

5900 Hollis Street, Suite A Emeryville, California 94608

Telephone: (510) 420-0700

Fax: (510) 420-9170

www.CRAworld.com

		TRAN	NSMITTA	L
DATE:	August		EFERENCE NO.:	240523 4212 First Street, Pleasanton
To:	Jerry W	/ickham	,	
•	Alamed	da County Environmental Healt	th	
•	1131 Ha	arbor Bay Parkway, Suite 250		RECEIVED
		la, California 94502-6577		By Alameda County Environmental Health at 2:54 pm, Aug 18
Please find	enclosed	1:	∑ Final Other	
Sent via:		☐ Mail [☐ Overnight Courier [☐	Same Day (Courier GeoTracker and Alameda County FTP
QUAN	ГІТҮ		DESCRI	PTION
1		Groundwater Monitoring Rep	ort – Second Q	uarter 2014
	equested our Use	For Rev	iew and Comme	nt
If you hav	e any qu	0 0		t, please call the CRA project manager
Peter Scha	efer at (5	510) 420-3319 or the Shell progra	am manager Pe	erry Pineda at (425) 413-1164.
Copy to:		Perry Pineda, Shell Oil Products Douglas E. & Mary M. Safreno (94566-6389 (electronic and ha	property owne	copy) rs), 1627 Vineyard Avenue, Pleasanton, CA
	Ι	Danielle Stefani, Livermore-Plea CA 94566-6267	nsanton Fire De	partment, 3560 Nevada Street, Pleasanton,
	(Clint Mercer (lessee), SC Fuels, 1	1800 West Kate	lla Avenue, Orange, CA 92867
	(Colleen Winey, Zone 7 Water Ag	gency (electron	ic copy)
	A	Aaron O'Brien, Tamalpais Envir	onmental Cons	sultants (electronic copy)
Completed	1 by: <u>I</u>	Peter Schaefer	Signed:	Peter Sol-Jan

Filing: Correspondence File

Shell Oil Products US

Mr. Jerry Wickham Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577 Soil and Groundwater Focus Delivery Group 20945 S. Wilmington Avenue Carson, CA 90810 Tel (425) 413 1164 Fax (425) 413 0988 Email perry.pineda@shell.com Internet http://www.shell.com

Re: 4212 First Street

Pleasanton, California SAP Code 135782 Incident No. 98995840

ACEH Case No. RO0000360

Dear Mr. Wickham:

The attached document is provided for your review and comment. Upon information and belief, I declare, under penalty of perjury, that the information contained in the attached document is true and correct.

As always, please feel free to contact me directly at (425) 413-1164 with any questions or concerns.

Sincerely, Shell Oil Products US

BAL

Perry Pineda

Senior Environmental Program Manager

GROUNDWATER MONITORING REPORT - SECOND QUARTER 2014

SHELL-BRANDED SERVICE STATION 4212 FIRST STREET PLEASANTON, CALIFORNIA

SAP CODE 135782 INCIDENT NO. 98995840 AGENCY NO. RO0000360

> Prepared by: Conestoga-Rovers & Associates

5900 Hollis Street, Suite A Emeryville, California U.S.A. 94608

Office: (510) 420-0700 Fax: (510) 420-9170

web: http://www.CRAworld.com

AUGUST 13, 2014 Ref. No. 240523 (27)

This report is printed on recycled paper.

TABLE OF CONTENTS

			<u>Page</u>
1.0	INTRO	ODUCTION	1
	1.1	SITE INFORMATION	1
2.0	SITE A	ACTIVITIES, FINDINGS, AND DISCUSSION	1
	2.1	CURRENT QUARTER'S ACTIVITIES	1
	2.2	CURRENT QUARTER'S FINDINGS	2
	2.3	PROPOSED ACTIVITIES	2

LIST OF FIGURES (Following Text)

FIGURE 1 VICINITY MAP

FIGURE 2 GROUNDWATER CONTOUR AND CHEMICAL CONCENTRATION MAP

LIST OF TABLES (Following Text)

TABLE 1 GROUNDWATER DATA

LIST OF APPENDICES

APPENDIX A BLAINE TECH SERVICES, INC. – FIELD NOTES

APPENDIX B TESTAMERICA LABORATORIES, INC. - ANALYTICAL REPORT

1.0 INTRODUCTION

Conestoga-Rovers & Associates (CRA) prepared this report on behalf of Equilon Enterprises LLC dba Shell Oil Products US (Shell).

1.1 SITE INFORMATION

Site Address 4212 First Street, Pleasanton

Site Use Shell-branded Service Station

Shell Project Manager Perry Pineda

CRA Project Manager Peter Schaefer

Lead Agency and Contact ACEH, Jerry Wickham

Agency Case No. RO0000360

Shell SAP Code 135782

Shell Incident No. 98995840

Date of most recent agency correspondence was June 17, 2014.

2.0 <u>SITE ACTIVITIES, FINDINGS, AND DISCUSSION</u>

2.1 <u>CURRENT QUARTER'S ACTIVITIES</u>

Blaine Tech Services, Inc. (Blaine) gauged and sampled the wells according to the modified monitoring program for this site. CRA prepared a vicinity map (Figure 1), a groundwater contour and chemical concentration map (Figure 2), and a groundwater data table (Table 1). Blaine's field notes are presented in Appendix A, and the laboratory report is presented in Appendix B.

On June 4, 2014, CRA submitted a *Soil Vapor Sampling Report*, which recommended no further soil vapor sampling.

Alameda County Environmental Health's (ACEH's) June 17, 2014 letter concurred with the recommendations in CRA's May 14, 2014 *Groundwater Monitoring Report – First Quarter 2014*, which proposed reducing groundwater sampling frequency from

quarterly to semiannual to be conducted in the second and fourth quarters, and concurred that no additional soil vapor sampling is warranted.

2.2 <u>CURRENT QUARTER'S FINDINGS</u>

Groundwater Flow Direction Northerly to northeasterly

Hydraulic Gradient 0.07

Depth to Water 33.30 to 102.50 feet below top of well casing

2.3 PROPOSED ACTIVITIES

Blaine will gauge and sample wells according to a modified monitoring program for this site. This site will now be monitored semiannually during the second and fourth quarters, and CRA will issue groundwater monitoring reports semiannually following the sampling events.

All of Which is Respectfully Submitted, CONESTOGA-ROVERS & ASSOCIATES

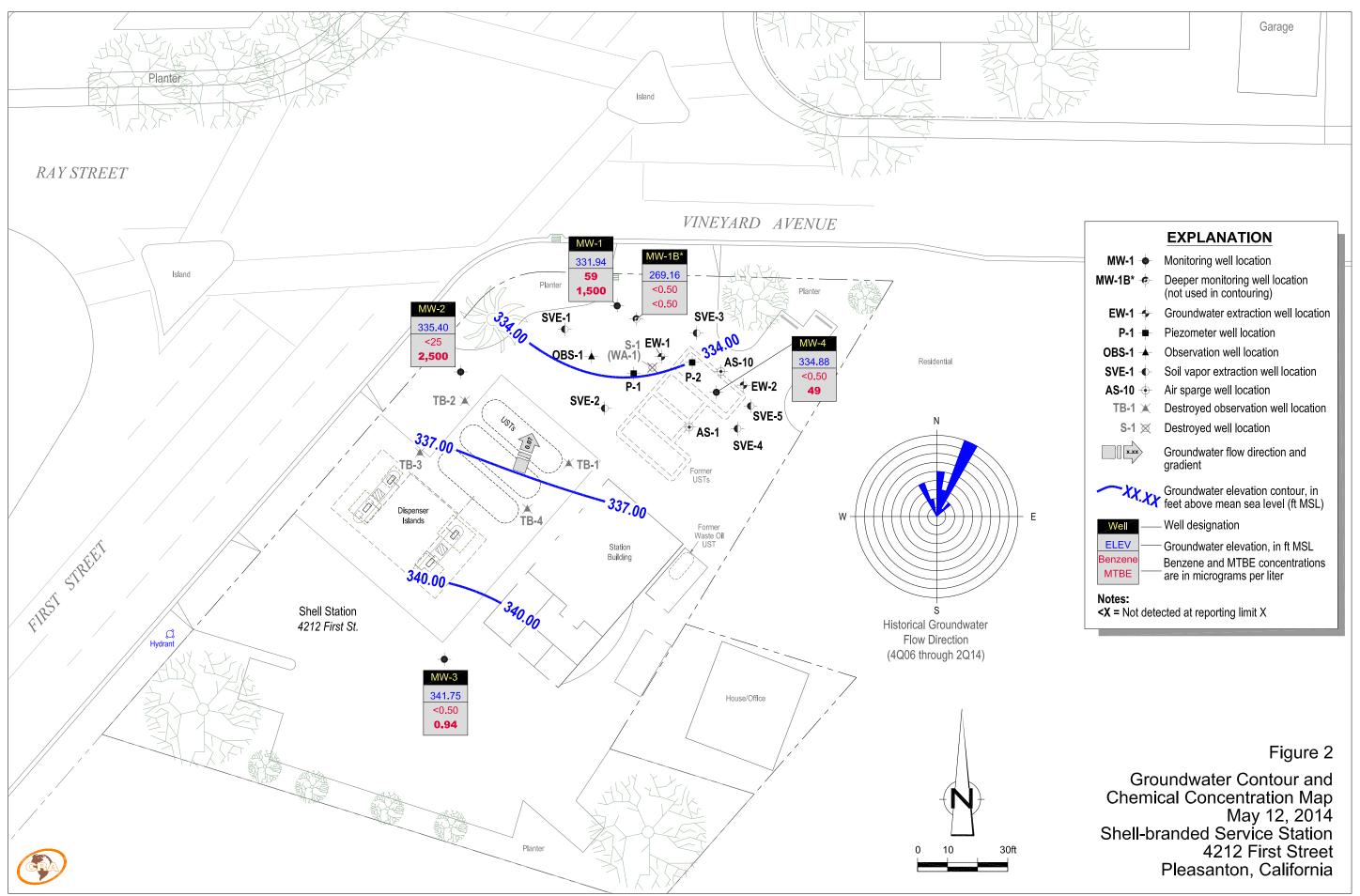
Peter Schaefer, CHG, CEG

Aubrey K. Cool, PG

FIGURES

Shell-branded Service Station

1/8


4212 First Street Pleasanton, California

SOURCE: TOPO! MAPS

1/2 SCALE : 1" = 1/4 MILE

Vicinity Map

TABLE

Well ID	Date	TPHg (µg/L)	B (µg/L)	Τ (μg/L)	Ε (μg/L)	Χ (μg/L)	MTBE 8020 (μg/L)	MTBE 8260 (μg/L)	TBA (μg/L)	DIPE (µg/L)	ETBE (μg/L)	TAME (μg/L)	Nitrate as N (µg/L)	Sulfate (µg/L)	Alkalinity as CaCO ₃ (µg/L)	Ferrous Iron (µg/L)	TOC (ft MSL)	Depth to Water (ft TOC)	GW Elevation (ft MSL)	DO (mg/L)	ORP (mV)
MW-1	06/16/1999																371.20	37.81	333.39		
MW-1	06/30/1999	89.0	5.89	< 0.500	< 0.500	0.652	< 5.00				·						371.20	33.65	337.55		
MW-1	09/24/1999	1,560	473	<10.0	<10.0	22.8	<2.50										371.20	37.04	334.16		
MW-1	12/08/1999	1,020	375	<5.00	<5.00	15.2	<50.0							****			371.20	36.79	334.41	Harrier	
MW-1	02/10/2000	523	106	<5.00	<5.00	31.8	2,9						arrests.				371.20	34.90	336,30		
MW-1	05/17/2000	<50.0	< 0.500	<0.500	< 0.500	< 0.500	37	29.5									371.20	32.55	338.65		
MW-1	08/03/2000	808	290	<2.50	<2.50	8.9	<12.5										371.20	39.13	332.07		******
MW-1	10/31/2000	507	250	0.962	< 0.500	23.5	3.76										371.20	37.91	333.29		
MW-1	03/01/2001	<50.0	< 0.500	< 0.500	< 0.500	< 0.500	74.6						Annahah				371,20	39.60	331.60	and the same	
MW-1	05/30/2001	780	280	<2.0	<2.0	11		< 2.0									371.20	39.53	331.67		
MW-1	08/02/2001	1,900	580	<2.5	<2.5	12		<25								P##4.***	371.20	39.61	331.59		annot rel
MW-1	12/06/2001	840	190	< 0.50	< 0.50	13		<5.0				*****					371,20	39.63	331.57		
MW-1	02/05/2002	2,700	650	<2.5	<2.5	7.2		<25									371.20	35.53	335.67		
MW-1	06/17/2002	2,500	550	<2.0	<2.0	5.9		<20									371.20	39.29	331.91		
MW-1	07/25/2002	690	130	< 0.50	< 0.50	4.4		18							-		371.20	39.39	331.81		
MW-1	11/14/2002	400	31	< 0.50	< 0.50	2.7		27					-				371.20	40.00	331.20	war end then	
MW-1	02/12/2003	840	0.85	< 0.50	< 0.50	< 0.50		40									371.20	32.92	338.28		
MW-1	05/14/2003	680	190	<2.5	<2.5	<5.0		95		m-m-m							371.20	32.57	338.63		
MW-1	07/29/2003	870	190	<2.5	<2.5	<5.0		150									371.20	33.82	337.38		
MW-1	11/19/2003	<200	14	<2.0	<2.0	<4.0		230									371.20	38.28	332,92		
MW-1	02/19/2004	58 c	11	< 0.50	< 0.50	<1.0	P1	85							white.		371.20	36.93	334.27		
MW-1	05/03/2004	670	310	<2.5	<2.5	<5.0		420									371.20	32.70	338.50		
MW-1	08/24/2004	430 c	34	<2.5	<2.5	<5.0	***	690									371.20	34.66	336.54		~~~
MW-1	11/15/2004	<250	29	<2.5	<2.5	<5.0		470					.,				371.20	38.27	332.93		
MW-1	02/02/2005	540 e	87	<2.5	<2.5	<5.0		700									371.20	32.02	339.18		
MW-1	05/05/2005	460 e	88	<2.5	<2.5	<5.0		300									371.20	36.82	334.38		
MW-1	08/05/2005	910	230	<2.5	<2.5	<5.0		480									371.20	33.35	337.85		
MW-1	11/22/2005	1,760	27	< 0.500	< 0.500	1.18		1,160		-							371.20	33.42	337.78		
MW-1	02/07/2006	4,620	225	< 0.500	< 0.500	< 0.500		1,480					er mar				371.20	31.63	339.57		
MW-1	05/16/2006	1,100	130	< 0.50	2.0	2.1		1,600									371.20	31.16	340.04		
MW-1	08/21/2006	2,700	86	< 0.500	0.79	0.81		1,960									371.20	33.07	338.13		
MW-1	11/14/2006	1,400 c	30	<25	<25	<25		2,100	<1,000	<25	<25	<25		****			371.20	33.73	337.47		
MW-1	02/01/2007	800	21	< 0.50	< 0.50	<1.0		2,300									371.20	33.02	338.18		
MW-1	06/01/2007	1,400 d,e	68	<20	<20	4.4 f		2,200			****						371.20	32.87	338.33		
MW-1	08/22/2007	250 d	20	<20	<20	<20		3,100	1,500			-					371.20	34.64	336.56		
MW-1	11/26/2007	1,800 d	33	<20	<20	<20		3,100	930	<40	<40	<40					371.20	35.59	335.61		
MW-1	02/19/2008	1,800 d	33	<20	<20	<20		3,700	1,700								371.20	31.05	340.15		
MW-1	05/23/2008	3,700	100	<25	<25	<25		3,100	1,300								371.20	31.80	339.40		
MW-1	08/07/2008	4,200	33	<25	<25	<25		3,500	<250							-	371.20	33.03	338.17		
MW-1	12/03/2008	3,400	34	<25	<25	<25		3,200	980	transf.							371.20	35.19	336.01		
MW-1	02/05/2009	2,100	26	<25	<25	<25		1,700	340								371.20	35.07	336.13		
MW-1	05/07/2009	4,400	230	<25	<25	<25		3,700	980								371.20	32.45	338.75		

Well ID	Date	TPHg (µg/L)	Β (μg/L)	Τ (μg/L)	E (µg/L)	X (µg/L)	MTBE 8020 (µg/L)	MTBE 8260 (μg/L)	TBA (µg/L)	DIPE (µg/L)	ETBE (µg/L)	TAME (μg/L)	Nitrate as N (µg/L)	Sulfate (µg/L)	Alkalinity as CaCO ₃ (µg/L)	Ferrous Iron (µg/L)	TOC (ft MSL)	Depth to Water (ft TOC)	GW Elevation (ft MSL)	DO (mg/L)	ORP (mV)
MW-1	08/20/2009	3,100	86	<25	<25	<25		2,500	730								371.20	34.48	336.72		
MW-1	11/09/2009	3,200	230	<20	<20	33		2,100	530	<40	<40	<40					371.20	35.84	335.36		
MW-1	02/11/2010	4,400	30	<20	<20	<20		3,000	730								371.20	34.06	337.14		
MW-1	05/13/2010	3,300	38	<20	<20	<20		3,300	1,100								371.20	31.99	339.21		
MW-1	08/05/2010	4,200	12	<20	<20	<20		3,800	1,300		***						371.20	33.70	337.50		
MW-1	10/30/2010	2,700	<10	<20	<20	<20		3,400	770	<40	<40	<40				m 	371.20	33.12	338.08		
MW-1	02/09/2011	2,600	32	<12	<12	<25		3,400	1,100								371.20	33.03	338.17		
MW-1	05/31/2011	<2,500	26	<25	<25	<50		3,000	1,000						****		371.20	32.21	338.99		
MW-1	07/27/2011	3,900 c	28	<10	<10	<20		4,100	1,400	,a. w.a.							371.20	33.60	337.60	No. obsessed	
MW-1	11/04/2011	4,200	<25	<25	<25	<50		4,800	<i>7</i> 90	< 50	< 50	< 50	***				371.20	31.20	340.00		
MW-1	05/23/2012	3,300 .	12	<10	<10	<20		3,400	710				5,000 g	19,000	630,000	<100	371.20	32.61	338.59	2.28	63
MW-1	08/31/2012																371.20	34.72	336.48		
MW-1	09/04/2012																371.20	31.31	339.89		
MW-1	09/07/2012	<5,000	< 50	<50	<50	<100		2,700	<1,000				4, 500 a	20,000	640,000		371.20	35.82	335.38	1.21	96
MW-1	11/13/2012	2,600	52	<25	<25	< 50		2,700	< 500	<25	<25	<25	4,700	21,000	630,000	****	371.20	37.19	334.01	1.93	54
MW-1	05/14/2013	6,500	410	<5.0	< 5.0	<10		1,600	940				1,900	17,000	670,000		371.20	36.01	335.19	1.25	112
MW-1	07/31/2013	4,700	550	<5.0	< 5.0	59		870	470				350	42,000	530,000	~~~	371.20	37.02	334.18	1.75	-10
MW-1	11/12/2013	2,100	71	<5.0	< 5.0	<10		1,300	810			atras de	970	19,000	710,000		371.20	39.50	331.70	1.68	88
MW-1	02/04/2014	1,200	13	< 0.50	< 0.50	<1.0		1,500	890				2,200	18,000	700,000		371.20	39.84	331.36	1.19	140
MW-1	05/12/2014	2,000	59	<10	<10	<20		1,500	670				280	21,000	650,000		371.20	39.26	331.94	1.44	72
MW-1B	09/21/2006											******					371.67	76.94	294.73		******
MW-1B	09/28/2006	< 50	< 0.50	< 0.50	< 0.50	< 0.50		21	<20								371.67	77.15	294.52		
MW-1B	11/14/2006	320 c	<5.0	<5.0	< 5.0	<5.0		310	<200	<5.0	<5.0	<5.0					371.67	69.38	302.29		
MW-1B	02/01/2007	77	0.53	< 0.50	< 0.50	<1.0		150	entreduct								371.67	60.92	310.75		
MW-1B	06/01/2007	<50 d,e	0.25 f	<1.0	<1.0	<1.0		74									371.67	61.07	310.60		
MW-1B	08/22/2007	<50 d	0.25 f	<1.0	<1.0	<1.0		35	7.1 f								371.67	77.54	294.13		
MW-1B	11/26/2007	<50 d	< 0.50	<1.0	<1.0	<1.0		1.7	<10	< 2.0	<2.0	<2.0					371.67	68.50	303.17		
MW-1B	02/19/2008	65 d	2.6	4.2	<1.0	1.1		58	<10								371.67	57.21	314.46	***	
MW-1B	05/23/2008	<50	< 0.50	<1.0	<1.0	<1.0		3.6	<10								371.67	57.53	314.14		
MW-1B	08/07/2008	<50	< 0.50	<1.0	<1.0	<1.0		1.1	<10								371.67	72.51	299.16		
MW-1B	12/03/2008	<50	<0.50	<1.0	<1.0	<1.0		3.4	<10								371.67	80.84	290.83		
MW-1B	02/05/2009	<50	< 0.50	<1.0	<1.0	<1.0		4.4	<10								371.67	76.11	295.56		
MW-1B	05/07/2009	<50	< 0.50	<1.0	<1.0	<1.0		2.5	13								371.67	66.97	304.70		
MW-1B	08/20/2009	<50	<0.50	<1.0	<1.0	<1.0		1.7	<10		***						371.67	97.32	274.35		
MW-1B	11/09/2009	< 50	< 0.50	<1.0	<1.0	<1.0		<1.0	<10	<2.0	<2.0	<2.0					371.67	98.90	272.77		
MW-1B	02/11/2010	<50	< 0.50	<1.0	<1.0	<1.0		1.1	<10								371.67	90.72	280.95		
MW-1B	05/13/2010	<50	< 0.50	<1.0	<1.0	<1.0		2.0	<10				mar-14				371.67	80.56	291.11		
MW-1B	08/05/2010	<50	< 0.50	<1.0	<1.0	<1.0		<1.0	<10	'							371.67	90.10	281.57		
MW-1B	10/30/2010	< 50	< 0.50	<1.0	<1.0	<1.0		<1.0	<10	<2.0	<2.0	<2.0	****				371.67	102.21	269.46		
MW-1B	02/09/2011	<50	< 0.50	< 0.50	< 0.50	<1.0		<1.0	<10							~~	371.67	90.24	281.43		
MW-1B	05/31/2011	<50	< 0.50	< 0.50	< 0.50	<1.0	·	<1.0	<10								371.67	73.83	297.84		

Well ID	Date	TPHg (µg/L)	Β (μg/L)	Τ (μg/L)	E (µg/L)	Χ (μg/L)	MTBE 8020 (μg/L)	MTBE 8260 (μg/L)	TBA (µg/L)	DIPE (µg/L)	ETBE (µg/L)	TAME (µg/L)	Nitrate as N (µg/L)	Sulfate (µg/L)	Alkalinity as CaCO 3 (μg/L)	Ferrous Iron (µg/L)	TOC (ft MSL)	Depth to Water (ft TOC)	GW Elevation (ft MSL)	DO (mg/L)	ORP (mV)
MW-1B	07/27/2011	<50	< 0.50	< 0.50	< 0.50	<1.0		<1.0	<10								371.67	82.90	288.77		
	11/04/2011	<50	< 0.50	< 0.50	< 0.50	<1.0		<1.0	<10	<1.0	<1.0	<1.0					371.67	89.19	282.48		
MW-1B	, ,	<50	< 0.50	< 0.50	< 0.50	<1.0		1.2	<10				18,000	51,000	270,000	<100	371.67	82.10	289.57	2.67	207
MW-1B	09/07/2012	< 50	< 0.50	< 0.50	< 0.50	<1.0		< 0.50	<10				19,000 a	49,000	260,000		371.66	102.45	269.21	1.54	204
	11/13/2012	<50	< 0.50	< 0.50	< 0.50	<1.0		< 0.50	<10	< 0.50	< 0.50	< 0.50	21,000	70,000	270,000		371.66	102.33	269.33	2.25	121
MW-1B	05/14/2013	<50	< 0.50	< 0.50	< 0.50	<1.0		< 0.50	<10				25,000	53,000	280,000		371.66	99.32	272.35	1.41	96
MW-1B		<50	< 0.50	< 0.50	< 0.50	<1.0		< 0.50	<10		,		20,000	50,000	270,000		371.66	102.77	268.90	1.98	20
MW-1B	11/12/2013	<50	< 0.50	< 0.50	< 0.50	<1.0		< 0.50	<10				19,000	49,000	300,000		371.66	102.83	268.83	1.96	92
MW-1B	02/04/2014	<50	< 0.50	< 0.50	< 0.50	<1.0		< 0.50	<10				22,000	54,000	330,000		371.66	102.89	268.77	1.09	154
MW-1B		<50	< 0.50	< 0.50	< 0.50	<1.0		< 0.50	<10				22,000	54,000	290,000		371.66	102.50	269.16	1.77	83
	, ,																				
MW-2	02/03/2000				~~~												372.40	32.65	339.75		
MW-2	02/07/2000																372.40	35.51	336.89		
MW-2	02/10/2000	<50.0	< 0.500	< 0.500	< 0.500	< 0.500	2.61										372.40	36.62	335.78		
MW-2	05/17/2000	120	4.09	< 0.500	< 0.500	< 0.500	29	·									372.40	32.14	340.26		
MW-2	08/03/2000	<50.0	0.692	< 0.500	< 0.500	< 0.500	40.5	36.6 b	-								372.40	32.42	339.98		
MW-2	10/31/2000	<50.0	< 0.500	< 0.500	< 0.500	< 0.500	57.4	44.8 a									372.40	33.02	339.38		
MW-2	03/01/2001	173	1.64	1.65	2.86	3.97	127	167									372.40	32.54	339.86	******	
MW-2	05/30/2001	<50	< 0.50	< 0.50	< 0.50	< 0.50		170									372.40	32.42	339.98		
MW-2	08/02/2001	< 50	< 0.50	< 0.50	< 0.50	< 0.50		160									372.40	32.55	339.85		
MW-2	12/06/2001	<50	< 0.50	< 0.50	< 0.50	< 0.50		170					'				372.40	33.15	339.25		
MW-2	02/05/2002	< 50	0.72	< 0.50	< 0.50	1.7	****	170									372.40	32.29	340.11		
MW-2	06/17/2002	<50	< 0.50	< 0.50	< 0.50	< 0.50		260		~	mter-%						372.40	32.63	339.77		******
MW-2	07/25/2002	< 50	< 0.50	< 0.50	< 0.50	< 0.50		280									372.40	32.80	339.60		
MW-2	11/14/2002	120	13	9.0	3.8	14	*****	430									372.40	33.31	339.09		
MW-2	02/12/2003	<100	<1.0	<1.0	<1.0	<1.0		430		***	~~~						372.40	32.15	340.25		-
MW-2	05/14/2003	<250	<2.5	<2.5	<2.5	<5.0		470									372.40	32.01	340.39		
MW-2	07/29/2003	<250	<2.5	<2.5	<2.5	< 5.0		670								******	372.40	32.51	339.89		
MW-2	11/19/2003	< 50	< 0.50	< 0.50	< 0.50	<1.0		54									372.40	33.83	338.57		
MW-2	02/19/2004	65	< 0.50	3.4	1.4	6.5	#1.0°-144	8.2									372.40	32.68	339.72		
MW-2	05/03/2004	<50	< 0.50	< 0.50	< 0.50	<1.0		5.2									372,40	32.07	340.33	*****	
MW-2	08/24/2004	< 50	< 0.50	< 0.50	< 0.50	<1.0		2.7									372.40	32.44	339.96		
MW-2	11/15/2004	<50	< 0.50	< 0.50	< 0.50	<1.0		1.3		,							372.40	32.95	339.45		
MW-2	02/02/2005	<50	< 0.50	< 0.50	< 0.50	<1.0		24									372.40	31.94	340.46		
MW-2	05/05/2005	72 c	< 0.50	< 0.50	< 0.50	<1.0		4.9									372.40	31.91	340.49	***	
MW-2	08/05/2005	< 50	< 0.50	< 0.50	< 0.50	<1.0		16									372.40	32.15	340.25		
MW-2	11/22/2005	840	0.80	< 0.500	< 0.500	0.87		556								-	372.40	32.31	340.09		
MW-2	02/07/2006	3,550	< 0.500	< 0.500	< 0.500	< 0.500		2,500	****								372.40	31.70	340.70	, mar. mar.	
MW-2	05/16/2006	1,400	<5.0	< 5.0	<5.0	<10		1,700		****							372.40	31.38	341.02		
MW-2	08/21/2006	1,910	< 0.500	< 0.500	< 0.500	< 0.500		2,590									372.40	33.29	339.11		-
MW-2	11/14/2006	2,300 c	<25	<25	<25	<25		2,500	<1,000	<25	<25	<25					372.40	32.67	339.73		
MW-2	02/01/2007	670	< 0.50	< 0.50	< 0.50	<1.0		2,000									372.40	32.13	340.27		

Well ID	Date	TPHg (µg/L)	B (µg/L)	Τ (μg/L)	E (µg/L)	X (µg/L)	MTBE 8020 (µg/L)	MTBE 8260 (μg/L)	TBA (µg/L)	DIPE (µg/L)	ETBE (µg/L)	TAME (µg/L)	Nitrate as N (µg/L)	Sulfate (µg/L)	Alkalinity as CaCO 3 (μg/L)	Ferrous Iron (µg/L)	TOC (ft MSL)	Depth to Water (ft TOC)	GW Elevation (ft MSL)	DO (mg/L)	ORP (mV)
MW-2	06/01/2007	500 d,e	<10	<20	<20	<20		2,000					****				372.40	32.14	340.26		
MW-2	08/22/2007	100 d _. e	<10	<20	<20	<20		2,400	120 f								372.40	32.93	339.47		
MW-2	11/26/2007	1,600 d,e	<10	<20	<20	<20		2,900	<200	<40	<40	<40			*****		372.40	33.44	338.96		
MW-2	02/19/2008	1,300 d,e	<10	<20	<20	<20		3,300	<200			*******					372,40	31.18	341.22		
MW-2	05/23/2008	1,900	<12	<25	<25	<25		1,700	<250								372.40	31.44	340.96		
MW-2	08/07/2008	1,700	<10	<20 .	<20	<20		1,300	<200								372.40	31.94	340.46		
MW-2	12/03/2008	3,000	<10	<20	<20	<20		2,900	<200		-						372,40	32.53	339.87		
MW-2	02/05/2009	1,200	<10	<20	<20	<20		1,000	<200								372.40	32.29	340.11		
MW-2	05/07/2009	2,400	<10	<20	<20	<20		2,400	<200	was and sout							372.40	31.98	340.42		
MW-2	08/20/2009	2,800	<10	<20	<20	<20		2,400	<200								372.40	32.51	339.89		
MW-2	11/09/2009	4,100	<12	<25	<25	<25		3,800	<250	<50	<50	<50			4-4-4		372.40	32.43	339.97		
MW-2	02/11/2010	4,300	<12	<25	<25	<25		3,200	<250								372.40	32.07	340.33		
MW-2	05/13/2010	2,400	<10	<20	<20	<20		2,500	<200								372.40	31.63	340.77		
MW-2	08/05/2010	1,500	<5.0	<10	<10	<10		1,400	210								372.40	33.82	338.58		
MW-2	10/30/2010	1,700	<5.0	<10	<10	<10		2,200	130	<20	<20	<20					372.40 372.40	32.82 32.11	339.58 340.29		
MW-2	02/09/2011	1,400	<12	<12	<12	<25		1,900	<250 <200								372.40	31.97	340.43		
MW-2	05/31/2011	<1,000 1,600 c	<10	<10 <10	<10 <10	<20 <20		1,200 2,000	<200 <200								372.40	32.30	340.43		
MW-2 MW-2	07/27/2011 11/04/2011	2,100	<10 <10	<10	<10	<20		2,500	<200	<20	<20	<20					372.40	33.20	339.20		
MW-2		2,700	<10	<10	<10	<20		3,000	<200	~20 	~20		7,500	70,000	300,000	300	372.40	31.92	340.48	1.51	42
MW-2	05/23/2012 09/07/2012	2,500 c	<25	<25	<25	<50		2,100	<500				5,800 a	80,000	300,000		372.40	33.32	339.08	1.75	68
MW-2	11/13/2012	2,100	<20	<20	<20	<40		2,500	<400	<20	<20	<20	8,400	77,000	310,000		372.40	34.91	337.49	1.27	22
MW-2	05/14/2013	840 i	<5.0	<5.0	<5.0	<10	*****	730	<100				5,800	55,000	420,000		372.40	33.61	338.79	0.53	78
MW-2	07/31/2013	1,500	<10	<10	<10	<20		1,100	<200				9,500	79,000	300,000		372.40	35.00	337.40	1.07	1
MW-2	11/12/2013	1,800	<10	<10	<10	<20		1,600	<200				7,300	77,000	340,000		372.40	37.25	335.15	1.03	28
MW-2	02/04/2014	1,600	<10	<10	<10	<20		2,000	<200				9,200	72,000	170,000		372.40	37.25	335.15	1.18	129
MW-2	05/12/2014	2,600 i	<25	<25	<25	<50		2,500	<500				230	71,000	340,000		372.40	37.00	335.40	1.12	36
MW-2	06/10/2014			men												men	372.26				
	, -																				
MW-3	02/03/2000	and the same															375.05	32.06	342.99		
MW-3	02/07/2000						*******										375.05	32.57	342.48		
MW-3	02/10/2000	180	5.12	< 0.500	< 0.500	0.714	26.8	21.5a						·			375.05	32.77	342.28	*****	
MW-3	05/17/2000	1,360	414	< 5.00	<5.00	17.6	<25.0										375.05	31.00	344.05		
MW-3	08/03/2000	<50.0	0.536	< 0.500	< 0.500	< 0.500	22										375.05	31.03	344.02		
MW-3	10/31/2000	<50.0	< 0.500	< 0.500	< 0.500	< 0.500	31.1										375.05	31.28	343.77		
MW-3	03/01/2001	384	172	0.815	< 0.500	8.0	5.16							~			375.05	31.21	343.84		
MW-3	05/30/2001	<50	< 0.50	< 0.50	< 0.50	<0.50		110							physical		375.05	31.02	344.03		****
MW-3	08/02/2001	< 50	< 0.50	< 0.50	< 0.50	<0.50		93									375.05	30.94	344.11		
MW-3	12/06/2001	110	< 0.50	<0.50	< 0.50	2.3		180									375.05	31.28	343.77		
MW-3	02/05/2002	<50	0.89	0.60	< 0.50	2.1		130									375.05	31.12	343.93		
MW-3	06/17/2002	<50	< 0.50	< 0.50	<0.50	<0.50		72									375.05	31.21	343.84		
MW-3	07/25/2002	< 50	< 0.50	< 0.50	< 0.50	< 0.50		81									375.05	30.96	344.09		

Well ID	Date	TPHg (µg/L)	B (µg/L)	T (µg/L)	E (µg/L)	X (μg/L)	MTBE 8020 (μg/L)	MTBE 8260 (μg/L)	TBA (μg/L)	DIPE (μg/L)	ETBE (µg/L)	TAME (µg/L)	Nitrate as N (µg/L)	Sulfate (µg/L)	Alkalinity as CaCO 3 (µg/L)	Ferrous Iron (µg/L)	TOC (ft MSL)	Depth to Water (ft TOC)	GW Elevation (ft MSL)	DO (mg/L)	ORP (mV)
MW-3	11/14/2002	<50	< 0.50	< 0.50	< 0.50	< 0.50		60						wh-trink			375.05	31.44	343.61		
MW-3	02/12/2003	< 50	< 0.50	< 0.50	< 0.50	< 0.50		43									375.05	31.28	343.77		*****
MW-3	05/14/2003	<50	< 0.50	< 0.50	< 0.50	<1.0		24		ner ent mit							375.05	31.20	343.85		
MW-3	07/29/2003	<50	< 0.50	< 0.50	< 0.50	<1.0		21									375.05	31.29	343.76	***************************************	
MW-3	11/19/2003	<50	< 0.50	< 0.50	< 0.50	<1.0		8.2									375.05	31.86	343.19		
MW-3	02/19/2004	81	0.67	4.4	1.8	8.6		13									375.05	31.66	343.39		
MW-3	05/03/2004	<50	< 0.50	< 0.50	< 0.50	<1.0		13									375.05	31.72	343.33		
MW-3	08/24/2004	< 50	< 0.50	< 0.50	< 0.50	<1.0		10						+***			375.05	32.09	342.96		
MW-3	11/15/2004	<50	< 0.50	< 0.50	< 0.50	<1.0		6.6									375.05	31.50	343.55		
MW-3	02/02/2005	<50	< 0.50	< 0.50	< 0.50	<1.0		3.1									375.05	31.28	343.77		
MW-3	05/05/2005	<50	< 0.50	< 0.50	< 0.50	<1.0		2.3									375.05	31.42	343.63		
MW-3	08/05/2005	< 50	< 0.50	< 0.50	< 0.50	<1.0		2.4									375.05	31.35	343.70		
MW-3	11/22/2005	<50	< 0.500	< 0.500	< 0.500	< 0.500		3.84									375.05	31.98	343.07		
MW-3	02/07/2006	<50.0	< 0.500	< 0.500	< 0.500	< 0.500		< 0.500	*******								375.05	31.24	343.81		
MW-3	05/16/2006	< 50	< 0.50	< 0.50	< 0.50	<1.0		4.5									375.05	31.37	343.68		
MW-3	08/21/2006	<50.0	< 0.500	< 0.500	< 0.500	< 0.500		4.04		*****							375.05	31.95	343.10		
MW-3	11/14/2006	< 50	< 0.50	< 0.50	< 0.50	< 0.50		3.8	<20	< 0.50	< 0.50	< 0.50			AL		375.05	32.24	342.81		
MW-3	02/01/2007	<50	< 0.50	< 0.50	< 0.50	<1.0		2.8				******					375.05	32.17	342.88		
MW-3	06/01/2007	<50 d	< 0.50	<1.0	<1.0	<1.0		3.1									375.05	31.86	343.19		
MW-3	08/22/2007	<50 d	< 0.50	<1.0	<1.0	<1.0		4.6	<10								375.05	32.18	342.87		
MW-3	11/26/2007	<50 d	< 0.50	<1.0	<1.0	<1.0		3.5	<10	< 2.0	<2.0	<2.0					375.05	32.69	342.36		
MW-3	02/19/2008	<50 d	< 0.50	1.2	<1.0	<1.0		2.6	<10								375.05	30.94	344,11		
MW-3	05/23/2008	< 50	< 0.50	<1.0	<1.0	<1.0		3.6	<10						*********		375.05	31.45	343.60		
MW-3	08/07/2008	< 50	< 0.50	<1.0	<1.0	<1.0		3.0	<10					******			375.05	31.40	343.65		
MW-3	12/03/2008	<50	< 0.50	<1.0	<1.0	<1.0		2.1	<10								375.05	32.12	342.93		
MW-3	02/05/2009	<50	< 0.50	<1.0	<1.0	<1.0		1.1	<10								375.05	32.74	342.31		~~*
MW-3	05/07/2009	<50	< 0.50	<1.0	<1.0	<1.0		<1.0	<10								375.05	31.69	343.36		
MW-3	08/20/2009	< 50	< 0.50	<1.0	<1.0	<1.0		2.0	<10								375.05	32.42	342.63		
MW-3	11/09/2009	<50	< 0.50	<1.0	<1.0	<1.0		1.7	<10	< 2.0	<2.0	< 2.0					375.05	32.54	342.51		
MW-3	02/11/2010	<50	< 0.50	<1.0	<1.0	<1.0		2.1	<10		ever artism?						375.05	31.81	343.24		
MW-3	05/13/2010	< 50	< 0.50	<1.0	<1.0	<1.0		1.7	<10								375.05	31.25	343.80	****	
MW-3	08/05/2010	<50	< 0.50	<1.0	<1.0	<1.0		1.2	<10								375.05	32.00	343.05		
MW-3	10/30/2010	<50	< 0.50	<1.0	<1.0	<1.0		1.4	<10	< 2.0	<2.0	<2.0					375.05	32.18	342.87		
MW-3	02/09/2011	< 50	< 0.50	< 0.50	< 0.50	<1.0		1.7	<10							·	375.05	31.80	343.25		
MW-3	05/31/2011	<50	< 0.50	< 0.50	< 0.50	<1.0		1.9	<10								375.05	31.60	343.45		
MW-3	07/27/2011	<50	< 0.50	< 0.50	< 0.50	<1.0		1.8	<10								375.05	32.00	343.05		
MW-3	11/04/2011	<50	< 0.50	< 0.50	< 0.50	<1.0		2.1	<10	<1.0	<1.0	<1.0	44.444				375.05	32.55	342.50	-	
MW-3	05/23/2012	<50	0.67	< 0.50	< 0.50	1.9		0.91	<10				1,400	36,000	250,000	5,000	375.05	31.52	343.53	1.81	-5
MW-3	09/07/2012	<50	< 0.50	< 0.50	< 0.50	<1.0		1.6	<10				<110 a	28,000	270,000		375.05	32.66	342.39	1.06	-10
MW-3	11/13/2012	<50	< 0.50	< 0.50	< 0.50	<1.0		1.8	<10	< 0.50	< 0.50	< 0.50	<110	7,300	330,000		375.05	33.35	341.70	1.44	-26
MW-3	05/14/2013	<50	< 0.50	< 0.50	< 0.50	<1.0		1.2	<10				<110	17,000	280,000		375.05	32.92	342.13	1,10	78
MW-3	07/31/2013	<50	< 0.50	< 0.50	< 0.50	<1.0		2.5	<10				<110	2,400	370,000		375.05	33.56	341.49	1.56	-82

Well ID	Date	TPHg (μg/L)	B (µg/L)	T (µg/L)	E (µg/L)	X (µg/L)	MTBE 8020 (μg/L)	MTBE 8260 (μg/L)	TBA (µg/L)	DIPE (μg/L)	ETBE (µg/L)	TAME (µg/L)	Nitrate as N (µg/L)	Sulfate (µg/L)	Alkalinity as CaCO 3 (µg/L)	Ferrous Iron (µg/L)	TOC (ft MSL)	Depth to Water (ft TOC)	GW Elevation (ft MSL)	DO (mg/L)	ORP (mV)
MW-3	11/12/2013	<50	< 0.50	< 0.50	< 0.50	<1.0		1,2	<10								375.05	34.20	340.85	1.26	-8
MW-3	02/04/2014	Insufficient															375.05	34.12	340.93		
MW-3	05/12/2014	<50	< 0.50	< 0.50	< 0.50	<1.0		0.94	<10				<110	150,000	250,000		375.05	33.30	341.75	1.19	-31
MW-4	09/21/2006										~	 -					372.78	31.58	341.20		
MW-4	09/28/2006	11,000	<250	<250	<250	<250		13,000	<10,000					********			372.78	31.57	341.21		
MW-4	11/14/2006	30,000	<250	<250	<250	<250 a		14,000	<10,000	<250	<250	<250			***		372.78	32.11	340.67		
MW-4	02/01/2007	6,300	50	<5.0	19	120	*****	14,000								****	372.78	33.23	339.55		
MW-4	06/01/2007	8,200 d	52	<25	26	150		11,000									372.78	31.57	341.21		
MW-4	08/22/2007														,a		372.78	33.40	339.38		
MW-4	11/26/2007	12,000 d	71	<100	<100	<100		20,000	<1,000	<200	<200	<200					372.78	34.74	338.04		
MW-4	02/19/2008	13,000 d	<100	<200	<200	<200		18,000	2,900		~~~						372.78	29.70	343.08		
MW-4	05/23/2008	21,000	<100	<200	<200	<200		16,000	<2,000			brauer.					372.78	31.67	341.11		
MW-4	08/07/2008	27,000	<100	<200	<200	<200		21,000	<2,000								372,78	31.90	340.88		
MW-4	12/03/2008	20,000	19	<25	<25	29		21,000	2,500				*****				372.78	34.32	338.46		
MW-4	02/05/2009	15,000	200	<200	<200	<200		13,000	<2,000		***						372.78	34.58	338.20		
MW-4	05/07/2009	18,000	<1.00	<200	<200	<200		17,000	<2,000		*****						372.78	31.34	341.44	-	
MW-4	08/20/2009	15,000	<50	<100	<100	<100		13,000	1,900	***					error rel		372.78	33.56	339.22		
MW-4	11/09/2009	13,000	<50	<100	<100	<100		11,000	<1000	<200	<200	<200					372.78	33.57	339.21		
MW-4	02/11/2010	11,000	95	<100	<100	110		7,500	3,200								372.78	31.21	341.57		
MW-4	05/13/2010	8,800	48	<50	57	96		7,800	2,900								372.78	30.19	342.59		
MW-4	08/05/2010	4,000	<12	<25	<25	<25		3,600	600								372.78	32.22	340.56		
MW-4	10/30/2010	6,800	<12	<25	<25	<25	***	8,200	1,400	< 50	<50	<50					372.78	33.95	338.83		
MW-4	02/09/2011	<5,000	<50	<50	<50	<100		5,800	2,700								372.78	31.56	341.22		
MW-4	05/31/2011	<5,000	<50	<50	<50	<100		5,600	1,200								372.78	30.78	342.00		****
MW-4	07/27/2011	4,500 c	<10	<10	18	21		5,200	2,100		********						372.78	31.64	341.14		
MW-4	11/04/2011	3,400 c	<25	<25	<25	<50		4,400	1,800	< 50	<50	<50					372.78	33.53	339.25		
MW-4	05/23/2012	3,500	<10	<10	13	<20		4,900	1,400				5,300	69,000	300,000	1,000	372.78	31.12	341.66	1.44	-6
MW-4	08/31/2012																372.79	33.77	339.02		
MW-4	09/04/2012								-pinglah								372.79	34.18	338.61		
MW-4	09/07/2012	5,900 c	<50	<50	<50	<100		5,000	<1,000			-	4,300 a	71,000	320,000		372.79	34.55	338.24	1.21	66
MW-4	11/13/2012	1,200	<10	<10	<10	<20		1,400	970	<10	<10	<10	2,100	53,000	300,000		372.79	36.25	336.54	1.38	85
MW-4	04/01/2013	,									-10						372,79	28.95	343.83		
	, ,	010	<0.50	< 0.50		7.5		46	290				1,700	130,000	80,000		372.79	35.48	337.30	1.34	70
MW-4	05/14/2013	910		<0.50	1. 4 2.0	2.8		200	630				1,900	81,000	100,000		372.79	36.00	336.78	1.43	31
MW-4	07/31/2013	1,200	< 0.50											55,000	170,000		372,79	38.15	334.64	1.70	38
MW-4	11/12/2013	1,200	1.3	<0.50	2.3	2.2		96	1,100	******			470		•		372.79	38.84	333.95	0.74	136
MW-4	02/04/2014	1,600	< 0.50	<0.50	2.1	<1.0		77 40	990			*****	1,300	48,000	340,000	22	372.79	37.91	334.88	1.62	44
MW-4	05/12/2014	420	<0.50	<0.50	<0.50	<1.0		49	170				790	62,000	140,000		3/2./9	37.91	554.00	1.02	***
TB-1	02/12/2003	Well inacce	essible															ميسني			
TB-1	02/28/2003																	12.54			
TB-1	05/14/2003	<50	< 0.50	< 0.50	< 0.50	<1.0		<5.0										12.31			
110-1	00/14/2000	~50	*0.00	-0.00	-0.00	-1.0		.0.0													

Well ID	Date	TPHg (µg/L)	Β (μg/L)	T (µg/L)	E (µg/L)	X (µg/L)	MTBE 8020 (μg/L)	MTBE 8260 (µg/L)	TBA (µg/L)	DIPE (µg/L)	ETBE (µg/L)	TAME (μg/L)	Nitrate as N (µg/L)	Sulfate (µg/L)	Alkalinity as CaCO 3 (µg/L)	Ferrous Iron (µg/L)	TOC (ft MSL)	Depth to Water (ft TOC)	GW Elevation (ft MSL)	DO (mg/L)	ORP (mV)
TB-2	02/12/2003	Well inacce	ssible																		******
TB-2	02/28/2003						encode et l						an order	principal and the second				12.56			
TB-2	05/14/2003	Insufficient	water															12.54		****	
TB-3	02/12/2003	Well dry																		***	
TB-3	02/28/2003	Well dry																	***		
TB-3	05/14/2003	Well dry																			
TB-4	02/12/2003	Well dry				24 mark			 ,				witted						nee pas vis,		
TB-4	02/28/2003	Well dry							-2												
TB-4	05/14/2003	Well dry																			
AS-1	08/31/2012													~			373.39	34.55	338.84		
AS-1	09/04/2012										****						373.39	35.08	338.31		
AS-1	09/07/2012	8,500	<50	<50	<50	<100		10,000						~~*			373.39	34.55	338.84	1.17	187
EW-1	08/31/2012																372.14				
EW-1	09/07/2012	Well dry	:								****						372.14				
EW-1	09/14/2012	<50	< 0.50	<0.50	< 0.50	<1.0		3.9	<10								372.14	19.03	353.11		
EW-1	09/14/2012	1,600 h	3.8 h	0.84 h	20 h	76 h		36 h	1,200 h		`						372.14				
EW-2	08/31/2012	****						***									372,74	33.61	339.13		
EW-2	09/04/2012							***									372.74	34.16	338.58		
EW-2	09/07/2012	3,600	<25	<25	<25	< 50		4,100									372.74	35.02	337.72	1.83	166
EW-2	09/14/2012	3,800	<25	<25	<25	<50		3,400	670				M1=14				372.74	****			
OBS-1	08/31/2012			***					~~~								372.28	33.50	338.78		
OBS-1	09/04/2012	****												record out			372.28	35.18	337.10		
P-1	08/31/2012	-														Maket	372.51			44-74-84	
P-1	09/07/2012	Well dry						,						Photophy			372.51				
P-2	08/31/2012							****									372.39	33.42	338.97		
P-2	09/04/2012								et met						,		372.39	34.00	338.39		
P-2	09/07/2012	7,700	580	<10	30	<20		1,800		an was					water page		372.39	34.61	337.78	1.62	193
SVE-5	08/31/2012														~		372.93	33.83	339.10		
SVE-5	09/04/2012			***													372.93	35.30	337.63		
SVE-5	09/07/2012	4,200	<25	<25	<25	<50		4,900									372.93	36.20	336.73	1.49	180

Notes:

							MTBE	MTBE					Nitrate		Alkalinity	Ferrous		Depth to	GW		
Well ID	Date	TPHg	В	T	E	\boldsymbol{X}	8020	8260	TBA	DIPE	ETBE	TAME	as N	Sulfate	as CaCO 3	Iron	TOC	Water	Elevation	DO	ORP
		(μg/L)	(µg/L)	(μg/L)	(μg/L)	(µg/L)	(μg/L)	$(\mu g/L)$	(μg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	$(\mu g/L)$	(µg/L)	(ft MSL)	(ft TOC)	(ft MSL)	(mg/L)	(mV)

TPHg = Total petroleum hydrocarbons as gasoline analyzed by EPA Method 8260B; prior to 5/30/2001, analyzed by EPA Method 8015 unless otherwise noted.

BTEX = Benzene, toluene, ethylbenzene, and total xylenes analyzed by EPA Method 8260B; prior to 5/30/2001, analyzed by EPA Method 8020.

MTBE = Methyl tertiary-butyl ether analyzed as noted

TBA = Tertiary-butyl alcohol analyzed by EPA Method 8260B

DIPE = Di-isopropyl ether analyzed by EPA Method 8260B

ETBE = Ethyl tertiary-butyl ether analyzed by EPA Method 8260B

TAME = Tertiary-amyl methyl ether analyzed by EPA Method 8260B

Nitrate as N and sulfate analyzed by EPA Method 300.0

Alkalinity as CaCO3 analyzed by SM 2320 B

Ferrous iron analyzed by SM 3500 Fe B

TOC = Top of casing elevation, in feet relative to mean sea level

GW = Groundwater

DO = Dissolved oxygen

ORP = Oxidation reduction potential

 $\mu g/L = Micrograms per liter$

ft = Feet

MSL = Mean sea level

mg/L = Milligrams per liter

mV = Millivolts

< x =Not detected at reporting limit x

--- = Not analyzed or available

- a = Sample was analyzed outside the EPA recommended holding time.
- b = Concentration is an estimate value above the linear quantitation range.
- c = Hydrocarbon result partly due to individual peak(s) in quantitation range.
- d = Analyzed by EPA Method 8015B (M).
- e = The sample chromatographic pattern for TPH does not match the chromatographic pattern of the specified standard. Quantitation of the unknown hydrocarbon(s) in the sample was based upon the specified standard.
- f = Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
- g = Result exceeded calibration range
- h = Post pilot test samples
- i = Concentration reported is due to the presence of discrete peak of MTBE.

Well MW-1 surveyed on May 4, 1999 by Virgil Chavez Land Surveying

Site wells surveyed on March 19, 2000 by Virgil Chavez Land Surveying

Site wells surveyed on January 15, 2002 by Virgil Chavez Land Surveying

Site wells surveyed on September 5, 2012 by Virgil Chavez Land Surveying

September 21, 2006 survey data for wells MW-1B and MW-4 provided by Delta Environmental Consultants, Inc.

APPENDIX A

BLAINE TECH SERVICES, INC. - FIELD NOTES

WELL GAUGING DATA

Proj	ect # <u>14092</u>	- 104	Date 5	-12-14	Client	_ Snell	
			***************************************		Martine (Angline) de la serie e e de descuer descuer de la serie d		
Site	4212	Ist St.	Reusanton	UA.			

Well ID	Time	Well Size (in.)	Sheen / Odor	Depth to Immiscible Liquid (ft.)			Depth to water	Depth to well bottom (ft.)	Survey Point: TOB or	Notes
Mw-1	1206	2					39.26	57.17		
MW-1B	17204	4					louso	108.00		
MW-2	1209	Ц					37.00	45.77		
MW-3	1202	4					33, 30	34.60		
Mw-4	1210	1					37.91	46.45		
						,				: :
					. 5				:	. `
				,						

BTS #: 1405(2-J04	Site: 999958	34 <u>0</u>							
Sampler: JO	Date: 5- (*	2-14							
Well I.D.: MW- \	Well Diameter	:(2) 3 4	6 8						
Total Well Depth (TD): 57.17	Depth to Water (DTW): 39.26								
Depth to Free Product:	Thickness of Free Product (feet):								
Referenced to: (PVC) Grade	D.O. Meter (if	req'd):	(YSI) HACH						
DTW with 80% Recharge [(Height of Water	Column x 0.20)) + DTW]: 4	2.84						
Purge Method: Bailer Disposable Bailer Positive Air Displacement Extrac Electric Submersible Other	Waterra Peristaltic tion Pump	Sampling Method: Other:	Disposable Bailer Extraction Port Dedicated Tubing						
$\frac{1}{1 \text{ Case Volume}} (Gals.) \times \frac{3}{Specified Volumes} = \frac{34.8}{Calculated Vo}$	Well Diamete 1" 2" 3"	er Multiplier Well 0.04 4" 0.16 6" 0.37 Othe	Diameter Multiplier 0.65 1.47 r radius ² * 0.163						
Time Temp (°F) pH Cond. (mS or μS)	Turbidity (NTUs)	Gals. Removed	Observations						
1258 71.6 6.42 1621	72	11.6							
Well Devulend	0 13.0								
1310 72,7 6.50 1611	38	Chinate and the state of the st							
			T/21 = 0.0						
Did well dewater? (Yes No	Gallons actuall	y evacuated:	13.0						
Sampling Date: 5-12-14 Sampling Time	=: 131D	Depth to Wate	r: 5096(zh)						
Sample I.D.: \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Laboratory:	(Test America)	Other						
Analyzed for: трн-д втех мтве трн-д	Oxygenates (5)	Other: See	(00						
EB I.D. (if applicable): @ Time	Duplicate I.D.								
Analyzed for: трн-с втех мтве трн-р	Oxygenates (5)	Other:							
D.O. (if req'd): Pre-purge:	mg/ _L P	ost-purge:	ી. મેર્લ ^{mg} /∟						
O.R.P. (if req'd): Pre-purge:	mV P	ost-purge:	72 mV						

BTS #: 140512-J04	Site: 98995840								
Sampler: 30	Date: 5-12-14								
Well I.D.: Mw-18	Well Diameter: 2 3 (4) 6 8								
Total Well Depth (TD): 100.00	Depth to Water (DTW): 10256								
Depth to Free Product:	Thickness of Free Product (feet):								
Referenced to: (VC) Grade	D.O. Meter (if req'd):	(-	YSI) HACH						
DTW with 80% Recharge [(Height of Water	Column x 0.20) + DTW]	: 43	60.6 N03.60						
Purge Method: Bailer Disposable Bailer Positive Air Displacement Electric Submersible Other	Waterra Sampling I Peristaltic stion Pump	Method: Other:	Bailer Disposable Bailer Extraction Port Dedicated Tubing						
, ,	Well Diameter Multiplier I" 0.04	Well D							
$\frac{35}{1 \text{ Case Volume}} = \frac{0.5}{\text{Specified Volumes}} = \frac{0.5}{\text{Calculated Volumes}}$	Gals. 2" 0.16	6" Other	0.65 1.47 radius ² * 0.163						
Cond.	Turbidity								
Time Temp (°F) pH (mS or (µS)	(NTUs) Gals. Ren	noved	Observations						
1229 71.2 7.01 1229	71000 3.5								
Well Dewaterd	2 Egallar								
440 71.8 7.00 1221	(39 -	-							
			E"= 0,0						
Did well dewater? (Yes No	Gallons actually evacuat	ed:	6-0						
Sampling Date: 5-12-14 Sampling Tim	e: 妈40 Depth to	Water	: 103.22						
Sample I.D.: MW-1B	Laboratory: Test Americ	ca) C	Other						
Analyzed for: TPH-G BTEX MTBE TPH-D	Oxygenates (5) Other:	LO C	Poc						
EB I.D. (if applicable): @ Time	Duplicate I.D. (if applica								
Analyzed for: трн-G втех мтве трн-D	Oxygenates (5) Other:								
D.O. (if req'd): Pre-purge:	^{mg} / _L Post-purge:		\.77 ^{mg} / _L						
O.R.P. (if req'd): Pre-purge:	mV Post-purge:		වී3 mV						

BTS #: 14	10512-504		•	Site: 4	1899 52	40						
Sampler:	S0			Date:		12:14						
Well I.D.:	MW-2			Well Diameter: 2 3 4 6 8								
Total Well I	Depth (TD): 4	5.44	Depth to Water (DTW): 37.00								
Depth to Fre	ee Product		~~~	Thickness of Free Product (feet):								
Referenced	to:	Pvd	Grade	D.O. N	leter (if	req'd):	(YSI) HACH					
DTW with 8	30% Recha	irge [(H	leight of Water	Colum	1 x 0.20)) + DTW]:	38.75					
Purge Method:	Bailer Disposable B Positive Air I Electric Subm	Displaceme		Waterra Peristaltic tion Pump	`:	Sampling Method	Bailer Disposable Bailer Extraction Port Dedicated Tubing					
5.7 (0 1 Case Volume	Gals.) XSpeci	っ ろ fied Volum	= nes Calculated Vo	Gals. Iume	Well Diamete I " 2" 3"	er Multiplier Well 0.04 4" 0.16 6" 0.37 Othe	Diameter Multiplier 0.65 1.47 or radius ² * 0.163					
Time	Temp (°F)	рН	Cond. (mS or µS)	1	oidity ΓUs)	Gals. Removed	Observations					
1248	72.1	6.78	922	20	9	5.4						
,		Well	Deviated @		6,4	<u> </u>						
1360	73.72	6-80	931	2.0								
				A PARA PARA PARA PARA PARA PARA PARA PA								
							E2 = 0.4 mill					
Did well de	water?	Yes	No	Gallon	s actuall	y evacuated:	6.5					
Sampling D	ate: 5-1	2-14	Sampling Time	e: [3	6 0	Depth to Wate	r: 40.26(24)					
Sample I.D.	: M	N-Z		Labora	tory:	Test America	Other					
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Ox; gena	ates (5)	Other: See	Coc					
EB I.D. (if a	applicable)	:	@ Time	Duplic	ate I.D.	(if applicable):						
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygena		Other:	Min. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.					
D.O. (if req	'd): P1	e-purge:		mg/L	P	ost-purge:	\.1Z mg/L					
O.R.P. (if re	eq'd): Pi	e-purge:		mV	P	ost-purge:	36 mV					

BTS#:	140512-50	1		Site:	98995	846					
Sampler:	So			Date:	5-12						
Well I.D.:	MW-3			Well Diameter: 2 3 (4) 6 8							
Total Well	Depth (TD): 4	1.60 .	Depth to Water (DTW): 33.30							
Depth to Fr	ee Product	•	enimon-personal	Thickn	ess of F	ree Product (fee					
Referenced	to:	(vc)	Grade	D.O. M	leter (if	req'd):	(YSI) HACH				
DTW with	80% Rech	arge [(H	leight of Water	Column	1×0.20) + DTW]: ろ	3.55				
Purge Method:	Bailer Disposable Ba Positive Air C Electric Subm	Displaceme		Waterra Peristaltic ction Pump	Well Diamete	Sampling Method: Other: Multiplier Well 1 0.04 4"	Disposable Bailer Extraction Port Dedicated Tubing				
O.O (1 Case Volume	Gals.) X Specit	3 fied Volum	nes Calculated Vo	Gals.	2" 3"	0.16 6" 0.37 Othe	1.47				
Time	Temp (°F)	рН	Cond. (mS or $\widehat{\mu}\widehat{S}$)	1	oidity (Us)	Gals. Removed	Observations				
1218	70.9	6.81	942	200	9	0.8					
,		LAZN.	pewated p	0.	اً ها ۹	ild					
1430	721	6.84	950	100		Manuscript -					
Andrews (Allenger) and the second of the		-				-					
							Fe2+ 1.6 mg 2				
Did well de	water?	Yes	No	Gallons	s actuall;	y evacuated:	(). Ť				
Sampling I)ate: 5-1	12-14	Sampling Time	e: (43	0	Depth to Wate	r: 33.80 (zur)				
Sample I.D	: Nw	-3		Laborat	tory:	Test America	Other				
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Ox; gena	tes (5)	Other: Soe	CFC				
EB I.D. (if	applicable)):	@ Time	Duplica	ate I.D. ((if applicable):					
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Oxygena	ites (5)	Other:					
D.O. (if req	(d): P1	re-purge:		mg/L	P	ost-purge:	1.19 mg/L				
O.R.P. (if r	eq'd): Pr	re-purge:		mV	Po	ost-purge:	- 3(mV				

BTS #: 140512-301	***	Site: 93995	9940						
Sampler: ১০		Date: 5-12-	14						
Well I.D.: MW-4		Well Diameter: 2 3 (4) 6 8							
Total Well Depth (TD):	46.75 ·	Depth to Water (DTW): 37.91							
Depth to Free Product:	**************************************	Thickness of F	ree Product (fee	et):					
Referenced to: (PV)	Grade	D.O. Meter (if	req'd):	(YSI) HACH					
DTW with 80% Recharge [Height of Water	Column x 0.20) + DTW]: 2	59.67					
Purge Method: Bailer Disposable Bailer Positive Air Displace Electric Submersible		Waterra Peristaltic etion Pump	Sampling Method: Other:	Disposable Bailer Extraction Port Dedicated Tubing					
57 con 3	11.1	Well Diameter	0.04 4"	Diameter Multiplier 0.65					
1 Case Volume Specified Vo	$= \frac{144}{\text{umes}} = \frac{144}{\text{Calculated Vo}}$		0.16 6" 0.37 Othe	1.47 r radius ² * 0.163					
Time Temp (°F) pH	Cond. (mS or \(\mu\S))	Turbidity (NTUs)	Gals. Removed	Observations					
1230 73.0 6.8	912	71000	5.4						
·	vell Dewate	ed Q	6.0						
\$50 F3.0 6.8		221							
			-	Fet = 00					
Did well dewater? Yes	No	Gallons actuall	ly evacuated:	6.0					
Sampling Date: 5-12-14	Sampling Tim	e: Uso	Depth to Wate	r: 36,26					
Sample I.D.: Mw-4		Laboratory:	(Test America)	Other					
Analyzed for: TPH-G BTE	MTBE TPH-D	Ox; genates (5)	Other: Sec	i ca					
EB I.D. (if applicable):	@ Time	Duplicate I.D.	(if applicable):						
Analyzed for: TPH-G BTE	MTBE TPH-D	Oxygenates (5)	Other:						
D.O. (if req'd): Pre-purg	e:	mg/ _L P	ost-purge:	\.(₆ 2					
O.R.P. (if req'd): Pre-purg	e:	mV P	ost-purge:	44 mV					

INCIDENT#	9999	5846
-----------	------	------

DATE:

5-12-14

ADDRESS

CITY & STATE

Pleusanton

CA

Well ID	Manwa	y Cover	Type, C	ondition	& Size	Well Li	vations L abeled / nted	Wel (Gri	ival I Cap oper) dition	Well l	ock Co	ndition	Sur	Pad / face dition	Note Repairs Made Detailed Explanation of Maintenance Recommended and Performed	W	os of ell lition	Repair Date and PM Initials
MW-1	Standpipe	Flush	(G)	Р	Size (Inch)		erly*	(a)	R	(G)	R	NL	(G)	P		٧		}
MW-13	Standpipe	(lush)	6	p	Size (inch)	(2)	N	(G)	R	6	R	NL	(6)	р		Y	(N)	
Mur-Z	Standpipe	Flush	40 a	(b)	Size (inch)	(3)	N	(G)	R	6	R	NL	(G)	P	Cap crushed by 1.2, Casing needs to be lowered.	У	(z)	
MW-3	Standpipe	Flosh	(G)	P	Size (Mich)		N	(g)	R	(G)	R	NL	(2)	P		Y	(N)	
MW-4	Standpipe	Flush	(G)	Р	Size (inch)	M	N	(م)	Ř	G	R	NL	(e)	Р	,	γ	N	
	Standpipe	Flush	G	Þ	Size (inch)	Y	N	G	R	G	R	NL	G	р		Y	N	
	Standpipe	Flush	G	p	Size (inch)	Y	N	G	R	G	R	NL	G	p		γ	N	
	Standpipe	Flush	G	P	Size (Inch)	Υ	N	G	R	G	R	NL	G	Р		Υ	N	
	Standpipe	Flush	G	Р	Size (Inch)	Y	N	G	R	G	P	NL	G	P		Y	N	
	Standpipe	Flush	G	р	Size (inch)	Υ	N	G	R	G	R	NL	G	P		Υ	N	
	Standpipe	Flush	G	P	Size (igeh)	Y	N	G	R	G	R	NL	G	P		Y	N	
				7/4	TOT <i>A</i>	AL#CAP	S REPLA	CED =	0		0	= TOTA	L#OFL	OCKS RI	EPLACED			
Condition of S Abando	Soil Boring P oned Monitori		G	Р	(N/A)) (P	OOR; Bor	ings/Well	IDs or Lo	cation De	scription:					Υ	N	
(Check bo	Compound		Condi	tion of Er	nclosure		on of Are Enclosure		Com	pound Se	curity	Emerge	ency Cont Visible	act Info	Cleaning / Repairs Recommended and Conducted	Phot Cont	os of lition	Repair Date and PM initials
NA Bujidh Building w/ Fer Fenced Con Traile	ng nce Comp. npound	***************************************	G	P	N/A	G	Р	N/A	G	Þ	N/A	Y	N	N/A		Y	N	
Number of Drums On-site	Does the Source o	Label Rev			led Correct riting Legit		Dn	ım Condi		Confim Relat Enviror	ed to		Located ess interf		Detailed Explanation of Any Issues Resolved	Phot Dn Cond	ım [Date Drume Removed from Site and PM initials
	Y	N	(AIN	Y	N	N/A	G	P	N/A	Y	N	Y	N	N/A		Y	N	

G = Good (Acceptable)

All environmental wells and the remediation compound were in good condition, locked, and secured upon my departure (unless otherwise noted above).

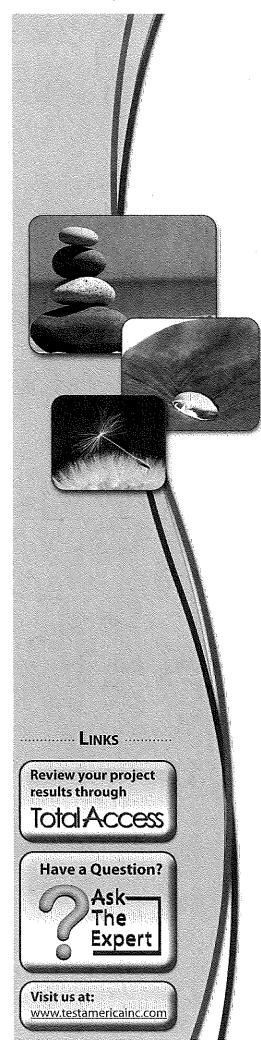
Print or type Name of Field Personnel & Consultant Company

R = Replaced

P = Poor (needs attention) NL = No Lock Required

Note: All repairs other than locks and grippers require Shell PM approval prior to repair.

[&]quot; = Groundwater monitoring well covers must be painted and labeled in accordance with applicable regulations. Version 2.4, March 2008


SHELL WELLHEAD REPAIR FORM

(FOR REPAIR TECHNICIAN)

Site Address	4	7 1	2		7	· · ·	<u>5.0</u>		5	<u> </u>	1.0	e	f.	10° 100° 10° 10° 10° 10° 10° 10° 10° 10°	1600	scn l	zin Date	6/10	14
Job Number	140	ele	5 <u>~</u> 2	0	ح	T	ech	nicia	ın		أر	<u>D</u>	> ,				- Page	(of	المعادلة:
•	•	Check Indicates deficiency																	
Inspection	anad, If squired			eai				ICEK I	naica	es de	Itcle	1	\$ FI.	, k	Design meter)	ited 5)	b#lel	incles Mf.	encles ce of n . o Repair
Point (Well ID or description of	Well Inspected, Cleaned, Labeled - No Further Corrective Action Required	Replaced Cap	Replaced Lock	Replaced Lid Seal	ing	Annular Seal	Tabs / Bolts	Box Structure	ų.	Trip Hazard	Below Grade	Not Securable by Design (12" diameter or less)	Lidnel marked with words	Other Deficiency	Not Securable by Design (greater than 12" diameter)	Well Not inspected (explain in notes)	Aß Repairs Completed	Remaining Deficiencies Losgad ants BLAINE. Repsir Order	Remaining Deticiencles Logged onto Notice of Deficient Condition
location)	Well Corre	Rep	- R	Rep	Casing	Ann	Tab	Box	Apron	Trip	Belo	Not	in Chil	of the control of the	Nov (green	(exp	\$	Rem Loga Reps	Rem Logg Defic
			<u> </u>										Ĺ	<u> </u>					
MW-2	Notes:		· · · · · · · · · · · · · · · · · · ·		, ((, , , , , , , , , , , , , , , , , , ,	<u>) /</u>		-5	9	<u>) </u>	//	<u> </u>	<u> </u>		0.14	
	Well bo	box type / size: Materials used:																	
		4	1														X		•
MCV-2 (cont'd)	Notes:		-0	WC	10	1		<u>C9</u>	30	1	Š		C) _ [411		new	CUP	Lock
(cont'd)	Well bo				<u>a'</u>	C	M	60	7			,	M	aterial	s used:				
								•											
	Notes:																	Section 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	
"	Well bo	x lype	/size):									M	aterial	s used:		······································		
	,																		
	Notes:			l		***************************************					,		,				<u> </u>		
	Well bo	x type	/ size);		***************************************	•	***************************************	******		· ······		M	aterial	s used:	(n.e.n			
								·				•							· ·
	Notes:			·£	·			1		1	1			<u></u>	1		<u></u>	· · · · · · · · · · · · · · · · · · ·	
	Well bo	x type	/ size):		··				***************************************			Me	ateriak	s used:				
								<u> </u>										I	
	Notes:			<u> </u>	Li	J		1	1	1				l	1 1	l			
٠	Well bo	x type	: / size):						. ,			M	aterials	s used:	·			- <u></u>

	Notes:	1	لـــــا	l		<u> </u>	1	1	J	1				L	L			<u></u>	
	Well bo	x type	/ size):	, , , , , , , , , , , , , , , , , , , 	-			<i></i>	•			M	aterials	s used:		"M d d d d d d d d d 		

APPENDIX B

TESTAMERICA LABORATORIES, INC. - ANALYTICAL REPORT

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc. TestAmerica Irvine 17461 Derian Ave Suite 100 Irvine, CA 92614-5817

Tel: (949)261-1022

TestAmerica Job ID: 440-78207-1

Client Project/Site: 4212 First St., Pleasanton, CA

For:

Conestoga-Rovers & Associates, Inc. 5900 Hollis Street
Suite A
Emeryville, California 94608

Attn: Peter Schaefer

Heather Cloub

Authorized for release by: 5/27/2014 4:01:48 PM

Heather Clark, Project Manager I (949)261-1022 heather.clark@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Case Narrative	4
Client Sample Results	5
Method Summary	9
Lab Chronicle	10
QC Sample Results	12
QC Association Summary	17
Definitions/Glossary	
Certification Summary	
Chain of Custody	
Receipt Checklists	

Sample Summary

Client: Conestoga-Rovers & Associates, Inc. Project/Site: 4212 First St., Pleasanton, CA

TestAmerica Job ID: 440-78207-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
440-78207-1	MW-1	Ground Water	05/12/14 13:10	05/13/14 10:40
440-78207-2	MW-1B	Ground Water	05/12/14 14:40	05/13/14 10:40
440-78207-3	MW-2	Ground Water	05/12/14 15:00	05/13/14 10:40
440-78207-4	MW-3	Ground Water	05/12/14 14:30	05/13/14 10:40
440-78207-5	MVV-4	Ground Water	05/12/14 14:50	05/13/14 10:40

Case Narrative

Client: Conestoga-Rovers & Associates, Inc. Project/Site: 4212 First St., Pleasanton, CA

TestAmerica Job ID: 440-78207-1

Job ID: 440-78207-1

Laboratory: TestAmerica Irvine

Narrative

Job Narrative 440-78207-1

Comments

No additional comments.

Receipt

The samples were received on 5/13/2014 10:40 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.4° C.

GC/MS VOA

Method(s) 8260B/CA_LUFTMS: The Gasoline Range Organics (GRO) concentration reported for the following sample(s) is due to the presence of discrete peaks: MW-2 (440-78207-3). Methyl tert-butyl ether.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

HPLC

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Client Sample Results

Client: Conestoga-Rovers & Associates, Inc. Project/Site: 4212 First St., Pleasanton, CA

m,p-Xylene

TestAmerica Job ID: 440-78207-1

Client Sample ID: MW-1							Lab San	ple ID: 440-7	
ate Collected: 05/12/14 13:10 ate Received: 05/13/14 10:40								Matrix: Groun	d Wate
Method: 8260B/CA_LUFTMS -	Volatile Organic	Compound	s by GC/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Volatile Fuel Hydrocarbons (C4-C12)	2000	MALAMAT PORTING POPULAR AND	1000		ug/L			05/15/14 13:55	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
Dibromofluoromethane (Surr)	104		76 - 132			-	-	05/15/14 13:55	
4-Bromofluorobenzene (Surr)	101		80 - 120					05/15/14 13:55	2
Toluene-d8 (Surr)	104		80 - 128					05/15/14 13:55	:
- Method: 8260B - Volatile Orga	nic Compounds (GC/MS)					•		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Benzene	59		10		ug/L			05/15/14 13:55	- :
Ethylbenzene	ND		10		ug/L			05/15/14 13:55	2
m,p-Xylene	ND		20		ug/L			05/15/14 13:55	:
Methyl-t-Butyl Ether (MTBE)	1500		10		ug/L			05/15/14 13:55	:
o-Xylene	ND		10		ug/L			05/15/14 13:55	;
tert-Butyl alcohol (TBA)	670		200		ug/L			05/15/14 13:55	2
Toluene	ND		10		ug/L			05/15/14 13:55	:
Xylenes, Total	ND		20		ug/L			05/15/14 13:55	:
Surrogate	%Recovery	Qualifier	Limits			_	Prepared	Analyzed	Dil F
4-Bromofluorobenzene (Surr)	101		80 _ 120					05/15/14 13:55	;
Dibromofluoromethane (Surr)	104		76 ₋ 132					05/15/14 13:55	:
Toluene-d8 (Surr) -	104		80 - 128					05/15/14 13:55	
Method: 300.0 - Anions, Ion Cl									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Nitrate as N	0.28		0.11		mg/L			05/13/14 18:51	
Sulfate	21		0.50		mg/L			05/13/14 18:51	
General Chemistry	•							•	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Alkalinity as CaCO3	650000		4000		ug/L			05/14/14 14:20	
Client Sample ID: MW-1B							Lab San	nple ID: 440-7	8207-
Date Collected: 05/12/14 14:40								Matrix: Groun	
Pate Received: 05/13/14 10:40									
- Method: 8260B/CA_LUFTMS -	Volatile Organic	Compound	ls by GC/MS		•				
Analyte	_	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Volotilo Euol Mudrocorbone (C4 C12)	ND.				/l			05/15/14 15:01	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Volatile Fuel Hydrocarbons (C4-C12)	ND		50		ug/L			05/15/14 15:21	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	117		76 - 132			_		05/15/14 15:21	1
4-Bromofluorobenzene (Surr)	104		80 - 120					05/15/14 15:21	1
Toluene-d8 (Surr) -	105		80 _ 128					05/15/14 15:21	1
- Method: 8260B - Volatile Organic	Compounds ((GC/MS)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND	•	0.50		ug/L			05/15/14 15:21	1
Ethylbenzene	ND		0.50		ug/L			05/15/14 15:21	1

TestAmerica Irvine

05/15/14 15:21

1.0

ug/L

ND

Client Sample Results

Client: Conestoga-Rovers & Associates, Inc. Project/Site: 4212 First St., Pleasanton, CA

TestAmerica Job ID: 440-78207-1

Client Sample ID: MW-1B

Date Collected: 05/12/14 14:40 Date Received: 05/13/14 10:40

Toluene-d8 (Surr)

Lab Sample ID: 440-78207-2

Matrix: Ground Water

Method: 8260B - Volatile Organ Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl-t-Butyl Ether (MTBE)	ND		0.50		ug/L			05/15/14 15:21	
o-Xylene	ND		0.50		ug/L			05/15/14 15:21	
tert-Butyl alcohol (TBA)	ND		10		ug/L			05/15/14 15:21	
Toluene	ND		0.50		ug/L			05/15/14 15:21	1
Kylenes, Total	ND		1.0		ug/L			05/15/14 15:21	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Díl Fac
4-Bromofluorobenzene (Surr)	104		80 - 120			-		05/15/14 15:21	1
Dibromofluoromethane (Surr)	117		76 - 132					05/15/14 15:21	1
Toluene-d8 (Surr)	105		80 - 128					05/15/14 15:21	ī
Method: 300.0 - Anions, Ion Ch	romatography							•	
Analyte	Result	Qualifier	RL_	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate as N	22		2.2		mg/L			05/13/14 19:42	20
Sulfate	54		10		mg/L		-	05/13/14 19:42	20
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	<u>D</u> .	Prepared	Analyzed	Dil Fac
Alkalinity as CaCO3	2 9 0000		4000		ug/L			05/14/14 14:26	1
ate Received: 05/13/14 10:40								Matrix: Groun	d Wate
ate Received: 05/13/14 10:40 Method: 8260B/CA_LUFTMS - \	_	Compound Qualifier	s by GC/MS RL	MDL	Unit	D	Prepared		
ate Received: 05/13/14 10:40 Method: 8260B/CA_LUFTMS - Note: Note	_	-	_	MDL	Unit ug/L	D	Prepared	Analyzed	Dil Fac
ate Collected: 05/12/14 15:00 ate Received: 05/13/14 10:40 Method: 8260B/CA_LUFTMS - V Analyte Volatile Fuel Hydrocarbons (C4-C12) Surrogate	Result	Qualifier	RL	MDL		D	Prepared Prepared	Analyzed	Dil Fac
ate Received: 05/13/14 10:40 Method: 8260B/CA_LUFTMS - Note: Note	Result 2600	Qualifier	RL 2500	MDL		<u>D</u> .		Analyzed 05/15/14 15:50	Dil Fac
ate Received: 05/13/14 10:40 Method: 8260B/CA_LUFTMS - V Analyte Volatile Fuel Hydrocarbons (C4-C12) Surrogate Dibromofluoromethane (Surr)	Result 2600 %Recovery	Qualifier	RL 2500 <i>Limits</i>	MDL		D .		Analyzed 05/15/14 15:50 Analyzed	Dil Fac
ate Received: 05/13/14 10:40 Method: 8260B/CA_LUFTMS - V Analyte Volatile Fuel Hydrocarbons (C4-C12) Surrogate Dibromofluoromethane (Surr) 4-Bromofluorobenzene (Surr)	Result 2600 %Recovery 120	Qualifier	2500 Limits 76 - 132	MDL		D .		Analyzed 05/15/14 15:50 Analyzed 05/15/14 15:50	Dil Fac
ate Received: 05/13/14 10:40 Method: 8260B/CA_LUFTMS - VAnalyte Volatile Fuel Hydrocarbons (C4-C12) Surrogate Dibromofluoromethane (Surr) 4-Bromofluorobenzene (Surr) Toluene-d8 (Surr) Method: 8260B - Volatile Organ	Result 2600 %Recovery 120 98 106 nic Compounds	Qualifier Qualifier (GC/MS)	Elmits 76 - 132 80 - 120 80 - 128		ug/L		Prepared	Analyzed 05/15/14 15:50 Analyzed 05/15/14 15:50 05/15/14 15:50	Dil Fac
ate Received: 05/13/14 10:40 Method: 8260B/CA_LUFTMS - Nanalyte Volatile Fuel Hydrocarbons (C4-C12) Surrogate Dibromofluoromethane (Surr) 4-Bromofluorobenzene (Surr) Toluene-d8 (Surr) Method: 8260B - Volatile Organ	Result 2600 %Recovery 120 98 106 nic Compounds Result	Qualifier Qualifier	RL 2500 Limits 76 - 132 80 - 120 80 - 128		ug/L Unit	D .		Analyzed 05/15/14 15:50 Analyzed 05/15/14 15:50 05/15/14 15:50 Analyzed	Dil Fac
ate Received: 05/13/14 10:40 Method: 8260B/CA_LUFTMS - Nanalyte Volatile Fuel Hydrocarbons (C4-C12) Surrogate Dibromofluoromethane (Surr) 4-Bromofluorobenzene (Surr) Toluene-d8 (Surr) Method: 8260B - Volatile Organalyte Benzene	Result 2600 %Recovery 120 98 106 nic Compounds (Result ND	Qualifier Qualifier (GC/MS)	RL 2500 Limits 76 - 132 80 - 120 80 - 128 RL 25		ug/L Unit ug/L		Prepared	Analyzed 05/15/14 15:50 Analyzed 05/15/14 15:50 05/15/14 15:50 Analyzed 05/15/14 15:50	Dil Fac 50 Dil Fac 50 Dil Fac 50 50
ate Received: 05/13/14 10:40 Method: 8260B/CA_LUFTMS - Nanalyte Volatile Fuel Hydrocarbons (C4-C12) Surrogate Dibromofluoromethane (Surr) 4-Bromofluorobenzene (Surr) Toluene-d8 (Surr) Method: 8260B - Volatile Organalyte Benzene Ethylbenzene	Result 2600 %Recovery 120 98 106 nic Compounds (Result ND ND	Qualifier Qualifier (GC/MS)	RL 2500 Limits 76 - 132 80 - 120 80 - 128 RL 25 25		Unit ug/L ug/L		Prepared	Analyzed 05/15/14 15:50 Analyzed 05/15/14 15:50 05/15/14 15:50 Analyzed 05/15/14 15:50 05/15/14 15:50	Dil Fac 50 Dil Fac 50 Dil Fac 50 50 50 50
ate Received: 05/13/14 10:40 Method: 8260B/CA_LUFTMS - Nanalyte Volatile Fuel Hydrocarbons (C4-C12) Surrogate Dibromofluoromethane (Surr) 4-Bromofluorobenzene (Surr) Toluene-d8 (Surr) Method: 8260B - Volatile Organ	Result 2600 %Recovery 120 98 106 nic Compounds Result ND ND	Qualifier Qualifier (GC/MS)	RL 2500 Limits 76 - 132 80 - 120 80 - 128 RL 25 25 50		Unit ug/L ug/L ug/L		Prepared	Analyzed 05/15/14 15:50 Analyzed 05/15/14 15:50 05/15/14 15:50 Analyzed 05/15/14 15:50 05/15/14 15:50 05/15/14 15:50	Dil Fac 50 Dil Fac 50 50 Dil Fac 50 50 50 50
ate Received: 05/13/14 10:40 Method: 8260B/CA_LUFTMS - Nanalyte Volatile Fuel Hydrocarbons (C4-C12) Surrogate Dibromofluoromethane (Surr) 4-Bromofluorobenzene (Surr) Toluene-d8 (Surr) Method: 8260B - Volatile Organalyte Benzene Ethylbenzene m.p-Xylene Methyl-t-Butyl Ether (MTBE)	Result 2600 %Recovery 120 98 106 nic Compounds Result ND ND ND 2500	Qualifier Qualifier (GC/MS)	RL 2500 Limits 76 - 132 80 - 120 80 - 128 RL 25 25 50 25		Unit ug/L ug/L ug/L ug/L		Prepared	Analyzed 05/15/14 15:50 Analyzed 05/15/14 15:50 05/15/14 15:50 Analyzed 05/15/14 15:50 05/15/14 15:50 05/15/14 15:50 05/15/14 15:50 05/15/14 15:50	Dil Fac 50 Dil Fac 50 50 Dil Fac 50 50 50 50 50
ate Received: 05/13/14 10:40 Method: 8260B/CA_LUFTMS - Nanalyte Volatile Fuel Hydrocarbons (C4-C12) Surrogate Dibromofluoromethane (Surr) 4-Bromofluorobenzene (Surr) Toluene-d8 (Surr) Method: 8260B - Volatile Organalyte Benzene Ethylbenzene m.p-Xylene Methyl-t-Butyl Ether (MTBE) o-Xylene	Result 2600 %Recovery 120 98 106 nic Compounds Result ND ND ND ND ND ND ND ND ND	Qualifier Qualifier (GC/MS)	RL 2500 Limits 76 - 132 80 - 120 80 - 128 RL 25 25 50 25 25		Unit ug/L ug/L ug/L ug/L ug/L		Prepared	Analyzed 05/15/14 15:50 Analyzed 05/15/14 15:50 05/15/14 15:50 05/15/14 15:50 05/15/14 15:50 05/15/14 15:50 05/15/14 15:50 05/15/14 15:50 05/15/14 15:50	Dil Fac 50 Dil Fac 50 50 50 50 50 50 50 50 50 5
ate Received: 05/13/14 10:40 Method: 8260B/CA_LUFTMS - Nanalyte Volatile Fuel Hydrocarbons (C4-C12) Surrogate Dibromofluoromethane (Surr) 4-Bromofluorobenzene (Surr) Toluene-d8 (Surr) Method: 8260B - Volatile Organ Analyte Benzene Ethylbenzene m.p-Xylene Methyl-t-Butyl Ether (MTBE) o-Xylene tert-Butyl alcohol (TBA)	Result 2600 %Recovery 120 98 106 nic Compounds Result ND	Qualifier Qualifier (GC/MS)	RL 2500 Limits 76 - 132 80 - 120 80 - 128 RL 25 25 50 25 50 25 500		Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L		Prepared	Analyzed 05/15/14 15:50 Analyzed 05/15/14 15:50 05/15/14 15:50 05/15/14 15:50 05/15/14 15:50 05/15/14 15:50 05/15/14 15:50 05/15/14 15:50 05/15/14 15:50 05/15/14 15:50	Dil Face 50 50 50 50 50 50 50 50 50 50 50
ate Received: 05/13/14 10:40 Method: 8260B/CA_LUFTMS - Nanalyte Volatile Fuel Hydrocarbons (C4-C12) Surrogate Dibromofluoromethane (Surr) 4-Bromofluorobenzene (Surr) Toluene-d8 (Surr) Method: 8260B - Volatile Organ Analyte Benzene Ethylbenzene m.p-Xylene Methyl-t-Butyl Ether (MTBE) o-Xylene tert-Butyl alcohol (TBA) Toluene	Result 2600 %Recovery 120 98 106 nic Compounds Result ND	Qualifier Qualifier (GC/MS)	RL 2500 Limits 76 - 132 80 - 120 80 - 128 RL 25 25 50 25 50 25 500 25 500 25		Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		Prepared	Analyzed 05/15/14 15:50 Analyzed 05/15/14 15:50 05/15/14 15:50 05/15/14 15:50 05/15/14 15:50 05/15/14 15:50 05/15/14 15:50 05/15/14 15:50 05/15/14 15:50 05/15/14 15:50 05/15/14 15:50 05/15/14 15:50	Dil Fac 50 Dil Fac 50 50 50 50 50 50 50 50 50 5
ate Received: 05/13/14 10:40 Method: 8260B/CA_LUFTMS - Nanalyte Volatile Fuel Hydrocarbons (C4-C12) Surrogate Dibromofluoromethane (Surr) 4-Bromofluorobenzene (Surr) Toluene-d8 (Surr) Method: 8260B - Volatile Organ Analyte Benzene Ethylbenzene m.p-Xylene Methyl-t-Butyl Ether (MTBE) o-Xylene tert-Butyl alcohol (TBA) Toluene	Result 2600 %Recovery 120 98 106 nic Compounds Result ND	Qualifier Qualifier (GC/MS)	RL 2500 Limits 76 - 132 80 - 120 80 - 128 RL 25 25 50 25 50 25 500		Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L		Prepared	Analyzed 05/15/14 15:50 Analyzed 05/15/14 15:50 05/15/14 15:50 05/15/14 15:50 05/15/14 15:50 05/15/14 15:50 05/15/14 15:50 05/15/14 15:50 05/15/14 15:50 05/15/14 15:50	Dil Fac 50 Dil Fac 50 50 50 50 50 50 50 50 50 5
afe Received: 05/13/14 10:40 Method: 8260B/CA_LUFTMS - Nanalyte Volatile Fuel Hydrocarbons (C4-C12) Surrogate Dibromofluoromethane (Surr) 4-Bromofluorobenzene (Surr) Toluene-d8 (Surr) Method: 8260B - Volatile Organ Analyte Benzene Ethylbenzene m.p-Xylene Methyl-t-Butyl Ether (MTBE) o-Xylene tert-Butyl alcohol (TBA) Toluene Xylenes, Total Surrogate	Result 2600 %Recovery 120 98 106 nic Compounds (Result ND	Qualifier Qualifier (GC/MS) Qualifier	RL 2500 Limits 76 - 132 80 - 120 80 - 128 RL 25 25 50 25 50 25 500 25 500 25 50 Limits		Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		Prepared	Analyzed 05/15/14 15:50 Analyzed 05/15/14 15:50 05/15/14 15:50 05/15/14 15:50 05/15/14 15:50 05/15/14 15:50 05/15/14 15:50 05/15/14 15:50 05/15/14 15:50 05/15/14 15:50 05/15/14 15:50 05/15/14 15:50 05/15/14 15:50 Analyzed	Dil Face 500 Dil Face 500 500 Dil Face 500 500 500 500 500 500 500 50
ate Received: 05/13/14 10:40 Method: 8260B/CA_LUFTMS - Nanalyte Volatile Fuel Hydrocarbons (C4-C12) Surrogate Dibromofluoromethane (Surr) 4-Bromofluorobenzene (Surr) Toluene-d8 (Surr) Method: 8260B - Volatile Organalyte Benzene Ethylbenzene m.p-Xylene Methyl-t-Butyl Ether (MTBE)	Result 2600 %Recovery 120 98 106 nic Compounds (Result ND	Qualifier Qualifier (GC/MS) Qualifier	RL 2500 Limits 76 - 132 80 - 120 80 - 128 RL 25 25 50 25 50 25 500 25 500 25 50		Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		Prepared Prepared	Analyzed 05/15/14 15:50 Analyzed 05/15/14 15:50 05/15/14 15:50 05/15/14 15:50 05/15/14 15:50 05/15/14 15:50 05/15/14 15:50 05/15/14 15:50 05/15/14 15:50 05/15/14 15:50 05/15/14 15:50 05/15/14 15:50 05/15/14 15:50	Dil Face 500 500 500 500 500 500 500 500 500 50

TestAmerica Irvine

05/15/14 15:50

80 - 128

106

Client Sample Results

Client: Conestoga-Rovers & Associates, Inc. Project/Site: 4212 First St., Pleasanton, CA

TestAmerica Job ID: 440-78207-1

Client Sample ID: MW-2

Date Collected: 05/12/14 15:00

Lab Sample ID: 440-78207-3

Matrix: Ground Water

Date Received: 05/13/14 10:40

Analyte	Result Qua	alifier I	L MD	L Unit	D	Prepared	Analyzed	Dil Fac
Nitrate as N	0.23	0.	1	mg/L			05/13/14 19:55	1
Sulfate -	71		0	ṃg/L			05/13/14 20:08	20
- General Chemistry								
Analyte	Result Qua	alifier I	L MD	L Unit	D	Prepared	Analyzed	Dil Fac
Alkafinity as CaCO3	340000	, 40	10	ug/L			05/14/14 14:33	1

Client Sample ID: MW-3

Lab Sample ID: 440-78207-4

Date Collected: 05/12/14 14:30

Matrix: Ground Water

Date Received: 05/13/14 10:40

Analyte .		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Volatile Fuel Hydrocarbons (C4-C12)	ND		50		ug/L			05/15/14 16:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	119		76 - 132			-		05/15/14 16:19	1
4-Bromofluorobenzene (Surr)	100		80 - 120					05/15/14 16:19	1
Toluene-d8 (Surr)	106		80 - 128					05/15/14 16:19	1
Method: 8260B - Volatile Organic	Compounds ((GC/MS)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Analyte	Result Qualifie	r RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND	0,50	ug/L			05/15/14 16:19	1
Ethylbenzene	ND	0.50	ug/L			05/15/14 16:19	1
m,p-Xylene	ND .	1.0	ug/L			05/15/14 16:19	1
Methyl-t-Butyl Ether (MTBE)	0.94	0.50	ug/L			05/15/14 16:19	1
o-Xylene	ND	0.50	ug/L			05/15/14 16:19	1
tert-Butyl alcohol (TBA)	ND	10	ug/L			05/15/14 16:19	1
Toluene	ND	0.50	ug/L			05/15/14 16:19	1
Xylenes, Total	ND	1.0	ug/L			05/15/14 16:19	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		80 - 120	-	05/15/14 16:19	1
Dibromofluoromethane (Surr)	119		76 ₋ 132		05/15/14 16:19	1
Toluene-d8 (Surr)	106		80 - 128		05/15/14 16:19	1

Method: 300.0 - Anions, Ion Chroma	atography								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate as N	ND		0.11		mg/L	-		05/13/14 20:21	1
Sulfate	150		10		mg/L			05/13/14 20:34	20

General Chemistry										
Analyte	Result	 RL	MDL	Unit	D)	Prepared	Analyzed	DilF	Fac
Alkalinity as CaCO3	250000	4000		ug/L		_		05/14/14 14:40		1

Client Sample Results

Client: Conestoga-Rovers & Associates, Inc. Project/Site: 4212 First St., Pleasanton, CA

TestAmerica Job ID: 440-78207-1

Client Sample ID: MW-4

Date Collected: 05/12/14 14:50 Date Received: 05/13/14 10:40 Lab Sample ID: 440-78207-5

Matrix: Ground Water

Analyte	Result	Qualifier	. RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Volatile Fuel Hydrocarbons	420		50		ug/L			05/15/14 16:48	
(C4-C12)									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Dibromofluoromethane (Surr)	120		76 - 132			_		05/15/14 16:48	7
4-Bromofluorobenzene (Surr)	100		80 - 120					05/15/14 16:48	1
Toluene-d8 (Surr)	110		80 - 128					05/15/14 16:48	1
Method: 8260B - Volatile Orga	-								
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.50		ug/L			05/15/14 16:48	1
Ethylbenzene	ND	•	0.50		ug/L			05/15/14 16:48	1
m,p-Xylene	ND		1.0		ug/L			05/15/14 16:48	
Methyl-t-Butyl Ether (MTBE)	49		0.50		ug/L			05/15/14 16:48	1
o-Xylene	ND		0.50		ug/L			05/15/14 16:48	1
tert-Butyl alcohol (TBA)	170		10		ug/L			05/15/14 16:48	1
Toluene	ND		0.50		ug/L			05/15/14 16:48	1
Xylenes, Total	ND		1.0		ug/L			05/15/14 16:48	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		80 - 120			_		05/15/14 16:48	7
Dibromofluoromethane (Surr)	120		76 - 132					05/15/14 16:48	1
Toluene-d8 (Surr)	110		80 - 128					05/15/14 16:48	1
Method: 300.0 - Anions, Ion Cl							•		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate as N	0.79		0.11		mg/L			05/13/14 21:31	1
Sulfate -	62		5.0		mg/L			05/13/14 20:47	10
General Chemistry									
Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Alkalinity as CaCO3	140000		4000		ug/L			05/14/14 14:47	1

Method Summary

Client: Conestoga-Rovers & Associates, Inc. Project/Site: 4212 First St., Pleasanton, CA

TestAmerica Job ID: 440-78207-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL IRV
8260B/CA_LUFTM S	Volatile Organic Compounds by GC/MS	SW846	TAL IRV
300.0	Anions, Ion Chromatography	MCAWW	TAL IRV
SM 2320B	Alkalinity	, SM	TAL IRV

Protocol References:

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

SM = "Standard Methods For The Examination Of Water And Wastewater",

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

Lab Chronicle

Client: Conestoga-Rovers & Associates, Inc. Project/Site: 4212 First St., Pleasanton, CA

TestAmerica Job ID: 440-78207-1

Client Sample ID: MW-1

Date Collected: 05/12/14 13:10 Date Received: 05/13/14 10:40 Lab Sample ID: 440-78207-1

Matrix: Ground Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		20	10 mL	10 mL	182498	05/15/14 13:55	YK	TAL IRV
Total/NA	Analysis	8260B/CA_LUFTM S		20	10 mL	10 mL	182499	05/15/14 13:55	YK	TAL IRV
Total/NA	Analysis	300.0		1	5 mL		181803	05/13/14 18:51	NN	TAL IRV
Total/NA	Analysis	300.0		1	5 mL		181804	05/13/14 18:51	NN	TAL IRV
Total/NA	Analysis	SM 2320B		1			182472	05/14/14 14:20	YZ	TAL IRV

Client Sample ID: MW-1B

Date Collected: 05/12/14 14:40 Date Received: 05/13/14 10:40 Lab Sample ID: 440-78207-2

Matrix: Ground Water

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		-
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	10 m L	10 mL	182498	05/15/14 15:21	YK	TAL IRV
Total/NA	Analysis	8260B/CA_LUFTM S		1	10 mL	10 mL	182499	05/15/14 15:21	YK	TAL IRV
Total/NA	Analysis	300,0		20	5 mL		181803	05/13/14 19:42	NN	TAL IRV
Total/NA	Analysis	300.0		20	5 mL		181804	05/13/14 19:42	NN	TAL IRV
Total/NA	Analysis	SM 2320B		1			182472	05/14/14 14:26	YZ	TAL IRV

Client Sample ID: MW-2

Date Collected: 05/12/14 15:00 Date Received: 05/13/14 10:40 Lab Sample ID: 440-78207-3

Matrix: Ground Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		50	10 mL	10 mL	182498	05/15/14 15:50	YK	TAL IRV
Total/NA	Analysis	8260B/CA_LUFTM S		50	10 mL	10 mL	182499	05/15/14 15:50	YK	TAL IRV
Total/NA	Analysis	300.0		1	5 mL		181803	05/13/14 19:55	NN	TAL IRV
Total/NA	Analysis	300.0		20	5 mL		181804	05/13/14 20:08	NN	TAL IRV
Total/NA	Analysis	SM 2320B		1			182472	05/14/14 14:33	YZ	TAL IRV

Client Sample ID: MW-3

Date Collected: 05/12/14 14:30

Date Received: 05/13/14 10:40

Lab Sample ID: 440-78207-4

Matrix: Ground Water

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	10 mL	10 mL	182498	05/15/14 16:19	YK	TAL IRV
Total/NA	Analysis	8260B/CA_LUFTM S		1	10 mL	10 mL .	182499	05/15/14 16:19	YK	TAL IRV
Total/NA	Analysis	300.0		1	5 mL		181803	05/13/14 20:21	NN	TAL IRV
Total/NA	Analysis	300.0		20	5 mL		181804	05/13/14 20:34	NN	TAL IRV
Total/NA	Analysis	SM 2320B		1			182472	05/14/14 14:40	YZ	TAL IRV

Lab Chronicle

Client: Conestoga-Rovers & Associates, Inc. Project/Site: 4212 First St., Pleasanton, CA

TestAmerica Job ID: 440-78207-1

Client Sample ID: MW-4

Date Collected: 05/12/14 14:50 Date Received: 05/13/14 10:40 Lab Sample ID: 440-78207-5

Matrix: Ground Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	10 mL	10 mL	182498	05/15/14 16:48	YK	TAL IRV
Total/NA	Analysis	8260B/CA_LUFTM S		1	10 mL	10 mL	182499	05/15/14 16:48	YK	TAL IRV
Total/NA	Analysis	300.0		10	5 mL		181804	05/13/14 20:47	NN	TAL IRV
Total/NA	Analysis	300.0		1	5 mL		181803	05/13/14 21:31	NN	TAL IRV
Total/NA	Analysis	SM 2320B		1			182472	05/14/14 14:47	YZ	TAL IRV

Laboratory References:

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

Client: Conestoga-Rovers & Associates, Inc. Project/Site: 4212 First St., Pleasanton, CA

TestAmerica Job ID: 440-78207-1

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 440-182498/8 Matrix: Water						Client Sa	ample ID: Metho Prep Type: T	
Analysis Batch: 182498							p .,p	
·	MB	MB						
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.50	ug/L			05/15/14 10:03	
Ethylbenzene	ND		0.50	ug/L			05/15/14 10:03	
m,p-Xylene	ND		1.0	ug/L			05/15/14 10:03	•
Methyl-t-Butyl Ether (MTBE)	ND		0.50	ug/L			05/15/14 10:03	
o-Xylene	ND		0,50	ug/L			05/15/14 10:03	
tert-Butyl alcohol (TBA)	ND		10	ug/L			05/15/14 10:03	
Toluene	ND		0.50	ug/L			05/15/14 10:03	
Xylenes, Total	, ND		1.0	ug/L			05/15/14 10:03	
	МВ	MB						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	101		80 _ 120		-		05/15/14 10:03	-
Dibromofluoromethane (Surr)	99		76 ₋ 132				05/15/14 10:03	
Toluene-d8 (Surr)	103		80 - 128				05/15/14 10:03	

Lab Sample ID: LCS 440-182498/9

Matrix: Water

Client Sample ID: Lab Control Sample
Prep Type: Total/NA

Analysis Batch: 182498

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	25.0	23.9		ug/L		96	68 - 130
Ethylbenzene	25.0	23.6		ug/L		94	70 - 130
m,p-Xylene	50.0	47.0		ug/L		94	70 - 130
Methyl-t-Butyl Ether (MTBE)	25.0	26.3		ug/L		105	63 _ 131
o-Xylene	25.0	24.2		ug/L		97	70 _ 130
tert-Butyl alcohol (TBA)	125	122		ug/L		. 98	70 ₋ 130
Toluene	25.0	24.4		ug/L		98	70 - 130

ĺ		LCS	LCS	
	Surrogate	%Recovery	Qualifier	Limits
	4-Bromofluorobenzene (Surr)	101		80 - 120
	Dibromofluoromethane (Surr)	106		76 - 132
	Toluene-d8 (Surr)	103		80 - 128

Lab Sample ID: 440-78207-1 MS

Matrix: Ground Water

Analysis Batch: 182498

Client Sample ID: MW-1

Prep Type: Total/NA

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	59		500	562		ug/L		100	66 - 130	
Ethylbenzene	ND		500	496		ug/L		99	70 - 130	
m,p-Xylene	ND		1000	1000		ug/L		100	70 _ 133	
Methyl-t-Butyl Ether (MTBE)	1500		500	1990		ug/L		103	70 _ 130	
o-Xylene	ND		500	521		ug/L		104	70 _ 133	
tert-Butyl alcohol (TBA)	670		2500	3110		ug/L		98	70 _ 130	
Toluene	ND		500	514		ug/L		103	70 - 130	
	MS	MS								
Surrogate	%Recovery	Qualifier	Limits							
4-Bromofluorobenzene (Surr)	104		80 _ 120							

TestAmerica Job ID: 440-78207-1

Client: Conestoga-Rovers & Associates, Inc. Project/Site: 4212 First St., Pleasanton, CA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 440-78207-1 MS

Matrix: Ground Water

Client Sample ID: MW-1 Prep Type: Total/NA

Analysis Batch: 182498

	MS	MS			
Surrogate	%Recovery	Qualifier	Limits		
Dibromofluoromethane (Surr)	109		76 - 132		
Toluene-d8 (Surr)	104		80 - 128		

Lab Sample ID: 440-78207-1 MSD

Matrix: Ground Water

Client Sample ID: MW-1 Prep Type: Total/NA

Analysis Batch: 182498

Allalysis Datell. 102430										
	Sample S	sample Sp	ike N	ISD MSD				%Rec.		RPD
Analyte	Result C	Qualifier Ade	ded Re	sult Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	59		500	552	ug/L		98	66 - 130	2	20
Ethylbenzene	ND		500	4 78	ug/L		96	70 - 130	4	20
m,p-Xylene	ND		000	946	ug/L		95	70 - 133	6	25
Methyl-t-Butyl Ether (MTBE)	1500		500 2	020	ug/L		108	70 - 130	1	25
o-Xylene	ND		500	502	ug/L		100	70 - 133	4	20
tert-Butyl alcohol (TBA)	670	2	500 3	020	ug/L		94	70 - 130	3	25
Toluene	ND		500	500	ug/L		100	70 - 130	3	20

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	105		80 - 120
Dibromofluoromethane (Surr)	112		76 - 132
Toluene-d8 (Surr)	105		80 - 128

Method: 8260B/CA_LUFTMS - Volatile Organic Compounds by GC/MS

ah Campl	~ IT. MAD	E 440-182499/8	,

Matrix: Water

Analysis Batch: 182499

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Volatile Fuel Hydrocarbons (C4-C12)	ND		50		ug/L			05/15/14 10:03	1
	МВ	MB		•					

	MD	IND				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	99		76 - 132		05/15/14 10:03	
4-Bromofluorobenzene (Surr)	101		80 - 120		05/15/14 10:03	1
Toluene-d8 (Surr)	103		80 - 128		05/15/14 10:03	1

Lab Sample ID: LCS 440-182499/10

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analysis Batch: 182499

Matrix: Water

ı	Analysis Butsti. 102400								
		Spike	LCS	LCS				%Rec.	
	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
	Volatile Fuel Hydrocarbons	500	483		ug/L		97	55 - 130	
	(C4-C12)								

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Dibromofluoromethane (Surr)	104		76 - 132
4-Bromofluorobenzene (Surr)	100		80 - 120
Toluene-d8 (Surr)	106		80 - 128

TestAmerica Job ID: 440-78207-1

Client: Conestoga-Rovers & Associates, Inc. Project/Site: 4212 First St., Pleasanton, CA

	Method: 8260B/CA_LUFTN	S - Volatile Organic Com	pounds by GC/MS (Continued)
--	------------------------	--------------------------	-----------------------------

Lab Sample ID: 440-78207-1 M Matrix: Ground Water	18								Client Sample ID: MW-1 Prep Type: Total/NA
Analysis Batch: 182499	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	•	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits
Volatile Fuel Hydrocarbons (C4-C12)	2000		34500	32900		ug/L		90	50 - 145
	MS	MS							
Surrogate	%Recovery	Qualifier	Limits						
Dibromofluoromethane (Surr)	109		76 - 132						
4-Bromofluorobenzene (Surr)	104		80 - 120						
Toluene-d8 (Surr)	104		80 - 128						
Lab Sample ID: 440-78207-1 N Matrix: Ground Water	I SD								Client Sample ID: MW-1 Prep Type: Total/NA

Analysis Batch: 182499					•				-		
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Volatile Fuel Hydrocarbons (C4-C12)	2000		34500	32100		ug/L	 _	87	50 - 145	3	20

i		MSD	MSD	
l	Surrogate	%Recovery	Qualifier	Limits
	Dibromofluoromethane (Surr)	112		76 - 132
	4-Bromofluorobenzene (Surr)	105		80 - 120
	Toluene-d8 (Surr)	105		80 - 128

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: LCS 440-181803/2

Lab Sample ID: MB 440-181803/4	Client Sample ID: Method Blank
Matrix: Water	Prep Type: Total/NA
Analysis Batch: 181803	

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate as N	ND		0.11		mg/L			05/13/14 11:02	1

Matrix: Water							Prep T	ſype: Total	I/NA
Analysis Batch: 181803	•							•	
	Spike	LCS	LCS				%Rec.		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Nitrate as N	 1.13	1.18		mg/L		105	90 - 110		

Lab Sample ID: 440-78201-A-1 MS Matrix: Water								Client	•	Matrix Spike /pe: Total/NA
Analysis Batch: 181803	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	ď	%Rec	Limits	*
Nitrate as N	8.5		11.3	19.9		mg/L		101	80 - 120	

Client Sample ID: Lab Control Sample

TestAmerica Job ID: 440-78207-1

Client: Conestoga-Rovers & Associates, Inc. Project/Site: 4212 First St., Pleasanton, CA

Lab Sample ID: 440-78201-A-1 MSI)						Client S	ample II	D: Matrix S _l	pike Dup	olicat
Matrix: Water									Prep T	ype: To	tal/N
Analysis Batch: 181803									-		
•	Sample	Sample	Spike	MSD	MSD				%Rec.		RF
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Lin
Nitrate as N	8.5		11.3	19.7		mg/L		100	80 - 120	1	;
Lab Sample ID: 440-78207-1 MS									Client Sar	nple ID:	MW-
Matrix: Ground Water										ype: To	
Analysis Batch: 181803									•	,,	
•	Sample	Sample	Spike	MS	MS				%Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
vitrate as N	ND		11.3	11.5	·	mg/L		102	80 - 120		
_ab Sample ID: 440-78207-1 MSD									Client Sar	nple ID:	MW
Watrix: Ground Water										ype: To	
Analysis Batch: 181803									1		
,	Sample	Sample	Spike	MSD	MSD				%Rec.		RI
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Lir
Jitrate as N	ND		11.3	11.8		mg/L		104	80 - 120	2	
ab Sample ID: MB 440-181804/4								Client	Sample ID:	Method	Bla
/latrix: Water										ype: To	
Analysis Batch: 181804									перт	урс. 10	Lan
Analysis Baton. 101004		мв мв									
	_			ומ	MEDI LINE			Dranged	Analya	red .	Dìl F
Analyte	R	esult Qualitier					13				
	R	esult Qualifier ND		RL 0.50	MDL Unit		_ D _ I	Prepared			
	R	ND Qualifier		0.50	mg/L			riepareu	05/13/14		
Sulfate	R								05/13/14	11:02	
Sulfate Lab Sample ID: LCS 440-181804/2	R								05/13/14 e ID: Lab C	11:02 ontrol S	amp
Sulfate Lab Sample ID: LCS 440-181804/2 Matrix: Water	R								05/13/14 e ID: Lab C	11:02	amp
Sulfate Lab Sample ID: LCS 440-181804/2 Matrix: Water	R		Snika	0.50	mg/L				05/13/14 e ID: Lab C Prep T	11:02 ontrol S	amp
Analyte Sulfate Lab Sample ID: LCS 440-181804/2 Matrix: Water Analysis Batch: 181804	R		Spike	0.50 LCS	mg/L LCS	Unit	Clien	t Sampl	05/13/14 e ID: Lab C Prep T %Rec.	11:02 ontrol S	amp
Sulfate Lab Sample ID: LCS 440-181804/2 Matrix: Water Analysis Batch: 181804 Analyte	R		Added	0.50 LCS Result	mg/L	Unit		t Sampl	05/13/14 e ID: Lab C Prep T %Rec. Limits	11:02 ontrol S	amp
Sulfate Lab Sample ID: LCS 440-181804/2 Matrix: Water Analysis Batch: 181804 Analyte	R		•	0.50 LCS	mg/L LCS	Unit mg/L	Clien	t Sampl	05/13/14 e ID: Lab C Prep T %Rec.	11:02 ontrol S	amp
Sulfate Lab Sample ID: LCS 440-181804/2 Matrix: Water Analysis Batch: 181804 Analyte Sulfate		ND	Added 5.00	0.50 LCS Result	mg/L LCS		Clien	t Sampl	05/13/14 e ID: Lab C Prep T %Rec. Limits	11:02 ontrol S	amp
Sulfate Lab Sample ID: LCS 440-181804/2 Watrix: Water Analysis Batch: 181804 Analyte Sulfate ethod: 300.0 - Anions, Ion C		ND	Added 5.00	0.50 LCS Result	mg/L LCS		Clien	t Sampl	05/13/14 e ID: Lab C Prep T %Rec. Limits	ontrol S	amp tal/N
Sulfate Lab Sample ID: LCS 440-181804/2 Watrix: Water Analysis Batch: 181804 Analyte Sulfate Lethod: 300.0 - Anions, Ion Cl		ND	Added 5.00	0.50 LCS Result	mg/L LCS		Clien	t Sampl	05/13/14 e ID: Lab C Prep T %Rec. Limits 90 - 110 Client Sai	ontrol S	amp tal/N
Sulfate Lab Sample ID: LCS 440-181804/2 Watrix: Water Analysis Batch: 181804 Analyte Sulfate ethod: 300.0 - Anions, Ion Cl Lab Sample ID: 440-78207-1 MS Watrix: Ground Water		ND	Added 5.00	0.50 LCS Result	mg/L LCS		Clien	t Sampl	05/13/14 e ID: Lab C Prep T %Rec. Limits 90 - 110 Client Sai	ontrol S Type: To	amp tal/N
Sulfate Lab Sample ID: LCS 440-181804/2 Matrix: Water Analysis Batch: 181804 Analyte Sulfate Lethod: 300.0 - Anions, Ion Cl Lab Sample ID: 440-78207-1 MS Matrix: Ground Water	hromat	ND	Added 5.00	LCS Result 4.97	mg/L LCS		Clien	t Sampl	05/13/14 e ID: Lab C Prep T %Rec. Limits 90 - 110 Client Sai	ontrol S Type: To	amp tal/N
Sulfate Lab Sample ID: LCS 440-181804/2 Matrix: Water Analysis Batch: 181804 Analyte Sulfate ethod: 300.0 - Anions, Ion Cl Lab Sample ID: 440-78207-1 MS Matrix: Ground Water Analysis Batch: 181804	hromat	ography - D	Added 5.00	LCS Result 4.97	mg/L LCS Qualifier		Clien	t Sampl	05/13/14 e ID: Lab C Prep T %Rec. Limits 90 - 110 Client Sai	ontrol S Type: To	amp tal/N
Lab Sample ID: LCS 440-181804/2 Matrix: Water Analysis Batch: 181804 Malyte Sulfate ethod: 300.0 - Anions, Ion Cl Lab Sample ID: 440-78207-1 MS Matrix: Ground Water Analysis Batch: 181804	hromat	ography - D	Added 5.00	LCS Result 4.97	mg/L LCS Qualifier	mg/L	Clien	t Sampl	05/13/14 e ID: Lab C Prep T %Rec. Limits 90 - 110 Client Sai Prep T	ontrol S Type: To	amp tal/N
Lab Sample ID: LCS 440-181804/2 Watrix: Water Analysis Batch: 181804 Analyte Gulfate Lethod: 300.0 - Anions, Ion Cl Lab Sample ID: 440-78207-1 MS Watrix: Ground Water Analysis Batch: 181804 Analyte Gulfate - DL	hromat Sample Result	ography - D	Added 5.00 L. Spike Added	LCS Result 4.97	mg/L . LCS Qualifier	mg/L	Clien	t Sampl	05/13/14 e ID: Lab C Prep T %Rec. Limits 90 - 110 Client Sai Prep T	ontrol S Type: To	amp tal/N MW tal/N
Lab Sample ID: LCS 440-181804/2 Watrix: Water Analysis Batch: 181804 Analyte Sulfate Lethod: 300.0 - Anions, Ion Cl Lab Sample ID: 440-78207-1 MS Watrix: Ground Water Analysis Batch: 181804 Analyte Sulfate - DL Lab Sample ID: 440-78207-1 MSD	hromat Sample Result	ography - D	Added 5.00 L. Spike Added	LCS Result 4.97	mg/L . LCS Qualifier	mg/L	Clien	t Sampl	05/13/14 e ID: Lab C Prep T %Rec. Limits 90 - 110 Client Sai Prep T %Rec. Limits 80 - 120 Client Sai	ontrol S Type: To mple ID: Type: To	amp tal/N MW tal/N
Sulfate Lab Sample ID: LCS 440-181804/2 Matrix: Water Analysis Batch: 181804 Analyte Sulfate Lethod: 300.0 - Anions, Ion C Lab Sample ID: 440-78207-1 MS Matrix: Ground Water Analysis Batch: 181804 Analyte Sulfate - DL Lab Sample ID: 440-78207-1 MSD Matrix: Ground Water	hromat Sample Result	ography - D	Added 5.00 L. Spike Added	LCS Result 4.97	mg/L . LCS Qualifier	mg/L	Clien	t Sampl	05/13/14 e ID: Lab C Prep T %Rec. Limits 90 - 110 Client Sai Prep T %Rec. Limits 80 - 120 Client Sai	ontrol S Type: To	amp tal/N MW tal/N
Sulfate Lab Sample ID: LCS 440-181804/2 Matrix: Water Analysis Batch: 181804 Analyte Sulfate Lethod: 300.0 - Anions, Ion C Lab Sample ID: 440-78207-1 MS Matrix: Ground Water Analysis Batch: 181804 Analyte Sulfate - DL Lab Sample ID: 440-78207-1 MSD Matrix: Ground Water	hromat Sample Result 37	ography - D	Added 5.00 L. Spike Added	LCS Result 4.97 MS Result 77.1	mg/L . LCS Qualifier	mg/L	Clien	t Sampl	05/13/14 e ID: Lab C Prep T %Rec. Limits 90 - 110 Client Sai Prep T %Rec. Limits 80 - 120 Client Sai	ontrol S Type: To mple ID: Type: To	amp tal/N MW tal/N
Sulfate Lab Sample ID: LCS 440-181804/2 Matrix: Water	hromat Sample Result 37	ography - D	Added 5.00 Spike Added 50.0	LCS Result 4.97 MS Result 77.1	mg/L LCS Qualifier MS Qualifier	mg/L	Clien	t Sampl	05/13/14 e ID: Lab C Prep T %Rec. Limits 90 - 110 Client Sai Prep T %Rec. Limits 80 - 120 Client Sai Prep T	ontrol S Type: To mple ID: Type: To	amp tal/N MW tal/N

QC Sample Results

Client: Conestoga-Rovers & Associates, Inc. Project/Site: 4212 First St., Pleasanton, CA

TestAmerica Job ID: 440-78207-1

Method: SM 2320B - Alkalinity														
 Lab Sample ID: MB 440-182472/3											-	Client S	ample ID: Metho	d Blank
Matrix: Water													Prep Type: 1	otal/NA
Analysis Batch: 182472														
		MB	MB											
Analyte	R	esult	Qualifier		RL		MDL	Unit		D	Pı	epared	Analyzed	Dil Fac
Alkalinity as CaCO3		ND			4000			ug/L					05/14/14 13:05	1
Lab Sample ID: LCS 440-182472/2										Clie	nt	Sample	ID: Lab Control	Sample
Matrix: Water													Prep Type: 1	Total/NA
Analysis Batch: 182472														
				Spike		LCS	LCS						%Rec.	
Analyte				Added		Result	Qual	ifier	Unit		D	%Rec	Limits	
Alkalinity as CaCO3				86300		87700		·	ug/L			102	90 _ 110	
- Lab Sample ID: 440-77709-H-6 DU												Clie	ent Sample ID: D	uplicate
Matrix: Water													Prep Type: 1	Γotal/NA
Analysis Batch: 182472														
•	Sample	Sam	ple			DU	DU							RPD
Analyte	Result	Qual	ifier			Result	Qual	ifier	Unit		D		RP	D Limit
Alkalinity as CaCO3	350000					347000			ug/L		_		0.	2 20

QC Association Summary

Client: Conestoga-Rovers & Associates, Inc. Project/Site: 4212 First St., Pleasanton, CA

TestAmerica Job ID: 440-78207-1

GC/MS VOA

		82498

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-78207-1	MVV-1	Total/NA	Ground Water	8260B	
440-78207-1 MS	MVV-1	Total/NA	Ground Water	8260B	
440-78207-1 MSD	MW-1	Total/NA	Ground Water	8260B	
440-78207-2	MW-1B	Total/NA	Ground Water	8260B	
440-78207-3	MW-2	Total/NA	Ground Water	8260B	* *
440-78207-4	MW-3	Total/NA	Ground Water	8260B	
440-78207-5	MW-4	Total/NA	Ground Water	8260B	
LCS 440-182498/9	Lab Control Sample	Total/NA	Water	8260B	
MB 440-182498/8	Method Blank	Total/NA	Water	8260B	

Analysis Batch: 182499

Lab Sample iD	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
440-78207-1	MW-1	Total/NA	Ground Water	8260B/CA_LUFT	
				MS	
440-78207-1 MS	MVV-1	Total/NA	Ground Water	8260B/CA_LUFT	
				MS	
440-78207-1 MSD	MW-1	Total/NA	Ground Water	8260B/CA_LUFT	
				MS	
440-78207-2	MW-1B	Total/NA	Ground Water	8260B/CA_LUFT	
				MS	
440-78207-3	MW-2	Total/NA	Ground Water	8260B/CA_LUFT	
				MS	
440-78207-4	MW-3	Total/NA	Ground Water	8260B/CA_LUFT	
				MS	
440-78207-5	MW-4	Total/NA	Ground Water	8260B/CA_LUFT	
				MS	
LCS 440-182499/10	Lab Control Sample	Total/NA	Water	8260B/CA_LUFT	
				MS	
MB 440-182499/8	Method Blank	Total/NA	Water	8260B/CA_LUFT	
_				MS	

HPLC/IC

Analysis Batch: 181803

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-78201-A-1 MS	Matrix Spike	Total/NA	Water	300.0	
440-78201-A-1 MSD	Matrix Spike Duplicate	Total/NA	Water	300.0	
440-78207-1	MW-1	Total/NA	Ground Water	300.0	
440-78207-1 MS	MW-1	Total/NA	Ground Water	300.0	
440-78207-1 MSD	MW-1	Total/NA	Ground Water	300.0	
440-78207-2	MW-1B	Total/NA	Ground Water	300,0	
440-78207-3	MW-2	Total/NA	Ground Water	300.0	
440-78207-4	MW-3	Total/NA	Ground Water	300.0	
440-78207-5	MW-4	Total/NA	Ground Water	300.0	
LCS 440-181803/2	Lab Control Sample	Total/NA	Water	300.0	
MB 440-181803/4	Method Blank	Total/NA	Water	300.0	

Analysis Batch: 181804

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Pr	ep Batch
440-78207-1	MVV-1	Total/NA	Ground Water	300.0	
440-78207-1 MS - DL	MVV-1	Total/NA	Ground Water	300.0	
440-78207-1 MSD - DL	MVV-1	Total/NA	Ground Water	300.0	
440-78207-2	MW-1B	Total/NA	Ground Water	300.0	

QC Association Summary

Client: Conestoga-Rovers & Associates, Inc. Project/Site: 4212 First St., Pleasanton, CA

TestAmerica Job ID: 440-78207-1

HPLC/IC (Continued)

Analysis Batch: 181804 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-78207-3	MW-2	Total/NA	Ground Water	300.0	
440-78207-4	MVV-3	Total/NA	Ground Water	300,0	
440-78207-5	MW-4	Total/NA	Ground Water	300.0	
LCS 440-181804/2	Lab Control Sample	Total/NA	Water	300.0	
MB 440-181804/4	Method Blank	Total/NA	Water	300.0	

General Chemistry

Analysis Batch: 182472

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
440-77709-H-6 DU	Duplicate	Total/NA	Water	SM 2320B	
440-78207-1	MW-1	Total/NA	Ground Water	SM 2320B	
440-78207-2	MW-1B	Total/NA	Ground Water	SM 2320B	
440-78207-3	MW-2	Total/NA	Ground Water	SM 2320B	
440-78207-4	MW-3	Total/NA	Ground Water	SM 2320B	
440-78207-5	MW-4	Total/NA	Ground Water	SM 2320B	
LCS 440-182472/2	Lab Control Sample	Total/NA	Water	SM 2320B	
MB 440-182472/3	Method Blank	Total/NA	Water	SM 2320B	

Definitions/Glossary

Client: Conestoga-Rovers & Associates, Inc. Project/Site: 4212 First St., Pleasanton, CA

TestAmerica Job ID: 440-78207-1

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Client: Conestoga-Rovers & Associates, Inc. Project/Site: 4212 First St., Pleasanton, CA

TestAmerica Job ID: 440-78207-1

Laboratory: TestAmerica Irvine
All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date		
Alaska	State Program	10	CA01531	06-30-14		
Arizona	State Program	9	AZ0671	10-13-14		
California	LA Cty Sanitation Districts	9	10256	01-31-15		
California	State Program	9	2706	06-30-14		
Guam	State Program	9	Cert. No. 12.002r	01-23-15		
Hawaii	State Program	9	N/A	01-29-15 *		
Nevada	State Program	9	CA015312007A	07-31-14		
New Mexico	State Program	6	N/A	01-29-15		
Northern Mariana Islands	State Program	9	MP0002	01-31-14 *		
Oregon	NELAP	10	4005	01-29-15		
USDA	Federal		P330-09-00080	06-06-15		
USEPA UCMR	Federal	1 .	CA01531	01-31-15		

^{*} Expired certification is currently pending renewal and is considered valid.

Clause	CALSCIENCE (il F	Products Chain Of Custody Record																									
				J				Please	Check	Арр	ropria	ate Bo	x:				Prin	t Bill	To C	Cont	act I	Name	e:				IN	CIDI	NT	# (E	NV S	SER	VICES)) [CHECK:	IF NO INCIDENT # A	PPLIES .
		-				ENV SER	MICES	ļ		МОТТ	VA RETA	<u> </u>	_	SKEL	RETA <u>11</u>					2405	23 P	eter S	Schae:	er			9	8	8 9 9 5 8 4 0 DATE 5. (2-14					14			
				_		MOTIVA :	SD&CM	7	Œ	covs	ULTANT		7	☐ was	5	¬	PO #							J	CAD#												
		A (IRVINE)				SHELL PI	NEI TRIE	i T							==	₹	_	—т	η		-	~ ~			-		┿┈	1	-	PAGE of							
CAMPLING CO			SHELL PIPELINE OTHER Log CODE.													\$17E ADDQESS: Street and City Glace Cut-Clear Light No.																					
1	INS COMPANY LOSS DOS. BTSS																		دماھ	ean	tan			Sha	CA				_								
ADDRESS			141/23												EDF DELIVERABLE TO (Name Company, Office Legator), PHONE MO.; PHONE MO.;										CONSULT	ANT PROJECT NO.											
	1680 Rogers Avenue, San Jose, CA												\dashv	Brenda Carter, CRA, Emeryville, CA 510-420-3343 Shell-DF @CRAWorld_com Shell-US-LabDataManagement@CRAworld_com										5-11.04													
Lorin Kli																	SAMPLE NAME (S) PAGE LAB USE ONLY																				
) 885-	4455 x 108		310) 637-5	802		E-MAIL!		lki	ng@b	lainete	ch,com					J.OA(2)																				
TURNAR	OUND MARD (1	TIME (CALENDAR DA 4 DAY) S DAY	rs [3 DAYS		2 DAYS] 24 KOURS				RESULTS	NEEDE	D ON WEE	KEND												REQ	UES1	ΓED,	ANA	LYSI	s					
□ LA · R	WQCB	REPORT FORMAT		UST AGENCY							_						TEMPERATURE ON RÉCE													N RECE							
		ISTRUCTIONS O									_			E APPLIES		1	Į	ļ			<u> </u>	ŭ		(82	-	}		ľ		ļ			\		_	_	
		ad the "CRA EQui dupload.craworld.					d it to the S	hell-l IS-				E REIMBL VOT NEEL		NT RATE A	PPLIES	- 1		Ļ		١	12	1	- [Ш				[{		Í	1/6	(4) n - 7	611
LabData!	Manag	ement@CRAwork	d.com em:	all folder.	2) Pie	ase indi	cate that yo	u have up	loaded	Г				N REQUES	TEĐ	ı	- {	ļ		- 1	Į.	μ̈́		11)]		ļ					100	ショリ	2. 1
the EDD	by inc	luding "EDD Uploa It to the Shell-US-	sded to CF LabDataM	RA website' Jenacemen	'in the tack	a body o Aworld :	the email t	used to de older	liverthe	_							ᆈ	€.		1	ة ا د ا دو	3	ļ					ļ			Ì			-		D 3.7/ TR	59
1,12,13,1	Теро			angungumum		2 (Ir Gira)	som on on	0,001								- 1	Purgeable (8260B)	Extractable (8016M)		- 1			- 1	11		ì	ľ]			ļ				<u> </u>	~ ~ ~ ~	<u> </u>
		ort to Shell.Lab.E						.com,She	II-US•							Ì	<u>=</u>	8	1 8	<u>.</u>	18	g	æ l					ļ						ł	l		
,		gement@CRAwor ShellLab.Billing@			erer (Q)	CHAVYO	ne.com										喜	윤	(e)tene)	707			9	<u> </u>	1	-	_	1									
Email inv	oles te	SHAUTED OWNER	Section	COIN					Matrix WP (c	Codes Irinkin	- WG (g water	ground 'Source	water), s), W (1	WS (sur	face wa mp Bia	ıtar), nk)	agin	tra	. 4	<u>, n</u>	+ 3		<u>\$</u>	5 E		89	182	Į						Į			
ļ			S A MAI	PLE ID					PRESERVATIVE							TPH.GRQ, Purgeable (8260B) TPH.GRQ, Purgeable (8260B) BTEX (8280B) BTEX + MTBE (8260B) BTEX + MTBE + TBA (8260B) BTEX + MTBE + TBA (8260B) BTEX + MTBE + TBA (8260B) Single Compound.									_	Iron		ļ	}								
1 ,			1		T	MPLER		1	MATRUX	-	Γ	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		T -	No.	.07	8	E 3		-	3 3		교	<u>ئ</u> و غ و	1 2	, ž	1 5		اع	•	1	SILS			ĺ	Container PID	Resdings
LAB USE ONLY	_]	PROJECT NUMBER	(MN	DATE MDDYY)	INI	TIALS	MELL ID	TIME	¥	HČL,	HINGS	H2504	NONE	OTNER	1	NT	TPH-GRO,	TPH-DRO,	1 4		BTE	ETB	Š	121	. E	Etha	Meth		Nitrate	Sulfale	Alkalinity	Ferrous fron				or Laborato	
V	vg –	140512-104	6512	14	.2	0	Mu-1	1310	WG	3			1		7		X	T.			\mathcal{C}			\perp					X	χ	X						
17	1]	- 1 -	1		. }		MW-18	1441	i	1] -]	} _	Í		1	`]	χ	1	ļ		χl		Ì						X	×	lχ						
	7]						MW-Z	(502)		T						Ī	Y		T-	T	x		\neg	T		7			Y	X	X						
				· .			1414-3	1430		11			7	1		\neg	X		1	7	X	\Box		7	T	Τ	Г		X	X	×						
							144-4	1450		П			Ţ)		,	X	_	7	٦.	V				Τ				×	Y	X					-	_
				1	<u> </u>	7	IVIEW - 1	1.100		 •		_	<u> </u>		┤ ─ ∸	7	7		1	1	1		/- [11] [1]	LIBIL VIETO	1011								4—	7			
					╂~	쿼		 	L	-				 	 	-	\dashv	+	┼╌	-†		ł								111			_	+	-		
 					-		 -							 _	 	+	+	_	†	+	7									Ш				\dagger	\top		
-					-					\ <u>-</u>					┢	十	+	- -	+	+	+	1			Ch:	MINE SO OM		stody	16 641	(E C B B C	/ E ET			+	+-		, <u>.</u>
-	_=	-			 					-	-			<u> </u>	┼-		\dashv	+	+-		-													+	╁		
Refirequialise	by (Sic	netre) –							Received	ne (Sign	artura)			1					_										Date:					7in			
	1	m1 ~			, .	, ,	سيم	}	(JU V	تالات	2 -\	Λ L		•													5,	- (:	2-1	14			1	532	-
Reinfoldered Difficurative Reserved by (Signature)									_													Date					Đe	E-9	532 0:40								
12/14 Suband																				_		ک	1	′	10			(0:40	}							
Retirquished	by (5)			* 7		•			Reselved	pyr (Sign	india)																		JEM.					110	127		
<u> </u>		.,, <u>.</u>				<u> </u>			L		11.	00	1/	921	2 2	72	2						_)			_						

212 4333

4.9°C

Login Sample Receipt Checklist

Client: Conestoga-Rovers & Associates, Inc.

Job Number: 440-78207-1

Login Number: 78207

List Number: 1 Creator: Kim, Guerry List Source: TestAmerica Irvine

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	•
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	