RECEIVED

2:13 pm, Oct 01, 2009

Alameda County Environmental Health

76 Broadway Sacramento, California 95818

September 30, 2009

Jerry Wickham Alameda County Health Agency 1131 Harbor Bay parkway, Suite250 Alameda, California 94502-577

Re: Site Conceptual Model (SCM) 76 Service Station # 7376 RO # 0361 4191 First Street Pleasanton, CA

Dear Mr. Wickham:

I declare under penalty of perjury that to the best of my knowledge the information and/or recommendations contained in the attached report is/are true and correct.

If you have any questions or need additional information, please call me at (916) 558-7666.

Sincerely,

Terry L. Grayson Site Manager Risk Management & Remediation

SITE CONCEPTUAL MODEL 76 SERVICE STATION NO. 7376 4191 FIRST STREET PLEASANTON, CALIFORNIA

Prepared for:

ConocoPhillips Company 76 Broadway Sacramento, CA 95818

Prepared by:

Delta Consultants 312 Piercy Road San Jose, California 95138

September 30, 2009

CERTIFICATION

The following report was prepared under the supervision and direction of the undersigned California Professional Geologist.

DELTA CONSULTANTS

Lia Holden California Professional Geologist #8584

TABLE OF CONTENTS

CERTIFICATION	11
1.0 INTRODUCTION	1
2.0 SITE LOCATION AND DESCRIPTION	2
2.1 SITE LOCATION	
2.2 Site Description	
2.3 Site Owner	
3.0 SITE SETTING	3
3.1 REGIONAL GEOLOGIC SETTING	
3.2 REGIONAL HYDROGEOLOGIC SETTING	
3.3 SITE HYDROGEOLOGIC CONDITIONS	
4.0 NATURE AND EXTENT OF SOURCE	5
4.1 Former USTs	5
4.2 Release Reports 1984-1987	
4.3 Monitoring Wells and Soil Borings	
4.4 POTENTIAL OFFSITE SOURCES	
4.5 RESIDUAL SOILS AS ON-GOING SOURCE	
4.6 Summary	
5.0 FATE AND TRANSPORT CHARACTERISTICS	12
5.1 Underground Utility Conduits	
5.2 Soil Migration Pathways	
5.3 Hydrogeologic Pathways	
5.4 CONTAMINANT MIGRATION MODEL	
5.5 CONCENTRATION TRENDS	
6.0 SITE REMEDIATION	15
7.0 POTENTIAL SENSITIVE RECEPTORS	16
7.1 Environmental Screening Levels	
7.2 INDOOR AIR INHALATION - SOIL	
7.3 NEARBY WATER SUPPLY WELLS	
8.0 SUMMARY	18

9.0 RECOMMENDATIONS	
9.1 Site Assessment	
9.2 OFF-SITE ASSESSMENT	
9.3 FEASIBILITY TESTING	
9.4 Corrective Action Plan	
10.0 REMARKS	20

LIST OF TABLES

Table 1 – Monitoring Well Construction Details Table 2 – Groundwater Gradients and Flow Directions

LIST OF FIGURES

- Figure 1 Site Location Map
- Figure 2 Site Plan
- Figure 3 Regional Geologic Map
- Figure 4A- Cross-Section A-A
- Figure 4B- Cross-Section A-A; Soil Analytical Data
- Figure 4C- Cross-Section A-A; Groundwater Analytical Data
- Figure 5A- Cross-Section B-B
- Figure 5B- Cross-Section B-B; Soil Analytical Data
- Figure 5C- Cross–Section B-B; Groundwater Analytical Data
- Figure 5 Groundwater Flow Rose Diagram

LIST OF TABLES

 Table 1 – Monitoring Well Construction Details

Table 2 – Groundwater Gradients and Flow Directions

LIST OF APPENDICES

- Appendix A Historic Site Maps
- Appendix B Historic Geologic Figures
- Appendix C Historic Boring Logs
- Appendix D Historic Soil Data and Sample Locations
- Appendix E Historic Groundwater Monitoring Data
- Appendix F Historic Groundwater Elevation Maps

Appendix G – Sensitive Receptor Surveys

Site Conceptual Model ConocoPhillips Site# 7376 Pleasanton, CA Page 1 of 22

1.0 INTRODUCTION

Delta Consultants, (Delta), on behalf of ConocoPhillips (COP) has prepared this Site Conceptual Model (SCM) for the 76 Service Station No. 7376, located at 4191 First Street in Pleasanton, California (site) (**Figure 1**). The SCM provides a working hypothesis regarding the current and future distribution of petroleum hydrocarbons and methyl tert-butyl ether (MTBE) detected in soil and groundwater beneath the site.

The key elements of the SCM are:

- Site history and description
- Regional hydrogeologic setting
- Nature and extent of the petroleum hydrocarbon source(s)
- Contaminant fate and transport characteristics
- Potential exposure pathways
- Potential receptors

2.0 SITE LOCATION AND DESCRIPTION

The following sections provide a description of the site and surrounding area.

2.1 Site Location

The site (Alameda County Assessor's Parcel # 94-110-12-4) is a rectangular property located at the intersection of Ray Street and First Street in Pleasanton, California. (**Figures 1 and 2**).

2.2 Site Description

The site is currently an active 76 Service Station located on the northwest corner of First Street and Ray Street in Pleasanton, California (**Figure 1**). Current site facilities consist of a cashier's kiosk, four product dispenser islands and two 12,000-gallon double-wall fiberglass gasoline underground storage tanks (USTs). There are currently 12 active groundwater-monitoring wells and four former groundwater monitoring wells at and in the site vicinity. The site is bounded to the northwest by a former Southern Pacific Railroad right-of-way currently owned by Alameda County, north and northeast by a commercial building, southeast by First Street, and southwest by Ray Street. There is an underground KinderMorgan petroleum pipeline located on Alameda County property adjacent to the northwest edge of the site. Properties in the immediate site vicinity are used for a mix of residential and commercial purposes. A Shell service station is located southeast of the site. The site is located at an approximate elevation of 360 feet above mean sea level.

The site was developed around 1907 as a warehouse to store grain and hay. As shown on a Sanborn map, an "in-ground" bunker fuel storage tank to support the railway was installed northwest of the property as early as 1907 (**Attachment A**). Additionally, overlays (estimates only) of historic site features upon the current arrangement of properties and site features were produced from historic Sanborn maps. These are included in **Attachment A**.

A service station was first constructed on the site in 1976. Between November 8, 1982 and February 8, 1985, the Pleasanton Fire Department (PFD) responded to five separate fuel releases at the site. The releases occurred prior to acquisition of the property by Unocal Corporation in 1988, and prior to ConocoPhillips assuming operations at the site.

2.3 Site Owner

According to an Alameda County Health Care Services letter dated November 14, 1994, the site was a Gas-N-Save station until the early 1980s, at which time Armour Oil Company owned and operated the site as an Arco service station. The site was purchased by the Unocal Corporation in on February 8, 1988. ConocoPhillips sold the site to CDW & PWS Enterprises, Inc, 8998 Alcosta Blvd, San Ramon, CA. on April 29, 2005. The property is currently owned by De L. Liu and Na Li of 922 Saddlehorn Ct in Danville, CA.

3.0 SITE SETTING

The following sections provide a summary of the regional geologic and hydrogeologic setting.

3.1 Regional Geologic Setting

The subject site is located near the southwest end of the Livermore Valley. The site is situated on a northern facing hill, and slopes slightly to the north. The Arroyo Valley stream is located approximately 1,100 feet to the north of the site. The site is underlain by Holocene age alluvial fan deposits, described by the Department of Water Resources (DWR) in Bulleting 118-3 as "unconsolidated, moderately sorted, permeable fine sand and silt, with gravel becoming more abundant toward fan heads with canyons." The site is approximately three miles east of the northwest trending Pleasanton Fault (**Figure 3**) (USGS 2006). Holocene alluvial fan deposits under the site are underlain by the Livermore Formation, consisting of northward dipping sand and gravel deposits. Above mentioned features are shown in regional geologic cross sections and maps, presented in **Attachment B**.

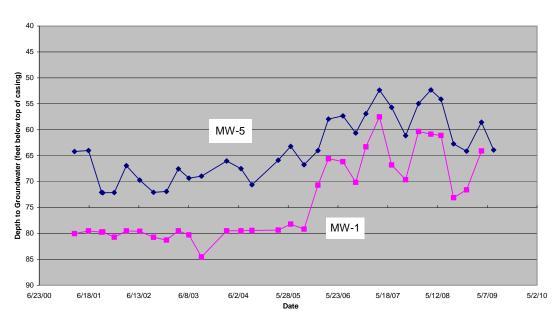
3.2 Regional Hydrogeologic Setting

The site is located within the Amador Sub-basin of the Livermore Valley Groundwater Basin. The Amador Sub-basin is bounded on the east by the Livermore Fault and on the west by the Pleasanton Fault. The main watercourses in the basin are the Arroyo Valle and Arroyo Mocho, which both drain into the Arroyo de la Laguna. Gravel pits are present in the central portion of the subbasin. The estimated depth to the regional groundwater is 40 feet below ground surface (bgs) and the regional flow direction is north and northeast (ACWD-Zone 7, 1993-2003).

Groundwater in the Amador subbasin occurs in both unconfined and confined conditions. In the shallower, unconfined aquifers, groundwater is first encountered generally about 30 to 50 feet bgs. Deeper aquifers are encountered within sand and gravel deposits at a depth of approximately 90 to 100 feet bgs (DWR, 2003). The Zone 7 contour map shows groundwater flow in both confined and unconfined aquifers toward the gravel pits in the center of the subbasin (See Zone 7 Groundwater Contour Map contained in **Attachment B**). A contour map from the Zone 7 Well Master Plan shows a flow within the "deeper aquifer" to the west. Sand and gravel pit groundwater extraction areas are located greater than one mile north of the site in the central portion of the subbasin. The site appears to be outside the area of influence of any groundwater extraction wells.

The City of Pleasanton is served by the Zone 7 Water Agency. Based on information provided by personnel from the Zone 7 Water Agency, the City of Pleasanton obtains 80% of its water from the Hetch-Hetchy reservoir, the San Joaquin/Sacramento Delta and multiple deep-water wells located in the Fremont area. The remaining water is pumped from wells in Pleasanton that range in depth from 50-600 feet bgs (ACWD 1993-2006).

3.3 Site Hydrogeologic Conditions


The site is underlain by complexly interlayered clay (Unified Soil Classification CL), silt (ML), silty sand (SM), clayey sand (SC), silty gravel (GM), sand (SP, SW), and gravel (GW). Contacts between soil types are often gradational. All soils contain various percentages of silt and sand. Site subsurface conditions are illustrated on cross-sections shown on **Figures**

Site Conceptual Model ConocoPhillips Site# 7376 Pleasanton, CA Page 4 of 22

4 and 5. Soils have been combined into two units; generally fine grained, moderate to low permeability soils (clay, silt, with some clayey sand and clayey gravel) and generally coarse-grained, moderate to high permeable soils (sand, gravel, with some interlayered silt, silty sand, and silty gravel). Copies of historic boring logs are contained in **Appendix C**.

Soil layers appear to dip to the north-northeast at an angle of approximately 15 degrees. Groundwater was first encountered in borings drilled between 1996 and 1998 typically at a depths of approximately 65 to 75 feet below ground surface (bgs) (KEI 1996), (GR 1999). Perched groundwater was encountered in thin permeable sand and gravel beds at depths as shallow as 40 feet bgs (see Shell MW-1 and COP MW-7 on cross-section A-A, **Figure 4**). Saturated layers are separated by low permeability dipping clay and silt beds. Saturated beds appear to be confined or semi-confined.

Two saturated permeable layers are recognized and are designated A and B on cross section **Figures 4 and 5**. Wells MW-5, MW-7, MW-8, and MW-9, appear to be screened across the upper of the two layers (A). Wells MW-1 (destroyed), MW-2B (destroyed), MW-1B, MW-2C, MW-3B, MW-6, and MW-10 appear to be screened in the lower of the units. Well MW-4 appears to be screened below the lowest of the two units (B). Depth to groundwater in wells MW-4 through MW-10 on June 22, 2009, ranged from 57.43 (MW-7) to 70.45 (MW-6) feet below top of casing. Groundwater flow was to the east. Groundwater levels in wells have risen by approximately 15 feet since late-2005 (see chart below). Seasonal fluctuations may be as great as 10 feet.

Depth to Groundwater Well MW-5 76 Service Station #7376 4191 First Street, Pleasanton, California

Site Conceptual Model ConocoPhillips Site# 7376 Pleasanton, CA Page 5 of 22

4.0 NATURE AND EXTENT OF SOURCE

The following sections describe the source(s) of the petroleum hydrocarbons that have been detected in soil and groundwater beneath and adjacent to the site.

4.1 Former USTs

A Union Oil Company of California drawing dated November 17, 1987 shows the two 12,000- gallon fuel USTs to be located in the northeastern end of the site in their current location (**Attachment A and Figure 2**). The first soil and groundwater investigation report dated September 9, 1987 shows four 12,000-gallon petroleum product USTs near the current tank pit location in the northeastern portion of the site. The four former USTs were replaced with two 12,000 gallon double-walled steel USTs in December 1987 as part of the property sale agreement (Enviros 1995).

A Bunker C fuel oil tank was installed at the site sometime around 1907 according to Sanborn insurance maps. The bunker fuel oil tank located just to the northwest of the site in the vicinity of boring SB-1. The bunker fuel oil tank was used to service the railroad that bordered the site to the northwest. The tank is believed to have been removed from the site, but removal documents are not available. Currently, there are no documents verifying the removal of this bunker tank. Delta utilized ground penetrating radar (GPR) technology to determine the current presence or absence of the bunker tank. The bunker tank was not detected; however, GPR results may not be conclusive depending on the material with which the tank was made.

4.2 Release Reports 1984-1987

<u>November 8, 1982</u>: The Pleasanton Fire Department reported that approximately nine gallons of gasoline had leaked from a damaged fuel filter and collected in the base sand area directly below the pumps.

<u>November 23, 1982</u> : The Valley Times Newspaper (volume 97 No. 230 dated November 23, 1982) reported that approximately 100 gallons of gasoline was discovered welling from an underground storage tank and pooling in a nearby parking lot. The nearby stream, Arroyo Del Valle, was reportedly not affected by the gasoline release.

<u>February 20, 1984</u>: The Pleasanton Fire Department filed an fire incident report for a gasoline leak at the site. According to the report, pump #12 located on the south fuel island was observed to be leaking. Approximately 30 gallons of gasoline was estimated to have leaked from possibly damaged underground product piping. Approximately 10 gallons of gasoline was contained using soil.

<u>January 7, 1985</u>: A complaint report was filed against the station, reporting a "strong odor of gasoline around storm drains." Station attendants stated that the site's gasoline USTs were filled that morning, and that gasoline from a possible overfill was likely transported to the drain via rain water runoff.

<u>February 8, 1985</u>: The Pleasanton Fire Department filed a Leak Reporting Form documenting an unknown amount of gasoline contaminated rain runoff entering two separate sewer drains. The nature of the spill was likely due to overfilling of the gasoline USTs.

Site Conceptual Model ConocoPhillips Site# 7376 Pleasanton, CA Page 6 of 22

July 16, 1987: A Petro Tite System Test revealed a leak of 0.93 gallons per hour in the North No. 1 regular gasoline UST. This result was followed up by an additional test on July 25th to confirm the leak. Leakage during the confirmation test was reported at 0.028 gallons per hour, and was deemed mathematically tight. It is unclear whether repairs were made to the UST system to repair the leak, or whether the leak detection was false (Environmental Laboratories Inc., 1987).

<u>October 17, 1994</u>: An unauthorized Release Report was filed following soil sampling performed on September 9, 1994. The report did not specify a release date or quantity released, but identified the contaminant as gasoline/waste oil. The report was filed following product piping replacement, during which old single-walled product lines were discovered, as well as extensive soil contamination.

4.3 Monitoring Wells and Soil Borings

The following section summarizes findings of previous soil and groundwater investigations conducted at the site. Historic soil data and sample locations can be found in **Attachment D**, historic groundwater data is presented in **Attachment E**, boring logs are presented in **Attachment C**, and monitoring well construction details are provided in **Table 1**.

June 30, 1987: Applied GeoSystems (AGS) oversaw the advancement of three soil borings (B-1, B-2 and B-3). The soil borings were advanced to 46.5 feet bgs and 55 feet bgs in the vicinity of the USTs and northern dispenser island (**Attachment D**). Total volatile hydrocarbons (TVH) were reported in all three borings, ranging from 7.72 milligrams per kilogram (mg/kg) in B-3 at a depth of 30 feet bgs, to 281.9 mg/kg in B-1 at a depth of 20 feet bgs. Total extractable hydrocarbons (TEH) were reported in B-1 at a depth of 35 feet bgs with a concentration of 1325 mg/kg. On August 21, 1987, an additional boring, B-4 was advanced to a depth of 66.5 feet bgs, directly north of B-1. TVH and TEH were reported at 100.5 mg/kg and 1,835 mg/kg, respectively at a depth of 35 feet bgs. Benzene was reported in all borings, with a maximum concentration of 17.1 mg/kg in B-1, located directly west of the fuel USTs, at a depth of 20 feet bgs, (AGS 1987).

<u>December 2 through 7, 1987</u>: Three soil borings (B-4, B-5 and B-6) were advanced at the site and completed in to monitoring wells MW-1, MW-2 and MW-3. The wells were installed to the southeast, north, and southwest of the site's fuel USTs as shown in **Figure 2**. TVH was detected in borings for wells MW-2 and MW-3 with a maximum concentration of 390 mg/kg at a depth of 55 feet bgs in MW-3. Benzene was detected in MW-2 and MW-3 with a maximum concentration of 14 mg/kg in MW-3 at a depth of 55 feet bgs. TEH was reported in MW-2 and MW-3 with a maximum concentration of 6,300 mg/kg in MW-2 at a depth of 35 feet bgs (AGS 1994).

<u>September 9 through 24, 1994</u>: Kaprellian Engineering Inc. (KEI) collected soil samples P1 through P13 from a depth of 3 feet and samples P2(9) and P5(9) from a depth of nine feet during product piping replacement activities. Sample locations are contained in **Attachment D**. Total petroleum hydrocarbons as gasoline (TPH-G) and benzene were reported at a maximum concentrations of 8,900 mg/kg and 65 mg/kg, respectively, in sample P5 located at the southern end of the No. 2 fuel dispenser (KEI 1994).

<u>February 6 and 7 1995</u>: KEI oversaw the installation of monitoring well MW-2B and soil boring EB-1 in the vicinity of the fuel USTs and southern fuel dispenser, respectively

Site Conceptual Model ConocoPhillips Site# 7376 Pleasanton, CA Page 7 of 22

(**Figure 2**). Well MW-2 was destroyed at this time due to introduction of asphalt to the well during repaving activities. TPH-G, total petroleum hydrocarbons as diesel (TPH-D) and benzene were reported in both borings with maximum concentrations of 15,000 mg/kg, 3,600 mg/kg and 340 mg/kg, respectively, in EB-1 at a depth of five feet. Detections of TPH-G, TPH-D and benzene were reported to depths of approximately 60 feet bgs in each boring (KEI 1995).

July 23 and 24, 1996: KEI oversaw the advancement of three additional soil monitoring wells (MW-4 through MW-6), to total depths of 73.5 to 93 feet bgs. Well MW-4 was installed onsite and wells MW-5 and MW-6 were installed offsite on the former Southern Pacific Railroad right-of-way as shown in Figure 2. Soil samples collected from the well borings were analyzed for TPH-G, benzene, toluene, ethylbenzene and xylenes (BTEX compounds), and fuel fingerprinting. Soil samples from boring MW-4 contained low concentrations of petroleum hydrocarbons ranging up to 47 parts per million (ppm) of TPH-G, up to 0.27 ppm of benzene, and up to 15 ppm of TPH-D. Soil samples collected in the upper 50 feet of well boring MW-5 contained benzene up to 0.038 ppm. Samples collected between 55 and 65 feet bgs in MW-5 contained up to 560 ppm of TPH-G, up to 3.9 ppm of benzene, and up to 450 ppm of TPH-D. Samples collected from MW-6 contained up to 5.0 ppm of TPH-G, up to 1.2 ppm of benzene and 200 ppm TPH-D detected at 55 feet bgs. Petroleum hydrocarbon concentrations in the range of kerosene, motor oil, and unidentified extractable hydrocarbons were also identified in the samples collected from the well borings (KEI, 1996).

<u>June 27, 1997</u>: Free product was encountered in well MW-5 during quarterly monitoring activities. In December 1997, Entrix, Inc. (Entrix) performed a forensic geochemical analysis of the free product extracted from well MW-5. The Entrix study determined that the free product was likely composed of a mixture of over 50% refined gasoline and 50% heavier hydrocarbons. The gasoline constituents appeared to be relatively fresh according to Entrix. The heavier hydrocarbon mixture had a carbon distribution ranging from C-13 to C-33. The distribution was similar in nature to a very weathered crude oil or Bunker C fuel, and petroleum products such as diesel #2, motor oil, lube oil, etc., or mixtures of any of the above heavier hydrocarbons (Entrix, 1997).

<u>November 1997</u>: Engeo advanced six soil borings (B-1 through B-5) on the northwest extent of the vacant right-of-way to the northwest of the site. The borings were advanced to determine whether soils in the right-of-way had been impacted as a result of fuel releases at the site. Borings B-1 through B-5 were advanced to depths of 40 to 80 feet bgs. No analytes were reported above reporting limits in any soil samples. TPH-G, benzene and MTBE were reported in groundwater samples at concentrations of 0.630 ppm, 0.023 ppm, and 0.498 ppm, respectively in groundwater sample W-4.

June and August 1998 : Five additional onsite soil borings (B-8 through B-12) were advanced and two offsite down gradient groundwater monitoring wells (MW-7, MW-8) were installed by Gettler-Ryan (GR) (Attachment D). TPH-G, benzene, TPH-D and MTBE reached maximum concentrations in boring B-12 at depths between 28.5 bgs and 37.5 bgs of 1,700 ppm, 21 ppm , 14,000 ppm and 2.6 ppm, respectively. Total petroleum hydrocarbons as hydraulic oil (TPH-ho) was detected in B-11 at 10.5 feet bgs at a maximum concentration of 5,200 ppm. No analytes were reported in samples collected from B-8 and MW-7. Two soil samples containing visible free product were collected from boring B-11 (near the former UST excavation) at 10.5 and 61 feet bgs and submitted to Global Geochemistry Corp. for hydrocarbon fingerprinting chemical analysis. The results of these analyses determined that the free product from both samples was composed of

Site Conceptual Model ConocoPhillips Site# 7376 Pleasanton, CA Page 8 of 22

approximately 90% highly to severely weathered crude oil and 10% of slightly weathered gasoline (GR, 1999).

<u>October and November 2000</u>: GR advanced one soil boring located northwest of the fuel USTs (B-13) and installed two offsite groundwater monitoring wells to the north of the site (MW-9 and MW-10) as shown in **Figure 2**. TPH-G and benzene were reported at maximum concentrations of 14,000 mg/kg and 100 mg/kg, respectively in B-13 at a depth of 28 feet bgs. Benzene and TPH-G were detected in B-13 to a depth of approximately 73 feet bgs. MTBE was reported at a maximum concentration of 2 mg/kg in B-13 at a depth of 46 feet bgs. No analytes were reported in MW-9. TPH-G, benzene and MTBE were reported in MW-10 at maximum concentrations of 240 mg/kg, 0.71 mg/kg, and 1.2 mg/kg, respectively, at a depth of 56 feet bgs (GR, 2000).

<u>September 17 through 19, 2001</u> : Two offsite soil borings were installed by GR and completed as groundwater monitoring wells MW-11 and MW-12 (**Figure 2**). The wells were installed to total depths of approximately 86 and 88 feet bgs, respectively. No analytes were detected above laboratory reporting limits for all soil samples. No analytes were reported above the reporting limits in groundwater sample MW-12-Grab, collected from a perched groundwater zone at 40 feet bgs in well boring MW-12 (GR 2002).

<u>November 5, 2007</u>: BSK conducted an investigation in the right-of-way northwest of the site and surrounding parcels. The investigation was conducted for the City of Pleasanton to determine the extent of herbicides and heavy metals in the corridor as a result of the property's prior use as a railway. In addition, the investigation took place to determine the impact on soils from fuel releases at the site, and from the Shell service station across First Street.

Surface soil samples were collected at locations shown in Attachment B, and seven soil borings (SB-1 through SB-7) were advanced between the Kinder Morgan Pipeline location and the site. Borings were advanced to depths of 37.5 feet bgs to 61 feet bgs. Arsenic was reported at a maximum concentration of 68 mg/kg in sample RR-3, which is above the California Human Health Screening Levels (CHHSL) for residential and commercial soils of 0.07 mg/kg and 0.24 mg/kg, respectively. Lead was reported above the residential CHHSL of 150 mg/kg in two surface samples with a maximum concentration of 190 mg/kg in sample BG-1 (BSK 2008).

Samples from soil borings were analyzed for TPH-G, TPH-D, BTEX compounds, TPH-jet fuel, TPH-aviation fuel, oil and grease, MTBE and TBA. No analytes were reported above laboratory reporting limits in SB-1 and SB-3. TPH-G and TPH-D, TPH-aviation fuel, TPH-jet fuel, benzene, oil and grease and MTBE were reported in maximum concentrations of 8,100 mg/kg, 860 mg/kg, 9,600 mg/kg, 37 mg/kg, 11,000 mg/kg and 260 mg/kg, respectively, in SB-5 at a depth of 30 feet bgs. TPH-G was reported at a maximum concentration of 380 mg/kg in SB-6 at a depth of 30 feet bgs. All soil sample locations and data are presented in Attachment B. The original lab report was amended as the indication of the petroleum hydrocarbons as jet fuel appeared to be questionable. A note on the soil analytical summary table stated "TPHg – total petroleum hydrocarbons – Jet Fuel** (Hydrocarbons reported within diesel range)" (BSK 2008).

<u>February 18 through 26, 2008</u>: Delta oversaw the advancement of seven cone penetrometer test (CPT) borings (CP-1 through CP-7). CP-1 and CP-2 were located onsite near the fuel USTs, and at the southeast portion of the site, respectively and CP-3 through CP-7 were located in the right of way directly to the west of the site as shown in **Figure 2**. TPH-G and benzene were reported only in CP-1 with maximum concentrations of 640 mg/kg

and 25 feet bgs and 14 mg/kg at 30 feet bgs, respectively. TPH-G was reported in soil in CP-1 to the maximum depth explored of 701 feet bgs. MTBE was reported in borings CP-1, CP-5, CP-6 and CP-7, with a maximum concentration of 1.3 mg/kg in CP-1 at a depth of 30 feet bgs. TPH-G was reported in groundwater from borings CP-1, CP-4, CP-6 and CP-7 ranging from 99 micrograms per liter (μ g/l) in CP-4 to a maximum of 1,500 μ g/l in CP-1. Benzene was reported in CP-1, CP-2 and CP-6 ranging from 0.67ug/l in CP-2 to a maximum of 250 μ g/l in CP-1. MTBE was reported in CP-1, CP-2, CP-4, CP-6 and CP-7 ranging from 1.4 μ g/l in CP-2 to a maximum of 530 μ g/l in CP-1. No groundwater samples were collected from CP-5 (Delta 2008).

June 8 through 25, 2009: Delta oversaw the destruction of wells MW-1, MW-2B and MW-3, and the installation of replacement wells MW-1B, MW-2C and MW-3B. In addition, one soil boring (SB-1) was advanced in the northwestern portion of the site in the footprint of an old bunker oil tank. Soil samples were collected from SB-1 and MW-2C. Gasoline range organics (GRO) was reported in soil boring SB-1 above the Environmental Screening Level (ESL) of 81 mg/kg from depths of 20 feet to 45 feet bgs. Fuel oil #6 was reported above the ESL of 2,500 mg/kg at depths of 30 feet bgs, 40 feet bgs and 45 feet bgs with a maximum concentration of 1,400 mg/kg at a depth of 20 feet bgs. Benzene was reported below 20 feet bgs in SB-1 to the maximum depth of 45 feet bgs, with a maximum concentration of 3.6 mg/kg at a depth of 30 feet bgs. MTBE was detected only at 10 feet bgs with a concentration of 0.05 mg/kg (Delta 2009).

Soil samples collected from MW-2C were subject to analysis for volatile organic compounds (VOCs) by Environmental Protection Agency (EPA) Method 8260, semi-volatile organic compounds by EPA Method 8270C, and purgeable aromatic and total petroleum hydrocarbons (TPH) by EPA 8015 (leaking underground fuel tank/ fuel finger printing) (LUFT/FFP). With the exception of sample depth 25 bgs Benzene was detected at all sampled depths at concentrations ranging from 28 (ppm) at 30 bgs, to 0.05 mg/kg at 45 bgs generally decreasing in concentration with depth. With the exception of sample depth 25 bgs MTBE was detected at all sampled depths in concentrations ranging from 8.7 mg/kg at 30 bgs to 0.075 mg/kg at 45 bgs generally decreasing in concentration with depths. TPH-G was not detected at or above laboratory reporting limits from sampled depths. TPH as Kerosene was detected at two sampled depths at concentrations ranging from 93 mg/kg at 20 bgs to 1,800 mg/kg at 25 bgs. TPH-D was detected at all sampled depths at concentrations ranging from 26 mg/kg at 20 bgs 15,000 mg/kg at 35 bgs.

4.4 Potential Offsite Sources

A Shell service station is located approximately 75 feet southeast of the site. This site has had an open leaking underground storage tank (LUST) case since 1995. Petroleum hydrocarbons were detected below the former USTs in the northern portion of the site in 1985 during UST replacement. In January 2005, waste oil was poured into a part of the waste oil tank which releases straight to the surrounding pea gravel. Oil and grease was detected in pea gravel, but soil samples confirmed that waste oil was confined to the pea gravel. Groundwater flow at the site has historically been to the north-northeast (Delta 2006). In September 2006, Shell advanced a CPT boring (CPT-2) in First Street between the two sites. Groundwater samples were collected at depths of approximately 78 and 98 feet bgs. TPH-G, toluene, ethylbenzene, and xylene were all below the laboratory reporting limit in both sample. Benzene was detected in the 78-foot sample at 0.99 ug/l along with 15 ug/l MTBE and 27 ug/l TBA. MTBE was the only constituent detected in the 98-foot sample (47 ug/l) (Delta 2006).

Site Conceptual Model ConocoPhillips Site# 7376 Pleasanton, CA Page 10 of 22

A Kinder Morgan Pipeline is located approximately 20 feet to the west of the site, and is approximately 15 feet deep. The pipeline is a 10 inch steel pipe which transports gasoline, diesel and jet fuel (BSK 2008). An investigation was performed by TRC in 2005 to determine whether the pipeline could be considered a potential source of contamination. The investigation reported that the pipeline is inspected every 5 years by an internal inspection device, and no damage or repairs had been reported. In 2007, BSK reported detections of TPH-jet fuel and TPH-aviation fuel in soil borings SB-5, SB-6 and SB-7, located between the pipeline and the site (Figure 2), with a maximum concentration of 6,300 mg/kg in boring SB-5 at a depth of 30 feet bgs. The indication of the petroleum hydrocarbons as jet fuel appeared to be questionable (see description above of investigation November 5, 2007).

Fuel fingerprinting has been performed on free product collected from the site in 1997, 1998 and in 2009. In 1997, fuel fingerprinting determined that the free product in MW-5 was most likely composed of 50% refined gasoline and 50% heavier hydrocarbons resembling crude oil, bunker C fuel, diesel, motor oil, or some combination of the above. The gasoline portion of the product was reported to be relatively "fresh" (Entrix 1997). In 1998 free product was collected in soil samples in B-11 from depths of 10.5 feet bgs and 61 feet bgs. The product was reported to be approximately 90% semi-volatile hydrocarbons consisting of crude oil and 10% slightly weathered gasoline (GR 1999). In 2009, soil samples from the boring for MW-2C were submitted for fuel fingerprinting. The presence of heavy hydrocarbons such as diesel, kerosene and hydraulic oil were reported (Delta 2009). TRC concluded that the source of free product on site and to the north was likely due to the former underground bunker C fuel tank that was installed at the site in 1907, and not from the Santa Fe Pacific pipeline (TRC 2005)

4.5 Residual Soils as On-Going Source

The most current on-site soil analytical data from borings CP-1 through CP-7, SB-5, SB-6, SB-7 (BSK), SB-1 (Delta), and monitoring well MW-2C show that the source area for soil contamination is in the vicinity of the site's USTs, in the northern portion of the site. This is consistent with the distribution of analytes in historic soil data. Contamination appears to follow product piping, with the majority of impacted soil in the vicinity and to the north of the fuel USTs. Offsite borings and monitoring wells to the northwest have not historically contained high levels of hydrocarbons in soil. Depth of soil contamination is from grade to approximately 70 feet bgs (see Figures 4B and 5B). The vadose zone extends to approximately 50 to 80 feet below the site, with groundwater averaging about 70 feet bgs. The vadose zone consists of alternating layers of silt/clay and sand/gravel. Clay is present to a depth of approximately five to fifteen feet bgs at the site, with interbedded high and low permeability zones below. Historic cross sections are presented in Attachment B The tank pit in the northern portion of the site likely extends to a depth of 15 feet bgs. Any product emanating from the tank pit would be easily mobilized in high permeability zones beneath the site.

4.6 Summary

Multiple releases of gasoline from the site USTs, dispenser islands and product piping occurred between 1982 and 1994 when spills and leaks were reported during annual inspections and tank refilling. A report documenting the removal of the site USTs in 1987 is unavailable, hence it is uncertain if the former USTs were a source of contamination.

Site Conceptual Model ConocoPhillips Site# 7376 Pleasanton, CA Page 11 of 22

Results of fuel fingerprinting analyses indicate that a heavy hydrocarbon source exists or existed at the site. This source is most likely the former Bunker C fuel tank which previously resided on Alameda County property northwest of the site.

Soil contamination has consistently been encountered at the site in the vicinity of the fuel USTs and product lines, primarily in northern portion of the site, and off-site to the north. Soil contamination has been reported from 3 feet bgs to approximately 70 feet bgs.

Site Conceptual Model ConocoPhillips Site# 7376 Pleasanton, CA Page 12 of 22

5.0 FATE AND TRANSPORT CHARACTERISTICS

The following sections describe potential contaminant migration pathways for petroleum hydrocarbons and MTBE. Plume migration and contaminant concentration trends are discussed.

5.1 Underground Utility Conduits

The exact location and depth information of utility trenches both on-site and in the site vicinity has not been determined. A Kinder-Morgan pipeline is located approximately 10 feet to the west of the site and is approximately six to eight feet deep. A fiber optic cable also exists approximately 60 feet to the west of the site, running parallel to the site's western boundary and the Kinder-Morgan pipeline. With these exceptions, based on the documents in Delta files, a survey of nearby utilities for the purpose of a preferential pathway evaluation has not been performed. However, depth to groundwater (average = 70 feet bgs) is below the depth of utility trenches, and no survey is now deemed necessary.

5.2 Soil Migration Pathways

Soils beneath the site area are both fine-grained and coarse grained. Coarse grained zones provide pathways for rapid spread of contaminants. Boring logs for soil borings and monitoring well installations across the site have consistently shown alternating layers of fine grained and coarse grained deposits to the maximum depth explored. Copies of boring logs and well construction diagrams are provided in **Attachment C**.

5.3 Hydrogeologic Pathways

Vertical migration of dissolved contaminants beneath the site is hindered by fine-grained soil layers, but expedited in coarse grained layers. Groundwater was first detected in soil borings and borings for site wells at depths ranging from 64 feet bgs (MW-5) to 96 feet bgs (B-13). Replaced wells MW-1B, MW-2C and MW-3B are screened from 79.5 to 81.5 feet bgs, well MW-4 is screened from 73 to 93 feet bgs, wells MW-5 and MW-7 are screened from approximately 52 to 75 feet bgs, wells MW-6, MW-8, MW-11 and MW-12 are screened from approximately 66-88 feet bgs, and MW-10 is screened from 83-100 feet bgs. Monitoring well construction details are outlined in Table 1. On June 22, 2009 (last sampling event), static water levels in the wells ranged from 55.54 (MW-12) to 70.45 feet below top of casing (MW-6). Newly installed wells MW-1B, MW-2C, and MW-3B were not included in this sampling event. Seasonally, depth to groundwater in individual wells typically fluctuates approximately 10 feet with the highest groundwater levels in January-March and lowest levels in August-September, however variations of up to 30 feet in site wells is occasionally observed at the site. Depth to water in wells over the year typically ranges from approximately 60 to 80 feet below top of casing. Cross sections (contained in **Attachment B)** indicate that beds beneath the site are dipping to the north, and that wells are not necessarily screened in the same beds.

The groundwater flow direction beneath the site has generally been to the north, varying from northwest to northeast. Regionally, groundwater flows to the northwest. A Shell branded service station approximately 75 feet to the southeast of the site has reported groundwater flow consistently to the north and northeast. The site is believed to have significant geologic features inferred through groundwater elevation patterns across the site and geologic cross sections. These features are evidenced by a cross section showing beds

Site Conceptual Model ConocoPhillips Site# 7376 Pleasanton, CA Page 13 of 22

curving steeply upward from MW-5 to the vicinity of MW-2B and B-13 as shown on Gettler-Ryan's cross section B-B' presented in **Attachment B**. Groundwater flow at the site appears to be directed toward the north-northwest, with two separate flow regimes. The first, being located on site, flows toward the north-northwest at an average gradient of 0.071 feet/foot. The second is directly northwest of the first, and starts at MW-5 with the highest groundwater elevation, and flows toward MW-11 and MW-12 with lower groundwater elevations. Historically, groundwater has not been interpreted with two flow regimes. Groundwater flow directions and gradients for on site wells, considered to be in the southern flow regime, were re-calculated to produce an on-site groundwater flow rose diagram. The rose diagram from 1995 until 2009 (a total of 58 monitoring events) is presented as **Figure 5**, a table of calculated gradients and average gradient is presented as **Table 2**. Historic groundwater flow diagrams are presented in **Attachment F**.

The groundwater flow rate beneath the site can be approximated based on the hydraulic conductivity of the soil, groundwater flow gradient and effective soil porosity. The linear groundwater flow rate or velocity (V) can be calculated from the formula:

 $V = (K \times I)/N$

where K = soil coefficient of hydraulic conductivity

I = groundwater gradient

N = effective soil porosity

The predominant soil types in water bearing zones beneath the site are sand and gravel. The average K for a sand and gravel is estimated in the range of 100 to 1000 feet per day and the porosity at 30% (Heath, 1983). The site hydraulic conductivity has typically been approximately 0.07 ft/ft. Using the above estimated parameters, a groundwater velocity of approximately 23 to 233 feet per year is calculated. The flow rate for dissolved petroleum hydrocarbons is typically significantly slower than the groundwater due to physical and chemical interactions with the soil matrix and biological processes. Vertical migration can be expected to be much slower, since contaminants must travel through clay and silt layers. TPH-G first appeared in well MW-8 on June 20, 2002. Using November 1982, the date of two documented gasoline releases, contaminants moved from the USTs to well MW-8 at a rate of 0.02 feet per day. This calculation is much lower than the theoretical rate for sand and gravel, much due to the fact that contaminants are probably being slowed in low permeability zones during their descent. Another possibility, is that contaminants have moved downward through steeply dipping coarse grained layers, and that their horizontal transport is being hindered by transport through overlying fine grained deposits. Soil stratigraphy in the vicinity of the fuel USTs would need to be determined to further understand the path of contaminants and groundwater beneath the site.

5.4 Contaminant Migration Model

It appears that multiple releases occurred at the site from 1982 to 1994. The distance from the bottom of the UST pit to the top of groundwater was approximately 45 feet. Petroleum hydrocarbons moved downdip by gravity through sandy layers until encountering saturated soils at a depth of approximately 60 feet bgs. The primary flow path appears to be through layer A as shown on cross-sections **Figures 4 and 5**. Once contaminants entered the groundwater, they were dissolved and began migrating with the groundwater flow toward the north. TPH-G and TPH-D concentrations in groundwater are shown of cross-sections **Figures 4C and 5C**. By June 2002, dissolved petroleum hydrocarbons had

Site Conceptual Model ConocoPhillips Site# 7376 Pleasanton, CA Page 14 of 22

migrated more than 130 feet down gradient and were detected in the first sample from well MW-7 (**Figure 2**). MTBE was also detected in the first sample from well MW-7 at 1700 ug/l. In September 2001, MTBE was reported in the first sample from MW-11, located approximately 200 feet north of MW-7, at a concentration of 9 ug/l. MTBE has not been reported in MW-11 since 2005. The down gradient extent of MTBE is defined between MW-7 and wells MW-11 and MW-12.

5.5 Concentration Trends

TPH-G and BTEX compounds have been detected in all wells with the exceptions of MW-4, MW-9, MW-10 and MW-11. Liquid phase hydrocarbons (LPH) have been reported in wells MW-2B and MW-5. LPH was reported in MW-5 nearly continuously from June 27th 1997 to December 11, 2006, and in MW-2B in September 2007 and December 2008. Groundwater samples were not collected when LPH was present in the wells. TPH-G has reached highest concentrations in wells MW-3 and MW-5 with a maximum concentration of 210,000 ug/l reported in well MW-5 on June 7, 1999. Benzene reached a maximum concentration of 7,300 ug/l in well MW-5 in March 2004. Currently, the TPH-G and benzene plume is centered on MW-5, with a concentration of 16,000 ug/l and 2,700 ug/l, respectively reported on June 22, 2009. The plume extends over the northern region of the site and to offsite wells MW-6, MW-7 and MW-8. Groundwater concentration maps are included in **Attachment E**.

MTBE has been detected in all site wells with the exceptions of MW-4 and MW-12. MTBE has been detected continuously in wells MW-1, MW-2B, MW-3, MW-5, MW-6, MW-7, MW-8 and MW-10. Currently, the MTBE plume is centered on well MW-2B in the northwestern region of the Site with a concentration of 5,200 ug/l and extends to MW-7 and MW-8 to the northwest of the site, and well MW-1 to the southeast. MTBE reached a maximum concentration of 12,200 ug/l in well MW-2B on September 25, 2000.

6.0 SITE REMEDIATION

Four fuel USTs were reportedly removed from the site in December of 1987. Later reports have mentioned that over excavation of contaminated soil took place, but the documentation of this event is not available, and the quantity of soil removed is unknown.

In September 1994, product lines and dispensers were replaced. During product piping removal, old single walled product lines were discovered below the newer double walled product lines. Soil contamination was present in two locations in the trench. The trench was subsequently over-excavated to approximately 9 feet bgs, with a total of 198 cubic yards of soil being removed from the site. The soil was disposed of at Forward Landfill in Manteca, California on September 21st and 24th, 1994.

7.0 POTENTIAL SENSITIVE RECEPTORS

The following sections evaluate the various potential impacts to sensitive receptors from petroleum hydrocarbons and MTBE detected in soil and groundwater

7.1 Environmental Screening Levels

The California Regional Water Quality Control Board, San Francisco Bay Region (RWQCB) has published Environmental Screening Levels (ESLs) for chemicals commonly found in soil and groundwater at sites where releases of chemicals have occurred. The RWQCB notes "The ESLs are considered to be conservative." The tables below compare site specific soil and groundwater concentrations for TPH-G, benzene, and MTBE with ESLs for various potential sensitive receptors. The ESL tables for various sensitive receptors as found in the November 2007 publication are referenced.

	ESL Table	TPH-G (mg/kg)	Benzene (mg/kg)	MTBE (mg/kg)
Maximum Concentration Detected in Soil Sample		15,000 (EB- 1@5' 2/6/1995)	340 (EB-1 @5' 2/6/95)	8.7 MW-2C @ 30' (6/12/09)
Groundwater Protection (shallow soils <3 meters)*	A-1	83	0.044	0.023
Groundwater Protection (deep soils >3 meters)*	C-1	83	0.044	0.023
Direct Exposure - Residential	K-1	110	0.12	30
Direct Exposure – Commercial	K-2	450	0.27	65
Direct Exposure – Construction/Trench Workers	K-3	42,000	12	2,800

* Ingestion. Groundwater considered a current or potential source of drinking water.

	ESL Table	TPH-G (ug/L)	Benzene (ug/L)	MTBE (ug/L)
Concentration Groundwater 3/26/09		19,000 (MW-5)	2,700 (MW-5)	5,200 (MW-2B)*
Potential Vapor Intrusion - Residential	E-1	NA	540	24,000
Potential Vapor Intrusion - Commercial	E-1	NA	1,800	8,000,000
California Maximum Contaminant Level (MCL)	F-3	100	1.0	5

*MW-2B was destroyed in June 2009, replacement well MW-2C was not sampled during the June 2009 sampling event. Results of the first quarter 2009 event are shown.

The maximum soil concentrations for TPH-G, benzene and MTBE exceeds the ESLs for leaching to groundwater considered as a current or potential source of drinking water. The concentration of benzene in soil exceeds all ESLs for direct exposure, and TPH-G exceeds the commercial direct exposure ESL. The concentration of MTBE is below the direct exposure ESLs.

Site Conceptual Model ConocoPhillips Site# 7376 Pleasanton, CA Page 17 of 22

Benzene and MTBE concentrations in groundwater exceed the California Maximum Contaminant Levels (MCLs). Benzene in MW-5 exceeds the potential vapor intrusion levels for residential and commercial, however, depth to groundwater is approximately 70 feet bgs, limiting the potential for vapor intrusion at ground surface.

7.2 Indoor Air Inhalation - Soil

No ESLs have been established for protection of indoor air from impacted soil. The RWQCB recommends direct measurement of soil gas concentrations in soil. Maximum concentrations of TPH-G and benzene were reported at a depth of 5 feet in the southern portion of the site near product piping. The upper 5 feet of the site has historically been classified as silt/clay which hinder the ability of hydrocarbons to migrate and vaporize, however a soil gas survey would be necessary in determining the soil vapor potential at the site.

7.3 Nearby Water Supply Wells

Well surveys were performed in 2004 by Toxichem Management Systems, Inc and in 2005 by Delta. The 2004 survey identified 18 wells within a ½-mile radius. No field verifications were made during this survey. The surveys were performed on behalf of a Shell branded service station located at 4221 First Street, across first street from the site. Delta's 2005 survey identified a total of 14 wells within a one-mile radius. These well locations were field verified. Both surveys are presented as **Attachment G**. The following excerpt is contained in Delta's *Site Conceptual Model* dated February 6, 2006:

<u>Well Survey</u> – In May 2004, Toxichem Management Systems, Inc. (Toxichem) obtain information from the Zone 7 Water District (Zone 7) and the DWR. A copy of Toxichem's well survey map and summary table are attached. The nearest wells identified were a well of "unknown" use (3S/1E-21B) and a municipal well (3S/1E-21B1) both located approximately 900 feet northeast of the site. Toxichem was unable to locate either well in the field and concluded that they were likely abandoned. In November 2005, Delta observed an old water tower building near the location of the two wells. A municipal well (3S/1E-16P1) was identified to be located >1,200 feet north of the site. Again, Toxichem could not field locate the well.

In September 2005, Delta performed an additional well survey for the site area. A well location map was obtained from Zone 7. The map identified three wells approximately 1,000 feet northwest of the site (3S/1E-21C1, -21C3, and -21C4.) Well -21C1 was classified as a "supply well", -21C3 as "abandoned or unlocatable", and -21C4 as "other designated well." Delta was only able to field located Well -21C4. The well provides irrigation water for a small city park. Delta also located a similar well in Kottinger Park located approximately 800 feet east of the site.

Site Conceptual Model ConocoPhillips Site# 7376 Pleasanton, CA Page 18 of 22

8.0 SUMMARY

Delta has prepared an SCM that describes the occurrence, migration, and fate of petroleum hydrocarbons and MTBE previously identified beneath the Site. The following are the key observations and conclusions:

- Site soils vary from clays and silts to sand and gravel in alternating layers. The groundwater flow rate is estimated at approximately 23 to 233 feet per year, however this estimate is likely much higher than the actual rate due to migration through fine grained layers. The primary direction of groundwater flow is to the northeast and northwest.
- Groundwater typically occurs at a depth of approximately 60 to 80 feet below top of casing. Depth to groundwater in monitoring wells fluctuates approximately 10 feet annually
- Historic reports from 1987 show the location of four former fuel USTs in the northern portion of the site, in the location of the current two fuel USTs. An underground bunker fuel tank existed in the northwest region of the site, installed sometime around 1907.
- Multiple releases of gasoline occurred between 1982 and 1987, mostly due to overfilling of the fuel USTs and leaking dispensers. In 1994, contaminated soil was discovered during product piping removal at depths of approximately 3 and 9 feet bgs. Petroleum hydrocarbons moved directly downward through the tank pit into highly permeable sands and gravels at a depth of approximately 15 feet bgs. Contaminants then moved downward through permeable zones to groundwater at a depth of approximately 70 feet bgs.
- Petroleum hydrocarbons were detected in the first groundwater samples collected from wells MW-1, MW-3 and MW-3 in December 1987 with maximum concentrations of TPH-G and benzene of 24,000 ug/l and 2,600 ug/l in well MW-3, respectively. Well MW-3 was located approximately 45 feet west (crossgradient) of the USTs, in the vicinity of product piping. Since 2000, TPH-G has only been detected in well MW-1. The downgradient extent of MTBE is defined to the north-northwest by wells MW-9, MW-11 and MW-12, and to the southwest by well MW-4. A review of the May 7th, 2009 monitoring report for the Shell service station to the south indicates that MTBE exists at the northernmost wells at the site.
- TPH-G, BTEX and MTBE concentrations in groundwater samples from wells MW-1, MW-3, MW-7, MW-10 and MW-11 continue to decline. Concentrations in wells MW-2B, MW-5, MW-6 and MW-9 appear to be stable. Concentrations in MW-8 appear to be on an increasing trend.
- Environmental risk based on soil and groundwater impacted by petroleum hydrocarbons can be summarized as follows;
 - **On-site**; Petroleum hydrocarbon soil vapors may pose a threat for inhalation of outdoor and indoor air as well as dermal contact by workers in excavations.

- **Off-site**; Current site conditions should not pose any environmental or public health issues related to development of County property for parking or recreation; however, additional testing will be performed to confirm this conclusion.
- **Groundwater Protection**; Current petroleum hydrocarbon and fuel oxygenate concentrations exceed screening levels for protection of drinking water aquifers. Currently, no water production wells are threatened.

9.0 RECOMMENDATIONS

Delta provides the following recommendations;

9.1 Site Assessment

The on-site assessment is deemed complete. The petroleum hydrocarbon source area in the northern portion of the site has been defined by three borings (B-10 through B-12), three groundwater monitoring wells (MW-1B, MW-2C, and MW-3B), and CPT boring CP-1 (**Figure 2**). The southern portion of the site has been explored by three soil borings (B-8, B-9, and EB-1), monitoring well MW-4, and CPT boring CP-2. Elevated petroleum hydrocarbons were detected in soil samples from boring EB-1 but not in groundwater from adjacent well MW-4.

9.2 Off-site Assessment

The upgradient (southern) extent of the dissolved petroleum hydrocarbon and fuel oxygenate plume is defined by data from Shell CPT-2. The off-site heavy fuel source (bunker fuel tank) has been defined by borings SB-1 and B-13. The northern portion of the plume is defined by wells MW-7 and MW-9. Petroleum hydrocarbon and MTBE concentrations are rising in downgradient well MW-8 located near the leading edge of the plume. TPH-G, MTBE, and TBA were detected in nearby CPT boring CP-6 at 160 ug/l, 110 ug/l, and 170 ug/l, respectively. TPH-G, MTBE, and TBA were detected in CPT boring CP-7, located approximately 60 feet to the northwest of MW-8, at 200 ug/l, 260 ug/l, and 120 ug/l, respectively. Delta recommends installation of a groundwater monitoring well in the vicinity of CPT boring CP-7 to define the extent the plume to the northwest.

Delta recommends that the County of Alameda further investigate the presence of heavy metals detected in surface soils within the former railway right-of-way. Arsenic and lead were found at elevated concentrations in soil samples collected during a study of the Alameda County Transportation Corridor in 2007. The service station is not considered to be a source of the heavy metals detected in surficial soils in the transportation corridor. Additionally, it is recommended that the County confirm the presence or absence of the former bunker fuel UST.

Site Conceptual Model ConocoPhillips Site# 7376 Pleasanton, CA Page 20 of 22

9.3 Feasibility Testing

Delta proposes to prepare a work plan for a remediation Feasibility Study (FS). Testing is anticipated to focus on the area of the site USTs and off-site well MW-5. Tests will be used to define soil parameters critical in the selection and design of a remediation system. Tests could include a aquifer pumping test, soil vapor extraction test, and air injection test. Tests will be described in a report along with results and submitted to ACEH for review.

9.4 Corrective Action Plan

Upon completion of the FS, Delta will prepare a Corrective Action (CAP). The CAP will propose soil and groundwater cleanup levels based on site conditions and land use considerations. The CAP will evaluate a minimum of three remediation alternatives in terms of regulatory acceptance, technical feasibility, time requirement for completion, and cost for implementation and annual operation and maintenance. A remediation approach will be selected along with development of a contingency plan in the event that the primary approach is not effective.

10.0 REMARKS

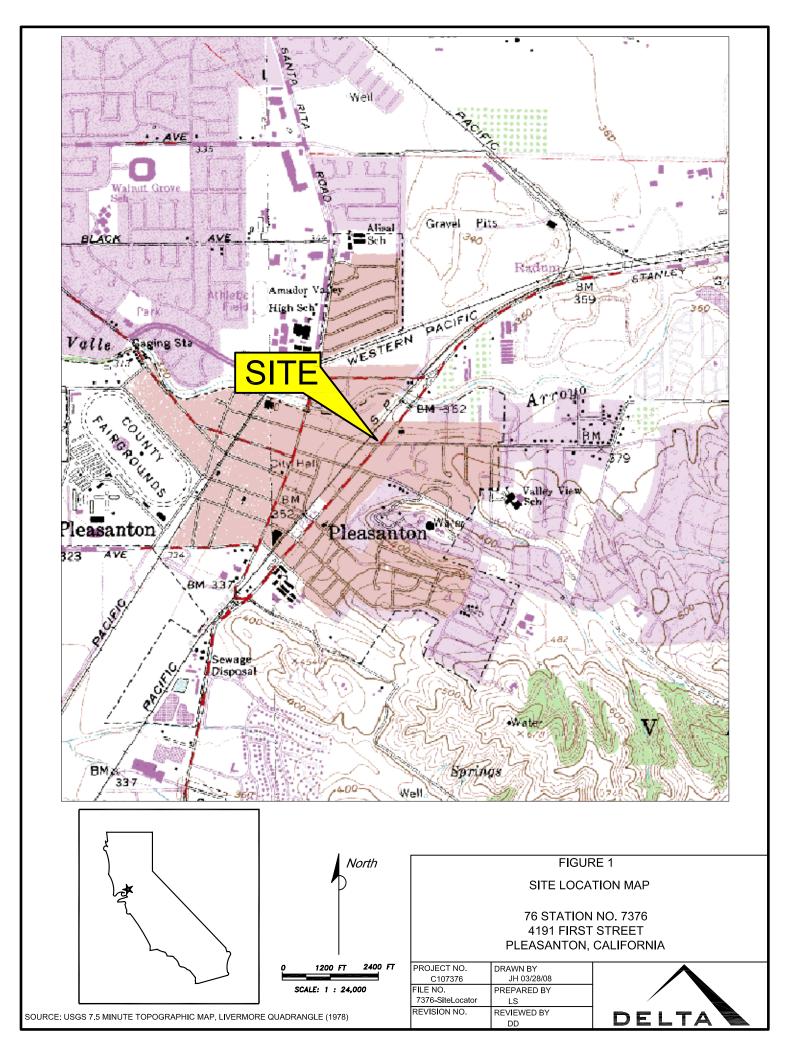
The descriptions, conclusions, and recommendations contained in this report represent Delta's professional opinions based upon the currently available information and are arrived at in accordance with currently acceptable professional standards. For any reports cited that were not generated by Delta, the data from those reports is used "as is" and is assumed to be accurate. Delta does not guarantee the accuracy of this data for the referenced work performed nor the inferences or conclusions stated in these reports. This report is based upon a specific scope of work requested by the client. The Contract between Delta and its client outlines the scope of work, and only those tasks specifically authorized by that contract or outlined in this report were conducted. This report is intended only for the use of Delta's Client and anyone else specifically listed on this report. Delta will not and cannot be liable for unauthorized reliance by any other third party. Other than as contained in this paragraph, Delta makes no express or implied warranty as to the contents of this report.

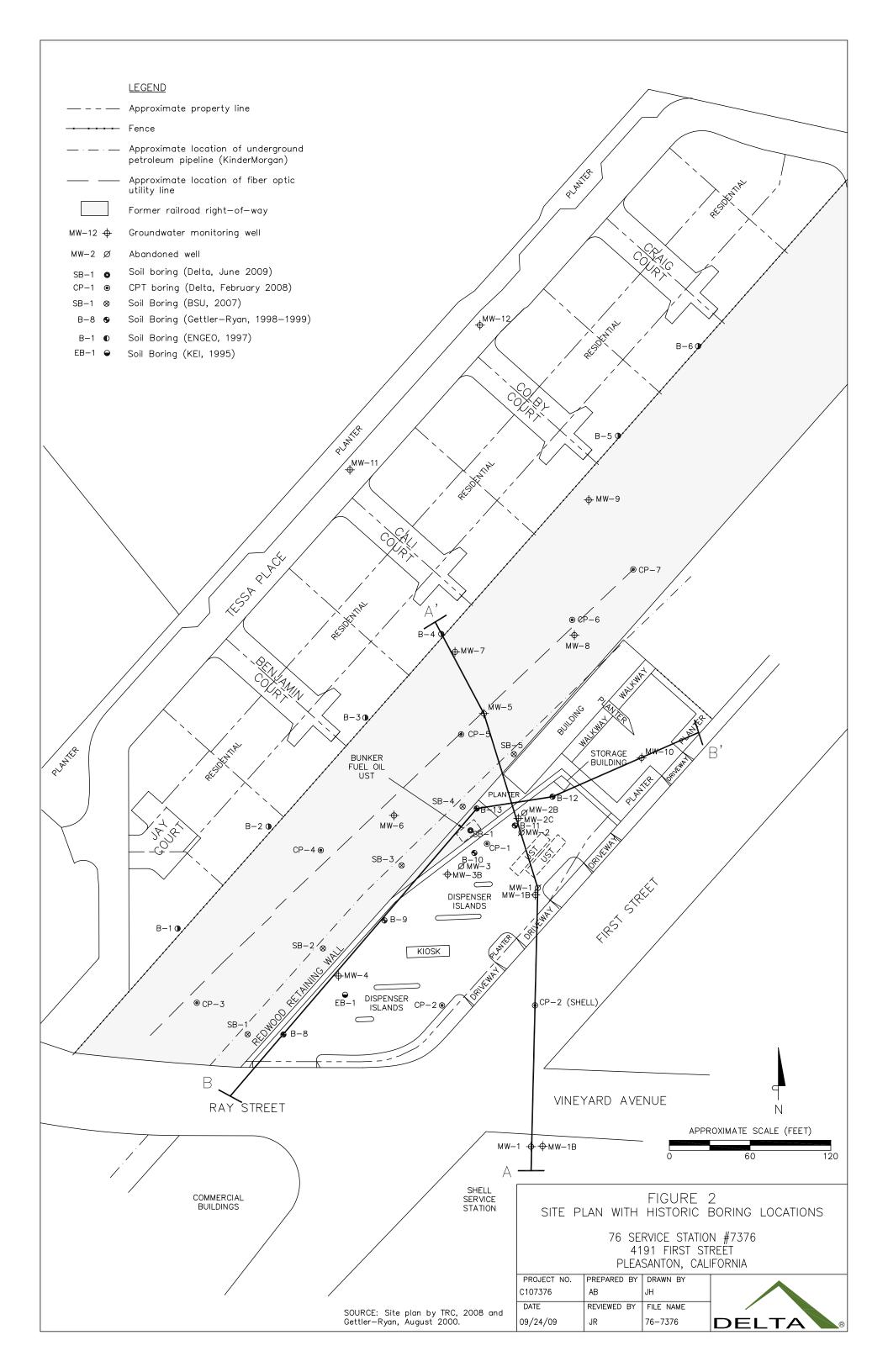
11.0 REFERENCES

Pleasanton Fire Department, Company Inspection Record, November 8, 1982.

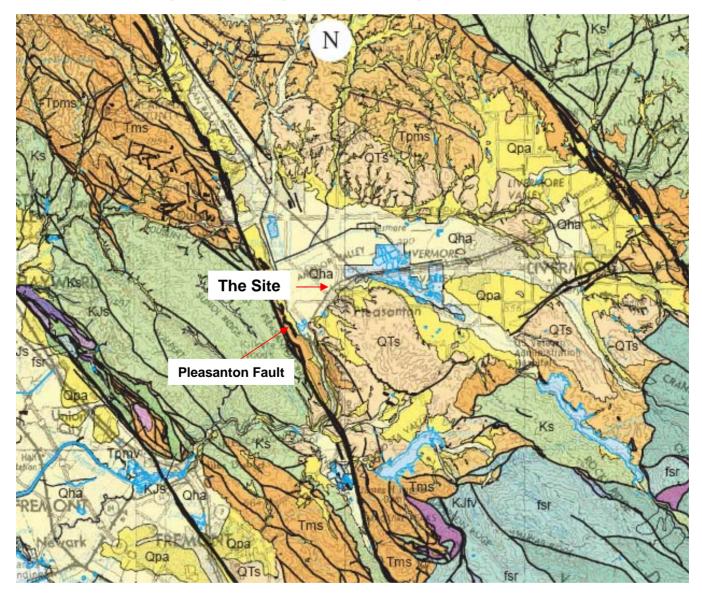
- Valley Times Newspaper, Gas Tank Rupture Forces Evacuation, Volume 97, No. 230, November 23, 1982.
- Heath, Ralph C., Basic Ground-Water Hydrology: U.S. Geological Survey Water-Supply Paper 2220, 1983.

Pleasanton Fire Department, Fire Incident Report, February 20, 1984.

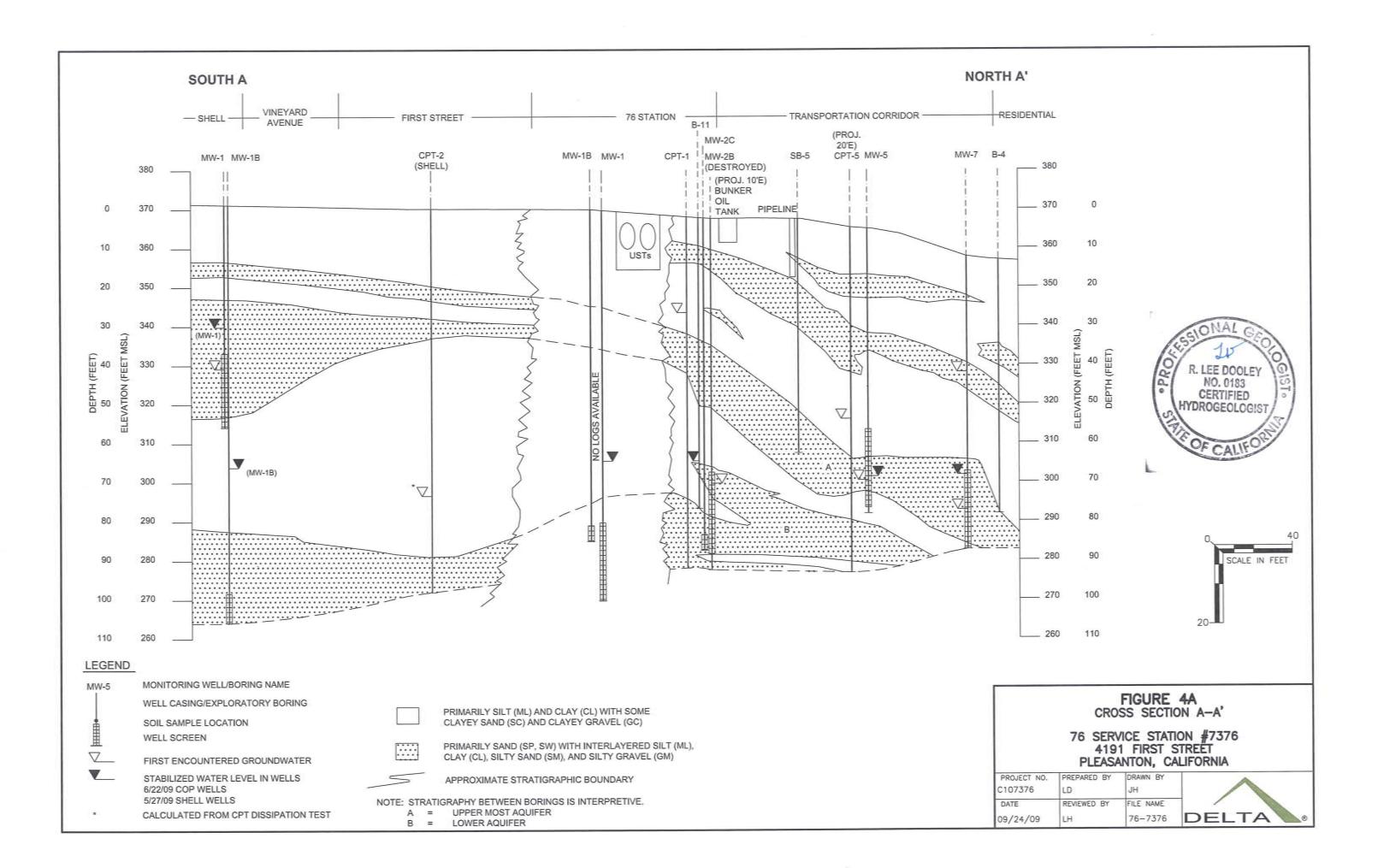

Jack Lavey, Complaint Report, January 7, 1985.

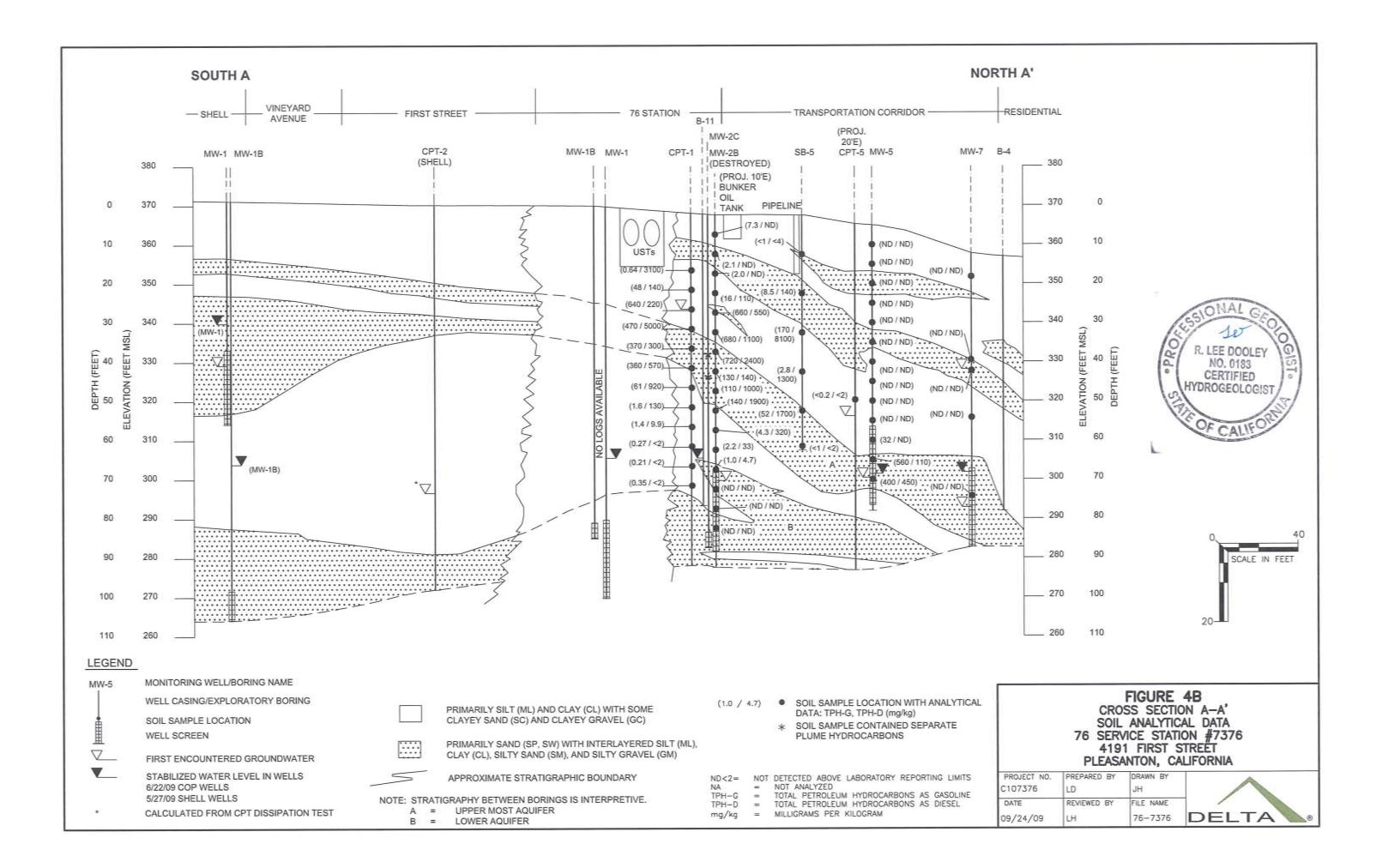

Pleasanton Fire Department, Spill/Leak Reporting Form, February 8, 1985.

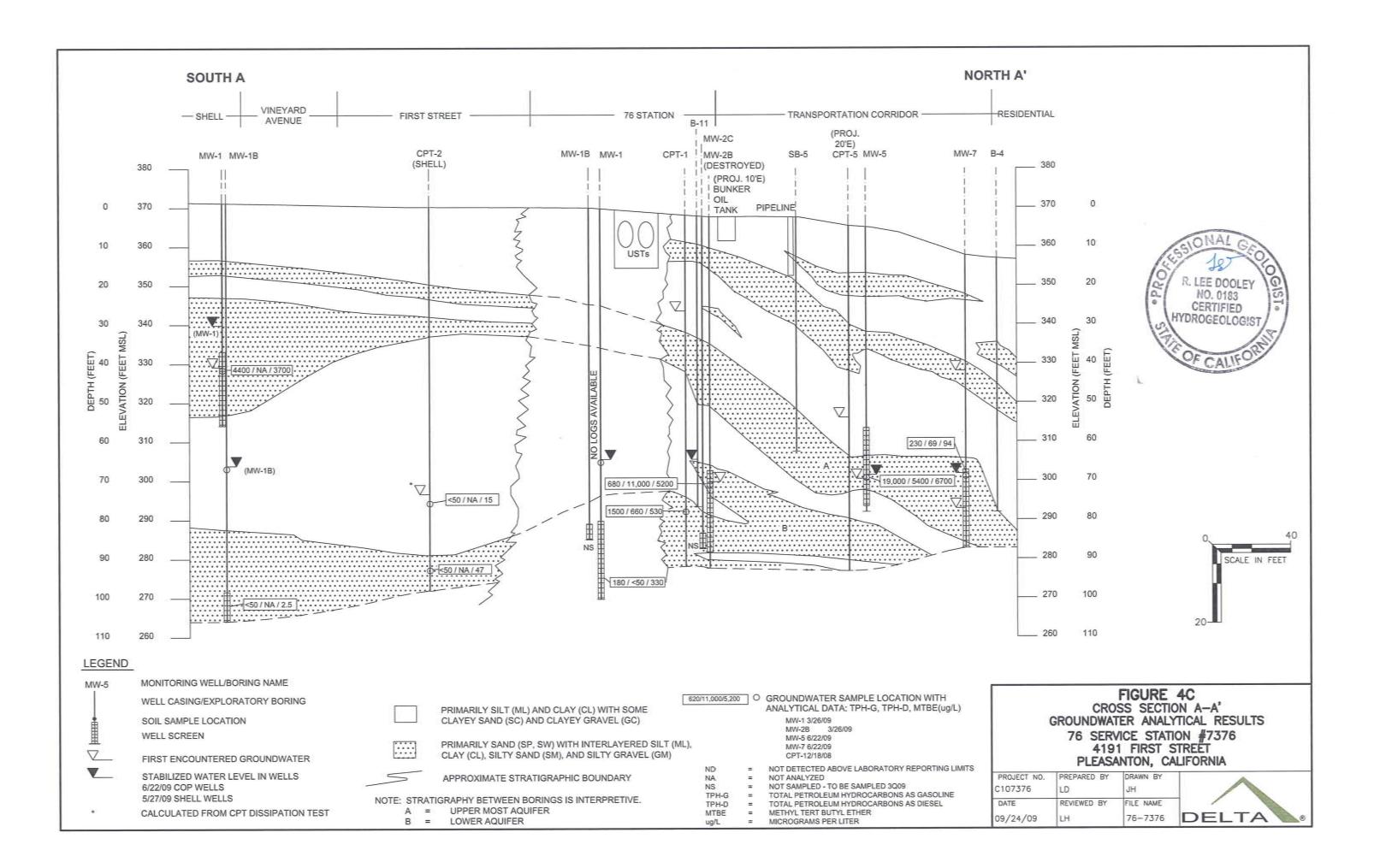
- Environmental Laboratories Inc., Petro Tite System Test, Armour Oil Company No. 188, First and Ray Streets, Pleasanton, California, July 30, 1987.
- Applied GeoSciences, Report: Supplemental Subsurface Environmental Investigation, ARCO Service Station Armour Oil Company No. 188, First and Ray Streets, Pleasanton, California, September 9, 1987.
- Unocal Corporation, General Arrangement SS 7376 4191 First Street, Pleasanton, November 17, 1987.
- J. Yang and Associates, Evaluation and Inspection Report, September 16, 1994.
- Unocal Corporation, Underground Storage Tank Unauthorization Release (Leak)/ Contamination Site Report, October 17, 1994.
- Applied GeoSciences, Report: Supplemental Subsurface Environmental Investigation, ARCO Service Station Armour Oil Company No. 188, First and Ray Streets, Pleasanton, California, November 3, 1994.
- Alameda Health Care Services Agency, Correspondence Letter: (Former) San Diego Armour Oil Company Station, 4191 First Street, Pleasanton, Alameda County, California, November 14, 1994.
- Kaprealian Engineering Inc., Pumpability Project Report Unocal Service Station #7376, 4191 1st Street, Pleasanton, California, October 21, 1994.
- Enviros, Inc., Phase I Site Assessment Report, Unocal 7376, 4191 First Street, Pleasanton, California, February 24, 1995.
- Kaprealian Engineering Inc., Continuing Ground Water Investigation at Unocal Service Station #7376, 4191 1st Street, Pleasanton, California, April 27, 1995.

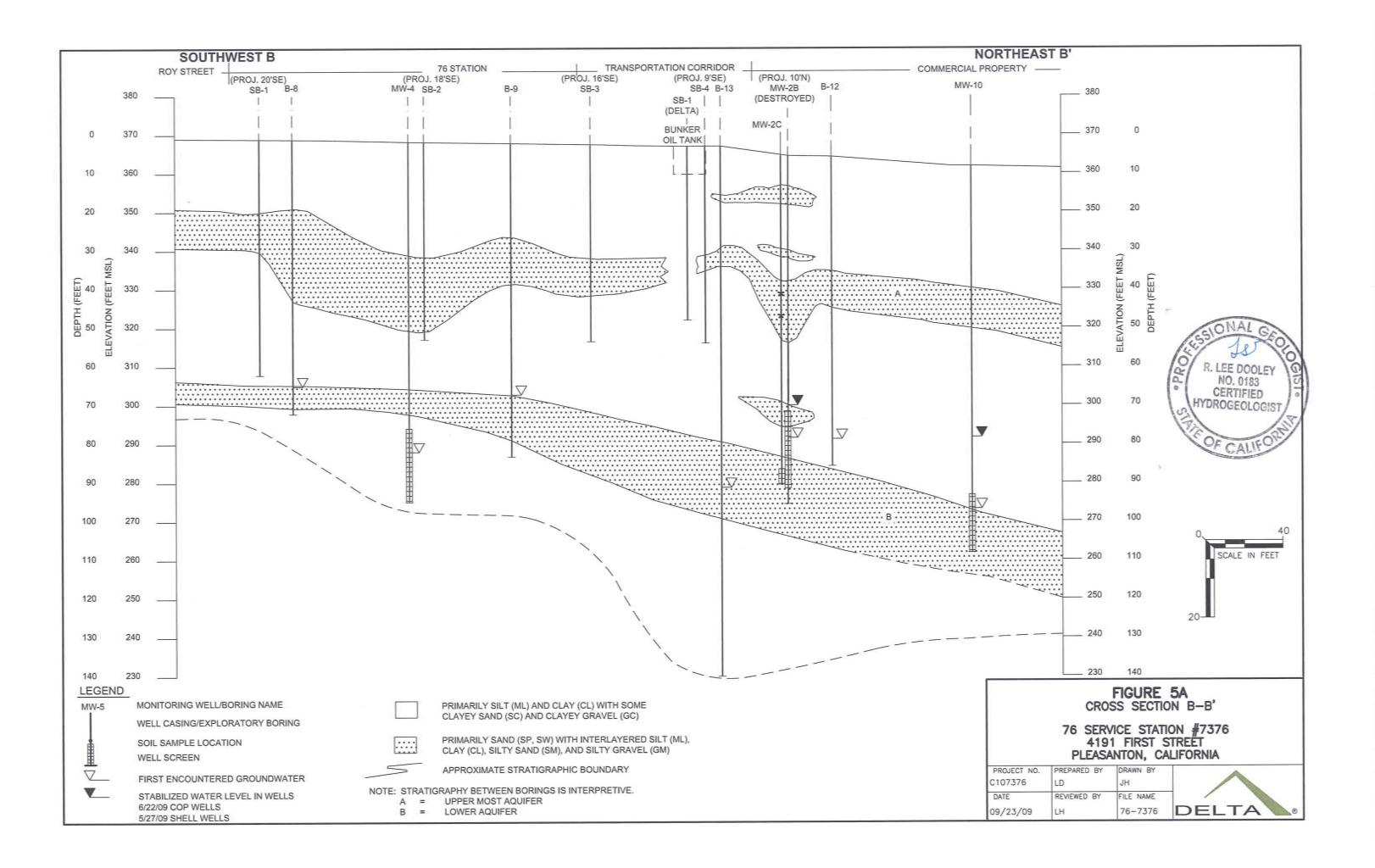

- Kaprealian Engineering Inc., Continuing Ground Water Investigation at Unocal Service Station #7376, 4191 1st Street, Pleasanton, California, November 4, 1996.
- Entrix, Forensic Geochemical Analysis of Free Product from MW-5, UNOCAL SS#7376, Pleasanton, CA, December 12, 1997.
- Gettler-Ryan Inc., Well Installation and Soil Boring Report at Tosco 76 Branded Facility No. 7376, 4191 First Street, Pleasanton, California, March 4, 1999.
- Gettler-Ryan Inc., Subsurface Investigation Report at Tosco 76 Branded Facility No. 7376, 4191 First Street, Pleasanton, California, May 9, 2000.
- Gettler-Ryan Inc., Offsite Subsurface Investigation Report at Tosco 76 Branded Facility No. 7376, 4191 First Street, Pleasanton, California, January 18, 2002.
- Gettler-Ryan Inc., Offsite Subsurface Investigation Report at Tosco 76 Branded Facility No. 7376, 4191 First Street, Pleasanton, California, March 20, 2002.
- California Department of Water Resources, *Bulletin 118 Updated 2003, California's Groundwater*, October 2003.
- TRC, Summary of PRP Search Findings, Former Unocal Service Station #7376, Pleasanton, California, April 6, 2005.
- Alameda County Water District, Zone 7 Water Agency, Well Master Plan, 1993-2006.
- R.W. Graymer, B.C. Moring, G.J. Saucedo, C.M. Wentworth, E.E. Brabb, and K.L. Knudsen (U. S. Geological Survey), Geologic Map of the San Francisco Bay Region, 2006
- Delta Consultants, Initial Site Conceptual Model (September 2005), Shell-branded Service Station 4226 First Street, Pleasanton, California, February 6, 2006.
- Delta Consultants, Soil and Groundwater Investigation Report, Shell-branded Service Station 4226 First Street, Pleasanton, California, October 31, 2006
- Delta Consultants, Soil and Groundwater Investigation Report, 76 Service Station No. 7376, 4191 First Street, Pleasanton, California, May 20, 2008.
- TRC, Quarterly Monitoring Report January through March 2009, 76 Station 7376, 4191 First Street, Pleasanton, California, April 17, 2009.
- Delta Consultants, Report on Groundwater Monitoring Well Replacement and Additional Investigation, 76 Service Station No. 7376, 4191 First Street, Pleasanton, CA, July 22, 2009.

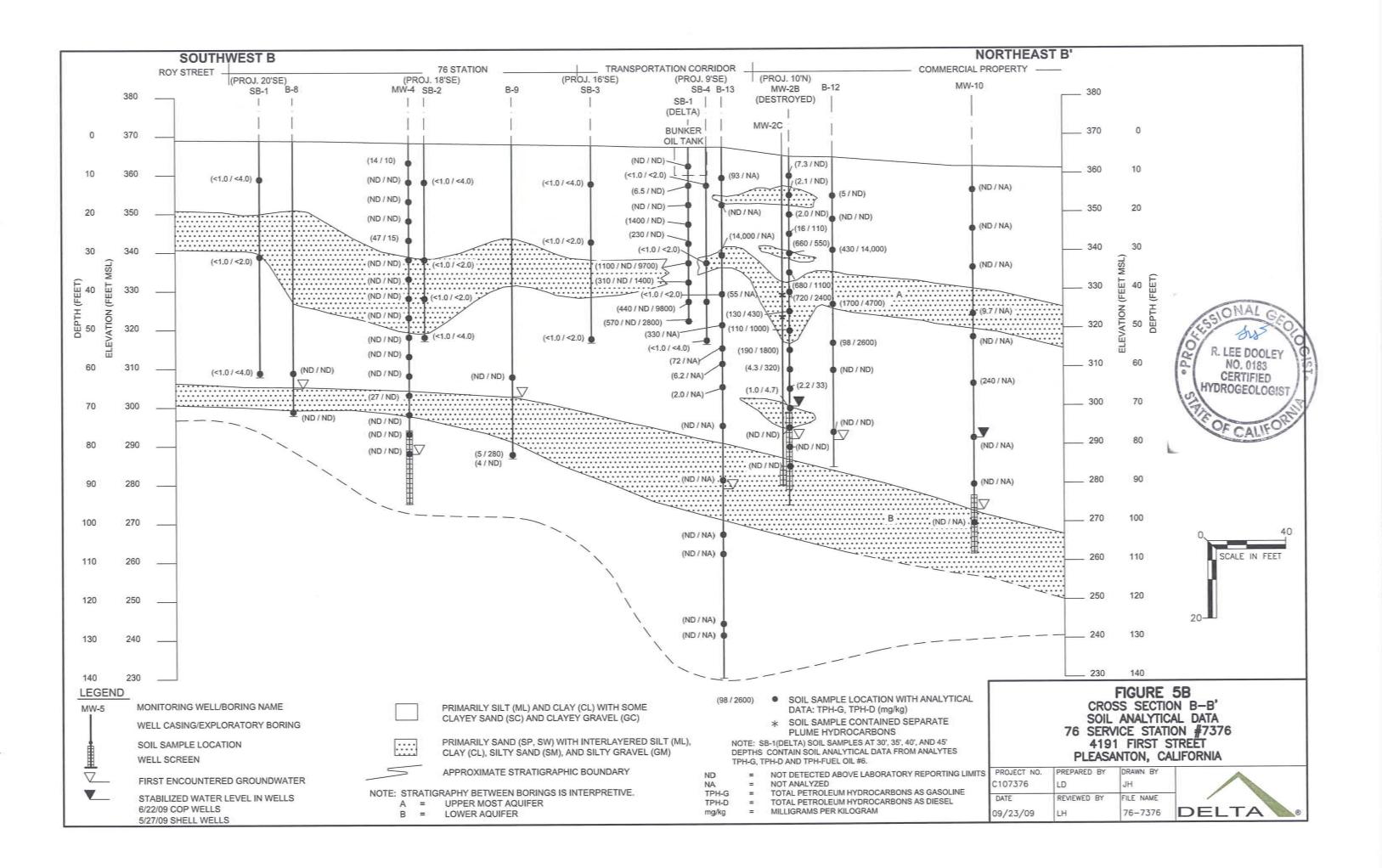
FIGURES

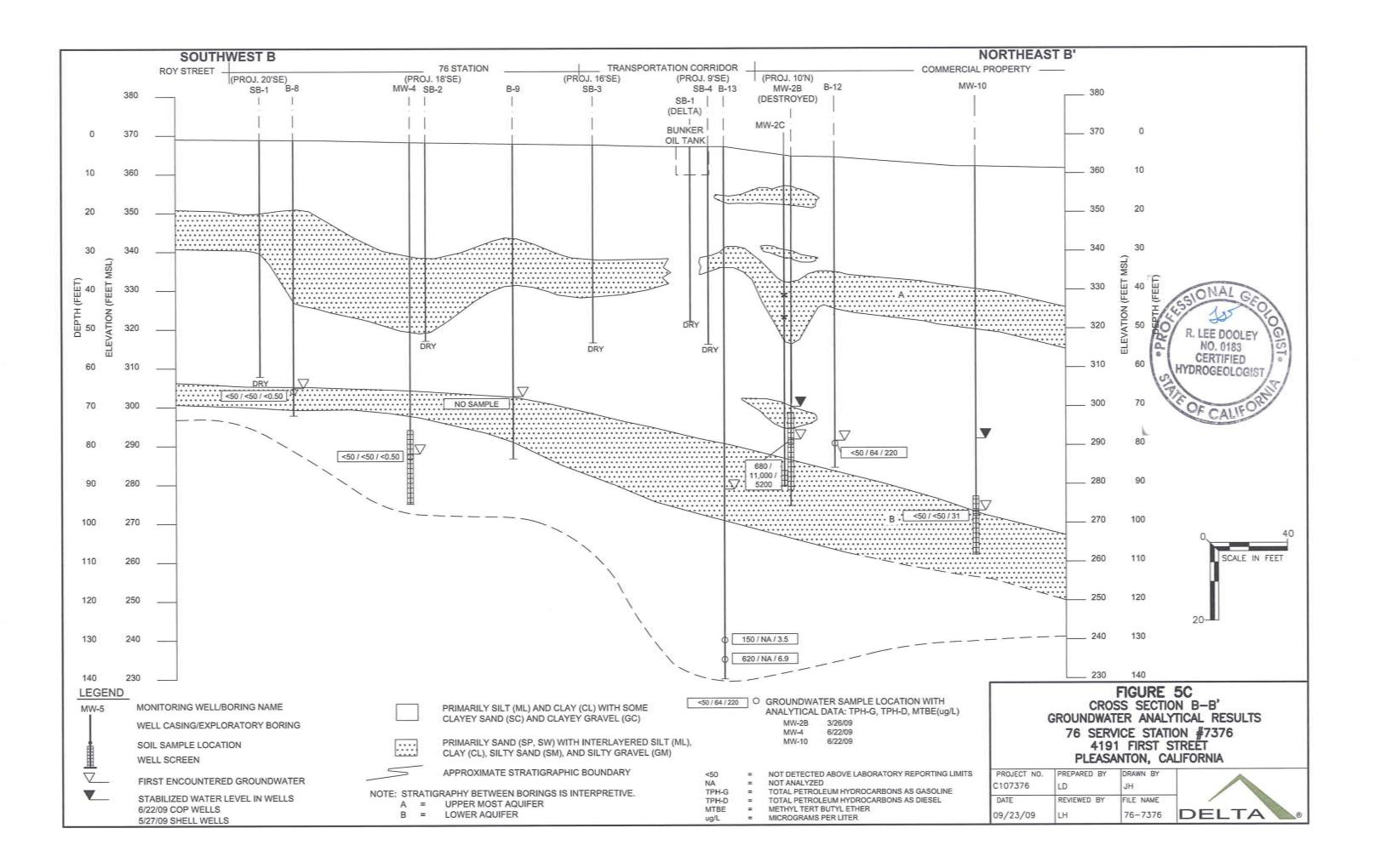


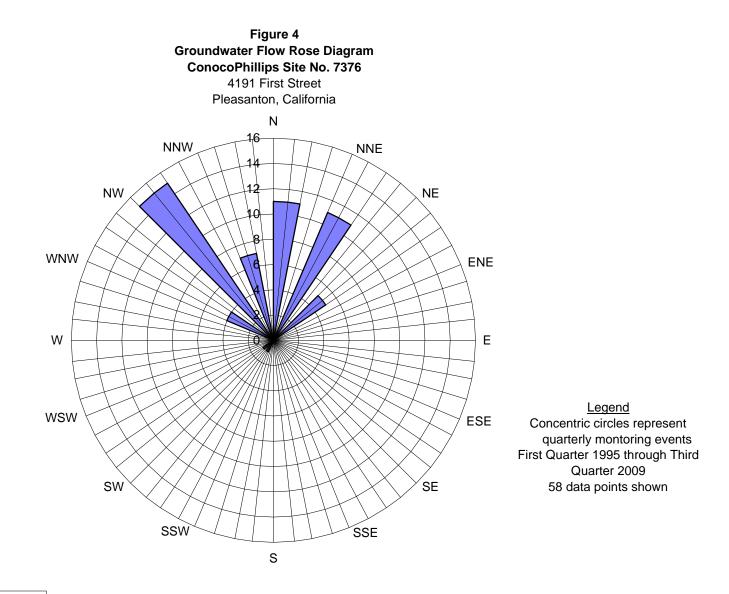



Figure 3: Regional Geologic Map



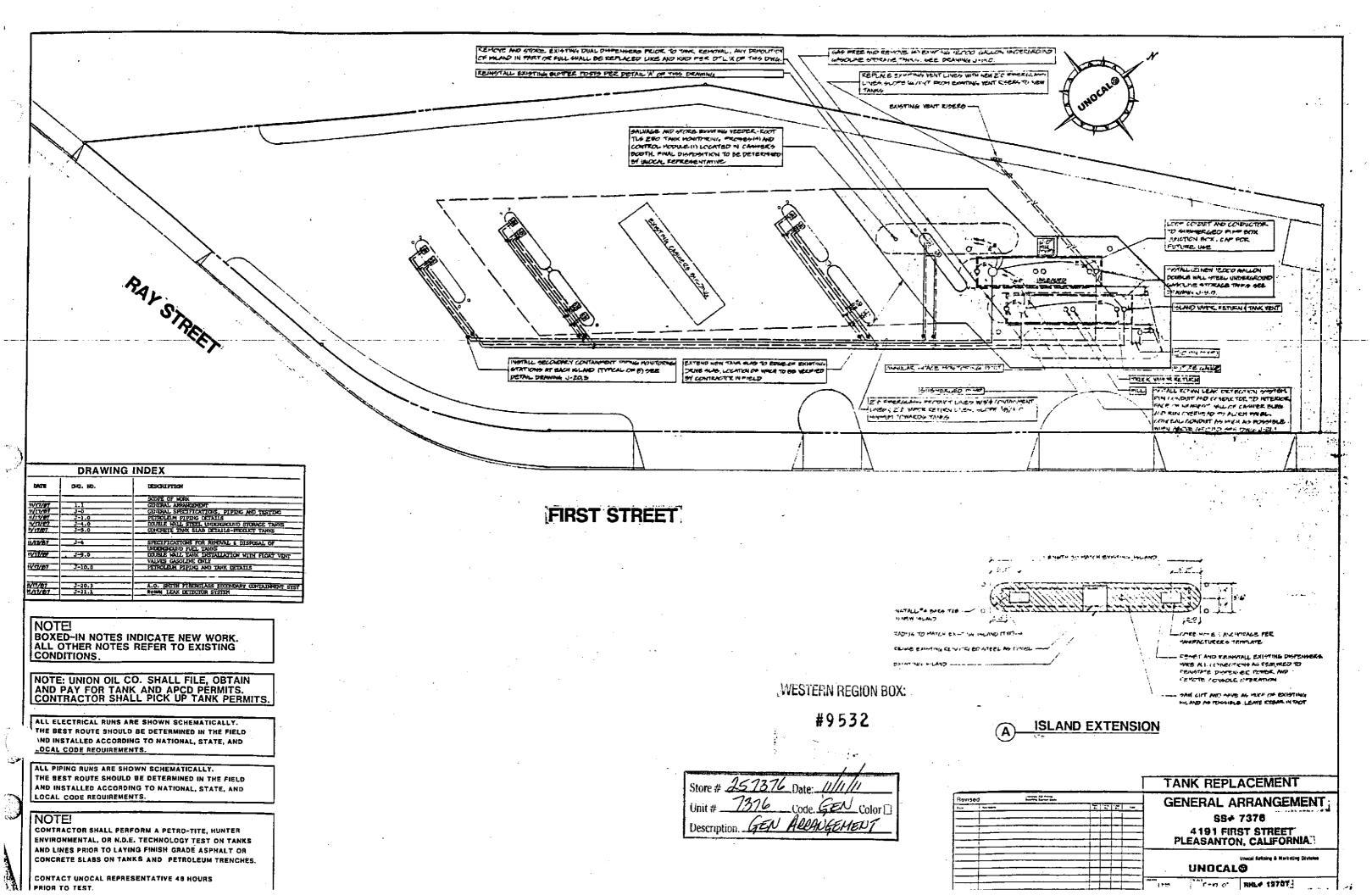

Qpa = Pleistocene Alluvium Ks = Great Valley Complex

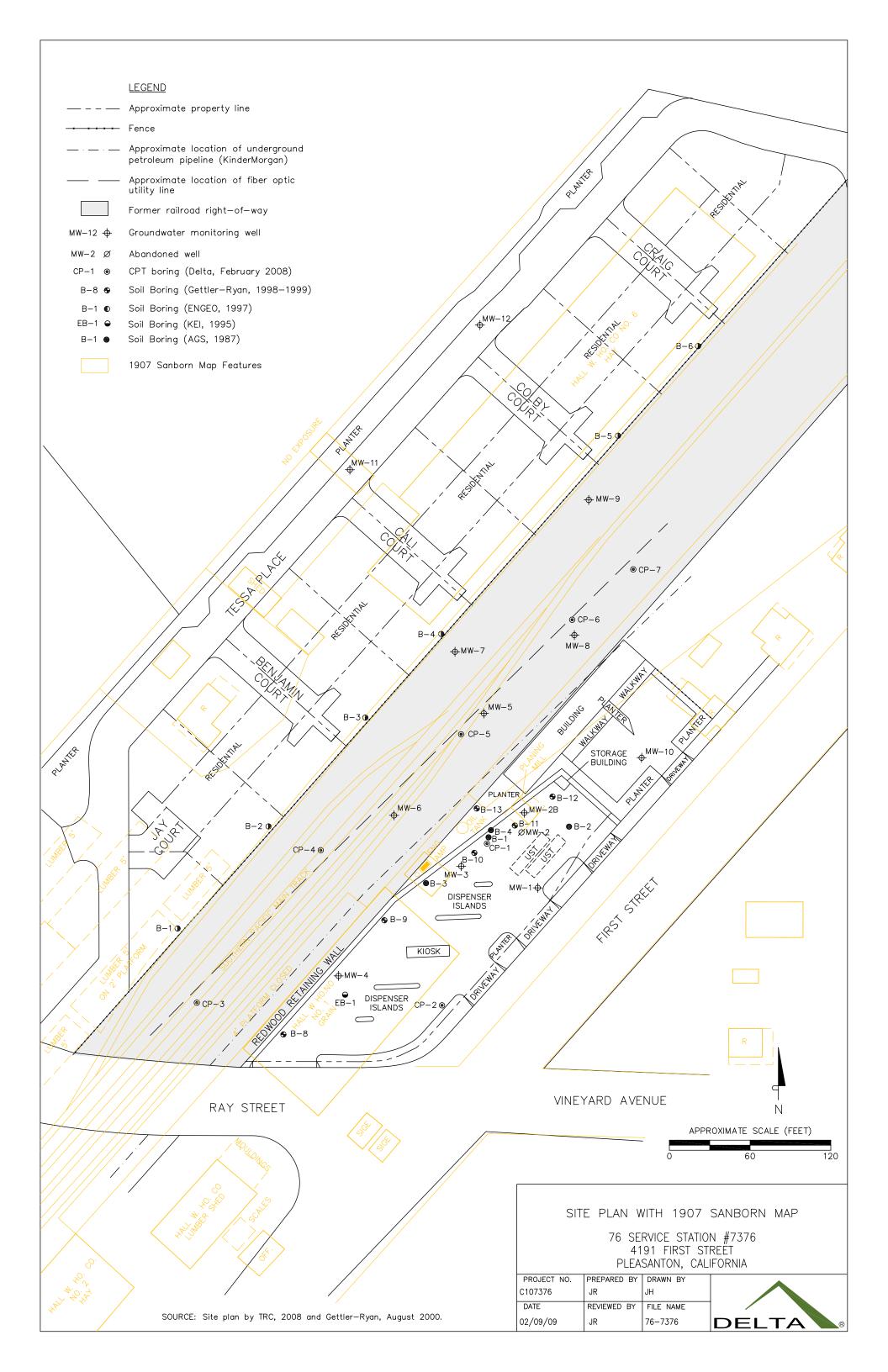


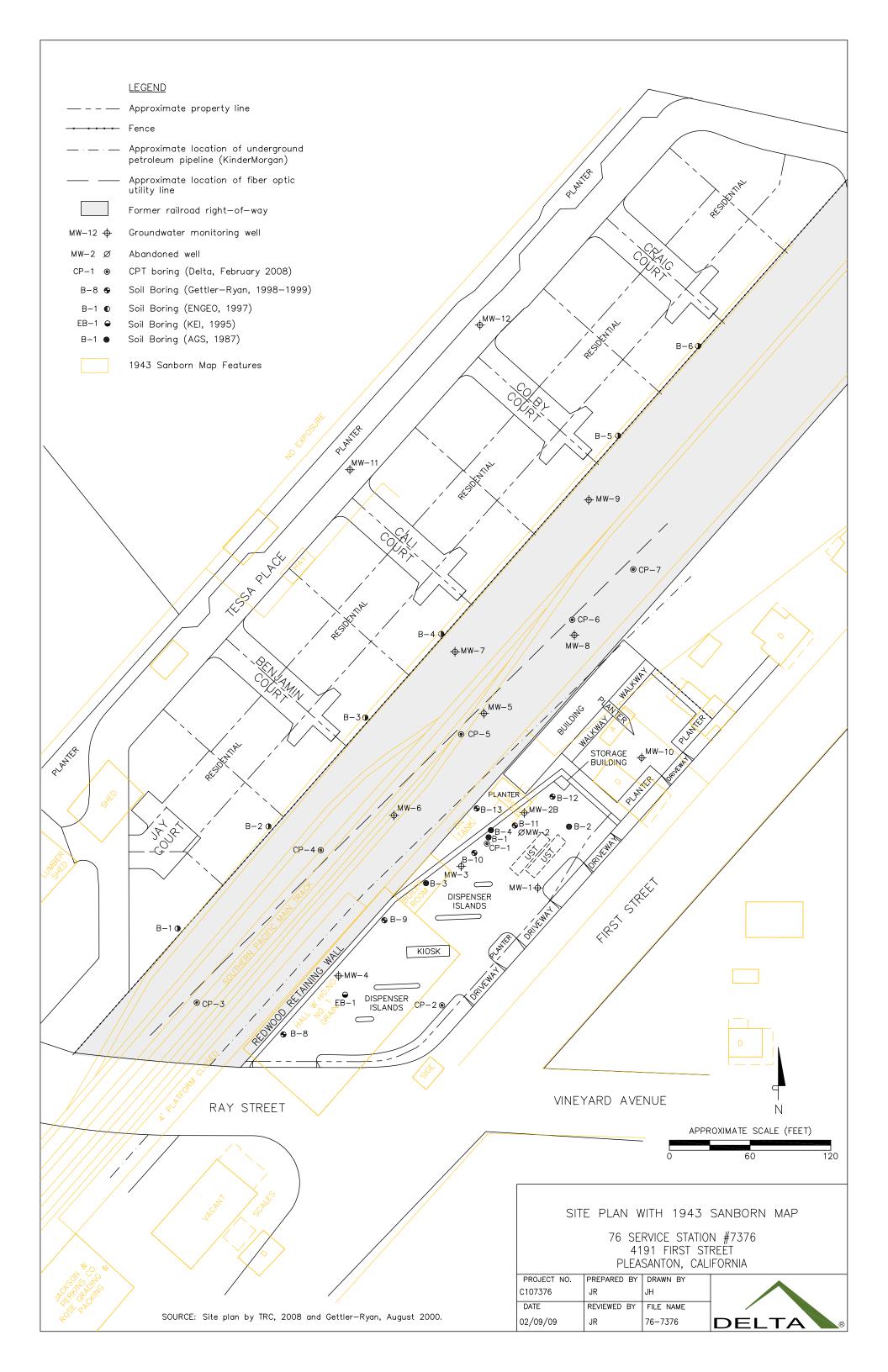


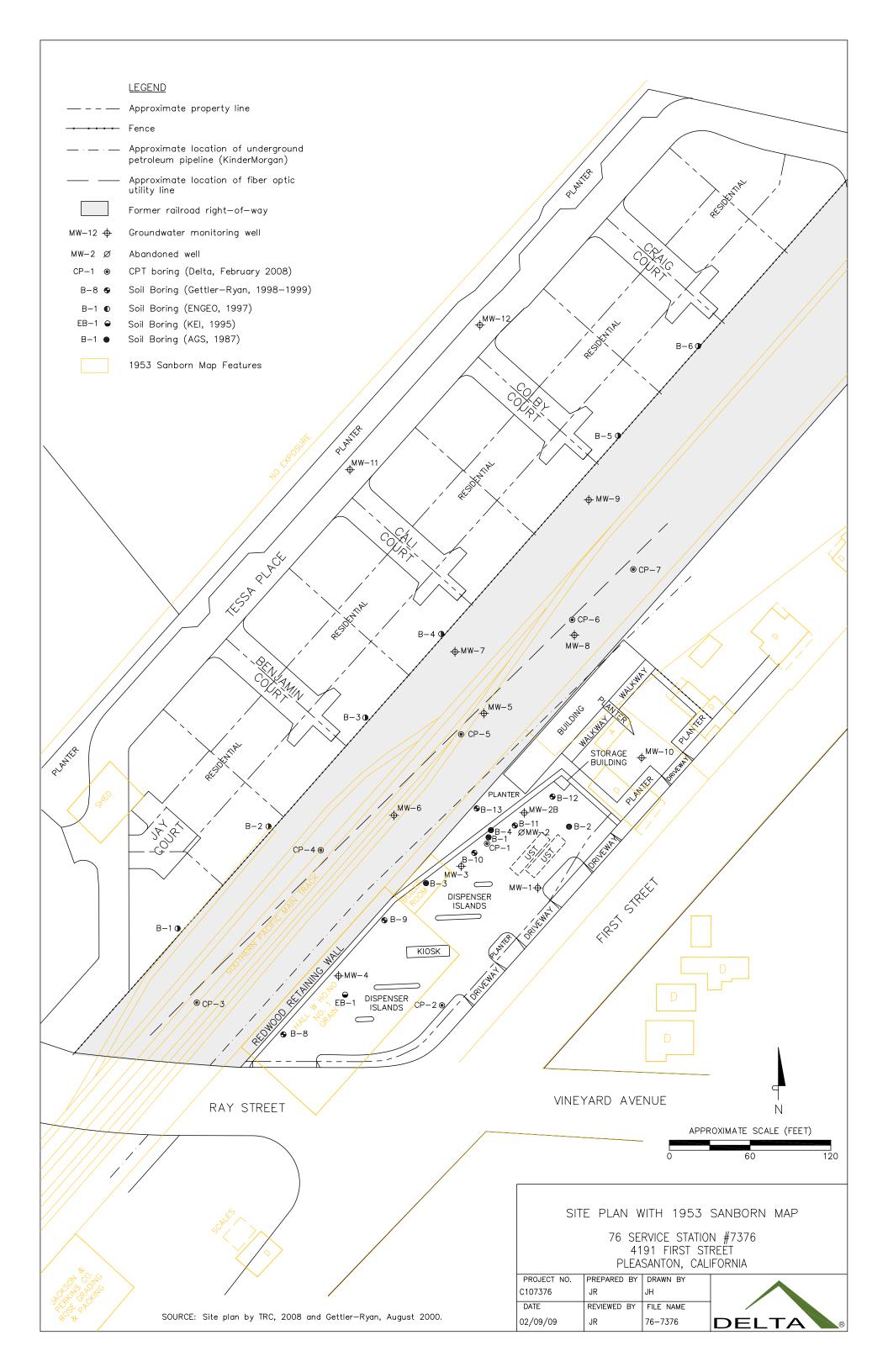
TABLE

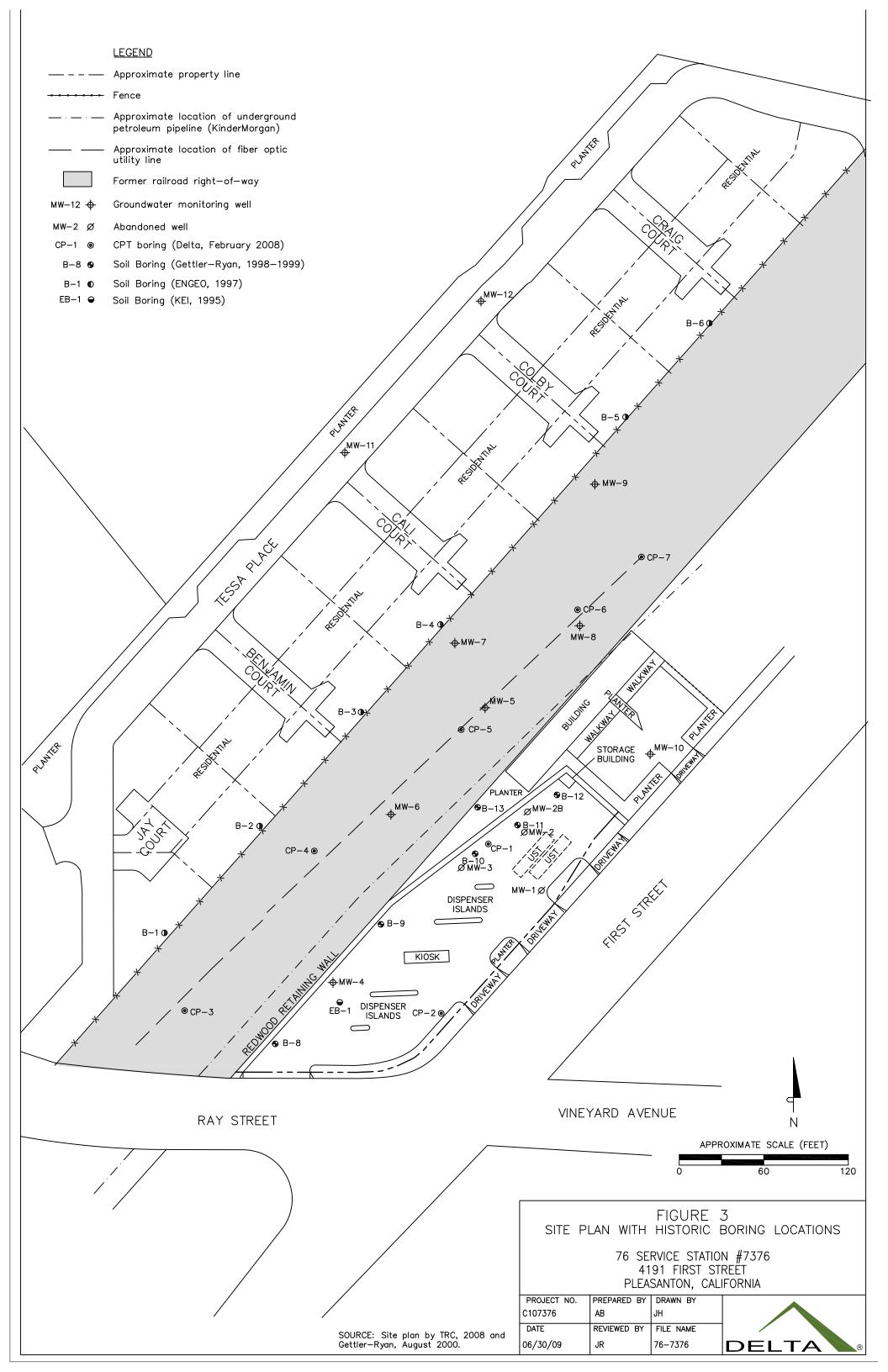
Table 1Well Construction DetailsConocoPhillips Site 73764191 First StreetPleasanton, California

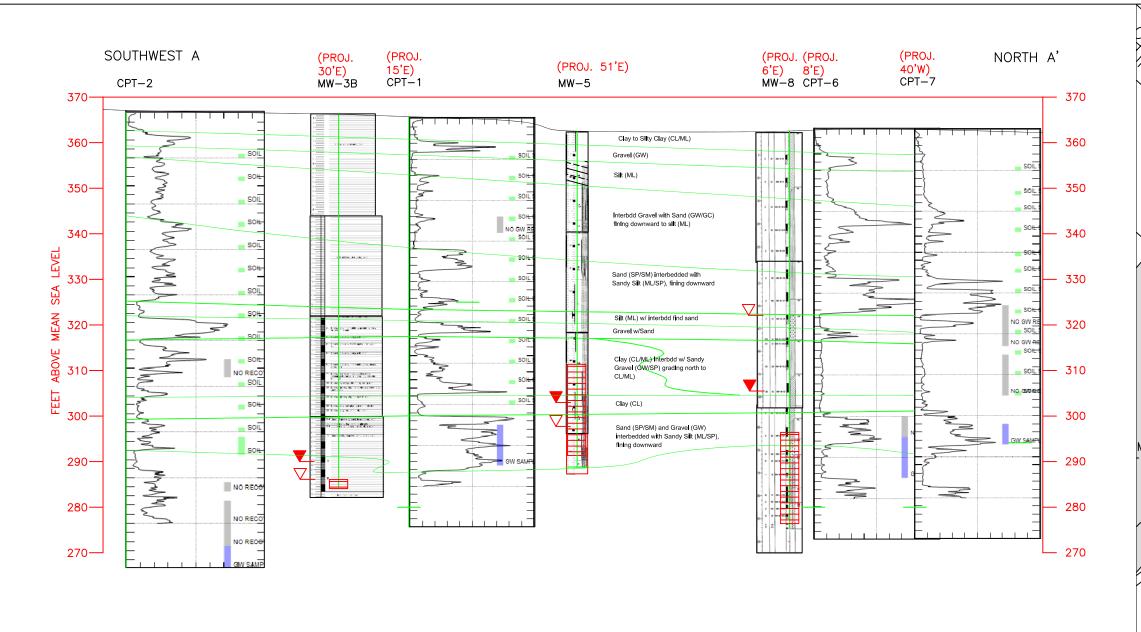

						Screen	Screen			
	Installation	Boring	Well	Boring	Well Diameter	Interval	Size	Sand Filter		
Well ID	Date	Depth fbg	Depth fbg	Diameter	(inches)	fbg	(inches)	Pack Size	Location	Status
MW-1	Dec-87	96.5	95	8	2	65-95	0.02	#3	Onsite	Destroyed June 2009
MW-2	Dec-87	96.5	85	8	2	55-85	0.02	#3	Onsite	Destroyed 1995
MW-3	Dec-87	96.5	95	8	2	65-95	0.02	#3	Onsite	Destroyed June 2009
MW-2B	2/6/1995	91	85	8.5	2	65-85	0.01	#2/12	Onsite	Destroyed June 2009
MW-4	7/24/1996	93	93	8.5	2	73-93	0.01	#2/12	Onsite	Active
MW-5	7/23/1996	73.5	72	8.5	2	52-72	0.01	#2/12	Offsite	Active
MW-6	7/24/1996	88	88	8.5	2	68-88	0.01	#2/12	Offsite	Active
MW-7	8/14/1998	75	75	8	2	55-75	0.02	#3	Offsite	Active
MW-8	6/12/1998	87.2	86	8	2	66-86	0.02	#3	Offsite	Active
MW-9	10/7/1999	76	75	8	2	55-75	0.02	#3	Offsite	Active
MW-10	11/21/1999	100	100	8	2	83-100	0.02	#3	Offsite	Active
MW-11	9/17/2001	91	86	8	2	66-86	0.02	#3	Offsite	Active
MW-12	9/18/2001	88	88	8	2	68-88	0.02	#3	Offsite	Active
MW-1B	6/9/2009	82.5	82	8	2	80-82	0.01	#2/12	Onsite	Active
MW-2C	6/12/2009	82.5	82	8	2	80-82	0.01	#2/12	Onsite	Active
MW-3B	6/15/2009	82.5	82	8	2	80-82	0.01	#2/12	Onsite	Active
Notes:										
Feet below	grade									

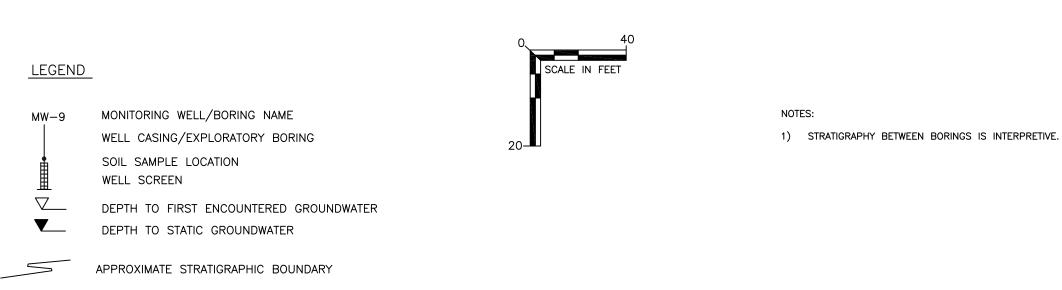

TABLE 2 Groundwater Gradient and Flow Direction ConocoPhillips Site Number 7376 4191 First Street Pleasanton, California																		
Site	•	Groundwater	Groundwater Flow Direction															
	Date	Gradient (feet per foot)	N	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW
7376	03/01/95	0.053	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
	06/01/95	0.002	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	09/09/95	0.008	0 0	0 0	0 0	0 0	0 0	0	0 0	1								
		0.006 0.002	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
		0.001	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
	09/18/96	0.01	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	12/21/96	0.03	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	03/07/97	0.05	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	06/27/97 09/29/97	0.1 0.1	1 0	0 0	0 0	0 0	0 0	0	0 0	0	0 1	0 0						
	12/15/97	0.1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
	03/16/98	0.02	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
	06/26/98	0.08	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	09/22/09	0.1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
	12/23/98 03/23/99	0.074 0.02	0 1	0 0	0 0	0 0	0 0	0	0 0	1 0	0 0							
	6/7/99	0.1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	9/3/99	0.1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
	12/6/99	0.111	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	3/10/00	0.101	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
	6/8/00	0.071	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
	9/25/00	0.15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
	12/19/00	0.12	1	0	0	0	0	0	0	0	0 0	0	0	0	0 0	0	0	0
	3/5/01 6/14/01	0.09 0.13	1 0	0 0	0 0	0 0	0 0	0	0 0	0 0	0	0 0	0 0	0 0	0	0	0 1	0 0
	9/17/01	0.15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
	12/17/01	0.11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
	3/15/02	0.175	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	6/20/02	0.185	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	9/27/02	DRY (only 2 wells)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	12/30/02	DRY (only 2 wells)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	3/26/03	0.15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
	6/10/03 9/9/03	0.12 0.11	0 0	0 0	0 0	0 0	0 0	0	0 0	0	0 1	1 0						
		0.2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	3/9/04	0.1	1	0	0	0	0	0	0	0	0	0	0	0	õ	0	0	0
	6/21/04	0.1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	9/8/04	0.07	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
		0.073	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
	3/17/05	0.05	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0.04 0.11	0 1	1 0	0 0	0 0	0 0	0	0 0									
	12/29/05	0.02	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
	3/15/06	0.05	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	6/28/06	0.06	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	9/28/06	0.01	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	12/11/06 3/19/07	0.009 0.015	0 0	0 0	1 0	0 0	0 0	0	0 0	0 0	0 0	0 0	0 1	0 0	0 0	0	0 0	0 0
	6/15/07	0.053	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	9/24/07	0.006	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
		0.001	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0.07	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
		0.037 0.048	0 0	1 0	0 1	0 0	0 0	0	0 0	0								
	9/5/2008		0	1	1 0	0	0	0	0	0	0	0	0	0	0	0	0	0
	3/26/2009		0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	6/22/2009		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0.071 Average	11	11	5	0	0	0	0	0	0	1	1	0	0	4	15	7
xplanat	tion			·														
IA = Not	available of Events =	58																

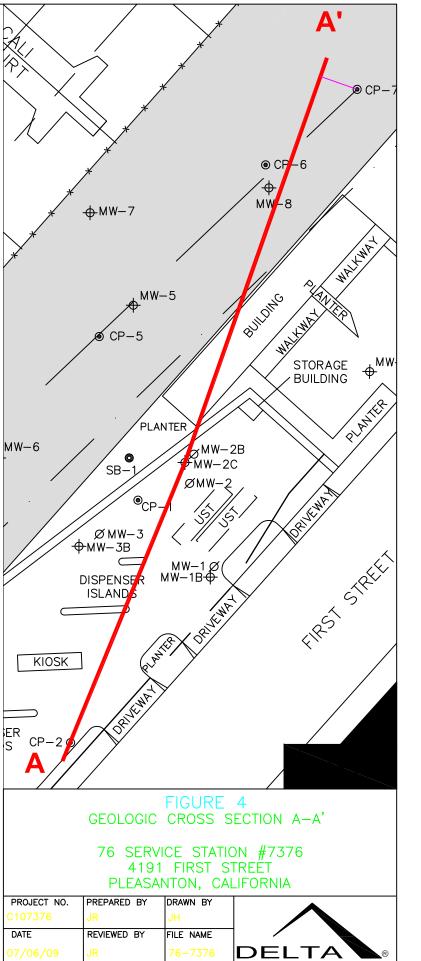


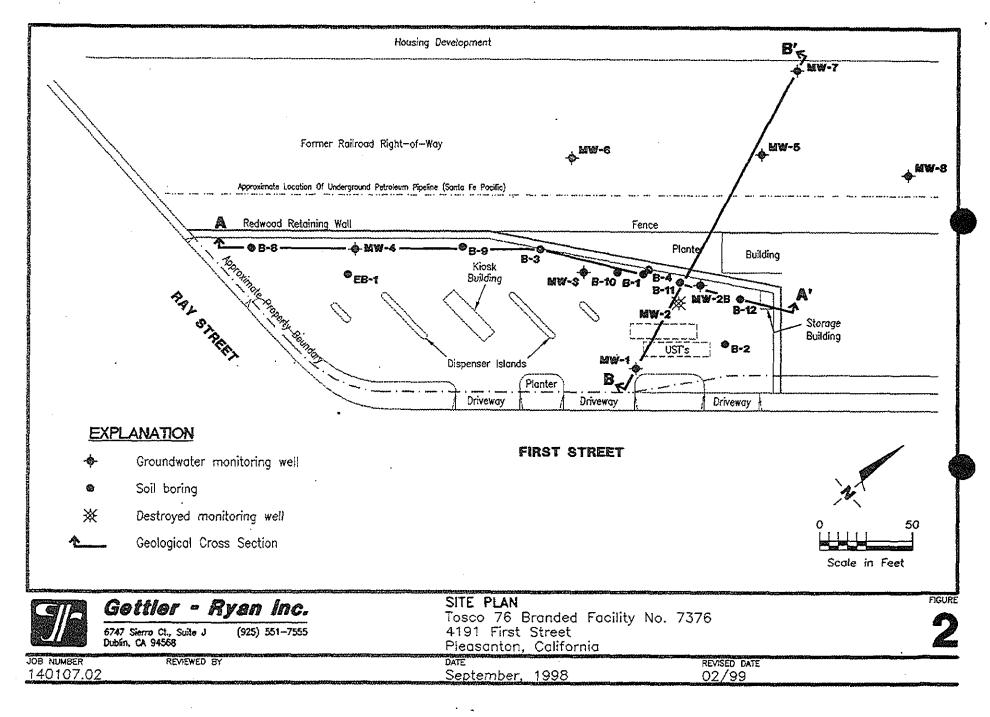

Groundwater Flow Direction

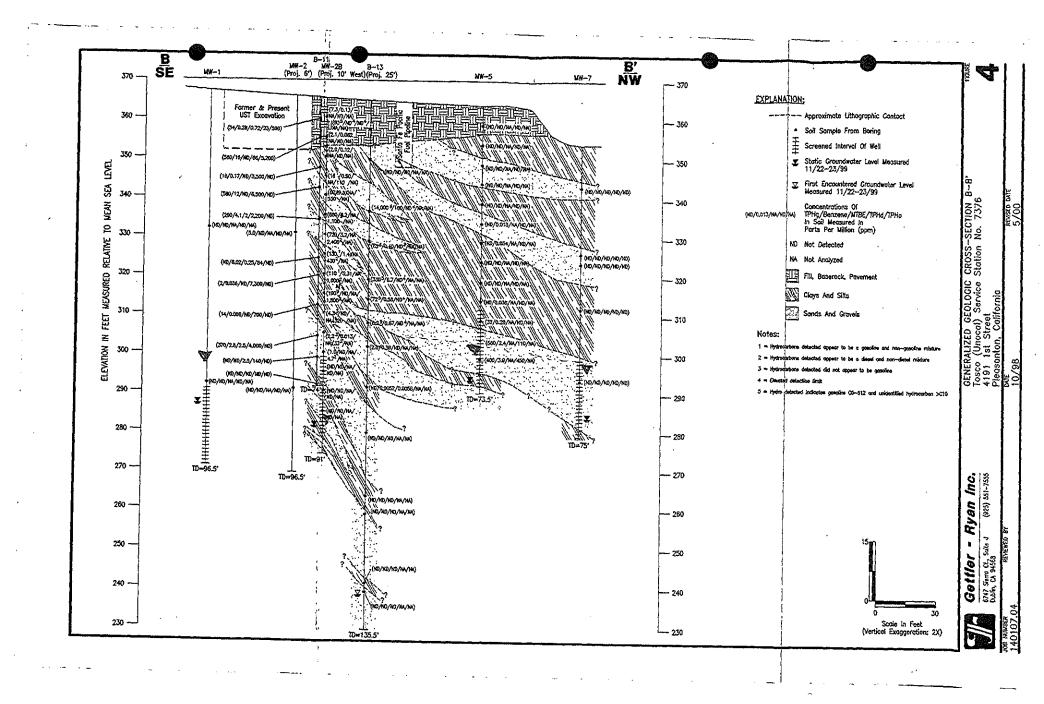

ATTACHMENT A Historic Facility Plans

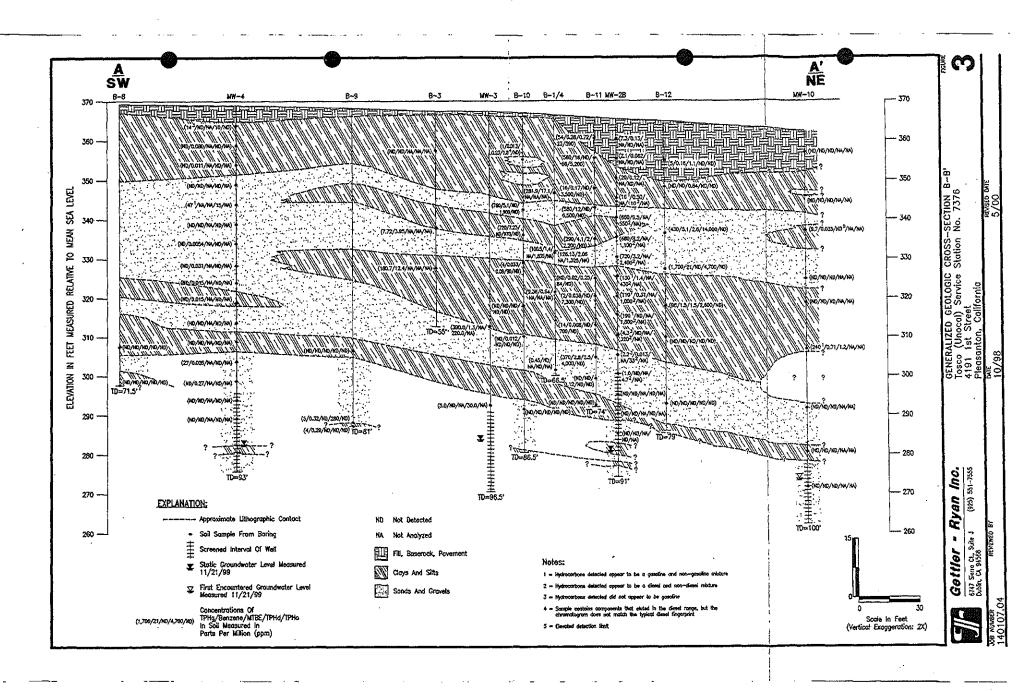


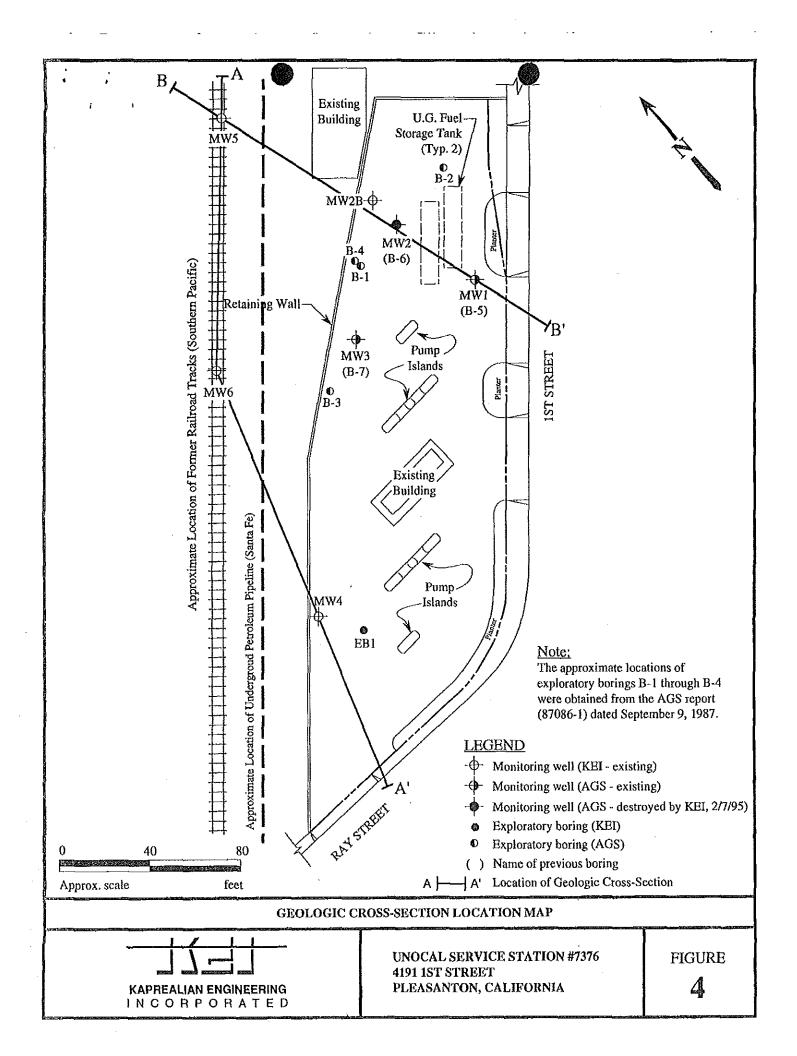


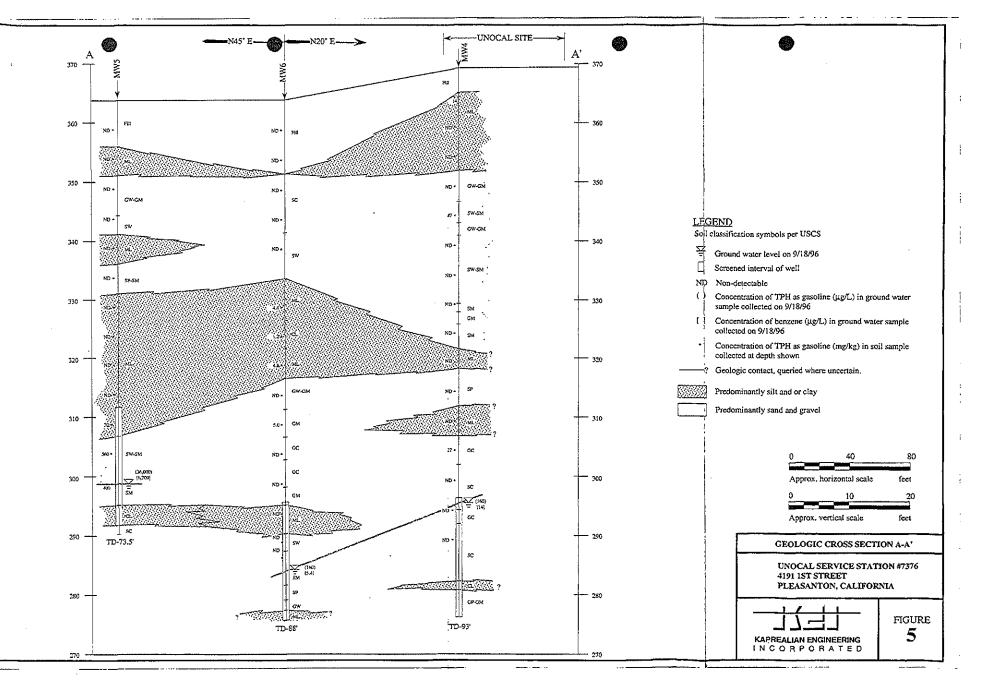


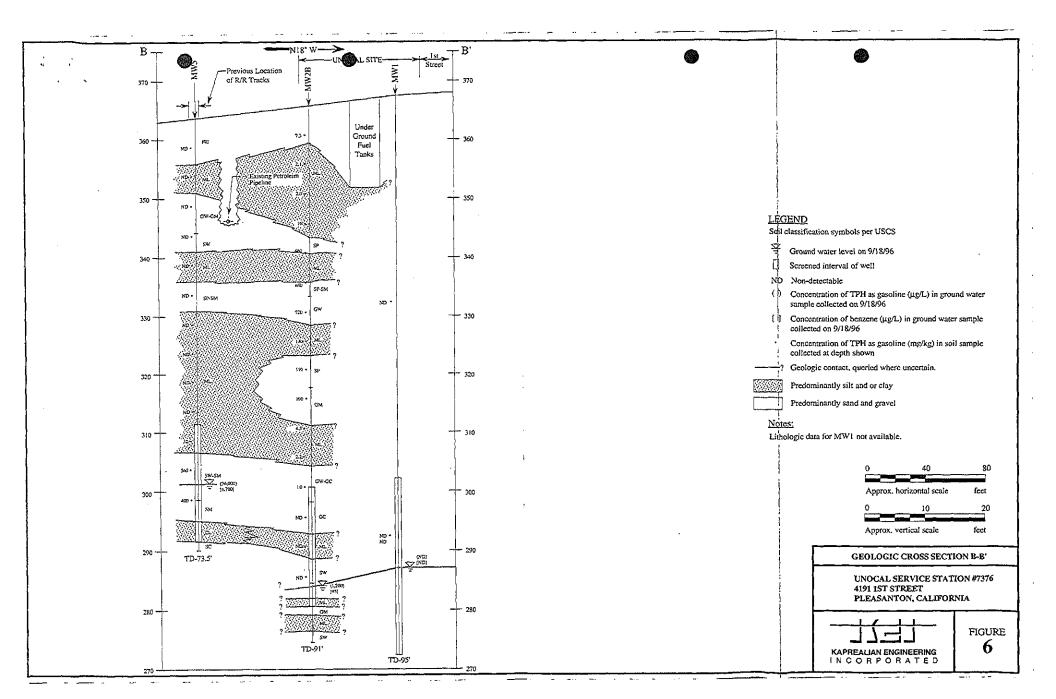

ATTACHMENT B


Regional Geologic Maps and Historic Cross Sections

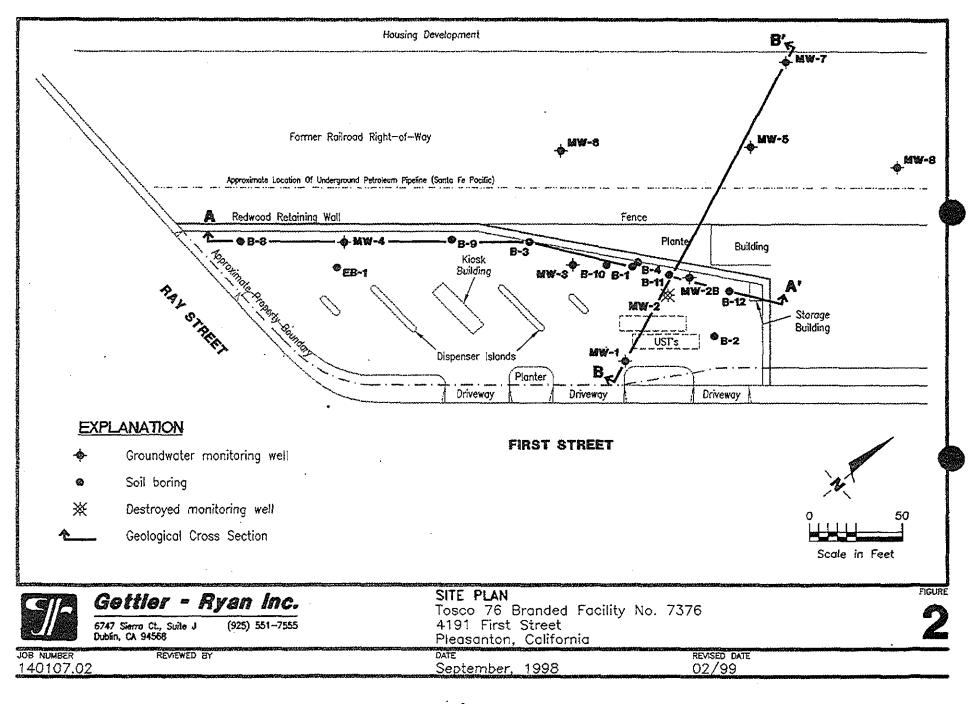


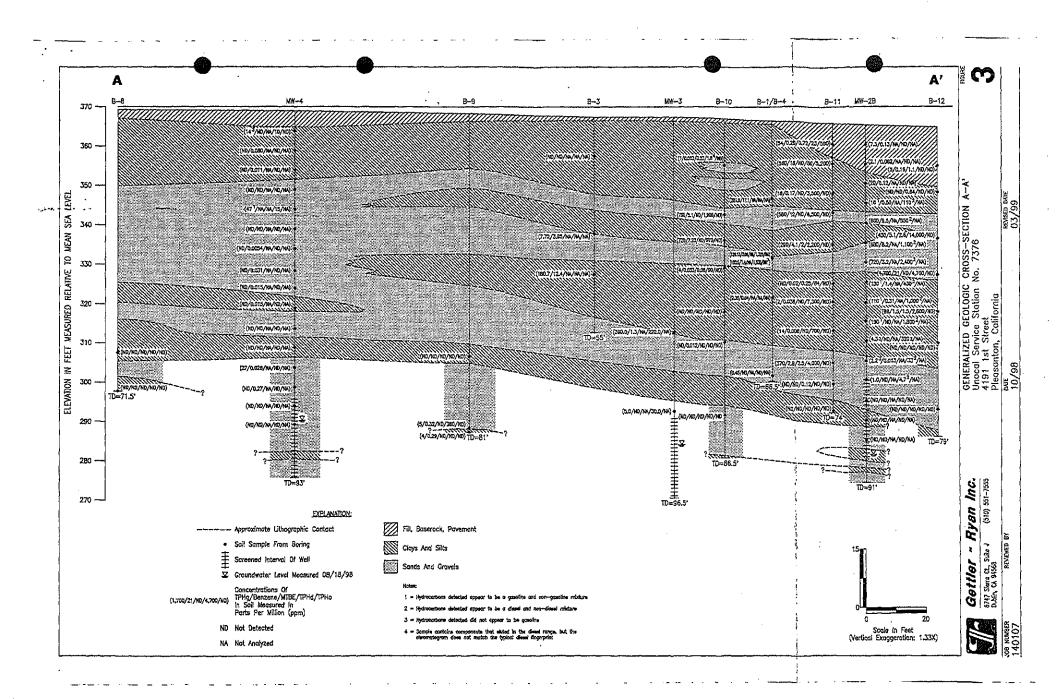



.

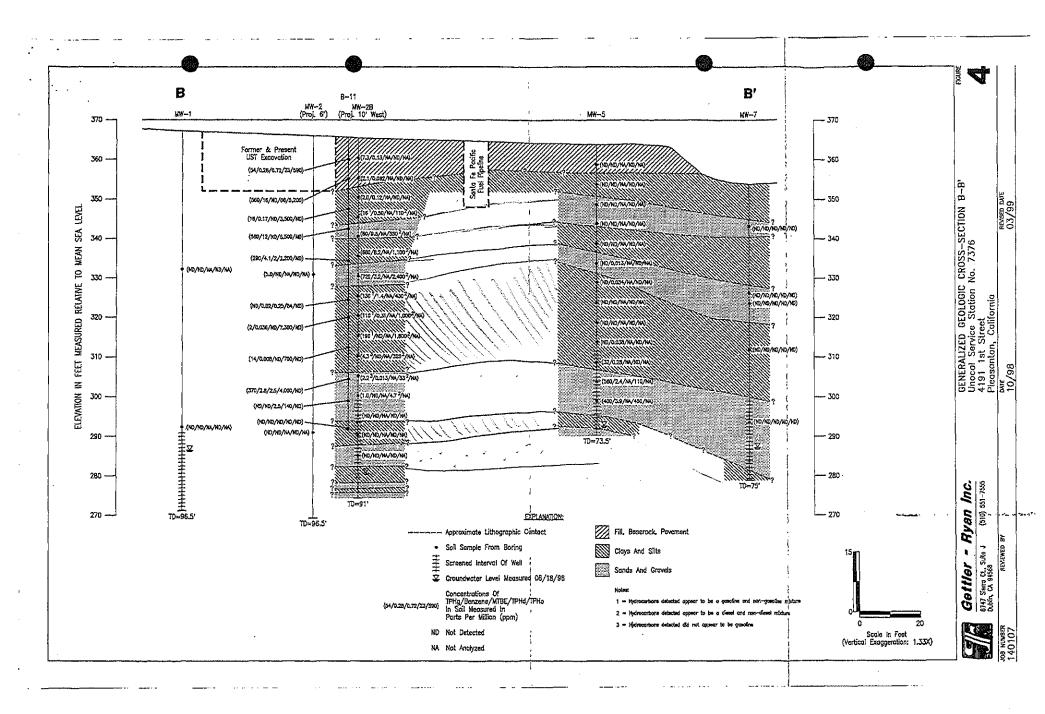


.



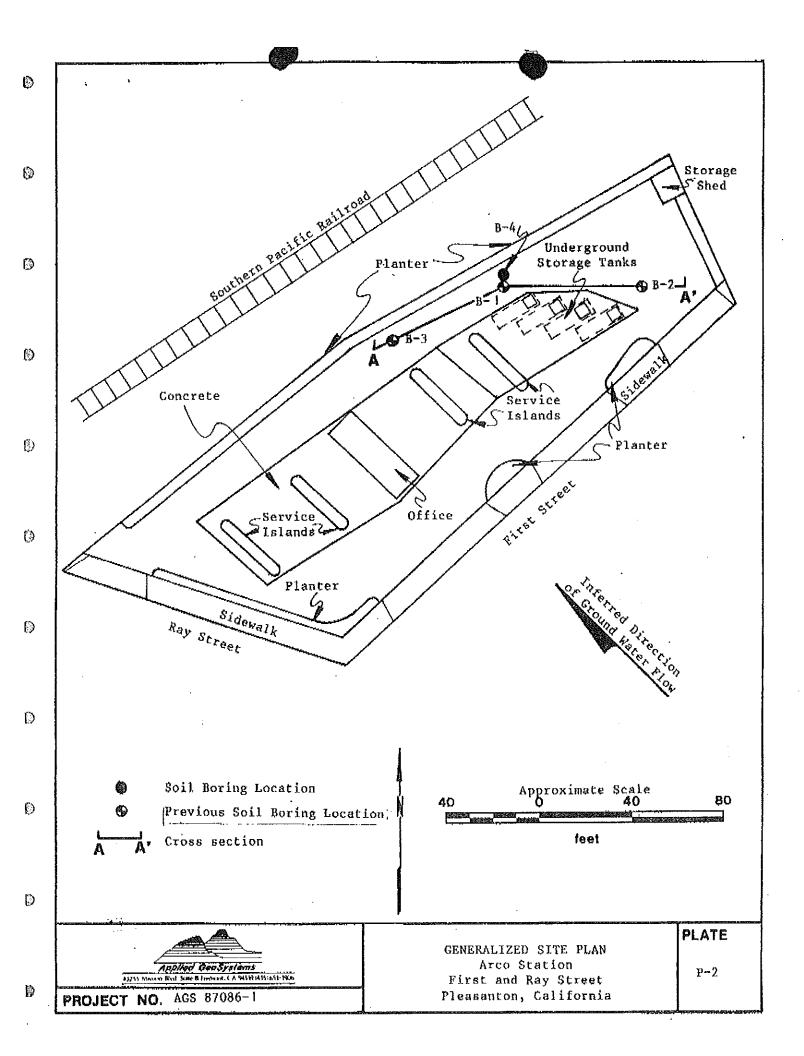


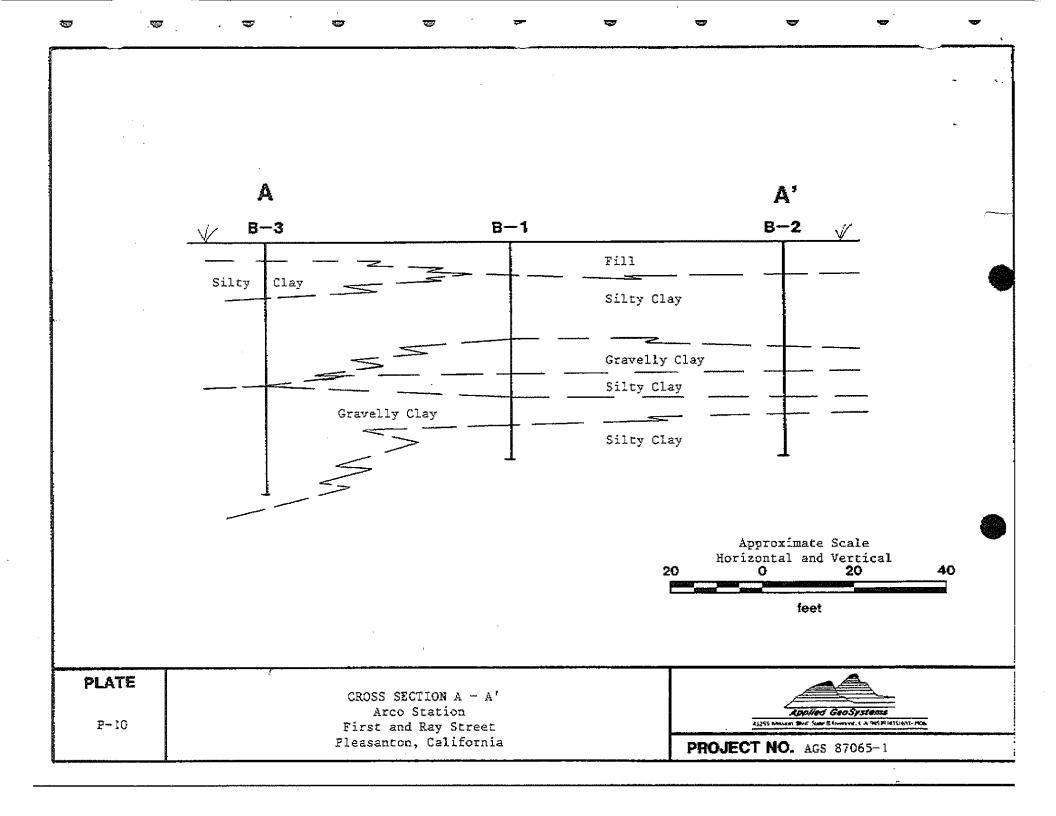
· _____

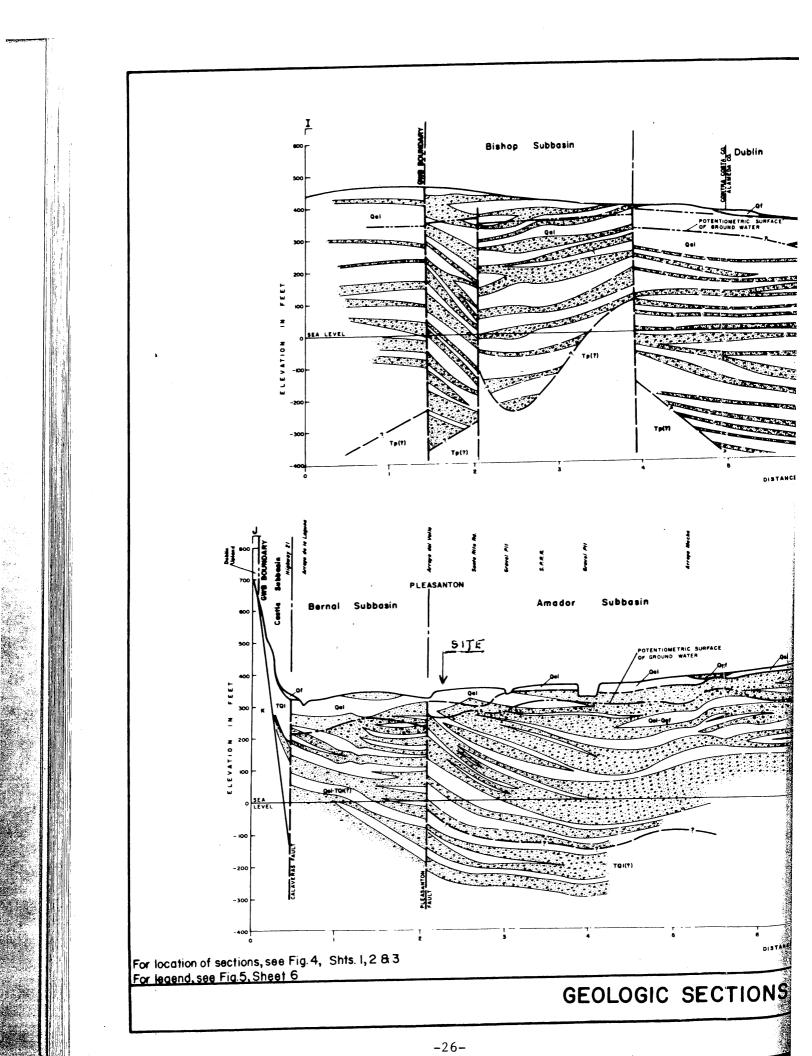


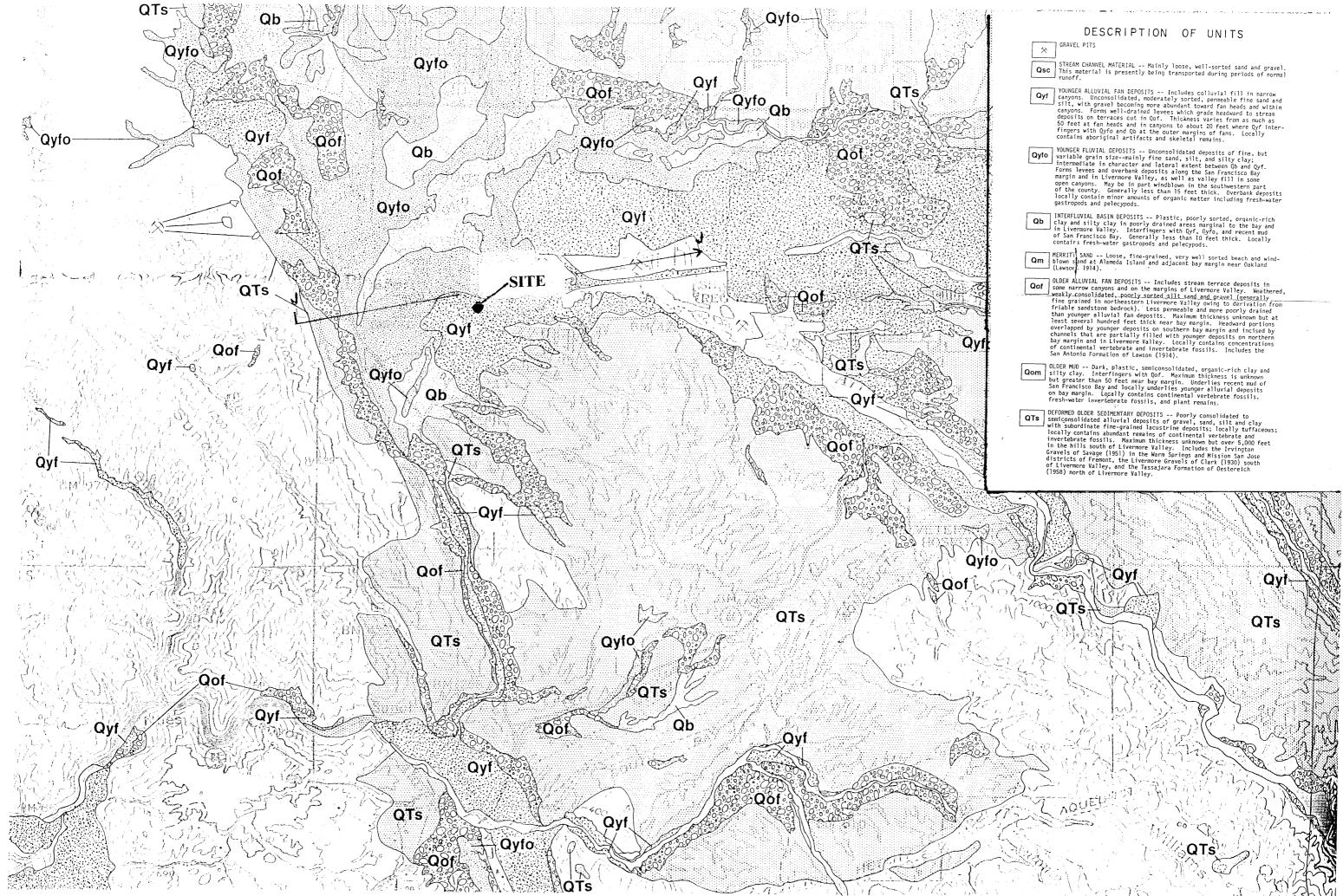
-

- - -

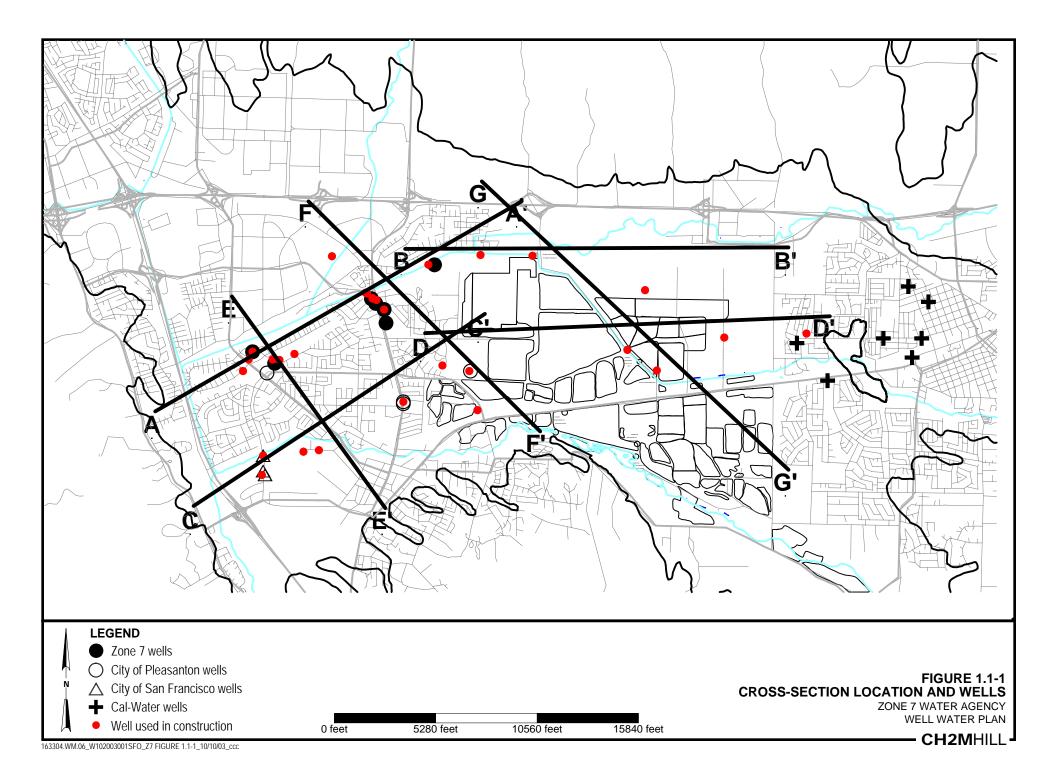


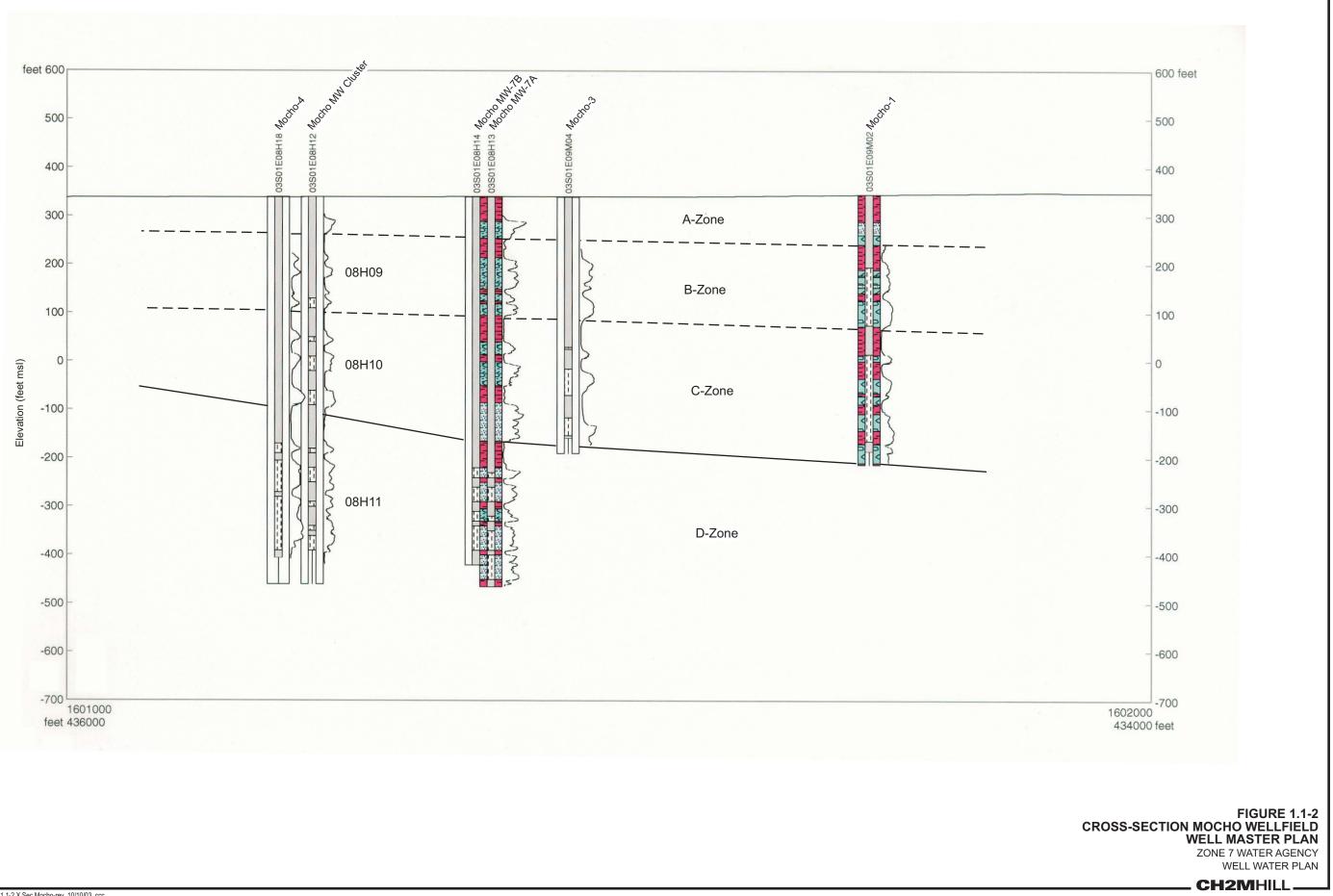

: ______ -----

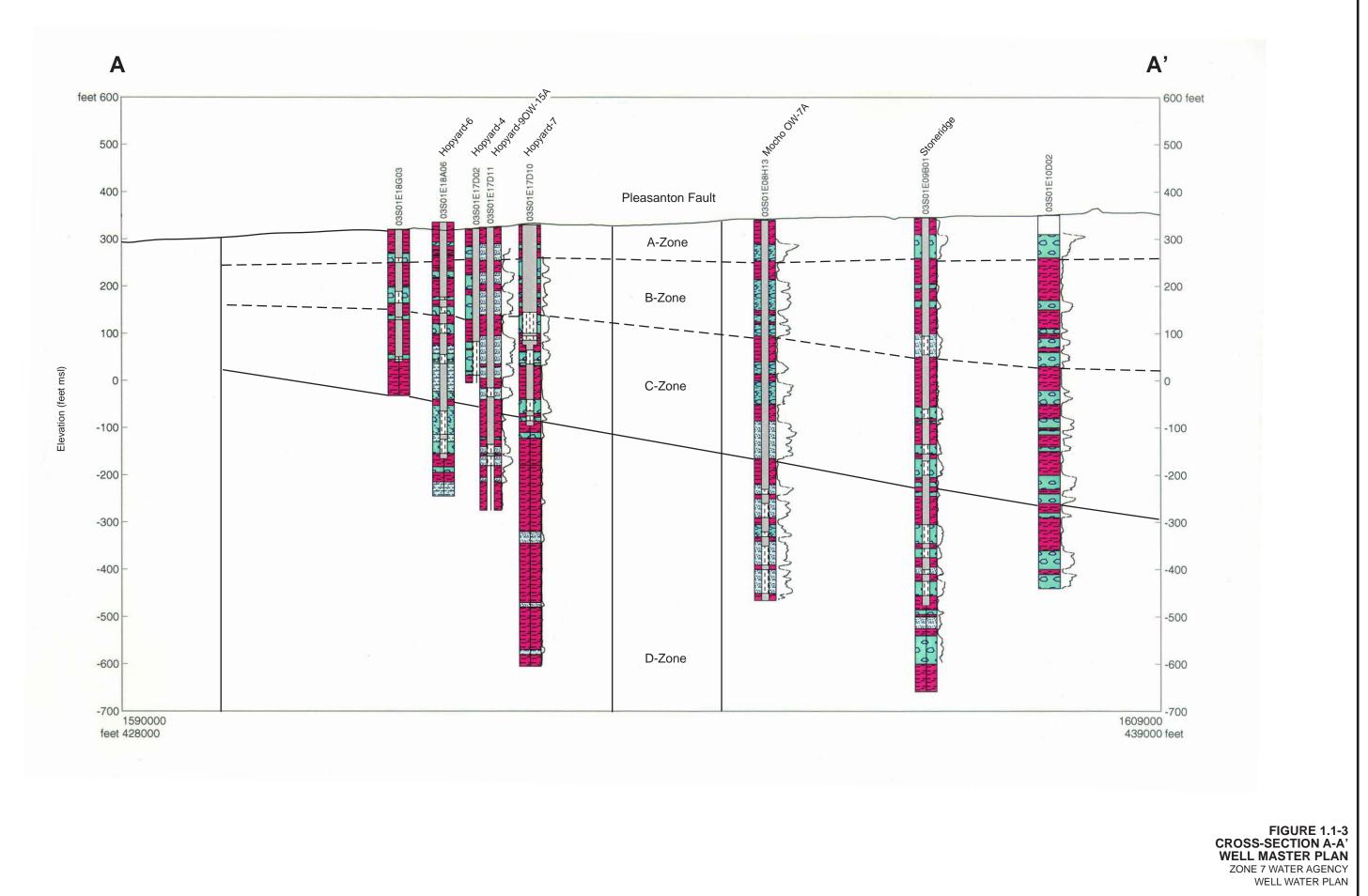


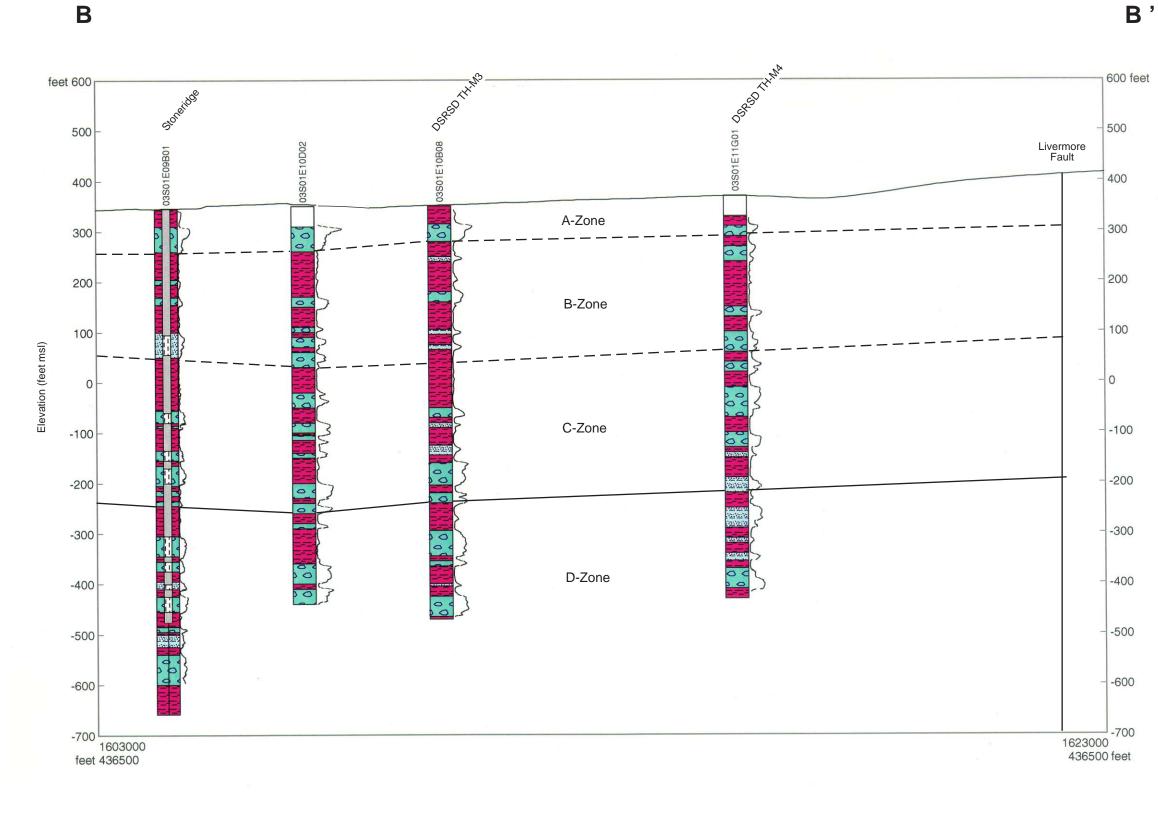

. •

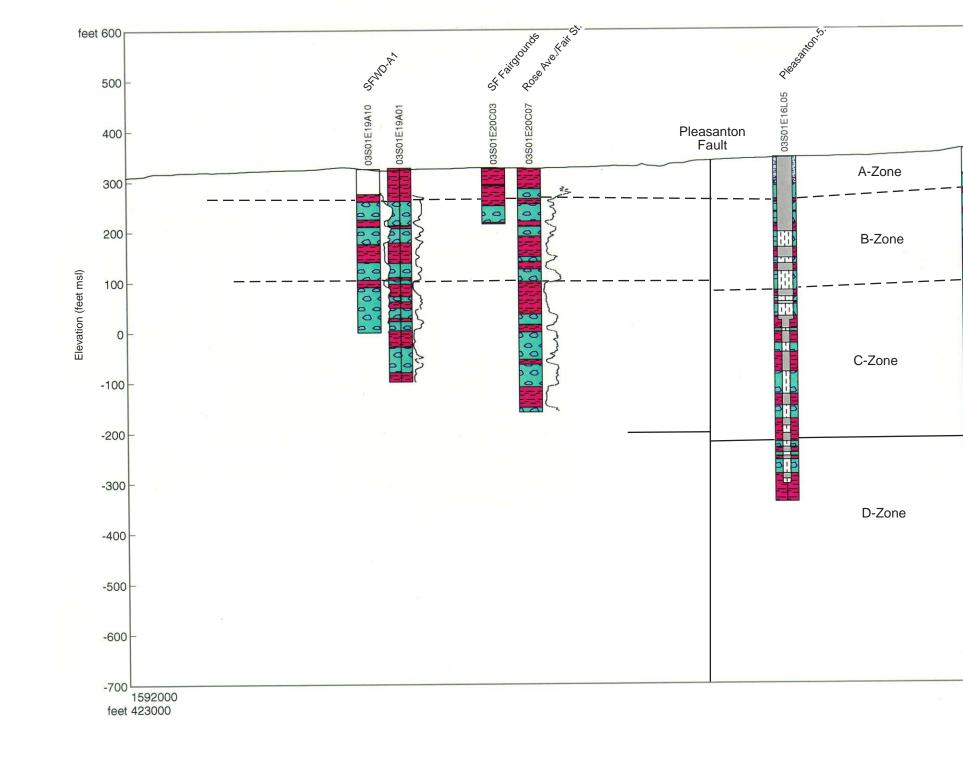
-








l	DESCRIPTION	OF L	JNITS	
公 GRAVEL P				
Qsc STREAM C This mater runoff.	HANNEL MATERIAL Mainly rial is presently being to	loose, well- ransported c	-sorted sand and gravel during periods of norma	i
silt, wit canyons. deposits 50 feet a fingers w	NLUVIAL FAN DEPOSITS I Unconsolidated, moderatel h gravel becoming more abu Forms well-drained levees on terraces cut in Qof. T t fan heads and in canyons ith Qyfo and Qb at the out aboriginal artifacts and s	ly sorted, p indant towar which grad hickness va to about 2 er margins	ermeable fine sand and d fan heads and within e headward to stream ries from as much as 0 feet where Qyf inter- of fang locally	
intermedi. Forms lev margin and open canyo of the cou locally co	LUVIAL DEPOSITS Unconso grain sizemainly fine sa ate in character and later; and overbank deposits a d in Livermore Valley, as y ms. May be in part windbl nty. Generally less than intain minor amounts of org and pelecypods.	nd, silt, an al extent be along the Sa well as vall lown in the	nd silty clay; etween Qb and Qyf. an Francisco Bay ley fill in some southwestern part	
in Livermo of San Fra	AL BASIN DEPOSITS Plast ilty clay in poorly draine re Valley. Interfingers w ncisco Bay. Generally les resh-water gastropods and	ith Qyf, Qy	ginal to the bay and	
Qm MERRITI SA blown sand (Lawsoi), 1	ND Loose, fine-grained, at Alameda Island and adj 914).	very well s acent bay ma	sorted beach and wind- argin near Oakland	
weakly cons fine graine friable sar	/IAL FAN DEPOSITS Includ v canyons and on the margir colidated, poorly sorted si d in northeastern Livermor dstone bedrock). Less per	is of Liverm ilt_sand_and e Valley ow meable and	ore Valley. Weathered gravel (generally ing to derivation from	,
least sever overlapped channels th bay margin of continen San Antonio	al hundraf feet thick near by younger deposits on sou at are partially filled wi and in Livermore Valley. tal vertebrate and inverte Formation of Lawson (1914	Maximum thi bay margin thern bay m th younger o Locally con brate fossi).	ckness unknown but at . Headward portions argin and incised by deposits on northern tains concentrations ls. Includes the	
but greater San Francisc on bay marg fresh-water	 Dark, plastic, semiconso Interfingers with Qof. M than 50 feet near bay marg to Bay and locally underlig n. Locally contains conti invertebrate fossils, and 	Maximum thic gin. Underl es younger a inental vert plant remai	kness is unknown ies recent mud of Iluvial deposits ebrate fossils, ns.	
with subordi locally cont invertebrate in the hills Gravels of S districts of	ER SEDIMENTARY DEPOSITS ated alluvial deposits of nate fine-grained lacustri ains abundant remains of c fossils. Maximum thickne south of Livermore Valley avage (1951) in the Warm SI Fremont, the Livermore Gri Valley, and the Tassaiara	gravel, sam ne deposits ontinental ss unknown l . Includes prings and M avels of Cla	d, silt and clay ; locally tuffaceous; vertebrate and but over 5,000 feet the Irvington lission San Jose wk (1920) cout	


CH2MHILL-

B '

FIGURE 1.1-4 CROSS-SECTION B-B' WELL MASTER PLAN ZONE 7 WATER AGENCY WELL WATER PLAN

- CH2MHILL

С

C'

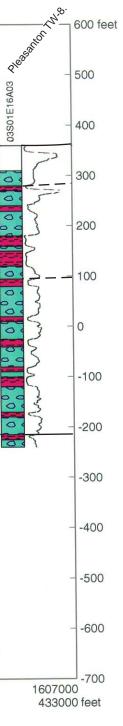
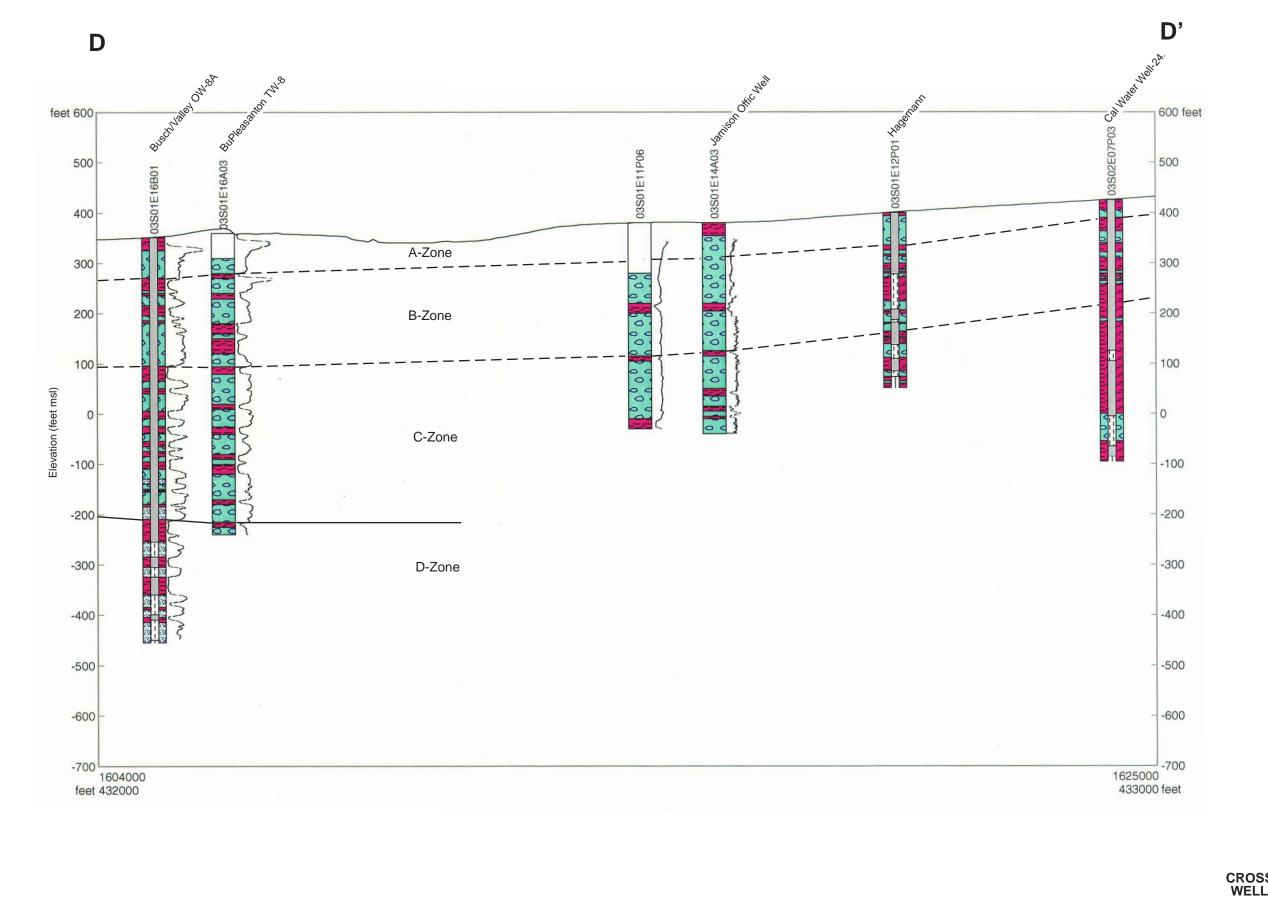
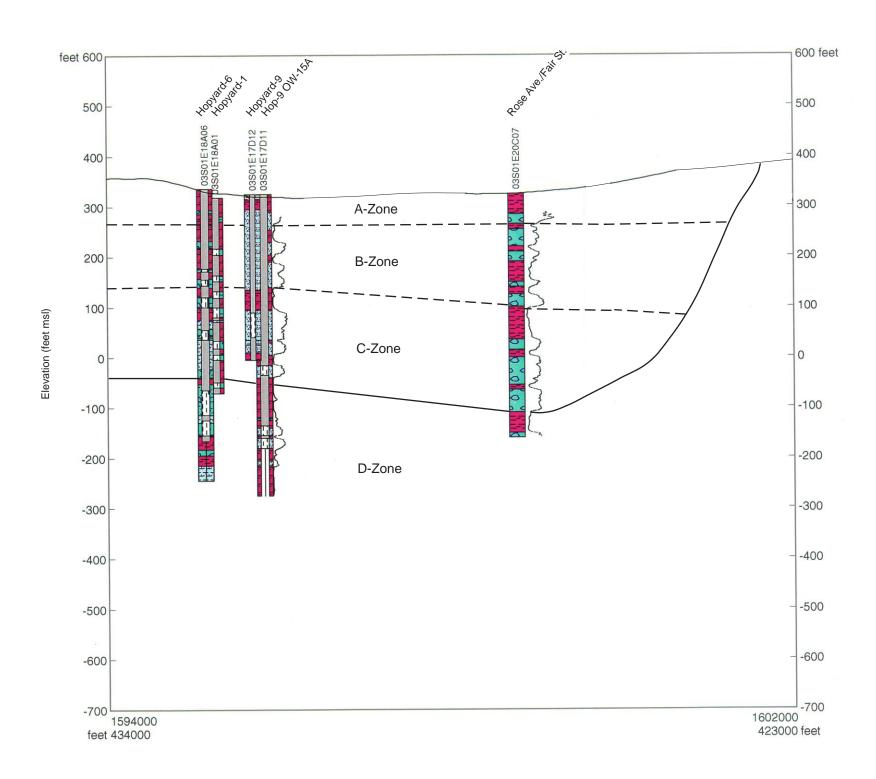



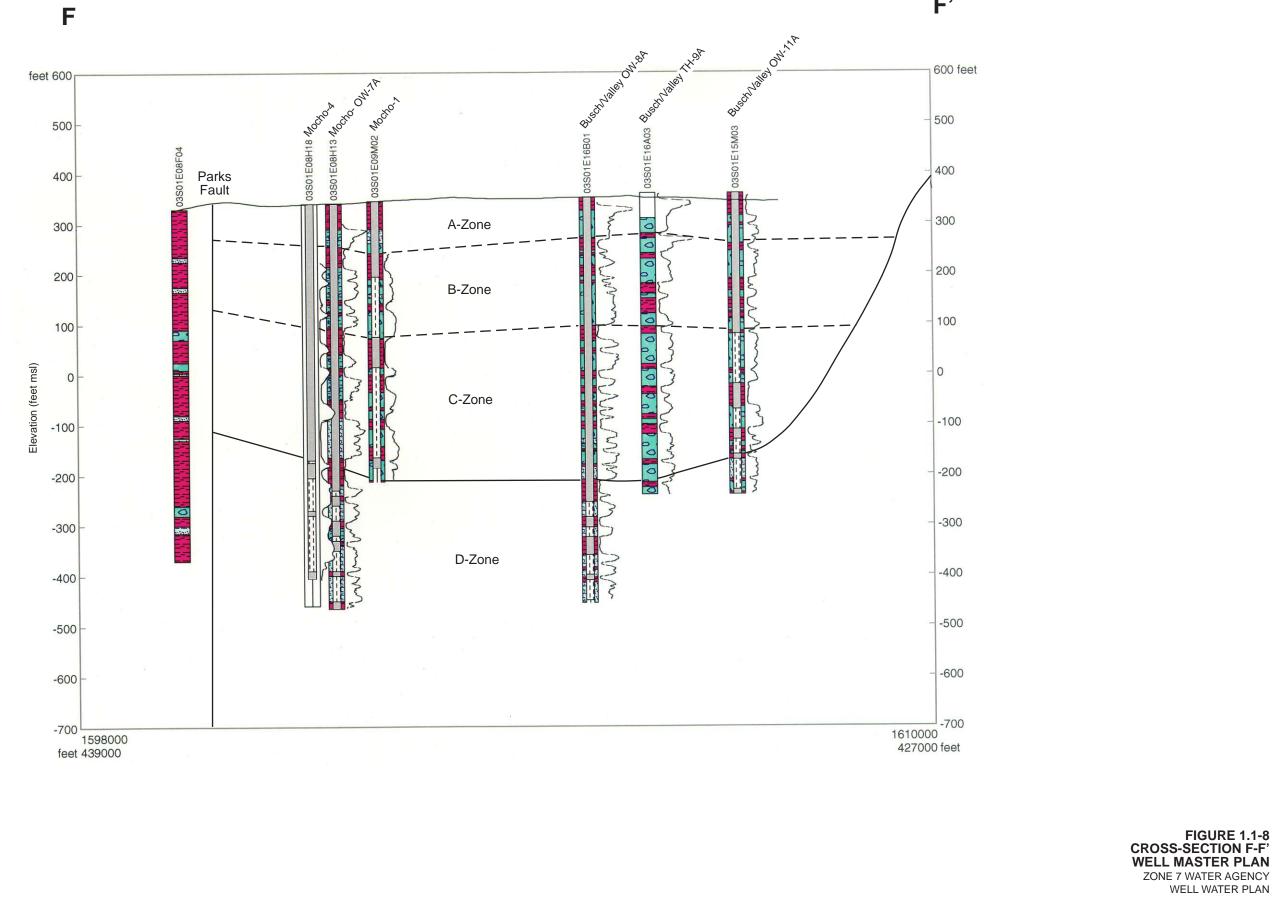
FIGURE 1.1-5 CROSS-SECTION C-C' WELL MASTER PLAN ZONE 7 WATER AGENCY WELL WATER PLAN


- CH2MHILL-

163304.WM.06_W102003001SFO_Figure 1.1-6 X Sec D-D_10/10/03_ccc

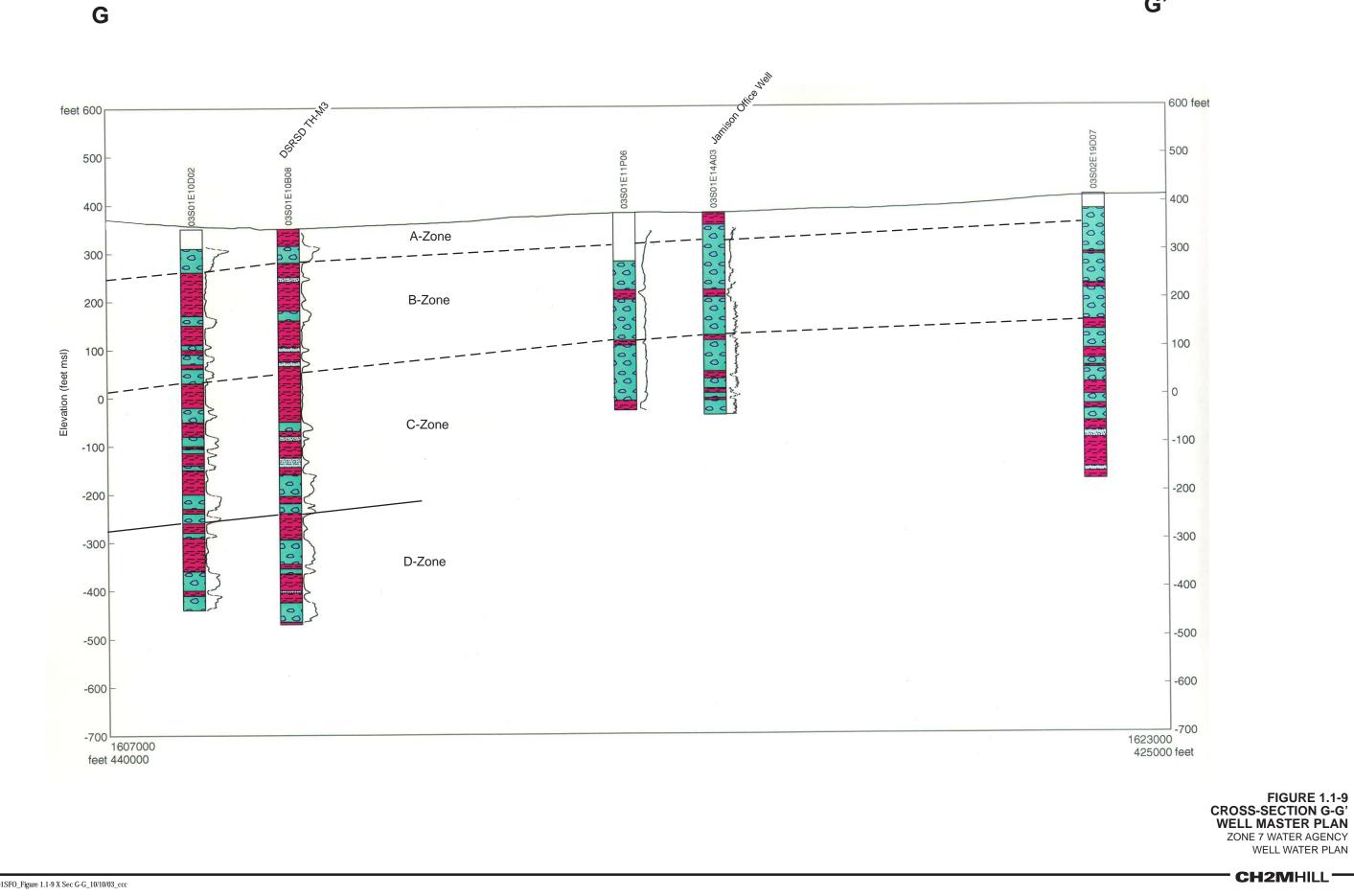
FIGURE 1.1-6 CROSS-SECTION D-D' WELL MASTER PLAN ZONE 7 WATER AGENCY WELL WATER PLAN

CH2MHILL-

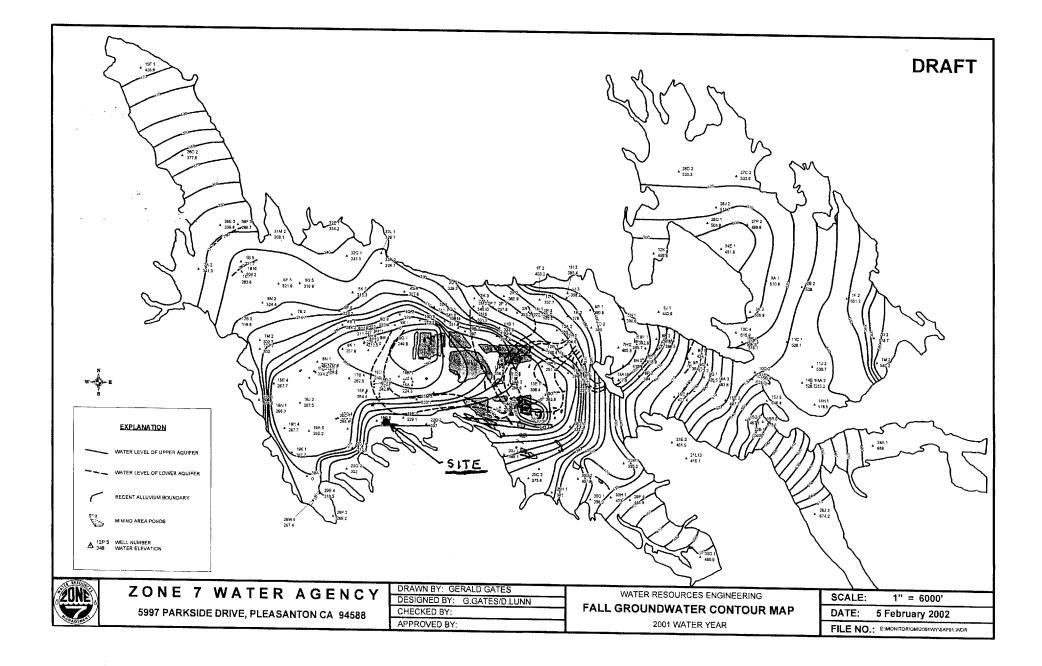


E'

Ε


FIGURE 1.1-7 CROSS-SECTION E-E' WELL MASTER PLAN ZONE 7 WATER AGENCY WELL WATER PLAN

CH2MHILL



F'

CH2MHILL

G'

ATTACHMENT C Historic Soil Data and Sample Locations

	amplo cation 81 81 81 81	Date 06/30/87	Sample Depth (fbg)	TPH-G (mg/kg)	TPH-D	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	тун	TEH	TPH-o
	81 81 81	06/30/87		111154/0501	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
	B1 B1		20.0			17.1	73.6	17.0	92,3		281.9		_
	61	08/30/87	20,0 35.0	-		2.06	1.02	0.84	6.69		126.13	1,325	
		06/30/87	45.0			0.64	1.06	0.26	1.47		9.36		
	D O	00100/07	25.0			13.1	6.3	6.1	56.2		188.8	_	-
	82 82	06/30/87 06/30/87	25.0 35.0			1.47	1.58	1.81	18.09	_	56.81	.	
	82	06/30/87	45.0	-		0.07	0.26	0.18	1.30	•••	9.09	-	
											ND		
	B3	06/30/87	10.0	-	**	ND	ND D 54	ND 0.13	ND 0.85	_	ND 7,72		••
	83 83	06/30/87 06/30/87	30,0 40.0	-	-	3.95 12.4	0.51 47.8	9.4	45,1	_	180.7	_	
	00	00/00/07	40.0										
	B4	08/21/87	35.0	***		1.4	0.6	0.5	4.4	-	100.5	1,835	••
	B4	08/21/87	65.0			ND	ND	ND	ND	-	0.45	ND	
	B8	06/08/98	61.5	ND	ND	ND	ND	ND	ND	ND			ND
	B8	06/08/98	72.5	ND	ND	ND	ND	NÐ	ND	ND	-	·	ND
								NB	ND	ND			ND
	B9	06/08/98	61.5	ND	ND	ND 0,32	ND 0.025	ND 0.032	ND 0.43	ND ND		_	ND
	B9 B9	06/08/98 06/08/98	80.5 81.0	5 4	280 ND	0.32	0.59	0.039	0.31	ND			ND
	D9	00/00/20	01.0	-	ne -	0120							•
	810	06/11/98	12.0	1	1.8	0.013	0.013	0.021	0.13	0,23	-	-	ND
	810	06/11/98	24.5	760	1,900	5.1	0.9 31	22 11	25 68	ND ND	-		ND ND
	810	06/11/98 06/11/98	31.0 38.0	720 4	970 90	7.3 0,033	0.006	0.010	0.032	0,08			ND
	810 810	06/11/98	49.0	ND	ND	ND	ND	ND	ND	ND	_		ND
	B10	06/11/98	57.0	ND	ND	0.012	0.012	0.008	0.048	ND	+-	-	ND
	B10	06/11/98	75.5	ND	ND	ND	ND	ND	ND	ND	-		ND
	B11	06/09/98	5,5	54	23	0.28	0.2	0.3	3.6	0.72			590
	B11	06/09/98	10.5	560	66	16	8.0	5.2	25	ND		-	5,200
	B11	06/09/98	18.0	16	3,500	0.17	0.031	0.21	0.62	ND		-	ND ND
	B11	06/09/98	23.0	580	6,500	12	1.3 0.89	6.0 4.7	17 11	ND 2			ND
	B11 B11	06/09/98 06/09/98	31.0 41.0	290 ND	2,200 84	4.1 0,02	ND	ND	ND	0.25	·	_	ND
	B11	06/09/98	45,5	2	7,300	0.036	0.15	0.022	0.15	ND		**	ND
	B11	06/09/98	53.0	14	700	0.008	0.008	0.02	0.025	ND			ND ND
	B11	06/09/98	61.0	370	4,000	2,8	16 ND	5.2 ND	24 ND	2.5 0.12		-	ND
	B11 B11	06/09/98 06/09/98	66.5 73.5		140 ND	ND ND	ND	ND	ND	ND			ND
					ø								ND
	B12	06/10/98	10.0	. 5	ND ND	0.16 ND	0.073 ND	0.02 ND	0.22 ND	1.1 0.64	-	•- •-	ND
	B12 B12	06/10/98 06/10/98	16.5 28.5	ND 430	14,000	5.1	3.2	6.6	15	2.6			ND
	B12	06/10/98	37.5	1,700	4,700	21	3.8	8.7	7.6	ND	***		ND
	B12	06/10/98	47.0	98	2,600	1.5	1.2	2.0	4.4	1.5	-	-	ND
	B12	06/10/98	55,0	ND	ND	ND	ND ND	ND ND	0.01 ND	ND ND	-		ND ND
	B12	06/10/98	72.0	ND	ND	ND.	ND	ND	ND.	1152			
	B13	11/22/99	7.5	93	_	ND	2.3	· ND	1.1	ND	-	p	
	B13	11/22/99	15.5	ND		ND	ND	ND	ND	ND			
	B13	11/22/99	28,0	14,000		100	92 0.088	240 0.092	1,200 0.31	ND ND			
	B13 B13	11/22/99 11/22/99	38.5 46.0	65 330		0.40 6.7	0.000 ND	7.0	21	2	•		-
	B13	11/22/99	51,0	72 ·		0.58	0.32	0.97	3.8	ND			-
	B13	11/22/99	57.0	6.2		0.67	0.30	0.068	0.24	0.18		-	↔
	B13	11/22/99	63.0	2.0		0.38	0.22	0,013	0.16	ND	•		-
	B13	11/22/99	73,5	ND		0.0052 ND	.0.0075 ND	ND ND	0.024 ND	0.058 ND			_
	B13 B13	11/22/99 11/22/99	85.5 101.5	ND ND		ND	ND	ND	ND	ND			
	B13	11/22/99	106.0	ND		ND	ND	NÐ	ND	ND			-
	B13	11/22/99	123.5	ND -		ND	ND	ND	ND	ND	-		-
	B13	11/22/99	126.0	ND		ND	NЮ	ND	ND	ND	•		
·	P1	09/09/94	3.0	ND		ND	NO	ND	ND		~		
	P2	09/09/94	3.0	1,300	•••	3.3	57	26	130		- 、		
	P2	09/15/94	9.0	13		0.020	0.015	0.013	1.1				
	P3	09/09/94	3.0	4.9 11	-	0.071 0.26	0.028 0.014	0.065 0.23	0.70 1.3			*-	
•	P4 P5	09/09/94 09/09/94	3.0 3.0	8,900		65	670	160	800	••		'	
	P5	09/15/94	9,0	17		0.029	0.031	0.047	1,4				-
	P6	09/09/94	3.0	ND		0.0093	0.015	ND	0.028				
	P7	09/09/94	3.0	8,7	-	0.21	0.028	0.081	0.73				-

TABLE 1 SUMMARY OF SOIL SAMPLE CHEMICAL ANALYSIS RESULTS 76 Service Station No. 7376 4191 First Street, Pleasanton, California

Page 1 of 3

14.

				4191	76 Service S First Street, F	leasanton, C						
Sample Location	Dato	Sample Deptin (fbg)	TPH-G (mg/kg)	TPH-D (mg/kg)	Benzene (mg/kg)	Toluene (mg/kg)	Ethyl- benzene (mg/kg)	Total Xylenes (mg/kg)	MTBE (mg/kg)	TVH (mg/kg)	TEH (mg/kg)	TPH-o (mg/kg)
P8	09/09/94	3.0	<u>(mg/kg)</u> 10	ពាទូភេទ្យ	0.074	0.27	0,043	0,38	(ingit(g)		<u>(aa)</u>	
P9	09/09/94	3.0	65*		0.69	0.15	0.71	3.9	-	**		-
P10	09/09/94	3.0	ND		ND	ND	ND	0.015		••		-
P11	09/09/94	3.0	ND		ND	ND	ND	ND	-			-
P12	09/09/94	3.0	4.7*		0.011	0.17	0.091	0.64	-		**	-
P13	09/23/94	9.0	4,400.0		29	390	150	790	-			
EB-1	02/06/95	5.0	15,000	3,600**	340	1,700	390	2,100	-			-
EB-1	02/06/95	10.0	3,200	690**	32	280	73	400	-		**	
EB-1	02/06/95	15.0	1,800	800**	15	140	41	240	•••			
EB-1	02/08/95	20.0	1,700	240**	4.9	76	39 44	220 250	-		-	-
EB-1	02/06/95	25.0	2,000	840**	3.9	78 40	30	170	-			
EB-1	02/08/95	30.0	1,500	530*** 200***	ND 1.4	52	44	250	_			
EB-1	02/08/95	35.0	1,800	98**	1.4	52	25	140	_			
EB-1 EB-1	02/06/95 02/06/95	40.0 45.0	1,200	2.6***	1.4	5.7	0.59	3.2		_		
EB-1	02/08/95	50.0	430	65**	0.29	11	7.5	42		-		_
EB-1	02/06/95	55.0	6,4	ND	0.89	0.097	0.20	1.0	_		**	
EB-1	02/06/95	60.0	1.6	ND	0.0090	0.061	0.021	0.098				_
EB-1	02/06/95	65.0	ND	ND	ND	0.034	0.011	0.065	-			-
MW-1 (B5)	12/02/87	35.0	**		ND	ND	ND	ND .		ND	ND	
MW-1	12/02/87	75.0			ND	ND	ND	ND	-	ND	ND	-
MW-2 (B6)	12/05/87	35.0			ND	ND	ND	ND		5.0	NO	-
MW-2	12/05/87	70.0	-		ND WELL ABAN	ND DONED 02/07	ND 795	ND	-	ND	ND	-
MW-28	02/08/95	5.0	7.3	ND	0.13	0.048	0.090	0.63	•		-	<u>~</u>
MW-2B	02/06/95	10.0	2.1	ND	0.062	0.020	0.0078	0.11	-		-	•-
MW-2B	02/06/95	15.0	2.0	ND	0.12	0.0076	0.0074	0.02	-			••
MW-28	02/06/95	20.0	16*	110**	0.50	0.042	0.12	0.18			-	
MW-2B	02/06/95	25.0	660	550**	9.5	2.6	4.1	11			-	
MW-2B	02/06/95	30.0	680	1,100**	8.2	1.1	6.1	11	-			
MW-2B	02/06/95	35.0	720	2,400**	3.2	1.1	4.6	16			**	
MW-2B	02/06/95	40.0	130*	430**	1.4	0.45	1.6	5.0	-	-		•••
MW-28	02/06/95	45.0	110*	1,000**	0.31	.0,083	0.63	1.7	-			
MW-2B	02/06/95	50.0	190*	1,800**	ND	0.68	0.33	2.2 0.056	-			
MW-2B	02/06/95	55,0	4.3****	320**	ND 0.042	ND 0.0000	0.013 ND	0.035	-			
MW-28 MW-28	02/06/95 02/06/95	60.0 65.0	2.2**** 1.0	33** 4.7**	0.013 ND	0.0088 0.0099	ND	0.0097	-			
MW-2B	02/06/95	70.0	ND	ND	ND	ND	ND	ND	***	· .		
MW-2B	02/08/95	75.0	ND	ND	ND	ND 1	ND	ND			-	-
MW-2B	02/06/95	80.0	ND	ND	ND	ND	ND	ND			-	
MW-3 (87)	12/07/87	55.0			1.3	6.2 ND	14.0 ND	34.0 ND		390.0 5.0	220.0 30.0	~
MW-3	12/07/87	75.0			ND	MD.			_	0.0	50.0	
MW-4	07/24/96	5.0	14****	10	ND	ND	ND	0,068			-	
MW-4	07/24/96	10.0	ND	ND	0.080	0.039	0.0059	0.096	- '			••
MW-4	07/24/96	15,0	ND	ND	0.011	ND	ND	ND				
MW-4	07/24/96	20.0	ND	ND	ND	ND	ND	ND			-	~
MW-4	07/24/96	25.0	47*	15	ND	ND	ND	0.77	-		→	
MW-4	07/24/96	30,0	ND	ND	ND	0.014	ND	0.029			-	~
:MW-4	07/24/98	35.0	ND	ND	0.0054	0.015	ND 0.0093	0.021			-	
MW-4	07/24/96	40.0	ND	ND	0.031	0.039	0.0083	0.040		·	\leftrightarrow	
MW-4	07/24/96	45,0	ND	ND	0.015	0.0078	ND	0.0089	**		-	-
MW-4	07/24/96	50,0	ND	ND	0.015	ND	ND	0.0074 ND			-	
MW-4	07/24/96	55.0	ND	ND ND	ND ND	ND ND	ND					
MW-4	07/24/96	60.0	ND	· ND	ND 0.026	ND	ND 0.37	ND 0.35				
MW-4	07/24/96	65.0	27	ND ND	0.026	0.081	0.27 ND	0.35				
MW-4	07/24/96	70.0	ND	ND ND	0.27	0.0053	ND ND	0.081 ND	_			· •••
	07/24/96 07/24/96	75.0 · 79.5	ND ND	ND ND	ND ND	ND ND	ND	ND	_			
MW-4 MW-4			ND .	ND	ND	ND	ND	ND	-			
MW-4	07/23/96	50		110		ND	ND	ND				
MW-4	07/23/96 07/23/96	5.0 10.0		ND	กบ							
MW-4 MW-5 MW-5	07/23/96	10.0	NÐ	ND ND		ND	ND	ND				••• ,
MW-4 MW-5 MW-5 MW-5	07/23/96 07/23/96	10.0 15.0	ND ND									
MW-4 MW-5 MW-5 MW-5 MW-5	07/23/96 07/23/96 07/23/96	10.0	ND ND ND	ND ND	ND	ND	ND	ND	-			
MW-4 MW-5 MW-5 MW-5 MW-5 MW-5	07/23/96 07/23/96	10.0 15.0 20.0	ND ND	ND	ND ND	ND ND	ND ND	ND ND ND ND			·	
MW-4 MW-5 MW-5 MW-5 MW-5 MW-5 MW-5	07/23/96 07/23/96 07/23/96 07/23/96	10.0 15.0 20.0 25.0	ND ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND				
MW-4 MW-5 MW-5 MW-5 MW-5 MW-5	07/23/96 07/23/96 07/23/96 07/23/96 07/23/96	10.0 15.0 20.0 25.0 30,0	ND ND ND ND ND	ND ND ND ND	ND ND ND 0.013	ND ND ND ND	ND ND ND ND	ND ND ND ND				- , - , - ,

TABLE 1
SUMMARY OF SOIL SAMPLE CHEMICAL ANALYSIS RESULTS
76 Service Station No. 7376
4191 First Street, Pleasanton, California

Page 2 of 3

	TABLE 1
	SUMMARY OF SOIL SAMPLE CHEMICAL ANALYSIS RESULTS
	76 Service Station No. 7376
•	4191 First Street, Pleasanton, California

	Sample		Sample Depth	TPH-G	трн-D	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	TVH	тен	трн-о
	Location	Date	(fbg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
	MW-5	07/23/96	50.0	ND	ND	0.038	ND	ND	ND	-	-	••	
	MW-5	07/23/96	55.0	· 32	ND	0.28	ND 1	0.098	0.048	-			
	MW-5	07/23/98	60.0	560	110	2.4	2.6	2.3	6,5		_		~
	MW-5	07/23/96	65.0	400	450	3.9	4.1	5.5	56		-		
								0.050	0.47				
	MW-6	07/24/96	5.0	ND	ND	0.054 0.011	0.055 0.0085	0.052 0.014	0.17 0.043	**	_	-	-
	MW-6	07/24/96	10,0	ND	ND		0.0000 ND	ND	ND			-	-
	MW-6	07/24/96	15.0	ND	ND	ND		ND	ND			_	
	MW-6	07/24/96	20.0	ND	ND	ND	ND		ND				
	MW-6	07/24/98	25.0	ND	ND	ND	ND	ND		-			
	MW-6	07/24/96	35.0	4.8	ND	0.69	0.67	0.073	0.71	-			
	MW-6	07/24/96	40.0	1.2	ND	0.27	0.15	0.010	0.053	-		-	-
	MW-6	07/24/96	45.0	4.8	ND	1.2	1.2	0.049	0.60		-	-	-
	MW-6	07/24/96	50.0	ND	ND	0.026	ND	0.014	0.0095		-		
	.MW-6	07/24/96	55.0	5.0	200	0.034	0.043	0.049	0.11	·			-
	MW-6	07/24/96	60.0	ND	ND	0.0050	· ND	ND	ND			-	
	MW-6	07/24/96	65,0	ND	ND	0.011	ND	NÐ	NÐ		-		
	MW-6	07/24/96	70.0	ND	ND	0.17	0.018	ND	0.039		-		
	MW-6	07/24/96	75.0	ND	ND	ND	ND	ND	ND	. .			
	MW-6	07/24/96	77.5	ND	ND	ND	ND	ND	ND	-	-	-	
	MW-7	08/14/98	11	ND	ND	ND	ND	ND	ND	NÐ			ND
	MW-7	08/14/98	28	ND	ND	ND	ND	ND	ND	ND		-	ND
			30.5	ND	ND	ND	ND	ND	ND	ND		_	ND
	MW-7	08/14/98					ND	ND	ND	ND	_		ND
÷.	-MW-7	08/14/98	42.0	ND	ND	ND			ND	ND	-		ND
	MW-7	08/14/98	60,5	ND	ND	NO	ND	ND	ND	ND	-		ND
	MW-8	06/12/98	11	ND	ND	ND	0.007	ND	0.010	ND	-	-	ND
	• MW-8	06/12/98	37.0	ND	ND	ND	0.006	ND	NĎ	ND	-		ND
	MW-8	06/12/98	45.5	60	79	ND	0.058	0.27	0.58	ND			ND
	MW-8	06/12/98	51.5	ND	ND	ND	ND	ND	ND	ND			ND
	MW-8	06/12/98	67.0	ND	ND	ND	ND	ND	ND	ND	-	-	ND
	MW-9	10/07/99	16	ND	_ ·	ND	ND	ND	ND	ND			
	MW-9	10/07/99	30,5	ND		ND 1	ND	ND	ND	ND	-		
	MW-9	10/07/99	41,0	ND		ND	ND	ND	ND	ND .	•		
	MW-9	10/07/99	46.5	ND		NÐ	ND	ND	ND	NÐ			
	MW-9	10/07/99	60.5	ND		ND	ND	ND	ND	NÐ		-	-
	•	-				<i></i>				10			
	MW-10	11/21/99	5.5	ND	—	ND	ND	ND	ND	ND	-		
	MW-10	11/21/99	16.5	ND		ND	ND	ND	ND	ND	·	-	-
	MW-10	11/21/99	25,5	ND		ND	ND	ND	ND	ND			
	MW-10	11/21/99	38.0	9.7	~	0,035	0.034	0.062	0.11	ND	-	-	***
	MW-10	11/21/99	44.0	ND		ND	ND	ND	ND	ND		••	
	MW-10	11/21/99	56.0	240		0.71	0,75	2.2	0.65	1.2			
	MW-10	11/21/99	71.0	ND		ND	ND	ND	ND	ND	-	~	
	MW-10	11/21/99	82.0	ND		ND	ND	ND	ND	ŅD		-	
	MW-10	11/21/99	90.5	ND		NÐ	ND	ND	ND	ND	-	-	
	MW-11	09/17/01	41.0	ND<1.0	ND<2.5	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.050			
	MW-11	09/17/01	72.5	ND<1.0	ND<2.5	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.050		-	
			80.5	ND<1.0	ND<2.5	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.050			
•	MW-11 MW-11	09/17/01 09/17/01	80.5 84.0	ND<1.0 ND<1.0	ND<2.5	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.050		**	
				115 6			ND-20-0020	ND-0.0050	ND<0.0050	ND<0.050			
	MW-12	09/19/01	52.0	ND<1.0	ND<2.5	ND<0.0050	ND<0.0050	ND<0.0050			-	3- 1	
	MW-12	09/19/01	68.5	ND<1.0	ND<2.5	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.050	-		_
	MW-12	09/19/01	80.5	ND<1.0	ND<2.5	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.050	P-+		
	MW-12	09/19/01	82.5	ND<1.0	ND<2.5	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.050	-	-	

Notes:

 TPH-G = total petroleum hydrocarbons as gasoline
 MTBE = methyl tert bulyl ether

 TPH-D = total petroleum hydrocarbons as diesel
 DIPE = Di-idopropyl ether

 mg/kg = milligrams per kilogram
 ETBE = Ethyl tert-bulyl ether

 ND = not datected at or above laboratory detection limits
 1,2-DCA = 1,2-Dichloroethane

 --= not analyzed
 TAME = tert-amyl methyl ethe

 TBA = tert-Bulyl alcohol
 EDB = Ethylene Dibromide

 fbg = feet below grade
 TOG = Total oil and grease

 TVH = total volalile hydrocarbons
 TEH = total extractable hydric

 * = Laboratory reported that the hydrocarbons detected appeared to be a TPH-D and non-dieset mixture
 **** = Laboratory reported that the hydrocarbons detected do not appear to be diesel

 **** = Laboratory reported that the hydrocarbons detected do not appear to be gasoline
 #****

 TAME = tert-amyl methyl ether TEH = total extractable bydrocarbons

MTBE = methyl tert butyl ether

Table 2

GROUNDWATER ANALYTICAL RESULTS ConocoPhillips Station No. 7376 4191 First Street, Pleasanton, California

Sample ID	Date	Sample Depth	ТРРН	Benzene	Toluene	Ethyl- benzene	Totai Xylenes	мтве	TBA	ETBE	TAME	DIPE	1,2-DCA	ED8	Ethanol	TPH-D
		(feet)	(µg/L)	(µg/L)	(µg/Ľ)	(µa/L)	(µg/L)	(µg/L)	(µg/L)	(µg/Ն)	(µg/L)	(ยg/L)	(µg/L)	(µg/L)	(µg/L)	(ug/L)
CPT Water Samples																<u> </u>
CP-1D*	2/18/2008	75-77	1500	250	2.6	33	15	530	490	ND<0.50	ND<0.50	ND<0.50	28	ND<0.50	ND<250	660
CP-2D ¹	2/20/2008	95-100	ND<50	0.67	ND<0.50	ND<0.50	ND<1.0	1.4	ND<10	ND<0.50	ND<0.50	ND<0.50	ND-<0.50	ND<0.50	ND<250	150
CP-3D ³	2/20/20008	88-93	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<10	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<250	140
CP-45 °	2/21/2008	63-68	99	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<10	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<250	83
CP-4D °	2/21/2008	79-82	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	4.8	ND<10	ND<0.50	ND<0.50	ND<0.50	0.68	ND<0.50	ND<250	69
CP-6D ^à	2/25/2008	75-88	160	4.7	ND<0.50	1.0	ND<1.0	110	170	ND<0.50	ND<0.50	7.0	1.4	ND<8.50	ND<250	ND<77
CP-7M -	2/26/2008	72-77	200	ND<0.50	ND<0.50	ND<0.50	ND<1.0	260	120	ND<0.50	ND<0.50	2.6	1.8	ND<0.50	ND<250	ND<72
Composite																
Comp Water	2/26/2008	·	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<10	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<250	190

b

c

TPPH = Total purgeable petroleum hydrocarbons by EPA Method 8260B

Benzene, toluene, ethylbenzene, total xylenes by EPA Method 8260B BTEX 📼

Methyl tertiary butyl ether by EPA Method 8260B МТВЕ ≕

TBA =

Tertiary butyl alcohol by EPA Method 8260B Ethyl tertiary butyl ether by EPA Method 8260B ETBE =

Di-isopropyl ether by EPA Method 8260B DIPE =

TAME = Tertiary amyl methyl ether by EPA Method 82608

1,2-dichloroethane (also known as ethylene dichloride) by EPA Method 82608 1,2-DCA =

EDB = Ethylene dibromide (also known as 1,2-dibromoethane) by EPA Method 8260B TPH-D = Total petroleum hydrocarbons as diesel by EPA Method 8015 M Ethanol analyzed by EPA Method 8260B

micrograms per liter µg/i =

not detected above the laboratory detection limit ND =

not applicable / not analyzed = --

Bold = detected compound concentration

US Environmental Protection Agency EPA ≕

= "deep" water sample

"shallow" water sample -

= "mixed" water sample collected after drilling past a shallower zone of saturation into a deeper zone of saturation

TABLE 1

SOIL ANALYTICAL RESULTS ConocoPhillips Station No. 7376 4191 First Street, Pleasanton, California

					,					1			,	,		· · · · · · · · · · · · · · · · · · ·	
Sample ID	Date	Sample	тррн	Benzene	Toluene	Ethyl- benzene	Total Xvienes	МТВЕ	TBA	ETBE	TAME	DIPE	1,2-DCA	EDB	Ethanol	TPH-D	Total Lea
		Depth (feet)	(mg/kg)	(mg/kg)	(ma/ka)	(mg/kg)	(ma/ka)	(mg/kg)	(mg/kg)	(mg/kg)	(ma/ka)	(ma/ka)	(mg/kg)	(mg/kg)	(ma/ka)	(mo/ka)	(mg/kg)
			1	(((),), (), (), (), (), (), (), (), (),		1	[<u></u>	1	(1-1)/(1-1)/					1	I
CPT Soil									1		-			•			1
Samples	3/10/0000	1 115 15	0.64	0.18	NO 40 0050	ND<0.0050	ND<0.010	0.29	0.36	1 NO 20 0050	NO 40 0050		ND 40 2050	ND<0.0050	ND<1.0	3100	
CP-1@ 14.5-15'	2/18/2008	14.5-15	0.64	2.7	0.066	0.77	0.36	0.29	ND<0.50				ND<0.0050		ND<10	140	
CP-1@ 19.5-20	2/18/2008	19.5-20	48		ND<0.50	16		ND<0.51	ND<0.50	ND<0.050			ND<0.050	ND<0.030	ND<100	220	
P-1@ 24.5-25	2/18/2008	24.3-25	640	4.5		16	1.2 6.6		ND<3.0	ND<0.50 ND<1.0		ND<0.50	ND<0.50	ND<1.0	ND<200	5000	
P-1@ 29.5-30	2/18/2008	29.5-30	470	14	ND<1.0		4.2	1.3	ND<10	ND<1.0		ND<0.25		ND<1.0	ND<200	300	
P-1@ 34.5-35	2/18/2008	34.5-35	370	3.8	ND<0.25	8.1		ND<0.25		ND<0.25					ND<50	570	
P-1@ 39.5-40	2/18/2008	39.5-40	360	9.7	ND<0.25	5.5	7.4	0.76	ND<2.5								
P-1@ 44.5-45	2/18/2008	44.5-45	61			ND<0.010		0.075	0.26					ND<0.010		920	
P-1@ 49.5-50	2/18/2008	49.5-50	1.6			ND<0.0068		0.29	0.43					ND<0.0050		130	
P-1@ 54,5-55	2/18/2008	54.5-55	1.4			ND<0.0050		0.28	0.40					ND<0.0050		9.9	
P-1@ 59.5-60	2/18/2008	59.5-60	0.27	0.033		0.0058	ND<0.010		0.19					ND<0.0050		ND<2.0	
P-1@ 64.5-65	2/18/2008	64.5-65	0.21			ND<0.0050			0.24					ND<0.0050		ND<2.0	
P-1@ 69.5-70	2/18/2008	69.5-70	0.35	ND<0.0050	ND<0.0050	ND<0.0050	010.05<	0.32	0.22	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<1.0	ND<2.0	
					•												<u> </u>
P-2@ 9.5-10	2/19/2008	9.5-10						ND<0.0050								ND<2.0	
P-2@ 14.5-15	2/19/2008	14.5-15						ND<0.0050								ND<2.0	
P-2@ 19.5-20	2/19/2008	19.5-20						ND<0.0050								ND<2.0	
P-2@ 24.5-25	2/19/2008	24.5-25						ND<0.0050								ND<2.0	
P-2@ 29.5-30	-2/19/2008	29.5-30						ND<0.0050								ND<2.0	
P-2@ 34.5-35	2/19/2008	34.5-35						ND<0.0050								ND<2.0	
P-2@ 39.5-40'	2/19/2008	39.5-40						ND<0.0050								ND<2.0	
P-2@ 44.5-45	2/19/2008	44.5-45						ND<0.0050								ND<2.0	
P-2@ 49.5-50	2/19/2008	49.5-50	ND<0.20	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.010	ND<0.0050	ND<0.050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<1.0	ND<2.0	
CP-3@ 29.5-30'	2/20/2008	20 E-20	L ND-0 20	1 ND <0.0050	ND<0.0050	1	ND-0 810	ND-0.0050	ND-0.050	NO-0 0050	ND-0 0050			ND-0.0050	ND<1.0	ND<2.0	1
P-3@ 84.5-85'	2/20/2008	84.5-85						ND<0.0050								ND<2.0	
1302 04:0-00	2/20/2000		ND<0.20	140<0.0000	ND-0.0030	1 10 40.0000	110-0.010	1000000	10-0.000	110-0.0000	10-0.0000	140-0.0000	312<0.0000	140-0.0000	10-1.0	110-2.0	+
P-4@ 54.5-55'	2/21/2008	54 5-55	ND 20 20		ND<0.0050			ND<0.0050	ND<0.050	ND~0.0050	ND-0.0050	MD<0.0050		ND<0.0050		ND<2.0	
CP-4@ 64.5-65	2/21/2808							ND<0.0050								ND<2.0	
P-4@ 74.5-75'	2/21/2008							ND<0.0050								ND<2.0	
		1			110 3010000			1			1						
P-5@ 44,5-45'	2/22/2008	44.5-45	ND<0.70	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.010	0.022	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.0050	ND<0.0050	ND<1.0	ND<2.0	
	2,22,2000	<u> </u>	1.12.12.20	1							1	1	1	1			
P-6@ 34.5-35'	2/25/2008	34.5.35	ND<0.70	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.010	ND<0.0050	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<0.0050	ND<0.0050	ND<1.0	ND<2.0	
P-6@ 69.5-70	2/25/2008					ND<0.0050								ND<0.0050			
		1		1	}				1	1		1	1	1		1	1
P-7@ 39.5-40'	2/26/2008	39.5-40	ND<0.20	ND<0.0050	ND<0.0050	1 ND<0.0050	ND<0.010	ND<0.0050	ND<0.050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<1.0	ND<2.0	
P-7@ 54.5-55'	2/26/2008	54.5-55	ND<0.20	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.010	0.020	ND<0.050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<1.0	ND<2.0	
			1											ļ		<u> </u>	
Composite	2/76/70000		 ND 40 70				ND -0 010	0.0057	ND -0 050	ND-0050	ND 40 0050		ND <0.0050	ND <0.0050	ND<1.0		15
Comp Soil	2/26/2008		ND<0.20	ND<0.0050	ND<0.0050	ND<0.0050	102<0.010	0.0055	ND<0.050	0.0050	NO<0.0050		NU<0.0050	ND<0.0050	0.1>UN	2.4	+
		i i	<u>.</u>		4	*******			Total poter				Mothod 90	1 E M		,	· • ·····
(PPH =	Total purgeab									Nothed 8250		neset by EPA	v metrioa 80	14 F1			
STEX =	Benzene, tolu				EPA Method 8	ZOUB				Method 8260							
TBE =	Methyl tertiar									PA Method 60	TAR						
TBA ==	Tertiary butvi	aronol by I	EPA Method	82608				ma/ka =	milliorams r	рег кирагата	•						

TBA =

Tertiary butyi alcohol by EPA Method 8260B Ethyl tertiary butyi ether by EPA Method 8260B Di-isopropyl ether by EPA Method 8260B ЕТВЕ -

DIPE =

TAME =

1,2-DCA =

EDB =

mg/kg = milligrams per kilogram

not detected above the laboratory detection limit ND =

not applicable / not analyzed -- --

- Bold = detected compound concentration
- EPA = US Environmental Protection Agency

Tertiary amyl methyl ether by EPA Method 8260B 1,2-dichloroethane (also known as ethylene dichloride) by EPA Method 8260B Ethylene dibromide (also known as 1,2-dibromoethane) by EPA Method 8260B

76 Service Station No. 7376, AOC# 1652 Report on Groundwater Monitoring Well Replacement and Additional Investigation

TABLE II Summary of Soil Analytical Results MW-2C 76 Service Station No. 7376 4191 1st St Pleasanton, CA Sample Depth Contaminant **Reporting Limit** Units 20 fbg 25 fbg 30 fbg 35 fbg 40 fbg 45 fbg 0.39 ND 28 19 0.056 0.05 Benzene 0.25 mg/Kg ND ND Bromobenzene ND ND ND ND 0.25 mg/Kg Bromochloromethane ND ND ND ND ND ND 0.25 mg/Kg Bromodichloromethane ND ND ND NĎ ND ND 0.25 mg/Kg Bromoform ND ND ND ND ND ND 0.25 mg/Kg Bromomethane ND ND ND ND ND ND 0.25 mg/Kg 3.7 0.25 n-Butylbenzene 1 5,3 1.4 0.01 0.032 mg/Kg ND ND ND 0.34 ND ND 0.25 sec-Butylbenzene mg/Kg tert-Butvlbenzene ND ND ND ND ND ND 0.25 mg/Kg ND Carbon tetrachloride ND ND ND ND ND 0.25 mg/Kg ND ND ND ND 0.25 Chlorobenzene ND ND mg/Kg ND ND ND ND ND ND 0.25 Chloroethane mg/Kg Chloroform ND ND ND ND ND ND 0.25 mg/Kg Chloromethane ND ND ND ND ND ND 0.25 mg/Kg 2-Chlorotoluene ND ND ND ND ND ND 0.25 mg/Kg 4-Chlorotoluene ND ND ND ND ND ND 0.25 mg/Kg Dibromochloromethane ND ND ND ND ND ND 0.25 mg/Kg ND ND ND ND ND ND 0.25 1.2-Dibromo-3-chloropropane mg/Kg 1.2-Dibromoethane ND ND ND ND ND ND 0.25 mg/Kg Dibromomethane ND ND ND ND ND ND 0.25 mg/Kg 1.2-Dichlorobenzene ND ND ND ND ND ND 0.25 mg/Kg ND ND ND ND ND 0.25 mg/Kg 1.3-Dichlorobenzene ND ND NĎ ND ND ND ND 0.25 1,4-Dichlorobenzene mg/Kg Dichlorodifluoromethane ND ND ND ND ND ND 0.25 mg/Kg 1,1-Dichloroethane ND ND ND ND ND ND 0.25 mg/Kg 1.2-Dichloroethane ND ND ND ND ND ND 0.25 mg/Kg

TABLE II Summary of Soil Analytical Results MW-2C 76 Service Station No. 7376 4191 1st St Pleasanton, CA												
			Sample De	pth								
Contaminant	20 fbg	25 fbg	30 fbg	35 fbg	40 fbg	45 fbg	Reporting Limit	Units				
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	0.25	mg/Kg				
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	0.25	mg/Kg				
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	0.25	mg/Kg				
Total 1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	0.5	mg/Kg				
1,2-Dichloropropane	ND	ND	ND	ND	ND	ND	0.25	mg/Kg				
1,3-Dichloropropane	ND	ND	ND	ND	ND	ND	0.25	mg/Kg				
2,2-Dichloropropane	ND	ND	ND	ND	ND	ND	0.25	mg/Kg				
1,1-Dichloropropene	ND	ND	ND	ND	ND	ND	0.25	mg/Kg				
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	ND	0.25	mg/Kg				
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	ND	0.25	mg/Kg				
Total 1,3-Dichloropropene	NĎ	ND	ND	ND	ND	ND	0.5	mg/Kg				
Ethylbenzene	4.7	14	9.9	3.9	0.021	0.22	0.25	mg/Kg				
Hexachlorobutadiene	ND	ND	ND	ND	ND	ND	0.25	mg/Kg				
Isopropylbenzene	ND	0.52	ND	ND	ND	0.011	0.25	mg/Kg				
p-Isopropyltoluene	ND	1.4	ND	0.57	ND	ND	0.25	mg/Kg				
Methylene chloride	ND	ND	ND	ND	ND	ND	0.5	mg/Kg				
Methyl t-butyl ether	0.48	ND	8.7	6.6	0.39	0.075	0.25	mg/Kg				
Naphthalene	2.3	10	5.9	0.6	0.0074	0.026	0.25	mg/Kg				
n-Propylbenzene	1.2	6.8	ND	ND	ND	0.064	0.25	mg/Kg				
Styrene	ND	ND	ND	ND	ND	ND	0.25	mg/Kg				
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	ND	0.25	mg/Kg				
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	ND	0.25	mg/Kg				
Tetrachloroethene	ND	ND	NĎ	NĎ	ND	ND	0.25	mg/Kg				
Toluene	<u>ND</u>	ND	1.5	2.9	ND	0.017	0.25	mg/Kg				
1.2,3-Trichlorobenzene	ND	ND	ND	ND	ND	ND	0.25	mg/Kg				
1.2,4-Trichlorobenzene	ND	ND	ND	ND	ND	ND	0.25	mg/Kg				

4

	TABLE II Summary of Soil Analytical Results MW-2C 76 Service Station No. 7376 4191 1st St Pleasanton, CA													
		1 · · · · · · · · · · · · · · · · · · ·	Sample De	pth										
Contaminant	20 fbg	25 fbg	30 fbg	35 fbg	40 fbg	45 fbg	Reporting Limit	Units						
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	ND	0.25	mg/Kg						
1,1,2-Trichloroethane	ND	NĎ	ND	ND	ND	ND	0.25	mg/Kg						
Trichloroethene	ND	ND	ND	ND	ND	ND	0.25	mg/Kg						
Trichlorofluoromethane	ND	ND	ND	ND	ND	ND	0.25	mg/Kg						
1,2,3-Trichloropropane	ND	ND	ND	ND	ND	ND	0.25	mg/Kg						
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	ND	ND	ND	ND	ND	0.25	mg/Kg						
1,2,4-Trimethylbenzene	11	39	ND	4.6	ND	0.072	0.25	mg/Kg						
1,3,5-Trimethylbenzene	ND	ND	ND	0.65	ND	ND	0.25	mg/Kg						
Vinyl chloride	ND	ND	ND	ND	ND	ND	0.25	mg/Kg						
Total Xylenes	3.4	6.4	12	15	ND	0.082	0.5	mg/Kg						
t-Amyl Methyl ether	ND	ND	ND	ND	ND	ND	0.25	mg/Kg						
t-Butyl alcohoi	ND	ND	ND	ND	0.45	0.55	2.5	mg/Kg						
Diisopropyl ether	ND	ND	ND	ND	ND	ND	0.25	mg/Kg						
Ethanol	ND	ND	ND	ND	ND	ND	50	mg/Kg						
Ethyl t-butyl ether	ND	ND	ND	ND	ND	ND	0.25	mg/Kg						
Total Purgeable Petroleum Hydrocarbons	370	850	650	540	1.2	37	50	mg/Kg						
Acenaphthene	ND	ND	ND	ND	ND	ND	0.1	mg/Kg						
Acenaphthylene	ND	ND	ND	ND	ND	ND	0.1	mg/Kg						
Aldrin	ND	ND	ND	ND	ND	ND	0.1	mg/Kg						
Aniline	ND	ND	ND	ND	ND	ND	0.2	mg/Kg						
Anthracene	ND	ND	ND	ND	ND	ND	0.1	mg/Kg						
Benzidine	ND	ND	ND	ND	ND	ND	3	mg/Kg						
Benzo[a]anthracene	ND	ND	ND	ND	ND	ND	0.1	mg/Kg						
Benzo[b]fluoranthene	ND	ND	ND	ND	ND	ND	0.1	mg/Kg						
Benzo[k]fluoranthene	ND	ND	· ND	ND	ND	ND	0.1	mg/Kg						
Benzo[a]pyrene	ND	ND	ND	ND	ND	ND	0.1	mg/Kg						

TABLE II Summary of Soil Analytical Results MW-2C .76 Service Station No. 7376 4191 1st St Pleasanton, CA													
Contaminant 20 fbg 25 fbg 30 fbg 35 fbg 40 fbg 45 fbg Reporting Limit Units													
Contaminant	20 fbg	25 fbg	30 fbg	35 fbg	40 fbg	45 fbg	Reporting Limit	Units					
Benzo[g,h,i]perylene	ND	ND	ND	ND	ND	ND	0.1	mg/Kg					
Benzoic acid	ND	ND	ND	ND	ND	ND	0.5	mg/Kg					
Benzyl alcohol	ND	ND	ND	ND	ND	ND	0.1	mg/Kg					
Benzyl butyl phthalate	ND	ND	NĎ	ND	ND	ND	0.1	mg/Kg					
alpha-BHC	ND	ND	ND	ND	ND	ND	0.1	mg/Kg					
beta-BHC	ND	ND	ND	ND	ND	ND	0.1	mg/Kg					
deita-BHC	ND	ND	ND	ND	ND	ND	0.1	mg/Kg					
gamma-BHC (Lindane)	ND	ND	ND	ND	ND	ND	0.1	mg/Kg					
bis(2-Chloroethoxy)methane	ND	ND	ND	ND	ND	ND	0.1	mg/Kg					
bis(2-Chloroethyl) ether	ND	ND	ND	ND	ND	ND	0.1	mg/Kg					
bis(2-Chloroisopropyl)ether	ND	ND	ND	ND	ND	ND	0.1	mg/Kg					
bis(2-Ethylhexyl)phthalate	ND	ND	ND	ND	ND	ND	0.2	mg/Kg					
4-Bromophenyl phenyl ether	ND	ND	ND	ND	ND	ND	0,1	mg/Kg					
4-Chloroaniline	ND	ND	ND	ND	NĎ	ND	0.1	mg/Kg					
2-Chloronaphthalene	ND	ND	ND	ND	ND	ND	0.1	mg/Kg					
4-Chlorophenyl phenyl ether	ND	ND	ND	ND	ND	ND	0.1	mg/Kg					
Chrysene	ND	ND	ND	ND	ND	ND	0.1	mg/Kg					
4,4'-DDD	ND	ND	ND	ND	ND	ND	0.1	mg/Kg					
4,4'-DDE	ND	ND	ND	ND	ND	ND	0.1	mg/Kg					
4.4'-DDT	ND	ND	ND	ND	ND	ND	0.1	mg/Kg					
Dibenzo[a,h]anthracene	ND	ND	ND	ND	ND	ND	0.1	mg/Kg					
Dibenzofuran	ND	ND	ND	ND	ND	ND	0.1	mg/Kg					
1,2-Dichlorobenzene	ND	ND	ND	ND	ND	ND	0.1	mg/Kg					
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	ND	0.1	mg/Kg					
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	ND	0.1	mg/Kg					
3,3-Dichlorobenzidine	ND	ND	ND	ND	ND	ND	0.2	mg/Kg					

TABLE II Summary of Soil Analytical Results MW-2C 76 Service Station No. 7376 4191 1st St Pleasanton, CA												
			Sample De	pth								
Contaminant	20 fbg	25 fbg	30 fbg	35 fbg	40 fbg	45 fbg	Reporting Limit	Units				
Dieldrin	ND	ND	ND	ND	ND	ND	0.1	mg/Kg				
Diethyl phthalate	ND .	ND [°]	ND	ND	ND	ND	0.1	mg/Kg				
Dimethyl phthalate	ND	ND	ND	ND	ND	ND	0.1	mg/Kg				
Di-n-butyl phthalate	ND	ND	ND	ND	ND	ND	0.1	mg/Kg				
2,4-Dinitrotoluene	ND	ND	ND	ND	ND	ND	0.1	mg/Kg				
2,6-Dinitrotoluene	ND	ND	ND	ND	ND	ND	0.1	mg/Kg				
Di-n-octyl phthalate	ND	ND	ND	ND	NĎ	ND	0.1	mg/Kg				
1,2-Diphenylhydrazine	ND	ND	ND	ND	ND	ND	0.1	mg/Kg				
Endosulfan I	ND	ND	ND	ND	ND	ND	0.2	mg/Kg				
Endosulfan II	ND	ND	ND	ND	ND	ND	0.2	mg/Kg				
Endosulfan sulfate	ND	ND	ND	ND	ND	ND	0.1	mg/Kg				
Endrin	ND	ND	ND	ND	ND	ND	0.2	mg/Kg				
Endrin aldehyde	ND	ND	ND	ND	ND	ND	0.5	mg/Kg				
Fluoranthene	ND	ND	ND	ND	ND	ND	0.1	mg/Kg				
Fluorene	ND	ND	ND	6.2	ND	ND	0.1	mg/Kg				
Heptachlor	ND	ND	ND	ND	ND	ND	0.1	mg/Kg				
Heptachlor epoxide	ND	ND	ND	ND	ND	ND	0.1	mg/Kg				
Hexachlorobenzene	ND	ND	ND	ND	ND	ND	0.1	mg/Kg				
Hexachlorobutadiene	ND	ND	ND	ND	ND	ND	0.1	mg/Kg				
Hexachlorocyclopentadiene	ND	NĎ	ND	ND	ND	ND	0.1	mg/Kg				
Hexachloroethane	ND	ND	ND	ND	ND	ND	0.1	mg/Kg				
Indeno[1,2,3-cd]pyrene	ND	ND	ND	ND	ND	ND	0.1	mg/Kg				
Isophorone	ND	ND	ND	ND	ND	ND	0.1	mg/Kg				
2-Methylnaphthalene	2.8	7.2	ND	ND	ND	ND	0.1	mg/Kg				
Naphthalene	2	7.1	ND	ND	ND	ND	0.1	mg/Kg				
2-Naphthylamine	ND	ND	ND	ND	ND	ND	3	mg/Kg				

4

		TABLE II ary of Soil Anal: MW-2C Service Station 4191 1st S Pleasanton,	ytical Results No. 7376 St					
			Sample De	pth				1
Contaminant	20 fbg	25 fbg	30 fbg	35 fbg	40 fbg	45 fbg	Reporting Limit	Units
2-Nitroaniline	ND	ND	ND	ND	ND	ND	0.1	mg/Kg
3-Nitroaniline	ND	ND	ND	ND	ND	ND	0.2	mg/Kg
4-Nitroaniline	ND	ND	ND	ND	ND	ND	0.2	mg/Kg
Nitrobenzene	ND	ND	ND	ND	ND	ND	0.1	mg/Kg
N-Nitrosodimethylamine	ND	ND	ND	ND	ND	ND	0.1	mg/Kg
N-Nitrosodi-N-propylamine	ND	ND	ND	ND	ND	ND	0.1	mg/Kg
N-Nitrosodiphenylamine	ND	ND	ND	ND	ND	ND	0.1	mg/Kg
Phenanthrene	ND	ND	ND	ND	ND	ND	0.1	mg/Kg
Pyrene	ND	ND	ND	ND	ND	ND	0.1	mg/Kg
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	ND	0.1	mg/Kg
4-Chloro-3-methylphenol	ND	NĎ	NĎ	ND	ND	ND	0.2	mg/Kg
2-Chlorophenoi	ND	ND	ND	ND	ND	ND	0.1	mg/Kg
2,4-Dichlorophenol	ND	ND	ND	ND	ND	ND	0.1	mg/Kg
2,4-Dimethylphenol	ND	ND	ND	ND	ND	ND	0.1	mg/Kg
4,6-Dinitro-2-methylphenol	ND	ND	ND	ND	ND	ND	0.5	mg/Kg
2,4–Dinitrophenol	ND	ND	ND	ND	ND	ND	0.5	mg/Kg
2-Methylphenol	ND	ND	NÐ	ND	ND	ND	0.1	mg/Kg
3- & 4-Methylphenol	ND	ND	ND	ND	ND	ND	0.2	mg/Kg
2-Nitrophenol	ND	ND	ND	ND	ND	ND	0.1	mg/Kg
4-Nitrophenol	ND	ND	ND	ND	ND	ND	0.2	mg/Kg
Pentachlorophenol	ND ·	ND	ND	ND	ND	ND	0.2	mg/Kg
Phenol	ND	ND	ND	ND	ND	ND	0.1	mg/Kg
2,4,5-Trichlorophenol	ND	ND	ND	ND	ND	ND	0.2	mg/Kg
2,4,6-Trichlorophenol	ND	ND	ND	ND	ND	ND	0.2	mg/Kg
TPH - Light Naptha	ND	ND	ND	ND	ND	ND	50	mg/Kg
TPH - Aviation Gas	ND	ND	ND	ND	ND	ND	50	mg/Kg

TABLE II Summary of Soil Analytical Results MW-2C 76 Service Station No. 7376 4191 1st St Pleasanton, CA

	1							1
			Sample De	pth				
Contaminant	20 fbg	25 fbg	30 fbg	35 fbg	40 fbg	45 fbg	Reporting Limit	Units
TPH - Stoddard Solvent	ND	ND	ND	ND	ND	ND	20	mg/Kg
TPH - Heavy Naptha	ND	ND	ND	ND	ND	ND	10	mg/Kg
TPH - Gasoline	ND	ND	ND	ND	ND	ND	20	mg/Kg
TPH - Jet Fuel (JP4)	ND	NĎ	ND	ND	ND	ND	10	mg/Kg
TPH - Jet Fuel (JP5)	ND	ND	NĎ	ND	ND	ND	10	mg/Kg
TPH - Jet Fuel (JP8)	ND	ND	ND	ND	ND	ND	10	mg/Kg
TPH - Kerosene	93	1800	ND	ND	ND	ND	10	mg/Kg
TPH - Diesel (FFP)	26	4500	1500	15000	53	1300	10	mg/Kg
TPH - Fuel Oil #6	ND	ND	ND	ND	ND	ND	10	mg/Kg
TPH - Crude Oil	ND	ND	ND	ND	ND	ND	20	mg/Kg
TPH - Hydraulic Oil / Motor Oil	30	4000	1100	11000	44	970	20	mg/Kg
TPH - WD-40	ND	ND	ND	ND	ND	ND	10	mg/Kg

Table Notes:

fbg = feet below grade

:

mg/Kg = milligrams per kilograms

boid = concentration at or above reporting limit

ND = non-detect (below reporting limit)

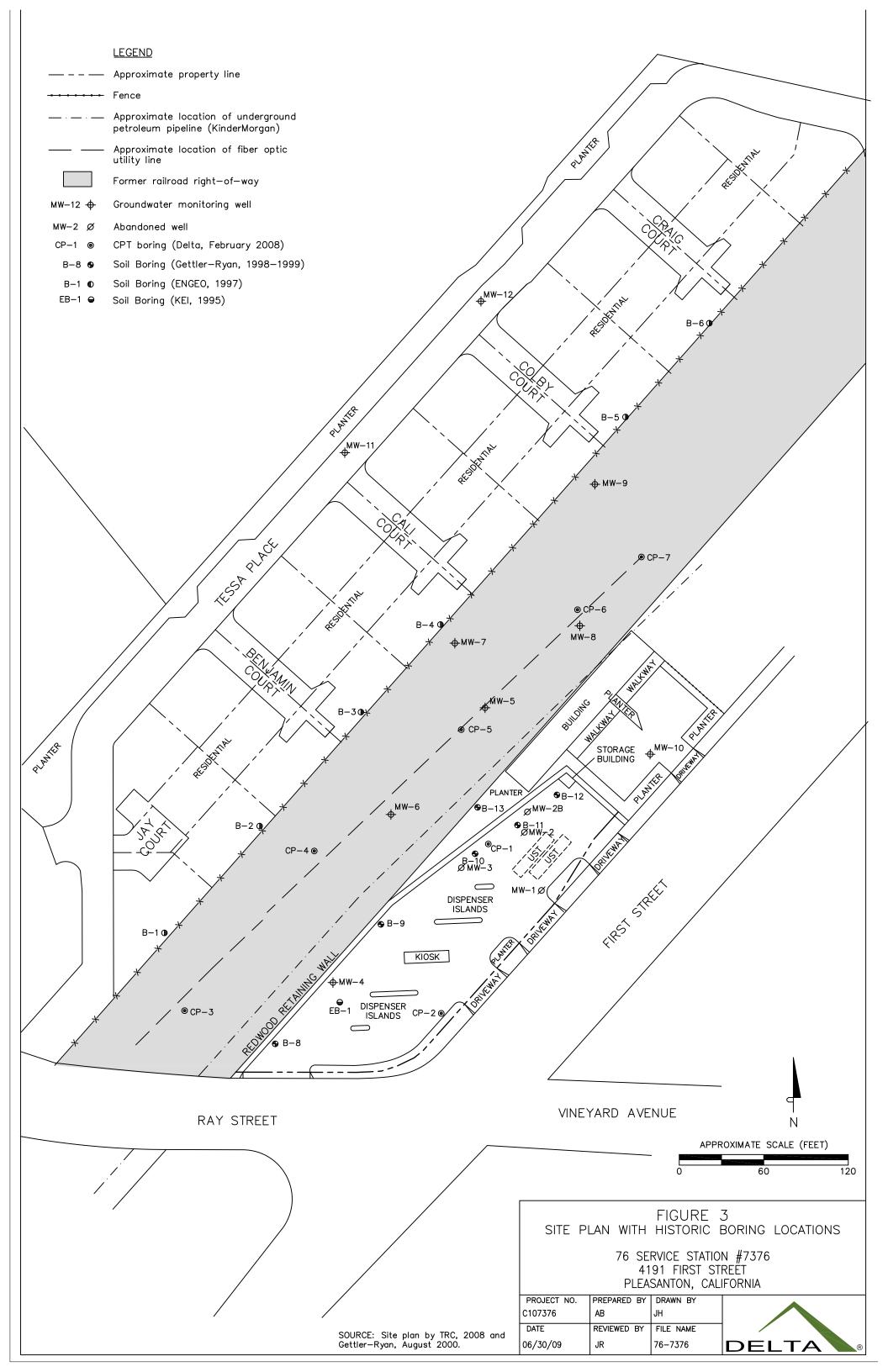

TABLE III Summary of Soil Analytical Results SB-1 76 Service Station No. 7376 4191 1st St Pleasanton, CA Sample Depth Contaminant Reporting Limit Units 5fbg 10 fbg 15 fbg 20 fbg 25 fbg 30 fbg 35 fbg 40 fbg 45 fbg ND ND ND 0.26 1.6 3.6 0.64 1.1 3.2 0.005 mg/kg Benzene 3 4.3 5.6 0.005 Ethylbenzene ND ND 0.021 23 8.4 1.9 mg/kg ND ND 0.05 ND ND ND ND ND ND 0.005 Methyl t-butyl ether mg/kg Toluene ND ND ND ND 0.48 0.44 ND 0.12 0.83 0.005 mg/kg Total Xylenes ND ND 0.05 4.1 100 9.6 1.6 2,7 21 0.01 mg/kg ND 0.005 t-Amyl Methyl ether ND ND ND ND ND ND ND ND mg/kg ND t-Butyl alcohol ND ND ND ND ND ND ND ND 0.05 mg/kg ND 0.005 Diisopropyl ether ND ND ND ND ND ND ND ND mg/kg ND ND ND ND ND ND ND ND ND 1 Ethanol mg/kg Ethyl t-butyl ether ND ND ND ND ND ND ND ND ND 0.005 mg/kg ND ND ND ND ND ND 50 TPH - Aviation Gas ND ND ND mg/kg ND TPH - Jet Fuel (JP4) ND ND ND ND ND ND ND ND 10 mg/kg ND ND ND ND ND ND ND ND ND 10 TPH - Jet Fuel (JP5) mg/kg TPH - Jet Fuel (JP6) ND ND ND ND ND ND ND ND ND 10 mg/kg ND 10 TPH - Jet Fuel (JP8) ND ND ND ND ND ND ND ND mg/kg Gasoline Range Organics (C4 - C12) 1400 230 1100 400 570 1 mg/kg ND 6.5 ND 310 TPH - Diesel (FFP) ND ND ND ND ND ND ND ND ND 10 mg/kg 10 ND 9700 1400 9800 2800 TPH - Fuel Oil #6 96 ND 200 880 mg/kg

Table Notes:

fbg = feet below grade

bold = concentration at or above reporting limit ND = non-detect (below reporting limit)

mg/Kg = milligrams per kilograms

TABLE I SURFACE SOIL SAMPLE ANALYTICAL RESULTS Alameda County Transportation Corridor Pleasanton, California

.

Sample Location	Sample Depth (inches)	Date	Arsenic (mg/kg)	Barium (mg/kg)	Cadmium (mg/kg)	Total Chromium* (mg/kg)	Lead (mg/kg)	Mercury (mg/kg)	Selenium (mg/kg)	Silver (mg/kg)	2,4,5-T (mg/kg)	2,4,5-TP (Silvex) (1ng/kg)	2,4-D (mg/kg)	2,4-DB (mg/kg)	Dichloroprop (mg/kg)	Dinoseb (mg/kg)
RR-1	6-8	11/5/2007	18	130	<1.0	28	79	0.1	<1.0	<2.0	NA	NA	NA	NA	NA	NA
LS-1	6-12	11/5/2007	9.5	I 70	<1.0	36	160	0.24	<1.0	<2.0	<0.020	< 0.010	< 0.040	<0.10	<0.10	<0.010
BG-1	6-12	11/5/2007	4.9	200	<1.0	32	190	0.1	<1.0	<2.0	<0.020	<0.010	<0.040	<0.10	<0.10	<0.010
RR-2	6-12 ·	11/5/2007	32	120	<1.0	28	83	<0.10	<1.0	<2.0	NA	NA	NA	NA	NA	NA
LS-2	6-12	11/5/2007	62	95	<1.0	28	120	0.26	<1.0	<2.0	<0.020	<0.010	<0.040	<0.10	<0.10	<0.010
RR-3	6-12	11/5/2007	68	97	<1.0	26	130	0.14	<1.0	<2.0	NA	NA	NA	NA	NA	NA
LS-3	6-12	11/5/2007	2.6	110	<1.0	25	25	<0.10	<1.0	<2.0	<0.020	<0.010	<0.040	<0.10	<0.10	<0.010
BG-3	6-12	11/5/2007	3.2	120	<1.0	31	58	0.13	1.1	<2.0	<0.020	<0.010	<0.040	<0.10	<0.10	<0.010
RR-4	6-12	11/5/2007	18	110	<1.0	26	33	<0.10	<1.0	<2.0	NA	NA	NA	NA	NA	NA .
LS-4	6-12	11/5/2007	3.9	130	<1.0	27	49	0.14	<1.0	<2.0	<0.020	<0.010	<0.040	<0.10	<0.10	< 0.010
BG-4	6-12	11/5/2007	2.3	120	<1.0	25	39	<0.10	<1.0	<2.0	<0.020	<0.010	<0.040	<0.10	<0.10	< 0.010
RR-5	6-12	11/5/2007	37	140	<1.0	30	70	<0.10	<1.0	<2.0	NA	NA	NA	NA	NA	NA
^ LS-5	6-12	11/5/2007	19	100	<1.0	30	47	<0.10	<1.0	<2.0	<0.020	<0.010	<0.040	<0.10	<0.10	<0.010
RR-6	1-3	11/5/2007	14	100	<1.0	26	30	<0.10	<1.0	<2.0	NA	ŇA	NA	ŇA	NA	NA
LS-6	6-12	11/5/2007	5.3	130	<1.0	36	25	<0.10	<1.0	<2.0	<0.020	<0.010	<0.040	<0.10	<0.10	<0.010
RR-7	6-12	11/5/2007	52	100	<1.0	30	74	<0.10	<1.0	<2.0	NA	NA	NA	NA	NA	NA
LS-7	6-12	11/5/2007	3.1	110	<1.0	33	12	<0.10	<1.0	<2.0	<0.020	<0.010	< 0.040	<0.10	<0.10	< 0.010
BG-7	6-12	11/5/2007	6	120	<1.0	36	18	<0.10	<1.0	<2.0	<0.020	<0.010	<0.040	<0.10	<0.10	< 0.010
CHHSL (Re CHHSL (Co		Ind)	0.07 0.24	5,200 63,000	1.7 7.5	17x6=102 37x6=222	150 3,500	18 180	380 4,800	380 4,800	550 6,100	NE NE	690 - 770	NE NE	NE NE	NE NE

mg/kg - milligrams per kilogram 2,4,5-T - Trichlorophenoxyacetic acid 2,4,5-TP (Silvex) -2,4-D - Dichlorophenoxyacetic acid 2,4-DB -Dichloroprop -Dinoseb (DNBP) -ND - None Detected

NA - Not Analyzed

NE - Not Established

* Assume 1/6 of Total Chrom is Chromium VI/ CHHSL Reported for Chromium VI

J:40107Uoos 07/E07.049.01F Alameda Corridor Phase IPhase 2 - Soil Sampling Phase II Report Pleasanton Soil Sampling Tables.xis

BSK

TABLE 2
SUBSURFACE SOIL SAMPLE ANALYTICAL RESULTS - PID/FID RESULTS
Alameda County Transportation Corridor
Pleasanton, California

Sample Location	Sample Depth	Date	PID Reading (ppm)	FID Reading (ppm)	TPH-d (mg/kg)	TPH-g Aviation Fucl (mg/kg)	TPH-g (mg/kg)	TPH-j** Jet Fuel (mg/kg)	Benzene (mg/kg)	Ethylbenzene (mg/kg)	Toluene (mg/kg)	Total Xylenes (mg/kg)	Hydrocarbon Oil & Grease	Tert-Butyl Alchohol (mg/kg)	MTBE (mg/kg)
SB-1	10	11/6/2007	19.5	0	<4.0	<1.0	0.1>	<4.0	<0.0050	<0.0050	<0.0050	<0.0050	<20	<50	<5.0
	30	11/6/2007	21.5	0	<2.0	<1.0	<1.0	<2.0	< 0.0050	<0.0050	<0.0050	<0.0050	<20	<50	<5.0
	60	11/6/2007	23.5	0	<4.0	<1.0	<1.0	<4.0	<0.0050	< 0.0050	< 0.0050	< 0.0050	<20	<50	<5.0
- SB-2	10	11/6/2007	24	0	<4.0	<1.0	<1.0	<4.0	<0.0050	<0.0050	<0.0050	<0.0050-	<20	<50	<5.0
	30	11/6/2007	19.5	0	<2.0	<1.0	<1.0	<2.0	<0.0050	<0.0050	<0.0050	<0.0050	<20	.<50	6.1
	40	11/6/2007	19	0	<2.0	<1.0	<1.0	<2.0	<0.0050	<0.0050	<0.0050	<0.0050	<20	<50	<5.0
	50	11/6/2007	24	16	<4.0	<1.0	<1.0	<4.0	<0.0050	<0.0050	<0.0050	<0.0050	<20	<50	<5.0
SB-3	10	11/6/2007	7	0	<4.0	<1.0	<1.0	<4.0	<0.0050	<0.0050	<0.0050	<0.0050	<20	<50	<5.0
	30	11/6/2007	7	6	<2.0	<1.0	<1.0	<2.0	<0.0050	< 0.0050	<0.0050	<0.0050	· <20	<50	<5.0
	50	11/6/2007	20	2	<2.0	<1.0	<1.0	<2.0	<0.0050	<0.0050	<0.0050	<0.0050	<20	<50	<5.0
SB-4	10	11/6/2007	7	0	<2.0	<1.0	<1.0	2.7	<0.0050	<0.0050	<0.0050	<0.0050	93	<50	<5.0
	30	11/6/2007	16	2	<2.0	<1.0	<1.0	<2.0	<0.0050	<0.0050	<0.0050	<0.0050	<20	<50	<5.0
	40	11/6/2007	17	1	<2.0	<1.0	<1.0	<2.0	<0.0050	<0.0050	<0.0050	<0.0050	<20	<50	<5.0
	50	11/6/2007	17	1	<4.0	<1.0	<1.0	<4.0	<0.0050	<0.0050	<0.0050	<0.0050	<20	<50	<5.0
SB-5	10	11/7/2007	2	0	<4.0	<1.0	<1.0	<4.0	<0.0050	<0.0050	<0.0050	<0.0050	<20	<50	<5.0
	20	11/7/2007	67	360	140	1.5	8.5	150	0.39	0.028	0.059	0.084	290	69	21
		11/7/2007	500	41,700	8,100	860	170	9,600	37	0.38	1.2	1.2	11,000	<310	260
	40	11/7/2007	400	5200	1300	8.9	28	1,400	0.69	0.5	0.11	0.46	2,400	69	52.
	50	11/7/2007	300	3,500	1,700	9	52	1,800	2.4	1.2	0.55	1	3,400	130	81
	60	11/7/2007	95	360	<2.0	<1.0	<1.0	<2.0	<0.0050	<0.0050	<0.0050	<0.0050	<20	120	7.1
SB-6	10	11/7/2007	200	350	<2.0	<1.0	<1.0	2.1	<0.0050	<0.0050	<0.0050	<0.0050	<20	<50	<5.0
	20	11/7/2007	35	20	<2.0	<1.0	<1.0	<2.0	<0.0050	<0.0050	<0.0050	<0.0050	<20	<50	6.6
	30	11/7/2007	1,500	22,000	1,100	67	380	1,400	1.4	. 4.8	1.2	21	2,400	<2500	<250
SB-7	10	11/7/2007	22	0	82	<1.0	<1.0	73	<0.0050	<0.0050	<0.0050	<0.0050	<20	<50	<5.0
	20	11/7/2007	23	8	<2.0	<1.0	<1.0	2.1	<0.0050	<0.0050	<0.0050	<0.0050	<20	<50	<5.0
	30	11/7/2007	25	60	<2.0	<1.0	<1.0	<2.0	<0.0050	<0.0050	<0.0050	<0.0050	<20	<50	<5.0
	40	11/7/2007	300	2,300	58	3	4.7	66	0.21	0.015	0.057	<0.0050	250	<50	<5.0
	50	11/7/2007	11	20	<2.0	<1.0	<1.0	<2.0	<0.0050	<0.0050	<0.0050	<0.0050	<20	130	170

J:\40\07\Jobs 07\E07.049.01F Alameda Comidor Phase I\Phase 2 - Soil Sampling\Phase II Report Pleasanton\Soil Sampling Tables.xis

•

BSK

TABLE 2

SUBSURFACE SOIL SAMPLE ANALYTICAL RESULTS - PID/FID RESULTS

Alameda County Transportation Corridor

Pleasanton, California

						TPH-g									
			PID	FID		Aviation		TPH-j**				Total		Tert-Butyl	
Sample	Sample		Reading	Reading	TPH-d	Fuel	TPH-g	Jet Fuel	Benzene	*Ethylbenzene					MTBE
Location	Depth	Date	(ppm)	(ppm)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	Oil & Grease	(mg/kg)	(mg/kg)

ppm - parts per million

ıng/kg - milligrams per kilogram

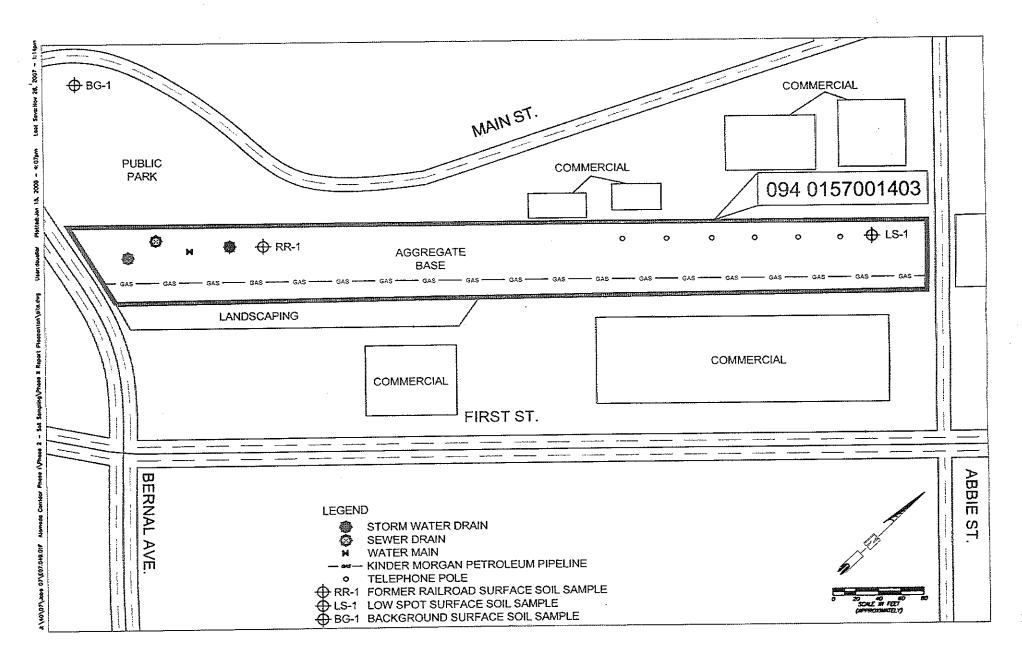
PID - Photo Ionization Detector

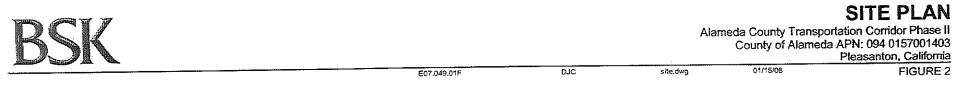
F(D - Fiame Ionization Detector

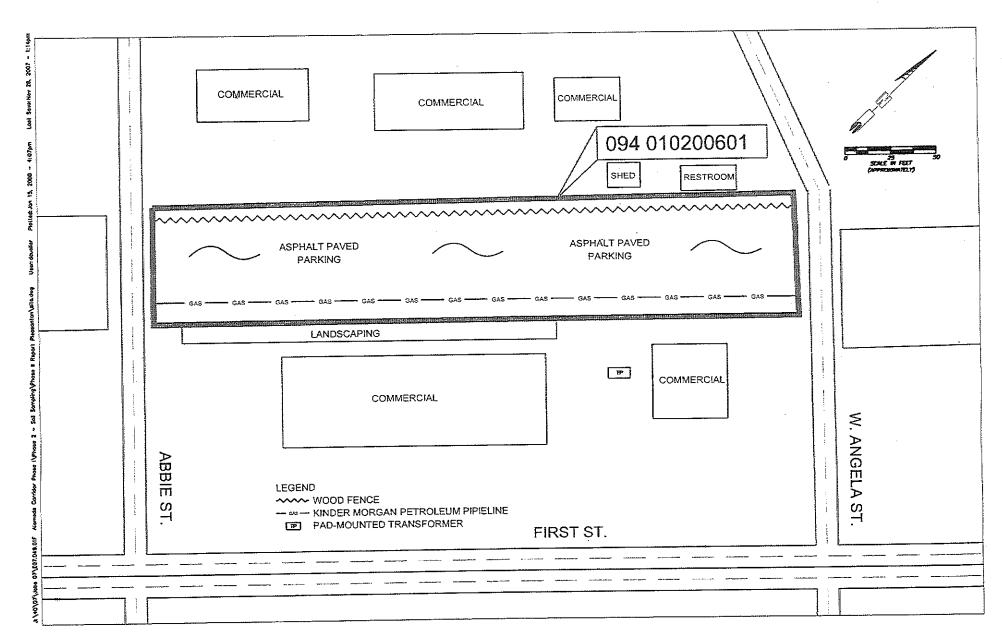
TPHd - Total Petroleura Hydrocarbons as diesel

TPH-g Total Petroleum Hydrocarbons - Aviation Fuel

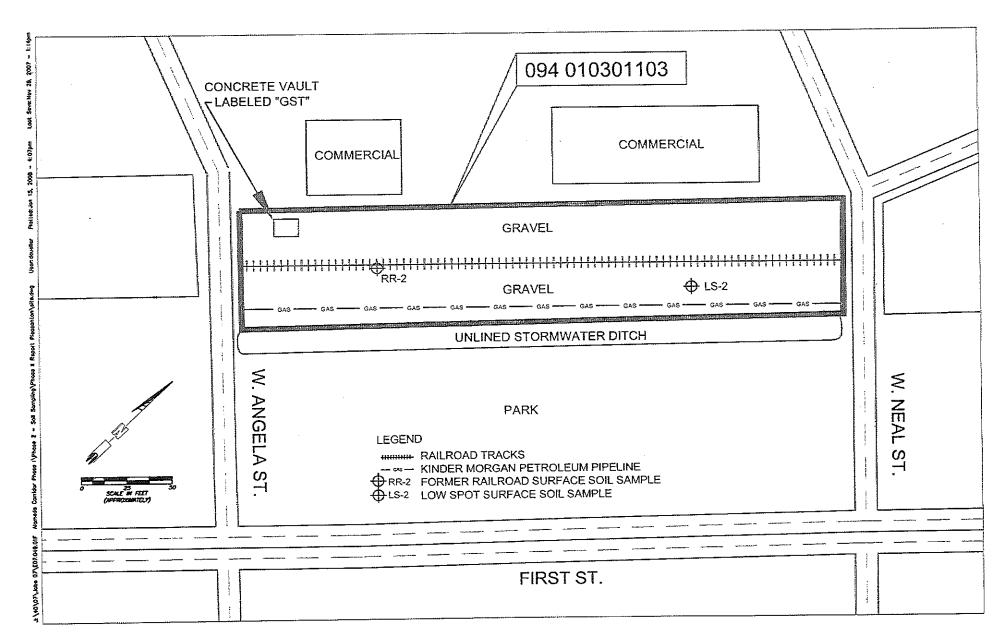
TPHg - Total Petroleum Hydrocarbons as gasoline

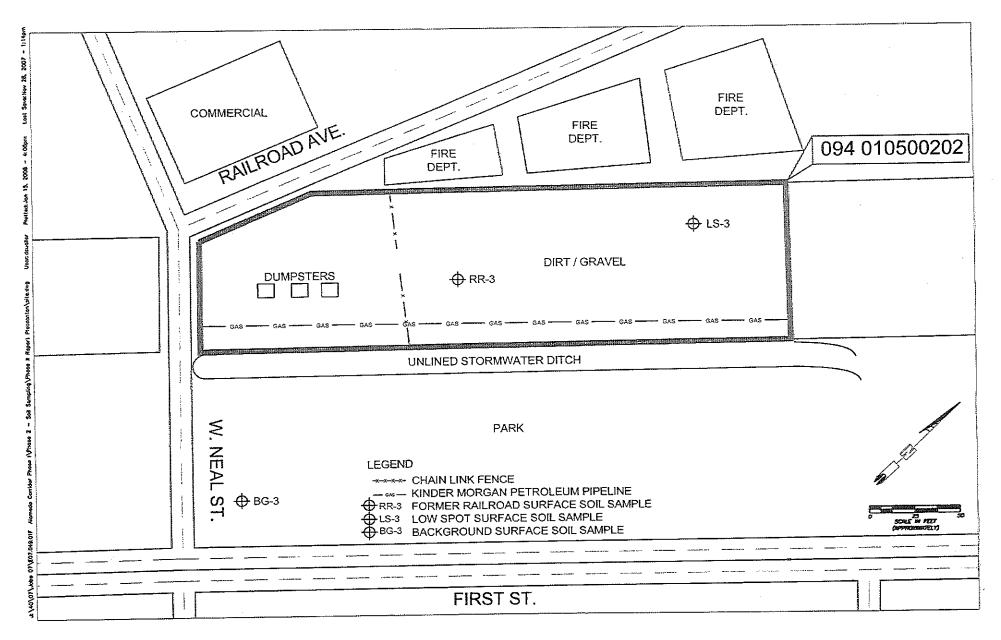

TPHg- Total Petroleum Hydrocarbons - Jet Fuel** (Hydrocarbons reported within diesel range)

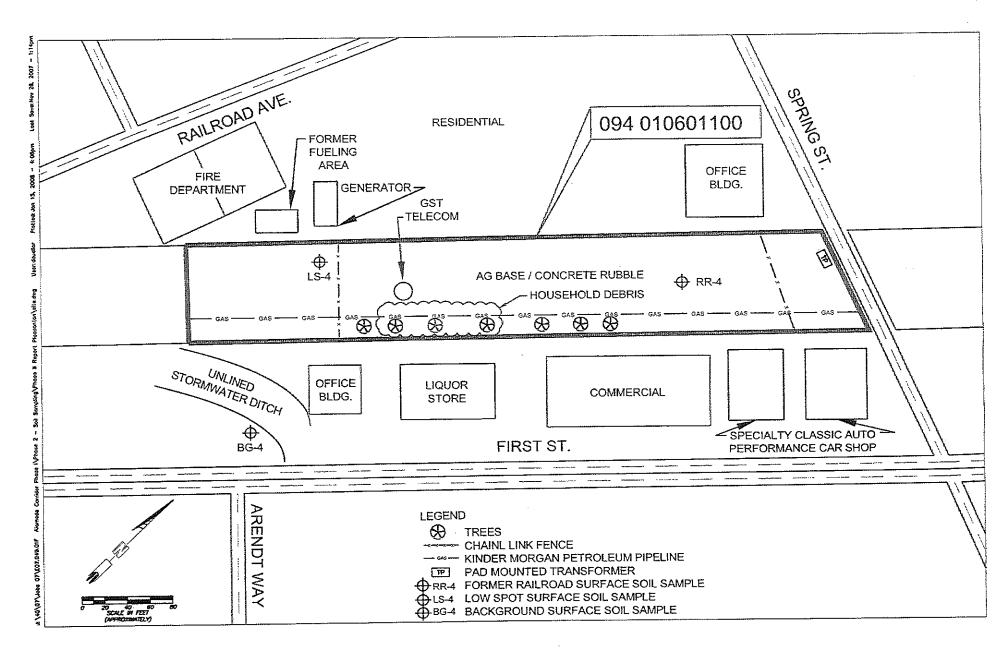

MTBE- Methyl text-butyl ether

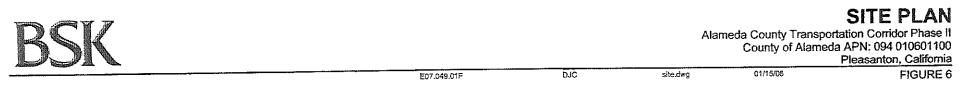

ND - None Detected

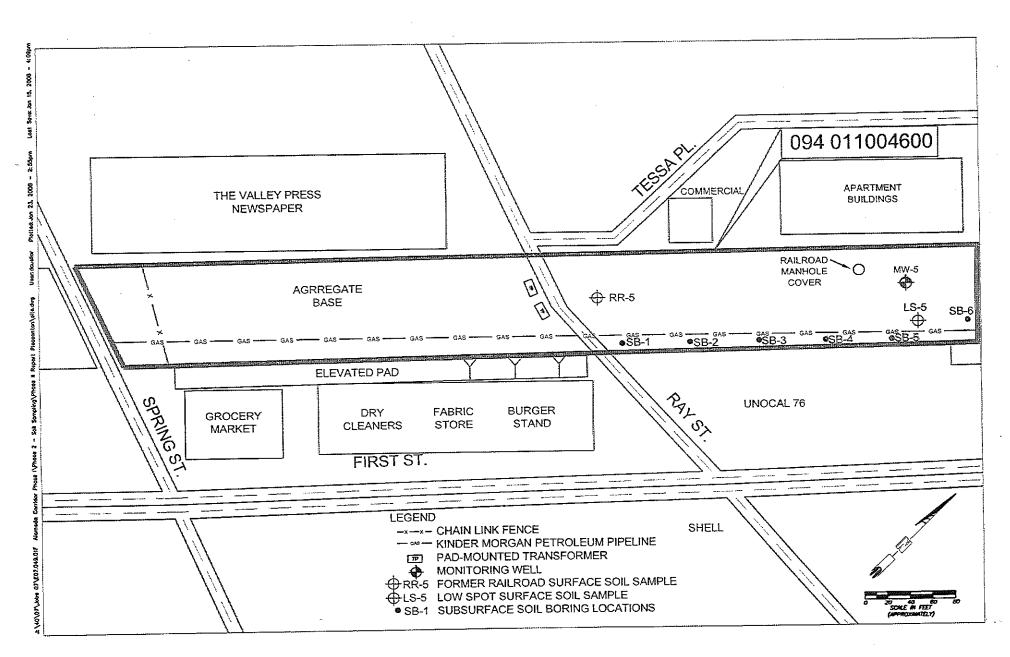
J:\40\07\Jobs 07\507.049.01F Alameda Comidor Phase I\Phase 2 - Soil Sampling\Phase II Report Pleasanton\Soil Sampling Tables.xls

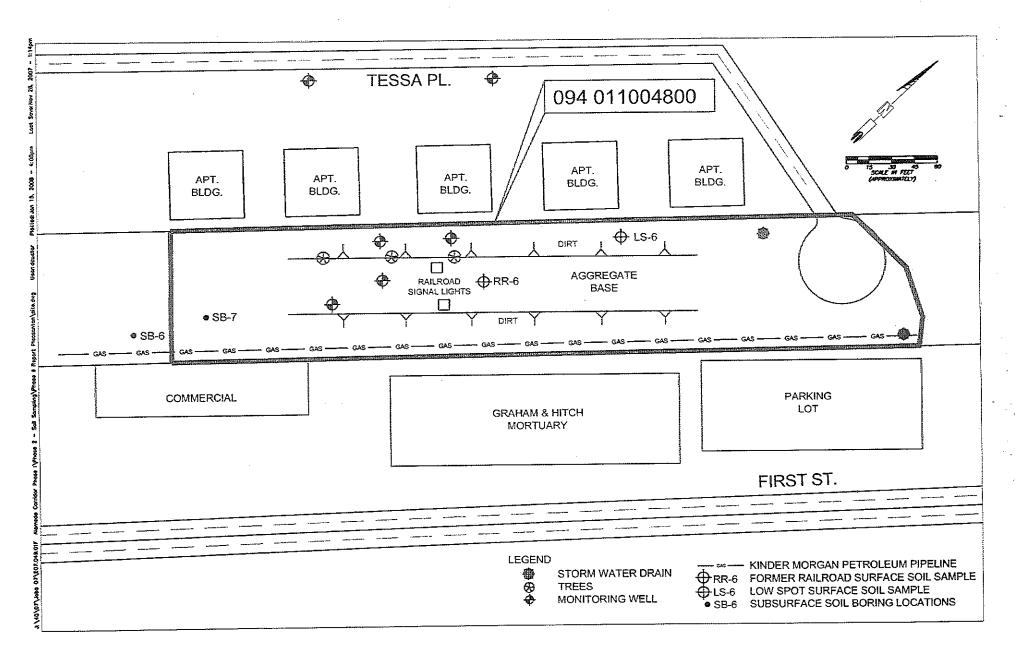


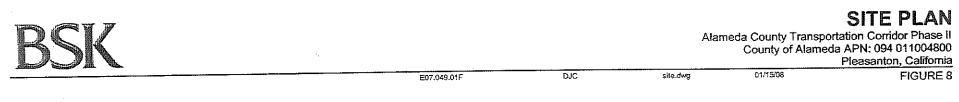


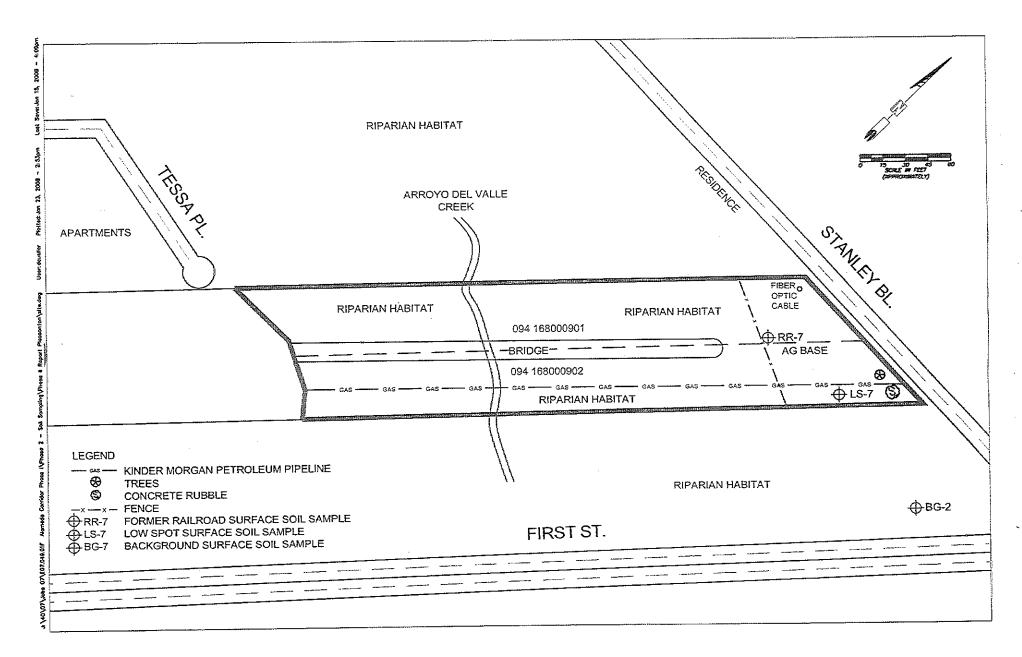

BSSIC E07.049.01F DJC site.dwg 01/15/08 FIGURE 3



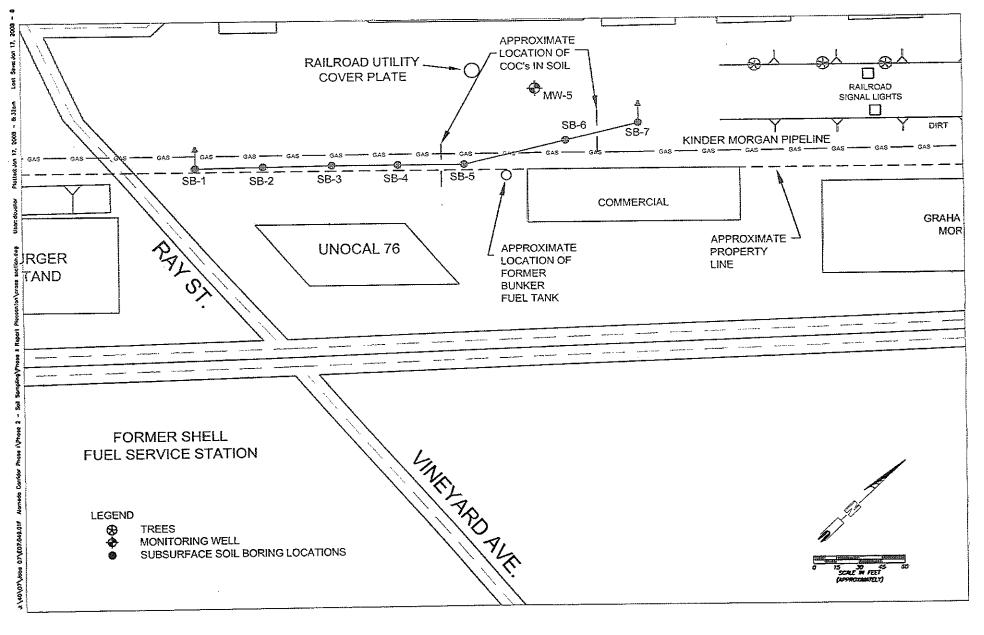

BSK				Alameda County Trans County of Alan	SITE PLAN portation Corridor Phase II neda APN: 094 010301103 Pleasanton, California
	E07.043.01F	JL	site.dwg	01/15/08	FIGURE 4


BSK			Alar	County of Alamed	SITE PLAN tation Corridor Phase II a APN: 094 010500202 Pleasanton, California
	 E07.049.01F	DIC	site.dwg	01/15/08	FIGURE 5



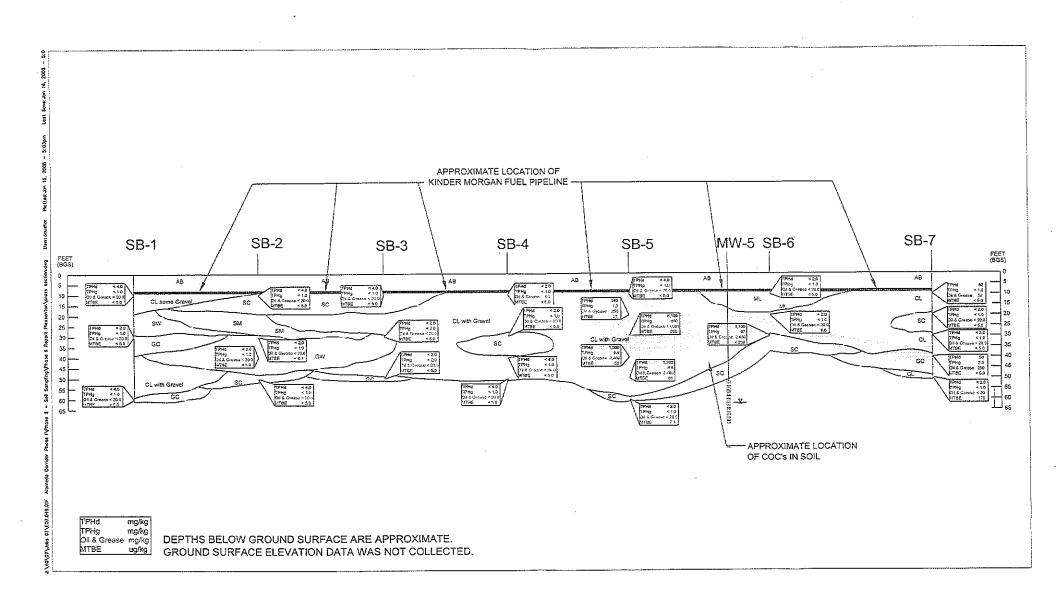


BSSK SITE PLAN Alameda County Transportation Corridor Phase II County of Alameda APN: 094 011004600 Pleasanton, California E07.049.01F DJC site.dwg 01/15/08 FIGURE 7

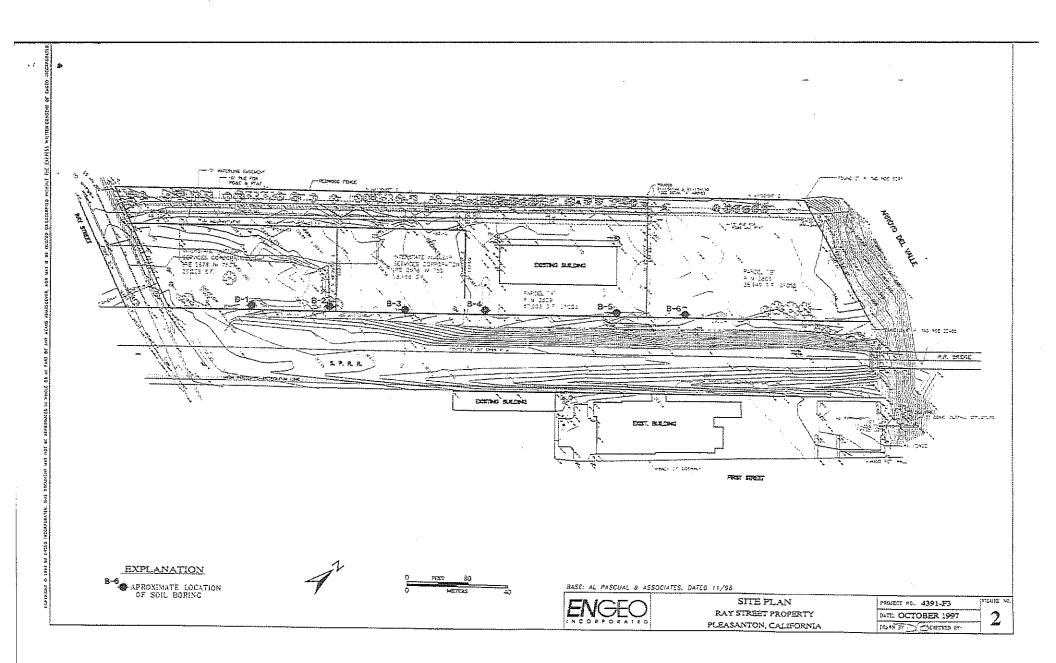


SITE PLAN

Alameda County Transportation Corridor Phase II County of Alameda APN: 946 168000901 & 946 168000902 Pleasanton, California FIGURE 9 DJC site.dwg 01/15/08 E07.049.01F


SITE PLAN

Alameda County Transportation Corridor Phase Il County of Alameda APN: 946 168000901 & 946 168000902 Pleasanton, California DJC site.dwg


E07.049.01F

01/15/08

FIGURE 10

E07.048.01F DJC stream of this 00 FIGURE 11

RAY STREET PROPERTY SOIL/GROUND-WATER SAMPLE LABORATORY ANALYSIS SUMMARY (Concentrations reported in gards per million))

SAMPLE	DEPTH (ft)	TPH -G	BENZ	TOL	E.BENZ	XYL	MTBE
1-1	51/2	<1.0	<.005	<.005	<.005	<.005	
1-2	15	<1.0	<.005	<.005	<.005	<.005	
1-3	251/2	<1.0	<.005	<.005	<.005	<.005	
1-4	351/2	<1.0	<.005	<.005	<.005	<.005	
2-1	51/2	<1.0	<.005	<.005	<.005	<.005	
2-2	151/2	<1.0	<.005	<.005	<.005	<.005	
2-3	251/2	<1.0	<.005	<.005	<.005	<.005	
2-4	351/2	<1.0	<.005	<.005	<.005	<.005	/
3-1	51/2	<1.0	<.005	<.005	<.005	<.005	
3-2	15½	<1.0	<.005	<.005	<.005	<.005	
3-3	251/2	<1.0	<.005	<.005	<.005	<.005	
3-4	351/2	<1,0	<.005	<.005	<.005	<.005	
4-1	5½	<1.0	<.005	<.005	<.005	<.005	
4-2	151/2	<1.0	<.005	<.005	<.005	<.005	
4-3	251/2	<1.0	<.005	<.005	<.005	<.005	
4-4	36	<1.0	<.005	<.005	<.005	<.005	- 11-11
4-6	501/2	<1.0	<,005	<.005	<.005	<.005	
4-7	581/2	<1.0	<,005	<.005	<,005	<.005	
4-8	661/2	<1.0	<.005	<,005	<.005	<.005	
5-1	7	<1.0	<.005	<.005	<.005	<.005	
5-2	151/2	<1.0	<.005	<,005	<.005	<.005	
5-3	251/2	<1.0	<.005	<,005	<.005	<.005	
5-4	351/2	<1.0	<.005	<.005	<.005	<.005	
5-5	40	<1.0	<.005	<.005	<,005	<,005	-t
б - І	51/2	<1.0	<.005	<.005	<.005	<.005	
6-2	151/2	<1.0	<.005	<.005	<.005	<.005	
6-3	251/2	<1.0	<.005	<.005	<.005	<.005	
6-5	36	<1.0	<.005	<.005	<.005	<.005	
6-6	40	<1.0	<.005	<.005	<.005	< 005	
W-4	B4 Water Sample	1630	.023	.0015	.0009	.0008	480
W-5	B5 Water Sample	<.050	<.0005	< 0005	<.000.5	<.0005	.007 6
W-6	B6 Water Sample	,120	< 0005	<.0005	<.0005	,0011	<.005

~ 75' ~ 35' ~ 35'

NE LES

11/97

ATTACHMENT D Historic Groundwater Data

Table 2 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS December 1987 Through March 2009 76 Station 7376

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness		Change 1n Elevation	TPH-G 8015 (Luft)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(μg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(3021B) (μg/l)	(8200B) (µg/l)	
MW-1			(Scre	en Interva	l in feet: 65.	0-95.0)			,	<u> </u>		(18-7	(1-8/-)	
12/08/8	7		`			50		58	8.0	ND	10			
12/07/9	4 366.99	81.04	0.00	285.95		ND		ND	ND	ND	ND			
03/01/9	5 366.99	80.09	0.00	286.90	0.95	ND		ND	1. İ	ND	1.3			
06/01/9	5 366.99	77.53	0.00	289.46	2.56	130		1.0	2.9	0.79	4.5			
09/06/9	5 366.99	79.00	0.00	287.99	-1.47	ND		ND	ND	ND	ND			
12/12/9	5 366.99	77.55	0.00	289.44	1.45	ND		ND	ND	ND	ND			
03/01/9	6 366.99	75.09	0.00	291.90	2.46	ND		ND	ND	ND	ND	370		
06/15/9	6 366.99	75.07	0.00	291.92	, 0.02	ND		ND	ND	ND	ND	270		
09/18/9	6 366.99	79.90	0.00	287.09	-4.83	ND		ND	ND	I ND	ND	590		
12/21/9	6 366,99	78.96	0.00	288.03	0.94	ND		ND	ND	ND	ND	150		
03/07/9	7 366.99	71.49	0.00	295.50	7.47	ND		ND	ND	ND	ND	220		
06/27/9	7 366.99	80.05	0.00	286.94	-8.56	ND		ND	ND	ND	ND	17		
09/29/9	7 366.99	80.04	0.00	286.95	0.01	ND		ND	ND	ND	ND	24		
12/15/9	7 366.99	80.07	0.00	286.92	-0.03	ND		ND	ND	ND	ND	25		
03/16/9	8 366.99	71.00	0.00	295.99	9.07	ND		ND	0.52	ND	0.71	190		
06/26/9	8 366.98	79.29	0.00	287.69	-8.30	59		0.90	ND	ND	ND	570		
08/18/9	366.98	79.93	0.00	287.05	-0.64									
09/22/9	3 366.98	79.99	0.00	286.99	-0.06	ND		ND	ND	ND	ND	170		
12/15/98	366.98	80.02	0.00	286.96	-0.03	ND		ND	ND	ND	ND	63		
12/23/98	366.98	80.02	0.00	286.96	0.00									
03/15/99		78.95	0.00	288.03	1.07	ND		ND	ND	ND	ND	520		
03/23/99	366.98	78.69	0.00	288.29	0.26									

7376

CTRC

Table 2 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS December 1987 Through March 2009 76 Station 7376

Date Sampled	TOC Elevation (feet)	Depth to Water (feet)	LPH Thickness (feet)	Ground- water Elevation (feet)	Change in Elevation (feet)	TPH-G 8015 (Luft) (μg/l)	TPH-G (GC/MS) (µg/l)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
		(1001)	(1001)	(1001)	(1001)	(µg/1)	(µg/I)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-1 06/07/9	continued 9 366.98	79.82	0.00	287.16	-1.13	ND		ND	ND	ND	ND	310		
09/03/9			0.00	287.24	0.08	ND		ND	ND	ND	ND	67	 55.2	
12/06/9			0.00	287.24	0.00	ND		ND	ND	ND	ND	120		
03/10/0	0 366.98	79.66	0.00	287.32	0.08	ND		ND	ND	ND	ND	120		
06/08/0	0 366.98	79.57	0.00	287.41	0.09	ND		ND	ND	ND	ND	98.9		
09/25/0	0 366.98	79.48	0.00	287.50	0.09	ND		ND	ND	ND	ND	145		
12/19/0	0 366.98	79.64	0.00	287.34	-0.16	ND		ND	ND	ND	ND	330		
03/05/0	1 366.98	80.03	0.00	286.95	-0.39	ND		ND	ND	ND	ND	711		
06/14/0	1 366.98	79.52	0.00	287.46	0.51	ND		ND	ND	ND	ND	680		
09/17/0	1 366.98	79.76	0.00	287.22	-0.24	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	11		
09/25/0	1 366.98	79.71	0.00	287.27	0.05									
12/17/0	1 366.98	80.73	0.00	286.25	-1.02	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	210	240	
03/15/0	2 366.98	79.51	0.00	287.47	i.22	ND<500		ND<5.0	ND<5.0	ND<5.0	ND<5.0	1200		
06/20/0	2 366.98	79.60	0.00	287.38	-0.09		580	ND<5.0	ND<5.0	ND<5.0	ND<10		810	
09/27/0	2 366.98	80.76	0.00	286.22	-1.16		67	ND<0.50	ND<0.50	ND<0.50	ND<1.0		71	
12/30/0	2 366.98	81.28	0.00	285.70	-0.52		ND<200	ND<2.0	ND<2.0	ND<2.0	ND<4.0		360	
03/26/0	3 366.98	79.48	0.00	287.50	1.80		1300	ND<10	ND<10	ND<10	ND<20		2000	
06/10/0	3 366.98	80.29	0.00	286.69	-0.81		ND<2000	ND<20	ND<20	ND<20	ND<40		2800	
09/09/0	3 366.98	84.54	0.00	282.44	-4.25		1000	ND<10	ND<10	ND<10	ND<20		1900	
12/10/0	3 366.98	80.01	0.00	286.97	4.53		ND<2000	ND<20	ND<20	ND<20	ND<40		2700	
03/09/04	4 366.98	79.48	0.00	287.50	0.53		540	ND<5.0	ND<5.0	ND<5.0	ND<10		840	
06/21/04	4 366.98	79.49	0.00	287.49	-0.01		650	ND<5.0	ND<5.0	ND<5.0	ND<10		620	
09/08/04	4 366.98	79.43	0.00	287.55	0.06		93	ND<0.50	ND<0.50	ND<0.50	ND<1.0		120	
7376								Page 2	of 27					(A)TOC

CTRC

7376

ΥĽ

Table 2 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS December 1987 Through March 2009 76 Station 7376

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015 (Luft)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
	continued													
12/14/0				287.53	-0.02		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		150	
03/17/0			0.00	287.62	0.09		ND<500	ND<0.50	ND<0.50	ND<0.50	ND<10		830	
06/15/0				288.77	1.15		ND<1300	ND<0.50	ND<0.50	ND<0.50	ND<1.0		2800	
09/20/0		79.18	0.00	287.80	-0.97		540	ND<0.50	ND<0.50	ND<0.50	ND<1.0		1400	
12/29/0)5 366.98	70.69	0.00	296.29	8.49		460	ND<0.50	ND<0.50	ND<0.50	ND<1.0		1400	
03/15/0		65.59	0.00	301.39	5.10		540	ND<0.50	ND<0.50	ND<0.50	ND<1.0		2500	
06/28/0		66.15	0.00	300.83	-0.56		630	ND<0.50	ND<0.50	ND<0.50	ND<1.0		3900	
09/28/0		70.13	0.00	296.85	-3.98		730	3.1	ND<2.5	ND<2.5	ND<2.5		2100	
12/11/0		63.29	0.00	303.69	6.84		180	ND<0.50	ND<0.50	ND<0.50	ND<0.50		1400	
03/19/0		57.52	0.00	309.46	5.77		740	ND<2.5	ND<2.5	ND<2.5	ND<2.5		990	
06/15/0		66.79		300.19	-9.27		1400	ND<5.0	ND<5.0	ND<5.0	ND<5.0		1900	
09/24/0		69.64	0.00	297.34	-2.85		1100	ND<10	ND<10	ND<10	ND<10		900	
12/27/0		60.34	0.00	306.64	9.30		240	ND<0.50	0.63	ND<0.50	ND<1.0		560	
03/25/08	8 366.98	60.85	0.00	306.13	-0.51		620	ND<5.0	ND<5.0	ND<5.0	ND<10		910	
06/06/08	8 366.98	61.10	0.00	305.88	-0.25		830	ND<5.0	ND<5.0	ND<5.0	ND<10		1000	
09/05/08	8 366.98	73.10	0.00	293.88	-12.00		200	ND<0.50	ND<0.50	ND<0.50	ND<1.0		590	
12/08/08		71.60	0.00	295.38	1.50		180	ND<0.50	ND<0.50	ND<0.50	ND<1.0		300	
03/26/09	9 366.98	64.10	0.00	302.88	7.50		180	ND<0.50	ND<0.50	ND<0.50	ND<1.0		330	
MW-2			(Scree	n Interval	in feet:)									
12/08/87	7					1800		910	800	260	1200			Damaged
12/07/94	4													Danagou
03/01/95	5	~~												Destroyed
MW-2B			(Scree	n Interval	in feet: 65.0	-85.0)								1 our of ou

7376

.

Page 3 of 27

©TRC

Table 2 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS December 1987 Through March 2009 76 Station 7376

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change 1n Elevation	TPH-G 8015 (Luft)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(μg/l)	(µg/l)	(µg/l)	(μg/l)	xytenes (μg/l)	(8021B) (μg/l)	(8200B) (μg/l)	
MW-2B	continued	i												·····
03/01/95	365.05	80.80	0.00	284.25		ND		ND	ND	ND	ND			
06/01/95	365.05	75.69	0.00	289.36	5.11	350		19	5.8	ND	7.7			
09/06/95	365.05	77.54	0.00	287.51	-1.85	ND		90	ND	ND	ND			
12/12/95	365.05	75.96	0.00	289.09	1.58	1200		630	ND	15	57			
03/01/96		73.27	0.00	291.78	2.69	1000		620	ND	ND	5.3	4300		
06/15/96		73.21	0.00	291.84	0.06	910		350	ND	ND	ND	3700		
09/18/96	365.05	81.08	0.00	283.97	-7.87	1200		95	ND	ND	ND	5200		
12/21/96		77.35	0.00	287.70	3.73	330		57	ND	ND	ND	2900		
03/07/97	365.05	69.67	0.00	295.38	7.68	190		28	0.64	ND	1.5	4300		
06/27/97	365.05	82.40	0.00	282.65	-12.73	98		3.4	1.0	0.53	ND	3100		
09/29/97	365.05	82.72	0.00	282.33	-0.32	ND		ND	ND	ND	ND	3000		
12/15/97	365.05	82.57	0.00	282.48	0.15	54		ND	ND	ND	ND	4100		
03/16/98	365.05	69.13	0.00	295.92	13.44	ND		17	ND	ND	ND	4400		
06/26/98	365.05	77.78	0.00	287.27	-8.65	ND		ND	ND	ND	ND	4000		
08/18/98	365.05	83.99	0.00	281.06	-6.21									
09/22/98	365.05	83.89	0.00	281.16	0.10	ND		ND	ND	ND	21	4600		
12/15/98	365.05	82.84	0.00	282.21	1.05	ND		ND	ND	ND	ND	5100		
12/23/98	365.05	82.55	0.00	282.50	0.29									
03/15/99	365.05	77.31	0.00	287.74	5.24	ND		ND	ND	ND	ND	4300	4800	
03/23/99	365.05	77.06	0.00	287.99	0.25						\~ = =			
06/07/99	365.05	82.96	0.00	282.09	-5.90	ND		ND	ND	ND	ND	5100		
09/03/99	365.05	84.16	0.00	280.89	-1.20	ND		ND	ND	ND	ND	6300	4400	
12/06/99	365.05	84.41	0.00	280.64	-0.25	ND		ND	ND	ND	ND	4400		

7376

Page 4 of 27

Table 2 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS December 1987 Through March 2009 76 Station 7376

Date Sampled	Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015 (Luft)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
· <u> </u>	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-2B	continue		• • • •											
03/10/0		82.42	0.00	282.63	1.99	ND		ND	ND	ND	ND	6900		
06/08/0		82.73	0.00	282.32	-0.31	ND		ND	ND	ND	ND	7780		
09/25/0		84.24	0.00	280.81	-1.51	52.9		8.83	6.58	0.932	5.60	12200		
12/19/0		84.39	0.00	280.66	-0.15	ND		ND	ND	ND	ND	6000		
03/05/0		84.61	0.00	280.44	-0.22	ND		ND	ND	ND	ND	5890		
06/14/0		83.53	0.00	281.52	1.08	ND		ND	ND	ND	ND	6600		
09/17/0	1 365.05	84.55	0.00	280.50	-1.02	ND<200		ND<2.0	ND<2.0	ND<2.0	ND<2.0	5100		
09/25/0	1 365.05													Inaccessible
12/17/0	365.05													Dry well
03/15/02	2 365.05													Inaccessible
06/20/02	2 365.05													Dry well
09/27/02	2 365.05													Dry well
12/30/02	2 365.05													Dry well
03/26/03	3 365.05													Dry well
06/10/03	365.05	83.17	0.00	281.88			ND<5000	ND<50	ND<50	ND<50	ND<100	6400		
09/09/03	365.05	84.56	0.00	280.49	-1.39									car parked on well
12/10/03	365.05													Dry well
03/09/04	365.05	84.13	0.00	280.92			ND<5000	ND<50	ND<50	ND<50	ND<100		5200	,
06/21/04	365.05	83.71	0.00	281.34	0.42		3400	ND<25	ND<25	ND<25	ND<50		4600	
09/08/04	365.05													Dry well
12/14/04	365.05				·									Dry well
03/17/05	365.05	79.55	0.00	285.50			ND<5000	ND<0.50	ND<0.50	0.83	ND<1.0		7800	
06/15/05	365.05	76.89	0.00	288.16	2.66		ND<5000			ND<0.50	ND<1.0		6400	
7376								Page 5						(A) TDO

©TRC

7376

Date Sampled	TOC Elevation (feet)	Depth to Water (feet)	LPH Thickness (feet)		Change in Elevation (feet)	TPH-G 8015 (Luft) (μg/l)	TPH-G (GC/MS) (µg/l)	Benzene (µg/l)	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
			(1001)	(1001)	(1001)	(µg/I)	(µ8/1)	(µg/1)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-2B 09/20/0		83.24	0.00				3200	ND<12	ND<12	ND<12	ND<25		6000	Casing elevation modified on 6/22/05
12/29/0	5													Car parked over well
03/15/0	6	64.03	0.00				ND<5000	ND<50	ND<50	ND<50	ND<100		5700	
06/28/0	6	61.22	0.00				3000	ND<5.0	ND<5.0	ND<5.0	ND<10		11000	
09/28/0	6	66.35	0.00				3100	ND<10	ND<10	ND<10	ND<10		9800	
12/11/0	6	61.20	0.00				330	1.3	ND<0.50	1.9	1.6		10000	
03/19/0	7	55.75	0.00				8600	ND<25	ND<25	ND<25	ND<25		11000	
06/15/0	7	65.21	0.00				4700	ND<10	ND<10	ND<10	ND<10		9300	
09/24/0	7	63.41	0.00											LPH in casing well
12/27/0	7	58.75	0.00				1500	0.66	1.2	0.64	1.5		7900	
03/25/0	8	59.27	0.00				ND<5000	ND<50	ND<50	ND<50	ND<100		5700	
06/06/0	8	59.50	0.00				6400	ND<50	ND<50	ND<50	ND<100		7400	
09/05/0	8	73.50	0.00				2200	ND<10	ND<10	ND<10	ND<20		4000	
12/08/0	8	69.99	0.01				3100	ND<25	ND<25	ND<25	ND<50		4200	LPH in well
03/26/0	9	62.48	0.00				630	18	ND<6.2	6.5	19		5200	
MW-3			(Scre	en Interval	in feet: 76.	5-96.5)								
12/08/8	7					24000		2600	1300	160	660			
12/07/9	4 367.01	85.54	0.00	281.47		ND		ND	ND	ND	ND			
03/01/9	5 367.01	83.20	0.00	283.81	2.34	ND		ND	1.1	ND	İ.1			
06/01/9	5 367.01	77.60	0.00	289.41	5.60	62		7.8	0.90	ND	1.6			
09/06/9	5 367.01	79.28	0.00	287.73	-1.68	4100		380	490	130	710			
12/12/9	5 367.01	77.73	0.00	289.28	1.55	19000		600	380	2100	5300			

7376

Page 6 of 27

CTRC

.

Date Sampled	TOC Elevation (feet)	Depth to Water (feet)	LPH Thickness (feet)	Ground- water Elevation (feet)	Change m Elevation (feet)	TPH-G 8015 (Luft) (μg/l)	TPH-G (GC/MS) (µg/l)	Benzene (µg/l)	Toluene (μg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE (8021B) (µg/l)	MTBE (8260B) (µg/l)	Comments
MW-3	continued													
03/01/9	6 367.01	75.18	0.00	291.83	2.55	3400		950	3.2	1900	290	59		
06/15/9	6 367.01	75.13	0.00	291.88	0.05	780		190	8.8	3.8	4.0	630		
09/18/9	6 367.01	82.84	0.00	284.17	-7.71	2800		340	12	11	110	2500		
12/21/9	6 367.01	79.29	0.00	287.72	3.55	51		1.3	ND	ND	0.53	20		
03/07/9	7 367.01	71.58	0.00	295.43	7.71	1400		53	14	29	68	220		
06/27/9	7 367.01	83.27	0.00	283.74	-11.69	ND		ND	ND	ND	ND	27		
09/29/9	7 367.01	83.33	0.00	283.68	-0.06	ND		ND	ND	ND	ND	11		
12/15/9	7 367.01	83.35	0.00	283.66	-0.02	ND		ND	ND	ND	ND	19		
03/16/9	8 367.01	71.07	0.00	295.94	12.28	130		6.5	1.9	1.5	1.6	210		
06/26/9	8 367.03	79.65	0.00	287.38	-8.56	400		15	ND	ND	1.9	490		
08/18/9	8 367.03	83.29	0.00	283.74	-3.64									
09/22/9	8 367.03	83.33	0.00	283.70	-0.04	ND		ND	ND	ND	ND	24		
12/15/9	8 367.03	83.29	0.00	283.74	0.04	ND		ND	ND	ND	ND	18		
12/23/9	8 367.03	83.28	0.00	283.75	0.01									
03/15/9	9 367.03	79.19	0.00	287.84	4.09	26000		3100	270	2200	3100	1300		
03/23/9	9 367.03	78.92	0.00	288.11	0.27									
06/07/9	9 367.03	83.22	0.00	283.81	-4.30	ND		ND	ND	0.63	ND	29		
09/03/9	9 367.03	83.31	0.00	283.72	-0.09	23000		770	ND	980	6400	280	82.4	
12/06/9	9 367.03	83.41	0.00	283.62	-0.10	41000		3200	3500	1300	8300	ND		
03/10/0	0 367.03	83.23	0.00	283.80	0.18	5100		340	ND	97	450	200		
06/08/0	0 367.03	83.22	0.00	283.81	0.01	1200		52.0	ND	41.7	356	55.8		
09/25/0	0 367.03	83.37	0.00	283.66	-0.15	3400		305	ND	25.4	512	137		
12/19/0	0 367.03	83.27	0.00	283.76	0.10	6800		260	ND	120	950	130		
												-		

7376

Page 7 of 27

Table 2 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS December 1987 Through March 2009 76 Station 7376

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness		Change in Elevation	TPH-G 8015 (Luft)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes.	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(μg/l)	(μg/l)	
	continued													
03/05/0	01 367.03	83.34	0.00	283.69	-0.07	16800		1100	48.6	637	4260	224		
06/14/0			0.00	283.64	-0.05	1800		260	ND	5.5	25	83		
09/17/(01 367.03	84.10	0.00	282.93	-0.71	ND<50	~=	0.50	ND<0.50	ND<0.50	ND<0.50	71		
09/25/0		84.23	0.00	282.80	-0.13									
12/17/0		83.32	0.00	283.71	0.91	1800		120	ND<5.0	45	270	80	91	
03/15/0		83.27	0.00	283.76	0.05	15000		160	ND<50	140	4400	ND<250		
06/20/0)2 367.03	83.74	0.00	283.29	-0.47		3700	98	0.69	4.0	2.3		92	
09/27/0)2 367.03	84.20	0.00	282.83	-0.46		210	ND<0.50	ND<0.50	ND<0.50	ND<1.0		67	
12/30/0)2 367.03	83.24	0.00	283.79	0.96		5900	320	ND<5.0	80	1500		160	
03/26/0	3 367.03	83.27	0.00	283.76	-0.03		7200	95	6.3	140	1500		130	
06/10/0	3 367.03	83.59	0.00	283.44	-0.32		360	2,1	ND<0.50	1.1	1.0		54	
09/09/0	3 367.01	83.75	0.00	283.26	-0.18		220	ND<0.50	ND<0.50	ND<0.50	ND<1.0		63	
12/10/0	3 367.01	83.21	0.00	283.80	0.54		980	32	ND<1.0	7.0	160		90	
03/09/0	4 367.01	83.23	0.00	283.78	-0.02		1300	4,2	0.67	6.4	91		83	
06/21/0	14 367.01	83.31	0.00	283.70	-0.08		96	ND<0.50	0.62	ND<0.50	ND<1.0		59	
09/08/0	4 367.01	83.81	0.00	283.20	-0.50	·	170	ND<0.50	ND<0.50	ND<0.50	ND<1.0		82	
12/14/0	4 367.01	83.20	0.00	283.81	0.61		1800	44	0.83	22	310		120	
03/17/0	5 367.01	81.33	0.00	285.68	1.87		11000	110	1.3	38	1100		57	
06/15/0	5 367.01	78.31	0.00	288.70	3.02		910	0.92	ND<0.50	1.0	ND<1.0		59	
09/20/0	5 367.01	83.28	0.00	283.73	-4.97		94	ND<0.50	ND<0.50	ND<0.50	ND<1.0		150	
12/29/0	5 367.01	70.73	0.00	296.28	12.55		2100	27	ND<0.50	91	260		64	
03/15/0	6 367.01	65.91	0.00	301.10	4.82		860	7.5	ND<0.50	3.3	ND<1.0		98	
06/28/0	6 367.01	66.16	0.00	300.85	-0.25		2200	430	14	25	17		380	

7376

Page 8 of 27

©TRC

Table 2 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS December 1987 Through March 2009 76 Station 7376

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water	Change in	TPH-G				5 .1 .	-			Comments
1			**********		Elevation	8015 (Luft)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl-	Total Victorian	MTBE (8021D)	MTBE	
	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(UC/MIS) (μg/l)	μg/l)	(μg/l)	benzene (µg/l)	Xylenes (µg/l)	(8021B) (µg/l)	(8260B)	
MW 2	continued			()	()	16.0.2		(#6,1)	(µg/1)	(µ6/1)	(µg/1)	(µg/1)	(µg/l)	
09/28/			0.00	296.86	-3.99		410	110	ND<0.50	0.52	ND<0.50		79	
12/11/	06 367.01	63.33	0.00	303.68	6.82		370	14	+	ND<0.50			70	
03/19/	07 367.01	57.35	0.00	309.66	5.98		820	4.2		ND<0.50	0.88		69	
06/15/	07 367.01	66.79	0.00	300.22	-9.44		1500	130	i.3	7.8	8,8		400	
09/24/	07 367.01	69.70	0.00	297.31	-2.91		330	1.1	ND<0.50				51	
12/27/	07 367.01	60.35	0.00	306.66	9.35		210	0.54	0.98	ND<0.50	i.4		52	
03/25/	08 367.01	60.87	0.00	306.14	-0.52		1500	69	ND<0.50	41	55		840	
06/06/	08 367.01	61.14	0.00	305.87	-0.27		1300	58	ND<5.0	ND<5.0	ND<10		840	
09/05/	08 367.01	73.10	0.00	293.91	-11.96		380	74	1.2	i.3	3.8		170	
12/08/	08 367.01	71.65	0.00	295.36	1.45		120	1.8	ND<0.50	ND<0.50	ND<1.0		31	
03/26/	09 367.01	64.12	0.00	302.89	7.53		490	0.84	0.53	ND<0.50	ND<1.0		33	
MW-4			(Scree	en Interval	in feet: 73.	0-03-0\								
09/18/	96 369.03	73.67	0.00	295.36		160		14	ND	ND	1.6	ND		
12/21/	96 369.03	77.69	0.00	291.34	-4.02	ND		ND	ND	ND	ND	ND		
03/07/	97 369.03	68.04	0.00	300.99	9.65	ND		i.9	0.99	ND	1.5	ND		
06/27/	97 369.03	79.06	0.00	289.97	-11.02	ND		ND	ND	ND	ND	ND		
09/29/	97 369.03	85.83	0.00	283.20	-6.77	ND		ND	ND	ND	ND	ND		
12/15/	97 369.03	87.26	0.00	281.77	-1.43	ND		ND	ND	ND	ND	ND		
03/16/	98 369.03	75.09	0.00	293.94	12.17	ND		ND	0.69	ND	0.82	ND		
06/26/	98 368.81	73.81	0.00	295.00	i.06	100		62	ND	ND	ND	ND		
08/18/9	98 368.81	78.75	0.00	290.06	-4.94									
09/22/	98 368.81	83.95	0.00	284.86	-5.20	ND		ND	ND	ND	ND	2.8		
12/15/9	98 368.81	85.41	0.00	283.40	-1.46	ND		ND	ND	ND	ND	ND		
7376								Page 0						. teka

Page 9 of 27

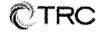
CTRC

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness		Change in Elevation	TPH-G 8015 (Luft)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-4	continued													
12/23/9				283.86	0.46									
03/15/9		78.47		290.34	6.48	ND		ND	ND	ND	ND	ND		
03/23/9		77.37		291.44	1.10									
06/07/9		76.60		292.21	0.77	ND		ND	ND	ND	ND	ND		
09/03/9		87.23	0.00	281.58	-10.63	ND		ND	ND	ND	ND	ND	ND	
12/06/9		92.23	0.00	276.58	-5.00	ND		ND	ND	ND	ND	ND		
03/10/0		88.54	0.00	280.27	3.69	ND		ND	ND	ND	ND	ND		
06/08/0		86.98	0.00	281.83	1.56	ND		ND	ND	ND	ND	ND		
09/25/0	0 368.81													Dry well
12/19/0	0 368.81													Dry well
03/05/0	1 368.81													Dry well
06/14/0	1 368.81													Dry well
09/17/0	1 368.81													Dry well
09/25/0	1 368.81													Dry well
12/17/0	1 368.81											<u>.</u>		Dry well
03/15/0	2 368.81													Dry well
06/20/0	2 368.81													Dry well
09/27/0	2 368.81													Dry well
12/30/0	2 368.81													Dry well
03/26/03	3 368.81													Dry well
06/10/0	3 368.81	89.76	0.00	279.05			ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
09/09/03	3 368.81	89.47	0.00	279.34	0.29		ND<50	ND<0.50	0.80	ND<0.50	ND<1.0		ND<2.0	
12/10/03	3 368.81	90.44	0.00	278.37	-0.97		ND<50	ND<0.50		ND<0.50	ND<1.0		ND<2.0	
7376								Page 10		-				

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015 (Luft)	TPH-G (GC/MS)	Benzene	Toluene	Ethy1- benzene	Totai Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
.	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(μg/l)	
	continued													i additi yan yan yan yan yan yan yan yan yan yan
03/09/04				283.92	5.55		ND<50	4.2	0.59	2.0	1.3		ND<2.0	
06/21/04			0.00	286.91	2.99		ND<50	ND<0.50	0.68	ND<0.50	ND<1.0		ND<0.50	
09/08/04			0.00	282.36	-4.55		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
12/14/04		89.95	0.00	278.86	-3.50		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
03/17/03			0.00	289.95	11.09		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
06/15/05			0.00	295.74	5.79		ND<50	0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
09/20/05		79.83	0.00	288.98	-6.76		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
12/29/05	5 368.81	74.08	0.00	294.73	5.75		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
03/15/06		62.45	0.00	306.36	11.63		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
06/28/06		61.87	0.00	306.94	0.58		ND<50	2.9	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
09/28/06	5 368.81	70.81	0.00	298.00	-8.94		ND<50	0.53	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
12/11/06		64.10	0.00	304.71	6.71		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
03/19/07		60.37	0.00	308.44	3.73		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
06/15/07		62.13	0.00	306.68	-1.76	~=	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
09/24/07	7 368.81	71.59	0.00	297.22	-9.46		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
12/27/07	7 368.81	62.18	0.00	306.63	9.41		ND<50	ND<0.50	1.1	ND<0.50	1.5		ND<0.50	
03/25/08	368.81	55.19	0.00	313.62	6.99		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
06/06/08	368.81	58.98	0.00	309.83	-3.79		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
09/05/08	368.81	69.95	0.00	298.86	-10.97		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
12/08/08	368.81	73.10	0.00	295.71	-3.15		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
03/26/09	368.81	62.10	0.00	306.71	11.00		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
MW-5			(Scree	n Interval	in feet: 52.()-72.0)								
09/18/96	5 363.23	64.20	0.00	299.03		36000		6700	410	730	6500	4100	-	
7376								Page 11	of 27					© TRC

Table 2 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS December 1987 Through March 2009 76 Station 7376

Date Sampled	TOC Elevation (feet)	Depth to Water (feet)	LPH Thickness (feet)	Ground- water Elevation (feet)	Change in Elevation (feet)	TPH-G 8015 (Luft) (μg/l)	TPH-G (GC/MS) (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE (8021B) (µg/l)	MTBE (8260B) (µg/l)	Comments
MW-5	continued													
12/21/9	96 363.23	61.77		301.46	2.43	25000		3200	300	780	3600	2600		
03/07/9	97 363.23	56.30		306.93	5.47	14000		1300	120	410	1200	1700		
06/27/9	97 363.23	68.88	0.90	295.02	-11.91									Not sampled-LPH in well
09/29/9	97 363.23	69.47	0.35	294.02	-1.00									Not sampled-LPH in well
12/15/9	97 363.23	64.92	0.30	298.54	4.51									Not sampled-LPH in well
03/16/9	98 363.23	49.63	0.09	313.67	15.13									Not sampled-LPH in well
06/26/9	8 363.21	64.13		299.08	-14.59	490		6.3	2.8	4.2	5.1	10		
08/18/9	8 363.21	70.40	0.01	292.81	-6,27									
09/22/9	8 363.21	69.10	0.06	294.15	1.34									Not sampled-LPH in well
12/15/9	8 363.21	68.84	0.17	294.50	0.34									Not sampled-LPH in well
12/23/9	8 363.21	68.42	0.50	295.16	0.67									• • • • • • • • •
03/15/9	9 363.21	63.81	0.25	299.59	4.42									
03/23/9	9 363.21	63.59	0.13	299.72	0.13									
06/07/9	9 363.21	68.25	0.82	295.57	-4.14	210000		6700	3700	5000	20000	11000	4000	
09/03/9	9 363.21	69.38	0.70	294.35	-1.22									Not sampled-LPH in well
12/06/9	9 363.21	70.02	0.82	293.80	-0.55									Not sampled-LPH in well
03/10/0	0 363.21	64.56	0.64	299.13	5.33									Not sampled-LPH in well
06/08/0	0 363.21	66.47	0.51	297.12	-2.01									Not sampled-LPH in well
09/25/0	0 363.21	69.02	0.60	294.64	-2.48									Not sampled-LPH in well
12/19/0	0 363.21	68.31	0.14	295.01	0.36									Not sampled-LPH in well
03/05/0	1 363.21	64.19	0.08	299.08	4.07									Not sampled-LPH in well
06/14/0	1 363.21	64.02	0.11	299.27	0.19									Not sampled-LPH in well
09/17/0	1 363.21	72.07	0.04	29 1.17	-8.10									Not sampled-LPH in well



Page 12 of 27

7376

Date Sampled	TOC Elevation (feet)	Depth to Water (feet)	LPH Thickness (feet)	Ground- water Elevation (feet)	Change m Elevation (feet)	TPH-G 8015 (Luft) (μg/l)	TPH-G (GC/MS) (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE (8021B) (µg/l)	MTBE (8260B) (μg/l)	Comments
	continued								(1-6-7	(1-8)	(18-)	(18-7)	(16.1)	
09/25/(72.17	0.03	291.06	-0.11									Not sampled-LPH in well
12/17/0)1 363.21	72.11	0.03	291.12	0.06									Not sampled-LPH in well
03/15/0	363.21	66.93	0.22	296.45	5.32									Not sampled-LPH in well
06/20/0	363.21	69.71	0.42	293.82	-2.63									Not sampled-LPH in well
09/27/0	363.21	72.07	0.00	291.14	-2.68									Not enough water to sample
12/30/0	363.21	71.91	0.00	291.30	0.16									Not enough water to sample
03/26/0	3 363.21	67.55	0.15	295.77	4.47									Not sampled-LPH in well
06/10/0	3 363.21	69.34	0.12	293.96	-1.81									Not sampled-LPH in well
09/09/0	3 363.21	68.97	0.00	294.24	0.28									LPH in well
12/10/0	3 363.21													Dry well
03/09/0	4 363.21	66.03	0.00	297.18			19000	7300	370	910	890		1400	
06/21/0	4 363.21	67.50	0.00	295.71	-1.47		13000	3700	220	710	660		1900	
09/08/0	4 363.21	70.62	0.02	292.61	-3.10									LPH in well
12/14/0	4 363.21													Dry well
03/17/0	5 363.21	65.88	0.02	297.35										LPH in well
06/15/0	5 363.21	63.20	0.02	300.02	2.68									LPH in well
09/20/0	5 363.21	66.74	0.01	296.48	-3.55									LPH in well
12/29/0	5 363.21	64.04	0.01	299.18	2.70									LPH in well
03/15/0	6 363.21	57.95	0.01	305.27	6.09									LPH in well
06/28/0	6 363.21	57.33	0.02	305.90	0.63									LPH in well
09/28/0	6 363.21	60.65	0.01	302.57	-3.33									LPH in well
12/11/0	6 363.21	56.92	0.02	306.30	3.74									LPH in well
03/19/0	7 363.21	52.37	0.00	310.84	4.54		16000	620	31	330	320		1600	

Page 13 of 27

Table 2 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS December 1987 Through March 2009 76 Station 7376

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change m Elevation	TPH-G 8015 (Luft)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-5														and an and a second second second second second second second second second second second second second second
06/15/0		55.70	0.00	307.51	-3.33		13000	1400	37	430	180		4400	
09/24/0	363.21	61.14	0.00	302.07	-5.44		17000	1500	34	490	130		4000	
12/27/0	363.21	54.95	0.00	308.26	6.19		6500	1100	31	300	110		1400	
03/25/0	8 363.21	52.33	0.00	310.88	2.62		14000	950	20	310	76		2600	
06/06/0	8 363.21	54.12	0.00	309.09	-1.79		14000	1800	27	380	92		4900	
09/05/0	8 363.21	62.72	0.00	300.49	-8.60		13000	1800	40	470	130		3700	
12/08/0	8 363.21	64.14	0.00	299.07	-1.42		14000	3000	70	560	160		3800	
03/26/0	9 363.21	58.55	0.00	304.66	5.59		19000	2700	57	630	170		2700	
MW-6			(Scree	en Interval	in feet: 68.0	0-88.0)								
09/18/9	6 363.12	79.07	0.00	284.05		160		5.4	ND	ND	ND	ND		
12/21/9	6 363.12	75.40	0.00	287.72	3.67	300		96	1.3	ND	1.7	21		
03/07/9	7 363.12	67.61	0.00	295.51	7.79	1800		920	18	ND	31	290		
06/27/9	7 363.12	80.45	0.00	282.67	-12.84	ND		0.73	ND	ND	38	38		
09/29/9	7 363.12	86.02	0.00	277.10	-5.57	62		ND	ND	ND	ND	43		
12/15/9	7 363.12	84.03	0.00	279.09	1.99	78		ND	ND	ND	ND	39		
03/16/9	8 363.12	67.15	0.00	295.97	16.88	210		36	2.5	ND	3.0	64		
06/26/9	8 363.13	75.71	0.00	287.42	-8.55	530		300	8.3	2.8	8.7	81		
08/18/9	8 363.13	74.86	0.00	288.27	0.85									
09/22/9	8 363.13													Unable to locate
12/15/9	8 363.13													Unable to locate
12/23/9	8 363.13	80.80	0.00	282.33		120		1.1	ND	ND	0.78	25		
01/23/9	9 363.13	80.68	0.00	282.45	0.12	ND								
03/15/9	9 363.13	75.29	0.00	287.84	5.39	62		1.4	ND	ND	ND	23		
7276								D	. 607					

Page 14 of 27

©TRC

7376

Date Sampled	TOC Elevation (feet)	Depth to Water (feet)	LPH Thickness (feet)	Ground- water Elevation (feet)	Change in Elevation (feet)	TPH-G 8015 (Luft) (μg/l)	TPH-G (GC/MS) (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	continued	()	(1000)	(1000)	(1001)	(µg,1)	(µg,1)	(µg/1)	(μg/1)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
03/23/9		75.03	0.00	288.10	0.26									
06/07/9	9 363.13	82.27	0.00	280.86	-7.24	ND		ND	ND	ND	ND	18		
09/03/9	9 363.13	87.49	0.00	275.64	-5.22									Dry well
12/06/9	9 363.13													Dry well
03/10/0	0 363.13	85.61	0.00	277.52		ND		ND	ND	ND	ND	64		Dry wen
06/08/0	0 363.13	87.36	0.00	275.77	-1.75									Dry well
09/25/0	0 363.13													Dry well
12/19/0	0 363.13	87.73		275.40		·								Dry well
03/05/0	1 363.13	87.82		275.31	-0.09									Dry well
06/14/0	1 363.13	87.69	0.00	275.44	0.13									Dry well
09/17/0	1 363.13	87.70	0.00	275.43	-0.01									Dry well
09/25/0	1 363.13													Dry weh
12/17/0	1 363.13	87.74	0.00	275.39										Dry well
03/15/0	2 363.13	87.72	0.00	275.41	0.02									Dry well
06/20/0	2 363.13	87.79	0.00	275.34	-0.07									Dry well
09/27/0	2 363.13													-
12/30/0	2 363.13													Dry well
03/26/0	3 363.13	87.67	0.00	275.46										Dry well
06/10/0	3 363.13	87.13	0.00	276.00	0.54									Dry well
09/09/0		87.29	0.00	275.84	-0.16									Dry well
12/10/0														Not enough water to sample
03/09/04		83.53	0.00	279.60			 ND<50	 ND<0.50	 ND<0.50	 ND<0.50	 ND<1.0			Dry well
06/21/04				2.2.00			MD ~50	140-0.50					37	—
00/21/0	. 505.15													Dry well

Page 15 of 27

Sampled El-	levation	Depth to Water	LPH Thickness		Change m Elevation	TPH-G 8015 (Luft)	TPH-G (GC/MS)	Benzene	Toluene	Ethyi- benzene	Totai Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-6 co 09/08/04	o ntinued 363.13													Dry well
12/14/04	363.13													Dry well
03/17/05	363.13	77.58	0.00	285.55			79	0.67	ND<0.50	ND<0.50	ND<1.0		23	
06/15/05	363.13	74.44	0.00	288.69	3.14		ND<50	0.51	ND<0.50	ND<0.50	ND<1.0		18	
09/20/05		81.92	0.00				ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		13	Casing elevation modified of 6/22/05
12/29/05		67.19	0.00				53	ND<0.50	ND<0.50	ND<0.50	ND<1.0		29	
03/15/06		61.88	0.00				ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		27	
06/28/06		62.52	0.00				ND<50	2.0	0.74	0.73	1.4		12	
09/28/06		66.54	0.00				82	0.58	ND<0.50	ND<0.50	ND<0.50		9.7	
12/11/06		59.64	0.00				59	ND<0.50	ND<0.50	ND<0.50	ND<0.50		11	
03/19/07		53.75	0.00				ND<50	1.1	ND<0.50	ND<0.50			22	
06/15/07		63.00	0.00				82	ND<0.50	ND<0.50				13	
09/24/07		66.10	0.00				110	ND<0.50	1.2	ND<0.50	0.85		8.8	
12/27/07		56.75	0.00				ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		8.4	
03/25/08		57.16	0.00				ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		3.6	
06/06/08		57.50	0.00				ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		6.3	
09/05/08		69.45	0.00				230	0.92	ND<0.50	ND<0.50	i.2		13	
12/08/08		67.95	0.00				ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		9.2	
03/26/09		60.20	0.00				ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		3.2	
MW-7			(Scree	n Interval	in feet: 55.0)-75.0)								
06/26/98	355.97		~~											
08/18/98	355.97	68.75	0.00	287.22		4000		1900	48	160	ND	1700		

Page 16 of 27

Table 2 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS December 1987 Through March 2009 76 Station 7376

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015 (Luft)	TPH-G (GC/MS)	Democra	Tel	Ethyl-	Total	MTBE	MTBE	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(UC/MS) (μg/l)	Benzene (µg/l)	Toluene (µg/l)	benzene (µg/l)	Xylenes (µg/l)	(8021B) (µg/l)	(8260B) (µg/l)	
MW-7	continued			, 							(1-8)	(1-87	(1-8-1)	
09/22/9	98 355.97	66.35	0.00	289.62	2.40	3200		1100	ND	22	ND	1500		
12/15/9	98 355.97	65.03	0.00	290.94	1.32	1900		180	2.7	2.9	3.8	1400		
12/23/9	98 355.97	64.82	0.00	291.15	0.21									
03/15/9	9 355.97	60.44	0.00	295.53	4.38	2700		1100	ND	30	16	1400	970	
03/23/9	9 355.97	60.43	0.00	295.54	0.01									
06/07/9	9 355.97	64.48	0.00	291.49	-4.05	2600		180	21	ND	13	1200		
09/03/9	9 355.97	69.98	0.00	285.99	-5.50	870		69	ND	ND	ND	1100	872	
12/06/9	9 355.97	70.18	0.00	285.79	-0.20	1900		350	ND	ND	ND	1100		
03/10/0	0 355.97	67.36	0.00	288.61	2.82	2900		1600	ND	40	54	1100		
06/08/0	0 355.97	69.81	0.00	286.16	-2.45	625	~~	30.8	ND	0.761	0.940	1290		
09/25/0	0 355.97	70.15	0.00	285.82	-0.34	2180		423	ND	ND	ND	1510		
12/19/0	0 355.97	70.11	0.00	285.86	0.04	59 00		1000	ND	ND	ND	1300		
03/05/0	1 355.97	68.72	0.00	287.25	1.39	13200		5070	195	306	385	1530		
06/14/0	1 355.97	70.00	0.00	285.97	-1.28	6400		3300	85	96	170	1000		
09/17/0	1 355.97	70.28	0.00	285.69	-0.28	11000		3000	ND<50	ND<50	ND<50	750		
09/25/0	1 355.97	70.49	0.00	285.48	-0.21									
12/17/0	1 355.97	71.35	0.00	284.62	-0.86	5800		1100	ND<10	ND<10	ND<10	760	670	
03/15/0	2 355.97	68.56	0.00	287.41	2.79	2800		850	22	74	39	360	540	
06/20/02	2 355.97	70.01	0.00	285.96	-i.45		9900	3200	23	41	ND<40		390	
09/27/02		71.50	0.00	284.47	-1.49		4200	710	ND<10	ND<10	ND<20		610	
12/30/02		71.25	0.00	284.72	0.25		2400	620	ND<2.5	20	53		500	
03/26/03		68.79	0.00	287.18	2.46		5300	1800	ND<10	13	ND<20		270	
06/10/03	3 355.97	69.10	0.00	286.87	-0.31		1300	380	ND<5.0	ND<5.0	ND<10			
7070								~						

7376

.

Page 17 of 27

CTRC

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015 (Luft)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl-	Total Verlag ag	MTBE	MTBE	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(μg/l)	(µg/l)	(μg/l)	benzene (µg/l)	Xylenes (µg/l)	(8021B) (µg/l)	(8260B) (µg/l)	
MW- 7	continued		-									(18-7		
09/09/0	3 355.97	70.04	0.00	285.93	-0.94		1900	240	ND<2.5	ND<2.5	ND<5.0		380	
12/10/0	3 355.97	69.98	0.00	285.99	0.06		4500	500	ND<5.0	ND<5.0	ND<10		340	
03/09/0	4 355.97	66.66	0.00	289.31	3.32		5600	1700	11	34	ND<20		280	
06/21/0	4 355.97	67.82	0.00	288.15	-1.16		2300	260	ND<2.5	3.0	ND<5.0		300	
09/08/0	4 355.97	70.05	0.00	285.92	-2.23		1400	72	ND<2.5	ND<2.5	ND<5.0		440	
12/14/0	4 355.97	70.87		285.10	-0.82		2200	180	ND<1.0	1.8	ND<2.0		320	
03/17/0		63.69	0.00	292,28	7.18		5700	1800	7.8	24	16		190	
06/15/0		59.29	0.00	296.68	4.40		3900	230	ND<2.5	3.7	8.0		280	
09/20/0	5 355.97	64.38	0.00	291.59	-5.09		1200	5.8	ND<5.0	ND<5.0	ND<10		260	
12/29/0	5 355.97	57.43	0.00	298.54	6.95		450	1.6	ND<0.50	ND<0.50	ND<1.0		140	
03/15/0		51.92	0.00	304.05	5.51		300	1.4	0.86	ND<0.50	ND<1.0		94	
06/28/0		49.47	0.00	306.50	2.45		770	47	2.4	2.2	1.3		510	
09/28/0	6 355.97	53.93	0.00	302.04	-4.46		610	13	1.İ	0.82	0.66		370	
12/11/0		49.87	0.00	306.10	4.06		180	1.2	ND<0.50	ND<0.50	ND<0.50		180	
03/19/0		45.28	0.00	310.69	4.59		200	0.92	ND<0.50	ND<0.50	ND<0.50		98	
06/15/0	7 355.97	49.48	0.00	306.49	-4.20		170	1.0	ND<0.50	ND<0.50	0.60		72	
09/24/0		54.05	0.00	301.92	-4.57		590	1.4	ND<0.50	ND<0.50	ND<0.50		330	
12/27/0		47.98	0.00	307.99	6.07		120	ND<0.50	ND<0.50	ND<0.50	ND<1.0		84	
03/25/08		46.00	0.00	309.97	1.98		92	ND<0.50	ND<0.50	ND<0.50	ND<1.0		74	
06/06/08		47.38	0.00	308.59	-1.38		130	ND<0.50	ND<0.50	ND<0.50	ND<1.0		68	
09/05/08		57.79	0.00	298.18	-10.41		320	3.4	ND<0.50	ND<0.50	ND<1.0		240	
12/08/08		56.98	0.00	298.99	0.81		270	ND<0.50	ND<0.50	ND<0.50	ND<1.0		100	
03/26/09	355.97	51.35	0.00	304.62	5.63		150	ND<0.50	ND<0.50	ND<0.50	ND<1.0		94	
7070								D ()						

7376

1

Page 18 of 27

CTRC

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015 (Luft)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(μg/l)	(µg/l)	(μg/l)	(0021L) (μg/l)	(0200 Π) (μg/l)	
MW-8			(Scre	en Interval	in feet: 66	.0-86.0)								
06/26/9	8 362.37	63.00		299.37		ND		6.0	ND	ND	ND	150		
08/18/9	8 362.37	73.38	0.00	288.99	-10.38									
09/22/9	8 362.37	70.89	0.00	291.48	2.49	ND		ND	ND	ND	ND	9.5		
12/15/9	8 362.37	70.29	0.00	292.08	0.60	ND		ND	ND	ND	ND	3.0		
12/23/9	8 362.37	70.03	0.00	292.34	0.26									
03/15/9	9 362.37				 ·									Unable to locate
03/23/9	9 361.83	64.86	0.00	296.97		ND		ND	0.77	ND	0.96	190		
06/07/9	9 361.83	68.30	0.00	293.53	-3.44	ND		ND	ND	ND	ND	ND		
09/03/9	9 361.83	73.92	0.00	287.91	-5.62	ND		ND	0.57	ND	ND	170	146	
12/06/9	9 361.83	74.98	0.00	286.85	-1.06	ND		ND	ND	ND	ND	150		
03/10/0	0 361.83	71.54	0.00	290.29	3.44	ND		ND	ND	ND	ND	150		
06/08/0	0 361.83	72.60	0.00	289.23	-1.06	ND		ND	ND	ND	ND	42.8		
09/25/0	0 361.83	75.31	0.00	286.52	-2.71	ND		ND	ND	ND	ND	227		
12/19/0	0 361.83	75.54	0.00	286.29	-0.23	ND		ND	ND	ND	ND	160		
03/05/0	1 361.83	75.91	0.00	285.92	-0.37	ND		ND	ND	ND	ND	125		
06/14/0	1 361.83	75.51	0.00	286.32	0.40	ND		ND	ND	ND	ND	140		
09/17/0	1 361.83	77.19	0.00	284.64	-1.68	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	110		
09/25/0	1 361.83	77.17	0.00	284.66	0.02									
12/17/0	1 361.83	79.94	0.00	281.89	-2.77	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	140	170	
03/15/02	2 361.83	76.82	0.00	285.01	3.12	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	72		
06/20/02	2 361.83	77.73	0.00	284.10	-0.91		83	ND<0.50	ND<0.50	ND<0.50	ND<1.0		80	
09/27/02	2 361.83	78.94	0.00	282.89	-1.21		160	ND<0.50	ND<0.50	ND<0.50	ND<1.0		94	
12/30/02	2 361.83	78.21	0.00	283.62	0.73		75	ND<0.50	ND<0.50	ND<0.50	ND<1.0		120	
7376								Page 1	9 of 27					

- 10

Page 19 of 27

©TRC

Date Sampled	TOC Elevation (feet)	Depth to Water (feet)	LPH Thickness (feet)	Ground- water Elevation (feet)	Change in Elevation (feet)	TPH-G 8015 (Luft) (μg/l)	TPH-G (GC/MS) (µg/l)	Benzene (µg/l)	Totuene (µg/l)	Ethyl- benzene (µg/l)	Total Xytenes (µg/l)	MTBE (8021B) (μg/l)	MTBE (8260B) (µg/l)	Comments
MW-8	continued										(1-8)	(1-8)	(#8,1)	
03/26/0	3 361.83	74.34	0.00	287.49	3.87		110	ND<0.50	ND<0.50	ND<0.50	ND<1.0		110	
- 06/10/0	3 361.83	75.17	0.00	286.66	-0.83		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		31	
09/09/0	3 361.83	74.11	0.00	287.72	1.06		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		150	
12/10/0	3 361.83	73.59	0.00	288.24	0.52		150	ND<1.0	ND<1.0	ND<1.0	ND<2.0		180	
03/09/0	4 361.83	70.32	0.00	291.51	3.27		130	ND<1.0	ND<1.0	ND<1.0	ND<2.0		180	
06/21/0	4 361.83	70.30	0.00	291.53	0.02		150	ND<1.0	ND<1.0	ND<1.0	ND<2.0		200	
09/08/0	4 361.83	73.83	0.00	288.00	-3.53		300	ND<1.0	ND<1.0	ND<1.0	ND<2.0		350	
12/14/0	4 361.83	75.45	0.00	286.38	-1.62		ND<100	ND<1.0	ND<1.0	ND<1.0	ND<2.0		210	
03/17/0	5 361.83	67.85	0.00	293.98	7.60		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		290	
06/15/0		62.74	0.00	299.09	5,11		ND<200	ND<0.50	ND<0.50	ND<0.50	ND<1.0		290	
09/20/0		68.11	0.00				180	ND<0.50	ND<0.50	ND<0.50	ND<1.0		310	Casing elevation modified on 6/22/05
12/29/0:		62.32	0.00				210	ND<0.50	ND<0.50	ND<0.50	ND<1.0		390	
03/15/0		56.89	0.00				140	ND<0.50	ND<0.50	ND<0.50	ND<1.0		310	
06/28/0		54.53	0.00				190	ND<0.50	ND<0.50	ND<0.50	ND<1.0		550	
09/28/0		59.02	0.00				210	ND<0.50	ND<0.50	ND<0.50	ND<0.50		460	
12/11/00		55.02	0.00				260	ND<0.50	ND<0.50	ND<0.50	ND<0.50		580	
03/19/07		51.00	0.00				340	ND<0.50	ND<0.50	ND<0.50	ND<0.50		480	
06/15/0′		54.60	0.00				350	ND<0.50	ND<0.50	ND<0.50	ND<0.50		540	
09/24/01		58.59	0.00				420	ND<0.50	ND<0.50	ND<0.50	ND<0.50		590	
12/27/01		53.40	0.00				240	ND<0.50	ND<0.50	ND<0.50	ND<1.0		510	
03/25/08	-	50.96	0.00				65	ND<0.50	0.58	ND<0.50	1.i		82	
06/06/08	3	52.66	0.00				400	ND<0.50	ND<0.50	ND<0.50	ND<1.0		550	

7376

Page 20 of 27

©TRC

Date Sampled E	TOC Elevation (feet)	Depth to Water (feet)	LPH Thickness (feet)	Ground- water Elevation (feet)	Change in Elevation (feet)	TPH-G 8015 (Luft)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
			(1001)	(leet)	(Teet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	and and and and and and and and and and
MW-8 c 09/05/08	ontinued	60.90	0.00				240	ND <0 50	ND -0.50	ND -0 70				
12/08/08		62.46	0.00				240		ND<0.50		ND<1.0		590	
03/26/09		56.72	0.00				330		ND<0.50		ND<1.0		640	· · · · ·
		50.72					120	ND<0.50	ND<0.50	ND<0.50	ND<1.0		510	
MW-9	254.95	54 50			in feet:)									
11/29/99		74.50	0.00	280.35										
12/06/99	354.85	74.35	0.00	280.50	0.15	ND		ND	ND	ND	ND	3.0	2.7	
03/10/00	354.85	65.94	0.00	288.91	8.41	ND		ND	ND	ND	ND	2.5		
06/08/00	354.85	70.77	0.00	284.08	-4.83	ND		ND	ND	ND	ND	ND		
09/25/00	354.85	74.75	0.00	280.10	-3.98	ND		ND	0.516	ND	ND	10.5		
12/19/00	354.85	74.43	0.00	280.42	0.32	ND		ND	ND	ND	ND	ND	<u> </u>	
03/05/01	354.85	74.63	0.00	280.22	-0.20	ND		ND	ND	ND	ND	ND		
06/14/01	354.85	74.75	0.00	280.10	-0.12	ND		ND	ND	ND	ND	ND		
09/17/01	354.85	74.78	0.00	280.07	-0.03	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.5		
09/25/01	354.85	74.83	0.00	280.02	-0.05							~~		
12/17/01	354.85	74.80	0.00	280.05	0.03	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0	ND<1.0	
03/15/02	354.85	74.83	0.00	280.02	-0.03	ND<50			ND<0.50		ND<0.50	ND<2.5		
06/20/02	354.85	74.88	0.00	279.97	-0.05		ND<50		ND<0.50		ND<1.0		0.75	
09/27/02	354.85	75.38	0.00	279.47	-0.50		ND<50		ND<0.50		ND<1.0		3.6	
12/30/02	354.85	73.33	0.00	281.52	2.05	-	ND<50		ND<0.50		ND<1.0		3.2	
03/26/03	354.85	71.21	0.00	283.64	2.12		ND<50		ND<0.50		ND<1.0		3.1	
06/10/03	354.85	71.83	0.00	283.02	-0.62		ND<50		ND<0.50					
09/09/03	362.62	71.85	0.00	290.77	7.75		ND<50				ND<1.0		ND<2.0	
12/10/03	362.62	69.50	0.00	293.12	2.35		ND<50		ND<0.50		ND<1.0		ND<2.0	
	562.04	09.50	0.00	273.12	2.33		0C>UN		ND<0.50	ND<0.50	ND<1.0		ND<2.0	
7376								Page 21	l of 27					ATDO

©TRC

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water	Change 111	TPH-G 8015	TPH-G			Ethyl-	Total	MTBE	MTBE	Comments
				Elevation	Elevation	(Luft)	(GC/MS)	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-9	continue	1												
03/09/0)4 362. 6	2 65.24	0.00	297.38	4.26		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
06/21/0			0.00	296.10	-1.28		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
09/08/0)4 362.6	2 71.36	0.00	291.26	-4.84		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
12/14/0)4 362.6	2 71.73	0.00	290.89	-0.37		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
03/17/0	362.6	2 60.42	0.00	302.20	11.31		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
06/15/0)5 362.6	2 57.63	0.00	304.99	2.79		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
09/20/0)5 362.6	2 62.99	0.00	299.63	-5.36		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		0.55	
12/29/0	5 362.6	2 55.38	0.00	307.24	7.61		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
03/15/0	6 362.6	2 50.12	0.00	312.50	5.26		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		0.68	
06/28/0	6 362.6	2 47.93	0.00	314.69	2.19		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
09/28/0	6 362.6	2 52.33	0.00	310.29	-4.40		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		1.1	
12/11/0	6 362.6	2 48.26	0.00	314.36	4.07		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		0.61	
03/19/0	7 362.6	2 43.68	0.00	318.94	4.58		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
06/15/0	7 362.6	2 48.35	0.00	314.27	-4.67		ND<50	ND<0.50	0.50	ND<0.50	0.74		0.59	
09/24/0	7 362.6	2 52.52	0.00	310.10	-4.17		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
12/27/0	7 362.6	2 46.26	0.00	316.36	6.26		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		0.56	
03/25/0	8 362.6	2 44.83	0.00	317.79	1.43		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		0.99	
06/06/0	8 362.6	2 45.88	0.00	316.74	-1.05		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
09/05/0	8 362.6	2 54.63	0.00	307.99	-8.75		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
12/08/0	8 362.6	2 55.44	0.00	307.18	-0.81		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
03/26/0	9 362.6	2 49.68	0.00	312.94	5.76		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
MW-10 11/29/9	9 362.6	2	(Scree	en Interval 	in feet:) 									Dry well

7376

Page 22 of 27

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015 (Luft)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-10	continued	i												
12/06/9														Dry well
03/10/0		85.04	0.00	277.58		ND		ND	ND	ND	ND	130	150	
06/08/06														Dry well
09/25/0														Dry well
12/19/00														Dry well
03/05/0														Dry well
06/14/0														Dry well
09/17/0	1 362.62													Dry well
09/25/0	362.62													Dry well
12/17/0	362.62													Dry well
03/15/02	2 362.62			'										Dry well
06/20/02	2 362.62													Dry well
09/27/02	2 362.62													Dry well
12/30/02	2 362.62													Dry well
03/26/03	3 362.62													Dry well
06/10/03	3 362.62	89.70	0.00	272.92			ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		24	-
09/09/03	3 362.62													Dry well
12/10/03	3 362.62	92.09	0.00	270.53										Insufficient recharge
03/09/04	362.62	83.15	0.00	279.47	8.94		130	ND<0.50	ND<0.50	ND<0.50	ND<1.0		130	
06/21/04	362.62	86.86	0.00	275.76	-3.71		420	ND<2.5	ND<2.5	ND<2.5	ND<5.0		490	
09/08/04	362.62													Dry well
12/14/04	362.62									-				Dry well
03/17/05	362.62	77.07	0.00	285,55			ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		65	;
7376								Page 23	3 of 27					(A) TPC

©TRC

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water	Change	TPH-G								Comments
Sumpiou	Liovation	water	1 mexiless		ın Elevatıon	8015	TPH-G	D	— .	Ethyl-	Total	MTBE	MTBE	
	(feet)	(feet)	(feet)	(feet)	(feet)	(Luft)	(GC/MS)	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
			(1001)	(1001)	(leel)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-10 06/15/0	continue)5 362.62		0.00	200 50	2.02		ND 50							
				288.58	3.03		ND<50			ND<0.50			77	
09/20/0				281.54	-7.04		120			ND<0.50			210	
12/29/0				296.31	14.77		51			ND<0.50	ND<1.0		84	
03/15/0				301.36	5.05		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		91	
06/28/0	6 362.62	61.88	0.00	300.74	-0.62		60	ND<0.50	ND<0.50	ND<0.50	ND<1.0		140	
09/28/0	6 362.62	65.76	0.00	296.86	-3.88		ND<50	ND<0.50	ND<0.50	ND<0.50	0.77		53	
12/11/0	6 362.62	58.96	0.00	303.66	6.80		85	ND<0.50	ND<0.50	ND<0.50	ND<0.50		83	
03/19/0	362.62	53.02	0.00	309.60	5.94		78	ND<0.50	ND<0.50	ND<0.50	ND<0.50		100	
06/15/0	07 362.62	62.50	0.00	300.12	-9.48		68	ND<0.50	ND<0.50	ND<0.50	ND<0.50		96	
09/24/0	7 362.62	65.30	0.00	297.32	-2.80		86	ND<0.50	ND<0.50	ND<0.50	ND<0.50		76	
12/27/0	7 362.62	55.95	0.00	306.67	9.35		63	ND<0.50	1.3	ND<0.50	1.6		81	
03/25/0	8 362.62	56.59	0.00	306.03	-0.64		61	0.75	ND<0.50	ND<0.50	ND<1.0		78	
06/06/0	8 362.62	56.76	0.00	305.86	-0.17		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		24	
09/05/0	8 362.62	68.75	0.00	293.87	-11.99		ND<50		ND<0.50		ND<1.0		43	
12/08/0	8 362.62	67.25	0.00	295.37	i.50		ND<50		ND<0.50		ND<1.0		20	
03/26/0	9 362.62	59.73	0.00	302.89	7.52		ND<50		ND<0.50		ND<1.0		20	
MW-11			(Sara	n Intomal	in feet:)						112 110		<i>i</i>	
09/25/0	1 354.66	81.24	0.00	273.42		ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	9.0		
12/17/0	1 354.66	80.47	0.00	274.19	0.77	ND<50				ND<0.50		9.0 10		
03/15/0	2 354.66	79.42	0.00	275.24	1.05	ND<50				ND<0.50			14	
06/20/0		80.69	0.00	273.97	-1.27		 ND<50					7.6		
09/27/0		81.58	0.00	273.08	-0.89		ND<30 ND<50			ND<0.50	ND<1.0		7.7	
12/30/02		79.12	0.00	275.08	-0.89 2,46				ND<0.50		ND<1.0		5.6	
7376	2 557.00	19.12	0.00	215.54	2.40		ND<50	ND<0.50		2.0	6 , i		6.9	

Page 24 of 27

©TRC

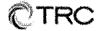
Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change 1n Elevation	TPH-G 8015 (Luft)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-11	continued	i												
03/26/0	3 354.66	73.70	0.00	280.96	5.42		ND<50	0.62	i.7	0.5	2.6		9.8	
06/10/0	3 354.66	73.06	0.00	281.60	0.64		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		3.8	
09/09/0	3 354.66	74.19	0.00	280.47	-1.13		ND<50	ND<0.50	0.66	ND<0.50	ND<1.0		4.4	
12/10/0	3 354.66	70.99	0.00	283.67	3.20		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		3.4	
03/09/0	4 354.66	66.61	0.00	288.05	4.38		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
06/21/0	4 354.66	67.63	0.00	287.03	-1.02		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		0.89	
09/08/0	4 354.66	72.69	0.00	281.97	-5.06		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		8.0	
12/14/0	4 354.66	72.69	0.00	281.97	0.00		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		15	
03/17/0	5 354.66	61.62	0.00	293.04	11.07		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		1.1	
06/15/0	5 354.66	58.68	0.00	295.98	2.94		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
09/20/0	5 354.66	63.81	0.00	290.85	-5.13		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
12/29/0	5 354.66	55.96	0.00	298.70	7.85		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		0.64	
03/15/0	6 354.66	50.73	0.00	303.93	5.23		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
06/28/0	6 354.66	48.54	0.00	306.12	2.19		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
09/28/0	6 354.66	52.78	0.00	301.88	-4.24		ND<50	ND<0.50	ND<0.50	ND<0.50	0.55		ND<0.50	
12/11/0	6 354.66	48.64	0.00	306.02	4.14		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
03/19/0	7 354.66	44.06	0.00	310.60	4.58		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
06/15/0	7 354.66	48.70	0.00	305.96	-4.64		ND<50	ND<0.50	ND<0.50	ND<0.50	0.63		ND<0.50	
09/24/0	7 354.66	52.77	0.00	301.89	-4.07		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
12/27/0	7 354.66	46.51	0.00	308.15	6.26		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	·	ND<0.50	
03/25/0	8 354.66	45.09	0.00	309.57	1.42		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
06/06/0	8 354.66	46.21	0.00	308.45	-1.12		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
09/05/0	8 354.66	54.97	0.00	299.69	-8.76		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	

Page 25 of 27

©TRC

Date Sampled		Depth to Water	LPH Thickness	Ground- water	Change 1n	TPH-G 8015	TPH-G			Ethyl-	Total	MTBE	MTBE	Comments
				Elevation	Elevation	(Luft)	(GC/MS)	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-11	continued	1												
12/08/0	8 354.66	55.63	0.00	299.03	-0.66		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
03/26/0	9 354.66	49.90	0.00	304.76	5.73		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
MW-12			(Scree	en Interval	in feet:)									
09/25/0	1 354.08	80.78		273.30	`	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.5	·	
12/17/0	1 354.08	80.02	0.00	274.06	0.76	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0	ND<1.0	
03/15/0	2 354.08	78.88	0.00	275.20	1.14	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2,5		
06/20/0	2 354.08	80.34	0.00	273.74	-1.46		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		0.83	
09/27/0	2 354.08	81.50	0.00	272.58	-1.16		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
12/30/02	2 354.08	78.20	0.00	275.88	3.30		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
03/26/03	3 354.08	72.80	0.00	281.28	5.40		ND<50	0.57	i.6	ND<0.50	2.2		ND<2.0	
06/10/03	3 354.08	72.31	0.00	281.77	0.49	ND<50	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
09/09/03	3 354.08	73.38	0.00	280.70	-1.07		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
12/10/03	3 354.08	70.28	0.00	283.80	3.10		ND<50	ND<0.50	0.51	ND<0.50	1.1		ND<2.0	
03/09/04	4 354.08	65.69	0.00	288.39	4.59		ND<50	ND<0.50	0.54	ND<0.50	1.4		ND<2.0	
06/21/04	4 354.08	66.90	0.00	287.18	-1.21		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
09/08/04	4 354.08	71.96	0.00	282.12	-5.06		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
12/14/04	4 354.08	71.92	0.00	282.16	0.04		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
03/17/05	5 354.08	60.49	0.00	293.59	11.43		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
06/15/05	5 354.08	57.82	0.00	296.26	2.67		ND<50	ND<0.50	ND<0.50	ND<0.50	1.1		ND<0.50	
09/20/05	5 354.08	63.02	0.00	291.06	-5.20		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
12/29/05	5 354.08	55.01	0.00	299.07	8.01		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
03/15/06	5 354.08	49.92	0.00	304.16	5.09		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
06/28/06	5 354.08	47.91	0.00	306.17	2.01		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		0.56	
7376								Page 26	5 of 27					

Page 26 of 27


©TRC

Date Sampled	TOC Elevation (feet)	Depth to Water (feet)	LPH Thickness (feet)		Change in Elevation (feet)	TPH-G 8015 (Luft) (µg/l)	TPH-G (GC/MS) (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (µg/l)	Total Xylenes (µg/l)	MTBE (8021B) (µg/l)	MTBE (8260B) (µg/l)	Comments
MW-12	continue	đ								(1-0)	(18-7	(F8-7	(PB-7)	
09/28/0	6 354.08	52.05	0.00	302.03	-4.14		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
12/11/0	6 354.08	47.83	0.00	306.25	4.22		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
03/19/0	7 354.08	43.32	0.00	310.76	4.51		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
06/15/0	07 354.08	48.26	0.00	305.82	-4.94		ND<50	ND<0.50	ND<0.50	ND<0.50	0.60		ND<0.50	
09/24/0	07 354.08	52.60	0.00	301.48	-4.34		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
12/27/0	354.08	45.83	0.00	308.25	6.77		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
03/25/0	8 354.08	44.63	0.00	309.45	i.20		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
06/06/0	8 354.08	45.51	0.00	308.57	-0.88		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
09/05/0	8 354.08	54.27	0.00	299.81	-8.76		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
12/08/0	8 354.08	54.92	0.00	299.16	-0.65		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
03/26/0	9 354.08	49.25	0.00	304.83	5.67		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	

							-	
Date Sampled				Ethylene-				
Sampica	TOLLO	TD 4	Ethanol	dibromide	i,2-DCA			
	TPH-D	TBA	(8260B)	(EDB)	(EDC)	DIPE	ETBE	TAME
	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)
MW-1								
12/08/87	2100							
03/01/95	120							
06/01/95	54							
09/06/95	690							
12/12/95	190							
03/01/96	56							
06/15/96	ND							
09/18/96	130				~~		·	
12/21/96	ND							
03/07/97	ND							
06/27/97	ND							
09/29/97	ND							
12/15/97	ND							
03/16/98	ND							
06/26/98	ND							
09/22/98	240							
12/15/98	ND							
03/15/99	67							
06/07/99	ND							
09/03/99	76	ND	ND	ND<2.0		ND	ND	ND
12/06/99	ND							
03/10/00	51							
06/08/00	68.2							
09/25/00	ND					-		
12/19/00	ND							

7376

° 11

					70	Station 7376	•	
Date				Ethylene-				
Sampled			Ethanol	dibromide	1,2-DCA			
	TPH-D	TBA	(8260B)	(EDB)	(EDC)	DIPE	ETBE	TAME
	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)
MW-1 co								
03/05/01	505							
06/14/01	71							
09/17/01	ND<50							
12/17/01	ND<53	ND<40	ND<1000		ND<2.0	ND<2.0	ND<2.0	ND<2.0
03/15/02	ND<52							
06/20/02	ND<50							
09/27/02	ND<100							
12/30/02	52	ND<400	ND<2000	ND<8.0	ND<8.0	ND<8.0	ND<8.0	ND<8.0
03/26/03	120	ND<2000	ND<10000	ND<40	ND<40	ND<40	ND<40	ND<40
06/10/03	ND<50	ND<4000	ND<20000	ND<80	ND<80	ND<80	ND<80	ND<80
09/09/03	ND<50							
12/10/03	ND<50							
03/09/04	ND<50							
06/21/04	ND<50							
09/08/04	ND<50							
12/14/04	ND<50	-						
03/17/05	ND<50							
06/15/05	ND<50							
09/20/05	ND<200							.
12/29/05	ND<200							
03/15/06	ND<200							
06/28/06	ND<200		-					
09/28/06	ND<50							
12/11/06	ND<50							
03/19/07	170							

Table 2 a ADDITIONAL HISTORIC ANALYTICAL RESULTS 76 Station 7376

7376

Page 2 of 19

©TRC

					76	Station 7376	Ď.			
Date Sampled			Ethanoi	Ethytene- dibromide	1, 2-DCA					
	TPH-D	TBA	(8260B)	(EDB)	(EDC)	DIPE	ETBE	TAME		
	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)		
MW-1 co 06/15/07	ontinued 53									
09/24/07	76				'					
12/27/07	53									
03/25/08	59									
06/06/08	ND<50			-						
09/05/08	ND<56									
12/08/08	ND<50									
03/26/09	ND<50					-				
00/20/09	ND<30									
MW-2										
12/08/87	620									
MW-2B										
03/01/95	320						~~			
06/01/95	280									
09/06/95	ND									
12/12/95	850									
03/01/96	870	·								
06/15/96	420									
09/18/96	600									
12/21/96	470									
03/07/97	870									
06/27/97	680									
09/29/97	430									
12/15/97	490									
03/16/98	4000									
06/26/98	790									
7376					P	age 3 of 19			Яте	~

©TRC

Table 2 a ADDITIONAL HISTORIC ANALYTICAL RESULTS 76 Station 7376

°1°

					7.	Station 7570			
Date				Ethylene-					
Sampled			Ethanol	dibromide	1,2-DCA				
	TPH-D	TBA	(8260B)	(EDB)	(EDC)	DIPE	ETBE	TAME	
	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-2B	continued								
09/22/98	930								
12/15/98	600								
03/15/99	390	3800	ND			13	ND	ND	
06/07/99	770							-	
09/03/99	870	3480	ND		<u></u>	ND	ND	ND	
12/06/99	850								
03/10/00	1500								
09/25/00	2900								
12/19/00	700								
06/14/01	570								
06/10/03	280	ND<10000	ND<50000	ND<200	ND<200	ND<200	ND<200	ND<200	
06/21/04	260								
03/17/05	280								
06/15/05	560								
09/20/05	340								
03/15/06	7200								
06/28/06	32000								
09/28/06	2300								
12/11/06	61000								
03/19/07	30000								
06/15/07	21000								
12/27/07	18000								
03/25/08	1200								
06/06/08	15000								
09/05/08	710								

7376

T

						Station / C/	•		
Date Sampled			Ethanol	Ethylene- dibromide	1,2-DCA				
	TPH-D	TBA	(8260B)	(EDB)	(EDC)	DIPE	ETBE	TAME	
<u></u>	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-2B 12/08/08	continued 7000								
03/26/09	11000								
MW-3 12/08/87	2300				~~				
03/01/95	140								
06/01/95	140								
09/06/95	880								
12/12/95	3100								
03/01/96	1500								
06/15/96	400								
09/18/96	170								
12/21/96	64								
03/07/97	570								
06/27/97	ND								
09/29/97	ND								
12/15/97	ND								
03/16/98	670								
06/26/98	63								
09/22/98	95								
12/15/98	ND								
03/15/99	3500								
06/07/99	ND								
09/03/99	2900	ND	ND			ND	ND	ND	
12/06/99	4200								
03/10/00	2500								

7376

					~ ~	o station 7570			
Date				Ethylene-					
Sampled			Ethanol	dibromide	1,2-DCA				
	TPH-D	TBA	(8260B)	(EDB)	(EDC)	DIPE	ETBE	TAME	
	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
	ontinued								
06/08/00	489								
09/25/00	4380								
12/19/00	5600								
03/05/01	3790								
06/14/01	1300								
09/17/01	290								
12/17/01	700	26	ND<500	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	
03/15/02	3600								
06/20/02	1300								
09/27/02	ND<100								
12/30/02	1800	ND<1000	ND<5000	ND<20	ND<20	ND<20	ND<20	ND<20	
03/26/03	2600	ND<1000	ND<5000	ND<20	ND<20	ND<20	ND<20	ND<20	
06/10/03	350	ND<100	ND<500	ND<2.0	5.3	ND<2.0	ND<2.0	ND<2.0	
09/09/03	270								
12/10/03	800								
03/09/04	1100								
06/21/04	210								
09/08/04	130								
12/14/04	800								
03/17/05	2400								
06/15/05	410								
09/20/05	ND<200								
12/29/05	1400								
03/15/06	520								
06/28/06	920								

7376

Page 6 of 19

							•		
Date Sampled				Ethylene-					
Sampled			Ethanol	dibromide	1,2-DCA				
	TPH-D	TBA	(8260B)	(EDB)	(EDC)	DIPE	ETBE	TAME	
	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-3 c									
09/28/06	190								
12/11/06	520								
03/19/07	660		·						
06/15/07	1100								
09/24/07	770								
12/27/07	340								
03/25/08	940								
06/06/08	380								
09/05/08	240								
12/08/08	250								
03/26/09	210								
MW-4									
09/18/96	200								
12/21/96	ND								
03/07/97	ND								
06/27/97	ND								
09/29/97	ND								
12/15/97	ND								
03/16/98	ND								
06/26/98	630				·				
09/22/98	74								
12/15/98	ND								
03/15/99	ND								
06/07/99	ND								
09/03/99	66	 ND	 ND						
07.00.79	00	IND	ND.			ND	ND	ND	

Page 7 of 19

					/0	Station 7570				
Date				Ethylene-						
Sampled			Ethanol	dibromide	1,2-DCA					
	TPH-D	TBA	(8260B)	(EDB)	(EDC)	DIPE	ETBE	TAME		
	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)		
	ontinued									
12/06/99	95									
03/10/00	ND									
06/08/00	72.8									
06/10/03	ND<50	ND<100	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0		
09/09/03	ND<50									
12/10/03	ND<50									
03/09/04	56									
06/21/04	59									
09/08/04	ND<50									
12/14/04	ND<50									
03/17/05	ND<50									
06/15/05	ND<50									
09/20/05	ND<200									
12/29/05	ND<200									
03/15/06	ND<200									
06/28/06	ND<200									
09/28/06	ND<50									
12/11/06	ND<50									
03/19/07	66									
06/15/07	ND<50									
09/24/07	ND<50				55					
12/27/07	ND<50									
03/25/08	ND<50									
06/06/08	ND<50									
09/05/08	ND<50									

7376

Page 8 of 19

							•		
Date Sampled			Ethanol	Ethylene- dibromide	1,2-DCA				
	TPH-D	TBA	(8260B)	(EDB)	(EDC)	DIPE	ETBE	TAME	
	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-4 c									
12/08/08	ND<56								
03/26/09	ND<50								
MW-5									
09/18/96	4700								
12/21/96	4700								
03/07/97	2100								
06/26/98	230000								
06/07/99	4700000	ND	ND			ND	ND	ND	
03/09/04	110000								
06/21/04	190000								
03/19/07	84000								
06/15/07	29000								
09/24/07	33000								
12/27/07	23000								
03/25/08	44000								
06/06/08	5100								
09/05/08	9000								
12/08/08	7500								
03/26/09	5400								
MW-6 09/18/96	ND								
12/21/96	ND								
03/07/97	ND 190								
06/27/97	73								
09/29/97	73 ND								
	ND								
7376					ł	Page 9 of 19			ÔTOC

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 7376

Date Sampled			Ethanol	Ethylene- dibromide	1,2-DCA			
	TPH-D	TBA	(8260B)	(EDB)	(EDC)	DIPE	ETBE	TAME
	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)
MW-6 co	ontinued							
12/15/97	ND							
03/16/98	100							
06/26/98	180							
01/23/99	ND							
03/15/99	71							
06/07/99	160							
03/10/00	ND							
03/09/04	110							
03/17/05	150							
06/15/05	120							
09/20/05	ND<200							~
12/29/05	ND<200							
03/15/06	ND<200							
06/28/06	ND<200							
09/28/06	85							
12/11/06	81							
03/19/07	90							
06/15/07	310							
09/24/07	130							
12/27/07	73							
03/25/08	77							
06/06/08	ND<50							
09/05/08	73							
12/08/08	130							
03/26/09	55							-

7376

Page 10 of 19

····· | ·····

.....1

					/0	Station 7376	1	
Date Sampled			Ethanol	Ethylene- dibromide	1,2-DCA			
	TPH-D	TBA	(8260B)	(EDB)	(EDC)	DIPE	ETBE	TAME
	(µg/l)	(µg/l)	(μg/l)	(µg/l)	(LBC) (µg/l)	(μg/l)	(μg/l)	(µg/l)
				((118/1)		(#8/1)
MW-7 08/18/98	1400							
09/22/98	780							
12/15/98	350							
03/15/99	460	610	 ND					
06/07/99	550					4.3	ND	ND
09/03/99	550	460						
12/06/99	220		ND			4.36	ND	ND
03/10/00	930							
06/08/00	930 463							
09/25/00								
12/19/00	1810							
03/05/01	930							
06/14/01	801				<u></u>	<u>.</u>		
09/17/01	710							
12/17/01	860							
03/15/02	470	ND<200	ND<5000	ND<10	ND<10	ND<10	ND<10	ND<10
	830							
06/20/02	710							
09/27/02	300		·					
12/30/02	220	ND<500	ND<2500	ND<10	ND<10	ND<10	ND<10	ND<10
03/26/03	560	ND<2000	ND<10000	ND<40	ND<40	ND<40	ND<40	ND<40
06/10/03	610	ND<1000	ND<5000	ND<20	ND<20	ND<20	ND<20	ND<20
09/09/03	430							
12/10/03	450							-
03/09/04	640							
06/21/04	630							

7376

Page 11 of 19

CTRC

Date				Ethylene-				
Sampled			Ethanol	dibromide	1,2 - DCA			
	TPH-D	TBA	(8260B)	(EDB)	(EDC)	DIPE	ETBE	TAME
	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)
MW-7 co	ontinued							
09/08/04	270							
12/14/04	160							
03/17/05	380							
06/15/05	630							
09/20/05	280							
12/29/05	ND<200							
03/15/06	ND<200							
06/28/06	260							
09/28/06	140							
12/11/06	99							
03/19/07	140							
06/15/07	78							
09/24/07	140							
12/27/07	71							
03/25/08	630							
06/06/08	ND<56							
09/05/08	120							
12/08/08	110							
03/26/09	69							
MW-8								
06/26/98	80							
09/22/98	120							
12/15/98	ND							
03/23/99	60							
06/07/99	ND							
00/07/99	1112						-	

7376

Page 12 of 19

CTRC

						otation 1570		
Date				Ethylene-				
Sampled			Ethanol	dibromide	1, 2-DCA			
	TPH-D	TBA	(8260B)	(EDB)	(EDC)	DIPE	ETBE	TAME
	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)
MW-8 co	ontinued							
09/03/99	130	ND	ND			12.4	ND	ND
12/06/99	160							
03/10/00	61							
06/08/00	135							
09/25/00	518							
12/19/00	100							
03/05/01	161							
06/14/01	94							
09/17/01	60			-				
12/17/01	ND<52	77	ND<500	ND<1.0	ND<1.0	9.8	ND<1.0	ND<1.0
03/15/02	69							
06/20/02	ND<50							
09/27/02	130							
12/30/02	76	ND<100	ND<500	ND<2.0	ND<2.0	7.1	ND<2.0	ND<2.0
03/26/03	120	ND<100	ND<500	ND<2.0	ND<2.0	7.1	ND<2.0	ND<2.0
06/10/03	ND<50	ND<100	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0
09/09/03	58							
12/10/03	86							
03/09/04	92							
06/21/04	87							
09/08/04	ND<50							
12/14/04	ND<50							
03/17/05	56							
06/15/05	53				ů.			
09/20/05	ND<200							


					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	otation 1570		
Date				Ethylene-				
Sampled			Ethanol	dibromide	1,2-DCA			
	TPH-D	TBA	(8260B)	(EDB)	(EDC)	DIPE	ETBE	TAME
	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)
	ontinued							
12/29/05	ND<200							
03/15/06	ND<200							
06/28/06	ND<200							
09/28/06	ND<50							
12/11/06	ND<50							
03/19/07	60							
06/15/07	58							
09/24/07	53							
12/27/07	72							
03/25/08	50							
06/06/08	ND<50							
09/05/08	ND<50							
12/08/08	62							
03/26/09	ND<50							
MW-9								
12/06/99	ND	ND		ND	ND	ND	ND	ND
03/10/00	150							
06/08/00	67.8							
09/25/00	903							
12/19/00	ND							
03/05/01	96.5							
06/14/01	ND							
09/17/01	ND<50							
12/17/01	ND<52	 ND<20	 ND<500	 ND<1.0	 ND<1.0	 ND<1.0	 ND<1.0	 ND∠i 0
03/15/02	ND<52 ND<51						ND<1.0	ND<1.0
03/13/02	ND-91							·

Page 14 of 19



					76	5 Station 7376		
Date				Ethylene-				
Sampled			Ethanol	dibromide	1,2 <b>-</b> DCA			
	TPH-D	TBA	(8260B)	(EDB)	(EDC)	DIPE	ETBE	TAME
	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)
MW-9 co								
06/20/02	ND<50							
09/27/02	ND<110							
12/30/02	59	ND<100	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0
03/26/03	ND<50	ND<100	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0
06/10/03	ND<50	ND<100	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0
09/09/03	ND<50							
12/10/03	ND<50							
03/09/04	ND<50							
06/21/04	ND<50							
09/08/04	ND<50							
12/14/04	ND<50							
03/17/05	ND<50							
06/15/05	ND<50							
09/20/05	ND<200		-					
12/29/05	ND<200							
03/15/06	ND<200							
06/28/06	ND<200							
09/28/06	ND<50							
12/11/06	ND<50							
03/19/07	ND<50			-	<u></u>			
06/15/07	52							
09/24/07	ND<50							
12/27/07	ND<50							
03/25/08	110			. —				
06/06/08	ND<50							
20/00/00								

# Table 2 aADDITIONAL HISTORIC ANALYTICAL RESULTS76 Station 7376

7376

------

Page 15 of 19

**CTRC** 

					70	Station 7376	)		
Date Sampled			Ethanol	Ethytene- dibromide	1,2 <b>-</b> DCA				
-	TPH-D	TBA	(8260B)	(EDB)	(EDC)	DIPE	ETBE	TAME	
	(μg/l)	(μg/l)	(θ200 <b>D</b> ) (μg/l)	(μg/l)	(EDC) (μg/l)	μg/l)	LIBE (μg/l)		
MW-9 co		(18-7	(PB-1)	(#8/1)	(#6/1)	(µg/1)	(μg/1)	(µg/l)	
09/05/08	ND<50								
12/08/08	ND<50								
03/26/09	ND<50								
	112 -50								
MW-10									
03/10/00	78	ND		ND	22	ND	ND	ND	
06/10/03	65	ND<100	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	
03/09/04	140								
06/21/04	ND<50								
03/17/05	ND<50								
06/15/05	71								
09/20/05	ND<200								
12/29/05	ND<200								
03/15/06	ND<200								
06/28/06	ND<200								
09/28/06	ND<50								
12/11/06	92								
03/19/07	190								
06/15/07	120								
09/24/07	130								
12/27/07	59								
03/25/08	74								
06/06/08	190								
09/05/08	ND<50								
12/08/08	53								
03/26/09	ND<50								
	112 -00								

Page 16 of 19

**©TRC** 

## Table 2 aADDITIONAL HISTORIC ANALYTICAL RESULTS76 Station 7376

						5 5 <b>11 11 11 15</b> 10	•		
Date Sampled	TPH-D (μg/l)	TBA (µg/l)	Ethanol (8260B) (µg/l)	Ethylene- dibromide (EDB) (µg/l)	i ,2-DCA (EDC) (µg/l)	DIPE (µg/l)	ETBE (µg/l)	TAME (μg/l)	
MW-11									 
09/25/01	ND<50								
12/17/01	110	ND<20	ND<500	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	
03/15/02	140								
06/20/02	ND<60								
09/27/02	ND<110								
12/30/02	ND<50	ND<100	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	
03/26/03	54	ND<100	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	
06/10/03	ND<50	ND<100	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	
09/09/03	ND<50								
12/10/03	ND<50								
03/09/04	ND<50								
06/21/04	ND<50								
09/08/04	ND<50								
12/14/04	ND<50								
03/17/05	85								
06/15/05	170								
09/20/05	210								
12/29/05	ND<200								
03/15/06	ND<200								
06/28/06	ND<200								
09/28/06	51								
12/11/06	74								
03/19/07	63								
06/15/07	70								
09/24/07	78								
7376					P	age 17 of 19			ATDA

**©**TRC

#### Table 2 a ADDITIONAL HISTORIC ANALYTICAL RESULTS 76 Station 7376

Table 2
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 7376

Date Sampled	ТРН-D (µg/l)	ΤΒΑ (μg/l)	Ethanol (8260B) (μg/l)	Ethylene- dibromide (EDB)	i,2-DCA (EDC)	DIPE	ETBE	TAME
		(µg/1)	(µg/1)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)
<b>MW-11</b> 12/27/07	continued ND<50							
03/25/08								
06/06/08								
09/05/08								
12/08/08			~-					
03/26/09								
03/20/09	90							
MW-12								
09/25/01	ND<50							
12/17/01	77	ND<20	ND<500	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
03/15/02	ND<51							
06/20/02	ND<58							
09/27/02	ND<100							
12/30/02	ND<50	ND<100	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0
03/26/03	ND<50	ND<100	ND<500000	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0
06/10/03	ND<50	ND<100	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0
09/09/03	ND<50							
12/10/03	ND<50							
03/09/04	220							
06/21/04	180							
09/08/04	ND<50							
12/14/04	ND<50							
03/17/05	350							
06/15/05	330							
09/20/05	250							
12/29/05	320							
	520							

Page 18 of 19



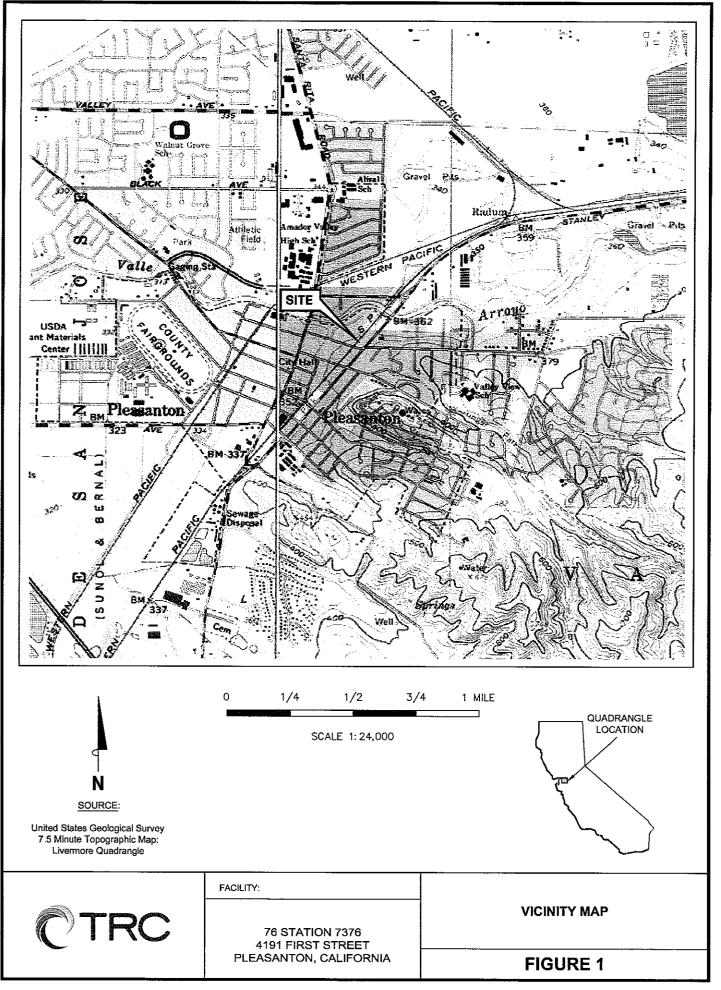
Date Sampled	TPH-D	TBA	Ethanol (8260B)	Ethylene- dibromide (EDB)	1,2-DCA (EDC)	DIPE	ETBE	TAME
	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)
<b>MW-12</b> 03/15/06								
06/28/06								
09/28/06								
12/11/06	120							
03/19/07	99							
06/15/07	66							
09/24/07	71							
12/27/07	ND<50							
03/25/08	58			·				
06/06/08	ND<50							
09/05/08	ND<50							
12/08/08	50							
03/26/09	ND<50							

### Table 2 a ADDITIONAL HISTORIC ANALYTICAL RESULTS 76 Station 7376

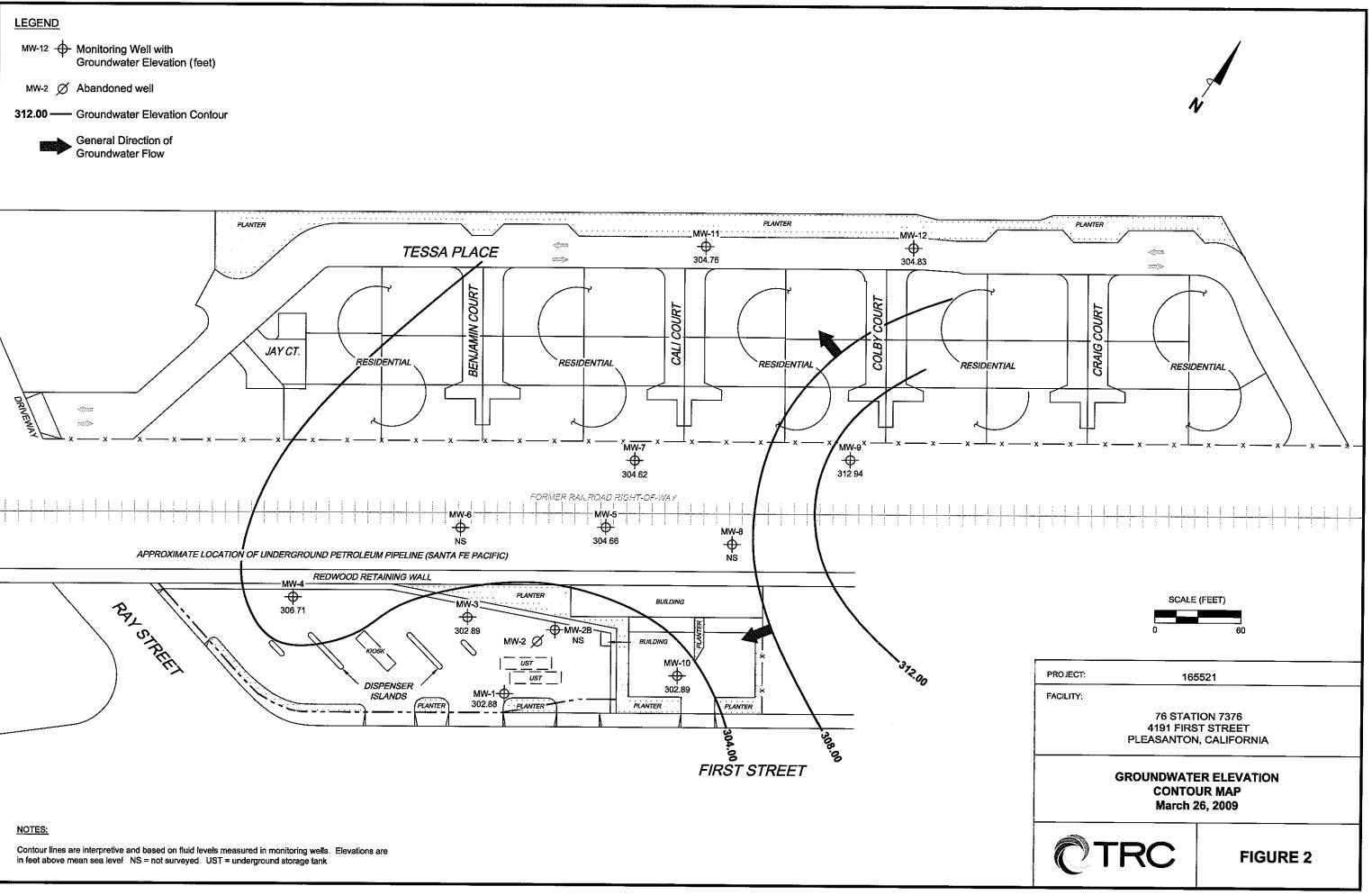


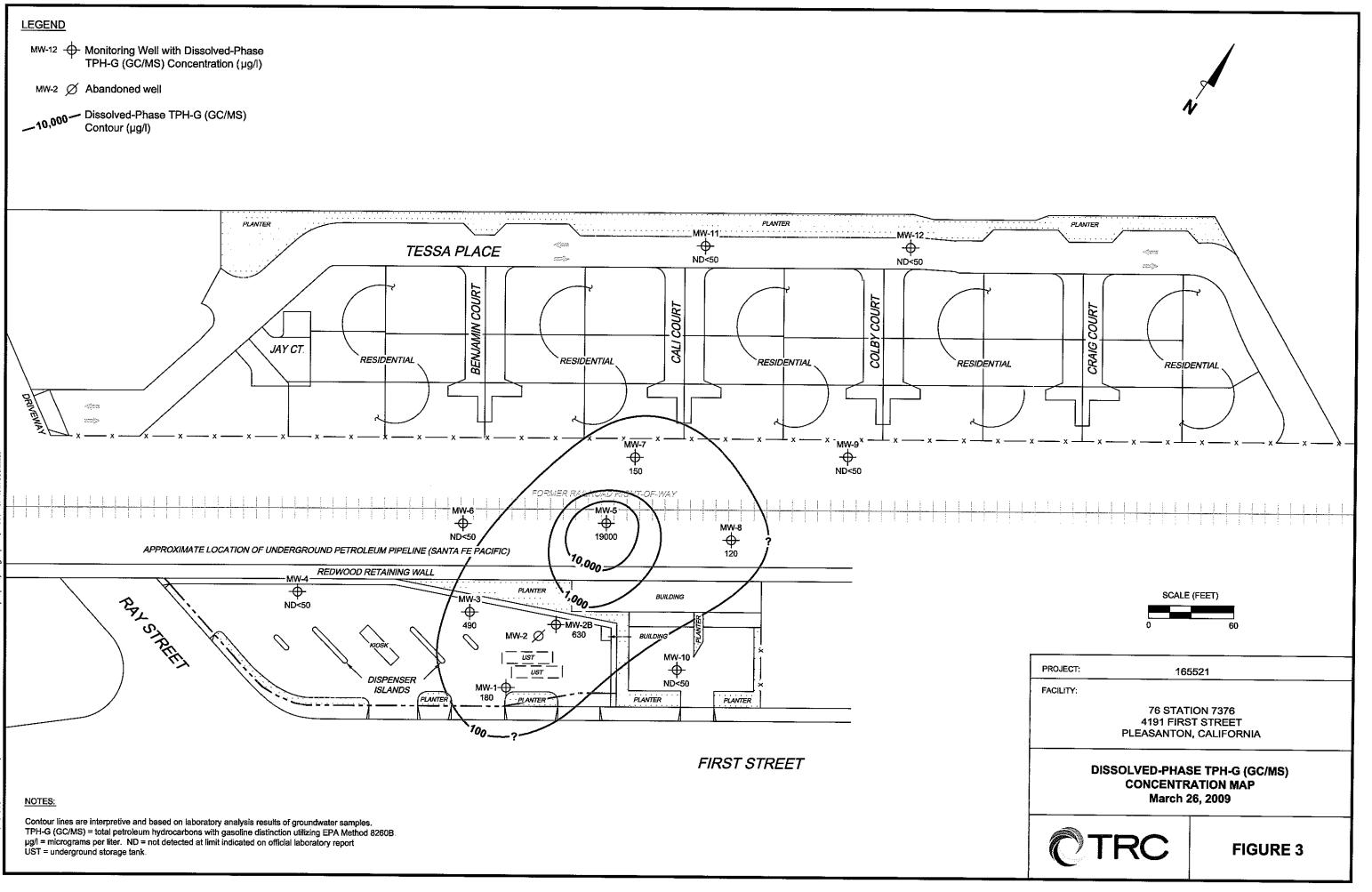
-----

### I ABLE 3LIQUID PHASE HYDROCARBON RECOVERY DAIA76 STATION 7376

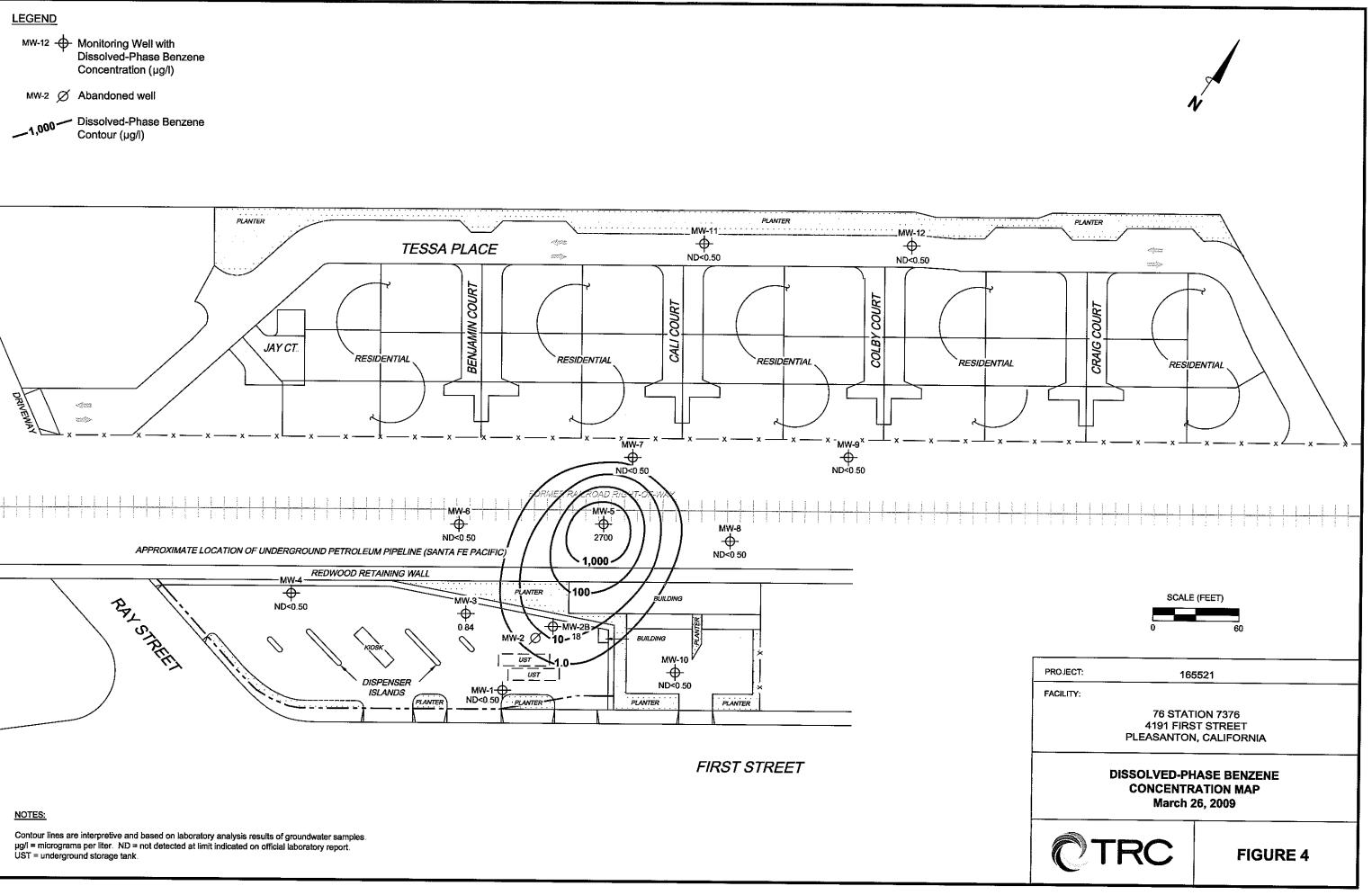

	DATE	LPH Recovered(Gallons)
MW-5	6/28/06	0 02
MW-5	7/12/06	0.00
MW-5	8/7/06	0 00
MW-5	9/15/06	0 00
MW-5	9/28/06	0 01
MW-5	10/10/06	0.00
MW-5	10/30/06	0 00
MW-5	11/10/06	0.00
MW-5	11/22/06	0.00
MW-5	12/11/06	0.02
MW-5	12/21/06	0.00
MW-5	1/5/07	0.01
MW-5	1/15/07	0 00
MW-5	2/5/07	0 00
MW-5	2/20/07	0 00
MW-5	3/8/07	0 00
MW-5	4/12/07	0 00
MW-5	4/30/07	0 03
MW-5	5/7/07	0 00
MW-5	5/23/07	0 00
MW-5	6/28/07	0 00
MW-5	7/19/07	0 00
MW-5	8/1/07	0 00
MW-5	8/13/07	0.00
MW-5	8/27/07	0.00
MW-5	9/14/07	0.00
MW-5	10/16/07	0 00
MW-5	10/29/07	0 00
MW-5	11/16/07	0 00
MW-5	12/7/07	0 00
MW-5	1/7/08	0 00
MW-5	1/28/08	0 00
MW-5	2/15/08	0 00
MW-5	2/29/08	0 00
MW-5	3/25/08	0 00
MW-5	4/11/08	0 00
MW-5	4/22/08	0.00
MW-5	5/5/08	0.00
MW-5 MW-5	5/20/08	0.00
MW-5	6/6/08 6/23/08	0.00 0.00
MW-5	7/1/08	0.00
MW-5	7/18/08	0.00
MW-5	8/7/08	0.00
MW-5	8/26/08	0.04
MW-5	9/16/08	0.00
MW-5	10/3/08	0 00
MW-5	10/17/08	0 00
MW-5	11/5/08	0.00
MW-5	11/26/08	0 00
MW-5	12/8/08	0 01
MW-5	12/24/08	0 00
MW-5	1/15/09	0.00
MW-5	1/30/09	0.00
MW-5	2/6/09	0.00
MW-5	3/6/09	0.00
MW-5	3/26/09	0.00

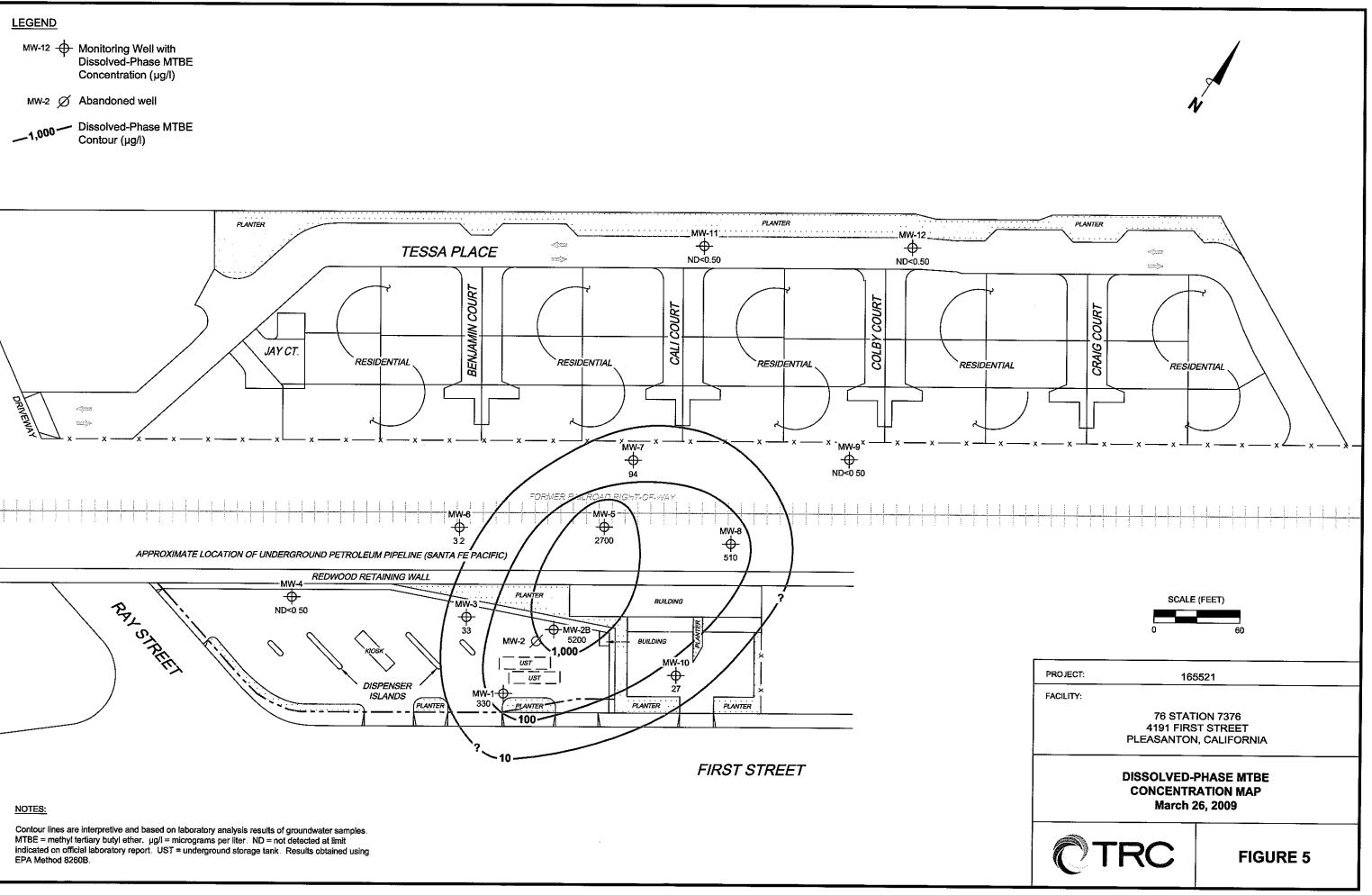
Total LPH Recovered (gallons):


0.14


ŗ

## FIGURES





PS=1:1 L:\QMS V I C I N I T Y M A P S\7376VM.DWG Jan 21, 2009 – 8:45am aakers





60 7376-003 L:\Graphics\QMS NORTH-SOUTH\x-7000\7376+\7376ams{new}.dwa Apr 14. 2009 - 8:42am bschm





ATTACHMENT E Historic Boring Logs UNIFIED SOIL CLASSIFICATION SYSTEM

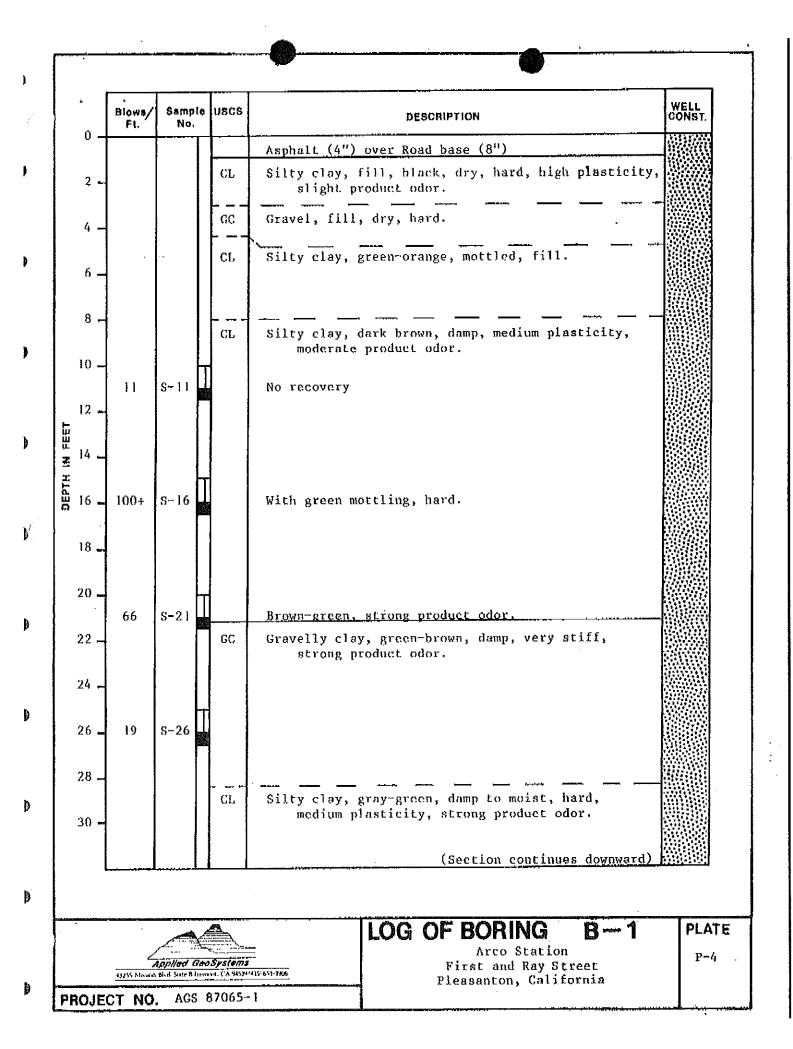
MAJOR É	of visions	1.1#	DESCRIFTION	0 NDLAM	VISTONS	LIN	BESCRIPTION			
		CH	Wall-gradud gravals of graval sa mixturop, little or no finam. Feorly-gradad gravals or gravel			HL	inorganic silts and very finn Aenda, rock flour, silty or clayer fing words or clayer silts with alight plasticity.			
	GNAVÉL AND GRAVELLY	57 6N	mand wixture, little or no fine Silty gravels, gravel-mand-dim		51LT5 AND CLAY5	<b>E</b> L	Inorganic clays of low to medium plasticity, gravely clays, sendy			
	50165	60	mixturen. Ciwyey qravalm, gravul-wend-cim minturuk.	3	LL+5D Slaya, wilty dla Urganic silta au		claya, milty clays, lean claya, Organic silts and organic milt- claya of low plasticity-			
ÇBARSE GRA1WÊD SQILS		SW	Wyll-graded sends of gravally sunds, little ar no finus.	CRAINED		лн	Inorganic wilts, miracasus or distonaceous fins usndy or silty soils, sjastic milts.			
	SAND AND Sandy	SP	Fourly-graded sands or gravell eands, little or no fines.	7	SILIS AND CLAIS	CH	leorganis slaya of high plasticit fat slays.			
	5011.5	SM	Silty pande, wand-wilt mirtures	••	LL<30	ŐН	Dresnic clays of medium to high planticity-			
		50	Elsysy wends, sand-clay mixturs	HL- HIGHLY SOI		Ft	Pout and other highly organic polle-			
¥ ¥ \$-10		d wa ved	iter level in böring	Neat cement annular seal Blank PVC Machine-slotted PVC						
			BLOW/FT. REPRESEI A 140-POUND HAMM TO DRIVE THE SAM 12 INCHES OF AN DASHED LINES SEP REPRESENT APPROX ACTUAL BOUNDARIE REPRESENT SUBSUR HOAING LOCATION ONLY.	ER FALLING 1 PLER THROUG 18 INCH PENI ARATING UNI IMATE BOUND 5 MAY BE GRA FACE CONDIT	IO INCHE I THE LA STRATION FS ON TH ARIES ON ADUAL IONS AT	S ST LO LY LOGS THE	G			
		<u>کور</u> در این		UNIFIED S	OIL CLA AND SY		CATION SYSTEM PLATE			

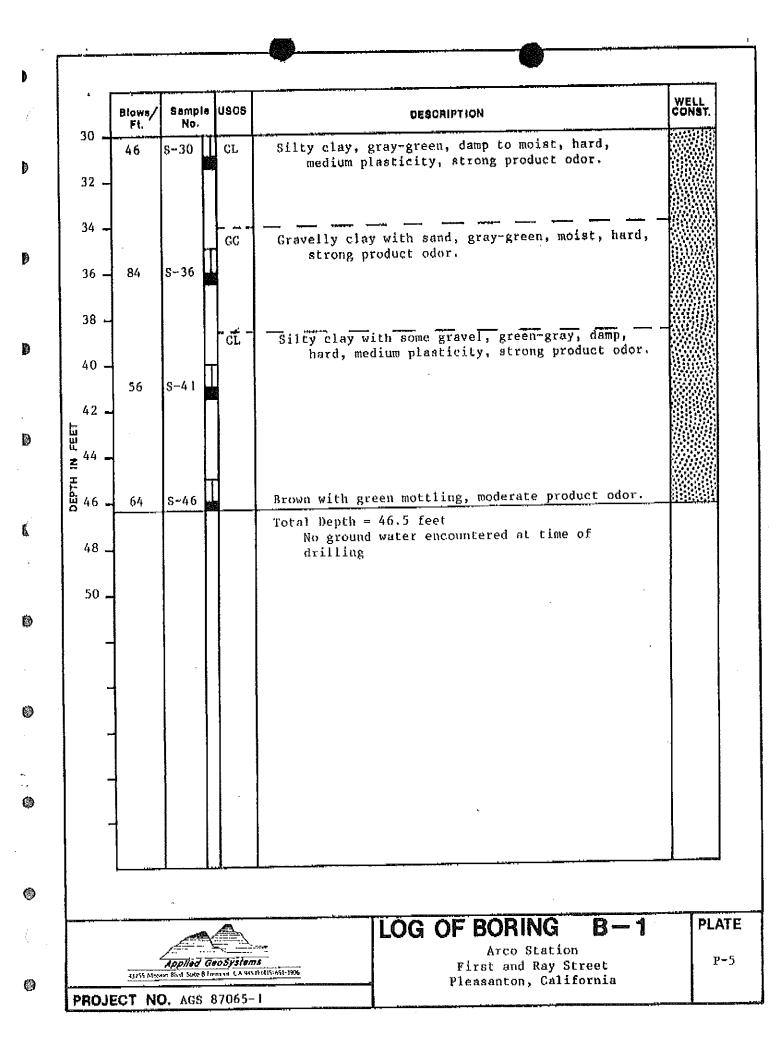
0

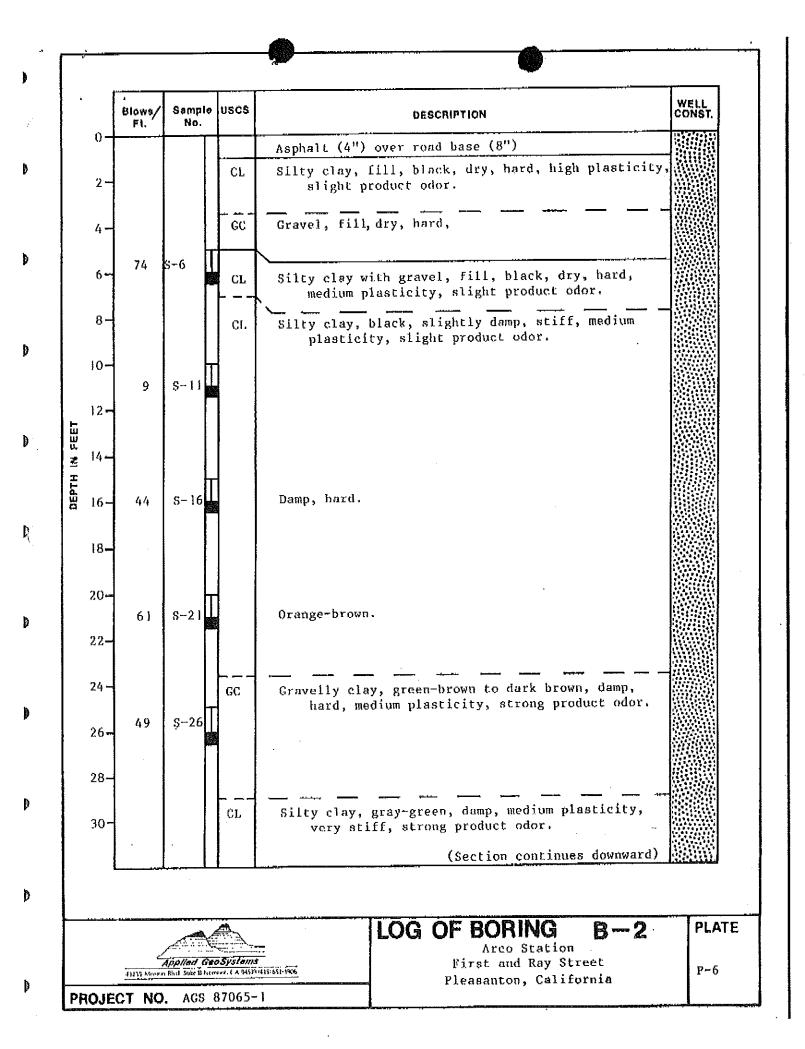
h

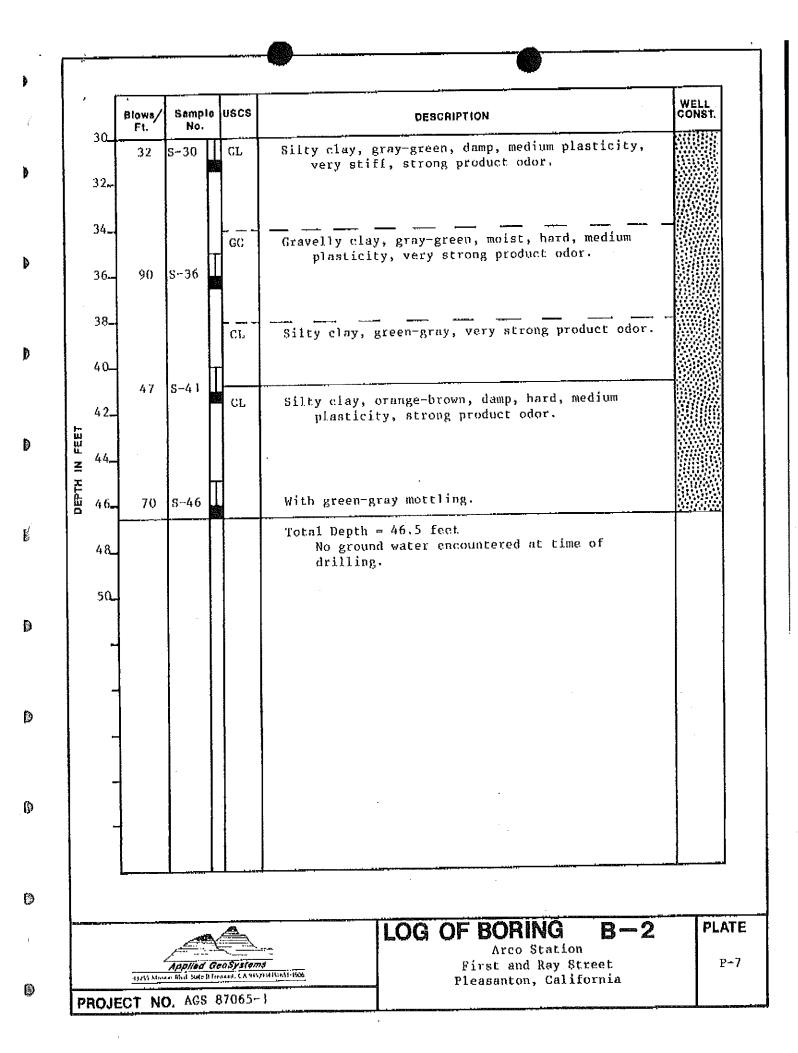
þ

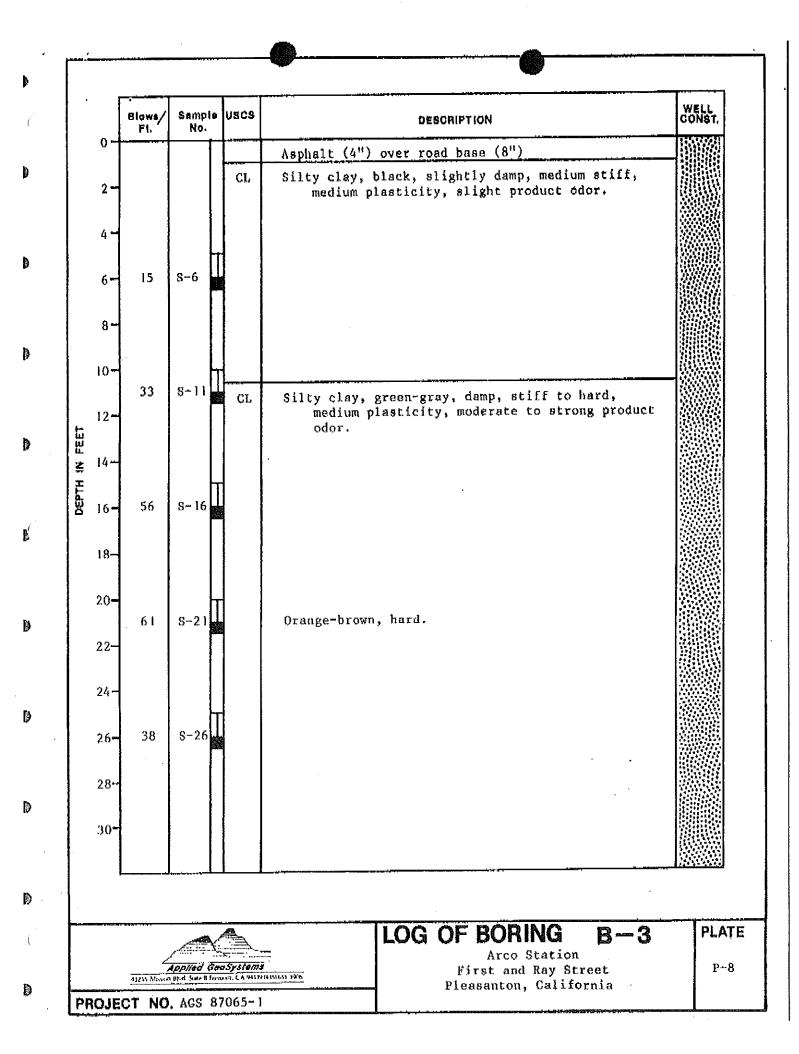
(tes

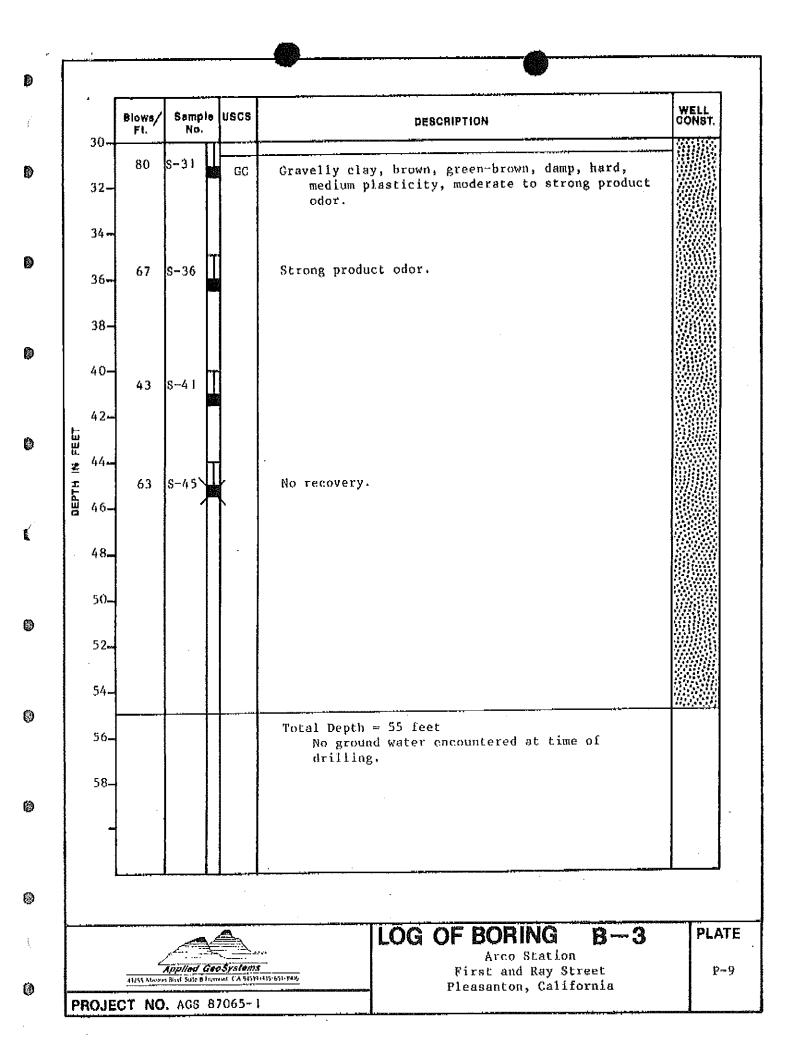

18.00

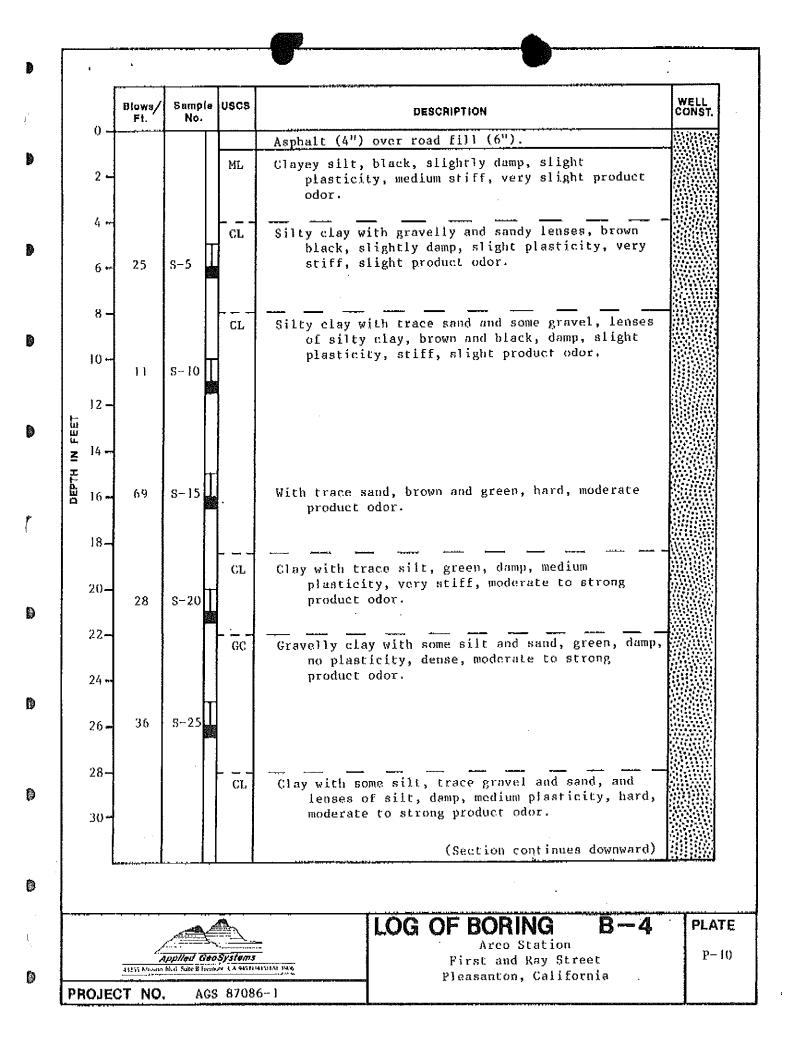

Ĺ


6


Ø


۲











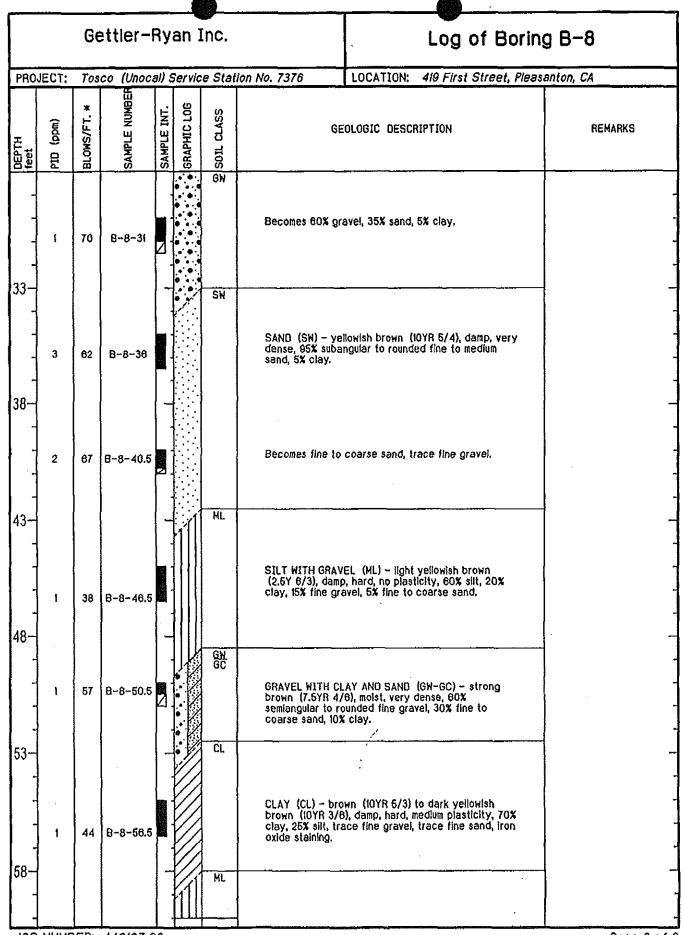



	Blows/ Ft,	Sample No.	USCS	DESCRIPTION	WELL CONST,
30 – 32 –	33	s-30	CL	Clay with some silt, trace gravel and sand, and lenses of silt, damp, medium plasticity, hard, moderate to strong product odor.	
34 - 36 -	49	s−35	GC	Gravelly clay with silt and sand, green-brown, very moist, no plasticity, hard, strong product odor.	
38 - 40 - 42 -	49	S-40	 Cl.	Silty clay with some sand and lenses of gravel, sand and silt, orange, slightly damp, slight plasticity, hard, slight product odor.	
44 - 46 -	37	8-45	CI.	Clay with trace silt and gravel, orange, slightly damp, medium plasticity, hard, slight product odor.	
48 50 52	37	8-50 T		With some sand and silt, brown, damp, slight plasticity.	
54 - 56 - 58 -	31	S-55		With some sand and trace silt, slightly damp, medium plasticity, very stiff.	
60 -				(Section continues downward)	
m-rai-drome à - Fri		Spplind Geo	Systems	LOG OF BORING B-4	PLA P-

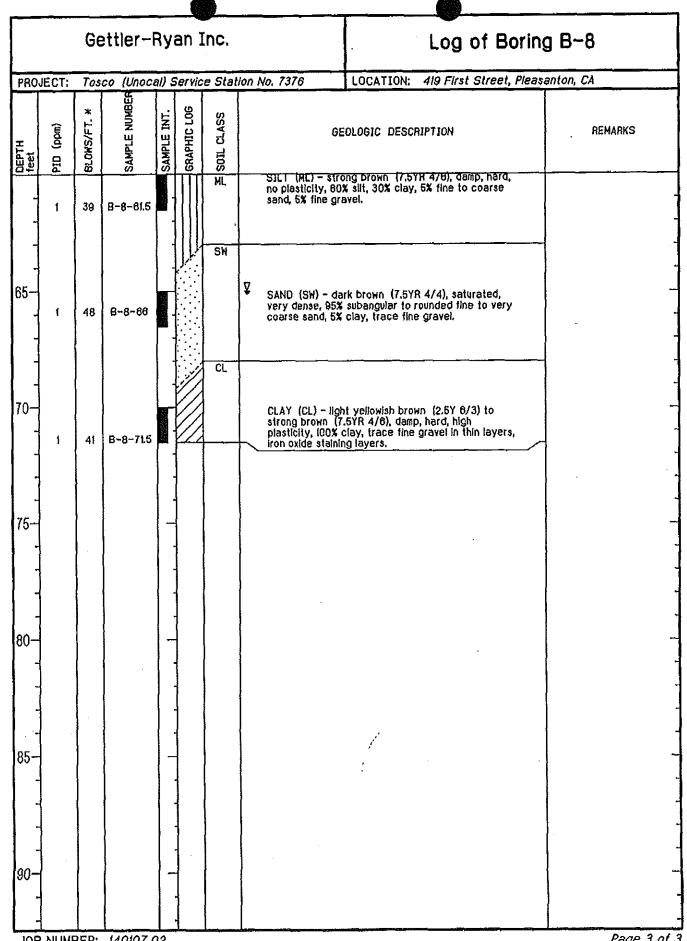
1

Ì

	Blows/ Ft.	Sampie No.	USCS	DESCRIPTION	WELL CONS
60	72	s-60	CL	Gravelly clay with some silt, orange, moist, slight plasticity, hard, no product odor.	
64 -	72	s-65 ∏		Clay with some sand and trace silt. medium	
66 -	<i></i>			plasticity. Total Depth = 66.5 feet. Boring terminated after 2 consecutive clean samples	<u>8400</u>
68 70				after 55 feet. No ground water encountered.	
DEPTH IN FEET					
HTT90					
-					
_					
					,
- -					
_					
		·			
			2	LOG OF BORING B-4	PL


		Ċ,	ttior_l	Dvi	an T	20		Log of Boring B-8					
		99	ettler-	n ye	011 T	110,		Log of Bo	bring B-8				
PRO	JECT:	Tos	co (Unoc	al) S	ervici	e Stat	ion No. 7378	LOCATION: 419 First Street, Pleasanton, CA					
PRO	JECT N	10. :	140107.0	2				CASING ELEVATION:					
DAT	E STA	RTED	: 06/08,	/98		_		WL (ft. bgs): 85 DATE:	TIME:				
			): <i>06/08</i>					WL (ft. bgs); DATE:	T1ME:				
_	LING					m aug	er	TOTAL DEPTH: 71.5 Feet	······································				
DRIL	LING	COMP	ANY: Wo	odw.	ard Di	rilling		GEOLOGIST: Clyde Galantine	·····				
DEPTH feet	PID (ppm)	BLOWS/FT. *	SAMPLE NUMBER	SAMPLE INT.	GRAPHIC LOG	SOIL CLASS	GE	OLOGIC DESCRIPTION	REMARKS				
						CL	Asphalt.						
1 1						UL	CLAY (CL) - ver damp, stiff, medi	y dark grayish brown (10YR 3/2), um plasticity, 70% clay, 30% silt,	Boring backfilled to ground surface with neat cement containing 5% bentonite powder.				
- 5 -	1	20	B-8-6				Color change to becomes damp, I medium sand, tra	dark yellowish brown (10YR 4/6), hard, 60% clay, 30% siit, 10% fine to ce gravel.					
+ - 10- -	2	28	B-8-11.5										
- 15- -	2	37	B-8-16			ML	hard, no plastici	k yellowish brown (10YR 4/8), damp, ly, 55% silt, 40% clay, 5% fine sand. from 15 to 15.5 feet.					
20-	2	50	B-8-21			GW	GRAVEL WITH S. (10YR 4/8), mois fine gravel, 30%	AND (GW) - dark yellowish brown t, dense, 65% subangular to rounded fine to coarse sand, 5% clay,	d				
- 25 7	2	66	<b>8-</b> 8−25.5				Color change to	Drown (10YR 4/3),					

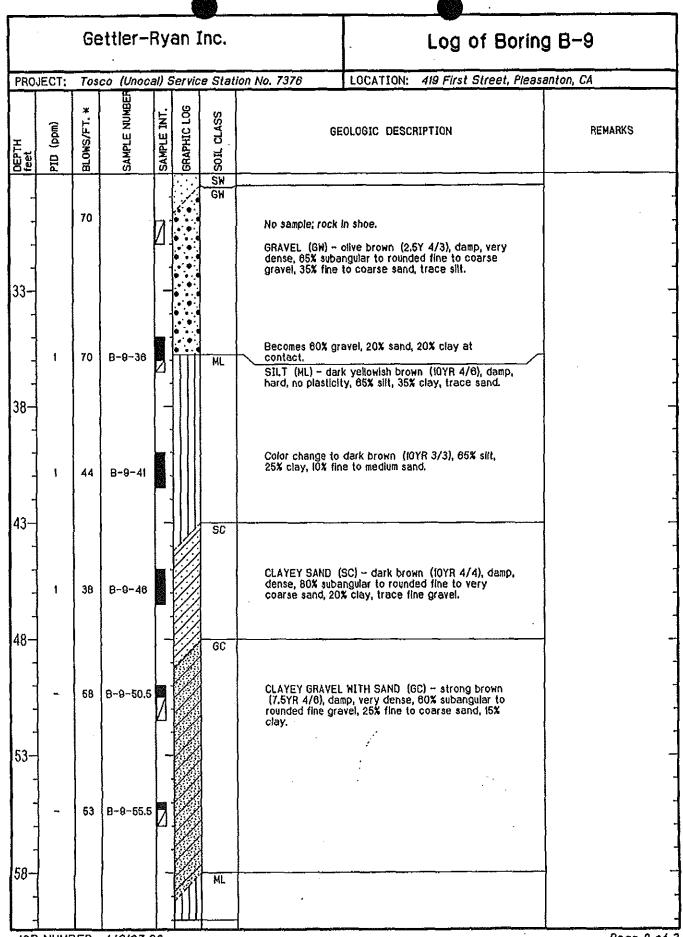
---- ++


JOB NUMBER: 140107.02

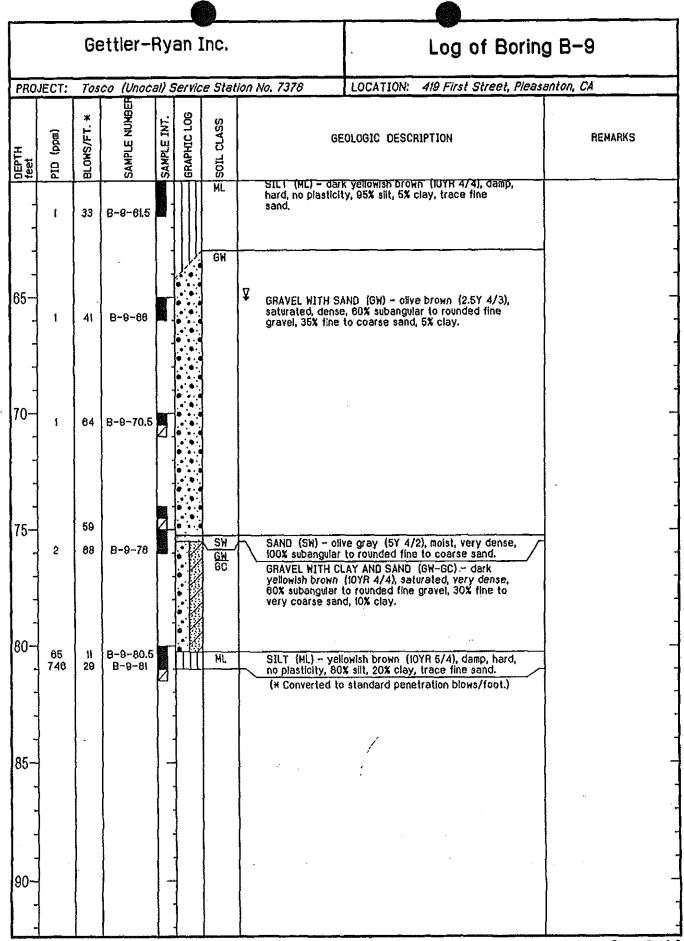
ł

Page 1 of 3




Page 2 of 3




	4 <u></u>		- <u></u>			<b>)</b>	<u></u>	<b>@</b>					
		Ge	ettler-	Rya	an I	inc.		Log of Bori	Log of Boring B-9				
PRO	ECT:	Tos	co (Unoc	el) S	ervic	e Stati	on No. 7378	LOCATION: 419 First Street, Pleasanton, CA					
PRO	JECT I	10.:	140107.0	2				CASING ELEVATION:					
	E STA			_		·	۰ 	WL (ft. bgs): 85 DATE:					
			): 06/08					WL. (ft. bgs): DATE:					
	LING		0D: 8" h			em auge Drilling	<u> </u>	TOTAL DEPTH: 81 Feet GEOLOGIST: Clyde Galantine					
DEPTH	(mqq) dI9	BLOWS/FT. *	SAMPLE NUMBER	SAMPLE INT.	BRAPHIC LOG	SOIL CLASS	. (	BEOLOGIC DESCRIPTION	REMARKS				
-						ML	Asphalt. SILT (ML) – yr no plasticity, to	ellowish brown (10YR 5/4), damp, hard, 10% sill, trace fine sand.	Boring backfilled to groun surface with neaf cement containing 5% bentonite powder.				
- 5		55		$\square$			No recovery.						
- 10 -	i	35	8-9 <b>-</b> 11				Color change t becomes 80% s	o yellowish brown (10YR 5/6), ill, 20% clay, non oxide crenulations.					
- - - -	0	58	B-9-15.5			38	brown (10YR 4	EL WITH SAND (GC) – dark yellowish /4), damp, very dense, 80% rounded fine gravel, 25% fine to 5% clay.					
- - 20 - -	ş	49	8-8-21.5			CL	CLAY WITH SA 4/0), damp, ha 20% fine to me	ND (CL) – dark yellowish brown (10YR rd, slight plasticity, 60% clay, 20% silt, dium sand, trace fine grave),					
- - 25	1	43	8~8-28			SW	SAND (SW) - ) dense, 95% sut 	yellowish Drown (10YR 5/4), damp, very Dangular to rounded fine to very X slit, trace fine gravel.					

;

(



Page 2 of 3



		Ge	ttler-f	٦уа	an I	nc.		Log of Bor	Log of Boring B-10			
PROJ	ECT:	Tos	co (Unoca	al) S	ervic	e Stat	ion No. 7376	LOCATION: 419 First Street, Pleasanton, CA				
PROJ	ECT N	0. :	140107.02	?				CASING ELEVATION:				
DATE	STA	RTED	06/11/9	8				WL (ft. bgs): 77 DATE:	TIME:			
DATE	E FINI	SHEC	1: 06/11/1	98				WL (ft. bgs); DATE;	TIME:			
DRIL	LING	HETH	0D: 8" h	ollo	v-ste	m aug	er	TOTAL DEPTH: 86.5 Feet				
DRIL	LING	COMP	ANY: Wo	odw	ard D	rilling	····	GEOLOGIST: Clyde Galantine				
feet	PID (ppm)	BLOWS/FT. *	SAMPLE NUMBER	SAMPLE INT.	<b>GRAPHIC LOG</b>	SOIL CLASS	G	EOLOGIC DESCRIPTION	REMARKS			
					2 04		Asphalt.					
						ML	GRAVEL WITH S	AND — fill material.	Boring backfilled to ground surface with neat cement containing \$% bentonite powder.			
5	2	43	B-10-6				SANDY SILT W (10YR 3/1), dan fine gravel, 15%	TH GRAVEL (ML) – very dark gray p, hard, no plasticity, 65% silt, 15% fine to coarse sand, 5% clay.				
1	1						Gravel strata f	om 7 to 7.25 feet.				
-{	132	28	B-10-8	۲۸·			Color change to	) dark brown (10YR 3/3).				
- -01 -	-	8	8-10-9,5				Color change to	o very dark grayish brown (2.5Y 3/2),				
1	280	10	B-10-12	2		GW	GRAVEL WITH Saturated, very	Aled, stiff, no plasticity. AND (GW) - black (7.5YR N2/), dense, 70% subangular to rounded i fine to coarse sand, 5% clay.				
-{	313	35	B-10-14		9 9							
15	11 30	50 79	B-10-15 B-10-18.5		· · ·	MĽ SM	dark yellowish i plasticity, 75% gravel, 5% clay	D (ML) - olive brown (2.5Y 4/3) to brown (10YR 4/4), damp, hard, no silt, 15% fine to coarse sand, 5% fine hydrocarbons (?) in cracks.	$\bigwedge$			
I F	24	63	B-10-18			ML	3/2), damp to r rounded fine to	5M) — very dark gravish brown (2.5Y loist, very dense, 50% subangular to coarse sand, 40% silt, 10% fine irbons (?) in cracks.				
- -0!			p. 10. of				4/2), damp, hai	D (ML) – dark grayish brown (2.5Y d, no plasticity, 50% silt, 25% clay, arse sand, 5% line gravel, (?) in cracks.				
-	14	62	B-10-21	NAME OF				• •				
1	17	43	8-10-22.5	N		SM	damp to moist, fine to coarse	SM) – dark greenish gray (6G 4/1), dense, 70% subangular to rounded sand, 25% silt, 5% fine gravel,				
- 25	578	28	B-10-24.5				hydrocarbona	(?) in void space and cracks.				
	587	43	B-10-26			GW ML	4/1), moist, ver fine gravel, 20 hydrocarbons layer et conta	SAND (GW) - dark greenish gray (5G y dense, 75% subangular to rounded f fine to coarse sand, 5% silt, (?) in void spaces and cracks. Sand ct. vo gray (5Y 4/2), damp to molet,	/			

;

ł

L

ŗ

ţ

		Ge	ettler-I	Ry	an	Inc.		Log of Boring B-10			
'nRÓ	JECT:	Tos	co (Unoci	al) S	Servi	ce Stat	ion No. 7376	LOCATION: 419 First Street, Ple	asanton, CA		
feet	PID (ppm)	BLOWS/FT. *	SAMPLE NUMBER	SAMPLE INT.	GRAPHIC LOG	SOIL CLASS	GE	OLOGIC DESCRIPTION	REMARKS		
	470	32	B~10-29			ML	Color change to feet.	dark greenish gray (56Y 4/1) at 20			
-	891	18	B-10-30.5								
- 3-	40) 636	60 44	B-10-32 B-10-34		•••	GW	dense, 80% suba	plive gray (5Y 4/2), moist, very ngular to rounded fine gravel, 15% and, 5% clay, abundant ) in void spaces.	-		
1 1 1	030	44	8-10-34			•	No sample recov	No sample recovery; rock in shoe.			
- -8	4 462	18 73	B-10-37.5 B-10-38		11	ML	Abundant moistur	e/hydrocarbons (?) at contact.			
1 - 1	250	62	8-10-40				5/4), damp, hard	SILT WITH GRAVEL (ML) – yellowish brown (IOYR 5/4), damp, hard, no plasticity, 70% silt, 20% fine gravel, 10% clay, hydrocarbons (?) in cracks and void spaces.			
-	89	82	B-10-41.5				Color change to yellowish brown	olive brown (2.5Y 4/4) to light (2,5Y 8/4).			
3	120	50	8-10-44								
-	31	75	B-10-47				feet, becomes d 70% silt, 15% clay	strong brown (7.5YR 4/8) at 45.25 amp to moist, hard, no plasticity, , 10% fine to coarse sand, 5% fine in hydrocarbons (?).			
8-	3	46	8-10-49	and the			Becomes 60% sli Irace gravel, no	i, 35% clay, 5% fine to coarse sand, hydrocarbons (?) at 47.5 feet.			
				and the second second							
- -	6	40	B-10-51				Localized fine to	coarse sand at 51.25 to 51.75 feet.			
3- -	8	41	B-10-53	Name of Street				; strong brown (7.5YR 4/6) with light 0YR 8/3) motiling from 53.25 to 54			
-	347	25	8-10-54.5	and the second			feet, Localized fine gr	avel and fine to coarse gravel			
-	290	50	8-10-57	Alter (Class	μŀ	SM	strata from 55.7	o to 56.25 feet.	-		
8- _	24	62	B-10-58				brown (IOYR 4/4	H GRAVEL (SM) – dark yellowish I), damp, very dense, 65% unded sand, 20% silt, 15% fine			

-

ţ

ł

		Ge	ettler-I	Ryan	Inc.		Log of Boring B-10			
PRO	ECT:	Tos	co (Unoci	al) Servi	ce Stat	ion No. 7378	LOCATION: 419 First Street, Plea	asanton, CA		
DEPTH feet	PID (ppm)	BLOWS/FT. *	SAMPLE NUMBER	SAMPLE INT. GRAPHIC LOG	SOIL CLASS	G	EOLOGIC DESCRIPTION	REMARKS		
	50 11	79 79	B-10-60.5 B-10-62		SM SW	SAND WITH GRA (iOYR 4/4), moi: rounded fine to silt.	VEL (SW) – dark yellowish brown st, very dense, 75% subangular to coarse sand, 20% fine gravel, 5%			
]	8	62	B-10-84				a.			
65 -	-	68	8-10-65.5 )		MĹ			-		
- - 70-	6	69	B-10-69			hard, no plastic	k yellowish brown (10YR 4/6), damp, ty, 75% silt, 20% clay, 5% fine sand. ta at 89.75 fect.			
-	7	50	6-10-71			Becomes 85% si feet.	It, 15% clay, trace fine sand at 70			
	8	63	B-10-72.5							
- 75	8	60 70	B-10-73.5 B-10-75.6		SW GW	dense, 90% sub coarse sand, 5%	ellowish brown (10YR 5/4), damp, very angular to rounded fine to very 4 silt, 5% fine gravel.			
-	5	72	B-10-78			(10YR 4/2), sat	AND (GW) – dark grayish brown urated, very dense, 60% subangular gravel, 35% fine to very coarse			
80-	~	72	B-10-79.5		SW	SAND (SW) - sa very coarse sar	sturated, very dense, 95% medium to nd, 5% fine gravel.			
-	5	83	B-10-82.5							
- 85—	6	19	B-10-84			Becomes 80% s	and, 20% fine gravel at 84 feet.			
1	8	88	8-10-86.5		ML	4/8), moist, har medium sand.	D (ML) – dark yellowish brown (10YR d, no plasticity, 80% silt, 20% fine to o standard penetration blows/foot.)	7		
90- -				-						

- -

ţ

•••

٠

;

ł

						<u> </u>		<b>()</b>			
		Ge	ettier-I	Ry	an 1	lnċ.		Log of Boring B-11			
PRO.	ECT:	Tos	co (Unoci	al) S	Servic	e Stat	ion No, 7376	LOCATION: 419 First Street, Pleasanton, CA			
PRO	ECT N	10. :	140107.0	2				CASING ELEVATION:			
DAT	E STA	RTED	: 06/09,	198	_			HL (ft. bgs): 68 DATE:	TIME:		
DAT	E FINI	SHEC	): 06/09	/98	1			HL (ft. bgs): DATE:	TIME:		
DRIL	LING	METH	0D: 8" h	ollo	w-ste	em aug	er	TOTAL DEPTH: 74 Feet			
DRIL	LING	COMP	ANY: WO	odw	ard L	Drilling		GEOLOGIST: Clyde Galantine			
DEPTH feet	(mqq) OI4	BLOWS/FT. *	SAMPLE NUMBER	SAMPLE INT.	GRAPHIC LOG	SOIL CLASS	GE	OLOGIC DESCRIPTION	REMARKS		
1						<u>CH</u>	Asphalt.				
						GW CL	(2.5Y 4/2), dama	ND (GH) - dark gravish brown b, dense, 85% subangular to rounded fine to coarse sand, 5% clay; FILL.	Boring backfilled to ground surface with neat cement containing 5% bentonite		
						GW	CLAY (CL) - ver	y dark gray (5Y 3/1), damp, very aticity, 90% clay, 10% silt: FILL.	powder.		
- 5	202	72	B-11~5.5	2			I damp, dense, 85	dark grayish brown (2.5Y 4/2), X subangular to rounded fine gravel, se sand, 5% clay, asphalt: FILL.			
	318	27	8-11-8								
- 10	ļ					ML.	SILT WITH SANE hard, no plasticit sand, 5% fine gra	) (ML) – black (10YR 2/1), damp, ly, 75% silt, 20% fine to very coarse avel.			
۲ -	584	28	B-11-10.5				Color change to at 11 feet, trace	very dark grayish brown {2.5Y 3/2} gravel, sand fining.			
4	408	40	B-11-13	and the second							
4	478	70	B-11-14	R.			Asphalt at 14 fe	et; may still be backfill.			
15-	202	81	B≁II-16				becomes 65% sill	olive brown (2.6Y 4/3) at 15 feet, t, 30% clay, 5% fine sand, }) In vold spaces.			
	513	79	8-11-18								
ل ا	483	82	8-11-19.5				Localized fine g	ravel strata from 19.25 to 19.5 feet,			
0 	361	51	B-11-21				Localized fine g feet,	ravel strata from 20.26 to 20.75			
1	552	55	B-11-23			GC	(2.5Y 4/3), dam rounded fine gra	WITH SAND (SC) - olive brown p, very dense, 60% subangular to avel, 25% fine to coarse sand, 15% aydrocarbons (?) in all cracks and			
25 -	311	32	B-11-25.5			ML	SILT (ML) - dar slight plasticity, sand, localized f	k olive gray (5Y 3/2), damp, hard, 70% sill, 25% clay, 5% fine to coarse ine gravel.			
-	459	32	B-11-27								

; ; ;

Page 1 of 3

Ĺ

		Ge	ettler-l	Ryan I	nc.		Log of Boring B-11		
PRO	JECT:	Tos	co (Unoci	al) Servic	e Stat	ion No. 7376	LOCATION: 419 First Street, Please	anton, CA	
оертн feet	PIC (ppm)	BLONS/FT. *	SAMPLE NUMBER	SAMPLE INT. GRAPHIC LOG	SOIL CLASS	GE	OLOGIC DESCRIPTION	REMARKS	
-	359	79	8-11-29.5		ML				
-	372	32	B-11-31			Localized fine gr feet.	avel and sand from 30.5 to 31.25		
- 33-	292	88	B-1 -32.5		GW	Sand strata from	1 32.4 to 32.8 feet.		
-	231	70	B-11-35	И И		damp, very dens oravel, 25% fine	AND (GW) – very dark gray (5Y 3/1), e, 70% subangular to rounded fine to coarse sand, 5% clay, abundant e) in all cracks and and vold spaces.		
- 38-	310	63	B~11-37		ML	SILT (ML) - gre	enish gray (5G 5/1) to dark		
,° ,	115	74	   B-11-39.5		CL_	plasticity, 65% s gravel, hydrocar	(10YR 4/4), damp, hard, slight lit, 35% clay, trace fine sand to fine bons (?) in cracks.		
1	30	77	B-11-41		LL.	hard, high plasti coarse sand, hy depth.	k yellowish brown (10YR 4/4), damp, city, 80% clay, 20% sill, trace fine to drocarbons (?) decreasing with		
43 -	320 358	72 82	B-11-43.5 8-11-45.5		ML	SILT (ML) - oliv plasticity, 70% s hydrocarbons ( Color change to greenish gray (	e brown (2.5Y 4/4), damp, hard, no lit, 30% clay, trace fine sand, ?) in cracks. olive gray (5Y 4/2) with dark 5BG 4/1) mottling at 44 feet, ocarbons (?) in cracks.		
_	209	70	B-11-47		1				
48-	321	70	B-11-49			Sand layer from hydrocarbons (	48.4 to 48.8 feet, abundant ) In cracks, trace fine grave).		
-	97	70	B~11-51.5			Color change to 50 feet, become coarse sand, tra	dark grayish brown (2.5Y 4/2) at is 60% silt, 30% clay, 10% fine to ace fine gravel,		
- 53—	82	83	B-11-53			Decrease in hyd staining from 52	rocarbons (?) at 52 feet, iron oxide 2 to 52.8 feet,		
-	141	77	B-11-55						
- 58—	148	79	B-11-58			Abundant hydro	carbons (?) in sand at 57 feet.		
	428	78	8-11-59		SW SC	brown (2.6Y 3/2 subangular to re	Y (SW-SC) - very dark grayish 2), damp to moist, very dense, 85% bunded fine to coarse sand, 10% clay, saturated with bydrocarbons (2).	1	

ς.

i

Į

ļ

1

·	· <u>·</u>					9-					
		Ge	ettler-	Ry	an 1	[nc.		Log of Boring B-11			
ROJ	ECT:	Tos	0.	ai) S	er vic	e Stal	ion No. 7376	LOCATION:	419 First Street, Plea	santon, CA	
feet	(mqq) (II4	BLOWS/FT. *	SAMPLE NUMBEI	SAMPLE INT.	<b>GRAPHIC LOG</b>	SOIL CLASS	GE	OLOGIC DESC	RIPTION	REMARKS	
	455 451	62 63	8-11-61 B-11-62.5			<u>SW</u> SC	SAND WITH CLA brown (2.5Y 3/2 very dense, 80% coarse sand, 10) hydrocarbons (1	(SW-SC) ~ ve ) to dark brown subangular to r c clay, 10% fine r) from 81 to 82.	ery dark grayish (10YR 4/3), damp, rounded fine to gravel, abundant 25 feet.		
- 5	74	62	B-11-65			GM GC	GRAVEL WITH CI yellowish brown subangular to ro coarse sand, 103	(10YR 4/8), dan unded fine grav	(GW-GC) – dark np, very dense, 60% rel, 30% fine to		
	51	62	8-11-68.5				Becomes 50% gr feet.	avel, 40% sand,	10% clay at 66		
	24	67	B-11-69	-			Saturated above feet.	: 68 feet, sand	strata above 68.2		
0-	8	82	8+1 -70.5				Abundant water.		· · · · · · · · · · · · · · · · · · ·		
	6	62	B-11-73.5			CL	CLAY (CL) – bro hard, medium pla sand.	wnish yellow (li sticity, 80% clay	0YR 8/8), damp, y, 20% silt, trace fine		
_ 1				.			(* Converted to	standard pene	tration blows/foot.)	1	
5	i										
ł				-			4				
4				-							
0-1	!										
			}								
-			ļ	.							
			ł								
5-			1	-				:			
-								·			
-							1				
ŀ											
0-1											

į

I

ţ

;

Ţ.

									<b>D</b>	<u>م المعام المعام المعام المعام المعام المعام المعام المعام المعام المعام المعام المعام المعام المعام المعام الم</u>	
		Ge	ettler-l	Ry	an I	nc,		Log of Boring B-12			
PROJ	ECT:	Tos	co (Unoc	al) S	Servic	e Stat	ion No, 7376	LOCATION: 419	First Street, F	Pleasanton, CA	
PROJ	ECT N	10. :	140107.0	2				CASING ELEVAT	ION:		
DATE	E STA	RTED	: 08/10/	98				WL (fl. bgs); 73	DATE:	TIME:	
DATI	E FINI	SHE	); 06/10/	/98				WL (ft. bgs):	DATE:	TIME:	
DRIL	LING	METH	100: <i>8" h</i>	ollo	w-ste	m aug	er	TOTAL DEPTH:	79 Feet	<u></u>	
DRIL	LING	COMP	ANY: WO	0đw	ard D.	rilling		GEOLOGIST: C	lyde Galantine		
DEPTH feet	(mqq) OIA	BLOWS/FT. *	SAMPLE NUMBEI	SAMPLE INT.	GRAPHIC LOG	SOIL CLASS	GE	OLOGIC DESCRIPT	ON	REMARKS	
					204		Asphalt.				
-				•	1571	CL	GRAVEL WITH SI	·······	damo verv	Boring backfilled to ground surface with neat cement	
-				.	V/		stift, medium plas	y dark gray (6Y 3/1 sticity, 90% clay, 10%	, damp, very silt.	containing 5% bentonite powder.	
	•						CLAYE WITH GR/ 5/8), damp, hard gravel, 20% fine	VEL (CL) – yellowis , no plasticity, 60% ( to coarse sand.	h brown (10YR clay, 20% fine		
5	19	83	8-12-5.5	7.			Color change to feet; fill material	very dark gray (10)	'R 3/1) at 5		
-	93	44	B-12-8				Asphalt in soil fr	om 7 to 8 feet.			
-10	144	18	B-12-10				Asphalt, burnt we	ood, and wood in soi	l.		
4	118	12	8-12-12								
1			1		$V \land$		Brick shards from	n 13 to 13,25 feet.			
15	39	18	B-12-14.5				Color change to 13.5 feet, becom	dark grayish brown es moist.	(2.5Y 4/2) at		
	58	79	B-12-18.5	V7/APPER	ľ Í Í	ML	SANDY SILT (M 4/8), damp, hard coarse sand, 103	.) – dark yellowish b 1, no plasticity, 55% : 4 clay.	rown (10YR silt, 35% fine to		
1	32	70	B-12-17.5		11111			from 18,4 to 18,5 fee	t.		
			ļ				Becomes SILT ( sand at 17.5 fee	ML), 80% silt, 40% cl t.	ay, trace fine		
20-	44	79	B-12-20.5				to wet, no plasti medium sand, 10%	-	ry fine to		
	58	70	B-12-22.5			GC	SANDY SILT (MI 4/6), damp, hard	er from 19.25 to 19.5 _) — dark yellowish b 1, no plasticity, 80% 4 clay	rown (IOYR		
	48	42	B-12-24	and the second second		ML		. WITH SAND (GC) - ngular to rounded fi			
25	37	76	B-12-28	N		SH SC	CLAYEY SILT st SAND WITH CLA damp, very dens	rata from 24 to 24.6 Y (SW-SC) - olive g i.e, 80% subangular t sand, 10% clay, 10% f	ray (5Y 4/2), b rounded fine	ゴ   ·	
-					<u>اللا</u>	SC	damp to moist, y	(SC) - dark greenish ery dense, 70% suba le to me sano, 30%	ingular to		

-

..

÷

ì

i

<u> </u>												
_	Gettler-Ryan Inc.								Log of Borin	g B-12		
PRO	IECT:	Tos		al) (	Servic	e Stat	ion No. 7376	LOCATION:	419 First Street, Plea	santon, CA		
DEPTH feet	PID (ppa)	BLOWS/FT. *	SAMPLE NUMBER	SAMPLE INT.	<b>GRAPHIC LOG</b>	SOIL CLASS	GE	IOLOGIC DESC	RIPTION	REMARKS		
	415 449	78 70	8-12-28.5 8-12-30	N N	/// • • •	SC GW	GRAVEL WITH Si damp, very dens gravel, 15% fine i	e, 80% subanqui	e gray (5Y 4/2), ar to rounded fine 5% clay.	-		
-	-	59	B-12-31.5	0								
33-	447	60	B-12-33.5				Visible hydrocari	bon (?) liquid or	surface of gravel.			
-	377	77	B-12-36				Localized Increa 15% sand, 15% cla	se in clay conte sy,	ent to 70% gravel,			
- 38-	399	62	8-12-37.5		•••	ML	Becomes satural		( 2/0) is creater			
	397	33	B-12-41			ML	gray (56 5/1) wi mottling, damp, h	th yellowish bro lard, no plasticit fine to coarse : hydrocarbons	y, 70–85% silt, sand, trace fine (?) in void spaces			
43-	192 278	86 68	B-12-43 B-12-44.5				Color change to with dark greeni feet, occasional	sh gray (5GY 4,	orown (10YR 4/6) /1) mottling at 43 (?) in cracks.			
- - 48	245 48	53 82	B-12-47 B-12-48.6				No hydročarbon:	s (?) visible belo	ow 47 feet.			
     	20	44	B-12-50.5	No. of the second second second second second second second second second second second second second second s			Increase in medi	ium sand from 60	).75 to 51.25 feet.			
- 53–	3	53	8-12-53				(		2.25 to 52,75 feet.			
4 1	2 -	40	B-12-55				feet, becomes m	oist to wet.	7.5YR 5/8) at 53.5			
1	2	69	B-12-58.5									
58-	3	48	B-12-59				Fine gravel stra Fine gravel stra					

I.

		Ge	ettler-I	Ryan	Inc.		Log of Borin	g B-12
PR0.	IECT:	Tos	co (Unoca	al) Servic	e Stat	ion No. 7376	LOCATION: 419 First Street, Plea	santon, CA
feet	PID (ppm)	BLOWS/FT. *	SAMPLE NUMBER	SAMPLE INT. GRAPHIC LOG	SOIL CLASS	GE	EOLOGIC DESCRIPTION	REMARKS
-	з	53	B-12-81		ML.	Gravel strata fro	om 80 to 80.5 feet.	
-	3	75	B-i2-82.5		SH SC	SAND WITH CLA 5/8), damp to mo rounded fine to 10% clay.	Y (SN-SC) - strong brown (7.5YR bist, very dense, 80% subangular to very coarse sand, 10% fine gravel,	
-	4	63	B-12-64			-	3.25 to 83.5 feet.	
15-1 _	5	<b>6</b> 5	B-12-85.5			Localized gravel	at 65.5 feet.	
					GM GC	No sample recov	ery; rock in shoe.	
'0- 	3	79	B-12-70			GRAVEL WITH C 4/6), moist, very fine gravel, 15%	.AY (GW-GC) - strong brown (7,5YR v dense, 75% subangular to rounded line to coarse sand, 10% clay.	
-	3	62	B-12-72					
_	5	55	8-12-73.5			Becomes wet to	saturated.	
′5	5	53	8-12-75.5					
- - - 30- -	4	60	8-12-79		ML	and gravel.	k yellowish brown (IOYR 4/8), damp, ty, 70% silt, 30% clay, trace sand o standard penetration blows/foot.)	
- 1   		-						
- 35								
1								
-00-		r						

ť

	0	<b>jet</b> i	tler~R	ya	n, İ	Inc.			Log of Bo	Log of Boring B-13			
PROJECT: Tosco (76) Service Station No. 7376									LOCATION: 419 First Street, Pleasanton, CA				
GR PROJECT NO. : 140107.04									SURFACE ELEVATION: 364.0	65 feet MSL			
DATE STARTED: 11/22/99									WL (ft. bgs): 102 DATE:	TIME			
DATE	FINI	SHEL	): 11/22/0	99					WL (fi. bgs): DATE:	TIME	· · · · ·		
	ING I					em augi	er .		TOTAL DEPTH: 135.5 feet		<u></u>		
DRILL	ING	COMP.	ANY: WO	odw	ard D	rilling	-,		GEOLOGIST: Clyde Galantine	? 	<b>₩</b> ━ <u></u>		
(feet)	(mqq) OId	BLOWS/FT_*	SAMPLE NUMBER	SAMPLE INT.	GRAPHIC LOG	SOIL CLASS			GEOLOGIC DESCRIPTION	,	REMARKS		
								Topsoil - planter	material with bark.		<u>                                      </u>		
4	•			-		CĹ		hard; 70X clay, 2	L (CL) - strong brown (7.5YR 5/8 0% subangular to rounded fine grav unded fine to coarse sand, bricks, t. (fill material)	), moist, vel, 10%	Boring backfilled with neat cement from the bottom ground surtace.		
	27	37	B-13-6			ML.		non-plastic; 60% 10% fine to coars	L (ML) – black (10YR 2/1), molst, hi silt, 30% subangular to rounded fin te sand. (fill material)	e gravel,			
- -8 -	139	42	8-13-7.5					3/3), moist, hard,	feet to SILT (ML) – dark brown (1 . non-plastic; 85% silt, 10% subangui nedium sand, 5% fine gravel. (fill ma	ar to			
	11	39	8-13-11					material)	et to dark gray (IOYR 4/I), saturate				
12-	~	<100	8-13-12.5	4		SW	$\overline{\}$	yellowish brown silt, 15% subangul gravel.	eet to SILT with SAND (ML) - dark (10YR 4/6), moist, hard, non-plastic ar to rounded fine sand, trace of fi	; 70% / ine /			
- - 16	2	<100	B-13-15,5			ML		90-95% very flor SILT (ML) - dari	ong brown (10YR 4/8), moist, very e to medium sand, 5-10% silt. k yellowish brown (10YR 4/4), moist silt, 5% subangular to rounded fine	, hard,			
- <del>1</del>	15	<100	B-13-18.5					Change at 18 fee	et to dark grayish brown (2.5Y 4/2)	) <b>.</b> .			
20-	144	73	B-13-21					25% clay, 10% su	et to dark olive brown (2.5Y 2/2); 6 bangular to rounded fine gravel, 5% ck hydrocarbon in void spaces.	io% silt, fine to			
-	376	<100	B-13-23.5			GH-GH		moist, very dens 15% subangular t	T (GW-GM) - very dark gray (5Y 3 e; 75% subangular to rounded fine g o rounded fine to coarse sand, 10% hydrocarbon in void spaces.	)ravel,			
24-						SW		dense; 90% suba	ry dark gray (5Y 3/1), saturated, v ngular to rounded fine to very coa ravel, abundant hydrocarbon.	ery ise sand,			
	957	<100	8-13-28.5	Ν				Change at 27 fe	et to 76% sand, 20% fine gravel, 5%	siit.			

11

ţ

Page I of 5

.

1

ł



Page 2 of 5

	(	<b>Set</b>	tler-R	yan	, Inc.		Log of Boring B	-13
PROJ	ECT:	Tos	co (76) 5	ervice	Station i	Vo. 7378	LOCATION: 419 First Street, Pleasantor	n, CA
0EP1H (feet)	PID (ppm)	BLOWS/FT. *	SAMPLE NUMBER	SAMPLE INT.	SOIL CLASS		GEOLOGIC DESCRIPTION	REMARKS
	15	<100	B-13-61		ML	Sand strata at 6	0.4 - 80.7 feei.	
- - 64-	833	<100	8-13-63		GW-GC	) brown (10YR 4/4	Y and SAND (GW-GC) - dark yellowish ), moist, very dense: 70% subangular to vel, 20% subangular to rounded fine to i clay.	
	-	<100	B-13-85.5					
68-	-	<100	8-13-87.5			Saturated at 67	feet.	
1	52	<100	8-13-70.5				et to 55% gravel, 35% sand, 10% ctay.	
72-					31) ML	(10YR 6/2) with 75% silt, 20% cla	k yellowish brown (10YR 4/6) to pale brown iron oxide staining, moist, hard, non-plastic; y, 5% subangular to rounded line sand.	
	7	<100	8-13-73,5			Attempt grad gr groundwater aft	oundwater sample at 68 - 73 feet, no er 45 minute walt.	
76- -	-	<100	B-13-75.6					
	-				••• GW	verv dense: 75%	dark yellowish brown (10YR 4/4), moist, subangular to rounded fine gravel, 20% unded fine to coarse sand, 5% clay.	
80-	-	<100	8-13-80.5		• • • • • • • • •			
- -	6	<100	B-13-82.5		• • • • • • • •			
84	6	<100	B-13-85.5		• • • • • • • • • •	Change at 85 fe	et lo 55% gravėl, 40% sand, 5% clay.	
88~	_	<100	B-13-87.5		• • • • • • • • •			
	-	<100	8-13-90.5		• • • • • • • • • • • • •			

.. .

t

í

1

ł

i

_

-

i

	· · · · ·		tler-R		41 lĝ	A7 (V6		Log of Boring B-	· · ·
PROJ	ECT:	Tos	co (76) S	ervi	ice S	Station I	No. 7376	LOCATION: 419 First Street, Pleasanton,	CA
DEPTH (feet)	PID (ppm)	BLOWS/FT. *	SAMPLE NUMBER	SAMPLE INT.	GRAPHIC LOG	SOIL CLASS		GEOLOGIC DESCRIPTION	REMARKS
_	-	<100	8-13-92.5	Ŋ		GW		age for geologic description.	
-		<100	B-13-95.5			SW-SC	(10YR 5/4), mol	r and GRAVEL (SW-SC) — yellowish brown st, very dense; 80% subangular to rounded sand, 30% subangular to rounded fine gravel,	
96-						1	Saturated grav	el with sand at contact with silt.	
1	0	52	B-13-98.5			ML	yellowish brown silt, 25% clay, 5 staining.	ht yellowish brown (10YR 6/4) to dark (10YR 4/8), moist, hard, non-plastic; 70% % subangular to rounded fine sand, iron oxide	
100							Attempt grad g groundwater af	roundwater sample at 91 – 99 feet, no ter 30 minute weit.	
1	0	42	B-13-101.5	NE POINT			¥ Attempt grab g	roundwater sample at 80 - 102 feet, no	
-	0	<100	B-13-103				groundwater af	ter overnight wait.	
104-						, ,	red (5YR 4/8)	/5 feet to SILT with SAND (ML) - yellowish with black (10YR 2/1) staining, moist, hard, % silt, 15% subangular to rounded fine to % clay.	
-	0		B-13-106	L		GW-GC	brown (IOYR 4/	AY and SAND (GW-GC) - dark yellowish (4), saturated, very dense; 70% subangular to avel, 20% subangular to rounded fine to very % clay.	• •
108-	-	<100	8-13-107.5	, <b>199</b>					
	I	<100	8-13-110.5			SW-SC	4/4), saturated	( (SW-SC) – dark yellowish brown (I0YR , very dense: 80% subangular to rounded se sand, 10% clay, 10% fine gravel.	
112	-	<100	8-13-112			1	Attempt grab g groundwater af	roundwater sample at 105 - 112 feet, no ter 45 minute wait.	
114							Silt strata at II		
	0	<100	    B-13-115.5			GW-GC	brown (10YR 4/	AY and SAND (GW-GC) - dark yellowish (4), saturated, very dense; 70% subangular to avel, 20% subangular to rounded fine to % clay.	
116-	-								
	Q	<100	8-13-118						
120						]			
-		<100					No sample reco	very.	
124-	0	<100	B-13-123.6	5	Ī	A  ML		llowish brown (10YR 4/4), moist, hard, 1% silt, 10% clay, 10% subangular to rounded	

1 . . . . . . .

**..** .

~ →·

-----

.

ί

	Ċ	<b>jet</b>	tler-R	y٤	sn,	Inc.		Log of Boring E	9-13
PROJE	CT:	Tos	co (78) S	ervi	ice S	tation i	Vo. 7376	LOCATION: 419 First Street, Pleasanto	n, CA
DEPTH (feet)	(mqq) (II4	BLOWS/FT. *	SAMPLE NUMBER	SAMPLE INT.	GRAPHIC LOG	SOIL CLASS		GEOLOGIC DESCRIPTION	REMARKS
	0		<u>й</u> В-13-128				CLAYEY GRAVEL 5/8), saturated, gravel, 25% suba 15% clay. No sample recov Grab groundwate Hydropunch samp No sample recov Bottom of boring	or sample - B-13-128.5 at 128.5 feet. Die - B-13-133'.	

i

1

ł

ł

· ; ; (

Ţ

l

Ô	

`



					BORIN	GLOG		
Project No.			1	Boring Di	ameter	8,5"	Logged By TCC	
KEI-P94-0903	3.P1			Casing Di	ameter	N/A	Logged By 766 T.S. <u>(EC-1633</u>	
Project Name 4191 1st Stree				Well Cove	er Elevation	)	Date Drilled 2/6/95	
Boring No. EB1				Drilling Method	Hol Au	low-stem ger	Drilling Company V & W Drilling	
Penetration blows/6"	G. W. level	(feet) g Samples 1		ati- iphy SCS			Description	
		0			Pavemer	nt, base gravel an	d fill.	
					Fill with	wood debris.		
					Silt, trac	e very coarse-gra	ined sand, firm, moist, dark brown.	
14/15/19		5			Silt, trace clay, trace very coarse-grained sand and gravel to 1/4 inch in diameter, very stiff to hard, moist, dark yellowish brown.			
11/18/21			М		Silt as at	oove, except yelk	owish brown, gravel to 1 inch in diameter.	
7/16/19				1);;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;			very coarse-grained sand, trace gravel to 1/2 If to hard, moist, yellowish brown.	
10/11/11		20	S1	M			1 inch in diameter, estimated at 15-20% silt, grained, medium dense, moist, yellowish	

			<u> </u>	BORING LOG	
Project No. KEI-P94-0903	3.P1		Boring Di Casing Di		Logged By J6C T.S. CE61633
Project Name 4191 1st Stree				er Elevation	Date Drilled 2/6/95
Boring No. EB1			Drilling Method	Hollow-stem Auger	Drilling Company V & W Drilling
Penetration blows/6"	G. W. level	Depth (feet) Samples	Strati- graphy USCS		Description
15/32/44 17/31/39			GW	diameter, estimated at 3 very dense, moist, dark Well graded gravel with	n sand, trace silt, gravel to 3/4 inch in diameter, edium to coarse-grained sand, dense to very
17/36/41		35	GM 200		at 15-20% silt and 10-15% medium avel to 2 inches indiameter, very dense, moist,
21/32/36		40			at 15-20% silt and 10-15% medium to avel to 2 inches in diameter, very dense, moist,
			ML	Silt, trace clay, very still brown mottled, trace bi	ff to hard, moist, yellowish brown and very pale otite.

;





. . .

				·····	BORING LOG	· · · · · · · · · · · · · · · · · · ·	
Project No. KEI-P94-0903	3.P1			oring Di asing Di		Logged By $\mathcal{T}GG$ T.S. $CEG/633$	
Project Name 4191 1st Stree					er Elevation	Date Drilled 2/6/95	
Boring No. EB1			rilling (ethod	Hollow-stem Auger	Drilling Company V & W Drilling		
Penetration blows/6''	G. W. level	Depth (feet) Samples	Strati- graphy USCS		Desc	cription	
8/16/24			ML		Silt, trace clay, very stiff to hard brown mottled, trace biotite.	l, moist, yellowish brown and very pale	
21/36/42					Well graded sand with gravel and silt, estimated at 15-20% gravel to 3/4 inch in diameter, 5-15% silt, sand is medium to very coarse-grained, dense to very dense, moist, yellowish brown.		
8/12/14			- <u> </u>		Silt, trace clay, trace gravel to 1 yellowish brown and olive, mot	/2 inch in diameter, very stiff, moist, tled, trace biotite.	
13/50-6"			CL		15-25% gravel to 1-1/2 inches i brown.	20% medium coarse-grained sand and n diameter, hard, moist, dark yellowish 5% silt, gravel to 1-1/2 inches in	
6/12/12		65	ML		Silt with trace very coarse-grained sand and gravel to 1/4 inch in diameter, stiff, moist, yellowish brown and pale olive, mottled. Silt with gravel, estimated at 10-15% clay and 15-20% gravel to 1/2 inch in diameter, trace very coarse-grained sand, very stiff, moist, dark yellowish brown.		

Total Depth: 66'

r	No. 9	Due to shall a	010727	6330	Clien		ConocoPhillips	Boring/Well No: SB-1
		Project No: Logged By:	C10737 Jon Filli		Locat		Pleasanton	Page 1 of 3
I		Driller:	Cascade			Drilled	: 6/12/2009	Location
ſ	Delta	Drilling Method:	Hollow :	Stem	Hole	Diamel	er: 8"	Map 344-6 58-1 404-20
1		Sampling Method	: Split Sp	noon	Hole	Depth:	45'	908-2 *(P-1)
	Consultants	Casing Type:	2"PVC			Dlamet		Avis-3
		Slot Size:	0.01			Depth:	N/A Depth: N/A	DISCENSER WA-18
		Gravel Pack:	Lonesta	r #2/12			r Depth: N/A	
		Elevation:		Northing			Easting:	KIOSK SALA
Í	Well	5	Ę	ភ	Sample			
	Sackfill Casing Mater Level	Moisture Content (D Readin (ppm)	ole	(feet)		Soil Type	LITHOLOG	Y / DESCRIPTION SOIL WITH
	kfill ing ier l	oist onte Rei	ami	ţ,	kecovery Interval	ΞŢ		NALYTICAL RESULTS (ug/L)
	Backfill Casing Water I	Moisture Content PID Reading (ppm)	Sample Identification	Depth	Recovery Interval	ហ	(BENZE	NE/GRO/TPH-FUEL OIL #6)
	RANTIN			_				
				1				
				2				-
							Air Knife to 5	5 Feet
				3—	<u></u>			
	_			_			·	
				4	╂╍╌╂╼╼┨			,
			SB-1	5			Bad Sample, large	chunk of scoria
			@5	6—				
	_						SB-1 @ 5 - (ND/	ND/ND)
1				7—	╎╴╎─┤			
				8-				
				9				
				- 1	┨			
		45.1	SB-1	10		ML	Med brown, sandy	silt with 20% gravel, damp,
	—	43.1	@10	-	COLUMN COLUMN		very mild odor	
							SB-1 @ 10 - (ND	/6.5/96)
				12-				
	_			1				
			1	13				
	—			-	<u> </u>			
				14				
				15—				
		104	SB-1	1		GM		ravely sand, damp, light odor
			@15	16			SB-1 @ 15 - (ND	/ND/ND)
	#1910/		•	-				
				17				
	—			18-				
				-				
				19	<u>                                      </u>		a sa an ann an an an an an an an an an an a	
				-				
		21.2	SB-1	20—		CL	Dk greenish grav	clay, damp, strong odor
ł.			@20				SB-1 @ 20 - (0.2	
				21		Į		
				22—	<u> </u>	•	1 Martin	
						L		

.

1		Project No:	C107376220	Client	t:	ConocoPhillips	Boring/Well No: SB-1
		Logged By:	Jon Fillingame	Locat		Pleasanton	Page 2 of 3
I		Driller:	Cascade	Date	Drilled	: 6/12/2009	Location
i i	Delta	Drilling Method:	Hollow Stem	Hole	Diame	ter: 8"	Мар
	Dara	Sampling Method	I: Split Spoon	Hole	Depth	45'	
	Environmental	Casing Type:	2"PVC		Diamei		
	Consultants,	Slot Size:	0.01		Depth:		
	Inc.	Gravel Pack:	Lonestar #2/12				
		Elevation:	Northing		: Wate	r Depth: N/A Easting:	4
	Well		1			Lasting.	
	Backfill Casing uoipaldwo Water Level	Moisture Content PID Reading (ppm)	Penetration (blows/6") Depth (feet)	Sample	Soil Type		GY / DESCRIPTION SOIL WITH
	cfill ing er L	ppm	th (	ver rva	-1 =		NALYTICAL RESULTS (ug/L)
	Backfill Casing Water L		Cep (bit	Recovery Interval	လိ	BENZE	NE/GRO/TPH-FUEL OIL #6)
	ш <del>,</del> ,						
			23-	$\left  - \right  $			
	_		-				- 
			24				All All All All All All All All All All
	—						
		915	SB-1 25		CL		clay, damp, very strong odor
			@25 26-	S AV		SB-1 @ 25 - (1.6	/230/880)
			27-				
			-	┨──┤──┤		· · · · · · · · · · · · · · · · · · ·	A ANAL MET AND A REAL AND A REAL AND A REAL AND A REAL AND A REAL AND A REAL AND A REAL AND A REAL AND A REAL AND A REAL AND A REAL AND A REAL AND A REAL AND A REAL AND A REAL AND A REAL AND A REAL AND A REAL AND A REAL AND A REAL AND A REAL AND A REAL AND A REAL AND A REAL AND A REAL AND A REAL AND A REAL AND A REAL AND A REAL AND A REAL AND A REAL AND A REAL AND A REAL AND A REAL AND A REAL AND A REAL AND A REAL AND A REAL AND A REAL AND A REAL AND A REAL AND A REAL AND A REAL AND A REAL AND A REAL AND A REAL AND A REAL AND A REAL AND A REAL AND A REAL AND A REAL AND A REAL AND A REAL AND A REAL AND A REAL AND A REAL AND A REAL AND A REAL AND A REAL AND A REAL AND A
			28-	╉╾╌╎──┤			
	_		-	$\left\{ \begin{array}{c} \\ \end{array} \right\}$			
			29				
l '	·						
. 1		940	SB-1 30		CL		sandy silty clay, damp, very
			^{@30} 31			strong odor	
	_		-			SB-1 @ 30 - (3.6	5/1100/9700)
	·		32	$\left  - \right  $			
			33-				
	—		-				
			34				
	_		35				
		820	128-11		CL	Dk greenish gray	sandy silty clay w gravel, damp,
			^{@35} 36—				patches of black sheeny
			-			substance SB-1 @ 35 - (0.6	54/310/1400)
	g==1,41 d + 1/2=		37-	$\left  - \right $		<u> </u>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	—					·····	
			38-				
	1. (1. (1. (1. (1. (1. (1. (1. (1. (1. (		39-				
			59-				
			40-			Dia and an internet	alley dame attant
		581	SB-1 40 -		CL	black sheeny pate	silty clay, damp, strong odor,
			^{@40} 41			SB-1 @ 40 - (1.:	
			-				.,,,
			42				
í.	۲ I						
1 _,			43-				
			44				
						<u> </u>	

		Project	No:	C10737	76220		Clier	nt:	Cono	coPhillips	Boring/Well No: SB-1
		Logged	By:	Jon Filli	ingame		Loca	tion:	Pleas	anton	Page 2 of 3
	_	Driller:		Cascad	e		Date	Drilled	d:	6/12/2009	Location
Delt	a		Method:					Diame		8 ⁿ	Мар
1	į		ng Method		poon			Depth		45'	
Environmen		Casing		2"PVC				Diame		N/A	
Consultant	ts,	Slot Siz		0.01		<b>18</b> 7		Depth		N/A	
Inc.		Gravel	Pack:	Lonesta	ar #2/12						
		Elevatio	<u>'n</u>		Northing	<u>×</u>	Stat	c wate	Eastir	th: N/A	-
Well	-				1						··· I,
Completion	Water Level	Moisture Content	PID Reading (ppm)	Penetration (blows/6")	Depth (feet)		nple	Soil Type		LITHOLOG	GY / DESCRIPTION SOIL WITH
rig Lig	L L	istu	Rea	etra ws/	5	é	- Sal	٦ ۲		SOIL A	NALYTICAL RESULTS (ug/L)
Backfill Casing	Vate	နိုပ်	<u> </u>	blo	ept	Recovery	Interval	Soi		(BENZE	NE/GRO/TPH-FUEL OIL #6)
	>					Å	ι Γ		<u> </u>		1 - 11 - 1
			830	SB-1 @45	45			CL	IDK Ĉ	odor	gravely silty clay, damp, strong
			-	643							- (3.2/570/2800)
					46						Max Depth: 45'
					47 —						
					- ⁻	ļ		2			
					48 —						
-					_						
					49					R. M.A.F. TT. B. T. T. T. B. T. T. T. B. T. T. T. B. T. T. T. B. T. T. T. B. T. T. T. B. T. T. T. B. T. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. B. T. T. T. B. T. T. T. B. T. T. T. B. T. T. T. B. T. T. T. T. B. T. T. T. B. T. T. T. T. B. T. T. T. T. T. T. T. T. T. T. B. T. T. T. T. T. T. T. T. T. T. T. T. T.	
					50 —	<u> </u>					
					51						
`			-		52						
					Ѓ –						
					53	<u> </u>					
· ••••••					54						
					- ⁻	<b> </b>					
					55						
					56						
					- 10						· · · · · · · · · · · · · · · · · · ·
					57 —						
					- ¹						
					59						
											-
						ļ			<u> </u>		
without the state of					61 ——						
					62 —						
					<u> </u>	ļ					
	1				63 —	<u> </u>			┣──		
					-	<u> </u>			1		
					64						
					65						
						┣—					
				1	66				<u> </u>		

Ĺ

ľ





					BORING LOG				
Project No.	<u> </u>		]	Boring Di	ameter 8.5"	Logged By JGG T.S. CEG 1633			
KEI-P94-090	3.P1	• • •		Casing Di	ameter 2"	T.S. <i>CEG</i> 1633			
Project Name 4191 1st Stree			١	Well Cove	r Elevation	Date Drilled 2/6/95			
Boring No. MW2B				Drilling Method	Hollow-stem Auger	Drilling Company V & W Drilling			
Penetration blows/6"	G. W. level	Depth (feet) Samples	Stra graf US	phy	I	Description			
		0			Pavement and base gravel.				
		·	ML		Silt, trace clay, trace mediur	n-grained sand, soft, moist, very dark gray.			
			SP-	10000	Poorly graded sand with gra	vel and silt, gravel to 1 inch in diameter,			
			SM	7-0-04077		ned, loose, moist, very dark gray, fill,			
					Gravelly silt, trace coarse to very coarse-grained sand, soft, moist,				
9/14/16		5			brownish yellow, fill. Gravelly silt, as above, gravel diameter increasing with depth, very stiff, asphalt, fill.				
						Native Soil ·			
5/6/6			VI		Gravelly silt, trace coarse to inches in diameter, stiff, mo	very coarse-grained sand, gravel to 1-1/4 ist, very dark brown.			
17/50-6"			MI		Silt, trace very coarse-grain diameter, hard, moist, yello	ed sand, trace gravel to 1/4 inch in wish brown.			
11/23/28		20 -			Silt, trace medium coarse-g	rained sand, hard, moist, olive brown.			





						BORING LOG		
Project No.		<u> </u>		E	loring Dia	imeter 8.5"	Logged By JGC T.S. (EG 1633	
KEI-P94-090	3.P1			C	asing Dia	meter 2"	T.S. <i>(EG   633</i>	
Project Name 4191 1st Stree				W	Vell Cover	Elevation	Date Drilled 2/6/95	
Boring No. MW2B					orilling fethod	Hollow-stem Auger	Drilling Company V & W Drilling	
Penetration blows/6"	G. W. level	Dept (feet) Samj		Stra grap USC	hy	D	escription	
	<u> </u>			ML	1====			
				SP		Poorly graded sand with grav to 3/4 inch in diameter, sand dense, moist, dark greenish g		
9/16/16		- 25 		ML.		Silt, trace fine to medium-gra gray.	vined sand, very stiff, moist, dark greenish	
8/13/14					Silt, trace very fine to fine-grained sand, very stiff, moist, dark gr gray. Poorly graded sand with silt, estimated at 20% gravel to 1-1/2 ind diameter, 10% silt, sand is predominantly medium-grained, medi			
				SP- SM		diameter, 10% siit, sand is pr dense, moist, dark greenish g		
27/50-6"		35		GW			I, trace silt, gravel to 2 inches in diameter, ained, very dense, moist, dark greenish	
12/21/26		40		ML		to 3/4 inch in diameter, hard, green, mottled.	-15% fine to medium-grained sand, gravel moist, dark yellowish brown and pale	
				SP		to 1/2 inch in diameter, sand	vel, trace silt, estimated at 20-25% gravel is predominantly fint to medium-grained, een and olive yellow, mottled.	





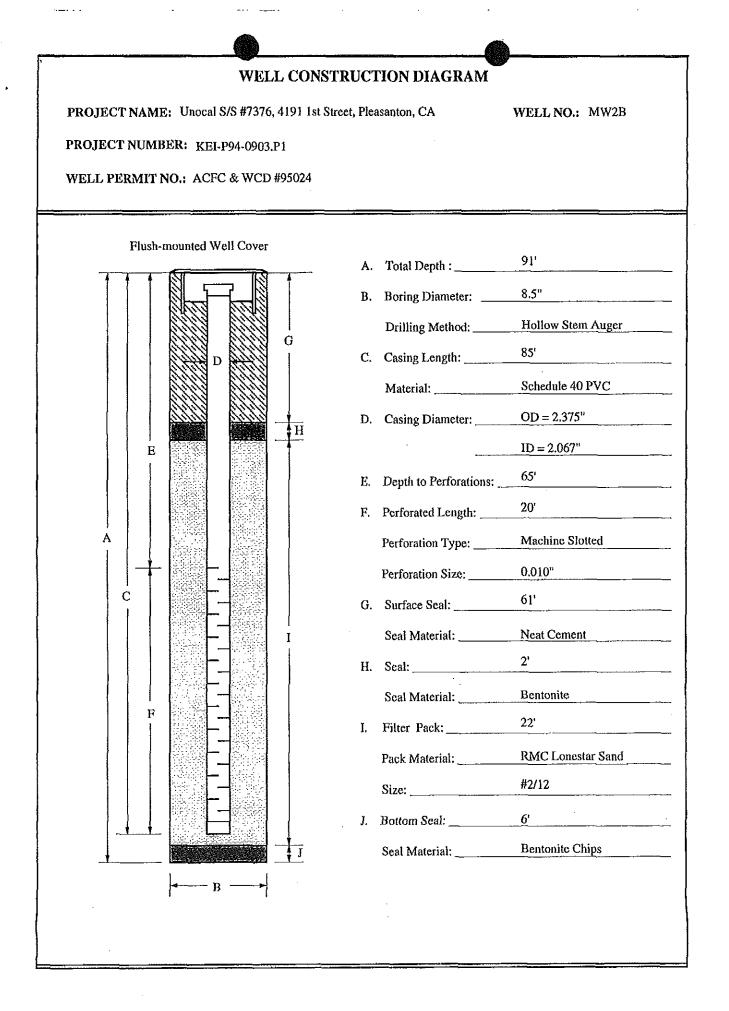
				BORING LOG			
Project No.			Boring I	Diameter 8.5"	Logged By J66		
KEI-P94-090	3.P1		Casing I	Diameter 2"	Logged By <i>T66</i> T.S. <i>CE6 1633</i>		
Project Name 4191 1st Stree			Well Co	ver Elevation	Date Drilled 2/6/95		
Boring No. MW2B			Drilling Method	Hollow-stem Auger	Drilling Company V & W Drilling		
Penetration blows/6"	G. W, level	Depth (feet) Samples	Strati- graphy USCS		Description		
40/50-6"			SP	to 1/2 inch in diameter, sa	gravel, trace silt, estimated at 20-25% gravel and is predominantly fint to medium-grained, h green and olive yellow, mottled.		
20/31/46			GM (2020) 2020 2020 2020 2020 2020 2020 202	Silty gravel with sand, estimated at 10-20% silt, 25-30% medium to very coarse-grained sand, gravel to 1 inch in diameter, very dense, moist, dark olive brown.			
12/21/33		- 55 -	000 000 000	<u></u>	above, except dense to very dense.		
28/39/43			ML	red.	y coarse-grained sand, hard, moist, yellowish nined sand and gravel to 1/4 inch in diameter, rong brown, with weathered biotite.		
29/50-3"		65 -	GW- GC		clay and sand, trace silt, sand is medium to dense, moist, dark yellowish brown.		



÷



					BORING LOG				
				<u> </u>					
Project No. KEI-P94-09(	)3.P1			Boring I		Logged By 566 T.S. <i>CEG</i> 1633			
· · · -					Diameter 2"				
Project Nam 4191 1st Stre			Ĵ	Well Co	ver Elevation	Date Drilled 2/6/95			
Boring No. MW2B				Drilling Method	Hollow-stem Auger	Drilling Company V & W Drilling			
Penetration blows/6"	G, W. level	Depth (feet) Samples	Stra gra US	phy	Desc	cription			
			GW GC	10.010.0	Well graded gravel with clay an very coarse-grained, very dense	ad sand, trace silt, sand is medium to e, moist, dark yellowish brown.			
27/50-6"		70	GC		Clayey gravel with sand, estimated at 15% clay, 5-10% silt, 10-15 medium to coarse-grained sand, gravel to 1-1/2 inches in diameter dense, moist, yellowish brown.				
9/27/50-5"		75 -	MI	1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,		ace coarse to very coarse-grained sand er, hard, moist, yellowish brown.			
37/50-3" 41/50-3"			SW	v		and is medium to very coarse-grained, very dense, moist, yellowish brown, with s above.			
39/50-6"		85 -	 		Silt, trace gravel to 1 inch in dia brown.	ameter, trace clay, hard, moist, olive			
41/50-4"			GN		Silty gravel, estimated at 10-15 gravel to 1 inch in diameter, ver	% medium to very coarse-grained sand, ry dense, moist, olive brown.			


Page 4 of 5



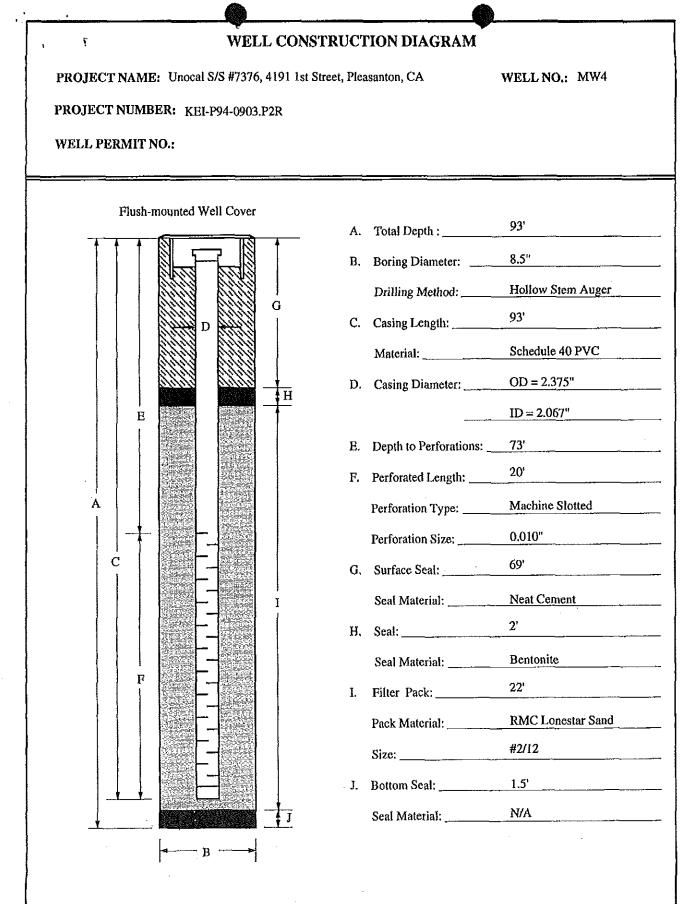
-----



					BORIN	GLOG		
Project No. KEI-P94-09	03.P1			Boring I Casing I	)iameter Diameter	8.5" 2"		Logged By 566 T.S. 656/633
Project Nan 4191 1st Str			)	Well Co	over Elevatio	n		Date Drilled 2/6/95
Boring No. MW2B				Drilling Method	Hol Auj	low-stem ger		Drilling Company V & W Drilling
Penetration blows/6"	G. W. level	Depth (feet) Samples	g	trati- raphy JSCS		· · · · · · · · · · · · · · · · · · ·	Descrij	ption
50/50-4"			M		<u>brown</u> . Weil gra gravei to	ded sand with		d, trace clay, hard, moist, olive e to 10% silt, estimated at 20-25% d is fine to coarse-grained, hard, epth: 91'
						<u></u>		



Ł	•					BORING LOG			
Project KEI-P94		.P2R			oring Dia		Logged By 766 T.S. (E6/633		
-		Unocal t, Pleasant	S/S #7376 ton, CA			r Elevation N/A	Date Drilled 7/24/96		
Boring I MW4	No.				illing ethod	Hollow-stem Auger	Drilling Company V & W Drilling		
Pene- tration blows/6"	G.W level	O.V.M. (P.P.M.)	Samples		graphy SCS	Desc	ription		
						Pavement over base gravel.			
l		- -				Sandy silt with gravel to 1 inch i (fill).	in diameter, firm, moist, dark brown		
10/11/30			5-			Silt, estimated at 5-10% medium 1/2 inch in diameter, very stiff to	n to coarse-grained sand, trace gravel to o hard, moist, brown.		
20/23/25				-		Silt, estimated at 10-20% predominantly fine-grained sand, 15-25% clay and trace gravel to 1/2 inch in diameter, hard, moist, yellowish brown.			
19/22/23				ML	1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	Sandy silt, trace gravel to 3/4 inc coarse-grained, hard, moist, dar			
14/19 <b>/2</b> 1						Sandy silt, estimated at 30-35% 10-20% clay, hard, moist, dark y	fine to very coarse-grained sand and yellowish brown.		
13/14/14				GW- GM	20000000000000000000000000000000000000		nated at 25-30% predominantly fine to % silt, gravel to 1 inch in diameter, owish brown.		


· £	ŧ					BORING LOG	
Project N KEI-P94		P2R			Boring Di Casing Di		Logged By 766 T.S. CEG 1633
Project N	Vame	Unocal	S/S #7376	╡		er Elevation	Date Drilled
4191 1st	Street,	Pleasant	on, CA			N/A	7/24/96
Boring N MW4	No.				Drilling Method	Hollow-stem Auger	Drilling Company V & W Drilling
Pene-		0.V.M. (P.P.M.)	Depth (feet) Samples		atigraphy USCS /		Description
				_ <u>G</u> A 	<u>A</u> 55 )-		estimated at 25-30% predominantly fine to 5-15% silt, gravel to 1 inch in diameter, k yellowish brown.
28/38/32			25	SN	1	( <del>-</del>	t and gravel, estimated at 15-25% gravel to 1 % silt, sand is fine to coarse-grained, very ish brown.
25/38/37				GY GI	6. 6.C.C.		estimated at 20-30% fine to coarse-grained el to 1-1/2 inches in diameter, very dense, wn.
36/26/30							and gravel, estimated at 15-25% gravel to 5-15% silt, sand is fine to coarse-grained, very ish brown.
24/25/27			- 35-	SV SN		Gravelly sand, cstimated a 5-15% silt, sand is predon moist, dark yellowish brov	at 20-25% gravel to 2 inches in diameter and ninantly fine to medium-grained, very dense, wn.
20/12/10			40	SI	A	medium dense, moist, dar	)-20% silt, sand is fine to coarse-grained, k yellowish brown.
17/19/22				G	4 00000 000000 000000000000000000000000	coarse-grained sand, grav dense, moist, dark yellow /Silty sand with gravel, est	limated at 15-25% silt and 10-20% medium to el to 1-1/4 inches in diameter, dense to very ish brown. limated at 20-25% gravel to 1/2 inch in , sand is fine to coarse-grained, dense to very
				SI	1		ish brown, moist at gravel marging.

i	3					BORING LOG	
Project I KEI-P94		.P2R			Boring Dia Casing Dia		Logged By 766 T.S. <i>CEG</i> 1633
Project l 4191 1st		Unocal t, Pleasant	S/S #7376 ton, CA	Ň	Well Cover	r Elevation N/A	Date Drilled 7/24/96
Boring N MW4	ło.		· · · · · · · · · · · · · · · · · · ·		Drilling ⁄Iethod	Hollow-stem Auger	Drilling Company V & W Drilling
	G.W. level	O.V.M. (P.P.M.)	Depth (feet) Samples		tigraphy JSCS	Dese	cription
17/19/22			45-	SM			d at 20-25% gravel to 1/2 inch in is fine to coarse-grained, dense to very own, moist at gravel margins.
8/10/11	-			ML		Clayey silt, trace sand, very stil	ff, moist, yellowish brown.
15/18/20				an		stiff, moist, greenish gray. Poorly graded sand with silt an	d gravel, estimated at 5-10% silt, sand is se-grained, gravel to 1-1/4 inches in
21/25/27			55	SP- SM	1999 B. 199	Poorly graded sand with silt an dense.	d gravel, as above except, dense to very
15/8/9				ML		Gravelly silt, estimated at 20-3 5-15% sand, very stiff, moist, o	0% gravel to 2 inches in diameter and olive.
19/26/38				GC		Clayey gravel with sand, estim coarse-grained sand and 10-20 diameter, dense to very dense,	% clay, gravel to 1-1/4 inches in

<u> </u>					
۰ ۰ 			· · · · · · · · · · · · · · · · · · ·	BORING LOG	
Project No. KEI-P94-0903	.P2R		Boring Dia Casing Dia	- <u></u>	Logged By 766 T.S. (EC1633
Project Name	Unocal S	/S #7376		r Elevation	Date Drilled
4191 1st Stree	t, Pleasantor	ı, CA		N/A	7/24/96
Boring No. MW4			Drilling Method	Hollow-stem Auger	Drilling Company V & W Drilling
Pene- G.W. tration level blows/6"	(P.P.M.)	Depth (feet) jamples	Stratigraphy USCS	I	Description
11/17/20			GC	coarse-grained sand and 10 diameter, dense to very den Clayey sand, estimated at 1 in diameter, sand is fine to a moist, dark yellowish brow	-
14/30/39			GC		20-30% fine to coarse-grained sand and inch in diameter, dense to very dense,
19/36/38			SC NSC SC	diameter and 10-20% clay,	timated at 20-25% gravel to 1 inch in sand is well graded and medium to very moist to wet, dark yellowish brown.
20/29/30		- 85- - -	DEP DEP DEP DEP DEP DEP DEP DEP DEP DEP	Claycy sand with gravel, es sand is fine to very coarse- dense to very dense, wet, y	timated at 15-20% gravel and 10-20% clay, grained, predominantly very coarse-grained, ellowish brown.
25/30/32		-	CL	Clay, estimated at 10-15% fine to medium-grained san	gravel to 1 inch in diameter and 10-15% d, hard, moist, olive, black staining.

· · · ·				BORING LOG	
Project No. KEI-P94-0903	3.P2R			Diameter 8.5" Diameter 2"	Logged By TGC T.S. LEG (633
Project Name 4191 1st Stree		S/S #7376 ton, CA	Well Co	over Elevation N/A	Date Drilled 7/24/96
<b>Boring No.</b> MW4			Drilling Method		Drilling Company V & W Drilling
Pene- G.W. tration level blows/6"		Depth (feet) Samples	Stratigraph USCS	r	Description
34/50-6"			CL GP- GM	Sandy gravel, estimated at 2 and 5-15% silt, gravel to 1- wet, dark yellowish brown,	gravel to 1 inch in diameter and 10-15% d, hard, moist, olive, black staining. 20-30% predominantly fine-grained sand 1/2 inches in diameter, very dense, moist to moisture at clast boundaries. TAL DEPTH: 93'

Į



				·····	<u></u>	BORING LOG		
Project No. KEI-P94-0903.P2R					ring Dia sing Dia	meter 8.5"	Logged By TGG T.S. CEG 1633	
Project Name Unocal S/S #7376 4191 1st Street, Pleasanton						· Elevation N/A	Date Drilled 7/23/96	
Boring No. MW5					illing ethod	Hollow-stem Auger	Drilling Company V&W Drilling	
					graphy CS	Description		
						Silty gravel with sand, loose	, moist, dark brown (fill).	
7/8/8						gravel to 3/4 inch in diamete brown (fill).	ed at 15-20% sand, 5-15% clay and trace er, medium dense, moist, dark yellowish	
6/9/9				ML			ne to medium-grained sand and 10-15% , stiff to very stiff, moist, dark brown.	
14/16/17				GW- GM	00000000000000000000000000000000000000	Sandy gravel, estimated at 1 diameter, dense, moist, yelk	0-15% silt, gravel to 1-1/4 inches in owish brown.	
14/15/16			20-	sw		Sand, fine to medium-grain coarse-grained sand, dense,	ed, estimated at 5-10% silt and trace moist, greenish gray.	

i

í

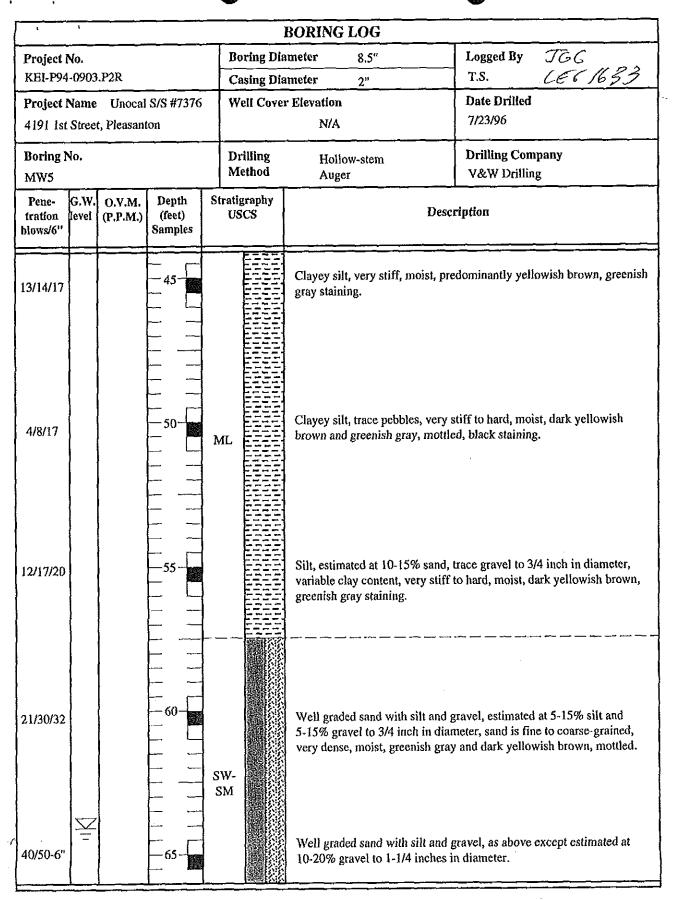
ı

I

i

[	i	<u></u>				BORING LOG	
Project l KBI-P94					Boring Di Casing Di	ameter 8.5"	Logged By <i>TGG</i> T.S. <i>CEC</i> 1633
f -		Unocal t, Pleasant	.S/S #7376 ton	-+-		er Elevation N/A	Date Drilled 7/23/96
Boring I MW5	No.				Drilling Method	Hollow-stem Auger	Drilling Company V&W Drilling
Pene- tration blows/6" G.W. O.V.M. Depth St (P.P.M.) (feet) Samples					tigraphy JSCS	Desci	ription
11/14/20				ML			
9/11/16			30-	SP- SM		Sand, predominantly fine to med medium dense, moist, greenish g	ium-grained, estimated at 5-10% silt, ray.
8/10/13				ML		Silt, estimated at 10-20% fine to greenish gray and dark olive, mo	medium-grained sand, very stiff, moist, ttled.
7/9/10						Silt, estimated at 5-15% fine-grai yellowish brown and greenish gr	

· · · ·

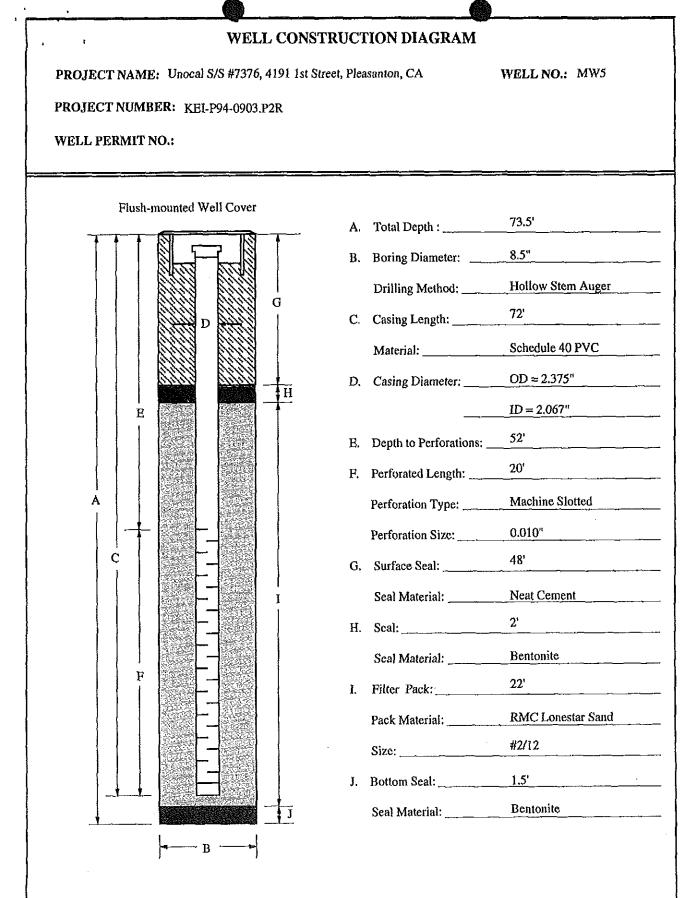

ť

ý

ĺ



. -. و بالملك مشروب المسالية عن ال




Ę



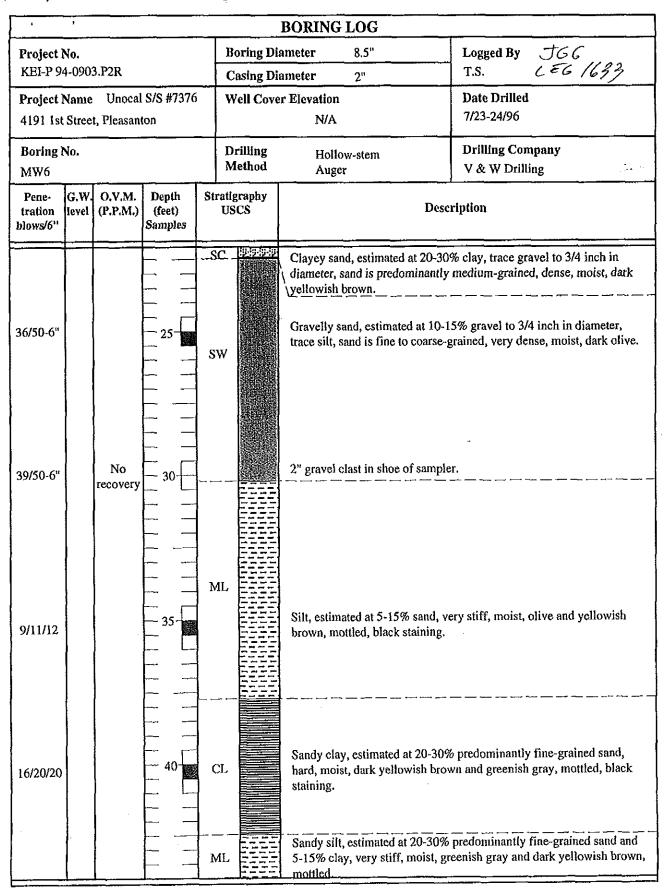
s		<u></u>							
e	د 	·				BORING LO	<u>نا</u>	<b>_</b>	
Project I						meter 8.		Logged By	JG6 CE6 1633
KEI-P94	-0903	.P2R				meter 2"		T.S.	200.00)
Project l	Name	Unocal	S/S #7376	Well	Cover	r Elevation		Date Drilled	
4191 Ist	Stree	t, Pleasan	ton			N/A		7/23/96	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Boring P MW5	₹o.			Drill Meth		Hollow-st Auger	em	Drilling Com V&W Drilling	
	G.W. level	O.V.M. (P.P.M.)	Depth (feet) Samples	Stratigra USCS			]	Description	
50-6"				SM		Silty sand with diameter and 10	gravel, estin )-20% silt, v	mated at 15-25% grav very dense, saturated,	el to 1 inch in olive brown.
10/13/19				CL		Sandy clay, est wet, yellowish		)-30% fine to coarse-g	grained sand, very stiff,
12/15/16				SC		Claycy sand, e medium dense	stimated at 2 to dense, we	25-35% clay, sand is f et, yellowish brown.	ine to coarse-grained,
}							TO	TAL DEPTH: 73.5'	
	[		⊢″-						
	]								
		ł							
						ļ			
[	1						• .		
						ł			
	1								
	ļ								
]							-		
{	1					1		<u></u>	

Page 4 of 4



(

	2		<u>_</u>		-	BORING LOG	
Project					Boring Dia		Logged By 566 T.S. 076/633
KEI-P9				-	Casing Dia	and the second second second second second second second second second second second second second second second	
1			S/S #7376		Well Cover		Date Drilled 7/23-24/96
4191 1st	Stree	t, Pleasant	ion			N/A	//23-24/90
Boring I MW6	No.				Drilling Method	Hollow-stem Auger	Drilling Company V & W Drilling
Pene- tration blows/6"	G.W level	O.V.M. (P.P.M.)	Samples	Str	ratigraphy USCS	Desc	ription
						Gravelly silt, estimated at 15-20 and 15-20% sand, loose, moist, o	% gravel to 1 3/4 inches in diameter, dark brown (fill).
2/5/9						Silt, estimated at 15-20% predor gravel to 3/4 inch in diameter, fi	ninantly fine-grained sand, and 5-10% irm, moist, dark brown (fill).
6/7/8						Silty sand, estimated at 20-30% diameter, sand is predominantly yellowish brown (fill).	silt, and 5-10% gravel to 1/2 inch in fine-grained, medium dense, moist,
10/11/13				S			ted at 15-25% clay and 5-10% gravel te to coarse-grained, medium dense,
19/21/29						Clayey sand, estimated at 20-30 diameter, sand is predominantly yellowish brown.	0% clay, trace gravel to 3/4 inch in v medium-grained, dense, moist, dark


ĺ

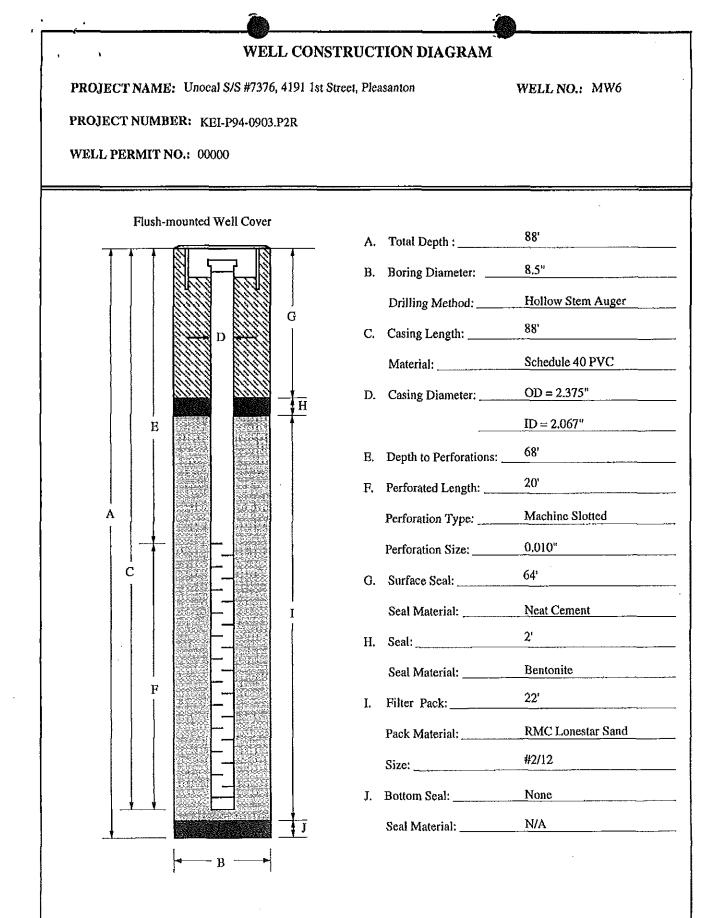
(

i

:

ľ



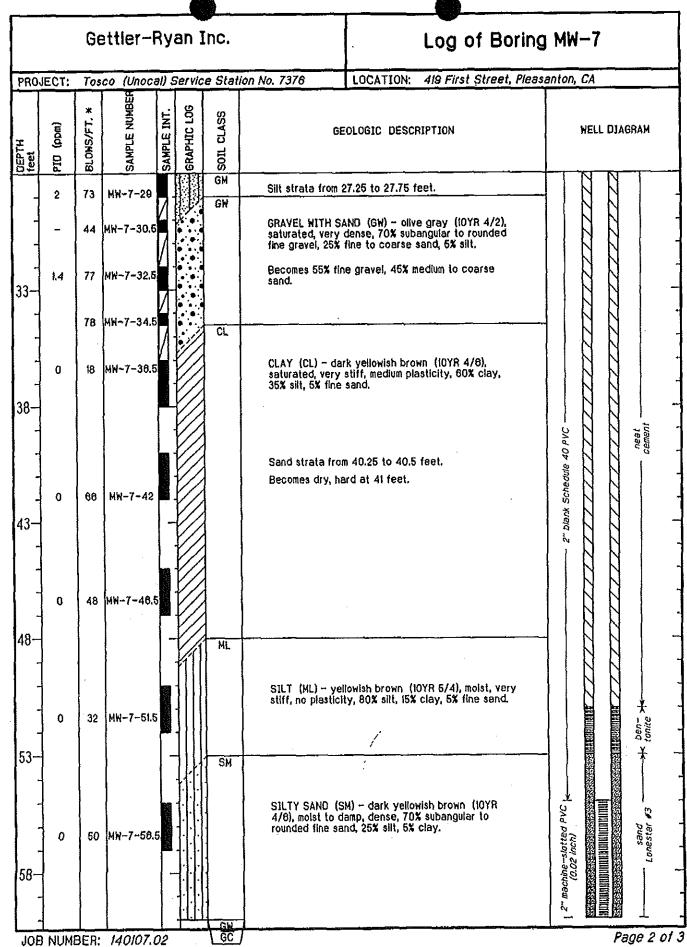

Page 2 of 4

						BORING LOG	
Project l			··	B	loring Dia	ameter 8,5"	Logged By JGC T.S. CEG 1633
KEI-P 94	1-0903	3,P2R			Casing Dia	ameter <u>2"</u>	T.S. CEG 1633
Project I			S/S #7376	V	Vell Cove	r Elevation	Date Drilled 7/23-24/96
4191 1st	Siree	, Pleasant				N/A	
Boring N MW6	<b>₹0.</b>				rilling lethod	Hollow-stem Auger	Drilling Company V & W Drilling
Pene- tration level (P.P.M.) Depth S blows/6" (P.P.M.) (feet) Samples					igraphy SCS	Desc	ription
11/12/18			45-	ML			predominantly fine-grained sand, and eenish gray and dark yellowish brown,
29/50-6"		۰. ۱	50-	GW- GM			0% fine to coarse-grained sand and diameter, very dense, moist, olive.
23/28/31				GM			% fine to coarse-grained sand and n diameter, very dense, moist, dark g clast boundaries.
14/23/34							30% fine to coarse-grained sand and thes in diameter, dense to very dense,
20/28/29				GC		Clayey gravel, as above.	
29/39/50						Clayey gravel, estimated at 20-3 10-20% clay, gravel to 1-1/2 inc yellowish brown, moisture at cli	30% fine to coarse-grained sand and ches in diameter, very dense, moist, ast margins.

í

1				BORING LOG				
Project No.			Boring 1	Diameter 8.5"	Logged By JGG			
KEI-P 94-0	903.P2R		Casing I	Diameter 2"	Logged By 766 T.S. <i>CEG</i> (633			
Project Na	me Unocal	S/S #7376	Well Co	ver Elevation	Date Drilled			
4191 1st Sti	reet, Pleasant	lon		N/A	7/23-24/96			
Boring No. MW6			Drilling Method	Hollow-stem Auger	Drilling Company V & W Drilling			
Pene- G.V tration lev blows/6"		Depth (feet) Samples	Stratigraphy USCS		Description			
24/50-6"			GM 650		15-25% fine to coarse-grained sand and inches in diameter, very dense, moist to wet,			
21/12/13				Silt, hard to very stiff, m	oist, yellowish brown.			
12/13/14			ML		20-30% silt, sand is predominantly very fine to nse, moist, yellowish brown.			
50/50-6"		- 75-	SW	diameter and 5-10% silt,	t, estimated at 20-25% gravel to 3/4 inch in sand is predominantly fine to ense, moist, dark yellowish brown.			
31/50-6"	Z			Silty sand with gravel, e diameter, and 10-20% si moist to wet, dark yellow	stimated at 15-20% gravel to 1 inch in It, sand is fine to coarse-grained, very dense, wish brown.			
33/50-6"		80-	SM	Silty sand with gravel, a	s above.			
				Poorly graded sand, pred saturated, olive brown.	dominantly medium-grained, medium dense,			
8/10/11				Well graded gravel with to very coarse-grained s	sand, gravel to 1/2 inch in diameter, medium and, medium dense, saturated, olive brown.			
33/50-3"			ML	Silty sand with gravel, e	estimated at 15-25% silt and 10-20% gravel to s predominantly fine to medium-grained, very			

•••




	Ú.		nyali	Inc.		Log of Boring MW-7				
ECT:	Tos	co (Unoc	al) Ser	vice Stati	on No. 7376	LOCATION: 419 First Street, Ple	asanton, (	CA		
ECT N	10. :	140107.0	2			CASING ELEVATION: 355.97 fee	et MSL			
E STA	RTED	: 08/14/	98			WL (ft. bgs): 61.8 DATE: 08/14/98	TIME:	2:00 pm		
EFIN	ISHE	): 08/14	/98			WL (ft. bgs): 64.30 DATE: 08/14/98	TIME;	2:00 pm		
LING	METH	IOD: 8" h	ollow-	stem auge	er	TOTAL DEPTH: 75 Feet				
LING	COMP		odward	l Drilling		GEOLOGIST: Clyde Galantine				
(udd) DIc	BLOWS/FT. *	SAMPLE NUMBE	SAMPLE INT.	SOIL CLASS	6	EOLOGIC DESCRIPTION		HELL DIAGRAM		
2	11	MW-7-8		ML	SILT (ML) — da slight plasticity, trace gravel	k brown (10YR 3/3), damp, stiff, 80% silt, 15% clay, 5% fine sand,				
i	42	MM-7-11		GM ML	verv dense, 659	subangular to rounded fine gravel.	lie 40 PVC			
0	66	₩₩~7 <b>-</b> 18,5			SILT WITH SAN 4/4), damp, har 10% clay.	D (ML) – dark yellowish brown (10YR d, 70% silt, 20% fine to coarse sand,	2" blank Sched	cement cement		
	51	₩₩-7-21.6			SILT (ML) – ye 80% silt, 35% cla	llowish brown (10YR 5/4), damp, hard, ay, 5% fine to medium sand.				
0	28	MW-7-28.		- <u>-</u> SW	gray (56 5/1) m SAND (SW) - o	iottling. live oray (6Y 4/2), moist, medium				
			报	GM	dense, 95% fine SILTY GRAVEL	to medium sand, 5% clay. (GM) - olive oray (5Y 4/2), moist.				
	ECT N STA FINI LING (EC) Pa 2 2 1	ECT NO. : E STARTED FINISHEI LING METH LING COMP (Udd) 01 1 1 1 1 1 1 1 1 1 1 1 1 1	ECT NO. : 140107.0. E STARTED: 08/14/ E FINISHED: 08/14/ LING METHOD: 8" h LING COMPANY: WO (WG) C * 1-1 WW-7-6 1 42 MW-7-18.5 0 66 MW-7-18.5 0 26 MW-7-28.6 3.2 34 MW-7-28	ECT NO. : 140107.02 E STARTED: 08/14/98 FINISHED: 08/14/98 LING METHOD: 8" hollow- LING COMPANY: Woodward (udd) 01 4 1 42 MW-7-18 51 MW-7-21.5 0 26 MH-7-26.5	ECT NO. : 140107.02 E STARTED: 08/14/98 E FINISHED: 08/14/98 LING METHOD: 8" hollow-stem auge LING COMPANY: Woodward Drilling (W00) 01 2 11 MW-7-6 2 11 MW-7-6 6 66 MW-7-16.5 6 1 MW-7-26.5 6 26 MW-7-26.5 6 26 MW-7-28	ECT NO. : 140107.02 E STARTED: 08/14/98 E FINISHED: 08/14/98 LING METHOD: 8" hollow-stem auger LING COMPANY: Woodward Drilling	ECT NO. : 140107.02     CASING ELEVATION: 355.97 fee       E STARTED: 08/14/98     NL (tt. bgs): 648 DATE: 08/14/98       E TINISHED: 08/14/98     NL (tt. bgs): 648 DATE: 08/14/98       LING METHOD: 8* hollow-stem auger     TOTAL DEPTH: 76 Feet       LING COMPANY: Woodward Drilling     GEOLOGIST: Clyde Galantine       1     1     1       2     11     MN-7-8       2     11     MN-7-18       3     20     65       42     NN-7-18       42     NN-7-18       51     NN-7-18       51     NN-7-18       51     NN-7-215       51     NN-7-215       51     SILT (ML) - vellowish brown (10YR 5/4), damp, hard, 80X silt, 35X clay, 5X fine to coarse sand.       0     66       61     NN-7-215       52     53       51     NN-7-215       51     SILT (ML) - vellowish brown (10YR 5/4), damp, hard, 80X silt, 35X clay, 5X fine to coarse sand.       0     66       61     NN-7-215       52     SILT (ML) - vellowish brown (10YR 5/4), damp, hard, 80X silt, 35X clay, 5X fine to medium sand.       61     NN-7-215       52     SILT (ML) - vellowish brown (10YR 5/4), damp, hard, 80X silt, 35X clay, 5X fine to medium sand.       61     NN-7-215       53     SILT	ECT NO.:       140107.02       CASING ELEVATION:       355.97 feet MSL         ESTARTED:       08/14/08       ML (ft.bgs): 64.8       DATE: 08/14/08       TIME:         ETISHED:       08/14/08       ML (ft.bgs): 64.30       DATE: 08/14/08       TIME:         ETISHED:       08/14/08       ML (ft.bgs): 64.30       DATE: 08/14/08       TIME:         LING COMPANY:       Woodward Drilling       GEOLOGIC DESCRIPTION       GEOLOGIC DESCRIPTION         0       0       0       0       0       SILT (ML) - dark brown (IDYR 3/3), damp, stiff, sliph basicity, 80% silt, IBX clay, 5X ftne sand, trace gravel.       ML         1       42       MH-7-8       ML       SILT WITH SAND (ML) - dark wellowish brown (IDYR 4/4), damp, stiff, sliph basicity, 80% silt, IBX clay, 5X ftne sand, trace gravel, 20% silt, ISX line to coarse sand.       0         0       60       MN-7-16.5       ML       SILT MITH SAND (ML) - dark yellowish brown (IDYR 4/4), damp, hard, 90% silt, ISX line to coarse sand, 10% clay.       0         0       60       NN-7-21.5       SILT MITH SAND (ML) - dark yellowish brown (IDYR 4/4), damp, hard, 90% silt, ISX line to coarse sand, 10% clay.       0         0       60       NN-7-21.5       SILT MITH SAND (ML) - dark yellowish brown (IDYR 4/4), damp, hard, 90% silt, ISX line to coarse sand, 10% clay.       0         0       60       NN-7-21.5<		

• •

- ---

•



<u></u>		Ge	ettler-l	Rya	an I	nc.		*** <u>*</u> ****************		Log of Bo	ring MW-7
PROJ	ECT:	Tos	co (Unoci	al) S	iervici	e Stat	ion No	p. 7376	LOCATION:	419 First Street,	Pleasanton, CA
UEY I H feet	PID (ppm)	BLOWS/FT. *	SAMPLE NUMBER	SAMPLE INT.	GRAPHIC LOG	SOIL CLASS			OLOGIC DESC		WELL DIAGRAM
	0		MH-7-60.5 MH-7-62.5			GH GC	¥	yellowish brown subangular to ro coarse sand, 103	(10YR 4/6), moi unded fine grav 6 clay.	(GW-GC) - dark st, very dense, 70% rel, 25% medium to 5/2) at 62 feet,	
35- -	4.4	66	MW-7-84.5					Sand layer from		leet.	
	-		MM-7-66.5					Abundant water	at 66 feel.		2" machine-slotted PVC (0.02 inch) (0.02 inch) ((((((((((((((((((((((((((((((((((((
- 	10	67	MW-7-68.5	5 2 -							2" mach 6
-10	0	68	MH-7-70.5	5 2.		SW SC	}	SAND WITH CLA 4/8), saturated, rounded fine to gravel.	Y (SW-SC) - si very dense, 85 very coarse sa	trong brown (7.5YR 3% subengular to nd, 10% clay, 5% fine	ap     2" machine-slotted PVC       ap     2" machine-slotted PVC       co.o2 inch)     0.02 inch)       co.o2 inch)     0.02 inch)       co.o2 inch     0.02 inch       co.o2 inch     0.02 inch       co.o2 inch     0.02 inch
- - 75_	0	60	MW-7-73.{	5		CL		CLAY (CL) - da hard, medium pla sand.	rk yellowish bro sticity, 85% cla	wn (10YR 4/6), moist iy, 10% silt, 5% fine	
75								(* Converted to	b standard pen	etration blows/foot.)	
80 - -				-					,		
- 85									:		
• •					-		- #				
90- -				-							

í

Page 3 of 3

Т

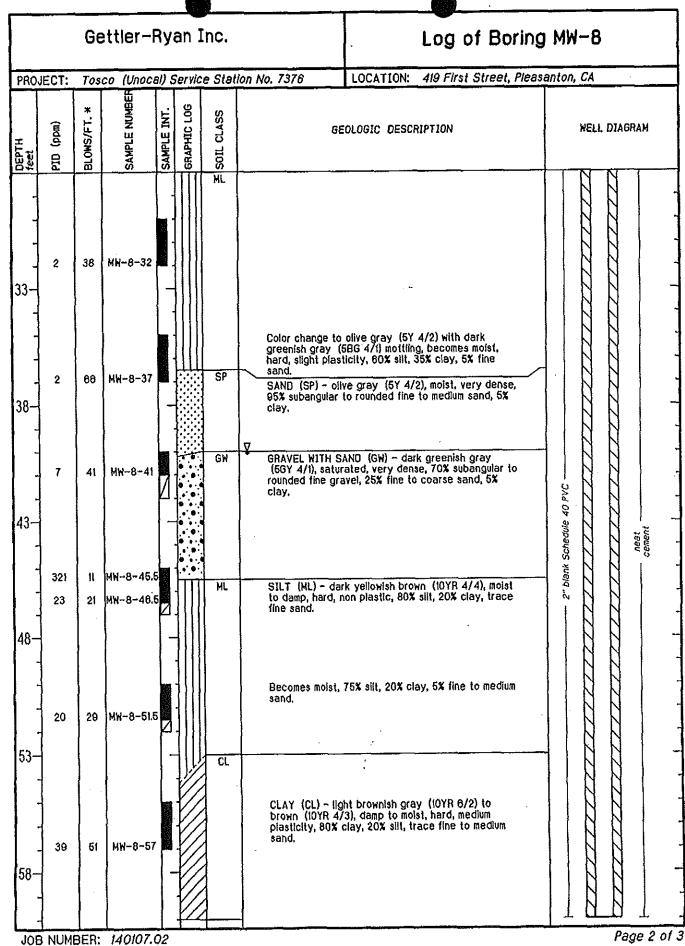
ŧ

		Ge	ettler-I	Ry	an I	nc.		Log of Boring MW-8					
PRO	JECT:	Tos	co (Unoć	a/) 5	Gervic	e Stat	ion No. 7376	LOCATION: 419	First Street, Plea	asanton, CA			
	JECT N					49. ⁻		CASING ELEVATION: 362.37 feet MSL					
DAT	E STA	RTED	: 06/12/	98				WL (ft. bgs): 40 DATE: TIME:					
DAT	EFIN	SHEE	): 06/12/	198				WL (ft. bgs):	DATE:	TIME:			
DRI	LLING	METH	00: <i>8" h</i>	ollo	w-ste	em augu	37	TOTAL DEPTH:	·····	"	·····		
ORI	LLING	COMP	ANY: Wo	odw	ard D	rilling		GEOLOGIST: Cly	de Galantine				
UEP1H feet	PID (ppm) BLOWS/FT. * SAMPLE NUMBER SAMPLE INT. GRAPHIC LOG GRAPHIC LOG SOIL CLASS							GEOLOGIC DESCRIPTION					
- - - 5- - - - - - - - - - - - - - - -	5	16	MN-8-8 MN-8-11			GM	SILTY GRAVEL medium dense, gravel, 20% sill	(GM) - dark brown (IC 70% subangular to roun , 10% fine to coarse sa	iYR 3/3), damp, ded fine nd.				
- - - - - - - - - - - - - - - - - 	2	14	MW-8-16.6			ML	SILT (ML) - v damp to moist, clay, 5% fine s	ery dark grayish brown very stiff, non plastic, and.	(10YR 3/2), 75% silt, 20%	2" biank Schedule 40 PVC	7/////////////////////////////////////		
20-	4	22	MW-8-21	5 🛛			Color change	o dark brown (10YR 4/	4).				
25-	2	33	MW-8-26				Becomes damj 10% fine to co	o, hard, non plastic, 70% arse sand.	slit, 20% clay,				

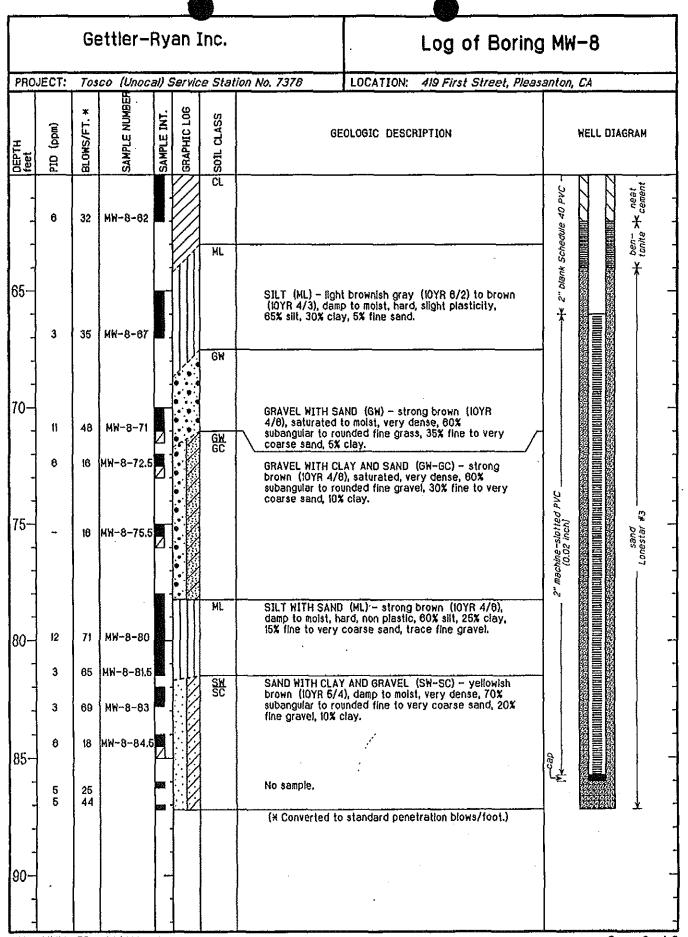
....

ť

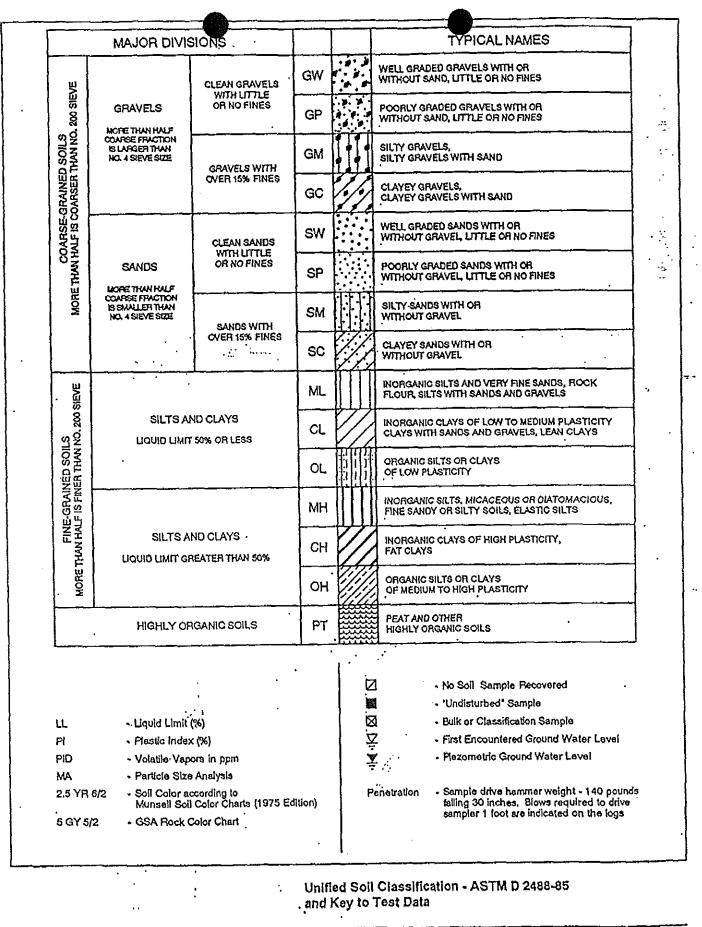
ļ


ł

ł


T

÷


: 1



Page 2 of 3



Page 3 of 3



۰,

	G	<b>Jet</b>	ler–R	ya	n,	Inc.		Log of Boring MW-9				
ROJI	ECT:	Toso	co (76) S	ervid	e Si	tation N	lo. 7376	LOCATION: 419 First Street, Plea	asanton, CA			
GR PF	OJEC	T NO.	: 14010	7.04				CASING ELEVATION: 354.85 fee	t MSL			
DATE	STAF	RTED:	10/07/	99		· · · · · · · · · · · · · · · · · · ·		WL (fl. bgs): 73.85 DATE: 10/07/99	Т1ME: 1:30 рт			
DATE	FINI	SHED	: 10/07/	99				WL (ft. bgs): 71.73 DATE: 10/07/99	TIME: 3:10 pm			
ORILI	ING N	ETH	0D: 8" h	ollo	v-sti	em auge	?*	TOTAL DEPTH: 76 feet				
JRILI	ING (	COMP		odwa	ard D	Drilling		GEOLOGIST: Clyde Galantine				
DEPTH (feet)	(mqq) CIq	BLOWS/FT. #	SAMPLE NUMBER	SAMPLE INT.	GRAPHIC LOG	soil class	C	EOLOGIC DESCRIPTION	WELL DIAGRAM			
		<u>a</u>	<u> </u>	<u>ທ</u>		ML	stiff, non-plasti gravel.	(ML) - dark brown (10YR 4/3), moist, ; 80% sill, 15% fine to coarse sand, 5% aet to dark brown (10YR 3/3).				
4		13	MM9-8				Change at 4,25 4/3), moist, very very fine sand,	feet to SILT (ML) ~ brown (10YR stiff, non-plastic; 90-100% silt, 0-10%				
- - - 12	a	18	MM-8-11				Change at 10 fe (10YR 4/3), mois coarse sand.	et to SILT with SAND (ML) – brown it, very stiff; 80% silt, 20% fine to	edule 40 PYC			
- 16	0	56	MM-9-19	· ·			Change at 15 fe 4/4),	et to dark yellowish brown (10YR	2" plank Sched.			
20	0	48	MW-9-21				with dark grayis	et to SILT (ML) - brown (7.5YR 5/4) h brown (10YR 4/2) mottling, molst, 5% clay, 10% fine to coarse sand.				
- 24-						CL	CLAY (CL) - da hard, moderatel coarse sand.	rk yellowish brown (10YR 4/4), moist, y plastic; 75% clay, 15% silt, 10% fine to				
28-	0	38	MW-9-28	2		GW	to saturated, ve fine gravel, 25%	dark grayish brown (2.5Y 4/2), moist rry dense; 70% subangular to rounded 80% subangular to rounded fine to coarse sand, 5% clay.				

ŧ

]

i

i



}	(	Set	tier-R	y٤	an, i	Inc.		Log of Boring	MW-9
PROJ	ECT:	Tos	co (76) S	ervi	ice Sl	ation I	Vo. 7376	LOCATION: 419 First Street, Pleasa	nton, CA
DEPTH {feet}	PID (pom)	BLOWS/FT. *	SAMPLE NUMBER	SAMPLE INT.	GRAPHIC LOG	SOIL CLASS	6	EOLOGIC DESCRIPTION	WELL DIAGRAM
	0		₩-9-30.E			GW	to saturated, ver fine gravel, 25%	dark grayish brown (2.5Y 4/2), moist y dense; 70% subangular to rounded 80% subangular to rounded fine b coarse sand, 5% clay.	
36-	1	<100				CL	No sample recov	ery t yellowish gray (2.5Y 6/2) to dark ), moist to saturated, very stiff, very	
- 40 - -	0	. 24	MW-9-41			SW	plastic; 80% clay Change at 41 fee — saturated, slig to coarse sand,	, 15% silt, 5% fine sand. St to SANDY CLAY with GRAVEL (CL) htly plastic; 85% clay, 20% very fine	2" blank Schedwle 40 PVC
44	0	56	MW~9-48.	~		GW	saturated, very to coarse sand, GRAVEL (GN) - saturated, very gravel, 20% fine CLAY (CL) - dar	dense, 95% subangular to rounded fine	
- - 52-	0	31	MW-9-51				Change at 50 fe yellowish brown oxide staining.	et to brown (10YR 5/3) to light (2.5Y 8/3) with black manganese	PVC (0.020 inch) Suuraturmutary ZZZ Suarannutary ZZZ
-  56   60	0		MW~9-56			SM	SILTY SAND (Si very dense, 80% fine sand, 20% s	4) – brown (10YR 4/3), saturated, subangular to rounded very fine to ilt.	

ł

High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High     High								
Image: Second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second		Get	tler-R	yan	n, Inc.		Log of Boring	MW-9
0       <100       HN-8-60.5       SM       See previous sheet for geologic description.         SAND with CLAY (SN-SC) - dark yellowish brown for rounded fine to very coarse sand, 10% fine gravel, 10% clay.       SN       SAND with BRAVEL (SN) - dark yellowish brown for rounded fine to very coarse sand, 25% fine gravel, 5-10% clay.         64       0       <100       SN-SC       SAND with BRAVEL (SN) - dark yellowish brown for rounded fine to very coarse sand, 25% fine gravel, 5-10% clay.         64       0       <100       SN-SC       SAND with CLAY (SN-SC) - dark yellowish brown for rounded fine to very coarse sand, 25% fine gravel, 5-10% clay.         68       HN-9-71.5       ¥         72       0       68       HN-9-71.5         74       SN-SC       SAND with CLAY (SN-SC) - dark yellowish brown for rounded fine to very coarse sand, 25% fine gravel, 5-10% clay.         76       0       <100       MN-9-76         80 tom of boring at 70 feet bgs. (x = Converted to equivalent standard penetration blows/foot.)       (x = Converted to equivalent standard penetration blows/foot.)	PROJECT	: Tos	co (76) Se	ervice	station	No. 7376	LOCATION: 419 First Street, Please	anton, CA
0     <100	OEPTH (feet) PID (ppm)	BLOWS/FT. *	SAMPLE NUMBER	SAMPLE INT.	GRAPHIC LOG SOIL CLASS	G	EOLOGIC DESCRIPTION	WELL DIAGRAM
		<100 <100	₩₩-9-60.5 ₩₩-9-71.5		SM SW-SC	SAND with CLAY (IOYR 4/4), saturounded fine to clay. SAND with GRAV 3/4), saturated, rounded fine to 5-10% clay. SAND with CLAY ✓ (IOYR 4/4), saturounded fine to clay. Bottom of borin (* = Converted	(SW-SC) - dark yellowish brown trated, very dense; 80% subangular to very coarse sand, 10% fine gravel, 10% EL (SW) - dark yellowish brown (10YR very dense; 85-70% subangular to very coarse sand, 25% fine gravel, (SW-SC) - dark yellowish brown urated, very dense; 80% subangular to very coarse send, 10% fine gravel, 10% g at 78 feet bgs.	Cap 2" machine slotted PVC (0.020 inch)

Page 3 of 3

	G	<b>et</b>	tier-R	ya	n,	Inc.		Log of Boring MW-10				
PROJE	CT:	Tos	co (76) Si	zrvi	ce Sl	ation N	10. 7376	LOCATION: 419 First Street, Please	anton, CA			
			.: 140102					CASING ELEVATION: 362.62 feet /				
DATE								WL (fl. bgs): 88.5 DATE: TIME:				
			): 11/21/9	9		-	· ····································	WL (ft. bgs): DATE:	TIME:			
			0D: 8" h			em auge		TOTAL DEPTH: 100 feet	TOTAL DEPTH: 100 feet			
ORILLI	ING C	COMP	ANY: Woo	odw.	ard D	Drilling		GEOLOGIST: Clyde Galantine				
(feet)	PIO (ppm)	BLOWS/FT. *	SAMPLE NUMBER	SAMPLE INT.	<b>GRAPHIC LOG</b>	soil class	6	EOLOGIC DESCRIPTION	WELL DIAGRAM			
					4.4.4	GW	Asphalt					
4	-	29	MW-10-3.5 MH-10-5.5			ML	SANDY SILT (MI 3/2), moist, hard to rounded fine	ND (GW) - Fill material. ) - very dark gravish brown (10YR , non-plastic; 50% silt, 30% subangular to coarse sand, 20% clay. eet to yellowish brown (10YR 5/6).				
8-1	0	21	MW-10-7.5									
	2	25	MW-10~11				yellowish brown non-plastic; 80% gravel, 5% fine t		D PVC			
-	0	22	MW-10-13	2  2 			(10YŘ 4/1); 40% to medium sand,	eet to SANDY SILT (ML) - dark gray silt, 40% subangular to rounded fine 20% clay. feet to GRAVELLY SILT (ML) - very	: Schedule 40 PVC			
16-	0	54	MW-10-16.5			SW~SM ML	grayish brown ( 30% subangular to rounded fine SAND with GRAV	IOYR 5/2), hard, non-plastic; 60% slit, to rounded fine gravel, 15% subangular to coarse sand. EL (SW-SM) - dark brown (10YR 4/3), ed, very dense; 60% subangular to	- 2" blank Sct			
		<100	MW-10-19				rounded fine to silt. SILT with SAND 4/6), moist, hard	very coarse sand, 30% fine grave), 10% (ML) - dark yellowish brown (10YR d, non-plastic; 70% silt, 25% subangular to very coarse sand, 5% subangular to				
	0	54	MW-10-21			5W	SAND (SW) - ol 85% subangular	lve gray (5Y 4/2), moist, very dense; to rounded fine to coarse sand, 10% bunded fine gravel, 5% silt.				
24-	0	67 46	MW-10-25.			ML	SILT (ML) - ye non-plastic; 901 sand.	Nowish brown (10YR 5/4), moist, hard, % silt, 10% subangular to rounded fine				
				7			Change at 27.2	5 feet to olive gray (5Y 4/2); 80% slit, ubangular to rounded fine sand,				

. . . . .

ï

	C	Set [®]	tler-R	ya	n,	Inc.		Log of Boring	MW-10
ROJ	ECT:	Tos	co (76) S	ervi	ce S	ation I	Vo. 7376	LOCATION: 419 First Street, Please	anton, CA
(feet)	PID (ppm)	BLOWS/FT. *	SAMPLE NUMBE	SAMPLE INT.	GRAPHIC LOG	SOIL CLASS	G	EOLOGIC DESCRIPTION	WELL DIAGRAM
	0	48	MW-10-29			ML	SILT (ML) - olivi non-plastic; 60% rounded fine san	e gray (5Y 4/2); molst, hard, silt, 30% clay, 10% subangular to id.	
	-	<100	MW-10-31			GW-GC	l (5Y 4/2), moist.	T and SAND (GW-GC) - ofive gray very dense; 60% subangular to vel, 30% subangular to rounded fine to	
32-	.ent	<100	N₩-10-32.(				SAND (SW) - oliv 90% subangular	ve gray (6Y 4/2), moist, vary dense; to rounded very fine to coarse sand, f silt and coarse sand,	
36-	3		MW-10-36.	0.000		GW	very dense: 60%	ND (GW) - olive gray (5Y 5/2), moist, subangular to rounded fine gravel, lar to rounded very fine to coarse	
	31	<100	MW-10-38						
40 - -	-	48	₩-10-40.			ML	non-plastic: 60-	wn (10YR 4/3), moist, hard, 80% silt, 20-30% clay, 0-10% unded fine to coarse sand.	0 PVC
- 44	2	68	N₩-10-44					er at 43,25 - 43,4 feet.	biank Schedwe 40 PVC
l. l.	0	63	MW~10-47	N. S. W. C. S.			At 45 feet beco Change at 46 fe 80% slit, 20% cla	et to grayish brown (10YR 5/2), moist;	- 2" bian
48	•		MW-10-49				Gray (5Y 5/1) m	otiling at 47 to 48.5 feet.	
1	2		MW∸10-51				Change at 50 fe with black mange	eet to dark yellowish brown (10YR 4/4) anese oxide staining.	
52-	;								
-	12 .	<100	MW~10-54					et to light olive brown (2,5Y 5/3) and	
56-	443	72	MW~10-58	»		 	greenish gray (	56 6/1).	
1							Equipment broke feet, no samples	n downhole, overdrilled from 57 – 70 s were taken.	
60-		1	}		}		]		

Page 2 of 4





	e	<b>ett</b>	ler-R	ya	n,	Inc.		Log of Boring	MW-10
PROJE	ECT:	Tosc	:0 (76) Se	ervi	ce S	tation N	10. 7376	LOCATION: 419 First Street, Please	anton, ÇA
DEPTH (feet)	(mqq) OI4	BLOWS/FT. *	SAMPLE NUMBER	SAMPLE INT.	SRAPHIC LOG	SOIL CLASS	G	EOLOGIC DESCRIPTION	WELL DIAGRAM
64 68	6		<u> </u>	<i>S</i>	<u>(6</u>		Equipment broke feet, no samples	n downhole, overdrilled from 57 - 70 were taken.	рис — лиа — лиа — лиа — лиа — лиа — лиа — лиа — лиа — лиа — лиа — лиа — лиа — лиа — лиа — лиа — лиа — лиа — лиа
72 - - 76	0	<100	MW-10-71 MW-10-72.( MW-10-78			GW-GC	yellowish brown 70% subangular	T and SAND (GW-GC) - dark (10YR 4/6), saturated, very dense; to rounded fine gravel, 20% subangular to coarse sand, 10% silt.	2" biank Schedwe 40 PVC 2" biank Schedwe 40 PVC 2" 1   1   1   1   1   1   1   1   1   1
	-	<100	M₩~10-77,			* * * * *		•	
-08	0	50	MM-10-82			ML.	non-plastic; 80; rounded fine sa	lowish brown (10YR 5/6), moist, hard, \$ silt, 10% clay, 10% subangular to nd, trace of fine gravel. coarse sand strata at 81.8 - 82.2	A A A A A A A A A A A A A A A A A A A
84-	0		MW-10-84			SW-SM	) brown (10YR 5/	and GRAVEL (SW-SM) - yellowish 8), molst, very dense; 70% subangular to coarse sand, 20% gravel, 10% silt.	(0.020 inch) - [0.020 inch] - [1]11111111111111111111111111111111111
- - 88-	0	<100	₩ <b>~10-87</b> .	.E		GW	GRAVEL with SA	ND (GN) - yellowish brown (10YR 5/6), se; 70% subangular to rounded fine angular to rounded fine to very coarse silt.	
1	-	<100	MW-10-90.	,5		P .* .* *	Grab groundwal	er sample MW~10-90 at 90 feet.	- 2" machin

{

ţ

Page 3 of 4

ł

!

T



## Log of Boring MW-10 Gettler-Ryan, Inc. LOCATION: PROJECT: Tosco (76) Service Station No. 7376 419 First Street, Pleasanton, CA SAMPLE NUMBER BLOWS/FT. * GRAPHIC LOG SAMPLE INT. SOIL CLASS (Edd) **GEOLOGIC DESCRIPTION WELL DIAGRAM** DEPTH (feet) DIA GRAVEL with SAND (GW) - yellowish brown (10YR 5/8), moist, very dense; 70% subangular to rounded fine gravel, 30% subangular to rounded fine to very coarse GW (0.020 inch)> <100 MH-10-92. .... 0 ŧ sand, trace of silt. <100 Course sand (SW) at bottom of 92.5 foot sample. #3 Lonestar sand slotted PVC Hydropunch rejection ater 8 inches at 93 feet. 98-Hydropunch sample - MW-10-95'. machine 2 <100 MW-10-99 Hydropunch from 99 ~ 100 feet, no groundwater after I hour wait. 100 Bottom of boring at 100 feet bgs. (* = Converted to equivalent standard penetration blows/foot.) 104 108-112. 116 120-124

JOB NUMBER: 140107.04

Gettler-R	lyan, II	nc.	Log of Borin	ng MW-11
PROJECT: Tosco (76) S	ervice Sta	tion No. 7376	LOCATION: 4191 First Street, Ple	asanton, California
GR PROJECT NO. ; 14010		· · · · · · · · · · · · · · · · · · ·	CASING ELEVATION:	·
DATE STARTED: 09/17/	01	······································	WL (11, bgs); 81.1 DATE: 09/17/01	TIME: 08:00
DATE FINISHED; 09/17/	/01	· • • • • • • • • • • • • • • • • • • •	WL (fi, bgs): DATE:	TIME:
DRILLING METHOD: 8 in.	. Hollow Ste	em Auger	TOTAL DEPTH: 91 feet	is - provide f
DRILLING COMPANY: WO	odward Drij	lling	GEOLOGIST: Clyde Galantine	
Lterin (feet) PID (ppm) BLOWS/FT. * SAMPLE NUMBER	SAMPLE JNT. GRAPHIC LOG	SDIL CLASS	GEOLOGIC DESCRIPTION	WELL DIAGRAM
5 - 10 - 15 - - - - - - - - - - - - -			ed to 40 feet.	

	C	Set	tler-R	ya	i <b>n,</b> )	Inc.		-	Log of Borin	ig MW-11
PROJ	ECT:	Tosi	co (76) Si	ervi	ce St	ation N	lo. 7376	LOCATION:	4191 First Street, Ple	asanton, California
DEPTH (feet)	(mqq) UI9	BLOWS/FT. *	SAMPLE NUMBER	SAMPLE INT.	GRAPHIC LOG	SOIL CLASS	G	EOLOGIC DESC	SIPTION	WELL DIAGRAM
		>100 >100 >100 48 17 >100 31 35 28 >100	MW-11-41 MW-11-42.5 MW-11-49 MW-11-52			SM GC CL	(10YR 5/4), satu rounded fine to CLAYEY GRAVEL (10YR 5/4), satu rounded fine gra 20% clay. CLAY (CL) - bro 80% clay, 15% sil Becomes very s Becomes hard.	Insted, very den very coarse san ivel, 15% silt. WITH SILT IGO inated, very den ivel, 30% fine to own (7.5YR 4/4) 1, 5% fine sand. tiff; 60% clay, 3 liff; 80% clay, 18	<ul> <li>yellowish brown</li> <li>se; 50% subangular to</li> <li>c) - yellowish brown</li> <li>se: 50% subangular to</li> <li>c) - yellowish brown</li> <li>se: 50% subangular to</li> <li>very coarse sand,</li> <li>i, moist, hard, plastic;</li> <li>5% silt, 5% fine sand.</li> <li>5% silt, 5% fine sand.</li> </ul>	(0.020 kcm)k
70-		>100	) MW-11-88. ) MW-11-71. ) MW-11-72.	5		SM	pale brown (10 subangular to r S1LTY SAND W (10YR 5/4) and	YA 8/3), moist, v ounded fine san ITH GRAVEL (S)	4) — yellowish brown 1YR 8/3), moist, very	2" machine stotted PVC (0.020 Acm ³ 2. machine stotted PVC (0.020 Acm ³ 111111111111111111111111111111111111
75-						SW-50	(10YR 4/3), sa	turated, very da	(SW-SC) — brown ense; 60% subangular to 10% fine gravel, 10%	
		BER:	140107.	05	- <b>L</b>	<u></u>				Page 2 o

			tler-R	V	an.	Inc.					 Lo	a of	Bori	nal	MW	11	
PROJ			co (76) S	_				<u>'6</u>		CATION						alifornia	
T NOO		103		<u> </u>		011077 1		<u> </u>		JUNITON			0000	10430/	1011, 0	20101120	
DEPTH {feet}	(mqq) (III	BLOWS/FT. *	SAMPLE NUMBER	SAMPLE INT.	SRAPHIC LOG	SOIL CLASS			GEOL	.0GIC DE:	SCRIPTI	ON			W	ELL DIAGR	AM
- - - - 80	_	>100 >100 >100	MM1180.5	И. И.	1.1/	SW-SC GW-GC GW-GM CL	GI (1) col GI GI (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	RAVEL WITH ( DYR 4/3), se bunded fine gi lay. RAVEL WITH ( HOYR 4/3), se bunded fine gi LAY WITH SAI	SILT SILT SILT SILT SILT SILT SILT SILT	40% fine 40% fine AND SANI d, very c 25% fine	iense; 50 to coar ) (GW-G lense; 61 to coar;	0% subar se sand, 5% subar se sand, sh brown	ngular to 10% own ngular to 10% silt.		—cao 1 ⁴ ⊷ 2° rescrine statted PVC (2.020 inch)		si Lenestar sand
- 85	0 0		MW-11-84 MW-11-88			SC	fi Ci 4	/4), moist, hai ne to medium LAYEY SAND /4), moist, ver ne to coarse	sand, (SC)	10% fine - dark ye se: 70%	gravel. ellowish i subangui	brown () lar to ro	IOYR unded				
90	D	>100	MW-11-88			CL	Ć	lay lens from LAY (CL) - d ard, plastic; 6	jark v	ellawish b	rown (10	DYR 4/4)	, moist,				bentanite i i i i
-	0	>100	MM-11-91				(	ottom of bori * = converte			-	rd penet	ration				
95 -				-				lows/foot.)			~						
  100 -																	
- 105- -															-		- -
- - 110																· ·	- - -
					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							-					- - -
115 JOB	NUME	 BER:	140107.0	<u> </u> - 75	1 ,	, <u>, , , , , , , , , , , , , , , , , , </u>	<u> </u>	<u></u>								Page	- 3 of 3

2010/02/2017

¥

PROJECT: To: GR PROJECT N DATE STARTEI DATE FINISHE DRILLING MET)	).: <i>140107.0</i>	lice St					
DATE STARTED DATE FINISHE DRILLING MET			auonin	10. 7376	V 41434	First Street, Plea	santon, California
DATE FINISHE DRILLING METH			· · · · · ·	• ••••	CASING ELEVATI WL (fl. bgs): <i>Bl.O</i>	DATE: 09/20/01	TIME: 07:40
DRILLING METH	n: <i>09/19/01</i>			<u> </u>	WL (ft. bgs):	DATE:	TIME:
			ilem Au	iger		88 feet	
ORITEING COM	ANY: Wood				GEOLOGIST: CI	rde Galantine	
DEPTH (faet) PID (ppm) BLOWS/FT, *	SAMPLE NUMBER	GRAPHIC LOG	SOIL CLASS		EOLOGIC DESCRIPTI	0N	WELL DIAGRAM
5				Well not logged t	o 40 feel.		Image: State of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second



	G	<b>Jet</b>	ller–R	yā	<b>m,</b> 1	Inc.		Log of Boring	g MW-12
PROJI	ECT:	Tos	00 (76) S	ervi	ce Sl	ation N	lo. 7376	LOCATION: 4191 First Street, Plea	asanton, California
DEPTH (feet)	PID (pom)	BLOWS/FT. *	SAMPLE NUMBER	SAMPLE INT.	GRAPHIC LOG	SOIL CLASS	G	EOLOGIC DESCRIPTION	WELL DIAGRAM
- - 40- - - 40- - - -	0	50 >100	MW-12-44 NW-12-44.5	- - - -		SM	(10YR 4/4), satu	TH GRAVEL (SM) – yellowish brown rated, very dense; 50% subangular to coarse sand, 30% clay, 20% fine	
	a Ó	18 16	MW-12-47 MW-12-49	1. N. A.		CL	CLAY (CL) - dəi səturated to moi silt, 5% fine sano	k yellowish brown (10YR 4/6), st, very stiff, plastic; 70% clay, 25% l	tuewee
50	0 0		MW-12-52 MM-12-53.8	1					2" blank schedule 40 PVS 
55- - -	0		MW-12-58.0 MW-12-58				Color changes to with dark brown	o yellowish brown (10YR 5/4) mottled (10YR 3/3).	2
60 -	0	35	MW-12-62						
65-	0	>100	4₩-12-63.1	5		ML	SILT WITH SAN 4/4), moist, very sand.	) (ML) – dark yellowish brown (10YR v dense: 50% slit, 30% clay, 20% fine	ea PVC (0.026 mch)
	0 0	53 >100	MW+12-67 MW-12-68,			SM SW	moist, very dens	M) – dark yellowish brown (10YR 4/4), 19; 60% subangular to rounded fine 11um sand, 25% silt, 15% clay.	
-70	0	>100				-211	very dense; 95) medium sand, 5%	ark yellowish brown (10YA 4/4), moist, 6 subangular to rounded very fine to 6 silt. ne to very coarse sand, 5% silt, trace	2" #90%fre
-	0	>100					of fine gravel. SAND WITH GRA	.VEL (SW) – dark yellowish brown st, very dense; 75% fine to coarse	مديني: «عديدار 
75				.		·			

ſ

l (

ł

Page 2 of 3

						<u></u>							
	(	Get	tierR	ļγŧ	an,	Inc.			Lo	g of Boring	<b>MW</b> -1	2	
PROJ	ECT:	Tos	co (76) S	өгч	ice S	tation I	No. 7.	376	LOCATION: 4191	First Street, Pleas	anton, C	alifornia	
QEPTH (feet)	PIC (ppm)	BLOWS/FT. *	SAMPLE NUMBER	SAMPLE INT.	GRAPHIC LOG	SOIL CLASS		G	EOLOGIC DESCRIPTI	01	W	ELL DIAGRA	М
	0	>100	MW-12-77.{			SM SM-SC GW-6C		(IOYR 3/3), satu rounded fine to ( clay, GRAVEL WITH CL	AND GRAVEL (SW-S ated, very dense; 50 coarse sand, 40% fine AY AND SAND (GW-G	0% subangular to e gravel, 10% 5C) — dark brown	20 kch		1
- 80 - -	0	>100	MW-12-80.1 MW-12-81.5 MW-12-82.5	;		ĊL	Į	(IOYR 3/3), satu gravel, 40% suba sand, 10% clay. CLAY (CL) - dar	rated, very dense; 50 ngular to rounded fin k yellowish brown (10 ; 75% clay, 20% silt, f	0% rounded fine le to coarse 1178 4/8), moist.	machine sioflad PVC (0.020 inch)		Lanestèr send - 1 1 1 1
85-	0	>100	MW-12-85.1 MW-12-86.1					CLAY WITH SAN 4/8), moisi, very coarse sand, 15%	; 704 clay, 204 silt, i ) (CL) – dark yellowis stiff, plastic; 60% cla clay, trace of fine g from 86,1 to 86,3 fee	sh brown (10YR ay, 25% fine lo gravel.	λ, I		25¢
- - 90 -				.   .			7-10-0000	Bottom of boring (x = converted blows/foot.)	at 88 feet bgs. to equivalent standar	rd penetration			
- - 95—		4											
- - - 100					J								-
-													
105	•											·	
- 110 -													•  
- 115 JOB	NUM	BER:	140107.0		-							Page	

·

1

Į

•

Delta consultants	Project No: Logged By: Driller: Drilling Method: Sampling Method Casing Type: Slot Size: Gravel Pack: Elevation:	: Split Spoon 2"PVC 0.01 Lonestar #2/12 Northing	Location: Date Drilled Hole Diamed Hole Depth: Well Diamet Well Depth: ▼ First Water Static Water	ter: 8" 82.62' ter: 2" 82.12' Depth: 80'	Boring/Well No: MW-3B Page 1 of 4 Location Map Map Multiple for the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second seco
Backfill Casing Casing Water Level	Moisture Content PID Reading (ppm)	Sample Identification Depth (feet)	Recovery S Interval ald Soil Type	LITI	HOLOGY / DESCRIPTION
		$ \begin{array}{c} 1 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$			Aductor Casing to 45'

.

•

De Environ Consul In	mental tants, c.	1 Drinning Fr	By: Alan Buehle Cascade Method: Hollow Stern ng Method: Split Spoor Type: 2"PVC ee: 0.01 Pack: Lonestar #2			an Buehler Location: Pleasant ascade Date Drilled: 6 bilow Stem Hole Diameter: 8 plit Spoon Hole Depth: 8 PVC Well Diameter: 2 0.01 ♥ Well Depth: 8 mestar #2/12 ♥ First Water Depth: 8 ♥ Static Water Depth:			6/22/2009 8" 82.62' 2" 82.12' pth: 80'	,	Boring/Well No: MW-3B Page 2 of 4 Location Map
Backfill Casing Casing	u Water Level	Moisture Content	PID Reading (ppm)	Penetration (blows/6")	Depth (feet)	San Sacovery	Interval [,] ad	Soil Type	I	LITH	OLOGY / DESCRIPTION
					23						
Control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the c					24						- 1000 400 FT
See a second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec					25						-
	_				_						
					26						
					27				TV T The Table of Some		
	·····				28—						
	_				29						
					30			a.1.796.000			
	_									<u> </u>	
					31				8" Steel	Cond	uctor Casing to 45'
	_				32					Cont	
					33						
	_				34						
	_				35			5 and 1.10	87 W (1997)		
	·				-						· · · · · · · · · · · · · · · · · · ·
	_				36		·				
					37		•				
					38—						
	_				39		<b> </b>				
	_							Subject Comm	····		
					40						
					41						
					42						
					43						
					44		<u> </u>				
					1-1-1						

	Project No: C1073762		ConocoPhillips	Boring/Well No: MW-3B
	Logged By: Alan Bueh			Page 3 of 4
	Driller: Cascade	Date Drill		Location
Delta	Drilling Method: Hollow Ste			Мар
	Journhand Meenod, obuc obo			
Environment		Well Dian		
Consultants	Slot Size: 0.01 Gravel Pack: Lonestar	Well Dep ≇2/12₩ First Wat		
Inc.	Graver Pack: Lonestar -		iter Depth: 76.35	
	Elevation: No	orthing:	Easting:	
Well		ہ Sample		
Completion Casing Casing	Moisture Content PID Reading (ppm) Penetration (blows/6")	Soil Type Soil Type		····
Casing	the out out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out of the out	Recovery Interval Soil Ty	LIT	HOLOGY / DESCRIPTION
Cas Cas	Did Pin C M	St linte		
			8" Steel Cor	nductor Casing 0-45'
	4	5	0 51001 001	ludetor cashig 0 43
The Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Secon				
	4	6		
		-,	- MAIN VIEW AND MARTY -	
	4	/ Сі		erbedded w greenish gravely
		8	material, mild odd	or
		ĭ		10-20-6-01 VII
	4	9		, down wild oder
				y, damp, mild odor
	5	0		1.2004
Nameda - Manada da Maria Namada - Manada - Maria Namada - Manada - Maria Namada - Manada - Maria Namada - Manada Manada - Manada - M			Greenish grav clay	y w 20% gravel, damp, slight
All the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	5		odor	/ // 2070 gruter, uump, origin
Standard Systems 11				
In a Contraction of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second	5	2		
		3CI	Greenish gray cla	y, damp, mild odor
The Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Net Construction of the Ne				
	5	4		
	5	5	Greenish gray clay	y, interbedded gravel, damp,
			strong odor	y, meerbedded gruver, ddmp,
	5	6		
		_,		aver val v
	5	7 MI		andy silt w interbedded
		8		ite, mild odor, dry, less odor
		×	within DG	
	5	9	1	lactio, maint strong a day
			1 Lt brn clay, very p	plastic; moist, strong odor
	6	0	1 It brown gravely	clay interbedded w greenish gray
			gravely clay	ency meerbedded w greenish gray
	6		<u></u>	
		2 Cł	Lt brown gravely	clay, moist, mild odor
		3		
			V & Astro (2000) ST	
	6	4		
			I Lt brown clay, ver	y plastic, moist, mild odor
	6	5	I I t hrouge attac	damp clight odor
				r, damp, slight odor
	6	6		·

	у <b>х</b> ай айман айман айман айман айман айман айман айман айман айман айман айман айман айман айман айман айман ай	Project No:	C10737	76220	Clien	nt:	ConocoPhillips	Boring/Well No: MW-3B
		Logged By:	Alan Bu		Loca	tion:	Pleasanton	Page 4 of 4
7		Driller:	Cascad	-	Date	Drilled		Location
۰	Delta	Drilling Method:			Hole	Diame	ter: 8"	Мар
		Sampling Method		poon		Depth		
	Environmental	Casing Type:	2"PVC			Diame		
	Consultants,	Slot Size:	0.01			Depth		
	Inc.	Gravel Pack:	Lonesta	ar #2/12			Depth: 80' r Depth: 76.35'	
		Elevation:		Northing			Easting:	
	Well				Sample			-
	Backfill Casing Mater Level	Moisture Content PID Reading (ppm)	Penetration (blows/6")	Depth (feet)		Soil Type		
	Backfill Casing	oist ont Rei	letr ows	th	over Srva	bil T		IOLOGY / DESCRIPTION
	A Car	ΣO G	(bl	Dep	Recovery Interval	Ň		
	A MARY TATALANA AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A MARY AND A							
		937		67		SM	Greenish gray silty	sand, damp, strong odor
							<u> </u>	······································
				68				, damp, slight odor
				69		SM	Lt brown silty fine	sand, moist, slight odor
	The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon			_				
	And Lange Standing Standard     And Lange Standard     And Lange Standard     And Lange Standard     And Lange Standard     And Lange Standard     And Lange Standard     And Lange Standard     And Lange Standard     And Lange Standard     And Lange Standard     And Lange Standard     And Lange Standard     And Lange Standard     And Lange Standard     And Lange Standard     And Lange Standard     And Lange Standard			70 —				
-				-		CL	Grav silty clav w g	ravel, damp, strong odor
	Terming A Contraction			71 —		02		tarely dampy of ong out
	And the second control of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se			72				
-	And Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All Call and All All and All All and All All and All All and All and All and All and All and All and All and All and All and All and All and All and All and All and All and All and All and All and All and All and All and All and All and All and All and All and All and All and All and All and All and All and All and All and All and All and All and All and All and All and All and All and All and All and All and All and All and All and All and All and All and All and All and All and All and All and All and All and All and			73 —				· · · ·
1	Kanang Ang Ang Ang Ang Ang Ang Ang Ang Ang A			_				
				74 —				
	Construction of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon							
				75				
	Nackal 2017 Gelaviania Nackal 2017 Gelaviani Nackal 2017 Gelaviania Nackal 2017 Gelaviania Nackal			76			~~~	
	To explain the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the sta					$\nabla$		
				77 —				
							·	
				78-				
				79-				
				<b></b>				
				80		V		
				-				·
				81				
			į	82				
				°2				
				83			TD = 82.5 ft	Dg
				<b>–</b>				A VIENDING AND AND A
	·			84				
	_			-				
				85				
				86				
				°°				
(				87 —	<b> </b>			
1					<b>  </b>			
		1		88	<u>├</u>			
			<u> </u>	<u>]</u>			<u></u>	

	<u>y (ater a transminente a transminente a</u>	Project No:	C10737	6220		Clien	it:	ConocoPhillips	Boring/Well No: MW-2C
Î		Logged By:	Jon Fillii	ngame		Loca	tion:	Pleasanton	Page 1 of 3
,		Driller:	Cascade			Date	Drilled		Location
Ĺ	Delta	Drilling Method:	Hollow S	Stem		Hole	Diame	ter: 8"	Map 4 4 6 50 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
		Sampling Method		oon			Depth:		2015-2 
	Consultants	Casing Type:	2"PVC				Diamet		9 Ma-3 39 11
		Slot Size:	0.01				Depth:		0.59ENSER V#-100
		Gravel Pack:	Lonesta	r #2/12				Depth: N/A	
				A1	<u>V</u>	Stati	c Wate	Depth: N/A	ALL ALL ALL ALL ALL ALL ALL ALL ALL ALL
	Well	Elevation:		Northing	; 			Easting:	<u>KOEK</u>
			ion	et)	Sar	nple	U		
		m) adi	ple	(fe	2	[	ζ	1776	IOLOGY / DESCRIPTION
	Backfill Casing Water Level	Moisture Content ID Readin	San ntif	Depth (feet)	Ne l	5V3	Soil Type		OLOGY / DESCRIPTION
	Ka Ca	Moisture Content PID Reading (ppm)	Sample Identification	De	Recovery	Interval	S		
			_		<u> </u>	-			
	_			_				·	
				1 —					
	—			_					
				2—					
				3—					· · · · · · · · · · · · · · · · · · ·
				4 —					
				5—					
				· · _				W	
				6—				And a strend a rear and a	
	_				<u> </u>				
7				7—	<u> </u>			·	- 10 M - 10 M - 10 M - 10 M - 10 M - 10 M - 10 M - 10 M - 10 M - 10 M - 10 M - 10 M - 10 M - 10 M - 10 M - 10 M
l.					<u> </u>				
				8—	<u> </u>				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
					<u> </u>				
				9—	$\vdash$				- N. 2019 N. 7. 6
	_			_	┢				- 010
				10—					. Maria 2017
				11					
				12—					
				12.					
	·			13—	L	<b> </b>			///IIVe_/.IIV
						<u> </u>		Not Sampled	
				14 —					
				_	<u> </u>	-			····•
				15					
				_					9999 A.
				16	<u> </u>				
			1						
				17	1				2011/2012/2012/2012/2012/2012/2012/2012
				10					
				19—					
					1000		GW		, 20% silt, gray, 80% fine
		508	MW2C	20—			CL	to course gra	vel
(			@20	<u> </u>				[Clay w 10% silt, gr	eenish gray, hard, med
				21				plast, moist	
	817.44 -				┣—	<u> </u>		1.049 h line of 1.0 million	
				22 —		<b> </b>			
				]	1	<u> </u>	<u> </u>	<u> </u>	

,	Project No	):	C10737	76220		Clier	nt:	Conoco	oPhillips	Boring/Well No: MW-2C
	Logged By		Jon Fill			Loca		Pleasa		Page 2 of 3
	Driller:		Cascad			Date	Drilled	j:	6/12/2009	Location
Delta	Drilling Me	ethod:	Hollow	Stem		Hole	Diame	eter:	8"	Мар
	Sampling i						Depth		45'	
Environmental	Casing Typ		2"PVC	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			Diame		N/A	
Consultants,	Slot Size:		0.01				Depth		N/A	
	Gravel Pac			ar #2/12	V					
Inc.	Glaverra		LUHESU	ar #2/12				er Depth		
	Elevation:			Northing		Stat	ic wate	Easting		
Well _	1		L C		1	.		Laberry	j •	
Backfill Casing Mater Level	<u>و</u> بو	ding (	tio e	Depth (feet)	Sar	nple	g			-*
	ter	b D D C G	fica	E.	٩ ۲	/al	Ϋ́		LITH	OLOGY / DESCRIPTION
Backfill Casing Water L	Moisture Content	<u>"</u> е	Sai	bt bt	Recovery	Interval	Soil Type			
<b>ພິບິ</b>	<u> </u>	PID Reading (ppm)	Sample Identification	۵ ۵	Rec	Int	01			
				23 —						
-				-						
				24	<u> </u>		CW_CC	Well	araded sand w	v clay, grayish green
		1271	MW2C				347-30	<u>, , , , , , , , , , , , , , , , , , , </u>	graded Sana v	v cidy, grayish green
		<i>⊷≮</i> ./⊥	@25	25 —	569 Å 39					
			1 425	_	-					
			1	26		<b> </b>				
			1	-	├──					
				27 —						
			1							
			1	28 —						
—				_						
				29				Class	200/ all and	aniah ayay haya high plaat
		1 40	having	ļ	20.50		CL			enish gray, hard, high plast,
		148	MW2C	30				mois	t	1000 000000000000000000000000000000000
			@30			<b></b>				
				31						
_										
				32		ļ				
·				-						
				33	ļ	ļ				
-					<u> </u>	e an the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s				4° 6. J TO HER TANK T Y HAV
				34			_			
				!			GC	Silty	gravelw sand,	dk greenish gray, 15% sand,
		751	MW2C	35				30%	silt, 55% gra\	vel, moist, free product: dk brn
			@35			<b> </b>				
				36				Į		
					<u> </u>	<b> </b>		<b> </b>		
				37 —				<u> </u>		
				´´ _	<b> </b>					······································
				38	ļ	ļ		L		1918 J
					ļ	submark to the				
				39 —						
					- Marganet		ML			tled gray with dk brn, 20% clay,
		77	MW2C	40				80%	silt, low plast	, dry, free product: dk brn
			@40	`´_	<u> </u>			ļ		- 1000 - 1000 Martines 7, 77
				41	<u> </u>			I		
			1	l				L		
				42	ļ			17. Mart 40. 47 (1970)		
Autor				<b>–</b>						
`			1	43				TATA Palanta and all the		
			1	44						
				<del></del>						
						and the second second second second second second second second second second second second second second second				

Ę

Ć

(

	Project	Not	C10737	16220		Clier	.+.	ConocoPl	hilling	Boring/Well No: MW-2C
	Logged		Jon Fill				tion:	Pleasanto		Page 3 of 3
	Driller:	-1.	Cascad				Drilleo		/12/2009	Location
	1	Method:					Diame			Мар
		ng Method					Depth		5'	
Environmental	Casing		2"PVC				Diame		/A	
	Slot Siz		0.01			Well	Depth		/A	
Inc.	Gravel	Pack:	Lonesta	ar #2/12				Depth: N	/A	
						Stati	c Wate	r Depth:		
Well	Elevatio		<u> </u>	Northing				Easting:		
Backfill Casing Water Level	e te	PID Reading (ppm)	Penetration (blows/6")	Depth (feet)	Sar	nple	e			•
	Moisture Content	pm	trat vs/(	E C	۹ ۲	a]	Soil Type		LITH	OLOGY / DESCRIPTION
Backfill Casing Water L	ΩΩ	с К С	ene blo	ept	Recovery	Interval	Soil			· · · · · · · · · · · · · · · · · · ·
a o s					Re	Ę				
		283	MW2C	45			CL			, 20% gravel, 80% clay,
_			@45	- ¹⁰				<u>g</u>	reen, med p	plast, hard, moist
				46 —					D of sampli	ng = 45 fbg
				47 —	-	$\left  - \right $				····
				48—						
				49						
				49						
				50 —						
			:	<u> </u>						
				51 —	-					
<u> </u>				-						
1		•		52	:					
				53—						
				54 —						
_	-				<b> </b>					•
				55			•			
			ļ							
				56 —						
		:		57 —						
				58						
				_	<u> </u>	┞.				
				59		<b>  </b>				
				60	$\vdash$					
					1					
			1	61						
				62 —		٦				
				Г —	<u> </u>	$\left  - \right $		I		200 MR -
				63 —	-	$\left  - \right $		1		
				-				[		- <u>-</u>
				64 —	$\vdash$					
۱ <u>–</u>					1			-10.000		n
				65 —						
				66	L					
	1			<u> </u>				L		

<b>BSSIC</b> 567 W. Shaw Ave. Fresno, CA 93704 (559)-497-2880 (559) 497-2886 FAX       Log of Boring SB-1 Alameda Co. Transportation Corrido Soil Sampling         Driller: Soilprobe, Inc.       Drill Method: GeoProbe 66DT	Elev Start Date: N	Number: E0704901F vation: lovember 6, 2007 November 6, 2007
DSIN     (506) 497-2886 FAX     Soil Sampling       Driller: Soilprobe, Inc.       Drill Method: GeoProbe 66DT	Elev Start Date: N Finish Date: Logged By:	lovember 6, 2007 November 6, 2007
Drill Method: GeoProbe 66DT	Finish Date: Logged By:	November 6, 2007
Drill Method: GeoProbe 66DT	Finish Date: Logged By:	November 6, 2007
		J.Rohlfing
Sample Method: Direct Push	Checked By	
Borehole Diameter: 2.5" Water Level: Not encountered		: M.Hutson
Depth (feet)       Depth (feet)       Sample Type       Blow Count       (blows/ft.)       Dry Density       (pcf)       Moisture (%)       Graphic Log	Elevation (fead)	Remarks
	0	
Aggregate base	-9 icity -19	PID = 19.5 - FID = 0 No odor, no staining
<ul> <li>SAND (SW)</li> <li>Brown, medium grained with fine gravel, d</li> <li>-22</li> <li>-24</li> <li>-26</li> <li>-28</li> <li>-30</li> <li>-31</li> <li>-32</li> <li>-34</li> <li>-34</li> <li>-34</li> <li>-26</li> <li>-27</li> <li>-28</li> <li>-28</li> <li>-28</li> <li>-29</li> <li>-29</li> <li>-20</li> <li>-20</li> <li>-20</li> <li>-21</li> <li>-21</li> <li>-22</li> <li>-22</li> <li>-24</li> <li>-24</li> <li>-24</li> <li>-24</li> <li>-24</li> <li>-24</li> <li>-24</li> <li>-24</li> <li>-24</li> <li>-25</li> <li>-26</li> <li>-27</li> <li>-28</li> <li>-29</li> <li>-29</li> <li>-29</li> <li>-29</li> <li>-29</li> <li>-20</li> <li>-20</li> <li>-21</li> <li>-21</li> <li>-22</li> <li>-24</li> <li>-25</li> <li>-26</li> <li>-27</li> <li>-28</li> <li>-28</li> <li>-28</li> <li>-29</li> <li>-29&lt;</li></ul>	-29	PID = 21.5 - F(D = 0 No odor, no staining PID = 21.5 - FID = 0 No odor, no staining

.

)	S	K	567 W. S Fresno, 4 (559) 49 (559) 49	Shaw Av CA 9370 7-2880 7-2886	ve. 04 FAX	Log of Boring SB-1 Alameda Co. Transportation Corridor Soil Sampling	Sheet Job N Elevat	umber: E0704901F	
	Sample Type	Blow Count (blows/ft.)	Dry Density (pcf)	Moisture (%)	Graphic Log	Materials Description	Elevation (feet)	Remarks	
							-39		
-						Sandy CLAY (CL) Olive brown, with fine gravel, moist, very stiff, low plasticity		PID = 20.0 - FID = 0 No odor, no staining	
						Grades to brown, with coarse sand, moderate plasticity		PID = 27,5 - FID = 0 No odor, no staining	
						Clayey GRAVEL (GC) Brown, fine to coarse gravel with coarse sand, wet	-59	PID = 23.5 - FID = 0 No odor, no staining	
						Boring completed at 61 feet bgs Groundwater not encountered Boring backfilled w/bentonite chips			

.

B		K	567 V Fresr (559) (559)	V. Shaw 10, CA 9 -497-28 497-28	v Ave. 93704 180 186 FAX	Log of Boring SB-2 Alameda Co. Transportation Corrido Soil Sampling		Job N Eleva		
			be, Inc						ovember 6, 2007 Iovember 6, 2007	
		<u> </u>	eoProl						Rohlfing	
			ter: 2.			Water Level: Not encountered			M.Hutson	
Depth (feet)	Sample Type	Blow Count (blows/ft.)	Dry Density (pcf)	Moisture (%)	Graphic Log	Materials Description	-	Elevation (feet)	Remarks	
-0	Sa	BIG (b)	DU	W	ß	Aggregate Base	allowyur	ш 0	Densely compacted AB	
-2 -4 -6 -8							·			
- -10 -12 -14 - -16						Clayey SAND (SC) Brown, medium to coarse grained with fine dry, dense	gravel,	-9	PID = 24.0 - FID = 0 No odor, no staining	
-18 -20 -22 -22 -24 -24 -26						Silty SAND (SM) Brown, fine grained with fine to coarse grav moist, dense	rel, dry to	-19	PID = 1.0 - FID = 0 No odor, no staining	
- -28 - -30 - -32 - -34						Sandy GRAVEL (GW) Brown, fine to coarse gravel with clay, mois	st, dense	-29	PID = 19.5 - FID = 0 Odor, noi discernable, no staining	

	P		567 W.	Shaw Av	′e.	Log of Boring SB-2	Sheet	2 of 2
			Fresno, (559) 49	CA 9370 97-2880 97-2886	)4	Log of Boring SB-2 Alameda Co. Transportation Corridor Soil Sampling	Job N	umber: E0704901F
	J	ŊΝ	(559) 49	97-2886	=AX	Soli Samping	Elevat	ion:
Depth (feet)	Sample Type	Blow Count (blows/ft.)	Dry Density (pcf)	Moisture (%)	Graphic Log	Materials Description	Elevation (feet)	Remarks
-37 -39 -39 -41 -43 -45 -47 -47 -47 -49 -51 -53 -55 -57 -59 -61 -63 -65 -67 -69 -69						Sandy GRAVEL (GW) Brown, fine to coarse gravel with clay, moist, dense Grades without clay Clayey SAND (SC) Brown, medium to coarse grained with fine to coarse gravel, molet to wet, dense Boring completed at 51 feet bgs Groundwater not encountered Boring backfilled w/bentonite chips	-49	PID = 19.0 - FID = 0 No odor, no staining PID = 24.0 - FID = 16.0 No odor, no staining

n	C	<u>۲</u>	Freso	V. Shaw 10, CA 9	3704	Log of Boring SB-3 Alameda Co. Transportation Corridor		Sheet	1 of 2 Imber: E0704901F	
(559)-497-2880 (559) 497-2886 FAX						Soil Sampling		Elevation:		
Drille			otember 6, 2007							
			eoProt		T				eptember 6, 2007	
			: Direc	·······			Logge	d By: J.F	Rohlfing	
			ter: 2.5			Water Level: Not encountered	Check	ed By: N	1.Hutson	
						new of a management of the second second second second second second second second second second second second			**************************************	
Depth (feet)	Sample Type	Blow Count (blows/ft.)	Dry Density (pcf)	Moisture (%)	Graphic Log	Materials Description		Elevation (feet)	Remarks	
-0								0		
2. 4 6 						Aggregate Base				
-8								-9		
-10 -12						Clayey SAND (SC) Brown, medium to coarse grained with grave moist, dense	əl, dry to		PID = 7,0 - FID = 0 No odor, no staining	
								-19		
- 20					Ħ	Silty CLAY (CL) Brown, moist, stiff, moderately plastic			PID = 3.0 - FID = 18.0 No odor, no staining	
-22					H					
24 -					Ħ					
-26										
-28					H			-29	4	
30 32 						Sandy GRAVEL (GW) Gray, fine to coarse gravel with silt, moist, c	lense		PID = 7.0 - FID = 6.0 No odor, no staining	
-34										

ľ

B	S		567 W. S Fresno, 9 (559) 49 (559) 49	CA 9370	4	Log of Boring SB-3 Alameda Co. Transportation Corridor Soil Sampling	2 of 2 umber: E0704901F ion:	
Depth (feet)	Sample Type	Blow Count (blows/ft.)	Dry Density (pcf)	Moisture (%)	Graphic Log	Materials Description	Elevation (feet)	Remarks
-37 -39 -41 -43 -45 -45 -47 -47 -49 -51		W				Sandy CLAY (CL) Brown with fine gravel, moist, stiff, low plasticity Clayey GRAVEL (GC) Brown, some medium to coarse grained sand, moist, dense	-39 -49 -51	PID = 19.0 - FID = 1.0 No odor, no staining 1" lense of decomposed granite PID = 20.0 - FID = 2.0 No odor, no staining
-57 -55 -57 -57 -59 -61 -63 -65 -67 -69						Boring completed at 51 feet bgs Groundwater not encountered Boring backfilled w/bentonite chips		

						Log of Boring SB-4		Sheet	1 of 2		
D			Fresh	<ul> <li>V. Shaw</li> <li>o, CA 9</li> <li>497-284</li> </ul>	3704	Alameda Co. Transportation Corridor			Job Number: E0704901F		
$\mathbb{D}$		M	(559)	497-28	B6 FAX	Soil Sampling Elev			levation:		
Drill	er: S	oilprob	e, Inc.				Start Da	ate: Sep	otember 6, 2007		
			eoProb		Γ		Finish I	Date: Se	eptember 6, 2007		
San	nple	Method	: Direc	t Push	)		Logged	<b>i By:</b> J.F	Rohlfing		
			ter: 2.5			Water Level: Not encountered	Checke	ad By: N	I.Hutson		
				in to olemanda		generation of a finite term dual to be a second second second second second second second second second second Second second	and the second second second second second second second second second second second second second second second				
Depth (feet)	Sample Type	Blow Count (blows/ft.)	Dry Density (pcf)	Moisture (%)	Graphic Log	Materials Description		Elevation (feet)	Remarks		
-0						A month Bass		0			
						Aggregate Base SIIty CLAY (CL) Brown, dry to moist, stiff, low plasticity Grades to moist, very stiff, moderate plastici	lty	-9	PID = 7.0 - FID = 0 No odor, no staining PID = 12.0 - FID = 2.0 No odor, no staining		
-24 -26 -28 -30 -32 -32 -34						Clayey SAND (SC) Olive, medium to coarse grained with fine g moist to wet, dense	ravel,	-28	PID = 16.0 - FID = 2.0 Strong petroleum odor,		

.

B	S	K	567 W. Fresno, (559) 49 (559) 49	Shaw Av CA 9370 )7-2880 )7-2886 I	/e. )4 [°] ≓AX	Log of Boring SB-4 Alameda Co. Transportation Corridor Soil Sampling		2 of 2 umber: E0704901F tion:
Depth (feet)	Sample Type	Blow Count (blows/ft.)	Dry Density (pcf)	Moisture (%)	Graphic Log	Materials Description	Elevation (feet)	Remarks
-37 -37 -39 -41 -43 -45 -47 -49 -51 -53 -55 -57 -59 -61 -63 -65 -67 -69						Sandy CLAY (CL) Gray with fine gravel, moist, stiff, moderate plasticity Grades to very stiff Grades with fine grained sand Boring completed at 51 feet bgs Groundwater not encountered Boring backfilled w/bentonite chips	-39	PID = 17.0 - FID = 1.0 No odor, no staining PID = 17.0 - FID = 1.0 No odor, no staining

.

• .

•

m		۲.	7 567 V Eresp	V. Shaw o, CA 9	Ave.	Log of Boring SB-5	angun dasarik dan angun dasarik dan sebagai dan sebagai dasarik dan sebagai dan sebagai dan sebagai dan sebagai	Sheet			
K		M	(559) (559)	497-288	80 86 FAX	Alameda Co. Transportation Corridor Soil Sampling	ŀ	Job Number: E0704901F Elevation:			
				September 6, 2007							
		oilprot		eptember 6, 2007							
		hod: G							Rohlfing		
		Method				with a lower Net encountered			1.Hutson		
Bore	ehol∉	Diame	ter: 2.5			Water Level: Not encountered	Oneone				
Depth (feet)	Sample Type	Blow Count (blows/ft.)	Dry Density (pcf)	Moisture (%)	Graphic Log	Materials Description		Elevation (feet)	Remarks		
-0 2 4 6 8 10	<i>S</i>			6		Aggregate Base Silty CLAY (CL) Brown with fine to coarse gravel, dry to mois	t, stiff,	-9	PID = 2.0 - FID = 0 No odor, no staining		
					# # # #	low plasticity			DID = 67.0 - EID = 360		
-20 -22 -22 -24 -24 -26					H H H	Grades to dark olive, moderate plasticity			PID = 67.0 - FID = 360 Strong petroleum odor, dark olive color		
-28 -30 -32 -34					HHHH	Grades with fine grained sand, moist, medium stiff, low plasticity			PID = 500 - FID = 41,700 (4,17%) Strong petroleum, odor, dark olive color		

· . .

B	S	K	567 W. Fresno, (559) 49 (559) 49	Shaw Av CA 937( )7-2880 )7-2886	re. )4 FAX	Log of Boring SB-5 Alameda Co. Transportation Corridor Soil Sampling	Sheet 2 of 2 Job Number: E0704901F Elevation:			
Depth (feet)	Sample Type	Blow Count (blows/ft.)	Dry Density (pcf)	Moisture (%)	Graphic Log	Materials Description	Elevation (feet)	Remarks		
-37 -39 -41 -43 -45 -47 -49 -51 -53 -55 -57 -57 -59 -61 -63 -65 -67 -69 -69					HHHHHHHHHHHHH	Grades to brown with fine grained sand and fine to coarse gravel, very stiff moderate plasticity	-59 -61	PID = 400 - FID = 5,200 Petroleum odor, olive, mottling PID = 300 - FID = 3,500 Petroleum odor, no staining PID = 95 - FID = 360 Slight petroleum odor, no staining		

	V. Shaw Ave.	Log of Boring SB-6		Sheet	1 of 2
E B B B Erest	no. CA 93704	Alemente Co. Transportation Corridor		Job Nu	ımber: E0704901F
	-497-2880 497-2886 FAX	Soli Sampling		Elevati	on:
Driller: Soilprobe, Inc	· · · · · · · · · · · · · · · · · · ·				otember 7, 2007
Drill Method: GeoPro	be 66DT				optember 7, 2007
Sample Method: Direc	t Push		Logged	By: J.f	Rohlfing
Borehole Diameter: 2.	5"	Water Level: Not encountered	Checke	d By:	
Depth (feet) Sample Type Blow Count (blows/ft.) Dry Density (pcf)	Moisture (%) Graphic Log	Materials Description		Elevation (feet)	Remarks
-0 -2 -4 -6 -8 -10 -12 -12 -12 -14 -16 -18 -20 -22 -24 -26 -28		Aggregate Base Sandy SILT (ML) Dark brown with fine gravel, moist, soft Sandy CLAY (CL) Brown, moist, very stiff, tow plasticity		-9	PID = 200 - FID = 350 No odor, no staining PID = 35 - FID = 20 No odor, no staining

والمنافقة والمساوية المراجع المساوية والمنافقة والمنافعة والمنافعة والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساوية والمساو

•

B	S	K	567 W. Fresno, (559) 49 (559) 49	Shaw Av CA 937( )7-2880 )7-2886	/e. )4 FAX	<b>Log of Boring SB-6</b> Alameda Co. Transportation Corridor Soil Sampling	Sheet Job N Elevat	umber: E0704901F
Depth (feet)	Sample Type	Blow Count (blows/ft.)	Dry Density (pcf)	Moisture (%)	Graphic Log	Materials Description	Elevation (feet)	Remarks
-30 -32 -34 -36 -38 -38 -40						Clayey SAND (SC) Light brown to brown, fine to medium grained with fine gravel, moist, medium dense Boring terminated at 37.5 feet bgs Groundwater not encountered Boring backfilled w/Bentonite chips	-29	PID = 1,500 FID = 22,000 (2.2%) Strong petroleum odor, no staining Boring refusat at 37.5' bgs
-42 -44 -46 -48								
-50 - -52								
-54 - -56								

		۹۳ /	<b>7</b> 567 V	V. Shav	v Ave.	Log of Boring SB-7		Sheet	1 of 2
$ \mathbf{R} $		K	Fresh (559)-	io, CA 9 -497-28	3704 80	Alameda Co. Transportation Corridor Soil Sampling		Job N	umber: E0704901F
		<u> </u>	(559)	497-28	86 FAX			Elevat	
Drill	er: S	oilprot	e, Inc.						ptember 7, 2007
Dril	l Met	hod: G	eoProb	be 66E	DT				eptember 7, 2007
San	nple	Method	: Direc	t Push	۱		Logged	By: J.	Rohlfing
Bore	eholo	Diame	ter: 2.5	)" )		Water Level: Not encountered	Checke	d By: N	A.Hutson
Depth (feet)	Sample Type	Blow Count (blows/ft.)	Dry Density (pcf)	Moisture (%)	Graphic Log	Materials Description		Elevation (feet)	Remarks
-0 -2 -4 -6 - -8 - -10 -12						Aggregate Base CLAY (CL) Dark brown, with trace of fine grained sand a gravel, moist, soft, moderate plasticity	nd	-9	PID = 22 - FID = 0 No odor, no staining
-14 -16 -18 -20 -22 -22						Clayey SAND (SC) Brown, fine grained, dry to moist, very dense	<b></b>	-19	PID = 23 - FID = 8 No odor, no staining
- -26 - -28 - -30 - -32 - - -34 -						Sandy CLAY (CL) Olive, moist, stiff, moderate plasticity		-29	PID = 25 - FID = 60 Petroleum odor, olive color

B	S	K	567 W. Fresno, (559) 49 (559) 49	Shaw Av CA 937( 97-2880 97-2886	/e. )4 FAX	Log of Boring SB-7 Alameda Co. Transportation Corridor Soil Sampling	Sheet Job N Elevat	umber: E0704901F
Depth (feet)	Sample Type	Blow Count (blows/ft.)	Dry Density (pcf)	Moisture (%)	Graphic Log	Materials Description	Elevation (feet)	Remarks
7 9 1 3 15						Clayey GRAVEL (GC) Olive, fine to coarse gravel, moist to wet, medium dense	-39	PID ≃ 300 - FID 2,300 Petroleum odor, olive color
49 51 53						CLAY (CL) Brown, moist, stiff, moderate plasticity Boring completed at 51 feet bgs Groundwater not encountered Boring backfilled w/Bentonite chips	-49 -51	PID = 11 - FID = 20 No odor, no staining
57 59						· · · ·		
51 53								
•65 •67 •69								

			e	DATE OF BORING: October 6, 1997	N - S.P.T.	OVM	en f	LACE
TET)	ETERS)	JMBER	AMPLE	SURFACE ELEVATION: Approx. 360.0 feet msl (109.7 meters msl)	BLOWS/FT	READING P.I.D. (10.0eV)	DRY	MOIST. CONTENT
DEPTH (FEET)	DEPTH (METERS)	AMPLE NUMBER	LOG, LOCATION AND TYPE OF SAMPLE	DESCRIPTION	*MODIFIED FOR 3" O.D. SAMPLER	(parts per million)	WEIGHT (PCF)	% DRY WEIGRT
-0			0.000	Grayish brown, silty GRAVEL with sand (granite to 1 [*] , sub-angular to sub-rounded), damp.(Fill)(GM)	24*	< 1		
-	-1		0.00 0.00 0.00 0.00	DRAFT No Recovery.	18	<1		
5	2	l-1	Piore Piore	Brown silty GRAVEL with sand (granite to 1"), gravel subrounded, damp. (Native)(GM)	35*	1.4		
-	-			Dark yellowish brown, silty CLAY with sand, slightly moist. (CL)		•		
- 10	-3		0.0.0 0.0 0.0 0.0 0.0 0.0 0.0	Dark yellowish brown, silty CLAY with coarse sand, slightly moist. (CL)	45 25*	<1		
	-			Brown very silty CLAY with sand, damp. (CL)		<1		
	-4			Dark yellowish brown, silty CLAY with sand, slightly moist. (CL) Dark brown clayey GRAVEL (to 2/3", subrounded). (GC)	29	<1	• • •	
- 15	-5	1-2		Dark yellowish brown clayey SAND, moist. (SC) Brown clayey SAND with gravel (to 2/3 [*] , subrounded). (SC)	21*	<1		
	2	- -		Yellowish brown SAND with clay and gravel (to 2/3 ⁺ , subrounded).(SP-SC) Yellowish brown CLAY with sand, moist. (CL) Yellowish brown claycy SILT, very moist. (ML)	. 26	<1		
- 20	-6			Yellowish brown silty SAND, moist. (SM) Dark yellowish brown silty CLAY with sand and gravel (1/2", subrounded). (CL) Dark yellowish brown claycy SILT, very moist. (ML)	15			
2 				Dark yellowish brown silty fine SAND, very moist. (SM) Brown clayey GRAVEL with sand, slightly moist (granite to 1 1/2*,	- 54	<1		
	-7		13/12 13/19	subrounded)(SM)(GC) Dark yellowish brown clayey SAND (fine to medium), very moist. \(SC)	- 57*	<1		
- 25	-8	1-3		Dark brown claycy GRAVEL, (to 1", subrounded), moist. (GC)		<1		
-				Dark yellowish brown silty SAND layer, moist. (SM)	- 58 40*	1> 1>		
- 30	9				-4	< 1		
	 2 N			RAY STREET PROPERTY	BORING	] 3 NO.: B-	1	FIGURE NO.
E IN		IGE RPORA	~	PLEASANTON, CALIFORNIA		vember 1997 10.: 4391-F3	CICECKP20 BY	
					LUCHECTS	······································		

OVM IN PLACE DATE OF BORING: October 6, 1997 N LOG, LOCATION AND TYPE OF SAMPLE S.P.T. READING SAMPLE NUMBER DEPTH (METERS) MOIST. DRY BLOWS/FT DEPTH (FEET) SURFACE ELEVATION: Approx. 360.0 feet msl (109.7 meters msl) P.I.D. CONTENT (10.0eV) UNIT WEIGHT *MODIFIED DESCRIPTION FOR (parts per % DRY 3" O.D. million) SAMPLER (PCF) WEIGHT 79 No recovery. Dark yellowish brown clayey GRAVEL (to 2 1/2", subrounded), wet. (GC) 76* < 110 < 1Dark yellowish brown clayey fine to coarse SAND, wet. (SC) -35 44 < 11-4 Dark yellowish brown clayey GRAVEL (2+", subrounded), very moist. (GC) -11 <1 32* < 112 40 51 2.413* <1Dark yellowish brown clayey SAND (fine to coarse grain), very moist. (SC) -13 < 1Dark brown clayey GRAVEL (to 2/3*, subrounded), moist. (GC) 79 1-5 < 145 Dark yellowish brown silty CLAY. (CL) Bottom of boring at approximately 45 feet. -14 15 DRAFT 50 ·16 - 55 -17 18 60 11/3/97 FIGURE BORING NO.: B-1 DVMMDEF 4391 RAY STREET PROPERTY ENGEO DATE: November 1997 OCOTO 81 PLEASANTON, CALIFORNIA INCORPORATED PROJECT NO.: 4391-F3

Ύ1

۱_{с 1}

				DATE OF BORINO: October 6, 1997	N	OVM	IN PI	LACE
1111	TERS)	MBER	ON ANI	SURFACE ELEVATION: Approx. 360.0 feet msl (109.7 meters msl)	S.P.T. BLOWS/PT	READING P.I.D. (10.0eV)	DRY UNIT	MOIST.
(เวลง) หเงลก	DEPTH (METERS)	SAMPLE NUMBER	LOG, LOCATION AND TYPE OF SAMPLE	DESCRIPTION	*MODIFIED FOR 3* O.D. SAMPLER	(parts per million)	WEIGHT (PCF)	% DRY WEIGHT
)	-		<u>व</u> ्म (	Gray silty GRAVEL (to 3/4", subangular), dry. (Fill)(GM)			i.	
				Grayish brown silty SAND with gravel (to 1/2", subangular, subrounded), damp. (SM)	22*	<1		
	-1				28	<1		
5	-2	2-1		Dark yellowish brown sandy CLAY, slightly moist. (CL)	22*	<1		
	u			Yellow brown clayey SAND with gravel (to 2/3", subroudned), damp. (SC)		<1		
10	-3			DRAFT		<1		
	-4				75	< 1		
15	-	2-2		Dark yellowish brown clayey GRAVEL (to ) 1/2*, subrounded), slightly moist. (GC)				
	~5			Dark brown clayey SAND with gravel (to 1/2", subrounded), slightly moist. (SC)	. 8*	< 1		
				·	70	<1		
20	-0			Dark yellowish brown clayey SAND, moist. (SC)	- 25*	<1		
				Dark yellowish brown silty fine SAND, very moist. (SM)	-			
	-7			Dark yellowish brown fine sandy SILT. (ML)	20	<1		
25		2-3		Dark yellowish brown, silty fine SAND. (SM)				
	-8			Dark yellowish brown silty CLAY with gravel (to 3/4", subrounded). (CL)	45*	<1		
30	-9			Dark brown claycy GRAVEL (to 1 1/2*, subrounded), moist. (GC)	106	< 1		
r	 7 %	ידי <i>ר</i> יד	$\Gamma$	RAY STREET PROPERTY	BORING		·2	FIGURE NO.
		NGE RPORA		PLEASANTON, CALIFORNIA		vember 1997 IO.: 4391-F3	CSTECKED IN	

. У

			A	DATE OF BORING: October 6, 1997	N - S.P.T.	OVM	IN PI	ACE
FEET)	ETERS)	UMBER	TION AN	SURFACE ELEVATION: Approx. 360.0 feet msl (109.7 meters msl)	BLOWS/FT	READING P.I.D. (10.0eV)	DRY UNIT	MOIST. CONTEN
DEPTH (FEET)	DEPTH (METERS)	SAMPLE NUMBER	LOG, LOCATION AND TYPE OF SAMPLE	DESCRIPTION	*MODIFIED FOR 3" O.D. SAMPLER	(parts per million)	WEIGHT (PCF)	% DRY WEIGHT
				Mottled dark yellowish brown/gray clayey SILT, very moist, locally strong, iron staining. (ML-CL)	29*	<1		
	-10			Mottled darkish yellow brown/gray silty CLAY, very moist, iron staining. (CL)	53	<1		
35	-11	2-4		Mottled darkish yellow brown/gray clayey SILT, very moist, iron staining. (ML-CL)				
	-				25*			·
40	-12	2-5		Dark yellowish brown silty fine SAND. (SM)	40	-		
	-			Bottom of boring at approximately 40 feet.				
	-13			DRAFT				
45	-14							
	-							
50	-15							
50								
	-16							
55								
	-17							
	-18							
60	,			·				
T	 7 N	IGF		RAY STREET PROPERTY	BORING		2	FIGURE NO.
		NUE RPORA		PLEASANTON, CALIFORNIA		vember 1997 10.: 4391-F3	CHELTOND BY	

ţ٨

ιJ

			A	DATE OF BORING: October 8, 1997	N SDT	OVM	in p	LACE
DEPTH (FEET)	DEPTH (METERS)	SAMPLE NUMBER	DG, LOCATION AN TYPE OF SAMPLE	SURFACE ELEVATION: Approx. 358.0 feet msl (109.1 meters msl)	S.P.T. BLOWS/PT	READING P.I.D. (10.0eV)	DRY UNIT WEIGHT	MOIST. CONTEN
DEPTH	) HLAEQ	SAMPLE	LOG, LOCATION AND TYPE OF SAMPLE	DESCRIPTION	*MODIFIED FOR 3* O.D. SAMPLER	(parts per million)	(PCF)	% DRY WEIGHT
0	-			Dark grayish brown silty SAND with gravel (to 2 1/4*, subangular to subrounded), dry. (Fill) (SM)	19*	<1		
	-1			Dark grayish brown silty SAND becoming clayey with gravel including asphaltics, damp. (Fill) (SM-SC)	21	<1		
5	-	3-1		Brown silty SAND with gravel (to 2/3*, subrounded), damp. (SM)				
	-2			DRAFT	15*.	<1		
01	3			Dark gray/brown clayey SAND with gravel, moist. (SC)	19	< 1		
	-			Dark vellowish brown GRAVEL clay and sand (to 2/3",	22*	1.0		
	-4			subrounded), moist. (CL) Dark yellowish brown clayey GRAVEL with sand. (GC)	44	<1		
15	-	3-2		Dark brown claycy fine and medium SAND, very moist. (SC)				
	-5			Mottled yellowish brown/dark grayish brown clayey medium to coarse SAND, moist. (SC)	31*			
	-			Dark gray/brown claycy SAND, moist, moderate iron staining common. (SC)	38			
20	-6			Dark yellowish brown clayey SAND with gravel (to 2/3",				
	-			subrounded), moist. (SC) Dark yellowish brown clayey fine to medium SAND, very moist.	36*	< 1		
	-7			(SC) Dark yellowish brown CLAY with incremental fine to medium sand, very moist. (CL)	. 20	< 1		
25	and a second second	3.3		Dark yellowish brown sandy CLAY, very moist. (CL)				
	-8			Mottled dark yellowish brown/gray silty clayey fine to medium SAND, wet. (SC)	14*	< 1		
	1			Dark yellowish brown claycy GRAVEL (to 1', subrounded) with sand, very moist. (GC)	45	< 1		
- 30	<u>و</u> .			Dark yellowish brown clayey fine SAND, wet. (SC)				
	ייי- ר_קרר		· · · ·	RAY STREET PROPERTY	BORING	NO.: B-	3	FIGURE NO.
L	ΙN	GE	$\mathbf{O}$		DATE: Nov	ember 1997	All other all	
IN	COF	RPORA	TED	PLEASANTON, CALIFORNIA	PROJECT N	D.: 4391-F3	CHECKED BI	

5 S S

Image: State of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state o	IN P DRY UNIT	PLACE MOIST.
Image: Support of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the secto	1	MOIST.
		CONTENT
Image: Constraint of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se	WEIGHT (PCF)	% DRY WEIGHT
27* <1		
-10 Dark gray clayey GRAVEL (to 1 1/2", subangular to subrounded), very moist. (GC) 50 <1		
35 Dark yellowish brown clayey SAND with gravel (to 2", subrounded). (SC)	~	
-11 Dark yellowish brown very silty CLAY, very moist, moderate iron 18 <1 staining common. (CL)		
<1		
10     -12     3-5     33     <1		
<b>15</b>		
-14		
50 -15		
	· ·	
		-
-18		
RAY STREET PROPERTY BORING NO.: B	-3	FIGURE NO.
DATE: November 1997	(GBGG3D 61	
INCORPORATED PLEASANTON, CALIFORNIA PROJECT NO.: 4391-F3		

ţ, x

 $\{\cdot\}$ 

			Α.	DATE OF BORING: October 7, 1997	N	OVM	IN P	LACE
FEET)	ETERS)	UMBER	TON AN AMPLE	SURFACE ELEVATION: Approx. 355.0 feet msl (108.2 meters msl)	BLOWS/FT	READING P.I.D. (10.0eV)	DRY UNTT	MOIST, CONTEN
DEPTH (FEET)	DEPTH (METERS)	SAMPLE NUMBER	LOG, LOCATION AND TYPE OF SAMPLE	DESCRIPTION	*MODIFTED FOR 3* O.D. SAMPLER	(parts per million)	WEIGHT (PCF)	% DRY WEIGH1
0	-		H	CONCRETE.				
	-			Gray AGGREGATE. Dark yellowish brown silty clayey SAND (fine to coarse), with gravel (fine gravels are subrounded), slightly moist. (SC)	7*	<1	·	
	-1			Dark grayish brown fine sandy SILT, slightly moist. (ML)	-	r H		
5	-	4-1		Very dark grayish brown fine sandy SILT, moist. (ML)				
	-2			Very dark gray/brown silty fine SAND, moist. (SM)	5*	< 1		
	~		1110	·	- 3	- 		
10	-3			Dark brown clayey GRAVEL (to 1°, subrounded), moist. (GC) Very dark grey/brown clayey SILT with fine sand, moist. (ML)				
	-				28*	< 1		
	-4			Dark yellowish brown clayey SAND (fine to medium grain), moist. (SC)	46	< 1		
15	-	4-2		DRAFT				
	-5				26*	<1		
	-				40	< 1		
20	6			Deduction because clauser See SAND with trace ground (as 1/24				
				Dark yellowish brown clayey fine SAND with trace gravel (to $1/2^{*}$ , subrounded), very moist. (SC)	18*	<1		
	-7				21	1.0		
25	1	4-3		Dark yellowish brown silty fine to medium SAND, wet. (SM)				
	-8			· · · · · · · · · · · · · · · · · · ·	- 9*	<1		
				Dark grayish brown claycy fine SAND, wet. (SC)	15	1.5		
30	9			Dark yellowish brown clayey fine SAND, very moist. (SC)				
$\overline{\mathbf{D}}$	י_י זאי	CT	$\cap$	RAY STREET PROPERTY	BORING	NO.: B-4	<u>ا</u>	FIGURE NO.
Ľ		UE PORA'		PLEASANTON, CALIFORNIA	DATE: Nov	ember 1997	विद्युत्तव्यक्र श्री	

(i) - 13 X

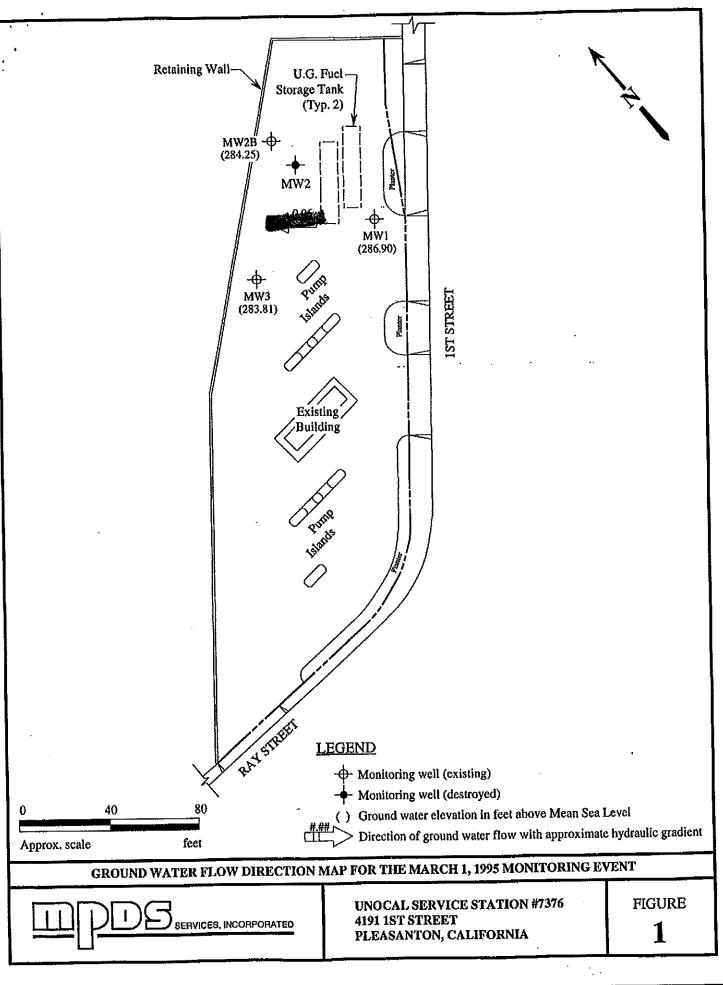
			6	DATE OF BORING: October 7, 1997	N S.P.T.	OVM	IN P	LACE
(FEET)	DEPTH (METERS)	SAMPLE NUMBER	OG, LOCATION AN TYPE OF SAMPLE	SURFACE ELEVATION: Approx. 355.0 feet msl (108.2 meters msl)	BLOWS/FT	READING P.I.D. (10.0eV)	DRY UNIT WEIGHT	MOIST, CONTEN
DEPTH (FEET)	DEPTH (	SAMPLE	LOG, LOCATION AND TYPE OF SAMPLE	DESCRIPTION	*MODIFIED FOR 3" O.D. SAMPLER	(parts per million)	(PCF)	% DRY WEIGHT
	-			Dark grayish brown silty fine SAND, wet. (SM)	10*	<1		
	-10		0000	Dark grayish brown silty GRAVEL (to 1 1/4", subrounded) with sand, very moist. (GM)	55	2.0		
35	-11	4-4		Dark grayish brown silty clayey fine SAND, wet. (SC)				
		÷		Monted grav/dark vellowish brown clayey fine to medium SAND.	23*	2.0		
	-12			Mottled gray/dark yellowish brown clayey fine to medium SAND, wet, moderate iron staining common. (SC)	15	- <1		
40				Dark grayish brown clayey GRAVEL (to 1 1/4", subrounded). (GC)	2*	2.5		
	-13			Dark yellowish brown clayey fine to coarse SAND, wet. (SC)	58	<1		
45		4-5		Dark gray clayey coarse to fine SAND with gravel ( to 1 1/2", subrounded). (SC)		1.5		
	-14			Dark yellowish brown fine sandy CLAY, very moist. (CL)	11*	<1		
				Mottled grayish brown/dark yellowish brown clayey SILT, very moist, strong iron staining common. (ML)	21	<1		
50	-15	4-6				<1		
	-16			Show of water on sample and clay fractures. Dark yellowish brown clayey GRAVEL, saturated. (GC) Dark yellowish brown, silty CLAY, wet. (CL)	16*	<1		
	-			<b>n</b> d Aft	5	< 1		
55	-17			DRAFT No recovery.	11*			
	1	4-7		Yellowish brown clayey fine SAND, wet. (SC)	8			
60	-18				44			
					19*	<1		
F	1 🏹 آ	GF	$\sim$	RAY STREET PROPERTY	BORINO		4	FIGURE NO.
· · · ·	* A. 1		TED	PLEASANTON, CALIFORNIA		vember 1997 IO.: 4391-F3	CHECKED BY	

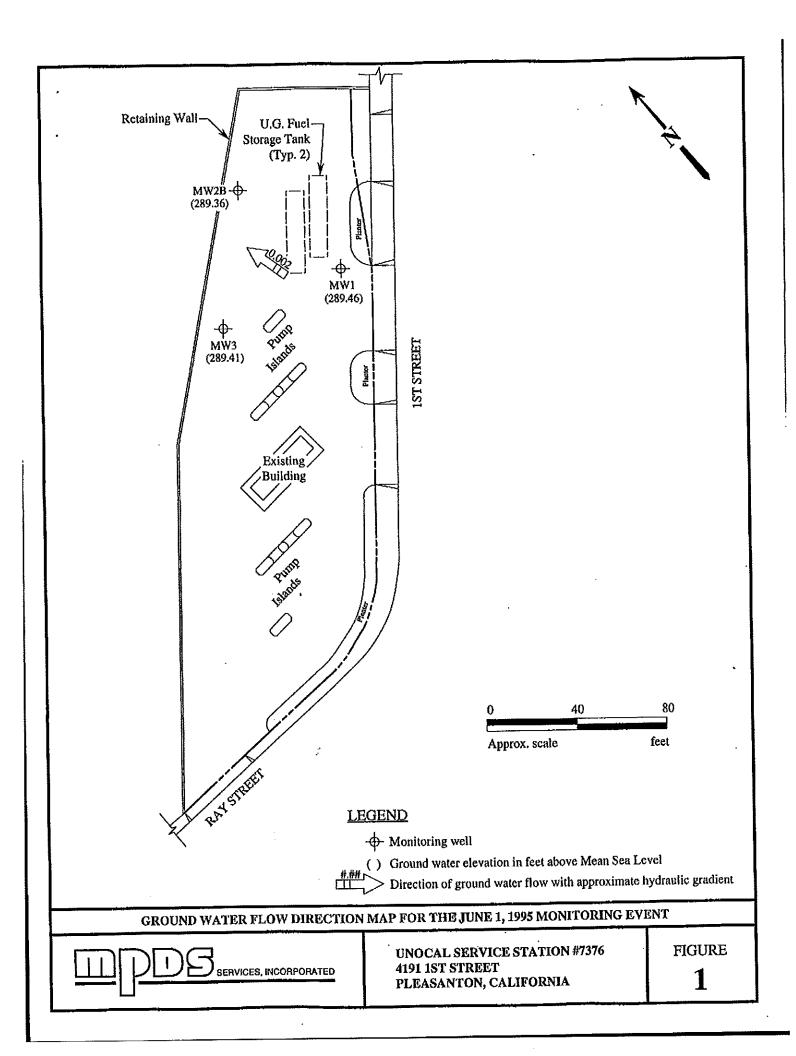
٩.,

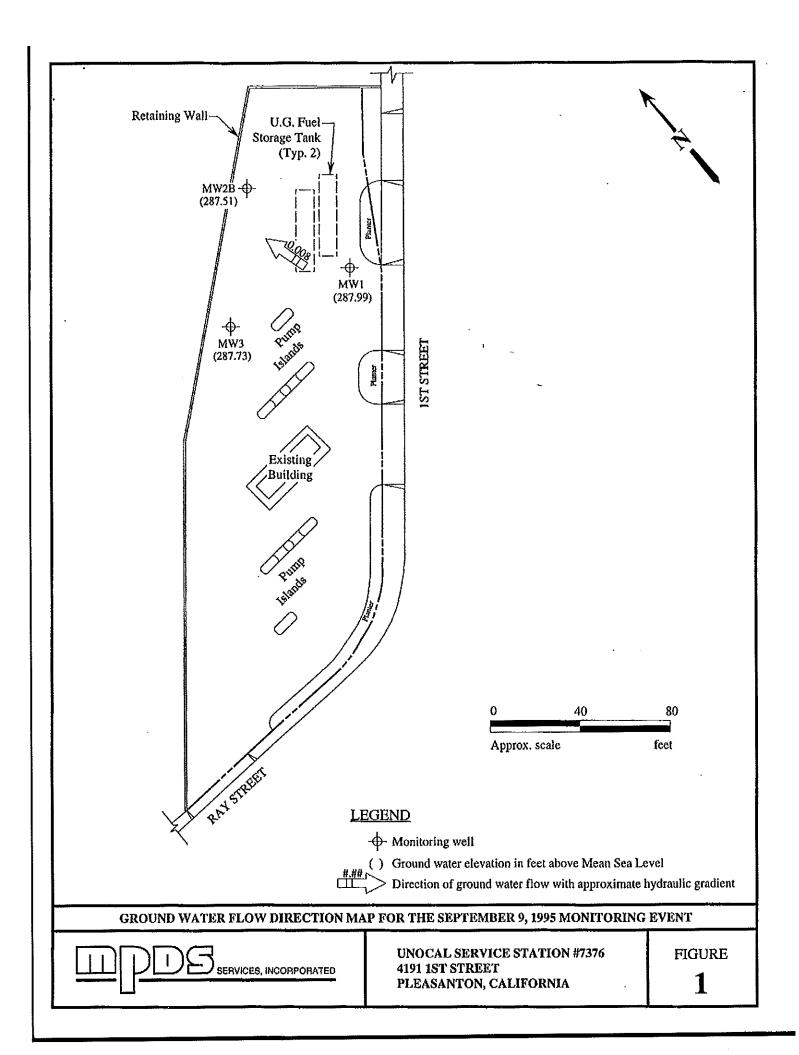
	6	DATE OF BORING: October 7, 1997	N S.P.T.	ovm	IN PLACE	
(FEET) AETERS) AUMBER	TION AN SAMPLE	SURFACE ELEVATION: Approx. 355.0 feet mal (108.2 meters mal)	BLOWS/ <u>FT</u>	READING P.I.D. (10.0oV)	DRY UNIT	MOIST. CONTEN
DEPTH (FEET) DEPTH (METERS) SAMPLE NUMBER	LOG, LOCATION AND TYPE OF SAMPLE	DESCRIPTION	*MODIFTED FOR 3" O.D. SAMPLER	(parts per million)	WEIGHT (PCF)	% DRY WEIGHT
-19		Yellowish brown clayey fine SAND with moderate iron staining common, very moist. (SC)	45	3.0		
~ 65 - 20 - 4- 4-	8	Gray brown/dark yellowish brown fine sandy very silty CLAY, very \moist, moderate iron staining abundant. (CL)	35*	<1		
- 21		Brown silty medium to coarse SAND with gravel (to 1 [*] , subangular to subrounded), saturated. (SM)	75	<1		
70 		Dark yellowish brown clayey fine SAND, wet. (SC)	8*	- 8.5		
75 75 		Z Approximate depth of ground water.				
-24		Bottom of boring at approximately 80 feet. Ground-water sample W-4 recovered at 15:20.				
- 85 -26		DRAFT				
27						
- 90						

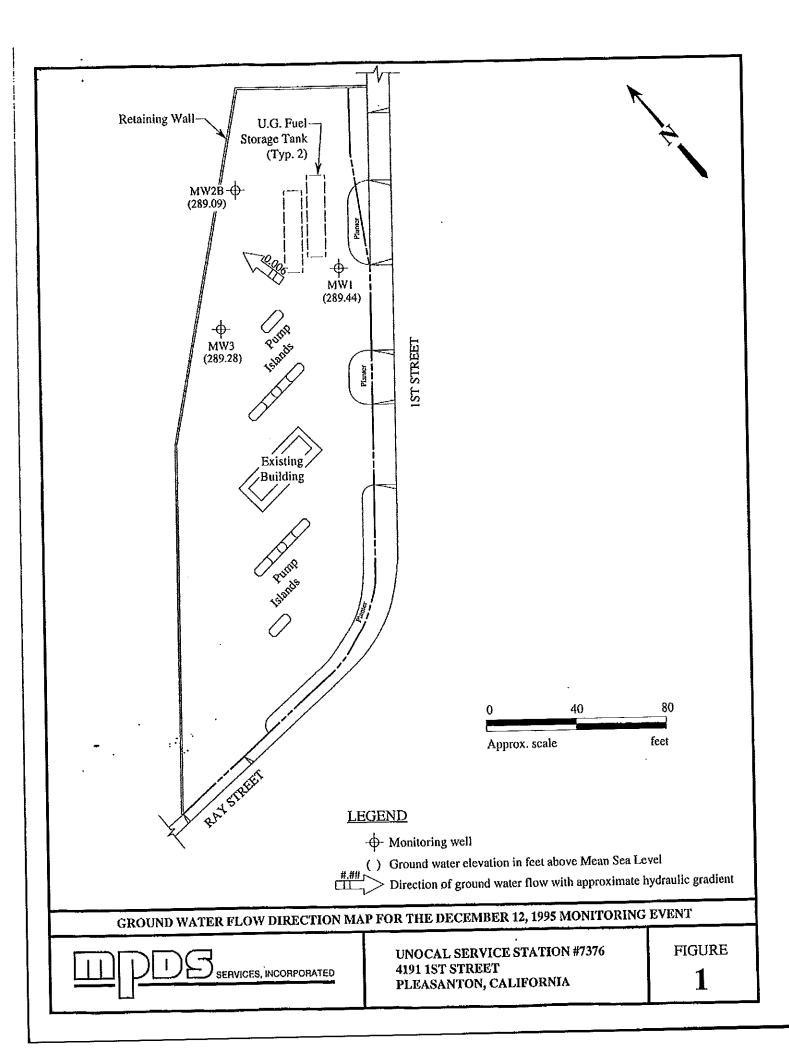
		e.	DATE OF BORING: October 7, 1997	N - S.P.T.	OVM	IN FLACE	
DEPTH (FEET) DEPTH (METERS)	SAMPLE NUMBER	DG, LOCATION AN TYPE OF SAMPLE	SURFACE ELEVATION: Approx. 355.0 feet ms1 (108.2 meters ms1)	BLOWS/PT	READING P.I.D. (10.0eV)	DRY UNIT WEIGHT	MOIST. CONTEN
	SAMPLE	LOG, LOCATION AND TYPE OF SAMPLE	DESCRIPTION	*MODIFIED FOR 3* O.D. SAMPLER	(parts per million)	(PCF)	% DRY WEIGHT
0							
-			Gray aggregate, dry. (Fill) Dark grayish brown claycy SILT with sand and gravel (to 2*subrounded), moist. (Fill) (ML)	7*	< 1		
-1			2 subrounded), moist. (Fing (ML)	6	< 1		
5				24*	1.0		
5					-		5.
-				- 8	<1		
10 ⁻³ 			Dark grayish brown very silty CLAY, tree roots, moist. (CL)	11*	< 1		
-4				8	<1		
15	5-2						
-5			Dark yellow brown clayey fine to course SAND with gravel (to 2/3", subrounded), very moist. (SC)	11*	<1		
				26	<1		
20			Dark yellowish brown clayey GRAVEL (to 1 1/2", subrounded), moist. (GC).	24*	<1		
-7			Dark yellowish brown, clayey fine to medium SAND, moist. (SC)	45	<1		
25 -8	5-3		jouwer 12 K. df 186,199, 143	11*	<1		
Å			Dark yellowish brown clayey fine to coarse SAND. (SC)	20	<1		
30 9			Durk brown silty CLAY with sand, very moist. (CL)			1	
EN	VGF	20	RAY STREET PROPERTY	BORINO		5	FIGURE NO.
INCORPORATED			PLEASANTON, CALIFORNIA	DATE: November 1997 PROJECT NO.: 4391-F3			

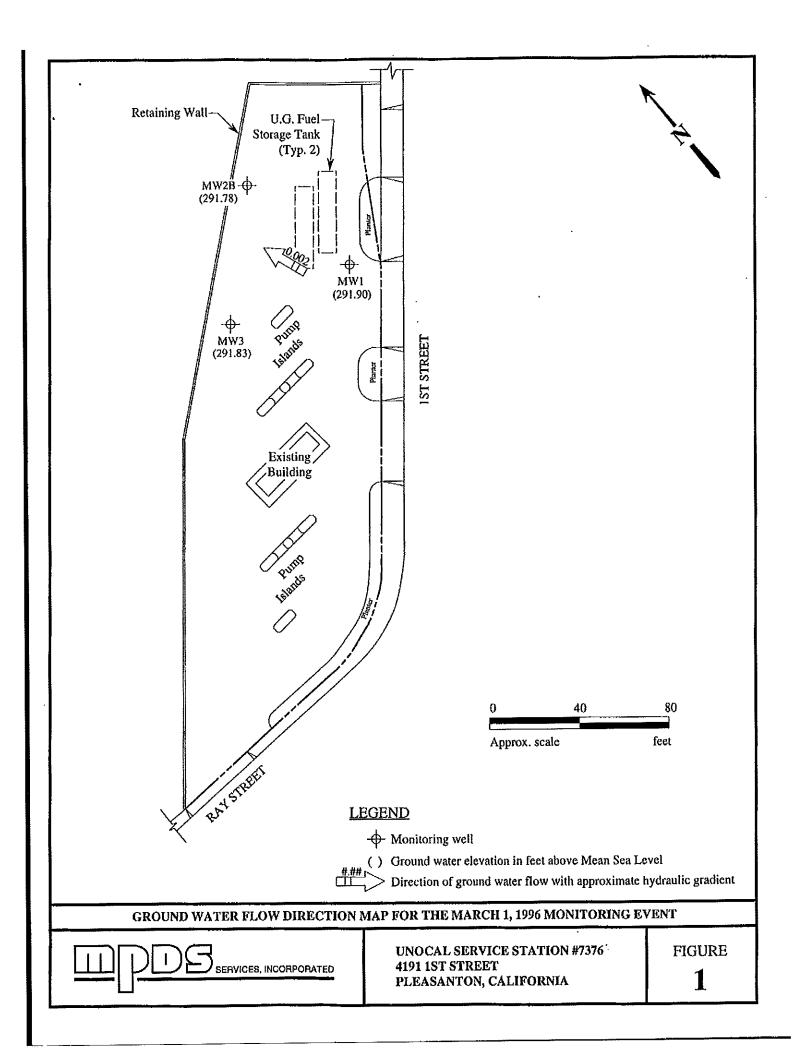
				DATE OF BORING: October 7, 1997	N	OVM	IN PLACE	
DEPTH (NETERS) DEPTH (NETERS)	UMBER	LOCATION AND PE OF SAMPLE	SURFACE ELEVATION: Approx. 355.0 feet msl (108.2 meters msl)	S.P.T. BLOWS/ET	READING P.I.D. (10.0eV)	DRY UNIT	MOIST. CONTENT	
	SAMPLE NUMBER	LOG, LOCATION AN TYPE OF SAMPLE	DESCRIPTION	*MODIFIED FOR 3" O.D. SAMPLER	(parts per million)	WEIGHT (PCF)	% DRY WEIGRT	
- 35	-10	5-4		Mottled dark brown/dark gray clayey SILT, very moist. (ML) Mottled dark brown/dark gray clayey very silty fine SAND, very moist, moderate iron staining common. (SM) Dark gray silty fine to medium SAND, very moist. (SM) Approximate depth of ground water. Dark gray silty CLAY with sand, very moist. (CL) Dark gray well graded GRAVEL (to 1 1/2* m.s. subrounded) with clay and sand, saturated. (GW)	4* 13 17*	<1		
- 40	-12	5.5		Dark gray brown clayey GRAVEL (to 1 1/4*, subrounded), very moist. (GC) Bottom of boring at approximately 40 feet. Ground-water sample recovered at 18:50.	88	•		
- 45	-13			DRAFT				
50	- -1:							
- 5	-10	5						
- 6	-1'			·				
ET 4391 11/3/97		NGE	EO	RAY STREET PROPERTY PLEASANTON, CALIFORNIA	} <b>-</b>	G NO.: B ovember 1997 NO.: 4391-F3	-5 	FIGURE NO.

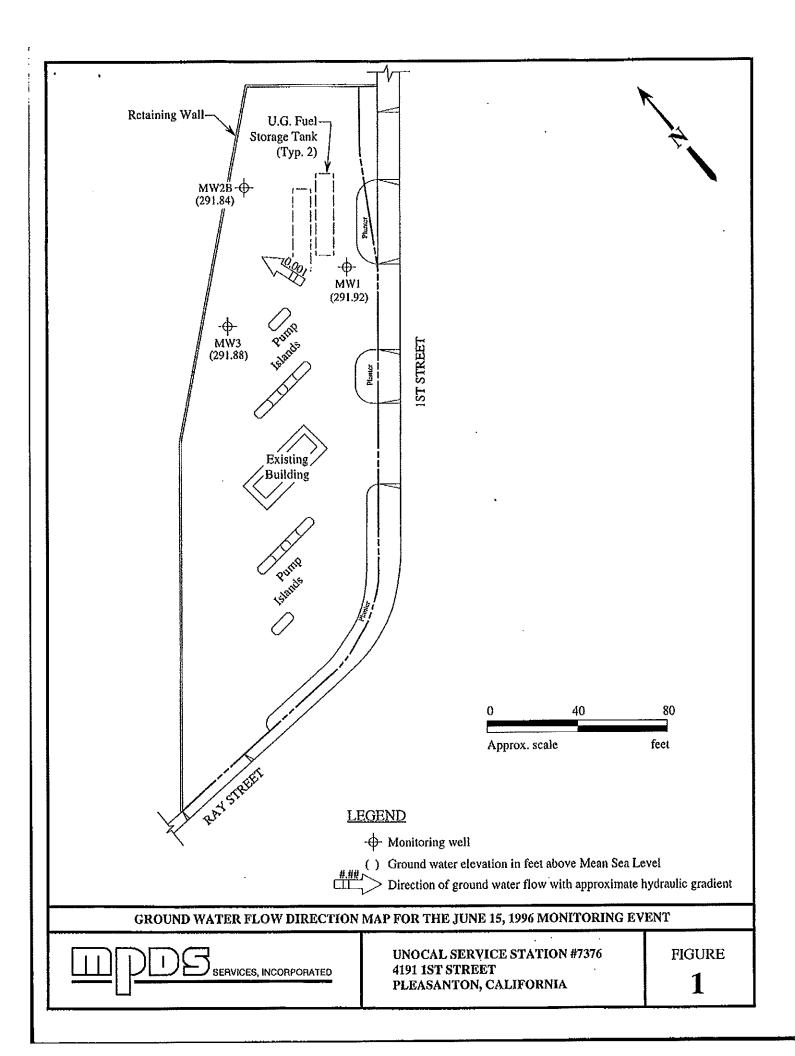

	DATE OF BORING: October 8, 1997	N - S.P.T.	MVO	IN PLACE	
DEPTH (FEET) EPTH (METERS) MPLE NUMBER , LOCATION AN 77E OF SAMPLE	SURFACE ELEVATION: Approx. 353.0 feet msl (107.6 meters msl)	BLOWS/ <u>FT</u>	READING P.I.D. (10.0eV)	DRY UNIT WEIGHT	MOIST. CONTEN
DEPTH (METERS) DEPTH (METERS) SAMPLE NUMBER LOG, LOCATION AND TYPE OF SAMPLE	DESCRIPTION	*MODIFIED FOR 3" O.D. SAMPLER	(parts per nullion)	(PCF)	% DRY WEIGHT
	Dark grayish brown silty GRAVEL with sand and cobbles (including concrete and asphalt). (Fill)(GM) Dark gray brown clayey SILT with fine sand, tree roots, damp. (ML)	3*	< 1		
1		3	< 1		
6-1	DRAFT	8*	< 1	-	
	·	5	<1		
10 3		26*		,	
-4	Dark grayish brown silty CLAY with sand, moist. (CL)	11	<1:		
¹⁵ 6-2	Dark yellowish brown clayey GRAVEL (to 3/4", subrounded) with sand, maist. (GC)	26*			
		26			
	Dark yellowish brown/dark gray brown silty CLAY with gravel ( to 1/2", subrounded). (CL) Dark yellowish brown clayey GRAVEL (to 1", subrounded), moist.	40*	< 1		
-7	(GC)	46	< 1		· · ·
25 6-3 <b>8</b>		18*	<1		
	Dark brown clayey fine to coarse SAND, moist. (SC)	40			
30 -9	Dark yellowish brown clayey SAND with trace gravel (to 3/4 [*] , subrounded), moist. (SC)	-		,	
<u> </u>	RAY STREET PROPERTY	BORING	J NO.: B-	6	FIGURE NO.

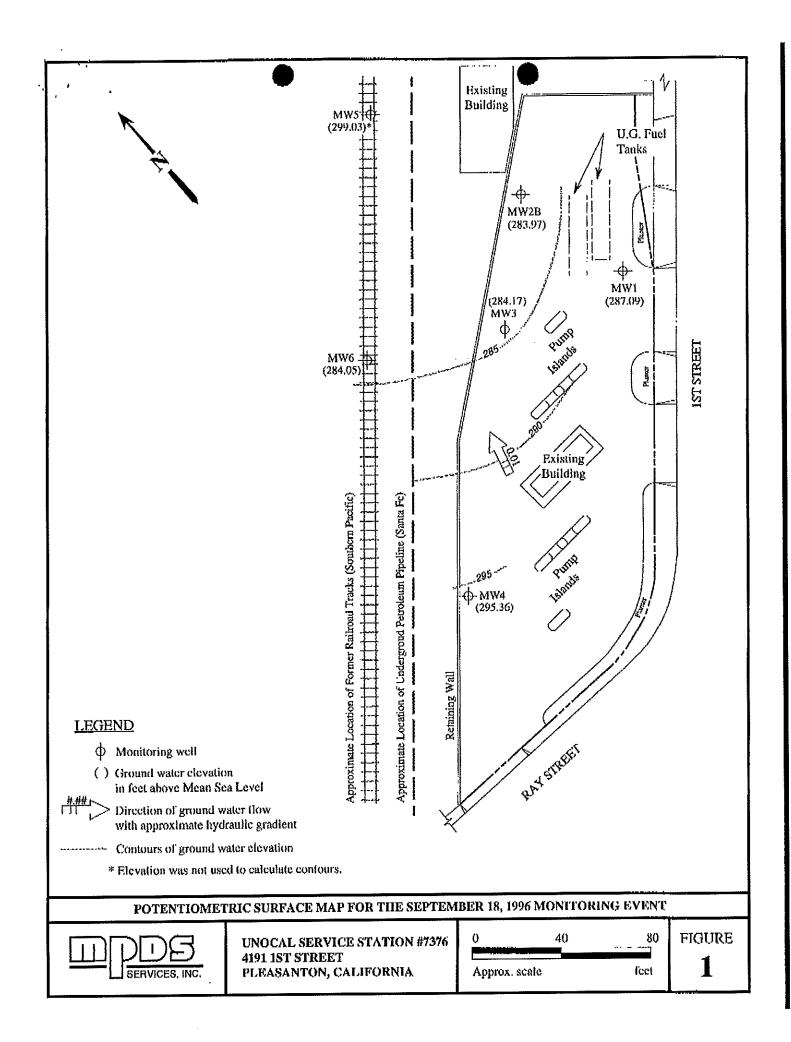

 $4 + \epsilon = \frac{1}{2} + \epsilon$ 


<u> </u>	DEPTH (METERS)			DATE OF BORING: October 8, 1997	Ň	OVM	IN PL	ACE
рертн (ғеет)		MBER	ON AND	SURFACE ELEVATION: Approx. 353.0 feet mal (107.6 meters mat)	S.P.T. BLOWS/ <u>FT</u>	READING P.I.D. (10.0eV)	DRY UNIT	MOIST. CONTENT
		SAMPLE NUMBER	LOG, LOCATION AND TYPE OF SAMPLE	DESCRIPTION	*MODIFIED FOR 3* O.D. SAMPLER	(parts per million)	WEIGHT (PCP)	% DRY WEIGHT
7		6-4		Mottled dark brown/dark gray very fine sandy SILT, very moist. (ML)	19*	<1		
-	-10			Dark gray brown silty fine SAND, wet. (SM) Mottled dark brown/dark gray very fine sandy SILT, very moist. (ML)	15	<1		
- 35		6-5		Approximate depth of groundwater.				
and a surrow the surrow of	-11			Dark gray brown silty GRAVEL (to 1", subrounded), saturated. (GM)	27*			
-	-12			<u>·</u>	32	-		
- 40	-	6-6		Reddish brown sandy CLAY, very wet. (SC) Bottom of boring at approximately 40 feet. Ground-water sample W-6 recovered at 15:20				
-	-13	i		-				
	-			DRAFT				
-45	-14							
ŀ	-							
- 50	-15	5						· ·
-	-16	5						
	-17							
	-11	3						
60		-						
11/3/97							 	FIGURE
E E	TNOTO			RAY STREET PROPERTY	BORINO	3 NO.: B-	-0	FIGURE NO.
ENGEU INCORPORATED				PLEASANTON, CALIFORNIA	PROJECT N	10.: 4391-F3	CARCKEN N	


.

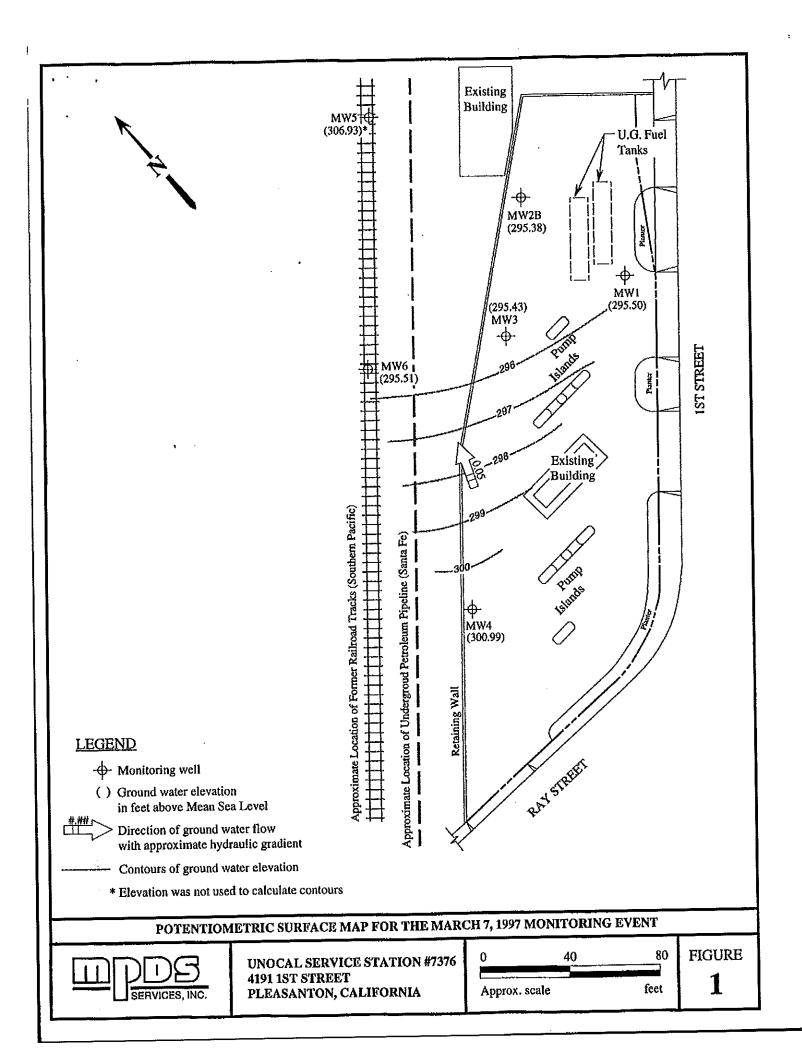

## **APPENDIX F** Historic Groundwater Elevation Maps

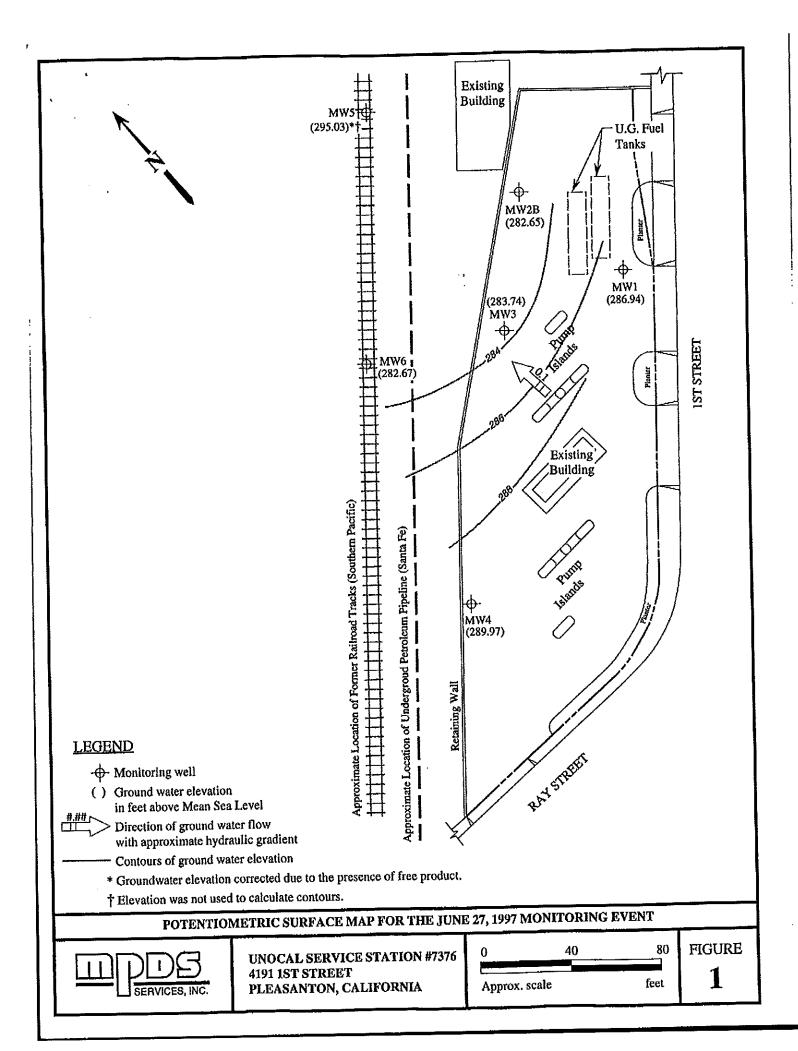


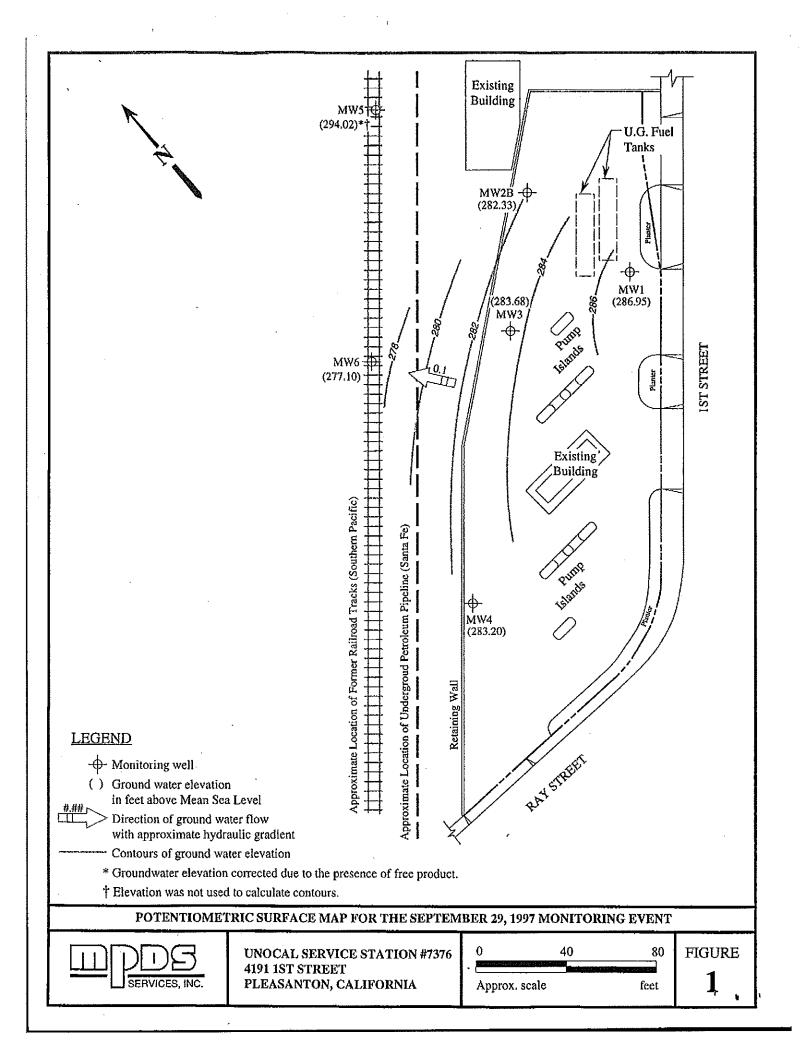



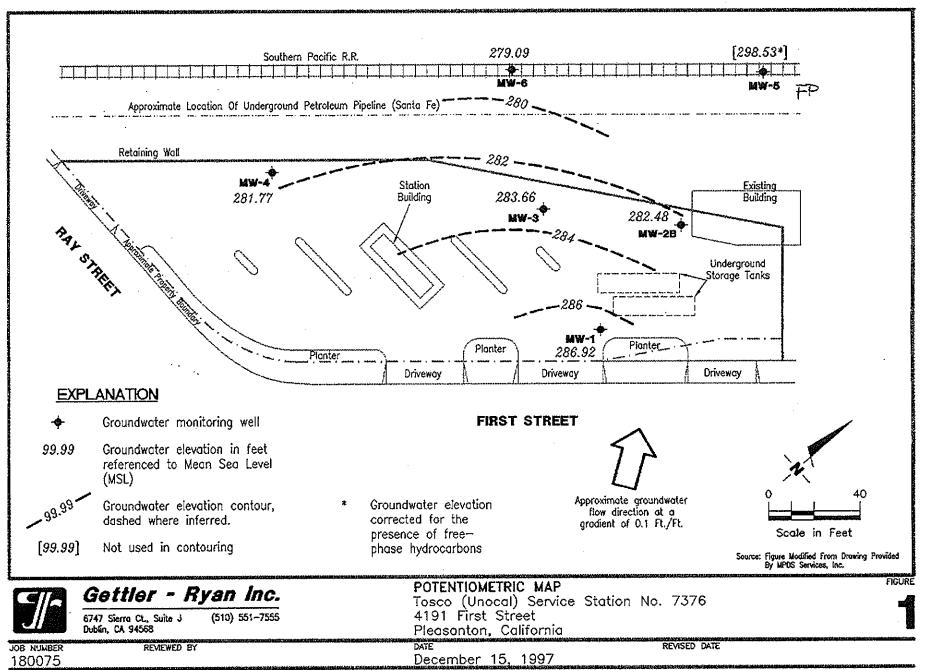






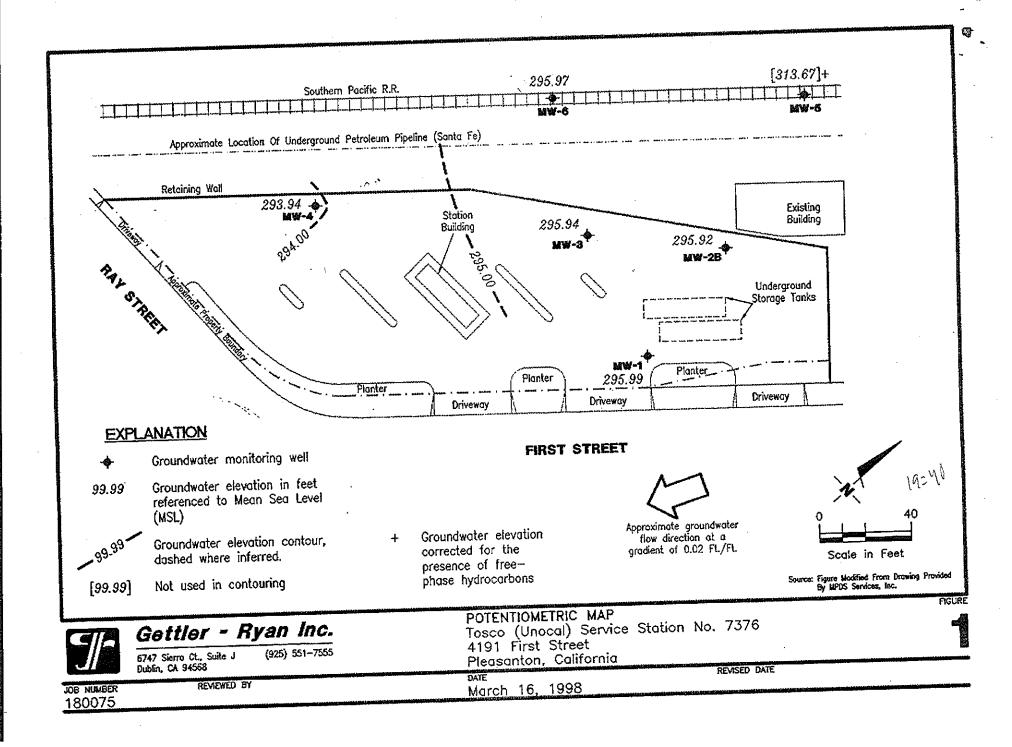



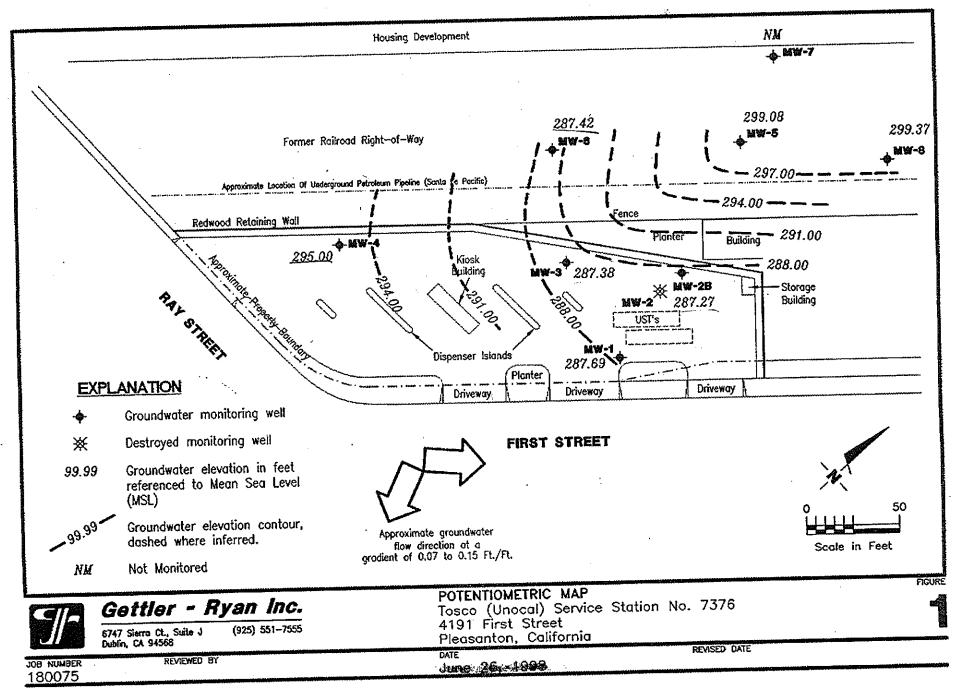





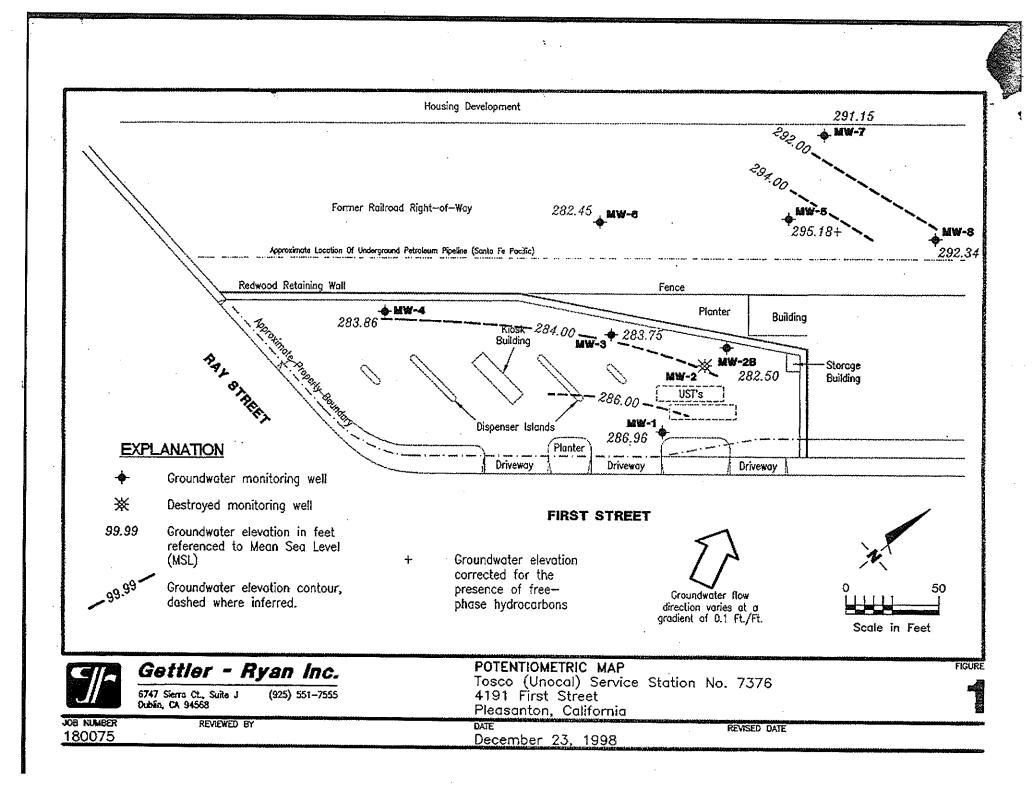


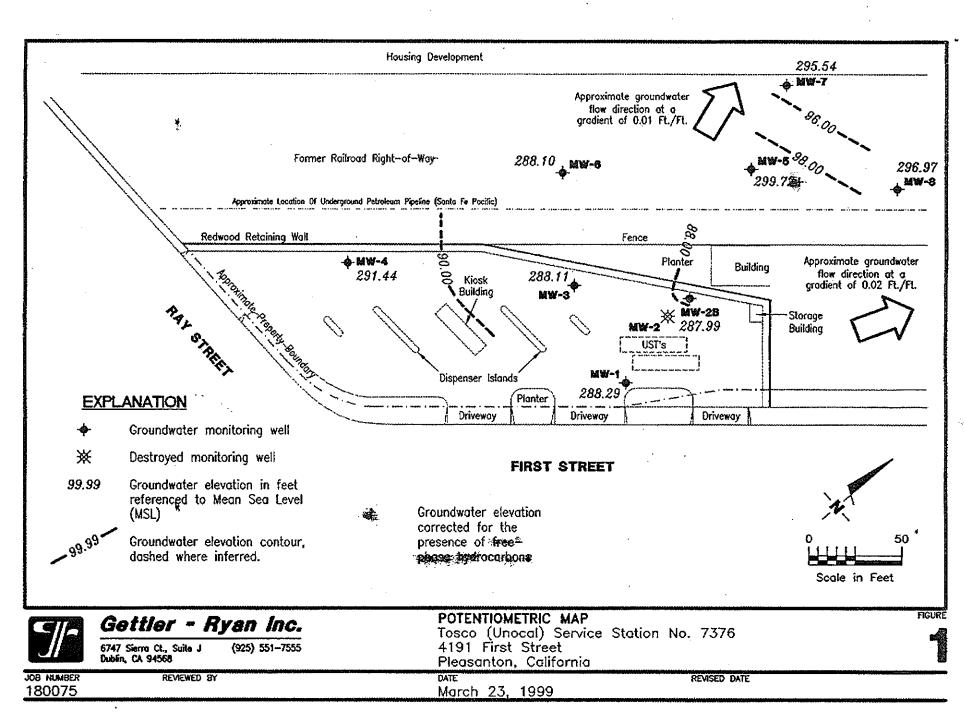





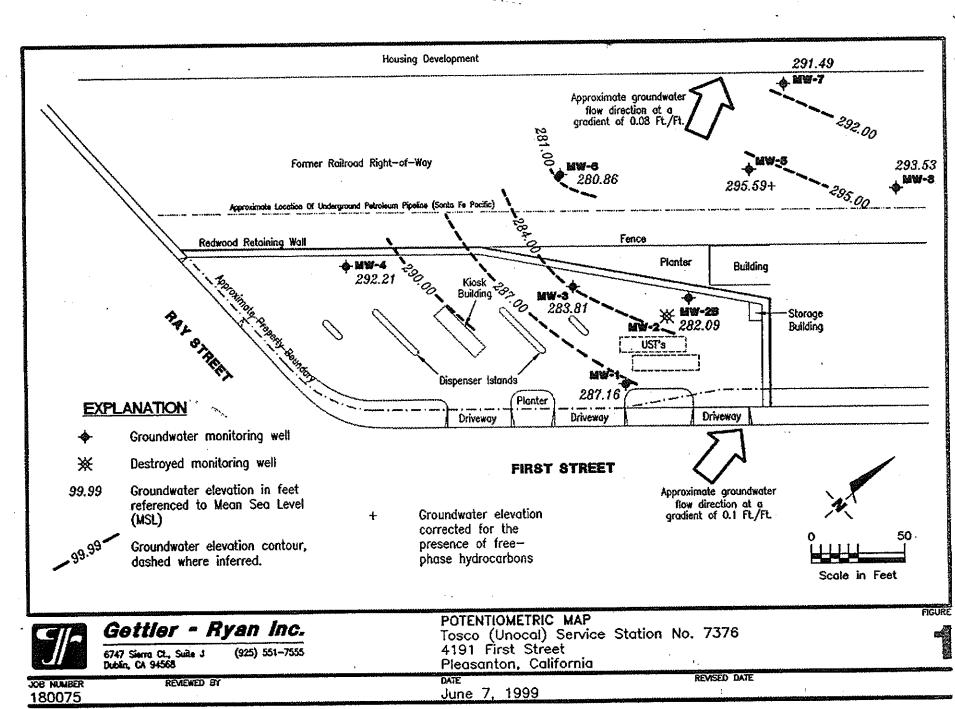

· · · · ·


`



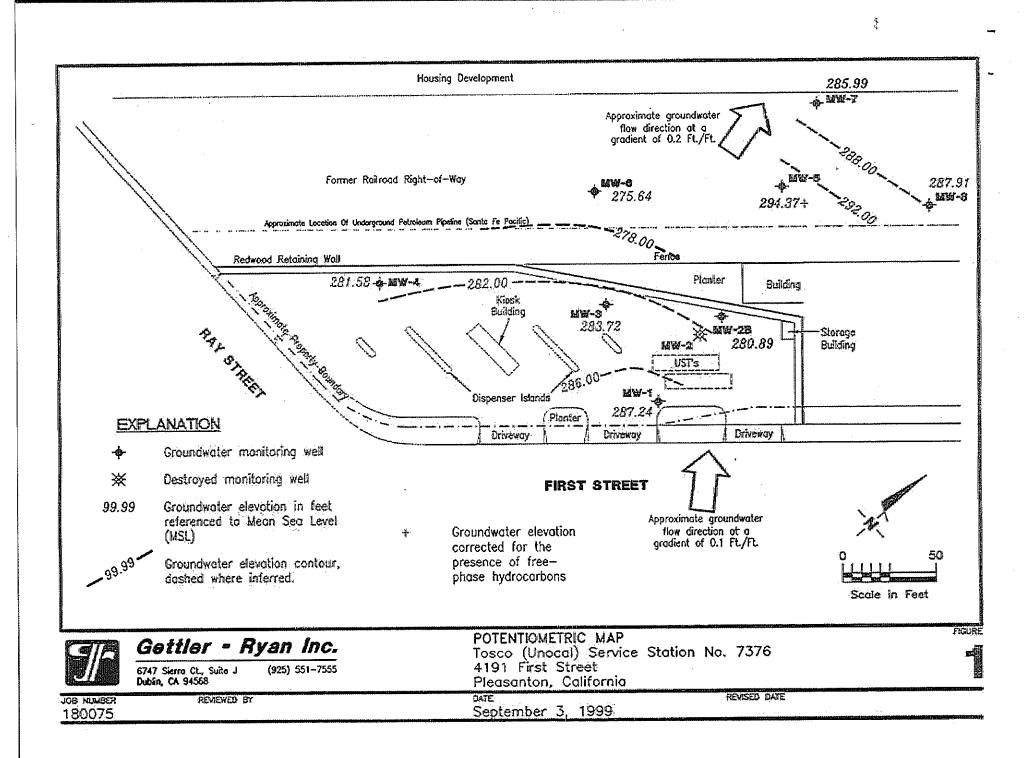



-----



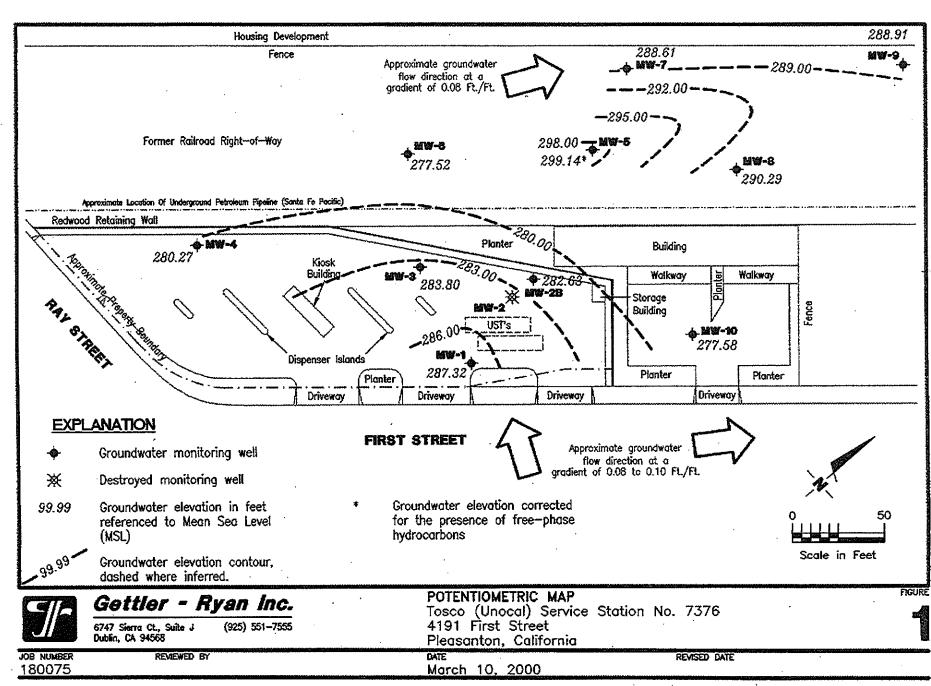




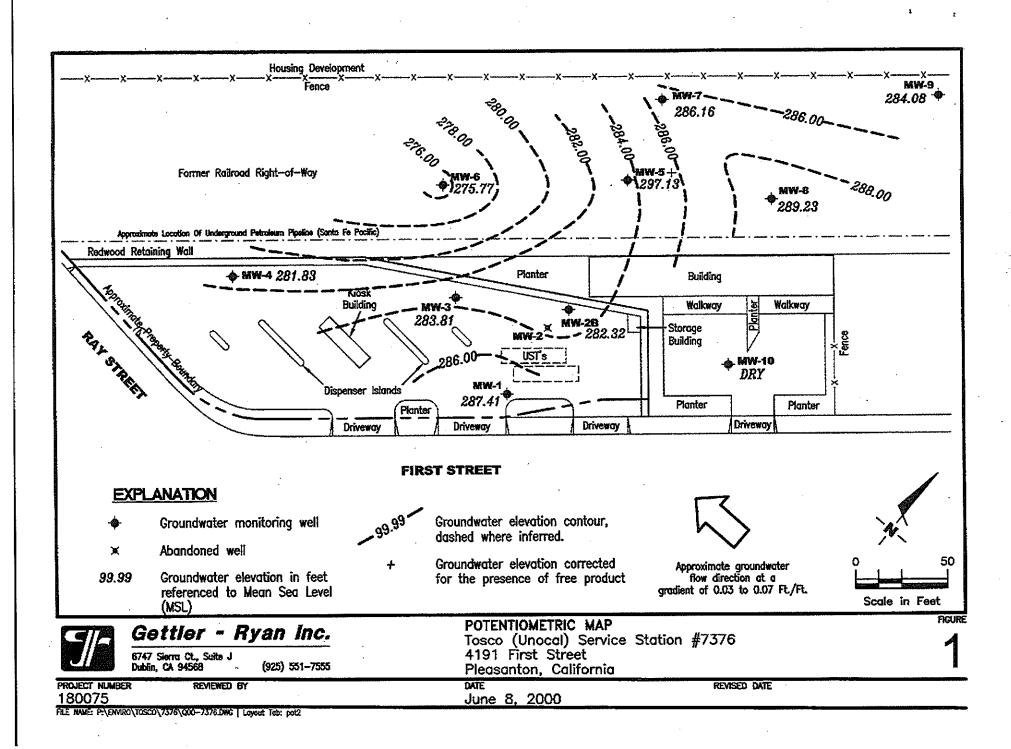


.

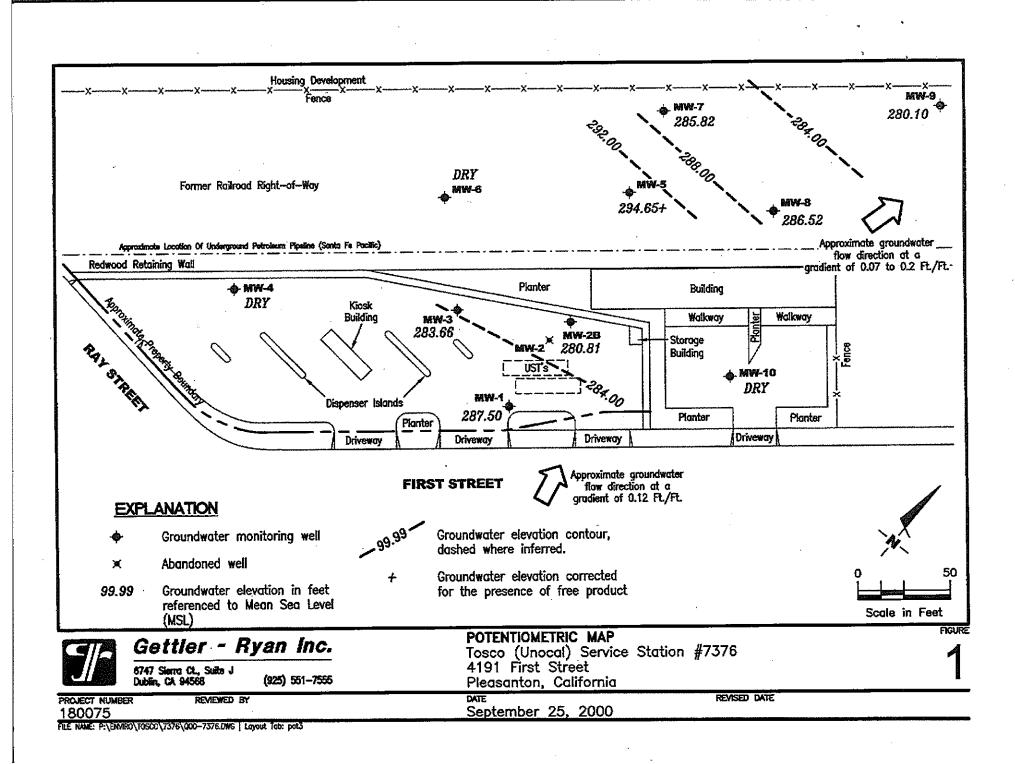
.

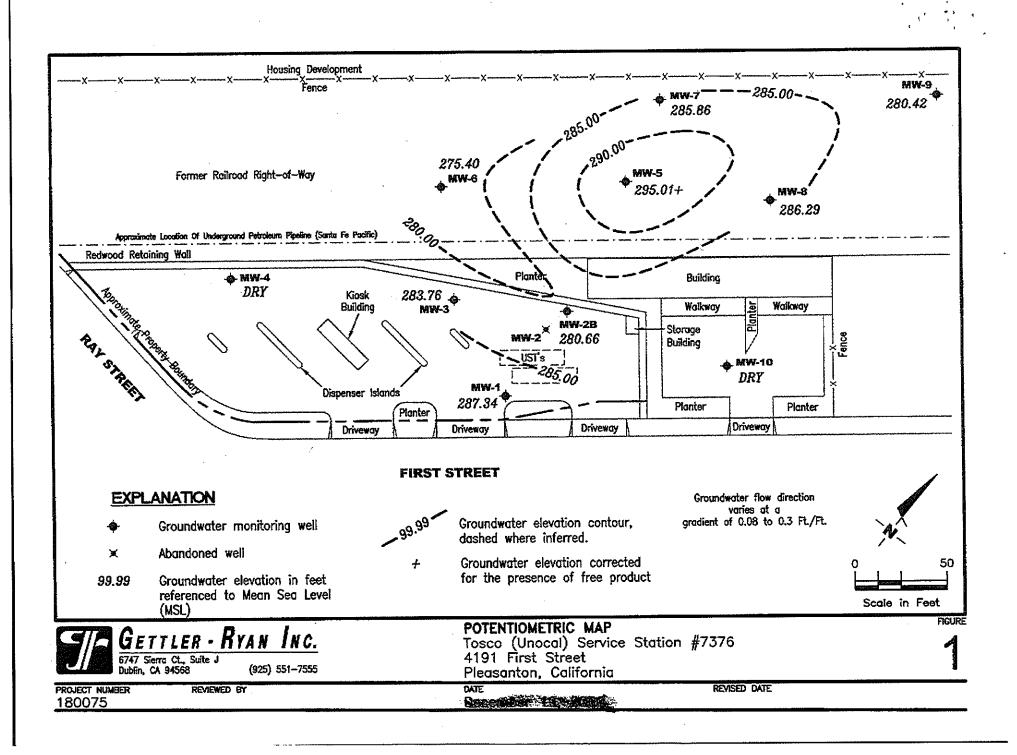


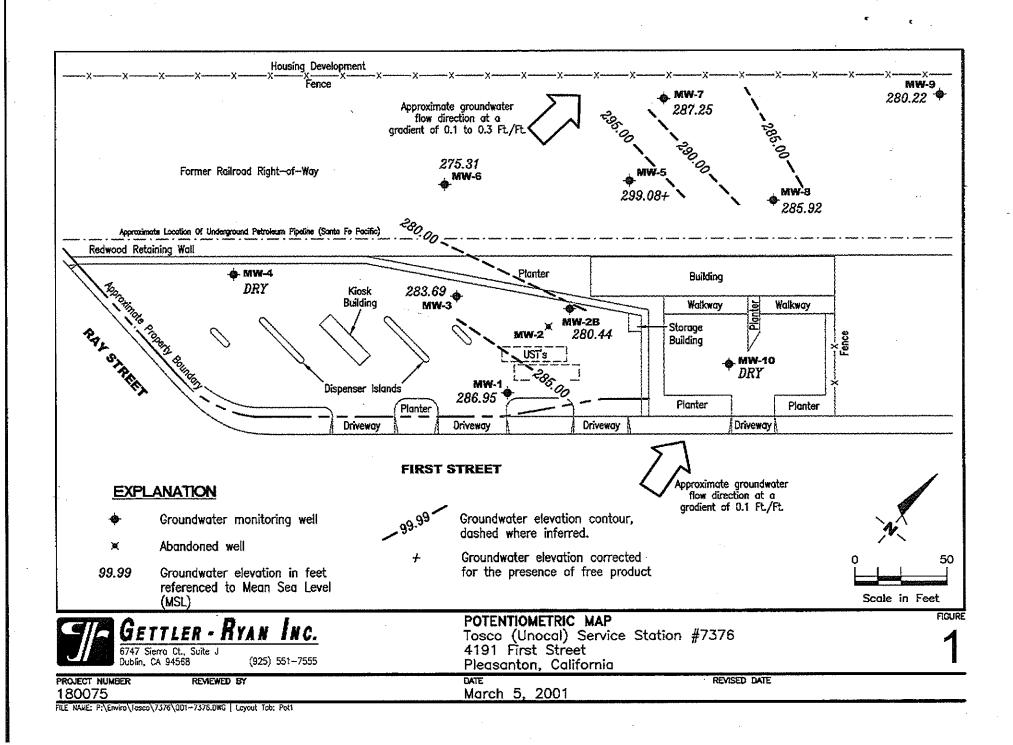

F128 (19 1) (1) (1) (1) (1)

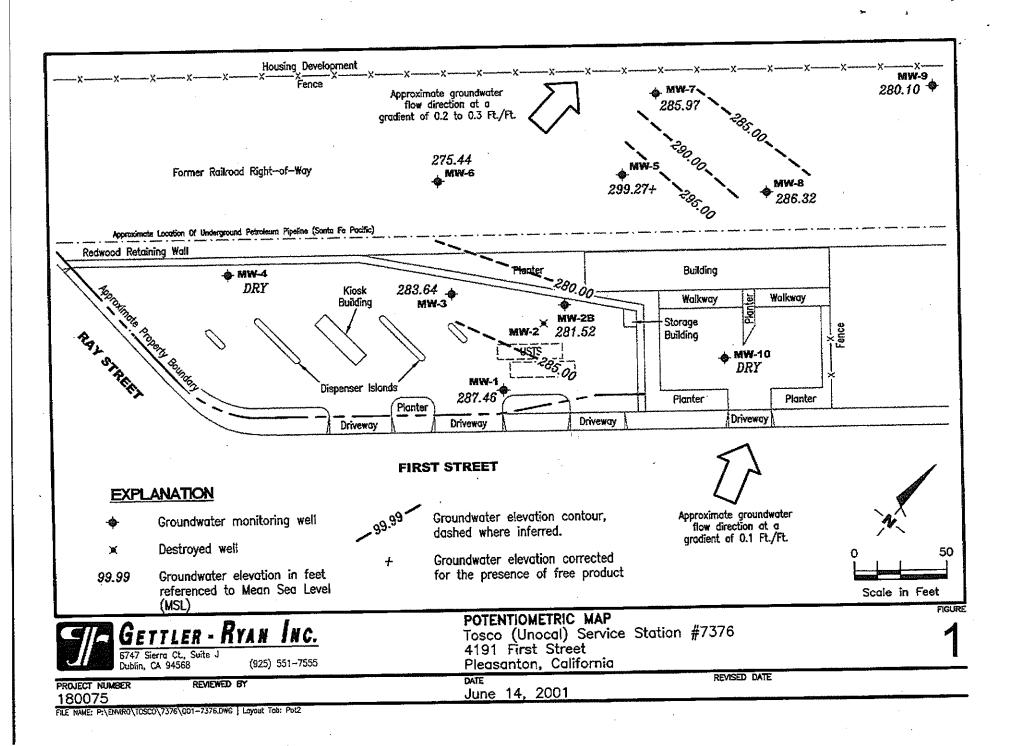
. . . .

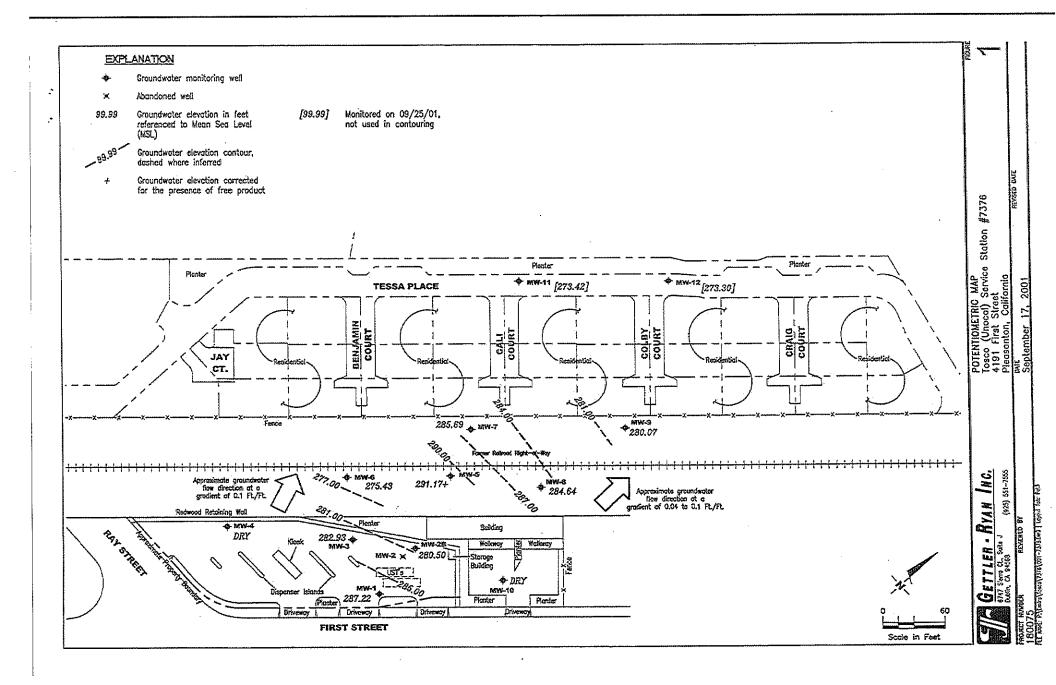


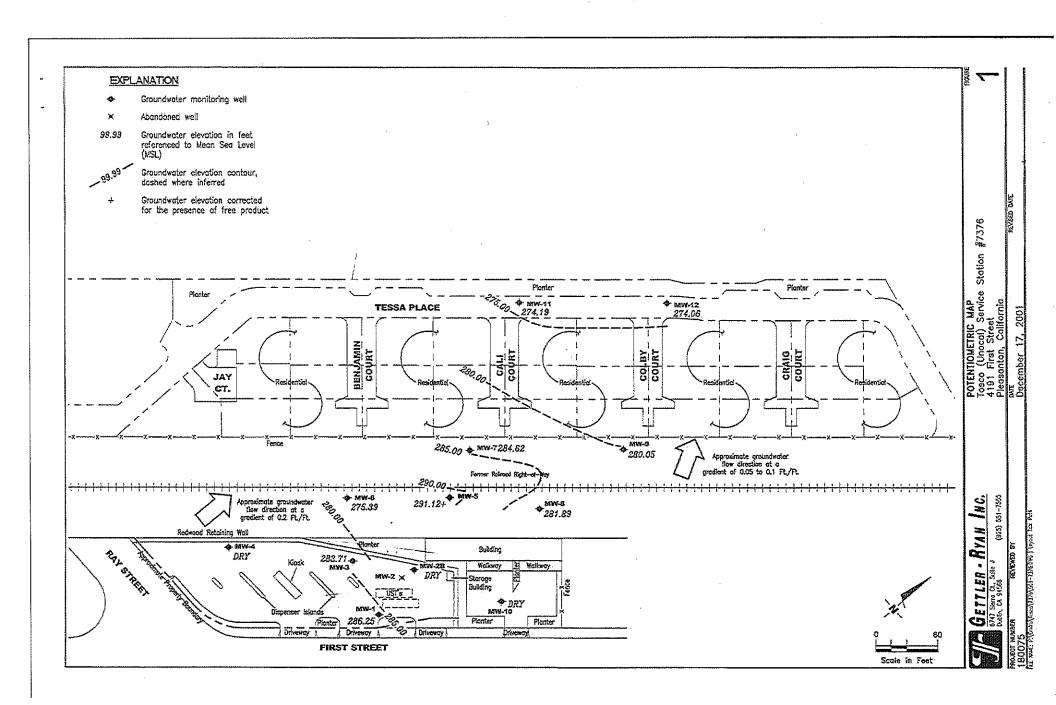



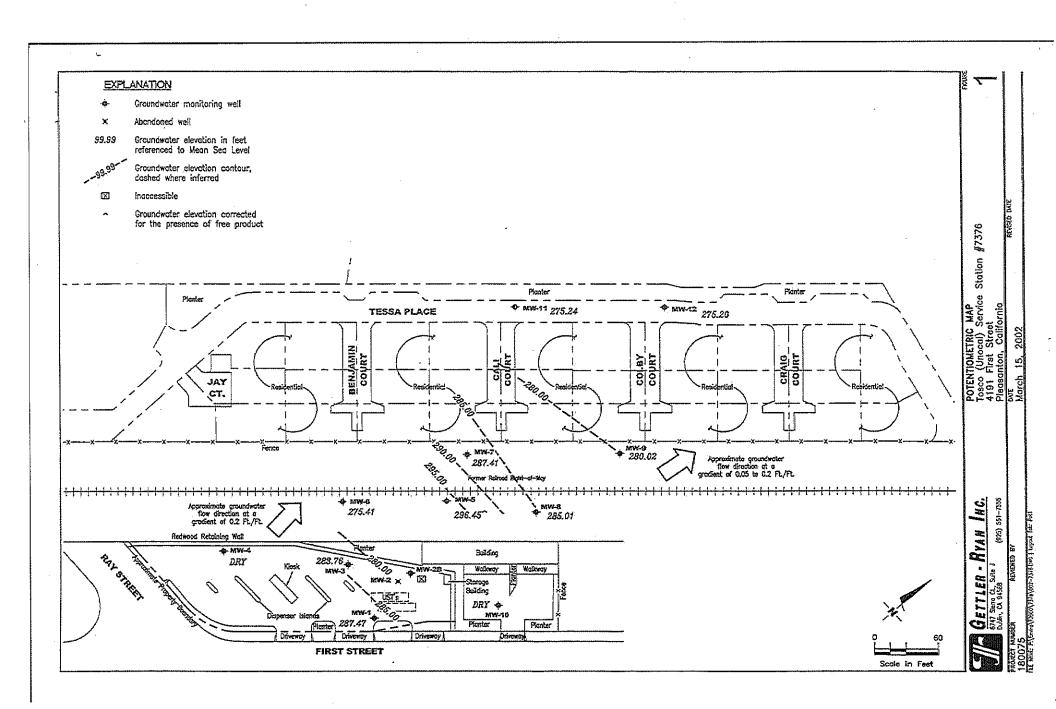


.....

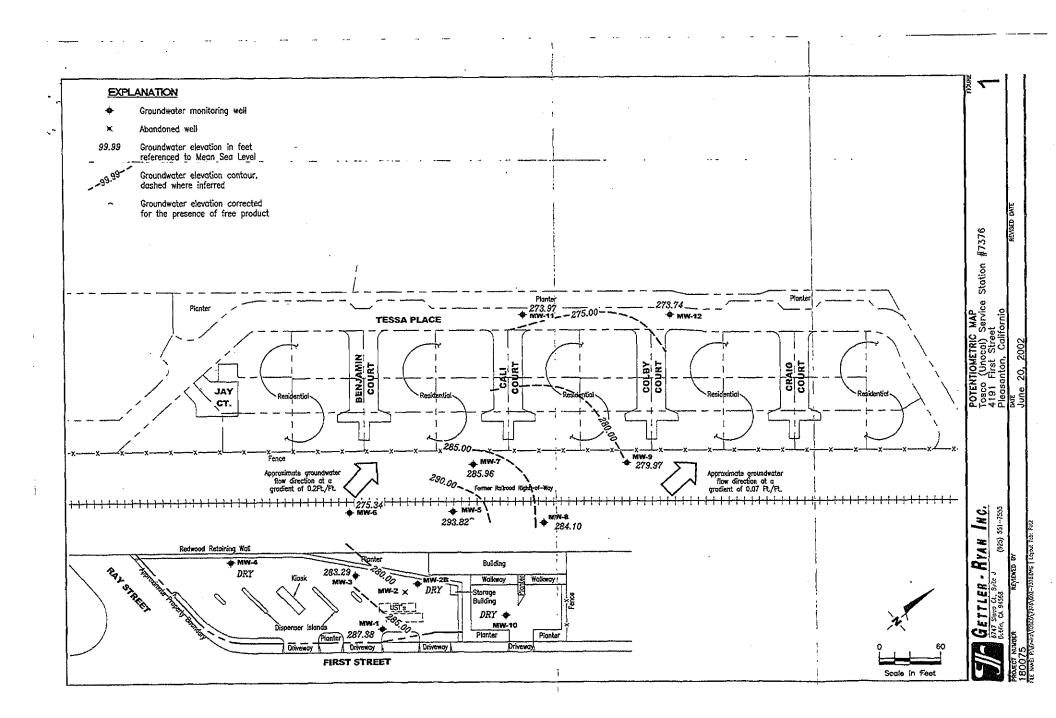


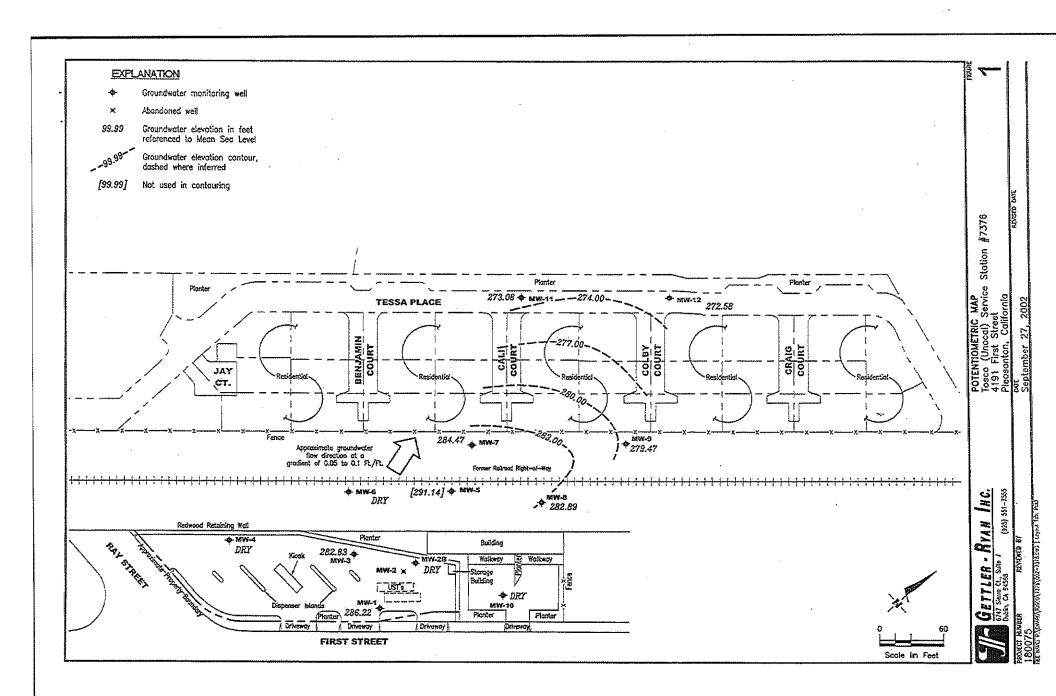


^{. .} 

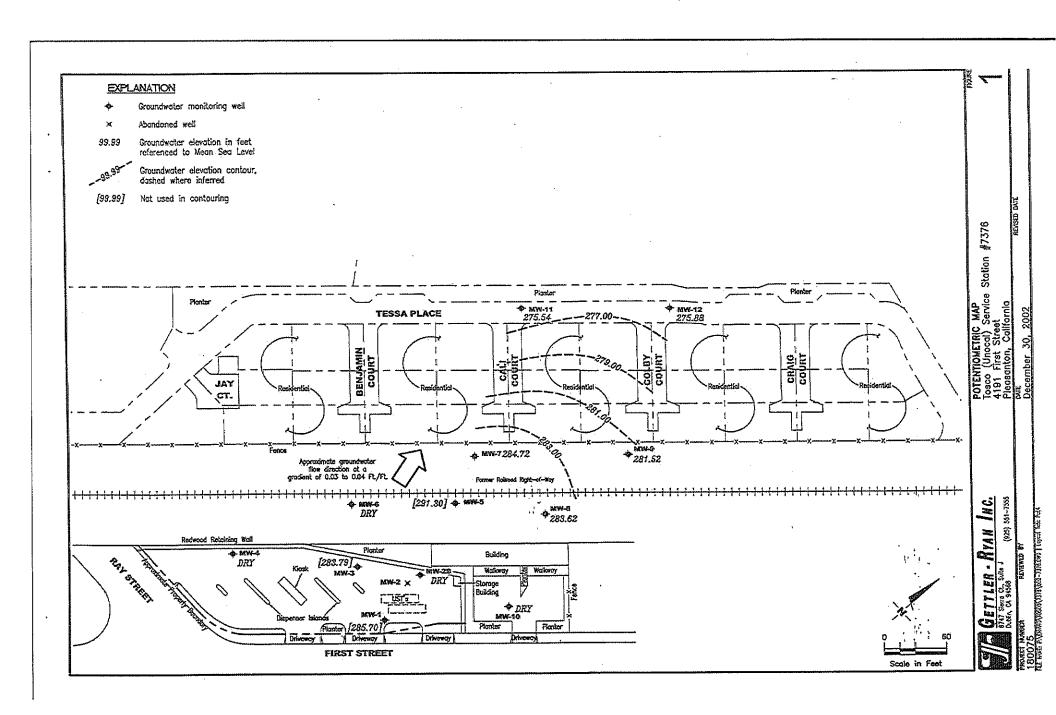


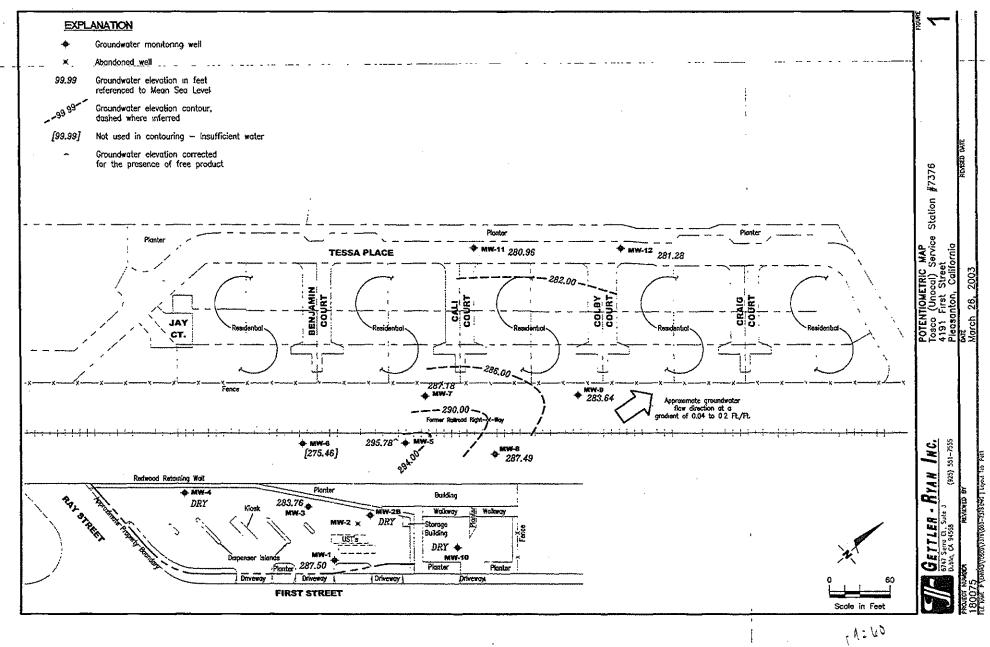



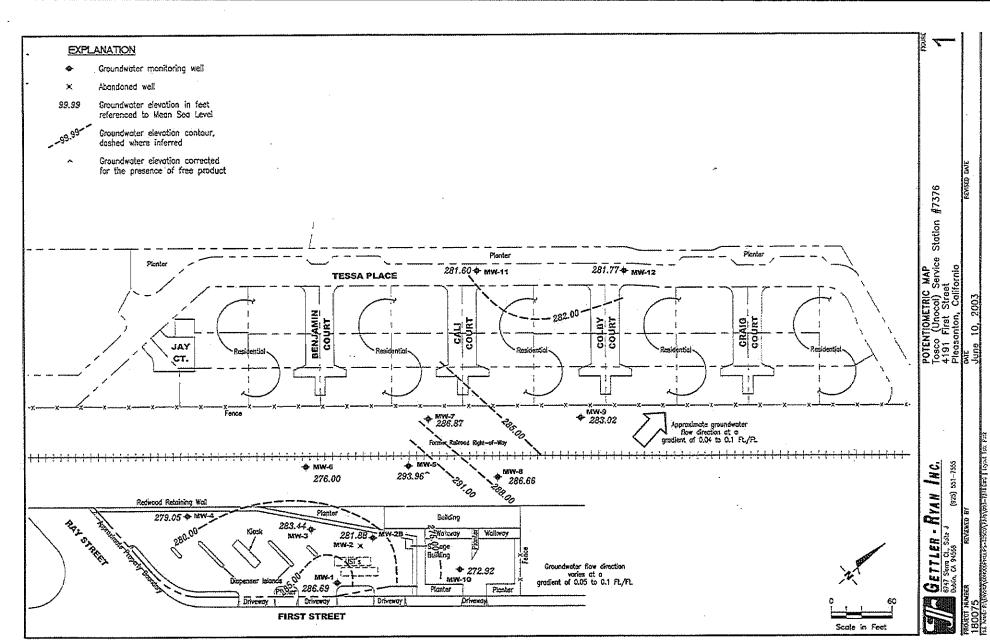



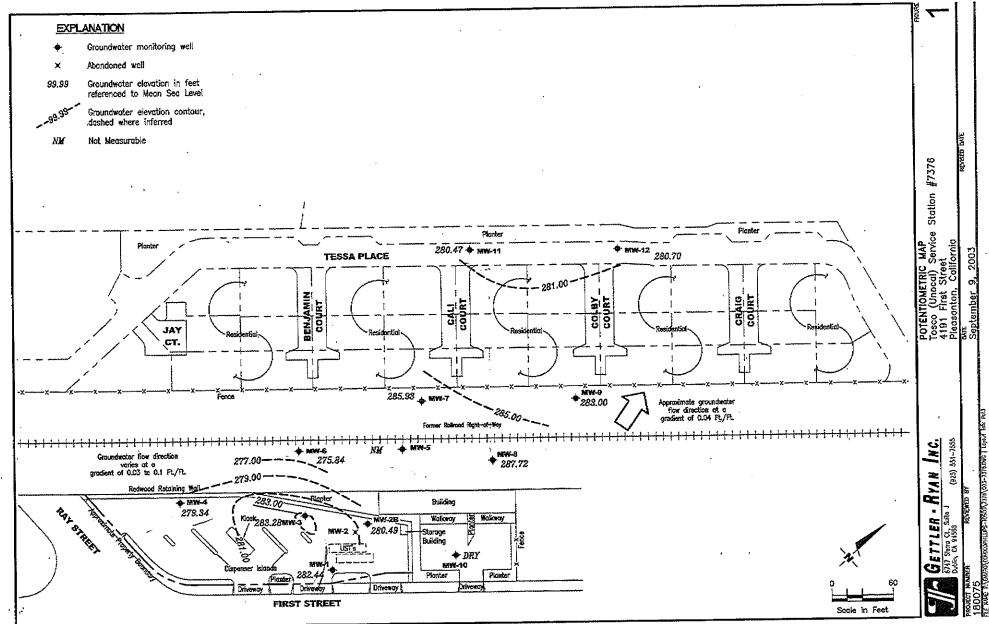



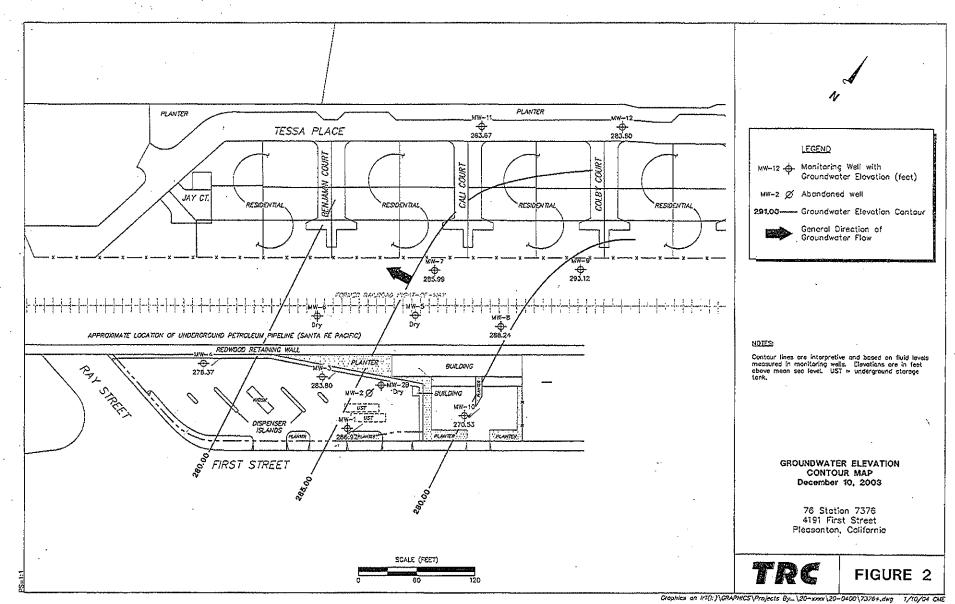



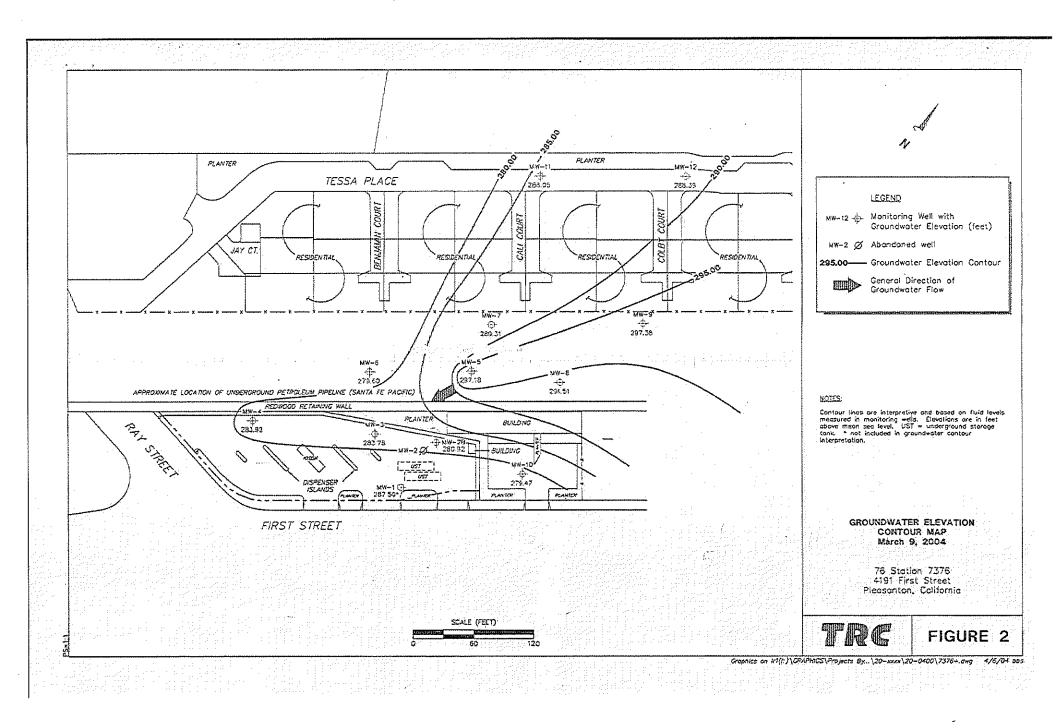



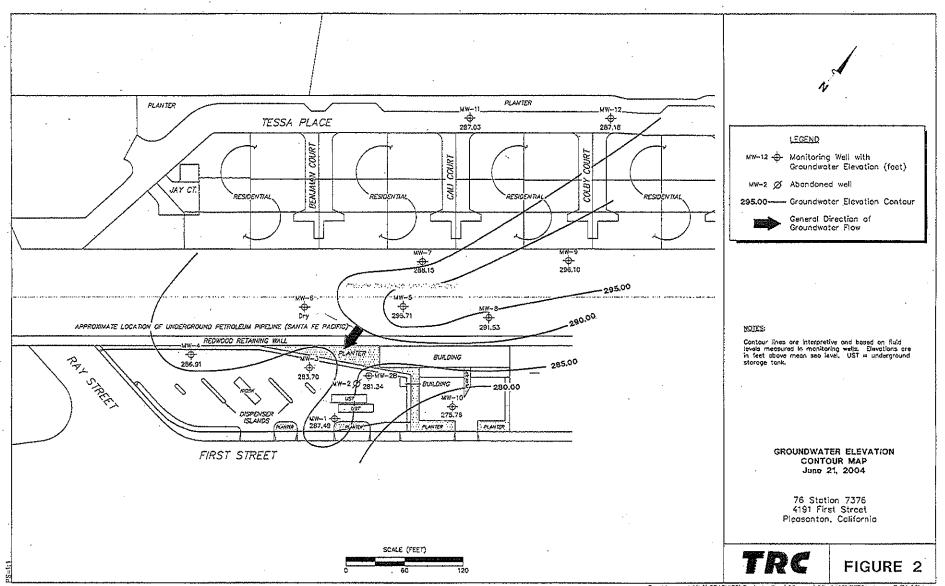







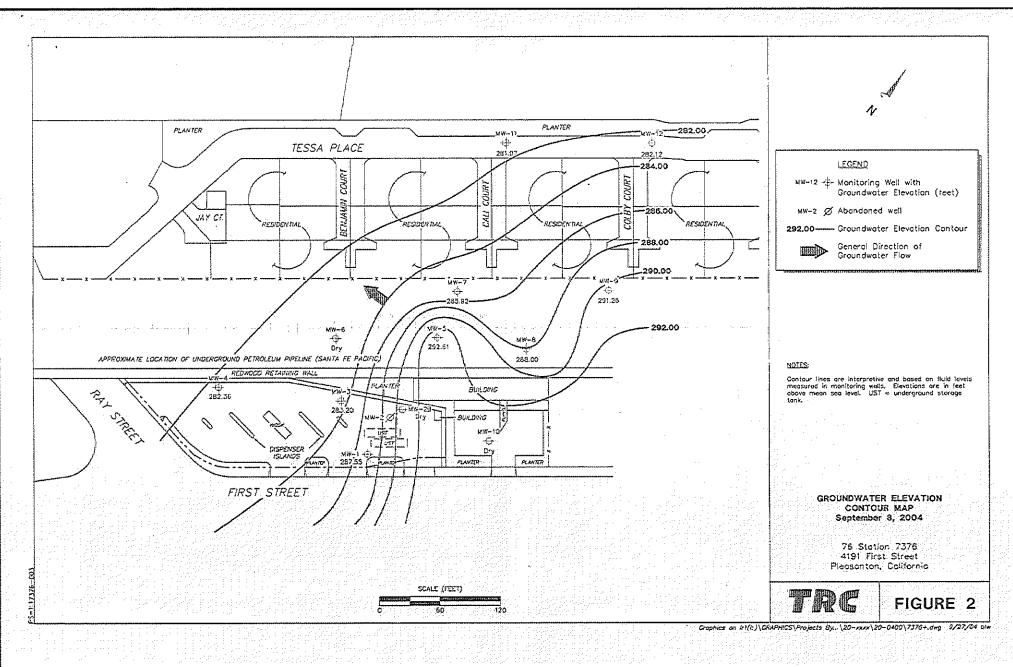



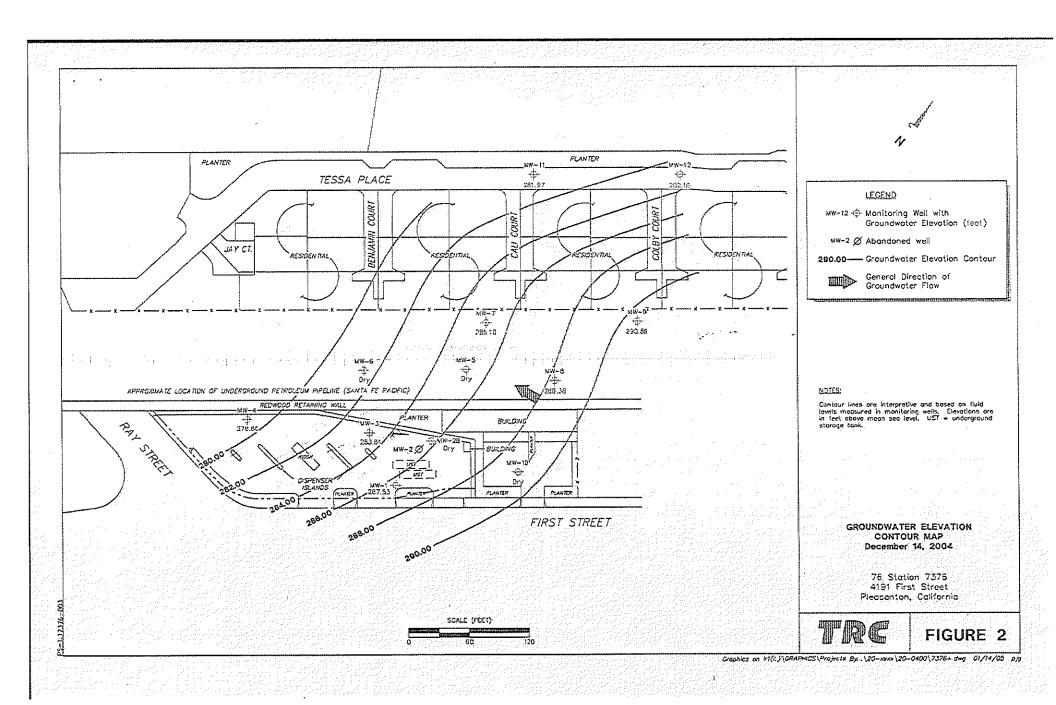


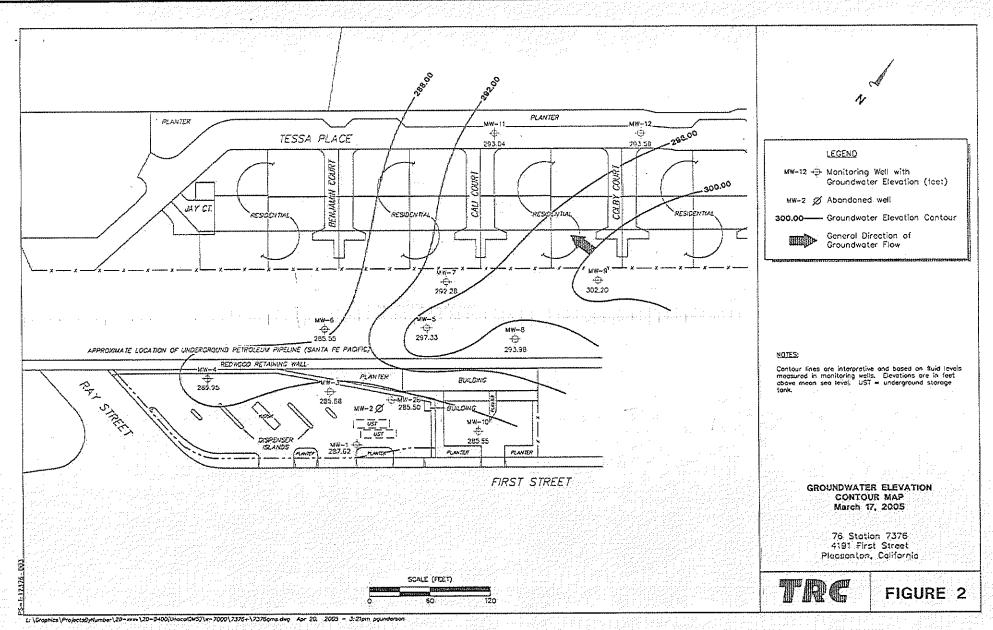

Elou. 315

. . . .

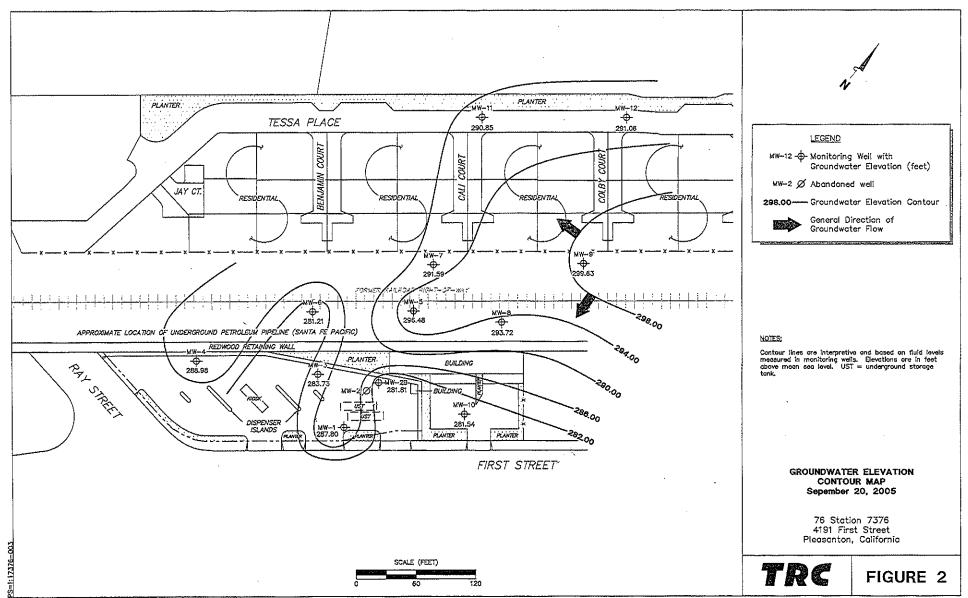




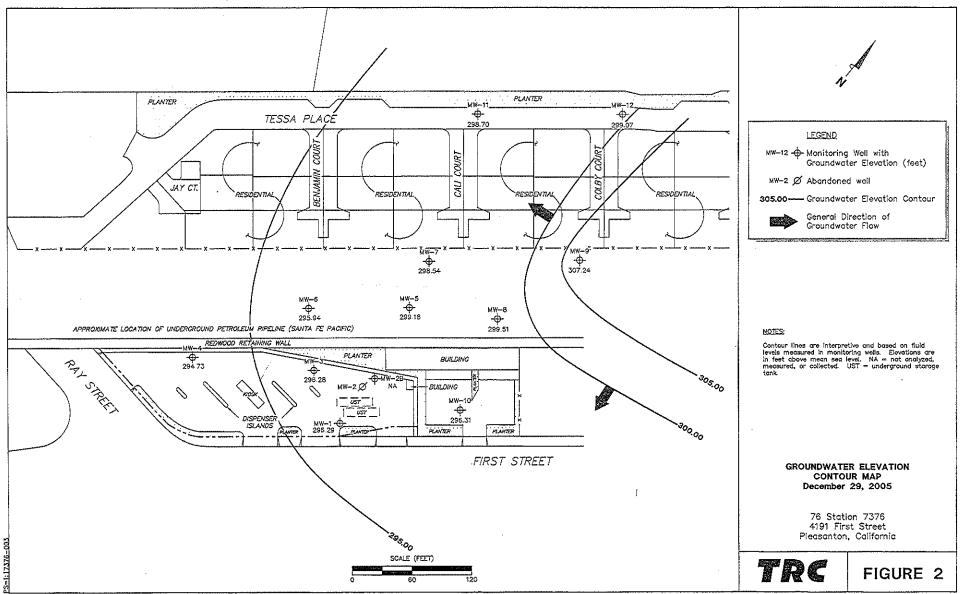


Graphics on Int(1:)\GRAPHICS\Projects By...\20-xxxx\20-0400\7376+.dwg 7/21//04 rbs


and the second second second second second second second second second second second second second second second


entre de la construcción de la construcción de la construcción de la construcción de la construcción de la const

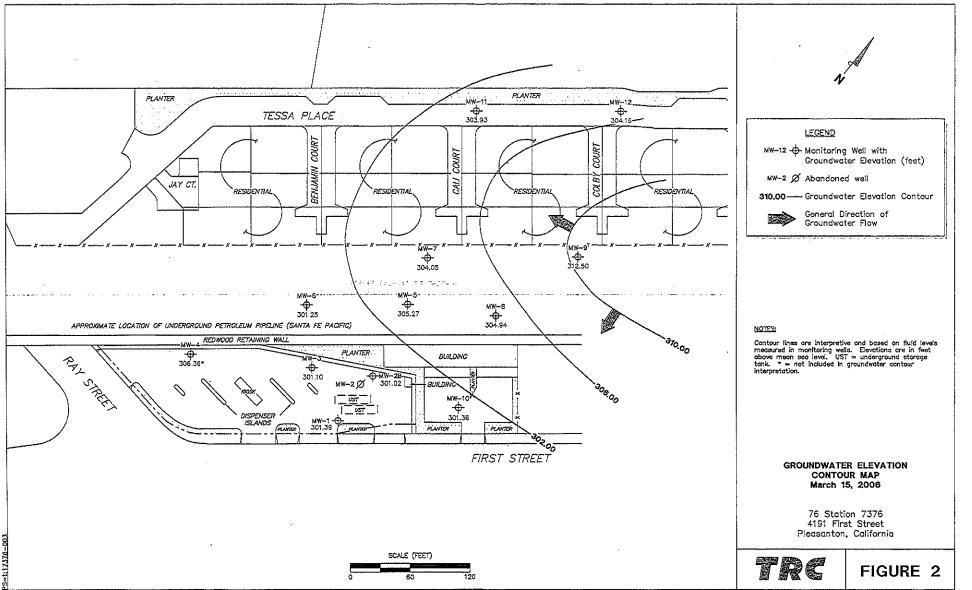

الدرية يحري الداري مانصلم محامات يجع الارام معجودات



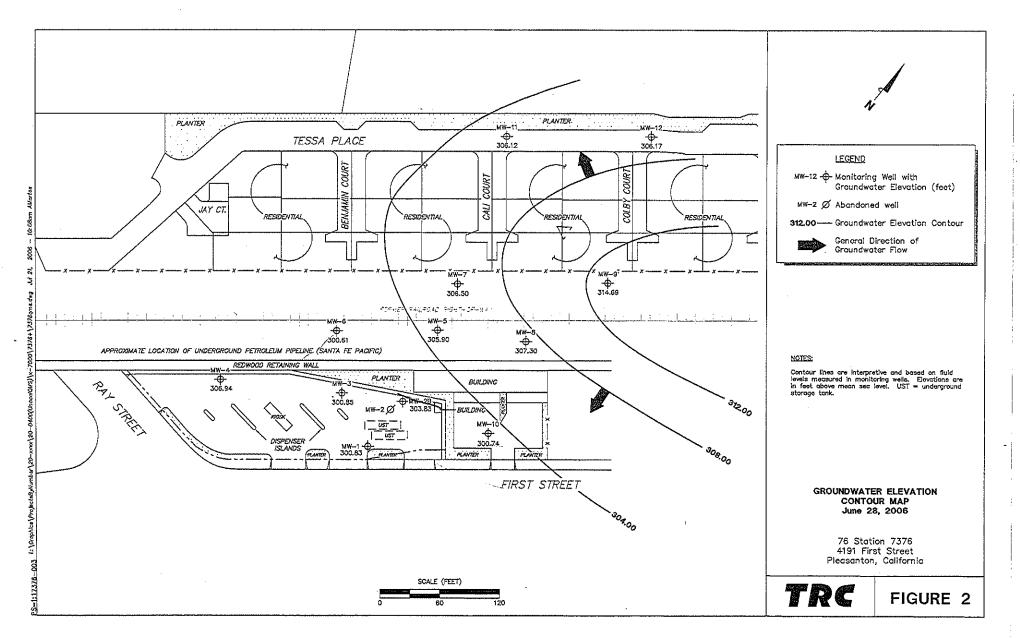






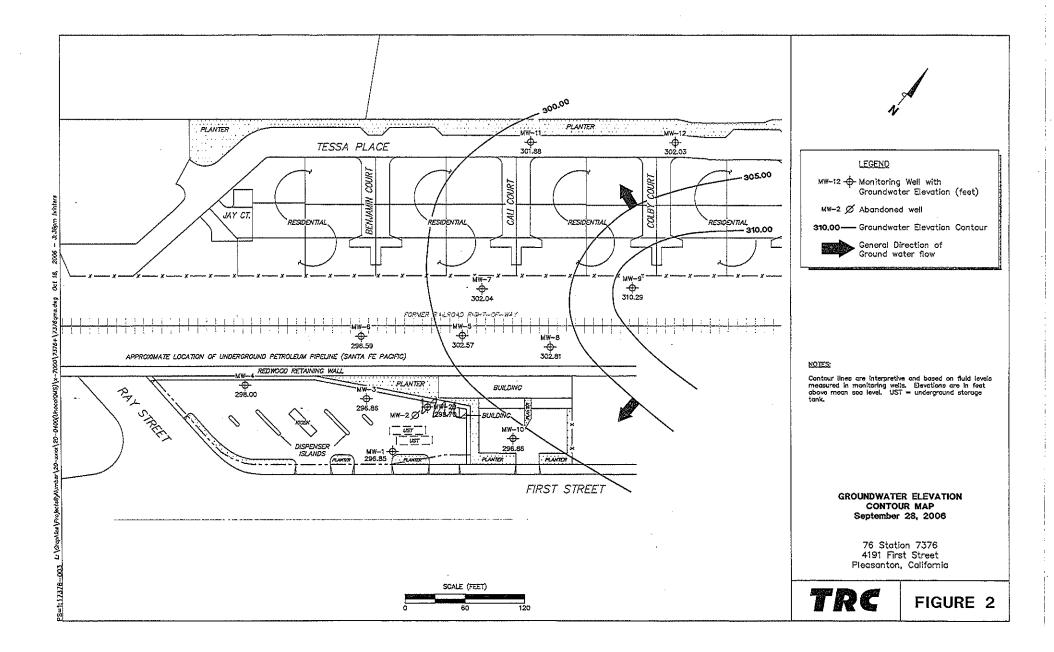



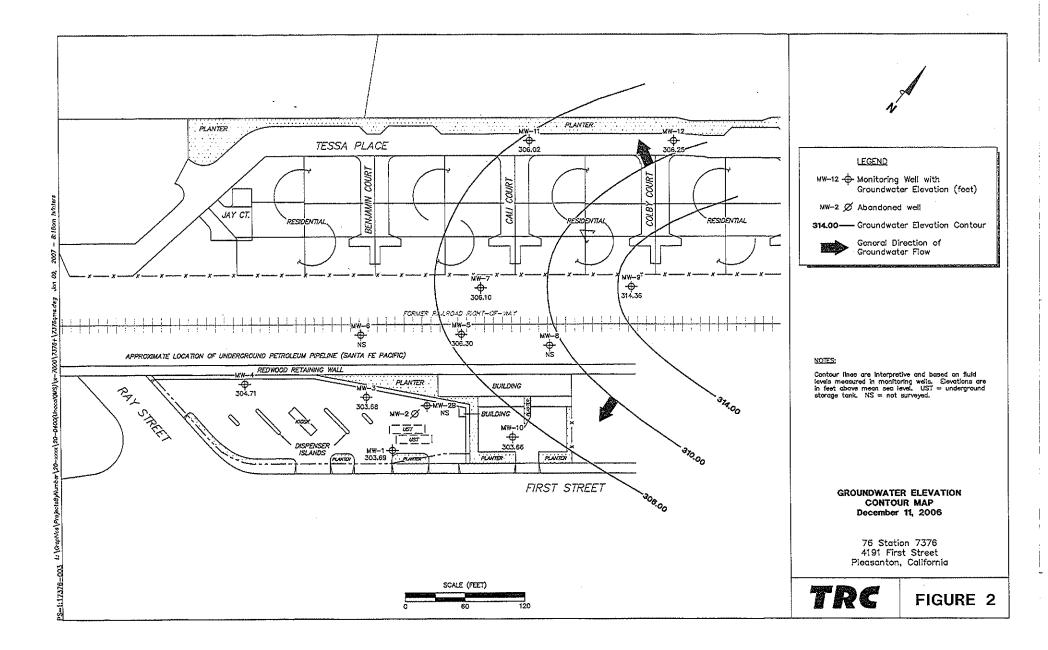

L:\Graphics\ProjectsByNumber\20-xxxx\20-0400(UnocalOMS)\x-7000\7376+\7376qms.dwg Oct 10, 2005 - 8:26am mesten

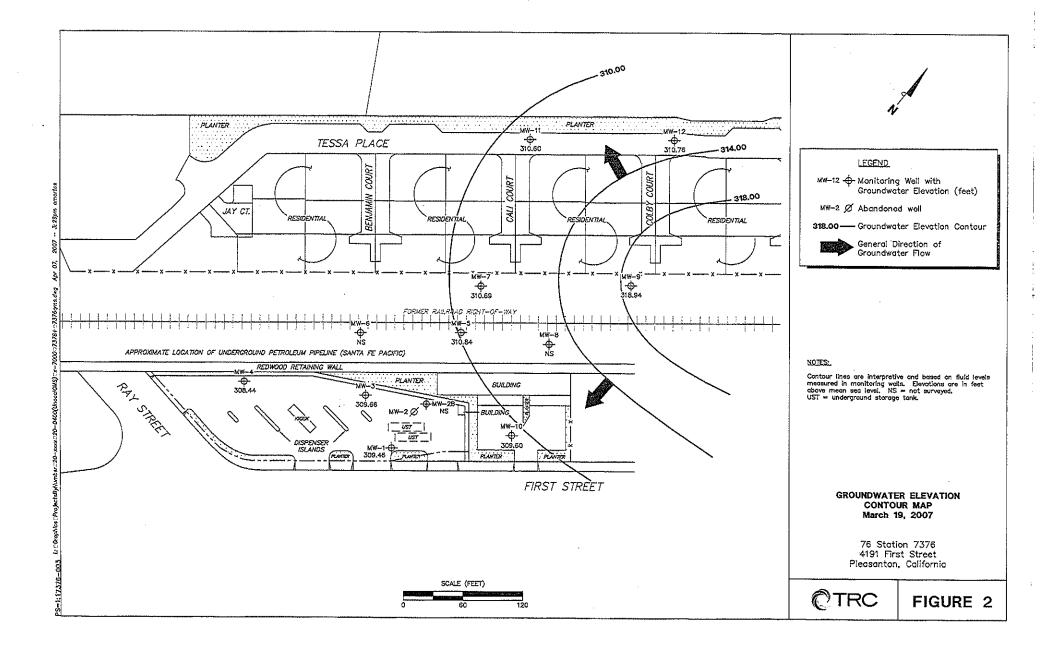


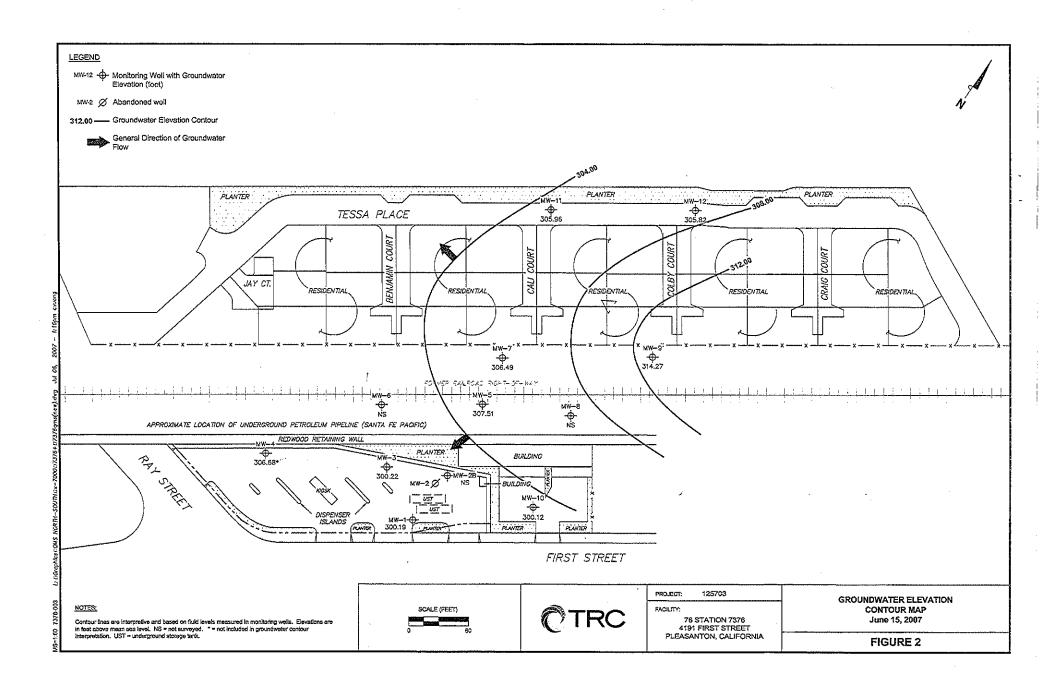

L:\Graphics\ProjectsByNumber\20-xxxxx120-xxxx120-xxxx120-xxxx1200\7376+\7376gms.dwg_Jan 13, 2005 - & 28am mester

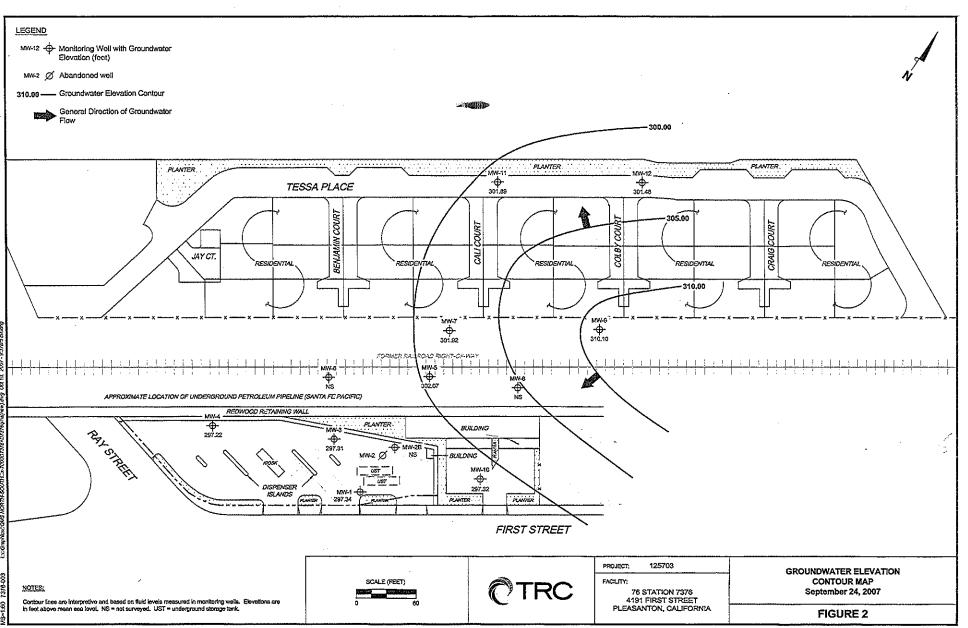
.

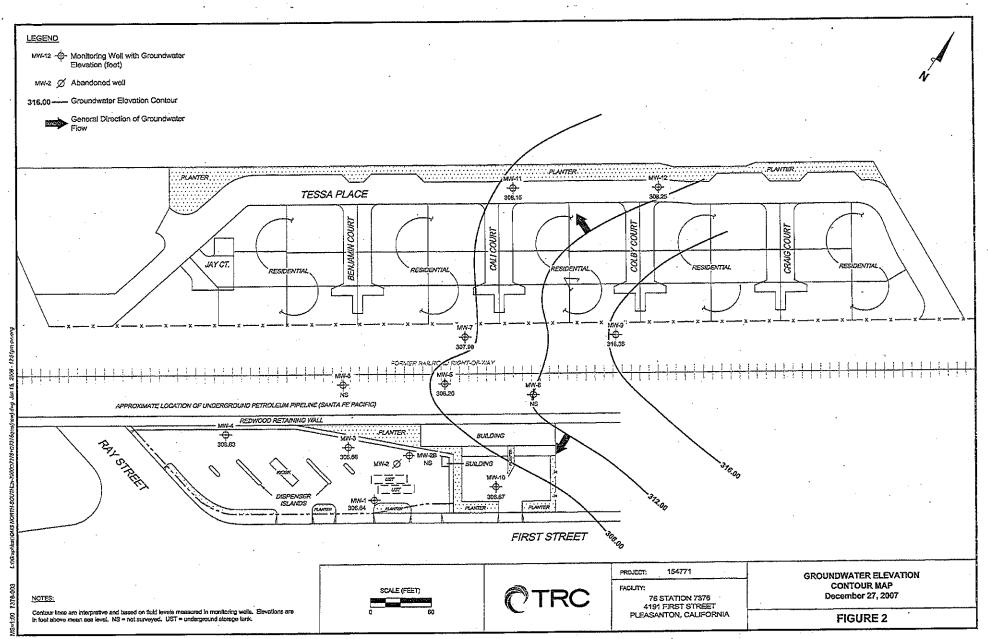


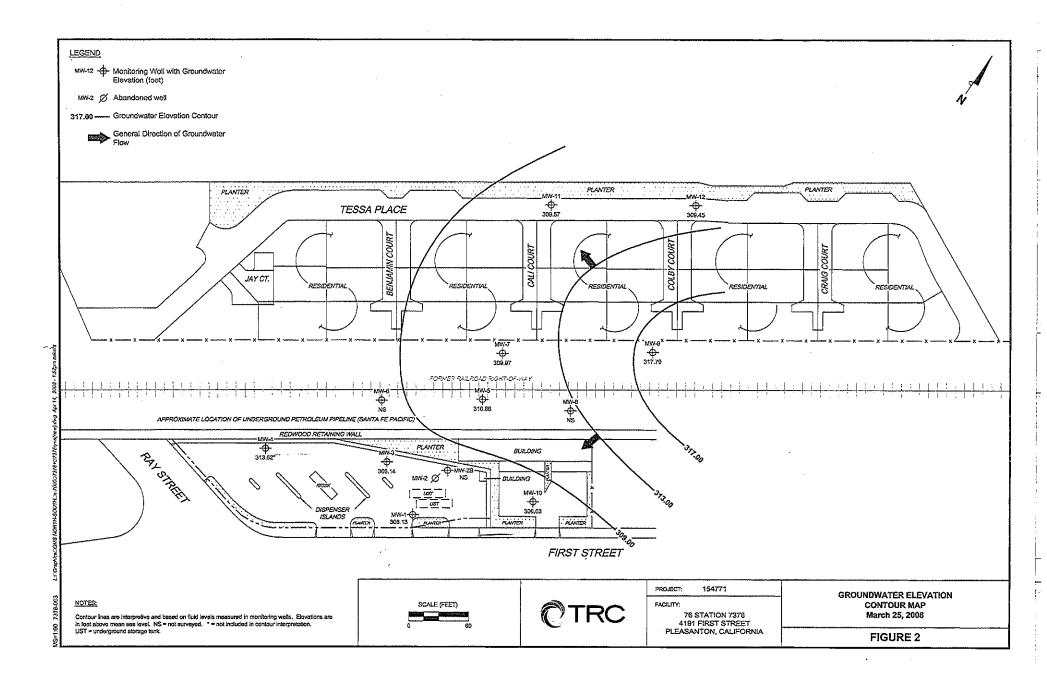


\/RVINE_FS1\Graphics\Graphics\ProjectsByNumber\20-xxxx\20-0400(UnacalGMS)\x-7000\7376+\7376qms.dwg Apr 04, 2006 - 2-37pm bachmidt

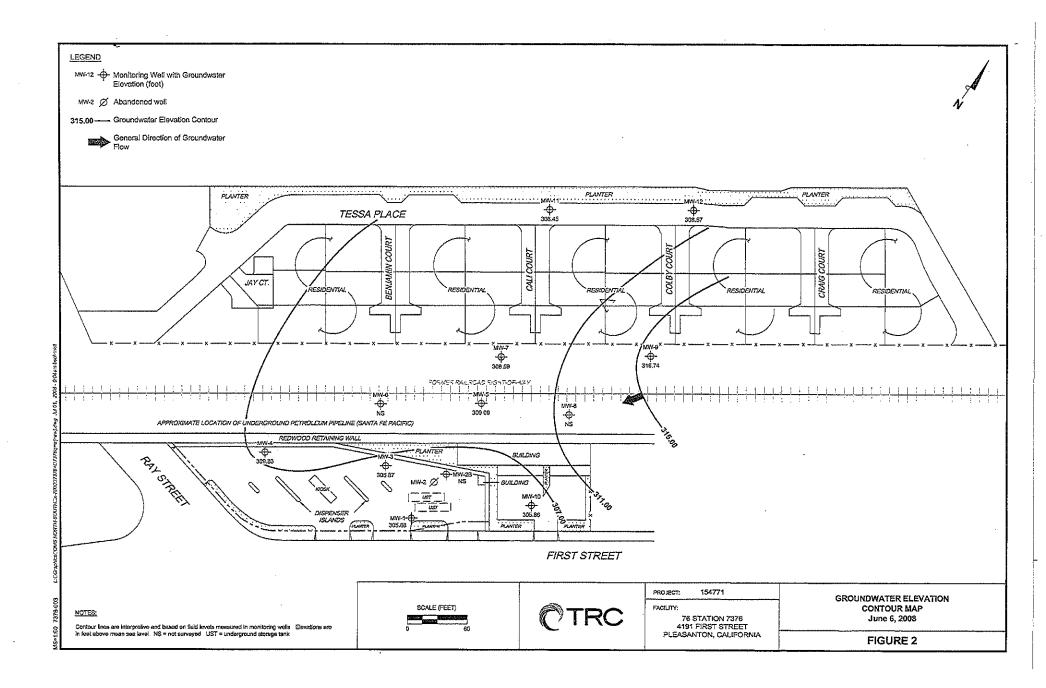


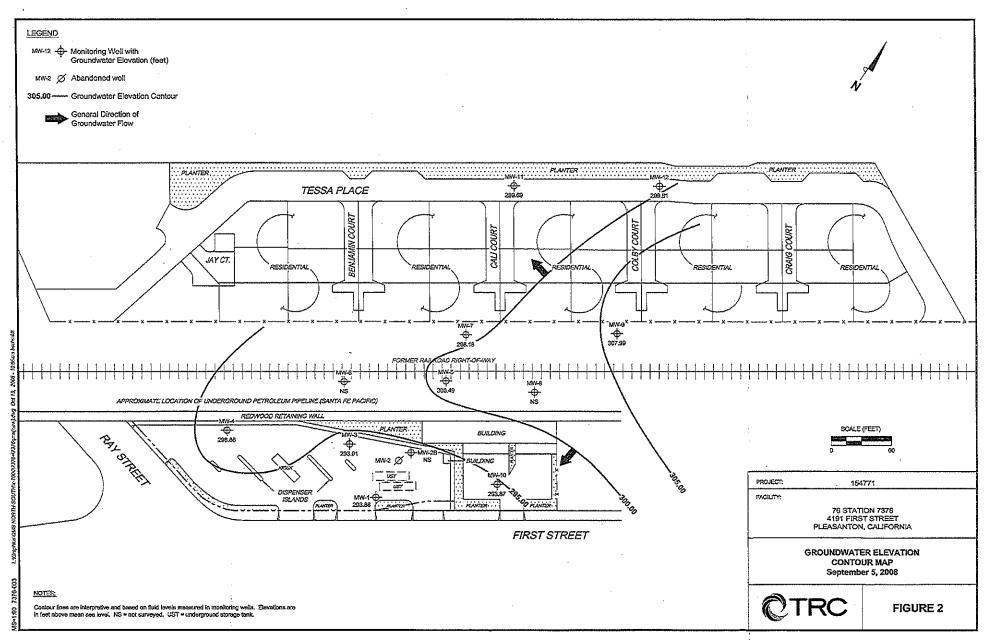


.

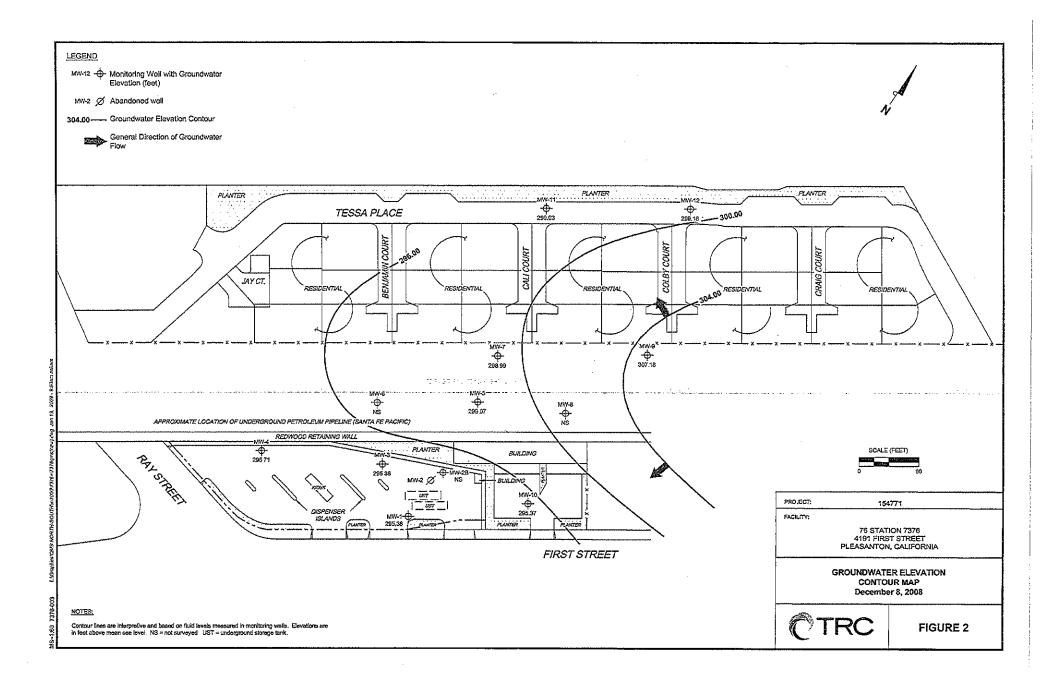

. .

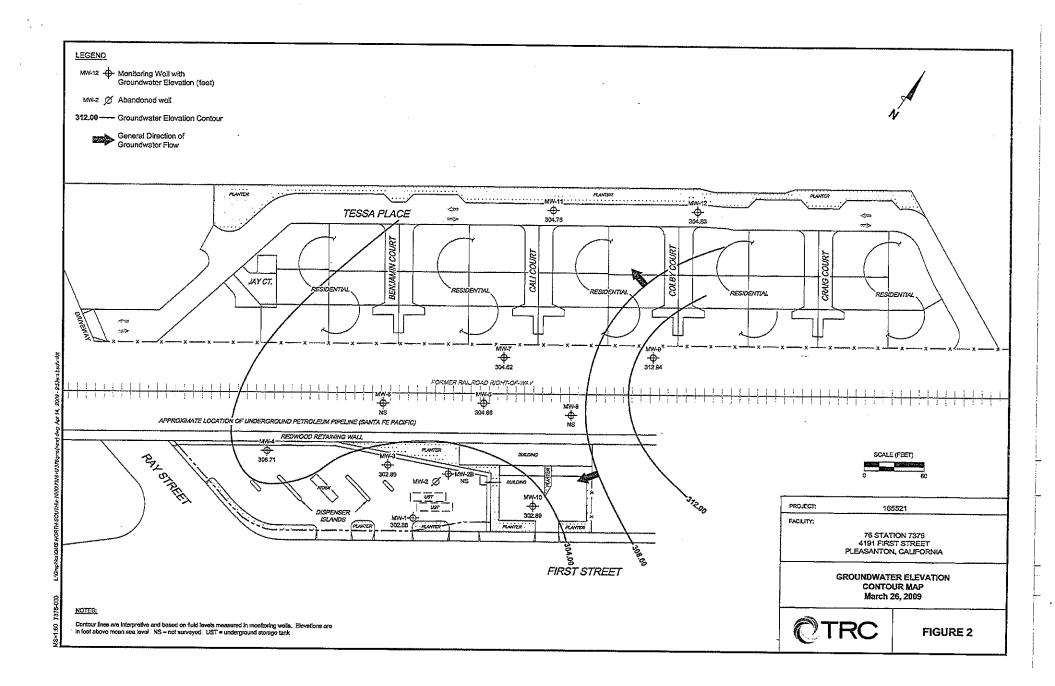


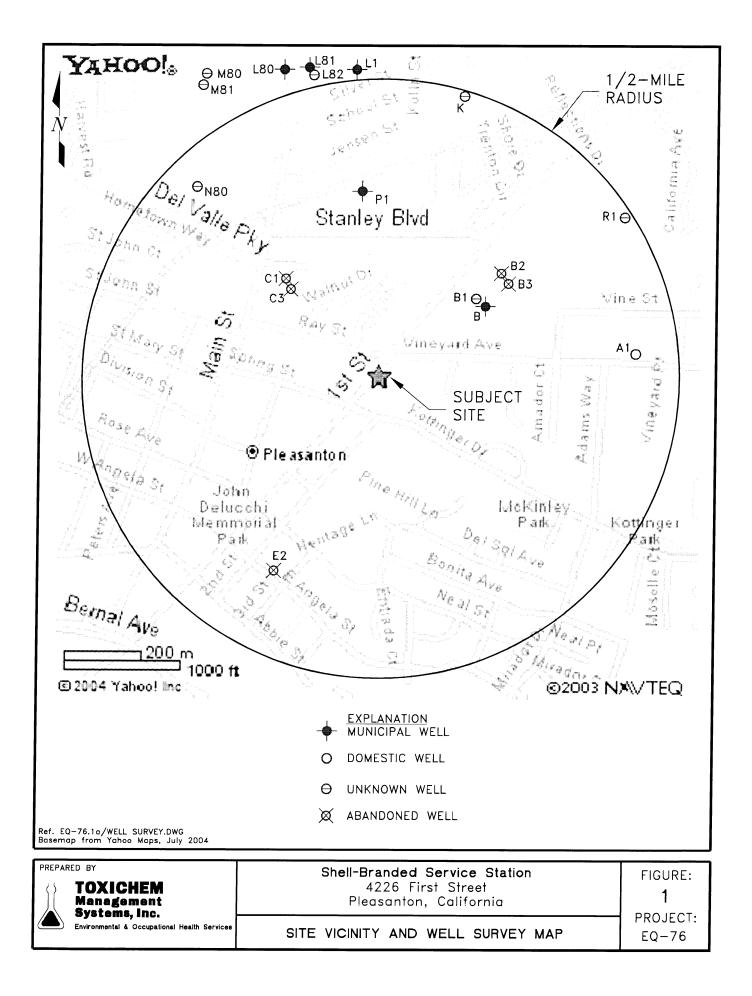












# **APPENDIX G** Sensitive Receptor Surveys



#### Table 4

### Well Location Details

## Shell-branded Service Station

4226 First Street, Pleasanton

		Source of		Approximate Distance and Direction from Site	Total Depth		
Map Number	Well Number	Information	Well Location	(Feet)	ft.	Date Installed	Use
к	3S/1E - 16K	ÐWR	1500' North of Ball Park (according to log)	>2,200 NNE	133	1916	NA
L1	3S/1E - 16L1	DWR	No distances on log, see approximate location on map	>2,200 N	152	1945	Municipal
L80	3S/1E - 16L80	DWR	20'S Blacow South Vine, 150'W of Santa Rita Road	>2,400 NNW	158	1936	Municipal
L81	3S/1E - 16L81	DWR	No distances on log, see approximate location on map	>2,200 N	205	NA	Municipal
L82	3S/1E - 16L82	DWR	No distances on log, see approximate location on map	>2,200 N	45	1912	NA
M80	3S/1E - 16M80	DWR	No distances on log, see approximate location on map	>2,400NNW	33	1912	NA
M81	3S/1E - 16M81	DWR	No distances on log, see approximate location on map	>2,400NNW	37	1912	NA
N80	3S/1E - 16N80	DWR	No distances on log, see approximate location on map	>1,300 NW	178	1912	NA
P1	3S/1E - 16P1	DWR	No distances on log, see approximate location on map	>1,200 N	305	1956	Municipal
A1	3S/1E - 21A1	DWR	No distances on log, see approximate location on map	>1,800 E	262	1954	Domestic
В	3S/1E - 21B	DWR	400'E of First St., 500'N of Vineyard	900'NE	250	1913	Municipal
B1	3S/1E - 21B1	DWR	400'E of First St., 500'N of Vineyard	900'NE	796	1960	Test Well
B2	3S/1E - 21B2	Zone 7	See Map	1200'NE	30	NA	Abandoned Water Well
B3	3S/1E - 21B3	Zone 7	See Map	1200'NE	55	NA	Abandoned Water Well
C1	3S/1E - 21C1	Zone 7	See Мар	1,100'NW	57	NA	Abandoned water Well
C3	3S/1E - 21C3	Zone 7	See Map	1,100'NW	NA	NA	Abandoned Water Well
E2	3S/1E - 21E2	Zone 7	See Map	2,000SW	35	NA	Abandoned Water Well
R1	3S/1E - 16R1	Zone 7	See Map	2,600NE	226	NA	Water Production Well

NA = Information Not Available

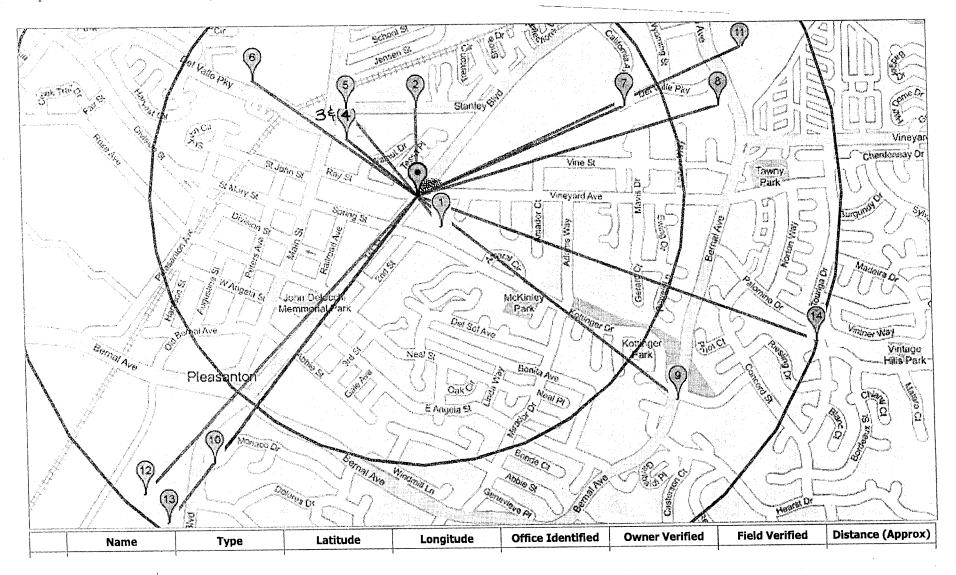
#### Table 5 Well Construction Details Shell-branded Service Station 4226 First Street, Pleasanton

Map Number	Total Depth	Depth to Water (ft. bgs)	Casing Type	Casing Diameter (in.)	Screen Interval (ft. bgs)	Gravel Pack Interval (ft. bgs)	Annular Seal Depth (ft. bgs)	Annular Seal Material	Well Construction Method	Driller's log Number	Pumping Test Rate (gpm)	Test Duration (hours)
к	133	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
L1	152	22	12 Gauge	12	56-136	NA	NA	NA	NA	NA	NA	NA
L80	158	NA	NA	NA	48-66 and various to 156'	NA	NA	NA	NA	NA	NA	NA
L81	205	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
L82	45	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
M80	33	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
M81	37	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
N80	178	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
P1	305	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	262	86	3/16 steel	10	110-178	NA	NA	NA	Cable	NA	33	NA
В	250	NA	NA	12	50-60, 105-135, 188-238	NA	NA	NA	NA	NA	NA	NA
B1	796	NA	NA	NA	NA	NA	NA	NA	Rotary	50865	NA	NA
B2	30	NA	NA	8	NA	NA	NA	NA	NA	NA	NA	NA
B3	55	NA	NA	12	NA	NA	NA	NA	NA	NA	NA	NA
C1	57	NA	NA	12	NA	NA	NA	NA	NA	NA	NA	NA
C3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
E2	35	NA	Brick	3'2"	NA	NA	NA	NA	NA	NA	NA	
R1	226	NA	NA	10	NA	NA	NA	NA	NA	NA		NA
									INA	NA	NA	NA

NA = Information Not Available

ft. bgs = Feet below ground surface

gpm = Gallons per minute


Receptor Map

Page 1 of 2

**Site #135782** 

Note:

All distances are approximate Only the closest 100 receptors are displayed Receptors without a latitude and longitude will not be displayed



Map is FV-5 Receptor Map

							,		
$  \heartsuit$	Irrigation Canal? (a)	Surface Water Body	37.662	-121.869	Yes	No	Verified	465.78 FT	
2	Unocal (LUFT)	Other [internal only]	37.666	-121.870	Yes	No	Verified	1095.61 FT	
9	Arroyo Dei Valle	Surface Water Body	37.665	-121.873	Yes	No	Verified	1133.89 FT	
$\left  \begin{array}{c} \dot{\mathbf{Q}} \end{array} \right $	3S/1E 21C4	Other Well	37.665	-121.873	Yes	No	Verified	1133.89 FT	
S	Mobil (LUFT)	Other [internal only]	37.666	-121.873	Yes	No	Verified	1397.34 FT	
Ś	N80	Other Well	37.667	-121.877	Yes	No	Verified	2495.83 FT	
¢	Creek	Surface Water Body	37.666	-121.861	No	No	Verified	2823.13 FT	
(B)	Fire Department	Other Well	37.666	-121.857	No	No	Verified	3914.69 FT	
Í	Seasonal Water Basir	n Surface Water Body	37.656	-121.859	No	No	Verified	4080.37 FT	
Ŵ	) Semipermanent Water Body (a)	Surface Water Body	37.654	-121.879	Yes	No	Verified	4192.15 FT	
Q		Surface Water Body	37.668	-121.856	Yes	No	Verified	4440.15 FT	
9	Dry Creek Designed for Rain Runoff	Surface Water Body	37.653	-121.882	No	No	Verified	5037.31 FT	
R	3) Semipermanent Water Body (b)	Surface Water Body	37.652	-121.881	Yes	No	Verified	5123.76 FT	
9	Irrigation Canal? (b)	) Surface Water Body	37.658	-121.853	Yes	No	Verified	5243.15 FT	
L	<u></u>								

Note: only the closest 100 receptors are displayed