

RECEIVED

9:33 am, May 17, 2010

Alameda County Environmental Health

May 14, 2009

Re: First Quarter 2010 Groundwater Monitoring Report Shell-Branded Service Station 4212 (*aka* 4226) First Street Pleasanton, California

Dear Mr. Jerry Wickham:

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

Sincerely, Shell Oil Products US

Denis L. Brown Project Manager May 14, 2010 Delta Project No. SCA421211D SAP No. 135782

Mr. Jerry Wickham Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Re: FIRST QUARTER 2010 GROUNDWATER MONITORING REPORT Shell-Branded Service Station

4212 (*aka* 4226) First Street Pleasanton, California

Dear Mr. Wickham:

On behalf of Equilon Enterprises LLC *dba* Shell Oil Products (Shell), Delta Consultants (Delta) has prepared this *First Quarter 2010 Groundwater Monitoring Report* for the above referenced site. Field monitoring activities at the site were conducted by Blaine Tech Services, Inc. under direct contract to Shell and included the collection of groundwater samples and static water level measurements. Delta does not provide any oversight of Blaine Tech Services Inc's work or protocol. A Delta staff member performed an evaluation of the data provided to us under the supervision of a California Registered Civil Engineer or a California Professional Geologist.

This report represents Delta's professional opinions based upon the currently available information and is arrived at in accordance with currently acceptable professional standards. This report is based upon a specific scope of work requested by the client. The Contract between Delta and its client outlines the scope of work, and only those tasks specifically authorized by that contract or outlined in this report were performed. This report is intended only for the use of Delta's client and anyone else specifically listed on this report. Delta will not and cannot be liable for unauthorized reliance by any other third party. Other than as contained in this paragraph, Delta makes no express or implied warranty as to the contents of this report.

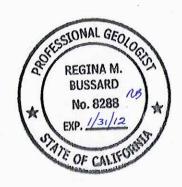
 312 Piercy Road
 San Jose, California 95138 USA

 Phone +1 408.224.4724 / USA Toll Free 800.477.7411

 Fax +1 408.225.8506

 www.deltaenv.com

If you have any questions regarding this site, please contact Suzanne McClurkin-Nelson (Delta Project Manager) at (408) 826-1875 or Denis Brown (Shell Site Manager) at (707) 865-0251.


Sincerely, Delta Consultants

Wan Mulletth

Suzanne McClurkin-Nelson Senior Project Manager

Regin Bessard

Regina Bussard, P.G. Project Geologist

Attachment: First Quarter 2010 Groundwater Monitoring Report

cc: Denis Brown, Shell Oil Products US Danielle Stefani, Livermore-Pleasanton Fire Department Cheryl Dizon, Zone 7 Water Agency

J:\Shell_Shell Sites\4\4212 (4226) First St\QMR's\2010-02-01_4Q09 GWM Report

SHELL QUARTERLY STATUS REPORT

Station Address:	4212 (aka 4226) First Street, Pleasanton, California
DELTA Project No.:	SCA421211D
SHELL Project Manager / Phone No.:	Denis Brown / (707) 865-0251
DELTA Site Manager / Phone No.:	Suzanne McClurkin-Nelson / (408) 826-1875
Primary Agency / Regulatory ID No.:	Alameda County Health Care Services Agency (ACHCSA) (Mr. Jerry Wickham, P.G., CHG)
Other Agencies to Receive Copies:	None

WORK PERFORMED THIS QUARTER (FIRST -2010):

- 1. Quarterly groundwater monitoring and sampling. Submitted quarterly report.
- 2. Installed four soil vapor extraction (SVE) wells and one test air sparge (AS) well; conducted air sparge (AS) pilot test to determine optimal radius of influence (ROI).
- 3. Submitted application for Authority to Construct to Bay Area Air Quality Management District.
- 4. Submitted monthly status reports on progress of remediation system installation. Reviewed and returned Draft Fact Sheet to ACHCSA for distribution to local neighbors.

WORK PROPOSED FOR NEXT QUARTER (SECOND -2010):

- 1. Quarterly groundwater monitoring and sampling. Submit quarterly report.
- 2. Submit AS Pilot Test report with recommendations for adjustments to remediation well spacing and total number of wells.
- 3. Make final revisions to system design drawings; re-submit Planning permit application package.
- 4. Submit monthly status reports on progress of remediation system installation.

Current Phase of Project:	Groundwater monitoring (remediation system planning)
Site Use:	Shell-branded Service Station
Frequency of Sampling:	Quarterly
Frequency of Monitoring:	Quarterly
Is Separate Phase Hydrocarbon Present On- site (Well #'s):	Yes No
Cumulative SPH Recovered to Date :	NA
SPH Recovered This Quarter :	None
Sensitive Receptor(s) and Respective Direction(s):	The Arroyo Del Valle Creek is located approximately 1,133 feet north-west of the site. A supply well (3S/1E-21C1) was located 1,000 feet northwest of the site and a municipal well (3S/1E-16P10) was located approximately 1,200 feet north of the site.
Site Lithology:	The site is underlain by interlayered silt, silty sand, gravelly sand and silty gravel.

SHELL QUARTERLY STATUS REPORT (CONT.)

Current Remediation Techniques:	Quarterly monitoring of natural attenuation						
Permits for Discharge:	None						
Groundwater Recovered This Quarter:	111.9 gallons were recovered on February 11, 2010.						
Approximate Depth to Groundwater:	31.21 to 34.06 feet below top of well casing. 90.72 feet below top of well casing in deeper Well MW1-B.						
Groundwater Gradient:	North at approximately 0.05 ft/ft						
Current Agency Correspondence:	ACHCSA email dated December 4, 2009, February 10, 2010 and February 24, 2010 (Appendix A)						
Date of Most Recent Work Plan Approval:	ACHCSA letter dated August 7, 2009 approving Interim Remediation work Plan (Appendix A)						
Site History:							
Case Opening	1985						
Onsite Assessment	1986 - 2007						
Offsite Assessment	None						
Passive Remediation	Monitoring Natural Attenuation						
Active Remediation	June 2007, Step Draw Down;						
	June, August 2007, Batch Extraction						
	February 2009, Dual-Phase Extraction Pilot Test January 2010, Air Sparge Pilot Test						
Closure	None						
Summary of Unusual Activity:	None						

Analytical results for the first quarter 2010 are consistent with historical data set. Elevated concentrations of total petroleum hydrocarbons as gasoline (TPH-g), benzene, methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA) remain in wells MW-1, MW-2 and MW-4.

Remediation wells SVE-1 through SVE-4, a test air sparge well (AS-10) and an observation well (OW-1) were installed January 2010; an AS pilot test was performed January 26, 2010 in order to determine the site-specific radius of influence (ROI). Following confirmation of well placement, the remaining AS wells will be installed.

An application package for an authority to construct (ATC) was submitted to the Bay Area Air Quality Management District during the first quarter 2010; additional fees and data were subsequently provided and the ATC is expected to be issued during the second quarter 2010. A preliminary remediation system design was finalized and a permit application package submitted to the planning department during the first quarter 2010; additional plan sets and information were requested. Re-submittal of the planning permit package was postponed pending a review of the air sparge (AS) pilot test results and potential adjustments to the system well number and placement. The AS pilot test report and re-submittal of the planning permit application package are scheduled for the second quarter 2010.

ATTACHMENTS:

Figures:

Figure 1 – Site Location Map

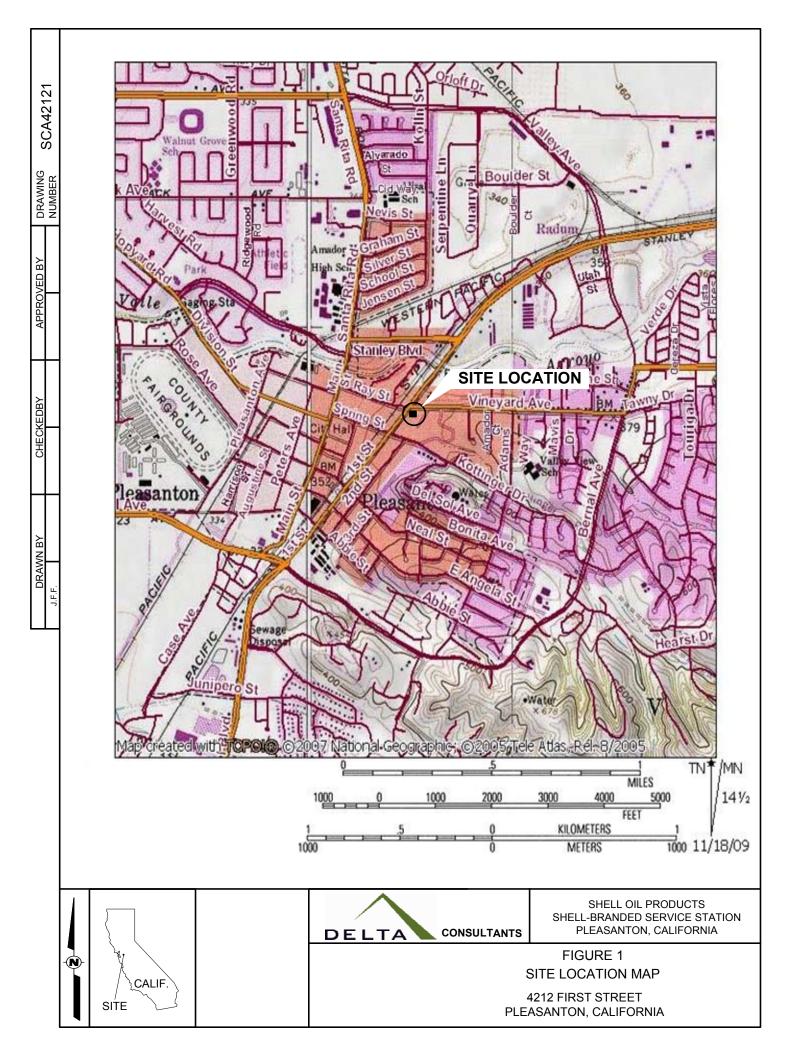
Figure 2 – Groundwater Elevation Contour Map – 2/11/2010

Figure 3 – Groundwater Hydrocarbon Distribution Map – 2/11/2010

Table:

Table 1 – Well Concentrations

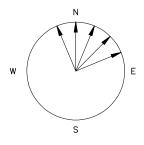
Appendices:


Appendix A – Agency Correspondence

Appendix B - Blaine Tech Services, Inc. Field Data Sheets

Appendix C - Blaine Tech Services, Inc. Field Procedures

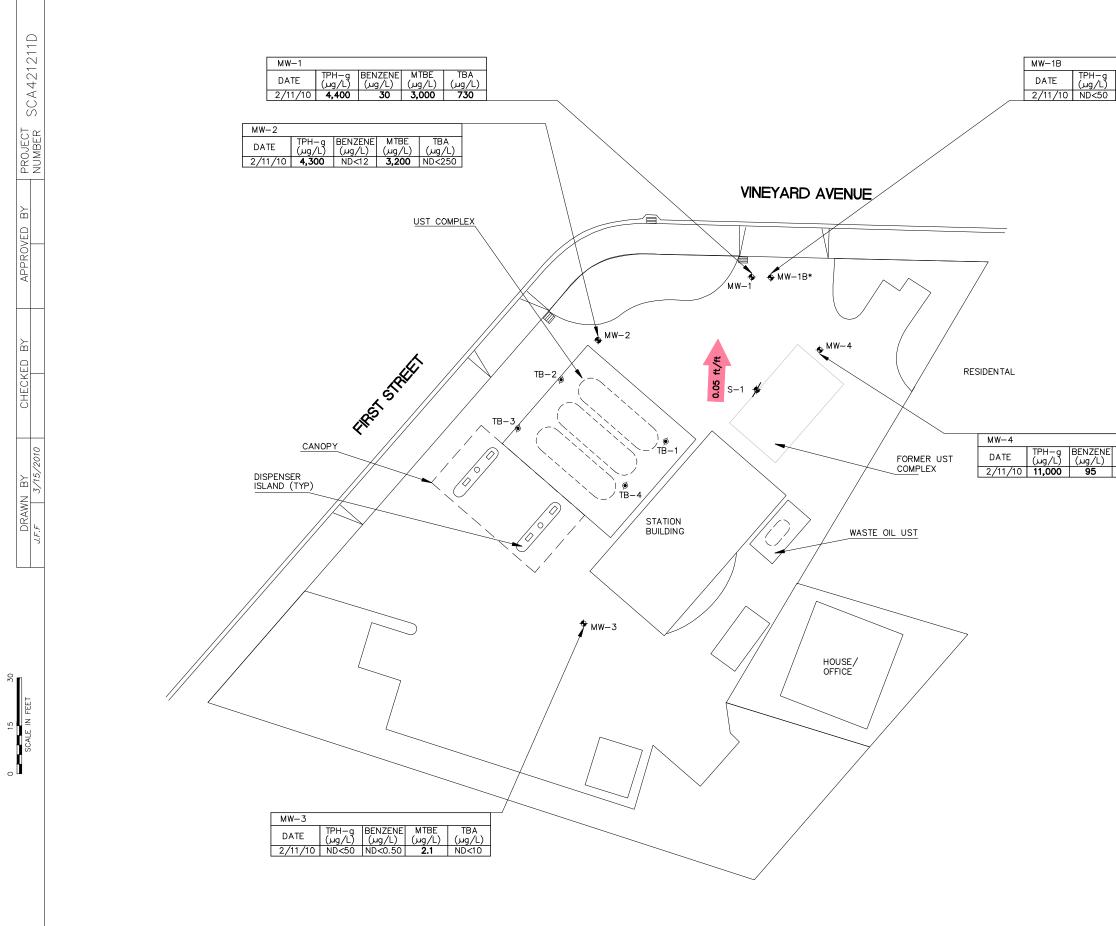
Appendix D - Certified Analytical Report with Chain-of-Custody Documentation


FIGURES

LEGEND	
MW-1 🕈	GROUNDWATER MONITORING WELL LOCATION AND DESIGNATION
S−1 梯	DESTROYED GROUNDWATER MONITORING WELL LOCATION AND DESIGNATION
TB−1 🚿	ABANDONED TANK BACKFILL WELL LOCATION
343.08	GROUNDWATER ELEVATION IN FEET ABOVE MEAN SEA LEVEL (Ft/MSL)
344.00 — — –	 GROUNDWATER CONTOUR IN FEET ABOVE MEAN SEA LEVEL (Ft/MSL) CONTOUR INTERVAL=2.00 FEET
MW-1B*	MONITORS DEEPER WATER BEARING ZONE; NOT USED USED IN CONTOURING
0.05 ft/ft	APPROXIMATE GROUNDWATER GRADIENT DIRECTION (ft/ft)

HISTORIC GROUNDWATER FLOW DIRECTIONS

DA TE	FLOW
	DIRECTION
8/5/2005	ENE
11/22/2005	ENE
2/7/2006	NNE
5/16/2006	NNE
8/21/2006	N
11/14/2006	N
2/1/2007	NNE
8/22/2007	N, NNE
11/26/2007	NNE
2/19/2008	NNW
5/23/2008	N
8/7/2008	N, NNW
12/3/2008	NNE
2/5/2009	NNE
5/7/2009	NNW
8/20/2009	NE
11/9/2009	NE
2/11/2010	N



SHELL OIL PRODUCTS US SHELL-BRANDED SERVICE STATION PLEASANTON, CALIFORNIA

FIGURE 2

GROUNDWATER ELEVATION CONTOUR MAP 2/11/2010

4212 FIRST STREET PLEASANTON, CALIFORNIA

	BĄ
_) (אפע) (ug/L) (3/L)
50 ND<0.50 1.1 ND	<10

LEGEND	
MW-1 🕈	GROUNDWATER MONITORING WELL LOCATION AND DESIGNATION
S−1 🗲	DESTROYED GROUNDWATER MONITORING WELL LOCATION AND DESIGNATION
TB−1 ୭́	ABANDONED TANK BACKFILL WELL LOCATION
TPH-g	TOTAL PETROLEUM HYDROCARBONS
MTBE	METHYL TERT-BUTYL ETHER
TBA	TERT-BUTYL ALCOHOL
ug/L	MICROGRAMS PER LITER
ND<	NOT DETECTED ABOVE LIMIT NOTED
MW-1B*	MONITORS DEEPER WATER BEARING ZONE
0.05 ft/ft	APPROXIMATE GROUNDWATER GRADIENT DIRECTION (ft/ft)

١E	MTBE	TBA
)	(µg/L)	(µg/L)
	7,500	3,200

TABLE

TABLE 1WELL CONCENTRATIONSShell-branded Service Station4212 First Street

Pleasanton, CA

							MTBE	MTBE						Depth to	GW
Well ID	Date	TPPH	В	т	Е	x	8020	8260	DIPE	ETBE	TAME	ТВА	тос	Water	Elevation
		(ug/L)	(MSL)	(ft.)	(MSL)										
MW-1	6/16/1999	NA	371.20	37.81	333.39										
MW-1	6/30/1999	89.0	5.89	<0.500	<0.500	0.652	<5.00	NA	NA	NA	NA	NA	371.20	33.65	337.55
MW-1	9/24/1999	1,560	473	<10.0	<10.0	22.8	<2.50	NA	NA	NA	NA	NA	371.20	37.04	334.16
MW-1	12/8/1999	1,020	375	<5.00	<5.00	15.2	<50.0	NA	NA	NA	NA	NA	371.20	36.79	334.41
MW-1	2/10/2000	523	106	<5.00	<5.00	31.8	2.9	NA	NA	NA	NA	NA	371.20	34.90	336.30
MW-1	5/17/2000	<50.0	<0.500	<0.500	<0.500	<0.500	37	29.5	NA	NA	NA	NA	371.20	32.55	338.65
MW-1	8/3/2000	808	290	<2.50	<2.50	8.9	<12.5	NA	NA	NA	NA	NA	371.20	39.13	332.07
MW-1	10/31/2000	507	250	0.962	<0.500	23.5	3.76	NA	NA	NA	NA	NA	371.20	37.91	333.29
MW-1	3/1/2001	<50.0	<0.500	<0.500	<0.500	<0.500	74.6	NA	NA	NA	NA	NA	371.20	39.60	331.60
MW-1	5/30/2001	780	280	<2.0	<2.0	11	NA	<2.0	NA	NA	NA	NA	371.20	39.53	331.67
MW-1	8/2/2001	1,900	580	<2.5	<2.5	12	NA	<25	NA	NA	NA	NA	371.20	39.61	331.59
MW-1	12/6/2001	840	190	<0.50	<0.50	13	NA	<5.0	NA	NA	NA	NA	371.20	39.63	331.57
MW-1	2/5/2002	2,700	650	<2.5	<2.5	7.2	NA	<25	NA	NA	NA	NA	371.20	35.53	335.67
MW-1	6/17/2002	2,500	550	<2.0	<2.0	5.9	NA	<20	NA	NA	NA	NA	371.20	39.29	331.91
MW-1	7/25/2002	690	130	<0.50	<0.50	4.4	NA	18	NA	NA	NA	NA	371.20	39.39	331.81
MW-1	11/14/2002	400	31	<0.50	<0.50	2.7	NA	27	NA	NA	NA	NA	371.20	40.00	331.20
MW-1	2/12/2003	840	0.85	<0.50	<0.50	<0.50	NA	40	NA	NA	NA	NA	371.20	32.92	338.28
MW-1	5/14/2003	680	190	<2.5	<2.5	<5.0	NA	95	NA	NA	NA	NA	371.20	32.57	338.63
MW-1	7/29/2003	870	190	<2.5	<2.5	<5.0	NA	150	NA	NA	NA	NA	371.20	33.82	337.38
MW-1	11/19/2003	<200	14	<2.0	<2.0	<4.0	NA	230	NA	NA	NA	NA	371.20	38.28	332.92
MW-1	2/19/2004	58 d	11	<0.50	<0.50	<1.0	NA	85	NA	NA	NA	NA	371.20	36.93	334.27
MW-1	5/3/2004	670	310	<2.5	<2.5	<5.0	NA	420	NA	NA	NA	NA	371.20	32.70	338.50
MW-1	8/24/2004	430 d	34	<2.5	<2.5	<5.0	NA	690	NA	NA	NA	NA	371.20	34.66	336.54
MW-1	11/15/2004	<250	29	<2.5	<2.5	<5.0	NA	470	NA	NA	NA	NA	371.20	38.27	332.93
MW-1	2/2/2005	540 e	87	<2.5	<2.5	<5.0	NA	700	NA	NA	NA	NA	371.20	32.02	339.18
MW-1	5/5/2005	460 e	88	<2.5	<2.5	<5.0	NA	300	NA	NA	NA	NA	371.20	36.82	334.38
MW-1	8/5/2005	910	230	<2.5	<2.5	<5.0	NA	480	NA	NA	NA	NA	371.20	33.35	337.85
MW-1	11/22/2005	1,760	27	<0.500	<0.500	1	NA	1,160	NA	NA	NA	NA	371.20	33.42	337.78
MW-1	2/7/2006	4,620	225	<0.500	<0.500	<0.500	NA	1,480	NA	NA	NA	NA	371.20	31.63	339.57

TABLE 1WELL CONCENTRATIONSShell-branded Service Station4212 First Street

Pleasanton, CA

							MTBE	MTBE						Depth to	GW
Well ID	Date	TPPH	В	т	Е	Х	8020	8260	DIPE	ETBE	TAME	тва	тос	Water	Elevation
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)
<u> </u>															
MW-1	5/16/2006	1,100	130	<0.50	2	2	NA	1,600	NA	NA	NA	NA	371.20	31.16	340.04
MW-1	8/21/2006	2,700	86	<0.500	1	1	NA	1,960	NA	NA	NA	NA	371.20	33.07	338.13
MW-1	11/14/2006	1,400 g	30	<25	<25	<25	NA	2,100	<25	<25	<25	<1,000	371.20	33.73	337.47
MW-1	2/1/2007	800	21	<0.50	<0.50	<1.0	NA	2,300	NA	NA	NA	NA	371.20	33.02	338.18
MW-1	6/1/2007	1,400 j,k	68	<20	<20	4.4	NA	2,200	NA	NA	NA	NA	371.20	32.87	338.33
MW-1	8/22/2007	250 j	20	<20	<20	<20	NA	3,100	NA	NA	NA	1,500	371.20	34.64	336.56
MW-1	11/26/2007	1,800 j	33	<20	<20	<20	NA	3,100	<40	<40	<40	930	371.20	35.59	335.61
MW-1	2/19/2008	1,800 j	33	<20	<20	<20	NA	3,700	NA	NA	NA	1,700	371.20	31.05	340.15
MW-1	5/23/2008	3,700	100	<25	<25	<25	NA	3,100	NA	NA	NA	1,300	371.20	31.80	339.40
MW-1	8/7/2008	4,200	33	<25	<25	<25	NA	3,500	NA	NA	NA	<250	371.20	33.03	338.17
MW-1	12/3/2008	3,400	34	<25	<25	<25	NA	3,200	NA	NA	NA	980	371.20	35.19	336.01
MW-1	2/5/2009	2,100	26	<25	<25	<25	NA	1,700	NA	NA	NA	340	371.20	35.07	336.13
MW-1	5/7/2009	4,400	230	<25	<25	<25	NA	3,700	NA	NA	NA	980	371.20	32.45	338.75
MW-1	8/20/2009	3,100	86	<25	<25	<25	NA	2,500	NA	NA	NA	730	371.20	34.48	336.72
MW-1	11/9/2009	3,200	230	<20	<20	33	NA	2,100	<40	<40	<40	530	371.20	35.84	335.36
MW-1	2/11/2010	4,400	30	<20	<20	<20	NA	3,000	NA	NA	NA	730	371.20	34.06	337.14
MW-1B	9/21/2006	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	371.67	76.94	294.73
MW-1B	9/28/2006	<50	<0.50	<0.50	<0.50	<0.50	NA	21	NA	NA	NA	<20	371.67	77.15	294.52
MW-1B	11/14/2006	320 g	<5.0	<5.0	<5.0	<5.0	NA	310	<5.0	<5.0	<5.0	<200	371.67	69.38	302.29
MW-1B	2/1/2007	77	0.53	<0.50	<0.50	<1.0	NA	150	NA	NA	NA	NA	371.67	60.92	310.75
MW-1B	6/1/2007	<50 j,k	0.25 I	<1.0	<1.0	<1.0	NA	74	NA	NA	NA	NA	371.67	61.07	310.60
MW-1B	8/22/2007	<50 j	0.25 I	<1.0	<1.0	<1.0	NA	35	NA	NA	NA	7.11	371.67	77.54	294.13
MW-1B	11/26/2007	<50 j	<0.50	<1.0	<1.0	<1.0	NA	1.7	<2.0	<2.0	<2.0	<10	371.67	68.50	303.17
MW-1B	2/19/2008	65 j	2.6	4.2	<1.0	1.1	NA	58	NA	NA	NA	<10	371.67	57.21	314.46
MW-1B	5/23/2008	<50	<0.50	<1.0	<1.0	<1.0	NA	3.6	NA	NA	NA	<10	371.67	57.53	314.14
MW-1B	8/7/2008	<50	<0.50	<1.0	<1.0	<1.0	NA	1.1	NA	NA	NA	<10	371.67	72.51	299.16
MW-1B	12/3/2008	<50	<0.50	<1.0	<1.0	<1.0	NA	3.4	NA	NA	NA	<10	371.67	80.84	290.83
MW-1B	2/5/2009	<50	<0.50	<1.0	<1.0	<1.0	NA	4.4	NA	NA	NA	<10	371.67	76.11	295.56

TABLE 1 WELL CONCENTRATIONS Shell-branded Service Station 4212 First Street Pleasanton, CA

							MTBE	MTBE						Depth to	GW
Well ID	Date	ТРРН	в	т	Е	х	8020	8260	DIPE	ETBE	TAME	ТВА	тос	Water	Elevation
	Dute	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)							
		((((((((0.9, =)	((((()	(
MW-1B	5/7/2009	<50	<0.50	<1.0	<1.0	<1.0	NA	2.5	NA	NA	NA	13	371.67	66.97	304.70
MW-1B	8/20/2009	<50	<0.50	<1.0	<1.0	<1.0	NA	1.7	NA	NA	NA	<10	371.67	97.32	274.35
MW-1B	11/9/2009	<50	<0.50	<1.0	<1.0	<1.0	NA	<1.0	<2.0	<2.0	<2.0	<10	371.67	98.90	272.77
MW-1B	2/11/2010	<50	<0.50	<1.0	<1.0	<1.0	NA	1.1	NA	NA	NA	<10	371.67	90.72	280.95
MW-2	2/3/2000	NA	NA	NA	NA	372.40	32.65	339.75							
MW-2	2/7/2000	NA	NA	NA	NA	372.40	35.51	336.89							
MW-2	2/10/2000	<50.0	<0.500	<0.500	<0.500	<0.500	2.61	NA	NA	NA	NA	NA	372.40	36.62	335.78
MW-2	5/17/2000	120	4.09	<0.500	<0.500	<0.500	29	NA	NA	NA	NA	NA	372.40	32.14	340.26
MW-2	8/3/2000	<50.0	0.692	<0.500	<0.500	<0.500	40.5	36.6b	NA	NA	NA	NA	372.40	32.42	339.98
MW-2	10/31/2000	<50.0	<0.500	<0.500	<0.500	<0.500	57.4	44.8c	NA	NA	NA	NA	372.40	33.02	339.38
MW-2	3/1/2001	173	1.64	1.65	2.86	3.97	127	167	NA	NA	NA	NA	372.40	32.54	339.86
MW-2	5/30/2001	<50	<0.50	<0.50	<0.50	<0.50	NA	170	NA	NA	NA	NA	372.40	32.42	339.98
MW-2	8/2/2001	<50	<0.50	<0.50	<0.50	<0.50	NA	160	NA	NA	NA	NA	372.40	32.55	339.85
MW-2	12/6/2001	<50	<0.50	<0.50	<0.50	<0.50	NA	170	NA	NA	NA	NA	372.40	33.15	339.25
MW-2	2/5/2002	<50	0.72	<0.50	<0.50	1.7	NA	170	NA	NA	NA	NA	372.40	32.29	340.11
MW-2	6/17/2002	<50	<0.50	<0.50	<0.50	<0.50	NA	260	NA	NA	NA	NA	372.40	32.63	339.77
MW-2	7/25/2002	<50	<0.50	<0.50	<0.50	<0.50	NA	280	NA	NA	NA	NA	372.40	32.80	339.60
MW-2	11/14/2002	120	13	9	3.8	14	NA	430	NA	NA	NA	NA	372.40	33.31	339.09
MW-2	2/12/2003	<100	<1.0	<1.0	<1.0	<1.0	NA	430	NA	NA	NA	NA	372.40	32.15	340.25
MW-2	5/14/2003	<250	<2.5	<2.5	<2.5	<5.0	NA	470	NA	NA	NA	NA	372.40	32.01	340.39
MW-2	7/29/2003	<250	<2.5	<2.5	<2.5	<5.0	NA	670	NA	NA	NA	NA	372.40	32.51	339.89
MW-2	11/19/2003	<50	<0.50	<0.50	<0.50	<1.0	NA	54	NA	NA	NA	NA	372.40	33.83	338.57
MW-2	2/19/2004	65	<0.50	3.4	1.4	6.5	NA	8.2	NA	NA	NA	NA	372.40	32.68	339.72
MW-2	5/3/2004	<50	<0.50	<0.50	<0.50	<1.0	NA	5.2	NA	NA	NA	NA	372.40	32.07	340.33
MW-2	8/24/2004	<50	<0.50	<0.50	<0.50	<1.0	NA	2.7	NA	NA	NA	NA	372.40	32.44	339.96
MW-2	11/15/2004	<50	<0.50	<0.50	<0.50	<1.0	NA	1.3	NA	NA	NA	NA	372.40	32.95	339.45
MW-2	2/2/2005	<50	<0.50	<0.50	<0.50	<1.0	NA	24	NA	NA	NA	NA	372.40	31.94	340.46
MW-2	5/5/2005	72 f	<0.50	<0.50	<0.50	<1.0	NA	4.9	NA	NA	NA	NA	372.40	31.91	340.49

TABLE 1WELL CONCENTRATIONSShell-branded Service Station4212 First Street

Pleasanton, CA

							MTBE	MTBE						Depth to	GW
Well ID	Date	TPPH	В	т	Е	х	8020	8260	DIPE	ETBE	TAME	ТВА	тос	Water	Elevation
	2410	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)
<u> </u>															
MW-2	8/5/2005	<50	<0.50	<0.50	<0.50	<1.0	NA	16	NA	NA	NA	NA	372.40	32.15	340.25
MW-2	11/22/2005	840	1	<0.500	<0.500	1	NA	556	NA	NA	NA	NA	372.40	32.31	340.09
MW-2	2/7/2006	3,550	<0.500	<0.500	<0.500	<0.500	NA	2,500	NA	NA	NA	NA	372.40	31.70	340.70
MW-2	5/16/2006	1,400	<5.0	<5.0	<5.0	<10	NA	1,700	NA	NA	NA	NA	372.40	31.38	341.02
MW-2	8/21/2006	1,910	<0.500	<0.500	<0.500	<0.500	NA	2,590	NA	NA	NA	NA	372.40	33.29	339.11
MW-2	11/14/2006	2,300 g	<25	<25	<25	<25	NA	2,500	<25	<25	<25	<1,000	372.40	32.67	339.73
MW-2	2/1/2007	670	<0.50	<0.50	<0.50	<1.0	NA	2,000	NA	NA	NA	NA	372.40	32.13	340.27
MW-2	6/1/2007	500 j,k	<10	<20	<20	<20	NA	2,000	NA	NA	NA	NA	372.40	32.14	340.26
MW-2	8/22/2007	100 j,k	<10	<20	<20	<20	NA	2,400	NA	NA	NA	120 I	372.40	32.93	339.47
MW-2	11/26/2007	1,600 j,k	<10	<20	<20	<20	NA	2,900	<40	<40	<40	<200	372.40	33.44	338.96
MW-2	2/19/2008	1,300 j,k	<10	<20	<20	<20	NA	3,300	NA	NA	NA	<200	372.40	31.18	341.22
MW-2	5/23/2008	1,900	<12	<25	<25	<25	NA	1,700	NA	NA	NA	<250	372.40	31.44	340.96
MW-2	8/7/2008	1,700	<10	<20	<20	<20	NA	1,300	NA	NA	NA	<200	372.40	31.94	340.46
MW-2	12/3/2008	3,000	<10	<20	<20	<20	NA	2,900	NA	NA	NA	<200	372.40	32.53	339.87
MW-2	2/5/2009	1,200	<10	<20	<20	<20	NA	1,000	NA	NA	NA	<200	372.40	32.29	340.11
MW-2	5/7/2009	2,400	<10	<20	<20	<20	NA	2,400	NA	NA	NA	<200	372.40	31.98	340.42
MW-2	8/20/2009	2,800	<10	<20	<20	<20	NA	2,400	NA	NA	NA	<200	372.40	32.51	339.89
MW-2	11/9/2009	4,100	<12	<25	<25	<25	NA	3,800	<50	<50	<50	<250	372.40	32.43	339.97
MW-2	2/11/2010	4,300	<12	<25	<25	<25	NA	3,200	NA	NA	NA	<250	372.40	32.07	340.33
													1	1	
MW-3	2/3/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	375.05	32.06	342.99
MW-3	2/7/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	375.05	32.57	342.48
MW-3	2/10/2000	180	5.12	<0.500	<0.500	0.714	26.8	21.5a	NA	NA	NA	NA	375.05	32.77	342.28
MW-3	5/17/2000	1,360	414	<5.00	<5.00	17.6	<25.0	NA	NA	NA	NA	NA	375.05	31.00	344.05
MW-3	8/3/2000	<50.0	0.536	<0.500	<0.500	<0.500	22	NA	NA	NA	NA	NA	375.05	31.03	344.02
MW-3	10/31/2000	<50.0	<0.500	<0.500	<0.500	<0.500	31.1	NA	NA	NA	NA	NA	375.05	31.28	343.77
MW-3	3/1/2001	384	172	0.815	<0.500	8	5.16	NA	NA	NA	NA	NA	375.05	31.21	343.84
MW-3	5/30/2001	<50	<0.50	<0.50	<0.50	<0.50	NA	110	NA	NA	NA	NA	375.05	31.02	344.03
MW-3	8/2/2001	<50	<0.50	<0.50	<0.50	<0.50	NA	93	NA	NA	NA	NA	375.05	30.94	344.11

TABLE 1WELL CONCENTRATIONSShell-branded Service Station4212 First Street

Pleasanton, CA

							MTBE	MTBE						Depth to	GW
Well ID	Date	TPPH	В	т	Е	Х	8020	8260	DIPE	ETBE	TAME	ТВА	тос	Water	Elevation
		(ug/L)	(MSL)	(ft.)	(MSL)										
<u>.</u>															· · · · · · · · · · · · · · · · · · ·
MW-3	12/6/2001	110	<0.50	<0.50	<0.50	2.3	NA	180	NA	NA	NA	NA	375.05	31.28	343.77
MW-3	2/5/2002	<50	0.89	0.6	<0.50	2.1	NA	130	NA	NA	NA	NA	375.05	31.12	343.93
MW-3	6/17/2002	<50	<0.50	<0.50	<0.50	<0.50	NA	72	NA	NA	NA	NA	375.05	31.21	343.84
MW-3	7/25/2002	<50	<0.50	<0.50	<0.50	<0.50	NA	81	NA	NA	NA	NA	375.05	30.96	344.09
MW-3	11/14/2002	<50	<0.50	<0.50	<0.50	<0.50	NA	60	NA	NA	NA	NA	375.05	31.44	343.61
MW-3	2/12/2003	<50	<0.50	<0.50	<0.50	<0.50	NA	43	NA	NA	NA	NA	375.05	31.28	343.77
MW-3	5/14/2003	<50	<0.50	<0.50	<0.50	<1.0	NA	24	NA	NA	NA	NA	375.05	31.20	343.85
MW-3	7/29/2003	<50	<0.50	<0.50	<0.50	<1.0	NA	21	NA	NA	NA	NA	375.05	31.29	343.76
MW-3	11/19/2003	<50	<0.50	<0.50	<0.50	<1.0	NA	8.2	NA	NA	NA	NA	375.05	31.86	343.19
MW-3	2/19/2004	81	0.67	4.4	1.8	8.6	NA	13	NA	NA	NA	NA	375.05	31.66	343.39
MW-3	5/3/2004	<50	<0.50	<0.50	<0.50	<1.0	NA	13	NA	NA	NA	NA	375.05	31.72	343.33
MW-3	8/24/2004	<50	<0.50	<0.50	<0.50	<1.0	NA	10	NA	NA	NA	NA	375.05	32.09	342.96
MW-3	11/15/2004	<50	<0.50	<0.50	<0.50	<1.0	NA	6.6	NA	NA	NA	NA	375.05	31.50	343.55
MW-3	2/2/2005	<50	<0.50	<0.50	<0.50	<1.0	NA	3.1	NA	NA	NA	NA	375.05	31.28	343.77
MW-3	5/5/2005	<50	<0.50	<0.50	<0.50	<1.0	NA	2.3	NA	NA	NA	NA	375.05	31.42	343.63
MW-3	8/5/2005	<50	<0.50	<0.50	<0.50	<1.0	NA	2.4	NA	NA	NA	NA	375.05	31.35	343.70
MW-3	11/22/2005	<50	<0.500	<0.500	<0.500	<0.500	NA	3.84	NA	NA	NA	NA	375.05	31.98	343.07
MW-3	2/7/2006	<50.0	<0.500	<0.500	<0.500	<0.500	NA	<0.500	NA	NA	NA	NA	375.05	31.24	343.81
MW-3	5/16/2006	<50	<0.50	<0.50	<0.50	<1.0	NA	4.5	NA	NA	NA	NA	375.05	31.37	343.68
MW-3	8/21/2006	<50.0	<0.500	<0.500	<0.500	<0.500	NA	4.04	NA	NA	NA	NA	375.05	31.95	343.10
MW-3	11/14/2006	<50	<0.50	<0.50	<0.50	<0.50	NA	3.8	<0.50	<0.50	<0.50	<20	375.05	32.24	342.81
MW-3	2/1/2007	<50	<0.50	<0.50	<0.50	<1.0	NA	2.8	NA	NA	NA	NA	375.05	32.17	342.88
MW-3	6/1/2007	<50 j	<0.50	<1.0	<1.0	<1.0	NA	3.1	NA	NA	NA	NA	375.05	31.86	343.19
MW-3	8/22/2007	<50 j	<0.50	<1.0	<1.0	<1.0	NA	4.6	NA	NA	NA	<10	375.05	32.18	342.87
MW-3	11/26/2007	<50 j	<0.50	<1.0	<1.0	<1.0	NA	3.5	<2.0	<2.0	<2.0	<10	375.05	32.69	342.36
MW-3	2/19/2008	<50 j	<0.50	1.2	<1.0	<1.0	NA	2.6	NA	NA	NA	<10	375.05	30.94	344.11
MW-3	5/23/2008	<50	<0.50	<1.0	<1.0	<1.0	NA	3.6	NA	NA	NA	<10	375.05	31.45	343.60
MW-3	8/7/2008	<50	<0.50	<1.0	<1.0	<1.0	NA	3.0	NA	NA	NA	<10	375.05	31.40	343.65
MW-3	12/3/2008	<50	<0.50	<1.0	<1.0	<1.0	NA	2.1	NA	NA	NA	<10	375.05	32.12	342.93

TABLE 1WELL CONCENTRATIONSShell-branded Service Station4212 First StreetPleasanton, CA

Weil ID Date TPPH B T E X (ug/L) (ug/L) (ug/L) ETBE TAME TBA TOC (ug/L) (ug/L) (ug/L) MW-3 2/5/2009 <50 <0.50 <1.0 <1.0 <1.0 NA <10 375.05 31.69 343.36 MW-3 8/20/2009 <50 <0.50 <1.0 <1.0 <1.0 NA NA NA NA NA NA <10 375.05 31.69 343.36 MW-3 8/20/2009 <50 <0.50 <1.0 <1.0 <1.0 NA	ir			1				MEDE	MEDE				1			014/
(ug/L) (ug/L)<				_	_	_		MTBE	MTBE						Depth to	GW
MW-3 215/2009 <50	Well ID	Date			-											
MW-3 5/7/2009 <50			(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(MSL)
MW-3 5/7/2009 <50 <0.50 <1.0 <1.0 <1.0 <1.0 NA NA NA NA NA <10 375.05 31.69 343.36 MW-3 8/20/2009 <50																
MW-3 8/20/2009 <50 <0.50 <1.0 <1.0 <1.0 <1.0 NA NA NA NA NA	MW-3	2/5/2009	<50	<0.50	<1.0	<1.0	<1.0	NA	1.1	NA	NA	NA	<10	375.05	32.74	342.31
MW-3 11/9/2009 <50 <1.0 <1.0 <1.0 NA 1.7 <2.0 <2.0 <2.0 <1.0 375.05 32.54 342.51 MW-3 2/11/2010 <50 <0.50 <1.0 <1.0 <1.0 NA NA NA NA NA VI 375.05 32.54 342.51 MW-3 2/11/2010 <50 <1.0 <1.0 <1.0 <1.0 NA NA <td>MW-3</td> <td>5/7/2009</td> <td><50</td> <td><0.50</td> <td><1.0</td> <td><1.0</td> <td><1.0</td> <td>NA</td> <td></td> <td>NA</td> <td>NA</td> <td>NA</td> <td><10</td> <td>375.05</td> <td>31.69</td> <td>343.36</td>	MW-3	5/7/2009	<50	<0.50	<1.0	<1.0	<1.0	NA		NA	NA	NA	<10	375.05	31.69	343.36
MW-3 2/11/2010 <50 <0.50 <1.0 <1.0 NA 2.1 NA NA NA <10 375.05 31.81 343.24 MW-4 9/21/2006 NA S1.57 31.58 341.20 MW-4 9/28/2006 11,000 <250	MW-3	8/20/2009	<50	<0.50	<1.0	<1.0	<1.0	NA	2.0	NA	NA	NA	<10	375.05	32.42	342.63
MW-4 9/21/2006 NA	MW-3	11/9/2009	<50	<0.50	<1.0	<1.0	<1.0	NA	1.7	<2.0	<2.0	<2.0	<10	375.05	32.54	342.51
MW-4 9/28/2006 11,000 <250	MW-3	2/11/2010	<50	<0.50	<1.0	<1.0	<1.0	NA	2.1	NA	NA	NA	<10	375.05	31.81	343.24
MW-4 9/28/2006 11,000 <250																
MW-4 11/14/2006 30,000 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <250 <200 <200	MW-4	9/21/2006	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	372.78	31.58	341.20
MW-4 2/1/2007 6,300 50 <5.0 19 120 NA 14,000 NA NA NA NA 372.78 33.23 339.55 MW-4 6/1/2007 8,200 j 52 <25	MW-4	9/28/2006	11,000	<250	<250	<250	<250	NA	13,000	NA	NA	NA	<10,000	372.78	31.57	341.21
MW-4 6/1/2007 8,200 j 52 <25 26 150 NA 11,000 NA NA </td <td>MW-4</td> <td>11/14/2006</td> <td>30,000</td> <td><250</td> <td><250</td> <td><250</td> <td><250 h,i</td> <td>NA</td> <td>14,000</td> <td><250</td> <td><250</td> <td><250</td> <td><10,000</td> <td>372.78</td> <td>32.11</td> <td>340.67</td>	MW-4	11/14/2006	30,000	<250	<250	<250	<250 h,i	NA	14,000	<250	<250	<250	<10,000	372.78	32.11	340.67
MW-4 8/22/2007 NA	MW-4	2/1/2007	6,300	50	<5.0	19	120	NA	14,000	NA	NA	NA	NA	372.78	33.23	339.55
MW-4 11/26/2007 12,000 j 71 <100 <100 <100 NA 20,000 <200 <200 <1000 372.78 34.74 338.04 MW-4 2/19/2008 13,000 j <100	MW-4	6/1/2007	8,200 j	52	<25	26	150	NA	11,000	NA	NA	NA	NA	372.78	31.57	341.21
MW-4 2/19/2008 13,000 j <100 <200 <200 <200 NA 18,000 NA NA NA NA 2,900 372.78 29.70 343.08 MW-4 5/23/2008 21,000 <100	MW-4	8/22/2007	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	372.78	33.40	339.38
MW-4 5/23/2008 21,000 <100 <200 <200 <200 NA 16,000 NA NA NA NA Strate MW-4 Strac	MW-4	11/26/2007	12,000 j	71	<100	<100	<100	NA	20,000	<200	<200	<200	<1,000	372.78	34.74	338.04
MW-4 8/7/2008 27,000 <100 <200 <200 <200 NA 21,000 NA NA NA <2,000 372.78 31.90 340.88 MW-4 12/3/2008 20,000 19 <25	MW-4	2/19/2008	13,000 j	<100	<200	<200	<200	NA	18,000	NA	NA	NA	2,900	372.78	29.70	343.08
MW-4 12/3/2008 20,000 19 <25 <25 29 NA 21,000 NA NA NA NA NA NA 21,000 NA NA NA NA NA NA NA 21,000 NA NA NA NA NA NA NA NA 2,500 372.78 34.32 338.46 MW-4 2/5/2009 15,000 200 <200	MW-4	5/23/2008	21,000	<100	<200	<200	<200	NA	16,000	NA	NA	NA	<2,000	372.78	31.67	341.11
MW-4 2/5/2009 15,000 200 <200 <200 <200 NA 13,000 NA NA NA NA Stress 338.20 MW-4 5/7/2009 18,000 <100	MW-4	8/7/2008	27,000	<100	<200	<200	<200	NA	21,000	NA	NA	NA	<2,000	372.78	31.90	340.88
MW-4 5/7/2009 18,000 <100 <200 <200 <200 NA 17,000 NA NA NA	MW-4	12/3/2008	20,000	19	<25	<25	29	NA	21,000	NA	NA	NA	2,500	372.78	34.32	338.46
MW-4 8/20/2009 15,000 <50 <100 <100 NA 13,000 NA NA NA NA 1,900 372.78 33.56 339.22 MW-4 11/9/2009 13,000 <50	MW-4	2/5/2009	15,000	200	<200	<200	<200	NA	13,000	NA	NA	NA	<2,000	372.78	34.58	338.20
MW-4 11/9/2009 13,000 <50 <100 <100 NA 11,000 <200 <200 <200 <100 372.78 33.57 339.21 MW-4 2/11/2010 11,000 95 <100 <100 110 NA 7,500 NA NA NA NA 3,200 372.78 33.57 339.21 MW-4 2/11/2010 11,000 95 <100 <100 110 NA 7,500 NA NA NA 3,200 372.78 31.21 341.57 TB-1 2/12/2003 Well inaccessible NA NA <td>MW-4</td> <td>5/7/2009</td> <td>18,000</td> <td><100</td> <td><200</td> <td><200</td> <td><200</td> <td>NA</td> <td>17,000</td> <td>NA</td> <td>NA</td> <td>NA</td> <td><2,000</td> <td>372.78</td> <td>31.34</td> <td>341.44</td>	MW-4	5/7/2009	18,000	<100	<200	<200	<200	NA	17,000	NA	NA	NA	<2,000	372.78	31.34	341.44
MW-4 2/11/2010 11,000 95 <100 <100 110 NA 7,500 NA NA NA 3,200 372.78 31.21 341.57 TB-1 2/12/2003 Well inaccessible NA NA <td>MW-4</td> <td>8/20/2009</td> <td>15,000</td> <td><50</td> <td><100</td> <td><100</td> <td><100</td> <td>NA</td> <td>13,000</td> <td>NA</td> <td>NA</td> <td>NA</td> <td>1,900</td> <td>372.78</td> <td>33.56</td> <td>339.22</td>	MW-4	8/20/2009	15,000	<50	<100	<100	<100	NA	13,000	NA	NA	NA	1,900	372.78	33.56	339.22
TB-1 2/12/2003 Well inaccessible NA	MW-4	11/9/2009	13,000	<50	<100	<100	<100	NA	11,000	<200	<200	<200	<1000	372.78	33.57	339.21
TB-1 2/28/2003 NA	MW-4	2/11/2010	11,000	95	<100	<100	110	NA	7,500	NA	NA	NA	3,200	372.78	31.21	341.57
TB-1 2/28/2003 NA																
TB-1 5/14/2003 <50 <0.50 <0.50 <1.0 NA <5.0 NA NA NA NA NA 12.31 NA TB-2 2/12/2003 Well inaccessible NA	TB-1	2/12/2003	Well inacce	essible	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TB-2 2/12/2003 Well inaccessible NA	TB-1	2/28/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	12.54	NA
	TB-1	5/14/2003	<50	<0.50	<0.50	<0.50	<1.0	NA	<5.0	NA	NA	NA	NA	NA	12.31	NA
TB-2 2/28/2003 NA	TB-2	2/12/2003	Well inacce	essible	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	TB-2	2/28/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	12.56	NA

TABLE 1 WELL CONCENTRATIONS Shell-branded Service Station 4212 First Street

Pleasanton, CA

Well ID	Date	TPPH (ug/L)	B (ug/L)	T (ug/L)	E (ug/L)	X (ug/L)	MTBE 8020 (ug/L)	MTBE 8260 (ug/L)	DIPE (ug/L)	ETBE (ug/L)	TAME (ug/L)	TBA (ug/L)	TOC (MSL)	Depth to Water (ft.)	GW Elevation (MSL)
TB-2	5/14/2003	Insufficient	water	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	12.54	NA
TB-3	2/12/2003	Well dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TB-3 TB-3	2/28/2003 5/14/2003	Well dry Well dry	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TB-4	2/12/2003	Well dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TB-4 TB-4	2/28/2003 5/14/2003	Well dry Well dry	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA

Abbreviations:

TPPH = Total petroleum hydrocarbons as gasoline by EPA Method 8260B; prior to May 30, 2001, analyzed by EPA Method 8015.

BTEX = Benzene, toluene, ethylbenzene, xylenes by EPA Method 8260B; prior to May 30, 2001, analyzed by EPA Method 8020.

MTBE = Methyl tertiary butyl ether

DIPE = Di-isopropyl ether, analyzed by EPA Method 8260B

ETBE = Ethyl tertiary butyl ether, analyzed by EPA Method 8260B

TAME = Tertiary amyl methyl ether, analyzed by EPA Method 8260B

TBA = Tertiary butyl alcohol, analyzed by EPA Method 8260B

TOC = Top of Casing Elevation

GW = Groundwater

ug/L = Parts per billion

MSL = Mean sea level

ft. = Feet

<n = Below detection limit

NA = Not applicable

TABLE 1 WELL CONCENTRATIONS Shell-branded Service Station 4212 First Street Pleasanton, CA

							MTBE	MTBE						Depth to	GW
Well ID	Date	TPPH	В	Т	E	Х	8020	8260	DIPE	ETBE	TAME	TBA	TOC	Water	Elevation
		(ug/L)	(MSL)	(ft.)	(MSL)										

Notes:

- a = Sample was analyzed outside of the EPA recommended holding time.
- b = Concentration is an estimate value above the linear quantitation range.
- c = The result reported was generated out of time. The sample was originally run within hold time, but needed to be re-analyzed.
- d = Sample contains discrete peak in addition to gasoline.
- e = Quantity of unknown hydrocarbon(s) in sample based on gasoline.
- f = The concentration reported reflect(s) individual or discrete unidentified peaks not matching a typical fuel pattern.
- g = The result for this hydrocarbon is elevated due to the presence of single analyte peak(s) in the quantitation range.
- h = Sample was originally analyzed with a positive result, however the reanalysis did not confirm the presence of the analyte.
- i = Confirmatory analysis was past holding time.
- j = Analyzed by EPA Method 8015B (M).
- k = The sample chromatographic pattern for TPH does not match the chromatographic pattern of the specified standard. Quantitation of the unknown hydrocarbon(s) in the sample was based upon the specified standard.
- I = Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
- Well MW-1 surveyed on May 4, 1999 by Virgil Chavez Land Surveying of Vallejo, CA.
- Site surveyed on March 19, 2000 by Virgil Chavez Land Surveying of Vallejo, CA.
- Site surveyed on January 15, 2002 by Virgil Chavez Land Surveying of Vallejo, CA.
- 3Q06 survey data for wells MW-1B and MW-4 provided by Delta Environmental Consultants, Inc. of San Jose, CA.

APPENDIX A

AGENCY CORRESPONDENCE

ALAMEDA COUNTY HEALTH CARE SERVICES

DAVID J. KEARS, Agency Director

AGENCY

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-93

August 7, 2009

Denis Brown Shell Oil Products US 20945 S. Wilmington Ave. Carson, CA 90810-1039

Douglas and Mary Safreno 1627 Vineyard Avenue Pleasanton, CA 94566-6389

1 2 2009 AUG

Subject: Fuel Leak Case No. RO0000360 and Geotracker Global ID T0600101259, Shell#13-5782, 4226 First Street, Pleasanton, CA 94566 – Work Plan Approval

Dear Mr. Brown and Mr. and Ms. Safreno:

Alameda County Environmental Health (ACEH) staff has reviewed the fuel leak case file for the abovereferenced site including the reports entitled, "Interim Remediation Work Plan, Shell-branded Service Station, 4212 First Street, Pleasanton, California," dated June 1, 2009 (Work Plan). The Work Plan was prepared on Shell's behalf by Delta Environmental Consultants, Inc.

The Work Plan proposes installation of a soil vapor extraction and air sparging system including extraction wells, sparging wells, and observation wells for interim remediation to address elevated concentrations of fuel hydrocarbons in soil and groundwater at the site. The proposed scope of work is acceptable and may be implemented as proposed.

TECHNICAL REPORT REQUEST

Please submit technical reports to Alameda County Environmental Health (Attention: Jerry Wickham), according to the following schedule:

- December 14, 2009 System Installation and Start-up Report
- 45 days following the end of each quarter following system installation and start-up Quarterly Remediation Progress and Monitoring Report

These reports are being requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request.

Denis Brown Douglas and Mary Safreno RO0000360 August 7, 2009 Page 2

ELECTRONIC SUBMITTAL OF REPORTS

ACEH's Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of reports in electronic form. The electronic copy replaces paper copies and is expected to be used for all public information requests, regulatory review, and compliance/enforcement activities. Instructions for submission of electronic documents to the Alameda County Environmental Cleanup Oversight Program FTP site are provided on the attached "Electronic Report Upload Instructions." Submission of reports to the Alameda County FTP site is an addition to existing requirements for electronic submittal of information to the State Water Resources Control Board (SWRCB) Geotracker website. In September 2004, the SWRCB adopted regulations that require electronic submittal of information for all groundwater cleanup programs. For several years, responsible parties for cleanup of leaks from underground storage tanks (USTs) have been required to submit groundwater analytical data, surveyed locations of monitoring wells, and other data to the Geotracker database over the Internet. Beginning July 1, 2005, these same reporting requirements were added to Spills, Leaks, Investigations, and Cleanup (SLIC) sites. Beginning July 1, 2005, electronic submittal of a complete copy of all reports for all sites is required in Geotracker (in Please visit the SWRCB website for more information on these requirements PDF format). (http://www.swrcb.ca.gov/ust/cleanup/electronic reporting).

PERJURY STATEMENT

All work plans, technical reports, or technical documents submitted to ACEH must be accompanied by a cover letter from the responsible party that states, at a minimum, the following: "I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge." This letter must be signed by an officer or legally authorized representative of your company. Please include a cover letter satisfying these requirements with all future reports and technical documents submitted for this fuel leak case.

PROFESSIONAL CERTIFICATION & CONCLUSIONS/RECOMMENDATIONS

The California Business and Professions Code (Sections 6735, 6835, and 7835.1) requires that work plans and technical or implementation reports containing geologic or engineering evaluations and/or judgments be performed under the direction of an appropriately registered or certified professional. For your submittal to be considered a valid technical report, you are to present site specific data, data interpretations, and recommendations prepared by an appropriately licensed professional and include the professional registration stamp, signature, and statement of professional certification. Please ensure all that all technical reports submitted for this fuel leak case meet this requirement.

UNDERGROUND STORAGE TANK CLEANUP FUND

Please note that delays in investigation, later reports, or enforcement actions may result in your becoming ineligible to receive grant money from the state's Underground Storage Tank Cleanup Fund (Senate Bill 2004) to reimburse you for the cost of cleanup.

Denis Brown Douglas and Mary Safreno RO0000360 August 7, 2009 Page 3

AGENCY OVERSIGHT

If it appears as though significant delays are occurring or reports are not submitted as requested, we will consider referring your case to the Regional Board or other appropriate agency, including the County District Attorney, for possible enforcement actions. California Health and Safety Code, Section 25299.76 authorizes enforcement including administrative action or monetary penalties of up to \$10,000 per day for each day of violation.

If you have any questions, please call me at (510) 567-6791 or send me an electronic mail message at jerry.wickham@acgov.org.

Sincerely,

Serry Wickham, California PG 3766, CEG 1177, and CHG 297 Senior Hazardous Materials Specialist

Enclosure: ACEH Electronic Report Upload (ftp) Instructions

cc: Cheryl Dizon, QIC 80201, Zone 7 Water Agency, 100 North Canyons Parkway Livermore, CA 94551

Danielle Stefani, Livermore-Pleasanton Fire Department, 3560 Nevada Street Pleasanton, CA 94566

Suzanne McClurkin-Nelson, Delta Environmental Consultants, Inc., 312 Piercy Road, San Jose, CA 95138

Donna Drogos, ACEH Jerry Wickham, ACEH File

Alamada County Environmental Cleanup	ISSUE DATE: July 5, 2005
Alameda County Environmental Cleanup Oversight Programs	REVISION DATE: March 27, 2009
(LOP and SLIC)	PREVIOUS REVISIONS: December 16, 2005, October 31, 2005
SECTION: Miscellaneous Administrative Topics & Procedures	SUBJECT: Electronic Report Upload (ftp) Instructions

The Alameda County Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of all reports in electronic form to the county's ftp site. Paper copies of reports will no longer be accepted. The electronic copy replaces the paper copy and will be used for all public information requests, regulatory review, and compliance/enforcement activities.

REQUIREMENTS

- Entire report including cover letter must be submitted to the ftp site as a single portable document format (PDF) with no password protection. (Please do not submit reports as attachments to electronic mail.)
- It is preferable that reports be converted to PDF format from their original format, (e.g., Microsoft Word) rather than scanned.
- Signature pages and perjury statements must be included and have either original or electronic signature.
- Do not password protect the document. Once indexed and inserted into the correct electronic case file, the document will be secured in compliance with the County's current security standards and a password.
 Documents with password protection will not be accepted.
- Each page in the PDF document should be rotated in the direction that will make it easiest to read on a computer monitor.
- Reports must be named and saved using the following naming convention:

RO# Report Name_Year-Month-Date (e.g., RO#5555_WorkPlan_2005-06-14)

Additional Recommendations

A separate copy of the tables in the document should be submitted by e-mail to your Caseworker in Excel format.
 These are for use by assigned Caseworker only.

Submission Instructions

- 1) Obtain User Name and Password:
 - a) Contact the Alameda County Environmental Health Department to obtain a User Name and Password to upload files to the ftp site.
 - i) Send an e-mail to <u>dehloptoxic@acgov.org</u>
 - Or
 - ii) Send a fax on company letterhead to (510) 337-9335, to the attention of My Le Huynh.
 - b) In the subject line of your request, be sure to include "ftp PASSWORD REQUEST" and in the body of your request, include the Contact Information, Site Addresses, and the Case Numbers (RO# available in Geotracker) you will be posting for.
- 2) Upload Files to the ftp Site
 - a) Using Internet Explorer (IE4+), go to ftp://alcoftp1.acgov.org
 - (i) Note: Netscape and Firefox browsers will not open the FTP site.
 - b) Click on File, then on Login As.
 - c) Enter your User Name and Password. (Note: Both are Case Sensitive.)
 - d) Open "My Computer" on your computer and navigate to the file(s) you wish to upload to the ftp site.
 - e) With both "My Computer" and the ftp site open in separate windows, drag and drop the file(s) from "My Computer" to the ftp window.
- 3) Send E-mail Notifications to the Environmental Cleanup Oversight Programs
 - a) Send email to dehloptoxic@acgov.org notify us that you have placed a report on our ftp site.
 - b) Copy your Caseworker on the e-mail. Your Caseworker's e-mail address is the entire first name then a period and entire last name @acgov.org. (e.g., firstname.lastname@acgov.org)
 - c) The subject line of the e-mail must start with the RO# followed by Report Upload. (e.g., Subject: RO1234 Report Upload) If site is a new case without an RO# use the street address instead.
 - d) If your document meets the above requirements and you follow the submission instructions, you will receive a notification by email indicating that your document was successfully uploaded to the ftp site.

From:	From: Wickham, Jerry, Env. Health [jerry.wickham@acgov.org]							
Sent:	Friday, December 04, 2009 6:03 PM							
To:	Suzanne McClurkin-Nelson							
Cc:	Regina Bussard; denis.I.brown@shell.com; Scott Pearson							
Subject	Subject: RE: 4226 First St., Pleasanton (aka 4212) (Case No. RO0000360)							

Suzanne,

The proposal to extend the schedule for submittal of a System Installation and Startup Report beyond December 14, 2009 and to provide a detailed schedule for proposed system installation no later than December 14, 2009 is acceptable. ACEH may provide additional comments pending review of the detailed schedule.

Regards,

Jerry Wickham Alameda County Environmental Health 1131 Harbor Bay Parkway Alameda, CA 94502 510-567-6791 jerry.wickham@acgov.org

From: Suzanne McClurkin-Nelson [mailto:SMcClurkin-Nelson@deltaenv.com]
Sent: Wednesday, November 25, 2009 2:12 PM
To: Wickham, Jerry, Env. Health
Cc: Suzanne McClurkin-Nelson; Regina Bussard; denis.l.brown@shell.com; Scott Pearson
Subject: 4226 First St., Pleasanton (aka 4212) (Case No. RO0000360)
Importance: High

Jerry; As we discussed Monday, I have attached a letter proposing a change in the deliverable requested in your letter dated August 7, 2009 as noted below:

- Provide detailed schedule of pre-field and field work for proposed system installation no later than December 14, 2009.
- Provide monthly status reports each month thereafter, beginning 1/15/10, until the system is installed, at which time a proposed date for submittal of a System Installation and Startup Report will be finalized.

Please let me know if this is an acceptable schedule - thanks!

Suzanne McClurkin-Nelson | Senior Project Manager | Global Oil & Gas Business Group Delta Consultants, an Oranjewoud N.V. Company Direct +1 408 826 1875 | Mobile +1 408 796 8889 | Alternate +1 408 582 4422 smcclurkin-nelson@deltaenv.com | www.deltaenv.com

THE TRUSTED PARTNER FOR MAXIMIZED ASSET VALUE

Member of Inogen® | <u>www.inogenet.com</u> Confidentiality Notice: If you are not the intended recipient of this email, please delete it. Thank you.

- From: Suzanne McClurkin-Nelson
- **Sent:** Friday, January 29, 2010 10:11 AM
- To: 'Wickham, Jerry, Env. Health'
- Cc: Suzanne McClurkin-Nelson; Regina Bussard; 'denis.l.brown@shell.com'
- Subject: Monthly Status Report (System Installation) 4212 First, Pleasanton (Fuel Leak Case No. RO0000360)

Hello Jerry;

Remediation wells SVE-1 through SVE-4 were installed January 11-14, 2010, along with an observation well and a test air sparge well. An air sparge pilot test was completed on January 26, 2010 with preliminary field results indicating a good radius of influence (ROI). Following evaluation of the data and calculation of the site-specific ROI, spacing of the proposed nine remaining air sparge wells will be confirmed and a field event will be planned to complete installation of the remaining sparge wells. We should have an evaluation of the pilot test ready by the next status report.

We are ready to submit the Planning Department permit package as soon as we receive a signature from the property owner (package was sent to him January 7, 2010, but we have not yet received the signed documents back). Following receipt of the Planning Dept. permit, we will submit the Building Dept. permit. A reminder will be sent to the property owner next week in hopes of receiving his signature.

We have completed a draft application package for an Authority to Construct an SVE/AS system through the Bay Area Air Management District, which is currently undergoing engineering review. We are targeting submittal of the ATC application package by the end of February.

A monthly status report for February 2010 will be scheduled for submittal to you on February 26, 2010.

Suzanne McClurkin-Nelson | Senior Project Manager | North American Operations Delta Consultants, an Oranjewoud N.V. Company Direct +1 408 826 1875 | Mobile +1 408 796 8889 | Alternate +1 408 582 4422 smcclurkin-nelson@deltaenv.com | www.deltaenv.com

SUSTAINABLE STRATEGIES FOR GLOBAL LEADERS

Member of Inogen® | <u>www.inogenet.com</u> Confidentiality Notice: If you are not the intended recipient of this email, please delete it. Thank you.

From:	Wickham, Jerry, Env. Health [jerry.wickham@acgov.org]
Sent:	Wednesday, February 10, 2010 10:24 AM
То:	'Brown, Denis L SOPUS-OP-COR-H'; Suzanne McClurkin-Nelson
Subject:	Draft Fact Sheet for 4212 First Street Pleasanton
Attachments	RO0360, Shell, 4226 First, Pleasanton Draft Fact Sheet 2010-02-09.doc

Denis and Suzanne,

Attached is a Draft Fact Sheet for the Shell site at 4212/4226 First Street in Pleasanton we discussed last week. Please review the Draft Fact Sheet and provide any comments. The Fact Sheet will be sent to residents within 200 feet of the site. I would like to send this out by February 25.

Regards,

Jerry Wickham Alameda County Environmental Health 1131 Harbor Bay Parkway Alameda, CA 94502 510-567-6791 jerry.wickham@acgov.org

DRAFT FACT SHEET SHELL BRANDED SERVICE STATION #13-5782 February 9, 2010

Site Location: Shell#13-5782, 4226 First Street, Pleasanton, CA 94566 Fuel Leak Case #RO0000434 and Geotracker Global ID # T0600101259

Summary – This fact sheet has been prepared to inform community members and other interested parties of the status of a soil and groundwater cleanup at a service station site at 4226 First Street in Pleasanton, California. Shell Oil Products US, the lead responsible party for the fuel leak case, will be evaluating two remedial technologies (soil vapor extraction and air sparging) to cleanup up gasoline contamination that resulted from fuel leaks at the service station. Soil vapor extraction (SVE) applies a vacuum to unsaturated soils above the water table to induce a controlled flow of air containing volatile contaminants removed from the soil. Extracted air will be treated at the surface to remove fuel hydrocarbons from the vapor. The treated air will be sampled on a regular basis to assure that treated air from the system meets discharge requirements of the Bay Area Air Quality Management District.

Air sparging injects air below the water table to volatilize contaminants in groundwater that can then be recovered by SVE. Air sparging also increases the oxygen content of groundwater, which may also increase the rate of biodegradation of petroleum hydrocarbons in groundwater. Planning and permitting is currently underway to install the SVE and air sparging system. Permitting and system installation is expected to be completed between May and July 2010. Aboveground equipment used for the SVE/air sparging system will be located...*[please input location]*. Operation of the system will be monitored over time to evaluate whether SVE and air sparging may be effective for final site cleanup.

Background – The site is currently an operating Shell-branded service station. Four gasoline underground storage tanks were removed from the northern portion of site in 1985 and were replaced by three new USTs installed in front of the station building. Environmental investigations conducted to date have delineated an area of petroleum hydrocarbons in soil and groundwater encompassing the current and former USTs and extending along the direction of groundwater flow to the north and northeast beneath Vineyard Avenue and First Street.

Next Step - Shell Oil Products US is working with Alameda County Environmental Health (ACEH) to implement a soil and groundwater cleanup at the site. Two remedial technologies (SVE and air sparging) will be implemented on an interim basis to assess their effectiveness. Descriptions of the two remedial technologies and how they will be implemented at the site are described in a document prepared by Delta Environmental on behalf of Shell Oil Products US entitled, "Interim Remediation Work Plan," dated June 1, 2009. This report along with all reports and correspondence for the case can be viewed over the Internet on the ACEH website (http://www.acqov.org/aceh/lop/ust.htm) or the State of California Water Resources Control Board Geotracker website (http://www.swrcb.ca.gov/ust/cleanup/electronic_reporting). If you have any questions or comments regarding the ongoing soil and groundwater cleanup at the site, please contact Jerry Wickham at the address below.

Additional information: Contact Jerry Wickham of the Alameda County Department of Environmental Health, 1131 Harbor Bay Parkway, Alameda, CA 94502 at 510-567-6791 or by email at jerry.wickham@acgov.org

From:	Suzanne McClurkin-Nelson							
Sent:	Wednesday, February 24, 2010 2:36 PM							
То:	'Wickham, Jerry, Env. Health'							
Cc:	Suzanne McClurkin-Nelson; Regina Bussard; 'denis.l.brown@shell.com'							
Subject:	RE: Draft Fact Sheet for 4212 First Street Pleasanton							
Importance:	High							
Attachments	: RO0360 Shell 4226 First Pleasanton Draft Fact Sheet 2010-02-09.doc							

Hi Jerry - I have made a few revisions to the Fact Sheet, sorry not to get it back to you sooner. We had to resend the building permit application to the property owners for their signature (it was original sent to them Dec. 2009) and just this week got it back, so the complete application package will be submitted this week. I will send you an updated status report by Friday.

Let me know if you have any questions - thanks!

Suzanne McClurkin-Nelson | Senior Project Manager | North American Operations Delta Consultants, an Oranjewoud N.V. Company Direct +1 408 826 1875 | Mobile +1 408 796 8889 | Alternate +1 408 582 4422 smcclurkin-nelson@deltaenv.com | www.deltaenv.com

SUSTAINABLE STRATEGIES FOR GLOBAL LEADERS

Member of Inogen® | <u>www.inogenet.com</u> Confidentiality Notice: If you are not the intended recipient of this email, please delete it. Thank you.

From: Wickham, Jerry, Env. Health [mailto:jerry.wickham@acgov.org] Sent: Wednesday, February 10, 2010 10:24 AM To: 'Brown, Denis L SOPUS-OP-COR-H'; Suzanne McClurkin-Nelson Subject: Draft Fact Sheet for 4212 First Street Pleasanton

Denis and Suzanne,

Attached is a Draft Fact Sheet for the Shell site at 4212/4226 First Street in Pleasanton we discussed last week. Please review the Draft Fact Sheet and provide any comments. The Fact Sheet will be sent to residents within 200 feet of the site. I would like to send this out by February 25.

Regards,

Jerry Wickham Alameda County Environmental Health 1131 Harbor Bay Parkway Alameda, CA 94502 510-567-6791 jerry.wickham@acgov.org

DRAFT FACT SHEET SHELL BRANDED SERVICE STATION #13-5782 February 9, 2010

Site Location: Shell#13-5782, 4226 First Street, Pleasanton, CA 94566 Fuel Leak Case #RO0000434 and Geotracker Global ID # T0600101259

Summary – This fact sheet has been prepared to inform community members and other interested parties of the status of a soil and groundwater cleanup at a service station site at 4226 First Street in Pleasanton, California. Shell Oil Products US, the lead responsible party for the fuel leak case, will be evaluating two remedial technologies (soil vapor extraction and air sparging) to cleanup up gasoline contamination that resulted from fuel leaks at the service station. Soil vapor extraction (SVE) applies a vacuum to unsaturated soils above the water table to induce a controlled flow of air containing volatile contaminants removed from the soil. Extracted air will be treated at the surface to remove fuel hydrocarbons from the vapor. The treated air will be sampled on a regular basis to assure that treated air from the system meets discharge requirements of the Bay Area Air Quality Management District.

Air sparging (AS) injects air below the water table to volatilize contaminants in groundwater that can then be recovered by SVE. AS also increases the oxygen content of groundwater, which may also increase the rate of biodegradation of petroleum hydrocarbons in groundwater. Planning and permitting is currently underway to install the SVE and air sparging system. Permitting and system installation is expected to be completed between May 2010 and the end of the year. Aboveground equipment used for the SVE/AS system will be located in an enclosed treatment system compound situated in the area currently comprising two parking spaces in the landscaped area off of Vineyard Avenue. Operation of the system will be monitored over time to evaluate whether SVE and AS may be effective for final site cleanup.

Background – The site is currently an operating Shell-branded service station. Four gasoline underground storage tanks were removed from the northern portion of site in 1985 and were replaced by three new USTs installed in front of the station building. Environmental investigations conducted to date have delineated an area of petroleum hydrocarbons in soil and groundwater encompassing the current and former USTs and extending along the direction of groundwater flow to the north and northeast beneath Vineyard Avenue and First Street.

Next Step – Shell Oil Products US is working with Alameda County Environmental Health (ACEH) to implement a soil and groundwater cleanup at the site. Two remedial technologies (SVE and air sparging) will be implemented on an interim basis to assess their effectiveness. Descriptions of the two remedial technologies and how they will be implemented at the site are described in a document prepared by Delta Environmental on behalf of Shell Oil Products US entitled, "Interim Remediation Work Plan," dated June 1, 2009. This report along with all reports and correspondence for the case can be viewed over the Internet on the ACEH website (http://www.acqov.org/aceh/lop/ust.htm) or the California Water Control Board Geotracker State of Resources website (http://www.swrcb.ca.gov/ust/cleanup/electronic_reporting). If you have any questions or comments regarding the ongoing soil and groundwater cleanup at the site, please contact Jerry Wickham at the address below.

Additional information: Contact Jerry Wickham of the Alameda County Department of Environmental Health, 1131 Harbor Bay Parkway, Alameda, CA 94502 at 510-567-6791 or by email at jerry.wickham@acgov.org

From: Wickham, Jerry, Env. Health [jerry.wickham@acgov.org]

Sent: Wednesday, February 24, 2010 3:35 PM

- To: Suzanne McClurkin-Nelson
- Cc: Regina Bussard; denis.l.brown@shell.com

Subject: RE: Draft Fact Sheet for 4212 First Street Pleasanton

Hi Suzanne,

Thank you for the comments! The Fact Sheet should go out tomorrow.

Regards, Jerry Wickham Alameda County Environmental Health 1131 Harbor Bay Parkway Alameda, CA 94502 510-567-6791 jerry.wickham@acgov.org

From: Suzanne McClurkin-Nelson [mailto:SMcClurkin-Nelson@deltaenv.com]
Sent: Wednesday, February 24, 2010 2:36 PM
To: Wickham, Jerry, Env. Health
Cc: Suzanne McClurkin-Nelson; Regina Bussard; denis.l.brown@shell.com
Subject: RE: Draft Fact Sheet for 4212 First Street Pleasanton
Importance: High

Hi Jerry - I have made a few revisions to the Fact Sheet, sorry not to get it back to you sooner. We had to resend the building permit application to the property owners for their signature (it was original sent to them Dec. 2009) and just this week got it back, so the complete application package will be submitted this week. I will send you an updated status report by Friday.

Let me know if you have any questions - thanks!

Suzanne McClurkin-Nelson | Senior Project Manager | North American Operations Delta Consultants, an Oranjewoud N.V. Company Direct +1 408 826 1875 | Mobile +1 408 796 8889 | Alternate +1 408 582 4422 smcclurkin-nelson@deltaenv.com | www.deltaenv.com

SUSTAINABLE STRATEGIES FOR GLOBAL LEADERS

Member of Inogen® | <u>www.inogenet.com</u> Confidentiality Notice: If you are not the intended recipient of this email, please delete it. Thank you.

From: Wickham, Jerry, Env. Health [mailto:jerry.wickham@acgov.org] Sent: Wednesday, February 10, 2010 10:24 AM To: 'Brown, Denis L SOPUS-OP-COR-H'; Suzanne McClurkin-Nelson Subject: Draft Fact Sheet for 4212 First Street Pleasanton

Denis and Suzanne,

Attached is a Draft Fact Sheet for the Shell site at 4212/4226 First Street in Pleasanton we discussed last week. Please review the Draft Fact Sheet and provide any comments. The Fact Sheet will be sent to residents within 200 feet of the site. I would like to send this out by February 25.

Regards,

Jerry Wickham Alameda County Environmental Health 1131 Harbor Bay Parkway Alameda, CA 94502 510-567-6791 jerry.wickham@acgov.org

- From: Suzanne McClurkin-Nelson
- Sent: Friday, February 26, 2010 5:06 PM
- To: Wickham, Jerry, Env. Health
- Cc: Suzanne McClurkin-Nelson; Regina Bussard; denis.l.brown@shell.com
- Subject: Monthly Status Report (System Installation) 4212 First, Pleasanton (Fuel Leak Case No. RO0000360)

Hello Jerry;

A review of data from the air sparge pilot test conducted January 26, 2010 indicates that the proposed number and placement of wells should be adequate to remediate the general source area. There may be some minor adjustements to ensure optimal coverage, but we are not recommendation a change in the number or general configuration of wells as currently proposed. A detailed engineering review of the results should be completed by the middle of next week, and once final placement of the remaining air sparge wells has been confirmed we will schedule the installation of the remaining wells.

An evaluation of the Fact Sheet which you drafted and submitted to Delta for review was completed and the Fact Sheet was scheduled for distribution by your office at the end of this week. We were finally able to secure the property owners signature for the Planning Department permit, and a permit application package was submitted to the City of Pleasanton on January 25, 2010. Following receipt of the Planning Dept. permit, we will submit a Building Department permit application package for an Authority to Construct an SVE/AS system through the Bay Area Air Management District should be finalized and submitted within the next two weeks.

A monthly status report for March 2010 will be scheduled for submittal to you on March 31, 2010. Please let me know if you have any questions or comments. Thanks!

Suzanne McClurkin-Nelson | Senior Project Manager | North American Operations Delta Consultants, an Oranjewoud N.V. Company Direct +1 408 826 1875 | Mobile +1 408 796 8889 | Alternate +1 408 582 4422 smcclurkin-nelson@deltaenv.com | www.deltaenv.com

SUSTAINABLE STRATEGIES FOR GLOBAL LEADERS

Member of Inogen® | <u>www.inogenet.com</u> Confidentiality Notice: If you are not the intended recipient of this email, please delete it. Thank you.

- From: Suzanne McClurkin-Nelson
- Sent: Wednesday, March 31, 2010 3:45 PM
- To: Wickham, Jerry, Env. Health
- Cc: 'denis.l.brown@shell.com'; Suzanne McClurkin-Nelson; Regina Bussard; Matt Lambert
- Subject: March 2010 Monthly Status Report (System Installation) 4212 First, Pleasanton (Fuel Leak Case No. RO0000360)

Hello Jerry;

The City of Pleasanton Planning Department requested additional information and multiple plan copies following submittal of the initial planning permit application package (based on the City of Pleasanton Administrative Design Review brochure provided on their website). A report on the air sparge (AS) pilot test results has been completed in draft form and is currently in senior engineering review; the report should be forwarded for client review by the end of this week and submitted final by mid-April. Based on the detailed review of the draft report and earlier dual-phase extraction (DPE) pilot test results from 2009, we are currently considering the addition of a 5th soil vapor extraction well to the system, specificially to address groundwater impacts to well MW-2. An application package for an authority to construct (ATC) through the Bay Area Air Quality Management District (BAAQMD) has been submitted; a letter dated March 17, 2010 was submitted by BAAQMD to Delta Consultants acknowledging receipt of the ATC application and providing a point of contact for further information and questions.

Wells SVE-1 through SVE-4 were installed January 12 thrugh 14, 2010, in addition to one AS well and an observation well. Once the system design and well number and placement have been finalized, the remaining remediation wells will be installed (currently proposed are 9 additional AS wells and possibly one additional SVE well).

Final system design recommendations will be included in the AS pilot test report which should be submitted by mid-April, and the planning permit application package will be re-submitted with the final system design drawings. The first quarter 2010 quarterly monitoring report will be submitted by May 14, 2010. A monthly status report for April 2010 will be scheduled for submittal to you no later than April 30, 2010. Please let me know if you have any questions or comments. Thanks!

Suzanne McClurkin-Nelson | Senior Project Manager | North American Operations Delta Consultants, an Oranjewoud N.V. Company Direct +1 408 826 1875 | Mobile +1 408 796 8889 | Alternate +1 408 582 4422 smcclurkin-nelson@deltaenv.com | www.deltaenv.com

SUSTAINABLE STRATEGIES FOR GLOBAL LEADERS

Member of Inogen® | <u>www.inogenet.com</u> Confidentiality Notice: If you are not the intended recipient of this email, please delete it. Thank you.

APPENDIX B

BLAINE TECH SERVICES, INC. FIELD DATA SHEETS

					(F	FOR S	AMPL	E TEC	HNICI	
Site Address	4	212	F	i'rs-	-5	rect	Pla	santa	n Ca.	. Date 2/11/10
Job Number	100211-DR1					Тес	hnician	DR	Date 2/11/10 Pageof	
Well ID	Well Inspected - No Corrective Action Required	Well Box Meets Compliance Requirements *See Below	Water Bailed From Wellbox	Cap Replaced	Lock Replaced	Well Not Inspected (explain in notes)	New Deficiency Identified	Previously Identified Deficiency Persists		Notes
MW-1		X					×		Rim	stal (rubber) is domaged. Nticks new one.
Mw-IB	×	X								×
Mw-2	X	X								
MW-3	×	X							0	
Mw-4		×			X		×		No luci	2 botts. Bay was off when opined well ick on cap. Put cap on at departure. Put missing bolt under water, in bonew leck on
									Found	missing bolt under water, in bonew leck on
,										
										ан Ген Чилин Алимин ан Илин — — — — — — — — — — — — — — — — — — —
алаанынын наталаан талаан т										
*Well box must mee "MONITORING WEL Notes:	t all thre L" (12"c	e criteria or less) 3	to be) WEL	comp L TA	oliant: G IS F	1) WELL RESENT,	IS SECURA SECURE, A	BLE BY DE	ESIGN (12" ECT	2"or less) 2) WELL IS MARKED WITH THE WORDS

WELL GAUGING DATA

Project # 00211-DR Date 2/11/10 Client hell

Site 4212 First St. Pleasanten Ca.

[1	T	1	[Thickness	Volume of	T		Survey	
		Well		Depth to	of	Immiscibles			Point:	
		Size	Sheen /	Immiscible			Depth to water	Depth to well	TOB or	
Well ID	Time	(in.)	Odor	Liquid (ft.)			(ft.)	bottom (ft.)	TOG	Notes
MW-1	0808	2					· · · · · · · · · · · · · · · · · · ·			
Maw-1B	0751	4					90.72	56.92 107.89		
Mw-2	0803	4					32.07	45.86		
Mw-3	0758	4					31.81	34.90		
mw-4	0818	4					31.21	46.67	V	
								-		
								:		
								-		
										s.

BTS #:	100211-DR			Site: 4212	First St. Pla	santan (a
Sampler:	DR			Date: 2/11/10		
Well I.D.:	Mw-1			Well Diamete	0	6 8
Total Wel	l Depth (TI	D): 5	6.92	Depth to Wate	er (DTW): 3	4,06
Depth to F	Free Produc	:t:		Thickness of I	Free Product (fe	
Reference	d to:	PVC	Grade	D.O. Meter (i		YSI HACH
DTW with	80% Rech	arge [(F	leight of Water	· Column x 0.20)) + DTW]: 3	8.63
Purge Method:		Bailer Displaceme		Waterra Peristaltic ction Pump	Sampling Method Other	l: XBailer Disposable Bailer Extraction Port Dedicated Tubing
). 7 I Case Volume	-	3 fied Volum	= <u> </u>	Gals. 3"	Multiplier Well 0.04 4" 0.16 6" 0.37 Other	Diameter Multiplier 0.65 1.47 er radius ² * 0.163
Time	Temp (°F)	рН	Cond. (mS or uS)	Turbidity (NTUs)	Gals. Removed	Observations
0947	66.7	6.5	[852	784	3.7	cloudy
0955	64.6	6.4	1887	>1000	7.4	
1002	64.7 184 -	6.4	1879	71000	11.1	Diw= 42.91
Did well de	water?	Yes (1	No	Gallons actuall	3 T	/ D
Sampling D	ate: 2/11/1		Sampling Time		Depth to Water	[].] (2 hr. waif) 1: 38.26
Sample I.D.	: Mul-1			Laboratory:	CalScience Colu	
nalyzed fo	er: TPH-G	BTEX	MTBE TPH-D (Oxygenates (5)	Other: See (.(
EB I.D. (if a	pplicable):		@]	Duplicate I.D. (
analyzed fo	r: TPH-G	BTEX I			Other:	
).O. (if req'	d): Pre	e-purge:		^{mg} /L Pc	ost-purge:	mg/L
).R.P. (if re	q'd): Pre	-purge:		mV Po	ost-purge:	mV

SHI , WELL MONITORING DA'I SHEET

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (800) 545-7558

		SHI	J WELL MO	ONITORING I	DA'I. SHEET	
BTS #: (00211-DR			Site: 4212	First St. Plea	santzia (a
Sampler:	DR			Date: 2/11/16		
Well I.D.:	MW-1B			Well Diamete	er: 2 3 Ø	6 8
Total Well	Depth (TI	D):	107.89	Depth to Wate	er (DTW): 90	יישב יישב
Depth to F	ree Produc	t:		Thickness of I	Free Product (fe	eet):
Referenced	l to:	PVC	, Grade	D.O. Meter (i		YSI HACH
DTW with	80% Rech	arge [(I	Height of Water	Column x 0.20)) + DTW]: 9	4.15
Purge Method:	Bailer Disposable E Positive Air I Ælectric Subr	Displacem	ent Extra Other		Sampling Method Other	Disposable Bailer Extraction Port Dedicated Tubing
I Case Volume		3 fied Volun	$\underline{} = \underline{33.6}$	Gals3"	er Multiplier Well 0.04 4" 0.16 6" 0.37 Othe	Diameter Multiplier 0.65 1.47 r radius ² * 0.163
Time	Temp (°F)	pН	Cond. (mS or uS)	Turbidity (NTUs)	Gals. Removed	Observations
0849	64.8	6.9	1240	178	11.2	light claude
0852	67.3	6.9	1270	301	22.4	light cloudy cloudy
0854	67.5	6.9	1281	334	33.6	Dq
Did well dev	water?	Yes (No	Gallons actuall	y evacuated:	3.6
Sampling D	ate: 2/11/1	0	Sampling Time	: 0900	Depth to Water	: 93,02 (2hr unif)
Sample I.D.:	MW-1B			Laboratory:	CalScience Colu	
Analyzed for	r: TPH-G	BTEX	MTBE TPH-D		Other: See (e	
EB I.D. (if a	pplicable):		@ Time	Duplicate I.D. (
Analyzed for	r: TPH-G	BTEX		-	Other:	
D.O. (if req'o	i): Pre	-purge:		^{mg} /L Po	ost-purge:	mg/L
D.R.P. (if red	q'd): Pre	-purge:		mV Po	ost-purge:	mV

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (800) 545-7558

		SHI	J WELL M	IONITORING	DAT SHEET	
BTS #:	100211-DK			Site: 4212	First St. Pla	acantera (a
Sampler:	DR			Date: 2/11/		
Well I.D.:	Mw-2			Well Diamete	er: 2 3 (6 8
Total Wel	l Depth (T	D): L	15.86	Depth to Wat		2.07
Depth to I	Free Produc	et:			Free Product (f	
Reference	d to:	PVC	> Grade	D.O. Meter (i		YSI HACH
DTW with	1 80% Recl	narge [(]	Height of Wate	er Column x 0.20	the second s	
Purge Method:		Bailer Displacem		Waterra Peristaltic action Pump	Sampling Method Other	d: XBailer Disposable Bailer Extraction Port Dedicated Tubing
q .o Case Volume	(Gals.) X Spec.	3 fied Volun	e 27.0 nes Calculated V	Gals. 3"	ter Multiplier Well 0.04 4" 0.16 6" 0.37 Oth	Diameter Multiplier 0.65 1.47 er radius ² * 0.163
Time	Temp (°F)	pН	Cond. (mS or uS)	Turbidity (NTUs)	Gals. Removed	Observations
0927	66.5	6.5	961	12	9.0	
0929	68.8	6.4	994	14	18.0	
* Well	demanne	e	19.5 qul.	!		DTW = 43.22
1500	(7.0	6.5	982	10		
id well de	water?	Yes	No	Gallons actuall	y evacuated:	19.5
ampling D	ate: 2/11/1	0	Sampling Time	e: 500	Depth to Water	in the second
ample I.D.	: MW-2			Laboratory:	CalScience Colu	
nalyzed fo		BTEX	MTBE TPH-D		Other: See (a	
B I.D. (if a	pplicable):		(2) Time	Duplicate I.D. (
nalyzed fo:	r: TPH-G	BTEX I		-	Other:	
.O. (if req'a	d): Pre	-purge:		^{mg} / _L Pc	ost-purge:	^{mg} /L
R.P. (if red	q'd): Pre	-purge:		mV Po	st-purge:	mV

 $\mathbf{r}_{\mathbf{r}}$

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (800) 545-7558

тV

BTS #:	100211-DR			Site: 4717	First St. Pla	
Sampler:	DR	Ca 6	-	Date: 2/11/1		Man G.
Well I.D.:	Mw-3			Well Diamete) 6 8
Total Wel	l Depth (T	D): 34	1.90	Depth to Wat	er (DTW): 31.	
Depth to F	Free Produc				Free Product (f	
Reference	d to:	PVC	, Grade	D.O. Meter (i		YSI HACH
DTW with Purge Method:		Bailer Displacem		Column x 0.20 Waterra Peristaltic ction Pump	D) + DTW]: 3 Sampling Method Othe	2.43 d: X Bailer Disposable Bailer Extraction Port Dedicated Tubing
<u>ρ</u> ο 1 Case Volume		3 ified Volun		Gals3"		Diameter <u>Multiplier</u> 0.65 1.47
Time	Temp (°F)	рН	Cond. (mS or (15)	Turbidity (NTUs)	Gals. Removed	Observations
6910	62.81	6.9	642	139	2.0	
& Well o	lewatured	e 2.5	qa			DTW= 32.94
1450	68.22	6.9	650	42		
Did well de			No	Gallons actuall	y evacuated: 🥤	1.5
Sampling D		0	Sampling Time	: 1450	Depth to Water	r: 31.40
Sample I.D.	- MW-3			Laboratory: 🤇	CalScience Colu	mbia Other
Analyzed fo	r: TPH-G	BTEX I	MTBE TPH-D (Oxygenates (5)	Other: See (C.
EB I.D. (if a	pplicable):		<pre>(2) Time</pre>	Duplicate I.D. (
Analyzed for	r: TPH-G	BTEX N			Other:	
D.O. (if req'a	d): Pre	-purge:		^{mg} /L Pc	ost-purge:	^{mg} /L
).R.P. (if red	q'd): Pre	-purge:		mV Po	ost-purge:	mV

SHI WELL MONITORING DAT SHEET

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (800) 545-7558

SHI	WELL	MONITORING	DA' SHEET
		IVE OTVER OHALING	DAL SHEEL

BTS #: (00211-DR	at the second		Site: 42	12	First St. P	lacar	itera (a
Sampler:	DR			Date: 2/				
Well I.D.:	Mw-4			Well Diar			Ì	6 8
Total Well	Depth (TI	D): 4	6.67	Depth to Y	Wate	er (DTW): 3		
Depth to F	ree Produc					Free Product		
Referenced	l to:	PVC	> Grade	D.O. Mete				/SI HACH
DTW with	80% Rech	arge [(I	Height of Water	· Column x	0.20) + DTW]:	34	30
10	Bailer Disposable E Positive Air XElectric Subi Gals.) X Speci	Displacem	Other	Gals.		er Multiplier V 0.04 0.16	hod: her: <u>Vell Diar</u> 4" 6" Other	X Bailer Disposable Bailer Extraction Port Dedicated Tubing <u>meter Multiplier</u> 0.65 1.47 radius ² * 0.163
Time	Temp (°F)	pН	Cond. (mS or µ\$)	Turbidity (NTUs)	1	Gals. Remove	ed	Observations
1009	67.7	6.5	916	146		10.0		
1011	68.6	6.5	964	> 1000		20.0		
* Well	durand	e	21.0 gal,	Conducted a	iver	- purge per chi	nt.	Diw= 44.20
1404	68.7	6.6	967	322		9.6	1	Diw= 31.89
1406	69.3	6.5	96.]	71000		RDewahred		DIW = 44.23
Did well dev			No	Gallons act	Jally	vevacuated:	2,	1.0/19.2
ampling Da	ate: 2/11/1	0	Sampling Time	: 1606		Depth to Wa	ter:	(2hr. wait) 36.12
ample I.D.:	MW-4			Laboratory:	\leq	CalScience Co	olumb	
analyzed for	TPH-G	BTEX	MTBE TPH-D	Oxygenates (5) (Other: See	(aC)	
CB I.D. (if a _j	oplicable):		\widehat{a}			if applicable)		
nalyzed for	TPH-G	BTEX 1	MTBE TPH-D (Oxygenates (5) (Other:		
0.0. (if req'd	l): Pre	-purge:		^{mg} /L	Po	st-purge:		mg/L
R.P. (if rec	ı'd): Pre	-purge:		mV	Ро	st-purge:		mV
	19.LI 1	.5 1	964 1	a construction of the second s		1 8-	1	

APPENDIX C

BLAINE TECH SERVICES, INC. FIELD PROCEDURES BLAINE TECH SERVICES INC.

GROUNDWATER SAMPLING SPECIALISTS SINCE 1985

March 2, 2010

Denis Brown Shell Oil Products US 2095 South Wilmington Avenue Carson, CA 90810

> First Quarter 2010 Groundwater Monitoring at Shell-branded Service Station 4212 First Street Pleasanton, CA

Monitoring performed on February 11, 2010

Groundwater Monitoring Report 100211-DR-1

This report covers the routine monitoring of groundwater wells at this Shell-branded facility. In accordance with standard procedures that conform to Regional Water Quality Control Board requirements, routine field data collection includes depth to water, total well depth, thickness of any separate immiscible layer, water column volume, calculated purge volume (if applicable), elapsed evacuation time (if applicable), total volume of water removed (if applicable), and standard water parameter instrument readings. Sample material is collected, contained, stored, and transported to the laboratory in conformance with EPA standards. Purgewater (if applicable) is, likewise, collected and transported to the Martinez Refining Company.

Basic field information is presented alongside analytical values excerpted from the laboratory report in the cumulative table of **WELL CONCENTRATIONS**. The full analytical report for the most recent samples and the field data sheets are attached to this report.

At a minimum, Blaine Tech Services, Inc. field personnel are certified on completion of a fortyhour Hazardous Materials and Emergency Response training course per 29 CFR 1910.120. Field personnel are also enrolled in annual eight-hour refresher courses. Blaine Tech Services, Inc. conducts sampling and documentation assignments of this type as an independent third party. Our activities at this site consisted of objective data and sample collection only. No interpretation of analytical results, defining of hydrological conditions or formulation of recommendations was performed.

Please call if you have any questions.

Yours truly,

Mike Ninokata Project Manager

MN/np

attachments: Cumulative Table of WELL CONCENTRATIONS Certified Analytical Report Field Data Sheets

cc: Suzanne McClurkin-Nelson Delta Environmental 175 Bernal Rd., Suite 200 San Jose, CA 95119

BLAINE TECH SERVICES, INC. METHODS AND PROCEDURES FOR THE ROUTINE MONITORING OF GROUNDWATER WELLS AT SHELL SITES

Blaine Tech Services, Inc. performs environmental sampling and documentation as an independent third party. We specialize in groundwater monitoring assignments and intentionally limit the scope of our services to those centered on the generation of objective information.

To avoid conflicts of interest, Blaine Tech Services, Inc. personnel do not evaluate or interpret the information we collect. As a state licensed contractor (C-57 well drilling –water – 746684) performing strictly technical services, we do not make any professional recommendations and perform no consulting of any kind.

SAMPLING PROCEDURES OVERVIEW

SAFETY

All groundwater monitoring assignments performed for Shell comply with Shell's safety guidelines, 29 CFR 1910.120 and SB-198 Injury and Illness Prevention Program (IIPP). All Field Technicians receive the full 40-hour 29CFR 1910.120 OSHA SARA HAZWOPER course, medical clearance and on-the-job training prior to commencing any work on any Shell site.

INSPECTION AND GAUGING

Wells are inspected prior to evacuation and sampling. The condition of the wellhead is checked and noted according to a wellhead inspection checklist.

Standard measurements include the depth to water (DTW) and the total well depth (TD) obtained with industry standard electronic water level indicators that are graduated in increments of hundredths of a foot.

The water in each well is inspected for the presence of immiscibles. When free product is suspected, its presence is confirmed using an electronic interface probe (e.g. MMC). No samples are collected from a well containing over two-hundredths of a foot (0.02') of product.

EVACUATION

Depth to water measurements are collected by our personnel prior to purging and minimum purge volumes are calculated anew for each well based on the height of the water column and the diameter of the well. Expected purge volumes are never less than three case volumes and are set at no less than four case volumes in some jurisdictions.

Standard Methods & Procedures Shell Oil Products US Page 1

Well purging devices are selected on the basis of the well diameter and the total volume to be evacuated. In most cases the well will be purged using an electric submersible pump (i.e. Grundfos) suspended near (but not touching) the bottom of the well.

PARAMETER STABILIZATION

Well purging completion standards include minimum purge volumes, but additionally require stabilization of specific groundwater parameters prior to sample collection. Typical groundwater parameters used to measure stability are electrical conductivity, pH, and temperature. Instrument readings are obtained at regular intervals during the evacuation process (no less than once per case volume).

Stabilization standards for routine quarterly monitoring of fuel sites include the following: Temperature is considered to have stabilized when successive readings do not fluctuate more than +/- 1 degree Celsius. Electrical conductivity is considered stable when successive readings are within 10%. pH is considered to be stable when successive readings remain constant or vary no more than 0.2 of a pH unit.

DEWATERED WELLS

Normal evacuation removes no less than three case volumes of water from the well. However, less water may be removed in cases where the well dewaters and does not immediately recharge.

MEASURING RECHARGE

Upon completion of well purging, a depth to water measurement is collected and notated to ensure that the well has recharged to within 80% of its static, pre-purge level prior to sampling.

Wells that do not immediately show 80% recharge or dewatered wells will be allowed a minimum of 2 hours to recharge prior to sampling. The water level at time of sampling will be noted.

PURGEWATER CONTAINMENT

All non-hazardous purgewater evacuated from each groundwater monitoring well is captured and contained in on-board storage tanks on the Sampling Vehicle and/or special water hauling trailers. Effluent from the decontamination of reusable apparatus (sounders, electric pumps and hoses etc.), consisting of groundwater combined with deionized water and non-phosphate soap, is also captured and pumped into effluent tanks.

Non-hazardous purgewater is transported under standard Bill of Lading documentation to a Blaine Tech Services, Inc. facility before being transported to a Shell approved disposal facility.

Blaine Tech Services, Inc.

Standard Methods & Procedures

Shell Oil Products US Page 2

SAMPLE COLLECTION DEVICES

All samples are collected using a stainless steel, Teflon or disposable ballers.

SAMPLE CONTAINERS

Sample material is decanted directly from the sampling baller into sample containers provided by the laboratory that will analyze the samples. The transfer of sample material from the baller to the sample container conforms to specifications contained in the USEPA T.E.G.D. The type of sample container, material of construction, method of closure and filling requirements are specific to the intended analysis. Chemicals needed to preserve the sample material are commonly placed inside the sample containers by the laboratory or glassware vendor prior to delivery of the bottle to our personnel. The laboratory sets the number of replicate containers.

TRIP BLANKS

Trip Blanks, if requested, are taken to the site and kept inside the sample cooler for the duration of the event. They are turned over to the laboratory for analysis with the samples from that site.

DUPLICATES

Duplicates, if requested, may be collected at a site. The Field Technician uses their discretion in choosing the well at which the Duplicate is collected, typically one suspected of containing measurable contaminants. The Duplicate sample is labeled "DUP" and the time of collection is omitted from the COC, thus rendering the sample blind.

SAMPLE STORAGE

All sample containers are promptly placed in food grade ice chests for storage in the field and transport (direct or via our facility) to the designated analytical laboratory. These ice chests contain quantities of restaurant grade ice as a refrigerant material. The samples are maintained in either an ice chest or a refrigerator until relinquished into the custody of the laboratory or laboratory courier.

DOCUMENTATION CONVENTIONS

A label must be affixed to all sample containers. In most cases these labels are generated by our office personnel and are partially preprinted. Labels can also be hand written by our field personnel. The site is identified with the store number and site address, as is the particular groundwater well from which the sample is drawn (e.g. MW-1, MW-2, S-1 etc.). The time and date of sample collection along with the initials of the person who collects the sample are handwritten onto the label.

Chain of Custody records are created using client specific preprinted forms following USEPA specifications.

Bill of Lading records are contemporaneous records created in the field at the site where the non-hazardous purgewater is generated. Field Technicians use preprinted Bill of Lading forms.

DECONTAMINATION

All equipment is brought to the site in clean and serviceable condition and is cleaned after use in each well and before subsequent use in any other well. Equipment is decontaminated before leaving the site.

The primary decontamination device is a commercial steam cleaner. The steam cleaner is detuned to function as a hot pressure washer that is then operated with high quality deionized water that is produced at our facility and stored onboard our sampling vehicle. Cleaning is facilitated by the use of proprietary fixtures and devices included in the patented workstation (U.S. Patent 5,535,775) that is incorporated in each sampling vehicle. The steam cleaner is used to decon reels, pumps and bailers.

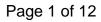
Any sensitive equipment or parts (i.e. Dissolved Oxygen sensor membrane, water level indicator, etc.) that cannot be washed using the high pressure water, will be sprayed with a non-phosphate soap and deionized water solution and rinsed with deionized water.

DISSOLVED OXYGEN READINGS

Dissolved Oxygen readings are taken pre- and/or post-purge using YSI meters (e.g. YSI Model 54, 58 or 95) or HACH field test kits.

The YSI meters are equipped with a stirring device that enables them to collect accurate in-situ readings. The probe/stirring devices are modified to allow downhole measurements to be taken from wells with diameters as small as two inches. The probe and reel is decontaminated between wells as described above. The meter is calibrated between wells as per the instructions in the operating manual. The probe and stirrer is lowered into the water column. The reading is allowed to stabilize prior to collection.

OXYIDATON REDUCTION POTENTIAL READINGS


All readings are obtained with either Corning or Myron-L meters (e.g. Corning ORP-65 or a Myron-L Ultrameter GP). The meter is cleaned between wells as described above. The meter is calibrated at the start of each day according to the instruction manual.

FERROUS IRON MEASUREMENTS

All field measurements are collected at time of sampling with a HACH test kit.

APPENDIX D

CERTIFIED ANALYTICAL REPORT WITH CHAIN-OF-CUSTODY DOCUMENTATION

February 24, 2010

Michael Ninokata Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105

Subject:Calscience Work Order No.:10-02-1261Client Reference:4212 First St.

10-02-1261 4212 First St., Pleasanton, CA

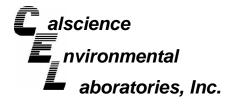
Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 2/13/2010 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,


Philip Samelle for

Calscience Environmental Laboratories, Inc. Xuan H. Dang Project Manager

 CA-ELAP ID: 1230
 NELAP ID: 03220CA
 CSDLAC ID: 10109
 SCAQMD ID: 93LA0830

 A
 7440 Lincoln Way, Garden Grove, CA 92841-1427
 TEL:(714) 895-5494
 FAX: (714) 894-7501

Page 2 of 12

LUFT GC/MS / EPA 8260B

Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105 Date Received: Work Order No: Preparation: Method: Units:

ug/L Page 1 of 3

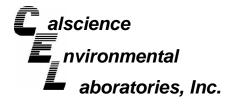
02/13/10

10-02-1261

EPA 5030B

Project: 4212 First St., Pleasanton, CA

	•	•									0
Client Sample Number				b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/ Analy		QC Batch ID
MW-1			10-02-1	I261-1-A	02/11/10 15:10	Aqueous	GC/MS RR	02/15/10	02/15 22:4		100215L01
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	Parameter			<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>
Benzene	30	10	20		Methyl-t-Buty	l Ether (MTE	BE)	3000	20	20	
Ethylbenzene	ND	20	20		Tert-Butyl Alc	cohol (TBA)		730	200	20	
Toluene	ND	20	20		TPPH			4400	1000	20	
Xylenes (total)	ND	20	20								
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits	<u>Qua</u>	<u>1</u>	Surrogates:			<u>REC (%)</u>	<u>Control</u> <u>Limits</u>	<u>C</u>	Qual
Dibromofluoromethane	102	80-132			1,2-Dichloroe	thane-d4		98	80-141		
Toluene-d8	97	80-120			Toluene-d8-T	PPH		100	88-112		
1,4-Bromofluorobenzene	86	76-120									
MW-1B			10-02-1	1261-2-A	02/11/10 09:00	Aqueous	GC/MS RR	02/15/10	02/15 23:1		100215L01
Parameter	Result	RL	DF	Qual	Doromotor			Result	RL	DF	Qual
				Qual	Parameter						Quai
	ND	0.50	1		Methyl-t-Buty	``	3E)	1.1	1.0	1	
Ethylbenzene Foluene	ND ND	1.0	1		Tert-Butyl Alc TPPH			ND ND	10	1 1	
(ylenes (total)	ND	1.0 1.0	1 1		IFFN			ND	50	1	
	REC (%)	Control	I Qua		Surrogates:			REC (%)	Control	C	Qual
Surrogates:	<u>KEC (%)</u>	Limits		<u>u</u>	Sunoyales.				Limits	<u>u</u>	<u>kuai</u>
Dibromofluoromethane	102	80-132			1,2-Dichloroe	thane-d4		97	80-141		
Foluene-d8	97	80-120			Toluene-d8-T			101	88-112		
1,4-Bromofluorobenzene	85	76-120			rolactic-ao-r			101	00 112		
MW-2	00	10 120	40.02	261-3-A	02/11/10	A	GC/MS RR	00/4 5/4 0	02/15	5/10	100215L01
IVI VV-2			10-02-	1201-3-A	15:00	Aqueous	GC/MS RR	02/15/10	23:4		100215201
Parameter	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	Parameter			<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual
Benzene	ND	12	25		Methyl-t-Buty	l Ether (MTE	BE)	3200	25	25	
Ethylbenzene	ND	25	25		Tert-Butyl Alc	· ·		ND	250	25	
Foluene	ND	25	25		тррн	. ,		4300	1200	25	
(ylenes (total)	ND	25	25								
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits	<u>Qua</u>	<u>1</u>	Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits	<u>C</u>	<u>Qual</u>
Dibromofluoromethane	103	80-132			1,2-Dichloroe	thane-d4		97	80-141		
Foluene-d8	97	80-120			Toluene-d8-T	PPH		101	88-112		
1,4-Bromofluorobenzene	86	76-120									
,		0									


RL - Reporting Limit , DF - Dilution Factor ,

hM

Qual - Qualifiers

7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

Page 3 of 12

Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105 Date Received: Work Order No: Preparation: Method: LUFT GC/MS / EPA 8260B Units:

Page 2 of 3

02/13/10

ug/L

10-02-1261

EPA 5030B

Project: 4212 First St., Pleasanton, CA

Client Sample Number				b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/1 Analy		QC Batch ID
MW-3			10-02-1	1261-4-A	02/11/10 14:50	Aqueous	GC/MS RR	02/17/10	02/17 19:1		100217L01
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	Parameter			<u>Result</u>	<u>RL</u>	DF	<u>Qual</u>
Benzene	ND	0.50	1		Methyl-t-Buty	Ether (MTE	BE)	2.1	1.0	1	
Ethylbenzene	ND	1.0	1		Tert-Butyl Alc	ohol (TBA)		ND	10	1	
Toluene	ND	1.0	1		TPPH			ND	50	1	
Xylenes (total)	ND	1.0	1								
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits	<u>Qua</u>	<u>ll</u>	Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits	<u>C</u>	lual
Dibromofluoromethane	103	80-132			1,2-Dichloroe	thane-d4		99	80-141		
Toluene-d8	98	80-120			Toluene-d8-T	PPH		104	88-112		
1,4-Bromofluorobenzene	91	76-120									
MW-4			10-02-1	261-5-A	02/11/10 16:06	Aqueous	GC/MS RR	02/17/10	02/17 19:4		100217L01
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
Benzene	95	50	100		Methyl-t-Buty	l Ether (MTB		7500	100	100	
Ethylbenzene	ND	100	100		Tert-Butyl Alc))	3200	1000	100	
Toluene	ND	100	100		TPPH			11000	5000	100	
Xylenes (total)	110	100	100						0000		
Surrogates:	<u>REC (%)</u>	Control Limits	Qua	<u>ll</u>	Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits	<u>C</u>	ual
Dibromofluoromethane	104	80-132			1,2-Dichloroe	thane-d4		101	80-141		
Toluene-d8	100	80-120			Toluene-d8-T	PPH		103	88-112		
1,4-Bromofluorobenzene	92	76-120									
Method Blank			099-12	-767-3,412	N/A	Aqueous	GC/MS RR	02/15/10	02/15 15:5		100215L01
Parameter	Result	<u>RL</u>	DF	Qual	Parameter			Result	<u>RL</u>	DF	Qual
Benzene	ND	0.50	1		Methyl-t-Buty	Ether (MTE	BE)	ND	1.0	1	
Ethylbenzene	ND	1.0	1		Tert-Butyl Alc	``		ND	10	1	
Toluene	ND	1.0	1		ТРРН	. ,		ND	50	1	
Xylenes (total)	ND	1.0	1								
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits	<u>Qua</u>	<u>ll</u>	Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits	<u>C</u>	ual
Dibromofluoromethane	99	80-132			1,2-Dichloroe	thane-d4		92	80-141		
Toluene-d8	97	80-120			Toluene-d8-T	PPH		101	88-112		
1,4-Bromofluorobenzene	89	76-120									

RL - Reporting Limit , DF - Dilution Factor

Qual - Qualifiers ,

hM

7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

Calscience nvironmental aboratories, Inc.

Shand IN ACCORDANC

Page 4 of 12

Page 3 of 3

Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105 Date Received:02/13/10Work Order No:10-02-1261Preparation:EPA 5030BMethod:LUFT GC/MS / EPA 8260BUnits:ug/L

Project: 4212 First St., Pleasanton, CA

Client Sample Number				ab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/T Analy		QC Batch ID
Method Blank			099-12	2-767-3,430	N/A	Aqueous	GC/MS RR	02/17/10	02/17 14:1		100217L01
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual	Parameter			<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual
Benzene	ND	0.50	1		Methyl-t-Butyl	Ether (MTE	BE)	ND	1.0	1	
Ethylbenzene	ND	1.0	1		Tert-Butyl Alc	ohol (TBA)		ND	10	1	
Toluene	ND	1.0	1		TPPH			ND	50	1	
Xylenes (total)	ND	1.0	1								
Surrogates:	<u>REC (%)</u>	<u>Control</u> <u>Limits</u>	<u>Qu</u>	al	Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits	<u>C</u>	Qual
Dibromofluoromethane	101	80-132			1,2-Dichloroe	thane-d4		96	80-141		
Toluene-d8	100	80-120			Toluene-d8-T	PPH		106	88-112		
1,4-Bromofluorobenzene	91	76-120									

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

h

7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

Blaine Tech Services, Inc.	Date Received:	02/13/10
1680 Rogers Avenue	Work Order No:	10-02-1261
San Jose, CA 95112-1105	Preparation:	EPA 5030B
	Method:	LUFT GC/MS / EPA
		8260B

Project 4212 First St., Pleasanton, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
10-02-1233-1	Aqueou	us GC/MS RR	02/15/10		02/15/10	100215S01
Parameter	MS %REC	MSD %REC	<u>%REC CL</u>	<u>RPD</u>	<u>RPD CL</u>	Qualifiers
Benzene	89	93	72-120	4	0-20	
Carbon Tetrachloride	85	87	63-135	3	0-20	
Chlorobenzene	93	97	80-120	4	0-20	
1,2-Dibromoethane	91	93	80-120	2	0-20	
1,2-Dichlorobenzene	96	101	80-120	5	0-20	
1,1-Dichloroethene	83	85	60-132	3	0-24	
Ethylbenzene	94	97	78-120	3	0-20	
Toluene	93	96	74-122	3	0-20	
Trichloroethene	87	90	69-120	3	0-20	
Vinyl Chloride	72	73	58-130	1	0-20	
Methyl-t-Butyl Ether (MTBE)	72	80	72-126	3	0-21	
Tert-Butyl Alcohol (TBA)	77	81	72-126	4	0-20	
Diisopropyl Ether (DIPE)	87	93	71-137	7	0-23	
Ethyl-t-Butyl Ether (ETBE)	85	90	74-128	6	0-20	
Tert-Amyl-Methyl Ether (TAME)	92	94	76-124	3	0-20	
Ethanol	83	90	35-167	8	0-48	

RPD - Relative Percent Difference, CL - Control Limit

hu 7440 Lincoln Way, Garden Grove, CA 92841-1427 . TEL:(714) 895-5494 ·

94 • FAX: (714) 894-7501

8260B

Blaine Tech Services, Inc.	Date Received:	02/13/10
1680 Rogers Avenue	Work Order No:	10-02-1261
San Jose, CA 95112-1105	Preparation:	EPA 5030B
	Method:	LUFT GC/MS / EPA

Project 4212 First St., Pleasanton, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
10-02-1268-2	Aqueou	IS GC/MS RR	02/17/10		02/17/10	100217S01
Parameter	MS %REC	MSD %REC	<u>%REC CL</u>	<u>RPD</u>	<u>RPD CL</u>	Qualifiers
Benzene	110	110	72-120	0	0-20	
Carbon Tetrachloride	108	107	63-135	1	0-20	
Chlorobenzene	106	106	80-120	0	0-20	
1,2-Dibromoethane	112	113	80-120	1	0-20	
1,2-Dichlorobenzene	104	105	80-120	1	0-20	
1,1-Dichloroethene	105	106	60-132	1	0-24	
Ethylbenzene	111	110	78-120	1	0-20	
Toluene	109	109	74-122	0	0-20	
Trichloroethene	106	106	69-120	0	0-20	
Vinyl Chloride	77	79	58-130	3	0-20	
Methyl-t-Butyl Ether (MTBE)	106	109	72-126	3	0-21	
Tert-Butyl Alcohol (TBA)	100	107	72-126	7	0-20	
Diisopropyl Ether (DIPE)	107	109	71-137	1	0-23	
Ethyl-t-Butyl Ether (ETBE)	111	113	74-128	3	0-20	
Tert-Amyl-Methyl Ether (TAME)	111	111	76-124	0	0-20	
Ethanol	88	110	35-167	22	0-48	

RPD - Relative Percent Difference, CL - Control Limit

h M

7440 Lincoln Way, Garden Grove, CA 92841-1427 . $\ \mbox{TEL:(714)}$ 895-5494 $\ \cdot$ FAX: (714) 894-7501

Blaine Tech Services, Inc.
1680 Rogers Avenue
San Jose, CA 95112-1105

Date Received: Work Order No: Preparation: Method:

N/A
10-02-1261
EPA 5030B
LUFT GC/MS / EPA 8260B

Project: 4212 First St., Pleasanton, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Anal		LCS/LCSD Numbe	
099-12-767-3,412	Aqueous	GC/MS RR	02/15/10	02/15/	/10	100215L	01
Parameter	LCS %REC	LCSD %REC	<u>%REC CL</u>	ME CL	<u>RPD</u>	RPD CL	Qualifiers
Benzene	93	94	80-122	73-129	1	0-20	
Carbon Tetrachloride	88	88	68-140	56-152	0	0-20	
Chlorobenzene	97	99	80-120	73-127	2	0-20	
1,2-Dibromoethane	99	99	80-121	73-128	0	0-20	
1,2-Dichlorobenzene	101	101	80-120	73-127	0	0-20	
1,1-Dichloroethene	86	87	72-132	62-142	1	0-25	
Ethylbenzene	96	96	80-126	72-134	0	0-20	
Toluene	93	95	80-121	73-128	1	0-20	
Trichloroethene	88	89	80-123	73-130	1	0-20	
Vinyl Chloride	69	69	67-133	56-144	0	0-20	
Methyl-t-Butyl Ether (MTBE)	89	88	75-123	67-131	1	0-20	
Tert-Butyl Alcohol (TBA)	89	97	75-123	67-131	9	0-20	
Diisopropyl Ether (DIPE)	89	89	71-131	61-141	0	0-20	
Ethyl-t-Butyl Ether (ETBE)	89	89	76-124	68-132	0	0-20	
Tert-Amyl-Methyl Ether (TAME)	98	97	80-123	73-130	1	0-20	
Ethanol	99	101	61-139	48-152	2	0-27	
ТРРН	90	90	65-135	53-147	0	0-30	

Total number of LCS compounds : 17 Total number of ME compounds : 0 Total number of ME compounds allowed : 1 LCS ME CL validation result : Pass

nM

RPD - Relative Percent Difference, CL - Control Limit

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 • FAX: (714) 894-7501

Blaine Tech Services, Inc.
1680 Rogers Avenue
San Jose, CA 95112-1105

Date Received: Work Order No: Preparation: Method: N/A 10-02-1261 EPA 5030B LUFT GC/MS / EPA 8260B

Project: 4212 First St., Pleasanton, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Anal <u>y</u>		LCS/LCSD I Numbe	
099-12-767-3,430	Aqueous	GC/MS RR	02/17/10	02/17/	/10	100217L	01
Parameter	LCS %REC	LCSD %REC	<u>%REC CL</u>	ME CL	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
Benzene	100	102	80-122	73-129	1	0-20	
Carbon Tetrachloride	95	97	68-140	56-152	2	0-20	
Chlorobenzene	98	100	80-120	73-127	1	0-20	
1,2-Dibromoethane	102	104	80-121	73-128	2	0-20	
1,2-Dichlorobenzene	94	98	80-120	73-127	4	0-20	
1,1-Dichloroethene	94	95	72-132	62-142	2	0-25	
Ethylbenzene	102	103	80-126	72-134	1	0-20	
Toluene	98	100	80-121	73-128	1	0-20	
Trichloroethene	97	99	80-123	73-130	2	0-20	
Vinyl Chloride	99	96	67-133	56-144	3	0-20	
Methyl-t-Butyl Ether (MTBE)	99	104	75-123	67-131	6	0-20	
Tert-Butyl Alcohol (TBA)	95	95	75-123	67-131	1	0-20	
Diisopropyl Ether (DIPE)	100	102	71-131	61-141	2	0-20	
Ethyl-t-Butyl Ether (ETBE)	103	107	76-124	68-132	4	0-20	
Tert-Amyl-Methyl Ether (TAME)	99	105	80-123	73-130	5	0-20	
Ethanol	89	91	61-139	48-152	2	0-27	
ТРРН	92	90	65-135	53-147	2	0-30	

Total number of LCS compounds : 17 Total number of ME compounds : 0 Total number of ME compounds allowed : 1 LCS ME CL validation result : Pass

n M

RPD - Relative Percent Difference, CL - Control Limit

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 • FAX: (714) 894-7501

MM

Work Order Number: 10-02-1261

Qualifier *	<u>Definition</u> See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported without further clarification.
А	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
Е	Concentration exceeds the calibration range.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ME	LCS Recovery Percentage is within LCS ME Control Limit range.
Ν	Nontarget Analyte.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
U	Undetected at the laboratory method detection limit.
Х	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture.

LAB (LOCATION)

4. -- :

.

Shell Oil Products Chain Of Custody Record

		Ple	ase Cheo	ck Ap	propr	iate	Box		Pr	int	Bill T	To Co	ontac	t Na	me:				l I		NT #	EN	V SE	RVIC	ES)	<u>i In</u>		NO INCIDENT	
□ SPL () □ XENCO ()	B-en	V. SERVICES	- 6	мотти	A RETAIL			L RETAIL	· · · · ·							cChurle	-N	elsin			T	9		- T	<u> </u>			2/11/1	
	П ма	DTIVA SD&CM		CONSU	LTANT		LUBE	s				W11		PO						0	 !	.	 .	• •	<u>+ (</u>		DATE:	61111	0
□ TEST AMERICA () □ OTHER ()				OTHER					1	<u></u>	<u></u>	<u> </u>	<u> </u>		7 	<u> </u>		T	1		<u>г 1</u>	SAP	#	<u> </u>	<u> </u>		PAGE		of
AMPLING COMPANY				LOG C					1		DRESS:																		-
laine Tech Services				BT							Firs				anto	n			State	СА		GLOBAI	001	012!	59				
ADDRESS 680 Rogers Ave, San Jose, CA 95112									EDFI	DELME	ERABLE T	O (Name, (Company,	Office Li	ocation)		РНО	ENO	-I		-	E-MAIL						CONSULTANT PRO	DJECTNO
ROJECT CONTACT (Hardcopy or PDF Report to)									An	gela		, Delta	a, San	Jos	e Offi	ce	408	.826.1	862			apico	@del	taenv	v.com		F	ATS # 1007	Z11-De
Ichael Ninokata ELEPHONE FAX		E-MAIL.																							- 193		E ONLY		
(408)573-0555 (408)573-7771		mninok	ata@blain	etech	.com					ワ	<u>). R</u>	tyre	a													10	-0	2-12	-61
TURNAROUND TIME (CALÈNDÀR DÀYS): 3 STANDARD (14 DAY) 5 DAYS 3 DAYS		🛛 2 DAYS	24 H	OURS		🗆 RE	SULTS NEED	DED WEEKENI				7	_					R	EQUE	STED	ANA	LYSI	s				<u></u>		<u> </u>
LA - RWQCB REPORT FORMAT										Т	T			-			-	T	Τ.			- 1	- T		<u> </u>		<u> </u>		
SPECIAL INSTRUCTIONS OR NOTES :				L CONTI	RACT RA	TE APPI	LIES		1_	Ŵ		TBA,															TEM	PERATURE	ON RECEIP
CC Suzanne McClurkin-Nelson w/final report						NT RAT	TE APPLIES		260B	(8015M)		(MT8E, T8A,																	
smcclurkin-nelson@deltaenv.com									e (8)	le (8							-			÷.									_
Run TPH-d w/Silica Gel Clean Up			🗹 RECE	IPT VER	RIFICATIO	ON REQ	UESTED		TPH - Purgeable (8260B)	TPH - Extractable	B) (2	5 Oxygenates (8260B) DIPE, TAME, ETBE)	â	_	<u>_</u>		1,2 DCA (8260B)	-	60B)	Methanol (8015M									
	SAN	PLING			PRE	SERVA	TIVE		- Ind	xtra	BTEX (8260B)	ates (AE, E1	MTBE (8260B)	TBA (8260B)	DIPE (8260B)	TAME (8260B) ETEE (8260B)	1 (82	EDB (8260B)	Ethanol (8260B)	ol (8									
Field Sample Identification	DATE	TIME	MATRIX					NO. OI CONT	Ī			tAA	BE	A (83	8) 8)			B (8)	anol	than							c	ontainer PID	Readings
4 7				HCL	нноз н	2504		R	Ē	Ē		5 O	MT	TB/	DID	TA TA	77	Ē	Ę	Mei								or Laborator	ry Notes
Mw_1	7/1/10	1510	W	X				3	X		X		X	X	Ī	·					T								
- Mw - 1B		0900	w	X				3	X		X		x	x				1							1	+	1		
2 Muj-Z		1500	Ś	X				3	x		×		t-	F				1							+	+		··	
MW-3		1450	W	X				3	X		X		x	x			+-		$\left \right $						+		+		
2 Mw-4	1	1606	w	X				$\frac{1}{2}$	X	+	$\frac{1}{x}$	+ +		<u>x</u>			+	+	+						+-		+		
	- <u>v</u>	1000	~~	\uparrow	+	\rightarrow		+		+	\uparrow	$\left \right $	 ^	\rightarrow	-+		+		+		-+		+		+	+-	+		
	<u> </u>			+	$\left - \right $	-+	-+-			+		$\left \right $	\square	-+	_+				-		-+				+	4			
		┝──┤		-	+ +				1					$ \rightarrow $				<u> </u>							_				· · · · ·
										 											$\neg \uparrow$			-	1	+	1		
		 		+	┠──┠─	-+		+	-	┢				-+	-				$\left - \right $							+-			
linquished by: (Signature)			Develop the st																										
			Received by: (S	igneture)	, \		7 ~				î		1			1	Ŧ				Dala:	1	1			Time			
Inquished by: (Signature)		_	1	A	1-7	[] d	$\underline{-}$	\leq			<u>(</u>	an	ph	•	Chy	tec	licz	,)			2	<u>/</u> (1	/(0			164	5	
	~	N 1	Received by: (S	Ignature)	\sim		,			~		-	l								Dale:	. /	;	~		Time		_	
		+-/		()	1	لر ا	イン	0		()	'Æ	- (~								2	/1	2.12	\circ			122	200	
My Sample (لخرمب	/			<u> </u>												-												
olinquished by: (Signature) - CP 2-12-	لاسل 10	2	Received by: (Si	ignature)	Ň	4	$-\epsilon$	<		Ž	2	·	_				0	_	_		Date:	1.	_ 1		$\overline{}$	Time	,		
Inquished by: (Signature) - CP 2-12-	10		Received by: (Si	ignature)	A A		\sim	$\overline{\mathcal{V}}$	5	Ł							. CI	<u>_</u>	-		Date: 2	11	31	1 (0	Tim e	<u>q:</u>	45	

Signature Type: SIGNATURE REQUIRED

Print Date : 02/12/10 15:08 PM Package 1 of 1

66 33 47.0

ļ. . .

1

Calscience W	work order #: 10-02										
Laboratories, Inc. SAMPLE RE	CEIPT FORM	Cooler _)_of								
CLIENT: <u>Bts</u>	DA	te: <u>02/</u>	3/10								
TEMPERATURE: Thermometer ID: SC1 (Criteria: 0.0 °C – 6.0 °C, not frozen)											
Temperature $3.2^{\circ}C + 0.5^{\circ}C$ (CF) =	<u>2.7</u> °C BB	ank 🗌 San	nple								
□ Sample(s) outside temperature criteria (PM/APM con	acted by:).										
□ Sample(s) outside temperature criteria but received o	n ice/chilled on same day of	sampling.									
□ Received at ambient temperature, placed on ice			~ 0								
Ambient Temperature: Air Filter Meta	Is Only 🛛 PCBs Only	ini	tial: <u>JU</u>								
CUSTODY SEALS INTACT:											
□ Cooler □ □ No (Not Intact) 🖉 Not Present 🗆] N/A Ini	itial: JLD								
□ Sample . □ □ No (Not Intact			itial:								
	· -										
SAMPLE CONDITION:	Yes	No	N/A								
Chain-Of-Custody (COC) document(s) received with s											
COC document(s) received complete											
\Box Collection date/time, matrix, and/or # of containers logged i											
□ No analysis requested. □ Not relinquished. □ No da		_	_								
Sampler's name indicated on COC											
Sample container label(s) consistent with COC Sample container(s) intact and good condition	1										
Proper containers and sufficient volume for analyses											
Analyses received within holding time											
Proper preservation noted on COC or sample contain	1										
□ Unpreserved vials received for Volatiles analysis	<i>ـــ</i>	—									
Volatile analysis container(s) free of headspace											
Tedlar bag(s) free of condensation			ø								
CONTAINER TYPE:			, ,								
Solid: □4ozCĢJ □8ozCGJ □16ozCGJ □Sleev	∋ () □EnCores® □]TerraCores [®]									
Water: □VOA ŪVOAh □VOAna₂ □125AGB □12											
□500AGB □500AGJ □500AGJs □250AGB □2											
□250PB □250PBn □125PB □125PBznna □100	⊃J □100PJ na₂ □	_ 🛛	□								
Air: □Tedlar [®] □Summa [®] Other: □ Trip	Blank Lot#:	Checked	by: 24								
Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z Preservative: h: HCL n: HNO3 na ₂ :Na ₂ S ₂ O ₃ Na: NaOH p: H ₃ PO ₄ s:	•	.•									

SOP T100_090 (07/16/09)

1

ŧ.

4.8 -