RECEIVED

10:20 am, Mar 23, 2009

Alameda County Environmental Health

76 Broadway Sacramento, California 95818

February 27, 2009

Jerry Wickham Alameda County Health Agency 1131 Harbor Bay parkway, Suite250 Alameda, California 94502-577

Re: Work Plan for Replacement of Monitoring Well 1 2B and 3 76 Service Station # 7376 RO # 0361 4191 First Street Pleasanton, CA

Dear Mr. Wickham:

I declare under penalty of perjury that to the best of my knowledge the information and/or recommendations contained in the attached report is/are true and correct.

If you have any questions or need additional information, please call me at (916) 558-7666.

Sincerely,

Terry L. Grayson Site Manager Risk Management & Remediation

MS. BARBARA JAKUB Alameda County Health Agency Department of Environmental Health 1131 Harbor Bay Parkway Alameda, CA 94502-6577

cc: Mr. Terry Grayson, ConocoPhillips (electronic copy)

76 SERVICE STATION NO. 7376 4194 First Street Pleasanton, CA

DELTA PROJECT C107376 AOC# 1652 February 25, 2009

Prepared for:

ConocoPhilips Company 76 Broadway Sacramento, CA 95818

Prepared by:

Delta Consultants

TABLE OF CONTENTS

1.0	CERTIFICATION
2.0	DECLARATION
3.0	SITE BACKGROUND AND DESCRIPTION
3.1 3.2 3.3 3.4	SITE BACKGROUND
4.0	PRE-FIELD ACTIVITIES AND UTILITY LOCATION
4.1 4.2	PERMITTING/HASP PREPARATION
5.0	PROPOSED MONITORING WELL INSTALLATIONS
5.1 5.2 5.3 5.4 5.5	MONITORING WELL CONSTRUCTION8SOIL SAMPLING AND LABORATORY ANALYSIS9GROUNDWATER SAMPLING AND LABORATORY ANALYSIS9SAMPLE POINT SURVEY9DISPOSAL OF DRILL CUTTINGS AND WASTEWATER9
6.0	REPORTING
7.0	REMARKS

FIGURES

Figure 1 – Site Location Map
Figure 2 - Site Plan with w/ Proposed Monitoring Well Locations
Figure 3 – Monitoring Well Construction Details (Typ)

ATTACHMENTS

Attachment A – Delta's May 20, 2008 Soil and Groundwater Investigation Report

1.0 CERTIFICATION

This report was prepared under the supervision and direction of the undersigned California Professional Geologist.

Delta Consultants

GE JOHN R. REAY NO. 4716 OF CAL John R. Reay, P.G. Project Manager California Registered Professional Geologist No. 4716

2.0 DECLARATION

On behalf of ConocoPhillips Company (COP), Delta Consultants (Delta) has prepared this *Work Plan for Replacement of Monitoring Wells 1, 2B, and 3* proposing the replacement of three monitoring wells at 76 Service Station Number 7376, in Pleasanton, California. This work is proposed to rectify excessively long screened intervals, approximately 30 feet, across multiple potential aquifer sands in monitoring wells MW-1, MW-2B and MW-3. The wells will be replaced with nested wells with short, two to five foot screened intervals at field selected depths based on core analysis and previously conducted CPT borings (Delta, May 20, 2008 *Soil and Groundwater Investigation Report*) to assess two potential aquifer sands underlying the site. Replacement wells will be labeled MW-1A,B, MW-2C,D, and MW-3A,B (Figure 2).

3.0 SITE BACKGROUND AND DESCRIPTION

3.1 SITE BACKGROUND

The site was developed in 1899 as a warehouse to store grain and hay (Amador-Livermore Valley Historical Society, 1994). According to a Sanborn map, an "in-ground" storage tank for oil was installed on-site in 1907. A service station was first constructed on the site in 1976 (Enviros, 1995). Between November 8, 1982 and February 8, 1985, the Pleasanton Fire Department (PFD) responded to five separate fuel releases at the site (PFD, 1988). The releases occurred prior to acquisition of the property by Unocal Corporation in 1988, and prior to ConocoPhillips assuming operations at the site.

3.2 PREVIOUS ASSESSMENT

The site was developed in 1899 as a warehouse to store grains and hay. According to a Sanborn map, an "in-ground" storage tank for oil was installed onsite in 1907. A service station was first constructed on the site in 1976. Between November 8, 1982 and February 8, 1985, the Pleasanton Fire Department (PFD) responded to five separate fuel releases at the site. The releases occurred prior to acquisition of the property by Unocal Corporation in 1988, and prior to ConocoPhillips assuming operations at the site.

<u>June 1987</u>: Three exploratory soil borings, B-1, B-2, and B-3, were drilled at the site and sampled by Applied GeoSystems (AGS) ... Borings B-1 and B-2 were drilled to a final depth of 46.5 feet below ground surface (bgs) and B-3 was drilled to 55 feet bgs (Figure 2). Three soil samples from each boring were analyzed for total petroleum hydrocarbons as gasoline (TPH-G) and benzene, toluene, ethylbenzene, and xylenes (BTEX). In addition, a sample collected at 35 feet bgs from B-1 (sample S-35-BI) was also analyzed for total petroleum hydrocarbons as diesel (TPH-D). A sample collected at 10 feet bgs from B-3 was reported as non-detect for all analytes. The remaining samples contained petroleum hydrocarbons at concentrations ranging from 7.72 to 188.8 parts per million (ppm) of TPH-G and 0.07 to 17.1 ppm of benzene. Sample 5-35-BI also contained 1,325 ppm of TPH-D. Groundwater was not encountered in the borings.

<u>August 1987</u>: One soil boring, B-4, was advanced by AGS to a total depth of 66.5 feet bgs (Figure 2). One soil sample collected at 35 feet bgs contained 100.5 ppm of TPH-G, 1.4 ppm of benzene, and 1,835 ppm of TPH-D. A second soil sample collected at 65 feet bgs was reported as non-detect for TPH-G, TPH-D, and BTEX. Groundwater was not encountered in the boring.

<u>December 1987</u>: AGS advanced three soil borings (B-5, B-6, B-7) to a total depth of 96.5 feet bgs and completed the borings as groundwater monitoring wells MW-I, MW-2, and MW-3 (Figure 2). The wells were completed at depths of 96.5, 85, and 96.5 feet bgs, respectively. Saturated soil was initially encountered at approXimately 80 feet bgs. Two soil samples collected at 35 and 70 feet bgs in boring B-5 were reported as non-detect for TPH-G, TPH-D, and BTEX. One soil sample collected at 35 feet bgs in boring B-6 contained 15.0 ppm of TPH-G, 6,300 ppm of TPH-D and was non-detect for benzene. One soil sample collected at 70 feet bgs in boring B-6 was reported as non-detect for TPH-G, TPH-D, and BTEX. A sample collected at 55 feet bgs in boring B-7 contained 390 ppm of TPH-G, 1.3 ppm of benzene, and 220 ppm of TPH-D. A sample collected at 75 feet bgs in boring B-7 contained 5.0 ppm of TPH-G, 30.0 ppm of TPH-D, and was nondetect for BTEX. Groundwater samples collected from well MW-I, MW-2, and MW-3 contained petroleum hydrocarbon concentrations ranging from 0.0500 to 24,000 ppm of TPH-G, TPH-G, 0.058 to 2,600 ppm of benzene, and 0.620 to 2,300 ppm of TPH-D.

<u>December 1987</u>: Four 12,000-galion USTs were replaced with two 12,000-galion doublewall USTs. An unknown volume of contaminated soil was reportedly removed and transported to a Class I facility. The property and facilities were sold to the Unocal Corporation in February 1988.

<u>September 1994</u>: Kaprealian Engineering, Inc. (KEI) conducted soil sampling services during a dispenser and product piping upgrade at the site. A total of twelve trench soil samples were collected at approximately 3 feet bgs. Petroleum hydrocarbons were detected in the samples at concentrations ranging from non-detect to 8,900 ppm of TPHG, and non-detect to 65 ppm of benzene. Upon receipt of the analytical data, overexcavation was conducted in the area of two soil samples with elevated hydrocarbon concentrations. Three soil samples were collected at approximately 9 feet bgs. The two overexcavation samples were reported to contain 13 and 17 ppm of TPH-G and 0.020 to 0.029 ppm of benzene. The third soil sample, collected laterally between the two overexcavation samples, contained 4,400 ppm of TPH-G and 29 ppm of benzene.

<u>February 1995</u>: KEI destroyed monitoring well MW-2 and advanced two soil borings (MW2B and EB-1). Boring MW-2B was completed as a monitoring well. Well MW-2 was destroyed due to asphalt tar being introduced into the well casing during repaving activities at the site. Soil boring EB-1 was drilled to a total depth of 66 feet bgs and well MW-2B was drilled and constructed to a total depth of 91 feet bgs (Figure 2). A total of twenty-nine soil samples were collected during boring EB-1 and MW-2B drilling activities. Samples collected from 5 to 50 feet bgs from EB-1 contained petroleum hydrocarbon concentrations ranging from 27 to 15,000 ppm of TPH-G, 0.29 to 340 ppm of benzene, and 55 to 3,600 ppm of TPH-D. Samples collected from 55 to 65 feet bgs from EB-1 contained petroleum hydrocarbon concentrations ranging from non-detect to 6.4 ppm of TPH-G, non-detect to 0.89 ppm of benzene, and non-detect for TPH-D. Soil samples collected from 5 to 65 feet bgs in well boring MW-2B contained petroleum hydrocarbons concentrations ranging from 1.0 to 720 ppm of TPH-G, non-detect to 9.5 ppm of benzene, and non-detect to 2,400 ppm of TPH-D. Soil samples collected from 70 to 80 feet bgs in well boring MW-2B were reported as non-detect for TPH-G, BTEX, and TPH-D. Enviros was contracted to complete a Phase I Environmental Site Assessment for the site in early 1995.

July 1996: KEI advanced three soil borings and completed them as groundwater monitoring wells MW-4, MW-5 and MW-6 to total depths of 73.5 to 93 feet bos, Well MW-4 was installed onsite and wells MW-5 and MW-6 were installed offsite on the former Southern Pacific Railroad right-ofway (Figure 2). A total of forty-seven soil samples were collected from the well borings and analyzed for TPH-G, BTEX, and fuel fingerprinting. Soil samples from well boring MW-4 contained low concentrations of petroleum hydrocarbons ranging from non-detect to 47 ppm of TPH-G, non-detect to 0.27 ppm of benzene, and non-detect to 15 ppm of TPH-D. Soil samples collected in the upper 50 feet of well boring MW-5 were reported as non-detect for TPH-G and TPH-D, and contained benzene in concentrations ranging from non-detect to 0.038 ppm. Samples collected between 55 and 65 feet bgs in MW-5 contained petroleum hydrocarbon concentrations ranging from 32 to 560 ppm of TPH-G, 0.28 to 3.9 ppm of benzene, and nondetect to 450 ppm of TPH-D. Samples collected from MW-6 contained petroleum hydrocarbon concentrations ranging from non-detect to 5.0 ppm of TPH-G, non-detect to 1.2 ppm of benzene, and non-detect for TPH-D except for 200 ppm detected at 55 feet bgs. Petroleum hydrocarbon concentrations in the range of kerosene, motor oil, and unidentified extractable hydrocarbons were also identified in the samples collected from the well borings.

<u>June 1997</u>: Separate phase hydrocarbons (SPH) were identified in well MW-5 during quarterly monitoring activities.

<u>December 1997</u>: Entrix Inc. conducted a forensic geochemical analysis on SPH extracted from well MW-5. The SPH was probably composed of a mixture of over 50% refined gasoline and heavier hydrocarbons. The gasoline constituents appeared to be relatively fresh. The heavier hydrocarbon mixture had a carbon distribution ranging from about C13 to C33. This distribution is similar in nature to a very weathered crude oil or Bunker C fuel, not refined petroleum products such as diesel #2, motor oil, lube oil, etc.

June/August 1998: Five onsite soil borings (B-8 through B-12) were advanced and two offsite downgradient groundwater monitoring wells (MW-7, MW-8) were installed by Gettler Ryan, Inc. (GR) (Figure 2). A total of forty soil samples were collected from the soil and well borings and analyzed for TPH-G, BTEX, methyl tertiary butyl ether (MTBE), TPH-D, and total petroleum hydrocarbons as oil (TPH-O). Petroleum hydrocarbon concentrations in the soil samples range from non-detect for all analytes for soil boring B-8 and well boring MW-7, to a maximum of 1,700 ppm of TPH-G and 21 ppm of benzene (B-12 at 37.5 feet bgs), 14.000 ppm of TPH-D, 2.6 ppm of MTBE (B-12 at 28.5 feet bgs), and 5,200 ppm of TPH-O (B-11 at 10.5 feet bgs). Elevated concentrations of petroleum hydrocarbons were concentrated at 24.5 and 31 feet bgs in boring B-10, from the surface to 61 feet bgs in boring B-11, at 28.5, 37.5 and 47 feet bgs in boring B-12, and at 45.5 feet bgs in well boring MW-8. In addition, two soil samples containing visible free product were collected from boring B-11 (near the former UST excavation) at 10.5 and 61 feet bas and submitted to Global Geochemistry Corp. for hydrocarbon fingerprinting chemical analysis. The results of these analyses was that the free product from both samples was composed of approximately 90% highly to severely weathered semi-volatile and high boiling components identified as crude oil and 10% of slightly weathered gasoline.

October-November 2000: GR advanced one offsite soil boring (B-13) and advanced and installed two offsite groundwater monitoring wells (MW-9, MW-10). A total of twenty eight soil samples were collected from the soil and well borings and analyzed for TPH-G, BTEX, and MTBE. Soil samples collected from well boring MW-9 between 16 and 60.5 feet and boring B-13 between 85.5 and 126 feet bgs were reported as non-detect for all analytes. Some soil samples collected from well boring MW-10 contained TPH-G, benzene, unidentified hydrocarbons with a carbon range of C6 to C12, and MTBE. Nine soil samples collected from boring B-13 between 7.5 and 73.5 feet bos contained TPH-G, unidentified hydrocarbons with a carbon range of greater than C10, benzene, and MTBE. Grab groundwater samples were collected from each of the borings. Groundwater samples collected at 128.5 and 133 feet bas from boring B-13 contained 150 and 620 ppb TPH-G, 17 and 53 ppb benzene, and 3.5 and 3.7 ppb MTBE, respectively. Groundwater sample G-1, collected from well boring MW-9 at 55 feet bgs, contained 66 ppb MTBE. The groundwater sample collected at 90 feet bgs from well boring MW-10 contained 34 ppb MTBE. The groundwater sample collected at 95 feet bgs from well boring MW-10 contained 230 ppb TPH-G and 54 ppb MTBE. Five soil samples collected from well boring MW-9 between 16 and 60.5 feet bgs were reported as non-detect for all analytes. Nine soils samples were collected from well boring MW-10 between 5.5 and 90.5 feet bgs. These soil samples were reported as nondetect for all analytes except for 9.7 ppm TPH-G, 0.035 ppm benzene, and 240 ppm TPH-G and unidentified hydrocarbons with a carbon range of C6 to C12 at 38 feet bgs, and 0.71 ppm benzene and 1.2 ppm MTBE by United States Environmental Protection Agency (EPA) Method 8020. Five samples collected from boring B-13 between 85.5 and 126 feet bgs were reported as non-detect for all analytes. Nine soil samples collected from boring B-13 between 7.5 and 73.5 feet bgs contained petroleum hydrocarbons at concentrations ranging from non-detect to 14,000 ppm TPH-G and unidentified hydrocarbons with a carbon range of greater than C10 (at 28 feet bgs), non-detect to 100 ppm benzene (at 28 feet bgs), and non-detect to 0.18 ppm MTBE (at 57 feet bgs). Grab groundwater samples were collected from each of the borings. Groundwater samples B-13-128.5 and B-13-133, collected at 128.5 and 133 feet bgs from boring B13,

contained 150 and 620 ppb TPH-G, 17 and 53 ppb benzene, and 3.5 and 3.7 ppb MTBE, respectively. Groundwater sample G-1, collected from well boring MW-9 at 55 feet bgs, contained 66 ppb MTBE and was reported as non-detect for TPH-G and MTBE. Groundwater sample MW-10-90, collected at 90 feet bgs from well boring MW-10, was reported as non-detect for TPH-G and benzene, and contained 34 ppb MTBE. Groundwater sample MW-10-95, collected at 95 feet bgs from well boring MW-10, was reported as non-detect for benzene, and contained 240 ppb MTBE. Groundwater for benzene, and contained 230 ppb TPH-G and 54 ppb MTBE.

<u>September 2001</u>: Two offsite soil borings were drilled by GR and completed as groundwater monitoring wells MW-II and MW-12. The wells were installed to total depths of approximately 86 and 88 feet bgs, respectively. Soil samples were reported as nondetect for all analytes. A grab groundwater sample collected from a perched groundwater zone at 40 feet bgs in well boring MW-12 was reported as non-detect for TPH-G, BTEX, and MTBE.

October 2003: Site environmental consulting responsibilities were transferred to TRC.

<u>October 2007</u>: Site environmental consulting responsibilities were transferred to Delta. Four onsite wells (MW-1, MW-2B, MW-3 and MW-4) and eight offsite wells (MW-5 through MW-12) have been monitored and sampled quarterly from December 1994 to the present. SPH was not present in onsite or offsite wells during the most recent groundwater monitoring and sampling event conducted on December 27, 2007. SPH was present in the casing of well MW-2B during the previous quarter and has been present periodically in well MW-5 since June 1997. Previous analysis of the SPH showed it contained a mixture of refined gasoline and heavy hydrocarbons. Excluding MW-5, petroleum hydrocarbon concentrations in the groundwater onsite and offsite have ranged from non-detect to 41,000 ppb TPH-G, non-detect to 3,200 ppb benzene, non-detect to 12,200 ppb MTBE, and non-detect to 4,380 ppb TPH-D. Depth to groundwater has fluctuated from approximately 45.83 to 92.23 feet below TOC. Groundwater flow has ranged from south to northwest with a hydraulic gradient of approximately 0.07 to 0.2 feet/foot.

<u>May 2008</u>: Delta advanced seven CPT borings and prepared *Soil and Groundwater Investigation Report.*

3.3 SENSITIVE RECEPTOR SURVEY

In 2005, a Sensitive Receptor Survey Report was prepared by TRC to identify domestic and municipal wells within one-half mile of the Site and evaluate nearby surface water bodies as possible sensitive receptors. No water supply wells were identified within one-half mile radius of the Site. Two surface water bodies, Damon Slough and Lion Creek, were identified as possible sensitive receptors.

3.4 HYDROGEOLOGIC SITE CONDITIONS

The subject site is located at the base of the northwest end of the Valle De San Jose. The site is underlain by Holocene age coarse grained alluvium interpreted to be alluvial fan deposits. These deposits are composed of unconsolidated, well bedded, moderately sorted, permeable sand and silt, with coarse sand and gravel becoming abundant toward fan heads and in narrow canyons (Helley, 1979). The site is also located approximately 1,000 feet west and north of Pliocene and/or Pleistocene non-marine sedimentary Livermore Gravel (Diblee, 1980).

The site is located within the Amador Sub-basin of the Livermore Valley Groundwater Basin. The main watercourses in the basin are the Arroyo Valle and Arroyo Mocho, which both drain into the Arroyo de la Laguna. There are three municipal water supply wells within 0.5 miles of the site. Monitoring wells maintained by the City of Pleasanton are located approximately 230 feet to the south of the site. The estimated depth to the regional groundwater is 40 fbg and the regional flow direction is north and northeast (ACWD-Zone 7, 1993).

The City of Pleasanton is served by the Zone 7 Water Agency. Based on information provided by personnel from the Zone 7 Water Agency, the City of Pleasanton obtains 80% of its water from the Hetch-Hetchy reservoir, the San Joaquin/Sacramento Delta and multiple deep-water wells located in the Fremont area. The remaining water is pumped from wells in Pleasanton that range in depth from 50-600 feet.

4.0 PRE-FIELD ACTIVITIES AND UTILITY LOCATION

4.1 PERMITTING/HASP PREPARATION

Drilling permits will be obtained for the boring and the monitoring wells as necessary from the appropriate parties prior to commencing field work. Delta will prepare a Health and Safety Plan (HASP) specific to the site and work being performed in accordance with Title 8, Section 5192 of the California Code of Regulations. This will contain a list of emergency contacts, as well as hospital route maps to the nearest emergency facility and Occupational Heath Center, and will be reviewed daily by field personnel as part of tailgate safety SOP.

4.2 SITE MARKING/UTILITIY CLEARANCE

The proposed boring locations will be marked in the field prior to drilling, and Underground Services Alert (USA) will be contacted at least 48 hours prior to initiating drilling to minimize the risk of damaging underground utilities. A private utility locator will also be retained to survey the locations and further minimize the risk of damaging underground utilities. Additionally, an air-knife vacuum truck will be used to clear the proposed boring and monitoring well locations to a depth of at least 5 feet bgs prior to drilling.

5.0 PROPOSED MONITORING WELL INSTALLATIONS

Existing wells MW-1, MW-2B, and MW-3 will be properly abandoned prior to installation of nested wells MW-1A,B, MW-2C,D, and MW-3A,B. Monitoring wells MW-1, MW-2A and MW-3 will be abandoned under permit and in accordance with California Well Standards, Bulletin 74-90 by a C-57 licensed drilling contractor.

Ten and one quarter inch I.D. hollow stem auger will be used to set surface conductor casings through upper contaminated zones. Six and one quarter inch I.D. auger will be used to drill out of the conductor casing and complete the monitoring wells. Based on previously conducted soil and CPT borings conducted in the immediately vicinity the proposed monitoring wells, the borings will be advanced to 45 feet bg directly without sampling. From 45 feet to target depth stratigraphy will be defined utilizing continuous core with acetate sleeve to first encountered aquifer sand estimated, based on CPT data, to occur at a depth of approximately 58 feet bg. The second target aquifer sand is estimated to be encountered at 75 feet bg. Upper potentially contaminated zones will be sealed off by emplacement of 8 ¼ inch I.D. steel conductor casing. The exact depth of casing will be field determined for each well. The surface conductor casing grout seal will be allowed to cure for a minimum of 24 hours prior to drilling out of the casing shoe.

5.1 MONITORING WELL CONSTRUCTION

Wells will be constructed (Figure 3) in a 6 1/4 inch I.D. auger boring of 2 inch ID PVC with 0.010 inch slotted screen with end cap and Loanstar #2/12 gravel pack (or equivalent) extending approximately one foot above the top of the screen. The gravel pack will be emplaced via treme pipe or equivalent. Approximately two foot granular bentonite seal will be placed on top of the gravel pack. The bentonite seal will be hydrated with a minimum of two gallons of clean potable water prior to installation of the neat cement seal if it extends above groundwater. The well will be completed by installation of a neat cement seal to ground surface, a concrete sanitary seal,

locking cap, and traffic rated water-resistant well-head vault. The monitoring well grout seal will be allowed to cure for a minimum of 24 hours prior to being developed and a minimum of 72 hours prior to initial sample collection. All monitoring wells will be developed by gentle surging and pumping until developed water is less than 10 Nephelometric Turbidity Units (NTU) as measured by a properly calibrated turbidity meter.

5.2 SOIL SAMPLING AND LABORATORY ANALYSIS

Soil samples will be collected for laboratory analysis from continuous core samples from field selected depths. A maximum of 10 soil samples will be collected from each boring. A precalibrated photo-ionization detector (PID) will be used to field screen soil samples for the presence of organic vapors. Discrete soil samples retained for analysis will be cut to size from the continuous core sleeve, capped with Teflon sheeting and tight-fitting plastic end caps, properly labeled with a unique identification number, placed in an ice-chilled cooler, and transported to a California-certified analytical laboratory with chain of custody documentation. Soil samples will be analyzed for TPHg, TPHd, TPH(Aviation Gas), and TPH(Jet Fuel) by EPA Method 8015M, benzene, toluene, ethylbenzene, toluene, xylenes, methyl tertiary butyl ether (MTBE), ethyl tertiary butyl ether (ETBE), di-isopropyl ether (DIPE), tertiary amyl methyl ether (TAME), tert butyl alcohol (TBA), ethylene dibromide (EDB), ethylene dichloride (EDC) and ethanol by EPA Method 8260.

5.3 GROUNDWATER SAMPLING AND LABORATORY ANALYSIS

Groundwater grab samples will be collected from all borings from field selected depth discrete intervals based on the continuous core samples. The groundwater samples will be placed into laboratory supplied sample bottles labeled with a unique identification number. The samples will then be placed into an ice-chilled cooler and transported to a California-certified analytical laboratory with chain of custody documentation. Groundwater samples will be analyzed for TPHg, TPHd, TPH(Aviation Gas), and TPH(Jet Fuel) by EPA Method 8015M, benzene, toluene, ethylbenzene, toluene, xylenes, methyl tertiary butyl ether (MTBE), ethyl tertiary butyl ether (ETBE), di-isopropyl ether (DIPE), tertiary amyl methyl ether (TAME), tert butyl alcohol (TBA), ethylene dibromide (EDB), ethylene dichloride (EDC) and ethanol by EPA Method 8260.

5.4 SAMPLE POINT SURVEY

Following the completion of the sampling event, a California licensed surveyor will survey the northing and easting of the monitoring well locations using Datum NGVD29 or NAD 88. A global positioning system (GPS) will also be used to survey in the latitude and longitude of the wells to be uploaded into California's GeoTracker database system. The survey of the well locations will be to sub-meter accuracy.

5.5 DISPOSAL OF DRILL CUTTINGS AND WASTEWATER

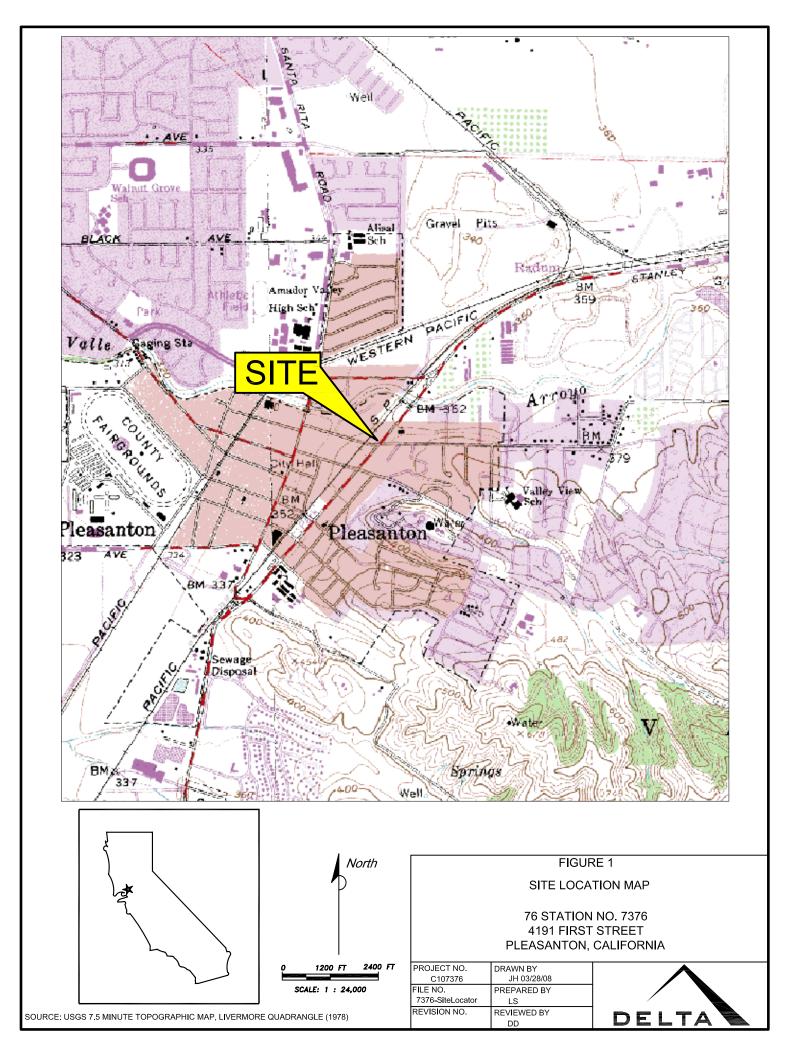
Drill cutting, purge and decontamination water generated during the sampling event will be placed into properly labeled 55-gallon Department of Transportation (DOT) approved steel drums and temporarily stored on the property. Samples of the drill cuttings and wastewater will be collected, properly labeled and placed on ice for submittal to a California-certified laboratory and analyzed for TPHg, TPHd by EPA Method 8015M, benzene, toluene, ethylbenzene, toluene, xylenes, methyl tertiary butyl ether (MTBE), ethyl tertiary butyl ether (ETBE), di-isopropyl ether (DIPE), tertiary amyl methyl ether (TAME), tert butyl alcohol (TBA), ethylene dibromide (EDB), ethylene dichloride (EDC) and ethanol by EPA Method 8260. A chain-of-custody will accompany the samples during transportation to the laboratory. Subsequent to receiving the laboratory analytical results, the drummed drill cuttings and wastewater will be profiled, transported, and disposed of at a ConocoPhillips (COP) approved facility.

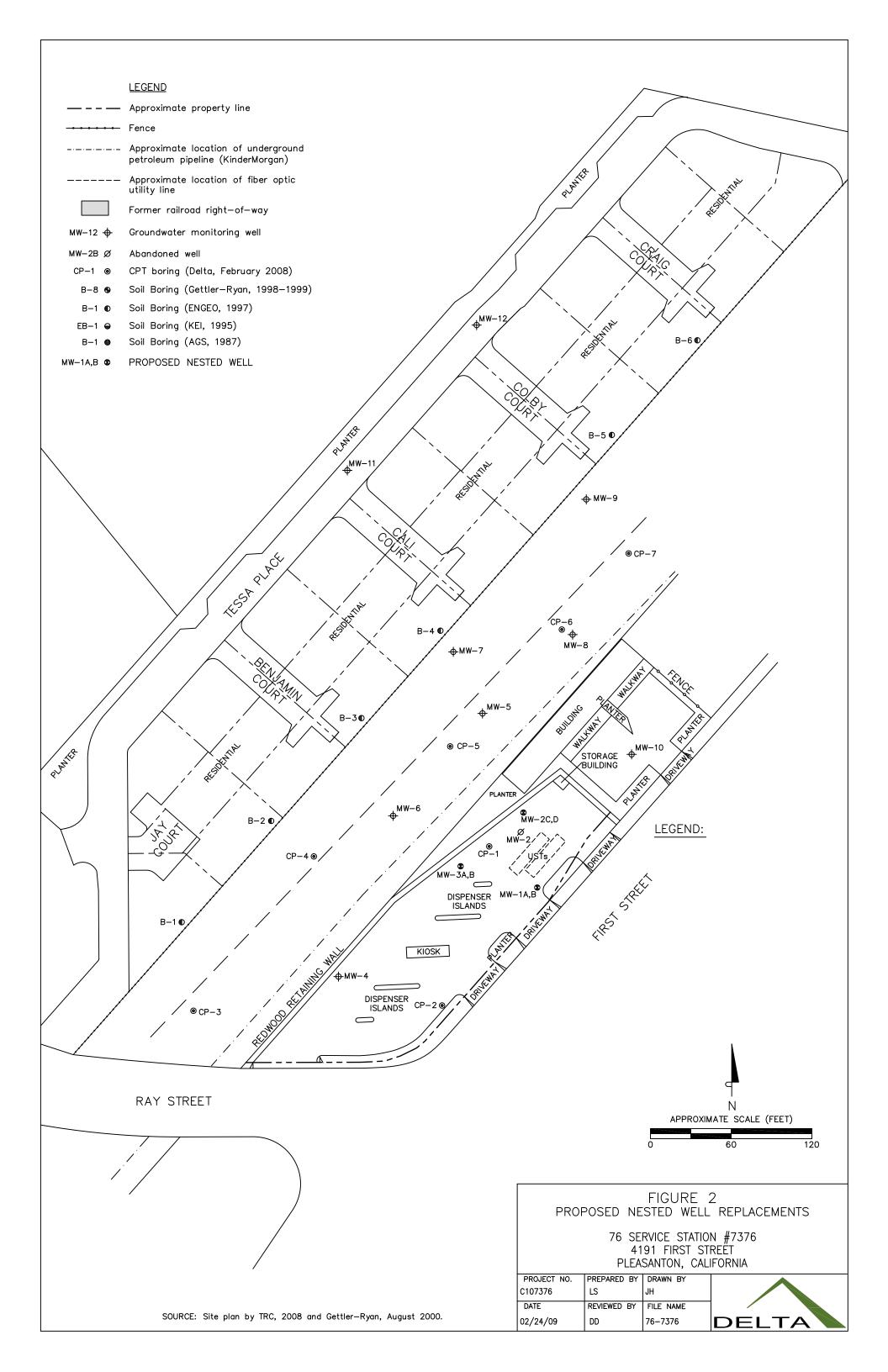
6.0 REPORTING

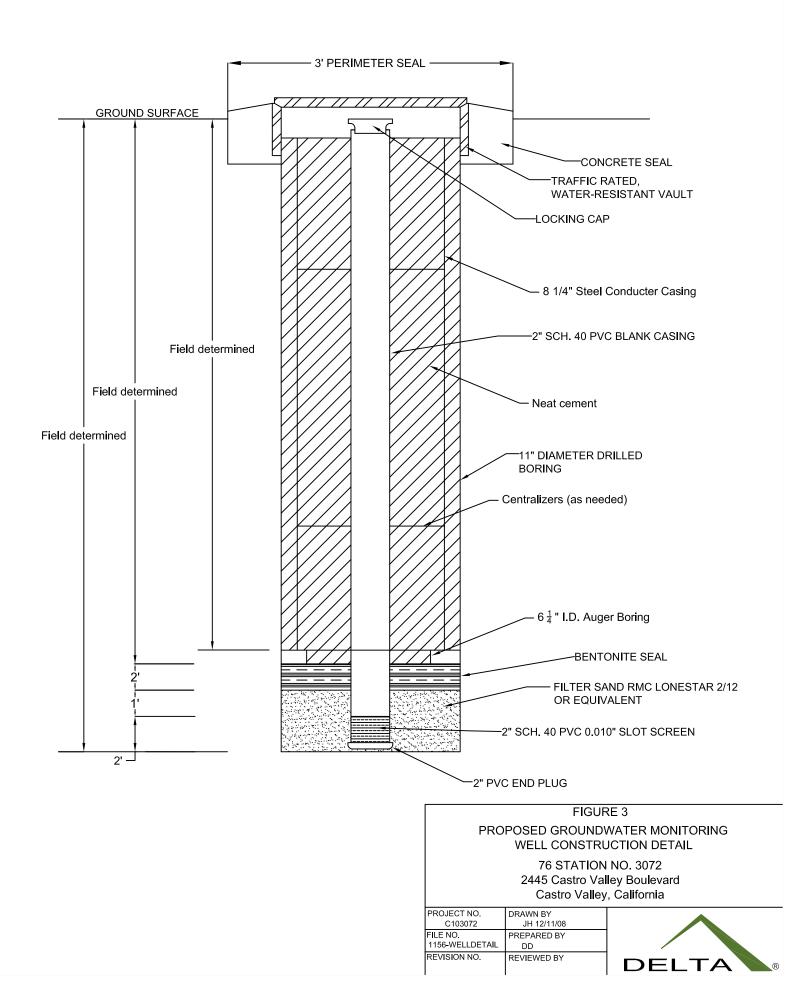
Anticipated schedule of work includes:

- 1st Q 09: Workplan submitted to ACEH
- 2nd Q 09: Comments to workplan received from ACEH
- Proceed with field work within 90 days of receipt of ACEH comments

Following completion of the field work and receipt of analytical results, a site investigation report will be prepared and submitted within 60 days. The report will present the details of the boring activities, including copies of boring permits, and details of disposal activities and copies of disposal documents. Required electronic submittals will be uploaded to the State Geotracker and Alameda County databases.


7.0 REMARKS


The recommendations contained in this report represent Delta's professional opinions based upon the currently available information and are arrived at in accordance with currently acceptable professional standards. This report is based upon a specific scope of work requested by the client. The Contract between Delta and its client outlines the scope of work, and only those tasks specifically authorized by that contract or outlined in this report will be performed. This report is intended only for the use of Delta's Client and anyone else specifically listed on this report. Delta will not and cannot be liable for unauthorized reliance by any other third party. Other than as contained in this paragraph, Delta makes no express or implied warranty as to the contents of this report. If you have questions regarding this report, please contact John Reay at (916) 503-1260 or Terry Grayson at 916-558-7666.


Sincerely,

DELTA CONSULTANTS

FIGURES

ATTACHMENT A

Delta's May 2008 Soil and Groundwater Investigation Report

May 20, 2008

Mr. Jerry Wickham Hazardous Materials Specialist Alameda County Health Care Services 1131 Harbor Bay Parkway Alameda, California 94502

SOIL AND GROUNDWATER INVESTIGATION REPORT

76 Service Station No. 7376 4191 First Street Pleasanton, California

Dear Mr. Wickham:

On behalf of ConocoPhillips Company (COP), Delta Consultants (Delta) has prepared this *Soil and Groundwater Investigation Report*. This presents the results of recent work at the above-referenced site (the site). A site location map is provided as Figure 1.

INTRODUCTION

The work was conducted in accordance with the *Revised Additional Soil and Groundwater Investigation Work Plan* by TRC dated November 21, 2005. The work plan was approved in the Alameda County Environmental Health (ACEH) letter dated November 29, 2005. The scope of this investigation involved the advancement of cone penetrometer test (CPT) borings at two onsite and five offsite locations. The purpose of this work was to identify potential shallow or perched water-bearing zones and to characterize the vertical and lateral distribution of petroleum hydrocarbons in soil and groundwater. Locations of the CPT borings are shown on Figure 2 and Figure 3.

SITE BACKGROUND

SITE DESCRIPTION

The site is currently an active 76 Service Station located on the northern corner of First Street and Ray Street in Pleasanton, California (Figure 1). Current site facilities consist of a cashier's kiosk, four product dispenser islands and two 12,000-gallon double-wall fiberglass gasoline underground storage tanks (USTs). There are currently 12 active groundwater monitoring wells and one former groundwater monitoring well at and in the site vicinity. The site is bounded northwest by a former Southern Pacific Railroad right-of-way (right-of-way) currently owned by Alameda County, north and northeast by a commercial building,

Soil and Groundwater Investigation Report 76 Service Station No. 7376

southeast by First Street, and southwest by Ray Street. There is an underground KinderMorgan petroleum pipeline presently located adjacent to the northwest edge of the site. Properties in the immediate site vicinity are used for a mix of residential and commercial purposes. A Shell service station is located southeast of the site. The site is located at an approximate elevation of 366 feet above mean sea level.

SITE BACKGROUND AND ACTIVITY

Historical soil sample and groundwater monitoring and sampling analytical results are presented in Appendix A. Soil sample, boring, and well locations are shown on Figure 2.

The site was developed in 1899 as a warehouse to store grains and hay. According to a Sanborn map, an "in-ground" storage tank for oil was installed onsite in 1907. A service station was first constructed on the site in 1976. Between November 8, 1982 and February 8, 1985, the Pleasanton Fire Department (PFD) responded to five separate fuel releases at the site. The releases occurred prior to acquisition of the property by Unocal Corporation in 1988, and prior to ConocoPhillips assuming operations at the site.

<u>June 1987</u> Three exploratory soil borings, B-1, B-2, and B-3, were drilled at the site and sampled by Applied GeoSystems (AGS). Borings B-1 and B-2 were drilled to a final depth of 46.5 feet below ground surface (bgs) and B-3 was drilled to 55 feet bgs (Figure 2). Three soil samples from each boring were analyzed for total petroleum hydrocarbons as gasoline (TPH-G) and benzene, toluene, ethylbenzene, and xylenes (BTEX). In addition, a sample collected at 35 feet bgs from B-1 (sample S-35-B1) was also analyzed for total petroleum hydrocarbons as diesel (TPH-D). A sample collected at 10 feet bgs from B-3 was reported as non-detect for all analytes. The remaining samples contained petroleum hydrocarbons at concentrations ranging from 7.72 to 188.8 parts per million (ppm) of TPH-G and 0.07 to 17.1 ppm of benzene. Sample S-35-B1 also contained 1,325 ppm of TPH-D. Groundwater was not encountered in the borings.

<u>August 1987</u> One soil boring, B-4, was advanced by AGS to a total depth of 66.5 feet bgs (Figure 2). One soil sample collected at 35 feet bgs contained 100.5 ppm of TPH-G, 1.4 ppm of benzene, and 1,835 ppm of TPH-D. A second soil sample collected at 65 feet bgs was reported as non-detect for TPH-G, TPH-D, and BTEX. Groundwater was not encountered in the boring.

December 1987 AGS advanced three soil borings (B-5, B-6, B-7) to a total depth of 96.5 feet bgs and completed the borings as groundwater monitoring wells MW-1, MW-2, and MW-3 (Figure 2). The wells were completed at depths of 96.5, 85, and 96.5 feet bgs, respectively. Saturated soil was initially encountered at approximately 80 feet bgs. Two soil samples collected at 35 and 70 feet bgs in boring B-5 were reported as non-detect for TPH-G, TPH-D, and BTEX. One soil sample collected at 35 feet bgs in boring B-6 contained 15.0 ppm of TPH-G, 6,300 ppm of TPH-D and was non-detect for benzene. One soil sample collected at 70 feet bgs in boring B-6 was reported as non-detect for TPH-G, TPH-D, and BTEX. A sample collected at 55 feet bgs in boring B-7 contained 390 ppm of TPH-G, 1.3 ppm of benzene, and 220 ppm of TPH-D. A sample collected at 75 feet bgs in boring B-7 contained 5.0 ppm of TPH-G, 30.0 ppm of TPH-D, and was non-detect for BTEX. Groundwater samples collected from well MW-1, MW-2, and MW-3

contained petroleum hydrocarbon concentrations ranging from 0.0500 to 24,000 ppm of TPH-G, 0.058 to 2,600 ppm of benzene, and 0.620 to 2,300 ppm of TPH-D.

<u>December 1987</u> Four 12,000-gallon USTs were replaced with two 12,000-gallon doublewall USTs. An unknown volume of contaminated soil was reportedly removed and transported to a Class I facility. The property and facilities were sold to the Unocal Corporation in February 1988.

<u>September 1994</u> Kaprealian Engineering, Inc. (KEI) conducted soil sampling services during a dispenser and product piping upgrade at the site. A total of twelve trench soil samples were collected at approximately 3 feet bgs. Petroleum hydrocarbons were detected in the samples at concentrations ranging from non-detect to 8,900 ppm of TPH-G, and non-detect to 65 ppm of benzene. Upon receipt of the analytical data, overexcavation was conducted in the area of two soil samples with elevated hydrocarbon concentrations. Three soil samples were collected at approximately 9 feet bgs. The two overexcavation samples were reported to contain 13 and 17 ppm of TPH-G and 0.020 to 0.029 ppm of benzene. The third soil sample, collected laterally between the two overexcavation samples, contained 4,400 ppm of TPH-G and 29 ppm of benzene.

<u>February 1995</u> KEI destroyed monitoring well MW-2 and advanced two soil borings (MW-2B and EB-1). Boring MW-2B was completed as a monitoring well. Well MW-2 was destroyed due to asphalt tar being introduced into the well casing during repaving activities at the site. Soil boring EB-1 was drilled to a total depth of 66 feet bgs and well MW-2B was drilled and constructed to a total depth of 91 feet bgs (Figure 2). A total of twenty-nine soil samples were collected during boring EB-1 and MW-2B drilling activities. Samples collected from 5 to 50 feet bgs from EB-1 contained petroleum hydrocarbon concentrations ranging from 27 to 15,000 ppm of TPH-G, 0.29 to 340 ppm of benzene, and 55 to 3,600 ppm of TPH-D. Samples collected from 55 to 65 feet bgs from EB-1 contained petroleum hydrocarbon concentrations ranging from 27 to 15,000 ppm of TPH-G, non-detect to 6.4 ppm of TPH-G, non-detect to 0.89 ppm of benzene, and non-detect for TPH-D. Soil samples collected from 5 to 65 feet bgs in well boring MW-2B contained petroleum hydrocarbons concentrations ranging from 1.0 to 720 ppm of TPH-G, non-detect to 9.5 ppm of benzene, and non-detect to 2,400 ppm of TPH-D. Soil samples collected from 70 to 80 feet bgs in well boring MW-2B were reported as non-detect for TPH-G, BTEX, and TPH-D.

Enviros was contracted to complete a Phase I Environmental Site Assessment for the site in early 1995.

July 1996 KEI advanced three soil borings and completed them as groundwater monitoring wells MW-4, MW-5 and MW-6 to total depths of 73.5 to 93 feet bgs. Well MW-4 was installed onsite and wells MW-5 and MW-6 were installed offsite on the former Southern Pacific Railroad right-of-way (Figure 2). A total of forty-seven soil samples were collected from the well borings and analyzed for TPH-G, BTEX, and fuel fingerprinting. Soil samples from well boring MW-4 contained low concentrations of petroleum hydrocarbons ranging from non-detect to 47 ppm of TPH-G, non-detect to 0.27 ppm of benzene, and non-detect to 15 ppm of TPH-D. Soil samples collected in the upper 50 feet of well boring MW-5 were reported as non-detect for TPH-G and TPH-D, and contained benzene in concentrations ranging from non-detect to 0.038 ppm. Samples collected between 55 and 65 feet bgs in MW-5 contained petroleum hydrocarbon concentrations ranging from 32 to 560 ppm of TPH-G, 0.28 to 3.9 ppm of Soil and Groundwater Investigation Report 76 Service Station No. 7376

benzene, and non-detect to 450 ppm of TPH-D. Samples collected from MW-6 contained petroleum hydrocarbon concentrations ranging from non-detect to 5.0 ppm of TPH-G, non-detect to 1.2 ppm of benzene, and non-detect for TPH-D except for 200 ppm detected at 55 feet bgs. Petroleum hydrocarbon concentrations in the range of kerosene, motor oil, and unidentified extractable hydrocarbons were also identified in the samples collected from the well borings.

<u>June 1997</u> Separate phase hydrocarbons (SPH) were identified in well MW-5 during quarterly monitoring activities.

<u>December 1997</u> Entrix Inc. conducted a forensic geochemical analysis on SPH extracted from well MW-5. The SPH was probably composed of a mixture of over 50% refined gasoline and heavier hydrocarbons. The gasoline constituents appeared to be relatively fresh. The heavier hydrocarbon mixture had a carbon distribution ranging from about C13 to C33. This distribution is similar in nature to a very weathered crude oil or Bunker C fuel, not refined petroleum products such as diesel #2, motor oil, lube oil, etc.

June/August 1998 Five onsite soil borings (B-8 through B-12) were advanced and two offsite downgradient groundwater monitoring wells (MW-7, MW-8) were installed by Gettler Ryan, Inc. (GR) (Figure 2). A total of forty soil samples were collected from the soil and well borings and analyzed for TPH-G, BTEX, methyl tertiary butyl ether (MTBE), TPH-D, and total petroleum hydrocarbons as oil (TPH-O). Petroleum hydrocarbon concentrations in the soil samples range from non-detect for all analytes for soil boring B-8 and well boring MW-7, to a maximum of 1,700 ppm of TPH-G and 21 ppm of benzene (B-12 at 37.5 feet bgs), 14,000 ppm of TPH-D, 2.6 ppm of MTBE (B-12 at 28.5 feet bgs), and 5,200 ppm of TPH-O (B-11 at 10.5 feet bgs). Elevated concentrations of petroleum hydrocarbons were concentrated at 24.5 and 31 feet bqs in boring B-10, from the surface to 61 feet bgs in boring B-11, at 28.5, 37.5 and 47 feet bgs in boring B-12, and at 45.5 feet bgs in well boring MW-8. In addition, two soil samples containing visible free product were collected from boring B-11 (near the former UST excavation) at 10.5 and 61 feet bgs and submitted to Global Geochemistry Corp. for hydrocarbon fingerprinting chemical analysis. The results of these analyses was that the free product from both samples was composed of approximately 90% highly to severely weathered semi-volatile and high boiling components identified as crude oil and 10% of slightly weathered gasoline.

<u>October-November 2000</u> GR advanced one offsite soil boring (B-13) and advanced and installed two offsite groundwater monitoring wells (MW-9, MW-10). A total of twenty eight soil samples were collected from the soil and well borings and analyzed for TPH-G, BTEX, and MTBE. Soil samples collected from well boring MW-9 between 16 and 60.5 feet and boring B-13 between 85.5 and 126 feet bgs were reported as non-detect for all analytes. Some soil samples collected from well boring MW-10 contained TPH-G, benzene, unidentified hydrocarbons with a carbon range of C6 to C12, and MTBE. Nine soil samples collected from boring B-13 between 7.5 and 73.5 feet bgs contained TPH-G, unidentified hydrocarbons with a carbon range of greater than C10, benzene, and MTBE. Grab groundwater samples were collected from boring B-13 contained 150 and 620 ppb TPH-G, 17 and 53 ppb benzene, and 3.5 and 3.7 ppb MTBE, respectively. Groundwater sample G-1, collected from well boring MW-9 at 55 feet bgs, contained 66

Soil and Groundwater Investigation Report 76 Service Station No. 7376

ppb MTBE. The groundwater sample collected at 90 feet bgs from well boring MW-10 contained 34 ppb MTBE. The groundwater sample collected at 95 feet bgs from well boring MW-10 contained 230 ppb TPH-G and 54 ppb MTBE.

Five soil samples collected from well boring MW-9 between 16 and 60.5 feet bas were reported as non-detect for all analytes. Nine soils samples were collected from well boring MW-10 between 5.5 and 90.5 feet bgs. These soil samples were reported as nondetect for all analytes except for 9.7 ppm TPH-G, 0.035 ppm benzene, and 240 ppm TPH-G and unidentified hydrocarbons with a carbon range of C6 to C12 at 38 feet bgs, and 0.71 ppm benzene and 1.2 ppm MTBE by United States Environmental Protection Agency (EPA) Method 8020. Five samples collected from boring B-13 between 85.5 and 126 feet bgs were reported as non-detect for all analytes. Nine soil samples collected from boring B-13 between 7.5 and 73.5 feet bgs contained petroleum hydrocarbons at concentrations ranging from non-detect to 14,000 ppm TPH-G and unidentified hydrocarbons with a carbon range of greater than C10 (at 28 feet bgs), non-detect to 100 ppm benzene (at 28 feet bgs), and non-detect to 0.18 ppm MTBE (at 57 feet bgs). Grab groundwater samples were collected from each of the borings. Groundwater samples B-13-128.5 and B-13-133, collected at 128.5 and 133 feet bgs from boring B-13, contained 150 and 620 ppb TPH-G, 17 and 53 ppb benzene, and 3.5 and 3.7 ppb MTBE, respectively. Groundwater sample G-1, collected from well boring MW-9 at 55 feet bgs, contained 66 ppb MTBE and was reported as non-detect for TPH-G and MTBE. Groundwater sample MW-10-90, collected at 90 feet bgs from well boring MW-10, was reported as non-detect for TPH-G and benzene, and contained 34 ppb MTBE. Groundwater sample MW-10-95, collected at 95 feet bgs from well boring MW-10, was reported as non-detect for benzene, and contained 230 ppb TPH-G and 54 ppb MTBE.

<u>September 2001</u> Two offsite soil borings were drilled by GR and completed as groundwater monitoring wells MW-11 and MW-12. The wells were installed to total depths of approximately 86 and 88 feet bgs, respectively. Soil samples were reported as non-detect for all analytes. A grab groundwater sample collected from a perched groundwater zone at 40 feet bgs in well boring MW-12 was reported as non-detect for TPH-G, BTEX, and MTBE.

October 2003 Site environmental consulting responsibilities were transferred to TRC.

October 2007 Site environmental consulting responsibilities were transferred to Delta.

Four onsite wells (MW-1, MW-2B, MW-3 and MW-4) and eight offsite wells (MW-5 through MW-12) have been monitored and sampled quarterly from December 1994 to the present. SPH was not present in onsite or offsite wells during the most recent groundwater monitoring and sampling event conducted on December 27, 2007. SPH was present in the casing of well MW-2B during the previous quarter and has been present periodically in well MW-5 since June 1997. Previous analysis of the SPH showed it contained a mixture of refined gasoline and heavy hydrocarbons. Excluding MW-5, petroleum hydrocarbon concentrations in the groundwater onsite and offsite have ranged from non-detect to 41,000 ppb TPH-G, non-detect to 3,200 ppb benzene, non-detect to 12,200 ppb MTBE, and non-detect to 4,380 ppb TPH-D. Depth to groundwater has fluctuated from approximately 45.83 to 92.23 feet below TOC. Groundwater flow has ranged from south to northwest with a hydraulic gradient of approximately 0.07 to 0.2 feet/foot.

GEOLOGY AND HYDROGEOLOGY

The subject site is located at the base of the northwest end of the Valle De San Jose. The site is underlain by Holocene age coarse-grained alluvium interpreted to be alluvial fan deposits. These deposits are composed of unconsolidated, well bedded, moderately sorted, permeable sand and silt, with coarse sand and gravel becoming abundant toward fan heads and in narrow canyons. The site is located approximately 1,000 feet west and north of Pliocene and/or Pleistocene non-marine sedimentary Livermore Gravel.

Previous subsurface studies conducted by AGS, KEI, and GR show the site is underlain by alluvium to a maximum explored depth of 135.5 feet bgs. The alluvium consists of interbedded layers of silt, sand, clay and gravel in both the vadose and saturated zones.

Groundwater has historically been reported at approximately 67.15 to 87.49 feet below TOC in wells MW-1, MW-2B, MW-3, MW-4, and MW-6. Groundwater in well MW-5 has historically been reported at 49.63 to 70.40 feet below TOC. Groundwater in well MW-5 and nearby wells MW-7, MW-8, and MW-9 have historically appeared "perched" and unconfined. Water table elevations in well MW-5 are generally 15 feet higher than nearby well water table elevations (wells MW-6 and MW-2B). The difference in the groundwater elevations may be a result of lithologic or structural constraints, possibly some offset or displacement in the soils beneath the site in the area between MW-2B and MW-5. The encountered water-bearing zone(s) appear to be unconfined. A review of Alameda County Flood Control and Water Conservation District - Zone 7 (Zone 7) (1993) groundwater data show the regional groundwater flow direction in the vicinity of the site is northwest. The nearest surface water is Arroyo Valle, located approximately 700 feet northwest of the site.

The groundwater flow direction is variable across the site. From the well gauging results during the most recent groundwater monitoring and sampling event conducted on December 27, 2007, the groundwater flow direction ranges from south at a calculated hydraulic gradient of 0.07 ft/ft to northwest at 0.07 ft/ft. A graph of historic groundwater flow directions is presented in this report as Appendix B.

SENSITIVE RECEPTORS

In January 1988, a well survey was conducted by reviewing Zone 7 files. Five water wells and two cathodic protection wells were identified within one-half mile of the site. Four of the five water wells are domestic wells, and one well appears to be a monitoring well. The nearest surface water is Arroyo Valle, located approximately 700 feet northwest of the site.

REMEDIATION STATUS

Remediation is not currently being conducted at the site. However, bi-monthly SPH gauging and recovery from well MW-5 was implemented in the Second Quarter 2006. Recently, the SPH gauging and recovery efforts were reduced to a quarterly schedule, concurrent with monitoring and sampling. Since December 7, 2007, approximately 0.09 gallons of SPH have been recovered from MW-5.

CHARACTERIZATION STATUS

From the analytical results for both soil and groundwater samples collected to date, the primary contaminant appears to be gasoline (BTEX constituents and MTBE).

The analytical results of the groundwater samples collected from the monitoring wells at and in the vicinity of the site show that concentrations of petroleum hydrocarbons are present in shallow groundwater beneath and downgradient of the site. Free product has been detected in well MW-5 since September 1999, and reportedly is composed of a mixture of crude oil and gasoline.

From previous subsurface investigations conducted at the site the vertical and lateral extent of petroleum hydrocarbon impact to soil is defined. The first encountered groundwater beneath and downgradient of the site has been impacted by petroleum hydrocarbons. Petroleum hydrocarbons in groundwater have been defined laterally in the crossgradient and downgradient direction. Although the plume extends offsite, it appears to be stable in its current configuration, based upon analytical results from the network of groundwater monitoring wells.

Geologic and hydraulic data generated during this and previous investigations suggest the hydrogeologic conditions responsible for the elevated or perched water table identified in wells MW-5 MW-7, MW-8, MW-9, MW-11, and MW-12 are possibly a result of the discontinuous nature of the alluvial fan deposit or some small offset or displacement of the soils beneath the site. Physical evidence of a possible fault has not been identified.

Groundwater data from the grab and quarterly groundwater samples show that petroleum hydrocarbons are present in groundwater at low concentrations downgradient and crossgradient (north and northeast) of the site such that the extent of impacts from petroleum hydrocarbons is defined in these directions. The vertical extent is most complex, given the imbricated potentiometric surface demonstrated at the site.

SCOPE OF WORK

The following tasks were conducted in completing the scope of work.

- Conducted utility clearance and obtained a drilling permit from Zone 7;
- Advanced seven borings by CPT to 90 feet bgs or until deep groundwater was encountered, with the initial five feet cleared by airknife technology;
- Measured volatile organic compounds (VOCs) in soil samples using a photoionization detector (PID) as a screening method to evaluate soil contamination in the soil column;
- Using the CPT logs, collected depth discrete grab groundwater samples from each borehole where groundwater was encountered;
- Submitted select soil samples and each groundwater sample for laboratory analysis;
- Uploaded analytical laboratory data into the State of California Geotracker System per requirements of AB 2886; and
- Arranged for disposal of generated waste materials.

PRE-FIELD ACTIVITIES

Prior to initiation of field activities, Delta produced a Health and Safety Plan (HASP) in accordance with Title 8, Section 5192 of the California Code of Regulations. The HASP contains a list of emergency contacts, as well as a hospital route map to the nearest emergency facility, and was reviewed daily by field personnel. Each boring location was marked and Underground Service Alert (USA) was contacted at least 48 hours prior to drilling operations to mark underground utilities. A private utility locator was also retained to mark underground utilities and further minimize the risk of damaging utilities. The first five feet of the boreholes wAS cleared with airknife technology before drilling began to ensure that no underground utilities were present. Delta obtained the necessary drilling permit from Zone 7 for the CPT borings (Appendix C).

CPT INVESTIGATION

Seven boring locations (CP-1 through CP-7) were drilled by Gregg Drilling and Testing, Inc. (Gregg) using a CPT rig. CP-1 and CP-2 were located onsite, and CP-3 through CP-5 were located in the adjacent right-of-way (Figure 3). The offsite locations were moved from their proposed locations due to vegetation, a steep slope and drainage patterns in the proposed area. CP-1 through CP-5 were advanced on February 18-22, 2008, and CP-6 and CP-7 were advanced on February 25-26, 2008. Two to three boreholes were advanced for each soil boring location. The initial borehole was drilled to provide a CPT log of subsurface lithology. The second borehole was drilled to collect soil samples for identification and laboratory analysis, and to collect a "deep" depthdiscrete groundwater sample. A third borehole was drilled to collect a "shallow" depthdiscrete groundwater sample, if encountered. Soil samples from just above first water and soil samples with high PID values or changes in lithology were submitted to a California-certified analytical laboratory for analysis along with groundwater samples collected. When the sampling was completed, the borings were backfilled with neat cement to approximately one foot bqs. The boreholes were then capped with concrete dyed to match the existing surface for the onsite locations, and were covered with the surrounding soil and gravel for the offsite locations.

Soil samples were collected using a direct push piston sampler. A sealed piston was advanced within the core barrel of the CPT to the desired sample depth. The piston was opened and driven to further depth to collect a soil sample at which time the piston assembly was removed and the soil sample recovered. A sample tube from certain depths was sealed with Teflon tape and plastic end caps, and then placed on ice pending transport under chain-of-custody protocol to BC Labs for analysis. The remaining soil collected from the sample tubes was used for field screening and lithologic description purposes. Soil samples from each sample interval were field screened for the presence of VOCs using a PID. The PID measurements were recorded on the soil boring log by the field geologist. All samples were logged by a field geologist using the Unified Soil Classification System (USCS) per ASTM D-2488. Boring logs are presented as Appendix D.

Pore pressure dissipation tests were conducted in each boring, generally when the pore pressure decreased below 0 pounds per square inch. Most of the pore pressure dissipation tests oscillated and did not level off after 10 to 15 minutes. A few of the pore pressure dissipation tests did level off; however, these tests were generally not reliable indicators of the presence of groundwater in the subsurface formation. The

graphs of the pore pressure dissipation tests are provided in Gregg's CPT Report (Appendix E).

Groundwater sampling was generally attempted when soil samples were collected that were wet or saturated. In a majority of the boreholes, "shallow" screened intervals were set up where saturated soil samples were collected; however, the formations did not yield enough groundwater, if any, to sample, except in CP-4. "Deep" groundwater samples were collected from each boring except for CP-5 where not enough groundwater flowed into the temporary well screen to collect a sample. In CP-7, the deep groundwater sample was labeled "mixed" because it was collected after drilling past a shallower zone of saturation into a deeper zone of saturation so there was a chance that groundwater from the two depths mixed within the borehole.

Groundwater samples were collected using a hydropunch. A closed screen sampler assembly was driven with the outer tube casing in place. When the desired groundwater sample depth was reached, the outer casing was retracted to expose the screen to groundwater. A small-diameter bailer was then lowered through the drill casing and a groundwater sample collected. The expendable drive point was left in place when the drill casing and sampling assembly were removed. "Deep" depthdiscrete groundwater samples were collected at screen intervals ranging from 75-78 feet bqs (CP-6) to 95-100 feet bqs (CP-2). A "shallow" depth-discrete groundwater sample for CP-4 was collected at a screen interval of 63-68 feet bgs. A "mixed" depthdiscrete groundwater sample for CP-7 was collected at a screen interval of 72-77 feet bgs. It was attempted to collect separate shallow and deep groundwater samples in the third borehole of CP-7, but no groundwater flowed into the screens, which were set from 43-48 feet, 48-53 feet, 55-65 feet, and 72-77 feet bqs. The screen intervals where groundwater samples were collected are noted on the boring logs (Appendix D). A CPT report produced by Gregg is provided as Appendix E.

Each groundwater sample was decanted into 40-milliliter vials containing hydrochloric acid as a preservative and a liter unpreserved amber bottle. The groundwater samples were then immediately placed on ice pending transport under chain-of-custody protocol to BC Labs for analysis.

SUBSURFACE CONDITIONS

A Delta field geologist examined soil samples from each of the seven borings in conjunction with the corresponding CPT log when classifying soil type and thickness. In general, the CPT log was not very accurate compared to the geologist's classification of soil samples obtained from the corresponding depths. The CPT log was used to determine the depths of unit contacts instead of the soil type. Based on soil classification by the field geologist, soil encountered during drilling consisted of alternating layers of clay and sand units except for CP-5, where all of the soil logged was clay or silt. Each of the boreholes contained clay and silt from a depth of 5 feet to 15 feet bgs except for CP-1, which contained clay at 5 feet bgs. From 15 feet to 50 feet bas, six of the seven boreholes contained from one to three sand layers interbedded between clay layers. From 50 feet to 60 feet bos, each of the boreholes contained a clay layer. The clay layer continued to the maximum depth explored in four of the boreholes and transitioned to a sand layer in the other three boreholes. The maximum explored depths for collecting soil samples ranged from 55 feet bgs in CP-5 to 90 feet bgs in CP-3.

Soil and Groundwater Investigation Report 76 Service Station No. 7376

Initial groundwater was encountered in each CPT boring, with the depth estimated from saturated soil samples. Static groundwater was measured in four boreholes; in three boreholes (CP-1, CP-3, and CP-5) depth to first water was estimated. In CP-1 and CP-3 this was due to the depth-to-water meter not functioning properly. In CP-5, not enough water flowed into the temporary well screen to be able to measure a static water level. First water in CP-1, CP-3 and CP-5 ranged between depths estimated to be 94.7 feet bqs in CP-2, 75 feet bqs in CP-1, and 95.7 feet bqs in CP-5.

In the four boreholes CP-2, CP-4, CP-6 and CP-7, both first water and static water depths were measured. In the CP-2 borehole, first water was encountered at 94.7 feet bgs and rose to a static level of 88 feet bgs. In CP-4, first water was encountered at 79.25 feet bgs and rose to a static level of 52 feet bgs. In CP-6, first water was estimated to be 71 feet bgs and dropped to a level of 79.5 feet bgs. In CP-7, first water was estimated to be 69 feet bgs and dropped to a level of 72.6 feet bgs.

A shallower water-bearing unit was encountered in CP-4, where first water was estimated to be 64 feet bgs and rose to a static level of 52 feet bgs.

During the CPT drilling activities, the depth to groundwater was measured in two monitoring wells. On February 26, 2008, the depth to water in MW-10 was 50.84 feet below TOC and in MW-4 it was 53.48 feet below TOC.

The CPT computer-generated logs are presented in Appendix E, and boring logs for CP-1 through CP-7 are presented in Appendix D.

LABORATORY ANALYSIS AND RESULTS

Soil and groundwater samples were submitted under chain-of-custody protocol to BC Labs, a California-certified laboratory. The soil and groundwater samples were analyzed for TPPH, BTEX, MTBE, TBA, ethyl tertiary butyl ether (ETBE), tertiary amyl methyl ether (TAME), di-isopropyl ether (DIPE), 1,2-dichloroethane (1,2-DCA), ethylene dibromide (EDB) and ethanol by United States Environmental Protection Agency (EPA) Method 8260B, and TPH-D by EPA Method 8015M. Appendix F includes the analytical reports and chain-of-custody documentation.

SOIL LABORATORY ANALYSIS AND RESULTS

The highest PID readings measured from the collected soil samples exceeded the upper limit of the PID. Results of the soil analyses are presented in Table 1. Analyzed constituents were below laboratory reporting limits in soil samples from CP-2 through In soil samples from CP-5 through CP-7, the only analyte above laboratory CP-4. reporting limits was MTBE, which was detected from 0.020 milligrams per kilogram (mg/kg) (CP-7@54.5-55') to 0.022 mg/kg (CP-5@44.5-45' and CP-6@69.5-70'). The soil samples from CP-1, collected at five foot intervals, each contained detections of three to seven analytes. Each of the twelve CP-1 soil samples submitted for analysis (from 15 to 70 feet bgs) contained TPPH, with a maximum concentration of 640 mg/kg (24.5-25') that decreased with increasing depth. Eight of the CP-1 soil samples contained benzene, with a maximum concentration of 14 mg/kg (29.5-30'). MTBE was detected in ten of the soil samples from CP-1, with a maximum concentration of 1.3 mg/kg (29.5-30'). TPH-D was detected in soil samples from 15-55 feet bgs, with a maximum concentration of 5,000 mg/kg (29.5-30').

The certified analytical report and chain-of-custody documentation are presented in Appendix F.

GROUNDWATER LABORATORY ANALYSIS AND RESULTS

Analytical results of groundwater samples are shown in Table 2. TPPH was detected in groundwater samples from CP-1D, CP-4S, CP-6D, and CP-7M with a maximum concentration of 1500 micrograms per liter (μ g/) (CP-1D). Benzene was detected in groundwater samples from CP-1D, CP-2D, and CP-6D, with a maximum concentration of 250 μ g/l (CP-1). MTBE was detected in CP-1D, CP-2D, CP-4D, CP-6D, and CP-7M with a maximum concentration of 530 μ g/l (CP-1D). TPH-D was detected in groundwater samples from each borehole except for CP-6 and CP-7. The maximum concentration of TPH-D was 660 μ g/l (CP-1D).

The groundwater sample from CP-7 was very silty due to a small column of water coming into the hydropunch screen. The silt could have buffered the HCl in the sample vials and caused the pH to be above 2, as was noted in the laboratory report for that sample.

KINDER MORGAN PIPELINE INVESTIGATION

The *Revised Additional Soil and Groundwater Investigation Work Plan* by TRC dated November 21, 2005, stated that a 10.75-inch diameter steel pipeline that transports gasoline, diesel, and jet fuel is located adjacent to the northwest edge of the site. The pipeline's previous owner and operator was Santa Fe Pacific Pipeline Partners. The current pipeline owner is KinderMorgan Energy Partners, L.P. (KinderMorgan).

The pipeline is inspected every five years by an internal inspection device, which examines the pipe wall for anomalies resulting from internal or external corrosion or damage. The results from a May 1996 inspection found no anomalies in the pipeline. It was also indicated that no repairs or reported releases have occurred in the vicinity of the site.

Delta confirmed with KinderMorgan the current integrity of the pipeline. KinderMorgan reported that the pipeline was most recently inspected on November 15, 2004 by the internal inspection device. No anomalies were reported. The pipeline was not replaced, relocated or repaired, and the pipeline met KinderMorgan's internal management plan and Department of Transportation (DOT) requirements. There were also no releases from the 51-mile long section of the pipeline that includes the portion adjacent to the site. The next internal inspection of the pipeline is scheduled for November 15, 2009.

WASTE DISPOSAL

Drill cuttings and decontamination water generated during field activities were placed into separate, properly labeled 55-gallon Department of Transportation (DOT)-approved steel drums and stored onsite pending disposal arrangements. For waste profiling purposes, composite samples of the drill cuttings were collected and submitted to a California-certified analytical laboratory for analysis of TPPH, BTEX, MTBE, TBA, ETBE, TAME, DIPE, 1,2-DCA, EDB, and ethanol by EPA Method 8260B, TPH-D by EPA Method 8015M, and total lead by EPA Method 6010B. A decontamination water sample from the waste drums was analyzed for TPPH, BTEX, MTBE, TBA, ETBE, TAME, DIPE, 1,2-DCA, EDB, and ethanol by EPA Method 8260B and TPH-D by EPA Method 8015M. Analytical results of the composite samples are shown in Tables 1 and 2 and the analytical report is presented as Appendix F. The soil drums were removed by Filter Recycling on March 13, 2008, and transported to their facility in Rialto, California. A copy of the waste manifest is presented as Appendix G.

DISCUSSION

The area in and around boring CP-1 contains the highest concentrations of petroleum hydrocarbons in soil and groundwater detected during the CPT investigation. Based on the presence of benzene and MTBE this is likely due to a historical release from an onsite source. The petroleum hydrocarbon concentrations in soil in CP-1 are highest between 25-30 feet bgs, well above the groundwater, and decreases with depth. During logging of the soil samples from CP-1 there was evidence of what appeared to be free product within the soil pore spaces.

The soil analytical results from CP-2 through CP-7 show petroleum hydrocarbons below the laboratory detection limits; in the case of MTBE the soil analytical results were at or below 0.022 mg/kg. This indicates that there are no significant impacts to soil from petroleum hydrocarbons in the areas drilled other than at and in the vicinity of CP-1.

Groundwater samples from upgradient borings CP-6 and CP-7 showed concentrations of TPPH, benzene, and MTBE. The rose diagram (Appendix B) shows that the groundwater flow direction has not historically been in a northeast direction from the site; therefore, it is likely the petroleum hydrocarbons present in the groundwater samples from CP-6 and CP-7 are derived from an offsite source.

TPH-D was detected in the groundwater samples from CP-1 through CP-4. The 76 Station does not currently sell diesel. However, an oil tank was installed at the site in 1907 and the TPH-D present in the groundwater may be a relic of a release from this tank.

None of the groundwater samples from the CPT borings contained TPPH, benzene, or MTBE concentrations as high as the maximum concentrations detected in monitoring wells during the fourth quarter 2007 monitoring and sampling event at the site. Monitoring well MW-5 has recently contained the highest concentrations of petroleum hydrocarbons in groundwater samples from the monitoring well network. CP-5 is located in close proximity to MW-5, but there was not enough groundwater to collect a sample from CP-5. However, during drilling of CP-5 very high concentrations of petroleum hydrocarbons were noted in the drilling equipment.

One shallow groundwater sample was collected during the CPT investigation. Some of the soil samples collected at shallow depths (above 69 feet bgs) were wet or saturated. However, pore pressure dissipation tests did not reveal shallow groundwater zones, and attempts at collecting groundwater samples from the wet or saturated zones were not successful except for the zone screened from 63-68 feet bgs in CP-4. Soil samples that were wet or saturated varied between sand, clayey sand and clay. The depths that first water was encountered varied from approximately 69 feet to 95 feet bgs.

Soil and Groundwater Investigation Report 76 Service Station No. 7376

CONCLUSION

Soil samples collected from onsite boring CP-1 showed the only elevated petroleum hydrocarbon concentrations of the seven borings drilled during the CPT investigation. This indicates an onsite source and, based on the benzene concentrations that ranged up to 9.7 mg/kg, is likely a relatively recent release. However, the concentration of TPH-D present in soil samples from 14.5-55.0 feet bgs (9.9–5,000 mg/kg) may indicate an additional impact from an older release, e.g., from an oil tank installed at the site in 1907.

Groundwater samples from boring CP-1 showed concentrations of TPPH, benzene, and MTBE which, as noted above, is likely due to a historical on site release. TPH-D was detected in groundwater samples from CP-1 through CP-4, which are each located onsite. The TPH-D in these groundwater samples may be a relic of an impact from an older release as noted above.

Aside from the groundwater samples collected from boring CP-1, the highest concentrations of TPPH, benzene, and MTBE in groundwater were detected in samples collected from borings CP-6 and CP-7, located upgradient/crossgradient from the site in the right-of-way. The petroleum hydrocarbons present in these groundwater samples are most likely from a source other than the service station site. Based on the presence of petroleum hydrocarbons in groundwater samples from boring CP-7, it is recommended that a groundwater monitoring well be installed southeast of monitoring well MW-9 on the opposite side of the right-of-way.

Shallow or perched groundwater zones were not clearly evident in the CPT boreholes, except for groundwater collected from a screened interval of 63-68 feet bgs in CP-4. This may be due to complex primary sedimentary structure or secondary structures, e.g., faults.

REMARKS

The descriptions, conclusions, and recommendations contained in this report represent Delta's professional opinions based upon the currently available information and are arrived at in accordance with currently acceptable professional standards. This report is based upon a specific scope of work requested by the client. The Contract between Delta and its client outlines the scope of work, and only those tasks specifically authorized by that contract or outlined in this report were performed. This report is intended only for the use of Delta's Client and anyone else specifically listed on this report. Delta will not and cannot be liable for unauthorized reliance by any other third party. Other than as contained in this paragraph, Delta makes no express or implied warranty as to the contents of this report. If you have questions regarding this report, please contact Daniel Davis at (916) 503-1260.

Sincerely, **DELTA CONSULTANTS**

Figures:

Figure 1 – Site Location Map

Figure 2 – Site Plan with Historic Boring Locations

Figure 3 – Site Plan with CPT Boring Locations

Tables:

Table 1 – Soil Analytical Results

Table 2 – Groundwater Analytical Results

Appendices:

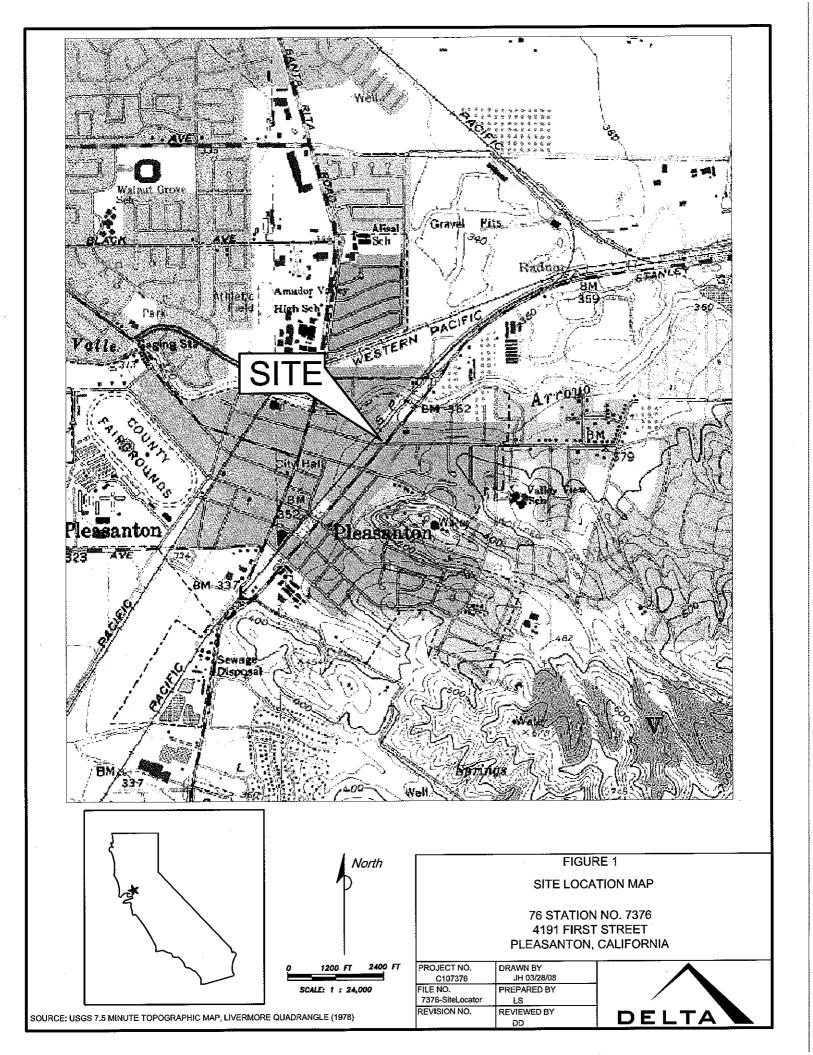
Appendix A – Historical Soil and Groundwater Analytical Data

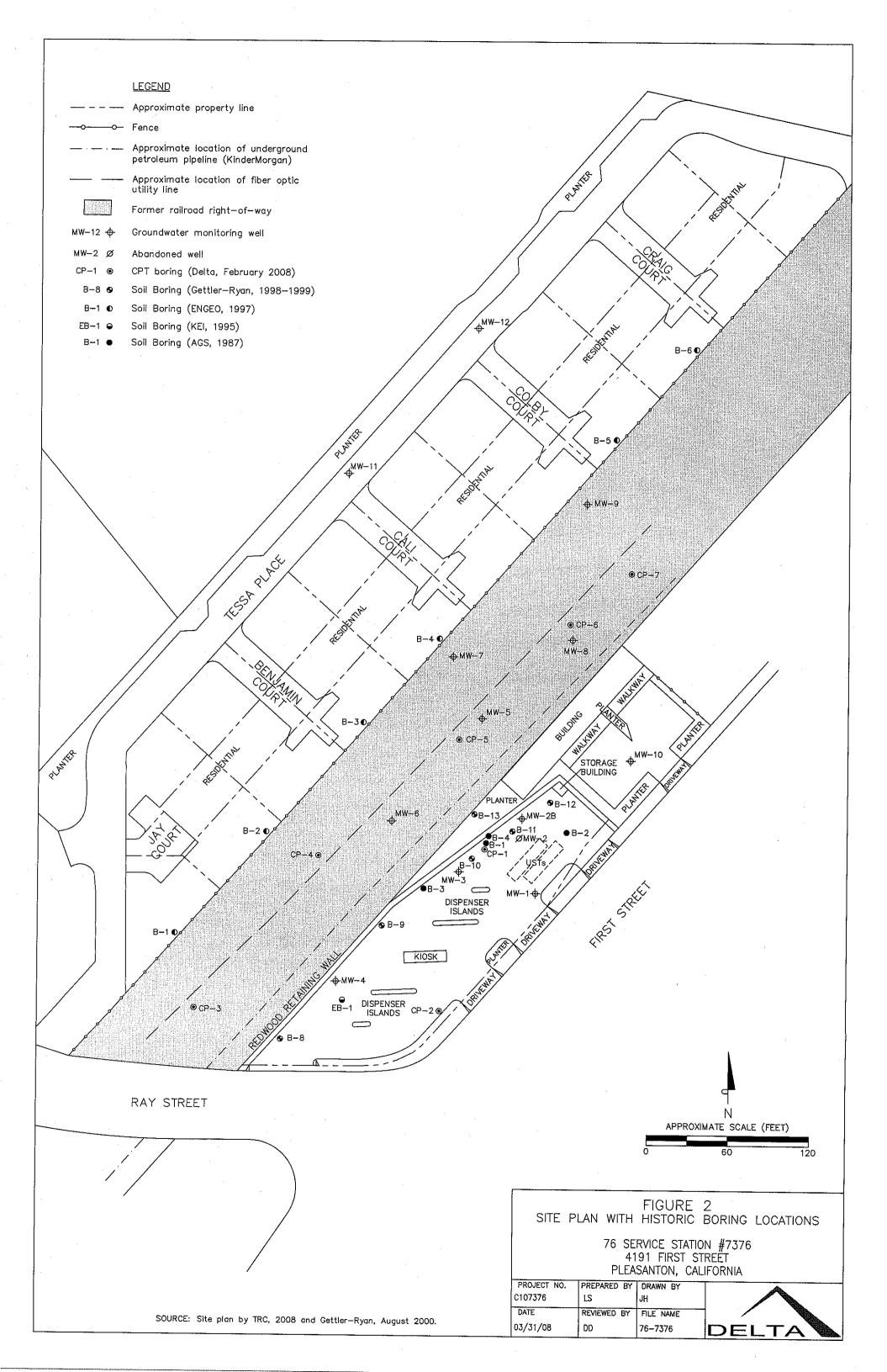
Appendix B – Rose Diagram of Historic Groundwater Flow Directions

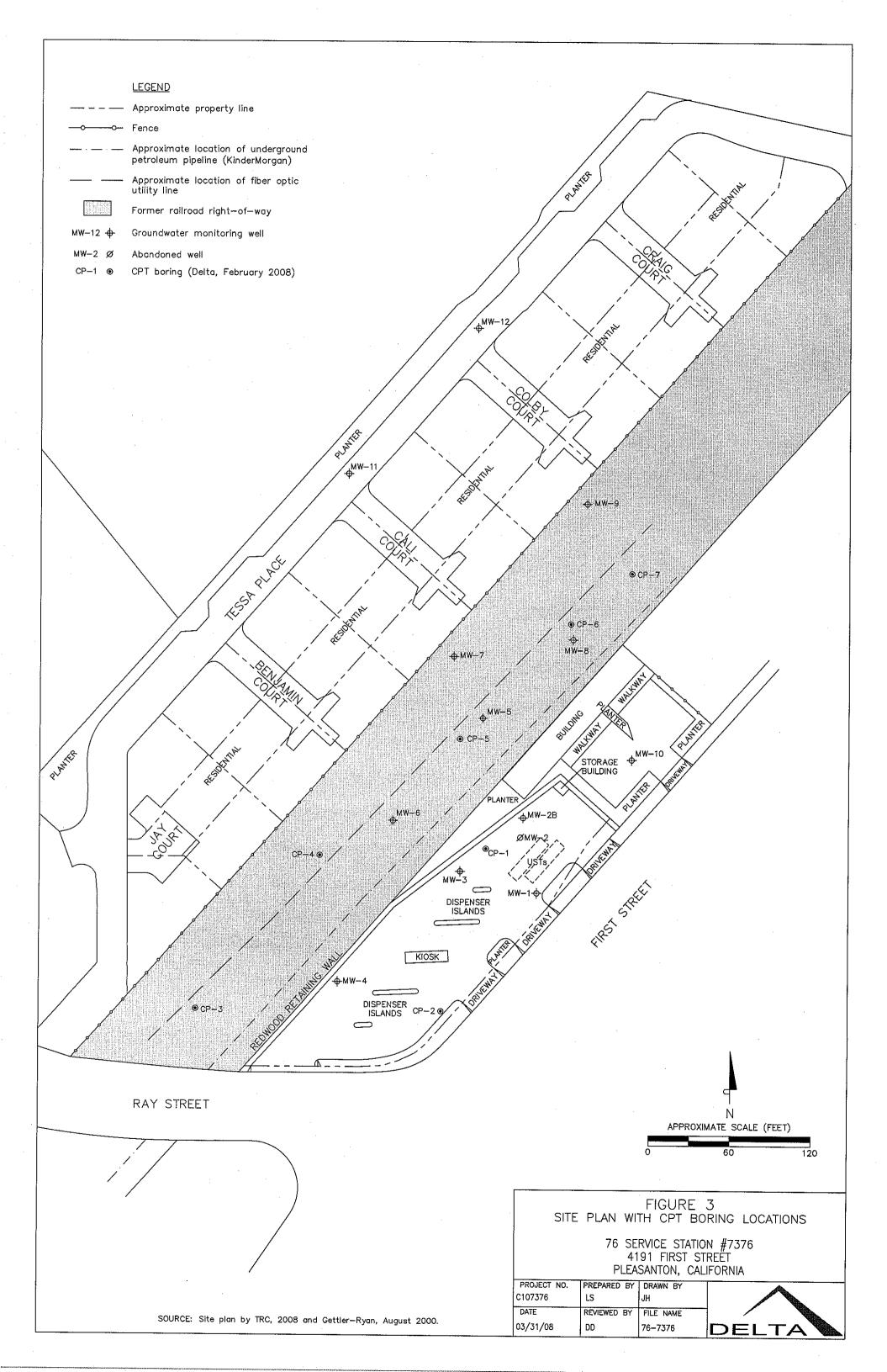
Appendix C – Drilling Permit

Appendix D – Boring Logs

Appendix E – Gregg Drilling CPT Report


Appendix F – Certified Laboratory Analytical Reports and Chain-of-Custody Documentation


Appendix G – Waste Manifest


cc:

Mr. Bill Borgh – ConocoPhillips (electronic copy only) Mr. Delong Liu – 76 Station No. 7376 (hard copy) Mr. Wyman Hong – Zone 7 Water Agency (electronic copy)

FIGURES

TABLES

TABLE 1

SOIL ANALYTICAL RESULTS ConocoPhillips Station No. 7376 4191 First Street, Pleasanton, California

Unitaria	Sample ID	Date	Sample Depth	тррн	Benzene	Toluene	Ethyl- benzene	Total Xylenes	мтве	TBA	ETBE	TAME	DIPE	1,2-DCA	EDB	Ethanol	TPH-D	Total Lea
CPT Solil Solid CPT Solil Solid Solid<				(ma/ka)	(mg/kg)	(ma/ka)	1	•	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
CPT-16 145-15 0.44 0.18 NP-0.0050 NP-0.0050 NP-0.0050 NP-0.0050	CPT Soil																	
CP:10 145:15 0.64 0.18 NP-0.0050 NP-0.050	Samples										Į							
CP-10 195-20 448 2.7 0.666 0.77 0.36 1.8 NP-0.50 NP-0.505 NP-0.255 NP-0.25		2/18/2008	14.5-15	0.64	0.18	ND<0.0050	ND<0.0050	ND<0.010	0.29	0.36	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<1.0	3100	
CP-102 245-25 640 4.5 Nb-0.50 16 1.2 Nb-0.50 Nb-0.10 Nb-0.10 Nb-0.10 Nb-0.25				48	2.7	0.066	0.77	0.36	0.51	ND<0.50	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<10	140	
CP-10/295-30 Z1/12/2008 295-30 470 14 NP-1.0 NP-0.025 NP		2/18/2008	24.5-25	640	4.5	ND<0.50	16	1.2	ND<0.50	ND<5.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<100	220	
CP-10 345-35 370 3.8 NP-0.25 NP-0.26 NP-0.26 NP-0.26 </td <td></td> <td>2/18/2008</td> <td>29.5-30</td> <td>470</td> <td>14</td> <td>ND<1.0</td> <td>14</td> <td>6.6</td> <td>1.3</td> <td>ND<10</td> <td>ND<1.0</td> <td>ND<1.0</td> <td>ND<1.0</td> <td>ND<1.0</td> <td>ND<1.0</td> <td>ND<200</td> <td>5000</td> <td></td>		2/18/2008	29.5-30	470	14	ND<1.0	14	6.6	1.3	ND<10	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<200	5000	
CP+10339-540 Z18/2008 93-540 360 9.7 ND< ND ND ND ND <t< td=""><td></td><td>2/18/2008</td><td>34.5-35</td><td>370</td><td>3.8</td><td>ND<0.25</td><td>8.1</td><td>4.2</td><td>ND<0.25</td><td>ND<2.5</td><td>ND<0.25</td><td>ND<0.25</td><td>ND<0.25</td><td>ND<0.25</td><td>ND<0.25</td><td>ND<50</td><td>300</td><td></td></t<>		2/18/2008	34.5-35	370	3.8	ND<0.25	8.1	4.2	ND<0.25	ND<2.5	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<50	300	
CP-L@ 445-45 Z18/2008 44.5-45 61. ND<0.010 ND<0.005 ND<0.0050		2/18/2008	39.5-40	360	9.7	ND<0.25	5.5	7.4	0.76	ND<2.5	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<50	570	
CP-1値 45-50 2/15/2008 49.5-50 1.6 0.0-66 N>0 0.00050 N<0<0.0050 N<0<0.0050 <thn< td=""><td></td><td></td><td>44.5-45</td><td>61</td><td>ND<0.010</td><td>ND<0.010</td><td>ND<0.010</td><td>ND<0.020</td><td>0.075</td><td>0.26</td><td>ND<0.010</td><td>ND<0.010</td><td>ND<0.010</td><td>ND<0.010</td><td>ND<0.010</td><td>ND<2.0</td><td>920</td><td></td></thn<>			44.5-45	61	ND<0.010	ND<0.010	ND<0.010	ND<0.020	0.075	0.26	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<2.0	920	
CP-16 593-50 C2/17 0.033 NU-C.0055 NU-C.0055 <td></td> <td></td> <td>49.5-50</td> <td>1.6</td> <td>0.066</td> <td>ND<0.0050</td> <td>ND<0.0068</td> <td>ND<0.010</td> <td>0.29</td> <td>0.43</td> <td>ND<0.0050</td> <td>ND<0.0050</td> <td>ND<0.0050</td> <td>ND<0.0050</td> <td>ND<0.0050</td> <td>ND<1.0</td> <td>130</td> <td></td>			49.5-50	1.6	0.066	ND<0.0050	ND<0.0068	ND<0.010	0.29	0.43	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<1.0	130	
CP-1@ 59.5-60 2/18/2008 59.5-60 0.27 0.033 ND<0.0050 ND <0.0050 ND<0.0050 ND <0.0050 ND <0.0050 <td>CP-1@ 54.5-55'</td> <td>2/18/2008</td> <td>54.5-55</td> <td>1.4</td> <td>ND<0.0050</td> <td>ND<0.0050</td> <td>ND<0.0050</td> <td>ND<0.010</td> <td>0.28</td> <td>0,40</td> <td>ND<0.0050</td> <td>ND<0.0050</td> <td>ND<0.0050</td> <td>ND<0.0050</td> <td>ND<0.0050</td> <td>ND<1.0</td> <td>9.9</td> <td></td>	CP-1@ 54.5-55'	2/18/2008	54.5-55	1.4	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.010	0.28	0,40	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<1.0	9.9	
CP-10 69:5-70 2/19/2008 69:5-70 0.35 ND<0.0050 ND<0.0050<		2/18/2008	59.5-60	0.27	0.033	ND<0.0050	0.0058	ND<0.010	0.063	0.19	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<1.0	ND<2.0	
CP-1@ 68.5-70 2/18/2005 69.5-70 0.35 NR<0.0050	CP-1@ 64.5-65'	2/18/2008	64.5-65	0.21	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.010	0.11	0.24	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<1.0	ND<2.0	
CP 2@ 14.5-15 2/19/2008 14.5-15 ND<0.020 ND<0.0050 ND <0.0050 ND <0	CP-1@ 69.5-70'	2/18/2008	69.5-70	0.35	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.010	0.32	0.22	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<1.0	ND<2.0	
CP 2@ 14.5-15 2/19/2008 14.5-15 ND<0.020 ND<0.0050 ND <0.0050 ND <0																		
CP-2@14.5-15 2/19/2008 14.5-15 ND<0.20 ND<0.0050 ND <0.0050 ND <0.005	CP-2@ 9.5-10'	2/19/2008	9.5-10	ND<0.20	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.010	ND<0.0050	ND<0.050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<1.0	ND<2.0	
CP-2@ (15.20 2/19/2008 19:5-20 ND=0.0050 <	CP-2@ 14.5-15										ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<1.0	ND<2.0	
CP-2@ 24.5-25 2/19/2008 24.5-25 ND<0.0050				ND<0.20	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.010	ND<0.0050	ND<0.050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<1.0	ND<2.0	
CP-2@ 29.5-30 2/19/2008 29.5-30 ND<0.0050				ND<0.20	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.010	ND<0.0050	ND<0.050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<1.0	ND<2.0	
CP-2@ 34.5-35' 2/19/2008 34.5-35 ND<0.20 ND<0.005																	ND<2.0	
CP-2@ 39.5-40' 2/19/2008 39.5-40 ND<0.20 ND<0.0050 <																	ND<2.0	
CP-2@44.5-45' 2/19/2008 44.5-45 ND<0.0050																	ND<2.0	
CP-2@ 49.5-50 2/19/2008 49.5-50 ND<0.20 ND<0.0050 ND<0.0050 ND<0.0050 ND<0.0050 ND<0.0050 ND<2.0 CP-3@ 29.5-30 2/20/2008 84.5-85 ND<0.20 ND<0.0050 ND																	ND<2.0	
CP-3@ 2/20/2008 29.5-30 ND<0.20 ND<0.0050 ND<0.0																	ND<2.0	·
CP-3@ 84.5-85' 2/20/2008 84.5-85 ND<0.020 ND<0.0050	0. 200 10.000		10.0 00															1
CP-3@ 84.5-85 V/20/2008 84.5-85 ND<0.00 ND<0.0050 ND<0.005	CP-3@ 29 5-30	2/20/2008	29.5-30	ND<0.20	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.010	ND<0.0050	ND<0.050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<1.0	ND<2.0	
CP-4@ 54.5-55' 2/21/2008 54.5-55 ND<0.20 ND<0.0050 <																	ND<2.0	
CP-4@ 64.5-65 2/21/2008 64.5-65 ND<0.20 ND<0.0050 ND<0.0050 <t< td=""><td></td><td>2/20/2000</td><td></td><td></td><td></td><td></td><td> </td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		2/20/2000									1							
CP-4@ 64.5-65 ND<0.20 ND<0.0050 ND<0.0	CP-4@ 54 5-55	2/21/2008	54.5-55	ND<0.20	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.010	ND<0.0050	ND<0.050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<1.0	ND<2.0	
CP-4@ 74.5-75 2/21/2008 74.5-75 ND<0.20 ND<0.0050 ND<0.0050 ND<0.0050 ND<0.0050 ND<0.0050 ND<0.0050 ND<0.0050 ND<0.0050 ND<0.0050 ND<1.0 ND<2.0 CP-5@ 44.5-45' 2/22/2008 44.5-45 ND<0.20																	ND<2.0	
CP-6@ 34.5-35' 2/22/2008 44.5-45 ND<0.20 ND<0.0050 ND<0.0050 ND<0.0050 ND<0.010 0.022 ND<0.050 ND<0.050 ND<0.0050 ND<1.0 ND<2.0 CP-6@ 34.5-35' 2/25/2008 34.5-35 ND<0.020																ND<1.0	ND<2.0	
CP-6@ 34.5-35' 2/25/2008 34.5-35 ND<0.20 ND<0.0050 ND<0.0050 ND<0.0050 ND<0.0050 ND<0.0050 ND<1.0 ND<2.0 CP-6@ 69.5-70' 2/25/2008 69.5-70' ND<0.20		2/22/2000											1				1	
CP-6@ 34.5-35' 2/25/2008 34.5-35 ND<0.20 ND<0.0050 <	CP-5@ 44 5-45'	2/22/2008	44.5-45	ND<0.20	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.010	0.022	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.0050	ND<0.0050	ND<1.0	ND<2.0	
CP-6@ 69.5-70 Z/25/2008 69.5-70 ND<0.20 ND<0.0050 ND<0.0050 ND<0.0050 ND<0.0050 ND<1.0 ND<2.0 CP-7@ 39.5-40' 2/26/2008 39.5-40 ND<0.0050		, 11, 10, 1000											1	1				
CP-6@ 69.5-70 Z/25/2008 69.5-70 ND<0.20 ND<0.0050 ND<0.0050 ND<0.0050 ND<0.0050 ND<1.0 ND<2.0 CP-7@ 39.5-40' 2/26/2008 39.5-40 ND<0.0050	CP-6@ 34 5-35'	2/25/2008	34.5-35	ND<0.20	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.010	ND<0.0050	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.0050	ND<0.0050	ND<1.0	ND<2.0	
CP-7@ 39.5-40' 2/26/2008 39.5-40 ND<0.20 ND<0.0050 <																		
CP-7@ 54.5-55 2/26/2008 54.5-55 ND<0.20 ND<0.0050							1		+									
CP-7@ 54.5-55' 2/26/2008 54.5-55 ND<0.20 ND<0.0050	CP-7@ 39.5-40'	2/26/2008	39.5-40							ND<0.050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050			
Composite Image: Composite			54.5-55	ND<0.20	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.010	0.020	ND<0.050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<1.0	ND<2.0	
Comp Soil 2/26/2008 ND<0.20 ND<0.0050 ND<0.	Composite							1					<u> </u>	L			1	
	Comp Soil	2/26/2008		ND<0.20	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.010	0.0055	ND<0.050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<1.0	2.4	15
						1						1						

MTBE = Methyl tertiary butyl ether by EPA Method 8260B

Tertiary butyi alcohol by EPA Method 8260B TBA =

ETBE = Ethyl tertiary butyl ether by EPA Method 82608

DIPE = Di-isopropyl ether by EPA Method 8260B

TAME = Tertiary amyl methyl ether by EPA Method 8260B

1,2-DCA = 1,2-dichloroethane (also known as ethylene dichloride) by EPA Method 8260B

Ethylene dibromide (also known as 1,2-dibromoethane) by EPA Method 8260B EDB =

Total lead analyzed by EPA Method 6010B

milligrams per kilogram mg/kg =

ND = not detected above the laboratory detection limit

not applicable / not analyzed -- =

Bold ≃ detected compound concentration

EPA = US Environmental Protection Agency

GROUNDWATER ANALYTICAL RESULTS ConocoPhillips Station No. 7376 4191 First Street, Pleasanton, California

Sample ID	Date	Sample Depth	тррн	Benzene	Тоіиепе	Ethyl- benzene	Total Xyienes	мтве	ТВА	ЕТВЕ	TAME	DIPE	1,2-DCA	EDB	Ethanol	TPH-D
		(feet)	(µg/L)	(µg/L)	(µg/ኒ)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/Ŀ)
CPT Water Samples																
CP-1D*	2/18/2008	75-77	1500	250	2.6	33	15	530	490	ND<0.50	ND<0.50	ND<0.50	28	ND<0.50	ND<250	660
CP-2D	2/20/2008	95-100	ND<50	0.67	ND<0.50	ND<0.50	ND<1.0	1.4	ND<10	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<250	150
CP-3D ^a	2/20/20008	88-93	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<10	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<250	140
CP-4S ^b	2/21/2008	63-68	99	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<10	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<250	83
CP-4D ^a	2/21/2008	79-82	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	4.8	ND<10	ND<0.50	ND<0.50	ND<0.50	0.68	ND<0.50	ND<250	69
CP-6D ª	2/25/2008	75-88	160	4.7	ND<0.50	1.0	ND<1.0	110	170	ND<0.50	ND<0.50	7.0	1.4	ND<0.50	ND<250	ND<77
CP-7M ^c	2/26/2008	72-77	200	ND<0.50	ND<0.50	ND<0.50	ND<1.0	260	120	ND<0.50	ND<0.50	2.6	1.8	ND<0.50	ND<250	ND<72
Composite																
Comp Water	2/26/2008		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<10	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<250	190

Total purgeable petroleum hydrocarbons by EPA Method 8260B TPPH =

Benzene, toluene, ethylbenzene, total xylenes by EPA Method 8260B BTEX =

Methyl tertiary butyl ether by EPA Method 8260B МТВЕ ≕

Tertiary butyl alcohol by EPA Method 8260B TBA =

Ethyl tertiary butyl ether by EPA Method 8260B ETBE =

DIPE = Di-isopropyl ether by EPA Method 8260B

Tertiary amyl methyl ether by EPA Method 82608 TAME =

1,2-dichloroethane (also known as ethylene dichloride) by EPA Method 8260B 1,2-DCA = Ethylene dibromide (also known as 1,2-dibromoethane) by EPA Method 8260B

EDB =

= "deep" water sample

µg/L =

Bold =

EPA =

=

ND =

--

b

с

"shallow" water sample =

Ethanol analyzed by EPA Method 8260B

micrograms per liter

not applicable / not analyzed

detected compound concentration

US Environmental Protection Agency

= "mixed" water sample collected after drilling past a shallower zone of saturation into a deeper zone of saturation

TPH-D = Total petroleum hydrocarbons as diesel by EPA Method 8015 M

not detected above the laboratory detection limit

APPENDIX A

Historical Soil and Groundwater Analytical Data

TABLE 1
SUMMARY OF SOIL SAMPLE CHEMICAL ANALYSIS RESULTS
76 Service Station No. 7376
4191 First Street, Pleasanton, California

			Sample			Bannana	Tabaaa	Ethyl-	Total Xylenes	MTBE	тун	TEH	TPH-0
	Sample ocation	Date	Depth (fbg)	TPH-G (mg/kg)	TPH-D (mg/kg)	Benzene (mg/kg)	Toluene (mg/kg)	benzene (mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
	B1	06/30/87	20.0			17.1	73.6	17.0	92.3		281.9	_	_
	B1	06/30/87	35.0			2.06	1.02	0.84	6.59		126.13	1,325	
	B1	06/30/87	45.0			0.64	1.06	0.26	1.47		9.36	-	
	B2	06/30/87	25.0			13.1	6.3	6.1	56.2		188.8	_	
	B2	06/30/87	35.0			1.47	1.58	1.81	18.09	-	56.81	_	
	B2	06/30/87	45.0	-		0.07	0.26	0.18	1.30	- ·	9.09	-	
	B3	06/30/87	10.0	_		ND	ND	ND	ND	_	ND	_	
	B3	06/30/87	30.0	_		3.95	0.51	0.13	0.85	_	7.72	_	
	B3	06/30/87	40.0	_	_	12.4	47.8	9.4	45.1	-	180.7	-	
		****						A F		· _	100.5	1,835	
	B4 B4	08/21/87 08/21/87	35.0 65.0			1.4 ND	0.6 ND	0.5 ND	4.4 ND	_	0.45	ND	-
	64	00/21/01	00.0										
	B8	06/08/98	61.5	ND	ND	ND	ND	ND	ND	ND		-	ND ND
	B8	06/08/98	72.5	ND	ND	ND	ND	ND	ND	ND			IND
	B9	06/08/98	61.5	ND	ND	ND	ND	ND	ND	ND			ND
	B9	06/08/98	80.5	5	280	0.32	0.025	0.032	0.43	ND			ND
	B9	06/08/98	81.0	4	ND	0.29	0.59	0.039	0.31	ND			ND
	B10	06/11/98	12.0	1	1.8	0.013	0.013	0.021	0.13	0.23	_		ND
	B10	06/11/98	24.5	760	1,900	5.1	0.9	22	25	ND	_		ND
	B10	06/11/98	31.0	720	970	7.3	31	11	68	ND	-		ND
	B10	06/11/98	38.0	4	90	0.033	0.006	0.010	0.032	0.08			ND
	B10	06/11/98	49.0	ND	NÐ	ND	ND	ND	ND	ND	-		ND
	B10	06/11/98	57.0	ND	ND	0.012	0.012	0.006	0.048	ND			ND
	B10	06/11/98	75.5	ND	ND	ND	ND	ND	ND	ND			ND
	B11	06/09/98	5,5	54	23	0.28	0.2	0.3	3.6	0.72	-		590
	B11	06/09/98	10.5	560	66	16	8.0	5.2	25	ND		-	5,200
	B11	06/09/98	18.0	16	3,500	0.17	0.031	0.21	0.52	ND	**	-	ND
	B11	06/09/98	23.0	580	6,500	12	1.3	6.0	17	ND		-	ND
	B11	06/09/98	31.0	290	2,200	4.1	0.89	4.7	11	2			ND
	B11	06/09/98	41.0	ND	84	0.02	ND	ND	ND	0.25		-	ND
	B11	06/09/98	45.5	2	7,300	0.036	0.15	0.022	0.15	ND			ND
	B11	06/09/98	53.0	14	700	0.008	0.008	0.02	0.025	ND			ND
	B11	06/09/98	61.0	370	4,000	2.8	16	5.2	24	2.5		·	ND ND
	B11	06/09/98	66.5	ND	140	ND	ND	ND ND	ND ND	0.12 ND			ND
	B11	06/09/98	73.5	ND	ND Ø	ND	ND	ND	ND	ND			
	B12	06/10/98	10.0	5	ND	0.16	0.073	0.02	0.22	1.1			ND
	B12	06/10/98	16.5	ND	ND	ND	ND	ND	ND	0.64	-		ND
	B12	06/10/98	28.5	430	14,000	5.1	3.2	6.6	15	2.6		-	ND
	B12	06/10/98	37.5	1,700	4,700	21	3.8	8.7	7.6	ND			ND
	B12	06/10/98	47.0	98	2,600	1.5	1.2	2.0	4.4	1.5			ND ND
	B12	06/10/98	55.0	ND ND	ND		ND ND		0.01 ND				ND
	B12	06/10/98	72.0	ND	ND	ND .	ND	ND		ND			
	B13	11/22/99	7.5	93		ND	2.3	ND	1.1	NÐ	-		
	B13	11/22/99	15.5	ND		ND	ND	ND	ND	ND	-	-	-
	B13	11/22/99	28.0	14,000		100	92	240	1,200	ND	-	-	
	B13	11/22/99	38.5	65		0.40	0.088	0.092	0.31	NĎ	-	-	-
	B13	11/22/99	46.0	330		6.7	ND	7.0	21	2		-	
	B13	11/22/99	51.0	72		0.58	0.32	0.97	3.8	ND 0.19			
	B13	11/22/99	57.0	6.2		0.67	0.30	0.068	0.24 0.16	0.18 ND			
	B13	11/22/99	63.0	2.0		0.38	0.22 0.0075	0.013 ND	0.024	0.058			_
	B13	11/22/99	73.5	ND		0.0052 ND	ND	ND	ND	ND			_
	B13	11/22/99	85.5	ND			ND	ND	ND	ND			_
	B13	11/22/99	101.5	ND ND		ND ND	ND	ND	ND	ND			_
	B13 B13	11/22/99 11/22/99	106.0 123.5	ND ·		ND	ND	ND	ND	ND			
	B13 B13	11/22/99	125.0	ND	-	ND	ND	ND	ND	ND	-		-
. •		00100101		ND		ND	ND		ND			_	•••
	P1 P2	09/09/94 09/09/94	3.0 3.0	ND 1,300		ND 3.3	ND 57	ND 26	130				
	P2 P2	09/09/94	9.0	13	·	0.020	0.015	0.013	1.1		_`		
	P3	09/09/94	3.0	4.9		0.071	0.028	0.065	0.70			-	
	P4	09/09/94	3.0	11		0.26	0.014	0.23	1.3			-	
	P5	09/09/94	3.0	8,900		65	570	160	800		-		
	P5	09/15/94	9.0	17		0.029	0.031	0.047	1.4				
	••												
	P6 P7	09/09/94	3.0	ND		0.0093 0.21	0.015	ND 0.081	0.028 0.73	-			

Page 1 of 3

TABLE 1 SUMMARY OF SOIL SAMPLE CHEMICAL ANALYSIS RESULTS 76 Service Station No. 7376 4191 First Street, Pleasanton, California

	-	Sample					Ethyl-	Total				
Sample Location	Date	Depth	TPH-G	TPH-D (mg/kg)	Benzene (mg/kg)	Toluene (mg/kg)	benzene (mg/kg)	Xylenes (mg/kg)	MTBE (mg/kg)	TVH (mg/kg)	TEH (mg/kg)	TPH-o (mg/kg)
P8	09/09/94	(fbg) 3.0	(mg/kg)		0.074	0.27	0.043	0.38	(ing/kg)		(ing/kg/ –	(ing/kg/
			10					3.9			_	
P9	09/09/94	3.0	65*		0.69	0.15	0.71		-			
P10	09/09/94	3.0	ND		ND	ND	ND	0.015				_
P11	09/09/94	3.0	ND		ND	ND	ND	ND	-			
P12	09/09/94	3.0	4.7*		0.011	0.17	0.091	0.54	-			-
P13	09/23/94	9.0	4,400.0		29	390	150	790	-			-
EB-1	02/06/95	5.0	15,000	3,600**	340	1,700	390	2,100	_			_
EB-1	02/06/95	10.0	3,200	690**	32	280	73	400	_			
EB-1	02/06/95	15.0	1,800	800**	15	140	41	240				
EB-1				240**	4.9	76	39	220	_			
	02/06/95	20.0	1,700						-		_	
EB-1	02/06/95	25.0	2,000	840**	3.9	78	44	250	_			
EB-1	02/06/95	30.0	1,500	530***	ND	40	30	170	_			-
EB-1	02/06/95	35.0	1,800	200***	1.4	52	44	250	_			
EB-1	02/06/95	40.0	1,200	98**	1.3	50	25	140	-			
EB-1	02/06/95	45.0	27	2.6***	1.4	5.7	0.59	3.2	-			
EB-1	02/06/95	50.0	430	55**	0.29	11	7.5	42	_			
EB-1	02/06/95	55.0	6.4	ND	0.89	0.097	0.20	1.0	_			
EB-1	02/06/95	60.0	1.6	ND	0.0090	0.061	0.021	0.098				_
EB-1	02/06/95	65.0	ND	ND	ND	0.034	0.011	0.065	_			_
	02100/00											
MW-1 (B5)	12/02/87	35.0	**		ND	ND	ND	ND .	-	ND	ND	
MW-1	12/02/87	75.0			ND	ND	ND	ND	-	ND	ND	-
MW-2 (B6)	12/05/87	35.0			ND	ND	ND	ND		5.0	ND	
MW-2	12/05/87	70.0			ND	ND	ND	ND		ND	ND	
·					WELL ABAN	DONED 02/07	7/95					
MW-2B	02/06/95	5.0	7.3	ND	0.13	0.048	0.090	0.63			_	
		10.0	2.1		0.062	0.020	0.0078	0.11				
MW-2B	02/06/95			ND								
MW-2B	02/06/95	15.0	2.0	ND	0.12	0.0076	0.0074	0.02			-	
MW-2B	02/06/95	20.0	16*	110**	0.50	0.042	0.12	0.18				
MW-2B	02/06/95	25.0	660	550**	9.5	2.6	4.1	11				
MW-2B	02/06/95	30.0	680	1,100**	8.2	1.1	6.1	11	_			
MW-2B	02/06/95	35.0	720	2,400**	3.2	1.1	4.6	15	_			
MW-2B	02/06/95	40.0	130*	430**	1.4	0.45	1.6	5.0		-		
MW-2B	02/06/95	45.0	110*	1,000**	0.31	0.083	0.63	1.7				
MW-2B	02/06/95	50.0	190*	1,800**	ND	0.68	0.33	2.2				
MW-2B	02/06/95	55.0	4.3****	320**	ND	ND	0.013	0.056				
MW-2B	02/06/95	60.0	2.2****	33**	0.013	0.0088	ND	0.035				
MW-2B	02/06/95	65.0	1.0	4.7**	ND	0.0099	ND	0.0097				
· .										1		
MW-2B	02/06/95	70.0	ND	ND	ND	ND	ND	NÐ			_	
MW-2B MW-2B	02/06/95 02/06/95	75.0 80.0	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND			_	
WVV-ZD	02/00/35	60.0	ND	ND	ND	ND.	ND	ND				
MW-3 (B7)	12/07/87	55.0			1.3	6.2	14.0	34.0		390.0	220.0	
MW-3	12/07/87	75.0			ND	ND	ND	ND		5.0	30.0	
MW-4	07/24/96	5.0	14****	10	ND	ND	ND	0.068			_	-
MW-4	07/24/96	10.0	ND	ND	0.080	0.039	0.0059	0.096	·			••
MW-4	07/24/96	15.0	ND	ND	0.011	ND	ND	ND				
MW-4	07/24/96	20.0	ND	ND	ND	ND	ND	ND			_	
MW-4	07/24/96	25.0	47*	15	ND	ND	ND	0.77			_	
MW-4	07/24/96	30.0	ND	ND	ND	0.014	ND	0.029			_	¹
			ND	ND	0.0054	0.014	ND	0.025			_	-
MW-4	07/24/96	35.0									_	
MW-4	07/24/96	40.0	ND	ND	0.031	0.039	0.0083	0.040				
MW-4	07/24/96	45.0	ND	ND	0.015	0.0078	ND	0.0089			-	
MW-4	07/24/96	50.0	ND	ND	0.015	ND	ND	0.0074			-	
MW-4	07/24/96	55.0	ND	ND	ND	ND	ND	ND			-	
MW-4	07/24/96	60.0	ND	ND	ND	· ND	ND	ND				
MW-4	07/24/96	65.0	27	ND	0.026	0.081	0.27	0.35	-		-	
MW-4	07/24/96	70.0	ND	ND	0.27	0.0053	ND	0.081				-
MW-4	07/24/96	75.0	ND	ND	ND	ND	ND	ND	-			·
MW-4	07/24/96	79.5	ND	ND	ND	ND	ND	ND	-			
MW-5	07/23/96	5.0	ND	ND	ND	ND	ND	ND				
MW-5	07/23/96	10.0	ND	ND	ND	ND	ND	ND				
MW-5	07/23/96	15.0	ND	ND	ND	ND	ND	ND				
						ND	ND	ND				
MW-5	07/23/96	20.0	ND	ND	ND							
MW-5	07/23/96	25.0	ND	ND	ND	ND	ND	ND				-
MW-5	07/23/96	30,0	ND	ND	0.013	ND	ND	ND				
MW-5	07/23/96	35.0	ND	ND	0.034	ND	ND	0.0055		-	·	-
MW-5	07/23/96	40.0	ND	ND	ND	ND	ND	ND	-	-		
MW-5	07/23/96	45.0	ND	ND	ND	ND	ND	ND				
-					_							

TABLE 1
SUMMARY OF SOIL SAMPLE CHEMICAL ANALYSIS RESULTS
76 Service Station No. 7376
4191 First Street, Pleasanton, California

			Sample					Ethyl-	Total				
	Sample		Depth	TPH-G	TPH-D	Benzene	Toluene	benzene	Xylenes	MTBE	TVH	TEH	TPH-o
	Location	Date	(fbg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
	MW-5	07/23/96	50.0	ND	ND	0.038	ND	ND	ND	-	-		
	MW-5	07/23/96	55.0	32	ND	0.28	ND	0.098	0.048		_		
	MW-5	07/23/96	60.0	560	110	2.4	2.6	2.3	6.5		_		
	MW-5	07/23/96	65.0	400	450	3.9	4.1	5.5	56		_		-
	10111-0	01120100	00.0	400	400	0.0		010	•••				
	MW-6	07/24/96	5.0	ND	ND	0.054	0.055	0.052	0.17		_		
	MW-6	07/24/96	10.0	ND	ND	0.011	0.0085	0.014	0.043		_	_	
	MW-6	07/24/96	15.0	ND	ND	ND	ND	ND	ND				
			20.0	ND	ND	ND	ND	ND	ND			_	
	MW-6	07/24/96				ND	ND	ND	ND				
	MW-6	07/24/96	25.0	ND	ND							. –	
	MW-6	07/24/96	35.0	4.8	ND	0.59	0.57	0.073	0.71			-	
	MW-6	07/24/96	40.0	1.2	ND	0.27	0.15	0.010	0.053			-	
	MW-6	07/24/96	45.0	4.8	ND	1.2	1.2	0.049	0.50			-	
	MW-6	07/24/96	50.0	ND	ND	0.026	ND	0.014	0.0095				
	MW-6	07/24/96	55.0	5.0	200	0.034	0.043	0.049	0.11	·		-	-
	MW-6	07/24/96	60.0	ND	ND	0.0050	• ND	ND	ND			_	
	MW-6	07/24/96	65.0	ND	ND	0.011	ND	ND	ND	•••		-	
			70.0	ND	ND	0.17	0.018	ND	0.039				
	MW-6	07/24/96										_	
	MW-6	07/24/96	75.0	ND	ND	ND	ND	ND	ND				
	MW-6	07/24/96	77.5	ND	ND	ND	ND	ND	ND	-	-	-	
													ND
1	MW-7	08/14/98	11	ND	ND	ND	ND	ND	ND	ND			ND
	MW-7	08/14/98	28	ND	ND	ND	ND	ND	ND	ND			ND
	MW-7	08/14/98	30.5	ND	ND	ND	ND	ND	ND	ND			ND
	MW-7	08/14/98	42.0	ND	ND	ND	ND	ND	ND	ND	_		ND
	MW-7	08/14/98	60.5	ND	ND	ND	ND	ND	ND	ND	·		ND
	MW-8	06/12/98	11	ND	ND	ND	0.007	ND	0.010	ND		-	ND
	MW-8	06/12/98	37.0	ND	ND	ND	0.006	ND	ND	ND	_		ND
	MW-8	06/12/98	45.5	60	79	ND	0.058	0.27	0.58	ND			ND
									ND	ND			ND
	MW-8	06/12/98	51.5	ND	ND	ND	ND	ND				_	
	MW-8	06/12/98	67.0	ND	ND	ND	ND	ND	ND	ND		-	ND
			40			ND	ND	ND	ND	ND			
	MW-9	10/07/99	16	ND	'	ND	ND	ND					
	MW-9	10/07/99	30,5	ND		ND	ND	ND	ND	ND			
	MW-9	10/07/99	41.0	NÐ	- .	ND	ND	ND	ND	ND .			
	MW-9	10/07/99	46.5	ND		ND	ND	ND	ND	ND			
	MW-9	10/07/99	60.5	ND		ND	ND	ND	ND	NÐ	-	-	
	MW-10	11/21/99	5.5	ND		ND	ND	ND	ND	ND	-	-	
	MW-10	11/21/99	16.5	ND		ND	ND	ND	ND	ND	·		
	MW-10	11/21/99	25.5	ND		ND	ND	ND	ND	ND			
	MW-10	11/21/99	38.0	9.7		0.035	0.034	0.062	0.11	ND			
	MW-10	11/21/99		ND		ND	ND	ND	ND	ND			
			44.0										
	MW-10	11/21/99	56.0	240		0.71	0.75	2.2	0.65	1.2			
	MW-10	11/21/99	71.0	ND		ND	ND	ND	ND	ND			
	MW-10	11/21/99	82.0	ND		ND	ND	ND	ND	ND		-	
	MW-10	11/21/99	90.5	ND		ND	ND	ND	ND	ND		-	
	MW-11	09/17/01	41.0	ND<1.0	ND<2.5	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.050	-		
	MW-11	09/17/01	72.5	ND<1.0	ND<2.5	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.050		-	
	MW-11	09/17/01	80.5	ND<1.0	ND<2.5	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.050			
	MW-11	09/17/01	84.0	ND<1.0	ND<2.5	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.050			
	14144-11	00/1/10/	0-1.0	ND *1.V	110-2.0	112 -0.0000			.12 .0.0000	112 30.000			
	MW-12	09/19/01	52.0	ND<1.0	ND<2.5	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.050			·
	MW-12	09/19/01	68.5	ND<1.0	ND<2.5	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.050			
	MW-12	09/19/01 09/19/01	80.5	ND<1.0	ND<2.5	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050 ND<0.0050	ND<0.050			
	MW-12		82.5	ND<1.0	ND<2.5	ND<0.0050	ND<0.0050	ND<0.0050		ND<0.050			

Notes:

TPH-G = total petroleum hydrocarbons as gasoline TPH-D = total petroleum hydrocarbons as diesel

mg/kg = milligrams per kilogram

ND = not detected at or above laboratory detection limits

-- = not analyzed

TBA = tert-Butyl alcohol

TAME = tert-amyl methyl ether EDB = Ethylene Dibromide TEH = total extractable hydrocarbons

1,2-DCA = 1,2-Dichloroethane

MTBE = methyl tert butyl ether DIPE = Di-idopropyl ether ETBE = Ethyl tert-butyl ether

 TVH = total volatile hydrocarbons
 TEH = total extractable hydrocarbons

 * = Laboratory reported that the hydrocarbons detected appeared to be a TPH-G and non-gasoline mixture

** = Laboratory reported that the hydrocarbons detected appeared to be a TPH-D and non-diese! mixture

*** = Laboratory reported that the hydrocarbons detected do not appear to be diesel

**** = Laboratory reported that the hydrocarbons detected do not appear to be gasoline

Table 2 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS December 1987 Through December 2007

76 Station 7376

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G (8015M)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
· · · · · · · · · · · · · · · · · · ·	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-1	(1	Screen Int	erval in fee	t: 65.0-95.	0)		· · · · · · · · · · · · · · · · · · ·	······································						·····
12/8/8						50		58	8.0	ND	10			
12/7/9	94 366.99	81.04	0.00	285.95		ND	**	ND	ND	ND	ND			
3/1/9	5 366.99	80.09	0.00	286.90	0.95	ND		ND	1.1	ND	1.3			
6/1/9	5 366.99	77.53	0.00	289.46	2.56	130		1.0	2.9	0.79	4,5			
9/6/9	5 366.99	79.00	0.00	287.99	-1.47	ND		ND	ND	ND	ND			
12/12/	95 366.99	77.55	0.00	289.44	1.45	ND	****	ND	ND	ND	ND			
3/1/9	6 366.99	75.09	0.00	291.90	2.46	ND		ND	ND	ND	ND	370		•
6/15/9		75.07	0.00	291.92	0.02	ND		ND	ND	ND	ND	270	'	
9/18/9	6 366 .9 9	79.90	0.00	287.09	-4.83	ND		ND	ND	ND	ND	590		· .
12/21/	96 366.99	78.96	0.00	288.03	0.94	ND		ND	ND	ND	ND	150		
3/7/9		71,49	0.00	295.50	7.47	ND		ND	ND	ND	ND	220	~	
6 /2 7/9	366.99	80.05	0.00	286.94	-8.56	ND		ND	ND	ND	ND	17	· 	
9/29/9	7 366.99	80.04	0.00	286.95	0.01	ND		ND	ND	ND	ND	24		
12/15/	97 366,99	80.07	0.00	286.92	-0.03	ND		ND	ND	ND	ND	25		·
3/16/9	8 366.99	71.00	0.00	295.99	9.07	ND		ND	0.52	ND	0.71	190		
6/26/9	8 366.98	79.29	0.00	287.69	-8.30	59		0.90	ND	ND	ND	570		
8/18/9	8 366.98	79.93	0.00	287.05	-0.64									
9/22/9	8 366.98	79.99	0.00	286.99	-0.06	ND		ND	' ND	ND	ND	170		
12/15/	98 366.98	80.02	0.00	286.96	-0.03	ND		ND	ND	ND	ND	63		
12/23/	98 366.98	80.02	0.00	286.96	0.00									
3/15/9	9 366.98	78.95	0.00	288.03	1.07	ND		ND	ND	ND	ND	520		
3/23/9	9 366.98	78.69	0.00	288.29	0.26		-		• 					
6/7/99	366.98	79.82	0.00	287.16	-1.13	NĎ	~-	ND	ND	ND	ND	310		·* ·•

Page 1 of 23

Table 2 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS December 1987 Through December 2007

76 Station 7376

Date Sample	TO ed Eleva		Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation		TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)		Comments
	(fe	et)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)		
MW	1 cont	inued											· · · · · · · · · · · · · · · · · · ·			
9/3	/99 3	66.98	79.74	0.00	287. 2 4	0.08	ND		ND	ND	ND	ND	67	55.2		
12/	5/99 3	66.98	79.74	0.00	287.24	0.00	ND		ND	ND	ND	ND	120			
3/1	0/00 3	66.98	79.66	0.00	287.32	0.08	ND	`	ND	ND	ND	ND	100	· • • •		
6/8	/00 3	66.98	79.57	0.00	287.41	0.09	ND		ND	ND	ND	ND	98.9		•	
9/2	5/00 3	66.98	79.48	0.00	287.50	0.09	ND		ND	ND	ND	ND	145	-		
12/1	9/00 3	66.98	79.64	0.00	287.34	-0.16	ND		ND	ND	ND	ND	330			
3/5	701 3	66.98	80.03	0.00	286.95	-0.39	ND		ND	ND	ND	ND	711		•	
6/1	4/01 3	66.98	79.52	0.00	287.46	0.51	ŇD		ND	ND	ND	ND	680			
9/1	7/01 3	66.98	79.76	0.00	287.22	-0.24	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	11			•
9/2	5/01 3	66.98	79.71	0.00	287.27	0.05						·				
12/1	7/01 3	66.98	80.73	0.00	286.25	-1.02	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	210	240		i -
3/1	5/02 3	66.98	79.51	0.00	287.47	1,22	ND<500		ND<5.0	ND<5.0	ND<5.0	ND<5.0	1200			
6/2	0/02 3	66.98	79.60	0.00	287.38	-0.09		580	ND<5.0	ND<5.0	ND<5.0	ND<10	_	810		
9/2	7/02 3	66.98	80.76	0.00	286.22	-1.16		67	ND<0.50	ND<0.50	ND<0.50	ND<1.0		71		,
12/3	0/02 3	66.98	81.28	0.00	285.70	-0.52		ND<200	ND<2.0	ND<2.0	ND<2.0	ND<4.0		360		
3/2	5/03 3	66.98	79.48	0.00	287.50	1.80	·	1300	ND<10	ND<10	ND<10	ND<20		2000		
6/1)/03 3	66.98	80.29	0.00	286.69	-0.81		ND<2000	ND<20	ND<20	ND<20	ND<40		2800		
9/9	/03 3	66.98	84.54	0.00	282.44	-4.25		1000	ND<10	ND<10	ND<10	ND<20		1900		
12/1	0/03 3	66,98	80.01	0.00	286.97	4.53		ND<2000	ND<20	ND<20	ND<20	ND<40		2700		
3/9	/04 3	66.98	79.48	0.00	287.50	0,53		540	ND<5.0	ND<5.0	ND<5.0	ND<10		840		
		66.98	79.49	0.00	287.49	-0.01		650	ND<5.0	ND<5.0	ND<5.0	ND<10	·	620		
		66.98	79.43	0.00	287.55	0.06		93	ND<0.50	ND<0.50	ND<0.50	ND<1.0		120		
		66.98	79.45	0.00	287.53	-0.02		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		150		
3/1	7/05 3	66.98	79.36	0.00	287.62	0.09	<u>`</u>	ND<500	ND<0.50	ND<0.50	ND<0.50	ND<10		830		
7976									n a	600						

7376

Page 2 of 23

HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS

December 1987 Through December 2007

76 Station 7376

	Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation		TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	•	Comments
		(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)		
	MW-1	continued						· · ·								······
	6/15/0	5 366.98	78.21	0.00	288.77	1.15		ND<1300	ND<0.50	ND<0.50	ND<0.50	ND<1.0		2800		
	9/20/0	5 366.98	79.18	0.00	287.80	-0.97		540	ND<0.50	ND<0.50	ND<0.50	ND<1.0		1400		
	12/29/0	5 366.98	70.69	0.00	296.29	8.49		460	ND<0.50	ND<0.50	ND<0.50	ND<1.0		1400		
	3/15/00	5 366.98	65.59	0.00	301.39	5.10		540	ND<0.50	ND<0.50	ND<0.50	ND<1.0	-	2500		<i>.</i>
	6/28/06	5 366.98	66.15	0.00	300.83	-0.56		630	ND<0.50	ND<0.50	ND<0.50	ND<1.0		3900		
	9/28/06	5 366.98	70.13	0.00	296.85	-3.98		730	3.1	ND<2.5	ND<2.5	ND<2.5		2100		
	12/11/0	6 366.98	63.29	0.00	303.69	6.84		180	ND<0.50	ND<0.50	ND<0.50	ND<0.50		1400		
	3/19/07	7 366.98	57.52	0.00	309,46	5.77		740	ND<2.5	ND<2.5	ND<2.5	ND<2.5		990		
	6/15/07		66.79	0.00	300.19	-9.27		1400	ND<5.0	ND<5.0	ND<5.0	ND<5.0		1900		
	9/24/07	7 366.98	69.64	0.00	297.34	-2.85		1100	ND<10	ND<10	ND<10	ND<10		900		
	12/27/0	7 366.98	60.34	0.00	306.64	9.30		240	ND<0.50	0.63	ND<0.50	ND<1.0		560		
·]	MW-2	· (S	creen Inte	erval in feet	:: DNA)	•										
	12/8/87						1800		9 10	800	260	1200		<u></u>		Damaged
	12/7/94				` <u></u>					~~ .						- <i>.</i>
	3/1/95								6 -					<u> </u>		Destroyed
]	MW-2B	(8	creen Inte	erval in feet	: 65.0-85.0))										
	3/1/95	365.05	80.80	0.00	284.25		ND		ND	ND	ND	ND				, ,
	6/1/95		75.69	0.00	289.36	5.11	350		19	5.8	ND	7.7				
	9/6/95		77.54	0.00	287.51	-1.85	ND	· ••••	90	ND	ND	ND				•
	12/12/9		75.96	0.00	289,09	1.58	1200		630	ND	15	57				
	3/1/96		73.27	0.00	291.78	2.69	1000	***	620	ND	ND	5.3	4300	,		
	6/15/96		73.21	0.00	291.84	0.06	910	-	350	ND	ND	ND	3700			
	9/18/9 6	5 365.05	81.08	0.00	283.97	-7.87	1200		95	ND	ND	ND	5200		·	

Page 3 of 23

Ladie 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
December 1987 Through December 2007

76 Station 7376

	Date Sampled 1	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation		TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
_		(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
	MW-2B	continued	1											····-	
	12/21/96	5 365.05	77.35	0.00	287.70	3.73	330		57	ND	ND	ND	2900		
	3/7/97	365.05	69.67	0.00	295.38	7.68	190		28	0.64	ND	1.5	4300		
	6/27/97	365.05	82.40	0.00	282.65	-12.73	98		3.4	1.0	0.53	ND	3100		
	9/29 /97	365.05	82.72	0.00	282.33	-0,32	ND		ND	ND	ND	ND	3000		
	12/15/97	7 365.05	82.57	0.00	282.48	0.15	54		ND	ND	ND	ND	4100		
	3/16 /98	365.05	69.13	0.00	295.92	13.44	ND	~-	17	ND	ND	ND	4400		
	6/26/98	365.05	77.78	0.00	287.27	-8.65	ND		ND	ND	ND	ND	4000		
	8/1 8/98	365.05	83.99	0.00	281.06	-6.21					_				
	9/22/98	365.05	83.89	0.00	281.16	0.10	ND		ND	ND	ND	21	4600		
	12/15/98	365.05	82.84	0.00	282.21	1.05	ND		ND	ND	ND	ND	5100		
	12/23/98	365.05	82.55	0.00	282.50	0.29	****			-					
	3/15/99	365.05	77.31	0.00	287.74	5.24	ND		ND	ND	ND	ND	4300	4800	•
	3/23/99	365.05	77.06	0.00	287.99	0.25				· _ ·					
	6/7/99	365.05	82.96	0.00	282.09	-5.90	ND		ND	ND	ND	ND	5100		
	9/3/99	365.05	84.16	0.00	280.89	-1.20	ND		ND	ND	ND	ND	6300	4400	
	12/6/99	365.05	84.41	0.00	280.64	-0.25	ND		ND	ND	ND	ND	4400		
	3/10/00	365.05	82.42	0.00	282.63	1.99	ŇD		ND	ND	ND	ND	6900		
	6/8/00	365.05	82.73	0.00	282.32	-0.31	ND		ND	ND	ND	ND	7780		
	9/25/00	365.05	84.24	0.00	280.81	-1.51	52.9		8.83	6.58	0.932	5.60	12200		
	12/19/00) 365.05	84.39	0.00	280.66	-0.15	ND		ND	ND	ND	ND	6000		
	3/5/01	365.05	84.61	0.00	280.44	-0.22	ND		ND	ND	ND	ND	5890		
	6/14/01	365.05	83.53	0.00	281.52	1.08	ND		ND	ND	ND	ND	6600		
	9/17/01	365.05	84.55	0.00	280.50	-1.02	ND<200		ND<2.0	ND<2.0	ND<2.0	ND<2.0	5100		
	9/25/01	365.05			~~ .								·		Inaccessible

Table 2 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS

December 1987 Through December 2007

76 Station 7376

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation			TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)		Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)		
MW-2B	continue	đ				· · · · · · · · · · · · · · · · · · ·									
12/17/0	1 365.05				~~~										Dry well
3/1-5/0	2 365.05							-							Inaccessible
6/20/0															Dry well
9/27/0	2 365.05			'							· .				Dry well
12/30/0	2 365.05		·		 '						***				Dry well
3/26/0	3 365.05							-			-				Dry well
6/10/0	3 365.05	83.17	0.00	281.88		·	ND<5000	ND<50	ND<50	ND<50	ND<100	6400			-
9/9/03	365.05	84.56	0.00	280.49	-1.39	·									car parked on well
12/10/0	3 365.05	***	**								<u>.</u>	~-			Dry well
3/9/04		84.13	0.00	280.92			ND<5000	ND<50	ND<50	ND<50	ND<100		5200		•
6/21/0	4 365.05	83.71	0.00	281.34	0.42		3400	ND<25	ND<25	ND<25	ND<50		4600		
9/8/04	365.05														Dry well
12/14/0	4 365.05														Dry well
3/17/0	5 365.05	79.55	0.00	285.50			ND<5000	ND<0.50	ND<0.50	0.83	ND<1.0		7800		·
6/15/0:	5 365.05	76.89	0.00	288.16	2.66		ND<5000	ND<0.50	ND<0.50	ND<0.50	ND<1.0		6400		
9/20/0		83,24	0.00		. 		3200	ND<12	ND<12	ND<12	ND<25		6000		Casing elevation modified on 6/22/05
1 2/29 /0								_				·	-		Car parked over well
3/15/0		64.03					ND<5000	ND<50	ND<50	ND<50	ND<100		5700		•
6/28/0		61.22					3000	ND<5.0	ND<5.0	ND<5.0	ND<10		11000		
9/28/0		66.35					3100	ND<10	ND<10	ND<10	ND<10		9800		
12/11/0		61.20					330	1.3	ND<0.50	1.9	1.6		10000	•	· · · · ·
3/19/0		55.75			20		8600	ND<25	ND<25	ND<25	ND<25		11000		••
6/15/01	7	65.21	0.00				4700	ND<10	ND<10	ND<10	ND<10	F-14	9300		
2020															

Page 5 of 23

Table 2 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS December 1987 Through December 2007

76 Station 7376

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation		TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-2B													,	
9/24/0		63.41	0:00											LPH in casing well
12/27/0	17	58.75	0.00			·	1500	0.66	1.2	0.64	1.5		7900	
MW-3		Screen Inte	erval in feet	: 76.5-96.	5)									
12/8/8						24000		2600	1300	160	660			
12/7/9				281.47		ND		ND	ND	ND	ND			
3/1/95		83.20		283.81	2.34	ND		ND	1.1	ND	1.1			· .
6/1/95			0.00	289.41	5.60	62		7.8	0.90	ND	1.6		-	
9/6/95	367.01	79.28	0.00	287.73	-1.68	4100		380	490	130	710		'	
12/12/9	5 367.01	77.73	0.00	289,28	1.55	19000		600	380	2 100	5300			
3/1/96	367.01	75.18	0.00	291.83	2.55	3400		950	3.2	1900	290	59		•
6/15/9	6 367.01	75.13	0.00	291.88	0.05	780		190	8.8	-3.8	4.0	630		
9/18/9	6 367. 01	82,84	0.00	284.17	-7.71	2800		340	12	11	110	2500		
12/21/9	6 367.01	79.29	0.00	287.72	3.55	51	— `	1.3	ND	ND	0.53	20		• •
3/7/97	367.01	71.58	0.00	295.43	7.71	1400		53	14	29	68	220		
6/27/9	7 367.01	83.27	0.00	283.74	-11.69	ND		ND	ND	ND	ND	27		
9/29/9	7 367.0 1	83.33	0.00	283.68	-0.06	ND		ND	ND	ND	ND	11		
12/15/9	7 367.01	83.35	0.00	283.66	-0.02	ND		ND	ND	ND	ND	19		
3/16/9	8 367.01	71.07	0.00	295.9 4	12.28	130		6.5	1.9	1.5	1.6	210		
6/26/9	8 367.03	79.65	0.00	287.38	-8.56	400		15	ND	ND	1.9	490		
8/18/9	8 367.03	83.29	0.00	283.74	-3.64									
9/22/9	8 367.03	83.33	0.00	283.70	-0.04	ND		ND	ND	ND	ND	24		
12/15/9	98 367.03	83.29	0.00	283.74	0.04	ND		ND	ND	ND	ND	18		
12/23/9	98 367.03	83.28	0.00	283.75	0.01							-		
3/15/9	9 367.03	79.19	0.00	287.84	4.09	26000		3100	270	2200	3100	1300		
7376								Page 6	of 23					

HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS

December 1987 Through December 2007

76 Station 7376

	Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation		TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
-		(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
	MW-3	continued				· ·									· · · · · · · · · · · · · · · · · · ·
	3/23/99	9 367.03	78.92	0.00	288.11	0.27									
	6/7/99	367.03	83.22	0.00	283.81	-4.30	ND		ND	ND	0.63	ND	29		
	9/3/99	367.03	83.31	0.00	283.72	-0.09	23000		770	ND	980	6400	280	82.4	
	12/6/99	9 367.03	83.41	0.00	283.62	-0.10	41000		3200	3500	1300	8300	ND		
	3/10/00	367.03	83.23	0.00	283.80	0.18	5100		340	ND	97	450	200		
•	6/8/00	367.03	83.22	0.00	283.81	0.01	1200		52.0	ND	41.7	356	55.8		
	9/25/00) 367.03	83.37	0.00	283.66	-0.15	3400		305	ND	25.4	512	137		
	12/19/0	0 367.03	83.27	0.00	283.76	0.10	6800		260	ND	120	950	130		
	3/5/01	367.03	83.34	0.00	283.69	-0.07	16800		1100	48.6	637	4260	224	~-	-
	6/14/0 1	367.03	83.39	0.00	283.64	-0.05	1800		260	ND	5.5	25	83		
	9/17/0 1		84.10	0.00	282.93	-0.71	ND<50		0.50	ND<0.50	ND<0.50	ND<0.50	71		
	9/25/01	l 367.03	84.23	0.00	282,80	-0.13			-						
	12/17/0	1 367.03	83.32	0.00	283.71	0.91	1800		120	ND<5.0	45	270	80	91	
۰.	3/15/02	2 367.03	83.27	0.00	283.76	0.05	15000		160	ND<50	140	4400	ND<250		
	6/20/02		83.74	0.00	283.29	-0.47		3700	. 98	0.69	4.0	2.3		92	· · ·
	9/27/02		84.20	0.00	282.83	-0.46		210	ND<0.50	ND<0.50	ND<0.50	ND<1.0		67	
	12/30/0				283.79	0.96		5900	320	ND<5.0	80	1500		160	
	3/26/03			0.00	283.76	-0.03		7200	95	6.3	140	1500		130	
	6/10/0 3				283.44	-0.32		360	2.1	ND<0.50	1.1	1.0		54	
	9/9/03			0.00	283.26	-0.18		220	ND<0.50	ND<0.50	ND<0.50	ND<1.0		63	
	12/10/0			0.00	283.80	0.54	 .	980	32	ND<1.0	7.0	160		90	
	3/9/04			0.00	283.78	-0.02		1300	4.2	0.67	6.4	91	4-1 Vez	83	
	6/21/04			0.00	283.70	-0.08		96	ND<0.50	0.62	ND<0.50	ND<1.0		59	-
	9/8/04	367.01	83.81	0.00	283.20	-0.50		170	ND<0.50	ND<0.50	ND<0.50	ND<1.0		82	
7	376								Page 7	of 23					-

Table 2 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS

December 1987 Through December 2007

76 Station 7376

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation		TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-3	continued													
12/14/0	367.01	83.20	0.00	283.81	0.61	**	1800	44	0.83	22	310		120	
3/17/0		81.33	0.00	285.68	1.87		11000	110	1.3	38	1100		57	
6/15/0	5 367.01	78.31	0.00	288.70	3.02		910	0.92	ND<0.50	1.0	ND<1.0		59	
9/20/0	5 367.01	83.28	0.00	283.73	-4.97		94	ND<0.50	ND<0.50	ND<0.50	ND<1.0		150	
12/29/0)5 367.01	70.73	0.00	296,28	12.55		2100	27	ND<0.50	91	260		64	
3/15/0	6 367.01	65.91	0.00	301.10	4.82	, ••••	860	7.5	ND<0.50	3.3	ND<1.0		98	·
6/28/0	6 367.01	66.16	0.00	300.85	-0.25		2200	430	14	25	17		380	
9/28/0	6 367.01	70.15	0.00	296.86	-3.99	· •••	410	110	ND<0.50	0,52	ND<0.50		79	· · · ·
. 12/11/0	6 367.01	63.33	0.00	303.68	6.82		370	14	ND<0.50	ND<0.50	ND<0.50	•••	70	· ·
3/19/0	7 367.01	57.35	0.00	309.66	5.98		820	4.2	ND<0.50	ND<0.50	0.88		69	
6/15/0	7 367.01	66.79	0.00	300.22	-9.44		1500	130	1.3	7.8	8.8		400	
9/24/0	7 367.01	69.70	0.00	297.31	-2.91		330	1,1	ND<0.50	ND<0.50	ND<0.50		51	
12/27/0)7 367.01	60.35	0.00	306.66	9.35		210	0.54	0.98	ND<0.50	1.4		52	
MW-4	(5	Screen Inte	rval in feet	: 73.0-93.0	0)									
9/18/9			0.00	295.36		160		14	ND	ND	1.6	ND	-	
12/21/9	96 369.03	77.69	0.00	291.34	-4.02	ND		ND	ND	ND	ND	ND		
3/7/97	7 369.03	68.04	. 0.00	300.99	9.65	ND		1.9	0.99	ND	1.5	ND		
6/27/9	7 369.03	79.06	0.00	289.97	-11.02	ND		ND	ND	ND	ND	ND		
. 9/29/9	7 369.03	85.83	0.00	283,20	-6.77	ND		ND	ND	ND	ND	ND		
12/15/9	97 369.03	87.26	0.00	281.77	-1.43	ND		ND	ND	ND	ND	ND		
3/16/9	8 369.03	75.09	0.00	293.94	12.17	ND		ND	0.69	ND	0.82	ND		
6/26/9	8 368.81	73,81	0.00	295.00	1.06	100		62	ND	ND	ND	ND		
8/18/9	8 368.81	78.75	0.00	290.06	-4.94									
9/22/9	8 368.81	83.95	0.00	284.86	-5.20	ND		ND	ND	ND	ND	2.8		
7376								Page 8	3 of 23					

HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS

December 1987 Through December 2007

76 Station 7376

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation		TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	•	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(μg/l)	(µg/l)	(µg/l)		
MW-4	continued			-	-	· · · · · · · · · · · · · · · · · · ·	•								
12/15/	98 368.81	85.41	0.00	283.40	-1.46	ND	·	ND	ND	ND	ND	ND			
12/23/	98 368.81	84.95	0.00	283.86	0.46				. —		. 				
3/15/9	9 368.81	78.47	0.00	290.34	6.48	ND	·	ND	ND	ND	ND ·	ND	****		· .
3/23/9	9 368.81	77.37	0.00	291,44	1.10			•• -							
6/7/9	9 368.81	76.60	0.00	292.21	0.77	ND		ND	ND	ND	ND	ND			
9/3/9	9 368.81	87.23	0.00	281.58	-10.63	ND		ND	ND	ND	ND	ND	ND .		
12/6/9	9 368.81	92.23	0.00	276.58	-5.00	ND		ND	ND	ND	ND	ND		·	
3/10/0	0 368.81	88.54	0.00	280.27	3.69	ND		ND	ND	ND	ND	ND			
6/8/0	0 368.81	86.98	0.00	281.83	1.56	ND		ND	ND	ND	ND	ND			
9/25/0	368, 81														Dry well
12/19/	00 368.81		. -	-						*-*					Dry well
3/5/0	1 368.81														Dry well
6/14/(1 368.81				~										Dry well
9/17/0	1 368.81														Dry well
9/25/(1 368.81					<u>.</u>									Dry well
12/17/	01 368.81			·											Dry well
3/15/0	2 368.81														Dry well
6/20/0	2 368.81							. –			~				Dry well
9/27/0	2 368.81												<u> </u>	•	Dry well
12/30/	02 368.81	· •••								· _					Dry well
3/26/0	3 368.81		<u>~-</u>			·				·					Dry well
6/10/0	3 368.81	89.76	0.00	279.05	·		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0		
9/9/0	3 368.81	89.47	0.00	279.3 4	0.29		ND<50	ND<0.50	0.80	ND<0.50	ND<1.0		ND<2.0		-
12/10/	03 368,81	90.44	0.00	278.37	-0.97		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0		
7376								Page 9	of 23						

HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS

December 1987 Through December 2007

76 Station 7376

Date Sampl ed	TOC Elevation	Depth to Water	LPH Thickness	water Elevation		(8015M)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-4	continued													
3/9/04		84.89		283.92			ND<50	4.2	0.59	2.0	1.3		ND<2.0	
6/21/0		81.90		286.91	2.99		ND<50	ND<0.50	0.68	ND<0.50	ND<1.0		ND<0.50	
9/8/04		86.45		282,36	-4.55		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
12/14/0	368.81	89.95	0.00	278.86	-3.50		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
3/17/0	5 .368.81	78.86		289.95	11.09		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	•
6/15/0	5 368.81	73.07	0.00	295.74	5.79		ND<50	0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
9/20/0	5 368.81	79.83	0.00	288.98	-6.76		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	·	ND<0.50	
12/29/0	05 368,81	74.08	0.00	294.73	5.75		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
3/15/0	6 368.81	62.45	0.00	306.36	11.63		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	· .
6/28/0	6 368.81	61.87	0.00	306.94	0.58		ND<50	2.9	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
9/28/0	6 368,81	70.81	0.00	298.00	-8.94		ND<50	0.53	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
12/11/0	06 368.8 1	64.10	0.00	304.71	6.71		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
3/19/0	7 368.81	60.37	0.00	308.44	3.73	_	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
6/15/0	7 368.81	62.13	0.00	306.68	-1.76		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	~	ND<0.50	
9/24/0	7 368.81	71.59	0.00	297.22	-9.46		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
12/27/	07 368.81	62.18	0.00	306.63	9.41		ND<50	ND<0.50	· 1.1	ND<0.50	1.5		ND<0.50	
MW-5	G	Screen Int	erval in fee	t: 52.0-72.	0)					•				
9/18/9				299.03	-	36000		6700	410	730	6500	4100		
12/21/	96 363.23	61.77		301.46	2.43	25000	_	3200	300	780	3600	2600		·
3/7/9	7 363.23	56.30)	306.93	5.47	14000		1300	120	410	1200	1700	***	•
6/27/9	363.23	68.88	0.90	295.02	-11.91			<u> </u>			·			Not sampled-LPH in well
9/29/9	363.23	69.47	0.35	294.02	-1.00									Not sampled-LPH in well
12/15/	97 363.23	64.92	0.30	298,54	4.51									Not sampled-LPH in well
3/16/9	8 363.23	49.63	0.09	313.67										Not sampled-LPH in well
7376				•				Page 1	0 of 23					

HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS

December 1987 Through December 2007

76 Station 7376

Date Sampled		Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G (8015M)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
-	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-5	continued											,		
6/26/9	8 363.21	64.13		299.08	-14.59	490		6.3	2.8	4.2	5.1	10		· · · ·
8/18/9	8 363.21	70.40	0.01	292.81	-6.27					·				
9/22/9	8 363.21	69.10	0.06	294.15	1.34	'								Not sampled-LPH in well
12/15/9	363.21	68.84	0.17	294.50	0.34			. In a	-	·	-			Not sampled-LPH in well
12/23/9	98 363.21	68.42	0.50	295.16	0.67		<u> </u>							
3/15/9	9 363.21	63.81	0.25	299.59	4.42								-	
3/23/9	9 363.21	63.59	0.13	299.72	0.13		·					_		
6/7/99	363.21	68.25	0.82	295.57	-4.14	210000		6700	3700	5000	20000	11000	4000	
9/3/99	363.21	69.38	0.70	294.35	-1.22				~-				· · · ·	Not sampled-LPH in well
12/6/9	9 363.21	70.02	0.82	293.80	-0.55									Not sampled-LPH in well
3/10/0	0 363.21	64.56	0.64	299.13	5.33									Not sampled-LPH in well
6/8/00) 363.21	66.47	0.51	297.12	-2.01					-		~~		Not sampled-LPH in well
9/25/0	0 363.21	69.02	0.60	294.64	-2.48									Not sampled-LPH in well
12/19/(00 363,21	68.31	0.14	295.01	0.36								·	Not sampled-LPH in well
3/5/01	363.21	64.19	0.08	299.08	4.07								-	Not sampled-LPH in well
6/14/0	1 363.21	64.02	0.11	299.27	0.19			·						Not sampled-LPH in well
9/17/0	1 363.21	72:07	0.04	29 1,17	-8.10	·								Not sampled-LPH in well
9/25/0	1 363.21	72.17	0.03	291.06	-0.11									Not sampled-LPH in well
12/17/0	363.2 1	72,11	0.03	291.12	0.06	÷-								Not sampled-LPH in well
3/15/0		66.93	0.22	296.45	5.32									Not sampled-LPH in well
6/20/0		69.71	0.42	293.82	-2.63		-							Not sampled-LPH in well
9/27/0		72.0 7	0.00	291.14	-2.68									Not enough water to sample
12/30/0		71.91	0.00	291.30	0.16							-		Not enough water to sample
3/26/0	3 363.21	67.55	0.15	295.77	4.47									Not sampled-LPH in well

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
December 1987 Through December 2007
76 Station 7376

Date Sampled	TQC Elevation	Depth to Water	LPH. Thickness	Ground- water Elevation	Change in Elevation		TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)		Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)		
MW-5	continued													, <u>,,,,,, , ,, , , , , , , , , , , </u>	······································
6/10/0	3 363.21	69.34	0.12	293.96	-1.81							•			Not sampled-LPH in well
9/9/03	3 363.21	68.97	0.00	. 294.24	0.28			** **							LPH in well
12/10/						*** * #			**						Dry well
3/9/04			0.00	297.18			19000	7300	370	910	890		1400		
6/21/0				295.71	-1.47		13000	3700	220	710	660	**	1900		
9/8/04	4 363.21	70.62	0.02	292.61	-3.10								<u> </u>		LPH in well
12/14/0	04 363.21				·										Dry well
3/17/0	5 363.21	65.88	0.02	297.35						· 					LPH in well
6/15/0	5 363.21	63.20	0.02	300.02	2,68							~~~			LPH in well
9/20/0	5 363.21	66.74		296.48	-3.55	'							-		LPH in well
12/29/		64.04		299.18	2.70										LPH in well
3/15/0	6 363.21	57.95	0.01	305.27	6.09										LPH in well
6/28/0		57.33	0.02	305.90	0.63										LPH in well
9/28/0	6 363.21	60.65	0.01	302.57	-3.33	 .	 .								LPH in well
12/11/0	06 363.21	56.92	0.02	306.30	3.74										LPH in well
3/19/0	7 363.2	52.37	0.00	310.84	4.54		16000	620	31	330	320		1600		
6/15/0	7 363.21	55.70	0.00	307.51	-3.33		13000	1400	37	430	180		4400	, <i>'</i>	
9/24/0	7 363.2	61.14	0.00	302.07	-5.44		17000	1500	34	490	130		4000	•	
12/27/	07 363 .2 1	54.95	0.00	308.26	i 6.19		6500	1100	31	300	110		1400		
MW-6	(Screen Int	erval in fee	t: 68.0-88.	0) ·										
9/18/9	6 363.12	2 79.07	0.00	284.05	·	160		5.4	ND	ND	ND	ND			
12/21/		2 75.40	0.00	287.72	3.67	300		96	1.3	ND	1.7	21	=		
3/7/9		2 67.61	0.00	295.51	7.79	1800		920	18	ND	31	290			1
6/27/9	7 363.12	2 80.45	0.00	282.67	-12.84	ND		0.73	ND	ND	38	38			
7376								Page 12	2 of 23						

Table 2 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS

December 1987 Through December 2007

76 Station 7376

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G (8015M)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)		Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(μg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)		
MW-6	continued					<u></u>			······						·
9/29/9	7 363.12	86,02	0.00	277.10	-5.57	62		ND	ND	ND	ND	43			
12/15/9	7 363.12	84.03	0.00	279.09	1.99	78		ND	ND	ND	ND	39			
3/16/9	8 363.12	67.15	0.00	295.97	16.88	210		36	2.5	ND	3.0	64			
6/26/98	8 363.13	75.71	0.00	287.42	-8.55	530		300	8.3	2.8	8.7	81			
8/18/9	8 363.13	74.86	0.00	288.27	0.85	·									
9/22/9						. 	. .								Unable to locate
12/15/9															Unable to locate
12/23/9		80.80	0.00	282.33	·	120		1.1	ND	ND	0.78	25			
1/23/99		80.68	0.00	282.45	0.12	ND	-								
3/15/99		75.29	0.00	287.84	5.39	62		1.4	ND	ND	ND	23			
3/23/99		75.03	0.00	288.10	0.26						<u></u>				
6/7/99		82.27	0.00	280.86	-7.24	ND	-	ND ·	ND	ND	ND	18			
9/3/99		87.49	0.00	275.64	-5.22										Dry well
12/6/99			· ·						-						Dry well
3/10/00		85.61	0.00	277.52		ND		ND	ND	ND	ND	64			
6/8/00		87.36	0.00	275.77	-1.75										Dry well
9/25/00												-			Dry well
12/1 9/0	•	87.73		275.40											Dry well
3/5/01		87.82		275.31	-0.09								-		Dry well
6/14/01		87.69	0.00	275.44	0.13	-112		<u></u>							Dry well
9/17/03		87.70	0.00	275.43	-0.01										Dry well
9/25/01					<u> </u>			-						, <i>·</i>	Dry well
12/17/0		87.74	0,00	275.39						~~					Dry well
3/15/02	2 363.13	87,72	0.00	275.41	0.02										Dry well
7376		•						Page 13	of 23						-

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
December 1987 Through December 2007
76 Station 7376

Date Sampl	TOC ed Elevation	Depth to Water	LPH Thickness		Change in Elevation		TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	· ·		Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)			
MŴ																
	0/02 363.13	8 87.79	0.00	275.34	-0.07											Dry well
	7/02 363.13				<u> </u>								 -			Dry well
12/:	30/02 363,13	3														Dry well
3/2	6/03 363.13	3 87.67	0.00	275.46	i ,		-				' 					Dry well
6/1	0/03 363.13	8 87.13	0.00	276.00	0.54			,								Dry well
9/	0/03 363.13	87.29	0.00	275.84	-0.16		Ta++								Not e	nough water to sample
12/	.0/03 363.13	3	·						-							Dry well
3/	0/04 363.1	3 83.53	0.00	279.60)	**	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		37			
6/2	1/04 363.13	3														Dry well
9/	3/04 363.13	3														Dry well
12/	4/04 363.1	3				~~	~~~~									Dry well
3/1	7/05 363.13	3 77.58	0.00	285.55	i		79	0.67	ND<0.50	ND<0.50	ND<1.0		23			
6/1	5/05 363.13	3 74.44	0.00	288.69	3.14		ND<50	0.51	ND<0.50	ND<0.50	ND<1.0		18			
9/2	0/05	81.92	0.00				ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		13		Casing	t elevation modified on 6/22/05
12/	29/05	67:19	0.00				53	ND<0.50	ND<0.50	ND<0.50	ND<1.0		29			
3/1	5/06 ·	61.88	0.00		·		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		27			
6/2	8/06	62.52	0.00				ND<50	2.0	0.74	0.73	1.4	~-	12			
9/2	8/06	66.54	0.00				82	0.58	ND<0.50	ND<0.50	ND<0.50		9.7			
12/	1/06	59.64	0.00				59	ND<0.50	ND<0.50	ND<0.50	ND<0.50		11			
3/1	9/07	53.75	5 0.00		-		ND<50	1.1	ND<0.50	ND<0.50	ND<0.50		22			
6/1	5/07	63.00) 0.00				82	ND<0.50	ND<0.50	ND<0.50	ND<0.50		13			
9/2	4/07	. 66.10	0.00				110	ND<0.50	1.2	ND<0.50	0.85		8.8			
12/	27/07	56.75	5 0.00			·	ND<50	ND<0.50	ND<0.50		ND<1.0	·	8.4			

Table 2 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS December 1987 Through December 2007

76 Station 7376

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation		TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
*	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-7	(8	Screen Inte	erval in feet	t: 55.0-75.0	D)									······································
6/26/9	8 355.97													
8/18/9		68.75	0.00	287.22		4000		1900	48	160	ND	1700		
9/22/9		66.35	0.00	289.62	2.40	3200		1100	ND	22	ND	1500		
12/15/9	98 355.97	65.03	0.00	290.94	1.32	1900		180	2.7	2.9	3.8	1400		
12/23/9	98 355.97	64.82	0.00	291.15	0.21						-		-	
3/1 5/9	9 355.97	60.44	0.00	295.53	4.38	2700		1100	ND	30	16	1400	970	
3/23/9		60.43	0.00	295.54	0.01									
6/7/99		64.48	0.00	291.49	-4.05	2600		180	21	ND	13	1200		
9/3/99		69.98	0.00	285.99	-5.50	870		69	ND	ND	ND	1100	872	
12/6/9		70.18	0.00	285.79	-0.20	1900	•	350	ND	ND	ND	1100	*	
3/10/0		67.36	0.00	288.61	2.82	2900		1600	ND	40	54	1100		
6/8/00		69.81	0.00	286.16	-2.45	625		30.8	ND	0.761	0.940	1290		
9/25/0	0 355.97	70.15	0.00	285.82	-0.34	2180	'	423	ND	NĎ	ND ·	1510		
12/19/0		70.11	0.00	285.86	0.04	5900		1000	ND	ND	ND	1300	`	
3/5/01		68.72	0.00	287.25	1.39	13200		5070	195	306	385	1530		
6/14/0	1 355.97	70.00	0.00	285.97	-1.28	6400	 '	3300	85	96	170	1000		
9/17/0			0.00	285.69	-0.28	11000		3000	ND<50	ND<50	ND<50	750		
9/25/0		70.49	0.00	285.48	-0.21		**							
12/17/0		71.35	0.00	284.62	-0.86	5800		1100	ND<10	ND<10	ND<10	760	670	
3/15/02			0.00	287.41	2,79	2800		850	22	74	39	360	540	
6/20/02			0.00	285.96	-1.45		9900	3200	23	41	ND<40		390	
9/27/02			0.00	284.47	-1.49	***	4200	710	ND<10	ND<10	ND<20		610	·
12/30/0			0.00	284.72	• 0.25		2400	620	ND<2.5	20	53		500	· -
3/26/03	3 355.97	68.79	0.00	287,18	2.46		5300	1800	ND<10	13	ND<20		270	
7376								Page 15	of 23					-

HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
December 1987 Through December 2007

76 Station 7376

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness		Change in Elevation		TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)		Comments	
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)			
MW- 7	continued															
6/10/0	3 355.97	69.10		286.87	-0.31		1300	380	ND<5.0	ND<5.0	ND<10	-	-			
9/9/03		70.04		285.93	-0.94		1900	240	ND<2.5	ND<2.5	ND<5.0		380			
12/10/0	3 355.97	69.98	0.00	285.99	0.06		4500	500	ND<5.0	ND<5.0	ND<10		340			
3/9/04	355.97	66.66	0.00	289.31	3.32		5600	1700	11	34	ND<20	~~	280			
6/21/0		67.82	0.00	288.15	-1.16		2300	260	ND<2.5	3.0	ND<5.0		300			
9/8/04		70.05	0.00	285.92	-2.23	 '	1400	72	ND<2.5	ND<2.5	ND<5.0	· —.	440			
12/14/(70.87		285.10	-0.82		2200	180	ND<1.0	1.8	ND<2.0		320			
3/17/0	· · ·	63.69		292.28	7.18		5700	1800	7.8	24	16		190			
6/15/0		59.29	4 C C C C C C C C C C C C C C C C C C C	296.68	4.40		3900	230	ND<2.5	3.7	8.0		280			
9/20/0				291.59			1200	5.8	ND<5.0	ND<5.0	ND<10		260			
12/29/(•	57.43		298.54			450	1.6	ND<0.50	ND<0.50	ND<1.0		140	•		
3/15/0				304.05			300	1.4	0.86	ND<0.50	ND<1.0		94			
6/28/0				306.50		·	770	47	2.4	2.2	1.3		510			
9/28/0				302.04			610	13	1.1	0.82	0,66		370			
12/11/0				306.10	4.06	-	180	1.2	ND<0.50	ND<0.50	ND<0.50		180			
3/19/0		45.28		310.69	4.59		200	0.92	ND<0.50	ND<0.50	ND<0.50		98			
6/15/0	7 355 .9 7	49,48	0.00	306.49	-4.20		170	1.0	ND<0.50	ND<0.50	0.60		72			
9/24/0	7 355.97	54.05	0.00	301.92	-4.57		590	1.4	ND<0.50	ND<0.50	ND<0.50	10.10	330			
12/27/0)7 355.97	7 47.98	0.00	307.99	6.07		120	ND<0.50	ND<0.50	ND<0.50	ND<1.0		84			
MW-8	(Screen Int	erval in fee	t: 66.0-86.	0)			· ·		-						
6/26/9			0.00	299.37		ND		6.0	ND	ND	ND	150				
8/18/9		7 73.38	0.00	288.99	-10.38						 '					
9/22/9		7 70.89	0.00	291.48	3 2.49	ND		ND	ND	ND	ND	9.5	•••• `	,		
12/15/	98 362.31	7 70.29	0.00	292.08	3 0.60	ND		ND	ND	ND	ND	3.0				
7376								Page 1	6 of 23						н. 1917 — Ал	

HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS

December 1987 Through December 2007

76 Station 7376

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation		TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
·	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-8	continued							· · · · · ·					(10-)	
12/23/9	8 362.37	70.03	0.00	292.34	0.26							-		
3/15/9	9 362.37											-		Unable to locate
3/23/9	9 361.83	64.86	0.00	296.97		ND		ND	0.77	ND	0.96	190		
6/7/99	361.83	68.30	0.00	293.53	-3.44	ND	·	ND	ND	ND	ND	ND		
9/3/99	361.83	73.92	0.00	287.91	-5.62	ND		ND	0.57	ŃD	ND	170	146	
12/6/99	9 361.83	74.98	0.00	286.85	-1.06	ND	_	ND	ND	ND	ND	150		
3/10/00	361.83	71.54	0.00	290.29	3.44	ND		ND	ND	ND	ND	150		
6/8/00	361.83	72.60	0.00	289.23	-1.06	ND		ND	ND	ND	ŇD	42.8		•
9/25/00	361.83	75.31	0.00	286.52	-2.71	ND		ND	ND	ND	ND	227	· 	
12/19/0	0 361.83	75.54	0.00	286.29	-0.23	ND		ND	ND	ND	ND	160		
3/5/01	361.83	75.91	0.00	285.92	-0.37	ND		ND	ND	ND	ND	125		
6/14/03		75.51	0.00	· 286.32	0.40	ND		ND	ND	ND	ND	140		
9/17/03		77.19	0.00	284.64	-1.68	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	110		
9/25/01		77.17	0.00	284.66	0.02						****			
12/17/0			0.00	281.89	-2.77	ND<50	·	ND<0,50	ND<0.50	ND<0.50	ND<0.50	140	170	
3/15/02	2 361.83	76,82	0.00	285.01	3.12	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	72		
6/20/02	2 361.83	77.73	0.00	284.10	-0.91		83	ND<0.50	ND<0.50	ND<0.50	ND<1.0		`80	
9/27/02		78.94	0.00	282.89	-1.21	. 	160	ND<0.50	ND<0.50	ND<0.50	ND<1.0		94	
12/30/0		78.21	0.00	283.62	0.73		75	ND<0.50	ND<0.50	ND<0.50	ND<1.0		120	
3/26/03			0.00	287.49	3.87		110	ND<0.50	ND<0.50	ND<0.50	ND<1.0		110	
6/10/03		75.17	0.00	286.66	-0.83		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		31	
9/9/03		74.11	0.00	287.72	1.06		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		150	
12/10/0		73.59	0.00	288.24	0.52		150	ND<1.0	ND<1.0	ND<1.0	ND<2.0		180	-
3/9/04	361.83	, 70.32	0.00	291.51	3.27		130	ND<1.0	ND<1.0	ND<1.0	ND<2.0		180	
7976								D	7.000					

Page 17 of 23

HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS

December 1987 Through December 2007

76 Station 7376

Date Sampled		Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation		TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)		Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)		
MW-8	continued														······································
6/21/0	4 361.83	70.30	0.00	291.53	0.02		150	ND<1.0	ND<1.0	ND<1.0	ND<2.0		200		
9/8/04	361.83	73.83	0.00	288.00	-3.53		300	ND<1.0	ND<1.0	ND<1.0	ND<2.0	· 	350	·	
12/14/0	4 361.83	75.45	0.00	286.38	-1.62		ND<100	ND<1.0	ND<1.0	ND<1.0	ND<2.0		210		
3/17/0	5 361.83	67.85	0.00	293.98	7.60		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		290		
6/15/0	5 361.83	62.74	0.00	299.09	5.11	. •	ND<200	ND<0.50	ND<0.50	ND<0.50	ND<1.0		290		
9/20/0	5	68.11	0.00	1.00			180	'ND<0.50	ND<0.50	ND<0.50	ND<1.0		310		Casing elevation modified on 6/22/05
12/29/0	5	62.32	0.00				210	ND<0.50	ND<0.50	ND<0.50	ND<1.0		390		
3/15/0	6	56.89	0.00			 '	140	ND<0.50	ND<0.50	ND<0.50	ND<1.0		310		
6/28/0	б	54.53	0.00				190	ND<0.50	ND<0.50	ND<0.50	ND<1.0		550		•
9/28/0	б	59.02	0.00	 '			210	ND<0.50	ND<0.50	ND<0.50	ND<0.50	-	460		
12/11/0)6	55.02	0.00				260	ND<0.50	ND<0.50	ND<0.50	ND<0.50		580		
3/19/0	7 ·	51.00	0.00	· ·			340	ND<0.50	ND<0.50	ND<0.50	ND<0.50	· · _	480		
6/15/0	7	54.60	0.00			<u>_`</u> _	350	ND<0.50	ND<0.50	ND<0.50	ND<0.50		540		
9/24/0	7	58.59	0.00				420	ND<0.50	ND<0.50	ND<0.50	ND<0.50	·	590	•	· · · ·
12/27/0)7	53.40	0.00				240	ND<0.50	ND<0.50	ND<0.50	ND<1.0		510		
MW-9	(5	Screen Int	erval in fee	t: DNA)											
11/29/9	99 354.85	74.50	0.00	280.35	i _	—							44		
12/6/9	9 354.85	5 74.35	0.00	280.50	0.15	ND		ND	ND	ND	ND	3.0	2.7		
3/10/0	0 354.85	65.94	0.00	288.91	8.41	ND		ND	ND	ND	ND	2.5			
6/8/00	354.85	5 70. <u>7</u> 7	0.00	284.08	-4.83	ND		ND	ND	ND	ND	ND			
9/25/0	0 354.85	5 74.75	0.00	280.10	-3.98	ND	,	ND	0.516	ND	ND	10.5			
12/19/0	0 0 354.85	5 74.43	0.00	280.42	2 0.32	ND		ND	ND	ND	ND	ND			
3/5/0	1 354.85	5 74.63	0.00	280.22	2 -0.20	ND		ND	ND	ND	ND	ND			
7376					•			Page 1	8 of 2 3		1	,			

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
December 1987 Through December 2007

76 Station 7376

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness		Change in Elevation		TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
M W-9	continued							·····						
6/14/0	1 354.85	74.75	0.00	280.10	-0.12	ND		ND	ND	ND	ND	ND		
9/17/0		74.78	0.00	280.07	-0.03	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.5		
9/25/0		74.83	0.00	280.02	-0.05						`	 '		·
12/17/0	01 354.8 5	74.80	0.00	280.05	0.03	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0	ND<1.0	
3/15/0			0.00	280.02	-0.03	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.5		
6/20/0		A CONTRACTOR OF A	0.00	279.97	-0.05		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		0.75	
9/27/0			0.00	279.47	-0.50	~=	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	***	3.6	
12/30/0				281.52	2.05		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		3.2	
3/26/0				283.64			ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		3.1	· · · ·
6/10/0				283.02	-0.62		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
9/9/03				290,77	7,75		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
12/10/0			0.00	293.12	2.35		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
3/9/04				297.38	4.26		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	-	ND<2.0	
6/21/0			0.00	296.10	-1.28		ND<50	ND<0,50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
9/8/04				291.26	-4.84		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
12/14/0			0.00	290.89	-0.37	·	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
3/17/0				302.20	11.31		ND<50	·ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
6/15/0				304.99	2.79	-	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
9/20/0				299.63	-5.36	<u> </u>	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	·	0.55	
12/29/0				307.24	7.61		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
3/15/0			•	312.50	5.26		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		0.68	
6/28/0				314.69	2.19		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
9/28/0				310.29	-4.40		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		1.1	-
12/11/0	6 362.62	48.26	0.00	314.36	4.07		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		0.61	
7376								Page 1	9 of 23					-

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
December 1987 Through December 2007

76 Station 7376

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation		TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments	
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)		
MW-9	continued											,			
3/19/07	7 362.62	43.68	0.00	318.94	4.58	 .	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50		
6/15/07	7 362.62	48.35	0.00	314.27	-4.67	-	ND<50	ND<0.50	0.50	ND<0.50	0.74		0.59		
9/24/01	7 362.62	52.52	0.00	310.10	-4.17	~=	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50		
12/27/0	7 362.62	46.26	0.00	31 6.3 6	6.26		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		0.56		
MW-10	(5	Screen Int	erval in feet	t: DNA)											
11/ 29/9	9 362.62							~~						Dry well	
12/6/99	9 362.62	, 												Dry well	
3/10/0	0 362.62	85.04	0.00	277.58		ND		ND	ND	ND	ND	130	150	, ,	
6/8/00	362.62									~~				Dry well	
9/25/0	0 362.62													Dry well	
12/19/0	0 362.62													Dry well	
3/5/01	362.62											-	-	Dry well	
6/14/0	1 362.62													Dry well	
9/17/0	1 362.62			·					. 		. 		 ·	Dry well	
9/25/0	1 362.62		、 					-	·				-	Dry well	
12/17/0	1 362.62													Dry well	
3/15/0	2 362.62										· ·			Dry well	
6/20/0:	2 362.62	·				-								Dry well	
9/27/0	2 362.62	:								·				Dry well	
12/30/0)2 362.62	:			-			Mat				[·]		Dry well	
. 3/26/0	3 362.62					·				••••		· 		Dry well	
6/10/0	3 362.62	89.70	0.00	272.92			ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		24	·	-
9/9/03	362.62	2												Dry well	
 12/10/0	3 362.62	92.09	0.00	270.53										Insufficient recharg	ze
7376								Page 2	0 of 23				:		

HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS

December 1987 Through December 2007

76 Station 7376

Date Sampled		Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation		TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-10	continued	i				· · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	····				· · · · · · · · · · · · · · · · · · ·
3/9/04	362.62	83.15	0.00.	279.47	8.94		130	ND<0.50	ND<0.50	ND<0.50	ND<1.0		130	
6/21/04	4 362.62	86.86	0.00	275.76	-3.71		420	ND<2.5	ND<2.5	ND<2.5	ND<5.0	~~	490	
9/8/04	•													Dry well
12/14/0	4 362.62			-										Dry well
3/17/0:	5 362.62	77.07	0.00	285,55			ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		65	
6/15/05	5 362.62	74.04	0.00	288.58	3.03	-	ND<50	ND<0,50	ND<0.50	ND<0.50	ND<1.0		77	· ·
9/20/05	5 362.62	81.08	0.00	281.54	-7.04		120	ND<0.50	ND<0.50	ND<0.50	ND<1.0		210	
12/29/0	5 362.62	66.31	0.00	296.31	14.77		51	ND<0,50	ND<0.50	ND<0.50	ND<1.0	~~	84	
3/15/06	5 362.62	61.26	0.00	301.36	5.05		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		91	
6/28/06	5 362.62	61.88	0.00	300.74	-0.62		60	ND<0.50	ND<0.50	ND<0.50	ND<1.0		140	
9/28/06		65.76	0.00	296.86	-3.88		ND<50	ND<0.50	ND<0.50	ND<0.50	0.77		53	
12/11/0		58.96	0.00	303.66	6.80		85	ND<0.50	ND<0.50	ND<0.50	ND<0.50		83	
3/19/07		53.02	0.00	309.60	5.94		78	ND<0.50	ND<0.50	ND<0.50	ND<0.50		100	
6/15/07		62.50	0.00	300,12	-9.48		68	ND<0.50	ND<0.50	ND<0.50	ND<0.50		96	
9/24/07	7 362.62	65.30	0.00	297.32	-2.80		86	ND<0.50	ND<0.50	ND<0.50	ND<0.50		76	
12/27/0	7 362.62	55.95	0.00	306.67	9.35	•	63	ND<0.50	1.3	ND<0.50	1.6		81	
MW-11	(S	creen Inte	erval in feet	: DNA)						•				•
9/25/01		81.24	0.00	273.42		ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	9.0		
12/17/0	1 354.66	80.47	0.00	274.19	0.77	ND<50				ND<0.50		10	14	
3/15/02	2 354,66	79,42	0.00	275.24	1.05	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	7.6		
6/20/02	2 354.66	80.69	0.00	273.97	-1.27		ND<50		ND<0.50		ND<1.0		7.7	
. 9/27/02	2 354.66	81.58	0.00	273.08	-0.89		ND<50		ND<0.50	ND<0.50	ND<1.0		5.6	
12/30/0	2 354.66	79,12	0.00	275,54	2.46		ND<50		ND<0.50	2.0	6.1		6.9	-
3/26/03	3 354.66	73.70	0.00	280.96	5.42		ND<50	0.62	1.7	0.5	2.6		9.8	
7376								Page 2	1 of 23					-

Table 2 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS

December 1987 Through December 2007

76 Station 7376

Date Sampled		Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation		TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-11	continued	1												
6/10/03	3 354.66	73.06	0.00	281.60	0.64		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		3.8	
9/9/03	354.66	74.19	0.00	280.47	-1.13		ND<50	ND<0.50	0.66	ND<0.50	ND<1.0		4.4	
12/10/0	3 354.66	70.99	0.00	283.67	3.20	ни	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		3.4	
3/9/04	354,66	66.61	0.00	288.05	4.38		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
6/21/04	4 354.66	67.63	0.00	287.03	-1.02		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		0.89	
9/8/04	354.66	72.69	0.00	281.97	-5.06		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		8.0	
12/14/0	4 354.66	72.69	0.00	281.97	0.00		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		15	
3/17/05	5 354.66	61.62	0.00	293.04	11.07		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		1.1	
6/15/0:	5 354.66	58.68	0.00	295.98	2.94		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
9/20/0:	5 354.66	63.81	0.00	290.85	-5.13		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
12/29/0	5 354.66	55.96	0.00	298.70	7.85	·	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		0.64	
3/15/00	5 354.66	50.73	0.00	303.93	.5.23		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	÷	ND<0.50	
6/28/00	5 354.66	48.54	0.00	306.12	2.19		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
9/28/00	5 354.66	52.78	0.00	301.88	-4.24		ND<50	ND<0.50	ND<0.50	ND<0.50	0.55		ND<0.50	
12/11/0	6 354.66	48.64	0.00	306.02	. 4.14		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
3/19/01	7 354.66	44.06	0.00	310.60	4.58		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
6/15/0	7 354.66	48.70	0.00	305.96	5 -4.64		ND<50	ND<0.50	ND<0.50	ND<0.50	0.63		ND<0.50	
9/24/01	7 354.66	52.77	0.00	301.89) -4.07		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	-	ND<0.50	-
12/27/0	354.66	46.51	0.00	308.15	6.26	÷	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	<u></u>	ND<0.50	
MW-12	(8	Screen Int	erval in fee	t: DNA)							· .			
9/25/0	1 354.08	8 80.78	0.00	273.30)	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.5		
12/17/0	354.08	8 80.02	0.00	274.06	5 0.76	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0	ND<1.0	
3/15/0	2 354.08	8 78.88	0.00	275.20) 1.14	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0,50	ND<2.5	·'	
6/20/0	2 354.08	80.34	0.00	273.74	4 -1.46	'	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		0.83	
7376								Page 2	2 of 23					

HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS

December 1987 Through December 2007

76 Station 7376

S	Date ampled		Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation		TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	· · · · ·	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
	MW-12	continued	l					1.1							
	9/2 7/02	354.08	81.50	0.00	272.58	-1.16		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	· · · · · · · · · · · · · · · · · · ·
	12/30/02	2 354.08	78.20	0.00	275.88	3.30		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2,0	
	3/26/03	354.08	72.80	0.00	281.28	5.40	***	ND<50	0.57	1.6	ND<0.50	2.2		ND<2.0	
	6/10 /0 3	354.08	72.31	0.00	281.77	0.49	ND<50	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
	9/9/03	354.08	73.38	0.00	280.70	-1.07		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
	12/10/03	3 354.08	70.28	0.00	283.80	3.10		ND<50	ND<0.50	0.51	ND<0.50	. 1.1		ND<2.0	
	3/9/04	354.08	65.69	0.00	288.39	4.59		ND<50	ND<0.50	0.54	ND<0.50	1.4		ND<2.0	
	6/21/04	354.08	66.90	0.00	287.18	-1.21		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	~~~	ND<0.50	
	9/ 8/04	354.08	71.96	0.00	2 82.12	-5.06		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
	12 /14/04	4 354.08	71.92	0.00	282.16	0.04		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
	3/17/05	354.08	60.49	0.00	293.59	11.43		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
	6/15/05	354.08	57.82	0.00	296.26	2.67		ND<50	ND<0.50	ND<0.50	ND<0.50	1.1		ND<0.50	· · · ·
	9/20/05	354.08	63.02	0.00	291.06	-5.20		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
	12/29/05	5 354.08	55.01	0.00	299.07	8.01		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
	3/15/06	354.08	49.92	0.00	304.16	5.09		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
	6/28/06	354.08	47.91	0.00	306.17	2.01		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	****	0.56	
	9/28/06	354.08	52.05	0.00	302.03	-4.14		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	·
	12/11/06	5 354.08	47.83	0.00	306.25	4.22		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
	3/19/07	354.08	43.32	0.00	310.76	4.51		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
	6/1 5/07	354.08	48.26	0.00	305.82	-4.94		ND<50	ND<0.50	ND<0.50	ND<0.50	0.60	**	ND<0.50	· · ·
	9/ 24/07	354.08	52.60	0.00	301.48	-4.34		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
	12/27/07	7 354.08	45.83	0.00	308.25	6.77		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	

•	·		•				76 Stati	on 7376		
Date Sampled	TPH-D	TBA	Ethanol (8260B)	Ethylene- dibromide (EDB)	1,2-DCA (EDC)	DIPE	ETBE	TAME		•
, 	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l) ·	(µg/l)	(µg/l)		
MW-1									•	
12/8/87	2100									
3/1/95	120									
6/1/95	54			_		****				
9/6/95	690				55				· · · ·	
12/12/95	190		~-		,					
3/1/96	56									
6/15/96	ND			-	 ,					
9/18/96	130							. 		
12/21/96	ND									
3/7/97	ND					•			· · · ·	
6/27/97	ND						·			
9/29/97	ND									
12/15/97	ND				P7			-		
3/16/98	ND		· ·							
6/26/98	ND			·			· ==			
9/22/98	240									L
12/15/98	ND							·		
3/15/99	67			~=		-				
6/7/99	ND									
9/3/99	76	ND	ND	ND<2.0	-	ND	ND	ND		
12/6/99	ND							·		
3/10/00	51									
6/8/00	68.2			. 		·				
9/25/00	ND						~~	**		
12/19/00							_			•
3/5/01	505									
							Page 1	of 16		
7376							Fage			

Table 2 a ADDITIONAL HISTORIC ANALYTICAL RESULTS

					ADDI	FIONAL 1	HISTORIC	ANALYTI	CAL RESULTS			
•							76 Stati	ion 7376				
Date Sampled	TPH-D	TBA	Ethanol (8260B)	Ethylene- dibromide (EDB)	1,2-DCA (EDC)	DIPE	ETBE	TAME				
	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)				
	continued									 		
6/14/01	71											
9/17/01	ND<50		77		••							
12/17/01	ND<53	ND<40	ND<1000		ND<2.0 ·	ND<2.0	ND<2.0	ND<2.0				
. 3/15/02	ND<52											
6/20/02	ND<50				. 	-		~~				
9/27/02	ND<100		••		 .							
12/30/02	52	ND<400	ND<2000	ND<8.0	ND<8.0	ND<8.0	ND<8.0	ND<8.0				
3/26/03	120	ND<2000	ND<10000	ND<40	ND<40	ND<40	ND<40	ND<40				
6/10/03	ND<50	ND<4000	ND<20000	ND<80	ND<80	ND<80	ND<80	ND<80				
9/9/03	ND<50	==			-							
12/10/03	ND<50	·										
3/9/04	ND<50											
6/21/04	ND<50		-		-		-					
9/8/04	ND<50											
12/14/04	ND<50										•	
3/17/05	ND<50	-+••										
6/15/05	ND<50					- <u>`</u>						
9/20/05	ND<200				<u> </u>							
12/29/05	ND<200											
3/15/06	ND<200								·		,	
6/28/06	ND<200								• •			
9/28/06	ND<50											
12/11/06	ND<50										•	
3/19/07	170				**						,	
6/15/07	53								:			•
9/2 4/07	76									·		•
•												

Table 2 a ADDITIONAL HISTORIC ANALYTICAL RESULTS

7376

Page 2 of 16

							76 Stati	on 7376				
Date Sampled	TPH-D	TBA	Ethanol (8260B)	Ethylene- dibromide (EDB)		DIPE	ETBE	TAME				• •
	(µg/l)	(µg/l)	(µg/l)	(μg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)				
MW-1 c 12/27/07	ontinued 53							. 	<u>.</u>	 	· · ·	
MW-2 12/8/87	620							_		· .		
MW-2B												
3/1/95	320											
6/1/95	280							-				
9/6/95	ND											
12/12/95	850											
3/1/96	870									•		
6/15/96	420											
9/18/96	600						-					
12/21/96	470											•
3/7/97	870				;		·					
6/27/97	680											
9/29/97	430						~~					· · ·
12/15/97	490									4		
3/16/98	4000							-				
6/26/98	790		<u> </u>					·				
9/22/98	930											
12/15/98	600										-	
3/15/99	390	3800	ND			13	ND	ND				
6/7/99	770		•									
9/3/99	870	3480	ND			ND	ND	ND				
12/6/99	850				¥			·				
3/10/00	1500											
9/25/00	2900											
7376							Page 3	of 16				

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 7276

7376

Page 3 of 16

				· ·			76 Stat	ion 7376		•			
Date Sampled	TPH-D	TBA.	Ethanol (8260B)	Ethylene- dibromide (EDB)	1,2-DCA (EDC)	DIPE	ETBE	TAME				•	
	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)			•		
MW-2B 12/19/00	continued 700									· · · · ·	 		
6/14/01	570		·	·									
6/10/03	280	ND<10000	ND<50000	ND<200	ND<200	ND<200	ND<200	ND<200		· .			
6/21/04	260						75						
3/17/05	280				•								
6/15/05	560		_		, 								
9/20/05	340												
3/15/06	7200									,			
6/28/06	32000								2				
9/28/06	2300												
12/11/06	61000												
3/19/07	30000		·				·						
6/15/07	21000	~-				 .							
12/27/07	18000							 .					
1W-3 .12/8/87	2300												
3/1/95	140												
6/1/95	140												
9/6/95	880							~~				· ·	
12/12/95	3100												
3/1/96	1500												
6/15/96	400	****			· · ·			**					
9/18/96	170												
12/21/96	64												
3/7/97	570				~-						-		
6/27/97	ND												
0141191	1ND												

Table 2 a ADDITIONAL HISTORIC ANALYTICAL RESILTS.

		•			-		76 Stati	on 7376							
Date Sampled	ТРН-D	ТВА	Ethanol (8260B)	Ethylene- dibromide (EDB)	1,2-DCA (EDC)	DIPE	ETBE	TAME							
	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)				-			
MW-3 c	ontinued														
9/29/97	ND	****													
12/15/97	ND					75				;					
3/16/98	670					'	·	-					•		
6/26/98	63		~~												
9/22/98	95														
12/15/98	ND		· <u></u> ·	·					•					•	
3/15/99	3500														
6/7/99	ND				·										
9/3/99	2900	ND	ND	1 111		ND	ND	ND						•	
12/6/99	4200														
3/10/00	2500														
6/8/00	489														
9/25/00	4380	· •••													
12/19/00	5600														
3/5/01	3790														
6/14/01	1300						[·]								
9/17/01	290														
12/17/01	700	26	ND<500	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0							
3/15/02	3600				- - '		, 					,			
6/20/02	1300	**		·			 '								
9/27/02	ND<100			·			-								
12/30/02	1800	ND<1000	ND<5000	ND<20	ND<20	ND<20	ND<20	ND<20							
3/26/03	2600	ND<1000	ND<5000	ND<20	ND<20	ND<20	ND<20	ND<20					,	-	
6/10/03	350	ND<100	ND<500	ND<2.0	5.3	ND<2.0	ND<2.0	ND<2.0							
9/9/03	270								,						
12/10/03	800														

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 7376

7376

Page 5 of 16

							/v blad	MI /J/0	· · · · ·
Date Sampled	ТРН-D	TBA	Ethanol (8260B)	Ethylene- dibromide (EDB)	1,2-DCA (EDC)	DIPE	ETBE	TAME	
	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-3 c	ontinued				,		,		· · · · · · · · · · · · · · · · · · ·
3/9/04	1100								
6/21/04	210						<u> </u>		
9/8/04	130								
12/14/04	800		B+ 4+		·				
3/17/05	2400								
6/15/05	410								•
9/20/05	ND<200				·				
12/29/05	1400				·				
3/15/06	520								
6/28/06	920								
9/28/06	190								
12/11/06	520					·			
3/19/07	660		-	-					
6/15/07	1100	·						_	
9/24/07	770								
12/27/07	340					-		~=	
MW-4 9/18/96	200						· ·		
12/21/96	ND	-							
3/7/97	ND	· 							
6/27/97	ND								
9/29/97	ND								
12/15/97	ND								
3/16/98	ND								
6/26/98									
9/22/98 9/22/98	630 74		****						
7122198	/4				~~				

Table 2a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 7376

7376

Page 6 of 16

.

Date Sampled	TPH-D	TBA	Ethanol (8260B)	Ethylene- dibromide (EDB)	1,2-DCA (EDC)	DIPE	ETBE	TAME		
	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)		
MW-4 c	ontinued							,		
12/15/98	ND									
3/15/99	ND									
6/7/99	ND						~			
9/3/99	66	ND	ND	••		ND	ND	ND		
12/6/99	95				 .					
3/10/00	ND									
6/8/00	72.8					• •••				
6/10/03	ND<50	ND<100	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0		
9/9/03	ND<50		~~							
12/10/03	ND<50	**								
3/9/04	56			,	 ,					
6/21/04	59									
9/8/04	ND<50	` <u></u> '				· ـ		÷= .		
12/14/04	ND<50			-						
3/17/05	ND<50						-			
6/15/05	ND<50									
9/20/05	ND<200					** **				
12/29/05	ND<200	~~								
3/15/06	ND<200			**	-	ΨL				
6/28/06	ND<200			***						
9/28/06	ND<50									
12/11/06										
. 3/19/07	66			-	-					
6/15/07	ND<50									
9/24/07	ND<50				· ·					
12/2 7/07	ND<50									

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 7376

Page 7 of 16

	ADDITIONAL HISTORIC ANALYTICAL RESULTS 76 Station 7376																
Date Sampled	TPH-D	TBA	Ethanol (8260B)	Ethylene- dibromide (EDB)	1,2-DCA (EDC)	DIPE	ETBE	TAME									
·····	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)									
MW-5											- * • • • • • • • • • • • • • • • • • •				· · · ·	<u>-</u> -	
9/18/96	4700	·															
12/21/96	4700	-				-	-										
3/7/97	2100					, 											
6/26/98	230000																
6/7/99	4700000	ND	ND			ND	ND	ND									
3/9/04	110000			· ·		-											
6/21/04	190000																
3/19/07	84000							'									
6/15/07	29000																
9/24/07	33000	~-															
12/27/07	23000																
MW-6										·							
9/18/96	ND							·									
12/21/96	ND					***		-								•	
3/7/97	190			***													
6 /27/ 97	73																
9/29 /97	ND			<u>.</u>													
12/15/97	ND																
3/16/98	100					_		• 									
6/26/98	180					_					•						*
1/23/99	ND												. ·				
3/15/99	71																
6/7/99	160				-												
3/10/00	ND		'	 .		 ·		·									
3/9/04	110		**														-
3/17/05	150														•		
7376							Page 8										
1010							rage a	01.10									-

Table 2 a ADDITIONAL DISTORIC ANAL VEICAL DESIL TO

							76 Static			_					
Date Sampled	TPH-D	TBA	Ethanol (8260B)	Ethylene- dibromide (EDB)	1 ,2- DCA (EDC)	DIPE	ETBE	TAME					. '		
	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)							
MW-6 6/15/05	continued 120			·	<u></u>						-				
9/20/05	ND<200														
	ND<200														
3/15/06	ND<200		-			 '		·							
6/28/06	ND<200														
9/28/06	85														
12/11/06	81		~~												
3/19/07	90	***													
6/15/07	310														
9/24/07	130														
12/27/07	7 73		.	~~				.							
MW-7									•						
8/18/98	1400			·			-	.							•
9/22/98	780													<i>a</i> :	
12/15/98	350			'											
3/15/99	460	610	ND			4.3	ND	ND							
6/7/99	550						:		•						
9/3/99	550	460	ND			4.36	ND	ND	· ·						
12/6/99	220														
3/10/00	930							-							•
6/8/00	463														
9/25/00	1810														
12/19/00	930														
3/5/01	801														
6/14/01	710	··· '					-								
9/17/01	860	***				 .									
7376							Page 9	of 16							

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 7376

•	·				ADDI	FIONAL H		ANALYTICAI	. RESULTS				
Date Sampled	TPH-D	TBA	Ethanol (8260B)	Ethylene- dibromide (EDB)	1,2-DCA (EDC)	DIPE	ETBE	TAME					
	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)					
MW-7 c	ontinued 470	ND<200	ND<5000	ND<10	ND<10	ND<10	ND<10	ND<10	· · · · · · · · · · · · · · · · · · ·			 	
3/15/02	830												
6/20/02	710					-							
9/27/02	300												
12/30/02	220	ND<500	ND<2500	ND<10	ND<10	ND<10	ND<10	ND<10					
3/26/03	560	ND<2000	ND<10000	ND<40	ND<40	ND<40	ND<40	ND<40					
6/10/03	610	ND<1000	ND<5000	ND<20	ND<20	ND<20	ND<20	ND<20					
9/9/03	430							·					
12/10/03	450										,		
3/9/04	640									1	,		
6/21/04	630								·				
9/8/04	270		. ==										
12/14/04	160												
3/17/05	380	[`]			-	`			_				
6/15/05	630			~~					-				
9/20/05	280												
12/29/05	ND<200												
3/15/06	ND<200	-				***							
6/28/06	260	 ,											
9/28/06	140					**							
12/11/06	99												
3/19/07	140				** **	·						•	
6/15/07	78				-								
9/24/07	140							,					
12/27/07	71					-							-
MW-8													

Table 2 a

MW-8

7376

Page 10 of 16

							76 Stati	on 7376	·						
Date Sampled	TPH-D	TBA	Ethanol (8260B)	Ethylene- dibromide (EDB)	1,2-DCA (EDC)	DIPE	ETBE	TAME							
	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)							
MW-8 6/26/98	continued ` 80													• .	
9/22/98	120	~		<u></u>						•					
12/15/98	ND														
3/23/99	60														
6/7/99	ND														
9/3/99	130	ND	ND			12.4	ND	ND							
12/6/99	160				·										
3/10/00	61					~~		**						•	
6/8/00	135														
9/25/00	518														:
12/19/00	100									÷					•
3/5/01	161														
6/14/01	94			'											
9/17/01	60	-									·				
12/17/01	ND<52	77	ND<500	ND<1.0	ND<1.0	9.8	ND<1.0	ND<1.0							
3/15/02	69														
6/20/02	ND<50	6.0		·											
9/27/02	130														
12/30/02	76	ND<100	ND<500	ND<2.0	ND<2.0	7.1	ND<2.0	ND<2.0							
3/26/03	120	ND<100	ND<500	ND<2.0	ND<2.0	7.1	ND<2.0	ND<2.0							
6/10/03	ND<50	ND<100	ND<500	ND<2.0	ND<2.0	ND<2,0	ND<2.0	ND<2.0							÷
9/9/03	58							· •		•					
12/10/03	86	<u> </u>					-								
3/9/04	92			~~											
6/21/04	87														
9/8/04	ND<50	***													
							Dees 1	1.010							•

1 able 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 7376

2**1**3 1

,

7376

Page 11 of 16

						ADDI	CIONAL I		ANALYTT ion 7376	CAL RESULTS	·		•		·	
	Date Sampled	TPH-D	TBA	Ethanol (8260B)	Ethylene- dibromide (EDB)	1,2-DCA (EDC)	DIPE	ETBE	TAME	•						
		(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)							
	MW-8 c														 	
	12/14/04				-											
	3/17/05	56														
	6/15/05	53						-		· .						
	9/20/05	ND<200						- 2								
	12/29/05															
•	3/15/06	ND<200										2		-		
	6/28/06	ND<200												·		
	9/28/06	ND<50										•				
	12/11/06	•														
	3/19/07	60		ein.		••	.									
	6/15/07	58		-							,					
	9/24/07	53			·											
	12/2 7/07	72					~	~~								
	MW-9													1		
	12/6/99	ND	ND		ND	ND	ND	ND	ND							
	3/10/00	150							time.							
	6/8/00	67.8	`						·							
	9/25/00	903														
	12/19/00	ND														
	3/5/01	96.5	<u>.</u>													
	6/1 4/01	ND														
	9/17/ 01	ND<50														
	12/17/01	ND<52	ND<20	ND<500	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0							
	3/15/02	ND<51	-													
	6/20/02	ND<50		~~												-
	9/27/02	ND<110						'	يەنبو	•						
	7970							Dogs 1	2 of 16							-

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS

7376

Page 12 of 16

					ADDI	LIUNALE			CAL RESUL	10			
							76 Stati	on 7376			. ·	•	•
Date Sampled	TPH-D	ТВА	Ethanol (8260B)	Ethylene- dibromide (EDB)	1,2-DCA (EDC)	DIPE	ETBE	TAME					
	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)		• 	 		
MW-9 c	ontinued	•				:							
12/30/02	59	ND<100	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0					
3/26/03	ND<50	ND<100	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0					
6/10/03	ND<50	ND<100	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0					
9/9/03	ND<50			. —									
12/10/03	ND<50			'									
3/9/04	ND<50								·				
6/21/04	ND<50												
9/8/04	ND<50						-						
12/14/04	ND<50												
3/17/05	ND<50						~~				•		
6/15/05	ND<50												
9/20/05	ND<200						•=	-					
12/29/05	ND<200							-					
3/15/06	ND<200				 .	-							
6/28/06	ND<200	-	 .					••••		•			
9/28/06	ND<50	·											
12/11/06	ND<50							10 m			ų.		
3/19/07	ND<50												
6/15/07	52	·		-									
9/24/07	ND<50												
12/27/07	ND<50												
MW-10 3/10/00	78	ND		ND	22	ND	ND	ND					
6/10/03	65	ND<100	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0					
3/9/04	140			112 ~2.V	ND~2.0	ND~2.0							
5/9/04 6/21/04			••• ,										
0/21/04	טניעוא	-											
7376							Page 1	l3 of 16					

Table 2 a ADDITIONAL HISTORIC ANALYTICAL RESULTS

ŗ						ADDI	IIONAL ,		ion 7376	ICAL RESULTS				
	Date Sampled	TPH-D	TBA	Ethanol (8260B)	Ethylene- dibromide (EDB)	1,2-DCA (EDC)	DIPE	ETBE	TAME					
		(µg/l)	(µg/l)	(μg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)					
	MW-10 3/17/05	continued ND<50		·						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		· · ·	•	
•	6/15/05	71							_					
	9/20 /05	ND<200							***					,
	12/29/05	ND<200						-	<u> </u>	Ň				
	3/15/06	ND<200	•••											
	6/28/06	ND<200												
	9/28/06	ND<50							·					
	12/11/06	92							7=					
	3/19/07	190												
	6/15/07	120			-	·								
	9/24/07	130												
	12/27/07	59	 ,											
М	W-11			,	5 A.				· .					
	9/25/01	ND<50										· .		
	12/17/01	110	ND<20	ND<500	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0					
	3/15/02	140		,			·							
	6/20/02 9/27/02	ND<60					·							
	9/2//02 12/30/02	ND<110 ND<50	 ND <100											
	3/26/03	54	ND<100 ND<100	ND<500 ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	•				
	6/10/03	ND<50	ND<100	ND<500 ND<500	ND<2.0 ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	4 · ·	· .			
	9/9/03	ND<50	ND~100	1417-200	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0					
	12/10/03	ND<50		~~										
	3/9/04	ND<50				·						·,		
	6/21/04	ND<50	**											
	9/8/04	ND<50												~
				~~										
73	76	٠	4					Page 14	4 of 16					-

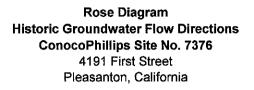
Table 2 a ADDITIONAL HISTORIC ANALYTICAL RESULTS

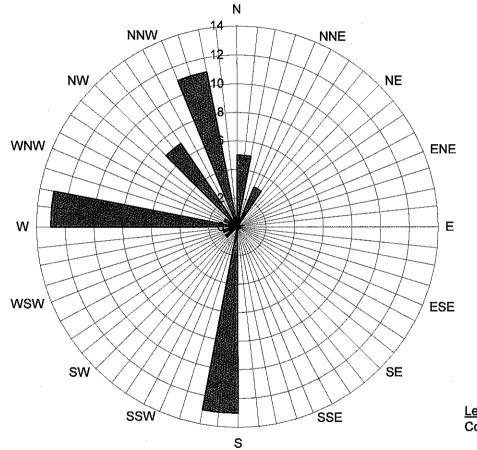
•							76 Stati	on 7376										
Date Sampled	TPH-D	TBA	Ethanol (8260B)	Ethylene- dibromide (EDB)	1,2-DCA (EDC)	DIPE	ETBE	TAME	·		·.	•						
	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)								·		
MW-11	continued						· .	· ·										
12/14/04	ND<50	15 M																
3/17/05	85		-		** **										·			
6/15/05	170				 '													
9/20/05	210			<u></u>														
12/29/05	ND<200	<u> </u>																
3/15/06	ND<200		 .	'									• .					
6/28/06	ND<200		'															
9/28/06	51						**											
12/11/06	74					·												
3/19/07	63	·											•					
6/15/07	70			,														
9/24/07	78																	
12/27/07	ND<50									•								
MW-12 9/25/01	ND<50																	·
12/17/01	77	ND<20	ND<500	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0				÷						
3/15/02	ND<51								•									
6/20/02	ND<58																	
9/27/02	ND<100																	
12/30/02		ND<100	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0			•						•	
3/26/03	ND<50	ND<100	ND<500000	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0										
6/10/03	ND<50	ND<100	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0						•				
9/9/03	ND<50				113.0 - 1010													
12/10/03										-								
3/9/04	220													•				
6/21/04	180																	
	100													•			,	
7376			•	· ·			Page 1	5 of 16										

Table 2 a ADDITIONAL HISTORIC ANALYTICAL RESULTS 76 Station 7276

							/0.514110	m /5/0					
Date Sampled	TPH-D	TBA	Ethanol (8260B)	Ethylene- dibromide (EDB)	1,2-DCA (EDC)	DIPE .	ETBE	TAME					
	(µg/l)	(µg/l)	(µ̈́g/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/1)					
MW-12 9/8/04	continued ND<50								· · · · · · · · · · · · · · · · · · ·		 		
12/14/04	ND<50												
3/17/05	350												
6/15/05	330			-									
9/20/05	250												
12/29/05	320			· ·									
3/1 5/06	240											•	
6/28/06	210											•	
9/28/06	ND<50												
12/11/06	120		**					·					
3/19/07	99												
6/15/07	66												
9/24/07	71				~~								
12/27/07	ND<50	-					_						

 Table 2 a


 ADDITIONAL HISTORIC ANALYTICAL RESULTS


 76 Station 7376

Page 16 of 16

APPENDIX B

Rose Diagram of Historic Groundwater Flow Directions

Groundwater Flow Direction

Legend

Concentric circles represent quarterly montoring events First Quarter 1999 through Fourth

Quarter 2007 55 data points shown

APPENDIX C

Drilling Permit

W

ZONE 7 WATER AGENCY

100 NORTH CANYONS PARKWAY, LIVERMORE, CALIFORNIA 94551 VOICE (925) 454-5000 FAX (925) 245-9306 E-MAIL whong@zone7water.com

DRILLING PERMIT APPLICATION

C

FOR OFFICE USE

LOCATION OF PROJECT 76 Station #7376, Located	PERMIT NUMBER 28014
at 4191 First St, pleasanton, CA, and former	WELL NUMBER
trailroad right-of-way NW & W of station	APN
California Coordinates Sourceft. Accuracyft. CCN ft. Accuracyft. CCN ft. CCE APN right of way: 094-0110-046, 094-0110-048, 094-0106-011 094-0103-01-03, 094-0102-006-01, * 094-4157-014-03 ft. CLIENT Name Conoco Phillips (Bill Borgh) Address The Broadway Phone [910) 558-7612 City Sacrawento, CA	PERMIT CONDITIONS (Circled Permit Requirements Apply) GENERAL A permit application should be submitted so as to arrive at the Zone 7 office five days prior to proposed starting date. Submit to Zone 7 within 60 days after completion of permitted work the original Department of Water Resources Water Well Drillers Report as continuent for work periods and days and permitted are drilling to get and the periods.

APPLICANT Name Delta Consultants (Daniel J. Davis) davis@ deltaenu.com Fax (916)638-8385 _Email _ Address 3164 Gold amp Dr. Ste. 200 phone (916) 503-1260 City Rancho Cardova, CA Zip 15670

FOR APPLICANT TO COMPLETE

TYPE OF PROJECT: Well Construction Geotechnical Investigation Contamination Investigation Well Destruction **Cathodic Protection** Other PROPOSED WELL USE:

Domestic	••	Irrigation	••
Municipal	••	Remediation	••
Industriat	••	Groundwater Monitoring	• •
Dewatering	••	Other	- ••

DRILLING ME	THOD:						
Mud Rotary		Air Rotary	••	Hollow	Stem Auger	-	• •
Cable Tool	• •	Direct Push	•• (Ofher_	CPT		
				<u> </u>	• •		~

DRILLING COMPANY Gregg Drilling + Testing, Inc.

DRILLER'S LICENSE NO. C57#485/65

ELL SPECIFICATIONS:	1999 - A. 1999 -	
Drill Hole Diameter in.	Maximum	
Casing Diameter in.	Depth	ft.
Surface Seal Depth ft.	Number	

SOIL BORINGS: Number of Borings	7		Maximum	
Hole Diameter	1.75	in. ·	Depth(<u>) ft.</u>
		~ 110		

ESTIMATED STARTING DATE ESTIMATED COMPLETION DATE _2/2.6/09

I hereby agree to comply with all requirements of this permit and Alameda County Ordinance No. 73-68.

MyBate 2-1.68 APPLICANT'S SIGNATURE Daniel J. Davis ATTACH SITE PLAN OR SKETCH

or dralling logs location sketch for geotechnical projects.

3.	Permit is void i	f project ni	ot begun	within	90 days	of approv	al
	date.	-	-				

WATER SUPPLY WELLS Β.

- Minimum surface seal diameter is four inches greater than the 1. well casing diameter.
- Minimum seal depth is 50 feet for municipal and industrial wells or 20 feet for domestic and irrigation wells unless a lesser depth is specially approved.
- Grout placed by tremie.
- An access port at least 0.5 inches in diameter is required 4. on the wellhead for water level measurements.
- 5 A sample port is required on the discharge pipe near the wellhead.

GROUNDWATER MONITORING WELLS INCLUDING PIEZOMETERS

- Minimum surface seal diameter is four inches greater than 1. the well or piezometer casing diameter.
- Minimum seal depth for monitoring wells is the maximum 2. depth practicable or 20 feet.
- 3. Grout placed by tremie.

D. GEOTECHNICAL. Backfill bore hole with compacted cuttings or heavy bentonite and upper two feet with compacted material. In areas of known or suspected contamination, tremied cement grout shall be used in place of compacted cuttings.

E. CATHODIC. Fill hole above anode zone with concrete placed by tremie.

F. WELL DESTRUCTION. See attached.

G. SPECIAL CONDITIONS. Submit to Zone 7 within 60 days after completion of permitted work the well installation report including all soil and water laboratory analysis results.

Date <u>2/</u>7/08 Uman NOT Approved_ Wyman Hong

APPENDIX D

Boring Logs

Decon	2 † sulta		Logged Driller: Drilling Samplir First Wa Static V	By: Lisa Gregg D Method: ng Metho ater Dept Vater Dep	CPT d: Piston th: ~75' pth: Not r Ity sound	Type recor-	Loo Ho Sa	cation: 4 P le Diame mple Ho T Log Ho	ocoPhillips 191 First Street easanton, California ter: 1.75" e Depth: 77' le Depth: 90' Easting	Boring No: CP-1 Date Drilled: 2/18/08 Page 1 of 5	
Borii Comple Cottiii Backtiii		Static Water Level	Moisture Cantent	PID Reading (ppm)	Sample Identification	Depth (feet)	Recovery Analyzed	l õ	LITHO	DLOGY / DESCRIPTION	
Neat Cement		crete	dry damp damp	4626 37.5 ↑ **	Air-Knifed	1 2 3 4 5 6 7 8 9 10 11			Sandy lean clay CL with tan mottling medium soft; 50° sand to fine grave damp; no odor (2 CL Same as above; o subangular; 15% No recovery from GM Silty gravel with to angular fine sa	7 d, compacted fines, dry. with gravel; dark brown ; medium plasticity, low toughness, % subrounded to subangular fine el, well sorted; trace roots; 20,30,50). brange brown; 35% sand, gravel (15,35,50).	
			sat* damp	3294	CP-1@ 14.5-15' 11:55 CP-1@ 19.5-20' 12:00	12			SC Clayey sand; gra free product pres coarse sand, 2% sorted, loose to n due to free produ ely strong odor (2	t visible as liquid at 14 feet ay-brown but appearing black from ent; subangular to angular fine to angular fine gravel, moderately nedium dense; 15% clay; saturated ict (liquid has oily sheen); extrem- 2,83,15).	

Delta Consultants	Logged Driller: Drilling Samplir First Wa Static V	No: C10 By: Lisa Gregg I Method: ng Method ater Dep Vater Dep Vater De Elevatio	Type recor- ler	l H S	Locat Hole I Samp CPT L	ion: 41 Ple Diamet		rst Street ton, California 75" 11: 77'	Boring No: CP-1 Date Drilled: $2/18/08$ Page 2 of 5 ∇ = First Water \mathbf{Y} = Static Groundwater \mathbf{X} = Screen for water sample $\mathbf{\uparrow}$ = slowly increasing values	
Boring Completion E Water V C V C C V C V C V C V C V C V C V C	Moisture Content	PID Reading (ppm)	Sample Identification	Depth (feet)	Recovery w	Analyzed d	Soil Type		LITHO	DLOGY / DESCRIPTION
Neat Cement	wet	614	CP-1@ 24.5-25' 12:10	23 — 24 — 25 — 26 —				SC	Same as above; b	en on soil at 24.25 feet prown-gray; 40% clay, low ghness; 5% gravel; wet (5,55,40).
	moist -wet	2739	CP-1@ 29.5-30' 12:22	27 28 29 30 31 32				CL	Lean clay; brown toughness, mediu medium to coarse	en on soil at 29 feet n-gray; medium plasticity, low um soft; 10% fine sand with trace e sand, angular, poorly graded; remely strong odor (0,10,90).
	damp	1856	CP-1@ 34.5-35' 12:32	33 — 34 — 35 — 36 — -				SC	angular to angula	h gravel; medium brown; sub- r fine sand to fine gravel, ium dense; 15% clay; damp; odor (30,55,15).
	sat moist	1539	CP-1@ 39.5-40' 12:42	37 — 38 — 39 — 40 — 41 — 42 — 43 —					fine to coarse san Fat clay; medium plasticity, stiff; 50	dark gray; angular to subangular id; some fines; saturated. in brown; high toughness, high % angular fine to coarse sand, gravel, moderate gradation; moist; odor (2,5,93).
	sat damp	407		43 —				СН	Same as above; s	saturated.

			-		7376002					ocoPhillips	Boring No: CP-1
				-	Stelzner			Loca		191 First Street	Date Drilled: 2/18/08
	1 し			Gregg [11-1-		easanton, Californ	
)el1		-	Method:		_				ter: 1.75 "	∇ = First Water
					d: Piston	туре			-	e Depth: 77'	\mathbf{V} = Static Groundwater
	Consulta	nts			th: ~75'			CPT	LOG HO	le Depth: 90'	= Screen for water sample
					pth: Not r						\uparrow = slowly increasing values
			aea au		Ity sound	ег	Nort	hing		Easting	
		Elevation					NOR	inig		Lusting	
	Boring			0	Ę		_				
Cor	npletion	Static	Moisture Content	PID Reading (ppm)	Sample Identification	Depth (feet)	1	mple	Soil Type		
	Li II	Water	istu inte	Rea	d m cific	с) ф	Recovery	Analyzed	L É	LI	THOLOGY / DESCRIPTION
	Backfill	Level	£ပိ	а Э	S ₅ Jent	ept	l õ	ıаlу	Soi		
	۵			4			R	Ar			
					CP-1@	45—					ve; medium toughness, medium
rt					44.5-45'		_				edium soft; 10% sand; trace gravel;
Neat Cement					13:00	46—				damp (4,10,	٥ <i>٠).</i>
l a	M						_				
at						47—					
Nei I											
						48—					· · · · · · · · · · · · · · · · · · ·
						49—					
			damp	854	CP-1@	49-				CH Same as abo	ve; high plasticity; 5% sand, no gravel,
					49.5-50'	50 —				poorly grade	d; stiff (0,5,95).
					13:15						
						51 —	_				
	M						_				
						52 —					
						53 —					
						E A		1			
			moist	777	CP-1@	54 —				CH Same as abo	ve; medium soft; 5% fine and coarse
					54.5-55'	55—				· · · · · · · · · · · · · · · · · · ·	e gravel, subrounded to subangular,
					14:20					gap gradatio	n; moist (2,5,93).
	M					56 —					
	AN					57	_	_			
							+			·n	
ł						58—					
						F 0					
1			moist	483	CP-1@	59 —					ay; medium brown; medium plasticity,
					59.5-60'	60 —					hness, medium soft; 40% fine sand to
					14:35						ubangular to angular, well graded;
						61—	_			moist; extre	mely strong odor (10,30,60).
								_			
						62—	_	``			
						63—					
								1.			
			moist	472	CP-1@	64—				CH Same as abo	ve; low to medium plasticity; 50%
					64.5-65'	<u>د</u> ۳					vel (10,40,50).
					14:52	65 —					
						66—		· ·		·	
		<u> </u>									

Delta Consultants	Logged B Driller: G Drilling M Sampling First Wat Static Wa ded due	By: Lisa Gregg D Method: g Method ter Depti ater Dep	CPT d: Piston h: ~75' oth: Not r ty sound	Type ecor- er	Locat Hole Samp	ion: 4: Pl Diame ole Hole	ocoPhillips 191 First Street easanton, California ter: 1.75" e Depth: 77' e Depth: 90' Easting	Boring No: CP-1 Date Drilled: 2/18/08 Page 4 of 5 \checkmark = First Water \checkmark = Static Groundwater \checkmark = Screen for water sample \uparrow = slowly increasing values
Boring Completion	Moisture Content	Moisture Content PID Reading (ppm) (ppm) Sample Identification Depth (feet)				Soil Type	LITHO	DLOGY / DESCRIPTION
Neat Cement	moist	202	CP-1@ 69.5-70' 15:25	67 — 68 — 69 — 70 — 71 — 72 —				n brown; high plasticity, high stiff; moist; strong odor (0,0,100).
\ \ ~75' 			CP-1D 15:50	73 — 74 — 75 — 76 — 77 —				
				78 — 79 — 80 — 81 — 82 — 83 — 83 — 84 — 85 — 86 — 86 — 87 — 88 —			Total depth of s	ampling hole = 77' bgs

	Project No: C					ocoPhillips	Boring No: CP-1		
	Logged By: Li		er	Loca		191 First Street	Date Drilled: 2/18/08		
Dalta	Driller: Gregg					leasanton, California	Page 5 of 5		
Delta	Drilling Metho					ter: 1.75"	∇ = First Water \mathbf{Y} = Static Groundwater		
	Sampling Met					e Depth: 77'			
Consultants	First Water De			CPT	Log Ho	le Depth: 90'	X = Screen for water sample		
	Static Water D						= slowly increasing values		
	ded due to fa	-							
	Elevat	ion	No No	orthing		Easting			
Boring							1		
Completion Static	Moisture Content PID Reading	Sample	Depth (feet)	Sample	be				
	Moisture Content ID Readin		5	ک ed	Soil Type		DLOGY / DESCRIPTION		
ਸ਼ੂ Water ਨੇ Level ਲ		sai sai	bt	Recovery Analyzed	io.				
Ba	I II	ĬĞ	ă	Recovery Analyzed	•,				
			89						
┝ <i>───[₩]₩</i> ── ─ ┝─ ── ─	┝╾╍╺┥╾╍╴	┥┈┈ᅳ	90	-+-		<u>+</u>			
			91			Total depth of	CPT log hole = 90' bgs		
			92						
			93						
			94						
_			_						
			95						
·			96—						
			97				·		
·			-+				·		
			98				·		
			99			·			
			100						
			102						
			103				· · · · ·		
			-+			<u> </u>			
			104				 		
			105			•			
			106						
			-+						
19 ₁₂ 7 , 1955			107				· · · · · · · · · · · · · · · · · · ·		
			108						
			109						
				_		· · · · · · · · · · · · · · · · · · ·			
			110						

	el [†]		Logged Driller: Drilling Sampli First W	By: Lis Gregg Method ng Meth ater Dep	0737600 a Stelzne Drilling : CPT od: Pisto oth: 94.7' epth: 88'	er n Type	Loca Hole Sam	ation: 4 P Diame ople Hol	ocoPhillips 191 First Street easanton, California eter: 1.75" e Depth: 100' le Depth: 90'	Boring No: CP-2 Date Drilled: 2/19/08 Page 1 of 5		
	-			Elevatio	on		Northing		Easting	** = PID reading at upper limit		
Bor Comp	letion	Static Water Level	Moisture Content	PID Reading (ppm)	Sample Identification	Depth (feet)	Recovery Samble Analyzed	Soil Type	LITH	OLOGY / DESCRIPTION		
Neat Cement		crete	damp damp damp damp	** ** 1646 3133	- п рэјиулу СР-2 @ 9.5-10' 10:35 СР-2 @ 14.5-15' 10:40 СР-2 @ 14.5-20' 10:45	$ \begin{array}{c} $	2 4 1 1		 CL and toughness, sol fine gravel, 4% fin (15,4,81). Subrour CL Same as above; 20 clay present (20,4) ML Silt; medium brow some clay, soft; 15 Isubrounded to sub graded; trace roots CH Fat clay with sam medium plasticity, cementation; 20% sand, well graded; CH Fat clay; medium plasticity, very har angular to angular slightly damp; som CH Same as above; m 	ravel; dark brown; medium plasticity ft; 15% subrounded to subangular ie sand, gap gradation; damp; no odor inded coarse gravel layer from 3.5-3.8'. 0% gravel; cemented chunks of ,76). ////////////////////////////////////		
						21— 						

			-		7376002 Stelznei				nt: Con ation: 4		illips rst Street	Boring No: CP-2 Date Drilled: 2/19/08
	_]	L' _	Driller:	Gregg [Drilling	~			P	easan	ton, California	Page 2 of 5
	eli	ta	1	Method:		.			Diame			∇ = First Water
	nsulta		1		d: Piston th: 94.7'	туре			iple Hol Log Ho		h: 100' h: 90'	\mathbf{V} = Static Groundwater \mathbf{X} = Screen for water sample
	10 and	41110		Vater De								▲ Solution Matter Sample ▲ = slowly increasing values
				Elevatio	'n		Norti	ning			Easting	
Bor	ing				· 		1		1			
Comp		Static	e F	PID Reading (ppm)	Sample Identification	Depth (feet)	Sar	nple	Ъ			
fill /		Water	Moisture Content	Rea ppr	amp tifici	E E	very	/zed	Soil Type		LITHO	LOGY / DESCRIPTION
Backfill		Level	ΣŬ	DI d	S Iden	Dep	Recovery	Analyzed	Ŝ			
							<u> </u>	~				
Jt						23—						
Cement			damp	271	CP-2 @	24				SC	Clavery cande made	lium brown fing good to fing
8 U			uamp	271	24.5-25'	-				30		lium brown; fine sand to fine
Neat					10:53	25					graded; 30% clay,	non-plastic due to sand; damp;
Z						26 —					some odor (3,67,3	0).
						 27	<u> </u>					
											· · · · · · · · · · · · · · · · · · ·	
					1	28—					1	
						 29						
			damp	201	CP-2 @					SC		ibangular to angular; 20% clay
				· .	29.5-30' 11:00	30 —					(7,73,20).	
1						31 —						
						32 —					``	
						33						
	-											
			moist	143	CP-2 @	34				SC		gravel; medium brown; fine
					34.5-35' 11:10	35 —					· · · · · · · · · · · · · · · · · · ·	, subangular to angular, loose, clay, non-plastic due to sand;
					11.10						moist; some odor (
			:									
						37 —						
											· · · · · · · · · · · · · · · · · · ·	······
						-						
			moist	131	CP-2 @	39 —				SC	Same as above; su	brounded to subangular gravel;
					39.5-40'	40 —					30% clay, medium	plasticity, medium toughness
					11:20						(30,40,30).	
						41						
						42 —						
	_						\vdash					
						43—						
			de	205		44	1					· · · ·
	Ĩ		damp	285								

			Logged Driller: Drilling Samplin First Wa	By: Lis: Gregg I Method: ag Metho ater Dep	_		Lo Ho Sa		191 Firs easanto ter: 1.7 e Depth:	st Street on, California 5" : 100'	▼ ×	Boring No: CP-2 Date Drilled: 2/19/08 Page 3 of 5 = First Water = Static Groundwater = Screen for water sample = slowly increasing values
				Elevatio	on		Northing)		Easting		
Boring Complet		Static Water Level	n istri		Depth (feet)	Recovery Sample	0		LITHC	LOGY	/ DESCRIPTION	
ent					CP-2 @ 44.5-45' 13:28	45—			CL		oft; som	n; medium plasticity, e silt present; trace fine e odor (0.2.98).
Cement					15.20	46 —						
Neat						47 —						· · · · · · · · · · · · · · · · · · ·
~						48						
			damp	170	CP-2 @	49 —			CL			m brown with some
ebile Fixed					49.5-50' 13:43	50 —				medium toughne	ss, soft;	cks; medium plasticity, 50% subangular to
						51—				angular fine sand damp; some odd		gravel, well graded; 50).
						52 —						
						53—						
			damp	83.5		54			CL	Same as above;	medium	brown; medium soft;
										45% fine sand to	o fine gra	vel (5,40,55).
unia Lint									· · · · · · · · · · · · · · · · · · ·			
	·											
						- 59			СН	Eat claw, brown	with cro	am, orange, and dark
			moist	27.8¶	-	- 60 —			<u></u>	brown mottling;	high tou	phness, high plasticity,
						61				very stiff; moist;	some o	
						- 62—						
						63						·
	_					64 —				· · · · · · · · · · · · · · · · · · ·		
			moist	36.3					СН			dium brown; medium ness, stiff; 22% fine sand
				· ·		65				to fine gravel, su graded; moist; s		d to subangular, well r (7,15,78).
		1				66 —				· · · · · · · · · · · · · · · · · · ·		• • • • • • • • • • • • • • • • •

والمراجعة والمعالية والمحافظة والمحافظ

Delta Consultants	Logged By: Driller: Gre Drilling Met Sampling M First Water Static Wate	4ethod: Pisto Depth: 94.7 Pr Depth: 88 Nation	≘r n Type	Locat Hole I Samp	ion: 41 Ple Diamet ole Hole	boooPhillips L91 First Street easanton, California eer: 1.75" e Depth: 100' e Depth: 90' Easting	Boring No: CP-2 Date Drilled: 2/19/08 Page 4 of 5 ✓ = First Water ✓ = Static Groundwater ✓ = Screen for water sample ↑ = slowly increasing values
Completion Static 문 Water 것 Level	Moisture Content PID Reading	(ppm) (ppm) Sample Identification	Depth (feet)	Recovery Analyzed	Soil Type	LITHO	LOGY / DESCRIPTION
Lange de la companya		3.7 ♠ 4.7 ♠	67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88			CH Sandy fat clay; of toughness; low places	medium soft; 15% fine to pravel; some moderately of clay; damp (0,15,85). prange brown; medium asticity (from sand); medium pular to angular fine sand to fine ed; wet; some odor (10,40,50).

Delta Consultants	Project No: C10737600 Logged By: Lisa Stelzne Driller: Gregg Drilling Drilling Method: CPT Sampling Method: Piston First Water Depth: 94.7' Static Water Depth: 88'	r Location: 43 Pla Hole Diamet n Type Sample Hole CPT Log Hol	191 First Street easanton, California er: 1.75" e Depth: 100' e Depth: 90'	Boring No: CP-2 Date Drilled: $2/19/08$ Page 5 of 5 \checkmark = First Water \checkmark = Static Groundwater \checkmark = Screen for water sample \uparrow = slowly increasing values
Boring Completion	Moisture Content PID Reading (ppm) Sample Identification	Depth (feet) Recovery S Analyzed ald Soil Type	Easting	LOGY / DESCRIPTION
			Total depth of CP	T log hole = 90'

De _{Con}	2 sulta		Driller: Drilling Samplir First Wa	Gregg D Method: ng Metho ater Dept		1 Туре	ed	Nor Hole Sarr		ay St., ter: 1. e Dept	h: 93'	Date Drilled: $2/20/08$ Page 1 of 5 ∇ = First Water \mathbf{V} = Static Groundwater \mathbf{X} = Screen for water sample 1 = slowly increasing values	
				Elevatio	n		Norti	hing			Easting ** = PID reading at upper limit		
Borir Comple Backtill Back		Static Water Level	Moisture Content	PID Reading (ppm)	Sample Identification	Depth (feet)	Recovery S Analyzed ald Soil Type			LITHO	LOGY / DESCR	IPTION	
Neat Cement	Soil		moist damp	0.0	Air-Knifed	1 — 1 — 2 — 3 — 4 — 5 — 6 — 7 — 8 — 9 — 10 —				CL CL CL	mixed with fines. Lean clay; mediu low toughness, so sand, 3% subroun well graded; moist Lean clay with s plasticity, low toug compacted pieces, coarse sand, well Fat clay; medium toughness; very si	rounded to subangul m brown; medium p ft; 7% fine to coarse ded to subangular fi ; no odor (3,7,90). and; medium brown phness, soft with ma angular to subangu graded; damp; no od brown; high plastici iff; trace fine to coa	lasticity, subangular ne gravel, ; medium ny angular lar fine to lor (0,35,65). ty; high rse sand;
			damp	1980		10 - 11 - 12 - 12 - 13 - 13 - 14 - 15 - 15 - 16 - 16 - 16 - 16 - 16 - 16				СН	(0,3,97). Sandy fat clay; n medium plasticity, sand, 5% subangu	nedium brown; medi soft; 40% angular f lar to subrounded fi ght odor (5,40,55).	um toughness, ine to coarse
			damp	1038		17 — 18 — 19 — 20 — 21 — 22 —					subangular to ang	d with silt; medium ular fine sand to fine % silt; damp; no odd	gravel, well

Delt Consultar		Logged Driller: Drilling Samplir First Wa	By: Lisa Gregg I Method: ng Metho ater Depi Vater De	CPT d: Piston th: ~92' pth: Not a	Type measure		Loca Nor Hole Sarr CPT	ation: F th of R Diame ple Hol	ocoPhillips ormer RR ROW by St., Pleasanton, CA er: 1.75" a Depth: 93' a Depth: 97'	Boring No: CP-3 Date Drilled: $2/20/08$ Page 2 of 5 $\mathbf{\Sigma}$ = First Water $\mathbf{\Sigma}$ = Static Groundwater $\mathbf{\Sigma}$ = Screen for water sample \mathbf{T} = slowly increasing values
	Elevation						hing		Easting	
≣ v	Static Water Level	Moisture Content	PID Reading (ppm)	Sample Identification	Depth (feet)	Recovery S	Analyzed du	Soil Type	LITHOL	OGY / DESCRIPTION
					23—					
Neat Cement		moist	472		24 — 25 — 26 —				SC subrounded to subar	with clay and gravel; brown; ngular fine sand to fine gravel, pist; no odor (20,70,10).
		moist	406	СР-3 @	27 — 28 — 29 —					d; medium brown with orange,
				29.5-30' 13:45	30 — 31 — 32 — –				medium toughness,	n mottling; medium plasticity; medium soft; 20% subangular to d to fine gravel, well graded;),75).
		moist	141		33 — 34 — 35 — 36 —				dark brown motting;	brown with orange, gray, and medium plasticity, low % fine to coarse subrounded sand; 0,10,90).
		moist	102		37 — 38 — 39 — 40 —				to subrounded fine s	own with gray mottling; subangular and to fine gravel, well graded;
		moist	56.2		41 — 42 — 43 — 44 —				loose; 20% clay, low moist; no odor (10,7	plasticity, low toughness; 0,20).

Delta	Project No: C107376 Logged By: Lisa Stel Driller: Gregg Drillin Drilling Method: CPT	g North of I	nocoPhillips Former RR ROW Ray St., Pleasanton, CA eter: 1.75"	Boring No: CP-3 Date Drilled: 2/20/08 Page 3 of 5 $\overline{\Sigma}$ = First Water
Consultants	Sampling Method: Pie First Water Depth: ~ Static Water Depth: I	CPT Log H	ole Depth: 93' Die Depth: 97'	
	Elevation	Northing	Easting	
Boring Completion E Water T Level	Moisture Content PID Reading (ppm) Sample	Depth (feet) Depth (feet) Recovery S Analyzed ald Soil Type	LITHO	DLOGY / DESCRIPTION
Neat Cement		45 46 47 48 48	to subrounded fi	own with gray mottling; subangular ne sand to fine gravel, well graded; low plasticity, low toughness; 5,75,20).
	damp 94.8	49 50 51 52 52	to subrounded fin	rown with white mottling; subangular ne sand to fine gravel, well graded; , medium plasticity, low toughness; 0,60,40).
	moist 81.4	53 54 55 55 56 57	mottling; low pla subrounded fine	y; medium brown with black asticity, low toughness, stiff; to coarse sand, poorly graded, ist; no odor (0,45,55).
	damp 97.8	58	mottling; stiff; tr	m brown with orange and gray ace fine to coarse sand, subangular, ed; damp; no odor (0,5,95).
	damp 40.9	62 63 64 65 66 66	A	sh brown; very stiff; trace fine subangular, moderately graded; 0,5,95).

De	Ita Iltants	Project No: C107376002 Logged By: Lisa Stelzner Driller: Gregg Drilling Drilling Method: CPT Sampling Method: Piston Type First Water Depth: ~92' Static Water Depth: Not measured						tion : Fo h of Ra Diamet		RR ROW Pleasanton, CA 75" : 93' n: 97'	▼ = ×=	Boring No: CP-3 Date Drilled: 2/20/08 Page 4 of 5 = First Water = Static Groundwater = Screen for water sample = slowly increasing values
Boring		Elevation North					ing			Easting		
Completio	n Static Water Level	Moisture Content	PID Reading (ppm)	Sample Identification	Depth (feet)	San Kecovery	Analyzed ald	Soil Type		LITHO	LOGY ,	DESCRIPTION
Cement					67 — 				·			
Neat Cen		moist	6.1		69				CL	Sandy lean clay	/: mediun	n brown with orange and
Ne –										grey mottling; m subangular fine s	edium pla sand to co	asticity, medium toughnes arse sand, trace
	_				71					subrounded fine moist; no odor (2		ell graded, very loose;
					72 — — 73 —						-	
		moist	4.0						CL			brown with orange and
	······				75						subangul	isticity, medium ar fine sand to coarse sar gular fine gravel, well
	_		-		76 — 							no odor (10,40,50).
		moist	4.4		79				CL			k brown; medium plastic m soft; subangular to
					80 — 						to coarse	sand, well graded;
1949					83—							
		damp	7.5	CP-3 @ 84.5-85'	84 — 				CL		, mediun	toughness, stiff;
				16:06	86					subangular to sul well graded; dam		fine to medium sand, pr (0,15,85).
					87 <u> </u>							······································
					88 —		\triangleleft					

Delta Consultants	Project No: C10737600 Logged By: Lisa Stelzne Driller: Gregg Drilling Drilling Method: CPT Sampling Method: Pistor First Water Depth: ~92' Static Water Depth: Not Elevation	er Location: Fe North of R Hole Diame n Type Sample Hole CPT Log Hol	ocoPhillips ormer RR ROW ay St., Pleasanton, CA ter: 1.75" e Depth: 93' le Depth: 97' Easting	Boring No: CP-3 Date Drilled: 2/20/08 Page 5 of 5 ✓ = First Water ▼ = Static Groundwater × = Screen for water sample ↑ = slowly increasing values
Boring				
Completion E Water Completion E Level	Moisture Content PID Reading (ppm) Sample Identification	Depth (feet) Recovery S Analyzed ald Soil Type	LITHO	LOGY / DESCRIPTION
	sat 2.4 CP- 3D 17:24		Too saturated to n Total depth of sa	e sand; 40% fines. make accurate classification.
		110		

			· -		7376002					nocoPł -	-		Boring No: CP-4
				By: Meg Gregg D	hann Hu	irt 🕤					RR ROW		Date Drilled: 2/21/08
	elt	ta		Method:	_					kay St. eter: 1.	, Pleasanton, CA		Page 1 of 5 First Water
		ια	-		d: Piston	Type				le Dept			Static Groundwater
Co	nsulta	ants			ater Depth				-	ole Dep			Screen for water sample
			Shallow	Static W	ater Dep	•				Water	Depth: 79.25'		slowly increasing values
									p Stati	c Wate	r Depth: 52'		
				Elevatio	n		Nort	hing			Easting		
Bor	-			D	c								
Comp		Static	ure	iding (ر	ole atio	Depth (feet)		nple	Soil Type				
มี มาก เป็น เป็น เป็น เป็น เป็น เป็น เป็น เป็น		Water	Moisture Content	Rea	amj	ر ب	Ven	yzed	UL T		LITHO	LOGY / I	DESCRIPTION
		Level	ΣŬ	PID Reading (ppm)	Sample Identification	Dep	Recovery	Analyzed	Š				
	Soil						<u> </u>						
					fed	2—							
	- H				Kni	-	_				, ·		
			damp	6.9	Air-Knifed	3—				СН	Fat clay; medium	brown; higi	h plasticity, high
						4	_						race coarse sand to fine
	-					-	_					t, poorly gra	aded; damp; no odor
	I —		damp	0.0		5	112.055			CL	(3,1,96). Lean clay with gr	avel: medi	um brown; medium
			dump	0.0		-					plasticity, medium	-	
						6—							ngular fine to coarse
						7—					sand, well graded;	damp; no d	odor; (15,10,75).
int													
Cement						8—							
Ŭ						9_							
Neat			damp	4560		<u> </u>		L		ML			ery stiff; 45% fine to
	I					10—						d, well grad	led, subrounded; damp;
	-										no odor (0,45,55).		muusuu .
						11-							
	l					12							
	- I						_						
						13					,		· · · · · · · · · · · · · · · · · · ·
											· · · · · · · · · · · · · · · · · · ·		
			damp	825						ML	Sandy silt; mediu		
						15—				ļ			coarse grained sand,
						-	+				well graded, subrou no odor (0,50,50).	unuea to su	bangular; damp;
						16							
						-							
					-	18—							
	. —		dry	502		10				¥			and gravel; medium
	I					20 —	Color12			SM			ded fine to coarse sand, 10% silt; dry (40,50,10).
	. —					-	1				subrounded fille gh	aver, 10058,	2070 Silly Ury (40,30,10).
						21—							
						22							
	×							L	종리하철				

		Project No: C107376002								ocoPhillips	Boring No: CP-4		
					jhann Hu	Irt				ormer RR ROW	Date Drilled: 2/21/08		
			1	Gregg E		· .				ay St., Pleasanton, CA ter: 1.75"	Page 2 of 5 ∇ = First Water		
	Del	Ca Drilling Method: CPT Sampling Method: Piston Type								e Depth: 82'	\mathbf{V} = Static Groundwater		
	Consulta	ants	1	-	ater Depti					le Depth: 92'	X = Screen for water sample		
			1		Vater Dep					Water Depth: 79.25 '	= slowly increasing values		
									Static	Water Depth: 52'			
				Elevatio	n		North	ing		Easting			
	Boring				E E		1	T.					
х. Т	Completion	Static	it e	PID Reading (ppm)	Sample Identification	Depth (feet)	Sam		Soil Type				
	đill	Water	Moisture Content	Rea	amp	th ()	very	/zed	ΞŢ	LITHO	LOGY / DESCRIPTION		
	Backfill	Level	ΣŬ	OI (gen	Dep	Recovery	Analyzed	ŝ		· · · · · · · · · · · · · · · · · · ·		
	-						<u> </u>	<pre></pre>		·			
						23				••••			
	len					24 —							
	em –		moist	202		24					m brown; soft; 45% fine to medium		
	— It C					25—					graded, subrounded; moist; no odor		
	Neat Cement					–				(0,45,55).			
						26							
						27							
				-		– [–]							
						28—	+				- 		
				· · ·		29					· · · ·		
			damp	124		2.9				SW- Well graded san	d with clay and gravel; medium		
						30					r fine to coarse sand, subangular		
						–	\downarrow				d, loose; 10% clay, low plasticity,		
						31				low toughness; da	mp; (30,60,10).		
						-				·			
						32 —							
						33—							
	- M												
						34 —							
			damp	69.4		35				SC Clayey sand with	n gravel; medium brown;		
										· · · · · · · · · · · · · · · · · · ·	rounded fine sand to fine gravel,		
						36 —	+ + + + + + + + + + + + + + + + + + +				; 20% clay, medium plasticity, s; damp; no odor (40,40,20).		
			Ì				+						
			ļ			37 —							
						38							
			ľ				$\left\{ - \right\}$						
			moist	87.2		39 —				CL Lean clay; mediu	m brown with orange, gray and dark		
		-		57.2		-					edium plasticity, medium toughness,		
						40				medium soft; trac	e subrounded fine sand; moist;		
			[41—				slight odor (0,3,97	')		
						-				-			
						42							
						43							
				2.0		44 —							
			moist	3.8		<u>f</u>							
			·							•			

Delta consultants	Logged By: Driller: Gre Drilling Met Sampling M Shallow Firs Shallow Sta Ele	hod: CPT ethod: Piston st Water Depth tic Water Dept vation	rt Locati North Hole D Type Sampl a: 64' CPT Lo th: 52' Deep Deep	Some concord concord billipsBoring No: CP-4on: Former RR ROWDate Drilled: $2/21/08$ a of Ray St., Pleasanton, CAPage 3 of 5Diameter: 1.75" ∇ = First Waterle Hole Depth: 82' ∇ = Static Groundwaterog Hole Depth: 92' $=$ Screen for water sampleFirst Water Depth: 79.25' $=$ slowly increasing valuesStatic Water Depth: 52'Easting
Static Water So Level	Moisture Content PID Readin	(ppm) Sample Identification	Depth (feet) Recovery S Analyzed al	LITHOLOGY / DESCRIPTION
Use at Cement C	damp 19 moist 15	52 CP-4 @ 54.5-55' 13:31		 SW- Well graded sand with clay; dark brown with SC a few gray clay chunks; fine to medium grained sand, subrounded, moderately graded, loose, trace gravel; 10% clay, low plasticity, low toughness; moist; slight odor (5,85,10). SC Clayey sand with gravel; medium brown with gray/green/white mottling; well sorted fine to coarse sand, subangular to subrounded, subangular fine gravel, loose; 20% clay, medium plasticity, low Itoughness; damp; slight odor (20,60,20). CL Lean clay; medium brown with dark brown/black mottling; medium plasticity, medium toughness, soft; 5% fine to coarse sand, subangular, well graded, trace subrounded fine gravel; moist; slight odor (2,5,93).
	moist 78 sat 6.	CP-4S 17:14	57 58 59 60 61 62 63 64 65 66	CL Sandy lean clay; medium brown; medium plasticity, medium toughness, soft; well graded fine to coarse sand, trace gravel, loose, subangular to subrounded; moist; no odor (5,40,55). CL Lean clay; medium brown; medium plasticity, medium toughness, medium soft; trace fine sand to fine gravel, subangular, well sorted; saturated; no odor (2,4,94).

				No: C107					ocoPhillips	Boring No: CP-4				
					hann Hurt	1			ormer RR ROW	Date Drilled: 2/21/08				
	elt			Gregg Di Method: (÷ .				ay St., Pleasanton, CA ter: 1.75"	Page 4 of 5 $\overline{\nabla}$ = First Water				
	CI	La			: Piston 1	[vne			e Depth: 82'	∇ = First water ∇ = Static Groundwater				
Co	nsulta	ants			er Depth:				le Depth: 92'	X = Screen for water sample				
					ater Depth			-	Water Depth: 79.25'	= slowly increasing values				
-				•		<u>.</u>		p Static	Water Depth: 52'					
				Elevatio	n	1	Northing		Easting					
Bor	ing							•						
Comp	letion	Static	nt e	PID Reading (ppm)	Sample	(feet)	Sample	þ						
Ę		Water	Moisture Content	Rea	Sample	5	/ery zed	Soil Type	LITHO	DLOGY / DESCRIPTION				
וואלייבא	100	Level	žŬ	ð	den S	Depth	Recovery Analyzed	S						
						L								
						67 —	\vdash			· · · · · · · · · · · · · · · · · · ·				
len						68								
Cement	M					- 00								
at C	.		damp	4.0		69			CL Gravelly lea	an clay with sand; medium brown;				
Neat			uamp	4.0					· · · · ·	y, low toughness, 50% well graded				
						70				gravel, subrounded, loose; damp;				
						71			no odor (35,15,5	50).				
						 72			······					
						73—				••••••••••••••••••••••••••••••••••••••				
			wet	7.4		74 —	522,5348			sand; medium brown; medium				
					CP-4 @ 74.5-75'	75 —		<u> </u>		m toughness; 25% fine to coarse sand, angular to subrounded, loose; trace				
					14:54	76 —			gravel; no odor;					
						77 —			· · · .					
						78								
		∇	sat	3.9	CP-4D	79			SW Well graded	sand with gravel; medium brown;				
		79.25' 15:22			16:03	80				sand to fine gravel, loose, sub- unded; saturated; no odor (20,75,5).				
		13.22				81	μŢ							
						82	-/			. \\\\\\				
								· · · · · · · · · · · · · · · · · · ·	Total depth of	sampling hole = 82' bgs				
						83								
						84 —								
	· · · · · · · · · · · · · · · · · · ·					85—				· · · · · · · · · · · · · · · · · · ·				
	· ···-					86								
						 88								
						<u> </u>								

Delta Consultants	Logged Driller: Drilling Sampli Shallov	No: C10 By: Meg Gregg D Method: ng Metho v First Wa v Static W Elevation	ghann Hu Drilling CPT d: Pistor ater Dept Vater Dep	urt n Type h: 64' oth: 52'	Loca Nor t Hole Sam CPT Deej	tion: F th of R Diame ple Hol Log Ho p First V	occoPhillips ormer RR ROW ay St., Pleasanton, CA eter: 1.75" e Depth: 82' le Depth: 92' Water Depth: 79.25' : Water Depth: 52' Easting	Boring No: CP-4 Date Drilled: 2/21/08 Page 5 of 5 ∇ = First Water \mathbf{V} = Static Groundwater \mathbf{X} = Screen for water sample \uparrow = slowly increasing values		
Boring Completion	nte	Moisture Content PID Reading (ppm) Sample Identification		Depth (feet)	Recovery adder Analyzed a	Soil Type	LITHOLOGY / DESCRIPTION			
				89 - 90 - 91 - 92 - 93 - 94 - 95 - 96 - 97 - 98 - 99 - 100 - 101 - 102 - 103 - 104 - 105 - 106 - 107 - 108 - 109 - 110 -				CPT log hole = 92' bgs		

			Logged	By: Meg	7376002 Jhann Hu		Loc	ation: F	iocoPhillips ormer RR ROW	Boring No: CP-5 Date Drilled: 2/22/08 Page 1 of 5
			Drilling Method: CPT Sampling Method: Piston Type					e Diame nple Ho	tay St., Pleasanton, CA eter: 1.75'' le Depth: 96' le Depth: 90'	$\nabla = \text{First Water}$ $\Psi = \text{Static Groundwater}$ $X = \text{Screen for water sample}$ $\Phi = \text{slowly increasing values}$
		Elevation			Northing			Easting		
Bori Compl IIJyoeg	etion	Static Water Level	Moisture Content	PID Reading (ppm)	Sample Identification	Depth (feet)	Recovery Samble Analyzed	Soil Type	LITHO	LOGY / DESCRIPTION
Neat Cement	Soil	Levei	≚ Ŏ damp damp	0.2 0.0 1193	S. Air-Knifed Iden	a 1 2 3 4 5 6 7 8 9 11 12 13 14 15	Reco		CL plasticity; low toug subangular fine to to subangular fine (20,30,50). CL Sandy lean clay w plasticity; low toug subangular fine to ito subangular fine (20,35,45). ML Silt with sand; da toughness; medium sand; trace gravel (2,25,73). CH Fat clay; medium toughness; very st	with gravel; medium brown; low ghness; no dilatancy; soft; 30% coarse sand; 20% subrounded gravel; well graded; damp; no odor with gravel; medium brown; low ghness; no dilatancy; soft; 30% coarse sand; 20% subrounded gravel; well graded; damp; no odor ark brown; low plasticity; low m soft; well graded fine to coare ; subrounded; moist; no odor brown; high plasticity; high tiff; trace medium sand to fine d; well graded; no odor; damp;
			damp	659					CL Lean clay with sa gray chunks; medi very stiff; subangu	and; medium brown with greenish ium plasticity; medium toughness; ilar fine to coarse sand; well graded; p; slight odor (2,20,78).

Delta Consultants	Logged B Driller: G Drilling M Sampling First Wate Static Wa	o: C107376002 y: Meghann Hu regg Drilling lethod: CPT Method: Pistor er Depth: 95.7' ater Depth:	ırt 1 Type	L N H S	ocation: F lorth of R lole Diame ample Hol PT Log Ho	ocoPhillips ormer RR ROW ay St., Pleasanto ter: 1.75" e Depth: 96' e Depth: 90' Easting	Boring No: CP-5 Date Drilled: 2/22/08 Page 2 of 5 ✓ = First Water ✓ = Static Groundwater ✓ = Screen for water sample ↑ = slowly increasing values		
Boring Completion E Water S Level	Moisture Content	PID Reading (ppm) Sample Identification	Depth (feet)	Samt Samt	Analyzed ad Soil Type	LITHOLOGY / DESCRIPTION			
Neat Cement	moist	440	23— 24— 25—			toughness	; mediu	h green; medium plasticity; medium m soft; well graded fine to coarse ; moist; slight odor (0,10,90).	
			26 — 27 — 28 —						
	damp 370 30- 31-	29 30 31 			greenish g toughness	rey chu ; well g ed to sub	with gravel; medium brown with nks; medium plasticity; medium raded fine sand to coarse gravel; pangular; loose; damp; strong odor;		
	damp	255	32 — 33 — 34 — 35 —			plasticity,	medium	and; greenish grey; medium n toughness; medium soft;	
			36 37 38					erately graded fine to medium sand; r; (0,20,80).	
	damp	4.5	39			medium to	oughnes ne grave	greenish grey; medium plasticity; s; medium soft; well graded fine l; subangular to subrounded; damp; 5,60).	
	damp	5.7	42 — 43 — 44 —						
				-					

Delta Consultants	Logged Driller: Drilling Sampli First W	Project No: C107376002 Logged By: Meghann Hurt Driller: Gregg Drilling Drilling Method: CPT Sampling Method: Piston Type First Water Depth: 95.7' Static Water Depth:					tion: Fo th of R Diame ple Hol		RR ROW Pleasanton, CA 5" : 96' : 90'	Boring No: CP-5 Date Drilled: $2/22/08$ Page 3 of 5 ∇ = First Water \mathbf{V} = Static Groundwater \mathbf{X} = Screen for water sample 1 = slowly increasing values
		Elevatio	ł	Nort	orthing			Easting		
Boring Completion	istu	PID Reading (ppm)	Sample Identification	Depth (feet)	Recovery S	Analyzed ald	Soil Type		LITHO	DLOGY / DESCRIPTION
			CP-5 @	45-				СН		m brown with green chunks; high
Neat Cement			44.5-45' 11:42	46-			plasticity; high toughness; very stiff; trace subrounded gravel; damp; strong odor (1,0,99).			
Cen Cen					_					
Veat				47—						
-				48-						
	sat			49-					No recovery from	n 49-50 feet. Sampling tubes appea
				50-					saturated.	
				51-	1	-				
				52-	<u> </u>					
				53-	_					
	damp	9.5		54-	_			СН		m brown with green chunks; high oughness; very stiff; trace
				55						rel; damp; strong odor (1,0,99).
				56-						
				57—						
				58-						
				59-						
					_					
				60-	_				Soil sampler bro	ke
				61—						
				62-					·	
				63-						
				64					n	
				65						
										(A1) A
				66 —					······································	·
						•		,		

Delta Consultants	Logged Driller: Drilling Samplin First W	By: Meg Gregg D Method: ng Metho ater Dept Vater Dep	CPT d: Pisto h: 95.7	urt n Type	Loca Nor Hole Sam	ition: Fe th of Ra Diame ple Hole	ocoPhillips ormer RR ROW ay St., Pleasanton, CA ter: 1.75" e Depth: 96' le Depth: 90'	Boring No: CP-5 Date Drilled: 2/22/08 Page 4 of 5 ✓ = First Water ▼ = Static Groundwater × = Screen for water sample ▲ = slowly increasing values
		Elevatio	ח		Northing		Easting	
Boring Completion E Wate X X Leve	nte istr	PID Reading (ppm)	Sample Identification	Depth (feet)	Recovery S Analyzed ad	Soil Type	LITHO	LOGY / DESCRIPTION
				67 - 68 - 69 - 70 - 71 - 72 - 73 - 74 - 75 - 76 - 77 - 78 - 79 - 80 - 81 - 82 - 83 - 84 - 85 - 86 - 87 - 88 -	Image <tr< td=""><td></td><td></td><td></td></tr<>			

		Logged Driller: Drilling Samplin First Wi	By: Meg Gregg D Method: ng Method ater Dept Vater Dep	CPT CPT d: Pistor h: 95.7' oth:	urt n Type	Loc No Hol Sar CPT	ation: F o th of R Diame nple Hol	ocoPhillips ormer RR ROW ay St., Pleasanton, CA iter: 1.75" e Depth: 96' le Depth: 90'	Boring No: CP-5 Date Drilled: $2/22/08$ Page 5 of 5 \checkmark = First Water \checkmark = Static Groundwater \checkmark = Screen for water sample \uparrow = slowly increasing values
			Elevation	n	1	Northing		Easting	
Boring Completion	Static Water Level	Moisture Content	PID Reading (ppm)	Sample Identification	Depth (feet)	Recovery S Analyzed	1 11	LITHC	DLOGY / DESCRIPTION
					89—		-	· · · · · · · · · · · · · · · · · · ·	
		L			90 —	╞━╁━	└		
					91		-	Total depth of C	PT log hole= 90' bgs
								· · · · · · · · · · · · · · · · · · ·	
Neat Cement					92				
t Ce				-	93				
Nea 					94 —		_		
	15:30 ▽				95 —]	·····	
	95.7				96	<u> </u>	↓		
					97 —		1	Total depth of s	ampling hole= 95' bgs
				-	· . —				
					98		-		
					99			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
					100			· · · · · · · · · · · · · · · · · · ·	
					101 —			· · · · · · · · · · · · · · · · · · ·	
					102		1		
					 103			· · · · · · · · · · · · · · · · · · ·	
					104 —		-		
					-		-		· .
					105		1	·····	
					106				
					107		-		
					108		1		
					 109				
							-		
					110		1		

	e!†	ta	Logged Driller: Drilling Samplir First Wa	By: Lisa Gregg E Method: ng Metho ater Depl	CPT d: Piston th: ~71' pth: 79.5	Туре	Nort	Loca Nor Hole San CPT		ormer ay St., ter: 1. e Dept	RR ROW Pleasanton, CA 75" h: 85'	<u>▼</u> = ×=	Boring No: CP-6 Date Drilled: 2/25/08 Page 1 of 5 First Water Static Groundwater Screen for water sample slowly increasing values
				Lievaud				inny			Lasting		
Bori Compl	etion	Static Water Level	Moisture Content	PID Reading (ppm)	Sample Identification	Depth (feet)	Recovery	Analyzed aldu	Soil Type		LITHO	logy /	DESCRIPTION
Neat Cement			damp damp dry dry	 a. 0.0 0.0 154 64.5 31.2 	Air-Knifed						non-plastic; some compacted chunks sand; 5% subang graded; damp; no Fat clay; medium toughness; soft; s angular to subang coarse subangular no odor (10,3,87) Lean clay; dark t plasticity; mediun to subangular coa odor; dry (1,1,98) No recovery from Same as above; n No recovery from Dry bentonite (mu	clay prese s; 10% sub ular to subr o odor (5,10 n brown; hig some compa- ular fine gr r sand; poo	gh plasticity; medium acted chunks; 10% avel; trace fine and rly graded; damp; toughness; medium e silt; trace subrounded fine gravel; strong

Neat Cement Backfill Backfill	Static Water Level	Moisture Content	Elevatio			Maut				slowly increasing values		
Completion	Water	loisture Content	ing	l I	1	NOTU	ning		Easting			
Veat Cement	-	20	PID Reading (ppm)	Sample Identification	Depth (feet)	Sar Kecovery	Analyzed ad	Soil Type	LITHOLOGY / DESCRIPTION			
Veat Cement	-				23—	_						
Veat Cer	-											
Veat	_	dry	96.3		- 25				SM Silty sand; orange	e brown; subrounded to		
					25—					and to fine gravel; well graded; me clay; non-plastic; some		
	-				26				odor; dry (10,50,4			
					27—							
					- 28—				· · · · · · · · · · · · · · · · · · ·			
					- 29—							
		damp	56.6							brown; high plasticity; high iff; trace subrounded to sub-		
	-				30 —		·		angular medium to	coarse sand; some odor; damp;		
· ·	-				31—				(0,2,98).			
	_											
	_				- 33—							
· .					-					· · ·		
	-	moist	211	CP-6 @	34					n brown; low toughness; medium		
. ——				34.5-35' 11:41	35				plasticity; soft; sor (0,0,100).	ne silt; moist; strong odor		
					- 36 —			m mi				
					_	$\left \right $						
					38				· .			
	-				39 —							
	1	damp	254		40					with silt and gravel; brown; angular fine to coarse sand;		
					41				angular fine gravel	(white, orange, and gray crypto-		
	-				-	+				well graded; very loose; 40% amp; strong odor (40,50,10).		
					42 —				~	- · · · /		
					43—							
	-				44	+						

1	elta ultants	Logged Driller: Drilling Samplir First Wa	No: C10 By: Lisa Gregg D Method: ng Method ater Dept Vater Dept Elevation	Steizne orilling CPT d: Pistor h: ~71' oth: 79.5	er n Type	Location: I North of I Hole Diam Sample Ho	nocoPhillips Former RR ROW Ray St., Pleasanton, CA eter: 1.75" le Depth: 85' ble Depth: 90' Easting	Boring No: CP-6 Date Drilled: $2/25/08$ Page 3 of 5 \checkmark = First Water \checkmark = Static Groundwater \checkmark = Screen for water sample \uparrow = slowly increasing values
			LICVULIO			Northing	Lasting	
Boring Completio	on Static Water Level	Moisture Content	PID Reading (ppm)	Sample Identification	Depth (feet)	Recovery Sala and Soil Type		IOLOGY / DESCRIPTION
Image: Second		damp moist moist	75.9 109 236 68.4		45 46 47 48 48 50 51 52 53 53 55 55 56 57 58 58 58 58 58 58 59 60 61 62 63 64		CH Same as above	ium brown; medium toughness; soft; moist; strong odor (0,0,100).
	······································	moist	137		64 — 65 — 66 —		CH Same as above	e; strong odor.

	Project No: C1073760 Logged By: Lisa Stelze Driller: Gregg Drilling Drilling Method: CPT Sampling Method: Pist First Water Depth: ~7: Static Water Depth: 79 Elevation				r I Type	Loca Nor Hole San	ation: Fo th of Ra Diamet pple Hole	ocoPhillips ormer RR ROW ay St., Pleasanton, CA cer: 1.75" e Depth: 85' e Depth: 90'	Boring No: CP-6 Date Drilled: 2/25/08 Page 4 of 5
			Elevatio	on	N	orthing		Easting	
Boring Completion	Static Water Level	Moisture Content	PID Reading (ppm)	Sample Identification	Depth (feet)	Recovery S Analyzed a	Soil Type	LITHO	LOGY / DESCRIPTION
Neat Cement	∑ ~71'	moist wet	138	CP-6 @ 69.5-70' 14:00	67 68 69 70 71			toughness; high subrounded to su	sand; medium brown; medium plasticity; medium soft; 20% ibangular fine sand to fine ed; strong odor; moist; wet at 0') (10,10,80).
	▼ 79.5' 15:38			CP-6D 15:50	72 73 74 75 76 77 78 79 80 81				
					82 83 84 85 86 87 88			Total depth of s	ample hole = 85' bgs

				737600		Clier	nt: Con	ocoPhillips	Boring No: CP-6
		Logged	By: Lisa	ı Stelzne	er	Loca	tion: F	ormer RR ROW	Date Drilled: 2/25/08
		Driller:	Gregg D	Drilling		Nort	th of R	ay St., Pleasanton, CA	Page 5 of 5
Delt	ta	Drilling	Method:	СРТ				ter: 1.75 "	∇ = First Water
	LU	-		d: Pistoı	n Type			e Depth: 85'	\mathbf{V} = Static Groundwater
Consulta	ante			th: ~71'	,,-			le Depth: 90'	X = Screen for water sample
Constant	41165			pth: 79.5	Z'		209 710	ie Depair. De	
			vater be		•				\uparrow = slowly increasing values
			Elevatio	n		Northing		Easting	
Boring			6	ç	0				
Completion	Static	Moisture Content	PID Reading (ppm)	Sample Identification	Depth (feet)	Sample	Soil Type		
=	Water	nte	pm	d mb	5	ed P	_√	LITH	OLOGY / DESCRIPTION
Backfill	Level	နူပ	<u> </u>	Sa	bt	No Z	Soil		,
Ba			Id	μ	۵	Recovery Analyzed	0,		
	· · ·								
	-				89—	┼──┼──┤			
						+ + - 1		T the	
					90 —	╏━╍┿╺━┥			
					_			Total dapth of (
					91	$\left \right $			CPT log hole = 90' bgs
<u></u>						┝┉┟──┥			
					92—				· · · · · · · · · · · · · · · · · · ·
						┟╍╌┥──┤			
					93—				
					94 —	╞━╌╏╼╼┨			
					95 —				
					96				
					90				
					97				·····
·									
·					98				
						<u> </u>			
					.99 —				
				-	<u>. </u>				
					100 —			141 - 77110-1484 - 14	
					_				···
					101—	<u> </u>			
—									
					102				·
		-			_				
					103—				
—									
		.			104 —			1111 - Val. 4 - 4 - 4	
—					105				
					105				
				·	106 —				
Ka					TOO				
					 107 <i>_</i>				
		1			10/				
					108				
					109—		ļ		
								- 	
					110				·

			-		7376002 Steiznei				nt: Con ation: F		nillips RR ROW		Boring No: CP-7 Date Drilled: 2/26/08
			Driller:	Gregg I	Drilling			Noi	th of R	ay St.	Page 1 of 5		
)elt	га	-	Method:		_			e Diame				First Water
	onsulta			ng Metho ater Dep	d: Piston	Туре			nple Hol Log Ho	-			Static Groundwater Screen for water sample
		41165		-	pth: 72.6	•			209110	ie bep			slowly increasing values
				Elevatio	n	1	Nort	hina			Easting		
Bo	oring							2					
Com	pletion	Static Water	Moisture Content	PID Reading (ppm)	ication	Depth (feet)		nple ឆ្ល	Soil Type				DESCRIPTION
	Backfill	Level	Mois Con	PID Re (pp	Sample Identification	Depth	Recovery	Analyzed	Soil	5	LINU	LUGY	DESCRIPTION
	Soil					-							
						1—	_						
					fed	2							
			damp	0.0	Air-Knifed		Aline			CL	Sandy lean clay:	medium hr	own; low plasticity; low
			uump	0.0	Air-	3				~			ular to angular fine to
	M					4—							to subrounded fine gravel;
											damp; no odor (7,		chunks of fines present;
	- 1		damp	0.0		<u> </u>		<u> </u>		CL	Lean clay; mediu	m brown; n	
	<u> </u>					6—							angular to angular fine ar to subrounded fine
						7	1						mented chunks of fines
ent						-					present; damp; no	odor (5,7,	88).
Cement						8							
at C	II —		damp	2868		9—				CL	Lean clay; dark bi	rowor modi	um planticitus laus
Neat			uamp	2000		- 10 —				CL			nded coarse sand; some
						- 10					silt; damp; slight o	odor (0,1,99	9).
						11—					10, 10, 17, 17, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19		
						12—							
						 13					· · · · · · · · · · · · · · · · · · ·		
	·					 14							
											No recovery from 1	14-15 feet	
		-	damp	9.7		15—				CL	Lean clay; dark br	rown; medi	um plasticity; low
						16—					toughness; soft; tr (0,0,100).	ace roots p	resent
						17 —							
	<u> </u>												
						 19							
			damp	497						CL			rown; medium plasticity; rounded to angular
						20							noderately graded; damp;
						21					strong odor (5,10,8	35).	
						22—							

			-		07376002			Clie	nt: Con	ocoPł	illips	Boring No: CP-7
					a Stelzne	r		Loca	ation: F	ormer	RR ROW	Date Drilled: 2/26/08
				Gregg	-						, Pleasanton, CA	Page 2 of 5
レ	el	ld		Method		_			Diame			∇ = First Water
				ng Metho ater Dep	d: Piston	і Туре			ple Hol	-		\mathbf{Y} = Static Groundwater
	nsult	ants			epth: 72.6	,		CPI	Log Ho	ie Dep	un: 90	 Screen for water sample slowly increasing values
					,pan 7 - 10							- slowly increasing values
				Elevatio	on		Nort	hing			Easting	
	ring detion			bu	ion	j,	Sar	nple	0			
_		Static Water	Moisture Content	PID Reading (ppm)	Sample Identification	Depth (feet)			Soil Type			
-	васклі	Level	4ois Con	and diamates an	San	bt	Recovery	Analyzed	To		LINU	LOGY / DESCRIPTION
ú	ра Д		_	IId	Ide	å	Rec	Ana	10			
						23—						
٦t						23						
nei						24 —		ļ				
Neat Cement			damp	2.5		–	100000	<u> </u>		СН		brown; high toughness; high
at (<u> </u>					25	1918/01					f; 10% subrounded to angular fine ; moderately graded; damp; slight
Ne						-					odor (3,7,90).	, moderatery graded, damp, signt
		-		:		26						
	l					27—	1	•				
						28—						
		÷				-						
						29—					No recovery from 2	29-30 feet
						30 —				<u> </u>		
			moist	8.3						СН		brown; high toughness; high
	—					31 —						o subangular gravel; moist
						-					(1,0,00).	
						32—						V - 64/14 - 64
						33—					· · · · · · · · · · · · · · · · · · ·	
												·····
			damp	3.3		34 —				СН	Fat clay: media	um brown; medium toughness; high
	- N		aamp	5.5								subangular gravel; damp
			·			35					(1,0,99).	<u> </u>
						36 —						
						37 —						
						38						
						39 —						
			moist	12.7	CP-7@			(instant		CL		ay-brown; low toughness; medium
		ĺ	wet		39.5-40' 11:35	40 —						ne silt present; 10% subrounded to o fine gravel; moderately graded;
			ŀ					-				bottom of sample); slight odor
						41—					(3,70,90).	
						42						
						·	\square					
		l				43—	┝─┤					
		ŗ					╞─┤					
Į.	I		wet	33.5		44						

	tatic Water	Logged Driller: Drilling Samplin First Wa	By: Lisa Gregg I Method: ng Metho ater Dep	CPT od: Piston th: 69' pth: 72.6'	Туре	Location: I North of I Hole Diam Sample Ho CPT Log H Northing	nocoPhillips Former RR ROW Ray St., Pleasanton, CA eter: 1.75" ble Depth: 77' ble Depth: 90' Easting	Boring No: CP-7 Date Drilled: 2/26/08 Page 3 of 5
Neat Cement Backfill	Level	sat		S	45 46 47 48 48 49	Image: Solution of the second	subangular to an graded; loose; 30 odor; wet (satura (20,50,30).	
		wet wet moist	9.3 5.9	CP-7@ 54.5-55' 13:57	50 — 51 — 52 — 53 — 54 — 55 —		low toughness; hi strong odor (0,0, Same as above; t CH fine gravel; wet (CH Fat clay; brown w high toughness; h	race subangular medium sand to 2,3,95). with orange and black mottling; high plasticity; stiff; trace subangular
		wet	6.2	13.3/	56 — 57 — 58 — 59 — 60 — 61 —		CH Fat clay; brown v high toughness; h	ine gravel; moist (2,3,95). vith orange and black mottling; high plasticity; stiff; trace subangular gravel; wet (3,7,90).
		wet	3.1		62 — 63 — 64 — 65 — 66 —		subangular to ang	h gravel; medium brown; ular fine sand to fine gravel; well % clay; medium plasticity; slight 30).

				737600				ocoPhillips	Boring No: CP-7
				a Stelzne	er			ormer RR ROW	Date Drilled: 2/26/08
			Gregg [_				ay St., Pleasanton, CA	Page 4 of 5
Delt	Га		Method:					ter: 1.75"	Σ = First Water
				d: Pisto	n Type			e Depth: 77'	\mathbf{Y} = Static Groundwater
Consulta	ants	1	ater Dep			CPT	Log Ho	le Depth: 90'	X = Screen for water sample
		Static V	Vater De	pth: 72.6	5'				🕇 = slowly increasing values
			Elevatio	n		Northing		Easting	
Boring			5	Ę	5				
Completion	Static	Moisture Content	PID Reading (ppm)	Sample Identification	Depth (feet)	Sample	Soil Type		
E E	Water	iste	ppn	Lifi di		ery	<u>-</u>	LITHO	LOGY / DESCRIPTION
Backfill	Level	ΨŬ	<u> </u>	Se leur	ept	Recovery Analyzed	Soi		
Ω			<u>а</u>	Ч	Δ	Re An			
					67				
Neat Cement					_				
на — — — — — — — — — — — — — — — — — — —					68 —				
- 8 -									
at (∼69'				69 —	 			
lei –	~09		n 2		· _			Compler brake	no sample. Tubes saturated.
					70	· · · · ·		Sampler broke -	no sample. Tubes saturated.
									· · · · · · · · · · · · · · · · · · ·
					71				
									· · · · · · · · · · · · · · · · · · ·
			-	CP-7M	72 —				
	72.6'			15:40	73—				
	15:36				/3				
					74 —				
					, , , , , , , , , , , , , , , , , , ,				
					75 —	A			
								· · · · · · · · · · · · · · · · · · ·	· ·
					76 —	$\ \cdot\ $			
					_				
╞╾╾╾╾┥		┝╺╍╴┥			77	┦╍╍╺┿╸╾╸┥			
-								Total dopth of a	ampling hole = 77' bgs
					78				amping note = 77 bys
					79 —			· · · · · · · · · · · · · · · · · · ·	
					80 —				
					81				
					01				
					82 —				
					83 —				
_						- -		· · · ·	
[84	$\left - \right $			
		·			85 —				
-		· ·							
! ──					86 —				
6					87 —				······
					00				
					88 —				

				737600			Client: ConocoPhillips Boring No: CP-7 Location: Former RR ROW Date Drilled: 2/26/08			
				a Stelzne	er					Date Drilled: 2/26/08
Del	ta'		Gregg I Method:	-					ay St., Pleasanton, CA ter: 1.75"	Page 5 of 5 $\overline{\nabla}$ = First Water
	La			d: Pisto	n Type				e Depth: 77'	$\mathbf{\nabla}$ = Static Groundwater
Consulta	ints	1	ater Dep						le Depth: 90'	X = Screen for water sample
				pth: 72.6	5'			U.		= slowly increasing values
			-							
			Elevatio	n		Northing			Easting	· · · · · · · · · · · · · · · · · · ·
Boring Completion		ىد ھ	PID Reading (ppm)	Sample Identification	et)	Sa	mple	e		
	Static Water	Moisture Content	ead om)	nple	Depth (feet)		-	Soil Type	ТТН	DLOGY / DESCRIPTION
Backfill	Level	Co Moi	a di	Sar enti	epth	Recovery	Analyzed	Soil		Description
B			Id	Ρ́Ι	ă	Rec	Ana	•		
					89—	+				
					90 —					
					91 —			i	Total depth of (CPT log hole= 90' bgs
					-	<u> </u>				
					92—	1				
					93—					· · · · · · · · · · · · · · · · · · ·
					94 —					
					 95					
_					-	<u> </u>				
·					96					
					97		$\left - \right $			
					 98			-		
						.				
					99 —					1007-1004-1-00-1- 10-10-10-10-10-10-10-10-10-10-10-10-10-1
					100 —	-				
					101					····
					 102					
					103—				· · · · · · · · · · · · · · · · · · ·	
					104 —					
					 105					· · · · · · · · · · · · · · · · · · ·
. —										

					107					
					108 —					
					 109 —				· .	
_										
					110					

•

APPENDIX E

Gregg Drilling CPT Report

GREGG DRILLING & TESTING, INC.

GEOTECHNICAL AND ENVIRONMENTAL INVESTIGATION SERVICES

February 27, 2008

Delta Consultants Attn: Lisa Stelzner 11050 White Rock Road, Suite 110 Rancho Cordva, California 95670

> CPT Site Investigation 76 Station #7376 4192 First St., Pleasanton, California GREGG Project Number: 08-048MA

Dear Ms. Stelzner:

Subject:

The following report presents the results of GREGG Drilling & Testing's Cone Penetration Test investigation for the above referenced site. The following testing services were performed:

1	Cone Penetration Tests (CPTU)
2	Pore Pressure Dissipation Tests (PPD)
3	Seismic Cone Penetration Tests (SCPTU)
4	Resistivity Cone Penetration Tests (RCPTU)
5	UVIF Cone Penetration Tests (UVIFCPTU)
6	Groundwater Sampling (GWS)
7	Soil Sampling (SS)
8	Vapor Sampling (VS)
9	Vane Shear Testing (VST)
10	SPT Energy Calibration (SPTE)

A list of reference papers providing additional background on the specific tests conducted is provided in the bibliography following the text of the report. If you would like a copy of any of these publications or should you have any questions or comments regarding the contents of this report, please do not hesitate to contact our office at (925) 313-5800.

Sincerely,

GREGG Drilling & Testing, Inc.

Mary Walden Operations Manager

> 950 Howe Rd • Martinez, California 94553 • (925) 313-5800 • FAX (925) 313-0302 OTHER OFFICES: LOS ANGELES • HOUSTON • SOUTH CAROLINA www.greegedrilling.com

GREGG DRILLING & TESTING, INC.

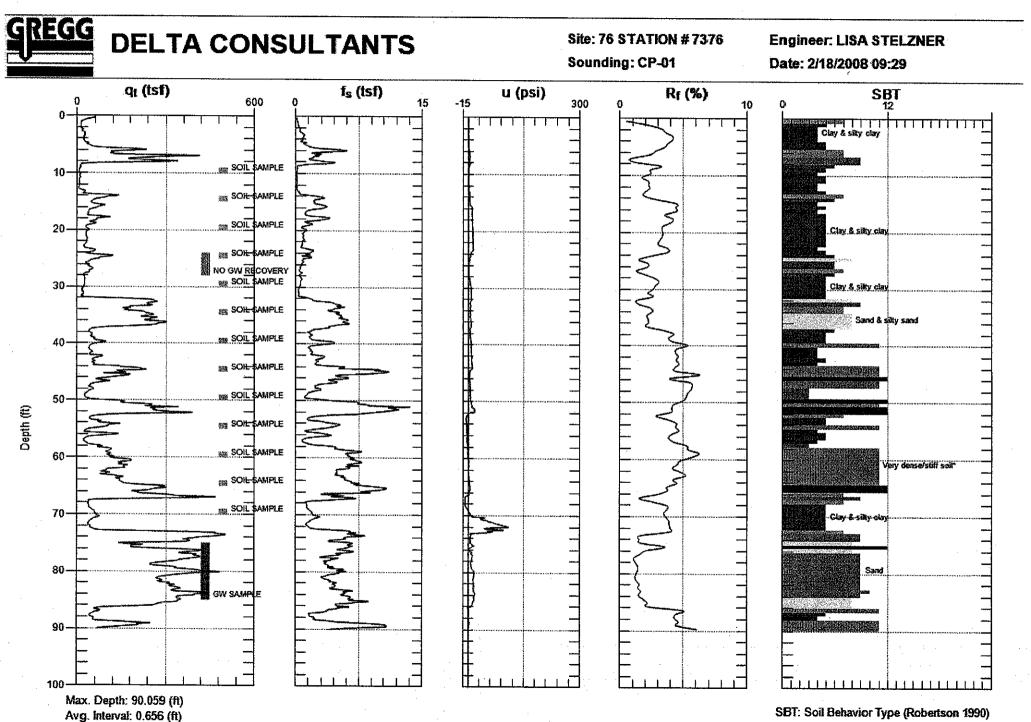
GEOTECHNICAL AND ENVIRONMENTAL INVESTIGATION SERVICES

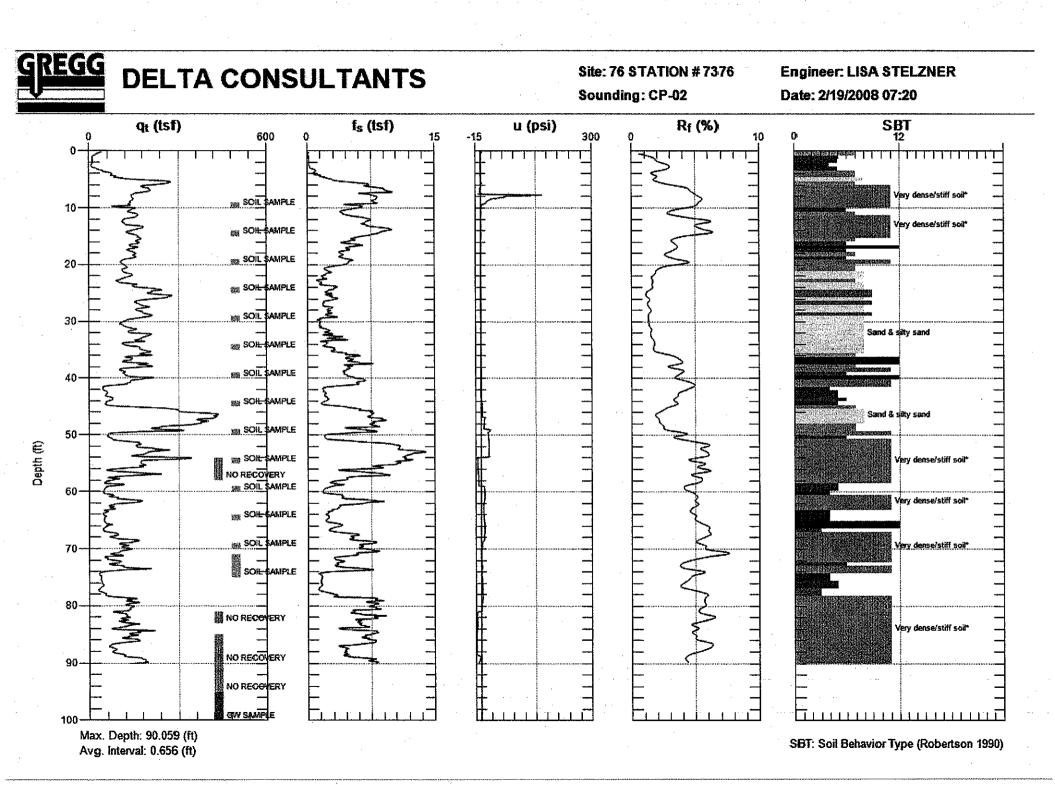
Cone Penetration Test Sounding Summary

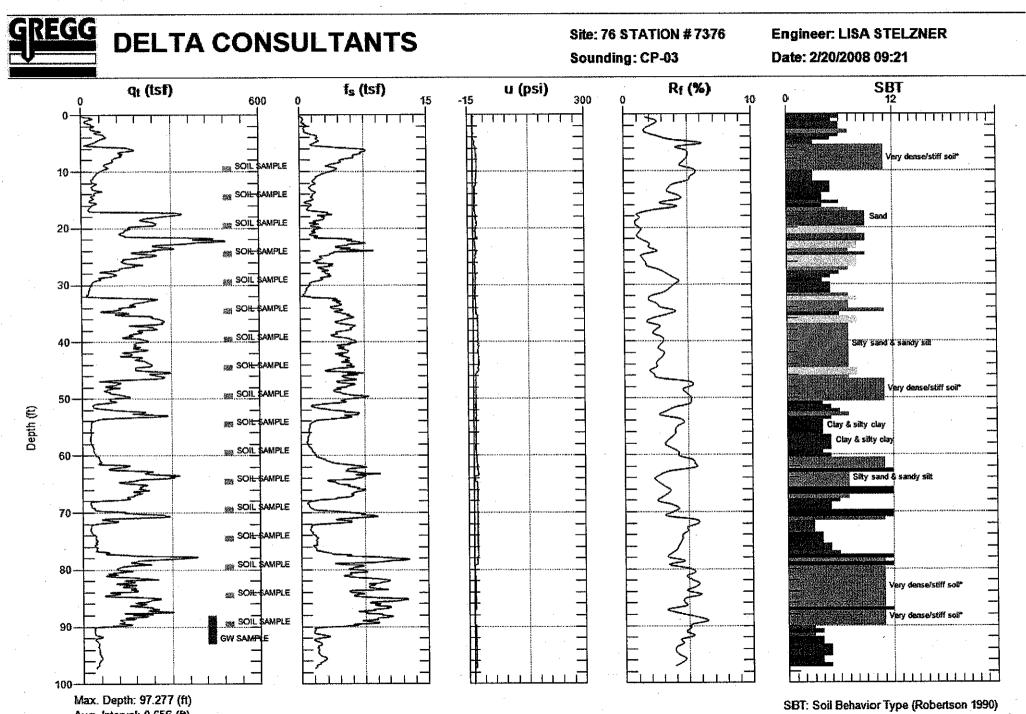
-Table 1-

CPT Sounding Identification	Date	Termination Depth (Feet)	Depth of Groundwater Samples (Feet)	Depth of Soil Samples (Feet)	Depth of Pore Pressure Dissipation Tests (Feet)
CPT-01	2/18/08	90	24-28,75-77	9-10,14-15,19-20,24- 25,29-30,34-35,39- 40,44-45,49-50,54- 55,59-60,64-65,69-70	66.6,79.4
CPT-02	2/19/08	100	54-58,81-83,85-90,90- 95,95-100	9-10,14-15,19-20,24- 25,29-30,34-35,39- 40,44-45,49-50,54- 55,59-60,64-65,69- 70,74-75	31.3,58.9
CPT-03	2/19/08	97	88-93	9-10,14-15,19-20,24- 25,29-30,34-35,39- 40,44-45,49-50,54- 55,59-60,64-65,69- 70,74-75,79-80,84- 85,89-90	89.6
СРТ-04	2/21/08-	92	63-68,79-82	9-10,14-15,19-20,24- 25,29-30,34-35,39- 40,44-45,49-50,54- 55,59-60,64-65,69- 70,74-75,79-80	30.5,44.8,51.8,63.2,85.9,92.0
CPT-05	2/22/08	90	79-83,85-88,90-95	9-10,15-16,20-21,24- 25,29-30,34-35,39- 40,44-45,49-50,54-55	27.7,63.2,81.7

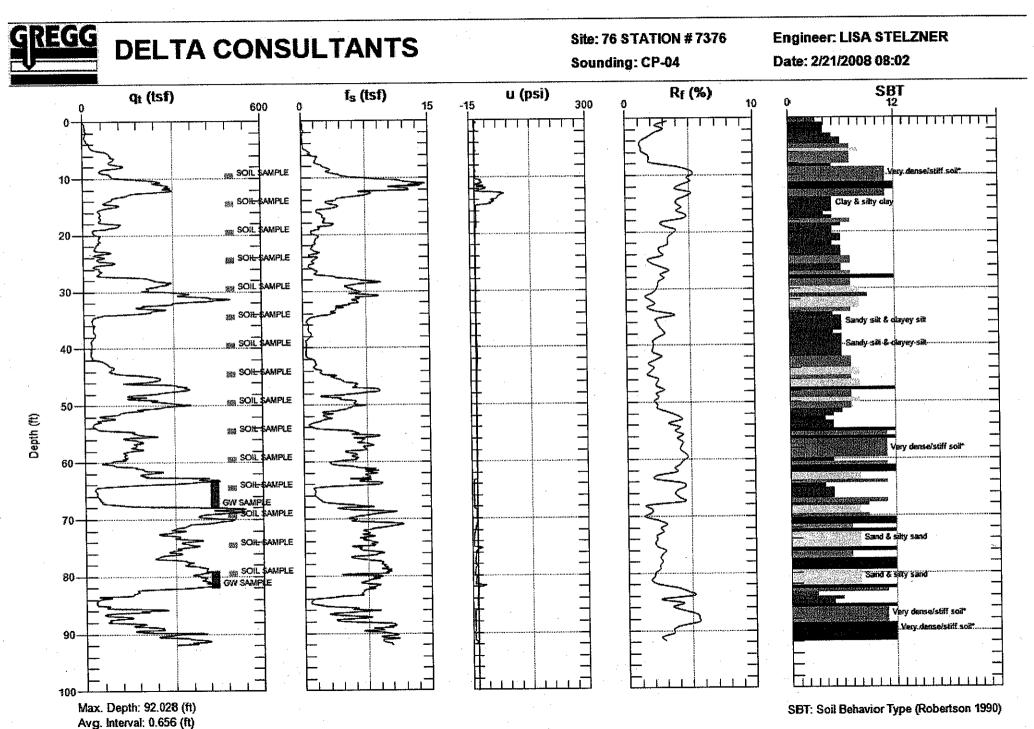
950 Howe Rd • Martinez, California 94553 • (925) 313-5800 • FAX (925) 313-0302 OTHER OFFICES: LOS ANGELES • HOUSTON • SOUTH CAROLINA www.greggdrilling.com

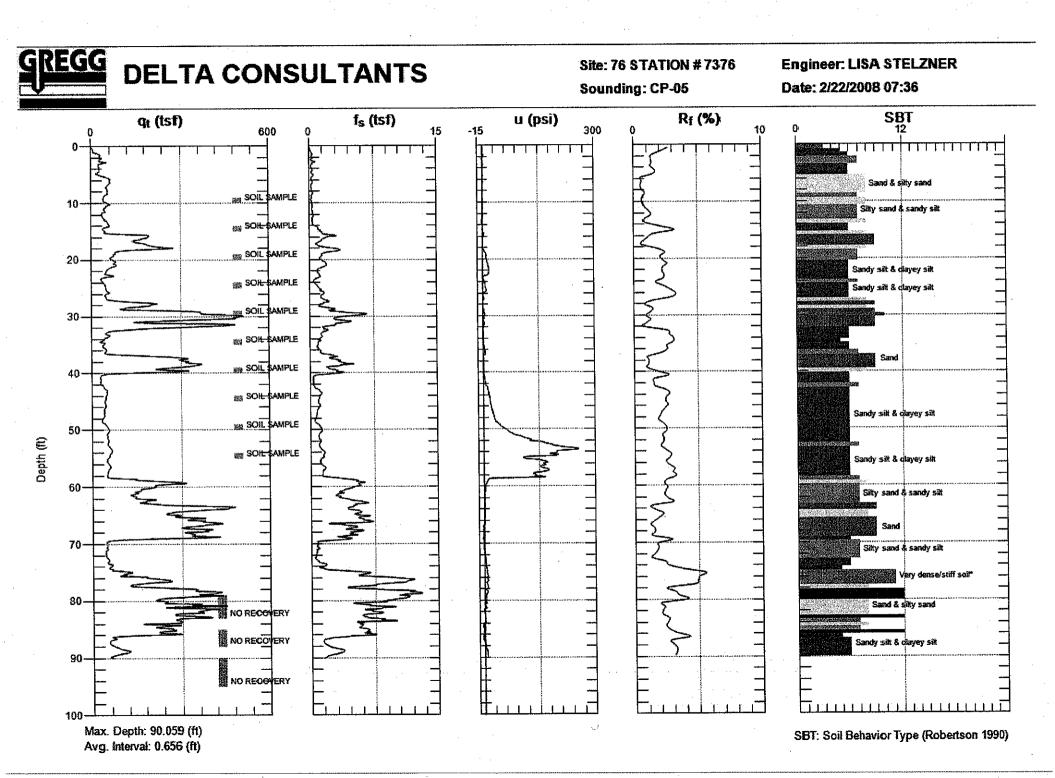


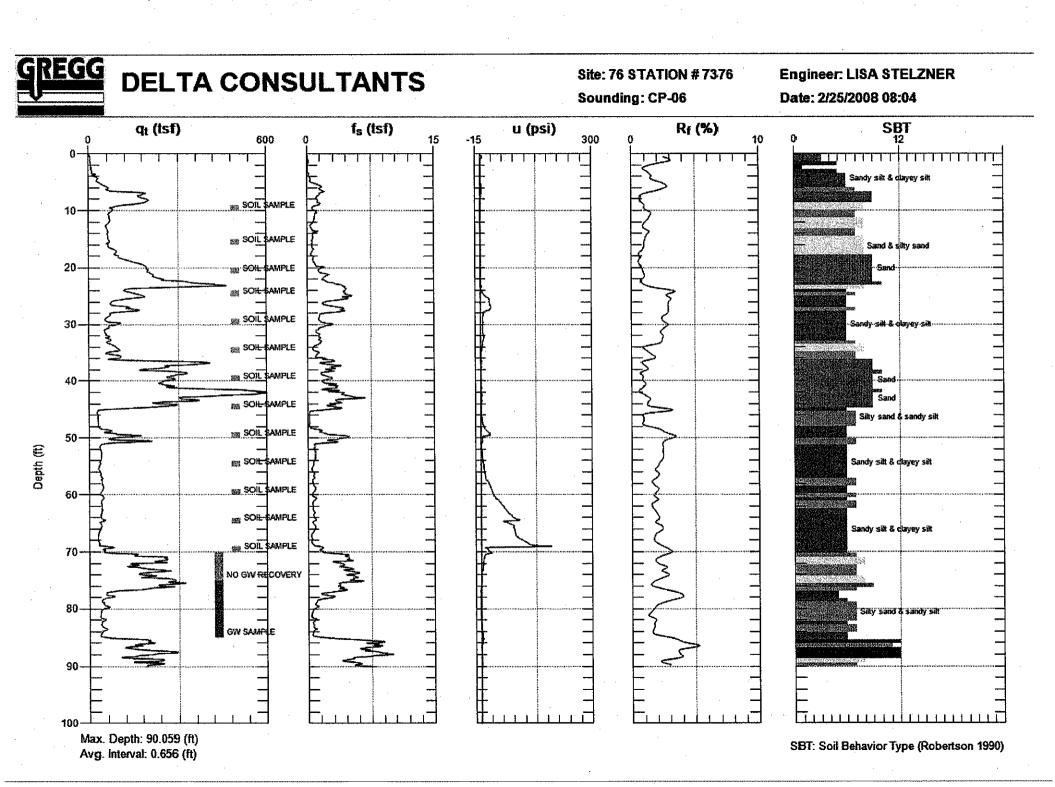

GREGG DRILLING & TESTING, INC.

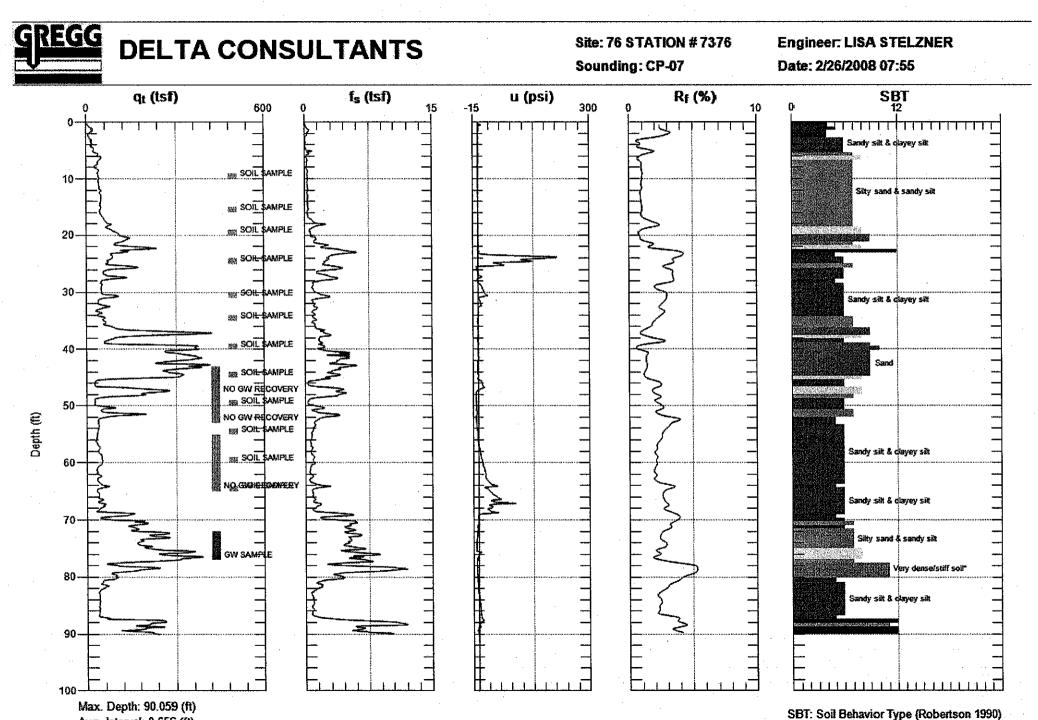

GEOTECHNICAL AND ENVIRONMENTAL INVESTIGATION SERVICES

CPT-06	2/25/08	90	70-75,75-85	9-10,14-15,19-20,24- 25,29-30,34-35,39- 40,44-45,49-50,54- 55,59-60,64-65,69-70	15.1,71.9
CPT-07	2/26/08	90	43-48,48-53,55-65,72-77	9-10,14-15,19-20,24- 25,29-30,34-35,39- 40,44-45,49-50,54- 55,59-60,64-65,69-70	18.9,75.5
			· · · · · · · · · · · · · · · · · · ·	·····	
			- -		· · · · · · · · · · · · · · · · · · ·
	····		······································		
· · · · · · · · · · · · · · · · · · ·					
			· · · · · · · · · · · · · · · · · · ·		
					·
·····				· · · · · · · · · · · · · · · · · · ·	
			· · · · · · · · · · · · · · · · · · ·		

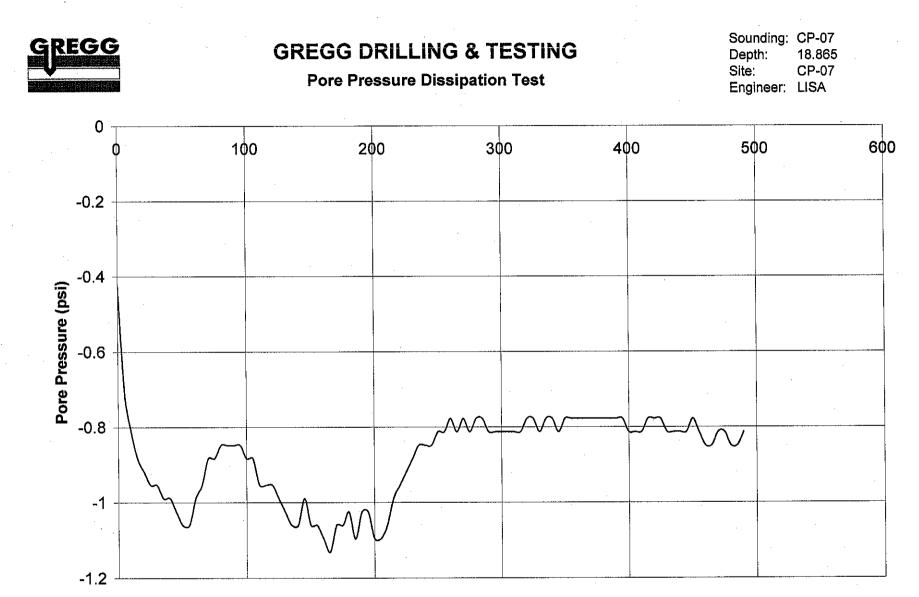

950 Howe Rd • Martinez, California 94553 • (925) 313-5800 • FAX (925) 313-0302 OTHER OFFICES: LOS ANGELES • HOUSTON • SOUTH CAROLINA www.greggdrilling.com

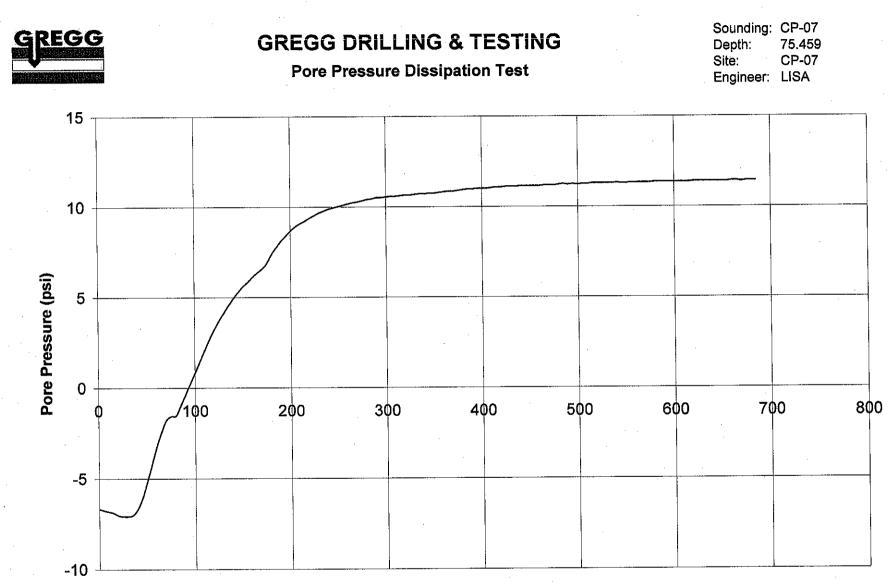


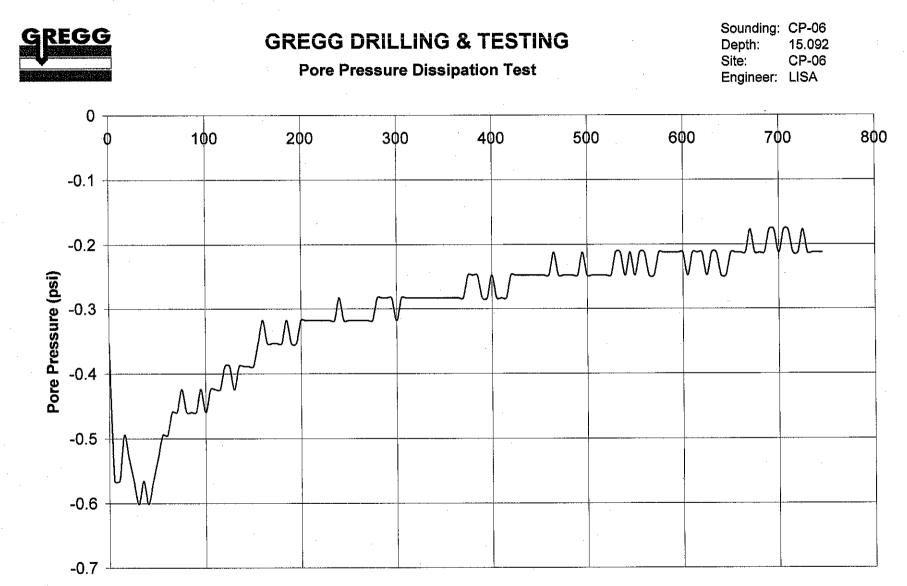


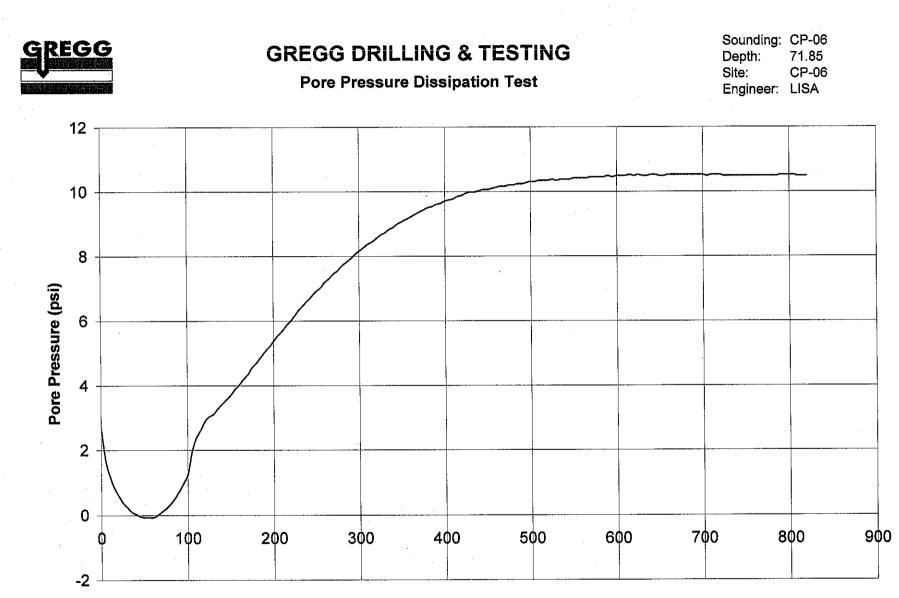


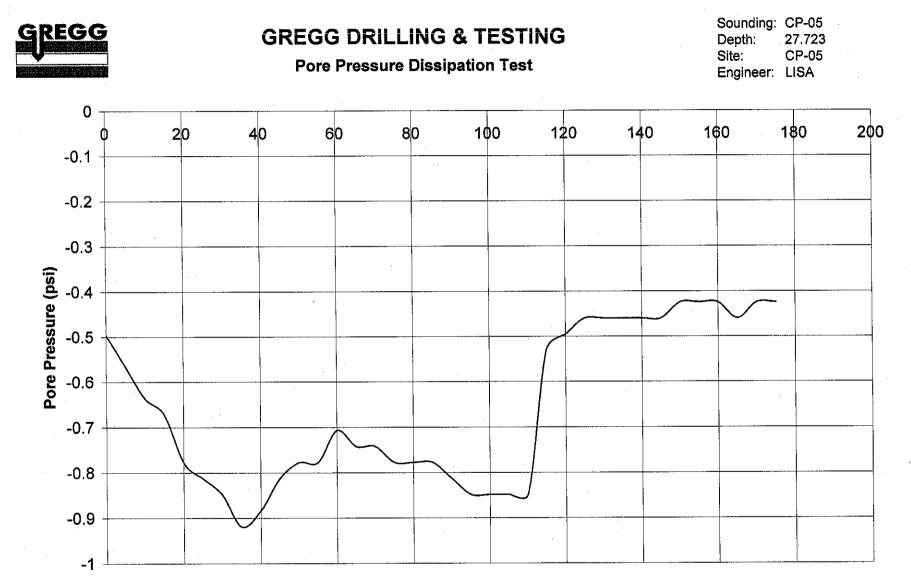
Avg. Interval: 0.656 (ft)



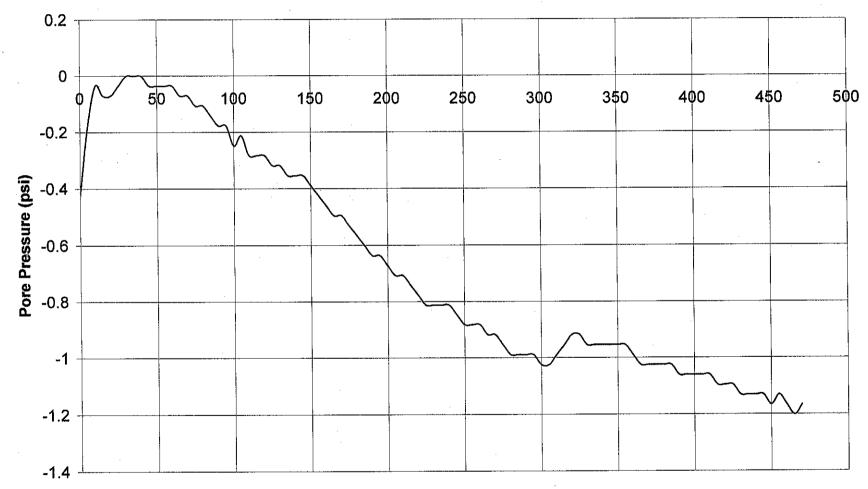


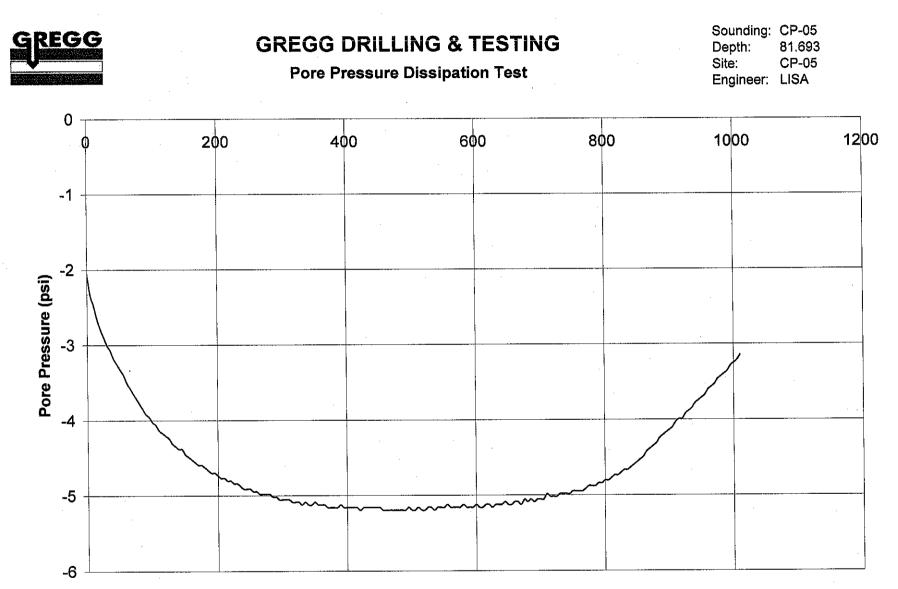

Avg. Interval: 0.656 (ft)

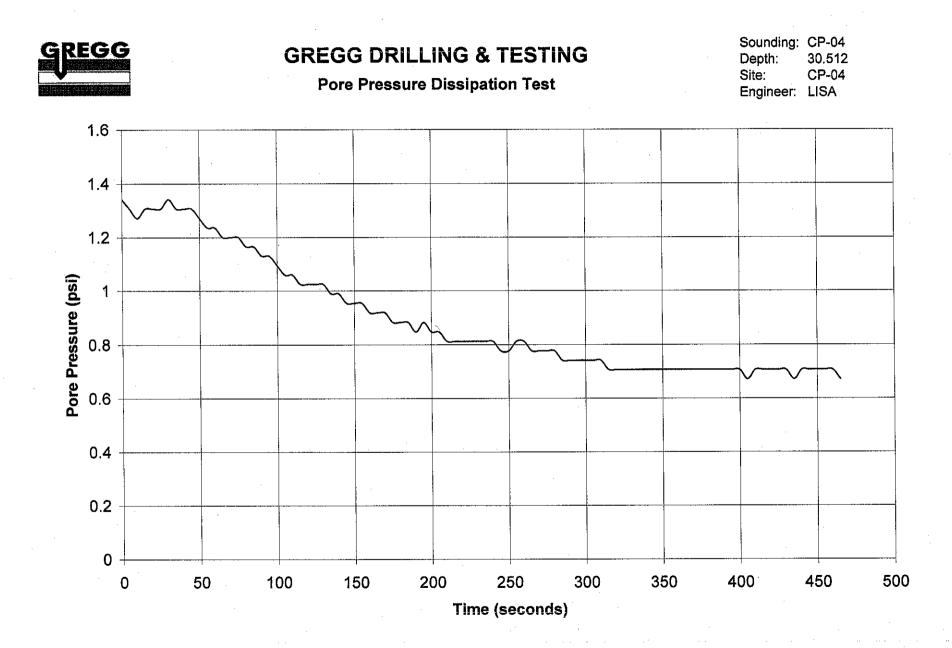

SBT: Soil Behavior Type (Robertson 1990)

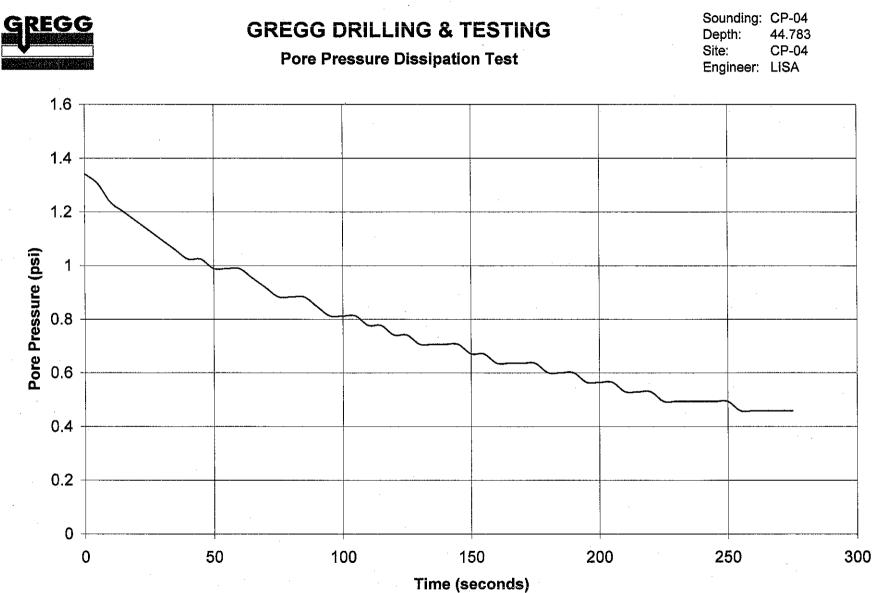


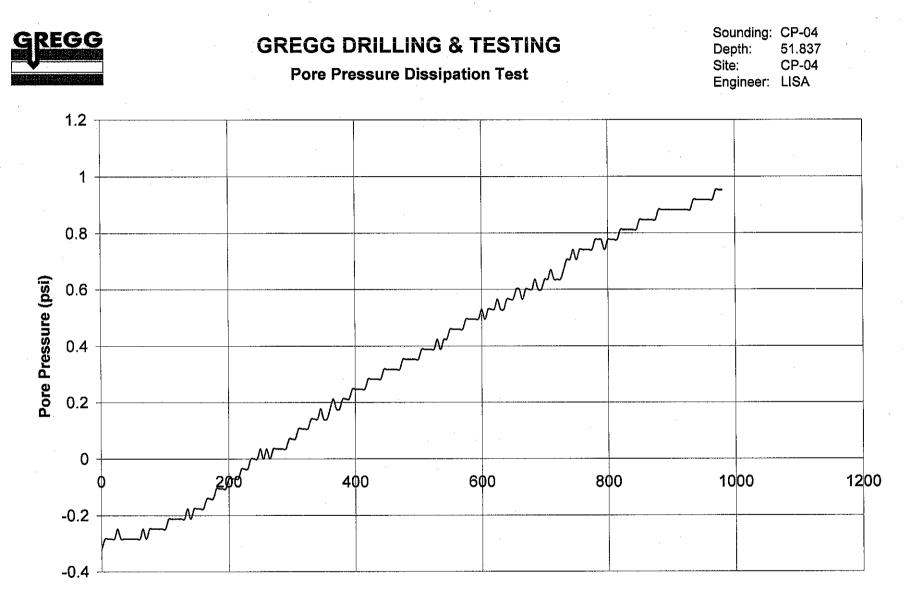
.

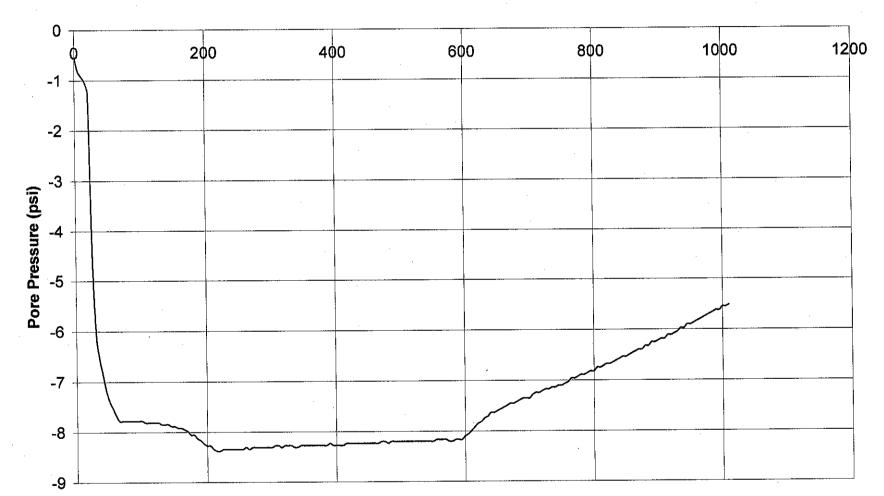







GREGG DRILLING & TESTING Pore Pressure Dissipation Test

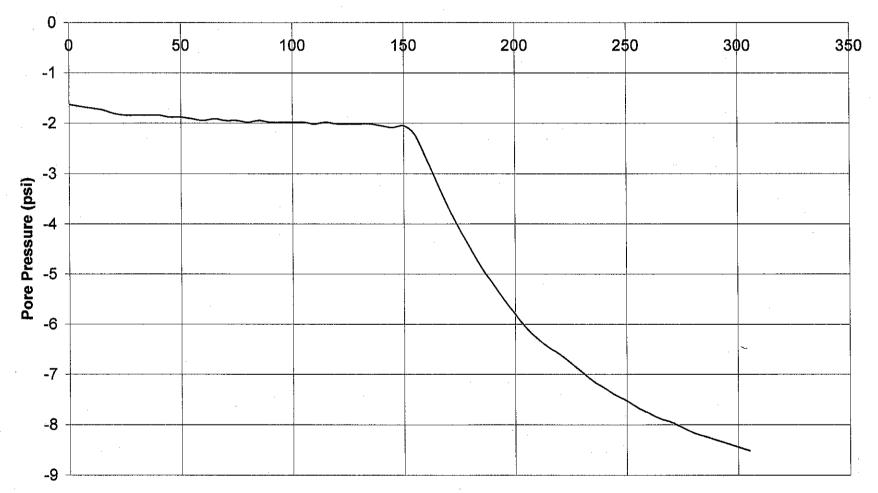

Sounding:	CP-05
Depth:	63.156
Site:	CP-05
Engineer:	LISA

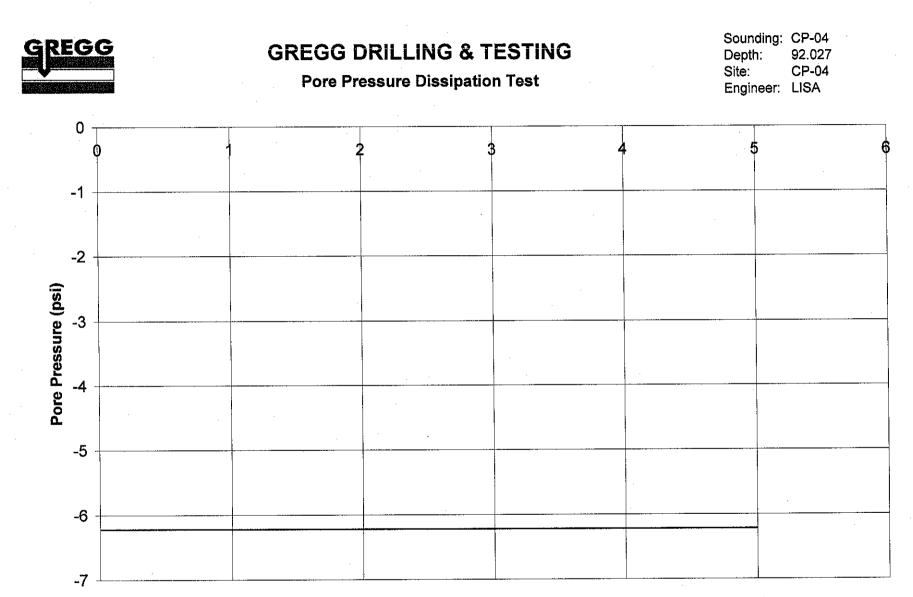


GREGG DRILLING & TESTING

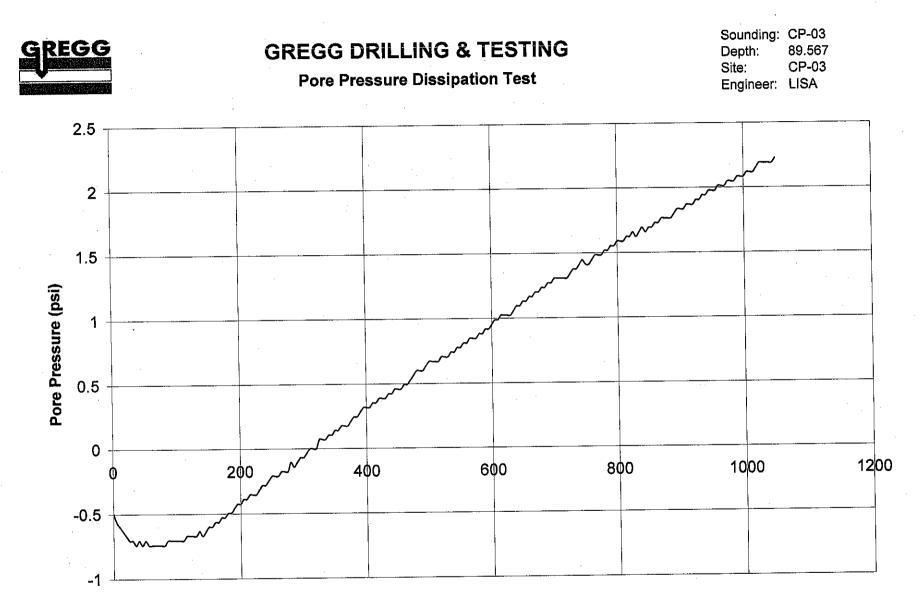
Pore Pressure Dissipation Test

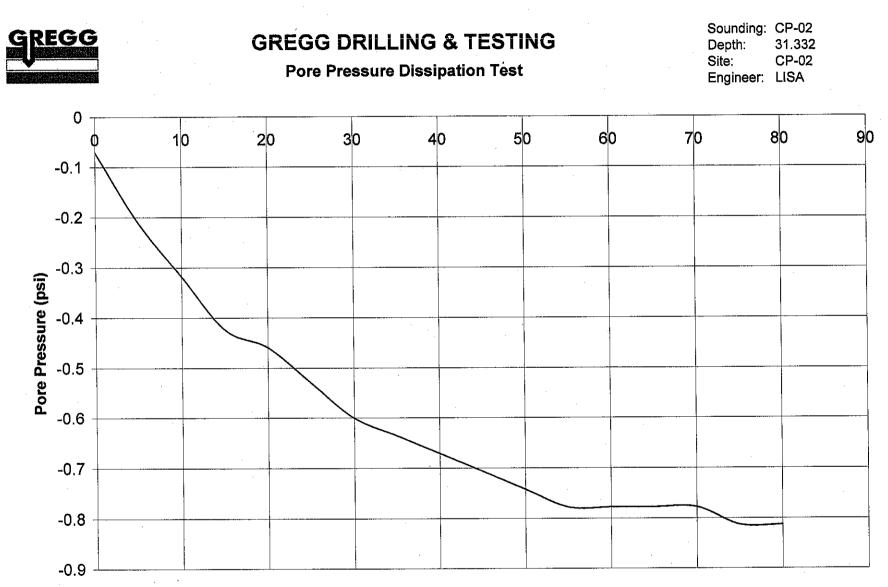
Sounding: CP-04 Depth: 63.156 Site: CP-04 Engineer: LISA

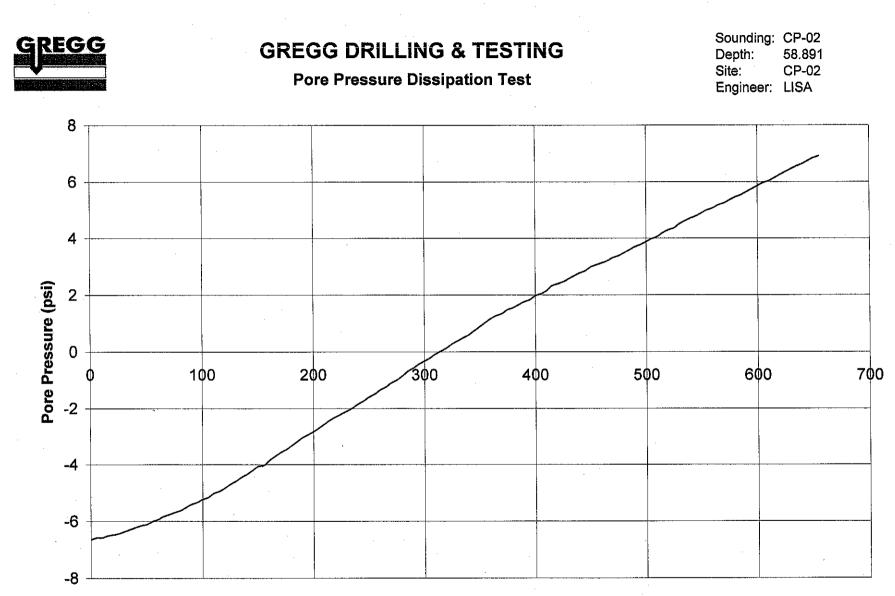




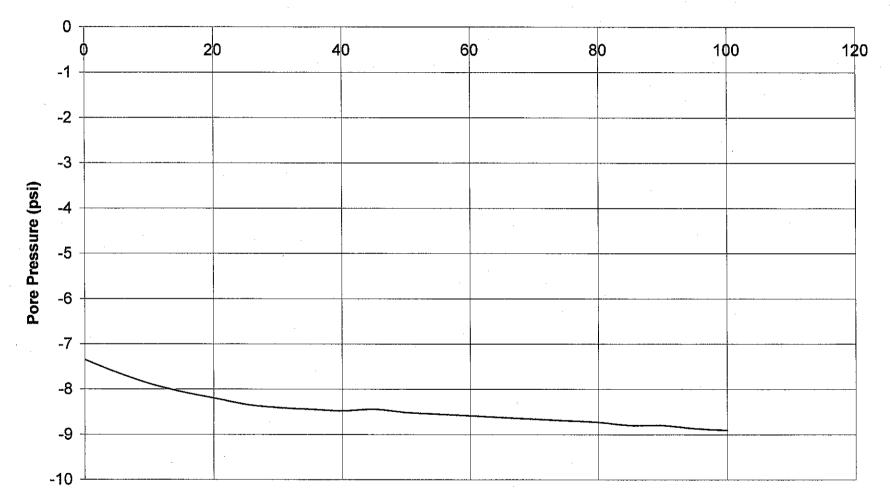
GREGG DRILLING & TESTING

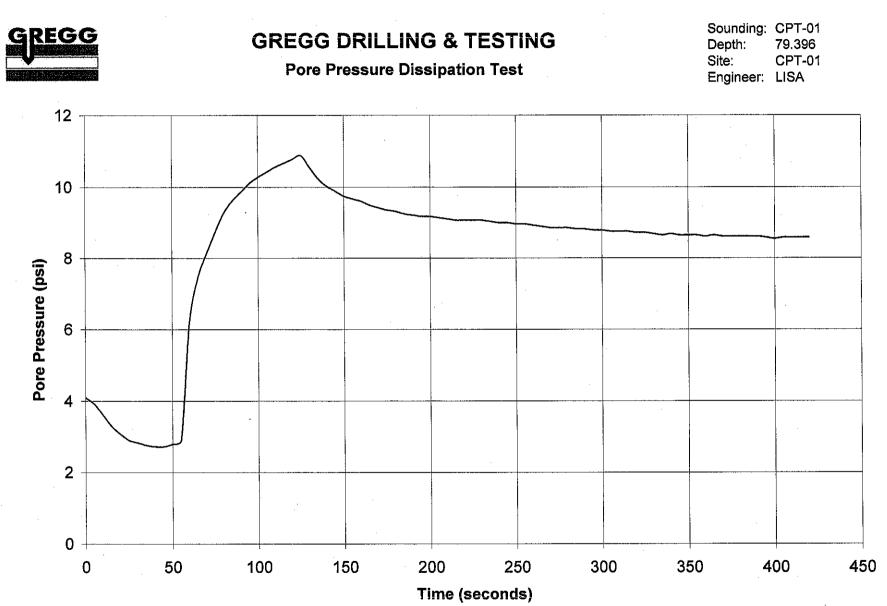

Pore Pressure Dissipation Test


Sounding: CP-04 Depth: 85.958 Site: CP-04 Engineer: LISA



.





GREGG DRILLING & TESTING Pore Pressure Dissipation Test

Sounding: CPT-01 Depth: 66.601 Site: CPT-01 Engineer: LISA

.

.

· · ·

APPENDIX CPT

Cone Penetration Testing Procedure (CPT)

Gregg Drilling carries out all Cone Penetration Tests (CPT) using an integrated electronic cone system, *Figure CPT*. The soundings were conducted using a 20 ton capacity cone with a tip area of 15 cm² and a friction sleeve area of 225 cm². The cone is designed with an equal end area friction sleeve and a tip end area ratio of 0.80.

The cone takes measurements of cone bearing (q_c), sleeve friction (f_s) and penetration pore water pressure (u_2) at 5cm intervals during penetration to provide a nearly continuous hydrogeologic log. CPT data reduction and interpretation is performed in real time facilitating on-site decision making. The above mentioned parameters are stored on disk for further analysis and reference. All CPT soundings are performed in accordance with revised (2002) ASTM standards (D 5778-95).

The cone also contains a porous filter element located directly behind the cone tip (u_2) , *Figure CPT*. It consists of porous plastic and is 5.0mm thick. The filter element is used to obtain penetration pore pressure as the cone is advanced as well as Pore Pressure Dissipation Tests (PPDT's) during appropriate pauses in penetration. It should be noted that prior to penetration, the element is fully saturated with silicon oil under vacuum pressure to ensure accurate and fast dissipation.

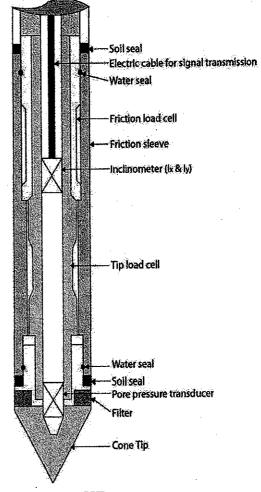
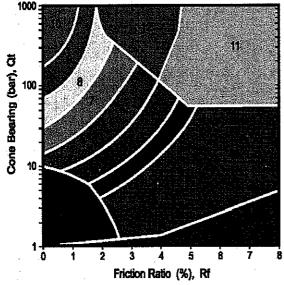


Figure CPT

When the soundings are complete, the test holes are grouted using a Gregg support rig. The grouting procedures generally consist of pushing a hollow CPT rod with a "knock out" plug to the termination depth of the test hole. Grout is then pumped under pressure as the tremie pipe is pulled from the hole. Disruption or further contamination to the site is therefore minimized.


Cone Penetration Test Data & Interpretation

The Cone Penetration Test (CPT) data collected from your site are presented in graphical form in the attached report. The plots include interpreted Soil Behavior Type (SBT) based on the charts described by Robertson (1990). Typical plots display SBT based on the non-normalized charts of Robertson et al (1986). For CPT soundings extending greater than 50 feet, we recommend the use of the normalized charts of Robertson (1990) which can be displayed as SBTn, upon request. The report also includes spreadsheet output of computer calculations of basic interpretation in terms of SBT and SBTn and various geotechnical parameters using current published correlations based on the comprehensive review by Lunne, Robertson and Powell (1997), as well as recent updates by Professor Robertson. The interpretations are presented only as a guide for geotechnical use and should be carefully reviewed. Gregg Drilling & Testing Inc. do not warranty the correctness or the applicability of any of the geotechnical parameters interpreted by the software and do not assume any liability for any use of the results in any design or review. The user should be fully aware of the techniques and limitations of any method used in the software.

Some interpretation methods require input of the groundwater level to calculate vertical effective stress. An estimate of the in-situ groundwater level has been made based on field observations and/or CPT results, but should be verified by the user.

A summary of locations and depths is available in Table 1. Note that all penetration depths referenced in the data are with respect to the existing ground surface.

Note that it is not always possible to clearly identify a soil type based solely on q_t , f_s , and u_2 . In these situations, experience, judgment, and an assessment of the pore pressure dissipation data should be used to infer the correct soil behavior type.

ZONE SBT Sensitive, fine grained 1 2 Organic materials 3 Clay 4 Silty clay to clay Clayey silt to silty clay 5 Sandy silt to clayey silt 6 7 Silty sand to sandy silt Sand to silty sand 8 Sand 9 10 Gravely sand to sand 11 Very stiff fine grained* Sand to clayey sand* 12 *over consolidated or cemented

(After Robertson, et al., 1986)

Figure SBT

Gregg CPT Interpretation Software 1.1., 2007

Cone Penetration Test (CPT) Interpretation

Gregg has recently updated their CPT interpretation and plotting software (2007). The software takes the CPT data and performs basic interpretation in terms of soil behavior type (SBT) and various geotechnical parameters using current published empirical correlations based on the comprehensive review by Lunne, Robertson and Powell (1997). The interpretation is presented in tabular format using MS Excel. The interpretations are presented only as a guide for geotechnical use and should be carefully reviewed. Gregg does not warranty the correctness or the applicability of any of the geotechnical parameters interpreted by the software and does not assume any liability for any use of the results in any design or review. The user should be fully aware of the techniques and limitations of any method used in the software.

The following provides a summary of the methods used for the interpretation. Many of the empirical correlations to estimate geotechnical parameters have constants that have a range of values depending on soil type, geologic origin and other factors. The software uses 'default' values that have been selected to provide, in general, conservatively low estimates of the various geotechnical parameters.

Input: 1

2

- Units for display (Imperial or metric) (atm. pressure, pa = 0.96 tsf or 0.1 MPa)
- Depth interval to average results, (ft or m). Data are collected at either 0.02 or 0.05m and can be averaged every 1, 3 or 5 intervals.
- 3 Elevation of ground surface (ft or m)
- 4 Depth to water table, z_w (ft or m) input required
- 5 Net area ratio for cone, a (default to 0.80)
- 6 Relative Density constant, C_{Dr} (default to 350)
- 7 Young's modulus number for sands, α (default to 5)
- 8 Small strain shear modulus number
 - a. for sands, S_G (default to 180 for $SBT_n 5, 6, 7$)
 - b. for clays, C_G (default to 50 for SBT_n 1, 2, 3 & 4)
- 9 Undrained shear strength cone factor for clays, N_{kt} (default to 15)
- 10 Over Consolidation ratio number, k_{ocr} (default to 0.3)
- 11 Unit weight of water, (default to $\gamma_w = 62.4 \text{ lb/ft}^3 \text{ or } 9.81 \text{ kN/m}^3$)

Column

- 1 Depth, z, (m) CPT data is collected in meters
- 2 Depth (ft)
- 3 Cone resistance, q_c (tsf or MPa)
- 4 Sleeve friction, f_s (tsf or MPa)
- 5 Penetration pore pressure, u (psi or MPa), measured behind the cone (i.e. u₂)
- 6 Other any additional data, if collected, e.g. electrical resistivity or UVIF
- 7 Total cone resistance, q_t (tsf or MPa) $q_t = q_c + u(1-a)$

6

Estimated permeability, k_{SBT} (based on Normalized SBT_n) (Lunne et al., 1997 and table below)

Equivalent SPT N₆₀, blows/ft 7

Lunne et al. (1997)

$$\frac{(q_{t}/p_{a})}{N_{60}} = 8.5 \left(1 - \frac{I_{c}}{4.6}\right)$$

blows/ft (N₁)₆₀ = N₆₀ C_N,

8 Equivalent SPT (N1)60 blows/ft where $C_N = (pa/\sigma'_{vo})^{0.5}$

9 Relative Density, D_r , (%) Only $SBT_n 5$, 6, 7 & 8

 $_{\rm h}/\rm C_{\rm Dr}$ ones 1, 2, 3, 4 & 9

10 Friction Angle, ϕ' , (degrees)

Only SBT_n 5, 6, 7 & 8

- 11 Young's modulus, E_s Only $SBT_n 5$, 6, 7 & 8
- Small strain shear modulus, Go 12 a. $G_0 = S_G (q_t \sigma'_{vo} pa)^{1/3}$ b. $G_0 = C_G q_t$
- 13 Undrained shear strength, s_u Only SBT_n 1, 2, 3, 4 & 9
- Over Consolidation ratio, OCR 14 Only SBT_n 1, 2, 3, 4 & 9

SBT Zones

The following updated and simplified SBT descriptions have been used in the software:

1	sensitive fine grained	1	sensitive fine grained
2	organic soil	2	organic soil
3	clay	3	clay
4	clay & silty clay	4	clay & silty clay
5	clay & silty clay		
6	sandy silt & clayey silt		
7	silty sand & sandy silt	5	silty sand & sandy silt
8	sand & silty sand	6	sand & silty sand
9	sand		
10	sand	7	sand

$$D_r^2 = Q_t$$

Show 'N/A' in z

$$\tan \phi' = \frac{1}{2.68} \left[\log \left(\frac{q_c}{\sigma'_{vo}} \right) + 0.29 \right]$$

Show'N/A' in zones 1, 2, 3, 4 & 9

 $E_s = \alpha q_t$ Show 'N/A' in zones 1, 2, 3, 4 & 9

For $SBT_n 5, 6, 7$ For SBT_n 1, 2, 3& 4 Show 'N/A' in zones 8 & 9

 $s_u = (q_t - \sigma_{vo}) / N_{kt}$ Show 'N/A' in zones 5, 6, 7 & 8

 $OCR = k_{ocr} Q_{t1}$ Show 'N/A' in zones 5, 6, 7 & 8

SBT_n Zones

Gregg CPT Interpretation Software 1.1., 2007

11	very dense/stiff soil*	8	very dense/stiff soil*
	-	-	1 1.100 114

12 very dense/stiff soil*

9 very dense/stiff soil*

*heavily overconsolidated and/or cemented

Track when soils fall with zones of same description and print that description (i.e. if soils fall only within SBT zones 4 & 5, print 'clays & silty clays')

Estimated Permeability (see Lunne et al., 1997)

SBT _n	Permeability (ft/sec)	(m/sec)
1	3x 10 ⁻⁸	1x 10 ⁻⁸
2	3x 10 ⁻⁷	1x 10 ⁻⁷
3	1x 10 ⁻⁹	3x 10 ⁻¹⁰
4	3x 10 ⁻⁸	1x 10 ⁻⁸
5	3x 10 ⁻⁶	1x 10 ⁻⁶
6	3×10^{-4}	1x 10 ⁻⁴
7	3×10^{-2}	1×10^{-2}
8	3×10^{-6}	1x 10 ⁻⁶
9	1×10^{-8}	3x 10 ⁻⁹

Estimated Unit Weight (see Lunne et al., 1997)

SBT	Approximate Unit Weight (lb/ft ³)	(kN/m ³)
1	111.4	17.5
2	79.6	12.5
3	111.4	17.5
4	114.6	18.0
5	114.6	18.0
6	114.6	18.0
7	117.8	18.5
8	120.9	19.0
9	124.1	19.5
10	127.3	20.0
11	130.5	20.5
12	120.9	19.0

APPENDIX PPDT

Pore Pressure Dissipation Tests (PPDT)

Pore Pressure Dissipation Tests (PPDT's) conducted at various intervals measured hydrostatic water pressures and determined the approximate depth of the ground water table. A PPDT is conducted when the cone is halted at specific intervals determined by the field representative. The variation of the penetration pore pressure (u) with time is measured behind the tip of the cone and recorded by a computer system.

Pore pressure dissipation data can be interpreted to provide estimates of:

- Equilibrium piezometric pressure
- Phreatic Surface
- In situ horizontal coefficient of consolidation (c_h)

• In situ horizontal coefficient of permeability (k_h)

In order to correctly interpret the equilibrium piezometric pressure and/or the phreatic surface, the pore pressure must be monitored until such time as there is no variation in pore pressure with time, *Figure PPDT*. This time is commonly referred to as t_{100} , the point at which 100% of the excess pore pressure has dissipated.

A complete reference on pore pressure dissipation tests is presented by Robertson et al. 1992.

A summary of the pore pressure dissipation tests is summarized in Table 1.

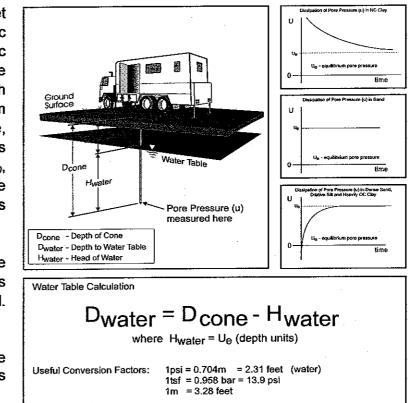


Figure PPDT

APPENDIX GWS

Groundwater Sampling (GWS)

Gregg Drilling conducts groundwater sampling using a Hydropunch[®] type groundwater sampler, *Figure GWS*. The groundwater sampler has a retrievable stainless steel or disposable PVC screen with steel drop off tip. This allows for samples to be taken at multiple depth intervals within the same sounding location. In areas of slower water recharge, provisions may be made to set temporary PVC well screens during sampling to allow the drill rig to advance to the next sample location while the groundwater is allowed to infiltrate.

The groundwater sampler operates bv advancing 1 ¾ inch hollow push rods with the filter tip in a closed configuration to the base of the desired sampling interval. Once at the desired sample depth, the push rods are retracted; exposing the encased filter screen infiltrate and allowing groundwater to hydrostatically from the formation into the A small diameter bailer inlet screen. (approximately 1/2 or 3/4 inch) is lowered through the push rods into the screen section The number of for sample collection. downhole trips with the bailer and time necessary to complete the sample collection at each depth interval is a function of sampling protocols, volume requirements, and the yield characteristics and storage capacity of the formation. Upon completion of sample collection, the push rods and sampler, with the exception of the PVC screen and steel drop off tip are retrieved to the ground surface, decontaminated and prepared for the next sampling event.

A summary of the groundwater samples collected, including the sampling date, depth and location identification, is presented in Table 1 and the corresponding CPT plot.

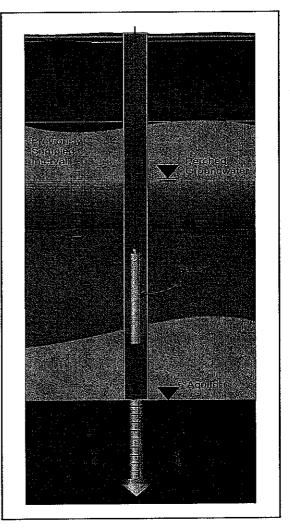


Figure GWS

For a detailed reference on direct push groundwater sampling, refer to Zemo et. al., 1992.

APPENDIX SS

Soil Sampling (SS)

Gregg Drilling uses a piston-type sampler to obtain relatively undisturbed soil samples without generating any soil cuttings, Figure SS. Two different types of samplers (12 and 18 inch) are used depending on the soil type and density. The soil sampler is initially pushed in a "closed" position to the desired sampling interval using a hydraulic rig. Keeping the sampler closed minimizes the potential of cross contamination caused by sloughing. The inner tip of the sampler is then retracted 12 inches (or 18 inches if using the longer sampler) leaving a hollow soil sampler with two inner 1¼ inch diameter by 6 inch or four 3 inch long soil sample tubes. If using the 18 inch sampler, two $1\frac{1}{2}$ inch diameter by 6 inch long tubes will be exposed. The hollow sampler is then pushed in a locked "open" position to collect a soil sample. The filled sampler and push rods are then retrieved to the ground surface. Because the soil enters the sampler at a constant rate, the opportunity for 100% recovery is increased. For environmental analysis, the soil sample tube ends are sealed with Teflon and plastic caps. Often, a longer "split tube" can be used for geotechnical sampling.

For a detailed reference on direct push soil sampling, refer to Robertson et al, 1998.

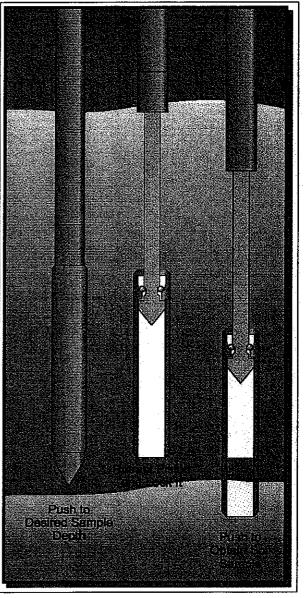


Figure SS

A summary of the soil samples collected, including the sampling date, depth and location identification, is presented in Table 1.

GREGG DRILLING & TESTING, INC.

GEOTECHNICAL AND ENVIRONMENTAL INVESTIGATION SERVICES

Bibliography

Lunne, T., Robertson, P.K. and Powell, J.J.M., "Cone Penetration Testing in Geotechnical Practice" E & FN Spon. ISBN 0 419 23750, 1997

Roberston, P.K., "Soil Classification using the Cone Penetration Test", Canadian Geotechnical Journal, Vol. 27, 1990 pp. 151-158.

Mayne, P.W., "NHI (2002) Manual on Subsurface Investigations: Geotechnical Site Characterization", available through www.ce.gatech.edu/~geosys/Faculty/Mayne/papers/index.html, Section 5.3, pp. 107-112.

Robertson, P.K., R.G. Campanella, D. Gillespie and A. Rice, "Seismic CPT to Measure In-Situ Shear Wave Velocity", Journal of Geotechnical Engineering ASCE, Vol. 112, No. 8, 1986 pp. 791-803.

Robertson, P.K., Sully, J., Woeller, D.J., Lunne, T., Powell, J.J.M., and Gillespie, D.J., "Guidelines for Estimating Consolidation Parameters in Soils from Piezocone Tests", Canadian Geotechnical Journal, Vol. 29, No. 4, August 1992, pp. 539-550.

Robertson, P.K., T. Lunne and J.J.M. Powell, "Geo-Environmental Application of Penetration Testing", Geotechnical Site Characterization, Robertson & Mayne (editors), 1998 Balkema, Rotterdam, ISBN 90 5410 939 4 pp 35-47.

Campanella, R.G. and I. Weemees, "Development and Use of An Electrical Resistivity Cone for Groundwater Contamination Studies", Canadian Geotechnical Journal, Vol. 27 No. 5, 1990 pp. 557-567.

DeGroot, D.J. and A.J. Lutenegger, "Reliability of Soil Gas Sampling and Characterization Techniques", International Site Characterization Conference - Atlanta, 1998.

Woeller, D.J., P.K. Robertson, T.J. Boyd and Dave Thomas, "Detection of Polyaromatic Hydrocarbon Contaminants Using the UVIF-CPT", 53rd Canadian Geotechnical Conference Montreal, QC October pp. 733-739, 2000.

Zemo, D.A., T.A. Delfino, J.D. Gallinatti, V.A. Baker and L.R. Hilpert, "Field Comparison of Analytical Results from Discrete-Depth Groundwater Samplers" BAT EnviroProbe and QED HydroPunch, Sixth national Outdoor Action Conference, Las Vegas, Nevada Proceedings, 1992, pp 299-312.

Copies of ASTM Standards are available through www.astm.org

8	Friction Ratio, R _f (%)	$R_{f} = (f_{s}/q_{t}) \times 100\%$
9	Soil Behavior Type (non-normalized), SBT	see note
10	Unit weight, γ (pcf or kN/m ³)	based on SBT, see note
. 11	Total overburden stress, σ_v (tsf)	$\sigma_{vo} = \gamma z$
. 12	Insitu pore pressure, u _o (tsf)	$u_o = \gamma_w (z - z_w)$
13	Effective overburden stress, σ'_{vo} (tsf)	$\sigma'_{vo} = \sigma_{vo} - u_o$
14	Normalized cone resistance, Q _{t1}	$Q_{t1} = (q_t - \sigma_{vo}) / \sigma'_{vo}$
1.	Normalized friction ratio, F_r (%)	$F_r = f_s / (q_t - \sigma_{vo}) \ge 100\%$
16	Normalized Pore Pressure ratio, B _q	$B_q = u - u_o / (q_t - \sigma_{vo})$
17		see note
18	SBT _n Index, I _c	see note
19	Normalized Cone resistance, Qtn (n varies with	Ic) see note
20	Estimated permeability, k _{SBT} (cm/sec or ft/sec)	see note
21	Equivalent SPT N ₆₀ , blows/ft	see note
22	1 • • • • • • • • • • • • • • • • • • •	see note
23		see note
24		see note
24	•	see note
- 26		
27		see note
28	8	s_u/σ_v
29	Estimated Over Consolidation ratio, OCR	see note
Notes		
1	Soil Behavior Type (non-normalized), SBT listed below	Lunne et al. (1997)
2	Unit weight, γ either constant at 119 pcf or bas (Lunne et al., 1997 and table below)	ed on Non-normalized SBT
3	Soil Behavior Type (Normalized), SBT _n	Lunne et al. (1997)
4	SBT _n Index, $I_c = ((3.47 - \log Q_{t1})^2)$	$^{2} + (\log F_{r} + 1.22)^{2})^{0.5}$
5	Normalized Cone resistance, Qin (n varies with	Ic)
	$Q_{tn} = ((q_t - \sigma_{vo})/pa) (pa/(\sigma'_{vo})^n \text{ and recalculate })$	c, then iterate:
	When $I_c < 1.64$, $n = 0.5$ (clean sand)	· · · ·
	When $I_c > 3.30$, $n = 1.0$ (clays)	
	When $1.64 < I_c < 3.30$, $n = (I_c - 1.64)0.3 + 0$	0.5
	Iterate until the change in n, $\Delta n < 0.01$	•

Page 2 of 4

8./28/2007

APPENDIX F

Certified Laboratory Analytical Reports and Chain-of-Custody Documentation

Date of Report: 03/10/2008

Daniel Davis

Delta Environmental Consultants, Inc. 3164 Gold Camp Road, Suite 200 Rancho Cordova, CA 95670

RE: 7376 BC Work Order: 0802383

Enclosed are the results of analyses for samples received by the laboratory on 02/19/2008 23:40. If you have any questions concerning this report, please feel free to contact me.

Sincerely

Contact Person: Molly Meyers Client Service Rep

Authorized Signature

(661) 327-4911 (661) 327-4911 fax	
Bakersfield, CA 93308 ConcoPhilings Requiring Human Party Survey Date: 2/1/2 Attr: Doe Hutchings Dire 200 Soft South Hubby, Survey ConcoPhilings Requiring Human Party Survey PAGE:	
Bakersfield, CA 93308 Attr:::Upp and the Changes Consochnilles Requisition Line Number PAGE: Consochnilles Requisition Line Number Consochnilles Requisition Line Number Consochnilles Requisition Line Number Consochnit Repair PAGE: C	105
(661) 327-4911 (661) 327-1918 fax 000000000000000000000000000000000000	of <u>3</u>
Delta Consultants 7376 TobBO100111 ADDR582 4775 ADDR583 (fined and Dity: 0000007muL 98 and 1000 0000007muL 98 and 1000 3164 Gold Camp Drive, Suite 200 Rancho Cordova, CA 95670 419 First Street, Pleasanton, California Bill Borgh PR0.461 Contract (mandeage and Liss Stellarer) EAML Eamle J. Davis and Liss Stellarer) Liss Stellarer) VELEMONE 916-503-1268 Market and Stellarer) Container/P Liss Stellarer) VELEMONE 000000000000000000000000000000000000	
ADDRESS Contract Municipy of Program (UP 8 mile balance) Contract Municipy	
PROJECT CONTACT (Inclusion) and Provention Fill of Provention<	······
Jamiel J. Davis and Lisa Stelzner EMAL: Itel Addition Law Use ONLY EMAL: Itel Addition Law Use ONLY Partiel J. Davis and Lisa Stelzner PHORE NO: Itel Addition Itel Addititel Addition Itel Addition	
Inte-503-1260 916-638-9385 Iddavis@deltaenv.com Lisa Steizner MARUER MARE(in frind): Container (Prind): Container (Prind): Container (Prind): Lisa Steizner and Meghann Hurt CONTAIN PROJECT NUMBER Container (Prind): Container (Prind): SPECIAL INSTRUCTIONS OR NOTES: CHECK BOX IF EDD'S NEEDED [] FIELD N Container (Prind): Y LE AJE FAX CoPU oF Coc To Grading (Prind): Container (Prind): Y LE AJE FAX CoPU oF Coc To Grading (Prind): Container (Prind): Y LE AJE FAX CoPU oF Coc To Grading (Prind): Container (Prind): Y LE AJE FAX CoPU oF Coc To Grading (Prind): Container (Prind): Y LE AJE FAX CoPU oF Coc To Grading (Prind): Container (Prind): Y LE AJE FAX CoPU oF Coc To Grading (Prind): Container (Prind): Y LE AJE FAX CoPU oF Coc To Grading (Prind): Container (Prind): Y LE AJE FAX CoPU oF Coc To Grading (Prind): Container (Prind): Y LE AJE FAX CoPU oF Coc To Grading (Prind): Container (Prind): Y LE AJE FAX CoPU oF Coc To Grading (Prind): Container (Prind): <tr< td=""><td></td></tr<>	
AMPLER MARE(8) (Primi: Liss Stetzner and Meghann Hurt Consultant Project NUMBER C107376002 REQUESTED ANALYSES 116 AVS [] 72 HOURS [] 48 HOU	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
(916) (G38 - 8385)	OTES
(916) (G38 - 8385)	eservat
(916) (G38 - 8385)	-
$\frac{1}{128} \frac{1}{128} \frac{1}$.,
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Foriat
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	EUEIPI
$-\frac{1}{2}CP - 1 \underbrace{(P-1)}{(P-1)} \underbrace{(P-1)}{(P-1$	
$-\frac{3}{4} c_{P-1} e_{24.5-25'} / c_{P-1} 12:10 12:10 12:10 12:10 12:10 12:10 12:10 12:12 12:10 12:12 12:10 12:12 12$	
$-\frac{1}{4} \frac{(p-1)(2)(2)(2)(2)}{(p-1)(2)(2)(2)(2)(2)} = \frac{1}{2} \frac{(p-1)(2)(2)(2)(2)}{(p-1)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)$	
-SCP-1@ 34.5-35' / CP-1 12'32 CARE DISTRIBUTION -12 CP-1@ 39.5-40' / CP-1 12:42	,
-12 CP-1@ 39.5-40' / CP-1 12:42	·····
8 CP-1@44.5-45' / CP-1 13:00	
9 CP-1@49.5-50' CP-1 13:15	5. 59
10 CP-1@54.5-55' CP-1 14:20	
H CP-1@ 59.5-60' / CP-1 / 14:35 / V V V V V V V V V V V V V V V V V V	<u>.</u>
tion stop Kossickon Relats 2/19/08 1715 Relingdigled by (Signature) Bagevied by (Signature) Date The	<u>, </u>
Kenswichen 2/19/08 Rikunt 2-19-08 2000	L
Received by: (Signature) Date: Time:	1
f lease fax copy to 9/6-638-8385-	

(*

1

u . 1

BC Laboratories, Inc. ConocoPhillips Site Manager: **Bill Borah** CongcoPhillips SAP Project Number DATE: <u>2/19/08</u> PAGE: <u>2</u> of <u>3</u> 4100 Atlas Court INVOICE REMITTANCE ADDRESS: CONOCOPHILLIPS Attn: Dee Hutchinson Bakersfield, CA 93308 ConocoPhillips Regulation/Line Number 3611 South Harbor, Suite 200 (661) 327-4911 (661) 327-1918 fax Santa Ana, CA, 92704 GLOBAL ID NO .: SAMPLING COMPANY: CONOCOPHILLIPS SITE NUMBER Delta Consultants T0600100101 7376 CONOCOPHILLIPS SITE MANAGER: ADDRESS: SITE ADORESS (Street and City): 3164 Gold Camp Drive, Suite 200 Rancho Cordova, CA 95670 Bill Borgh 4191 First Street, Pleasanton, California PROJECT CONTACT (Hardcopy or PDF Report to): E-MAIL: EDF DELIVERABLE TO (RP or Designee); HONE NO .: LAB USE ONLY Daniel J. Davis and Lisa Stelzner Istelzner@deltaenv. TELEPHONE: E-MAIL: 916-503-1268 FAX Lisa Stelzner 916-503-1260 916-638-8385 ddavis@deltaenv.com <u>com</u> SAMPLER NAME(S) (Print): CONSULTANT PROJECT NUMBER REQUESTED ANALYSES Lisa Steizner and Meghann Hurt C107376002 TURNAROUND TIME (CALENDAR DAYS): 🔽 14 DAYS 🔲 7 DAYS 🔲 72 HOURS 🛄 48 HOURS 🗌 24 HOURS 🛄 LESS THAN 24 HOURS - TPH-G/ BTEX/ MTBE FIELD NOTES: DSTLC CHECK BOX IF EDD IS NEEDED SPECIAL INSTRUCTIONS OR NOTES: Container/Preservative 00 or PID Readings 8260B - TPPH/ BTEX/ □Total | A PLEASE FAX COPY OF COC TO or Laboratory Notes **U-H-I** (916) 638 - 8385 # 6010 - Lead I Oxygenates * Field Point name only required if different from Sample ID 8015M 8015M TEMPERATURE ON RECEIPT C* LAB Sample Identification/Field Point SAMPLING NO. OF MATRIX USE CONT DATE TIME Name* ONU CP-1@64.5-65' 2/18/08 14:52 CP-1 SOI 1 1 P-1@69.5 - 70' /CP-Soil 15:25 \mathbf{U} 6 Х CP-15:50 Water VOA'S preserved w/ MCL P-1 2/19/08 10-35 Х R-209.5-61 108-2 Soil 4 8-2@ 14.5-15' CP-2 10:40 Х X 10:45 20 19.5-20' CR-2 10:53 (R-2 -2@ 24.5-25' 11:00 CP-26295-30' 100-2 34.5-35' 12-2 11200 11:20 39.5-40 Date P. LAB 2 1718 OB OW Date: -08 2-19-8 3 Please fax copy to 916-638-8385

ConocoPhillips Chain Of Custody Record

4100 Atlas Court INVOICI Bakersfield, CA 93308 INVOICI Bakersfield, CA 93308 (661) 327-4911 (661) 327-1918 fax Invoicitien (1000) MAMPLING GOMPANY: Valid Value IE Valid Value IE Delta Consultants Valid Value IE Valid Value IE ADDRESS: Sample Gold Camp Drive, Suite 200 Rancho Cordova, CA S PROJECT CONTACT (Hardcopy or PDF Report to): Daniel J. Davis and Lisa Stelzner TELEPHONE: PAX: E-MAIL: D16-503-1260 916-638-8385 ddavis@cc SAMPLER NAME(S) (Print): CONSULTAN CONSULTAN TURNAROUND TIME (CALENDAR DAVS): (21 HOURS 1 24 HOURS 24 HOURS 24 HOURS 24 HOURS SPECIAL INSTRUCTIONS OR NOTES: CHECK BOX A PLEASE FAX COPU OF (166)(G37 - 8385 * Sample Identification/Field Point Sample II Sample Identification/Field Point Sample II	Deltaenv.com INT PROJECT NUMBER C107376002 RS I LESS THAN 24 HOURS X IF EDD IS NEEDED V E COC TO	CONC 737(sire 4 419 ⁻ Lisa	6 ADDRESS 1 First	(Street Stree BLE TO	E NUMBER	Santa Ana anton, Cali	e Hutchins th Harbor a, CA. 92	son , Suite 200		HONE NO.3	Cono	coPhilli	ps Requis GLOBAL I T06001	00101 HILLIPS SITE	lumber MANAGEI			2/19/ 3_0	<u>/08</u> 3
Bakersfield, CA 93308 (661) 327-4911 (661) 327-1918 fax Delta Consultants ADDRESS: 3164 Gold Camp Drive, Suite 200 Rancho Cordova, CA S PROJECT CONTACT (Hardcopy or PDF Report to): Daniel J. Davis and Lisa Stelzner TELEPHONE: PAMPLINE: Datis and Lisa Stelzner TELEPHONE: P16-503-1260 P16-638-8385 ddavis@c consultants Consultants Consultants Daniel J. Davis and Lisa Stelzner TELEPHONE: P6-503-1260 916-638-8385 ddavis@c consultant C	802383 ID: 95670 Relatenv.com INT PROJECT NUMBER C107376002 RS [] LESS THAN 24 HOURS X IF EDD IS NEEDED [] E COC ID	соно 3176 / 419 ⁻ ЕОГ С Lisa	ocophill 6 address 1 First delivera	(Street Stree BLE TO	and City): t, Pleas	Attn: Dee 3611 Sour Santa An anton, Cali	e Hutchins th Harbor a, CA. 92	son , Suite 200					GLOBAL I T06001 CONOCOP Bill Bor E-MAIL:	D NO.: 00101 HILLIPS SITE	E MANAGEI	R:		<u>-//9</u>	<u>, 08</u> 1 <u>3</u>
(661) 327-4911 (661) 327-1918 fax Vaild Value IE IAMPLING COMPANY: Vaild Value IE Delta Consultants ADDRESS: 3164 Gold Camp Drive, Suite 200 Rancho Cordova, CA S PROJECT CONTACT (Hardcopy or PDF Report to): Daniel J. Davis and Lisa Stelzner TELEPHONE: PAX: D16-503-1260 916-638-8385 IAMPLER NAME(S) (Print): CONSULTAN Lisa Stelzner and Meghann Hurt CONSULTAN TURNAROUND TIME (CALENDAR DAYS): 24 HOURS I 4 DAYS 7 DAYS 72 HOURS 48 HOURS 24 HOURS SPECIAL INSTRUCTIONS OR NOTES: CHECK BOX #A PLEASE FAX COM OF (1Lb) (G35 - 8385 * * * * Field Point name only required if different from Sample II SAMPL SAMPL VALUE Name* DATE DATE	ID: 95670 2deltaenv.com NT PROJECT NUMBER C107376002 RS [] LESS THAN 24 HOURS X IF EDD IS NEEDED [] E COC TO ID	7376 Sire 2 419 EDF D Lisa	6 address 1 First delivera	(Street Stree BLE TO	and City): t, Pleas	3611 Sour Santa An anton, Cali	th Harbor, a, CA. 92	, Suite 200					GLOBAL I T06001 CONOCOP Bill Bor E-MAIL:	D NO.: 00101 HILLIPS SITE	E MANAGEI	R:		3	f <u>3</u>
IAMPLING COMPANY: Valid Value IE Delta Consultants ADDRESS: ADDRESS: 3164 Gold Camp Drive, Suite 200 Rancho Cordova, CA S PROJECT CONTACT (Hardcopy or PDF Report to): Daniel J. Davis and Lisa Stelzner TELEPHONE: PAX: TELEPHONE: PAX: Old-503-1260 916-638-8385 Idavis@c consultant TURNAROUND TIME (CALENDAR DAYS): CONSULTAN I 1 days 7 DAYS 72 HOURS 48 HOURS 24 HOURS SPECIAL INSTRUCTIONS OR NOTES: CHECK BOX #A PLEASE FAX COM 0F (1Lb) (G35 - 8385 ★ * * * Field Point name only required if different from Sample II Sample Identification/Field Point SamPle Liss Sample Identification/Field Point SamPle	ID: 95670 2deltaenv.com NT PROJECT NUMBER C107376002 RS [] LESS THAN 24 HOURS X IF EDD IS NEEDED [] E COC TO ID	7376 Sire 2 419 EDF D Lisa	6 address 1 First delivera	(Street Stree BLE TO	and City): t, Pleas	anton, Cali		704					T06001 CONOCOP Bill Bor E-MAIL:	00101 HILLIPS SITE	LAE	R:			
IAMPLING COMPANY: Valid Value IE Delta Consultants ADDRESS: ADDRESS: 3164 Gold Camp Drive, Suite 200 Rancho Cordova, CA S PROJECT CONTACT (Hardcopy or PDF Report to): Daniel J. Davis and Lisa Stelzner TELEPHONE: PAX: TELEPHONE: PAX: Old-503-1260 916-638-8385 Idavis@c consultant TURNAROUND TIME (CALENDAR DAYS): CONSULTAN I 1 days 7 DAYS 72 HOURS 48 HOURS 24 HOURS SPECIAL INSTRUCTIONS OR NOTES: CHECK BOX #A PLEASE FAX COM 0F (1Lb) (G35 - 8385 ★ * * * Field Point name only required if different from Sample II Sample Identification/Field Point SamPle Liss Sample Identification/Field Point SamPle	ID: 95670 2deltaenv.com NT PROJECT NUMBER C107376002 RS [] LESS THAN 24 HOURS X IF EDD IS NEEDED [] E COC TO ID	7376 Sire 2 419 EDF D Lisa	6 address 1 First delivera	(Street Stree BLE TO	and City): t, Pleas	•	ifornia						T06001 CONOCOP Bill Bor E-MAIL:	00101 HILLIPS SITE	LAE		NLY		
ADDRESS: 3164 Gold Camp Drive, Suite 200 Rancho Cordova, CA S PROJECT CONTACT (Hardcopy or PDF Report to): Daniel J. Davis and Lisa Stelzner TELEPHONE: PAX: E-MAIL: 216-503-1260 916-638-8385 ddavis@c SAMPLER NAME(S) (Print): Lisa Stelzner and Meghann Hurt TURNAROUND TIME (CALENDAR DAVS): 14 DAYS 7 DAYS 72 HOURS 48 HOURS 24 HOURS SPECIAL INSTRUCTIONS OR NOTES: CHECK BOX CHECK B	Deltaenv.com INT PROJECT NUMBER C107376002 RS I LESS THAN 24 HOURS X IF EDD IS NEEDED V E COC TO	SITE 4 419 EDF D Lisa	ADDRESS 1 First DELIVERA	Stree BLE TO	t, Pleas	•	ifornia						CONOCOP Bill Bor E-MAIL:	HILLIPS SITE	LAE		NLY		
PROJECT CONTACT (Hardcopy or PDF Report to): Daniel J. Davis and Lisa Stelzner TELEPHONE: PAX: 24 MAIL: Odd avis@c J16-503-1260 916-638-8385 CONSULTAN Lisa Stelzner and Meghann Hurt TURNAROUND TIME (CALENDAR DAVS): 14 DAYS 24 HOURS SPECIAL INSTRUCTIONS OR NOTES: CHECK BOX AF PLEASE FAX COPY OF (ALG) (G38 - 8385 # * Field Point name only required if different from Sample II CAMPLE Sample Identification/Field Point Sample Identification/Field Point	Deltaenv.com INT PROJECT NUMBER C107376002 RS I LESS THAN 24 HOURS X IF EDD IS NEEDED V E COC TO	_ 419 ⁻ EDF C Lisa	1 First	Stree BLE TO	t, Pleas	•	ifornia						E-MAIL:	-	4	BUSE O	NLY		<u>p</u>
Daniel J. Davis and Lisa Stelzner TELEPHONE: PAX: 916-503-1260 916-638-8385 StampLER NAME(S) (Print): CONSULTAN Lisa Stelzner and Meghann Hurt CONSULTAN TURNAROUND TIME (CALENDAR DAVS): 24 HOURS 14 DAYS 7 DAYS 72 HOURS 48 HOURS 24 HOURS SPECIAL INSTRUCTIONS OR NOTES: CHECK BOX #A PLEASE FAX COPY OF (166) 638 - 8385 # * Field Point name only required if different from Sample II Sample Identification/Field Point SamPle CMUY Name* DATE	INT PROJECT NUMBER C107376002 RS LESS THAN 24 HOURS X IF EDD IS NEEDED I COC To ID	Lisa	DELIVERA	BLE TO		•							E-MAIL:	-	4	3 USE O	NLY	,	
TELEPHONE: PAX: E-MAIL: 216-503-1260 916-638-8385 ddavis@c SAMPLER NAME(S) (Print): CONSULTAN Lisa Stelzner and Meghann Hurt TURNAROUND TIME (CALENDAR DAVS): I 14 DAYS 7 DAYS 72 HOURS 48 HOURS 24 HOURS SPECIAL INSTRUCTIONS OR NOTES: CHECK BOX #A PLEASE FAX COPY OF (166) 638 - 8385 # * Field Point name only required if different from Sample II LAB Sample Identification/Field Point SAMPL Name* DATE	INT PROJECT NUMBER C107376002 RS LESS THAN 24 HOURS X IF EDD IS NEEDED I COC To ID	-	a Stelzr	ner		-			9	16-503	8-1268		isteizne	- Odaliaan	4				
AMPLER NAME(8) (Print): Lisa Stelzner and Meghann Hurt TURNAROUND TIME (CALENDAR DAYS): ☑ 14 DAYS ☐ 7 DAYS ☐ 72 HOURS ☐ 48 HOURS ☐ 24 HOURS SPECIAL INSTRUCTIONS OR NOTES: CHECK BOX AF PLEASE FAX COPU OF (1(L_b)(635 - 8385 ★ * Field Point name only required if different from Sample II LAB USE USE Sample Identification/Field Point SAMPL USE Name*	INT PROJECT NUMBER C107376002 RS LESS THAN 24 HOURS X IF EDD IS NEEDED I COC To ID	-											101012110	nugaenaer	<u>1V.</u>				
Lisa Steizner and Meghann Hurt TURNAROUND TIME (CALENDAR DAYS): 14 DAYS 7 DAYS 72 HOURS 48 HOURS 24 HOURS SPECIAL INSTRUCTIONS OR NOTES: CHECK BOX AF PLEASE FAX COPY OF (allo)(638 - 8385 A * Field Point name only required if different from Sample II LAB USE USE Sample Identification/Field Point SAMPL USE Name* DATE	C107376002 RS LESS THAN 24 HOURS X IF EDD IS NEEDED 2 COC TO ID	-	1								,		<u>com</u>					· ·	
I 4 DAYS 7 DAYS 72 HOURS 48 HOURS 24 HOURS SPECIAL INSTRUCTIONS OR NOTES: CHECK BOX AF PLEASE FAX COPY 0F (160)(638 - 8385 ★ * Field Point name only required if different from Sample II LAB Sample Identification/Field Point SAMPI NAME NAME* DATE		-				·····	····		RE	QUES	TED AN	ALYS	ES						
SPECIAL INSTRUCTIONS OR NOTES: CHECK BOX # PLEASE FAX COPY OF (allo)(638 - 8385 # * Field Point name only required if different from Sample I LAB USE Sample Identification/Field Point SAMPL Name*				1															
# PLEASE FAX COPY OF (allo)(638 - 8385 # * Field Point name only required if different from Sample II LAB USE USE UNEY Sample Identification/Field Point SAMPI DATE				BTEX/ MTBE	Ŋ													FIELD NO	DTES:
(allo)(638 - 8385 * Field Point name only required if different from Sample I USE USE ONLY Name* DATE	ID .		8	W X													c	ontainer/Pre	
(allo)(638 - 8385 * Field Point name only required if different from Sample I USE USE ONLY Name* DATE	ID .		- TPPH/ BTEX/ 8 nates	BTE	tal [or PID Rea or Laborato	
* Field Point name only required if different from Sample II LAB USE USE ONLY Name* DATE		1 1	H B	0	İĂ		1									1			
LAB Sample Identification/Field Point SAMPL		0-H41 -	TPP	Ē	ead														
ONLY Name* DATE		ŝ	8260B - TPPI Oxvoenates	P NS	6010 - Lead (DTCLP												TEMPER	ATURE ON R	ECEIPT C°
23 CP-2@44.5-45'/CP-2 211908 23 CP-2@49.5-50'(CP-2 J 1	TIME MAININ CONT.	8015M	826 Oxv	8015M	56														
23 CP-2@49.5-50' (CP-2 1 1	13:28 501 1	X	X																
	13:43 J J	X	X		-														
		+			- 		++		++			+				+			
		-	+				_				+								
			<u> </u>			<u> </u>													
								1		1									
			1																
		╀	· · ···	-		1			t		++						1		
									+ +		++								
		+	+						╉╼╍╂		++-								
Relinguished by: (Signature)	Received by Spnature		<u> </u>			,						Date				Time	<u> </u>		
And Att Att		" / /	\sum	<u> </u>	lar.	BCL	MS						2/19	180			71	5	
Relinquisped by: (Signature)			464		$\overline{\mathbf{z}}$		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					Date	<i>יו ו</i> י	<u>a</u>	~	Time	-		
Return utilized by: (Signature)	Received by: (Signature	<u>Ne</u>	4~	<u> </u>	۲ ک							Date	<u>~`\</u>	4-6	08	Time	<u> </u>	900	
Krey 2-19.6	AB 0	k		1	•	_						0	- [9-8				re	
2810			<u></u>		~								k				9/19/	3 Revision	
~~(>	Please		Λ																
	K. Voan	- /	low	c	oren	古口	716-	-126	000										

BC LABORATORIES INC.		SAM	PLE REC	EIPT FO	RM	Rev. No.	10 01/	21/04	Page 📒	Of 3
Submission #: 0809383	P	roject C	ode:			ТВ	Batch #			
SHIPPING INFOR Federal Express	Hand De	livery 🔲	· · · · · · · · · · · · · · · · · · ·		lce Che: Bo:	/		ITAINER one 🗆 her 🗆 (S		
Refrigerant: Ice 🗹 Blue Ice [] Noi	ne 🗇	Other [l Com	ments:					
	Containe	ers [] [] No []	None	Comr	nents:					
All samples received? Ye	A# sample	s containe	rs intact?	Xes Pro	» D	Descrip	ntion(s) mat	ch COC?	Vas DNo	
COC Received			erature:	led <u>3.10</u> °C 48		ssivity tainer			Time $\frac{2}{1}$	``
1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -					SAMPLE	NUMBERS.				
SAMPLE CONTAINERS	1	2	<u> </u>	4	5	6	7	8	9	10
<u>OT GENERAL MINERAL/ GENERAL PHYSICAL</u> PT PE UNPRESERVED										
OT INORGANIC CHEMICAL METALS										
PT INORGANIC CHEMICAL METALS						<u> </u>				
T CYANDE						<u> </u>		<u> </u>		
T NITROGEN FORMS										
TTOTAL SULFIDE						t	<u> </u>			
Les NITRATE / NITRITE							a n , ~		1 3 1	
I TOTAL ORGANIC CARBON					·					
T CHEMICAL OXYGEN DEMAND							I	1	1	
PA PHENOLICS										
10mi VOA VIAL TRAVEL BLANK										
iomi VOA VIAL	(58)	()	<u>ر</u>	¥ 1	6) <u> </u>	•	1 1	<u> </u>
QT EPA 413.1, 413.2, 418.1										
PT ODOR						ļ	ļ		Į	
RADIOLOGICAL				ļ				[ļ	
BACTERIOLOGICAL				Contraction of the second	<u> </u>	 	· ·		<u> </u>	<u> </u>
10 mt VOA VIAL-504					·		 	_	[
2T EPA 508/608/8080				 			 			1 (6) (6) (6) (6) (6) (7)
QT EPA 515.1/8150				<u> </u>		 	N. 1998		e A de la constant de Constant de la constant	
OT EPA-525					ż				_	
YT EPA SIS TRAVEL BLANK										
00ml 87A 547						<u>.</u>				
oomi KPA Silii DT KPA See	ana -	· · · · · · · · · · · · · · · · · · ·			32		· · · · · · · · · · · · · · · · · · ·	· · · · ·		
<u>)T REA SHE</u> DT REA SHE			<u> </u>	54						an a
T EPA SE									1	1
T EPA 8015M		and a second								
ΟΤ QA/QC			100 A			•				
T AMBER										
OZ. JAR						Viet	1999 (P. 187) (A)			
2 OZ. JAR									ļ	
OIL SLEEVE									L	
CB VIAL	A	A.	<u>P</u>	Y7	A	B	- H	A.	<u> A-</u> _	14
LASTIC BAG				 	*					
ERROUS IRON				 					Į	
NCORE				1			<u> </u>		1 - (- , - ; - ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	
					L	l	1	l		
omments:				. All and a second	or k					1 18 A 1

CS\WPBOIL

DO LADODATODICS INC		SARA	PLE RECE		м	Rev. No. 1	0 01/2	1/04 F	Page 🛃 C	H 2
BC LABORATORIES INC.	27			ar i ron					<u></u>	- <u>)</u>
Submission #: 080238		roject Co	de:		<u>.</u>	1	Batch #			
SHIPPING INFOR							NG CON			
Federal Express 🛛 UPS 🗆	Hand Del				Ice Chest			ne □ er □ (Sp	a nifur)	
BC Lab Field Service (_] {Specity	n)			Box	U	. 000	er Litət	secity)	
										· · · · · · · · · · · · · · · · · · ·
Refrigerant: Ice 🗹 Blue Ice [<u>Nor</u>	<u>he []</u>	Other []	Com	nents:			···		
Custody Seals: Ice Chest 🗆	Containe	ers 🛛 🗉	None [] Comm	ents:					
	Intact? Yes									
All samples received? Yes ONo D	Alf sample	s container	s intact? Y	NO NO	D	Descript	ion(s) matc	h coc? \	No No	0
· · · · · · · · · · · · · · · · · · ·									$\frac{c}{1} = \frac{2}{19}$	
COC Received		Ice U Tempe	hest ID rature: 📑	2.10 °C		sivity ainerAv				-
∅ YES □ NO		Thermome		18				Analy	st Init <u>AN</u>	
					SAMPLE	NUMBERS				
SAMPLE CONTAINERS	1	12	13	14	15	6	17] 8	17 9	20
OT GENERAL MINERAL/ GENERAL PHYSICAL									<u> </u>	
PT PE UNPRESERVED				•		L	L			
OT INORGANIC CHEMICAL METALS										<u> </u>
PT INORGANIC CHEMICAL METALS										
PT CYANIDE										
PT NITROGEN FORMS					l					ļ
TTOTAL SULFIDE										ļ
201. NITRATE / NITRITE									1	
IPON TOTAL ORGANIC CARBON										
OT TOX								<u>est-anno 10 est-to 11 1</u>		ļ
PT CIRMICAL OXYGEN DEMAND								<u></u>		
PLA PHENOLICS		. <u> </u>							<u> </u>	
40mi VOA VIAL TRAVEL BLANK			er az	~ <						
40ml VOA VIAL		<u> </u>	H.S.	AS	()	1 1	t 1	l		· · ·
QT EPA 413.1, 413.2, 418.1	i da							·	<u> </u>	
PT ODOR	matpille		<u></u>							
RADIOLOGICAL					• •				<u> </u>	
BACTERIOLOGICAL		<u> </u>							+	
40 ml VOA VIAL-504				Crist Statistics						
QT EPA 508/608/8080		<u> </u>						Mala	- S.M. & A	
OT EPA 515.1/8159		· ·					77655380			
OT EPA 525							·····			
OT KPA SIS TRAVEL BLANK 100ml EFA SIT										
100ml KFA 331:1							Ċ.			
OT EPA AN									in a	
OT BEAST	an a									and a second
OT EPA 433					064.) 199					
QT EPA 8015M			19 4 (19 194) 	and the second						
QT QA/QC			2000	the second						
QT AMBER		1	8	B						
8 07. JAR									_	
32 OZ. JAR				ANY			10			
SOIL SLEEVE	A	M	4	RINIL	H.	<u>1</u> 2-	<u> </u>	<u> </u>	A_	[_/] _
PCB VIAL				· · · ·		ļ			<u> </u>	
PLASTIC BAG						 			- <u> </u>	
FERROUS IRON	ļ				<u> </u>		 			
ENCORE						_	 			
		<u>I</u>		l negazie	L	l	<u> </u>	L		
Comments:			Time:		50	.			No.	

Sample Numbering Completed By:

(H:\DOCS\WP80\LAB_DOCS\FORMS\SAMREC2.WPD)

BC LABORATORIES INC.	<u> </u>			IPT FOR	M	Rev. No. 10		1/04 F	age <u>3</u> 0	1 4
Submission #: 0802382	<u> </u>	roject Co	de:				atch #	· · · · · · · · · · · · · · · · · · ·		
SHIPPING INFOR	MATION					SHIPPI	NG CONT			
	Hand Del				Ice Chest			ne 🛛	\	•
BC Lab Field Service 1 Other] (Specify	り			Box	Q	Oth	er ∐ (Sp	ecify)	<u>.</u> ,
			I				•			
Refrigerant: Ice 🗹 Blue Ice 🛙] Nor	ie 🗆 📃	Other 🛛	Comn	nents:					
Custody Seals Ice Chest	Containe	rs 🛛	None [] Comm	ents:					
intact? Yes [] No []		1								
		s container				Descripti	ion(c) mate	ь сос л у	res DNo	n
	All sample								$\frac{2}{19}$	
COC Received			hest ID <u>(</u> rature: 7	<u>ed</u> 3.6 °C		sivity <u> </u>	<u>97</u>			
🗹 YES 🗆 NO		Thermome		<u>498</u>	Com			Analy	st Init <u>10</u>	<u></u>
	[SAMPLE	MIMRERS		<u> </u>		
SAMPLE CONTAINERS	21	22	23	2.4	Z 5	Z_ 6	77	28	2.9	310
OT GENERAL MINERAL/ GENERAL PHYSICAL										
PT PE UNPRESERVED									1	ļ
OT INORGANIC CHEMICAL METALS										L
PT INORGANIC CHEMICAL METALS									<u> </u>	
PT CYANIDE									<u></u>	
PT NITROGEN FORMS										ļ
PT TOTAL SULFIDE	and to b								•	
200. NITRATE / NITRITE										ļ
IPONI TOTAL ORGANIC CARBON							· ·			<u>.</u>
OT TOX										
PT CHEMICAL OXYGEN DEMAND										
PLA PHENOLICS				1					ļ	
40ml VOA VIAL TRAVEL BLANK							L		<u> </u>	
40ml VOA VIAL	F A	ر ا			د ،	() 	· · · · ·	1	<u>)</u>	
QT EPA 413.1, 413.2, 418.1						ļ			·	
PT ODOR							ļ		<u> </u>	
RADIOLOGICAL			: 			 				
BACTERIOLOGICAL		ļ			<u>.</u>		· · ·	ļ		
40 ml VOA VIAL-504		ļ				 			- 36	Seguestras 1
QT EPA 508/608/8080		ļ		 		 		ļ		
QT EPA 515.1/8150				 				alar Alar	al international states and the second states of th	
QT EPA 525			L							
OT EPA 535 TRAVEL BLANK		[and and a second se	 		l		<u> </u>
100mj KPA 547		<u> </u>				2.1				
100mi KPA SIL	Ê	<u> </u>		<u>* 1.388</u>	<u>80 (1)</u>	 				New York
OT RPA LA						 				
OT EFA ME	and the second sec	1	ana Ang Anger 1		\$4.				1	
OT EPA 432	12-13- 12-13- 12-13-13-13-13-13-13-13-13-13-13-13-13-13-							<u> </u>		
<u>QT EPA 8015M</u>			indeka Seri					<u> </u>		1
QT QA/QC		 				ingeligene and sold	a hata	<u> </u>	1	
QT AMBER		 	ilitian Stati	·					1	
8 07. JAR		<u> </u>					ANNE Sector		1	
32 OZ. JAR	A	A	Apm	i 1/21	the second s			<u>.</u>		
SOIL SLEEVE					<u> </u>			1		
PCB VIAL				<u> </u>	r	1	1	1		
PLASTIC BAG				<u> </u>	t	1	1	1		
FERROUS IRON	<u> </u>			<u> </u>		1	1			
ENCORE				 	 		[28.N
nen ander en		्र	/Time:	1310	1					
Comments:										

	ntal Consultants, Inc. Road, Suite 200 a, CA 95670		Project: 7376 Project Number: [none] Project Manager: Daniel Davis	- 	Reported: 03/10/2008 16:5
		Laborat	ory / Client Sample Cross Ref	erence	
Laboratory	Client Sample Informat	ion			
0802383-01	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	7376 CP-1 CP-1@14.5-15 DECR	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	02/19/2008 23:40 02/18/2008 11:55 Solids	Delivery Work Order: Global ID: T0600100101 Matrix: SO Samle QC Type (SACode): CS Cooler ID:
0802383-02	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 7376 CP-1 CP-1@19.5-20 DECR	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	02/19/2008 23:40 02/18/2008 12:00 Solids	Delivery Work Order: Global ID: T0600100101 Matrix: SO Samle QC Type (SACode): CS Cooler ID:
0802383-03	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 7376 CP-1 CP-1@24.5-25 DECR	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	02/19/2008 23:40 02/18/2008 12:10 Solids	Delivery Work Order: Global ID: T0600100101 Matrix: SO Samle QC Type (SACode): CS Cooler ID:
0802383-04	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 7376 CP-1 CP-1@29.5-30 DECR	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	02/19/2008 23:40 02/18/2008 12:22 Solids	Delivery Work Order: Global ID: T0600100101 Matrix: SO Samle QC Type (SACode): CS Cooler ID:
0802383-05	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 7376 CP-1 CP-1@34.5-35 DECR	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	02/19/2008 23:40 02/18/2008 12:32 Solids	Delivery Work Order: Global ID: T0600100101 Matrix: SO Samle QC Type (SACode): CS Cooler ID:

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 1 of 58

	ental Consultants, Inc. p Road, Suite 200 a, CA 95670		Reported: 03/10/2008 16:5								
Laboratory / Client Sample Cross Reference											
Laboratory	Client Sample Informat	ion									
0802383-06	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 7376 CP-1 CP-1@39.5-40 DECR	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	02/19/2008 23:40 02/18/2008 12:42 Solids	Delivery Work Order: Global ID: T0600100101 Matrix: SO Samle QC Type (SACode): CS Cooler ID:						
0802383-07	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 7376 CP-1 CP-1@44.5-45 DECR	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	02/19/2008 23:40 02/18/2008 13:00 Solids	Delivery Work Order: Global ID: T0600100101 Matrix: SO Samle QC Type (SACode): CS Cooler ID:						
0802383-08	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 7376 CP-1 CP-1@49.5-50 DECR	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	02/19/2008 23:40 02/18/2008 13:15 Solids	Delivery Work Order: Global ID: T0600100101 Matrix: SO Samle QC Type (SACode): CS Cooler ID:						
0802383-09	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 7376 CP-1 CP-1@54.5-55 DECR	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	02/19/2008 23:40 02/18/2008 14:20 Solids	Delivery Work Order: Global ID: T0600100101 Matrix: SO Samle QC Type (SACode): CS Cooler ID:						
0802383-10	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 7376 CP-1 CP-1@59.5-60 DECR	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	02/19/2008 23:40 02/18/2008 14:35 Solids	Delivery Work Order: Global ID: T0600100101 Matrix: SO Samle QC Type (SACode): CS Cooler ID:						

LABORATORIES, INC.

BC

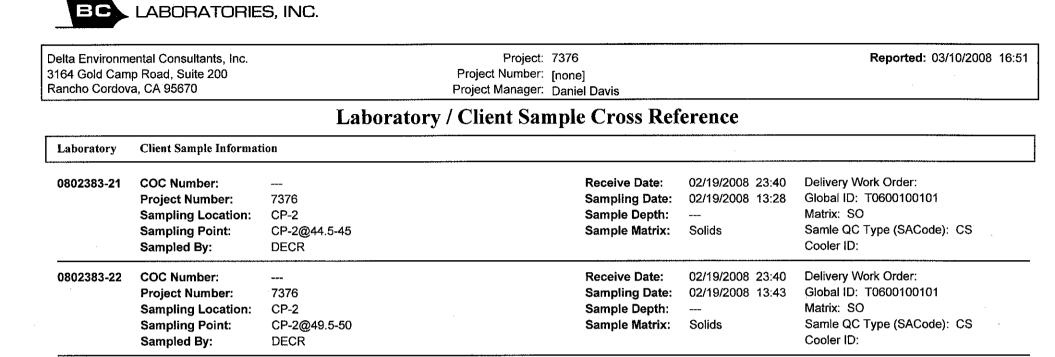
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 2 of 58

	ental Consultants, Inc. p Road, Suite 200 a, CA 95670		Project: 73 Project Number: [nɑ Project Manager: Da	one]		Reported: 03/10/2008 16:5
		Laborat	ory / Client Samp	ole Cross Ref	erence	
Laboratory	Client Sample Informat	ion				
0802383-11	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 7376 CP-1 CP -1@64.5-65 DECR		Receive Date: Sampling Date: Sample Depth: Sample Matrix:	02/19/2008 23:40 02/18/2008 14:52 Solids	Delivery Work Order: Global ID: T0600100101 Matrix: SO Samle QC Type (SACode): CS Cooler ID:
0802383-12	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 7376 CP-1 CP-1@69.5-70 DECR		Receive Date: Sampling Date: Sample Depth: Sample Matrix:	02/19/2008 23:40 02/18/2008 15:25 Solids	Delivery Work Order: Global ID: T0600100101 Matrix: SO Samle QC Type (SACode): CS Cooler ID:
0802383-13	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 7376 CP-1D CP-1D DECR		Receive Date: Sampling Date: Sample Depth: Sample Matrix:	02/19/2008 23:40 02/18/2008 15:50 Water	Delivery Work Order: Global ID: T0600100101 Matrix: W Samle QC Type (SACode): CS Cooler ID:
0802383-14	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 7376 CP-2 CP-2@9.5-10 DECR		Receive Date: Sampling Date: Sample Depth: Sample Matrix:	02/19/2008 23:40 02/19/2008 10:35 Solids	Delivery Work Order: Global ID: T0600100101 Matrix: SO Samle QC Type (SACode): CS Cooler ID:
0802383-15	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 7376 CP-2 CP-2@14.5-15 DECR		Receive Date: Sampling Date: Sample Depth: Sample Matrix:	02/19/2008 23:40 02/19/2008 10:40 Solids	Delivery Work Order: Global ID: T0600100101 Matrix: SO Samle QC Type (SACode): CS Cooler ID:

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.


Page 3 of 58

Delta Environmental Consultants, Inc. 3164 Gold Camp Road, Suite 200 Rancho Cordova, CA 95670		· ·	Reported: 03/10/2008 16:		
		Laborator	/ Client Sample Cross Ref	erence	
Laboratory	Client Sample Informat	ion			
0802383-16	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 7376 CP-2 CP-2@19.5-20 DECR	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	02/19/2008 23:40 02/19/2008 10:45 Solids	Delivery Work Order: Global ID: T0600100101 Matrix: SO Samle QC Type (SACode): CS Cooler ID:
0802383-17	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 7376 CP-2 CP-2@24.5-25 DECR	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	02/19/2008 23:40 02/19/2008 10:53 Solids	Delivery Work Order: Global ID: T0600100101 Matrix: SO Samle QC Type (SACode): CS Cooler ID:
0802383-18	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 7376 CP-2 CP-2@29.5-30 DECR	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	02/19/2008 23:40 02/19/2008 11:00 Solids	Delivery Work Order: Global ID: T0600100101 Matrix: SO Samle QC Type (SACode): CS Cooler ID:
0802383-19	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 7376 CP-2 CP-2@34.5-35 DECR .	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	02/19/2008 23:40 02/19/2008 11:10 Solids	Delivery Work Order: Global ID: T0600100101 Matrix: SO Samle QC Type (SACode): CS Cooler ID:
0802383-20	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 7376 CP-2 CP-2@39.5-40 DECR	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	02/19/2008 23:40 02/19/2008 11:20 Solids	Delivery Work Order: Global ID: T0600100101 Matrix: SO Samle QC Type (SACode): CS Cooler ID:

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com Page 4 of 58

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com Page 5 of 58

Delta Environmental Consultants, Inc 3164 Gold Camp Road, Suite 200 Rancho Cordova, CA 95670				Projec	Project: ect Number: ct Manager:	[none] Daniel D					Repo	rted: 03/1	0/2008 16:
	Vol	atile	Orga	nic A	nalys	is (E	PA Met	hod	826	D)			
BCL Sample ID: 0802383-01	Client Sam	ple Name:	7376, C	P-1, CP-1@	@14.5-15, 2	/18/2008	11:55:00AM		~~				
	Desult	1 J 14		MDL	Method	Prep Date	Run Date/Time	Analyst	instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
Constituent Benzene	0.18	Units mg/kg	PQL 0.0050	INDL	EPA-8260	02/22/08	02/23/08 07:03	LHS	MS-V2	1	BRB1345	ND	
1.2-Dibromoethane	ND	mg/kg	0.0050		EPA-8260	02/22/08	02/23/08 07:03	LHS	MS-V2	1	BRB1345	ND	
1.2-Dichloroethane	ND	mg/kg	0.0050		EPA-8260	02/22/08	02/23/08 07:03	LHS	MS-V2	1	BRB1345	ND	
Ethylbenzene	ND	mg/kg	0.0050		EPA-8260	02/22/08	02/23/08 07:03	LHS	MS-V2	1	BRB1345	ND	
Methyl t-butyl ether	0.29	mg/kg	0.0050		EPA-8260	02/22/08	02/23/08 07:03	LHS	MS-V2	1	BRB1345	ND	
Toluene	ND	mg/kg	0.0050		EPA-8260	02/22/08	02/23/08 07:03	LHS	MS-V2	1	BRB1345	ND	
Total Xylenes	ND	mg/kg	0.010		EPA-8260	02/22/08	02/23/08 07:03	LHS	MS-V2	1	BRB1345	ND	
t-Amyl Methyl ether	ND	mg/kg	0.0050		EPA-8260	02/22/08	02/23/08 07:03	LHS	MS-V2	1	BRB1345	ND	
t-Butyl alcohol	0.36	mg/kg	0.050		EPA-8260	02/22/08	02/23/08 07:03	LHS	MS-V2	1	BRB1345	ND	
Diisopropyl ether	ND	mg/kg	0.0050		EPA-8260	02/22/08	02/23/08 07:03	LHS	MS-V2	1	BRB1345	ND	
Ethanol	ND	mg/kg	1.0		EPA-8260	02/22/08	02/23/08 07:03	LHS	MS-V2	1	BRB1345	ND	
Ethyl t-butyl ether	ND	mg/kg	0.0050		EPA-8260	02/22/08	02/23/08 07:03	LHS	MS-V2	1	BRB1345	ND	,
Total Purgeable Petroleum Hydrocarbons	0.64	mg/kg	0.20		EPA-8260	02/22/08	02/23/08 07:03	LHS	MS-V2	1	BRB1345	ND	
1,2-Dichloroethane-d4 (Surrogate)	95.5	%	70 - 121	(LCL - UCL)	EPA-8260	02/22/08	02/23/08 07:03	LHS	MS-V2	1	BRB1345		
Toluene-d8 (Surrogate)	103	%	81 - 117	(LCL - UCL)	EPA-8260	02/22/08	02/23/08 07:03	LHS	MS-V2	1	BRB1345		
4-Bromofluorobenzene (Surrogate)	96.9	%	74 - 121	(LCL - UCL)	EPA-8260	02/22/08	02/23/08 07:03	LHS	MS-V2	1 ->	BRB1345		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com Page 6 of 58

Delta Environmental Consultants, Inc.	Project: 7376	Reported: 03/10/2008 16:51
3164 Gold Camp Road, Suite 200	Project Number: [none]	
Rancho Cordova, CA 95670	Project Manager: Daniel Davis	

Total Petroleum Hydrocarbons

BCL Sample ID: 0802383-01	Client Sam	ple Name	: 7376, CP	-1, CP-1(@14.5-15, 2	/18/2008	11:55:00AM						
						Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Diesel Range Organics (C12 - C24)	3100	mg/kg	500		Luft/TPHd	02/26/08	03/06/08 11:59	PTL	GC-5	251.68	BRC0288	ND	
Tetracosane (Surrogate)	0	%	34 - 136 (LC	,	Luft/TPHd		03/06/08 11:59	PTL	GC-5	251.68	BRC0288		A17

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com Page 7 of 58

BC Laboratories

Delta Environmental Consultants, Ind 3164 Gold Camp Road, Suite 200 Rancho Cordova, CA 95670	с.				Project: ect Number: ct Manager:	[none]	avis			Reported: 03/10/2008 16					
	Vol	atile	Orga	nic A	nalys	is (E	PA Met	hod	826	0)					
BCL Sample ID: 0802383-02	Client Sam	ple Name	: 7376, 0	CP-1, CP-1@	2)19.5-20, 2	/18/2008	12:00:00PM	•							
Constituent	Result	Units	PQL	MDL	Method	Prep	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals		
Benzene	2.7	mg/kg	0.050	WIDL	EPA-8260	Date 02/22/08	02/23/08 07:29	LHS	MS-V2	10	BRB1345	ND	A01		
1,2-Dibromoethane	ND	mg/kg	0.050		EPA-8260	02/22/08	02/23/08 07:29	LHS	MS-V2	10	BRB1345	ND	A01		
1,2-Dichloroethane	ND	mg/kg	0.050		EPA-8260	02/22/08	02/23/08 07:29	LHS	MS-V2	10	BRB1345	ND	A01		
Ethylbenzene	0.77	mg/kg	0.050		EPA-8260	02/22/08	02/23/08 07:29	LHS	MS-V2	10	BRB1345	ND	A01		
Methyl t-butyl ether	0.51	mg/kg	0.050		EPA-8260	02/22/08	02/23/08 07:29	LHS	MS-V2	10	BRB1345	ND	A01		
Toluene	0.066	mg/kg	0.050		EPA-8260	02/22/08	02/23/08 07:29	LHS	MS-V2	10	BRB1345	ND	A01		
Total Xylenes	0.36	mg/kg	0.10		EPA-8260	02/22/08	02/23/08 07:29	LHS	MS-V2	10	BRB1345	ND	A01		
t-Amyl Methyl ether	ND	mg/kg	0.050		EPA-8260	02/22/08	02/23/08 07:29	LHS	MS-V2	10	BRB1345	ND	A01		
t-Butyl alcohol	ND	mg/kg	0.50		EPA-8260	02/22/08	02/23/08 07:29	LHS	MS-V2	10	BRB1345	ND	A01		
Diisopropyl ether	ND	mg/kg	0.050		EPA-8260	02/22/08	02/23/08 07:29	LHS	MS-V2	10	BRB1345	ND	A01		
Ethanol	ND	mg/kg	10		EPA-8260	02/22/08	02/23/08 07:29	LHS	MS-V2	10	BRB1345	ND	A01		
Ethyl t-butyl ether	ND	mg/kg	0.050		EPA-8260	02/22/08	02/23/08 07:29	LHS	MS-V2	10	BRB1345	ND	A01		
Total Purgeable Petroleum Hydrocarbons	48	mg/kg	5.0		EPA-8260	02/25/08	02/25/08 21:11	LHS	MS-V2	25	BRB1345	ND	A01		
1,2-Dichloroethane-d4 (Surrogate)	96.1	%	70 - 121	(LCL - UCL)	EPA-8260	02/22/08	02/23/08 07:29	LHS	MS-V2	10	BRB1345				
1,2-Dichloroethane-d4 (Surrogate)	• 93.0	%	70 - 121	(LCL - UCL)	EPA-8260	02/25/08	02/25/08 21:11	LHS	MS-V2	25	BRB1345				
Toluene-d8 (Surrogate)	104	%	81 - 117	(LCL - UCL)	EPA-8260	02/22/08	02/23/08 07:29	LHS	MS-V2	10	BRB1345				
Toluene-d8 (Surrogate)	92.7	%	81 - 117	(LCL - UCL)	EPA-8260	02/25/08	02/25/08 21:11	LHS	MS-V2	25	BRB1345				
4-Bromofluorobenzene (Surrogate)	101	%	7 4 - 1 21	(LCL - UCL)	EPA-8260	02/25/08	02/25/08 21:11	LHS	MS-V2	25	BRB1345				
4-Bromofluorobenzene (Surrogate)	93.0	%	74 - 121	(LCL - ÜCL)	EPA-8260	02/22/08	02/23/08 07:29	LHS	MS-V2	10	BRB1345				

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Delta Environmental Consultants, Inc.	Project: 7376	Reported: 03/10/2008 16:51
3164 Gold Camp Road, Suite 200 Rancho Cordova, CA 95670	Project Number: [none] Project Manager: Daniel Davis	
	Froject Manager. Daniel Davis	

Total Petroleum Hydrocarbons

BCL Sample ID: 0802383-02	Client Sam	ple Name	ne: 7376, CP-1, CP-1@19.5-20, 2/18/2008 12:00:00PM										
	•					Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Diesel Range Organics (C12 - C24)	140	mg/kg	20		Luft/TPHd	02/26/08	03/06/08 12:56	PTL	GC-5	10.067	BRC0288	ND	
Tetracosane (Surrogate)	0	%	34 - 136 (L	CL - UCL)	Luft/TPHd	02/26/08	03/06/08 12:56	PTL	GC-5	10.067	BRC0288		A18

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com Page 9 of 58

Delta Environmental Consultants, Inc 3164 Gold Camp Road, Suite 200					Project: ect Number:	[none]					Repo	rted: 03/1	0/2008 16:5
Rancho Cordova, CA 95670				-	ct Manager:								
	Vol	atile	Orga	nic A	nalys	is (E	PA Met	hod	8260)			
BCL Sample ID: 0802383-03	Client Sam	ple Name:	7376, C	P-1, CP-1@	024.5-25, 2		12:10:00PM						
Constituent	Result	Units	PQL	MDL	Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
Benzene	4.5	mg/kg	0.50		EPA-8260	02/22/08	02/23/08 07:55	LHS	MS-V2	100	BRB1345	ND	A01
1,2-Dibromoethane	ND	mg/kg	0.50		EPA-8260	02/22/08	02/23/08 07:55	LHS	MS-V2	100	BRB1345	ND	A01
1,2-Dichloroethane	ND	mg/kg	0.50		EPA-8260	02/22/08	02/23/08 07:55	LHS	MS-V2	100	BRB1345	ND	A01
Ethylbenzene	16	mg/kg	0.50		EPA-8260	02/22/08	02/23/08 07:55	LHS	MS-V2	100	BRB1345	ND	A01
Methyl t-butyl ether	ND	mg/kg	0.50		EPA-8260	02/22/08	02/23/08 07:55	LHS	MS-V2	100	BRB1345	ND	A01
Toluene	ND	mg/kg	0.50		EPA-8260	02/22/08	02/23/08 07:55	LHS	MS-V2	100	BRB1345	ND	A01
Total Xylenes	1.2	mg/kg	1.0	Lat. 18 '11'	EPA-8260	02/22/08	02/23/08 07:55	LHS	MS-V2	100	BRB1345	ND	A01
t-Amyl Methyl ether	ND	mg/kg	0.50		EPA-8260	02/22/08	02/23/08 07:55	LHS	MS-V2	100	BRB1345	ND	A01
t-Butyl alcohol	ND	mg/kg	5.0		EPA-8260	02/22/08	02/23/08 07:55	LHS	MS-V2	100	BRB1345	ND	A01
Diisopropyl ether	ND	mg/kg	0.50		EPA-8260	02/22/08	02/23/08 07:55	LHS	MS-V2	100	BRB1345	ND	A01
Ethanol	ND	mg/kg	100		EPA-8260	02/22/08	02/23/08 07:55	LHS	MS-V2	100	BRB1345	ND	A01
Ethyl t-butyl ether	ND	mg/kg	0.50		EPA-8260	02/22/08	02/23/08 07:55	LHS	MS-V2	100	BRB1345	ND	A01
Total Purgeable Petroleum Hydrocarbons	640	mg/kg	200		EPA-8260	02/25/08	02/25/08 21:37	LHS	MS-V2	1000	BRB1345	ND	A01
1,2-Dichloroethane-d4 (Surrogate)	92.2	%	70 - 1 21	(LCL - UCL)	EPA-8260	02/22/08	02/23/08 07:55	LHS	MS-V2	100	BRB1345		
1,2-Dichloroethane-d4 (Surrogate)	93.0	%	70 - 121	(LCL - UCL)	EPA-8260	02/25/08	02/25/08 21:37	LHS	MS-V2	1000	BRB1345		
Toluene-d8 (Surrogate)	108	%	81 - 117	(LCL - UCL)	EPA-8260	02/22/08	02/23/08 07:55	LHS	MS-V2	100	BRB1345		
Toluene-d8 (Surrogate)	91.6	%	81 - 117	(LCL - UCL)	EPA-8260	02/25/08	02/25/08 21:37	LHS	MS-V2	1000	BRB1345		
4-Bromofluorobenzene (Surrogate)	92.5	%	74 - 121	(LCL - UCL)	EPA-8260	02/25/08	02/25/08 21:37	LHS	MS-V2	1000	BRB1345		
4-Bromofluorobenzene (Surrogate)	104	%	74 - 121	(LCL - UCL)	EPA-8260	02/22/08	02/23/08 07:55	LHS	MS-V2	100	BRB1345		

Page 10 of 58

BC Laboratories

Delta Environmental Consultants, Inc.	Project: 7376	Reported: 03/10/2008 16:51
3164 Gold Camp Road, Suite 200	Project Number: [none]	
Rancho Cordova, CA 95670	Project Manager: Daniel Davis	

BCL Sample ID: 0802383-03	Client Sam	ple Name	: 7376, CP-	1, CP-1(@24.5-25, 2	/18/2008	12:10:00PM						
						Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Diesel Range Organics (C12 - C24)	220	mg/kg	40		Luft/TPHd	02/26/08	03/06/08 13:10	PTL	GC-5	20.067	BRC0288	ND	
Tetracosane (Surrogate)	61.4	%	34 - 136 (LC			02/26/08	03/06/08 13:10	PTL	GC-5	20.067	BRC0288		A18

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com Page 11 of 58

Delta Environmental Consultants, Ind 3164 Gold Camp Road, Suite 200	C.				Project: ect Number:	[none]					Repo	orted: 03/1	0/2008 16:5
Rancho Cordova, CA 95670	Vol	atile	Orgai	-	ct Manager nalvs		PA Met	hod	8260))			
BCL Sample ID: 0802383-04							12:22:00PM						
Constituent	Result	Units	PQL	MDL	Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
Benzene	14	mg/kg	1.0		EPA-8260	02/22/08	02/23/08 08:21	LHS	MS-V2	200	BRB1345	ND	A01
1,2-Dibromoethane	ND	mg/kg	1.0		EPA-8260	02/22/08	02/23/08 08:21	LHS	MS-V2	200	BRB1345	ND	A01
1,2-Dichloroethane	ND	mg/kg	1.0		EPA-8260	02/22/08	02/23/08 08:21	LHS	MS-V2	200	BRB1345	ND	A01
Ethylbenzene	14	mg/kg	1.0		EPA-8260	02/22/08	02/23/08 08:21	LHS	MS-V2	200	BRB1345	ND	A01
Methyl t-butyl ether	1.3	mg/kg	1.0		EPA-8260	02/22/08	02/23/08 08:21	LHS	MS-V2	200	BRB1345	ND	A01
Toluene	ND	mg/kg	1.0		EPA-8260	02/22/08	02/23/08 08:21	LHS	MS-V2	200	BRB1345	ND	A01
Total Xylenes	6.6	mg/kg	2.0		EPA-8260	02/22/08	02/23/08 08:21	LHS	MS-V2	200	BRB1345	ND	A01
t-Amyl Methyl ether	ND	mg/kg	1.0		EPA-8260	02/22/08	02/23/08 08:21	LHS	MS-V2	200	BRB1345	ND	A01
t-Butyl alcohol	ND	mg/kg	10		EPA-8260	02/22/08	02/23/08 08:21	LHS	MS-V2	200	BRB1345	ND	A01
Diisopropyl ether	ND	mg/kg	1.0		EPA-8260	02/22/08	02/23/08 08:21	LHS	MS-V2	200	BRB1345	ND	A01
Ethanol	ND	mg/kg	200		EPA-8260	02/22/08	02/23/08 08:21	LHS	MS-V2	200	BRB1345	ND	A01
Ethyl t-butyl ether	ND	mg/kg	1.0		EPA-8260	02/22/08	02/23/08 08:21	LHS	MS-V2	200	BRB1345	ND	A01
Total Purgeable Petroleum Hydrocarbons	470	mg/kg	40		EPA-8260	02/22/08	02/23/08 08:21	LHS	MS-V2	200	BRB1345	ND	A01
1,2-Dichloroethane-d4 (Surrogate)	93.1	%	70-121 (L	CL - UCL)	EPA-8260	02/22/08	02/23/08 08:21	LHS	MS-V2	200	BRB1345		
Toluene-d8 (Surrogate)	93.4	%	81 - 117 (L	CL - UCL)	EPA-8260	02/22/08	02/23/08 08:21	LHS	MS-V2	200	BRB1345		
4-Bromofluorobenzene (Surrogate)	102	%	74 - 121 (L	.CL - UCL)	EPA-8260	02/22/08	02/23/08 08:21	LHS	MS-V2	200	BRB1345		,

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com Page 12 of 58

Delta Environmental Consultants, Inc. 3164 Gold Camp Road, Suite 200 Rancho Cordova, CA 95670 Project: 7376 Project Number: [none]

Project Manager: Daniel Davis

Total Petroleum Hydrocarbons

BCL Sample ID: 0802383-04	Client Sam	ple Name	: 7376, CP-	1, CP-1(@29.5-30, 2	/18/2008	12:22:00PM						
						Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Diesel Range Organics (C12 - C24)	5000	mg/kg	990		Luft/TPHd	02/26/08	03/06/08 13:25	PTL	GC-5	496.69	BRC0288	ND	
Tetracosane (Surrogate)	0	%	34 - 136 (LCI	- UCL)	Luft/TPHd	02/26/08	03/06/08 13:25	PTL	GC-5	496.69	BRC0288		A17

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com Page 13 of 58

Reported: 03/10/2008 16:51

Delta Environmental Consultants, Inc. 3164 Gold Camp Road, Suite 200 Rancho Cordova, CA 95670	•	· • • • • • • • • • • • • • • • • • • •			Project: ect Number: ct Manager:	[none]	Davis				Repo	orted: 03/	10/2008 16:51
	Vol	atile	Orga	nic A	nalys	is (E	PA Met	hod	826	J)			
BCL Sample ID: 0802383-05	Client Sam	ple Name:	7376, C	P-1, CP-1@	234.5-35, 2	/18/2008	12:32:00PM						
Constituent	Result	Units	PQL	MDL	Method	Prep Date	Run Date/Time	Analyst	instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
Benzene	3.8	mg/kg	0.25		EPA-8260	02/25/08	02/26/08 03:19	LHS	MS-V2	50	BRB1345	ND	A01
1,2-Dibromoethane	ND	mg/kg	0.25		EPA-8260	02/25/08	02/26/08 03:19	LHS	MS-V2	50	BRB1345	ND	A01
1,2-Dichloroethane	ND	mg/kg	0.25		EPA-8260	02/25/08	02/26/08 03:19	LHS	MS-V2	50	BRB1345	ND	A 01
Ethylbenzene	8.1	mg/kg	0.25		EPA-8260	02/25/08	02/26/08 03:19	LHS	MS-V2	50	BRB1345	ND	A01
Methyl t-butyl ether	ND	mg/kg	0.25		EPA-8260	02/25/08	02/26/08 03:19	LHS	MS-V2	50	BRB1345	ND	A01
Toluene	ND	mg/kg	0.25		EPA-8260	02/25/08	02/26/08 03:19	LHS	MS-V2	50	BRB1345	ND	A 01
Total Xylenes	4.2	mg/kg	0.50		EPA-8260	02/25/08	02/26/08 03:19	LHS	MS-V2	50	BRB1345	ND	A01
t-Amyl Methyl ether	ND	mg/kg	0.25		EPA-8260	02/25/08	02/26/08 03:19	LHS	MS-V2	50	BRB1345	ND	A01
t-Butyl alcohol	ND	mg/kg	2.5		EPA-8260	02/25/08	02/26/08 03:19	LHS	MS-V2	50	BRB1345	ND	A01
Diisopropyl ether	ND	mg/kg	0.25		EPA-8260	02/25/08	02/26/08 03:19	LHS	MS-V2	50	BRB1345	ND	A01
Ethanol	ND	mg/kg	50		EPA-8260	02/25/08	02/26/08 03:19	LHS	MS-V2	50	BRB1345	ND	A01
Ethyl t-butyl ether	ND	mg/kg	0.25		EPA-8260	02/25/08	02/26/08 03:19	LHS	MS-V2	50	BRB1345	ND	A01
Total Purgeable Petroleum Hydrocarbons	370	mg/kg	50		EPA-8260	02/27/08	02/27/08 16:17	LHS	MS-V2	250	BRB1345	ND	A0 1
1,2-Dichloroethane-d4 (Surrogate)	90.4	%	70 - 121 (LCL - UCL)	EPA-8260	02/25/08	02/26/08 03:19	LHS	MS-V2	5 0	BRB1345		
1,2-Dichloroethane-d4 (Surrogate)	91.9	%	70 - 121 (LCL - UCL)	EPA-8260	02/27/08	02/27/08 16:17	LHS	MS-V2	250	BRB1345		
Toluene-d8 (Surrogate)	107	%	81 - 117 (LCL - UCL)	EPA-8260	02/25/08	02/26/08 03:19	LHS	MS-V2	50	BRB1345		
Toluene-d8 (Surrogate)	106	%	81 - 117 (LCL - UCL)	EPA-8260	02/27/08	02/27/08 16:17	LHS	MS-V2	250	BRB1345		
4-Bromofluorobenzene (Surrogate)	94.5	%	74 - 121 (LCL - UCL)	EPA-8260	02/27/08	02/27/08 16:17	LHS	MS-V2	250	BRB1345		
4-Bromofluorobenzene (Surrogate)	109	%	74 - 121 (LCL - UCL)	EPA-8260	02/25/08	02/26/08 03:19	LHS	MS-V2	50	BRB1345		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com Page 14 of 58

Delta Environmental Consultants, Inc.Project:7376Reported:03/10/200816:513164 Gold Camp Road, Suite 200Project Number:[none]Project Manager:Daniel DavisRancho Cordova, CA 95670Project Manager:Daniel Davis

Total Petroleum Hydrocarbons

BCL Sample ID: 0802383-05	Client Sam	ple Name	: 7376, CP-1, CP	-1@34.5-35, 2	2/18/2008	12:32:00PM						
					Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL MD	L Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Diesel Range Organics (C12 - C24)	300	mg/kg	20	Luft/TPHd	02/26/08	03/06/08 13:39	PTL	GC-5	9.836	BRC0288	ND	
Tetracosane (Surrogate)	0	%	34 - 136 (LCL - UC	L) Luft/TPHd	02/26/08	03/06/08 13:39	PTL	GC-5	9.836	BRC0288		A18

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 15 of 58

Delta Environmental Consultants, Inc. 3164 Gold Camp Road, Suite 200 Rancho Cordova, CA 95670			·		Project ect Number ect Manager	: [none]	Davis				Repo	orted: 03/	10/2008 16:5
	Vol	atile	Org				EPA Met	hod	826	0)			
BCL Sample ID: 0802383-06	Client Sam	ple Name	: 7376,	CP-1, CP-1(@39.5-40, 2	2/18/2008	12:42:00PM						
Constituent	Result	Units	PQL	MDL	Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
Benzene	9.7	mg/kg	0.25		EPA-8260	02/25/08	02/26/08 03:45	LHS	MS-V2	50	BRB1345	ND	A01
1,2-Dibromoethane	ND	mg/kg	0.25		EPA-8260	02/25/08	02/26/08 03:45	LHS	MS-V2	50	BRB1345	ND	A01
1,2-Dichloroethane	ND	mg/kg	0.25		EPA-8260	02/25/08	02/26/08 03:45	LHS	MS-V2	50	BRB1345	ND	A01
Ethylbenzene	5.5	mg/kg	0.25		EPA-8260	02/25/08	02/26/08 03:45	LHS	MS-V2	50	BRB1345	ND	A01
Methyl t-butyl ether	0.76	mg/kg	0.25	··· *	EPA-8260	02/25/08	02/26/08 03:45	LHS	MS-V2	50	BRB1345	ND	A01
Toluene	ND	mg/kg	0.25		EPA-8260	02/25/08	02/26/08 03:45	LHS	MS-V2	50	BRB1345	ND	A01
Total Xylenes	7.4	mg/kg	0.50	····	EPA-8260	02/25/08	02/26/08 03:45	LHS	MS-V2	50	BRB1345	ND	A01
t-Amyl Methyl ether	ND	mg/kg	0.25		EPA-8260	02/25/08	02/26/08 03:45	LHS	MS-V2	50	BRB1345	ND	A01
t-Butyl alcohol	ND	mg/kg	2.5		EPA-8260	02/25/08	02/26/08 03:45	LHS	MS-V2	50	BRB1345	ND	A 01
Diisopropyl ether	ND	mg/kg	0.25		EPA-8260	02/25/08	02/26/08 03:45	LHS	MS-V2	50	BRB1345	ND	A01
Ethanol	ND	mg/kg	50		EPA-8260	02/25/08	02/26/08 03:45	LHS	MS-V2	50	BRB1345	ND	A01
Ethyl t-butyl ether	ND	mg/kg	0.25	· · · · · ·	EPA-8260	02/25/08	02/26/08 03:45	LHS	MS-V2	50	BRB1345	ND	A01
Total Purgeable Petroleum Hydrocarbons	360	mg/kg	50		EPA-8260	02/27/08	02/27/08 16:44	LHS	MS-V2	250	BRB1345	ND	A01
1,2-Dichloroethane-d4 (Surrogate)	90.0	%	70 - 121	(LCL - UCL)	EPA-8260	02/25/08	02/26/08 03:45	LHS	MS-V2	50	BRB1345		
1,2-Dichloroethane-d4 (Surrogate)	89.8	%	70 - 121	(LCL - UCL)	EPA-8260	02/27/08	02/27/08 16:44	LHS	MS-V2	250	BRB1345	···	,
Toluene-d8 (Surrogate)	101	%	81 - 117	(LCL - UCL)	EPA-8260	02/27/08	02/27/08 16:44	LHS	MS-V2	250	BRB1345		
Toluene-d8 (Surrogate)	95.0	%	81 - 117	(LCL - UCL)	EPA-8260	02/25/08	02/26/08 03:45	LHS	MS-V2	50	BRB1345		
4-Bromofluorobenzene (Surrogate)	103	%	74 - 121	(LCL - UCL)	EPA-8260	02/27/08	02/27/08 16:44	LHS	MS-V2	250	BRB1345		
4-Bromofluorobenzene (Surrogate)	109	%	74 - 121	(LCL - UCL)	EPA-8260	02/25/08	02/26/08 03:45	LHS	MS-V2	50	BRB1345		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 16 of 58

Railcho Coldova, CA 35070		
Rancho Cordova, CA 95670	Project Manager: Daniel Da	
3164 Gold Camp Road, Suite 200	Project Number: [none]	
Delta Environmental Consultants, Inc.	Project: 7376	Reported: 03/10/2008 16:51

BCL Sample ID: 0802383-06	Client Sam	ple Name	: 7376, CP	P-1, CP-1(@39.5-40, 2	2/18/2008	12:42:00PM						
						Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Diesel Range Organics (C12 - C24)	570	mg/kg	100		Luft/TPHd	02/26/08	03/06/08 13:53	PTL	GC-5	50.336	BRC0288	ND	
Tetracosane (Surrogate)	0	%	34 - 136 (LO	,	Luft/TPHd	02/26/08	03/06/08 13:53	PTL	GC-5	50.336	BRC0288		A17

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com Page 17 of 58

Delta Environmental Consultants, Inc 3164 Gold Camp Road, Suite 200 Rancho Cordova, CA 95670).				Project: ect Number: ct Manager:	[none]	avis				Repo	orted: 03/1	10/2008 16
	Vol	atile	Organ	ic A	nalys	is (E	PA Met	hod	8260))			
BCL Sample ID: 0802383-07	Client Sam	ple Name:	7376, CP-	1, CP-1@	0,44.5-45, 2	/18/2008	1:00:00PM						
Constituent	Result	Units	PQL	MDL	Method	Prep Date	Run Date/Time	Analyst	instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
Benzene	ND	mg/kg	0.010		EPA-8260	02/27/08	02/28/08 09:32	LHS	MS-V2	2	BRB1345	ND	A01
1,2-Dibromoethane	ND	mg/kg	0.010		EPA-8260	02/27/08	02/28/08 09:32	LHS	MS-V2	2	BRB1345	ND	A01
1,2-Dichloroethane	ND	mg/kg	0.010		EPA-8260	02/27/08	02/28/08 09:32	LHS	MS-V2	2	BRB1345	ND	A01
Ethylbenzene	ND	mg/kg	0.010		EPA-8260	02/27/08	02/28/08 09:32	LHS	MS-V2	2	BRB1345	ND	A01
Methyl t-butyl ether	0.075	mg/kg	0.010		EPA-8260	02/27/08	02/28/08 09:32	LHS	MS-V2	2	BRB1345	ND	A01
Toluene	ND	mg/kg	0.010		EPA-8260	02/27/08	02/28/08 09:32	LHS	MS-V2	2	BRB1345	ND	A01
Total Xylenes	ND	mg/kg	0.020		EPA-8260	02/27/08	02/28/08 09:32	LHS	MS-V2	2	BRB1345	ND	A01
t-Amyl Methyl ether	ND	mg/kg	0.010		EPA-8260	02/27/08	02/28/08 09:32	LHS	MS-V2	2	BRB1345	ND	A01
t-Butyl alcohol	0.26	mg/kg	0.10		EPA-8260	02/27/08	02/28/08 09:32	LHS	MS-V2	2	BRB1345	ND	A01
Diisopropyl ether	ND	mg/kg	0.010		EPA-8260	02/27/08	02/28/08 09:32	LHS	MS-V2	2	BRB1345	ND	A01
Ethanol	ND	mg/kg	2.0		EPA-8260	02/27/08	02/28/08 09:32	LHS	MS-V2	2	BRB1345	ND	A01
Ethyl t-butyl ether	ND	mg/kg	0.010		EPA-8260	02/27/08	02/28/08 09:32	LHS	MS-V2	2	BRB1345	ND	A01
Total Purgeable Petroleum Hydrocarbons	61	mg/kg	10		EPA-8260	02/27/08	02/27/08 17:10	LHS	MS-V2	50	BRB1345	ND	A01
1,2-Dichloroethane-d4 (Surrogate)	88.2	%	70 - 121 (LC	L - UCL)	EPA-8260	02/27/08	02/27/08 17:10	LHS	MS-V2	50	BRB1345		
1,2-Dichloroethane-d4 (Surrogate)	98.3	%	70 - 121 (LC	L - UCL)	EPA-8260	02/27/08	02/28/08 09:32	LHS	MS-V2	2	BRB1345		
Toluene-d8 (Surrogate)	96.6	%	81 - 117 (LC	L - UCL)	EPA-8260	02/27/08	02/28/08 09:32	LHS	MS-V2	2	BRB1345		
Toluene-d8 (Surrogate)	104	%	81 - 117 (LC	L - UCL)	EPA-8260	02/27/08	02/27/08 17:10	LHS	MS-V2	50	BRB1345		
4-Bromofluorobenzene (Surrogate)	105	%	74 - 121 (LC	L - UCL)	EPA-8260	02/27/08	02/27/08 17:10	LHS	MS-V2	50	BRB1345		
4-Bromofluorobenzene (Surrogate)	103	%	74 - 121 (LC	L - UCL)	EPA-8260	02/27/08	02/28/08 09:32	LHS	MS-V2	2	BRB1345		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com Page 18 of 58

Delta Environmental Consultants, Inc. 3164 Gold Camp Road, Suite 200 Rancho Cordova, CA 95670	Project: 73 Project Number: _{[n} Project Manager: _D	none]	Reported: 03/10/2008 16:51
Linumer	Total Petroleum H	lydrocarbons	

BCL Sample ID: 0802383-07	Client Sam	ple Name	e: 7376, CP-	-1, CP-1@	@44.5-45, 2	/18/2008	1:00:00PM						
			····			Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Diesel Range Organics (C12 - C24)	920	mg/kg	100		Luft/TPHd	02/26/08	03/06/08 14:08	PTL	GC-5	49.834	BRC0288	ND	
Tetracosane (Surrogate)	0	%	34 - 136 (LC	L - UCL)		02/26/08	03/06/08 14:08	PTL	GC-5	49.834	BRC0288		A17

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com Page 19 of 58

Delta Environmental Consultants, Inc 3164 Gold Camp Road, Suite 200 Rancho Cordova, CA 95670	2.	Project: 7376 Reported: 03/10/20 Project Number: [none] Project Manager: Daniel Davis									0/2008 16:5	
	Vol	atile	Organic A	nalys	sis (E	EPA Met	hod	826	D)		,	
BCL Sample ID: 0802383-08	Client Sam	ple Name	: 7376, CP-1, CP-1	@49.5-50, 2	2/18/2008	1:15:00PM						
Constituent	Result	Units	PQL MDL	Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
Benzene	0.066	mg/kg	0.0050	EPA-8260	02/22/08	02/23/08 10:07	LHS	MS-V2	1	BRB1345	ND	
1,2-Dibromoethane	ND	mg/kg	0.0050	EPA-8260	02/22/08	02/23/08 10:07	LHS	MS-V2	1	BRB1345	ND	
1,2-Dichloroethane	ND	mg/kg	0.0050	EPA-8260	02/22/08	02/23/08 10:07	LHS	MS-V2	1	BRB1345	ND	
Ethylbenzene	0.0068	mg/kg	0.0050	EPA-8260	02/22/08	02/23/08 10:07	LHS	MS-V2	1	BRB1345	ND	
Methyl t-butyl ether	0.29	mg/kg	0.0050	EPA-8260	02/22/08	02/23/08 10:07	LHS	MS-V2	1	BRB1345	ND	
Toluene	ND	mg/kg	0.0050	EPA-8260	02/22/08	02/23/08 10:07	LHS	MS-V2	1 .	BRB1345	ND	
Total Xylenes	ND	mg/kg	0.010	EPA-8260	02/22/08	02/23/08 10:07	LHS	MS-V2	1	BRB1345	ND	
t-Amyl Methyl ether	ND	mg/kg	0.0050	EPA-8260	02/22/08	02/23/08 10:07	LHS	MS-V2	1	BRB1345	ND	
t-Butyl alcohol	0.43	mg/kg	0.050	EPA-8260	02/22/08	02/23/08 10:07	LHS	MS-V2	1	BRB1345	ND	
Diisopropyl ether	ND	mg/kg	0.0050	EPA-8260	02/22/08	02/23/08 10:07	LHS	MS-V2	1	BRB1345	ND	
Ethanol	ND	mg/kg	1.0	EPA-8260	02/22/08	02/23/08 10:07	LHS	MS-V2	1	BRB1345	ND	
Ethyl t-butyl ether	ND	mg/kg	0.0050	EPA-8260	02/22/08	02/23/08 10:07	LHS	MS-V2	1	BRB1345	ND	
Total Purgeable Petroleum Hydrocarbons	1.6	mg/kg	0.20	EPA-8260	02/22/08	02/23/08 10:07	LHS	MS-V2	1	BRB1345	ND	
1,2-Dichloroethane-d4 (Surrogate)	93.2	%	70 - 121 (LCL - UCL)	EPA-8260	02/22/08	02/23/08 10:07	LHS	MS-V2	1	BRB1345		
Toluene-d8 (Surrogate)	92.7	%	81 - 117 (LCL - UCL)	EPA-8260	02/22/08	02/23/08 10:07	LHS	MS-V2	1	BRB1345		
4-Bromofluorobenzene (Surrogate)	96.7	%	74 - 121 (LCL - UCL)	EPA-8260	02/22/08	02/23/08 10:07	LHS	MS-V2	1	BRB1345		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com Page 20 of 58

Delta Environmental Consultants, Inc. 3164 Gold Camp Road, Suite 200 Rancho Cordova, CA 95670	Project: 7 Project Number: [Project Manager: [[none]	Reported: 03/10/2008 16:51
	Total Petroleum	Hydrocarbons	

BCL Sample ID: 0802383-08	Client Sam	ple Name	e: 7376, CF	P-1, CP-1(@49.5-50, 2	/18/2008	1:15:00PM						
						Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quais
Diesel Range Organics (C12 - C24)	130	mg/kg	20		Luft/TPHd	02/26/08	03/06/08 14:22	PTL	GC-5	9.934	BRC0288	ND	
Tetracosane (Surrogate)	65.3	%	34 - 136 (L	CL - UCL)	Luft/TPHd	02/26/08	03/06/08 14:22	PTL	GC-5	9.934	BRC0288		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com Page 21 of 58

Delta Environmental Consultants, In 3164 Gold Camp Road, Suite 200	C.			Proie	Project: ect Number:						Repo	orted: 03/1	0/2008 16:
Rancho Cordova, CA 95670					ct Manager:		Davis						
	Vola	atile	Orgar	nic A	nalys	is (E	EPA Met	hod	826	0)			
BCL Sample ID: 0802383-09	Client Sam											····	
Constituent	Result	Units	PQL	MDL	Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
Benzene	ND	mg/kg	0.0050		EPA-8260	02/22/08	02/23/08 10:33	LHS	MS-V2	1	BRB1345	ND	
1,2-Dibromoethane	ND	mg/kg	0.0050		EPA-8260	02/22/08	02/23/08 10:33	LHS	MS-V2	1	BRB1345	ND	
1,2-Dichloroethane	ND	mg/kg	0.0050		EPA-8260	02/22/08	02/23/08 10:33	LHS	MS-V2	1	BRB1345	ND	
Ethylbenzene	ND	mg/kg	0.0050		EPA-8260	02/22/08	02/23/08 10:33	LHS	MS-V2	1	BRB1345	ND	
Methyl t-butyl ether	0.28	mg/kg	0.0050		EPA-8260	02/22/08	02/23/08 10:33	LHS	MS-V2	1	BRB1345	ND	
Toluene	ND	mg/kg	0.0050		EPA-8260	02/22/08	02/23/08 10:33	LHS	MS-V2	1	BRB1345	ND	
Total Xylenes	ND	mg/kg	0.010		EPA-8260	02/22/08	02/23/08 10:33	LHS	MS-V2	1	BRB1345	ND	
t-Amyl Methyl ether	ND	mg/kg	0.0050		EPA-8260	02/22/08	02/23/08 10:33	LHS	MS-V2	1	BRB1345	ND	
t-Butyl alcohol	0.40	mg/kg	0.050		EPA-8260	02/22/08	02/23/08 10:33	LHS	MS-V2	1	BRB1345	ND	
Diisopropyl ether	ND	mg/kg	0.0050		EPA-8260	02/22/08	02/23/08 10:33	LHS	MS-V2	1	BRB1345	ND	
Ethanol	ND	mg/kg	1.0		EPA-8260	02/22/08	02/23/08 10:33	LHS	MS-V2	1	BRB1345	ND	
Ethyl t-butyl ether	ND	mg/kg	0.0050		EPA-8260	02/22/08	02/23/08 10:33	LHS	MS-V2	· 1	BRB1345	ND	
Total Purgeable Petroleum Hydrocarbons	1.4	mg/kg	0.20		EPA-8260	02/22/08	02/23/08 10:33	LHS	MS-V2	1	BRB1345	ND	
1,2-Dichloroethane-d4 (Surrogate)	92.9	%	70 - 121 (LC	CL - UCL)	EPA-8260	02/22/08	02/23/08 10:33	LHS	MS-V2	1	BRB1345		
Toluene-d8 (Surrogate)	103	%	81 - 117 (LC	CL - UCL)	EPA-8260	02/22/08	02/23/08 10:33	LHS	MS-V2	1	BRB1345		
4-Bromofluorobenzene (Surrogate)	87.5	%	74 - 121 (LC	CL - UCL)	EPA-8260	02/22/08	02/23/08 10:33	LHS	MS-V2	1	BRB1345		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com Page 22 of 58

Delta Environmental Consultants, Inc.Project:7376Reported:03/10/200816:513164 Gold Camp Road, Suite 200Project Number:[none]Project Manager:Daniel DavisRancho Cordova, CA 95670Project Manager:Daniel Davis

Total Petroleum Hydrocarbons

BCL Sample ID: 0802383-09	Client Sam	ple Name	: 7376, CP-	1, CP-1(@54.5-55, 2	/18/2008	2:20:00PM				,		
						Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Diesel Range Organics (C12 - C24)	9.9	mg/kg	2.0		Luft/TPHd	02/26/08	03/05/08 19:10	PTL	GC-5	0.987	BRC0288	ND	
Tetracosane (Surrogate)	60.8	%	34 - 136 (LCL		Luft/TPHd		03/05/08 19:10	PTL	GC-5	0.987	BRC0288		

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 23 of 58

Delta Environmental Consultants, I 3164 Gold Camp Road, Suite 200 Rancho Cordova, CA 95670	Project: 7376 Reported: 03/10/2008 16:51 Project Number: [none] Project Manager: Daniel Davis												
	Vol	atile	Organ	ic A	nalys	is (E	PA Met	hod	8260	D)			
BCL Sample ID: 0802383-10	Client Sam	ple Name	: 7376, CP-1	1, CP-1@	059.5-60, 2	/18/2008	2:35:00PM						
Constituent	Result	Units	PQL	MDL	Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
Benzene	0.033	mg/kg	0.0050		EPA-8260	02/22/08	02/23/08 11:00	LHS	MS-V2	1	BRB1345	ND	
1,2-Dibromoethane	ND	mg/kg	0.0050		EPA-8260	02/22/08	02/23/08 11:00	LHS	MS-V2	1	BRB1345	ND	
1,2-Dichloroethane	ND	mg/kg	0.0050		EPA-8260	02/22/08	02/23/08 11:00	LHS	MS-V2	1	BRB1345	ND	
Ethylbenzene	0.0058	mg/kg	0.0050		EPA-8260	02/22/08	02/23/08 11:00	LHS	MS-V2	1	BRB1345	ND	
Methyl t-butyl ether	0.063	mg/kg	0.0050		EPA-8260	02/22/08	02/23/08 11:00	LHS	MS-V2	1	BRB1345	ND	
Toluene	ND	mg/kg	0.0050		EPA-8260	02/22/08	02/23/08 11:00	LHS	MS-V2	1	BRB1345	ND	
Total Xylenes	ND	mg/kg	0.010		EPA-8260	02/22/08	02/23/08 11:00	LHS	MS-V2	1	BRB1345	ND	
t-Amyl Methyl ether	ND	mg/kg	0.0050		EPA-8260	02/22/08	02/23/08 11:00	LHS	MS-V2	1	BRB1345	ND	
t-Butyl alcohol	0.19	mg/kg	0.050		EPA-8260	02/22/08	02/23/08 11:00	LHS	MS-V2	1	BRB1345	ND	
Diisopropyl ether	ND	mg/kg	0.0050		EPA-8260	02/22/08	02/23/08 11:00	LHS	MS-V2	1	BRB1345	ND	
Ethanol	ND	mg/kg	1.0		EPA-8260	02/22/08	02/23/08 11:00	LHS	MS-V2	1	BRB1345	ND	
Ethyl t-butyl ether	ND	mg/kg	0.0050		EPA-8260	02/22/08	02/23/08 11:00	LHS	MS-V2	1	BRB1345	ND	
Total Purgeable Petroleum Hydrocarbons	0.27	mg/kg	0.20		EPA-8260	02/22/08	02/23/08 11:00	LHS	MS-V2	1	BRB1345	ND	
1,2-Dichloroethane-d4 (Surrogate)	96.8	%	70 - 121 (LC	L - UCL)	EPA-8260	02/22/08	02/23/08 11:00	LHS	MS-V2	1	BRB1345		
Toluene-d8 (Surrogate)	100	%	81 - 117 (LC	L - UCL)	EPA-8260	02/22/08	02/23/08 11:00	LHS	MS-V2	1	BRB1345		
4-Bromofluorobenzene (Surrogate)	96.1	%	74 - 121 (LC	L - UCL)	EPA-8260	02/22/08	02/23/08 11:00	LHS	MS-V2	1	BRB1345		

Delta Environmental Consultants, Inc. 3164 Gold Camp Road, Suite 200 Rancho Cordova, CA 95670 Project: 7376

Project Number: [none]

Project Manager: Daniel Davis

Total Petroleum Hydrocarbons

BCL Sample ID: 0802383-10	Client Sam	ple Name	: 7376, CP-	1, CP-1(@59.5-60, 2	/18/2008	2:35:00PM						
						Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Diesel Range Organics (C12 - C24)	ND	mg/kg	2.0		Luft/TPHd	02/26/08	03/05/08 19:24	PTL	GC-5	0.993	BRC0288	ND	
Tetracosane (Surrogate)	57.3	%	34 - 136 (LC	L - UCL)	Luft/TPHd	02/26/08	03/05/08 19:24	PTL	GC-5	0.993	BRC0288		
										5			

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com

 γ

Page 25 of 58

Reported: 03/10/2008 16:51

Delta Environmental Consultants, Inc. 3164 Gold Camp Road, Suite 200 Rancho Cordova, CA 95670				Project ject Number ect Manager	[none]	Davis				Repo	orted: 03/*	10/2008 16:
	Vol	atile	Organic A	Analys	is (E	PA Met	hod	8260))			
BCL Sample ID: 0802383-11	Client Sam	ple Name:	7376, CP-1, CP -	1@64.5-65,2	2/18/2008	2:52:00PM						
Constituent	Result	Units	PQL MDL	Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
Benzene	ND	mg/kg	0.0050	EPA-8260	02/22/08	02/23/08 11:26	LHS	MS-V2	1	BRB1345	ND	
1,2-Dibromoethane	ND	mg/kg	0.0050	EPA-8260	02/22/08	02/23/08 11:26	LHS	MS-V2	1	BRB1345	ND	
1,2-Dichloroethane	ND	mg/kg	0.0050	EPA-8260	02/22/08	02/23/08 11:26	LHS	MS-V2	1	BRB1345	ND	
Ethylbenzene	ND	mg/kg	0.0050	EPA-8260	02/22/08	02/23/08 11:26	LHS	MS-V2	1	BRB1345	ND	
Methyl t-butyl ether	0.11	mg/kg	0.0050	EPA-8260	02/22/08	02/23/08 11:26	LHS	MS-V2	1	BRB1345	ND	
Toluene	ND	mg/kg	0.0050	EPA-8260	02/22/08	02/23/08 11:26	LHS	MS-V2	1	BRB1345	ND	
Total Xylenes	ND	mg/kg	0.010	EPA-8260	02/22/08	02/23/08 11:26	LHS	MS-V2	1	BRB1345	ND	
t-Amyl Methyl ether	ND	mg/kg	0.0050	EPA-8260	02/22/08	02/23/08 11:26	LHS	MS-V2	1	BRB1345	ND	
t-Butyl alcohol	0.24	mg/kg	0.050	EPA-8260	02/22/08	02/23/08 11:26	LHS	MS-V2	1	BRB1345	ND	
Diisopropyl ether	ND	mg/kg	0.0050	EPA-8260	02/22/08	02/23/08 11:26	LHS	MS-V2	1	BRB1345	ND	
Ethanol	ND	mg/kg	1.0	EPA-8260	02/22/08	02/23/08 11:26	LHS	MS-V2	1	BRB1345	ND	
Ethyl t-butyl ether	ND	mg/kg	0.0050	EPA-8260	02/22/08	02/23/08 11:26	LHS	MS-V2	1	BRB1345	ND	
Total Purgeable Petroleum Hydrocarbons	0.21	mg/kg	0.20	EPA-8260	02/22/08	02/23/08 11:26	LHS	MS-V2	1	BRB1345	ND	A90
1,2-Dichloroethane-d4 (Surrogate)	96.4	%	70 - 121 (LCL - UCL) EPA-8260	02/22/08	02/23/08 11:26	LHS	MS-V2	1	BRB1345		
Toluene-d8 (Surrogate)	96.7	%	81 - 117 (LCL - UCL) EPA-8260	02/22/08	02/23/08 11:26	LHS	MS-V2	1	BRB1345		
4-Bromofluorobenzene (Surrogate)	92.8	%	74 - 121 (LCL - UCL) EPA-8260	02/22/08	02/23/08 11:26	LHS	MS-V2	1	BRB1345		

 Delta Environmental Consultants, Inc.
 Project: 7376
 Reported: 03/10/2008 16:51

 3164 Gold Camp Road, Suite 200
 Project Number: [none]

 Rancho Cordova, CA 95670
 Project Manager: Daniel Davis

 Total Petroleum Hydrocarbons

BCL Sample ID: 0802383-11	Client Sam	ple Name	e: 7376, CF	P-1, CP -1	@64.5-65, 2	2/18/2008	2:52:00PM						
						Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Diesel Range Organics (C12 - C24)	ND	mg/kg	2.0		Luft/TPHd	02/26/08	03/05/08 19:38	PTL	GC-5	0.987	BRC0288	ŃD	
Tetracosane (Surrogate)	64.1	%	34 - 136 (L			02/26/08	03/05/08 19:38	PTL	GC-5	0.987	BRC0288		

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com Page 27 of 58

Delta Environmental Consultants, Inc 3164 Gold Camp Road, Suite 200 Rancho Cordova, CA 95670	.				Project: ect Number: ct Manager:	[none]	avis				Repo	orted: 03/*	10/2008 16:5
	Vol	atile	Orga	nic A	nalys	is (E	PA Met	hod	826	D)			
BCL Sample ID: 0802383-12	Client Sam	ple Name	: 7376, C	P-1, CP-1(@69.5-70, 2	/18/2008	3:25:00PM						
Constituent	Result	Units	PQL	MDL	Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quais
Benzene	ND	mg/kg	0.0050		EPA-8260	02/22/08	02/23/08 11:53	LHS	MS-V2	1	BRB1345	ND	
1,2-Dibromoethane	ND	mg/kg	0.0050		EPA-8260	02/22/08	02/23/08 11:53	LHS	MS-V2	1	BRB1345	ND	
1,2-Dichloroethane	ND	mg/kg	0.0050		EPA-8260	02/22/08	02/23/08 11:53	LHS	MS-V2	1	BRB1345	ND	
Ethylbenzene	ND	mg/kg	0.0050		EPA-8260	02/22/08	02/23/08 11:53	LHS	MS-V2	1	BRB1345	ND	
Methyl t-butyl ether	0.32	mg/kg	0.0050		EPA-8260	02/22/08	02/23/08 11:53	LHS	MS-V2	1	BRB1345	ND	
Toluene	ND	mg/kg	0.0050		EPA-8260	02/22/08	02/23/08 11:53	LHS	MS-V2	1	BRB1345	ND	44
Total Xylenes	ND	mg/kg	0.010		EPA-8260	02/22/08	02/23/08 11:53	LHS	MS-V2	1	BRB1345	ND	
t-Amyl Methyl ether	ND	mg/kg	0.0050		EPA-8260	02/22/08	02/23/08 11:53	LHS	MS-V2	1	BRB1345	ND	
t-Butyl alcohol	0.22	mg/kg	0.050		EPA-8260	02/22/08	02/23/08 11:53	LHS	MS-V2	1	BRB1345	ND	
Diisopropyl ether	ND	mg/kg	0.0050		EPA-8260	02/22/08	02/23/08 11:53	LHS	MS-V2	1	BRB1345	ND	
Ethanol	ND	mg/kg	1.0		EPA-8260	02/22/08	02/23/08 11:53	LHS	MS-V2	1	BRB1345	ND	
Ethyl t-butyl ether	ND	mg/kg	0.0050		EPA-8260	02/22/08	02/23/08 11:53	LHS	MS-V2	1	BRB1345	ND	-
Total Purgeable Petroleum Hydrocarbons	0.35	mg/kg	0.20		EPA-8260	02/22/08	02/23/08 11:53	LHS	MS-V2	1	BRB1345	ND	A90
1,2-Dichloroethane-d4 (Surrogate)	93.7	%	70 - 121 (LCL - UCL)	EPA-8260	02/22/08	02/23/08 11:53	LHS	MS-V2	1	BRB1345		
Toluene-d8 (Surrogate)	105	%	81 - 117 (LCL - UCL)	EPA-8260	02/22/08	02/23/08 11:53	LHS	MS-V2	1	BRB1345		
4-Bromofluorobenzene (Surrogate)	101	%	74 - 121 (LCL - UCL)	EPA-8260	02/22/08	02/23/08 11:53	LHS	MS-V2	1	BRB1345		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com Page 28 of 58

Delta Environmental Consultants, Inc.	Project: 7376	Reported: 03/10/2008 16:51
3164 Gold Camp Road, Suite 200	Project Number: [none]	
Rancho Cordova, CA 95670	Project Manager: Daniel Davis	

BCL Sample ID: 0802383-12	Client Sam	ple Name	: 7376, CP-1, CP	-1@69.5-70, 2	2/18/2008	3:25:00PM						
					Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL MD	L Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Diesel Range Organics (C12 - C24)	ND	mg/kg	2.0	Luft/TPHd	02/26/08	03/05/08 19:52	PTL	GC-5	1.007	BRC0288	ND	
Tetracosane (Surrogate)	58.5	%	34 - 136 (LCL - UC	L) Luft/TPHd	02/26/08	03/05/08 19:52	PTL	GC-5	1.007	BRC0288		

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com Page 29 of 58

Delta Environmental Consultants, Inc. 3164 Gold Camp Road, Suite 200 Rancho Cordova, CA 95670					Project: ect Number: ct Manager:	[none]	avis				Repo	orted: 03/1	0/2008 16:5
	Vol	atile	Orgar	nic A	nalys	is (E	PA Met	hod	8260	D)			
BCL Sample ID: 0802383-13	Client Sam	ole Name:	7376, CP	-1D, CP-1	ID, 2/18/20	08 3:50:0							
Constituent	Result	Units	PQL	MDL	Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
Benzene	250	ug/L	5.0		EPA-8260	02/26/08	02/27/08 17:42	SDU	MS-V10	10	BRB1546	ND	A01
1,2-Dibromoethane	ND	ug/L	0.50		EPA-8260	02/26/08	02/28/08 03:09	SDU	MS-V10	1	BRB1546	ND	
1,2-Dichloroethane	28	ug/L	0.50		EPA-8260	02/26/08	02/28/08 03:09	SDU	MS-V10	1	BRB1546	ND	
Ethylbenzene	33	ug/L	0.50		EPA-8260	02/26/08	02/28/08 03:09	SDU	MS-V10	1	BRB1546	ND	
Methyl t-butyl ether	530	ug/L	5.0		EPA-8260	02/26/08	02/27/08 17:42	SDU	MS-V10	10	BRB1546	ND	A01
Toluene	2.6	ug/L	0:50		EPA-8260	02/26/08	02/28/08 03:09	SDU	MS-V10	1	BRB1546	ND	
Total Xylenes	15	ug/L	1.0		EPA-8260	02/26/08	02/28/08 03:09	SDU	MS-V10	1	BRB1546	ND	
t-Amyl Methyl ether	ND	ug/L	0.50		EPA-8260	02/26/08	02/28/08 03:09	SDU	MS-V10	[•] 1	BRB1546	ND	
t-Butyl alcohol	490	ug/L	10		EPA-8260	02/26/08	02/28/08 03:09	SDU	MS-V10	1	BRB1546	ND	
Diisopropyl ether	ND	ug/L	0.50		EPA-8260	02/26/08	02/28/08 03:09	SDU	MS-V10	1	BRB1546	ND	
Ethanol	ND	ug/L	250		EPA-8260	02/26/08	02/28/08 03:09	SDU	MS-V10	1	BRB1546	ND	
Ethyl t-butyl ether	ND	ug/L	0.50		EPA-8260	02/26/08	02/28/08 03:09	SDU	MS-V10	1	BRB1546	ND	
Total Purgeable Petroleum Hydrocarbons	1500	ug/L	50		EPA-8260	02/26/08	02/28/08 03:09	SDU	MS-V10	1 .	BRB1546	ND	
1,2-Dichloroethane-d4 (Surrogate)	97.1	%	76 - 114 (L	CL - UCL)	EPA-8260	02/26/08	02/27/08 17:42	SDU	MS-V10	10	BRB1546		
1,2-Dichloroethane-d4 (Surrogate)	96.2	%	76 - 114 (L	CL - UCL)	EPA-8260	02/26/08	02/28/08 03:09	SDU	MS-V10	1	BRB1546		
Toluene-d8 (Surrogate)	97.9	%	88 - 110 (L	CL - UCL)	EPA-8260	02/26/08	02/27/08 17:42	SDU	MS-V10	10	BRB1546		
Toluene-d8 (Surrogate)	98.9	%	88 - 110 (L	CL - UCL)	EPA-8260	02/26/08	02/28/08 03:09	SDU	MS-V10	1	BRB1546		
4-Bromofluorobenzene (Surrogate)	106	%	86 - 115 (L	CL - UCL)	EPA-8260	02/26/08	02/28/08 03:09	SDU	MS-V10	1	BRB1546		
4-Bromofluorobenzene (Surrogate)	100	%	86 - 115 (L	CL - UCL)	EPA-8260	02/26/08	02/27/08 17:42	SDU	MS-V10	10	BRB1546		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com Page 30 of 58

Rancho Cordova, CA 95670 Project Manager: Daniel Davis	
3164 Gold Camp Road, Suite 200 Project Number: [none]	
Delta Environmental Consultants, Inc. Project: 7376	Reported: 03/10/2008 16:51

BCL Sample ID: 0802383-13	Client Sam	ple Name	e: 7376, CP-	1D, CP-	1D, 2/18/20	08 3:50:0	00PM						
	•		•			Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Diesel Range Organics (C12 - C24)	660	ug/L	50		Luft/TPHd	02/26/08	03/01/08 01:48	PTL	GC-5	- 1	BRB1904	ND	
Tetracosane (Surrogate)	51.4	%	28 - 139 (LC	L - UCL)	Luft/TPHd	02/26/08	03/01/08 01:48	PTL	GC-5	1	BRB1904		

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 31 of 58

,

Delta Environmental Consultants, 3164 Gold Camp Road, Suite 200 Rancho Cordova, CA 95670	Inc.			Project ject Number	: [none]		Reported: 03/10/2008 16:51					
Kancho Coldova, CA 95070	Vola	atile	Organic A	ect Manager			hod	826	D)			
BCL Sample ID: 0802383-14	Client Sam	ple Name	: 7376, CP-2, CP-2	2@9.5-10, 2/	19/2008 1							
Constituent	Result	Units	PQL MDL	Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
Benzene	ND	mg/kg	0.0050	EPA-8260	02/26/08	02/26/08 15:20	LHS	MS-V2	1	BRB1433	ND	
1,2-Dibromoethane	ND	mg/kg	0.0050	EPA-8260	02/26/08	02/26/08 15:20	LHS	MS-V2	1	BRB1433	ND	
1,2-Dichloroethane	ND	mg/kg	0.0050	EPA-8260	02/26/08	02/26/08 15:20	LHS	MS-V2	1	BRB1433	ND	
Ethylbenzene	ND	mg/kg	0.0050	EPA-8260	02/26/08	02/26/08 15:20	LHS	MS-V2	1	BRB1433	ND	
Methyl t-butyl ether	ND	mg/kg	0.0050	EPA-8260	02/26/08	02/26/08 15:20	LHS	M\$-V2	1	BRB1433	ND	
Toluene	ND	mg/kg	0.0050	EPA-8260	02/26/08	02/26/08 15:20	LHS	MS-V2	1	BRB1433	ND	
Total Xylenes	ND	mg/kg	0.010	EPA-8260	02/26/08	02/26/08 15:20	LHS	MS-V2	1	BRB1433	ND	
t-Amyl Methyl ether	ND	mg/kg	0.0050	EPA-8260	02/26/08	02/26/08 15:20	LHS	MS-V2	1	BRB1433	ND	
t-Butyl alcohol	ND	mg/kg	0.050	EPA-8260	02/26/08	02/26/08 15:20	LH\$	MS-V2	1	BRB1433	ND	
Diisopropyl ether	ND	mg/kg	0.0050	EPA-8260	02/26/08	02/26/08 15:20	LHS	MS-V2	1	BRB1433	ND	
Ethanol	ND	mg/kg	1.0	EPA-8260	02/26/08	02/26/08 15:20	LHS	MS-V2	1	BRB1433	ND	
Ethyl t-butyl ether	ND	mg/kg	0.0050	EPA-8260	02/26/08	02/26/08 15:20	LHS	MS-V2	1	BRB1433	ND	
Total Purgeable Petroleum Hydrocarbons	ND	mg/kg	0.20	EPA-8260	02/26/08	02/26/08 15:20	LHS	MS-V2	1	BRB1433	ND	
1,2-Dichloroethane-d4 (Surrogate)	98.6	%	70 - 121 (LCL - UCL) EPA-8260	02/26/08	02/26/08 15:20	LHS	MS-V2	1	BRB1433		
Toluene-d8 (Surrogate)	92.1	%	81 - 117 (LCL - UCL) EPA-8260	02/26/08	02/26/08 15:20	LHS	MS-V2	1	BRB1433		
4-Bromofluorobenzene (Surrogate)	96.2	%	74 - 121 (LCL - UCL) EPA-8260	02/26/08	02/26/08 15:20	LHS	MS-V2	1	BRB1433		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com Page 32 of 58

Delta Environmental Consultants, Inc.	Project: 7376	Reported: 03/10/2008 16:51
3164 Gold Camp Road, Suite 200	Project Number: [none]	
Rancho Cordova, CA 95670	Project Manager: Daniel Davis	

BCL Sample ID: 0802383-14	Client Sam	ple Name	: 7376, CF	P-2, CP-2(@9.5-10, 2/	19/2008 1	0:35:00AM						
· · · · · · · · · · · · · · · · · · ·						Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Diesel Range Organics (C12 - C24)	ND	mg/kg	2.0		Luft/TPHd	02/26/08	03/05/08 20:06	PTL	GC-5	1.010	BRC0288	ND	
Tetracosane (Surrogate)	65.7	%	34 - 136 (L	CL - UCL)	Luft/TPHd	02/26/08	03/05/08 20:06	PTL	GC-5	1.010	BRC0288		

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com Page 33 of 58

Delta Environmental Consultants, Inc 3164 Gold Camp Road, Suite 200 Rancho Cordova, CA 95670	2.				Project ect Number ct Manager	[none]	Davis				Repo	orted: 03/1	10/2008 16:51
	Vol	atile	Orga	anic A	nalys	is (E	EPA Met	hod	826	0)			
BCL Sample ID: 0802383-15	Client Sam	ple Name	: 7376, 0	CP-2, CP-2(@14.5-15, 2	2/19/2008	10:40:00AM						
Constituent	Result	Units	PQL	MDL	Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
Benzene	ND	mg/kg	0.0050		EPA-8260	02/26/08	02/26/08 15:46	LHS	MS-V2	1	BRB1433	ND	
1,2-Dibromoethane	ND	mg/kg	0.0050		EPA-8260	02/26/08	02/26/08 15:46	LHS	MS-V2	1	BRB1433	ND	
1,2-Dichloroethane	ND	mg/kg	0.0050	· · · · · · · · · · · · · · · · · · ·	EPA-8260	02/26/08	02/26/08 15:46	LHS	MS-V2	1	BRB1433	ND	
Ethylbenzene	ND	mg/kg	0.0050		EPA-8260	02/26/08	02/26/08 15:46	LHS	MS-V2	• 1	BRB1433	ND	<u></u>
Methyl t-butyl ether	ND	mg/kg	0.0050		EPA-8260	02/26/08	02/26/08 15:46	LHS	MS-V2	1	BRB1433	ND	
Toluene	ND	mg/kg	0.0050		EPA-8260	02/26/08	02/26/08 15:46	LHS	MS-V2	1	BRB1433	ND	
Total Xylenes	ND	mg/kg	0.010		EPA-8260	02/26/08	02/26/08 15:46	LHS	MS-V2	1	BRB1433	ND	· · · · · · · · · · · · · · · · · · ·
t-Amyl Methyl ether	ND	mg/kg	0.0050		EPA-8260	02/26/08	02/26/08 15:46	LHS	MS-V2	1	BRB1433	ND	
t-Butyl alcohol	ND	mg/kg	0.050	a a construction of the second s	EPA-8260	02/26/08	02/26/08 15:46	LHS	MS-V2	1	BRB1433	ND	
Diisopropyl ether	ND	mg/kg	0.0050		EPA-8260	02/26/08	02/26/08 15:46	LHS	MS-V2	1	BRB1433	ND	
Ethanol	ND	mg/kg	1.0		EPA-8260	02/26/08	02/26/08 15:46	LHS	MS-V2	1	BRB1433	ND	
Ethyl t-butyl ether	ND	mg/kg	0.0050	•	EPA-8260	02/26/08	02/26/08 15:46	LHS	MS-V2	1	BRB1433	ND	
Total Purgeable Petroleum Hydrocarbons	ND	mg/kg	0.20		EPA-8260	02/26/08	02/26/08 15:46	LHS	MS-V2	1	BRB1433	ND	
1,2-Dichloroethane-d4 (Surrogate)	99.0	%	70 - 121	(LCL - UCL)	EPA-8260	02/26/08	02/26/08 15:46	LHS	MS-V2	1	BRB1433	·	
Toluene-d8 (Surrogate)	95.3	%	81 - 117	(LCL - UCL)	EPA-8260	02/26/08	02/26/08 15:46	LHS	MS-V2	1	BRB1433		
4-Bromofluorobenzene (Surrogate)	94.4	%	74 - 121	(LCL - UCL)	EPA-8260	02/26/08	02/26/08 15:46	LHS	MS-V2	1	BRB1433		

Total Petroleum Hydrocarbo	ns
Rancho Cordova, CA 95670 Project Manager: Daniel Davis	
3164 Gold Camp Road, Suite 200 Project Number: [none]	
Delta Environmental Consultants, Inc. Project: 7376	Reported: 03/10/2008 16:51

BCL Sample ID: 0802383-15	Client Sam	ple Name	e: 7376, CF	P-2, CP-2@	@14.5-15, 2	/19/2008	10:40:00AM		<u>.</u>				
······································					<u></u>	Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Diesel Range Organics (C12 - C24)	ND	mg/kg	2.0		Luft/TPHd	02/26/08	03/05/08 20:21	PTL	GC-5	0.990	BRC0288	ND	
Tetracosane (Surrogate)	63.6		34 - 136 (L			02/26/08	03/05/08 20:21	PTL	GC-5	0.990	BRC0288		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com Page 35 of 58

Delta Environmental Consultants, Ir 3164 Gold Camp Road, Suite 200 Rancho Cordova, CA 95670	IC.				Project: ect Number: ct Manager:	[none])avis		1000		Repo	orted: 03/1	0/2008 16:
	Vol	atile	Organ	ic A	nalys	is (E	PA Met	hod	8260))			
BCL Sample ID: 0802383-16	Client Sam	ple Name	: 7376, CP-:	2, CP-2@	<u>@</u> 19.5-20, 2	/19/2008	10:45:00AM						
Constituent	Result	Units	PQL	MDL	Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
Benzene	ND	mg/kg	0.0050		EPA-8260	02/26/08	02/26/08 16:12	LHS	MS-V2	1	BRB1433	ND	
1,2-Dibromoethane	ND	mg/kg	0.0050		EPA-8260	02/26/08	02/26/08 16:12	LHS	MS-V2	1	BRB1433	ND	
1,2-Dichloroethane	ND	mg/kg	0.0050		EPA-8260	02/26/08	02/26/08 16:12	LHS	MS-V2	1	BRB1433	ND	
Ethylbenzene	ND	mg/kg	0.0050		EPA-8260	02/26/08	02/26/08 16:12	LHS	MS-V2	1	BRB1433	ND	
Methyl t-butyl ether	ND	mg/kg	0.0050		EPA-8260	02/26/08	02/26/08 16:12	LHS	MS-V2	1	BRB1433	ND	
Toluene	ND	mg/kg	0.0050		EPA-8260	02/26/08	02/26/08 16:12	LHS	MS-V2	1	BRB1433	ND	
Total Xylenes	ND	mg/kg	0.010		EPA-8260	02/26/08	02/26/08 16:12	LHS	MS-V2	1	BRB1433	ND	
t-Amyl Methyl ether	ND	mg/kg	0.0050		EPA-8260	02/26/08	02/26/08 16:12	LHS	MS-V2	1	BRB1433	ND	
t-Butyl alcohol	ND	mg/kg	0.050		EPA-8260	02/26/08	02/26/08 16:12	LHS	MS-V2	• 1	BRB1433	ND	
Diisopropyl ether	ND	mg/kg	0.0050		EPA-8260	02/26/08	02/26/08 16:12	LHS	MS-V2	1	BRB1433	ND	
Ethanol	ND	mg/kg	1:0		EPA-8260	02/26/08	02/26/08 16:12	LHS	MS-V2	1.	BRB1433	ND	
Ethyl t-butyl ether	ND	mg/kg	0.0050		EPA-8260	02/26/08	02/26/08 16:12	LHS	MS-V2	1	BRB1433	ND	
Total Purgeable Petroleum Hydrocarbons	ND	mg/kg	0.20		EPA-8260	02/26/08	02/26/08 16:12	LHS	MS-V2	1	BRB1433	ND	
1,2-Dichloroethane-d4 (Surrogate)	99.8	%	70 - 121 (LC	L - UCL)	EPA-8260	02/26/08	02/26/08 16:12	LHS	MS-V2	1	BRB1433		
Toluene-d8 (Surrogate)	106	%	81 - 117 (LC	L - UCL)	EPA-8260	02/26/08	02/26/08 16:12	LHS	MS-V2	1	BRB1433		
4-Bromofluorobenzene (Surrogate)	95.5	%	74 - 121 (LC	L - UCL)	EPA-8260	02/26/08	02/26/08 16:12	LHS	MS-V2	1	BRB1433		

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com Page 36 of 58

3164 Gold Camp Road, Suite 200 Rancho Cordova, CA 95670	Project Number: [none] Project Manager: Daniel Davis	
Delta Environmental Consultants, Inc.	Project: 7376	Reported: 03/10/2008 16:51

BCL Sample ID: 0802383-16	Client Sam	ple Name	e: 7376, CP-	2, CP-2(@19.5-20, 2	/19/2008	10:45:00AM						
			1.1.2.11			Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quais
Diesel Range Organics (C12 - C24)	ND	mg/kg	2.0		Luft/TPHd	02/26/08	03/05/08 20:35	PTL	GC-5	0.997	BRC0288	ND	
Tetracosane (Surrogate)	60.7	%	34 - 136 (LC	L - UCL)	Luft/TPHd		03/05/08 20:35		GC-5	0.997	BRC0288		

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com Page 37 of 58

Delta Environmental Consultants, Inc 3164 Gold Camp Road, Suite 200	2.			Proje	Project: ect Number:						Repo	orted: 03/1	10/2008 16:
Rancho Cordova, CA 95670					ct Manager:		avis						
	Vol	atile	Orgar			· · · · ·	PA Met	hod	8260))			
BCL Sample ID: 0802383-17	Client Sam	ple Name:	7376, CP	-2, CP-2@	24.5-25, 2	/19/2008	10:53:00AM						
Constituent	Result	Units	PQL	MDL	Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
Benzene	ND	mg/kg	0.0050		EPA-8260	02/26/08	02/26/08 16:39	LHS	MS-V2	1	BRB1433	ND	
1,2-Dibromoethane	ND	mg/kg	0.0050		EPA-8260	02/26/08	02/26/08 16:39	LHS	MS-V2	1	BRB1433	ND	
1,2-Dichloroethane	ND	mg/kg	0.0050		EPA-8260	02/26/08	02/26/08 16:39	LHS	MS-V2	1	BRB1433	NĎ	
Ethylbenzene	ND	mg/kg	0.0050		EPA-8260	02/26/08	02/26/08 16:39	LHS	MS-V2	1	BRB1433	ND	
Methyl t-butyl ether	ND	mg/kg	0.0050		EPA-8260	02/26/08	02/26/08 16:39	LHS	MS-V2	1	BRB1433	ND 🁋	
Toluene	ND	mg/kg	0.0050		EPA-8260	02/26/08	02/26/08 16:39	LHS	MS-V2	1	BRB1433	ND	
Total Xylenes	ND	mg/kg	0.010		EPA-8260	02/26/08	02/26/08 16:39	LHS	MS-V2	1	BRB1433	ND	
t-Amyl Methyl ether	ND	mg/kg	0.0050		EPA-8260	02/26/08	02/26/08 16:39	LHS	MS-V2	1	BRB1433	ND	
t-Butyl alcohol	ND	mg/kg	0.050		EPA-8260	02/26/08	02/26/08 16:39	LHS	MS-V2	1	BRB1433	ND	
Diisopropyl ether	ND	mg/kg	0.0050		EPA-8260	02/26/08	02/26/08 16:39	LHS	MS-V2	1	BRB1433	ND	
Ethanol	ND	mg/kg	1.0		EPA-8260	02/26/08	02/26/08 16:39	LHS	MS-V2	1	BRB1433	ND	
Ethyl t-butyl ether	ND	mg/kg	0.0050		EPA-8260	02/26/08	02/26/08 16:39	LHS	MS-V2	1	BRB1433	ND	
Total Purgeable Petroleum Hydrocarbons	ND	mg/kg	0.20		EPA-8260	02/26/08	02/26/08 16:39	LHS	MS-V2	1	BRB1433	NĎ	
1,2-Dichloroethane-d4 (Surrogate)	104	%	70 - 121 (L	CL - UCL)	EPA-8260	02/26/08	02/26/08 16:39	LHS	MS-V2	1	BRB1433		
Toluene-d8 (Surrogate)	103	%	81 - 117 (L	CL - UCL)	EPA-8260	02/26/08	02/26/08 16:39	LHS	MS-V2	1	BRB1433		
4-Bromofluorobenzene (Surrogate)	85.2	%	74 - 121 (L	CL - UCL)	EPA-8260	02/26/08	02/26/08 16:39	LHS	MS-V2	1	BRB1433		

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com Page 38 of 58

Total Potroloum	ludrocarbono
Rancho Cordova, CA 95670 Project Manager: D	aniel Davis
3164 Gold Camp Road, Suite 200 Project Number: [n	ione]
Delta Environmental Consultants, Inc. Project: 73	376 Reported: 03/10/2008 16:51

BCL Sample ID: 0802383-17	Client Sam	ple Name	: 7376, CF	P-2, CP-2(@24.5-25, 2	/19/2008	10:53:00AM						
•						Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Diesel Range Organics (C12 - C24)	ND	mg/kg	2.0		Luft/TPHd	02/26/08	03/05/08 21:32	PTL	GC-5	1.010	BRC0288	ND	
Tetracosane (Surrogate)	59.4	%	34 - 136 (L	.CL - UCL)		02/26/08	03/05/08 21:32	PTL	GC-5	1.010	BRC0288		

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com Page 39 of 58

Delta Environmental Consultants, Ir 3164 Gold Camp Road, Suite 200 Rancho Cordova, CA 95670	Project Number: [none] Project Manager: Daniel Davis								Repo	orted: 03/1	0/2008 16:5		
	Vol	atile	Orgar	nic A	nalys	is (E	PA Met	hod	8260))			
BCL Sample ID: 0802383-18	Client Sam	ple Name	: 73 7 6, CP	-2, CP-2@	@29.5-30, 2	/19/2008	11:00:00AM						
Constituent	Result	Units	PQL	MDL	Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
Benzene	ND	mg/kg	0.0050		EPA-8260	02/26/08	02/26/08 17:05	LHS	MS-V2	1	BRB1433	ND	
1,2-Dibromoethane	ND	mg/kg	0.0050		EPA-8260	02/26/08	02/26/08 17:05	LHS	MS-V2	1	BRB1433	ND	
1,2-Dichloroethane	ND	mg/kg	0.0050	· · ·	EPA-8260	02/26/08	02/26/08 17:05	LHS	MS-V2	1	BRB1433	ND	
Ethylbenzene	ND	mg/kg	0.0050		EPA-8260	02/26/08	02/26/08 17:05	LHS	MS-V2	1	BRB1433	ND	
Methyl t-butyl ether	ND	mg/kg	0.0050		EPA-8260	02/26/08	02/26/08 17:05	LHS	MS-V2	1	BRB1433	ND	
Toluene	ND	mg/kg	0.0050		EPA-8260	02/26/08	02/26/08 17:05	LHS	MS-V2	1	BRB1433	ND	
Total Xylenes	ND	mg/kg	0.010		EPA-8260	02/26/08	02/26/08 17:05	LHS	MS-V2	1	BRB1433	ND	
t-Amyl Methyl ether	ND	mg/kg	0.0050		EPA-8260	02/26/08	02/26/08 17:05	LHS	MS-V2	1	BRB1433	ND	
t-Butyl alcohol	ND	mg/kg	0.050		EPA-8260	02/26/08	02/26/08 17:05	LHS	MS-V2	1	BRB1433	ND	
Diisopropyl ether	ND	mg/kg	0.0050		EPA-8260	02/26/08	02/26/08 17:05	LHS	MS-V2	1	BRB1433	ND	
Ethanol	ND	mg/kg	1.0		EPA-8260	02/26/08	02/26/08 17:05	LHS	MS-V2	1	BRB1433	ND	
Ethyl t-butyl ether	ND	mg/kg	0.0050		EPA-8260	02/26/08	02/26/08 17:05	LHS	MS-V2	1	BRB1433	ND	
Total Purgeable Petroleum Hydrocarbons	ND	mg/kg	0.20		EPA-8260	02/26/08	02/26/08 17:05	LHS	MS-V2	1	BRB1433	ND	
1,2-Dichloroethane-d4 (Surrogate)	100	%	70 - 121 (L	CL - UCL)	EPA-8260	02/26/08	02/26/08 17:05	LHS	MS-V2	1	BRB1433		
Toluene-d8 (Surrogate)	103	%	81 - 117 (L	CL - UCL)	EPA-8260	02/26/08	02/26/08 17:05	LHS	MS-V2	1	BRB1433		
4-Bromofluorobenzene (Surrogate)	96.3	%	74 - 121 (L	CL - UCL)	EPA-8260	02/26/08	02/26/08 17:05	LHS	MS-V2	1	BRB1433		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com Page 40 of 58

	Total Petroleum	Hydrocarbons	
Rancho Cordova, CA 95670	Project Manager:	Daniel Davis	,
3164 Gold Camp Road, Suite 200	Project Number:	[none]	
Delta Environmental Consultants, Inc.	Project:	7376	Reported: 03/10/2008 16:51

Client Sample Name: 7376, CP-2, CP-2@29.5-30, 2/19/2008 11:00:00AM 0802383-18 **BCL Sample ID:** QC Prep Run Instru-MB Lab Result Units PQL MDL Method Date/Time Analyst ment ID Batch ID Bias Constituent Date Dilution Quals 2.0 Luft/TPHd 02/26/08 03/05/08 21:46 PTL GC-5 0.993 BRC0288 ND Diesel Range Organics (C12 - C24) ND mg/kg 03/05/08 21:46 PTL GC-5 BRC0288 Tetracosane (Surrogate) 68.1 % 34 - 136 (LCL - UCL) Luft/TPHd 02/26/08 0.993

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com Page 41 of 58

Delta Environmental Consultants, Inc 3164 Gold Camp Road, Suite 200 Rancho Cordova, CA 95670				Projec	Project: ct Number: ct Manager:	[none] Daniel D					Repo	rted: 03/1	0/2008 16:5
	Vol	atile (Orgar	nic A	nalys	is (E	PA Met	hod	8260))			
BCL Sample ID: 0802383-19	Client Sam	ple Name:	7376, CP	-2, CP-2@	034.5-35, 2		11:10:00AM					MB	Lab
Constituent	Result	Units	PQL	MDL	Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	Bias	Quals
Benzene	ND	mg/kg	0.0050		EPA-8260	02/26/08	02/26/08 17:31	LHS	MS-V2	1	BRB1433	ND	
1.2-Dibromoethane	ND	mg/kg	0.0050	,	EPA-8260	02/26/08	02/26/08 17:31	LHS	MS-V2	1	BRB1433	ND	
1,2-Dichloroethane	ND	mg/kg	0.0050		EPA-8260	02/26/08	02/26/08 17:31	LHS	MS-V2	1	BRB1433	ND	
Ethylbenzene	ND	mg/kg	0.0050		EPA-8260	02/26/08	02/26/08 17:31	LHS	MS-V2	1	BRB1433	ND	
Methyl t-butyl ether	ND	mg/kg	0.0050		EPA-8260	02/26/08	02/26/08 17:31	LHS	MS-V2	1	BRB1433	ND	
Toluene	ND	mg/kg	0.0050		EPA-8260	02/26/08	02/26/08 17:31	LHS	MS-V2	1	BRB1433	ND	
Total Xylenes	ND	mg/kg	0.010		EPA-8260	02/26/08	02/26/08 17:31	LHS	MS-V2	1	BRB1433	ND	
t-Amyl Methyl ether	ND	mg/kg	0.0050		EPA-8260	02/26/08	02/26/08 17:31	LHS	MS-V2	1	BRB1433	ND	
t-Butyl alcohol	ND	mg/kg	0.050		EPA-8260	02/26/08	02/26/08 17:31	LHS	MS-V2	1	BRB1433	ND	
Diisopropyl ether	ND	mg/kg	0.0050		EPA-8260	02/26/08	02/26/08 17:31	LHS	MS-V2	1	BRB1433	ND	
Ethanol	ND	mg/kg	1.0		EPA-8260	02/26/08	02/26/08 17:31	LHS	MS-V2	1	BRB1433	ND	
Ethyl t-butyl ether	ND	mg/kg	0.0050		EPA-8260	02/26/08	02/26/08 17:31	LHS	MS-V2	1	BRB1433	ND	
Total Purgeable Petroleum Hydrocarbons	ND	mg/kg	0.20		EPA-8260	02/26/08	02/26/08 17:31	LHS	MS-V2	1	BRB1433	ND	
1,2-Dichloroethane-d4 (Surrogate)	103	%	70 - 121 (L	CL - UCL)	EPA-8260	02/26/08	02/26/08 17:31	LHS	MS-V2	1 .	BRB1433		
Toluene-d8 (Surrogate)	105	%	81 - 1 17 (L	CL - UCL)	EPA-8260	02/26/08	02/26/08 17:31	LHS	MS-V2	1	BRB1433		
4-Bromofluorobenzene (Surrogate)	86.7	%	74 - 121 (L	CL - UCL)	EPA-8260	02/26/08	02/26/08 17:31	LHS	MS-V2	1	BRB1433		ure 1

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com Page 42 of 58

Delta Environmental Consultants, Inc.	Project: 7376	Reported: 03/10/2008 16:51
3164 Gold Camp Road, Suite 200 Rancho Cordova, CA 95670	Project Number: [none] Project Manager: Daniel Davis	

BCL Sample ID: 0802383-19	Client Sam	ple Name	: 7376, CP-2	2, CP-2(@34.5-35, 2	/19/2008	11:10:00AM						
	· · · • • • • • • • • • • • • • • • • •					Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Diesel Range Organics (C12 - C24)	ND	mg/kg	2.0		Luft/TPHd	02/26/08	03/05/08 22:00	PTL	GC-5	0.987	BRC0288	ND	
Tetracosane (Surrogate)	66.6	%	34 - 136 (LCI	UCL)	Luft/TPHd	02/26/08	03/05/08 22:00	PTL	GC-5	0.987	BRC0288		

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com Page 43 of 58

Delta Environmental Consultants, Ind 3164 Gold Camp Road, Suite 200 Rancho Cordova, CA 95670	C.	Project: 7376 Project Number: [none] Project Manager: Daniel Davis								Repo	orted: 03/	10/2008 16:
	Vol	atile	Organic /			and the	hod	826	0)			
BCL Sample ID: 0802383-20	Client Sam	ple Name:	7376, CP-2, CP-	2@39.5-40, 2	2/19/2008	11:20:00AM						
Constituent	Result	Units	PQL MDL	. Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
Benzene	ND	mg/kg	0.0050	EPA-8260	02/26/08	02/26/08 17:57	LHS	MS-V2	1	BRB1433	ND	
1,2-Dibromoethane	ND	mg/kg	0.0050	EPA-8260	02/26/08	02/26/08 17:57	LHS	MS-V2	1	BRB1433	ND	
1,2-Dichloroethane	ND	mg/kg	0.0050	EPA-8260	02/26/08	02/26/08 17:57	LHS	MS-V2	1	BRB1433	ND	
Ethylbenzene	ND	mg/kg	0.0050	EPA-8260	02/26/08	02/26/08 17:57	LHS	MS-V2	1	BRB1433	ND	
Methyl t-butyl ether	ND	mg/kg	0.0050	EPA-8260	02/26/08	02/26/08 17:57	LHS	MS-V2	1	BRB1433	ND	
Toluene	ND	mg/kg	0.0050	EPA-8260	02/26/08	02/26/08 17:57	LHS	MS-V2	1	BRB1433	ND	
Total Xylenes	ND	mg/kg	0.010	EPA-8260	02/26/08	02/26/08 17:57	LHS	MS-V2	1	BRB1433	ND	
t-Amyl Methyl ether	ND	mg/kg	0.0050	EPA-8260	02/26/08	02/26/08 17:57	LHS	MS-V2	1	BRB1433	ND	
t-Butyl alcohol	ND	mg/kg	0.050	EPA-8260	02/26/08	02/26/08 17:57	LHS	MS-V2	1	BRB1433	ND	
Diisopropyl ether	ND	mg/kg	0.0050	EPA-8260	02/26/08	02/26/08 17:57	LHS	MS-V2	1	BRB1433	ND	
Ethanol	ND	mg/kg	1.0	EPA-8260	02/26/08	02/26/08 17:57	LHS	MS-V2	. 1	BRB1433	ND	
Ethyl t-butyl ether	ND	mg/kg	0.0050	EPA-8260	02/26/08	02/26/08 17:57	LHS	MS-V2	1	BRB1433	ND	
Total Purgeable Petroleum Hydrocarbons	ND	mg/kg	0.20	EPA-8260	02/26/08	02/26/08 17:57	LHS	MS-V2	1	BRB1433	ND	
1,2-Dichloroethane-d4 (Surrogate)	106	%	70 - 121 (LCL - UC	L) EPA-8260	02/26/08	02/26/08 17:57	LHS	MS-V2	1	BRB1433		
Toluene-d8 (Surrogate)	107	%	81 - 117 (LCL - UC	L) EPA-8260	02/26/08	02/26/08 17:57	LHS	MS-V2	1	BRB1433		

74 - 121 (LCL - UCL) EPA-8260 02/26/08 02/26/08 17:57

Toluene-d8 (Surrogate)

4-Bromofluorobenzene (Surrogate)

101

%

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

LHS

MS-V2

1

BRB1433

All results listed in this report alteration, separation, detachment or third party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com

Page 44 of 58

Delta Environmental Consultants, Inc.	Project: 7376	Reported: 03/10/2008 16:51
3164 Gold Camp Road, Suite 200	Project Number: [none]	
Rancho Cordova, CA 95670	Project Manager: Daniel Davis	

BCL Sample ID: 0802383-20	Client Sam	ple Name	: 7376, CF	P-2, CP-2(@39.5-40, 2	/19/2008	11:20:00AM						
						Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Diesel Range Organics (C12 - C24)	ND	mg/kg	2.0		Luft/TPHd	02/26/08	03/05/08 22:14	PTL	GC-5	1	BRC0288	ND	
Tetracosane (Surrogate)	65.4	%	34 - 136 (L	.CL - UCL)	Luft/TPHd	02/26/08	03/05/08 22:14	PTL	GC-5	1	BRC0288		

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 45 of 58

Delta Environmental Consultants, Inc 3164 Gold Camp Road, Suite 200 Rancho Cordova, CA 95670					Project: ect Number: ct Manager:	[none]	Davis				Repo	orted: 03/	10/2008 16:5
	Vol	atile	Orgar	nic A	nalys	is (E	EPA Me	thod	826	D)			
BCL Sample ID: 0802383-21	Client Sam	ple Name	7376, CP	-2, CP-2@	@44.5-45, 2	/19/2008	1:28:00PM						
Constituent	Result	Units	PQL	MDL	Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quais
Benzene	ND	mg/kg	0.0050		EPA-8260	02/26/08	02/26/08 18:23	3 LHS	MS-V2	. 1	BRB1433	ND	
1,2-Dibromoethane	ND	mg/kg	0.0050		EPA-8260	02/26/08	02/26/08 18:23	3 LHS	MS-V2	1	BRB1433	ND	
1,2-Dichloroethane	ND	mg/kg	0.0050		EPA-8260	02/26/08	02/26/08 18:2:	3 LHS	MS-V2	1	BRB1433	ND	
Ethylbenzene	ND	mg/kg	0.0050		EPA-8260	02/26/08	02/26/08 18:23	3 LHS	MS-V2	1	BRB1433	ND	
Methyl t-butyl ether	ND	mg/kg	0.0050		EPA-8260	02/26/08	02/26/08 18:23	3 LHS	MS-V2	1	BRB1433	ND	
Toluene	ND	mg/kg	0.0050		EPA-8260	02/26/08	02/26/08 18:23	3 LHS	MS-V2	1	BRB1433	ND	
Total Xylenes	ND	mg/kg	0.010		EPA-8260	02/26/08	02/26/08 18:23	3 LHS	MS-V2	1	BRB1433	ND	
t-Amyl Methyl ether	ND	mg/kg	0.0050		EPA-8260	02/26/08	02/26/08 18:2	3 LHS	MS-V2	1	BRB1433	ND	
t-Butyl alcohol	ND	mg/kg	0.050		EPA-8260	02/26/08	02/26/08 18:2	3 LHS	MS-V2	1	BRB1433	ND	
Diisopropyl ether	ND .	mg/kg	0.0050		EPA-8260	02/26/08	02/26/08 18:2	3 LHS	MS-V2	1	BRB1433	ND	
Ethanol	ND	mg/kg	1.0		EPA-8260	02/26/08	02/26/08 18:2	3 LHS	MS-V2	1	BRB1433	ND	
Ethyl t-butyl ether	ND	mg/kg	0.0050		EPA-8260	02/26/08	02/26/08 18:2	3 LHS	MS-V2	1	BRB1433	ND	
Total Purgeable Petroleum Hydrocarbons	ND	mg/kg	0.20		EPA-8260	02/26/08	02/26/08 18:2	3 LHS	MS-V2	1	BRB1433	ND	
1,2-Dichloroethane-d4 (Surrogate)	101	%	70 - 121 (LC	CL - UCL)	EPA-8260	02/26/08	02/26/08 18:2	3 LHS	MS-V2	1	BRB1433		
Toluene-d8 (Surrogate)	104	%	81 - 117 (LC	CL - UCL)	EPA-8260	02/26/08	02/26/08 18:2	3 LHS	MS-V2	1	BRB1433		
4-Bromofluorobenzene (Surrogate)	104	%	74 - 121 (LC	CL - UCL)	EPA-8260	02/26/08	02/26/08 18:2	3 LHS	MS-V2	1	BRB1433		

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com Page 46 of 58

Delta Environmental Consultants, Inc.	Project: 7376	Reported: 03/10/2008 16:51
3164 Gold Camp Road, Suite 200	Project Number: [none]	
Rancho Cordova, CA 95670	Project Manager: Daniel Davis	
	Tatal Datualauma Ukudwa aa	<u>ula na </u>

Total Petroleum Hydrocarbons

BCL Sample ID: 0802383-21	Client Sam	ple Name	: 7376, CI	P-2, CP-2(@44.5-45, 2	2/19/2008	1:28:00PM						
						Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Diesel Range Organics (C12 - C24)	ND	mg/kg	2.0		Luft/TPHd	02/26/08	03/05/08 22:28	PTL	GC-5	1	BRC0288	ND	
Tetracosane (Surrogate)	59.6	%	34 - 136 (L		Luft/TPHd		03/05/08 22:28	PTL	GC-5	1	BRC0288		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com Page 47 of 58

Delta Environmental Consultants, Inc 3164 Gold Camp Road, Suite 200 Rancho Cordova, CA 95670					Project: ect Number: ct Manager:	[none]	Davis				Repo	orted: 03/1	0/2008 16:5
	Vola	atile	Orgai	nic A	nalys	is (E	EPA Met	hod	8260))			
BCL Sample ID: 0802383-22	Client Sam	ole Name	: 7376, CF	P-2, CP-2@	249.5-50, 2	/19/2008	1:43:00PM						
Constituent	Result	Units	PQL	MDL	Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
Benzene	ND	mg/kg	0.0050		EPA-8260	02/26/08	02/26/08 18:50	LHS	MS-V2	1	BRB1433	ND	
1,2-Dibromoethane	ND	mg/kg	0.0050		EPA-8260	02/26/08	02/26/08 18:50	LHS	MS-V2	1	BRB1433	ND	
1,2-Dichloroethane	ND	mg/kg	0.0050		EPA-8260	02/26/08	02/26/08 18:50	LHS	MS-V2	1	BRB1433	ND	
Ethylbenzene	ND	mg/kg	0.0050		EPA-8260	02/26/08	02/26/08 18:50	LHS	MS-V2	1	BRB1433	ND	
Methyl t-butyl ether	ND	mg/kg	0.0050		EPA-8260	02/26/08	02/26/08 18:50	LHS	MS-V2	1	BRB1433	ND	
Toluene	ND	mg/kg	0.0050		EPA-8260	02/26/08	02/26/08 18:50	LHS	MS-V2	1	BRB1433	ND	
Total Xylenes	ND	mg/kg	0.010		EPA-8260	02/26/08	02/26/08 18:50	LHS	MS-V2	1	BRB1433	ND	
t-Amyi Methyl ether	ND	mg/kg	0.0050		EPA-8260	02/26/08	02/26/08 18:50	LHS	MS-V2	1	BRB1433	ND	
t-Butyl alcohol	ND	mg/kg	0.050		EPA-8260	02/26/08	02/26/08 18:50	LHS	MS-V2	1	BRB1433	ND	
Diisopropyl ether	ND	mg/kg	0.0050		EPA-8260	02/26/08	02/26/08 18:50	LHS	MS-V2	1	BRB1433	ND	
Ethanol	ND	mg/kg	1.0		EPA-8260	02/26/08	02/26/08 18:50	LHS	MS-V2	1	BRB1433	ND	
Ethyl t-butyl ether	ND	mg/kg	0.0050		EPA-8260	02/26/08	02/26/08 18:50	LHS	MS-V2	. 1	BRB1433	ND	
Total Purgeable Petroleum Hydrocarbons	ND	mg/kg	0.20		EPA-8260	02/26/08	02/26/08 18:50	LHS	MS-V2	1	BRB1433	ND	
1,2-Dichloroethane-d4 (Surrogate)	103	%	70 - 121 (L	CL - UCL)	EPA-8260	02/26/08	02/26/08 18:50	ĿHS	MS-V2	1	BRB1433		
Toluene-d8 (Surrogate)	95.8	%	81 - 117 (L	CL - UCL)	EPA-8260	02/26/08	02/26/08 18:50	LHS	MS-V2	1	BRB1433		
4-Bromofluorobenzene (Surrogate)	97.5	%	74 - 121 (L	CL - UCL)	EPA-8260	02/26/08	02/26/08 18:50	LHS	MS-V2	1	BRB1433		

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com Page 48 of 58

Delta Environmental Consultants, Inc.Project: 7376Reported: 03/10/2008 16:513164 Gold Camp Road, Suite 200Project Number: [none]Rancho Cordova, CA 95670Project Manager: Daniel Davis

Total Petroleum Hydrocarbons

BCL Sample ID: 0802383-22	Client Sam	ple Name	: 7376, CF	P-2, CP-2@	@49.5-50, 2	/19/2008	1:43:00PM			-			
						Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Diesel Range Organics (C12 - C24)	ND	mg/kg	2.0		Luft/TPHd	02/26/08	03/03/08 13:42	PTL	GC-5	1	BRC0024	ND	
Tetracosane (Surrogate)	67.1	%	34 - 136 (L	CL - UCL)	Luft/TPHd	02/26/08	03/03/08 13:42	PTL	GC-5	1	BRC0024		

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com Page 49 of 58

Delta Environmental Consultants, Inc.Project:7376Reported:03/10/200816:513164 Gold Camp Road, Suite 200Project Number:[none]Project Nanager:Daniel DavisRancho Cordova, CA 95670Project Manager:Daniel Davis

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Precision & Accuracy

										Contro	ol Limits
			Source	Source		Spike			Percent		Percent
Constituent	Batch ID	QC Sample Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery Lab Quals
Benzene	[,] BRB1345	Matrix Spike	0801068-82	0	0.12438	0.12500	mg/kg		99.5		70 - 130
		Matrix Spike Duplicate	e0801068-82	0	0.11800	0.12500	mg/kg	5.3	94.4	20	70 - 130
Toluene	BRB1345	Matrix Spike	0801068-82	0	0.13120	0.12500	mg/kg		105		70 - 130
		Matrix Spike Duplicate	e0801068-82	0	0.12920	0.12500	mg/kg	1.9	103	20	70 - 130
1,2-Dichloroethane-d4 (Surrogate)	BRB1345	Matrix Spike	0801068-82	ND	0.048004	0.050000	mg/kg		96.0		70 - 121
		Matrix Spike Duplicat	e0801068-82	NÐ	0.046538	0.050000	mg/kg		93.1		70 - 121
Toluene-d8 (Surrogate)	BRB1345	Matrix Spike	0801068-82	ND	0.051196	0.050000	mg/kg		102		81 - 117
		Matrix Spike Duplicat	e0801068-82	ND	0.050764	0.050000	mg/kg		102		81 - 117
4-Bromofluorobenzene (Surrogate)	BRB1345	Matrix Spike	0801068-82	ND	0.043875	0.050000	mg/kg		87.8		74 - 121
		Matrix Spike Duplicat	e0801068-82	ND	0.049093	0.050000	mg/kg		98.2		74 - 121
Benzene	BRB1433	Matrix Spike	0801068-84	0	0.12119	0.12500	mg/kg		97.0		70 - 130
		Matrix Spike Duplicat	e0801068-84	0	0.12119	0.12500	mg/kg	0	97.0	20	70 - 130
Toluene	BRB1433	Matrix Spike	0801068-84	0	0.12641	0.12500	mg/kg		101		70 - 130
		Matrix Spike Duplicat	e 0801068-84	0	0.12811	0.12500	mg/kg	1.0	102	20	70 - 130
1,2-Dichloroethane-d4 (Surrogate)	BRB1433	Matrix Spike	0801068-84	ND	0.051066	0.050000	mg/kg		102		70 - 121
		Matrix Spike Duplicat	e 0801068-84	ND	0.048522	0.050000	mg/kg		97.0		70 - 121
Toluene-d8 (Surrogate)	BRB1433	Matrix Spike	0801068-84	ND	0.050871	0.050000	mg/kg		102		81 - 117
		Matrix Spike Duplicat	te 0801068-84	ND	0.050682	0.050000	mg/kg		101		81 - 117
4-Bromofluorobenzene (Surrogate)	BRB1433	Matrix Spike	0801068-84	ND	0.046015	0.050000	mg/kg		92.0		74 - 121
		Matrix Spike Duplicat	te 0801068-84	ND	0.045712	0.050000	mg/kg		91.4		74 - 121
Benzene	BRB1546	Matrix Spike	0802245-02	0	25.610	25.000	ug/L		102		70 - 130
		Matrix Spike Duplicat	te 0802245-02	0	28.730	25.000	ug/L	12.0	115	20	70 - 130
Toluene	BRB1546	Matrix Spike	0802245-02	0	24.420	25.000	ug/L		97.7		70 - 130
		Matrix Spike Duplicat	te 0802245-02	0	27.940	25.000	ug/L	13.6	112	20	70 - 130
1,2-Dichloroethane-d4 (Surrogate)	BRB1546	Matrix Spike	0802245-02	ND	9.6700	10.000	ug/L		96.7		76 - 114
		Matrix Spike Duplical	te 0802245-02	ND	9.8500	10.000	ug/L		98.5		76 - 114

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 50 of 58

Delta Environmental Consultants, Inc.	Project: 7376	Reported: 03/10/2008 16:51
3164 Gold Camp Road, Suite 200 Rancho Cordova, CA 95670	Project Number: [none] Project Manager: Daniel Davis	

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Precision & Accuracy

										Contre	ol Limits
			Source	Source		Spike			Percent		Percent
Constituent	Batch ID	QC Sample Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery Lab Quals
Toluene-d8 (Surrogate)	BRB1546	Matrix Spike	0802245-02	ND	9.9200	10.000	ug/L		99.2		88 - 110
		Matrix Spike Duplicat	e 0802245-02	ND	10.000	10.000	ug/L		100		88 - 110
4-Bromofluorobenzene (Surrogate)	BRB1546	Matrix Spike	0802245-02	ND	10.610	10.000	ug/L		106		86 - 115
		Matrix Spike Duplicat	e 0802245-02	ND	10.330	10.000	ug/L		103		86 - 115

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com Page 51 of 58

Delta Environmental Consultants, Inc.	Project:	7376	Reported: 03/10/2008 16:51
3164 Gold Camp Road, Suite 200	Project Number:	[none]	
Rancho Cordova, CA 95670	Project Manager:	Daniel Davis	

Total Petroleum Hydrocarbons

Quality Control Report - Precision & Accuracy

										Contro	<u>ol Limits</u>	
Constituent	Batch ID	QC Sample Type	Source Sample ID	Source Result	Result	Spike Added	Units	RPD	Percent Recovery	RPD	Percent Recover	t y Lab Quals
Diesel Range Organics (C12 - C24)	BRB1904	Matrix Spike Matrix Spike Duplicat	0801068-61 e0801068-61	0	447.99 423.46	500.00 500.00	ug/L ug/L	5.6	89.6 84.7	30	36 - 130 36 - 130	-
Tetracosane (Surrogate)	BRB1904	Matrix Spike Matrix Spike Duplicat	0801068-61 e 0801068-61	ND ND	15.733 14.885	20.000 20.000	ug/L ug/L		78.7 74.4		28 - 139 28 - 139	
Diesel Range Organics (C12 - C24)	BRC0024	Matrix Spike Matrix Spike Duplicat	0802310-25 e 0802310-25	7443.7 7443.7	7469.0 6398.2	16.447 16.502	mg/kg mg/kg	210	154 -6340	30	40 - 137 40 - 137	A01,Q03 A01,Q02,Q0 3
Tetracosane (Surrogate)	BRC0024	Matrix Spike Matrix Spike Duplicat	0802310-25 e 0802310-25	ND ND	0 0	0.65789 0.66007	mg/kg mg/kg		0		34 - 136 34 - 136	A01,A17 A01,A17
Diesel Range Organics (C12 - C24)	BRC0288	Matrix Spike Matrix Spike Duplicat	0801068-59 e 0801068-59	0 0	13.913 16.826	16.722 16.835	mg/kg mg/kg	18.2	83.2 99.9	30	40 - 137 40 - 137	
Tetracosane (Surrogate)	BRC0288	Matrix Spike Matrix Spike Duplicat	0801068-59 e 0801068-59	ND ND	0.47371 0.59710	0.66890 0.67340	mg/kg mg/kg		70.8 88.7		34 - 136 34 - 136	

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com Page 52 of 58

Delta Environmental Consultants, Inc.Project:7376Reported:03/10/200816:513164 Gold Camp Road, Suite 200Project Number:[none]I

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Laboratory Control Sample

										Control	<u>Limits</u>	
Constituent	Potob ID	QC Sample ID		Decult	Spike	DOI	11	Percent		Percent		
			QC Type	Result	Level	PQL	Units	Recovery	RPD	Recovery	RPD	Lab Quals
Benzene	BRB1345	BRB1345-BS1	LCS	0.11757	0.12500	0.0050	mg/kg	94.1		70 - 130		
Toluene	BRB1345	BRB1345-BS1	LCS	0.12814	0.12500	0.0050	mg/kg	103		70 - 130		
1,2-Dichloroethane-d4 (Surrogate)	BRB1345	BRB1345-BS1	LCS	0.047648	0.050000		mg/kg	95.3		70 - 121		
Toluene-d8 (Surrogate)	BRB1345	BRB1345-BS1	LCS	0.051123	0.050000		mg/kg	102		81 - 117		
4-Bromofluorobenzene (Surrogate)	BRB1345	BRB1345-BS1	LCS	0.049705	0.050000		mg/kg	99.4		74 - 121		
Benzene	BRB1433	BRB1433-BS1	LCS	0.12036	0.12500	0.0050	mg/kg	96.3		70 - 130		
Toluene	BRB1433	BRB1433-BS1	LCS	0.12893	0.12500	0.0050	mg/kg	103		70 - 130		
1,2-Dichloroethane-d4 (Surrogate)	BRB1433	BRB1433-BS1	LCS	0.048194	0.050000		mg/kg	96.4		70 - 121		
Toluene-d8 (Surrogate)	BRB1433	BRB1433-BS1	LCS	0.051012	0.050000		mg/kg	102		81 - 117		
4-Bromofluorobenzene (Surrogate)	BRB1433	BRB1433-BS1	LCS	0.046063	0.050000		mg/kg	92.1		74 - 121		
Benzene	BRB1546	BRB1546-BS1	LCS	27.480	25.000	0.50	ug/L	110	· · · · · · · · · · · · · · · · · · ·	70 - 130		
Toluene	BRB1546	BRB1546-BS1	LCS	26.170	25.000	0.50	ug/L	105		70 - 130		
1,2-Dichloroethane-d4 (Surrogate)	BRB1546	BRB1546-BS1	LCS	9.7700	10.000		ug/L	97.7		76 - 114	********	
Toluene-d8 (Surrogate)	BRB1546	BRB1546-BS1	LCS	9.8700	10.000		ug/L	98.7		88 - 110		
4-Bromofluorobenzene (Surrogate)	BRB1546	BRB1546-BS1	LCS	10.420	10.000		ug/L	104	• • • • • • • • • • • •	86 - 115		

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Delta Environmental Consultants, Inc. 3164 Gold Camp Road, Suite 200 Rancho Cordova, CA 95670

Project: 7376 Project Number: [none]

Reported: 03/10/2008 16:51

Page 54 of 58

Project Manager: Daniel Davis

Total Petroleum Hydrocarbons

Quality Control Report - Laboratory Control Sample

										Control	Limits	
Constituent	Batch ID	QC Sample ID	QC Туре	Result	Spike Level	PQL	Units	Percent Recovery	RPD	Percent Recovery	RPD	Lab Quals
Diesel Range Organics (C12 - C24)	BRB1904	BRB1904-BS1	LCS	477.69	500.00	50	ug/L	95.5		48 - 125		
Tetracosane (Surrogate)	BRB1904	BRB1904-BS1	LCS	15.522	20.000		ug/L	77.6		28 - 139		·
Diesel Range Organics (C12 - C24)	BRC0024	BRC0024-BS1	LCS	12.833	16.447	2.0	mg/kg	78.0		50 - 136		
Tetracosane (Surrogate)	BRC0024	BRC0024-BS1	LCS	0.52447	0.65789		mg/kg	79.7		34 - 136		
Diesel Range Organics (C12 - C24)	BRC0288	BRC0288-BS1	LCS	14.754	16.779	2.0	mg/kg	87.9		50 - 136		
Tetracosane (Surrogate)	BRC0288	BRC0288-BS1	LCS	0.52430	0.67114		mg/kg	78.1		34 - 136		

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Delta Environmental Consultants, Inc. 3164 Gold Camp Road, Suite 200 Rancho Cordova, CA 95670		Project: 7376 ject Number: [none] ect Manager: Daniel Dav	ris		F	eported: 03	8/10/2008 16:5
Vol	atile Organic	Analysis (E	PA Metho	d 8260)		
	Quality Control I	Report - Method	l Blank Anal	ysis	•		
Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quais
Benzene	BRB1345	BRB1345-BLK1	ND	mg/kg	0.0050		
1,2-Dibromoethane	BRB1345	BRB1345-BLK1	ND	mg/kg	0.0050		
1,2-Dichloroethane	BRB1345	BRB1345-BLK1	ND	mg/kg	0.0050		
Ethylbenzene	BRB1345	BRB1345-BLK1	ND	mg/kg	0.0050		
Methyl t-butyl ether	BRB1345	BRB1345-BLK1	ND	mg/kg	0.0050		
Toluene	BRB1345	BRB1345-BLK1	ND	mg/kg	0.0050		
Total Xylenes	BRB1345	BRB1345-BLK1	ND	mg/kg	0.010		
t-Amyl Methyl ether	BRB1345	BRB1345-BLK1	ND	mg/kg	0.0050		
t-Butyl alcohol	BRB1345	BRB1345-BLK1	ND	mg/kg	0.050		
Diisopropyl ether	BRB1345	BRB1345-BLK1	ND	mg/kg	0.0050		
Ethanol	BRB1345	BRB1345-BLK1	ND	mg/kg	1.0		
Ethyl t-butyl ether	BRB1345	BRB1345-BLK1	ND	mg/kg	0.0050		
Total Purgeable Petroleum Hydrocarbons	BRB1345	BRB1345-BLK1	ND	mg/kg	0.20		
1,2-Dichloroethane-d4 (Surrogate)	BRB1345	BRB1345-BLK1	94.9	%	70 - 121 (LCL - UCL)	-
Toluene-d8 (Surrogate)	BRB1345	BRB1345-BLK1	92.7	%	81 - 117 (LCL - UCL)	
4-Bromofluorobenzene (Surrogate)	BRB1345	BRB1345-BLK1	97.2	%	74 - 121 (LCL - UCL)	
Benzene	BRB1433	BRB1433-BLK1	ND	mg/kg	0.0050		
1,2-Dibromoethane	BRB1433	BRB1433-BLK1	ND	mg/kg	0.0050		
1,2-Dichloroethane	BRB1433	BRB1433-BLK1	ND	mg/kg	0.0050		
Ethylbenzene	BRB1433	BRB1433-BLK1	ND	mg/kg	0.0050		
Methyl t-butyl ether	BRB1433	BRB1433-BLK1	ND	mg/kg	0.0050		
Toluene	BRB1433	BRB1433-BLK1	ND	mg/kg	0.0050		
Total Xylenes	BRB1433	BRB1433-BLK1	ND	mg/kg	0.010		
t-Amyl Methyl ether	BRB1433	BRB1433-BLK1	ND	mg/kg	0.0050		

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com Page 55 of 58

Delta Environmental Consultants, Inc. 3164 Gold Camp Road, Suite 200 Rancho Cordova, CA 95670	Pro	Project: 7376 nject Number: [none] ect Manager: Daniel Dav	<i>i</i> is		ŀ	Reported: 03	/10/2008 16:5
Vo	atile Organic		· · · · · · · · · · · · · · · · · · ·	d 8260)	***	*****
	Quality Control I	Report - Method	l Blank Anal	ysis	•		
Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
t-Butyl alcohol	BRB1433	BRB1433-BLK1	ND	mg/kg	0.050		
Diisopropyl ether	BRB1433	BRB1433-BLK1	ND	mg/kg	0.0050	-	
Ethanol	BRB1433	BRB1433-BLK1	ND	mg/kg	1.0		
Ethyl t-butyl ether	BRB1433	BRB1433-BLK1	ND	mg/kg	0.0050		
Total Purgeable Petroleum Hydrocarbons	BRB1433	BRB1433-BLK1	ND	mg/kg	0.20		
1,2-Dichloroethane-d4 (Surrogate)	BRB1433	BRB1433-BLK1	99.6	%	70 - 121	LCL - UCL)	
Toluene-d8 (Surrogate)	BRB1433	BRB1433-BLK1	95.2	%	81 - 117	LCL - UCL)	
4-Bromofluorobenzene (Surrogate)	BRB1433	BRB1433-BLK1	95.3	%	74 - 121	LCL - UCL)	
Benzene	BRB1546	BRB1546-BLK1	ND	ug/L	0.50		
1,2-Dibromoethane	BRB1546	BRB1546-BLK1	ND	ug/L	0.50		
1,2-Dichloroethane	BRB1546	BRB1546-BLK1	ND	ug/L	0.50		<u></u>
Ethylbenzene	BRB1546	BRB1546-BLK1	ND	ug/L	0.50		
Methyl t-butyl ether	BRB1546	BRB1546-BLK1	ND ·	ug/L	0.50		
Toluene	BRB1546	BRB1546-BLK1	ND	ug/L	0.50		
Total Xylenes	BRB1546	BRB1546-BLK1	ND	ug/L	1.0		•••
t-Amyl Methyl ether	BRB1546	BRB1546-BLK1	ND	ug/L	0.50		· · · · · · · · · · · · · · · · · · ·
t-Butyl alcohol	BRB1546	BRB1546-BLK1	ND	ug/L	10		
Diisopropyl ether	BRB1546	BRB1546-BLK1	ND	ug/L	0.50		
Ethanol	BRB1546	BRB1546-BLK1	ND	ug/L	250		
Ethyl t-butyl ether	BRB1546	BRB1546-BLK1	ND	ug/L	0.50		•••••••••••••••••••••••••••••••••••••••
Total Purgeable Petroleum Hydrocarbons	BRB1546	BRB1546-BLK1	ND	ug/L	50		
1,2-Dichloroethane-d4 (Surrogate)	BRB1546	BRB1546-BLK1	100	· %	76 - 114	LCL - UCL)	
Toluene-d8 (Surrogate)	BRB1546	BRB1546-BLK1	101	%		LCL - UCL)	<u> </u>
4-Bromofluorobenzene (Surrogate)	BRB1546	BRB1546-BLK1	101	%		LCL - UCL)	

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 56 of 58

Delta Environmental Consultants, Inc.	P	roject: 7376			Reported: 03	3/10/2008 16:51
3164 Gold Camp Road, Suite 200	Project Nu	mber: [none]				
Rancho Cordova, CA 95670	Project Mar	nager: Daniel Dav	is			
	Total Petrole	um Hydr	ocarbons)	-	
	Quality Control Repo	ort - Method	Blank Anal	lysis	·	
Constituent	Batab ID (C Sample ID	MB Posult	Unite	 MDI	

Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lap Quais
Diesel Range Organics (C12 - C24)	BRB1904	BRB1904-BLK1	ND	ug/L	50		
Tetracosane (Surrogate)	BRB1904	BRB1904-BLK1	96.2	%	28 - 139	(LCL - UCL)	
Diesel Range Organics (C12 - C24)	BRC0024	BRC0024-BLK1	ND	mg/kg	2.0		
Tetracosane (Surrogate)	BRC0024	BRC0024-BLK1	71.0	%	34 - 136	(LCL - UCL)	
Diesel Range Organics (C12 - C24)	BRC0288	BRC0288-BLK1	ND	mg/kg	2.0		
Tetracosane (Surrogate)	BRC0288	BRC0288-BLK1	83.2	%	34 - 136	(LCL - UCL)	

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com Page 57 of 58

3164 G	Environmental Consultants, Inc. Gold Camp Road, Suite 200 o Cordova, CA 95670	Project: 7376 Project Number: [none] Project Manager: Daniel Davis		Reported: 03/10/2008	8 16:51
Notes	And Definitions		· .	······································	
MDL	Method Detection Limit				
ND	Analyte Not Detected at or above the reporting limit				
PQL	Practical Quantitation Limit				
RPD	Relative Percent Difference				
A01	PQL's and MDL's are raised due to sample dilution.				
A17	Surrogate not reportable due to sample dilution.				
A18	Surrogate not reportable due to matrix interference.			· · · · · · · · · · · · · · · · · · ·	
A90	TPPH does not exhibit a "gasoline" pattern. TPPH is entirely o	due to MTBE.			
Q02	Matrix spike precision is not within the control limits.				
Q03	Matrix spike recovery(s) is(are) not within the control limits.				

LABORATORIES, INC.

BC

Page 58 of 58

Date of Report: 03/07/2008

Daniel Davis

Delta Environmental Consultants, Inc. 3164 Gold Camp Road, Suite 200 Rancho Cordova, CA 95670

RE: 7376 BC Work Order: 0802338

Enclosed are the results of analyses for samples received by the laboratory on 02/20/2008 20:55. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Contact Person." Molly Meyers Client Service Rep

Authorized Signature

No. of Concession, Name	Contraction of the local division of the loc			
D	E	6] []]	En
		13		
By_				D
	and the state of the state of			

·									DI					• •	4		D .					
BC Labor	atories, Inc.	Conce	Dhilling	Site Mar			<u> </u>	Bill B	coPl	וווון		nai	n O	TC	-					<u></u>		·
4100 A	las Court		-	TANCE A	-			Dill D	otgn							Condcor	Inniba a	AF FIOJEC				ala ini
				TANCE	UUKE	:33:			CONOCO Attn: Dee								<u> </u>				DATE:	2/20/08
	ld, CA 93308		C. 6	233	8				3611 Sou	th Harb	or, Sult	e 200			Co	onocoPh	llips Req	ulsition/L	ine Num	ıber	PAGE:	of \
	(661) 327-1918 fax								Santa An	a, CA. 9	92704											
SAMPLING COMPANY: Delta Consultants		Valid Value (C	D:			OCOPHILL -	IPS SITE	NUMBER										L ID NO.:				
ADDRESS:		I			737 SITE	6 ADDRESS	(Street e	nd City):										OPHILLIPS		NAGER:		<u> </u>
,	e, Sulte 200 Rancho Cor	dova, CA 🤉	95670		419	1 First	Street	Pleasa	nton, Cali	fornla							Bill B	orah				
PROJECT CONTACT (Hardco Daniel J, Davis and Li								RP or Dasi	-				ТРН	ONE NO.:			E-MAIL:				SEONLY	
TELEPHONE:	FAX:	E-MAIL:											9	16-503	-1268		isteizi	ner@del	taenv.	LABU	SE UNE I	
916-503-1260	916-638-8385		seltaenv.co		LIS	a Stelzr	ier										<u>com</u>			L		
SAMPLER NAME(S) (Print): Lisa Steizner a	nd Meghann Hurt	CONSULTAN	C107376	-									RE	QUES	TED /	ANALY	SES					
TURNAROUND TIME (CAL		¬																			- T	<u> </u>
I 14 DAYS L 7 DAYS [72 HOURS 48 HOURS	24 HOURS	5 [_] LESS TI	AN 24 HOUR	-		μ				1											<u>:</u>
			10 FOD 10 M				MT8	2					1									FIELD NOTES:
SPECIAL INSTRUCTION		CHECK BOX		-		(18	1X															Container/Preservative or PID Readings
Please	tax cor	יע י	54		-	l 🗄	81	al ota														or Laboratory Notes
to 2.54	elever at	911	0° 63	5. 838	S g	8260B - TPPH/ BTEX/ Oxygenates	- TPH-G/ BTEX/ MTBE	- Lead []Total]STLC LP														
	nly required if different from	n Sample II	D		-1-8	3 - T		ا ہے ج												i		
	tification/Field Point Name*		ING M	ATRIX NO.		8260	8015M	6010 -												ł	TEMP	ERATURE ON RECEIPT C°
-1 CR-2 D				ater G	\overline{X}	X									<u>† </u>						No A	s preserved w) fici
	1.5-30.01 CP-3		3:45 5		X	X																- I
	5-85.0% CP-3		6:06 5		X						1										·	
- OF VEST	0 05.01 01 0		0.00			+		+	·	1	СНК	by		5151	वान	סווט	M			/ †		· · · · · · · · · · · · · · · · · · ·
		<u> </u>								╺┼┼╌┎		B		₩.						┢────╋		
								·			\mathcal{N}	NT 1	1210									
											0			<u>- 5</u>	<u>фв-</u> (1		
										·												
					-	-				-		++			1						_	
	.					1.					+	┼┈┼			\uparrow		+	<u> </u>				·
						-	,				1	$\uparrow \uparrow$									-	
Relinquished by: (Signature)	in the	5	Re		ilure)	.ila	Ń	R	LAB		···	·			. 1	D.	10	08			Time:	47
Relindushed by: (Signature)	shay 2/20/08	/	P	celved by: (Signa	ilure)	/.	$\overline{\mathbf{x}}$	\mathcal{V}										<u>20</u> -	08	<u>R</u>	Time:	74(
Relinguished by (Signature)		20.1	29	ceived by: (Signa	- 1	yat.	<u></u>										ite:	= 20 /		-	Time;	
<u>11</u>				g-fr	<u>v /l</u>	MAN	<u>د ب</u>			,							2/0	-0/	vO			9/03 Revision
	1 20	728	- 1																			

.

.

	·····	SAM		EIPT FOR		Rev. No. 1	0 01/21	104 Pa	age \ O	f)
BC LABORATORIES INC.						1	Batch #		3-1	
Submission #: 080,0838	<u> </u>	roject C								
SHIPPING INFOR							NG CONT			
Federal Express UPS UPS Other I	Hand Del				Ice Chest Box		Non Othe	е Ц ж 🖸 (Spe	ecify)	
BC Lab Field Service	J (Spear)	·			000	5				
Refrigerant: Ice 🛙 Blue Ice [] Nor	ne 🗍	Other []	Com	nents:		<u></u>			
Custody Seals: Ice Chest []	Containe Intact? Yes	INO D		Comm	ients:					
All samples received? Yes D No 🗆	All sample	s containe	rs intact?)	es 🗐 No	0	Descrip	tion(s) match			
COC Received			hest ID			sivity	.97	Date/T	ime <u>J-Q(</u>	1-8
YES INO		Tempe Thermom	erature: 🧾	<u>3.7</u> °C	Cont	ainer <u>67</u>	<u>A</u>	Analys	ime <u>2-2(</u> t Init <u>/4-</u> 2	2058
	1	Incinion		<u>47</u>			·····			
SAMPLE CONTAINERS			T		SAMPLE		1 . 1	8	9	10
	1	2	3	4	5	6		<u> </u>		
OT GENERAL MINERAL/ GENERAL PHYSICAL				·			<u> </u>			
OT INORGANIC CHEMICAL METALS		-								
PT INORGANIC CHEMICAL METALS			1							
PT CYANIDE										
PT NITROGEN FORMS			1 .							
PT TOTAL SULFIDE									•	
202. NITRATE / NITRITE					-					
100ml TOTAL ORGANIC CARBON										
ΟΤ ΤΟΧ										
PT CHEMICAL OXYGEN DEMAND										
PIA PHENOLICS										
40ml VOA VIAL TRAVEL BLANK										
40ml VOA VIAL	A·S	<u>с</u> (<u> </u>	()	<u> </u>		ر ۲	(÷ 3
QT EPA 413.1, 413.2, 418.1			 							
PT ODOR			ļ							
RADIOLOGICAL							┠────┼			
BACTERIOLOGICAL							┨────┼			
40 ml VOA VIAL- 504	`									·····
QT EPA 508/608/8080		· · · · · · · · · · · · · · · · · · ·								
QT EPA 515.1/8150										[
<u>QT EPA 525</u>										
QT EPA 525 TRAVEL BLANK							·			
100mt EPA 547			· · · ·							1
100mt EPA 531.1 QT EPA 548					à					
OT EPA 549										
QT EPA 632			-							
QT EPA 8015M		•								
QT QA/QC						-				
QT AMBER	13									
8 07. JAR										
32 OZ. JAR	· · ·			-						
SOIL SLEEVE		A	A							
PCB VIAL							└ <u>─</u> ──┤-			
PLASTIC BAG	L,I						 _			
FERROUS IRON	ļ				·		ļ		t	
ENCORE			· · · · · · · · · · · · · ·				l_			
Comments:										

Sample Numbering Completed By:

Bu Date/Time: 2-20-8 2320

Delta Environmental Consultants, Inc. 3164 Gold Camp Road, Suite 200 Rancho Cordova, CA 95670		· · · ·	Project: 7376 Project Number: [none] Project Manager: Daniel Davis		Reported: 03/07/2008 11:07
,		Laboratory /	Client Sample Cross Ref	erence	
Laboratory	Client Sample Informat	ion			
0802338-01	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	7376 CP-2D CP-2D DECR	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	02/20/2008 20:55 02/20/2008 07:30 Water	Delivery Work Order: Global ID: T0600100101 Matrix: W Samle QC Type (SACode): CS Cooler ID:
0802338-02	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 7376 CP-3 CP-3@29.5-30.0 DECR	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	02/20/2008 20:55 02/20/2008 13:45 Solids	Delivery Work Order: Global ID: T0600100101 Matrix: SO Samle QC Type (SACode): CS Cooler ID:
0802338-03	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 7376 CP-3 CP-3@84.5-85.0 DECR	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	02/20/2008 20:55 02/20/2008 16:06 Solids	Delivery Work Order: Global ID: T0600100101 Matrix: SO Samle QC Type (SACode): CS Cooler ID:

Delta Environmental Consultants, In 3164 Gold Camp Road, Suite 200 Rancho Cordova, CA 95670	IC.				Project ect Number ct Manager	[none]	Davis				Repo	orted: 03/0	07/2008 11:0
,	Vol	atile	Orga	anic A	nalys	is (E	EPA Met	hod	8260))			
BCL Sample ID: 0802338-01	Client Sam	ple Name	e: 7376, (CP-2D, CP-	2D, 2/20/20	08 7:30:0	DOAM						
Constituent	Result	Units	PQL	MDL	Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
Benzene	0.67	ug/L	0.50		EPA-8260	02/26/08	02/27/08 22:29	ANO	MS-V4	1	BRB1438	ND	
1,2-Dibromoethane	ND	ug/L	0.50		EPA-8260	02/26/08	02/27/08 22:29	ANO	MS-V4	1	BRB1438		
1,2-Dichloroethane	ND	ug/L	0.50		EPA-8260	02/26/08	02/27/08 22:29	ANO	MS-V4	1	BRB1438		
Ethylbenzene	ND	ug/L	0.50		EPA-8260	02/26/08	02/27/08 22:29	ANO	MS-V4	1	BRB1438	ND	
Methyl t-butyl ether	1.4	ug/L	0.50		EPA-8260	02/26/08	02/27/08 22:29	ANO	MS-V4	1	BRB1438	ND	
Toluene	ND	ug/L	0.50		EPA-8260	02/26/08	02/27/08 22:29	ANO	MS-V4	1	BRB1438	ND	
Total Xylenes	ND	ug/L	1.0		EPA-8260	02/26/08	02/27/08 22:29	ANO	MS-V4	1	BRB1438	ND	
t-Amyl Methyl ether	ND	ug/L	0.50		EPA-8260	02/26/08	02/27/08 22:29	ANO	MS-V4	1	BRB1438	ND	
t-Butyl alcohol	ND	ug/L	10		EPA-8260	02/26/08	02/27/08 22:29	ANO	MS-V4	1	BRB1438	ND	
Diisopropyl ether	ND	ug/L	0.50		EPA-8260	02/26/08	02/27/08 22:29	ANO	MS-V4	1	BRB1438	ND	
Ethanol	ND	ug/L	250		EPA-8260	02/26/08	02/27/08 22:29	ANO	MS-V4	1	BRB1438	ND	
Ethyl t-butyl ether	ND	ug/L	0.50		EPA-8260	02/26/08	02/27/08 22:29	ANO	MS-V4	1	BRB1438	ND	
Total Purgeable Petroleum Hydrocarbons	ND	ug/L	50		EPA-8260	02/26/08	02/27/08 22:29	ANO	MS-V4	1	BRB1438	ND	
1,2-Dichloroethane-d4 (Surrogate)	101	%	76 - 114	(LCL - UCL)	EPA-8260	02/26/08	02/27/08 22:29	ANO	MS-V4	1	BRB1438		······
Toluene-d8 (Surrogate)	99.2	%	88 - 110	(LCL - UCL)	EPA-8260	02/26/08	02/27/08 22:29	ANO	MS-V4	1	BRB1438		
4-Bromofluorobenzene (Surrogate)	97.9	%	86 - 115	(LCL - UCL)	EPA-8260	02/26/08	02/27/08 22:29	ANO	MS-V4	1	BRB1438		

2

Delta Environmental Consultants, Inc. 3164 Gold Camp Road, Suite 200 Rancho Cordova, CA 95670	Project: 7376 Project Number: [none] Project Manager: Daniel Davis	Reported: 03/07/2008 11:07
•	Total Datuslassa II. J I	

Total Petroleum Hydrocarbons

BCL Sample ID: 0802338-01	Client Sam	ple Name	: 7376, CP	-2D, CP-:	2D, 2/20/20	08 7:30:0	DOAM						
Constituent	Result	Units	PQL	MDL	Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
Diesel Range Organics (C12 - C24)	150	ug/L	50		Luft/TPHd		03/01/08 01:34		GC-5	1	BRB1904	ND	
Tetracosane (Surrogate)	52.3	%	28 - 139 (LC	CL - UCL)	Luft/TPHd	02/26/08	03/01/08 01:34	PTL	GC-5	1	BRB1904		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Delta Environmental Consultants, Ind 3164 Gold Camp Road, Suite 200 Rancho Cordova, CA 95670).			Project ect Number ect Manager	[none]	Davis				Repo	orted: 03/0	07/2008 11:07
x	Vola	atile	Organic A	nalys	sis (E	EPA Met	hod	826	D)			- ////////
BCL Sample ID: 0802338-02	Client Sam	ple Name	: 7376, CP-3, CP-3	@29.5-30.0	, 2/20/200	8 1:45:00PM						
Constituent	Result	Units	PQL MDL	Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quais
Benzene	ND	mg/kg	0.0050	EPA-8260	02/20/08	02/21/08 17:59	JSK	MS-V3	1	BRB1190	ND	
1,2-Dibromoethane	ND	mg/kg	0.0050	EPA-8260	02/20/08	02/21/08 17:59	JSK	MS-V3	1	BRB1190	ND	
1,2-Dichloroethane	ND	mg/kg	0.0050	EPA-8260	02/20/08	02/21/08 17:59	JSK	MS-V3	1	BRB1190	ND	
Ethylbenzene	ND	mg/kg	0.0050	EPA-8260	02/20/08	02/21/08 17:59	JSK	MS-V3	1	BRB1190	ND	
Methýl t-butyl ether	ND	mg/kg	0.0050	EPA-8260	02/20/08	02/21/08 17:59	JSK	MS-V3	1	BRB1190	ND	
Toluene	ND	mg/kg	0.0050	EPA-8260	02/20/08	02/21/08 17:59	JSK	MS-V3	1	BRB1190	ND	
Total Xylenes	ND	mg/kg	0.010	EPA-8260	02/20/08	02/21/08 17:59	JSK	MS-V3	1	BRB1190	ND	
t-Amyl Methyl ether	ND	mg/kg	0.0050	EPA-8260	02/20/08	02/21/08 17:59	JSK	MS-V3	1	BRB1190	ND	
t-Butyl alcohol	ND	mg/kg	0.050	EPA-8260	02/20/08	02/21/08 17:59	JSK	MS-V3	1	BRB1190	ND	
Diisopropyl ether	ND	mg/kg	0.0050	EPA-8260	02/20/08	02/21/08 17:59	JSK	MS-V3	1	BRB1190	ND	
Ethanol .	ND	mg/kg	1.0	EPA-8260	02/20/08	02/21/08 17:59	JSK	MS-V3	1	BRB1190	ND	
Ethyl t-butyl ether	ND	mg/kg	0.0050	EPA-8260	02/20/08	02/21/08 17:59	JSK	MS-V3	1	BRB1190	ND	
Total Purgeable Petroleum Hydrocarbons	ND	mġ/kg	0.20	EPA-8260	02/20/08	02/21/08 17:59	JSK	MS-V3	1	BRB1190	ND	
1,2-Dichloroethane-d4 (Surrogate)	89.1	%	70 - 121 (LCL - UCL)	EPA-8260	02/20/08	02/21/08 17:59	JSK	MS-V3	1	BRB1190		,
Toluene-d8 (Surrogate)	94.4	%	81 - 117 (LCL - UCL)	EPA-8260	02/20/08	02/21/08 17:59	JSK	MS-V3	1	BRB1190		· · · · · · · · · · · · · · · · · · ·
4-Bromofluorobenzene (Surrogate)	95.8	%	74 - 121 (LCL - UCL)	EPA-8260	02/20/08	02/21/08 17:59	JSK	MS-V3	1	BRB1190		

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com

 Delta Environmental Consultants, Inc.
 Project:
 7376
 Reported:
 03/07/2008
 11:07

 3164 Gold Camp Road, Suite 200
 Project Number:
 [none]

 Rancho Cordova, CA 95670
 Project Manager:
 Daniel Davis

Total Petroleum Hydrocarbons

BCL Sample ID: 0802338-02	Client Sam	ple Name	e: 7376, CP	-3, CP-3(@29.5-30.0,	2/20/200	3 1:45:00PM		· · · ·				
Constituent						Prep	Run		instru-		QC	MB	Lab
Constituent	Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Diesel Range Organics (C12 - C24)	ND	mg/kg	2.0		Luft/TPHd	02/26/08	03/03/08 22:48	PTL	GC-5	0.984	BRC0024	ND	
Tetracosane (Surrogate)	68.2	%	34 - 136 (LC	CL - UCL)	Luft/TPHd	02/26/08	03/03/08 22:48	PTL	GC-5	0.984	BRC0024		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Delta Environmental Consultants, 3164 Gold Camp Road, Suite 200 Rancho Cordova, CA 95670	Inc.		Proj Proje	Project ect Number ect Manager	:: 7376 :: [none] :: Daniel [Davis				Repo	orted: 03/0)7/2008 11:0
	Vola	atile	Organic A	nalys	sis (E	PA Met	hod	8260))			
BCL Sample ID: 0802338-03	Client Sam	ple Name	: 7376, CP-3, CP-3	@84.5-85.0	, 2/20/200	8 4:06:00PM						
Constituent	Result	Units	PQL MDL	Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
Benzene	ND	mg/kg	0.0050	EPA-8260	02/20/08	02/21/08 18:25	JSK	MS-V3	1	BRB1190	ND	
1,2-Dibromoethane	ND	mg/kg	0.0050	EPA-8260	02/20/08	02/21/08 18:25	JSK	MS-V3	1	BRB1190	ND	
1,2-Dichloroethane	ND	mg/kg	0.0050	EPA-8260	02/20/08	02/21/08 18:25	JSK	MS-V3	1	BRB1190	ND	
Ethylbenzene	ND	mg/kg	0.0050	EPA-8260	02/20/08	02/21/08 18:25	JSK	MS-V3	1	BRB1190	ND	
Methýl t-butyl ether	ND	m g /kg	0.0050	EPA-8260	02/20/08	02/21/08 18:25	JSK	MS-V3	1	BRB1190	ND	
Toluene	ND	mg/kg	0.0050	EPA-8260	02/20/08	02/21/08 18:25	JSK	MS-V3	1	BRB1190	ND	
Total Xylenes	ND	mg/kg	0.010	EPA-8260	02/20/08	02/21/08 18:25	JSK	MS-V3	1	BRB1190	ND	
t-Amyl Methyl ether	ND	mg/kg	0.0050	EPA-8260	02/20/08	02/21/08 18:25	JSK	MS-V3	1	BRB1190	ND	
t-Butyl alcohol	ND	mg/kg	0.050	EPA-8260	02/20/08	02/21/08 18:25	JSK	MS-V3	1	BRB1190	ND	
Diisopropyl ether	ND	mg/kg	0.0050	EPA-8260	02/20/08	02/21/08 18:25	JSK	MS-V3	1	BRB1190	ND	
Ethanol	ND	mg/kg	1.0	EPA-8260	02/20/08	02/21/08 18:25	JSK	MS-V3	1	BRB1190	ND	
Ethyl t-butyl ether	ND	mg/kg	0.0050	EPA-8260	02/20/08	02/21/08 18:25	JSK	MS-V3	1	BRB1190	ND	
Total Purgeable Petroleum Hydrocarbons	ND	mg/kg	0.20	EPA-8260	02/20/08	02/21/08 18:25	JSK	MS-V3	1	BRB1190	ND	
1,2-Dichloroethane-d4 (Surrogate)	91.0	%	70 - 121 (LCL - UCL)	EPA-8260	02/20/08	02/21/08 18:25	JSK	MS-V3	1	BRB1190		
Toluene-d8 (Surrogate)	98.2	%	81 - 117 (LCL - UCL)	EPA-8260	02/20/08	02/21/08 18:25	JSK	MS-V3	1	BRB1190		
4-Bromofluorobenzene (Surrogate)	92.2	%	74 - 121 (LCL - UCL)	EPA-8260	02/20/08	02/21/08 18:25	JSK	MS-V3	1	BRB1190		

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com

Delta Environmental Consultants, Inc. 3164 Gold Camp Road, Suite 200 Rancho Cordova, CA 95670	Project: 7376 Project Number: [none] Project Manager: Danial Davia	Reported: 03/07/2008 11:07
	Project Manager: Daniel Davis	

Total Petroleum Hydrocarbons

BCL Sample ID: 0802338-03	Client Sam	ple Name	e: 7376, CP	-3, CP-3(@84.5-85.0	2/20/200	8 4:06:00PM						
· · · · ·						Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	<u>Units</u>	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Diesel Range Organics (C12 - C24)	ND	mg/kg	2.0		Luft/TPHd	02/26/08	03/03/08 23:02	PTL	GC-5	0.990	BRC0024	ND	
Tetracosane (Surrogate)	64.6	%	34 - 136 (LC	CL - UCL)	Luft/TPHd	02/26/08	03/03/08 23:02	PTL	GC-5	0.990	BRC0024		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

 Delta Environmental Consultants, Inc.
 Project:
 7376
 Reported:
 03/07/2008
 11:07

 3164 Gold Camp Road, Suite 200
 Project Number:
 [none]
 Project Manager:
 Daniel Davis

 Rancho Cordova, CA 95670
 Project Manager:
 Daniel Davis
 Daniel Davis

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Precision & Accuracy

									Contro	ol Limits
D-4-6 ID					Spike			Percent		Percent
Batch ID	QC Sample Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery Lab Quals
BRB1190	Matrix Spike	0801068-58	0	0.12812	0.12500	mg/kg		102		70 - 130
	Matrix Spike Duplicat	e 0801068-58	0	0.11936	0.12500	mg/kg	6.6	95.5	20	70 - 130
BRB1190	Matrix Spike	0801068-58	0	0.12338	0.12500	mg/kg		98.7		70 - 130
	Matrix Spike Duplicat	e 0801068-58	0	0.11762	0.12500	mg/kg	4.8	94.1	20	70 - 130
BRB1190	Matrix Spike	0801068-58	ND	0.050503	0.050000	mg/kg		101		70 - 121
	Matrix Spike Duplicate	e0801068-58	ND	0.049826	0.050000	mg/kg		99.7		70 - 121
BRB1190	Matrix Spike	0801068-58	ND	0.047214	0.050000	mg/kg		94.4		81 - 117
	Matrix Spike Duplicate	e0801068-58	ND	0.050166	0.050000	mg/kg		100		81 - 117
BRB1190	Matrix Spike	0801068-58	ND	0.049806	0.050000	ma/ka		99.6		74 - 121
	Matrix Spike Duplicate	e 0801068-58	ND	0.050338	0.050000	mg/kg		101		74 - 121
BRB1438	Matrix Spike	0802307-03	0	25.710	25.000	ua/L		103	<u> </u>	70 - 130
	Matrix Spike Duplicate	e 0802307-03	0	25.920	25.000	ug/L	1.0	104	20	70 - 130
BRB1438	Matrix Spike	0802307-03	0	27.100	25.000	ua/L		108		70 - 130
	Matrix Spike Duplicate	e 0802307-03	0	26.080	25.000	ug/L	3.8	104	20	70 - 130
BRB1438	Matrix Spike	0802307-03	ND	9.8100	10.000	ua/i.		98.1		76 - 114
	Matrix Spike Duplicate	e 0802307-03	ND	9.9700	10.000	ug/L		99.7		76 - 114
BRB1438	Matrix Spike	0802307-03	ND	10.260	10.000	 ua/I		103		88 - 110
	Matrix Spike Duplicate	e 0802307-03	ND	9.9400	10.000	•				88 - 110
BRB1438	Matrix Spike	0802307-03	ND	9.8100	10.000					86 - 115
	Matrix Spike Duplicate	e 0802307-03	ND	9.8500	10.000	ug/L		98.5		86 - 115
	BRB1190 BRB1190 BRB1190 BRB1190 BRB1190 BRB1438 BRB1438 BRB1438 BRB1438	Matrix Spike Duplicat BRB1190 Matrix Spike BRB1438 Matrix Spike	BRB1190Matrix Spike0801068-58Matrix Spike Duplicate 0801068-58BRB1190Matrix Spike Duplicate 0801068-58BRB1438Matrix Spike Duplicate 0801068-58BRB1438Matrix Spike Duplicate 0802307-03BRB1438Matrix Spike Duplicate 0802307-03	Batch IDQC Sample TypeSample IDResultBRB1190Matrix Spike0801068-580Matrix Spike Duplicate 0801068-580BRB1190Matrix Spike Duplicate 0801068-580BRB1190Matrix Spike Duplicate 0801068-580BRB1190Matrix Spike Duplicate 0801068-58NDMatrix Spike Duplicate 0801068-58NDMatrix Spike Duplicate 0801068-58NDBRB1190Matrix Spike Duplicate 0801068-58NDBRB1438Matrix Spike Duplicate 0802307-030BRB1438Matrix Spike Duplicate 0802307-030BRB1438Matrix Spike Duplicate 0802307-030BRB1438Matrix Spike Duplicate 0802307-03NDMatrix Spike Duplicate 0802307-03NDMatrix Spike Duplicate 0802307-03NDBRB1438Matrix Spike Duplicate 0802307-03NDBRB1438 </td <td>Batch ID QC Sample Type Sample ID Result Result BRB1190 Matrix Spike 0801068-58 0 0.12812 Matrix Spike Duplicate 0801068-58 0 0.11936 BRB1190 Matrix Spike 0801068-58 0 0.12338 BRB1190 Matrix Spike 0801068-58 0 0.12338 Matrix Spike 0801068-58 0 0.12338 BRB1190 Matrix Spike 0801068-58 ND 0.050503 Matrix Spike 0801068-58 ND 0.049826 BRB1190 Matrix Spike 0801068-58 ND 0.047214 Matrix Spike Duplicate 0801068-58 ND 0.049806 BRB1190 Matrix Spike Duplicate 0801068-58 ND 0.050338 BRB1190 Matrix Spike Duplicate 0802307-03 0 25.710 Matrix Spike Duplicate 0802307-03 0 25.920 BRB1438 Matrix Spike Duplicate 0802307-03 0 26.080 BRB1438 Matrix Spike 0802307-03 ND 9.8100 Matr</td> <td>Batch ID QC Sample Type Sample ID Result Result Added BRB1190 Matrix Spike 0801068-58 0 0.12812 0.12500 Matrix Spike Duplicate 0801068-58 0 0.12832 0.12500 BRB1190 Matrix Spike Duplicate 0801068-58 0 0.12338 0.12500 BRB1190 Matrix Spike Duplicate 0801068-58 0 0.12338 0.12500 BRB1190 Matrix Spike Duplicate 0801068-58 ND 0.050503 0.050000 BRB1190 Matrix Spike 0801068-58 ND 0.049826 0.050000 BRB1190 Matrix Spike 0801068-58 ND 0.047214 0.050000 BRB1190 Matrix Spike 0801068-58 ND 0.049806 0.050000 BRB1190 Matrix Spike 0801068-58 ND 0.049806 0.050000 BRB1190 Matrix Spike 0801068-58 ND 0.050338 0.050000 BRB1438 Matrix Spike 0802307-03 0 25.710 25.000 BRB1438 Matrix Spike 0802307-03 0 26.080 <</td> <td>Batch ID QC Sample Type Sample ID Result Result Added Units BRB1190 Matrix Spike 0801068-58 0 0.12812 0.12500 mg/kg BRB1190 Matrix Spike 0801068-58 0 0.11936 0.12500 mg/kg BRB1190 Matrix Spike 0801068-58 0 0.12338 0.12500 mg/kg BRB1190 Matrix Spike 0801068-58 0 0.11762 0.12500 mg/kg BRB1190 Matrix Spike 0801068-58 ND 0.050503 0.050000 mg/kg BRB1190 Matrix Spike 0801068-58 ND 0.0449826 0.050000 mg/kg BRB1190 Matrix Spike 0801068-58 ND 0.047214 0.050000 mg/kg BRB1190 Matrix Spike 0801068-58 ND 0.049806 0.050000 mg/kg BRB1190 Matrix Spike 0801068-58 ND 0.050338 0.050000 mg/kg BRB1438 Matrix Spike 0802307-</td> <td>Batch ID QC Sample Type Sample ID Result Result Added Units RPD BRB1190 Matrix Spike 0801068-58 0 0.12812 0.12500 mg/kg 6.6 BRB1190 Matrix Spike 0801068-58 0 0.11936 0.12500 mg/kg 6.6 BRB1190 Matrix Spike 0801068-58 0 0.11762 0.12500 mg/kg 4.8 BRB1190 Matrix Spike 0801068-58 ND 0.050503 0.050000 mg/kg 4.8 BRB1190 Matrix Spike 0801068-58 ND 0.049826 0.050000 mg/kg - BRB1190 Matrix Spike 0801068-58 ND 0.049826 0.050000 mg/kg - BRB1190 Matrix Spike 0801068-58 ND 0.05038 0.050000 mg/kg - BRB1438 Matrix Spike 08020307-03 0 25.710 25.000 ug/L 1.0 BRB1438 Matrix Spike 0802307-03 <t< td=""><td>Batch ID QC Sample Type Sample ID Result Result Added Units RPD Recovery BRB1190 Matrix Spike 0801068-58 0 0.12812 0.12500 mg/kg 6.6 95.5 BRB1190 Matrix Spike 0801068-58 0 0.12338 0.12500 mg/kg 4.8 94.1 BRB1190 Matrix Spike 0801068-58 0 0.1762 0.12500 mg/kg 4.8 94.1 BRB1190 Matrix Spike 0801068-58 ND 0.050503 0.050000 mg/kg 99.7 BRB1190 Matrix Spike 0801068-58 ND 0.047214 0.050000 mg/kg 99.7 BRB1190 Matrix Spike 0801068-58 ND 0.047214 0.050000 mg/kg 100 BRB1190 Matrix Spike 0801068-58 ND 0.05038 0.050000 mg/kg 100 BRB1190 Matrix Spike 0802307-03 0 25.710 25.000 ug/L 103</td><td>Batch ID QC Sample Type Sample ID Result Result Added Units RPD Recovery RPD BRB1190 Matrix Spike 0801068-58 0 0.12812 0.12500 mg/kg 6.6 95.5 20 BRB1190 Matrix Spike Duplicate 0801068-58 0 0.12338 0.12500 mg/kg 6.6 95.5 20 BRB1190 Matrix Spike Duplicate 0801068-58 0 0.12338 0.12500 mg/kg 4.8 94.1 20 BRB1190 Matrix Spike Duplicate 0801068-58 ND 0.050503 0.050000 mg/kg 99.7 - BRB1190 Matrix Spike Duplicate 0801068-58 ND 0.047214 0.050000 mg/kg 99.7 - BRB1190 Matrix Spike Duplicate 0801068-58 ND 0.049806 0.050000 mg/kg 100 - BRB1190 Matrix Spike Duplicate 0801068-58 ND 0.05033 0.050000 mg/kg 103 -</td></t<></td>	Batch ID QC Sample Type Sample ID Result Result BRB1190 Matrix Spike 0801068-58 0 0.12812 Matrix Spike Duplicate 0801068-58 0 0.11936 BRB1190 Matrix Spike 0801068-58 0 0.12338 BRB1190 Matrix Spike 0801068-58 0 0.12338 Matrix Spike 0801068-58 0 0.12338 BRB1190 Matrix Spike 0801068-58 ND 0.050503 Matrix Spike 0801068-58 ND 0.049826 BRB1190 Matrix Spike 0801068-58 ND 0.047214 Matrix Spike Duplicate 0801068-58 ND 0.049806 BRB1190 Matrix Spike Duplicate 0801068-58 ND 0.050338 BRB1190 Matrix Spike Duplicate 0802307-03 0 25.710 Matrix Spike Duplicate 0802307-03 0 25.920 BRB1438 Matrix Spike Duplicate 0802307-03 0 26.080 BRB1438 Matrix Spike 0802307-03 ND 9.8100 Matr	Batch ID QC Sample Type Sample ID Result Result Added BRB1190 Matrix Spike 0801068-58 0 0.12812 0.12500 Matrix Spike Duplicate 0801068-58 0 0.12832 0.12500 BRB1190 Matrix Spike Duplicate 0801068-58 0 0.12338 0.12500 BRB1190 Matrix Spike Duplicate 0801068-58 0 0.12338 0.12500 BRB1190 Matrix Spike Duplicate 0801068-58 ND 0.050503 0.050000 BRB1190 Matrix Spike 0801068-58 ND 0.049826 0.050000 BRB1190 Matrix Spike 0801068-58 ND 0.047214 0.050000 BRB1190 Matrix Spike 0801068-58 ND 0.049806 0.050000 BRB1190 Matrix Spike 0801068-58 ND 0.049806 0.050000 BRB1190 Matrix Spike 0801068-58 ND 0.050338 0.050000 BRB1438 Matrix Spike 0802307-03 0 25.710 25.000 BRB1438 Matrix Spike 0802307-03 0 26.080 <	Batch ID QC Sample Type Sample ID Result Result Added Units BRB1190 Matrix Spike 0801068-58 0 0.12812 0.12500 mg/kg BRB1190 Matrix Spike 0801068-58 0 0.11936 0.12500 mg/kg BRB1190 Matrix Spike 0801068-58 0 0.12338 0.12500 mg/kg BRB1190 Matrix Spike 0801068-58 0 0.11762 0.12500 mg/kg BRB1190 Matrix Spike 0801068-58 ND 0.050503 0.050000 mg/kg BRB1190 Matrix Spike 0801068-58 ND 0.0449826 0.050000 mg/kg BRB1190 Matrix Spike 0801068-58 ND 0.047214 0.050000 mg/kg BRB1190 Matrix Spike 0801068-58 ND 0.049806 0.050000 mg/kg BRB1190 Matrix Spike 0801068-58 ND 0.050338 0.050000 mg/kg BRB1438 Matrix Spike 0802307-	Batch ID QC Sample Type Sample ID Result Result Added Units RPD BRB1190 Matrix Spike 0801068-58 0 0.12812 0.12500 mg/kg 6.6 BRB1190 Matrix Spike 0801068-58 0 0.11936 0.12500 mg/kg 6.6 BRB1190 Matrix Spike 0801068-58 0 0.11762 0.12500 mg/kg 4.8 BRB1190 Matrix Spike 0801068-58 ND 0.050503 0.050000 mg/kg 4.8 BRB1190 Matrix Spike 0801068-58 ND 0.049826 0.050000 mg/kg - BRB1190 Matrix Spike 0801068-58 ND 0.049826 0.050000 mg/kg - BRB1190 Matrix Spike 0801068-58 ND 0.05038 0.050000 mg/kg - BRB1438 Matrix Spike 08020307-03 0 25.710 25.000 ug/L 1.0 BRB1438 Matrix Spike 0802307-03 <t< td=""><td>Batch ID QC Sample Type Sample ID Result Result Added Units RPD Recovery BRB1190 Matrix Spike 0801068-58 0 0.12812 0.12500 mg/kg 6.6 95.5 BRB1190 Matrix Spike 0801068-58 0 0.12338 0.12500 mg/kg 4.8 94.1 BRB1190 Matrix Spike 0801068-58 0 0.1762 0.12500 mg/kg 4.8 94.1 BRB1190 Matrix Spike 0801068-58 ND 0.050503 0.050000 mg/kg 99.7 BRB1190 Matrix Spike 0801068-58 ND 0.047214 0.050000 mg/kg 99.7 BRB1190 Matrix Spike 0801068-58 ND 0.047214 0.050000 mg/kg 100 BRB1190 Matrix Spike 0801068-58 ND 0.05038 0.050000 mg/kg 100 BRB1190 Matrix Spike 0802307-03 0 25.710 25.000 ug/L 103</td><td>Batch ID QC Sample Type Sample ID Result Result Added Units RPD Recovery RPD BRB1190 Matrix Spike 0801068-58 0 0.12812 0.12500 mg/kg 6.6 95.5 20 BRB1190 Matrix Spike Duplicate 0801068-58 0 0.12338 0.12500 mg/kg 6.6 95.5 20 BRB1190 Matrix Spike Duplicate 0801068-58 0 0.12338 0.12500 mg/kg 4.8 94.1 20 BRB1190 Matrix Spike Duplicate 0801068-58 ND 0.050503 0.050000 mg/kg 99.7 - BRB1190 Matrix Spike Duplicate 0801068-58 ND 0.047214 0.050000 mg/kg 99.7 - BRB1190 Matrix Spike Duplicate 0801068-58 ND 0.049806 0.050000 mg/kg 100 - BRB1190 Matrix Spike Duplicate 0801068-58 ND 0.05033 0.050000 mg/kg 103 -</td></t<>	Batch ID QC Sample Type Sample ID Result Result Added Units RPD Recovery BRB1190 Matrix Spike 0801068-58 0 0.12812 0.12500 mg/kg 6.6 95.5 BRB1190 Matrix Spike 0801068-58 0 0.12338 0.12500 mg/kg 4.8 94.1 BRB1190 Matrix Spike 0801068-58 0 0.1762 0.12500 mg/kg 4.8 94.1 BRB1190 Matrix Spike 0801068-58 ND 0.050503 0.050000 mg/kg 99.7 BRB1190 Matrix Spike 0801068-58 ND 0.047214 0.050000 mg/kg 99.7 BRB1190 Matrix Spike 0801068-58 ND 0.047214 0.050000 mg/kg 100 BRB1190 Matrix Spike 0801068-58 ND 0.05038 0.050000 mg/kg 100 BRB1190 Matrix Spike 0802307-03 0 25.710 25.000 ug/L 103	Batch ID QC Sample Type Sample ID Result Result Added Units RPD Recovery RPD BRB1190 Matrix Spike 0801068-58 0 0.12812 0.12500 mg/kg 6.6 95.5 20 BRB1190 Matrix Spike Duplicate 0801068-58 0 0.12338 0.12500 mg/kg 6.6 95.5 20 BRB1190 Matrix Spike Duplicate 0801068-58 0 0.12338 0.12500 mg/kg 4.8 94.1 20 BRB1190 Matrix Spike Duplicate 0801068-58 ND 0.050503 0.050000 mg/kg 99.7 - BRB1190 Matrix Spike Duplicate 0801068-58 ND 0.047214 0.050000 mg/kg 99.7 - BRB1190 Matrix Spike Duplicate 0801068-58 ND 0.049806 0.050000 mg/kg 100 - BRB1190 Matrix Spike Duplicate 0801068-58 ND 0.05033 0.050000 mg/kg 103 -

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com

Delta Environmental Consultants, Inc.Project: 7376Reported: 03/07/2008 11:073164 Gold Camp Road, Suite 200Project Number: [none]Rancho Cordova, CA 95670Project Manager: Daniel Davis

Total Petroleum Hydrocarbons

Quality Control Report - Precision & Accuracy

										Contr	<u>ol Limits</u>	
Constituent	Batch ID	QC Sample Type	Source Sample ID	Source Result	Result	Spike Added	Units	RPD	Percent Recovery	RPD	Percent Recover	: y Lab Quals
Diesel Range Organics (C12 - C24)	BRB1904	Matrix Spike Matrix Spike Duplicat	0801068-61 e 0801068-61	0 0	447.99 423.46	500.00 500.00	ug/L ug/L	5.6	89.6 84.7	30	36 - 130 36 - 130	
Tetracosane (Surrogate)	BRB1904	Matrix Spike Matrix Spike Duplicat	0801068-61 e 0801068-61	ND ND	15.733 14.885	20.000 20.000	ug/L ug/L		78.7 74.4		28 - 139 28 - 139	
Diesel Range Organics (C12 - C24)	BRC0024	Matrix Spike Matrix Spike Duplicat	0802310-25 e 0802310-25	7443.7 7443.7	7469.0 6398.2	16.447 16.502	mg/kg mg/kg	210	154 -6340	30	40 - 137 40 - 137	A01,Q03 A01,Q02,Q0 3
Tetracosane (Surrogate)	BRC0024	Matrix Spike Matrix Spike Duplicat	0802310-25 e 0802310-25	ND ND	0 0	0.65789 0.66007	mg/kg mg/kg		0 0		34 - 136 34 - 136	A01,A17 A01,A17

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Delta Environmental Consultants, Inc.Project:7376Reported:03/07/200811:073164 Gold Camp Road, Suite 200Project Number:[none]Rancho Cordova, CA 95670Project Manager:Daniel Davis

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Laboratory Control Sample

									<u>Control</u>	Limits	
Batch ID	QC Sample ID	QC Type	Result	Spike Level	PQL	Units	Percent Recovery	RPD	Percent Recovery	RPD	Lab Quals
BRB1190	BRB1190-BS1	LCS	0.12152	0.12500	0.0050	mg/kg	97.2		70 130		
BRB1190	BRB1190-BS1	LCS	0.12153	0.12500	0.0050	mg/kg	97.2		70 - 130		
BRB1190	BRB1190-BS1	LCS	0.047554	0.050000		mg/kg	95.1		70 - 121		
BRB1190	BRB1190-BS1	LCS	0.050730	0.050000		mg/kg	101		81 - 117		
BRB1190	BRB1190-BS1	LCS	0.049441	0.050000		mg/kg	98.9		74 - 121		
BRB1438	BRB1438-BS1	LCS	25.610	25.000	0.50	ug/L	102		70 - 130		
BRB1438	BRB1438-BS1	LCS	25.510	25.000	0.50	ug/L	102		70 - 130		
BRB1438	BRB1438-BS1	LCS	9.7300	10.000		ug/L	97.3		76 - 114		
BRB1438	BRB1438-BS1	LCS	9.8900	10.000		ug/L	98.9				
BRB1438	BRB1438-BS1	LCS	9.6900	10.000		ug/L	96.9		86 - 115		
	BRB1190 BRB1190 BRB1190 BRB1190 BRB1190 BRB1438 BRB1438 BRB1438 BRB1438	Batch ID QC Sample ID BRB1190 BRB1190-BS1 BRB1438 BRB1438-BS1 BRB1438 BRB1438-BS1 BRB1438 BRB1438-BS1 BRB1438 BRB1438-BS1 BRB1438 BRB1438-BS1	BRB1190 BRB1190-BS1 LCS BRB1438 BRB1438-BS1 LCS	BRB1190 BRB1190-BS1 LCS 0.12152 BRB1190 BRB1190-BS1 LCS 0.12153 BRB1190 BRB1190-BS1 LCS 0.047554 BRB1190 BRB1190-BS1 LCS 0.047554 BRB1190 BRB1190-BS1 LCS 0.050730 BRB1190 BRB1190-BS1 LCS 0.049441 BRB1438 BRB1438-BS1 LCS 25.610 BRB1438 BRB1438-BS1 LCS 25.510 BRB1438 BRB1438-BS1 LCS 9.7300 BRB1438 BRB1438-BS1 LCS 9.8900	Batch ID QC Sample ID QC Type Result Level BRB1190 BRB1190-BS1 LCS 0.12152 0.12500 BRB1190 BRB1190-BS1 LCS 0.12153 0.12500 BRB1190 BRB1190-BS1 LCS 0.047554 0.050000 BRB1190 BRB1190-BS1 LCS 0.047554 0.050000 BRB1190 BRB1190-BS1 LCS 0.049441 0.050000 BRB1438 BRB1438-BS1 LCS 25.610 25.000 BRB1438 BRB1438-BS1 LCS 25.510 25.000 BRB1438 BRB1438-BS1 LCS 9.7300 10.000 BRB1438 BRB1438-BS1 LCS 9.8900 10.000	Batch ID QC Sample ID QC Type Result Level PQL BRB1190 BRB1190-BS1 LCS 0.12152 0.12500 0.0050 BRB1190 BRB1190-BS1 LCS 0.12153 0.12500 0.0050 BRB1190 BRB1190-BS1 LCS 0.047554 0.050000 0.0050 BRB1190 BRB1190-BS1 LCS 0.050730 0.050000 0.050000 BRB1190 BRB1190-BS1 LCS 0.049441 0.050000 0.50 BRB1438 BRB1438-BS1 LCS 25.610 25.000 0.50 BRB1438 BRB1438-BS1 LCS 9.7300 10.000 0.50 BRB1438 BRB1438-BS1 LCS 9.8900 10.000 0.50	Batch ID QC Sample ID QC Type Result Level PQL Units BRB1190 BRB1190-BS1 LCS 0.12152 0.12500 0.0050 mg/kg BRB1190 BRB1190-BS1 LCS 0.12153 0.12500 0.0050 mg/kg BRB1190 BRB1190-BS1 LCS 0.047554 0.050000 mg/kg BRB1190 BRB1190-BS1 LCS 0.050730 0.050000 mg/kg BRB1190 BRB1190-BS1 LCS 0.049441 0.050000 mg/kg BRB1438 BRB1438-BS1 LCS 25.610 25.000 0.50 ug/L BRB1438 BRB1438-BS1 LCS 9.7300 10.000 ug/L BRB1438 BRB1438-BS1 LCS 9.8900 10.000 ug/L	Batch IDQC Sample IDQC TypeResultLevelPQLUnitsRecoveryBRB1190BRB1190-BS1LCS0.121520.125000.0050mg/kg97.2BRB1190BRB1190-BS1LCS0.121530.125000.0050mg/kg97.2BRB1190BRB1190-BS1LCS0.0475540.050000mg/kg95.1BRB1190BRB1190-BS1LCS0.0507300.050000mg/kg101BRB1190BRB1190-BS1LCS0.0494410.050000mg/kg98.9BRB1438BRB1438-BS1LCS25.61025.0000.50ug/L102BRB1438BRB1438-BS1LCS9.730010.000ug/L97.3BRB1438BRB1438-BS1LCS9.890010.000ug/L98.9	Batch ID QC Sample ID QC Type Result Level PQL Units Recovery RPD BRB1190 BRB1190-BS1 LCS 0.12152 0.12500 0.0050 mg/kg 97.2 BRB1190 BRB1190-BS1 LCS 0.12153 0.12500 0.0050 mg/kg 97.2 BRB1190 BRB1190-BS1 LCS 0.12153 0.12500 0.0050 mg/kg 97.2 BRB1190 BRB1190-BS1 LCS 0.047554 0.050000 mg/kg 95.1 BRB1190 BRB1190-BS1 LCS 0.050730 0.050000 mg/kg 101 BRB1190 BRB1190-BS1 LCS 0.049441 0.050000 mg/kg 98.9 BRB1438 BRB1438-BS1 LCS 25.610 25.000 0.50 ug/L 102 BRB1438 BRB1438-BS1 LCS 25.510 25.000 0.50 ug/L 102 BRB1438 BRB1438-BS1 LCS 9.7300 10.000 ug/L 97.3 <	Batch IDQC Sample IDQC TypeResultLevelPQLUnitsRecoveryRPDRecoveryBRB1190BRB1190-BS1LCS0.121520.125000.0050mg/kg97.270 - 130BRB1190BRB1190-BS1LCS0.121530.125000.0050mg/kg97.270 - 130BRB1190BRB1190-BS1LCS0.0475540.050000mg/kg95.170 - 121BRB1190BRB1190-BS1LCS0.0507300.050000mg/kg10181 - 117BRB1190BRB1190-BS1LCS0.0494410.050000mg/kg98.974 - 121BRB1438BRB1438-BS1LCS25.61025.0000.50ug/L10270 - 130BRB1438BRB1438-BS1LCS25.51025.0000.50ug/L10270 - 130BRB1438BRB1438-BS1LCS9.730010.000ug/L97.376 - 114BRB1438BRB1438-BS1LCS9.890010.000ug/L98.988 - 110	Batch IDQC Sample IDQC TypeResultLevelPQLUnitsRecoveryRPDRecoveryRPDBRB1190BRB1190-BS1LCS0.121520.125000.0050mg/kg97.270 - 130BRB1190BRB1190-BS1LCS0.121530.125000.0050mg/kg97.270 - 130BRB1190BRB1190-BS1LCS0.0475540.050000mg/kg95.170 - 121BRB1190BRB1190-BS1LCS0.0507300.050000mg/kg10181 - 117BRB1190BRB1190-BS1LCS0.0494410.050000mg/kg98.974 - 121BRB1438BRB1438-BS1LCS25.61025.0000.50ug/L10270 - 130BRB1438BRB1438-BS1LCS25.51025.0000.50ug/L10270 - 130BRB1438BRB1438-BS1LCS9.730010.000ug/L98.988 - 110BRB1438BRB1438-BS1LCS9.890010.000ug/L98.988 - 110

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

3164 Gold Camp Road, Suite 200 Project: 7376 Reported: 03/07/2008 Rancho Cordova, CA 95670 Project Manager: Daniel Davis	• /		Reported: 03/07/2008 11:0	7
--	-----	--	---------------------------	---

Total Petroleum Hydrocarbons

Quality Control Report - Laboratory Control Sample

									Control	_imits	
Constituent	Batch ID	QC Sample ID	QC Type	<u>Res</u> ult	Spike Level	PQL	Units	Percent Recovery	Percent RPD Recovery	RPD	Lab Quals
Diesel Range Organics (C12 - C24)	BRB1904	BRB1904-BS1	LCS	477.69	500.00	50	ug/L	95.5	48 - 125		· · · · · · · · · · · · · · · · · · ·
Tetracosane (Surrogate)	BRB1904	BRB1904-BS1	LCS	15.522	20.000		ug/L	77.6	28 - 139		1
Diesel Range Organics (C12 - C24)	BRC0024	BRC0024-BS1	LCS	12.833	16.447	2.0	mg/kg	78.0	50 - 136		, <u>,</u>
Tetracosane (Surrogate)	BRC0024	BRC0024-BS1	LCS	0.52447	0.65789		mg/kg	79.7	34 - 136	<u> </u>	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Delta Environmental Consultants, Inc. 3164 Gold Camp Road, Suite 200 Rancho Cordova, CA 95670	Proj Proje	Project: 7376 ect Number: [none] ect Manager: Daniel Dav	vis		R	eported: 03	/07/2008 11:07
	Volatile Organic			d 8260)		······
	Quality Control F						
Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quais
Benzene	BRB1190	BRB1190-BLK1	ND	mg/kg	0.0050		
1,2-Dibromoethane	BRB1190	BRB1190-BLK1	ND	mg/kg	0.0050		
1,2-Dichloroethane	BRB1190	BRB1190-BLK1	ND	mg/kg	0.0050		
Ethylbenzene	BRB1190	BRB1190-BLK1	ND	mg/kg	0.0050		
Methyl t-butyl ether	BRB1190	BRB1190-BLK1	ND	mg/kg	0.0050		
Toluene	BRB1190	BRB1190-BLK1	ND	mg/kg	0.0050		
Total Xylenes	BRB1190	BRB1190-BLK1	ND	mg/kg	0.010		
t-Amyl Methyl ether	BRB1190	BRB1190-BLK1	ND	mg/kg	0.0050		
t-Butyl alcohol	BRB1190	BRB1190-BLK1	ND	mg/kg	0.050		
Diisopropyl ether	BRB1190	BRB1190-BLK1	ND	mg/kg	0.0050		
Ethanol	BRB1190	BRB1190-BLK1	ND	mg/kg	1.0		
Ethyl,t-butyl ether	BRB1190	BRB1190-BLK1	ND	mg/kg	0.0050		
Total Purgeable Petroleum Hydrocarbons	BRB1190	BRB1190-BLK1	ND	mg/kg	0.20		
1,2-Dichloroethane-d4 (Surrogate)	BRB1190	BRB1190-BLK1	88.8	%	70 - 121 (L	CL - UCL)	
Toluene-d8 (Surrogate)	BRB1190	BRB1190-BLK1	99.2	%	81 - 117 (L		
4-Bromofluorobenzene (Surrogate)	BRB1190	BRB1190-BLK1	97.6	%	74 - 121 (L	<u>-</u>	
Benzene	BRB1438	BRB1438-BLK1	ND	ug/L	0.50		
Ethylbenzene	BRB1438	BRB1438-BLK1	ND	ug/L	0.50		
Methyl t-butyl ether	BRB1438	BRB1438-BLK1	ND	ug/L	0.50		
Toluene	BRB1438	BRB1438-BLK1	ND	ug/L	0.50		
Total Xylenes	BRB1438	BRB1438-BLK1	ND	ug/L	1.0		
t-Amyl Methyl ether	BRB1438	BRB1438-BLK1	ND	ug/L	0.50		
t-Butyl alcohol	BRB1438	BRB1438-BLK1	ND	ug/L	10		· · · · · · · · · · · · · · · · · · ·
Diisopropyl ether	BRB1438	BRB1438-BLK1	ND	ug/L	0.50		

BC Laboratories

۲

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com

Delta Environmental Consultants, Inc. 3164 Gold Camp Road, Suite 200 Rancho Cordova, CA 95670	Pro Proj	Project: 7376 ject Number: [none] ect Manager: Daniel Dav	vis			Reported: 03	/07/2008 11:07
Vola	atile Organic	Analysis (E	PA Metho	d 8260)		
	Quality Control I	- •					
Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
Ethanol	BRB1438	BRB1438-BLK1	ND	ug/L	250		
Ethyl t-butyl ether	BRB1438	BRB1438-BLK1	ND	ug/L	0.50		
Total Purgeable Petroleum Hydrocarbons	BRB1438	BRB1438-BLK1	ND	ug/L	50		·······
1,2-Dichloroethane-d4 (Surrogate)	BRB1438	BRB1438-BLK1	93.8	%	76 - 114	(LCL - UCL)	
Toluene-d8 (Surrogate)	BRB1438	BRB1438-BLK1	99.6	%		(LCL - UCL)	

BRB1438-BLK1

BRB1438

BC Laboratories

4-Bromofluorobenzene (Surrogate)

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

96.3

%

86 - 115 (LCL - UCL)

Delta Environmental Consultants, Inc. 3164 Gold Camp Road, Suite 200 Rancho Cordova, CA 95670	Project: 7376 Project Number: [none] Project Manager: Daniel Davis	Reported: 03/07/2008 11:07									
Total Petroleum Hydrocarbons											
	Quality Control Report - Method Blank Analy	sis									

1

Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
Diesel Range Organics (C12 - C24)	BRB1904	BRB1904-BLK1	ND	ug/L	50		
Tetracosane (Surrogate)	BRB1904	BRB1904-BLK1	96.2	%	28 - 139	(LCL - UCL)	
Diesel Range Organics (C12 - C24)	BRC0024	BRC0024-BLK1	ND	mg/kg	2.0		
Tetracosane (Surrogate)	BRC0024	BRC0024-BLK1	71.0	%	34 - 136	(LCL - UCL)	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Delta Environmental Consultants, Inc. 3164 Gold Camp Road, Suite 200 Rancho Cordova, CA 95670		Project: Project Number: Project Manager:	[none]	Reported: 03/07/2008 11:0					
Notes Ar	nd Definitions								
MDL	Method Detection Limit								
ND	Analyte Not Detected at or above the reporting limit								
PQL	Practical Quantitation Limit								
RPD	Relative Percent Difference								
A01	PQL's and MDL's are raised due to sample dilution.								
A17	Surrogate not reportable due to sample dilution.								
Q02	Matrix spike precision is not within the control limits.								
Q03	Matrix spike recovery(s) is(are) not within the control limits.								

ABORATORIES, INC.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

•

Date of Report: 03/07/2008

Daniel Davis

Delta Environmental Consultants, Inc. 3164 Gold Camp Road, Suite 200 Rancho Cordova, CA 95670

RE: 7376 BC Work Order: 0802475

Enclosed are the results of analyses for samples received by the laboratory on 02/21/2008 22:15. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Contact Person: Molly Meyers Client Service Rep

Authorized Signature

BC Laboratories, Inc. 4100 Atlas Court	ConocoPhil										ConocoPhillips SAP Project Number DATE:				10(0)(0)	212120							
Bakersfield, CA 93308				Attn: Bee Histohinson											of آنگراند م								
(661) 327-4911 (661) 327-1918 fax									Ana, (CA. 92	704												
PLING COMPANY:	Valid Value ID:				COPHILLIP	SSITE	NUMBER	2										LID NO.: 100101	1				
DRESS:				7376 SITE A	DDRESS (Street aı	nd City):								<u> </u>				SITE MAN	AGER:			
4 Gold Camp Drive, Suite 200 Rancho Co ROJECT CONTACT (Hardcopy or PDF Report to):	rdova, CA 95670			4191	First S	treet,	Pleas	anton,	Califo	rnia							Bill B	orgh					
niel J. Davis and Lisa Stelzner				ÉÐF D	ELIVERAB	LE TO (F	RP or De	signee):					PHO	ONE NO.;		<u> </u>	E-MAIL:			LAB USE	EONLY		
LEPHONE: FAX: -503-1260 916-638-8385	E-MAIL: ddavis@deltaei	1v.com		Lisa	Stelzne	r							91	6-503-	1268		lsteizn com	er@de	<u>ltaenv.</u>				
PLER NAME(S) (Print): Lisa Stelzner and Meghann Hurt	CONSULTANT PROJ	ECT NUMBER 7376002											REC	QUES'	TED A	NALY							<u>19071903199</u>
JRNAROUND TIME (CALENDAR DAYS):							Ŀ								1								
14 DAYS 7 DAYS 72 HOURS 48 HOURS	LI 24 HOURS LI LI	ESS THAN 24 HO	URS			ш	DTCLP																TEO
ECIAL INSTRUCTIONS OR NOTES:	CHECK BOX IF EDD	IS NEEDED L				BTEX/ MTBE																FIELD NO	-
2/2056 fax (Day of					X/8	EX															c	ontainer/Pres or PID Read	
	CUC	10			BTE	18.7	DTotal															or Laboratory	/ Note
Please fax copy of 	1. 1038 · K	3385		- ТРН-D	TPPH/ BTEX/ ates	TPH-G/																	
Field Point name only required if different fro				11		1 1	Lead										11						
Sample Identification/Field Poin			IO. OF	8015M	8260B - TPP Oxygenates	8015M	6010 -														TEMPEF	RATURE ON RE	CEIPT
Ly Name*	DATE TIME	+	CONT.			8	96						+							—	<u> </u>		
<u>CP-3D / CP-3</u>	2/20/08/7:24	+ +	7	X	X							_		_						\rightarrow	<u> </u>	Der e la 1	HCI
CP-40 54.5'-55'/ CP-4	2/2/03 13:31	5011	1	X	X								\perp						_.				
CP-4 e 64.5-651 CP-4	21210314:04	5011	1	X	X																		
(CP-4 @ 74.5-75') CP-4	2/21/08/14:54	50.1	۱	X	X							<u>JHK</u>	<u>Β</u> Υ		2rs	TF #E	UTIC	2N	+				
(P-4D ICP-4	2/2/08 16:03	Water	+	Х	Х							1	2	13	Y	7	17-1	<u></u>	1 / [100	ber - ie	Hén
			-		<u> </u>						世			Ť	- Si	JB-C	TUK	rh.	'				
						-								•••••			14	الماسط ويتركن المقادة					
														··· · ·			+			-+	+		
		+		<u> </u>		-			$\left - \right $					+-		+	+		+ $+$		<u> </u>		
		┥──┤-		 		-								_			$\left \right $			-+	<u> </u>		
	h	طيبيا	<u> </u>			L,	þ																
inquished by: (Signature)	\mathbf{A}	Received by: (2		\mathcal{D}_{1}		-//	on	B	c. 1	1 An	2					Da	. /	108			rime: 1700	7	
inquished by: (Signature)		Received by: (S	igneture)		. A		×	_ <i>_</i> _								Da			0	T	Time:		
Inglished by: (Signature)		Received by: (S	ignature)	ه	<u>~~</u>	\sim)		·							Da	<u> </u>	-1.	<u> </u>		18 fime:	50	
Ley Je2-2	603	CB	~~~~	1-	, 													21.	- 8		22	15	
	ONIT	copy			1-	0	• /														9/19/0	3 Revision	

BC LABORATORIES INC.		SAMI	PLE RECE	IPT FOR		Rev. No. 1	0 01/2	1/04 P	ageO)f				
Submission #: 7802470	- P	roject Co				TB	Batch #							
SHIPPING INFOR														
Federal Express UPS	Hand De	livery 🛛		Ice Chest 🗊 🛛 None 🛛										
BC Lab Field Service 🛛 Other	[Box 🛛 Other 🗆 (Specify)												
							•							
Refrigerant: Ice 🖬 Blue Ice	Noi	ne 🗆	Other 🛛	Com	ments:									
Custody Seals: Ice Chest	Containe		None [3 Comm	nents:				_/					
All samples received? Yes D No D	All sample	s container:	s intact? Y	es No		Descrip	tion(s) matc	h COC? Y	es Ø No ∣					
	COC Received Ice Chest ID <u>Mid</u> Emissivity <u>.97</u> Date/Time <u>721 22</u> Temperature: <u>5.2</u> °C Container <u>arm/221</u>													
		Temper	rature: 📿	5.2 °C					nt Init <u>(D)</u>					
		Thermome	ter ID: +V	<u>~0~00</u>				Analys						
SAMPLE CONTAINERS					T	UMBERS								
	1	2	3	4	5	6	7	8	9	10				
OT GENERAL MINERAL/ GENERAL PHYSICAL PT PE UNPRESERVED	1	t		· · ·	1									
OT INORGANIC CHEMICAL METALS														
PT INORGANIC CHEMICAL METALS									11. Ang. 1	·				
PT CYANIDE										·				
PT NITROGEN FORMS														
PT TOTAL SULFIDE									•					
202. NITRATE / NITRITE					ļ									
100ml TOTAL ORGANIC CARBON					1									
от тох					ļ		ļ		ļ					
PT CHEMICAL OXYGEN DEMAND					ļ									
PLA PHENOLICS	_													
40ml VOA VIAL TRAVEL BLANK														
40ml VOA VIAL	R.Q	() 	÷ >		A.4	I.		1) <u>(</u>	() 				
QT EPA 413.1, 413.2, 418.1	.				_									
PT ODOR					<u> </u>									
RADIOLOGICAL										-				
BACTERIOLOGICAL					<u> </u>									
40 ml VOA VIAL- 504	.													
QT EPA 508/608/8080	<u> </u>				<u> </u>									
<u>QT EPA 515.1/8150</u>														
QT EPA 525														
QT EPA 525 TRAVEL BLANK					<u> </u>									
100ml EPA 547						·								
100ml EPA 531.1				:										
QT EPA 548										-				
QT EPA 549														
QT EPA 632								· _						
QT EPA 8015M	1	<u> </u>			1		1	<u> </u>	 					
OT AMBER	B				B									
QT AMBER 8 OZ. JAR		 			<u>⊢∵</u> −									
32 OZ. JAR	1 .	<u>†</u>												
SOIL SLEEVE	1	A	A	A			1			7				
PCB VIAL	1													
PLASTIC BAG	1				1									
FERROUS IRON	1													
ENCORE	1													
	<u>[</u>						1							
Comments:					<u> </u>									
Sample Numbering Completed By:	MЭ	Date	/Time:	2 de	3-08	1431)	A100041 P.D. C.	OCS\FORMS\SA	MRFC2 WPD				
							- INCIDOCS	WFOULAB_D	JC91FUR149194					

Delta Environmental Consultants, Inc. 3164 Gold Camp Road, Suite 200 Rancho Cordova, CA 95670			Project: 7376 Project Number: [none] Project Manager: Daniel Davis		Reported: 03/07/2008 11:08									
	Laboratory / Client Sample Cross Reference													
Laboratory	Client Sample Informat	ion		· · · · · · · · · · · · · · · · · · ·										
0802475-01	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 7376 CP-3D CP-3D DECR	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	02/21/2008 22:15 02/20/2008 17:24 Water	Delivery Work Order: Global ID: T0600100101 Matrix: W Samle QC Type (SACode): CS Cooler ID:									
0802475-02	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 7376 CP-4 CP-4 @ 54.5'-55' DECR	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	02/21/2008 22:15 02/21/2008 13:31 Solids	Delivery Work Order: Global ID: T0600100101 Matrix: SO Samle QC Type (SACode): CS Cooler ID:									
0802475-03	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 7376 CP-4 CP-4 @ 64.5-65' DECR	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	02/21/2008 22:15 02/21/2008 14:04 Solids	Delivery Work Order: Global ID: T0600100101 Matrix: SO Samle QC Type (SACode): CS Cooler ID:									
0802475-04	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 7376 CP-4 CP-4 @ 74.5-75' DECR	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	02/21/2008 22:15 02/21/2008 14:54 Solids	Delivery Work Order: Global ID: T0600100101 Matrix: SO Samle QC Type (SACode): CS Cooler ID:									
0802475-05	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 7376 CP-4D CP-4D DECR	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	02/21/2008 22:15 02/21/2008 16:03 Water	Delivery Work Order: Global ID: T0600100101 Matrix: W Samle QC Type (SACode): CS Cooler ID:									

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com

Delta Environmental Consultants, I 3164 Gold Camp Road, Suite 200 Rancho Cordova, CA 95670	nc.				Project ect Number ect Manager	[none])avis				Rep	orted: 03/0	07/2008 11:	
Volatile Organic Analysis (EPA Method 8260)														
BCL Sample ID: 0802475-01	Client Sam					-								
Constituent	Result	Units	PQL	MDL	Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quais	
Benzene	ND	ug/L	0.50		EPA-8260	02/27/08	02/27/08 22:54	ANO	MS-V4	1	BRC0001	ND		
1,2-Dibromoethane	ND	ug/L	0.50		EPA-8260	02/27/08	02/27/08 22:54	ANO	MS-V4	1	BRC0001	ND		
1,2-Dichloroethane	ND	ug/L	0.50		EPA-8260	02/27/08	02/27/08 22:54	ANO	MS-V4	1	BRC0001	ND		
Ethylbenzene	ND	ug/L	0.50		EPA-8260	02/27/08	02/27/08 22:54	ANO	MS-V4	1	BRC0001	ND		
Methyl t-butyl ether	ND	ug/L	0.50		EPA-8260	02/27/08	02/27/08 22:54	ANO	MS-V4	1	BRC0001	ND		
Toluene	ND	ug/L	0.50		EPA-8260	02/27/08	02/27/08 22:54	ANO	MS-V4	1	BRC0001	ND		
Total Xylenes	NĎ	ug/L	1.0		EPA-8260	02/27/08	02/27/08 22:54	ANO	MS-V4	1	BRC0001	ND		
t-Amyl Methyl ether	ND	ug/L	0.50		EPA-8260	02/27/08	02/27/08 22:54	ANO	MS-V4	1	BRC0001	ND		
t-Butyl alcohol	ND	ug/L	10		EPA-8260	02/27/08	02/27/08 22:54	ANO	MS-V4	1	BRC0001	ND		
Diisopropyl ether	ND	ug/L	0.50		EPA-8260	02/27/08	02/27/08 22:54	ANO	MS-V4	1	BRC0001	ND		
Ethanol	ND	ug/L	250		EPA-8260	02/27/08	02/27/08 22:54	ANO	MS-V4		BRC0001	ND		
Ethyl t-butyl ether	ND	ug/L	0.50		EPA-8260	02/27/08	02/27/08 22:54	ANO	MS-V4	' 1	BRC0001	ND		
Total Purgeable Petroleum Hydrocarbons	ND	ug/L	50		EPA-8260	02/27/08	02/27/08 22:54	ANO	MS-V4	1	BRC0001	ND		
1,2-Dichloroethane-d4 (Surrogate)	98.3	%	76 - 114	(LCL - UCL)	EPA-8260	02/27/08	02/27/08 22:54	ANO	MS-V4	1	BRC0001			
Toluene-d8 (Surrogate)	97.4	%	88 - 110	(LCL - UCL)	EPA-8260	02/27/08	02/27/08 22:54	ANO	MS-V4	1	BRC0001			
4-Bromofluorobenzene (Surrogate)	94.5	%	86 - 115	(LCL - UCL)	EPA-8260	02/27/08	02/27/08 22:54	ANO	MS-V4	i	BRC0001			

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com

	Delta Environmental Consultants, Inc. 3164 Gold Camp Road, Suite 200 Rancho Cordova, CA 95670	Project: 7376 Project Number: [none] Project Manager: Daniel Davis	Reported: 03/07/2008 11:08
L		Project Manager: Daniel Davis	

BCL Sample ID: 0802475-01	-01 Client Sample Name: 7376, CP-3D, CP-3D, 2/20/2008 5:24:00PM												
Constituent	Result	Units	PQL	MDL	Method	Prep Date	Run Date/Time	Analyst	Instru-	Dilation	QC	MB	Lab
Diesel Range Organics (C12 - C24)	140	ug/L	120		Luft/TPHd	02/26/08			ment ID GC-5	Dilution 2.326	Batch ID BRB1904	Bias ND	Quals
Tetracosane (Surrogate)	53.5	%	28 - 139 (LC	L - UCL)	Luft/TPHd	02/26/08	03/02/08 15:25	PTL	GC-5	2.326	BRB1904		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Delta Environmental Consultants, In 3164 Gold Camp Road, Suite 200 Rancho Cordova, CA 95670	с.			Proje Project Numb Project Manag	ct: 7376 er: [none] er: Daniel [Davis				Repo	orted: 03/0)7/2008 11:08
	Vola	atile	Organic	: Analy	sis (E	EPA Met	hod	826	0)			
BCL Sample ID: 0802475-02	Client Sam	ple Name	: 7376, CP-4, C	P-4 @ 54.5'-5	5', 2/21/200	8 1:31:00PM	······		-			
Constituent	Result	Units	PQL M	DL Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
Benzene	ND	mg/kg	0.0050	EPA-826	0 02/25/08	02/25/08 13:43	LHS	MS-V2	1	BRB1345	ND	
1,2-Dibromoethane	ND	mg/kg	0.0050	EPA-826	0 02/25/08	02/25/08 13:43	LHS	MS-V2	1	BRB1345	ND	:
1,2-Dichloroethane	ND	mg/kg	0.0050	EPA-826	0 02/25/08	02/25/08 13:43	LHS	MS-V2	1	BRB1345	ND	
Ethylbenzene	ND	mg/kg	0.0050	EPA-826	0 02/25/08	02/25/08 13:43	LHS	MS-V2	1	BRB1345	ND	
Methyl t-butyl ether	ND	mg/kg	0.0050	EPA-826	0 02/25/08	02/25/08 13:43	LHS	MS-V2	1	BRB1345	ND	
Toluene	ND	mg/kg	0.0050	EPA-826	0 02/25/08	02/25/08 13:43	LHS	MS-V2	1	BRB1345	ND	·
Total Xylenes	ND	mg/kg	0.010	EPA-826	0 02/25/08	02/25/08 13:43	LHS	MS-V2	1	BRB1345	ND	
t-Amyl Methyl ether	ND	mg/kg	0.0050	EPA-826	0 02/25/08	02/25/08 13:43	LHS	MS-V2	1	BRB1345	ND	
t-Butyl alcohol	ND	mg/kg	0.050	EPA-826	0 02/25/08	02/25/08 13:43	LHS	MS-V2	1	BRB1345	ND	
Diisopropyl ether	ND	mg/kg	0.0050	EPA-826	0 02/25/08	02/25/08 13:43	LHS	MS-V2	1	BRB1345	ND	
Ethanol	ND	mg/kg	1.0	EPA-826	0 02/25/08	02/25/08 13:43	LHS	MS-V2	1	BRB1345	ND	
Ethyl t-butyl ether	ND	mg/kg	0.0050	EPA-826	0 02/25/08	02/25/08 13:43	LHS	MS-V2	1	BRB1345	ND	
Total Purgeable Petroleum Hydrocarbons	ND	mg/kg	0.20	EPA-826	0 02/25/08	02/25/08 13:43	LHS	MS-V2	1	BRB1345	ND	
1,2-Dichloroethane-d4 (Surrogate)	94.4	%	70 - 121 (LCL - U	ICL) EPA-826	0 02/25/08	02/25/08 13:43	LHS	MS-V2	1	BRB1345		
Toluene-d8 (Surrogate)	106	%	81 - 117 (LCL - U	CL) EPA-826	0 02/25/08	02/25/08 13:43	LHS	MS-V2	1	BRB1345		
4-Bromofluorobenzene (Surrogate)	97.6	%	74 - 121 (LCL - L	ICL) EPA-826	0 02/25/08	02/25/08 13:43	LHS	MS-V2	1	BRB1345		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com

Delta Environmental Consultants, Inc. 3164 Gold Camp Road, Suite 200 Rancho Cordova, CA 95670	Project: 7376 Project Number: [none] Project Manager: Daniel Davis	Reported: 03/07/2008 11:08
---	--	-----------------------------------

BCL Sample ID: 0802475-02 Client Sample Name: 7376, CP-4, CP-4 @ 54.5'-55', 2/21/2008 1:31:00PM												
Constituent	Desult	11			Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	<u>PQL M</u>	<u>)L Method</u>	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Diesel Range Organics (C12 - C24)	ND	mg/kg	2.0	Luft/TPHd	02/26/08	03/03/08 23:16	PTL	GC-5	0.993	BRC0024	ND	
Tetracosane (Surrogate)	67.6	%	34 - 136 (LCL - U	CL) Luft/TPHd	02/26/08	03/03/08 23:16	PTL	GC-5	0.993	BRC0024		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Delta Environmental Consultants, Inc. 3164 Gold Camp Road, Suite 200 Rancho Cordova, CA 95670			Proj Proje	Project ect Number ect Manager	[none]	Davis				Repo	orted: 03/0	07/2008 11:
	Vol	atile	Organic A	nalys	is (E	EPA Met	hod	8260))			
BCL Sample ID: 0802475-03	Client Sam	ple Name	: 7376, CP-4, CP-4	@ 64.5-65'	2/21/2008	3 2:04:00PM						
Constituent	Result	Units	PQL MDL	Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
Benzene	ND	mg/kg	0.0050	EPA-8260	02/25/08	02/25/08 14:10	LHS	MS-V2	1	BRB1345	ND	Quulo
1,2-Dibromoethane	ND	mg/kg	0.0050	EPA-8260	02/25/08	02/25/08 14:10	LHS	MS-V2	1	BRB1345	ND	
1,2-Dichloroethane	ND	mg/kg	0.0050	EPA-8260	02/25/08	02/25/08 14:10	LHS	MS-V2	1	BRB1345	ND	
Ethylbenzene	ND	mg/kg	0.0050	EPA-8260	02/25/08	02/25/08 14:10	LHS	MS-V2	1	BRB1345	ND	
Methyl t-butyl ether	ND	mg/kg	0.0050	EPA-8260	02/25/08	02/25/08 14:10	LHS	MS-V2	1	BRB1345	ND	
Toluene	ND	mg/kg	0.0050	EPA-8260	02/25/08	02/25/08 14:10	LHS	MS-V2	1	BRB1345	ND	
Total Xylenes	ND	mg/kg	0.010	EPA-8260	02/25/08	02/25/08 14:10	LHS	MS-V2	1	BRB1345	ND	
t-Amyl Methyl ether	ND	mg/kg	0.0050	EPA-8260	02/25/08	02/25/08 14:10	LHS	MS-V2	1	BRB1345	ND	
t-Butyl alcohol	ND	mg/kg	0.050	EPA-8260	02/25/08	02/25/08 14:10	LHS	MS-V2	1	BRB1345	ND	
Diisopropyl ether	ND	mg/kg	0.0050	EPA-8260	02/25/08	02/25/08 14:10	LHS	MS-V2	1	BRB1345	ND	
Ethanol	ND	mg/kg	1.0	EPA-8260	02/25/08	02/25/08 14:10	LHS	MS-V2	1	BRB1345	ND	
Ethyl t-butyl ether	ND	mg/kg	0.0050	EPA-8260	02/25/08	02/25/08 14:10	LHS	MS-V2	1	BRB1345	ND	
Total Purgeable Petroleum Hydrocarbons	ND	mg/kg	0.20	EPA-8260	02/25/08	02/25/08 14:10	LHS	MS-V2	1	BRB1345	ND	
1,2-Dichloroethane-d4 (Surrogate)	98.3	%	70 - 121 (LCL - UCL)	EPA-8260	02/25/08	02/25/08 14:10	LHS	MS-V2	1	BRB1345		
Toluene-d8 (Surrogate)	103	%	81 - 117 (LCL - UCL)	EPA-8260	02/25/08	02/25/08 14:10	LHS	MS-V2	. 1	BRB1345		
4-Bromofluorobenzene (Surrogate)	97.8	%	74 - 121 (LCL - UCL)	EPA-8260	02/25/08	02/25/08 14:10	LHS	MS-V2	1	BRB1345		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com

Page 6 of 19

Delta Environmental Consultants, Inc. 3164 Gold Camp Road, Suite 200 Rancho Cordova, CA 95670	Project: 7376 Project Number: [none] Project Manager: Daniel Davis	Reported: 03/07/2008 11:08

BCL Sample ID: 0802475-03	Client Sam	ple Name	e: 7376, CP-4	I, CP-4	@ 64.5-65',	2/21/2008	3 2:04:00PM						
						Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	<u>Units</u>	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Diesel Range Organics (C12 - C24)	ND	mg/kg	2.0		Luft/TPHd	02/26/08	03/03/08 23:30	PTL	GC-5	0.997	BRC0024	ND	
Tetracosane (Surrogate)	53.8	%	34 - 136 (LCL	UCL)	Luft/TPHd	02/26/08	03/03/08 23:30	PTL	GC-5	0.997	BRC0024		

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Delta Environmental Consultants, In 3164 Gold Camp Road, Suite 200 Rancho Cordova, CA 95670	с.		Proj	Project ject Number ect Manager	: 7376 : [none] : Daniel [Davis				Repo	orted: 03/0	07/2008 11:0
	Vol	atile	Organic A	Analys	sis (E	EPA Met	hod	8260))			
BCL Sample ID: 0802475-04	Client Sam	ple Name	: 7376, CP-4, CP-4	@ 74.5-75',	2/21/2008	8 2:54:00PM						
Constituent	Result	Units	PQL MDL	Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
Benzene	ND	mg/kg	0.0050	EPA-8260	02/25/08	02/25/08 14:36	LHS	MS-V2	1	BRB1345	ND	
1,2-Dibromoethane	ND	mg/kg	0.0050	EPA-8260	02/25/08	02/25/08 14:36	LHS	MS-V2	1	BRB1345	ND	
1,2-Dichloroethane	ND	mg/kg	0.0050	EPA-8260	02/25/08	02/25/08 14:36	LHS	MS-V2	1	BRB1345	ND	
Ethylbenzene	ND	mg/kg	0.0050	EPA-8260	02/25/08	02/25/08 14:36	LHS	MS-V2	1	BRB1345	ND	
Methyl t-butyl ether	ND	mg/kg	0.0050	EPA-8260	02/25/08	02/25/08 14:36	LHS	MS-V2	1	BRB1345	ND	
Toluene	ND	mg/kg	0.0050	EPA-8260	02/25/08	02/25/08 14:36	LHS	MS-V2	1	BRB1345	ND	
Total Xylenes	ND	mg/kg	0.010	EPA-8260	02/25/08	02/25/08 14:36	LHS	MS-V2	1	BRB1345	ND	
t-Amyl Methyl ether	ND	mg/kg	0.0050	EPA-8260	02/25/08	02/25/08 14:36	LHS	MS-V2	1	BRB1345	ND	<u></u>
t-Butyl alcohol	ND	mg/kg	0.050	EPA-8260	02/25/08	02/25/08 14:36	LHS	MS-V2	1	BRB1345	ND	
Diisopropyl ether	ND	mg/kg	0.0050	EPA-8260	02/25/08	02/25/08 14:36	LHS	MS-V2	1	BRB1345	ND	
Ethanol	ND	mg/kg	1.0	EPA-8260	02/25/08	02/25/08 14:36	LHS	MS-V2	1	BRB1345	ND	
Ethyl t-butyl ether	ND	mg/kg	0.0050	EPA-8260	02/25/08	02/25/08 14:36	LHS	MS-V2	1	BRB1345	ND	
Total Purgeable Petroleum Hydrocarbons	ND	mg/kg	0.20	EPA-8260	02/25/08	02/25/08 14:36	LHS	MS-V2	1	BRB1345	ND	
1,2-Dichloroethane-d4 (Surrogate)	92.7	%	70 - 121 (LCL - UCL)	EPA-8260	02/25/08	02/25/08 14:36	LHS	MS-V2	1	BRB1345		
Toluene-d8 (Surrogate)	107	%	81 - 117 (LCL - UCL)	EPA-8260	02/25/08	02/25/08 14:36	LHS	MS-V2	1	BRB1345		
4-Bromofluorobenzene (Surrogate)	97.1	%	74 - 121 (LCL - UCL)	EPA-8260	02/25/08	02/25/08 14:36	LHS	MS-V2	1	BRB1345		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com

Page 8 of 19

 Delta Environmental Consultants, Inc.
 Project: 7376
 Reported: 03/07/2008 11:08

 3164 Gold Camp Road, Suite 200
 Project Number: [none]

 Rancho Cordova, CA 95670
 Project Manager: Daniel Davis

 Total Petroleum Hydrocarbons

BCL Sample ID: 0802475-04	Client Sam	ple Name	: 7376, C	P-4, CP-4	@ 74.5-75',	2/21/200	3 2:54:00PM					·	
Constituent	Result	Units	PQL	MDL	Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
Diesel Range Organics (C12 - C24)	ND	mg/kg	2.0		Luft/TPHd	02/26/08	03/03/08 23:44		GC-5	1	BRC0024	ND	Geodia
Tetracosane (Surrogate)	62.5	%	34 - 136 (L	_CL - UCL)	Luft/TPHd	02/26/08	03/03/08 23:44	PTL	GC-5	1	BRC0024		

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Delta Environmental Co 3164 Gold Camp Road, Rancho Cordova, CA 95	Suite 200				Proje Proje	Project ect Number ct Manager	: 7376 : [none] : Daniel E	Davis				Repo	orted: 03/0	07/2008 11:0
		Vol	atile	Orgar	nic A	nalys	is (E	EPA Met	hod	8260))			
BCL Sample ID: 080	02475-05	Client Sam	ple Name	: 7376, CP	-4D, CP-	4D, 2/21/20	08 4:03:0	00PM	· · · · · ·					
Constituent		Result	Units	PQL	MDL	Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
Benzene		ND	ug/L	0.50		EPA-8260	02/27/08	02/27/08 23:18	ANO	MS-V4	1	BRC0001	ND	
1,2-Dibromoethane		ND	ug/L	0.50		EPA-8260	02/27/08	02/27/08 23:18	ANO	MS-V4	1	BRC0001	ND	
1,2-Dichloroethane		0.68	ug/L	0.50		EPA-8260	02/27/08	02/27/08 23:18	ANO	MS-V4	1	BRC0001	ND	
Ethylbenzene		ND	ug/L	0.50		EPA-8260	02/27/08	02/27/08 23:18	ANO	MS-V4	1	BRC0001	ND	
Methyl t-butyl ether		4.8	ug/L	0.50		EPA-8260	02/27/08	02/27/08 23:18	ANO	MS-V4	1	BRC0001	ND	
Toluene		ND	ug/L	0.50		EPA-8260	02/27/08	02/27/08 23:18	ANO	MS-V4	1	BRC0001	ND	
Total Xylenes		ND	ug/L	1.0		EPA-8260	02/27/08	02/27/08 23:18	ANO	MS-V4	1	BRC0001	ND	
t-Amyl Methyl ether		ND	ug/L	0.50		EPA-8260	02/27/08	02/27/08 23:18	ANO	MS-V4	1	BRC0001	ND	
t-Butyl alcohol		ND	ug/L	10		EPA-8260	02/27/08	02/27/08 23:18	ANO	MS-V4	1	BRC0001	ND	
Diisopropyl ether		ND	ug/L	0.50		EPA-8260	02/27/08	02/27/08 23:18	ANO	MS-V4	1	BRC0001	ND	
Ethanol		ND	ug/L	250		EPA-8260	02/27/08	02/27/08 23:18	ANO	MS-V4	1	BRC0001	ND	
Ethyl t-butyl ether		ND	ug/L	0.50		EPA-8260	02/27/08	02/27/08 23:18	ANO	MS-V4	1	BRC0001	ND	
Total Purgeable Petroleum Hydrocarbons	l	ND	ug/L	50		EPA-8260	02/27/08	02/27/08 23:18	ANO	MS-V4	1	BRC0001	ND	
1,2-Dichloroethane-d4 (Sur	rrogate)	101	%	76 - 114 (LC	CL - UCL)	EPA-8260	02/27/08	02/27/08 23:18	ANO	MS-V4	1	BRC0001		·····
Toluene-d8 (Surrogate)		98.7	%	88 - 110 (LC	CL - UCL)	EPA-8260	02/27/08	02/27/08 23:18	ANO	MS-V4	1	, BRC0001		
4-Bromofluorobenzene (Su	irrogate)	97.5	%	86 - 115 (LC	CL - UCL)	EPA-8260	02/27/08	02/27/08 23:18	ANO	MS-V4	1	BRC0001		

.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com

Delta Environmental Consultants, Inc. 3164 Gold Camp Road, Suite 200 Rancho Cordova, CA 95670	Project: 7376 Project Number: [none] Project Manager: Daniel Davis	Reported: 03/07/2008 11:08

BCL Sample ID: 0802475-05	Client Sam	ple Name	e: 7376, CP-4D, 0	CP-4D, 2/21/20	08 4:03:	DOPM						
					Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	<u>PQL</u> ME	L Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Diesel Range Organics (C12 - C24)	69	ug/L	50	Luft/TPHd	02/26/08	03/01/08 02:17	PTL	GC-5	1.042	BRB1904	ND	
Tetracosane (Surrogate)	53.4	%	28 - 139 (LCL - U	CL) Luft/TPHd	02/26/08	03/01/08 02:17	PTL	GC-5	1.042	BRB1904		,

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

 $\frac{d^2}{\partial t} = \frac{1}{\partial t} \frac{\partial t}{\partial t} + \frac{1}{\partial t} \frac{\partial$

Delta Environmental Consultants, Inc.Project:7376Reported:03/07/200811:083164 Gold Camp Road, Suite 200Project Number:[none]Project Manager:Daniel DavisRancho Cordova, CA 95670Project Manager:Daniel Davis

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Precision & Accuracy

Toluene 1,2-Dichloroethane-d4 (Surrogate) Toluene-d8 (Surrogate)										Contro	ol Limits
			Source	Source		Spike			Percent		Percent
Constituent	Batch ID	QC Sample Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery Lab Quals
Benzene	BRB1345	Matrix Spike	0801068-82	0	0.12438	0.12500	mg/kg		99.5		70 - 130
		Matrix Spike Duplicat	te 0801068-82	0	0.11800	0.12500	mg/kg	5.3	94.4	20	70 - 130
Toluene	BRB1345	Matrix Spike	0801068-82	0	0.13120	0.12500	mg/kg		105		70 - 130
		Matrix Spike Duplicat	te 0801068-82	0	0.12920	0.12500	mg/kg	1.9	103	20	70 - 130
1,2-Dichloroethane-d4 (Surrogate)	BRB1345	Matrix Spike	0801068-82	ND	0.048004	0.050000	mg/kg		96.0		70 - 121
		Matrix Spike Duplicat	te 0801068-82	ND	0.046538	0.050000	mg/kg		93.1		70 - 121
Toluene-d8 (Surrogate)	BRB1345	Matrix Spike	0801068-82	ND	0.051196	0.050000	mg/kg		102		81 - 117
		Matrix Spike Duplicat	te 0801068-82	ND	0.050764	0.050000	mg/kg		102		81 - 117
4-Bromofluorobenzene (Surrogate)	BRB1345	Matrix Spike	0801068-82	ND	0.043875	0.050000	mg/kg		87.8		74 - 121
		Matrix Spike Duplicat	te 0801068-82	ND	0.049093	0.050000	mg/kg		98.2		74 - 121
Benzene	BRC0001	Matrix Spike	0802254-01	0	26.460	25.000	ug/L		106		70 - 130
		Matrix Spike Duplicat	te 0802254-01	0	26.900	25.000	ug/L	1.9	108	20	70 - 130
Toluene	BRC0001	Matrix Spike	0802254-01	0	26.980	25.000	ug/L		108		70 - 130
		Matrix Spike Duplicat	te 0802254-01	0	27.400	25.000	ug/L	1.8	110	20	70 - 130
1,2-Dichloroethane-d4 (Surrogate)	BRC0001	Matrix Spike	0802254-01	ND	9.6800	10.000	ug/L		96.8		76 - 114
		Matrix Spike Duplicat	te 0802254-01	ND	9.9200	10.000	ug/L		99.2		76 - 114
Toluene-d8 (Surrogate)	BRC0001	Matrix Spike	0802254-01	ND	10.100	10.000	ug/L		101		88 - 110
		Matrix Spike Duplicat	te 0802254-01	ND	10.140	10.000	ug/L		101		88 - 110
4-Bromofluorobenzene (Surrogate)	BRC0001	Matrix Spike	0802254-01	ND	9.8800	10.000	ug/L		98.8		86 - 115
×		Matrix Spike Duplicat	te 0802254-01	ND	9.5700	10.000	ug/L		95.7		86 - 115

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Delta Environmental Consultants, Inc.	Project: 7376	Reported: 03/07/2008 11:08
3164 Gold Camp Road, Suite 200	Project Number: [none]	-
Rancho Cordova, CA 95670	Project Manager: Daniel Davis	

Quality Control Report - Precision & Accuracy

						Control Limits						
Constituent	Batch ID	QC Sample Type	Source Sample ID	Source Result	Result	Spike Added	Units	RPD	Percent Recovery	RPD	Percent Recover	t y Lab Quais∍
Diesel Range Organics (C12 - C24)	BRB1904	Matrix Spike Matrix Spike Duplicat	0801068-61 e 0801068-61	0 0	447.99 423.46	500.00 500.00	ug/L ug/L	5.6	89.6 84.7	30	36 - 130 36 - 130	
Tetracosane (Surrogate)	BRB1904	Matrix Spike Matrix Spike Duplicat	0801068-61 e 0801068-61	ND ND	15.733 14.885	20.000 20.000	ug/L ug/L		78.7 74.4		28 - 139 28 - 139	
Diesel Range Organics (C12 - C24)	BRC0024	Matrix Spike Matrix Spike Duplicat	0802310-25 e 0802310-25	7443.7 7443.7	7469.0 6398.2	16.447 16.502	mg/kg mg/kg	210	154 -6340	30	40 - 137 40 - 137	A01,Q03 A01,Q02,Q0 3
Tetracosane (Surrogate)	BRC0024	Matrix Spike Matrix Spike Duplicat	0802310-25 e 0802310-25	ND ND	0 0	0.65789 0.66007	mg/kg mg/kg		0		34 - 136 34 - 136	A01,A17 A01,A17

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Delta Environmental Consultants, Inc. Project: 7376 3164 Gold Camp Road, Suite 200 Project Number: [none] Rancho Cordova, CA 95670 Project Manager: Daniel Davis	Reported: 03/07/2008 11:08
--	-----------------------------------

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Laboratory Control Sample

						• •			Control	<u>Limits</u>	
Batch ID	QC Sample ID	QC Type	Result	Spike Level	PQL	Units	Percent Recovery	RPD	Percent Recoverv	RPD	Lab Quais
BRB1345	BRB1345-BS1	LCS	0.11757	0.12500	0.0050	mg/kg	94.1		70 - 130		
BRB1345	BRB1345-BS1	LCS	0.12814	0.12500	0.0050	mg/kg	103		70 - 130		
BRB1345	BRB1345-BS1	LCS	0.047648	0.050000		mg/kg	95.3		70 - 121		
BRB1345	BRB1345-BS1	LCS	0.051123	0.050000		mg/kg	102		81 - 117		
BRB1345	BRB1345-BS1	LCS	0.049705	0.050000		mg/kg	99.4		74 - 121		
BRC0001	BRC0001-BS1	LCS	23.550	25.000	0.50	ug/L	94.2		70 - 130		
BRC0001	BRC0001-BS1	LCS	24.040	25.000	0.50	ug/L	96.2		70 - 130		
BRC0001	BRC0001-BS1	LCS	10.110	10.000		ug/L	101		76 - 114		
BRC0001	BRC0001-BS1	LCS	10.330	10.000		ug/L	103		88 - 110		
BRC0001	BRC0001-BS1	LCS	9.8400	10.000		ug/L	98.4		86 - 115		
	BRB1345 BRB1345 BRB1345 BRB1345 BRB1345 BRC0001 BRC0001 BRC0001 BRC0001	BRB1345 BRB1345-BS1 BRC0001 BRC0001-BS1 BRC0001 BRC0001-BS1 BRC0001 BRC0001-BS1 BRC0001 BRC0001-BS1	BRB1345 BRB1345-BS1 LCS BRC0001 BRC0001-BS1 LCS	BRB1345 BRB1345-BS1 LCS 0.11757 BRB1345 BRB1345-BS1 LCS 0.12814 BRB1345 BRB1345-BS1 LCS 0.047648 BRB1345 BRB1345-BS1 LCS 0.051123 BRB1345 BRB1345-BS1 LCS 0.049705 BRC0001 BRC0001-BS1 LCS 23.550 BRC0001 BRC0001-BS1 LCS 24.040 BRC0001 BRC0001-BS1 LCS 10.110 BRC0001 BRC0001-BS1 LCS 10.330	Batch ID QC Sample ID QC Type Result Level BRB1345 BRB1345-BS1 LCS 0.11757 0.12500 BRB1345 BRB1345-BS1 LCS 0.12814 0.12500 BRB1345 BRB1345-BS1 LCS 0.047648 0.050000 BRB1345 BRB1345-BS1 LCS 0.051123 0.050000 BRB1345 BRB1345-BS1 LCS 0.049705 0.050000 BRB1345 BRB1345-BS1 LCS 0.049705 0.050000 BRB0001 BRC0001-BS1 LCS 23.550 25.000 BRC0001 BRC0001-BS1 LCS 24.040 25.000 BRC0001 BRC0001-BS1 LCS 10.110 10.000 BRC0001 BRC0001-BS1 LCS 10.330 10.000	Batch ID QC Sample ID QC Type Result Level PQL BRB1345 BRB1345-BS1 LCS 0.11757 0.12500 0.0050 BRB1345 BRB1345-BS1 LCS 0.12814 0.12500 0.0050 BRB1345 BRB1345-BS1 LCS 0.047648 0.050000 0.0050 BRB1345 BRB1345-BS1 LCS 0.051123 0.050000 0.050000 BRB1345 BRB1345-BS1 LCS 0.049705 0.050000 0.50 BRB0001 BRC0001-BS1 LCS 23.550 25.000 0.50 BRC0001 BRC0001-BS1 LCS 10.110 10.000 0.50 BRC0001 BRC0001-BS1 LCS 10.330 10.000 0.50	Batch ID QC Sample ID QC Type Result Level PQL Units BRB1345 BRB1345-BS1 LCS 0.11757 0.12500 0.0050 mg/kg BRB1345 BRB1345-BS1 LCS 0.12814 0.12500 0.0050 mg/kg BRB1345 BRB1345-BS1 LCS 0.047648 0.050000 mg/kg BRB1345 BRB1345-BS1 LCS 0.051123 0.050000 mg/kg BRB1345 BRB1345-BS1 LCS 0.049705 0.050000 mg/kg BRC0001 BRC0001-BS1 LCS 23.550 25.000 0.50 ug/L BRC0001 BRC0001-BS1 LCS 10.110 10.000 ug/L BRC0001 BRC0001-BS1 LCS 10.330 10.000 ug/L	Batch ID QC Sample ID QC Type Result Level PQL Units Recovery BRB1345 BRB1345-BS1 LCS 0.11757 0.12500 0.0050 mg/kg 94.1 BRB1345 BRB1345-BS1 LCS 0.12814 0.12500 0.0050 mg/kg 103 BRB1345 BRB1345-BS1 LCS 0.047648 0.050000 mg/kg 95.3 BRB1345 BRB1345-BS1 LCS 0.051123 0.050000 mg/kg 102 BRB1345 BRB1345-BS1 LCS 0.049705 0.050000 mg/kg 99.4 BRC0001 BRC0001-BS1 LCS 23.550 25.000 0.50 ug/L 94.2 BRC0001 BRC0001-BS1 LCS 24.040 25.000 0.50 ug/L 96.2 BRC0001 BRC0001-BS1 LCS 10.110 10.000 ug/L 101 BRC0001 BRC0001-BS1 LCS 10.330 10.000 ug/L 103	Batch ID QC Sample ID QC Type Result Level PQL Units Recovery RPD BRB1345 BRB1345-BS1 LCS 0.11757 0.12500 0.0050 mg/kg 94.1 BRB1345 BRB1345-BS1 LCS 0.12814 0.12500 0.0050 mg/kg 103 BRB1345 BRB1345-BS1 LCS 0.047648 0.050000 mg/kg 95.3 BRB1345 BRB1345-BS1 LCS 0.051123 0.050000 mg/kg 102 BRB1345 BRB1345-BS1 LCS 0.047648 0.050000 mg/kg 99.4 BRB1345 BRB1345-BS1 LCS 0.049705 0.050000 mg/kg 99.4 BRC0001 BRC0001-BS1 LCS 23.550 25.000 0.50 ug/L 94.2 BRC0001 BRC0001-BS1 LCS 10.110 10.000 ug/L 101 BRC0001 BRC0001-BS1 LCS 10.330 10.000 ug/L 103 BRC0001	Batch ID QC Sample ID QC Type Result Spike Level PQL Units Percent Recovery PPrcent Recovery Percent Recovery BRB1345 BRB1345-BS1 LCS 0.11757 0.12500 0.0050 mg/kg 94.1 70 - 130 BRB1345 BRB1345-BS1 LCS 0.12814 0.12500 0.0050 mg/kg 94.1 70 - 130 BRB1345 BRB1345-BS1 LCS 0.047648 0.050000 mg/kg 95.3 70 - 121 BRB1345 BRB1345-BS1 LCS 0.051123 0.050000 mg/kg 99.4 74 - 121 BRB1345 BRB1345-BS1 LCS 0.049705 0.50000 mg/kg 99.4 74 - 121 BRC0001 BRC0001-BS1 LCS 23.550 25.000 0.50 ug/L 94.2 70 - 130 BRC0001 BRC0001-BS1 LCS 10.110 10.000 ug/L 96.2 70 - 130 BRC0001 BRC0001-BS1 LCS 10.330 10.000 ug/L 101 </td <td>Batch ID QC Sample ID QC Type Result Level PQL Units Recovery RPD Recovery RPD BRB1345 BRB1345-BS1 LCS 0.11757 0.12500 0.0050 mg/kg 94.1 70 - 130 BRB1345 BRB1345-BS1 LCS 0.12814 0.12500 0.0050 mg/kg 103 70 - 130 BRB1345 BRB1345-BS1 LCS 0.047648 0.050000 mg/kg 95.3 70 - 121 BRB1345 BRB1345-BS1 LCS 0.051123 0.050000 mg/kg 99.4 74 - 121 BRB1345 BRB1345-BS1 LCS 0.049705 0.50000 mg/kg 99.4 74 - 121 BRC0001 BRC0001-BS1 LCS 23.550 25.000 0.50 ug/L 94.2 70 - 130 BRC0001 BRC0001-BS1 LCS 24.040 25.000 0.50 ug/L 96.2 70 - 130 BRC0001 BRC0001-BS1 LCS 10.110 10.000 ug/L <t< td=""></t<></td>	Batch ID QC Sample ID QC Type Result Level PQL Units Recovery RPD Recovery RPD BRB1345 BRB1345-BS1 LCS 0.11757 0.12500 0.0050 mg/kg 94.1 70 - 130 BRB1345 BRB1345-BS1 LCS 0.12814 0.12500 0.0050 mg/kg 103 70 - 130 BRB1345 BRB1345-BS1 LCS 0.047648 0.050000 mg/kg 95.3 70 - 121 BRB1345 BRB1345-BS1 LCS 0.051123 0.050000 mg/kg 99.4 74 - 121 BRB1345 BRB1345-BS1 LCS 0.049705 0.50000 mg/kg 99.4 74 - 121 BRC0001 BRC0001-BS1 LCS 23.550 25.000 0.50 ug/L 94.2 70 - 130 BRC0001 BRC0001-BS1 LCS 24.040 25.000 0.50 ug/L 96.2 70 - 130 BRC0001 BRC0001-BS1 LCS 10.110 10.000 ug/L <t< td=""></t<>

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Delta Environmental Consultants, Inc. Project: 7376 Reported: 03/07/2008 11:08 3164 Gold Camp Road, Suite 200 Project Number: [none] Rancho Cordova, CA 95670 Project Manager: Daniel Davis

Total Petroleum Hydrocarbons

Quality Control Report - Laboratory Control Sample

									<u>Control</u>	Limits	
Constituent	Batch ID	QC Sample ID	QC Type	Result	Spike Level	PQL	Units	Percent Recovery	Percent RPD Recovery	RPD	Lab Quals
Diesel Range Organics (C12 - C24)	BRB1904	BRB1904-BS1	LCS	477.69	500.00	50	ug/L	95.5	48 - 125		
Tetracosane (Surrogate)	BRB1904	BRB1904-BS1	LCS	15.522	20.000		ug/L	77.6	28 - 139		
Diesel Range Organics (C12 - C24)	BRC0024	BRC0024-BS1	LCS	12.833	16.447	2.0	mg/kg	78.0	50 - 136	• • •	
Tetracosane (Surrogate)	BRC0024	BRC0024-BS1	LCS	0.52447	0.65789		mg/kg	79.7	34 - 136		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Delta Environmental Consultants, Inc. 3164 Gold Camp Road, Suite 200 Rancho Cordova, CA 95670	Proj	Project: 7376 ject Number: [none] ect Manager: Daniel Dav	vis		F	Reported: 03/07/2008 11:08								
Vol	atile Organic			d 8260)									
	Quality Control Report - Method Blank Analysis													
Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals							
Benzene	BRB1345	BRB1345-BLK1	ND	mg/kg	0.0050									
1,2-Dibromoethane	BRB1345	BRB1345-BLK1	ND	mg/kg	0.0050									
1,2-Dichloroethane	BRB1345	BRB1345-BLK1	ND	mg/kg	0.0050									
Ethylbenzene	BRB1345	BRB1345-BLK1	ND	mg/kg	0.0050									
Methyl t-butyl ether	BRB1345	BRB1345-BLK1	ND	mg/kg	0.0050									
Toluene	BRB1345	BRB1345-BLK1	ND	mg/kg	0.0050									
Total Xylenes	BRB1345	BRB1345-BLK1	ND	mg/kg	0.010									
t-Amyl Methyl ether	BRB1345	BRB1345-BLK1	ND	mg/kg	0.0050									
t-Butyl alcohol	, BRB1345	BRB1345-BLK1	ND	mg/kg	0.050									
Diisopropyl ether	BRB1345	BRB1345-BLK1	ND	mg/kg	0.0050									
Ethanol	BRB1345	BRB1345-BLK1	ND	mg/kg	1.0									
Ethyl t-butyl ether	BRB1345	BRB1345-BLK1	ND	mg/kg	0.0050									
Total Purgeable Petroleum Hydrocarbons	BRB1345	BRB1345-BLK1	ND	mg/kg	0.20									
1,2-Dichloroethane-d4 (Surrogate)	BRB1345	BRB1345-BLK1	94.9	%	70 - 121 (LCL - UCL)								
Toluene-d8 (Surrogate)	BRB1345	BRB1345-BLK1	92.7	%		LCL - UCL)								
4-Bromofluorobenzene (Surrogate)	BRB1345	BRB1345-BLK1	97.2	%		LCL - UCL)								
Benzene	BRC0001	BRC0001-BLK1	ND	ug/L	0,50									
1,2-Dibromoethane	BRC0001	BRC0001-BLK1	ND	ug/L	0.50									
1,2-Dichloroethane	BRC0001	BRC0001-BLK1	ND	ug/L	0.50									
Ethylbenzene	BRC0001	BRC0001-BLK1	ND	ug/L	0.50									
Methyl t-butyl ether	BRC0001	BRC0001-BLK1	ND	ug/L	0.50									
Toluene	BRC0001	BRC0001-BLK1	ND	ug/L	0.50									
Total Xylenes	BRC0001	BRC0001-BLK1	ND	ug/L	1.0									
t-Amyl Methyl ether	BRC0001	BRC0001-BLK1	ND	ug/L	0.50									

1

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Delta Environmental Consultants, Inc. 3164 Gold Camp Road, Suite 200	Project: 7376 Project Number: [none]	Reported: 03/07/2008 11:08
Rancho Cordova, CA 95670	Project Manager: Daniel Davis	

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Method Blank Analysis

Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
t-Butyl alcohol	BRC0001	BRC0001-BLK1	ND	ug/L	10		
Diisopropyl ether	BRC0001	BRC0001-BLK1	ND	ug/L	0.50		<u> </u>
Ethanol	BRC0001	BRC0001-BLK1	ND	ug/L	250		
Ethyl t-butyl ether	BRC0001	BRC0001-BLK1	ND	ug/L	0.50		
Total Purgeable Petroleum Hydrocarbons	BRC0001	BRC0001-BLK1	ND	ug/L	50		
1,2-Dichloroethane-d4 (Surrogate)	BRC0001	BRC0001-BLK1	98.2	%	76 - 114 (LCL - UCL)	
Toluene-d8 (Surrogate)	BRC0001	BRC0001-BLK1	100	%		LCL - UCL)	
4-Bromofluorobenzene (Surrogate)	BRC0001	BRC0001-BLK1	96.8	%		LCL - UCL)	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Delta Environmental Consultants, Inc.	Project: 7376	Reported: 03/07/2008 11:08
3164 Gold Camp Road, Suite 200 Rancho Cordova, CA 95670	Project Number: [none] Project Manager: Daniel Davis	
		······································

Quality Control Report - Method Blank Analysis

Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
Diesel Range Organics (C12 - C24)	BRB1904	BRB1904-BLK1	ND	ug/L	50		
Tetracosane (Surrogate)	BRB1904	BRB1904-BLK1	96.2	%	28 - 139	(LCL - UCL)	
Diesel Range Organics (C12 - C24)	BRC0024	BRC0024-BLK1	ND	mg/kg	2.0		
Tetracosane (Surrogate)	BRC0024	BRC0024-BLK1	71.0	%	34 - 136	(LCL - UCL)	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Delta Environmental Consultants, Inc. Project: 7376 Reported: 03/07/2008 11:08 3164 Gold Camp Road, Suite 200 Project Number: [none] Rancho Cordova, CA 95670 Project Manager: Daniel Davis Notes And Definitions MDL Method Detection Limit ND Analyte Not Detected at or above the reporting limit PQL Practical Quantitation Limit RPD **Relative Percent Difference** A01 PQL's and MDL's are raised due to sample dilution. A17 Surrogate not reportable due to sample dilution. Q02 Matrix spike precision is not within the control limits. Q03 Matrix spike recovery(s) is(are) not within the control limits.

BC

LABORATORIES, INC.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Date of Report: 03/11/2008

Daniel Davis

Delta Environmental Consultants, Inc. 3164 Gold Camp Road, Suite 200 Rancho Cordova, CA 95670

RE: 7376 BC Work Order: 0802507

Enclosed are the results of analyses for samples received by the laboratory on 02/22/2008 20:35. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Contact Person. Molly Meyers Client Service Rep

Authorized Signature

BC Laboratories, Inc.						С	on	000	Ph	illip	os C	ha	in (Df (Cus	sto	dy	R	ecc	ord				
4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 (661) 327-1918 fax	ConocoPh INVOICE R			-	SS:		Bill I	Attn: 3611 S	COP Dee H South	HILLIP Hutchir Harbo CA. 9	nson or, Suite	e 200						Phillips SAP Project Number						ATE: 2/21/08 AGE: of
SAMPLING COMPANY:	Valid Value ID:				COPĤILLIF	'S SITE	NUMBEF	2															1	
Delta Consultants ADDRESS:				7376 SITE /	S ADDRESS (Street a	nd City):									••••			0010		SITE MA	NAGER:		· · · · ·
3164 Gold Camp Drive, Suite 200 Rancho Co PROJECT CONTACT (Hardcopy or PDF Report to):	ordova, CA 9567	0		4191	l First S	itreet,	Pleas	anton, (Califo	ornia								Bill	Borg	ļh				
Daniel J. Davis and Lisa Stelzner				EDF C	ELIVERAB	LE TO (I	RP or De	signee):						PHONE N	10.:			E-MÄI	L:			LABI	USE O	NLY
TELEPHONE: FAX: 916-503-1260 916-638-8385	E-MAIL: ddavis@delta	env.com		Lisa	Stelzne	er								916-5	03-12	:68		lste corr		@delta	<u>aenv.</u>	O	C	02507
SAMPLER NAME(S) (Print): Lisa Stelzner and Meghann Hurt	CONSULTANT PRO	DJECT NUMBER 07376002	ł										R	EQUI	ESTE	D AN	IALY	SES						
							Ľ,																	
SPECIAL INSTRUCTIONS OR NOTES: Place fox COPY L. Stelever at C	CHECK BOX IF EE	D IS NEEDED	ন	1.1	8260B - TPPH/ BTEX/ 8 Oxygenates	M - TPH-G/ BTEX/ MTBE	- Lead DTotal DSTLC DTCLP																	FIELD NOTES: Container/Preservative or PID Readings or Laboratory Notes
UNB Sample Identification/Field Poin USE ONLY Name*	NT SAMPLING	E MATRIX	NO. OF CONT.		8260B Oxygei	8015M	6010																	TEMPERATURE ON RECEIPT C ^o
1 CP-45 / CP-4	2/21/08 17:1	y Water	7	X	X	•.	:																	1 Amber - 4 HCI VOAS
-2 CP-5 C44.5-45' /CP-1	5 312408 154	2 5611		X	X										_									•
											K B	<u> </u>	p	ST	3IBI	UTI	dл	+	\uparrow					
										$\ $	1/2	\mathbb{D}	JX 1	N/N		71-	+-	+						
										LO	2			SI	BC	літ			Π					
												1							₽					
Réinquished by: (Signature)	$\widetilde{\mathcal{A}}$	Received	y (Signature	» 4)	id	leei	1	BC	L	AB							Da	nte: 2_{ \$	2/	08	/		Time:	1545
Reinquised by (Sanatale)	Is.	Received t	oy: (Signature		1	Δ											D: •	2:	22	6	28)	Time:	
Relinquished by: (Signature)	2.08	Received	fy: (Signature	$\hat{\Lambda}$	Not	I A		-									ŭ∕ŭ	ite: 42	21	OP	3		Time:	a035
g	035	1	V	l	•																			9/19/03 Revision

										, 1
SC LABORATORIES INC.				IPT FOR	M	Rev. No. 10		04 Pa	ge 01	F
Submission #: 0802507	/ <u>Pi</u>	roject Co	de:	<u> </u>			atch #			
SHIPPING INFOR	MATION					SHIPPI	IG CONT			
Federal Express I UPS I	Hand Del	ivery 🛙			Ice Chest	-	None		-6.5	
BC Lab Field Service 2 Other	3 (Specify	1)			Box	U	••• Other	r Ц (Spe	city]	
Refrigerant: Ice 2 Blue Ice [Nor		Other 🗌	Сотп	nents:					
Sustody Seals Ice Chest 🛛	Containe	rs 🛛 🕴	None E	Comm	ents:					
Intact? Yes [] No []	Intact? Yes		· · · · · · · · · · · · · · · · · · ·							
All samples received? Yes 2 No 1	All sample	s container	s intact? Y	es E No	0	Descript	ion(s) match	COC? Ye	s I No I	<u> </u>
CØC Received		ice Cl	hest ID		Emis	sivity 🔄	97	Date/Ti	me <u>2-2</u> .	2-8
PYES DNO			rature:		Cont	ainer 🖉	mbr	Analys	Init <u>AL</u>	(2)
	<u>_</u>	Thermome	ter ID:	49		-		1		<u> </u>
	[1			SAMPLE		<u> </u>			
SAMPLE CONTAINERS	1	2	3	4	5	6	7	8	9	10
T GENERAL MINERALI GENERAL PHYSICAL										
T PE UNPRESERVED										
ET INORGANIC CHEMICAL METALS										
T INORGANIC CHEMICAL METALS										
T CYANIDE	·									
T NITROGEN FORMS		7	· 、							
T TOTAL SULFIDE										
OZ. NITRATE / NITRITE			· · ·		·····					
00ml TOTAL ORGANIC CARBON										
TTOX					<u> </u>					
T CHEMICAL OXYGEN DEMAND										
*A PHENOLICS			 							
Mmi VOA VIAL TRAVEL BLANK	A.6					<u>с</u> і		()	· · ·	
Omi VOA VIAL	AVE		() 			·				
<u>)T EPA 413.1, 413.2, 418.1</u>	-									
T ODOR										
RADIOLOGICAL										
SACTERIOLOGICAL										
10 mi VOA VIAL-504										
<u>)T EPA 508/608/8080</u>										
<u>)T EPA 515.1/8159</u>	· .									
<u>)T EPA 525</u>			<u>د</u>							
<u>)T EPA 525 TRAVEL BLANK</u>										
60ml EPA 547										
00ml EPA 531.1		·								
2T EPA 548						}				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2T EPA 549										
2T EPA 632										
<u>2T EPA 8015M</u>	· · · •									
2T QA/QC	10				<u> </u>					
2T AMBER	B-					<u> </u>				
OZ. JAR	·						┟╼──┼			385
2 OZ. JAR		6				<u> </u>	┠────┼			
SORL SLEEVE	·	A	 		<u> </u>	<u> </u>	┟╍╍╍──╁	<u> </u>		
PCB VIAL		<u> </u>	<u>}</u>		 	 	╏───┤			
PLASTIC BAG		· · ·				<u> </u>	┟───╁			
FERROUS IRON	·				<u> </u>	<u> </u>	┟╌──╂			
ENCORE				 _	 	╂	<u>{</u> ──-†			
		L	II	L	1	<u> </u>	<u></u>			

omments:_

ample Numbering Completed By:_

<u>A</u>

Date/Time: <u>2-22-8</u>0400

	ental Consultants, Inc. p Road, Suite 200 a, CA 95670		Project: 7376 Project Number: [none] Project Manager: Daniel Davis		Reported: 03/11/2008 16:27
		Labor	atory / Client Sample Cross I	Reference	······································
Laboratory	Client Sample Informat	tion			
0802507-01	COC Number:		Receive Dat	e: 02/22/2008 20:35	Delivery Work Order:
	Project Number:	7376	Sampling Da	ite: 02/21/2008 17:14	Global ID: T0600100101
	Sampling Location:	CP-4S	Sample Dep	th:	Matrix: W
	Sampling Point:	CP-4S	Sample Mat	ix: Water	Samle QC Type (SACode): CS
	Sampled By:	DECR			Cooler ID:
0802507-02	COC Number:		Receive Dat	e: 02/22/2008 20:35	Delivery Work Order:
	Project Number:	7376	Sampling Da	te: 02/22/2008 11:42	Global ID: T0600100101
	Sampling Location:	CP-5	Sample Dep	th:	Matrix: SO
	Sampling Point:	CP-5@44.5-45	Sample Mat	ix: Solids	Samle QC Type (SACode): CS
	Sampled By:	DECR			Cooler ID:

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Delta Environmental Consultants, In 3164 Gold Camp Road, Suite 200 Rancho Cordova, CA 95670	с.				Project ect Number	[none]					Repo	orted: 03/1	1/2008 16:2
	Vol	atile	Orga		nalys		EPA Met	hod	8260))			
BCL Sample ID: 0802507-01	Client Sam					`							
Constituent	Result	Units	PQL	MDL	Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
Benzene	ND	ug/L	0.50		EPA-8260	03/03/08	03/03/08 10:03	mwb	HPCHEM	1	BRB1875	ND	
1,2-Dibromoethane	ND	ug/L	0.50		EPA-8260	03/03/08	03/03/08 10:03	mwb	HPCHEM	1	BRB1875	ND	
1,2-Dichloroethane	ND	ug/L	0.50	······	EPA-8260	03/03/08	03/03/08 10:03	mwb	HPCHEM	1	BRB1875	ND	
Ethylbenzene	ND	ug/L	0.50	· · · · ·	EPA-8260	03/03/08	03/03/08 10:03	mwb	HPCHEM	1	BRB1875	ND	
Methyl t-butyl ether	ND ·	ug/L	0.50		EPA-8260	03/03/08	03/03/08 10:03	mwb	HPCHEM	1	BRB1875	ND	
Toluene	ND	ug/L	0.50		EPA-8260	03/03/08	03/03/08 10:03	mwb	HPCHEM	1	BRB1875	ND	
Total Xylenes	ND	ug/L	1.0		EPA-8260	03/03/08	03/03/08 10:03	mwb	HPCHEM	1	BRB1875	ND	
t-Amyl Methyl ether	ND	ug/L	0.50		EPA-8260	03/03/08	03/03/08 10:03	mwb	HPCHEM	1	BRB1875	ND	
t-Butyl alcohol	ND	ug/L	10		EPA-8260	03/03/08	03/03/08 10:03	mwb	HPCHEM	1	BRB1875	ND	
Diisopropyl ether	ND	ug/L	0.50		EPA-8260	03/03/08	03/03/08 10:03	mwb	HPCHEM	1	BRB1875	ND	
Ethanol	ND	ug/L	250		EPA-8260	03/03/08	03/03/08 10:03	mwb	HPCHEM	1	BRB1875	ND	an a
Ethyl t-butyl ether	ND	ug/L	0.50		EPA-8260	03/03/08	03/03/08 10:03	mwb	HPCHEM	1	BRB1875	ND	
Total Purgeable Petroleum Hydrocarbons	99	ug/L	50	·····	EPA-8260	03/03/08	03/03/08 10:03	mwb	HPCHEM	1	BRB1875	ND	
1,2-Dichloroethane-d4 (Surrogate)	90.2	%	76 - 114	(LCL - UCL)	EPA-8260	03/03/08	03/03/08 10:03	mwb	HPCHEM	1	BRB1875		
Toluene-d8 (Surrogate)	90.0	%	88 - 110	(LCL - UCL)	EPA-8260	03/03/08	03/03/08 10:03	mwb	HPCHEM	1	BRB1875		
4-Bromofluorobenzene (Surrogate)	95.0	%	86 - 115	(LCL - UCL)	EPA-8260	03/03/08	03/03/08 10:03	mwb	HPCHEM	1	BRB1875		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Delta Environmental Consultants, Inc. 3164 Gold Camp Road, Suite 200 Rancho Cordova, CA 95670	Project: 7376 Project Number: [none] Project Manager: Daniel Davis	Reported: 03/11/2008 16:27

BCL Sample ID: 0802507-01	Client Sam	ple Name	e: 7376, CP-4	4S, CP-	4S, 2/21/20	08 5:14:0	0PM			****		<u>.</u>	
			···			Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Diesel Range Organics (C12 - C24)	83	ug/L	50		Luft/TPHd	03/01/08	03/08/08 00:21	PTL	GC-5	1	BRC0517	ND	
Tetracosane (Surrogate)	58.8	%	28 - 139 (LCI	UCL)	Luft/TPHd	03/01/08	03/08/08 00:21	PTL	GC-5	1	BRC0517		

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Delta Environmental Consultants, Inc 3164 Gold Camp Road, Suite 200 Rancho Cordova, CA 95670			F	Project Project Number roject Manager	:: 7376 : [none] : Daniel [Davis				Repo	orted: 03/ ⁻	11/2008 16:2
	Vol	atile	Organic	Analys	sis (E	EPA Met	thod	826))			<u></u>
BCL Sample ID: 0802507-02	Client Sam	ple Name	: 7376, CP-5, CF	P-5@44.5-45, 2	2/22/2008	11: 42:00 AM						
Constituent	Result	Units	PQL MD	L Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
Benzene	ND	mg/kg	0.0050	EPA-8260	02/25/08	02/25/08 15:29	LHS	MS-V2	1	BRB1433	ND	
1,2-Dibromoethane	ND	mg/kg	0.0050	EPA-8260	02/25/08	02/25/08 15:29	LHS	MS-V2	1	BRB1433	ND	
1,2-Dichloroethane	ND	mg/kg	0.0050	EPA-8260	02/25/08	02/25/08 15:29	LHS	MS-V2	1	BRB1433	ND	
Ethylbenzene	ND	mg/kg	0.0050	EPA-8260	02/25/08	02/25/08 15:29	LHS	MS-V2	1	BRB1433	ND	
Methyl t-butyl ether	0.022	mg/kg	0.0050	EPA-8260	02/25/08	02/25/08 15:29	LHS	MS-V2	1	BRB1433	ND	
Toluene	ND	mg/kg	0.0050	EPA-8260	02/25/08	02/25/08 15:29	LHS	MS-V2	1	BRB1433	ND	
Total Xylenes	ND	mg/kg	0.010	EPA-8260	02/25/08	02/25/08 15:29	LHS	MS-V2	1	BRB1433	ND	
t-Amyl Methyl ether	ND	mg/kg	0.0050	EPA-8260	02/25/08	02/25/08 15:29	LHS	MS-V2	1	BRB1433	ND	
t-Butyl alcohol	ND	mg/kg	0.050	EPA-8260	02/25/08	02/25/08 15:29	LHS	MS-V2	1	BRB1433	ND	
Diisopropyl ether	ND	mg/kg	0.0050	EPA-8260	02/25/08	02/25/08 15:29	LHS	MS-V2	1	BRB1433	ND	
Ethanol	ND	mg/kg	1.0	EPA-8260	02/25/08	02/25/08 15:29	LHS	MS-V2	1	BRB1433	ND	
Ethyl t-butyl ether	ND	mg/kg	0.0050	EPA-8260	02/25/08	02/25/08 15:29	LHS	MS-V2	1	BRB1433	ND	
Total Purgeable Petroleum Hydrocarbons	ND	mg/kg	0.20	EPA-8260	02/25/08	02/25/08 15:29	LHS	MS-V2	1	BRB1433	ND	
1,2-Dichloroethane-d4 (Surrogate)	96.0	%	70 - 121 (LCL - UC	CL) EPA-8260	02/25/08	02/25/08 15:29	LHS	MS-V2	1	BRB1433		
Toluene-d8 (Surrogate)	96.3	%	81 - 117 (LCL - UC	CL) EPA-8260	02/25/08	02/25/08 15:29	LHS	MS-V2	1	BRB1433		
4-Bromofluorobenzene (Surrogate)	93.4	%	74 - 121 (LCL - UC	CL) EPA-8260	02/25/08	02/25/08 15:29	LHS	MS-V2	1	BRB1433	·· - ·	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Delta Environmental Consultants, Inc.	Project: 7376	Reported: 03/11/2008 16:27
3164 Gold Camp Road, Suite 200	Project Number: [none]	
Rancho Cordova, CA 95670	Project Manager: Daniel Davis	

BCL Sample ID: 0802507-02	Client Sam	ple Name	: 7376, CP-5, CP-5	6@44.5-45, 2	2/22/2008	11:42:00AM						
					Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	<u>Units</u>	PQL MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Diesel Range Organics (C12 - C24)	ND	mg/kg	2.0	Luft/TPHd	03/01/08	03/08/08 07:52	PTL	GC-5	1.007	BRC0405	ND	
Tetracosane (Surrogate)	67.1	%	34 - 136 (LCL - UCL)	Luft/TPHd	03/01/08	03/08/08 07:52	PTL	GC-5	1.007	BRC0405		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

 Delta Environmental Consultants, Inc.
 Project:
 7376
 Reported:
 03/11/2008
 16:27

 3164 Gold Camp Road, Suite 200
 Project Number:
 [none]

 Rancho Cordova, CA 95670
 Project Manager:
 Daniel Davis

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Precision & Accuracy

										Contr	ol Limits
Constituent	Batch ID	QC Sample Type	Source Sample ID	Source Result	Result	Spike Added	Units	RPD	Percent Recovery	RPD	Percent Recovery Lab Quals
Benzene	BRB1433	Matrix Spike	0801068-84	0	0.12119	0.12500	mg/kg		97.0		70 - 130
		Matrix Spike Duplicat	te 0801068-84	0	0.12119	0.12500	mg/kg	0	97.0	20	70 - 130
Toluene	BRB1433	Matrix Spike	0801068-84	0	0.12641	0.12500	mg/kg		101		70 - 130
		Matrix Spike Duplicat	te 0801068-84	0	0.12811	0.12500	mg/kg	1.0	102	20	70 - 130
1,2-Dichloroethane-d4 (Surrogate)	BRB1433	Matrix Spike	0801068-84	ND	0.051066	0.050000	mg/kg		102		70 - 121
		Matrix Spike Duplicat	te 0801068-84	ND	0.048522	0.050000	mg/kg		97.0		70 - 121
Toluene-d8 (Surrogate)	BRB1433	Matrix Spike	0801068-84	ND	0.050871	0.050000	mg/kg		102		81 - 117
		Matrix Spike Duplicat	te 0801068-84	ND	0.050682	0.050000	mg/kg		101		81 - 117
4-Bromofluorobenzene (Surrogate)	BRB1433	Matrix Spike	0801068-84	ND	0.046015	0.050000	mg/kg		92.0		74 - 121
		Matrix Spike Duplicat	te 0801068-84	ND	0.045712	0.050000	mg/kg		91.4		74 - 121
Benzene	BRB1875	Matrix Spike	0801068-74	0	26.630	25.000	ug/L		107		70 - 130
		Matrix Spike Duplicat	te 0801068-74	0	26.390	25.000	ug/L	0.9	106	20	70 - 130
Toluene	BRB1875	Matrix Spike	0801068-74	0	26.380	25.000	ug/L		106		70 - 130
		Matrix Spike Duplicat	e0801068-74	0	26.320	25.000	ug/L	0.9	105	20	70 - 130
1,2-Dichloroethane-d4 (Surrogate)	BRB1875	Matrix Spike	0801068-74	ND	9.9500	10.000	ug/L		99.5		76 - 114
s		Matrix Spike Duplicat	e 0801068-74	ND	9.7800	10.000	ug/L		97.8		76 - 114
Toluene-d8 (Surrogate)	BRB1875	Matrix Spike	0801068-74	ND	10.010	10.000	ug/L		100		88 - 110
		Matrix Spike Duplicat	e 0801068-74	. ND	9.9100	10.000	ug/L		99.1		88 - 110
4-Bromofluorobenzene (Surrogate)	BRB1875	Matrix Spike	0801068-74	ND	9.9000	10.000	ug/L		99.0		86 - 115
		Matrix Spike Duplicat	e 0801068-74	ND	9.9100	10.000	ug/L		99.1		86 - 115

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 6 of 13

Delta Environmental Consultants, Inc.	Project: 7376	Reported: 03/11/2008 16:27
3164 Gold Camp Road, Suite 200	Project Number: [none]	
Rancho Cordova, CA 95670	Project Manager: Daniel Davis	

Quality Control Report - Precision & Accuracy

										<u>Contr</u>	<u>ol Limits</u>
			Source	Source		Spike			Percent		Percent
Constituent	Batch ID	QC Sample Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery Lab Quals
Diesel Range Organics (C12 - C24)	BRC0405	Matrix Spike	0801068-07	0	15.208	16.892	mg/kg		90.0		40 - 137
		Matrix Spike Duplicat	te 0801068-07	0	13.873	16.835	mg/kg	8.8	82.4	30	40 - 137
Tetracosane (Surrogate)	BRC0405	Matrix Spike	0801068-07	ND	0.44480	0.67568	mg/kg		65.8		34 - 136
		Matrix Spike Duplicat	te 0801068-07	ND	0.43337	0.67340	mg/kg		64.4		34 - 136
Diesel Range Organics (C12 - C24)	BRC0517	Matrix Spike	0801068-67	0	453.15	500.00	ug/L		90.6		36 - 130
		Matrix Spike Duplicat	te 0801068-67	0	512.64	500.00	ug/L	12.8	103	30	36 - 130
Tetracosane (Surrogate)	BRC0517	Matrix Spike	0801068-67	ND	13.266	20.000	ug/L		66.3		28 - 139
		Matrix Spike Duplicat	te 0801068-67	ND	17.377	20.000	ug/L		86.9		28 - 139

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Delta Environmental Consultants, Inc.	Project: 7376	Reported: 03/11/2008 16:27
3164 Gold Camp Road, Suite 200	Project Number: [none]	
Rancho Cordova, CA 95670	Project Manager: Daniel Davis	

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Laboratory Control Sample

										<u>Control</u>	Limits	
Constituent	Batch ID	QC Sample ID	QC Type	Result	Spike Level	PQL	Units	Percent Recovery	RPD	Percent Recovery	RPD	Lab Quals
Benzene	BRB1433	BRB1433-BS1	LCS	0.12036	0.12500	0.0050	mg/kg	96.3		70 - 130		
Toluene	BRB1433	BRB1433-BS1	LCS	0.12893	0.12500	0.0050	mg/kg	103		70 - 130		a
1,2-Dichloroethane-d4 (Surrogate)	BRB1433	BRB1433-BS1	LCS	0.048194	0.050000		mg/kg	96.4		70 - 121		
Toluene-d8 (Surrogate)	BRB1433	BRB1433-BS1	LCS	0.051012	0.050000		mg/kg	102		81 - 117		
4-Bromofluorobenzene (Surrogate)	BRB1433	BRB1433-BS1	LCS	0.046063	0.050000		mg/kg	92.1		74 - 121	•	·····
Benzene	BRB1875	BRB1875-BS1	LCS	26.230	25.000	1.0	ug/L	105		70 - 130		
Toluene	BRB1875	BRB1875-BS1	LCS	26.620	25.000	1.0	ug/L	106		70 - 130		
1,2-Dichloroethane-d4 (Surrogate)	BRB1875	BRB1875-BS1	LCS	10.170	10.000		ug/L	102		76 - 114		
Toluene-d8 (Surrogate)	BRB1875	BRB1875-BS1	LCS	10.120	10.000		ug/L	101	•••••	88 - 110		
4-Bromofluorobenzene (Surrogate)	BRB1875	BRB1875-BS1	LCS	9.8700	10.000		ug/L	98.7		86 - 115		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Delta Environmental Consultants, Inc.	Project: 7376	Reported: 03/11/2008 16:27
3164 Gold Camp Road, Suite 200 Rancho Cordova, CA 95670	Project Number: [none] Project Manager: Daniel Davis	
		- Andrea

Quality Control Report - Laboratory Control Sample

			QC Type						Control	<u>Limits</u>	
Constituent	Batch ID	QC Sample ID		Result	Spike Level	PQL	Units	Percent Recovery	Percent RPD Recovery	RPD	Lab Quais
Diesel Range Organics (C12 - C24)	BRC0405	BRC0405-BS1	LCS	16.109	16.667	2.0	mg/kg	96.7	50 - 136		
Tetracosane (Surrogate)	BRC0405	BRC0405-BS1	LCS	0.54907	0.66667		mg/kg	82.4	34 - 136		
Diesel Range Organics (C12 - C24)	BRC0517	BRC0517-BS1	LCS	499.84	500.00	50	ug/L	100	48 - 125		
Tetracosane (Surrogate)	BRC0517	BRC0517-BS1	LCS	15.841	20.000		ug/L	79.2	28 - 139	·	

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Delta Environmental Consultants, Inc. 3164 Gold Camp Road, Suite 200 Rancho Cordova, CA 95670		Project: 7376 ject Number: [none] ect Manager: Daniel Dav	vis		F	eported: 03	8/11/2008 16:27
Vo	latile Organic	Analysis (E	PA Metho	d 8260)		
	Quality Control F	-			,		
Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
Benzene	BRB1433	BRB1433-BLK1	ND	mg/kg	0.0050		
1,2-Dibromoethane	BRB1433	BRB1433-BLK1	ND	mg/kg	0.0050		
1,2-Dichloroethane	BRB1433	BRB1433-BLK1	ND	mg/kg	0.0050		
Ethylbenzene	BRB1433	BRB1433-BLK1	ND	mg/kg	0.0050		
Methyl t-butyl ether	BRB1433	BRB1433-BLK1	ND	mg/kg	0.0050		·····
Toluene	BRB1433	BRB1433-BLK1	ND	mg/kg	0.0050		
Total Xylenes	BRB1433	BRB1433-BLK1	ND	mg/kg	0.010		
t-Amyl Methyl ether	BRB1433	BRB1433-BLK1	ND	mg/kg	0.0050		
t-Butyl alcohol	BRB1433	BRB1433-BLK1	ND	mg/kg	0.050		
Diisopropyl ether	BRB1433	BRB1433-BLK1	ND `	mg/kg	0.0050		
Ethanol	BRB1433	BRB1433-BLK1	ND	mg/kg	1.0		
Ethyl t-butyl ether	BRB1433	BRB1433-BLK1	ND	mg/kg	0.0050		······································
Total Purgeable Petroleum Hydrocarbons	BRB1433	BRB1433-BLK1	ND	mg/kg	0.20		
1,2-Dichloroethane-d4 (Surrogate)	BRB1433	BRB1433-BLK1	99.6	%	70 - 121 (LCL - UCL)	
Toluene-d8 (Surrogate)	BRB1433	BRB1433-BLK1	95.2	%	81 - 117 (LCL - UCL)	
4-Bromofluorobenzene (Surrogate)	BRB1433	BRB1433-BLK1	95.3	%	74 - 121 (LCL - UCL)	
Benzene	BRB1875	BRB1875-BLK1	ND	ug/L	1.0		
1,2-Dibromoethane	BRB1875	BRB1875-BLK1	ND	ug/L	0.50		
1,2-Dichloroethane	BRB1875	BRB1875-BLK1	ND	ug/L	0.50		
Ethylbenzene	BRB1875	BRB1875-BLK1	ND	ug/L	1.0		
Methyl t-butyl ether	BRB1875	BRB1875-BLK1	ND	ug/L	2.0		
Toluene	BRB1875	BRB1875-BLK1	ND	ug/L	1.0		
Total Xylenes	BRB1875	BRB1875-BLK1	ND	ug/L	1.0		
t-Amyl Methyl ether	BRB1875	BRB1875-BLK1	ND	ug/L	2.0		

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 10 of 13

Delta Environmental Consultants, Inc.					Project	: 737	6			· .	Reported: 03/11/2008 16:27
3164 Gold Camp Road, Suite 200			P	roject N	lumber:	[no	ne]				
Rancho Cordova, CA 95670			Pr	oject M	anager	Dar	niel Davis				
	X / I / I / I	<u> </u>			-			-	 1.0000		

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Method Blank Analysis

Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL MD	L Lab Quals
t-Butyl alcohol	BRB1875	BRB1875-BLK1	ND	ug/L	10	
Diisopropyl ether	BRB1875	BRB1875-BLK1	ND	ug/L	2.0	
Ethanol	BRB1875	BRB1875-BLK1	ND	ug/L	1000	
Ethyl t-butyl ether	BRB1875	BRB1875-BLK1	ND	ug/L	2.0	
Total Purgeable Petroleum Hydrocarbons	BRB1875	BRB1875-BLK1	ND	ug/L	50	
1,2-Dichloroethane-d4 (Surrogate)	BRB1875	BRB1875-BLK1	99.5	%	76 - 114 (LCL - UC	L)
Toluene-d8 (Surrogate)	BRB1875	BRB1875-BLK1	98.7	%	88 - 110 (LCL - UC	L)
4-Bromofluorobenzene (Surrogate)	BRB1875	BRB1875-BLK1	97.1	%	86 - 115 (LCL - UC	L)

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Delta Environmental Consultants, Inc.	Project:	7376	Reported: 03/11/2008 16:27
3164 Gold Camp Road, Suite 200	Project Number:	[none]	
Rancho Cordova, CA 95670	Project Manager:	Daniel Davis	

Quality Control Report - Method Blank Analysis

Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
Diesel Range Organics (C12 - C24)	BRC0405	BRC0405-BLK1	ND	mg/kg	2.0		
Tetracosane (Surrogate)	BRC0405	BRC0405-BLK1	56.2	%	34 - 136	(LCL - UCL)	
Diesel Range Organics (C12 - C24)	BRC0517	BRC0517-BLK1	ND	ug/L	50		
Tetracosane (Surrogate)	BRC0517	BRC0517-BLK1	79.0	%	28 - 139	(LCL - UCL)	

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reported: 03/11/2008 16:27 Davis
Davis

BC

MDL Method Detection Limit

ND Analyte Not Detected at or above the reporting limit

LABORATORIES, INC.

PQL Practical Quantitation Limit

RPD Relative Percent Difference

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Date of Report: 03/11/2008

Daniel Davis

Delta Environmental Consultants, Inc. 3164 Gold Camp Road, Suite 200 Rancho Cordova, CA 95670

RE: 7376 BC Work Order: 0802561

Enclosed are the results of analyses for samples received by the laboratory on 02/25/2008 20:45. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Contact Person Molly Meyers Client Service Rep

Authorized Signature

SPECIAL INSTRUCTIONS OR NOTES: CHECK BOX IF EDD IS NEEDED [] A Please fax Opy of COC fo (16) 638-8385 A Of Hat Set fax Op Hat Set fa	<u>/25/05</u> of[
Bakersfield, CA 93308 Atth: Der Mulchinson ConcostPhillus Resultation/Line Number PAGE: (661) 327-4911 (661) 327-4918 fax ConcostPhillus Resultation/Line Number PAGE: ConcostPhillus Resultation/Line Number PAGE: Data Consultants 7376 TossonPhillus Resultation/Line Number ConcostPhillus Resultation/Line Number PAGE: ConcostPhillus Resultation/Line Number ConcostPhillus Restent Resultation/Line Number Concos	of	
(661) 327-4911 (661) 327-1918 fax Santa Ana, C.A. 92704 AMPLIE COMPARTIN: Viild Value ID: Delta Consultants 7376 TORBO 100 101 (1) CONOCOPHILIPS STE MUMBER OLOBAL E NO.: TORBO 100 101 (1) ADDRESS: SITE ADDRESS (Bisect and Chy): 1164 Gold Camp Drive, Suite 200 Rancho Cordova, CA 95670 FIRE ADDRESS (Bisect and Chy): PROJECT CONTACT (Meekopy of PDE Report b): EMAL Janiel J. Davis and Liag Steizmer. EMAL Janiel J. Davis and Liag Steizmer. EMAL Usa Steizmer and Meghamm Hunt CONSULTANT PROJECT HUMBER CONSULTANT PROJECT HUMBER CONSULTANT PROJECT HUMBER CIAR ADVIS 21 HOURS C 48 HOURS C	ofL	
Delta Consultants 7376 T0600100101 ADDRESS: ADDRESS: STE ADDRESS: (Seed and City): CONCOMPLUE SITE MANAGER: 3164 Gold Camp Drive, Suite 200 Rancho Cordova, CA 95670 STE ADDRESS (Seed and City): CONCOMPLUE SITE MANAGER: Daniel J. Davis and Liag Steizner EMAL: EMAL: Consultants Bill Borgh Daniel J. Davis and Liag Steizner Fax: Consultants Consultants Consultants Marketig (Infinit: Infield Steizner Consultants Consultants Consultants Consultants Marketig (Infinit: Infield Steizner EAML: Consultants Cons		
ABDRESS: STE ADDRESS (Streed and City): CONOCOPHILUPS BITE MANAGER: Bill Borgh 164 Gold Camp Drive, Suite 200 Rancho Cordova, CA 95670 STE ADDRESS (Streed and City): STE ADDRESS (Streed and City): Bill Borgh Vaniel J. Davis and Lias Steizner FAX: Bill Borgh Bill Borgh Vaniel J. Davis and Lias Steizner FAX: Ste ADDRESS (Streed and City): Conocophilups Bite ManAger: Vaniel J. Davis and Lias Steizner and Megistim Hurt Consultant PROJECT NUMBER Consultant PROJECT NUMBER Consultant PROJECT NUMBER Lisa Steizner and Megistim Hurt Consultant PROJECT NUMBER Consultant PROJECT NUMBER Consultant PROJECT NUMBER Lisa Steizner and Megistim Hurt Consultant PROJECT NUMBER Consultant PROJECT NUMBER Consultant PROJECT NUMBER Lisa Steizner and Megistim Hurt Consultant PROJECT NUMBER Consultant PROJECT NUMBER Consultant PROJECT NUMBER Lisa Steizner and Megistim Hurt Consultant PROJECT Control Ste Address Steizner and Megistim Hurt Consultant PROJECT Control J Hows Dir Z HOURS C Adv Cong Y Go C fo Git Wits Steizner Git Wits Steizner Git Wits Steizner Market Dir Market Market Steizner Steizner Git Wits Steizner Git Wits Steizner J Hows Dir Z HOURS C		
1194 Gold Camp Drive, Suite 200 Rancho Cordova, CA 95670 1191 First Street, Pleasanton, California Bill Borgh TRUEET CONTACT (Medeory or DP Report to): CAMU: CAMU: <th< td=""><td></td></th<>		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		
Attrict Notification/Field Point EAML: Iddavis@deltaenv.com Lisa Stelzner 916-503-1268 Istelzner@deltaenv.com MMPLER MARKED 916-603-1268 Istelzner@deltaenv.com com com MMPLER MARKED 916-503-1268 Istelzner@deltaenv.com com MMPLER MARKED 916-503-1268 Istelzner@deltaenv.com com MMPLER MARKED CONSULTANT PROJECT NUMBER C107376002 REQUESTED ANALYSES TURNAROUND TIME (CALENDAR DAYS): CHECK BOX IF EDD IS NEEDED [] Istelzner@deltaenv.com FIEL SPECIAL INSTRUCTIONS OR NOTES: CHECK BOX IF EDD IS NEEDED [] Istelzner@deltaenv.com FIEL AF AFLASE fax Wpy of COC fo GH G		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
Lisa Steizner and Meghanin Hunt C107376002 REQUESTED ANALYSES TURNAROUND TIME (CALENDAR DAYS): I to DAYS		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
SPECIAL INSTRUCTIONS OR NOTES: CHECK BOX IF EDD IS NEEDED $[]$ Needd $[]$ Needd $[]$ Needed		
SPECIAL INSTRUCTIONS OR NOTES: CHECK BOX IF EDD IS NEEDED \square At Please fax way of COC fo $(9(0) 638 - 8385 A$ Other time only required if different from Sample ID Teild Point name only required if different from Sample ID Name* Date TIME MATRIX No. of Cont. VIE Name* Date TIME MATRIX No. of Cont. So Til X X Temperature CP-G@ G9.5 -70'/CP-G 2/28/08 11:41 So Til X X VIE Distribution Temperature Current form Sample Identification/Field Point Sample Identification Sample Identification Sample Identification So Til X X VIE Distribution Temperature Current form Sample Identification/Field Point Sample Identification So Til X X Image: Control of the	DNOTEO	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	LD NOTES:	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ner/Preservati PID Readings	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	boratory Note	
* Field Point name only required if different from Sample ID Intermeter if different from Sample ID Sample Identification/Field Point Name* Intermeter if on Sample ID Intermeter if on Sample ID Name* Intermeter if on Sample ID Intermeter if on Sample ID Name* Intermeter if on Sample ID Intermeter if on Sample ID Name* Intermeter if on Sample ID Intermeter if on Sample ID <th cols<="" td=""><td></td></th>	<td></td>	
$\frac{1}{2} \frac{CP-6@cq.5-70'}{CP-6} \frac{212408}{1425108} \frac{14200}{11241} \frac{5011}{12511} \frac{1}{12} \frac{X}{X}$		
$\frac{1}{2} CP - 6@ cq. 5 - 70' / CP - 6 212808 14:00 soil 1 X X $	E ON RECEIPT (
2 CP-6 @ 34.5-35'/CP-6 425108 11:41 SOIL 1 X X		
<u>2 CP-6 D / Cp-6 2/25/08 15:50 water 6 X X</u> <u>10A3 pre</u>		
	served wj	
	· · · · ·	
Relinquished by: (Signature)		
Vita State 1635 2/25/08 1635		
Relinguistedby: (Signature) Date: 2-2.5-08 V7.50)	
tempulshed buc (Signature) Date: Time:		

BC LABORATORIES INC.		SAMPLE RECEIPT FORM Rev. No. 10 01/21/04 Page Of									
Submission #: 0802501_	F	roject Co	ode:			TB E	atch #		ι	· · ·	
SHIPPING INFOR Federal Express UPS UPS UPS UPS UPS UPS UPS UPS		livery 🛛			lce Chest Box		NG CONT Non Othe	e 🖸	>cify)		
Refrigerant: Ice 🗅 Blue Ice [] No	ne 🛛	Other 🗌	Com	nents:						
Custody Seals: Ice Chest	Containe	ers [] ; [] No []	None [] Comm //	ients:				/		
\ll samples received? Yes 🕢 No 🗆	All sample	enistroo	s intact? Y	es D. No	0	Descript	ion(s) match	COC? Y	es [] No I		
COC Received		ice C Tempe <u>Thermome</u>	rature: 📿	<u>2001</u> -D_°€ -199)		sivity ainer <u>@Y</u>	-97 nxun	4	ime <u>2/28</u> t Init <u></u>		
		*			SAMPLE	UMBERS					
SAMPLE CONTAINERS	1	2	3	4	5	6	7	8	9	10	
<u>)T GENERAL MINERAL/ GENERAL PHYSICAL</u> 'T PE UNPRESERVED											
T INORGANIC CHEMICAL METALS											
T INORGANIC CHEMICAL METALS		<u> </u>									
T CYANIDE	1	 						_·			
T NITROGEN FORMS		<u> </u>									
T TOTAL SULFIDE		<u> </u>									
102_NITRATE/NITRITE		 	 								
00mi TOTAL ORGANIC CARBON		<u> </u>									
	· · · · ·		 			· · · ·					
<u>T CHEMICAL OXYGEN DEMAND</u>											
TA PHENOLICS											
IDeal VOA VIAL TRAVEL BLANK		· · ·	A.5.	(. (1	· r 1	()			
lomi VOA VIAL					· · ·	· · ·		````			
<u>YT EPA 413.1, 413.2, 418.1</u> YT ODOR											
RADIOLOGICAL		1									
BACTERIOLOGICAL											
10 ml VOA VIAL- 504											
)T EPA 508/608/8080											
)T EPA 515.1/8150											
)T EPA-525											
YT EPA 525 TRAVEL BLANK											
100ml EPA 547											
100ml EPA 531.1											
<u>2T EPA 548</u>		_									
<u> 2T EPA 549</u>											
<u>JT EPA 632</u>											
<u>)T EPA 8015M</u>											
⊇T QA/QC			·								
<u>QT AMBER</u>			-B								
OZ. JAR	····										
32 OZ. JAR	- A-										
SOIL SLEEVE		14-									
PCB VIAL		 									
PLASTIC BAG		 									
FERROUS IRON	•	<u> </u>									
ENCORE		<u> </u>									
										ť	

omments:______ample Numbering Completed By:______NW

.

	ental Consultants, Inc. p Road, Suite 200 a, CA 95670		Project: Project Number: Project Manager:	[none]		Reported: 03/11/2008 16:29
		Laborator	ry / Client Sar	mple Cross Ref	erence	
Laboratory	Client Sample Informat	ion ·	· • • • • • • • • • • • • • • • • • • •			
0802561-01	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 7376 CP-6 CP-6@69.5-70 DECR		Receive Date: Sampling Date: Sample Depth: Sample Matrix:	02/25/2008 20:45 02/25/2008 14:00 Solids	Delivery Work Order: Global ID: T0600100101 Matrix: SO Samle QC Type (SACode): CS Cooler ID:
0802561-02	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 7376 CP-6 CP-6@34.5-35 DECR		Receive Date: Sampling Date: Sample Depth: Sample Matrix:	02/25/2008 20:45 02/25/2008 11:41 Solids	Delivery Work Order: Global ID: T0600100101 Matrix: SO Samle QC Type (SACode): CS Cooler ID:
0802561-03	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 7376 CP-6D CP-6D DECR		Receive Date: Sampling Date: Sample Depth: Sample Matrix:	02/25/2008 20:45 02/25/2008 15:50 Water	Delivery Work Order: Global ID: T0600100101 Matrix: W Samle QC Type (SACode): CS Cooler ID:

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Delta Environmental Consultants, In 3164 Gold Camp Road, Suite 200 Rancho Cordova, CA 95670	С.			Project bject Number ect Manager	" [none]	Davis				Repo	orted: 03/	11/2008 16:2
	Vol	atile	Organic A	Analys	sis (E	EPA Met	hod	826))			
BCL Sample ID: 0802561-01	Client Sam	ple Name	: 7376, CP-6, CP-6	6@69.5-70, 2	2/25/2008	2:00:00PM		*****				
Constituent	Result	Units	PQL MDL	Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
Benzene	ND	mg/kg	0.0050	EPA-8260	02/27/08	02/28/08 09:06	LHS	MS-V2	1	BRC0002	ND	
1,2-Dibromoethane	ND	mg/kg	0.0050	EPA-8260	02/27/08	02/28/08 09:06	LHS	MS-V2	1	BRC0002	ND	
1,2-Dichloroethane	ND	mg/kg	0.0050	EPA-8260	02/27/08	02/28/08 09:06	LHS	MS-V2	1	BRC0002	ND	
Ethylbenzene	ND	mg/kg	0.0050	EPA-8260	02/27/08	02/28/08 09:06	LHS	MS-V2	1	BRC0002	ND	
Methyl t-butyl ether	0.022	mg/kg	0.0050	EPA-8260	02/27/08	02/28/08 09:06	LHS	MS-V2	1	BRC0002	ND	
Toluene	ND	mg/kg	0.0050	EPA-8260	02/27/08	02/28/08 09:06	LHS	MS-V2	1	BRC0002	ND	
Total Xylenes	ND	mg/kg	0.010	EPA-8260	02/27/08	02/28/08 09:06	LHS	MS-V2	1	BRC0002	ND	
t-Amyl Methyl ether	ND	mg/kg	0.0050	EPA-8260	02/27/08	02/28/08 09:06	LHS	MS-V2	1	BRC0002	ND	
t-Butyl alcohol	ND	mg/kg	0.050	EPA-8260	02/27/08	02/28/08 09:06	LHS	MS-V2	1	BRC0002	ND	
Diisopropyl ether	ND	mg/kg	0.0050	EPA-8260	02/27/08	02/28/08 09:06	LHS	MS-V2	1	BRC0002	ND	······································
Ethanol	ND	mg/kg	1.0	EPA-8260	02/27/08	02/28/08 09:06	LHS	MS-V2	1	BRC0002	ND	
Ethyl t-butyl ether	ND	mg/kg	0.0050	EPA-8260	02/27/08	02/28/08 09:06	LHS	MS-V2	1	BRC0002	ND	
Total Purgeable Petroleum Hydrocarbons	ND	mg/kg	0.20	EPA-8260	02/27/08	02/28/08 09:06	LHS	MS-V2	1	BRC0002	ND	
1,2-Dichloroethane-d4 (Surrogate)	88.8	%	70 - 121 (LCL - UCL)	EPA-8260	02/27/08	02/28/08 09:06	LHS	MS-V2	1	BRC0002		
Toluene-d8 (Surrogate)	106	%	81 - 117 (LCL - UCL)	EPA-8260	02/27/08	02/28/08 09:06	LHS	MS-V2	1	BRC0002		
4-Bromofluorobenzene (Surrogate)	94.9	%	74 - 121 (LCL - UCL)	EPA-8260	02/27/08	02/28/08 09:06	LHS	MS-V2	1	BRC0002		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Delta Environmental Consultants, Inc.	Project: 7376	Reported: 03/11/2008 16:29
3164 Gold Camp Road, Suite 200		Reported: 03/11/2000 10.29
Rancho Cordova, CA 95670	Project Number: [none]	
Kalicho Coldova, CA 95670	Project Manager: Daniel Davis	

Total Petroleum Hydrocarbons

BCL Sample ID: 0802561-01	Client Sam	ple Name	: 7376, CF	P-6, CP-6(@69.5-70, 2	2/25/2008	2:00:00PM				PA10		
Constituent	Result	Units	PQL	MDL	Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
Diesel Range Organics (C12 - C24)	ND	mg/kg	2.0		Luft/TPHd			PTL	GC-5	0.990	BRC0405	ND	Quais
Tetracosane (Surrogate)	72.9	%	34 - 136 (L	,	Luft/TPHd	03/01/08	03/08/08 08:06	PTL	GC-5	0.990	BRC0405		

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Delta Environmental Consultants, Inc 3164 Gold Camp Road, Suite 200 Rancho Cordova, CA 95670	> .			Proj Proje	Project ect Number ct Manager	[none]	Davis				Repo	orted: 03/1	1/2008 16:29
	Vol	atile	Orga	nic A	nalys	sis (E	EPA Met	hod	8260))			
BCL Sample ID: 0802561-02	Client Sam	ple Name	: 7376, C	P-6, CP-6(@34.5-35, 2	2/25/2008	11:41:00AM						
Constituent	Result	Units	PQL	MDL	Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
Benzene	ND	mg/kg	0.0050		EPA-8260	02/27/08	02/28/08 04:10	LHS	MS-V2	1	BRC0002	ND	
1,2-Dibromoethane	ND	mg/kg	0.0050		EPA-8260	02/27/08	02/28/08 04:10	LHS	MS-V2	1	BRC0002	ND	
1,2-Dichloroethane	ND	mg/kg	0.0050		EPA-8260	02/27/08	02/28/08 04:10	LHS	MS-V2	1	BRC0002	ND	
Ethylbenzene	ND	mg/kg	0.0050		EPA-8260	02/27/08	02/28/08 04:10	LHS	MS-V2	1	BRC0002	ND	
Methyl t-butyl ether	ND	mg/kg	0.0050		EPA-8260	02/27/08	02/28/08 04:10	LHS	MS-V2	1	BRC0002	ND	•
Toluene	ND	mg/kg	0.0050		EPA-8260	02/27/08	02/28/08 04:10	LHS	MS-V2	1	BRC0002	ND	
Total Xylenes	ND	mg/kg	0.010		EPA-8260	02/27/08	02/28/08 04:10	LHS	MS-V2	1	BRC0002	ND	
t-Amyi Methyi ether	ND	mg/kg	0.0050	· · · · · · · · · · · · · · · · · · ·	EPA-8260	02/27/08	02/28/08 04:10	LHS	MS-V2	1	BRC0002	ND	······
t-Butyl alcohol	ND	mg/kg	0.050		EPA-8260	02/27/08	02/28/08 04:10	LHS	MS-V2	1	BRC0002	ND	
Diisopropyl ether	ND	mg/kg	0.0050		EPA-8260	02/27/08	02/28/08 04:10	LHS	MS-V2	1	BRC0002	ND	
Ethanol	ND	mg/kg	1.0		EPA-8260	02/27/08	02/28/08 04:10	LHS	MS-V2	1	BRC0002	ND	
Ethyl t-butyl ether	ND	mg/kg	0.0050		EPA-8260	02/27/08	02/28/08 04:10	LHS	MS-V2	1	BRC0002	ND	·,
Total Purgeable Petroleum Hydrocarbons	ND	mg/kg	0.20		EPA-8260	02/27/08	02/28/08 04:10	LHS	MS-V2	1	BRC0002	ND	
1,2-Dichloroethane-d4 (Surrogate)	91.9	%	70 - 121 (L	CL - UCL)	EPA-8260	02/27/08	02/28/08 04:10	LHS	MS-V2	1	BRC0002		1
Toluene-d8 (Surrogate)	93.5	%	81 - 117 (L	CL - UCL)	EPA-8260	02/27/08	02/28/08 04:10	LHS	MS-V2	1	BRC0002		
4-Bromofluorobenzene (Surrogate)	99.2	%	74 - 121 (1	_CL - UCL)	EPA-8260	02/27/08	02/28/08 04:10	LHS	MS-V2	1	BRC0002		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Delta Environmental Consultants, Inc. 3164 Gold Camp Road, Suite 200 Rancho Cordova, CA 95670	Project: 7376 Project Number: [none] Project Manager: Daniel Davis	Reported: 03/11/2008 16:29
---	--	----------------------------

Total Petroleum Hydrocarbons

BCL Sample ID: 0802561-02	Client Sam	ple Name	: 7376,	CP-6, CP-6(@34.5-35, 2	2/25/2008	11:41:00AM						
0	-					Prep	Run		Instru-		QC	MB	Lab
Constituent	<u>Result</u>	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Diesel Range Organics (C12 - C24)	ND	mg/kg	2.0		Luft/TPHd	03/01/08	03/08/08 08:20	PTL	GC-5	1.014	BRC0405	ND	qualo
Tetracosane (Surrogate)	64.4	%	34 - 136	(LCL - UCL)	Luft/TPHd	03/01/08	03/08/08 08:20	PTL	GC-5	1.014	BRC0405		

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Delta Environmental Consultants, Inc 3164 Gold Camp Road, Suite 200 Rancho Cordova, CA 95670				Project oject Number ject Manager		Davis				Repo	orted: 03/*	11/2008 16:2
	Vol	atile	Organic <i>I</i>	Analys	sis (E	EPA Met	thod	826	0)			
BCL Sample ID: 0802561-03	Client Sam	ple Name	: 7376, CP-6D, CF	P-6D, 2/25/20	08 3:50:0	DOPM						
Constituent	Result	Units	PQL MDL	Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
Benzene	4.7	ug/L	0.50	EPA-8260	02/29/08	03/01/08 01:31	ken	MS-V12	1	BRB1788	ND	
1,2-Dibromoethane	ND	ug/L	0.50	EPA-8260	02/29/08	03/01/08 01:31	ken	MS-V12	1	BRB1788	ND	
1,2-Dichloroethane	1.4	ug/L	0.50	EPA-8260	02/29/08	03/01/08 01:31	ken	MS-V12	1	BRB1788	ND	
Ethylbenzene	1.0	ug/L	0.50	EPA-8260	02/29/08	03/01/08 01:31	ken	MS-V12	1	BRB1788	ND	
Methyl t-butyl ether	110	ug/L	1.0	EPA-8260	02/29/08	03/04/08 00:27	ken	MS-V12	2	BRB1788	ND	A01
Toluene	NĎ	ug/L	0.50	EPA-8260	02/29/08	03/01/08 01:31	ken	MS-V12	1	BRB1788	ND	
Total Xylenes	ND	ug/L	1.0	EPA-8260	02/29/08	03/01/08 01:31	ken	MS-V12	1	BRB1788	ND	
t-Amyl Methyl ether	ND	ug/L	0.50	EPA-8260	02/29/08	03/01/08 01:31	ken	MS-V12	1	BRB1788	ND	
t-Butyl alcohol	170	ug/L	10	EPA-8260	02/29/08	03/01/08 01:31	ken	MS-V12	1	BRB1788	ND	
Diisopropyl ether	7.0	ug/L	0.50	EPA-8260	02/29/08	03/01/08 01:31	ken	MS-V12	1	BRB1788	ND	
Ethanol	ND	ug/L	250	EPA-8260	02/29/08	03/01/08 01:31	ken	MS-V12	1	BRB1788	ND	
Ethyl t-butyl ether	ND	ug/L	0.50	EPA-8260	02/29/08	03/01/08 01:31	ken	MS-V12	1	BRB1788	ND	
Total Purgeable Petroleum Hydrocarbons	160	ug/L	50	EPA-8260	02/29/08	03/01/08 01:31	ken	MS-V12	1	BRB1788	ND	
1,2-Dichloroethane-d4 (Surrogate)	106	%	76 - 114 (LCL - UCI	.) EPA-8260	02/29/08	03/01/08 01:31	ken	MS-V12	1	BRB1788		
1,2-Dichloroethane-d4 (Surrogate)	106	%	76 - 114 (LCL - UCI	.) EPA-8260	02/29/08	03/04/08 00:27	ken	MS-V12	2	BRB1788		
Toluene-d8 (Surrogate)	101	%	88 - 110 (LCL - UCI	_) EPA-8260	02/29/08	03/04/08 00:27	ken	MS-V12	2	BRB1788		
Toluene-d8 (Surrogate)	101	%	88 - 110 (LCL - UCI	.) EPA-8260	02/29/08	03/01/08 01:31	ken	MS-V12	1	BRB1788		
4-Bromofluorobenzene (Surrogate)	97.4	%	86 - 115 (LCL - UCI	.) EPA-8260	02/29/08	03/01/08 01:31	ken	MS-V12	1	BRB1788		
4-Bromofluorobenzene (Surrogate)	104	%	86 - 115 (LCL - UCI	.) EPA-8260	02/29/08	03/04/08 00:27	ken	MS-V12	2	BRB1788		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com Page 6 of 15

Delta Environmental Consultants, Inc.Project: 7376Reported: 03/11/2008 16:293164 Gold Camp Road, Suite 200Project Number: [none]Rancho Cordova, CA 95670Project Manager: Daniel Davis

Total Petroleum Hydrocarbons

BCL Sample ID: 0802561-03	Client Sam	ple Name	: 7376, CF	P-6D, CP-0	6D, 2/25/20	08 3:50:0	00PM						
						Prep	Run		Instru-		OC _	MB	Lab
Constituent	Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Diesel Range Organics (C12 - C24)	ND	ug/L	77		Luft/TPHd	03/04/08	03/06/08 08:08	PTL	GC-5	1.538	BRC0324	ND	
Tetracosane (Surrogate)	45.0	%	28 - 139 (L	CL - UCL)	Luft/TPHd	03/04/08	03/06/08 08:08	PTL	GC-5	1.538	BRC0324		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com Page 7 of 15

Project: 7376 Project Number: [none] Project Manager: Daniel Davis Reported: 03/11/2008 16:29

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Precision & Accuracy

									-	Contro	ol Limits
			Source	Source		Spike			Percent		Percent
Constituent	Batch ID	QC Sample Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery Lab Quals
Benzene	BRB1788	Matrix Spike	0802516-01	0	22.060	25.000	ug/L		88.2		70 - 130
		Matrix Spike Duplicat	e 0802516-01	0	25.240	25.000	ug/L	13.5	101	20	70 - 130
Toluene	BRB1788	Matrix Spike	0802516-01	0	22.690	25.000	ug/L		90.8		70 - 130
		Matrix Spike Duplicat	te 0802516-01	0	26.230	25.000	ug/L	14.5	105	20	70 - 130
1,2-Dichloroethane-d4 (Surrogate)	BRB1788	Matrix Spike	0802516-01	ND	10.580	10.000	ug/L		106		76 - 114
<u> </u>		Matrix Spike Duplicat	te 0802516-01	ND	10.320	10.000	ug/L		103		76 - 114
Toluene-d8 (Surrogate)	BRB1788	Matrix Spike	0802516-01	ND	10.160	10.000	ug/L		102		88 - 110
		Matrix Spike Duplicat	te 0802516-01	ND	10.130	10.000	ug/L		101		88 - 110
4-Bromofluorobenzene (Surrogate)	BRB1788	Matrix Spike	0802516-01	ND	9.6200	10.000	ug/L		96.2		86 - 115
· · ·		Matrix Spike Duplicat	te 0802516-01	ND	9.8800	10.000	ug/L		98.8		86 - 115
Benzene	BRC0002	Matrix Spike	0801068-87	0	0.11778	0.12500	mg/kg		94.2		70 - 130
		Matrix Spike Duplicat	te 0801068-87	0	0.11680	0.12500	mg/kg	0.9	93.4	20	70 - 130
Toluene	BRC0002	Matrix Spike	0801068-87	0	0.13989	0.12500	mg/kg		112		70 - 130
		Matrix Spike Duplicat	te 0801068-87	0	0.13436	0.12500	mg/kg	4.6	107	20	70 - 130
1,2-Dichloroethane-d4 (Surrogate)	BRC0002	Matrix Spike	0801068-87	ND	0.050567	0.050000	mg/kg		101		70 - 121
		Matrix Spike Duplicat	te 0801068-87	ND	0.050414	0.050000	mg/kg		101		70 - 121
Toluene-d8 (Surrogate)	BRC0002	Matrix Spike	0801068-87	ND	0.054719	0.050000	mg/kg		109		81 - 117
		Matrix Spike Duplicat	te 0801068-87	ND	0.052576	0.050000	mg/kg		105		81 - 117
4-Bromofluorobenzene (Surrogate)	BRC0002	Matrix Spike	0801068-87	ND	0.051250	0.050000	mg/kg		102		74 - 121
		Matrix Spike Duplicat	te 0801068-87	ND	0.050025	0.050000	mg/kg		100		74 - 121

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com Page 8 of 15

Delta Environmental Consultants, Inc.Project: 7376Reported: 03/11/2008 16:293164 Gold Camp Road, Suite 200Project Number: [none]Rancho Cordova, CA 95670Project Manager: Daniel Davis

Total Petroleum Hydrocarbons

Quality Control Report - Precision & Accuracy

										<u>Contr</u>	ol Limits
			Source	Source		Spike			Percent		Percent
Constituent	Batch ID	QC Sample Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery Lab Quals
Diesel Range Organics (C12 - C24)	BRC0324	Matrix Spike	0714775-61	0	394.27	500.00	ug/L		78.9		36 - 130
		Matrix Spike Duplicat	e0714775-61	0	417.57	500.00	ug/L	5.7	83.5	30	36 - 130
Tetracosane (Surrogate)	BRC0324	Matrix Spike	0714775-61	ND	11.104	20.000	ug/L		55.5		28 - 139
		Matrix Spike Duplicat	e 0714775-61	ND	11.386	20.000	ug/L		56.9		28 - 139
Diesel Range Organics (C12 - C24)	BRC0405	Matrix Spike	0801068-07	0	15.208	16.892	mg/kg		90.0		40 - 137
		Matrix Spike Duplicat	te 0801068-07	0	13.873	16.835	mg/kg	8.8	82.4	30	40 - 137
Tetracosane (Surrogate)	BRC0405	Matrix Spike	0801068-07	ND	0.44480	0.67568	mg/kg		65.8		34 - 136
		Matrix Spike Duplicat	te 0801068-07	ND	0.43337	0.67340	mg/kg		64.4		34 - 136

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com Page 9 of 15

Delta Environmental Consultants, Inc.Project:7376Reported:03/11/200816:293164 Gold Camp Road, Suite 200Project Number:[none]Project Manager:Daniel DavisRancho Cordova, CA 95670Project Manager:Daniel Davis

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Laboratory Control Sample

										<u>Control</u>	Limits	
	Datab ID	OC Semale ID	00 Turns	Decult	Spike	POI	Unito	Percent	חממ	Percent	RPD	Lab Quals
Constituent	Batch ID	QC Sample ID	QC Type	Result	Level	PQL	Units	Recovery	RPD	Recovery	RPD	
Benzene	BRB1788	BRB1788-BS1	LCS	25.350	25.000	0.50	ug/L	101		70 - 130		
Toluene	BRB1788	BRB1788-BS1	LCS	25.550	25.000	0.50	ug/L	102		70 - 130		
1,2-Dichloroethane-d4 (Surrogate)	BRB1788	BRB1788-BS1	LCS	9.7100	10.000		ug/L	97.1		76 - 114		
Toluene-d8 (Surrogate)	BRB1788	BRB1788-BS1	LCS	10.180	10.000		ug/L	102		88 - 110		
4-Bromofluorobenzene (Surrogate)	BRB1788	BRB1788-BS1	LCS	9.7500	10.000		ug/L	97.5		86 - 115		
Benzene	BRC0002	BRC0002-BS1	LCS	0.11439	0.12500	0.0050	mg/kg	91.5		70 - 130		
Toluene	BRC0002	BRC0002-BS1	LCS	0.12033	0.12500	0.0050	mg/kg	96.3		70 - 130		
1,2-Dichloroethane-d4 (Surrogate)	BRC0002	BRC0002-BS1	LCS	0.047260	0.050000		mg/kg	94.5		70 - 121		
Toluene-d8 (Surrogate)	BRC0002	BRC0002-BS1	LCS	0.048950	0.050000		mg/kg	97.9		81 - 117		
4-Bromofluorobenzene (Surrogate)	BRC0002	BRC0002-BS1	LCS	0.050311	0.050000		mg/kg	101		74 - 121		
	a na sa				·······							

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com Page 10 of 15

Delta Environmental Consultants, Inc. 3164 Gold Camp Road, Suite 200

Rancho Cordova, CA 95670

Reported: 03/11/2008 16:29

Page 11 of 15

Project: 7376 Project Number: [none]

Project Manager: Daniel Davis

Total Petroleum Hydrocarbons

Quality Control Report - Laboratory Control Sample

										<u>Control</u>	Limits	
Constituent	Batch ID	QC Sample ID	QC Type	Result	Spike Level	PQL	Units	Percent Recovery	RPD	Percent Recovery	RPD	Lab Quals
Diesel Range Organics (C12 - C24)	BRC0324	BRC0324-BS1	LCS	299.56	500.00	50	ug/L	59.9		48 - 125		
Tetracosane (Surrogate)	BRC0324	BRC0324-BS1	LCS	8.7810	20.000		ug/L	43.9		28 - 139		
Diesel Range Organics (C12 - C24)	BRC0405	BRC0405-BS1	LCS	16.109	16.667	2.0	mg/kg	96.7		50 - 136		
Tetracosane (Surrogate)	BRC0405	BRC0405-BS1	LCS	0.54907	0.66667		mg/kg	82.4		34 - 136		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Delta Environmental Consultants, Inc. 3164 Gold Camp Road, Suite 200 Rancho Cordova, CA 95670		Project: 7376 ject Number: [none] ect Manager: Daniel Dav	vis		Reported: 03/11/2008 16:					
Vol	atile Organic /	Analysis (E	PA Metho	d 8260)					
	Quality Control F	Report - Method	I Blank Anal	ysis						
Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals			
Benzene	BRB1788	BRB1788-BLK1	ND	ug/L	0.50	· · · ·				
1,2-Dibromoethane	BRB1788	BRB1788-BLK1	ND	ug/L	0.50					
1,2-Dichloroethane	BRB1788	BRB1788-BLK1	ND	ug/L	0.50					
Ethylbenzene	BRB1788	BRB1788-BLK1	ND	ug/L	0.50					
Methyl t-butyl ether	BRB1788	BRB1788-BLK1	ND	ug/L	0.50					
Toluene	BRB1788	BRB1788-BLK1	ND	ug/L	0.50					
Total Xylenes	BRB1788	BRB1788-BLK1	ND	ug/L	1.0					
t-Amyl Methyl ether	BRB1788	BRB1788-BLK1	ND	ug/L	0.50					
t-Butyl alcohol	BRB1788	BRB1788-BLK1	ND	ug/L	10					
Diisopropyl ether	BRB1788	BRB1788-BLK1	ND	ug/L	0.50					
Ethanol	BRB1788	BRB1788-BLK1	ND	ug/L	250					
Ethyl t-butyl ether	BRB1788	BRB1788-BLK1	ND	ug/L	0.50					
Total Purgeable Petroleum Hydrocarbons	BRB1788	BRB1788-BLK1	ND	ug/L	50					
1,2-Dichloroethane-d4 (Surrogate)	BRB1788	BRB1788-BLK1	103	%	76 - 114	LCL - UCL)				
Toluene-d8 (Surrogate)	BRB1788	BRB1788-BLK1	100	%	88 - 110	LCL - UCL)				
4-Bromofluorobenzene (Surrogate)	BRB1788	BRB1788-BLK1	97.2	%	86 - 115	LCL - UCL)				
Benzene	BRC0002	BRC0002-BLK1	ND	mg/kg	0.0050					
1,2-Dibromoethane	BRC0002	BRC0002-BLK1	ND	mg/kg	0.0050					
1,2-Dichloroethane	BRC0002	BRC0002-BLK1	ND	mg/kg	0.0050					
Ethylbenzene	BRC0002	BRC0002-BLK1	NĎ	mg/kg	0.0050					
Methyl t-butyl ether	BRC0002	BRC0002-BLK1	ND	mg/kg	0.0050					
Toluene	BRC0002	BRC0002-BLK1	ND	mg/kg	0.0050		····· · ····· • · · · · · · · · · · · ·			
Total Xylenes	BRC0002	BRC0002-BLK1	ND	mg/kg	0.010					
t-Amyl Methyl ether	BRC0002	BRC0002-BLK1	ND	mg/kg	0.0050					

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com Page 12 of 15

Delta Environmental Consultants, Inc. 3164 Gold Camp Road, Suite 200 Rancho Cordova, CA 95670	Proj	Project: 7376 ject Number: [none] ect Manager: Daniel Dav				teported: 03	/11/2008 16:29
Vol	atile Organic /	Analysis (E	PA Metho	od 8260)		
	Quality Control	Report - Method	l Blank Ana	lysis			
Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
t-Butyl alcohol	BRC0002	BRC0002-BLK1	ND	mg/kg	0.050		
Diisopropyl ether	BRC0002	BRC0002-BLK1	ND	mg/kg	0.0050		
Ethanol	BRC0002	BRC0002-BLK1	ND	mg/kg	1.0		
Ethyl t-butyl ether	BRC0002	BRC0002-BLK1	ND	mg/kg	0.0050		
Total Purgeable Petroleum Hydrocarbons	BRC0002	BRC0002-BLK1	ND	mg/kg	0.20		
1,2-Dichloroethane-d4 (Surrogate)	BRC0002	BRC0002-BLK1	99.7	%	70 - 121 (LCL - UCL)	
Toluene-d8 (Surrogate)	BRC0002	BRC0002-BLK1	97.6	%	81 - 117 (LCL - UCL)	

BRC0002-BLK1

BRC0002

BC Laboratories

4-Bromofluorobenzene (Surrogate)

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

%

74 - 121 (LCL - UCL)

100

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com Page 13 of 15

Delta Environmental Consultants, Inc.

3164 Gold Camp Road, Suite 200

Rancho Cordova, CA 95670

Reported: 03/11/2008 16:29

Project: 7376 Project Number: [none]

Project Manager: Daniel Davis

Total Petroleum Hydrocarbons

Quality Control Report - Method Blank Analysis

Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
Diesel Range Organics (C12 - C24)	BRC0324	BRC0324-BLK1	ND	ug/L	50		
Tetracosane (Surrogate)	BRC0324	BRC0324-BLK1	61.0	%	28 - 139	(LCL - UCL)	······································
Diesel Range Organics (C12 - C24)	BRC0405	BRC0405-BLK1	ND	mg/kg	2.0		
Tetracosane (Surrogate)	BRC0405	BRC0405-BLK1	56.2	%	34 - 136	(LCL - UCL)	T. 1. W. M.

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com Page 14 of 15

-		
	_	
	_	

3164 G	nvironmental Consultants, Inc. old Camp Road, Suite 200 o Cordova, CA 95670	Project: Project Number: Project Manager:	[none]	Reported: 03/11/2008 16:29
Notes	And Definitions		an a	
MDL	Method Detection Limit			
ND	Analyte Not Detected at or above the reporting limit			
PQL	Practical Quantitation Limit			
RPD	Relative Percent Difference			
A 01	PQL's and MDL's are raised due to sample dilution.			
	•			

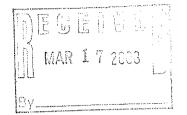
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com Page 15 of 15

Date of Report: 03/11/2008

Daniel Davis

Delta Environmental Consultants, Inc. 3164 Gold Camp Road, Suite 200 Rancho Cordova, CA 95670


RE: 7376 BC Work Order: 0802629

Enclosed are the results of analyses for samples received by the laboratory on 02/26/2008 21:40. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Contact Person: Molly Meye

Authorized Signature

BC LABORATORIES INC.		SAM	PLE RECI	IPT FOR	M	Rev. No. 1	0 01/21	/04 Pa	age O	f
Submission #: 080262 9	` P	roject Co	de:			ТВЕ	Batch #			
SHIPPING INFOR							NG CONT	AINER		
Federal Express C JPS C	Hand De	livery 🛛			Ice Chest		Non	ie 🗋		
BC Lab Field Service 🖆 👘 Other [] (Specify	n			Box	O	· Othe	er 🗆 (Spo	ecify)	
								<u></u>		
Refrigerant: Ice 🛛 Blue Ice 🕻	<u> No</u>	<u>ne 🛛 .</u>	Other 🖸	Com	nents:					
Custody Seals: Ice Chest 🛙	Containe	1	None E	Comm	ients:					
	Intact? Yes									
All samples received? Yes 🖯 No 🛛	All sample	s container	s intact? Y	es 🛛 No	0	Descript	ion(s) matcl	h COC? Y	es 🛛 No	CI IIII
COC Received			hest ID			sivity	.95	Date/Ti	ime <u>2-2</u>	6-8
		Tempe		°C	Cont	ainer <u>()</u> †	<u>An</u>	Analys		2229
	<u>(</u>	Thermome		<u> ()</u>						f
SAMPLE CONTAINERS	1	2	3		SAMPLE I	6	7	8	9	10
OT GENERAL MINERAL/ GENERAL PHYSICAL		<u>4</u>	3		3			•		<u>`````</u>
PT PE UNPRESERVED			-					-		
QT INORGANIC CHEMICAL METALS										
PT INORGANIC CHEMICAL METALS										
PT CYANIDE										
PT NITROGEN FORMS										
PT TOTAL SULFIDE										
202. NITRATE / NITRITE										
100mi TOTAL ORGANIC CARBON										
QT TOX PT CHEMICAL OXYGEN DEMAND										
PIA PHENOLICS			-							
40ml VOA VIAL TRAVEL BLANK										
40mi VOA VIAL	ť	A.7		t	A S		· ()	()	(4 1
QT EPA 413.1, 413.2, 418.1										
PT ODOR										
RADIOLOGICAL										
BACTERIOLOGICAL										
40 ml VOA VIAL- 504										
QT EPA 508/608/8080										
QT EPA 515.1/8150										
QT EPA 525 QT EPA 525 TRAVEL BLANK										
100ml EPA 547										
100ml EPA 531.1	-									
QT EPA 548										
QT EPA 549										
QT EPA 632	_ ,									
QT EPA 8015M										
QT QA/QC					<i>r</i>					
QT AMBER		_13			-[3-					
8 OZ. JAR										
32 OZ. JAR	A,B		A	4						
SOIL SLEEVE	בו ודי		1 5		İ					
PCB VIAL PLASTIC BAG										
FERROUS IRON										
ENCORE										
]					

Ā

Date/Time: <u>2-26-823</u>(0

4100 Atlas Court ConcooPhillips Site Manager: Bill Borgh ConcooPhillips Expendentiation.Line Number Bakersfield, CA 93308 (661) 327-1918 fax 00000Phillips Site Manager: 000000Phillips Site Manager: 000000Phillips Expendentiation.Line Number Delta Consultante 726 000000Phillips Site Manager: 00000Phillips Site Manager: 000	
Bakersfield, CA 93308 CONCOMPLIERS CONCOMPLIERS DATE: 1/2/2/2/2/ (661) 327-4911 (661) 327-1918 fax 0500 2.0.21	X
Data Control Of Conceptibility Conceptibility Conceptibility Conceptibility Conceptibility PAGE:	+ A
(661) 327-4911 (661) 327-1918 fax OSCO2029 Santa Ana, CA, 92704 PAGE:	
Description Pail Visual (b): Consocret/Lise are evided: OLDBALL IS NO: Deprese 7376 ToBON10011 ADDRESS: ToBON1001 ADDRESS: ToBON1001 ADDRESS: ToBON1001 ADDRESS: ToBON1001 ADDRESS: ToBON1001 ADDRESS: Consocret/Reales 10 (PP or Dealgree): Price ADDRESS: Consocret Numbers Lisa Stelzner Addressedeletaron.com Lisa Stelzner Isatezner(Bdeletaron.com Lisa Stelzner Addressedeletaron.com Lisa Stelzner Consocret Numbers Lisa Stelzner Consocret Numbers Lisa Stelzner Consocret Numbers Lisa Stelzner Consocrets: Check Box Force Consocrets: Check Cox Box Force	
NOREAS: Topological Topological Topological 164 Gold Camp Drive, Suite 200 Rancho Cordova, CA 95670 Bill ADDREss (Bread and Chy): Concomulations and Liss Stelaner Concomulations and Liss Stelaner Bill Borgh aniel J. Davis and Liss Stelaner Eddol Camp Drive, Suite 200 Rancho (Stelaner); Eddol Camp Drive, Suite 200 Rancho Cordova, CA 95670 High First Street, Pleasanton, California Bill Borgh aniel J. Davis and Liss Stelaner Eddol: Eddol Camp Drive, Suite 200 Rancho (Stelaner); Iddavis@deltaenv.com Liss Stelaner Stelaner Stelaner Stelaner Iddavis@deltaenv.com Liss Stelaner Consultant Provis Townee Number Consultant Provis Townee Number Liss Stelaner Stelaner Stelaner UNAROUND TIME (CALENDAR DAYS); Consultant Provis Townee Number Consultant Provis Townee Number REQUESTED ANALYSES File D NO PEGAL INSTRUCTIONS OR NOTES: CHECK EXAL (FEDDIS NEEDED IST File D NO File D NO Container/Pressor Container/Pressor Stanple Identification/Field Point Amer Date Time Mater Stanple Identification/Field Point Social Stanple Identification Field Point Social Stanple Identificatinor Stanple Ident	******
164 Gold Camp Drive, Suite 200 Rancho Cordova, CA 95670 4191 First Street, Pleasanton, California Bill Borgh aniel J. Davis and Lisa Stelzner FAX: Example: Proceedings of the conditionant of the condit of the conditionant of the conditionant of the conditi	^{يو} ادر
aniel J. Davis, and Lisa Stelzner FXX: EAML: Lab USE ONLY aniel J. Davis, and Lisa Stelzner FXX: EAML: Lab USE ONLY Be-033-1268 FXX: FXX: Different From Different From MBPLER NAME(S) (PMI): CONSULTANT PROJECT NUMBER LINARADOWN TIME (ALENDAR DAYS): CONSULTANT PROJECT NUMBER CONSULTANT PROJECT NUMBER CONSULTANT PROJECT NUMBER CONSULTANT PROJECT NUMBER IPRCIAL INSTRUCTIONS OR NOTES: CHECK BOX IF EDDIS NEEDED [] PS PS FIELD NO Combine 2 Soil Hubes, com bine VBAS for Check Box IF EDDIS NEEDED [] PS PS PS Marker Same New Marker New	
Preck PAX: E-MAIL: B16-503-1268 Istaizner@dellaanv.com MM-Ler NAME(8) (PHAID): CONSULTANT PROJECT NUMBER C107376002 REQUESTED ANALYSES Lisa Steizner and Meghann Hurt C107376002 REQUESTED ANALYSES TURNAROUND TRUE (OLEEDADA OX9): C107376002 REQUESTED ANALYSES I to AVY: 7 DAVS 72 HOURS 24 HOURS Liss Steizner IPECIAL INSTRUCTIONS OR NOTES: C-RECK BOX IF EDDIS NEEDED [
MMPLER MARE(S) (Print): CONSULTANT PROJECT NUMBER Lisa Statzner and Meghann Hurt C107376002 TURNAROUND TIME (CALENDAR DAYS): 2 HOURS 2 24 HOURS 2 44 HOU	
TURNAROUND TIME (CALENDAR DAYS): CHOROL I 14 DAYS 7 DAYS 7 DAYS 7 24 HOURS LESS THAN 24 HOURS FIELD NO PECIAL INSTRUCTIONS OR NOTES: CHECK BOX IF EDD IS NEEDED Image: Check Box IF EDD IS NEEDED	
I + DAYS 7 DAYS <td></td>	
PECIAL INSTRUCTIONS OR NOTES: CHECK BOX IF EDD IS NEEDED [] AS Please fax copy of coc to (916) 638-8385 Combine Soil tyber, combine Veas for composite Soil tyber, combine Veas for combine for Com	
Combine soil tubes, combine Veas for composite samples. Field Point anne only required if different from Sample ID Age Sample Identification/Field Point SAMPLING MATRIX NO. OF See Name* DATE TIME MATRIX NO. OF COMP Soil 42000037 Soil 2 X X X Combine for Comp Water 24000037 Soil 2 X X Combine for Combine for	
Combine soil tubes, combine Veas for composite samples. Field Point anne only required if different from Sample ID Age Sample Identification/Field Point SAMPLING MATRIX NO. OF See Name* DATE TIME MATRIX NO. OF COMP Soil 42000037 Soil 2 X X X Combine for Comp Water 24000037 Soil 2 X X Combine for Combine for	ES:
Combine Soil tybes, combine Veas for composite Samples. Field Point name only required if different from Sample ID Are Name* Comp Soil 2285 Soil 2 X X X Comp Nater 246408 10:37 Soil 2 X X Combine for Combine	
Composite Samples. *Field Point name only required if different from Sample ID * See Sample Identification/Field Point SAMPLING MATRIX NO. OF See Name* DATE TIME MATRIX NO. OF See Sample Identification/Field Point SAMPLING MATRIX NO. OF See Sample Identification/Field Point SAMPLING MATRIX NO. OF See Sample Identification/Field Point SAMPLING MATRIX NO. OF See Sample Identification/Field Point SAMPLING MATRIX NO. OF See Sample Identification/Field Point SAMPLING MATRIX NO. OF See Sample Identification/Field Point SAMPLING MATRIX NO. OF See Sample Identification/Field Point SAMPLING MATRIX NO. OF See Sample Identification/Field Point SAMPLING MATRIX NO. OF See Sample Identification/Field Point SAMPLING MATRIX NO. OF See Sample Identification/Field Point SAMPLING MATRIX NO. OF See Sample Identification/Field Point SAMPLING MATRIX NO. OF See Sample Identification/Field Point SAMPLING MATRIX NO. OF See Sample Identification/Field Point SAMPLING MATRIX NO. OF See Sample Identification/Field Point SAMPLING MATRIX NO. OF See Sample Identification/Field Point SAMPLING MATRIX NO. OF See Sample Identification/Field Point SAMPLING MATRIX NO. OF See Sample Identification/Field Point SAMPLING MATRIX NO. OF See Sample Identification/Field Point SAMPLING MATRIX NO. OF Comp Water Sample Identification/Field Point SAMPLING MATRIX NO. OF See Sample Identification/Field Point SAMPLING MATRIX NO. OF See Sample Identification/Field Point SAMPLING MATRIX NO. OF See Sample Identification/Field Point SAMPLING MATRIX NO. OF Comp Water Sample Identification/Field Point Identification/Field Point SAMPLING MATRIX NO. OF See Sample Identification/Field Point SAMPLING MATRIX NO. OF See Sample Identification/Field Point SAMPLING MATRIX NO. OF See Sample Identification/Field Point SAMPLING MATRIX NO. OF See Sample Identification/Field Point SAMPLING MATRIX NO. OF See Sample Identification/Field Point SAMPLING MATRIX NO. OF See Sample Identification/Field Point SAMPLING MATRIX NO. OF See Sample Identification/F	
¹ Field Point name only required if different from Sample ID Name* DATE NO. OF CONT. So of So of So of So of So of So of So of <th< th=""><th></th></th<>	
Sample Identification/Field Point SAMPLING MATRIX No. of cont So of cont	
Comp Soil 2/2000 10:37 Soil 2 X X X X Combine for 2 Comp Water 2/2000 10:37 Soil 2/2	
2 Comp Water 2006 10:30 Water 8 X X X - Combine to Comb	∃IPT C⁰
2 Comp Water 2/26/08/10:50 Water 8 X X Tr I Amber : 71 3 CP-7@39.5-40' /CP-7 2/24/08/11-25 Soil 1 X X	Sa
3 CP-7@39.5-40' /CR-7 2/24/08/11-35 Soil 1 × ×	
3 CP-10 39.5-40 /CP-7 14408 11-35 Soil XX	
$4 c_{2} - 7 e_{54,5-55} / (e_{7} - 7) = 0.557 oil 1 x v$	
5 CR-IM VISION VAS preserved	WIP
Inquisited by: (Signature)	r Li
the Kash Silan BCIAN 3/26/18 1630	rLis
Koss Wickey 2/26/08 Riking and Z. 2 (and The 1840	rLis
Received by: (Signature) Produce by: (Signature) 2/2/2/08 Time: 2140	need r Lis m 21
2140 9/19/03 Revision	rLis

÷

	ental Consultants, Inc. p Road, Suite 200 a, CA 95670		Project: 7376 Project Number: [none] roject Manager: Daniel Davis		Reported: 03/11/2008			
		Laboratory / C	Client Sample Cross Re	ference				
Laboratory	Client Sample Informat	ion						
0802629-01	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	7376 Comp Soil Comp Soil DECR	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	02/26/2008 21:40 02/26/2008 10:37 Solids	Delivery Work Order: Global ID: T0600100101 Matrix: SO Samle QC Type (SACode): CS Cooler ID:			
0802629-02	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	7376 Comp Water Comp Water DECR	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	02/26/2008 21:40 02/26/2008 10:50 Water	Delivery Work Order: Global ID: T0600100101 Matrix: W Samle QC Type (SACode): CS Cooler ID:			
0802629-03	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 7376 CP-7 CP-7@39.5-40 DECR	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	02/26/2008 21:40 02/26/2008 11:35 Solids	Delivery Work Order: Global ID: T0600100101 Matrix: SO Samle QC Type (SACode): CS Cooler ID:			
0802629-04	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 7376 CP-7 CP-7@54.5-55 DECR	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	02/26/2008 21:40 02/26/2008 13:57 Solids	Delivery Work Order: Global ID: T0600100101 Matrix: SO Samle QC Type (SACode): CS Cooler ID:			
0802629-05	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 7376 CP-7M CP-7M DECR	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	02/26/2008 21:40 02/26/2008 15:40 Water	Delivery Work Order: Global ID: T0600100101 Matrix: W Samle QC Type (SACode): CS Cooler ID:			

EC LABORATORIES, INC.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com Page 1 of 23

Delta Environmental Consultants, I 3164 Gold Camp Road, Suite 200 Rancho Cordova, CA 95670	nc.			F Project N Project Ma		[none]	avis	Reported: 03/11/2008					
	Vola	atile	Organi	c Ana	lys	is (E	PA Me	thod	826))			
BCL Sample ID: 0802629-01	Client Sam	ole Name	: 7376, Comp	Soil, Comp	Soil, 2	2/26/2008	10:37:00AM						
Constituent	Result	Units	PQL N	/IDL Me	thod	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
Benzene	ND	mg/kg	0.0050	EPA	-8260	02/27/08	02/27/08 18:03	LHS	MS-V2	1	BRC0002	ND	
1,2-Dibromoethane	ND	mg/kg	0.0050	EPA	-8260	02/27/08	02/27/08 18:03	LHS	MS-V2	1	BRC0002	ND	
1,2-Dichloroethane	ND	mg/kg	0.0050	EPA	-8260	02/27/08	02/27/08 18:03	LHS	MS-V2	1	BRC0002	ND	
Ethylbenzene	ND	mg/kg	0.0050	EPA	-8260	02/27/08	02/27/08 18:03	LHS	MS-V2	1	BRC0002	ND	
Methyl t-butyl ether	0.0055	mg/kg	0.0050	EPA	-8260	02/27/08	02/27/08 18:03	LHS	MS-V2	1	BRC0002	ND	
Toluene	ND	mg/kg	0.0050	EPA	-8260	02/27/08	02/27/08 18:03	LHS	MS-V2	1	BRC0002	ND	
Total Xylenes	ND	mg/kg	0.010	EPA	\-8260	02/27/08	02/27/08 18:03	LHS	MS-V2	1	BRC0002	ND	
t-Amyl Methyl ether	ND	mg/kg	0.0050	EPA	-8260	02/27/08	02/27/08 18:03	LHS	MS-V2	1	BRC0002	ND	
t-Butyl alcohol	ND	mg/kg	0.050	EPA	\-8260	02/27/08	02/27/08 18:03	LHS	MS-V2	1	BRC0002	ND	
Diisopropyl ether	ND	mg/kg	0.0050	EP/	\-8260	02/27/08	02/27/08 18:03	LHS	MS-V2	1	BRC0002	ND	
Ethanol	ND	mg/kg	1.0	EP/	\-8260	02/27/08	02/27/08 18:03	LHS	MS-V2	1	BRC0002	ND	
Ethyl t-butyl ether	ND	mg/kg	0.0050	EP/	4-8260	02/27/08	02/27/08 18:03	LHS	MS-V2	1	BRC0002	ND	
Total Purgeable Petroleum Hydrocarbons	ND	mg/kg	0.20	EP/	\-8260	02/27/08	02/27/08 18:03	LHS	MS-V2	1	BRC0002	ND	
1,2-Dichloroethane-d4 (Surrogate)	91.8	%	70 - 121 (LCL -	UCL) EP/	4-8260	02/27/08	02/27/08 18:03	LHS	MS-V2	1	BRC0002		
Toluene-d8 (Surrogate)	95.6	%	81 - 117 (LCL -	UCL) EP/	4-8260	02/27/08	02/27/08 18:03	LHS	MS-V2	1	BRC0002		
4-Bromofluorobenzene (Surrogate)	88.9	%	74 - 121 (LCL -	UCL) EP/	4-8260	02/27/08	02/27/08 18:03	LHS	MS-V2	1	BRC0002		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com Page 2 of 23

Project: 7376

Reported: 03/11/2008 16:35

Project Number: [none]

Project Manager: Daniel Davis

Total Petroleum Hydrocarbons

BCL Sample ID: 0802629-01 Client Sample Name: 7376, Comp Soil, Comp Soil, 2/26/2008 10:37:00AM													
						Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Diesel Range Organics (C12 - C24)	2.4	mg/kg	2.0		Luft/TPHd	03/01/08	03/08/08 08:34	PTL	GC-5	1.010	BRC0405	ND	
Tetracosane (Surrogate)	107	%	34 - 136 (L	CL - UCL)	Luft/TPHd	03/01/08	03/08/08 08:34	PTL	GC-5	1.010	BRC0405		<u> </u>

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com Page 3 of 23

Project: 7376 Project Number: [none] Reported: 03/11/2008 16:35

Project Manager: Daniel Davis

Total Concentrations (TTLC)

BCL Sample ID:	0802629-01	Client Samp	ole Name:	7376, Co	mp Soil, (Comp Soil, :	2/26/2008	10:37:00AM						
							Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Lead		15	mg/kg	2.5		EPA-60108	3 03/04/08	03/05/08 14:39	LDG	PE-OP2	0.990	BRC0148	ND	

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com

Page 4 of 23

Delta Environmental Consultants, In	с.			Project	: 7376					Repo	orted: 03/1	11/2008 16:3
3164 Gold Camp Road, Suite 200				Project Number						1.		
Rancho Cordova, CA 95670				oject Manager								
	Vol	atile	Organic	Analys	is (E	EPA Met	hod	826	D)			
BCL Sample ID: 0802629-02	Client Sam	ple Name	: 7376, Comp Wa	ater, Comp Wa	iter, 2/26/2	2008 10:50:00A	M					
					Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL MD		Date	Date/Time	Analyst		Dilution	Batch ID	Bias	Quals
Benzene	ND	ug/L	0.50	EPA-8260	02/29/08	03/01/08 02:43	ken	MS-V12		BRB1891	ND	·
1,2-Dibromoethane	ND	ug/L	0.50	EPA-8260	02/29/08	03/01/08 02:43	ken	MS-V12	1	BRB1891	ND	
1,2-Dichloroethane	ND	ug/L	0.50	EPA-8260	02/29/08	03/01/08 02:43	ken	MS-V12	1	BRB1891	ND	
Ethylbenzene	ND	ug/L	0.50	EPA-8260	02/29/08	03/01/08 02:43	ken	MS-V12	1	BRB1891	ND	
Methyl t-butyl ether	ND	ug/L	0.50	EPA-8260	02/29/08	03/01/08 02:43	ken	MS-V12	1	BRB1891	ND	
Toluene	ND	ug/L	0.50	EPA-8260	02/29/08	03/01/08 02:43	ken	MS-V12	1	BRB1891	ND	
Total Xylenes	ND	ug/L	1.0	EPA-8260	02/29/08	03/01/08 02:43	ken	MS-V12	1	BRB1891	ND	
t-Amyl Methyl ether	ND	ug/L	0.50	EPA-8260	02/29/08	03/01/08 02:43	ken	MS-V12	1	BRB1891	ND	
t-Butyl alcohol	ND	ug/L	10	EPA-8260	02/29/08	03/01/08 02:43	ken	MS-V12	1	BRB1891	ND	
Diisopropyl ether	ND	ug/L	0.50	EPA-8260	02/29/08	03/01/08 02:43	ken	MS-V12	1	BRB1891	ND	
Ethanol	ND	ug/L	250	EPA-8260	02/29/08	03/01/08 02:43	ken	MS-V12	1	BRB1891	ND	
Ethyl t-butyl ether	ND	ug/L	0.50	EPA-8260	02/29/08	03/01/08 02:43	ken	MS-V12	1	BRB1891	ND	
Total Purgeable Petroleum Hydrocarbons	ND	ug/L	50	EPA-8260	02/29/08	03/01/08 02:43	ken	MS-V12	1	BRB1891	ND	
1,2-Dichloroethane-d4 (Surrogate)	108	%	76 - 114 (LCL - UC	CL) EPA-8260	02/29/08	03/01/08 02:43	ken	MS-V12	1	BRB1891		
Toluene-d8 (Surrogate)	102	%	88 - 110 (LCL - UC	CL) EPA-8260	02/29/08	03/01/08 02:43	ken	MS-V12	1	BRB1891		• • • • • • • • • • • • • • • • • • • •
4-Bromofluorobenzene (Surrogate)	98.2	%	86 - 115 (LCL - UC	CL) EPA-8260	02/29/08	03/01/08 02:43	ken	MS-V12	1	BRB1891		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com Page 5 of 23

Delta Environmental Consultants, Inc.Project:7376Reported:03/11/200816:353164 Gold Camp Road, Suite 200Project Number:[none]Project Manager:Daniel DavisRancho Cordova, CA 95670Project Manager:Daniel Davis

Total Petroleum Hydrocarbons

BCL Sample ID: 080262	9-02	Client Sam	ent Sample Name: 7376, Comp Water, Comp Water, 2/26/2008 10:50:00AM											
							Prep	Run		Instru-		QC	MB	L.ab
Constituent		Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Diesel Range Organics (C12 - C	24)	190	ug/L	50		Luft/TPHd	03/04/08	03/06/08 08:23	PTL	GC-5	1	BRC0324	ND	
Tetracosane (Surrogate)		71.8	%	28 - 139 (LC	L - UCL)	Luft/TPHd	03/04/08	03/06/08 08:23	PTL	GC-5	1	BRC0324		

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com Page 6 of 23

Delta Environmental Consultants, Inc 3164 Gold Camp Road, Suite 200 Rancho Cordova, CA 95670					Project ect Number ct Manager	[none]	Davis				Repo	orted: 03/1	1/2008 16:35
	Vol	atile	Orga	nic A	nalys	is (E	EPA Met	hod	826	D)			
BCL Sample ID: 0802629-03	Client Sam	ple Name	: 7376, C	P-7, CP-7(@39.5-40, 2	/26/2008	11:35:00AM						
Constituent	Result	Units	PQL	MDL	Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
Benzene	ND	mg/kg	0.0050		EPA-8260	02/27/08	02/27/08 18:30	LHS	MS-V2	1	BRC0002	ND	
1,2-Dibromoethane	ND	mg/kg	0.0050		EPA-8260	02/27/08	02/27/08 18:30	LHS	MS-V2	1	BRC0002	ND	
1,2-Dichloroethane	ND	mg/kg	0.0050		EPA-8260	02/27/08	02/27/08 18:30	LHS	MS-V2	1	BRC0002	ND	
Ethylbenzene	ND	mg/kg	0.0050		EPA-8260	02/27/08	02/27/08 18:30	LHS	MS-V2	1	BRC0002	ND	·
Methyl t-butyl ether	ND	mg/kg	0.0050		EPA-8260	02/27/08	02/27/08 18:30	LHS	MS-V2	1	BRC0002	ND	
Toluene	ND	mg/kg	0.0050		EPA-8260	02/27/08	02/27/08 18:30	LHS	MS-V2	1	BRC0002	ND	
Total Xylenes	ND	mg/kg	0.010		EPA-8260	02/27/08	02/27/08 18:30	LHS	MS-V2	1	BRC0002	ND	
t-Amyl Methyl ether	ND	mg/kg	0.0050		EPA-8260	02/27/08	02/27/08 18:30	LHS	MS-V2	1	BRC0002	ND	
t-Butyl alcohol	ND	mg/kg	0.050		EPA-8260	02/27/08	02/27/08 18:30	LHS	MS-V2	1	BRC0002	ND	
Diisopropyl ether	ND	mg/kg	0.0050		EPA-8260	02/27/08	02/27/08 18:30	LHS	MS-V2	1	BRC0002	ND	
Ethanol	ND	mg/kg	1.0		EPA-8260	02/27/08	02/27/08 18:30	LHS	MS-V2	1	BRC0002	ND	_
Ethyl t-butyl ether	ND	mg/kg	0.0050		EPA-8260	02/27/08	02/27/08 18:30	LHS	MS-V2	1	BRC0002	ND	
Total Purgeable Petroleum Hydrocarbons	ND	mg/kg	0.20		EPA-8260	02/27/08	02/27/08 18:30	LHS	MS-V2	1	BRC0002	ND	
1,2-Dichloroethane-d4 (Surrogate)	94.4	%	70 - 121 (LCL - UCL)	EPA-8260	02/27/08	02/27/08 18:30	LHS	MS-V2	• 1	BRC0002		
Toluene-d8 (Surrogate)	95.4	%	81 - 117 (LCL - UCL)	EPA-8260	02/27/08	02/27/08 18:30	LHS	MS-V2	1	BRC0002		
4-Bromofluorobenzene (Surrogate)	94.2	%	74 - 121 (LCL - UCL)	EPA-8260	02/27/08	02/27/08 18:30	LHS	MS-V2	1	BRC0002		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com Page 7 of 23

*

Project: 7376 Project Number: [none]

Project Manager: Daniel Davis

Total Petroleum Hydrocarbons

BCL Sample ID: 0802629-	03 C	lient Samp	le Name	: 7376, CP-	7, CP-7	239.5-40, 2	/26/2008	11:35:00AM						
							Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Diesel Range Organics (C12 - C24	4)	ND	mg/kg	2.0		Luft/TPHd	03/01/08	03/08/08 08:49	PTL	GC-5	1.007	BRC0405	ND	
Tetracosane (Surrogate)		76.8	%	34 - 136 (LC	· ·	Luft/TPHd		03/08/08 08:49	PTL	GC-5	1.007	BRC0405		

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com Page 8 of 23/

Reported: 03/11/2008 16:35

Delta Environmental Consultants, Inc 3164 Gold Camp Road, Suite 200 Rancho Cordova, CA 95670					Project ect Number ct Manager	[none]	Davis				Repo	orted: 03/1	1/2008 16:3
	Vola	atile	Orga	nic A	nalys	is (E	PA Met	thod	8260))			
BCL Sample ID: 0802629-04	Client Sam	ole Name	: 7376, CI	P-7, CP-7(@54.5-55, 2	/26/2008	1:57:00PM						
Constituent	Result	Units	PQL	MDL	Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
Benzene	ND	mg/kg	0.0050		EPA-8260	02/27/08	02/27/08 18:56	LHS	MS-V2	1	BRC0002	ND	
1,2-Dibromoethane	ND	mg/kg	0.0050		EPA-8260	02/27/08	02/27/08 18:56	LHS	MS-V2	1	BRC0002	ND	
1,2-Dichloroethane	ND	mg/kg	0.0050		EPA-8260	02/27/08	02/27/08 18:56	LHS	MS-V2	1	BRC0002	ND	
Ethylbenzene	ND	mg/kg	0.0050		EPA-8260	02/27/08	02/27/08 18:56	LHS	MS-V2	1	BRC0002	ND	
Methyl t-butyl ether	0.020	mg/kg	0.0050		EPA-8260	02/27/08	02/27/08 18:56	LHS	MS-V2	1	BRC0002	ND	
Toluene	ND	mg/kg	0.0050		EPA-8260	02/27/08	02/27/08 18:56	LHS	MS-V2	1	BRC0002	ND	
Total Xylenes	ND	mg/kg	0.010	· · · ·	EPA-8260	02/27/08	02/27/08 18:56	LHS	MS-V2	1	BRC0002	ND	
t-Amyl Methyl ether	ND	mg/kg	0.0050		EPA-8260	02/27/08	02/27/08 18:56	LHS	MS-V2	1	BRC0002	ND	
t-Butyl alcohol	ND	mg/kg	0.050		EPA-8260	02/27/08	02/27/08 18:56	LHS	MS-V2	1	BRC0002	ND	
Diisopropyl ether	ND	mg/kg	0.0050		EPA-8260	02/27/08	02/27/08 18:56	LHS	MS-V2	1	BRC0002	ND	
Ethanol	ND	mg/kg	1.0		EPA-8260	02/27/08	02/27/08 18:56	LHS	MS-V2	1	BRC0002	, ND	
Ethyl t-butyl ether	ND	mg/kg	0.0050		EPA-8260	02/27/08	02/27/08 18:56	LHS	MS-V2	1	BRC0002	ND	
Total Purgeable Petroleum Hydrocarbons	ND	mg/kg	0.20		EPA-8260	02/27/08	02/27/08 18:56	LHS	MS-V2	1	BRC0002	ND	
1,2-Dichloroethane-d4 (Surrogate)	86.7	%	70 - 121 (L	.CL - UCL)	EPA-8260	02/27/08	02/27/08 18:56	LHS	MS-V2	1	BRC0002		
Toluene-d8 (Surrogate)	108	%	81 - 117 (L	CL - UCL)	EPA-8260	02/27/08	02/27/08 18:56	LHS	MS-V2	1	BRC0002		
4-Bromofluorobenzene (Surrogate)	94.4	%	74 - 121 (L	.CL - UCL)	EPA-8260	02/27/08	02/27/08 18:56	LHS	MS-V2	1	BRC0002		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com Page 9 of 23

Delta Environmental Consultants, Inc.	Project: 7376	Reported: 03/11/2008 16:35
3164 Gold Camp Road, Suite 200 Rancho Cordova, CA 95670	Project Number: [none] Project Manager: Daniel Davis	

Total Petroleum Hydrocarbons

BCL Sample ID: 0802629-04	Client Sam	ple Name	e: 7376, CP	-7, CP-7(@54.5-55, 2	/26/2008	1:57:00PM						
						Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Diesel Range Organics (C12 - C24)	ND	mg/kg	2.0		Luft/TPHd	03/01/08	03/08/08 09:03	PTL	GC-5	0.993	BRC0405	ND	
Tetracosane (Surrogate)	86.4	%	34 - 136 (LC	CL - UCL)	Luft/TPHd	03/01/08	03/08/08 09:03	PTL	GC-5	0.993	BRC0405		

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 10 of 23

Delta Environmental Consultants, Inc 3164 Gold Camp Road, Suite 200 Rancho Cordova, CA 95670				Project ect Number ct Manager	: [none]	avis				Repo	orted: 03/	11/2008 16:35
	Vol	atile	Organic A	nalys	sis (E	PA Met	hod	826	D)			
BCL Sample ID: 0802629-05	Client Sam	pie Name	: 7376, CP-7M, CP-	7M, 2/26/20	08 3:40:	DOPM						
Constituent	Result	Units	PQL MDL	Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
Benzene	ND	ug/L	0.50	EPA-8260	02/29/08	03/03/08 18:35	кеп	MS-V12	1	BRB1891	ND	A39
1,2-Dibromoethane	ND	ug/L	0.50	EPA-8260	02/29/08	03/03/08 18:35	ken	MS-V12	1	BRB1891	ND	A39
1,2-Dichloroethane	1.8	ug/L	0.50	EPA-8260	02/29/08	03/03/08 18:35	ken	MS-V12	1	BRB1891	ND	A39
Ethylbenzene	ND	ug/L	0.50	EPA-8260	02/29/08	03/03/08 18:35	ken	MS-V12	1	BRB1891	ND	A39
Methyl t-butyl ether	260	ug/L	2.5	EPA-8260	02/29/08	03/04/08 01:40	ken	MS-V12	5	BRB1891	ND	A01,A39
Toluene	ND	ug/L	0.50	EPA-8260	02/29/08	03/03/08 18:35	ken	MS-V12	1	BRB1891	ND	A39
Total Xylenes	ND	ug/L	1.0	EPA-8260	02/29/08	03/03/08 18:35	ken	MS-V12	1	BRB1891	ND	A39
t-Amyl Methyl ether	ND	ug/L	0.50	EPA-8260	02/29/08	03/03/08 18:35	ken	MS-V12	1	BRB1891	ND	A39
t-Butyl alcohol	120	ug/L	10	EPA-8260	02/29/08	03/03/08 18:35	ken	MS-V12	1	BRB1891	ND	A39
Diisopropyl ether	2.6	ug/L	0.50	EPA-8260	02/29/08	03/03/08 18:35	ken	MS-V12	1	BRB1891	ND	A39
Ethanol	ND	ug/L	250	EPA-8260	02/29/08	03/03/08 18:35	ken	MS-V12	1	BRB1891	ND	A39
Ethyl t-butyl ether	ND	ug/L	0.50	EPA-8260	02/29/08	03/03/08 18:35	ken	MS-V12	1	BRB1891	ND	A39
Total Purgeable Petroleum Hydrocarbons	200	ug/L	50	EPA-8260	02/29/08	03/03/08 18:35	ken	MS-V12	1	BRB1891	ND	A39,A90
1,2-Dichloroethane-d4 (Surrogate)	106	%	76 - 114 (LCL - UCL)	EPA-8260	02/29/08	03/04/08 01:40	ken	MS-V12	5	BRB1891		
1,2-Dichloroethane-d4 (Surrogate)	111	%	76 - 114 (LCL - UCL)	EPA-8260	02/29/08	03/03/08 18:35	ken	MS-V12	1	BRB1891		
Toluene-d8 (Surrogate)	102	%	88 - 110 (LCL - UCL)	EPA-8260	02/29/08	03/03/08 18:35	ken	MS-V12	1	BRB1891		
Toluene-d8 (Surrogate)	103	%	88 - 110 (LCL - UCL)	EPA-8260	02/29/08	03/04/08 01:40	ken	MS-V12	5	BRB1891		
4-Bromofluorobenzene (Surrogate)	100	%	86 - 115 (LCL - UCL)	EPA-8260	02/29/08	03/04/08 01:40	ken	MS-V12	5	BRB1891		
4-Bromofluorobenzene (Surrogate)	100	%	86 - 115 (LCL - UCL)	EPA-8260	02/29/08	03/03/08 18:35	ken	MS-V12	1	BRB1891		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com Page 11 of 23

Delta Environmental Consultants, Inc.	Project: 7376	Reported: 03/11/2008 16:35
3164 Gold Camp Road, Suite 200 Rancho Cordova, CA 95670	Project Number: [none] Project Manager: Daniel Davis	

Total Petroleum Hydrocarbons

BCL Sample ID: 0802629-05	Client Sam	ple Name	e: 7376, C	P-7M, CP-	7M, 2/26/20	08 3:40:	00PM		·				
						Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Diesel Range Organics (C12 - C24)	ND	ug/L	72		Luft/TPHd	03/04/08	03/06/08 08:37	PTL	GC-5	1.449	BRC0324	ND	
Tetracosane (Surrogate)	59.7	%	28 - 139 (LCL - UCL)	Luft/TPHd	03/04/08	03/06/08 08:37	PTL	GC-5	1.449	BRC0324		

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project: 7376 Project Number: [none] Project Manager: Daniel Davis Reported: 03/11/2008 16:35

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Precision & Accuracy

										Contro	ol Limits
			Source	Source		Spike			Percent		Percent
Constituent	Batch ID	QC Sample Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery Lab Quals
Benzene	BRB1891	Matrix Spike	0801068-76	0	27.110	25.000	ug/L		108		70 - 130
		Matrix Spike Duplicat	te 0801068-76	0	26.700	25.000	ug/L	0.9	107	20	70 - 130
Toluene	BRB1891	Matrix Spike	0801068-76	0	28.880	25.000	ug/L		116		70 - 130
		Matrix Spike Duplicat	te 0801068-76	0	27.560	25.000	ug/L	5.3	110	20	70 - 130
1,2-Dichloroethane-d4 (Surrogate)	BRB1891	Matrix Spike	0801068-76	ND	9.8900	10.000	ug/L		98.9		76 - 114
		Matrix Spike Duplicat	te 0801068-76	ND	10.360	10.000	ug/L		104		76 - 114
Toluene-d8 (Surrogate)	BRB1891	Matrix Spike	0801068-76	ND	9.9600	10.000	ug/L		99.6		88 - 110
		Matrix Spike Duplicat	te 0801068-76	ND	10.050	10.000	ug/L		100		88 - 110
4-Bromofluorobenzene (Surrogate)	BRB1891	Matrix Spike	0801068-76	ND	9.7600	10.000	ug/L		97.6		86 - 115
		Matrix Spike Duplicat	te 0801068-76	ND	10.040	10.000	ug/L		100		86 - 115
Benzene	BRC0002	Matrix Spike	0801068-87	0	0.11778	0.12500	mg/kg		94.2	<u></u>	70 - 130
		Matrix Spike Duplical	te 0801068-87	0	0.11680	0.12500	mg/kg	0.9	93.4	20	70 - 130
Toluene	BRC0002	Matrix Spike	0801068-87	0	0.13989	0.12500	mg/kg		112	<u></u>	70 - 130
		Matrix Spike Duplicat	te 0801068-87	0	0.13436	0.12500	mg/kg	4.6	107	20	70 - 130
1,2-Dichloroethane-d4 (Surrogate)	BRC0002	Matrix Spike	0801068-87	ND	0.050567	0.050000	mg/kg		101		70 - 121
		Matrix Spike Duplicat	te 0801068-87	ND	0.050414	0.050000	mg/kg		101		70 - 121
Toluene-d8 (Surrogate)	BRC0002	Matrix Spike	0801068-87	ND	0.054719	0.050000	mg/kg		109		81 - 117
		Matrix Spike Duplicat	te 0801068-87	ND	0.052576	0.050000	mg/kg		105		81 - 117
4-Bromofluorobenzene (Surrogate)	BRC0002	Matrix Spike	0801068-87	ND	0.051250	0.050000	mg/kg	•••	102		74 - 121
		Matrix Spike Duplicat	te 0801068-87	ND	0.050025	0.050000	mg/kg		100		74 - 121

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com Page 13 of 23

Project: 7376 Project Number: [none] Project Manager: Daniel Davis Reported: 03/11/2008 16:35

Page 14 of 23

Total Petroleum Hydrocarbons

Quality Control Report - Precision & Accuracy

										Contr	ol Limits
	-		Source	Source		Spike			Percent		Percent
Constituent	Batch ID	QC Sample Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery Lab Quais
iesel Range Organics (C12 - C24) B	BRC0324	Matrix Spike	0714775-61	0	394.27	500.00	ug/L		78.9		36 - 130
		Matrix Spike Duplicat	e 0714775-61	0	417.57	500.00	ug/L	5.7	83.5	30	36 - 130
Tetracosane (Surrogate)	BRC0324	Matrix Spike	0714775-61	ND	11.104	20.000	ug/L		55.5		28 - 139
		Matrix Spike Duplicat	e0714775-61	ND	11.386	20.000	ug/L		56.9		28 - 139
Diesel Range Organics (C12 - C24)	BRC0405	Matrix Spike	0801068-07	0	15.208	16.892	mg/kg		90.0		40 - 137
		Matrix Spike Duplicat	e 0801068-07	0	13.873	16.835	mg/kg	8.8	82.4	30	40 - 137
etracosane (Surrogate)	BRC0405	Matrix Spike	0801068-07	ND	0.44480	0.67568	mg/kg		65.8		34 - 136
		Matrix Spike Duplical	e 0801068-07	ND	0.43337	0.67340	mg/kg		64.4		34 - 136

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project: 7376 Project Number: [none] Project Manager: Daniel D Reported: 03/11/2008 16:35

Page 15 of 23

Project Manager: Daniel Davis

Total Concentrations (TTLC)

Quality Control Report - Precision & Accuracy

										Contro	ol Limits
			Source	Source		Spike			Percent		Percent
Constituent	Batch ID	QC Sample Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery Lab Quais
Lead	BRC0148	Duplicate	0802709-25	8.0268	8.5126		mg/kg	5.9		20	,
		Matrix Spike	0802709-25	8.0268	91.070	96.154	mg/kg		86.4		75 - 125
		Matrix Spike Duplicat	e 0802709-25	8.0268	94.251	96.154	mg/kg	3.7	89.7	20	75 - 125

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project: 7376 Project Number: [none] Reported: 03/11/2008 16:35

Project Manager: Daniel Davis

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Laboratory Control Sample

										Control	Limits	
Constituent	Batch ID	QC Sample ID	QC Type	Result	Spike Level	PQL	Units	Percent Recovery	RPD	Percent Recovery	RPD	Lab Quals
Benzene	BRB1891	BRB1891-BS1	LCS	26.780	25.000	0.50	ug/L	107		70 - 130		
Toluene	BRB1891	BRB1891-BS1	LCS	28.250	25.000	0.50	ug/L	113		70 - 130		
1,2-Dichloroethane-d4 (Surrogate)	BRB1891	BRB1891-BS1	LCS	10.970	10.000		ug/L	110		76 - 114		
Toluene-d8 (Surrogate)	BRB1891	BRB1891-BS1	LCS	10.160	10.000		ug/Ĺ	102		88 - 110		
4-Bromofluorobenzene (Surrogate)	BRB1891	BRB1891-BS1	LCS	9.9800	10.000		ug/L	99.8		86 - 115		
Benzene	BRC0002	BRC0002-BS1	LCS	0.11439	0.12500	0.0050	mg/kg	91.5		70 - 130		
Toluene	BRC0002	BRC0002-BS1	LCS	0.12033	0.12500	0.0050	mg/kg	96.3		70 - 130		
1,2-Dichloroethane-d4 (Surrogate)	BRC0002	BRC0002-BS1	LCS	0.047260	0.050000		mg/kg	94.5		70 - 121		
Toluene-d8 (Surrogate)	BRC0002	BRC0002-BS1	LCS	0.048950	0.050000		mg/kg	97.9		81 - 117		
4-Bromofluorobenzene (Surrogate)	BRC0002	BRC0002-BS1	LCS	0.050311	0.050000		mg/kg	101		74 - 121		
												· · · · · · · · · · · · · · · · · · ·

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com

Page 16 of 23

Project: 7376 Project Number: [none] Reported: 03/11/2008 16:35

Project Manager: Daniel Davis

Total Petroleum Hydrocarbons

Quality Control Report - Laboratory Control Sample

									<u>Control</u>	Limits	
Constituent	Batch ID	QC Sample ID	QC Type	Result	Spike Level	PQL	Units	Percent Recovery	Percent RPD Recovery	RPD	Lab Quals
Diesel Range Organics (C12 - C24)	BRC0324	BRC0324-BS1	LCS	299.56	500.00	50	ug/L	59.9	48 - 125		
Tetracosane (Surrogate)	BRC0324	BRC0324-BS1	LCS	8.7810	20.000		ug/L	43.9	28 - 139		
Diesel Range Organics (C12 - C24)	BRC0405	BRC0405-BS1	LCS	16.109	16.667	2.0	mg/kg	96.7	50 - 136		
Tetracosane (Surrogate)	BRC0405	BRC0405-BS1	LCS	0.54907	0.66667		mg/kg	82.4	34 - 136		

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com Page 17 of 23

Project: 7376 Project Number: [none] Reported: 03/11/2008 16:35

Page 18 of 23

Project Manager: Daniel Davis

Total Concentrations (TTLC)

Quality Control Report - Laboratory Control Sample

								Control Limits					
					Spike			Percent		Percent			
Constituent	Batch ID	QC Sample ID	QC Type	Result	Level	PQL	Units	Recovery	RPD	Recovery	RPD	Lab Quals	
Lead	BRC0148	BRC0148-BS1	LCS	97.765	100.00	2.5	mg/kg	97.8		75 - 125			

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Delta Environmental Consultants, Inc. 3164 Gold Camp Road, Suite 200 Rancho Cordova, CA 95670		Project: 7376 ject Number: [none] ect Manager: Daniel Dav	<i>i</i> is		F	Reported: 03/11/2008 16			
Vol	atile Organic /	Analysis (E	PA Metho	d 8260)		· ** Hedda		
	Quality Control F	•			•				
Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals		
Benzene	BRB1891	BRB1891-BLK1	ND	ug/L	0.50		······································		
1,2-Dibromoethane	BRB1891	BRB1891-BLK1	ND	ug/L	0.50				
1,2-Dichloroethane	BRB1891	BRB1891-BLK1	ND	ug/L	0.50				
Ethylbenzene	BRB1891	BRB1891-BLK1	ND	ug/L	0.50				
Methyl t-butyl ether	BRB1891	BRB1891-BLK1	ND	ug/L	0.50				
Toluene	BRB1891	BRB1891-BLK1	ND	ug/L	0.50				
Total Xylenes	BRB1891	BRB1891-BLK1	ND	ug/L	1.0				
t-Amyl Methyl ether	BRB1891	BRB1891-BLK1	ND	ug/L	0.50		······································		
t-Butyl alcohol	BRB1891	BRB1891-BLK1	ND	ug/L	10				
Diisopropyl ether	BRB1891	BRB1891-BLK1	ND	ug/L	0.50				
Ethanol	BRB1891	BRB1891-BLK1	ND	ug/L	250				
Ethyl t-butyl ether	BRB1891	BRB1891-BLK1	ND	ug/L	0.50				
Total Purgeable Petroleum Hydrocarbons	BRB1891	BRB1891-BLK1	ND	ug/L	50				
1,2-Dichloroethane-d4 (Surrogate)	BRB1891	BRB1891-BLK1	103	%	76 - 114	LCL - UCL)			
Toluene-d8 (Surrogate)	BRB1891	BRB1891-BLK1	99.1	%	88 - 110	LCL - UCL)	······································		
4-Bromofluorobenzene (Surrogate)	BRB1891	BRB1891-BLK1	99.3	%	86 - 115	LCL - UCL)			
Benzene	BRC0002	BRC0002-BLK1	ND	mg/kg	0.0050				
1,2-Dibromoethane	BRC0002	BRC0002-BLK1	ND	mg/kg	0.0050				
1,2-Dichloroethane	BRC0002	BRC0002-BLK1	ND	mg/kg	0.0050				
Ethylbenzene	BRC0002	BRC0002-BLK1	ND	mg/kg	0.0050				
Methyl t-butyl ether	BRC0002	BRC0002-BLK1	ND	mg/kg	0.0050		******		
Toluene	BRC0002	BRC0002-BLK1	ND	mg/kg	0.0050				
Total Xylenes	BRC0002	BRC0002-BLK1	ND	mg/kg	0.010		.		
t-Amyi Methyl ether	BRC0002	BRC0002-BLK1	ND	mg/kg	0.0050				

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com Page 19 of 23

Delta Environmental Consultants, Inc.	Project: 7376	Reported: 03/11/2008 16:35							
3164 Gold Camp Road, Suite 200	Project Number: [none]								
Rancho Cordova, CA 95670	Project Manager: Daniel Davis								
Volatile Organic Analysis (EPA Method 8260)									
	Quality Control Report - Method Blank Analysis								

Constituent	Batch ID	QC Sample ID	MB Result	Units	POL	MDL	Lab Quals
t-Butyl alcohol	BRC0002	BRC0002-BLK1	ND	mg/kg	0.050		
Diisopropyl ether	BRC0002	BRC0002-BLK1	ND	mg/kg	0.0050		
Ethanol	BRC0002	BRC0002-BLK1	ND	mg/kg	1.0		
Ethyl t-butyl ether	BRC0002	BRC0002-BLK1	ND	mg/kg	0.0050		
Total Purgeable Petroleum Hydrocarbons	BRC0002	BRC0002-BLK1	ND	mg/kg	0.20		
1,2-Dichloroethane-d4 (Surrogate)	BRC0002	BRC0002-BLK1	99.7	%	70 - 121 (LCL - UCL)	
Toluene-d8 (Surrogate)	BRC0002	BRC0002-BLK1	97.6	%	81 - 117 (LCL - UCL)	
4-Bromofluorobenzene (Surrogate)	BRC0002	BRC0002-BLK1	100	%	74 - 121 (LCL - UCL)	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 20 of 23

3164 Gold Camp Road, Suite 200 Rancho Cordova, CA 95670	Project: 7376 Project Number: [none] Project Manager: Daniel Davis	Reported: 03/11/2008 16:35
	Total Petroleum Hydrocarbons	

Quality Control Report - Method Blank Analysis

Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
Diesel Range Organics (C12 - C24)	BRC0324	BRC0324-BLK1	ND	ug/L	50		
Tetracosane (Surrogate)	BRC0324	BRC0324-BLK1	61.0	%	28 - 139	(LCL - UCL)	
Diesel Range Organics (C12 - C24)	BRC0405	BRC0405-BLK1	ND	mg/kg	2.0	······	
Tetracosane (Surrogate)	BRC0405	BRC0405-BLK1	56.2	%	34 - 136	(LCL - UCL)	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com Page 21 of 23

Delta Environmental Consultants, Inc.	Project: 7376	Reported: 03/11/2008 16:35							
3164 Gold Camp Road, Suite 200	Project Number: [none]								
Rancho Cordova, CA 95670	Project Manager: Daniel Davis								
Q	uality Control Report - Method Blank Analysis	5							

Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
Lead	BRC0148	BRC0148-BLK1	ND	mg/kg	2.5	· ····	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court • Bakersfield, CA 93308 • (661) 327-4911 • FAX (661) 327-1918 • www.bclabs.com Page 22 of 23

Delta Environmental Consultants, Inc. 3164 Gold Camp Road, Suite 200 Rancho Cordova, CA 95670		Project: 7376 Project Number: [none] Project Manager: Daniel Davis	Reported: 03/11/2008 16:35					
Notes And Definitions								
MDL	Method Detection Limit							
ND	Analyte Not Detected at or above the reporting limit							
PQL	Practical Quantitation Limit							
RPD	Relative Percent Difference							
A01	PQL's and MDL's are raised due to sample dilution.							
A39	Sample received at pH greater than 2.							
A90	TPPH does not exhibit a "gasoline" pattern. TPPH is e	ntirely due to MTBE.						

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 23 of 23

APPENDIX G

Waste Manifest

	NON-HAZAFIDOUS	1. Generator ID Number		2. Page 1 of	3. Emergency Responses 909-721-203		4. Waste Tr	aciúng Nut 18960	nedi				
	WASTE MANIFEST 5. Generator's Name and Mailin	Q Address			Generator's Site Addr	-			;		_		
		4191 FIRST STREET											
	LIGHARIDI & PTIONU:	-503-1272 *			· · · · · · · · · · · · · · · · · · ·		110 FD4 ID 1		_				
	5. Transporter 1 Company Nam ENVIRONMENTAI	LOGISTICS, INC				-	U.S. EPA ID CAF	1000172	478				
	7. Transporter 2 Company Narr	9					U.S. EPA ID I	Number					
	8. Domente Reverse 180 W. MONTE A RIALTO, CA 923	VE 16		,	, , , , , , , , , , , , , , , , , , , 		U.8. EPA IDI CAI	Number 0982444	481				
	Fecility's Phone: 909-421	-2012											
GENERATOR	8. Wasta Shipping Nam	and Description			10. CC No.	ntalners Type	11. Total • Quantity	12, Linit WL/Vol.					
	1. NON HAZAR	DOUS WASTE SOLID			9	DM	3600	P			A STATES		
	2. NON HAZAR	DOUS WASTE LIQUID				DM		G					
	3.												
	4.												
	13. Special Handling Instructions and Additional Information 9B.1) SOIL # 01002536 9.35 WEAR APPROPRIATE PPE #48960 9B.2)\A/ATER#01062637							960					
		BILL TO:	DELTA										
				,									
	14. GENERATOR'S CERTIFIC	ATION: I centity the materials dosor	bed above on this manifest	are not subjec	t to federal regulations	for reporting pr	oper disposal of H	azatdous W	aste.				
	Genomitor's/Offerer's Printed/T	vped Name	/		neture	2-			Month	Day Yo	6BH		
Y	16. International Shomenia	NE CHER	<u></u>	<u> </u>	-64	1-20				150	~		
L.N	Transporter Signature (for exp	Import to U.S.	ي	Export from I		f entry/exit: neving U.S.:		•.		.			
笥	16. Transporter Acknowledgm	ent of Receipt of Materials			//				Ntth	5			
Ę	Transporter Prohted/Typed N	ame Comd	ICE	Eig t	nature MM	- 1	qui	10 -	Month Is 71		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
TRANSPORTER	Transporter 2 Printed/Typed N			្នំ	nativ	~ */	que	<u> </u>	Month		AAr .		
Ē	17. Discrepancy			<u> </u>	<u></u>								
IÎ	17a. Discrepancy Indication Sp	ace Duantity	Type		C Rezidue		Partial Re	lection	□ Fu	l Rejection			
¦ ≻	17b. Alternate Facility (or Gene	irator)			Manifest Referen	ce Number:	U.S. EPA ID	Number			_		
달							ſ						
12 A	Facility's Phone: 17c. Signature of Alternate Fac	ility for Generator)					1		Month	Day Y	'ear		
IN		, (•)											
- DESIGNATED FACILITY					κ μη -								
	18. Designated Facility Owner	or Operator: Certification of receipt (if materials covered by the	manifost excer	t as noted in litern 17a		an and an analysis	almana 🖬 maaa	مىيىلىدا بېلىمىرىپ مېل يې مېر	i i i i i i i i i i i i i i i i i i i			
	Printod/Typed Name								Month []	Day Y	(enr		
ľ	9-BLC-0 6 11977 (Rev			<u> ``</u>			DESIGNAT	ED FAC		ENERAĨ	TOR		