RECEIVED

8:55 am, Jul 16, 2010

Alameda County Environmental Health

76 Broadway Sacramento, California 95818

July 6, 2010

Jerry Wickham Alameda County Health Agency 1131 Harbor Bay parkway, Suite250 Alameda, California 94502-577

Re:

Semi Annual Summary Report—First thru Second Quarters 2010

76 Service Station # 7376 RO # 0361

4191 First Street Pleasanton, CA

Dear Mr. Wickham:

I declare under penalty of perjury that to the best of my knowledge the information and/or recommendations contained in the attached report is/are true and correct.

If you have any questions or need additional information, please call me at (916) 558-7666.

Sincerely,

Terry L. Grayson Site Manager

Risk Management & Remediation

July 9, 2010

Mr. Jerry Wickham Alameda County Health Care Services 1131 Harbor Bay Parkway Alameda, California 94502

Re: Semiannual Groundwater Monitoring Report – July 2010 76 Service Station No. 7376 4191 First Street Pleasanton, California RO# 0361

Dear Mr. Wickham:

On behalf of ConocoPhillips Company (ConocoPhillips), Delta Consultants (Delta) is submitting the subject report and forwarding a copy of TRC's *Quarterly Monitoring Report – April through June 2010*, for the above site.

Twelve site wells are sampled on a semiannual basis - MW-1B, MW-2B, MW-3B, and MW-4 through 12. Well MW-13 was installed in May, 2010 and will be sampled quarterly for one year.

R. LEE DOOLEY NO. 0183 CERTIFIED HYDROGEOLOGIS

Please contact the undersigned at (408) 826-1871 if you have questions.

Sincerely,

Delta Consultants

Lee Dooley, C.H.G. #0183

Hydrogeologist – Project Manager

Enclosure

cc: Mr. Terry Grayson - ConocoPhillips (electronic copy only)

Semiannual Groundwater Monitoring Report July – 2010

ConocoPhillips 76- Branded Service Station #7376 4191 First Street Pleasanton, Alameda County, CA

INTRODUCTION

On June 18, 2010, TRC conducted quarterly groundwater monitoring and sampling at 76 Service Station No. 7376 (the site) on behalf of ConocoPhillips. The monitoring and sampling is conducted as part of site assessment and characterization activities.

SITE DESCRIPTION

The site is currently an active 76 Service Station located on the northern corner of First Street and Ray Street in Pleasanton, California (Figure 1, TRC, Quarterly Monitoring Report). Current site facilities consist of a cashier's kiosk, four product dispenser islands and two 12,000-gallon double-wall fiberglass gasoline underground storage tanks (USTs). There are currently 13 active groundwater-monitoring wells at and in the site vicinity (Figure 2, TRC). The site is bounded northwest by a former Southern Pacific Railroad right-of-way currently owned by Alameda County, north and northeast by a commercial building, southeast by First Street, and southwest by Ray Street. There is an underground KinderMorgan petroleum pipeline presently located in the Alameda County property adjacent to the northwest edge of the site. Properties in the immediate site vicinity are used for a mix of residential and commercial purposes. A Shell service station is located east of the site. The site is located at an approximate elevation of 366 feet above mean sea level.

GEOLOGY AND HYDROGEOLOGY

The following sections are taken from Delta's Site Conceptual Model Report dated September 30, 2009.

The subject site is located near the southwest end of the Livermore Valley. The site is situated on a northern facing hill, and slopes slightly to the north. The Arroyo Valley stream is located approximately 1,100 feet to the north of the site. The site is underlain by Holocene age alluvial fan deposits, described by the Department of Water Resources (DWR) in Bulleting 118-3 as "unconsolidated, moderately sorted, permeable fine sand and silt, with gravel becoming more abundant toward fan heads with canyons." The site is approximately three miles east of the northwest trending Pleasanton Fault (USGS 2006). Holocene alluvial fan deposits under the site are underlain by the Livermore Formation, consisting of northward dipping sand and gravel deposits.

The site is located within the Amador Sub-basin of the Livermore Valley Groundwater Basin. Groundwater in the Amador sub-basin occurs in both unconfined and confined conditions. In the shallower, unconfined aquifers, groundwater is first encountered generally about 30 to 50 feet bgs. Deeper aquifers are encountered within sand and gravel deposits at a depth of approximately 90 to 100 feet bgs (DWR, 2003). A Zone 7 water district contour map shows groundwater flow in both confined and unconfined aquifers toward the gravel pits in the center of the sub-basin north of the site. A contour map from the Zone 7 Well Master Plan shows a flow within the "deeper aquifer" to the west. Sand and gravel pit groundwater extraction areas are located greater than one mile north of the site in the central portion of the sub-basin. The site appears to be outside the area of influence of any groundwater extraction wells.

Quarterly Summary Report – First Quarter 2010 ConocoPhillips Service Station No. 7376 Pleasanton, California Page 2 of 10

The City of Pleasanton is served by the Zone 7 Water Agency. Based on information provided by personnel from the Zone 7 Water Agency, the City of Pleasanton obtains 80% of its water from the Hetch-Hetchy reservoir, the San Joaquin/Sacramento Delta and multiple deep-water wells located in the Fremont area. The remaining water is pumped from wells in Pleasanton that range in depth from 50-600 feet bgs (ACWD 1993-2006).

The site is underlain by complexly interlayered clay (Unified Soil Classification CL), silt (ML), silty sand (SM), clayey sand (SC), silty gravel (GM), sand (SP, SW), and gravel (GW). Contacts between soil types are often gradational. All soils contain various percentages of silt and sand. Soils have been combined into two units; generally fine grained, moderate to low permeability soils (clay, silt, with some clayey sand and clayey gravel) and generally coarse-grained, moderate to high permeable soils (sand, gravel, with some interlayered silt, silty sand, and silty gravel).

Soil layers appear to dip to the north-northeast at an angle of approximately 15 degrees. Groundwater was first encountered in borings drilled between 1996 and 1998 typically at a depths of approximately 65 to 75 feet below ground surface (bgs) (KEI 1996), (GR 1999). Perched groundwater was encountered in thin permeable sand and gravel beds at depths as shallow as 40 feet bgs. Saturated layers are separated by low permeability dipping clay and silt beds. Saturated beds appear to be confined or semi-confined.

As described and illustrated in Delta's Site Conceptual Model dated September 30, 2009, two saturated permeable layers are recognized and are designated A and B. Wells MW-5, MW-7, MW-8, and MW-9, appear to be screened across the upper of the two layers (A). Wells MW-1 (destroyed), MW-2B (destroyed), MW-1B, MW-2C, MW-3B, MW-6, and MW-10 appear to be screened in the lower of the units (B). Well MW-4 appears to be screened below the lower of the two units (B). Depth to groundwater in wells MW-4 through MW-10 on June 22, 2009, ranged from 57.43 (MW-7) to 70.45 (MW-6) feet below top of casing. Groundwater flow was to the east. Groundwater levels in wells have risen by approximately 15 feet since late-2005 (see chart below). Seasonal fluctuations may be as great as 10 feet.

SITE BACKGROUND AND ACTIVITY

The site was developed in 1899 as a warehouse to store grains and hay. According to a Sanborn map, an "in-ground" storage tank for oil was installed onsite in 1907. A service station was first constructed on the site in 1976. Between November 8, 1982 and February 8, 1985, the Pleasanton Fire Department (PFD) responded to five separate fuel releases at the site. The releases occurred prior to acquisition of the property by Unocal Corporation in 1988, and prior to ConocoPhillips assuming operations at the site.

<u>June 1987</u>: Three exploratory soil borings were advanced to depths ranging from 46.5 to 55 feet bgs. Soil samples contained low to moderate maximum concentrations of petroleum hydrocarbons. Groundwater was not encountered.

<u>August 1987</u>: One soil boring was advanced to a depth of 66.5 feet bgs. Low to moderate concentrations of petroleum hydrocarbons were detected in a soil sample collected at 35 feet bgs. Groundwater was not encountered.

<u>December 1987</u>: Three monitoring wells were installed to depths of 96.5 feet bgs. Maximum petroleum hydrocarbon concentrations in soil samples generally declined with increasing depth.

Quarterly Summary Report – First Quarter 2010 ConocoPhillips Service Station No. 7376 Pleasanton, California Page 3 of 10

<u>December 1987</u>: Four 12,000-gallon underground storage tanks (USTs) were replaced with two 12,000-gallon double-walled USTs. An unknown volume of hydrocarbon-impacted soil was removed and transported to a Class I facility.

<u>September 1994</u>: A dispenser and product piping upgrade was conducted with confirmation sampling. Over-excavation was conducted in the area of two soil samples with elevated hydrocarbon concentrations.

<u>February 1995</u>: Monitoring well MW-2 was destroyed because asphalt tar had entered the well during repaving. The well was replaced by MW-2B. Soil boring EB-1 was advanced to a total depth of 66 feet bgs. Twenty-nine soil samples were collected during drilling and submitted for analysis.

<u>July 1996</u>: Three monitoring wells were installed to depths of 73.5 to 93 feet bgs. Two wells were installed offsite, in the former Southern Pacific Railroad right-of-way. A total of forty seven soil samples were collected from the well borings and analyzed for total petroleum hydrocarbons as gasoline (TPH-G) and benzene, toluene, ethyl benzene and xylenes (BTEX). Fuel fingerprinting was also conducted. Petroleum hydrocarbon concentrations in the range of total petroleum hydrocarbons as diesel (TPH-D), kerosene, motor oil, and unidentified extractable hydrocarbons were also identified in the samples.

<u>June 1997</u>: Separate phase hydrocarbons (SPH) were identified in well MW-5 during quarterly monitoring activities.

<u>December 1997</u>: Entrix Inc. conducted a forensic geochemical analysis on SPH extracted from well MW-5. The SPH was probably composed of a mixture of over 50% refined gasoline and heavier hydrocarbons. The gasoline constituents appeared to be relatively fresh. The heavier hydrocarbon mixture had a carbon distribution ranging from about C13 to C33. This distribution is similar in nature to a very weathered crude oil or Bunker C fuel, not refined petroleum products such as diesel #2, motor oil, lube oil, etc.

<u>June/August 1998</u>: Five onsite soil borings were advanced and two offsite downgradient monitoring wells were installed. A total of forty soil samples were collected and analyzed for petroleum hydrocarbons. In addition, two soil samples containing visible SPH were collected from boring B-11 (onsite near the former UST excavation) at 10.5 and 61 feet bgs and submitted for hydrocarbon fingerprinting. The results of these analyses showed that the SPH from both samples was composed of approximately 90% highly to severely weathered semi-volatile and high boiling components identified as crude oil and 10% of slightly weathered gasoline.

October-November 2000: GR advanced one offsite soil boring (B-13) and advanced and installed two offsite groundwater monitoring wells (MW-9, MW-10). A total of twenty eight soil samples were collected from the soil and well borings and analyzed for TPH-G, BTEX, and methyl tertiary butyl ether (MTBE). Soil samples collected from well boring MW-9 between 16 and 60.5 feet and boring B-13 between 85.5 and 126 feet bgs were reported as non-detect for all analytes. Some soil samples collected from well boring MW-10 contained TPH-G, benzene, unidentified hydrocarbons with a carbon range of C6 to C12, and MTBE. Nine soil samples collected from boring B-13 between 7.5 and 73.5 feet bgs contained TPH-G, unidentified hydrocarbons with a carbon range of greater than C10, benzene, and MTBE. Grab groundwater samples were collected from each of the borings. Groundwater samples collected at 128.5 and 133 feet bgs from boring B-13 contained 150 and 620 ppb TPH-G, 17 and 53 ppb benzene, and 3.5 and 3.7 ppb MTBE, respectively. Groundwater sample G-1, collected from well boring MW-9 at 55 feet bgs contained 66 ppb MTBE. The groundwater sample collected at 90 feet bgs from well boring MW-10

Quarterly Summary Report – First Quarter 2010 ConocoPhillips Service Station No. 7376 Pleasanton, California Page 4 of 10

contained 34 ppb MTBE. The groundwater sample collected at 95 feet bgs from well boring MW-10 contained 230 ppb TPH-G and 54 ppb MTBE.

<u>September 2001</u>: Two offsite soil borings were drilled by GR and completed as groundwater monitoring wells MW-11 and MW-12. The wells were installed to total depths of approximately 86 and 88 feet bgs, respectively. Soil samples were reported as non-detect for all analytes. A grab groundwater sample collected from a perched groundwater zone at 40 feet bgs in well boring MW-12 was reported as non-detect for TPH-G, BTEX, and MTBE.

October 2003: Site environmental consulting responsibilities were transferred to TRC.

October 2007: Site environmental consulting responsibilities were transferred to Delta.

<u>February 2008</u>: Seven CPT borings (CPT-1 through CPT-7) were advanced by Gregg Drilling and Testing under the oversight of Delta Consultants. Two boring locations (CPT-1 and CPT-2) were onsite. The other five boring locations (CPT-3 through CPT-7) were offsite. TPPH was detected in four groundwater samples with a maximum concentration of 1,500 micrograms per liter. TPH-D was detected in five groundwater samples with a maximum concentration of 660 micrograms per liter.

<u>June 2009</u>: Delta oversaw the abandonment of wells MW-1, MW-2B, and MW-3, and replaced the wells as MW-1A, MW-2C, and MW-3A. Soil samples were collected for laboratory analysis from the boring for well MW-2C. TPH-G was detected in soil at a maximum concentration of 1,400 mg/kg at 20 feet.

<u>September 9, 2009</u>: Delta oversaw the re-surveying of all monitoring wells associated with the site.

April – May 2010; Delta oversaw the installation of two vadose zone well clusters (CWA and CWB) for use in soil vapor extraction feasibility testing. An additional groundwater monitoring well (MW-13) was installed downgradient (northeast) of the site. Delta submitted the results of the feasilibility testing in a report dated May 15, 2010.

July 2010; Delta prepared and submitted a Corrective Action Plan for the site and adjacent areas.

SENSITIVE RECEPTORS

Well surveys were performed in 2004 by Toxichem Management Systems, Inc and in 2005 by Delta. The 2004 survey identified 18 wells within a ½-mile radius. No field verifications were made during this survey. The surveys were performed on behalf of a Shell branded service station located at 4221 First Street, across First street from the site. Delta's 2005 survey identified a total of 14 wells within a one-mile radius. These well locations were field verified. The following excerpt is contained in Delta's *Site Conceptual Model* dated February 6, 2006:

<u>Well Survey</u> – In May 2004, Toxichem Management Systems, Inc. (Toxichem) obtain information from the Zone 7 Water District (Zone 7) and the DWR. A copy of Toxichem's well survey map and summary table are attached. The nearest wells identified were a well of "unknown" use (3S/1E-21B) and a municipal well (3S/1E-21B1) both located approximately 900 feet northeast of the site. Toxichem was unable to locate either well in the field and concluded that they were likely abandoned. In November 2005, Delta observed an old water tower building near the location of the two wells. A municipal well (3S/1E-16P1) was identified to be located >1,200 feet north of the site. Again, Toxichem could not field locate the well.

In September 2005, Delta performed an additional well survey for the site area. A well location map was obtained from Zone 7. The map identified three wells approximately 1,000 feet northwest of the site (3S/1E-21C1, -21C3, and -21C4.) Well -21C1 was classified as a "supply well", -21C3 as "abandoned or unlocatable", and -21C4 as "other designated well." Delta was only able to field located Well -21C4. The well provides irrigation water for a small city park. Delta also located a similar well in Kottinger Park located approximately 800 feet east of the site.

MONITORING AND SAMPLING

Groundwater samples were collected on June 18, 2010 and analyzed for TPH-G by EPA method 8260, TPH-D by EPA Method 8015 and BTEX and MTBE by US Environmental Protection Agency (EPA) Method 8260B. During the current event, a full-scan volatile organic compounds VOCs) by EPA Method 8270 was conducted on groundwater samples from MW-7 and MW-8. Current and historic groundwater monitoring data is included in TRC report *Quarterly Monitoring Report, April through June 2010* dated July 13, 2010. The report also contains maps illustrating the distribution of petroleum hydrocarbons in groundwater.

There are currently 4 onsite and 8 offsite monitoring wells included in the sites semiannual monitoring and sampling program. An additional off-site well (MW-13) was recently installed and sampled by Delta in April, 2010 and will be sampled quarterly for one year. Initial (second quarter 2010) data from MW-13 was reported in Delta's *Feasibility Study and Additional Soil and Groundwater Investigation Report*, dated May 15, 2010. The newly installed well will be sampled by TRC beginning in the third quarter 2010.

Groundwater was measured between 60.17 (MW-12) and 78.83 (MW-3B) feet below TOC. Groundwater flow was shown to be to the west at a gradient of 0.02 feet per foot (ft/ft). This is consistent with a gradient of 0.02 ft/ft west reported during the previous sampling event of February 4, 2010. However, wells at the site and in the site vicinity are screened at varying elevations and in different permeable northward-dipping beds. The flow patterns and lithology in the site vicinity are complex and are not fully represented by a simple change in groundwater elevation. As this case, these gradients and flow directions are not considered to be representative of actual conditions.

Dissolved groundwater concentrations are reported as follows:

TPPH was detected at a maximum concentration in well MW-7 at a concentration of 710 μ g/L. Samples from MW-1B and MW-8 showed detections of 200 μ g/L and 270 μ g/L, respectively. The detections in wells MW-1B and MW-8 are is consistent with the previous sampling event; the laboratory attached the following note to value; "TPPH does not exhibit a 'gasoline' pattern. TPPH is entirely due to MTBE."

MTBE was detected in well at a maximum concentration of 600 μ g/L in well MW-8 and at a concentration of 330 μ g/L in well MW-1B. For both of these detections, the laboratory attached the following note to value; " PQLs [practical quantitation limits] and MDLs [method detection limits] are raised due to sample dilution."

BTEX Compounds were detected in at a maximum concentration of 11 µg/L in well MW-3B.

TPH-DRO (C12-C24) was detected in MW1B at a concentration of 50 11 μg/L and at a maximum concentration of 110 in MW-7. For both of these detections, the laboratory attached the following note to value; "Chromatogram not typical of diesel."

Additional full scan VOC analyses conducted on samples from MW-7 and MW-8 showed no detections above the laboratory reporting limits.

REMEDIATION STATUS

Remediation is not currently being conducted at the site. Delta submitted a Corrective Action Plan dated July 7, 2010 outlining a combination of soil vapor and groundwater extraction for soil and groundwater remediation.

CONCLUSIONS & RECOMMENDATIONS

Multiple releases of gasoline from the site USTs, dispenser islands and product piping occurred between 1982 and 1994 when spills and leaks were reported during annual inspections and tank refilling. A report documenting the removal of the site USTs in 1987 is unavailable; hence it is uncertain if the former USTs were a source of contamination. Results of fuel fingerprinting analyses indicate that a heavy hydrocarbon source exists or existed at the site. This source is most likely the former Bunker C fuel tank which previously resided on Alameda County property northwest of the site.

Soil contamination has consistently been encountered at the site in the vicinity of the fuel USTs and product lines, primarily in northern portion of the site, and off-site to the north. Soil contamination has been reported from 3 feet bgs to approximately 70 feet bgs.

Data shows that an overall decreasing trend for TPH-G, BTEX and MTBE in groundwater samples from wells MW-7, MW-10 and MW-11. With the exception of minor xylenes detected in MW-11, analytes have not been detected in this well since 2003. Concentrations in wells MW-1B, MW-2B, MW-5, MW-6 and MW-9 appear to be stable. MW-3B has only one data point as it has been dry during three of four monitoring events. Concentrations in MW-8 appear to be on an increasing trend.

Quarterly Summary Report – First Quarter 2010 ConocoPhillips Service Station No. 7376 Pleasanton, California Page 7 of 10

The on-site assessment is deemed complete. The petroleum hydrocarbon source area in the northern portion of the site has been defined by three borings (B-10 through B-12), three groundwater monitoring wells (MW-1B, MW-2C, and MW-3B), and CPT boring CP-1. The southern portion of the site has been explored by three soil borings (B-8, B-9, and EB-1), monitoring well MW-4, and CPT boring CP-2. Elevated petroleum hydrocarbons were detected in soil samples from boring EB-1 but not in groundwater from adjacent well MW-4.

The upgradient (southern) extent of the dissolved petroleum hydrocarbon and fuel oxygenate plume is defined by data from Shell CPT-2. The off-site heavy fuel source (bunker fuel tank) has been defined by borings SB-1 and B-13. The northern portion of the plume is defined by wells MW-7 and MW-9. Petroleum hydrocarbon and MTBE concentrations are rising in downgradient well MW-8 located near the leading edge of the plume. TPH-G, MTBE, and TBA were detected in nearby CPT boring CP-6 at 160 μ g/L, 110 μ g/L, and 170 μ g/L, respectively. TPH-G, MTBE, and TBA were detected in CPT boring CP-7, located approximately 60 feet to the northwest of MW-8, at 200 μ g/L, 260 μ g/L, and 120 μ g/L, respectively. In Delta's *Feasibility Study and Work Plan*, dated Dec 17, 2009, Delta recommended installation of a groundwater monitoring well in the vicinity of CPT boring CP-7 to define the extent the plume to the northwest. This proposed well installation was approved in a letter from the ACEH, dated January 6, 2010.

Delta recommends remedial system construction as proposed in Delta's *Corrective Action Plan*, dated July 7, 2010.

Delta recommends that the County of Alameda further investigate the presence of heavy metals detected in surface soils within the former railway right-of-way. Arsenic and lead were found at elevated concentrations in soil samples collected during a study of the Alameda County Transportation Corridor in 2007. The service station is not considered to be a source of the heavy metals detected in surficial soils in the transportation corridor. Additionally, it is recommended that the County confirm the presence or absence of the former bunker fuel UST.

RECENT CORRESPONDENCE

January 6, 2010: ConocoPhillips received agency approval to proceed with the activities proposed in Delta's Feasibility Study Work Plan, dated December 16, 2009.

February 26, 2010: Delta and ConocoPhillips were granted permission to enter the transportation corridor to monitor and sample existing monitoring wells, and to install new wells proposed in Delta's Work Plan and Feasibility Study.

May 15, 2010: Delta submitted the *Feasibility Study and Additional Soil and Groundwater Investigation Report*.

July 7, 2010: Delta submitted the Corrective Action Plan.

THIS PERIOD ACTIVITIES (First and Second Quarters 2010)

- Monitoring and sampling of the groundwater monitoring well network was conducted by TRC on June 18, 2010
- Delta installed two vadose zone well clusters and an additional off-site downgradient groundwater monitoring well.
- Delta submitted a remediation feasibility study and corrective action plan.

NEXT QUARTER ACTIVITIES (Third and Fourth Quarters 2010)

- Delta submitted the Corrective Action Plan, dated June 7, 2010
- TRC Prepared the *Quarterly Monitoring Report April through June*, dated July 13, 2010.
- Delta prepared and submitted the *Semiannual Groundwater Monitoring Report July 2010* (presented herein).
- TRC to conduct the third quarter 2010 groundwater monitoring and sampling event and prepare a quarterly monitoring report.
- Upon agency approval, ConocoPhillips to proceed with implementation of remedial activities presented in the corrective action plan.

CONSULTANT: Delta Consultants

REFERENCES CITED

Pleasanton Fire Department, Company Inspection Record, November 8, 1982.

- Valley Times Newspaper, Gas Tank Rupture Forces Evacuation, Volume 97, No. 230, November 23, 1982.
- Heath, Ralph C., Basic Ground-Water Hydrology: U.S. Geological Survey Water-Supply Paper 2220, 1983.
- Pleasanton Fire Department, Fire Incident Report, February 20, 1984.
- Jack Lavey, Complaint Report, January 7, 1985.
- Pleasanton Fire Department, Spill/Leak Reporting Form, February 8, 1985.
- Environmental Laboratories Inc., Petro Tite System Test, Armour Oil Company No. 188, First and Ray Streets, Pleasanton, California, July 30, 1987.
- Applied GeoSciences, Report: Supplemental Subsurface Environmental Investigation, ARCO Service Station Armour Oil Company No. 188, First and Ray Streets, Pleasanton, California, September 9, 1987.
- Unocal Corporation, General Arrangement SS 7376 4191 First Street, Pleasanton, November 17, 1987.
- J. Yang and Associates, Evaluation and Inspection Report, September 16, 1994.
- Unocal Corporation, Underground Storage Tank Unauthorization Release (Leak)/ Contamination Site Report, October 17, 1994.
- Applied GeoSciences, Report: Supplemental Subsurface Environmental Investigation, ARCO Service Station Armour Oil Company No. 188, First and Ray Streets, Pleasanton, California, November 3, 1994.
- Alameda Health Care Services Agency, Correspondence Letter: (Former) San Diego Armour Oil Company Station, 4191 First Street, Pleasanton, Alameda County, California, November 14, 1994.
- Kaprealian Engineering Inc., Pumpability Project Report Unocal Service Station #7376, 4191 1st Street, Pleasanton, California, October 21, 1994.
- Enviros, Inc., Phase I Site Assessment Report, Unocal 7376, 4191 First Street, Pleasanton, California, February 24, 1995.
- Kaprealian Engineering Inc., Continuing Ground Water Investigation at Unocal Service Station #7376, 4191 1st Street, Pleasanton, California, April 27, 1995.
- Kaprealian Engineering Inc., Continuing Ground Water Investigation at Unocal Service Station #7376, 4191 1st Street, Pleasanton, California, November 4, 1996.

- Entrix, Forensic Geochemical Analysis of Free Product from MW-5, UNOCAL SS#7376, Pleasanton, CA, December 12, 1997.
- Gettler-Ryan Inc., Well Installation and Soil Boring Report at Tosco 76 Branded Facility No. 7376, 4191 First Street, Pleasanton, California, March 4, 1999.
- Gettler-Ryan Inc., Subsurface Investigation Report at Tosco 76 Branded Facility No. 7376, 4191 First Street, Pleasanton, California, May 9, 2000.
- Gettler-Ryan Inc., Offsite Subsurface Investigation Report at Tosco 76 Branded Facility No. 7376, 4191 First Street, Pleasanton, California, January 18, 2002.
- Gettler-Ryan Inc., Offsite Subsurface Investigation Report at Tosco 76 Branded Facility No. 7376, 4191 First Street, Pleasanton, California, March 20, 2002.
- California Department of Water Resources, *Bulletin 118 Updated 2003, California's Groundwater*, October 2003.
- TRC, Summary of PRP Search Findings, Former Unocal Service Station #7376, Pleasanton, California, April 6, 2005.
- Alameda County Water District, Zone 7 Water Agency, Well Master Plan, 1993-2006.
- R.W. Graymer, B.C. Moring, G.J. Saucedo, C.M. Wentworth, E.E. Brabb, and K.L. Knudsen (U. S. Geological Survey), Geologic Map of the San Francisco Bay Region, 2006
- Delta Consultants, Initial Site Conceptual Model (September 2005), Shell-branded Service Station 4226 First Street, Pleasanton, California, February 6, 2006.
- Delta Consultants, Soil and Groundwater Investigation Report, Shell-branded Service Station 4226 First Street, Pleasanton, California, October 31, 2006
- Delta Consultants, Soil and Groundwater Investigation Report, 76 Service Station No. 7376, 4191 First Street, Pleasanton, California, May 20, 2008.
- TRC, Quarterly Monitoring Report October through December 2009, 76 Station 7376, 4191 First Street, Pleasanton, California, January 11, 2010.
- Delta Consultants, Report on Groundwater Monitoring Well Replacement and Additional Investigation, 76 Service Station No. 7376, 4191 First Street, Pleasanton, CA, July 22, 2009.
- Delta Consultants, Feasibility Study and Work Plan, 76 Service Station No. 7376, 4191 First Street, Pleasanton, CA, December 17, 2009.
- TRC, Quarterly Monitoring Report April through June 2010, 76 Station 7376, 4191 First Street, Pleasanton, California, July 13, 2010.

123 Technology Drive West Irvine, CA 92618

949.727.9336 PHONE 949.727.7399 FAX

www.TRCsolutions.com

DATE:

July 13, 2010

TO:

ConocoPhillips Company

76 Broadway

Sacramento, CA 95818

ATTN:

MR. TERRY GRAYSON

SITE:

76 STATION 7376

4191 FIRST STREET

PLEASANTON, CALIFORNIA

RE:

QUARTERLY MONITORING REPORT

APRIL THROUGH JUNE 2010

Dear Mr. Grayson:

Please find enclosed our Quarterly Monitoring Report for 76 Station 7376, located at 4191 First Street, Pleasanton, California. If you have any questions regarding this report, please call us at (949) 727-9336.

Sincerely,

TRC

Groundwater Program Operations Manager

CC: Mr. Lee Dooley, Delta Consultants (3 copies)

Enclosures 20-0400/7376R27.QMS

QUARTERLY MONITORING REPORT APRIL THROUGH JUNE 2010

76 STATION 7376 4191 First Street Pleasanton, California

Prepared For:

Mr. Terry Grayson CONOCOPHILLIPS COMPANY 76 Broadway Sacramento, California 95818

By:

Senior Project Geologist, Irvine Operations

Date:

	LIST OF ATTACHMENTS
Summary Sheet	Summary of Gauging and Sampling Activities
Tables	Table Key
	Contents of Tables
	Table 1: Current Fluid Levels and Selected Analytical Results
	Table 1a-l: Additional Current Analytical Results
	Table 2: Historic Fluid Levels and Selected Analytical Results
	Table 2a-m: Additional Historic Analytical Results
	Table 3: Liquid Phase Hydrocarbon Recovery Data
	Table 4: Fuel Fingerprint Results
Figures	Figure 1: Vicinity Map
	Figure 2: Groundwater Elevation Contour Map
	Figure 3: Dissolved-Phase TPH-G Concentration Map
	Figure 4: Dissolved-Phase Benzene Concentration Map
	Figure 5: Dissolved-Phase MTBE Concentration Map
Graphs	Groundwater Elevations vs. Time
	TPH-G Concentrations vs. Time
	Benzene Concentrations vs. Time
	MTBE Concentrations vs. Time
Field Activities	General Field Procedures
	Field Monitoring Data Sheets – 6/18/10
	Groundwater Sampling Field Notes – 6/18/10
	Statement of Non-Completion – 6/18/10
	LPH Recovery Data – 2/16/10, 3/9/10, 3/22/10, 4/9/10, 4/22/10, 5/7/10, 5/18/10,
	6/3/10
Laboratory	Official Laboratory Reports
Reports	Quality Control Reports
	Chain of Custody Records
Statements	Purge Water Disposal
	Limitations

Summary of Gauging and Sampling Activities April 2010 through June 2010 76 Station 7376 4191 First Street Pleasanton, CA

Project Coordinator: **Terry Grayson** Water Sampling Contractor: **TRC**

Telephone: 916-558-7666 Compiled by: Daniel Lee

Date(s) of Gauging/Sampling Event: 6/18/2010

Sample Points

Groundwater wells: 4 onsite, 8 offsite Points gauged: 12 Points sampled: 11

Purging method: Submersible pump/bailer

Purge water disposal: Crosby and Overton treatment facility

Other Sample Points: **0** Type: --

Liquid Phase Hydrocarbons (LPH)

Sample Points with LPH: **0** Maximum thickness (feet): --

LPH removal frequency: -- Method: --

Treatment or disposal of water/LPH: --

Hydrogeologic Parameters

Depth to groundwater (below TOC): Minimum: 60.17 feet Maximum: 78.83 feet

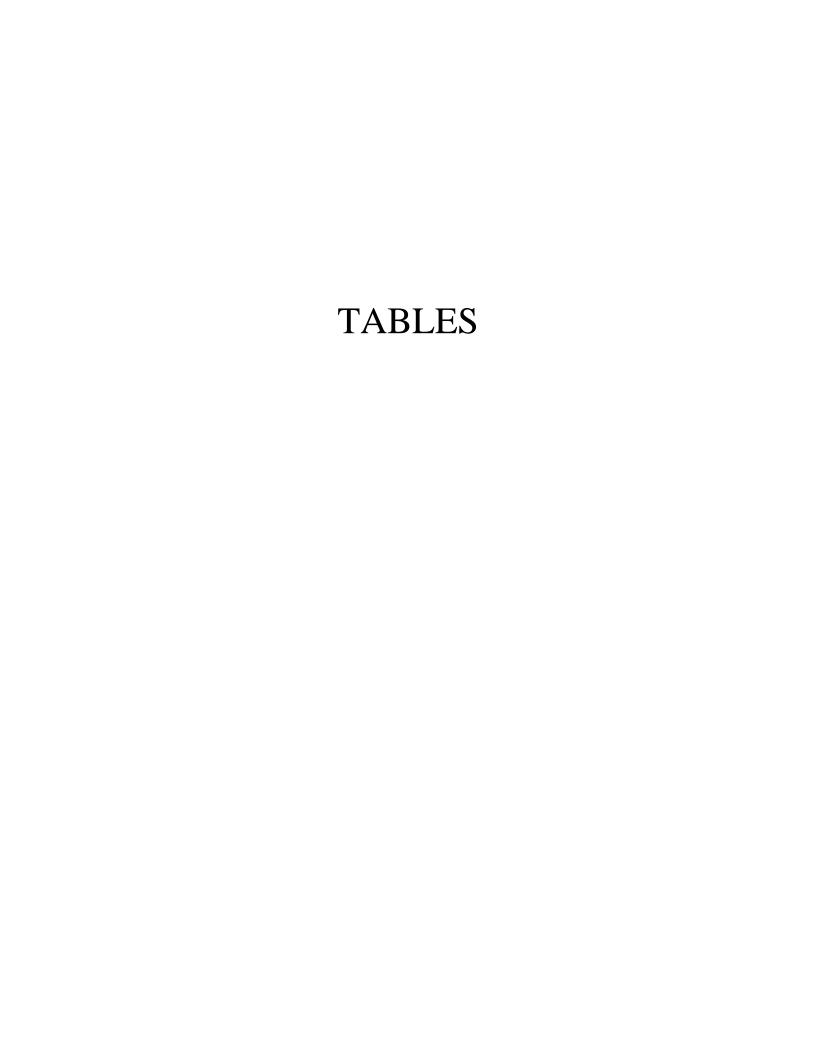
Average groundwater elevation (relative to available local datum): **294.91 feet**Average change in groundwater elevation since previous event: **3.78 feet**

Interpreted groundwater gradient and flow direction:

Current event: 0.02 ft/ft, west

Previous event: **0.02 ft/ft**, west (2/4/2010)

Selected Laboratory Results


Sample Points with detected **Benzene:** 3 Sample Points above MCL (1.0 µg/l): 2

Maximum reported benzene concentration: 11 μg/I (MW-3B)

Sample Points with TPH-G by GC/MS 4 Maximum: 710 µg/l (MW-7)
Sample Points with MTBE 8260B 9 Maximum: 600 µg/l (MW-8)

Notes:

MW-5=Trace of LPH in bailer

TABLE KEY

STANDARD ABBREVIATIONS

-- e not analyzed, measured, or collected

LPH = liquid-phase hydrocarbons

μg/l = micrograms per liter (approx. equivalent to parts per billion, ppb)
mg/l = milligrams per liter (approx. equivalent to parts per million, ppm)

ND< = not detected at or above laboratory detection limit TOC = top of casing (surveyed reference elevation)

D = duplicate P = no-purge sample

ANALYTES

DIPE = di-isopropyl ether

ETBE = ethyl tertiary butyl ether

MTBE = methyl tertiary butyl ether

PCB = polychlorinated biphenyls

PCE = tetrachloroethene
TBA = tertiary butyl alcohol
TCA = trichloroethane
TCE = trichloroethene

TPH-G = total petroleum hydrocarbons with gasoline distinction

TPH-G (GC/MS) = total petroleum hydrocarbons with gasoline distinction utilizing EPA Method 8260B

TPH-D = total petroleum hydrocarbons with diesel distinction

TRPH = total recoverable petroleum hydrocarbons

TAME = tertiary amyl methyl ether

1,2-DCA = 1,2-dichloroethane (same as EDC, ethylene dichloride)

NOTES

- 1. Elevations are in feet above mean sea level. Depths are in feet below surveyed top-of-casing.
- 2. Groundwater elevations for wells with LPH are calculated as: <u>Surface Elevation Measured Depth to Water + (Dp x LPH Thickness)</u>, where Dp is the density of the LPH, if known. A value of 0.75 is used for gasoline and when the density is not known. A value of 0.83 is used for diesel.
- 3. Wells with LPH are generally not sampled for laboratory analysis (see General Field Procedures).
- 4. Comments shown on tables are general. Additional explanations may be included in field notes and laboratory reports, both of which are included as part of this report.
- 5. A "J" flag indicates that a reported analytical result is an estimated concentration value between the method detection limit (MDL) and the practical quantification limit (PQL) specified by the laboratory.
- 6. Other laboratory flags (qualifiers) may have been reported. See the official laboratory report (attached) for a complete list of laboratory flags.
- 7. Concentration graphs based on tables (presented following Figures) show non-detect results prior to the Second Quarter 2000 plotted at fixed values for graphical display. Non-detect results reported since that time are plotted at reporting limits stated in the official laboratory report.
- 8. Prior to the 1st quarter 2010, the word "monitor" was used in table comments interchangeably with the word "gauge". Starting in the 1st quarter 2010, the word "monitor" is used to include both "gauge" and "sample".

REFERENCE

TRC began groundwater monitoring and sampling for 76 Station 7376 in October 2003. Historical data compiled prior to that time were provided by Gettler-Ryan Inc.

Contents of Tables 1 and 2 Site: 76 Station 7376

CL	ırr	a۲	٦ŧ	E١	اه/	nt.
\mathbf{c}	411	C 1	11	∟ \		IL.

Table 1	Well/ Date	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)
Table 1a	Well/ Date	TPH-D	Ethylene- dibromide (EDB)	1,2-DCA (EDC)	TPH- Motor Oil	Bromo- benzene	Bromo- chloro- methane	Bromo- dichloro- methane	Bromo- form	Bromo- methane	n-Butyl- benzene	sec-Butyl- benzene	tert-Butyl benzene
Table 1b	Well/ Date	Carbon Tetra- chloride	Chloro- benzene	Chloro- ethane	Chloroform	Chloro- methane	2- Chloro- toluene	4-Chloro- toluene	1,2Dibrom- 3-chloro- propane	Dibromo- chloro- methane	Dibromo- methane	1,2- Dichloro- benzene	1,3- Dichloro- benzene
Table 1c	Well/ Date	1,4- Dichloro- benzene	Dichloro- difluoro- methane	1,1-DCA	1,1-DCE	cis- 1,2-DCE	trans- 1,2-DCE	1,2- Dichloro- propane	1,3- Dichloro- propane	2,2- Dichloro- propane	1,1- Dichloro- propene	cis-1,3- Dichloro- propene	trans-1,3- Dichloro- propene
Table 1d	Well/ Date	Hexa- chloro- butadiene	Isopropyl- benzene	p- Isopropyl- toluene	Methylene chloride	Naph- thalene	n-Propyl- benzene	Styrene	1,1,1,2- Tetrachloro- ethane	1,1,2,2- Tetrachloro- ethane	Tetrachloro- ethene (PCE)	Trichloro- trifluoro- ethane	1,2,4- Trichloro- benzene
Table 1e	Well/ Date	1,2,3- Trichloro- benzene	1,1,1- Trichloro- ethane	1,1,2- Trichloro- ethane	Trichloro- ethene (TCE)	Trichloro- fluoro- methane	1,2,3- Trichloro- propane	1,2,4- Trimethyl- benzene	1,3,5- Trimethyl- benzene	Vinyl chloride	Acena- phthene	Acena- phthylene (svoc)	Aldrin
Table 1f	Well/ Date	Aniline	Anthra- cene	Benzidine	Benzo[a]- anthracene	Benzo[a]- pyrene	Benzo[b]- fluor- anthene	Benzo- [g,h,l]- perylene	Benzo[k]- fluor- anthene	Benzoic Acid	Benzyl Alcohol	Bis(2-chloro- ethoxy) methane	Bis(2-chloro- ethyl) ether
Table 1g	Well/ Date	Bis(2-chloro- isopropyl)- ether	Bis(2-ethyl- hexyl) phthalate	4-Bromo- pheny phe- nyl ether	Butyl- benzyl phthalate	alpha-BHC	beta-BHC	delta-BHC	gamma-BHC	4-Chloro- 3-methyl- phenol	4-Chloro- aniline	2-Chloro- naphtha- lene	2-Chloro- phenol
Table 1h	Well/ Date	4-Chloro- phenyl phenyl ether	Chrysene	4,4'-DDD	4,4'-DDE	4,4'-DDT	Dibenzo- [a,h]- anthracene	Dibenzo- furan	1,2-Dichloro- benzene (svoc)	1,3-Dichloro- benzene (svoc)	1,4-Dichloro- benzene (svoc)	3,3-Dichloro- benzidine	Dieldrin
Table 1i	Well/ Date	2,4-Dichloro- phenol	Diethyl phthalate	2,4-Dimethyl- phenol	Dimethyl phthalate	Di-n-butyl phthalate	2,4-Dinitro- phenol	2,4-Dinitro- toluene	2,6-Dinitro- toluene	Di-n-octyl phthalate	1,2-Diphenyl hydrazine	Endosulfan I	Endosulfan II
Table 1j	Weil/ Date	Endosulfan sulfate	Endrin	Endrin aldehyde	Fluoran- thene	Fluorene	Heptachlor	Heptachlor epoxide	Hexa- chloro- benzene	HCBD (svoc)	Hexachloro cyclopenta- diene	Hexachloro -ethane	Indeno- [1,2,3-c,d] pyrene

Contents of Tables 1 and 2 Site: 76 Station 7376

Table 1k	Well/ Date	Isophorone	2-Methyl- 4,6-dinitro- phenol	2-Methyl- naphtha- lene	2-Methyl- phenol	Naphtha- lene (svoc)	2-Naphthyl- amine	2-Nitro- aniline	3-Nitro- aniline	4-Nitro- aniline	Nitro- benzene	2-Nitro- phenol	4-Nitro- phenol
Table 1l	Well/ Date	N-Nitroso- dimethyl- amine	N-nitrosodi- n-propyl- amine	N-Nitro- sodiphenyl- amine	Penta- chloro- phenol	Phen- anthrene	Phenol	Pyrene	1,2,4- Trichloro- benzene	2,4,6- Trichloro- phenol	2,4,5- Trichloro- phenol		
Historic	Data												
Table 2	Weil/ Date	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)
Table 2a	Well/ Date	TPH-D	TBA	Ethanol (8260B)	Ethylene- dibromide (EDB)	1,2-DCA (EDC)	DIPE	ETBE	TAME	TPH- Motor Oil	Bromo- benzene	Bromo- chloro- methane	Bromo- dichloro- methane
Table 2b	Well/ Date	Bromo- form	Bromo- methane	n-Butyl- benzene	sec-Butyl- benzene	tert-Butyl benzene	Carbon Tetra- chloride	Chloro- benzene	Chloro- ethane	Chloroform	Chloro- methane	2- Chloro- toluene	4-Chloro- toluene
Table 2c	Well/ Date	1,2Dibrom- 3-chloro- propane	Dibromo- chloro- methane	Dibromo- methane	1,2- Dichloro- benzene	1,3- Dichloro- benzene	1,4- Dichloro- benzene	Dichloro- difluoro- methane	1,1-DCA	1,1-DCE	cis- 1,2-DCE	trans- 1,2-DCE	1,2- Dichloro- propane
Table 2d	Well/ Date	1,3- Dichloro- propane	2,2- Dichloro- propane	1,1- Dichloro- propene	cis-1,3- Dichloro- propene	trans-1,3- Dichloro- propene	Hexa- chloro- butadiene	Isopropyl- benzene	p- Isopropyl- toluene	Methylene chloride	Naph- thalene	n-Propyl- benzene	Styrene
Table 2e	Weli/ Date	1,1,1,2- Tetrachloro- ethane	1,1,2,2- Tetrachloro- ethane	Tetrachloro- ethene (PCE)	Trichloro- trifluoro- ethane	1,2,4- Trichloro- benzene	1,2,3- Trichloro- benzene	1,1,1- Trichloro- ethane	1,1,2- Trichloro- ethane	Trichloro- ethene (TCE)	Trichloro- fluoro- methane	1,2,3- Trichloro- propane	1,2,4- Trimethyl- benzene
Table 2f	Well/ Date	1,3,5- Trimethyl- benzene	Vinyl chloride	Acena- phthene	Acena- phthylene (svoc)	Aldrin	Aniline	Anthra- cene	Benzidine	Benzo[a]- anthracene	Benzo[a]- pyrene	Benzo[b]- fluor- anthene	Benzo- [g,h,l]- perylene
Table 2g	Well/ Date	Benzo[k]- fluor- anthene	Benzoic Acid	Benzyl Alcohol	Bis(2-chloro- ethoxy) methane	Bis(2-chloro- ethyl) ether	Bis(2-chloro- isopropyl)- ether	Bis(2-ethyl- hexyl) phthalate	4-Bromo- pheny phe- nyl ether	Butyl- benzyl phthalate	alpha-BHC	beta-BHC	delta-BHC
Table 2h	Well/ Date	gamma-BHC	4-Chloro- 3-methyl- phenol	4-Chloro- aniline	2-Chloro- naphtha- lene	2-Chloro- phenol	4-Chloro- phenyl phenyl ether	Chrysene	4,4'-DDD	4,4'-DDE	4,4'-DDT	Dibenzo- [a,h]- anthracene	Dibenzo- furan

Contents of Tables 1 and 2 Site: 76 Station 7376

Table 2i	Well/ Date	1,2-Dichloro- benzene (svoc)	1,3-Dichloro- benzene (svoc)	1,4-Dichloro- benzene (svoc)	3,3-Dichloro- benzidine	Dieldrin	2,4-Dichloro- phenol	Diethyl phthalate	2,4-Dimethyl- phenol	Dimethyl phthalate	Di-n-butyl phthalate	2,4-Dinitro- phenol	2,4-Dinitro- toluene
Table 2j	Well/ Date	2,6-Dinitro- toluene	Di-n-octyl phthalate	1,2-Diphenyl hydrazine	Endosulfan I	Endosulfan II	Endosulfan sulfate	Endrin	Endrin aldehyde	Fluoran- thene	Fluorene	Heptachlor	Heptachlor epoxide
Table 2k	Well/ Date	Hexa- chloro- benzene	HCBD (svoc)	Hexachloro cyclopenta- diene	Hexachloro -ethane	Indeno- [1,2,3-c,d] pyrene	Isophorone	2-Methyl- 4,6-dinitro- phenol	2-Methyl- naphtha- lene	2-Methyl- phenol	Naphtha- lene (svoc)	2-Naphthyl- amine	2-Nitro- aniline
Table 2I	Well/ Date	3-Nitro- aniline	4-Nitro- aniline	Nitro- benzene	2-Nitro- phenol	4-Nitro- phenol	N-Nitroso- dimethyl- amine	N-nitrosodi- n-propyl- amine	N-Nitro- sodiphenyl- amine	Penta- chloro- phenol	Phen- anthrene	Phenol	Pyrene
Table 2m	Well/ Date	1,2,4- Trichloro- benzene	2,4,6- Trichloro- phenol	2,4,5- Trichloro- phenol									

Table 1
CURRENT FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
June 18, 2010

76 Station 7376

Date	TOC	Depth to Water	LPH		Change in									Comments
Sampled	Elevation	water	Thickness	water Elevation	Elevation	TPH-G	TPH-G	~		Ethyl-	Total	MTBE	MTBE	
	(f+)	(f4)	(6)			8015	(GC/MS)	Benzene	Toluene		Xylenes	(8021B)	(8260B)	
····	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	μg/I)	(μg/l)	(μg/l)	(µg/l)	(µg/l)	(µg/l)	(μg/l)	
MW-1B			(Scree	en Interval	in feet: 80.	.0-82.0)								
6/18/20	10 369.28	78.17	0.00	291.11	1.39		200	ND<0.50	ND<0.50	ND<0.50	ND<1.0		330	
MW-2C			(Scree	en Interval	in feet: 80.	.0-82.0)								
6/18/20	10 368.48	77.20	0.00	291.28			ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		11	
MW-3B			(Scree	en Interval	in feet: 80.	.0-82.0)								
6/18/20	10 369.85	78.83	0.00	291.02			86	11	7.9	2.2	11		28	•
MW-4			(Scree	n Interval	in feet: 73.	n_03 n)								
	10 371.58	74.36	0.00	297.22			ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
MW-5			(6			0.52.0				113 0100	112 110		112 -0.50	
	10 366.04	66.34	0.00	en Interval 299.70	in feet: 52.	.0-72.0)								Terre of PULL hall
	10 300.04	00.54												Trace of LPH in bailer
MW-6	10 266.22	74.00			in feet: 68.	•	3.775 -470	3.775 .0.470						
6/18/20	10 366.22	74.90	0.00	291.32	3.90		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		8.9	
MW-7			(Scree		in feet: 55.									
6/18/20	10 358.67	61.76	0.00	296.91	3.77	ND<200	710	10	ND<0.50	0.62	ND<1.0		62	
MW-8			(Scree	n Interval	in feet: 66.	0-86.0)								
6/18/20	10 365.07	66.46	0.00	298.61	4.09	ND<200	270	ND<0.50	ND<0.50	ND<0.50	ND<1.0		600	
MW-9			(Scree	n Interval	in feet:)								•	
	10 357.67	60.63	0.00	297.04	-		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		2.1	
MW-10	•		(Scree	n Interval	in feet:)									
	10 365.42	74.13	0.00	291.29	3.86		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		0.65	
			(6								1,2 1.0		0.05	
MW-11 6/18/20	10 357.44	60.74	0.00	n Interval 296.70	in feet:) 3.24		ND<50	ND<0.50	NID-0 50	ND<0.50	NID~1 0		NID <0.50	
	10 337.44	00.74					1VD/30	טכייי~מאז	1VD~0.30	10.30 ענא	ND~1.0		ND<0.50	
MW-12	10 05600	60.1-	,	n Interval										
6/18/20	10 356.89	60.17	0.00	296.72	3.17		ND<50	0.77	ND<0.50	ND<0.50	ND<1.0		15	
7376								Page 1	1 of 1					©TRC:

Table 1 a
ADDITIONAL CURRENT ANALYTICAL RESULTS
76 Station 7376

Date Sampled	TPH-D (µg/l)	Ethylene- dibromide (EDB) (µg/l)	1,2-DCA (EDC) (μg/l)	TPH- Motor Oil (μg/l)	Bromo- benzene (µg/l)	Bromo- chloro- methane (µg/l)	Bromo- dichloro- methane (µg/l)	Bromo- form (µg/l)	Bromo- methane (µg/l)	n-Butyl- benzene (μg/l)	sec-Butyl- benzene (µg/l)	tert-Butyl benzene (µg/l)
MW-1B 6/18/2010	50	ND<0.50	0.81									
MW-2C 6/18/2010	ND<56	ND<0.50	6.0									
MW-3B 6/18/2010	ND<50	ND<0.50	5.0									
MW-4 6/18/2010	ND<50	ND<0.50	ND<0.50									 ·
MW-6 6/18/2010	ND<59	ND<0.50	2.9							·		
MW-7 6/18/2010	110	ND<0.50	ND<0.50	ND<200	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	1.0	0.85
MW-8 6/18/2010	ND<50	ND<0.50	ND<0.50	ND<200	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<0.50
MW-9 6/18/2010	ND<50	ND<0.50	ND<0.50									
MW-10 6/18/2010	ND<60	ND<0.50	ND<0.50									
MW-11 6/18/2010	ND<50	ND<0.50	ND<0.50									
MW-12 6/18/2010	ND<50	ND<0.50	ND<0.50									

Table 1 b
ADDITIONAL CURRENT ANALYTICAL RESULTS
76 Station 7376

Date Sampled	Carbon Tetra- chloride (µg/l)	Chloro- benzene (µg/l)	Chloro- ethane (µg/l)	Chloroform (μg/l)	Chloro- methane (µg/l)	2- Chloro- toluene (μg/l)	4-Chloro- toluene (μg/l)	1,2Dibrom- 3-chloro- propane (µg/l)	Dibromo- chloro- methane (µg/l)	Dibromo- methane (μg/l)	1,2- Dichloro- benzene (μg/l)	1,3- Dichloro- benzene (µg/l)
MW-7 6/18/2010	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50
MW-8 6/18/2010	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50

Table 1 c
ADDITIONAL CURRENT ANALYTICAL RESULTS
76 Station 7376

Date Sampled	1,4- Dichloro- benzene (µg/l)	Dichloro- difluoro- methane (μg/l)	1,1-DCA (μg/l)	1,1-DCE (μg/l)	cis- 1,2 - DCE (μg/l)	trans- 1,2-DCE (μg/l)	1,2- Dichloro- propane (µg/l)	1,3- Dichloro- propane (µg/l)	2,2- Dichloro- propane (µg/l)	1,1- Dichloro- propene (µg/l)	cis-1,3- Dichloro- propene (μg/l)	trans-1,3- Dichloro- propene (µg/l)
MW-7 6/18/2010	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
MW-8 6/18/2010	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50

Table 1 d
ADDITIONAL CURRENT ANALYTICAL RESULTS
76 Station 7376

Date Sampled	Hexa- chloro- butadiene (μg/l)	Isopropyl- benzene (µg/l)	p- Isopropyl- toluene (μg/l)	Methylene chloride (μg/l)	Naph- thalene (µg/l)	n-Propyl- benzene (µg/l)	Styrene (µg/l)	1,1,1,2- Tetrachloro- ethane (µg/l)	1,1,2,2- Tetrachloro- ethane (μg/l)	Tetrachloro- ethene (PCE) (µg/l)	Trichloro- trifluoro- ethane (µg/l)	1,2,4- Trichloro- benzene (µg/l)
MW-7 6/18/2010	ND<0.50	0.63	ND<0.50	ND<1.0	ND<0.50	0.51	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
MW-8 6/18/2010	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50

Table 1 e
ADDITIONAL CURRENT ANALYTICAL RESULTS
76 Station 7376

Date Sampled	1,2,3- Trichloro- benzene (µg/l)	1,1,1- Trichloro- ethane (μg/l)	1,1,2- Trichloro- ethane (μg/l)	Trichloro- ethene (TCE) (µg/l)	Trichloro- fluoro- methane (µg/l)	1,2,3- Trichloro- propane (µg/l)	1,2,4- Trimethyl- benzene (μg/l)	1,3,5- Trimethyl- benzene (μg/l)	Vinyl chloride (µg/l)	Acena- phthene (μg/l)	Acena- phthylene (svoc) (µg/l)	Aldrin (μg/l)
MW -7 6/18/2010	ND<0.50	ND<0.50	ND<0.50	ND<0,50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<0.50	ND<2.0	ND<2.0	ND<2.0
MW-8 6/18/2010	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<0.50	ND<2.0	ND<2.0	ND<2.0

Table 1 f
ADDITIONAL CURRENT ANALYTICAL RESULTS
76 Station 7376

Date Sampled	Aniline (μg/l)	Anthra- cene (µg/l)	Benzidine (μg/l)	Benzo[a]- anthracene (μg/l)	Benzo[a]- pyrene (µg/l)	Benzo[b]- fluor- anthene (µg/l)	Benzo- [g,h,I]- perylene (μg/l)	Benzo[k]- fluor- anthene (μg/l)	Benzoic Acid (μg/l)	Benzyl Alcohol (μg/l)	Bis(2-chloro- ethoxy) methane (µg/l)	Bis(2-chloro- ethyl) ether (μg/l)
MW-7 6/18/2010	ND<5.0	ND<2.0	ND<20	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0	ND<2.0
MW-8 6/18/2010	ND<5.0	ND<2.0	ND<20	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0	ND<2.0

Table 1 g ADDITIONAL CURRENT ANALYTICAL RESULTS 76 Station 7376

Date Sampled	Bis(2-chloro- isopropyl)- ether (μg/l)	Bis(2-ethyl- hexyl) phthalate (μg/l)	4-Bromo- pheny phe- nyl ether (μg/l)	Butyl- benzyl phthalate (µg/l)	alpha-BHC (µg/l)	beta-BHC (µg/l)	delta-BHC (µg/l)	gamma-BHC (µg/l)	4-Chloro- 3-methyl- phenol (μg/l)	4-Chloro- aniline (μg/l)	2-Chloro- naphtha- lene (µg/l)	2-Chloro- phenol (μg/l)
MW-7 6/18/2010	ND<2.0	ND<5.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<5.0	ND<2.0	ND<2.0	ND<2.0
MW-8 6/18/2010	ND<2.0	ND<5.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<5.0	ND<2.0	ND<2.0	ND<2.0

Table 1 h
ADDITIONAL CURRENT ANALYTICAL RESULTS
76 Station 7376

Date Sampled	4-Chloro- phenyl phenyl ether (μg/l)	Chrysene (µg/l)	4,4'-DDD (μg/l)	4,4'-DDE (μg/l)	4,4'-DDT (μg/l)	Dibenzo- [a,h]- anthracene (µg/l)	Dibenzo- furan (μg/l)	1,2-Dichloro- benzene (svoc) (µg/l)	1,3-Dichloro- benzene (svoc) (µg/l)	1,4-Dichloro- benzene (svoc) (μg/l)	3,3-Dichloro- benzidine (µg/l)	Dieldrin (μg/l)
MW-7 6/18/2010	ND<2.0	ND<2.0	ND<2.0	ND<3.0	ND<2.0	ND<3.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<3.0
MW-8 6/18/2010	ND<2.0	ND<2.0	ND<2.0	ND<3.0	ND<2.0	ND<3.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<3.0

Table 1 i
ADDITIONAL CURRENT ANALYTICAL RESULTS
76 Station 7376

Date Sampled	2,4-Dichloro- phenol (μg/l)	Diethyl phthalate (μg/l)	2,4-Dimethyl- phenol (μg/l)	Dimethyl phthalate (µg/l)	Di-n-butyl phthalate (μg/l)	2,4-Dinitro- phenol (μg/l)	2,4-Dinitro- toluene (µg/l)	2,6-Dinitro- toluene (µg/l)	Di-n-octyl phthalate (μg/l)	1,2-Diphenyl hydrazine (µg/l)	Endosulfan I (μg/l)	Endosulfan II (µg/l)
MW-7 6/18/2010	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<10
MW-8 6/18/2010	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<10

Table 1 j
ADDITIONAL CURRENT ANALYTICAL RESULTS
76 Station 7376

Date Sampled	Endosulfan sulfate (μg/l)	Endrin (µg/l)	Endrin aldehyde (µg/l)	Fluoran- thene (µg/l)	Fluorene (µg/l)	Heptachlor (μg/l)	Heptachlor epoxide (μg/l)	Hexa- chloro- benzene (µg/l)	HCBD (svoc) (μg/l)	Hexachloro cyclopenta- diene (µg/l)	Hexachloro -ethane (μg/l)	Indeno- [1,2,3-c,d] pyrene (µg/l)
MW-7 6/18/2010	ND<3.0	ND<2.0	ND<10	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0
MW-8 6/18/2010	ND<3.0	ND<2.0	ND<10	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0

Table 1 k
ADDITIONAL CURRENT ANALYTICAL RESULTS
76 Station 7376

Date Sampled	Isophorone (μg/l)	2-Methyl- 4,6-dinitro- phenol (µg/l)	2-Methyl- naphtha- lene (µg/l)	2-Methyl- phenol (µg/l)	Naphtha- lene (svoc) (μg/l)	2-Naphthyl- amine (μg/l)	2-Nitro- aniline (μg/l)	3-Nitro- aniline (µg/l)	4-Nitro- aniline (μg/l)	Nitro- benzene (µg/l)	2-Nitro- phenol (μg/l)	4-Nitro- phenol (μg/l)
MW-7 6/18/2010	ND<2.0	ND<10	ND<2.0	ND<2.0	ND<2.0	ND<20	ND<2.0	ND<2.0	ND<5.0	ND<2.0	ND<2.0	ND<2.0
MW-8 6/18/2010	ND<2.0	ND<10	ND<2.0	ND<2.0	ND<2.0	ND<20	ND<2.0	ND<2.0	ND<5.0	ND<2.0	ND<2.0	ND<2.0

Table 1 I
ADDITIONAL CURRENT ANALYTICAL RESULTS
76 Station 7376

Date Sampled	N-Nitroso- dimethyl- amine (μg/l)	N-nitrosodi- n-propyl- amine (μg/l)	N-Nitro- sodiphenyl- amine (μg/l)	Penta- chloro- phenol (µg/l)	Phen- anthrene (µg/l)	Phenol (μg/l)	Pyrene (µg/l)	1,2,4- Trichloro- benzene (svoc) (µg/l)	2,4,6- Trichloro- phenol (µg/l)	2,4,5- Trichloro- phenol (µg/l)	
MW-7 6/18/2010	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<5.0	ND<5.0	
MW-8 6/18/2010	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<5.0	ND<5.0	

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
December 1987 Through June 2010

76 Station 7376

Date	TO		Depth to	LPH		Change in									Comments
Sampled	Eleva	ation	Water	Thickness	water Elevation	Elevation	TPH-G	TPH-G			Ethyl-	Total	MTBE	MTBE	
							8015	(GC/MS)	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
***************************************	(fe	et)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(μg/l)	(μg/l)	(µg/l)	(μg/l)	(µg/l)	(μg/l)	(μg/l)	rak.
MW-1				(Scree	en Interva	l in feet: 65.	0-95.0)								
12/8/19	87						50		58	8.0	ND	10		<u>\ </u>	
12/7/19	94 3	366.99	81.04	0.00	285.95		ND		ND	ND	ND	ND			
3/1/199	95 3	366.99	80.09	0.00	286.90	0.95	ND		ND	1.1	ND	1.3			
6/1/199	95 3	366.99	77.53	0.00	289.46	2.56	130		1.0	2.9	0.79	4.5			
9/6/199	95 3	366.99	79.00	0.00	287.99	-1.47	ND		ND	ND	ND	ND			
12/12/19	995 3	366.99	77.55	0.00	289.44	1.45	ND		ND	ND	ND	ND			
3/1/199	96 3	366.99	75.09	0.00	291.90	2.46	ND		ND	ND	ND	ND	370		
6/15/19	96 3	366.99	75.07	0.00	291.92	0.02	ND		ND	ND	ND	ND	270		
9/18/19	96 3	366.99	79.90	0.00	287.09	-4.83	ND		ND	ND	ND	ND	590		
12/21/19	996 3	366.99	78.96	0.00	288.03	0.94	ND		ND	ND	ND	ND	150		
3/7/199	97 3	366.99	71.49	0.00	295.50	7.47	ND		ND	ND	ND	ND	220		
6/27/19	97 3	366.99	80.05	0.00	286.94	-8.56	ND		ND	ND	ND	ND	17	***	
9/29/19	97 3	366.99	80.04	0.00	286.95	0.01	ND		ND	ND	ND	ND	24		
12/15/19	997 3	366.99	80.07	0.00	286.92	-0.03	ND		ND	ND	ND	ND	25		
3/16/19	98 3	366.99	71.00	0.00	295.99	9.07	ND		ND	0.52	ND	0.71	190		
6/26/19	98 3	366.98	79.29	0.00	287.69	-8.30	59		0.90	ND	ND	ND	570		
8/18/19	98 3	366.98	79.93	0.00	287.05	-0.64									\sim
9/22/19	98 3	366.98	79.99	0.00	286.99	-0.06	ND		ND	ND.	ND	ND	170		
12/15/19	998 3	366.98	80.02	0.00	286.96	-0.03	ND		ND	ND	ND	ND	63		
12/23/19	998 3	366.98	80.02	0.00	286.96	0.00									
3/15/19	99 3	366.98	78.95	0.00	288.03	1.07	ND		ND	ND	ND	ND	520		
3/23/19	99 3	366.98	78.69	0.00	288.29	0.26									

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
December 1987 Through June 2010
76 Station 7376

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)		Comments
_	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(µg/l)	(µg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)		
MW-1	continued	İ													
6/7/199		8 79.82	0.00	287.16	-1.13	ND		ND	ND	ND	ND	310		•	
9/3/199	9 366.9	8 79.74	0.00	287.24	0.08	ND		ND	ND	ND	ND	67	55.2		
12/6/19	99 366.9	8 79.74	0.00	287.24	0.00	ND		ND	ND	ND	ND	120			
3/10/20	00 366.9	8 79.66	0.00	287.32	0.08	ND		ND	ND	ND	ND	100			
6/8/200	00 366.9	8 79.57	0.00	287.41	0.09	ND		ND	ND	ND	ND	98.9			
9/25/20	00 366.9	8 79.48	0.00	287.50	0.09	ND		ND	ND	ND	ND	145			
12/19/20	000 366.9	8 79.64	0.00	287.34	-0.16	ND		ND	ND	ND	ND	330			
3/5/200	1 366.9	8 80.03	0.00	286.95	-0.39	ND		ND	, ND	ND	ND	711			
6/14/20	01 366.9	8 79.52	0.00	287.46	0.51	ND		ND	ND	ND	ND	680			
9/17/20	01 366.9	8 79.76	0.00	287.22	-0.24	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	11			
9/25/20	01 366.9	8 79.71	0.00	287.27	0.05										
12/17/20	001 366.9	8 80.73	0.00	286.25	-1.02	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	210	240		
3/15/20	02 366.9	8 79.51	0.00	287.47	1.22	ND<500		ND<5.0	ND<5.0	ND<5.0	ND<5.0	1200			
6/20/20	02 366.9	8 79.60	0.00	287.38	-0.09		580	ND<5.0	ND<5.0	ND<5.0	ND<10		810	•	
9/27/20	02 366.9	8 80.76	0.00	286.22	-1.16		67	ND<0.50	ND<0.50	ND<0.50	ND<1.0		71		
12/30/20	002 366.9	8 81.28	0.00	285.70	-0.52		ND<200	ND<2.0	ND<2.0	ND<2.0	ND<4.0		360		
3/26/20	03 366.9	8 79.48	0.00	287.50	1.80		1300	ND<10	ND<10	ND<10	ND<20		2000		
6/10/20	03 366.9	8 80.29	0.00	286.69	-0.81		ND<2000	ND<20	ND<20	ND<20	ND<40		2800		
9/9/200	366.9	8 84.54	0.00	282.44	-4.25		1000	ND<10	ND<10	ND<10	ND<20		1900		
12/10/20	003 366.9	8 80.01	0.00	286.97	4.53		ND<2000	ND<20	ND<20	ND<20	ND<40		2700		
3/9/200	366.9	8 79.48	0.00	287.50	0.53		540	ND<5.0	ND<5.0	ND<5.0	ND<10		840		
6/21/20	04 366.9	8 79.49	0.00	287.49	-0.01		650	ND<5.0	ND<5.0	ND<5.0	ND<10		620		
9/8/200	366.9	8 79.43	0.00	287.55	0.06		93	ND<0.50	ND<0.50	ND<0.50	ND<1.0		120		

OTRC

Page 2 of 30

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
December 1987 Through June 2010
76 Station 7376

Date	TOC Elevation	Depth to Water	LPH Thickness		Change in										Comments
Sampled	Elevation	water	THICKHESS	water Elevation	Elevation	TPH-G	TPH-G	D	20 - 1	Ethyl-	Total	MTBE	MTBE		
	(feet)	(feet)	(feet)	(feet)	(feet)	8015 (μg/l)	(GC/MS) (μg/l)	Benzene (µg/l)	Toluene	benzene	Xylenes	(8021B)	(8260B)		
		(1001)	(1002)	(Icci)	(1007)	(μg/1)	(μg/1)	(μg/1)	(μg/l)	(μg/l)	(µg/l)	(μg/l)	(μg/l)		
	continued 004 366.98	79.45	0.00	287.53	-0.02		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		150		
3/17/20			0.00	287.62					ND<0.50		ND<1.0		830		
6/15/20			0.00	288.77						ND<0.50			2800		
9/20/20			0.00	287.80			540		ND<0.50		ND<1.0		1400		
	05 366.98		0.00	296.29			460		ND<0.50		ND<1.0		1400		
3/15/20			0.00	301.39			540		ND<0.50		ND<1.0	~~	2500		
6/28/20			0.00	300.83			630	ND<0.50			ND<1.0		3900		
9/28/20			0.00	296.85			730	3.1	ND<0.50	ND<0.50	ND<1.0 ND<2.5		2100		
	06 366.98		0.00	303.69			180	3.1 ND<0.50	ND<0.50		ND<0.50				
3/19/20			0.00	309.46									1400		
			0.00				740	ND<2.5	ND<2.5	ND<2.5	ND<2.5		990		
6/15/20				300.19			1400	ND<5.0	ND<5.0	ND<5.0	ND<5.0		1900		
9/24/20			0.00	297.34			1100	ND<10	ND<10	ND<10	ND<10		900		
	007 366.98		0.00	306.64			240	ND<0.50	0.63	ND<0.50	ND<1.0		560		
3/25/20			0.00	306.13			620	ND<5.0	ND<5.0	ND<5.0	ND<10		910		
6/6/200			0.00	305.88			830	ND<5.0	ND<5.0	ND<5.0	ND<10		1000	•	
9/5/200			0.00	293.88			200		ND<0.50		ND<1.0		590		
12/8/20	08 366.98	71.60	0.00	295.38	1.50		180			ND<0.50	ND<1.0		300		
3/26/20		64.10	0.00	302.88	7.50		180	ND<0.50	ND<0.50	ND<0.50	ND<1.0		330		
6/22/20	09 366.98														Paved over
MW-1B			(Scre	en Interva	l in feet: 80.	0-82.0)									
9/1/200	9 369.28	79.78	0.00	289.50			230	ND<0.50	ND<0.50	ND<0.50	ND<1.0		220		
12/17/20	009 369.28	79.50	0.00	289.78	0.28		130	ND<0.50	ND<0.50	ND<0.50	ND<1.0		230		
2/4/201	0 369.28	79.56	0.00	289.72	-0.06		130	ND<0.50	ND<0.50	ND<0.50	ND<1.0		370		
7376								Page 3	3 of 30						ATPC

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
December 1987 Through June 2010
76 Station 7376

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G	TPH-G	70	m 1	Ethyl-	Total	MTBE	MTBE	Comments
	(feet)	(feet)	(feet)	(feet)		8015	(GC/MS)	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
			(1661)	(1661)	(feet)	(μg/l)	(μg/l)	(μg/l)	(µg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	
MW-1B 6/18/20			0.00	291.11	1.39		200	ND<0.50	ND<0.50	ND<0.50	ND<1.0		330	
MW-2			(Scre	en Interva	l in feet:)									
12/8/19	87					1800		910	800	260	1200			Damaged
12/7/19	94			·										
3/1/199)5													Destroyed
MW-2B			(Scre	en Interva	l in feet: 65.	0-85.0)								
3/1/199	365.05	80.80	0.00	284.25		ND		ND	ND	ND	ND			
6/1/199	365.05	75.69	0.00	289.36	5.11	350		19	5.8	ND	7.7			
9/6/199	365.05	77.54	0.00	287.51	-1.85	ND		90	ND	ND	ND			
12/12/19	95 365.05	75.96	0.00	289.09	1.58	1200		630	ND	15	57			
3/1/199	96 365.05	73.27	0.00	291.78	2.69	1000		620	ND	ND	5.3	4300		
6/15/19	96 365.05	73.21	0.00	291.84	0.06	910		350	ND	ND	ND	3700		
9/18/19	96 365.05	81.08	0.00	283.97	-7.87	1200		95	ND	ND	ND	5200		
12/21/19	96 365.05	77.35	0.00	287.70	3.73	330		57	ND	ND	ND	2900		
3/7/199	365.05	69.67	0.00	295.38	7.68	190		28	0.64	ND	1.5	4300		
6/27/19	97 365.05	82.40	0.00	282.65	-12.73	98		3.4	1.0	0.53	ND	3100		
9/29/19	97 365.05	82.72	0.00	282.33	-0.32	ND		ND	ND	ND	ND	3000		
12/15/19	997 365.05	82.57	0.00	282.48	0.15	54		ND	ND	ND	ND	4100		
3/16/19	98 365.05	69.13	0.00	295.92	13.44	ND		17	ND	ND	ND	4400		
6/26/19	98 365.05	77.78	0.00	287.27	-8.65	ND		ND	ND	ND	ND	4000		
8/18/19	98 365.05	83.99	0.00	281.06	-6.21									
9/22/19	98 365.05	83.89	0.00	281.16	0.10	ND		ND	ND	ND	21	4600		
12/15/19	998 365.05	82.84	0.00	282.21	1.05	ND		ND	ND	ND	ND	5100	~~	

⊘TRC

Page 4 of 30

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
December 1987 Through June 2010

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(µg/l)	(μg/l)	
MW-2B														
12/23/199	98 365.05	82.55	0.00	282.50	0.29									
3/15/199	9 365.05	77.31	0.00	287.74	5.24	ND		ND	ND	ND	ND	4300	4800	
3/23/199	9 365.05	77.06	0.00	287.99	0.25								***	
6/7/1999	9 365.05	82.96	0.00	282.09	-5.90	ND		ND	ND	ND	ND	5100		
9/3/1999	9 365.05	84.16	0.00	280.89	-1.20	ND		ND	ND	ND	ND	6300	4400	
12/6/199	9 365.05	84.41	0.00	280.64	-0.25	ND		ND	ND	ND	ND	4400		
3/10/200	00 365.05	82.42	0.00	282.63	1.99	ND		ND	ND	ND	ND	6900		
6/8/2000	0 365.05	82.73	0.00	282.32	-0.31	ND		ND	ND -	ND	ND	7780	***	
9/25/200	00 365.05	84.24	0.00	280.81	-1.51	52.9		8.83	6.58	0.932	5.60	12200		
12/19/200	00 365.05	84.39	0.00	280.66	-0.15	ND		ND	ND	ND	ND	6000		
3/5/200	1 365.05	84.61	0.00	280.44	-0.22	ND		ND	ND	ND	ND	5890		
6/14/200	1 365.05	83.53	0.00	281.52	1.08	ND		ND	ND	ND	ND	6600		
9/17/200	1 365.05	84.55	0.00	280.50	-1.02	ND<200		ND<2.0	ND<2.0	ND<2.0	ND<2.0	5100		
9/25/200	1 365.05													Inaccessible
12/17/200	01 365.05													Dry well
3/15/200	2 365.05													Inaccessible
6/20/200	2 365.05													Dry well
9/27/200	2 365.05													Dry well
12/30/200	02 365.05													Dry well
3/26/200	365.05							· 						Dry well
6/10/200	365.05	83.17	0.00	281.88			ND<5000	ND<50	ND<50	ND<50	ND<100	6400		
9/9/2003	3 365.05	84.56	0.00	280.49	-1.39					***				car parked on well
12/10/200	03 365.05									** ***				Dry well
								~ -						

OTRC

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
December 1987 Through June 2010
76 Station 7376

Date Sampled l	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015	TPH-G (GC/MS)	Dangana	Taluana	Ethyl-	Total	MTBE	MTBE	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	0013 (μg/l)	(GC/MS) (μg/l)	Benzene (µg/l)	Toluene (μg/l)	benzene (μg/l)	Xylenes (μg/l)	(8021B) (μg/l)	(8260B) (μg/l)	
MW-2B	continue	ď												 1700 V 1700 V
3/9/2004			0.00	280.92			ND<5000	ND<50	ND<50	ND<50	ND<100		5200	
6/21/200	4 365.05	83.71	0.00	281.34	0.42		3400	ND<25	ND<25	ND<25	ND<50		4600	
9/8/2004	4 365.05													Dry well
12/14/200	04 365.05													Dry well
3/17/200	5 365.05	79.55	0.00	285.50			ND<5000	ND<0.50	ND<0.50	0.83	ND<1.0		7800	
6/15/200	5 365.05	76.89	0.00	288.16	2.66		ND<5000	ND<0.50	ND<0.50	ND<0.50	ND<1.0		6400	
9/20/200	5	83.24	0.00				3200	ND<12	ND<12	ND<12	ND<25		6000	Casing elevation modified on 6/22/05
12/29/200)5													Car parked over well
3/15/200	6	64.03	0.00				ND<5000	ND<50	ND<50	ND<50	ND<100		5700	
6/28/200	6	61.22	0.00				3000	ND<5.0	ND<5.0	ND<5.0	ND<10		11000	
9/28/200		66.35	0.00				3100	ND<10	ND<10	ND<10	ND<10		9800	
12/11/200	06	61.20	0.00				330	1.3	ND<0.50	1.9	1.6		10000	•
3/19/200	7	55.75	0.00				8600	ND<25	ND<25	ND<25	ND<25		11000	
6/15/200	7	65.21	0.00				4700	ND<10	ND<10	ND<10	ND<10		9300	
9/24/200	7	63.41	0.00											LPH in casing well
12/27/200	07	58.75	0.00				1500	0.66	1.2	0.64	1.5		7900	
3/25/200	8	59.27	0.00				ND<5000	ND<50	ND<50	ND<50	ND<100		5700	
6/6/2008	8	59.50	0.00				6400	ND<50	ND<50	ND<50	ND<100		7400	
9/5/2008	8	73.50	0.00				2200	ND<10	N:D<10	ND<10	ND<20		4000	
12/8/200	98	69.99	0.01				3100	ND<25	ND<25	ND<25	ND<50		4200	LPH in well
3/26/200	9	62.48	0.00				630	18	ND<6.2	6.5	19		5200	
6/22/200	9													Paved over

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
December 1987 Through June 2010

Date Sampled I		Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	$(\mu g/l)$	$(\mu g/l)$	$(\mu g/l)$	(μg/l)	(μg/l)	(µg/l)	
MW-2C			(Scre	en Interva	l in feet: 80.	0-82.0)								The state of the s
9/1/2009	368.48													Dry
12/17/200	9 368.48													Dry
2/4/2010	368.48													Dry
6/18/201	0 368.48	77.20	0.00	291.28			ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		11	
MW-3			(Scre	en Interva	l in feet: 76.:	5-96.5)								
12/8/198	7					24000	***	2600	1300	160	660			
12/7/199	4 367.01	85.54	0.00	281.47		ND		ND	ND	ND	ND			
3/1/1995	367.01	83.20	0.00	283.81	2.34	ND		ND	1.1	ND	1.1			
6/1/1995	367.01	77.60	0.00	289.41	5.60	62		7.8	0.90	ND	1.6			
9/6/1995	367.01	79.28	0.00	287.73	-1.68	4100		380	490	130	710			
12/12/199	95 367.01	77.73	0.00	289.28	1.55	19000		600	380	2100	5300			
3/1/1996	367.01	75.18	0.00	291.83	2.55	3400		950	3.2	1900	290	59		
6/15/199	6 367.01	75.13	0.00	291.88	0.05	780		190	8.8	3.8	4.0	630		
9/18/199	6 367.01	82.84	0.00	284.17	-7.71	2800		340	12	11	110	2500		
12/21/199	96 367.01	79.29	0.00	287.72	3.55	51		1.3	ND	ND	0.53	20		
3/7/1997	7 367.01	71.58	0.00	295.43	7.71	1400		53	14	29	68	220		
6/27/199	7 367.01	83.27	0.00	283.74	-11.69	ND		ND	ND	ND	ND	27		
9/29/199	7 367.01	83.33	0.00	283.68	-0.06	ND		ND	ND	ND	ND	11		
12/15/199	97 367.01	83.35	0.00	283.66	-0.02	ND		ND	ND	ND	ND	19		
3/16/199	8 367.01	71.07	0.00	295.94	12.28	130	****	6.5	1.9	1.5	1.6	210		
6/26/199	8 367.03	79.65	0.00	287.38	-8.56	400	,	15	ND	ND	1.9	490		
8/18/199	8 367.03	83.29	0.00	283.74	-3.64	:-				No. coa				
9/22/199	8 367.03	83.33	0.00	283.70	-0.04	ND		ND	ND	ND	ND	24		

OTRO

Page 7 of 30

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
December 1987 Through June 2010

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	water Elevation		TPH-G 8015	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	
MW-3	continued													
	998 367.03			283.74		ND		ND	ND	ND	ND	18		
	998 367.03			283.75	0.01			·						
3/15/19				287.84	4.09	26000		3100	270	2200	3100	1300		
3/23/19		78.92		288.11	0.27				'					
6/7/199	99 367.03	83.22	0.00	283.81	-4.30	ND		ND	ND	0.63	ND	29		
9/3/199	99 367.03	83.31	0.00	283.72	-0.09	23000		770	ND	980	6400	280	82.4	
12/6/19	99 367.03	83.41	0.00	283.62	-0.10	41000		3200	3500	1300	8300	ND		
3/10/20	00 367.03	83.23	0.00	283.80	0.18	5100		340	ND	97	450	200		
6/8/200	00 367.03	83.22	0.00	283.81	0.01	1200		52.0	ND	41.7	356	55.8		
9/25/20	00 367.03	83.37	0.00	283.66	-0.15	3400		305	ND	25.4	512	137	'	
12/19/20	000 367.03	83.27	0.00	283.76	0.10	6800		260	ND	120	950	130		
3/5/200	367.03	83.34	0.00	283.69	-0.07	16800		1100	48.6	637	4260	224		
6/14/20	01 367.03	83.39	0.00	283.64	-0.05	1800		260	ND	5.5	25	83		
9/17/20	01 367.03	84.10	0.00	282.93	-0.71	ND<50		0.50	ND<0.50	ND<0.50	ND<0.50	71		
9/25/20	01 367.03	84.23	0.00	282.80	-0.13									
12/17/20	001 367.03	83.32	0.00	283.71	0.91	1800		120	ND<5.0	45	270	80	91	
3/15/20	02 367.03	83.27	0.00	283.76	0.05	15000		160	ND<50	140	4400	ND<250		
6/20/20	02 367.03	83.74	0.00	283.29	-0.47		3700	98	0.69	4.0	2.3		92	
9/27/20	02 367.03	84.20	0.00	282.83	-0.46		210	ND<0.50	ND<0.50	ND<0.50	ND<1.0		67	
12/30/20	002 367.03	83.24	0.00	283.79	0.96		5900	320	ND<5.0	80	1500		160	
3/26/20	03 367.03	83.27	0.00	283.76	-0.03		7200	95	6.3	140	1500		130	
6/10/20	03 367.03	83.59	0.00	283.44	-0.32		360	2.1	ND<0.50	1.1	1.0		54	
9/9/200	367.01	83.75	0.00	283.26	-0.18		220	ND<0.50	ND<0.50	ND<0.50	ND<1.0		63	

⊘TRC

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
December 1987 Through June 2010
76 Station 7376

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G	TPH-G	70		Ethyl-	Total	MTBE	MTBE	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	8015 (μg/l)	(GC/MS) (μg/l)	Benzene (μg/l)	Toluene (μg/l)	benzene	Xylenes	(8021B)	(8260B)	
			(1001)	(1001)	(1001)	(481)	(μg/1)	(μg/1)	(µg/I)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	
	continued 003 367.01		0.00	283.80	0.54		980	32	ND<1.0	7.0	160		90	
3/9/200			0.00	283.78			1300	4.2	0.67	6.4	91		83	
6/21/20			0.00	283.70			96	ND<0.50	0.62	ND<0.50	ND<1.0		59	
9/8/200			0.00	283.20			170	ND<0.50	ND<0.50	ND<0.50	ND<1.0		82	
12/14/20			0.00	283.81		· 	1800	44	0.83	22	310		120	
3/17/20		81.33	0.00	285.68			11000	110	1.3	38	1100		57	
6/15/20	*		0.00	288.70			910	0.92	ND<0.50	1.0	ND<1.0		59	
9/20/20		83.28	0.00	283.73			94	ND<0.50	ND<0.50	ND<0.50	ND<1.0		150	
12/29/20	005 367.01	70.73	0.00	296.28	12.55		2100	27	ND<0.50	91	260		64	
3/15/20	06 367.01	65.91	0.00	301.10	4.82		860	7.5	ND<0.50	3.3	ND<1.0		98	
6/28/20	06 367.01	66.16	0.00	300.85	-0.25		2200	430	14	25	17		380	
9/28/20	06 367.01	70.15	0.00	296.86	-3.99		410	110	ND<0.50	0.52	ND<0.50		79	
12/11/20	006 367.01	63.33	0.00	303.68	6.82		370	14	ND<0.50	ND<0.50	ND<0.50		70	
3/19/20	07 367.01	57.35	0.00	309.66	5.98		820	4.2	ND<0.50	ND<0.50	0.88		69	
6/15/20	07 367.01	66.79	0.00	300.22	-9.44		1500	130	1.3	7.8	8.8		400	
9/24/20	07 367.01	69.70	0.00	297.31	-2.91		330	1.1	ND<0.50	ND<0.50	ND<0.50		51	
12/27/20	007 367.01	60.35	0.00	306.66	9.35		210	0.54	0.98	ND<0.50	1.4		52	
3/25/20	08 367.01	60.87	0.00	306.14	-0.52		1500	69	ND<0.50	41	55		840	
6/6/200)8 367.01	61.14	0.00	305.87	-0.27		1300	58	ND<5.0	ND<5.0	ND<10		840	
9/5/200)8 367.01	73.10	0.00	293.91	-11.96		380	74	1.2	1.3	3.8		170	
12/8/20	08 367.01	71.65	0.00	295.36	1.45		120	1.8	ND<0.50	ND<0.50	ND<1.0		31	
3/26/20	09 367.01	64.12	0.00	302.89	7.53		490	0.84	0.53	ND<0.50	ND<1.0		33	
6/22/20	09 367.01													Paved over

Table 2 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS December 1987 Through June 2010

Date Sampled I	TOC Elevation	Depth to Water	LPH Thickness		Change in Elevation	TPH-G 8015	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	
MW-3B			(Scre	en Interva	ıl in feet: 80.	0-82.0)								 ***************************************
9/1/2009	369.85	·	`											Dry
12/17/200	9 369.85	;												Dry
2/4/2010	369.85	·												Dry
6/18/2010	0 369.85	78.83	0.00	291.02	2		86	11	7.9	2.2	11		28	
MW-4			(Scre	en Interva	ıl in feet: 73.	0-93.0)								
9/18/1996	6 369.03	73.67	0.00	295.36	·	160		14	ND	ND	1.6	ND		
12/21/199	6 369.03	77.69	0.00	291.34	-4.02	ND		ND	ND	ND	ND	ND		
3/7/1997	369.03	68.04	0.00	300.99	9.65	ND		1.9	0.99	ND	1.5	ND		
6/27/199	7 369.03	79.06	0.00	289.97	-11.02	ND		ND	ND	ND	ND	ND		
9/29/199	7 369.03	85.83	0.00	283.20	-6.77	ND		ND	ND	ND	ND	ND		
12/15/199	7 369.03	87.26	0.00	281.77	7 -1.43	ND		ND	ND	ND	ND	ND		
3/16/199	8 369.03	75.09	0.00	293.94	12.17	ND		ND	0.69	ND	0.82	ND		
6/26/199	8 368.81	73.81	0.00	295.00	1.06	100		62	ND	ND	ND	ND		
8/18/199	8 368.81	78.75	0.00	290.06	-4 .94									
9/22/199	8 368.81	83.95	0.00	284.86	5 -5.20	ND		ND	ND	ND	ND	2.8		
12/15/199	8 368.81	85.41	0.00	283.40	-1.46	ND		ND	ND	ND	ND	ND		
12/23/199	98 368.81	84.95	0.00	283.86	0.46									
3/15/1999	9 368.81	78.47	0.00	290.34	6.48	ND		ND	ND	ND	ND	ND ·		
3/23/199	9 368.81	77.37	0.00	291.44	1.10									
6/7/1999	368.81	76.60	0.00	292.21	0.77	ND		ND	ND	ND	ND	ND		
9/3/1999	368.81	87.23	0.00	281.58	-10.63	ND		ND	ND	ND	ND	ND	ND	
12/6/199	9 368.81	92.23	0.00	276.58	-5.00	ND		ND	ND	ND	ND	ND		
3/10/200	0 368.81	88.54	0.00	280.27	7 3.69	ND		ND	ND	ND	ND	ND		
7376								Page 10	of 30					PTPC

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
December 1987 Through June 2010

Date Sampled l		Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)		Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(μg/l)	(µg/l)	$(\mu g/l)$	(µg/l)	(μg/l)	$(\mu g/l)$	(μg/l)		
MW-4	continued														
6/8/2000	0 368.81	86.98	0.00	281.83	1.56	ND		ND	ND	ND	ND	ND			
9/25/200	00 368.81														Dry well
12/19/200	00 368.81							~-		·					Dry well
3/5/2001	1 368.81													•	Dry well
6/14/200	1 368.81														Dry well
9/17/200	1 368.81														Dry well
9/25/200	1 368.81														Dry well
12/17/200	01 368.81														Dry well
3/15/200	2 368.81			-											Dry well
6/20/200	2 368.81														Dry well
9/27/200	2 368.81				~~										Dry well
12/30/200	02 368.81														Dry well
3/26/200	368.81														Dry well
6/10/200	368.81	89.76	0.00	279.05			ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0		
9/9/2003	3 368.81	89.47	0.00	279.34	0.29		ND<50	ND<0.50	0.80	ND<0.50	ND<1.0		ND<2.0		
12/10/200	03 368.81	90.44	0.00	278.37	-0.97		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0		
3/9/2004	4 368.81	84.89	0.00	283.92	5.55		ND<50	4.2	0.59	2.0	1.3		ND<2.0		
6/21/200	368.81	81.90	0.00	286.91	2.99		ND<50	ND<0.50	0.68	ND<0.50	ND<1.0		ND<0.50		
9/8/2004	4 368.81	86.45	0.00	282.36	-4.55		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50		
12/14/200	04 368.81	89.95	0.00	278.86	-3.50		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50		
3/17/200	368.81	78.86	0.00	289.95	11.09		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50		
6/15/200	368.81	73.07	0.00	295.74	5.79		ND<50	0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50		
9/20/200)5 368.81	79.83	0.00	288.98	-6.76		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50		

∂TRC

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
December 1987 Through June 2010
76 Station 7376

Date	TOC	Depth to	LPH		Change in									Comments
Sampled	Elevation	Water	Thickness	water Elevation	Elevation	TPH-G	TPH-G	_		Ethyl-	Total	MTBE	MTBE	
	(6.4)	(C ()	· (C)			8015	(GC/MS)	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
***************************************	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	NAME OF THE PARTY
	continued													
	005 368.81			294.73			ND<50		ND<0.50		ND<1.0		ND<0.50	
3/15/20				306.36			ND<50		ND<0.50		ND<1.0		ND<0.50	
6/28/20	06 368.81	61.87	0.00	306.94	0.58		ND<50	2.9		ND<0.50			ND<0.50	
9/28/20	06 368.81	70.81	0.00	298.00	-8.94		ND<50	0.53	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
12/11/20	006 368.81	64.10	0.00	304.71	6.71		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
3/19/20	07 368.81	60.37	0.00	308.44	3.73		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
6/15/20	07 368.81	62.13	0.00	306.68	-1.76		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
9/24/20	07 368.81	71.59	0.00	297.22	-9.46		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
12/27/20	007 368.81	62.18	0.00	306.63	9.41		ND<50	ND<0.50	1.1	ND<0.50	1.5		ND<0.50	
3/25/20	08 368.81	55.19	0.00	313.62	6.99		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
6/6/200	368.81	58.98	0.00	309.83	-3.79		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
9/5/200	08 368.81	69.95	0.00	298.86	-10.97		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	•
12/8/20	08 368.81	73.10	0.00	295.71	-3.15		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
3/26/20	09 368.81	62.10	0.00	306.71	11.00		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
6/22/20	09 368.81	68.55	0.00	300.26	-6.45		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
9/1/200	09 371.58	81.18	0.00	290.40	-9.86						***	~~		Sampled Q2 and Q4 only
12/17/20		84.23	0.00	287.35	-3.05		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	- · · · · · · · · · · · · · · · · · · ·
2/4/20				289.94										Sampled Q2 and Q4 only
6/18/20				297.22			ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
						0.74.0)								
MW-5 9/18/19	96 363.23	64.20	•	en Interva 299.03	l in feet: 52.	0-72.0) 36000		6700	410	730	6500	4100		
	996 363.23			301.46		25000	JE 100	3200	300	780	3600	2600		
3/7/19				306.93		14000		1300	120	410	1200	1700		
	91 303. 23	, 30.30		300.93	J.4/	14000				410	1200	1/00		manife States
7376								Page 1	2 of 30	•				€ TRC

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
December 1987 Through June 2010
76 Station 7376

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(θ2θθΒ) (μg/l)	
MW-5	continued													
6/27/19	97 363.23	68.88	0.90	295.02	-11.91								~~	Not sampled-LPH in well
9/29/19	97 363.23	69.47	0.35	294.02	-1.00									Not sampled-LPH in well
12/15/19	997 363.23	64.92	0.30	298.54	4.51				***					Not sampled-LPH in well
3/16/19	98 363.23	49.63	0.09	313.67	15.13									Not sampled-LPH in well
6/26/19	98 363.21	64.13		299.08	-14.59	490		6.3	2.8	4.2	5.1	10		
8/18/19	98 363.21	70.40	0.01	292.81	-6.27									
9/22/19	98 363.21	69.10	0.06	294.15	1.34									Not sampled-LPH in well
12/15/19	998 363.21	68.84	0.17	294.50	0.34									Not sampled-LPH in well
12/23/19	998 363.21	68.42	0.50	295.16	0.67									
3/15/19	99 363.21	63.81	0.25	299.59	4.42									·
3/23/19	99 363.21	63.59	0.13	299.72	0.13									
6/7/199	99 363.21	68.25	0.82	295.57	-4.14	210000		6700	3700	5000	20000	11000	4000	
9/3/199	99 363.21	69.38	0.70	294.35	-1.22									Not sampled-LPH in well
12/6/19	99 363.21	70.02	0.82	293.80	-0.55									Not sampled-LPH in well
3/10/20	00 363.21	64.56	0.64	299.13	5.33									Not sampled-LPH in well
6/8/200	00 363.21	66.47	0.51	297.12	-2.01									Not sampled-LPH in well
9/25/20	00 363.21	69.02	0.60	294.64	-2.48									Not sampled-LPH in well
12/19/20	000 363.21	68.31	0.14	295.01	0.36									Not sampled-LPH in well
3/5/200	01 363.21	64.19	0.08	299.08	4.07									Not sampled-LPH in well
6/14/20	01 363.21	64.02	0.11	299.27	0.19									Not sampled-LPH in well
9/17/20	01 363.21	72.07	0.04	291.17	-8.10									Not sampled-LPH in well
9/25/20	01 363.21	72.17	0.03	291.06	-0.11									Not sampled-LPH in well
12/17/20	001 363.21	72.11	0.03	291.12	0.06									Not sampled-LPH in well

⊕TRO

Page 13 of 30

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
December 1987 Through June 2010
76 Station 7376

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(θ2θθΒ) (μg/l)	
MW-5	continued													
3/15/20	02 363.21	66.93	0.22	296.45	5.32							·		Not sampled-LPH in well
6/20/20	02 363.21	69.71	0.42	293.82	-2.63									Not sampled-LPH in well
9/27/20	02 363.21	72.07	0.00	291.14	-2.68									Not enough water to sample
12/30/20	002 363.21	71.91	0.00	291.30	0.16									Not enough water to sample
3/26/20	03 363.21	67.55	0.15	295.77	4.47									Not sampled-LPH in well
6/10/20	03 363.21	69.34	0.12	293.96	-1.81			-						Not sampled-LPH in well
9/9/200	363.21	68.97	0.00	294.24	0.28		***							LPH in well
12/10/20	003 363.21													Dry well
3/9/200	04 363.21	66.03	0.00	297.18			19000	7300	370	910	890		1400	
6/21/20	04 363.21	67.50	0.00	295.71	-1.47		13000	3700	220	710	660		1900	
9/8/200	04 363.21	70.62	0.02	292.61	-3.10									LPH in well
12/14/20	004 363.21									M 641				Dry well
3/17/20	05 363.21	65.88	0.02	297.35										LPH in well
6/15/20	05 363.21	63.20	0.02	300.02	2.68									LPH in well
9/20/20	05 363.21	66.74	0.01	296.48	-3.55									LPH in well
12/29/20	005 363.21	64.04	0.01	299.18	2.70									LPH in well
3/15/20	06 363.21	57.95	0.01	305.27	6.09									LPH in well
6/28/20	06 363.21	57.33	0.02	305.90	0.63									LPH in well
9/28/20	06 363.21	60.65	0.01	302.57	-3.33		<u></u>				:			LPH in well
12/11/20	006 363.21	56.92	0.02	306.30	3.74	<u></u>								LPH in well
3/19/20	07 363.21	52.37	0.00	310.84	4.54		16000	620	31	330	320		1600	
6/15/20	07 363.21	55.70	0.00	307.51	-3.33	-	13000	1400	37	430	180		4400	
9/24/20	07 363.21	61.14	0.00	302.07	-5.44		17000	1500	34	490	130		4000	

@TRC

Page 14 of 30

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
December 1987 Through June 2010

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness		Change in Elevation	TPH-G 8015	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	
MW-5	continued													
12/27/20	07 363.21	54.95	0.00	308.26	6.19		6500	1100	31	300	110		1400	
3/25/200	08 363.21	52.33	0.00	310.88	2.62		14000	950	20	310	76		2600	
6/6/200	8 363.21	54.12	0.00	309.09	-1.79		14000	1800	27	380	92		4900	
9/5/200	8 363.21	62.72	0.00	300.49	-8.60		13000	1800	40	470	130		3700	
12/8/200	08 363.21	64.14	0.00	299.07	-1.42		14000	3000	70	560	160		3,800	
3/26/200	09 363.21	58.55	0.00	304.66	5.59		19000	2700	57	630	170		2700	
6/22/200	09 363.21	63.90	0.00	299.31	-5.35		16000	2700	75	630	160		5000	
9/1/200	9 366.04	69.38	0.00	296.66	-2.65		49000	1900	78	1400	260		2500	
12/17/20	09 366.04	- -								***				Dry
2/4/201	0 366.04	·												Dry
6/18/20	10 366.04	66.34	0.00	299.70						•••				Trace of LPH in bailer
MW-6			(Scre	en Interva	l in feet: 68.	0-88.0)							4.	
9/18/199	96 363.12	79.07	0.00	284.05		160		5.4	ND	ND	ND	ND		
12/21/19	96 363.12	75.40	0.00	287.72	3.67	300		96	1.3	ND	1.7	21	`	
3/7/199	7 363.12	67.61	0.00	295.51	7.79	1800		. 920	18	ND	31	290		
6/27/199	97 363.12	80.45	0.00	282.67	-12.84	ND		0.73	ND	ND	38	38		
9/29/19	97 363.12	86.02	0.00	277.10	-5.57	62		ND	ND	ND	ND	43		
12/15/19	97 363.12	84.03	0.00	279.09	1.99	78		ND	ND	ND	ND	39		
3/16/199	98 363.12	67.15	0.00	295.97	16.88	210		36	2.5	ND	3.0	64		
6/26/199	98 363.13	75.71	0.00	287.42	-8.55	530		300	8.3	2.8	8.7	81		
8/18/19	98 363.13	74.86	0.00	288.27	0.85									
9/22/19	98 363.13													Unable to locate
12/15/19	98 363.13													Unable to locate
								Page 14	of 30					

OTRC

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
December 1987 Through June 2010
76 Station 7376

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water	Change in Elevation	TDILO	TDU			Dd 1) (MD)) (m)		Comments
Sumpred	Biovation	Water	Timekiiess	Elevation		TPH-G 8015	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)		
	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(θ2θθΒ) (μg/l)		
MW-6	continued						•					***************************************		*	
	998 363.13	80.80	0.00	282.33		120		1.1	ND	ND	0.78	25			
1/23/19	99 363.13	80.68	0.00	282.45	0.12	ND									
3/15/19	99 363.13	75.29	0.00	287.84	5.39	62		1.4	ND	ND	ND	23			
3/23/19	99 363.13	75.03	0.00	288.10	0.26										
6/7/199	99 363.13	82.27	0.00	280.86	-7.24	ND		ND	ND	ND	ND	18			
9/3/199	99 363.13	87.49	0.00	275.64	-5.22										Dry well
12/6/19	99 363.13														Dry well
3/10/20	00 363.13	85.61	0.00	277.52		ND		ND	ND	ND	ND	64			
6/8/200	00 363.13	87.36	0.00	275.77	-1.75				~~	=				•	Dry well
9/25/20	00 363.13														Dry well
12/19/20	000 363.13	87.73		275.40											Dry well
3/5/200	01 363.13	87.82		275.31	-0.09										Dry well
6/14/20	01 363.13	87.69	0.00	275.44	0.13										Dry well
9/17/20	01 363.13	87.70	0.00	275.43	-0.01										Dry well
9/25/20	01 363.13														Dry well
12/17/20	001 363.13	87.74	0.00	275.39											Dry well
3/15/20	02 363.13	87.72	0.00	275.41	0.02										Dry well
6/20/20	02 363.13	87.79	0.00	275.34	-0.07						 .				Dry well
9/27/20	02 363.13														Dry well
12/30/20	002 363.13	·													Dry well
3/26/20	03 363.13	87.67	0.00	275.46	·										Dry well
6/10/20	03 363.13	87.13	0.00	276.00	0.54										Dry well
9/9/20	03 363.13	87.29	0.00	275.84	-0.16									Not	enough water to sample

OTRC

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
December 1987 Through June 2010
76 Station 7376

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(µg/l)	(μg/l)	(µg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	
	continued 003 363.13							****						Dry well
3/9/200			0.00	279.60			ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		37	
6/21/20	04 363.13	3												Dry well
9/8/200	363.13	3												Dry well
12/14/20	004 363.13	3												Dry well
3/17/20	05 363.13	3 77.58	0.00	285.55			79	0.67	ND<0.50	ND<0.50	ND<1.0		23	
6/15/20	05 363.13	3 74.44	0.00	288.69	3.14		ND<50	0.51	ND<0.50	ND<0.50	ND<1.0		18	
9/20/20	05	81.92	0.00				ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		13	Casing elevation modified on 6/22/05
12/29/20	005	67.19	0.00				53	ND<0.50	ND<0.50	ND<0.50	ND<1.0		29	
3/15/20	06	61.88	0.00				ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		27	
6/28/20	06	62.52	0.00				ND<50	2.0	0.74	0.73	1.4		12	
9/28/20	06	66.54	0.00				82	0.58	ND<0.50	ND<0.50	ND<0.50		9.7	
12/11/20	006	59.64	0.00				59	ND<0.50	ND<0.50	ND<0.50	ND<0.50		11	
3/19/20	07	53.75	0.00				ND<50	1.1	ND<0.50	ND<0.50	ND<0.50		22	
6/15/20	07	63.00	0.00				82	ND<0.50	ND<0.50	ND<0.50	ND<0.50		13	
9/24/20	07	66.10	0.00				110	ND<0.50	1.2	ND<0.50	0.85		8.8	
12/27/20	007	56.75	0.00				ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		8.4	
3/25/20	08	57.16	0.00				ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		3.6	
6/6/200)8	57.50	0.00				ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		6.3	
9/5/200)8	69.45	0.00				230	0.92	ND<0.50	ND<0.50	1.2		13-	
12/8/20	08	67.95	0.00				ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		9.2	
3/26/20	09	60.20	0.00	***	***	INV AND	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1:0		3.2	

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
December 1987 Through June 2010

Date Sampled		Depth to Water	LPH Thickness	water	Change in Elevation	ТРН-G	TPH-G			Ethyl-	Total	MTBE	MTBE	Comments
				Elevation		8015	(GC/MS)	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
*******	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(µg/l)	(μg/l)	(μg/l)	(µg/l)	
MW-6 6/22/200	continued	70.45	0.00				150	1.8	NID~0.50	ND<0.50	ND<1.0		16	
9/1/2009			0.00	278.62				1.0	ND~0.30	ND~0.30	ND~1.0			Sampled Q2 and Q4 only
12/17/200			0.00	287.45		ND<200	53		ND<0.50	ND<0.50	ND<1.0		31	Sampled Q2 and Q4 only
2/4/2010			0.00	287.42		ND~200		ND~0.30	ND~0.30	ND~0.30	111/1.0		31 	Sampled Q2 and Q4 only
6/18/201			0.00	291.32			ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		8.9	Sampled Q2 and Q4 only
	0 300.22	74.50					ND 50	110 (0.50	ND <0.50	1412 (0.50	ND \1.0		0.7	
MW-7 6/26/199	8 355.97	, <u></u>	(Scree	en Interva 	l in feet: 55.	.0-75.0)								
8/18/199			0.00	287.22		4000		1900	48	160	ND	1700		
9/22/199		•	0.00	289.62		3200		1100	ND	22	ND	1500		
	98 355.97		0.00	290.94		1900		180	2.7	2.9	3.8	1400		
	98 355.97 98 355.97		0.00	291.15					2.1	2.9	J.6	1400 		
3/15/199			0.00	295.53		2700		1100	ND	30	16	1400	970	
3/13/199			0.00	295.53		2700				5 0		1400	970 	
6/7/199			0.00	293.34		2600		180	21	ND	13	1200		
9/3/1999			0.00	285.99		870		69	ND	ND	ND	1100	872	
12/6/199			0.00	285.79		1900		350	ND	ND	ND	1100		
3/10/200				288.61		2900		1600	ND	40	54	1100		
6/8/200			0.00	286.16		625		30.8	ND	0.761	0.940	1290		
9/25/200			0.00	285.82		2180		423	ND	ND	ND	1510		
12/19/200			0.00	285.86		5900		1000	ND	ND	ND	1300		
3/5/200			0.00	287.25		13200		5070	195	306	385	1530	***	
6/14/200				285.97		6400		3300	85	96	170	1000		
9/17/200				285.69		11000		3000	ND<50	ND<50	ND<50	750		
2/11/200		70.20	0.00	200.00	00	11000		3000	112 50	1.2 50	112 50	,,,		

⊘TRC

Page 18 of 30

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
December 1987 Through June 2010
76 Station 7376

Date Sampled		Depth to Water	LPH Thickness		Change in Elevation	TPH-G 8015	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(µg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	
	continued													
9/25/200)1 355.97	70.49		285.48	-0.21									
12/17/20	01 355.97	71.35	0.00	284.62	-0.86	5800		1100	ND<10	ND<10	ND<10	760	670	
3/15/200	2 355.97	68.56	0.00	287.41	2.79	2800		850	22	74	39	360	540	
6/20/200	2 355.97	70.01	0.00	285.96	-1.45		9900	3200	23	41	ND<40		390	
9/27/200	2 355.97	71.50	0.00	284.47	-1.49		4200	710	ND<10	ND<10	ND<20		610	
12/30/20	02 355.97	71.25	0.00	284.72	0.25		2400	620	ND<2.5	20	53		500	
3/26/200	355.97	68.79	0.00	287.18	2.46		5300	1800	ND<10	13	ND<20		270	
6/10/200	355.97	69.10	0.00	286.87	-0.31		1300	380	ND<5.0	ND<5.0	ND<10			
9/9/200	3 355.97	70.04	0.00	285.93	-0.94		1900	240	ND<2.5	ND<2.5	ND<5.0		380	
12/10/20	03 355.97	69.98	0.00	285.99	0.06		4500	500	ND<5.0	ND<5.0	ND<10		340	
3/9/200	4 355.97	66.66	0.00	289.31	3.32		5600	1700	11	34	ND<20		280	
6/21/200)4 355.97	67.82	0.00	288.15	-1.16		2300	260	ND<2.5	3.0	ND<5.0		300	
9/8/200	4 355.97	70.05	0.00	285.92	-2.23		1400	72	ND<2.5	ND<2.5	ND<5.0	107.00	440	
12/14/20	04 355.97	70.87		285.10	-0.82		2200	180	ND<1.0	1.8	ND<2.0		320	
3/17/200)5 355.97	63.69	0.00	292.28	7.18		5700	1800	7.8	24	16		190	
6/15/200)5 355.97	59.29	0.00	296.68	4.40		3900	230	ND<2.5	3.7	8.0		280	
9/20/200)5 355.97	64.38	0.00	291.59	-5.09		1200	5.8	ND<5.0	ND<5.0	ND<10	***	260	
12/29/20	05 355.97	57.43	0.00	298.54	6.95		450	1.6	ND<0.50	ND<0.50	ND<1.0		140	
3/15/200	06 355.97	51.92	0.00	304.05	5.51		300	1.4	0.86	ND<0.50	ND<1.0		94	
6/28/200	06 355.97	49.47	0.00	306.50	2.45		770	47	2.4	2.2	1.3		510	•
9/28/200	06 355.97	53.93	0.00	302.04	-4.46		610	13	1.1	0.82	0.66		370	
12/11/20	06 355.97	49.87	0.00	306.10	4.06		180	1.2	ND<0.50	ND<0.50	ND<0.50		180	
3/19/200	07 355.97	45.28	0.00	310.69	4.59		200	0.92	ND<0.50	ND<0.50	ND<0.50		98	

⊘TRC

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
December 1987 Through June 2010

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	water	Change in Elevation	TPH-G	TPH-G			Ethyl-	Total	MTBE	MTBE	Comments
				Elevation		8015	(GC/MS)	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(μg/l)	$(\mu g/l)$	$(\mu g/l)$	$(\mu g/l)$	$(\mu g/I)$	(μg/l)	$(\mu g/l)$	
MW-7	continued													
6/15/20	07 355.97	49.48	0.00	306.49	-4.20		170	1.0	ND<0.50	ND<0.50	0.60		72	
9/24/20	07 355.97	54.05	0.00	301.92	-4.57		590	1.4	ND<0.50	ND<0.50	ND<0.50		330	
12/27/20	007 355.97	47.98	0.00	307.99	6.07		120	ND<0.50	ND<0.50	ND<0.50	ND<1.0		84	
3/25/20	08 355.97	46.00	0.00	309.97	1.98		92	ND<0.50	ND<0.50	ND<0.50	ND<1.0		74	
6/6/200	08 355.97	47.38	0.00	308.59	-1.38		130	ND<0.50	ND<0.50	ND<0.50	ND<1.0		68	
9/5/200)8 355.97	57.79	0.00	298.18	-10.41		320	3.4	ND<0.50	ND<0.50	ND<1.0		240	
12/8/20	08 355.97	56.98	0.00	298.99	0.81		270	ND<0.50	ND<0.50	ND<0.50	ND<1.0		100	
3/26/20	09 355.97	51.35	0.00	304.62	5.63		150	ND<0.50	ND<0.50	ND<0.50	ND<1.0		94	
6/22/20	09 355.97	57.43	0.00	298.54	-6.08		230	3.9	ND<0.50	ND<0.50	ND<1.0		100	
9/1/200	9 358.67	67.95	0.00	290.72	-7.82									Sampled Q2 and Q4 only
12/17/20	009 358.67	66.52	0.00	292.15	1.43	670	2300	6.6	ND<0.50	0.69	1.0		31	
2/4/201	10 358.67	65.53	0.00	293.14	0.99									Sampled Q2 and Q4 only
6/18/20	10 358.67	61.76	0.00	296.91	3.77	ND<200	710	10	ND<0.50	0.62	ND<1.0		62	
MW-8			(Scre	en Interva	I in feet: 66	.0-86.0)								
6/26/19	98 362.37	63.00	0.00	299.37		ND		6.0	ND	ND	ND	150		
8/18/19	98 362.37	73.38	0.00	288.99	-10.38									
9/22/19	98 362.37	70.89	0.00	291.48	2.49	ND		ND	ND	ND	ND	9.5		
12/15/19	998 362.37	70.29	0.00	292.08	0.60	ND		ND	ND	ND	ND	3.0		
12/23/19	998 362.37	70.03	0.00	292.34	0.26									
3/15/19	99 362.37													Unable to locate
3/23/19	99 361.83	64.86	0.00	296.97	·	ND		ND	0.77	ND	0.96	190		
6/7/199	99 361.83	68.30	0.00	293.53	-3.44	ND		ND	ND	ND	ND	ND		·
9/3/199	99 361.83	73.92	0.00	287.91	-5.62	ND		ND	0.57	ND	ND	170	146	
7376								Page 2	0 of 30					OTDC

OTRC

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
December 1987 Through June 2010
76 Station 7376

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness		Change in Elevation	TPH-G 8015	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(µg/l)	(μg/l)	(μg/l)	(μg/l)	
MW-8	continue	đ												
12/6/19	99 361.8	3 74.98	0.00	286.85	-1.06	ND		ND	ND	ND	ND	150		
3/10/20	00 361.8	3 71.54	0.00	290.29	3.44	ND		ND	ND	ND	ND	150		
6/8/200	00 361.8	3 72.60	0.00	289.23	-1.06	ND		ND	ND	ND	ND	42.8		
9/25/20	00 361.8	3 75.31	0.00	286.52	-2.71	ND		ND	ND	ND	ND	227		
12/19/20	000 361.8	3 75.54	0.00	286.29	-0.23	ND		ND	ND	ND	ND	160		
3/5/200	01 361.8	3 75.91	0.00	285.92	-0.37	ND		ND	ND	ND	ND	125		
6/14/20	01 361.8	3 75.51	0.00	286.32	0.40	ND		ND	ND	ND	ND	140		
9/17/20	01 361.8	3 77.19	0.00	284.64	-1.68	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	110		
9/25/20	01 361.8	3 77.17	0.00	284.66	0.02				***					
12/17/20	001 361.8	3 79.94	0.00	281.89	-2.77	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	140	170	
3/15/20	02 361.8	3 76.82	0.00	285.01	3.12	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	72		
6/20/20	02 361.8	3 77.73	0.00	284.10	-0.91		83	ND<0.50	ND<0.50	ND<0.50	ND<1.0		80	
9/27/20	02 361.8	3 78.94	0.00	282.89	-1.21		160	ND<0.50	ND<0.50	ND<0.50	ND<1.0		94	
12/30/20	002 361.8	3 78.21	0.00	283.62	0.73		75	ND<0.50	ND<0.50	ND<0.50	ND<1.0		120	
3/26/20	03 361.8	3 74.34	0.00	287.49	3.87		110	ND<0.50	ND<0.50	ND<0.50	ND<1.0		110	
6/10/20	03 361.8	3 75.17	0.00	286.66	-0.83		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		31	
9/9/200	361.8	3 74.11	0.00	287.72	1.06		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		150	
12/10/20	003 361.8	33 73.59	0.00	288.24	0.52		150	ND<1.0	ND<1.0	ND<1.0	ND<2.0		180	
3/9/200	361.8	33 70.32	0.00	291.51	3.27		130	ND<1.0	ND<1.0	ND<1.0	ND<2.0		180	
6/21/20	04 361.8	33 70.30	0.00	291.53	0.02		150	ND<1.0	ND<1.0	ND<1.0	ND<2.0		200	
9/8/200	361.8	73.83	0.00	288.00	-3.53	. 	300	ND<1.0	ND<1.0	ND<1.0	ND<2.0		350	
12/14/20	004 361.8	3 75.45	0.00	286.38	-1.62		ND<100	ND<1.0	ND<1.0	ND<1.0	ND<2.0		210	
3/17/20	05 361.8	67.85	0.00	293.98	7.60		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		290	

⊕TRC

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
December 1987 Through June 2010

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness		Change in Elevation	TPH-G 8015	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)		Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	θεπzene (μg/l)	Aylenes (μg/l)	(8021B) (μg/l)	(8200B) (μg/l)		
MW-8	continued														
	05 361.83		0.00	299.09	5.11		ND<200	ND<0.50	ND<0.50	ND<0.50	ND<1.0		290		
9/20/20	05	68.11	0.00				180	ND<0.50	ND<0.50	ND<0.50	ND<1.0		310		Casing elevation modified on 6/22/05
12/29/20	005	62.32	0.00				210	ND<0.50	ND<0.50	ND<0.50	ND<1.0		390		
3/15/20	06	56.89	0.00				140	ND<0.50	ND<0.50	ND<0.50	ND<1.0		310		
6/28/20	06	54.53	0.00				190	ND<0.50	ND<0.50	ND<0.50	ND<1.0		550		
9/28/20	06	59.02	0.00				210	ND<0.50	ND<0.50	ND<0.50	ND<0.50		460		
12/11/20	006	55.02	0.00				260	ND<0.50	ND<0.50	ND<0.50	ND<0.50		580		
3/19/20	07	51.00	0.00				340	ND<0.50	ND<0.50	ND<0.50	ND<0.50		480		
6/15/20	07	54.60	0.00				350	ND<0.50	ND<0.50	ND<0.50	ND<0.50		540		
9/24/20	07	58.59					420	ND<0.50	ND<0.50	ND<0.50	ND<0.50		590		
12/27/20	007	53.40	0.00				240	ND<0.50	ND<0.50	ND<0.50	ND<1.0		510		
3/25/20	08	50.96					65	ND<0.50	0.58	ND<0.50	1.1		82		
6/6/200)8	52.66	0.00				400	ND<0.50	ND<0.50	ND<0.50	ND<1.0		550		
9/5/200)8	60.90	0.00			***	240	ND<0.50	ND<0.50	ND<0.50	ND<1.0		590		
12/8/20	08	62.46	0.00				330	ND<0.50	ND<0.50	ND<0.50	ND<1.0		640		
3/26/20	09	56.72					120	ND<0.50	ND<0.50	ND<0.50	ND<1.0	·	510		
6/22/20	09	62.00	0.00				520	ND<5.0	ND<5.0	ND<5.0	ND<10		820		
9/1/200	9 365.07	7 72.23	0.00	292.84											Sampled Q2 and Q4 only
12/17/20	009 365.07	7 71.86	0.00	293.21	0.37	ND<200	240	ND<0.50	ND<0.50	ND<0.50	ND<1.0		430		
2/4/201		7 70.55	0.00	294.52			***							•	Sampled Q2 and Q4 only
6/18/20	10 365.07	7 66.46	0.00	298.61	4.09	ND<200	270	ND<0.50	ND<0.50	ND<0.50	ND<1.0		600		
MW-9			(Scre	en Interva	l in feet:)										

€TRC

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
December 1987 Through June 2010
76 Station 7376

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness		Change in Elevation	TPH-G 8015	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	-	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(μg/l)	(μg/l)	(µg/l)		
MW-9	continue	i													
11/29/19	999 354.8	5 74.50	0.00	280.35											
12/6/19	99 354.8	5 74.35	0.00	280.50	0.15	ND		ND	ND	ND	ND	3.0	2.7		
3/10/20	00 354.8	5 65.94	0.00	288.91	8.41	ND		ND	ND	ND	ND	2.5			
6/8/200	00 354.8	5 70.77	0.00	284.08	-4.83	ND		ND	ND	ND	ND	ND			
9/25/20	00 354.8	5 74.75	0.00	280.10	-3.98	ND		ND	0.516	ND ·	ND	10.5			
12/19/20	000 354.8	5 74.43	0.00	280.42	0.32	ND		ND	ND	ND	ND	ND			
3/5/200	354.8	5 74.63	0.00	280.22	-0.20	ND		ND	ND	ND	ND	ND			
6/14/20	01 354.8	5 74.75	0.00	280.10	-0.12	ND		ND	ND	ND	ND	ND			
9/17/20	01 354.8	5 74.78	0.00	280.07	-0.03	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.5			
9/25/20	01 354.8	5 74.83	0.00	280.02	-0.05										
12/17/20	001 354.8	5 74.80	0.00	280.05	0.03	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0	ND<1.0		
3/15/20	02 354.8	5 74.83	0.00	280.02	-0.03	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.5			
6/20/20	02 354.8	5 74.88	0.00	279.97	-0.05		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		0.75		
9/27/20	02 354.8	5 75.38	0.00	279.47	-0.50		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		3.6		
12/30/20	002 354.8	5 73.33	0.00	281.52	2.05		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		3.2		
3/26/20	03 354.8	5 71.21	0.00	283.64	2.12		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		3.1		
6/10/20	03 354.8	5 71.83	0.00	283.02	-0.62		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0		
9/9/200	362.6	2 71.85	0.00	290.77	7.75		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0		
12/10/20	003 362.6	69.50	0.00	293.12	2.35		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0		
3/9/200	362.6	65.24	0.00	297.38	4.26		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0		
6/21/20	04 362.6	66.52	0.00	296.10	-1.28		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50		
9/8/200	362.6	2 71.36	0.00	291.26	-4.84		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50		
12/14/20	004 362.6	2 71.73	0.00	290.89	-0.37		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50		

€TRC

Table 2 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS December 1987 Through June 2010 **76 Station 7376**

Date	TOC	Depth to	LPH		Change in									Comments
Sampled	Elevation	Water	Thickness	water Elevation	Elevation	TPH-G	TPH-G	_		Ethyl-	Total	MTBE	MTBE	
	(0)	(0)	(2)		40	8015	(GC/MS)	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(μg/l)	(µg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	
	continue													
3/17/20	05 362.6	2 60.42		302.20	11.31		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
6/15/20	05 362.6	2 57.63	0.00	304.99	2.79		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
9/20/20	05 362.6	2 62.99	0.00	299.63	-5.36		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		0.55	
12/29/20	005 362.6	2 55.38	0.00	307.24	7.61		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
3/15/20	06 362.6	2 50.12	0.00	312.50	5.26		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		0.68	
6/28/20	06 362.6	2 47.93	0.00	314.69	2.19		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
9/28/20	06 362.6	2 52.33	0.00	310.29	- 4.40		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		1.1	
12/11/20	006 362.6	2 48.26	0.00	314.36	4.07		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		0.61	
3/19/20	07 362.6	2 43.68	0.00	318.94	4.58		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
6/15/20	07 362.6	2 48.35	0.00	314.27	-4.67		ND<50	ND<0.50	0.50	ND<0.50	0.74		0.59	
9/24/20	07 362.6	2 52.52	0.00	310.10	-4.17		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
12/27/20	007 362.6	2 46.26	0.00	316.36	6.26		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		0.56	
3/25/20	08 362.6	2 44.83	0.00	317.79	1.43		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		0.99	
6/6/200	08 362.6	2 45.88	0.00	316.74	-1.05		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
9/5/200	08 362.6	2 54.63	0.00	307.99	-8.75		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
12/8/20	08 362.6	2 55.44	0.00	307.18	-0.81		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
3/26/20	09 362.6	2 49.68	0.00	312.94	5.76		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
6/22/20	09 362.6	2		·										Unable to locate
9/1/200	9 357.6	7 67.52	0.00	290.15										Sampled Q2 and Q4 only
12/17/20	009 357.6	7 64.95	0.00	292.72	2.57		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		0.95	
2/4/20	10 357.6	7 63.97	0.00	293.70	0.98									Sampled Q2 and Q4 only
6/18/20				297.04	3.34		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		2.1	- · · · ·
MW-10	٠		(Scre	en Interva	l in feet:)									

Page 24 of 30

Table 2 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS

December 1987 Through June 2010

76 Station 7376

Date Sampled H	TOC Elevation	Depth to Water	LPH Thickness		Change in Elevation	TPH-G 8015	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)		Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(µg/l)	(μg/l)	(µg/l)	$(\mu g/l)$	(μg/l)	(µg/l)	(μg/l)		
MW-10	continue	1													
11/29/199	9 362.62									***					Dry well
12/6/1999	9 362.62													r	Dry well
3/10/2000	0 362.62	85.04	0.00	277.58		ND		ND	ND	ND	ND	130	150		
6/8/2000	362.62														Dry well
9/25/2000	0 362.62														Dry well
12/19/200	00 362.62														Dry well
3/5/2001	362.62														Dry well
6/14/200	1 362.62														Dry well
9/17/200	1 362.62														Dry well
9/25/200	1 362.62														Dry well
12/17/200	1 362.62														Dry well
3/15/2002	2 362.62														Dry well
6/20/2002	2 362.62		***								- -				Dry well
9/27/2002	2 362.62														Dry well
12/30/200	2 362.62														Dry well
3/26/2003	3 362.62												eu		Dry well
6/10/2003	3 362.62	89.70	0.00	272.92			ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		24		
9/9/2003	362.62														Dry well
12/10/200	362.62	92.09	0.00	270.53											Insufficient recharge
3/9/2004	362.62	83.15	0.00	279.47	8.94		130	ND<0.50	ND<0.50	ND<0.50	ND<1.0		130		
6/21/2004	4 362.62	86.86	0.00	275.76	-3.71		420	ND<2.5	ND<2.5	ND<2.5	ND<5.0		490		
9/8/2004	362.62														Dry well
12/14/200	362.62														Dry well
								Dage 2	5 of 30						

OTRO

Page 25 of 30

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
December 1987 Through June 2010
76 Station 7376

Date	TOC	Depth to	LPH		Change in									Comments
Sampled	Elevation	Water	Thickness	water Elevation	Elevation	TPH-G	TPH-G			Ethyl-	Total	MTBE	MTBE	
	(6)	(6. 1)	(O)			8015	(GC/MS)	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(μg/l)	(μg/l)	(μg/l)	(µg/l)	(μg/l)	(μg/l)	(μg/l)	
	continue													
3/17/200	05 362.62	77.07		285.55	·		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		65	
6/15/200		74.04		288.58	3.03		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		77	
9/20/200	05 362.62	81.08	0.00	281.54	-7.04		120	ND<0.50	ND<0.50	ND<0.50	ND<1.0		210	
12/29/20	05 362.62	66.31	0.00	296.31	14.77		51	ND<0.50	ND<0.50	ND<0.50	ND<1.0		84	
3/15/200	06 362.62	61.26	0.00	301.36	5.05		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		91	
6/28/200	06 362.62	61.88	0.00	300.74	-0.62		60	ND<0.50	ND<0.50	ND<0.50	ND<1.0		140	
9/28/200	06 362.62	65.76	0.00	296.86	-3.88		ND<50	ND<0.50	ND<0.50	ND<0.50	0.77		53	
12/11/20	06 362.62	58.96	0.00	303.66	6.80		85	ND<0.50	ND<0.50	ND<0.50	ND<0.50		83	
3/19/200	07 362.62	53.02	0.00	309.60	5.94		78	ND<0.50	ND<0.50	ND<0.50	ND<0.50		100	
6/15/200	07 362.62	62.50	0.00	300.12	-9.48		68	ND<0.50	ND<0.50	ND<0.50	ND<0.50		96	
9/24/200	07 362.62	65.30	0.00	297.32	-2.80		86	ND<0.50	ND<0.50	ND<0.50	ND<0.50		76	
12/27/20	07 362.62	55.95	0.00	306.67	9.35		63	ND<0.50	1.3	ND<0.50	1.6		81	
3/25/200	08 362.62	56.59	0.00	306.03	-0.64		61	0.75	ND<0.50	ND<0.50	ND<1.0		78	
6/6/200	8 362.62	56.76	0.00	305.86	-0.17		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		24	
9/5/200	8 362.62	68.75	0.00	293.87	-11.99		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		43	
12/8/200	08 362.62	67.25	0.00	295.37	1.50		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		20	
3/26/200	09 362.62	59.73	0.00	302.89	7.52		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		27	
6/22/20	09 362.62	69.98	0.00	292.64	-10.25		ND<50	0.82	ND<0.50	ND<0.50	ND<1.0		31	
9/1/200	9 365.42	87.18	0.00	278.24	-14.40									Sampled Q2 and Q4 only
12/17/20	09 365.42	78.60	0.00	286.82	8.58	460	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		30	
2/4/201	0 365.42	77.99	0.00	287.43	0.61					~-				Sampled Q2 and Q4 only
6/18/20	10 365.42	74.13	0.00	291.29	3.86		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		0.65	
				<u>.</u> .										

MW-11

(Screen Interval in feet: --)

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
December 1987 Through June 2010

		Depth to	LPH		Change in									Comments
Sampled El	levation	Water	Thickness	water Elevation	Elevation	TPH-G 8015	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(μg/l)	(μg/l)	$(\mu g/l)$	(μg/l)	(µg/l)	(μg/l)	
MW-11	continued													
9/25/2001	354.66	81.24	0.00	273.42		ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	9.0		
12/17/2001	354.66	80.47	0.00	274.19	0.77	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	10	14	
3/15/2002	354.66	79.42	0.00	275.24	1.05	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	7.6		
6/20/2002	354.66	80.69	0.00	273.97	-1.27		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		7.7	
9/27/2002	354.66	81.58	0.00	273.08	-0.89		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		5.6	
12/30/2002	354.66	79.12	0.00	275.54	2.46		ND<50	ND<0.50	ND<0.50	2.0	6.1		6.9	
3/26/2003	354.66	73.70	0.00	280.96	5.42		ND<50	0.62	1.7	0.5	2.6		9.8	
6/10/2003	354.66	73.06	0.00	281.60	0.64		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		3.8	
9/9/2003	354.66	74.19	0.00	280.47	-1.13		ND<50	ND<0.50	0.66	ND<0.50	ND<1.0		4.4	
12/10/2003	354.66	70.99	0.00	283.67	3.20		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		3.4	
3/9/2004	354.66	66.61	0.00	288.05	4.38		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<2.0	
6/21/2004	354.66	67.63	0.00	287.03	-1.02		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		0.89	
9/8/2004	354.66	72.69	0.00	281.97	-5.06		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		8.0	,
12/14/2004	354.66	72.69	0.00	281.97	0.00		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		15	
3/17/2005	354.66	61.62	0.00	293.04	11.07		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		1.1	
6/15/2005	354.66	58.68	0.00	295.98	2.94	~~	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
9/20/2005	354.66	63.81	0.00	290.85	-5.13		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	***	ND<0.50	•
12/29/2005	354.66	55.96	0.00	298.70	7.85		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		0.64	
3/15/2006	354.66	50.73	0.00	303.93	5.23		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
6/28/2006	354.66	48.54	0.00	306.12	2.19		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
9/28/2006	354.66	52.78	0.00	301.88	-4.24		ND<50	ND<0.50	ND<0.50	ND<0.50	0.55		ND<0.50	
12/11/2006	354.66	48.64	0.00	306.02	4.14		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
3/19/2007	354.66	44.06	0.00	310.60	4.58		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	

©TRC

Table 2 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS December 1987 Through June 2010 76 Station 7376

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness		Change in Elevation										Comments
Sampled	Lievation	water	THICKHOSS	Elevation		TPH-G	TPH-G	D	m 1	Ethyl-	Total	MTBE	MTBE		
	(fact)	(fact)	(fact)	(fast)	(6 4)	8015	(GC/MS)	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)		
	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(µg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	· · · · · · · · · · · · · · · · · · ·	
MW-11			0.00												
6/15/20				305.96					ND<0.50		0.63		ND<0.50		
9/24/20			0.00	301.89			ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	•	
12/27/20	007 354.66	46.51	0.00	308.15	6.26		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50		
3/25/20	08 354.66	45.09	0.00	309.57	1.42		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50		
6/6/200	08 354.66	46.21	0.00	308.45	-1.12		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50		
9/5/200	354.66	54.97	0.00	299.69	-8.76		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50		
12/8/20	08 354.66	55.63	0.00	299.03	-0.66		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50		
3/26/20	09 354.66	49.90	0.00	304.76	5.73		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50		
6/22/20	09 354.66	56.09	0.00	298.57	-6.19		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50		
9/1/200	9 357.44	67.53	0.00	289.91	-8.66										Sampled Q2 and Q4 only
12/17/20	009 357.44	65.01	0.00	292.43	2.52		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50		
2/4/201	0 357.44	63.98	0.00	293.46	1.03										Sampled Q2 and Q4 only
6/18/20	10 357.44	60.74	0.00	296.70	3.24		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50		
MW-12			(Scre	en Interva	l in feet:)										
9/25/20	01 354.08	80.78		273.30		ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.5			
12/17/20	001 354.08	80.02	0.00	274.06	0.76	ND<50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0	ND<1.0		
3/15/20	02 354.08	78.88	0.00	275.20	1.14	ND<50				ND<0.50		ND<2.5			
6/20/20		80.34	0.00	273.74	-1.46		ND<50			ND<0.50	ND<1.0		0.83		
9/27/20		81.50	0.00	272.58	-1.16		ND<50			ND<0.50	ND<1.0		ND<2.0		
	002 354.08			275.88			ND<50		ND<0.50		ND<1.0		ND<2.0		
3/26/20				281.28			ND<50	0.57	1.6	ND<0.50	2.2		ND<2.0		
6/10/20			0.00	281.77		ND<50	ND<50			ND<0.50	ND<1.0		ND<2.0		
9/9/200				280.70		ND \30	ND<50			ND<0.50	ND<1.0		ND<2.0		
	,5 554.00	, 15.56	0.00	200.70	-1.07		1412 /20	Page 2		1412 ~0.30	1117-1.0		1111-2.0		
7376								rage 2	0 01 20						STO

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
December 1987 Through June 2010
76 Station 7376

Date Sampled		Depth to Water	LPH Thickness		Change in Elevation	TPH-G 8015	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(μg/l)	(μg/l)	(µg/l)	$(\mu g/l)$	μg/l)	(μg/l)	(μg/l)	
MW-12	continue	i							***					
12/10/20	03 354.08	70.28	0.00	283.80	3.10		ND<50	ND<0.50	0.51	ND<0.50	1.1		ND<2.0	
3/9/200	4 354.08	65.69	0.00	288.39	4.59		ND<50	ND<0.50	0.54	ND<0.50	1.4		ND<2.0	
6/21/200	04 354.08	66.90	0.00	287.18	-1.21		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
9/8/200	4 354.08	71.96	0.00	282.12	-5.06		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
12/14/20	04 354.08	71.92	0.00	282.16	0.04		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
3/17/200	05 354.08	60.49	0.00	293.59	11.43		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
6/15/200	05 354.08	57.82	0.00	296.26	2.67		ND<50	ND<0.50	ND<0.50	ND<0.50	1.1		ND<0.50	
9/20/200	05 354.08	63.02	0.00	291.06	-5.20		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
12/29/20	05 354.08	55.01	0.00	299.07	8.01		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
3/15/200	06 354.08	49.92	0.00	304.16	5.09		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
6/28/200	06 354.08	47.91	0.00	306.17	2.01		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		0.56	
9/28/200	06 354.08	52.05	0.00	302.03	-4.14		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
12/11/20	06 354.08	47.83	0.00	306.25	4.22		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
3/19/200	07 354.08	43.32	0.00	310.76	4.51		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
6/15/200	07 354.08	48.26	0.00	305.82	-4.94		ND<50	ND<0.50	ND<0.50	ND<0.50	0.60		ND<0.50	
9/24/200	07 354.08	52.60	0.00	301.48	-4.34		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
12/27/20	07 354.08	45.83	0.00	308.25	6.77		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
3/25/200	08 354.08	44.63	0.00	309.45	1.20		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
6/6/200	8 354.08	45.51	0.00	308.57	-0.88		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
9/5/200	8 354.08	54.27	0.00	299.81	-8.76		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
12/8/200	08 354.08	54.92	0.00	299.16	-0.65		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
3/26/200	9 354.08	49.25	0.00	304.83	5.67		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
6/22/200	9 354.08	55.54	0.00	298.54	-6.29		ND<50	0.86	ND<0.50	ND<0.50	ND<1.0		ND<0.50	•
								D 2	0 -620					.27%

©TRC

Page 29 of 30

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
December 1987 Through June 2010
76 Station 7376

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	
MW-12 9/1/200			0.00	289.38	-9.16						•••			Sampled Q2 and Q4 only
12/17/20	09 356.89	64.35	0.00	292.54	3.16		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
2/4/201	0 356.89	63.34	0.00	293.55	1.01									Sampled Q2 and Q4 only
6/18/20	10 356.89	60.17	0.00	296.72	3.17		ND<50	0.77	ND<0.50	ND<0.50	ND<1.0		15	

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 7376

MW-1 12/8/1987 2100	
3/1/1995 120	
6/1/1995 54	
9/6/1995 690	
12/12/1995 190	
3/1/1996 56	
6/15/1996 ND	
9/18/1996 130	
12/21/1996 ND	
3/7/1997 ND	
6/27/1997 ND	
9/29/1997 ND	
12/15/1997 ND	
3/16/1998 ND	
(10(1100) 275	
6/26/1998 ND	
9/22/1998 240	
12/15/1998 ND	
3/15/1999 67	
6/7/1999 ND	
9/3/1999 76 ND ND ND<2.0 ND ND ND	
12/6/1999 ND	
3/10/2000 51	
6/8/2000 68.2	
9/25/2000 ND	
12/19/2000 ND	

OTRC

Page 1 of 20

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 7376

Date Sampled	TPH-D (μg/l)	TBA (μg/l)	Ethanol (8260B) (µg/l)	Ethylene- dibromide (EDB) (µg/l)	1,2-DCA (EDC) (μg/l)	DIPE (μg/l)	ETBE (µg/l)	TAME (µg/l)	TPH- Motor Oil (μg/l)	Bromo- benzene (µg/l)	Bromo- chloro- methane (µg/l)	Bromo- dichloro- methane (µg/l)
MW-1 co	ntinued											
3/5/2001	505											**
6/14/2001	71											
9/17/2001	ND<50		100 MM									
12/17/2001	ND<53	ND<40	ND<1000		ND<2.0	ND<2.0	ND<2.0	ND<2.0				
3/15/2002	ND<52									***		
6/20/2002	ND<50		an pa									
9/27/2002	ND<100									~~		
12/30/2002	52	ND<400	ND<2000	ND<8.0	ND<8.0	ND<8.0	ND<8.0	ND<8.0				
3/26/2003	120	ND<2000	ND<10000	ND<40	ND<40	ND<40	ND<40	ND<40				
6/10/2003	ND<50	ND<4000	ND<20000	ND<80	ND<80	ND<80	ND<80	ND<80				
9/9/2003	ND<50											
12/10/2003	ND<50											
3/9/2004	ND<50											
6/21/2004	ND<50											
9/8/2004	ND<50											
12/14/2004	ND<50											
3/17/2005	ND<50				****							
6/15/2005	ND<50											
9/20/2005	ND<200											
12/29/2005	ND<200											
3/15/2006	ND<200											
6/28/2006	ND<200		**									
9/28/2006	ND<50											
12/11/2006	ND<50											
3/19/2007	170											

OTRC

Page 2 of 20

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 7376

Date Sampled	TPH-D (μg/l)	TBA (μg/l)	Ethanol (8260B) (µg/l)	Ethylene- dibromide (EDB) (µg/l)	1,2-DCA (EDC) (μg/l)	DIPE (µg/l)	ETBE (µg/l)	TAME (µg/l)	TPH- Motor Oil (µg/l)	Bromo- benzene (µg/l)	Bromo- chloro- methane (µg/l)	Bromo- dichloro- methane (µg/l)
MW-1 co	ntinued										407	(1.8.7)
6/15/2007	53											
9/24/2007	76											
12/27/2007	53			***				***				
3/25/2008	59					ton ove						
6/6/2008	ND<50											
9/5/2008	ND<56											
12/8/2008	ND<50					244 para	***					
3/26/2009	ND<50											
MW-1B												
9/1/2009	ND<50	49	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50				
12/17/2009	ND<50											
2/4/2010	ND<50											a. u.
6/18/2010	50			ND<0.50	0.81		No. 100					
MW-2 12/8/1987	620											
MW-2B												
3/1/1995	320											
6/1/1995	280											
9/6/1995	ND											
12/12/1995	850											
3/1/1996	870								***			
6/15/1996	420											
9/18/1996	600		par- yea									
12/21/1996	470											

Page 3 of 20

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 7376

		(µg/l)	(8260B) (μg/l)	(EDB) (μg/l)	1,2-DCA (EDC) (µg/l)	DIPE (µg/l)	ETBE (µg/l)	TAME (µg/l)	TPH- Motor Oil (µg/l)	Bromo- benzene (µg/l)	chloro- methane (µg/l)	dichloro- methane (µg/l)
	continued	,										
3/7/1997	870		400 700							·		
6/27/1997	680		***									
9/29/1997	430											
12/15/1997	490		ma sa									
3/16/1998	4000											
6/26/1998	790											
9/22/1998	930			***				no es				
12/15/1998	600											
3/15/1999	390	3800	ND			13	ND	ND				
6/7/1999	770											
9/3/1999	870	3480	ND			ND	ND	ND				
12/6/1999	850											
3/10/2000	1500											
9/25/2000	2900		· ·									
12/19/2000	700		***									
6/14/2001	570											
6/10/2003	280	ND<10000	ND<50000	ND<200	ND<200	ND<200	ND<200	ND<200				
6/21/2004	260											
3/17/2005	280										****	
6/15/2005	560											
9/20/2005	340		2012									
3/15/2006	7200						wa ma					
6/28/2006	32000						***					
9/28/2006	2300											
12/11/2006	61000			an an								

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 7376

Date Sampled	TPH-D (μg/l)	TBA (μg/l)	Ethanol (8260B) (µg/l)	Ethylene- dibromide (EDB) (µg/l)	1,2-DCA (EDC) (µg/l)	DIPE (μg/l)	ETBE (µg/l)	TAME (µg/l)	TPH- Motor Oil (µg/l)	Bromo- benzene (µg/l)	Bromo- chloro- methane (µg/l)	Bromo-dichloro-methane
MW-2B	continued					407	(1.0 1)	(1161-7)	(#5/1)	(µg/1)	(μg/1)	(μg/l)
3/19/2007	30000											
6/15/2007	21000											
12/27/2007	18000											
3/25/2008	1200											
6/6/2008	15000					***					*** NO	
9/5/2008	710											
12/8/2008	7000					***			 		~~	
3/26/2009	11000											
MW-2C												
6/18/2010	ND<56			ND<0.50	6.0							
MW-3												
12/8/1987	2300											
3/1/1995	140									***		
6/1/1995	140	****										
9/6/1995	880						m-m					
12/12/1995	3100											
3/1/1996	1500											<u></u>
6/15/1996	400											
9/18/1996	170											
12/21/1996	64									***		
3/7/1997	570											***
6/27/1997	ND											
9/29/1997	ND						m m.					
12/15/1997	ND								***			
3/16/1998	670								****			
7070					τ.) 5 . COO						

Page 5 of 20

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 7376

Date Sampled	TPH-D (μg/l)	TBA (μg/l)	Ethanol (8260B) (μg/l)	Ethylene- dibromide (EDB) (µg/l)	1,2-DCA (EDC) (μg/l)	DIPE (µg/l)	ETBE (µg/l)	TAME (μg/l)	TPH- Motor Oil (µg/l)	Bromo- benzene (µg/l)	Bromo- chloro- methane (µg/l)	Bromo- dichloro- methane (µg/l)
MW-3 co	ontinued								(1-3-)	(110-1)	(#8/1)	(μg/1)
6/26/1998	63											
9/22/1998	95										***	
12/15/1998	ND											
3/15/1999	3500											
6/7/1999	ND	PM 500				***						
9/3/1999	2900	ND	ND			ND	ND	ND				
12/6/1999	4200								m. m.	m to		
3/10/2000	2500											
6/8/2000	489											
9/25/2000	4380											
12/19/2000	5600											
3/5/2001	3790											
6/14/2001	1300											
9/17/2001	290				***			~-		***		
12/17/2001	700	26	ND<500	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0				
3/15/2002	3600											
6/20/2002	1300											
9/27/2002	ND<100						700 MM					
12/30/2002	1800	ND<1000	ND<5000	ND<20	ND<20	ND<20	ND<20	ND<20				
3/26/2003	2600	ND<1000	ND<5000	ND<20	ND<20	ND<20	ND<20	ND<20				
6/10/2003	350	ND<100	ND<500	ND<2.0	5.3	ND<2.0	ND<2.0	ND<2.0				
9/9/2003	270											
12/10/2003	800											
3/9/2004	1100											
6/21/2004	210						~~					

Page 6 of 20

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 7376

Date Sampled	TPH-D (μg/l)	TBA (µg/l)	Ethanol (8260B) (μg/l)	Ethylene- dibromide (EDB) (µg/l)	1,2-DCA (EDC) (μg/l)	DIPE (µg/l)	ETBE (μg/l)	TAME (µg/l)	TPH- Motor Oil (µg/l)	Bromo- benzene (µg/l)	Bromo- chloro- methane (µg/l)	Bromo- dichloro- methane (µg/l)
MW-3 co	ntinued											
9/8/2004	130											
12/14/2004	800											
3/17/2005	2400											
6/15/2005	410											
9/20/2005	ND<200											
12/29/2005	1400											
3/15/2006	520									***		
6/28/2006	920											
9/28/2006	190											
12/11/2006	520											
3/19/2007	660											
6/15/2007	1100											
9/24/2007	770											
12/27/2007	340				·							
3/25/2008	940								804.444		W W	
6/6/2008	380			and man								
9/5/2008	240											
12/8/2008	250											
3/26/2009	210										***	
MW-3B 6/18/2010	ND<50			ND<0.50	5.0							
MW-4 9/18/1996	200											
	200 ND									A4 100		
12/21/1996	ND		***					***				
3/7/1997	ND									****		

Page 7 of 20

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 7376

Date Sampled	TPH-D	TBA	Ethanol (8260B)	Ethylene- dibromide (EDB)	1,2-DCA (EDC)	DIPE	ETBE	TAME	TPH-	Bromo-	Bromo- chloro-	Bromo-dichloro-
	(μg/l)	1ΒΑ (μg/l)	(8200B) (μg/l)	(EDB) (μg/l)	(EDC) (μg/l)	DIPE (μg/l)	EIBE (μg/l)	1 AIVLE (μg/l)	Motor Oil (μg/l)	benzene (μg/l)	methane (μg/l)	methane (μg/l)
MW-4 co							10 /	(C /		(10)	(1-8)	(1.8 -)
6/27/1997	ND											
9/29/1997	ND							==				
12/15/1997	ND											
3/16/1998	ND											
6/26/1998	630		van bee									
9/22/1998	74		***									
12/15/1998	ND	***										
3/15/1999	ND											
6/7/1999	ND		-									
9/3/1999	66	ND	ND			ND	ND	ND				
12/6/1999	95											
3/10/2000	ND								***			
6/8/2000	72.8											
6/10/2003	ND<50	ND<100	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0				
9/9/2003	ND<50					and the same						
12/10/2003	ND<50											
3/9/2004	56											
6/21/2004	59											
9/8/2004	ND<50											
12/14/2004	ND<50						000 AM					
3/17/2005	ND<50											
6/15/2005	ND<50											
9/20/2005	ND<200											
12/29/2005	ND<200											
3/15/2006	ND<200											

Page 8 of 20

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 7376

Date Sampled	TPH-D (μg/l)	TBA (μg/l)	Ethanol (8260B) (μg/l)	Ethylene- dibromide (EDB) (µg/l)	1,2-DCA (EDC) (μg/l)	DIPE (µg/l)	ETBE (µg/l)	TAME (µg/l)	TPH- Motor Oil (µg/l)	Bromo- benzene (µg/l)	Bromo- chloro- methane (µg/l)	Bromo- dichloro- methane (µg/l)
MW-4 co	ontinued											
6/28/2006	ND<200											
9/28/2006	ND<50											
12/11/2006	ND<50											
3/19/2007	66											
6/15/2007	ND<50											
9/24/2007	ND<50											MA DAY
12/27/2007	ND<50											
3/25/2008	ND<50											
6/6/2008	ND<50											
9/5/2008	ND<50		700 ma									
12/8/2008	ND<56											
3/26/2009	ND<50											
6/22/2009	140								*** ***			
12/17/2009	ND<50			***								
6/18/2010	ND<50		640,000	ND<0.50	ND<0.50					~~		
MW-5												
9/18/1996	4700				~~							alle sole
12/21/1996	4700						***	and ton				
3/7/1997	2100											
6/26/1998	230000			***								
6/7/1999	4700000	ND	ND			ND	ND	ND				
3/9/2004	110000	100 244	10 100						₩.#		200 pag	
6/21/2004	190000											
3/19/2007	84000			Note other						***		
6/15/2007	29000									***		

Page 9 of 20

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 7376

Date Sampled	TPH-D (μg/l)	TBA (µg/l)	Ethanol (8260B) (µg/l)	Ethylene- dibromide (EDB) (μg/l)	1,2-DCA (EDC) (µg/l)	DIPE (µg/l)	ETBE (μg/l)	TAME (µg/l)	TPH- Motor Oil (µg/l)	Bromo- benzene (µg/l)	Bromo- chloro- methane (µg/l)	Bromodichloromethane (µg/l)
MW-5 co	ntinued											
9/24/2007	33000											
12/27/2007	23000											- -
3/25/2008	44000				***							
6/6/2008	5100											
9/5/2008	9000	P1 70										
12/8/2008	7500		000 pas									
3/26/2009	5400											
6/22/2009	15000											
MW-6												
9/18/1996	ND		no me							***		
12/21/1996	ND											
3/7/1997	190				***							
6/27/1997	73											
9/29/1997	ND											
12/15/1997	ND											
3/16/1998	100											
6/26/1998	180											
1/23/1999	ND											
3/15/1999	71											
6/7/1999	160											
3/10/2000	ND											
3/9/2004	110											
3/17/2005	150											
6/15/2005	120											
9/20/2005	ND<200											

Page 10 of 20

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 7376

Date Sampled	TPH-D (μg/l)	TBA (µg/l)	Ethanol (8260B) (μg/l)	Ethylene- dibromide (EDB) (µg/l)	1,2-DCA (EDC) (µg/l)	DIPE (μg/l)	ETBE (µg/l)	TAME (µg/l)	TPH- Motor Oil (µg/l)	Bromo- benzene (µg/l)	Bromo- chloro- methane (µg/l)	Bromo- dichloro- methane (µg/l)
MW-6 co										4.0 /	(1.8.4)	(781)
12/29/2005	ND<200								MM, 344		ana pana	
3/15/2006	ND<200		and too									
6/28/2006	ND<200											
9/28/2006	85										~=	
12/11/2006	81											
3/19/2007	90											
6/15/2007	310				***							
9/24/2007	130											
12/27/2007	73											
3/25/2008	77											
6/6/2008	ND<50											
9/5/2008	73			****								
12/8/2008	130											***
3/26/2009	55						***		gan van			
6/22/2009	ND<56											
12/17/2009	ND<50											
6/18/2010	ND<59			ND<0.50	2.9							Marine .
MW-7												
8/18/1998	1400											
9/22/1998	780									<u></u>	<u></u>	
12/15/1998	350									~~		
3/15/1999	460	610	ND			4.3	ND	ND				 -
6/7/1999	550										 	
9/3/1999	550	460	ND			4.36	ND	ND				
12/6/1999	220											

©TRC

Page 11 of 20

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 7376

Date Sampled	TPH-D (µg/l)	TBA (μg/l)	EthanoI (8260B) (μg/I)	Ethylene- dibromide (EDB) (µg/l)	1,2-DCA (EDC) (μg/l)	DIPE (μg/l)	ETBE (µg/l)	TAME (μg/l)	TPH- Motor Oil (µg/l)	Bromo- benzene (µg/l)	Bromo- chloro- methane (µg/l)	Bromo-dichloro-methane
MW-7 co	ontinued						(189)	(1.0.1)	(#6/1)	(µg/1)	(μg/1)	(μg/l)
3/10/2000	930											
6/8/2000	463											
9/25/2000	1810											~=
12/19/2000	930											
3/5/2001	801											
6/14/2001	710					****						***
9/17/2001	860											
12/17/2001	470	ND<200	ND<5000	ND<10	ND<10	ND<10	ND<10	ND<10				
3/15/2002	830											
6/20/2002	710											
9/27/2002	300											
12/30/2002	220	ND<500	ND<2500	ND<10	ND<10	ND<10	ND<10	 ND<10				
3/26/2003	560	ND<2000	ND<10000	ND<40	ND<40	ND<40	ND<10 ND<40	ND<10 ND<40				
6/10/2003	610	ND<1000	ND<5000	ND<20	ND<20	ND<20	ND<40 ND<20					
9/9/2003	430					11D \20		ND<20				
12/10/2003	450						 	AN NO.				
3/9/2004	640		-			***						
6/21/2004	630									Ma Ma		
9/8/2004	270								~~			
12/14/2004	160											
3/17/2005	380											
6/15/2005	630											
9/20/2005	280					*** ***						
12/29/2005	ND<200											
3/15/2006	ND<200											
5/15/2000	1111-200											

∂TRC

Page 12 of 20

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 7376

Date				Ethylene-							Bromo-	Bromo-
Sampled			Ethanol	dibromide	1,2-DCA				TPH-	Bromo-	chloro-	dichloro-
	TPH-D	TBA	(8260B)	(EDB)	(EDC)	DIPE	ETBE	TAME	Motor Oil	benzene	methane	methane
	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(μg/l)
	ntinued											
6/28/2006	260											
9/28/2006	140											
12/11/2006	99				100-100							
3/19/2007	140											
6/15/2007	78										M- 100	
9/24/2007	140											
12/27/2007	71											
3/25/2008	630											
6/6/2008	ND<56											
9/5/2008	120			and pas								
12/8/2008	110											
3/26/2009	69		***				•••					
6/22/2009	110											
12/17/2009	150											
6/18/2010	110			ND<0.50	ND<0.50				ND<200	ND<0.50	ND<0.50	ND<0.50
MW-8												
6/26/1998	80											
9/22/1998	120											
12/15/1998	ND											
3/23/1999	60											
6/7/1999	ND											
9/3/1999	130	ND	ND			12.4	ND	ND				
12/6/1999	160											
3/10/2000	61											w.e.
6/8/2000	135											***

©TRC

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 7376

Date Sampled	TPH-D (μg/l)	TBA (μg/l)	Ethano1 (8260Β) (μg/l)	Ethylene- dibromide (EDB) (µg/l)	1,2-DCA (EDC) (μg/l)	DIPE (µg/l)	ETBE (µg/l)	TAME (μg/l)	TPH- Motor Oil (µg/l)	Bromo- benzene (µg/l)	Bromo- chloro- methane (µg/l)	Bromo-dichloro-methane (µg/l)
MW-8 co	ntinued									· · · · ·	427	(1-8-7)
9/25/2000	518											
12/19/2000	100											
3/5/2001	161											
6/14/2001	94			~~								
9/17/2001	60											
12/17/2001	ND<52	77	ND<500	ND<1.0	ND<1.0	9.8	ND<1.0	ND<1.0				
3/15/2002	69			***						™ =		
6/20/2002	ND<50											
9/27/2002	130											
12/30/2002	76	ND<100	ND<500	ND<2.0	ND<2.0	7.1	ND<2.0	ND<2.0				
3/26/2003	120	ND<100	ND<500	ND<2.0	ND<2.0	7.1	ND<2.0	ND<2.0				
6/10/2003	ND<50	ND<100	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0				
9/9/2003	58											
12/10/2003	86											
3/9/2004	92											
6/21/2004	87											
9/8/2004	ND<50											
12/14/2004	ND<50										*	
3/17/2005	56											
6/15/2005	53											
9/20/2005	ND<200											
12/29/2005	ND<200											
3/15/2006	ND<200											
6/28/2006	ND<200											
9/28/2006	ND<50								~~			

Page 14 of 20

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 7376

Date Sampled	TPH-D (µg/l)	TBA (µg/l)	Ethanol (8260Β) (μg/l)	Ethylene- dibromide (EDB) (µg/l)	1,2-DCA (EDC) (μg/l)	DIPE (μg/l)	ETBE (µg/l)	TAME (µg/l)	TPH- Motor Oil (μg/l)	Bromo- benzene (µg/l)	Bromo- chloro- methane (µg/l)	Bromo- dichloro- methane (µg/l)
	continued											
12/11/20												
3/19/200	07 60				-		***			100 300		
6/15/200	7 58											
9/24/200	53	Par 164										
12/27/20	07 72											
3/25/200)8 50											
6/6/200	8 ND<50	Min Ma										
9/5/200	8 ND<50							***				
12/8/200	08 62											
3/26/200)9 ND<50											
6/22/200	9 ND<50											
12/17/20	09 ND<50											
6/18/201	10 ND<50			ND<0.50	ND<0.50				ND<200	ND<0.50	ND<0.50	ND<0.50
MW-9												
12/6/199	99 ND	ND		ND	ND	ND	ND	ND				
3/10/200	00 150											
6/8/200	0 67.8											
9/25/200	903											
12/19/20	00 ND											
3/5/200	1 96.5											
6/14/200)1 ND											
9/17/200)1 ND<50											
12/17/20	01 ND<52	ND<20	ND<500	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0				
3/15/200)2 ND<51											
6/20/200												

Page 15 of 20

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 7376

Date Sampled	TPH-D (μg/l)	TBA (µg/l)	Ethanol (8260Β) (μg/l)	Ethylene- dibromide (EDB) (μg/l)	1,2-DCA (EDC) (μg/l)	DIPE (µg/l)	ETBE (µg/l)	TAME (μg/l)	TPH- Motor Oil (µg/l)	Bromo- benzene (μg/l)	Bromo- chloro- methane (µg/l)	Bromo- dichloro- methane (µg/l)
MW-9 co	ntinued									· · · · · ·	407	(68-7)
9/27/2002	ND<110											
12/30/2002	59	ND<100	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0				
3/26/2003	ND<50	ND<100	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0				
6/10/2003	ND<50	ND<100	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0				
9/9/2003	ND<50							***				
12/10/2003	ND<50			mark cross								
3/9/2004	ND<50											
6/21/2004	ND<50											
9/8/2004	ND<50											
12/14/2004	ND<50											
3/17/2005	ND<50									Series		
6/15/2005	ND<50											
9/20/2005	ND<200											
12/29/2005	ND<200											
3/15/2006	ND<200											
6/28/2006	ND<200											
9/28/2006	ND<50											
12/11/2006	ND<50											
3/19/2007	ND<50											
6/15/2007	52											
9/24/2007	ND<50											
12/27/2007	ND<50											
3/25/2008	110											
6/6/2008	ND<50											
9/5/2008	ND<50											

@TRC

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 7376

Date Sampled	TPH-D (μg/l)	TBA (µg/l)	Ethanol (8260Β) (μg/l)	Ethylene- dibromide (EDB) (µg/l)	1,2-DCA (EDC) (μg/l)	DIPE (µg/l)	ETBE (µg/l)	TAME (µg/l)	TPH- Motor Oil (μg/l)	Bromo- benzene (µg/l)	Bromo- chloro- methane (µg/l)	Bromo- dichloro- methane (µg/l)
	ntinued											
12/8/2008	ND<50											
3/26/2009	ND<50											
12/17/2009	ND<50											
6/18/2010	ND<50			ND<0.50	ND<0.50							
MW-10												
3/10/2000	78	ND		ND	22	ND	ND	ND				
6/10/2003	65	ND<100	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0				
3/9/2004	140											
6/21/2004	ND<50											
3/17/2005	ND<50											
6/15/2005	71											
9/20/2005	ND<200							₩#				
12/29/2005	ND<200											
3/15/2006	ND<200											
6/28/2006	ND<200									****		
9/28/2006	ND<50											
12/11/2006	92											
3/19/2007	190			~ m								
6/15/2007	120											
9/24/2007	130											
12/27/2007	59											
3/25/2008	74										-	
6/6/2008	190											
9/5/2008	ND<50								pa ea		***	
12/8/2008	53							***				

@TRC

Page 17 of 20

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 7376

Date Sampled	TPH-D (μg/l)	TBA (µg/l)	Ethanol (8260Β) (μg/l)	Ethylene- dibromide (EDB) (µg/l)	1,2-DCA (EDC) (μg/l)	DIPE (µg/l)	ETBE (µg/l)	TAME (µg/l)	TPH- Motor Oil (μg/l)	Bromo- benzene (µg/l)	Bromo- chloro- methane (µg/l)	Bromodichloromethane
MW-10 c	ontinued									(1.9)	(۳8,1)	(μg/ι)
3/26/2009	ND<50										***	~ •
6/22/2009	ND<50											
12/17/2009	ND<50						***			Mining		
6/18/2010	ND<60			ND<0.50	ND<0.50							
MW-11												
9/25/2001	ND<50											
12/17/2001	110	ND<20	ND<500	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0				
3/15/2002	140	Main Samp				<u></u>						
6/20/2002	ND<60	*****						ion des				
9/27/2002	ND<110											
12/30/2002	ND<50	ND<100	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0				
3/26/2003	54	ND<100	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0			 	
6/10/2003	ND<50	ND<100	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0				
9/9/2003	ND<50											
12/10/2003	ND<50						****					***
3/9/2004	ND<50										~~	
6/21/2004	ND<50											
9/8/2004	ND<50											
12/14/2004	ND<50											
3/17/2005	85					ww.				***		No. See
6/15/2005	170											
9/20/2005	210											
12/29/2005	ND<200				-							
3/15/2006	ND<200									Sin ess		
6/28/2006	ND<200											

@TRC

Page 18 of 20

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 7376

Date Sampled	TPH-D (μg/l)	TBA (μg/l)	Ethanol (8260B) (µg/l)	Ethylene- dibromide (EDB) (µg/l)	1,2-DCA (EDC) (µg/l)	DIPE (μg/l)	ETBE (µg/l)	TAME (µg/l)	TPH- Motor Oil (µg/l)	Bromo- benzene (µg/l)	Bromo- chloro- methane (µg/l)	Bromo- dichloro- methane (µg/l)
MW-11 d	continued											
9/28/2006	51									***		
12/11/2006	74											
3/19/2007	63							***				
6/15/2007	70											
9/24/2007	78											
12/27/2007	ND<50						~					
3/25/2008	51											
6/6/2008	ND<50											
9/5/2008	ND<50											
12/8/2008	87											
3/26/2009	90											
6/22/2009	76						wal and					 -
12/17/2009	ND<50											
6/18/2010	ND<50			ND<0.50	ND<0.50							
MW-12 9/25/2001	ND<50											
12/17/2001	77	ND<20	ND<500	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0				
3/15/2002	ND<51							ND~1.0				
6/20/2002	ND<51 ND<58											
9/27/2002	ND<38 ND<100	***										
12/30/2002		 ND<100	ND<500	ND<2.0	 ND<2.0	ND<2.0	ND<2.0	ND<2.0				
3/26/2003			ND<500000	ND<2.0		ND<2.0 ND<2.0	ND<2.0 ND<2.0	ND<2.0 ND<2.0				
	ND<50	ND<100		ND<2.0	ND<2.0							
6/10/2003	ND<50	ND<100	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0				
9/9/2003	ND<50											
12/10/2003	ND<50											

Page 19 of 20

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 7376

Date Sampled	TPH-D (μg/l)	TBA (μg/l)	Ethanol (8260B) (µg/l)	Ethylene- dibromide (EDB) (µg/l)	1,2-DCA (EDC) (μg/l)	DIPE (µg/l)	ETBE (µg/l)	TAME (µg/l)	TPH- Motor Oil (µg/l)	Bromo- benzene (µg/l)	Bromo- chloro- methane (µg/l)	Bromo- dichloro- methane (µg/l)
MW-12 c		(10)	(187)	(10)	(F-6)	(1-8-5)	(1-8-7	(1-6-7)	(F-6)	(7-6-7)	(18-)	(1767-7)
3/9/2004	220											
6/21/2004	180											
9/8/2004	ND<50											
12/14/2004	ND<50											
3/17/2005	350											
6/15/2005	330					***	•••	***				
9/20/2005	250							944 WA				
12/29/2005	320											
3/15/2006	240											
6/28/2006	210											
9/28/2006	ND<50											
12/11/2006	120					***						
3/19/2007	99											
6/15/2007	66											
9/24/2007	71						~~					
12/27/2007	ND<50						App State					
3/25/2008	58							***				
6/6/2008	ND<50											
9/5/2008	ND<50											
12/8/2008	50											
3/26/2009	ND<50										~~	
6/22/2009	ND<50											
12/17/2009	ND<50						to on					
6/18/2010	ND<50			ND<0.50	ND<0.50							

Table 2 b
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 7376

Date			2-									
Sampled	Bromo- form (µg/l)	Bromo- methane (μg/l)	n-Butyl- benzene (µg/l)	sec-Butyl- benzene (µg/l)	tert-Butyl benzene (µg/l)	Tetra- chloride (µg/l)	Chloro- benzene (µg/l)	Chloro- ethane (µg/l)	Chloroform (µg/l)	Chloro- methane (µg/l)	Chloro- toluene (µg/l)	4-Chloro- toluene (µg/l)
MW-7 6/18/2010	ND<0.50	ND<1.0	ND<0.50	1.0	0.85	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
MW-8 6/18/2010	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50

Table 2 c
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 7376

Date Sampled	1,2Dibrom- 3-chloro- propane (µg/l)	Dibromo- chloro- methane (µg/l)	Dibromo- methane (µg/l)	1,2- Dichloro- benzene (µg/l)	1,3- Dichloro- benzene (µg/l)	1,4- Dichloro- benzene (µg/l)	Dichloro- difluoro- methane	1,1-DCA	1,1-DCE	cis- 1,2-DCE	trans- 1,2-DCE	1,2- Dichloro- propane
MW-7 6/18/2010		ND<0.50	ND<0.50	ND<0.50	ND<0.50	(μg/1) ND<0.50	(μg/l) ND<0.50	(μg/l) ND<0.50	(μg/l) ND<0.50	(μg/l) ND<0.50	(μg/l) ND<0.50	(μg/l)
MW-8 6/18/2010	112 110	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50

Table 2 d
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 7376

Date Sampled	1,3- Dichloro- propane (µg/l)	2,2- Dichloro- propane (µg/l)	1,1- Dichloro- propene (µg/l)	cis-1,3- Dichloro- propene (µg/l)	trans-1,3- Dichloro- propene (µg/l)	Hexa- chloro- butadiene	Isopropyl- benzene	p- Isopropyl- toluene	Methylene chloride	Naph-thalene	n-Propyl- benzene	Styrene
	(1-6)	(861)	(#8/1)	(μg/1)	(μg/1)	(μg/l)	(μg/l)	(μg/l)	(µg/l)	(µg/l)	(μg/l)	(μg/l)
MW-7 6/18/2010	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	0.63	ND<0.50	ND<1.0	ND<0.50	0.51	ND<0.50
MW-8 6/18/2010	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<0.50

Table 2 e ADDITIONAL HISTORIC ANALYTICAL RESULTS 76 Station 7376

Date Sampled	1,1,1,2- Tetrachloro- ethane (µg/l)	1,1,2,2- Tetrachloro- ethane (µg/l)	Tetrachloro- ethene (PCE) (µg/l)	Trichloro- trifluoro- ethane (µg/l)	1,2,4- Trichloro- benzene (μg/l)	1,2,3- Trichloro- benzene (µg/l)	l,1,1- Trichloro- ethane (µg/l)	1,1,2- Trichloro- ethane (µg/l)	Trichloro- ethene (TCE) (µg/l)	Trichloro- fluoro- methane (μg/l)	1,2,3- Trichloro- propane (µg/l)	1,2,4- Trimethyl- benzene (µg/l)
MW-7 6/18/2010) ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50
MW-8 6/18/2010) ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50

Page 1 of 1

Table 2 f
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 7376

Date	1,3,5-			Acena-							Benzo[b]-	Benzo-
Sampled	Trimethyl- benzene	Vinyl chloride	Acena- phthene	phthylene (svoc)	Aldrin	Aniline	Anthra- cene	Benzidine	Benzo[a]- anthracene	Benzo[a]- pyrene	fluor- anthene	[g,h,I]- perylene
	(μg/l)	(μg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(μg/l)	(µg/l)	(µg/l)	(μg/l)	(µg/l)	(μg/l)
MW-7 6/18/2010	ND<0.50	ND<0.50	ND<2.0	ND<2.0	ND<2.0	ND<5.0	ND<2.0	ND<20	ND<2.0	ND<2.0	ND<2.0	ND<2.0
MW-8 6/18/2010	ND<0.50	ND<0.50	ND<2.0	ND<2.0	ND<2.0	ND<5.0	ND<2.0	ND<20	ND<2.0	ND<2.0	ND<2.0	ND<2.0

Table 2 g ADDITIONAL HISTORIC ANALYTICAL RESULTS 76 Station 7376

Date Sampled	Benzo[k]- fluor- anthene (µg/l)	Benzoic Acid (µg/l)	Benzyl Alcohol (µg/l)	Bis(2-chloro- ethoxy) methane (µg/l)	Bis(2-chloro- ethyl) ether (µg/l)	Bis(2-chloro- isopropyl)- ether (μg/l)	Bis(2-ethyl- hexyl) phthalate (μg/l)	4-Bromopheny phenyl ether (µg/l)	Butyl- benzyl phthalate (µg/l)	alpha-BHC (μg/l)	beta-BHC (μg/l)	delta-BHC (μg/l)
MW-7 6/18/2010	ND<2.0	ND<10	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<5.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0
MW-8 6/18/2010	ND<2.0	ND<10	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<5.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0

Table 2 j ADDITIONAL HISTORIC ANALYTICAL RESULTS 76 Station 7376

Date Sampled	2,6-Dinitro- toluene (μg/l)	Di-n-octyl phthalate (μg/l)	1,2-Diphenyl hydrazine (µg/l)	Endosulfan I (µg/l)	Endosulfan II (µg/l)	Endosulfan sulfate (µg/l)	Endrin (µg/l)	Endrin aldehyde (µg/l)	Fluoran- thene (µg/l)	Fluorene (μg/l)	Heptachlor (µg/l)	Heptachlor epoxide (µg/l)
MW-7 6/18/2010	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<10	ND<3.0	ND<2.0	ND<10	ND<2.0	ND<2.0	ND<2.0	ND<2.0
MW-8 6/18/2010	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<10	ND<3.0	ND<2.0	ND<10	ND<2.0	ND<2.0	ND<2.0	ND<2.0

Table 2 k
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 7376

Date Sampled	Hexa- chloro- benzene (µg/l)	HCBD (svoc) (µg/l)	Hexachloro cyclopenta- diene (µg/l)	Hexachloro -ethane (μg/l)	Indeno- [1,2,3-c,d] pyrene (μg/l)	Isophorone (μg/l)	2-Methyl- 4,6-dinitro- phenol (µg/l)	2-Methyl- naphtha- lene (μg/l)	2-Methyl- phenol (μg/l)	Naphtha- lene (svoc) (μg/l)	2-Naphthyl- amine (μg/l)	2-Nitro- aniline (μg/l)
MW-7 6/18/2010	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0	ND<2.0	ND<20	ND<2.0
MW-8 6/18/2010	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0	ND<2.0	ND<20	ND<2.0

Table 2 1
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 7376

Date Sampled	3-Nitro- aniline (μg/l)	4-Nitro- aniline (μg/l)	Nitro- benzene (µg/l)	2-Nitro- phenol (μg/l)	4-Nitro- phenol (μg/l)	N-Nitroso- dimethyl- amine (μg/l)	N-nitrosodi- n-propyl- amine (µg/l)	N-Nitro- sodiphenyl- amine (μg/l)	Penta- chloro- phenol (µg/l)	Phen- anthrene (μg/l)	Phenol (μg/l)	Pyrene (µg/l)
MW-7 6/18/2010	ND<2.0	ND<5.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0	ND<2.0
MW-8 6/18/2010	ND<2.0	ND<5.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<10	ND<2.0	ND<2.0	ND<2.0

Table 2 m ADDITIONAL HISTORIC ANALYTICAL RESULTS 76 Station 7376

Date Sampled	1,2,4-	2,4,6-	2,4,5-
Sampicu	Trichloro- benzene (svoc)	Trichloro- phenol	Trichloro- phenol
	(μg/l)	μg/l)	phenor (μg/l)
MW-7			
6/18/2010	0 ND<2.0	ND<5.0	ND<5.0
MW-8			
6/18/2010	0 ND<2.0	ND<5.0	ND<5.0

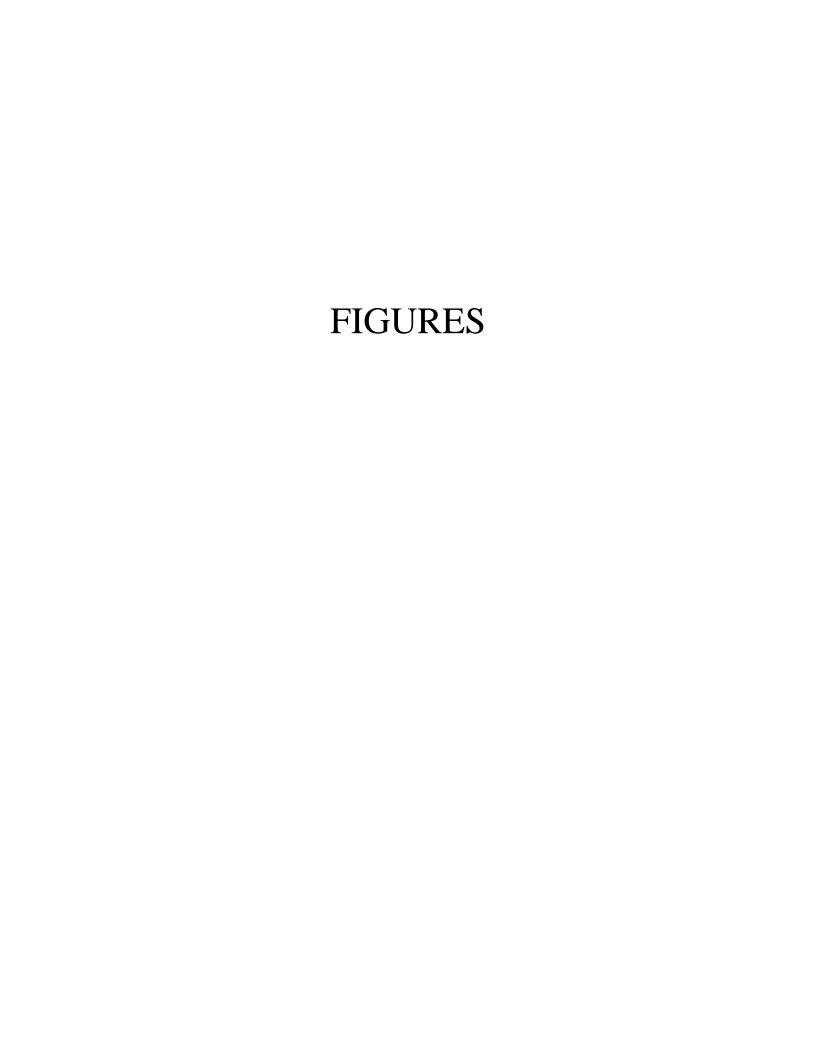
TABLE 3 LIQUID PHASE HYDROCARBON RECOVERY DATA 76 STATION 7376

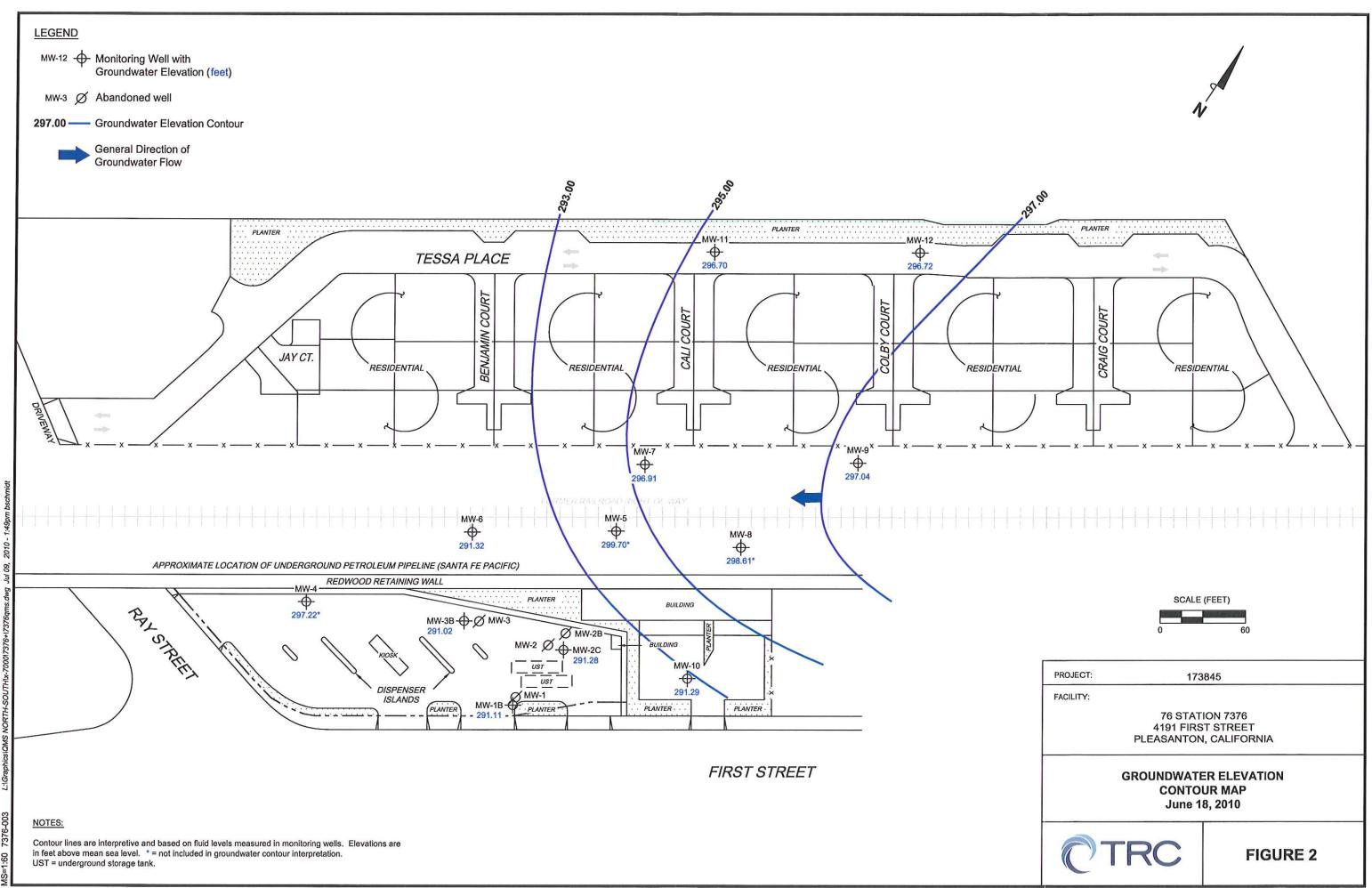
<u>WELL</u>	<u>DATE</u>	LPH Recovered(Gallons)
MW-5	6/28/06	0.02
MW-5	7/12/06	0.00
MW-5	8/7/06	0.00
MW-5	9/15/06	0.00
MW-5	9/28/06	0.01
MW-5	10/10/06	0.00
MW-5	10/30/06	0.00
MW-5	11/10/06	0.00
MW-5	11/22/06	0.00
MW-5	12/11/06	0.02
MW-5	12/21/06	0.00
MW-5	1/5/07	0.01
MW-5	1/15/07	0.00
MW-5	2/5/07	0.00
MW-5	2/20/07	0.00
MW-5	3/8/07	0.00
MW-5	4/12/07	0.00
MW-5	4/30/07	0.03
MW-5	5/7/07	0.00
MW-5	5/23/07	0.00
MW-5	6/28/07	0.00
MW-5	7/19/07	0.00
MW-5	8/1/07	0.00
MW-5	8/13/07	0.00
MW-5	8/27/07	0.00
MW-5	9/14/07	0.00
MW-5	10/16/07	0.00
MW-5	10/29/07	0.00
MW-5	11/16/07	0.00
MW-5	12/7/07	0.00
MW-5	1/7/08	0.00
MW-5	1/28/08	0.00
MW-5	2/15/08	0.00
MW-5	2/29/08	0.00
MW-5	3/25/08	0.00
MW-5	4/11/08	0.00
MW-5	4/22/08	0.00
MW-5	5/5/08	0.00
MW-5	5/20/08	0.00
MW-5	6/6/08	0.00
MW-5	6/23/08	0.00
MW-5	7/1/08	0.00
MW-5	7/18/08	0.00
MW-5	8/7/08	0.00
MW-5	8/26/08	0.04
MW-5	9/16/08	0.00
MW-5	10/3/08	0.00

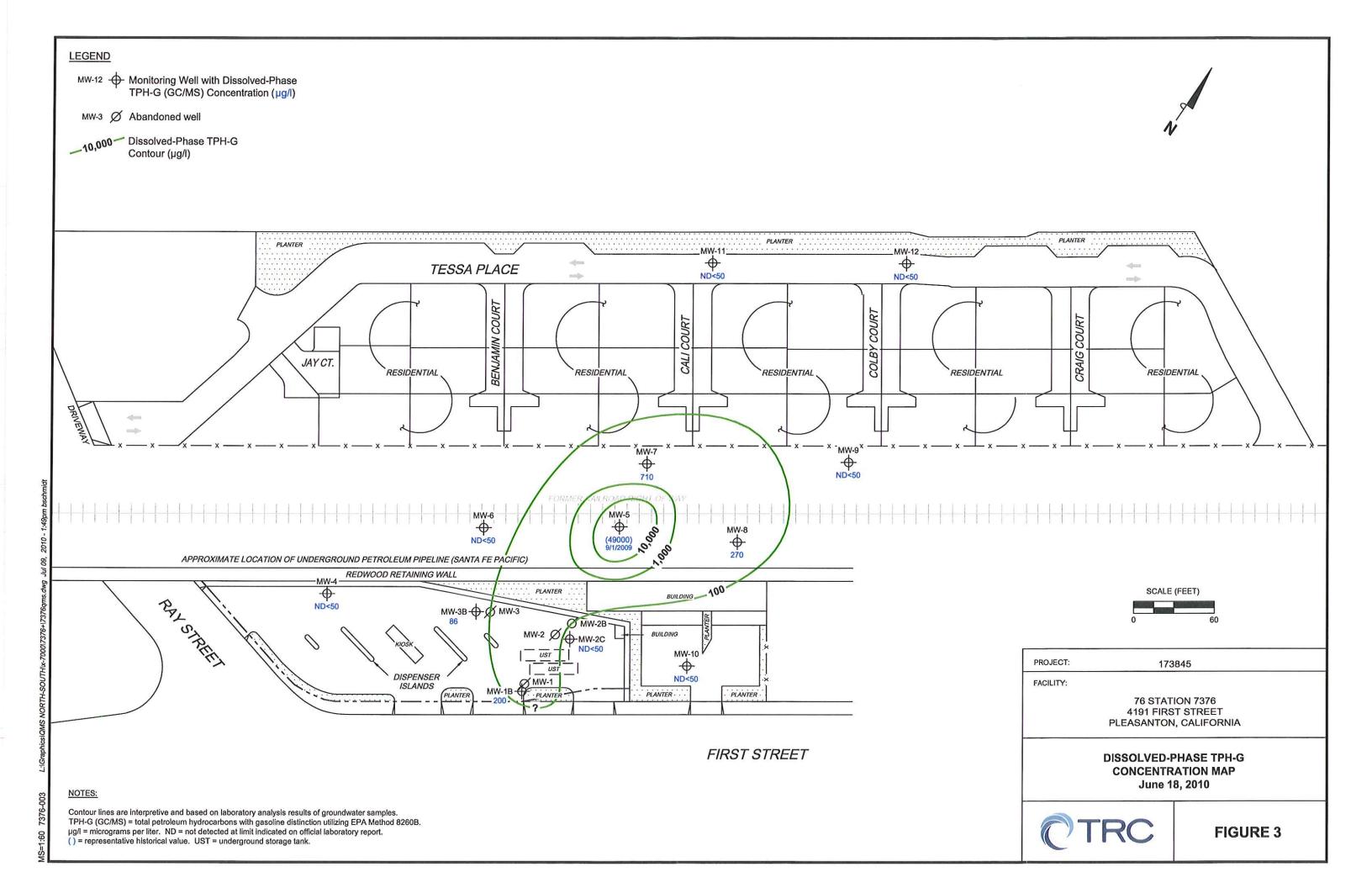
7376 Page 1 of 2

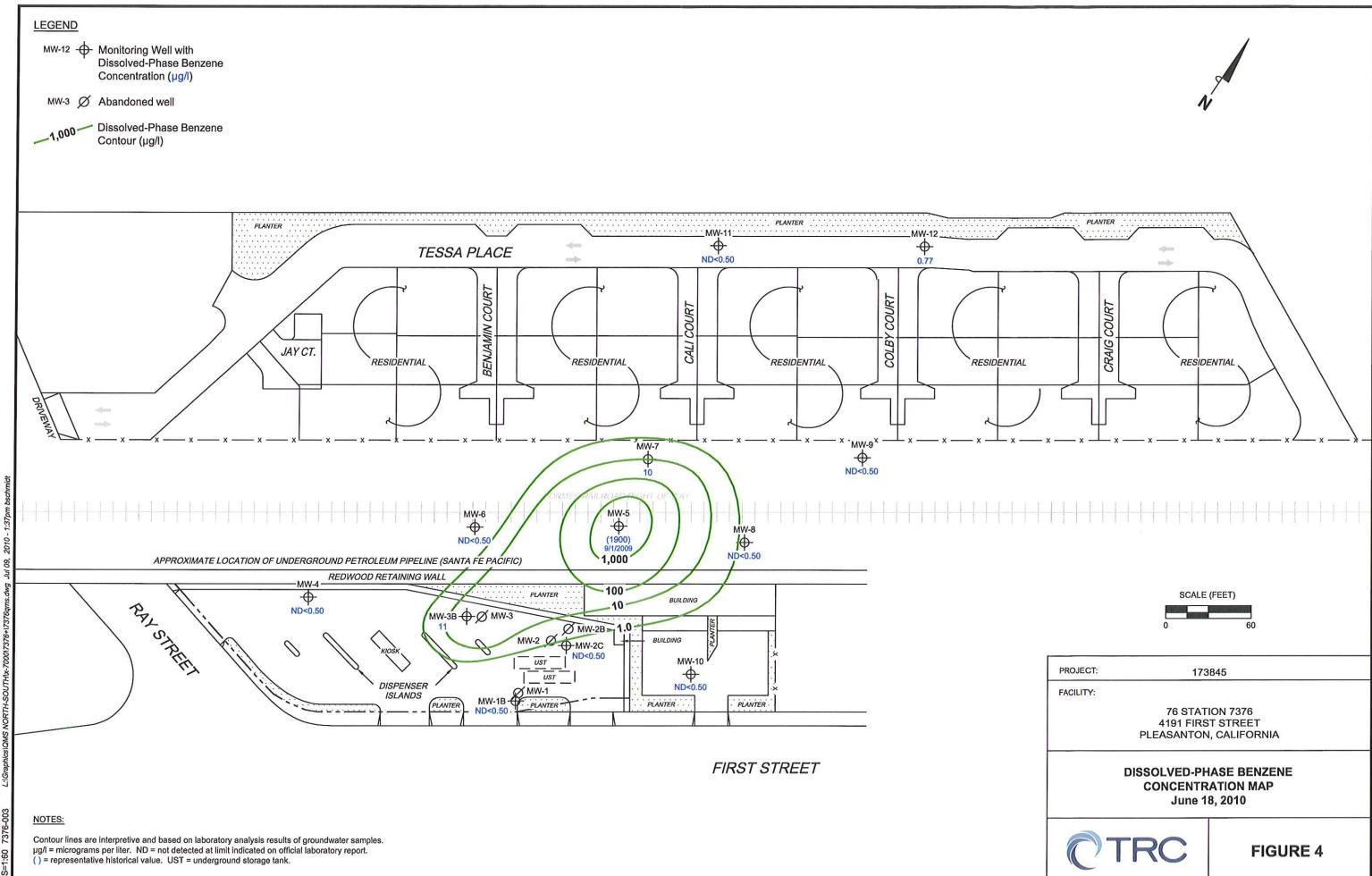
TABLE 3 LIQUID PHASE HYDROCARBON RECOVERY DATA 76 STATION 7376

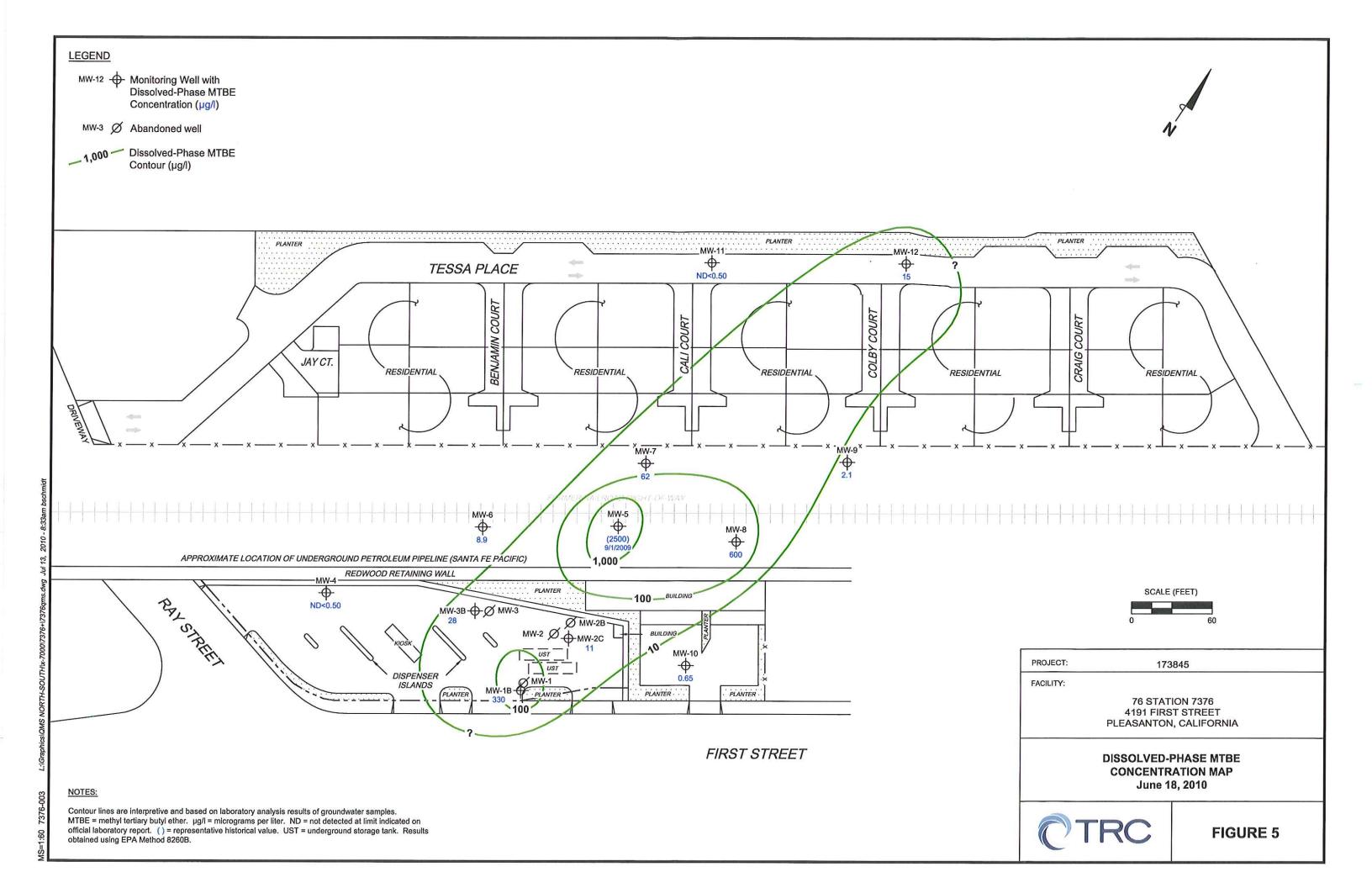
WELL	<u>DATE</u>	LPH Recovered(Gallons)
MW-5	10/17/08	0.00
MW-5	11/5/08	0.00
MW-5	11/26/08	0.00
MW-5	12/8/08	0.01
MW-5	12/24/08	0.00
MW-5	1/15/09	0.00
MW-5	1/30/09	0.00
MW-5	2/6/09	0.00
MW-5	3/6/09	0.00
MW-5	3/26/09	0.00
MW-5	4/21/09	0.00
MW-5	5/7/09	0.00
MW-5	5/26/09	0.00
MW-5	6/12/09	0.00
MW-5	7/7/09	0.00
MW-5	7/27/09	0.00
MW-5	8/3/09	0.00
MW-5	8/19/09	0.00
MW-5	9/22/09	0.00
MW-5	10/6/09	0.00
MW-5	10/26/09	0.00
MW-5	11/3/09	0.00
MW-5	11/23/09	0.00
MW-5	12/10/09	0.00
MW-5	1/7/10	0.00
MW-5	1/18/10	0.00
MW-5	2/16/10	0.00
MW-5	3/9/10	0.00
MW-5	3/22/10	0.00
MW-5	4/9/10	0.00
MW-5	4/22/10	0.00
MW-5	5/7/10	0.00
MW-5	5/18/10	0.00
MW-5	6/3/10	0.00

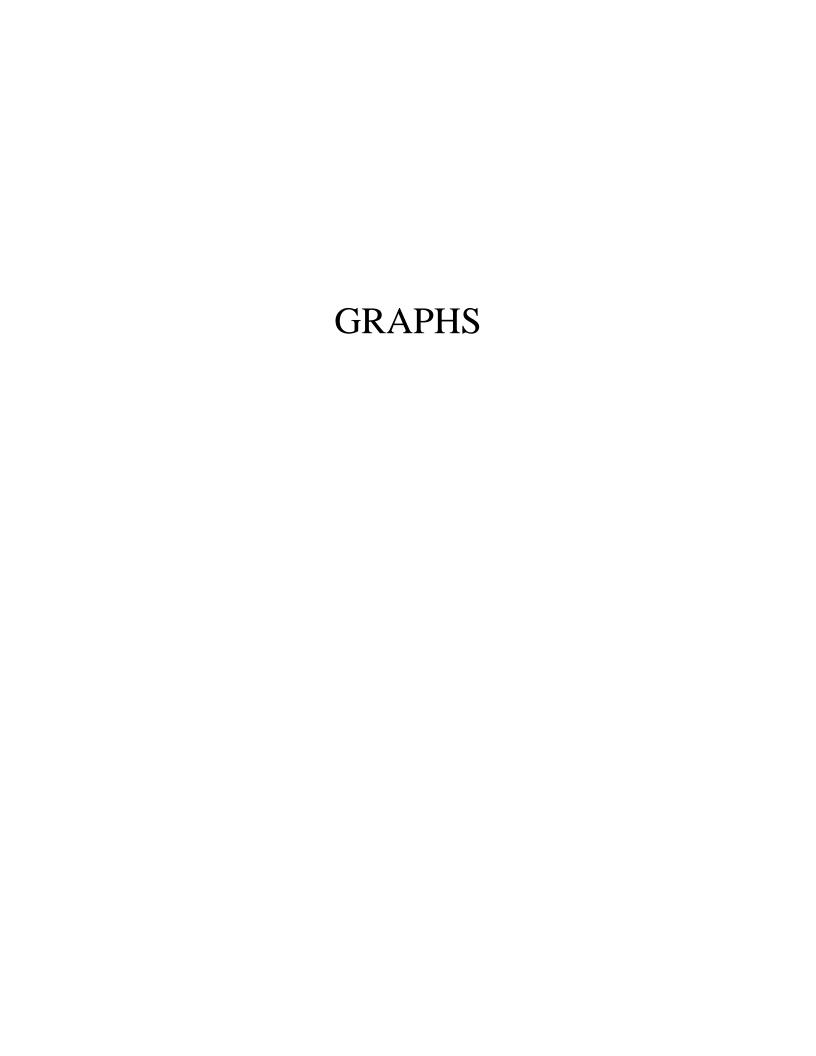

Total LPH Recovered (gallons): 0.14

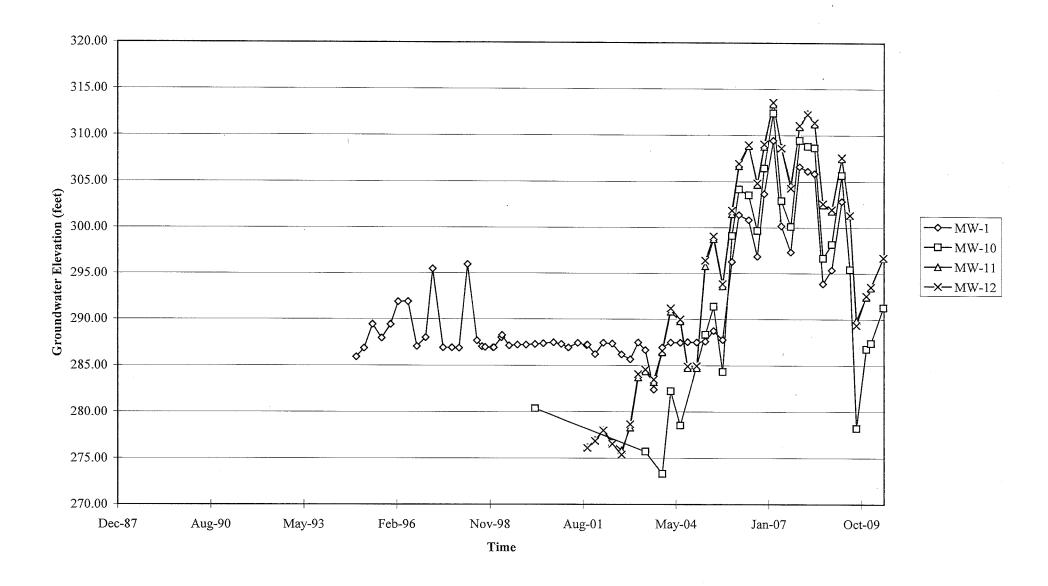

7376 Page 2 of 2

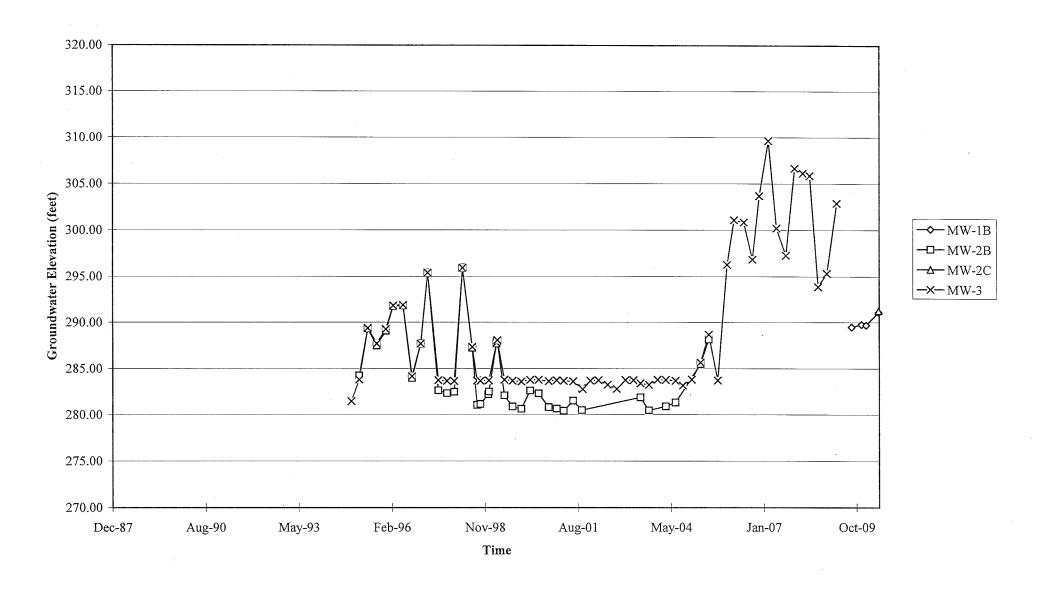

Table 4
FUEL FINGERPRINT RESULTS
December 17, 2009
76 Station 7376

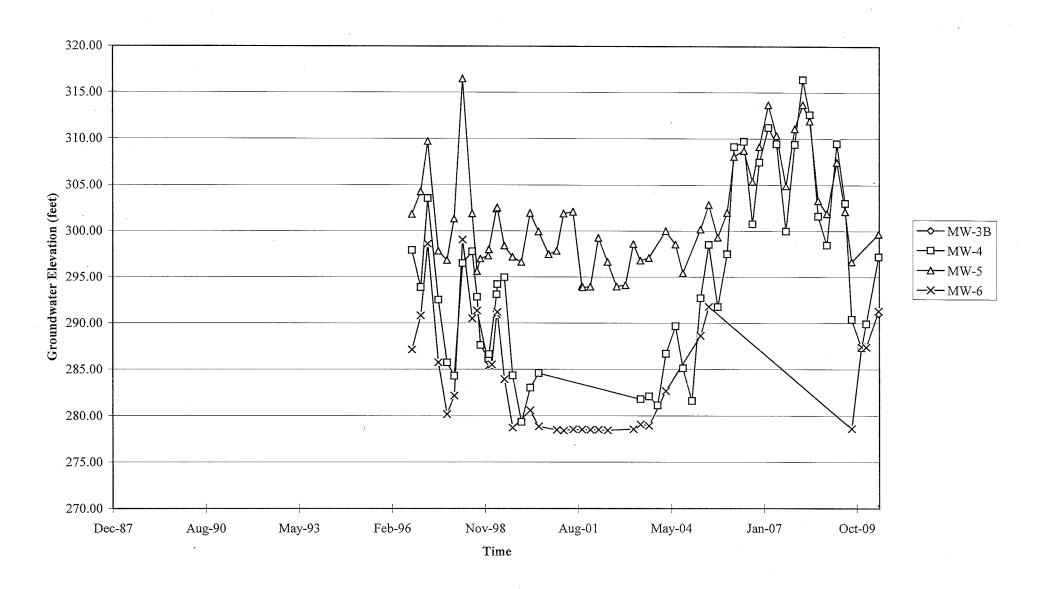

Well No. N	Monitoring	TPH -	TPH -	TPH -	TPH -	TPH-	TPH-	TPH -	TPH -						
	Date	Light	Aviation	Stoddard	Heavy	Gasoline	Jet Fuel	Jet Fuel	Jet Fuel	Kerosene	Diesel	Fuel Oil	Crude Oil	Hydraulic	WD-40
		Naptha	Gas	Solvent	Naptha		(JP4)	(JP5)	(JP8)		(FFP)	#6		Oil / Motor	
														Oil	
		$(\mu g/l)$	(µg/l)	$(\mu g/l)$	$(\mu g/l)$	$(\mu g/l)$	$(\mu g/l)$	(µg/l)	$(\mu g/l)$						
MW-6 1	12/17/2009	ND<200	ND<200	ND<50	ND<50	ND<200	ND<50	ND<50	ND<50	ND<50	ND<50	ND<50	ND<200	ND<200	ND<50
MW-7 1	12/17/2009	ND<200	ND<200	ND<50	ND<50	670	ND<50	ND<50	ND<50	ND<50	150	ND<50	ND<200	ND<200	ND<50
MW-8 1	12/17/2009	ND<200	ND<200	ND<50	ND<50	ND<200	ND<50	ND<50	ND<50	ND<50	ND<50	ND<50	ND<200	ND<200	ND<50
MW-10 1	12/17/2009	ND<200	ND<200	ND<50	ND<50	460	ND<50	ND<50	ND<50	ND<50	ND<50	ND<50	ND<200	ND<200	ND<50

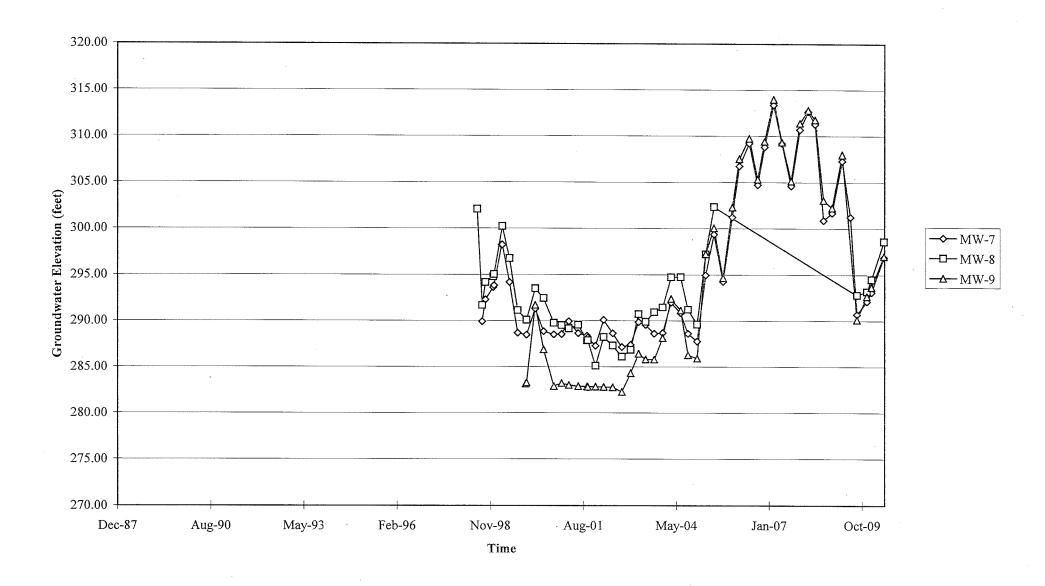

05432 Page 1 of 1

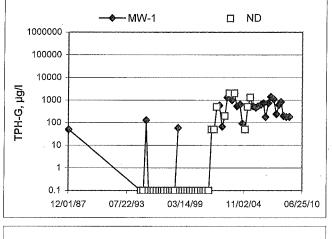


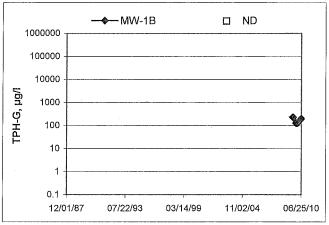


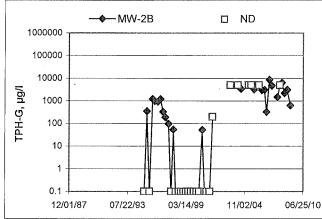


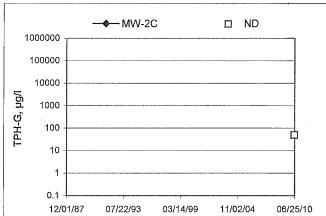


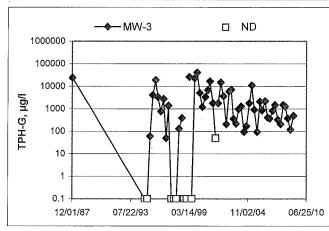


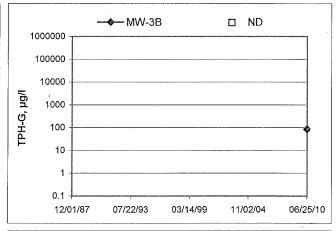


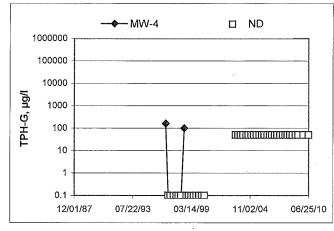


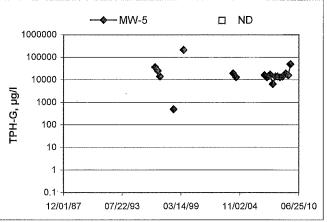


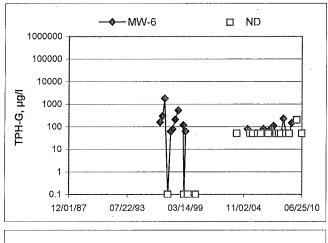


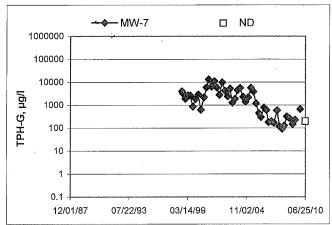

TPH-G Concentrations vs Time

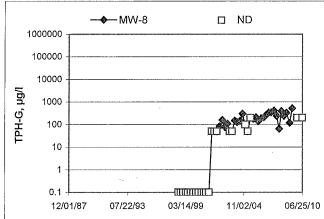


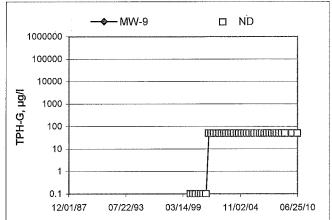


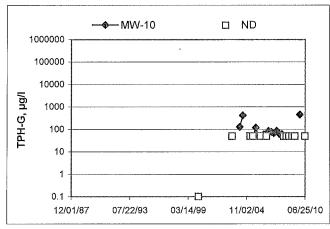


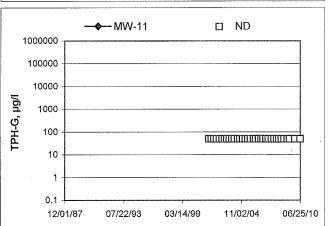


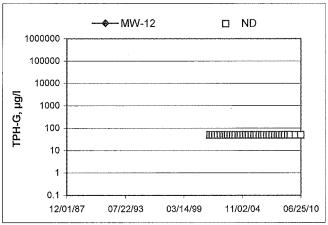


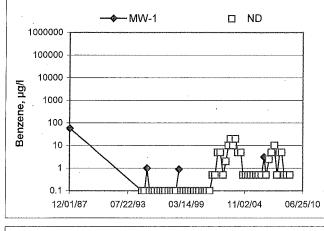


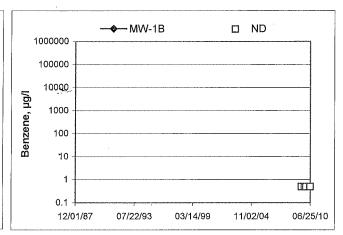


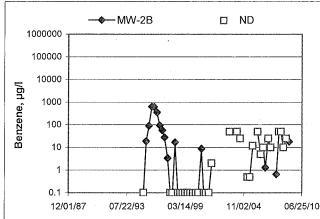

TPH-G Concentrations vs Time

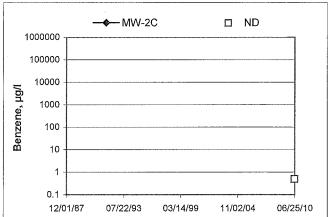


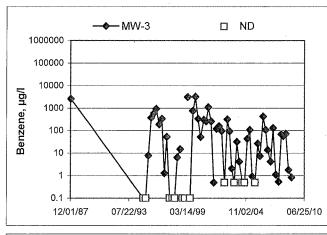


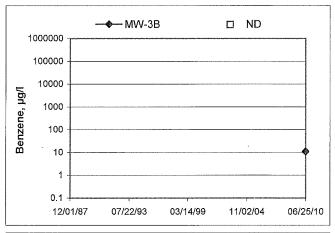


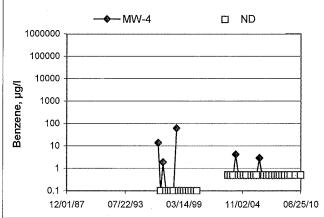


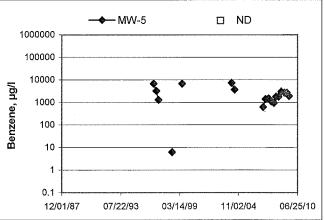




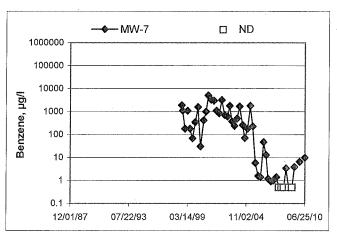

Benzene Concentrations vs Time

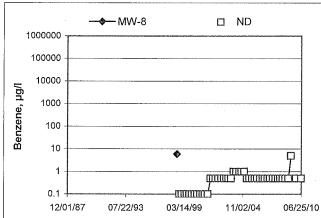


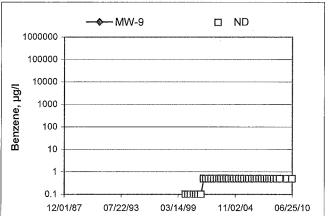


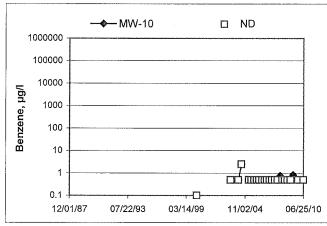


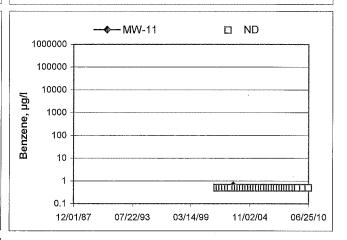


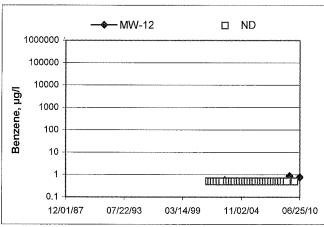


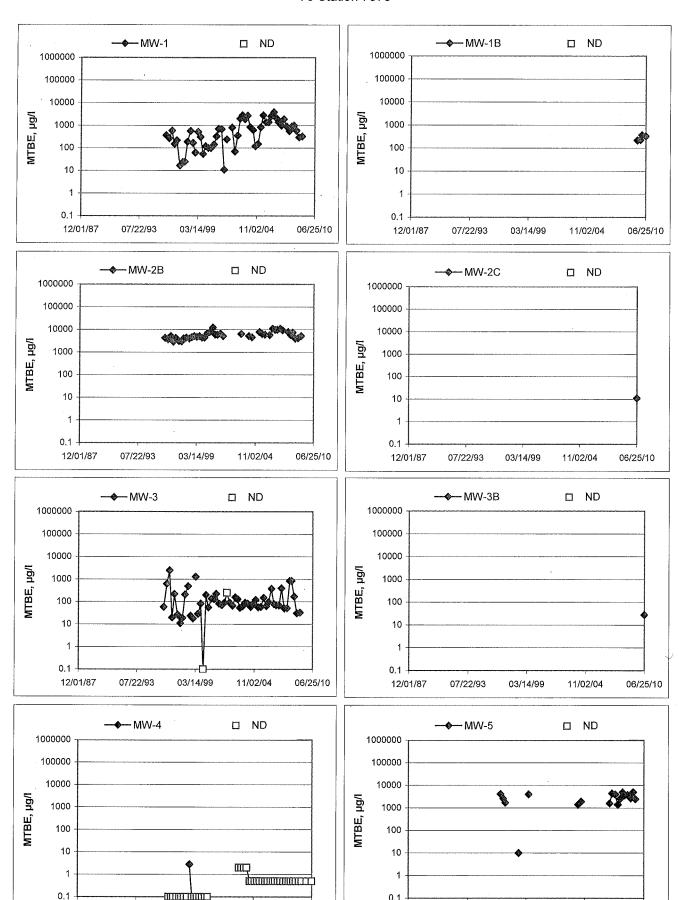





Benzene Concentrations vs Time







MTBE Concentrations vs Time

76 Station 7376

0.1

12/01/87

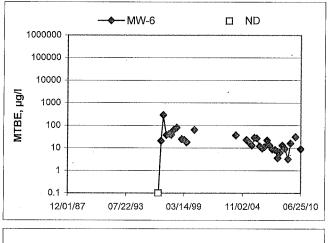
07/22/93

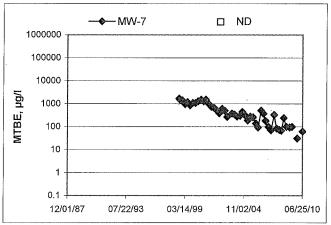
03/14/99

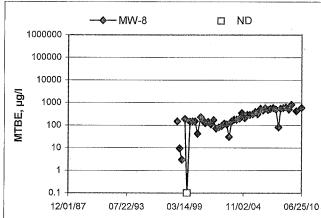
11/02/04

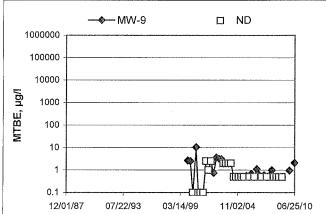
06/25/10

03/14/99

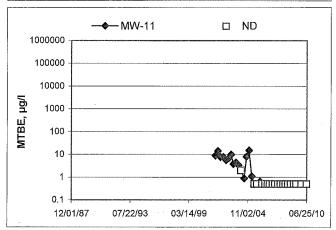

11/02/04

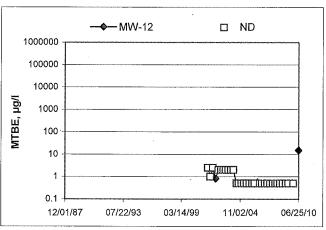

06/25/10


07/22/93


12/01/87


MTBE Concentrations vs Time





GENERAL FIELD PROCEDURES

Groundwater Monitoring and Sampling Assignments

For each site, TRC technicians are provided with a Technical Service Request (TSR) that specifies activities required to complete the groundwater monitoring and sampling assignment for the site. TSRs are based on client directives, instructions from the primary environmental consultant for the site, regulatory requirements, and TRC's previous experience with the site.

Fluid Level Measurements

Initial site activities include determination of well locations based on a site map provided with the TSR. Well boxes are opened and caps are removed. Indications of well or well box damage or of pressure buildup in the well are noted.

Fluid levels in each well are measured using a coated cloth tape equipped with an electronic interface probe, which distinguishes between liquid phase hydrocarbon (LPH) and water. The depth to LPH (if it is present), to water, and to the bottom of the well are measured from the top of the well casing (surveyors mark or notch if present) to the nearest 0.01 foot. Unless otherwise instructed, a well with less than 0.67 foot between the measured top of water and the measured bottom of the well casing is considered dry, and is not sampled. If the well contains 0.67 foot or more of water, an attempt is made to bail and/or sample as specified on the TSR.

Wells that are found to contain LPH are not purged or sampled. Instead, one casing volume of fluid is bailed from the well and the well is re-sealed. Bailed fluids are placed in a container separate from normal purge water, and properly disposed.

Purging and Groundwater Parameter Measurement

TSR instructions may specify that a well not be purged (no-purge sampling), be purged using low-flow methods, or be purged using conventional pump and/or bail methods. Conventional purging generally consists of pumping or bailing until a minimum of three casing volumes of water have been removed or until the well has been pumped dry. Pumping is generally accomplished using submersible electric or pneumatic diaphragm pumps.

During conventional purging, three groundwater parameters (temperature, pH, and conductivity) are measured after removal of each casing volume. Stabilization of these parameters, to within 10 percent, confirm that sufficient purging has been completed. In some cases, the TSR indicates that other parameters are also to be measured during purging. TRC commonly measures dissolved oxygen (DO), oxidation-reduction potential (ORP), and/or turbidity. Instruments used for groundwater parameter measurements are calibrated daily according to manufacturer's instructions.

Low-flow purging utilizes a bladder or peristaltic pump to remove water from the well at a low rate. Groundwater parameters specified by the TSR are measured continuously until they become stable in general accordance with EPA guidelines.

Purge water is generally collected in labeled drums for disposal. Drums may be left on site for disposal by others, or transported to a collection location for eventual transfer to a licensed treatment or recycling facility. In some cases, purge water may be collected directly from the site by a licensed vacuum truck company, or may be treated on site by an active remediation system, if so directed.

Groundwater Sample Collection

After wells are purged, or not purged, according to TSR instructions, samples are collected for laboratory analysis. For wells that have been purged using conventional pump or bail methods, sampling is conducted after the well has recovered to 80 percent of its original volume or after two hours if the well does not recover to at least 80 percent. If there is insufficient recharge of water in the well after two hours, the well is not sampled.

Samples are collected by lowering a new, disposable, ½-inch to 4-inch polyethylene bottom-fill bailer to just below the water level in the well. The bailer is retrieved and the water sample is carefully transferred to containers specified for the laboratory analytical methods indicated by the TSR. Particular care is given to containers for volatile organic analysis (VOAs) which require filling to zero headspace and fitting with Teflon-sealed caps.

After filling, all containers are labeled with project number (or site number), well designation, sample date, sample time, and the sampler's initials, and placed in an insulated chest with ice. Samples remain chilled prior to and during transport to a state-certified laboratory for analysis. Sample container descriptions and requested analyses are entered onto a chain-of-custody form in order to provide instructions to the laboratory. The chain-of-custody form accompanies the samples during transportation to provide a continuous record of possession from the field to the laboratory. If a freight or overnight carrier transports the samples, the carrier is noted on the form.

For wells that have been purged using low-flow methods, sample containers are filled from the effluent stream of the bladder or peristaltic pump. In some cases, if so specified by the TSR, samples are taken from the sample ports of actively pumping remediation wells.

Sequence of Gauging, Purging and Sampling

The sequence in which monitoring activities are conducted is specified on the TSR. In general, wells are gauged beginning with the least affected well and ending with the well that has the highest concentration based on previous analytic results. After all gauging for the site is completed, wells are purged and/or sampled from the least-affected to the most-affected well.

Decontamination

In order to reduce the possibility of cross contamination between wells, strict isolation and decontamination procedures are observed. Portable pumps are not used in wells with LPH. Technicians wear nitrile gloves during all gauging, purging, and sampling activities. Gloves are changed between wells and more often if warranted. Any equipment that could come in contact with fluids are either dedicated a particular well, decontaminated prior to each use, or discarded after a single use. Decontamination consists of washing in a solution of Liqui-nox and water and rinsing twice. The final rinse is in deionized water.

Exceptions

Additional tasks or non-standard procedures, if any, that may be requested or required for a particular site, and noted on the site TSR, are documented in field notes on the following pages.

3/7/08 version

Technician: 1. Values	Job #/Task #:	173845 FAZO	Date: 06/18/16
Site #7376	Project Manager	A. Collins	Page 1 of Z

Well#	тос	Time Gauged	Total Depth	Depth to Water	Depth to Product	Product Thickness (feet)	Time Sampled	Misc. Well Notes
MW-12	₩.	0603	88.90	60.17	Conference on the order of subsection 1.	************	o735	2 "
MW-11	>	0608	84.94	60.74	Control of the State of the Sta	The state of the s	0861	211
MW-9	V	0621	74.69	60.63		- management	084-8	2"
MW-8	√	0626	84.77	bb.46	Contract designation ()		0954	2"
Mw-7	٧	0631	76.11	61.76	Continue of the second	Company of the Control of the Contro	1620	2"
Mw-5	/	0634	72.45	bb. 34	**************************************	*Discussion of the Control of the Co	NS	Z" Non-completion form
	-				·			
			•					
							_	
FIELD DATA	COMPLE	ETE	QA/QC		COC	W	ELL BOX C	ONDITION SHEETS
MANIFEST		DRUM IN	VENTOR'	Y	TRAFFIC	CONTROL		

Technician: Bashiv	Job #/Task #: 1738 45 FA20	Date: _	6-18-10
Site # 7376	Project Manager A. Collins	Page _	2 of 2

				Depth	Depth	Product		
Well#	TOC	Time Gauged	Total Depth	to Water	to Product	Thickness (feet)	Time Sampled	Misc. Well Notes
	استسا			78.83	CONTE		\$ 10/0	
MW 3B MW ZC	L. som	1		77.20	e de la constante de la consta	Mark V	1020	2"
10,-4				74.36	gazote di Lo	Plantyses,	1050	2"
MW-4				74.13	_bear.		0850	2 "
11w-10 11w-6 11w-113							0920	
100-6	V	l i		74.90		■####################################	0700	
MW-15		0624	82,25	78.17	-Message -	Magain	1030	2"

				114.				

				·				
						1		
	COMPL	<u> </u>	04/00			1	ELL DOV O	ONDITION CHEETS
FIELD DATA	COMPLI	=1E	QA/QC		COC	VV	ELL BOX C	ONDITION SHEETS
MANIFEST		DRUM IN	VENTOR	Y	TRAFFIC (CONTROL		
				· · · · · · · · · · · · · · · · · · ·				

Technician: Site: 1376 173845 Project No.:_ MW-12 Well No._ Purge Method:_ 60.17 Depth to Water (feet): Depth to Product (feet): 88,90 Total Depth (feet)_ LPH & Water Recovered (gallons): 28.73 Water Column (feet):_ Casing Diameter (Inches):_ 65.92 80% Recharge Depth(feet): 1 Well Volume (gallons):

Time	Time	Depth to	Volume	Conductivity	Temperature		D.O.		
Start	Stop	Water (feet)	Purged (gallons)	(µS/cm)	(F,C)	pН	(mg/L)	ORP	Turbidity
Pre-	Purge								
0717			5	882.8	19.0	5.84			
			10	879,7	19.9	5.84			
	0729		15	881.8	19.4	5.87			
									
Stat	tic at Time S	ampled	Tota	al Gallons Pur	ged	l	Sample	Time	<u> </u>
60.27			15			0735			
Comments	omments:								

Well No.
MW-11

Depth to Water (feet):
60.74

Depth to Product (feet):
Depth to Product (feet):

Total Depth (feet)
84.94

LPH & Water Recovered (gallons):
Water Column (feet):

24.20
Casing Diameter (Inches):

80% Recharge Depth(feet):
65.58

1 Well Volume (gallons):
5

	Stop	Water (feet)	Purged (gallons)	Conductivity (µS/cm)	Temperature (F,C)	рН	D.O. (mg/L)	ORP	Turbidity
Pre-Pur	ge								
0746			5	925.3	18.7	5.99			
			10	947.2	14.0	5.99			
	755		15	948.3	18.9	6.61			
						,			
Static a	t Time Sa	ampled	Tota	I Gallons Pur	ged		Sample	Time	1
60.	83			15			0801		
Comments:				,					

A. Vidners Technician: Site: 7376 173845 Project No.:_ MW-9 Sub Well No._ Purge Method:_ 60.63 Depth to Water (feet):_ Depth to Product (feet): 74.69 Total Depth (feet)_ LPH & Water Recovered (gallons):_ 14.06 Water Column (feet):_ 2 Casing Diameter (Inches):_ 3. 80% Recharge Depth(feet): 63.44 1 Well Volume (gallons):___

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature (F,C)	рН	D.O. (mg/L)	ORP	Turbidity
Pre-	Purge					***************************************			
c837			3	1002	19.0	6.34			
			b	1009	19.6	6.30			
	0843		O	1010	19.6	6.28		***	
								······································	
Stat	ic at Time S	ampled	Tota	al Gallons Pur	ged		Sample	Time	J
	60.79		· · · · · · · · · · · · · · · · · · ·	eq		··· • · · · · · · · · · · · · · · · · ·	0848		·
Comments	:								

Well No. MW- &	Purge Method: Sub
Depth to Water (feet): 66.46	Depth to Product (feet):
Total Depth (feet) 84.77	LPH & Water Recovered (gallons):
Water Column (feet): 18.3	Casing Diameter (Inches): 2
80% Recharge Depth(feet): 70.12	1 Well Volume (gallons):

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature (F,C)	рН	D.O. (mg/L)	ORP	Turbidity
Pre-	Purge							· · · · · · · · · · · · · · · · · · ·	
0904			4	1046	20.4	6.18	ļ ·		
			8	1147	20.9	6.06			
	0911		17	1164	21.3	6.11			
	 								
Stat	ic at Time S	ampled	Tota	al Gallons Pur	ged		Sample	Time	l
58.91			12				0954	, , , , , ,	
Comments	omments:						01.54		

Technician: A. Valies Site: 1376 Date: 06/18/10 Well No. MW-7 Purge Method: Svb Depth to Water (feet):_ 61.75 Depth to Product (feet): 76.11 Total Depth (feet) LPH & Water Recovered (gallons): Water Column (feet): 14.35 Casing Diameter (Inches):_____ 80% Recharge Depth(feet): 64.63 1 Well Volume (gallons): Depth to Volume Conductivity Temperature Time Time D.O. Water Purged pН **ORP** Turbidity Start Stop (µS/cm) (F,C)(mg/L)(feet) (gallons) Pre-Purge 1006 6.53 402 26.9 مک 1444 6.48 19.9 1015 1451 Static at Time Sampled Total Gallons Purged Sample Time 63.81 1020 Comments: Well No._____ Purge Method: Depth to Water (feet):_____ Depth to Product (feet):____ Total Depth (feet)_____ LPH & Water Recovered (gallons):_____ Water Column (feet):_____ Casing Diameter (Inches):_____ 80% Recharge Depth(feet):____ 1 Well Volume (gallons):_____ Depth to Volume Time Time Conductivity | Temperature D.O. Water Purged Ha ORP **Turbidity** Start Stop (µS/cm) (F,C) (mg/L) (feet) (gallons) Pre-Purge Static at Time Sampled **Total Gallons Purged** Sample Time Comments:

		Tec	hnician: _	Ba	ulio	_			
Site: <u>73</u>	76		ect No.:	1738	245	_	Date:_	0-18	2-10
Well No	MW-	<u>3B</u>		Purge Metho	d: <u></u> [415			
Depth to Wa	ater (feet):_	78.83		Depth to Prod	duct (feet):	Quantities and a second	Millionings ,		
Total Depth	(feet)	82.15		LPH & Water	Recovered (ga	allons):	- Appareur	_	
Water Colu	mn (feet):	3.32		Casing Diam	eter (Inches):_	2			
80% Recha	rge Depth(fe	eet): <u> </u>	19	1 Well Volum	e (gallons):		-		
	T	1 D-4-4-1	Valore	T		1	ı 1		1
Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature (F,C)	рН	D.O. (mg/L)	ORP	Turbidity
	Purge								
0709			7	1051	18.5	6.46			
	078		3	1033	19.5	6.30		········	
	0.0								
Stati	ic at Time Sa		Tota	al Gallons Pur	ged	A CTIV	Sample	Time	
Comments	<u> 78.8</u> :	4				/D,	/ 0		
		**************************************					,		
Well No	Mh	J-2C		Purge Metho	d: <u>}</u>	B			
		77.20)	Depth to Prod	duct (feet):	·			
		81.96			Recovered (ga				
Water Colu		4176			eter (Inches):_	シ		•	
				1 Well Volum	e (gallons):)			
80% Recha	rge Depth(fe	eet): <u>[8, 1</u>			(0 /				
80% Recha	rge Depth(fo	eet):(<i>\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \</i>							
80% Recha Time Start	rge Depth(fe Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature (F,C)	рН	D.O. (mg/L)	ORP	Turbidity
Time Start	Time	Depth to Water		Conductivity	Temperature	рН		ORP	Turbidity

D D.		(feet)	(gallons)	(µS/cm)	(F, ©)		(mg/L)		
Pre-Pi	urge								
0724				1093	18.7	667			
,				1120	19.5	6.49			
	0732		3	1101	19.4	4.53			
Static	at Time Sa	mpled	Tota	al Gallons Pur	ged		Sample	Time	
	77.	22	.3			/	020		
Comments:									
				***************************************		****			

Technician: Banko

Site: 7376 Project No.: 173845 Date: 6-18-10

Well No. MW-10 Purge Method: 5ub

Depth to Water (feet): 74.13 Depth to Product (feet): 5ub

Total Depth (feet) 91.64 LPH & Water Recovered (gallons): 5ub

Water Column (feet): 17.63 1 Well Volume (gallons): 3

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature (F, C)	рН	D.O. (mg/L)	ORP	Turbidity
Pre-F	Purge								
17840			3	932.7	19.9	7.42			
<u></u>			6	935.5	20-3	7. ZO			
	0844		9	947.2	20,6	6.97	•		
Stat	ic at Time Sa	mpled	Tot	al Gallons Pur	ged		Sample	Time	
	75.60		9			C	1850	5	
Comments									

Well No. MW-6	Purge Method:
Depth to Water (feet): 74,90	Depth to Product (feet):
Total Depth (feet) 88.20	LPH & Water Recovered (gallons):
Water Column (feet): 13.30	Casing Diameter (Inches):
80% Recharge Depth(feet): 77.56	1 Well Volume (gallons):3
	•

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature	рН	D.O. (mg/L)	ORP	Turbidity	
Pre-F	Purge				_					
0904			3	1015	20.60	6.94				
			6	1006	20.4	6.70				
	0908		9	1004	20,5	652				
Stati	Static at Time Sampled			Total Gallons Purged			Sample Time			
	75.00			9			0920			
Comments	•		···						****	
Comments	•									

Technician: <u>Sasilio</u>										
Site: <u>73</u>	76	Proj	ect No.:/		·	_	Date:_	6-1	8-10	
Well No	MW-	113		Purge Method: HB						
Depth to W	ater (feet):	78.17		duct (feet):			_			
Total Depth	(feet)	82,25		LPH & Water	· Recovered (ga	allons):		_		
Water Colu	mn (feet):	4.08		Casing Diam	eter (Inches):_	2_				
80% Recha	rge Depth(fe	et): 78.9	<u>18</u>	1 Well Volum	ne (gallons):					
Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature (F , C)	рН	D.O. (mg/L)	ORP	Turbidity	
	Purge									
0735			2	1413	19.3	6.75	•			
	0745	,	3	1421	19.7	6.79				
	(///)			1120		0.77		·····		
Stati	c at Time Sa			al Gallons Pur			Sample	Time		
0 1	<u>80.</u>	15	3	0		1	030			
Comments	: 1) ry	at 3019	C. O'ic	enot re	e cover Bl	% 2 h	151			
	-						•			
	MW-			Purge Metho	d:	5nb				
Depth to Wa	ater (feet):	74.36		Depth to Prod	duct (feet):	4,				
Total Depth	(feet)	92:75		LPH & Water	· Recovered (ga	allons):		_		
	mn (feet):		•							
80% Recha	rge Depth(fe	et): <u>78.0</u>	3_	Casing Diameter (Inches): 1 Well Volume (gallons):						

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature (F,C)	рН	D.O. (mg/L)	ORP	Turbidity
	Purge		,						
0802			1 4	836.4	17.4	7.66	and thousand		
	0807		8	922,6	19.2	7.34		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
0910	08 14		12	776.1	20,1	7.20			
						1			
Static at Time Sampled			Tot	al Gallons Pur	ged	Sample Time			
77.70			12			1053011			
Comments	•								

STATEMENT OF NON-COMPLETION OF JOB

DATE OF EVENT: 06/18/10	SITE ID: 7376
TECH: A. Vidners	CALLED SUPERVISOR: YES / NO
CALLED PM: YES / NO NAME O	
WELL ID: MW-5	
Traces of LPH in well. [probe. Noticed chunks/specs Did not sample well	id not register on interface
probe. Noticed chunks/specs	of product while bailing.
Pid not sample well	per lee Dooley.
	'
WELL ID:	
W D D D	
	•
WELL ID:	

Technician:	JOE	Job #/Task #: 173485	Date: 02-16-10
Site#_		Project Manager A - Collin 5	Pageof/

		Time	Total	Depth to	Depth to	Product Thickness	Time		
Well#	тос	Gauged	Depth	Water	Product	(feet)	Sampled	Misc. Well Notes	
MW5	X	1436	72.50	71.42	pintop	procession of the second of th	NS	2"monitor only	
•			•						
,									٦
									ᅦ
								<u> </u>	٦
									-
									\dashv
*									\dashv
									\dashv
									\dashv
									\dashv
									\dashv
									\dashv
									\dashv
									4
									_
									\Box
4									
									٦
									\exists
FIELD DATA	COMPLE	ETE	QA/QC		COC	W	ELL BOX C	ONDITION SHEETS	┪
									\exists
MANIFEST		DRUM IN	VENTOR'	 Y	TRAFFIC (CONTROL			٦

Technician: Site #	A. Vo	Nulrs 16	Joi Projec	b #/Task #: et Manager	17384 A	S/FAZO Collins		Date:of
Well#	тос	Time Gauged	Total Depth	Depth to Water	Depth to Product	Product Thickness (feet)	Time Sampled	Misc. Well Notes
MW-5	√	1113	72.49	70.12	GARBINETO COMMISSION C	- The Control of Contr	NS	2"
						_		
FIELD DATA	COMPLE	TE	QA/QC		COC	W	ELL BOX CO	ONDITION SHEETS
MANIFEST		DRIIM INI	/ENTORY		TRAFFIC (CONTROL		

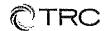
Technician: A Whit's Site #			Job #/Task #: 173845 FB20 Project Manager A. Collins				Date: 03/22/10 Page of		
Well#	тос	Time Gauged	Total Depth	Depth to Water	Depth to Product	Product Thickness (feet)	Time Sampled	Misc. Well Notes	
MW-5	V	1008	72.41	69.48	460 marine processor de la companya	Commission and the contract of	2/5	2"	
-0									
war'									

COC

TRAFFIC CONTROL

QA/QC

DRUM INVENTORY


WELL BOX CONDITION SHEETS

FIELD DATA COMPLETE

MANIFEST

Technician: Site#	E 73) asili 376	Job Projec	#/Task #: t Manager	1738 A.C	145/FR	320 .8	Date: <u>4-9-10</u> Page <u> </u> of
Well#	тос	Time Gauged	Total Depth	Depth to Water	Depth to Product	Product Thickness (feet)	Time Sampled	Misc. Well Notes
MW-5	V	06.20	72.40	69,37	- management of the second	**************************************	1/5	2"
				<u> </u>				
					`			
FIELD DATA		ETE	QA/QC	<u> </u>	COC	W	ELL BOX C	ONDITION SHEETS
MANIFEST		DRIIM IN	VENITOR'	V	TRAFFIC	CONTROL		

Technician:	6	wili) Jol	o #/Task #:	173	845-F	420-	Date: 4-22-1
Site #	73	76	Projec	t Manager	A. C.	Mins		Date: <u> </u>
		ı —	·	Depth	Depth	Product		
Well#	TOC	Time Gauged	Total Depth	to Water	to Product	Thickness	Time Sampled	Misc. Well Notes
MW-5	V	1330	72.40	69.32	Principal and American Company		NB	ご
·								
							i	
-								
FIELD DATA	COMPLE	ETE	QA/QC		COC	W	ELL BOX C	ONDITION SHEETS
		DD124111	. /= /= \		Thirtie	CONTROL		
MANIFEST		DRUM IN	VENTOR'	Υ	TRAFFIC (JUNIKUL		

Technician: A. Villers	Job #/Task #:	173845/FB20	Date: _	05/07/10
Site # 1316	Project Manager	A. Collins	Page _	0 of 1

		Time	Total	Depth to	Depth to	Product Thickness	Time			
Well#	TOC	Gauged	Depth	Water	Product	(feet)	Sampled	Misc. Well Notes		
MW-5	√	1105	72.62	66.99		(N/S	2'		
							,			

				•						
			0110-				ELL DOV 5	ANDITION OF THE		
FIELD DATA	COMPLE	=1E	QA/QC		COC	W	FLL ROX C	ONDITION SHEETS		
MANIFEST		DRUM IN	VENTOR'	Y	TRAFFIC (CONTROL				

Technician:	Jo	1	. Jol) #/Task #:	17384	15/FA-	'o	Date: 4	05/18	3/10	
Site #	Same of the same o	376	Projec	t Manager	A. Co1	lins'		Page _	of		_
		Time	Total	Depth to	Depth to	Product Thickness	Time				-

Well#	тос	Time Gauged	Total Depth	to Water	to Product	Thickness (feet)	Time Sampled	Misc. Well Notes
Mw-5	Χ	1327		66,48	Vegazione		NS	211 monitor only
			-					
				,				
							-	
						4		4.444
								,
FIELD DATA	COMPLE	ETE	QA/QC	 	COC	W	ELL BOX C	ONDITION SHEETS
MANIFEST		DRUM IN	VENTOR'	Y	TRAFFIC (CONTROL		

Technician:	P	sail	Ö Job) #/Task #:	173	845-4	AZD	Date: 6-3-10
Technician: Site #	7	376	Projec	t Manager	A.	Colli	. 8	Pageof
		1		Depth	Depth	Product		
		Time	Total	to	to	Thickness	Time	
Well#	TOC	Gauged		Water	Product	(feet)	Sampled	Misc. Well Notes
MW-5		1220	72.50	66.25		- description of the second	1/5	2" Monitor Only
				WTT W 4 TO THE MAN				
						:		
								-
							·	
FIELD DATA	COMPLE	ETE	QA/QC		COC	W	ELL BOX CO	ONDITION SHEETS
MANIFEST		DRUM IN	VENTORY	/	TRAFFIC (CONTROL		

Date of Report: 07/07/2010

Anju Farfan

TRC 123 Technology Drive Irvine, CA 92618

RE: 7376 BC Work Order: 1008515 Invoice ID: B082971

Enclosed are the results of analyses for samples received by the laboratory on 6/18/2010. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Contact Person: Molly Meyers

Molly Meyers

Client Service Rep

Authorized Signature

Certifications: CA ELAP #1186; NV #CA00014

Table of Contents

Sample Information	
Chain of Custody and Cooler Receipt form	4
Laboratory / Client Sample Cross Reference	8
Sample Results	
1008515-01 - MW-12	
Volatile Organic Analysis (EPA Method 8260)	11
Total Petroleum Hydrocarbons	12
1008515-02 - MW-11	
Volatile Organic Analysis (EPA Method 8260)	13
Total Petroleum Hydrocarbons	14
1008515-03 - MW-9	
Volatile Organic Analysis (EPA Method 8260)	15
Total Petroleum Hydrocarbons	16
1008515-04 - MW-8	
Volatile Organic Analysis (EPA Method 8260)	
Base Neutral and Acid Extractables Organic Analysis (EPA Method 8270C)	
Purgeable Aromatics and Total Petroleum Hydrocarbons	23
1008515-05 - MW-7	
Volatile Organic Analysis (EPA Method 8260)	
Base Neutral and Acid Extractables Organic Analysis (EPA Method 8270C)	
Purgeable Aromatics and Total Petroleum Hydrocarbons	30
1008515-06 - MW-3B	
Volatile Organic Analysis (EPA Method 8260)	
Total Petroleum Hydrocarbons	32
1008515-07 - MW-2C	
Volatile Organic Analysis (EPA Method 8260)	
Total Petroleum Hydrocarbons	34
1008515-08 - MW-4	
Volatile Organic Analysis (EPA Method 8260)	
Total Petroleum Hydrocarbons	36
1008515-09 - MW-10	0-
Volatile Organic Analysis (EPA Method 8260)	
Total Petroleum Hydrocarbons	38
1008515-10 - MW-6	24
Volatile Organic Analysis (EPA Method 8260)	
Total Petroleum Hydrocarbons	40
	4.
Volatile Organic Analysis (EPA Method 8260) Total Petroleum Hydrocarbons	
•	42
Quality Control Reports	
Volatile Organic Analysis (EPA Method 8260)	4'
Method Blank AnalysisLaboratory Control Sample	
Precision and Accuracy	
Base Neutral and Acid Extractables Organic Analysis (EPA Method 8270C)	
Method Blank Analysis	15
Laboratory Control Sample	
Precision and Accuracy	
Purgeable Aromatics and Total Petroleum Hydrocarbons	
Method Blank Analysis	5/
Laboratory Control Sample	
Precision and Accuracy	
Total Petroleum Hydrocarbons	
Method Blank Analysis	57
Motifod Blattic / Hidiyoto	

Table of Contents

	Laboratory Control Sample	58
	Precision and Accuracy	
Notes	,	
	Notes and Definitions	. 60

1008515 BC LABORATORIES, INC.

4100 Atlas Court (661) 327-4911

Bakersfield, CA 93308 FAX (661) 327-1918

CHAIN OF CUSTODY

						Analy	sis	Rec	ques	ted		
Bill to: Co	onoco Phillips/ TRC	Consultant Firm: TR	c	MATRIX (GW)	15					by 8760B	*	3
Address:	4-191 First Street	21 Technology Drive Irvine, CA 92618-230 Attn: Anju Farfan		Ground- water (S) Soil	3, Gas by 8015		nates	7 8260B	- 1	_ →¥<	And Oil #10x	Requested
City:	Pleasanton	4-digit site#: 737	,	(WW) Waste- water	by 8021B,	TPH GAS by 8015M TPH DIESEL by 8015	8260 full list w/ oxygenates	BTEX/MTBE/@MMS BY	ETHANOL by 8260B		Z 7	Turnaround Time Requested
State: CA	Zip:	Project #: 173 <i>8</i> 45		(SL)	BE	by 8 SEL 1	list v	BEV	L by	ğ X	8 3	¥ E
Conoco F	Phillips Mgr: Tevry Grays	Ø∧ Sampler Name: Å.	Viduers	Sludge	ZMT	GAS	를	CMT	NO	چ او چ	g	aron
Lab#	Sample Description	Field Point Name	Date & Time Sampled		BTEX/MTBE	TPH	8260	вте	ETH/	VOC-full Scan	ğ	T
	-1	MW-12	06/18/10 0735	GW		. X		À	>	<u> </u>		57.D
	- 2	Mw-11	0801	\								$\perp \perp \perp$
	-3	Mw-9	0848							Ц.,		$\perp \perp$
	-4	MW-8	6954							\ \ \ \ \	*	$\perp \perp \perp$
	-5	Mw-7	CNABY LOGO	OSTITION .	<u> </u>	V		$ \downarrow\rangle$		V *	*	V
	· · · · · · · · · · · · · · · · · · ·		SUE	OUT						+		
		,	V									
Comments:		Relinquished by: (S	Mgnature)	7J	· ·	Receive Receive	d by:	isk	3 6	Date & T Date & T -18.	/12 /2 ime lo (615
,	T0600106101	Relinquished by: (S		1855		Receive	d by:}		- 1	Date & T		1855

Laboratories, Inc.

Environmental Testing Laboratory Since 1949

Chain of Custody and Cooler Receipt Form for 1008515 Page 2 of 4

#1008515

BC LABORATORIES, INC.

4100 Atlas Court (661) 327-4911

Bakersfield, CA 93308 FAX (661) 327-1918

CHAIN OF CUSTODY

AVIOLATION DESCRIPTION	CONTRACTOR OF THE STREET	COLUMN TO THE PROPERTY OF THE PARTY OF THE P	FAX (001) 321-1910	OF 15 14 15 10 10 10 10 10 10 10 10 10 10 10 10 10	DATE THAT	77/800322713	NUMBER OF THE PERSON	AND THE PERSON NAMED IN	teral system	1940224432	ZTO SAME FOR	Patraphicans
						Analy	/SIS	Red	lues	ed		
Bill to: Co	noco Phillips/ TRC	Consultant Firm: TR	С	MATRIX (GW)	8015				6	Keo		
Address:	191 First St.	21 Technology Drive Irvine, CA 92618-230 Attn: Anju Farfan	21 Technology Drive Irvine, CA 92618-2302 Attn: Anju Farfan				ates	8260B	W low his	Jewy		Requested
city: Pleasanton		4-digit site#: 7	4-digit site#: 7376 Workorder#01652-45129176/6				3260 full list w/ oxygenates	BY BY	ETHANOL by 8260B			Time Requ
State: CA	Zip:	1	3845	water (SL)	3E b	by 8015M EL by 801	st w	3E/8	ğ (T br
Conoco P	hillips Mgr: Ovry Ly	Sampler Name:	antis	Sludge	/MTE	GAS	1	/MT	NOL			arour
Lab#	Sample Description /	Field Point Name	Date & Time Sampled		BTEX/MTBE by 8021B,	TPH GAS by 8015M TPH DIESEL by 8015	8260	BTEX/MTBE/@	ETHA			Turnaround
,	- (پ	MW-3B 6-	18-10 1010	600				\times	\rightarrow			54
,	-7	Mw-2C	1-1020	.		- 1						
	-8	MW-4	1050					Ш	$\perp \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$			
	-9	MW-10	0850	. /		$\perp \perp$						
	~10	MW-6	.0920			\perp			$\perp \! \! \perp \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	\perp		
	-11	MW-1B 1	/030	U U		-∜-		V	1	4	15	16
										+	\dashv	+-
Comments:		Relinquished by: (S	XIN			Receive	Vi.	ka	6	ate & Ti	10/2	232
GLOBAL ID):	Relinquished by: (S		9/00		Receive	کس	لسكر	6.	até & Tir	0	615
To	600100161	Relinquished by: (S	19 6-(8·(0	1853		Receive	a by:	7		ate & Ti [-{\S		855

Chain of Custody and Cooler Receipt Form for 1008515

				Page 3 of		. 43 0	i/24/08	Page <u>I</u>	Of 2	
LABORATORIES INC.	SA	MPLE	ECEIPT	FORIVI	Rev. N	0. 12 0	12408	1 49-		
							CONT	AINED		
bmission #: 7008575 SHIPPING INFORM	ATION					HIPPING	None	AINER		1
LIPSO H	and Deliver (Specify)	у 🗆	_]	lce	Chest ⊘ Box □		Other	□ (Spec	ify)	
		Othe	r C	omments:						
efrigerant: Ice ☑ Blue Ice □	None 🗆				0.1					N.
Istody Seals Ice Chest I	Containers ntact? Yes 🖸	No 🖸		Comment		Dagoriotic	onis) mat	ch COC? Y	es 🗹 No	
samples received? Yes ∯ No □ A	il samples c	ontainers	intact? Yes	No U				Data/Tim	e/18/12	
COC Received	nissivity()	15 a	ntainer:(3	THE IN	ermomete	L IDH-I-I	-			, 1910 l
COCINOCOLIC		Γ	4 .,	10	0,4	*c		Analyst l	nit <u>A</u>	
YES NO Te	mperature: A						-			
Control of the Contro	T				SAMPLE N	UMHERS_	7	8	9	10
SAMPLE CONTAINERS	1	2	3	4	5					
T GENERAL MINERAL/ GENERAL PHYSICAL										
T PE UNPRESERVED									\	
YT INORGANIC CHEMICAL METALS										
T INORGANIC CHEMICAL METALS										
T CYANIDE PT NITROGEN FORMS	1									
PT TOTAL SULFIDE										
ROL NITRATE / NITRITE										
PT TOTAL ORGANIC CARBON						1				
PT TOX			+							
PT CHEMICAL OXYGEN DEMAND				1						
PLA PHENOLICS										
40ml YOA VIAL TRAVEL BLANK	A-(3	A (3	A G	3 A 3	A 3	51	4			
40ml VOA VIAL	110	177	7-11-	-			-			
QT EPA 413.1, 413.2, 418.1		+								-
PT ODOR		-								
RADIOLOGICAL		+	1						-+	
BACTERIOLOGICAL		+								
40 mi VOA VIAL- 504									-	
QT EPA 508/608/8080									-	
QT EPA 515.1/8150										
QT EPA 525										
OT EPA 525 TRAVEL BLANK	_								-	
100ml EPA 547										
100ml EPA 531.1							-+			
QT EPA 548										
QT EPA 549	_									
QT EPA 632										1
QT EPA 8015M	8,0	B, 0	(B, C	B, <	BIC					
OT AMBER										
8 OZ. JAR										
32 OZ. JAR										
SOIL SLEEVE										
PCB VIAL										
PLASTIC BAG										
FERROUS IRON										
ENCORE					- 4-	22-	-			
Comments: Completed By:	CLV	0	ate/Time:	6-01	- 10	9 20	-enventionA	B_DOCS/FORM	SISAMRECZY	NPO)

Chain of Custody and Cooler Receipt Form for 1008515 Page 4 of 4

LABORATORIES INC.	S	AMPLE F	ECEIPT	FORM	Rev. N	0. 12	6/24/08	Page 2		
ubmission#: /00 85/5										
SHIPPING INFOR	MATION land Delive (Specify)	ry 🗆	_	Ice	Chest a Box □	HIPPIN	Non	TAINER e □ r □ (Spec	ify)	
efrigerant: Ice Blue Ice	None 🗆	Othe	r 🗆 Co	mments	:					
omgeran			enol	Comment	ts:					. `
Intact? Yes [] No.[]	Containers Intact? Yes D	No 🗆				Danasintl	on/e) mat	tch COC? Y	es No	
samples received? Yes [No D	All samples c	ontainers i	ntact? Yes	No O						
COC Received En	missivity	1800	ntainer: _\ 	/ C			77_	Date/Tim Analyst I	nit 3	, 1910
					SAMPLE N		_	T .	9	10
SAMPLE CONTAINERS	1 0	27	8.0	49	610	511	7	+ *		
T GENERAL MINERALI GENERAL PHYSICAL										
T PE UNPRESERVED	1									
T INORGANIC CHEMICAL METALS	-									
T INORGANIC CHEMICAL METALS								T		-
T CYANIDE	1									-
T NITROGEN FORMS	+									+
T TOTAL SULFIDE	1									+
oz. NITRATE / NITRITE	+									+
T TOTAL ORGANIC CARBON	1								+	+
T TOX									+	+
T CHEMICAL OXYGEN DEMAND					1		-		+	_
PIA PHENOLICS				-		77 3	-	1	1 1	
10ml VOA VIAL TRAVEL BLANK 10ml VOA VIAL	A13	A 3	13	H 13	A 3	115	1		+	1
OT EPA 413.1, 413.2, 418.1					-		+	_	_	
PT ODOR						-	+	_		
RADIOLOGICAL							+			
BACTERIOLOGICAL				-		-	_		-	
40 ml VOA VIAL- 504					-					
QT EPA 508/608/8080	-			-		_				
QT EPA 515.1/8150		+		-						
QT EPA 525		-								
QT EPA 525 TRAVEL BLANK	-	+		1						-
100ml EPA 547	-	-	1							
100ml EPA 531.1			1							
QT EPA 548		+								
QT EPA 549		-	1							
OT EPA 632		+								
OT EPA 8015M	BC	B,C	Bic	B,C	Bic	B, 0				
OT AMBER	-12,-		7							-
8 OZ. JAR							_			
32 OZ. JAR SOIL SLEEVE						-				
PCB VIAL						+				
PLASTIC BAG				+		-				
FERROUS IRON				-		+-	-			
ENCORE										
					20 123					

TRC Reported:

123 Technology Drive Project: 7376
Irvine, CA 92618 Project Number: 4512917610
Project Manager: Anju Farfan

Laboratory / Client Sample Cross Reference

07/07/2010 15:47

Laboratory **Client Sample Information** 1008515-01 06/18/2010 18:55 **COC Number:** Receive Date: 7376 06/18/2010 07:35 **Project Number:** Sampling Date: Sampling Location: Sample Depth: Sampling Point: MW-12 Water Sample Matrix: Sampled By: **TRCI** Delivery Work Order: Global ID: T0600100101 Location ID (FieldPoint): MW-12 Matrix: W Sample QC Type (SACode): CS Cooler ID: 1008515-02 **COC Number:** Receive Date: 06/18/2010 18:55 **Project Number:** Sampling Date: 06/18/2010 08:01 7376 Sampling Location: Sample Depth: MW-11 Water Sampling Point: Sample Matrix: TRCI Delivery Work Order: Sampled By: Global ID: T0600100101 Location ID (FieldPoint): MW-11 Matrix: W Sample QC Type (SACode): CS Cooler ID: 1008515-03 **COC Number:** 06/18/2010 18:55 Receive Date: 06/18/2010 08:48 **Project Number:** 7376 Sampling Date: Sampling Location: Sample Depth: MW-9 Water Sampling Point: Sample Matrix: Sampled By: TRCI Delivery Work Order: Global ID: T0600100101 Location ID (FieldPoint): MW-9 Matrix: W Sample QC Type (SACode): CS Cooler ID: 1008515-04 **COC Number:** Receive Date: 06/18/2010 18:55 **Project Number:** 7376 Sampling Date: 06/18/2010 09:54 Sampling Location: Sample Depth: 8-WM Water Sampling Point: Sample Matrix: **TRCI** Delivery Work Order: Sampled By: Global ID: T0600100101 Location ID (FieldPoint): MW-8 Matrix: W Sample QC Type (SACode): CS Cooler ID:

TRC

123 Technology Drive Irvine, CA 92618 Reported: 07/07/2010 15:47

Project: 7376

Project Number: 4512917610
Project Manager: Anju Farfan

Laboratory / Client Sample Cross Reference

Laboratory	Client Sample Informati	on	
1008515-05	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 7376 MW-7 TRCI	Receive Date: 06/18/2010 18:55 Sampling Date: 06/18/2010 10:20 Sample Depth: Sample Matrix: Water Delivery Work Order: Global ID: T0600100101 Location ID (FieldPoint): MW-7 Matrix: W
			Sample QC Type (SACode): CS Cooler ID:
1008515-06	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 7376 MW-3B TRCI	Receive Date: 06/18/2010 18:55 Sampling Date: 06/18/2010 10:10 Sample Depth: Sample Matrix: Water Delivery Work Order: Global ID: T0600100101 Location ID (FieldPoint): MW-3B Matrix: W Sample QC Type (SACode): CS Cooler ID:
1008515-07	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 7376 MW-2C TRCI	Receive Date: 06/18/2010 18:55 Sampling Date: 06/18/2010 10:20 Sample Depth: Sample Matrix: Water Delivery Work Order: Global ID: T0600100101 Location ID (FieldPoint): MW-2C Matrix: W Sample QC Type (SACode): CS Cooler ID:
1008515-08	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 7376 MW-4 TRCI	Receive Date: 06/18/2010 18:55 Sampling Date: 06/18/2010 10:50 Sample Depth: Sample Matrix: Water Delivery Work Order: Global ID: T0600100101 Location ID (FieldPoint): MW-4 Matrix: W Sample QC Type (SACode): CS Cooler ID:

TRC Reported: 07/07/2010 15:47

123 Technology Drive Project: 7376
Irvine, CA 92618 Project Number: 4512917610
Project Manager: Anju Farfan

Laboratory / Client Sample Cross Reference

Laboratory **Client Sample Information** 1008515-09 06/18/2010 18:55 **COC Number:** Receive Date: Sampling Date: **Project Number:** 7376 06/18/2010 08:50 Sampling Location: Sample Depth: Sampling Point: MW-10 Water Sample Matrix: Sampled By: **TRCI** Delivery Work Order: Global ID: T0600100101 Location ID (FieldPoint): MW-10

Sample QC Type (SACode): CS Cooler ID:

 1008515-10
 COC Number:
 -- Receive Date:
 06/18/2010
 18:55

 Project Number:
 7376
 Sampling Date:
 06/18/2010
 09:20

 Sampling Location:
 -- Sample Depth:
 --

Sampling Point:MW-6Sample Matrix:WaterSampled By:TRCIDelivery Work Order:Global ID:T0600100101

Location ID (FieldPoint): MW-6

Matrix: W

Cooler ID:

1008515-11 COC Number: --- Receive Date: 06/18/2010 18:55

 Project Number:
 7376
 Sampling Date:
 06/18/2010 10:30

 Sampling Location:
 -- Sample Depth:
 --

Sampling Point: MW-1B
Sampled By: TRCI
Sampled By: Sample Matrix: Water
Delivery Work Order:
Global ID: T0600100101

Location ID (FieldPoint): MW-1B

Matrix: W

Sample QC Type (SACode): CS

Cooler ID:

Sample QC Type (SACode): CS

Matrix: W

TRC

123 Technology Drive Irvine, CA 92618 Reported: 07/07/2010 15:47

Project: 7376

Project Number: 4512917610 Project Manager: Anju Farfan

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID:	1008515-01	Client Sampl	e Name:	7376, MW-12, 6/18/	7376, MW-12, 6/18/2010 7:35:00AM						
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #			
Benzene		0.77	ug/L	0.50	EPA-8260	ND		1			
1,2-Dibromoethane		ND	ug/L	0.50	EPA-8260	ND		1			
1,2-Dichloroethane		ND	ug/L	0.50	EPA-8260	ND		1			
Ethylbenzene		ND	ug/L	0.50	EPA-8260	ND		1			
Methyl t-butyl ether		15	ug/L	0.50	EPA-8260	ND		1			
Toluene		ND	ug/L	0.50	EPA-8260	ND		1			
Total Xylenes		ND	ug/L	1.0	EPA-8260	ND		1			
Total Purgeable Petroleum Hydrocarbons	1	ND	ug/L	50	Luft-GC/MS	ND		1			
1,2-Dichloroethane-d4 (Su	rrogate)	102	%	76 - 114 (LCL - UCL)	EPA-8260			1			
Toluene-d8 (Surrogate)		97.2	%	88 - 110 (LCL - UCL)	EPA-8260			1			
4-Bromofluorobenzene (Su	ırrogate)	97.2	%	86 - 115 (LCL - UCL)	EPA-8260			1			

			Run				QC	
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260	06/25/10	06/25/10 22:43	KEA	MS-V10	1	BTF1710	

 TRC
 Reported:
 07/07/2010 15:47

 123 Technology Drive
 Project:
 7376

Irvine, CA 92618 Project Number: 4512917610
Project Manager: Anju Farfan

BCL Sample ID:	1008515-01	Client Sampl	e Name:	7376, MW-12, 6/18/	2010 7:35:00AM				
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #	
Diesel Range Organic	s (C12 - C24)	ND	ug/L	50	Luft/TPHd	ND		1	
Tetracosane (Surroga	te)	92.7	%	28 - 139 (LCL - UCL)	Luft/TPHd			1	

			Run				QC
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	Luft/TPHd	06/23/10	06/29/10 00:32	MWB	GC-13	1	BTF1786

123 Technology Drive Irvine, CA 92618 Reported: 07/07/2010 15:47

Project: 7376

Project Number: 4512917610 Project Manager: Anju Farfan

BCL Sample ID: 1008515-02	Client Sample	e Name:	7376, MW-11, 6/18/	2010 8:01:00AM	l		
Constituent	Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene	ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dibromoethane	ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dichloroethane	ND	ug/L	0.50	EPA-8260	ND		1
Ethylbenzene	ND	ug/L	0.50	EPA-8260	ND		1
Methyl t-butyl ether	ND	ug/L	0.50	EPA-8260	ND		1
Toluene	ND	ug/L	0.50	EPA-8260	ND		1
Total Xylenes	ND	ug/L	1.0	EPA-8260	ND		1
Total Purgeable Petroleum Hydrocarbons	ND	ug/L	50	Luft-GC/MS	ND		1
1,2-Dichloroethane-d4 (Surrogate)	103	%	76 - 114 (LCL - UCL)	EPA-8260			1
Toluene-d8 (Surrogate)	97.6	%	88 - 110 (LCL - UCL)	EPA-8260			1
4-Bromofluorobenzene (Surrogate)	97.5	%	86 - 115 (LCL - UCL)	EPA-8260			1

				QC				
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260	06/25/10	06/25/10 22:25	KEA	MS-V10	1	BTF1710	

TRC Reported: 07/07/2010 15:47 123 Technology Drive

Irvine, CA 92618 Project Number: 4512917610 Project Manager: Anju Farfan

Total Petroleum Hydrocarbons

Project: 7376

BCL Sample ID:	1008515-02	Client Sampl	e Name:	7376, MW-11, 6/18/	2010 8:01:00AM			
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Diesel Range Organic	s (C12 - C24)	ND	ug/L	50	Luft/TPHd	ND		1
Tetracosane (Surroga	te)	75.2	%	28 - 139 (LCL - UCL)	Luft/TPHd			1

			Run				QC
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	Luft/TPHd	06/23/10	06/29/10 00:54	MWB	GC-13	0.950	BTF1786

Reported: 07/07/2010 15:47

123 Technology Drive Project: 7376
Irvine, CA 92618 Project Number: 4512917610
Project Manager: Anju Farfan

BCL Sample ID: 1008515-03	Client Sample	e Name:	7376, MW-9, 6/18/2	010 8:48:00AM			
Constituent	Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene	ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dibromoethane	ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dichloroethane	ND	ug/L	0.50	EPA-8260	ND		1
Ethylbenzene	ND	ug/L	0.50	EPA-8260	ND		1
Methyl t-butyl ether	2.1	ug/L	0.50	EPA-8260	ND		1
Toluene	ND	ug/L	0.50	EPA-8260	ND		1
Total Xylenes	ND	ug/L	1.0	EPA-8260	ND		1
Total Purgeable Petroleum Hydrocarbons	ND	ug/L	50	Luft-GC/MS	ND		1
1,2-Dichloroethane-d4 (Surrogate)	99.4	%	76 - 114 (LCL - UCL)	EPA-8260			1
Toluene-d8 (Surrogate)	94.3	%	88 - 110 (LCL - UCL)	EPA-8260			1
4-Bromofluorobenzene (Surrogate)	96.3	%	86 - 115 (LCL - UCL)	EPA-8260			1

	Run					QC			
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID		
1	EPA-8260	06/25/10	06/25/10 19:10	KEA	MS-V10	1	BTF1710		

TRC Reported: 07/07/2010 15:47

Project: 7376 123 Technology Drive Irvine, CA 92618 Project Number: 4512917610 Project Manager: Anju Farfan

BCL Sample ID:	1008515-03	Client Sampl	e Name:	7376, MW-9, 6/18/2	010 8:48:00AM			
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Diesel Range Organic	s (C12 - C24)	ND	ug/L	50	Luft/TPHd	ND		1
Tetracosane (Surroga	te)	81.6	%	28 - 139 (LCL - UCL)	Luft/TPHd			1

			Run				QC
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	Luft/TPHd	06/23/10	06/29/10 01:17	MWB	GC-13	0.970	BTF1786

123 Technology Drive Irvine, CA 92618 Reported: 07/07/2010 15:47

Project: 7376

Project Number: 4512917610 Project Manager: Anju Farfan

BCL Sample ID:	1008515-04	Client Sample	e Name:	7376, MW-8,	6/18/2010 9:54:00AM			
Constituent		Desult	l le !4 a	DO!	Metheral	MB	Lab	D #
Constituent Benzene		Result ND	Units ug/L	PQL 0.50	Method EPA-8260	Bias ND	Quals	Run #
Bromobenzene		ND	ug/L	0.50	EPA-8260	ND		<u>'</u> 1
Bromochloromethane		ND	ug/L	0.50	EPA-8260	ND		<u>'</u> 1
Bromodichloromethane		ND	ug/L	0.50	EPA-8260	ND		<u>·</u> 1
Bromoform		ND	ug/L	0.50	EPA-8260	ND		<u>·</u> 1
Bromomethane		ND	ug/L	1.0	EPA-8260	ND		<u>·</u> 1
n-Butylbenzene		ND	ug/L	0.50	EPA-8260	ND		1
sec-Butylbenzene		ND	ug/L	0.50	EPA-8260	ND		1
tert-Butylbenzene		ND	ug/L	0.50	EPA-8260	ND		1
Carbon tetrachloride		ND	ug/L	0.50	EPA-8260	ND		1
Chlorobenzene		ND	ug/L	0.50	EPA-8260	ND		1
Chloroethane		ND	ug/L	0.50	EPA-8260	ND		1
Chloroform		ND	ug/L	0.50	EPA-8260	ND		1
Chloromethane		ND	ug/L	0.50	EPA-8260	ND		1
2-Chlorotoluene		ND	ug/L	0.50	EPA-8260	ND		1
4-Chlorotoluene		ND	ug/L	0.50	EPA-8260	ND		1
Dibromochloromethane		ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dibromo-3-chloropropa	ne	ND	ug/L	1.0	EPA-8260	ND		1
1,2-Dibromoethane		ND	ug/L	0.50	EPA-8260	ND		1
Dibromomethane		ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dichlorobenzene		ND	ug/L	0.50	EPA-8260	ND		1
1,3-Dichlorobenzene		ND	ug/L	0.50	EPA-8260	ND		1
1,4-Dichlorobenzene		ND	ug/L	0.50	EPA-8260	ND		1
Dichlorodifluoromethane		ND	ug/L	0.50	EPA-8260	ND		1
1,1-Dichloroethane		ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dichloroethane		ND	ug/L	0.50	EPA-8260	ND		1
1,1-Dichloroethene		ND	ug/L	0.50	EPA-8260	ND		1
cis-1,2-Dichloroethene		ND	ug/L	0.50	EPA-8260	ND		1
trans-1,2-Dichloroethene		ND	ug/L	0.50	EPA-8260	ND		1
Total 1,2-Dichloroethene		ND	ug/L	1.0	EPA-8260	ND		1
1,2-Dichloropropane		ND	ug/L	0.50	EPA-8260	ND		1
1,3-Dichloropropane		ND	ug/L	0.50	EPA-8260	ND		1
2,2-Dichloropropane		ND	ug/L	0.50	EPA-8260	ND		1

123 Technology Drive Irvine, CA 92618 Reported: 07/07/2010 15:47

Project: 7376

Project Number: 4512917610 Project Manager: Anju Farfan

BCL Sample ID: 10	08515-04	Client Sampl	e Name:	7376, MW-8, 6/18/2	010 9:54:00AM			
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
1,1-Dichloropropene		ND	ug/L	0.50	EPA-8260	ND ND	Quais	Run # 1
cis-1,3-Dichloropropene		ND	ug/L	0.50	EPA-8260	ND		1
trans-1,3-Dichloropropene		ND	ug/L	0.50	EPA-8260	ND		1
Total 1,3-Dichloropropene		ND	ug/L	1.0	EPA-8260	ND		1
Ethylbenzene		ND	ug/L	0.50	EPA-8260	ND		1
Hexachlorobutadiene		ND	ug/L	0.50	EPA-8260	ND		1
sopropylbenzene		ND	ug/L	0.50	EPA-8260	ND		1
o-Isopropyltoluene		ND	ug/L	0.50	EPA-8260	ND		1
Methylene chloride		ND	ug/L	1.0	EPA-8260	ND		1
Methyl t-butyl ether		600	ug/L	5.0	EPA-8260	ND	A01	2
Naphthalene		ND	ug/L	0.50	EPA-8260	ND		1
n-Propylbenzene		ND	ug/L	0.50	EPA-8260	ND		1
Styrene		ND	ug/L	0.50	EPA-8260	ND		1
1,1,1,2-Tetrachloroethane		ND	ug/L	0.50	EPA-8260	ND		1
1,1,2,2-Tetrachloroethane		ND	ug/L	0.50	EPA-8260	ND		1
Tetrachloroethene		ND	ug/L	0.50	EPA-8260	ND		1
Toluene		ND	ug/L	0.50	EPA-8260	ND		1
1,2,3-Trichlorobenzene		ND	ug/L	0.50	EPA-8260	ND		1
1,2,4-Trichlorobenzene		ND	ug/L	0.50	EPA-8260	ND		1
1,1,1-Trichloroethane		ND	ug/L	0.50	EPA-8260	ND		1
1,1,2-Trichloroethane		ND	ug/L	0.50	EPA-8260	ND		1
Trichloroethene		ND	ug/L	0.50	EPA-8260	ND		1
Trichlorofluoromethane		ND	ug/L	0.50	EPA-8260	ND		1
1,2,3-Trichloropropane		ND	ug/L	1.0	EPA-8260	ND		1
1,1,2-Trichloro-1,2,2-trifluoroe	ethane	ND	ug/L	0.50	EPA-8260	ND		1
1,2,4-Trimethylbenzene		ND	ug/L	0.50	EPA-8260	ND		1
1,3,5-Trimethylbenzene		ND	ug/L	0.50	EPA-8260	ND		1
Vinyl chloride		ND	ug/L	0.50	EPA-8260	ND		1
Total Xylenes		ND	ug/L	1.0	EPA-8260	ND		1
otal Purgeable Petroleum		270	ug/L	50	Luft-GC/MS	ND	A90	1
1,2-Dichloroethane-d4 (Surro	gate)	96.7	%	76 - 114 (LCL - UCL)	EPA-8260			1
1,2-Dichloroethane-d4 (Surro	gate)	92.2	%	76 - 114 (LCL - UCL)	EPA-8260			2
Toluene-d8 (Surrogate)		101	%	88 - 110 (LCL - UCL)	EPA-8260			1

123 Technology Drive Irvine, CA 92618 **Reported:** 07/07/2010 15:47

Project: 7376

Project Number: 4512917610 Project Manager: Anju Farfan

BCL Sample ID:	1008515-04	Client Sampl	e Name:	7376, MW-8, 6/18/2	7376, MW-8, 6/18/2010 9:54:00AM				
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #	
Toluene-d8 (Surrogate	e)	98.3	%	88 - 110 (LCL - UCL)	EPA-8260			2	
4-Bromofluorobenzene	e (Surrogate)	94.9	%	86 - 115 (LCL - UCL)	EPA-8260			1	
4-Bromofluorobenzene	e (Surrogate)	91.5	%	86 - 115 (LCL - UCL)	EPA-8260			2	

			Run		QC			
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260	07/01/10	07/01/10 15:54	JCC	MS-V4	1	BTF2088	
2	EPA-8260	07/01/10	07/01/10 16:22	JCC	MS-V4	10	BTF2088	

123 Technology Drive Irvine, CA 92618 **Reported:** 07/07/2010 15:47

Project: 7376

Project Number: 4512917610 Project Manager: Anju Farfan

BCL Sample ID:	1008515-04	Client Sampl	e Name:	7376, MW-8, 6	6/18/2010 9:54:00AM			
Constituent		Dec.:!4	l le!te	POI.	Mothed	MB	Lab	D #
Constituent Acenaphthene		Result ND	Units ug/L	PQL 2.0	Method EPA-8270C	Bias ND	Quals	Run # 1
Acenaphthylene		ND	ug/L	2.0	EPA-8270C	ND		 1
Aldrin		ND	ug/L	2.0	EPA-8270C	ND		 1
Aniline		ND	ug/L	5.0	EPA-8270C	ND		1
Anthracene		ND	ug/L	2.0	EPA-8270C	ND		1
Benzidine		ND	ug/L	20	EPA-8270C	ND		1
Benzo[a]anthracene		ND	ug/L	2.0	EPA-8270C	ND		1
Benzo[b]fluoranthene		ND	ug/L	2.0	EPA-8270C	ND		1
Benzo[k]fluoranthene		ND	ug/L	2.0	EPA-8270C	ND		1
Benzo[a]pyrene		ND	ug/L	2.0	EPA-8270C	ND		1
Benzo[g,h,i]perylene		ND	ug/L	2.0	EPA-8270C	ND		1
Benzoic acid		ND	ug/L	10	EPA-8270C	ND		1
Benzyl alcohol		ND	ug/L	2.0	EPA-8270C	ND		1
Benzyl butyl phthalate		ND	ug/L	2.0	EPA-8270C	ND		1
alpha-BHC		ND	ug/L	2.0	EPA-8270C	ND		1
peta-BHC		ND	ug/L	2.0	EPA-8270C	ND		1
delta-BHC		ND	ug/L	2.0	EPA-8270C	ND		1
gamma-BHC (Lindane)		ND	ug/L	2.0	EPA-8270C	ND		1
ois(2-Chloroethoxy)meth	nane	ND	ug/L	2.0	EPA-8270C	ND		1
ois(2-Chloroethyl) ether		ND	ug/L	2.0	EPA-8270C	ND		1
ois(2-Chloroisopropyl)etl	her	ND	ug/L	2.0	EPA-8270C	ND		1
pis(2-Ethylhexyl)phthala	te	ND	ug/L	5.0	EPA-8270C	ND		1
4-Bromophenyl phenyl e	ther	ND	ug/L	2.0	EPA-8270C	ND		1
4-Chloroaniline		ND	ug/L	2.0	EPA-8270C	ND		1
2-Chloronaphthalene		ND	ug/L	2.0	EPA-8270C	ND		1
1-Chlorophenyl phenyl e	ther	ND	ug/L	2.0	EPA-8270C	ND		1
Chrysene		ND	ug/L	2.0	EPA-8270C	ND		1
1,4'-DDD		ND	ug/L	2.0	EPA-8270C	ND		1
1,4'-DDE		ND	ug/L	3.0	EPA-8270C	ND		1
1,4'-DDT		ND	ug/L	2.0	EPA-8270C	ND		1
Dibenzo[a,h]anthracene		ND	ug/L	3.0	EPA-8270C	ND		1
Dibenzofuran		ND	ug/L	2.0	EPA-8270C	ND		1
1,2-Dichlorobenzene		ND	ug/L	2.0	EPA-8270C	ND		1

123 Technology Drive Irvine, CA 92618 Reported: 07/07/2010 15:47

Project: 7376

Project Number: 4512917610 Project Manager: Anju Farfan

BCL Sample ID:	1008515-04	Client Sample Name:			6/18/2010 9:54:00AM			
Constituent		Desult	l le!te	DOI.	Mothed	MB	Lab	Due #
Constituent 1,3-Dichlorobenzene		Result ND	Units ug/L	PQL 2.0	Method EPA-8270C	Bias ND	Quals	Run # 1
1,4-Dichlorobenzene		ND	ug/L	2.0	EPA-8270C	ND		<u>·</u> 1
3,3-Dichlorobenzidine		ND	ug/L	10	EPA-8270C	ND		<u>·</u> 1
Dieldrin		ND	ug/L	3.0	EPA-8270C	ND		1
Diethyl phthalate		ND	ug/L	2.0	EPA-8270C	ND		1
Dimethyl phthalate		ND	ug/L	2.0	EPA-8270C	ND		1
Di-n-butyl phthalate		ND	ug/L	2.0	EPA-8270C	ND		1
2,4-Dinitrotoluene		ND	ug/L	2.0	EPA-8270C	ND		1
2,6-Dinitrotoluene		ND	ug/L	2.0	EPA-8270C	ND		1
Di-n-octyl phthalate		ND	ug/L	2.0	EPA-8270C	ND		1
1,2-Diphenylhydrazine		ND	ug/L	2.0	EPA-8270C	ND		1
Endosulfan I		ND	ug/L	10	EPA-8270C	ND		1
Endosulfan II		ND	ug/L	10	EPA-8270C	ND		1
Endosulfan sulfate		ND	ug/L	3.0	EPA-8270C	ND		1
Endrin		ND	ug/L	2.0	EPA-8270C	ND		1
Endrin aldehyde		ND	ug/L	10	EPA-8270C	ND		1
Fluoranthene		ND	ug/L	2.0	EPA-8270C	ND		1
Fluorene		ND	ug/L	2.0	EPA-8270C	ND		1
Heptachlor		ND	ug/L	2.0	EPA-8270C	ND		1
Heptachlor epoxide		ND	ug/L	2.0	EPA-8270C	ND		1
Hexachlorobenzene		ND	ug/L	2.0	EPA-8270C	ND		1
Hexachlorobutadiene		ND	ug/L	2.0	EPA-8270C	ND		1
Hexachlorocyclopentadie	ne	ND	ug/L	2.0	EPA-8270C	ND		1
Hexachloroethane		ND	ug/L	2.0	EPA-8270C	ND		1
Indeno[1,2,3-cd]pyrene		ND	ug/L	2.0	EPA-8270C	ND		1
Isophorone		ND	ug/L	2.0	EPA-8270C	ND		1
2-Methylnaphthalene		ND	ug/L	2.0	EPA-8270C	ND		1
Naphthalene		ND	ug/L	2.0	EPA-8270C	ND		1
2-Naphthylamine		ND	ug/L	20	EPA-8270C	ND		1
2-Nitroaniline		ND	ug/L	2.0	EPA-8270C	ND		1
3-Nitroaniline		ND	ug/L	2.0	EPA-8270C	ND		1
4-Nitroaniline		ND	ug/L	5.0	EPA-8270C	ND		1
Nitrobenzene		ND	ug/L	2.0	EPA-8270C	ND		1

123 Technology Drive Irvine, CA 92618 **Reported:** 07/07/2010 15:47

Project: 7376

Project Number: 4512917610 Project Manager: Anju Farfan

BCL Sample ID:	1008515-04	Client Sample	e Name:	7376, MW-8, 6/18/2	010 9:54:00AM			
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
N-Nitrosodimethylamine		ND	ug/L	2.0	EPA-8270C	ND	·	1
N-Nitrosodi-N-propylamine		ND	ug/L	2.0	EPA-8270C	ND		1
N-Nitrosodiphenylamine		ND	ug/L	2.0	EPA-8270C	ND		1
Phenanthrene		ND	ug/L	2.0	EPA-8270C	ND		1
Pyrene		ND	ug/L	2.0	EPA-8270C	ND		1
1,2,4-Trichlorobenzene		ND	ug/L	2.0	EPA-8270C	ND		1
4-Chloro-3-methylphenol		ND	ug/L	5.0	EPA-8270C	ND		1
2-Chlorophenol		ND	ug/L	2.0	EPA-8270C	ND		1
2,4-Dichlorophenol		ND	ug/L	2.0	EPA-8270C	ND		1
2,4-Dimethylphenol		ND	ug/L	2.0	EPA-8270C	ND		1
4,6-Dinitro-2-methylphenol		ND	ug/L	10	EPA-8270C	ND		1
2,4-Dinitrophenol		ND	ug/L	10	EPA-8270C	ND		1
2-Methylphenol		ND	ug/L	2.0	EPA-8270C	ND		1
3- & 4-Methylphenol		ND	ug/L	2.0	EPA-8270C	ND		1
2-Nitrophenol		ND	ug/L	2.0	EPA-8270C	ND		1
4-Nitrophenol		ND	ug/L	2.0	EPA-8270C	ND		1
Pentachlorophenol		ND	ug/L	10	EPA-8270C	ND		1
Phenol		ND	ug/L	2.0	EPA-8270C	ND		1
2,4,5-Trichlorophenol		ND	ug/L	5.0	EPA-8270C	ND		1
2,4,6-Trichlorophenol		ND	ug/L	5.0	EPA-8270C	ND		1
2-Fluorophenol (Surrogate))	86.5	%	28 - 85 (LCL - UCL)	EPA-8270C		S09	1
Phenol-d5 (Surrogate)		59.9	%	13 - 59 (LCL - UCL)	EPA-8270C		S09	1
Nitrobenzene-d5 (Surrogat	e)	75.0	%	34 - 119 (LCL - UCL)	EPA-8270C			1
2-Fluorobiphenyl (Surrogat	e)	83.4	%	24 - 128 (LCL - UCL)	EPA-8270C			1
2,4,6-Tribromophenol (Sur	rogate)	113	%	35 - 114 (LCL - UCL)	EPA-8270C			1
p-Terphenyl-d14 (Surrogate	e)	108	%	10 - 185 (LCL - UCL)	EPA-8270C			1

Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8270C	06/22/10	06/25/10 00:49	SKC	MS-B2	1.020	BTF1668	

123 Technology Drive Irvine, CA 92618 Reported: 07/07/2010 15:47

Project: 7376

Project Number: 4512917610 Project Manager: Anju Farfan

Purgeable Aromatics and Total Petroleum Hydrocarbons

BCL Sample ID:	1008515-04	Client Sampl	e Name:	7376, MW-8, 6/18/2	2010 9:54:00AM			
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
TPH - Gasoline		ND	ug/L	200	Luft/FFP	ND		1
TPH - Diesel (FFP)		ND	ug/L	50	Luft/FFP	ND		1
TPH - Fuel Oil #6		ND	ug/L	50	Luft/FFP	ND		1
TPH - Motor Oil		ND	ug/L	200	Luft/FFP	ND		1
Tetracosane (Surrogat	te)	69.8	%	37 - 134 (LCL - UCL)	Luft/FFP			1

Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	Luft/FFP	06/23/10	07/06/10 13:25	MWB	GC-13	1.010	BTF1789	

123 Technology Drive Irvine, CA 92618 Reported: 07/07/2010 15:47

Project: 7376

Project Number: 4512917610 Project Manager: Anju Farfan

BCL Sample ID: 10	08515-05	Client Sample	e Name:	7376, MW-7,	6/18/2010 10:20:00AM			
O a martitum ant		D14	11	DOL	B# -411	МВ	Lab	.
Constituent Benzene		Result 10	Units ug/L	PQL 0.50	Method EPA-8260	Bias ND	Quals	Run # 1
Bromobenzene		ND	ug/L	0.50	EPA-8260	ND		<u>'</u> 1
Bromochloromethane		ND	ug/L	0.50	EPA-8260	ND		<u>'</u> 1
Bromodichloromethane		ND	ug/L	0.50	EPA-8260	ND		<u>'</u> 1
Bromoform		ND	ug/L	0.50	EPA-8260	ND		<u>'</u> 1
Bromomethane		ND	ug/L	1.0	EPA-8260	ND		<u>'</u> 1
n-Butylbenzene		ND	ug/L	0.50	EPA-8260	ND		<u>·</u> 1
sec-Butylbenzene		1.0	ug/L	0.50	EPA-8260	ND		<u>'</u> 1
tert-Butylbenzene		0.85	ug/L	0.50	EPA-8260	ND		<u>.</u> 1
Carbon tetrachloride		ND	ug/L	0.50	EPA-8260	ND		<u>·</u> 1
Chlorobenzene		ND	ug/L	0.50	EPA-8260	ND		<u>·</u> 1
Chloroethane		ND	ug/L	0.50	EPA-8260	ND		 1
Chloroform		ND	ug/L	0.50	EPA-8260	ND		1
Chloromethane		ND	ug/L	0.50	EPA-8260	ND		 1
2-Chlorotoluene		ND	ug/L	0.50	EPA-8260	ND		1
4-Chlorotoluene		ND	ug/L	0.50	EPA-8260	ND		1
Dibromochloromethane		ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dibromo-3-chloropropane	e	ND	ug/L	1.0	EPA-8260	ND		1
1,2-Dibromoethane		ND	ug/L	0.50	EPA-8260	ND		1
Dibromomethane		ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dichlorobenzene		ND	ug/L	0.50	EPA-8260	ND		1
1,3-Dichlorobenzene		ND	ug/L	0.50	EPA-8260	ND		1
1,4-Dichlorobenzene		ND	ug/L	0.50	EPA-8260	ND		1
Dichlorodifluoromethane		ND	ug/L	0.50	EPA-8260	ND		1
1,1-Dichloroethane		ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dichloroethane		ND	ug/L	0.50	EPA-8260	ND		1
1,1-Dichloroethene		ND	ug/L	0.50	EPA-8260	ND		1
cis-1,2-Dichloroethene		ND	ug/L	0.50	EPA-8260	ND		1
trans-1,2-Dichloroethene		ND	ug/L	0.50	EPA-8260	ND		1
Total 1,2-Dichloroethene		ND	ug/L	1.0	EPA-8260	ND		1
1,2-Dichloropropane		ND	ug/L	0.50	EPA-8260	ND		1
1,3-Dichloropropane		ND	ug/L	0.50	EPA-8260	ND		1
2,2-Dichloropropane		ND	ug/L	0.50	EPA-8260	ND		1

123 Technology Drive Irvine, CA 92618 Reported: 07/07/2010 15:47

Project: 7376

Project Number: 4512917610 Project Manager: Anju Farfan

BCL Sample ID: 10	08515-05	Client Sample	e Name:	7376, MW-7, 6/18/2				
Constituent		Popult	Hnite	POL	Mothod	MB	Lab	D.: #
Constituent 1,1-Dichloropropene		Result ND	Units ug/L	PQL 0.50	Method EPA-8260	Bias ND	Quals	Run # 1
cis-1,3-Dichloropropene		ND	ug/L	0.50	EPA-8260	ND		 1
trans-1,3-Dichloropropene		ND	ug/L	0.50	EPA-8260	ND		 1
Total 1,3-Dichloropropene		ND	ug/L	1.0	EPA-8260	ND		1
Ethylbenzene		0.62	ug/L	0.50	EPA-8260	ND		<u>.</u> 1
Hexachlorobutadiene		ND	ug/L	0.50	EPA-8260	ND		1
Isopropylbenzene		0.63	ug/L	0.50	EPA-8260	ND		1
p-Isopropyltoluene		ND	ug/L	0.50	EPA-8260	ND		 1
Methylene chloride		ND	ug/L	1.0	EPA-8260	ND		1
Methyl t-butyl ether		62	ug/L	0.50	EPA-8260	ND		1
Naphthalene		ND	ug/L	0.50	EPA-8260	ND		<u>'</u> 1
n-Propylbenzene		0.51	ug/L	0.50	EPA-8260	ND		1
Styrene		ND	ug/L	0.50	EPA-8260	ND		1
1,1,1,2-Tetrachloroethane		ND	ug/L	0.50	EPA-8260	ND		1
1,1,2,2-Tetrachloroethane		ND	ug/L	0.50	EPA-8260	ND		<u>·</u> 1
Tetrachloroethene		ND	ug/L	0.50	EPA-8260	ND		1
Toluene		ND	ug/L	0.50	EPA-8260	ND		1
1,2,3-Trichlorobenzene		ND	ug/L	0.50	EPA-8260	ND		1
1,2,4-Trichlorobenzene		ND	ug/L	0.50	EPA-8260	ND		1
1,1,1-Trichloroethane		ND	ug/L	0.50	EPA-8260	ND		1
1,1,2-Trichloroethane		ND	ug/L	0.50	EPA-8260	ND		1
Trichloroethene		ND	ug/L	0.50	EPA-8260	ND		1
Trichlorofluoromethane		ND	ug/L	0.50	EPA-8260	ND		1
1,2,3-Trichloropropane		ND	ug/L	1.0	EPA-8260	ND		1
1,1,2-Trichloro-1,2,2-trifluoro	ethane	ND	ug/L	0.50	EPA-8260	ND		1
1,2,4-Trimethylbenzene		ND	ug/L	0.50	EPA-8260	ND		1
1,3,5-Trimethylbenzene		ND	ug/L	0.50	EPA-8260	ND		1
Vinyl chloride		ND	ug/L	0.50	EPA-8260	ND		1
Total Xylenes		ND	ug/L	1.0	EPA-8260	ND		1
Total Purgeable Petroleum Hydrocarbons		710	ug/L	50	Luft-GC/MS	ND		1
1,2-Dichloroethane-d4 (Surro	gate)	97.0	%	76 - 114 (LCL - UCL)	EPA-8260			1
Toluene-d8 (Surrogate)		107	%	88 - 110 (LCL - UCL)	EPA-8260			1
4-Bromofluorobenzene (Surre	ogate)	98.2	%	86 - 115 (LCL - UCL)	EPA-8260			1

Reported: 07/07/2010 15:47

 123 Technology Drive
 Project: 7376

 Irvine, CA 92618
 Project Number: 4512917610

Project Number: 4512917610
Project Manager: Anju Farfan

BCL Sample ID	: 1008515-05	Client Sar	mple Name:	7376, MW-7, 6	6/18/2010 10:20):00AM		
Run #	Method	Prep Date	Run Date/Time	Analyst	Instrument	Dilution	QC Batch ID	
1	EPA-8260	07/01/10	07/01/10 15:25	JCC	MS-V4	1	BTF2088	

123 Technology Drive Irvine, CA 92618 Reported: 07/07/2010 15:47

Project: 7376

Project Number: 4512917610 Project Manager: Anju Farfan

BCL Sample ID: 1	008515-05	Client Sampl	e Name:	7376, MW-7, 6	6/18/2010 10:20:00AM			
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Acenaphthene		ND	ug/L	2.0	EPA-8270C	ND	·	1
Acenaphthylene		ND	ug/L	2.0	EPA-8270C	ND		1
Aldrin		ND	ug/L	2.0	EPA-8270C	ND		1
Aniline		ND	ug/L	5.0	EPA-8270C	ND		1
Anthracene		ND	ug/L	2.0	EPA-8270C	ND		1
Benzidine		ND	ug/L	20	EPA-8270C	ND		1
Benzo[a]anthracene		ND	ug/L	2.0	EPA-8270C	ND		1
Benzo[b]fluoranthene		ND	ug/L	2.0	EPA-8270C	ND		1
Benzo[k]fluoranthene		ND	ug/L	2.0	EPA-8270C	ND		1
Benzo[a]pyrene		ND	ug/L	2.0	EPA-8270C	ND		1
Benzo[g,h,i]perylene		ND	ug/L	2.0	EPA-8270C	ND		1
Benzoic acid		ND	ug/L	10	EPA-8270C	ND		1
Benzyl alcohol		ND	ug/L	2.0	EPA-8270C	ND		1
Benzyl butyl phthalate		ND	ug/L	2.0	EPA-8270C	ND		1
alpha-BHC		ND	ug/L	2.0	EPA-8270C	ND		1
peta-BHC		ND	ug/L	2.0	EPA-8270C	ND		1
delta-BHC		ND	ug/L	2.0	EPA-8270C	ND		1
gamma-BHC (Lindane)		ND	ug/L	2.0	EPA-8270C	ND		1
ois(2-Chloroethoxy)methan	e	ND	ug/L	2.0	EPA-8270C	ND		1
ois(2-Chloroethyl) ether		ND	ug/L	2.0	EPA-8270C	ND		1
pis(2-Chloroisopropyl)ether		ND	ug/L	2.0	EPA-8270C	ND		1
pis(2-Ethylhexyl)phthalate		ND	ug/L	5.0	EPA-8270C	ND		1
4-Bromophenyl phenyl ethe	r	ND	ug/L	2.0	EPA-8270C	ND		1
4-Chloroaniline		ND	ug/L	2.0	EPA-8270C	ND		1
2-Chloronaphthalene		ND	ug/L	2.0	EPA-8270C	ND		1
4-Chlorophenyl phenyl ethe	r	ND	ug/L	2.0	EPA-8270C	ND		1
Chrysene		ND	ug/L	2.0	EPA-8270C	ND		1
1,4'-DDD		ND	ug/L	2.0	EPA-8270C	ND		1
1,4'-DDE		ND	ug/L	3.0	EPA-8270C	ND		1
1,4'-DDT		ND	ug/L	2.0	EPA-8270C	ND		1
Dibenzo[a,h]anthracene		ND	ug/L	3.0	EPA-8270C	ND		1
Dibenzofuran		ND	ug/L	2.0	EPA-8270C	ND		1
1,2-Dichlorobenzene		ND	ug/L	2.0	EPA-8270C	ND		1

123 Technology Drive Irvine, CA 92618 Reported: 07/07/2010 15:47

Project: 7376

Project Number: 4512917610 Project Manager: Anju Farfan

BCL Sample ID:	1008515-05	Client Sampl	e Name:	7376, MW-7,	6/18/2010 10:20:00AM			
Comptituent		De avilé	He!4a	DOL	Mathad	MB	Lab	D #
1,3-Dichlorobenzene		Result ND	Units ug/L	PQL 2.0	Method EPA-8270C	Bias ND	Quals	Run # 1
1,4-Dichlorobenzene		ND	ug/L	2.0	EPA-8270C	ND		<u>·</u> 1
3,3-Dichlorobenzidine		ND	ug/L	10	EPA-8270C	ND		1
Dieldrin		ND	ug/L	3.0	EPA-8270C	ND		1
Diethyl phthalate		ND	ug/L	2.0	EPA-8270C	ND		1
Dimethyl phthalate		ND	ug/L	2.0	EPA-8270C	ND		<u>'</u> 1
Di-n-butyl phthalate		ND	ug/L	2.0	EPA-8270C	ND		<u>·</u> 1
2,4-Dinitrotoluene		ND	ug/L	2.0	EPA-8270C	ND		1
2,6-Dinitrotoluene		ND	ug/L	2.0	EPA-8270C	ND		1
Di-n-octyl phthalate		ND	ug/L	2.0	EPA-8270C	ND		1
1,2-Diphenylhydrazine		ND	ug/L	2.0	EPA-8270C	ND		1
Endosulfan I		ND	ug/L	10	EPA-8270C	ND		<u>'</u> 1
Endosulfan II		ND	ug/L	10	EPA-8270C	ND		<u>·</u> 1
Endosulfan sulfate		ND	ug/L	3.0	EPA-8270C	ND		<u>·</u> 1
Endrin		ND	ug/L	2.0	EPA-8270C	ND		<u>·</u> 1
Endrin aldehyde		ND	ug/L	10	EPA-8270C	ND		1
Fluoranthene		ND	ug/L	2.0	EPA-8270C	ND		1
Fluorene		ND	ug/L	2.0	EPA-8270C	ND		1
Heptachlor		ND	ug/L	2.0	EPA-8270C	ND		1
Heptachlor epoxide		ND	ug/L	2.0	EPA-8270C	ND		1
Hexachlorobenzene		ND	ug/L	2.0	EPA-8270C	ND		1
Hexachlorobutadiene		ND	ug/L	2.0	EPA-8270C	ND		1
Hexachlorocyclopentadie	ne	ND	ug/L	2.0	EPA-8270C	ND		1
Hexachloroethane		ND	ug/L	2.0	EPA-8270C	ND		1
Indeno[1,2,3-cd]pyrene		ND	ug/L	2.0	EPA-8270C	ND		1
Isophorone		ND	ug/L	2.0	EPA-8270C	ND		1
2-Methylnaphthalene		ND	ug/L	2.0	EPA-8270C	ND		1
Naphthalene		ND	ug/L	2.0	EPA-8270C	ND		1
2-Naphthylamine		ND	ug/L	20	EPA-8270C	ND		1
2-Nitroaniline		ND	ug/L	2.0	EPA-8270C	ND		1
3-Nitroaniline		ND	ug/L	2.0	EPA-8270C	ND		1
4-Nitroaniline		ND	ug/L	5.0	EPA-8270C	ND		1
Nitrobenzene		ND	ug/L	2.0	EPA-8270C	ND		1

123 Technology Drive Irvine, CA 92618 Reported: 07/07/2010 15:47

Project: 7376

Project Number: 4512917610 Project Manager: Anju Farfan

BCL Sample ID:	1008515-05	Client Sampl	e Name:	7376, MW-7, 6/18/2	010 10:20:00AM			
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run#
N-Nitrosodimethylamir	ne	ND	ug/L	2.0	EPA-8270C	ND	·	1
N-Nitrosodi-N-propylar	mine	ND	ug/L	2.0	EPA-8270C	ND		1
N-Nitrosodiphenylamir	ne	ND	ug/L	2.0	EPA-8270C	ND		1
Phenanthrene		ND	ug/L	2.0	EPA-8270C	ND		1
Pyrene		ND	ug/L	2.0	EPA-8270C	ND		1
1,2,4-Trichlorobenzen	е	ND	ug/L	2.0	EPA-8270C	ND		1
4-Chloro-3-methylpher	nol	ND	ug/L	5.0	EPA-8270C	ND		1
2-Chlorophenol		ND	ug/L	2.0	EPA-8270C	ND		1
2,4-Dichlorophenol		ND	ug/L	2.0	EPA-8270C	ND		1
2,4-Dimethylphenol		ND	ug/L	2.0	EPA-8270C	ND		1
4,6-Dinitro-2-methylph	enol	ND	ug/L	10	EPA-8270C	ND		1
2,4-Dinitrophenol		ND	ug/L	10	EPA-8270C	ND		1
2-Methylphenol		ND	ug/L	2.0	EPA-8270C	ND		1
3- & 4-Methylphenol		ND	ug/L	2.0	EPA-8270C	ND		1
2-Nitrophenol		ND	ug/L	2.0	EPA-8270C	ND		1
4-Nitrophenol		ND	ug/L	2.0	EPA-8270C	ND		1
Pentachlorophenol		ND	ug/L	10	EPA-8270C	ND		1
Phenol		ND	ug/L	2.0	EPA-8270C	ND		1
2,4,5-Trichlorophenol		ND	ug/L	5.0	EPA-8270C	ND		1
2,4,6-Trichlorophenol		ND	ug/L	5.0	EPA-8270C	ND		1
2-Fluorophenol (Surro	gate)	80.6	%	28 - 85 (LCL - UCL)	EPA-8270C			1
Phenol-d5 (Surrogate)		56.8	%	13 - 59 (LCL - UCL)	EPA-8270C			1
Nitrobenzene-d5 (Surr	ogate)	66.6	%	34 - 119 (LCL - UCL)	EPA-8270C			1
2-Fluorobiphenyl (Surr	rogate)	72.6	%	24 - 128 (LCL - UCL)	EPA-8270C			1
2,4,6-Tribromophenol	(Surrogate)	97.1	%	35 - 114 (LCL - UCL)	EPA-8270C			1
p-Terphenyl-d14 (Surr	ogate)	96.5	%	10 - 185 (LCL - UCL)	EPA-8270C			1

			Run				QC	
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8270C	06/22/10	06/25/10 01:16	SKC	MS-B2	0.950	BTF1668	

123 Technology Drive Irvine, CA 92618 Reported: 07/07/2010 15:47

Project: 7376

Project Number: 4512917610 Project Manager: Anju Farfan

Purgeable Aromatics and Total Petroleum Hydrocarbons

BCL Sample ID:	1008515-05	Client Sampl	e Name:	7376, MW-7, 6/18/2	7376, MW-7, 6/18/2010 10:20:00AM			
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run#
TPH - Gasoline		ND	ug/L	200	Luft/FFP	ND		1
TPH - Diesel (FFP)		110	ug/L	50	Luft/FFP	ND		1
TPH - Fuel Oil #6		ND	ug/L	50	Luft/FFP	ND		1
TPH - Motor Oil		ND	ug/L	200	Luft/FFP	ND		1
Tetracosane (Surrogat	te)	74.2	%	37 - 134 (LCL - UCL)	Luft/FFP			1

			Run				QC	
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	Luft/FFP	06/23/10	07/06/10 13:53	MWB	GC-13	1.020	BTF1789	_

123 Technology Drive Irvine, CA 92618 Reported: 07/07/2010 15:47

Project: 7376

Project Number: 4512917610
Project Manager: Anju Farfan

BCL Sample ID: 10	08515-06	Client Sampl	e Name:	7376, MW-3B, 6/18	/2010 10:10:00AM	l		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run#
Benzene		11	ug/L	0.50	EPA-8260	ND		1
1,2-Dibromoethane		ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dichloroethane		5.0	ug/L	0.50	EPA-8260	ND		1
Ethylbenzene		2.2	ug/L	0.50	EPA-8260	ND		1
Methyl t-butyl ether		28	ug/L	0.50	EPA-8260	ND		1
Toluene		7.9	ug/L	0.50	EPA-8260	ND		1
Total Xylenes		11	ug/L	1.0	EPA-8260	ND		1
Total Purgeable Petroleum Hydrocarbons		86	ug/L	50	Luft-GC/MS	ND		1
1,2-Dichloroethane-d4 (Surro	gate)	99.0	%	76 - 114 (LCL - UCL)	EPA-8260			1
Toluene-d8 (Surrogate)		97.7	%	88 - 110 (LCL - UCL)	EPA-8260			1
4-Bromofluorobenzene (Surro	ogate)	98.6	%	86 - 115 (LCL - UCL)	EPA-8260			1

			Run				QC	
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260	06/25/10	06/25/10 18:16	KEA	MS-V10	1	BTF1710	

123 Technology Drive Irvine, CA 92618 **Reported:** 07/07/2010 15:47

Project: 7376

Project Number: 4512917610
Project Manager: Anju Farfan

BCL Sample ID:	1008515-06	Client Sampl	e Name:	7376, MW-3B, 6/18/	/2010 10:10:00AM			
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Diesel Range Organic	s (C12 - C24)	ND	ug/L	50	Luft/TPHd	ND	A52	1
Tetracosane (Surrogat	te)	80.1	%	28 - 139 (LCL - UCL)	Luft/TPHd			1

			Run				QC
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	Luft/TPHd	06/23/10	06/29/10 01:39	MWB	GC-13	0.960	BTF1786

123 Technology Drive Irvine, CA 92618 **Reported:** 07/07/2010 15:47

Project: 7376

Project Number: 4512917610 Project Manager: Anju Farfan

BCL Sample ID: 1008515-07	Client Sample	e Name:	7376, MW-2C, 6/18	/2010 10:20:00AM	М		
Constituent	Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene	ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dibromoethane	ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dichloroethane	6.0	ug/L	0.50	EPA-8260	ND		1
Ethylbenzene	ND	ug/L	0.50	EPA-8260	ND		1
Methyl t-butyl ether	11	ug/L	0.50	EPA-8260	ND		1
Toluene	ND	ug/L	0.50	EPA-8260	ND		1
Total Xylenes	ND	ug/L	1.0	EPA-8260	ND		1
Total Purgeable Petroleum Hydrocarbons	ND	ug/L	50	Luft-GC/MS	ND		1
1,2-Dichloroethane-d4 (Surrogate)	103	%	76 - 114 (LCL - UCL)	EPA-8260			1
Toluene-d8 (Surrogate)	95.2	%	88 - 110 (LCL - UCL)	EPA-8260			1
4-Bromofluorobenzene (Surrogate)	99.3	%	86 - 115 (LCL - UCL)	EPA-8260			1

			Run				QC	
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260	06/25/10	06/25/10 17:58	KEA	MS-V10	1	BTF1710	

123 Technology Drive Irvine, CA 92618 **Reported:** 07/07/2010 15:47

Project: 7376

Project Number: 4512917610 Project Manager: Anju Farfan

BCL Sample ID:	1008515-07	Client Sampl	e Name:	7376, MW-2C, 6/18	/2010 10:20:00AM			
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Diesel Range Organic	s (C12 - C24)	ND	ug/L	56	Luft/TPHd	ND	A52	1
Tetracosane (Surroga	te)	76.7	%	28 - 139 (LCL - UCL)	Luft/TPHd			1

				Run				QC
Ru	ın#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
	1	Luft/TPHd	06/23/10	06/29/10 02:02	MWB	GC-13	1.128	BTF1786

 TRC
 Reported:
 07/07/2010 15:47

 123 Technology Drive
 Project:
 7376

123 Technology DriveProject: 7376Irvine, CA 92618Project Number: 4512917610Project Manager: Anju Farfan

BCL Sample ID: 100851	5-08	Client Samp	le Name:	7376, MW-4, 6/18/	2010 10:50:00AM			
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run#
Benzene		ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dibromoethane		ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dichloroethane		ND	ug/L	0.50	EPA-8260	ND		1
Ethylbenzene		ND	ug/L	0.50	EPA-8260	ND		1
Methyl t-butyl ether		ND	ug/L	0.50	EPA-8260	ND		1
Toluene		ND	ug/L	0.50	EPA-8260	ND		1
Total Xylenes		ND	ug/L	1.0	EPA-8260	ND		1
Total Purgeable Petroleum Hydrocarbons		ND	ug/L	50	Luft-GC/MS	ND		1
1,2-Dichloroethane-d4 (Surrogate)		104	%	76 - 114 (LCL - UCL)	EPA-8260			1
Toluene-d8 (Surrogate)		93.1	%	88 - 110 (LCL - UCL)	EPA-8260			1
4-Bromofluorobenzene (Surrogate)		100	%	86 - 115 (LCL - UCL)	EPA-8260			1

			Run					
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260	06/25/10	06/25/10 17:40	KEA	MS-V10	1	BTF1710	

123 Technology Drive Irvine, CA 92618

Reported: 07/07/2010 15:47

Project: 7376

Project Number: 4512917610 Project Manager: Anju Farfan

BCL Sample ID:	1008515-08	Client Sampl	e Name:	7376, MW-4, 6/18/2	010 10:50:00AM			
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Diesel Range Organic	s (C12 - C24)	ND	ug/L	50	Luft/TPHd	ND		1
Tetracosane (Surroga	te)	95.8	%	28 - 139 (LCL - UCL)	Luft/TPHd			1

			Run				QC
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	Luft/TPHd	06/23/10	06/29/10 02:25	MWB	GC-13	1	BTF1786

123 Technology Drive Irvine, CA 92618 **Reported:** 07/07/2010 15:47

Project: 7376

Project Number: 4512917610 Project Manager: Anju Farfan

BCL Sample ID:	1008515-09	Client Sampl	e Name:	7376, MW-10, 6/18/	/2010 8:50:00AM			
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene		ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dibromoethane		ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dichloroethane		ND	ug/L	0.50	EPA-8260	ND		1
Ethylbenzene		ND	ug/L	0.50	EPA-8260	ND		1
Methyl t-butyl ether		0.65	ug/L	0.50	EPA-8260	ND		1
Toluene		ND	ug/L	0.50	EPA-8260	ND		1
Total Xylenes		ND	ug/L	1.0	EPA-8260	ND		1
Total Purgeable Petroleu Hydrocarbons	ım	ND	ug/L	50	Luft-GC/MS	ND		1
1,2-Dichloroethane-d4 (S	Surrogate)	101	%	76 - 114 (LCL - UCL)	EPA-8260			1
Toluene-d8 (Surrogate)		96.9	%	88 - 110 (LCL - UCL)	EPA-8260			1
4-Bromofluorobenzene (Surrogate)	100	%	86 - 115 (LCL - UCL)	EPA-8260			1

			Run				QC	
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260	06/25/10	06/25/10 17:23	KEA	MS-V10	1	BTF1710	

123 Technology Drive Irvine, CA 92618

TRC

Reported: 07/07/2010 15:47

Project: 7376

Project Number: 4512917610
Project Manager: Anju Farfan

BCL Sample ID:	1008515-09	Client Sampl	e Name:	7376, MW-10, 6/18/	2010 8:50:00AM			
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Diesel Range Organic	s (C12 - C24)	ND	ug/L	60	Luft/TPHd	ND		1
Tetracosane (Surroga	te)	92.4	%	28 - 139 (LCL - UCL)	Luft/TPHd			1

			Run				QC
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	Luft/TPHd	06/23/10	06/29/10 02:49	MWB	GC-13	1.200	BTF1786

123 Technology Drive Irvine, CA 92618 Reported: 07/07/2010 15:47

Project: 7376

Project Number: 4512917610 Project Manager: Anju Farfan

BCL Sample ID: 1008515-10	Client Sample	e Name:	7376, MW-6, 6/18/2	010 9:20:00AM			
Constituent	Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene	ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dibromoethane	ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dichloroethane	2.9	ug/L	0.50	EPA-8260	ND		1
Ethylbenzene	ND	ug/L	0.50	EPA-8260	ND		1
Methyl t-butyl ether	8.9	ug/L	0.50	EPA-8260	ND		1
Toluene	ND	ug/L	0.50	EPA-8260	ND		1
Total Xylenes	ND	ug/L	1.0	EPA-8260	ND		1
Total Purgeable Petroleum Hydrocarbons	ND	ug/L	50	Luft-GC/MS	ND		1
1,2-Dichloroethane-d4 (Surrogate)	102	%	76 - 114 (LCL - UCL)	EPA-8260			1
Toluene-d8 (Surrogate)	93.8	%	88 - 110 (LCL - UCL)	EPA-8260			1
4-Bromofluorobenzene (Surrogate)	102	%	86 - 115 (LCL - UCL)	EPA-8260			1

		Run					QC				
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID				
1	EPA-8260	06/25/10	06/25/10 17:05	KEA	MS-V10	1	BTF1710				

123 Technology Drive Irvine, CA 92618 Reported: 07/07/2010 15:47

Project: 7376

Project Number: 4512917610
Project Manager: Anju Farfan

BCL Sample ID:	1008515-10	Client Sampl	e Name:	7376, MW-6, 6/18/2	010 9:20:00AM			
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Diesel Range Organic	s (C12 - C24)	ND	ug/L	59	Luft/TPHd	ND		1
Tetracosane (Surroga	te)	81.0	%	28 - 139 (LCL - UCL)	Luft/TPHd			1

			QC				
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	Luft/TPHd	06/23/10	06/29/10 03:11	MWB	GC-13	1.173	BTF1786

123 Technology Drive Irvine, CA 92618 Reported: 07/07/2010 15:47

Project: 7376

Project Number: 4512917610
Project Manager: Anju Farfan

BCL Sample ID:	1008515-11	Client Sampl	e Name:	7376, MW-1B, 6/18/	2010 10:30:00AN	Л		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene		ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dibromoethane		ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dichloroethane		0.81	ug/L	0.50	EPA-8260	ND		1
Ethylbenzene		ND	ug/L	0.50	EPA-8260	ND		1
Methyl t-butyl ether		330	ug/L	2.5	EPA-8260	ND	A01	2
Toluene		ND	ug/L	0.50	EPA-8260	ND		1
Total Xylenes		ND	ug/L	1.0	EPA-8260	ND		1
Total Purgeable Petroleu Hydrocarbons	m	200	ug/L	50	Luft-GC/MS	ND	A90	1
1,2-Dichloroethane-d4 (Su	urrogate)	102	%	76 - 114 (LCL - UCL)	EPA-8260			1
1,2-Dichloroethane-d4 (Su	urrogate)	99.3	%	76 - 114 (LCL - UCL)	EPA-8260			2
Toluene-d8 (Surrogate)		94.8	%	88 - 110 (LCL - UCL)	EPA-8260			1
Toluene-d8 (Surrogate)		80.1	%	88 - 110 (LCL - UCL)	EPA-8260		S09	2
4-Bromofluorobenzene (S	urrogate)	103	%	86 - 115 (LCL - UCL)	EPA-8260			1
4-Bromofluorobenzene (S	urrogate)	99.6	%	86 - 115 (LCL - UCL)	EPA-8260			2

			Run		QC				
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID		
1	EPA-8260	06/25/10	06/25/10 16:47	KEA	MS-V10	1	BTF1710		
2	EPA-8260	06/25/10	06/29/10 15:51	KEA	MS-V10	5	BTF1710		

123 Technology Drive Irvine, CA 92618 **Reported:** 07/07/2010 15:47

Project: 7376

Project Number: 4512917610
Project Manager: Anju Farfan

BCL Sample ID:	1008515-11	Client Sampl	e Name:	7376, MW-1B, 6/18	7376, MW-1B, 6/18/2010 10:30:00AM				
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run#	
Diesel Range Organic	cs (C12 - C24)	50	ug/L	50	Luft/TPHd	ND	A52	1	
Tetracosane (Surroga	ite)	85.7	%	28 - 139 (LCL - UCL)	Luft/TPHd			1	

			Run					
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	Luft/TPHd	06/23/10	06/29/10 03:34	MWB	GC-13	0.980	BTF1786	

123 Technology Drive Irvine, CA 92618 Reported: 07/07/2010 15:47

Project: 7376

Project Number: 4512917610 Project Manager: Anju Farfan

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Method Blank Analysis

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BTF1710						
Benzene	BTF1710-BLK1	ND	ug/L	0.50		
1,2-Dibromoethane	BTF1710-BLK1	ND	ug/L	0.50		
1,2-Dichloroethane	BTF1710-BLK1	ND	ug/L	0.50		
Ethylbenzene	BTF1710-BLK1	ND	ug/L	0.50		
Methyl t-butyl ether	BTF1710-BLK1	ND	ug/L	0.50		
Toluene	BTF1710-BLK1	ND	ug/L	0.50		
Total Xylenes	BTF1710-BLK1	ND	ug/L	1.0		
Total Purgeable Petroleum Hydrocarbons	BTF1710-BLK1	ND	ug/L	50		
1,2-Dichloroethane-d4 (Surrogate)	BTF1710-BLK1	101	%	76 - 114	4 (LCL - UCL)	
Toluene-d8 (Surrogate)	BTF1710-BLK1	97.1	%	88 - 110	(LCL - UCL)	
4-Bromofluorobenzene (Surrogate)	BTF1710-BLK1	98.9	%	86 - 115	(LCL - UCL)	
QC Batch ID: BTF2088						
Benzene	BTF2088-BLK1	ND	ug/L	0.50		
Bromobenzene	BTF2088-BLK1	ND	ug/L	0.50		
Bromochloromethane	BTF2088-BLK1	ND	ug/L	0.50		
Bromodichloromethane	BTF2088-BLK1	ND	ug/L	0.50		
Bromoform	BTF2088-BLK1	ND	ug/L	0.50		
Bromomethane	BTF2088-BLK1	ND	ug/L	1.0		
n-Butylbenzene	BTF2088-BLK1	ND	ug/L	0.50		
sec-Butylbenzene	BTF2088-BLK1	ND	ug/L	0.50		
tert-Butylbenzene	BTF2088-BLK1	ND	ug/L	0.50		
Carbon tetrachloride	BTF2088-BLK1	ND	ug/L	0.50		
Chlorobenzene	BTF2088-BLK1	ND	ug/L	0.50		
Chloroethane	BTF2088-BLK1	ND	ug/L	0.50		
Chloroform	BTF2088-BLK1	ND	ug/L	0.50		
Chloromethane	BTF2088-BLK1	ND	ug/L	0.50		
2-Chlorotoluene	BTF2088-BLK1	ND	ug/L	0.50		
4-Chlorotoluene	BTF2088-BLK1	ND	ug/L	0.50		
Dibromochloromethane	BTF2088-BLK1	ND	ug/L	0.50		
1,2-Dibromo-3-chloropropane	BTF2088-BLK1	ND	ug/L	1.0		
1,2-Dibromoethane	BTF2088-BLK1	ND	ug/L	0.50		
Dibromomethane	BTF2088-BLK1	ND	ug/L	0.50		
1,2-Dichlorobenzene	BTF2088-BLK1	ND	ug/L	0.50		
1,3-Dichlorobenzene	BTF2088-BLK1	ND	ug/L	0.50		

123 Technology Drive Irvine, CA 92618 **Reported:** 07/07/2010 15:47

Project: 7376

Project Number: 4512917610 Project Manager: Anju Farfan

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Method Blank Analysis

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BTF2088						
1,4-Dichlorobenzene	BTF2088-BLK1	ND	ug/L	0.50		
Dichlorodifluoromethane	BTF2088-BLK1	ND	ug/L	0.50		
1,1-Dichloroethane	BTF2088-BLK1	ND	ug/L	0.50		
1,2-Dichloroethane	BTF2088-BLK1	ND	ug/L	0.50		
1,1-Dichloroethene	BTF2088-BLK1	ND	ug/L	0.50		
cis-1,2-Dichloroethene	BTF2088-BLK1	ND	ug/L	0.50		
trans-1,2-Dichloroethene	BTF2088-BLK1	ND	ug/L	0.50		
Total 1,2-Dichloroethene	BTF2088-BLK1	ND	ug/L	1.0		
1,2-Dichloropropane	BTF2088-BLK1	ND	ug/L	0.50		
1,3-Dichloropropane	BTF2088-BLK1	ND	ug/L	0.50		
2,2-Dichloropropane	BTF2088-BLK1	ND	ug/L	0.50		
1,1-Dichloropropene	BTF2088-BLK1	ND	ug/L	0.50		
cis-1,3-Dichloropropene	BTF2088-BLK1	ND	ug/L	0.50		
trans-1,3-Dichloropropene	BTF2088-BLK1	ND	ug/L	0.50		
Total 1,3-Dichloropropene	BTF2088-BLK1	ND	ug/L	1.0		
Ethylbenzene	BTF2088-BLK1	ND	ug/L	0.50		
Hexachlorobutadiene	BTF2088-BLK1	ND	ug/L	0.50		
Isopropylbenzene	BTF2088-BLK1	ND	ug/L	0.50		
p-Isopropyltoluene	BTF2088-BLK1	ND	ug/L	0.50		
Methylene chloride	BTF2088-BLK1	ND	ug/L	1.0		
Methyl t-butyl ether	BTF2088-BLK1	ND	ug/L	0.50		
Naphthalene	BTF2088-BLK1	ND	ug/L	0.50		
n-Propylbenzene	BTF2088-BLK1	ND	ug/L	0.50		
Styrene	BTF2088-BLK1	ND	ug/L	0.50		
1,1,1,2-Tetrachloroethane	BTF2088-BLK1	ND	ug/L	0.50		
1,1,2,2-Tetrachloroethane	BTF2088-BLK1	ND	ug/L	0.50		
Tetrachloroethene	BTF2088-BLK1	ND	ug/L	0.50		
Toluene	BTF2088-BLK1	ND	ug/L	0.50		
1,2,3-Trichlorobenzene	BTF2088-BLK1	ND	ug/L	0.50		
1,2,4-Trichlorobenzene	BTF2088-BLK1	ND	ug/L	0.50		
1,1,1-Trichloroethane	BTF2088-BLK1	ND	ug/L	0.50		
1,1,2-Trichloroethane	BTF2088-BLK1	ND	ug/L	0.50		
Trichloroethene	BTF2088-BLK1	ND	ug/L	0.50		
Trichlorofluoromethane	BTF2088-BLK1	ND	ug/L	0.50		

TRC
123 Technology Drive

Irvine, CA 92618 Project Number: 4512917610
Project Manager: Anju Farfan

Volatile Organic Analysis (EPA Method 8260)

07/07/2010 15:47

Reported:

Project: 7376

Quality Control Report - Method Blank Analysis

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BTF2088						
1,2,3-Trichloropropane	BTF2088-BLK1	ND	ug/L	1.0		
1,1,2-Trichloro-1,2,2-trifluoroethane	BTF2088-BLK1	ND	ug/L	0.50		
1,2,4-Trimethylbenzene	BTF2088-BLK1	ND	ug/L	0.50		
1,3,5-Trimethylbenzene	BTF2088-BLK1	ND	ug/L	0.50		
Vinyl chloride	BTF2088-BLK1	ND	ug/L	0.50		
Total Xylenes	BTF2088-BLK1	ND	ug/L	1.0		
Total Purgeable Petroleum Hydrocarbons	BTF2088-BLK1	ND	ug/L	50		
1,2-Dichloroethane-d4 (Surrogate)	BTF2088-BLK1	97.6	%	76 - 114	(LCL - UCL)	
Toluene-d8 (Surrogate)	BTF2088-BLK1	101	%	88 - 110	(LCL - UCL)	
4-Bromofluorobenzene (Surrogate)	BTF2088-BLK1	91.7	%	86 - 115	(LCL - UCL)	

123 Technology Drive Irvine, CA 92618 Reported: 07/07/2010 15:47

Project: 7376

Project Number: 4512917610 Project Manager: Anju Farfan

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Laboratory Control Sample

								Control L	<u>imits</u>	
		_		Spike		Percent		Percent		
Constituent	QC Sample ID	Туре	Result	Level	Units	Recovery	RPD	Recovery	RPD	Lab Quals
QC Batch ID: BTF1710										
Benzene	BTF1710-BS1	LCS	24.940	25.000	ug/L	99.8		70 - 130		
Toluene	BTF1710-BS1	LCS	26.330	25.000	ug/L	105		70 - 130		
1,2-Dichloroethane-d4 (Surrogate)	BTF1710-BS1	LCS	10.130	10.000	ug/L	101		76 - 114		
Toluene-d8 (Surrogate)	BTF1710-BS1	LCS	10.100	10.000	ug/L	101		88 - 110		
4-Bromofluorobenzene (Surrogate)	BTF1710-BS1	LCS	9.4400	10.000	ug/L	94.4		86 - 115		
QC Batch ID: BTF2088										
Benzene	BTF2088-BS1	LCS	28.440	25.000	ug/L	114		70 - 130		
Bromodichloromethane	BTF2088-BS1	LCS	23.000	25.000	ug/L	92.0		70 - 130		
Chlorobenzene	BTF2088-BS1	LCS	25.380	25.000	ug/L	102		70 - 130		
Chloroethane	BTF2088-BS1	LCS	31.430	25.000	ug/L	126		70 - 130		
1,4-Dichlorobenzene	BTF2088-BS1	LCS	24.960	25.000	ug/L	99.8		70 - 130		
1,1-Dichloroethane	BTF2088-BS1	LCS	27.290	25.000	ug/L	109		70 - 130		
1,1-Dichloroethene	BTF2088-BS1	LCS	32.150	25.000	ug/L	129		70 - 130		
Toluene	BTF2088-BS1	LCS	25.020	25.000	ug/L	100		70 - 130		
Trichloroethene	BTF2088-BS1	LCS	25.290	25.000	ug/L	101		70 - 130		
1,2-Dichloroethane-d4 (Surrogate)	BTF2088-BS1	LCS	11.400	10.000	ug/L	114		76 - 114		
Toluene-d8 (Surrogate)	BTF2088-BS1	LCS	9.9500	10.000	ug/L	99.5		88 - 110		
4-Bromofluorobenzene (Surrogate)	BTF2088-BS1	LCS	9.8900	10.000	ug/L	98.9		86 - 115		

123 Technology Drive Irvine, CA 92618 Reported: 07/07/2010 15:47

Project: 7376

Project Number: 4512917610 Project Manager: Anju Farfan

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Precision & Accuracy

									Cont	rol Limits	
		Source	Source		Spike			Percent		Percent	Lab
Constituent	Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Quals
QC Batch ID: BTF1710	Used	client sample:	: N								
Benzene	MS	1007897-57	ND	24.050	25.000	ug/L		96.2		70 - 130	
	MSD	1007897-57	ND	22.840	25.000	ug/L	5.2	91.4	20	70 - 130	
Toluene	MS	1007897-57	ND	26.040	25.000	ug/L		104		70 - 130	
	MSD	1007897-57	ND	24.670	25.000	ug/L	5.4	98.7	20	70 - 130	
1,2-Dichloroethane-d4 (Surrogate)	MS	1007897-57	ND	9.8400	10.000	ug/L		98.4		76 - 114	
	MSD	1007897-57	ND	9.9600	10.000	ug/L		99.6		76 - 114	
Toluene-d8 (Surrogate)	MS	1007897-57	ND	9.8500	10.000	ug/L		98.5		88 - 110	
	MSD	1007897-57	ND	10.010	10.000	ug/L		100		88 - 110	
4-Bromofluorobenzene (Surrogate)	MS	1007897-57	ND	9.9200	10.000	ug/L		99.2		86 - 115	
	MSD	1007897-57	ND	9.6600	10.000	ug/L		96.6		86 - 115	
QC Batch ID: BTF2088	Used	client sample:	: N								
Benzene	MS	1008663-01	ND	30.150	25.000	ug/L		121		70 - 130	
	MSD	1008663-01	ND	29.530	25.000	ug/L	2.1	118	20	70 - 130	
Bromodichloromethane	MS	1008663-01	ND	28.920	25.000	ug/L		116		70 - 130	
	MSD	1008663-01	ND	26.300	25.000	ug/L	9.5	105	20	70 - 130	
Chlorobenzene	MS	1008663-01	ND	28.430	25.000	ug/L		114		70 - 130	
	MSD	1008663-01	ND	27.620	25.000	ug/L	2.9	110	20	70 - 130	
Chloroethane	MS	1008663-01	ND	28.520	25.000	ug/L		114		70 - 130	
	MSD	1008663-01	ND	35.030	25.000	ug/L	20.5	140	20	70 - 130	Q02,Q
1,4-Dichlorobenzene	MS	1008663-01	ND	29.320	25.000	ug/L		117		70 - 130	03
1,4 Didilioroberizone	MSD	1008663-01	ND	27.520	25.000	ug/L	6.3	110	20	70 - 130	
1,1-Dichloroethane	MS	1008663-01	ND	30.400	25.000	ug/L		122		70 - 130	
1,1-Dichioroethane	MSD	1008663-01	ND	29.490	25.000	ug/L ug/L	3.0	118	20	70 - 130	
1,1-Dichloroethene	MS	1008663-01	ND	33.610	25.000	ug/L		134		70 - 130	Q03
1,1 Biolioroculeilo	MSD	1008663-01	ND	34.350	25.000	ug/L	2.2	137	20	70 - 130	Q03
Toluene	MS	1008663-01	ND	27.980	25.000	ug/L		112		70 - 130	
	MSD	1008663-01	ND	26.920	25.000	ug/L	3.9	108	20	70 - 130	
Trichloroethene	MS	1008663-01	ND	28.450	25.000	ug/L		114		70 - 130	
	MSD	1008663-01	ND	27.960	25.000	ug/L	1.7	112	20	70 - 130	
1,2-Dichloroethane-d4 (Surrogate)	MS	1008663-01	ND	10.050	10.000	ug/L		100		76 - 114	
.,	MSD	1008663-01	ND	10.580	10.000	ug/L		106		76 - 114	
Toluene-d8 (Surrogate)	MS	1008663-01	ND	10.100	10.000	ug/L		101		88 - 110	
(3****)	MSD	1008663-01	ND	10.080	10.000	ug/L		101		88 - 110	
4-Bromofluorobenzene (Surrogate)	MS	1008663-01	ND	10.740	10.000	ug/L		107		86 - 115	
						- 9				•	

123 Technology Drive Irvine, CA 92618 Reported: 07/07/2010 15:47

Project: 7376

Project Number: 4512917610 Project Manager: Anju Farfan

Base Neutral and Acid Extractables Organic Analysis (EPA Method 8270C)

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BTF1668						
Acenaphthene	BTF1668-BLK1	ND	ug/L	2.0		
Acenaphthylene	BTF1668-BLK1	ND	ug/L	2.0		
Aldrin	BTF1668-BLK1	ND	ug/L	2.0		
Aniline	BTF1668-BLK1	ND	ug/L	5.0		
Anthracene	BTF1668-BLK1	ND	ug/L	2.0		
Benzidine	BTF1668-BLK1	ND	ug/L	20		
Benzo[a]anthracene	BTF1668-BLK1	ND	ug/L	2.0		
Benzo[b]fluoranthene	BTF1668-BLK1	ND	ug/L	2.0		
Benzo[k]fluoranthene	BTF1668-BLK1	ND	ug/L	2.0		
Benzo[a]pyrene	BTF1668-BLK1	ND	ug/L	2.0		
Benzo[g,h,i]perylene	BTF1668-BLK1	ND	ug/L	2.0		
Benzoic acid	BTF1668-BLK1	ND	ug/L	10		
Benzyl alcohol	BTF1668-BLK1	ND	ug/L	2.0		
Benzyl butyl phthalate	BTF1668-BLK1	ND	ug/L	2.0		
alpha-BHC	BTF1668-BLK1	ND	ug/L	2.0		
beta-BHC	BTF1668-BLK1	ND	ug/L	2.0		
delta-BHC	BTF1668-BLK1	ND	ug/L	2.0		
gamma-BHC (Lindane)	BTF1668-BLK1	ND	ug/L	2.0		
bis(2-Chloroethoxy)methane	BTF1668-BLK1	ND	ug/L	2.0		
bis(2-Chloroethyl) ether	BTF1668-BLK1	ND	ug/L	2.0		
bis(2-Chloroisopropyl)ether	BTF1668-BLK1	ND	ug/L	2.0		
bis(2-Ethylhexyl)phthalate	BTF1668-BLK1	ND	ug/L	5.0		
4-Bromophenyl phenyl ether	BTF1668-BLK1	ND	ug/L	2.0		
4-Chloroaniline	BTF1668-BLK1	ND	ug/L	2.0		
2-Chloronaphthalene	BTF1668-BLK1	ND	ug/L	2.0		
4-Chlorophenyl phenyl ether	BTF1668-BLK1	ND	ug/L	2.0		
Chrysene	BTF1668-BLK1	ND	ug/L	2.0		
4,4'-DDD	BTF1668-BLK1	ND	ug/L	2.0		
4,4'-DDE	BTF1668-BLK1	ND	ug/L	3.0		
4,4'-DDT	BTF1668-BLK1	ND	ug/L	2.0		
Dibenzo[a,h]anthracene	BTF1668-BLK1	ND	ug/L	3.0		
Dibenzofuran	BTF1668-BLK1	ND	ug/L	2.0		
1,2-Dichlorobenzene	BTF1668-BLK1	ND	ug/L	2.0		
1,3-Dichlorobenzene	BTF1668-BLK1	ND	ug/L	2.0		

123 Technology Drive Irvine, CA 92618 Reported: 07/07/2010 15:47

Project: 7376

Project Number: 4512917610 Project Manager: Anju Farfan

Base Neutral and Acid Extractables Organic Analysis (EPA Method 8270C)

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BTF1668						
1,4-Dichlorobenzene	BTF1668-BLK1	ND	ug/L	2.0		
3,3-Dichlorobenzidine	BTF1668-BLK1	ND	ug/L	10		
Dieldrin	BTF1668-BLK1	ND	ug/L	3.0		
Diethyl phthalate	BTF1668-BLK1	ND	ug/L	2.0		
Dimethyl phthalate	BTF1668-BLK1	ND	ug/L	2.0		
Di-n-butyl phthalate	BTF1668-BLK1	ND	ug/L	2.0		
2,4-Dinitrotoluene	BTF1668-BLK1	ND	ug/L	2.0		
2,6-Dinitrotoluene	BTF1668-BLK1	ND	ug/L	2.0		
Di-n-octyl phthalate	BTF1668-BLK1	ND	ug/L	2.0		
1,2-Diphenylhydrazine	BTF1668-BLK1	ND	ug/L	2.0		
Endosulfan I	BTF1668-BLK1	ND	ug/L	10		
Endosulfan II	BTF1668-BLK1	ND	ug/L	10		
Endosulfan sulfate	BTF1668-BLK1	ND	ug/L	3.0		
Endrin	BTF1668-BLK1	ND	ug/L	2.0		
Endrin aldehyde	BTF1668-BLK1	ND	ug/L	10		
Fluoranthene	BTF1668-BLK1	ND	ug/L	2.0		
Fluorene	BTF1668-BLK1	ND	ug/L	2.0		
Heptachlor	BTF1668-BLK1	ND	ug/L	2.0		
Heptachlor epoxide	BTF1668-BLK1	ND	ug/L	2.0		
Hexachlorobenzene	BTF1668-BLK1	ND	ug/L	2.0		
Hexachlorobutadiene	BTF1668-BLK1	ND	ug/L	2.0		
Hexachlorocyclopentadiene	BTF1668-BLK1	ND	ug/L	2.0		
Hexachloroethane	BTF1668-BLK1	ND	ug/L	2.0		
Indeno[1,2,3-cd]pyrene	BTF1668-BLK1	ND	ug/L	2.0		
Isophorone	BTF1668-BLK1	ND	ug/L	2.0		
2-Methylnaphthalene	BTF1668-BLK1	ND	ug/L	2.0		
Naphthalene	BTF1668-BLK1	ND	ug/L	2.0		
2-Naphthylamine	BTF1668-BLK1	ND	ug/L	20		
2-Nitroaniline	BTF1668-BLK1	ND	ug/L	2.0		
3-Nitroaniline	BTF1668-BLK1	ND	ug/L	2.0		
4-Nitroaniline	BTF1668-BLK1	ND	ug/L	5.0		
Nitrobenzene	BTF1668-BLK1	ND	ug/L	2.0		
N-Nitrosodimethylamine	BTF1668-BLK1	ND	ug/L	2.0		
N-Nitrosodi-N-propylamine	BTF1668-BLK1	ND	ug/L	2.0		

123 Technology Drive Irvine, CA 92618 Reported: 07/07/2010 15:47

Project: 7376

Project Number: 4512917610 Project Manager: Anju Farfan

Base Neutral and Acid Extractables Organic Analysis (EPA Method 8270C)

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BTF1668						
N-Nitrosodiphenylamine	BTF1668-BLK1	ND	ug/L	2.0		
Phenanthrene	BTF1668-BLK1	ND	ug/L	2.0		
Pyrene	BTF1668-BLK1	ND	ug/L	2.0		
1,2,4-Trichlorobenzene	BTF1668-BLK1	ND	ug/L	2.0		
4-Chloro-3-methylphenol	BTF1668-BLK1	ND	ug/L	5.0		
2-Chlorophenol	BTF1668-BLK1	ND	ug/L	2.0		
2,4-Dichlorophenol	BTF1668-BLK1	ND	ug/L	2.0		
2,4-Dimethylphenol	BTF1668-BLK1	ND	ug/L	2.0		
4,6-Dinitro-2-methylphenol	BTF1668-BLK1	ND	ug/L	10		
2,4-Dinitrophenol	BTF1668-BLK1	ND	ug/L	10		
2-Methylphenol	BTF1668-BLK1	ND	ug/L	2.0		
3- & 4-Methylphenol	BTF1668-BLK1	ND	ug/L	2.0		
2-Nitrophenol	BTF1668-BLK1	ND	ug/L	2.0		
4-Nitrophenol	BTF1668-BLK1	ND	ug/L	2.0		
Pentachlorophenol	BTF1668-BLK1	ND	ug/L	10		
Phenol	BTF1668-BLK1	ND	ug/L	2.0		
2,4,5-Trichlorophenol	BTF1668-BLK1	ND	ug/L	5.0		
2,4,6-Trichlorophenol	BTF1668-BLK1	ND	ug/L	5.0		
2-Fluorophenol (Surrogate)	BTF1668-BLK1	80.7	%	28 - 85	(LCL - UCL)	
Phenol-d5 (Surrogate)	BTF1668-BLK1	48.9	%	13 - 59	(LCL - UCL)	
Nitrobenzene-d5 (Surrogate)	BTF1668-BLK1	84.1	%	34 - 119	(LCL - UCL)	
2-Fluorobiphenyl (Surrogate)	BTF1668-BLK1	83.0	%	24 - 128	3 (LCL - UCL)	
2,4,6-Tribromophenol (Surrogate)	BTF1668-BLK1	116	%	35 - 114	LCL - UCL)	S09
p-Terphenyl-d14 (Surrogate)	BTF1668-BLK1	119	%	10 - 185	(LCL - UCL)	

123 Technology Drive Irvine, CA 92618 **Reported:** 07/07/2010 15:47

Project: 7376

Project Number: 4512917610
Project Manager: Anju Farfan

Base Neutral and Acid Extractables Organic Analysis (EPA Method 8270C)

Quality Control Report - Laboratory Control Sample

								Control L	<u>imits</u>	
				Spike		Percent		Percent		
Constituent	QC Sample ID	Туре	Result	Level	Units	Recovery	RPD	Recovery	RPD	Lab Quals
QC Batch ID: BTF1668										
Acenaphthene	BTF1668-BS1	LCS	46.931	50.000	ug/L	93.9		63 - 128		
1,4-Dichlorobenzene	BTF1668-BS1	LCS	40.664	50.000	ug/L	81.3		72 - 112		
2,4-Dinitrotoluene	BTF1668-BS1	LCS	59.240	50.000	ug/L	118		45 - 136		
Hexachlorobenzene	BTF1668-BS1	LCS	52.393	50.000	ug/L	105		71 - 130		
Hexachlorobutadiene	BTF1668-BS1	LCS	39.406	50.000	ug/L	78.8		56 - 106		
Hexachloroethane	BTF1668-BS1	LCS	37.787	50.000	ug/L	75.6		58 - 116		
Nitrobenzene	BTF1668-BS1	LCS	44.223	50.000	ug/L	88.4		59 - 119		
N-Nitrosodi-N-propylamine	BTF1668-BS1	LCS	44.529	50.000	ug/L	89.1		47 - 112		
Pyrene	BTF1668-BS1	LCS	36.259	50.000	ug/L	72.5		26 - 167		
1,2,4-Trichlorobenzene	BTF1668-BS1	LCS	42.894	50.000	ug/L	85.8		64 - 116		
4-Chloro-3-methylphenol	BTF1668-BS1	LCS	44.999	50.000	ug/L	90.0		52 - 123		
2-Chlorophenol	BTF1668-BS1	LCS	41.924	50.000	ug/L	83.8		62 - 106		
2-Methylphenol	BTF1668-BS1	LCS	37.942	50.000	ug/L	75.9		39 - 119		
3- & 4-Methylphenol	BTF1668-BS1	LCS	56.551	100.00	ug/L	56.6		40 - 94		
4-Nitrophenol	BTF1668-BS1	LCS	20.582	50.000	ug/L	41.2		18 - 64		
Pentachlorophenol	BTF1668-BS1	LCS	48.649	50.000	ug/L	97.3		38 - 144		
Phenol	BTF1668-BS1	LCS	20.487	50.000	ug/L	41.0		22 - 60		
2,4,6-Trichlorophenol	BTF1668-BS1	LCS	56.506	50.000	ug/L	113		60 - 127		
2-Fluorophenol (Surrogate)	BTF1668-BS1	LCS	66.160	80.000	ug/L	82.7		28 - 85		
Phenol-d5 (Surrogate)	BTF1668-BS1	LCS	38.926	80.000	ug/L	48.7		13 - 59		
Nitrobenzene-d5 (Surrogate)	BTF1668-BS1	LCS	68.365	80.000	ug/L	85.5		34 - 119		
2-Fluorobiphenyl (Surrogate)	BTF1668-BS1	LCS	77.655	80.000	ug/L	97.1		24 - 128		
2,4,6-Tribromophenol (Surrogate)	BTF1668-BS1	LCS	93.982	80.000	ug/L	117		35 - 114		S09
p-Terphenyl-d14 (Surrogate)	BTF1668-BS1	LCS	45.952	40.000	ug/L	115		10 - 185		

123 Technology Drive Irvine, CA 92618 Reported: 07/07/2010 15:47

Project: 7376

Project Number: 4512917610 Project Manager: Anju Farfan

Base Neutral and Acid Extractables Organic Analysis (EPA Method 8270C)

									Cont	rol Limits	
		Source	Source		Spike			Percent		Percent	Lab
Constituent	Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Quals
QC Batch ID: BTF1668	Used	client sample	: N								
Acenaphthene	∟ MS	1007897-36	ND	42.143	50.000	ug/L		84.3		55 - 128	
•	MSD	1007897-36	ND	43.613	50.000	ug/L	3.4	87.2	28	55 - 128	
1,4-Dichlorobenzene	MS	1007897-36	ND	34.760	50.000	ug/L		69.5		64 - 114	
	MSD	1007897-36	ND	36.438	50.000	ug/L	4.7	72.9	27	64 - 114	
2,4-Dinitrotoluene	MS	1007897-36	ND	50.099	50.000	ug/L		100		41 - 135	
	MSD	1007897-36	ND	48.974	50.000	ug/L	2.3	97.9	29	41 - 135	
Hexachlorobenzene	MS	1007897-36	ND	52.096	50.000	ug/L		104		66 - 131	
	MSD	1007897-36	ND	51.956	50.000	ug/L	0.3	104	23	66 - 131	
Hexachlorobutadiene	MS	1007897-36	ND	29.794	50.000	ug/L		59.6		47 - 108	
	MSD	1007897-36	ND	34.579	50.000	ug/L	14.9	69.2	26	47 - 108	
Hexachloroethane	MS	1007897-36	ND	29.545	50.000	ug/L		59.1		49 - 118	
	MSD	1007897-36	ND	31.561	50.000	ug/L	6.6	63.1	30	49 - 118	
Nitrobenzene	MS	1007897-36	ND	40.441	50.000	ug/L		80.9		53 - 118	
	MSD	1007897-36	ND	40.457	50.000	ug/L	0.0	80.9	27	53 - 118	
N-Nitrosodi-N-propylamine	MS	1007897-36	ND	40.818	50.000	ug/L		81.6		41 - 114	
	MSD	1007897-36	ND	43.628	50.000	ug/L	6.7	87.3	30	41 - 114	
Pyrene	MS	1007897-36	ND	43.057	50.000	ug/L		86.1		25 - 163	
	MSD	1007897-36	ND	47.741	50.000	ug/L	10.3	95.5	27	25 - 163	
1,2,4-Trichlorobenzene	MS	1007897-36	ND	35.617	50.000	ug/L		71.2		52 - 121	
	MSD	1007897-36	ND	38.914	50.000	ug/L	8.8	77.8	28	52 - 121	
4-Chloro-3-methylphenol	MS	1007897-36	ND	42.100	50.000	ug/L		84.2		46 - 125	
	MSD	1007897-36	ND	43.379	50.000	ug/L	3.0	86.8	23	46 - 125	
2-Chlorophenol	MS	1007897-36	ND	35.789	50.000	ug/L		71.6		53 - 109	
	MSD	1007897-36	ND	36.235	50.000	ug/L	1.2	72.5	30	53 - 109	
2-Methylphenol	MS	1007897-36	ND	34.965	50.000	ug/L		69.9		37 - 117	
	MSD	1007897-36	ND	36.320	50.000	ug/L	3.8	72.6	26	37 - 117	
3- & 4-Methylphenol	MS	1007897-36	ND	54.066	100.00	ug/L		54.1		39 - 92	
	MSD	1007897-36	ND	60.225	100.00	ug/L	10.8	60.2	27	39 - 92	
4-Nitrophenol	MS	1007897-36	ND	19.666	50.000	ug/L		39.3		18 - 63	
	MSD	1007897-36	ND	21.638	50.000	ug/L	9.5	43.3	30	18 - 63	
Pentachlorophenol	MS	1007897-36	ND	49.151	50.000	ug/L		98.3		16 - 156	
	MSD	1007897-36	ND	43.494	50.000	ug/L	12.2	87.0	30	16 - 156	
Phenol	MS	1007897-36	ND	17.995	50.000	ug/L		36.0		21 - 59	
	MSD	1007897-36	ND	18.204	50.000	ug/L	1.2	36.4	29	21 - 59	
2,4,6-Trichlorophenol	MS	1007897-36	ND	46.062	50.000	ug/L		92.1		43 - 135	
	MSD	1007897-36	ND	49.229	50.000	ug/L	6.6	98.5	30	43 - 135	

123 Technology Drive Irvine, CA 92618 Reported: 07/07/2010 15:47

Project: 7376

Project Number: 4512917610 Project Manager: Anju Farfan

Base Neutral and Acid Extractables Organic Analysis (EPA Method 8270C)

									Cont	rol Limits	
		Source	Source		Spike			Percent		Percent	Lab
Constituent	Туре	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Quals
QC Batch ID: BTF1668	Used	client sample	: N								
2-Fluorophenol (Surrogate)	MS	1007897-36	ND	57.133	80.000	ug/L		71.4		28 - 85	
	MSD	1007897-36	ND	58.600	80.000	ug/L		73.2		28 - 85	
Phenol-d5 (Surrogate)	MS	1007897-36	ND	33.906	80.000	ug/L		42.4		13 - 59	
	MSD	1007897-36	ND	35.830	80.000	ug/L		44.8		13 - 59	
Nitrobenzene-d5 (Surrogate)	MS	1007897-36	ND	63.251	80.000	ug/L		79.1		34 - 119	
	MSD	1007897-36	ND	62.070	80.000	ug/L		77.6		34 - 119	
2-Fluorobiphenyl (Surrogate)	MS	1007897-36	ND	63.023	80.000	ug/L		78.8		24 - 128	
	MSD	1007897-36	ND	67.340	80.000	ug/L		84.2		24 - 128	
2,4,6-Tribromophenol (Surrogate)	MS	1007897-36	ND	87.419	80.000	ug/L		109		35 - 114	
	MSD	1007897-36	ND	90.350	80.000	ug/L		113		35 - 114	
p-Terphenyl-d14 (Surrogate)	MS	1007897-36	ND	39.748	40.000	ug/L		99.4		10 - 185	
	MSD	1007897-36	ND	44.050	40.000	ug/L		110		10 - 185	

TRC Reported: 07/07/2010 15:47

123 Technology Drive Project: 7376

Irvine, CA 92618 Project Number: 4512917610
Project Manager: Anju Farfan

Purgeable Aromatics and Total Petroleum Hydrocarbons

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BTF1789						
TPH - Gasoline	BTF1789-BLK1	ND	ug/L	200		
TPH - Diesel (FFP)	BTF1789-BLK1	ND	ug/L	50		
TPH - Fuel Oil #6	BTF1789-BLK1	ND	ug/L	50		
TPH - Motor Oil	BTF1789-BLK1	ND	ug/L	200		
Tetracosane (Surrogate)	BTF1789-BLK1	68.9	%	37 - 134	(LCL - UCL)	

123 Technology Drive Irvine, CA 92618 Reported: 07/07/2010 15:47

Project: 7376

Project Number: 4512917610
Project Manager: Anju Farfan

Purgeable Aromatics and Total Petroleum Hydrocarbons

Quality Control Report - Laboratory Control Sample

							Control L	Control Limits					
Constituent	QC Sample ID	Туре	Result	Spike Level	Units	Percent Recovery	Percent RPD Recovery	RPD	Lab Quals				
QC Batch ID: BTF1789													
TPH - Diesel (FFP)	BTF1789-BS1	LCS	365.89	500.00	ug/L	73.2	52 - 128						
Tetracosane (Surrogate)	BTF1789-BS1	LCS	17.625	20.000	ug/L	88.1	37 - 134						

123 Technology Drive Irvine, CA 92618 Reported: 07/07/2010 15:47

Project: 7376

Project Number: 4512917610 Project Manager: Anju Farfan

Purgeable Aromatics and Total Petroleum Hydrocarbons

								Control Limits			
		Source	Source		Spike			Percent		Percent	Lab
Constituent	Туре	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Quals
QC Batch ID: BTF1789	Used	client sample	: N								
TPH - Diesel (FFP)	MS	1007897-57	ND	336.01	500.00	ug/L		67.2		50 - 127	
	MSD	1007897-57	ND	939.74	500.00	ug/L	94.6	188	24	50 - 127	Q03
Tetracosane (Surrogate)	MS	1007897-57	ND	17.047	20.000	ug/L		85.2		37 - 134	
	MSD	1007897-57	ND	60.665	20.000	ug/L		303		37 - 134	S09

123 Technology Drive Irvine, CA 92618 **Reported:** 07/07/2010 15:47

Project: 7376

Project Number: 4512917610 Project Manager: Anju Farfan

Total Petroleum Hydrocarbons

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BTF1786						
Diesel Range Organics (C12 - C24)	BTF1786-BLK1	ND	ug/L	50		
Tetracosane (Surrogate)	BTF1786-BLK1	91.1	%	28 - 139	(LCL - UCL)	

123 Technology Drive Irvine, CA 92618 **Reported:** 07/07/2010 15:47

Project: 7376

Project Number: 4512917610
Project Manager: Anju Farfan

Total Petroleum Hydrocarbons

Quality Control Report - Laboratory Control Sample

								Control Limits				
Constituent	QC Sample ID	Type	Result	Spike Level	Units	Percent Recovery	RPD	Percent Recovery	RPD	Lab Quals		
QC Batch ID: BTF1786												
Diesel Range Organics (C12 - C24)	BTF1786-BS1	LCS	392.52	500.00	ug/L	78.5		48 - 125				

123 Technology Drive Irvine, CA 92618 Reported: 07/07/2010 15:47

Project: 7376

Project Number: 4512917610 Project Manager: Anju Farfan

Total Petroleum Hydrocarbons

									Cont	rol Limits		
		Source	Source		Spike			Percent		Percent	Lab	
Constituent	Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Quals	
QC Batch ID: BTF1786	Used	client sample	: N									
Diesel Range Organics (C12 - C24)	MS	1007897-56	ND	353.81	500.00	ug/L		70.8		36 - 130		
	MSD	1007897-56	ND	410.91	500.00	ug/L	14.9	82.2	30	36 - 130		
Tetracosane (Surrogate)	MS	1007897-56	ND	18.125	20.000	ug/L		90.6		28 - 139		
	MSD	1007897-56	ND	20.033	20.000	ug/L		100		28 - 139		

TRC Reported: 07/07/2010 15:47

123 Technology Drive Project: 7376

Irvine, CA 92618 Project Number: 4512917610 Project Manager: Anju Farfan

Notes And Definitions

MDL Method Detection Limit

ND Analyte Not Detected at or above the reporting limit

PQL Practical Quantitation Limit RPD Relative Percent Difference

PQL's and MDL's are raised due to sample dilution. A01

A52 Chromatogram not typical of diesel.

A90 TPPH does not exhibit a "gasoline" pattern. TPPH is entirely due to MTBE.

Q02 Matrix spike precision is not within the control limits.

Q03 Matrix spike recovery(s) is(are) not within the control limits.

S09 The surrogate recovery on the sample for this compound was not within the control limits.

STATEMENTS

Purge Water Disposal

Non-hazardous groundwater produced during purging and sampling of monitoring wells is accumulated at TRC's groundwater monitoring field office at Concord, California, for transportation by a licensed carrier to an authorized disposal facility. Currently, non-hazardous purge water is transported under a bulk non-hazardous waste manifest to Crosby and Overton, Inc. in Long Beach, California.

Limitations

The fluid level monitoring and groundwater sampling activities summarized in this report have been performed under the responsible charge of a California Registered Geologist or Registered Civil Engineer and have been conducted in accordance with current practice and the standard of care exercised by geologists and engineers performing similar tasks in this area. No warranty, express or implied, is made regarding the conclusions and professional opinions presented in this report. The conclusions are based solely upon an analysis of the observed conditions. If actual conditions differ from those described in this report, our office should be notified.