

5900 Hollis Street, Suite A Emeryville, California 94608

Telephone: (510) 420-0700 Fax: (510) 420-9170

www.CRAworld.com

		TRAN	SMITT	TAL
DATE:	Februar	ry 9, 2015 R E	ference N	No.: 240523
		PR	OJECT NAN	ME: 4212 First Street, Pleasanton
То:	Jerry W	Vickham (
	Alamed	da County Environmental Health	1	
		arbor Bay Parkway, Suite 250		RECEIVED
-		da, California 94502-6577	.5	By Alameda County Environmental Health at 3:40 pm, Feb 10, 20
-	THUTTE	day Camerina / 1002 0077		
-				
Please find	enclosed	d: Draft Originals Prints	Final Other	
Sent via:		☐ Mail ☐ Overnight Courier ☐		Day Courier GeoTracker and Alameda County FTP
QUANT	ΓΙΤΥ		DESC	CRIPTION
1		Groundwater Monitoring Repo	ort – Fourth	h Quarter 2014
	equested our Use	For Revie	ew and Com	mment
COMMEN				
		0 0		ment, please call the CRA project manager
Peter Scha	efer at (510) 420-3319 or the Shell progra	m manage	er Perry Pineda at (425) 413-1164.
Copy to:		Perry Pineda, Shell Oil Products Douglas E. & Mary M. Safreno (p 94566-6389 (electronic and har	roperty ov	onic copy) wners), 1627 Vineyard Avenue, Pleasanton, CA
	I	Danielle Stefani, Livermore-Pleas CA 94566-6267	santon Fire	e Department, 3560 Nevada Street, Pleasanton,
	(Clint Mercer (lessee), SC Fuels, 1	800 West K	Katella Avenue, Orange, CA 92867
	. (Colleen Winey, Zone 7 Water Ag	ency (elect	ctronic copy)
		Aaron O'Brien, Tamalpais Enviro	onmental C	Consultants (electronic copy)
Completed	d by: _l	Peter Schaefer	Signe	ed: fete Sil enfor
Filing: C	Correspoi	ndence File		

Shell Oil Products US

Mr. Jerry Wickham Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577 Soil and Groundwater Focus Delivery Group 20945 S. Wilmington Avenue Carson, CA 90810 Tel (425) 413 1164 Fax (425) 413 0988 Email perry.pineda@shell.com Internet http://www.shell.com

Re: 4212 First Street

Pleasanton, California SAP Code 135782 Incident No. 98995840

ACEH Case No. RO0000360

Dear Mr. Wickham:

The attached document is provided for your review and comment. Upon information and belief, I declare, under penalty of perjury, that the information contained in the attached document is true and correct.

As always, please feel free to contact me directly at (425) 413-1164 with any questions or concerns.

Sincerely, Shell Oil Products US

BAL

Perry Pineda

Senior Environmental Program Manager

GROUNDWATER MONITORING REPORT - FOURTH QUARTER 2014

SHELL-BRANDED SERVICE STATION 4212 FIRST STREET PLEASANTON, CALIFORNIA

SAP CODE 135782 INCIDENT NO. 98995840 AGENCY NO. RO0000360

> Prepared by: Conestoga-Rovers & Associates

5900 Hollis Street, Suite A Emeryville, California U.S.A. 94608

Office: (510) 420-0700 Fax: (510) 420-9170

web: http://www.CRAworld.com

FEBRUARY 9, 2015 Ref. no. 240523 (28)

This report is printed on recycled paper.

TABLE OF CONTENTS

			<u>Page</u>
1.0	INTRO	DDUCTION	1
	1.1	SITE INFORMATION	1
2.0	SITE A	ACTIVITIES, FINDINGS, AND DISCUSSION	1
	2.1	CURRENT QUARTER'S ACTIVITIES	1
	2.2	CURRENT QUARTER'S FINDINGS	2
	23	PROPOSED ACTIVITIES	2

<u>LIST OF FIGURES</u> (Following Text)

FIGURE 1 VICINITY MAP

FIGURE 2 GROUNDWATER CONTOUR AND CHEMICAL CONCENTRATION MAP

LIST OF TABLES (Following Text)

TABLE 1 GROUNDWATER DATA

LIST OF APPENDICES

APPENDIX A BLAINE TECH SERVICES, INC. - FIELD NOTES

APPENDIX B TESTAMERICA LABORATORIES, INC. - ANALYTICAL REPORT

1.0 INTRODUCTION

Conestoga-Rovers & Associates (CRA) prepared this report on behalf of Equilon Enterprises LLC dba Shell Oil Products US (Shell).

1.1 SITE INFORMATION

Site Address 4212 First Street, Pleasanton

Site Use Shell-branded Service Station

Shell Project Manager Perry Pineda

CRA Project Manager Peter Schaefer

Lead Agency and Contact ACEH, Jerry Wickham

Agency Case No. RO0000360

Shell SAP Code 135782

Shell Incident No. 98995840

Date of most recent agency correspondence was June 17, 2014.

2.0 <u>SITE ACTIVITIES, FINDINGS, AND DISCUSSION</u>

2.1 <u>CURRENT QUARTER'S ACTIVITIES</u>

Blaine Tech Services, Inc. (Blaine) gauged and sampled the wells according to the established monitoring program for this site. CRA prepared a vicinity map (Figure 1), a groundwater contour and chemical concentration map (Figure 2), and a groundwater data table (Table 1). Blaine's field notes are presented in Appendix A, and the laboratory report is presented in Appendix B.

2.2 <u>CURRENT QUARTER'S FINDINGS</u>

Groundwater Flow Direction Northerly to northeasterly

Hydraulic Gradient 0.09

Depth to Water 34.18 to 102.96 feet below top of well casing

2.3 PROPOSED ACTIVITIES

Blaine will gauge and sample wells according to the established monitoring program for this site. This site is monitored semiannually during the second and fourth quarters, and CRA will issue groundwater monitoring reports semiannually following the sampling events.

Unless directed otherwise, CRA will discontinue analysis for monitored natural attenuation parameters nitrate as nitrogen, sulfate, alkalinity as calcium carbonate, and ferrous iron in wells MW-1, MW-1B, MW-2, and MW-4.

All of Which is Respectfully Submitted, CONESTOGA-ROVERS & ASSOCIATES

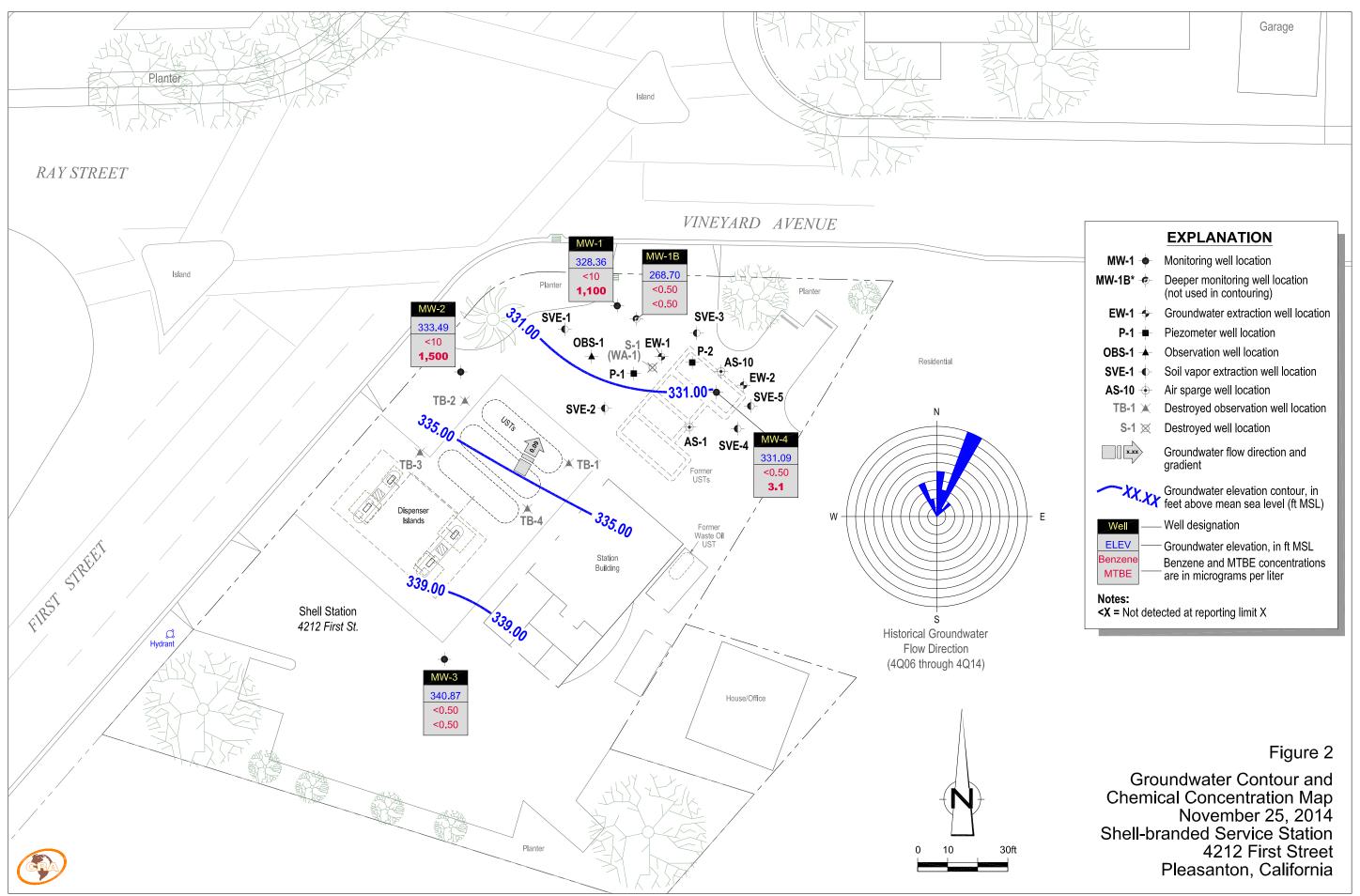
Peter Schaefer, CHG, CEG

Aubrey K. Cool, PG

FIGURES

Shell-branded Service Station

1/8


4212 First Street Pleasanton, California

SOURCE: TOPO! MAPS

1/2 SCALE : 1" = 1/4 MILE

Vicinity Map

TABLE

TABLE 1 Page 1 of 9

GROUNDWATER DATA SHELL-BRANDED SERVICE STATION 4212 FIRST STREET, PLEASANTON, CALIFORNIA

Well ID	Date	ТРНд	В	T	E	X	MTBE 8020	MTBE 8260	TBA	DIPE	ETBE	TAME	Nitrate as N	Sulfate	Alkalinity as CaCO 3	Ferrous Iron	тос	Depth to Water	GW Elevation	DO	ORP
		(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	$(\mu g/L)$	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(ft MSL)	(ft TOC)	(ft MSL)	(mg/L)	(mV)
MW-1	06/16/1999																371.20	37.81	333.39		
MW-1	06/30/1999	89.0	5.89	< 0.500	< 0.500	0.652	< 5.00										371.20	33.65	337.55		
MW-1	09/24/1999	1,560	473	<10.0	<10.0	22.8	< 2.50										371.20	37.04	334.16		
MW-1	12/08/1999	1,020	375	< 5.00	< 5.00	15.2	<50.0										371.20	36.79	334.41		
MW-1	02/10/2000	523	106	< 5.00	< 5.00	31.8	2.9										371.20	34.90	336.30		
MW-1	05/17/2000	< 50.0	< 0.500	< 0.500	< 0.500	< 0.500	37	29.5									371.20	32.55	338.65		
MW-1	08/03/2000	808	290	<2.50	<2.50	8.9	<12.5										371.20	39.13	332.07		
MW-1	10/31/2000	507	250	0.962	< 0.500	23.5	3.76										371.20	37.91	333.29		
MW-1	03/01/2001	<50.0	< 0.500	< 0.500	< 0.500	< 0.500	74.6										371.20	39.60	331.60		
MW-1	05/30/2001	780	280	<2.0	<2.0	11		<2.0									371.20	39.53	331.67		
MW-1	08/02/2001	1,900	580	<2.5	<2.5	12		<25									371.20	39.61	331.59		
MW-1	12/06/2001	840	190	< 0.50	< 0.50	13		< 5.0									371.20	39.63	331.57		
MW-1	02/05/2002	2,700	650	<2.5	<2.5	7.2		<25									371.20	35.53	335.67		
MW-1	06/17/2002	2,500	550	<2.0	<2.0	5.9		<20									371.20	39.29	331.91		
MW-1	07/25/2002	690	130	<0.50	<0.50	4.4		18									371.20	39.39	331.81		
MW-1	11/14/2002	400	31	<0.50	<0.50	2.7		27									371.20	40.00	331.20		
MW-1	02/12/2003	840	0.85	< 0.50	<0.50	<0.50		40									371.20	32.92	338.28		
MW-1	05/14/2003	680	190	<2.5	<2.5	<5.0		95 150									371.20	32.57	338.63		
MW-1	07/29/2003	870	190	<2.5	<2.5	<5.0		150									371.20	33.82	337.38		
MW-1	11/19/2003	<200	14	<2.0	<2.0	<4.0		230									371.20	38.28	332.92		
MW-1	02/19/2004	58 c	11	< 0.50	< 0.50	<1.0		85									371.20	36.93	334.27		
MW-1	05/03/2004	670	310	<2.5	<2.5	<5.0		420									371.20	32.70	338.50		
MW-1	08/24/2004	430 c	34	<2.5	<2.5	<5.0		690 470									371.20	34.66	336.54		
MW-1 MW-1	11/15/2004 02/02/2005	<250 540 e	29 87	<2.5 <2.5	<2.5 <2.5	<5.0 <5.0		470 700									371.20 371.20	38.27 32.02	332.93 339.18		
MW-1	05/05/2005	460 e	88	<2.5	<2.5	<5.0		300									371.20	36.82	334.38		
MW-1	08/05/2005	910	230	<2.5	<2.5	<5.0		480									371.20	33.35	337.85		
MW-1	11/22/2005	1,760	27	< 0.500	< 0.500	1.18		1,160									371.20	33.42	337.78		
MW-1	02/07/2006	4,620	225	< 0.500	< 0.500	< 0.500		1,480									371.20	31.63	339.57		
MW-1	05/16/2006	1,100	130	<0.50	2.0	2.1		1,600									371.20	31.16	340.04		
MW-1	08/21/2006	2,700	86	< 0.500	0.79	0.81		1,960									371.20	33.07	338.13		
MW-1	11/14/2006	1,400 c	30	<25	<25	<25		2,100	<1,000	<25	<25	<25					371.20	33.73	337.47		
MW-1	02/01/2007	800	21	< 0.50	< 0.50	<1.0		2,300									371.20	33.02	338.18		
MW-1	06/01/2007	1,400 d,e	68	<20	<20	4.4 f		2,200									371.20	32.87	338.33		
MW-1	08/22/2007	250 d	20	<20	<20	<20		3,100	1,500								371.20	34.64	336.56		
MW-1	11/26/2007	1,800 d	33	<20	<20	<20		3,100	930	<40	<40	<40					371.20	35.59	335.61		
MW-1	02/19/2008	1,800 d	33	<20	<20	<20		3,700	1,700								371.20	31.05	340.15		
MW-1	05/23/2008	3,700	100	<25	<25	<25		3,100	1,300								371.20	31.80	339.40		
MW-1	08/07/2008	4,200	33	<25	<25	<25		3,500	<250								371.20	33.03	338.17		
MW-1	12/03/2008	3,400	34	<25	<25	<25		3,200	980								371.20	35.19	336.01		
MW-1	02/05/2009	2,100	26	<25	<25	<25		1,700	340								371.20	35.07	336.13		

TABLE 1 Page 2 of 9

GROUNDWATER DATA SHELL-BRANDED SERVICE STATION 4212 FIRST STREET, PLEASANTON, CALIFORNIA

Well ID	Date	ТРНд	В	T	E	X	MTBE 8020	MTBE 8260	TBA	DIPE	ETBE	TAME	Nitrate as N	Sulfate	Alkalinity as CaCO 3	Ferrous Iron	TOC	Depth to Water	GW Elevation	DO	ORP
Well ID	Dutt	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(ft MSL)	(ft TOC)	(ft MSL)	(mg/L)	(mV)
MW-1	05/07/2009	4,400	230	<25	<25	<25		3,700	980								371.20	32.45	338.75		
MW-1	08/20/2009	3,100	86	<25	<25	<25		2,500	730								371.20	34.48	336.72		
MW-1	11/09/2009	3,200	230	<20	<20	33		2,100	530	<40	<40	<40					371.20	35.84	335.36		
MW-1	02/11/2010	4,400	30	<20	<20	<20		3,000	730								371.20	34.06	337.14		
MW-1	05/13/2010	3,300	38	<20	<20	<20		3,300	1,100								371.20	31.99	339.21		
MW-1	08/05/2010	4,200	12	<20	<20	<20		3,800	1,300								371.20	33.70	337.50		
MW-1	10/30/2010	2,700	<10	<20	<20	<20		3,400	770	<40	<40	<40					371.20	33.12	338.08		
MW-1	02/09/2011	2,600	32	<12	<12	<25		3,400	1,100								371.20	33.03	338.17		
MW-1	05/31/2011	<2,500	26	<25	<25	<50		3,000	1,000								371.20	32.21	338.99		
MW-1	07/27/2011	3,900 c	28	<10	<10	<20		4,100	1,400								371.20	33.60	337.60		
MW-1	11/04/2011	4,200	<25	<25	<25	<50		4,800	790	<50	<50	<50					371.20	31.20	340.00		
MW-1	05/23/2012	3,300	12	<10	<10	<20		3,400	710				5,000 g	19,000	630,000	<100	371.20	32.61	338.59	2.28	63
MW-1	08/31/2012																371.20	34.72	336.48		
MW-1	09/04/2012																371.20	31.31	339.89		
MW-1	09/07/2012	<5,000	<50	<50	<50	<100		2,700	<1,000				4,500 a	20,000	640,000		371.20	35.82	335.38	1.21	96
MW-1	11/13/2012	2,600	52	<25	<25	<50		2,700	< 500	<25	<25	<25	4,700	21,000	630,000		371.20	37.19	334.01	1.93	54
MW-1	05/14/2013	6,500	410	<5.0	< 5.0	<10		1,600	940				1,900	17,000	670,000		371.20	36.01	335.19	1.25	112
MW-1	07/31/2013	4,700	550	<5.0	< 5.0	59		870	470				350	42,000	530,000		371.20	37.02	334.18	1.75	-10
MW-1	11/12/2013	2,100	71	<5.0	< 5.0	<10		1,300	810				970	19,000	710,000		371.20	39.50	331.70	1.68	88
MW-1	02/04/2014	1,200	13	< 0.50	< 0.50	<1.0		1,500	890				2,200	18,000	700,000		371.20	39.84	331.36	1.19	140
MW-1	05/12/2014	2,000	59	<10	<10	<20		1,500	670				280	21,000	650,000		371.20	39.26	331.94	1.44	72
MW-1	11/25/2014	1,200 i	<10	<10	<10	<20		1,100	580	14	<10	<10	1,000	16,000	630,000		371.20	42.84	328.36		
MW-1B	09/21/2006																371.67	76.94	294.73		
MW-1B	09/28/2006	<50	< 0.50	< 0.50	< 0.50	< 0.50		21	<20								371.67	77.15	294.52		
MW-1B	11/14/2006	320 c	< 5.0	< 5.0	< 5.0	< 5.0		310	<200	< 5.0	< 5.0	< 5.0					371.67	69.38	302.29		
MW-1B	02/01/2007	77	0.53	< 0.50	< 0.50	<1.0		150									371.67	60.92	310.75		
MW-1B	06/01/2007	<50 d,e	0.25 f	<1.0	<1.0	<1.0		74									371.67	61.07	310.60		
MW-1B	08/22/2007	<50 d	0.25 f	<1.0	<1.0	<1.0		35	7.1 f								371.67	77.54	294.13		
MW-1B	11/26/2007	<50 d	< 0.50	<1.0	<1.0	<1.0		1.7	<10	<2.0	<2.0	<2.0					371.67	68.50	303.17		
MW-1B	02/19/2008	65 d	2.6	4.2	<1.0	1.1		58	<10								371.67	57.21	314.46		
MW-1B	05/23/2008	<50	< 0.50	<1.0	<1.0	<1.0		3.6	<10								371.67	57.53	314.14		
MW-1B	08/07/2008	<50	< 0.50	<1.0	<1.0	<1.0		1.1	<10								371.67	72.51	299.16		
MW-1B	12/03/2008	<50	< 0.50	<1.0	<1.0	<1.0		3.4	<10								371.67	80.84	290.83		
MW-1B	02/05/2009	< 50	< 0.50	<1.0	<1.0	<1.0		4.4	<10								371.67	76.11	295.56		
MW-1B	05/07/2009	< 50	< 0.50	<1.0	<1.0	<1.0		2.5	13								371.67	66.97	304.70		
MW-1B	08/20/2009	< 50	< 0.50	<1.0	<1.0	<1.0		1.7	<10								371.67	97.32	274.35		
MW-1B	11/09/2009	< 50	< 0.50	<1.0	<1.0	<1.0		<1.0	<10	<2.0	< 2.0	<2.0					371.67	98.90	272.77		
MW-1B	02/11/2010	< 50	< 0.50	<1.0	<1.0	<1.0		1.1	<10								371.67	90.72	280.95		
MW-1B	05/13/2010	< 50	< 0.50	<1.0	<1.0	<1.0		2.0	<10								371.67	80.56	291.11		
MW-1B	08/05/2010	<50	< 0.50	<1.0	<1.0	<1.0		<1.0	<10								371.67	90.10	281.57		

TABLE 1 Page 3 of 9

GROUNDWATER DATA SHELL-BRANDED SERVICE STATION 4212 FIRST STREET, PLEASANTON, CALIFORNIA

Well ID	Date	ТРНд	В	T	E	X	MTBE 8020	MTBE 8260	TBA	DIPE	ЕТВЕ	TAME	Nitrate as N	Sulfate	Alkalinity as CaCO 3	Ferrous Iron	TOC	Depth to Water	GW Elevation	DO	ORP
		(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(ft MSL)	(ft TOC)	(ft MSL)	(mg/L)	(mV)
MW-1B	10/30/2010	<50	< 0.50	<1.0	<1.0	<1.0		<1.0	<10	<2.0	<2.0	<2.0					371.67	102.21	269.46		
MW-1B	02/09/2011	<50	< 0.50	< 0.50	< 0.50	<1.0		<1.0	<10								371.67	90.24	281.43		
	05/31/2011	< 50	< 0.50	< 0.50	< 0.50	<1.0		<1.0	<10								371.67	73.83	297.84		
MW-1B	07/27/2011	< 50	< 0.50	< 0.50	< 0.50	<1.0		<1.0	<10								371.67	82.90	288.77		
MW-1B	11/04/2011	< 50	< 0.50	< 0.50	< 0.50	<1.0		<1.0	<10	<1.0	<1.0	<1.0					371.67	89.19	282.48		
MW-1B	05/23/2012	< 50	< 0.50	< 0.50	< 0.50	<1.0		1.2	<10				18,000	51,000	270,000	<100	371.67	82.10	289.57	2.67	207
	09/07/2012	< 50	< 0.50	< 0.50	< 0.50	<1.0		< 0.50	<10				19,000 a	49,000	260,000		371.66	102.45	269.21	1.54	204
MW-1B	11/13/2012	< 50	< 0.50	< 0.50	< 0.50	<1.0		< 0.50	<10	< 0.50	< 0.50	< 0.50	21,000	70,000	270,000		371.66	102.33	269.33	2.25	121
MW-1B	05/14/2013	< 50	< 0.50	< 0.50	< 0.50	<1.0		< 0.50	<10				25,000	53,000	280,000		371.66	99.32	272.35	1.41	96
MW-1B	07/31/2013	< 50	< 0.50	< 0.50	< 0.50	<1.0		< 0.50	<10				20,000	50,000	270,000		371.66	102.77	268.90	1.98	20
MW-1B	11/12/2013	< 50	< 0.50	< 0.50	< 0.50	<1.0		< 0.50	<10				19,000	49,000	300,000		371.66	102.83	268.83	1.96	92
MW-1B	02/04/2014	< 50	< 0.50	< 0.50	< 0.50	<1.0		< 0.50	<10				22,000	54,000	330,000		371.66	102.89	268.77	1.09	154
MW-1B	05/12/2014	< 50	< 0.50	< 0.50	< 0.50	<1.0		< 0.50	<10				22,000	54,000	290,000		371.66	102.50	269.16	1.77	83
MW-1B	11/25/2014	< 50	< 0.50	< 0.50	< 0.50	<1.0		< 0.50	<10	< 0.50	< 0.50	< 0.50	22,000	47,000	280,000		371.66	102.96	268.70		
MW-2	02/03/2000																372.40	32.65	339.75		
MW-2	02/07/2000																372.40	35.51	336.89		
MW-2	02/10/2000	<50.0	< 0.500	< 0.500	< 0.500	< 0.500	2.61										372.40	36.62	335.78		
MW-2	05/17/2000	120	4.09	< 0.500	< 0.500	< 0.500	29										372.40	32.14	340.26		
MW-2	08/03/2000	<50.0	0.692	< 0.500	< 0.500	< 0.500	40.5	36.6 b									372.40	32.42	339.98		
MW-2	10/31/2000	<50.0	< 0.500	< 0.500	< 0.500	< 0.500	57.4	44.8 a									372.40	33.02	339.38		
MW-2	03/01/2001	173	1.64	1.65	2.86	3.97	127	167									372.40	32.54	339.86		
MW-2	05/30/2001	< 50	< 0.50	< 0.50	< 0.50	< 0.50		170									372.40	32.42	339.98		
MW-2	08/02/2001	< 50	< 0.50	< 0.50	< 0.50	< 0.50		160									372.40	32.55	339.85		
MW-2	12/06/2001	< 50	< 0.50	< 0.50	< 0.50	< 0.50		170									372.40	33.15	339.25		
MW-2	02/05/2002	< 50	0.72	< 0.50	< 0.50	1.7		170									372.40	32.29	340.11		
MW-2	06/17/2002	< 50	< 0.50	< 0.50	< 0.50	< 0.50		260									372.40	32.63	339.77		
MW-2	07/25/2002	< 50	< 0.50	< 0.50	< 0.50	< 0.50		280									372.40	32.80	339.60		
MW-2	11/14/2002	120	13	9.0	3.8	14		430									372.40	33.31	339.09		
MW-2	02/12/2003	<100	<1.0	<1.0	<1.0	<1.0		430									372.40	32.15	340.25		
MW-2	05/14/2003	<250	<2.5	<2.5	<2.5	< 5.0		470									372.40	32.01	340.39		
MW-2	07/29/2003	<250	<2.5	<2.5	<2.5	< 5.0		670									372.40	32.51	339.89		
MW-2	11/19/2003	<50	< 0.50	< 0.50	< 0.50	<1.0		54									372.40	33.83	338.57		
MW-2	02/19/2004	65	< 0.50	3.4	1.4	6.5		8.2									372.40	32.68	339.72		
MW-2	05/03/2004	< 50	< 0.50	< 0.50	< 0.50	<1.0		5.2									372.40	32.07	340.33		
MW-2	08/24/2004	< 50	< 0.50	< 0.50	< 0.50	<1.0		2.7									372.40	32.44	339.96		
MW-2	11/15/2004	< 50	< 0.50	< 0.50	< 0.50	<1.0		1.3									372.40	32.95	339.45		
MW-2	02/02/2005	<50	< 0.50	< 0.50	< 0.50	<1.0		24									372.40	31.94	340.46		
MW-2	05/05/2005	72 c	< 0.50	< 0.50	< 0.50	<1.0		4.9									372.40	31.91	340.49		
MW-2	08/05/2005	< 50	< 0.50	< 0.50	< 0.50	<1.0		16									372.40	32.15	340.25		
MW-2	11/22/2005	840	0.80	< 0.500	< 0.500	0.87		556									372.40	32.31	340.09		

TABLE 1 Page 4 of 9

GROUNDWATER DATA SHELL-BRANDED SERVICE STATION 4212 FIRST STREET, PLEASANTON, CALIFORNIA

Well ID	Date	TPHg (µg/L)	Β (μg/L)	Τ (μg/L)	E (µg/L)	X (μg/L)	MTBE 8020 (μg/L)	MTBE 8260 (μg/L)	TBA (μg/L)	DIPE (μg/L)	ETBE (μg/L)	TAME (μg/L)	Nitrate as N (µg/L)	Sulfate (µg/L)	Alkalinity as CaCO ₃ (μg/L)	Ferrous Iron (µg/L)	TOC (ft MSL)	Depth to Water (ft TOC)	GW Elevation (ft MSL)	DO (mg/L)	ORP (mV)
MW-2	02/07/2006	3,550	< 0.500	< 0.500	< 0.500	< 0.500		2,500									372.40	31.70	340.70		
MW-2	05/16/2006	1,400	< 5.0	< 5.0	< 5.0	<10		1,700									372.40	31.38	341.02		
MW-2	08/21/2006	1,910	< 0.500	< 0.500	< 0.500	< 0.500		2,590									372.40	33.29	339.11		
MW-2	11/14/2006	2,300 c	<25	<25	<25	<25		2,500	<1,000	<25	<25	<25					372.40	32.67	339.73		
MW-2	02/01/2007	670	< 0.50	< 0.50	< 0.50	<1.0		2,000									372.40	32.13	340.27		
MW-2	06/01/2007	500 d,e	<10	<20	<20	<20		2,000									372.40	32.14	340.26		
MW-2	08/22/2007	100 d,e	<10	<20	<20	<20		2,400	120 f								372.40	32.93	339.47		
MW-2	11/26/2007	1,600 d,e	<10	<20	<20	<20		2,900	<200	<40	<40	<40					372.40	33.44	338.96		
MW-2	02/19/2008	1,300 d,e	<10	<20	<20	<20		3,300	<200								372.40	31.18	341.22		
MW-2	05/23/2008	1,900	<12	<25	<25	<25		1,700	<250								372.40	31.44	340.96		
MW-2	08/07/2008	1,700	<10	<20	<20	<20		1,300	<200								372.40	31.94	340.46		
MW-2	12/03/2008	3,000	<10	<20	<20	<20		2,900	<200								372.40	32.53	339.87		
MW-2	02/05/2009	1,200	<10	<20	<20	<20		1,000	<200								372.40	32.29	340.11		
MW-2	05/07/2009	2,400	<10	<20	<20	<20		2,400	<200								372.40	31.98	340.42		
MW-2	08/20/2009	2,800	<10	<20	<20	<20		2,400	<200								372.40	32.51	339.89		
MW-2	11/09/2009	4,100	<12	<25	<25	<25		3,800	<250	<50	<50	<50					372.40	32.43	339.97		
MW-2	02/11/2010	4,300	<12	<25	<25	<25		3,200	<250								372.40	32.07	340.33		
MW-2	05/13/2010	2,400	<10	<20	<20	<20		2,500	<200								372.40	31.63	340.77		
MW-2	08/05/2010	1,500	<5.0	<10	<10	<10		1,400	210								372.40	33.82	338.58		
MW-2	10/30/2010	1,700	< 5.0	<10	<10	<10		2,200	130	<20	<20	<20					372.40	32.82	339.58		
MW-2	02/09/2011	1,400	<12	<12	<12	<25		1,900	<250								372.40	32.11	340.29		
MW-2	05/31/2011	<1,000	<10	<10	<10	<20		1,200	<200								372.40	31.97	340.43		
MW-2	07/27/2011	1,600 c	<10	<10	<10	<20		2,000	<200								372.40	32.30	340.10		
MW-2	11/04/2011	2,100	<10	<10	<10	<20		2,500	<200	<20	<20	<20	7.500	70.000	200,000	200	372.40	33.20	339.20	1 51	
MW-2	05/23/2012	2,700	<10	<10	<10	<20		3,000	<200				7,500	70,000	300,000	300	372.40	31.92	340.48	1.51	42
MW-2	09/07/2012	2,500 c	<25	<25	<25	<50		2,100	<500				5,800 a	80,000	300,000		372.40	33.32	339.08	1.75	68
MW-2 MW-2	11/13/2012 05/14/2013	2,100 840 i	<20 <5.0	<20 <5.0	<20 <5.0	<40 <10		2,500 730	<400 <100	<20	<20	<20	8,400 5,800	77,000 55,000	310,000 420,000		372.40 372.40	34.91 33.61	337.49 338.79	1.27 0.53	22 78
MW-2	07/31/2013	1,500	<10	<10	<10	<20		1,100	<200				9,500	79,000	300,000		372.40	35.00	337.40	1.07	1
MW-2	11/12/2013	1,800	<10	<10	<10	<20		1,600	<200				7,300	77,000	340,000		372.40	37.25	335.15	1.07	28
MW-2	02/04/2014	1,600	<10	<10	<10	<20		2,000	<200				9,200	72,000	170,000		372.40	37.25	335.15	1.18	129
MW-2	05/12/2014	2,600 i	<25	<25	<25	<50		2,500	<500				230	71,000	340,000		372.40	37.23	335.40	1.12	36
MW-2	06/10/2014	2,000 I											230	71,000	J40,000 		372.40 372.26			1.12	
MW-2	11/25/2014	1,300 i	<10	<10	<10	<20		1,500	<200	<10	<10	<10	6,400	74,000	300,000		372.26	38.77	333.49		
17177-2	11/25/2011	1,5001	110	110	110	120		1,500	1200	110	110	110	0,100	7 1,000	300,000		37 2.20	50.77	000.17		
MW-3	02/03/2000																375.05	32.06	342.99		
MW-3	02/03/2000																375.05	32.57	342.48		
MW-3	02/10/2000	180	5.12	< 0.500	< 0.500	0.714	26.8	21.5a									375.05	32.77	342.28		
MW-3	05/17/2000	1,360	414	<5.00	<5.00	17.6	<25.0										375.05	31.00	344.05		
MW-3	08/03/2000	<50.0	0.536	< 0.500	< 0.500	< 0.500	22										375.05	31.03	344.02		
MW-3	10/31/2000	<50.0	< 0.500	< 0.500	< 0.500	< 0.500	31.1										375.05	31.28	343.77		
1,1,1,0	//	00.0	0.000	0.000	0.000	0.000	0 - 1 -										0.0.00	010	0 10		

TABLE 1 Page 5 of 9

GROUNDWATER DATA SHELL-BRANDED SERVICE STATION 4212 FIRST STREET, PLEASANTON, CALIFORNIA

Well ID	Date	TPHg (µg/L)	Β (μg/L)	Τ (μg/L)	Ε (μg/L)	Χ (μg/L)	MTBE 8020 (μg/L)	MTBE 8260 (μg/L)	TBA (μg/L)	DIPE (µg/L)	ETBE (μg/L)	TAME (μg/L)	Nitrate as N (μg/L)	Sulfate (µg/L)	Alkalinity as CaCO ₃ (μg/L)	Ferrous Iron (µg/L)	TOC (ft MSL)	Depth to Water (ft TOC)	GW Elevation (ft MSL)	DO (mg/L)	ORP (mV)
MW-3	03/01/2001	384	172	0.815	< 0.500	8.0	5.16										375.05	31.21	343.84		
MW-3	05/30/2001	< 50	< 0.50	< 0.50	< 0.50	< 0.50		110									375.05	31.02	344.03		
MW-3	08/02/2001	< 50	< 0.50	< 0.50	< 0.50	< 0.50		93									375.05	30.94	344.11		
MW-3	12/06/2001	110	< 0.50	< 0.50	< 0.50	2.3		180									375.05	31.28	343.77		
MW-3	02/05/2002	< 50	0.89	0.60	< 0.50	2.1		130									375.05	31.12	343.93		
MW-3	06/17/2002	< 50	< 0.50	< 0.50	< 0.50	< 0.50		72									375.05	31.21	343.84		
MW-3	07/25/2002	< 50	< 0.50	< 0.50	< 0.50	< 0.50		81									375.05	30.96	344.09		
MW-3	11/14/2002	< 50	< 0.50	< 0.50	< 0.50	< 0.50		60									375.05	31.44	343.61		
MW-3	02/12/2003	< 50	< 0.50	< 0.50	< 0.50	< 0.50		43									375.05	31.28	343.77		
MW-3	05/14/2003	< 50	< 0.50	< 0.50	< 0.50	<1.0		24									375.05	31.20	343.85		
MW-3	07/29/2003	< 50	< 0.50	< 0.50	< 0.50	<1.0		21									375.05	31.29	343.76		
MW-3	11/19/2003	< 50	< 0.50	< 0.50	< 0.50	<1.0		8.2									375.05	31.86	343.19		
MW-3	02/19/2004	81	0.67	4.4	1.8	8.6		13									375.05	31.66	343.39		
MW-3	05/03/2004	< 50	< 0.50	< 0.50	< 0.50	<1.0		13									375.05	31.72	343.33		
MW-3	08/24/2004	< 50	< 0.50	< 0.50	< 0.50	<1.0		10									375.05	32.09	342.96		
MW-3	11/15/2004	< 50	< 0.50	< 0.50	< 0.50	<1.0		6.6									375.05	31.50	343.55		
MW-3	02/02/2005	< 50	< 0.50	< 0.50	< 0.50	<1.0		3.1									375.05	31.28	343.77		
MW-3	05/05/2005	< 50	< 0.50	< 0.50	< 0.50	<1.0		2.3									375.05	31.42	343.63		
MW-3	08/05/2005	< 50	< 0.50	< 0.50	< 0.50	<1.0		2.4									375.05	31.35	343.70		
MW-3	11/22/2005	< 50	< 0.500	< 0.500	< 0.500	< 0.500		3.84									375.05	31.98	343.07		
MW-3	02/07/2006	< 50.0	< 0.500	< 0.500	< 0.500	< 0.500		< 0.500									375.05	31.24	343.81		
MW-3	05/16/2006	< 50	< 0.50	< 0.50	< 0.50	<1.0		4.5									375.05	31.37	343.68		
MW-3	08/21/2006	< 50.0	< 0.500	< 0.500	< 0.500	< 0.500		4.04									375.05	31.95	343.10		
MW-3	11/14/2006	< 50	< 0.50	< 0.50	< 0.50	< 0.50		3.8	<20	< 0.50	< 0.50	< 0.50					375.05	32.24	342.81		
MW-3	02/01/2007	< 50	< 0.50	< 0.50	< 0.50	<1.0		2.8									375.05	32.17	342.88		
MW-3	06/01/2007	<50 d	< 0.50	<1.0	<1.0	<1.0		3.1									375.05	31.86	343.19		
MW-3	08/22/2007	<50 d	< 0.50	<1.0	<1.0	<1.0		4.6	<10								375.05	32.18	342.87		
MW-3	11/26/2007	<50 d	< 0.50	<1.0	<1.0	<1.0		3.5	<10	< 2.0	<2.0	<2.0					375.05	32.69	342.36		
MW-3	02/19/2008	<50 d	< 0.50	1.2	<1.0	<1.0		2.6	<10								375.05	30.94	344.11		
MW-3	05/23/2008	< 50	< 0.50	<1.0	<1.0	<1.0		3.6	<10								375.05	31.45	343.60		
MW-3	08/07/2008	< 50	< 0.50	<1.0	<1.0	<1.0		3.0	<10								375.05	31.40	343.65		
MW-3	12/03/2008	< 50	< 0.50	<1.0	<1.0	<1.0		2.1	<10								375.05	32.12	342.93		
MW-3	02/05/2009	< 50	< 0.50	<1.0	<1.0	<1.0		1.1	<10								375.05	32.74	342.31		
MW-3	05/07/2009	< 50	< 0.50	<1.0	<1.0	<1.0		<1.0	<10								375.05	31.69	343.36		
MW-3	08/20/2009	< 50	< 0.50	<1.0	<1.0	<1.0		2.0	<10								375.05	32.42	342.63		
MW-3	11/09/2009	< 50	< 0.50	<1.0	<1.0	<1.0		1.7	<10	< 2.0	<2.0	< 2.0					375.05	32.54	342.51		
MW-3	02/11/2010	< 50	< 0.50	<1.0	<1.0	<1.0		2.1	<10								375.05	31.81	343.24		
MW-3	05/13/2010	<50	< 0.50	<1.0	<1.0	<1.0		1.7	<10								375.05	31.25	343.80		
MW-3	08/05/2010	<50	< 0.50	<1.0	<1.0	<1.0		1.2	<10								375.05	32.00	343.05		
MW-3	10/30/2010	<50	< 0.50	<1.0	<1.0	<1.0		1.4	<10	<2.0	<2.0	<2.0					375.05	32.18	342.87		
MW-3	02/09/2011	< 50	< 0.50	< 0.50	< 0.50	<1.0		1.7	<10								375.05	31.80	343.25		

TABLE 1 Page 6 of 9

GROUNDWATER DATA SHELL-BRANDED SERVICE STATION 4212 FIRST STREET, PLEASANTON, CALIFORNIA

Well ID	Date	TPHg (μg/L)	Β (μg/L)	Τ (μg/L)	Ε (μg/L)	Χ (μg/L)	MTBE 8020 (μg/L)	MTBE 8260 (μg/L)	TBA (μg/L)	DIPE (μg/L)	ETBE (μg/L)	TAME (μg/L)	Nitrate as N (µg/L)	Sulfate (µg/L)	Alkalinity as CaCO ₃ (μg/L)	Ferrous Iron (µg/L)	TOC (ft MSL)	Depth to Water (ft TOC)	GW Elevation (ft MSL)	DO (mg/L)	ORP (mV)
MW-3	05/31/2011	< 50	< 0.50	< 0.50	< 0.50	<1.0		1.9	<10								375.05	31.60	343.45		
MW-3	07/27/2011	< 50	< 0.50	< 0.50	< 0.50	<1.0		1.8	<10								375.05	32.00	343.05		
MW-3	11/04/2011	< 50	< 0.50	< 0.50	< 0.50	<1.0		2.1	<10	<1.0	<1.0	<1.0					375.05	32.55	342.50		
MW-3	05/23/2012	< 50	0.67	< 0.50	< 0.50	1.9		0.91	<10				1,400	36,000	250,000	5,000	375.05	31.52	343.53	1.81	-5
MW-3	09/07/2012	< 50	< 0.50	< 0.50	< 0.50	<1.0		1.6	<10				<110 a	28,000	270,000		375.05	32.66	342.39	1.06	-10
MW-3	11/13/2012	< 50	< 0.50	< 0.50	< 0.50	<1.0		1.8	<10	< 0.50	< 0.50	< 0.50	<110	7,300	330,000		375.05	33.35	341.70	1.44	-26
MW-3	05/14/2013	< 50	< 0.50	< 0.50	< 0.50	<1.0		1.2	<10				<110	17,000	280,000		375.05	32.92	342.13	1.10	78
MW-3	07/31/2013	< 50	< 0.50	< 0.50	< 0.50	<1.0		2.5	<10				<110	2,400	370,000		375.05	33.56	341.49	1.56	-82
MW-3	11/12/2013	< 50	< 0.50	< 0.50	< 0.50	<1.0		1.2	<10								375.05	34.20	340.85	1.26	-8
MW-3	02/04/2014	Insufficient	t water														375.05	34.12	340.93		
MW-3	05/12/2014	< 50	< 0.50	< 0.50	< 0.50	<1.0		0.94	<10				<110	150,000	250,000		375.05	33.30	341.75	1.19	-31
MW-3	11/25/2014	<50	<0.50	<0.50	<0.50	<1.0		<0.50	<10	<0.50	<0.50	<0.50					375.05	34.18	340.87		
3.6747.4	00 /01 /000/																252 50	21 50	241.20		
MW-4	09/21/2006	11.000		 -0E0	 -0E0	 -250		12.000									372.78	31.58	341.20		
MW-4	09/28/2006	11,000	<250	<250	<250	<250		13,000	<10,000	 -250	 -250	 -250					372.78	31.57	341.21		
MW-4	11/14/2006	30,000	<250	<250	<250	<250 a		14,000	<10,000	<250	<250	<250					372.78	32.11	340.67		
MW-4	02/01/2007	6,300	50 52	<5.0	19	120		14,000									372.78	33.23	339.55		
MW-4 MW-4	06/01/2007 08/22/2007	8,200 d 	52 	<25 	26	150		11,000									372.78 372.78	31.57 33.40	341.21 339.38		
MW-4	11/26/2007	12,000 d	71	<100	<100	<100		20,000	<1,000	<200	<200	<200					372.78	34.74	338.04		
MW-4	02/19/2008	12,000 d 13,000 d	<100	<200	<200	<200		18,000	2,900	~200	~200 	~200 					372.78	29.70	343.08		
MW-4	05/23/2008	21,000 a	<100	<200	<200	<200		16,000	<2,000								372.78	31.67	341.11		
MW-4	08/07/2008	27,000	<100	<200	<200	<200		21,000	<2,000								372.78	31.90	340.88		
MW-4	12/03/2008	20,000	19	<25	<25	29		21,000	2,500								372.78	34.32	338.46		
MW-4	02/05/2009	15,000	200	<200	<200	<200		13,000	<2,000								372.78	34.58	338.20		
MW-4	05/07/2009	18,000	<100	<200	<200	<200		17,000	<2,000								372.78	31.34	341.44		
MW-4	08/20/2009	15,000	<50	<100	<100	<100		13,000	1,900								372.78	33.56	339.22		
MW-4	11/09/2009	13,000	<50	<100	<100	<100		11,000	<1000	<200	<200	<200					372.78	33.57	339.21		
MW-4	02/11/2010	11,000	95	<100	<100	110		7,500	3,200								372.78	31.21	341.57		
MW-4	05/13/2010	8,800	48	< 50	57	96		7,800	2,900								372.78	30.19	342.59		
MW-4	08/05/2010	4,000	<12	<25	<25	<25		3,600	600								372.78	32.22	340.56		
MW-4	10/30/2010	6,800	<12	<25	<25	<25		8,200	1,400	< 50	< 50	< 50					372.78	33.95	338.83		
MW-4	02/09/2011	<5,000	< 50	<50	< 50	<100		5,800	2,700								372.78	31.56	341.22		
MW-4	05/31/2011	<5,000	< 50	< 50	< 50	<100		5,600	1,200								372.78	30.78	342.00		
MW-4	07/27/2011	4,500 c	<10	<10	18	21		5,200	2,100								372.78	31.64	341.14		
MW-4	11/04/2011	3,400 c	<25	<25	<25	< 50		4,400	1,800	< 50	< 50	< 50					372.78	33.53	339.25		
MW-4	05/23/2012	3,500	<10	<10	13	<20		4,900	1,400				5,300	69,000	300,000	1,000	372.78	31.12	341.66	1.44	-6
MW-4	08/31/2012																372.79	33.77	339.02		
MW-4	09/04/2012																372.79	34.18	338.61		
MW-4	09/07/2012	5,900 c	< 50	<50	< 50	<100		5,000	<1,000				4,300 a	71,000	320,000		372.79	34.55	338.24	1.21	66
MW-4	11/13/2012	1,200	<10	<10	<10	<20		1,400	970	<10	<10	<10	2,100	53,000	300,000		372.79	36.25	336.54	1.38	85

TABLE 1 Page 7 of 9

GROUNDWATER DATA SHELL-BRANDED SERVICE STATION 4212 FIRST STREET, PLEASANTON, CALIFORNIA

Math								MTBE	MTBE					Nitrate		Alkalinity	Ferrous		Depth to	GW		
MM-4 09/01/2013	Well ID	Date	ТРНд	\boldsymbol{B}	T	E	\boldsymbol{X}	8020	8260	TBA	DIPE	ETBE	TAME	as N				TOC	Water	Elevation		
MW-4 07/14/2013 910 90.5 90.5 90.5 1.4 7.5 1.4 46 290 1.4 7.5 1.5			(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(ft MSL)	(ft TOC)	(ft MSL)	(mg/L)	(mV)
MM-4 17/12/2013 12.00	MW-4	04/01/2013																372.79	28.95	343.83		
MW-4 17/12/2013 1,200 1,3 < <p>MS-1 17/12/2013 1,200 1,3 MS-1 17/12/2013 1,200 1,3 MS-1 17/12/2013 1,200 1,3 MS-1 17/12/2014 1,3 MS-1 17/1</p>	MW-4	05/14/2013	910	< 0.50	< 0.50	1.4	7.5		46	290				1,700	130,000	80,000		372.79	35.48	337.30	1.34	70
MW-4 02/04/2014 1,600 4,050 4,000 4,000	MW-4	07/31/2013	1,200	< 0.50	< 0.50	2.0	2.8		200	630				1,900	81,000	100,000		372.79	36.00	336.78	1.43	31
MW-4 11/25/2014 420 <1.50 <1.50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.	MW-4	11/12/2013	1,200	1.3	< 0.50	2.3	2.2		96					470	55,000	170,000		372.79	38.15	334.64	1.70	38
MW-4 1/25/2014 270 0.50 0.50 0.50 0.50 0.50 0.10 0 0.50 0.50 0.50 0.50 0.50 0.50 0.60	MW-4	02/04/2014	1,600	< 0.50	< 0.50	2.1	<1.0		77	990				1,300	48,000	340,000		372.79	38.84	333.95	0.74	136
TB-1 02/12/2003 Well inaccessible	MW-4	, ,	420	< 0.50	< 0.50	< 0.50	<1.0		49	170				790	62,000	140,000		372.79	37.91	334.88	1.62	44
TB-1 05/14/2003	MW-4	11/25/2014	270	<0.50	<0.50	<0.50	<1.0		3.1	<10	<0.50	<0.50	<0.50	4,600	76,000	70,000		372.79	41.70	331.09		
TB-1 05/14/2003	TB-1	02/12/2003	Well inacce	essible																		
TB-2 02/12/2003 Well inaccessible	TB-1	02/28/2003																	12.54			
TB-2 02/28/2003	TB-1	05/14/2003	<50	< 0.50	< 0.50	< 0.50	<1.0		<5.0										12.31			
TB-3 02/12/2003 Well dry	TB-2	02/12/2003	Well inacce	essible																		
TB-3 02/12/2003 Well dry	TB-2	02/28/2003																	12.56			
TB-3 02/28/2003 Well dry	TB-2	05/14/2003	Insufficient	t water															12.54			
TB-3 05/14/2003 Well dry	TB-3	, ,	Well dry																			
TB-4 02/12/2003 Well dry	TB-3	02/28/2003	Well dry																			
TB-4 02/28/2003 Well dry	TB-3	05/14/2003	Well dry																			
TB-4 05/14/2003 Well dry	TB-4	02/12/2003	Well dry																			
AS-1 08/31/2012		, ,	-																			
AS-1 09/04/2012	TB-4	05/14/2003	Well dry																			
AS-1 09/07/2012 8,500 <50 <50 <50 <50 <100 10,000		, ,																				
EW-1 08/31/2012 Well dry	AS-1																					
EW-1 09/07/2012 Well dry	AS-1	09/07/2012	8,500	<50	<50	<50	<100		10,000									373.39	34.55	338.84	1.17	187
EW-1 09/14/2012 <50 <0.50 <0.50 <0.50 <1.0 3.9 <10	EW-1	08/31/2012	Well dry															372.14				
EW-1 09/14/2012 1,600 h 3.8 h 0.84 h 20 h 76 h 36 h 1,200 h 372.14 EW-2 08/31/2012	EW-1	09/07/2012	Well dry															372.14				
EW-1 09/14/2012 1,600 h 3.8 h 0.84 h 20 h 76 h 36 h 1,200 h 372.14 EW-2 08/31/2012	EW-1	09/14/2012	<50	< 0.50	< 0.50	< 0.50	<1.0		3.9	<10								372.14	19.03	353.11		
EW-2 09/04/2012	EW-1		1,600 h	3.8 h	0.84 h	20 h	76 h		36 h	1,200 h								372.14				
EW-2 09/07/2012 3,600 <25 <25 <25 <50 4,100	EW-2	08/31/2012																372.74	33.61	339.13		
EW-2 09/14/2012 3,800 <25 <25 <25 <50 3,400 670 372.74 OBS-1 08/31/2012	EW-2	09/04/2012																372.74	34.16	338.58		
EW-2 09/14/2012 3,800 <25 <25 <25 <50 3,400 670 372.74 OBS-1 08/31/2012	EW-2	09/07/2012	3,600	<25	<25	<25	< 50		4,100									372.74	35.02	337.72	1.83	166
, ,	EW-2		3,800	<25	<25	<25	<50			670								372.74				
, ,	OBS-1	08/31/2012																372.28	33.50	338.78		
	OBS-1	09/04/2012																372.28	35.18	337.10		

TABLE 1 Page 8 of 9

GROUNDWATER DATA SHELL-BRANDED SERVICE STATION 4212 FIRST STREET, PLEASANTON, CALIFORNIA

							MTBE	MTBE					Nitrate		Alkalinity	Ferrous		Depth to	GW		
Well ID	Date	ТРНд	\boldsymbol{B}	T	E	\boldsymbol{X}	8020	8260	TBA	DIPE	ETBE	TAME	as N	Sulfate	as CaCO 3	Iron	TOC	Water	Elevation	DO	ORP
		(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(ft MSL)	(ft TOC)	(ft MSL)	(mg/L)	(mV)
P-1	08/31/2012	Well dry															372.51				
P-1	09/07/2012	Well dry															372.51				
P-2	08/31/2012																372.39	33.42	338.97		
P-2	09/04/2012																372.39	34.00	338.39		
P-2	09/07/2012	7,700	580	<10	30	<20		1,800									372.39	34.61	337.78	1.62	193
SVE-5	08/31/2012																372.93	33.83	339.10		
SVE-5	09/04/2012																372.93	35.30	337.63		
SVE-5	09/07/2012	4,200	<25	<25	<25	< 50		4,900									372.93	36.20	336.73	1.49	180

Notes:

TPHg = Total petroleum hydrocarbons as gasoline analyzed by EPA Method 8260B; prior to 5/30/2001, analyzed by EPA Method 8015 unless otherwise noted.

BTEX = Benzene, toluene, ethylbenzene, and total xylenes analyzed by EPA Method 8260B; prior to 5/30/2001, analyzed by EPA Method 8020.

MTBE = Methyl tertiary-butyl ether analyzed as noted

TBA = Tertiary-butyl alcohol analyzed by EPA Method 8260B

DIPE = Di-isopropyl ether analyzed by EPA Method 8260B

ETBE = Ethyl tertiary-butyl ether analyzed by EPA Method 8260B

TAME = Tertiary-amyl methyl ether analyzed by EPA Method 8260B

Nitrate as N and sulfate analyzed by EPA Method 300.0

Alkalinity as CaCO3 analyzed by SM 2320 B

Ferrous iron analyzed by SM 3500 Fe B

TOC = Top of casing elevation, in feet relative to mean sea level

GW = Groundwater

DO = Dissolved oxygen

ORP = Oxidation reduction potential

 μ g/L = Micrograms per liter

ft = Feet

MSL = Mean sea level

mg/L = Milligrams per liter

mV = Millivolts

<x = Not detected at reporting limit x

--- = Not analyzed or available

- a = Sample was analyzed outside the EPA recommended holding time.
- b = Concentration is an estimate value above the linear quantitation range.
- c = Hydrocarbon result partly due to individual peak(s) in quantitation range.
- d = Analyzed by EPA Method 8015B (M).
- e = The sample chromatographic pattern for TPH does not match the chromatographic pattern of the specified standard. Quantitation of the unknown hydrocarbon(s) in the sample was based upon the specified standard.
- f = Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.

TABLE 1 Page 9 of 9

GROUNDWATER DATA SHELL-BRANDED SERVICE STATION 4212 FIRST STREET, PLEASANTON, CALIFORNIA

							MTBE	MTBE					Nitrate		Alkalinity	Ferrous		Depth to	GW		
Well ID	Date	ТРНд	\boldsymbol{B}	T	E	\boldsymbol{X}	8020	8260	TBA	DIPE	ETBE	TAME	as N	Sulfate	as CaCO 3	Iron	TOC	Water	Elevation	DO	ORP
		(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(ft MSL)	(ft TOC)	(ft MSL)	(mg/L)	(mV)

g = Result exceeded calibration range

h = Post pilot test samples

i = Concentration reported is due to the presence of discrete peak of MTBE.

Well MW-1 surveyed on May 4, 1999 by Virgil Chavez Land Surveying Site wells surveyed on March 19, 2000 by Virgil Chavez Land Surveying Site wells surveyed on January 15, 2002 by Virgil Chavez Land Surveying Site wells surveyed on September 5, 2012 by Virgil Chavez Land Surveying

September 21, 2006 survey data for wells MW-1B and MW-4 provided by Delta Environmental Consultants, Inc.

APPENDIX A

BLAINE TECH SERVICES, INC. - FIELD NOTES

WELL GAUGING DATA

Proje	ct #	14	11125	- D	2		_ Date		25	/14		Client	5	HELL		
•									•			-				1
Site	421	le .	FIRS	37	ST	PLE	ASANT))	G	4			10.1			

Well ID	Time	Well Size (in.)	Sheen / Odor	Depth to Immiscible Liquid (ft.)	Immiscibles Removed	Depth to water	Depth to well bottom (ft.)	Survey Point: TOB or	Notes
MW-1	1045	2_				42.84	57.12		
MW-1B	IOLY	Constitution of the Consti				102.96	107.98		
MW-2	1039					38.77	45.76	The second secon	
MW-3	1028	and a second				34.18	34.57		
MW-4	1033	7				41.70	46.73	V	
			*						

*		ACERICA -		MITORING D	ALA SHUUL	
BTS #: [4][25-DC1			Site: 9899	95840	
Sampler:	DC			Date: $u/\iota \leq /\iota$	1	
Well I.D.:	MW-I			Well Diameter	: (2) 3 4	6 8
Total Well	Depth (TD): 57	.12	Depth to Wate	r (DTW): 42.	84
Depth to Fr	ee Product	•		Thickness of F	ree Product (fe	et):
Referenced	to:	(PVC)	Grade	D.O. Meter (if	req'd):	YSD HACH
DTW with	80% Rech	arge [(H	Ieight of Water	Column x 0.20) + DTW]: 48	5.69
Purge Method:	Bailer Disposable B Positive Air I Electric Subm	Displaceme	ent Extrac Other	Waterra Peristaltic tion Pump	Sampling Method	Disposable Bailer Extraction Port Dedicated Tubing
2.2 ((I Case Volume	Gals.) XSpeci	3 fied Volum	= 6.6 nes Calculated Vo	Gals. Well Diamete 2" 3"	er <u>Multiplier</u> Well 0.04 4" 0.16 6" 0.37 Othe	Diameter Multiplier 0.65 1.47 r radius²* 0.163
Time	Temp (°F)	pН	Cond. (mS or(µS))	Turbidity (NTUs)	Gals. Removed	Observations
1134	68.5	6.18	1969	> 1000	2.5	CLOUDY
1137	WELL	DEWA	TERRED @	4.0 GAL		
1345	66.9	6.39	2081	724	GRAB	CLOUDY
						Fe2+: 0.0 mg/L
Did well de	water?	(es)	No	Gallons actuall	y evacuated:	4.0
Sampling D	ate: '(15/	14	Sampling Time	e: 1345	Depth to Wate	r: 43.76
Sample I.D.	: MW-1			Laboratory:	Test America	Other
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Offer SUE	SC
EB I.D. (if a	pplicable)		@ Time	Duplicate I.D.	(if applicable):	
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:	
D.O. (if req'	d): Pr	e-purge:	•	mg/L P	ost-purger	. 0,96 mg/L
O.R.P. (if re	q'd): Pr	e-purge:	_	mV g	ost-purges .	176 mV

BTS #: 14	1125-001			Site:	<u>98995</u>	5840	
Sampler:	PC			Date:	1/25/14	/	·
Well I.D.:	MW-1B			Well D)iameter:	: 2 3 4	6 8
Total Well 1	Depth (TD): 107.	. 98	Depth	to Water	:(DTW): 102.	96
Depth to Fro	ee Product	*		Thickn	ess of F	ree Product (fee	et):
Referenced	to:	(PVC)	Grade	D.O. M	leter (if	req'd): (YSI HACH
DTW with 8	80% Recha	arge [(H	eight of Water	Colum	n x 0.20)) + DTW]: 10	3.96
Purge Method:	Bailer Disposable Bailer Positive Air I Electric Subm	Displaceme		Waterra Peristaltic ction Pump		Sampling Method: Other:	Bailer Disposable Bailer Extraction Port Dedicated Tubing
3.2 (0 1 Case Volume	Gals.) XSpeci	ろ fied Volum	= 9.6 es Calculated Vo	Gals.	Well Diamete 1" 2" 3"	or Multiplier Well I 0.04 4" 0.16 6" 0.37 Other	Diameter Multiplier 0.65 1.47 r radius² * 0.163
Time	Temp (°F)	рН	Cond. (mS or $\widehat{\mu}$ S)	1	bidity ΓUs)	Gals. Removed	Observations
1101	67.3	7.06	1289	7100	0	3.5	CLOUDY
¥	WELL	DEU	VATBURED C	4.0 6	AL		
1305	66.4	7.19	1237	710	00	GRAB	ciaudy
							· ·
							Fe2+: 0.0 mg/L
Did well de	water?	(Pe)	No	Gallon	s actuall	y evacuated: 4	1.0
Sampling D	vate: "にち,	İH	Sampling Tim	e: 136	5	Depth to Water	r: 105.07(> 2HRS)
Sample I.D.	: MW-	13		Labora	itory:	Test America	Other
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Oxygen	ates (5)	Other: SEE	COC
EB I.D. (if a	applicable)		@ Time	Duplic	ate I.D. ((if applicable):	
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Oxygen	٠,	Other:	
D.O. (if req	'd): P1	e-purge:		mg/ _L	P	ost-purge:	2.67 mg/L
O.R.P. (if re	eq'd): Pi	e-purge:		mV	P	ost-purge)	97 mV

				INITOKTIAO	r DAIA SHEEL	
BTS#:	141125-00	7		Site: 98	8995840	
Sampler:	DC			Date: "/15	5/14	
Well I.D.:	MW-2			Well Diame	eter: 2 3 (6 8
Total Well	Depth (TD): 45.	.76	Depth to W	ater (DTW): 38.7	77
Depth to Fr	ee Product			Thickness of	of Free Product (fe	et):
Referenced	to:	(PVC)	Grade	D.O. Meter	(if req'd): (YSD HACH
DTW with	80% Recha	arge [(H	leight of Water			1.16
Purge Method:	Bailer Disposable Ba Positive Air D Electric Subm	Displaceme		Waterra Peristaltic ction Pump	Sampling Method: Other:	Disposable Bailer Extraction Port Dedicated Tubing
H.5 (Case Volume	Gals.) X	3 fied Volum	$= \frac{13.5}{\text{Calculated Vo}}$		Multiplier Well 0.04 4" 0.16 6" 0.37 Othe	Diameter Multiplier 0.65 1.47 r radius ² * 0.163
Time	Temp (°F)	pН	Cond. (mS or (dS))	Turbidity (NTUs)	Gals. Removed	Observations
1121	70.1	6.09	811	34	4,5	CLEAR
*	WELL	DE	WATBREO	@ 4.5	5 GAL	
1330	70.1	6.48	838	56	GRAS	CLEAR
						Fezt: 1.2 mg/L
Did well de	water?	(Yes)	No	Gallons act	ually evacuated:	4.5
Sampling D	vate: "[15]1	4	Sampling Time	e: 1330	Depth to Wate	r: 42.20(>2 HZS)
Sample I.D.	5-WM :			Laboratory:	: Test America	Other
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5) Other: 528 0	DOC .
EB I.D. (if a	applicable)):	@ Time	Duplicate I.	.D. (if applicable):	
Analyzed for	or: TPH-G	BTEX	МТВЕ ТРН-О	Oxygenates (5) Other:	
D.O. (if req	'd): P1	re-purge:	•	mg/L (Post-purge	1,46 mg/L
O.R.P. (if re	eq'd): Pi	re-purge:		mV	Post-purge:	3% mV

Site:

BTS #: 141125-DC1

Sampler:	DC			Date:	11/25/14	Î			
Well I.D.:	<u>10-3</u>			Well I	Diameter	: 2 3	<u>(4)</u>	6 8	
Total Well I	Depth (TD): 34.5	57	Depth	to Water	(DTW):	34.18	? \$	
Depth to Fre	ee Product	•		Thickr	ness of F	ree Produc	et (fee	et):	
Referenced	to:	ÆVO_	Grade	D.O. N	Aeter (if	req'd):	(YSI HACH	
DTW with 8	30% Recha	arge [(H	leight of Water	Colum	n x 0.20)	+ DTW]:	34.	25	***************************************
Purge Method:	Bailer Disposable Bar Positive Air I Electric Subm	Displaceme	nt Extrac	Waterra Peristaltic ction Pump	:	Sampling M		Bailer Disposable Bail Extraction Por Dedicated Tubin	ŧ
		#			Well Diamete		Other:	Diameter Multiplier	
0.2 (0 1 Case Volume	Gals.) X Specif	3 fied Volum	= 0.6 es Calculated Vo	_ Gals. lume	1" 2" 3"	0.04 0.16 0.37	4" 6" Other	0.65 1.47	3
			Cond.	Tur	bidity				
Time	Temp (°F)	pН	(mS or(µS)	(N	TUs)	Gals. Rem	oved	Observation	S
1145	68.1	6.74	896	2	37	< 0.2		CLOUPY	
* WELL DEWATERED C					. 2 GA	<u></u>			
1400	68.0	6.77	918	15	56	GRAB		CLOUDY	
			,					Fe2+: 1.2 mg	1_
Did well dev	water?	(Yes)	No	Gallon	s actuall	y evacuate	:d: (0.2_	
Sampling D	ate: 11/25/1	4	Sampling Time	e: 140	0	Depth to	Wate	r: 34.40(72	HRS)
Sample I.D.	: MW-3	>		Labora	itory:	(est Americ	ā) (Other	·
Analyzed fo	r: TPH-G	BTEX	мтве трн-р	Oxygen	ates (5)	Other Se	E (OC III	
EB I.D. (if a	pplicable)) <u>.</u> .	@ Time	Duplic	ate I.D.	(if applical	ble):		
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygen	ates (5)	Other:	·····		
D.O. (if req'	d): Pr	re-purge:		mg/L	P	ost-purge:	;	i.81	$^{ m mg}/_{ m L}$
O.R.P. (if re	q'd): Pi	re-purge:		mV	(P	ost-purge:	-	10	mV

BTS #: 4	125-DC1			Site: 9899	5840				
	DC			Date: 4/25/14					
Well I.D.:	MW-4			Well Diameter	: 2 3 4	6 8			
Total Well	Depth (TD): 46.	73	Depth to Wate	r (DTW): 41.7	10			
Depth to Fr	ee Product	*		Thickness of F	ree Product (fee	et):			
Referenced	to:	/řůc	Grade	D.O. Meter (if	req'd): (YSI HACH			
DTW with	80% Recha	arge [(H	eight of Water	Column x 0.20) + DTW]: 42.	70			
Purge Method:	Bailer Disposable Ba Positive Air I Electric Subm	Displaceme	nt Extrac Other	Waterra Peristaltic ction Pump	Sampling Method: Other:	Disposable Bailer Extraction Port Dedicated Tubing			
		3	01	Well Diamet	0.04 4"	Diameter Multiplier 0.65			
3.2 (0 1 Case Volume	Jais. J.A.	ン fied Volum	$=\frac{9.6}{\text{Calculated Vo}}$	_Gals. -	0.16 6" 0.37 Other	1.47 r radius ² * 0.163			
Time	Temp (°F)	pН	Cond. (mS or (µS)	Turbidity (NTUs)	Gals. Removed	Observations			
1112	66.9	6.17	580	81	3.5	CLEAR, ODOR			
* WELL DEWATERONS				@ 3.5 0	AL				
1320	68.0	6.86	605	> 1000	GRAB	CLOUDY			
						Fe2+: 2.0 mg/L			
Did well de	water?	(Yes)	No	Gallons actually evacuated: 3.5					
Sampling D	ate: " ₂₅	s system	Sampling Time	ne: 1320 Depth to Water: 42.63					
Sample I.D.	: MW-4			Laboratory: Test America Other					
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other. SEE	COC			
EB I.D. (if a	applicable)		@ Time	Duplicate I.D.	(if applicable):				
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:				
D.O. (if req	'd): P1	re-purge:		mg/L	Post-purge:	1,76 ^{mg} /L			
O.R.P. (if re	eq'd): Pi	re-purge:		mV I	Post-purge.	9 mV			

ENVIRONMENTAL WELL, REMEDIATION COMPOUND, AND SITE INSPECTION FORM

Oh856686 #100001

HI/S2|11

DATE:

ADDRESS 4212 FIRST ST

CITY & STATE PLEASANTED

G

						Observ	ations U	Observations Upon Arrival	/al						Street Street Control	Dhothe	Donair Date
O llew	Manwa	Manway Cover, Type, Condition & Size	Type, Cc	mdition	& Size	Well Labelt Painted	Well Labeled / Painted	Well Cap (Gripper)	Cap per)	Well Lx	Well Lock Condition	Ittion	Well Pad /	/ pa/ /	e Recommended	Well	
						Property*	erly*	Condition	ition				Condition	tion	and zerromed	Condition	minais
-WM	Standpipe	(Flush)	9	d.	Size (Inch)	2	Z	9	æ	9	ec e	Z	9	d		(B) ×	
MW-18	Standpipe	(fang)	Q	۵.	Size (inch)	8)	z	@	0¢	9	œ	¥	Q	a.		<u>€</u>	
7-MW	Standpipe	(FS)	@	o.	Siza (inch)	${\mathscr D}$	z	0	œ	©	œ	뉥	(a)	Ω.		>	
MW-3	Standpipe	(F)	@	4	Size (Inch)	ેન્દ્ર	z	©	ıκ	9	0¢	z z	(P)	ο.		⊗ ≻	
2-32	Standpipe	(Flush	(9)	۵	Size (inch)	3	z	©	œ	(9)	œ	z	(10)	<u> </u>		> (3)	
	Standpipe	Flush	ဗ	a.	Size (inch)	>-	z	Ø	Œ	O	œ	ź	ပ	a .		. z ≻	
And the same of th	Standpipe	Flush	ŋ	a.	Size (inch)	>	z	ŋ	œ	g	œ	ź	g	p.		>	
	Standpipe	Flush	O	ō.	Size (inch)	>	z	U	œ	b	œ	뒿	9	a		×	
	Standpipe	Flush	5	o.	Size (inch)	>	z	ď	ď	9	α	¥	5	l a		N >	
	Standpipe	Flush	Ø	G.	Size (Inch)	>	z	b	œ	9	nz.	불	හ	a.		>	
	Standpipe	Flush	g	Q.	Size (inch)	>	z	ပ	œ	၅	oc.	ź	ဖ	<u>a</u>		× ×	
					ТОТА	TOTAL # CAPS REPLACED =	S REPLA	CED =	Q		Ô	* TOTAL	= TOTAL # OF LOCKS REPLACED	CKS REI	PLACED		
Condition of Soil Boring Patches or Abandoned Monitoring Wells:	ition of Soil Boring Patches or Abandoned Monitoring Wells:	atches or ing Wells:	ပ	D.	(1)	#	POOR, Boring:	if POOR; Borings/Well IDs or Location Description:	Os or Loc	ation Des	cription:					γ	
Remediation (Check bo	Remediation Compound Type (Check boxes that apply)	Type (yi)	Condit	Condition of Enclosure	closure	Conditie	Condition of Area Ins Enclosure	Inside	Сотр	Compound Security	umty	Emerger	Emergency Contact Info Visible	ct Info	Cleaning / Repairs Recommended and Conducted	Photos of Condition	Repair Date and PM Initials
NA Building	βu	2			(((
Building w/ Fence Comp. Fenced Compound Trailer	nce Comp. npound sr		Ø	a.	(A)	Ø	<u>о</u> .	8	O	D.	(A)	>	z	(A)		z ≻	
Number of Drums On-site	Does the Source	Does the Label Reveal the Source of the Contents	sal the (ents	Label W	Labeled Correctly and Writing Legible	y and	Drin	Drum Condition	8	Confirm Drums Related to Environmental	Drums d to nental	Drums I Busines	Drums Located to Min Business Interference	5 Min ence	Detailed Explanation of Any Issues Resolved	Photos of Drum Condition	Date Drums Removed from Site
			1					-				-					74.75.00 CO. 20.00

G = Good (Acceptable) R = Replaced

P = Poor (needs attention) NL = No Lock Required

Note: All repairs other than looks and grippers require Shell PM approval prior to repair.

a Groundwater monitoring well covers must be painted and labeled in accordance with applicable regulations.
 Version 2.4, March 2008

All environmental wells and the remediation compound were in good condition, locked, and secured upon my departure (unless otherwise noted above).

>

∑

z

>-

z

. >-

4

۵.

Ø

(§)

z

>

(N)

z

Print or type Name of Field Personnel & Consultant Company

APPENDIX B

TESTAMERICA LABORATORIES, INC. -ANALYTICAL REPORT

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Irvine 17461 Derian Ave Suite 100

Irvine, CA 92614-5817 Tel: (949)261-1022

TestAmerica Job ID: 440-94350-1

Client Project/Site: 4212 First St., Pleasanton, CA

For:

Conestoga-Rovers & Associates, Inc. 5900 Hollis Street Suite A Emeryville, California 94608

Attn: Peter Schaefer

Heather Clark

Authorized for release by: 12/10/2014 11:58:11 AM

Heather Clark, Project Manager I (949)261-1022

heather.clark@testamericainc.com

·····LINKS ······

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Case Narrative	4
Client Sample Results	5
Method Summary	9
Lab Chronicle	10
QC Sample Results	12
QC Association Summary	20
Definitions/Glossary	22
Certification Summary	23
Chain of Custody	24
Receipt Checklists	25

3

4

R

9

11

12

Sample Summary

Client: Conestoga-Rovers & Associates, Inc. Project/Site: 4212 First St., Pleasanton, CA

TestAmerica Job ID: 440-94350-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
440-94350-1	MW-1	Ground Water	11/25/14 13:45	11/26/14 09:35
440-94350-2	MW-1B	Ground Water	11/25/14 13:05	11/26/14 09:35
440-94350-3	MW-2	Ground Water	11/25/14 13:30	11/26/14 09:35
440-94350-4	MW-3	Ground Water	11/25/14 14:00	11/26/14 09:35
440-94350-5	MW-4	Ground Water	11/25/14 13:20	11/26/14 09:35

3

4

5

6

8

9

4 4

11

1 4

1:

Case Narrative

Client: Conestoga-Rovers & Associates, Inc. Project/Site: 4212 First St., Pleasanton, CA

TestAmerica Job ID: 440-94350-1

Job ID: 440-94350-1

Laboratory: TestAmerica Irvine

Narrative

Job Narrative 440-94350-1

Comments

No additional comments.

Receipt

The samples were received on 11/26/2014 9:35 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 2.8° C.

GC/MS VOA

Method(s) 8260B/CA_LUFTMS: The Gasoline Range Organics (GRO) concentration reported for the following sample(s) is due to the presence of discrete peaks: Methyl tert-butyl ether. MW-2 (440-94350-3).

Method(s) 8260B/CA_LUFTMS: The Gasoline Range Organics (GRO) concentration reported for the following sample is due to the presence of discrete peaks: MW-1 (440-94350-1). Methyl tert-butyl ether

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

HPLC/IC

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

4

6

q

10

10

2

Client: Conestoga-Rovers & Associates, Inc. Project/Site: 4212 First St., Pleasanton, CA

TestAmerica Job ID: 440-94350-1

Lab Sample ID: 440-94350-1

Matrix: Ground Water

Date Collected: 11/25/14 13:45 Date Received: 11/26/14 09:35

Client Sample ID: MW-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Volatile Fuel Hydrocarbons	1200		1000		ug/L			12/04/14 01:40	20
(C4-C12)									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Dibromofluoromethane (Surr)	103		76 - 132			-		12/04/14 01:40	20
4-Bromofluorobenzene (Surr)	100		80 - 120					12/04/14 01:40	2
Toluene-d8 (Surr)	105		80 - 128					12/04/14 01:40	2
Method: 8260B - Volatile Orga	nic Compounds ((GC/MS)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	ND		10		ug/L			12/04/14 01:40	2
Isopropyl Ether (DIPE)	14		10		ug/L			12/04/14 01:40	2
Ethyl-t-butyl ether (ETBE)	ND		10		ug/L			12/04/14 01:40	2
Ethylbenzene	ND		10		ug/L			12/04/14 01:40	2
Methyl-t-Butyl Ether (MTBE)	1100		10		ug/L			12/04/14 01:40	2
Tert-amyl-methyl ether (TAME)	ND		10		ug/L			12/04/14 01:40	2
tert-Butyl alcohol (TBA)	580		200		ug/L			12/04/14 01:40	2
Toluene	ND		10		ug/L			12/04/14 01:40	2
Xylenes, Total	ND		20		ug/L			12/04/14 01:40	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	100		80 - 120			-		12/04/14 01:40	2
Dibromofluoromethane (Surr)	103		76 - 132					12/04/14 01:40	2
Toluene-d8 (Surr)	105		80 - 128					12/04/14 01:40	2
Method: 300.0 - Anions, Ion Ch	nromatography								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Nitrate as N	1000		110		ug/L			11/26/14 14:15	
Sulfate	16000		500		ug/L			11/26/14 14:15	
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa

Client Sample ID: MW-1B Lab Sample ID: 440-94350-2

4000

ug/L

Date Collected: 11/25/14 13:05

Alkalinity as CaCO3

Date Received: 11/26/14 09:35

630000

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Volatile Fuel Hydrocarbons (C4-C12)	ND		50		ug/L			12/03/14 01:52	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	95		76 - 132			-		12/03/14 01:52	1
4-Bromofluorobenzene (Surr)	91		80 - 120					12/03/14 01:52	1
Toluene-d8 (Surr)	102		80 ₋ 128					12/03/14 01:52	1

Method: 8260B - Volatile Orga	nic Compounds (GC/MS)					
Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Benzene	ND ND	0.50	ug/L		12/03/14 01:52	1
Isopropyl Ether (DIPE)	ND	0.50	ug/L		12/03/14 01:52	1

TestAmerica Irvine

11/29/14 09:25

Matrix: Ground Water

Page 5 of 25

12/10/2014

4

6

8

10

12

TestAmerica Job ID: 440-94350-1

Client: Conestoga-Rovers & Associates, Inc. Project/Site: 4212 First St., Pleasanton, CA

Client Sample ID: MW-1B

Date Collected: 11/25/14 13:05 Date Received: 11/26/14 09:35 Lab Sample ID: 440-94350-2

Matrix: Ground Water

Matrix: Ground Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethyl-t-butyl ether (ETBE)	ND		0.50		ug/L			12/03/14 01:52	1
Ethylbenzene	ND		0.50		ug/L			12/03/14 01:52	1
Methyl-t-Butyl Ether (MTBE)	ND		0.50		ug/L			12/03/14 01:52	1
Tert-amyl-methyl ether (TAME)	ND		0.50		ug/L			12/03/14 01:52	1
tert-Butyl alcohol (TBA)	ND		10		ug/L			12/03/14 01:52	1
Toluene	ND		0.50		ug/L			12/03/14 01:52	1
Xylenes, Total	ND		1.0		ug/L			12/03/14 01:52	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	91		80 - 120			-		12/03/14 01:52	1
Dibromofluoromethane (Surr)	95		76 - 132					12/03/14 01:52	1
Toluene-d8 (Surr)	102		80 - 128					12/03/14 01:52	1
Method: 300.0 - Anions, Ion Ch	romatography								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate as N	22000		2200		ug/L			11/26/14 16:09	20
Sulfate	47000		10000		ug/L			11/26/14 16:09	20
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity as CaCO3	280000		4000		ug/L			11/29/14 09:33	

Client Sample ID: MW-2 Lab Sample ID: 440-94350-3

Date Collected: 11/25/14 13:30

Date Received: 11/26/14 09:35

Dibromofluoromethane (Surr)

Method: 8260B/CA_LUFTMS - Volatile Organic Compounds by GC/MS									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Volatile Fuel Hydrocarbons (C4-C12)	1300		1000		ug/L			12/04/14 02:09	20

Surrogate	%Recovery	Qualifier	Limits	F	Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	101		76 - 132			12/04/14 02:09	20
4-Bromofluorobenzene (Surr)	100		80 - 120			12/04/14 02:09	20
Toluene-d8 (Surr)	106		80 - 128			12/04/14 02:09	20

Method: 8260B - Volatile Orga	nic Compounds (GC	C/MS)						
Analyte	Result Qu	ualifier RL	MDL U	Init	D	Prepared	Analyzed	Dil Fac
Benzene	ND ND	10	u	g/L			12/04/14 02:09	20
Isopropyl Ether (DIPE)	ND	10	u	g/L			12/04/14 02:09	20
Ethyl-t-butyl ether (ETBE)	ND	10	u	g/L			12/04/14 02:09	20
Ethylbenzene	ND	10	u	g/L			12/04/14 02:09	20
Methyl-t-Butyl Ether (MTBE)	1500	10	u	g/L			12/04/14 02:09	20
Tert-amyl-methyl ether (TAME)	ND	10	u	g/L			12/04/14 02:09	20
tert-Butyl alcohol (TBA)	ND	200	u	g/L			12/04/14 02:09	20
Toluene	ND	10	u	g/L			12/04/14 02:09	20
Xylenes, Total	ND	20	u	g/L			12/04/14 02:09	20
Surrogate	%Recovery Qu	ualifier Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100	80 - 120			_		12/04/14 02:09	20

TestAmerica Irvine

12/04/14 02:09

Page 6 of 25

76 - 132

Analyzed

Dil Fac

Prepared

Client: Conestoga-Rovers & Associates, Inc. Project/Site: 4212 First St., Pleasanton, CA

Client Sample ID: MW-2 Lab Sample ID: 440-94350-3

Date Collected: 11/25/14 13:30 **Matrix: Ground Water**

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	106		80 - 128		12/04/14 02:09	20

Method: 300.0 - Anions, Ion Chromatography

Result Qualifier

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Nitrate as N	6400	110	ug/L			11/26/14 14:48	1
Sulfate	74000	10000	ug/L			11/26/14 15:04	20

General Chemistry Analyte

Date Received: 11/26/14 09:35

Alkalinity as CaCO3	300000	4000	ug/L	11/29/14 09:41	1

RL

MDL Unit

Client Sample ID: MW-3 Lab Sample ID: 440-94350-4

Date Collected: 11/25/14 14:00 **Matrix: Ground Water** Date Received: 11/26/14 09:35

Method: 8260B/CA_LUFTMS - Volatile Organic Compounds by GC/MS

Analyte Volatile Fuel Hydrocarbons (C4-C12)	Result	Qualifier	RL 50	 g/L D	Prepared	Analyzed 12/03/14 02:22	Dil Fac
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	96		76 - 132			12/03/14 02:22	1
4-Bromofluorobenzene (Surr)	90		80 - 120			12/03/14 02:22	1
Toluene-d8 (Surr)	100		80 - 128			12/03/14 02:22	1

Method: 8260B - Volatile Organic Compounds (GC/MS)

Wethou. 02000 - Volatile Organii	c compounds (CONNIC							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.50		ug/L			12/03/14 02:22	1
Isopropyl Ether (DIPE)	ND		0.50		ug/L			12/03/14 02:22	1
Ethyl-t-butyl ether (ETBE)	ND		0.50		ug/L			12/03/14 02:22	1
Ethylbenzene	ND		0.50		ug/L			12/03/14 02:22	1
Methyl-t-Butyl Ether (MTBE)	ND		0.50		ug/L			12/03/14 02:22	1
Tert-amyl-methyl ether (TAME)	ND		0.50		ug/L			12/03/14 02:22	1
tert-Butyl alcohol (TBA)	ND		10		ug/L			12/03/14 02:22	1
Toluene	ND		0.50		ug/L			12/03/14 02:22	1
Xylenes, Total	ND		1.0		ug/L			12/03/14 02:22	1
I and the second se									

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	90		80 - 120		12/03/14 02:22	1
Dibromofluoromethane (Surr)	96		76 - 132		12/03/14 02:22	1
Toluene-d8 (Surr)	100		80 - 128		12/03/14 02:22	1

Client Sample ID: MW-4 Lab Sample ID: 440-94350-5

Date Collected: 11/25/14 13:20 Date Received: 11/26/14 09:35

(C4-C12)

	itile Organic Compounds l	by GC/MS					
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Volatile Fuel Hydrocarbons	270	50	ug/L			12/03/14 02:53	1

TestAmerica Irvine

Matrix: Ground Water

Client Sample Results

Client: Conestoga-Rovers & Associates, Inc. Project/Site: 4212 First St., Pleasanton, CA

TestAmerica Job ID: 440-94350-1

Lab Sample ID: 440-94350-5

Matrix: Ground Water

Client Sample ID: MW-4

Date Collected: 11/25/14 13:20 Date Received: 11/26/14 09:35

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	95		76 - 132		12/03/14 02:53	1
4-Bromofluorobenzene (Surr)	92		80 - 120		12/03/14 02:53	1
Toluene-d8 (Surr)	100		80 - 128		12/03/14 02:53	1

4-Diomondocinzene (Sun)	32		00 - 120					12/03/14 02.03	
Toluene-d8 (Surr)	100		80 - 128					12/03/14 02:53	
Method: 8260B - Volatile Orgar	nic Compounds ((GC/MS)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	ND		0.50		ug/L			12/03/14 02:53	
Isopropyl Ether (DIPE)	ND		0.50		ug/L			12/03/14 02:53	•
Ethyl-t-butyl ether (ETBE)	ND		0.50		ug/L			12/03/14 02:53	•
Ethylbenzene	ND		0.50		ug/L			12/03/14 02:53	
Methyl-t-Butyl Ether (MTBE)	3.1		0.50		ug/L			12/03/14 02:53	
Tert-amyl-methyl ether (TAME)	ND		0.50		ug/L			12/03/14 02:53	•
tert-Butyl alcohol (TBA)	ND		10		ug/L			12/03/14 02:53	
Toluene	ND		0.50		ug/L			12/03/14 02:53	•
Xylenes, Total	ND		1.0		ug/L			12/03/14 02:53	,
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	92		80 - 120			-		12/03/14 02:53	
Dibromofluoromethane (Surr)	95		76 - 132					12/03/14 02:53	
Toluene-d8 (Surr)	100		80 - 128					12/03/14 02:53	

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Nitrate as N	4600	110	ug/L			11/26/14 16:58	1
Sulfate	76000	5000	ug/L			11/26/14 17:15	10
General Chemistry							

Contra Chombury							
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity as CaCO3	70000	4000	ug/L			11/29/14 09:50	1

J

9

10

12

Method Summary

Client: Conestoga-Rovers & Associates, Inc. Project/Site: 4212 First St., Pleasanton, CA

TestAmerica Job ID: 440-94350-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL IRV
8260B/CA_LUFTM S	Volatile Organic Compounds by GC/MS	SW846	TAL IRV
300.0	Anions, Ion Chromatography	MCAWW	TAL IRV
SM 2320B	Alkalinity	SM	TAL IRV

Protocol References:

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SM = "Standard Methods For The Examination Of Water And Wastewater",

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

2

Client: Conestoga-Rovers & Associates, Inc. Project/Site: 4212 First St., Pleasanton, CA

Lab Sample ID: 440-94350-1

Matrix: Ground Water

Client Sample ID: MW-1 Date Collected: 11/25/14 13:45 Date Received: 11/26/14 09:35

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		20	10 mL	10 mL	222397	12/04/14 01:40	AT	TAL IRV
Total/NA	Analysis	8260B/CA_LUFTM S		20	10 mL	10 mL	222398	12/04/14 01:40	AT	TAL IRV
Total/NA	Analysis	300.0		1	5 mL		221095	11/26/14 14:15	NN	TAL IRV
Total/NA	Analysis	300.0		1	5 mL		221096	11/26/14 14:15	NN	TAL IRV
Total/NA	Analysis	SM 2320B		1			221561	11/29/14 09:25	YZ	TAL IRV

Client Sample ID: MW-1B

Date Collected: 11/25/14 13:05

Lab Sample ID: 440-94350-2

Matrix: Ground Water

Date Collected: 11/25/14 13:05
Date Received: 11/26/14 09:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	10 mL	10 mL	222117	12/03/14 01:52	WK	TAL IRV
Total/NA	Analysis	8260B/CA_LUFTM S		1	10 mL	10 mL	222118	12/03/14 01:52	WK	TAL IRV
Total/NA	Analysis	300.0		20	5 mL		221095	11/26/14 16:09	NN	TAL IRV
Total/NA	Analysis	300.0		20	5 mL		221096	11/26/14 16:09	NN	TAL IRV
Total/NA	Analysis	SM 2320B		1			221561	11/29/14 09:33	YZ	TAL IRV

Client Sample ID: MW-2

Date Collected: 11/25/14 13:30

Lab Sample ID: 440-94350-3

Matrix: Ground Water

Date Received: 11/26/14 09:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		20	10 mL	10 mL	222397	12/04/14 02:09	AT	TAL IRV
Total/NA	Analysis	8260B/CA_LUFTM S		20	10 mL	10 mL	222398	12/04/14 02:09	AT	TAL IRV
Total/NA	Analysis	300.0		1	5 mL		221095	11/26/14 14:48	NN	TAL IRV
Total/NA	Analysis	300.0		20	5 mL		221096	11/26/14 15:04	NN	TAL IRV
Total/NA	Analysis	SM 2320B		1			221561	11/29/14 09:41	YZ	TAL IRV

Client Sample ID: MW-3

Date Collected: 11/25/14 14:00

Lab Sample ID: 440-94350-4

Matrix: Ground Water

Date Received: 11/26/14 09:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	10 mL	10 mL	222117	12/03/14 02:22	WK	TAL IRV
Total/NA	Analysis	8260B/CA_LUFTM S		1	10 mL	10 mL	222118	12/03/14 02:22	WK	TAL IRV

Lab Chronicle

Client: Conestoga-Rovers & Associates, Inc. Project/Site: 4212 First St., Pleasanton, CA

TestAmerica Job ID: 440-94350-1

Lab Sample ID: 440-94350-5

Matrix: Ground Water

Client Sample ID: MW-4
Date Collected: 11/25/14 13:20
Date Received: 11/26/14 09:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	10 mL	10 mL	222117	12/03/14 02:53	WK	TAL IRV
Total/NA	Analysis	8260B/CA_LUFTM S		1	10 mL	10 mL	222118	12/03/14 02:53	WK	TAL IRV
Total/NA	Analysis	300.0		1	5 mL		221095	11/26/14 16:58	NN	TAL IRV
Total/NA	Analysis	300.0		10	5 mL		221096	11/26/14 17:15	NN	TAL IRV
Total/NA	Analysis	SM 2320B		1			221561	11/29/14 09:50	YZ	TAL IRV

Laboratory References:

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

4

6

7

Q

10

Client: Conestoga-Rovers & Associates, Inc. Project/Site: 4212 First St., Pleasanton, CA

Method: 8260B - Volatile Organic Compounds (GC/MS)

MD MD

Lab Sample ID: MB 440-222117/4

Matrix: Water

Analysis Batch: 222117

Client Sample ID: Method Blank

Prep Type: Total/NA

	IVID IVID							
Analyte	Result Qualif	ier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND	0.50		ug/L			12/02/14 19:51	1
Isopropyl Ether (DIPE)	ND	0.50		ug/L			12/02/14 19:51	1
Ethyl-t-butyl ether (ETBE)	ND	0.50		ug/L			12/02/14 19:51	1
Ethylbenzene	ND	0.50		ug/L			12/02/14 19:51	1
Methyl-t-Butyl Ether (MTBE)	ND	0.50		ug/L			12/02/14 19:51	1
Tert-amyl-methyl ether (TAME)	ND	0.50		ug/L			12/02/14 19:51	1
tert-Butyl alcohol (TBA)	ND	10		ug/L			12/02/14 19:51	1
Toluene	ND	0.50		ug/L			12/02/14 19:51	1
Xylenes, Total	ND	1.0		ug/L			12/02/14 19:51	1

MB MB %Recovery Qualifier Surrogate Limits Prepared Analyzed Dil Fac 4-Bromofluorobenzene (Surr) 90 80 - 120 12/02/14 19:51 94 Dibromofluoromethane (Surr) 76 - 132 12/02/14 19:51 Toluene-d8 (Surr) 101 80 - 128 12/02/14 19:51

Lab Sample ID: LCS 440-222117/5

Matrix: Water

Analysis Batch: 222117

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

•	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	25.0	23.2	-	ug/L		93	68 - 130	
Isopropyl Ether (DIPE)	25.0	20.9		ug/L		83	58 - 139	
Ethyl-t-butyl ether (ETBE)	25.0	15.3		ug/L		61	60 _ 136	
Ethylbenzene	25.0	23.7		ug/L		95	70 - 130	
m,p-Xylene	25.0	25.1		ug/L		100	70 - 130	
Methyl-t-Butyl Ether (MTBE)	25.0	21.2		ug/L		85	63 _ 131	
o-Xylene	25.0	24.6		ug/L		98	70 - 130	
Tert-amyl-methyl ether (TAME)	25.0	14.9		ug/L		60	57 ₋ 139	
tert-Butyl alcohol (TBA)	250	276		ug/L		110	70 - 130	
Toluene	25.0	23.2		ug/L		93	70 - 130	

	LCS LCS	
Surrogate	%Recovery Qualif	ier Limits
4-Bromofluorobenzene (Surr)	90	80 - 120
Dibromofluoromethane (Surr)	95	76 - 132
Toluene-d8 (Surr)	99	80 - 128

Lab Sample ID: 440-94052-B-1 MS

Matrix: Water

Analysis Batch: 222117

Client Sample ID: Matrix Spike Prep Type: Total/NA

7 maryoto Datom 222111	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	ND		25.0	22.8		ug/L		91	66 - 130
Isopropyl Ether (DIPE)	ND		25.0	21.4		ug/L		85	64 - 138
Ethyl-t-butyl ether (ETBE)	ND		25.0	16.5	F1	ug/L		66	70 - 130
Ethylbenzene	ND		25.0	23.1		ug/L		92	70 - 130
m,p-Xylene	ND		25.0	24.0		ug/L		96	70 - 133
Methyl-t-Butyl Ether (MTBE)	ND		25.0	23.5		ug/L		94	70 - 130

TestAmerica Irvine

Page 12 of 25

12/10/2014

Client: Conestoga-Rovers & Associates, Inc. Project/Site: 4212 First St., Pleasanton, CA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 440-94052-B-1 MS

Matrix: Water

Analysis Batch: 222117

Client Sample ID: Matrix Spike Prep Type: Total/NA %Rec Sample Sample

	Sample	Sample	Бріке	IVIO	IVIS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
o-Xylene	ND		25.0	24.5		ug/L		98	70 - 133	
Tert-amyl-methyl ether (TAME)	ND		25.0	16.5	F1	ug/L		66	68 - 133	
tert-Butyl alcohol (TBA)	ND		250	268		ug/L		107	70 - 130	
Toluene	ND		25.0	22.5		ug/L		90	70 - 130	

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	91		80 - 120
Dibromofluoromethane (Surr)	95		76 - 132
Toluene-d8 (Surr)	97		80 - 128

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Analysis Batch: 222117

Matrix: Water

Lab Sample ID: 440-94052-B-1 MSD

Sample Sample Spike MSD MSD %Rec. RPD Result Qualifier Added Result Qualifier RPD Limit Analyte Unit %Rec Limits Benzene ND 25.0 23.4 66 - 130 ug/L 94 3 20 ND 25.0 21.3 64 - 138 25 Isopropyl Ether (DIPE) ug/L 85 Ethyl-t-butyl ether (ETBE) ND 25.0 16.3 F1 ug/L 65 70 - 130 2 25 Ethylbenzene ND 25.0 23.1 ug/L 70 - 130 20 m,p-Xylene ND 25.0 24.6 ug/L 98 70 - 133 25 Methyl-t-Butyl Ether (MTBE) ND 25.0 23.5 ug/L 94 70 - 130 25 ND 25.0 97 20 o-Xylene 24.3 ug/L 70 - 133 Tert-amyl-methyl ether (TAME) ND 25.0 16.7 F1 ug/L 67 68 - 133 30 tert-Butyl alcohol (TBA) ND 250 105 70 - 130 25 263 ug/L Toluene ND 25.0 22.8 ug/L 70 - 130 20

	MSD MSD	
Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	90	80 - 120
Dibromofluoromethane (Surr)	96	76 - 132
Toluene-d8 (Surr)	97	80 - 128

Lab Sample ID: MB 440-222397/4 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 222397

мв мв

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.50		ug/L			12/03/14 19:22	1
Isopropyl Ether (DIPE)	ND		0.50		ug/L			12/03/14 19:22	1
Ethyl-t-butyl ether (ETBE)	ND		0.50		ug/L			12/03/14 19:22	1
Ethylbenzene	ND		0.50		ug/L			12/03/14 19:22	1
Methyl-t-Butyl Ether (MTBE)	ND		0.50		ug/L			12/03/14 19:22	1
Tert-amyl-methyl ether (TAME)	ND		0.50		ug/L			12/03/14 19:22	1
tert-Butyl alcohol (TBA)	ND		10		ug/L			12/03/14 19:22	1
Toluene	ND		0.50		ug/L			12/03/14 19:22	1
Xylenes, Total	ND		1.0		ug/L			12/03/14 19:22	1

Client: Conestoga-Rovers & Associates, Inc. Project/Site: 4212 First St., Pleasanton, CA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 440-222397/4

Matrix: Water

Analysis Batch: 222397

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98		80 - 120	 	12/03/14 19:22	1
Dibromofluoromethane (Surr)	96		76 - 132		12/03/14 19:22	1
Toluene-d8 (Surr)	108		80 - 128		12/03/14 19:22	1

Lab Sample ID: LCS 440-222397/5

Matrix: Water

Analysis Batch: 222397

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	25.0	24.7		ug/L		99	68 - 130	
Isopropyl Ether (DIPE)	25.0	23.8		ug/L		95	58 _ 139	
Ethyl-t-butyl ether (ETBE)	25.0	24.2		ug/L		97	60 - 136	
Ethylbenzene	25.0	27.0		ug/L		108	70 - 130	
m,p-Xylene	25.0	27.9		ug/L		112	70 - 130	
Methyl-t-Butyl Ether (MTBE)	25.0	26.3		ug/L		105	63 _ 131	
o-Xylene	25.0	28.7		ug/L		115	70 - 130	
Tert-amyl-methyl ether (TAME)	25.0	25.3		ug/L		101	57 ₋ 139	
tert-Butyl alcohol (TBA)	250	258		ug/L		103	70 - 130	
Toluene	25.0	26.5		ug/L		106	70 - 130	

LCS LCS

Surrogate	%Recovery Qual	lifier Limits
4-Bromofluorobenzene (Surr)	101	80 - 120
Dibromofluoromethane (Surr)	101	76 - 132
Toluene-d8 (Surr)	107	80 - 128

Lab Sample ID: 440-94404-B-1 MS

Matrix: Water

Analysis Batch: 222397

Client Sample ID: Matrix Spike

Prep Type: Total/NA

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	ND		25.0	24.3		ug/L		97	66 - 130	
Isopropyl Ether (DIPE)	ND		25.0	23.2		ug/L		93	64 - 138	
Ethyl-t-butyl ether (ETBE)	ND		25.0	23.7		ug/L		95	70 - 130	
Ethylbenzene	ND		25.0	26.9		ug/L		107	70 - 130	
m,p-Xylene	ND		25.0	28.0		ug/L		112	70 - 133	
Methyl-t-Butyl Ether (MTBE)	160		25.0	173	4	ug/L		68	70 - 130	
o-Xylene	ND		25.0	28.4		ug/L		114	70 - 133	
Tert-amyl-methyl ether (TAME)	ND		25.0	24.3		ug/L		97	68 - 133	
tert-Butyl alcohol (TBA)	66		250	321		ug/L		102	70 - 130	
Toluene	ND		25.0	26.1		ug/L		105	70 - 130	

MS MS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	100	80 - 120
Dibromofluoromethane (Surr)	100	76 - 132
Toluene-d8 (Surr)	105	80 - 128

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Client: Conestoga-Rovers & Associates, Inc. Project/Site: 4212 First St., Pleasanton, CA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 440-94404-B-1 MSD

Matrix: Water

Analysis Batch: 222397

Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	ND		25.0	23.7	-	ug/L		95	66 - 130	2	20
Isopropyl Ether (DIPE)	ND		25.0	22.8		ug/L		91	64 - 138	2	25
Ethyl-t-butyl ether (ETBE)	ND		25.0	23.7		ug/L		95	70 - 130	0	25
Ethylbenzene	ND		25.0	26.1		ug/L		105	70 - 130	3	20
m,p-Xylene	ND		25.0	27.0		ug/L		108	70 - 133	4	25
Methyl-t-Butyl Ether (MTBE)	160		25.0	173	4	ug/L		71	70 - 130	0	25
o-Xylene	ND		25.0	28.1		ug/L		112	70 - 133	1	20
Tert-amyl-methyl ether (TAME)	ND		25.0	24.3		ug/L		97	68 - 133	0	30
tert-Butyl alcohol (TBA)	66		250	324		ug/L		103	70 - 130	1	25
Toluene	ND		25.0	25.5		ug/L		102	70 - 130	2	20

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	101		80 - 120
Dibromofluoromethane (Surr)	98		76 - 132
Toluene-d8 (Surr)	105		80 - 128

Method: 8260B/CA_LUFTMS - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 440-222118/4

Matrix: Water

Analysis Batch: 222118

MB MB

Analyte	Result Qualifier	RL	MDL Unit	ט	Prepared	Analyzed	DII Fac
Volatile Fuel Hydrocarbons (C4-C12)	ND	50	ug/L			12/02/14 19:51	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	94		76 - 132		12/02/14 19:51	1
4-Bromofluorobenzene (Surr)	90		80 - 120		12/02/14 19:51	1
Toluene-d8 (Surr)	101		80 - 128		12/02/14 19:51	1

Lab Sample ID: LCS 440-222118/6

Matrix: Water

Analysis Batch: 222118

	Spike	LCS	LCS			%Rec.
Analyte	Added	Result	Qualifier Unit	D	%Rec	Limits
Volatile Fuel Hydrocarbons	500	467	ug/L		93	55 - 130

(C4-C12)

	LCS LCS	
Surrogate	%Recovery Qualifi	er Limits
Dibromofluoromethane (Surr)	95	76 - 132
4-Bromofluorobenzene (Surr)	90	80 - 120
Toluene-d8 (Surr)	99	80 - 128

Client: Conestoga-Rovers & Associates, Inc. Project/Site: 4212 First St., Pleasanton, CA

TestAmerica Job ID: 440-94350-1

Method: 8260B/CA_LUFTMS - Volatile Organic Compounds by GC/MS (Continued)

Comple Comple

Lab Sample ID: 440-94052-B-1 MS

Matrix: Water

Analysis Batch: 222118

Client Sample ID: Matrix Spike Prep Type: Total/NA

0/ Doo

	Gampic	Oumpic	Opino	1110	1410				/01100.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Volatile Fuel Hydrocarbons	ND		1730	1600		ug/L		93	50 - 145	
(C4-C12)										

Me Me

Chiles

MS MS Surrogate %Recovery Qualifier Limits Dibromofluoromethane (Surr) 76 - 132 95 80 - 120 4-Bromofluorobenzene (Surr) 91 Toluene-d8 (Surr) 97 80 - 128

Lab Sample ID: 440-94052-B-1 MSD Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

Matrix: Water

Analysis Batch: 222118

Sample Sample Spike MSD MSD %Rec. RPD Result Qualifier Limit Analyte Added Result Qualifier Limits RPD Unit D %Rec Volatile Fuel Hydrocarbons ND 1730 1600 ug/L 93 50 - 145 20 (C4-C12)

MSD MSD Surrogate %Recovery Qualifier Limits 76 - 132 Dibromofluoromethane (Surr) 96 80 - 120 4-Bromofluorobenzene (Surr) 90 Toluene-d8 (Surr) 97 80 - 128

Lab Sample ID: MB 440-222398/4 Client Sample ID: Method Blank

MR MR

Matrix: Water

Analysis Batch: 222398

	IVID	1410							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Volatile Fuel Hydrocarbons (C4-C12)	ND		50		ug/L			12/03/14 19:22	1

	MB MB	3			
Surrogate	%Recovery Qua	alifier Limits	Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	96	76 - 132		12/03/14 19:22	1
4-Bromofluorobenzene (Surr)	98	80 - 120		12/03/14 19:22	1
Toluene-d8 (Surr)	108	80 - 128		12/03/14 19:22	1

Analysis Batch: 222398

Lab Sample ID: LCS 440-222398/6 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Spike LCS LCS %Rec. Added Unit Analyte Result Qualifier Limits %Rec 500 410 ug/L 82 55 - 130 Volatile Fuel Hydrocarbons (C4-C12)

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
Dibromofluoromethane (Surr)	98		76 - 132
4-Bromofluorobenzene (Surr)	99		80 - 120
Toluene-d8 (Surr)	107		80 ₋ 128

TestAmerica Irvine

Prep Type: Total/NA

Client Cample ID: Matrix Spike

Client: Conestoga-Rovers & Associates, Inc. Project/Site: 4212 First St., Pleasanton, CA

Method: 8260B/CA_LUFTMS - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 440-94404-B-1 MS

Matrix: Water

Analysis Batch: 222398

				Prep Type: Total/NA	
Sample	Sample	Spike	MS MS	%Rec.	

Sample Sample Result Qualifier babbA Result Qualifier Limits Analyte Unit D %Rec 130 1730 1920 ug/L 104 50 - 145 Volatile Fuel Hydrocarbons (C4-C12)

MS MS %Recovery Qualifier Surrogate Limits Dibromofluoromethane (Surr) 100 76 - 132 4-Bromofluorobenzene (Surr) 100 80 - 120 Toluene-d8 (Surr) 105 80 - 128

Lab Sample ID: 440-94404-B-1 MSD Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

Matrix: Water

Analysis Batch: 222398

Sample Sample Spike MSD MSD %Rec. RPD Result Qualifier Qualifier Analyte Added Limits RPD Limit Result Unit D %Rec 130 1730 1870 ug/L 101 50 - 145 20 Volatile Fuel Hydrocarbons (C4-C12)

MSD MSD %Recovery Limits Surrogate Qualifier Dibromofluoromethane (Surr) 98 76 - 132 80 - 120 4-Bromofluorobenzene (Surr) 101 Toluene-d8 (Surr) 105 80 - 128

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 440-221095/4 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 221095

MB MB Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Nitrate as N ND 110 ug/L 11/26/14 09:32

Lab Sample ID: LCS 440-221095/6 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 221095

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits 1130 1080 Nitrate as N ug/L 90 - 110

Lab Sample ID: MB 440-221096/4 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 221096 MB MB

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Sulfate ND 500 11/26/14 09:32 ug/L

100 100

Snika

TestAmerica Job ID: 440-94350-1

Client Sample ID: Lab Control Sample

%Poo

80 - 120

Prep Type: Total/NA

Client: Conestoga-Rovers & Associates, Inc. Project/Site: 4212 First St., Pleasanton, CA

Lab Sample ID: LCS 440-221096/6

Matrix: Water

Analysis Batch: 221096

Method: 300.0 - Anions, Ion Chromatography (Continued)

20

			Spike	LCS	LCS				%Rec.		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
Sulfate			5000	4900		ug/L		98	90 - 110		
Lab Sample ID: 440-94350-3 MS									Client Sar	nple ID:	MW-2
Matrix: Ground Water									Prep T	ype: To	tal/NA
Analysis Batch: 221096										•	
•	Sample	Sample	Spike	MS	MS				%Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Sulfate	74000		50000	114000		ug/L		81	80 - 120		
Lab Sample ID: 440-94350-3 MSD									Client Sar	nple ID:	MW-2
Matrix: Ground Water										ype: To	
Analysis Batch: 221096										,,,	
,	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Sulfate	74000		50000	116000	-	ug/L		84	80 - 120	2	20
Method: 300.0 - Anions, Ion C - Lab Sample ID: 440-94350-3 MS Matrix: Ground Water	hromat	ography -	·DL						Client Sar		
Analysis Batch: 221095									Prep i	ype: To	lai/INA
Analysis Butch. 22 1000	Sample	Sample	Spike	MS	MS				%Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Nitrate as N - DL	7000		11300	16000		ug/L		80	80 - 120		
- Lab Sample ID: 440-94350-3 MSD									Client Sar	nple ID:	MW-2
Matrix: Ground Water									Prep T	ype: To	tal/NA
Analysis Batch: 221095									•		
-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit

Method:	SM	2320B -	- Alkalin	ity
---------	----	---------	-----------	-----

Lab Sample ID: MB 440-221561/3 Client Sample ID: Method Blank

Matrix: Water

Nitrate as N - DL

Analysis Batch: 221561

мв мв

7000

Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Alkalinity as CaCO3 ND 4000 ug/L 11/29/14 07:21

15400 F1

ug/L

11300

Lab Sample ID: LCS 440-221561/2 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 221561

Spike LCS LCS %Rec. Added Result Qualifier Unit %Rec Limits Alkalinity as CaCO3 77600 71100 ug/L 92 80 - 120

TestAmerica Irvine

Prep Type: Total/NA

QC Sample Results

Client: Conestoga-Rovers & Associates, Inc. Project/Site: 4212 First St., Pleasanton, CA

TestAmerica Job ID: 440-94350-1

Method: SM 2320B - Alkalinity (Continued)

Lab Sample ID: 440-94350-5 DU

Matrix: Ground Water

Client Sample ID: MW-4

Prep Type: Total/NA

Analysis Batch: 221561

	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Alkalinity as CaCO3	70000		69800		ug/L		 0.7	20

6

4

5

6

8

9

11

12

Client: Conestoga-Rovers & Associates, Inc. Project/Site: 4212 First St., Pleasanton, CA

GC/MS VOA

Analysis Batch: 222117

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-94052-B-1 MS	Matrix Spike	Total/NA	Water	8260B	
440-94052-B-1 MSD	Matrix Spike Duplicate	Total/NA	Water	8260B	
440-94350-2	MW-1B	Total/NA	Ground Water	8260B	
440-94350-4	MW-3	Total/NA	Ground Water	8260B	
440-94350-5	MW-4	Total/NA	Ground Water	8260B	
LCS 440-222117/5	Lab Control Sample	Total/NA	Water	8260B	
MB 440-222117/4	Method Blank	Total/NA	Water	8260B	

Analysis Batch: 222118

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-94052-B-1 MS	Matrix Spike	Total/NA	Water	8260B/CA_LUFT	
				MS	
440-94052-B-1 MSD	Matrix Spike Duplicate	Total/NA	Water	8260B/CA_LUFT	
				MS	
440-94350-2	MW-1B	Total/NA	Ground Water	8260B/CA_LUFT	
				MS	
440-94350-4	MW-3	Total/NA	Ground Water	8260B/CA_LUFT	
				MS	
440-94350-5	MW-4	Total/NA	Ground Water	8260B/CA_LUFT	
				MS	
LCS 440-222118/6	Lab Control Sample	Total/NA	Water	8260B/CA_LUFT	
				MS	
MB 440-222118/4	Method Blank	Total/NA	Water	8260B/CA_LUFT	
_				MS	

Analysis Batch: 222397

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-94350-1	MW-1	Total/NA	Ground Water	8260B	
440-94350-3	MW-2	Total/NA	Ground Water	8260B	
440-94404-B-1 MS	Matrix Spike	Total/NA	Water	8260B	
440-94404-B-1 MSD	Matrix Spike Duplicate	Total/NA	Water	8260B	
LCS 440-222397/5	Lab Control Sample	Total/NA	Water	8260B	
MB 440-222397/4	Method Blank	Total/NA	Water	8260B	

Analysis Batch: 222398

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-94350-1	MW-1	Total/NA	Ground Water	8260B/CA_LUFT	
				MS	
440-94350-3	MW-2	Total/NA	Ground Water	8260B/CA_LUFT	
				MS	
440-94404-B-1 MS	Matrix Spike	Total/NA	Water	8260B/CA_LUFT	
				MS	
440-94404-B-1 MSD	Matrix Spike Duplicate	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCS 440-222398/6	Lab Control Sample	Total/NA	Water	8260B/CA_LUFT	
				MS	
MB 440-222398/4	Method Blank	Total/NA	Water	8260B/CA_LUFT	
				MS	

HPLC/IC

Analysis Batch: 221095

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-94350-1	MW-1	Total/NA	Ground Water	300.0	

TestAmerica Irvine

Page 20 of 25

QC Association Summary

Client: Conestoga-Rovers & Associates, Inc. Project/Site: 4212 First St., Pleasanton, CA

TestAmerica Job ID: 440-94350-1

HPLC/IC (Continued)

Analysis Batch: 221095 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-94350-2	MW-1B	Total/NA	Ground Water	300.0	
440-94350-3	MW-2	Total/NA	Ground Water	300.0	
440-94350-3 MS - DL	MW-2	Total/NA	Ground Water	300.0	
440-94350-3 MSD - DL	MW-2	Total/NA	Ground Water	300.0	
440-94350-5	MW-4	Total/NA	Ground Water	300.0	
LCS 440-221095/6	Lab Control Sample	Total/NA	Water	300.0	
MB 440-221095/4	Method Blank	Total/NA	Water	300.0	

Analysis Batch: 221096

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-94350-1	MW-1	Total/NA	Ground Water	300.0	_
440-94350-2	MW-1B	Total/NA	Ground Water	300.0	
440-94350-3	MW-2	Total/NA	Ground Water	300.0	
440-94350-3 MS	MW-2	Total/NA	Ground Water	300.0	
440-94350-3 MSD	MW-2	Total/NA	Ground Water	300.0	
440-94350-5	MW-4	Total/NA	Ground Water	300.0	
LCS 440-221096/6	Lab Control Sample	Total/NA	Water	300.0	
MB 440-221096/4	Method Blank	Total/NA	Water	300.0	

General Chemistry

Analysis Batch: 221561

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-94350-1	MW-1	Total/NA	Ground Water	SM 2320B	
440-94350-2	MW-1B	Total/NA	Ground Water	SM 2320B	
440-94350-3	MW-2	Total/NA	Ground Water	SM 2320B	
440-94350-5	MW-4	Total/NA	Ground Water	SM 2320B	
440-94350-5 DU	MW-4	Total/NA	Ground Water	SM 2320B	
LCS 440-221561/2	Lab Control Sample	Total/NA	Water	SM 2320B	
MB 440-221561/3	Method Blank	Total/NA	Water	SM 2320B	

4

6

8

9

11

12

Definitions/Glossary

Client: Conestoga-Rovers & Associates, Inc. Project/Site: 4212 First St., Pleasanton, CA

Not Calculated

Quality Control

Relative error ratio

Practical Quantitation Limit

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Not detected at the reporting limit (or MDL or EDL if shown)

Relative Percent Difference, a measure of the relative difference between two points

Reporting Limit or Requested Limit (Radiochemistry)

TestAmerica Job ID: 440-94350-1

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description		
F1	MS and/or MSD Recovery exceeds the control limits		
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.		
LIBL OUG			

HPLC/IC

Qualifier	Qualifier Description
F1	MS and/or MSD Recovery exceeds the control limits

Glossary

NC

ND PQL

QC

RER

RPD TEF

TEQ

RL

<u></u>			
Abbreviation	These commonly used abbreviations may or may not be present in this report.		
п	Listed under the "D" column to designate that the result is reported on a dry weight basis		
%R	Percent Recovery		
CFL	Contains Free Liquid		
CNF	Contains no Free Liquid		
DER	Duplicate error ratio (normalized absolute difference)		
Dil Fac	Dilution Factor		
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample		
DLC	Decision level concentration		
MDA	Minimum detectable activity		
EDL	Estimated Detection Limit		
MDC	Minimum detectable concentration		
MDL	Method Detection Limit		
ML	Minimum Level (Dioxin)		

Certification Summary

Client: Conestoga-Rovers & Associates, Inc. Project/Site: 4212 First St., Pleasanton, CA

TestAmerica Job ID: 440-94350-1

3

Laboratory: TestAmerica Irvine

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska	State Program	10	CA01531	06-30-15
Arizona	State Program	9	AZ0671	10-13-15
California	LA Cty Sanitation Districts	9	10256	01-31-15
California	State Program	9	2706	06-30-16
Guam	State Program	9	Cert. No. 12.002r	01-23-15
Hawaii	State Program	9	N/A	01-29-15 *
Nevada	State Program	9	CA015312007A	07-31-15
New Mexico	State Program	6	N/A	01-29-15
Northern Mariana Islands	State Program	9	MP0002	01-29-15
Oregon	NELAP	10	4005	01-29-15
USDA	Federal		P330-09-00080	06-06-15
USEPA UCMR	Federal	1	CA01531	01-31-15

A

D

7

8

3

111

^{*} Certification renewal pending - certification considered valid.

Page 24 of 25

12

12/10/2014

Login Sample Receipt Checklist

Client: Conestoga-Rovers & Associates, Inc.

Job Number: 440-94350-1

Login Number: 94350 List Source: TestAmerica Irvine

List Number: 1

Creator: Chy, Jonathan

Creator. Criy, Jonathan		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

-

6

8

10

11