RECEIVED

9:11 am, Mar 24, 2010

Alameda County Environmental Health

Prepared for

Hopyard Cleaners 2771 Hopyard Road Pleasanton, California 94612

FOURTH QUARTER 2009 GROUNDWATER AND SVE MONITORING REPORT

HOPYARD CLEANERS

2771 Hopyard Road Pleasanton, California Self- Monitoring Program No. R2-2008-0032

Prepared by

Geosyntec^D consultants

engineers | scientists | innovators

475 14th Street, Suite 400 Oakland, California 94612

Project Number: WR0574

28 January 2010

Fourth Quarter 2009 Groundwater and SVE Monitoring Report Hopyard Cleaners 2771 Hopyard Road Pleasanton, California Self- Monitoring Program No. R2-2008-0032

Prepared by

Geosyntec Consultants, Inc. 475 14th Street, Suite 400 Oakland, California 94612

Melissa Asher, P.E. Engineer

Int Siane

Hanchih (Angela) Liang Ph.D., P.E. Senior Engineer

Project Number: WR0574 28 January 2010

Geosyntec[▷] consultants

TABLE OF CONTENTS

LIST	F OF A	BBREVIATIONS	IV
1.	INT	RODUCTION	1
	1.1	Monitoring Well Network	1
	1.2	SVE System	1
	1.3	Work Performed This Quarter (Third Quarter 2009)	2
2.	QUA	ARTERLY GROUNDWATER MONITORING	3
	2.1	Sampling and Analytical Procedures	3
	2.2	Groundwater Elevations and Flow Conditions	4
	2.3	Data QA/QC	5
	2.4	Analytical Results	5
		2.4.1 A Zone Wells: MW-1 through MW-4	5
		2.4.2 B Zone Wells: MW-5 through MW-7	5
	2.5	Results Discussion	6
3.	SVE	E SYSTEM MONITORING AND PERFORMANCE EVALUATION	7
	3.1	SVE Monitoring Procedures	7
	3.2	SVE Operation, Monitoring, and Maintenance	8
	3.3	SVE Performance Evaluation	9
4.	FUT	URE WORK	11

LIST OF TABLES

- Table 1
 Monitoring Well Construction Summary
- Table 2Groundwater Elevations
- Table 3Groundwater Gradient Summary
- Table 4
 Groundwater Analytical Summary
- Table 5
 SVE System Performance Monitoring Results

- Table 6SVE Influent Analytical Summary
- Table 7SVE Well Monitoring Results

LIST OF FIGURES

Figure 1	Site Location Map
Figure 2	Site Layout and Vicinity Map
Figure 3	Groundwater Elevation Hydrograph and Monthly Precipitation
Figure 4	A Zone Groundwater Elevation Contours and Analytical Results – Fourth Quarter 2009
Figure 5	B Zone Groundwater Elevation Contours and Analytical Results – Fourth Quarter 2009
Figure 6	PCE Isoconcentration Contours in A Zone Groundwater (20 to 35 ft bgs) – April 2003 through Fourth Quarter 2009
Figure 7	PCE Isoconcentration Contours in B Zone Groundwater (40 to 60 ft bgs) – January 2006 through Fourth Quarter 2009
Figure 8	TCE Isoconcentration Contours in A Zone Groundwater (20 to 35 ft bgs) – April 2003 through Fourth Quarter 2009
Figure 9	PCE and TCE Groundwater Concentrations Over Time
Figure 10	MW-2 Concentrations and Groundwater Elevations Over Time
Figure 11	Soil Vapor Extraction Well Locations and Piping Layout
Figure 12	Revised SVE Process and Instrumentation Diagram
Figure 13	SVE Influent Concentrations Over Time
Figure 14	SVE Cumulative Mass Removal
Figure 15	SVE Influent PCE and TCE Concentrations

LIST OF APPENDICES

Appendix A Environmental Sampling Services Field Report

Appendix B Groundwater and SVE Monitoring Laboratory Analytical Reports

iii

Geosyntec[>]

LIST OF ABBREVIATIONS

BAAQMD PTO	Bay Area Air Quality Management District Permit to Operate
cis-1,2-DCE	cis-1,2-dichloroethene
EISB	Enhanced in situ bioremediation
ESS	Environmental Sampling Services, Inc.
feet bgs	feet below ground surface
ft/ft	feet per feet
ft/mi	feet per mile
GAC	Granular activated carbon
Geosyntec	Geosyntec Consultants
lbs	pounds
ISCO	In situ chemical oxidation
MSL	Mean Sea Level
μg/L	micrograms per liter
$\mu g/m^3$	micrograms per cubic meter
PCE	tetrachloroethene
PDBs	Passive diffusion bag samples
PID	Photoionization detector
ppmv	parts per million by volume
QA/QC	Quality assurance/ quality control
RWQCB	California Regional Water Quality Control Board, San Francisco Bay Region
SVE	Soil vapor extraction

TCE trichloroethene

trans-1,2-DCE trans-1,2-dichloroethene

VOC Volatile organic compounds

1. INTRODUCTION

On behalf of the property owner, Ms. Clare Leung, Geosyntec Consultants (Geosyntec) prepared this fourth quarter 2009 groundwater and soil vapor extraction (SVE) monitoring report for the Hopyard Cleaners Site, which is located at 2771 Hopyard Road in Pleasanton, California (the "Site"). A Site location map is provided in Figure 1. The work described in this report was performed in compliance with the California Regional Water Quality Control Board, San Francisco Bay Region (RWQCB) Order No. R2-2008-0032, issued on 29 May 2008.

1.1 Monitoring Well Network

The Site monitoring well network consists of seven wells (MW-1 through MW-7). For discussion purposes, the uppermost groundwater zone beneath the Site, which occurs from approximately 20 to 35 feet below ground surface (feet bgs), is referred to as the A Zone, and the deeper groundwater from approximately 40 to 60 feet bgs is referred to as the B Zone. Wells MW-1 through MW-4 are screened in the A Zone, and wells MW-5 through MW-7 are screened in the B Zone. Well completion details are summarized in Table 1. Well locations relative to the Site are shown in Figure 2.

1.2 SVE System

The SVE system was installed at the Site in August 2008. The SVE system consists of five SVE wells (SVE-1 through SVE-5) located inside Hopyard Cleaners and a skid-mounted treatment system located in the parking lot approximately 60 feet southwest of the Site. The SVE system layout is shown in Figure 2. Geosyntec conducted a pilot test of the SVE system on 19 and 21 August 2008. The SVE system installation, pilot test, and start-up were documented in the *SVE System Installation and Pilot Test Report*, which was submitted to the RWQCB on 29 September 2008. The full-scale SVE operations began on 21 August 2008. An *Addendum to the SVE System Installation and Pilot Test Report*, which included quarterly SVE influent volatile organic compounds (VOC) analysis and recommendations and conclusions, was submitted to the RWQCB on 1 December 2008. The *SVE System Installation and Pilot Test Report* and the *Addendum to the SVE System Installation and Pilot Test Report* and the *RWQCB* on 9 December 2008.

1.3 Work Performed This Quarter (Fourth Quarter 2009)

The following work was performed in the third quarter 2009:

- The fourth quarter groundwater monitoring event was performed on 8 October 2009. This work is discussed in detail in this report.
- SVE monitoring was conducted on 13 October, 11 November, and 11 December 2009. This work is also discussed in detail in this report.
- The *Enhanced In Situ Bioremediation Pilot Study Work Plan* (EISB Work Plan) was submitted to the RWQCB on 30 October 2009. This EISB Work Plan was approved by the RWQCB in a letter dated 8 December 2009.

2. QUARTERLY GROUNDWATER MONITORING

Quarterly groundwater monitoring was performed at the Site on 8 October 2009. Passive diffusion bags (PDBs) were used to collect samples from MW-1 through MW-7. A study to test the appropriateness of using PDBs was proposed in the *Results of* Fourth Quarter 2007 Groundwater Monitoring report submitted to the RWQCB on 31 January 2008¹ and was verbally approved by the RWQCB in a conference call on 12 March 2008. The PDB study was completed in the first and second guarters 2008. Results of the study showed that cis-1,2-dichloroethene (cis-1,2-DCE), tetrachloroethene (PCE), and trichloroethene (TCE) concentrations were slightly higher in samples collected from PDBs compared to samples collected using a peristaltic pump. Sample results reported as non-detect using the conventional sampling method were also non-detect using the PDB sampling method. These results indicate that PDB samplers are an appropriate and reliable method of monitoring VOCs at this Site. Therefore, beginning in the third quarter 2008, PDBs have replaced sampling via peristaltic pump.

2.1 <u>Sampling and Analytical Procedures</u>

The groundwater sampling fieldwork was performed by Environmental Sampling Services, Inc. (ESS), of Martinez, California. ESS's report, including field procedures and sampling logs, is provided in Appendix A.

The PDBs were deployed on 6 July 2009, during the third quarter 2009 monitoring event, in monitoring wells MW-1 through MW-7. On 8 October 2009, the PDBs were removed from the wells and sampled. Samples were delivered to Test America Laboratory of Pleasanton, California, for analysis under standard chain-of-custody procedures. Groundwater samples from the Site monitoring wells were analyzed for VOCs by Environmental Protection Agency (EPA) Method 8260B. New PDBs for the first quarter 2010 sampling event were deployed in wells MW-1 through MW-7 on 8 October 2009 after the fourth quarter 2009 sampling was completed at each well.

¹ Geosyntec Consultants, 2008. *Results of the Fourth Quarter 2007 Groundwater Monitoring, Hopyard Cleaners, 2771 Hopyard Road, Pleasanton, California, Self-Monitoring Program No. R2-2006-0059, 31 January 2008.*

2.2 <u>Groundwater Elevations and Flow Conditions</u>

Table 2 summarizes groundwater elevations measured during this and previous sampling events. During the fourth quarter 2009, groundwater in the A Zone (MW-1 through MW-4) beneath the Site was encountered between 17.56 and 19.87 feet bgs, corresponding to groundwater elevations between 306.40 and 308.13 feet above Mean Sea Level (MSL). Groundwater in the B Zone was encountered between 37.38 and 39.89 ft bgs, corresponding to groundwater elevations between 287.07 and 287.30 feet MSL.

Groundwater elevations over time are shown in Figure 3. The groundwater elevations in the A Zone monitoring wells have ranged from 306.4 to 314.8 feet MSL, since monitoring began in November 2006. Groundwater elevations in the B Zone are lower than those measured in the A Zone, with elevations ranging from 287.1 to 307.4 feet MSL. Both the A Zone and B Zone groundwater elevations tend to fluctuate seasonally with higher elevations during the winter and spring, when there are periods of precipitation, and lower elevations in the summer and fall, after periods of little or no rainfall. In the fourth quarter 2009, groundwater elevations were the lowest observed in both the A Zone and B Zone since monitoring began at the Site.

Water levels measured during the fourth quarter 2009 event were used to construct groundwater elevation contours for the A Zone and B Zone, as shown in Figures 4 and 5, respectively. Table 3 summarizes groundwater gradients and flow directions for this and previous monitoring events. The fourth quarter 2009 A Zone groundwater contours indicate a general groundwater flow to the west-northwest with an average gradient of approximately 0.0069 feet per feet (ft/ft) (36.4 feet per mile (ft/mi)). The B Zone groundwater contours indicate general groundwater flow to the southwest under a gradient of approximately 0.0013 ft/ft (6.7 ft/mi). During the fourth quarter 2009, the gradients and flow directions for both the A and B Zones are consistent with previous monitoring events, as shown on Table 3.

Geosyntec consultants

2.3 Data QA/QC

Geosyntec performed a quality assurance/quality control (QA/QC) review of the analytical data. Data were reviewed for completeness, accuracy, precision, sample contamination, conformance with holding times, and detection limits within acceptable ranges. Based on this review, the data are acceptable.

2.4 <u>Analytical Results</u>

Laboratory analytical reports for groundwater samples are provided in Appendix B. Table 4 summarizes analytical results for groundwater samples collected during the fourth quarter 2009 event together with historical results. Analytical results for the fourth quarter 2009 sampling event are also shown in Figures 4 and 5 for the A Zone and B Zone, respectively. Isoconcentration contour maps for PCE and TCE are shown in Figures 6 through 8. The isoconcentration contours were drawn using current data from monitoring wells along with results from grab groundwater samples previously collected at the Site. Results are summarized below.

2.4.1 A Zone Wells: MW-1 through MW-4

Analytical results for samples collected from the four A Zone monitoring wells consistently show the highest VOC concentrations at MW-2. During the fourth quarter 2009, the PCE concentration in the original and duplicate samples collected from MW-2 were both 15,000 micrograms per liter (μ g/L). PCE concentrations in samples collected from MW-2 have historically ranged from 4,700 to 18,000 μ g/L. During the fourth quarter 2009, TCE and cis-1,2-DCE concentrations in samples collected from MW-2 and VOC concentrations observed in samples collected from the other A Zone wells (MW-1, MW-3, and MW-4) were consistent with historical results. Duplicate samples collected from MW-2 contained 11 μ g/L trans-1,2-trichloroethene (trans-1,2-DCE), just above the analytical detection limit of 10 μ g/L. This represents the first detection of trans-1,2-DCE in groundwater since initiation of groundwater monitoring at the Site.

2.4.2 B Zone Wells: MW-5 through MW-7

PCE is the only VOC detected in the B Zone groundwater. During the fourth quarter 2009, the highest detection of PCE, 30 μ g/L, was in the sample collected from the

closest B Zone monitoring well to the Site, MW-5. Farther downgradient from the Site, PCE was detected in the sample collected from MW-7 at 11 μ g/L and was not detected in the sample collected from MW-6.

2.5 <u>Results Discussion</u>

Time-series graphs of PCE and TCE concentrations in all Site monitoring wells are shown in Figure 9. The highest concentrations of PCE and TCE have historically been detected in A Zone monitoring well MW-2. As shown in Figure 10, concentrations of TCE and PCE in MW-2 generally vary inversely with groundwater elevations measured in this well. The concentration of PCE and TCE in samples collected from MW-2 have increased overall since the fourth quarter 2008, which corresponds to an overall decline in groundwater elevations. PCE and TCE concentrations in A Zone wells MW-1, MW-3, and MW-4 and in B Zone wells MW-5 and MW-7 are generally stable or declining.

3. SVE SYSTEM MONITORING AND PERFORMANCE EVALUATION

The SVE system was installed at the Site in August 2008. The SVE system consists of five SVE wells (SVE-1 through SVE-5) located inside Hopyard Cleaners and a skid-mounted treatment system located in the parking lot about 60 feet southwest of the Site. The full-scale SVE operations began on 21 August 2008. Startup monitoring of the SVE system was performed on day 1 through 5, day 7, and day 9 of system startup to evaluate system performance and air emissions for the Bay Area Air Quality Management District Permit to Operate (BAAQMD PTO). Monitoring was performed weekly for the first month and monthly, at a minimum, thereafter. During the fourth quarter 2009, Geosyntec conducted the system monitoring on 13 October, 11 November, and 11 December 2009. The SVE system layout is shown in Figure 2. The SVE well locations and piping layout inside the dry cleaners is shown in Figure 11, and the process and instrumentation diagram is provided in Figure 12.

3.1 <u>SVE Monitoring Procedures</u>

SVE monitoring includes the following procedures:

- Perform photoionization detector (PID) screening via Tedlar[®] bags of:
 - Samples collected from the system influent, mid-point between the two granular activated carbon (GAC) vessels, and the system effluent, and
 - Samples collected at each SVE wellhead.
- Record vacuum response at each SVE wellhead;
- Record flow rate and vacuum response at the manifold;
- Record vacuum, temperature, and flow rate readings at system influent;
- Record hour meter;
- Inspect the moisture separator water level and drain into 55-gallon drums, if necessary; and
- Record the electrical meter reading.

As discussed in the SVE System Installation and Pilot Test Report and subsequent Addendum SVE System Installation and Pilot Test Report, influent SVE samples were

collected in 1-liter Summa canisters for laboratory analysis by TO-15 during start-up testing and on a quarterly basis to correlate VOC concentrations with PID readings and to evaluate the composition of VOCs in the extracted vapors.

3.2 <u>SVE Operation, Monitoring, and Maintenance</u>

The system performance monitoring results are presented in Table 5. The laboratory analytical results for the SVE influent samples are summarized in Table 6, and the laboratory analytical report is provided in Appendix B. The individual SVE well monitoring results are shown in Table 7.

The system was operated continuously 24 hours a day from the startup on 21 August 2008 through 2 September 2008, except for an approximately 2-hour time period on 29 August 2008 when the blower shut-off switch was tripped. During that time, even though measures were taken to reduce the noise from the system blower, Geosyntec received complaints regarding the noise at night from residents in the vicinity of the dry cleaners (both across Hopyard Road and Valley Road). Even though measures were taken to reduce noise from the system blowers, on 3 September 2008, the SVE system was modified to run 14 hours a day from 8 am to 10 pm.

In order to optimize the SVE system performance and efficiency, cycling of the SVE wells was started on 6 January 2009. Based on the results of the well cycling, the SVE system operation was reduced on 26 February 2009 to 2 hours per day with extraction from all five SVE wells.

Due to anomalously high mid-point and effluent concentrations observed during the 5 February 2009 SVE system monitoring, the Operations and Maintenance contractor, Mako, moved the blower from after the carbon vessels to in front of the carbon vessels in the treatment process, on 19 February 2009. The blower increases the temperature of the extracted vapor and therefore decreases the amount of water vapor that condenses in the carbon vessels, which results in an increased efficiency of the carbon. The carbon must remain below 120 degrees Fahrenheit to effectively treat the extracted vapor, therefore the recirculation valve on the system was opened to control (lower) the temperature. Monitoring of the temperature immediately before the carbon vessels was added to the system monitoring program, as shown in Table 5.

When the recirculation valve was opened to control the temperature, the extraction flow rate was reduced. Therefore, SVE operation was increased to 4 hours per day (8 am to 12 pm) on 10 April 2009 to increase the total extracted volume per day.

During the September 2009 monitoring event, it was noted that the SVE timer had drifted approximately 45 minutes. Accordingly, the system ran from approximately 8:45 and to 12:45 pm for period of the third quarter 2009. Due to the drift in the timer, the 4 September 2009 system monitoring was unknowingly conducted less than 20 minutes after startup, resulting in higher influent and SVE well VOC concentrations compared to previous SVE monitoring, which is conducted approximately 1 hour after startup to allow for equilibration of the extracted vapor VOC concentrations. Upon discovery that the timer had drifted, Geosyntec set the timer back to run from 8 am to 12 pm on 22 September 2009 and re-conducted system monitoring approximately 1 hour after startup. The high influent and well concentration from 4 September 2009 are shown on Tables 5 and 7 and on Figure 13. However, to be conservative the 4 September 2009 influent concentration was not used to calculation mass removal for the SVE system.

During the fourth quarter 2009, the SVE system continued to operate for 4 hours per day with the system timer set to run from approximately 8 am to 12 pm each day. On 14 September 2009, it was noted that the influent vacuum gauge was malfunctioning and in need of replacement. The gauge was replaced on 18 November 2009 by Mako Industries.

3.3 <u>SVE Performance Evaluation</u>

During the fourth quarter 2009, SVE influent VOC concentrations measured in the field using a PID ranged from 1,946 to 5,134 micrograms per cubic meter (μ g/m³) as equivalent PCE (0.282 to 0.744 parts per million by volume (ppmv)). After sixteen months of operation, the SVE system has removed a total of approximately 11.00 pounds (lbs) (0.82 gallons) of VOCs as equivalent PCE (Table 5 and Figure 14).

Laboratory analysis of SVE influent samples indicate that PCE is the primary COC being removed from the target remediation zone, as shown in Table 6 and in the laboratory analytical report provided in Appendix B. Observed discrepancies in total VOC concentrations between PID readings and laboratory analytical results on 4 August 2008 were corrected by reducing the time lapse between PID analysis and

Geosyntec consultants

sample collection. This change in sampling procedure led to greater agreement in VOC concentrations between PID and analytic results on 2 September 2008, 5 December 2008, 12 March 2009, 11 June 2009, and 11 December 2009. Although sampling methods were not altered, PID readings on 4 September 2009 were an order of magnitude higher than the VOC concentrations observed in laboratory analytical results. The discrepancy between PID and laboratory readings may be due to the altered startup time of the SVE system. Laboratory influent VOC samples were likely more equilibrated than PID samples, which were taken approximately 30 minutes earlier.

As shown on Figure 15, PCE concentrations in SVE influent samples analyzed by the laboratory decreased from 24,000 μ g/m³ on 21 August 2008 to 1700 μ g/m³ on 12 March 2009. After this initial decline, PCE concentrations increased in SVE influent samples collected on 11 June and 4 September 2009. PCE concentrations detected in the 11 December 2009 sample were slightly lower, at 2,000 μ g/m³. Overall, TCE concentrations have remained below the soil gas cleanup standard for TCE of 4,100 μ g/m³ in all samples and have decreased from 280 μ g/m³ on 21 August 2008 to 36 μ g/m³ on 12 March 2009. TCE concentrations rose slightly in samples collected on 11 June and 4 September 2009. The SVE influent sample collected on 11 December 2009 contained 87 μ g/m³ TCE, similar to the concentration observed in samples collected on Figure 15, PCE and TCE concentrations do not appear to exhibit a declining trend over the last four quarters of SVE influent sampling.

Table 7 presents the PID screening results of the SVE wells. Initial cycling of the wells in January and February 2009 demonstrated potential rebound effects. After two months of cycling, the rebound effects significantly decreased and concentrations in all wells but SVE-2 were below the soil gas cleanup standard for PCE (1,400 μ g/m³). During the fourth quarter 2009 operations, wellhead PID screening results at all SVE wells were above the soil gas cleanup standard for PCE, which is similar to previous results.

4. **FUTURE WORK**

The following work will be completed during the first quarter 2010:

- EISB pilot study pre-design field activities, described in the EISB Work Plan², will be conducted in January 2010. A technical memorandum summarizing predesign field activities and results and detailing the final design of the pilot study will be submitted to the RWQCB by 15 March 2010.
- The next quarterly groundwater monitoring event will be performed in January 2010. Results of the first quarter 2010 monitoring report will be submitted to the RWQCB by 30 April 2010.
- SVE monitoring will continue on a monthly basis at a minimum with one sample being collected for TO-15 analysis during the first quarter 2010. Results of the monitoring will be presented in the first quarter 2010 monitoring report due to the RWQCB on 30 April 2010.
- Review SVE system operations to develop a plan for system optimization.

² Geosyntec Consultants, 2009. Enhanced In Situ Bioremediation Pilot Study Work Plan, Hopyard Cleaners, 2771 Hopyard Road, Pleasanton, California, 30 October 2009.

TABLES

Table 1Monitoring Well Construction SummaryHopyard CleanersPleasanton, California

Well I.D.	Date of Completion	Northing	Easting	TOC Elevation (MSL)	Total Depth (ft bgs)		Screen Inte (ft b	-	Well Casing Material	Well Diameter (inches)			
					Borehole	Well	Тор	Bottom					
A Zone Mon	A Zone Monitoring Wells												
MW-1	9/29/2006	2071427.29	6157712.24	325.77	30	30	20.00	30.00	SCH 40 PVC	2			
MW-2	9/26/2006	2071357.03	6157791.18	325.69	30	30	20.00	30.00	SCH 40 PVC	2			
MW-3	9/27/2006	2071461.21	6157787.94	326.27	30	30	20.00	30.00	SCH 40 PVC	2			
MW-4	7/20/2007	2071382.30	6157557.57	326.27	36.5	35	25.00	35.00	SCH 40 PVC	2			
B Zone Mor	B Zone Monitoring Wells												
MW-5*	7/19/2007	2071292.25	6157654.24	327.19	60	60	50.00	60.00	SCH 40 PVC	2			
MW-6	8/19/2008	2071280.12	6157384.43	324.48	59	59	49.00	59.00	SCH 40 PVC	2			
MW-7	8/20/2008	2071076.06	6157645.52	324.55	56	55	45.00	55.00	SCH 40 PVC	2			

Notes:

ft bgs = feet below ground surface

MSL = mean sea level

TOC = Top of Casing

Elevations are based on NAVD 88 Datum

* Conductor casing was installed from 0 to 40 ft bgs.

Table 2Groundwater ElevationsHopyard CleanersPleasanton, California

Well I.D.	тос		Depth to	Groundwater
(Screen Interval)	Elevation	Sample Date	Groundwater Below	Elevation
(Screen Interval)	(ft MSL)		TOC (ft)	(ft MSL)
A Zone Monitoring		_		
MW-1	325.77	10/8/2009	18.23	307.54
(20-30 ft bgs)		7/6/2009	15.63	310.14
		4/27/2009	13.81	311.96
		1/26/2009	16.71	309.06
		12/10/2008	16.78	308.99
		7/14/2008	13.79	311.98
		5/16/2008	11.70	314.07
		2/15/2008	11.38	314.39
		1/3/2008	13.63	312.14
		8/3/2007	14.40	311.37
		5/11/2007	12.27	313.50
		2/9/2007	13.98	311.79
		11/20/2006	14.88	310.89
MW-2	325.69	10/8/2009	17.56	308.13
(20-30 ft bgs)		7/6/2009	15.03	310.66
		4/27/2009	13.27	312.42
		1/26/2009	16.17	309.52
		12/10/2008	16.24	309.45
		7/14/2008	13.23	312.46
		5/16/2008	11.30	314.39
		2/15/2008	10.87	314.82
		1/3/2008	13.21	312.48
		8/3/2007	13.72	311.97
		5/11/2007	11.87	313.82
		2/9/2007	13.55	312.14
		11/20/2006	14.36	311.33
MW-3	326.27	10/8/2009	18.58	307.69
(20-30 ft bgs)		7/6/2009	15.98	310.29
		4/27/2009	14.02	312.25
		1/26/2009	17.10	309.17
		12/10/2008	17.17	309.10
		7/14/2008	14.21	312.06
		5/16/2008	12.18	314.09
		2/15/2008	11.68	314.59
		1/3/2008	14.02	312.25
		8/3/2007	14.68	311.59
		5/11/2007	12.72	313.55
		2/9/2007	14.41	311.86
		11/20/2006	15.28	310.99

Table 2
Groundwater Elevations
Hopyard Cleaners
Pleasanton, California

Well I.D.	тос		Depth to	Groundwater
(Screen Interval)	Elevation	Sample Date	Groundwater Below	Elevation
(Screen Interval)	(ft MSL)		TOC (ft)	(ft MSL)
MW-4	326.27	10/8/2009	19.87	306.40
(25-35 ft bgs)		7/6/2009	17.16	309.11
		4/27/2009	14.96	311.31
		1/26/2009	17.86	308.41
		12/10/2008	18.41	307.86
		7/14/2008	13.81	312.46
		5/16/2008	12.12	314.15
		2/15/2008	12.05	314.22
		1/3/2008	14.73	311.54
		8/3/2007	15.85	310.42
B Zone Monitoring	Wells			
MW-5	327.19	10/8/2009	39.89	287.30
(50-60 ft bgs)		7/6/2009	34.84	292.35
		4/27/2009	28.83	298.36
		1/26/2009	30.61	296.58
		12/10/2008	33.67	293.52
		7/14/2008	32.16	295.03
		5/16/2008	23.06	304.13
		2/15/2008	19.74	307.45
		1/3/2008	22.65	304.54
		8/3/2007	30.51	296.68
MW-6	324.48	10/8/2009	37.38	287.10
(49-59 ft bgs)		7/6/2009	32.33	292.15
		4/27/2009	26.32	298.16
		1/26/2009	28.10	296.38
		12/10/2009	31.14	293.34
MW-7	324.55	10/8/2009	37.48	287.07
(45-55 ft bgs)		7/6/2009	32.41	292.14
		4/27/2009	26.39	298.16
		1/26/2009	28.19	296.36
		12/10/2008	31.21	293.34

Notes:

ft MSL = feet above mean sea level TOC = Top of Casing ft bgs = feet below ground surface Elevations are based on NAVD 88 Datum

Table 3 Groundwater Gradient Summary Hopyard Cleaners Pleasanton, California

Date	Grae	lient	General
Date	ft/ft	ft/mi	Flow Direction
A Zone			
10/8/2009	0.0069	36.4	West-Northwest
7/6/2009	0.0064	33.8	West-Northwest
4/27/2009	0.0050	26.4	West-Northwest
1/26/2009	0.0045	23.8	West-Northwest
12/10/2008	0.0068	36.1	West-Northwest
7/14/2008	0.0048	25.5	North
5/16/2008	0.0031	16.5	North-Northwest
2/15/2008	0.0038	20.5	Northwest
1/3/2008	0.0025	13.2	Northwest
8/3/2007	0.0070	37.0	West-Northwest
5/11/2007	0.0030	15.8	North-Northwest
2/9/2007	0.0010	5.3	North-Northwest
11/20/2006	0.0040	22.0	Northwest
B Zone			
10/8/2009	0.0013	6.7	Southwest
7/6/2009	0.0012	6.1	Southwest
4/27/2009	0.0011	5.9	Southwest
1/26/2009	0.0012	6.4	Southwest
12/10/2008	0.0012	6.1	Southwest

 $\frac{Notes:}{ft/ft = feet per feet}$

ft/mi = feet per mile

Table 4 Groundwater Analytical Summary Hopyard Cleaners Pleasanton, California

Well I.D. (Screen Interval)	Sample Date	Sampling Method	Volatile Organic Compounds - EPA Method 8260B (ug/L)						
(Screen Interval)			cis-1,2-DCE	trans-1,2-DCE	PCE	TCE			
A Zone Monitoring We	lls								
MW-1	10/8/2009	PDB Sampler	220	<25	1,500	340			
(20-30 ft bgs)	7/6/2009	PDB Sampler	210	<20	1,700	270			
	4/27/2009	PDB Sampler	180	<20	1,500	240			
	1/26/2009	PDB Sampler	240	<20	1,700	320			
	12/10/2008	PDB Sampler	250	<20	1,900	350			
	7/14/2008	PDB Sampler	230	<20	1,700	250			
	5/16/2008	Purge and Sample	250	<20	1,600	280			
	5/16/2008	PDB Sampler*	260	<20	1,900	310			
	2/29/2008	PDB Sampler*	330	<20	2,000	330			
	2/15/2008	Purge and Sample	230	<20	1,400	250			
	1/2/2008	Purge and Sample	230	<20	1,600	270			
	8/3/2007	Purge and Sample	260	<20	1,600	270			
	5/11/2007	Purge and Sample	310	<20	2,500	310			
	2/9/2007	Purge and Sample	270 / 270	<20	2,400 / 2,300	290 / 290			
	11/20/2006	Purge and Sample	370	<50	3,100	370			
MW-2	10/8/2009	PDB Sampler	540 / 560	<100 / 11	15,000 / 15,000	870 / 900			
(20-30 ft bgs)	7/6/2009	PDB Sampler	610 / 650	<100 / <100	17,000 / 18,000	880 / 930			
	4/27/2009	PDB Sampler	770 / 710	<100 / <100	14,000 / 14,000	850 / 850			
	1/26/2009	PDB Sampler	760 / 770	<100 / <100	12,000 / 12,000	720 / 730			
	12/10/2008	PDB Sampler	840 / 770	<100 / <100	15,000 / 15,000	790 / 740			
	7/14/2008	PDB Sampler	820 / 830	<100/<50	9,500 / 8,100	530 / 500			
	5/16/2008	Purge and Sample	900 / 930	<50/<50	5,800 / 5,900	460 / 450			
	5/16/2008	PDB Sampler*	940	<50/<50	6,700	480			
	2/29/2008	PDB Sampler*	780	<50	5,300	360			
	2/15/2008	Purge and Sample	690 / 690	<50 / <50	4,100 / 4,000	320 / 300			
	1/2/2008	Purge and Sample	940 / 890	<50 / <50	8,200 / 8,200	560 / 580			
	8/3/2007	Purge and Sample	1,200 / 1,100	<50/<50	8,000 / 8,100	590 / 570			
	5/11/2007	Purge and Sample	1,000 / 980	<50/<50	7,200 / 7,300	490 / 450			
	2/9/2007	Purge and Sample	760	<50/<20	4,700	350			
	11/20/2006	Purge and Sample	800 / 800	<50 / <40	5,700 / 5,800	370 / 360			
MW-3	10/8/2009	PDB Sampler	5.3	< 0.50	48	5.0			
(20-30 ft bgs)	7/6/2009	PDB Sampler	4.1	< 0.50	47	4.6			
	4/27/2009	PDB Sampler	4.4	< 0.50	48	4.7			
	1/26/2009	PDB Sampler	4.6	< 0.50	42	4.7			
	12/10/2008	PDB Sampler	5.6	< 0.50	60	5.5			
	7/14/2008	PDB Sampler	4.3	< 0.50	43	4.0			
	5/16/2008	Purge and Sample	5.0	< 0.50	39	4.3			
	5/16/2008	PDB Sampler*	5.4	< 0.50	46	4.4			
	2/29/2008	PDB Sampler*	6.9	< 0.50	58	5.9			
	2/15/2008	Purge and Sample	6.2	< 0.50	44	5.1			
	1/2/2008	Purge and Sample	5.2	< 0.50	46	4.6			
	8/3/2007	Purge and Sample	4.7	< 0.50	37	4.2			
	5/11/2007	Purge and Sample	5.5	< 0.50	43	4.4			
	2/9/2007	Purge and Sample	5.3	< 0.50	42	4.2			
	11/20/2006	Purge and Sample	9.5	<1.0	93	7.2			

Table 4
Groundwater Analytical Summary
Hopyard Cleaners
Pleasanton, California

(Screen Interval) MW-4 (25-35 ft bgs)	10/8/2009 7/6/2009 4/27/2009 1/26/2009 12/10/2008 7/14/2008	PDB Sampler PDB Sampler PDB Sampler PDB Sampler	cis-1,2-DCE 3.3 3.0 3.7	trans-1,2-DCE <0.50 <0.50	PCE <0.50	TCE 3.2
	7/6/2009 4/27/2009 1/26/2009 12/10/2008	PDB Sampler PDB Sampler PDB Sampler	3.0	1 1		3.2
(25-35 ft bgs)	4/27/2009 1/26/2009 12/10/2008	PDB Sampler PDB Sampler		< 0.50		
	1/26/2009 12/10/2008	PDB Sampler	3.7		< 0.50	3.4
	12/10/2008	^		< 0.50	< 0.50	4.3
			4.3	< 0.50	< 0.50	4.9
F	7/14/2008	PDB Sampler	4.0	< 0.50	< 0.50	3.7
		PDB Sampler	4.7	< 0.50	< 0.50	4.0
	5/16/2008	Purge and Sample	3.7	< 0.50	< 0.50	2.6
	5/16/2008	PDB Sampler*	3.6	< 0.50	< 0.50	2.7
	2/29/2008	PDB Sampler*	3.4	< 0.50	< 0.50	3.0
	2/15/2008	Purge and Sample	4.2	< 0.50	< 0.50	4.0
	1/3/2008	Purge and Sample	4.2	< 0.50	< 0.50	3.5
	8/3/2007	Purge and Sample	4.6	< 0.50	< 0.50	3.5
B Zone Monitoring Wells						
MW-5	MW-5 10/8/2009 PI		< 0.50	< 0.50	30	< 0.50
(50-60 ft bgs)	7/6/2009	PDB Sampler	< 0.50	< 0.50	34	< 0.50
	4/27/2009	PDB Sampler	< 0.50	< 0.50	35	< 0.50
	1/26/2009	PDB Sampler	< 0.50	< 0.50	37	< 0.50
	12/10/2008	PDB Sampler	< 0.50	< 0.50	49	< 0.50
	7/14/2008	PDB Sampler	< 0.50	< 0.50	31	< 0.50
	5/16/2008	Purge and Sample	< 0.50	< 0.50	24	< 0.50
	5/16/2008	PDB Sampler*	< 0.50	< 0.50	34	< 0.50
	2/29/2008	PDB Sampler (52.5 ft bgs)*	< 0.50	< 0.50	41	< 0.50
	2/29/2008	PDB Sampler (57.5 ft bgs)*	< 0.50	< 0.50	33	< 0.50
	2/15/2008	Purge and Sample	< 0.50	< 0.50	26	< 0.50
	1/3/2008	Purge and Sample	< 0.50	< 0.50	38	< 0.50
	8/3/2007	Purge and Sample	< 0.50	< 0.50	37	< 0.50
MW-6	10/8/2009	PDB Sampler	< 0.50	< 0.50	< 0.50	<0.50
(49-59 ft bgs)	7/6/2009	PDB Sampler	< 0.50	< 0.50	< 0.50	< 0.50
	4/27/2009	PDB Sampler	< 0.50	< 0.50	< 0.50	< 0.50
	1/26/2009	PDB Sampler	< 0.50	< 0.50	< 0.50	< 0.50
	12/10/2008	PDB Sampler (51.5 ft bgs)*	< 0.50	< 0.50	< 0.50	<0.50
	12/10/2008	PDB Sampler (56.5 ft bgs)*	< 0.50	< 0.50	< 0.50	<0.50
MW-7	10/8/2009	PDB Sampler	< 0.50	< 0.50	11	< 0.50
(45-55 ft bgs)	7/6/2009	PDB Sampler	< 0.50	< 0.50	5.3	< 0.50
	4/27/2009	PDB Sampler	< 0.50	<0.50	5.7	< 0.50
	1/26/2009	PDB Sampler	<0.50	<0.50	9.9	<0.50
	12/10/2008	PDB Sampler (47.5 ft bgs)*	<0.50	<0.50	9.8	<0.50
	12/10/2008	PDB Sampler (52.5 ft bgs)*	<0.50	<0.50	10	<0.50

Notes:

Table shows only compounds detected above the laboratory reporting limit.

cis-1,2-DCE = cis-1,2-dichloroethene

trans-1,2-DCE = trans-1,2-dichloroethene

PCE = tetrachloroethene

TCE = trichloroethene

"-- / --" = result on right represents duplicate sample

ft bgs = feet below ground surface

PDB = Passive Diffusion Bag Sampler

* Samples collected as part of the PDB comparison study. PDBs were deployed at two depths in the following wells to evaluate stratification: at 52.5 and 57.5 ft bgs in MW-5 for the 1st Quarter 2008 event, at 51.5 and 56.5 ft bgs in MW-6 for the 4th Quarter 2008 event, and at 47.5 and 52.5 ft bgs in MW-7 for the 4th Quarter 2008 event.

	SYSTEM MEASUREMENTS								MASS REMOVAL CALCULATIONS									
Sample Date	Time	Operation Time (Hour)	Influent Flow Rate (ft/min)	System Temp. (°F)	Influent Vacuum (in Hg)	Influent Conc. (ug/m ³ as PCE)	Mid-Point Conc. (ug/m ³ as PCE)	Effluent Conc. (ug/m ³ as PCE)	Temp. Before GAC Vessels (°F) ⁽¹⁾	Vacuum (in water)	Flowrate (cfm)	Flowrate (scfm)	Total Operation Time (hr)	Equivalent PCE Conc. (mg/m ³ as PCE)	Mass Removal Rate (lbs/hr)	Mass Removal Rate (lbs/day)	Mass Removal per Monitoring Event (lbs as PCE)	Cumulative Mass Removal (lbs as PCE)
21-Aug-08	9:15	7,569.2			10.0	89,700	1,380	690		136				89.7			0.00	0.00
22-Aug-08	9:25	7,593.3	4,590	83.5	10.0	37,950	2,070	0.0		136	210.54	136.22	24.17	38.0	0.0326	0.7817	0.79	0.79
23-Aug-08	10:00	7,618.0	4,690	78.3	9.5	4,830	1,380	690		129	215.13	144.06	48.75	4.8	0.0115	0.2770	0.28	1.07
24-Aug-08	14:02	7,646.0	4,550	79.5	10.0	6,210	2,070	0.0		136	208.71	136.04	76.78	6.2	0.0028	0.0675	0.08	1.15
25-Aug-08	16:22	7,672.4	4,450	87.2	10.0	7,590	2,070	690		136	204.12	131.17	103.12	7.6	0.0034	0.0814	0.09	1.24
27-Aug-08	8:14	7,712.1	4,520	74.0	10.0	45,540	690	0.0		136	207.33	136.53	142.98	45.5	0.0136	0.3261	0.54	1.78
29-Aug-08	8:02	7,757.7	4,380	77.9	9.5	12,420				129	200.91	134.64	190.78	12.4	0.0146	0.3508	0.70	2.48
2-Sep-08	9:14	7,853.3	4,250	77.5	10.0	12,420	690	0.0		136	194.95	127.54	287.98	12.4	0.0059	0.1424	0.58	3.06
8-Sep-08	8:40	7,996.2	4,290	76.8	8.5	14,490	690	0.0		116	196.78	138.60	379.14	14.5	0.0070	0.1677	0.64	3.69
18-Sep-08	10:40	8,238.2	4,300	79.0	8.0	4,830	0.0	0.0		109	197.24	141.59	520.31	4.8	0.0051	0.1230	0.72	4.42
8-Oct-08	10:00	8,715.1	4,300	83.8	8.0	5,520	0.0	0.0		109	197.24	140.34	799.92	5.5	0.0027	0.0653	0.76	5.18
17-Nov-08	9:30	9,675.1	4,300	66	8.0	6,210	0.0	0.0		109	197.24	145.09	1,359.63	6.2	0.0032	0.0765	1.78	6.96
5-Dec-08	9:26	10,107.1	4,775	49.8	8.0	4,830	1,380	0.0		109	219.03	166.23	1,611.59	4.8	0.0034	0.0825	0.87	7.83
6-Jan-09	9:10	10,847.7	4,610	53.5	7.5	1,380	0.0	0.0		102	211.46	162.96	2,059.43	1.4	0.0019	0.0455	0.85	8.68
21-Jan-09	8:25	11,233.5	4,490	51.8	9.0	4,830	3,450	690		122	205.95	148.60	2,268.99	4.8	0.0017	0.0415	0.36	9.04
21-Jan-09	15:30	11,240.5	3,445	67.8	10.5	3,450	2,070	2,070		143	158.02	102.64	2,273.13	3.5	0.0016	0.0382	0.01	9.04
5-Feb-09	9:05	11,562.4	4,130	56.6	10.0	6,900 ⁽²⁾	5,520 ⁽²⁾	690 ⁽²⁾		136	189.44	128.95	2,479.38	6.9 ⁽²⁾	0.0008	0.0200	0.17	9.22
5-Feb-09	10:30	11,563.8	4,470	59.1	10.0	154,600 (2)	93,840 ⁽²⁾	104,880 (2)		136	205.04	138.90	2,480.21	154.56 ⁽²⁾	0.0009	0.0215	0.00	9.22
19-Feb-09	8:42	11,898.0	4,440	55.1	9.0	0.0	0.0	0.0		122	203.66	146.01	2,675.16	0.0	0.0009	0.0226	0.18	9.40
19-Feb-09	12:00	11,899.7	3,110	63.8	10.0	0.0	0.0	0.0	102.3	136	142.65	95.77	2,675.20	0.0	0.0000	0.0000	0.00	9.40
26-Feb-09	9:15	12,064.9	3,150	60.3	9.0	0.0	0.0	0.0	97.4	122	144.49	102.55	2,771.60	0.0	0.0000	0.0000	0.00	9.40
26-Feb-09	10:07	12,068.8	3,500	60.9	8.0	0.0	0.0	0.0	94.8	109	160.54	119.25	2,772.10	0.0	0.0000	0.0000	0.00	9.40
12-Mar-09	9:40	12,400.3	3,650	56.1	7.0	1,097	0.0	0.0	77.4	95	167.42	131.24	2,800.06	1.10	0.0003	0.0065	0.01	9.41
10-Apr-09	8:43	13,095.4	3,680	62.1	8.0	3,305	1,207.5	248.4	86.5	109	168.80	125.09	2,857.98	3.31	0.0010	0.0248	0.06	9.47
6-May-09	9:00	13,719.6	3,570	72.4	11.5	2,870	1,573.2	966.0	109.7	156	163.75	100.02	2,962.03	2.87	0.0012	0.0278	0.12	9.59
11-Jun-09	8:43	14,583.4	3,590	72.1	5.0	83	20.7	13.8	99.1	68	164.67	136.11	3,105.98	0.083	0.0008	0.0181	0.11	9.70
7-Jul-09	9:00	15,207.7	3,410	79.3	8.0	3,340	483.0	558.9	112.8	109	156.41	112.22	3,210.03	3.34	0.0007	0.0173	0.07	9.77
6-Aug-09	8:40	15,927.3	2,750	75.5	7.0	4,485	1,614.6	710.7	101.3	95	126.14	95.30	3,329.98	4.49	0.0014	0.0335	0.17	9.94
4-Sep-09	8:55	16,623.6	3,220	80.9	(3)	40,586 (4)	0.0	0.0	102.1	95	147.70	110.47	3,446.02	40.586 ⁽⁴⁾	(4)	(4)	(4)	9.94
22-Sep-09	10:15	17,056.4	(5)	(5)	(3)	6,445	924.6	855.6	118.1	95	147.70	110.47	3,518.24	6.44	0.0023	0.0543	0.43	10.37
13-Oct-09	10:02	17,560.8	3,190	66.4	(3)	5,134	1,139	1,711	78.2	95	146.32	112.53	3,602.20	5.13	0.0024	0.0586	0.20	10.57
11-Nov-09	9:15	18,257.1	3,480	65.2	(3)	3,940	2,180	655.5	95.7	95	159.63	122.96	3,718.07	3.94	0.0021	0.0502	0.24	10.81

Table 5

SVE System Performance Monitoring Results Hopyard Cleaners 2771 Hopyard Road, Pleasanton, California

	SYSTEM MEASUREMENTS										MASS REMOVAL CALCULATIONS										
Sample Date	Time	Operation Time (Hour)	Influent Flow Rate (ft/min)	·	Influent Vacuum (in Hg)	Conc.	as (ug/m ³ as (ug/m ³)		Versela	Vacuum (in water)	Flowrate (cfm)	Flowrate (scfm)	Iotai	Equivalent PCE Conc. (mg/m ³ as PCE)	Rate	Mass Removal Rate (lbs/day)	Mass Removal per Monitoring Event (lbs as PCE)	Cumulative Mass Removal (lbs as PCE)			
11-Dec-09	9:15	18976.8	3260	56.1	5.0	1,946	207.0	213.9	81.2	68	149.53	127.43	3,838.07	1.95	0.0014	0.0337	0.17	10.98			

Notes/Assumptions:

A. Inlet pipe diameter is 3".

B. SVE operations were reduced from 24 hours per day to 14 hours (8 am to 10 pm) per day on 3 September 2008; SVE operations were reduced to 2 hours (8 am to 10 am) per day on 26 February 2009; and SVE operations were increased to 4 hours (8 am to 12 pm) per day on 10 April 2009. SVE monitoring is conducted approximately 1 hour after SVE system startup.

C. Vapor density of PCE is estimated to be $6,900 \text{ g/m}^3$ at 20C.

D. SCFM(at 14.7psia and 68°F) = CFM x([(Pg + Patm)/(Patm)] x [(68 + 460)/(Tact + 460)])

E. Concentrations and mass removal are calculated as mass of PCE.

(1) On 19 February 2009, the blower was moved in front of the carbon vessels in the treatment process. Temperature measurement were collected before carbon vessels to confirm that vapor temperatures are below 120 prior to entering the carbon vessels. (2) PID readings from 5 February 2009 were anomolously high, indicating possible instrumentation error. To be conservative, this influent concentration was not included in mass removal calculations.

(3) From the beginning of September through mid-November 2009, the influent vacuum gauge was malfuncting. Flow rate and mass removal were calculated using the influent vacuum measured on 6 August 2009 (7.0 in Hg). The vacuum gauge was replaced on 18 November 2009 by Mako Industries, Inc.

(4) The timer on the SVE system drifted prior to the 4 Sepember 2009 monitoring event, and SVE system started approximately 45 minutes later than scheduled. Therefore, system monitoring was conducted less than 20 minutes after SVE system startup, resulting in high influent concentations, than those measured 1 hour after startup. To be conservative, the influent concentations from 4 September 2009 were not used in the mass removal calulations and SVE system monitoring was conducted again on 22 September 2009.
(5) On 22 September 2009, influent temperature and flow rate readings could not be obtained due to equiptment problems. These values are assumed to be equivalent to those measured on 4 September 2009 and the 4 September 2009 values were used to flow rate and calculate mass removal.

ft/min = feet per minute	in water = inches water	$mg/m^3 = milligrams$ per cubic meter
$ug/m^3 = micrograms$ per cubic meter	cfm = cubic feet per minute	yr = year
^o F = degrees Fahrenheit	scfm = standard cubic feet per minute	lbs = pounds
in Hg = inches mercury	hr = hour	"" = not measured or not calculated

Table 5SVE System Performance Monitoring ResultsHopyard Cleaners2771 Hopyard Road, Pleasanton, California

Table 6 SVE Influent Analytical Summary Hopyard Cleaners 2771 Hopyard Road, Pleasanton, California

	Sample Date														
VOC	21-Aug-08		2-Se	p-08	5-De	ec-08	12-M	ar-09	11-J	un-09	4-Se	p-09	11-Dec-09		
units	ppmv	ug/m ³	ppmv	ug/m ³	ppmv	ug/m ³	ppmv	ug/m ³	ppmv	ug/m ³	ppmv	ug/m ³	ppmv	ug/m ³	
PCE	3.600	24,000	1.200	8,500	0.340	2,300	0.250	1,700	0.290	2,000	0.600	4,100	0.430	2,900	
TCE	0.051	280	0.029	160	0.012	64	0.0068	36	0.01	54	0.017	89	0.016	87	
Other ¹	0.022	66	0.0075	22	0.043	112.6	0.0134	35.1	0.0207	56.9	0.036	96	0.0026	13	
Total VOCs	3.651	24,346	1.237	8,682	0.395	2,476.6	0.270	1,771.1	0.321	2,110.9	0.653	4,285	0.4486	3,000	
Influent PID Reading ²	13.8	95,220	1.8	12,420	0.7	4,830	0.159	1,097	0.012	83	5.882	40,586	0.282	1,946	

Notes:

Table shows only compounds detected above the laboratory reporting limit

VOC - Volatile Organic Compound; analyzed by TO-15

ppmv - parts per million by volume

ug/m3 - micrograms per cubic meter

cis-1,2-DCE - cis-1,2-dichloroethene

PCE - tetrachloroethene

TCE - trichloroethene

PID - Photoionization Detector

(1) Tetrahydrofuran was detected at a concentration of 0.022 ppmv on 21 August 2008; 2-butanone was detected at a concentration of 0.0075 ppmv on 2 September 2008; freon 12 was detected at a concentration of 0.0014 ppmv, ethanol was detected at 0.0082 ppmv, acetone was detected at 0.0099 ppmv, carbon disulfide was detected at 0.0025 ppmv, methylene chloride was detected at 0.0014 ppmv, 2-butanone was detected at 0.0025 ppmv, acetone was detected at 0.0014 ppmv, benzene was detected at 0.0025 ppmv, and toluene was detected at 0.0076 ppmv on 5 December 2008; acetone was detected at 0.0026 ppmv, 2-butanone was detected at 0.0026 ppmv, and tetrahydrofuran was detected at 0.0029 ppmv, on 12 March 2009; acetone was detected at 0.0075 ppmv, 2-butanone was detected at 0.0026 ppmv, ethanol was detected at 0.0029 ppmv, on 12 March 2009; acetone was detected at 0.0014 ppmv, benzene was detected at 0.0025 ppmv, no 11 June 2009; freon 12 was detected at 0.0025 ppmv, acetone was detected at 0.0025 ppmv, acetone was detected at 0.0026 ppmv, ethanol was detected at 0.0025 ppmv, and toluene was detected at 0.0014 ppmv on 11 June 2009; freon 12 was detected at 0.0025 ppmv, acetone was detected at 0.0025 ppmv, acetone was detected at 0.0026 ppmv, and 2-butanone was detected at 0.0055 ppmv on 4 September 2009; and freon 12 was detected at 0.0026 ppmv on 11 December 2009.

(2) PID screening results from the date sampling was conducted, as presented on Table 5. PID results are calculated as parts per million by volume to ug/m as PCE.

	Monitoring Event		MANIFOLD			SVE-1				SVE-2				SVE-3					S	VE-4		SVE-5			
Monitoring		Extraction		Flow				PID	(2)			PII	(2)			PID	(2)			PID	(2)			PII) (2)
Date		Duration ⁽¹⁾ (hr/day)	Time	Rate (scfm)	Vacuum (in Hg)	Time	Vacuum (in Hg)	ug/m ³ as PCE	ppmv	Time	Vacuum (in Hg)	ug/m ³ as PCE	ppmv	Time	Vacuum (in Hg)	ug/m ³ as PCE	ppmv	Time	Vacuum (in Hg)		ppmv	Time	Vacuum (in Hg)		ppmv
21-Aug-08	Start up Day 1	24	9:22	240		9:24	0	322,920	46.8	9:22	1.5	164,220	23.8	9:21	2.0	34,500	5.0	9:25	1.5	167,670	24.3	9:20	2.0	60,720	8.8
22-Aug-08	Start-up Day 2	24	9:41	240		9:42	0	141,450	20.5	9:40	1.75	82,800	12.0	9:38	2.0	14,490	2.1	9:44	1.5	57,960	8.4	9:37	2.0	28,980	4.2
23-Aug-08	Start-up Day 3	24	10:35	240		10:38	0	86,250	12.5	10:34	1.5	53,820	7.8	10:28	0	15,870	2.3	10:26	1.0	44,160	6.4	10:31	2.0	24,840	3.6
25-Aug-08	Start-up Day 5	24	16:52	235		16:50	0	64,170	9.3	16:58	0	33,810	4.9	16:55	1.0	11,040	1.6	4:46	1.0	33,120	4.8	16:53	2.0	17,940	2.6
27-Aug-08	Start-up Day 7	24	8:36	240		8:38	0	49,680	7.2	8:36	1.5	24,840	3.6	8:35	2.0	4,140	0.6	8:39	1.5	61,410	8.9	8:34	2.0	10,350	1.5
2-Sep-08	Start-up Day 13/Week 2	24	9:43	230	3.5	9:44	0	24,150	3.5	9:42	1.5	15,180	2.2	9:40	1.75	4,830	0.7	9:45	1.5	13,110	1.9	9:36	1.5	8,280	1.2
8-Sep-08	Start-up Week 3	14	8:58	230	3.75	9:01	0	17,940	2.6	8:59	1.25	19,320	2.8	8:58	1.5	16,560	2.4	9:02	1.25	8,280	1.2	8:57	1.5	14,490	2.1
18-Sep-08	1st Month	14	11:14	235	4	11:16	1.2	12,420	1.8	11:14	1.5	5,520	0.8	11:12	1.5	0	0.0	11:17	1.3	5,520	0.8	11:10	1.5	3,450	0.5
8-Oct-08	2nd Month	14	10:40	235	3.75	11:04	1.2	8,970	1.3	11:00	1.5	7,590	1.1	10:57	1.4	3,450	0.5	11:07	1.3	6,900	1.0	10:51	1.5	5,520	0.8
17-Nov-08	3rd Month	14	9:45	235	3.5	9:48	1.1	6,900	1.0	9:46	1.4	4,830	0.7	9:44	1.3	3,450	0.5	9:50	1.2	4,830	0.7	9:42	1.4	5,520	0.8
5-Dec-08	4th Month	14	11:20	240	3.5	11:21	1.1	4,830	0.7	11:19	1.3	3,450	0.5	11:18	1.3	2,070	0.3	11:22	1.1	3,450	0.5	11:17	1.4	3,450	0.5
6-Jan-09	5th Month	14	9:44	240	3.5	9:45	1.0	690	0.1	9:43	1.3	0	0	9:42	1.2	0	0.0	9:46	1.1	690	0.1	9:40	1.3	0	0.0
21-Jan-09	Cycle Wells ⁽³⁾	14	9:02	235	4.5	9:03	1.5	10,350	1.5	9:00	2.4	11,730	1.7	10:06	OFF	115,230	16.7	9:06	1.7	44,850	6.5	10:05	OFF	124,890	18.1
21-Jan-09	Cycle Wells ⁽³⁾	14	15:47	220	5.5	15:49	OFF	4,140	0.6	15:46	OFF	2,760	0.4	15:45	3.1	2,760	0.4	15:50	OFF	6,210	0.9	15:43	3.2	690	0.1
5-Feb-09	6th Month/Cycle Wells ⁽³⁾	14	9:27	230	5.0	9:28	OFF	84,180 (4)	12.2 (4)	9:26	OFF	73,830 (4)	10.7 ⁽⁴⁾	9:24	2.9	74,520 ⁽⁴⁾	10.8 (4)	9:29	OFF	178,710 ⁽⁴⁾	25.9 ⁽⁴⁾	9:40	2.9	252,540 ⁽⁴⁾	36.6 (4)
5-Feb-09	Cycle Wells ⁽³⁾	14	10:41	230	4.5	10:43	1.5	189,750 ⁽⁴⁾	27.5 (4)	10:42	1.2	158,700 ⁽⁴⁾	23.0 ⁽⁴⁾	10:40	OFF	107,640 (4)	15.6 ⁽⁴⁾	10:45	1.5	230,460 (4)	33.4 (4)	10:39	OFF	142,830 (4)	20.7 (4)
19-Feb-09	Cycle Wells ⁽³⁾	14	9:02	235	4.5	9:03	1.5	0	0.0	9:02	2.3	0	0.0	9:00	OFF	40,710	5.9	9:04	1.5	0	0.0	8:59	OFF	15,180	2.2
19-Feb-09	Cycle Wells ⁽³⁾	14	12:10	165	3.0	12:10	OFF	0	0.0	12:09	OFF	0	0.0	12:07	2.0	0	0.0	12:12	OFF	0	0.0	12:06	2.1	0	0.0
26-Feb-09	Cycle Wells ⁽³⁾	2	9:29	165	3.0	9:31	OFF	21,390	3.1	9:28	OFF	17,940	2.6	9:27	2.0	0	0.0	9:32	OFF	65,550	9.5	9:26	2.1	0	0.0
26-Feb-09	Cycle Wells ⁽³⁾	2	10:19	230	2.0	10:19	0.7	690	0.1	10:18	0.7	0	0.0	10:17	0.7	0	0.0	10:20	0.8	690	0.1	10:16	0.9	0	0.0
12-Mar-09	7th Month	2	9:21	180	2.0	9:23	0.7	497	0.072	9:22	0.8	1,780	0.258	9:20	0.8	276	0.040	9:24	0.8	373	0.054	9:19	0.8	573	0.083
10-Apr-09	8th Month	4	9:08	180	2.0	9:09	0.7	4,733	0.686	9:07	0.9	4,099	0.594	9:05	0.8	2,125	0.308	9:10	0.9	5,058	0.733	9:04	0.9	2,829	0.410
6-May-09	9th Month	4	9:27	180	2.0	9:28	0.7	3,471	0.503	9:26	0.8	3,160	0.458	9:24	0.8	1,746	0.253	9:30	0.9	2,691	0.390	9:21	0.9	4,133	0.599
11-Jun-09	10th Month	4	9:09	180	2.0	9:13	0.7	90	0.013	9:10	0.9	76	0.011	9:07	0.8	62	0.009	9:15	0.9	90	0.013	9:05	0.9	76	0.011
7-Jul-09	11th Month	4	9:28	180	2.0	9:29	0.7	2,670	0.387	9:26	0.8	1,953	0.283	9:24	0.7	2,857	0.414	9:31	0.9	2,691	0.390	9:22	0.9	3,567	0.517
6-Aug-09	12th Month	4	9:34	170	1.5	9:35	0.6	3,968	0.575	9:33	0.7	4,513	0.654	9:31	0.7	5,610	0.813	9:37	0.7	4,230	0.613	9:28	0.7	6,969	1.01
4-Sep-09	13th Month	4	9:37	165	2.0	9:38	0.6	140,139 (5)	20.31 (5)	9:36	0.7	5,203 (5)	0.754 ⁽⁵⁾	9:33	0.7	7,349 ⁽⁵⁾	1.065 (5)	9:39	0.7	15,560 ⁽⁵⁾	2.255 (5)	9:31	0.7	13,379 ⁽⁵⁾	1.939 (5)
22-Sep-09	13th Month	4	10:40	160	2.0	10:43	0.6	10,702	1.551	10:46	0.7	5,603	0.812	10:42	0.7	7,638	1.107	10:44	0.7	10,633	1.541	10:41	0.7	8,694	1.260
13-Oct-09	14th Month	4	9:52	160	2.0	9:44	0.7	8,508	1.233	9:50	0.7	6,031	0.874	9:42	0.7	9,322	1.351	9:48	0.7	5,251	0.761	9:40	0.7	7,017	1.017
11-Nov-09	15th Month	4	9:35	170	1.5	9:36	0.6	7,625	1.105	9:34	0.7	3,574	0.518	9:32	0.7	4,333	0.628	9:38	0.7	4,637	0.672	9:30	0.7	9,177	1.330
11-Dec-09	16th Month	4	9:35	175	1.5	9:38	0.7	1,932	0.280	9:36	0.7	2,194	0.318	9:33	0.7	1,539	0.223	9:38	0.7	3,767	0.546	9:30	0.7	2,512	0.364

Notes:

(1) A timer was installed on the system and was set to run from 8 am to 10 pm (14 hrs/day) on 3 September 2008. Operation was then reduced to 8 am to 10 am (2 hrs/day) on 26 February 2009 to optimize the system. Operation was increased to 8 am to 12 pm (4 hrs/day) on 10 April 2009. (2) PID screening was conducted using a MiniRae 2000 capable of detecting VOCs in the ppmv range. Beginning on 12 March 2009, a ppbRae was used to detect concentrations at lower levels, in the parts per billion.

(3) On 21 January, 5 February, 19 February, and 26 February 2009, monitoring was conducted twice: before cycling the SVE wells and approximately 30 minutes after cycling the SVE wells

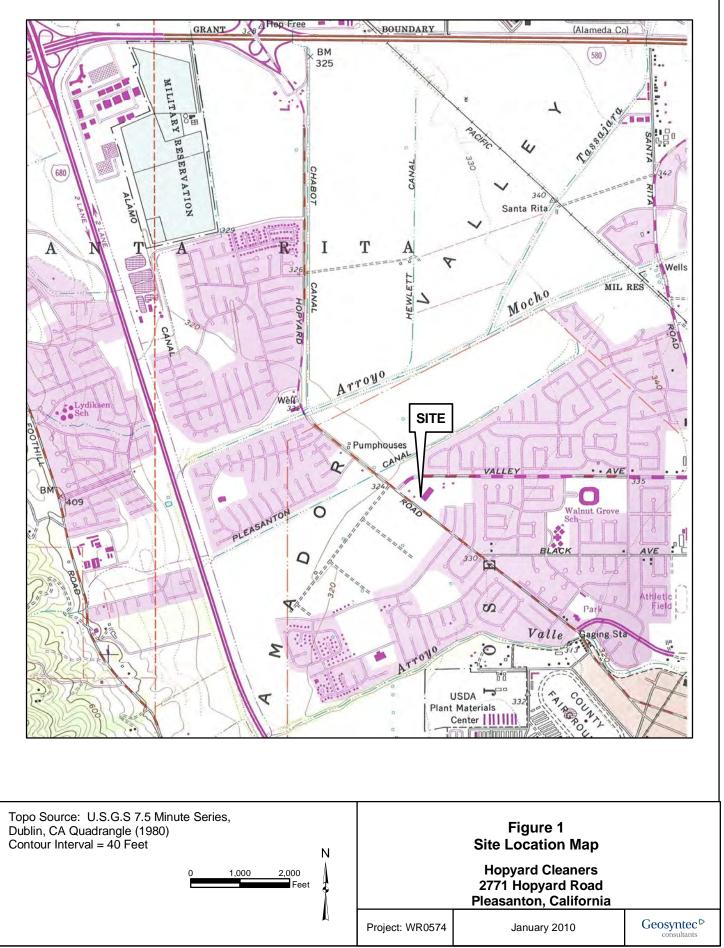
(4) PID readings from 5 February 2009 were anomolously high, indicating possible instrumentation error.

(5) The timer on the SVE system drifted prior to the 4 Sepember 2009 monitoring event, and SVE system started approximately 45 minutes later than scheduled. Therefore, system monitoring was conducted in closer proximitey to SVE system startup than other monitoring events, resulting in higher measured concentrations. ft = feet

min = minute

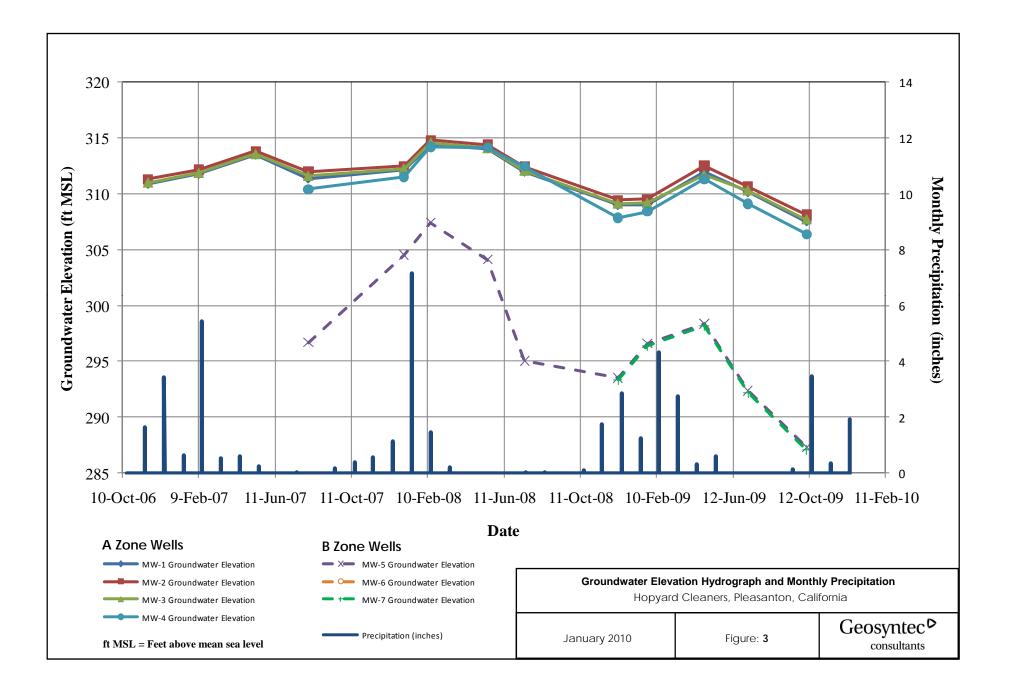
in Hg = inches of mercury

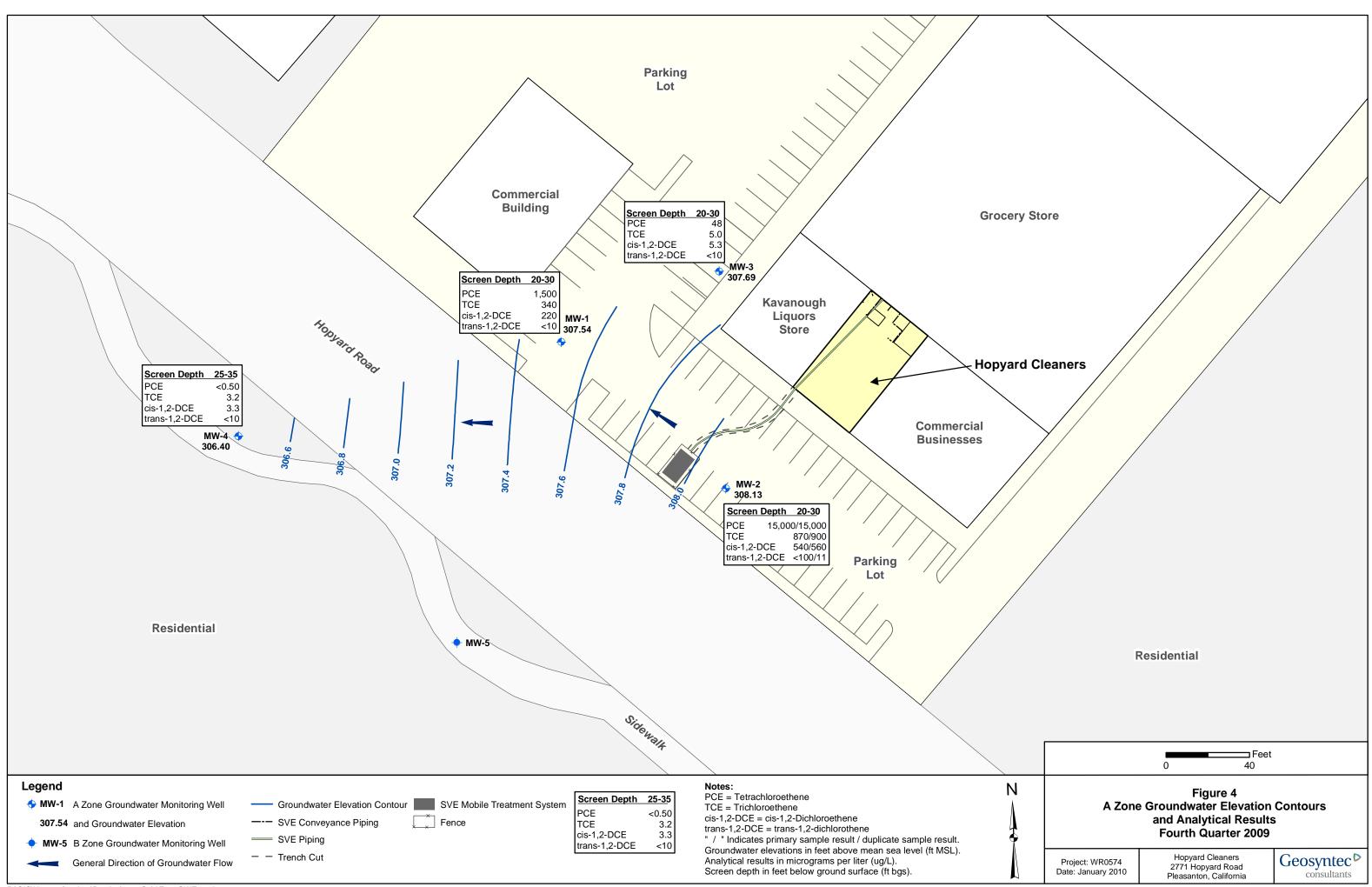
ug/m³ as PCE= micrograms per cubic meter as equivalent tetrachloroethene

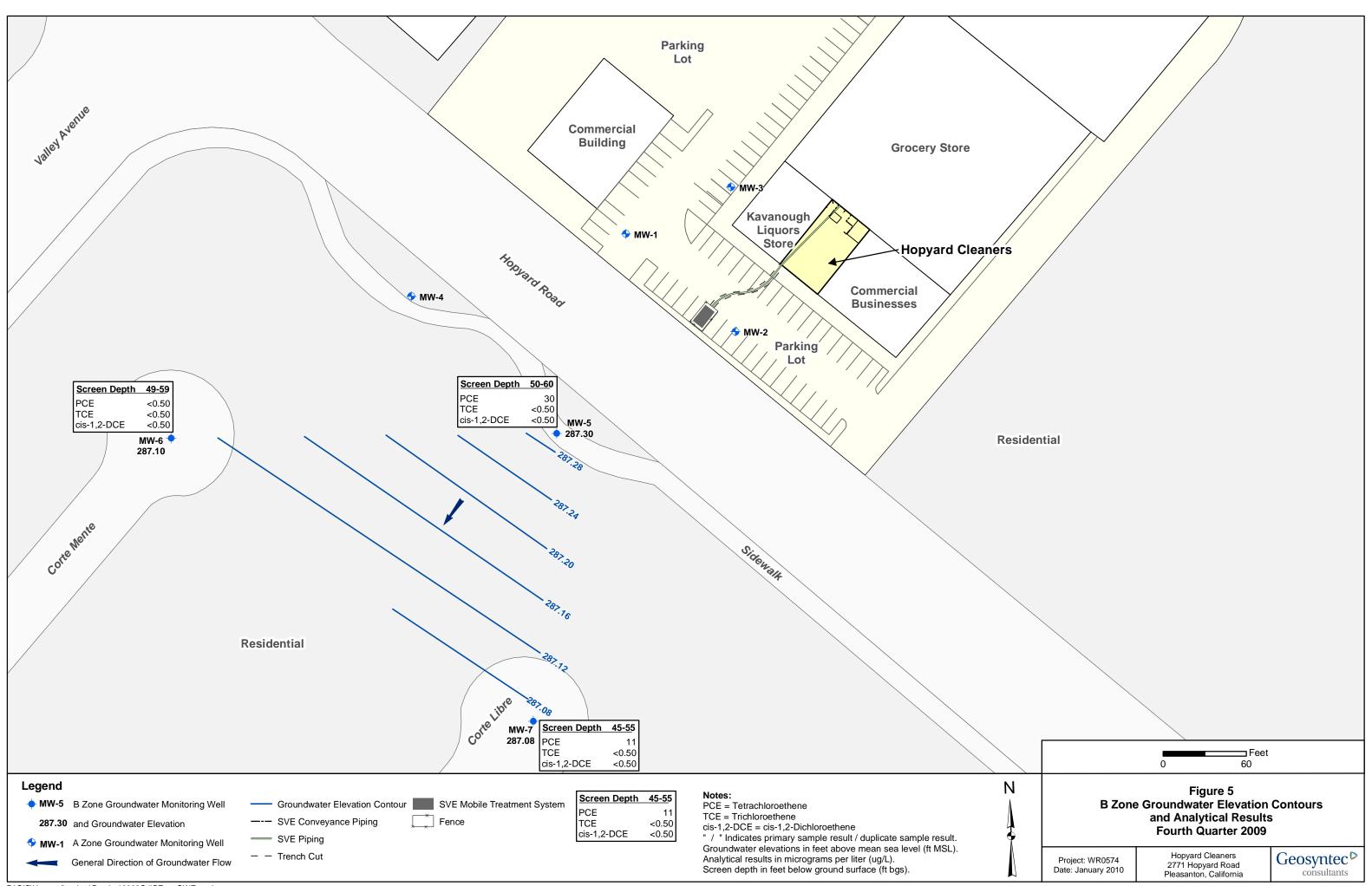

ppmv = parts per million volume


scfm = standard cubic feet per minute

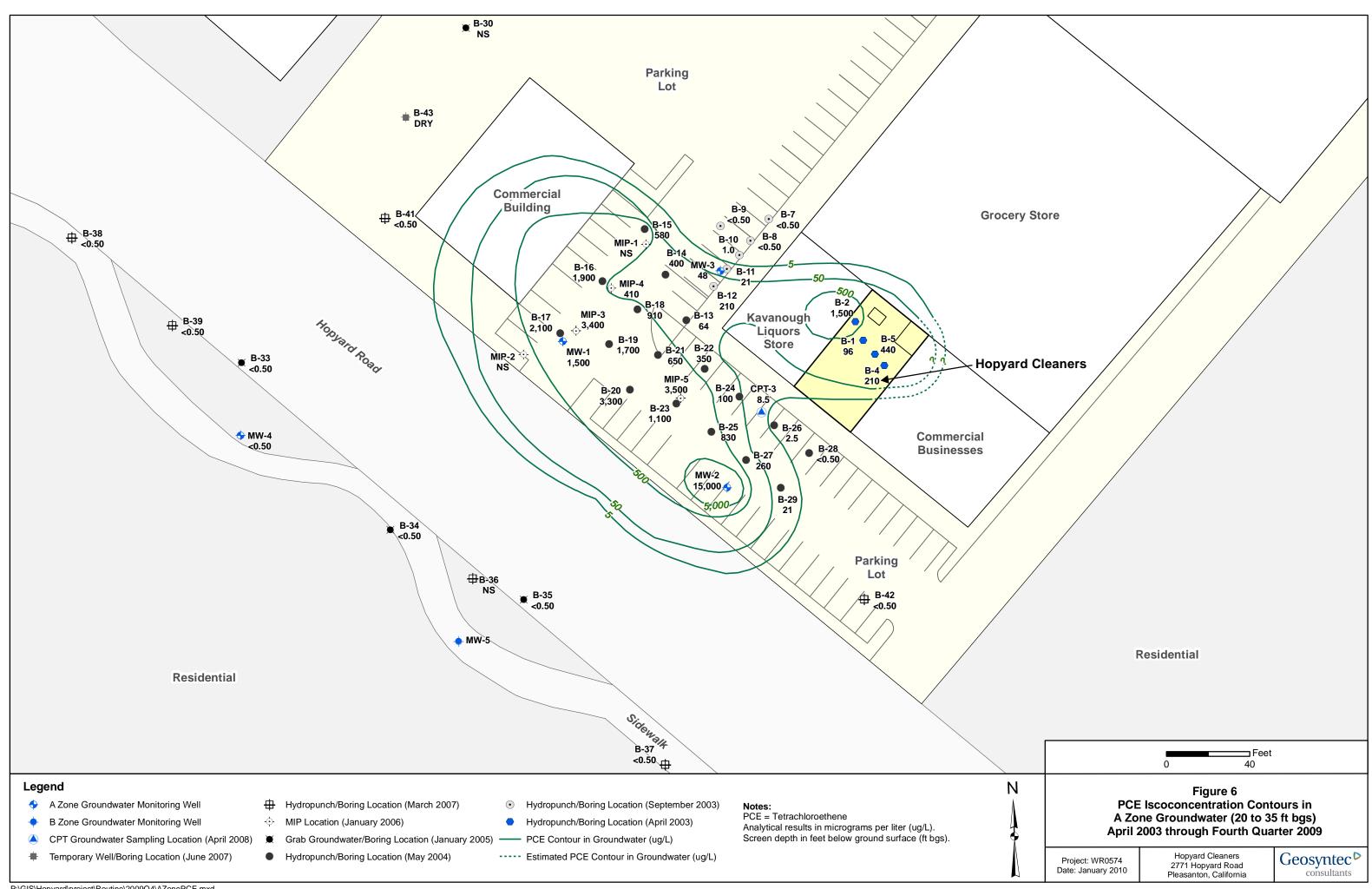
OFF = well turned off during well cycling

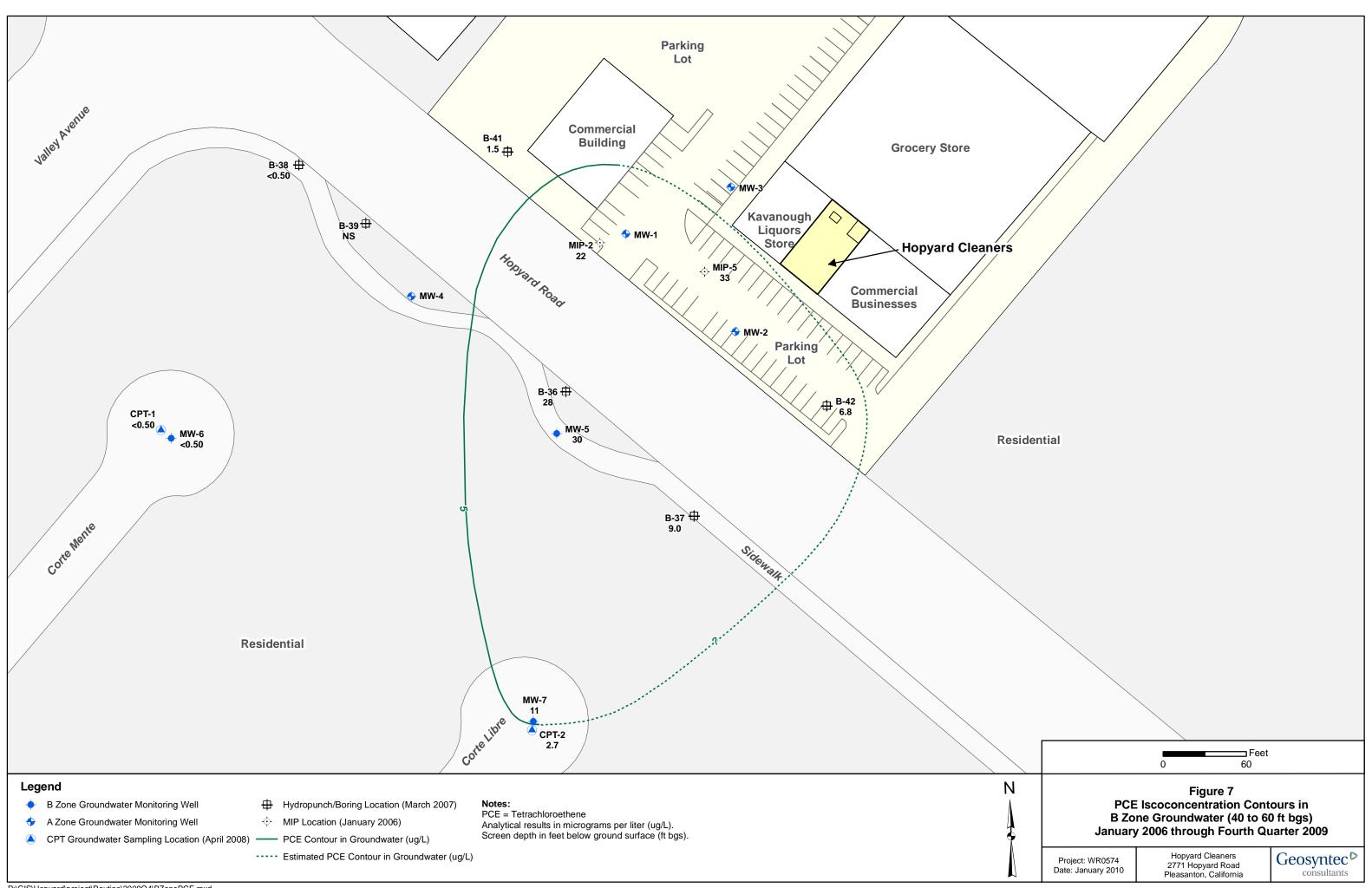

Table 7 **SVE Well Monitoring Results Hopyard Cleaners** 2771 Hopyard Road, Pleasanton, California

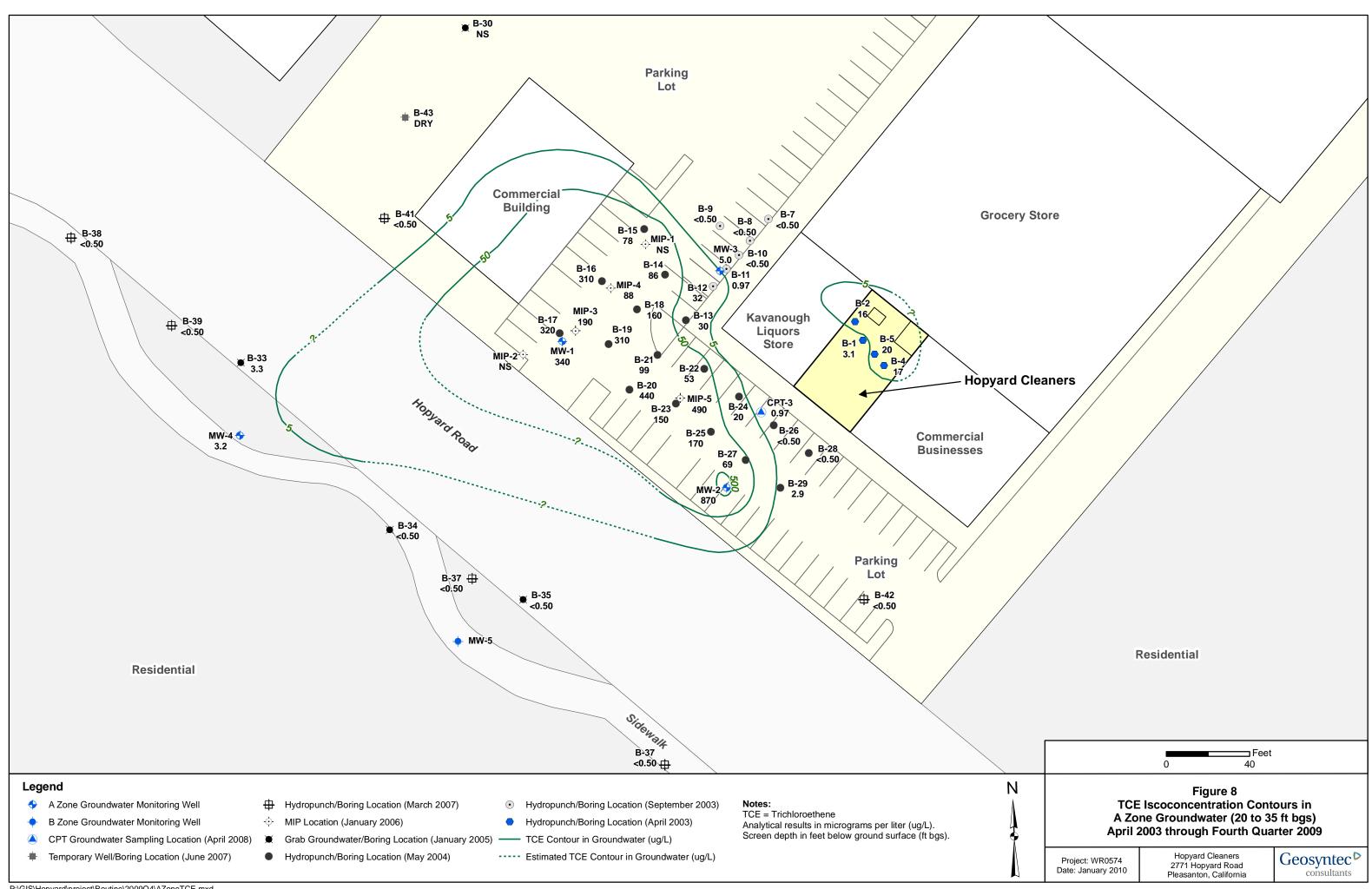

FIGURES

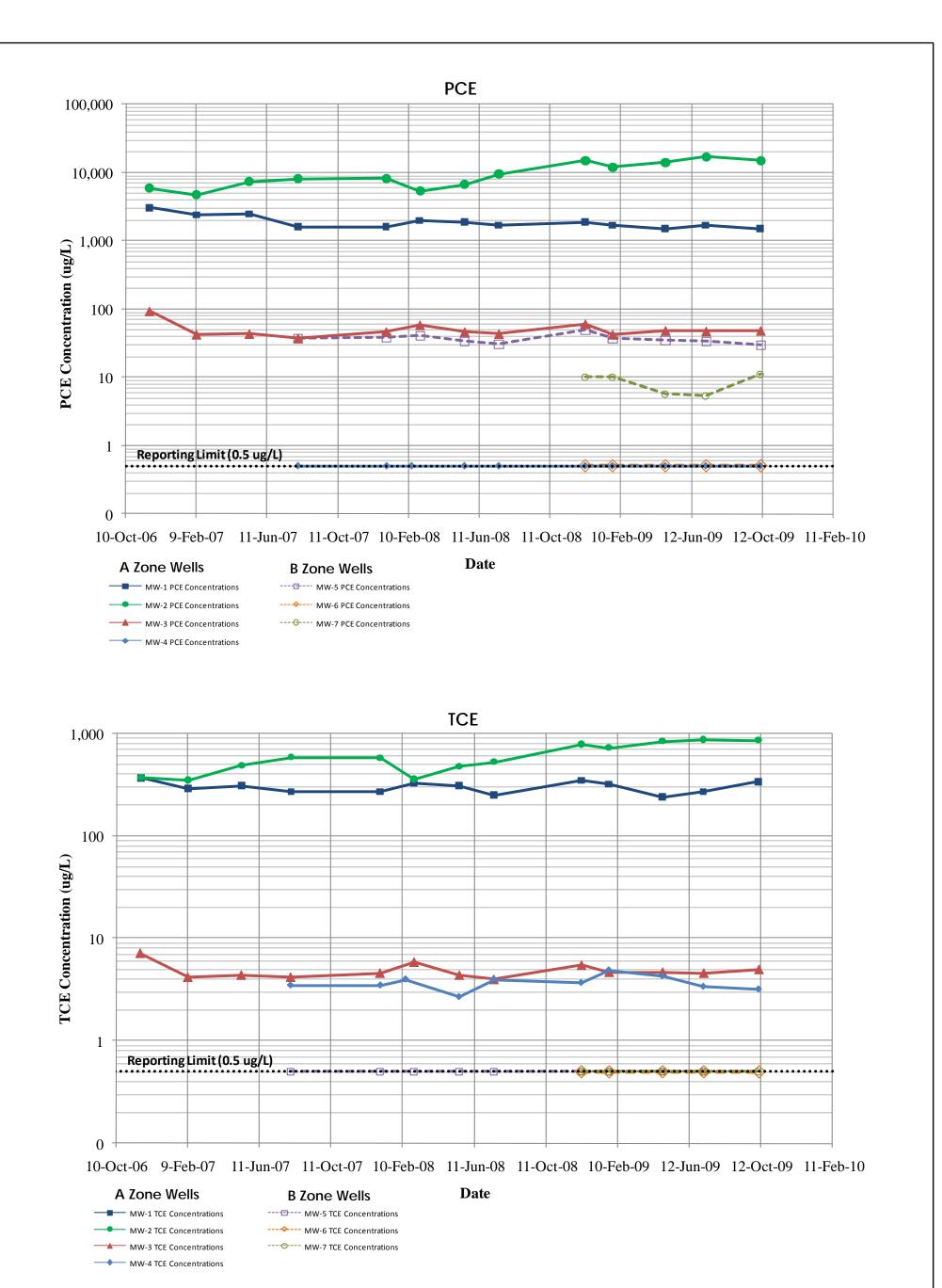


P:\GIS\Hopyard\project\Routine\2009Q4\Layout.mxd

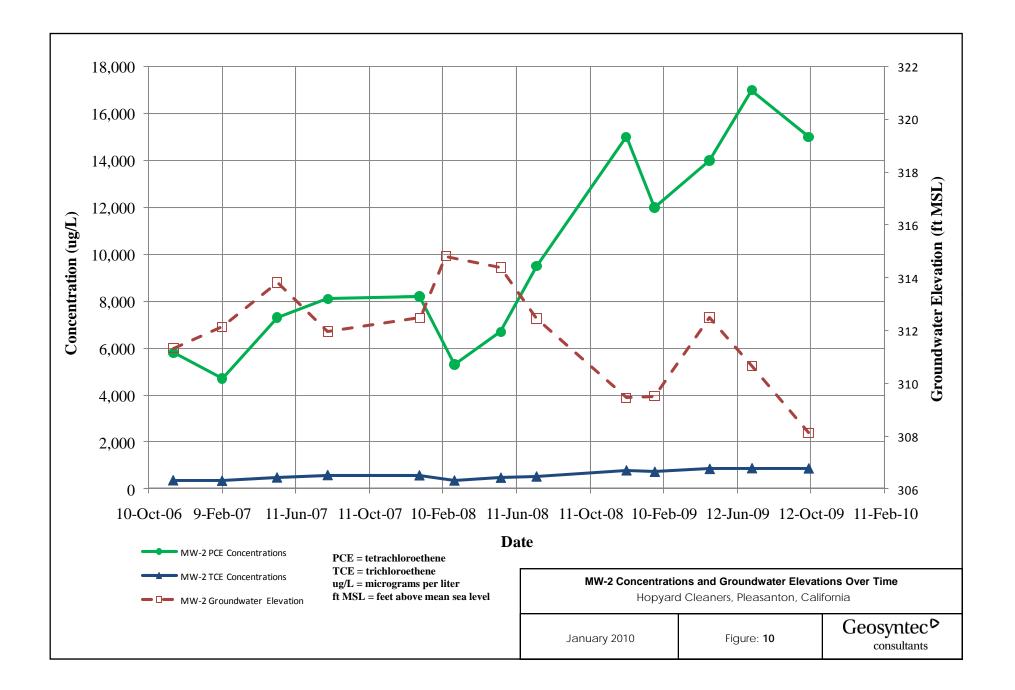


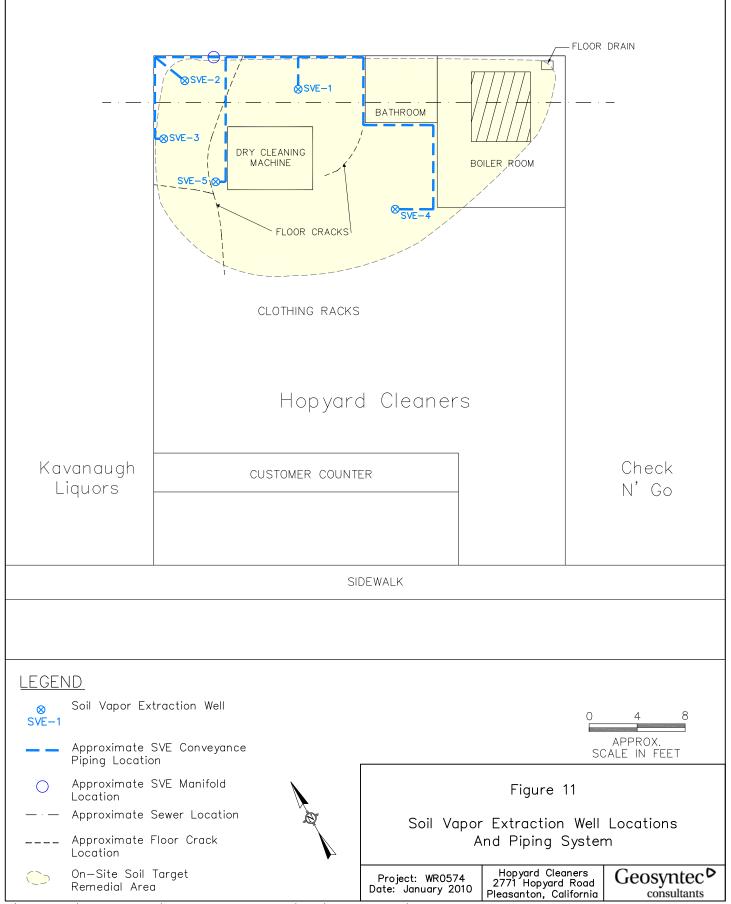


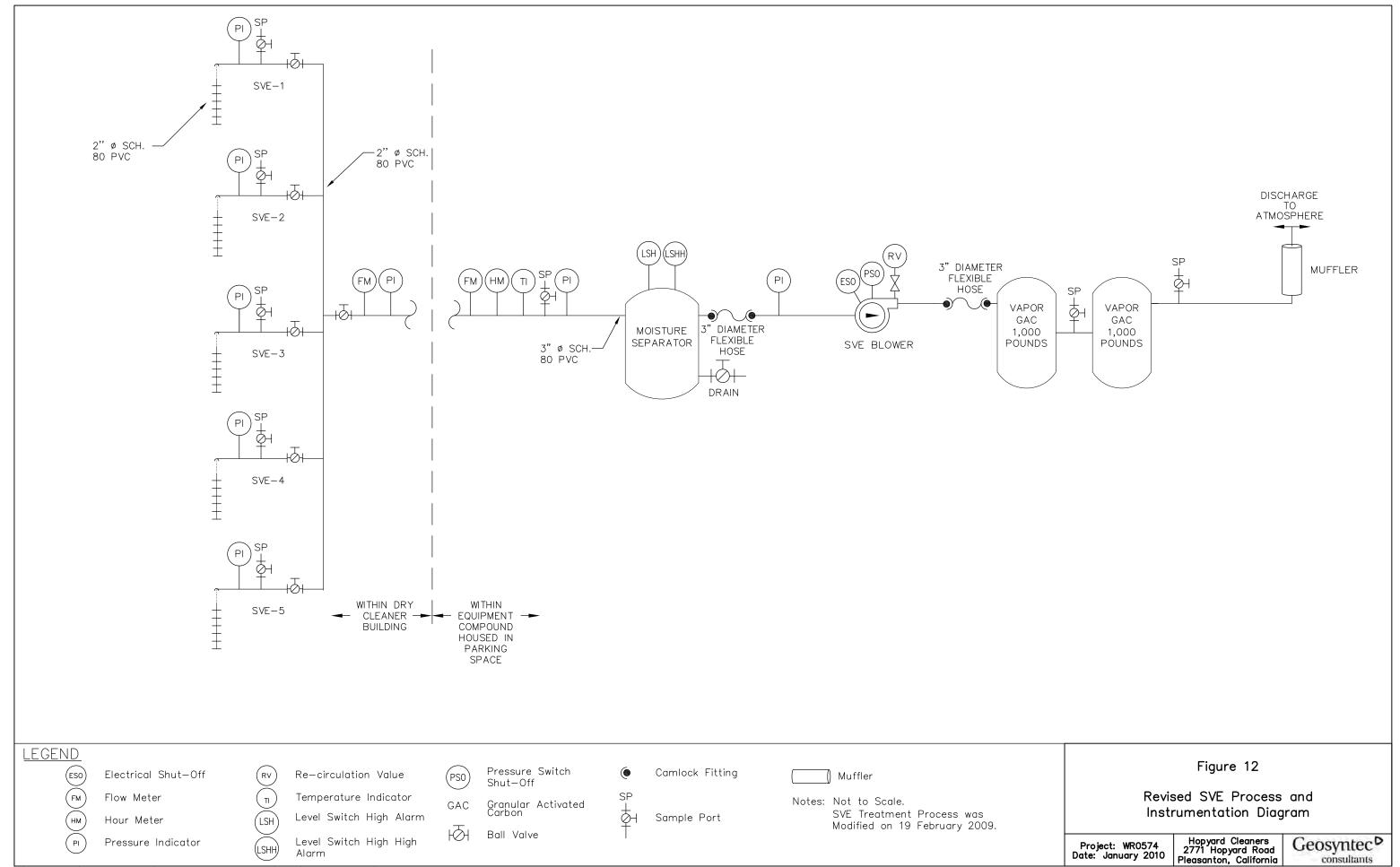

P:\GIS\Hopyard\project\Routine\2009Q4\AZoneGWE.mxd

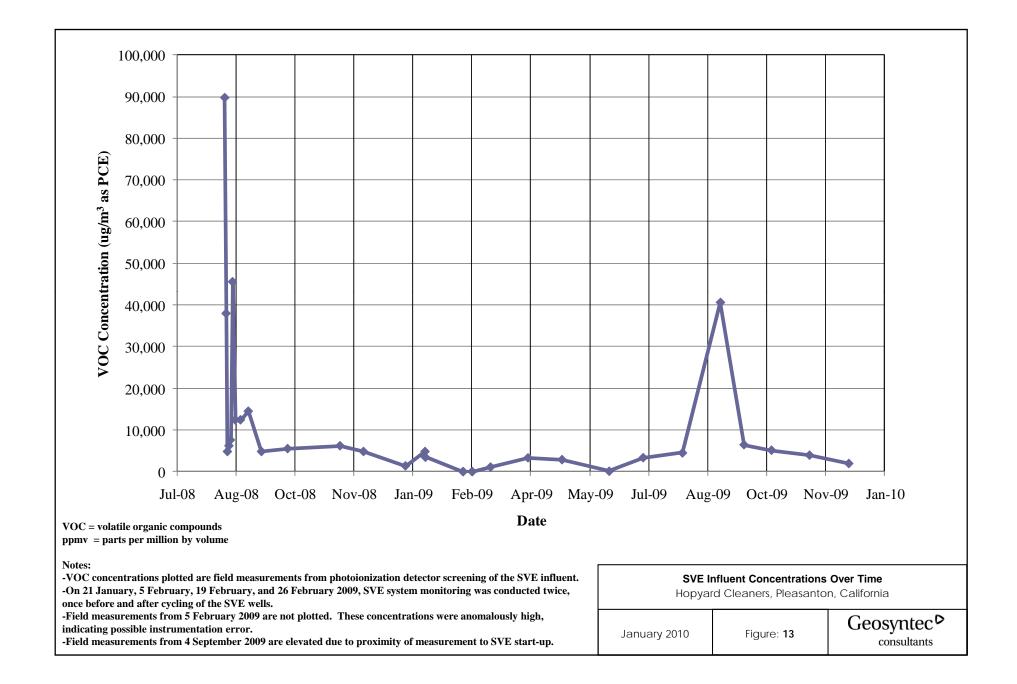


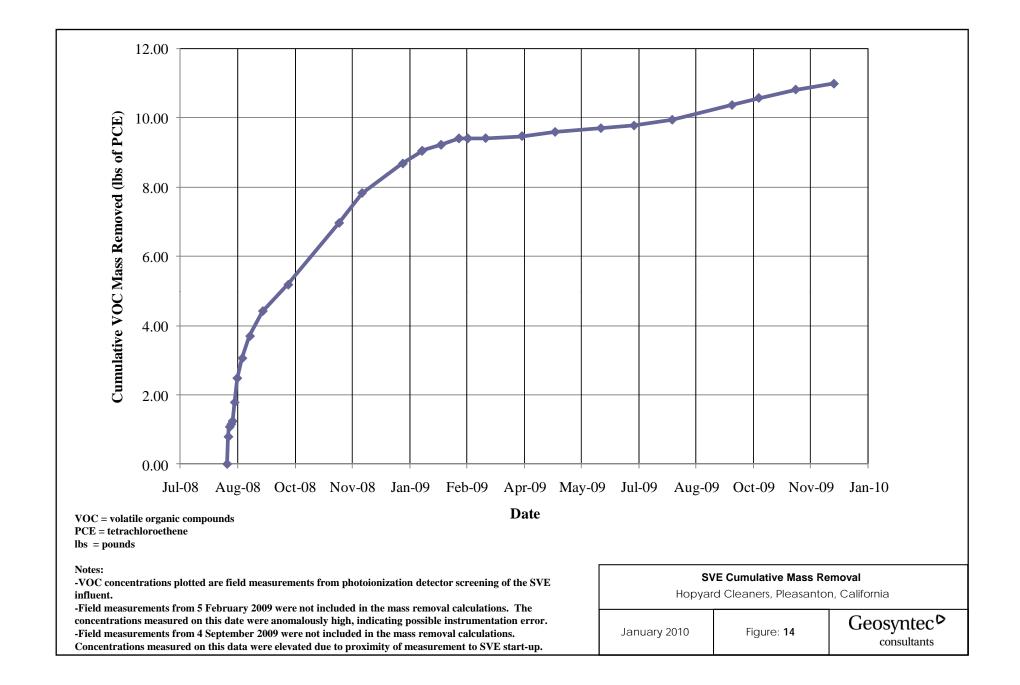
P:\GIS\Hopyard\project\Routine\2009Q4\BZoneGWE.mxd

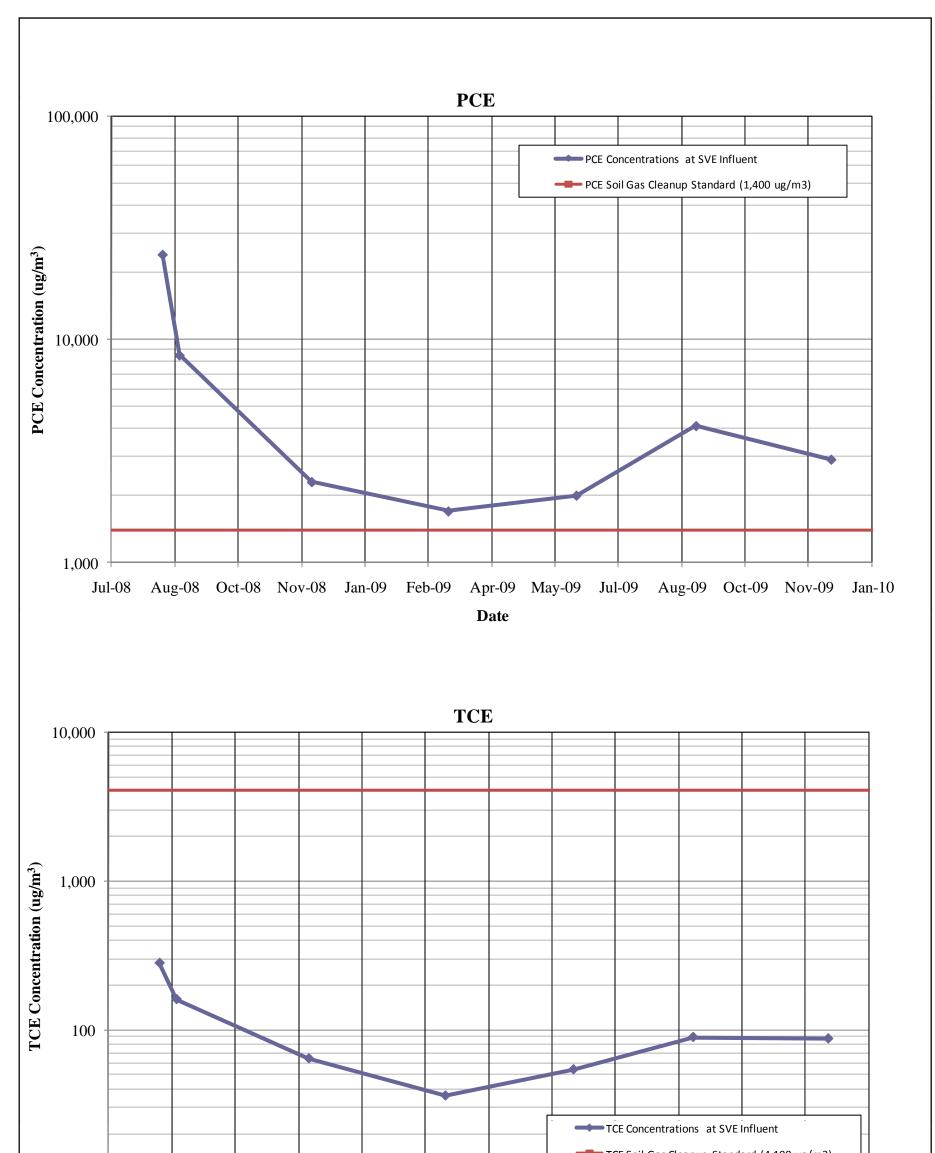


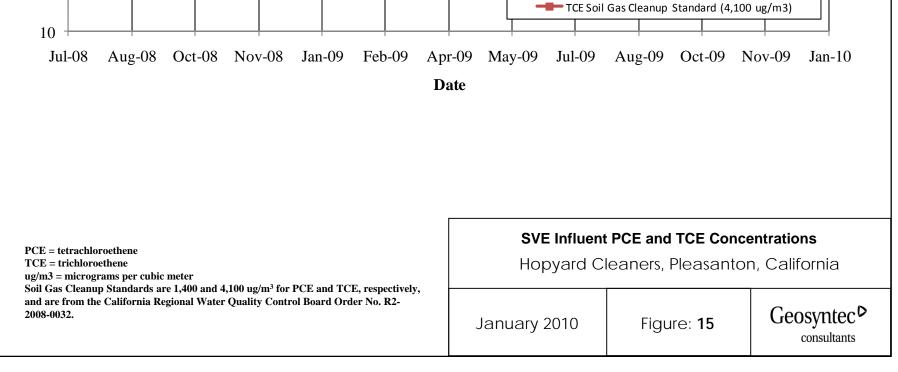



PCE = tetrachloroethene TCE = trichloroethene ug/L = micrograms per liter


	bundwater Concentratio leaners, Pleasanton, C	
January 2010	Figure: 9	






P:\PRJ2003REM\Hopyard Cleaners\Quarterly Monitoring Reports\4Q09\Tables & Figures\Figure 11 - SWE Well Loc.dwg 1-04-10

APPENDIX A

Environmental Sampling Services Field Report

October 9, 2009

Ms. Melissa Asher Senior Staff Engineer Geosyntec Consultants 475-14th Street, Suite 450 Oakland, California 94612

SUBJECT: October 2009 Quarterly Groundwater Monitoring Event for Hopyard Cleaners, Pleasanton, California

Dear Ms. Asher,

Please find enclosed the Field Activity Report for the quarterly groundwater monitoring event at 2771 Hopyard Road that occurred October 8, 2009.

If you have any questions or concerns regarding this Field Activity Report, please do not hesitate to call me.

Sincerely, Environmental Sampling Services, LLC

Jacqueline Lee Manager

Enclosure

FIELD ACTIVITY REPORT FOR

OCTOBER 2009 QUARTERLY GROUNDWATER MONITORING EVENT

HOPYARD CLEANERS 2771 HOPYARD ROAD PLEASANTON, CALIFORNIA

> Prepared for: Geosyntec Consultants 475-14th Street, Suite 450 Oakland, California 94612

> > Date Prepared: October 9, 2009

FIELD ACTIVITY REPORT FOR

OCTOBER 2009 QUARTERLY GROUNDWATER MONITORING EVENT

HOPYARD CLEANERS 2771 HOPYARD ROAD PLEASANTON, CALIFORNIA

Task 1: Obtain Depth to Groundwater Level Measurements from Seven Monitoring Wells Task 2: Collect Seven Groundwater Samples and Install Seven New Passive Diffusion Bag Samplers ESS Personnel: Jacqueline Lee Date of Activities: October 8, 2009

Decontamination Procedures

A Solinst® Water Level Meter and cutting implements were cleaned with Liqui-Nox® laboratory-grade soap, potable water, and rinsed with distilled water prior to use and between each monitoring well.

Groundwater Level Measurements

Depth to groundwater for seven monitoring wells were measured and recorded following atmospheric equilibration of more than thirty minutes. All readings were performed with a Solinst® Water Level Meter, Serial Number 49914, and referenced to the surveyor's mark or north rim at the top of PVC well casing (Table 1). Three successive readings that agreed to within one-hundredth of a foot determined depth to groundwater.

Passive Diffusion Bag Sampling

Groundwater samples were obtained from Passive Diffusion Bag Samplers (PDBS).

All sample labels were completed with waterproof ink and affixed to sample containers. All sample containers were wiped dry, sealed in Ziploc® bags, and placed a chilled cooler for storage and shipment to the laboratory.

New PDBS were installed in each well after sample collection.

Laboratory

TestAmerica of Pleasanton, California provided Trip and Temperature Blanks, sample containers with appropriate preservative, and conducted all laboratory analyses.

All monitoring wells were sampled for Volatile Organic Compounds (VOCs) by EPA Method 8260.

Sample Containers /Sample Handling

Each VOC sample set was contained in three, 40-ml VOA clear glass containers preserved with Hydrochloric Acid.

All samples were placed in a chilled cooler, along with the Trip and Temperature Blanks, for storage and transportation.

Quality Assurance /Quality Control Samples

One QA/QC sample was submitted to TestAmerica for analysis:

Trip Blank

One Trip Blank set, labeled Trip Blank 1, was stored in the cooler throughout the sampling event and submitted for analysis.

No other QA/QC samples were requested.

Storage and Sample Collection of Investigative Derived Wastewater

Approximately 5 gallons of decontamination water and less than 0.5 gallons of excess groundwater were transferred and stored in a new 55-gallon drum.

The drum was sealed closed, labeled, and stored inside the secured Treatment System compound.

Chain of Custody (COC) Form

Standard chain of custody procedures were used for documentation purposes. The COC included: sampler's name and signature, sample identification, Site Geotracker Identification, sample date and time, and analysis request section. Electronic Data Format (EDF) and standard turnaround time was requested.

Shipment of Samples

All groundwater samples remained in ESS's possession and were relinquished directly to TestAmerica October 8, 2009.

All work was performed according to Geosyntec's directives for Hopyard Cleaners' October 2009 Quarterly Monitoring Event, dated September 21, 2009. Environmental Sampling Services, LLC

Jacqueline Lee Manager

Attachments: Table 1: Summary of October 2009 Groundwater Monitoring Event Water Quality Sample Log Sheets Chain of Custody

Table 1: October 2009 Quarterly Groundwater Monitoring EventProject Name: Hopyard CleanersProject Location: 2771 Hopyard Road, Pleasanton, California

Well/Sample Identification	Measurement Date (mm/dd/yy)	Measurement Time	Depth to Groundwater (Ft., below TOC)	Sample Date	Sample Time	QA/QC Type	QA/QC Sample Identification
MW-1	10/08/09	9:13	18.23	10/08/09	10:02	None	NA
MW-2	10/08/09	9:19	17.56	10/08/09	11:56	None	NA
MW-3	10/08/09	9:16	18.58	10/08/09	9:39	None	NA
MW-4	10/08/09	9:07	19.87	10/08/09	10:50	None	NA
MW-5	10/08/09	9:11	39.89	10/08/09	10:23	None	NA
MW-6	10/08/09	9:01	37.38	10/08/09	11:33	None	NA
MW-7	10/08/09	8:56	37.48	10/08/09	11:11	None	NA

Legend:

TOC = Top of Well Casing

All measurements obtained with Solinst® Water Level Meter, Serial Number 49914

WATER	VATER QUALITY SAMPLE LOG SHEET WELL IDENTIFICATION: MW-1 DATE: 10/08/2009 Project Name: Hopyard Cleaners Pleasanton, CA Project Task: Quarterly Monitoring Project/Task No. WR0574												
Project N	Project Name: <u>Hopyard Cleaners Pleasanton, CA</u> Project Task: <u>Quarterly Monitoring</u> Project/Task No. <u>WR0574</u> Client: <u>Geosyntec Cons.</u> Lab: <u>TestAmerica</u> Weather Conditions: <u>Overcast</u> GeoTracker #: <u>SL0600116931</u>												
Client: C	Geosyntec (Cons. Lab:	TestAmeric	ca Weathe	er Conditions:	Overco	ist	GeoTracke	er #: <u>SL06</u>	00116931			
Well Des	scription: 2) 3.5" 4"	5" 6" Oth	ner:	Well Type: 🤅	YC) Sta	inless Ste	el Other:					
Is Well S	Secured?	es/No Bolt	Size: 9/10	6"	Type of lock	/ Lock nur	nber: <u>Ma</u>	ster P288					
Observa	tions / Com	ments:			Screen Interv	al: 20' to	30'						
Purge M	ethod: NA	Teflon / PE	Disposabl	e Bailer C	Centrifugal Pun	np Perist	altic Pum	p Other:					
Pump Li	nes: NA N	ew / Cleaned	d / Dedicat	ed	Bailer Line:	A New /	Cleaned /	Dedicated					
	8278				DI Rinse Oth								
Method of	of Cleaning	Bailer: (NA)	Liqui-nox	Tap Water	DI Rinse Oth	ner:							
		Passive Diff		-									
YSI Muti	-Parameter	Meter/Probe	e Serial No	o.: 556 MPS	S - 05F1258AH	H / 600XL	. 319340F	R - 00C1522	2				
141.000 CONTRACTOR		on: See Dai		-				P.I.D. Read		ppm			
200 CT 200 CT 200 CT					ator Serial No.:			CALIFORNIA SECOND CONTRACTOR					
Contraction contract		and and and an and a state of the) Water Level				1.	5.			
					er) x "K" = <u>1.96</u>		100 Common Co. 10			53			
	CK"= 0.163 (2" well) "K"	= 0.50 (3.5	" well) "K'	' = .653 (4" well)	"K" = 1.	02 (5" well) "K" = 1.4	6 (6" well)				
			FIEL	D WATER	QUALITY PAF	RAMETER	S						
FIELD WATER QUALITY PARAMETERS													
Date Time Discharge pH Temp. Conductance Turbidity Redox Oxygen Level Color													
		(Liters)	+/- 0 1	(°C)			10 ST		(BLOC)				
10/8/09	(Liters) (°C) μS (NTU's) (mV) (mg/L) (BTOC) +/- 0.1 +/- 3% +/- 10 +/- 10 +/- 10% H H %/3/09 NA Initial NA NA NA NA NA NA												
	NA	0.5	NA	NA	NA	NA	NA	NA	NA	NA			
	NA	1.0	NA	NA	NA	NA	NA	NA	NA	NA			
	NA	1.5	NA	NA	NA	NA	NA	NA	NA	NA			
	NA	2.0	NA	NA	NA	NA	NA	NA	NA	NA			
	NA	2.5	NA	NA	NA	NA	NA	NA	NA	NA			
	NA	3.0	NA	NA	NA	NA	NA	NA	NA	NA			
	NA	3.5	NA	NA	NA	NA	NA	NA	NA	NA			
V	NA	4.0	NA	NA	NA	NA	NA	NA	NA	NA			
Total Dis	charge:	O- Lit	ers		Casing Volum	es Remov	ed: NA						
Method of	of disposal of	of discharged	water: 5	Gallon Dr	umos) Poly T	ank Tre	atment S	ystem Oth	ner:				
Method of disposal of discharged water: 55 Gallon Drumos) Poly Tank Treatment System Other: Date/Time Sampled:/5/59 @0.0:02 Analysis: VOCs (8260B) - 3 VOAs w/HCl													
and the second s	QA/QC: None @ Duplicate MS/MSD Equipment Rinseate Field Blank Lab Split												
Comments:													
	Recorded by: Stephen Penman / Jacqueline Lee Signature:												
Recorded	by: Steph	nen Penman	/ Jacquelir	he Lee	ignature:				Page 1 of 1				

6680 Alhambra Ave., #102 • Martinez, CA 94553-6165 (925) 372-8108 • Fax: (925) 372-6705 www.envsampling.com

WATER	WATER QUALITY SAMPLE LOG SHEET WELL IDENTIFICATION: MW-2 DATE: 10/06/2009 Project Name: Hopyard Cleaners Pleasanton, CA Project Task: Quarterly Monitoring Project/Task No. WR0574													
Project N	Name: Hopy	yard Cleaner	s Pleasant	on, CA Pr	oject Task: Qu	arterly Mo	onitoring I	Project/Tas	k No. WF	R0574				
					er Conditions:									
Well De	scription: (2	3.5" 4"	5" 6" Ot	her:	Well Type:	VC Sta	inless Ste	el Other:	-					
ls Well S	Secured?	es/No Bol	t Size: <u>9/1</u>	<u>6"</u>	Type of lock	/ Lock nur	nber: <u>Ma</u>	ster P288						
Observa	tions / Com	nments:			Screen Interv	/al: <u>20' to</u>	30'							
Purge M	ethod: NA) Teflon / PE	E Disposab	le Bailer C	Centrifugal Pur	np Perist	altic Pum	p Other:						
Pump Li	Pump Lines: NA New / Cleaned / Dedicated Bailer Line: NA New / Cleaned / Dedicated Method of Cleaning Pump: NA Liqui-nox Tap Water DI Rinse Other:													
0.0000-0000000000-00-00000			Committee and a second state water			Contraction of the second s								
Method (of Cleaning	Bailer: (NA)	Liqui-nox	Tap Water	DI Rinse Oth	ner:								
and the second sec	-	Passive Dif												
YSI Muti	i-Parameter	r Meter/Prob	e Serial No	o.: 556 MP	S - 05F1258AH	H / 600XI	_ 319340F	R - 00C1522	2					
		ion: See Da						P.I.D. Read		ppm				
					ator Serial No.:									
					c) Water Leve									
					er) x "K" = 2.0									
	"K"= 0.163 ((2" well) "K	' = 0.50 (3.5	" well) "K'	" = .653 (4" well)) "K" = 1.	02 (5" well) "K" = 1.4	46 (6" well)				
			FIEL	D WATER		RAMETER	S							
Data	Specific Dissolved Water													
Date	DateTimeDischargepHTemp.ConductanceTurbidityRedoxOxygenLevelColor(Liters)(°C)µS(NTU's)(mV)(mg/L)(BTOC)													
		(Ellers)	+/- 0.1	(0)	+/- 3%	+/- 10	+/- 10	+/- 10%	(6100)					
10/8/09	NA	Initial	NA	NA	NA	NA	NA	NA	NA	NA				
	NA	0.5	NA	NA	NA	NA	NA	NA	NA	NA				
	NA	1.0	NA	NA	NA	NA	NA	NA	NA	NA				
	NA	1.5	NA	NA	NA	NA	NA	NA	NA	NA				
	NA	2.0	NA	NA	NA	NA	NA	NA	NA	NA				
	NA	2.5	NA	NA	NA	NA	NA	NA	NA	NA				
	NA	3.0	NA	NA	NA	NA	NA	NA	NA	NA				
	NA	3.5	NA	NA	NA	NA	NA	NA	NA	NA				
T	NA	4.0	NA	NA	NA	NA	NA	NA	NA	NA				
Total Dis	charge:	O Li	ters		Casing Volum	es Remov	ed: <u>NA</u>							
Method o	Method of disposal of discharged water 55 Gallon Drum(s) Poly Tank Treatment System Other:													
Date/Time Sampled: 10/s/09 @ 11:56 Analysis: VOCs (8260B) - 3 VOAs w/HCl														
QA/QC: None @ Duplicate MS/MSD Equipment Rinseate Field Blank Lab Split														
	Comments:													
Recorder	hv: Stept	en Penman	/ acqueli		ignature:	1			D					
riccordet	a by. Otepi	len r enman	/ Jacquein	le Lee J J	ignature.				Page 1 of 1	- 1				

6680 Alhambra Ave., #102 • Martinez, CA 94553-6105 • (925) 372-8108 • Fax: (925) 372-6705 www.envsampling.com

-													
WATER	WATER QUALITY SAMPLE LOG SHEET WELL IDENTIFICATION: MW-3 DATE: 10/08/2009 Project Name: Hopyard Cleaners Pleasanton, CA Project Task: Quarterly Monitoring Project/Task No. WR0574												
Project Name: <u>Hopyard Cleaners Pleasanton, CA</u> Project Task: <u>Quarterly Monitoring</u> Project/Task No. <u>WR0574</u> Client: <u>Geosyntec Cons.</u> Lab: <u>TestAmerica</u> Weather Conditions: <u>Over cast</u> GeoTracker #: <u>SL0600116931</u>													
Anna Anna A		Carl Charles and				~							
					Well Type: (F								
1.000					Type of lock			ster P288					
					Screen Interv								
	X		 An example a second a second 		Centrifugal Pur	-		• 03					
Pump Lines: NA New / Cleaned / Dedicated Bailer Line: NA New / Cleaned / Dedicated Method of Cleaning Pump: NA Liqui-nox Tap Water DI Rinse Other:													
	The second second second		ferrer and the ser	Carrier Carro									
100 1008	tana an early av	\sim		12	DI Rinse Oth	ner:							
· · · · · · · · · · · · · · · · · · ·		Passive Dif		T.									
- A B P C C C C C C C C C C C C C C C C C C					S - 05F1258AI								
		ion: See Da		\frown				P.I.D. Read		ppm			
A CONTRACTOR OF A CONTRACTOR OF					ator Serial No.:								
					c) Water Leve								
		and the second se			er) x "K" = _ 1.9								
`	"K"= 0.163	(2" well) "K	" = 0.50 (3.5	5" well) "K	" = .653 (4" well) "K" = 1	.02 (5" well) "K" = 1.4	16 (6" well))			
			FIEL	D WATER	QUALITY PAP	RAMETER	S						
		D' I		Ŧ	Specific	-		Dissolved		.			
Date Time Discharge pH Temp. Conductance Turbidity Redox Oxygen Level Color													
		(Liters)	+/- 0.1	(0)	+/- 3%	+/- 10	30 1050		(6100)				
10/8/09	(Liters) (°C) µS (NTU's) (mV) (mg/L) (BTOC) +/- 0.1 +/- 0.1 +/- 3% +/- 10 +/- 10 +/- 10% (BTOC)												
1	NA	0.5	NA	NA	NA	NA	NA	NA	NA	NA			
	NA	1.0	NA	NA	NA	NA	NA	NA	NA	NA			
	NA	1.5	NA	NA	NA	NA	NA	NA	NA	NA			
	NA	2.0	NA	NA	NA	NA	NA	NA	NA	NA			
	NA	2.5	NA	NA	NA	NA	NA	NA	NA	NA			
	NA	3.0	NA	NA	NA	NA	NA	NA	NA	NA			
	NA	3.5	NA	NA	NA	NA	NA	NA	NA	NA			
1	NA	4.0	NA	NA	NA	NA	NA	NA	NA	NA			
Total Di	scharge:	⊖ Li	ters		Casing Volum	es Remov	ed: NA						
Method of disposal of discharged water: (55 Gallon Drum(s) Poly Tank Treatment System Other:													
Date/Tir	Date/Time Sampled: 10/8/09 @ 1:39 Analysis: VOCs (8260B) - 3 VOAs w/HCl												
QA/QC: None @ Duplicate MS/MSD Equipment Rinseate Field Blank Lab Split													
Comments:													
	11 01					11			Marg and March				
Recorde	ed by: Step	hen Penman	/ Vacqueli	ne Lee S	ignature.	an .			Page 1 of 1	1			

6680 Alhambra Ave., #102 • Martinez, CA 94553-6105 (925) 372-8108 • Fax: (925) 372-6705 www.envsampling.com

WATER	WATER QUALITY SAMPLE LOG SHEET WELL IDENTIFICATION: MW-4 DATE: 10/08/2009 Project Name: Hopvard Cleaners Pleasanton, CA Project Task: Quarterly Monitoring Project/Task No. WR0574													
Project Name: <u>Hopyard Cleaners Pleasanton, CA</u> Project Task: <u>Quarterly Monitoring</u> Project/Task No. <u>WR0574</u> Client: <u>Geosyntec Cons.</u> Lab: <u>TestAmerica</u> Weather Conditions: <u>Partly cloudy</u> GeoTracker #: <u>SL0600116931</u>														
Client: (Geosyntec (Cons. Lab:	<u>TestAmeri</u>	<u>ca</u> Weathe	er Conditions:	Partly c	loudy	GeoTracke	er #: <u>SL06</u>	300116931				
Well Des	scription: (2	") 3.5" 4"	5" 6" Ot	her:	Well Type: (Sta	inless Ste	el Other:						
a francisco de la companya de			110		Type of lock			ster P288						
	-				Screen Interv									
Purge Method: NA Teflon / PE Disposable Bailer Centrifugal Pump Peristaltic Pump Other: Pump Lines: NA New / Cleaned / Dedicated Bailer Line: NA New / Cleaned / Dedicated														
					DI Rinse Oth									
					DI Rinse Oth	ner:								
and the second		Passive Dif												
and the second se					S - 05F1258AH									
		on: See Da				05000 //		P.I.D. Read		ppm				
			1000		tor Serial No.:									
) Water Leve									
10 - 34					er) x "K" = <u>2.3</u> ' = .653 (4" well)									
	0.1001		2011 - 6 10 Kerner		s of the second second second second	CONTRACTOR OF CASE)	o (o weil)	k				
	FIELD WATER QUALITY PARAMETERS													
Date	Date Time Discharge pH Temp, Conductance Turbidity Redox Oxygen, Level Color													
	Date Time Discharge pH Temp. Conductance Turbidity Redox Oxygen Level Color (Liters) (°C) µS (NTU's) (mV) (mg/L) (BTOC)													
10/1	(Liters) (°C) μS (NTU's) (mV) (mg/L) (BTOC) +/- 0.1 +/- 3% +/- 10 +/- 10% +/- 10% (BTOC)													
78/09	*/- 0.1 +/- 3% +/- 10 +/- 10% %/09 NA Initial NA NA NA NA NA NA													
	NA	0.5	NA	NA	NA	NA	NA	NA	NA	NA				
	NA	1.0	NA	NA	NA	NA	NA	NA	NA	NA				
	NA	1.5	NA	NA	NA	NA	NA	NA	NA	NA				
	NA	2.0	NA	NA	NA	NA	NA	NA	NA	NA				
	NA	2.5	NA	NA	NA	NA	NA	NA	NA	NA				
	NA	3.0	NA	NA	NA	NA	NA	NA	NA	NA				
	NA	3.5	NA	NA	NA	NA	NA	NA	NA	NA				
\checkmark	NA	4.0	NA	NA	NA	NA	NA	NA	NA	NA				
Total Dis	charge:	🕀 Li	ters		Casing Volum	es Remov	ed: NA							
Method o	of disposal of	of discharge	d water:	5 Gallon Dr	um(s) Poly T	Tank Tre	atment S	ystem Oth	ner:					
Method of disposal of discharged water: 5 Gallon Drum(s) Poly Tank Treatment System Other: Date/Time Sampled: 10/2/09 @_10:50 Analysis: VOCs (8260B) - 3 VOAs w/HCl														
QA/QC: None @ Duplicate MS/MSD Equipment Rinseate Field Blank Lab Split														
Comments: Existing lock is very difficult to open; due to submergence. Should get														
a new lock Next time.														
Recorded	d by: Steph	nen Penman	/Qacquelin	ne Lee) S	ignature:				Page 1 of 1					

6680 Alhambra Ave., #102 • Martinez, CA 94553-0105 • (925) 372-8108 • Fax: (925) 372-6705 www.envsampling.com

WATER QUALITY SAMPLE LOG SHEET WELL IDENTIFICATION: MW-5 DATE: 10/09/2009 Project Name: Hopyard Cleaners Pleasanton, CA Project Task: Quarterly Monitoring Project/Task No. WR0574										el 2009			
Project Name: Hopyard Cleaners Pleasanton, CA Project Task: Quartery Monitoring Project Task No. WR05/4 Client: Geosyntec Cons. Lab: TestAmerica Weather Conditions: Odd. Cloudy GeoTracker #: SL0600116931 Well Description: 2" 3.5" 4" 5" 6" Other: Well Type: Well Type: VC Stainless Steel Other:													
	4 - 0.103 (2 Wein K	state located) = 1.4	o (o well)				
Date	FIELD WATER QUALITY PARAMETERS Date Time Discharge (Liters) pH Temp. (°C) Specific Lonductance µS Turbidity (NTU's) Redox (mV) Dissolved Oxygen Water Level Color +/- 0.1 +/- 3% +/- 10 +/- 10 +/- 10% Vater Color												
10/8/09	NA	Initial	NA	NA	NA	NA	NA	NA	NA	NA			
	NA	0.5	NA	NA	NA	NA	NA	NA	NA	NA			
	NA	1.0	NA	NA	NA	NA	NA	NA	NA	NA			
	NA	1.5	NA	NA	NA	NA	NA	NA	NA	NA			
	NA	2.0	NA	NA	NA	NA	NA	NA	NA	NA			
	NA	2.5	NA	NA	NA	NA	NA	NA	NA	NA			
	NA	3.0	NA	NA	NA	NA	NA	NA	NA	NA			
	NA	3.5	NA	NA	NA	NA	NA	NA	NA	NA			
+	NA	4.0	NA	NA	NA	NA	NA	NA	NA	NA			
Method o Date/Tim QA/QC:	Total Discharge: Liters Casing Volumes Removed: NA Method of disposal of discharged water: 65 Gallon Drum(3) Poly Tank Treatment System Other: Date/Time Sampled: 10:23 Analysis: VOCs (8260B) - 3 VOAs w/HCl QA/QC: None Duplicate MS/MSD Equipment Rinseate Field Blank Lab Split Comments: Duplicate MS/MSD Equipment Rinseate Field Blank Lab Split												
Recorded	Recorded by: Stephen Penman / acqueline Lee Signature: Page 1 of 1												

6680 Alhambra Ave., #102 • Martinez, CA 94553-6105) • (925) 372-8108 • Fax: (925) 372-6705 www.envsampling.com

WATER	WATER QUALITY SAMPLE LOG SHEET WELL IDENTIFICATION: MW-6 DATE: 10/05/2009												
Project Name: Hopyard Cleaners Pleasanton, CA Project Task: Quarterly Monitoring Project/Task No. WR0574 Client: Geosyntec Cons. Lab: TestAmerica Weather Conditions: Clear Sties, cool GeoTracker #: SL0600116931 Well Description: 20 3.5" 4" 5" 6" Other: Well Type: VC Stainless Steel Other: Is Well Secured? Yee / No Bolt Size: 344 9/16" Type of lock / Lock number: Dolphin Observations / Comments: Screen Interval: Purge Method: NA Teflon / PE Disposable Bailer Centrifugal Pump Peristaltic Pump Other: Pump Lines: NA New / Cleaned / Dedicated Bailer Line: NA New / Cleaned / Dedicated Method of Cleaning Pump: NA Liqui-nox Tap Water DI Rinse Other: Sampling Method: Passive Diffusion Bag YSI Muti-Parameter Meter/Probe Serial No.: 556 MPS - 05F1258AH / 600XL 319340R - 00C1522 Equipment Calibration: See Daily Equipment Calibration Sheet P.I.D. Reading: NA ppm Method to Measure Water Level: Slope Colins Indicator Serial No.: 25083 / 25742 / 21758 / 49914 Water Level at Start (DTW): _37.35 C11.31 (BTOC) Water Level Prior After Sampling: <u>37.35</u> (BTOC) TD = <u>58.56'</u> - <u>37.35</u> (DTW) = _21.21 (ft.of water) x "K" = <u>3.45</u> (Gals./CV) x NA (No. of CV) = NA (Gals.) "K" = 0.50 (3.5" well) "K" = .653 (4" well) "K" = 1.02 (5" well) "K" = 1.46 (6" well)													
Date	(Liters) (°C) µS (NTU's) (mV) (mg/L) (BTOC)												
10/8/09	(Liters) (°C) μS (NTU's) (mV) (mg/L) (BTOC) +/- 0.1 +/- 0.1 +/- 3% +/- 10 +/- 10 +/- 10% (BTOC) 1%/0 09 NA Initial NA NA NA NA NA NA												
I	NA	0.5	NA	NA	NA	NA	NA	NA	NA	NA			
	NA	1.0	NA	NA	NA	NA	NA	NA	NA	NA			
	NA	1.5	NA	NA	NA	NA	NA	NA	NA	NA			
	NA	2.0	NA	NA	NA	NA	NA	NA	NA	NA			
	NA	2.5	NA	NA	NA	NA	NA	NA	NA	NA			
	NA	3.0	NA	NA	NA	NA	NA	NA	NA	NA			
	NA	3.5	NA	NA	NA	NA	NA	NA	NA	NA			
\checkmark	NA	4.0	NA	NA	NA	NA	NA	NA	NA	NA			
Total Discharge: Liters Casing Volumes Removed: NA Method of disposal of discharged water. 55 Gallon Drum(s) Poly Tank Treatment System Other: Date/Time Sampled: 10/\$/09 @3 Analysis: VOCs (8260B) - 3 VOAs w/HCl													
QA/QC:	<u>None</u> @ _		Duplicate	MS/MSD	Equipment R								
Recorded by: Stephen Penman Jacqueline Lee Signature: Page 1 of 1													
Recorde	d by: Step	nen Penman	Hacqueli	ne Lee S	ignature:				Page 1 of 1				

6680 Alhambra Ave., #102 • Martinez, CA 94553-6105 • (925) 372-8108 • Fax: (925) 372-6705 www.envsampling.com

WATER	VATER QUALITY SAMPLE LOG SHEET WELL IDENTIFICATION: MW-7 DATE: 10 (g/2009) Project Name: Hopyard Cleaners Pleasanton, CA Project Task: Quarterly Monitoring Project/Task No. WR0574													
Project I	Name: Hopy	yard Cleaner	s Pleasant	on, CA Pr	oject Task: Qu	arterly Mo	nitoring I	Project/Tasl	K No. WR	0574				
					er Conditions:			7						
					Well Type: 🤅									
					Type of lock									
Observa	ations / Com	iments:			Screen Interv	al:								
Purge M	Purge Method: NA Teflon / PE Disposable Bailer Centrifugal Pump Peristaltic Pump Other:													
Pump Lines: NA New / Cleaned / Dedicated Bailer Line: NA New / Cleaned / Dedicated														
Method of Cleaning Pump: NA Liqui-nox Tap Water DI Rinse Other:														
Method of Cleaning Bailer: NA Liqui-nox Tap Water DI Rinse Other:														
Sampling Method: Passive Diffusion Bag														
YSI Mut	YSI Muti-Parameter Meter/Probe Serial No.: 556 MPS - 05F1258AH / 600XL 319340R - 00C1522													
Equipment Calibration: See Daily Equipment Calibration Sheet P.I.D. Reading: NA ppm														
Method	to Measure	Water Leve	I: Slope/S	olins Indica	ator Serial No.:	25083/2	25742 / 2	1758 / 4991	3					
Water L	evel at Star	t (DTW): _3	7.47 e	11:09 (втос) Water Leve	Prior To	After Sa	mpling: 37.	47 (BT	oc)				
TD = <u>54.</u>					x "K" = 3.85									
	(K"= 0.163 (2" well) "K'	' = 0.50 (3.5	" well) "K'	' = .653 (4" well)	"K" = 1.	02 (5" well) "K" = 1.4	6 (6" well)	1				
			FIEL	D WATER	QUALITY PAR	RAMETER	RS							
FIELD WATER QUALITY PARAMETERS Specific Dissolved Water														
Date	Date Time Discharge pH Temp. Conductance Turbidity Redox Oxygen Level Color													
		(Liters)	+/- 0 1	(°C)	and the second				(BLOC)					
10/8/09	(Liters) (°C) μS (NTU's) (mV) (mg/L) (BTOC) +/- 0.1 +/- 0.1 +/- 3% +/- 10 +/- 10 +/- 10% (BTOC) 1%/0 NA Initial NA NA NA NA NA NA													
1	NA	0.5	NA	NA	NA	NA	NA	NA	NA	NA				
	NA	1.0	NA	NA	NA	NA	NA	NA	NA	NA				
	NA	1.5	NA	NA	NA	NA	NA	NA	NA	NA				
	NA	2.0	NA	NA	NA	NA	NA	NA	NA	NA				
	NA	2.5	NA	NA	NA	NA	NA	NA	NA	NA				
	NA	3.0	NA	NA	NA	NA	NA	NA	NA	NA				
	NA	3.5	NA	NA	NA	NA	NA	NA	NA	NA				
+	NA	4.0	NA	NA	NA	NA	NA	NA	NA	NA				
Total Dis	scharge:	🔁 Li	ters		Casing Volum	es Remov	/ed: <u>NA</u>							
Method of disposal of discharged water: 58 Gallon Drum(s) Poly Tank Treatment System Other:														
Date/Tin	Date/Time Sampled: _10/8/09_ @ _11:1 (Analysis: VOCs (8260B) - 3 VOAs w/HCl													
QA/QC: None @ Duplicate MS/MSD Equipment Rinseate Field Blank Lab Split														
Comments:														
Recorde	d by: Stept	ien Penman	/clacqueli	ne Lee	ignatue:	(Page 1 of 1	_				
recorde	d by. otepi	enrennan	Jacquelli	ic Lee S	ignature.	_			Page 1 of 1					

6680 Alhambra Ave., #102 • Martinez, CA 94553-6105 • (925) 372-8108 • Fax: (925) 372-6705 www.envsampling.com

		·		6680	Alhan	nbra Av	e., #	102	?		_							(CH	AIN	10	F	CU	ST	OI	ŊY	RF	CO	R	D			Pag	e) of
		Environmenta	1	Marti	nez, C	aliforni	a 94	553	8-61	05				TU	R	A A	ROI	TRIT															Other:	- <u> </u>
	s)	Sampling Serv	rices, Ll	LC Tel: (9	925) 33	72-810	8 F	ax:	(925	5) 3	72-	67(05	LA	BC	RA	то	RY:			7										$\mathbf{\nabla}$			
				Log C	ode: E	SSM	WW	/w.e	envs	am	plin	g.co	om	Tes	stA	mer	ica-	Plea	asar	ntor	ы, I	24 Hou		т	48 Hou		14	1.	I	NI.		. 1		
Report To:				lephone :			2		_					Lab	Co	ode:	CH	IRP			'	100	115	Ľ	100	us	v	Veel	ĸ	INC	orma	a 1		
	-	ntec Consultants		× <u>(510)</u>									[A	na	lys	is F	(eq	ues	st							Com	nents
Address:		4th Street, Suite 450		oject Na		<u>Hopya</u>		Cle	ane	r				Τ			T		Π			Π					Π	ŕ1	eld l	Filte	red ()	FF)		
E-Mail;		<u>ind, CA 94612</u> g@geosyntec.com	Pro Pro	oject Nu	mber:	WROS	<u>574</u>																									\square		
	Jacqu	teline Lee		npler's Signa			M																											
		en Penman		npler's Signa	(Ŧ																												
GeoTracke		SL0600116931		• • • • • • • • • • • • • • • • • • • •		<u>~</u>					-																	ľ						
Reportin	g Req	uirement: Hard C	opy: Ye	s 🗹 No																1														
EDD File:	Yes	No 🗹		ectronic (Yes	⊠	_	No																								l	
			San	nple		ner	I	Mai	rix		Pres	ervat	live																					
				-	Ja Si	of Container		. ۲		╡		1	-	<u>8</u>														1						
					er c ine	ပိ	wale	Vanor	1					826																			l	
_		FIELD POINT			Number of Containers	୍ଚ ଅ	Groundwater	_ <u> </u> >	Water	Ъ.	-	jõ	<u>Š</u>	ű																				
SAMPLE	C ID	NAME	Date	Time	N N N	Type	ŏ	S S	ŝ	<u></u>	키지	聖	Ξ	×																				
TripBlan	K-1	QCTBI	1/8/09	08:00	2	L			X	⊥	শ্বস	Ł		X															Π			Π		
MW-	3	MW-3	10/8/09	09:39	3	l i				ŀ	XX			X					Π				Τ			Τ	П		\square			Π		
MW-	1	MW-1	10/8/09	10:02	З	1	k		Π	Ţ	XX			X				+			╞	$ \uparrow$	╈	\square		+-			+	\uparrow	+			
MW-	-5	MW-5	·%/09	10:23	3	1	X	┢	Π	-	хŃ				╈				╎┤		╧	$\left \right $	╈	\dagger		╈	+		┢┤	-		\square		
MW	-4	MW-4	1%/09	10:50	3		X	1	\square	Ť	XX	1	\uparrow	ᠿ	╈	+		+-	┢╴╢	╉	╈	┢╎	+	+		+	$\left \right $		+		+-	$\left \right $		
MW		MW-7	10/109	11:11	3		\mathbf{k}			╡		1-	┼╌╿	\$	╈	-		+-	┢┤	╉	┢	┢╴┼	+	+		┿	\mathbb{H}		+		+-			
MW	-6		19/1/09		2	<u> </u>	f.†	╈	┿┥	-+	96	<u>}</u>	┼╌┨	4	+	+-	-	+	$\left \cdot \right $		+	$\left + \right $	╋	+			┝╌╂	- i !	┼┤		-	\square		
			10/1	11.35			K	┿	╉┨	╉	ᄿ	╀	┼╌╊	4		+-		_ _	$\left - \right $			\vdash	+			+-	\square	_					<u> </u>	
MW.	·~	MW-2	1%/0q	11:56	3		М	_	\downarrow	1_	ᄊ	4		<u>х</u>					Ц															
																											\square		\square					
							$ \top$			T	Τ	Γ		T				T	Π			\square	T	Π		1-	\uparrow					Π		
							$\uparrow \uparrow$	╈		╈	╧	+-	╞╴┨	╈	╉		\vdash	+	╞╌┨	╉	╋	┢┼┤	╈	+		+	┼╌╂		┢┤	+	+	⊢		
Relinquished By	110		Date:	Time:	Received	By:	<u>, </u>		~			1	┶┨	1 =	Sai	mple		htain	l er T	vpe:	1 =			Glas	1.5	=Pla	stic	4=9						
Relinquished B.	<u>w</u>		78/2009	13:55		By: Oun	-M	Le.	للا	Ľ	n			QU	JES	TIC	ONS	RE	GA	RD	ING	GC	00	, CA	NLL	ES	5	. 5		_			E RECE	IPT
Relinquished By	•		Date:	Time:	Received	By:								-								_					-			<u>≃</u> Inta		<u></u>	Cold	<u>, , , , , , , , , , , , , , , , , , , </u>
Relinquished By			Date.	Time:	Received	By				_			_	DI -				~~~~	.		~										lce		• Ambie	
	Please email COC for confirmation (<u>masher@geosyntex con</u>) Preservative Correct?																																	

.

APPENDIX B

Groundwater and SVE Monitoring Laboratory Analytical Reports

ANALYTICAL REPORT

Job Number: 720-23121-1 Job Description: Hopyard Cleaners

For: Geosyntec Consultants, Inc. 475 14th Street, Suite 450 Oakland, CA 94612

Attention: Ms. Melissa Asher

Asanif Sal

Approved for release. Afsaneh Salimpour Project Manager I 10/15/2009 6:05 PM

Afsaneh Salimpour Project Manager I afsaneh.salimpour@testamericainc.com 10/15/2009

cc: Ms. Angela Liang

CA ELAP Certification # 2496

The Chain(s) of Custody are included and are an integral part of this report.

The report shall not be reproduced except in full, without the written approval of the laboratory. The client, by accepting this report, also agrees not to alter any reports whether in the hard copy or electronic format and to use reasonable efforts to preserve the reports in the form and substance originally provided by TestAmerica.

A trip blank is required to be provided for volatile analyses. If trip blank results are not included in the report, either the trip blank was not submitted or requested to be analyzed.

EXECUTIVE SUMMARY - Detections

Lab Sample ID Cl Analyte	ient Sample ID	Result / Qualifier	Reporting Limit	Units	Method
720-23121-2	MW-3				
cis-1,2-Dichloroethene Tetrachloroethene Trichloroethene		5.3 48 5.0	0.50 0.50 0.50	ug/L ug/L ug/L	8260B 8260B 8260B
720-23121-3	MW-1				
cis-1,2-Dichloroethene Tetrachloroethene Trichloroethene		220 1500 340	25 25 25	ug/L ug/L ug/L	8260B 8260B 8260B
720-23121-4	MW-5				
Tetrachloroethene		30	0.50	ug/L	8260B
720-23121-5	MW-4				
cis-1,2-Dichloroethene Trichloroethene		3.3 3.2	0.50 0.50	ug/L ug/L	8260B 8260B
720-23121-6	MW-7				
Tetrachloroethene		11	0.50	ug/L	8260B
720-23121-8	MW-2				
cis-1,2-Dichloroethene Tetrachloroethene Trichloroethene		540 15000 870	100 100 100	ug/L ug/L ug/L	8260B 8260B 8260B

METHOD SUMMARY

Client: Geosyntec Consultants, Inc.			Job Number: 720-23121-1
Description	Lab Location	Method	Preparation Method
Matrix: Water			
Volatile Organic Compounds (GC/MS)	TAL SF TAL SF	SW846 8260B	SW846 5030B
Purge and Trap	TAL SF		SW640 5030B
Lab References:			
TAL SF = TestAmerica San Francisco			

Method References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

METHOD / ANALYST SUMMARY

Method	Analyst	Analyst ID
SW846 8260B	Le, Lien	LL
SW846 8260B	Tran, Megan	МТ

SAMPLE SUMMARY

			Date/Time	Date/Time
Lab Sample ID	Client Sample ID	Client Matrix	Sampled	Received
720-23121-1	TRIP BLANK-1	Water	10/08/2009 0800	10/08/2009 1355
720-23121-2	MW-3	Water	10/08/2009 0939	10/08/2009 1355
720-23121-3	MW-1	Water	10/08/2009 1002	10/08/2009 1355
720-23121-4	MW-5	Water	10/08/2009 1023	10/08/2009 1355
720-23121-5	MW-4	Water	10/08/2009 1050	10/08/2009 1355
720-23121-6	MW-7	Water	10/08/2009 1111	10/08/2009 1355
720-23121-7	MW-6	Water	10/08/2009 1133	10/08/2009 1355
720-23121-8	MW-2	Water	10/08/2009 1156	10/08/2009 1355

Job Number: 720-23121-1

Client Sample ID:	TRIP BLANK-1						
Lab Sample ID: Client Matrix:	720-23121-1 Water			Sampled: 10/08/2009 0800 Received: 10/08/2009 1355			
	8260B Volatile Organic Compounds (GC/MS)						
Method: Preparation: Dilution:	8260B 5030B 1.0	Analysis Batch: 720-59314	Instrument ID: Lab File ID: Initial Weight/Volume:	HP7 10100907.D 10 mL			
Date Analyzed: Date Prepared:	10/10/2009 1250 10/10/2009 1250		Final Weight/Volume:	10 mL			
Analyte		Result (ug/L)	Qualifier	RL			
Methyl tert-butyl eth	ner	ND		0.50			
Acetone		ND		50			
Benzene		ND		0.50			
Dichlorobromometh	nane	ND		0.50			
Bromobenzene		ND		1.0			
Chlorobromometha	ine	ND		1.0			
Bromoform		ND		1.0			
Bromomethane		ND		1.0			
2-Butanone (MEK)		ND		50			
n-Butylbenzene		ND		1.0			
sec-Butylbenzene		ND ND		1.0 1.0			
tert-Butylbenzene Carbon disulfide		ND		5.0			
Carbon tetrachlorid	0	ND		0.50			
Chlorobenzene		ND		0.50			
Chloroethane		ND		1.0			
Chloroform		ND		1.0			
Chloromethane		ND		1.0			
2-Chlorotoluene		ND		0.50			
4-Chlorotoluene		ND		0.50			
Chlorodibromometh	nane	ND		0.50			
1,2-Dichlorobenzen		ND		0.50			
1,3-Dichlorobenzen		ND		0.50			
1,4-Dichlorobenzen		ND		0.50			
1,3-Dichloropropan		ND		1.0			
1,1-Dichloropropen		ND		0.50			
1,2-Dibromo-3-Chlo		ND		1.0			
Ethylene Dibromide	9	ND		0.50			
Dibromomethane		ND		0.50			
Dichlorodifluoromet	thane	ND		0.50			
1,1-Dichloroethane		ND		0.50			
1,2-Dichloroethane		ND		0.50			
1,1-Dichloroethene		ND		0.50			
cis-1,2-Dichloroethe		ND		0.50			
trans-1,2-Dichloroe		ND		0.50			
1,2-Dichloropropan		ND		0.50			
cis-1,3-Dichloropro		ND		0.50			
trans-1,3-Dichlorop	ropene	ND		0.50			
Ethylbenzene		ND		0.50			
Hexachlorobutadier	ne	ND		1.0			
2-Hexanone		ND		50			
Isopropylbenzene		ND		0.50			
4-Isopropyltoluene		ND		1.0			
Methylene Chloride		ND		5.0			
4-Methyl-2-pentanc	one (MIBK)	ND		50			
Naphthalene		ND		1.0			

Job Number: 720-23121-1

Client Sample ID:	TRIP BLANK-1			
Lab Sample ID:	720-23121-1		Da	te Sampled: 10/08/2009 0800
Client Matrix:	Water		Da	ate Received: 10/08/2009 1355
		8260B Volatile Organic Compo	inds (GC/MS)	
Method:	8260B	Analysis Batch: 720-59314	Instrument ID:	HP7
Preparation:	5030B		Lab File ID:	10100907.D
Dilution:	1.0		Initial Weight/Volume	: 10 mL
Date Analyzed:	10/10/2009 1250		Final Weight/Volume:	
Date Prepared:	10/10/2009 1250			
Analyte		Result (ug/L)	Qualifier	RL
N-Propylbenzene		ND		1.0
Styrene		ND		0.50
1,1,1,2-Tetrachloro	bethane	ND		0.50
1,1,2,2-Tetrachloro		ND		0.50
Tetrachloroethene		ND		0.50
Toluene		ND		0.50
1,2,3-Trichlorobenz	zene	ND		1.0
1,2,4-Trichlorobenz	zene	ND		1.0
1,1,1-Trichloroetha	ine	ND		0.50
1,1,2-Trichloroetha	ine	ND		0.50
Trichloroethene		ND		0.50
Trichlorofluorometh	hane	ND		1.0
1,2,3-Trichloroprop	bane	ND		0.50
1,1,2-Trichloro-1,2	,2-trifluoroethane	ND		0.50
1,2,4-Trimethylben	izene	ND		0.50
1,3,5-Trimethylben	izene	ND		0.50
Vinyl acetate		ND		10
Vinyl chloride		ND		0.50
Xylenes, Total		ND		1.0
2,2-Dichloropropar	ne	ND		0.50
Surrogate		%Rec	Qualifier Accep	tance Limits
4-Bromofluorobenz	zene	76	67 - 13	30
1,2-Dichloroethane	e-d4 (Surr)	111	67 - 13	30
Toluene-d8 (Surr)	. ,	92	70 - 13	30

Client: Geosyntec Consultants, Inc.

Client Sample ID:	MW-3			
Lab Sample ID: Client Matrix:	720-23121-2 Water			Sampled: 10/08/2009 0939 Received: 10/08/2009 1355
		8260B Volatile Organic Compo	unds (GC/MS)	
Method: Preparation: Dilution:	8260B 5030B 1.0	Analysis Batch: 720-59462	Instrument ID: Lab File ID: Initial Weight/Volume:	HP5 10130935.D 10 mL
Date Analyzed: Date Prepared:	10/14/2009 0143 10/14/2009 0143		Final Weight/Volume:	10 mL
Analyte		Result (ug/L)	Qualifier	RL
Methyl tert-butyl eth	ner	ND		0.50
Acetone		ND		50
Benzene		ND		0.50
Dichlorobromometh	nane	ND		0.50
Bromobenzene		ND		1.0
Chlorobromometha	ine	ND		1.0
Bromoform	-	ND		1.0
Bromomethane		ND		1.0
2-Butanone (MEK)		ND		50
		ND		1.0
n-Butylbenzene		ND		
sec-Butylbenzene				1.0
tert-Butylbenzene		ND		1.0
Carbon disulfide		ND		5.0
Carbon tetrachlorid	e	ND		0.50
Chlorobenzene		ND		0.50
Chloroethane		ND		1.0
Chloroform		ND		1.0
Chloromethane		ND		1.0
2-Chlorotoluene		ND		0.50
4-Chlorotoluene		ND		0.50
Chlorodibromometh	nane	ND		0.50
1,2-Dichlorobenzen	ne	ND		0.50
1,3-Dichlorobenzen	ne	ND		0.50
1,4-Dichlorobenzen		ND		0.50
1,3-Dichloropropan		ND		1.0
1,1-Dichloropropen		ND		0.50
1,2-Dibromo-3-Chlo		ND		1.0
Ethylene Dibromide		ND		0.50
Dibromomethane	•	ND		0.50
Dichlorodifluoromet	thano	ND		0.50
1,1-Dichloroethane				
,		ND		0.50
1,2-Dichloroethane		ND		0.50
1,1-Dichloroethene		ND		0.50
cis-1,2-Dichloroethe		5.3		0.50
trans-1,2-Dichloroe		ND		0.50
1,2-Dichloropropan		ND		0.50
cis-1,3-Dichloropro	•	ND		0.50
trans-1,3-Dichlorop	ropene	ND		0.50
Ethylbenzene		ND		0.50
Hexachlorobutadier	ne	ND		1.0
2-Hexanone		ND		50
Isopropylbenzene		ND		0.50
4-Isopropyltoluene		ND		1.0
Methylene Chloride	9	ND		5.0
4-Methyl-2-pentanc		ND		50
Naphthalene	· •	ND		1.0
		=		

Client: Geosyntec Consultants, Inc.

Client Sample ID:	MW-3				
Lab Sample ID: Client Matrix:	720-23121-2 Water			Date Sampled: 10/08/2009 0939 Date Received: 10/08/2009 1355	
		8260B Volatile Organic Compou	unds (GC/MS)		
Method:	8260B	Analysis Batch: 720-59462	Instrument ID:	HP5	
Preparation:	5030B		Lab File ID:	10130935.D	
Dilution:	1.0		Initial Weight/\	/olume: 10 mL	
Date Analyzed:	10/14/2009 0143		Final Weight/V	'olume: 10 mL	
Date Prepared:	10/14/2009 0143		-		
Analyte		Result (ug/L)	Qualifier	RL	
N-Propylbenzene		ND		1.0	
Styrene		ND		0.50	
1,1,1,2-Tetrachloroe		ND		0.50	
1,1,2,2-Tetrachloroe	ethane	ND		0.50	
Tetrachloroethene		48		0.50	
Toluene		ND		0.50	
1,2,3-Trichlorobenz		ND		1.0	
1,2,4-Trichlorobenz		ND		1.0	
1,1,1-Trichloroethar		ND		0.50	
1,1,2-Trichloroethar	ne	ND		0.50	
Trichloroethene		5.0		0.50	
Trichlorofluorometh		ND		1.0	
1,2,3-Trichloropropa		ND		0.50	
1,1,2-Trichloro-1,2,2		ND		0.50	
1,2,4-Trimethylbenz		ND		0.50	
1,3,5-Trimethylbenz	zene	ND		0.50	
Vinyl acetate		ND		10	
Vinyl chloride		ND		0.50	
Xylenes, Total		ND		1.0	
2,2-Dichloropropane	e	ND		0.50	
Surrogate		%Rec	Qualifier	Acceptance Limits	
4-Bromofluorobenze	ene	99		67 - 130	
1,2-Dichloroethane-	-d4 (Surr)	117		67 - 130	
Toluene-d8 (Surr)		99		70 - 130	

Client: Geosyntec Consultants, Inc.

Client Matrix: Water Date Recent 8260B Volatile Organic Compounds (GC/MS) Method: 8260B Analysis Batch: 720-59462 Instrument ID: HF	bled: 10/08/2009 1002 bived: 10/08/2009 1355
8260B Volatile Organic Compounds (GC/MS) Method: 8260B Analysis Batch: 720-59462 Instrument ID: HF	ived: 10/08/2009 135:
Method: 8260B Analysis Batch: 720-59462 Instrument ID: HF	
,	
Descention F000D	25
Preparation: 5030B Lab File ID: 10	130936.D
Dilution: 50 Initial Weight/Volume: 10	mL
Date Analyzed: 10/14/2009 0214 Final Weight/Volume: 10	mL
Date Prepared: 10/14/2009 0214	
Analyte Result (ug/L) Qualifier	RL
Methyl tert-butyl ether ND	25
Acetone ND	2500
Benzene ND	25
Dichlorobromomethane ND	25
Bromobenzene ND	50
Chlorobromomethane ND	50
Bromoform ND	50
Bromomethane ND	50
2-Butanone (MEK) ND	2500
n-Butylbenzene ND	2500 50
,	50
,	50
tert-Butylbenzene ND	
Carbon disulfide ND	250
Carbon tetrachloride ND	25
Chlorobenzene ND	25
Chloroethane ND	50
Chloroform ND	50
Chloromethane ND	50
2-Chlorotoluene ND	25
4-Chlorotoluene ND	25
Chlorodibromomethane ND	25
1,2-Dichlorobenzene ND	25
1,3-Dichlorobenzene ND	25
1,4-Dichlorobenzene ND	25
1,3-Dichloropropane ND	50
1,1-Dichloropropene ND	25
1,2-Dibromo-3-Chloropropane ND	50
Ethylene Dibromide ND	25
Dibromomethane ND	25
Dichlorodifluoromethane ND	25
1,1-Dichloroethane ND	25
1,2-Dichloroethane ND	25
1,1-Dichloroethene ND	25
cis-1,2-Dichloroethene 220	25
trans-1,2-Dichloroethene ND	25
1,2-Dichloropropane ND	25
cis-1,3-Dichloropropene ND	25
	25 25
Ethylbenzene ND	25
Hexachlorobutadiene ND	50
2-Hexanone ND	2500
Isopropylbenzene ND	25
4-Isopropyltoluene ND	50
Methylene Chloride ND	250
4-Methyl-2-pentanone (MIBK) ND	2500
Naphthalene ND	50

Client: Geosyntec Consultants, Inc.

Client Sample ID:	MW-1					
Lab Sample ID: Client Matrix:	720-23121-3 Water				Date Sampled: 10/08/2009 1002 Date Received: 10/08/2009 1355	
		8260B Volatile Organic Compou	ınds (GC/MS)			
Method:	8260B	Analysis Batch: 720-59462	Instrument II	D: HF	P5	
Preparation:	5030B		Lab File ID:		130936.D	
Dilution:	50		Initial Weigh	t/Volume: 10	mL	
Date Analyzed:	10/14/2009 0214		Final Weight	/Volume: 10	mL	
Date Prepared:	10/14/2009 0214					
Analyte		Result (ug/L)	Qualifier		RL	
N-Propylbenzene		ND			50	
Styrene		ND			25	
1,1,1,2-Tetrachloroe	ethane	ND			25	
1,1,2,2-Tetrachloroe	ethane	ND			25	
Tetrachloroethene		1500			25	
Toluene		ND			25	
1,2,3-Trichlorobenz		ND			50	
1,2,4-Trichlorobenz		ND			50	
1,1,1-Trichloroethar		ND			25	
1,1,2-Trichloroethar	ne	ND			25	
Trichloroethene		340			25	
Trichlorofluorometh		ND			50	
1,2,3-Trichloropropa		ND			25	
1,1,2-Trichloro-1,2,2		ND			25	
1,2,4-Trimethylbenz		ND			25	
1,3,5-Trimethylbenz	zene	ND			25	
Vinyl acetate		ND			500	
Vinyl chloride		ND			25	
Xylenes, Total		ND			50	
2,2-Dichloropropane	9	ND			25	
Surrogate		%Rec	Qualifier	Acceptance Li	mits	
4-Bromofluorobenze		95		67 - 130		
1,2-Dichloroethane-	-d4 (Surr)	114		67 - 130		
Toluene-d8 (Surr)		99		70 - 130		

Client: Geosyntec Consultants, Inc.

Client Sample ID:	MW-5			
Lab Sample ID: Client Matrix:	720-23121-4 Water			Sampled: 10/08/2009 1023 Received: 10/08/2009 1355
		8260B Volatile Organic Compo	unds (GC/MS)	
Method: Preparation: Dilution: Date Analyzed:	8260B 5030B 1.0 10/14/2009 0245	Analysis Batch: 720-59462	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	HP5 10130937.D 10 mL 10 mL
Date Prepared:	10/14/2009 0245			
Analyte		Result (ug/L)	Qualifier	RL
Methyl tert-butyl eth	ner	ND		0.50
Acetone		ND		50
Benzene		ND		0.50
Dichlorobromometh	nane	ND		0.50
Bromobenzene		ND		1.0
Chlorobromometha	ine	ND		1.0
Bromoform		ND		1.0
Bromomethane		ND		1.0
2-Butanone (MEK)		ND		50
n-Butylbenzene		ND		1.0
sec-Butylbenzene		ND		1.0
tert-Butylbenzene		ND		1.0
Carbon disulfide		ND		5.0
Carbon tetrachlorid	e	ND		0.50
Chlorobenzene		ND		0.50
Chloroethane		ND		1.0
Chloroform		ND		1.0
Chloromethane		ND		1.0
2-Chlorotoluene		ND		0.50
4-Chlorotoluene		ND		0.50
Chlorodibromometh	nane	ND		0.50
1,2-Dichlorobenzen	ne	ND		0.50
1,3-Dichlorobenzen		ND		0.50
1,4-Dichlorobenzen		ND		0.50
1,3-Dichloropropan		ND		1.0
1,1-Dichloropropen		ND		0.50
1,2-Dibromo-3-Chlo		ND		1.0
Ethylene Dibromide		ND		0.50
Dibromomethane		ND		0.50
Dichlorodifluoromet	thane	ND		0.50
1,1-Dichloroethane		ND		0.50
1,2-Dichloroethane		ND		0.50
1,1-Dichloroethene		ND		0.50
cis-1,2-Dichloroethe		ND		0.50
trans-1,2-Dichloroe		ND		0.50
1,2-Dichloropropan		ND		0.50
cis-1,3-Dichloropropan		ND		0.50
trans-1,3-Dichlorop		ND		0.50
Ethylbenzene		ND		0.50
Hexachlorobutadier	ne	ND		1.0
2-Hexanone		ND		50
Isopropylbenzene		ND		0.50
4-Isopropyltoluene		ND		1.0
		ND		5.0
Methylene Chloride		ND		5.0 50
4-Methyl-2-pentance				
Naphthalene		ND		1.0

Client: Geosyntec Consultants, Inc.

Client Sample ID:	MW-5			
Lab Sample ID: Client Matrix:	720-23121-4 Water			Date Sampled: 10/08/2009 1023 Date Received: 10/08/2009 1355
		8260B Volatile Organic Compou	unds (GC/MS)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8260B 5030B 1.0 10/14/2009 0245 10/14/2009 0245	Analysis Batch: 720-59462	Instrument ID: Lab File ID: Initial Weight/Vol Final Weight/Volu	
Analyte		Result (ug/L)	Qualifier	RL
N-Propylbenzene Styrene 1,1,1,2-Tetrachloro 1,1,2,2-Tetrachloro Tetrachloroethene Toluene 1,2,3-Trichlorobenz 1,2,4-Trichlorobenz 1,1,1-Trichloroetha 1,1,2-Trichloroetha Trichlorofluorometh 1,2,3-Trichloroprop 1,1,2-Trichloro-1,2, 1,2,4-Trimethylbenz Vinyl acetate Vinyl acetate Vinyl acetate Xylenes, Total 2,2-Dichloropropan	ethane zene ne ne nane ane 2-trifluoroethane zene zene	ND ND ND 30 ND ND ND ND ND ND ND ND ND ND ND ND ND		$\begin{array}{c} 1.0\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 0.50\\ 0.50\\ 0.50\\ 1.0\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 10\\ 0.50\\ 1.0\\ 0.50\\ 1.0\\ 0.50\end{array}$
Surrogate		%Rec	Qualifier Ad	cceptance Limits
4-Bromofluorobenz 1,2-Dichloroethane Toluene-d8 (Surr)		97 116 98	67 67	7 - 130 7 - 130 0 - 130

Client: Geosyntec Consultants, Inc.

Hiten Matrix Water Date Received: 10/08/2009 01 Nethod: 8260B Analysis Batch: 720-59462 Instrument ID: HP5 tepparation: 5030B Lab File ID: 10130938.D ihution: 1.0 Initial Weight/Volume: 10 mL take Analyzed: 101/14/2009 0317 Final Weight/Volume: 10 mL take Analyzed: 101/14/2009 0317 Final Weight/Volume: 10 mL take Analyzed: 101/14/2009 0317 Final Weight/Volume: 10 mL take Analyzed: 101/14/2009 0317 Sol Sol Sol take Analyzed: 101/14/2009 0317 Sol Sol Sol take Analyzed: 101/14/2009 0317 Sol Sol Sol take Analyzed: ND 0.50 Sol Sol Sol take Sol ND 0.50 Sol Sol Sol take Sol ND 1.0 Sol Sol	Client Sample ID:	MW-4					
B260B Volatile Organic Compounds (GC/INS) tethod: 8260B Analysis Batch: 720-59462 Instrument ID: HP5 treparation: 5030B Lab File ID: 10130938.D initial Weight/Volume: 10 mL File ID: 10 mL tate Analyza: 1014/2009 0317 Timilal Weight/Volume: 10 mL tate Analyza: 1014/2009 0317 Volume: 10 mL tate Analyza: 1014/2009 0317 RL ND Solo tate Analyza: 1014/2009 0317 RL ND Solo tate Analyza: ND Qualifier RL ND Solo tetry tott/buly ether ND ND 0.50 Solo Solo tetry tott/buly ether ND 10 Solo Solo Solo <th>Lab Sample ID:</th> <th>720-23121-5</th> <th></th> <th>Date</th> <th>Sampled: 10/08/2009 1050</th>	Lab Sample ID:	720-23121-5		Date	Sampled: 10/08/2009 1050		
National Section 2005 Analysis Bath. 720-59462 Instrument ID: HP5 treparation: 5030B 10130038.0 Instrument ID: HD5 take Analyzed: 10/14/2009 0317 Final Weight/Volume: 10 mL take Analyzed: 10/14/2009 0317 Final Weight/Volume: 10 mL take Analyzed: 10/14/2009 0317 Final Weight/Volume: 10 mL take Analyzed: 10/14/2009 0317 ND 50 50 catoon ND 50 50 50 catoon ND 0.50 50 50 catoon ND 1.0 1.0 1.0 troonomethane ND 1.0 1.0 1.0 roonomethane ND 0.50 1.0 1.0 roonomethane ND	Client Matrix:	Water		Date	Received: 10/08/2009 1355		
reparation: 5030B Lab File ID: 10130938.D iluiton: 1.0 Initial Weight/Volume: 10 mL tate Analyzed: 10/14/2009 0317 Final Weight/Volume: 10 mL tate Analyzed: 10/14/2009 0317 ND 0.50 tate Analyzed: ND 50 tethy teth-butyl ether ND 50 coctone ND 50 enzere ND 50 icklorotromomethane ND 50 romobenzene ND 1.0 romoromotatano ND 1.0	8260B Volatile Organic Compounds (GC/MS)						
Nution: 1.0 Initial Weight/Volume: 10 mL Priare Are Prepared: 10/14/2009 0317 Final Weight/Volume: 10 mL ate Prepared: 10/14/2009 0317 Result (ug/L) Qualifier R R ate Prepared: 10/14/2009 0317 ND 50 S0 restrict: ND 50 S0 S0 cetore ND 0.50 S0 S0 ichlorobromomethane ND 1.0 S0 S0 ichlorobrobromomethane N	Method:	8260B	Analysis Batch: 720-59462	Instrument ID:	HP5		
base Analyzet: 10/14/2009 0317 Final Weight/Volum: 10 mL nailyte Result (ug/L) Qualifier RL tethyl tert-bulyt ether ND 0.50 cotion ND 0.50 tertonomethane ND 0.50 iromobenzene ND 0.50 iromoberzene ND 0.50 iromoberzene ND 1.0 e-Butyloenzene ND 1.0 iromoberzene ND 0.50 irborothare ND 0.50 irborothare ND 0.50 irborothare ND 0.50 irborothare ND 0.50 irborothoromethane ND 0.50 irboroth	Preparation:	5030B		Lab File ID:	10130938.D		
hate Analyzed: 10/14/2009 0317 Final Weight/Volume: 10 mL nakyte Result (ug/L) Qualifier RL No So cetone ND So	Dilution:	1.0		Initial Weight/Volume:	10 mL		
tate Prepared: 10/14/2009 0317 nalyte Result (ug/L) Qualifier RL lefny iterbuty ether ND 50 cetone ND 50 erzzne ND 50 incomobenzene ND 50 incomobenzene ND 10 incomobenzene ND 10 incomotentane ND 10 ethylpenzene ND 10 ethylpenzene ND 50 incorotenzene ND 10 incorotenzene ND 50 incorotenzene	Date Analyzed:	10/14/2009 0317		=	10 mL		
tethyl teth-bulyl ether ND 0.50 cetone ND 50 cetone ND 0.50 ichlorobromomethane ND 0.50 iromobenzene ND 1.0 hihorobromomethane ND 1.0 iromoform ND 1.0 iromomethane ND 1.0 Butylbenzene ND 1.0 Butylbenzene ND 1.0 Butylbenzene ND 1.0 e-Butylbenzene ND 1.0 arbon disulfide ND 5.0 iarbon tetrachloride ND 0.50 ihlorobenzene ND 0.50 ibloroform ND 0.50 j.2Di	Date Prepared:	10/14/2009 0317		U U			
decimaND50ienzeneND0.50ienzeneND0.50iromoberzeneND1.0iromoberzeneND1.0iromoberzeneND1.0iromoberzeneND1.0iromoberzeneND1.0iromoberzeneND1.0iromoberzeneND1.0ebutanone (MEK)ND50Buttanone (MEK)ND1.0ebutyberzeneND1.0exbutyberzeneND0.50exbutyberzeneND0.50irabon tetrachlorideND0.50irborotetraneND	Analyte		Result (ug/L)	Qualifier	RL		
cectorsND50ienzeneND0.50ichiorobromomethaneND0.50iromobenzeneND1.0iromobenzeneND1.0iromoberzeneND1.0iromoberzeneND1.0iromoberzeneND1.0iromoberzeneND1.0iromoberzeneND1.0ebutanone (MEK)ND1.0ebutybenzeneND1.0ebutybenzeneND1.0ebutybenzeneND0.50irabon tetrachlorideND0.50irabon tetrachlorideND0.50irborotentaneND0.50irborotentaneND0.50irborotentaneND0.50irborotentaneND0.50irborotentaneND0.50irborotentaneND0.50irborotentaneND0.50irborotentaneND0.50irborotentaneND0.50irborotentaneND0.50irborotentaneND0.50irborotenzeneND0.50irborotenzeneND0.50irborotenzeneND0.50irborotenzeneND0.50irborotenzeneND0.50irborotenzeneND0.50irborotenzeneND0.50irborotenzeneND0.50irborotenzeneND0.50irborotenzeneND0.50irborot	Methyl tert-butyl eth	ner	ND		0.50		
inclinorbornomethaneND0.50romobenzeneND1.0romomethaneND1.0romomethaneND1.0romomethaneND1.0romomethaneND1.0-Butanone (MEK)ND1.0-Butanone (MEK)ND1.0-ButylbenzeneND1.0-ButylbenzeneND5.0-ButylbenzeneND5.0-arbon tetrachlorideND5.0-arbon tetrachlorideND5.0-arbon tetrachlorideND5.0-blorobenzeneND5.0-bloroben	Acetone		ND		50		
inclinorbornomethaneND0.50romobenzeneND1.0romomethaneND1.0romomethaneND1.0romomethaneND1.0romomethaneND1.0-Butanone (MEK)ND1.0-Butanone (MEK)ND1.0-ButylbenzeneND1.0-ButylbenzeneND5.0-ButylbenzeneND5.0-arbon tetrachlorideND5.0-arbon tetrachlorideND5.0-arbon tetrachlorideND5.0-blorobenzeneND5.0-bloroben	Benzene		ND		0.50		
hlorobromomethaneND1.0romoformND1.0Butanone (MEK)ND50-ButyloerzeneND1.0-ButyloerzeneND1.0ex-ButyloerzeneND1.0arbon disulfideND5.0arbon disulfideND5.0-ChoroblueneND5.0-ChoroblueneND5.0-JohchoroberzeneND5.0-JohchoroberzeneND5.0-JohchoropopaneND5.0-JohchoropopaneND5.0-JohchoropopaneND5.0-JohchoropopaneND5.0-JohchoropopaneND5.0-JohchoropopaneND5.0-JohchoropopaneND5.0-JohchoropopaneND5.0-JohchoropopaneND5.0-JohchoropopaneND5.0-JohchoropopaneND5.0-JohchoropopaneS.0 </td <td>Dichlorobromometh</td> <td>nane</td> <td>ND</td> <td></td> <td>0.50</td>	Dichlorobromometh	nane	ND		0.50		
hlorobromomethaneND1.0romoformND1.0Butanone (MEK)ND50-ButyloerzeneND1.0-ButyloerzeneND1.0ex-ButyloerzeneND1.0arbon disulfideND5.0arbon disulfideND5.0-ChoroblueneND5.0-ChoroblueneND5.0-JohchoroberzeneND5.0-JohchoroberzeneND5.0-JohchoropopaneND5.0-JohchoropopaneND5.0-JohchoropopaneND5.0-JohchoropopaneND5.0-JohchoropopaneND5.0-JohchoropopaneND5.0-JohchoropopaneND5.0-JohchoropopaneND5.0-JohchoropopaneND5.0-JohchoropopaneND5.0-JohchoropopaneND5.0-JohchoropopaneS.0 </td <td>Bromobenzene</td> <td></td> <td></td> <td></td> <td></td>	Bromobenzene						
ironoformND1.0romomethaneND50Butynoe (MEK)ND1.0Butynoe (MEK)ND1.0ebutyloenzeneND1.0reButyloenzeneND5.0arbon disulfideND5.0arbon disulfideND0.50hloroethaneND0.50hloroethaneND1.0chloroethaneND0.50chloroethaneND0.50chloroethaneND0.50chloroethaneND0.50chloroethaneND0.50chloroethaneND0.50chloroethaneND0.50chloroethaneND0.50chloroethaneND0.50chloroblueneND0.50chlorobleneND0.50chlorobleneND0.50chlorobleneND0.50chlorobleneND0.50chlorobleneND0.50chlorobleneND0.50chlorobleneND0.50chlorobleneND0.50chlorobleneND0.50chlorobleneND0.50chlorobleneND0.50chlorobleneND0.50chlorobleneND0.50chlorobleneND0.50chlorobleneND0.50chlorobleneND0.50chlorobleneND0.50chlorobleneND0.50		ne					
romomethaneND1.0-Butanone (MEK)ND50-ButylbenzeneND1.0ec-ButylbenzeneND1.0ec-ButylbenzeneND5.0arbon distrifiedND0.50arbon distrifiedND0.50arbon distrifiedND1.0chorostenzeneND0.50hilorobenzeneND1.0chorostenzeneND1.0chorostenzeneND1.0chorostenzeneND0.50	Bromoform						
Butanone (MEK)ND50ButylbenzeneND1.0exButylbenzeneND1.0exButylbenzeneND5.0arbon disulifdeND0.50arbon disulifdeND0.50arbon tetrachlorideND0.50chlorobenzeneND1.0chlorobenzeneND1.0chlorobethaneND1.0chlorobethaneND0.50chlorobethaneND0.50chlorobethaneND0.50chlorobethaneND0.50chlorobethaneND0.50chloroblueneND0.50chlorobethaneND0.50							
ButylbenzeneND1.0ec-ButylbenzeneND1.0art-ButylbenzeneND5.0arbon disufideND0.50arbon disufideND0.50arbon disufideND0.50bihorobenzeneND1.0bihorobenzeneND1.0bihorobenzeneND1.0bihorobenzeneND0.50chloroblueneND0.50chloroblueneND0.50chloroblueneND0.50chloroblueneND0.50chloroblueneND0.50chloroblueneND0.50chloroblueneND0.50chloroblueneND0.50chloroblenzeneND0.50.2-DichlorobenzeneND0.50.3-DichlorobenzeneND0.50.2-DibroropaneND0.50.2-DibroropaneND0.50.2-DibroropaneND0.50.2-DibroropaneND0.50.2-DibroropaneND0.50.2-DibroropaneND0.50.2-DichlorobenzeneND0.50.2-DichlorobenzeneND0.50.2-DichlorobenzeneND0.50.2-DichlorobenzeneND0.50.2-DichlorobenzeneND0.50.2-DichlorobenzeneND0.50.2-DichlorobenzeneND0.50.2-DichlorobenzeneND0.50.2-DichlorobenzeneND0.50 <tr< td=""><td></td><td></td><td></td><td></td><td></td></tr<>							
ex-ButylenzeneND1.0art-ButylenzeneND5.0arbon disulfideND0.50arbon disulfideND0.50arbon terachlorideND0.50hlorobenzeneND1.0hlorobenzeneND1.0hlorobentaneND1.0chlorobentaneND0.50chlorobentaneND0.50chlorobentaneND0.50chlorobenzeneND0.50chlorobenzeneND0.50chlorobenzeneND0.50chlorobenzeneND0.50chlorobenzeneND0.50.2-DichlorobenzeneND0.50.3-DichlorobenzeneND0.50.3-DichlorobenzeneND0.50.3-DichlorobenzeneND0.50.2-DichlorobenzeneND0.50.3-DichlorobenzeneND0.50.3-DichlorobenzeneND0.50.3-DichlorobenzeneND0.50.2-DichloropropaneND0.50.2-DichloropropaneND0.50.1-DichloroethaneND0.50.2-DichloroethaneND0.50.2-Dichloroethene3.30.50.2-DichloroetheneND0.50.2-DichloropropaneND0.50.2-DichloropropaneND0.50.2-DichloropropaneND0.50.2-DichloropropaneND0.50.2-DichloropropaneND0.50.2-Dichlo							
Part-ButylbenzeneND1.0barbon disulfideND5.0barbon tetrachlorideND0.50chlorobenzeneND1.0chlorobenzeneND1.0chlorobertaneND1.0chlorobertaneND0.50chlorobertaneND0.50chlorobertaneND0.50chlorobertaneND0.50chloroblueneND0.50chloroberzeneND0.50chloroberzeneND0.50chloroberzeneND0.50.2-DichlorobenzeneND0.50.3-DichloropropaneND0.50.3-DichloropropaneND0.50.2-DichlorobenzeneND0.50.2-DichloropropaneND0.50.2-DichloropropaneND0.50.2-DichloropropaneND0.50.2-DichloropropaneND0.50.2-DichloropropaneND0.50.2-DichloropropaneND0.50.2-DichloropropaneND0.50.2-DichloropropaneND0.50.2-DichloropropaneND0.50.2-DichloropropaneND0.50.2-DichloropropaneND0.50.2-DichloropropaneND0.50.2-DichloropropaneND0.50.2-DichloropropaneND0.50.2-DichloropropaneND0.50.2-DichloropropaneND0.50.2-DichloropropaneND0.50							
arbon disulfideND5.0arbon disulfideND0.50arbon tetrachlorideND0.50bhorobenzeneND1.0chlorothaneND1.0chlorothaneND0.50chlorothaneND0.50chlorothaneND0.50chlorothaneND0.50chlorothaneND0.50chlorothaneND0.50chlorothaneND0.50chlorothaneND0.50chlorothoromethaneND0.50chlorothoromethaneND0.50.2-DichlorobenzeneND0.50.2-DichlorobenzeneND0.50.2-DichloropopaneND0.50.2-DichloropopaneND0.50.2-DichloropopaneND0.50.2-DichloropopaneND0.50.2-DichloropopaneND0.50.2-DichloropopaneND0.50.2-DichloropopaneND0.50.2-DichloropopaneND0.50.2-DichloroptaneND0.50.2-DichloroptaneND0.50.2-DichloroptaneND0.50.2-DichloroptaneND0.50.2-DichloroptaneND0.50.2-DichloroptaneND0.50.2-DichloroptaneND0.50.2-DichloroptaneND0.50.2-DichloroptaneND0.50.2-DichloroptaneND0.50.2-DichloroptaneND <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>							
arbon tetrachlorideND0.50chloroberzeneND0.50chloroberzeneND1.0chloroftameND1.0chloroformND0.50chloroblueneND0.50chloroblueneND0.50chloroblueneND0.50chloroblueneND0.50chloroblueneND0.50.2-DichlorobenzeneND0.50.3-DichlorobenzeneND0.50.3-DichlorobenzeneND0.50.3-DichloropropaneND0.50.2-DiblorobenzeneND0.50.2-DichloropropaneND0.50							
hlorobenzeneND0.50chlorobtaneND1.0chloroformND1.0chloroformND1.0chlorotolueneND0.50chlorotolueneND0.50chlorobtaneneND0.50chlorobtaneneND0.50chlorobtaneneND0.50chlorobtaneneND0.50.2-DichlorobenzeneND0.50.3-DichlorobenzeneND0.50.3-DichlorobenzeneND0.50.3-DichlorobenzeneND0.50.2-DichloropopaneND0.50.2-DichloropopaneND0.50.2-DichloropopaneND0.50.2-DichlorobenzeneND0.50.2-DichlorobenzeneND0.50.2-DichlorobenzeneND0.50.2-DichloropopaneND0.50.2-DichloropopaneND0.50.2-DichloroptaneND0.50.2-DichloroptaneND0.50.2-DichloroptaneND0.50.2-DichloroptaneND0.50.2-DichloroptaneND0.50.2-DichloroptaneND0.50.2-DichloroptaneND0.50.2-DichloroptaneND0.50.2-DichloroptaneND0.50.2-DichloroptaneND0.50.2-DichloroptaneND0.50.2-DichloroptaneND0.50.2-DichloroptaneND0.50.2-Dichloroptane <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>							
Abore thaneND1.0Abore thaneND1.0Choro to to ueneND0.50Choro to lueneND0.50Choro to lueneND0.50Choro to lueneND0.50Choro to lueneND0.50Choro to lueneND0.502-DichlorobenzeneND0.503-DichloropenzeneND0.503-DichloropopaneND0.503-DichloropopaneND0.503-DichloropopaneND0.503-DichloropopaneND0.503-DichloropopaneND0.501,1-DichloropopaneND0.501,2-DichloroethaneND0.501,1-DichloroethaneND0.501,1-DichloroethaneND0.501,1-DichloroethaneND0.501,1-DichloroethaneND0.501,1-DichloroethaneND0.501,1-DichloroethaneND0.501,1-DichloroethaneND0.501,1-DichloroethaneND0.501,1-DichloroethaneND0.501,2-DichloroethaneND0.501,2-DichloroethaneND0.501,3-DichloroptopeneND0.501,3-DichloroptopeneND0.501,3-DichloroptopeneND0.501,3-DichloroptopeneND0.501,3-DichloroptopeneND0.501,3-DichloroptopeneND0.501,3-Dichloroptopene0.50 </td <td></td> <td>e</td> <td></td> <td></td> <td></td>		e					
hloroformND1.0chlorofotueneND1.0-ChlorototueneND0.50-ChlorototueneND0.50chlorototueneND0.50/chlorobenzeneND0.50,2-DichlorobenzeneND0.50,3-DichloroporpaneND0.50,1-DichloropropaneND0.50,2-Dibromo-3-ChloropropaneND0.50,2-DichlorobenzeneND0.50,2-DichloropropaneND0.50,1-DichloropropaneND0.50,2-Dibromo-3-ChloropropaneND0.50,1-DichloroethaneND0.50,2-DichloroethaneND0.50,1-DichloroethaneND0.50,1-DichloroethaneND0.50,2-DichloroethaneND0.50,1-DichloroethaneND0.50,1-DichloroethaneND0.50,1-DichloroethaneND0.50,1-DichloroethaneND0.50,1-DichloroethaneND0.50,1-DichloroethaneND0.50,1-DichloroethaneND0.50,2-DichloroethaneND0.50,2-DichloroethaneND0.50,2-DichloroethaneND0.50,2-DichloroethaneND0.50,2-DichloroethaneND0.50,2-DichloroethaneND0.50,2-DichloroethaneND0.50,3-Dichloroethane0.500.50,3-Dichloroethane <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>							
IndoromethaneND1.0-ChlorotolueneND0.50-ChlorotolueneND0.50-ChlorotolueneND0.50-ChloroblenzeneND0.50.2-DichlorobenzeneND0.50.3-DichlorobenzeneND0.50.3-DichloropropaneND0.50.2-DichloropropaneND0.50.2-DichloropropaneND0.50.2-DichloropropaneND0.50.2-DichloropropaneND0.50.2-DichloropropaneND0.50.2-DichloropropaneND0.50.2-DichloropropaneND0.50.2-DichloropropaneND0.50.2-DichloropropaneND0.50.2-DichloroethaneND0.50.2-DichloroethaneND0.50.2-DichloroethaneND0.50.2-DichloroethaneND0.50.2-DichloroethaneND0.50.2-DichloroptopaneND0.50.2-DichloroethaneND0.50.2-DichloroptopaneND0.50.2-DichloroptopaneND0.50.2-DichloroptopaneND0.50.2-DichloroptopaneND0.50.2-DichloroptopaneND0.50.2-DichloroptopaneND0.50.2-DichloroptopaneND0.50.2-DichloroptopaneND0.50.2-DichloroptopaneND0.50.2-DichloroptopaneND0.50.2-Dichloroptopan							
-ChlorotolueneND0.50-ChlorotolueneND0.50-ChlorotoluromenthaneND0.50,2-DichlorobenzeneND0.50,3-DichlorobenzeneND0.50,4-DichlorobenzeneND0.50,3-DichloropopaneND0.50,1-DichloropropaneND0.50,2-DichloropropaneND0.50,2-DichloropropaneND0.50,2-DichloropropaneND0.50,2-DichloropropaneND0.50,2-DichloropropaneND0.50,1-DichloropropaneND0.50,1-DichloroethaneND0.50,1-DichloroethaneND0.50,1-DichloroethaneND0.50,1-DichloroethaneND0.50,1-DichloroethaneND0.50,1-DichloroethaneND0.50,1-DichloroethaneND0.50,1-DichloroethaneND0.50,1-DichloroethaneND0.50,1-DichloroethaneND0.50,1-DichloroethaneND0.50,1-DichloroethaneND0.50,1-DichloroethaneND0.50,1-DichloroethaneND0.50,1-DichloroethaneND0.50,1-Dichloroethane0.500.50,1-Dichloroethane0.500.50,1-DichloropropeneND0.50,1-DichloropropeneND0.50,1-DichloropropeneND0.50,1-Dichlo							
ChlorotolueneND0.50chlorotolbromomethaneND0.50,2-DichlorobenzeneND0.50,3-DichlorobenzeneND0.50,4-DichlorobenzeneND0.50,3-DichloroponaneND0.50,2-Dibromo-3-ChloropropaneND0.50,2-Dibromo-3-ChloropropaneND0.50,2-Dibromo-3-ChloropropaneND0.50,2-Dibromo-3-ChloropropaneND0.50,1-DichloroethaneND0.50,1-DichloroethaneND0.50,1-DichloroethaneND0.50,1-DichloroethaneND0.50,1-DichloroethaneND0.50,1-DichloroethaneND0.50,1-DichloroethaneND0.50,1-Dichloroethane0.500.50,1-DichloroethaneND0.50,1-DichloroethaneND0.50,1-Dichloroethane0.500.50,2-DichloroethaneND0.50,2-Dichloroethane0.500.50,2-DichloroethaneND0.50,2-DichloroethaneND0.50,2-DichloroptopeneND0.50,2-DichloroptopeneND0.50,2-DichloroptopeneND0.50,2-DichloroptopeneND0.50,2-DichloroptopeneND0.50,2-DichloroptopeneND0.50,2-DichloroptopeneND0.50,2-DichloroptopeneND0.50,2-DichloroptopeneND<							
chlorodibromomethaneND0.50,2-DichlorobenzeneND0.50,3-DichlorobenzeneND0.50,4-DichlorobenzeneND0.50,3-DichloropropaneND0.50,1-DichloropropaneND0.50,2-DibhoropropaneND0.50,2-DibhoropropaneND0.50,2-Dibromo-3-ChloropropaneND0.50,2-Dibromo-3-ChloropropaneND0.50,2-DibromothaneND0.50,1-DichloroethaneND0.50,1-DichloroethaneND0.50,2-DichloroethaneND0.50,2-DichloroethaneND0.50,2-DichloroethaneND0.50,2-DichloroethaneND0.50,2-DichloroetheneND0.50,2-DichloropteneND0.50,2-DichloropteneND0.50,2-DichloropteneND0.50,2-DichloropteneND0.50,2-DichloropteneND0.50,2-DichloropteneND0.50,2-DichloropteneND0.50,2-DichloropteneND0.50,2-DichloropteneND0.50,2-DichloropteneND0.50,2-DichloropteneND0.50,3-DichloropteneND0.50,2-DichloropteneND0.50,2-DichloropteneND0.50,3-DichloropteneND0.50,3-DichloropteneND0.50,3-Dichloroptene							
2-DichlorobenzeneND0.50,3-DichlorobenzeneND0.50,4-DichloropropaneND1.0,1-DichloropropaneND0.50,2-Dibromo-3-ChloropropaneND0.50,2-Dibromo-3-ChloropropaneND0.50,2-Dibromo-3-ChloropropaneND0.50,2-Dibromo-3-ChloropropaneND0.50,2-Dibromo-3-ChloropropaneND0.50,2-Dibromo-3-ChloropropaneND0.50,2-DichloropthaneND0.50,1-DichloropthaneND0.50,1-DichloroethaneND0.50,2-DichloroethaneND0.50,2-DichloroethaneND0.50,2-DichloroethaneND0.50,2-Dichloroethene3.30.50,2-DichloroptopaneND0.50,2-DichloroptopaneND0.50,2-DichloroptopaneND0.50,2-DichloroptopaneND0.50,2-DichloroptopaneND0.50,2-DichloroptopaneND0.50,2-DichloroptopaneND0.50,2-DichloroptopaneND0.50,3-DichloroptopaneND0.50,3-DichloroptopaneND0.50,3-DichloroptopaneND0.50,3-DichloroptopaneND0.50,3-DichloroptopaneND0.50,3-DichloroptopaneND0.50,3-DichloroptopaneND0.50,3-Dichloroptopane0.50,3-Dichloroptopane <td>4-Chlorotoluene</td> <td></td> <td></td> <td></td> <td></td>	4-Chlorotoluene						
,3-DichlorobenzeneND0.50,4-DichlorobenzeneND1.0,3-DichloropropaneND0.50,1-DichloropropeneND0.50,2-Dibromo-3-ChloropropaneND0.50,2-Dibromo-3-ChloropropaneND0.50(thylene DibromideND0.50(bibromomethaneND0.50(bichlorodifluoromethaneND0.50(c) LichloroethaneND0.50(c) LichloroethaneND0.50(c) LichloroethaneND0.50(c) LichloroethaneND0.50(c) LichloroethaneND0.50(c) LichloroethaneND0.50(c) LichloroethaneND0.50(c) LichloroethaneND0.50(c) LichloroethaneND0.50(c) LichloroptopaneND0.50(c) Lichloroptopa	Chlorodibromometh	nane	ND		0.50		
4-Dichlorobenzene ND 0.50 ,3-Dichloropropane ND 1.0 ,1-Dichloropropene ND 0.50 ,2-Dibromo-3-Chloropropane ND 0.50 ,2-Dibromo-3-Chloropropane ND 0.50 ,2-Dibromo-3-Chloropropane ND 0.50 ,2-Dibromota ND 0.50 ,1-Dichloropthane ND 0.50 ,1-Dichloroethane ND 0.50 ,1-Dichloroethane ND 0.50 ,2-Dichloroethane ND 0.50 ,1-Dichloroethane ND 0.50 ,2-Dichloroethane ND 0.50 ,1-Dichloroethene 3.3 0.50 ,1-Dichloroethene 3.3 0.50 ,2-Dichloropropane ND 0.50 ,2-Dichloropropane ND 0.50 ,3-Dichloropropane ND 0.50 ,ans-1,3-Dichloropropane ND 0.50 ans-1,3-Dichloropropane ND 0.50 ans-1,3-Dichloropropane ND 0	1,2-Dichlorobenzen	e	ND		0.50		
3-Dichloropropane ND 1.0 ,1-Dichloropropane ND 0.50 ,2-Dibromo-3-Chloropropane ND 1.0 ithylene Dibromide ND 0.50 ithylene Dibromide ND 0.50 bibromoethane ND 0.50 vichloroptifluoromethane ND 0.50 vichloroptifluoromethane ND 0.50 ,1-Dichloroethane ND 0.50 ,2-Dichloroethane ND 0.50 ,2-Dichloroethane ND 0.50 ,1-Dichloroethane ND 0.50 ,1-Dichloroethene ND 0.50 ,1-Dichloroethene ND 0.50 ,2-Dichloroethene ND 0.50 ans-1,2-Dichloroethene ND 0.50 ,2-Dichloropropane ND 0.50 ,2-Dichloropropene ND 0.50 ,3-J.Dichloropropene ND 0.50 ans-1,3-Dichloropropene ND 0.50 ans-1,3-Dichloropropene ND 0.50 </td <td>1,3-Dichlorobenzen</td> <td>e</td> <td>ND</td> <td></td> <td>0.50</td>	1,3-Dichlorobenzen	e	ND		0.50		
1-DichloropropeneND0.50,2-Dibromo-3-ChloropropaneND0.50ithylene DibromideND0.50bibromomethaneND0.50bichlorodifluoromethaneND0.50,1-DichloroethaneND0.50,2-DichloroethaneND0.50,2-DichloroethaneND0.50,2-DichloroethaneND0.50,2-DichloroethaneND0.50,2-DichloroethaneND0.50,2-Dichloroethene3.30.50,2-DichloroetheneND0.50,2-DichloroetheneND0.50,2-DichloroptopaneND0.50,3-DichloroptopaneND0.50,3-DichloroptopaneND0.50,3-DichloroptopeneND0.50,3-DichloroptopeneND0.50,3-DichloroptopeneND0.50,3-DichloroptopeneND0.50,3-DichloroptopeneND0.50,3-DichloroptopeneND0.50,3-DichloroptopeneND0.50,3-DichloroptopeneND0.50,3-DichloroptopeneND0.50,3-DichloroptopeneND0.50,3-DichloroptopeneND0.50,3-DichloroptopeneND0.50,3-DichloroptopeneND0.50,3-DichloroptopeneND0.50,3-DichloroptopeneND0.50,3-DichloroptopeneND0.50,3-DichloroptopeneND0.50 <td>1,4-Dichlorobenzen</td> <td>e</td> <td>ND</td> <td></td> <td>0.50</td>	1,4-Dichlorobenzen	e	ND		0.50		
2-Dibromo-3-ChloropropaneND1.01thylene DibromideND0.501bibromomethaneND0.501chlorodifluoromethaneND0.501chloroethaneND0.502-DichloroethaneND0.502-DichloroethaneND0.502-DichloroethaneND0.503.30.500.50ans-1,2-Dichloroethene3.30.50ans-1,2-DichloroetheneND0.50ans-1,3-DichloropropaneND0.50ans-1,3-DichloropropeneND0.50ans-1,3-DichloropropeneND0.50ans-1,3-DichloropropeneND0.50ans-1,3-DichloroptopeneND0.50ans-1,3-DichloroptopeneND0.50ans-1,3-DichloroptopeneND0.50ans-1,3-DichloroptopeneND0.50ans-1,3-DichloroptopeneND0.50ans-1,3-DichloroptopeneND0.50ans-1,3-DichloroptopeneND0.50ans-1,3-DichloroptopeneND0.50ans-1,3-DichloroptopeneND0.50ans-1,3-DichloroptopeneND0.50ans-1,3-DichloroptopeneND0.50ans-1,3-DichloroptopeneND0.50ans-1,3-DichloroptopeneND0.50ans-1,3-DichloroptopeneND0.50ans-1,3-DichloroptopeneND0.50ans-1,3-DichloroptopeneND0.50ans-1,3-DichloroptopeneND0.50ans-1,3-Dichl	1,3-Dichloropropan	e	ND		1.0		
ithylene Dibromide ND 0.50 Dibromomethane ND 0.50 Dichlorodifluoromethane ND 0.50 ,1-Dichloroethane ND 0.50 ,2-Dichloroethane ND 0.50 ,1-Dichloroethane ND 0.50 ,1-Dichloroethane ND 0.50 ,1-Dichloroethene ND 0.50 is-1,2-Dichloroethene 3.3 0.50 ans-1,2-Dichloroethene ND 0.50 ,2-Dichloroethene ND 0.50 ,2-Dichloroethene ND 0.50 ,2-Dichloroptopene ND 0.50 ,2-Dichloropropane ND 0.50 ,2-Dichloropropene ND 0.50 ans-1,3-Dichloropropene ND 0.50 ans-1,3-Dichloropropene ND 0.50 ans-1,3-Dichloropropene ND 0.50 ans-1,3-Dichloropropene ND 0.50 ans-1,3-Dichlorophutadiene ND 0.50	1,1-Dichloropropen	e	ND		0.50		
ithylene Dibromide ND 0.50 Dibromomethane ND 0.50 Dichlorodifluoromethane ND 0.50 ,1-Dichloroethane ND 0.50 ,2-Dichloroethane ND 0.50 ,1-Dichloroethane ND 0.50 ,1-Dichloroethane ND 0.50 ,1-Dichloroethene ND 0.50 is-1,2-Dichloroethene 3.3 0.50 ans-1,2-Dichloroethene ND 0.50 ,2-Dichloroethene ND 0.50 ,2-Dichloroethene ND 0.50 ,2-Dichloroptopene ND 0.50 ,2-Dichloropropane ND 0.50 ,2-Dichloropropene ND 0.50 ans-1,3-Dichloropropene ND 0.50 ans-1,3-Dichloropropene ND 0.50 ans-1,3-Dichloropropene ND 0.50 ans-1,3-Dichloropropene ND 0.50 ans-1,3-Dichlorophutadiene ND 0.50	1,2-Dibromo-3-Chlo	propropane	ND		1.0		
ND 0.50 Dichlorodifluoromethane ND 0.50 J-Dichloroethane ND 0.50 ,1-Dichloroethane ND 0.50 ,2-Dichloroethane ND 0.50 ,1-Dichloroethene ND 0.50 is-1,2-Dichloroethene 3.3 0.50 ans-1,2-Dichloroethene ND 0.50 ans-1,2-Dichloroethene ND 0.50 ans-1,2-Dichloroethene ND 0.50 ans-1,3-Dichloroptopene ND 0.50 ans-1,3-Dichloropropene ND 0.50 ans-1,3-Dichlorophytadiene 0.50 0.50	Ethylene Dibromide						
ND 0.50 ,1-Dichloroethane ND 0.50 ,2-Dichloroethane ND 0.50 ,1-Dichloroethane ND 0.50 ,1-Dichloroethene ND 0.50 is-1,2-Dichloroethene 3.3 0.50 ans-1,2-Dichloroethene ND 0.50 ans-1,2-Dichloroethene ND 0.50 ans-1,2-Dichloroethene ND 0.50 ans-1,3-Dichloroptopene ND 0.50 ans-1,3-Dichloropropene 0.50 0.50 ans-1,3-Dichloropropene 0.50 0.50 ans-1,3-Dichloropropene 0.50 <td>Dibromomethane</td> <td></td> <td>ND</td> <td></td> <td>0.50</td>	Dibromomethane		ND		0.50		
,1-DichloroethaneND0.50,2-DichloroethaneND0.50,1-DichloroetheneND0.50is-1,2-Dichloroethene3.30.50ans-1,2-DichloroetheneND0.50,2-DichloroptopaneND0.50is-1,3-DichloroptopeneND0.50ans-1,3-DichloroptopeneND <t< td=""><td>Dichlorodifluoromet</td><td>hane</td><td>ND</td><td></td><td></td></t<>	Dichlorodifluoromet	hane	ND				
,2-Dichloroethane ND 0.50 ,1-Dichloroethene ND 0.50 is-1,2-Dichloroethene 3.3 0.50 ans-1,2-Dichloroethene ND 0.50 ans-1,2-Dichloroethene ND 0.50 ans-1,2-Dichloroethene ND 0.50 ans-1,3-Dichloropropane ND 0.50 ans-1,3-Dichloropropene 0.50 0.50 ans-1,3-Dichloropropene 0.50 0.50 ans-1,3-Dichloropropene 0.50 0.50 ans-1,3-Dichloropropene 1.0 0.50	1,1-Dichloroethane		ND				
,1-Dichloroethene ND 0.50 is-1,2-Dichloroethene 3.3 0.50 ans-1,2-Dichloroethene ND 0.50 ,2-Dichloroptopane ND 0.50 is-1,3-Dichloroptopene ND 0.50 ans-1,3-Dichloroptopene ND 0.50 ans-1,3-Dichloroptopene ND 0.50 exachloroptopene ND 0.50 ithylbenzene ND 0.50 lexachlorobutadiene ND 1.0	,						
is-1,2-Dichloroethene 3.3 0.50 ans-1,2-Dichloroethene ND 0.50 ,2-Dichloropropane ND 0.50 is-1,3-Dichloropropene ND 0.50 ans-1,3-Dichloropropene ND 0.50 ans-1,3-Dichloropropene ND 0.50 ans-1,3-Dichloropropene ND 0.50 athylbenzene ND 0.50 lexachlorobutadiene ND 1.0	-						
rans-1,2-DichloroetheneND0.50,2-DichloropropaneND0.50is-1,3-DichloropropeneND0.50rans-1,3-DichloropropeneND0.50ithylbenzeneND0.50lexachlorobutadieneND1.0	-	ene					
,2-Dichloropropane ND 0.50 is-1,3-Dichloropropene ND 0.50 rans-1,3-Dichloropropene ND 0.50 ithylbenzene ND 0.50 lexachlorobutadiene ND 0.50	,						
is-1,3-DichloropropeneND0.50ans-1,3-DichloropropeneND0.50ithylbenzeneND0.50lexachlorobutadieneND1.0							
rans-1,3-DichloropropeneND0.50ithylbenzeneND0.50lexachlorobutadieneND1.0							
thylbenzeneND0.50lexachlorobutadieneND1.0							
lexachlorobutadiene ND 1.0							
		20					
	Isopropylbenzene						
	4-Isopropyltoluene						
	Methylene Chloride						
-Methyl-2-pentanone (MIBK) ND 50		ne (MIBK)					
laphthalene ND 1.0	Naphthalene		ND		1.0		

Client: Geosyntec Consultants, Inc.

Client Sample ID:	MW-4			
Lab Sample ID: Client Matrix:	720-23121-5 Water			Date Sampled: 10/08/2009 1050 Date Received: 10/08/2009 1355
		8260B Volatile Organic Compou	ınds (GC/MS)	
Method:	8260B	Analysis Batch: 720-59462	Instrument ID:	HP5
Preparation:	5030B		Lab File ID:	10130938.D
Dilution:	1.0		Initial Weight/V	olume: 10 mL
Date Analyzed:	10/14/2009 0317		Final Weight/V	olume: 10 mL
Date Prepared:	10/14/2009 0317		-	
Analyte		Result (ug/L)	Qualifier	RL
N-Propylbenzene		ND		1.0
Styrene		ND		0.50
1,1,1,2-Tetrachloroe		ND		0.50
1,1,2,2-Tetrachloroe	ethane	ND		0.50
Tetrachloroethene		ND		0.50
Toluene		ND		0.50
1,2,3-Trichlorobenz		ND		1.0
1,2,4-Trichlorobenz		ND		1.0
1,1,1-Trichloroethar		ND		0.50
1,1,2-Trichloroethar	ne	ND		0.50
Trichloroethene		3.2		0.50
Trichlorofluorometh		ND		1.0
1,2,3-Trichloropropa		ND		0.50
1,1,2-Trichloro-1,2,2		ND		0.50
1,2,4-Trimethylbenz		ND		0.50
1,3,5-Trimethylbenz	ene	ND		0.50
Vinyl acetate		ND		10
Vinyl chloride		ND		0.50
Xylenes, Total		ND		1.0
2,2-Dichloropropane	9	ND		0.50
Surrogate		%Rec		Acceptance Limits
4-Bromofluorobenze		96		67 - 130
1,2-Dichloroethane-	d4 (Surr)	116		67 - 130
Toluene-d8 (Surr)		99		70 - 130

Client: Geosyntec Consultants, Inc.

Client Sample ID:	MW-7			
Lab Sample ID:	720-23121-6		Date	e Sampled: 10/08/2009 1
Client Matrix:	Water		Date	e Received: 10/08/2009 1
		8260B Volatile Organic Compou	inds (GC/MS)	
Method:	8260B	Analysis Batch: 720-59462	Instrument ID:	HP5
Preparation:	5030B		Lab File ID:	10130939.D
Dilution:	1.0		Initial Weight/Volume:	10 mL
Date Analyzed:	10/14/2009 0347		Final Weight/Volume:	10 mL
Date Prepared:	10/14/2009 0347		-	
Analyte		Result (ug/L)	Qualifier	RL
Methyl tert-butyl eth	er	ND		0.50
Acetone		ND		50
Benzene		ND		0.50
Dichlorobromometh	ane	ND		0.50
Bromobenzene		ND		1.0
Chlorobromomethar	ne	ND		1.0
Bromoform		ND		1.0
Bromomethane		ND		1.0
2-Butanone (MEK)		ND		50
n-Butylbenzene		ND		1.0
sec-Butylbenzene		ND		1.0
tert-Butylbenzene		ND		1.0
Carbon disulfide		ND		5.0
Carbon tetrachloride	`	ND		0.50
Chlorobenzene	5	ND		0.50
Chloroethane				1.0
		ND		
Chloroform		ND		1.0
Chloromethane		ND		1.0
2-Chlorotoluene		ND		0.50
1-Chlorotoluene		ND		0.50
Chlorodibromometh		ND		0.50
1,2-Dichlorobenzen		ND		0.50
1,3-Dichlorobenzen	e	ND		0.50
1,4-Dichlorobenzen	e	ND		0.50
1,3-Dichloropropane	e	ND		1.0
1,1-Dichloropropene	e	ND		0.50
1,2-Dibromo-3-Chlo	ropropane	ND		1.0
Ethylene Dibromide		ND		0.50
Dibromomethane		ND		0.50
Dichlorodifluorometh	hane	ND		0.50
1,1-Dichloroethane		ND		0.50
1,2-Dichloroethane		ND		0.50
1,1-Dichloroethene		ND		0.50
cis-1,2-Dichloroethe	ene	ND		0.50
rans-1,2-Dichloroet		ND		0.50
,2-Dichloropropane		ND		0.50
is-1,3-Dichloroprop		ND		0.50
rans-1,3-Dichloroprop		ND		0.50
Ethylbenzene	5,5110	ND		0.50
lexachlorobutadien		ND		1.0
2-Hexanone		ND		50
sopropylbenzene		ND		0.50
1-Isopropyltoluene		ND		1.0
Methylene Chloride		ND		5.0
4-Methyl-2-pentano	ne (MIBK)	ND		50
Naphthalene		ND		1.0

Client: Geosyntec Consultants, Inc.

Client Sample ID:	MW-7			
Lab Sample ID: Client Matrix:	720-23121-6 Water			Date Sampled: 10/08/2009 1111 Date Received: 10/08/2009 1355
		8260B Volatile Organic Compou	ınds (GC/MS)	
Method:	8260B	Analysis Batch: 720-59462	Instrument ID:	HP5
Preparation:	5030B		Lab File ID:	10130939.D
Dilution:	1.0		Initial Weight/Vo	lume: 10 mL
Date Analyzed:	10/14/2009 0347		Final Weight/Vo	lume: 10 mL
Date Prepared:	10/14/2009 0347		-	
Analyte		Result (ug/L)	Qualifier	RL
N-Propylbenzene		ND		1.0
Styrene		ND		0.50
1,1,1,2-Tetrachloroe	ethane	ND		0.50
1,1,2,2-Tetrachloroe	ethane	ND		0.50
Tetrachloroethene		11		0.50
Toluene		ND		0.50
1,2,3-Trichlorobenz	ene	ND		1.0
1,2,4-Trichlorobenz		ND		1.0
1,1,1-Trichloroethar		ND		0.50
1,1,2-Trichloroethar	ne	ND		0.50
Trichloroethene		ND		0.50
Trichlorofluorometh		ND		1.0
1,2,3-Trichloropropa		ND		0.50
1,1,2-Trichloro-1,2,2		ND		0.50
1,2,4-Trimethylbenz		ND		0.50
1,3,5-Trimethylbenz	zene	ND		0.50
Vinyl acetate		ND		10
Vinyl chloride		ND		0.50
Xylenes, Total		ND		1.0
2,2-Dichloropropane	e	ND		0.50
Surrogate		%Rec		Acceptance Limits
4-Bromofluorobenzo	ene	95		57 - 130
1,2-Dichloroethane-	-d4 (Surr)	116		57 - 130
Toluene-d8 (Surr)		97	7	70 - 130

Client: Geosyntec Consultants, Inc.

Client Sample ID:	MW-6			
Lab Sample ID:	720-23121-7			Sampled: 10/08/2009 113
Client Matrix:	Water		Date	Received: 10/08/2009 135
		8260B Volatile Organic Compou	inds (GC/MS)	
Method:	8260B	Analysis Batch: 720-59462	Instrument ID:	HP5
Preparation:	5030B		Lab File ID:	10130940.D
Dilution:	1.0		Initial Weight/Volume:	10 mL
Date Analyzed:	10/14/2009 0419		Final Weight/Volume:	10 mL
Date Prepared:	10/14/2009 0419		-	
Analyte		Result (ug/L)	Qualifier	RL
Methyl tert-butyl ethe	er	ND		0.50
Acetone		ND		50
Benzene		ND		0.50
Dichlorobromometha	ine	ND		0.50
Bromobenzene		ND		1.0
Chlorobromomethan	e	ND		1.0
Bromoform		ND		1.0
Bromomethane		ND		1.0
2-Butanone (MEK)		ND		50
n-Butylbenzene		ND		1.0
sec-Butylbenzene		ND		1.0
tert-Butylbenzene		ND		1.0
Carbon disulfide		ND		5.0
Carbon tetrachloride		ND		0.50
Chlorobenzene		ND		0.50
Chloroethane		ND		1.0
Chloroform		ND		1.0
Chloromethane		ND		1.0
2-Chlorotoluene		ND		0.50
4-Chlorotoluene		ND		0.50
Chlorodibromometha		ND		0.50
1,2-Dichlorobenzene		ND		0.50
1,3-Dichlorobenzene	:	ND		0.50
1,4-Dichlorobenzene	•	ND		0.50
1,3-Dichloropropane		ND		1.0
1,1-Dichloropropene		ND		0.50
1,2-Dibromo-3-Chlor	opropane	ND		1.0
Ethylene Dibromide		ND		0.50
Dibromomethane		ND		0.50
Dichlorodifluorometh	ane	ND		0.50
1,1-Dichloroethane		ND		0.50
1,2-Dichloroethane		ND		0.50
1,1-Dichloroethene		ND		0.50
cis-1,2-Dichloroether	ne	ND		0.50
trans-1,2-Dichloroeth		ND		0.50
1,2-Dichloropropane		ND		0.50
cis-1,3-Dichloroprope		ND		0.50
trans-1,3-Dichloropro		ND		0.50
Ethylbenzene	- F	ND		0.50
Hexachlorobutadiene	2	ND		1.0
2-Hexanone	~	ND		50
Isopropylbenzene		ND		0.50
		ND		1.0
4-Isopropyltoluene				
Methylene Chloride		ND		5.0 50
4-Methyl-2-pentanon Naphthalene		ND ND		1.0

Client: Geosyntec Consultants, Inc.

Client Sample ID:	MW-6			
Lab Sample ID: Client Matrix:	720-23121-7 Water			Date Sampled: 10/08/2009 1133 Date Received: 10/08/2009 1355
		8260B Volatile Organic Compou	inds (GC/MS)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8260B 5030B 1.0 10/14/2009 0419 10/14/2009 0419	Analysis Batch: 720-59462	Instrument ID: Lab File ID: Initial Weight/Volu Final Weight/Volu	
Analyte		Result (ug/L)	Qualifier	RL
N-Propylbenzene Styrene 1,1,1,2-Tetrachlorod 1,1,2,2-Tetrachlorod Tetrachloroethene Toluene 1,2,3-Trichlorobenz 1,2,4-Trichlorobenz 1,1,1-Trichloroethan 1,1,2-Trichloroethan Trichlorofluorometh 1,2,3-Trichloropropa 1,1,2-Trichloro-1,2,3 1,2,4-Trimethylbenz Vinyl acetate Vinyl acetate Vinyl acetate Xylenes, Total 2,2-Dichloropropan	ethane rene ne ne ane 2-trifluoroethane zene zene	ND ND ND ND ND ND ND ND ND ND ND ND ND N		$\begin{array}{c} 1.0\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 0.50\\ 0.50\\ 0.50\\ 1.0\\ 0.50\\ 0.50\\ 0.50\\ 0.50\\ 10\\ 0.50\\ 1.0\\ 0.50\\ 1.0\\ 0.50\end{array}$
Surrogate		%Rec	Qualifier Ac	cceptance Limits
4-Bromofluorobenz 1,2-Dichloroethane Toluene-d8 (Surr)		93 117 98	67	7 - 130 7 - 130 0 - 130

Client: Geosyntec Consultants, Inc.

Client Sample ID:	MW-2			
Lab Sample ID:	720-23121-8		Date	Sampled: 10/08/2009 1156
Client Matrix:	Water		Date	Received: 10/08/2009 1355
		8260B Volatile Organic Compou	unds (GC/MS)	
Method:	8260B	Analysis Batch: 720-59462	Instrument ID:	HP5
Preparation:	5030B		Lab File ID:	10130941.D
Dilution:	200		Initial Weight/Volume:	10 mL
Date Analyzed:	10/14/2009 0450		Final Weight/Volume:	10 mL
Date Prepared:	10/14/2009 0450		C C	
Analyte		Result (ug/L)	Qualifier	RL
Methyl tert-butyl ethe	r	ND		100
Acetone		ND		10000
Benzene		ND		100
Dichlorobromometha	ne	ND		100
Bromobenzene		ND		200
Chlorobromomethane	9	ND		200
Bromoform	-	ND		200
Bromomethane		ND		200
		ND		10000
2-Butanone (MEK)		ND		200
n-Butylbenzene				200
sec-Butylbenzene		ND		
tert-Butylbenzene		ND		200
Carbon disulfide		ND		1000
Carbon tetrachloride		ND		100
Chlorobenzene		ND		100
Chloroethane		ND		200
Chloroform		ND		200
Chloromethane		ND		200
2-Chlorotoluene		ND		100
4-Chlorotoluene		ND		100
Chlorodibromometha	ne	ND		100
1,2-Dichlorobenzene		ND		100
1,3-Dichlorobenzene		ND		100
1,4-Dichlorobenzene		ND		100
1,3-Dichloropropane		ND		200
1,1-Dichloropropene		ND		100
1,2-Dibromo-3-Chloro	opropane	ND		200
Ethylene Dibromide		ND		100
Dibromomethane		ND		100
Dichlorodifluorometha	ane	ND		100
1,1-Dichloroethane		ND		100
1,2-Dichloroethane		ND		100
1,1-Dichloroethene		ND		100
cis-1,2-Dichloroethen	ne	540		100
trans-1,2-Dichloroeth		ND		100
1,2-Dichloropropane		ND		100
cis-1,3-Dichloroprope	ne	ND		100
trans-1,3-Dichloropro		ND		100
Ethylbenzene	,pono	ND		100
Hexachlorobutadiene		ND		200
2-Hexanone	;	ND ND		200
Isopropylbenzene		ND		100
4-Isopropyltoluene		ND		200
Methylene Chloride		ND		1000
-				
4-Methyl-2-pentanone Naphthalene	e (MIBK)	ND ND		10000 200

Client: Geosyntec Consultants, Inc.

Client Sample ID:	MW-2			
Lab Sample ID: Client Matrix:	720-23121-8 Water			Date Sampled: 10/08/2009 1156 Date Received: 10/08/2009 1355
		8260B Volatile Organic Compou	unds (GC/MS)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8260B 5030B 200 10/14/2009 0450 10/14/2009 0450	Analysis Batch: 720-59462	Instrument ID: Lab File ID: Initial Weight/Volum Final Weight/Volum	
Analyte		Result (ug/L)	Qualifier	RL
N-Propylbenzene Styrene 1,1,1,2-Tetrachlorod 1,1,2,2-Tetrachlorod Tetrachloroethene Toluene 1,2,3-Trichlorobenz 1,2,4-Trichlorobenz 1,1,1-Trichloroethar 1,1,2-Trichloroethan Trichlorofluorometh 1,2,3-Trichloropropa 1,1,2-Trichloro-1,2,2 1,2,4-Trimethylbenz 1,3,5-Trimethylbenz Vinyl acetate Vinyl acetate Vinyl chloride Xylenes, Total 2,2-Dichloropropan	ethane rene ne ne ane 2-trifluoroethane zene zene	ND ND ND 15000 ND ND ND ND ND ND ND ND ND ND ND ND ND		200 100 100 100 100 200 200 200 100 100
Surrogate		%Rec	Qualifier Acce	eptance Limits
4-Bromofluorobenze 1,2-Dichloroethane- Toluene-d8 (Surr)		94 116 97	67 - 67 - 70 -	130 130

DATA REPORTING QUALIFIERS

Lab Section

Qualifier

Description

Client: Geosyntec Consultants, Inc.

Job Number: 720-23121-1

QC Association Summary

		Report			
Lab Sample ID	Client Sample ID	Basis	Client Matrix	Method	Prep Batch
GC/MS VOA					
Analysis Batch:720-593	:14				
LCS 720-59314/3	Lab Control Sample	Т	Water	8260B	
LCSD 720-59314/4	Lab Control Sample Duplicate	Т	Water	8260B	
MB 720-59314/24	Method Blank	Т	Water	8260B	
720-23121-1	TRIP BLANK-1	Т	Water	8260B	
Analysis Batch:720-594	62				
LCS 720-59462/4	Lab Control Sample	Т	Water	8260B	
LCSD 720-59462/5	Lab Control Sample Duplicate	Т	Water	8260B	
MB 720-59462/8	Method Blank	Т	Water	8260B	
720-23121-2	MW-3	Т	Water	8260B	
720-23121-3	MW-1	Т	Water	8260B	
720-23121-4	MW-5	Т	Water	8260B	
720-23121-5	MW-4	Т	Water	8260B	
720-23121-6	MW-7	Т	Water	8260B	
720-23121-7	MW-6	Т	Water	8260B	
720-23121-8	MW-2	Т	Water	8260B	

Report Basis

T = Total

Page 24 of 31

Quality Control Results

Job Number: 720-23121-1

10/15/2009

Method: 8260B Preparation: 5030B

Instrument ID:	ChemStation 3.0			
Lab File ID:	101009	903.E)	
Initial Weight/V	olume:	10	mL	
Final Weight/Vo	olume:	10	mL	

Analyte	Result	Qual	RL
Methyl tert-butyl ether	ND		0.50
Acetone	ND		50
Benzene	ND		0.50
Dichlorobromomethane	ND		0.50
Bromobenzene	ND		1.0
Chlorobromomethane	ND		1.0
Bromoform	ND		1.0
Bromomethane	ND		1.0
2-Butanone (MEK)	ND		50
n-Butylbenzene	ND		1.0
sec-Butylbenzene	ND		1.0
tert-Butylbenzene	ND		1.0
Carbon disulfide	ND		5.0
Carbon tetrachloride	ND		0.50
Chlorobenzene	ND		0.50
Chloroethane	ND		1.0
Chloroform	ND		1.0
Chloromethane	ND		1.0
2-Chlorotoluene	ND		0.50
4-Chlorotoluene	ND		0.50
Chlorodibromomethane	ND		0.50
1,2-Dichlorobenzene	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,3-Dichloropropane	ND		1.0
1,1-Dichloropropene	ND		0.50
1,2-Dibromo-3-Chloropropane	ND		1.0
Ethylene Dibromide	ND		0.50
Dibromomethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
1,1-Dichloroethane	ND		0.50
1,2-Dichloroethane	ND		0.50
1,1-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
trans-1,2-Dichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
Ethylbenzene	ND		0.50
Hexachlorobutadiene	ND		1.0
2-Hexanone	ND		50

Analysis Batch: 720-59314

Prep Batch: N/A

Units: ug/L

Client: Geosyntec Consultants, Inc.

Method Blank - Batch: 720-59314

Lab Sample ID: MB 720-59314/24 Client Matrix: Water Dilution: 1.0 Date Analyzed: 10/10/2009 1025 Date Prepared: 10/10/2009 1025

Quality Control Results

Job Number: 720-23121-1

Method: 8260B Preparation: 5030B

Instrument ID:	Chem	Statio	n 3.0
Lab File ID:	101009	903.E)
Initial Weight/Ve	olume:	10	mL
Final Weight/Volume:		10	mL

Analyte	Result	Qual	RL
Isopropylbenzene	ND		0.50
4-Isopropyltoluene	ND		1.0
Methylene Chloride	ND		5.0
4-Methyl-2-pentanone (MIBK)	ND		50
Naphthalene	ND		1.0
N-Propylbenzene	ND		1.0
Styrene	ND		0.50
1,1,1,2-Tetrachloroethane	ND		0.50
1,1,2,2-Tetrachloroethane	ND		0.50
Tetrachloroethene	ND		0.50
Toluene	ND		0.50
1,2,3-Trichlorobenzene	ND		1.0
1,2,4-Trichlorobenzene	ND		1.0
1,1,1-Trichloroethane	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Trichloroethene	ND		0.50
Trichlorofluoromethane	ND		1.0
1,2,3-Trichloropropane	ND		0.50
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
1,2,4-Trimethylbenzene	ND		0.50
1,3,5-Trimethylbenzene	ND		0.50
Vinyl acetate	ND		10
Vinyl chloride	ND		0.50
Xylenes, Total	ND		1.0
2,2-Dichloropropane	ND		0.50
Surrogate	% Rec	Acceptance Limits	
4-Bromofluorobenzene	76	67 - 130	
1,2-Dichloroethane-d4 (Surr)	100	67 - 130	
Toluene-d8 (Surr)	95	70 - 130	

Analysis Batch: 720-59314

Prep Batch: N/A

Units: ug/L

Method Blank - Batch: 720-59314

Lab Sample ID: MB 720-59314/24

Water

1.0 Date Analyzed: 10/10/2009 1025 Date Prepared: 10/10/2009 1025

Client Matrix:

Dilution:

Quality Control Results

Job Number: 720-23121-1

Client: Geosyntec Consultants, Inc.

Lab Control Sample/ Lab Control Sample Duplicate Recovery Report - Batch: 720-59314

LCS Lab Sample ID:	LCS 720-59314/3	Analysis Batch: 720-59314	Instrument ID: ChemStation 3.0
Client Matrix:	Water	Prep Batch: N/A	Lab File ID: 10100905.D
Dilution:	1.0	Units: ug/L	Initial Weight/Volume: 10 mL
Date Analyzed:	10/10/2009 1145		Final Weight/Volume: 10 mL
Date Prepared:	10/10/2009 1145		
LCSD Lab Sample ID	: LCSD 720-59314/4	Analysis Batch: 720-59314	Instrument ID: ChemStation 3.0
Client Matrix:	Water	Prep Batch: N/A	Lab File ID: 10100904.D
Dilution:	1.0	Units: ug/L	Initial Weight/Volume: 10 mL
Date Analyzed:	10/10/2009 1112		Final Weight/Volume: 10 mL
Date Prepared:	10/10/2009 1112		

	<u>c</u>	<u>% Rec.</u>					
Analyte	LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual
Benzene	97	110	80 - 130	12	20		
Chlorobenzene	101	111	80 - 122	10	20		
1,1-Dichloroethene	89	107	70 - 130	18	20		
Toluene	96	111	80 - 126	14	20		
Trichloroethene	100	110	72 - 138	10	20		
Surrogate	L	CS % Rec	LCSD %	Rec	Accep	tance Limits	
4-Bromofluorobenzene	1	06	108		6	7 - 130	
1,2-Dichloroethane-d4 (Surr)	1	05	105		6	7 - 130	
Toluene-d8 (Surr)	1	01	102		7	0 - 130	

Client: Geosyntec Consultants, Inc.

Method Blank - Batch: 720-59462

 Lab Sample ID:
 MB 720-59462/8

 Client Matrix:
 Water

 Dilution:
 1.0

 Date Analyzed:
 10/13/2009 2207

 Date Prepared:
 10/13/2009 2207

Analysis Batch: 720-59462 Prep Batch: N/A Units: ug/L

Quality Control Results

Job Number: 720-23121-1

Instrument ID:	Agilent	75M	SD
Lab File ID:	101309	928.C)
Initial Weight/Ve	olume:	10	mL
Final Weight/Volume:		10	mL

Analyte	Result	Qual	RL
Methyl tert-butyl ether	ND		0.50
Acetone	ND		50
Benzene	ND		0.50
Dichlorobromomethane	ND		0.50
Bromobenzene	ND		1.0
Chlorobromomethane	ND		1.0
Bromoform	ND		1.0
Bromomethane	ND		1.0
2-Butanone (MEK)	ND		50
n-Butylbenzene	ND		1.0
sec-Butylbenzene	ND		1.0
tert-Butylbenzene	ND		1.0
Carbon disulfide	ND		5.0
Carbon tetrachloride	ND		0.50
Chlorobenzene	ND		0.50
Chloroethane	ND		1.0
Chloroform	ND		1.0
Chloromethane	ND		1.0
2-Chlorotoluene	ND		0.50
4-Chlorotoluene	ND		0.50
Chlorodibromomethane	ND		0.50
1,2-Dichlorobenzene	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,3-Dichloropropane	ND		1.0
1,1-Dichloropropene	ND		0.50
1,2-Dibromo-3-Chloropropane	ND		1.0
Ethylene Dibromide	ND		0.50
Dibromomethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
1,1-Dichloroethane	ND		0.50
1,2-Dichloroethane	ND		0.50
1,1-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
trans-1,2-Dichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
Ethylbenzene	ND		0.50
Hexachlorobutadiene	ND		1.0
2-Hexanone	ND		50

Lab Sample ID:	MB 720-59462/8
Client Matrix:	Water
Dilution:	1.0
Date Analyzed:	10/13/2009 2207
Date Prepared:	10/13/2009 2207

Analysi	s Batch:	720-59462
Prep B	atch: N/A	
Units:	ug/L	

Quality Control Results

Job Number: 720-23121-1

Instrument ID:	Agilent	75M	SD
Lab File ID:	101309	928.C)
Initial Weight/V	olume:	10	mL
Final Weight/Vo	olume:	10	mL

Analyte	Result	Qual	RL
Isopropylbenzene	ND		0.50
4-Isopropyltoluene	ND		1.0
Methylene Chloride	ND		5.0
4-Methyl-2-pentanone (MIBK)	ND		50
Naphthalene	ND		1.0
N-Propylbenzene	ND		1.0
Styrene	ND		0.50
1,1,1,2-Tetrachloroethane	ND		0.50
1,1,2,2-Tetrachloroethane	ND		0.50
Tetrachloroethene	ND		0.50
Toluene	ND		0.50
1,2,3-Trichlorobenzene	ND		1.0
1,2,4-Trichlorobenzene	ND		1.0
1,1,1-Trichloroethane	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Trichloroethene	ND		0.50
Trichlorofluoromethane	ND		1.0
1,2,3-Trichloropropane	ND		0.50
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
1,2,4-Trimethylbenzene	ND		0.50
1,3,5-Trimethylbenzene	ND		0.50
Vinyl acetate	ND		10
Vinyl chloride	ND		0.50
Xylenes, Total	ND		1.0
2,2-Dichloropropane	ND		0.50
Surrogate	% Rec	Acceptance Limits	
4-Bromofluorobenzene	102	67 - 130	
1,2-Dichloroethane-d4 (Surr)	111	67 - 130	
Toluene-d8 (Surr)	102	70 - 130	

Quality Control Results

Job Number: 720-23121-1

Client: Geosyntec Consultants, Inc.

Lab Control Sample/ Lab Control Sample Duplicate Recovery Report - Batch: 720-59462

LCS Lab Sample ID:	LCS 720-59462/4	Analysis Batch: 720-59462	Instrument ID: Agilent75MSD
Client Matrix:	Water	Prep Batch: N/A	Lab File ID: 10130924.D
Dilution:	1.0	Units: ug/L	Initial Weight/Volume: 10 mL
Date Analyzed:	10/13/2009 2002		Final Weight/Volume: 10 mL
Date Prepared:	10/13/2009 2002		
		Analysis Databy 700 50400	
LCSD Lab Sample ID		Analysis Batch: 720-59462	Instrument ID: Agilent75MSD
Client Matrix:	Water	Prep Batch: N/A	Lab File ID: 10130925.D
Dilution:	1.0	Units: ug/L	Initial Weight/Volume: 10 mL
Date Analyzed:	10/13/2009 2032		Final Weight/Volume: 10 mL
Date Prepared:	10/13/2009 2032		

	<u>c</u>	<u>% Rec.</u>					
Analyte	LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual
Benzene	107	107	80 - 130	0	20		
Chlorobenzene	108	108	80 - 122	0	20		
1,1-Dichloroethene	104	105	70 - 130	1	20		
Toluene	106	107	80 - 126	1	20		
Trichloroethene	105	106	72 - 138	1	20		
Surrogate	L	CS % Rec	LCSD %	Rec	Accep	tance Limits	
4-Bromofluorobenzene	1	09	110		6	7 - 130	
1,2-Dichloroethane-d4 (Surr)	1	10	107		6	7 - 130	
Toluene-d8 (Surr)	1	02	103		7	0 - 130	

720-23121

11	9	5	6	3
1.			~	1

			6680) Alhan	ibra A	ve., #	102			Т				C	HAIN	OF	CU	STOI	DY I	RECO	RI	D		Page of
	Environment			inez, C							TUI	RN A	ROU	ND '	TIME			-				170		Other:
	Sampling Ser	vices, L	LC Tel:	(925) 3	72-810)8 F	ax: (9)	25) 3'	72-67	05]	LAI	BOR	TOP	RY:		1.1	3 4	48		1				
A REAL			Log	Code: E	SSM	ww	w.env	samp	ling.c	om 7	Test	tAme	rica-l	Pleas	anton	S	urs	Hou		Weel	k	Norn	nal	50
Report To: Meli	ssa Asher		elephone :			0				1	Lab	Code:	CH	RP		्लकृत	annan s		155	1.1.2.2.1	<u> </u>	1000000		
Company: <u>Geos</u>	yntec Consultants		ax: <u>(510</u>	1											A	nalys	sis R	eques	t					Comments
Address: 475-1	4th Street, Suite 450) P	roject Na	me:	Hopy	ard (Clean	er				TT		T					П	Fi	eld F	Filtered	(FF)	
	and, CA 94612		roject Nı			574																		
Conserved and Alternation	ng@geosyntec.con				m	10												- a:						
Sampler(s): Jacqu	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		mpler's Sign		-	an		-		-														
	en Penman		mpler's Sign	ature:		-	-		_	_														*
	SL0600116931		CT N	-																				
EDD File: Yes	uirement: Hard (es ⊠ N lectronic		Ves	N	N	lo [1															
SDD File, Tes	L 130 L	- 5.63	=	(EDF) .		T	IN	1	.	-														
		Sar	mple		Container	N	latri	e 🛛	'reservat		2										11			
			1	Jo Si	onta	L.	1.1		TT		8200B)													
				er	of C(Iwat	iodi			10/	0													
	FIELD POINT			Number of Containers	Type o	roundwater	Soil Vapor Water	Other	59	18	XS													
SAMPLE ID	NAME	Date	Time		Ty	50	Soil	07	ΞΞ	ΞÞ	2										Ц		\square	
FripBlank-1	QCTB 1	1%109	08:00	2	1			46	X		4													10
MW-3	MW-3		09;39		1	1		6	X	5	X													10 N
MW-1	MW-1		10:02		1	X		T,		6	x										T		Ħ	
MW-5	MW-5	10/109	10:23	3	1	X		1 x	Ũ	5	1	T	Ħ					++			H		Ħ	
MW-4	MW-4	1%/09	10:50	-		Û			K.	ΗĆ	T	Ħ					+		+			++	+	
MW-7		1%/09	11:11	3	-	0	+	H C	1	15	1	+						++-	+	++-	H	++	+	
	MW-7	19/19/09		3	-	0		HC		-	_	\vdash		+				++	+		H	++-	+	
MW-6	MW-6			-		A	++	1	17	X	-	++								++	\vdash	++	+	
MW-2	MW-2	1/9/09	11:56	3		X	\square	X	X	X		\square									\square	++	\square	
																								-
											T										Π			
							++				+	H	-			+		++-	++		\vdash	++		
elinquished By: / A A		Date:	Time:	Received I	v:		Ť		100 1	1		ample	Cont	aitter	Type: 1	=1/04	2-0	lace 2-	Place	ic 4=St	lune	1a Cari	ister	
Soll	-	1%/2009	Time: 13:55	d	oun	M	el	Qu	1									CALL		10 4-30	ATTER		-	E RECEIPT
dinquished by:		Date	Time.	Received I					~	-1~	COL	- serie	1101	and.	mon		09029300C.5					ntact		Cold
																		1.42			1000000	On Ice		Ambient
dinquished By:		Date	Time:	Received E	ly:					Р	leas	se em	ail C(OC fe	or con	firmat	ion f	masheriz	reasyn					Correct?
																					ΠY	les		No DNA

Client: Geosyntec Consultants, Inc.

Login Number: 23121

Creator: Mullen, Joan List Number: 1

Question	T / F/ NA	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	
The cooler's custody seal, if present, is intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Is the Field Sampler's name present on COC?	True	
Sample Preservation Verified	True	

Job Number: 720-23121-1

List Source: TestAmerica San Francisco

ANALYTICAL REPORT

Job Number: 720-23121-2 Job Description: Hopyard Cleaners

For: Geosyntec Consultants, Inc. 475 14th Street, Suite 450 Oakland, CA 94612

Attention: Ms. Melissa Asher

Asanif Sal

Approved for release. Afsaneh Salimpour Project Manager I 10/23/2009 5:34 PM

Afsaneh Salimpour Project Manager I afsaneh.salimpour@testamericainc.com 10/23/2009

cc: Ms. Angela Liang

CA ELAP Certification # 2496

The Chain(s) of Custody are included and are an integral part of this report.

The report shall not be reproduced except in full, without the written approval of the laboratory. The client, by accepting this report, also agrees not to alter any reports whether in the hard copy or electronic format and to use reasonable efforts to preserve the reports in the form and substance originally provided by TestAmerica.

A trip blank is required to be provided for volatile analyses. If trip blank results are not included in the report, either the trip blank was not submitted or requested to be analyzed.

Job Narrative 720-23121-2

Comments

No additional comments.

Receipt

All samples were received in good condition within temperature requirements.

GC/MS VOA

No analytical or quality issues were noted.

EXECUTIVE SUMMARY - Detections

Client: Geosyntec Consultants, Inc.

Lab Sample ID Client Sample ID		Reporting		
Analyte	Result / Qualifier	Limit	Units	Method
720-23121-8 MW-2				
cis-1,2-Dichloroethene	560	10	ug/L	8260B
trans-1,2-Dichloroethene	11	10	ug/L	8260B
Tetrachloroethene	15000	1000	ug/L	8260B
Trichloroethene	900	10	ug/L	8260B

METHOD SUMMARY

Client: Geosyntec Consultants, Inc.			Job Number: 720-23121-2
Description	Lab Location	Method	Preparation Method
Matrix: Water			
Volatile Organic Compounds (GC/MS)	TAL SF	SW846 8260B	
Purge and Trap	TAL SF		SW846 5030B
Lab References:			
TAL SF = TestAmerica San Francisco			

Method References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

METHOD / ANALYST SUMMARY

Client: Geosyntec Consultants, Inc.

Job Number: 720-23121-2

Analyst ID

AC

Method

SW846 8260B

Chen, Amy

Analyst

Page 5 of 19

SAMPLE SUMMARY

Client: Geosyntec Consultants, Inc.

			Date/Time	Date/Time
Lab Sample ID	Client Sample ID	Client Matrix	Sampled	Received
720-23121-8	MW-2	Water	10/08/2009 1156	10/08/2009 1355

Client: Geosyntec Consultants, Inc.

Client Sample ID:	MW-2				
Lab Sample ID:	720-23121-8		Date	Sampled: 10/08/2009 1156	
Client Matrix:	Water		Date	Received: 10/08/2009 1355	
		8260B Volatile Organic Compou	unds (GC/MS)		
Method:	8260B	8260B Analysis Batch: 720-60049 Instrument ID:			
Preparation:	5030B		Lab File ID:	10220917.D	
Dilution:	20		Initial Weight/Volume:	10 mL	
Date Analyzed:	10/22/2009 1953		Final Weight/Volume:	10 mL	
Date Prepared:	10/22/2009 1953				
Analyte		Result (ug/L)	Qualifier	RL	
Methyl tert-butyl ethe	er	ND		10	
Acetone		ND		1000	
Benzene		ND		10	
Dichlorobromometha	ana	ND		10	
Bromobenzene		ND		20	
	20				
Chlorobromomethan		ND		20	
Bromoform		ND		20	
Bromomethane		ND		20	
2-Butanone (MEK)		ND		1000	
n-Butylbenzene		ND		20	
sec-Butylbenzene		ND		20	
tert-Butylbenzene		ND		20	
Carbon disulfide		ND		100	
Carbon tetrachloride	•	ND		10	
Chlorobenzene		ND		10	
Chloroethane		ND		20	
Chloroform		ND		20	
Chloromethane		ND		20	
2-Chlorotoluene		ND		10	
4-Chlorotoluene		ND		10	
Chlorodibromometha	ana	ND		10	
				10	
1,2-Dichlorobenzene		ND			
1,3-Dichlorobenzene		ND		10	
1,4-Dichlorobenzene		ND		10	
1,3-Dichloropropane		ND		20	
1,1-Dichloropropene		ND		10	
1,2-Dibromo-3-Chlor	ropropane	ND		20	
Ethylene Dibromide		ND		10	
Dibromomethane		ND		10	
Dichlorodifluorometh	nane	ND		10	
1,1-Dichloroethane		ND		10	
1,2-Dichloroethane		ND		10	
1,1-Dichloroethene		ND		10	
cis-1,2-Dichloroether	ne	560		10	
trans-1,2-Dichloroeth		11		10	
1,2-Dichloropropane		ND		10	
cis-1,3-Dichloroprop		ND		10	
trans-1,3-Dichloropro		ND		10	
Ethylbenzene		ND		10	
Hexachlorobutadien	۵	ND		20	
2-Hexanone	•	ND		1000	
Isopropylbenzene		ND		10	
4-Isopropyltoluene		ND		20	
Methylene Chloride		ND		100	
4-Methyl-2-pentanor Naphthalene	ne (MIBK)	ND		1000	
		ND		20	

Client: Geosyntec Consultants, Inc.

Client Sample ID:	MW-2					
Lab Sample ID:720-23121-8Client Matrix:Water		Date Sampled: 1 Date Received: 1				
		8260B Volatile Organic Compou	inds (GC/MS)			
Method:	8260B	Analysis Batch: 720-60049	Instrument ID): HP5		
Preparation:	5030B		Lab File ID:	10220917.D		
Dilution:	20		Initial Weight	/Volume: 10 mL		
Date Analyzed:	10/22/2009 1953		Final Weight/	Volume: 10 mL		
Date Prepared:	10/22/2009 1953					
Analyte		Result (ug/L)	Qualifier	RL		
N-Propylbenzene		ND		20		
Styrene		ND		10		
1,1,1,2-Tetrachloro	ethane	ND		10		
1,1,2,2-Tetrachloroethane		ND		10		
Toluene		ND		10		
1,2,3-Trichlorobenz	ene	ND		20		
1,2,4-Trichlorobenz	ene	ND		20		
1,1,1-Trichloroetha	ne	ND		10		
1,1,2-Trichloroetha	ne	ND		10		
Trichloroethene		900		10		
Trichlorofluorometh	ane	ND		20		
1,2,3-Trichloroprop		ND		10		
1,1,2-Trichloro-1,2,	2-trifluoroethane	ND		10		
1,2,4-Trimethylbenz		ND		10		
1,3,5-Trimethylbenz	zene	ND		10		
Vinyl acetate		ND		200		
Vinyl chloride		ND		10		
Xylenes, Total		ND		20		
2,2-Dichloropropan	e	ND		10		
Surrogate		%Rec	Qualifier	Acceptance Limits		
4-Bromofluorobenz	ene	96		67 - 130		
1,2-Dichloroethane	-d4 (Surr)	92		67 - 130		
Toluene-d8 (Surr)		99		70 - 130		

Client: Geosyntec Consultants, Inc.

Client Sample ID:	MW-2			
Lab Sample ID: Client Matrix:	720-23121-8 Water			ate Sampled: 10/08/2009 1156 ate Received: 10/08/2009 1355
		8260B Volatile Organic Compou	inds (GC/MS)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8260B 5030B 2000 10/22/2009 2244 10/22/2009 2244	Analysis Batch: 720-60079	Instrument ID: Lab File ID: Initial Weight/Volum Final Weight/Volume	
Analyte		Result (ug/L)	Qualifier	RL
Tetrachloroethene		15000		1000
Surrogate		%Rec	Qualifier Acce	ptance Limits
4-Bromofluorobenz	ene	91	67 - 1	130
1,2-Dichloroethane	-d4 (Surr)	77	67 - 1	130
Toluene-d8 (Surr)		98	70 - 1	130

DATA REPORTING QUALIFIERS

Lab Section

Qualifier

Description

Client: Geosyntec Consultants, Inc.

Job Number: 720-23121-2

QC Association Summary

Lab Sample ID	Client Sample ID	Report Basis	Client Matrix	Method	Prep Batch
GC/MS VOA					
Analysis Batch:720-6004	49				
LCS 720-60049/4	Lab Control Sample	Т	Water	8260B	
LCSD 720-60049/5	Lab Control Sample Duplicate	Т	Water	8260B	
MB 720-60049/8	Method Blank	Т	Water	8260B	
720-23121-8	MW-2	Т	Water	8260B	
Analysis Batch:720-600	79				
LCS 720-60079/4	Lab Control Sample	Т	Water	8260B	
LCSD 720-60079/5	Lab Control Sample Duplicate	Т	Water	8260B	
MB 720-60079/8	Method Blank	Т	Water	8260B	
720-23121-8	MW-2	Т	Water	8260B	

Report Basis

T = Total

Client: Geosyntec Consultants, Inc.

Method Blank - Batch: 720-60049

 Lab Sample ID:
 MB 720-60049/8

 Client Matrix:
 Water

 Dilution:
 1.0

 Date Analyzed:
 10/22/2009 1922

 Date Prepared:
 10/22/2009 1922

Analysi	s Batch:	720-60049	
Prep Ba	atch: N/A		
Units:	ug/L		

Quality Control Results

Job Number: 720-23121-2

Instrument ID:	Agilent	75M	SD
Lab File ID:	102209	916.C)
Initial Weight/Volume:		10	mL
Final Weight/Volume:		10	mL

Analyte	Result	Qual	RL
Methyl tert-butyl ether	ND		0.50
Acetone	ND		50
Benzene	ND		0.50
Dichlorobromomethane	ND		0.50
Bromobenzene	ND		1.0
Chlorobromomethane	ND		1.0
Bromoform	ND		1.0
Bromomethane	ND		1.0
2-Butanone (MEK)	ND		50
n-Butylbenzene	ND		1.0
sec-Butylbenzene	ND		1.0
tert-Butylbenzene	ND		1.0
Carbon disulfide	ND		5.0
Carbon tetrachloride	ND		0.50
Chlorobenzene	ND		0.50
Chloroethane	ND		1.0
Chloroform	ND		1.0
Chloromethane	ND		1.0
2-Chlorotoluene	ND		0.50
4-Chlorotoluene	ND		0.50
Chlorodibromomethane	ND		0.50
1,2-Dichlorobenzene	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,3-Dichloropropane	ND		1.0
1,1-Dichloropropene	ND		0.50
1,2-Dibromo-3-Chloropropane	ND		1.0
Ethylene Dibromide	ND		0.50
Dibromomethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
1,1-Dichloroethane	ND		0.50
1,2-Dichloroethane	ND		0.50
1,1-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
trans-1,2-Dichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
Ethylbenzene	ND		0.50
Hexachlorobutadiene	ND		1.0
2-Hexanone	ND		50

Quality Control Results

Job Number: 720-23121-2

Method: 8260B Preparation: 5030B

Instrument ID:	Agilent	75M	SD
Lab File ID:	102209	16.C)
Initial Weight/Vo	olume:	10	mL
Final Weight/Vo	lume:	10	mL

Analyte	Result	Qual	RL
Isopropylbenzene	ND		0.50
4-Isopropyltoluene	ND		1.0
Methylene Chloride	ND		5.0
4-Methyl-2-pentanone (MIBK)	ND		50
Naphthalene	ND		1.0
N-Propylbenzene	ND		1.0
Styrene	ND		0.50
1,1,1,2-Tetrachloroethane	ND		0.50
1,1,2,2-Tetrachloroethane	ND		0.50
Tetrachloroethene	ND		0.50
Toluene	ND		0.50
1,2,3-Trichlorobenzene	ND		1.0
1,2,4-Trichlorobenzene	ND		1.0
1,1,1-Trichloroethane	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Trichloroethene	ND		0.50
Trichlorofluoromethane	ND		1.0
1,2,3-Trichloropropane	ND		0.50
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
1,2,4-Trimethylbenzene	ND		0.50
1,3,5-Trimethylbenzene	ND		0.50
Vinyl acetate	ND		10
Vinyl chloride	ND		0.50
Xylenes, Total	ND		1.0
2,2-Dichloropropane	ND		0.50
Surrogate	% Rec	Acceptance Limits	
4-Bromofluorobenzene	96	67 - 130	
1,2-Dichloroethane-d4 (Surr)	90	67 - 130	
Toluene-d8 (Surr)	99	70 - 130	

Analysis Batch: 720-60049

Prep Batch: N/A

Units: ug/L

Client: Geosyntec Consultants, Inc.

Method Blank - Batch: 720-60049

 Lab Sample ID:
 MB 720-60049/8

 Client Matrix:
 Water

 Dilution:
 1.0

 Date Analyzed:
 10/22/2009 1922

 Date Prepared:
 10/22/2009 1922

Quality Control Results

Job Number: 720-23121-2

Client: Geosyntec Consultants, Inc.

Lab Control Sample/ Lab Control Sample Duplicate Recovery Report - Batch: 720-60049

LCS Lab Sample ID:	LCS 720-60049/4	Analysis Batch: 720-60049	Instrument ID: Agilent75MSD
Client Matrix:	Water	Prep Batch: N/A	Lab File ID: 10220912.D
Dilution:	1.0	Units: ug/L	Initial Weight/Volume: 10 mL
Date Analyzed:	10/22/2009 1718		Final Weight/Volume: 10 mL
Date Prepared:	10/22/2009 1718		
LCSD Lab Sample ID	: LCSD 720-60049/5	Analysis Batch: 720-60049	Instrument ID: Agilent75MSD
Client Matrix:	Water	Prep Batch: N/A	Lab File ID: 10220913.D
Dilution:	1.0	Units: ug/L	Initial Weight/Volume: 10 mL
Date Analyzed:	10/22/2009 1749		Final Weight/Volume: 10 mL
Date Prepared:	10/22/2009 1749		

	<u>c</u>	<u>% Rec.</u>					
Analyte	LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual
Benzene	105	104	80 - 130	0	20		
Chlorobenzene	106	106	80 - 122	0	20		
1,1-Dichloroethene	109	108	70 - 130	1	20		
Toluene	100	99	80 - 126	1	20		
Trichloroethene	106	105	72 - 138	1	20		
Surrogate	L	CS % Rec	LCSD %	Rec	Accep	tance Limits	
4-Bromofluorobenzene	1	00	102		6	7 - 130	
1,2-Dichloroethane-d4 (Surr)	8	7	89		6	7 - 130	
Toluene-d8 (Surr)	1	02	102		7	0 - 130	

Client: Geosyntec Consultants, Inc.

Method Blank - Batch: 720-60079

Lab Sample ID: MB 720-60079/8 Client Matrix: Water Dilution: 1.0 10/22/2009 2212 Date Analyzed: Date Prepared: 10/22/2009 2212

1,4-Dichlorobenzene

1,3-Dichloropropane

1,1-Dichloropropene

Ethylene Dibromide Dibromomethane

1,1-Dichloroethane

1,2-Dichloroethane 1,1-Dichloroethene

cis-1,2-Dichloroethene

1,2-Dichloropropane

Ethylbenzene Hexachlorobutadiene

2-Hexanone

Isopropylbenzene

4-Isopropyltoluene

trans-1,2-Dichloroethene

cis-1,3-Dichloropropene trans-1,3-Dichloropropene

Dichlorodifluoromethane

1,2-Dibromo-3-Chloropropane

Analyte	Result	Qual
Methyl tert-butyl ether	ND	
Benzene	ND	
Dichlorobromomethane	ND	
Bromobenzene	ND	
Chlorobromomethane	ND	
Bromoform	ND	
Bromomethane	ND	
n-Butylbenzene	ND	
sec-Butylbenzene	ND	
tert-Butylbenzene	ND	
Carbon disulfide	ND	
Carbon tetrachloride	ND	
Chlorobenzene	ND	
Chloroethane	ND	
Chloroform	ND	
Chloromethane	ND	
2-Chlorotoluene	ND	
4-Chlorotoluene	ND	
Chlorodibromomethane	ND	
1,2-Dichlorobenzene	ND	
1,3-Dichlorobenzene	ND	

ND

Page 15 of 19

Analysis Batch: 720-60079

Prep Batch: N/A

Units: ug/L

Method: 8260B

Preparation: 5030B

Instrument ID:	Agilent	75M	SD
Lab File ID:	102209	927.C)
Initial Weight/Volume:		10	mL
Final Weight/Vo	olume:	10	mL

ND	0.50
ND	1.0
ND	5.0
ND	0.50
ND	0.50
ND	1.0
ND	1.0
ND	1.0

Calculations are performed before rounding to avoid round-off errors in calculated results.

Quality Control Results

Job Number: 720-23121-2

RL

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.50

1.0

0.50

1.0

0.50

0.50

0.50

0.50

0.50

0.50 0.50

0.50

0.50

0.50

0.50

0.50

1.0

50

0.50

1.0

Quality Control Results

Job Number: 720-23121-2

Method: 8260B Preparation: 5030B

Instrument ID:	Agilent	75M	SD
Lab File ID:	102209	927.C)
Initial Weight/V	olume:	10	mL
Final Weight/Vo	olume:	10	mL

Analyte	Result	Qual	RL
Methylene Chloride	ND		5.0
4-Methyl-2-pentanone (MIBK)	ND		50
Naphthalene	ND		1.0
N-Propylbenzene	ND		1.0
Styrene	ND		0.50
1,1,1,2-Tetrachloroethane	ND		0.50
1,1,2,2-Tetrachloroethane	ND		0.50
Tetrachloroethene	ND		0.50
Toluene	0.651		0.50
1,2,3-Trichlorobenzene	ND		1.0
1,2,4-Trichlorobenzene	ND		1.0
1,1,1-Trichloroethane	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Trichloroethene	ND		0.50
Trichlorofluoromethane	ND		1.0
1,2,3-Trichloropropane	ND		0.50
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
1,2,4-Trimethylbenzene	ND		0.50
1,3,5-Trimethylbenzene	ND		0.50
Vinyl acetate	ND		10
Vinyl chloride	ND		0.50
Xylenes, Total	ND		1.0
2,2-Dichloropropane	ND		0.50
Surrogate	% Rec	Acceptance Limits	
4-Bromofluorobenzene	93	67 - 130	
1,2-Dichloroethane-d4 (Surr)	81	67 - 130	
Toluene-d8 (Surr)	98	70 - 130	

Analysis Batch: 720-60079

Prep Batch: N/A

Units: ug/L

Lab Sample ID: MB 720-60079/8

Water

1.0 Date Analyzed: 10/22/2009 2212 Date Prepared: 10/22/2009 2212

Client Matrix:

Dilution:

Client: Geosyntec Consultants, Inc.

Naphthalene
N-Propylbenzene
Styrene
1,1,1,2-Tetrachloroethane
1,1,2,2-Tetrachloroethane
Totrachloroothono

Calculations are performed before rounding to avoid round-off errors in calculated results.

Quality Control Results

Job Number: 720-23121-2

10/23/2009

Method: 8260B Preparation: 5030B

LCS Lab Sample ID: Client Matrix:	LCS 720-60079/4 Water	Analysis Batch: 720-60079 Prep Batch: N/A	Instrument ID: Agilent 75MSD Lab File ID: 10220925.D
Dilution: Date Analyzed:	1.0 10/22/2009 2109	Units: ug/L	Initial Weight/Volume: 10 mL Final Weight/Volume: 10 mL
Date Prepared:	10/22/2009 2109		, , , , , , , , , , , , , , , , , , ,
LCSD Lab Sample IE	D: LCSD 720-60079/5	Analysis Batch: 720-60079	Instrument ID: Agilent 75MSD
Client Matrix:	Water	Prep Batch: N/A	Lab File ID: 10220926.D
Dilution:	1.0	Units: ug/L	Initial Weight/Volume: 10 mL
Date Analyzed:	10/22/2009 2140		Final Weight/Volume: 10 mL
Date Prepared:	10/22/2009 2140		

	<u>9</u>	<u>6 Rec.</u>					
Analyte	LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual
Benzene	108	108	80 - 130	0	20		
Chlorobenzene	105	106	80 - 122	0	20		
1,1-Dichloroethene	105	106	70 - 130	1	20		
Toluene	106	110	80 - 126	4	20		
Trichloroethene	109	110	72 - 138	0	20		
Surrogate	L	CS % Rec	LCSD %	Rec	Accep	tance Limits	
4-Bromofluorobenzene	90	6	94		6	7 - 130	
1,2-Dichloroethane-d4 (Surr)	74	4	74		6	7 - 130	
Toluene-d8 (Surr)	98	8	98		7	0 - 130	

Page 17 of 19

Client: Geosyntec Consultants, Inc.

Lab Control Sample/

Lab Control Sample Duplicate Recovery Report - Batch: 720-60079

Salimpour, Afsaneh

From: MAsher@Geosyntec.com

Sent: Wednesday, October 21, 2009 5:46 PM

To: Salimpour, Afsaneh

Cc: Brewer, Melissa

Subject: Duplicate Question for Hopyard Cleaners Job # 720-23121-1

Importance: High

Afsnaeh,

We had some miscommunication on our end about collecting a duplicate sample on 10/8/2009 for the Hopyard Cleaners site. Do you have any sample left to run one duplicate? I know the 14 day hold time ends tomorrow, but it would be helpful if we could have a duplicate run on one of our samples.

Thank you,

Melissa Asher, P.E. Engineer

475 14 th Street Suite 400			Geosyntec	_logcV10_USE-T
Cakland, CA 94612 Phone:510-836-3034	48			
Fax: 510-836-3036 www.geosynlec.com		45)		

This electronic mail message contains information that (a) is or may be LEGALLY PRIVILEGED, CONFIDENTIAL, PROPRIETARY IN NATURE, OR OTHERWISE PROTECTED BY LAW FROM DISCLOSURE, and (b) is intended only for the use of the Addressee(s) named herein. If you are not the intended recipient, an addressee, or the person responsible for delivering this to an addressee, you are hereby notified that reading, using, copying; or distributing any part of this message is strictly prohibited. If you have received this electronic mail message in error, please contact us immediately and take the steps necessary to delete the message completely from your computer system.

RUSH

Client: Geosyntec Consultants, Inc.

Login Number: 23121

Creator: Mullen, Joan List Number: 1

Question	T / F/ NA	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	
The cooler's custody seal, if present, is intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Is the Field Sampler's name present on COC?	True	
Sample Preservation Verified	True	

Job Number: 720-23121-2

List Source: TestAmerica San Francisco

12/28/2009 Ms. Angela Liang GeoSyntec Consultants 475 14th Street Suite 400 Oakland CA 94612

Project Name: Hopyard Project #: WR0574 Workorder #: 0912316

Dear Ms. Angela Liang

The following report includes the data for the above referenced project for sample(s) received on 12/14/2009 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kyle Vagadori at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Vgch Kyle

Kyle Vagadori Project Manager

WORK ORDER #: 0912316

Work Order Summary

CLIENT:	Ms. Angela Liang GeoSyntec Consultants 475 14th Street Suite 400 Oakland, CA 94612	BILL TO:	Ms. Angela Liang GeoSyntec Consultants 475 14th Street Suite 400 Oakland, CA 94612
PHONE:	510-836-3034	P.O. #	WR0574
FAX:	510-836-3036	PROJECT #	WR0574 Hopyard
DATE RECEIVED:	12/14/2009	CONTACT:	Kyle Vagadori
DATE COMPLETED:	12/28/2009		

			RECEIPT	FINAL
FRACTION #	NAME	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	SVE-INFLUENT	Modified TO-15	3.0 "Hg	15 psi
02A	Lab Blank	Modified TO-15	NA	NA
03A	CCV	Modified TO-15	NA	NA
04A	LCS	Modified TO-15	NA	NA

CERTIFIED BY:

Sinda d. Fruman

DATE: <u>12/28/09</u>

Laboratory Director

Certification numbers: CA NELAP - 02110CA, LA NELAP/LELAP- AI 30763, NJ NELAP - CA004 NY NELAP - 11291, UT NELAP - 9166389892, AZ Licensure AZ0719 Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act, Accreditation number: E87680, Effective date: 07/01/09, Expiration date: 06/30/10 Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

> 180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000. (800) 985-5955. FAX (916) 985-1020

LABORATORY NARRATIVE Modified TO-15 GeoSyntec Consultants Workorder# 0912316

One 1 Liter Summa Canister sample was received on December 14, 2009. The laboratory performed analysis via modified EPA Method TO-15 using GC/MS in the full scan mode.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	TO-15	ATL Modifications
Daily CCV	= 30% Difference</td <td><!--= 30% Difference; Compounds exceeding this criterion<br-->and associated data are flagged and narrated.</td>	= 30% Difference; Compounds exceeding this criterion<br and associated data are flagged and narrated.
Sample collection media	Summa canister	ATL recommends use of summa canisters to insure data defensibility, but will report results from Tedlar bags at client request
Method Detection Limit	Follow 40CFR Pt.136 App. B	The MDL met all relevant requirements in Method TO-15 (statistical MDL less than the LOQ). The concentration of the spiked replicate may have exceeded 10X the calculated MDL in some cases

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

All Quality Control Limit exceedences and affected sample results are noted by flags. Each flag is defined at the bottom of this Case Narrative and on each Sample Result Summary page. Target compound non-detects in the samples that are associated with high bias in QC analyses have not been flagged.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

B - Compound present in laboratory blank greater than reporting limit (background subtraction not performed).

- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the reporting limit.
- UJ- Non-detected compound associated with low bias in the CCV
- N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

- a-File was requantified
- b-File was quantified by a second column and detector
- r1-File was requantified for the purpose of reissue

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: SVE-INFLUENT

Lab ID#: 0912316-01A				
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.8	2.6	8.8	13
Trichloroethene	1.8	16	9.6	87
Tetrachloroethene	1.8	430	12	2900

Client Sample ID: SVE-INFLUENT Lab ID#: 0912316-01A MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	y122121 3.58			on: 12/11/09 9:42:00 AM :: 12/21/09 10:08 PM	
	Rpt. Limit	Amount	Rpt. Limit	Amount	
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)	
Freon 12	1.8	2.6	8.8	13	
Freon 114	1.8	Not Detected	12	Not Detected	
Chloromethane	7.2	Not Detected	15	Not Detected	
Vinyl Chloride	1.8	Not Detected	4.6	Not Detected	
1,3-Butadiene	1.8	Not Detected	4.0	Not Detected	
Bromomethane	1.8	Not Detected	7.0	Not Detected	
Chloroethane	1.8	Not Detected	4.7	Not Detected	
Freon 11	1.8	Not Detected	10	Not Detected	
Ethanol	7.2	Not Detected	13	Not Detected	
Freon 113	1.8	Not Detected	14	Not Detected	
1,1-Dichloroethene	1.8	Not Detected	7.1	Not Detected	
Acetone	7.2	Not Detected	17	Not Detected	
2-Propanol	7.2	Not Detected	18	Not Detected	
Carbon Disulfide	1.8	Not Detected	5.6	Not Detected	
3-Chloropropene	7.2	Not Detected	22	Not Detected	
Methylene Chloride	1.8	Not Detected	6.2	Not Detected	
Methyl tert-butyl ether	1.8	Not Detected	6.4	Not Detected	
rans-1,2-Dichloroethene	1.8	Not Detected	7.1	Not Detected	
Hexane	1.8	Not Detected	6.3	Not Detected	
1,1-Dichloroethane	1.8	Not Detected	7.2	Not Detected	
2-Butanone (Methyl Ethyl Ketone)	1.8	Not Detected	5.3	Not Detected	
cis-1,2-Dichloroethene	1.8	Not Detected	7.1	Not Detected	
Tetrahydrofuran	1.8	Not Detected	5.3	Not Detected	
Chloroform	1.8	Not Detected	8.7	Not Detected	
1,1,1-Trichloroethane	1.8	Not Detected	9.8	Not Detected	
Cyclohexane	1.8	Not Detected	6.2	Not Detected	
Carbon Tetrachloride	1.8	Not Detected	11	Not Detected	
2,2,4-Trimethylpentane	1.8	Not Detected	8.4	Not Detected	
Benzene	1.8	Not Detected	5.7	Not Detected	
1,2-Dichloroethane	1.8	Not Detected	7.2	Not Detected	
Heptane	1.8	Not Detected	7.3	Not Detected	
Trichloroethene	1.8	16	9.6	87	
1,2-Dichloropropane	1.8	Not Detected	8.3	Not Detected	
1,4-Dioxane	7.2	Not Detected	26	Not Detected	
Bromodichloromethane	1.8	Not Detected	12	Not Detected	
cis-1,3-Dichloropropene	1.8	Not Detected	8.1	Not Detected	
4-Methyl-2-pentanone	1.8	Not Detected	7.3	Not Detected	
Toluene	1.8	Not Detected	6.7	Not Detected	
trans-1,3-Dichloropropene	1.8	Not Detected	8.1	Not Detected	

Client Sample ID: SVE-INFLUENT Lab ID#: 0912316-01A MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	y122121 3.58	Date of Collection: 12/11/09 9:42:00 AM Date of Analysis: 12/21/09 10:08 PM			
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
1,1,2-Trichloroethane	1.8	Not Detected	9.8	Not Detected	
Tetrachloroethene	1.8	430	12	2900	
2-Hexanone	7.2	Not Detected	29	Not Detected	
Dibromochloromethane	1.8	Not Detected	15	Not Detected	
1,2-Dibromoethane (EDB)	1.8	Not Detected	14	Not Detected	
Chlorobenzene	1.8	Not Detected	8.2	Not Detected	
Ethyl Benzene	1.8	Not Detected	7.8	Not Detected	
m,p-Xylene	1.8	Not Detected	7.8	Not Detected	
o-Xylene	1.8	Not Detected	7.8	Not Detected	
Styrene	1.8	Not Detected	7.6	Not Detected	
Bromoform	1.8	Not Detected	18	Not Detected	
Cumene	1.8	Not Detected	8.8	Not Detected	
1,1,2,2-Tetrachloroethane	1.8	Not Detected	12	Not Detected	
Propylbenzene	1.8	Not Detected	8.8	Not Detected	
4-Ethyltoluene	1.8	Not Detected	8.8	Not Detected	
1,3,5-Trimethylbenzene	1.8	Not Detected	8.8	Not Detected	
1,2,4-Trimethylbenzene	1.8	Not Detected	8.8	Not Detected	
1,3-Dichlorobenzene	1.8	Not Detected	11	Not Detected	
1,4-Dichlorobenzene	1.8	Not Detected	11	Not Detected	
alpha-Chlorotoluene	1.8	Not Detected	9.3	Not Detected	
1,2-Dichlorobenzene	1.8	Not Detected	11	Not Detected	
1,2,4-Trichlorobenzene	7.2	Not Detected UJ	53	Not Detected U.	
Hexachlorobutadiene	7.2	Not Detected	76	Not Detected	

UJ = Non-detected compound associated with low bias in the CCV

Container Type: 1 Liter Summa Canister

		Method
Surrogates	%Recovery	Limits
Toluene-d8	102	70-130
1,2-Dichloroethane-d4	130	70-130
4-Bromofluorobenzene	105	70-130

Client Sample ID: Lab Blank Lab ID#: 0912316-02A MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	y122111 1.00		Date of Collection: NA Date of Analysis: 12/21/09 02:50 PM			
	Rpt. Limit	Amount	Rpt. Limit	Amount		
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)		
Freon 12	0.50	Not Detected	2.5	Not Detected		
Freon 114	0.50	Not Detected	3.5	Not Detected		
Chloromethane	2.0	Not Detected	4.1	Not Detected		
/inyl Chloride	0.50	Not Detected	1.3	Not Detected		
1,3-Butadiene	0.50	Not Detected	1.1	Not Detected		
Bromomethane	0.50	Not Detected	1.9	Not Detected		
Chloroethane	0.50	Not Detected	1.3	Not Detected		
Freon 11	0.50	Not Detected	2.8	Not Detected		
Ethanol	2.0	Not Detected	3.8	Not Detected		
Freon 113	0.50	Not Detected	3.8	Not Detected		
1,1-Dichloroethene	0.50	Not Detected	2.0	Not Detected		
Acetone	2.0	Not Detected	4.8	Not Detected		
2-Propanol	2.0	Not Detected	4.9	Not Detected		
Carbon Disulfide	0.50	Not Detected	1.6	Not Detected		
3-Chloropropene	2.0	Not Detected	6.3	Not Detected		
Methylene Chloride	0.50	Not Detected	1.7	Not Detected		
Methyl tert-butyl ether	0.50	Not Detected	1.8	Not Detected		
rans-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected		
Hexane	0.50	Not Detected	1.8	Not Detected		
I,1-Dichloroethane	0.50	Not Detected	2.0	Not Detected		
2-Butanone (Methyl Ethyl Ketone)	0.50	Not Detected	1.5	Not Detected		
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected		
Tetrahydrofuran	0.50	Not Detected	1.5	Not Detected		
Chloroform	0.50	Not Detected	2.4	Not Detected		
I,1,1-Trichloroethane	0.50	Not Detected	2.7	Not Detected		
Cyclohexane	0.50	Not Detected	1.7	Not Detected		
Carbon Tetrachloride	0.50	Not Detected	3.1	Not Detected		
2,2,4-Trimethylpentane	0.50	Not Detected	2.3	Not Detected		
Benzene	0.50	Not Detected	1.6	Not Detected		
1,2-Dichloroethane	0.50	Not Detected	2.0	Not Detected		
Heptane	0.50	Not Detected	2.0	Not Detected		
Trichloroethene	0.50	Not Detected	2.7	Not Detected		
I,2-Dichloropropane	0.50	Not Detected	2.3	Not Detected		
,4-Dioxane	2.0	Not Detected	7.2	Not Detected		
Bromodichloromethane	0.50	Not Detected	3.4	Not Detected		
cis-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected		
4-Methyl-2-pentanone	0.50	Not Detected	2.0	Not Detected		
Foluene	0.50	Not Detected	1.9	Not Detected		
rans-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected		

Client Sample ID: Lab Blank Lab ID#: 0912316-02A MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	y122111 1.00	Date Date	21/09 02:50 PM	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,1,2-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Tetrachloroethene	0.50	Not Detected	3.4	Not Detected
2-Hexanone	2.0	Not Detected	8.2	Not Detected
Dibromochloromethane	0.50	Not Detected	4.2	Not Detected
1,2-Dibromoethane (EDB)	0.50	Not Detected	3.8	Not Detected
Chlorobenzene	0.50	Not Detected	2.3	Not Detected
Ethyl Benzene	0.50	Not Detected	2.2	Not Detected
m,p-Xylene	0.50	Not Detected	2.2	Not Detected
o-Xylene	0.50	Not Detected	2.2	Not Detected
Styrene	0.50	Not Detected	2.1	Not Detected
Bromoform	0.50	Not Detected	5.2	Not Detected
Cumene	0.50	Not Detected	2.4	Not Detected
1,1,2,2-Tetrachloroethane	0.50	Not Detected	3.4	Not Detected
Propylbenzene	0.50	Not Detected	2.4	Not Detected
4-Ethyltoluene	0.50	Not Detected	2.4	Not Detected
1,3,5-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,2,4-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,3-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,4-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
alpha-Chlorotoluene	0.50	Not Detected	2.6	Not Detected
1,2-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,2,4-Trichlorobenzene	2.0	Not Detected UJ	15	Not Detected U
Hexachlorobutadiene	2.0	Not Detected	21	Not Detected

UJ = Non-detected compound associated with low bias in the CCV

Container Type: NA - Not Applicable

		Method			
Surrogates	%Recovery	Limits			
Toluene-d8	101	70-130			
1,2-Dichloroethane-d4	122	70-130			
4-Bromofluorobenzene	107	70-130			

Client Sample ID: CCV Lab ID#: 0912316-03A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	y122103 1.00	Date of Collection: NA Date of Analysis: 12/21/09 08:43 AM				
Compound		%Recovery				
Freon 12		115				
Freon 114		106				
Chloromethane		105				
Vinyl Chloride		110				
1,3-Butadiene		110				
Bromomethane		109				
Chloroethane		113				
Freon 11		116				
Ethanol		112				
Freon 113		110				
1,1-Dichloroethene		117				
Acetone		101				
2-Propanol		112				
Carbon Disulfide		106				
3-Chloropropene		103				
Methylene Chloride		111				
Methyl tert-butyl ether		122				
trans-1,2-Dichloroethene		108				
Hexane		112				
1,1-Dichloroethane		113				
2-Butanone (Methyl Ethyl Ketone)		114				
cis-1,2-Dichloroethene		115				
Tetrahydrofuran		121				
Chloroform		115				
1,1,1-Trichloroethane		122				
Cyclohexane		110				
Carbon Tetrachloride		122				
2,2,4-Trimethylpentane		114				
Benzene		110				
1,2-Dichloroethane		134 Q				
Heptane		117				
Trichloroethene		118				
1,2-Dichloropropane		112				
1,4-Dioxane		108				
Bromodichloromethane		124				
cis-1,3-Dichloropropene		120				
4-Methyl-2-pentanone		128				
Toluene		113				
trans-1,3-Dichloropropene		129				

Client Sample ID: CCV

Lab ID#: 0912316-03A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	y122103 1.00	Date of Collection: NA Date of Analysis: 12/21/09 08:43 AM
Compound		%Recovery
1,1,2-Trichloroethane		114
Tetrachloroethene		114
2-Hexanone		119
Dibromochloromethane		123
1,2-Dibromoethane (EDB)		121
Chlorobenzene		111
Ethyl Benzene		118
m,p-Xylene		118
o-Xylene		119
Styrene		122
Bromoform		125
Cumene		123
1,1,2,2-Tetrachloroethane		112
Propylbenzene		118
4-Ethyltoluene		117
1,3,5-Trimethylbenzene		114
1,2,4-Trimethylbenzene		118
1,3-Dichlorobenzene		107
1,4-Dichlorobenzene		108
alpha-Chlorotoluene		123
1,2-Dichlorobenzene		104
1,2,4-Trichlorobenzene		68 Q
Hexachlorobutadiene		80

Q = Exceeds Quality Control limits. Container Type: NA - Not Applicable

Surrogates	%Recovery	Method Limits
Toluene-d8	104	70-130
1,2-Dichloroethane-d4	112	70-130
4-Bromofluorobenzene	104	70-130

Client Sample ID: LCS Lab ID#: 0912316-04A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	<i>j</i>	
Compound		%Recovery
Freon 12		114
Freon 114		104
Chloromethane		104
Vinyl Chloride		107
1,3-Butadiene		110
Bromomethane		106
Chloroethane		110
Freon 11		113
Ethanol		184 Q
Freon 113		96
1,1-Dichloroethene		102
Acetone		98
2-Propanol		106
Carbon Disulfide		106
3-Chloropropene		101
Methylene Chloride		99
Methyl tert-butyl ether		120
trans-1,2-Dichloroethene		104
Hexane		112
1,1-Dichloroethane		107
2-Butanone (Methyl Ethyl Ketone)		114
cis-1,2-Dichloroethene		117
Tetrahydrofuran		115
Chloroform		108
1,1,1-Trichloroethane		116
Cyclohexane		108
Carbon Tetrachloride		118
2,2,4-Trimethylpentane		111
Benzene		110
1,2-Dichloroethane		128
Heptane		117
Trichloroethene		117
1,2-Dichloropropane		112
1,4-Dioxane		108
Bromodichloromethane		119
cis-1,3-Dichloropropene		121
4-Methyl-2-pentanone		126
Toluene		108
trans-1,3-Dichloropropene		136 Q

Client Sample ID: LCS Lab ID#: 0912316-04A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	y122104 1.00	Date of Collection: NA Date of Analysis: 12/21/09 09:26 AM
Compound		%Recovery
1,1,2-Trichloroethane		119
Tetrachloroethene		123
2-Hexanone		124
Dibromochloromethane		129
1,2-Dibromoethane (EDB)		131 Q
Chlorobenzene		118
Ethyl Benzene		124
m,p-Xylene		126
o-Xylene		126
Styrene		129
Bromoform		130
Cumene		126
1,1,2,2-Tetrachloroethane		119
Propylbenzene		119
4-Ethyltoluene		120
1,3,5-Trimethylbenzene		117
1,2,4-Trimethylbenzene		119
1,3-Dichlorobenzene		110
1,4-Dichlorobenzene		112
alpha-Chlorotoluene		123
1,2-Dichlorobenzene		109
1,2,4-Trichlorobenzene		64 Q
Hexachlorobutadiene		78

Q = Exceeds Quality Control limits. Container Type: NA - Not Applicable

Surrogates	%Recovery	Method Limits
Toluene-d8	104	70-130
1,2-Dichloroethane-d4	107	70-130
4-Bromofluorobenzene	109	70-130

Sample Transportation Notice

Relinquishing signature on this document indicates that sample is being shipped in compliance with all applicable local, State, Federal, national, and international laws, regulations and ordinances of any kind. Air Toxics Limited assumes no liability with respect to the collection, handling or shipping of these samples. Relinquishing signature also indicates agreement to hold harmless, defend, and indemnify Air Toxics Limited against any claim, demand, or action, of any kind, related to the collection, handling, or shipping of samples. D.O.T. Hotline (800) 467-4922

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA 95630-4719 (916) 985-1000 FAX (916) 985-1020

Page _ 1 of _ 1

Project Manager Angela Libra				Project Info:			Turn Around		Lab Use Only		
Collected by: (Print and Sign) J. Ian Untry				P.O. #_ WR\$5-74			Time:		Pressurized by:		
Company Geosyntec Consultants Email aliange Geosyntec. con mosher egeosyntec. con					Normal		Date:				
Address 4	75 14th 3t #400 Onklard State	e <i>CA</i> Zip 94	16/2	$\frac{1}{2} \operatorname{Project} \# \underline{\mathcal{W}} R \# 5 7 4 \underline{}$			Rush		Pressurization Gas:		
Phone 510. 285. 2700 Fax 510.836.3036			Project Name			Ryard		pecify	- N ₂ He		e
			D	ate	Time			Canis	ter Pres	sure/Vac	uum
Lab I.D.	Field Sample I.D. (Location)	Can #	of Co	llection	of Collection	Analyses Reques	sted	Initial	Final	Receipt	Final (psi)
OLA	SVE. INFLUENT	1035	Dec	11 2009	9:42	Modified TO-1	5	26 in Hy	4 in Hay		
								,			
an an an Araban An Araban An Araban An Araban An Araban An Araban An Araban											
						- T			<u> </u>		
						<u> </u>					
	· · · · · · · · · · · · · · · · · · ·					·········					
						·····		·			
	· · · · · · · · · · · · · · · · · · ·					• • • • • • • • • • • • • • • • • • •					
									····		
Retinquish	ed by: (signature) Date/Time 14.45 Rece	ned by: (signa	ture)	Date/Tim	ie	Notes:		<u> </u>			
The h	The clith 2009 / 9:45pm 1	while	Ct	(left		204109830					
Helinquish	Felinquished by: (signature) Date/Time Received by: (signature) Date/Time										
Relinquish	Relinquished by: (signature) Date/Time Received by: (signature) Date/Time										
Lab Shipper Name Air Bill # Temp (°C) Condition Custody Seals Intact? Work Order #											
Use Only	Rd 4 7982 16398449	7	NA	- 6	rood	Yes No	No		912	316	
	•						\subset		v_<u>+</u> ~	····*	