RECEIVED

9:25 am, Jul 29, 2009

Alameda County
Environmental Health

76 Broadway Sacramento, California 95818

July 22, 2009

Jerry Wickham Alameda County Health Agency 1131 Harbor Bay parkway, Suite250 Alameda, California 94502-577

Re:

Report on Ground Water Monitoring Well Replacement and Additional Investigation 76 Service Station # 7376 RO # 0361

4191 First Street Pleasanton, CA

Dear Mr. Wickham:

I declare under penalty of perjury that to the best of my knowledge the information and/or recommendations contained in the attached report is/are true and correct.

If you have any questions or need additional information, please call me at (916) 558-7666.

Sincerely,

Terry L. Grayson Site Manager

Risk Management & Remediation

July 22, 2009

Mr. Jerry Wickham Alameda County Health Agency Department of Environmental Health 1131 Harbor Bay Parkway Alameda, CA 94502-6577

cc: Mr. Terry Grayson, ConocoPhillips (electronic copy)

REPORT ON GROUNDWATER MONITORING WELL REPLACEMENT AND ADDITIONAL INVESTIGATION

76 SERVICE STATION NO. 7376 4191 First Street Pleasanton, CA AOC 1652 RO# 0361 DELTA PROJECT C107376220

Prepared for:

ConocoPhilips Company 76 Broadway Sacramento, CA 95818

TABLE OF CONTENTS

1.0	DECLARATION	4
2.0	SITE BACKGROUND AND DESCRIPTION	4
2.1	SITE BACKGROUNDPREVIOUS ASSESSMENT	4
2.3 2.4	SENSITIVE RECEPTOR SURVEY	
3.0	MONITORING WELL REPLACEMENTS	9
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8	PREFEILD ACTIVITIES	9 10 10 11 11
4.0	RECOMMENDATIONS	13
5.0	REPORTING	13
6.0	REMARKS	13
FIGUI	Figure 1 – Site Location Map Figure 2 – Site Plan with w/Monitoring Well Locations Figure 3 – Site Plan with Historical Boring Locations Figure 4 – MW-1A, MW-2B, MW-3A Well Construction Detail Figure 5 – Geologic Cross Section A-A'	
ATTA	CHMENTS Appendix A - ACHCSA letter dated 3/27/09 Appendix B - Cruz Brothers Locators, Inc record of geophysical survey Appendix C - Zone 7 Water Agency permits Appendix D - Laboratory Analytical Results, Chain-of-Custody Documents Appendix E - Boring Logs	

TABLES

Table I - Comparison of MSL Groundwater Elevations (Ft.)
Table II - Summary of Soil Analytical Results

CERTIFICATION

This report was prepared under the supervision and direction of the undersigned California Professional Geologist.

Delta Consultants

Alan Buehler Staff Geologist

John R. Reay, P.G. Project Manager

California Registered Professional Geologist

OHN R. REAY

NO. 4716

49F6CALH

1.0 DECLARATION

On behalf of ConocoPhillips, Delta has prepared this report for the 76 Service Station No. 7376 (site) located at 4191 1st Street, Pleasanton, California (Figure 1). Approval for this work was granted in an Alameda County Health Care Services Agency (ACHCSA) letter dated March 27, 2009 (Appendix A). The purpose of this report is to provide a summary of groundwater monitoring well replacement, MW-1, MW-2b and MW-3, (Figure 2) at the subject site, the results of soil boring sampling conducted at the assumed location of a former offsite fuel oil tank at the request of ACHCSA, and provide recommendations for additional activities as may be needed at the site and adjacent properties.

2.0 SITE BACKGROUND AND DESCRIPTION

2.1 SITE BACKGROUND

The site was developed in 1899 as a warehouse to store grain and hay (Amador-Livermore Valley Historical Society, 1994). According to available Sanborn maps an "oil tank in ground" was installed in between 1903 and 1907 to service warehouse operations until approximately 1943 (Sanborn). A service station was first constructed on the site in 1976 (Enviros, 1995). Between November 8, 1982 and February 8, 1985, the Pleasanton Fire Department (PFD) responded to five separate fuel releases at the site (PFD, 1988). These releases occurred prior to acquisition of the property by Unocal Corporation in 1988, and prior to ConocoPhillips assuming operations in 2000.

2.2 PREVIOUS ASSESSMENT

June 1987: Three exploratory soil borings, B-1, B-2, and B-3, were drilled at the site and sampled by Applied GeoSystems (AGS). Borings B-1 and B-2 were drilled to a final depth of 46.5 feet below grade (fbg) and B-3 was drilled to 55 fbg (Figure 3). Three soil samples from each boring were analyzed for total petroleum hydrocarbons as TVH (Total Volatile Hydrocarbons) or Gasoline range hydrocarbons, benzene, toluene, ethylbenzene, and xylenes (BTEX) compounds. In addition, one sample collected at 35 fbg from B-1 (sample S-35-B1) was also analyzed for Total Extractable Hydrocarbons (TEH) or Diesel range hydrocarbons. TEH was detected in sample S-35-B1 at 1,325 parts per million (ppm). Sample (S-10-B3) collected at 10 fbg was reported as non-detect for all analytes. The remaining samples contained petroleum hydrocarbons at concentrations ranging from 7.72 ppm TVH in S-30-B3 to 281.9 ppm TVH in S-20-B1. Benzene was detected in concentrations ranging from 0.07 ppm in S-45-B2 to 17.1 ppm in S-20-B1. Groundwater was not encountered in the borings.

<u>August 1987</u>: One soil boring, B-4, was advanced by AGS to a total depth of 66.5 fbg (Figure 3). TVH was reported from one soil sample collected at 35 fbg (S-35-B4) at 100.5 ppm, benzene at 1.4 ppm, and TEH at 1,835 ppm. A second soil sample collected at 65 fbg was reported as non-detect for all analytes with the exception of TVH which was detected at 0.45 ppm. Groundwater was not encountered in the boring.

October 1987 AGS workplan related to replacement of UST's and installation of 3 groundwater monitoring wells. Report of well installation and UST closure never submitted to any agency (Enviros, 1995).

December 1987: AGS advanced three soil borings (B-5, B-6, B-7) to a total depth of 96.5 fbg and completed the borings as groundwater monitoring wells MW-I, MW-2, and MW3 (Figure 3). The wells were completed at depths of 96.5,85, and 96.5 fbg, respectively. Saturated soil was initially encountered at approximately 80 fbg. Two soil samples collected at 35 and 70 fbg in boring B-5 were reported as non-detect for TPH-G, TPH-D, and BTEX. One soil sample collected at 35 fbg in boring 8-6 contained 15.0 ppm of TPH-G, 6,300 ppm of TPH-D and was non-detect for benzene. One soil sample collected at 70 fbg in boring B-6 was reported as non-detect for TPH-G, TPH-D, and 8TEX. A sample collected at 55 fbg in boring B-7 contained 390 ppm of TPH-G, 1.3 ppm of benzene, and 220 ppm of TPH-D. A sample collected at 75 fbg in boring B-7 contained 5.0 ppm of TPH-G, 30.0 ppm of TPH-D, and was non-detect for BTEX. Groundwater samples collected from well MW-I, MW-2, and MW-3 contained petroleum hydrocarbon concentrations ranging from 0.0500 to 24,000 ppm of TPH-G, 0.058 to 2,600 ppm of benzene, and 0.620 to 2,300 ppm of TPH-D.

<u>December 1987</u>: Four 12,000-galion USTs were replaced with two 12,000-galion double-wall USTs. An unknown volume of contaminated soil was reportedly removed and transported to a Class I facility. The property and facilities were sold to the Unocal Corporation in February 1988.

<u>September 1994</u>: Kaprealian Engineering, Inc. (KEI) conducted soil sampling services during a dispenser and product piping upgrade at the site. A total of twelve trench soil samples were collected at approximately 3 fbg. Petroleum hydrocarbons were detected in the samples at concentrations ranging from non-detect to 8,900 ppm of TPHG, and non-detect to 65 ppm of benzene. Upon receipt of the analytical data, over-excavation was conducted in the area of two soil samples with elevated hydrocarbon concentrations. Three soil samples were collected at approximately 9 fbg. The two over-excavation samples were reported to contain 13 and 17 ppm of TPH-G and 0.020 to 0.029 ppm of benzene. The third soil sample collected laterally between the two over-excavation samples, contained 4,400 ppm of TPH-G and 29 ppm of benzene

February 1995: KEI destroyed monitoring well MW-2 and advanced two soil borings (MW2B and EB-1). Boring MW-2B was completed as a monitoring well. Well MW-2 was destroyed due to asphalt tar being introduced into the well casing during repaving activities at the site. Soil boring EB-1 was drilled to a total depth of 66 fbg and well MW-2B was drilled and constructed to a total depth of 91 fbg (Figure 3). A total of twenty-nine soil samples were collected during boring EB-1 and MW-2B drilling activities. Samples collected from 5 to 50 fbg from EB-1 contained petroleum hydrocarbon concentrations ranging from 27 to 15,000 ppm of TPH-G, 0.29 to 340 ppm of benzene, and 55 to 3,600 ppm of TPH-D. Samples collected from 55 to 65 fbg from EB-1 contained petroleum hydrocarbon concentrations ranging from non-detect to 6.4 ppm of TPH-G, non-detect to 0.89 ppm of benzene, and non-detect for TPH-D. Soil samples collected from 5 to 65 fbg in well boring MW-2B contained petroleum hydrocarbons concentrations ranging from 1.0 to 720 ppm of TPH-G, non-detect to 9.5 ppm of benzene, and non-detect to 2,400 ppm of TPH-D. Soil samples collected from 70 to 80 fbg in well boring MW-28 were

reported as nondetect for TPH-G, BTEX, and TPH-D. Enviros was contracted to complete a Phase I Environmental Site Assessment for the site in early 1995.

July 1996: KEI advanced three soil borings and completed them as groundwater monitoring wells MW-4, MW-5 and MW-6 to total depths of 73.5 to 93 fbg. Well MW-4 was installed onsite and wells MW-5 and MW-6 were installed offsite on the former Southern Pacific Railroad right-of-way (Figure 3). A total of forty-seven soil samples were collected from the well borings and analyzed for TPH-G, BTEX, and fuel fingerprinting. Soil samples from well boring MW-4 contained low concentrations of petroleum hydrocarbons ranging from nondetect to 47 ppm of TPH-G, non-detect to 0.27 ppm of benzene, and non-detect to 15 ppm of TPH-D. Soil samples collected in the upper 50 feet of well boring MW-5 were reported as non-detect for TPH-G and TPH-D, and contained benzene in concentrations ranging from non-detect to 0.038 ppm. Samples collected between 55 and 65 fbg in MW-5 contained petroleum hydrocarbon concentrations ranging from 32 to 560 ppm of TPH-G, 0.28 to 3.9 ppm of benzene, and nondetect to 450 ppm of TPH-D. Samples collected from MW-6 contained petroleum hydrocarbon concentrations ranging from non-detect to 5.0 ppm of TPH-G, non-detect to 1.2 ppm of benzene, and non-detect for TPH-D except for 200 ppm detected at 55 fbg. Petroleum hydrocarbon concentrations in the range of kerosene, motor oil, and unidentified extractable hydrocarbons were also identified in the samples collected from the well borings.

<u>June 1997</u>: Separate phase hydrocarbons (SPH) were identified in well MW-5 during quarterly monitoring activities. Previous analysis of the SPH showed it contained a mixture of refined gasoline and heavy hydrocarbons. Excluding MW-5, petroleum hydrocarbon concentrations in the groundwater onsite and *offsite* have ranged from non-detect to 41,000 ppb TPH-G, nondetect to 3,200 ppb benzene, non-detect to 12,200 ppb MTBE, and non-detect to 4,380 ppb TPH-D. Depth to groundwater has fluctuated from approximately 45.83 to 92.23 feet below TOC. Groundwater flow has ranged from south to northwest with a hydraulic gradient of approximately 0.07 to 0.2 feet/foot.

<u>December 1997</u>: Entrix Inc. conducted a forensic geochemical analysis on SPH extracted from well MW-5. The SPH was probably composed of a mixture of over 50% refined gasoline and heavier hydrocarbons. The gasoline constituents appeared to be relatively fresh. The heavier hydrocarbon mixture had a carbon distribution ranging from about C13 to C33. This distribution is similar in nature to a very weathered crude oil or Bunker C fuel, not refined petroleum products such as diesel #2, motor oil, lube oil, etc.

June/August 1998: Five onsite soil borings (B-8 through B-12) were advanced and two offsite downgradient groundwater monitoring wells (MW-7, MW-8) were installed by Gettler Ryan, Inc. (GR) (Figure 3). A total of forty soil samples were collected from the soil and well borings and analyzed for TPH-G, BTEX, methyl tertiary butyl ether (MTBE), TPH-D, and total petroleum hydrocarbons as oil (TPH-O). Petroleum hydrocarbon concentrations in the soil samples range from non-detect for all analytes for soil boring B-8 and well boring MW-7, to a maximum of 1,700 ppm of TPH-G and 21 ppm of benzene (B-12 at 37.5 fbg), 14,000 ppm of TPH-D, 2.6 ppm of MTBE (B-12 at 28.5 fbg), and 5,200 ppm of TPH-O (B-11 at 10.5 fbg). Elevated concentrations of petroleum hydrocarbons were concentrated at 24.5 and 31 fbg in boring B-1 0, from the surface to 61 fbg in boring B-11, at 28.5, 37.5 and 47 fbg in boring B-12, and at 45.5 fbg in well

boring MW-8. In addition, two soil samples containing visible free product were collected from boring B-11 (near the former UST excavation) at 10.5 and 61 fbg and submitted to Global Geochemistry Corp. for hydrocarbon fingerprinting chemical analysis. The results of these analyses was that the free product from both samples was composed of approximately 90% highly to severely weathered semi-volatile and high boiling components identified as crude oil and 10% of slightly weathered gasoline.

October-November 2000: GR advanced one offsite soil boring (B-13) and advanced and installed two offsite groundwater monitoring wells (MW-9, MW-1 0). A total of twenty eight soil samples were collected from the soil and well borings and analyzed for TPH-G. BTEX, and MTBE. Soil samples collected from well boring MW-9 between 16 and 60.5 feet and boring B-13 between 85.5 and 126 fbg were reported as non-detect for all analytes. Some soil samples collected from well boring MW-10 contained TPH-G, benzene unidentified hydrocarbons with a carbon range of C6 to C12, and MTBE. Nine soil samples collected from boring B-13 between 7.5 and 73.5 fbg contained TPH-G, unidentified hydrocarbons with a carbon range of greater than C1 0, benzene, and MTBE. Grab groundwater samples were collected from each of the borings. Groundwater samples and 53 ppb benzene, and 3.5 and 3.7 ppb MT8E, respectively. Groundwater sample G-1, collected from well boring MW-9 at 55 fbg, contained 66 ppb MT8E. The groundwater sample collected at 90 fbg from well boring MW-10 contained 34 ppb MTBE. The groundwater sample collected at 95 fbg from well boring MW-10 contained 230 ppb TPH-G and 54 ppb MTBE. Five soil samples collected from well boring MW-9 between 16 and 60.5 fbg were reported as non-detect for all analytes. Nine soils samples were collected from well boring MW-10 between 5.5 and 90.5 fbg. These soil samples were reported as nondetect for all analytes except for 9.7 ppm TPH-G, 0.035 ppm benzene, and 240 ppm TPH-G and unidentified hydrocarbons with a carbon range of C6 to C12 at 38 fbg, and 0.71 ppm benzene and 1.2 ppm MTBE by United States Environmental Protection Agency (EPA) Method 8020. Five samples collected from boring B-13 between 85.5 and 126 fbg were reported as non-detect for all analytes. Nine soil samples collected from boring B-13 between 7.5 and 73.5 fbg contained petroleum hydrocarbons at concentrations ranging from non-detect to 14,000 ppm TPH-G and unidentified hydrocarbons with a carbon range of greater than C1 0 (at 28 fbg), non-detect to 100 ppm benzene (at 28 fbg), and non-detect to 0.18 ppm MTBE (at 57 fbg). Grab groundwater samples were collected from each of the borings. Groundwater samples B-13-128.5 and B-13-133, collected at 128.5 and 133 fbg from boring B13, contained 150 and 620 ppb TPH-G, 17 and 53 ppb benzene, and 3.5 and 3.7 ppb MTBE, respectively. Groundwater sample G-1, collected from well boring MW-9 at 55 fbg, contained 66 ppb MTBE and was reported as non-detect for TPH-G and MTBE. Groundwater sample MW-10-90, collected at 90 fbg from well boring MW-10, was reported as non-detect for TPH-G and benzene, and contained 34 ppb MTBE. Groundwater sample MW-10-95, collected at 95 fbg from well boring MW-10, was reported as non-detect for benzene, and contained 230 ppb TPH-G and 54 ppb MTBE.

<u>September 2001</u>: Two *offsite* soil borings were drilled by GR and completed as groundwater monitoring wells MW-II and MW-12. The wells were installed to total depths of approximately 86 and 88 fbg, respectively. Soil samples were reported as nondetect for all analytes. A grab groundwater sample collected from a perched groundwater zone at 40 fbg in well boring MW-12 was reported as non-detect for TPH-G, BTEX, and MTBE.

October 2003: Site environmental consulting responsibilities were transferred to TRC.

October 2007: Site environmental consulting responsibilities were transferred to Delta. Four onsite wells (MW-1, MW-2B, MW-3 and MW-4) and eight offsite wells (MW-5 through MW12) have been monitored and sampled quarterly from December 1994 to the present. SPH was not present in onsite or offsite wells during the most recent groundwater monitoring and sampling event conducted on December 27, 2007. SPH was present in the casing of well MW-2B during the previous quarter and has been present periodically in well MW-5 since

<u>May 2008</u>: Delta advanced seven CPT borings and prepared *Soil and Groundwater Investigation Report*.

<u>June 2009</u> Delta abandons MW-1, MW-2B, and MW-3 and re-constructs wells as MW-1A, MW-2C, and MW-3A to correct excessive screen intervals in older wells and define potential multiple aquifer sands.

2.3 SENSITIVE RECEPTOR SURVEY

In 2005, a Sensitive Receptor Survey Report was prepared by TRC to identify domestic and municipal wells within one-half mile of the Site and evaluate nearby surface water bodies as possible sensitive receptors. No water supply wells were identified within one-half mile radius of the Site. Two surface water bodies, Damon Slough and Lion Creek, were identified as possible sensitive receptors.

2.4 HYDROGEOLOGIC SITE CONDITIONS

The subject site is located at the base of the northwest end of the Valle De San Jose. The site is underlain by Holocene age coarse grained alluvium interpreted to be alluvial fan deposits. These deposits are composed of unconsolidated, well bedded, moderately sorted, permeable sand and silt, with coarse sand and gravel becoming abundant toward fan heads and in narrow canyons (Helley, 1979). The site is also located approximately 1,000 feet west and north of Pliocene and/or Pleistocene non-marine sedimentary Livermore Gravel (Diblee, 1980).

The site is located within the Amador Sub-basin of the Livermore Valley Groundwater Basin. The main watercourses in the basin are the Arroyo Valle and Arroyo Mocho, which both drain into the Arroyo de la Laguna. There are three municipal water supply wells within 0.5 miles of the site. Monitoring wells maintained by the City of Pleasanton are located approximately 230 feet to the south of the site. The estimated depth to the regional groundwater is 40 fbg and the regional flow direction is north and northeast (ACWD-Zone 7, 1993).

The City of Pleasanton is served by the Zone 7 Water Agency. Based on information provided by personnel from the Zone 7 Water Agency, the City of Pleasanton obtains 80% of its water from the Hetch-Hetchy reservoir, the San Joaquin/Sacramento Delta and multiple deep-water wells located in the Fremont area. The remaining water is pumped from wells in Pleasanton that range in depth from 50-600 feet.

3.0 MONITORING WELL REPLACEMENTS

Existing wells MW-1, MW-2B, and MW-3 were properly abandoned under permit and in accordance with California Well Standards, Bulletin 74-90 by a C-57 licensed drilling contractor prior to installation of wells MW-1B, MW-2C, and MW-3B.

Fifteen inch hollow stem auger was used to set surface conductor casings through previously identified upper contaminated zones. Upper contaminated zones were sealed off by emplacement of 8 5/8 inch I.D. steel conductor casing. The surface conductor casing grout seal was allowed to cure for a minimum of 24 hours prior to drilling out of the casing shoe. Eight inch auger was used to drill out of the conductor casing and complete the monitoring wells. Based on previously conducted soil and CPT borings conducted in the immediately vicinity of the proposed monitoring wells, the borings were advanced to 45 fbg directly without sampling. From 45 feet to target depth stratigraphy was defined utilizing continuous core in MW-3B to the first encountered aquifer sand at approximately 80 fbg. No "upper" or perched aquifer sand was encountered. MW-1A and MW-2B were drilled directly to completion depth out of the conductor shoe and constructed based on correlation of MW-3B cores and soil and CPT borings previously conducted in the immediate vicinity.

3.1 PREFEILD ACTIVITIES

Before commencing field operations Delta obtained necessary access agreements and prepared a site-specific Health and Safety Plan in accordance with state and federal requirements for use during site assessment activities. In addition, drilling permits for the proposed groundwater monitoring wells were obtained from the Zone 7 Water Agency (Appendix C). Prior to drilling Underground Service Alert (USA North) was notified as required and a private utility locating service visited the site to clear the proposed boring locations for underground utilities (Appendix B). The proposed well abandonment, installation and boring locations were further cleared by air vacuum to avoid damage to possible underground utilities.

3.2 SCOPE OF FIELD ACTIVITIES

Field activities were commenced on June 8, 2009 and completed by June 25, 2009. Field work included setting six conductor casings through upper contaminated strata, coring to determine detailed stratigraphy, and setting wells based on core examination and correlation with previously conducted borings. No perched or upper water-bearing zones or separate aquifer sands were noted. First encountered water was found at 80 fbg at all cored locations. After well development water levels were noted to have raised to approximately 75 fbg. Based on field observations, i.e. the absence of a perched water zone or separated aquifer sands, MW-1, MW-2C, and MW-3 were installed as single well completions. Steel surface casings set in anticipation of multiple well nested completions were abandoned by filling the casings with grout to surface per Mr. Wyman Hong, Zone 7 Water Agency. MW-1 was replaced by MW-1B, MW-2B was replaced by MW-2C, and MW-3 was replaced by MW-3B. At the request of AECH one soil boring (SB-1) was advanced at assumed location of a former fuel oil tank (Figure 2) to a total depth of 45 fbg. Soil samples were collected from SB-1 at 5 foot intervals to total depth.

3.3 MONITORING WELL CONSTRUCTION

All wells were constructed (Figure 4) in a 8 inch auger boring of 2 inch ID PVC with 0.010 inch slotted screen with end cap and Loanstar #2/12 gravel pack (or equivalent) extending approximately 6 inches below the screen and one foot above the top of the screen. The gravel pack was emplaced via treme pipe or equivalent. Approximately two foot granular bentonite seal was placed on top of the gravel pack. The bentonite seal was hydrated with a minimum of two gallons of clean potable water prior to installation of the neat cement seal. The well was completed by installation of a neat cement seal to ground surface, a concrete sanitary seal, locking cap, and COP standard traffic rated water-resistant well-head vault. The monitoring well grout seal was allowed to cure for a minimum of 24 hours prior to well development. All monitoring wells were developed by gentle surging and pumping until developed water was observed to be clear. Water samples were not collected as part of this phase of investigation. Initial sampling of the wells will be conducted during the 3rd quarter of 2009 as part of normally scheduled quarter monitoring.

3.4 SOIL SAMPLING AND LABORATORY ANALYSIS

Soil samples were collected from MW-2C and SB-1. All soil samples were collected utilizing a California Modified Split Spoon sampler loaded with 2 inch by 6 inch precleaned brass tubes. The ends of filled brass tubes were capped with Teflon[®] sheets, sealed with polyethylene end-caps and secured by duct tape. Each sample tube was affixed with a unique identification label and placed directly on water ice in a cooler pending delivery to the laboratory.

Based on PID readings, soil odor and soil color observed during drilling operations soil samples were collected from MW-2C commencing at 20 fbg to 45 fbg prior to installing the conductor. Soil samples collected from MW-2C were subject to analysis for Volatile Organic Compounds by EPA Method 8260, Semi-Volatile Organic Compounds by EPA Method 8270C, and Purgeable Aromatic and Total Petroleum Hydrocarbons (TPH) by EPA 8015 (LUFT/FFP) (Appendix D). With the exception of sample depth 25 fbg Benzene was detected at all sampled depths at concentrations ranging from 28 parts per million (ppm) at 30 fbg, to 0.05 ppm at 45 fbg generally decreasing in concentration with depth. With the exception of sample depth 25 fbg MTBE was detected at all sampled depths in concentrations ranging from 8.7 ppm at 30 fbg to 0.075 ppm at 45 fbg generally decreasing in concentration with depth. TPH as Gasoline was not detected at or above laboratory reporting limits from sampled depths. TPH as Kerosene was detected at two sampled depths at concentrations ranging from 93 ppm at 20 fbg to TPH as Diesel was detected at all sampled depths at 1,800 ppm at 25 fbg. concentrations ranging from 26 ppm at 20 fbg 15,000 ppm at 35 fbg.

Soil samples were collected from SB-1 at five foot intervals commencing at 5 fbg to 45 fbg. Soil samples collected from SB-1 were subject to analysis for Volatile Organic Compounds by EPA Method 8260 and Purgeable Aromatic and Total Petroleum Hydrocarbons (TPH) by EPA 8015 (LUFT/FFP) (Appendix D). With the exception of sample depths 5 fbg, 10 fbg and 15 fbg Benzene was detected at all sampled depths at concentrations ranging from 0.26 parts per million (ppm) at 20 fbg, to 3.6 ppm at 30 fbg. MTBE was not detected at any sampled depths with the exception of 15 fbg where it was

detected at 0.05 ppm. With the exception of 5 fbg and 15 fbg TPH as Gasoline was detected at all sampled depths in concentrations ranging from 1,400 ppm at 20 fbg to 6.5 ppm 10 fbg generally decreasing in concentration with depth. With the exception of 5 fbg and 15 fbg TPH as Fuel Oil #6 was detected at all sampled depths in concentrations ranging from 96 ppm at 10 fbg to 9,800 ppm at 40 fbg generally increasing in concentration with depth. TPH as Diesel was not detected at any sampled depths. Boring logs are provided as Appendix E.

3.5 GROUNDWATER SAMPLING AND LABORATORY ANALYSIS

Groundwater samples will be taken during the 3rd Quarter 2009 quarterly monitoring event. Groundwater samples will be analyzed for TPH (Gasoline), TPH (Diesel), TPH (Aviation Gas), TPH (Jet Fuel) and TPH (Fuel Oil) by EPA Method 8015 (LUFT/FFP). Analysis will also include benzene, toluene, ethylbenzene, xylenes, methyl tertiary butyl ether (MTBE), ethyl tertiary butyl ether (ETBE), di-isopropyl ether (DIPE), tertiary amyl methyl ether (TAME), tert butyl alcohol (TBA), ethylene dibromide (EDB), ethylene dichloride (EDC) and ethanol by EPA Method 8260.

3.6 SAMPLE POINT SURVEY

A survey of the three newly installed monitoring wells, as well as the soil boring was performed on July 8, 2009 by Morrow Surveying. The survey data will be submitted to appropriate agency's upon receipt.

3.7 DISPOSAL OF DRILL CUTTINGS AND WASTEWATER

Drill cuttings, purge and decontamination water generated during the sampling event were placed in properly labeled 55-gallon Department of Transportation (DOT) approved steel drums and temporarily stored on the property. Representative samples of drill cuttings and wastewater were collected and submitted under chain-of-custody (Appendix D) to a California-certified laboratory and analyzed for pre-disposal waste characterization profiling. Waste barrels are currently pending transportation and disposal at a ConocoPhillips (COP) approved facility by Belshire Environmental Services, Inc.

3.8 SUMMARY OF FINDINGS

It was the purpose of this phase of investigation to resolve the question of the presence of perched or multiple aquifer sands underlying the subject site that have been suggested in past reporting (Gettler-Ryan, 2000), specifically with regard to groundwater elevations historically reported in offsite wells MW-5, MW-6, MW-7 and MW-8. Table I below shows a comparison of groundwater msl elevations in these wells and on-site well MW-2B over the period of 6/26/98 to 6/15/05. Review of these data show msl groundwater elevations in MW-5 are, on average, 6 feet to approximately 13 feet higher that compared wells. These data lend support to the inferred presence of structural or stratigraphic discontinuities that might result in locally elevated groundwater elevations.

Table I
Comparison of MSL Groundwater Elevations (Ft.)
6/26/98 to 6/15/05

		Rai	nge
Well #	Average	Max	Min
MW-5	295.35	300.02	291.06
MW-6	279.78	288.69	275.31
MW-7	287.96	296.68	284.47
MW-8	288.80	299.37	281.89
MW-2B	282.64	288.16	280.44

This and previous investigation has shown the site to be underlain by alluvial clays and silts interbedded with discontinuous sands and gravels that may be related or equivalent to the Pliocene and/or Pleistocene non-marine sedimentary Livermore Gravel of Diblee (1980). First encountered groundwater in MW-1A, MW-2C, and MW-3A was observed at 80 fbg, which rose to approximately 76 fbg after development indicating partially confined aquifer conditions. Geologic cross section A-A' from southwest to northeast was constructed from previous soil and CPT boring data and incorporates newly constructed MW-3B (Figure 5). Cross section A-A' shows strata gently dipping from south to north from surface to approximately 50 fbg at which depth an unconformity is inferred based on a change in stratigraphic dip along the section profile.

Also noted along the section A-A' profile are pronounced changes in depth to first encountered and static groundwater elevations. Groundwater elevations generally rise from approximately 270 feet above mean sea level (msl) in CPT-2 to MW-5 and then vary from approximately 305 feet above msl in MW-8 to approximately 298 feet msl in CPT-7. These observations, when taken in context with previous investigation, suggest complex interaction between confined and unconfined aquifer conditions, and stratigraphic and potential structural discontinuities.

Soil samples collected from MW-2C boring showed elevated concentrations of heavy hydrocarbons identified as Kerosene, Diesel and Hydraulic or Motor Oil. While Gasoline range hydrocarbons were not detected in the MW-2C boring, Gasoline range hydrocarbons have been detected in previous borings advanced in the immediate vicinity (Gettler-Ryan, B-11). While the source of the Gasoline range hydrocarbons appears to be from retail fuel dispensing operations, the source of the heavier Diesel/Kerosene range hydrocarbons is unknown. Review of documentation provided by ConocoPhillips indicate that neither Diesel, Kerosene nor Hydraulic Oil products have ever been stored, sold or used at this location.

In addition to re-building MW-1, MW-2B, and MW-3, one soil boring (SB-1) was advanced off site to 45 fbg at the assumed location of a former fuel oil tank (Figure 2). The predominant contaminants in this boring were identified as Gasoline and Fuel Oil #6 which were both found to be present at elevated concentrations to the total depth investigated.

4.0 RECOMMENDATIONS

A number of questions regarding the nature and distribution of hydrocarbon contamination at this site remain unresolved including;

- The source of heavier diesel/motor oil range hydrocarbon contamination.
- The nature of the stratigraphic or structural discontinuity inferred between the UST site and MW-5 as indicated by changes in observed groundwater elevations.
- The up-gradient extent of the groundwater contamination plume.

To address these questions the following actions are recommended:

- Schedule meeting with AECH to review project to date and discuss strategy for moving forward.
- Update a Site Conceptual Model (SCM) to summarize all previously conducted investigation and identify data gaps.
- Drill and construct one monitoring well southwest of MW-1B to establish upgradient plume extent and background groundwater quality.
- Conduct a geophysical survey of the area between the current UST installation and MW-9 to determine the nature of the inferred structural or stratigraphic discontinuity.

5.0 REPORTING

Anticipated schedule of work includes:

- 3rd Q 09: Report of groundwater analysis as part of quarterly monitoring program, submittal of SCM and report of up-gradient monitoring well installation.
- Meeting with AECH
- Preparation of SCM pending AECH meeting and review of current site status.
- Preparation of workplan reflecting installation of up-gradient monitoring well and geophysical survey pending AECH meeting.

Following the meeting with AECH the proposed workplan and SCM will be prepared and submitted within 60 days. Required electronic submittals will be uploaded to the State Geotracker and Alameda County databases.

6.0 REMARKS

The recommendations contained in this report represent Delta's professional opinions based upon the currently available information and are arrived at in accordance with currently acceptable professional standards. This report is based upon a specific scope of work requested by the client. The Contract between Delta and its client outlines the scope of work, and only those tasks specifically authorized by that contract or outlined in this report will be performed. This report is intended only for the use of Delta's Client and anyone else specifically listed on this report. Delta will not and cannot be liable for unauthorized reliance by any other third party. Other than as contained in this paragraph, Delta makes no express or implied warranty as to the contents of this report.

If you have questions regarding this report, please contact John Reay at (916) 503-1260 or Terry Grayson at 916-558-7666.

Sincerely,

DELTA CONSULTANTS

			Sample De	pth				
Contaminant	20 fbg	25 fbg	30 fbg	35 fbg	40 fbg	45 fbg	Reporting Limit	Units
Benzene	0.39	ND	28	19	0.056	0.05	0.25	mg/Kg
Bromobenzene	ND	ND	ND	ND	ND	ND	0.25	mg/Kg
Bromochloromethane	ND	ND	ND	ND	ND	ND	0.25	mg/Kg
Bromodichloromethane	ND	ND	ND	ND	ND	ND	0.25	mg/Kg
Bromoform	ND	ND	ND	ND	ND	ND	0.25	mg/Kg
Bromomethane	ND	ND	ND	ND	ND	ND	0.25	mg/Kg
n-Butylbenzene	1	5.3	3.7	1.4	0.01	0.032	0.25	mg/Kg
sec-Butylbenzene	ND	ND	ND	0.34	ND	ND	0.25	mg/Kg
tert-Butylbenzene	ND	ND	ND	ND	ND	ND	0.25	mg/Kg
Carbon tetrachloride	ND	ND	ND	ND	ND	ND	0.25	mg/Kg
Chlorobenzene	ND	ND	ND	ND	ND	ND	0.25	mg/Kg
Chloroethane	ND	ND	ND	ND	ND	ND	0.25	mg/Kg
Chloroform	ND	ND	ND	ND	ND	ND	0.25	mg/Kg
Chloromethane	ND	ND	ND	ND	ND	ND	0.25	mg/Kg
2-Chlorotoluene	ND	ND	ND	ND	ND	ND	0.25	mg/Kg
4-Chlorotoluene	ND	ND	ND	ND	ND	ND	0.25	mg/Kg
Dibromochloromethane	ND	ND	ND	ND	ND	ND	0.25	mg/Kg
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	ND	ND	0.25	mg/Kg
1,2-Dibromoethane	ND	ND	ND	ND	ND	ND	0.25	mg/Kg
Dibromomethane	ND	ND	ND	ND	ND	ND	0.25	mg/Kg
1,2-Dichlorobenzene	ND	ND	ND	ND	ND	ND	0.25	mg/Kg
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	ND	0.25	mg/Kg
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	ND	0.25	mg/Kg
Dichlorodifluoromethane	ND	ND	ND	ND	ND	ND	0.25	mg/Kg
1,1-Dichloroethane	ND	ND	ND	ND	ND	ND	0.25	mg/Kg
1,2-Dichloroethane	ND	ND	ND	ND	ND	ND	0.25	mg/Kg

Contaminant	20 fbg	25 fbg	30 fbg	35 fbg	40 fbg	45 fbg	Reporting Limit	Units
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	0.25	mg/Kg
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	0.25	mg/Kg
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	0.25	mg/Kg
Total 1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	0.5	mg/Kg
1,2-Dichloropropane	ND	ND	ND	ND	ND	ND	0.25	mg/Kg
1,3-Dichloropropane	ND	ND	ND	ND	ND	ND	0.25	mg/Kg
2,2-Dichloropropane	ND	ND	ND	ND	ND	ND	0.25	mg/Kg
1,1-Dichloropropene	ND	ND	ND	ND	ND	ND	0.25	mg/Kg
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	ND	0.25	mg/Kg
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	ND	0.25	mg/Kg
Total 1,3-Dichloropropene	ND	ND	ND	ND	ND	ND	0.5	mg/Kg
Ethylbenzene	4.7	14	9.9	3.9	0.021	0.22	0.25	mg/Kg
Hexachlorobutadiene	ND	ND	ND	ND	ND	ND	0.25	mg/Kg
Isopropylbenzene	ND	0.52	ND	ND	ND	0.011	0.25	mg/Kg
p-Isopropyltoluene	ND	1.4	ND	0.57	ND	ND	0.25	mg/Kg
Methylene chloride	ND	ND	ND	ND	ND	ND	0.5	mg/Kg
Methyl t-butyl ether	0.48	ND	8.7	6.6	0.39	0.075	0.25	mg/Kg
Naphthalene	2.3	10	5.9	0.6	0.0074	0.026	0.25	mg/Kg
n-Propylbenzene	1.2	6.8	ND	ND	ND	0.064	0.25	mg/Kg
Styrene	ND	ND	ND	ND	ND	ND	0.25	mg/Kg
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	ND	0.25	mg/Kg
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	ND	0.25	mg/Kg
Tetrachloroethene	ND	ND	ND	ND	ND	ND	0.25	mg/Kg
Toluene	ND	ND	1.5	2.9	ND	0.017	0.25	mg/Kg
1,2,3-Trichlorobenzene	ND	ND	ND	ND	ND	ND	0.25	mg/Kg
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	ND	0.25	mg/Kg

			Sample De	pth				Units
Contaminant	20 fbg	25 fbg	30 fbg	35 fbg	40 fbg	45 fbg	Reporting Limit	
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	ND	0.25	mg/Kg
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	ND	0.25	mg/Kg
Trichloroethene	ND	ND	ND	ND	ND	ND	0.25	mg/Kg
Trichlorofluoromethane	ND	ND	ND	ND	ND	ND	0.25	mg/Kg
1,2,3-Trichloropropane	ND	ND	ND	ND	ND	ND	0.25	mg/Kg
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	ND	ND	ND	ND	ND	0.25	mg/Kg
1,2,4-Trimethylbenzene	11	39	ND	4.6	ND	0.072	0.25	mg/Kg
1,3,5-Trimethylbenzene	ND	ND	ND	0.65	ND	ND	0.25	mg/Kg
Vinyl chloride	ND	ND	ND	ND	ND	ND	0.25	mg/Kg
Total Xylenes	3.4	6.4	12	15	ND	0.082	0.5	mg/Kg
t-Amyl Methyl ether	ND	ND	ND	ND	ND	ND	0.25	mg/Kg
t-Butyl alcohol	ND	ND	ND	ND	0.45	0.55	2.5	mg/Kg
Diisopropyl ether	ND	ND	ND	ND	ND	ND	0.25	mg/Kg
Ethanol	ND	ND	ND	ND	ND	ND	50	mg/Kg
Ethyl t-butyl ether	ND	ND	ND	ND	ND	ND	0.25	mg/Kg
Total Purgeable Petroleum Hydrocarbons	370	850	650	540	1.2	37	50	mg/Kg
Acenaphthene	ND	ND	ND	ND	ND	ND	0.1	mg/Kg
Acenaphthylene	ND	ND	ND	ND	ND	ND	0.1	mg/Kg
Aldrin	ND	ND	ND	ND	ND	ND	0.1	mg/Kg
Aniline	ND	ND	ND	ND	ND	ND	0.2	mg/Kg
Anthracene	ND	ND	ND	ND	ND	ND	0.1	mg/Kg
Benzidine	ND	ND	ND	ND	ND	ND	3	mg/Kg
Benzo[a]anthracene	ND	ND	ND	ND	ND	ND	0.1	mg/Kg
Benzo[b]fluoranthene	ND	ND	ND	ND	ND	ND	0.1	mg/Kg
Benzo[k]fluoranthene	ND	ND	ND	ND	ND	ND	0.1	mg/Kg
Benzo[a]pyrene	ND	ND	ND	ND	ND	ND	0.1	mg/Kg

			Sample De	pth				
Contaminant	20 fbg	25 fbg	30 fbg	35 fbg	40 fbg	45 fbg	Reporting Limit	Units
Benzo[g,h,i]perylene	ND	ND	ND	ND	ND	ND	0.1	mg/Kg
Benzoic acid	ND	ND	ND	ND	ND	ND	0.5	mg/Kg
Benzyl alcohol	ND	ND	ND	ND	ND	ND	0.1	mg/Kg
Benzyl butyl phthalate	ND	ND	ND	ND	ND	ND	0.1	mg/Kg
alpha-BHC	ND	ND	ND	ND	ND	ND	0.1	mg/Kg
beta-BHC	ND	ND	ND	ND	ND	ND	0.1	mg/Kg
delta-BHC	ND	ND	ND	ND	ND	ND	0.1	mg/Kg
gamma-BHC (Lindane)	ND	ND	ND	ND	ND	ND	0.1	mg/Kg
bis(2-Chloroethoxy)methane	ND	ND	ND	ND	ND	ND	0.1	mg/Kg
bis(2-Chloroethyl) ether	ND	ND	ND	ND	ND	ND	0.1	mg/Kg
bis(2-Chloroisopropyl)ether	ND	ND	ND	ND	ND	ND	0.1	mg/Kg
bis(2-Ethylhexyl)phthalate	ND	ND	ND	ND	ND	ND	0.2	mg/Kg
4-Bromophenyl phenyl ether	ND	ND	ND	ND	ND	ND	0.1	mg/Kg
4-Chloroaniline	ND	ND	ND	ND	ND	ND	0.1	mg/Kg
2-Chloronaphthalene	ND	ND	ND	ND	ND	ND	0.1	mg/Kg
4-Chlorophenyl phenyl ether	ND	ND	ND	ND	ND	ND	0.1	mg/Kg
Chrysene	ND	ND	ND	ND	ND	ND	0.1	mg/Kg
4,4'-DDD	ND	ND	ND	ND	ND	ND	0.1	mg/Kg
4,4'-DDE	ND	ND	ND	ND	ND	ND	0.1	mg/Kg
4,4'-DDT	ND	ND	ND	ND	ND	ND	0.1	mg/Kg
Dibenzo[a,h]anthracene	ND	ND	ND	ND	ND	ND	0.1	mg/Kg
Dibenzofuran	ND	ND	ND	ND	ND	ND	0.1	mg/Kg
1,2-Dichlorobenzene	ND	ND	ND	ND	ND	ND	0.1	mg/Kg
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	ND	0.1	mg/Kg
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	ND	0.1	mg/Kg
3,3-Dichlorobenzidine	ND	ND	ND	ND	ND	ND	0.2	mg/Kg

			Sample De	pth				Units
Contaminant	20 fbg	25 fbg	30 fbg	35 fbg	40 fbg	45 fbg	Reporting Limit	
Dieldrin	ND	ND	ND	ND	ND	ND	0.1	mg/Kg
Diethyl phthalate	ND	ND	ND	ND	ND	ND	0.1	mg/Kg
Dimethyl phthalate	ND	ND	ND	ND	ND	ND	0.1	mg/Kg
Di-n-butyl phthalate	ND	ND	ND	ND	ND	ND	0.1	mg/Kg
2,4-Dinitrotoluene	ND	ND	ND	ND	ND	ND	0.1	mg/Kg
2,6-Dinitrotoluene	ND	ND	ND	ND	ND	ND	0.1	mg/Kg
Di-n-octyl phthalate	ND	ND	ND	ND	ND	ND	0.1	mg/Kg
1,2-Diphenylhydrazine	ND	ND	ND	ND	ND	ND	0.1	mg/Kg
Endosulfan I	ND	ND	ND	ND	ND	ND	0.2	mg/Kg
Endosulfan II	ND	ND	ND	ND	ND	ND	0.2	mg/Kg
Endosulfan sulfate	ND	ND	ND	ND	ND	ND	0.1	mg/Kg
Endrin	ND	ND	ND	ND	ND	ND	0.2	mg/Kg
Endrin aldehyde	ND	ND	ND	ND	ND	ND	0.5	mg/Kg
Fluoranthene	ND	ND	ND	ND	ND	ND	0.1	mg/Kg
Fluorene	ND	ND	ND	6.2	ND	ND	0.1	mg/Kg
Heptachlor	ND	ND	ND	ND	ND	ND	0.1	mg/Kg
Heptachlor epoxide	ND	ND	ND	ND	ND	ND	0.1	mg/Kg
Hexachlorobenzene	ND	ND	ND	ND	ND	ND	0.1	mg/Kg
Hexachlorobutadiene	ND	ND	ND	ND	ND	ND	0.1	mg/Kg
Hexachlorocyclopentadiene	ND	ND	ND	ND	ND	ND	0.1	mg/Kg
Hexachloroethane	ND	ND	ND	ND	ND	ND	0.1	mg/Kg
Indeno[1,2,3-cd]pyrene	ND	ND	ND	ND	ND	ND	0.1	mg/Kg
Isophorone	ND	ND	ND	ND	ND	ND	0.1	mg/Kg
2-Methylnaphthalene	2.8	7.2	ND	ND	ND	ND	0.1	mg/Kg
Naphthalene	2	7.1	ND	ND	ND	ND	0.1	mg/Kg
2-Naphthylamine	ND	ND	ND	ND	ND	ND	3	mg/Kg

			Sample De	epth				
Contaminant	20 fbg	20 fbg 25 fbg 30 fbg 35 fb		35 fbg	40 fbg	45 fbg	Reporting Limit	Units
2-Nitroaniline	ND	ND	ND	ND	ND	ND	0.1	mg/Kg
3-Nitroaniline	ND	ND	ND	ND	ND	ND	0.2	mg/Kg
4-Nitroaniline	ND	ND	ND	ND	ND	ND	0.2	mg/Kg
Nitrobenzene	ND	ND	ND	ND	ND	ND	0.1	mg/Kg
N-Nitrosodimethylamine	ND	ND	ND	ND	ND	ND	0.1	mg/Kg
N-Nitrosodi-N-propylamine	ND	ND	ND	ND	ND	ND	0.1	mg/Kg
N-Nitrosodiphenylamine	ND	ND	ND	ND	ND	ND	0.1	mg/Kg
Phenanthrene	ND	ND	ND	ND	ND	ND	0.1	mg/Kg
Pyrene	ND	ND	ND	ND	ND	ND	0.1	mg/Kg
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	ND	0.1	mg/Kg
4-Chloro-3-methylphenol	ND	ND	ND	ND	ND	ND	0.2	mg/Kg
2-Chlorophenol	ND	ND	ND	ND	ND	ND	0.1	mg/Kg
2,4-Dichlorophenol	ND	ND	ND	ND	ND	ND	0.1	mg/Kg
2,4-Dimethylphenol	ND	ND	ND	ND	ND	ND	0.1	mg/Kg
4,6-Dinitro-2-methylphenol	ND	ND	ND	ND	ND	ND	0.5	mg/Kg
2,4-Dinitrophenol	ND	ND	ND	ND	ND	ND	0.5	mg/Kg
2-Methylphenol	ND	ND	ND	ND	ND	ND	0.1	mg/Kg
3- & 4-Methylphenol	ND	ND	ND	ND	ND	ND	0.2	mg/Kg
2-Nitrophenol	ND	ND	ND	ND	ND	ND	0.1	mg/Kg
4-Nitrophenol	ND	ND	ND	ND	ND	ND	0.2	mg/Kg
Pentachlorophenol	ND	ND	ND	ND	ND	ND	0.2	mg/Kg
Phenol	ND	ND	ND	ND	ND	ND	0.1	mg/Kg
2,4,5-Trichlorophenol	ND	ND	ND	ND	ND	ND	0.2	mg/Kg
2,4,6-Trichlorophenol	ND	ND	ND	ND	ND	ND	0.2	mg/Kg
TPH - Light Naptha	ND	ND	ND	ND	ND	ND	50	mg/Kg
TPH - Aviation Gas	ND	ND	ND	ND	ND	ND	50	mg/Kg

Summary of Soil Analytical Results MW-2C 76 Service Station No. 7376 4191 1st St Pleasanton, CA

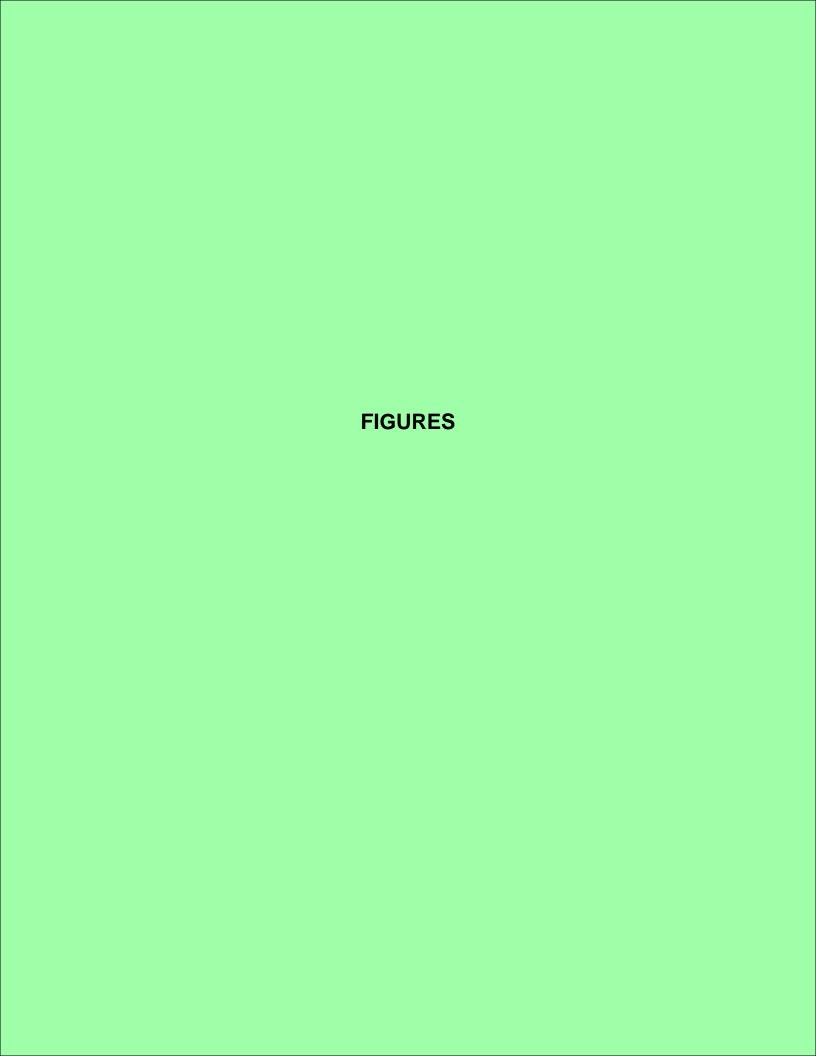
			Sample De	pth				
Contaminant	20 fbg	25 fbg	30 fbg	35 fbg	40 fbg	45 fbg	Reporting Limit	Units
TPH - Stoddard Solvent	ND	ND	ND	ND	ND	ND	20	mg/Kg
TPH - Heavy Naptha	ND	ND	ND	ND	ND	ND	10	mg/Kg
TPH - Gasoline	ND	ND	ND	ND	ND	ND	20	mg/Kg
TPH - Jet Fuel (JP4)	ND	ND	ND	ND	ND	ND	10	mg/Kg
TPH - Jet Fuel (JP5)	ND	ND	ND	ND	ND	ND	10	mg/Kg
TPH - Jet Fuel (JP8)	ND	ND	ND	ND	ND	ND	10	mg/Kg
TPH - Kerosene	93	1800	ND	ND	ND	ND	10	mg/Kg
TPH - Diesel (FFP)	26	4500	1500	15000	53	1300	10	mg/Kg
TPH - Fuel Oil #6	ND	ND	ND	ND	ND	ND	10	mg/Kg
TPH - Crude Oil	ND	ND	ND	ND	ND	ND	20	mg/Kg
TPH - Hydraulic Oil / Motor Oil	30	4000	1100	11000	44	970	20	mg/Kg
TPH - WD-40	ND	ND	ND	ND	ND	ND	10	mg/Kg

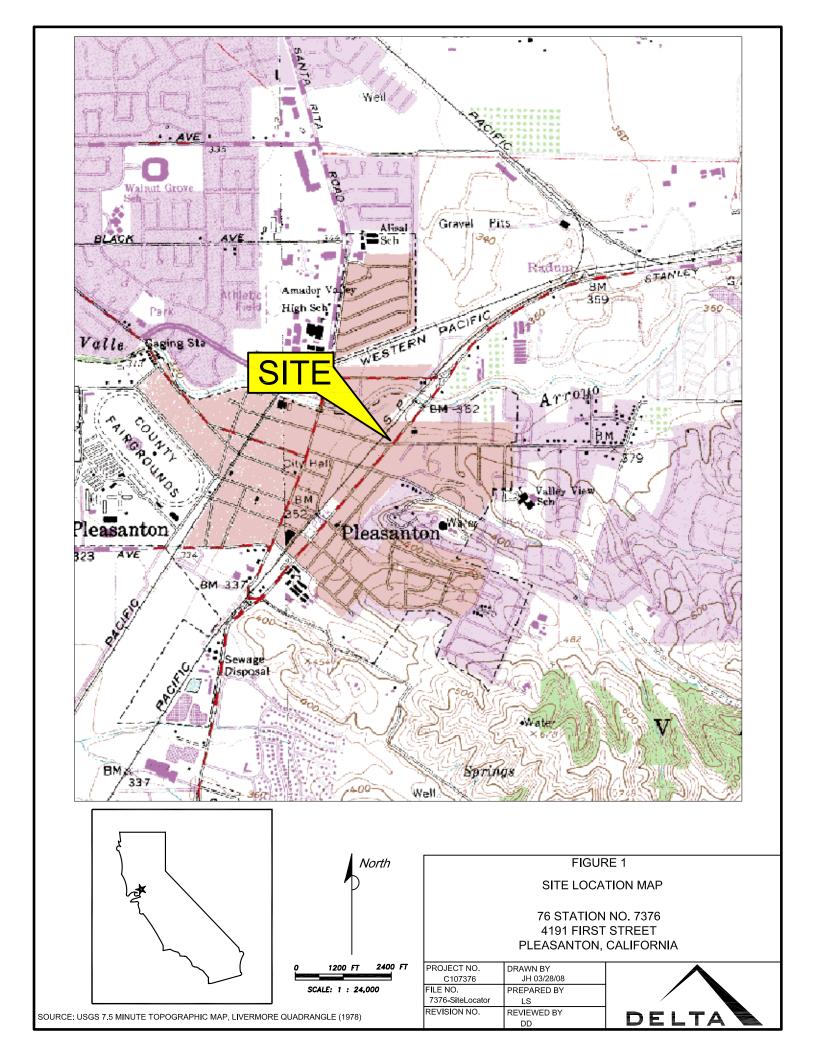
Table Notes:

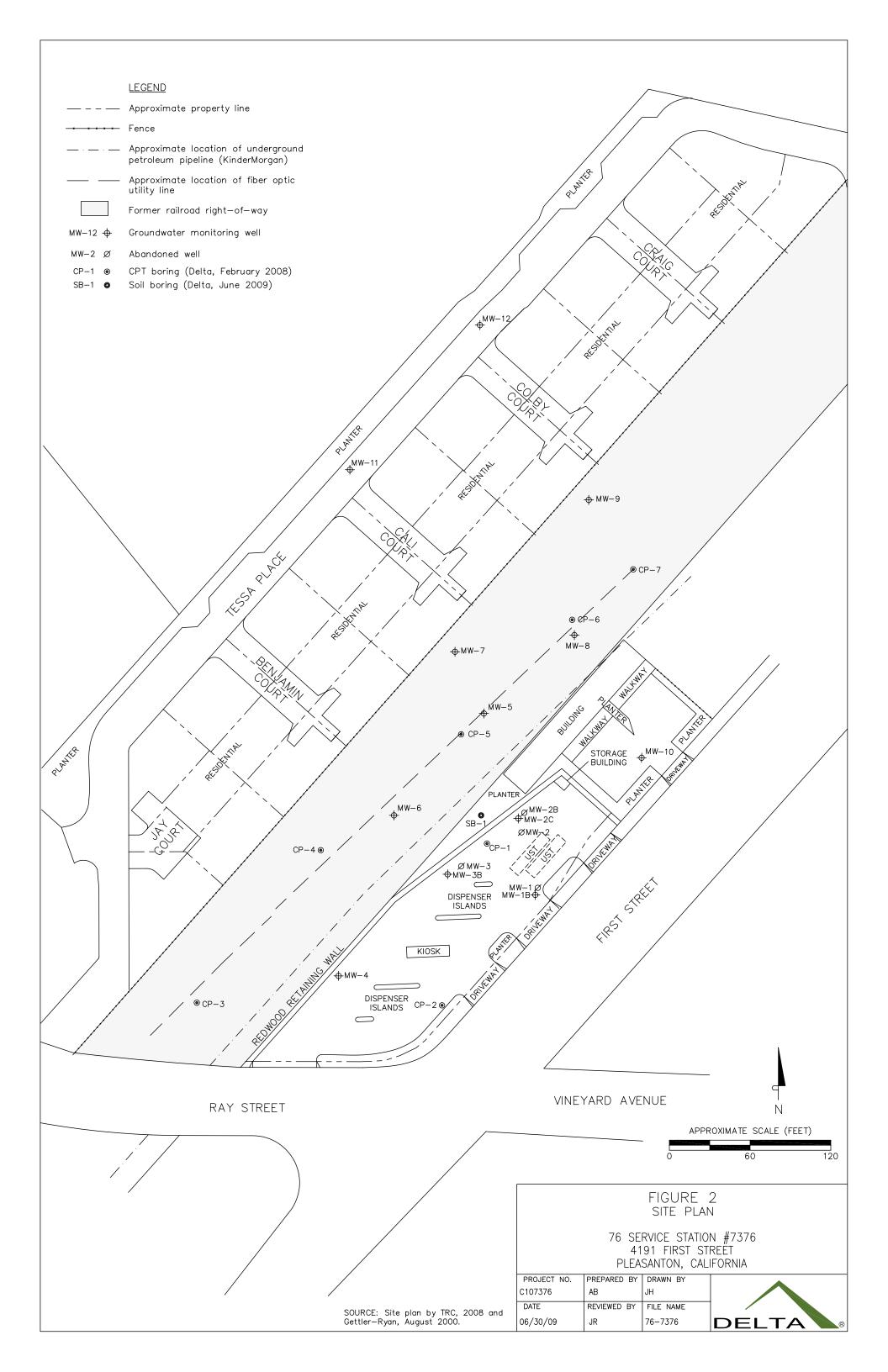
fbg = feet below grade mg/Kg = milligrams per kilograms **bold** = concentration at or above reporting limit

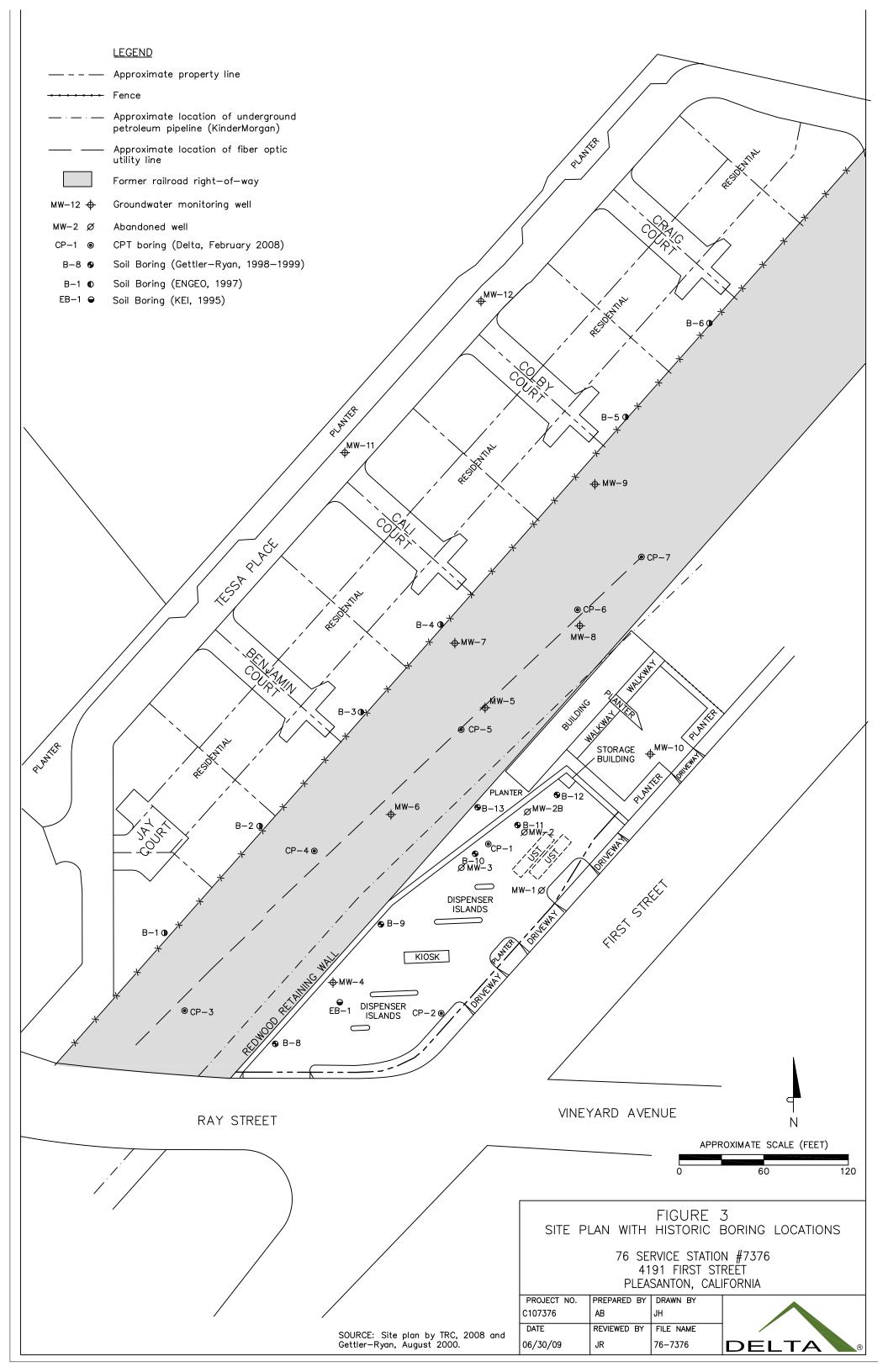
ND = non-detect (below reporting limit)

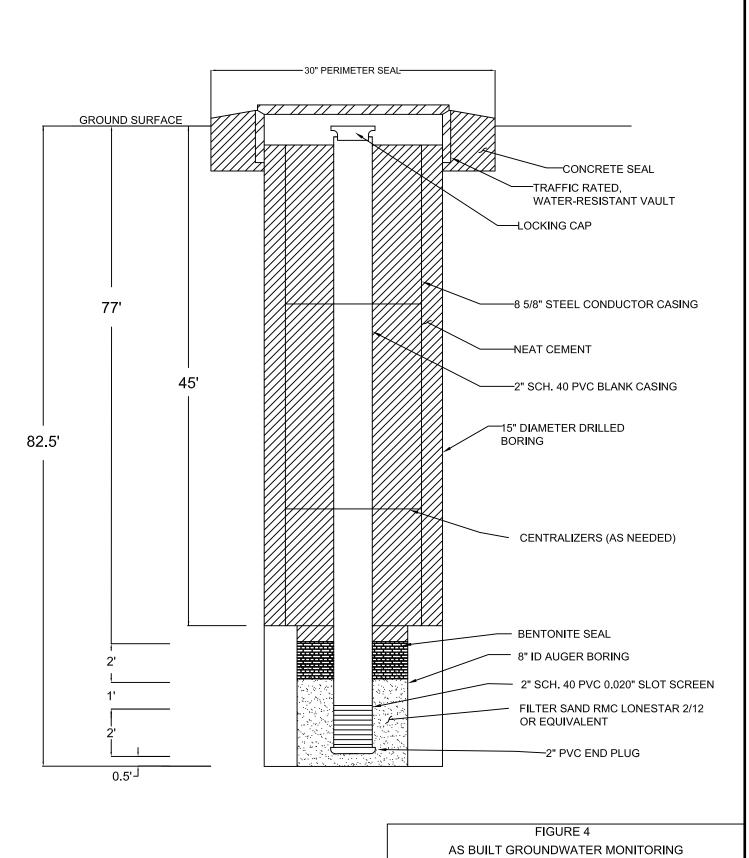
Summary of Soil Analytical Results SB-1 76 Service Station No. 7376 4191 1st St Pleasanton, CA

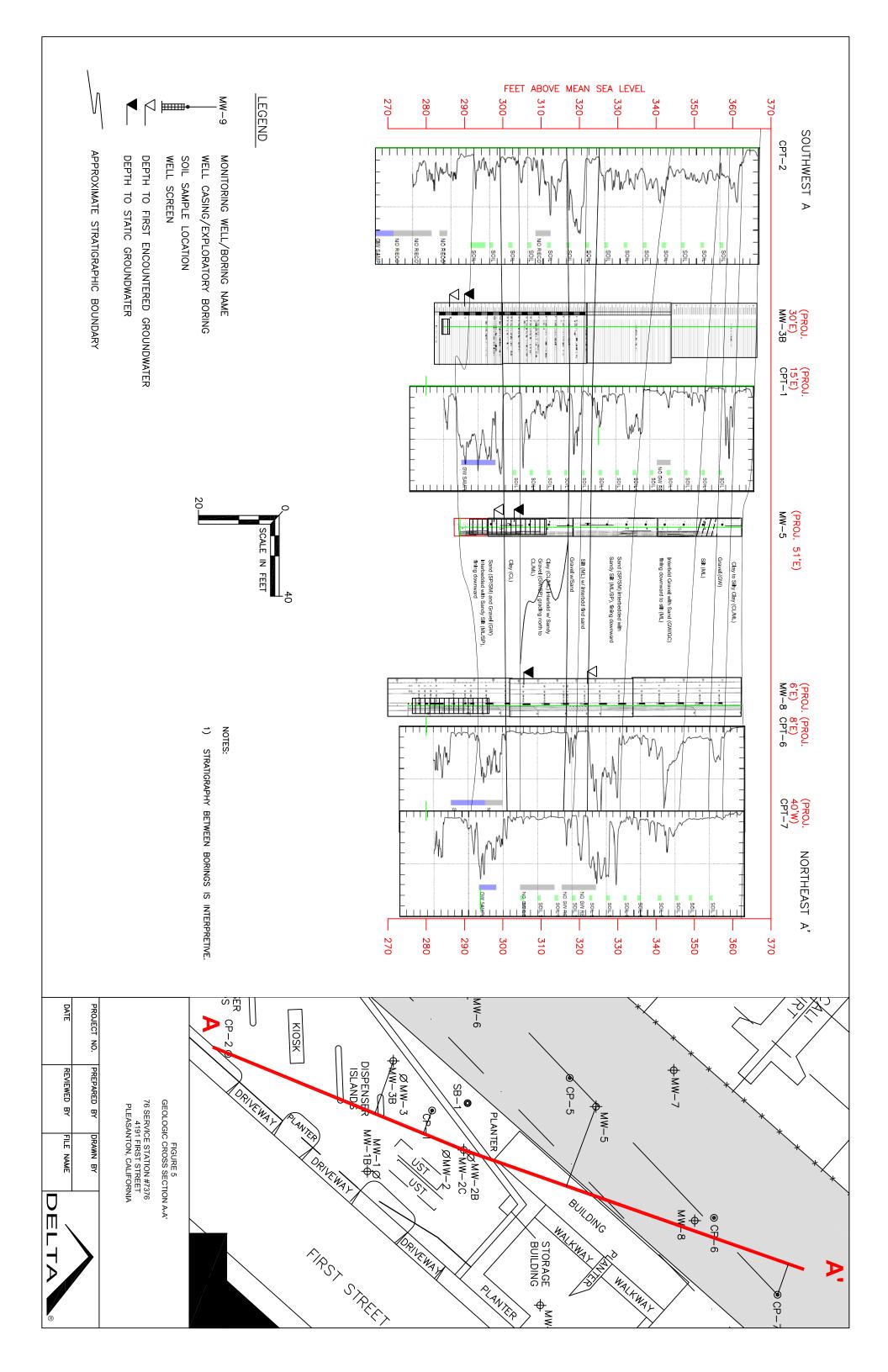

	Sample Depth										
Contaminant	5fbg	10 fbg	15 fbg	20 fbg	25 fbg	30 fbg	35 fbg	40 fbg	45 fbg	Reporting Limit	Units
Benzene	ND	ND	ND	0.26	1.6	3.6	0.64	1.1	3.2	0.005	mg/kg
Ethylbenzene	ND	ND	0.021	3	23	8.4	1.9	4.3	5.6	0.005	mg/kg
Methyl t-butyl ether	ND	ND	0.05	ND	ND	ND	ND	ND	ND	0.005	mg/kg
Toluene	ND	ND	ND	ND	0.48	0.44	ND	0.12	0.83	0.005	mg/kg
Total Xylenes	ND	ND	0.05	4.1	100	9.6	1.6	2.7	21	0.01	mg/kg
t-Amyl Methyl ether	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.005	mg/kg
t-Butyl alcohol	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.05	mg/kg
Diisopropyl ether	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.005	mg/kg
Ethanol	ND	ND	ND	ND	ND	ND	ND	ND	ND	1	mg/kg
Ethyl t-butyl ether	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.005	mg/kg
TPH - Aviation Gas	ND	ND	ND	ND	ND	ND	ND	ND	ND	50	mg/kg
TPH - Jet Fuel (JP4)	ND	ND	ND	ND	ND	ND	ND	ND	ND	10	mg/kg
TPH - Jet Fuel (JP5)	ND	ND	ND	ND	ND	ND	ND	ND	ND	10	mg/kg
TPH - Jet Fuel (JP6)	ND	ND	ND	ND	ND	ND	ND	ND	ND	10	mg/kg
TPH - Jet Fuel (JP8)	ND	ND	ND	ND	ND	ND	ND	ND	ND	10	mg/kg
Gasoline Range Organics (C4 - C12)	ND	6.5	ND	1400	230	1100	310	400	570	1	mg/kg
TPH - Diesel (FFP)	ND	ND	ND	ND	ND	ND	ND	ND	ND	10	mg/kg
TPH - Fuel Oil #6	ND	96	ND	200	880	9700	1400	9800	2800	10	mg/kg


Table Notes:


fbg = feet below grade


bold = concentration at or above reporting limit
ND = non-detect (below reporting


mg/Kg = milligrams per kilograms



AS BUILT GROUNDWATER MONITORING
MW-1A, MW-2B, MW-3A WELL CONSTRUCTION DETAIL

76 STATION NO. 7376 4191 FIRST STREET PLEASANTON, CALIFORNIA

PROJECT NO.	DRAWN BY
C107376	JH 07/16/09
FILE NO.	PREPARED BY
7376-WELLDETAIL	AB
REVISION NO.	REVIEWED BY
	l .IR l

APPENDIX A

ACHCSA Letter Dated 3/27/09

ALAMEDA COUNTY HEALTH CARE SERVICES AGENCY

DAVID J. KEARS, Agency Director

ENVIRONMENTAL HEALTH SERVICES **ENVIRONMENTAL PROTECTION** 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-93

March 27, 2009

Mr. Terry Grayson ConocoPhillips Company 76 Broadway Sacramento, CA 95818

De L Liu and Na Li 922 Saddlehorn Court Danville, CA 94506

Mr. Henry O. Armour P.O. Box 2527 Olympia, WA 98507

CD & PWS Enterprises, Inc. 8998 Alcosta Boulevard San Ramon, CA 94583

Subject: Fuel Leak Case No. RO0000361 and Geotracker Global ID T0600100101, Unocal #7376, 4191 First Street, Pleasanton, CA 94566 - Work Plan Approval

Dear Mr. Grayson:

Alameda County Environmental Health (ACEH) staff has reviewed the fuel leak case file for the abovereferenced site including the most recent document entitled, "Work Plan for Replacement of Wells 1, 2B and 3, 76 Service Station #7376, RO# 361, 4191 First Street, Pleasanton, CA," dated February 27, 2009. The Work Plan was prepared on behalf of ConocoPhillips by Delta Environmental. The Work Plan proposes decommissioning of existing long-screen wells MW-1, MW-2B, and MW-3 and installation of wells MW-1A, MW-1B, MW-2C, MW-2D, MW-3A, and MW-3B.

In correspondence dated July 30, 2008, ACEH requested that ConocoPhillips submit a Pilot Test Work Plan or Draft Corrective Action Plan by September 28, 2008 to begin site cleanup. Based on schedule extension requests from ConocoPhillips, the schedule for submittal of a Pilot Test Work Plan or Draft Corrective Action Plan was extended to March 1, 2009. On February 9, 2009 Jerry Wickham of ACEH met with Terry Grayson representing ConocoPhillips and John Reay of Delta Environmental regarding future work at the site. During the meeting, decommissioning of long-screen wells and installation of wells with appropriate screen intervals was discussed in order to acquire additional information on hydraulic gradient and the lateral and vertical extent of groundwater contamination. This information is to be used in planning and implementing site cleanup.

The proposed scope of work for well installation and sampling is generally acceptable provided that the modifications requested in the technical comments below are addressed and incorporated during the field investigation. Submittal of a revised Work Plan is not required unless an alternate scope of work outside that described in the Work Plan and technical comments below is proposed. We request that you also incorporate the additional investigation described in technical comment 1 in the area of a former Bunker fuel tank.

We request that you address the technical comments below, perform the proposed work, and send us the reports requested below.

TECHNICAL COMMENTS

- 1. Former Bunker Fuel Tank. In correspondence dated March 21, 2008 and July 30, 2008, we requested that you review the relevant investigation data regarding the former bunker fuel tank and propose investigation activities to evaluate whether a tank may still be in place and whether long chain hydrocarbon contamination is present near the former location of the bunker fuel tank. During the February 9, 2009 meeting, Delta Environmental provided a map entitled, "Site Plan with 1907 Sanborn Map." The map showed the projected location of a former bunker fuel tank based on a 1907 Sanborn map. On the map provided by Delta Environmental, the projected location of the former bunker tank is approximately 10 to 15 feet northwest of the northern boundary of the site. However, a linear feature taken from the Sanborn map that appears to be the property boundary is offset approximately 10 feet northwest from the current property boundary. If the map locations of the property boundaries are shifted back to be coincident, the former location of the bunker fuel tank appears to be along the northern boundary of the site, roughly 10 feet north of boring CP-1. Elevated concentrations of TPH as diesel were detected in soil samples collected from boring CP-1. However, no analyses for hydrocarbons in the fractions heavier than TPH as diesel were performed on the soil samples from CP-1. In order to evaluate the detections of heavier hydrocarbons in shallow soil in this area, we request that you advance one soil boring to a depth of 40 feet bgs at a location approximately 10 feet north of CP-1 along the property boundary. Prior to advancing the boring, we request that you perform a geophysical survey to verify that the tank is no longer present. The soil boring is to be sampled continuously in the field for logging and screening as the boring is advanced. Field screening is to be conducted by a qualified field geologist using visual observations, odor, and measurements using a field photoionization detector (PID) fitted with an appropriate lamp and calibrated for the chemicals of concern. Soil samples are to be extracted from the continuous cores at frequent intervals and placed in sealed jars or plastic bags for measurement and recording of VOC concentrations in the headspace using the PID. Soil samples are to be collected for laboratory analysis from zones where visible staining, odor, or elevated PID readings are observed. If visible staining, odor, or elevated PID readings are not observed, soil samples are to be collected for laboratory analysis at minimum intervals of 5 feet. The soil samples are to be analyzed for TPH as gasoline, TPH as diesel, and TPH as bunker oil using EPA Method 8015M and BTEX and fuel oxygenates using EPA Method 8260. Please present the results in the Well Installation and
- Monitoring Well Construction. Please include a table of well construction details in the Well Installation and Sampling Report requested below. For all monitoring wells on and off office of the construction table is to describe the well diameter. of the screened interval, depths of the filter pack, and other well construction details that may be relevant. Please show the screen intervals for all monitoring wells on the hydrogeologic cross sections requested in technical comment 4.
- Well Survey. The "Soil and Groundwater Investigation Report May 15, 2008," refers to a well survey conducted in January 1988; however, the locations of nearby wells are not shown. Please complete an updated, detailed well survey to locate all water supply wells within 2,000 ft of the

subject site. Submittal of maps showing the location of all wells identified in your study, and the use of tables to report the data, including well construction details, collected as part of your survey are required. Well construction details are to include the well diameter, screen slot size, total depth of the boring, depths of the screened interval, depths of the filter pack, year of installation, and other construction details that may be relevant. The status of the water supply well, whether active, decommissioned, or unknown is to be included where known. Please present the results in the Well Installation and Sampling Report requested below.

COTTO

Hydrogeologic Cross Sections. Detailed hydrogeologic cross sections were presented in a previous report for the site entitled, "Off-Site Subsurface Investigation Report," dated March 20, 2002 and prepared by Gettler-Ryan, Inc. We request that you review the previous cross sections and prepare updated cross sections incorporating data from the more recent soil borings and monitoring wells. Please present the updated cross sections in the Well Installation and Sampling Report requested below.

TECHNICAL REPORT REQUEST

Please submit technical reports to Alameda County Environmental Health (Attention: Jerry Wickham), according to the following schedule:

- July 23, 2009 Well Installation and Sampling Report
- 35 days following end of each quarter -- Groundwater Monitoring Reports

These reports are being requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request.

ELECTRONIC SUBMITTAL OF REPORTS

ACEH's Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of reports in electronic form. The electronic copy replaces paper copies and is expected to be used for all public information requests, regulatory review, and compliance/enforcement activities. Instructions for submission of electronic documents to the Alameda County Environmental Cleanup Oversight Program FTP site are provided on the attached "Electronic Report Upload Instructions." Submission of reports to the Alameda County FTP site is an addition to existing requirements for electronic submittal of information to the State Water Resources Control Board (SWRCB) Geotracker website. In September 2004, the SWRCB adopted regulations that require electronic submittal of information for all groundwater cleanup programs. For several years, responsible parties for cleanup of leaks from underground storage tanks (USTs) have been required to submit groundwater analytical data, surveyed locations of monitoring wells, and other data to the Geotracker database over the Internet. Beginning July 1, 2005, these same reporting requirements were added to Spills, Leaks, Investigations, and Cleanup (SLIC) sites. Beginning July 1, 2005, electronic submittal of a complete copy of all reports for all sites is required in Geotracker (in

PDF format). Please visit the SWRCB website for more information on these requirements (http://www.swrcb.ca.gov/ust/cleanup/electronic reporting).

PERJURY STATEMENT

All work plans, technical reports, or technical documents submitted to ACEH must be accompanied by a cover letter from the responsible party that states, at a minimum, the following: "I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge." This letter must be signed by an officer or legally authorized representative of your company. Please include a cover letter satisfying these requirements with all future reports and technical documents submitted for this fuel leak case.

PROFESSIONAL CERTIFICATION & CONCLUSIONS/RECOMMENDATIONS

The California Business and Professions Code (Sections 6735, 6835, and 7835.1) requires that work plans and technical or implementation reports containing geologic or engineering evaluations and/or judgments be performed under the direction of an appropriately registered or certified professional. For your submittal to be considered a valid technical report, you are to present site specific data, data interpretations, and recommendations prepared by an appropriately licensed professional and include the professional registration stamp, signature, and statement of professional certification. Please ensure all that all technical reports submitted for this fuel leak case meet this requirement.

UNDERGROUND STORAGE TANK CLEANUP FUND

Please note that delays in investigation, later reports, or enforcement actions may result in your becoming ineligible to receive grant money from the state's Underground Storage Tank Cleanup Fund (Senate Bill 2004) to reimburse you for the cost of cleanup.

AGENCY OVERSIGHT

If it appears as though significant delays are occurring or reports are not submitted as requested, we will consider referring your case to the Regional Board or other appropriate agency, including the County District Attorney, for possible enforcement actions. California Health and Safety Code, Section 25299.76 authorizes enforcement including administrative action or monetary penalties of up to \$10,000 per day for each day of violation.

If you have any questions, please call me at 510-567-6791 or send me an electronic mail message at jerry.wickham@acgov.org.

Sincerely,

Jerry Wickham, California PG 3766, CEG 1177, and CHG 297

Senior Hazardous Materials Specialist

Enclosure: ACEH Electronic Report Upload (ftp) Instructions

cc: Cheryl Dizon, QIC 80201, Zone 7 Water Agency, 100 North Canyons Parkway, Livermore, CA 94551

Danielle Stefani, Livermore-Pleasanton Fire Department, 3560 Nevada Street Pleasanton, CA 94566

Les Hausrath, Wendel, Rosen, Black & Dean, 1111 Broadway, 24th Floor, Oakland, CA 94607

Rory MacNeil, Alameda County Public Works, 399 Elmhurst Street, Hayward, CA 94544-1307

John Reay, Delta Environmental Consultants, Inc., 11050 White Rock Road, Suite 110, Rancho Cordova, CA 95670

Donna Drogos, ACEH Jerry Wickham, ACEH File

Alameda County Environmental Cleanup **Oversight Programs** (LOP and SLIC)

ISSUE DATE: July 5, 2005

REVISION DATE: December 16, 2005

PREVIOUS REVISIONS: October 31, 2005

ECTION: Miscellaneous Administrative Topics & Procedures

SUBJECT: Electronic Report Upload (ftp) Instructions

fective January 31, 2006, the Alameda County Environmental Cleanup Oversight Programs (LOP and SLIC) require ibmission of all reports in electronic form to the county's ftp site. Paper copies of reports will no longer be accepted. ne electronic copy replaces the paper copy and will be used for all public information requests, regulatory review, and impliance/enforcement activities.

EQUIREMENTS

- Entire report including cover letter must be submitted to the ftp site as a single portable document format (PDF) with no password protection. (Please do not submit reports as attachments to electronic mail.)
- It is preferable that reports be converted to PDF format from their original format, (e.g., Microsoft Word) rather than scanned.
- Signature pages and perjury statements must be included and have either original or electronic signature.
- Do not password protect the document. Once indexed and inserted into the correct electronic case file, the document will be secured in compliance with the County's current security standards and a password. Documents with password protection will not be accepted.
- Each page in the PDF document should be rotated in the direction that will make it easiest to read on a computer monitor.
- Reports must be named and saved using the following naming convention: RO#_Report Name_Year-Month-Date (e.g., RO#5555_WorkPlan_2005-06-14)

dditional Recommendations

A separate copy of the tables in the document should be submitted by e-mail to your Caseworker in Excel format. These are for use by assigned Caseworker only.

ubmission Instructions

-) Obtain User Name and Password:
 - a) Contact the Alameda County Environmental Health Department to obtain a User Name and Password to upload files to the ftp site.
 - Send an e-mail to dehloptoxic@acgov.org

- Send a fax on company letterhead to (510) 337-9335, to the attention of Alicia Lam-Finneke.
- b) In the subject line of your request, be sure to include "ftp PASSWORD REQUEST" and in the body of your request, include the Contact Information, Site Addresses, and the Case Numbers (RO# available in Geotracker) you will be posting for.
- !) Upload Files to the ftp Site
 - a) Using Internet Explorer (IE4+), go to ftp://alcoftp1.acgov.org
 - (i) Note: Netscape and Firefox browsers will not open the FTP site.
 - b) Click on File, then on Login As.
 - c) Enter your User Name and Password. (Note: Both are Case Sensitive.)
 - d) Open "My Computer" on your computer and navigate to the file(s) you wish to upload to the ftp site.
 - e) With both "My Computer" and the ftp site open in separate windows, drag and drop the file(s) from "My Computer" to the ftp window.
- 3) Send E-mail Notifications to the Environmental Cleanup Oversight Programs
 - a) Send email to dehloptoxic@acgov.org notify us that you have placed a report on our ftp site.
 - b) Copy your Caseworker on the e-mail. Your Caseworker's e-mail address is the entire first name then a period and entire last name at acgov.org. (e.g., firstname.lastname@acgov.org)
 - c) The subject line of the e-mail must start with the RO# followed by Report Upload. (e.g., Subject: RO1234 Report Upload)

APPENDIX B Cruz Brothers Locators, Inc Record of Geophysical Survey

job#: /9601

P.O.Box 66768 Scotts Valley, CA 95067

INVOICE AGREEMENT

(831) 461-1468 Dispatch (831) 461-1470 Fax

This agreement is made between Cri	nz Brothers Locators herein	after referred to as	"C.B.L." and the un	dersigned client.
Requestor: JOHN PEX	<i>y</i>	Company: 1201	ta consul	1011)
Billing Address:				-503-1260
C.B.L. agrees to perform the following scope of Speriments	a minimum charge of two hours are agrees to compensate C.B.L. in the or gas leak where one was believe commendations. In any event that utility lines are only guaranteed for utilities are undetectable. The final struction contractor performs this wind forward this invoice to your A.	event it is proven that the d to be. C.B.L. will not it is determined C.B.L. i utilities located and ma proof of location of leak	e problem noted in the set be held liable for any act is liable for its actions the rked. Customers should r or utility line requires a sm nia State Law. For all exe	ope of work does not exist such ions taken by any other person liability shall be limited to the over assume that 100% of said hall excavation from the surface avation call USA 48 hr.s ahead,
			City PLE	ASONTON
Job Address: 4/9/ Firs	/		Phone #: 9	16-233-503 <u>9</u>
Contact Person: Alten Bus	utro		PHORE W.==	
Service & Scope of work: Utc.				
Date: 5/1/09 Start	11:30 End:_	<i>2:30</i> To	tal Hrs: 3	Charges: <u>495</u>
Expense/Credit:		*	Total:	405
Authorizing Signature:		· · · · · · · · · · · · · · · · · · ·	Total Due:	773
Results:	Tecl	nnician: TAME	<u>5</u>	
Elect ENSED GPR 7	OLOGATE, UG.	STORAGE	TANK	
Yellow Comm/TV Orange Water Blue Sewer/Drain	U.6. 5707AGG	71001	ound	
Graen				
Other Pink/Purple				
Job Complete: <u>5/1/09</u>	Datum Process	Samuel Commission of the Commi	mind a historial about	
Y Tellier v Y	Return Trip Adv	Video Inspectio	On Go	Vacuum Extraction

APPENDIX C

Zone 7 Water Agency Permits

ALAMEDA COUNTY FLOOD CONTROL AND WATER CONSERVATION DISTRICT, ZONE 7 100 NORTH CANYONS PARKWAY, LIVERMORE, CA 94551-9486 • PHONE (925) 454-5000

June 1, 2009

Mr. Alan Buehler Deita Consultants 11050 White Rock Road, Suite 110 Rancho Cordova, CA 95670

Dear Mr. Buehler:

Enclosed is drilling permit 29031 for the destruction of monitoring wells 3S/1E-21C8 (MW-1), 3S/1E-21C9 (MW-3) and 3S/1E-21C11 (MW-2B) at 4191 First Street in Pleasanton for ConocoPhillips. Also enclosed is a current drilling permit application for your files. Drilling permit applications for future projects can also be downloaded from our web site (www.zone7water.com).

Please note that permit condition A-2 requires that a well destruction report (DWR Form 188) be signed by the driller and submitted after completion of the work. The report should include destruction log, the method and materials used to destroy the well, location sketch, date of destruction, and permit number. Please submit the original of your well destruction report. We will forward your submittal to the California Department of Water Resources.

If you have any questions, please contact me at extension 5056 or Matt Katen at extension 5071.

Sincerely,

Wyman Hong

Water Resources Specialist

Enc.

ATTACH SITE PLAN OR SKETCH

ZONE 7 WATER AGENCY

100 NORTH CANYONS PARKWAY, LIVERMORE, CALIFORNIA 94551 VOICE (925) 454-5000 FAX (925) 245-9306 E-MAIL whong@zone7water.com

DRILLING PERMIT APPLICATION

FOR APPLICANT TO COMPLETE	FOR OFFICE USE
LOCATION OF PROJECT 4191 1ST ST	
LOCATION OF PROJECT STATE TO	
Pleasanton, CA 94566	PERMIT NUMBER 29031 WELL NUMBER 3S/1E-21C8, 21C9 & 21C11
Coordinates Source ft. Accuracy ft. LAT: 37° 39' 48, 54" \(\nabla\) ft. LONG: \(\text{tz}\) \(\frac{\partial}{\partial}\) ft.	APN 094-0110-012-04
LAT: 370 38148, 54 0 H. LONG: 1210 52:11, 86" W H. APN	PERMIT CONDITIONS
	(Circled Permit Requirements Apply)
CLIENT Name Terry Grayson (LowcoPhillips) Address 76 Broadwac Phone 916-558-7466 City Sacramum to Zip 95 818 APPLICANT Name Alan Brewer (Delta Consoltants Email abusher Edella Env. 10m Fax Address 1105 cd 2011-12 73	A. GENERAL 1. A permit application should be submitted so as to arrive at the Zone 7 office five days prior to your proposed starting date. 2. Submit to Zone 7 within 60 days after completion of permitted work the original Department of Water Resources Water Well Drillers Report (DWR Form 188), signed by the driller. 3. Permit is void if project not begun within 90 days of approval date.
City Sanction Zip 9 5 6 7 0 TYPE OF PROJECT: Well Construction	 WATER SUPPLY WELLS Minimum surface seal diameter is four inches greater than the well casing diameter. Minimum seal depth is 50 feet for municipal and industrial wells or 20 feet for domestic and irrigation wells unless a lesser depth is specially approved. Grout placed by tremie.
PROPOSED WELL USE: Domestic	 4. An access port at least 0.5 inches in diameter is required on the wellhead for water level measurements. 5. A sample port is required on the discharge pipe near the wellhead.
DRILLING METHOD: Mud Rotary	 C. GROUNDWATER MONITORING WELLS INCLUDING PIEZOMETERS 1. Minimum surface seal diameter is four inches greater than the well or piezometer casing diameter. 2. Minimum seal depth for monitoring wells is the maximum depth practicable or 20 feet. 3. Grout placed by tremie.
WELL SPECIFICATIONS: Drill Hole Diameter 10 in. Maximum Casing Diameter 2 in. Depth 40 ft. Surface Seal Depth 60 ft. Number 3	D. GEOTECHNICAL. Backfill bore hole with compacted cuttings or heavy bentonite and upper two feet with compacted material. In areas of known or suspected contamination, tremied cement grout shall be used in place of compacted cuttings.
SOIL BORINGS: Number of Borings	E CATHODIC. Fill hole above anode zone with concrete placed by tremie.
ESTIMATED STARTING DATE 6 8 09 ESTIMATED COMPLETION DATE 6 19 09	F. WELL DESTRUCTION. See attached.
I hereby agree to comply with all requirements of this permit and Alameda County Ordinance No. 73-68.	G. SPECIAL CONDITIONS. Submit to Zone 7 within 60 days after completion of permitted work the well installation report including all soil and water laboratory analysis results.
APPLICANT'S Date 5 27 09	Approved Wyman Hong Date 5/27/09 Wyman Hong
Alan Buehler	\1

Zone 7 Water Resources Engineering Groundwater Protection Ordinance

ConocoPhillips
4191 First Street
Pleasanton
Wells 35/1E-21C8 (MW-1), 35/1E-21C9 (MW-3) and 35/1E-21C11 (MW-2B)
Permit 29031

<u>Destruction Requirements:</u>

- 1. Sound the well as deeply as practicable and record for your report.
- 2. Drill out the well so that the casing, seal, and gravel pack are removed to the bottom of the well.
- 3. Fill the remaining hole to grade or original ground, whichever is the lower elevation, with neat cement sealing material, using a tremmie pipe.

P:\WRE\GPOs\Destruct Specs\Drillout.wpd

ALAMEDA COUNTY FLOOD CONTROL AND WATER CONSERVATION DISTRICT, ZONE 7

100 NORTH CANYONS PARKWAY, LIVERMORE, CA 94551-9486 • PHONE (925) 454-5000

June 1, 2009

RECEIVED

JUN 0 3 2009

Mr. Alan Buehler Delta Consultants 11050 White Rock Road, Suite 110 Rancho Cordova, CA 95670

Dear Mr. Buehler:

Enclosed is drilling permit 29030 for monitoring well construction project at 4191 First Street in Pleasanton for ConocoPhillips. Also enclosed is a current drilling permit application for your files. Drilling permit applications for future projects can also be downloaded from our web site at www.zone7water.com.

Please note that permit conditions A-2 requires that a well construction report be submitted after completion of the work. The report must be completed on Department of Water Resources form 188. Please submit the original of your completion report signed by the driller. Also include a copy of any analysis of the soil and water samples. We will forward your submittal to the California Department of Water Resources.

If you have any questions, please contact me at extension 5056 or Matt Katen at extension 5071.

Sincerely,

Wyman Hong

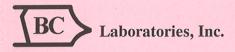
Water Resources Specialist

Enc.

ONE

ATTACH SITE PLAN OR SKETCH

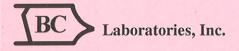
ZONE 7 WATER AGENCY


100 NORTH CANYONS PARKWAY, LIVERMORE, CALIFORNIA 94551 VOICE (925) 454-5000 FAX (925) 245-9306 E-MAIL whong@zone7water.com

DRILLING PERMIT APPLICATION

FOR APPLICANT TO COMPLETE	FOR OFFICE USE
LOCATION OF PROJECT 4191 18 St	
Pleasanton, (4 94566 Coordinates Source ft. Accuracy ft. LAT: 37° 39' 48.54'N ft. LONG: 121° 52' 11.86' 11. CLIENT Name Terry Grayson (Longo Phillips)	PERMIT NUMBER 29030 WELL NUMBER 3S/1E-21C36 to 21C41 APN 094-0110-012-04 PERMIT CONDITIONS (Circled Permit Requirements Apply)
Address 7613, 20 dua. Phone 916-558-7666 City Sacramento Zip 95818. APPLICANT Name Alan Bue Her (De Ha (onso Hants) Email absence de Haenv. com Fax Address 11850 white Park Ed Phone City Sanc us Cordova Zip 95670	 A permit application should be submitted so as to arrive at the Zone 7 office five days prior to your proposed starting date. Submit to Zone 7 within 60 days after completion of permitted work the original <u>Department of Water Resources Water Well Drillers Report (DWR Form 188), signed by the driller.</u> Permit is void if project not begun within 90 days of approval date.
TYPE OF PROJECT: Well Construction	 WATER SUPPLY WELLS Minimum surface seal diameter is four inches greater than the well casing diameter. Minimum seal depth is 50 feet for municipal and industrial wells or 20 feet for domestic and irrigation wells unless a lesser depth is specially approved. Grout placed by tremie. An access port at least 0.5 inches in diameter is required on the wellhead for water level measurements. A sample port is required on the discharge pipe near the
Industrial	wellhead. C. GROUNDWATER MONITORING WELLS INCLUDING PIEZOMETERS 1. Minimum surface seal diameter is four inches greater than the well or piezometer casing diameter. 2. Minimum seal depth for monitoring wells is the maximum depth practicable or 20 feet. 3. Grout placed by tremie.
Drill Hole Diameter 10 in. Maximum Casing Diameter 2 in. Depth 75 ft. Surface Seal Depth 46 ft. Number 6	D. GEOTECHNICAL. Backfill bore hole with compacted cuttings or heavy bentonite and upper two feet with compacted material. In areas of known or suspected contamination, tremied cement grout shall be used in place of compacted cuttings.
SOIL BORINGS: Number of Borings Maximum Hole Diameter in. Depth ft.	 E. CATHODIC. Fill hole above anode zone with concrete placed by tremie.
ESTIMATED STARTING DATE	F. WELL DESTRUCTION. See attached. G. SPECIAL CONDITIONS. Submit to Zone 7 within 60 days after completion of permitted work the well installation report including all soil and water laboratory analysis results.
APPLICANT'S Date 5 27 09 Alan Buehler	Approved Wyman Hong Date 5/27/09

Revised: April 23, 2008


APPENDIX D Laboratory Analytical Results, Chain-of Custody Documents

Chain of Custody Form

PLEASE COMPLETE: BCL QUOTE ID:	

Report To: Client:	Corre Philips	Delta	Project #:	C	07	370						A	nal	ysis	Req	lues	ted								Page	of	1973
THE RESERVE OF THE PARTY OF THE	Han Buchl		Project Na					au de	1	\int	7	1	1	/	//	//		/	1	Co	mmer	its:					
Street Ad	Idress: 11050 Whil	+ Tork, Sila	Global ID	#:					/	P	eas	e r	fer	to	heb	ack	of the	lis	/								
City, Stat	te, Zip: 23 Caurle	(ciliona)	Sampler(s	s):					/	/	/	pag	e fo	or/co	phpl	etig	/n /	/	/								
Phone:	16-75-50 %Fax:								1	/	ins	tru	ctio	ns	and	met	hød	1		•	7		Avo thou	o ony tosts y	rith holding	imac lac	ec than
Email Ad	Idress: a bueller	Cotollann	.com									0	cl	egé	nd.			I s		. eld ا اة	Matrix _	ind lays*	Are the	or equa	l to 48 hours	?	Sthan
Work Or									5	14-1	×	1	1	70					ng Wa	i Wat		Turnaround of work days*	* Cto	Yes Yes	around = 1		dove
Sample #	Des	scription		S	Da ⁱ		Ti San	me noled	DE	din	1	- 0	7	7				lio	ludge	round	Other	Tur # of v	- Star		Notes	WOIK	uays
e ne (Soil 3	day terms	leum d		1 17	J.	Jun		Y	4	35	- September 1	Y	7				S	S	0	Other			•	10105		
ASSESSMENT TO	Company of the Company	sday form	the state of the s	i i	1 17	1/:0	A.	300	2		Y	*															
attu 7.4		2000 2 SVV		7.	117	l es a	1 1 2 2	50	V	7	×		V	9													
870				e Ca	117	1600	7																				
ALUZE C				- (-	117	109	3,1	30	¥	X	×		1	×													
ALL EL							807	,5	×	X	X		Y	4.													
						i																					
1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							8.0	$e^{-\beta}$	X	×	X		4	y													
						1				7																	
00 2 C							15	0	¥	×	Y		4	×													
						1						1.0															
Vite TC							8:3	55	4	w.Z.	4		Y	イ													
								Sample	Dien	osal								Ш						Special	Reporting		
Billing		Same as al		Report Vaters			No. of the second	Re			ent		Dispo	osal by	lab		Archive	: 1	Mont	hs			QC QC			Raw D	ata
Client:				Yes	S	□ N	0	1. Relin	quish	ed By	1		0		Da	te //2//		ime 142		1. R	eceived I	1 -	· da		Date 6/12		Time 1420
				end Co	nov to	State	of	2. Relin	quish	ed By	1		X		Da			ime		2. R	eceived I		May		Date		Time
City:	Sta	ate Zip		CA?	pj to	State																	0		Di		TO!
Attn: PO#:				Yes	5	□ N	0	3. Relin	quish	ed By	1				Dat	te	r	ime		3. R	eceived I	3y			Date		Time
· Om·		BC Laborat	ories Inc	/11/	00 4	tlac (C+ D	Rakaraf	ield	CA	033	US	661	227	1011	- Fo	v. 66	1 32	7 10	012	_ 31/31/33/	helal	as com				

Man Buller

Email Address: a buch los @ do Hagan

Description

Street Address: 1050 white Rock

City, State, Zip: Laurho Cordous

Work Order #: Po# 4511814991

Phone: 16-223-5037 Fax:

Report To: Client:

Attn:

Sample

#

531

5131 E

Billing

Address: _

Client:

City: _

Attn: _

PO#:

Chain of Cu

Project #: / 107376

Global ID #:

com

Project Name: 7376 Pleason Jon

Date

Report Drinking

Waters on State Form?

Yes No

Send Copy to State of

☐ No

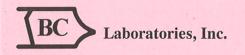
☐ Yes

Same as above

__ State _____ Zip

Time

17:30 17:01 17:46


1:03 1:17 1:10

1:77

Sampled Sampled

Sampler(s): May Buckle

n of	f (Cu	st	00	dy	F	0	rn	n									PLEASE COMPLETE: BCL QUOTE ID:
				A	nal	ysis	Re	que	este	d								Page of
stor	/	P	eas		5000	to/or/ca	the	ha/si/et	ek di	fty	is	/	7	C	on	nmen	ts:	
ime npled	TPH-63	TOH.D		Butteroun	ctio Williams	ege × 41		m	the	d			. H.	닒	Waste Water Z	Iatrix Other	Turnaround # of work days*	Are there any tests with holding times less than or equal to 48 hours? Yes No * Standard Turnaround = 10 work days Notes
36	XXX	Y X		XXX		XX	¿ X			ı	を見ると							
57 58	XXX	XXX		KXK		XXX	XXX				Street Street Street							
2	NXX	人人		NKK		FXX	XXX				meanly de Same the organic							
	6	/		Ţ		7	7											
Sample Re	turn t	o Clie			Dispo	osal by	-	ate	Arch	_	me		onth		Rec	eived By	,	Special Reporting QC EDF Raw Data Date Time
2. Relin	quish	ed By	5	2	0		D	ate	109	Ti	me	,5	2	2. 1	Rec	eived By	100	Date Time

Street Address: 11 Color Color

Fax: 16 - (-30

Description

Same as above

_ State ____

Yes

☐ No

Report To: Client:

Attn: A

Sample #

Billing

Client: Address:

City: _

Attn:

PO#:

City, State, Zip:

Phone: // / 7. 17 **Email Address:** Work Order #:

			(Ch	aiı	n o	f (Cu	st	00	dy	F	0	rn	n							PLEASE COMPL BCL QUOTE	ETE: D:
Project :	#: (1	6	3	7 (225	1			Α	naly	/sis	Re	que	este	d						Page	_ of
Project 1							1000		/	/	/	/	/	/	/	/	1	7	Co	mmen	ts:		
Global I						3111		/DV	eas	1	801	1	hol	hal		F 43/		/					
Sampler							1/	/	/		e fo			Jan.		1	1						
Sample	(3):						/	/	1	-					the	/	/						
							1		III	T		ege		1111	Z LIII		Sa	ım	ple 1	Matrix	_*s	Are there any tests with holding tin or equal to 48 hours?	nes less than
con									V	¥		0						Wate	/ater		Turnaround t of work days*	Yes N	lo
			Da	le.	Т	ime	10	ut T.E.E.	山	70							36	king	nd W		urnar f wor	* Standard Turnaround = 10	work days
		S		oled		npled	1174	ALT)	10	+7							Soil	Drin	Ground Water	Other		Notes	
		1	17 6	10	7:	ζ-2,	×	4	4	×													\$6651
,			1																				
(3 000			1																				
			1	1																			
			1																				
			1	1																			
			1																				
			1																				
																							844
				1																			
				<u> </u>																			
																							1
						Sample	Dien	lean														Special Reporting	
bove			Drinl on St	cing ate Fo	rm?		eturn t		ent		Dispo	sal by	lab		Arch	ive:	M	ont	hs				taw Data
		Yes	,	□ N	0	1. Relin	-	APPROPRIEST	-	0	-		_	ate		Tir	6000	-		eceived B	У	Date	Time
						2. Relin	amiel	ned D	v		(D	ate	(10)	Tin	11(1 P	eceived B	Ma	chen 6/26/0	7 111 Time
	Sen CA		py to	State	of	2. Keili	iquisi	ieu B	,					ate			ue		4. K	eceivea B	Ŋ	Date	Time
		Vac				3. Relin	quish	ned By	y				D	ate		Tir	ne		3. R	eceived B	y	Date	Time

Date of Report: 07/09/2009

John Reay

Delta Environmental Consultants, Inc. 11050 White Rock Rd, Suite 110 Rancho Cordova, CA 95670

RE: 7376

BC Work Order: 0908152 Invoice ID: B064735

Enclosed are the results of analyses for samples received by the laboratory on 6/22/2009. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Contact Person: Molly Meyers

Client Service Rep

Authorized Signature

Delta Environmental Consultants, Inc. Project: 7376 11050 White Rock Rd, Suite 110 Project Number: 4511814991 Rancho Cordova, CA 95670

Project Manager: John Reay

Laboratory / Client Sample Cross Reference

Laboratory	Client Sample Information	on .			
0908152-01	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 7376 SB1@5 DECR	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	06/22/2009 21:03 06/18/2009 12:36 Solids	Delivery Work Order: Global ID: Location ID (FieldPoint): SB1 Matrix: SO Sample QC Type (SACode): CS Cooler ID:
0908152-02	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 7376 SB1@10 DECR	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	06/22/2009 21:03 06/18/2009 12:41 Solids	Delivery Work Order: Global ID: Location ID (FieldPoint): SB1 Matrix: SO Sample QC Type (SACode): CS Cooler ID:
0908152-03	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 7376 SB1@15 DECR	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	06/22/2009 21:03 06/18/2009 12:46 Solids	Delivery Work Order: Global ID: Location ID (FieldPoint): SB1 Matrix: SO Sample QC Type (SACode): CS Cooler ID:
0908152-04	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 7376 SB1@20 DECR	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	06/22/2009 21:03 06/18/2009 12:52 Solids	Delivery Work Order: Global ID: Location ID (FieldPoint): SB1 Matrix: SO Sample QC Type (SACode): CS Cooler ID:

Reported: 07/09/2009 16:26

Delta Environmental Consultants, Inc. Project: 7376 11050 White Rock Rd, Suite 110 Project Number: 4511814991 Rancho Cordova, CA 95670 Project Manager: John Reay

Reported: 07/09/2009 16:26

Laboratory / Client Sample Cross Reference

Laboratory	Client Sample Information	on .			
0908152-05	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 7376 SB1@25 DECR	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	06/22/2009 21:03 06/18/2009 12:58 Solids	Delivery Work Order: Global ID: Location ID (FieldPoint): SB1 Matrix: SO Sample QC Type (SACode): CS Cooler ID:
0908152-06	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 7376 SB1@30 DECR	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	06/22/2009 21:03 06/18/2009 01:03 Solids	Delivery Work Order: Global ID: Location ID (FieldPoint): SB1 Matrix: SO Sample QC Type (SACode): CS Cooler ID:
0908152-07	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 7376 SB1@35 DECR	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	06/22/2009 21:03 06/18/2009 01:12 Solids	Delivery Work Order: Global ID: Location ID (FieldPoint): SB1 Matrix: SO Sample QC Type (SACode): CS Cooler ID:
0908152-08	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 7376 SB1@40 DECR	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	06/22/2009 21:03 06/18/2009 01:18 Solids	Delivery Work Order: Global ID: Location ID (FieldPoint): SB1 Matrix: SO Sample QC Type (SACode): CS Cooler ID:

Delta Environmental Consultants, Inc.

11050 White Rock Rd, Suite 110 Rancho Cordova, CA 95670

Project: 7376

Project Number: 4511814991 Project Manager: John Reay **Reported:** 07/09/2009 16:26

Laboratory / Client Sample Cross Reference

Laboratory Client Sample Information

0908152-09 COC Number: ---

Project Number: 7376
Sampling Location: ---

Sampling Point: SB1@45
Sampled By: DECR

Receive Date: 06/22/2009 21:03 Delivery Work Order:

Sampling Date: 06/18/2009 01:22 Global ID:

Sample Depth: --- Location ID (FieldPoint): SB1

Sample Matrix: Solids Matrix: SO

Sample QC Type (SACode): CS

Cooler ID:

Delta Environmental Consultants, Inc.

Project: 7376

Reported: 07/09/2009 16:26

11050 White Rock Rd, Suite 110Project Number:4511814991Rancho Cordova, CA 95670Project Manager:John Reay

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID:	0908152-01	Client Sample	e Name:	7376, SB1@5, 6/18	/2009 12:36:	00PM							
		•				Prep	Run		Instru-		QC	МВ	Lab
Constituent		Result	Units	PQL MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene		ND	mg/kg	0.0050	EPA-8260	06/23/09	06/24/09 00:39	ADC	MS-V2	1	BSF1506	ND	
Ethylbenzene		ND	mg/kg	0.0050	EPA-8260	06/23/09	06/24/09 00:39	ADC	MS-V2	1	BSF1506	ND	
Methyl t-butyl ether		ND	mg/kg	0.0050	EPA-8260	06/23/09	06/24/09 00:39	ADC	MS-V2	1	BSF1506	ND	
Toluene		ND	mg/kg	0.0050	EPA-8260	06/23/09	06/24/09 00:39	ADC	MS-V2	1	BSF1506	ND	
Total Xylenes		ND	mg/kg	0.010	EPA-8260	06/23/09	06/24/09 00:39	ADC	MS-V2	1	BSF1506	ND	
t-Amyl Methyl ether		ND	mg/kg	0.0050	EPA-8260	06/23/09	06/24/09 00:39	ADC	MS-V2	1	BSF1506	ND	
t-Butyl alcohol		ND	mg/kg	0.050	EPA-8260	06/23/09	06/24/09 00:39	ADC	MS-V2	1	BSF1506	ND	
Diisopropyl ether		ND	mg/kg	0.0050	EPA-8260	06/23/09	06/24/09 00:39	ADC	MS-V2	1	BSF1506	ND	
Ethanol		ND	mg/kg	1.0	EPA-8260	06/23/09	06/24/09 00:39	ADC	MS-V2	1	BSF1506	ND	
Ethyl t-butyl ether		ND	mg/kg	0.0050	EPA-8260	06/23/09	06/24/09 00:39	ADC	MS-V2	1	BSF1506	ND	
1,2-Dichloroethane-d4 (Sur	rogate)	97.9	%	70 - 121 (LCL - UCL)	EPA-8260	06/23/09	06/24/09 00:39	ADC	MS-V2	1	BSF1506		
Toluene-d8 (Surrogate)		101	%	81 - 117 (LCL - UCL)	EPA-8260	06/23/09	06/24/09 00:39	ADC	MS-V2	1	BSF1506		
4-Bromofluorobenzene (Su	rrogate)	101	%	74 - 121 (LCL - UCL)	EPA-8260	06/23/09	06/24/09 00:39	ADC	MS-V2	1	BSF1506		

Delta Environmental Consultants, Inc.

Project: 7376

Reported: 07/09/2009 16:26

11050 White Rock Rd, Suite 110 Rancho Cordova, CA 95670

Project Number: 4511814991 Project Manager: John Reay

BCL Sample ID: 0908152-01	Client Sample	e Name:	7376, SB1@5, 6	/18/2009 12:36	:00PM							
					Prep	Run		Instru-		QC	МВ	Lab
Constituent	Result	Units	PQL ME	L Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Gasoline Range Organics (C4 - C12)	ND	mg/kg	1.0	Luft	06/19/09	06/23/09 12:25	JJH	GC-V8	1	BSF1065	ND	
TPH - Diesel (FFP)	ND	mg/kg	10	Luft/FFP	06/26/09	07/03/09 07:31	CKD	GC-2	0.984	BSF1928	ND	
TPH - Fuel Oil #6	ND	mg/kg	10	Luft/FFP	06/26/09	07/03/09 07:31	CKD	GC-2	0.984	BSF1928	ND	
Tetracosane (Surrogate)	107	%	20 - 145 (LCL - UCL) Luft/FFP	06/26/09	07/03/09 07:31	CKD	GC-2	0.984	BSF1928		
a,a,a-Trifluorotoluene (FID Surrogate)	95.5	%	70 - 130 (LCL - UCL) Luft	06/19/09	06/23/09 12:25	JJH	GC-V8	1	BSF1065		

Delta Environmental Consultants, Inc.
Project: 7376

11050 White Rock Rd, Suite 110
Project Number: 4511814991

Rancho Cordova, CA 95670 Project Manager: John Reay

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID:	0908152-02	Client Sample	Name:	7376, SB1@10, 6/1	8/2009 12:41	:00PM							
		-				Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene		ND	mg/kg	0.0050	EPA-8260	06/23/09	06/24/09 01:05	ADC	MS-V2	1	BSF1506	ND	
Ethylbenzene		ND	mg/kg	0.0050	EPA-8260	06/23/09	06/24/09 01:05	ADC	MS-V2	1	BSF1506	ND	
Methyl t-butyl ether		ND	mg/kg	0.0050	EPA-8260	06/23/09	06/24/09 01:05	ADC	MS-V2	1	BSF1506	ND	
Toluene		ND	mg/kg	0.0050	EPA-8260	06/23/09	06/24/09 01:05	ADC	MS-V2	1	BSF1506	ND	
Total Xylenes		ND	mg/kg	0.010	EPA-8260	06/23/09	06/24/09 01:05	ADC	MS-V2	1	BSF1506	ND	
t-Amyl Methyl ether		ND	mg/kg	0.0050	EPA-8260	06/23/09	06/24/09 01:05	ADC	MS-V2	1	BSF1506	ND	
t-Butyl alcohol		ND	mg/kg	0.050	EPA-8260	06/23/09	06/24/09 01:05	ADC	MS-V2	1	BSF1506	ND	
Diisopropyl ether		ND	mg/kg	0.0050	EPA-8260	06/23/09	06/24/09 01:05	ADC	MS-V2	1	BSF1506	ND	
Ethanol		ND	mg/kg	1.0	EPA-8260	06/23/09	06/24/09 01:05	ADC	MS-V2	1	BSF1506	ND	
Ethyl t-butyl ether		ND	mg/kg	0.0050	EPA-8260	06/23/09	06/24/09 01:05	ADC	MS-V2	1	BSF1506	ND	
1,2-Dichloroethane-d4 (Su	ırrogate)	99.5	%	70 - 121 (LCL - UCL)	EPA-8260	06/23/09	06/24/09 01:05	ADC	MS-V2	1	BSF1506		
Toluene-d8 (Surrogate)		100	%	81 - 117 (LCL - UCL)	EPA-8260	06/23/09	06/24/09 01:05	ADC	MS-V2	1	BSF1506		
4-Bromofluorobenzene (S	urrogate)	102	%	74 - 121 (LCL - UCL)	EPA-8260	06/23/09	06/24/09 01:05	ADC	MS-V2	1	BSF1506		

Reported: 07/09/2009 16:26

Delta Environmental Consultants, Inc. 11050 White Rock Rd. Suite 110

Project: 7376

Reported: 07/09/2009 16:26

11050 White Rock Rd, Suite 110Project Number:4511814991Rancho Cordova, CA 95670Project Manager:John Reay

BCL Sample ID: 0908152-02	Client Sampl	le Name:	7376, SB1@10, 6	/18/2009 12:4	1:00PM							
	-				Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL MDI	_ Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
TPH - Aviation Gas	ND	mg/kg	50	Luft/FFP	06/26/09	07/08/09 16:31	CKD	GC-13	0.993	BSF1928		
TPH - Jet Fuel (JP4)	ND	mg/kg	10	Luft/FFP	06/26/09	07/08/09 16:31	CKD	GC-13	0.993	BSF1928		
TPH - Jet Fuel (JP5)	ND	mg/kg	10	Luft/FFP	06/26/09	07/08/09 16:31	CKD	GC-13	0.993	BSF1928		
TPH - Jet Fuel (JP6)	ND	mg/kg	10	Luft/FFP	06/26/09	07/08/09 16:31	CKD	GC-13	0.993	BSF1928		
TPH - Jet Fuel (JP8)	ND	mg/kg	10	Luft/FFP	06/26/09	07/08/09 16:31	CKD	GC-13	0.993	BSF1928	ND	
Gasoline Range Organics (C4 - C12)	6.5	mg/kg	1.0	Luft	06/19/09	06/23/09 12:56	JJH	GC-V8	1	BSF1065	ND	
TPH - Diesel (FFP)	ND	mg/kg	10	Luft/FFP	06/26/09	07/08/09 16:31	CKD	GC-13	0.993	BSF1928	ND	
TPH - Fuel Oil #6	96	mg/kg	10	Luft/FFP	06/26/09	07/08/09 16:31	CKD	GC-13	0.993	BSF1928		
Tetracosane (Surrogate)	115	%	20 - 145 (LCL - UCL)	Luft/FFP	06/26/09	07/08/09 16:31	CKD	GC-13	0.993	BSF1928		
a,a,a-Trifluorotoluene (FID Surrogate)	99.0	%	70 - 130 (LCL - UCL)	Luft	06/19/09	06/23/09 12:56	JJH	GC-V8	1	BSF1065		

Delta Environmental Consultants, Inc. 11050 White Rock Rd, Suite 110

Rancho Cordova, CA 95670

Project: 7376

Project Number: 4511814991 Project Manager: John Reay

Reported: 07/09/2009 16:26

Volatile Organic Analysis (EPA Method 8260)

0908152-03	Client Sample	Name:	7376, SB1@15, 6	/18/2009 12:46	6:00PM							
					Prep	Run		Instru-		QC	МВ	Lab
	Result	Units	PQL MDI	_ Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
	ND	mg/kg	0.0050	EPA-8260	06/23/09	06/24/09 01:31	ADC	MS-V2	1	BSF1506	ND	
	0.021	mg/kg	0.0050	EPA-8260	06/23/09	06/24/09 01:31	ADC	MS-V2	1	BSF1506	ND	
	0.050	mg/kg	0.0050	EPA-8260	06/23/09	06/24/09 01:31	ADC	MS-V2	1	BSF1506	ND	
	ND	mg/kg	0.0050	EPA-8260	06/23/09	06/24/09 01:31	ADC	MS-V2	1	BSF1506	ND	
	0.050	mg/kg	0.010	EPA-8260	06/23/09	06/24/09 01:31	ADC	MS-V2	1	BSF1506	ND	
	ND	mg/kg	0.0050	EPA-8260	06/23/09	06/24/09 01:31	ADC	MS-V2	1	BSF1506	ND	
	ND	mg/kg	0.050	EPA-8260	06/23/09	06/24/09 01:31	ADC	MS-V2	1	BSF1506	ND	
	ND	mg/kg	0.0050	EPA-8260	06/23/09	06/24/09 01:31	ADC	MS-V2	1	BSF1506	ND	
	ND	mg/kg	1.0	EPA-8260	06/23/09	06/24/09 01:31	ADC	MS-V2	1	BSF1506	ND	
	ND	mg/kg	0.0050	EPA-8260	06/23/09	06/24/09 01:31	ADC	MS-V2	1	BSF1506	ND	
Surrogate)	104	%	70 - 121 (LCL - UCL)	EPA-8260	06/23/09	06/24/09 01:31	ADC	MS-V2	1	BSF1506		
	101	%	81 - 117 (LCL - UCL)	EPA-8260	06/23/09	06/24/09 01:31	ADC	MS-V2	1	BSF1506		
Surrogate)	103	%	74 - 121 (LCL - UCL)	EPA-8260	06/23/09	06/24/09 01:31	ADC	MS-V2	1	BSF1506		
	O908152-03 Surrogate)	Result ND 0.021 0.050 ND 0.050 ND ND ND ND ND ND ND	Result Units ND mg/kg 0.021 mg/kg 0.050 mg/kg ND mg/kg Surrogate) 104 % 101 %	Result Units PQL MDI ND mg/kg 0.0050 0.021 mg/kg 0.0050 ND mg/kg 0.0050 ND mg/kg 0.010 ND mg/kg 0.0050 ND mg/kg 0.050 ND mg/kg 0.0050 ND mg/kg 0.0050 ND mg/kg 1.0 ND mg/kg 0.0050 Surrogate) 104 % 70 - 121 (LCL - UCL) 101 % 81 - 117 (LCL - UCL)	Result Units PQL MDL Method ND mg/kg 0.0050 EPA-8260 0.021 mg/kg 0.0050 EPA-8260 ND mg/kg 0.050 EPA-8260 ND mg/kg 0.0050 EPA-8260 ND mg/kg 0.0050 EPA-8260 ND mg/kg 0.0050 EPA-8260 ND mg/kg 0.0050 EPA-8260 Surrogate) 104 % 70 - 121 (LCL - UCL) EPA-8260 Burrogate) 101 % 81 - 117 (LCL - UCL) EPA-8260	Result Units PQL MDL Method Date ND mg/kg 0.0050 EPA-8260 06/23/09 0.021 mg/kg 0.0050 EPA-8260 06/23/09 ND mg/kg 0.0050 EPA-8260 06/23/09 ND mg/kg 0.0050 EPA-8260 06/23/09 ND mg/kg 0.010 EPA-8260 06/23/09 ND mg/kg 0.050 EPA-8260 06/23/09 ND mg/kg 0.050 EPA-8260 06/23/09 ND mg/kg 0.050 EPA-8260 06/23/09 ND mg/kg 0.0050 EPA-8260 06/23/09 ND mg/kg 0.0050 EPA-8260 06/23/09 Surrogate) 104 % 70 - 121 (LCL - UCL) EPA-8260 06/23/09 Burrogate) 101 % 81 - 117 (LCL - UCL) EPA-8260 06/23/09	Result Units PQL MDL Method Date Date Date Date/Time ND mg/kg 0.0050 EPA-8260 06/23/09 06/24/09 01:31 0.021 mg/kg 0.0050 EPA-8260 06/23/09 06/24/09 01:31 ND mg/kg 0.0050 EPA-8260 06/23/09 06/24/09 01:31 <td>Result Units PQL MDL Method Date Date/Time Date/Time Date/Time Analyst ND mg/kg 0.0050 EPA-8260 06/23/09 06/24/09 01:31 ADC 0.021 mg/kg 0.0050 EPA-8260 06/23/09 06/24/09 01:31 ADC 0.050 mg/kg 0.0050 EPA-8260 06/23/09 06/24/09 01:31 ADC ND mg/kg 0.0050 EPA-8260 06/23/09 06/24/09 <td< td=""><td> Result Units PQL MDL Method Date Date/Time Analyst ment ID </td><td> Result Units PQL MDL Method Date Date/Time Analyst ment ID Dilution </td><td>Result Units PQL MDL Method Date Date Date/Time Date Analyst ment ID Dilution Dilution Batch ID Batch ID Dilution Bach ID Batch ID Batch ID Date Date/Time Date/Time Date/Time Date Date/Time Date/Ti</td><td> No</td></td<></td>	Result Units PQL MDL Method Date Date/Time Date/Time Date/Time Analyst ND mg/kg 0.0050 EPA-8260 06/23/09 06/24/09 01:31 ADC 0.021 mg/kg 0.0050 EPA-8260 06/23/09 06/24/09 01:31 ADC 0.050 mg/kg 0.0050 EPA-8260 06/23/09 06/24/09 01:31 ADC ND mg/kg 0.0050 EPA-8260 06/23/09 06/24/09 <td< td=""><td> Result Units PQL MDL Method Date Date/Time Analyst ment ID </td><td> Result Units PQL MDL Method Date Date/Time Analyst ment ID Dilution </td><td>Result Units PQL MDL Method Date Date Date/Time Date Analyst ment ID Dilution Dilution Batch ID Batch ID Dilution Bach ID Batch ID Batch ID Date Date/Time Date/Time Date/Time Date Date/Time Date/Ti</td><td> No</td></td<>	Result Units PQL MDL Method Date Date/Time Analyst ment ID	Result Units PQL MDL Method Date Date/Time Analyst ment ID Dilution	Result Units PQL MDL Method Date Date Date/Time Date Analyst ment ID Dilution Dilution Batch ID Batch ID Dilution Bach ID Batch ID Batch ID Date Date/Time Date/Time Date/Time Date Date/Time Date/Ti	No

Delta Environmental Consultants, Inc. 11050 White Pack Pd. Suite 110

Project: 7376

Reported: 07/09/2009 16:26

11050 White Rock Rd, Suite 110 Project Number: 4511814991 Rancho Cordova, CA 95670 Project Manager: John Reay

BCL Sample ID: 0908152-03	Client Sample	e Name:	7376, SB1@15,	6/18/2009 12:4	6:00PM							
	-				Prep	Run		Instru-		QC	МВ	Lab
Constituent	Result	Units	PQL MD	L Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Gasoline Range Organics (C4 - C12)	ND	mg/kg	1.0	Luft	06/18/09	06/24/09 17:49	JJH	GC-V8	1	BSF1179	ND	
TPH - Diesel (FFP)	ND	mg/kg	10	Luft/FFP	06/26/09	07/03/09 08:17	CKD	GC-2	0.997	BSF1928	ND	
TPH - Fuel Oil #6	ND	mg/kg	10	Luft/FFP	06/26/09	07/03/09 08:17	CKD	GC-2	0.997	BSF1928	ND	
Tetracosane (Surrogate)	126	%	20 - 145 (LCL - UCL	Luft/FFP	06/26/09	07/03/09 08:17	CKD	GC-2	0.997	BSF1928		
a,a,a-Trifluorotoluene (FID Surrogate)	95.8	%	70 - 130 (LCL - UCL	Luft	06/18/09	06/24/09 17:49	JJH	GC-V8	1	BSF1179		

Delta Environmental Consultants, Inc. 11050 White Rock Rd. Suite 110

Rancho Cordova, CA 95670

Project: 7376

Reported: 07/09/2009 16:26

Project Number: 4511814991 Project Manager: John Reay

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID:	0908152-04	Client Sample	Name:	7376, SB1@20, 6/1	8/2009 12:52	2:00PM							
						Prep	Run		Instru-		QC	МВ	Lab
Constituent		Result	Units	PQL MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene		0.26	mg/kg	0.12	EPA-8260	06/23/09	06/24/09 12:02	ADC	MS-V2	25	BSF1506	ND	A01
Ethylbenzene		3.0	mg/kg	0.12	EPA-8260	06/23/09	06/24/09 12:02	ADC	MS-V2	25	BSF1506	ND	A01
Methyl t-butyl ether		ND	mg/kg	0.12	EPA-8260	06/23/09	06/24/09 12:02	ADC	MS-V2	25	BSF1506	ND	A01
Toluene		ND	mg/kg	0.12	EPA-8260	06/23/09	06/24/09 12:02	ADC	MS-V2	25	BSF1506	ND	A01
Total Xylenes		4.1	mg/kg	0.25	EPA-8260	06/23/09	06/24/09 12:02	ADC	MS-V2	25	BSF1506	ND	A01
t-Amyl Methyl ether		ND	mg/kg	0.12	EPA-8260	06/23/09	06/24/09 12:02	ADC	MS-V2	25	BSF1506	ND	A01
t-Butyl alcohol		ND	mg/kg	1.2	EPA-8260	06/23/09	06/24/09 12:02	ADC	MS-V2	25	BSF1506	ND	A01
Diisopropyl ether		ND	mg/kg	0.12	EPA-8260	06/23/09	06/24/09 12:02	ADC	MS-V2	25	BSF1506	ND	A01
Ethanol		ND	mg/kg	25	EPA-8260	06/23/09	06/24/09 12:02	ADC	MS-V2	25	BSF1506	ND	A01
Ethyl t-butyl ether		ND	mg/kg	0.12	EPA-8260	06/23/09	06/24/09 12:02	ADC	MS-V2	25	BSF1506	ND	A01
1,2-Dichloroethane-d4 (Su	rrogate)	103	%	70 - 121 (LCL - UCL)	EPA-8260	06/23/09	06/24/09 12:02	ADC	MS-V2	25	BSF1506		
Toluene-d8 (Surrogate)		105	%	81 - 117 (LCL - UCL)	EPA-8260	06/23/09	06/24/09 12:02	ADC	MS-V2	25	BSF1506		
4-Bromofluorobenzene (Su	ırrogate)	116	%	74 - 121 (LCL - UCL)	EPA-8260	06/23/09	06/24/09 12:02	ADC	MS-V2	25	BSF1506		

Delta Environmental Consultants, Inc.

Project: 7376

Reported: 07/09/2009 16:26

11050 White Rock Rd, Suite 110Project Number:4511814991Rancho Cordova, CA 95670Project Manager:John Reay

BCL Sample ID: 090	8152-04	Client Sample	Name:	7376, SB1@20	6/18/2009 12:	52:00PM							
						Prep	Run		Instru-		QC	МВ	Lab
Constituent		Result	Units	PQL M	DL Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
TPH - Aviation Gas		ND	mg/kg	250	Luft/FFP	06/26/09	07/08/09 14:29	CKD	GC-13	4.983	BSF1928		A01
TPH - Jet Fuel (JP4)		ND	mg/kg	50	Luft/FFP	06/26/09	07/08/09 14:29	CKD	GC-13	4.983	BSF1928		A01
TPH - Jet Fuel (JP5)		ND	mg/kg	50	Luft/FFP	06/26/09	07/08/09 14:29	CKD	GC-13	4.983	BSF1928		A01
TPH - Jet Fuel (JP6)		ND	mg/kg	50	Luft/FFP	06/26/09	07/08/09 14:29	CKD	GC-13	4.983	BSF1928		A01
TPH - Jet Fuel (JP8)		ND	mg/kg	50	Luft/FFP	06/26/09	07/08/09 14:29	CKD	GC-13	4.983	BSF1928	ND	A01
Gasoline Range Organics (C4	- C12)	1400	mg/kg	250	Luft	06/26/09	06/26/09 17:46	JJH	GC-V8	250	BSF1786	ND	A01
TPH - Diesel (FFP)		ND	mg/kg	50	Luft/FFP	06/26/09	07/08/09 14:29	CKD	GC-13	4.983	BSF1928	ND	A01
TPH - Fuel Oil #6		200	mg/kg	50	Luft/FFP	06/26/09	07/08/09 14:29	CKD	GC-13	4.983	BSF1928		A01
Tetracosane (Surrogate)		119	%	20 - 145 (LCL - UC	L) Luft/FFP	06/26/09	07/08/09 14:29	CKD	GC-13	4.983	BSF1928		A01
a,a,a-Trifluorotoluene (FID Suri	rogate)	100	%	70 - 130 (LCL - UC	L) Luft	06/26/09	06/26/09 17:46	JJH	GC-V8	250	BSF1786		

Delta Environmental Consultants, Inc. 11050 White Rock Rd, Suite 110 Rancho Cordova, CA 95670 Project: 7376

Project Number: 4511814991 Project Manager: John Reay Reported: 07/09/2009 16:26

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 090815	52-05	Client Sample	e Name:	7376, SB1@	<u> 3</u> 25, 6/18	8/2009 12:58	:00PM							
	_						Prep	Run	_	Instru-		QC	MB	Lab
Constituent		Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene		1.6	mg/kg	0.25		EPA-8260	06/23/09	06/24/09 12:54	ADC	MS-V2	50	BSF1506	ND	A01
Ethylbenzene		23	mg/kg	0.25		EPA-8260	06/23/09	06/24/09 12:54	ADC	MS-V2	50	BSF1506	ND	A01
Methyl t-butyl ether		ND	mg/kg	0.25		EPA-8260	06/23/09	06/24/09 12:54	ADC	MS-V2	50	BSF1506	ND	A01
Toluene		0.48	mg/kg	0.25		EPA-8260	06/23/09	06/24/09 12:54	ADC	MS-V2	50	BSF1506	ND	A01
Total Xylenes		100	mg/kg	1.0		EPA-8260	06/23/09	06/24/09 14:39	ADC	MS-V2	100	BSF1506	ND	A01
t-Amyl Methyl ether		ND	mg/kg	0.25		EPA-8260	06/23/09	06/24/09 12:54	ADC	MS-V2	50	BSF1506	ND	A01
t-Butyl alcohol		ND	mg/kg	2.5		EPA-8260	06/23/09	06/24/09 12:54	ADC	MS-V2	50	BSF1506	ND	A01
Diisopropyl ether		ND	mg/kg	0.25		EPA-8260	06/23/09	06/24/09 12:54	ADC	MS-V2	50	BSF1506	ND	A01
Ethanol		ND	mg/kg	50		EPA-8260	06/23/09	06/24/09 12:54	ADC	MS-V2	50	BSF1506	ND	A01
Ethyl t-butyl ether		ND	mg/kg	0.25		EPA-8260	06/23/09	06/24/09 12:54	ADC	MS-V2	50	BSF1506	ND	A01
1,2-Dichloroethane-d4 (Surrogate)		97.3	%	70 - 121 (LCL	- UCL)	EPA-8260	06/23/09	06/24/09 12:54	ADC	MS-V2	50	BSF1506		
1,2-Dichloroethane-d4 (Surrogate)		101	%	70 - 121 (LCL	- UCL)	EPA-8260	06/23/09	06/24/09 14:39	ADC	MS-V2	100	BSF1506		
Toluene-d8 (Surrogate)		111	%	81 - 117 (LCL	- UCL)	EPA-8260	06/23/09	06/24/09 12:54	ADC	MS-V2	50	BSF1506		
Toluene-d8 (Surrogate)		105	%	81 - 117 (LCL	- UCL)	EPA-8260	06/23/09	06/24/09 14:39	ADC	MS-V2	100	BSF1506		
4-Bromofluorobenzene (Surrogate)	120	%	74 - 121 (LCL	- UCL)	EPA-8260	06/23/09	06/24/09 12:54	ADC	MS-V2	50	BSF1506		
4-Bromofluorobenzene (Surrogate)	115	%	74 - 121 (LCL	- UCL)	EPA-8260	06/23/09	06/24/09 14:39	ADC	MS-V2	100	BSF1506		

Delta Environmental Consultants, Inc.

Project: 7376

Reported: 07/09/2009 16:26

11050 White Rock Rd, Suite 110 Rancho Cordova, CA 95670

Project Number: 4511814991 Project Manager: John Reay

BCL Sample ID: 0908152-0	5 Client Sam	ple Name:	7376, SB1@	25, 6/1	8/2009 12:58	3:00PM							
						Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Gasoline Range Organics (C4 - C12)	230	mg/kg	50		Luft	06/18/09	06/24/09 18:50	JJH	GC-V8	50	BSF1179	ND	A01
TPH - Diesel (FFP)	ND	mg/kg	100		Luft/FFP	06/26/09	07/09/09 14:57	CKD	GC-13	9.967	BSF1928	ND	
TPH - Fuel Oil #6	880	mg/kg	100		Luft/FFP	06/26/09	07/09/09 14:57	CKD	GC-13	9.967	BSF1928	ND	A01,Z1
Tetracosane (Surrogate)	0	%	20 - 145 (LCL - I	UCL)	Luft/FFP	06/26/09	07/09/09 14:57	CKD	GC-13	9.967	BSF1928		A17
a,a,a-Trifluorotoluene (FID Surrogate)	98.2	%	70 - 130 (LCL - I	UCL)	Luft	06/18/09	06/24/09 18:50	JJH	GC-V8	50	BSF1179		

Delta Environmental Consultants, Inc. 11050 White Rock Rd, Suite 110 Rancho Cordova, CA 95670 Project: 7376

Project Number: 4511814991 Project Manager: John Reay **Reported:** 07/09/2009 16:26

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID:	0908152-06	Client Sample	Name:	7376, SB1@30, 6/1	8/2009 1:03	:00AM							
						Prep	Run		Instru-		QC	МВ	Lab
Constituent		Result	Units	PQL MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene		3.6	mg/kg	0.12	EPA-8260	06/23/09	06/24/09 10:44	ADC	MS-V2	25	BSF1506	ND	A01
Ethylbenzene		8.4	mg/kg	0.12	EPA-8260	06/23/09	06/24/09 10:44	ADC	MS-V2	25	BSF1506	ND	A01
Methyl t-butyl ether		ND	mg/kg	0.12	EPA-8260	06/23/09	06/24/09 10:44	ADC	MS-V2	25	BSF1506	ND	A01
Toluene		0.44	mg/kg	0.12	EPA-8260	06/23/09	06/24/09 10:44	ADC	MS-V2	25	BSF1506	ND	A01
Total Xylenes		9.6	mg/kg	0.25	EPA-8260	06/23/09	06/24/09 10:44	ADC	MS-V2	25	BSF1506	ND	A01
t-Amyl Methyl ether		ND	mg/kg	0.12	EPA-8260	06/23/09	06/24/09 10:44	ADC	MS-V2	25	BSF1506	ND	A01
t-Butyl alcohol		ND	mg/kg	1.2	EPA-8260	06/23/09	06/24/09 10:44	ADC	MS-V2	25	BSF1506	ND	A01
Diisopropyl ether		ND	mg/kg	0.12	EPA-8260	06/23/09	06/24/09 10:44	ADC	MS-V2	25	BSF1506	ND	A01
Ethanol		ND	mg/kg	25	EPA-8260	06/23/09	06/24/09 10:44	ADC	MS-V2	25	BSF1506	ND	A01
Ethyl t-butyl ether		ND	mg/kg	0.12	EPA-8260	06/23/09	06/24/09 10:44	ADC	MS-V2	25	BSF1506	ND	A01
1,2-Dichloroethane-d4 (S	urrogate)	99.3	%	70 - 121 (LCL - UCL)	EPA-8260	06/23/09	06/24/09 10:44	ADC	MS-V2	25	BSF1506		
Toluene-d8 (Surrogate)		108	%	81 - 117 (LCL - UCL)	EPA-8260	06/23/09	06/24/09 10:44	ADC	MS-V2	25	BSF1506		
4-Bromofluorobenzene (S	Surrogate)	117	%	74 - 121 (LCL - UCL)	EPA-8260	06/23/09	06/24/09 10:44	ADC	MS-V2	25	BSF1506		

Delta Environmental Consultants, Inc. 11050 White Rock Rd, Suite 110

Rancho Cordova, CA 95670

Project: 7376

Reported: 07/09/2009 16:26

Project Number: 4511814991 Project Manager: John Reay

BCL Sample ID: 0908152-06	Client Sample	e Name:	7376, SB1@30, 6/	18/2009 1:03	:00AM							
	-				Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
TPH - Aviation Gas	ND	mg/kg	5000	Luft/FFP	06/26/09	07/08/09 14:52	CKD	GC-13	99.338	BSF1928		A01
TPH - Jet Fuel (JP4)	ND	mg/kg	1000	Luft/FFP	06/26/09	07/08/09 14:52	CKD	GC-13	99.338	BSF1928		A01
TPH - Jet Fuel (JP5)	ND	mg/kg	1000	Luft/FFP	06/26/09	07/08/09 14:52	CKD	GC-13	99.338	BSF1928		A01
TPH - Jet Fuel (JP6)	ND	mg/kg	1000	Luft/FFP	06/26/09	07/08/09 14:52	CKD	GC-13	99.338	BSF1928		A01
TPH - Jet Fuel (JP8)	ND	mg/kg	1000	Luft/FFP	06/26/09	07/08/09 14:52	CKD	GC-13	99.338	BSF1928	ND	A01
Gasoline Range Organics (C4 - C12)	1100	mg/kg	250	Luft	06/25/09	06/25/09 09:45	JJH	GC-V8	250	BSF1786	ND	A01
TPH - Diesel (FFP)	ND	mg/kg	1000	Luft/FFP	06/26/09	07/08/09 14:52	CKD	GC-13	99.338	BSF1928	ND	A01
TPH - Fuel Oil #6	9700	mg/kg	1000	Luft/FFP	06/26/09	07/08/09 14:52	CKD	GC-13	99.338	BSF1928		A01
Tetracosane (Surrogate)	0	%	20 - 145 (LCL - UCL)	Luft/FFP	06/26/09	07/08/09 14:52	CKD	GC-13	99.338	BSF1928		A01,A17
a,a,a-Trifluorotoluene (FID Surrogate)	109	%	70 - 130 (LCL - UCL)	Luft	06/25/09	06/25/09 09:45	JJH	GC-V8	250	BSF1786		

Delta Environmental Consultants, Inc. 11050 White Rock Rd, Suite 110 Rancho Cordova, CA 95670

Project: 7376

Project Number: 4511814991

Project Manager: John Reay

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID:	0908152-07	Client Sample	e Name:	7376, SB1@35, 6/1	8/2009 1:12	:00AM							
		-				Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene		0.64	mg/kg	0.12	EPA-8260	06/23/09	06/24/09 11:10	ADC	MS-V2	25	BSF1506	ND	A01
Ethylbenzene		1.9	mg/kg	0.12	EPA-8260	06/23/09	06/24/09 11:10	ADC	MS-V2	25	BSF1506	ND	A01
Methyl t-butyl ether		ND	mg/kg	0.12	EPA-8260	06/23/09	06/24/09 11:10	ADC	MS-V2	25	BSF1506	ND	A01
Toluene		ND	mg/kg	0.12	EPA-8260	06/23/09	06/24/09 11:10	ADC	MS-V2	25	BSF1506	ND	A01
Total Xylenes		1.6	mg/kg	0.25	EPA-8260	06/23/09	06/24/09 11:10	ADC	MS-V2	25	BSF1506	ND	A01
t-Amyl Methyl ether		ND	mg/kg	0.12	EPA-8260	06/23/09	06/24/09 11:10	ADC	MS-V2	25	BSF1506	ND	A01
t-Butyl alcohol		ND	mg/kg	1.2	EPA-8260	06/23/09	06/24/09 11:10	ADC	MS-V2	25	BSF1506	ND	A01
Diisopropyl ether		ND	mg/kg	0.12	EPA-8260	06/23/09	06/24/09 11:10	ADC	MS-V2	25	BSF1506	ND	A01
Ethanol		ND	mg/kg	25	EPA-8260	06/23/09	06/24/09 11:10	ADC	MS-V2	25	BSF1506	ND	A01
Ethyl t-butyl ether		ND	mg/kg	0.12	EPA-8260	06/23/09	06/24/09 11:10	ADC	MS-V2	25	BSF1506	ND	A01
1,2-Dichloroethane-d4 (Su	urrogate)	107	%	70 - 121 (LCL - UCL)	EPA-8260	06/23/09	06/24/09 11:10	ADC	MS-V2	25	BSF1506		
Toluene-d8 (Surrogate)		104	%	81 - 117 (LCL - UCL)	EPA-8260	06/23/09	06/24/09 11:10	ADC	MS-V2	25	BSF1506		
4-Bromofluorobenzene (S	urrogate)	112	%	74 - 121 (LCL - UCL)	EPA-8260	06/23/09	06/24/09 11:10	ADC	MS-V2	25	BSF1506		

Reported: 07/09/2009 16:26

Delta Environmental Consultants, Inc.

Project: 7376

Reported: 07/09/2009 16:26

11050 White Rock Rd, Suite 110Project Number:4511814991Rancho Cordova, CA 95670Project Manager:John Reay

BCL Sample ID: 0908152-07	Client Sampl	e Name:	7376, SB1@35, 6	6/18/2009 1:12	2:00AM							
	•				Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL MD	L Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Gasoline Range Organics (C4 - C12)	310	mg/kg	250	Luft	06/25/09	06/25/09 10:16	JJH	GC-V8	250	BSF1786	ND	A01
TPH - Diesel (FFP)	ND	mg/kg	100	Luft/FFP	06/26/09	07/08/09 15:15	CKD	GC-13	9.868	BSF1928	ND	A01
TPH - Fuel Oil #6	1400	mg/kg	100	Luft/FFP	06/26/09	07/08/09 15:15	CKD	GC-13	9.868	BSF1928	ND	A01
Tetracosane (Surrogate)	0	%	20 - 145 (LCL - UCL)	Luft/FFP	06/26/09	07/08/09 15:15	CKD	GC-13	9.868	BSF1928		A01,A17
a,a,a-Trifluorotoluene (FID Surrogate)	95.2	%	70 - 130 (LCL - UCL)	Luft	06/25/09	06/25/09 10:16	JJH	GC-V8	250	BSF1786		

Delta Environmental Consultants, Inc. 11050 White Rock Rd, Suite 110 Rancho Cordova, CA 95670

Project: 7376

Project Number: 4511814991 Project Manager: John Reay

Reported: 07/09/2009 16:26

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID:	0908152-08	Client Sample	Name:	7376, SB1@40, 6/1	8/2009 1:18	:00AM							
		-				Prep	Run		Instru-		QC	МВ	Lab
Constituent		Result	Units	PQL MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene		1.1	mg/kg	0.12	EPA-8260	06/23/09	06/24/09 11:36	ADC	MS-V2	25	BSF1506	ND	A01
Ethylbenzene		4.3	mg/kg	0.12	EPA-8260	06/23/09	06/24/09 11:36	ADC	MS-V2	25	BSF1506	ND	A01
Methyl t-butyl ether		ND	mg/kg	0.12	EPA-8260	06/23/09	06/24/09 11:36	ADC	MS-V2	25	BSF1506	ND	A01
Toluene		0.12	mg/kg	0.12	EPA-8260	06/23/09	06/24/09 11:36	ADC	MS-V2	25	BSF1506	ND	A01
Total Xylenes		2.7	mg/kg	0.25	EPA-8260	06/23/09	06/24/09 11:36	ADC	MS-V2	25	BSF1506	ND	A01
t-Amyl Methyl ether		ND	mg/kg	0.12	EPA-8260	06/23/09	06/24/09 11:36	ADC	MS-V2	25	BSF1506	ND	A01
t-Butyl alcohol		ND	mg/kg	1.2	EPA-8260	06/23/09	06/24/09 11:36	ADC	MS-V2	25	BSF1506	ND	A01
Diisopropyl ether		ND	mg/kg	0.12	EPA-8260	06/23/09	06/24/09 11:36	ADC	MS-V2	25	BSF1506	ND	A01
Ethanol		ND	mg/kg	25	EPA-8260	06/23/09	06/24/09 11:36	ADC	MS-V2	25	BSF1506	ND	A01
Ethyl t-butyl ether		ND	mg/kg	0.12	EPA-8260	06/23/09	06/24/09 11:36	ADC	MS-V2	25	BSF1506	ND	A01
1,2-Dichloroethane-d4 (Si	urrogate)	94.9	%	70 - 121 (LCL - UCL)	EPA-8260	06/23/09	06/24/09 11:36	ADC	MS-V2	25	BSF1506		
Toluene-d8 (Surrogate)		104	%	81 - 117 (LCL - UCL)	EPA-8260	06/23/09	06/24/09 11:36	ADC	MS-V2	25	BSF1506		
4-Bromofluorobenzene (S	Surrogate)	112	%	74 - 121 (LCL - UCL)	EPA-8260	06/23/09	06/24/09 11:36	ADC	MS-V2	25	BSF1506		

Delta Environmental Consultants, Inc. 11050 White Rock Rd, Suite 110

Rancho Cordova, CA 95670

Project: 7376

Reported: 07/09/2009 16:26

Project Number: 4511814991 Project Manager: John Reay

BCL Sample ID: 0908152-08	Client Sample	e Name:	7376, SB1@40, 6/	18/2009 1:18	:00AM							
	•				Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
TPH - Aviation Gas	ND	mg/kg	5000	Luft/FFP	06/26/09	07/08/09 15:40	CKD	GC-13	99.668	BSF1928		A01
TPH - Jet Fuel (JP4)	ND	mg/kg	1000	Luft/FFP	06/26/09	07/08/09 15:40	CKD	GC-13	99.668	BSF1928		A01
TPH - Jet Fuel (JP5)	ND	mg/kg	1000	Luft/FFP	06/26/09	07/08/09 15:40	CKD	GC-13	99.668	BSF1928		A01
TPH - Jet Fuel (JP6)	ND	mg/kg	1000	Luft/FFP	06/26/09	07/08/09 15:40	CKD	GC-13	99.668	BSF1928		A01
TPH - Jet Fuel (JP8)	ND	mg/kg	1000	Luft/FFP	06/26/09	07/08/09 15:40	CKD	GC-13	99.668	BSF1928	ND	A01
Gasoline Range Organics (C4 - C12)	400	mg/kg	50	Luft	06/18/09	06/24/09 20:21	JJH	GC-V8	50	BSF1179	ND	A01
TPH - Diesel (FFP)	ND	mg/kg	1000	Luft/FFP	06/26/09	07/08/09 15:40	CKD	GC-13	99.668	BSF1928	ND	A01
TPH - Fuel Oil #6	9800	mg/kg	1000	Luft/FFP	06/26/09	07/08/09 15:40	CKD	GC-13	99.668	BSF1928		A01
Tetracosane (Surrogate)	0	%	20 - 145 (LCL - UCL)	Luft/FFP	06/26/09	07/08/09 15:40	CKD	GC-13	99.668	BSF1928		A01,A17
a,a,a-Trifluorotoluene (FID Surrogate)	116	%	70 - 130 (LCL - UCL)	Luft	06/18/09	06/24/09 20:21	JJH	GC-V8	50	BSF1179		

Delta Environmental Consultants, Inc. 11050 White Rock Rd, Suite 110 Rancho Cordova, CA 95670 Project: 7376

Project Number: 4511814991 Project Manager: John Reay **Reported:** 07/09/2009 16:26

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID:	0908152-09	Client Sample	Name:	7376, SB1@45, 6/1	8/2009 1:22	:00AM							
						Prep	Run		Instru-		QC	МВ	Lab
Constituent		Result	Units	PQL MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene		3.2	mg/kg	0.12	EPA-8260	06/23/09	06/24/09 12:28	ADC	MS-V2	25	BSF1506	ND	A01
Ethylbenzene		5.6	mg/kg	0.12	EPA-8260	06/23/09	06/24/09 12:28	ADC	MS-V2	25	BSF1506	ND	A01
Methyl t-butyl ether		ND	mg/kg	0.12	EPA-8260	06/23/09	06/24/09 12:28	ADC	MS-V2	25	BSF1506	ND	A01
Toluene		0.83	mg/kg	0.12	EPA-8260	06/23/09	06/24/09 12:28	ADC	MS-V2	25	BSF1506	ND	A01
Total Xylenes		21	mg/kg	0.25	EPA-8260	06/23/09	06/24/09 12:28	ADC	MS-V2	25	BSF1506	ND	A01
t-Amyl Methyl ether		ND	mg/kg	0.12	EPA-8260	06/23/09	06/24/09 12:28	ADC	MS-V2	25	BSF1506	ND	A01
t-Butyl alcohol		ND	mg/kg	1.2	EPA-8260	06/23/09	06/24/09 12:28	ADC	MS-V2	25	BSF1506	ND	A01
Diisopropyl ether		ND	mg/kg	0.12	EPA-8260	06/23/09	06/24/09 12:28	ADC	MS-V2	25	BSF1506	ND	A01
Ethanol		ND	mg/kg	25	EPA-8260	06/23/09	06/24/09 12:28	ADC	MS-V2	25	BSF1506	ND	A01
Ethyl t-butyl ether		ND	mg/kg	0.12	EPA-8260	06/23/09	06/24/09 12:28	ADC	MS-V2	25	BSF1506	ND	A01
1,2-Dichloroethane-d4 (Si	urrogate)	98.0	%	70 - 121 (LCL - UCL)	EPA-8260	06/23/09	06/24/09 12:28	ADC	MS-V2	25	BSF1506		
Toluene-d8 (Surrogate)		108	%	81 - 117 (LCL - UCL)	EPA-8260	06/23/09	06/24/09 12:28	ADC	MS-V2	25	BSF1506		
4-Bromofluorobenzene (S	Surrogate)	108	%	74 - 121 (LCL - UCL)	EPA-8260	06/23/09	06/24/09 12:28	ADC	MS-V2	25	BSF1506		

Delta Environmental Consultants, Inc.

Project: 7376

Reported: 07/09/2009 16:26

11050 White Rock Rd, Suite 110Project Number:4511814991Rancho Cordova, CA 95670Project Manager:John Reay

BCL Sample ID: 090	08152-09	Client Sample	e Name:	7376, SB1@4	45, 6/18	3/2009 1:22:	00AM							
							Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Gasoline Range Organics (C4	4 - C12)	570	mg/kg	250		Luft	06/25/09	06/25/09 11:17	JJH	GC-V8	250	BSF1786	ND	A01
TPH - Diesel (FFP)		ND	mg/kg	500		Luft/FFP	06/26/09	07/08/09 16:05	CKD	GC-13	49.342	BSF1928	ND	A01
TPH - Fuel Oil #6		2800	mg/kg	500		Luft/FFP	06/26/09	07/08/09 16:05	CKD	GC-13	49.342	BSF1928	ND	A01
Tetracosane (Surrogate)		0	%	20 - 145 (LCL - L	JCL)	Luft/FFP	06/26/09	07/08/09 16:05	CKD	GC-13	49.342	BSF1928		A01,A17
a,a,a-Trifluorotoluene (FID Sui	rrogate)	100	%	70 - 130 (LCL - L	JCL)	Luft	06/25/09	06/25/09 11:17	JJH	GC-V8	250	BSF1786		

Delta Environmental Consultants, Inc. 11050 White Rock Rd, Suite 110

Rancho Cordova, CA 95670

Project: 7376

Reported: 07/09/2009 16:26

Project Number: 4511814991 Project Manager: John Reay

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Precision & Accuracy

			·						Control Limits		
			Source	Source		Spike			Percent		Percent
Constituent	Batch ID	QC Sample Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery Lab Quals
Benzene	BSF1506	Matrix Spike	0908002-12	0	0.12504	0.12500	mg/kg		100		70 - 130
		Matrix Spike Duplicate	0908002-12	0	0.12879	0.12500	mg/kg	3.0	103	20	70 - 130
Toluene	BSF1506	Matrix Spike	0908002-12	0	0.12717	0.12500	mg/kg		102		70 - 130
		Matrix Spike Duplicate	0908002-12	0	0.13159	0.12500	mg/kg	2.9	105	20	70 - 130
1,2-Dichloroethane-d4 (Surrogate)	BSF1506	Matrix Spike	0908002-12	ND	0.050302	0.050000	mg/kg		101		70 - 121
		Matrix Spike Duplicate	0908002-12	ND	0.050735	0.050000	mg/kg		101		70 - 121
Toluene-d8 (Surrogate)	BSF1506	Matrix Spike	0908002-12	ND	0.049031	0.050000	mg/kg		98.1		81 - 117
		Matrix Spike Duplicate	0908002-12	ND	0.049813	0.050000	mg/kg		99.6		81 - 117
4-Bromofluorobenzene (Surrogate)	BSF1506	Matrix Spike	0908002-12	ND	0.051053	0.050000	mg/kg		102		74 - 121
		Matrix Spike Duplicate	0908002-12	ND	0.049869	0.050000	mg/kg		99.7		74 - 121

Delta Environmental Consultants, Inc. 11050 White Rock Rd, Suite 110 Rancho Cordova, CA 95670 Project: 7376

Project Number: 4511814991 Project Manager: John Reay **Reported:** 07/09/2009 16:26

Purgeable Aromatics and Total Petroleum Hydrocarbons

Quality Control Report - Precision & Accuracy

		_	_	_						Contr	ol Limits	
			Source	Source		Spike			Percent		Percent	
Constituent	Batch ID	QC Sample Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery Lab	Quals
Gasoline Range Organics (C4 - C12)	BSF1065	Matrix Spike	0906490-94	0	5.5888	5.0000	mg/kg		112		70 - 130	
		Matrix Spike Duplicate	0906490-94	0	5.4830	5.0000	mg/kg	1.8	110	20	70 - 130	
a,a,a-Trifluorotoluene (FID Surrogate)	BSF1065	Matrix Spike	0906490-94	ND	0.039800	0.040000	mg/kg		99.5		70 - 130	
		Matrix Spike Duplicate	0906490-94	ND	0.040200	0.040000	mg/kg		100		70 - 130	
Gasoline Range Organics (C4 - C12)	BSF1179	Matrix Spike	0906490-95	0	5.0391	5.0000	mg/kg		101		70 - 130	
		Matrix Spike Duplicate	0906490-95	0	5.2253	5.0000	mg/kg	3.9	105	20	70 - 130	
a,a,a-Trifluorotoluene (FID Surrogate)	BSF1179	Matrix Spike	0906490-95	ND	0.038600	0.040000	mg/kg		96.5		70 - 130	
		Matrix Spike Duplicate	0906490-95	ND	0.038600	0.040000	mg/kg		96.5		70 - 130	
Gasoline Range Organics (C4 - C12)	BSF1786	Matrix Spike	0908002-06	0	5.6059	5.0000	mg/kg		112		70 - 130	
		Matrix Spike Duplicate	0908002-06	0	5.6115	5.0000	mg/kg	0	112	20	Percent Recovery Lab 70 - 130	
a,a,a-Trifluorotoluene (FID Surrogate)	BSF1786	Matrix Spike	0908002-06	ND	0.038600	0.040000	mg/kg		96.5		70 - 130	
		Matrix Spike Duplicate	0908002-06	ND	0.038900	0.040000	mg/kg		97.2		70 - 130	
TPH - Diesel (FFP)	BSF1928	Matrix Spike	0908152-04	0	183.75	82.508	mg/kg		223		52 - 131 A01,	,Q03
		Matrix Spike Duplicate	0908152-04	0	170.10	82.781	mg/kg	8.4	205	30	52 - 131 A01,	,Q03
Tetracosane (Surrogate)	BSF1928	Matrix Spike	0908152-04	ND	3.5254	3.3003	mg/kg		107		Percent Recovery Lab 70 - 130	
		Matrix Spike Duplicate	0908152-04	ND	4.1099	3.3113	mg/kg		124		20 - 145 A01	

Delta Environmental Consultants, Inc.

Project: 7376

Reported: 07/09/2009 16:26

11050 White Rock Rd, Suite 110 Rancho Cordova, CA 95670

Project Number: 4511814991 Project Manager: John Reay

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Laboratory Control Sample

				=								
								Control Limits				
					Spike			Percent		Percent		
Constituent	Batch ID	QC Sample ID	QC Type	Result	Level	PQL	Units	Recovery	RPD	Recovery	RPD	Lab Quals
Benzene	BSF1506	BSF1506-BS1	LCS	0.12968	0.12500	0.0050	mg/kg	104		70 - 130		
Toluene	BSF1506	BSF1506-BS1	LCS	0.12992	0.12500	0.0050	mg/kg	104		70 - 130		
1,2-Dichloroethane-d4 (Surrogate)	BSF1506	BSF1506-BS1	LCS	0.049924	0.050000		mg/kg	99.8		70 - 121		
Toluene-d8 (Surrogate)	BSF1506	BSF1506-BS1	LCS	0.049188	0.050000		mg/kg	98.4		81 - 117		
4-Bromofluorobenzene (Surrogate)	BSF1506	BSF1506-BS1	LCS	0.050325	0.050000		mg/kg	101		74 - 121		

Delta Environmental Consultants, Inc. 11050 White Rock Rd. Suite 110

Rancho Cordova, CA 95670

Project: 7376

Reported: 07/09/2009 16:26

Project Number: 4511814991 Project Manager: John Reay

Purgeable Aromatics and Total Petroleum Hydrocarbons

Quality Control Report - Laboratory Control Sample

				-				-				
				_		Control Limits						
					Spike			Percent		Percent		
Constituent	Batch ID	QC Sample ID	QC Type	Result	Level	PQL	Units	Recovery	RPD	Recovery	RPD	Lab Quals
Gasoline Range Organics (C4 - C12)	BSF1065	BSF1065-BS1	LCS	5.5558	5.0000	1.0	mg/kg	111		85 - 115		
a,a,a-Trifluorotoluene (FID Surrogate)	BSF1065	BSF1065-BS1	LCS	0.040500	0.040000		mg/kg	101		70 - 130		
Gasoline Range Organics (C4 - C12)	BSF1179	BSF1179-BS1	LCS	5.2063	5.0000	1.0	mg/kg	104		85 - 115		
a,a,a-Trifluorotoluene (FID Surrogate)	BSF1179	BSF1179-BS1	LCS	0.038400	0.040000		mg/kg	96.0		70 - 130		
Gasoline Range Organics (C4 - C12)	BSF1786	BSF1786-BS1	LCS	5.6854	5.0000	1.0	mg/kg	114		85 - 115		
a,a,a-Trifluorotoluene (FID Surrogate)	BSF1786	BSF1786-BS1	LCS	0.038900	0.040000		mg/kg	97.2		70 - 130		
TPH - Diesel (FFP)	BSF1928	BSF1928-BS1	LCS	72.617	82.237	10	mg/kg	88.3		64 - 124		
Tetracosane (Surrogate)	BSF1928	BSF1928-BS1	LCS	3.6724	3.2895		mg/kg	112		20 - 145		

Delta Environmental Consultants, Inc. 11050 White Rock Rd, Suite 110

Rancho Cordova, CA 95670

Project: 7376

Reported: 07/09/2009 16:26

Project Number: 4511814991 Project Manager: John Reay

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Method Blank Analysis

Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL MDL	Lab Quals
Benzene	BSF1506	BSF1506-BLK1	ND	mg/kg	0.0050	
Ethylbenzene	BSF1506	BSF1506-BLK1	ND	mg/kg	0.0050	
Methyl t-butyl ether	BSF1506	BSF1506-BLK1	ND	mg/kg	0.0050	
Toluene	BSF1506	BSF1506-BLK1	ND	mg/kg	0.0050	
Total Xylenes	BSF1506	BSF1506-BLK1	ND	mg/kg	0.010	
t-Amyl Methyl ether	BSF1506	BSF1506-BLK1	ND	mg/kg	0.0050	
t-Butyl alcohol	BSF1506	BSF1506-BLK1	ND	mg/kg	0.050	
Diisopropyl ether	BSF1506	BSF1506-BLK1	ND	mg/kg	0.0050	
Ethanol	BSF1506	BSF1506-BLK1	ND	mg/kg	1.0	
Ethyl t-butyl ether	BSF1506	BSF1506-BLK1	ND	mg/kg	0.0050	
1,2-Dichloroethane-d4 (Surrogate)	BSF1506	BSF1506-BLK1	107	%	70 - 121 (LCL - UCL)	
Toluene-d8 (Surrogate)	BSF1506	BSF1506-BLK1	97.5	%	81 - 117 (LCL - UCL)	
4-Bromofluorobenzene (Surrogate)	BSF1506	BSF1506-BLK1	98.9	%	74 - 121 (LCL - UCL)	

Delta Environmental Consultants, Inc. 11050 White Rock Rd, Suite 110

Rancho Cordova, CA 95670

Project: 7376

Project Number: 4511814991 Project Manager: John Reay **Reported:** 07/09/2009 16:26

Purgeable Aromatics and Total Petroleum Hydrocarbons

Quality Control Report - Method Blank Analysis

Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
Gasoline Range Organics (C4 - C12)	BSF1065	BSF1065-BLK1	ND	mg/kg	1.0		
a,a,a-Trifluorotoluene (FID Surrogate)	BSF1065	BSF1065-BLK1	100	%	70 - 130	(LCL - UCL)	
Gasoline Range Organics (C4 - C12)	BSF1179	BSF1179-BLK1	ND	mg/kg	1.0		
a,a,a-Trifluorotoluene (FID Surrogate)	BSF1179	BSF1179-BLK1	95.2	%	70 - 130	(LCL - UCL)	
Gasoline Range Organics (C4 - C12)	BSF1786	BSF1786-BLK1	ND	mg/kg	1.0		
a,a,a-Trifluorotoluene (FID Surrogate)	BSF1786	BSF1786-BLK1	95.5	%	70 - 130	(LCL - UCL)	
TPH - Jet Fuel (JP8)	BSF1928	BSF1928-BLK1	ND	mg/kg	10		
TPH - Diesel (FFP)	BSF1928	BSF1928-BLK1	ND	mg/kg	10		
TPH - Fuel Oil #6	BSF1928	BSF1928-BLK1	ND	mg/kg	10		
Tetracosane (Surrogate)	BSF1928	BSF1928-BLK1	116	%	20 - 145	(LCL - UCL)	

Delta Environmental Consultants, Inc.

Project: 7376

Reported: 07/09/2009 16:26

11050 White Rock Rd, Suite 110 Project Number: 4511814991 Rancho Cordova, CA 95670 Project Manager: John Reay

Notes And Definitions

MDL Method Detection Limit

ND Analyte Not Detected at or above the reporting limit

PQL Practical Quantitation Limit

RPD Relative Percent Difference

A01 PQL's and MDL's are raised due to sample dilution.

A17 Surrogate not reportable due to sample dilution.

Q03 Matrix spike recovery(s) is(are) not within the control limits.

Z1 Chromatogram not typical of Fuel Oil #6.

BC	Laboratories,	Inc.
----	---------------	------

Chain of Custody Form

PLEASE COMPLET	E:	101002000
BCL QUOTE ID:		
The state of the s		

Report To: Client:	Delta		Project #:	C1073	576					Αī	naly	sis F	kequ	este	d]	Page	_ of	
Attn:	Han Bio	nler	Project Na			easan tor		\int	/	110	/. /	/ /	7	7	7	/	C	omme	ents:	t despite and consecutive	\$2.50 C C C C C C C C C C C C C C C C C C C	410-24-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-			
Street A	.ddress:11050U	Unito Rak no	Global ID				1		/ / /2//		\ <u>\</u> \	o/d	1/W	lk d	/ ft/	15/	7								
		olorboug CA	Sampler(s	i): Alan	1 Bue	color]/,	2) (g (2) (g	2. A	1/0	$0/\infty$		7/0/ 90/	tion											
Phone:	16-203-5039	Fax:					\ a				/11/	100/i	99)	dth	/1										
Email A	ddress:abuel	nloredeltaenu	com	· (7.4.)				,		- (l	Me	gen	O,			Sai	ig ig	Matri .	x	ays*	1	or equal	h holding tir to 48 hours?		an
	rder #: Po# 4	511814991	1097	118C	62		Ş	7		Fe		X	<u>s</u>				ig Wa	water	X Turnaround	ork d		Yes	2		
Sample		Description			ate npled	Time Sampled	正	TTH	8 0.00	Bonte	を	四里	χ ()			oil udge	Drinking Water Ground Water	aste	1 :	# of w	Standa		ound = 10 v	work days	
					Tibreat		<u> </u>	1	. 1250	Îzri	48.	121 \ 	0			ŏ ιδ		≥ Othe	er			TA	otes		
5BL	_ '1					1m 2 T2 4 a				V						Ŕ			_						
281	gail	-2		9 1	009	12:30	X	K		X X		× .				Vi I			+						
10 10 SBL	501	-3				12:46	X	X X		4			<u>ح</u> د		4										
331		<u></u> ~↓				12:57	\frac{\sigma}{\varphi}	y.		1									dн	KB	Y	DISTF	IBUTIC)/($\neg \parallel$
5B1		 `5		-		12:5%	$\frac{1}{\chi}$	*		X		× 1						Sales Sales	A		1/2	Pugl		T	\dashv
581 581 581 581 581 581 581 581 581 581			***************************************		1	1:07	ĺχ	X		Ź		× ×				Ü		Arman	7,000	Commission of the Commission	Seedan Se	SU	3-OUT	[minimal	
7B1		- 7				1:12	Q	X		X)		XX										***************************************		NAMES OF TAXABLE PARTY	
531		-8			1	1:18	4	7		¥		X X	(4									
@35 \$B1 &40 \$B1 E45	V	-9			/	1.22	U	义		<i>f_</i>		<u>بر</u>	X												

						Sample	Diam	1					***************************************	***************************************						omposit Nivage		C:-1 D			
Billin	3)	Same as	above 1	Report Dr Waters on		1 —	eturn :		nt		Dispos	al by la	b [Arc	hive:	Mc	onths_		_] ဝင္င	Special Re		aw Data	
Client: _				Yes	□N	1 Relin	nquisl	ed Ry	/	7	0		Date	laa	Tir	ne 36	1 1	Received	1-1		1,		Date	Time	- 1
	•		,	 Send Copy	v to State	of 2. Reli	oquisl	ned By		/			Date	7	Tir			Received	By	<u>(1)</u>	<u> </u>		6/240 Date	Time	
		State Zi _I	?	CA?		126	D	N/C	The	ry			6/2	njo			R	Ry	بهيا		1	ب ر	6.22.0		
Attn: PO#:				Yes		$\frac{3. \text{ Relin}}{2}$	nguisl D .	ied By		~ V		. L	Date 27	2.09	Tir 2			Received	•	•	J	week	Date	Time	- 1
L // .		DC I abov	otorica Inc	4100	A +100 C	't Rokero	<u>a — </u>		1022	 	<i>CC</i> 1												I W L C S I	- 11 6	لككلا

BC LABORATORIES INC. SAMPLE RECEIPT FORM Rev. No. 12 06/24/08 Page Of														
Submission #: 0908	150	\supset												
SHIPPING INF							SHIPPI	NG CON	FAINER					
Federal Express UPS		nd Deliv			I	ce Chest _i		Non						
BC Lab Field Service Other	er 🗆 (S	Specify))			Вох		Othe	r 🗆 (Spec	;ify)				
Refrigerant: Ice Blue Ice		None		,	Comment	*******								
Custody Seals Ice Chest Intact? Yes Intact? Yes Intact?			rs 🗆 🗆 No 🗆	None⊿	Comme	nts:								
All samples received? Yes 🗗 No 🗅	All :	samples	containers	intact? Ye	s Z No []	Descript	ion(s) matc	h COC? Y	es⊿ No i				
COC Received Emissivity: <u>98</u> Container: <u>WA</u> Thermometer ID: <u>TH 163</u> Date/Time 06-22-09														
1 / 1	MYES INO I													
Temperature: A <u>'4,1</u> °C / C <u>3.8</u> °C Analyst Init <u>PLM</u>														
SAMPLE NUMBERS														
SAMPLE CONTAINERS 1 2 3 4 5 6 7 8 9 10														
QT GENERAL MINERAL/ GENERAL PHYSIC	CAL													
PT PE UNPRESERVED														
OT INORGANIC CHEMICAL METALS														
PT INORGANIC CHEMICAL METALS				wa										
PT CYANIDE														
PT NITROGEN FORMS														
PT TOTAL SULFIDE														
202. NITRATE / NITRITE			7											
PT TOTAL ORGANIC CARBON														
РТ ТОХ														
PT CHEMICAL OXYGEN DEMAND														
PtA PHENOLICS														
40ml VOA VIAL TRAVEL BLANK							·							
40ml VOA VIAL		(()	()	()	()	()	()	()	()	()			
QT EPA 413.1, 413.2, 418.1														
PT ODOR										<u> </u>				
RADIOLOGICAL														
BACTERIOLOGICAL								***						
40 ml VOA VIAL- 504 QT EPA 508/608/8080					. *									
QT EPA 515.1/8150					•									
QT EPA 515.1/6150 QT EPA 525														
QT EPA 525 QT EPA 525 TRAVEL BLANK														
100ml EPA 547								-						
100ml EPA 531.1														
OT EPA 548	<u> </u>													
QT EPA 549														
QT EPA 632														
QT EPA 8015M														
QT AMBER														
8 OZ. JAR														
32 OZ. JAR	Maria													
SOIL SLEEVE		A	A	A	A	A	A	77	A	A				
PCB VIAL					*									
PLASTIC BAG														
FERROUS IRON				• :					**					
ENCORE														

Comments:

Sample Numbering Completed By: JOW Date/Time: 10 22 07

A = Actual / C = Corrected

Date of Report: 07/02/2009

John Reay

Delta Environmental Consultants, Inc. 11050 White Rock Rd, Suite 110 Rancho Cordova, CA 95670

7376 RE:

0907815 BC Work Order: B064402 Invoice ID:

Enclosed are the results of analyses for samples received by the laboratory on 6/15/2009. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Contact Person: Molly Meyers

Client Service Rep

Rancho Cordova, CA 95670

Delta Environmental Consultants, Inc.

Project: 7376

Reported: 07/02/2009 8:28

11050 White Rock Rd, Suite 110

Project Number: [none]

Laboratory / Client Sample Cross Reference

Project Manager: John Reay

Laboratory	Client Sample Information	On			
0907815-01	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 7376 Comp Waste 1 DECR	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	06/15/2009 21:00 06/12/2009 09:28 Solids	Delivery Work Order: Global ID: Location ID (FieldPoint): Comp Waste 1 Matrix: SO Sample QC Type (SACode): CS Cooler ID:
0907815-02	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 7376 Comp Waste 2 DECR	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	06/15/2009 21:00 06/12/2009 09:30 Solids	Delivery Work Order: Global ID: Location ID (FieldPoint): Comp Waste 2 Matrix: SO Sample QC Type (SACode): CS Cooler ID:
0907815-03	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 7376 MW-2C@20 DECR	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	06/15/2009 21:00 06/12/2009 08:25 Solids	Delivery Work Order: Global ID: Location ID (FieldPoint): MW-2C Matrix: SO Sample QC Type (SACode): CS Cooler ID:
0907815-04	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 7376 MW-2C@25 DECR	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	06/15/2009 21:00 06/12/2009 08:30 Solids	Delivery Work Order: Global ID: Location ID (FieldPoint): MW-2C Matrix: SO Sample QC Type (SACode): CS Cooler ID:

Delta Environmental Consultants, Inc.

11050 White Rock Rd, Suite 110

Rancho Cordova, CA 95670

Project Number: [none]

Project Manager: John Reav

Project Manager: John Reay

Laboratory / Client Sample Cross Reference

Laboratory	Client Sample Information	on			
0907815-05	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 7376 MW-2C@30 DECR	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	06/15/2009 21:00 06/12/2009 08:40 Solids	Delivery Work Order: Global ID: Location ID (FieldPoint): MW-2C Matrix: SO Sample QC Type (SACode): CS Cooler ID:
0907815-06	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 7376 MW-2C@35 DECR	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	06/15/2009 21:00 06/12/2009 08:40 Solids	Delivery Work Order: Global ID: Location ID (FieldPoint): MW-2C Matrix: SO Sample QC Type (SACode): CS Cooler ID:
0907815-07	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 7376 MW-2C@40 DECR	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	06/15/2009 21:00 06/12/2009 08:50 Solids	Delivery Work Order: Global ID: Location ID (FieldPoint): MW-2C Matrix: SO Sample QC Type (SACode): CS Cooler ID:
0907815-08	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 7376 MW-2C@45 DECR	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	06/15/2009 21:00 06/12/2009 08:55 Solids	Delivery Work Order: Global ID: Location ID (FieldPoint): MW-2C Matrix: SO Sample QC Type (SACode): CS Cooler ID:

Delta Environmental Consultants, Inc.

Project: 7376

11050 White Rock Rd, Suite 110

Project Number: [none]

Rancho Cordova, CA 95670 Project Manager: John Reay

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 0907815-01	Client Sample	Name:	7376, Comp Waste	1, 6/12/2009	9:28:00AM							
					Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene	0.52	mg/kg	0.050	EPA-8260	06/16/09	06/16/09 22:49	JSK	MS-V3	10	BSF1054	ND	A01
Ethylbenzene	1.9	mg/kg	0.050	EPA-8260	06/16/09	06/16/09 22:49	JSK	MS-V3	10	BSF1054	ND	A01
Methyl t-butyl ether	ND	mg/kg	0.050	EPA-8260	06/16/09	06/16/09 22:49	JSK	MS-V3	10	BSF1054	ND	A01
Toluene	0.23	mg/kg	0.050	EPA-8260	06/16/09	06/16/09 22:49	JSK	MS-V3	10	BSF1054	ND	A01
Total Xylenes	2.4	mg/kg	0.10	EPA-8260	06/16/09	06/16/09 22:49	JSK	MS-V3	10	BSF1054	ND	A01
Total Purgeable Petroleum Hydrocarbons	100	mg/kg	20	Luft-GC/MS	06/16/09	06/18/09 00:15	JSK	MS-V3	100	BSF1054	ND	A01
1,2-Dichloroethane-d4 (Surrogate)	88.4	%	70 - 121 (LCL - UCL)	EPA-8260	06/16/09	06/18/09 00:15	JSK	MS-V3	100	BSF1054		
1,2-Dichloroethane-d4 (Surrogate)	100	%	70 - 121 (LCL - UCL)	EPA-8260	06/16/09	06/16/09 22:49	JSK	MS-V3	10	BSF1054		
Toluene-d8 (Surrogate)	98.4	%	81 - 117 (LCL - UCL)	EPA-8260	06/16/09	06/16/09 22:49	JSK	MS-V3	10	BSF1054		
Toluene-d8 (Surrogate)	98.2	%	81 - 117 (LCL - UCL)	EPA-8260	06/16/09	06/18/09 00:15	JSK	MS-V3	100	BSF1054		
4-Bromofluorobenzene (Surrogate)	98.8	%	74 - 121 (LCL - UCL)	EPA-8260	06/16/09	06/18/09 00:15	JSK	MS-V3	100	BSF1054		
4-Bromofluorobenzene (Surrogate)	102	%	74 - 121 (LCL - UCL)	EPA-8260	06/16/09	06/16/09 22:49	JSK	MS-V3	10	BSF1054		

 $\label{eq:DeltaEnvironmentalConsultants} \ \ \text{Inc.}$

11050 White Rock Rd, Suite 110 Rancho Cordova, CA 95670 Project: 7376

Project Number: [none]
Project Manager: John Reay

Reported: 07/02/2009 8:28

Total Concentrations (TTLC)

BCL Sample ID:	0907815-01	Client Sample	e Name:	7376, Con	np Waste 1	1, 6/12/2009	9:28:00AM	l						
							Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Lead		10	mg/kg	2.5		EPA-6010B	06/18/09	06/18/09 14:10	PPS	PE-OP1	0.962	BSF1305	ND	

Delta Environmental Consultants, Inc. 11050 White Rock Rd, Suite 110 Rancho Cordova, CA 95670 Project: 7376

Project Number: [none]
Project Manager: John Reay

Reported: 07/02/2009 8:28

BCL Sample ID: 0907815-02	Client Sample	Name:	7376, Comp	Waste 2	2, 6/12/2009	9:30:00AM							
						Prep	Run		Instru-		QC	МВ	Lab
Constituent	Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene	0.17	mg/kg	0.0050		EPA-8260	06/16/09	06/16/09 23:15	JSK	MS-V3	1	BSF1054	ND	
Ethylbenzene	2.6	mg/kg	0.050		EPA-8260	06/16/09	06/17/09 16:50	JSK	MS-V3	10	BSF1054	ND	A01
Methyl t-butyl ether	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/16/09 23:15	JSK	MS-V3	1	BSF1054	ND	
Toluene	0.087	mg/kg	0.0050		EPA-8260	06/16/09	06/16/09 23:15	JSK	MS-V3	1	BSF1054	ND	
Total Xylenes	2.4	mg/kg	0.10		EPA-8260	06/16/09	06/17/09 16:50	JSK	MS-V3	10	BSF1054	ND	A01
Total Purgeable Petroleum Hydrocarbons	110	mg/kg	20		Luft-GC/MS	06/16/09	06/18/09 00:42	JSK	MS-V3	100	BSF1054	ND	A01
1,2-Dichloroethane-d4 (Surrogate)	111	%	70 - 121 (LCL -	UCL)	EPA-8260	06/16/09	06/16/09 23:15	JSK	MS-V3	1	BSF1054		
1,2-Dichloroethane-d4 (Surrogate)	87.3	%	70 - 121 (LCL -	UCL)	EPA-8260	06/16/09	06/18/09 00:42	JSK	MS-V3	100	BSF1054		
1,2-Dichloroethane-d4 (Surrogate)	101	%	70 - 121 (LCL -	UCL)	EPA-8260	06/16/09	06/17/09 16:50	JSK	MS-V3	10	BSF1054		
Toluene-d8 (Surrogate)	107	%	81 - 117 (LCL -	UCL)	EPA-8260	06/16/09	06/16/09 23:15	JSK	MS-V3	1	BSF1054		
Toluene-d8 (Surrogate)	101	%	81 - 117 (LCL -	UCL)	EPA-8260	06/16/09	06/17/09 16:50	JSK	MS-V3	10	BSF1054		
Toluene-d8 (Surrogate)	99.5	%	81 - 117 (LCL -	UCL)	EPA-8260	06/16/09	06/18/09 00:42	JSK	MS-V3	100	BSF1054		
4-Bromofluorobenzene (Surrogate)	103	%	74 - 121 (LCL -	UCL)	EPA-8260	06/16/09	06/17/09 16:50	JSK	MS-V3	10	BSF1054		
4-Bromofluorobenzene (Surrogate)	104	%	74 - 121 (LCL -	UCL)	EPA-8260	06/16/09	06/16/09 23:15	JSK	MS-V3	1	BSF1054		
4-Bromofluorobenzene (Surrogate)	99.1	%	74 - 121 (LCL -	UCL)	EPA-8260	06/16/09	06/18/09 00:42	JSK	MS-V3	100	BSF1054		

 $\label{eq:Delta Environmental Consultants, Inc.} Delta \ Environmental \ Consultants, \ Inc.$

11050 White Rock Rd, Suite 110 Rancho Cordova, CA 95670

Project: 7376

Project Number: [none]
Project Manager: John Reay

Total Concentrations (TTLC)

BCL Sample ID:	0907815-02	Client Sample	e Name:	7376, Con	mp Waste 2	2, 6/12/2009	9:30:00AM							
							Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Lead		9.5	mg/kg	2.5		EPA-6010B	06/18/09	06/18/09 14:12	PPS	PE-OP1	0.962	BSF1305	ND	

Delta Environmental Consultants, Inc. 11050 White Rock Rd, Suite 110

Project Number: [none] Rancho Cordova, CA 95670 Project Manager: John Reay

Volatile Organic Analysis (EPA Method 8260)

Project: 7376

BCL Sample ID:	0907815-03	Client Sample	e Name:	7376, MW	/-2C@20,	6/12/2009 8	:25:00AM							
		-					Prep	Run		Instru-		QC	МВ	Lab
Constituent		Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene		0.39	mg/kg	0.25		EPA-8260	06/16/09	06/16/09 23:42	JSK	MS-V3	50	BSF1054	ND	A01
Bromobenzene		ND	mg/kg	0.25		EPA-8260	06/16/09	06/16/09 23:42	JSK	MS-V3	50	BSF1054	ND	A01
Bromochloromethane		ND	mg/kg	0.25		EPA-8260	06/16/09	06/16/09 23:42	JSK	MS-V3	50	BSF1054	ND	A01
Bromodichloromethane		ND	mg/kg	0.25		EPA-8260	06/16/09	06/16/09 23:42	JSK	MS-V3	50	BSF1054	ND	A01
Bromoform		ND	mg/kg	0.25		EPA-8260	06/16/09	06/16/09 23:42	JSK	MS-V3	50	BSF1054	ND	A01
Bromomethane		ND	mg/kg	0.25		EPA-8260	06/16/09	06/16/09 23:42	JSK	MS-V3	50	BSF1054	ND	A01
n-Butylbenzene		1.0	mg/kg	0.25		EPA-8260	06/16/09	06/16/09 23:42	JSK	MS-V3	50	BSF1054	ND	A01
sec-Butylbenzene		ND	mg/kg	0.25		EPA-8260	06/16/09	06/16/09 23:42	JSK	MS-V3	50	BSF1054	ND	A01
tert-Butylbenzene		ND	mg/kg	0.25		EPA-8260	06/16/09	06/16/09 23:42	JSK	MS-V3	50	BSF1054	ND	A01
Carbon tetrachloride		ND	mg/kg	0.25		EPA-8260	06/16/09	06/16/09 23:42	JSK	MS-V3	50	BSF1054	ND	A01
Chlorobenzene		ND	mg/kg	0.25		EPA-8260	06/16/09	06/16/09 23:42	JSK	MS-V3	50	BSF1054	ND	A01
Chloroethane		ND	mg/kg	0.25		EPA-8260	06/16/09	06/16/09 23:42	JSK	MS-V3	50	BSF1054	ND	A01
Chloroform		ND	mg/kg	0.25		EPA-8260	06/16/09	06/16/09 23:42	JSK	MS-V3	50	BSF1054	ND	A01
Chloromethane		ND	mg/kg	0.25		EPA-8260	06/16/09	06/16/09 23:42	JSK	MS-V3	50	BSF1054	ND	A01
2-Chlorotoluene		ND	mg/kg	0.25		EPA-8260	06/16/09	06/16/09 23:42	JSK	MS-V3	50	BSF1054	ND	A01
4-Chlorotoluene		ND	mg/kg	0.25		EPA-8260	06/16/09	06/16/09 23:42	JSK	MS-V3	50	BSF1054	ND	A01
Dibromochloromethane		ND	mg/kg	0.25		EPA-8260	06/16/09	06/16/09 23:42	JSK	MS-V3	50	BSF1054	ND	A01
1,2-Dibromo-3-chloropropa	ane	ND	mg/kg	0.25		EPA-8260	06/16/09	06/16/09 23:42	JSK	MS-V3	50	BSF1054	ND	A01
1,2-Dibromoethane		ND	mg/kg	0.25		EPA-8260	06/16/09	06/16/09 23:42	JSK	MS-V3	50	BSF1054	ND	A01
Dibromomethane		ND	mg/kg	0.25		EPA-8260	06/16/09	06/16/09 23:42	JSK	MS-V3	50	BSF1054	ND	A01
1,2-Dichlorobenzene		ND	mg/kg	0.25		EPA-8260	06/16/09	06/16/09 23:42	JSK	MS-V3	50	BSF1054	ND	A01
1,3-Dichlorobenzene		ND	mg/kg	0.25		EPA-8260	06/16/09	06/16/09 23:42	JSK	MS-V3	50	BSF1054	ND	A01
1,4-Dichlorobenzene		ND	mg/kg	0.25		EPA-8260	06/16/09	06/16/09 23:42	JSK	MS-V3	50	BSF1054	ND	A01

Delta Environmental Consultants, Inc. 11050 White Rock Rd, Suite 110 Rancho Cordova, CA 95670 Project: 7376

Project Number: [none]
Project Manager: John Reay

Reported: 07/02/2009 8:28

BCL Sample ID: 0907815-03	Client Sample	e Name:	7376, MV	V-2C@20, 6	6/12/2009 8	:25:00AM							
	•					Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Dichlorodifluoromethane	ND	mg/kg	0.25		EPA-8260	06/16/09	06/16/09 23:42	JSK	MS-V3	50	BSF1054	ND	A01
1,1-Dichloroethane	ND	mg/kg	0.25		EPA-8260	06/16/09	06/16/09 23:42	JSK	MS-V3	50	BSF1054	ND	A01
1,2-Dichloroethane	ND	mg/kg	0.25		EPA-8260	06/16/09	06/16/09 23:42	JSK	MS-V3	50	BSF1054	ND	A01
1,1-Dichloroethene	ND	mg/kg	0.25		EPA-8260	06/16/09	06/16/09 23:42	JSK	MS-V3	50	BSF1054	ND	A01
cis-1,2-Dichloroethene	ND	mg/kg	0.25		EPA-8260	06/16/09	06/16/09 23:42	JSK	MS-V3	50	BSF1054	ND	A01
trans-1,2-Dichloroethene	ND	mg/kg	0.25		EPA-8260	06/16/09	06/16/09 23:42	JSK	MS-V3	50	BSF1054	ND	A01
Total 1,2-Dichloroethene	ND	mg/kg	0.50		EPA-8260	06/16/09	06/16/09 23:42	JSK	MS-V3	50	BSF1054	ND	A01
1,2-Dichloropropane	ND	mg/kg	0.25		EPA-8260	06/16/09	06/16/09 23:42	JSK	MS-V3	50	BSF1054	ND	A01
1,3-Dichloropropane	ND	mg/kg	0.25		EPA-8260	06/16/09	06/16/09 23:42	JSK	MS-V3	50	BSF1054	ND	A01
2,2-Dichloropropane	ND	mg/kg	0.25		EPA-8260	06/16/09	06/16/09 23:42	JSK	MS-V3	50	BSF1054	ND	A01
1,1-Dichloropropene	ND	mg/kg	0.25		EPA-8260	06/16/09	06/16/09 23:42	JSK	MS-V3	50	BSF1054	ND	A01
cis-1,3-Dichloropropene	ND	mg/kg	0.25		EPA-8260	06/16/09	06/16/09 23:42	JSK	MS-V3	50	BSF1054	ND	A01
trans-1,3-Dichloropropene	ND	mg/kg	0.25		EPA-8260	06/16/09	06/16/09 23:42	JSK	MS-V3	50	BSF1054	ND	A01
Total 1,3-Dichloropropene	ND	mg/kg	0.50		EPA-8260	06/16/09	06/16/09 23:42	JSK	MS-V3	50	BSF1054	ND	A01
Ethylbenzene	4.7	mg/kg	0.25		EPA-8260	06/16/09	06/16/09 23:42	JSK	MS-V3	50	BSF1054	ND	A01
Hexachlorobutadiene	ND	mg/kg	0.25		EPA-8260	06/16/09	06/16/09 23:42	JSK	MS-V3	50	BSF1054	ND	A01
Isopropylbenzene	ND	mg/kg	0.25		EPA-8260	06/16/09	06/16/09 23:42	JSK	MS-V3	50	BSF1054	ND	A01
p-Isopropyltoluene	ND	mg/kg	0.25		EPA-8260	06/16/09	06/16/09 23:42	JSK	MS-V3	50	BSF1054	ND	A01
Methylene chloride	ND	mg/kg	0.50		EPA-8260	06/16/09	06/16/09 23:42	JSK	MS-V3	50	BSF1054	ND	A01
Methyl t-butyl ether	0.48	mg/kg	0.25		EPA-8260	06/16/09	06/16/09 23:42	JSK	MS-V3	50	BSF1054	ND	A01
Naphthalene	2.3	mg/kg	0.25		EPA-8260	06/16/09	06/16/09 23:42	JSK	MS-V3	50	BSF1054	ND	A01
n-Propylbenzene	1.2	mg/kg	0.25		EPA-8260	06/16/09	06/16/09 23:42	JSK	MS-V3	50	BSF1054	ND	A01
Styrene	ND	mg/kg	0.25		EPA-8260	06/16/09	06/16/09 23:42	JSK	MS-V3	50	BSF1054	ND	A01

Rancho Cordova, CA 95670

Delta Environmental Consultants, Inc.
Project: 7376

11050 White Rock Rd, Suite 110
Project Number: [none]

Project Number: [none]
Project Manager: John Reay

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 0907815-03	Client Sample	e Name:	7376, MW	/-2C@20, 6	6/12/2009 8:	25:00AM							
	-					Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
1,1,1,2-Tetrachloroethane	ND	mg/kg	0.25		EPA-8260	06/16/09	06/16/09 23:42	JSK	MS-V3	50	BSF1054	ND	A01
1,1,2,2-Tetrachloroethane	ND	mg/kg	0.25		EPA-8260	06/16/09	06/16/09 23:42	JSK	MS-V3	50	BSF1054	ND	A01
Tetrachloroethene	ND	mg/kg	0.25		EPA-8260	06/16/09	06/16/09 23:42	JSK	MS-V3	50	BSF1054	ND	A01
Toluene	ND	mg/kg	0.25		EPA-8260	06/16/09	06/16/09 23:42	JSK	MS-V3	50	BSF1054	ND	A01
1,2,3-Trichlorobenzene	ND	mg/kg	0.25		EPA-8260	06/16/09	06/16/09 23:42	JSK	MS-V3	50	BSF1054	ND	A01
1,2,4-Trichlorobenzene	ND	mg/kg	0.25		EPA-8260	06/16/09	06/16/09 23:42	JSK	MS-V3	50	BSF1054	ND	A01
1,1,1-Trichloroethane	ND	mg/kg	0.25		EPA-8260	06/16/09	06/16/09 23:42	JSK	MS-V3	50	BSF1054	ND	A01
1,1,2-Trichloroethane	ND	mg/kg	0.25		EPA-8260	06/16/09	06/16/09 23:42	JSK	MS-V3	50	BSF1054	ND	A01
Trichloroethene	ND	mg/kg	0.25		EPA-8260	06/16/09	06/16/09 23:42	JSK	MS-V3	50	BSF1054	ND	A01
Trichlorofluoromethane	ND	mg/kg	0.25		EPA-8260	06/16/09	06/16/09 23:42	JSK	MS-V3	50	BSF1054	ND	A01
1,2,3-Trichloropropane	ND	mg/kg	0.25		EPA-8260	06/16/09	06/16/09 23:42	JSK	MS-V3	50	BSF1054	ND	A01
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	mg/kg	0.25		EPA-8260	06/16/09	06/16/09 23:42	JSK	MS-V3	50	BSF1054	ND	A01
1,2,4-Trimethylbenzene	11	mg/kg	0.25		EPA-8260	06/16/09	06/16/09 23:42	JSK	MS-V3	50	BSF1054	ND	A01
1,3,5-Trimethylbenzene	ND	mg/kg	0.25		EPA-8260	06/16/09	06/16/09 23:42	JSK	MS-V3	50	BSF1054	ND	A01
Vinyl chloride	ND	mg/kg	0.25		EPA-8260	06/16/09	06/16/09 23:42	JSK	MS-V3	50	BSF1054	ND	A01
Total Xylenes	3.4	mg/kg	0.50		EPA-8260	06/16/09	06/16/09 23:42	JSK	MS-V3	50	BSF1054	ND	A01
t-Amyl Methyl ether	ND	mg/kg	0.25		EPA-8260	06/16/09	06/16/09 23:42	JSK	MS-V3	50	BSF1054	ND	A01
t-Butyl alcohol	ND	mg/kg	2.5		EPA-8260	06/16/09	06/16/09 23:42	JSK	MS-V3	50	BSF1054	ND	A01
Diisopropyl ether	ND	mg/kg	0.25		EPA-8260	06/16/09	06/16/09 23:42	JSK	MS-V3	50	BSF1054	ND	A01
Ethanol	ND	mg/kg	50		EPA-8260	06/16/09	06/16/09 23:42	JSK	MS-V3	50	BSF1054	ND	A01
Ethyl t-butyl ether	ND	mg/kg	0.25		EPA-8260	06/16/09	06/16/09 23:42	JSK	MS-V3	50	BSF1054	ND	A01
Total Purgeable Petroleum Hydrocarbons	370	mg/kg	50		Luft-GC/MS	06/16/09	06/18/09 01:34	JSK	MS-V3	250	BSF1054	ND	A01

Delta Environmental Consultants, Inc.

Project: 7376

11050 White Rock Rd, Suite 110

Project Number: [none]

Rancho Cordova, CA 95670 Project Manager: John Reay

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 0907815-03	Client Sample	e Name:	7376, MW	/-2C@20,	6/12/2009 8	:25:00AM							
	•					Prep	Run		Instru-		QC	МВ	Lab
Constituent	Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
1,2-Dichloroethane-d4 (Surrogate)	87.4	%	70 - 121 (LC	L - UCL)	EPA-8260	06/16/09	06/18/09 01:34	JSK	MS-V3	250	BSF1054		
1,2-Dichloroethane-d4 (Surrogate)	95.5	%	70 - 121 (LC	L - UCL)	EPA-8260	06/16/09	06/16/09 23:42	JSK	MS-V3	50	BSF1054		
Toluene-d8 (Surrogate)	97.8	%	81 - 117 (LC	L - UCL)	EPA-8260	06/16/09	06/18/09 01:34	JSK	MS-V3	250	BSF1054		
Toluene-d8 (Surrogate)	100	%	81 - 117 (LC	L - UCL)	EPA-8260	06/16/09	06/16/09 23:42	JSK	MS-V3	50	BSF1054		
4-Bromofluorobenzene (Surrogate)	106	%	74 - 121 (LC	L - UCL)	EPA-8260	06/16/09	06/18/09 01:34	JSK	MS-V3	250	BSF1054		
4-Bromofluorobenzene (Surrogate)	106	%	74 - 121 (LC	L - UCL)	EPA-8260	06/16/09	06/16/09 23:42	JSK	MS-V3	50	BSF1054		

Delta Environmental Consultants, Inc.

Project: 7376

Reported: 07/02/2009 8:28

11050 White Rock Rd, Suite 110Project Number: [none]Rancho Cordova, CA 95670Project Manager: John Reay

BCL Sample ID:	0907815-03	Client Sampl	e Name:	7376, MW	-2C@20, (6/12/2009 8:	25:00AM							
							Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Acenaphthene		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
Acenaphthylene		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
Aldrin		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
Aniline		ND	mg/kg	0.20		EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
Anthracene		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
Benzidine		ND	mg/kg	3.0		EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
Benzo[a]anthracene		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
Benzo[b]fluoranthene		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
Benzo[k]fluoranthene		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
Benzo[a]pyrene		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
Benzo[g,h,i]perylene		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
Benzoic acid		ND	mg/kg	0.50		EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
Benzyl alcohol		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
Benzyl butyl phthalate		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
alpha-BHC		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
beta-BHC		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
delta-BHC		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
gamma-BHC (Lindane)		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
bis(2-Chloroethoxy)meth	ane	ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
bis(2-Chloroethyl) ether		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
bis(2-Chloroisopropyl)etl	ner	ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
bis(2-Ethylhexyl)phthala	te	ND	mg/kg	0.20		EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
4-Bromophenyl phenyl e	ther	ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	

Delta Environmental Consultants, Inc.

Project: 7376

11050 White Rock Rd, Suite 110

Project Number: [none]

Rancho Cordova, CA 95670 Project Manager: John Reay

Base Neutral and Acid Extractables Organic Analysis (EPA Method 8270C)

BCL Sample ID: 0907815-03	Client Sampl	e Name:	7376, MW	/-2C@20,	6/12/2009 8:	25:00AM							
						Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
4-Chloroaniline	ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
2-Chloronaphthalene	ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
4-Chlorophenyl phenyl ether	ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
Chrysene	ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
4,4'-DDD	ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
4,4'-DDE	ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
4,4'-DDT	ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
Dibenzo[a,h]anthracene	ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
Dibenzofuran	ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
1,2-Dichlorobenzene	ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
1,3-Dichlorobenzene	ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
1,4-Dichlorobenzene	ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
3,3-Dichlorobenzidine	ND	mg/kg	0.20		EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
Dieldrin	ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
Diethyl phthalate	ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
Dimethyl phthalate	ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
Di-n-butyl phthalate	ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
2,4-Dinitrotoluene	ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
2,6-Dinitrotoluene	ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
Di-n-octyl phthalate	ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
1,2-Diphenylhydrazine	ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
Endosulfan I	ND	mg/kg	0.20		EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
Endosulfan II	ND	mg/kg	0.20		EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	

Delta Environmental Consultants, Inc. 11050 White Rock Rd, Suite 110

Rancho Cordova, CA 95670

Project: 7376

Reported: 07/02/2009 8:28

Project Number: [none]
Project Manager: John Reay

BCL Sample ID:	0907815-03	Client Sample	e Name:	7376, MW	/-2C@20, 6	6/12/2009 8:	25:00AM							
							Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Endosulfan sulfate		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
Endrin		ND	mg/kg	0.20		EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
Endrin aldehyde		ND	mg/kg	0.50		EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
Fluoranthene		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
Fluorene		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
Heptachlor		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
Heptachlor epoxide		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
Hexachlorobenzene		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
Hexachlorobutadiene		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
Hexachlorocyclopentadien	e	ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
Hexachloroethane		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
Indeno[1,2,3-cd]pyrene		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
Isophorone		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
2-Methylnaphthalene		2.8	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
Naphthalene		2.0	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
2-Naphthylamine		ND	mg/kg	3.0		EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
2-Nitroaniline		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
3-Nitroaniline		ND	mg/kg	0.20		EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
4-Nitroaniline		ND	mg/kg	0.20		EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
Nitrobenzene		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
N-Nitrosodimethylamine		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
N-Nitrosodi-N-propylamine)	ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
N-Nitrosodiphenylamine		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	

Delta Environmental Consultants, Inc. 11050 White Rock Rd, Suite 110

Rancho Cordova, CA 95670

Project: 7376

Reported: 07/02/2009 8:28

Project Number: [none]
Project Manager: John Reay

BCL Sample ID:	0907815-03	Client Sample	e Name:	7376, MW-2C@20,	6/12/2009 8:	25:00AM							
						Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Phenanthrene		ND	mg/kg	0.10	EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
Pyrene		ND	mg/kg	0.10	EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
1,2,4-Trichlorobenzene		ND	mg/kg	0.10	EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
4-Chloro-3-methylphenol		ND	mg/kg	0.20	EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
2-Chlorophenol		ND	mg/kg	0.10	EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
2,4-Dichlorophenol		ND	mg/kg	0.10	EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
2,4-Dimethylphenol		ND	mg/kg	0.10	EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
4,6-Dinitro-2-methylphenol		ND	mg/kg	0.50	EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
2,4-Dinitrophenol		ND	mg/kg	0.50	EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
2-Methylphenol		ND	mg/kg	0.10	EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
3- & 4-Methylphenol		ND	mg/kg	0.20	EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
2-Nitrophenol		ND	mg/kg	0.10	EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
4-Nitrophenol		ND	mg/kg	0.20	EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
Pentachlorophenol		ND	mg/kg	0.20	EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
Phenol		ND	mg/kg	0.10	EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
2,4,5-Trichlorophenol		ND	mg/kg	0.20	EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
2,4,6-Trichlorophenol		ND	mg/kg	0.20	EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688	ND	
2-Fluorophenol (Surrogate)	1	90.0	%	42 - 137 (LCL - UCL)	EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688		
Phenol-d5 (Surrogate)		94.9	%	36 - 137 (LCL - UCL)	EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688		
Nitrobenzene-d5 (Surrogate	e)	76.5	%	34 - 135 (LCL - UCL)	EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688		
2-Fluorobiphenyl (Surrogate	e)	81.9	%	40 - 135 (LCL - UCL)	EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688		
2,4,6-Tribromophenol (Surr	rogate)	105	%	54 - 162 (LCL - UCL)	EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688		
p-Terphenyl-d14 (Surrogate	e)	93.3	%	20 - 176 (LCL - UCL)	EPA-8270C	06/22/09	06/30/09 06:38	SKC	MS-B1	0.987	BSF1688		

Delta Environmental Consultants, Inc. 11050 White Rock Rd, Suite 110 Rancho Cordova, CA 95670 Project: 7376

Project Number: [none]
Project Manager: John Reay

Reported: 07/02/2009 8:28

Purgeable Aromatics and Total Petroleum Hydrocarbons

BCL Sample ID: 09078	15-03	Client Sample	Name:	7376, MW-2C@	20, 6/12/2009	8:25:00AM							
	•					Prep	Run		Instru-		QC	МВ	Lab
Constituent		Result	Units	PQL M	DL Method	l Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
TPH - Light Naptha		ND	mg/kg	50	Luft/FFP	06/17/09	06/22/09 08:22	CKD	GC-2	0.990	BSF1330	ND	
TPH - Aviation Gas		ND	mg/kg	50	Luft/FFP	06/17/09	06/22/09 08:22	CKD	GC-2	0.990	BSF1330	ND	
TPH - Stoddard Solvent		ND	mg/kg	20	Luft/FFP	06/17/09	06/22/09 08:22	CKD	GC-2	0.990	BSF1330	ND	
TPH - Heavy Naptha		ND	mg/kg	10	Luft/FFP	06/17/09	06/22/09 08:22	CKD	GC-2	0.990	BSF1330	ND	
TPH - Gasoline		ND	mg/kg	20	Luft/FFP	06/17/09	06/22/09 08:22	CKD	GC-2	0.990	BSF1330	ND	
TPH - Jet Fuel (JP4)		ND	mg/kg	10	Luft/FFP	06/17/09	06/22/09 08:22	CKD	GC-2	0.990	BSF1330	ND	
TPH - Jet Fuel (JP5)		ND	mg/kg	10	Luft/FFP	06/17/09	06/22/09 08:22	CKD	GC-2	0.990	BSF1330	ND	
TPH - Jet Fuel (JP8)		ND	mg/kg	10	Luft/FFP	06/17/09	06/22/09 08:22	CKD	GC-2	0.990	BSF1330	ND	
TPH - Kerosene		93	mg/kg	10	Luft/FFP	06/17/09	06/22/09 08:22	CKD	GC-2	0.990	BSF1330	ND	
TPH - Diesel (FFP)		26	mg/kg	10	Luft/FFP	06/17/09	06/22/09 08:22	CKD	GC-2	0.990	BSF1330	ND	
TPH - Fuel Oil #6		ND	mg/kg	10	Luft/FFP	06/17/09	06/22/09 08:22	CKD	GC-2	0.990	BSF1330	ND	
TPH - Crude Oil		ND	mg/kg	20	Luft/FFP	06/17/09	06/22/09 08:22	CKD	GC-2	0.990	BSF1330	ND	
TPH - Hydraulic Oil / Motor Oil		30	mg/kg	20	Luft/FFP	06/17/09	06/22/09 08:22	CKD	GC-2	0.990	BSF1330	ND	
TPH - WD-40		ND	mg/kg	10	Luft/FFP	06/17/09	06/22/09 08:22	CKD	GC-2	0.990	BSF1330	ND	
Tetracosane (Surrogate)		74.6	%	20 - 145 (LCL - UC	L) Luft/FFP	06/17/09	06/22/09 08:22	CKD	GC-2	0.990	BSF1330		

Delta Environmental Consultants, Inc. 11050 White Rock Rd, Suite 110 Rancho Cordova, CA 95670 Project: 7376

Project Number: [none]

Project Manager: John Reay

Reported: 07/02/2009 8:28

BCL Sample ID: 09078	15-04 Client S	Sample Name:	7376, M\	W-2C@25,	6/12/2009 8	:30:00AM							
	•					Prep	Run		Instru-		QC	МВ	Lab
Constituent	Resu		PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene	ND	mg/kg	0.50		EPA-8260	06/16/09	06/17/09 17:17	JSK	MS-V3	100	BSF1054	ND	A01
Bromobenzene	ND	mg/kg	0.50		EPA-8260	06/16/09	06/17/09 17:17	JSK	MS-V3	100	BSF1054	ND	A01
Bromochloromethane	ND	mg/kg	0.50		EPA-8260	06/16/09	06/17/09 17:17	JSK	MS-V3	100	BSF1054	ND	A01
Bromodichloromethane	ND	mg/kg	0.50		EPA-8260	06/16/09	06/17/09 17:17	JSK	MS-V3	100	BSF1054	ND	A01
Bromoform	ND	mg/kg	0.50		EPA-8260	06/16/09	06/17/09 17:17	JSK	MS-V3	100	BSF1054	ND	A01
Bromomethane	ND	mg/kg	0.50		EPA-8260	06/16/09	06/17/09 17:17	JSK	MS-V3	100	BSF1054	ND	A01
n-Butylbenzene	5.3	mg/kg	0.50		EPA-8260	06/16/09	06/17/09 17:17	JSK	MS-V3	100	BSF1054	ND	A01
sec-Butylbenzene	ND	mg/kg	0.50		EPA-8260	06/16/09	06/17/09 17:17	JSK	MS-V3	100	BSF1054	ND	A01
tert-Butylbenzene	ND	mg/kg	0.50		EPA-8260	06/16/09	06/17/09 17:17	JSK	MS-V3	100	BSF1054	ND	A01
Carbon tetrachloride	ND	mg/kg	0.50		EPA-8260	06/16/09	06/17/09 17:17	JSK	MS-V3	100	BSF1054	ND	A01
Chlorobenzene	ND	mg/kg	0.50		EPA-8260	06/16/09	06/17/09 17:17	JSK	MS-V3	100	BSF1054	ND	A01
Chloroethane	ND	mg/kg	0.50		EPA-8260	06/16/09	06/17/09 17:17	JSK	MS-V3	100	BSF1054	ND	A01
Chloroform	ND	mg/kg	0.50		EPA-8260	06/16/09	06/17/09 17:17	JSK	MS-V3	100	BSF1054	ND	A01
Chloromethane	ND	mg/kg	0.50		EPA-8260	06/16/09	06/17/09 17:17	JSK	MS-V3	100	BSF1054	ND	A01
2-Chlorotoluene	ND	mg/kg	0.50		EPA-8260	06/16/09	06/17/09 17:17	JSK	MS-V3	100	BSF1054	ND	A01
4-Chlorotoluene	ND	mg/kg	0.50		EPA-8260	06/16/09	06/17/09 17:17	JSK	MS-V3	100	BSF1054	ND	A01
Dibromochloromethane	ND	mg/kg	0.50		EPA-8260	06/16/09	06/17/09 17:17	JSK	MS-V3	100	BSF1054	ND	A01
1,2-Dibromo-3-chloropropane	ND	mg/kg	0.50		EPA-8260	06/16/09	06/17/09 17:17	JSK	MS-V3	100	BSF1054	ND	A01
1,2-Dibromoethane	ND	mg/kg	0.50		EPA-8260	06/16/09	06/17/09 17:17	JSK	MS-V3	100	BSF1054	ND	A01
Dibromomethane	ND	mg/kg	0.50		EPA-8260	06/16/09	06/17/09 17:17	JSK	MS-V3	100	BSF1054	ND	A01
1,2-Dichlorobenzene	ND	mg/kg	0.50		EPA-8260	06/16/09	06/17/09 17:17	JSK	MS-V3	100	BSF1054	ND	A01
1,3-Dichlorobenzene	ND	mg/kg	0.50		EPA-8260	06/16/09	06/17/09 17:17	JSK	MS-V3	100	BSF1054	ND	A01
1,4-Dichlorobenzene	ND	mg/kg	0.50		EPA-8260	06/16/09	06/17/09 17:17	JSK	MS-V3	100	BSF1054	ND	A01

Delta Environmental Consultants, Inc. 11050 White Rock Rd, Suite 110

Rancho Cordova, CA 95670

Project: 7376

Project Number: [none]

Project Manager: John Reay

Reported: 07/02/2009 8:28

BCL Sample ID: 0907815-04	Client Sample	e Name:	7376, MW	V-2C@25,	6/12/2009 8	:30:00AM							
	-					Prep	Run		Instru-		QC	МВ	Lab
Constituent	Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Dichlorodifluoromethane	ND	mg/kg	0.50		EPA-8260	06/16/09	06/17/09 17:17	JSK	MS-V3	100	BSF1054	ND	A01
1,1-Dichloroethane	ND	mg/kg	0.50		EPA-8260	06/16/09	06/17/09 17:17	JSK	MS-V3	100	BSF1054	ND	A01
1,2-Dichloroethane	ND	mg/kg	0.50		EPA-8260	06/16/09	06/17/09 17:17	JSK	MS-V3	100	BSF1054	ND	A01
1,1-Dichloroethene	ND	mg/kg	0.50		EPA-8260	06/16/09	06/17/09 17:17	JSK	MS-V3	100	BSF1054	ND	A01
cis-1,2-Dichloroethene	ND	mg/kg	0.50		EPA-8260	06/16/09	06/17/09 17:17	JSK	MS-V3	100	BSF1054	ND	A01
trans-1,2-Dichloroethene	ND	mg/kg	0.50		EPA-8260	06/16/09	06/17/09 17:17	JSK	MS-V3	100	BSF1054	ND	A01
Total 1,2-Dichloroethene	ND	mg/kg	1.0		EPA-8260	06/16/09	06/17/09 17:17	JSK	MS-V3	100	BSF1054	ND	A01
1,2-Dichloropropane	ND	mg/kg	0.50		EPA-8260	06/16/09	06/17/09 17:17	JSK	MS-V3	100	BSF1054	ND	A01
1,3-Dichloropropane	ND	mg/kg	0.50		EPA-8260	06/16/09	06/17/09 17:17	JSK	MS-V3	100	BSF1054	ND	A01
2,2-Dichloropropane	ND	mg/kg	0.50		EPA-8260	06/16/09	06/17/09 17:17	JSK	MS-V3	100	BSF1054	ND	A01
1,1-Dichloropropene	ND	mg/kg	0.50		EPA-8260	06/16/09	06/17/09 17:17	JSK	MS-V3	100	BSF1054	ND	A01
cis-1,3-Dichloropropene	ND	mg/kg	0.50		EPA-8260	06/16/09	06/17/09 17:17	JSK	MS-V3	100	BSF1054	ND	A01
trans-1,3-Dichloropropene	ND	mg/kg	0.50		EPA-8260	06/16/09	06/17/09 17:17	JSK	MS-V3	100	BSF1054	ND	A01
Total 1,3-Dichloropropene	ND	mg/kg	1.0		EPA-8260	06/16/09	06/17/09 17:17	JSK	MS-V3	100	BSF1054	ND	A01
Ethylbenzene	14	mg/kg	0.50		EPA-8260	06/16/09	06/17/09 17:17	JSK	MS-V3	100	BSF1054	ND	A01
Hexachlorobutadiene	ND	mg/kg	0.50		EPA-8260	06/16/09	06/17/09 17:17	JSK	MS-V3	100	BSF1054	ND	A01
Isopropylbenzene	0.52	mg/kg	0.50		EPA-8260	06/16/09	06/17/09 17:17	JSK	MS-V3	100	BSF1054	ND	A01
p-Isopropyltoluene	1.4	mg/kg	0.50		EPA-8260	06/16/09	06/17/09 17:17	JSK	MS-V3	100	BSF1054	ND	A01
Methylene chloride	ND	mg/kg	1.0		EPA-8260	06/16/09	06/17/09 17:17	JSK	MS-V3	100	BSF1054	ND	A01
Methyl t-butyl ether	ND	mg/kg	0.50		EPA-8260	06/16/09	06/17/09 17:17	JSK	MS-V3	100	BSF1054	ND	A01
Naphthalene	10	mg/kg	0.50		EPA-8260	06/16/09	06/17/09 17:17	JSK	MS-V3	100	BSF1054	ND	A01
n-Propylbenzene	6.8	mg/kg	0.50		EPA-8260	06/16/09	06/17/09 17:17	JSK	MS-V3	100	BSF1054	ND	A01
Styrene	ND	mg/kg	0.50		EPA-8260	06/16/09	06/17/09 17:17	JSK	MS-V3	100	BSF1054	ND	A01

Delta Environmental Consultants, Inc. 11050 White Rock Rd, Suite 110 Rancho Cordova, CA 95670 Project: 7376

Project Number: [none]
Project Manager: John Reay

Reported: 07/02/2009 8:28

BCL Sample ID: 0907815-04	Client Sample	e Name:	7376, MW	/-2C@25, (6/12/2009 8:	30:00AM							
	-					Prep	Run		Instru-		QC	МВ	Lab
Constituent	Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
1,1,1,2-Tetrachloroethane	ND	mg/kg	0.50		EPA-8260	06/16/09	06/17/09 17:17	JSK	MS-V3	100	BSF1054	ND	A01
1,1,2,2-Tetrachloroethane	ND	mg/kg	0.50		EPA-8260	06/16/09	06/17/09 17:17	JSK	MS-V3	100	BSF1054	ND	A01
Tetrachloroethene	ND	mg/kg	0.50		EPA-8260	06/16/09	06/17/09 17:17	JSK	MS-V3	100	BSF1054	ND	A01
Toluene	ND	mg/kg	0.50		EPA-8260	06/16/09	06/17/09 17:17	JSK	MS-V3	100	BSF1054	ND	A01
1,2,3-Trichlorobenzene	ND	mg/kg	0.50		EPA-8260	06/16/09	06/17/09 17:17	JSK	MS-V3	100	BSF1054	ND	A01
1,2,4-Trichlorobenzene	ND	mg/kg	0.50		EPA-8260	06/16/09	06/17/09 17:17	JSK	MS-V3	100	BSF1054	ND	A01
1,1,1-Trichloroethane	ND	mg/kg	0.50		EPA-8260	06/16/09	06/17/09 17:17	JSK	MS-V3	100	BSF1054	ND	A01
1,1,2-Trichloroethane	ND	mg/kg	0.50		EPA-8260	06/16/09	06/17/09 17:17	JSK	MS-V3	100	BSF1054	ND	A01
Trichloroethene	ND	mg/kg	0.50		EPA-8260	06/16/09	06/17/09 17:17	JSK	MS-V3	100	BSF1054	ND	A01
Trichlorofluoromethane	ND	mg/kg	0.50		EPA-8260	06/16/09	06/17/09 17:17	JSK	MS-V3	100	BSF1054	ND	A01
1,2,3-Trichloropropane	ND	mg/kg	0.50		EPA-8260	06/16/09	06/17/09 17:17	JSK	MS-V3	100	BSF1054	ND	A01
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	mg/kg	0.50		EPA-8260	06/16/09	06/17/09 17:17	JSK	MS-V3	100	BSF1054	ND	A01
1,2,4-Trimethylbenzene	39	mg/kg	0.50		EPA-8260	06/16/09	06/17/09 17:17	JSK	MS-V3	100	BSF1054	ND	A01
1,3,5-Trimethylbenzene	ND	mg/kg	0.50		EPA-8260	06/16/09	06/17/09 17:17	JSK	MS-V3	100	BSF1054	ND	A01
Vinyl chloride	ND	mg/kg	0.50		EPA-8260	06/16/09	06/17/09 17:17	JSK	MS-V3	100	BSF1054	ND	A01
Total Xylenes	6.4	mg/kg	1.0		EPA-8260	06/16/09	06/17/09 17:17	JSK	MS-V3	100	BSF1054	ND	A01
t-Amyl Methyl ether	ND	mg/kg	0.50		EPA-8260	06/16/09	06/17/09 17:17	JSK	MS-V3	100	BSF1054	ND	A01
t-Butyl alcohol	ND	mg/kg	5.0		EPA-8260	06/16/09	06/17/09 17:17	JSK	MS-V3	100	BSF1054	ND	A01
Diisopropyl ether	ND	mg/kg	0.50		EPA-8260	06/16/09	06/17/09 17:17	JSK	MS-V3	100	BSF1054	ND	A01
Ethanol	ND	mg/kg	100		EPA-8260	06/16/09	06/17/09 17:17	JSK	MS-V3	100	BSF1054	ND	A01
Ethyl t-butyl ether	ND	mg/kg	0.50		EPA-8260	06/16/09	06/17/09 17:17	JSK	MS-V3	100	BSF1054	ND	A01
Total Purgeable Petroleum Hydrocarbons	850	mg/kg	200		Luft-GC/MS	06/16/09	06/18/09 02:01	JSK	MS-V3	1000	BSF1054	ND	A01

Delta Environmental Consultants, Inc. 11050 White Rock Rd. Suite 110

Project: 7376

Reported: 07/02/2009 8:28

11050 White Rock Rd, Suite 110 Rancho Cordova, CA 95670

Project Number: [none]
Project Manager: John Reay

BCL Sample ID: 0907815-04	Client Sample	e Name:	7376, MW	/-2C@25,	6/12/2009 8	:30:00AM							
						Prep	Run		Instru-		QC	МВ	Lab
Constituent	Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
1,2-Dichloroethane-d4 (Surrogate)	91.9	%	70 - 121 (LC	L - UCL)	EPA-8260	06/16/09	06/18/09 02:01	JSK	MS-V3	1000	BSF1054		
1,2-Dichloroethane-d4 (Surrogate)	89.2	%	70 - 121 (LC	L - UCL)	EPA-8260	06/16/09	06/17/09 17:17	JSK	MS-V3	100	BSF1054		
Toluene-d8 (Surrogate)	104	%	81 - 117 (LC	L - UCL)	EPA-8260	06/16/09	06/17/09 17:17	JSK	MS-V3	100	BSF1054		
Toluene-d8 (Surrogate)	101	%	81 - 117 (LC	L - UCL)	EPA-8260	06/16/09	06/18/09 02:01	JSK	MS-V3	1000	BSF1054		
4-Bromofluorobenzene (Surrogate)	106	%	74 - 121 (LC	L - UCL)	EPA-8260	06/16/09	06/18/09 02:01	JSK	MS-V3	1000	BSF1054		
4-Bromofluorobenzene (Surrogate)	110	%	74 - 121 (LC	L - UCL)	EPA-8260	06/16/09	06/17/09 17:17	JSK	MS-V3	100	BSF1054		

Delta Environmental Consultants, Inc.

11050 White Rock Rd, Suite 110 Rancho Cordova, CA 95670

Project: 7376

Project Number: [none]
Project Manager: John Reay

Reported: 07/02/2009 8:28

BCL Sample ID: 090	7815-04	Client Sample	e Name:	7376, MW	/-2C@25, 6	6/12/2009 8:	30:00AM							
							Prep	Run		Instru-		QC	МВ	Lab
Constituent		Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Acenaphthene		ND	mg/kg	4.9		EPA-8270C	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
Acenaphthylene		ND	mg/kg	4.9		EPA-8270C	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
Aldrin		ND	mg/kg	4.9		EPA-8270C	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
Aniline		ND	mg/kg	9.8		EPA-8270C	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
Anthracene		ND	mg/kg	4.9		EPA-8270C	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
Benzidine		ND	mg/kg	150		EPA-8270C	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
Benzo[a]anthracene		ND	mg/kg	4.9		EPA-8270C	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
Benzo[b]fluoranthene		ND	mg/kg	4.9		EPA-8270C	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
Benzo[k]fluoranthene		ND	mg/kg	4.9		EPA-8270C	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
Benzo[a]pyrene		ND	mg/kg	4.9		EPA-8270C	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
Benzo[g,h,i]perylene		ND	mg/kg	4.9		EPA-8270C	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
Benzoic acid		ND	mg/kg	25		EPA-8270C	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
Benzyl alcohol		ND	mg/kg	4.9		EPA-8270C	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
Benzyl butyl phthalate		ND	mg/kg	4.9		EPA-8270C	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
alpha-BHC		ND	mg/kg	4.9		EPA-8270C	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
beta-BHC		ND	mg/kg	4.9		EPA-8270C	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
delta-BHC		ND	mg/kg	4.9		EPA-8270C	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
gamma-BHC (Lindane)		ND	mg/kg	4.9		EPA-8270C	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
bis(2-Chloroethoxy)methane		ND	mg/kg	4.9		EPA-8270C	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
bis(2-Chloroethyl) ether		ND	mg/kg	4.9		EPA-8270C	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
bis(2-Chloroisopropyl)ether		ND	mg/kg	4.9		EPA-8270C	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
bis(2-Ethylhexyl)phthalate		ND	mg/kg	9.8		EPA-8270C	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
4-Bromophenyl phenyl ether		ND	mg/kg	4.9		EPA-8270C	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10

Delta Environmental Consultants, Inc.

Project: 7376

Reported: 07/02/2009 8:28

11050 White Rock Rd, Suite 110Project Number: [none]Rancho Cordova, CA 95670Project Manager: John Reay

BCL Sample ID:	0907815-04	Client Sample	e Name:	7376, MW	-2C@25,	6/12/2009 8:	30:00AM							
							Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
4-Chloroaniline		ND	mg/kg	4.9		EPA-8270C	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
2-Chloronaphthalene		ND	mg/kg	4.9		EPA-8270C	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
4-Chlorophenyl phenyl eth	ner	ND	mg/kg	4.9		EPA-8270C	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
Chrysene		ND	mg/kg	4.9		EPA-8270C	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
4,4'-DDD		ND	mg/kg	4.9		EPA-8270C	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
4,4'-DDE		ND	mg/kg	4.9		EPA-8270C	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
4,4'-DDT		ND	mg/kg	4.9		EPA-8270C	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
Dibenzo[a,h]anthracene		ND	mg/kg	4.9		EPA-8270C	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
Dibenzofuran		ND	mg/kg	4.9		EPA-8270C	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
1,2-Dichlorobenzene		ND	mg/kg	4.9		EPA-8270C	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
1,3-Dichlorobenzene		ND	mg/kg	4.9		EPA-8270C	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
1,4-Dichlorobenzene		ND	mg/kg	4.9		EPA-8270C	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
3,3-Dichlorobenzidine		ND	mg/kg	9.8		EPA-8270C	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
Dieldrin		ND	mg/kg	4.9		EPA-8270C	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
Diethyl phthalate		ND	mg/kg	4.9		EPA-8270C	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
Dimethyl phthalate		ND	mg/kg	4.9		EPA-8270C	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
Di-n-butyl phthalate		ND	mg/kg	4.9		EPA-8270C	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
2,4-Dinitrotoluene		ND	mg/kg	4.9		EPA-8270C	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
2,6-Dinitrotoluene		ND	mg/kg	4.9		EPA-8270C	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
Di-n-octyl phthalate		ND	mg/kg	4.9		EPA-8270C	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
1,2-Diphenylhydrazine		ND	mg/kg	4.9		EPA-8270C	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
Endosulfan I		ND	mg/kg	9.8		EPA-8270C	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
Endosulfan II		ND	mg/kg	9.8		EPA-8270C	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10

Delta Environmental Consultants, Inc.

Project: 7376

11050 White Rock Rd, Suite 110

Project Number: [none]

Rancho Cordova, CA 95670 Project Manager: John Reay

Reported: 07/02/2009 8:28

Endosulfan sulfate N Endrin N	ND ND	Units mg/kg mg/kg	PQL 4.9 9.8	MDL	Method EPA-8270C	Prep Date	Run		Instru-		QC	МВ	Lab
Endosulfan sulfate N Endrin N	ND	mg/kg	4.9	MDL		Date	D-4-/Ti						
Endrin N	ND				EDA 92700		Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
		mg/kg	0.0		EFA-02/00	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
Endrin aldehyde	ND		9.0		EPA-8270C	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
		mg/kg	25		EPA-8270C	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
Fluoranthene	ND	mg/kg	4.9		EPA-8270C	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
Fluorene	ND	mg/kg	4.9		EPA-8270C	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
Heptachlor	ND	mg/kg	4.9		EPA-8270C	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
Heptachlor epoxide	ND	mg/kg	4.9		EPA-8270C	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
Hexachlorobenzene	ND	mg/kg	4.9		EPA-8270C	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
Hexachlorobutadiene N	ND	mg/kg	4.9		EPA-8270C	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
Hexachlorocyclopentadiene N	ND	mg/kg	4.9		EPA-8270C	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
Hexachloroethane N	ND	mg/kg	4.9		EPA-8270C	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
Indeno[1,2,3-cd]pyrene	ND	mg/kg	4.9		EPA-8270C	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
Isophorone N	ND	mg/kg	4.9		EPA-8270C	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
2-Methylnaphthalene	7.2	mg/kg	4.9		EPA-8270C	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
Naphthalene 7	7.1	mg/kg	4.9		EPA-8270C	06/22/09	06/29/09 17:10	skc	MS-B2	49.020	BSF1688	ND	A10
2-Naphthylamine	ND	mg/kg	150		EPA-8270C	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
2-Nitroaniline	ND	mg/kg	4.9		EPA-8270C	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
3-Nitroaniline	ND	mg/kg	9.8		EPA-8270C	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
4-Nitroaniline	ND	mg/kg	9.8		EPA-8270C	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
Nitrobenzene	ND	mg/kg	4.9		EPA-8270C	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
N-Nitrosodimethylamine	ND	mg/kg	4.9		EPA-8270C	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
N-Nitrosodi-N-propylamine	ND	mg/kg	4.9		EPA-8270C	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
N-Nitrosodiphenylamine	ND	mg/kg	4.9		EPA-8270C	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10

Delta Environmental Consultants, Inc.
Project: 7376

Reported: 07/02/2009 8:28

11050 White Rock Rd, Suite 110
Project Number: [none]

11050 White Rock Rd, Suite 110Project Number: [none]Rancho Cordova, CA 95670Project Manager: John Reay

BCL Sample ID: 09	907815-04	Client Sample	Name:	7376, MW-2C@	25, 6/12/2009	8:30:00AM							
						Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL ME	L Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Phenanthrene		ND	mg/kg	4.9	EPA-82700	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
Pyrene		ND	mg/kg	4.9	EPA-82700	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
1,2,4-Trichlorobenzene		ND	mg/kg	4.9	EPA-82700	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
4-Chloro-3-methylphenol		ND	mg/kg	9.8	EPA-8270	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
2-Chlorophenol		ND	mg/kg	4.9	EPA-8270	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
2,4-Dichlorophenol		ND	mg/kg	4.9	EPA-8270	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
2,4-Dimethylphenol		ND	mg/kg	4.9	EPA-8270	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
4,6-Dinitro-2-methylphenol		ND	mg/kg	25	EPA-8270	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
2,4-Dinitrophenol		ND	mg/kg	25	EPA-8270	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
2-Methylphenol		ND	mg/kg	4.9	EPA-8270	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
3- & 4-Methylphenol		ND	mg/kg	9.8	EPA-82700	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
2-Nitrophenol		ND	mg/kg	4.9	EPA-8270	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
4-Nitrophenol		ND	mg/kg	9.8	EPA-8270	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
Pentachlorophenol		ND	mg/kg	9.8	EPA-8270	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
Phenol		ND	mg/kg	4.9	EPA-8270	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
2,4,5-Trichlorophenol		ND	mg/kg	9.8	EPA-8270	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
2,4,6-Trichlorophenol		ND	mg/kg	9.8	EPA-8270	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688	ND	A10
2-Fluorophenol (Surrogate)		0	%	42 - 137 (LCL - UCL) EPA-8270	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688		A10,A17
Phenol-d5 (Surrogate)		0	%	36 - 137 (LCL - UCL) EPA-82700	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688		A10,A17
Nitrobenzene-d5 (Surrogate)		0	%	34 - 135 (LCL - UCL) EPA-8270	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688		A10,A17
2-Fluorobiphenyl (Surrogate)	1	0	%	40 - 135 (LCL - UCL) EPA-8270	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688		A10,A17
2,4,6-Tribromophenol (Surrog	gate)	0	%	54 - 162 (LCL - UCL) EPA-82700	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688		A10,A17
p-Terphenyl-d14 (Surrogate)		0	%	20 - 176 (LCL - UCL) EPA-82700	06/22/09	06/29/09 17:10	SKC	MS-B2	49.020	BSF1688		A10,A17

Delta Environmental Consultants, Inc.

Project: 7376

11050 White Rock Rd, Suite 110

Project Number: [none]

Rancho Cordova, CA 95670 Project Manager: John Reay

Purgeable Aromatics and Total Petroleum Hydrocarbons

BCL Sample ID:	0907815-04	Client Sample	Name:	7376, MW-2C@2	5, 6/12/2009 8	3:30:00AM							
						Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL MDI	_ Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
TPH - Light Naptha		ND	mg/kg	2500	Luft/FFP	06/17/09	06/22/09 08:45	CKD	GC-2	50.336	BSF1330	ND	A01
TPH - Aviation Gas		ND	mg/kg	2500	Luft/FFP	06/17/09	06/22/09 08:45	CKD	GC-2	50.336	BSF1330	ND	A01
TPH - Stoddard Solvent		ND	mg/kg	1000	Luft/FFP	06/17/09	06/22/09 08:45	CKD	GC-2	50.336	BSF1330	ND	A01
TPH - Heavy Naptha		ND	mg/kg	500	Luft/FFP	06/17/09	06/22/09 08:45	CKD	GC-2	50.336	BSF1330	ND	A01
TPH - Gasoline		ND	mg/kg	1000	Luft/FFP	06/17/09	06/22/09 08:45	CKD	GC-2	50.336	BSF1330	ND	A01
TPH - Jet Fuel (JP4)		ND	mg/kg	500	Luft/FFP	06/17/09	06/22/09 08:45	CKD	GC-2	50.336	BSF1330	ND	A01
TPH - Jet Fuel (JP5)		ND	mg/kg	500	Luft/FFP	06/17/09	06/22/09 08:45	CKD	GC-2	50.336	BSF1330	ND	A01
TPH - Jet Fuel (JP8)		ND	mg/kg	500	Luft/FFP	06/17/09	06/22/09 08:45	CKD	GC-2	50.336	BSF1330	ND	A01
TPH - Kerosene		1800	mg/kg	500	Luft/FFP	06/17/09	06/22/09 08:45	CKD	GC-2	50.336	BSF1330	ND	A01
TPH - Diesel (FFP)		4500	mg/kg	500	Luft/FFP	06/17/09	06/22/09 08:45	CKD	GC-2	50.336	BSF1330	ND	A01
TPH - Fuel Oil #6		ND	mg/kg	500	Luft/FFP	06/17/09	06/22/09 08:45	CKD	GC-2	50.336	BSF1330	ND	A01
TPH - Crude Oil		ND	mg/kg	1000	Luft/FFP	06/17/09	06/22/09 08:45	CKD	GC-2	50.336	BSF1330	ND	A01
TPH - Hydraulic Oil / Moto	or Oil	4000	mg/kg	1000	Luft/FFP	06/17/09	06/22/09 08:45	CKD	GC-2	50.336	BSF1330	ND	A01
TPH - WD-40		ND	mg/kg	500	Luft/FFP	06/17/09	06/22/09 08:45	CKD	GC-2	50.336	BSF1330	ND	A01
Tetracosane (Surrogate)		0	%	20 - 145 (LCL - UCL)	Luft/FFP	06/17/09	06/22/09 08:45	CKD	GC-2	50.336	BSF1330		A01,A17

Delta Environmental Consultants, Inc. 11050 White Rock Rd, Suite 110 Rancho Cordova, CA 95670 Project: 7376

Project Number: [none]
Project Manager: John Reay

Reported: 07/02/2009 8:28

Constituent	BCL Sample ID: 0907815-05	Client Sample	e Name:	7376, MV	V-2C@30, 6	6/12/2009 8	:40:00AM							
Benzene 28 mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12.06 JSK MS-V3 250 BSF1054 ND A01							Prep	Run		Instru-		QC	MB	Lab
Bromobenzene ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 1.26 JSK MS-V3 250 BSF1054 ND A01	Constituent	Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Bromochloromethane ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12/06 JSK MS-V3 250 BSF1054 ND A01	Benzene	28	mg/kg	1.2		EPA-8260	06/16/09	06/18/09 12:06	JSK	MS-V3	250	BSF1054	ND	A01
Ermodichloromethane ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 1.206 JSK MS-V3 250 BSF1054 ND A01	Bromobenzene	ND	mg/kg	1.2		EPA-8260	06/16/09	06/18/09 12:06	JSK	MS-V3	250	BSF1054	ND	A01
Bromoform ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12.06 JSK MS-V3 250 BSF1054 ND A01	Bromochloromethane	ND	mg/kg	1.2		EPA-8260	06/16/09	06/18/09 12:06	JSK	MS-V3	250	BSF1054	ND	A01
Bromomethane ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01	Bromodichloromethane	ND	mg/kg	1.2		EPA-8260	06/16/09	06/18/09 12:06	JSK	MS-V3	250	BSF1054	ND	A01
n-Butylbenzene 3.7 mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01 sec-Butylbenzene ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01 tert-Butylbenzene ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01 Carbon tetrachloride ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01 Chlorobenzene ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01 Chlorotolurene ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01 Chlorotolurene	Bromoform	ND	mg/kg	1.2		EPA-8260	06/16/09	06/18/09 12:06	JSK	MS-V3	250	BSF1054	ND	A01
sec-Buty/benzene ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01 tert-Buty/benzene ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01 Carbon tetrachloride ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01 Chlorobenzene ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01 Chlorobenzene ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01 Chlorobeltane ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054	Bromomethane	ND	mg/kg	1.2		EPA-8260	06/16/09	06/18/09 12:06	JSK	MS-V3	250	BSF1054	ND	A01
tert-Butylbenzene ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12.06 JSK MS-V3 250 BSF1054 ND A01 Carbon tetrachloride ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12.06 JSK MS-V3 250 BSF1054 ND A01 Chlorobenzene ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12.06 JSK MS-V3 250 BSF1054 ND A01 Chlorothane ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12.06 JSK MS-V3 250 BSF1054 ND A01 Chlorothane ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12.06 JSK MS-V3 250 BSF1054 ND A01 Chlorothane ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12.06 JSK MS-V3 250 BSF1054 ND A01 Chloromethane ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12.06 JSK MS-V3 250 BSF1054 ND A01 2-Chlorotoluene ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12.06 JSK MS-V3 250 BSF1054 ND A01 4-Chlorotoluene ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12.06 JSK MS-V3 250 BSF1054 ND A01 Chloromethane ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12.06 JSK MS-V3 250 BSF1054 ND A01 1-2-Dibromochloromethane ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12.06 JSK MS-V3 250 BSF1054 ND A01 1,2-Dibromo-3-chloropropane ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12.06 JSK MS-V3 250 BSF1054 ND A01 1,2-Dibromoe-3-chloropropane ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12.06 JSK MS-V3 250 BSF1054 ND A01 1,2-Dibromoethane ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12.06 JSK MS-V3 250 BSF1054 ND A01 1,2-Dibromoethane ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12.06 JSK MS-V3 250 BSF1054 ND A01 1,2-Dibromoethane ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12.06 JSK MS-V3 250 BSF1054 ND A01 1,2-Dibromoethane ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12.06 JSK MS-V3 250 BSF1054 ND A01 1,2-Dibromoethane ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12.06 JSK MS-V3 250 BSF1054 ND A01 1,2-Dibromoethane ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12.06 JSK MS-V3 250 BSF1054 ND A01 1,2-Dibromoethane ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12.06 JSK MS-V3 250 BSF1054 ND A01 1,2-Dibromoethane ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12.06 JSK MS-V3 250 BSF1054 ND A01 1,3-Dibrlorobenzene ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12.06 JSK MS-V3	n-Butylbenzene	3.7	mg/kg	1.2		EPA-8260	06/16/09	06/18/09 12:06	JSK	MS-V3	250	BSF1054	ND	A01
Carbon tetrachloride ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01 Chlorobenzene ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01 Chloroethane ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01 Chloroform ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01 Chlorotoluene ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01 2-Chlorotoluene ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND	sec-Butylbenzene	ND	mg/kg	1.2		EPA-8260	06/16/09	06/18/09 12:06	JSK	MS-V3	250	BSF1054	ND	A01
Chlorobenzene ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01	tert-Butylbenzene	ND	mg/kg	1.2		EPA-8260	06/16/09	06/18/09 12:06	JSK	MS-V3	250	BSF1054	ND	A01
Chloroethane ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01	Carbon tetrachloride	ND	mg/kg	1.2		EPA-8260	06/16/09	06/18/09 12:06	JSK	MS-V3	250	BSF1054	ND	A01
Chloroform ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01 2-Chlorotoluene ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01 4-Chlorotoluene ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01 4-Chlorotoluene ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01 Dibromochloromethane ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01 1,2-Dibromo-3-chloropropane ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01 1,2-Dibromoethane ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01 1,2-Dibromoethane ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01 Dibromomethane ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01 Dibromomethane ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01 1,2-Dichlorobenzene ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01 1,2-Dichlorobenzene ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01 1,3-Dichlorobenzene ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01 1,3-Dichlorobenzene ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01	Chlorobenzene	ND	mg/kg	1.2		EPA-8260	06/16/09	06/18/09 12:06	JSK	MS-V3	250	BSF1054	ND	A01
Chloromethane ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01 2-Chlorotoluene ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01 4-Chlorotoluene ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01 Dibromochloromethane ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01 1,2-Dibromo-3-chloropropane ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01 1,2-Dibromoethane ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01 1,2-Dibromoethane ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01 Dibromomethane ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01 1,2-Dibromomethane ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01 1,2-Dichlorobenzene ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01 1,2-Dichlorobenzene ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01 1,3-Dichlorobenzene ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01 1,3-Dichlorobenzene ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01	Chloroethane	ND	mg/kg	1.2		EPA-8260	06/16/09	06/18/09 12:06	JSK	MS-V3	250	BSF1054	ND	A01
2-Chlorotoluene ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01 4-Chlorotoluene ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01 Dibromochloromethane ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01 1,2-Dibromo-3-chloropropane ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01 1,2-Dibromoethane ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01 1,2-Dibromoethane ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01 Dibromomethane ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01 1,2-Dichlorobenzene ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01 1,3-Dichlorobenzene ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01 1,3-Dichlorobenzene ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01	Chloroform	ND	mg/kg	1.2		EPA-8260	06/16/09	06/18/09 12:06	JSK	MS-V3	250	BSF1054	ND	A01
4-Chlorotoluene ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01 Dibromochloromethane ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01 1,2-Dibromo-3-chloropropane ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01 1,2-Dibromoethane ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01 Dibromomethane ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01 Dibromomethane ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01 1,2-Dichlorobenzene ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01 1,3-Dichlorobenzene ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01 1,3-Dichlorobenzene ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01	Chloromethane	ND	mg/kg	1.2		EPA-8260	06/16/09	06/18/09 12:06	JSK	MS-V3	250	BSF1054	ND	A01
Dibromochloromethane ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01 1,2-Dibromo-3-chloropropane ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01 1,2-Dibromoethane ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01 Dibromomethane ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01 1,2-Dichlorobenzene ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01 1,3-Dichlorobenzene ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250	2-Chlorotoluene	ND	mg/kg	1.2		EPA-8260	06/16/09	06/18/09 12:06	JSK	MS-V3	250	BSF1054	ND	A01
1,2-Dibromo-3-chloropropane ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01 1,2-Dibromoethane ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01 Dibromoethane ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01 1,2-Dichlorobenzene ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01 1,3-Dichlorobenzene ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01 1,3-Dichlorobenzene ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250	4-Chlorotoluene	ND	mg/kg	1.2		EPA-8260	06/16/09	06/18/09 12:06	JSK	MS-V3	250	BSF1054	ND	A01
1,2-Dibromoethane ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01 Dibromomethane ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01 1,2-Dichlorobenzene ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01 1,3-Dichlorobenzene ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01	Dibromochloromethane	ND	mg/kg	1.2		EPA-8260	06/16/09	06/18/09 12:06	JSK	MS-V3	250	BSF1054	ND	A01
Dibromomethane ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01 1,2-Dichlorobenzene ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01 1,3-Dichlorobenzene ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01	1,2-Dibromo-3-chloropropane	ND	mg/kg	1.2		EPA-8260	06/16/09	06/18/09 12:06	JSK	MS-V3	250	BSF1054	ND	A01
1,2-Dichlorobenzene ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01 1,3-Dichlorobenzene ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01	1,2-Dibromoethane	ND	mg/kg	1.2		EPA-8260	06/16/09	06/18/09 12:06	JSK	MS-V3	250	BSF1054	ND	A01
1,3-Dichlorobenzene ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01	Dibromomethane	ND	mg/kg	1.2		EPA-8260	06/16/09	06/18/09 12:06	JSK	MS-V3	250	BSF1054	ND	A01
	1,2-Dichlorobenzene	ND	mg/kg	1.2		EPA-8260	06/16/09	06/18/09 12:06	JSK	MS-V3	250	BSF1054	ND	A01
1,4-Dichlorobenzene ND mg/kg 1.2 EPA-8260 06/16/09 06/18/09 12:06 JSK MS-V3 250 BSF1054 ND A01	1,3-Dichlorobenzene	ND	mg/kg	1.2		EPA-8260	06/16/09	06/18/09 12:06	JSK	MS-V3	250	BSF1054	ND	A01
	1,4-Dichlorobenzene	ND	mg/kg	1.2		EPA-8260	06/16/09	06/18/09 12:06	JSK	MS-V3	250	BSF1054	ND	A01

Delta Environmental Consultants, Inc. 11050 White Rock Rd, Suite 110 Rancho Cordova, CA 95670 Project: 7376

Project Number: [none]
Project Manager: John Reay

Reported: 07/02/2009 8:28

BCL Sample ID: 0907815-05	Client Sample	e Name:	7376, MV	V-2C@30, 6	6/12/2009 8	:40:00AM							
	-					Prep	Run		Instru-		QC	МВ	Lab
Constituent	Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Dichlorodifluoromethane	ND	mg/kg	1.2		EPA-8260	06/16/09	06/18/09 12:06	JSK	MS-V3	250	BSF1054	ND	A01
1,1-Dichloroethane	ND	mg/kg	1.2		EPA-8260	06/16/09	06/18/09 12:06	JSK	MS-V3	250	BSF1054	ND	A01
1,2-Dichloroethane	ND	mg/kg	1.2		EPA-8260	06/16/09	06/18/09 12:06	JSK	MS-V3	250	BSF1054	ND	A01
1,1-Dichloroethene	ND	mg/kg	1.2		EPA-8260	06/16/09	06/18/09 12:06	JSK	MS-V3	250	BSF1054	ND	A01
cis-1,2-Dichloroethene	ND	mg/kg	1.2		EPA-8260	06/16/09	06/18/09 12:06	JSK	MS-V3	250	BSF1054	ND	A01
trans-1,2-Dichloroethene	ND	mg/kg	1.2		EPA-8260	06/16/09	06/18/09 12:06	JSK	MS-V3	250	BSF1054	ND	A01
Total 1,2-Dichloroethene	ND	mg/kg	2.5		EPA-8260	06/16/09	06/18/09 12:06	JSK	MS-V3	250	BSF1054	ND	A01
1,2-Dichloropropane	ND	mg/kg	1.2		EPA-8260	06/16/09	06/18/09 12:06	JSK	MS-V3	250	BSF1054	ND	A01
1,3-Dichloropropane	ND	mg/kg	1.2		EPA-8260	06/16/09	06/18/09 12:06	JSK	MS-V3	250	BSF1054	ND	A01
2,2-Dichloropropane	ND	mg/kg	1.2		EPA-8260	06/16/09	06/18/09 12:06	JSK	MS-V3	250	BSF1054	ND	A01
1,1-Dichloropropene	ND	mg/kg	1.2		EPA-8260	06/16/09	06/18/09 12:06	JSK	MS-V3	250	BSF1054	ND	A01
cis-1,3-Dichloropropene	ND	mg/kg	1.2		EPA-8260	06/16/09	06/18/09 12:06	JSK	MS-V3	250	BSF1054	ND	A01
trans-1,3-Dichloropropene	ND	mg/kg	1.2		EPA-8260	06/16/09	06/18/09 12:06	JSK	MS-V3	250	BSF1054	ND	A01
Total 1,3-Dichloropropene	ND	mg/kg	2.5		EPA-8260	06/16/09	06/18/09 12:06	JSK	MS-V3	250	BSF1054	ND	A01
Ethylbenzene	9.9	mg/kg	1.2		EPA-8260	06/16/09	06/18/09 12:06	JSK	MS-V3	250	BSF1054	ND	A01
Hexachlorobutadiene	ND	mg/kg	1.2		EPA-8260	06/16/09	06/18/09 12:06	JSK	MS-V3	250	BSF1054	ND	A01
Isopropylbenzene	ND	mg/kg	1.2		EPA-8260	06/16/09	06/18/09 12:06	JSK	MS-V3	250	BSF1054	ND	A01
p-Isopropyltoluene	ND	mg/kg	1.2		EPA-8260	06/16/09	06/18/09 12:06	JSK	MS-V3	250	BSF1054	ND	A01
Methylene chloride	ND	mg/kg	2.5		EPA-8260	06/16/09	06/18/09 12:06	JSK	MS-V3	250	BSF1054	ND	A01
Methyl t-butyl ether	8.7	mg/kg	1.2		EPA-8260	06/16/09	06/18/09 12:06	JSK	MS-V3	250	BSF1054	ND	A01
Naphthalene	5.9	mg/kg	1.2		EPA-8260	06/16/09	06/18/09 12:06	JSK	MS-V3	250	BSF1054	ND	A01
n-Propylbenzene	ND	mg/kg	1.2		EPA-8260	06/16/09	06/18/09 12:06	JSK	MS-V3	250	BSF1054	ND	A01
Styrene	ND	mg/kg	1.2		EPA-8260	06/16/09	06/18/09 12:06	JSK	MS-V3	250	BSF1054	ND	A01

Delta Environmental Consultants, Inc. 11050 White Rock Rd, Suite 110

Rancho Cordova, CA 95670

Project: 7376

Project Number: [none]

Project Manager: John Reay

Reported: 07/02/2009 8:28

BCL Sample ID: 0	907815-05	Client Sample	e Name:	7376, MW	/-2C@30, (6/12/2009 8:4	40:00AM							
		_					Prep	Run	_	Instru-		QC	MB	Lab
Constituent		Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
1,1,1,2-Tetrachloroethane		ND	mg/kg	1.2		EPA-8260	06/16/09	06/18/09 12:06	JSK	MS-V3	250	BSF1054	ND	A01
1,1,2,2-Tetrachloroethane		ND	mg/kg	1.2		EPA-8260	06/16/09	06/18/09 12:06	JSK	MS-V3	250	BSF1054	ND	A01
Tetrachloroethene		ND	mg/kg	1.2		EPA-8260	06/16/09	06/18/09 12:06	JSK	MS-V3	250	BSF1054	ND	A01
Toluene		1.5	mg/kg	1.2		EPA-8260	06/16/09	06/18/09 12:06	JSK	MS-V3	250	BSF1054	ND	A01
1,2,3-Trichlorobenzene		ND	mg/kg	1.2		EPA-8260	06/16/09	06/18/09 12:06	JSK	MS-V3	250	BSF1054	ND	A01
1,2,4-Trichlorobenzene		ND	mg/kg	1.2		EPA-8260	06/16/09	06/18/09 12:06	JSK	MS-V3	250	BSF1054	ND	A01
1,1,1-Trichloroethane		ND	mg/kg	1.2		EPA-8260	06/16/09	06/18/09 12:06	JSK	MS-V3	250	BSF1054	ND	A01
1,1,2-Trichloroethane		ND	mg/kg	1.2		EPA-8260	06/16/09	06/18/09 12:06	JSK	MS-V3	250	BSF1054	ND	A01
Trichloroethene		ND	mg/kg	1.2		EPA-8260	06/16/09	06/18/09 12:06	JSK	MS-V3	250	BSF1054	ND	A01
Trichlorofluoromethane		ND	mg/kg	1.2		EPA-8260	06/16/09	06/18/09 12:06	JSK	MS-V3	250	BSF1054	ND	A01
1,2,3-Trichloropropane		ND	mg/kg	1.2		EPA-8260	06/16/09	06/18/09 12:06	JSK	MS-V3	250	BSF1054	ND	A01
1,1,2-Trichloro-1,2,2-trifluoro	oethane	ND	mg/kg	1.2		EPA-8260	06/16/09	06/18/09 12:06	JSK	MS-V3	250	BSF1054	ND	A01
1,2,4-Trimethylbenzene		ND	mg/kg	1.2		EPA-8260	06/16/09	06/18/09 12:06	JSK	MS-V3	250	BSF1054	ND	A01
1,3,5-Trimethylbenzene		ND	mg/kg	1.2		EPA-8260	06/16/09	06/18/09 12:06	JSK	MS-V3	250	BSF1054	ND	A01
Vinyl chloride		ND	mg/kg	1.2		EPA-8260	06/16/09	06/18/09 12:06	JSK	MS-V3	250	BSF1054	ND	A01
Total Xylenes		12	mg/kg	2.5		EPA-8260	06/16/09	06/18/09 12:06	JSK	MS-V3	250	BSF1054	ND	A01
t-Amyl Methyl ether		ND	mg/kg	1.2		EPA-8260	06/16/09	06/18/09 12:06	JSK	MS-V3	250	BSF1054	ND	A01
t-Butyl alcohol		ND	mg/kg	12		EPA-8260	06/16/09	06/18/09 12:06	JSK	MS-V3	250	BSF1054	ND	A01
Diisopropyl ether		ND	mg/kg	1.2		EPA-8260	06/16/09	06/18/09 12:06	JSK	MS-V3	250	BSF1054	ND	A01
Ethanol		ND	mg/kg	250		EPA-8260	06/16/09	06/18/09 12:06	JSK	MS-V3	250	BSF1054	ND	A01
Ethyl t-butyl ether		ND	mg/kg	1.2		EPA-8260	06/16/09	06/18/09 12:06	JSK	MS-V3	250	BSF1054	ND	A01
Total Purgeable Petroleum Hydrocarbons		650	mg/kg	100		Luft-GC/MS	06/16/09	06/17/09 00:34	JSK	MS-V3	500	BSF1054	ND	A01

Delta Environmental Consultants, Inc.

Project: 7376

Reported: 07/02/2009 8:28

11050 White Rock Rd, Suite 110Project Number: [none]Rancho Cordova, CA 95670Project Manager: John Reay

BCL Sample ID: 0907815-05	Client Sample	e Name:	7376, MW	/-2C@30,	6/12/2009 8	:40:00AM							
	•					Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
1,2-Dichloroethane-d4 (Surrogate)	97.1	%	70 - 121 (LC	L - UCL)	EPA-8260	06/16/09	06/17/09 00:34	JSK	MS-V3	500	BSF1054		
1,2-Dichloroethane-d4 (Surrogate)	98.7	%	70 - 121 (LC	L - UCL)	EPA-8260	06/16/09	06/18/09 12:06	JSK	MS-V3	250	BSF1054		
Toluene-d8 (Surrogate)	103	%	81 - 117 (LC	L - UCL)	EPA-8260	06/16/09	06/18/09 12:06	JSK	MS-V3	250	BSF1054		
Toluene-d8 (Surrogate)	97.2	%	81 - 117 (LC	L - UCL)	EPA-8260	06/16/09	06/17/09 00:34	JSK	MS-V3	500	BSF1054		
4-Bromofluorobenzene (Surrogate)	99.8	%	74 - 121 (LC	L - UCL)	EPA-8260	06/16/09	06/18/09 12:06	JSK	MS-V3	250	BSF1054		
4-Bromofluorobenzene (Surrogate)	101	%	74 - 121 (LC	L - UCL)	EPA-8260	06/16/09	06/17/09 00:34	JSK	MS-V3	500	BSF1054		

Delta Environmental Consultants, Inc.

11050 White Rock Rd, Suite 110 Rancho Cordova, CA 95670 Project: 7376

Project Number: [none]
Project Manager: John Reay

Reported: 07/02/2009 8:28

BCL Sample ID:	0907815-05	Client Sampl	e Name:	7376, MW	/-2C@30,	6/12/2009 8:	40:00AM							
		-					Prep	Run		Instru-		QC	МВ	Lab
Constituent		Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Acenaphthene		ND	mg/kg	2.5		EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
Acenaphthylene		ND	mg/kg	2.5		EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
Aldrin		ND	mg/kg	2.5		EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
Aniline		ND	mg/kg	5.0		EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
Anthracene		ND	mg/kg	2.5		EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
Benzidine		ND	mg/kg	74		EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
Benzo[a]anthracene		ND	mg/kg	2.5		EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
Benzo[b]fluoranthene		ND	mg/kg	2.5		EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
Benzo[k]fluoranthene		ND	mg/kg	2.5		EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
Benzo[a]pyrene		ND	mg/kg	2.5		EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
Benzo[g,h,i]perylene		ND	mg/kg	2.5		EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
Benzoic acid		ND	mg/kg	12		EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
Benzyl alcohol		ND	mg/kg	2.5		EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
Benzyl butyl phthalate		ND	mg/kg	2.5		EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
alpha-BHC		ND	mg/kg	2.5		EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
beta-BHC		ND	mg/kg	2.5		EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
delta-BHC		ND	mg/kg	2.5		EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
gamma-BHC (Lindane)		ND	mg/kg	2.5		EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
bis(2-Chloroethoxy)meth	ane	ND	mg/kg	2.5		EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
bis(2-Chloroethyl) ether		ND	mg/kg	2.5		EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
bis(2-Chloroisopropyl)eth	ner	ND	mg/kg	2.5		EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
bis(2-Ethylhexyl)phthalat	е	ND	mg/kg	5.0		EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
4-Bromophenyl phenyl et	ther	ND	mg/kg	2.5		EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10

Delta Environmental Consultants, Inc.
11050 White Rock Rd, Suite 110

Project Number: [none]

Reported: 07/02/2009 8:28

Rancho Cordova, CA 95670 Project Manager: John Reay

Base Neutral and Acid Extractables Organic Analysis (EPA Method 8270C)

Project: 7376

BCL Sample ID: 09078	15-05	Client Sampl	e Name:	/3/6, MW	/-2C@30, (6/12/2009 8:	40:00AM							
							Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
4-Chloroaniline		ND	mg/kg	2.5		EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
2-Chloronaphthalene		ND	mg/kg	2.5		EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
4-Chlorophenyl phenyl ether		ND	mg/kg	2.5		EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
Chrysene		ND	mg/kg	2.5		EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
4,4'-DDD		ND	mg/kg	2.5		EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
4,4'-DDE		ND	mg/kg	2.5		EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
4,4'-DDT		ND	mg/kg	2.5		EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
Dibenzo[a,h]anthracene		ND	mg/kg	2.5		EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
Dibenzofuran		ND	mg/kg	2.5		EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
1,2-Dichlorobenzene		ND	mg/kg	2.5		EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
1,3-Dichlorobenzene		ND	mg/kg	2.5		EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
1,4-Dichlorobenzene		ND	mg/kg	2.5		EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
3,3-Dichlorobenzidine		ND	mg/kg	5.0		EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
Dieldrin		ND	mg/kg	2.5		EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
Diethyl phthalate		ND	mg/kg	2.5		EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
Dimethyl phthalate		ND	mg/kg	2.5		EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
Di-n-butyl phthalate		ND	mg/kg	2.5		EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
2,4-Dinitrotoluene		ND	mg/kg	2.5		EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
2,6-Dinitrotoluene		ND	mg/kg	2.5		EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
Di-n-octyl phthalate		ND	mg/kg	2.5		EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
1,2-Diphenylhydrazine		ND	mg/kg	2.5		EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
Endosulfan I		ND	mg/kg	5.0		EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
Endosulfan II		ND	mg/kg	5.0		EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10

11050 White Rock Rd, Suite 110Project Number: [none]Rancho Cordova, CA 95670Project Manager: John Reay

BCL Sample ID: 090	7815-05	Client Sampl	e Name:	7376, MW	/-2C@30, 6	6/12/2009 8:	40:00AM							
							Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Endosulfan sulfate		ND	mg/kg	2.5		EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
Endrin		ND	mg/kg	5.0		EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
Endrin aldehyde		ND	mg/kg	12		EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
Fluoranthene		ND	mg/kg	2.5		EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
Fluorene		ND	mg/kg	2.5		EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
Heptachlor		ND	mg/kg	2.5		EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
Heptachlor epoxide		ND	mg/kg	2.5		EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
Hexachlorobenzene		ND	mg/kg	2.5		EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
Hexachlorobutadiene		ND	mg/kg	2.5		EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
Hexachlorocyclopentadiene		ND	mg/kg	2.5		EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
Hexachloroethane		ND	mg/kg	2.5		EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
Indeno[1,2,3-cd]pyrene		ND	mg/kg	2.5		EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
Isophorone		ND	mg/kg	2.5		EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
2-Methylnaphthalene		ND	mg/kg	2.5		EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
Naphthalene		ND	mg/kg	2.5		EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
2-Naphthylamine		ND	mg/kg	74		EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
2-Nitroaniline		ND	mg/kg	2.5		EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
3-Nitroaniline		ND	mg/kg	5.0		EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
4-Nitroaniline		ND	mg/kg	5.0		EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
Nitrobenzene		ND	mg/kg	2.5		EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
N-Nitrosodimethylamine		ND	mg/kg	2.5		EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
N-Nitrosodi-N-propylamine		ND	mg/kg	2.5		EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
N-Nitrosodiphenylamine		ND	mg/kg	2.5		EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10

Delta Environmental Consultants, Inc. 11050 White Rock Rd, Suite 110

Rancho Cordova, CA 95670

Project: 7376

Reported: 07/02/2009 8:28

Project Number: [none] Project Manager: John Reay

BCL Sample ID: 0907815-05	Client Sample	e Name:	7376, MW-2C@3	80, 6/12/2009 8:	40:00AM							
	•				Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL MD		Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Phenanthrene	ND	mg/kg	2.5	EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
Pyrene	ND	mg/kg	2.5	EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
1,2,4-Trichlorobenzene	ND	mg/kg	2.5	EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
4-Chloro-3-methylphenol	ND	mg/kg	5.0	EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
2-Chlorophenol	ND	mg/kg	2.5	EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
2,4-Dichlorophenol	ND	mg/kg	2.5	EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
2,4-Dimethylphenol	ND	mg/kg	2.5	EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
4,6-Dinitro-2-methylphenol	ND	mg/kg	12	EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
2,4-Dinitrophenol	ND	mg/kg	12	EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
2-Methylphenol	ND	mg/kg	2.5	EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
3- & 4-Methylphenol	ND	mg/kg	5.0	EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
2-Nitrophenol	ND	mg/kg	2.5	EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
4-Nitrophenol	ND	mg/kg	5.0	EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
Pentachlorophenol	ND	mg/kg	5.0	EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
Phenol	ND	mg/kg	2.5	EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
2,4,5-Trichlorophenol	ND	mg/kg	5.0	EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
2,4,6-Trichlorophenol	ND	mg/kg	5.0	EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688	ND	A10
2-Fluorophenol (Surrogate)	83.7	%	42 - 137 (LCL - UCL)	EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688		A10
Phenol-d5 (Surrogate)	93.4	%	36 - 137 (LCL - UCL)	EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688		A10
Nitrobenzene-d5 (Surrogate)	88.7	%	34 - 135 (LCL - UCL)	EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688		A10
2-Fluorobiphenyl (Surrogate)	109	%	40 - 135 (LCL - UCL)	EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688		A10
2,4,6-Tribromophenol (Surrogate)	90.3	%	54 - 162 (LCL - UCL)	EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688		A10
p-Terphenyl-d14 (Surrogate)	101	%	20 - 176 (LCL - UCL)	EPA-8270C	06/22/09	06/29/09 17:37	SKC	MS-B2	24.752	BSF1688		A10

Delta Environmental Consultants, Inc. 11050 White Rock Rd, Suite 110

Rancho Cordova, CA 95670

Project: 7376

Project Number: [none]
Project Manager: John Reay

Reported: 07/02/2009 8:28

Purgeable Aromatics and Total Petroleum Hydrocarbons

BCL Sample ID:	0907815-05	Client Sample	e Name:	7376, MW-2C@3	80, 6/12/2009	8:40:00AM							
						Prep	Run		Instru-		QC	МВ	Lab
Constituent		Result	Units	PQL MD	L Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
TPH - Light Naptha		ND	mg/kg	1200	Luft/FFP	06/17/09	06/22/09 09:08	CKD	GC-2	25.084	BSF1330	ND	A01
TPH - Aviation Gas		ND	mg/kg	1200	Luft/FFP	06/17/09	06/22/09 09:08	CKD	GC-2	25.084	BSF1330	ND	A01
TPH - Stoddard Solvent		ND	mg/kg	500	Luft/FFP	06/17/09	06/22/09 09:08	CKD	GC-2	25.084	BSF1330	ND	A01
TPH - Heavy Naptha		ND	mg/kg	250	Luft/FFP	06/17/09	06/22/09 09:08	CKD	GC-2	25.084	BSF1330	ND	A01
TPH - Gasoline		ND	mg/kg	500	Luft/FFP	06/17/09	06/22/09 09:08	CKD	GC-2	25.084	BSF1330	ND	A01
TPH - Jet Fuel (JP4)		ND	mg/kg	250	Luft/FFP	06/17/09	06/22/09 09:08	CKD	GC-2	25.084	BSF1330	ND	A01
TPH - Jet Fuel (JP5)		ND	mg/kg	250	Luft/FFP	06/17/09	06/22/09 09:08	CKD	GC-2	25.084	BSF1330	ND	A01
TPH - Jet Fuel (JP8)		ND	mg/kg	250	Luft/FFP	06/17/09	06/22/09 09:08	CKD	GC-2	25.084	BSF1330	ND	A01
TPH - Kerosene		ND	mg/kg	250	Luft/FFP	06/17/09	06/22/09 09:08	CKD	GC-2	25.084	BSF1330	ND	A01
TPH - Diesel (FFP)		1500	mg/kg	250	Luft/FFP	06/17/09	06/22/09 09:08	CKD	GC-2	25.084	BSF1330	ND	A01
TPH - Fuel Oil #6		ND	mg/kg	250	Luft/FFP	06/17/09	06/22/09 09:08	CKD	GC-2	25.084	BSF1330	ND	A01
TPH - Crude Oil		ND	mg/kg	500	Luft/FFP	06/17/09	06/22/09 09:08	CKD	GC-2	25.084	BSF1330	ND	A01
TPH - Hydraulic Oil / Mot	tor Oil	1100	mg/kg	500	Luft/FFP	06/17/09	06/22/09 09:08	CKD	GC-2	25.084	BSF1330	ND	A01
TPH - WD-40		ND	mg/kg	250	Luft/FFP	06/17/09	06/22/09 09:08	CKD	GC-2	25.084	BSF1330	ND	A01
Tetracosane (Surrogate)		0	%	20 - 145 (LCL - UCL) Luft/FFP	06/17/09	06/22/09 09:08	CKD	GC-2	25.084	BSF1330		A01,A17

Project: 7376

Project Number: [none]
Project Manager: John Reay

Reported: 07/02/2009 8:28

BCL Sample ID:	0907815-06	Client Sample	e Name:	7376, MW	-2C@35, 6	6/12/2009 8	:40:00AM							
							Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene		19	mg/kg	0.25		EPA-8260	06/16/09	06/18/09 02:53	JSK	MS-V3	50	BSF1054	ND	A01
Bromobenzene		ND	mg/kg	0.25		EPA-8260	06/16/09	06/18/09 02:53	JSK	MS-V3	50	BSF1054	ND	A01
Bromochloromethane		ND	mg/kg	0.25		EPA-8260	06/16/09	06/18/09 02:53	JSK	MS-V3	50	BSF1054	ND	A01
Bromodichloromethane		ND	mg/kg	0.25		EPA-8260	06/16/09	06/18/09 02:53	JSK	MS-V3	50	BSF1054	ND	A01
Bromoform		ND	mg/kg	0.25		EPA-8260	06/16/09	06/18/09 02:53	JSK	MS-V3	50	BSF1054	ND	A01
Bromomethane		ND	mg/kg	0.25		EPA-8260	06/16/09	06/18/09 02:53	JSK	MS-V3	50	BSF1054	ND	A01
n-Butylbenzene		1.4	mg/kg	0.25		EPA-8260	06/16/09	06/18/09 02:53	JSK	MS-V3	50	BSF1054	ND	A01
sec-Butylbenzene		0.34	mg/kg	0.25		EPA-8260	06/16/09	06/18/09 02:53	JSK	MS-V3	50	BSF1054	ND	A01
tert-Butylbenzene		ND	mg/kg	0.25		EPA-8260	06/16/09	06/18/09 02:53	JSK	MS-V3	50	BSF1054	ND	A01
Carbon tetrachloride		ND	mg/kg	0.25		EPA-8260	06/16/09	06/18/09 02:53	JSK	MS-V3	50	BSF1054	ND	A01
Chlorobenzene		ND	mg/kg	0.25		EPA-8260	06/16/09	06/18/09 02:53	JSK	MS-V3	50	BSF1054	ND	A01
Chloroethane		ND	mg/kg	0.25		EPA-8260	06/16/09	06/18/09 02:53	JSK	MS-V3	50	BSF1054	ND	A01
Chloroform		ND	mg/kg	0.25		EPA-8260	06/16/09	06/18/09 02:53	JSK	MS-V3	50	BSF1054	ND	A01
Chloromethane		ND	mg/kg	0.25		EPA-8260	06/16/09	06/18/09 02:53	JSK	MS-V3	50	BSF1054	ND	A01
2-Chlorotoluene		ND	mg/kg	0.25		EPA-8260	06/16/09	06/18/09 02:53	JSK	MS-V3	50	BSF1054	ND	A01
4-Chlorotoluene		ND	mg/kg	0.25		EPA-8260	06/16/09	06/18/09 02:53	JSK	MS-V3	50	BSF1054	ND	A01
Dibromochloromethane		ND	mg/kg	0.25		EPA-8260	06/16/09	06/18/09 02:53	JSK	MS-V3	50	BSF1054	ND	A01
1,2-Dibromo-3-chloropropa	ane	ND	mg/kg	0.25		EPA-8260	06/16/09	06/18/09 02:53	JSK	MS-V3	50	BSF1054	ND	A01
1,2-Dibromoethane		ND	mg/kg	0.25		EPA-8260	06/16/09	06/18/09 02:53	JSK	MS-V3	50	BSF1054	ND	A01
Dibromomethane		ND	mg/kg	0.25		EPA-8260	06/16/09	06/18/09 02:53	JSK	MS-V3	50	BSF1054	ND	A01
1,2-Dichlorobenzene		ND	mg/kg	0.25		EPA-8260	06/16/09	06/18/09 02:53	JSK	MS-V3	50	BSF1054	ND	A01
1,3-Dichlorobenzene		ND	mg/kg	0.25		EPA-8260	06/16/09	06/18/09 02:53	JSK	MS-V3	50	BSF1054	ND	A01
1,4-Dichlorobenzene		ND	mg/kg	0.25		EPA-8260	06/16/09	06/18/09 02:53	JSK	MS-V3	50	BSF1054	ND	A01

Project Number: [none] Project Manager: John Reay

Reported: 07/02/2009 8:28

Dichlorodiffuoremethane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF 1054 ND A01	BCL Sample ID: 0907815-06	Client Sample	e Name:	7376, MV	V-2C@35,	6/12/2009 8	:40:00AM							
Dichlorodifiluromethane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 0.253 JSK MS-V3 50 BSF 1054 ND A01							Prep	Run		Instru-		QC	MB	Lab
1.1-Dichloroethane	Constituent	Result	Units		MDL								Bias	
1.2-Dichloroethane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1.1-Dichloroethene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1.1-Dichloroethene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1.1-Dichloroethene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1.1-Dichloroethene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1.2-Dichloroethene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1.2-Dichloropropane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1.2-Dichloropropane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1.2-Dichloropropane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1.1-Dichloropropane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1.1-Dichloropropane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1.1-Dichloropropane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1.1-Dichloropropane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1.1-Dichloropropane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1.1-Dichloropropane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1.1-Dichloropropane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1.1-Dichloropropane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1.1-Dichloropropane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1.1-Dichloropropane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1.1-Dichloropropane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1.1-Dichloropropane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1.1-Dichloropropane ND mg/kg 0.25 EPA-8260 06/16/09 06/18	Dichlorodifluoromethane	ND	mg/kg	0.25		EPA-8260	06/16/09	06/18/09 02:53	JSK	MS-V3	50	BSF1054	ND	A01
1.1-Dichloroethene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 cis-1,2-Dichloroethene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 trans-1,2-Dichloroethene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 Taras-1,2-Dichloroethene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1.2-Dichloroptopane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1.2-Dichloroptopane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1.3-Dichloroptopane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1.3-Dichloroptopane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1.3-Dichloroptopane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1.3-Dichloroptopane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1.3-Dichloroptopane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1.3-Dichloroptopane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1.3-Dichloroptopane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1.3-Dichloroptopane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1.3-Dichloroptopane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1.3-Dichloroptopane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1.3-Dichloroptopane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1.3-Dichloroptopane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1.3-Disporopy/blenzene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1.3-Disporopy/blenzene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1.3-Disporopy/blenzene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1.3-Disporopy/blenzene ND mg/k	1,1-Dichloroethane	ND	mg/kg	0.25		EPA-8260	06/16/09	06/18/09 02:53	JSK	MS-V3	50	BSF1054	ND	A01
cis-1,2-Dichloroethene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 trans-1,2-Dichloroethene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1,2-Dichloroptopane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1,2-Dichloroptopane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1,3-Dichloroptopane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1,3-Dichloroptopane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1,3-Dichloroptopane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1,3-Dichloroptopane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1,3-Dichloroptopane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1,3-Dichloroptopane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1,3-Dichloroptopane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1,3-Dichloroptopane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1,3-Dichloroptopane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1,3-Dichloroptopane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1,3-Dichloroptopane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1,3-Dichloroptopane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1,3-Dichloroptopane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1,3-Dichloroptopane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1,3-Dichloroptopane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1,3-Dichloroptopane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1,3-Dichloroptopane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1,3-Dichloroptopane ND mg/kg 0.25 EPA-8260	1,2-Dichloroethane	ND	mg/kg	0.25		EPA-8260	06/16/09	06/18/09 02:53	JSK	MS-V3	50	BSF1054	ND	A01
trans-1,2-Dichloroethene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 Total 1,2-Dichloroethene ND mg/kg 0.50 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1,2-Dichloropropane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1,3-Dichloropropane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1,3-Dichloropropane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1,1-Dichloropropene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 <td>1,1-Dichloroethene</td> <td>ND</td> <td>mg/kg</td> <td>0.25</td> <td></td> <td>EPA-8260</td> <td>06/16/09</td> <td>06/18/09 02:53</td> <td>JSK</td> <td>MS-V3</td> <td>50</td> <td>BSF1054</td> <td>ND</td> <td>A01</td>	1,1-Dichloroethene	ND	mg/kg	0.25		EPA-8260	06/16/09	06/18/09 02:53	JSK	MS-V3	50	BSF1054	ND	A01
Total 1,2-Dichloroptehene ND mg/kg 0.50 EPA-8260 06/16/09 06/16/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1,2-Dichloropropane ND mg/kg 0.25 EPA-8260 06/16/09 06/16/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1,3-Dichloropropane ND mg/kg 0.25 EPA-8260 06/16/09 06/16/09 02:53 JSK MS-V3 50 BSF1054 ND A01 2,2-Dichloropropane ND mg/kg 0.25 EPA-8260 06/16/09 06/16/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1,1-Dichloropropane ND mg/kg 0.25 EPA-8260 06/16/09 06/16/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1,1-Dichloropropane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1,1-Dichloropropane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1,1-Dichloropropane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1,1-Dichloropropane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1,1-Dichloropropane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1,1-Dichloropropane ND mg/kg 0.50 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 Ethylbenzane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1,1-Dichloropropane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1,1-Dichloropropane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1,1-Dichloropropane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1,1-Dichloropropane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1,1-Dichloropropane ND mg/kg 0.25 EPA	cis-1,2-Dichloroethene	ND	mg/kg	0.25		EPA-8260	06/16/09	06/18/09 02:53	JSK	MS-V3	50	BSF1054	ND	A01
1,2-Dichloropropane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1,3-Dichloropropane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 2,2-Dichloropropane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1,1-Dichloropropane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 cis-1,3-Dichloropropene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 trans-1,3-Dichloropropene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 trans-1,3-Dichloropropene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 trans-1,3-Dichloropropene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 trans-1,3-Dichloropropene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 trans-1,3-Dichloropropene ND mg/kg 0.50 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 trans-1,3-Dichloropropene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 trans-1,3-Dichloropropene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 trans-1,3-Dichloropropene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 trans-1,3-Dichloropropene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 trans-1,3-Dichloropropene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 trans-1,3-Dichloropropene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 Methylete chloride ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 Methylete chloride ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 ND Mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 ND Mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 ND Mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 ND Mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02	trans-1,2-Dichloroethene	ND	mg/kg	0.25		EPA-8260	06/16/09	06/18/09 02:53	JSK	MS-V3	50	BSF1054	ND	A01
1,3-Dichloropropane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 2,2-Dichloropropane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1,1-Dichloropropane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1,1-Dichloropropane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1,1-Dichloropropane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1,1-Dichloropropane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1,1-Dichloropropane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1,1-Dichloropropane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1,1-Dichloropropane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1,1-Dichloropropane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1,1-Dichloropropane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1,1-Dichloropropane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1,1-Dichloropropane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1,1-Dichloropropane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1,1-Dichloropropane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1,1-Dichloropropane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1,1-Dichloropropane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1,1-Dichloropropane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1,1-Dichloropropane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1,1-Dichloropropane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1,1-Dichloropropane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1,1-Dichloropropane ND mg/kg 0.25 EPA-8260 06/16/09	Total 1,2-Dichloroethene	ND	mg/kg	0.50		EPA-8260	06/16/09	06/18/09 02:53	JSK	MS-V3	50	BSF1054	ND	A01
2,2-Dichloropropane ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 1,1-Dichloropropene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 cis-1,3-Dichloropropene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 trans-1,3-Dichloropropene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 Total 1,3-Dichloropropene ND mg/kg 0.50 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 Ethylbenzene 3.9 mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 Bsopropylibenzene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 Bsopropylibenzene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 Bsopropylibenzene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 Bsopropylibenzene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 Bsopropylibenzene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 Methylene chloride ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 Methylene chloride ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 Methylene chloride ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 Methylene chloride ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 ND Mp/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 ND Mp/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 ND ND Mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 ND ND Mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 ND ND Mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 ND ND Mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 ND ND Mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 ND ND Mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 ND ND M	1,2-Dichloropropane	ND	mg/kg	0.25		EPA-8260	06/16/09	06/18/09 02:53	JSK	MS-V3	50	BSF1054	ND	A01
1,1-Dichloropropene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 cis-1,3-Dichloropropene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 trans-1,3-Dichloropropene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 Trans-1,3-Dichloropropene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 Ethylbenzene 3.9 mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 Ethylbenzene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 Stopropylbenzene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 Exactlorobutadiene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 Depisopropylbenzene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 Depisopropylbenzene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 Depisopropylbenzene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 Depisopropylbenzene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 Depisopropylbenzene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 Depisopropylbenzene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 Depisopropylbenzene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 Depisopropylbenzene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 Depisopropylbenzene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 Depisopropylbenzene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 Depisopropylbenzene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 Depisopropylbenzene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 Depisopropylbenzene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 Depisopropylbenzene ND mg/kg 0.25 EPA-8260 06/16/09	1,3-Dichloropropane	ND	mg/kg	0.25		EPA-8260	06/16/09	06/18/09 02:53	JSK	MS-V3	50	BSF1054	ND	A01
cis-1,3-Dichloropropene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 trans-1,3-Dichloropropene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 Total 1,3-Dichloropropene ND mg/kg 0.50 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 Ethylbenzene 3.9 mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 Hexachlorobutadiene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 Isopropylbenzene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50	2,2-Dichloropropane	ND	mg/kg	0.25		EPA-8260	06/16/09	06/18/09 02:53	JSK	MS-V3	50	BSF1054	ND	A01
trans-1,3-Dichloropropene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 Total 1,3-Dichloropropene ND mg/kg 0.50 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 Ethylbenzene 3.9 mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 Hexachlorobutadiene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 Isopropylbenzene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 Isopropyltoluene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 Methylene chloride ND mg/kg 0.50 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 Methylene chloride ND mg/kg 0.50 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 Methyl t-butyl ether 6.6 mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 Naphthalene 0.60 mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 Naphthalene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 Naphthalene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 Naphthalene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 Naphthalene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01	1,1-Dichloropropene	ND	mg/kg	0.25		EPA-8260	06/16/09	06/18/09 02:53	JSK	MS-V3	50	BSF1054	ND	A01
Total 1,3-Dichloropropene ND mg/kg 0.50 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 Ethylbenzene 3.9 mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 Hexachlorobutadiene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 Isopropylbenzene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 p-Isopropylbenzene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 Methylene chloride ND mg/kg 0.50 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 B	cis-1,3-Dichloropropene	ND	mg/kg	0.25		EPA-8260	06/16/09	06/18/09 02:53	JSK	MS-V3	50	BSF1054	ND	A01
Ethylbenzene 3.9 mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 Hexachlorobutadiene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 Isopropylbenzene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 p-isopropyltoluene 0.57 mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 Methylene chloride ND mg/kg 0.50 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 Methyl t-butyl ether 6.6 mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF	trans-1,3-Dichloropropene	ND	mg/kg	0.25		EPA-8260	06/16/09	06/18/09 02:53	JSK	MS-V3	50	BSF1054	ND	A01
Hexachlorobutadiene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 Isopropylbenzene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 P-Isopropyltoluene 0.57 mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 Methylene chloride ND mg/kg 0.50 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 Methyl t-butyl ether 6.6 mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 Naphthalene 0.60 mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 n-Propylbenzene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01	Total 1,3-Dichloropropene	ND	mg/kg	0.50		EPA-8260	06/16/09	06/18/09 02:53	JSK	MS-V3	50	BSF1054	ND	A01
Sopropylbenzene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01	Ethylbenzene	3.9	mg/kg	0.25		EPA-8260	06/16/09	06/18/09 02:53	JSK	MS-V3	50	BSF1054	ND	A01
p-Isopropyltoluene 0.57 mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 Methylene chloride ND mg/kg 0.50 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 Methylene chloride EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 Maphthalene 0.60 mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 Naphthalene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 A01	Hexachlorobutadiene	ND	mg/kg	0.25		EPA-8260	06/16/09	06/18/09 02:53	JSK	MS-V3	50	BSF1054	ND	A01
Methylene chloride ND mg/kg 0.50 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 Methyl t-butyl ether 6.6 mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 Naphthalene 0.60 mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 n-Propylbenzene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01	Isopropylbenzene	ND	mg/kg	0.25		EPA-8260	06/16/09	06/18/09 02:53	JSK	MS-V3	50	BSF1054	ND	A01
Methyl t-butyl ether 6.6 mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 Naphthalene 0.60 mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 n-Propylbenzene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01	p-lsopropyltoluene	0.57	mg/kg	0.25		EPA-8260	06/16/09	06/18/09 02:53	JSK	MS-V3	50	BSF1054	ND	A01
Naphthalene 0.60 mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01 n-Propylbenzene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01	Methylene chloride	ND	mg/kg	0.50		EPA-8260	06/16/09	06/18/09 02:53	JSK	MS-V3	50	BSF1054	ND	A01
n-Propylbenzene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01	Methyl t-butyl ether	6.6	mg/kg	0.25		EPA-8260	06/16/09	06/18/09 02:53	JSK	MS-V3	50	BSF1054	ND	A01
	Naphthalene	0.60	mg/kg	0.25		EPA-8260	06/16/09	06/18/09 02:53	JSK	MS-V3	50	BSF1054	ND	A01
Styrene ND mg/kg 0.25 EPA-8260 06/16/09 06/18/09 02:53 JSK MS-V3 50 BSF1054 ND A01	n-Propylbenzene	ND	mg/kg	0.25		EPA-8260	06/16/09	06/18/09 02:53	JSK	MS-V3	50	BSF1054	ND	A01
	Styrene	ND	mg/kg	0.25		EPA-8260	06/16/09	06/18/09 02:53	JSK	MS-V3	50	BSF1054	ND	A01

Delta Environmental Consultants, Inc.
Project: 7376
11050 White Rock Rd, Suite 110
Project Number: [none]

Rancho Cordova, CA 95670 Project Manager: John Reay

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 0907815-06	Client Sample	e Name:	7376, MW	/-2C@35, (6/12/2009 8:	40:00AM							
						Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
1,1,1,2-Tetrachloroethane	ND	mg/kg	0.25		EPA-8260	06/16/09	06/18/09 02:53	JSK	MS-V3	50	BSF1054	ND	A01
1,1,2,2-Tetrachloroethane	ND	mg/kg	0.25		EPA-8260	06/16/09	06/18/09 02:53	JSK	MS-V3	50	BSF1054	ND	A01
Tetrachloroethene	ND	mg/kg	0.25		EPA-8260	06/16/09	06/18/09 02:53	JSK	MS-V3	50	BSF1054	ND	A01
Toluene	2.9	mg/kg	0.25		EPA-8260	06/16/09	06/18/09 02:53	JSK	MS-V3	50	BSF1054	ND	A01
1,2,3-Trichlorobenzene	ND	mg/kg	0.25		EPA-8260	06/16/09	06/18/09 02:53	JSK	MS-V3	50	BSF1054	ND	A01
1,2,4-Trichlorobenzene	ND	mg/kg	0.25		EPA-8260	06/16/09	06/18/09 02:53	JSK	MS-V3	50	BSF1054	ND	A01
1,1,1-Trichloroethane	ND	mg/kg	0.25		EPA-8260	06/16/09	06/18/09 02:53	JSK	MS-V3	50	BSF1054	ND	A01
1,1,2-Trichloroethane	ND	mg/kg	0.25		EPA-8260	06/16/09	06/18/09 02:53	JSK	MS-V3	50	BSF1054	ND	A01
Trichloroethene	ND	mg/kg	0.25		EPA-8260	06/16/09	06/18/09 02:53	JSK	MS-V3	50	BSF1054	ND	A01
Trichlorofluoromethane	ND	mg/kg	0.25		EPA-8260	06/16/09	06/18/09 02:53	JSK	MS-V3	50	BSF1054	ND	A01
1,2,3-Trichloropropane	ND	mg/kg	0.25		EPA-8260	06/16/09	06/18/09 02:53	JSK	MS-V3	50	BSF1054	ND	A01
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	mg/kg	0.25		EPA-8260	06/16/09	06/18/09 02:53	JSK	MS-V3	50	BSF1054	ND	A01
1,2,4-Trimethylbenzene	4.6	mg/kg	0.25		EPA-8260	06/16/09	06/18/09 02:53	JSK	MS-V3	50	BSF1054	ND	A01
1,3,5-Trimethylbenzene	0.65	mg/kg	0.25		EPA-8260	06/16/09	06/18/09 02:53	JSK	MS-V3	50	BSF1054	ND	A01
Vinyl chloride	ND	mg/kg	0.25		EPA-8260	06/16/09	06/18/09 02:53	JSK	MS-V3	50	BSF1054	ND	A01
Total Xylenes	15	mg/kg	0.50		EPA-8260	06/16/09	06/18/09 02:53	JSK	MS-V3	50	BSF1054	ND	A01
t-Amyl Methyl ether	ND	mg/kg	0.25		EPA-8260	06/16/09	06/18/09 02:53	JSK	MS-V3	50	BSF1054	ND	A01
t-Butyl alcohol	ND	mg/kg	2.5		EPA-8260	06/16/09	06/18/09 02:53	JSK	MS-V3	50	BSF1054	ND	A01
Diisopropyl ether	ND	mg/kg	0.25		EPA-8260	06/16/09	06/18/09 02:53	JSK	MS-V3	50	BSF1054	ND	A01
Ethanol	ND	mg/kg	50		EPA-8260	06/16/09	06/18/09 02:53	JSK	MS-V3	50	BSF1054	ND	A01
Ethyl t-butyl ether	ND	mg/kg	0.25		EPA-8260	06/16/09	06/18/09 02:53	JSK	MS-V3	50	BSF1054	ND	A01
Total Purgeable Petroleum Hydrocarbons	540	mg/kg	100		Luft-GC/MS	06/16/09	06/17/09 01:01	JSK	MS-V3	500	BSF1054	ND	A01

Reported: 07/02/2009 8:28

Delta Environmental Consultants, Inc. 11050 White Pock Pd. Suite 110

Project: 7376

Reported: 07/02/2009 8:28

11050 White Rock Rd, Suite 110 Rancho Cordova, CA 95670

Project Number: [none]
Project Manager: John Reay

BCL Sample ID: 0907815-06	Client Sample	e Name:	7376, MW	'-2C@35,	6/12/2009 8	:40:00AM							
						Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
1,2-Dichloroethane-d4 (Surrogate)	108	%	70 - 121 (LC	L - UCL)	EPA-8260	06/16/09	06/18/09 02:53	JSK	MS-V3	50	BSF1054		
1,2-Dichloroethane-d4 (Surrogate)	93.0	%	70 - 121 (LC	L - UCL)	EPA-8260	06/16/09	06/17/09 01:01	JSK	MS-V3	500	BSF1054		
Toluene-d8 (Surrogate)	101	%	81 - 117 (LC	L - UCL)	EPA-8260	06/16/09	06/17/09 01:01	JSK	MS-V3	500	BSF1054		
Toluene-d8 (Surrogate)	109	%	81 - 117 (LC	L - UCL)	EPA-8260	06/16/09	06/18/09 02:53	JSK	MS-V3	50	BSF1054		
4-Bromofluorobenzene (Surrogate)	117	%	74 - 121 (LC	L - UCL)	EPA-8260	06/16/09	06/18/09 02:53	JSK	MS-V3	50	BSF1054		
4-Bromofluorobenzene (Surrogate)	100	%	74 - 121 (LC	L - UCL)	EPA-8260	06/16/09	06/17/09 01:01	JSK	MS-V3	500	BSF1054		

11050 White Rock Rd, Suite 110Project Number: [none]Rancho Cordova, CA 95670Project Manager: John Reay

Constituent R Acenaphthene Acenaphthylene	Result ND ND	Units mg/kg	PQL			Prep	D		1				
Acenaphthene	ND		POI				Run		Instru-		QC	MB	Lab
		ma/ka		MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Acenaphthylene	ND	99	1.5		EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
		mg/kg	1.5		EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
Aldrin	ND	mg/kg	1.5		EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
Aniline	ND	mg/kg	3.0		EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
Anthracene	ND	mg/kg	1.5		EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
Benzidine	ND	mg/kg	45		EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
Benzo[a]anthracene	ND	mg/kg	1.5		EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
Benzo[b]fluoranthene	ND	mg/kg	1.5		EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
Benzo[k]fluoranthene	ND	mg/kg	1.5		EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
Benzo[a]pyrene	ND	mg/kg	1.5		EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
Benzo[g,h,i]perylene	ND	mg/kg	1.5		EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
Benzoic acid	ND	mg/kg	7.5		EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
Benzyl alcohol	ND	mg/kg	1.5		EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
Benzyl butyl phthalate	ND	mg/kg	1.5		EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
alpha-BHC	ND	mg/kg	1.5		EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
beta-BHC	ND	mg/kg	1.5		EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
delta-BHC	ND	mg/kg	1.5		EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
gamma-BHC (Lindane)	ND	mg/kg	1.5		EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
bis(2-Chloroethoxy)methane	ND	mg/kg	1.5		EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
bis(2-Chloroethyl) ether	ND	mg/kg	1.5		EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
bis(2-Chloroisopropyl)ether	ND	mg/kg	1.5		EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
bis(2-Ethylhexyl)phthalate	ND	mg/kg	3.0		EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
4-Bromophenyl phenyl ether	ND	mg/kg	1.5		EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10

Delta Environmental Consultants, Inc. 11050 White Rock Rd, Suite 110

Rancho Cordova, CA 95670

Project: 7376

Project Number: [none]
Project Manager: John Reay

Reported: 07/02/2009 8:28

BCL Sample ID: 0907815-06	Client Sample	e Name:	7376, MW	/-2C@35,	6/12/2009 8:	40:00AM							
						Prep	Run		Instru-		QC	МВ	Lab
Constituent	Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
4-Chloroaniline	ND	mg/kg	1.5		EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
2-Chloronaphthalene	ND	mg/kg	1.5		EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
4-Chlorophenyl phenyl ether	ND	mg/kg	1.5		EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
Chrysene	ND	mg/kg	1.5		EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
4,4'-DDD	ND	mg/kg	1.5		EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
4,4'-DDE	ND	mg/kg	1.5		EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
4,4'-DDT	ND	mg/kg	1.5		EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
Dibenzo[a,h]anthracene	ND	mg/kg	1.5		EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
Dibenzofuran	ND	mg/kg	1.5		EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
1,2-Dichlorobenzene	ND	mg/kg	1.5		EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
1,3-Dichlorobenzene	ND	mg/kg	1.5		EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
1,4-Dichlorobenzene	ND	mg/kg	1.5		EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
3,3-Dichlorobenzidine	ND	mg/kg	3.0		EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
Dieldrin	ND	mg/kg	1.5		EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
Diethyl phthalate	ND	mg/kg	1.5		EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
Dimethyl phthalate	ND	mg/kg	1.5		EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
Di-n-butyl phthalate	ND	mg/kg	1.5		EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
2,4-Dinitrotoluene	ND	mg/kg	1.5		EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
2,6-Dinitrotoluene	ND	mg/kg	1.5		EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
Di-n-octyl phthalate	ND	mg/kg	1.5		EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
1,2-Diphenylhydrazine	ND	mg/kg	1.5		EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
Endosulfan I	ND	mg/kg	3.0		EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
Endosulfan II	ND	mg/kg	3.0		EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10

Delta Environmental Consultants, Inc. 11050 White Rock Rd, Suite 110

Rancho Cordova, CA 95670

Project: 7376

Project Number: [none]
Project Manager: John Reay

Reported: 07/02/2009 8:28

BCL Sample ID:	0907815-06	Client Sampl	e Name:	7376, MW	/-2C@35,	6/12/2009 8:	40:00AM							
							Prep	Run		Instru-		QC	МВ	Lab
Constituent		Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Endosulfan sulfate		ND	mg/kg	1.5		EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
Endrin		ND	mg/kg	3.0		EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
Endrin aldehyde		ND	mg/kg	7.5		EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
Fluoranthene		ND	mg/kg	1.5		EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
Fluorene		6.2	mg/kg	1.5		EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
Heptachlor		ND	mg/kg	1.5		EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
Heptachlor epoxide		ND	mg/kg	1.5		EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
Hexachlorobenzene		ND	mg/kg	1.5		EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
Hexachlorobutadiene		ND	mg/kg	1.5		EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
Hexachlorocyclopentadier	ne	ND	mg/kg	1.5		EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
Hexachloroethane		ND	mg/kg	1.5		EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
Indeno[1,2,3-cd]pyrene		ND	mg/kg	1.5		EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
Isophorone		ND	mg/kg	1.5		EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
2-Methylnaphthalene		ND	mg/kg	1.5		EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
Naphthalene		ND	mg/kg	1.5		EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
2-Naphthylamine		ND	mg/kg	45		EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
2-Nitroaniline		ND	mg/kg	1.5		EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
3-Nitroaniline		ND	mg/kg	3.0		EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
4-Nitroaniline		ND	mg/kg	3.0		EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
Nitrobenzene		ND	mg/kg	1.5		EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
N-Nitrosodimethylamine		ND	mg/kg	1.5		EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
N-Nitrosodi-N-propylamine	9	ND	mg/kg	1.5		EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
N-Nitrosodiphenylamine		ND	mg/kg	1.5		EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10

11050 White Rock Rd, Suite 110Project Number: [none]Rancho Cordova, CA 95670Project Manager: John Reay

BCL Sample ID: 0907815-06	Client Sample	Name:	7376, MW-2C@3	5, 6/12/2009 8:	40:00AM							
	•				Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL MD		Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Phenanthrene	ND	mg/kg	1.5	EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
Pyrene	ND	mg/kg	1.5	EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
1,2,4-Trichlorobenzene	ND	mg/kg	1.5	EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
4-Chloro-3-methylphenol	ND	mg/kg	3.0	EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
2-Chlorophenol	ND	mg/kg	1.5	EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
2,4-Dichlorophenol	ND	mg/kg	1.5	EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
2,4-Dimethylphenol	ND	mg/kg	1.5	EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
4,6-Dinitro-2-methylphenol	ND	mg/kg	7.5	EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
2,4-Dinitrophenol	ND	mg/kg	7.5	EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
2-Methylphenol	ND	mg/kg	1.5	EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
3- & 4-Methylphenol	ND	mg/kg	3.0	EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
2-Nitrophenol	ND	mg/kg	1.5	EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
4-Nitrophenol	ND	mg/kg	3.0	EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
Pentachlorophenol	ND	mg/kg	3.0	EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
Phenol	ND	mg/kg	1.5	EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
2,4,5-Trichlorophenol	ND	mg/kg	3.0	EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
2,4,6-Trichlorophenol	ND	mg/kg	3.0	EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688	ND	A10
2-Fluorophenol (Surrogate)	88.1	%	42 - 137 (LCL - UCL)	EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688		A10
Phenol-d5 (Surrogate)	94.6	%	36 - 137 (LCL - UCL)	EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688		A10
Nitrobenzene-d5 (Surrogate)	94.0	%	34 - 135 (LCL - UCL)	EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688		A10
2-Fluorobiphenyl (Surrogate)	103	%	40 - 135 (LCL - UCL)	EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688		A10
2,4,6-Tribromophenol (Surrogate)	104	%	54 - 162 (LCL - UCL)	EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688		A10
p-Terphenyl-d14 (Surrogate)	119	%	20 - 176 (LCL - UCL)	EPA-8270C	06/22/09	06/30/09 07:05	SKC	MS-B1	15	BSF1688		A10

11050 White Rock Rd, Suite 110Project Number: [none]Rancho Cordova, CA 95670Project Manager: John Reay

Purgeable Aromatics and Total Petroleum Hydrocarbons

BCL Sample ID: 090	7815-06	Client Sample	Name:	7376, MW-2C@3	5, 6/12/2009 8	3:40:00AM							
	•					Prep	Run		Instru-		QC	МВ	Lab
Constituent		Result	Units	PQL MDI	_ Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
TPH - Light Naptha		ND	mg/kg	5000	Luft/FFP	06/17/09	06/22/09 09:32	CKD	GC-2	100.33	BSF1330	ND	A01
TPH - Aviation Gas		ND	mg/kg	5000	Luft/FFP	06/17/09	06/22/09 09:32	CKD	GC-2	100.33	BSF1330	ND	A01
TPH - Stoddard Solvent		ND	mg/kg	2000	Luft/FFP	06/17/09	06/22/09 09:32	CKD	GC-2	100.33	BSF1330	ND	A01
TPH - Heavy Naptha		ND	mg/kg	1000	Luft/FFP	06/17/09	06/22/09 09:32	CKD	GC-2	100.33	BSF1330	ND	A01
TPH - Gasoline		ND	mg/kg	2000	Luft/FFP	06/17/09	06/22/09 09:32	CKD	GC-2	100.33	BSF1330	ND	A01
TPH - Jet Fuel (JP4)		ND	mg/kg	1000	Luft/FFP	06/17/09	06/22/09 09:32	CKD	GC-2	100.33	BSF1330	ND	A01
TPH - Jet Fuel (JP5)		ND	mg/kg	1000	Luft/FFP	06/17/09	06/22/09 09:32	CKD	GC-2	100.33	BSF1330	ND	A01
TPH - Jet Fuel (JP8)		ND	mg/kg	1000	Luft/FFP	06/17/09	06/22/09 09:32	CKD	GC-2	100.33	BSF1330	ND	A01
TPH - Kerosene		ND	mg/kg	1000	Luft/FFP	06/17/09	06/22/09 09:32	CKD	GC-2	100.33	BSF1330	ND	A01
TPH - Diesel (FFP)		15000	mg/kg	1000	Luft/FFP	06/17/09	06/22/09 09:32	CKD	GC-2	100.33	BSF1330	ND	A01
TPH - Fuel Oil #6		ND	mg/kg	1000	Luft/FFP	06/17/09	06/22/09 09:32	CKD	GC-2	100.33	BSF1330	ND	A01
TPH - Crude Oil		ND	mg/kg	2000	Luft/FFP	06/17/09	06/22/09 09:32	CKD	GC-2	100.33	BSF1330	ND	A01
TPH - Hydraulic Oil / Motor Oi	il	11000	mg/kg	2000	Luft/FFP	06/17/09	06/22/09 09:32	CKD	GC-2	100.33	BSF1330	ND	A01
TPH - WD-40		ND	mg/kg	1000	Luft/FFP	06/17/09	06/22/09 09:32	CKD	GC-2	100.33	BSF1330	ND	A01
Tetracosane (Surrogate)		0	%	20 - 145 (LCL - UCL)	Luft/FFP	06/17/09	06/22/09 09:32	CKD	GC-2	100.33	BSF1330		A01,A17

Project: 7376

Project Number: [none]
Project Manager: John Reay

Reported: 07/02/2009 8:28

BCL Sample ID: 0907815	5-07 Client Samp	ole Name:	7376, MW	/-2C@40, (6/12/2009 8	:50:00AM							
						Prep	Run		Instru-		QC	МВ	Lab
Constituent	Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene	0.056	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:23	JSK	MS-V3	1	BSF1054	ND	
Bromobenzene	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:23	JSK	MS-V3	1	BSF1054	ND	
Bromochloromethane	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:23	JSK	MS-V3	1	BSF1054	ND	
Bromodichloromethane	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:23	JSK	MS-V3	1	BSF1054	ND	
Bromoform	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:23	JSK	MS-V3	1	BSF1054	ND	
Bromomethane	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:23	JSK	MS-V3	1	BSF1054	ND	
n-Butylbenzene	0.010	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:23	JSK	MS-V3	1	BSF1054	ND	
sec-Butylbenzene	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:23	JSK	MS-V3	1	BSF1054	ND	
tert-Butylbenzene	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:23	JSK	MS-V3	1	BSF1054	ND	
Carbon tetrachloride	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:23	JSK	MS-V3	1	BSF1054	ND	
Chlorobenzene	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:23	JSK	MS-V3	1	BSF1054	ND	
Chloroethane	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:23	JSK	MS-V3	1	BSF1054	ND	
Chloroform	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:23	JSK	MS-V3	1	BSF1054	ND	
Chloromethane	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:23	JSK	MS-V3	1	BSF1054	ND	
2-Chlorotoluene	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:23	JSK	MS-V3	1	BSF1054	ND	
4-Chlorotoluene	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:23	JSK	MS-V3	1	BSF1054	ND	
Dibromochloromethane	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:23	JSK	MS-V3	1	BSF1054	ND	
1,2-Dibromo-3-chloropropane	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:23	JSK	MS-V3	1	BSF1054	ND	
1,2-Dibromoethane	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:23	JSK	MS-V3	1	BSF1054	ND	
Dibromomethane	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:23	JSK	MS-V3	1	BSF1054	ND	
1,2-Dichlorobenzene	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:23	JSK	MS-V3	1	BSF1054	ND	
1,3-Dichlorobenzene	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:23	JSK	MS-V3	1	BSF1054	ND	
1,4-Dichlorobenzene	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:23	JSK	MS-V3	1	BSF1054	ND	

Project: 7376

Project Number: [none]

Project Manager: John Reay

Reported: 07/02/2009 8:28

BCL Sample ID: 0907815-07	Client Sample	e Name:	7376, MW	-2C@40, (6/12/2009 8	:50:00AM							
						Prep	Run		Instru-		QC	МВ	Lab
Constituent	Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Dichlorodifluoromethane	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:23	JSK	MS-V3	1	BSF1054	ND	
1,1-Dichloroethane	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:23	JSK	MS-V3	1	BSF1054	ND	
1,2-Dichloroethane	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:23	JSK	MS-V3	1	BSF1054	ND	
1,1-Dichloroethene	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:23	JSK	MS-V3	1	BSF1054	ND	
cis-1,2-Dichloroethene	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:23	JSK	MS-V3	1	BSF1054	ND	
trans-1,2-Dichloroethene	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:23	JSK	MS-V3	1	BSF1054	ND	
Total 1,2-Dichloroethene	ND	mg/kg	0.010		EPA-8260	06/16/09	06/17/09 23:23	JSK	MS-V3	1	BSF1054	ND	
1,2-Dichloropropane	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:23	JSK	MS-V3	1	BSF1054	ND	
1,3-Dichloropropane	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:23	JSK	MS-V3	1	BSF1054	ND	
2,2-Dichloropropane	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:23	JSK	MS-V3	1	BSF1054	ND	
1,1-Dichloropropene	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:23	JSK	MS-V3	1	BSF1054	ND	
cis-1,3-Dichloropropene	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:23	JSK	MS-V3	1	BSF1054	ND	
trans-1,3-Dichloropropene	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:23	JSK	MS-V3	1	BSF1054	ND	
Total 1,3-Dichloropropene	ND	mg/kg	0.010		EPA-8260	06/16/09	06/17/09 23:23	JSK	MS-V3	1	BSF1054	ND	
Ethylbenzene	0.021	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:23	JSK	MS-V3	1	BSF1054	ND	
Hexachlorobutadiene	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:23	JSK	MS-V3	1	BSF1054	ND	
Isopropylbenzene	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:23	JSK	MS-V3	1	BSF1054	ND	
p-Isopropyltoluene	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:23	JSK	MS-V3	1	BSF1054	ND	
Methylene chloride	ND	mg/kg	0.010		EPA-8260	06/16/09	06/17/09 23:23	JSK	MS-V3	1	BSF1054	ND	
Methyl t-butyl ether	0.39	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:23	JSK	MS-V3	1	BSF1054	ND	
Naphthalene	0.0074	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:23	JSK	MS-V3	1	BSF1054	ND	
n-Propylbenzene	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:23	JSK	MS-V3	1	BSF1054	ND	
Styrene	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:23	JSK	MS-V3	1	BSF1054	ND	

Project: 7376

Project Number: [none]

Project Manager: John Reay

Reported: 07/02/2009 8:28

BCL Sample ID: 0907815-07	Client Sample	e Name:	7376, MW	-2C@40, (6/12/2009 8:	50:00AM							
	-					Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
1,1,1,2-Tetrachloroethane	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:23	JSK	MS-V3	1	BSF1054	ND	
1,1,2,2-Tetrachloroethane	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:23	JSK	MS-V3	1	BSF1054	ND	
Tetrachloroethene	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:23	JSK	MS-V3	1	BSF1054	ND	
Toluene	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:23	JSK	MS-V3	1	BSF1054	ND	
1,2,3-Trichlorobenzene	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:23	JSK	MS-V3	1	BSF1054	ND	
1,2,4-Trichlorobenzene	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:23	JSK	MS-V3	1	BSF1054	ND	
1,1,1-Trichloroethane	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:23	JSK	MS-V3	1	BSF1054	ND	
1,1,2-Trichloroethane	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:23	JSK	MS-V3	1	BSF1054	ND	
Trichloroethene	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:23	JSK	MS-V3	1	BSF1054	ND	
Trichlorofluoromethane	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:23	JSK	MS-V3	1	BSF1054	ND	
1,2,3-Trichloropropane	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:23	JSK	MS-V3	1	BSF1054	ND	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:23	JSK	MS-V3	1	BSF1054	ND	
1,2,4-Trimethylbenzene	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:23	JSK	MS-V3	1	BSF1054	ND	
1,3,5-Trimethylbenzene	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:23	JSK	MS-V3	1	BSF1054	ND	
Vinyl chloride	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:23	JSK	MS-V3	1	BSF1054	ND	
Total Xylenes	ND	mg/kg	0.010		EPA-8260	06/16/09	06/17/09 23:23	JSK	MS-V3	1	BSF1054	ND	
t-Amyl Methyl ether	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:23	JSK	MS-V3	1	BSF1054	ND	
t-Butyl alcohol	0.45	mg/kg	0.050		EPA-8260	06/16/09	06/17/09 23:23	JSK	MS-V3	1	BSF1054	ND	
Diisopropyl ether	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:23	JSK	MS-V3	1	BSF1054	ND	
Ethanol	ND	mg/kg	1.0		EPA-8260	06/16/09	06/17/09 23:23	JSK	MS-V3	1	BSF1054	ND	
Ethyl t-butyl ether	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:23	JSK	MS-V3	1	BSF1054	ND	
Total Purgeable Petroleum Hydrocarbons	1.2	mg/kg	0.20		Luft-GC/MS	06/16/09	06/17/09 23:23	JSK	MS-V3	1	BSF1054	ND	

11050 White Rock Rd, Suite 110Project Number: [none]Rancho Cordova, CA 95670Project Manager: John Reay

BCL Sample ID:	0907815-07	Client Sample	e Name:	7376, MW	-2C@40,	6/12/2009 8	:50:00AM							
		•					Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
1,2-Dichloroethane-d4 (Su	rrogate)	92.7	%	70 - 121 (LC	L - UCL)	EPA-8260	06/16/09	06/17/09 23:23	JSK	MS-V3	1	BSF1054		
Toluene-d8 (Surrogate)		101	%	81 - 117 (LC	L - UCL)	EPA-8260	06/16/09	06/17/09 23:23	JSK	MS-V3	1	BSF1054		
4-Bromofluorobenzene (Su	urrogate)	103	%	74 - 121 (LC	L - UCL)	EPA-8260	06/16/09	06/17/09 23:23	JSK	MS-V3	1	BSF1054		

Delta Environmental Consultants, Inc. 11050 White Rock Rd. Suite 110

Rancho Cordova, CA 95670

Project: 7376

Reported: 07/02/2009 8:28

Base Neutral and Acid Extractables Organic Analysis (EPA Method 8270C)

Project Number: [none]

Project Manager: John Reay

BCL Sample ID:	0907815-07	Client Sampl	e Name:	7376, MW	/-2C@40,	6/12/2009 8:	50:00AM							
							Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Acenaphthene		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
Acenaphthylene		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
Aldrin		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
Aniline		ND	mg/kg	0.20		EPA-8270C	06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
Anthracene		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
Benzidine		ND	mg/kg	3.0		EPA-8270C	06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
Benzo[a]anthracene		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
Benzo[b]fluoranthene		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
Benzo[k]fluoranthene		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
Benzo[a]pyrene		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
Benzo[g,h,i]perylene		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
Benzoic acid		ND	mg/kg	0.50		EPA-8270C	06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
Benzyl alcohol		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
Benzyl butyl phthalate		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
alpha-BHC		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
beta-BHC		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
delta-BHC		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
gamma-BHC (Lindane)		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
bis(2-Chloroethoxy)metha	ane	ND	mg/kg	0.10		EPA-8270C	06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
bis(2-Chloroethyl) ether		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
bis(2-Chloroisopropyl)eth	er	ND	mg/kg	0.10		EPA-8270C	06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
bis(2-Ethylhexyl)phthalate	e	ND	mg/kg	0.20		EPA-8270C	06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
4-Bromophenyl phenyl et	her	ND	mg/kg	0.10		EPA-8270C	06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	

11050 White Rock Rd, Suite 110Project Number: [none]Rancho Cordova, CA 95670Project Manager: John Reay

BCL Sample ID: 0907	815-07	Client Sample	e Name:	7376, MW	-2C@40, (6/12/2009 8:	50:00AM							
							Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
4-Chloroaniline		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
2-Chloronaphthalene		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
4-Chlorophenyl phenyl ether		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
Chrysene		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
4,4'-DDD		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
4,4'-DDE		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
4,4'-DDT		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
Dibenzo[a,h]anthracene		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
Dibenzofuran		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
1,2-Dichlorobenzene		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
1,3-Dichlorobenzene		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
1,4-Dichlorobenzene		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
3,3-Dichlorobenzidine		ND	mg/kg	0.20		EPA-8270C	06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
Dieldrin		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
Diethyl phthalate		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
Dimethyl phthalate		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
Di-n-butyl phthalate		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
2,4-Dinitrotoluene		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
2,6-Dinitrotoluene		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
Di-n-octyl phthalate		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
1,2-Diphenylhydrazine		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
Endosulfan I		ND	mg/kg	0.20		EPA-8270C	06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
Endosulfan II		ND	mg/kg	0.20		EPA-8270C	06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	

11050 White Rock Rd, Suite 110Project Number:[none]Rancho Cordova, CA 95670Project Manager:John Reay

BCL Sample ID: 0907815-07	Client Sampl	e Name:	7376, MW	/-2C@40, 6	6/12/2009 8:	50:00AM							
						Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Endosulfan sulfate	ND	mg/kg	0.10		EPA-8270C	06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
Endrin	ND	mg/kg	0.20		EPA-8270C	06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
Endrin aldehyde	ND	mg/kg	0.50		EPA-8270C	06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
Fluoranthene	ND	mg/kg	0.10		EPA-8270C	06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
Fluorene	ND	mg/kg	0.10		EPA-8270C	06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
Heptachlor	ND	mg/kg	0.10		EPA-8270C	06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
Heptachlor epoxide	ND	mg/kg	0.10		EPA-8270C	06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
Hexachlorobenzene	ND	mg/kg	0.10		EPA-8270C	06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
Hexachlorobutadiene	ND	mg/kg	0.10		EPA-8270C	06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
Hexachlorocyclopentadiene	ND	mg/kg	0.10		EPA-8270C	06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
Hexachloroethane	ND	mg/kg	0.10		EPA-8270C	06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
Indeno[1,2,3-cd]pyrene	ND	mg/kg	0.10		EPA-8270C	06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
Isophorone	ND	mg/kg	0.10		EPA-8270C	06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
2-Methylnaphthalene	ND	mg/kg	0.10		EPA-8270C	06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
Naphthalene	ND	mg/kg	0.10		EPA-8270C	06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
2-Naphthylamine	ND	mg/kg	3.0		EPA-8270C	06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
2-Nitroaniline	ND	mg/kg	0.10		EPA-8270C	06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
3-Nitroaniline	ND	mg/kg	0.20		EPA-8270C	06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
4-Nitroaniline	ND	mg/kg	0.20		EPA-8270C	06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
Nitrobenzene	ND	mg/kg	0.10		EPA-8270C	06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
N-Nitrosodimethylamine	ND	mg/kg	0.10		EPA-8270C	06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
N-Nitrosodi-N-propylamine	ND	mg/kg	0.10		EPA-8270C	06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
N-Nitrosodiphenylamine	ND	mg/kg	0.10		EPA-8270C	06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	

11050 White Rock Rd, Suite 110Project Number: [none]Rancho Cordova, CA 95670Project Manager: John Reay

BCL Sample ID: 0907815	p-U/	Client Sample	e Name:	7376, MW-2C@	40, 6/12/2009	8:50:00AM							
						Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL M			Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Phenanthrene		ND	mg/kg	0.10	EPA-827	OC 06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
Pyrene		ND	mg/kg	0.10	EPA-827	OC 06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
1,2,4-Trichlorobenzene		ND	mg/kg	0.10	EPA-827	OC 06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
4-Chloro-3-methylphenol		ND	mg/kg	0.20	EPA-827	OC 06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
2-Chlorophenol		ND	mg/kg	0.10	EPA-827	OC 06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
2,4-Dichlorophenol		ND	mg/kg	0.10	EPA-827	OC 06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
2,4-Dimethylphenol		ND	mg/kg	0.10	EPA-827	OC 06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
4,6-Dinitro-2-methylphenol		ND	mg/kg	0.50	EPA-827	OC 06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
2,4-Dinitrophenol		ND	mg/kg	0.50	EPA-827	OC 06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
2-Methylphenol		ND	mg/kg	0.10	EPA-827	OC 06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
3- & 4-Methylphenol		ND	mg/kg	0.20	EPA-827	OC 06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
2-Nitrophenol		ND	mg/kg	0.10	EPA-827	OC 06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
4-Nitrophenol		ND	mg/kg	0.20	EPA-827	OC 06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
Pentachlorophenol		ND	mg/kg	0.20	EPA-827	OC 06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
Phenol		ND	mg/kg	0.10	EPA-827	OC 06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
2,4,5-Trichlorophenol		ND	mg/kg	0.20	EPA-827	OC 06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
2,4,6-Trichlorophenol		ND	mg/kg	0.20	EPA-827	OC 06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688	ND	
2-Fluorophenol (Surrogate)		66.3	%	42 - 137 (LCL - UCL) EPA-827	OC 06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688		
Phenol-d5 (Surrogate)		74.4	%	36 - 137 (LCL - UCL) EPA-827	OC 06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688		
Nitrobenzene-d5 (Surrogate)		72.1	%	34 - 135 (LCL - UCL) EPA-827	OC 06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688		
2-Fluorobiphenyl (Surrogate)		72.5	%	40 - 135 (LCL - UCL) EPA-827	OC 06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688		
2,4,6-Tribromophenol (Surrogate)		91.3	%	54 - 162 (LCL - UCL) EPA-827	OC 06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688		
p-Terphenyl-d14 (Surrogate)		96.7	%	20 - 176 (LCL - UCL) EPA-827	OC 06/22/09	06/25/09 03:23	SKC	MS-B2	1	BSF1688		

Project: 7376

Project Number: [none]
Project Manager: John Reay

Reported: 07/02/2009 8:28

Purgeable Aromatics and Total Petroleum Hydrocarbons

BCL Sample ID:	0907815-07	Client Sample	Name:	7376, MW-2C@4	10, 6/12/2009 8	3:50:00AM							
						Prep	Run		Instru-		QC	МВ	Lab
Constituent		Result	Units	PQL MD	L Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
TPH - Light Naptha		ND	mg/kg	50	Luft/FFP	06/17/09	06/22/09 09:55	CKD	GC-2	0.997	BSF1330	ND	
TPH - Aviation Gas		ND	mg/kg	50	Luft/FFP	06/17/09	06/22/09 09:55	CKD	GC-2	0.997	BSF1330	ND	
TPH - Stoddard Solvent		ND	mg/kg	20	Luft/FFP	06/17/09	06/22/09 09:55	CKD	GC-2	0.997	BSF1330	ND	
TPH - Heavy Naptha		ND	mg/kg	10	Luft/FFP	06/17/09	06/22/09 09:55	CKD	GC-2	0.997	BSF1330	ND	
TPH - Gasoline		ND	mg/kg	20	Luft/FFP	06/17/09	06/22/09 09:55	CKD	GC-2	0.997	BSF1330	ND	
TPH - Jet Fuel (JP4)		ND	mg/kg	10	Luft/FFP	06/17/09	06/22/09 09:55	CKD	GC-2	0.997	BSF1330	ND	
TPH - Jet Fuel (JP5)		ND	mg/kg	10	Luft/FFP	06/17/09	06/22/09 09:55	CKD	GC-2	0.997	BSF1330	ND	
TPH - Jet Fuel (JP8)		ND	mg/kg	10	Luft/FFP	06/17/09	06/22/09 09:55	CKD	GC-2	0.997	BSF1330	ND	
TPH - Kerosene		ND	mg/kg	10	Luft/FFP	06/17/09	06/22/09 09:55	CKD	GC-2	0.997	BSF1330	ND	
TPH - Diesel (FFP)		53	mg/kg	10	Luft/FFP	06/17/09	06/22/09 09:55	CKD	GC-2	0.997	BSF1330	ND	
TPH - Fuel Oil #6		ND	mg/kg	10	Luft/FFP	06/17/09	06/22/09 09:55	CKD	GC-2	0.997	BSF1330	ND	
TPH - Crude Oil		ND	mg/kg	20	Luft/FFP	06/17/09	06/22/09 09:55	CKD	GC-2	0.997	BSF1330	ND	
TPH - Hydraulic Oil / Moto	or Oil	44	mg/kg	20	Luft/FFP	06/17/09	06/22/09 09:55	CKD	GC-2	0.997	BSF1330	ND	
TPH - WD-40		ND	mg/kg	10	Luft/FFP	06/17/09	06/22/09 09:55	CKD	GC-2	0.997	BSF1330	ND	
Tetracosane (Surrogate)		84.3	%	20 - 145 (LCL - UCL) Luft/FFP	06/17/09	06/22/09 09:55	CKD	GC-2	0.997	BSF1330		

Project: 7376

Project Number: [none]
Project Manager: John Reay

Reported: 07/02/2009 8:28

BCL Sample ID: 0907815-08	Client Sample	e Name:	7376, MW-	-2C@45,	6/12/2009 8	55:00AM							
						Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene	0.050	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:49	JSK	MS-V3	1	BSF1054	ND	
Bromobenzene	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:49	JSK	MS-V3	1	BSF1054	ND	
Bromochloromethane	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:49	JSK	MS-V3	1	BSF1054	ND	
Bromodichloromethane	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:49	JSK	MS-V3	1	BSF1054	ND	
Bromoform	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:49	JSK	MS-V3	1	BSF1054	ND	
Bromomethane	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:49	JSK	MS-V3	1	BSF1054	ND	
n-Butylbenzene	0.032	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:49	JSK	MS-V3	1	BSF1054	ND	
sec-Butylbenzene	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:49	JSK	MS-V3	1	BSF1054	ND	
tert-Butylbenzene	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:49	JSK	MS-V3	1	BSF1054	ND	
Carbon tetrachloride	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:49	JSK	MS-V3	1	BSF1054	ND	
Chlorobenzene	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:49	JSK	MS-V3	1	BSF1054	ND	
Chloroethane	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:49	JSK	MS-V3	1	BSF1054	ND	
Chloroform	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:49	JSK	MS-V3	1	BSF1054	ND	
Chloromethane	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:49	JSK	MS-V3	1	BSF1054	ND	
2-Chlorotoluene	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:49	JSK	MS-V3	1	BSF1054	ND	
4-Chlorotoluene	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:49	JSK	MS-V3	1	BSF1054	ND	
Dibromochloromethane	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:49	JSK	MS-V3	1	BSF1054	ND	
1,2-Dibromo-3-chloropropane	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:49	JSK	MS-V3	1	BSF1054	ND	
1,2-Dibromoethane	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:49	JSK	MS-V3	1	BSF1054	ND	
Dibromomethane	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:49	JSK	MS-V3	1	BSF1054	ND	
1,2-Dichlorobenzene	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:49	JSK	MS-V3	1	BSF1054	ND	
1,3-Dichlorobenzene	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:49	JSK	MS-V3	1	BSF1054	ND	
1,4-Dichlorobenzene	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:49	JSK	MS-V3	1	BSF1054	ND	

Delta Environmental Consultants, Inc. 11050 White Rock Rd, Suite 110 Project Number: [none] Rancho Cordova, CA 95670 Project Manager: John Reay Reported: 07/02/2009 8:28

Volatile Organic Analysis (EPA Method 8260)

Project: 7376

Constituent Dichlorodifluoromethane 1,1-Dichloroethane 1,2-Dichloroethane	Result ND ND ND	Units mg/kg mg/kg	PQL 0.0050 0.0050	MDL	Method EPA-8260	Prep Date	Run Dete/Time		Instru-		QC	МВ	Lab
Dichlorodifluoromethane 1,1-Dichloroethane	ND ND	mg/kg mg/kg	0.0050	MDL		Date	Data/Time						
1,1-Dichloroethane	ND	mg/kg			EPA-8260		Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
-			0.0050			06/16/09	06/17/09 23:49	JSK	MS-V3	1	BSF1054	ND	
1,2-Dichloroethane	ND		0.0000		EPA-8260	06/16/09	06/17/09 23:49	JSK	MS-V3	1	BSF1054	ND	
		mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:49	JSK	MS-V3	1	BSF1054	ND	
1,1-Dichloroethene	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:49	JSK	MS-V3	1	BSF1054	ND	
cis-1,2-Dichloroethene	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:49	JSK	MS-V3	1	BSF1054	ND	
trans-1,2-Dichloroethene	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:49	JSK	MS-V3	1	BSF1054	ND	
Total 1,2-Dichloroethene	ND	mg/kg	0.010		EPA-8260	06/16/09	06/17/09 23:49	JSK	MS-V3	1	BSF1054	ND	
1,2-Dichloropropane	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:49	JSK	MS-V3	1	BSF1054	ND	
1,3-Dichloropropane	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:49	JSK	MS-V3	1	BSF1054	ND	
2,2-Dichloropropane	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:49	JSK	MS-V3	1	BSF1054	ND	
1,1-Dichloropropene	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:49	JSK	MS-V3	1	BSF1054	ND	
cis-1,3-Dichloropropene	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:49	JSK	MS-V3	1	BSF1054	ND	
trans-1,3-Dichloropropene	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:49	JSK	MS-V3	1	BSF1054	ND	
Total 1,3-Dichloropropene	ND	mg/kg	0.010		EPA-8260	06/16/09	06/17/09 23:49	JSK	MS-V3	1	BSF1054	ND	
Ethylbenzene	0.22	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:49	JSK	MS-V3	1	BSF1054	ND	
Hexachlorobutadiene	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:49	JSK	MS-V3	1	BSF1054	ND	
Isopropylbenzene	0.011	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:49	JSK	MS-V3	1	BSF1054	ND	
p-Isopropyltoluene	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:49	JSK	MS-V3	1	BSF1054	ND	
Methylene chloride	ND	mg/kg	0.010		EPA-8260	06/16/09	06/17/09 23:49	JSK	MS-V3	1	BSF1054	ND	
Methyl t-butyl ether	0.075	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:49	JSK	MS-V3	1	BSF1054	ND	
Naphthalene	0.026	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:49	JSK	MS-V3	1	BSF1054	ND	
n-Propylbenzene	0.064	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:49	JSK	MS-V3	1	BSF1054	ND	
Styrene	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:49	JSK	MS-V3	1	BSF1054	ND	

Delta Environmental Consultants, Inc.

Project: 7376

11050 White Rock Rd, Suite 110

Rancho Cordova, CA 95670

Project Manager: John Reay

Reported: 07/02/2009 8:28

BCL Sample ID: 0907815-08	Client Sample	e Name:	7376, MW	-2C@45, (6/12/2009 8:	55:00AM							
						Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
1,1,1,2-Tetrachloroethane	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:49	JSK	MS-V3	1	BSF1054	ND	
1,1,2,2-Tetrachloroethane	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:49	JSK	MS-V3	1	BSF1054	ND	
Tetrachloroethene	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:49	JSK	MS-V3	1	BSF1054	ND	
Toluene	0.017	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:49	JSK	MS-V3	1	BSF1054	ND	
1,2,3-Trichlorobenzene	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:49	JSK	MS-V3	1	BSF1054	ND	
1,2,4-Trichlorobenzene	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:49	JSK	MS-V3	1	BSF1054	ND	
1,1,1-Trichloroethane	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:49	JSK	MS-V3	1	BSF1054	ND	
1,1,2-Trichloroethane	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:49	JSK	MS-V3	1	BSF1054	ND	
Trichloroethene	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:49	JSK	MS-V3	1	BSF1054	ND	
Trichlorofluoromethane	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:49	JSK	MS-V3	1	BSF1054	ND	
1,2,3-Trichloropropane	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:49	JSK	MS-V3	1	BSF1054	ND	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:49	JSK	MS-V3	1	BSF1054	ND	
1,2,4-Trimethylbenzene	0.072	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:49	JSK	MS-V3	1	BSF1054	ND	
1,3,5-Trimethylbenzene	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:49	JSK	MS-V3	1	BSF1054	ND	
Vinyl chloride	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:49	JSK	MS-V3	1	BSF1054	ND	
Total Xylenes	0.082	mg/kg	0.010		EPA-8260	06/16/09	06/17/09 23:49	JSK	MS-V3	1	BSF1054	ND	
t-Amyl Methyl ether	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:49	JSK	MS-V3	1	BSF1054	ND	
t-Butyl alcohol	0.55	mg/kg	0.050		EPA-8260	06/16/09	06/17/09 23:49	JSK	MS-V3	1	BSF1054	ND	
Diisopropyl ether	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:49	JSK	MS-V3	1	BSF1054	ND	
Ethanol	ND	mg/kg	1.0		EPA-8260	06/16/09	06/17/09 23:49	JSK	MS-V3	1	BSF1054	ND	
Ethyl t-butyl ether	ND	mg/kg	0.0050		EPA-8260	06/16/09	06/17/09 23:49	JSK	MS-V3	1	BSF1054	ND	
Total Purgeable Petroleum Hydrocarbons	37	mg/kg	20		Luft-GC/MS	06/16/09	06/17/09 01:53	JSK	MS-V3	100	BSF1054	ND	A01

Delta Environmental Consultants, Inc. 11050 White Pock Pd. Suite 110

Project: 7376

Reported: 07/02/2009 8:28

11050 White Rock Rd, Suite 110 Rancho Cordova, CA 95670

Project Number: [none]
Project Manager: John Reay

BCL Sample ID: 0907815-08	Client Sample	e Name:	7376, MW	/-2C@45,	6/12/2009 8	:55:00AM							
	-					Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
1,2-Dichloroethane-d4 (Surrogate)	97.3	%	70 - 121 (LC	L - UCL)	EPA-8260	06/16/09	06/17/09 23:49	JSK	MS-V3	1	BSF1054		
1,2-Dichloroethane-d4 (Surrogate)	95.1	%	70 - 121 (LC	L - UCL)	EPA-8260	06/16/09	06/17/09 01:53	JSK	MS-V3	100	BSF1054		
Toluene-d8 (Surrogate)	99.8	%	81 - 117 (LC	L - UCL)	EPA-8260	06/16/09	06/17/09 23:49	JSK	MS-V3	1	BSF1054		
Toluene-d8 (Surrogate)	99.0	%	81 - 117 (LC	L - UCL)	EPA-8260	06/16/09	06/17/09 01:53	JSK	MS-V3	100	BSF1054		
4-Bromofluorobenzene (Surrogate)	103	%	74 - 121 (LC	L - UCL)	EPA-8260	06/16/09	06/17/09 01:53	JSK	MS-V3	100	BSF1054		
4-Bromofluorobenzene (Surrogate)	106	%	74 - 121 (LC	L - UCL)	EPA-8260	06/16/09	06/17/09 23:49	JSK	MS-V3	1	BSF1054		

Project: 7376

Project Number: [none]
Project Manager: John Reay

Reported: 07/02/2009 8:28

BCL Sample ID:	0907815-08	Client Sampl	e Name:	7376, MW	/-2C@45, (6/12/2009 8:	55:00AM							
							Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Acenaphthene		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
Acenaphthylene		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
Aldrin		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
Aniline		ND	mg/kg	0.20		EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
Anthracene		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
Benzidine		ND	mg/kg	3.0		EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
Benzo[a]anthracene		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
Benzo[b]fluoranthene		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
Benzo[k]fluoranthene		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
Benzo[a]pyrene		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
Benzo[g,h,i]perylene		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
Benzoic acid		ND	mg/kg	0.50		EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
Benzyl alcohol		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
Benzyl butyl phthalate		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
alpha-BHC		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
beta-BHC		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
delta-BHC		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
gamma-BHC (Lindane)		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
bis(2-Chloroethoxy)metha	ane	ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
bis(2-Chloroethyl) ether		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
bis(2-Chloroisopropyl)eth	er	ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
bis(2-Ethylhexyl)phthalate	е	ND	mg/kg	0.20		EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
4-Bromophenyl phenyl et	her	ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	

11050 White Rock Rd, Suite 110Project Number: [none]Rancho Cordova, CA 95670Project Manager: John Reay

BCL Sample ID: 0907815-08	Client Sampl	e Name:	7376, MW	-2C@45, (6/12/2009 8:	55:00AM							
	-					Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
4-Chloroaniline	ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
2-Chloronaphthalene	ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
4-Chlorophenyl phenyl ether	ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
Chrysene	ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
4,4'-DDD	ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
4,4'-DDE	ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
4,4'-DDT	ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
Dibenzo[a,h]anthracene	ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
Dibenzofuran	ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
1,2-Dichlorobenzene	ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
1,3-Dichlorobenzene	ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
1,4-Dichlorobenzene	ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
3,3-Dichlorobenzidine	ND	mg/kg	0.20		EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
Dieldrin	ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
Diethyl phthalate	ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
Dimethyl phthalate	ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
Di-n-butyl phthalate	ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
2,4-Dinitrotoluene	ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
2,6-Dinitrotoluene	ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
Di-n-octyl phthalate	ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
1,2-Diphenylhydrazine	ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
Endosulfan I	ND	mg/kg	0.20		EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
Endosulfan II	ND	mg/kg	0.20		EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	

Delta Environmental Consultants, Inc.
Project: 7376
Reported: 07/02/2009 8:28
11050 White Rock Rd, Suite 110
Project Number: [none]

Rancho Cordova, CA 95670 Project Manager: John Reay

BCL Sample ID: 0907815	5-08	Client Sampl	e Name:	7376, MW	/-2C@45, (6/12/2009 8:	55:00AM							
							Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Endosulfan sulfate		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
Endrin		ND	mg/kg	0.20		EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
Endrin aldehyde		ND	mg/kg	0.50		EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
Fluoranthene		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
Fluorene		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
Heptachlor		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
Heptachlor epoxide		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
Hexachlorobenzene		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
Hexachlorobutadiene		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
Hexachlorocyclopentadiene		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
Hexachloroethane		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
Indeno[1,2,3-cd]pyrene		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
Isophorone		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
2-Methylnaphthalene		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
Naphthalene		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
2-Naphthylamine		ND	mg/kg	3.0		EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
2-Nitroaniline		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
3-Nitroaniline		ND	mg/kg	0.20		EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
4-Nitroaniline		ND	mg/kg	0.20		EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
Nitrobenzene		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
N-Nitrosodimethylamine		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
N-Nitrosodi-N-propylamine		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
N-Nitrosodiphenylamine		ND	mg/kg	0.10		EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	

11050 White Rock Rd, Suite 110Project Number: [none]Rancho Cordova, CA 95670Project Manager: John Reay

BCL Sample ID: 09	907815-08	Client Sample	Name:	7376, MW-2C@4	5, 6/12/2009 8	:55:00AM							
						Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL MD		Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Phenanthrene		ND	mg/kg	0.10	EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
Pyrene		ND	mg/kg	0.10	EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
1,2,4-Trichlorobenzene		ND	mg/kg	0.10	EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
4-Chloro-3-methylphenol		ND	mg/kg	0.20	EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
2-Chlorophenol		ND	mg/kg	0.10	EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
2,4-Dichlorophenol		ND	mg/kg	0.10	EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
2,4-Dimethylphenol		ND	mg/kg	0.10	EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
4,6-Dinitro-2-methylphenol		ND	mg/kg	0.50	EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
2,4-Dinitrophenol		ND	mg/kg	0.50	EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
2-Methylphenol		ND	mg/kg	0.10	EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
3- & 4-Methylphenol		ND	mg/kg	0.20	EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
2-Nitrophenol		ND	mg/kg	0.10	EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
4-Nitrophenol		ND	mg/kg	0.20	EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
Pentachlorophenol		ND	mg/kg	0.20	EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
Phenol		ND	mg/kg	0.10	EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
2,4,5-Trichlorophenol		ND	mg/kg	0.20	EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
2,4,6-Trichlorophenol		ND	mg/kg	0.20	EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688	ND	
2-Fluorophenol (Surrogate)		80.7	%	42 - 137 (LCL - UCL)	EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688		
Phenol-d5 (Surrogate)		85.6	%	36 - 137 (LCL - UCL)	EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688		
Nitrobenzene-d5 (Surrogate))	81.5	%	34 - 135 (LCL - UCL)	EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688		
2-Fluorobiphenyl (Surrogate))	89.4	%	40 - 135 (LCL - UCL)	EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688		
2,4,6-Tribromophenol (Surro	gate)	93.9	%	54 - 162 (LCL - UCL)	EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688		
p-Terphenyl-d14 (Surrogate)		115	%	20 - 176 (LCL - UCL)	EPA-8270C	06/22/09	06/30/09 07:33	SKC	MS-B1	0.977	BSF1688		

Project: 7376

Project Number: [none] Project Manager: John Reay

Reported: 07/02/2009 8:28

Purgeable Aromatics and Total Petroleum Hydrocarbons

BCL Sample ID:	0907815-08	Client Sample	e Name:	7376, MW-2C@	45, 6/12/2009	8:55:00AM							
						Prep	Run		Instru-		QC	МВ	Lab
Constituent		Result	Units	PQL MI	L Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
TPH - Light Naptha		ND	mg/kg	500	Luft/FFP	06/17/09	06/22/09 10:18	CKD	GC-2	10.169	BSF1330	ND	A01
TPH - Aviation Gas		ND	mg/kg	500	Luft/FFP	06/17/09	06/22/09 10:18	CKD	GC-2	10.169	BSF1330	ND	A01
TPH - Stoddard Solvent		ND	mg/kg	200	Luft/FFP	06/17/09	06/22/09 10:18	CKD	GC-2	10.169	BSF1330	ND	A01
TPH - Heavy Naptha		ND	mg/kg	100	Luft/FFP	06/17/09	06/22/09 10:18	CKD	GC-2	10.169	BSF1330	ND	A01
TPH - Gasoline		ND	mg/kg	200	Luft/FFP	06/17/09	06/22/09 10:18	CKD	GC-2	10.169	BSF1330	ND	A01
TPH - Jet Fuel (JP4)		ND	mg/kg	100	Luft/FFP	06/17/09	06/22/09 10:18	CKD	GC-2	10.169	BSF1330	ND	A01
TPH - Jet Fuel (JP5)		ND	mg/kg	100	Luft/FFP	06/17/09	06/22/09 10:18	CKD	GC-2	10.169	BSF1330	ND	A01
TPH - Jet Fuel (JP8)		ND	mg/kg	100	Luft/FFP	06/17/09	06/22/09 10:18	CKD	GC-2	10.169	BSF1330	ND	A01
TPH - Kerosene		ND	mg/kg	100	Luft/FFP	06/17/09	06/22/09 10:18	CKD	GC-2	10.169	BSF1330	ND	A01
TPH - Diesel (FFP)		1300	mg/kg	100	Luft/FFP	06/17/09	06/22/09 10:18	CKD	GC-2	10.169	BSF1330	ND	A01
TPH - Fuel Oil #6		ND	mg/kg	100	Luft/FFP	06/17/09	06/22/09 10:18	CKD	GC-2	10.169	BSF1330	ND	A01
TPH - Crude Oil		ND	mg/kg	200	Luft/FFP	06/17/09	06/22/09 10:18	CKD	GC-2	10.169	BSF1330	ND	A01
TPH - Hydraulic Oil / Mot	tor Oil	970	mg/kg	200	Luft/FFP	06/17/09	06/22/09 10:18	CKD	GC-2	10.169	BSF1330	ND	A01
TPH - WD-40		ND	mg/kg	100	Luft/FFP	06/17/09	06/22/09 10:18	CKD	GC-2	10.169	BSF1330	ND	A01
Tetracosane (Surrogate)		0	%	20 - 145 (LCL - UCL) Luft/FFP	06/17/09	06/22/09 10:18	CKD	GC-2	10.169	BSF1330		A01,A17

Project: 7376

Project Number: [none]
Project Manager: John Reay

Reported: 07/02/2009 8:28

Volatile Organic Analysis (EPA Method 8260)

										Contr	ol Limits
			Source	Source		Spike			Percent		Percent
Constituent	Batch ID	QC Sample Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery Lab Quals
Benzene	BSF1054	Matrix Spike	0906490-54	0	0.13209	0.12500	mg/kg		106		70 - 130
		Matrix Spike Duplicate	0906490-54	0	0.13345	0.12500	mg/kg	0.9	107	20	70 - 130
Bromodichloromethane	BSF1054	Matrix Spike	0906490-54	0	0.13202	0.12500	mg/kg		106		70 - 130
		Matrix Spike Duplicate	0906490-54	0	0.12852	0.12500	mg/kg	2.9	103	20	70 - 130
Chlorobenzene	BSF1054	Matrix Spike	0906490-54	0	0.12540	0.12500	mg/kg		100		70 - 130
		Matrix Spike Duplicate	0906490-54	0	0.12576	0.12500	mg/kg	1.0	101	20	70 - 130
Chloroethane	BSF1054	Matrix Spike	0906490-54	0	0.13010	0.12500	mg/kg		104		70 - 130
		Matrix Spike Duplicate	0906490-54	0	0.13499	0.12500	mg/kg	3.8	108	20	70 - 130
1,4-Dichlorobenzene	BSF1054	Matrix Spike	0906490-54	0	0.13417	0.12500	mg/kg		107		70 - 130
		Matrix Spike Duplicate	0906490-54	0	0.12876	0.12500	mg/kg	3.8	103	20	70 - 130
1,1-Dichloroethane	BSF1054	Matrix Spike	0906490-54	0	0.12192	0.12500	mg/kg		97.5		70 - 130
		Matrix Spike Duplicate	0906490-54	0	0.13100	0.12500	mg/kg	7.4	105	20	70 - 130
1,1-Dichloroethene	BSF1054	Matrix Spike	0906490-54	0	0.12285	0.12500	mg/kg		98.3		70 - 130
		Matrix Spike Duplicate	0906490-54	0	0.12257	0.12500	mg/kg	0.2	98.1	20	70 - 130
Toluene	BSF1054	Matrix Spike	0906490-54	0	0.13040	0.12500	mg/kg		104		70 - 130
		Matrix Spike Duplicate	0906490-54	0	0.12983	0.12500	mg/kg	0	104	20	70 - 130
Trichloroethene	BSF1054	Matrix Spike	0906490-54	0	0.13161	0.12500	mg/kg		105		70 - 130
		Matrix Spike Duplicate	0906490-54	0	0.13144	0.12500	mg/kg	0	105	20	70 - 130
1,2-Dichloroethane-d4 (Surrogate)	BSF1054	Matrix Spike	0906490-54	ND	0.053211	0.050000	mg/kg		106		70 - 121
		Matrix Spike Duplicate	0906490-54	ND	0.051185	0.050000	mg/kg		102		70 - 121
Toluene-d8 (Surrogate)	BSF1054	Matrix Spike	0906490-54	ND	0.050273	0.050000	mg/kg		101		81 - 117
-		Matrix Spike Duplicate	0906490-54	ND	0.050093	0.050000	mg/kg		100		81 - 117
4-Bromofluorobenzene (Surrogate)	BSF1054	Matrix Spike	0906490-54	ND	0.051548	0.050000	mg/kg		103		74 - 121
, 5 ,		Matrix Spike Duplicate	0906490-54	ND	0.049510	0.050000	mg/kg		99.0		74 - 121

Project: 7376
Project Number: [none]

Reported: 07/02/2009 8:28

Base Neutral and Acid Extractables Organic Analysis (EPA Method 8270C)

Project Manager: John Reay

										Contr	ol Limits
			Source	Source		Spike			Percent		Percent
Constituent	Batch ID	QC Sample Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery Lab Quals
Acenaphthene	BSF1688	Matrix Spike	0907815-07	0	1.1284	1.6340	mg/kg		69.1		36 - 158
		Matrix Spike Duplicate	0907815-07	0	1.1329	1.6447	mg/kg	0.3	68.9	29	36 - 158
1,4-Dichlorobenzene	BSF1688	Matrix Spike	0907815-07	0	1.0378	1.6340	mg/kg		63.5		33 - 135
		Matrix Spike Duplicate	0907815-07	0	1.0076	1.6447	mg/kg	3.5	61.3	26	33 - 135
2,4-Dinitrotoluene	BSF1688	Matrix Spike	0907815-07	0	1.1415	1.6340	mg/kg		69.9		52 - 137
		Matrix Spike Duplicate	0907815-07	0	1.1942	1.6447	mg/kg	3.8	72.6	26	52 - 137
Hexachlorobenzene	BSF1688	Matrix Spike	0907815-07	0	1.1778	1.6340	mg/kg		72.1		44 - 152
		Matrix Spike Duplicate	0907815-07	0	1.2462	1.6447	mg/kg	5.0	75.8	20	44 - 152
Hexachlorobutadiene	BSF1688	Matrix Spike	0907815-07	0	0.93476	1.6340	mg/kg		57.2		33 - 127
		Matrix Spike Duplicate	0907815-07	0	1.0278	1.6447	mg/kg	8.9	62.5	27	33 - 127
Hexachloroethane	BSF1688	Matrix Spike	0907815-07	0	0.96354	1.6340	mg/kg		59.0		29 - 129
		Matrix Spike Duplicate	0907815-07	0	1.0405	1.6447	mg/kg	7.0	63.3	27	29 - 129
Nitrobenzene	BSF1688	Matrix Spike	0907815-07	0	1.0824	1.6340	mg/kg		66.2		39 - 137
		Matrix Spike Duplicate	0907815-07	0	1.1157	1.6447	mg/kg	2.4	67.8	23	39 - 137
N-Nitrosodi-N-propylamine	BSF1688	Matrix Spike	0907815-07	0	1.3620	1.6340	mg/kg		83.4		35 - 123
		Matrix Spike Duplicate	0907815-07	0	1.3500	1.6447	mg/kg	1.6	82.1	30	35 - 123
Pyrene	BSF1688	Matrix Spike	0907815-07	0.011457	1.3857	1.6340	mg/kg		84.1		36 - 161
		Matrix Spike Duplicate	0907815-07	0.011457	1.1000	1.6447	mg/kg	23.8	66.2	25	36 - 161
1,2,4-Trichlorobenzene	BSF1688	Matrix Spike	0907815-07	0	1.0572	1.6340	mg/kg		64.7		41 - 135
		Matrix Spike Duplicate	0907815-07	0	1.1058	1.6447	mg/kg	3.8	67.2	28	41 - 135
4-Chloro-3-methylphenol	BSF1688	Matrix Spike	0907815-07	0	1.2658	1.6340	mg/kg		77.5		54 - 144
		Matrix Spike Duplicate	0907815-07	0	1.2940	1.6447	mg/kg	1.5	78.7	21	54 - 144
2-Chlorophenol	BSF1688	Matrix Spike	0907815-07	0	1.1101	1.6340	mg/kg		67.9		43 - 126
		Matrix Spike Duplicate	0907815-07	0	1.0765	1.6447	mg/kg	3.6	65.5	21	43 - 126
2-Methylphenol	BSF1688	Matrix Spike	0907815-07	0	1.1909	1.6340	mg/kg		72.9		40 - 133
		Matrix Spike Duplicate	0907815-07	0	1.1669	1.6447	mg/kg	2.8	70.9	19	40 - 133

Delta Environmental Consultants, Inc. 11050 White Rock Rd, Suite 110

Rancho Cordova, CA 95670

Project: 7376

Project Number: [none]

Reported: 07/02/2009 8:28

Base Neutral and Acid Extractables Organic Analysis (EPA Method 8270C)

Project Manager: John Reay

										Contr	ol Limits
			Source	Source		Spike			Percent		Percent
Constituent	Batch ID	QC Sample Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery Lab Quals
3- & 4-Methylphenol	BSF1688	Matrix Spike	0907815-07	0	2.1144	3.2680	mg/kg		64.7		10 - 216
		Matrix Spike Duplicate	0907815-07	0	2.0927	3.2895	mg/kg	1.7	63.6	17	10 - 216
4-Nitrophenol	BSF1688	Matrix Spike	0907815-07	0	0.99982	1.6340	mg/kg		61.2		10 - 154
		Matrix Spike Duplicate	0907815-07	0	1.0351	1.6447	mg/kg	2.7	62.9	26	10 - 154
Pentachlorophenol	BSF1688	Matrix Spike	0907815-07	0	1.2107	1.6340	mg/kg		74.1		26 - 183
		Matrix Spike Duplicate	0907815-07	0	1.3592	1.6447	mg/kg	10.8	82.6	26	26 - 183
Phenol	BSF1688	Matrix Spike	0907815-07	0	1.1383	1.6340	mg/kg		69.7		39 - 123
		Matrix Spike Duplicate	0907815-07	0	1.1286	1.6447	mg/kg	1.6	68.6	21	39 - 123
2,4,6-Trichlorophenol	BSF1688	Matrix Spike	0907815-07	0	1.2804	1.6340	mg/kg		78.4		50 - 140
		Matrix Spike Duplicate	0907815-07	0	1.3775	1.6447	mg/kg	6.7	83.8	19	50 - 140
2-Fluorophenol (Surrogate)	BSF1688	Matrix Spike	0907815-07	ND	1.8346	2.6144	mg/kg		70.2		42 - 137
		Matrix Spike Duplicate	0907815-07	ND	1.8632	2.6316	mg/kg		70.8		42 - 137
Phenol-d5 (Surrogate)	BSF1688	Matrix Spike	0907815-07	ND	2.0324	2.6144	mg/kg		77.7		36 - 137
		Matrix Spike Duplicate	0907815-07	ND	1.9977	2.6316	mg/kg		75.9		36 - 137
Nitrobenzene-d5 (Surrogate)	BSF1688	Matrix Spike	0907815-07	ND	2.0461	2.6144	mg/kg		78.3		34 - 135
		Matrix Spike Duplicate	0907815-07	ND	2.0079	2.6316	mg/kg		76.3		34 - 135
2-Fluorobiphenyl (Surrogate)	BSF1688	Matrix Spike	0907815-07	ND	2.0049	2.6144	mg/kg		76.7		40 - 135
		Matrix Spike Duplicate	0907815-07	ND	2.0434	2.6316	mg/kg		77.6		40 - 135
2,4,6-Tribromophenol (Surrogate)	BSF1688	Matrix Spike	0907815-07	ND	2.3827	2.6144	mg/kg		91.1		54 - 162
		Matrix Spike Duplicate	0907815-07	ND	2.4576	2.6316	mg/kg		93.4		54 - 162
p-Terphenyl-d14 (Surrogate)	BSF1688	Matrix Spike	0907815-07	ND	1.2098	1.3072	mg/kg		92.5		20 - 176
		Matrix Spike Duplicate	0907815-07	ND	1.0799	1.3158	mg/kg		82.1		20 - 176

Delta Environmental Consultants, Inc. 11050 White Pock Pd. Suite 110

Project: 7376

Reported: 07/02/2009 8:28

11050 White Rock Rd, Suite 110 Rancho Cordova, CA 95670

Project Number: [none]
Project Manager: John Reay

Purgeable Aromatics and Total Petroleum Hydrocarbons

										Contr	ol Limits
			Source	Source		Spike			Percent		Percent
Constituent	Batch ID	QC Sample Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery Lab Quals
TPH - Diesel (FFP)	BSF1330	Matrix Spike	0905143-78	0	81.752	82.781	mg/kg		98.8		52 - 131
		Matrix Spike Duplicate	0905143-78	0	78.574	82.508	mg/kg	3.7	95.2	30	52 - 131
Tetracosane (Surrogate)	BSF1330	Matrix Spike	0905143-78	ND	3.2579	3.3113	mg/kg		98.4		20 - 145
		Matrix Spike Duplicate	0905143-78	ND	3.1909	3.3003	mg/kg		96.7		20 - 145

Delta Environmental Consultants, Inc. 11050 White Pack Pd. Suite 110

Project: 7376

Reported: 07/02/2009 8:28

11050 White Rock Rd, Suite 110 Rancho Cordova, CA 95670

Project Number: [none]
Project Manager: John Reay

Total Concentrations (TTLC)

Quality Control Report - Precision & Accuracy

								Control Limits				
			Source	Source		Spike			Percent		Percent	
Constituent	Batch ID	QC Sample Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery Lab Quals	
Lead	BSF1305	Duplicate	0907833-01	2.1420	ND		mg/kg			20		
		Matrix Spike	0907833-01	2.1420	91.675	97.087	mg/kg		92.2		75 - 125	
		Matrix Spike Duplicate	0907833-01	2.1420	88.668	97.087	mg/kg	3.4	89.1	20	75 - 125	

Delta Environmental Consultants, Inc.

Project: 7376

11050 White Rock Rd, Suite 110

Project Number: [none]

Rancho Cordova, CA 95670 Project Manager: John Reay

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Laboratory Control Sample

				=				=				
										Control	Limits	_
					Spike			Percent		Percent		
Constituent	Batch ID	QC Sample ID	QC Type	Result	Level	PQL	Units	Recovery	RPD	Recovery	RPD	Lab Quals
Benzene	BSF1054	BSF1054-BS1	LCS	0.12515	0.12500	0.0050	mg/kg	100		70 - 130		
Bromodichloromethane	BSF1054	BSF1054-BS1	LCS	0.12318	0.12500	0.0050	mg/kg	98.5		70 - 130		
Chlorobenzene	BSF1054	BSF1054-BS1	LCS	0.12394	0.12500	0.0050	mg/kg	99.2		70 - 130		
Chloroethane	BSF1054	BSF1054-BS1	LCS	0.12761	0.12500	0.0050	mg/kg	102		70 - 130		
1,4-Dichlorobenzene	BSF1054	BSF1054-BS1	LCS	0.12558	0.12500	0.0050	mg/kg	100		70 - 130		
1,1-Dichloroethane	BSF1054	BSF1054-BS1	LCS	0.12296	0.12500	0.0050	mg/kg	98.4		70 - 130		
1,1-Dichloroethene	BSF1054	BSF1054-BS1	LCS	0.11634	0.12500	0.0050	mg/kg	93.1		70 - 130		
Toluene	BSF1054	BSF1054-BS1	LCS	0.12345	0.12500	0.0050	mg/kg	98.8		70 - 130		
Trichloroethene	BSF1054	BSF1054-BS1	LCS	0.12354	0.12500	0.0050	mg/kg	98.8		70 - 130		
1,2-Dichloroethane-d4 (Surrogate)	BSF1054	BSF1054-BS1	LCS	0.048971	0.050000		mg/kg	97.9		70 - 121		
Toluene-d8 (Surrogate)	BSF1054	BSF1054-BS1	LCS	0.050234	0.050000		mg/kg	100		81 - 117		
4-Bromofluorobenzene (Surrogate)	BSF1054	BSF1054-BS1	LCS	0.051046	0.050000		mg/kg	102		74 - 121		

Reported: 07/02/2009 8:28

Delta Environmental Consultants, Inc. 11050 White Rock Rd, Suite 110

Rancho Cordova, CA 95670

Project: 7376

Reported: 07/02/2009 8:28

Project Number: [none]
Project Manager: John Reay

Base Neutral and Acid Extractables Organic Analysis (EPA Method 8270C)

			-			-				0	1.114	
					Online			D		Control	<u>Limits</u>	
Constituent	Batch ID	QC Sample ID	QC Type	Result	Spike Level	PQL	Units	Percent Recovery	RPD	Percent Recovery	RPD	Lab Quals
Acenaphthene	BSF1688	•	LCS	1.3456	1.6556	0.10	mg/kg	81.3	5	39 - 167	5	
1,4-Dichlorobenzene	BSF1688	BSF1688-BS1	LCS	1.2377	1.6556	0.10	mg/kg	74.8		46 - 131		
2,4-Dinitrotoluene	BSF1688	BSF1688-BS1	LCS	1.3722	1.6556	0.10	mg/kg	82.9		58 - 139		
Hexachlorobenzene	BSF1688	BSF1688-BS1	LCS	1.3534	1.6556	0.10	mg/kg	81.7		53 - 151		
Hexachlorobutadiene	BSF1688	BSF1688-BS1	LCS	1.1510	1.6556	0.10	mg/kg	69.5		48 - 120		
Hexachloroethane	BSF1688	BSF1688-BS1	LCS	1.1908	1.6556	0.10	mg/kg	71.9		44 - 124		
Nitrobenzene	BSF1688	BSF1688-BS1	LCS	1.2515	1.6556	0.10	mg/kg	75.6		39 - 143		
N-Nitrosodi-N-propylamine	BSF1688	BSF1688-BS1	LCS	1.5292	1.6556	0.10	mg/kg	92.4		36 - 128		
Pyrene	BSF1688	BSF1688-BS1	LCS	1.5521	1.6556	0.10	mg/kg	93.7		45 - 170		
1,2,4-Trichlorobenzene	BSF1688	BSF1688-BS1	LCS	1.2520	1.6556	0.10	mg/kg	75.6		55 - 128		
4-Chloro-3-methylphenol	BSF1688	BSF1688-BS1	LCS	1.4084	1.6556	0.20	mg/kg	85.1		49 - 153		
2-Chlorophenol	BSF1688	BSF1688-BS1	LCS	1.2238	1.6556	0.10	mg/kg	73.9		46 - 128		
2-Methylphenol	BSF1688	BSF1688-BS1	LCS	1.2696	1.6556	0.10	mg/kg	76.7		40 - 138		
3- & 4-Methylphenol	BSF1688	BSF1688-BS1	LCS	2.3260	3.3113	0.20	mg/kg	70.2		10 - 230		
4-Nitrophenol	BSF1688	BSF1688-BS1	LCS	1.0745	1.6556	0.20	mg/kg	64.9		13 - 145		
Pentachlorophenol	BSF1688	BSF1688-BS1	LCS	1.2862	1.6556	0.20	mg/kg	77.7		50 - 170		
Phenol	BSF1688	BSF1688-BS1	LCS	1.2731	1.6556	0.10	mg/kg	76.9		41 - 126		
2,4,6-Trichlorophenol	BSF1688	BSF1688-BS1	LCS	1.4450	1.6556	0.20	mg/kg	87.3		53 - 144		
2-Fluorophenol (Surrogate)	BSF1688	BSF1688-BS1	LCS	2.0618	2.6490		mg/kg	77.8		42 - 137		
Phenol-d5 (Surrogate)	BSF1688	BSF1688-BS1	LCS	2.2579	2.6490		mg/kg	85.2		36 - 137		
Nitrobenzene-d5 (Surrogate)	BSF1688	BSF1688-BS1	LCS	2.2646	2.6490		mg/kg	85.5		34 - 135		
2-Fluorobiphenyl (Surrogate)	BSF1688	BSF1688-BS1	LCS	2.2592	2.6490		mg/kg	85.3		40 - 135		
2,4,6-Tribromophenol (Surrogate)	BSF1688	BSF1688-BS1	LCS	2.5790	2.6490		mg/kg	97.4		54 - 162		

Delta Environmental Consultants, Inc.

Project: 7376

Reported: 07/02/2009 8:28

11050 White Rock Rd, Suite 110Project Number: [none]Rancho Cordova, CA 95670Project Manager: John Reay

Base Neutral and Acid Extractables Organic Analysis (EPA Method 8270C)

										Control	<u> Limits</u>	
					Spike			Percent		Percent		
Constituent	Batch ID	QC Sample ID	QC Type	Result	Level	PQL	Units	Recovery	RPD	Recovery	RPD	Lab Quals
p-Terphenyl-d14 (Surrogate)	BSF1688	BSF1688-BS1	LCS	1.4648	1.3245		mg/kg	111		20 - 176		

Project: 7376

Reported: 07/02/2009 8:28

11050 White Rock Rd, Suite 110 Rancho Cordova, CA 95670

Project Number: [none] Project Manager: John Reay

Purgeable Aromatics and Total Petroleum Hydrocarbons

								<u>Control Limits</u>						
					Spike			Percent		Percent				
Constituent	Batch ID	QC Sample ID	QC Type	Result	Level	PQL	Units	Recovery	RPD	Recovery	RPD	Lab Quals		
TPH - Diesel (FFP)	BSF1330	BSF1330-BS1	LCS	82.135	84.175	10	mg/kg	97.6		64 - 124				
Tetracosane (Surrogate)	BSF1330	BSF1330-BS1	LCS	3.2744	3.3670		mg/kg	97.2		20 - 145				

11050 White Rock Rd, Suite 110 Rancho Cordova, CA 95670 Project: 7376

Project Number: [none]
Project Manager: John Reay

Reported: 07/02/2009 8:28

Total Concentrations (TTLC)

									<u>Control Limits</u>					
					Spike			Percent		Percent				
Constituent	Batch ID	QC Sample ID	QC Type	Result	Level	PQL	Units	Recovery	RPD	Recovery	RPD	Lab Quals		
Lead	BSF1305	BSF1305-BS1	LCS	110.18	100.00	2.5	mg/kg	110		75 - 125				

Project: 7376

Project Number: [none]
Project Manager: John Reay

Reported: 07/02/2009 8:28

Volatile Organic Analysis (EPA Method 8260)

Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
Benzene	BSF1054	BSF1054-BLK1	ND	mg/kg	0.0050		
Bromobenzene	BSF1054	BSF1054-BLK1	ND	mg/kg	0.0050		
Bromochloromethane	BSF1054	BSF1054-BLK1	ND	mg/kg	0.0050		
Bromodichloromethane	BSF1054	BSF1054-BLK1	ND	mg/kg	0.0050		
Bromoform	BSF1054	BSF1054-BLK1	ND	mg/kg	0.0050		
Bromomethane	BSF1054	BSF1054-BLK1	ND	mg/kg	0.0050		
n-Butylbenzene	BSF1054	BSF1054-BLK1	ND	mg/kg	0.0050		
sec-Butylbenzene	BSF1054	BSF1054-BLK1	ND	mg/kg	0.0050		
tert-Butylbenzene	BSF1054	BSF1054-BLK1	ND	mg/kg	0.0050		
Carbon tetrachloride	BSF1054	BSF1054-BLK1	ND	mg/kg	0.0050		
Chlorobenzene	BSF1054	BSF1054-BLK1	ND	mg/kg	0.0050		
Chloroethane	BSF1054	BSF1054-BLK1	ND	mg/kg	0.0050		
Chloroform	BSF1054	BSF1054-BLK1	ND	mg/kg	0.0050		
Chloromethane	BSF1054	BSF1054-BLK1	ND	mg/kg	0.0050		
2-Chlorotoluene	BSF1054	BSF1054-BLK1	ND	mg/kg	0.0050		
4-Chlorotoluene	BSF1054	BSF1054-BLK1	ND	mg/kg	0.0050		
Dibromochloromethane	BSF1054	BSF1054-BLK1	ND	mg/kg	0.0050		
1,2-Dibromo-3-chloropropane	BSF1054	BSF1054-BLK1	ND	mg/kg	0.0050		
1,2-Dibromoethane	BSF1054	BSF1054-BLK1	ND	mg/kg	0.0050		
Dibromomethane	BSF1054	BSF1054-BLK1	ND	mg/kg	0.0050		
1,2-Dichlorobenzene	BSF1054	BSF1054-BLK1	ND	mg/kg	0.0050		
1,3-Dichlorobenzene	BSF1054	BSF1054-BLK1	ND	mg/kg	0.0050		
1,4-Dichlorobenzene	BSF1054	BSF1054-BLK1	ND	mg/kg	0.0050		
Dichlorodifluoromethane	BSF1054	BSF1054-BLK1	ND	mg/kg	0.0050		

Project: 7376

Project Number: [none]
Project Manager: John Reay

Reported: 07/02/2009 8:28

Volatile Organic Analysis (EPA Method 8260)

Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
1,1-Dichloroethane	BSF1054	BSF1054-BLK1	ND	mg/kg	0.0050		
1,2-Dichloroethane	BSF1054	BSF1054-BLK1	ND	mg/kg	0.0050		
1,1-Dichloroethene	BSF1054	BSF1054-BLK1	ND	mg/kg	0.0050		
cis-1,2-Dichloroethene	BSF1054	BSF1054-BLK1	ND	mg/kg	0.0050		
trans-1,2-Dichloroethene	BSF1054	BSF1054-BLK1	ND	mg/kg	0.0050		
Total 1,2-Dichloroethene	BSF1054	BSF1054-BLK1	ND	mg/kg	0.010		
1,2-Dichloropropane	BSF1054	BSF1054-BLK1	ND	mg/kg	0.0050		
1,3-Dichloropropane	BSF1054	BSF1054-BLK1	ND	mg/kg	0.0050		
2,2-Dichloropropane	BSF1054	BSF1054-BLK1	ND	mg/kg	0.0050		
1,1-Dichloropropene	BSF1054	BSF1054-BLK1	ND	mg/kg	0.0050		
cis-1,3-Dichloropropene	BSF1054	BSF1054-BLK1	ND	mg/kg	0.0050		
trans-1,3-Dichloropropene	BSF1054	BSF1054-BLK1	ND	mg/kg	0.0050		
Total 1,3-Dichloropropene	BSF1054	BSF1054-BLK1	ND	mg/kg	0.010		
Ethylbenzene	BSF1054	BSF1054-BLK1	ND	mg/kg	0.0050		
Hexachlorobutadiene	BSF1054	BSF1054-BLK1	ND	mg/kg	0.0050		
Isopropylbenzene	BSF1054	BSF1054-BLK1	ND	mg/kg	0.0050		
p-Isopropyltoluene	BSF1054	BSF1054-BLK1	ND	mg/kg	0.0050		
Methylene chloride	BSF1054	BSF1054-BLK1	ND	mg/kg	0.010		
Methyl t-butyl ether	BSF1054	BSF1054-BLK1	ND	mg/kg	0.0050		
Naphthalene	BSF1054	BSF1054-BLK1	ND	mg/kg	0.0050		
n-Propylbenzene	BSF1054	BSF1054-BLK1	ND	mg/kg	0.0050		
Styrene	BSF1054	BSF1054-BLK1	ND	mg/kg	0.0050		
1,1,1,2-Tetrachloroethane	BSF1054	BSF1054-BLK1	ND	mg/kg	0.0050		
1,1,2,2-Tetrachloroethane	BSF1054	BSF1054-BLK1	ND	mg/kg	0.0050		

Project: 7376 Reported: 07/02/2009 8:28

Project Number: [none]
Project Manager: John Reay

Volatile Organic Analysis (EPA Method 8260)

Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
Tetrachloroethene	BSF1054	BSF1054-BLK1	ND	mg/kg	0.0050	_	
Toluene	BSF1054	BSF1054-BLK1	ND	mg/kg	0.0050		
1,2,3-Trichlorobenzene	BSF1054	BSF1054-BLK1	ND	mg/kg	0.0050		
1,2,4-Trichlorobenzene	BSF1054	BSF1054-BLK1	ND	mg/kg	0.0050		
1,1,1-Trichloroethane	BSF1054	BSF1054-BLK1	ND	mg/kg	0.0050		
1,1,2-Trichloroethane	BSF1054	BSF1054-BLK1	ND	mg/kg	0.0050		
Trichloroethene	BSF1054	BSF1054-BLK1	ND	mg/kg	0.0050		
Trichlorofluoromethane	BSF1054	BSF1054-BLK1	ND	mg/kg	0.0050		
1,2,3-Trichloropropane	BSF1054	BSF1054-BLK1	ND	mg/kg	0.0050		
1,1,2-Trichloro-1,2,2-trifluoroethane	BSF1054	BSF1054-BLK1	ND	mg/kg	0.0050		
1,2,4-Trimethylbenzene	BSF1054	BSF1054-BLK1	ND	mg/kg	0.0050		
1,3,5-Trimethylbenzene	BSF1054	BSF1054-BLK1	ND	mg/kg	0.0050		
Vinyl chloride	BSF1054	BSF1054-BLK1	ND	mg/kg	0.0050		
Total Xylenes	BSF1054	BSF1054-BLK1	ND	mg/kg	0.010		
t-Amyl Methyl ether	BSF1054	BSF1054-BLK1	ND	mg/kg	0.0050		
t-Butyl alcohol	BSF1054	BSF1054-BLK1	ND	mg/kg	0.050		
Diisopropyl ether	BSF1054	BSF1054-BLK1	ND	mg/kg	0.0050		
Ethanol	BSF1054	BSF1054-BLK1	ND	mg/kg	1.0		
Ethyl t-butyl ether	BSF1054	BSF1054-BLK1	ND	mg/kg	0.0050		
Total Purgeable Petroleum Hydrocarbons	BSF1054	BSF1054-BLK1	ND	mg/kg	0.20		
1,2-Dichloroethane-d4 (Surrogate)	BSF1054	BSF1054-BLK1	96.5	%	70 - 121 (LCL	- UCL)	
Toluene-d8 (Surrogate)	BSF1054	BSF1054-BLK1	99.3	%	81 - 117 (LCL	- UCL)	
4-Bromofluorobenzene (Surrogate)	BSF1054	BSF1054-BLK1	104	%	74 - 121 (LCL	- UCL)	

Project: 7376

Project Number: [none]
Project Manager: John Reay

Reported: 07/02/2009 8:28

Base Neutral and Acid Extractables Organic Analysis (EPA Method 8270C)

Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
Acenaphthene	BSF1688	BSF1688-BLK1	ND	mg/kg	0.10		
Acenaphthylene	BSF1688	BSF1688-BLK1	ND	mg/kg	0.10		
Aldrin	BSF1688	BSF1688-BLK1	ND	mg/kg	0.10		
Aniline	BSF1688	BSF1688-BLK1	ND	mg/kg	0.20		
Anthracene	BSF1688	BSF1688-BLK1	ND	mg/kg	0.10		
Benzidine	BSF1688	BSF1688-BLK1	ND	mg/kg	3.0		
Benzo[a]anthracene	BSF1688	BSF1688-BLK1	ND	mg/kg	0.10		
Benzo[b]fluoranthene	BSF1688	BSF1688-BLK1	ND	mg/kg	0.10		
Benzo[k]fluoranthene	BSF1688	BSF1688-BLK1	ND	mg/kg	0.10		
Benzo[a]pyrene	BSF1688	BSF1688-BLK1	ND	mg/kg	0.10		
Benzo[g,h,i]perylene	BSF1688	BSF1688-BLK1	ND	mg/kg	0.10		
Benzoic acid	BSF1688	BSF1688-BLK1	ND	mg/kg	0.50		
Benzyl alcohol	BSF1688	BSF1688-BLK1	ND	mg/kg	0.10		
Benzyl butyl phthalate	BSF1688	BSF1688-BLK1	ND	mg/kg	0.10		
alpha-BHC	BSF1688	BSF1688-BLK1	ND	mg/kg	0.10		
beta-BHC	BSF1688	BSF1688-BLK1	ND	mg/kg	0.10		
delta-BHC	BSF1688	BSF1688-BLK1	ND	mg/kg	0.10		
gamma-BHC (Lindane)	BSF1688	BSF1688-BLK1	ND	mg/kg	0.10		
bis(2-Chloroethoxy)methane	BSF1688	BSF1688-BLK1	ND	mg/kg	0.10		
bis(2-Chloroethyl) ether	BSF1688	BSF1688-BLK1	ND	mg/kg	0.10		
bis(2-Chloroisopropyl)ether	BSF1688	BSF1688-BLK1	ND	mg/kg	0.10		
bis(2-Ethylhexyl)phthalate	BSF1688	BSF1688-BLK1	ND	mg/kg	0.20		
4-Bromophenyl phenyl ether	BSF1688	BSF1688-BLK1	ND	mg/kg	0.10		
4-Chloroaniline	BSF1688	BSF1688-BLK1	ND	mg/kg	0.10		

Delta Environmental Consultants, Inc. 11050 White Rock Rd, Suite 110

Rancho Cordova, CA 95670

Project: 7376

Reported: 07/02/2009 8:28

Project Number: [none] Project Manager: John Reay

Base Neutral and Acid Extractables Organic Analysis (EPA Method 8270C)

Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
2-Chloronaphthalene	BSF1688	BSF1688-BLK1	ND	mg/kg	0.10		
4-Chlorophenyl phenyl ether	BSF1688	BSF1688-BLK1	ND	mg/kg	0.10		
Chrysene	BSF1688	BSF1688-BLK1	ND	mg/kg	0.10		
4,4'-DDD	BSF1688	BSF1688-BLK1	ND	mg/kg	0.10		
4,4'-DDE	BSF1688	BSF1688-BLK1	ND	mg/kg	0.10		
4,4'-DDT	BSF1688	BSF1688-BLK1	ND	mg/kg	0.10		
Dibenzo[a,h]anthracene	BSF1688	BSF1688-BLK1	ND	mg/kg	0.10		
Dibenzofuran	BSF1688	BSF1688-BLK1	ND	mg/kg	0.10		
1,2-Dichlorobenzene	BSF1688	BSF1688-BLK1	ND	mg/kg	0.10		
1,3-Dichlorobenzene	BSF1688	BSF1688-BLK1	ND	mg/kg	0.10		
1,4-Dichlorobenzene	BSF1688	BSF1688-BLK1	ND	mg/kg	0.10		
3,3-Dichlorobenzidine	BSF1688	BSF1688-BLK1	ND	mg/kg	0.20		
Dieldrin	BSF1688	BSF1688-BLK1	ND	mg/kg	0.10		
Diethyl phthalate	BSF1688	BSF1688-BLK1	ND	mg/kg	0.10		
Dimethyl phthalate	BSF1688	BSF1688-BLK1	ND	mg/kg	0.10		
Di-n-butyl phthalate	BSF1688	BSF1688-BLK1	ND	mg/kg	0.10		
2,4-Dinitrotoluene	BSF1688	BSF1688-BLK1	ND	mg/kg	0.10		
2,6-Dinitrotoluene	BSF1688	BSF1688-BLK1	ND	mg/kg	0.10		
Di-n-octyl phthalate	BSF1688	BSF1688-BLK1	ND	mg/kg	0.10		
1,2-Diphenylhydrazine	BSF1688	BSF1688-BLK1	ND	mg/kg	0.10		
Endosulfan I	BSF1688	BSF1688-BLK1	ND	mg/kg	0.20		
Endosulfan II	BSF1688	BSF1688-BLK1	ND	mg/kg	0.20		
Endosulfan sulfate	BSF1688	BSF1688-BLK1	ND	mg/kg	0.10		
Endrin	BSF1688	BSF1688-BLK1	ND	mg/kg	0.20		

Project: 7376

Project Number: [none]
Project Manager: John Reay

Reported: 07/02/2009 8:28

Base Neutral and Acid Extractables Organic Analysis (EPA Method 8270C)

Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
Endrin aldehyde	BSF1688	BSF1688-BLK1	ND	mg/kg	0.50		
Fluoranthene	BSF1688	BSF1688-BLK1	ND	mg/kg	0.10		
Fluorene	BSF1688	BSF1688-BLK1	ND	mg/kg	0.10		
Heptachlor	BSF1688	BSF1688-BLK1	ND	mg/kg	0.10		
Heptachlor epoxide	BSF1688	BSF1688-BLK1	ND	mg/kg	0.10		
Hexachlorobenzene	BSF1688	BSF1688-BLK1	ND	mg/kg	0.10		
Hexachlorobutadiene	BSF1688	BSF1688-BLK1	ND	mg/kg	0.10		
Hexachlorocyclopentadiene	BSF1688	BSF1688-BLK1	ND	mg/kg	0.10		
Hexachloroethane	BSF1688	BSF1688-BLK1	ND	mg/kg	0.10		
Indeno[1,2,3-cd]pyrene	BSF1688	BSF1688-BLK1	ND	mg/kg	0.10		
Isophorone	BSF1688	BSF1688-BLK1	ND	mg/kg	0.10		
2-Methylnaphthalene	BSF1688	BSF1688-BLK1	ND	mg/kg	0.10		
Naphthalene	BSF1688	BSF1688-BLK1	ND	mg/kg	0.10		
2-Naphthylamine	BSF1688	BSF1688-BLK1	ND	mg/kg	3.0		
2-Nitroaniline	BSF1688	BSF1688-BLK1	ND	mg/kg	0.10		
3-Nitroaniline	BSF1688	BSF1688-BLK1	ND	mg/kg	0.20		
4-Nitroaniline	BSF1688	BSF1688-BLK1	ND	mg/kg	0.20		
Nitrobenzene	BSF1688	BSF1688-BLK1	ND	mg/kg	0.10		
N-Nitrosodimethylamine	BSF1688	BSF1688-BLK1	ND	mg/kg	0.10		
N-Nitrosodi-N-propylamine	BSF1688	BSF1688-BLK1	ND	mg/kg	0.10		
N-Nitrosodiphenylamine	BSF1688	BSF1688-BLK1	ND	mg/kg	0.10		
Phenanthrene	BSF1688	BSF1688-BLK1	ND	mg/kg	0.10		
Pyrene	BSF1688	BSF1688-BLK1	ND	mg/kg	0.10		
1,2,4-Trichlorobenzene	BSF1688	BSF1688-BLK1	ND	mg/kg	0.10		

Delta Environmental Consultants, Inc. 11050 White Rock Rd, Suite 110

Rancho Cordova, CA 95670

Project: 7376

Project Number: [none]
Project Manager: John Reay

Reported: 07/02/2009 8:28

Base Neutral and Acid Extractables Organic Analysis (EPA Method 8270C)

Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
4-Chloro-3-methylphenol	BSF1688	BSF1688-BLK1	ND	mg/kg	0.20		
2-Chlorophenol	BSF1688	BSF1688-BLK1	ND	mg/kg	0.10		
2,4-Dichlorophenol	BSF1688	BSF1688-BLK1	ND	mg/kg	0.10		
2,4-Dimethylphenol	BSF1688	BSF1688-BLK1	ND	mg/kg	0.10		
4,6-Dinitro-2-methylphenol	BSF1688	BSF1688-BLK1	ND	mg/kg	0.50		
2,4-Dinitrophenol	BSF1688	BSF1688-BLK1	ND	mg/kg	0.50		
2-Methylphenol	BSF1688	BSF1688-BLK1	ND	mg/kg	0.10		
3- & 4-Methylphenol	BSF1688	BSF1688-BLK1	ND	mg/kg	0.20		
2-Nitrophenol	BSF1688	BSF1688-BLK1	ND	mg/kg	0.10		
4-Nitrophenol	BSF1688	BSF1688-BLK1	ND	mg/kg	0.20		
Pentachlorophenol	BSF1688	BSF1688-BLK1	ND	mg/kg	0.20		
Phenol	BSF1688	BSF1688-BLK1	ND	mg/kg	0.10		
2,4,5-Trichlorophenol	BSF1688	BSF1688-BLK1	ND	mg/kg	0.20		
2,4,6-Trichlorophenol	BSF1688	BSF1688-BLK1	ND	mg/kg	0.20		
2-Fluorophenol (Surrogate)	BSF1688	BSF1688-BLK1	79.2	%	42 - 137 (LCL - UCL)	
Phenol-d5 (Surrogate)	BSF1688	BSF1688-BLK1	87.0	%	36 - 137 (LCL - UCL)	
Nitrobenzene-d5 (Surrogate)	BSF1688	BSF1688-BLK1	88.3	%	34 - 135 (LCL - UCL)	
2-Fluorobiphenyl (Surrogate)	BSF1688	BSF1688-BLK1	89.5	%	40 - 135 (LCL - UCL)	
2,4,6-Tribromophenol (Surrogate)	BSF1688	BSF1688-BLK1	99.8	%	54 - 162 (LCL - UCL)	
p-Terphenyl-d14 (Surrogate)	BSF1688	BSF1688-BLK1	119	%	20 - 176 (LCL - UCL)	

Delta Environmental Consultants, Inc. 11050 White Rock Rd, Suite 110

Rancho Cordova, CA 95670

Project: 7376

Project Number: [none]
Project Manager: John Reay

Reported: 07/02/2009 8:28

Purgeable Aromatics and Total Petroleum Hydrocarbons

Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
TPH - Light Naptha	BSF1330	BSF1330-BLK1	ND	mg/kg	50		
TPH - Aviation Gas	BSF1330	BSF1330-BLK1	ND	mg/kg	50		
TPH - Stoddard Solvent	BSF1330	BSF1330-BLK1	ND	mg/kg	20		
TPH - Heavy Naptha	BSF1330	BSF1330-BLK1	ND	mg/kg	10		
TPH - Gasoline	BSF1330	BSF1330-BLK1	ND	mg/kg	20		
TPH - Jet Fuel (JP4)	BSF1330	BSF1330-BLK1	ND	mg/kg	10		
TPH - Jet Fuel (JP5)	BSF1330	BSF1330-BLK1	ND	mg/kg	10		
TPH - Jet Fuel (JP8)	BSF1330	BSF1330-BLK1	ND	mg/kg	10		
TPH - Kerosene	BSF1330	BSF1330-BLK1	ND	mg/kg	10		
TPH - Diesel (FFP)	BSF1330	BSF1330-BLK1	ND	mg/kg	10		
TPH - Fuel Oil #6	BSF1330	BSF1330-BLK1	ND	mg/kg	10		
TPH - Crude Oil	BSF1330	BSF1330-BLK1	ND	mg/kg	20		
TPH - Hydraulic Oil / Motor Oil	BSF1330	BSF1330-BLK1	ND	mg/kg	20		
TPH - WD-40	BSF1330	BSF1330-BLK1	ND	mg/kg	10		
Tetracosane (Surrogate)	BSF1330	BSF1330-BLK1	91.7	%	20 - 145 (L	CL - UCL)	

Delta Environmental Consultants, Inc. 11050 White Rock Rd. Suite 110

Project: 7376

Reported: 07/02/2009 8:28

11050 White Rock Rd, Suite 110 Rancho Cordova, CA 95670

Project Number: [none]
Project Manager: John Reay

Total Concentrations (TTLC)

Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
Lead	BSF1305	BSF1305-BLK1	ND	mg/kg	2.5		

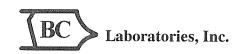
Delta Environmental Consultants, Inc. Project: 7376 Reported: 07/02/2009 8:28

11050 White Rock Rd, Suite 110Project Number: [none]Rancho Cordova, CA 95670Project Manager: John Reay

Notes And Definitions

MDL Method Detection Limit

ND Analyte Not Detected at or above the reporting limit


PQL Practical Quantitation Limit

RPD Relative Percent Difference

A01 PQL's and MDL's are raised due to sample dilution.

A10 PQL's and MDL's were raised due to matrix interference.

A17 Surrogate not reportable due to sample dilution.

Chain of Custody Form

PLEASE COMPLETE: BCL QUOTE ID:		emissis:	harrase
	H.MOOC	Ollinger	HURATE

Client: Projec	t#: C107376			Ana	ysis R	equeste	ēl .			Page of
Attn: Alan Bushler Projec	t Name: 7376 Pleasan to	h		///	///	12/	///	Comme	nts:	
Street Address: 1650 White Pack Svite Global	ID #:		Plead	e refer	/to/the	/3/ /	12/5	li,		
City, State, Zip: Marcholovarac (A Sampl	er(s):	1/	//	14ge/h	or/cor/a	Zili/s		:		
Phone: 916 - 233-509\Fax:		V /	/ /1115	/mu/ti	7/15 / N	2/5/3				
Email Address: a buehler @ belaenv.com	P [*]			202	38	22 6 Fing 6	San	ple Matrix		here any tests with holding times less than or equal to 48 hours?
Work Order #: 0907815		5	m X	1.102	2 2	1 1 20 1		Wate Vater	of work days*	Yes No
Sample Description #	Date Time	PHA	なるなが	李章		事	il idge	Oround Water Waste Water On O	Turn w of w	tandard Turnaround = 10 work days
ComaP	Sampled Sampled				-	4	Sign	ට්රි≥ි Othe	r #	Notes
		-	xx							TAINIA.
(mpaster 2 901 1 3 day turn anou			<i>y y</i>							
Muse -3	6 12 09 8:25	*	K X	x	XX	XX				
1	8 12 100 ₁	-			\$ f					AND A COLD HOTO COLD I TANK B B AND B AND B B
MW2C -4	6 17 09 9:30	1/2 3	X X	×-	R X	XX		1 1 1		DISTRIBUTION TO THE PROPERTY OF THE PROPERTY O
AND TO	8:35		200			>/ /			pt 130	SUB-OUT [1]
MV 26 -5	8: 33	34)	X X	<u> </u>	× X	17/4		Emm. co. and	kaanna kanna antiinkinki sad alaina sii maankakikisika siinkili maai laabi inpaliina	Topic Paris Sect "Super Super Sect Sect Sect Sect Sect Sect Sect Sect
MW 2C		y 3	X X			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
@35 u			X X	7	x X					
MW 2C -7	8:56				1.0					
@ 40 -+		X 3	XX	*	XX					
NW2C -8 /	8:55	4.	4 4	×		1///				
243 28		3-	4 4	7	XX	1212				
Billing Same as above	Report Drinking Sample	Dispos	al							Special Reporting
Client:	Waters on State Form? Re	turn to (Disp	osal by lab	Complete Com			_	
Address:	Yes No 1. Relind	quished	S. (7 0	I	6/12/09		1. Received		Daty Time 6/2/09 1420
City: State Zip	Send Copy to State of 2. Relin	quished	<i>I</i> \	1	I	Date	Time	2. Received	By /	Date Time
Attn: State Zip	CA?	116	Sich	9		6/15/09	1700	Preu	Zu pe	6-15-09 1700
PO#: 451174(0489	Yes No 3. Reline	Risned	1 By _	1.	1 7	Date LC-09		3. Received I	By So	Date Time 5 - 15 - 00 21 00
	Inc. – 4100 Atlas Ct. – Bakersfi			18 – 661	327 40	11 _ Fav. (61 327 1	018 _ 11/11/11	holobo corri) Cq 51 00

SUBMISSION #: 100 7 7815											
Submission #: 09 7 781	5										
SHIPPING INF						SHIPPII	NG CONT	TAINER			
Federal Express □ UPS □					ce Chest,	d	None	e 🗆			
BC Lab Field Service 🗹 Oth	er 🗆 (Specify)			Box		Othe	r 🗆 (Spec	ify)		
					ASSESSED OF THE PROPERTY OF TH						
Refrigerant: Ice Blue Ice	e □ None	Ø Otl	ner 🗆 🤇	Commen	ts:						
Custody Seals Ice Chest ☐ Intact? Yes ☐ No ☐	Containe Intact? Yes	5 L	None 🗗	Comme	nts:						
All samples received? Yes ☑ No □	All samples	containers	s intact? Yo	ęs,⊠ No[3	Descript	ion(s) matc	h COC? Y	es,⁄d No []	
All samples received? Yes No All samples containers intact? Yes No Description(s) match COC? Yes N											
Ź YES □ NO						er ID: <u>) W </u>	<u>්</u>				
2.120 B.NO	Temperature:	A 21	0.5°	c / c	20,2	°C		Analyst lı	<u> </u>		
					SAMPLE	UIMBERS		***************************************			
SAMPLE CONTAINERS	1	2	3	4	5	6	7	8	9	10	
QT GENERAL MINERAL/ GENERAL PHYSIC	CAL										
PT PE UNPRESERVED											
OT INORGANIC CHEMICAL METALS											
PT INORGANIC CHEMICAL METALS											
PT CYANIDE											
PT NITROGEN FORMS											
PT TOTAL SULFIDE	No.	,									
20z. NITRATE / NITRITE		`		***************************************							
PT TOTAL ORGANIC CARBON		***********								***	
PT TOX											
PT CHEMICAL OXYGEN DEMAND											
PtA PHENOLICS 40ml VOA VIAL TRAVEL BLANK											
40ml VOA VIAL 40ml VOA VIAL	(()	()	(()	()	()	()	()	()	
OT EPA 413.1, 413.2, 418.1			· · · · ·		, ,	, ,	\ /	. ,	` '	. ,	
PT ODOR								******			
RADIOLOGICAL		:									
BACTERIOLOGICAL	S. Constant										
40 ml VOA VIAL- 504											
QT EPA 508/608/8080	`					•					
QT EPA 515.1/8150		-									
QT EPA 525								٠			
QT EPA 525 TRAVEL BLANK											
100ml EPA 547											
100ml EPA 531.1											
QT EPA 548	ili ya ka	*****									
QT EPA 549	Steam Section 1									-	
QT EPA 632											
QT EPA 8015M		-									
QT AMBER											
8 OZ. JAR											
32 OZ. JAR	10_	A	A	Ã	<u> </u>	<u>A</u>	. <u>.</u> A	8			
SOIL SLEEVE	A	-11	1.1		A	A	<u> </u>				
PCB VIAL											
PLASTIC BAG							,				
FERROUS IRON											
	<u> </u>									-	

Comments:_ Sample Numbering Completed By:_ A = Actual / C = Corrected Date/Time: 10 15

Date of Report: 07/02/2009

John Reay

Delta Environmental Consultants, Inc. 11050 White Rock Rd, Suite 110 Rancho Cordova, CA 95670

RE: 7376

BC Work Order: 0908396 Invoice ID: B064376

Enclosed are the results of analyses for samples received by the laboratory on 6/26/2009. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Contact Person: Molly Meyers

Client Service Rep

Authorized Signature

11050 White Rock Rd, Suite 110 Rancho Cordova, CA 95670

Project: 7376

Project Number: 4511814991 Project Manager: John Reay

Laboratory / Client Sample Cross Reference

Client Sample Information Laboratory

0908396-01 **COC Number:**

Project Number: 7376 Sampling Location:

Sampling Point: COMP WASTE H20

DECR Sampled By:

06/26/2009 19:00 Receive Date:

06/25/2009 07:33 Global ID:

Sampling Date:

Location ID (FieldPoint): COMP WASTE Sample Depth: H20 Sample Matrix: Water

Matrix: W

Sample QC Type (SACode): CS

Reported: 07/02/2009 8:31

Cooler ID:

Delivery Work Order:

Delta Environmental Consultants, Inc. 11050 White Rock Rd, Suite 110

Rancho Cordova, CA 95670

Project: 7376

Reported: 07/02/2009 8:31

Project Number: 4511814991 Project Manager: John Reay

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 090	08396-01	Client Sample	e Name:	7376, COMP WASTE H20, 6/25/2009 7:33:00AM										
		•					Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL N	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene		ND	ug/L	0.50		EPA-8260	06/30/09	07/01/09 00:52	MWB	MS-V13	1	BSF1903		
Ethylbenzene		ND	ug/L	0.50		EPA-8260	06/30/09	07/01/09 00:52	MWB	MS-V13	1	BSF1903		
Methyl t-butyl ether		ND	ug/L	0.50		EPA-8260	06/30/09	07/01/09 00:52	MWB	MS-V13	1	BSF1903		
Toluene		ND	ug/L	0.50		EPA-8260	06/30/09	07/01/09 00:52	MWB	MS-V13	1	BSF1903		
Total Xylenes		ND	ug/L	1.0		EPA-8260	06/30/09	07/01/09 00:52	MWB	MS-V13	1	BSF1903		
Total Purgeable Petroleum Hydrocarbons		ND	ug/L	50		Luft-GC/MS	06/30/09	07/01/09 00:52	MWB	MS-V13	1	BSF1903		
1,2-Dichloroethane-d4 (Surrog	jate)	102	%	76 - 114 (LCL - UC	CL)	EPA-8260	06/30/09	07/01/09 00:52	MWB	MS-V13	1	BSF1903		
Toluene-d8 (Surrogate)		99.3	%	88 - 110 (LCL - UC	CL)	EPA-8260	06/30/09	07/01/09 00:52	MWB	MS-V13	1	BSF1903		
4-Bromofluorobenzene (Surro	gate)	107	%	86 - 115 (LCL - UC	CL)	EPA-8260	06/30/09	07/01/09 00:52	MWB	MS-V13	1	BSF1903		

 $\label{eq:DeltaEnvironmentalConsultants} \ \ \text{Inc.}$

11050 White Rock Rd, Suite 110 Rancho Cordova, CA 95670

Project: 7376

Project Number: 4511814991 Project Manager: John Reay **Reported:** 07/02/2009 8:31

Water Analysis (Metals)

BCL Sample ID:	0908396-01	Client Sample	e Name:	7376, COI	MP WASTI	E H20, 6/25/2	009 7:33:0	MA00						
				Prep Run Instru- QC MB Lab								Lab		
Constituent		Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Total Lead		ND	ug/L	50		EPA-6010B	06/30/09	06/30/09 18:22	PPS	PE-OP1	1	BSF1917	ND	

Delta Environmental Consultants, Inc. 11050 White Rock Rd, Suite 110

Rancho Cordova, CA 95670

Project: 7376 Project Number: 4511814991

Project Manager: John Reay

Reported: 07/02/2009 8:31

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Precision & Accuracy

									Control Limits		
			Source	Source		Spike			Percent		Percent
Constituent	Batch ID	QC Sample Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery Lab Quals
Benzene	BSF1903	Matrix Spike	0908273-24	0	27.690	25.000	ug/L		111		70 - 130
		Matrix Spike Duplicate	0908273-24	0	27.330	25.000	ug/L	1.8	109	20	70 - 130
Toluene	BSF1903	Matrix Spike	0908273-24	0	28.130	25.000	ug/L		113		70 - 130
		Matrix Spike Duplicate	0908273-24	0	27.990	25.000	ug/L	0.9	112	20	70 - 130
1,2-Dichloroethane-d4 (Surrogate)	BSF1903	Matrix Spike	0908273-24	ND	9.4900	10.000	ug/L		94.9		76 - 114
		Matrix Spike Duplicate	0908273-24	ND	9.6500	10.000	ug/L		96.5		76 - 114
Toluene-d8 (Surrogate)	BSF1903	Matrix Spike	0908273-24	ND	10.030	10.000	ug/L		100		88 - 110
		Matrix Spike Duplicate	0908273-24	ND	10.180	10.000	ug/L		102		88 - 110
4-Bromofluorobenzene (Surrogate)	BSF1903	Matrix Spike	0908273-24	ND	9.8100	10.000	ug/L		98.1		86 - 115
		Matrix Spike Duplicate	0908273-24	ND	9.9100	10.000	ug/L		99.1		86 - 115

Project: 7376

Reported: 07/02/2009 8:31

11050 White Rock Rd, Suite 110 Rancho Cordova, CA 95670

Project Number: 4511814991 Project Manager: John Reay

Water Analysis (Metals)

Quality Control Report - Precision & Accuracy

								Control Limits					
			Source	Source		Spike			Percent		Percent		
Constituent	Batch ID	QC Sample Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery Lab Quals		
Total Lead	BSF1917	Duplicate	0908290-01	1.6033	ND		ug/L			20			
		Matrix Spike	0908290-01	1.6033	418.06	400.00	ug/L		104		75 - 125		
		Matrix Spike Duplicate	0908290-01	1.6033	416.85	400.00	ug/L	0	104	20	75 - 125		

Project: 7376

Reported: 07/02/2009 8:31

11050 White Rock Rd, Suite 110 Rancho Cordova, CA 95670

Project Number: 4511814991 Project Manager: John Reay

Volatile Organic Analysis (EPA Method 8260)

									Control Limits				
Constituent	Batch ID	QC Sample ID	QC Type	Result	Spike Level	PQL	Units	Percent Recovery	RPD	Percent Recovery	RPD	Lab Quals	
Benzene	BSF1903	BSF1903-BS1	LCS	26.290	25.000	0.50	ug/L	105		70 - 130			
Toluene	BSF1903	BSF1903-BS1	LCS	26.760	25.000	0.50	ug/L	107		70 - 130			
1,2-Dichloroethane-d4 (Surrogate)	BSF1903	BSF1903-BS1	LCS	9.3800	10.000		ug/L	93.8		76 - 114			
Toluene-d8 (Surrogate)	BSF1903	BSF1903-BS1	LCS	9.9800	10.000		ug/L	99.8		88 - 110			
4-Bromofluorobenzene (Surrogate)	BSF1903	BSF1903-BS1	LCS	9.8900	10.000		ug/L	98.9		86 - 115			

Project: 7376

Reported: 07/02/2009 8:31

11050 White Rock Rd, Suite 110 Rancho Cordova, CA 95670

Project Number: 4511814991 Project Manager: John Reay

Water Analysis (Metals)

						Control Limits								
					Spike			Percent		Percent				
Constituent	Batch ID	QC Sample ID	QC Type	Result	Level	PQL	Units	Recovery	RPD	Recovery	RPD	Lab Quals		
Total Lead	BSF1917	BSF1917-BS1	LCS	453.30	400.00	50	ug/L	113		85 - 115				

Delta Environmental Consultants, Inc.

Project: 7376

Reported: 07/02/2009 8:31

11050 White Rock Rd, Suite 110Project Number:4511814991Rancho Cordova, CA 95670Project Manager:John Reay

Volatile Organic Analysis (EPA Method 8260)

Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
1,2-Dichloroethane-d4 (Surrogate)	BSF1903	BSF1903-BLK1	84.9	%	76 - 114	(LCL - UCL)	
Toluene-d8 (Surrogate)	BSF1903	BSF1903-BLK1	97.2	%	88 - 110	(LCL - UCL)	
4-Bromofluorobenzene (Surrogate)	BSF1903	BSF1903-BLK1	101	%	86 - 115	(LCL - UCL)	

Delta Environmental Consultants, Inc. 11050 White Pock Pd. Suite 110

Project: 7376

Reported: 07/02/2009 8:31

11050 White Rock Rd, Suite 110 Rancho Cordova, CA 95670

Project Number: 4511814991 Project Manager: John Reay

Water Analysis (Metals)

Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
Total Lead	BSF1917	BSF1917-BLK1	ND	ug/L	50		

Delta Environmental Consultants, Inc. Project: 7376 Reported: 07/02/2009 8:31

11050 White Rock Rd, Suite 110Project Number:4511814991Rancho Cordova, CA 95670Project Manager:John Reay

Notes And Definitions

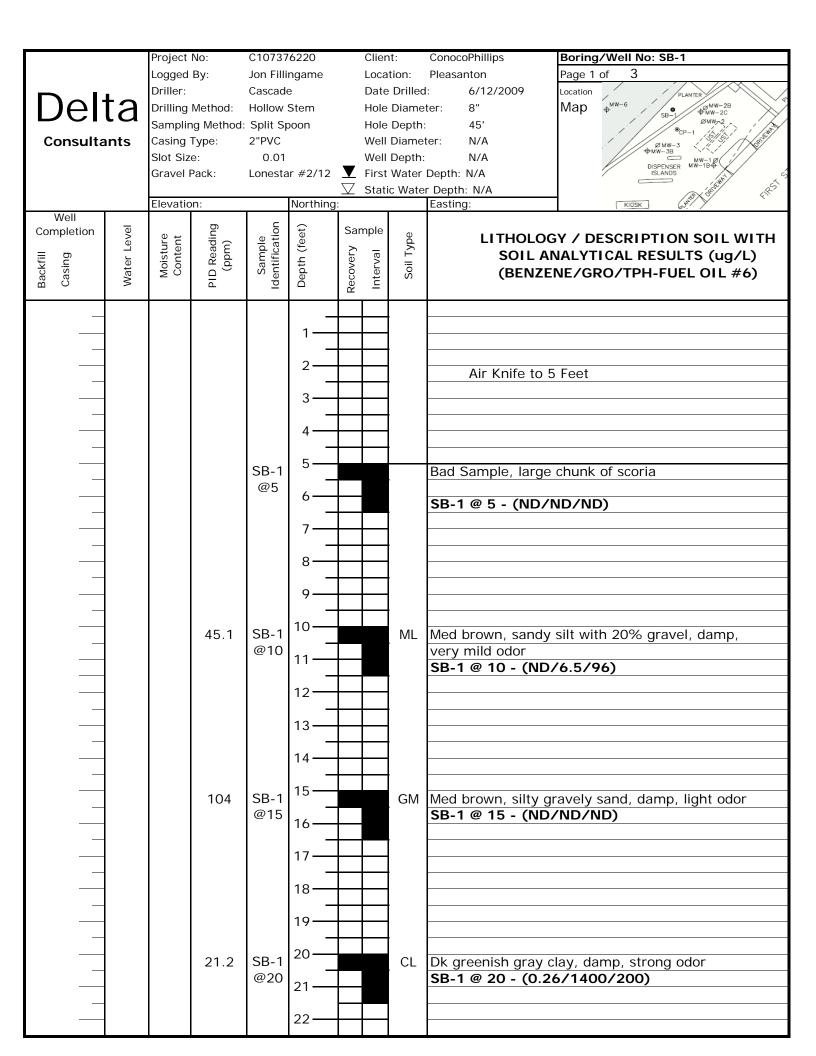
MDL Method Detection Limit

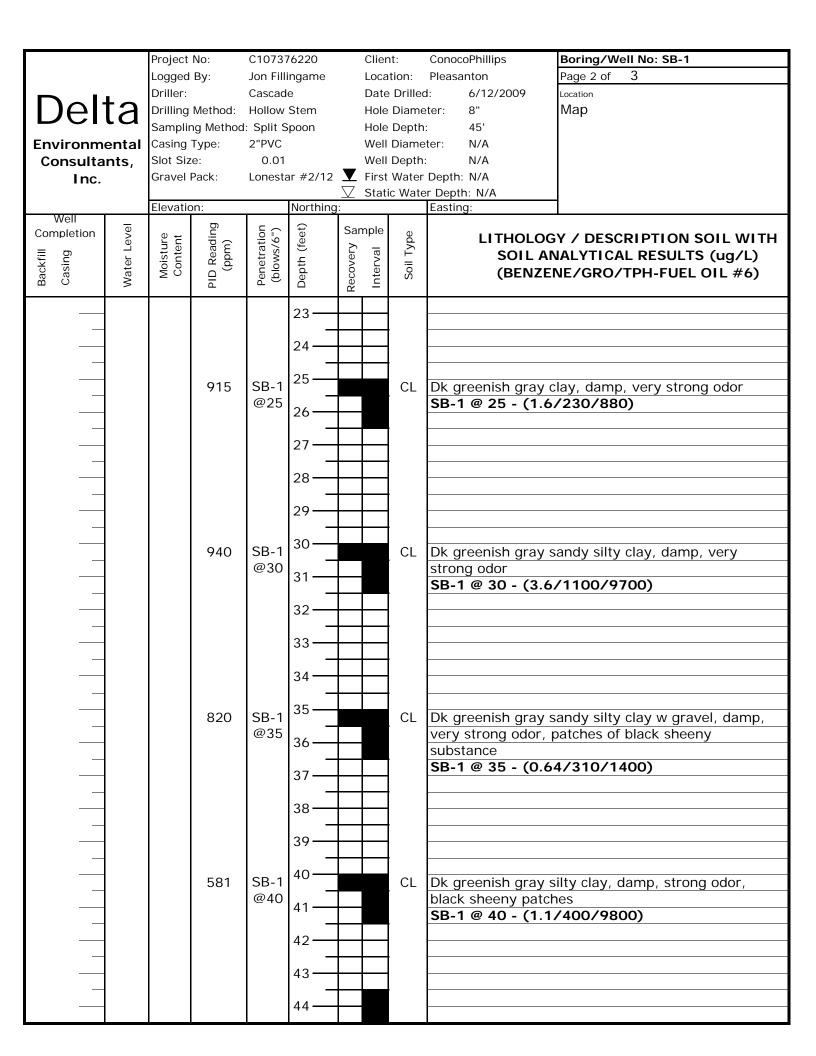
ND Analyte Not Detected at or above the reporting limit

PQL Practical Quantitation Limit

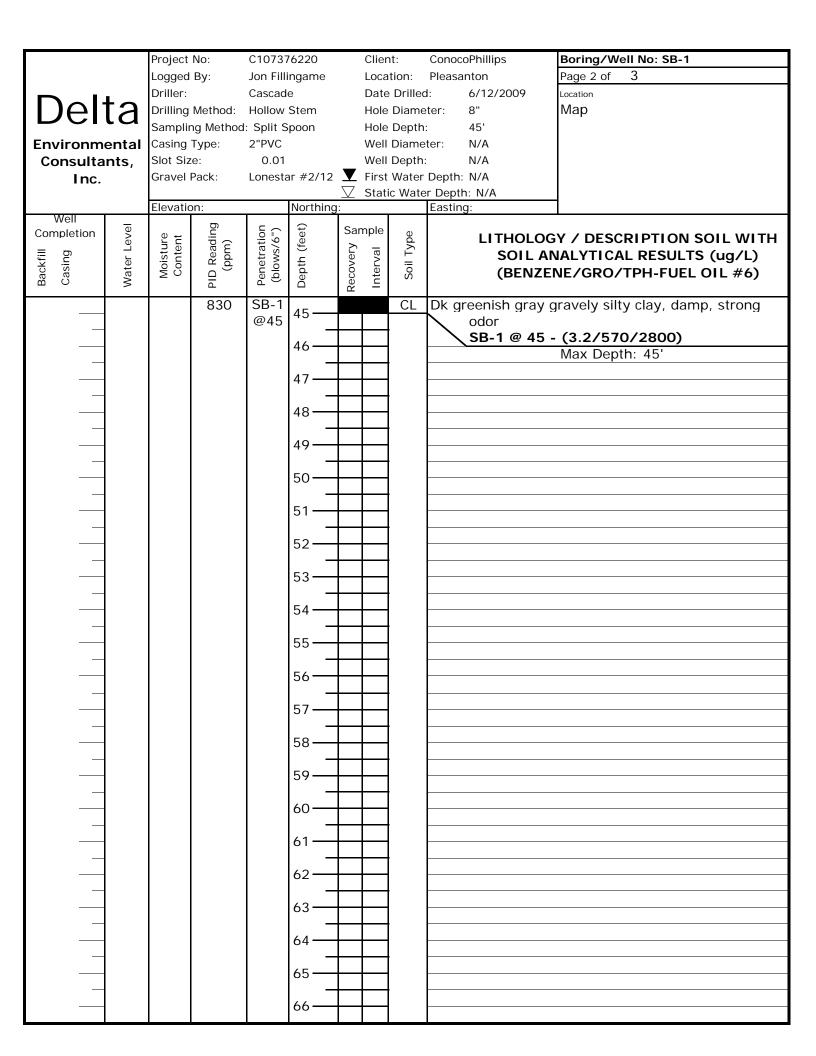
RPD Relative Percent Difference

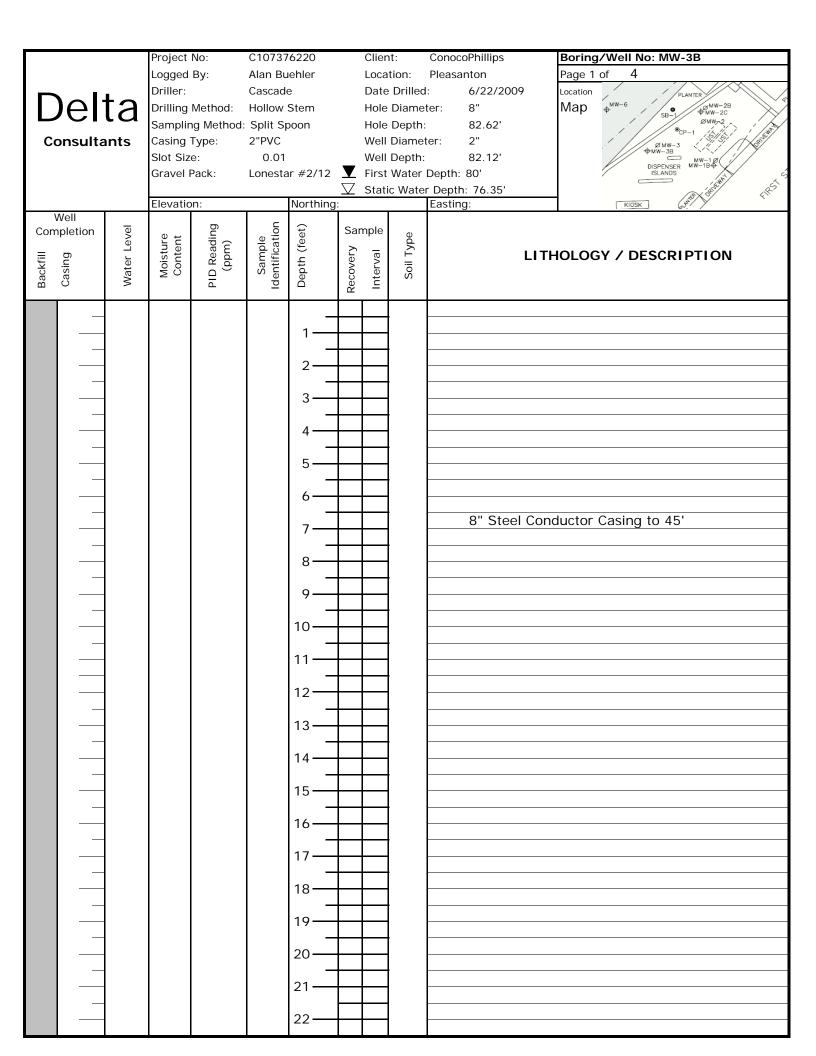
Chain of Custody Form


PLEASE COMPLETE: BCL QUOTE ID:

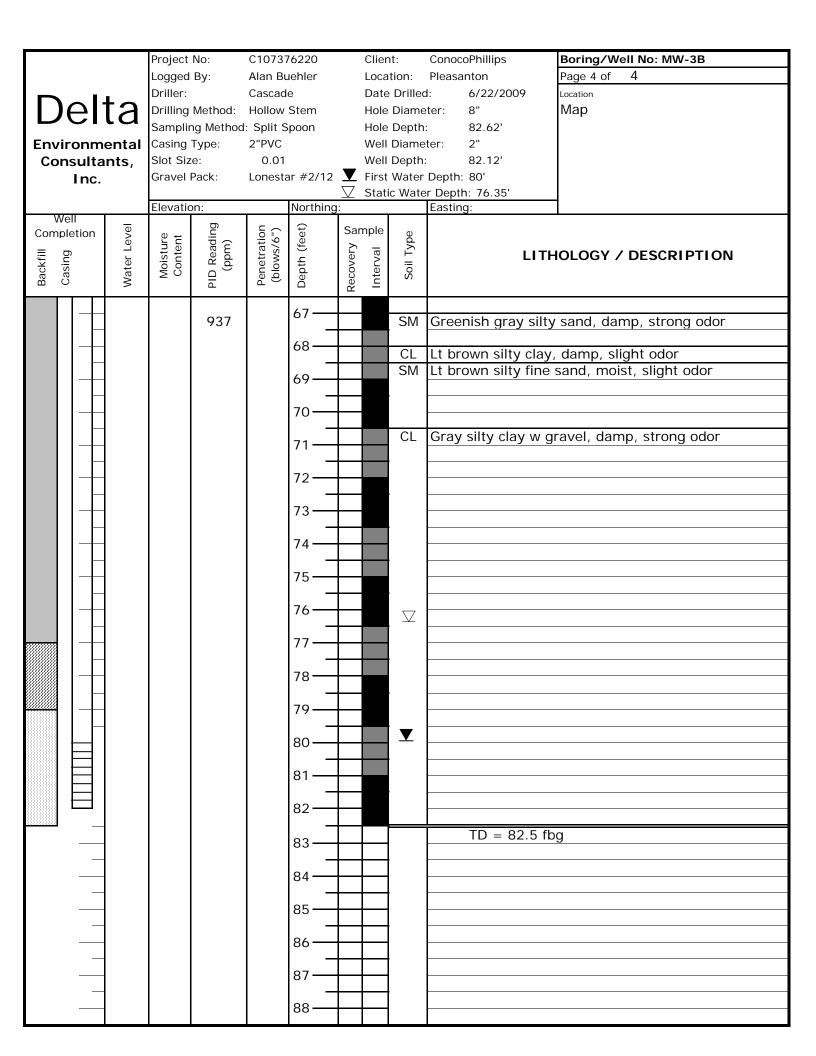

Report To: Pr	roject #:	:C1	0737	2 (0226				Ai	nally	sis I	Requ	este	exel								Page_	(of	
Attn: Aan Bueller Pi	roject Na	ame:7	376 F	leasan	100				/	//	7	7	7	7	/0	Com	ımen	ts:	ocen- zmortugi		Marine Atompto verse constant			
Attn: A an Bueller Pr Street Address: 11050 White Rot 110 G	lobal ID	#:] /		/ esis/e		ie/	to Æ	e/ha	/		1.	/									
·	ampler(s							1/21	e /for	r/coi	/131/	tion												
Phone: 916-503-1273 Fax: 916-638-8385						/ ,	/1115/	kruy	ltiq	as /	n (/ 1)	ayth	11	_										NO SECTION OF SECTION
Email Address: a Sucher @ delta eur.	Duy							B	100	gen	d.			Sa	mpl ાંગ ≒	e M:	atrix	ıd ıys*	Are there	any tests w or equa	ith holding I to 48 hou		ess than	•
Work Order #: CAOS394					۸. ا	111	X	2							y Wate	/ater		arour ork da		Yes] No		
Sample Description #			Date	Time	ります	MTBE	BTEX	[0fal						il idge	inking	ste W	Other	Turnaround of work days*	* Stanc	dard Turna		10 work	days	
				Sampled			2	اعر				-		Sou	פֿובֿן	≱ (Other	#			lotes			
comp. Had (600A, 1 Amber, 1 poly) -3 day turnarand		6	25 09	7:33	*	*	~	>																
>3day turnaraind	4																				***************************************			_
\																	ware.						-	
												-				-								_
																			:					_

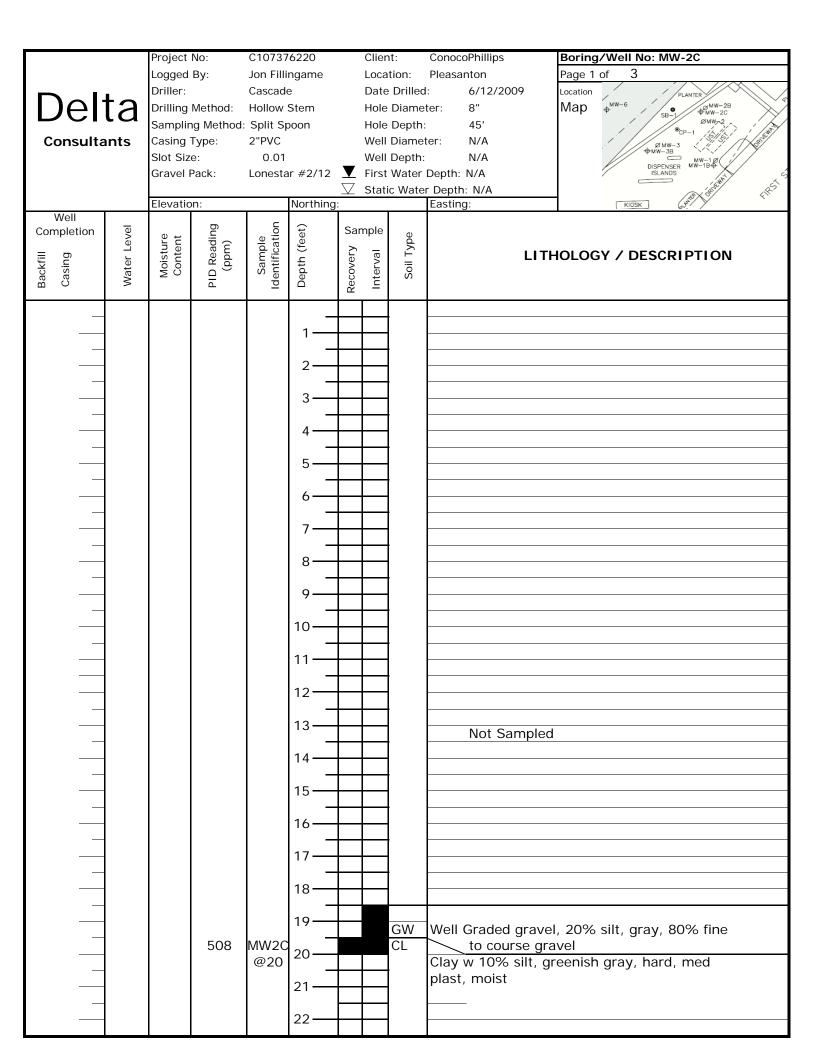
CHK BY DISTRIBUTION	0 1				-							_												_
CHK BY DISTRIBUTION	RPV																							=
SUB-OUT			<u> </u>								-				_									
	***************************************						_																***************************************	
																			:					_
		-	<u> </u>				-		-								·		***************************************		****			\dashv
		-					_			-									· minat					
				Sample	Dien	neal					arpological description of the second			at and a sup-			n consideration of the best of	anatania ana a	en y postajenja na sustavnikom v kroli slikana kili	C			ormon los interessos.	
Billing Same as about	ve R		Orinking on State Fo		eturn t		nt	r	Dispos	al by la	b [Arc	hive:	Мс	nths_				QC	Special R		Raw I	Data	
Client:		Yes	\square N	o () Reli	nquish	ed By	. (0		Date	-11.0	Tir		1.	Rece	jved By				Date		Time	
Address:	S	end Co	— — — py to State	of 2. Reli			لد	<u>_</u> 	_		Date,	zle oc		40 ne	2.	Rece	ived By	WIL	<u>chen</u>		Date		//// Time	
City:StateZip	C	CA?		" K	6B		ick	Dr,			6/2	6/01	14	15	e	R		المحد ا	1_		6-Z6-C	1	LYIS	-
Attn:PO#:	—— C	Yes	\square N	O 3. Relin				D			Date	1	Tir	ne	[3.	Rece	ived By				Date		Time	
PO#: BC Laborator	ries Inc	410	Ω A +1ας (Tt Bokors	<u>JL</u>	$\frac{\mathcal{U}}{\mathcal{C}^{\lambda}}$	0330	76 つら	661	-	6-20	<u>0 'U'(</u>	((1	227	101	₹\	$\frac{\mathcal{V}}{\mathcal{V}}$	/ 🗸)	10/20	9759	1900	\mathcal{U}

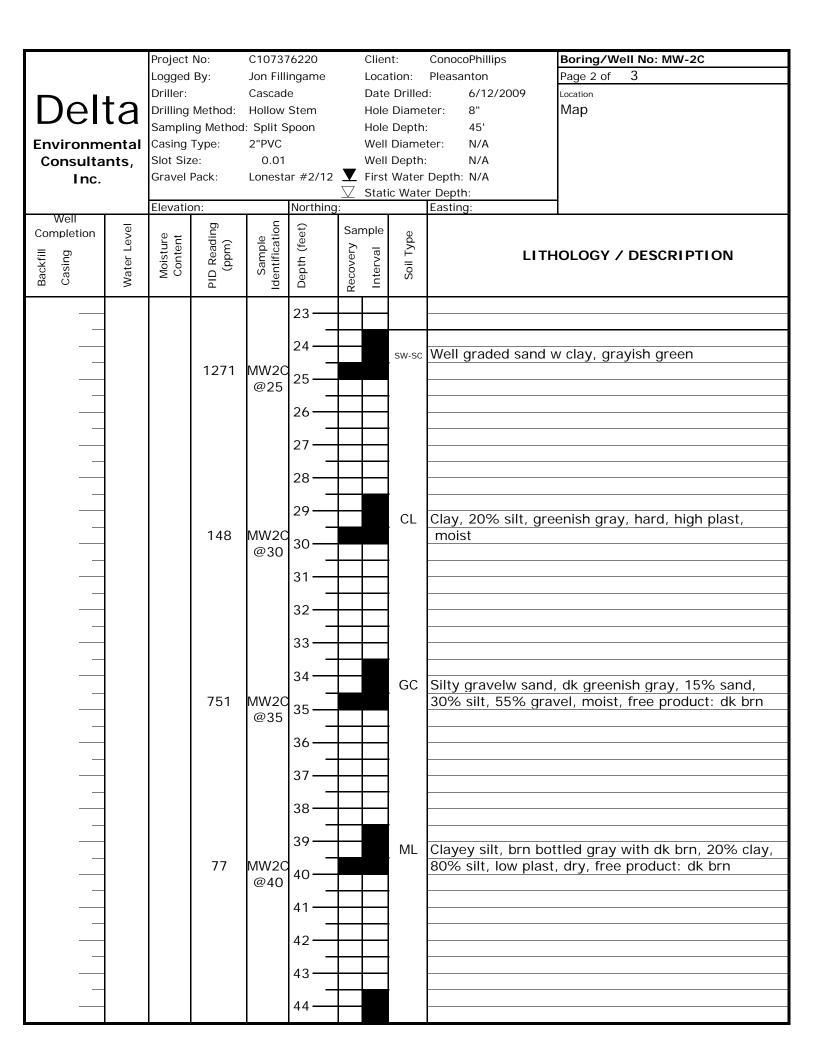

BC LABORATORIES INC.		SAMPLE	RECEIP.	T FORM	Rev	. No. 12	06/24/08	Page _	Of _					
Submission #: 0908390)				·									
SHIPPING INFOR		very □		SHIPPING CONTAINER Ice Chest None										
BC Lab Field Service ☑ Other □		Box ⊂ Other □ (Specify)												
Refrigerant: Ice ☑ Blue Ice □	None	□ Oth	ier□ C	omment	s:									
	Containe Intact? Yes		None 🗹	Comme	nts:									
All samples received? Yes 🗹 No 🗆 🛚 🗜	All samples	containers	intact? Ye	s d No □]	Descripti	on(s) matc		es 🗹 No 🏻					
COC Received En	nissivity: _	0.98 c	ontainer: <u>{</u>	the T	hermomet	er ID: Thi	162	Date/Time	<u> 0 20 0</u>	9 1900				
			<u>o</u> °(Analyst In	nit <u>JOV</u>	j l				
i le	mperature.	A	<u> </u>	J / G	<i>U.J</i>			Analysen	0.10 M.					
SAMPLE CONTAINERS					SAMPLE				_					
	11	2	3	4	5	6	7	8	9	10				
QT GENERAL MINERAL/ GENERAL PHYSICAL PT PE UNPRESERVED	3													
OT INORGANIC CHEMICAL METALS														
PT INORGANIC CHEMICAL METALS														
PT CYANIDE PT NUTROCEN FORMS														
PT NITROGEN FORMS PT TOTAL SULFIDE														
2oz. NITRATE / NITRITE		4												
PT TOTAL ORGANIC CARBON														
РТ ТОХ														
PT CHEMICAL OXYGEN DEMAND														
PtA PHENOLICS														
40ml VOA VIAL TRAVEL BLANK														
40ml VOA VIAL	AW	()	()	(()	()	()	()	()	()				
OT EPA 413.1, 413.2, 418.1														
PT ODOR														
RADIOLOGICAL .							-		 					
BACTERIOLOGICAL										· · · · · · · · · · · · · · · · · · ·				
40 ml VOA VIAL- 504														
QT EPA 508/608/8080	·													
QT EPA 515.1/8150	I													
OT EPA 525														
QT EPA 525 TRAVEL BLANK	New York		<u> </u>											
100ml EPA 547			<u> </u>											
100ml EPA 531.1														
QT EPA 548														
QT EPA 549 QT EPA 632														
QT EPA 8015M														
QT AMBER	C													
8 OZ. JAR														
32 OZ. JAR														
SOIL SLEEVE														
PCB VIAL														
PLASTIC BAG														
FERROUS IRON ,			<u></u>											
ENCORE														


APPENDIX E

Boring Logs







	Project No:	C1073762	20	Clien	t: Co	onocoPhillips	Boring/Well No: MW-3B
	Project No:	C1073762		Clien		onocoPhillips	Boring/Well No: MW-3B
١, ١,	Logged By:	Alan Buehl	ler	Locat		easanton .	Page 2 of 4
Delta	Driller:	Cascade		Date	Drilled:	6/22/2009	Location
	Drilling Method				Diameter	: 8"	Мар
Environmental	Sampling Methor		on		Depth:	82.62'	
Consultants,	Casing Type:	2"PVC	_		Diameter		
Inc.	Slot Size: Gravel Pack:	0.01 Lonestar #			Depth:	82.12'	
	Graver rack.	Lonestal #	∇			epth: 76.35'	
Well $\overline{\psi}$ Completion	бг	E C E	Sa	mple	4)		
Ō	Moisture Content PID Reading (ppm)	Penetration (blows/6") Depth (feet)		-	Soil Type		THOLOOY / DECODED TO AN
Backfill Casing Water L	foisi Cont	low.	Recovery	Interval	ie	LI	THOLOGY / DESCRIPTION
Ba _e Ca		d) De l	Rec	<u>l</u>	Ň		
		23	,	T			
)				
		24	1 ———	\perp			
			+	+	-		
		25	5 —	+	<u> </u>		
			. 🕇				
		26					
		27	7 ——				
			+				
		28	3——				
			$\overline{}$				
		29					
		30	\rightarrow				
			+	+			
		31	1 —	+			
		32	<u>, </u>			8" Steel Co	onductor Casing to 45'
		33	3——	+	_		
			+	+			
		34	1 —				
		35					
			´ 	+			
		36	5 	+	<u> </u>		
			. +	+	\vdash		
		37	/				
		38	$_{3}$				
			- +	+			
		39	- -	+-			
			T	+			
		40					
		4	ı ——	$\downarrow \downarrow \downarrow$			
			+	+	<u> </u>		
		42	2——	+	<u> </u>		
			, +	+	<u> </u>		
		43					
		44	1 — T	$\downarrow \Box$			
			-				

	Project No:	C10737	6220	Clie	nt:	ConocoPhillips	Boring/Well No: MW-3B
	Logged By:	Alan Bu	ıehler	Loca	ation:	Pleasanton	Page 3 of 4
	Driller:	Cascade		Date	e Drilled		Location
Delta	Drilling Method:	Hollow :	Stem	Hole	e Diame	eter: 8"	Мар
	Sampling Metho	d: Split S	poon	Hole	e Depth		
Environmental		2"PVC			l Diame		
Consultants,	Slot Size:	0.01			I Depth:		
Inc.	Gravel Pack:	Lonesta	ar #2/12 V			Depth: 80'	
	Elevation:		Northing:	∠ Stat	ic Wate	er Depth: 76.35' Easting:	4
Well						Lasting.	
Backfill Casing uoitaldwoo	Moisture Content PID Reading (ppm)	Penetration (blows/6")	Φ	Sample	be		
fill ng	istu nte nte Rea	tra ws/	ب ب	rery val	Soil Type	LIT	HOLOGY / DESCRIPTION
Backfill Casing Water L	Moisture Content ID Readin (ppm)	ene	ept	Recovery Interval	Soil		
M O S	٦	Д)	ن ۵	ъ -			
			45			8" Steel Cor	nductor Casing 0-45'
			46				
			+		ŀ		
			47 —		CL	It brown clay into	erbedded w greenish gravely
			 		CL	material, mild odd	
			48			material, milu out	л
							
			49		CL	Greenish grav cla	y, damp, mild odor
						l stronger	y
			50		1		
					CL	Greenish gray clay	y w 20% gravel, damp, slight
			51 —			odor	
			52				
			J2				
			53		CL	Greenish gray clay	y, damp, mild odor
					ļ.		
			54				
							
			55		CL	Croonish gray clay	y, interbedded gravel, damp,
			+		CL	strong odor	y, interbedded graver, damp,
			56		1	Strong odor	
			 		t		
			57		ML	Lt brown coarse s	andy silt w interbedded
							ite, mild odor, dry, less odor
			58			within DG	<u>-</u>
			59				
			J 7		СН	Lt brn clay, very p	plastic, moist, strong odor
			60				
			-		CH		clay interbedded w greenish gray
			61			gravely clay	
			+		ŀ		
			62		СН	It brown grovely	clay moist mild odor
			 		СП	Lt brown gravery	clay, moist, mild odor
			63				
			 				
			64		СН	It brown clay ver	y plastic, moist, mild odor
			l +		J. 1	S. S. VIII Sidy, VCI	J placed molec, mile oder
			65		СН	Lt brown silty clay	, damp, slight odor
			,, +		1	2.1.25 2.100	· It United
			66				
	•					•	

	Project No:	C107376220	Clier	nt: Con	ocoPhillips	Boring/Well No: MW-2C
	Logged By:	Jon Fillingame	Loca	ation: Plea	santon	Page 3 of 3
	Driller:	Cascade	Date	e Drilled:	6/12/2009	Location
Delta	Drilling Method	: Hollow Stem	Hole	Diameter:	8"	Мар
Derta	Sampling Metho		Hole	Depth:	45'	
Environmental	Casing Type:	2"PVC	Well	Diameter:	N/A	
Consultants,	Slot Size:	0.01	Well	Depth:	N/A	
Inc.	Gravel Pack:	Lonestar #2/12				
				ic Water De	pth:	_
Well	Elevation:	Northin	g:	Eas	ting:	
Completion $\frac{\overline{\Phi}}{>}$	Moisture Content PID Reading (ppm)	Penetration (blows/6") Depth (feet)	Sample	φ		
Backfill Casing uoitaldumoD	Moisture Content ID Readin (ppm)	Penetration (blows/6") Depth (feet)	a S	Soil Type	117	HOLOGY / DESCRIPTION
Backfill Casing Water L		net low pth	OV6 PIV	- -	LII	HOLOGY / DESCRIPTION
Ba Ca		Pe (β Del	Recovery	S		
	283	MMAC		CL Lea	n clay w graye	el, 20% gravel, 80% clay,
		@45 45 —		52 500		plast, hard, moist
		-	† †	†		ling = 45 fbg
		46—	1 1	1	P	3
				1		
		47—		1		
		48—				
		40				
		49—				
		50—				
		_		ļ <u> </u>		
		51 —				
_		-	+ + -			
		52—	+			
		-	+ +	-		
		53 —				
		-	+ +	 		
		54 —	+ + -			
		-	+ + -	┪ ├─		
		55 	+ +	1		
		-	+ +	1		
		56—		1		
				1		
		57—	1 1	1		
				1		
		58—]		
		59—				
		60—				
			\bot	ļ <u> </u>		
		61 —				
		-	+	ļ <u> </u>		
		62 —	+			
		-	+ + -	 		
		63 —	++-	-		
		-	++-	 		
		64 —	++-	-		
		-	+ + -	 		
<u> </u>		65 —	+ + -	 		
		-	+ + -	 		
		66—	+ + -	-		