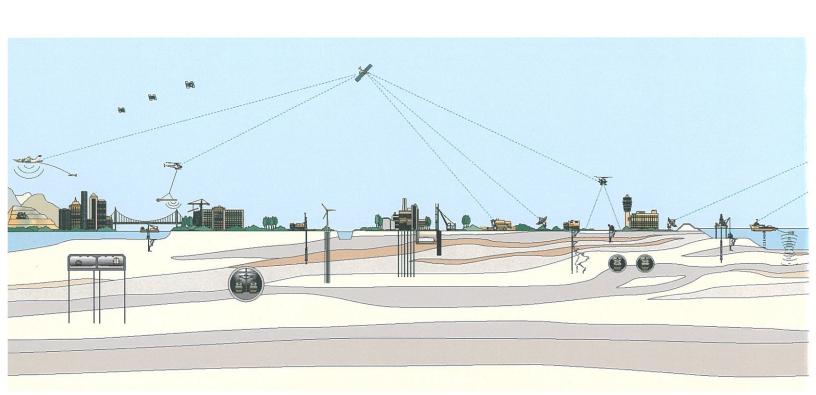
FUGRO WEST, INC.

By dehloptoxic at 9:22 am, Jul 27, 2006



QUARTERLY GROUNDWATER MONITORING REPORT - WINTER 2005 AND SPRING 2006 EVENTS 2250 TELEGRAPH AVENUE OAKLAND, CALIFORNIA

Prepared for: BUTTNER PROPERTIES

JUNE 2006

Fugro Project No. 609.004

FUGRO WEST, INC.

1000 Broadway, Suite 200 Oakland, California 94607 **Tel: (510) 268-0461** Fax: (510) 268-0137

June 28, 2006 Project No. 609.004

Buttner Properties 600 West Grand Avenue Oakland, California 94612

Attention: Ms. Marianne Robison

Subject: Winter 2005 and Spring 2006 Groundwater Monitoring Report, 2250 Telegraph

Avenue, Oakland, California

Dear Ms. Robison:

Fugro West, Inc., (Fugro) is pleased to present this letter, which records the results of the Winter 2005 and Spring 2006 groundwater monitoring events for the 2250 Telegraph Avenue Property (Site). The groundwater monitoring program has been implemented in accordance with our February 2004 Work Plan and the Addendum to our Work Plan dated August 5, 2004. The Site location is shown on the Vicinity Map - Plate 1 and the Site Plan is presented on Plate 2.

During these monitoring events, Fugro sampled the four wells located onsite (MW-1, MW-3, MW-3, and MW-4), as well as one well located offsite to the south (MW-5), within the parking lane of the heavily traveled West Grand Avenue. Due to restrictions imposed by the City of Oakland Public Works Department on work being conducted within a public right-of-way during the City's designated "Holiday Traffic Pattern" period (November 1 to January 1), we were unable to obtain an encroachment permit to temporarily block the eastbound lane of West Grand Avenue during the Winter 2005 event. Consequently, we were only able to sample monitoring well MW-6 during the Spring 2006 event.

BACKGROUND

In August 1990, a 10,000-gallon gasoline underground gasoline storage tanks (UST) and one 280-gallon waste oil UST were removed from the Site. Approximately 500 cubic yards of gasoline-impacted soil were excavated from the former UST and pump island areas, and with concurrence from the Alameda County Environmental Health (ACEH) the contaminated soils were aerated onsite in 1990 and 1991 and disposed at a Class III sanitary landfill. The excavations were backfilled with clean imported materials, placed and compacted under engineering supervision, and the area was resurfaced with asphalt pavement.

In February 1994, contaminated soils near the former waste oil tank were over-excavated and removed from the Site, four groundwater monitoring wells (MW-1 through MW-4) were installed onsite, and a groundwater monitoring program was implemented. In

May 1996, five temporary well points were installed and grab groundwater samples were obtained as part of a supplemental investigation to assist in determining locations for the installation of offsite monitoring wells. Two monitoring wells (MW-5 and MW-6) were installed at offsite locations, downgradient from the former UST excavations in June 1997. In response to ACEH letters dated June 16, 1998, and November 8, 1999, all groundwater monitoring wells (MW-1 through MW-6) were monitored and sampled on a semi-annual basis through 2001.

In their letter dated January 16, 2002, the ACEH recommended a risk assessment and sensitive receptor survey be conducted to determine whether the Site may be considered a "low risk". While in the process of conducting these activities, a subsequent letter from the ACEH dated April 4, 2003, was received by the property owner. The April 2003 letter requested additional source and site characterization studies, a preferential pathway study, and a well survey be conducted. In response to these requests, Fugro prepared a Preferential Pathway and Preliminary Risk Evaluation report dated February 19, 2004. Fugro conducted research at the City offices to identify the location of preferential pathways in the immediate vicinity and evaluated the presence of sensitive receptors in the area. Fugro also compared detected concentrations to the Environmental Screening Levels established by the Regional Water Quality Control Board (RWQCB) for classification of impacted sites. Results of these studies indicated the following:

- Source material has been removed from the Site and the Site has been restored to allow the continued use of the Site;
- Residual concentrations of Total Petroleum Hydrocarbons (TPH) in soil beneath the
 onsite structure and concentrations in groundwater do not pose an immediate and
 significant risk to human health or the environment considering the current
 commercial use of the Site:
- Groundwater below West Grand Avenue is impacted by commingled petroleum releases. Methyl tertiary butyl ether (MTBE) was not used onsite as the UST's were removed prior to its introduction, yet MTBE has historically been detected in offsite well MW-6;
- No drinking water wells exist within a half-mile radius of the Site;
- No utility corridors were located on or offsite, which would create a preferential
 migration pathway for contaminants of concern. City infrastructure maps indicate
 that storm and sanitary sewer mainlines do not extend below West Grand Avenue,
 they extend below Telegraph Avenue, situated along the upgradient side of the Site,
 and below Valley Street further to the east. Only one shallow storm drain connector
 extends from the southeast corner of the Site to Valley Street, and the connector is
 located above the groundwater surface;
- Shallow groundwater in the downtown Oakland area is not considered nor currently used as a potable water source; and
- With the exception of possible upward migration of soil gas vapors, no exposure pathways currently exist.

Fugro developed a scope of work (Work Plan, February 2004, and Work Plan Addendum, August 2004) to define the lateral extent of onsite soil and groundwater impacts, and to evaluate the potential for soil gas vapors to impact occupants considering that the Site would be redeveloped in the future. In their letter dated August 19, 2005, ACEH requested further clarification for the proposed scope of services. Fugro provided responses to ACEH comments in the Groundwater Monitoring Report and Supplemental Work Plan Addendum dated October 15, 2005. To date no further written comments or acknowledgement has been received from ACEH.

GROUNDWATER MONITORING – WINTER 2005

Due to restrictions imposed on work being conducted within a public right-of-way during the City of Oakland's designated "Holiday Traffic Pattern" period (November 1 to January 1), we were unable to obtain an encroachment permit and approval to temporarily block the east bound lane of West Grand Avenue. Consequently we were unable to sample monitoring well MW-6.

Fugro conducted this monitoring event on November 9, 2005. Five wells (MW-1, MW-2, MW-3, MW-4 and MW-5) were sampled. Prior to sampling, the presence of free product was checked and the depth to groundwater was measured in the five wells. No free product was observed in any of the wells. Each well was then purged of approximately three casing volumes of water while monitoring for changes in pH, conductivity, and temperature. Once the water levels stabilized to within 80 percent of their initial levels, the wells were sampled with clean disposable bailers. Samples were retained in glass containers pre-cleaned by the laboratory in accordance with Environmental Protection Agency (EPA) protocols. The containers were placed in an ice-filled cooler and kept chilled pending delivery to the laboratory.

The samples for this event were submitted under appropriate chain-of-custody documents to Curtis & Tompkins, Ltd., a laboratory certified by the State of California Department of Health Services for hazardous waste and water testing. A sample from each well was analyzed for the following constituents:

- Total volatile hydrocarbons as gasoline (TVHg), EPA Methods 5030/8015;
- Total extractable hydrocarbons as diesel and motor oil (TEHd and mo), EPA Methods 8015m, using silica gel cleanup;
- Lead Scavengers including; dichloroethane and dibromoethane;
- Five fuel oxygenates by EPA Methods 8260 including;
- Methyl tertiary butyl ether (MTBE), tert butyl alcohol (TBA), isopropyl ether (DIPE), ethyl tert-butyl ether (ETBE), and methyl tert-amyl ether (TAME); and
- Benzene, toluene, ethylbenzene and total xylenes (BTEX).

Well sampling forms, chain-of-custody documents, and the analytical test reports are attached in Appendix A. Groundwater elevation data are summarized in Table 1. Analytical test results are summarized in Table 2.

The groundwater flow directions for the 2005 groundwater monitoring events are presented in a Rose Diagram, presented on Plate 2. The gradient for the Winter 2005 monitoring event was 0.038 feet per foot (ft/ft) directed towards the northeast. Based on the groundwater elevation data presented in Table 1, the groundwater gradient remains generally consistent with previous measurements. Groundwater was encountered at elevations slightly higher in two wells (MW-2 and MW-5), and slightly lower in the remaining three wells (MW-1, MW-3, and MW-4), than the elevations measured in August 2005. The gradient is relatively flat and tends generally toward the northeast.

Fugro's field geologist noticed hydrocarbon odor during purging and sampling of monitoring well MW-4; however, no free product was observed. TVHg was detected during this event in samples from wells MW-1 (290 μ g/l), MW-3 (1,100 μ g/l), and MW-4 (2,000 μ g/l). TEHd was detected in samples from wells MW-3 (110 μ g/l), and MW-4 (1,900 μ g/l). TEHmo was detected in samples from well MW-4 (2,300 μ g/l).

Analysis detected benzene concentrations in wells MW-3 (150 μ g/l) and MW-4 (1.2 μ g/l). Total xylenes were detected in samples from wells MW-3 (3.8 μ g/l) and MW-4 (0.8 μ g/l). No concentrations of ethylbenzene or toluene were detected in any of the samples tested.

No MTBE concentrations were detected in any of the samples tested during this event. However, analysis detected TBA in wells MW-1 (14 μ g/l) and MW-3 (13 μ g/l). None of the lead scavengers or remaining fuel oxygenates were detected in any of the samples analyzed.

GROUNDWATER MONITORING – SPRING 2006

Fugro conducted this monitoring event on March 21, 2006. Prior to sampling, the presence of free product was checked and the depth to groundwater was measured in all six wells. No free product was observed in any of the wells. Each well was then purged of approximately three casing volumes of water while monitoring for changes in pH, conductivity, and temperature. Once the water levels stabilized, the wells were sampled with clean disposable bailers. Samples were retained in glass containers pre-cleaned by the laboratory in accordance with EPA protocols. The containers were placed in an ice-filled cooler and kept chilled pending delivery to the laboratory.

The samples for this event were submitted under appropriate chain-of-custody documents to Curtis & Tompkins, Ltd., a laboratory certified by the State of California Department of Health Services for hazardous waste and water testing. A sample from each well was analyzed for the following constituents:

- TVHg, EPA Methods 5030/8015;
- TEHd and mo, EPA Methods 8015m, using silica gel cleanup;
- Lead Scavengers including; dichloroethane and dibromoethane;
- Five fuel oxygenates by EPA Methods 8260 including;
 - o MTBE, TBA, DIPE, ETBE, and TAME; and
- BTEX.

Well sampling forms, chain-of-custody documents, and the analytical test reports are attached in Appendix A. Groundwater elevation data are summarized in Table 1. Analytical test results are summarized in Table 2.

The groundwater flow direction for the spring event is presented in the Rose Diagram on Plate 2. The gradient for the March 2006 monitoring event was 0.012 ft/ft directed towards the northeast. Based on the groundwater elevation data presented in Table 1, the groundwater gradient remains generally consistent with previous measurements. Groundwater was encountered at elevations slightly higher in all wells, than the elevations measured during the Fall and Winter of 2005. The gradient is relatively flat and tends generally toward the east-south east.

Fugro's field geologist noticed hydrocarbon odor during purging and sampling of monitoring wells MW-4 and MW-6; however, no free product was observed. TVHg was detected during this event in samples from wells MW-1 (390 μ g/l), MW-3 (100 μ g/l), MW-4 (2,200 μ g/l) and MW-6 (1,900 μ g/l). TEHd was detected in samples from wells MW-1 (97 μ g/l), MW-3 (61 μ g/l), MW-4 (2,800 μ g/l) and MW-6 (850 μ g/l). TEHmo was detected in samples from well MW-4 (4,000 μ g/l).

Analysis detected benzene concentrations in wells MW-1 (1 μ g/l), and MW-4 (1.2 μ g/l), as well as ethylbenzene concentrations of 0.6 μ g/l in well MW-1. Total xylenes were detected in samples from wells MW-4 (0.7 μ g/l). No concentrations of toluene were detected in any of the samples tested.

With the exception of 0.5 μ g/l detected well MW-6, no MTBE concentrations were detected in any of the remaining samples tested during this event. Analysis also detected TBA in MW-1 (16 μ g/l) and MW-3 (12 μ g/l). None of the lead scavengers or remaining fuel oxygenates were detected in any of the samples analyzed.

NEXT GROUNDWATER MONITORING EVENT

The next scheduled event will be conducted during the Summer 2006. If you have any questions, please call either of the undersigned at (510) 268-0461.

Sincerely,

FUGRO WEST, INC.

Obi Nzewi

Project Geologist

Juiann alexander

Jeriann N. Alexander, P.E., R.E.A.

Project Manager

Civil Engineer 40469 (exp. 3/31/07)

REA 03130 (exp. 7/07)

ON/JNA:tm

Attachments: Table 1 - Groundwater Elevation Data

Table 2 - Chemical Concentrations in Groundwater

Plate 1 - Vicinity Map

Plate 2 - Site Plan with Groundwater Rose Diagram

Appendix A - Well Sampling Forms

Analytical Test Report and Chain of Custody Form

Copies Submitted: (3) Addressee

(1) Mr. Tim Robison, Ph.D.

(1) Mr. Don Hwang, Alameda County Environmental Health



Table 1 Groundwater Elevation Data 2250 Telegraph Avenue Oakland, California

Monitoring <u>Well</u>	<u>Date</u>	TOC Elevation (feet) MSL	DTW (feet)	Elevation (feet) MSL
MW-1	3/3/1994	20.55	10.39	10.16
	3/10/1994		10.54	10.01
	6/6/1994		11.36	9.19
	9/7/1994		11.92	8.63
	12/22/1994		10.83	9.72
	3/17/1995		9.73	10.82
	6/27/1995		10.51	10.04
	9/18/1995		11.12	9.43
	5/30/1996		10.49	10.06
	7/9/1997		11.79	8.76
	8/21/1998		11.00	9.55
	10/6/1998		11.84	8.71
	2/24/1999		9.74	10.81
	6/30/2000		11.28	9.27
	4/27/2001		10.56	9.99
	4/14/2005		10.12	10.43
	8/1/2005		10.56	9.99
	11/9/2005		12.53	8.02
	3/21/2006		9.71	10.84
MW-2	3/3/1994	20.03	10.37	9.66
11111 2	3/10/1994	20.03	10.53	9.50
	6/6/1994		11.15	8.88
	9/7/1994		11.72	8.31
	12/22/1994		11.27	8.76
	3/17/1995		9.85	10.18
	6/27/1995		10.70	9.33
	9/18/1995		11.67	8.36
	5/30/1996		11.56	8.47
	7/9/1997		11.52	8.51
	8/21/1998		11.91	8.12
	10/6/1998		11.57	8.46
	2/24/1999		9.91	10.12
	6/30/2000		11.16	8.87
	4/27/2001		11.32	8.71
	4/14/2005		11.00	9.03
	8/1/2005		11.67	8.36
	11/9/2005		11.54	8.49
	3/21/2006		11.02	9.01

Table 1 Groundwater Elevation Data 2250 Telegraph Avenue Oakland, California

Monitoring <u>Well</u>	<u>Date</u>	TOC Elevation (feet) MSL	DTW (feet)	Elevation (feet) MSL
MW-3	3/3/1994	18.97	9.50	9.47
	3/10/1994		9.51	9.46
	6/6/1994		10.28	8.69
	9/7/1994		10.75	8.22
	12/22/1994		9.74	9.23
	3/17/1995		8.85	10.12
	6/27/1995		9.94	9.03
	9/18/1995		10.54	8.43
	5/30/1996		9.69	9.28
	7/9/1997		10.60	8.37
	8/21/1998		10.36	8.61
	10/6/1998		10.64	8.33
	2/24/1999		8.58	10.39
	6/30/2000		10.21	8.76
	4/27/2001		9.85	9.12
	4/14/2005		9.58	9.39
	8/1/2005		10.24	8.73
	11/9/2005 3/21/2006		10.45 8.77	8.52 10.20
	3/21/2000		0.77	10.20
MW-4	3/3/1994	19.88	10.89	8.99
	3/10/1994		11.19	8.69
	6/6/1994		11.85	8.03
	9/7/1994		12.86	7.02
	12/22/1994		12.26	7.62
	3/17/1995		10.10	9.78
	6/27/1995		11.05	8.83
	9/18/1995		11.84	8.04
	5/30/1996		10.97	8.91
	7/9/1997		12.08	7.80
	8/21/1998		11.86	8.02
	10/6/1998		12.84	7.04
	2/24/1999		10.79	9.09
	6/30/2000		12.39	7.49
	4/27/2001		11.26	8.62
	4/14/2005		12.01	7.87
	8/1/2005		11.78	8.10
	11/9/2005		12.42	7.46
	3/21/2006		10.00	9.88

Table 1 Groundwater Elevation Data 2250 Telegraph Avenue Oakland, California

Monitoring <u>Well</u>	<u>Date</u>	TOC Elevation (feet) MSL	DTW (feet)	Elevation (feet) MSL
MW-5	6/26/1997	16.02	8.44	7.58
	7/9/1997		8.48	7.54
	8/21/1998		8.32	7.70
	10/6/1998		8.51	7.51
	2/24/1999		6.86	9.16
	6/30/2000		7.63	8.39
	4/27/2001		7.60	8.42
	4/15/2005		7.20	8.82
	8/1/2005		8.16	7.86
	11/9/2005		7.92	8.10
	3/21/2006		6.58	9.44
MW-6	6/26/1997	18.36	10.89	7.47
	7/9/1997		10.98	7.38
	8/21/1998		11.00	7.36
	10/6/1998		10.79	7.57
	2/24/1999		9.32	9.04
	6/30/2000		10.37	7.99
	4/27/2001		10.10	8.26
	4/15/2005		9.55	8.81
	8/1/2005		10.54	7.82
	11/9/2005		NA	NA
	3/21/2006		9.11	9.25

TOC = Top of Casing DTW = Depth to Water

Elevation Reference: USGS benchmark W1197, 1969 with a reported

elevation of +21.06 feet MSL datum.

NA = Not Accessible During This Sampling Event

Table 2 Chemical Concentrations in Groundwater Buttner Properties Oakland, California

				Petrole	um Hydrod	arbons			Volatil	e Organic	S										ı
Well	Date	Groundwater Elevation MSL (feet)	TVH as Gasoline µg/l	TEH as Kerosene μg/I	TEH as Diesel µg/l	TEH as Motor Oil ug/l	Benzene µg/l	μg/l	μg/l	Xylenes μg/l	MTBE -8020 μg/l	MTBE -8260 μg/l	TBA μg/l	DIPE µg/l	ETBE µg/l	TAME μg/l	1,1,1-TCA μg/l	1,2-DCA μg/l	1,2-DBA μg/l	PCE µg/l	Chloro- Benzene µg/l
Soil Gas			NV	NV	NV	NV	540	380,000	170,000	160,000	24,000										
Groundwate			100	100	100	100	1	40	30	20	5						4				
Temp. Well 1	5/31/96		13,000		37,000		<50	<50	<50	380							<1	<1		<1	<1
Temp. Well 2 Temp. Well 3	5/30/96 5/30/96		250 <50		<50 83		<0.5 <0.5	<0.5 <0.5	13 <0.5	3.4 <0.5							<1 -1	<1 20		<1 -1	<1
Temp. Well 4	5/31/96		11,000		03 1,900		130	<0.5 66	340	260							<1 <1	20 <1		<1 <1	<1 <1
Temp. Well 5	5/30/96		70		1,900		< 0.5	<0.5	< 0.5	< 0.5							<1	<1		<1	<1
Tellip. Well 3	3/30/90		70		100		<0.5	<0.5	V 0.5	<0.5							<u> </u>	<u> </u>		<u> </u>	<u> </u>
MW-1	3/3/94	10.16	300	<50	<50	<500	1.3	<0.5	2.7	3.1							<0.5	5.5		<0.5	<0.5
	6/6/94	9.19	430	180+	<50	<500	10	2.2	6.1	7.6							<0.5	<0.5		<0.5	<0.5
	9/7/94	8.63	410	<50	<50	<500	6.4	0.8	2.6	3.8							<0.5	3.8		<0.5	<0.5
	12/22/94	9.72	130	<50	<50	<500	0.7	<0.5	0.6	0.8							<0.5	3.4		<0.5	<0.5
	3/17/95	10.82	1,600	170	<50	<500	29	<0.5	9.1	6.9							<0.5	<0.5		< 0.5	<0.5
	6/27/95	10.04	1,100	<50	<50	<500	14	<0.5	7.1	5							<0.5	3.3		<0.5	<0.5
	9/18/95	9.43	370		110+		4.4	0.6	2	1.4							< 0.5	2.4		< 0.5	< 0.5
	8/21/98	9.55	170		62+		< 0.5	0.76	0.79	< 0.5	<2.0										
	2/24/99	10.81	20		280+		< 0.5	< 0.5	< 0.5	< 0.5		<2.0									
	6/30/00	13.47	240		<50		0.7	8.0	< 0.5	0.74	4.0										
	4/27/01	9.99	160		<50		3.3	< 0.5	0.86	< 0.50	<2.0										
	4/15/05	10.43	520		99 ^{LY}	<300	3.3 ^C	1.8	< 0.5	4.6		< 0.5	<10	< 0.5	< 0.5	< 0.5		0.6	< 0.5		
	8/1/05	9.99	480		62 LY	<300	< 0.5	< 0.5	< 0.5	2.3		< 0.5	18	< 0.5	< 0.5	< 0.5		< 0.5	< 0.5		
	11/9/05	8.02	290 ^Y		<50	<300	<0.5	< 0.5	<0.5	< 0.5		<0.5	14	< 0.5	< 0.5	< 0.5		< 0.5	<0.5		
	3/21/06	10.84	390		97 ^{LY}	<300	1	<0.5	0.6	<0.5		<0.5	16	<0.5	<0.5	<0.5		<0.5	<0.5		
	0,2,,,,,,																				
MW-2	3/3/94	9.66	110	<50	<50	<500	< 0.5	1.7	0.58	2.7							< 0.5	< 0.5		< 0.5	< 0.5
	6/6/94	8.88	100	<50	<50	<500	11	< 0.5	0.7	1.1							<0.5	< 0.5		< 0.5	< 0.5
	9/7/94	8.31	<50	<50	<50	<500	< 0.5	< 0.5	< 0.5	< 0.5							< 0.5	< 0.5		< 0.5	< 0.5
	12/22/94	8.76	<50	<50	<50	<500	8.0	< 0.5	< 0.5	8.0							< 0.5	< 0.5		< 0.5	< 0.5
	3/17/95	10.18	180	100	<50	<500	31	< 0.5	1	1.8							< 0.5	< 0.5		< 0.5	< 0.5
	6/27/95	9.33	80	<50	<50	<500	6	< 0.5	< 0.5	<0.5							<0.5	< 0.5		< 0.5	< 0.5
	9/18/95	8.36	<50		<50		< 0.5	< 0.5	< 0.5	<0.5							<0.5	< 0.5		< 0.5	<0.5
	8/21/98	8.12	<50		<50		<0.5	<0.5	<0.5	<0.5	<2.0										
	2/24/99	10.12	<50		<50		<0.5	<0.5	<0.5	<0.5		<2.0									
	6/30/00	14.24	<50		<50		<0.5	<0.5	<0.5	<0.5	2.0										
	4/27/01	8.71	<50		<50		<0.5	<0.5	<0.5	<0.5	<2.0										
	4/15/05	9.03	<50		<50	<300	<0.5	<0.5	<0.5	<0.5		<0.5	<10	<0.5	<0.5	<0.5		<0.5	<0.5		
	8/1/05	8.36	<50		<50	<300	<0.5	<0.5	<0.5	<0.5		<0.5	<10	<0.5	<0.5	<0.5		<0.5	<0.5		
	11/9/05	8.49	<50		<50	<300	<0.5	< 0.5	<0.5	< 0.5		<0.5	<10	< 0.5	< 0.5	<0.5		< 0.5	< 0.5		
	3/21/06	9.01	<50		<50	<300	<0.5	<0.5	<0.5	<0.5		<0.5	<10	<0.5	<0.5	<0.5		<0.5	<0.5		
MW-3	3/3/94	9.47	85	<50	<50	<500	<0.5	0.77	<0.5	3.7							<0.5	<0.5		<0.5	<0.5
IVIVV-3	6/6/94	9.47 8.69	100	<50 110+	<50 <50	<500 <500	<0.5 <0.5	<0.77	<0.5 <0.5	3.7 <0.5							2.5	<0.5 0.8		2.1	<0.5 <0.5
	9/7/94	8.22	220	<50	<50 <50	<500 <500	<0.5 11	<0.5 1.8	2.6	3.5							<0.5	<0.5		0.6	<0.5 <0.5
	12/22/94	9.23	130	95+	<50	<500 <500	3.8	0.5	0.6	1.2							<0.5	<0.5		<0.5	<0.5
	3/17/95	10.12	1,500	270	<50	<500	83	6	10	1.2							<0.5	<0.5		<0.5	<0.5
	6/27/95	9.03	2,500	<50	<50	<500	330	8.9	8.1	20							<0.5	<0.5		<0.5	<0.5
	9/18/95	8.43	1,500		770+		400	11	2.2	3.3							<0.5	<0.5		<0.5	<0.5
	5, .0,00	5.10	.,500				.00			5.0							-5.0	-5.0		-5.0	-5.0

Table 2 Chemical Concentrations in Groundwater Buttner Properties Oakland, California

				Petrole	um Hydroc	arbons			Volatil	e Organic	S										
Well	Date	Groundwater Elevation MSL (feet)	TVH as Gasoline µg/l	TEH as Kerosene μg/l	TEH as Diesel µg/l	TEH as Motor Oil ug/l	Benzene µg/l	μg/l	μg/l	μg/l	MTBE -8020 μg/l	MTBE -8260 μg/l	TBΑ μg/l	DIPE µg/l	ETBE µg/l	TAME μg/l	1,1,1-TCA μg/l	1,2-DCA μg/l	1,2-DBA µg/l	PCE µg/l	Chloro- Benzene µg/l
Soil Gas			NV	NV	NV	NV	540	380,000	170,000	160,000	24,000										
Groundwate			100	100	100	100	1	40	30	20	5										
MW-3 Contd	8/21/98	8.61	2,300		600+		410	9.3	36	25	<10										
	2/24/99	10.39	55		110+		<0.5	<0.5	<0.5	<0.5		<2.0									
	6/30/00	10.83	110		83+		<0.5	<0.5	0.51	<0.5	<2.0										
	4/27/01	8.67	<50		690+		<0.5	<0.5	<0.5	<0.5	<2.0										
	4/14/05	9.12	<50		<50	<300	<0.5	<0.5	<0.5	<0.5		<0.5	<10	<0.5	<0.5	<0.5		<0.5	<0.5		
	8/1/05	9.39	410		150 HLY	750	17	<0.5	0.87c	1.4		<0.5	<10	<0.5	<0.5	<0.5		<0.5	<0.5		
	11/9/05	8.73	1,100 [°]		110 ^{LY}	<300	150	3.4	6.1	3.8		<0.5	13	<0.5	<0.5	<0.5		<0.5	<0.5		
	3/21/06	8.52	100		61 ^Y	<300	<0.5	<0.5	<0.5	<0.5		<0.5	12	<0.5	<0.5	<0.5		<0.5	<0.5		
MW-4	3/3/94	8.99	4,300	<50	240	<500	220	20	7.5	17							<0.5	5.9		<0.5	4.4
	6/6/94	8.03	4,400	<50	+008	<500	140	< 0.5	< 0.5	< 0.5							<0.5	< 0.5		< 0.5	< 0.5
	9/7/94	7.02	10,000	490+	280+	<500	84	< 0.5	42	69							<0.5	4.4		0.5	4.3
	12/22/94	7.62	2,400	450+	54+	<500	11	< 0.5	7.1	11							< 0.5	3.6		3.6	< 0.5
	3/17/95	9.78	2,200	380	160+	<500	< 0.5	< 0.5	7.9	10							< 0.5	1.7		< 0.5	4.5
	6/27/95	8.83	3,100	<50	82	<500	< 0.5	< 0.5	13	19							< 0.5	2.3		< 0.5	4.8
	9/18/95	8.04	3,000		1,231+		12	< 0.7	6.9	8.3							<0.5	1.9		< 0.5	4.0
	8/21/98	8.02	1,700		600+		8.2	12	13	5.2	<2.0	-									
	2/24/99	9.09	2,700		2,100+		4.3	0.64	< 0.5	0.54		<2.0									
	6/30/00	11.74	6,700		3,200+		3.1	1.7	11	16.7	27										
	4/27/01	8.62	1,900		710		<0.5	<0.5	<0.5	< 0.5	14										
	4/14/05	7.87	2,900		2,200 HLY	2,500	< 0.5	< 0.5	<0.5	5.1		< 0.5	<10	<0.5	<0.5	< 0.5		<0.5	<0.5		
	8/1/05	8.10	2,000		2,100 HLY	3400 ^L	< 0.5	< 0.5	< 0.5	5.8c		< 0.5	<10	< 0.5	< 0.5	< 0.5		< 0.5	< 0.5		
	11/9/05	7.46	2,000Y		1,900 ^{HLY}	2,300 ^L	1.2	< 0.5	< 0.5	0.8		< 0.5	<10	< 0.5	< 0.5	< 0.5		< 0.5	< 0.5		
	3/21/06	9.88	2,200		2,800 ^{HLY}	4,000 ^L	1.2	<0.5	<0.5	0.7		<0.5	<10	<0.5	<0.5	<0.5		<0.5	<0.5		
MW-5	6/26/97	7.58	120		<50		<0.5	<0.5	<0.5	<0.5							<0.5	<0.5		1.6	<0.5
	8/21/98	7.70	<50		<50		< 0.5	<0.5	< 0.5	< 0.5	<2.0										
	2/24/99	9.16	<50		<50		< 0.5	< 0.5	< 0.5	< 0.5		<2.0									
	6/30/00	8.39	<50		<50		< 0.5	< 0.5	< 0.5	< 0.5	5.1										
	4/27/01	8.42	<50		<50		< 0.5	< 0.5	< 0.5	< 0.5	<2.0										
	4/14/05	8.82	<50		<50	<300	< 0.5	< 0.5	< 0.5	< 0.5		< 0.5	<10	< 0.5	< 0.5	< 0.5		< 0.5	< 0.5		
	8/1/05	7.86	<50		<50	<300	< 0.5	< 0.5	< 0.5	< 0.5		< 0.5	<10	< 0.5	< 0.5	< 0.5		<0.5	< 0.5		
	11/9/05	8.10	<50		<50	<300	< 0.5	< 0.5	<0.5	<0.5		<0.5	<10	<0.5	<0.5	<0.5		<0.5	<0.5		
	3/21/06	9.44	<50		<50	<300	<0.5	<0.5	<0.5	<0.5		<0.5	<10	<0.5	<0.5	<0.5		<0.5	<0.5		
MW-6	6/26/97	7.47	1,500+		450+		<0.5	<0.5	11	<0.5	-	-					<0.5	<0.5		<0.5	1.7
	8/21/98	7.36	1,400		540+		< 0.5	3.6	5.6	0.4	5.7	3.2									
	2/24/99	9.04	1,600		600+		< 0.5	< 0.5	0.56	< 0.5		2.3									
	6/30/00	8.04	1,900		360+		0.56	3	5.4	3.5	30										
	4/27/01	8.26	1,600		440		< 0.5	< 0.5	< 0.5	< 0.5	3.3										
	4/14/05	8.81	2,100		890 ^{LY}	<300	< 0.5	< 0.5	< 0.5	5.9		0.7	<10	<0.5	<0.5	< 0.5		< 0.5	< 0.5		
	8/1/05	7.82	2,100		670 LY	<300	< 0.5	< 0.5	< 0.5	< 0.5		< 0.5	<10	<0.5	<0.5	< 0.5		< 0.5	< 0.5		
	11/9/05	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	3/21/06	9.25	1,900		850LY	<300	< 0.5	< 0.5	< 0.5	<0.5		0.5	<10	< 0.5	< 0.5	<0.5		<0.5	< 0.5		

Table 2 Chemical Concentrations in Groundwater Buttner Properties Oakland, California

				Petroleum Hydrocarbons Volatile Organics					s											
Well	Date	Groundwater Elevation MSL (feet)	TVH as Gasoline µg/l	TEH as Kerosene µg/l	TEH as Diesel µg/l	TEH as Motor Oil ug/l	Benzene µg/l	Toluene	Ethyl- benzene µg/l	Xylenes μg/l	MTBE -8020 μg/l	MTBE -8260 μg/l	DIPE µg/l	ETBE µg/l	TAME µg/l	1,1,1-TCA μg/l	1,2-DCA µg/l	1,2-DBA µg/l	PCE µg/l	Chloro- Benzene µg/l
Soil Gas Groundwate			NV 100	NV 100	NV 100	NV 100	540 1	380,000 40	170,000 30	160,000 20	24,000 5									

Notes

DCA = Dichloroethane

DBA = Dibromoethane

TCA = Trichloroethane

PCE = Tetrachloroethene

MTBE = Methyl tert butyl ether

TBA = Tert butyl alcohol

DIPE = Isopropyl alcohol

ETBE = Ethyl tert butyl ether

TAME = Methyl tert amyl ether

-- = Chemical not tested for

NR = Hydrocarbon range not reported by laboratory

+ = Uncategorized hydrocarbons quantified in ranges specified

mg/l = milligrams per liter = parts per million

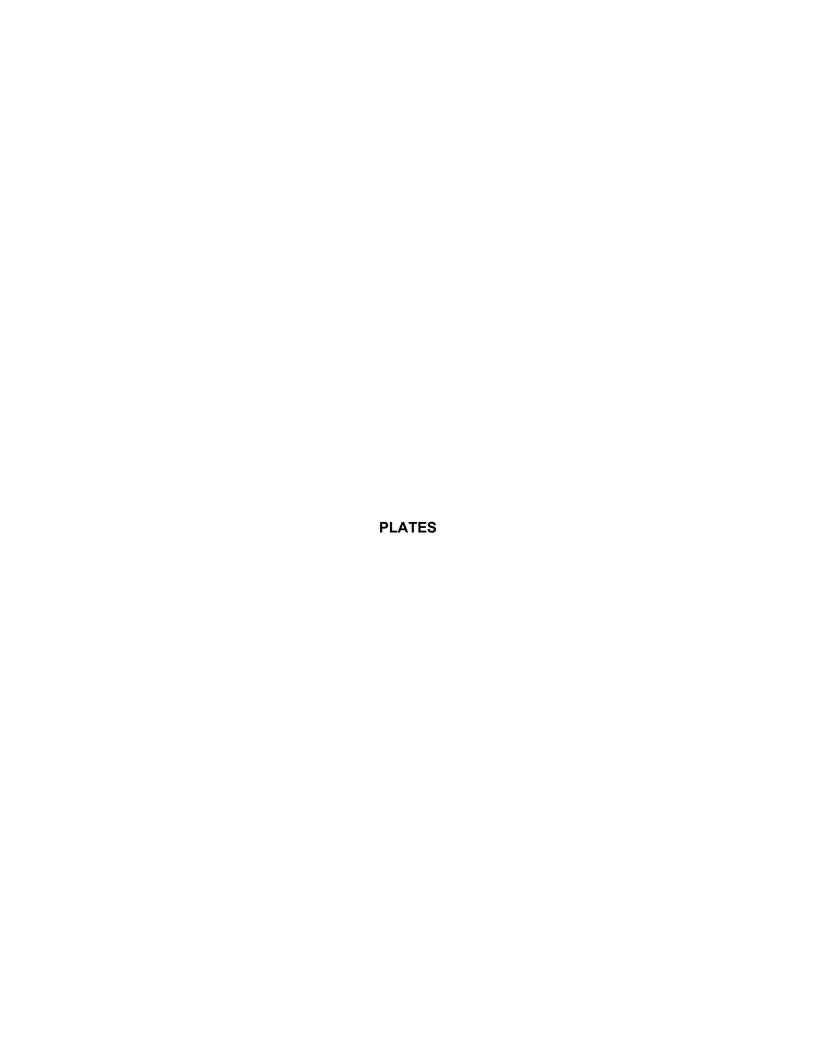
 μ g/I = micrograms per liter = parts per billion

<1 = Chemical not present at a concentration greater than the laboratory detection limit shown or stated on test reports</p>

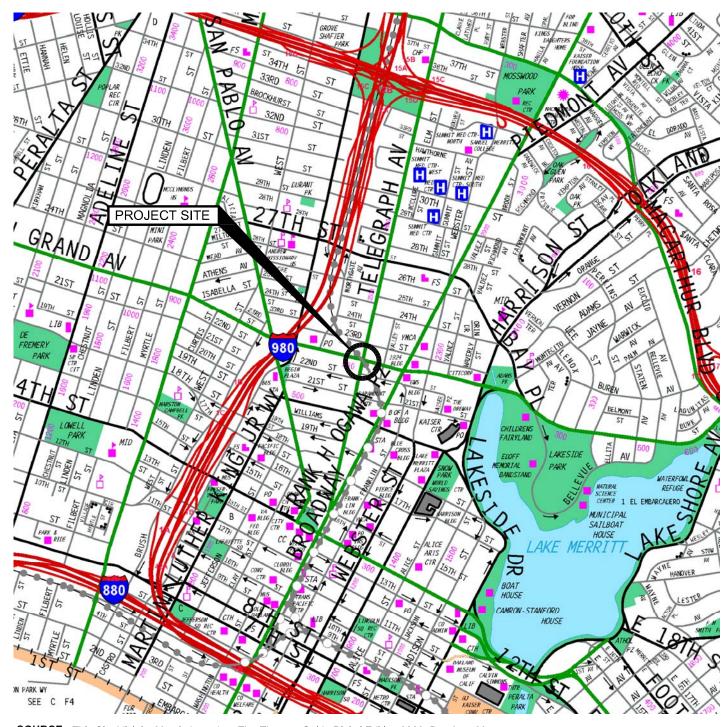
C = Presence Confirmed, but RPD between colums exceeds 40%

Y = Sample exhibits chromatographic pattern which does not resember standard

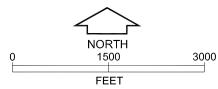
H = Heavier hydrocarbon contributed to the quantitatior


L = Lighter hydrocarbon contributed to the quantitation

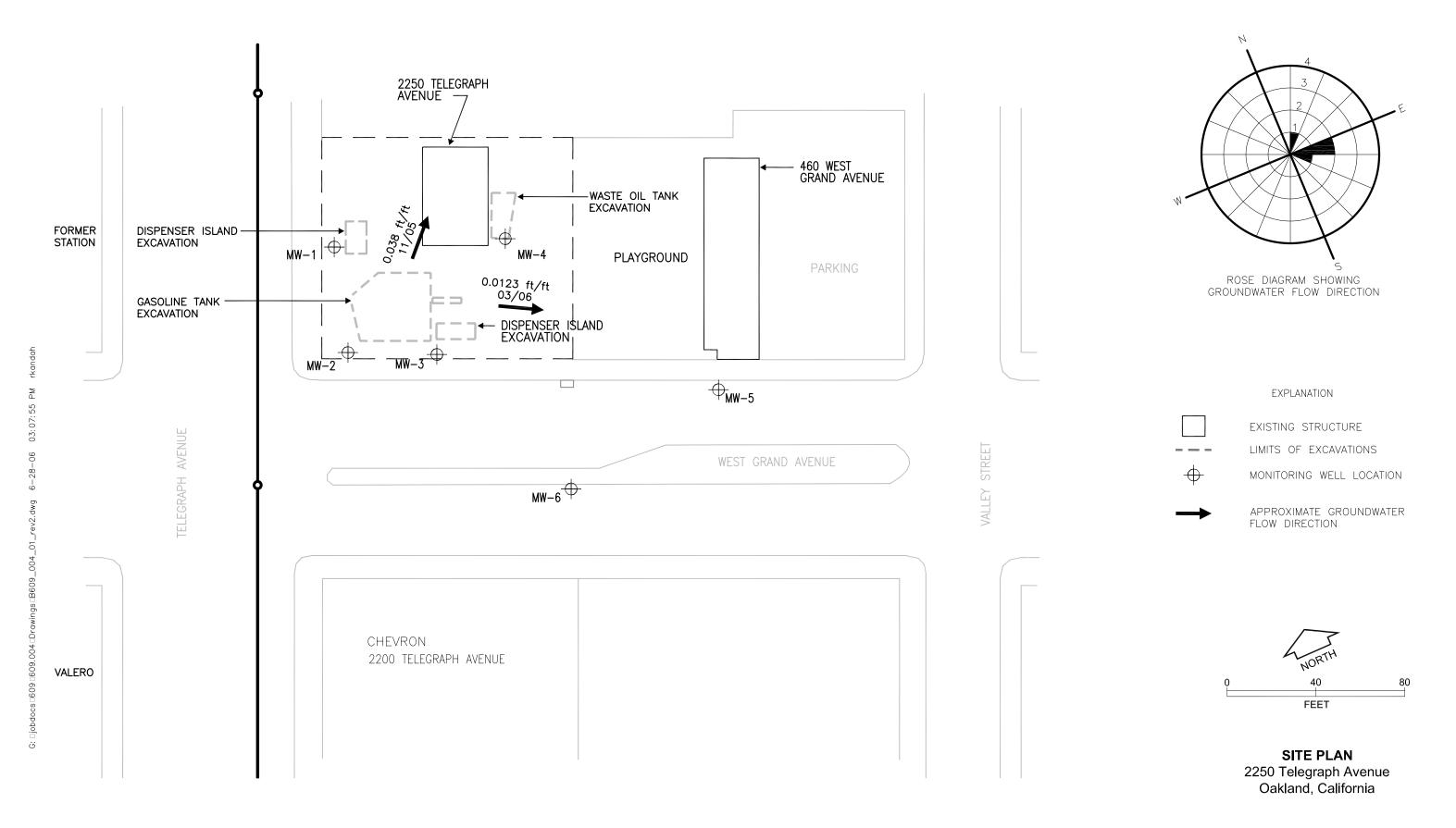
* = Environmental Screening Levels established by the San Francisco Bay Regional Water Qaulity Control Board Table E-1Groundwater Screening Levels for Evaluation of Potential Vapor Intrusion Concerns


** = Environmental Screening Levels established by the San Francisco Bay Regional Water Qaulity Control Board Table F-1a Groundwater Screening Levels (groundwater is a current potential drinking water resource

NA = Not Accessible During This Sampling Event


-- = Not Analyzed

SOURCE: This Site Vicinity Map is based on The Thomas Guide Digital Edition 2003, Bay Area Metro, Alameda, Contra Costa, Marin, San Francisco, San Mateo, and Santa Clara Counties.



VICINITY MAP 50 Telegraph Aver

2250 Telegraph Avenue Oakland, California

PROJECT NAME:	2250 Teleç	graph Aver	ue						
PROJECT NO.:	609.00	4						WELL NO.:	M W -
SAMPLED BY:	Obi Nzewi					WEL		DIAMETER:	
DATE:	11/9/200	5						LEVATION:	
WEATHER:	Br	iaht	Sien	ny mild.		Manual .			
		0		9					
TOTAL DEPTH OF CAS DEPTH TO GROUNDW. FEET OF WATER IN WI	ATER (BTO		53	_FEET _FEET	CALCULATED (feet of water FREE PRODU	* casing dia ² *	.0408 * # o	NA	
FEET OF WATER IN WI	ELL.		<i>,</i> 3		DUDGE MET	IOD.	D 8-0	ald a lolo	Bailer
	_				PURGE METH	10D:	Day	OSWOW	Bailer
MEASUREMENT METH	OD: ELECT	RONIC SC	UNDER	or OTHER					
				FIELD MEASURE	MENTS				
				CONDUCTIVITY	anger tragger tragger to the contract of the c	ORP	DO	CON 48	ACNTO
GALLONS REMOVED	TIME	Temp	pН	(µMHOS/CM)	TDS (g/L)	(mV)	(mg/l)		MENTS color,)
Downhole (Pre-Purge)	1240	21.61	6.09	263	0.598	· · · · · · · · · · · · · · · · · · ·	0.99		ulrocarbon solo
2	1247	21.41	6.31	877		213-4	3.70	30191012	16
3	1249	21.39	6.20	88D		0187.3	3.42		11
					***				***************************************
ACTUAL DEDTUTO OD	OLINIDIALATE	ם חבבסטי	- 0 4 4 50 14	IO (DTOO)	16				2 = ~
ACTUAL DEPTH TO GRO	JUNDWATE	K BEFORI	= SAMPLII	NG (BTOC):			TIME SAM	IPLED: / 2	455
SAMPLING METHOD	Bailer								
		1				1 10 .			
CONTAINERS / PRESER	VATIVE:	6 /	HCH		-	1 Ambe	v/ <u> </u>		
		40	ML			Li	TER		
		,	,				,		
					-	W-V-1-01-2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-			
*****		Po	•			ОТ	HER		
ANALYSES: (Note if any s									
	TEHd, TEHn			•		Pesticides (80	80)		
	TVHg, BTEX		J 15/8020)			PCBs (8080)			
	VOCs (8260) HVOCs (826					Sulfate (300.0)			
***************************************	Title 22 Meta	•	1001			Nitrate (300.0)			
***************************************	i nie 22 ivield	19 (00 10/90	,00)		· · · · · · · · · · · · · · · · · · ·	Fe ²⁺ - Field Fil	rerea		
MISC FIELD OBSERVATI	ON:								

PROJECT NAME:	2250 Tele	graph Aver	nue							
PROJECT NO.:	609.00							VELL NO.:	MW-	2
SAMPLED BY:	Obi Nzewi		***************************************		···		L CASING D		2	
DATE:	11/9/200							EVATION:		
WEATHER:	Brig		benn	y mild		-	100 EE	LVATION		
TOTAL DEPTH OF CAS	SING (BTOC): <u>16 ·</u>	85	_FEET	CALCULATED			2.6		gallon
DEPTH TO GROUNDW	ATER (BTO	C): 11.	5 <u>H</u>	FEET	FREE PRODU	-		,		
FEET OF WATER IN W	ELL:	_5-	31	_FEET	PURGE METH		Dispo	A Sable	Barle	ν
MEASUREMENT METH	OD. ELECT	RONIC SC	OUNDER	or OTHER						
				FIELD MEASURE	MENTS					
GALLONS REMOVED	TIME	Temp	рН	CONDUCTIVITY, (µMHOS/CM)	TDC (~/L)	ORP	DO (************************************	СОММ		
Downhole (Pre-Purge)	1156	20.85	6.02	48 b	TDS (g/L) り・3 <i>H</i> 3	(mV) 330-b	(mg/l)	(odor, co	lor,)	
I I I I I I I I I I I I I I I I I I I	1203	20.98	6.46	267	0.188	296.3	3.47			
2018 2·6	1203	20-95		514	0.362	273.8	3.29			
7			0 //-	314	0.262	2750	3.24			
	<u> </u>									
	<u> </u>	<u></u>					L			
ACTUAL DEPTH TO GR	OUNDWATE	R BEFORE	E SAMPLIN	NG (BTOC):	13-31		TIME SAMP	LED: 12	15	
SAMPLING METHOD	Bailer									
	20									
CONTAINERS / PRESER	RVATIVE:	6 /	HCL			1 Ambe				
		40			-		TER	The Harmon		
		/								
		Po	ly			ОТІ	HER			
ANALYSES: (Note if any s	samples are	field filtered	f)							
***************************************	TEHd, TEHr	no (8015 w	/ Silica gel))	F	Pesticides (808	30)			
****	TVHg, BTEX	(, MTBE (80	015/8020)		F	PCBs (8080)	•			
***************************************	VOCs (8260)				Sulfate (300.0)				
***************************************	HVOCs (826	0)				litrate (300.0)				
***************************************	Title 22 Meta	ils (6010/90	000)			e 2+ - Field Filt	tered			
MISC FIELD OBSERVATI	ON:									
-										
-										


PROJECT NAME:	2250 Tele	graph Aven	ue						
PROJECT NO.:	609.00)4						WELL NO.: 1	1W-3
SAMPLED BY:	Obi Nzewi					WEL	L CASING		2
DATE:	11/9/200							ELEVATION:	
WEATHER:	Brig	H &	inny					111000	
TOTAL DEPTH OF CAS	SING (BTOC			FEET	CALCULATED	D PURGE VOL * casing dia ² *		2.8	, gallons
DEPTH TO GROUNDW	ATER (BTO	c): / O · A	45	FEET		-		•	
FEET OF WATER IN W	ELL:	<u>5-8</u>	35	_FEET	FREE PRODU		2.5	posable	Bailer
MEASUREMENT METH	OD: ELECT	RONIC SO	UNDER	or OTHER	A				
				FIELD MEASURE	MENTS				
04110110	****			CONDUCTIVITY		ORP	DO	COMME	
GALLONS REMOVED	TIME	Temp	pH / i //	(µMHOS/CM)	TDS (g/L)	(mV)	(mg/l)	(odor, cold	or,)
Downhole (Pre-Purge)		20.82		910	0.H31	295.2	2.21	\$	
2 3	11/4	20.98	P.47	762	0.536	254.4	3.22	Slight hy	diocarbon ador
	-	20.93	6.50	766	0.540	224.9	3.37	0 0	
		-					ļ		
		-							
		 							
						<u></u>			
ACTUAL DEPTH TO GR	OUNDWATE	ER BEFORE	E SAMPLII	NG (BTOC):	16	<u> </u>	TIME SAM	MPLED: 1135	>
SAMPLING METHOD	Bailer								
CONTAINERS / PRESER	RVATIVE:	6 /	HCL			Amber			
		40 1	ML.		•	Lľ	TER		
		Po	ly		•	ОТ	HER		
ANALYSES: (Note if any	samples are	field filtered	I)						
	TEHd, TEHr	no (8015 w	/ Silica gel)		Pesticides (80	80)		
	TVHg, BTEX	K, MTBE (80	015/8020)			PCBs (8080)			
	VOCs (8260					Sulfate (300.0)		***************************************	
	HVOCs (826	60)				Nitrate (300.0)		***************************************	
***************************************	Title 22 Meta	als (6010/90	000)			Fe ²⁺ - Field Fil			
MICO FIELD OBOES (177	· ON								
MISC FIELD OBSERVATI	ION:								
-							······································	·	

PROJECT NAME:	2250 Teleg	graph Aven	ue						
PROJECT NO.:	609.00	4						WELL NO.:	1.1-H
SAMPLED BY:	Obi Nzewi					— WEL	L CASING	DIAMETER: 2	
DATE:	11/9/200	5						LEVATION:	
WEATHER:	_BV	ght	8Um	ny mord					
TOTAL DEPTH OF CAS	SING (BTOC)	: <u>18°</u>	3	_FEET	CALCULATE			2.9 23	gallon
DEPTH TO GROUNDW	ATER (BTO	c): 12-1	42	FEET	FREE PRODU	_		NA	
FEET OF WATER IN W	ELL:	_5-	88	FEET	PURGE METH				1
MEASUREMENT METH	OD ELECT	RONIC SO	UNDER	or OTHER		IOD.		polable	baillx.
				CONDUCTIVITY	MENTS	000			
GALLONS REMOVED	TIME	Temp	рН	(µMHOS/CM)	TDS (g/L)	ORP (mV)	DO (mg/l)	COMMENTS (odor, color,	
Downhole (Pre-Purge)	1320		6.26	574	0.405	181.0	1.25	hydrocombo	
2	1326	20.95	641	601	0 H23	280	3.00	Myser Con Mas	moder
3	1330	20.94	6.39	622	0 438	10.5	3.08	11	
							-t		
ACTUAL DEPTH TO GRO	DUNDWATE	R BEFORE	E SAMPLIN	NG (BTOC):		? ·	TIME SAM	PLED: 1340	
SAMPLING METHOD	Pailor								
SAMPLING METHOD	Bailer								
CONTAINERS / PRESER	VATIVE:	6	HCL			1 Anber	//_		
OOMINIMENOTINEDER		40			-			***************************************	
		40 1				Li	TER		
		. /	,				/		
•	•	Po	lv		-	OT	/ HER		
ANALYSES: (Note if any s	samples are f		•			O1	HEK		
	TEHd, TEHm		-		1	Pesticides (80	80)		
	TVHg, BTEX		- ,			PCBs (8080)	00)		
	VOCs (8260)		,			Sulfate (300.0)			
	HVOCs (826)					Vitrate (300.0)			
	Title 22 Meta		000)			e ²⁺ - Field Fil			
				•	··	- 10011			
MISC FIELD OBSERVATI	ON:		Stial	t Steen					
_			- 0						
-									
_									

PROJECT NAME: PROJECT NO.:	2250 Teleç 609.00	graph Aveni 4	ue		-	WELL NO.: MW-5				
SAMPLED BY:	Obi Nzewi					_ WEL				
DATE:	11/9/200						TOC EL	.EVATION:		
WEATHER:	Brig	ht si	inn	y mild		-				
TOTAL DEPTH OF CAS		_		FEET	CALCULATED			H · 6 Volumes)	gallons	
DEPTH TO GROUNDW	ATER (BTO			FEET	FREE PRODU	CT:	(NA		
FEET OF WATER IN W	ELL:	_9·h	f 8	FEET	PURGE METH		Dispe	N A Sable Bair	en .	
MEASUREMENT METH	OD: ELECT	RONIC SO	UNDER	or O,THER			-			
				FIELD MEASURE	EMENTS					
	T11.45	T	-11	CONDUCTIVITY	TDC (~/L)	ORP	DO (ma/l)	COMMENTS		
GALLONS REMOVED	TIME	Temp	6.01	(µMHOS/CM)	TDS (g/L)	(mV) 297-8	(mg/l) 2.07	(odor, color,)		
Downhole (Pre-Purge)	1017	21.93		355 3HH	0.239	271.0	3-HS	turbid.		
	1025	21.78	6.08 1.33		0.241	255.3	3.47	TUTBIU.		
3	1028	21.85		3 <i>H8</i>	0.2H3	249.9	3.14	· · · · · · · · · · · · · · · · · · ·		
<i>5</i> -	1032	21.00	6.33	352	U AND	277.7	711			
							 			
		-					-			
		-		· · · · · · · · · · · · · · · · · · ·			-			
					L					
ACTUAL DEPTH TO GR	OUNDWAT	ER BEFORI	E SAMPLIN	NG (BTOC):	7-95		_TIME SAMI	PLED: 1035		
SAMPLING METHOD	Bailer						rivers and the second s		M	
CONTAINERS / PRESER	RVATIVE:	<u>b</u> /	HCL ML			1 Amber	TER .			
			/				,			
					-					
		Po	•			01	THER			
ANALYSES: (Note if any										
	TEHd, TEH)		Pesticides (80	80)			
<u>*</u>	TVHg, BTE	X, MTBE (8	015/8020)			PCBs (8080)				
***************************************	VOCs (826)	0)				Sulfate (300.0)			
******	HVOCs (82	60)				Nitrate (300.0)			****	
	Title 22 Met	als (6010/9	000)			Fe ²⁺ - Field F	iltered			
MISC FIELD OBSERVAT	ION:	_5								
						·····				

PROJECT NAME:	2250 Telegi	aph Ave				-			
PROJECT NO.:	609.004							VELL NO.: MW-1	
SAMPLED BY:	Obi Nzewi					. WELL		IAMETER: 2	
DATE:	3/21/2006					_	TOC EL	EVATION:	
WEATHER:	_Sum	ry V	mild			-			
TOTAL DEPTH OF CAS DEPTH TO GROUNDWA	ING (BTOC): ATER (BTOC	18.	31 71	FEET FEET FEET	CALCULATED (feet of water *	casing dia ² * .		H·2 Volumes)	_gallons
FEET OF WATER IN WE				, mm m. ,	PURGE METH	OD:	Disposable	Bailer	
MEASUREMENT METHO	OD: ELECTF	RONIC SO		or OTHER					
Ample (Cap Capana) and Amazana				CONDUCTIVITY		ORP	DO	COMMENTS	
GALLONS REMOVED	TIME	Temp	рН	(µMHOS/CM)	TDS (g/L)	(mV)	(mg/l)	(odor, color,)	
Downhole (Pre-Purge)	1022	18-93		1003	• 737	37.1	1.63		
2	1027			988	7-34	37.3	2-84		
#	1030	18.74		927	.728	28.7	2.67		
	1			· · · · · · · · · · · · · · · · · · ·					
ACTUAL DEPTH TO GR	OUNDWATE	R BEFORI	E SAMPLIN	IG (BTOC):	15.85	-	TIME SAM	PLED: /6#5	
SAMPLING METHOD	Bailer								
CONTAINERS / PRESER	RVATIVE:	6 5/40	HCL mone ML	-		1 Li	none TER		*
		,	/				/		
							<u></u>		
		Po	•			O i	HER		
ANALYSES: (Note if any						m // 100	.00\	Land Cananana	
	TEHd, TEHr					Pesticides (80	180)	Lead Scavengers	_
	TVHg, BTEX		015/8020)			PCBs (8080)			_
	VOCs (8260					Sulfate (300.0			_
	HVOCs (826					Nitrate (300.0)			_
***	Title 22 Meta	als (6010/9	000)			Fe 2+ - Field F	iltered		
MISC FIELD OBSERVAT	TION:								

PROJECT NAME:	2250 Teleg	raph Ave						14.13	
PROJECT NO.:	609.004					-		VELL NO.: MW-	- 2
SAMPLED BY:	Obi Nzewi					_ WEL	L CASING D	AMETER: 2	· -
DATE:	3/21/2006						TOC EL	EVATION:	·
WEATHER:	Over	cast	Cold						
TOTAL DEPTH OF CAS DEPTH TO GROUNDWA	ATER (BTOC	<u>): - ·</u>	_	_FEET _FEET	CALCULATEI (feet of water FREE PRODU	* casing dia ² * JCT:	.0408 * # of \	<i>(4)</i>	gallons
MEASUREMENT METHO	OD ELECTI	RONIC SO	UNDER	or OTHER			_		
				FIELD MEASURE	MENTS				
		_		CONDUCTIVITY	TD0 (4)	ORP	DO (***)	COMMENTS	
GALLONS REMOVED	TIME	Temp	pH I = U	(µMHOS/CM) 567	TDS (g/L)	(mV) 39·0	(mg/l) 2-2-4	(odor, color,)	
Downhole (Pre-Purge)	0930	18.2	6.54		•397	36-8	3.38		
<u> </u>	0938	18.17		582 588	·HHO	300	2.90		
2	0940	18-26	6.83	5 88	- 439	260	2.83		
3	UIAU	18.70	0.00	2 00	-731	200	12-07		
									
			- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	*			+		
	34					1.	1		
ACTUAL DEPTH TO GR	OUNDWATE	R BEFOR	E SAMPLII	NG (BTOC):	12.25	2	_TIME SAMF	PLED: 0950	.2
SAMPLING METHOD	Bailer		1					-	
CONTAINERS / PRESEF	RVATIVE:	5 /	HCL -none ML	-		1 L	none ITER		*
			,				,		3* * 3* * 5.8.
		Po	•			0.	THER		
ANALYSES: (Note if any									
	TEHd, TEHn					Pesticides (8)	080)	Lead Scavengers	
	TVHg, BTEX		015/8020)			PCBs (8080)		****	
	VOCs (8260)	-				Sulfate (300.0			
	HVOCs (826					Nitrate (300.0			
	Title 22 Meta	ıls (6010/9	000)			Fe 2+ - Field F	riltered		
MISC FIELD OBSERVAT	ION:								
					,				
	.,,.			·			***************************************		

PROJECT NAME:	2250 Teleç	graph Ave				_			. –
PROJECT NO.:	609.004							VELL NO.: MW -	<u> </u>
SAMPLED BY:	Obi Nzewi					WEL		AMETER: 2	
DATE:	3/21/200						TOCEL	EVATION:	
WEATHER:	-Over	cast c	our_						
TOTAL DEPTH OF CAS		_		FEET		D PURGE VOL * casing dia ² *		<u>3 · 6</u> /olumes)	gallons
DEPTH TO GROUNDW	ATER (BTO	c): 8 - 1	++	FEET	FREE PRODU	ICT:	12	A	
FEET OF WATER IN W	ELL:	0 37	.53	FEET	PURGE MET		Disposable		
					PURGE MET	HOD.	Disposable	Dallel	
MEASUREMENT METH	OD ELECT	RONIC SO	UNDER	or OTHER			-		
		192.996	Alexander Contraction	FIELD MEASURI	EMENTS				
		. A		CONDUCTIVITY		ORP	DO	COMMENTS	
GALLONS REMOVED	TIME	Temp	pH L O 4	(µMHOS/CM)	TDS (g/L)	(mV)	(mg/l)	(odor, color,)	
Downhole (Pre-Purge)		17 45	624	839	637	46.0 43.8	3.03	***	
2	0845	11:43	6.39	816	.616		3.98		
<u> </u>	0850	18.07	653	930	1022	34.8	1.10		
					*				
			%	المومدان					
ACTUAL DEPTH TO GR	OUNDWATE	ER BEFOR	E SAMPLII	NG (BTOC):	15-10		_TIME SAMP	LED: 0900	
SAMPLING METHOD	Bailer				<i>V</i>				***************************************
CONTAINERS / PRESER	RVATIVE:	5 /	_	+CL		1	none		
			ML			L	TER		
		/	/				/		
		Po	oly			01	THER		
ANALYSES: (Note if any	samples are	field filtere	d)						
	TEHd, TEH					Pesticides (80)80)	Lead Scavengers	
	TVHg, BTE		015/8020)			PCBs (8080)			
	VOCs (8260				***************************************	Sulfate (300.0			
	HVOCs (826		000)			Nitrate (300.0) Fe ²⁺ - Field F			
	Title 22 Met	als (6010/9	000)		***************************************	re - rieia r	literea		
MISC FIELD OBSERVAT	ION:								
	<u> </u>								***************************************

PROJECT NAME:	2250 Teleg	graph Ave								
PROJECT NO.:	609.004					_		WELL NO	M_{ω}	<u> </u>
SAMPLED BY:	Obi Nzewi					WELI	CASING		₹: 2	
DATE:	3/21/200	6				-	TOC E	ELEVATION	V:	
WEATHER:	Over	scest	Col	d		_				
TOTAL DEPTH OF CAS			_	CCCT	CALCULATE	DUDGE VOL	LINATT.	<i>j</i> .	1	o alla cara
TOTAL DEPTH OF CAS	ing (BTOC)	10		FEET	CALCULATED (feet of water *					gallons
DEPTH TO GROUNDW.			_	FEET	FREE PRODU	_		H SI		
FEET OF WATER IN W	ELL:		· 3 —	FEET	PURGE METH	IOD:	Disposab			
MEASUREMENT METH	OD: ELECT	RONIC SO	UNDER	or OTHER						
				FIELD MEASURE	MENTS					
				CONDUCTIVITY		ORP	DO	C	OMMENTS	
GALLONS REMOVED	TIME	Temp	pΗ	(µMHOS/CM)	TDS (g/L)	(mV)	(mg/l)		or, color,)	
Downhole (Pre-Purge)	1104		6-33	683	.506	24.3	2.79	XCIOCION	hydroca	rbon odlo
2	1111		6-60	6 9 7	.516	-9-8	3-16	ļ <u> </u>		
4	1111	18.94	6.72	708	.520	-23-8	3 82	ļ		
		-								
		-								
							· · · · · · · · · · · · · · · · · · ·			
		<u> </u>						<u> </u>		
ACTUAL DEPTH TO GR	OUNDWATE	ER BEFORE	E SAMPLIN	NG (BTOC):			TIME SAM	MPLED:	1120	
SAMPLING METHOD	Bailer							PARTIE AND ADDRESS OF THE PARTIES AND ADDRESS OF		
0017411500 (00000	D) (A TI) (E.	5 /	HCL	_			/			
CONTAINERS / PRESEF	KVATIVE:	40			-		/ none			
		40	IVI L			Im!	IEK			
					-					
		Po	•			ОТ	HER			
ANALYSES: (Note if any	•		•						_	
	TEHd, TEHr)		Pesticides (808	30)	Lead	Scavengers	And the second section of the section of the second section of the secti
	TVHg, BTEX		015/8020)		***************************************	PCBs (8080)		***************************************		
	VOCs (8260					Sulfate (300.0)				
	HVOCs (826					Nitrate (300.0)				
	Title 22 Meta	ais (6010/90	JUU)		l	Fe ²⁺ - Field Fil	terea			*****
MICO EIEI D ODOED!	ION.									
MISC FIELD OBSERVAT	ION:									

PROJECT NAME:	2250 Teleg	raph Ave							
PROJECT NO.:	609.004					_	V	VELL NO.: MW-	5
SAMPLED BY:	Obi Nzewi					WELI		IAMETER: 2	
DATE:	3/21/200	6					TOC ELI	EVATION:	
WEATHER:	_ O ve	rcas	t Co	ld					
TOTAL DEPTH OF CAS		_	2	FEET		D PURGE VOL * casing dia ² *		5 · 3 /olumes)	gallons
DEPTH TO GROUNDW	AIER (BIOC) <u>: U*</u>	<u> </u>	FEET	EDEE DOOD!	ICT.		NA	
FEET OF WATER IN W	ELL.	In.	82	FEET	FREE PRODU	JC1:		10 M	
					PURGE METI	HOD:	Disposable	Bailer	
MEASUREMENT METH	IOD: ELECT	RONIC SC	OUNDER 0	or OTHER			-		
				FIELD MEASURE	MENTS				
GALLONS REMOVED	TIME	Tomp	~ LJ	CONDUCTIVITY	TDC (~/L)	ORP	DO (m.c/l)	COMMENTS	
Downhole (Pre-Purge)	0713	Temp	6 H4	(µMHOS/CM) 414	TDS (g/L)	(mV) 35.2	(mg/l)	(odor, color,)	
2	0719	12 05	6 2H	417	• 311	5/.3	2.99		
		18.10		414	• 3/6	3111 /	2.72		
5.3	0726		6.36	- 3/3	• 310	117.0			
	UTAB	19.00	6.70	<u> </u>	310	7-3-2	2.68		
	 					-			
	 								
		L	L				LL		
ACTUAL DEPTH TO GR	OUNDWATE	R BEFOR	E SAMPLING	G (BTOC):	b. b	5	TIME SAMP	LED: 0740	***************************************
SAMPLING METHOD	Bailer								
CONTAINERS / PRESER	RVATIVE:	6 /	HCL coone ML			1	none		
		/	/						
		Po	oly			ОТ	HER		
ANALYSES: (Note if any	samples are t	ield filtere	d)						
, x	TEHd, TEHm	no (8015 w	/ Silica gel)			Pesticides (808	BO)	Lead Scavengers	
×	TVHg, BTEX	, MTBE (8	015/8020)			PCBs (8080)	ŕ		-
х	VOCs (8260)					Sulfate (300.0))		
	HVOCs (826)	0)				Nitrate (300.0)			
	Title 22 Meta	ls (6010/9	000)			Fe 2+ - Field Fil			
									_
MISC FIELD OBSERVAT	ION:								
-							***************************************		

PROJECT NAME: PROJECT NO.: SAMPLED BY: DATE: WEATHER:	2250 Teleg 609.004 Obi Nzewi 3/21/2006	5	f col	d		 Wel 	L CASING E	WELL NO.: MW -6 DIAMETER: 2 LEVATION:
TOTAL DEPTH OF CAS DEPTH TO GROUNDW. FEET OF WATER IN W	ATER (BTOO	<u>9.</u> 9.	11 8H	FEET FEET	CALCULATED (feet of water FREE PRODU PURGE METH	* casing dia ² * JCT:	.0408 * # of	NA
MEASUREMENT METH	OD: ELECTI	RONIC SO	UNDER	or OTHER	A District Control		<u></u>	
				FIELD MEASURE CONDUCTIVITY	MENTS	ORP	DO	COMMENTS
GALLONS REMOVED	TIME	Temp	pH	(µMHOS/CM)	TDS (g/L)	(mV)	(mg/l)	(odor, color,)
Downhole (Pre-Purge)	0015	19.5	6.73	457	0-54	-19-1	3.9	Slight hydrocarbon ode
2	0621	1947	P-RH	945	0.68	-3·H	3.4	
<u> </u>	0629	19.5%	6.47	445	0.685	-8.1	3.13	
5	0633	1:00	5.45	<u> 446 </u>	0:08%	-4·7	3.01	
							 	
							-	
ACTUAL DEPTH TO GR	OUNDWATE	R BEFOR	E SAMPLIN	IG (BTOC):	9.3		_TIME SAMI	PLED: 06HO
SAMPLING METHOD	Bailer					***************************************		
CONTAINERS / PRESE	RVATIVE:	<i>b</i> / 40	HC(ML	_		1	none_	· · · · · · · · · · · · · · · · · · ·
						*		
		Po	oly			01	THER	
ANALYSES: (Note if any	samples are	field filtere	d)	31				
x	TEHd, TEHr	no (8015 w	/ Silica gel)			Pesticides (80	080)	Lead Scavengers
	TVHg, BTEX		015/8020)			PCBs (8080)		
	VOCs (8260			4		Sulfate (300.0		
	HVOCs (826					Nitrate (300.0		
	Title 22 Meta	als (6010/9	000)		***************************************	Fe 2+ - Field F	iltered	and the second s
MISC FIELD OBSERVAT	ION:							
		V-V-1111111111111111111111111111111111						

ANALYTICAL TEST REPORT AND CHAIN OF CUSTODY FORM

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

ANALYTICAL REPORT

Prepared for:

Fugro West Inc. 1000 Broadway Suite 200 Oakland, CA 94607

Date: 03-APR-06 Lab Job Number: 185674 Project ID: 609.004

Location: 2250 Telgraph Av. Oakland

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis.

Reviewed by:

roject Manager

Reviewed by:

Operations Manager

This package may be reproduced only in its entirety.

NELAP # 01107CA

CASE NARRATIVE

Laboratory number:

185674

Client:

Fugro West Inc.

Project:

609.004

Location:

2250 Telgraph Av. Oakland

Request Date:

03/21/06

Samples Received:

03/21/06

This hardcopy data package contains sample and QC results for six water samples, requested for the above referenced project on 03/21/06. The samples were received cold and intact.

TPH-Purgeables and/or BTXE by GC (EPA 8015B):

High surrogate recovery was observed for trifluorotoluene (FID) in MW-6 (lab # 185674-006); the corresponding bromofluorobenzene (FID) surrogate recovery was within limits. No other analytical problems were encountered.

TPH-Extractables by GC (EPA 8015B):

No analytical problems were encountered.

Volatile Organics by GC/MS (EPA 8260B):

No analytical problems were encountered.

185674

CHAIN OF CUSTODY

g:/server migration/data/template/chain of custody

PAGE 1 OF 1

PROJECT NA	AME: 2250 Telegraph	1 Av	e_		****																					Г		1A	VALY	SIS	REQ	JEST	ED	
PROJECT NO											ا	LAB	: C8	<u>kT</u>												Г	T	= {	600					I
	ONTACT: Obi Nzewi							•				TUR	NA	RO	JNE	D: S	tan	dard								1		(8)	79) Sa					
SAMPLED BY	Y: Obi Nzewi																											lica)	genar					
		Τ		***						************	T								***************************************						Т	\dashv	1	IS/M W	5 ruei Oxygenates (6200)					
LABORATORY		L	MA.	TRIX	<u>.</u>		CC	NTA	INE	RS	4	!	PRE	SER	VAŢ	IVE			, ;	SAMP	LING I	DATE					2100	(8015	rs ru					
I.D. NUMBER	FIELD SAMPLE I.D.	WATER	SOIL	α		Ą	LITER	PINT	TUBE			_	H ₂ SO₄	HNO3		отнек	NONE	монтн	D,	AY	YEAR		TII	ME	MOTES	TPH9 (8015m)		TPHd and mo (8015m w/silica)	BIEA, MIBE, 5	EDD	7			
	MW-1	<u>≷</u> X	SC	AIR	<u> </u>	NOA	=	ā	T.		_	소 오	Ĭ,		B 연	ОТ			ļ				,	rr	_			E E	B IE	I	1			
λ	MW-2	X	 	-	 	5	1	_		_	\dashv	<u>X</u> X	\dashv	_	X	-	X	0 3	2	1 (1		H 5		Y	-	少	4 7		\perp			
3	MW-3	X		1	an	Si	1				┪	7	\dashv	\dashv	<u>/</u>	-	7	0 3 0 3	2	1 (00	9	5 C		 X		47			+	\dashv	-	
(MW-4	×		3.	21-10	15	i					7			\mathcal{I}		7	0 3	2	1 (1	1	20		3		イイ	4		+-+	+	+	_
	MW-5	Х		<u> </u>		6	1					X			×		人	0 3	2	1 (Ò	7	<i>H</i> 0	_	7	4-		4 4		+	$\neg \dagger$	+	_
2	MW-6	X	-	-		6	1				_	X			X		X	0 3	2	1 (6	Ø		4 (14		7						
		╂	-	-	 						-			_					-			-				<u> </u>	\bot							
		1	-		 						\dashv		}	\dashv	-				-			-			+	+	+	+		4	+	_	_	_
											\forall	\neg		\dashv	7				-	\vdash	-	+	 		+	╁	+	+		+	++	-	+	_
																					1	†	 		╁	十	+	+		+	++	\dashv	\dashv	+-
		 		-			ļ	ļ			_																							
	<u> </u>	<u> </u>		<u> </u>		<u> </u>																					\perp	\perp						
	CI	HAI	N OF	cu	STO	DY	REC	OR	0									СОММЕ	NTS	& NO	TES:											***************************************		
RELINQUISHED	DBY: (Signature)		DATE	/TIN	ΙE	REC	CEIV	ED E	3Y: (8	Signati	ure)			, DA	TE/	/TIM	E																	
Withday	3/21/0	6		3	0	Γ.)_	0) , .		3	3/21	10		13	:10									f						_		~
RELINQUISHED	D BY: (Signature)		DATE	1	_	REC	CEIV	ED E	3Y: (S	Signati	<i>ur</i> e)	w	****		1	/TIM				10861Y 1-Y68	ation Co	rrect?	4					Cold	eceive	d l Ambi	ont	ice A Inte	ct	
RELINQUISHED	D BY: (Signature)	D/	ATE/	TIME	=	REC	CEIV	ED F	3Y: (5	Signati	ure)			DΔ.	TE/T	IME							_	_		FII	<u>ıcı</u>	RO I	MES	T 1	NC			
	,		-				•	•	(9	<i> ,</i>			2/1	-/	11715		一瓦	J G	R					40					•				
RELINOUISHED	D BY: (Signature)		ATE/	TIMAT		<u></u>	>= 1,													☆									-		ite 2			
PALLINGOIONEL	on (olynature)	יט	41E/	I IIVIE	:	KE(۱۷عر	⊨D E	5Y: (S	Signati	ure)		•	DA.	TE/T	IME				仌											946			
1																				\angle				Tel:	510	.26	8.0	461	Fa	ax: 5	510.2	£68.0	137	,

Total Volatile Hydrocarbons 2250 Telgraph Av. Oakland Lab #: 185674 Location: Fugro West Inc. EPA 5030B Prep: Client: 609.004 Analysis: EPA 8015B Project#: Sampled: 03/21/06 Water Matrix: Received: 03/21/06 Units: ug/L Batch#: 111511

Field ID: Type: Lab ID:

MW-1

SAMPLE

185674-001

Diln Fac: Analyzed:

1.000 03/21/06

Result RL Analyte Gasoline C7-C12 50 390

Limits %REC Surrogate Trifluorotoluene (FID) 118 69-137 80-133 Bromofluorobenzene (FID) 122

Field ID: Type: Lab ID:

MW-2

SAMPLE

185674-002

Diln Fac: Analyzed: 1.000

03/21/06

Result Analyte RLGasoline C7-C12 50 ND

%REC Limits Surrogate Trifluorotoluene (FID) 111 69-137 Bromofluorobenzene (FID) 113 80-133

Field ID:

Type: Lab ID: MW-3 SAMPLE

185674-003

Diln Fac:

Analyzed:

1.000

03/21/06

<u>Analy</u>te Result RL 50 Gasoline C7-C12 100

Surrogate	%REC	: Limits	
Trifluorotoluene (FID)	104	69-137	·
Bromofluorobenzene (FID)	122	80-133	

Field ID:

Type: Lāb ID: MW-4

SAMPLE

185674-004

Diln Fac:

Analyzed:

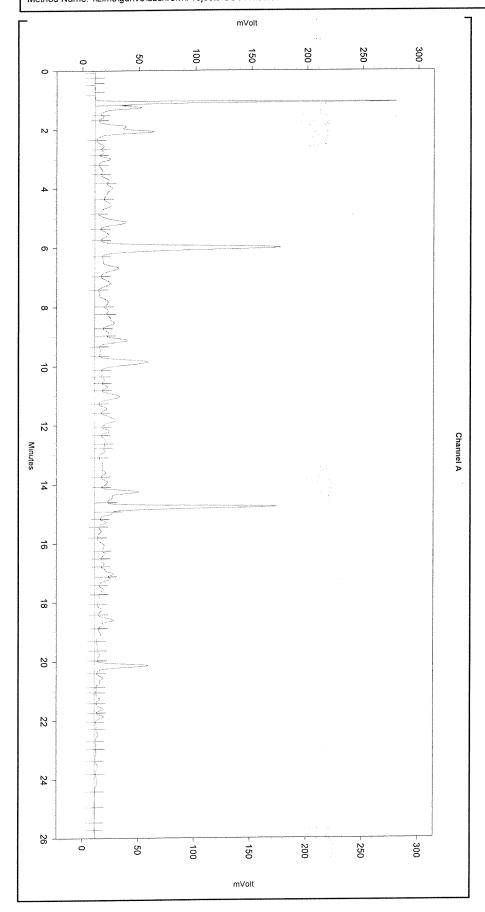
2.000

03/22/06

Analyte Result Gasoline C7-C12 2,200

Surrogate	%REC	: Limits
Trifluorotoluene (FID)	135	69-137
Bromofluorobenzene (FID)	111	80-133

*= Value outside of QC limits; see narrative


ND= Not Detected

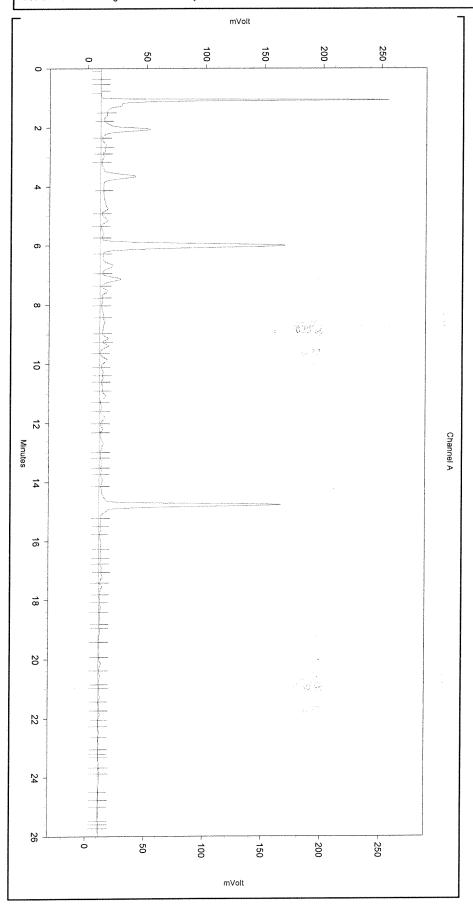
RL= Reporting Limit

Page 1 of 2

Sample Name: mss,185674-001,111511,tvh Data File: \\Lims\gdrive\ezchrom\Projects\GC04\Data\080_007

Software Version 3.1.7 Run Date: 3/21/2006 5:28:05 PM Analysis Date: 3/22/2006 10:34:12 AM Sample Amount: 5

< General Method Parameters	:>
No items selected for this section	ו
< A >	
No items selected for this section	1
Integration Events	art Stop
Enabled Event Type	(Minutes) (Minutes) Value
Yes Width Yes Threshold Yes Reset Baseline	0 0 0 0 0 10 0.822 0 0
Yes Threshold	0 0 10
Yes Threshold Yes Reset Baseline Manual Integration Fixes Data File: \\Lims\gdrive\ezchro.	0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Yes Threshold Yes Reset Baseline Manual Integration Fixes Data File: \\Lims\gdrive\ezchro.	0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

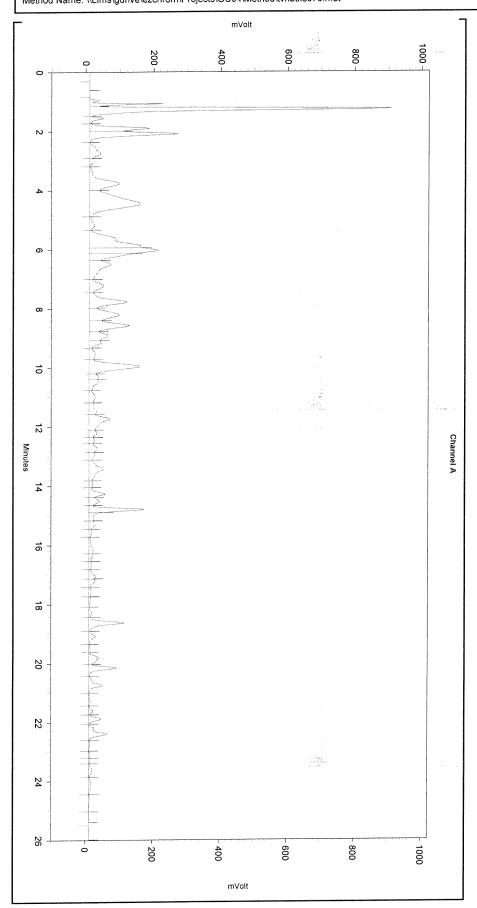

Sample Name: 185674-003,111511,tvh
Data File: \\Lims\gdrive\ezchrom\Projects\GC04\Data\080_009
Sequence File: \\Lims\gdrive\ezchrom\Projects\GC04\Sequence\080.seq

Instrument: GC04 Vial: N/A Operator: lims2k3\tvh2

Method Name: \\Lims\gdrive\ezchrom\Projects\GC04\Method\tvhbtxe073.met

Software Version 3.1.7 Run Date: 3/21/2006 6:40:11 PM Analysis Date: 3/21/2006 7:09:38 PM

Sample Amount: 5



	neral Method Parameter	s >		
No iten	ns selected for this sectio	n		
< A >				
No item	ns selected for this sectio	n		
-	tion Events			
Enab	Siled Event Type	tart Stop (Minutes)	(Minutes)	Value
Yes	Width Threshold Reset Baseline	0 0 0 0.822	0 0 10 0 0)
	Integration Fixes			
Data Data\Ci	File: C:\Documents and S nromatographySystem\R strument.10047\080_009	ecovery	ers\Applicat	tion
	ed Event Type		(Minutes)	

Sample Name: 185674-004,111511,2x,tvh Data File: \\Lims\gdrive\ezchrom\Projects\GC04\Data\080_017 Sequence File: \\Lims\\garive\ezchrom\Projects\GC04\Sequence\080.seq \\Instrument: GC04 Vial: N/A Operator: Tvh 2. Analyst (lims2k3\tvh2) \\Method \Name: \\Lims\gdrive\ezchrom\Projects\GC04\Method\tvhbtxe073.met

Software Version 3.1.7 Run Date: 3/22/2006 11:29:23 AM Analysis Date: 3/22/2006 1:03:09 PM

Sample Amount: 5

< Ge	neral Method Paran					
No item	s selected for this s	section				
< A >						
No item	s selected for this s	ection				
-	ion Events					
Enabl	ed Event Type	Start	Stop (Minute	s) (Mi	inutes)	Valu
,	Width		0	0	0	
Yes Yes			0 0.822	-	0 0	•
Manual	Integration Fixes					
Data I	======================================		Projects\0 Stop	GC04\	Data\08	0_017
Enabl	ed Event Type		(Minute	s) (Mi	inutes)	Valu
	Split Peak		5.94	0	0	
Yes Yes	Split Peak Split Peak		6.129 14.89	0	0	

Total Volatile Hydrocarbons 2250 Telgraph Av. Oakland EPA 5030B Location: Lab #: 185674 Fugro West Inc. 609.004 Prep: Analysis: Client: EPA 8015B 03/21/06 03/21/06 Project#: Sampled: Matrix: Water Received: ug/L Units: 111511 Batch#:

Field ID:

MW-5

Type: Lab ID:

SAMPLE

185674-005

Diln Fac:

1.000

Analyzed:

03/21/06

Note I William	Pacult	PT.	
Gasoline C7-C12	ND	50	

Surrogate	%REC	Limits	
Trifluorotoluene (FID)	105	69-137	
Bromofluorobenzene (FID)	117	80-133	

Field ID: Type: Lab ID:

MW-6

SAMPLE

185674-006

Diln Fac: Analyzed: 1.000

03/22/06

Analyte	Result	RL	
Gasoline C7-C12	1,900	50	

Surrogate	%REC	Limits
Trifluorotoluene (FID)	159 *	69-137
Bromofluorobenzene (FID)	128	80-133

Type: Lab ID:

BLANK

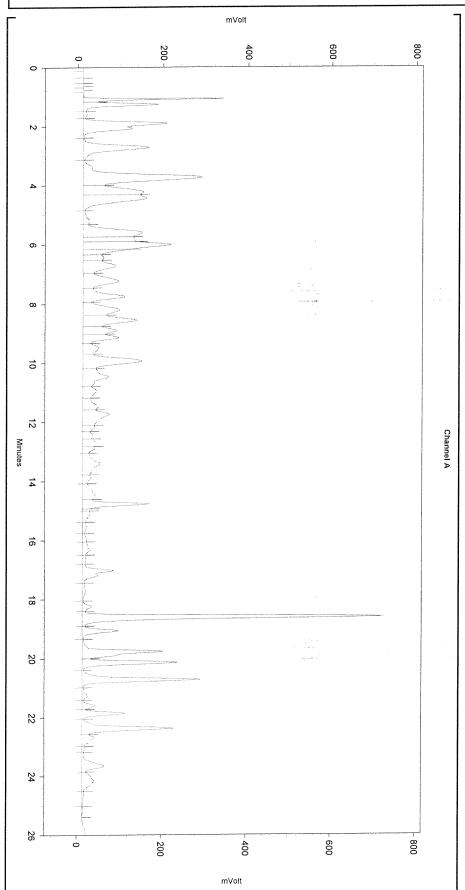
QC332363

Diln Fac:

1.000

Analyzed:

03/21/06


Analyte	Result	RL	
Gagoline C7-C12	ND	50	

Surrogate	%RE	C Limits	
Trifluorotoluene (FID)	94	69-137	
Bromofluorobenzene (FID)	94	80-133	

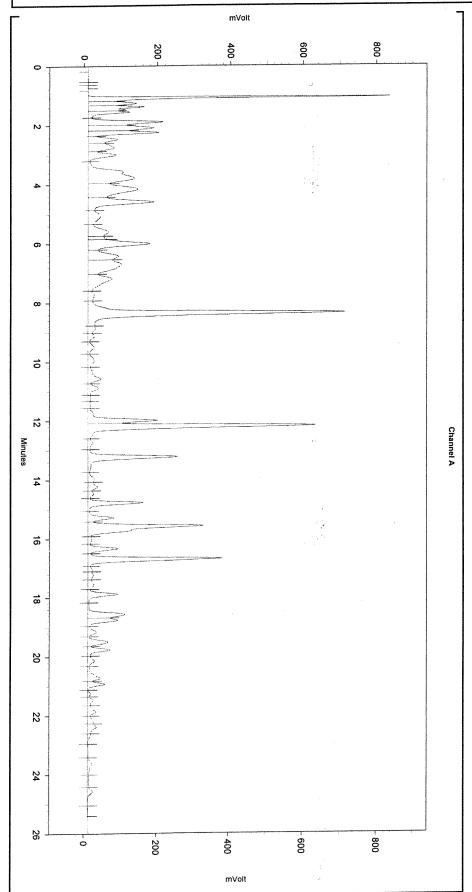
^{*=} Value outside of QC limits; see narrative ND= Not Detected RL= Reporting Limit

Sample Name: 185674-006,111511,tvh Data File: \\Lims\gdrive\ezchrom\Projects\GC04\Data\080_014 Sequence File: \Lims\gdrive\ezchrom\Projects\GC04\Sequence\080.seq Instrument: GC04 (Offline) Vial: N/A Operator: Tvh 2. Analyst (lims2k3\tvh2) Method Name: \Lims\gdrive\ezchrom\Projects\GC04\Method\tvhbtxe073.met

Software Version 3.1.7 Run Date: 3/22/2006 9:03:11 AM Analysis Date: 3/22/2006 10:38:56 AM Sample Amount: 5

< Ger	eral Method Para	meters >-				
No item	s selected for this	section				
< A >-						
No item	s selected for this	section				
	on Events					
=====		Start	Stop			
Enable	ed Event Type	Start	(Minute:	s) (Mir	nutes)	Value
Yac	Width		0	0	0	
Yes			ō	ō	10	
Yes	Reset Baseline		0.822	(0 0	
	Integration Fixes					
					\ O.O.	0 044
Data F	ile: \\Lims\gdrive\	ezchrom\ŧ Start		CU41L	Jatalue	0_014
Enable	ed Event Type	Start	(Minutes	s) (Mir	nutes)	Value
Yes	Split Peak		5.893	0	0	
	Split Peak		6.153	0	0	
Yes			14.941	0	0	

Sample Name: ccv/lcs,qc332365,111511,S2869,5/5000


Data File: \\Lims\gdrive\ezchrom\Projects\GC04\Data\080_003

Sequence File: \\Lims\gdrive\ezchrom\Projects\GC04\Sequence\080.seq

Instrument: GC04 (Offline) Vial: N/A Operator: Tvh 2. Analyst (lims2k3\tvh2)

Method Name: \\Lims\gdrive\ezchrom\Projects\GC04\Method\tvhbtxe073.met

Software Version 3.1.7 Run Date: 3/21/2006 3:03:42 PM Analysis Date: 3/22/2006 10:26:58 AM Sample Amount: 5

< Ger	neral Method Paran	neters >-			 	
No items	s selected for this s	section				
No item	s selected for this s	section				
	ion Events					
=====	32222222	Start	Stop			
Enable	ed Event Type	Start	(Minutes)) (Min	utes)	Value
Yes	Width		0 0) ()	
Yes	Threshold		0	0	10	
Yes	Reset Baseline		0.822	0	0	
	Integration Fixes	** ***				
	File: \\Lims\gdrive\e			C04\D:	ata\08	0_003
Enable	ed Event Type	-	(Minutes) (Min	utes)	Value
Yes	Split Peak		5.848	0	0	

Casoline

Page 2 of 4 Curtis & Tompkins Ltd.

	Total Vo	olatile Hydrocarbo	ns
Lab #:	185674	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8015B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC332365	Batch#:	111511
Matrix:	Water	Analyzed:	03/21/06
Units:	ug/L		

Analyte	Spiked	Result	%REC	! Limits	
Gasoline C7-C12	2,000	1,887	94	80-120	

Surrogate	%REC	Limits
Trifluorotoluene (FID)	127	69-137
Bromofluorobenzene (FID)	110	80-133

	Total Volatil	e Hydrocarbons	
Lab #:	185674	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8015B
Field ID:	MW-1	Batch#:	111511
MSS Lab ID:	185674-001	Sampled:	03/21/06
Matrix:	Water	Received:	03/21/06
Units:	ug/L	Analyzed:	03/21/06
Diln Fac:	1.000		

Type:

MS

Lab ID: QC332396

Analyte	MSS Result	Spiked	Result	%RE	C Limits
Gasoline C7-C12	393.7	2,000	2,296	95	80-120

Surrogate	%REC	Limits
Trifluorotoluene (FID)	131	69-137
Bromofluorobenzene (FID)	130	80-133

Type:

MSD

Lab ID:

QC332397

Analyte	Spiked	Result	*KBC		RPL) Lilm
Gasoline C7-C12	2,000	2,272	94	80-120	1	20
<u> </u>						

Surrogate	%REC	Limits
Trifluorotoluene (FID)	131	69-137
Bromofluorobenzene (FID)	125	80-133

	Total Ext	tractable Hydrocar	rbons
Lab #:	185674	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 3520C
Project#:	609.004	Analysis:	EPA 8015B
Matrix:	Water	Sampled:	03/21/06
Units:	ug/L	Received:	03/21/06
Diln Fac:	1.000	Prepared:	03/25/06
Batch#:	111684	Analyzed:	03/27/06

Field ID: Type:

Motor Oil C24-C36

MW-1 SAMPLE Lab ID:

185674-001 Cleanup Method: EPA 3630C

-11				-		
Analy	rte	Result	t	RL		
Diesel C10-C24		97	LY	50)	
Motor Oil C24-C3	36 N	ID		300)	

Surrogate	%REC	Limits	
Hexacosane	90	65-130	

Field ID: Type:

MW-2 SAMPLE Lab ID:

185674-002 Cleanup Method: EPA 3630C

Analyte	Result	RL	
Diesel C10-C24	ND	50	
Motor Oil C24-C36	ND	300	

Surrogate	%REC	Limits		
Hexacosane	89	65-130		

Field ID:

Type:

MW - 3 SAMPLE Lab ID:

185674-003 Cleanup Method: EPA 3630C

71	Paguit	RL	
Discol Glo GG4	Kesult (1 V	5.11	
Diesel Clu-C24	OT 1	50	
I Motor Oil C24-C36	ND	300	

Surroga	te %REC	Limits	
Hexacosane	91	65-130	

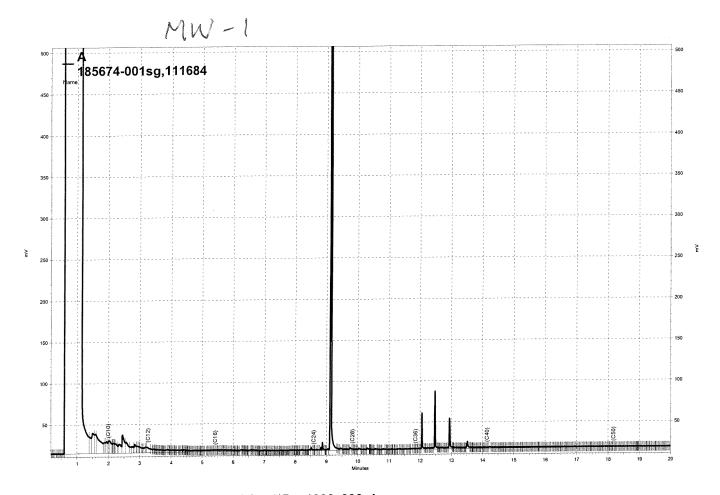
Field ID: Type:

MW - 4 SAMPLE Lab ID:

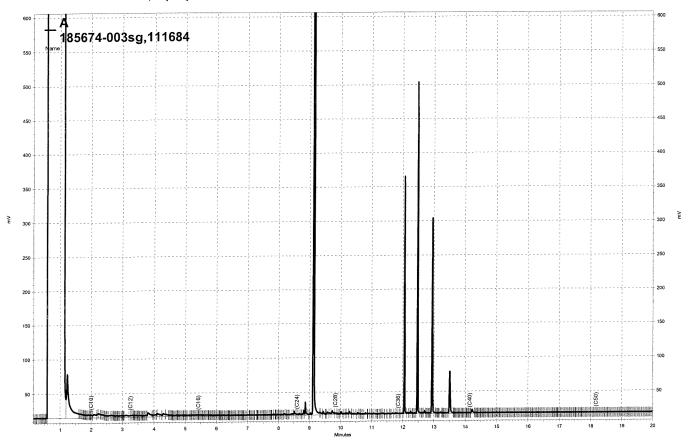
185674-004 Cleanup Method: EPA 3630C

Analyte	Result	RL	
Diesel C10-C24	2,800 H L Y	50	
Motor Oil C24-C36	4,000 L	300	

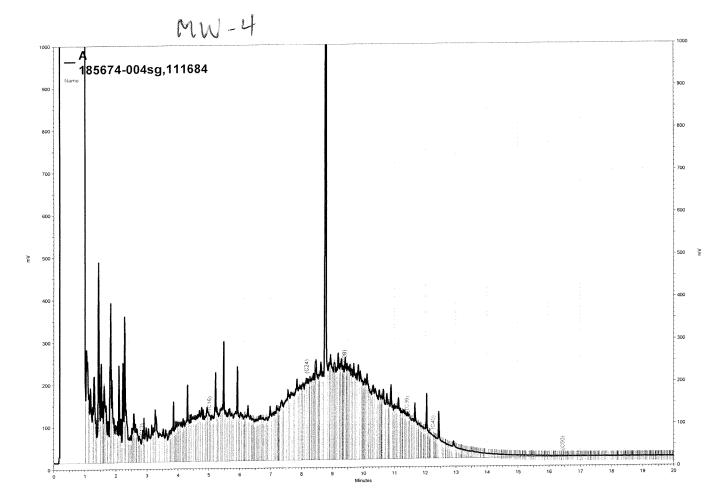
Surrogate	%REC	Limits	
Hexacosane	94	65-130	


 $\mbox{\sc H=}$ Heavier hydrocarbons contributed to the quantitation $\mbox{\sc L=}$ Lighter hydrocarbons contributed to the quantitation

Y= Sample exhibits chromatographic pattern which does not resemble standard


ND= Not Detected

RL= Reporting Limit


Page 1 of 2

\Lims\gdrive\ezchrom\Projects\GC17A\Data\086a006, A

\Lims\gdrive\ezchrom\Projects\GC17A\Data\086a008, A

\\Lims\gdrive\ezchrom\Projects\GC11A\Data\085a034, A

	Total Ext	cractable Hydrocan	bons
Lab #:	185674	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 3520C
Project#:	609.004	Analysis:	EPA 8015B
Matrix:	Water	Sampled:	03/21/06
Units:	ug/L	Received:	03/21/06
Diln Fac:	1.000	Prepared:	03/25/06
Batch#:	111684	Analyzed:	03/27/06

Field ID: Type:

MW - 5

SAMPLE

Lab ID:

185674-005

Cleanup Method: EPA 3630C

Analyte	Result	RL	
Diesel C10-C24	ND	50	
Motor Oil C24-C36	ND	300	

Surrogate	%REC	Limits	
Hexacosane	96	65-130	

Field ID: Type:

MW - 6 SAMPLE Lab ID:

185674-006

Cleanup Method: EPA 3630C

Analyte	Result	RL	
Diesel C10-C24	850 L Y	50	
Motor Oil C24-C36	ND	300	

Surrogate	e %REC	: Limits	
Hexacosane	92	65-130	

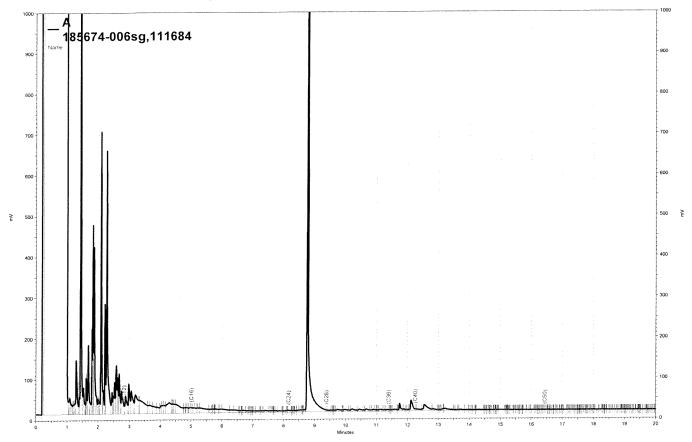
Type: Lab ID:

BLANK QC333044

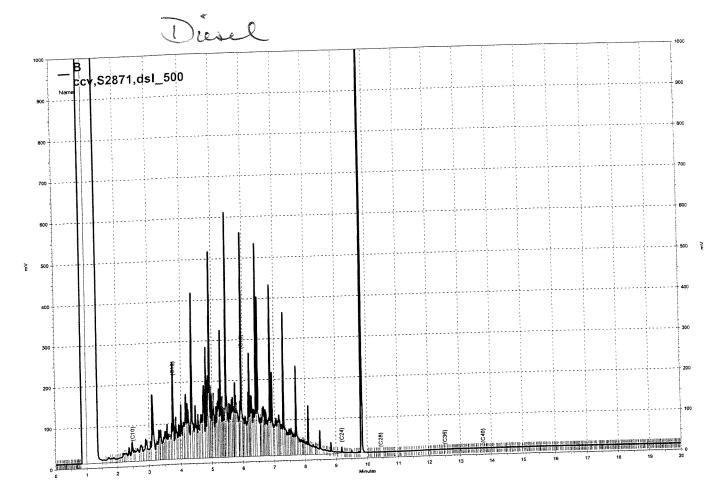
Cleanup Method: EPA 3630C

Analyte	Result	RL	
Diesel C10-C24	ND	50	
Motor Oil C24-C36	ND	300	

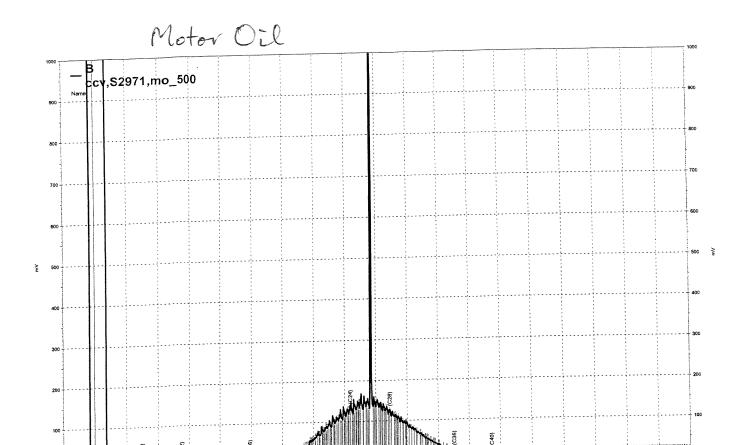
Surrogate	%REC	Limits	
Hexacosane	93	65-130	


 $\mbox{\sc H=}$ Heavier hydrocarbons contributed to the quantitation $\mbox{\sc L=}$ Lighter hydrocarbons contributed to the quantitation

Y= Sample exhibits chromatographic pattern which does not resemble standard


ND= Not Detected

RL= Reporting Limit


Page 2 of 2

\Lims\gdrive\ezchrom\Projects\GC11A\Data\085a036, A

\\Lims\gdrive\ezchrom\Projects\GC15B\Data\085b003, B

\Lims\gdrive\ezchrom\Projects\GC15B\Data\085b004, B

	Total Ex	tractable Hydrocar	bons
Lab #:	185674	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 3520C
Project#:	609.004	Analysis:	EPA 8015B
Matrix:	Water	Batch#:	111684
Units:	ug/L	Prepared:	03/25/06
Diln Fac:	1.000	Analyzed:	03/27/06

Type:

BS

Cleanup Method: EPA 3630C

Lab ID: QC333045

Analyte	Spiked	Result	%RE	C Limits	
Diesel C10-C24	2,500	2,021	81	61-133	

Surrogate	%REC	Limits	
Hexacosane	96	65-130	

Type:

BSD

Cleanup Method: EPA 3630C

Lab ID:

QC333046

Analyte	Spiked	Result	%REC	! Limits	RPD	Lim
Diesel C10-C24	2,500	2,274	91	61-133	12	31

	Surrogate	%REC	Limits	
Π	Hexacosane	105	65-130	

	BTXE &	Oxygenates	
Lab #:	185674	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Field ID:	MW-1.	Batch#:	111541
Lab ID:	185674-001	Sampled:	03/21/06
Matrix:	Water	Received:	03/21/06
Units:	ug/L	Analyzed:	03/22/06
Diln Fac:	1.000		

Analyte	Result	RL
tert-Butyl Alcohol (TBA)	16	10
MTBE	ND	0.5
Isopropyl Ether (DIPE)	ND	0.5
Ethyl tert-Butyl Ether (ETBE)	ND	0.5
1,2-Dichloroethane	ND	0.5
Benzene	1.0	0.5
Methyl tert-Amyl Ether (TAME)	ND	0.5
Toluene	ND	0.5
1,2-Dibromoethane	ND	0.5
Ethylbenzene	0.6	0.5
m,p-Xylenes	ND	0.5
o-Xylene	ND	0.5

Surrogate	%REC	Limits
Dibromofluoromethane	99	80-120
1,2-Dichloroethane-d4	106	80-130
Toluene-d8	100	80-120
Bromofluorobenzene	102	80-122

	BT:	KE & Oxygenates	
Lab #:	185674	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Field ID:	MW-2	Batch#:	111541
Lab ID:	185674-002	Sampled:	03/21/06
Matrix:	Water	Received:	03/21/06
Units:	ug/L	Analyzed:	03/22/06
Diln Fac:	1.000		

Analyte	Result	RL
tert-Butyl Alcohol (TBA)	ND	10
MTBE	ND	0.5
Isopropyl Ether (DIPE)	ND	0.5
Ethyl tert-Butyl Ether (ETBE)	ND	0.5
1,2-Dichloroethane	ND	0.5
Benzene	ND	0.5
Methyl tert-Amyl Ether (TAME)	ND	0.5
Toluene	ND	0.5
1,2-Dibromoethane	ND	0.5
Ethylbenzene	ND	0.5
m,p-Xylenes	ND	0.5
o-Xylene	ND	0.5

Surrogate	%REC	Limits
Dibromofluoromethane	100	80-120
1,2-Dichloroethane-d4	107	80-130
Toluene-d8	101	80-120
Bromofluorobenzene	102	80-122

	ВТУ	KE & Oxygenates	
Lab #:	185674	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Field ID:	MW-3	Batch#:	111679
Lab ID:	185674-003	Sampled:	03/21/06
Matrix:	Water	Received:	03/21/06
Units:	ug/L	Analyzed:	03/25/06
Diln Fac:	1.000		

Analyte	Result	RL
tert-Butyl Alcohol (TBA)	12	10
MTBE	ND	0.5
Isopropyl Ether (DIPE)	ND	0.5
Ethyl tert-Butyl Ether (ETBE)	ND	0.5
1,2-Dichloroethane	ND	0.5
Benzene	ND	0.5
Methyl tert-Amyl Ether (TAME)	ND	0.5
Toluene	ND	0.5
1,2-Dibromoethane	ND	0.5
Ethylbenzene	ND	0.5
m,p-Xylenes	ND	0.5
o-Xylene	ND	0.5

Surrogate	%REC	Limits
Dibromofluoromethane	104	80-120
1,2-Dichloroethane-d4	120	80-130
Toluene-d8	102	80-120
Bromofluorobenzene	106	80-122

	BT	KE & Oxygenates	
Lab #:	185674	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Field ID:	MW-4	Batch#:	111541
Lab ID:	185674-004	Sampled:	03/21/06
Matrix:	Water	Received:	03/21/06
Units:	ug/L	Analyzed:	03/22/06
Diln Fac:	1.000	-	

Analyte	Res	mlt	RL	
tert-Butyl Alcohol (TBA)	ND		10	
MTBE	ND		0.5	
Isopropyl Ether (DIPE)	ND		0.5	
Ethyl tert-Butyl Ether (ETBE)	ND		0.5	
1,2-Dichloroethane	ND		0.5	
Benzene		1.2	0.5	
Methyl tert-Amyl Ether (TAME)	ND		0.5	
Toluene	ND		0.5	
1,2-Dibromoethane	ND		0.5	
Ethylbenzene	ND		0.5	
m,p-Xylenes		0.7	0.5	
o-Xylene	ND		0.5	

Surrogate	%REC	Limits
Dibromofluoromethane	106	80-120
1,2-Dichloroethane-d4	119	80-130
Toluene-d8	107	80-120
Bromofluorobenzene	106	80-122

	BT	IE & Oxygenates	
Lab #:	185674	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Field ID:	MW-5	Batch#:	111541
Lab ID:	185674-005	Sampled:	03/21/06
Matrix:	Water	Received:	03/21/06
Units:	ug/L	Analyzed:	03/22/06
Diln Fac:	1.000		

Analyte	Result	RL
tert-Butyl Alcohol (TBA)	ND	10
MTBE	ND	0.5
Isopropyl Ether (DIPE)	ND	0.5
Ethyl tert-Butyl Ether (ETBE)	ND	0.5
1,2-Dichloroethane	ND	0.5
Benzene	ND	0.5
Methyl tert-Amyl Ether (TAME)	ND	0.5
Toluene	ND	0.5
1,2-Dibromoethane	ND	0.5
Ethylbenzene	ND	0.5
m,p-Xylenes	ND	0.5
o-Xylene	ND	0.5

Surrogate	%REC	Limits
Dibromofluoromethane	108	80-120
1,2-Dichloroethane-d4	119	80-130
Toluene-d8	101	80-120
Bromofluorobenzene	108	80-122

	ВТЗ	KE & Oxygenates	
Lab #:	185674	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Field ID:	MW - 6	Batch#:	111594
Lab ID:	185674-006	Sampled:	03/21/06
Matrix:	Water	Received:	03/21/06
Units:	ug/L	Analyzed:	03/23/06
Diln Fac:	1.000		

Analyte	Result	RL
tert-Butyl Alcohol (TBA)	ND	10
MTBE	0.5	0.5
Isopropyl Ether (DIPE)	ND	0.5
Ethyl tert-Butyl Ether (ETBE)	ND	0.5
1,2-Dichloroethane	ND	0.5
Benzene	ND	0.5
Methyl tert-Amyl Ether (TAME)	ND	0.5
Toluene	ND	0.5
1,2-Dibromoethane	ND	0.5
Ethylbenzene	ND	0.5
m,p-Xylenes	ND	0.5
o-Xylene	ND	0.5

Surrogate	%REC	Limits
Dibromofluoromethane	108	80-120
1,2-Dichloroethane-d4	123	80-130
Toluene-d8	105	80-120
Bromofluorobenzene	104	80-122

-	BT.	XE & Oxygenates	
Lab #:	185674	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Type:	BLANK	Diln Fac:	1.000
Lab ID:	QC332461	Batch#:	111541
Matrix:	Water	Analyzed:	03/22/06
Units:	ug/L		

Analyte	Result	RL
tert-Butyl Alcohol (TBA)	ND	1.0
MTBE	ND	0.5
Isopropyl Ether (DIPE)	ND	0.5
Ethyl tert-Butyl Ether (ETBE)	ND	0.5
1,2-Dichloroethane	ND	0.5
Benzene	ND	0.5
Methyl tert-Amyl Ether (TAME)	ND	0.5
Toluene	ND	0.5
1,2-Dibromoethane	ND	0.5
Ethylbenzene	ND	0.5
m,p-Xylenes	ND	0.5
o-Xylene	ND	0.5

Surrogate	%REC	Limits
Dibromofluoromethane	104	80-120
1,2-Dichloroethane-d4	114	80-130
Toluene-d8	101	80-120
Bromofluorobenzene	107	80-122

-	BT?	KE & Oxygenates	
Lab #:	185674	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Type:	BLANK	Diln Fac:	1.000
Lab ID:	QC332690	Batch#:	111594
Matrix:	Water	Analyzed:	03/23/06
Units:	ug/L	_	

Analyte	Result	RL
tert-Butyl Alcohol (TBA)	ND	10
MTBE	ND	0.5
Isopropyl Ether (DIPE)	ND	0.5
Ethyl tert-Butyl Ether (ETBE)	ND	0.5
1,2-Dichloroethane	ND	0.5
Benzene	ND	0.5
Methyl tert-Amyl Ether (TAME)	ND	0.5
Toluene	ND	0.5
1,2-Dibromoethane	ND	0.5
Ethylbenzene	ND	0.5
m,p-Xylenes	ND	0.5
o-Xylene	ND	0.5

Surrogate	%REC	Limits
Dibromofluoromethane	103	80-120
1,2-Dichloroethane-d4	113	80-130
Toluene-d8	101	80-120
Bromofluorobenzene	106	80-122

	BT:	XE & Oxygenates	
Lab #:	185674	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Type:	BLANK	Diln Fac:	1.000
Lab ID:	QC333028	Batch#:	111679
Matrix:	Water	Analyzed:	03/25/06
Units:	ug/L		

Analyte	Result	RL
tert-Butyl Alcohol (TBA)	ND	10
MTBE	ND	0.5
Isopropyl Ether (DIPE)	ND	0.5
Ethyl tert-Butyl Ether (ETBE)	ND	0.5
1,2-Dichloroethane	ND	0.5
Benzene	ND	0.5
Methyl tert-Amyl Ether (TAME)	ND	0.5
Toluene	ND	0.5
1,2-Dibromoethane	ND	0.5
Ethylbenzene	ND	0.5
m,p-Xylenes	ND	0.5
o-Xylene	ND	0.5

Surrogate	%REC	Limits
Dibromofluoromethane	97	80-120
1,2-Dichloroethane-d4	106	80-130
Toluene-d8	100	80-120
Bromofluorobenzene	102	80-122

	BTXE & C	xygenates	
Lab #:	185674	Location:	2250 Telgraph Av. Oakland
Client:	Fugro West Inc.	Prep:	EPA 5030B
Project#:	609.004	Analysis:	EPA 8260B
Matrix:	Water	Batch#:	111541
Units:	ug/L	Analyzed:	03/22/06
Diln Fac:	1.000		

Type:

BS

Lab ID:

QC332458

Analyte	Spiked	Result	%REC	Limits
tert-Butyl Alcohol (TBA)	125.0	135.8	109	64-141
MTBE	25.00	24.52	98	72-120
Isopropyl Ether (DIPE)	25.00	26.35	105	68-123
Ethyl tert-Butyl Ether (ETBE)	25.00	28.47	114	77-129
1,2-Dichloroethane	25.00	26.36	105	77-120
Benzene	25.00	25.22	101	80-120
Methyl tert-Amyl Ether (TAME)	25.00	24.72	99	77-120
Toluene	25.00	24.30	97	80-120
1,2-Dibromoethane	25.00	23.08	92	80-120
Ethylbenzene	25.00	26.30	105	80-120
m,p-Xylenes	50.00	52.81	106	80-121
o-Xylene	25.00	24.99	100	80-120

Surrogate	%REC	Limits
Dibromofluoromethane	99	80-120
1,2-Dichloroethane-d4	107	80-130
Toluene-d8	101	80-120
Bromofluorobenzene	100	80-122

Type:

BSD

Lab ID: QC332459

Analyte	Spiked	Result	%REC	' Limits	RPD	Lim
tert-Butyl Alcohol (TBA)	125.0	118.0	94	64-141	14	22
MTBE	25.00	23.79	95	72-120	3	20
Isopropyl Ether (DIPE)	25.00	25.46	102	68-123	3	20
Ethyl tert-Butyl Ether (ETBE)	25.00	27.26	109	77-129	4	20
1,2-Dichloroethane	25.00	25.60	102	77-120	3	20
Benzene	25.00	24.53	98	80-120	3	20
Methyl tert-Amyl Ether (TAME)	25.00	23.90	96	77-120	3	20
Toluene	25.00	24.05	96	80-120	1	20
1,2-Dibromoethane	25.00	22.87	91	80-120	1	20
Ethylbenzene	25.00	26.10	104	80-120	1	20
m,p-Xylenes	50.00	52.46	105	80-121	1	20
o-Xylene	25.00	25.44	102	80-120	2	20

Surrogate	%REC	Limits
Dibromofluoromethane	100	80-120
1,2-Dichloroethane-d4	105	80-130
Toluene-d8	100	80-120
Bromofluorobenzene	100	80-122

	BTI	CE & Oxygenates	
Lab #: Client: Project#:	185674 Fugro West Inc. 609.004	Location: Prep: Analysis:	2250 Telgraph Av. Oakland EPA 5030B EPA 8260B
Matrix: Units: Diln Fac:	Water ug/L 1.000	Batch#: Analyzed:	111594 03/23/06

Type:

BS

Lab ID: QC332687

		Result	%REC	Limits
Analyte	Spiked			
tert-Butyl Alcohol (TBA)	125.0	138.2	111	64-141
MTBE	25.00	25.58	102	72-120
Isopropyl Ether (DIPE)	25.00	27.22	109	68-123
Ethyl tert-Butyl Ether (ETBE)	25.00	28.94	116	77-129
1,2-Dichloroethane	25.00	27.74	111	77-120
Benzene	25.00	26.47	106	80-120
Methyl tert-Amyl Ether (TAME)	25.00	25.12	100	77-120
Toluene	25.00	25.78	103	80-120
1,2-Dibromoethane	25.00	24.54	98	80-120
Ethylbenzene	25.00	27.96	112	80-120
m,p-Xylenes	50.00	55.99	112	80-121
o-Xylene	25.00	26.81	107	80-120

Surrogate	%REC	Limits	
Dibromofluoromethane	101	80-120	
1,2-Dichloroethane-d4	109	80-130	
Toluene-d8	101	80-120	
Bromofluorobenzene	101	80-122	

Type:

BSD

Lab ID: QC332688

Analyte	Spiked	Result	%REC	' Limits	RPD	
tert-Butyl Alcohol (TBA)	125.0	123.0	98	64-141	12	22
MTBE	25.00	23.78	95	72-120	7	20
Isopropyl Ether (DIPE)	25.00	25.43	102	68-123	7	20
Ethyl tert-Butyl Ether (ETBE)	25.00	27.33	109	77-129	6	20
1,2-Dichloroethane	25.00	26.12	104	77-120	6	20
Benzene	25.00	25.18	101	80-120	5	20
Methyl tert-Amyl Ether (TAME)	25.00	23.51	94	77-120	7	20
Toluene	25.00	24.80	99	80-120	4	20
1,2-Dibromoethane	25.00	23.73	95	80-120	3	20
Ethylbenzene	25.00	26.16	105	80-120	7	20
m,p-Xylenes	50.00	52.98	106	80-121	6	20
o-Xylene	25.00	25.11	100	80-120	7	20

Surrogate	%REC	Limits
Dibromofluoromethane	99	80-120
1,2-Dichloroethane-d4	108	80-130
Toluene-d8	103	80-120
Bromofluorobenzene	98	80-122

	BT	XE & Oxygenates	
Lab #: Client:	185674	Location: Prep:	2250 Telgraph Av. Oakland EPA 5030B
Project#:	Fugro West Inc. 609.004	Analysis:	EPA 8260B
Matrix: Units:	Water	Batch#: Analyzed:	111679 03/25/06
Diln Fac:	ug/L 1.000	Analyzed:	03/23/00

Type:

BS

Lab ID:

QC333026

Analyte	Spiked	Result	%REC	' Limits
tert-Butyl Alcohol (TBA)	125.0	113.6	91	64-141
MTBE	25.00	22.72	91	72-120
Isopropyl Ether (DIPE)	25.00	23.76	95	68-123
Ethyl tert-Butyl Ether (ETBE)	25.00	26.60	106	77-129
1,2-Dichloroethane	25.00	25.29	101	77-120
Benzene	25.00	24.43	98	80-120
Methyl tert-Amyl Ether (TAME)	25.00	23.42	94	77-120
Toluene	25.00	24.70	99	80-120
1,2-Dibromoethane	25.00	22.65	91	80-120
Ethylbenzene	25.00	25.83	103	80-120
m,p-Xylenes	50.00	51.88	104	80-121
o-Xylene	25.00	25.30	101	80-120

Surrogate	%REC	Limits	
Dibromofluoromethane	95	80-120	
1,2-Dichloroethane-d4	99	80-130	
Toluene-d8	99	80-120	1
Bromofluorobenzene	98	80-122	

Type:

BSD

Lab ID:

QC333027

Analyte	Spiked	Result	%RE	C Limits	RPI	Lim
tert-Butyl Alcohol (TBA)	125.0	110.5	88	64-141	3	22
MTBE	25.00	21.81	87	72-120	4	20
Isopropyl Ether (DIPE)	25.00	22.67	91	68-123	5	20
Ethyl tert-Butyl Ether (ETBE)	25.00	24.77	99	77-129	7	20
1,2-Dichloroethane	25.00	23.98	96	77-120	5	20
Benzene	25.00	23.01	92	80-120	6	20
Methyl tert-Amyl Ether (TAME)	25.00	22.21	89	77-120	5	20
Toluene	25.00	23.06	92	80-120	7	20
1,2-Dibromoethane	25.00	21.85	87	80-120	4	20
Ethylbenzene	25.00	24.67	99	80-120	5	20
m,p-Xylenes	50.00	49.11	98	80-121	5	20
o-Xylene	25.00	23.84	95	80-120	6	20

Surrogate	%REC	Limits
Dibromofluoromethane	95	80-120
1,2-Dichloroethane-d4	101	80-130
Toluene-d8	101	80-120
Bromofluorobenzene	97	80-122