF Qual 1 1 1 Qual	Parameter. Xylenes (total) Methyl-t-Butyl Ether (MTBl TPPH <u>Surrogates:</u> 1,2-Dichloroethane-d4 Toluene-d8-TPPH	1300 <u>REC (%)</u> 108 100	RL DF Qual 1.0 1 1.0 1 50 1 <u>Control</u> Qual <u>Limits</u> 74-146 88-112 2000
M₩- 6		09	-06-0501-7-В	06/03/09 Aqueous 12:25	GC/MS LL 06/12/09	06/13/09 090613L01 15:25
Parameter Benzene Ethylbenzene Toluene <u>Surrogates:</u> Dibromofluoromethane Toluene-d8 1.4-Bromofluorobenzene	Result ND ND REC (%) 108 100 102	RL I 0.50 1.0 1.0 Limits 74-140 88-112 74-110 1.10	DF Qual 1 1 1 Qual	Parameter Xylenes (total) Methyl-t-Butyl Ether (MTB TPPH <u>Surrogates:</u> 1,2-Dichloroethane-d4 Toluene-d8-TPPH	Result ND E) ND REC (%) 108 99	RL DF Qual 1.0 1 1.0 1 50 1 <u>Control</u> Qual Limits 74-146 88-112
MW-7		n de la constanción de la constante	-06-0501-8-B	06/03/09 Aqueous 10:20	GC/MS LL 06/12/09	06/13/09 090613L01 15:53
Parameter Benzene Ethylbenzene Toluene <u>Surrogates:</u> Dibromofluoromethane Toluene-d8 1,4-Bromofluorobenzene	Result 6.3 71 1.5 REC (%) 110 102 103	RL 1 0.50 1.0 1.0 1.0 <u>Control</u> Limits 74-140 88-112 74-110 10	DF Qual 1 1 1 Qual	Parameter Xylenes (total) Methyl-t-Butyl Ether (MTB TPPH <u>Surrogates:</u> 1,2-Dichloroethane-d4 Toluene-d8-TPPH	Result 78 78 ND 3500 REC (%) 108 101	RL DF Quai 1.0 1 1.0 1 50 1 <u>Control</u> Qual Limits 74-146 88-112 2
х.						

N

								Pag	je 6	of 19
C alscience				·					de g	
E _nvironment	al		A	Analyt	ical Report					
aboratori	es, Inc.						2 4 C C			
Blaine Tech Services, Ind 1680 Rogers Avenue San Jose, CA 95112-110			<u></u>		Date Received: Work Order No: Preparation: Method: Units:		LUFT G		09-0 EPA	6/05/09 6-0501 5030B 8260B ug/L
Project: 1784 150th Ave	., San Le	andro, (CA						Page	e 3 of 5
Client Sample Number				b Sample Number	Date/Time Collected Matrix I	Instrument	Date Prepared	Date/T Analyz		C Batch ID
MW28			A STATEMENTS IN STATE	9501-9-A		GC/MS LL	1999 - A.	06/12/ 20:0		990612L01
Parameter Benzene Ethylbenzene Toluene <u>Surrogates:</u> Dibromofluoromethane Toluene-d8	<u>Result</u> 24 210 ND <u>REC (%)</u> 104 101	<u>RL</u> 2.5 5.0 <u>5.0</u> <u>Control</u> <u>Limits</u> 74-140 88-112	<u>DF</u> 5 5 5	<u>Qual</u> Qual	Parameter Xylenes (total) Methyl-t-Butyl Ether (MTBE) TPPH <u>Surrogates:</u> 1,2-Dichloroethane-d4 Toluene-d8-TPPH		Result 840 ND 6400 REC (%) 102 100	<u>RL</u> 5.0 250 <u>Control</u> <u>Limits</u> 74-146 88-112	DF 5 5 5	Qual Qual
1,4-Bromofluorobenzene	101	74-110	09-06-()501-10-A	1. สาวระบบการและสาวระบบการและสาวระบบการเราะสาวารณาสาวารณาให้การได้เราะ	GC/MS LL	i tang tang tang tang tang tang)90612L01
<u>Parameter</u> Benzene Ethylbenzene Toluene <u>Surrogates:</u>	<u>Result</u> ND ND ND <u>REC (%)</u>	<u>RL</u> 0.50 1.0 1.0 <u>Control</u>	DF 1 1 1	<u>Qual</u> Qual	<u>Parameter</u> Xylenes (total) Methyl-t-Butyl Ether (MTBE) TPPH <u>Surrogates:</u>		<u>Result</u> ND ND ND REC (%)	<u>RL</u> 1.0 1.0 50 <u>Control</u>	<u>DF</u> 1 1	<u>Qual</u> Qual
Dibromofluoromethane Toluene-d8 1,4-Bromofluorobenzene	104 101 100	<u>Limits</u> 74-140 88-112 74-110			1,2-Dichloroethane-d4 Toluene-d8-TPPH	de enadestadoren et Mark	104 100	<u>Limits</u> 74-146 88-112		
MW-12			09-06-0)501-13-4	A 06/03/09 Aqueous (10:40	GC/MS LL	06/12/09	06/12 21:5		090612L01
<u>Parameter</u> Benzene Ethylbenzene Toluene <u>Surrogates:</u>	<u>Result</u> 1000 800 370 <u>REC (%)</u>	<u>RL</u> 5.0 10 10 <u>Control</u>	<u>DF</u> 10 10 10	<u>Qual</u> Qual	<u>Parameter</u> Xylenes (total) Methyl-t-Butyl Ether (MTBE) TPPH <u>Surrogates:</u>		<u>Result</u> 2400 ND 14000 REC (%)	<u>RL</u> 10 10 500 <u>Control</u>	DF 10 10 10	Qual Qual
Dibromofluoromethane Toluene-d8 1,4-Bromofluorobenzene	106 101 100	<u>Limits</u> 74-140 88-112 74-110			1,2-Dichloroethane-d4 Toluene-d8-TPPH		107 100	<u>Limits</u> 74-146 88-112		
· · · · · ·										

RL - Reporting Limit , DF - Dilution Factor Qual - Qualifiers .

M

hu

		Page 7 of 19
Calscience		A CONTRACT
	Analytical Report	
aboratories, Inc.		
Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105	Date Received: Work Order No: Preparation: Method:	06/05/09 09-06-0501 EPA 5030B
	Units:	LUFT GC/MS / EPA 8260B ug/L
Project: 1784 150th Ave., San Leandro, CA		Page 4 of 5
Client Sample Number	Lab Sample Date/Time Number Collected Matrix Instrume	Date Date/Time ent Prepared Analyzed QC Batch ID
	5-0501-14-A 06/03/09 Aqueous GC/MS I 11:50	Statistics in order to an owned with a substrate or an example in the history of the index in the history of the substrate of t
Parameter Result RL DF Benzene ND 0.50 1 Ethylbenzene ND 1.0 1 Toluene ND 1.0 1		<u>Result RL DF Qual</u> ND 1.0 1 ND 1.0 1 ND 50 1
Surrogates: REC (%) Control	Qual Surrogates:	REC (%) Control Qual
LimitsDibromofluoromethane10774-140Toluene-d89988-1121,4-Bromofluorobenzene9974-110	1,2-Dichloroethane-d4 Toluene-d8-TPPH	Limits 107 74-146 99 88-112
EW-1 09-0	6-0501-15-A 06/03/09 Aqueous GC/MS 14:10	LL 06/12/09 06/13/09 090612L02 04:39
Parameter Result RL DF Benzene 540 10 20 Ethylbenzene 1300 20 20 Toluene 220 20 20 Surrogates: REC (%) Control) Xylenes (total)) Methyl-t-Butyl Ether (MTBE)	Result RL DF Qual 2600 20 20 210 20 20 26000 1000 20 REC (%) Control Qual
LimitsDibromofluoromethane10574-140Toluene-d810288-1121,4-Bromofluorobenzene10074-110	1,2-Dichloroethane-d4 Toluene-d8-TPPH	Limits 106 74-146 100 88-112
EW-2 09-0	6-0501-16-A 06/03/09 Aqueous GC/MS 13:45	LL 06/12/09 06/13/09 090612L02 05:06
Parameter Result RL DF Benzene 560 50 10 Ethylbenzene 3000 100 10 Toluene 490 100 10 Surrogates: REC (%) Control Limits	0 Xylenes (total) 10 Methyl-t-Butyl Ether (MTBE)	<u>Result RL DF Qual</u> 18000 100 100 ND 100 100 62000 5000 100 <u>REC (%) Control</u> Qual Limits
Dibromofluoromethane10574-140Toluene-d810288-1121,4-Bromofluorobenzene10174-110	1,2-Dichloroethane-d4 Toluene-d8-TPPH	105 7 4- 146 101 88-112

									Page	8 of 19
alscience										
E _nvironmenta	al		A	Analyti	cal Repo	rt		ر هانه	i.	
aboratorie	es, Inc.								Ç	
Blaine Tech Services, Inc 1680 Rogers Avenue San Jose, CA 95112-110 Project: 1784 150th Ave.	5	andro	CA		Date Rec Work Orc Preparati Method: Units:	ler No:	·	_UFT G	E C/MS / E	06/05/09 9-06-0501 PA 5030B PA 8260B ug/L age 5 of 5
	, earrie			b Sample	Date/Time			Date	Date/Time	e
Client Sample Number			1.00000000000	Vumber	Collected	Matrix	Instrument	Prepared	Analyzed 06/12/09	and a formation of a second second
Method Blank	den de la se		099-12	-767-1,988	8 N/A	Aqueous	GC/MS LL	06/12/09	14:18	090612L01
<u>Parameter</u> Benzene Ethylbenzene Toluene <u>Surrogates:</u>	<u>Result</u> ND ND ND REC (%)	<u>RL</u> 0.50 1.0 1.0 <u>Control</u>	<u>DF</u> 1 1	<u>Qual</u> Qual	Parameter Xylenes (total) Methyl-t-Butyl I TPPH Surrogates:	Ether (MTBI		<u>Result</u> ND ND ND REC (%)	<u>RL</u> 1.0 1.0 50 <u>Control</u>	DF Qual 1 1 1 Qual
Dibromofluoromethane Toluene-d8 1,4-Bromofluorobenzene	103 101 100	<u>Limits</u> 74-140 88-112 74-110			1,2-Dichloroeth Toluene-d8-TF			105 100	<u>Limits</u> 74-146 88-112	, An We Tay (1) (1) (1) (1) (1)
Method Blank			099-12	-767-1,99() N/A	Aqueous	GC/MS LL	06/12/09	06/13/09 02:51	9 090612L02
Parameter Benzene Ethylbenzene Toluene Surrogates:	<u>Result</u> ND ND ND <u>REC (%)</u>	<u>RL</u> 0.50 1.0 1.0 <u>Control</u>	<u>DF</u> 1 1 1	<u>Qual</u> <u>Qual</u>	Parameter Xylenes (total) Methyl-t-Butyl TPPH Surrogates:	Ether (MTB		<u>Result</u> ND ND ND REC (%)	1.0 1.0 50 <u>Control</u>	DF Qual 1 1 1 Qual
Dibromofluoromethane Toluene-d8 1,4-Bromofluorobenzene	104 100 99	<u>Limits</u> 74-140 88-112 74-110			1,2-Dichloroetl Toluene-d8-TF		· ·	105 98	<u>Limits</u> 74-146 88-112	
Method Blank			099-12	-767-1,99	5 N/A	Aqueous	GC/MS LL	06/13/09	06/13/09 12:17	9.090613L01
Parameter Benzene Ethylbenzene Toluene <u>Surrogates:</u>	<u>Result</u> ND ND ND <u>REC (%)</u>	<u>RL</u> 0.50 1.0 1.0 <u>Control</u> Limits	<u>DF</u> 1 1	<u>Qual</u> <u>Qual</u>	<u>Parameter</u> Xylenes (total) Methyl-t-Butyl TPPH <u>Surrogates:</u>	Ether (MTB		Result ND ND ND REC (%)	<u>RL</u> 1.0 50 <u>Control</u> Limits	<u>DF Qual</u> 1 1 1 <u>Qual</u>
Dibromofluoromethane Toluene-d8 1,4-Bromofluorobenzene	105 100 101	74-140 88-112 74-110			1,2-Dichloroet Toluene-d8-Ti			105 99	74-146 88-112	

him

M

									Pa	ge 9	of 19
<i>C</i> alscience <i>nvironmen</i> aboratori				Analyt	ical Repor						
Blaine Tech Services, In 1680 Rogers Avenue San Jose, CA 95112-11	05				Date Rece Work Ord Preparatio Method: Units:	er No:		LUFT G	C/MS /	09-0 EPA	6/05/09 6-0501 5030B 8260B ug/L
Project: 1784 150th Ave	e., San Le	andro, (Data/Time			Date	Data		e 1 of 1
Client Sample Number			ione of the Real of	ab Sample Number 0501-5-B	Date/Time Collected 06/03/09 11:30	Matrix Aqueous	Instrument GC/MS LL	Prepared	Date/1 Analy 06/13 14;:	zed (2C Batch ID 090613L01
<u>Parameter</u> Benzene Ethylbenzene Toluene Xylenes (total) Methyl-t-Butyl Ether (MTBE) <u>Surrogates:</u>	<u>Result</u> ND ND ND ND <u>REC (%)</u>	RL 0.50 1.0 1.0 1.0 1.0 <u>Control</u> Limits	DF 1 1 1 1	<u>Qual</u> <u>Qual</u>	Parameter Tert-Butyl Alcoh Diisopropyl Ethe Ethyl-t-Butyl Eth Tert-Amyl-Meth TPPH Surrogates:	er (DIPE) her (ETBE)	AME)	<u>Result</u> ND ND ND ND ND REC (%)	<u>RL</u> 10 2.0 2.0 2.0 50 <u>Control</u> Limits	<u>DF</u> 1 1 1 1	<u>Qual</u>
Dibromofluoromethane Toluene-d8 1,4-Bromofluorobenzene Method Blank	112 100 101	74-140 88-112 74-110	099-12	2=767-1,99	1,2-Dichloroeth Toluene-d8-TPI 5 N/A	PH	GC/MSILL	107 98 06/13/09	74-146 88-112 06/1: 12:		090613L01
Parameter Benzene Ethylbenzene Toluene Xylenes (total) Methyl-t-Butyl Ether (MTBE)	Result ND ND ND ND ND	<u>RL</u> 0.50 1.0 1.0 1.0 1.0	DF 1 1 1 1 1	Qual	Parameter Tert-Butyl Alcol Diisopropyl Eth Ethyl-t-Butyl Et Tert-Amyl-Meth TPPH	er (DIPE) her (ETBE	AME)	Result ND ND ND ND ND	RL 10 2.0 2.0 2.0 50	<u>DF</u> 1 1 1 1 1	Qual
<u>Surrogates:</u> Dibromofluoromethane Toluene-d8 1,4-Bromofluorobenzene	<u>REC (%)</u> 105 100 101	<u>Control</u> Limits 74-140 88-112 74-110		<u>Qual</u>	<u>Surrogates:</u> 1,2-Dichloroeth Toluene-d8-TP			<u>REC (%)</u> 105 99	<u>Control</u> <u>Limits</u> 74-146 88-112		Qual

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

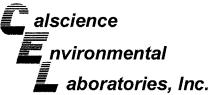
M

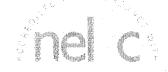
him

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 • FAX: (714) 894-7501

.

Page 10 of 19


nec


Blaine Tech Services, Inc.	Date Received:	06/05/09
1680 Rogers Avenue	Work Order No:	09-06-0501
San Jose, CA 95112-1105	Preparation:	EPA 5030B
	Method:	LUFT GC/MS / EPA
		8260B

Project 1784 150th Ave., San Leandro, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
MW-1A	Aqueous	GC/MS LL	06/12/09		06/12/09	090612S01
Parameter	MS %REC	MSD %REC	<u>%REC CL</u>	<u>RPD</u>	RPD CL	Qualifiers
Benzene	98	92	88-118	6	0-7	
Carbon Tetrachloride	97	93	67-145	4	0-11	
Chlorobenzene	97	89	88-118	8	0-7	4
1,2-Dibromoethane	101	95	70-130	6	0-30	
1,2-Dichlorobenzene	98	90	86-116	9	0-8	4
1,1-Dichloroethene	99	91	70-130	9	0-25	
Ethylbenzene	95	90	70-130	6	0-30	
Toluene	99	91	87-123	9	0-8	4
Trichloroethene	94	88	79-127	7	0-10	
Vinyl Chloride	108	105	69-129	3	0-13	
Methyl-t-Butyl Ether (MTBE)	109	97	71-131	9	0-13	
Tert-Butyl Alcohol (TBA)	106	80	36-168	11	0-45	
Diisopropyl Ether (DIPE)	108	100	81-123	8	0-9	
Ethyl-t-Butyl Ether (ETBE)	110	101	72-126	8	0-12	
Tert-Amyl-Methyl Ether (TAME)	106	98	72-126	7	0-12	
Ethanol	90	111	53-149	21	0-31	

RPD - Relative Percent Difference, CL - Control Limit

Blaine Tech Services, Inc.	Date Received:	06/05/09
1680 Rogers Avenue	Work Order No:	09-06-0501
San Jose, CA 95112-1105	Preparation:	EPA 5030B
	Method:	LUFT GC/MS / EPA
		8260B

Project 1784 150th Ave., San Leandro, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date I alyzed	NS/MSD Batch Number
MW-3	Aqueou	s GC/MS ^I LL	06/13/09	06	6/13/09	090613S01
		Y				
Parameter	MS %REC	MSD %REC	<u>%REC CL</u>	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
Benzene	98	98	88-118	1	0-7	
Carbon Tetrachloride	101	101	67-145	0	0-11	
Chlorobenzene	95	97	88-118	2	0-7	
1,2-Dibromoethane	100	103	70-130	3	0-30	
1,2-Dichlorobenzene	98	98	86-116	0	0-8	
1,1-Dichloroethene	103	105	70-130	1	0-25	
Ethylbenzene	95	97	70-130	2	0-30	
Toluene	97	100	87-123	2	0-8	
Trichloroethene	96	95	79-127	1	0-10	
Vinyl Chloride	119	114	69-129	4	0-13	
Methyl-t-Butyl Ether (MTBE)	107	113	71-131	5	0-13	
Tert-Butyl Alcohol (TBA)	100	111	36-168	10	0-45	
Diisopropyl Ether (DIPE)	108	111	81-123	2	0-9	
Ethyl-t-Butyl Ether (ETBE)	107	111	72-126	3	0-12	
Tert-Amyl-Methyl Ether (TAME)	101	104	72-126	3	0-12	
Ethanol	110	137	53-149	22	0-31	

RPD - Relative Percent Difference, CL - Control Limit

Page 12 of 19

Blaine Tech Services, Inc. 1680 Rogers Avenue

San Jose, CA 95112-1105

Date Received: Work Order No: Preparation: Method: 06/05/09 09-06-0501 EPA 5030B LUFT GC/MS / EPA 8260B

Project 1784 150th Ave., San Leandro, CA

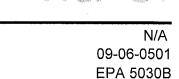
Quality Control Sample ID	Matrix	Instrument	Date Prepared	A	Date malyzed	MS/MSD Batch Number		
09-06-0505-3	Aqueous	GC/MS LL	06/12/09	0	06/13/09	090612S02		
Parameter	MS %REC	MSD %REC	<u>%REC CL</u>	<u>RPD</u>	RPD CL	Qualifiers		
Benzene	96	94	88-118	1	0-7			
Carbon Tetrachloride	96	96	67-145	0	0-11			
Chlorobenzene	93	91	88~118	2	0-7			
1,2-Dibromoethane	102	98	70-130	4	0-30			
1,2-Dichlorobenzene	96	93	86-116	3	0-8			
1,1-Dichloroethene	89	90	70-130	2	0-25			
Ethylbenzene	93	90	70-130	3	0-30			
Toluene	96	95	87-123	2	0-8			
Trichloroethene	89	88	79-127	1	0-10			
Vinyl Chloride	108	106	69-129	1	0-13			
Methyl-t-Butyl Ether (MTBE)	109	108	71-131	1	0-13			
Tert-Butyl Alcohol (TBA)	108	111	36-168	3	0-45			
Diisopropyl Ether (DIPE)	108	107	81-123	1	0-9			
Ethyl-t-Butyl Ether (ETBE)	109	106	72-126	2	0-12			
Tert-Amyl-Methyl Ether (TAME)	102	101	72-126	0	0-12			
Ethanol	107	112	53-149	5	0-31			

RPD - Relative Percent Difference, CL - Control Limit

Blaine Tech Services, Inc.	Date Received:	N/A
1680 Rogers Avenue	Work Order No:	09-06-0501
San Jose, CA 95112-1105	Preparation:	EPA 5030B
x	Method:	LUFT GC/MS / EPA 8260B

Project: 1784 150th Ave., San Leandro, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Anal		LCS/LCSD I Numbe	
099-12-767-1,988	Aqueous	GC/MS LL	06/12/09	06/12	/09	090612L	01
Parameter	LCS %REC	LCSD %REC	<u>%REC CL</u>	ME_CL	<u>RPD</u>	<u>RPD CL</u>	Qualifiers
Benzene	98	99	84-120	78-126	• 0	0-8	
Carbon Tetrachloride	99	105	63-147	49-161	6	0-10	
Chiorobenzene	98	96	89-119	84-124	2	0-7	
1,2-Dibromoethane	104	101	80-120	73-127	2	0-20	
1,2-Dichlorobenzene	101	102	89-119	84-124	1	0-9	
1,1-Dichloroethene	98	99	77-125	69-133	2	0-16	
Ethylbenzene	97	98	80-120	73-127	1	0-20	
Toluene	100	99	83-125	76-132	0	0-9	
Trichloroethene	98	98	89-119	84-124	0	0-8	
Vinyl Chloride	106	111	63-135	51-147	5	0-13	•
Methyl-t-Butyl Ether (MTBE)	109	111	82-118	76-124	1	0-13	
Tert-Butyl Alcohol (TBA)	105	107	46-154	28-172	2	0-32	-
Diisopropyl Ether (DIPE)	106	110	81-123	74-130	5	0-11	
Ethyl-t-Butyl Ether (ETBE)	109	113	74-122	66-130	4	0-12	
Tert-Amyl-Methyl Ether (TAME)	108	107	76-124	68-132	0	0-10	
Ethanol	122	112	60-138	47-151	9	0-32	
ТРРН	87	90	65-135	53-147	4	0-30	


Total number of LCS compounds : 17 Total number of ME compounds : 0 Total number of ME compounds allowed : LCS ME CL validation result : Pass

> RPD - Relative Percent Difference, CL - Control Limit

1

Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105 Date Received: Work Order No: Preparation: Method:

LUFT GC/MS / EPA 8260B

Project: 1784 150th Ave., San Leandro, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Anal	ate yzed	LCS/LCSD Numbe	
099-12-767-1,995	Aqueous	GC/MS LL	06/13/09	06/13	/09	090613L	01
Parameter	LCS %REC	LCSD %REC	%REC CL	ME_CL	RPD	RPD CL	Qualifiers
Benzene	99	99	84-120	78-126	0	0-8	
Carbon Tetrachloride	100	106	63-147	49-161	6	0-10	
Chlorobenzene	96	98	89-119	84-124	2	0-7	
1,2-Dibromoethane	105	103	80-120	73-127	1	0-20	
1,2-Dichlorobenzene	99	100	89-119	84-124	1	0-9	
1,1-Dichloroethene	102	99	77-125	69-133	3	0-16	
Ethylbenzene	96	98	80-120	73-127	2	0-20	
Toluene	100	99	83-125	76-132	1	0-9	
Trichloroethene	99	98	89-119	84-124	1	0-8	
Vinyl Chloride	113	116	63-135	51-147	3	0-13	
Methyl-t-Butyl Ether (MTBE)	110	112	82-118	76-124	1	0-13	
Tert-Butyl Alcohol (TBA)	108	106	46-154	28-172	3	0-32	
Diisopropyl Ether (DIPE)	109	113	81-123	74-130	3	0-11	
Ethyl-t-Butyl Ether (ETBE)	. 112	114	74-122	66-130	2	0-12	
Tert-Amyl-Methyl Ether (TAME)	108	106	76-124	68-132	1	0-10	
Ethanol	108	115	60-138	47-151	. 6	0-32	
ТРРН	91	83	65-135	53-147	10	0-30	

 Total number of LCS compounds :
 17

 Total number of ME compounds :
 0

 Total number of ME compounds allowed :
 LCS ME CL validation result :

RPD - Relative Percent Difference , CL - Control Limit

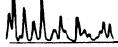
1

Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105 Date Received: Work Order No: Preparation: Method: N/A 09-06-0501 EPA 5030B LUFT GC/MS / EPA 8260B

Project: 1784 150th Ave., San Leandro, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Anal		LCS/LCSD I Numbe	
099-12-767-1,990	Aqueous	GC/MS LL	06/12/09	06/13	/09	090612L	02
Parameter	LCS %REC	LCSD %REC	%REC CL	ME_CL	<u>RPD</u>	RPD CL	Qualifiers
Benzene	93	95	84-120	78-126	1	0-8	
Carbon Tetrachloride	96	94	63-147	49-161	2	0-10	
Chlorobenzene	92	94	89-119	84-124	2	0-7	
1,2-Dibromoethane	101	102	80-120	73-127	1	0-20	
1,2-Dichlorobenzene	94	95	89-119	84-124	1	0-9	
1,1-Dichloroethene	95	90	77-125	69-133	5	0-16	
Ethylbenzene	92	93	80-120	73-127	2	0-20	
Toluene	95	96	83-125	76-132	1	0-9	
Trichloroethene	94	95	89-119	84-124	1	0-8	
Vinyl Chloride	106	99	63-135	51-147	7	0-13	
Methyl-t-Butyl Ether (MTBE)	113	105	82-118	76-124	7	0-13	
Tert-Butyl Alcohol (TBA)	110	107	46-154	28-172	3	0-32	
Diisopropyl Ether (DIPE)	108	105	81-123	74-130	3	0-11	
Ethyl-t-Butyl Ether (ETBE)	110	106	74-122	66-130	4	0-12	
Tert-Amyl-Methyl Ether (TAME)	104	104	76-124	68-132	0	0-10	
Ethanol	130	119	60-138	47-151	9	0-32	
ТРРН	85	86	65-135	53-147	2	0-30	

 Total number of LCS compounds :
 17


 Total number of ME compounds :
 0

 Total number of ME compounds allowed :
 LCS ME CL validation result :

 Pass

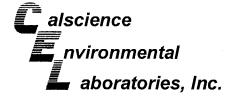
RPD - Relative Percent Difference, CL - Control Limit

1

Glossary of Terms and Qualifiers

Work Order Number: 09-06-0501

Qualifier	Definition
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
А	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
E	Concentration exceeds the calibration range.
[•] H	Sample received and/or analyzed past the recommended holding time.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ME	LCS Recovery Percentage is within LCS ME Control Limit range.
N	Nontarget Analyte.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
U	Undetected at the laboratory method detection limit.
Х	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture.


LAB (LOCATION)

Shell Oil Products Chain Of Custody Record

Balance New Review BTSS 17764 150th Ave, San Leandro CA T06000101230 Manual Review Manua Review Manual Review Manual Rev	LAB (LOCATION)				i			She	II O)il P	ro	du	cts	Cł	nai	n C)f C	ust									_			
I =		10000	Ple	ase Cheo	k Apr	ropria	te Box:		P	rint B	ill:Te	o Co	ntaci	Nan	ne:				. BA	ICIDE	NT #	(EN	V SE	RVIC	ES)		CHECK I	NO INCID	NT # APPL	IES
1000000000000000000000000000000000000	🖸 SPL (the second second				HELL RETAL	L D	ntor S	Soba	ofor	2406	42					9	8	9	9	6	0	6 8	3	DATE:	6 3	109	<u> </u>
□ Test Netto: □ origit				R	CONSULT			UBES			Cila										•		÷÷÷÷			3		2		ອ ເອ
Office Option Option<) [귀는	<u> </u>	1	1			<u></u>	<u> </u>	1	Ť		T T	T T	<u></u> 1	Ť	- 	<u> </u>	· ا	PAGE:		_ of	
Band Work BTSS T764 1500h Ave, San Leandro CA T0600101230 With Vicks CA T0600101230 With Vicks With Vicks With Vicks CA T0600100000 With Vicks With Vicks With Vicks CA You Nick With Vicks With Vicks With Vicks CA You Nick With Vicks With Vicks With Vicks CA With Vicks With Vicks With Vicks With Vicks CA With Vicks With Vicks With Vicks With Vicks With Vicks With Vicks With Vicks With Vicks With Vicks With Vicks		, 🛄 SHE	ELL PIPELINE																6646		L	GLOBA								
Biller Feld Did 00 Did									1				-	San	ہم ا	ndr	•					T06	5001	012	30					
Indextage Index									EDI	FOELVER	ABLE TO	O (Name, C	Company,	Office Loc	ation):		PHO	ND YO		<u> </u>										
Milestar Mindels Contract Market Mindels Contract Mindels Set 11 / Set	1680 Rogers Ave, San Jose, CA 95112				•			· · · ·	_	nni Kr	omi. t	CRA.	Eme	wille			(51	6) 420	-3335			Shell	ledf@	gcraw	orld.c	om		DYU E	103-m	101
NEW-WIL Law Law Law Law Law Law DOP DOP DOP DOP DOP DOP TERMANDUR THE CALERAD MUCH 12 M/S 12 M/S <td></td> <td>lling@craworld.c</td> <td>om</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>AMPLERN</td> <td>AME(S) (</td> <td>(Print)</td> <td></td> <td><i>,</i>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</td> <td></td> <td>1.4.1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>4</td> <td>AE US</td> <td></td> <td></td> <td></td> <td></td>		lling@craworld.c	om							AMPLERN	AME(S) ((Print)		<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1.4.1									4	AE US				
Important	TELEPHONE		E-MAIL							2,	کر د رمن	110	າ ເ		/											1)6.	- (020	1
If and (read) I and (read) <t< td=""><td></td><td>8)5/3-///1</td><td>mninok</td><td>ata@blain</td><td>etech.</td><td></td><td>PESHITS N</td><td>FEDED</td><td>_ -</td><td></td><td><u>m</u></td><td>-e</td><td>~</td><td></td><td><u> </u></td><td></td><td>10</td><td></td><td></td><td>ERTER</td><td></td><td></td><td>15</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		8)5/3-///1	mninok	ata@blain	etech.		PESHITS N	FEDED	_ -		<u>m</u>	-e	~		<u> </u>		10			ERTER			15							
I RANCE REPORT ROLL I. STARLET I. STARLET RANKLASSENET PALL RAPIES I. STARLET RAPIES I. STARLET RANKLASSENET PALL RAPIES I. STARLET RANKLASSENET PALL RAPIES I. STARLET RANKLASSENET PALL RAPIES I. STARLET RAPIES		D 3 DAYS	🗖 2 DAYS	🖸 24 H	ours				D				, ,																	{
SPECIAL INSTRUCTIONS OR NOTES:	LA - RWQCB REPORT FORMAT	AGENCY:											ĺĺ														TE	VIPERATU		CEIPI
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		·····		🗖 Shei	L CONTR	ACT RATE	APPLIES		1	a 🕯																			Ç.	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SPECIAL INSTRUCTIONS OR NOTE) -		_			T RATE APPL	IES	10ac			(g																		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		•								e le		826			1		6		6	ŴS				1			-			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Den 7011 dur(Olling Col Cison Un			RECI	EIPT VER	IFICATION	REQUESTED	>		ictal a	f	sa	ß	a	<u>a</u>	e i	260 H	6	2601	801										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Run IPH-0 WSuica Ger Clean Op	SAF	MPLING			PRESE	ERVATIVE			Ĩ	826	ena	(826	1260	B260	(826	979) 8 (8	3260	1(8)	P				1						
$\frac{11}{11} \frac{1}{11} $	Field Sample Identifica	tion		MATRIX					NT.	÷	Ĭ	B/XC	Ë	8) ¥	E E	W I		E E	han	tha					÷					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $.use	DATE	TIME		HCL	HNO3 HZ	SO4 NONE	OTHER	1	5 F	E	50	Σ	F	ā	<u>≮ </u>			<u>a</u>	ž				\vdash		+	<u> </u>			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		6318	11430	W	3			3	, 7	<	ø		ø	×		~	_×	¦. 	-		 			┝╌╋		+				
13 MW - [2 1040 10 10 10 10 14 MM - [3 1159 10 10 10 10 10 15 HW - [3 1159 10 10 10 10 10 16 HW - [2 1040 10 10 10 10 10 16 HW - [2 1045 10 10 10 10 10 16 EW - 2 1045 10 10 10 10 10 16 EW - 2 1045 10 10 10 10 16 EW - 2 1045 10 10 10 10 16 EW - 2 1045 10 10 10 17 Result by (Synton) Result by (Synton) 5Ann PLE 6/3/39 1623 16 H H H H 10 10 1002			1350		1)	0	k	<u>ا ا</u>	Ý	6		×	<u>×</u>	2	_	<u> </u>				\vdash						
12 MN-B 1150 X X X X 15 MN-B 1140 X X X X 16 EN-2 1245 V X X X 16 EN-2 1245 X X X X 17 Energy Factor by (Syntax) SAMIPLE Energy Energy 18 Energy Factor by (Syntax) SAMIPLE Energy Energy 19 Energy Factor by (Syntax) Factor by (Syntax) Factor by (Syntax) Energy <td< td=""><td></td><td></td><td></td><td></td><td>\square</td><td></td><td></td><td></td><td>Y</td><td>0</td><td>6</td><td></td><td>Ø</td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td>ļ</td><td></td><td></td><td>\square</td><td></td><td>\downarrow</td><td></td><td></td><td></td><td></td></td<>					\square				Y	0	6		Ø				_				ļ			\square		\downarrow				
IS HWWED EN-1 1410 1 x x x x IS EN-2 1345 V x x x x x IS EN-2 1345 V x x x x IS EN-2 1345 V x x x x IS EN-2 1345 V x x x IS EN-2 1345 V x x x Reinvision Reinvision SAM PLE Dete: 6/3/29 1/623 IS Exercise by (Signition) Reinvision SAM PLE Dete: 6/4/09 1/623 IS Exercise by (Signition) Reinvision Three 6/4/09 1/623 IS Exercise by (Signition) Reinvision Contraction Dete: 6/4/09 1/623			1150							c 📃	×	•	p					1		<u> </u>	\square			⊢╌┤						
Relinquised by (Signilian) Relinquised by (Signilian) Received by (Signilian		1-1	1410						>	۹ 🗌	×	٥	x						1		<u> </u>			\vdash						
Relinguistically: (Signature) Relinguistically: (Signature)					V				ψ,	0	×	\$	\sim							1				\square			<u>_</u>			
Relinquising by: (Signature) Relinquising by: (Signature) Relinquising by: (Signature) Relinquising by: (Signature) Relinquising by: (Signature) Received by: (Signature)			1																	ļ	ļ			 						
Relinquising by: (Signature) Relinquising by: (Signature) Relinquising by: (Signature) Relinquising by: (Signature) Relinquising by: (Signature) Received by: (Signature)			1								Τ															1				
Relinquished by: (Signature) Relinquished by: (Signature) Relinq									·	-+-		\uparrow				-				1				\square						
Relinquising by: (Signature) Relinquising by: (Signature) Relinquising by: (Signature) Relinquising by: (Signature) Relinquising by: (Signature) Received by: (Signature)			_			┠ ┠	_		_						\rightarrow	-+	+-				· .						_			
Relinquished by: (Signature) Relinquished by: (Signature) Relinquished by: (Signature) Relinquished by: (Signature) Relinquished by: (Signature) Received by: (Signature)																					Orter	<u> </u>		Ł			me:			
Received by: (Signation) Dele: Dele: 1000 President (Signation) 10000 President (Signation) 1000 President (Sig	Relinquished by: (Signature)			Received by:	(Signature)	5	/ .	SAM	PLE	-											0.010	.	121	1				110	2	
	AA			1 A	×	\leq		ws	TUI	1A	N											<u>•/</u>	<u> </u>	-7	·			164	~	
	Relinquished by: (Signature)	<u> </u>		Received by:	(Signalure)	, ,	/	1	0	2-1													u li	10		["				
	1 Harle Cus	John).	,		0	n	all	ly_	4	<u>P</u> C												<u> </u>	1					00		
Reinquished by Signature) 11 6/4/09 Received by: (Signature)	Reinquished by: (Signature)	4	1/09		(Signature)	,		1									Λ	NC	1				~1	00	y			-		
Reinguished by Bightighters) 44/09 Received by (Signature) 1000 The OMpluy TO 650 4730 1000 USIZZUG Revision	To Ondly to	650 17:	30												-		H	H¢-	an	r	10	9 /-	>/	07					n	
		<u> </u>															11	/									55			

Image: Product Control (Control (Co	LAB (LOCATION))	S	hell	Oi	I P	roc	due	cts	Cha	ain	Of	Cu	sto	dy	Re	COL	d -						
Image:			Ple	ase Che	ck Ap	propr	iate E	Box		Prì	nt Bi	ill To	Col	ntact	Name					INC	DEN	ſ#(E	NV S	ERVI	CES)	🗆 ci	HECK IF N	O INCIDEN	# APPLIES
Inter	□ SPL ()	EI	<u> </u>		_				RETAIL	1	••••								Γ										
□ The full □ Intel	XENCO ()		OTIVA SD&CM		CONSUL	TANT																				2		1 1	
And Taxis Barries Database Database <td>TEST AMERICA ()</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>L</td> <td></td> <td><u> </u></td> <td>T</td> <td>1 1</td> <td></td> <td></td> <td><u> </u></td> <td><u>:</u> T</td> <td><u>i i i i</u></td> <td></td> <td><u></u></td> <td>1</td> <td><u> </u></td> <td><u></u></td> <td>1</td> <td>1</td> <td><u></u></td> <td>- P/</td> <td>AGE:</td> <td><u> </u></td> <td>of</td>	TEST AMERICA ()							L		<u> </u>	T	1 1			<u> </u>	<u>:</u> T	<u>i i i i</u>		<u></u>	1	<u> </u>	<u></u>	1	1	<u></u>	- P/	AGE:	<u> </u>	of
Barrows BTSS T784 150th Ave, San Leandro CA T0900101230 BR Report Am, San Ave, CA 95172 Anni Kremi, CAA, Binerytlie (910) 423-335 Bailed@creworld.com (910) 423-335 BR Report Am, San Ave, CA 95172 Anni Kremi, CAA, Binerytlie (910) 423-335 Bailed@creworld.com (910) 423-335 Breach Michael - Copy to Stell Lab.Billing@creworld.com Inninoldal@blantech.com MILL (14h Wol Nf.; US 57 I/N (966 05-W) Celebra Michael - Copy to Stell Lab.Billing@creworld.com Inninoldal@blantech.com NILL (14h Wol Nf.; US 57 I/N (966 050) Celebra Michael - Copy to Stell Lab.Billing@creworld.com Inninoldal@blantech.com NILL (14h Wol Nf.; US 57 I/N (966 05.00) Celebra Michael - Copy to Stell Lab.Billing@creworld.com Inninoldal@blantech.com NILL (14h Wol Nf.; US 57 I/N (966 05.00) Celebra Michael - Copy to Stell Lab.Billing@creworld.com Inninoldal@blantech.com Inninoldal@blantech.com NILL (14h Wol Nf.; US 57 I/N Celebra Michael - Copy to Stell Lab.Billing@creworld.com Inninoldal@clantech.com Inninoldal@clantech.com Inninoldal@clantech.com SeeDal Instructions Societtic Inninoldal@clantech.com Inninoldal@clantech.com Inninoldal@clantech.com Inninoldal@clantech.com Res TFH d visible: Gel Clan Up Sample Societticom Sametael Societticom<			HELL PIPELINE			ODE:				STT	ADDR	FSS: SI	reet ar			1			s	tate		GLO	BALIDN						
Mark Annu Aver Assist Assist Annu Kremi, CAA, Bringville (650, 426-3335 Bailed Begrowork from Of 10.6 0.5 - W Intermediation Implementation Implementation July 57 /JN	AMPLING COMPANY Blaine Tech Services				1					17	84 1	50tl	h Av	/e., S	an L	ean	dro		(ТО	600	1012	30		- 1.66	WICH TANT DO	0.56710
And the Allow Copy 10 (Intellab.Billing@croworkLoom) Care of the Copy 10 (Intellab.Billing@croworkLoom) Core of the Copy 10 (Intellab.Billing@crowo	ADORESS 680 Rogers Ave, San Jose, CA 95112								-,-							(1				35		She	liedf	Deraw	orld.co	an a			
Non-TABLE Immediate devices Recuestion R		craworld.	com							SAM	PLERNA	ME(S) (P	rint)	t 1	VIIIE				1US	TI	V			,		ØVSE	OWLY		
Name Name <th< td=""><td>TELEPHONE FAX.</td><td></td><td>E-MAIL</td><td>atamhlair</td><td>hetech</td><td></td><td></td><td></td><td></td><td>1 1</td><td>MI</td><td></td><td>, ()</td><td>tM</td><td>VV</td><td>0 1</td><td>16</td><td>)</td><td>K</td><td>RE</td><td>555</td><td>•</td><td></td><td></td><td></td><td>\mathcal{O}</td><td>6—</td><td>05</td><td>01</td></th<>	TELEPHONE FAX.		E-MAIL	atamhlair	hetech					1 1	MI		, ()	tM	VV	0 1	16)	K	RE	555	•				\mathcal{O}	6—	05	01
1 A. HANCES BERCH MORNAL I. STAREDCH. I. STAREDCH. HART MORNAL I. STAREDCH. I. STARE REPRESENTED IN TRANSFER	TURNAROUND TIME (CALENDAR DAYS):						RES			+													sis						
3 0	STANDARD (14 DAY) 5 DAYS 3	AYS	2 DAYS	24 F	IOURS			ON V	EEKEND	·	T	<u> </u>		<u> </u>			1									T			
SPECIAL INSTRUCTIONS OR NOTES: I sell contract for and solution <li< td=""><td>LA - RWQCB REPORT FORMAT</td><td>:</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>TEMPE</td><td></td><td></td></li<>	LA - RWQCB REPORT FORMAT	:								-																	TEMPE		
Build of the control and	SPECIAL INSTRUCTIONS OR NOTES :			_						(B)	15M										1								
Run TPH-d w/Silica Gel Clean Up SAMPLING PRESENTION REQUERTED Image: Pield Sample Identification Date: Time MATRIX Presention Container PID Readings or Laboratory Noises Image: Pield Sample Identification Date: Time MATRIX Presention Sample Identification Date: Time Matrix Presention										(826	(80		60B																
SAME/ING PRESERVATIVE No. of control with the control withe control with the control							on requ	JESTED		ble	able		(82			-		ß		Î I	WCL								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Run TPH-d w/Silica Gel Clean Up		<u></u>					•.		rgea	ract	60B	ates	20B		160B	60B	(826	(B)	826(1		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		SA	MPLING			PRE	SERVAT	IVE	NO. OF	- 6	E T	(82)	/gen	E (82	826	E (82	82	Š	(826		ano						6	tainor Dif	Dendler
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		DAT		MATRIX					CONT	H	H	Ě	õ	Ē	K H	AME	E E	50		ta i i									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ONLY.					HNO3 1	12504	IONE OTHE			<u> </u>	+ +	5			╞	+	-+-	~				+			╋┙			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		b 3]e	9 1400	W	3				3	~					_		<u> </u>									┼──┦	<u> </u>		
3 Mw -2B 1415 x x x 1 Mw -3 1459 x x x x 1 Mw -3 1459 x x x x 5 Mw -9 125 x x x x 6 Mw -5 1215 x x x x 7 Mw -6 125 x x y x 8 Mw -7 1020 x y y x 9 Mw -7 1020 x y y y 9 Mw -9 y y y y y 9 Mw -10 Max Max y y y 9 Mw -2 <td>2 Mm-1B</td> <td>11</td> <td>1325</td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td>1</td> <td>2</td> <td><u> </u></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td>\square</td> <td><u> </u></td> <td></td> <td></td>	2 Mm-1B	11	1325		1				1	2	<u> </u>					1									_	\square	<u> </u>		
Images by comment 1450 x x x x Images by comment 125 x x x x Images by comment 1023 x x x x Images by comment x x x			1415							8		1		×								_	<u> </u>			\square			
S MW-9 MW-5 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1215 1225 1215 1225	4 Mm-3						1		Π	×		×	Х					×											
2 MN-5 1215 7 MN-6 1225 8 MN-7 102 9 MN-8 102 9 MN-9 102 9 MN-9 102 9 MN-9 102 102 102 102 102 102 102 102										X		X	Ø														Ĺ		
MW-8 102 ² V V	1 MM-5				-+1	╞╼╍┽	- 1							8															
MW-8 102 ² V V	7 Maid						†				1	++		V											1	\square			
MW-8 102 ² V V	14.57			<u> _ </u>		╞╴╞				- <u> `-</u>				5		Τ													
1 PWV C MW-9 10 MW-9 10 MW-					-++	╆╼┼				+	+					\uparrow	1	-+			1					\square			
The construction of the co			-			┼╌┼					+	1				+-					-	-							
reactived by: (Signature) reactived by: (Signature) reactive by: (Signa		<u> </u>	133			1 I			<u>V</u>	14	1	14		70	_						D	ite:				Time:	<u> </u>		
rescriptived by: (Signature) rescriptived by: (Signature) rescri	Relinguisted by: (Signature)			1 L	(Signature		St	MP	UE													ь /	'3 /	09			- 17	173	
Leven de by Signature) Leven de by Signature	1 And			R	$\overline{\ }$	2		WS.	TOD	14	<u>N</u>											<u> </u>	1	1		Time	<u></u>	<u> </u>	
teringuisted by: (Signeture) To Malley 70 650 1736 To Signeture) To Signeture	ReBnd/Is/dd by: (Signature)			Received by	Signatur		~	11		~ ~	~ >												'u/	ንና				7	
To Malley 70 650 1736 Received by: (Signature) 1000	the Camb Costom.)				201	<u> / (</u>	W	<u>y (</u>	کار	\mathcal{C}				•								111			Time'		<u> </u>	
10-01 Malley 70 650 1736	Refinguished by: (Signeture)	6/-4	1/09	Received by:	(Signature	3)		//	1								i	n /	1	7			c/.	1				0	
05/2/06 Revision	To Omalley TA 651	5 17	736					V										Lit	an	*		6/3	2/0	9					
	10 - 11 10 - 000	205															11								_		05/2/06 1	Revision	

WORK ORDER #: 09		Page 19 of 19
A storatories, Inc. SAMPLE RECEIPT FORM	Coole	r _ [_ of _ [
CLIENT: <u>Blaine Tech</u> DA	TE: <u>6</u>	15 109
TEMPERATURE: (Criteria: 0.0 °C - 6.0 °C, not frozen) Temperature 2 6 °C - 0.2 °C (CF) = 2 4 °C Image: Sample(s) outside temperature criteria (PM/APM contacted by:	sampling.	Sample Initial:
CUSTODY SEALS INTACT: Cooler No (Not Intact) Sample No (Not Intact) Not Present	N/A	Initial: Initial:
SAMPLE CONDITION: Yes	No	N/A
Chain-Of-Custody (COC) document(s) received with samples		
□ Collection date/time, matrix, and/or # of containers logged in based on sample labels.		
COC not relinquished.		
Sampler's name indicated on COC.		
Sample container label(s) consistent with COC		
Sample container(s) intact and good condition		
Correct containers and volume for analyses requested		
Analyses received within holding time		
Proper preservation noted on COC or sample container		
☐ Unpreserved vials received for Volatiles analysis		
Volatile analysis container(s) free of headspace		
Tedlar bag(s) free of condensation \Box		
CONTAINER TYPE:	<u>)</u>	-
Solid: □4ozCGJ □8ozCGJ □16ozCGJ □Sleeve □EnCores [®] □Terr	aCores® [
Water: □VOA _ ─VOAh □VOAna₂ □125AGB □125AGBh □125AGBp □1A		Bna ₂ 🗆 1AGBs
□500AGB □500AGJ □500AGJs □250AGB □250CGB □250CGBs □1		
□250PB □250PBn □125PB □125PBznna □100PB □100PBna ₂ □		
	ecked/Label	
Preservative: h: HCL n: HNO3 na ₂ :Na ₂ S ₂ O ₃ Na: NaOH p: H ₃ PO ₄ s: H ₂ SO ₄ znna: ZnAc ₂ +NaOH f: Fleid-f	Review	red by: $1/5$

July 09, 2009

Michael Ninokata Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105

Subject: Calscience Work Order No.: Client Reference:

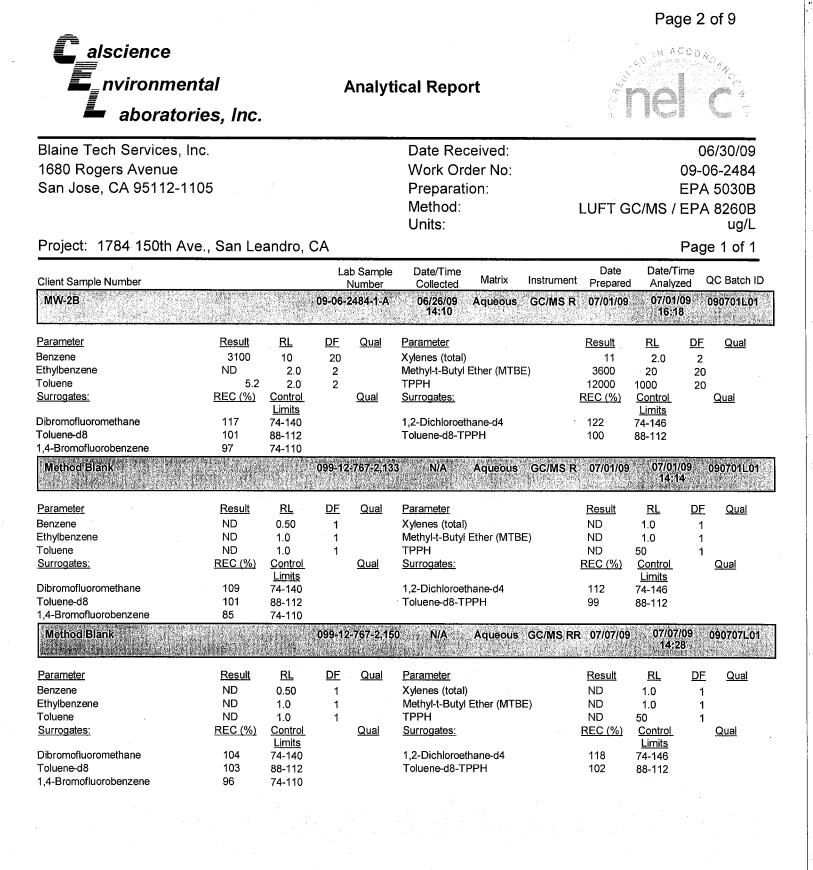
09-06-2484 1784 150th Ave., San Leandro, CA

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 6/30/2009 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.


Sincerely,

Philp Samelle for

Calscience Environmental Laboratories, Inc. Jessie Lee Project Manager

CA-ELAP ID: 1230

D: 1230 • NELAP ID: 03220CA • CSDLAC ID: 10109 • SCAQMD ID: 93LA0830 7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 • FAX: (714) 894-7501

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

MALAMA

Page 3 of 9

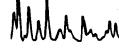
Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105

Date Received:	06/30/09
Work Order No:	09-06-2484
Preparation:	EPA 5030B
Method:	LUFT GC/MS / EPA
	8260B

Project 1784 150th Ave., San Leandro, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date nalyzed	MS/MSD Batch Number
09-06-2244-5	Aqueous	GC/MS R	07/01/09	. 0	7/01/09	090701501
1. m			·····			
Parameter	MS %REC	MSD %REC	<u>%REC CL</u>	RPD	RPD CL	Qualifiers
Benzene	93	91	88-118	2	0-7	
Carbon Tetrachloride	102	115	67-145	12	0-11	4
Chlorobenzene	95	96	88-118	1	0-7	
1,2-Dibromoethane	99	100	70-130	1	0-30	·
1,2-Dichlorobenzene	95	95	86-116	0	0-8	
1,1-Dichloroethene	89	92	70-130	4	0-25	
Ethylbenzene	99	99	. 70-130	0	0-30	
Toluene	100	96	87-123	4	0-8	
Trichloroethene	89	89	79-127	0	0-10	
Vinyl Chloride	109	117	69-129	7	0-13	
Methyl-t-Butyl Ether (MTBE)	98	110	71-131	11	0-13	
Tert-Butyl Alcohol (TBA)	98	100	36-168	2	0-45	
Diisopropyl Ether (DIPE)	95	103	81-123	9	0-9	
Ethyl-t-Butyl Ether (ETBE)	107	115	72-126	8	0-12	
Tert-Amyl-Methyl Ether (TAME)	105	109	72-126	3	0-12	
Ethanol	102	105	53-149	3	0-31	

RPD - Relative Percent Difference , CL - Control Limit


Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105

Date Received:	06/30/09
Work Order No:	09-06-2484
Preparation:	EPA 5030B
Method:	LUFT GC/MS / EPA
	8260B

Project 1784 150th Ave., San Leandro, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date N nalyzed	IS/MSD Batch Number
09-07-0167-6	Aqueou	IS GC/MS RR	07/07/09	0	7/07/09	090707S01
	n an	an Chair an ang anang ga na ng ga ang ga ang ga sa taon na taon ng taon ng taon ng taon ng taon ng taon ng taon	n in de la regionne de la company de la c		n og det en jegteren her har en konstanter for en som e	Anna Laisse naadse varginer se anstade stadiet indere a
Parameter	MS %REC	MSD %REC	<u>%REC CL</u>	<u>RPD</u>	RPD CL	Qualifiers
Benzene	95	93	88-118	2	0-7	
Carbon Tetrachloride	109	106	67-145	2	0-11	
Chlorobenzene	92	91	88-118	1	0-7	
1,2-Dibromoethane	100	96	70-130	4	0-30	
1,2-Dichlorobenzene	99	97	86-116	2	0-8	
1,1-Dichloroethene	107	103	70-130	5	0-25	
Ethylbenzene	101	99	70-130	2	0-30	
Toluene	97	95	87-123	3	0-8	
Trichloroethene	94	90	79-127	3	0-10	
Vinyl Chloride	101	98	69-129	4	0-13	
Methyl-t-Butyl Ether (MTBE)	100	98	71-131	2	0-13	
Tert-Butyl Alcohol (TBA)	95	93	36-168	2	0-45	
Diisopropyl Ether (DIPE)	104	102	81-123	2	0-9	
Ethyl-t-Butyl Ether (ETBE)	96	94	72-126	2	0-12	
Tert-Amyl-Methyl Ether (TAME)	97	96	72-126	2	0-12	
Ethanol	114	113	53-149	1	0-31	

RPD - Relative Percent Difference, CL - Control Limit

Blaine Tech Services, Inc.
1680 Rogers Avenue
San Jose, CA 95112-1105

Date Received: Work Order No: Preparation: Method: N/A 09-06-2484 EPA 5030B LUFT GC/MS / EPA 8260B

Project: 1784 150th Ave., San Leandro, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Anal		LCS/LCSD I Numbe	
099-12-767-2,133	Aqueous	GC/MS R	07/01/09	07/01	/09	090701L	01
Parameter	LCS %REC	LCSD %REC	<u>%REC CL</u>	ME_CL	RPD	RPD CL	Qualifiers
Benzene	95	95	84-120	78-126	0	0-8	
Carbon Tetrachloride	115	119	63-147	49-161	3	0-10	
Chlorobenzene	100	102	89-119	84-124	2	0-7	
1,2-Dibromoethane	99	100	80-120	73-127	1	0-20	
1,2-Dichlorobenzene	100	98	89-119	84-124	2	0-9	
1,1-Dichloroethene	99	103	77-125	69-133	4	0-16	
Ethylbenzene	105	107	80-120	73-127	2	0-20	
Toluene	101	107	83-125	76-132	6	0-9	
Trichloroethene	95	103	89-119	84-124	8	0-8	
Vinyl Chloride	124	120	63-135	51-147	3	0-13	
Methyl-t-Butyl Ether (MTBE)	105	104	82-118	76-124	1	0-13	
Tert-Butyl Alcohol (TBA)	101	99	46-154	28-172	2	0-32	
Diisopropyl Ether (DIPE)	101	100	81-123	74-130	1	0-11	
Ethyl-t-Butyl Ether (ETBE)	112	114	74-122	66-130	· 1	0-12	
Tert-Amyl-Methyl Ether (TAME)	104	103	76-124	68-132	1	0-10	
Ethanol	101	100	60-138	47-151	1	0-32	
ТРРН	95	102	65-135	53-147	8	0-30	

Total number of LCS compounds : 17 Total number of ME compounds : 0 Total number of ME compounds allowed : LCS ME CL validation result : Pass

RPD - Relative Percent Difference , CL - Control Limit

1

Mulnu

Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105

Date Received: Work Order No: Preparation: Method: N/A 09-06-2484 EPA 5030B LUFT GC/MS / EPA 8260B

Project: 1784 150th Ave., San Leandro, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Anal		LCS/LCSD I Numbe	
099-12-767-2,150	Aqueous	GC/MS RR	07/07/09	07/07	/09	090707L	01
Parameter	LCS %REC	LCSD %REC	%REC CL	ME CL	RPD	RPD CL	Qualifiers
Benzene	96	95	84-120	78-126	2	0-8	
Carbon Tetrachloride	112	109	63-147	49-161	3	0-10	
Chlorobenzene	95	93	89-119	84-124	1	0-7	
1,2-Dibromoethane	101	99	80-120	73-127	2	0-20	
1,2-Dichlorobenzene	99	99	89-119	84-124	0	0-9	
1,1-Dichloroethene	109	105	77-125	69-133	3	0-16	
Ethylbenzene	102	100	80-120	73-127	3	0-20	
Toluene	97	94	83-125	76-132	3	0-9	
Trichloroethene	97	94	89-119	84-124	3	0-8	
Vinyl Chloride	100	98	63-135	51-147	2	0-13	
Methyl-t-Butyl Ether (MTBE)	101	101	82-118	76-124	0	0-13	
Tert-Butyl Alcohol (TBA)	95	97	46-154	28-172	3	0-32	
Diisopropyl Ether (DIPE)	103	102	81-123	74-130	1	0-11	
Ethyl-t-Butyl Ether (ETBE)	94	94	74-122	66-130	1	0-12	
Tert-Amyl-Methyl Ether (TAME)	96	97	76-124	68-132	1	0-10	
Ethanol	102	112	60-138	47-151	9	0-32	
ТРРН	97	98	65-135	53-147	1	0-30	

Total number of LCS compounds : 17 Total number of ME compounds : 0 Total number of ME compounds allowed : 1 LCS ME CL validation result : Pass

RPD - Relative Percent Difference, CL - Control Limit

Work Order Number: 09-06-2484

<u>Qualifier</u>	Definition
*	See applicable analysis comment.
. 1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
А	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
C	Analyte presence was not confirmed on primary column.
E	Concentration exceeds the calibration range.
H H	Sample received and/or analyzed past the recommended holding time.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ME	LCS Recovery Percentage is within LCS ME Control Limit range.
Ν	Nontarget Analyte.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
U	Undetected at the laboratory method detection limit.
X	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture.

	AB (LOCATION)								Sh	ell	Oil	I P	ro	due	cts	Ch	air		f Ci	ust	ody	y R	ecc	ord							
	CIENCE (Pl	ase Cheo	k Ap	propriat	e Box	di ini		Prir	nt Bí	il:To	Col c	ntact	Nam	e				H		NT #	(EN	/ SEI	RVICI	ES)	П сн	ECK IF NO INC	IDENT # AP	PLIES
	(. SERVICES		AVITOM			SHELL RE	TATI					24061						9		<u>1 1</u>			0 6			TE: 6		
	O (П мо	TIVA SD&CI	1	CONSUL	TANT		LUBES							- 0#								SAP			1.7	1			$\left(\right)$
	AMERICA (🔲 зн			OTHER _				_					<u> </u>	<u> </u>	<u> </u>	1	1				ΪÌ	<u></u>	1	<u></u>	1	- PA	GE: (of _	
SAMPLING CO		······/·····/	1			LOG CC	DE .				\$ITE	ADDR	ESS: S	treet an	d C#v						State		└	GLOBAL	ID NO				<u></u>	·	
	lech Services					BTS	s				178	34 1	50t	h Av	/e., S	an I	_ea	ndro			CA				0010)123	0				
	gers Ave, San Jose,	CA 95112									EÖF ÖZ	LVERA	BLETO	{Name, C	ompany, O	fice Locati	ou).		PHONE					E-MAL						DG26	
2	NTACT (Hantcopy or PDF Report to)	Shell.Lab.Billing@cra	aworld.co	m			•						ME(S) (P		Emery	ville , (<u> </u>	1(510) 420-	3335		ł	Shello	:0160C	rawo		om Le use o			
TELEPHONE	408)573-0555	FAX (408)573-777		E-MAL	ata@blaine	etech.	com				A	f-1	$\int_{\mathcal{A}}$	ar	7	th	X	3										06	<u>،</u>	248	4
	OUND TIME (CALENDAR DA DARD (14 DAY)	YS): 5 DAYS 3 DAYS	5	2 DAYS	24 HC	OURS		RESULTS	S NEEDED ON WEE	KEND										R	EQUE	STED	ANA	LYSIS	5						
	WQCB REPORT FORMAT	UST AGENCY:																-						- [Τ		TEMPERA	TURE ON F	
SPEC	IAL INSTRUCTIONS	OR NOTES :				E REIMBI	ACT RATE A URSEMENT DED		PLIES		- Purgeable (8260B)	TPH - Extractable (8015M)		(8260B)								6								C°	
Run	TPH-d w/Silica Gei C	lean Up				IPT VERI	FICATION	REQUEST	ED		rgeable	ractabl	(B)	ates (8:	(B)	i i		(8)	1,2 DCA (8260B)	(8)	Ethanol (8260B)	Methanol (8015M)									
			SAM	PLING			PRESER			NO, OF	PE	Ă	(82(gen	(82)	976	(8)	(82	N C	826(ol (8	lou									
LAB USE OMLY	Field Sample	Identification	DATE	TIME	MATRIX	HCL	HN03 H2SC	4 NONE	OTHER	CONT.		-H-T	BTEX (8260B)	5 Oxygenates	MTBE (8260B)	1 EA (82005) DIPE (82608)	TAME (\$260B)	ETBE (8260B)	1,2 DC	EDB (8260B)	Ethan	Metha								er PID Real loratory No	• 1
1	MW-27	3	612610	410	W	3				3	X		X		\propto																
		:		• • · ·																											1
				~																											
			1			\square									-†		1														
	······	<u> </u>				+		+	+						+		+-						+		-		-				
		·				$\left \right $								$\left - \right $	-+-	+	+	+									-	++			
							_	+	╞╼┾						_		1.	-						+	_	+	+				
		· · · · · · · · · · · · · · · · · · ·	1					ŀ									1	1								_		\square			
	<u></u>		1					1								\uparrow															
	· · · · · · · · · · · · · · · · · · ·		·													+-										1	1				
Retingsted by (Signature) Retingsted by (Signature) Return Caro Lors					1	(SN	m	rle	2		8	100	hi	- zer_	. \	Date:		12	61	109	<u> </u>	15	15	-					
Relinguishably: (Signature)																		حر	Dale:	6	2	9 /c	29	Time:	1600	>					
Realinguistical by: (Signature) SlutVIAGSO Received by: (Signature)														M	Ŵ	rb		Date:	/30	0/1	, , 1 A	·	Time:	000							
		$\frac{1}{1}$																			79				_/	(05/2/06 Revisi	οπ	

5121 50344

Page 9 of WORK ORDER #: 09-06- 그 년 동	9 4
Cooler of	<u> </u>
CLIENT: <u>Blaine Tecz</u> DATE: <u>6 13010</u>	9
TEMPERATURE: (Criteria: 0.0 °C - 6.0 °C, not frozen) Temperature 2 .6 °C - 0.2 °C (CF) = _2 .4 °C Blank Sample Sample(s) outside temperature criteria (PM/APM contacted by:). Sample(s) outside temperature criteria but received on ice/chilled on same day of sampling. Received at ambient temperature, placed on ice for transport by Courier. Ambient Temperature: Air Filter Metals Only PCBs Only Initial: _44	2
CUSTODY SEALS INTACT: Cooler Image: Sample No (Not Intact) Not Present No (Not Intact) Not Present Initial: Initial: Image: Sample Image: Sample Image: Sample Image: Sample	2.
SAMPLE CONDITION: Yes No N/A	
Chain-Of-Custody (COC) document(s) received with samples	
Collection date/time, matrix, and/or # of containers logged in based on sample labels.	
□ COC not relinquished. □ No date relinquished. □ No time relinquished. Sampler's name indicated on COC	
Sample container label(s) consistent with COC	
Correct containers and volume for analyses requested	
Analyses received within holding time	
Proper preservation noted on COC or sample container	
□ Unpreserved vials received for Volatiles analysis	
Volatile analysis container(s) free of headspace	
Tedlar bag(s) free of condensation	
CONTAINER TYPE:	
Solid: □4ozCGJ □8ozCGJ □16ozCGJ □Sleeve □EnCores [®] □TerraCores [®] □	
Water: DVOA ZVOAh DVOAna2 D125AGB D125AGBh D125AGBp D1AGB D1AGBna2 D1AG	Bs
□500AGB □500AGJ □500AGJs □250AGB □250CGB □250CGBs □1PB □500PB □500PB	
□250PB □250PBn □125PB □125PBznna □100PB □100PBna2 □ □ □	
Air: □Tedlar [®] □Summa [®] □ Other: □ Checked/Labeled by: 1	-
Container: C: Clear A: Amber P: Plastic G: Glass J: Jar (Wide-mouth) B: Bottle (Narrow-mouth) Reviewed by: D, C Preservative: h: HCL n: HNO3 na2:Na2S2O3 Na: NaOH p: H3PO4 s: H2SO4 znna: ZnAc2+NaOH f: Field-filtered Scanned by: D, C	

11 A L

: (

SOP T100_090 (03/13/09)

WELL GAUGING DATA

Project # 090603- MWI Date 06/03/09 Client SHELL Site 1784 ISDH AVE, SAN LEANDRO, CA

		Well Size	Sheen /	Depth to Immiscible	Thickness of Immiscible	Volume of Immiscibles Removed	Depth to water	Depth to well	Survey Point: TOB or	-
Well ID	Time	(in.)	Odor	Liquid (ft.)	Liquid (ft.)	(ml)	(ft.)	bottom (ft.)	TOC	Notes
MW-1A	0938	4					22-30	26.34		
MW-IB	0936	4					22.38	49.72		
MW-2B	0922	Ч					18.36	48.39		
MW-3	0922	Ц					25.24	41.60		
mw - 4	15	2					13.78	25000		Tr
MW-5	0939	2					14.83	24.92		
MW-6	1210	2					14.19	19.48		
MW-7	1007	2					17.75	26.72		Tr
MW - 8	1010	2					16-64	24.10		Tr
MW-9	1118	2						34.77		tr
MW-10	0927	4	SHEEN	23.85	<0.01		23.85	31.65		
MW-11	0932	4	SHEEN	18.91	20.01		18.91	24.72		
MW -12	1025	2					17.47	27.81		75
MW-13	1137	2		1	•		14.90	23.88		Tr
EW-1	0933	4					21.80	35,02	<u> </u>	
EW-2	0927	4					17.90	32.82	$ \Psi $	

BLAINE TECH SERVICES, INC.

SAN JOSE SACRAMENTO LOS ANGELES SAN DIEGO SEATTLE

4

www.blainetech.com

		SHEL	WELL MO	NITORING DA	TrEET							
BTS #: 09	0603-1	NWN		Site: 1784 150th AVE, SAN LEAN DRO, CA								
Sampler: V	w			Date: 6/3/09								
Well I.D.:	MW-1A			Well Diameter: 2 3 4 6 8								
Total Well I	Depth (TD)): 26:	34	Depth to Water (DTW): 22-30								
Depth to Fre	e Product:			Thickness of F	ree Product (feet):						
Referenced		PVC	Grade	D.O. Meter (if	req'd):	rsi) насн						
DTW with 8	30% Recha	urge [(He	eight of Water	Column x 0.20) + DTW]: 2	3.11						
	Disposable Ba Positive Air D Electric Subm Gals.) X	isplacemer	nt Extrac Other = 7.8	Waterra Peristaltic tion Pump Gals. Jume	Sampling Method: Other: er <u>Multiplier Well Di</u> 0.04 4" 0.16 6" 0.37 Other	Bailer Disposable Bailer Extraction Port Dedicated Tubing iameter Multiplier 0.65 1.47 radius ² * 0.163						
Time	Temp (°F)	pН	Cond. (mS ०म्/म\$)	Turbidity (NTUs)	Gals. Removed	Observations						
133V	12.5	7.16	<u>ریت دری</u> ۱۳۲۱	>1010	2.6							
1335	71 1	7.08	1763	234	5.2							
1336	72.1	6-95	1723	97	7-8	<u> </u>						
				3								
	-		· · · · · · · · · · · · · · · · · · ·									
Did well de	water?	Yes 7	No	Gallons actual	ly evacuated:	7-8						
Sampling D	Date: 6/3	109	Sampling Tim	ne: 1400	Depth to Water	:: 23.11						
Sample I.D	.: Mw -	1A		Laboratory:	CalScience) Colu	mbia Other						
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: See	we						
EB I.D. (if	applicable):	@ Time	Duplicate I.D.	(if applicable):							
Analyzed f	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:	ge un verban an de verban verban en						
D.O. (if rec	l'd): P	re-purge:		^{mg} /L	Post-purge.	(-71 ^{mg} / _L						
O.R.P. (if r	eq'd): P	re-purge:		mV	Post-purge:	mV						

			AA BURDEN IVE OI									
BTS #: 09(0603-1	NWN		Site: 1784 150th AVE, SAN LEAN DRD, CA								
Sampler: W	-W			Date: 6/3/09								
Well I.D.:	m-IB	>		Well Diameter: 2 3 (4) 6 8								
Total Well I			.72	Depth to Water (DTW): 22,38								
Depth to Fre				Thickness of Fr	ee Product (feet):						
Referenced		(PVC)	Grade	D.O. Meter (if 1	req'd):	изі) насн						
DTW with 8	30% Recha	rge [(H	eight of Water	Column x 0.20)	+ DTW]: 27	285						
Purge Method:	Bailer Disposable Ba Positive Air D Electric Subm	niler Displacemer		Waterra Peristaltic tion Pump Well Diameter	Sampling Method: Other: r Multiplier Well Di							
14.5 (C	Gals.) X Specit	3 fied Volum	$\frac{43.5}{\text{Calculated Vo}}$	_ Gals. 2" lume 3"	0.04 4" 0.16 6" 0.37 Other	0.65 1.47 radius ² * 0.163						
Time	Temp (°F)	рН	Cond. (mS or (IIS))	Turbidity (NTUs)	Gals. Removed	Observations						
1314	74.8	7.73	1760	21000	14.5							
13/6	72,0	7.61	1758	742	29	odur						
1318	72.7	76.0	1770	311	43.5	(()						
			°.									
			· · ·									
Did well de	water?	Yes	No	Gallons actual	ly evacuated: 4	3-5						
Sampling I	Date: 6/3	109	Sampling Tim	ne: 1325	Depth to Water	: 22-86						
Sample I.D	.: MW	- 1B		Laboratory:	CalScience) Colu	umbia Other						
Analyzed f	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: Sel	wc						
EB I.D. (if	applicable):	@ Time	Duplicate I.D.	(if applicable):							
Analyzed f	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:							
D.O. (if red	l'd): P	're-purge		mg/L	Post-purge:	2,37 ^{mb/}						
O.R.P. (if r	ea'd): F	re-purge		mV I	Post-purge:	mV						

SHEI WELL MONITORING DAT. !EET

		SHE	WELL MO	NITORIN	G DA	ATTEET					
BTS #: 09	0603-1	NWI	· · · · ·	Site: 1784 150th AVE, SAN LEAN DRO, CA							
Sampler:	AF-			Date: 6/3/09							
Well I.D.:	MW-	ZB		Well Diameter: 3 4 6 8							
Total Well I	Depth (TD)): LI	9.39	Depth to Water (DTW): 18.36							
Depth to Fre	ee Product:		· ·	Thickness of Free Product (feet):							
Referenced	to:	PVC	Grade	D.O. Mete	er (if i	req'd):	YSI) HACH				
DTW with 8	30% Recha	.rge [(H	eight of Water	Column x (0.20)	+ DTW]: 2	24.36				
Purge Method:	Bailer Disposable Ba Positive Air D Electric Subm	isplaceme		Waterra Peristaltic tion Pump		Sampling Method: Other:	Bailer Disposable Bailer Extraction Port Dedicated Tubing				
30.07	5				Diamete:	r Multiplier Well D 0.04 4"	iameter Multiplier 0.65				
<u>19.5</u> (C 1 Case Volume		3 ied Volum	$= \frac{58.5}{\text{Calculated Vo}}$	_Gals.	2" . }"	0.16 6" 0.37 Other	1.47 radius ² * 0.163				
Time	Temp (°F)	pН	Cond. (mS or kS)	Turbidit (NTUs	•	Gals. Removed	Observations				
1404	68.8	69	1559	169		20.0					
1408	68.9	69	1621	105		40.0					
1400	69.3	6.9	1611	127		60.0					
NOT	0 20		- BRIEFLY	WATT	2						
Did well de	water?	Yes (Ro	Gallons ac	ctuall	y evacuated:	60.0				
Sampling D	ate: 6/3	109	Sampling Tim	e: 141	5	Depth to Water	: 22.09				
Sample I.D.	: MW	-2B		Laborator	y: 🤇	CalScience) Colu	mbia Other				
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates	(5)	Other: See	Coc				
EB I.D. (if a	applicable)	:	@ Time	Duplicate	I.D.	(if applicable):					
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates	(5)	Other:					
D.O. (if req	'd): Pi	e-purge:		mg/L	P	ost-purge:	0.06 ^{mg} /L				
O.R.P. (if re	eq'd): Pi	e-purge:		mV	F	ost-purge:	mV				

SHEI WELL M	IONITORING DAT. LEET							
BTS #: 090603-WW1	Site: 1784 150th AVE, SAN LEAN DRO, CA							
Sampler: WW	Date: 6/3/09							
Well I.D.: MM-3	Well Diameter: 2 3 4 6 8							
Total Well Depth (TD): 41.60	Depth to Water (DTW): 25-24							
Depth to Free Product:	Thickness of Free Product (feet):							
Referenced to: Grade	D.O. Meter (if req'd): (YSI) HACH							
DTW with 80% Recharge [(Height of Wat	ter Column x 0.20) + DTW]: 28.51							
•	WaterraSampling Method:C BailerPeristalticDisposable Bailertraction PumpExtraction PortDedicated TubingOther:							
$\frac{10.6}{1 \text{ Case Volume}} (\text{Gals.}) \times \frac{3}{\text{Specified Volumes}} = \frac{31.5}{\text{Calculated}}$	Well DiameterMultiplierWell DiameterMultiplier1" 0.04 4" 0.65 2" 0.16 6" 1.47 3" 0.37 Other $radius^2 * 0.163$							
Time Temp (°F) pH (mS or mS)								
1439 68:6 1.22 1594	$\frac{56}{21}$ $\frac{10.6}{3.2^{21.2}}$							
1442 68.6 697 1649	42 31.8							
Did well dewater? Yes (No)	Gallons actually evacuated: 31,3							
Sampling Date: 6/3/09 Sampling T								
Sample I.D.: MW - 3	Laboratory: CalScience Columbia Other							
Analyzed for: TPH-G BTEX MTBE TPH-	D Oxygenates (5) Other: See wc							
EB I.D. (if applicable): @	Duplicate I.D. (if applicable):							
Analyzed for: TPH-G BTEX MTBE TPH-								
D.O. (if req'd): Pre-purge:	^{mg} / _L Post-purge: /, // ^{mg} / _L							
O.R.P. (if req'd): Pre-purge:	mV Post-purge: mV							

SHE WELL MONITORING DAT

BTS #: 090603-WW1				Site: 1784 1	50th	AVE, SAN	I LEAN DRO, CA
Sampler: AK				Date: 6/3/09			
Well I.D.: MW-4				Well Diameter: 3 4 6 8			
Total Well I	5,00	Depth to Water (DTW): 13.78					
Depth to Fre		Thickness of Free Product (feet):					
Referenced to: Grade				D.O. Meter (if req'd): (YSI) HACH			
DTW with 80% Recharge [(Height of Water Column x 0.20) + DTW]: 16.02							
Purge Method: [1.22 [.7 [.7 [.7] [.7]	Disposable Ba Positive Air E Electric Subm Gals.) X	Displaceme	nt Extrac Other = 5.3	Gals.	meter M 0 0	mpling Method: Other: <u>ultiplier Well D</u> .04 4" .16 6" .37 Other	Disposable Bailer Extraction Port Dedicated Tubing <u>pameter Multiplier</u> 0.65 1.47 radius ² * 0.163
Time	C° Temp (°E	pH	Cond. (mS or µ S)	Turbidity (NTUs)	Ga	ls. Removed	Observations
(12)	19.4	7.6	1018	00015		2.0	
1123	19.2	7.3	1019	71000		4.0	
1125	19.2	7.3	1026	71000		6.0	
			-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
				,			
Did well dewater? Yes 🚱 Gallons actually evacuated: 6.0							
Sampling Date: 6/3/09 Sampling Time: 1130 Depth to Water: 13.88							
Sample I.D.: Mw-4 Lab					Cal	Science) Colu	mbia Other
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)) Oth	er: See	wc
EB I.D. (if a	(i) Time	Duplicate I.D. (if applicable):					
Analyzed for: TPH-G BTEX MTBE TPH-D (Oxygenates (5) Other:			
D.O. (if req'd): Pre-purge:				mg/L	Post-	purge:	0.05 mB/L
O.R.P. (if req'd): Pre-purge: mV Post-purge:					mV		

		SHE!	WELL MO	NITORING DA	ATEET			
BTS #: 090603-WW1				Site: 1784 150th AVE, SAN LEAN DRO, CA				
Sampler:	AK			Date: 6/3/09				
Well I.D.:	MW-	5		Well Diameter: 1 3 4 6 8				
Total Well	Depth (TD): U	4.90	Well Diameter: 2 3 4 6 8 Depth to Water (DTW): 4 6 8 4 4 6 84 8 84 8 84 8 84 8 $84 8 8 4 8 8 4 8 8 4 8 8 4 8 8 8 4 8 8 8 4 8 8 8 4 8 8 _8 4 8 8 4 8 8 4 8 8 4 8 8 _8 4 8 8 8 4 8 8 8 _8 8 8 _8 4 8 8 8 _8 8 8 8 8 _8$				
Depth to Fr	ee Product			Thickness of Free Product (feet):				
Referenced		P	Grade	D.O. Meter (if req'd): (YSI) HACH				
DTW with	80% Rech	arge [(H	eight of Water	Column x 0.20)) + DTW]:	6.82		
· · · · · · · ·	Baile Disposable Br Positive Air E Electric Subm	Displacemen	·	Waterra Sampling Method: Bailer Peristaltic Disposable Bailer etion Pump Extraction Port Dedicated Tubing Other:				
10.10				Well Diameter Multiplier Well Diameter Multiplier 1" 0.04 4" 0.65				
I.6 Case Volume	Gals.) X Speci	3 fied Volume	$= \frac{4.9}{\text{Calculated Vo}}$	Gals. 2"	0.14 4 0.16 6" 0.37 Other	1.47 .		
Time	Temp (°F)	рН	Cond. (mS or (15)	Turbidity (NTUs)	Gals. Removed	Observations		
1200	67.1	7.66	1141	>1000	1.6	· · · · · · · · · · · · · · · · · · ·		
1203	69.8	7.53	1096	>1000	3.2	· 		
1206	67.4	7.41	1091	5,000	4.8	·		
			4	3				
· ·								
Did well de	ewater?	Yes (Ro	Gallons actual	ly evacuated:	4.2		
Sampling I	Date: 6/3	109	Sampling Time	e: 1215	Depth to Water	r: 15-11		
Sample I.D	.: MW-	5		Laboratory:	CalScience Colu	ımbia Other		
Analyzed f	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: Sel	wc		
EB I.D. (if	applicable):	@ Time	Duplicate I.D.	(if applicable):			
Analyzed f	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:			
D.O. (if rec	1'd): P	re-purge:		^{mg} /L I	Post-purge:	0.86 ^{mg} /1		
O.R.P. (if r	ea'd): P	re-purge:		mV	Post-purge:	mV		

		SHE	WELL MO	NITORING D	AT CEET		
BTS #: 090603-WW1				Site: 1784 150th AVE, SAN LEAN DRO, CA			
Sampler: WW AK				Date: 6/3/09			
Well I.D.: MW-6				Well Diameter: 2 3 4 6 8			
Total Well Depth (TD): 19-48				Depth to Water (DTW): +9.48 14.19			
Depth to Fro	ee Product	:		Thickness of Free Product (feet):			
Referenced	to:	(PVC)	Grade	D.O. Meter (if req'd): (YSI) HACH			
DTW with 80% Recharge [(Height of Water Column x 0.20) + DTW]: 15.25							
Purge Method:	Bailer Disposable Ba Positive Air E Electric Subm	Displacemen		Waterra Peristaltic tion Pump	Sampling Method: Other:	₩Bailer Disposable Bailer Extraction Port Dedicated Tubing	
D. A. (C 1 Case Volume	Gals.) X Specif	3 fied Volume	$= \frac{2 \sqrt{2}}{Calculated Vo}$	Well Diamet 1" 2" 2" 3"	ter Multiplier Well D 0.04 4" 0.16 6" 0.37 Other	iameter Multiplier 0.65 1.47 radius ² * 0.163	
Time	Temp (°F)	pН	Cond. (mS or AS)	Turbidity (NTUs)	Gals. Removed	Observations	
1216	66.4	7:87	154	>1000	0.8		
1218	66.9	7,65	136	>1000	1.6		
1220	66-7	7.52	136	>1000	2.4		
			<i>n</i> .				
ä.							
Did well dewater? Yes No Gallons actually evacuated: 2.4							
Sampling Date: 6/3/09 Sampling Time: 1225 Depth to Water: 15.05							
Sample I.D.: MW-6 Laboratory: CalScience Columbia Other							
Analyzed for: TPH-G BTEX MTBE TPH-D Oxygenates (5) Other: See wc							
EB I.D. (if applicable): [@] Duplicate I.D. (if applicable):							
Analyzed for: TPH-G BTEX MTBE TPH-D Oxygenates (5) Other: 2.25							
D.O. (if req'd): Pre-purge: ^{mg} /L Post-purge: Z , b ^{mg} /L							
O.R.P. (if req'd): Pre-purge: mV Post-purge: mV							

					. Cod	have an	1500000		
BTS #: 09	0603-	MMI	· · · · · · · · · · · · · · · · · · ·	Site: 1784 150th AVE, SAN LEAN DRO, CA					
Sampler: 🚺	n vu			Date: 6/3/09					
Well I.D.:	MW-	7		Well Diameter: 2 3 4 6 8					
Total Well I	Depth (TD):26.	72	Depth to W	/ater (DTW): 17.	75		
Depth to Fre	ee Product	:	•	Thickness	of Fre	e Product (fee	t):		
Referenced	to:	Eve	Grade	D.O. Mete	r (if re	q'd):	YSI) HACH		
DTW with 8	30% Recha	arge [(He	eight of Water	Column x ().20) +	DTW]: (9	.54		
	Bailer Disposable B Positive Air I Electric Subir Gals.) X	Displacement	Other	_ Gals.	Diameter	Sampling Method: Other: <u>Multiplier Well D</u> 0.04 4" 0.16 6" 0.37 Other	Bailer Disposable Bailer Extraction Port Dedicated Tubing iameter Multiplier 0.65 1.47 radius ² * 0.163		
T '	Temp (°F)		Cond. (mS or (LS)	Turbidit (NTUs)		Gals. Removed	Observations		
Time 1014	69.9	pH 6.51	2952	205		μ γ γ	odvr		
1015	69.4	6.61	2963	>1000		2,2	۰ <i>۲</i>		
1016	62.9	6.67	2944	>1000	>	4.2	U C		
	·		4	3					
							· · · · · · · · · · · · · · · · · · ·		
Did well de	water?	Yes f	No	Gallons ac	tually	evacuated: L	-2 ~		
Sampling D	ate: 6/3	109	Sampling Tim	e: 1020) [Depth to Water	7.54 Traffic		
Sample I.D.	: MW-	7		Laboratory	/: 🤇	CalScience) Colu	mbia Other		
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates	(5) C	Other: Sel	wc		
EB I.D. (if	applicable):	@ Time	Duplicate	I.D. (i	f applicable):			
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates	(5) ()ther:			
D.O. (if req	'd): P	re-purge:		^{mg} /L	Pos	st-purge:	0.62 mg/L		
O.R.P. (if r	eq'd): P	re-purge:		mV	Pos	st-purge:	mV		

SHEI WELL MONITORING DAT

		SHE!	WELL MO	NITORING DA	AT EET				
BTS #: 09	0603-	MW1		Site: 1784 150th AVE, SAN LEAN DRO, CA					
Sampler:	AC			Date: 6/3/09					
Well I.D.:	MW-	B		Well Diameter	: 🖉 3 4	6 8			
Total Well I			4.10	Depth to Water	r (DTW): L	2.64			
Depth to Fre	e Product			Thickness of F	ree Product (fee				
Referenced		PFR	Grade	D.O. Meter (if	req'd):	үзі) насн			
DTW with 8	30% Recha	arge [(H	eight of Water	Column x 0.20)) + DTW]:	18.13			
Purge Method: <	Bailer Disposable B Positive Air I Electric Subn	Displacemer		Waterra Peristaltic tion Pump	Sampling Method: Other:	Raile Disposable Bailer Extraction Port Dedicated Tubing			
7.46	i			Well Diamete	er Multiplier Well D	Diameter Multiplier			
I Case Volume	Gals.) X Speci	3 fied Volume	= 3.5 es Calculated Vo	_ Gals. 3"	0.04 4" 0.16 6" 0.37 Other	0.65 1.47 radius ² * 0.163			
Time	C ^o Temp (°E	5 рН	Cond. (mS or 🔊)	Turbidity (NTUs)	Gals. Removed	Observations			
1016	19.5	6.5	2947	> 1000	1.25	· · · ·			
1017	19.5	6.6	3606	71000	2.50	- -			
1019	19.5	6.7	3546	71000	3.75				
NOTO	9 0	90 -	TRATTIC	weret					
Did well dev	water?	Yes (No	Gallons actual	ly evacuated:	3.75			
Sampling D	ate: 6/3	109	Sampling Time	e: 1020	Depth to Water	r: 20.27×			
Sample I.D.	: MW-	છ		Laboratory:	CalScience Colu	mbia Other			
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: See	wc			
EB I.D. (if a	applicable):	@ Time	Duplicate I.D.	(if applicable):				
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:				
D.O. (if req'	d): P	re-purge:	<u></u>	^{mg} /L F	Post-purge:	0.84 ^{mg} / ₁			
O.R.P. (if re	eq'd): P	re-purge:		mV	Post-purge:	mV			

		SHEI	VELL MO	NITORING D	ATA EET				
BTS #: 09	0603-1	NWI		Site: 1784 150th AVE, SAN LEAN DRO, CA					
Sampler: W	JW.			Date: 6/3/09					
Well I.D.:	Mw- "	1		Well Diameter	: ② 3 4	6 8			
Total Well I		A	.77	Depth to Wate	r (DTW): // ,	84			
Depth to Fre	ee Product	:		Thickness of F	ree Product (fee	t):			
Referenced	· · · · · · · · · · · · · · · · · · ·	NVC)	Grade	D.O. Meter (if	req'd):	YSI) HACH			
DTW with 8	80% Recha	arge [(H	eight of Water	Column x 0.20) + DTW]:	8.91			
	Bailer >Disposable Ba Positive Air E Electric Subm	Displacemer	nt Extrac Other		Sampling Method: Other:	Bailer Disposable Bailer Extraction Port Dedicated Tubing			
<u>3.3</u> ((1 Case Volume	Gals.) X Specif	3 fied Volum	$= \frac{9.9}{\text{Calculated Vo}}$	Gals. 3"	er Multiplier Well D 0.04 4" 0.16 6" 0.37 Other	Diameter Multiplier 0.65 1.47 radius ² * 0.163			
Time	Temp (°F)	pН	Cond. (mS or (tS))	Turbidity (NTUs)	Gals. Removed	Observations			
1124	71.0	7.02	1108	77					
1127	68.1	7.77	1103	47	6.6	ann airtin a shift na shift ann a			
1120	67.5	7.73	1100	48	9.9				
			9	L					
Did well de	water?	Yes 🖌	No	Gallons actual	ly evacuated:	9.9			
Sampling D	Date: 6/3	109	Sampling Tim	e: 1135	Depth to Water	r: 14.95 (Wallie			
Sample I.D.	.: Mw	- 9		Laboratory:	CalScience) Colu	imbia Other			
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: See	wc-			
EB I.D. (if	applicable):	@ Time	Duplicate I.D.	(if applicable):				
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:				
D.O. (if req	'd): P	re-purge:		^{mg} /L	Post-purge:	0.55 mg/1			
O.R.P. (if r	eq'd): Pr	re-purge:		mV	Post-purge:	mV			

 $\frac{C_{1}}{M}$

		SHEL	WELL MO	NITORING D	ATA _ IEET	,			
BTS #: O	90603 -	-ww	l	Site: 1734150th AUE, SAN LEANDRED, CA					
Sampler: (w			Date: $6/3/29$					
Well I.D.:	un-10			Well Diameter	: 2 3 ④	6 8			
Total Well I	Depth (TD)): 31.6	• 5	Depth to Water (DTW): 23.85					
Depth to Fre	ee Product	: 23.5	35	Thickness of F	ree Product (fee	t): (2) 3 A (<0.01			
Referenced	to:	PVC)	Grade	D.O. Meter (if	req'd):	YSI НАСН			
DTW with 8	30% Recha	arge [(H	eight of Water	Column x 0.20) + DTW]: 25				
Purge Method:	Bailer Disposable Ba Positive Air D Electric Subm	Displaceme		Waterra Peristaltic tion Pump	Sampling Method: Other:	Bailer Disposable Bailer Extraction Port Dedicated Tubing			
S. 1 1 Case Volume	Gals.) X Specif	Z fied Volum	$= \frac{15}{\text{Calculated Vo}}$		er Multiplier Well E 0.04 4" 0.16 6" 0.37 Other	Diameter Multiplier 0.65 1.47 radius ² * 0.163			
Time	Temp (°F)	pН	Cond. (mS ox (µS)	Turbidity (NTUs)	Gals. Removed	Observations			
1418	70.4	7.43	976	44	5-1				
1419	71.2	7.25	1005	45	10.2				
1420	10.5	7.05	(09Z	45	18-3				
Did well de	water?	Yes	Ko	Gallons actual	ly evacuated:	15.3			
Sampling D	ate: 6/2	209	Sampling Tim	e: 1430	Depth to Wate	r: 25,19			
Sample I.D.	: MW	-10		Laboratory:	CalScience Colu	imbia Other			
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: See	, eoc			
EB I.D. (if a	applicable)):	@ Time	Duplicate I.D.	(if applicable):				
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:				
D.O. (if req	'd): Pi	re-purge:		^{mg} /L	Post-purge:	2. (1 ^{mg} / _L			
O.R.P. (if re	eq'd): Pr	re-purge:		mV	Post-purge:	mV			

		SHE	VELL MU	NITORING D.				
BTS #: 09	0603-1	NWI		Site: 1784 150th AVE, SAN LEAN DRO, CA				
Sampler:	AK	· .		Date: 6/3/09				
Well I.D.:	MW-11			Well Diameter: 2 3 ④ 6 8				
Total Well I	Depth (TD)): 2	4.72	Depth to Water	r (DTW): (8.91		
Depth to Fre	e Product			Thickness of F	ree Product (fee	et): < 0.01		
Referenced		PYO	Grade	D.O. Meter (if	req'd): (YSI) HACH		
DTW with 8	0% Recha	rge [(H	eight of Water	Column x 0.20)) + DTW]:	20.07		
	Bailer Disposable Ba Positive Air D Electric Subin	isplacemer	nt Extrac Other	Waterra Peristaltic tion Pump	Sampling Method: Other:	Disposable Bailer Extraction Port Dedicated Tubing		
5.21				Well Diamete	er Multiplier Well I	Diameter Multiplier		
3.7 (C I Case Volume	Gals.) X Specif	3 ied Volum	_ = <u>11.3</u> es Calculated Vo	_ Gals. 3"	0.04 4" 0.16 6" 0.37 Other	0.65 1.47 r radius ² * 0.163		
Time	Temp (°F)	pН	Cond. (mS or Ø)	Turbidity (NTUs)	Gals. Removed	Observations		
1324	70.0	6.7	306	22	4.0			
1325	68.9	6.8	348	80 8.0				
DEWATER	50 @	0 10	.0 6AU	as		Din: 22.08		
1350	66.6	7.0	346	24				
Did well dev	water?	(cs)	No	Gallons actual	ly evacuated:	10.0		
Sampling D	ate: 6/3	109	Sampling Tim	e: 1350	Depth to Wate	r: 19.69		
Sample I.D.	: Nv	V-11		Laboratory:	CalScience) Colu	umbia Other		
Analyzed fo	or: TPH-G	втех	MTBE TPH-D	Oxygenates (5)	Other: See	Loc		
EB I.D. (if a	applicable)		@ Time	Duplicate I.D.	(if applicable):			
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:	mg/I		
D.O. (if req	'd): P1	e-purge:		^{nug} /L Post-purge: O.10				
O.R.P. (if re	eq'd): Pi	e-purge:		mV	Post-purge:	mV		

SHE! WELL MONITORING DAT

						·····			
BTS #: 09	0603-1	NWN		Site: 1784 150th AVE, SAN LEAN DRO, CA					
Sampler: 1	NV			Date: 6/3/09					
Well I.D.:	MW-1	2		Well Diameter: 🕑 3 4 6 8					
Total Well I	Depth (TD)): 27.	.81	Depth to Water	(DTW):1747				
Depth to Fre	ee Product:	· · · · · · · · · · · · · · · · · · ·		Thickness of Fi	ee Product (fee	t):			
Referenced		PVC	Grade	D.O. Meter (if	req'd):	үsi) насн			
DTW with 8	30% Recha	rge [(H	eight of Water	Column x 0.20)	+ DTW]: [9	,54			
. 0	Bailer Disposable Ba Positive Air D Electric Subm	isplacemen		Waterra Peristaltic tion Pump 	Sampling Method: Other: r Multiplier Well D	Bailer Disposable Bailer Extraction Port Dedicated Tubing			
1.7 1 Case Volume	Gals.) X Specif	3 Tied Volum	$\frac{1}{es} = \frac{S_{2}}{Calculated Vo}$	Gals. 2" Jume 3"	0.04 4" 0.16 6" 0.37 Other	0.65 1.47 radius ² * 0.163			
Time	Temp (°F)	pН	Cond. (mS or	Turbidity (NTUs)	Gals. Removed	Observations			
1031	71.6	7.99	1202	51000	1.7	0 dov			
1032	70.2	7.54	1417	5,000	3.4	~ر			
1033	69.2	7.34	1557	5/000	51	e e			
						1 Charles			
Did well de	water?	Yes	No	Gallons actual	y evacuated:	SIL			
Sampling D	Date: 6/3	109	Sampling Tim	ie: 1040	Depth to Wate	r: 19.54 (mall			
Sample I.D.	: Mw-	12		Laboratory:	CalScience) Colu	umbia Other			
Analyzed for	Dr: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: See	wc			
EB I.D. (if:	applicable):	@ Time	Duplicate I.D.	(if applicable):				
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:				
D.O. (if req	'd): P	re-purge:		^{mg} / _L Post-purge: 1.02					
O.R.P. (if r	eq'd): P	re-purge:		mV	Post-purge:	m٧			

SHEI WELL MONITORING DAT , 'EET

		SHE	WELL MOI	NITORI	NG DA	AT LEET		
BTS#: 09	0603-1	NWN		Site: 1784 ISOTH AVE, SAN LEAN DRO, CA				
Sampler:	WW			Date: 6/3/09				
Well I.D.:	Mw-13	 ج		Well Di	ameter:	O 3 4	6 8	
Total Well I	Depth (TD): 23	.88	Depth to	o Water	·(DTW): 14,0	90	
Depth to Fre	-	<u></u>		Thickne	ss of F	ree Product (fee	t):	
Referenced		EVO	Grade	D.O. M			Ysi) насн	
DTW with 8	30% Recha	arge [(He	ight of Water	Column	x 0.20)	+ DTW]: /	6.70	
Purge Method:	Bailer Disposable Ba Positive Air E Electric Subm	bisplacement	-	Waterra Peristaltic tion Pump	Vell Diamete	Sampling Method: Other: r Multiplier Well D	Bailer Disposable Bailer Extraction Port Dedicated Tubing	
1 Case Volume	Gals.) X Specif	3 ĩeḋ Volume	$= \frac{4.2}{\text{Calculated Vol}}$	_Gals.	1" 2" 3"	0.04 4" 0.16 6" 0.37 Other	0.65	
Time	Temp (°F)	рН	Cond. (mS or 5)	Turb (NT	-	Gals. Removed	Observations	
1139	70.3	7,90	1300	7000 1.4			·····	
1141	70.2	7-73	1340	$>_{0}$	OD	2.8	<u> </u>	
1143	71.2	7.72	1315	710		4.2		
· · · · · · · · · · · · · · · · · · ·			4	2				
Did well de	water?	Yes d	No.	Gallons	actual	ly evacuated:	f.2	
Sampling D	ate: 6/3	109	Sampling Time	e: 115	0	Depth to Water	r: 14.98 Traffic	
Sample I.D.	: MW -1	3		Laborat	ory: 🤇	CalScience) Colu	imbia Other	
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygena	tes (5)	Other: See	wc	
EB I.D. (if a	applicable)):	@ Time	Duplica	ite I.D.	(if applicable):		
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Oxygena	tes (5)	Other:		
D.O. (if req	'd): Pi	re-purge:		^{mg} / _L Post-purge: 0.9			0-99 mg/1	
O.R.P. (if re	eq'd): Pi	re-purge:		mV	I	Post-purge:	mV	

		SHEL	WELL MO	NITORING DA	ATA AEET				
BTS #: 04	20603	-WwI		Site: 1784 150th AVE, SAN LEANDRO, CA					
Sampler:	hrw			Date: $6/3/09$					
Well I.D.:	EW-1			Well Diameter:	2 3 👍	6 8			
Total Well I	Depth (TD): 35-	02	Depth to Water (DTW): 21. 30					
Depth to Fre	ee Product			Thickness of F	ree Product (fee	t):			
Referenced	to:	exc)	Grade	D.O. Meter (if	req'd):	YSI) HACH			
DTW with 8	80% Rech	arge [(H	eight of Water	Column x 0.20)	$+ DTW]: 24_{-}$	44			
Purge Method:	Bailer Disposable B Positive Air I Œlectric Subn	Displacemen	·	Waterra Peristaltic tion Pump	Sampling Method: Other:	DBailer Disposable Bailer Extraction Port Dedicated Tubing			
B·6 (0 I Case Volume	Gals.) X Speci	ک fied Volum	$= \frac{25.7}{Calculated Vo}$	- [] 3"	r <u>Multiplier Well D</u> 0.04 4" 0.16 6" 0.37 Other	Diameter <u>Multiplier</u> 0.65 1.47 radius ² * 0.163			
Time	Temp (°F)	рН	Cond. (mS or aS)	Turbidity (NTUs)	Gals. Removed	Observations			
1355	71.3	3.07	782	969	R.6	odor			
1357	70.1	7-28	646	>1000	17.2				
1359	70.4	7.32	640	>1000	25-8				
				3					
				· ·					
Did well de	water?	Yes (No	Gallons actuall	y evacuated:	25.8			
Sampling D	ate: 6/3/	08	Sampling Tim	e: 1410	Depth to Water	r: 22. 20			
Sample I.D.	: EW-1			Laboratory:	(1)	mbia Other			
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: 5CC	, we			
EB I.D. (if a	applicable):	@ Time	Duplicate I.D.	(if applicable):				
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:	-			
D.O. (if req	'd): P	re-purge:		^{mg} /L	ost-purge:	1.09 mg/L			
O.R.P. (if re	eq'd): P	re-purge:		mV P	ost-purge:	mV			

SHEL

		SHEI	WELL MO	NITOF	UNG D	AT LEET		
BTS #: 09	0603-	WW \		Site: 17	84 15	Oth AVE, SAA	I LEAN DRO, CA	
Sampler:	AK-			Date:	6/3	109		
Well I.D.:	EW	ι		Well Diameter: 2 3 a 6 8				
Total Well	Depth (TD):	32.82	Depth	to Wate	r (DTW):	7.90	
Depth to Fr	ee Product	•		Thickn	ess of F	'ree Product (fee	······································	
Referenced	to:	PVO	Grade	D.O. N	leter (if	req'd): (үзі) насн	
DTW with	80% Recha	arge [(H	leight of Water	Colum	n x 0.20)) + DTW]:	20.88	
Purge Method:	Bailer Disposable Ba Positive Air I Electric Subp	Displaceme	nt Extrac Other	Waterra Peristaltic ction Pump		Sampling Method: Other:	Baner Disposable Bailer Extraction Port Dedicated Tubing	
14,92					Well Diamete		iameter Multiplier	
<u>9.6</u> 1 Case Volume		3 fied Volum	$= \frac{29.0}{\text{Calculated Vo}}$		2" 3"	0.04 4" 0.16 6" 0.37 Other	0.65 1.47 radius ² * 0.163	
Time	Temp (°F)	pН	Cond. (mS or 🎪)	1	oidity FUs)	Gals. Removed	Observations	
13239	61.9	7.1	397	12	-0			
1341	67.8	7-0	398	12	3	20.0		
1342	67. 9	7.0	401	12	0	30.0		
				(L ¹⁾		-		
Did well de	water?	Yes (<u>N</u>	Gallon	s actuall	ly evacuated:	30.0	
Sampling D	ate: 6/3	109	Sampling Tim	e: (3	45	Depth to Water	: 20.16	
Sample I.D.	: EW-	-2		Labora	tory: 🤇	CalScience) Colu		
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygen	ates (5)	Other: See	(w C	
EB I.D. (if a	applicable)	•	@ Time	Duplic	ate I.D.	(if applicable):		
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygen	ates (5)	Other:		
D.O. (if req	'd): Pr	e-purge:		^{mg} /L	P	ost-purge:	0.03 ^{mg} /L	
O.R.P. (if re	eq'd): Pr	e-purge:		mV	P	Post-purge:	mV	

MANTINATIATA TA A 100

WELL GAUGING DATA											
Project	Project # <u>D90626-AC3</u> Date <u>62609</u> Client <u>Shell</u>										
Site (Site 1784 150th Ave. San Leandre										
Well ID	Time	Well Size (in.)	Sheen / Odor		Thickness of Immiscible Liquid (ft.)		Depth to water (ft.)	Depth to well bottom (ft.)	Survey Point: TOB or FOC	Notes	
MW-2B	1340	Ц					18.84	48.65	T		
						 ; ;					
	1				1						
								7			
a	· · · ·										
C.F.											
· · ·											
				· · ·			· · · · · · · · · · · · · · · · · · ·	<u>}</u>			
								<u></u>			
· · · · · · · · · · · · · · · · · · · ·											
	L.,			I	L	I <u></u>	<u>I</u>	L	L		

BLAINE TECH SERVICES, INC. SAN JOSE SACRAMENTO LOS ANGELES SAN DIEGO SEATTLE www.blainetech.com

		SHL!						
BTS #:	10626	-AC	3	Site: 1784 150th Ave San Leandro				
Sampler:	AC			Date: $6/26/09$				
Well I.D.:	MW-2	B		Well Diameter: 2 3 (4) 6 8				
Total Well I	Depth (TD): 45	3.65	Depth to Water	r (DTW): ({	3.84		
Depth to Fre	ee Product	:		Thickness of F	ree Product (fee	t):		
Referenced	to:	PVC	Grade	D.O. Meter (if	req'd):	YSI HACH		
DTW with 8	30% Recha	arge [(H	eight of Water	Column x 0.20)+DTW]: 24	.80		
Purge Method: ¥	4Bailer Disposable Ba Positive Air D Electric Subm	oisplaceme	nt Extrac Other	Waterra Peristaltic tion Pump	Sampling Method: Other:	KBailer Disposable Bailer Extraction Port Dedicated Tubing		
19 1 Case Volume	Gals.) X Specii	S fied Volum	$= \frac{57}{\text{Calculated Vo}}$	<u>Well Diamet</u> 1" 2" Jume	er Multiplier Well D 0.04 4" 0.16 6" 0.37 Other	Diameter Multiplier 0.65 1.47 radius ² * 0.163		
			Cond.	Turbidity				
Time	Temp (°F)	pН	(mS or μ S))	(NTUs)	Gals. Removed	Observations		
1355	71.5	6.81	1642	216	19	- Cloudy 2+oder		
1359	70,6	6.85	1642	155	38	clear		
1403	71.2	6.91	1630	189	57	<u>с</u>		
						22 39.41		
Did well de	water?	Yes /	No	Gallons actual	ly evacuated:	57		
Sampling D	Date: 6/26	109	Sampling Tim	e: 1410	Depth to Wate	r: 23,61		
Sample I.D.	.: Mu	U-2B)	Laboratory:	CalScience Colu	umbia Other		
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: See	COC		
EB I.D. (if a	applicable):	@ Time	Duplicate I.D.	(if applicable):			
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:			
D.O. (if req	'd): P	re-purge:		^{mg} /L	Post-purge:	0.76 ^{mg} /L		
O.R.P. (if re	eq'd): P	re-purge:	an a	mV	Post-purge:	mV		

HEFT WITH A MANTERADIATA DAM QUEI

SHELL WELLHEAD INSPECTION FORM

(FOR SAMPLE TECHNICIAN)

Site Address	178	4 19	50-11	n f	NE	<u>, SA</u>	I LEAN	vo Ro,	A Date 6/3/09
Job Number	09	06 03	<u>>-/</u>	\sqrt{V})	Tec	hnician	WW	Pageof
Well ID	Well Inspected - No Corrective Action Required	Well Box Meets Compliance Requirements *See Below	Water Bailed From Wellbox	Cap Replaced	Lock Replaced	Well Not Inspected (explain in notes)	New Deficiency Identified	Previously Identified Deficiency Persists	Notes
MW-1A							1	N	NO 746-
MW-1B		6						D	NU 746
MW-2B		-10						\mathcal{X}	NO TAG
MW-3	ん	N					-		
MW-4	\times	x							
MW-5	Ø	\wp	-						
MW-6	X	N							
MW-7							\times		1/2 Buits MSSIONE
MW-8	ď	p	\times						
Mw-9	K	K							
MW-10	×	42							
Mw-11	X	P							
Mw-12		- Cro					∇		1/2 BOLTS MISSING NO THE
MW-13							ρ		NO THE /1/2 BOLTS MISSING
EW-1								\succ	NO THE
EW-2	X	Ø							
					i				
*Well box must mee "WONITORING WEL Notes:	et all thr .L" (12	ee criteria 'or less) (to be 3) WE	e com LL TA	pliant G IS	: 1) WELL PRESENT	IS SECUR SECURE,	ABLE BY D AND CORF	ESIGN (12"or less) 2) WELL IS MARKED WITH THE WORDS RECT
	<u>,</u>	<u>;</u> ,	<u></u>			. 3	· · · · · · · · · · · · · · · · · · ·		
•									
BLAINE TECH SE	RVICES, IN	IC.		SAN J	OSE	SACRA	MENTO	LOS ANGELE	S SAN DIEGO SEATTLE www.blainelech.com

ite Addread	17.	₹ H		<u> </u>	•				INICIAN)	Data 6/26/08
ile Address				<u>50</u> Ac	/ ~/	<u>swen</u>	ue,	Jan_	Jeanan	Date <u>6(26(09</u> Page(of_\
b Number		1062	<u>.6-</u>	<u>74C</u>	<u>\$</u> _	lec	hnician			Pageof
Well ID	Well Inspected - No Corrective Action Required	Well Box Meets Compliance Requirements *See Below	Water Bailed From Wellbox	Cap Replaced	Lock Replaced	Well Not Inspected (explain in notes)	New Deficiency Identified	Previously Identified Deficiency Persists		Notes
1W-2B	V									
W do	•									······································
										<u></u>
		 					1			
									, ,	
										· · · · · · · · · · · · · · · · · · ·
·										
<u>#_</u>										· · · · · · · · · · · · · · · · · · ·
· .										
	. 									
								· .		
·····										· · · · · · · · · · · · · · · · · · ·
ell box must mee ONITORING WEL										ELL IS MARKED WITH THE WORDS
	<u></u>				·					#*************************************

 A second sec second sec .