ExxonMobil Environmental Services Company 4096 Piedmont Avenue #194 Oakland, California 94611 510 547 8196 Telephone 510 547 8706 Facsimile

RECEIVED

1:36 pm, Jan 06, 2009

Alameda County Environmental Health Jennifer C. Sedlachek Project Manager

December 30, 2008

Ms. Barbara Jakub, P.G. Alameda County Health Care Services Agency Department of Environmental Health 1131 Harbor Bay Parkway, Room 250 Alameda, California 94502-6577

RE: Former Exxon RAS #70235/2225 Telegraph Avenue, Oakland California.

Dear Ms. Jakub:

Attached for your review and comment is a copy of the letter report entitled *Groundwater Assessment Report*, dated December 30, 2008, for the above-referenced site. The report was prepared by Environmental Resolutions, Inc. (ERI) of Petaluma, California, and details assessment activities at the subject site.

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

If you have any questions or comments, please contact me at 510.547.8196.

Sincerely.

Jennifer C. Sedlachek Project Manager

Attachment: ERI's Groundwater Assessment Report, dated December 30, 2008

cc: w/ attachment

Mr. Robert C. Elhers, M.S., P.E., The Valero Companies, Environmental Liability Management

w/o attachment Ms. Paula Sime, Environmental Resolutions, Inc.

Southern California Northern California Pacific Northwest Southwest Texas Montana

December 30, 2008 ERI 222903.R24

Ms. Jennifer C. Sedlachek ExxonMobil Environmental Services Company 4096 Piedmont Avenue #194 Oakland, California 94611

SUBJECT Site Assessment Report Former Exxon Service Station 70235 2225 Telegraph Avenue, Oakland, California

Ms. Sedlachek:

At the request of ExxonMobil Environmental Services Company, on behalf of ExxonMobil Oil Corporation (ExxonMobil), Environmental Resolutions, Inc. (ERI) prepared this site assessment report for the subject site (Plate 1). The purpose of the work is to assess the vertical extent of residual adsorbed-phase and dissolved-phase fuel constituents beneath the site. The work was conducted in accordance with ERI's *Work Plan for Groundwater Assessment* (Work Plan), dated August 22, 2008, which was approved in the Alameda County Health Care Services Agency Department of Environmental Health (ACEH) letter dated September 5, 2008 (Appendix A). The work consisted of a utility survey and the advancement of CPT borings CPT1 through CPT3, Hydropunch[®] (HP) borings HP1 through HP3, and direct-push (DP) soil borings DP1 and DP2 in the vicinity of the subject site (Plate 2). Based on the results of the investigation, ERI concludes that while the vertical extent of hydrocarbons in soil is delineated, the vertical extent of hydrocarbons in groundwater is not delineated.

SITE DESCRIPTION

Former Exxon Service Station 70235 is located at 2225 Telegraph Avenue, on the eastern corner of Telegraph Avenue and West Grand Avenue, Oakland, California, as depicted on the Site Vicinity Map (Plate 1). The site is at an elevation of approximately 20 feet above msl and the surrounding area is a mix of industrial and residential properties.

The site is an active retail service station. Texaco Refining and Marketing, Incorporated operated the station from 1963 until 1988 when the site property was transferred to ExxonMobil. ExxonMobil sold the site to Valero Refining Company in 2000. In 2001, Valero sold the site to Mr. Lam Truong who currently owns and operates the station.

GEOLOGY AND HYDROGEOLOGY

The site is located along the eastern margin of the San Francisco Bay within the East Bay Plain (Hickenbottom and Muir, 1988). The surficial deposits in the site vicinity are mapped as Merritt Sand consisting of fine-grained, very well sorted, well-drained eolian deposits of the Pleistocene and Holocene age (Graymer, 2000). The active northwest trending Hayward fault is located approximately 3½ miles east of the site.

The East Bay Plain is regionally divided into two major groundwater basins: the San Pablo and the San Francisco Basin. These basins are tectonic depressions that are filled primarily with a sequence of coalescing alluvial fans. The San Francisco Basin is further divided into seven sub-areas. The site is located in the Oakland Sub-Area, which is filled primarily by alluvial deposits that range from 300 to 700 feet thick without well-defined aquitards (CRWQCB, 1999). Under natural conditions, the direction of groundwater flow in the East Bay Plain is east to west and correlates with topography.

The site is located approximately 2,200 feet west of the Lake Merritt. Lake Merritt is connected to the Oakland Inner Harbor to the west, which connects to the San Francisco Bay. The San Francisco Bay is located approximately 2.7 miles west and 3.5 miles south of the site. Groundwater flow direction is predominantly to the southwest towards the San Francisco Bay, consistent with site data and the local topography. Groundwater recharge of the East Bay Plain occurs by infiltration from precipitation, irrigation, pipe leakage, and stream flow.

PREVIOUS WORK

Cumulative soil analytical results are summarized in Tables 1A through 1C. Cumulative grab groundwater analytical results are summarized on Table 2A through 2C. Cumulative groundwater monitoring analytical results are summarized on Tables 3A and 3B. Well construction details are presented on Table 4.

2

Fueling System Activities

The site currently dispenses Regular, Plus, and Premium Unleaded gasoline and diesel. The locations of the USTs, dispenser islands, and other select site features are shown on the Generalized Site Plan (Plate 2).

In November 1991 three single-walled USTs and their associated piping were removed and replaced with double-walled fiberglass tanks and piping. The existing UST cavity was enlarged to accommodate the new USTs (EA, 1992).

Site Assessment Activities

Multiple phases of assessment have been conducted from 1988 to the present, including the advancement of seven soil-gas probes and 22 soil borings and the installation of two vapor extraction wells, four recovery wells (RW1 through RW3 and RW3A), and 10 groundwater monitoring wells (MW6A through MW6J) (Alton, 1991; ERI, 2000, 2001a, 2002, 2007a; HLA, 1988, 1989, 1990, 1992). Wells MW6A and RW3 were destroyed in conjunction with assessment activities (ERI, 2002; HLA, 1992). Results of the assessment indicated maximum residual adsorbed-phase TPHg, benzene, and MTBE concentrations of 11,000 mg/kg, 200 mg/kg, and 0.016 mg/kg, respectively. Residual adsorbed-phase TPHg and benzene are primarily present in the soils from surface to 13.5 feet bgs around the northern dispenser islands and the northeastern portion of the site (borings B1A, B3A, B1, B2, MW6H, TG2, and TG3). Residual MTBE was reported in soil samples collected from boring B9 along the eastern edge of the site. A detailed description of site conditions is presented in ERI's *Site Conceptual Model*, dated May 29, 2007 (ERI, 2007b). Cumulative soil data is presented in Tables 1A through 1C.

Remediation Activities

In November and December 1991, the product USTs were removed and the former tank pit was enlarged to accommodate the new product USTs; an area approximately 45 by 33 feet to 13.5 feet bgs was excavated. Concentrations of TPHg up to 10,000 mg/kg (TG2, 13 feet bgs) and benzene up to 130 mg/kg (TG2, 13 feet bgs) were reported in soil samples collected from the base of the excavation. Concentrations of TPHg up to 660 mg/kg (TG12, 12 feet bgs) and benzene up to 4.3 mg/kg (TG12, 12 feet bgs) were reported in the sidewall soil samples of the enlarged cavity (EA, 1992).

A groundwater remediation system extracted, treated, and discharged approximately 307,000 gallons of groundwater between fourth quarter 1990 and the end of first quarter 1992 (HLA, 1992). By November 15, 1993, approximately 583,679 gallons of groundwater had been discharged (Texaco, 1994).

On September 11, 2001, ERI conducted a DPE test. A total of 9,000 gallons of groundwater was extracted and treated during the nine day DPE test. The average extraction rate for the test was 1.06 gpm. Approximately 187.5 pounds of TPHg and 2.36 pounds of MTBE were removed through soil vapor extraction during the DPE feasibility test. A total of 0.329 pound of TPHg and 0.0374 pound of MTBE were removed by groundwater extraction during the DPE test (ERI, 2001b). The results of the DPE test indicated that DPE is a feasible remedial alternative for the site.

Groundwater Monitoring Activities

Quarterly groundwater monitoring was implemented at the site in 1988. Measurable NAPL was detected in well MW6D during the July 11, 1988, monitoring and sampling event. Hydrocarbon sheen was observed in well RW2 in April 1999. Dissolved-phase TPHg, benzene, and MTBE extend from the east-northeastern portion of the site off site into the public right-of-way, with the maximum concentrations reported in samples collected from wells RW1 and MW6H and boring B9. During the monitoring program, fuel constituent concentrations reported in samples collected from wells MW6E, MW6F, and MW6I have declined to concentrations at or below the laboratory reporting limit. Cumulative grab groundwater analytical data is summarized in Tables 2A through 2C. Cumulative groundwater monitoring and sampling data are summarized in Tables 3A and 3B. The fourth quarter 2008 groundwater monitoring results are included as Plates 3 and 4. Well details are summarized in Table 4.

UTILITY CONDUITS

In their approval letter, dated September 5, 2008 (Appendix A), the ACEH requested that the utility map and cross sections for the site be updated to show the locations of the laterals running underneath the site to the main conduits. The ACEH further requested that cross sections previously submitted as part of ERI's *Site Conceptual Model*, dated July 1, 2008, be updated to show the locations of the pipelines. Though exact locations for given utilities are not supplied by the individual utility members, ERI has updated the utility map and cross sections using utility maps supplied by the members, a private utility locator, Underground Service Alert (USA) markings, and field measurements. Approximate utility vault and conduit depths are presented in Table 5. The updated utility map and cross sections are presented as Plates 5 through 9.

SUBSURFACE INVESTIGATION

In order to assess the vertical extent of residual adsorbed-phase and dissolved-phase fuel constituents beneath the site, ERI proposed the advancement of three paired CPT and HP borings (CPT1 through CPT3 and HP1 through HP3) and two dual-wall DP borings (DP1 and DP2) at the subject site. ERI performed the fieldwork in accordance with the Work Plan, ERI's standard field protocol (Appendix B), a site-specific health and safety plan, and applicable regulatory guidelines under the advisement of a professional geologist.

Pre-Field Activities

Prior to field activities, ERI obtained drilling permits from the Alameda County Public Works Agency (ACWPA) (Appendix C), notified USA, and contracted a private utility-locating company to locate underground utilities at the site. On October 22, 2008, ERI observed Gregg Drilling, Inc. (Gregg) advance the upper 8 feet of borings CPT1 through CPT3, HP1 through HP3, DP1, and DP2 using a hand auger.

Cone Penetration Test and Hydropunch Borings

Between October 23 and 27, 2008, ERI observed Gregg advance borings CPT1 through CPT3 to 50 feet bgs, borings HP1 and HP2 to 42 feet bgs, and boring HP3 to 48 feet bgs using CPT technology (Plate 2). Using the CPT logs and previous assessment boring logs, depth-discrete intervals were selected to attempt grab groundwater sampling. ERI collected depth-discrete water samples from each of the HP borings. Selected sampling intervals are detailed in Table 6 and CPT logs are included in Appendix D.

Direct-Push Soil Borings

On October 28, 2008, ERI observed Woodward Drilling Company advance soil borings DP1 and DP2 using dual-tube direct-push technology (Plate 2). During borehole clearance, ERI collected shallow soil samples from the adjacent CPT borings in brass sleeves using a hand auger. The direct-push borings were sampled continuously from the base of the cleared hole to the total depth of the boring. Borings DP1 and DP2 were advanced to 30.5 feet bgs. Select soil samples were preserved for laboratory analysis. Boring logs are presented in Appendix E.

Groundwater was first encountered in borings DP1 and DP2 at approximately 16 feet bgs and 17 feet bgs, respectively. Groundwater samples were not collected from the DP borings. Procedures are described in the standard field protocols (Appendix B).

Laboratory Analyses

ERI submitted soil and grab groundwater samples for analysis to a California state-certified laboratory. Laboratory analytical reports and COC records are provided in Appendix F. Cumulative soil sample and grab groundwater sample analytical data and testing methods are summarized on Tables 1A through 1C and 2A through 2C.

Site Survey

On October 30, 2008, ERI observed a licensed surveyor survey the locations and ground surface elevations of borings CPT1 through CPT3, HP1 through HP3, and DP1. The survey data is included in Appendix G.

Waste Management

The decontamination rinsate water and drill cuttings were temporarily stored on site in DOT-approved, sealed 55-gallon drums. Soil was transported to Republic Services Vasco Road Landfill in Livermore, California, for proper disposal. Decontamination water was transported to InStrat, Inc., of Rio Vista, California, for recycling. Copies of disposal documentation are included in Appendix H.

RESULTS OF INVESTIGATION

Site Geology

During this investigation, native soil observed beneath the site consisted primarily of fine-grained sediments composed primarily of clay and sandy clay mixtures. Coarse-grained sediments composed primarily of sand and clayey sands occur as continuous beds at approximately 12 feet bgs, 29 feet bgs, and 38 feet bgs. Groundwater was encountered at approximately 16 and 17 feet bgs in borings DP1 and DP2, respectively. In the CPT logs for borings CPT1 through CPT3, water-bearing zones were identified at 12 to 18 feet bgs, 29 to 30 feet bgs, and 36 to 42 feet bgs. Boring logs and CPT soundings were used to generate cross sections of the site. A cross section location map and cross sections are presented as Plates 6 though 9.

Fuel Constituents in Soil

Concentrations of TPHd, TPHg, TPHmo, BTEX, and MTBE were reported in soil samples collected during this investigation at or just above the laboratory reporting limits. Concentrations of TBA, DIPE, ETBE, TAME, 1,2-DCA, EDB, and ethanol were not reported in soil samples collected during this investigation (Tables 1A and 1B, Plates 7 through 12).

Fuel Constituents in Groundwater

Concentrations of TPHd, TPHg TPHmo, BTEX, MTBE, and TBA were reported in the grab groundwater samples collected during this investigation. Concentrations of DIPE, ETBE, TAME, 1,2-DCA, EDB, and ethanol were not reported in groundwater samples collected during this investigation (Tables 2A and 2B, Plate 13).

CONCLUSIONS

Sediment classifications interpreted through the sounding of CPT1 through CPT3 and observed during the advancement of borings DP1 and DP2 were consistent with observations made during previous investigations at the site.

The purpose of the work was to assess the vertical extent of residual adsorbed-phase and dissolvedphase fuel constituents beneath the. In ERI's opinion, the vertical extent of hydrocarbons in soil is defined at the site (Plates 7 through 12).

Depth-discrete water samples collected from borings CPT1 through CPT3 indicate that the vertical distribution of hydrocarbons in groundwater is not defined and that hydrocarbons are present at a depth of approximately 42 feet bgs (Plate 13).

CONTACT INFORMATION

The responsible party contact is Ms. Jennifer C. Sedlachek ExxonMobil Environmental Services Company, 4096 Piedmont Avenue #194, Oakland, California 94611. The consultant contact is Ms. Paula Sime, Environmental Resolutions, Inc., 601 N. McDowell Boulevard, Petaluma, California 94954. The agency contact is Ms. Barbara Jakub, P.G., Alameda County Health Care Services Agency, Department of Environmental Health, 1131 Harbor Bay Parkway, Suite 250, Alameda, California 94502-6577.

LIMITATIONS

For any reports cited that were not generated by ERI, the data taken from those reports is used "as is" and is assumed to be accurate. ERI does not guarantee the accuracy of this data and makes no warranties for the referenced work performed nor the inferences or conclusions stated in these reports.

This document was prepared in accordance with generally accepted standards of environmental, geological and engineering practices in California at the time of investigation. No soil engineering or geotechnical references are implied or should be inferred. The evaluation of the geologic conditions at the site for this investigation is made from a limited number of data points. Subsurface conditions may vary away from these data points.

For any questions concerning the content of this report, please contact Ms. Paula Sime at (707) 766-2000.

Sincerely, Environmental Resolutions, Inc. Rebekah A. Westrup Senior Staff Geologist Heidi L. Dieffenbach Carle P.G. 6793

cc: Ms. Barbara Jakub, P.G., Alameda County Health Care Services Agency, Department of Environmental Health, 1131 Harbor Bay Parkway, Suite 250, Alameda, California 94502-6577

Mr. Robert C. Ehlers, M.S., P.E., The Valero Companies, Environmental Liability Management, 685 West Third Street, Hanford, California 93230

Enclosures:

References

Acronym List

Plate 1	Site Vicinity Map
Plate 2	Generalized Site Plan
Plate 3	Groundwater Elevation Map, October 23, 2008
Plate 4	Select Analytical Results, October 23 and 31, 2008
Plate 5	Vault/Utility Map
Plate 6	Cross Section Location Map
Plate 7	Cross Section A-A'
Plate 8	Cross Section B-B'
Plate 9	Cross Section C-C'
Plate 10	Select Soil Analytical Results-TPHg
Plate 11	Select Soil Analytical Results-Benzene
Plate 12	Select Soil Analytical Results-MTBE
Plate 13	Select Groundwater Analytical Results
Table 1A	Cumulative Soil Analytical Results
Table 1B	Additional Cumulative Soil Analytical Results-VOCs
Table 1C	Additional Cumulative Soil Analytical Results-Metals
Table 2A	Cumulative Grab Groundwater Analytical Results
Table 2B	Additional Cumulative Grab Groundwater Analytical Results-VOCs
Table 2C	Additional Cumulative Grab Groundwater Analytical Results-Metals
Table 3A	Cumulative Groundwater Monitoring and Sampling Data
Table 3B	Additional Cumulative Groundwater Monitoring and Sampling Data
Table 4	Well Construction Details
Table 5	Vault and Conduit Depths
Table 6	Grab Groundwater Interval Sampling Details

- Appendix A Correspondence
- Appendix B Field Protocols
- Appendix C Permits
- Appendix D CPT Protocol and Report
- Appendix E Boring Logs
- Appendix F Laboratory Analytical Reports and Chain-of-Custody Records
- Appendix G Survey Data
- Appendix H Waste Documentation

REFERENCES

Alton Geoscience Inc. (Alton). April 25, 1991. Preliminary Soil Assessment Report, Exxon Company U.S.A., Exxon Station No 7-0235, 2225 Telegraph Ave., Oakland, California.

California Regional Water Quality Control Board San Francisco Bay Region Groundwater Committee (CRWQCB). June 1999. *East Bay Plain Groundwater Basin Beneficial Use Evaluation Report, Alameda and Contra Costa Counties, CA.*

EA Engineering (EA). January 1992. Report of Tank Replacement and Closure Sampling Exxon Retail Site 7-0235, 225 Telegraph Avenue, Oakland, California.

Environmental Resolutions, Inc (ERI). May 11, 2000. Soil and Groundwater Investigation Report for Exxon Service Station 7-0235, 2225 Telegraph Avenue, Oakland, California. ERI 222903.R01.

Environmental Resolutions, Inc (ERI). September 7, 2001a. Well Installation Report for Former Exxon Service Station 7-0235, 2225 Telegraph Avenue, Oakland, California. ERI 222903.R02.

Environmental Resolutions, Inc (ERI). October 19, 2001b. Dual-Phase Extraction Pilot Test, Former Exxon Service Station 7-0235, 2225 Telegraph Avenue, Oakland, California. ERI 222905.R01.

Environmental Resolutions, Inc (ERI). November 25, 2002. Preferential Pathway Study and Work Plan for Off-Site Delineation at Former Exxon Service Station 7-0235, 2225 Telegraph Avenue, Oakland, California.

Environmental Resolutions, Inc (ERI). April 27, 2007a. Off-Site Delineation Investigation Report, Former Exxon Service Station 7-0235, 2225 Telegraph Avenue, Oakland, California. ERI 229212.R22.

Environmental Resolutions, Inc. (ERI). May 29, 2007b. Site Conceptual Model, Former Exxon Service Station 7-0235, 2225 Telegraph Avenue, Oakland, California. ERI 222903.R23.

Graymer, R.W. 2000. Geologic map and map database of the Oakland metropolitan area, Alameda, Contra Costa, and San Francisco Counties, California. USGS, Miscellaneous Field Studies MF-2342.

Harding Lawson Associates (HLA). July 20, 1988. Subsurface Investigation Texaco Station No. 62488000195, 2225 Telegraph Avenue, Oakland, California. HLA Job No. 2251,052.04.

Harding Lawson Associates (HLA). June 22, 1989. Environmental Assessment Former Texaco Station No. 62488000195, 2225 Telegraph Avenue, Oakland, California.

Harding Lawson Associates (HLA). September 7, 1990. *Quarterly Technical Report, Second Quarter of 1990, Former Texaco Station, 2225 Telegraph Avenue, Oakland, California.*

Harding Lawson Associates (HLA). September 10, 1992. Quarterly Technical Report, Second Quarter 1992, Exxon Station, 2225 Telegraph Avenue, Oakland, California.

Hickenbottom, Kelvin and Muir, Kenneth S. June 1988. *Geohydrogeology and Groundwater Quality Overview of the East Bay Plain Area, Alameda County, CA.* Alameda County Flood Control and Water Conservation District. 83p.

Texaco Refining and Marketing Inc. (Texaco). April 28, 1994. Letter from Bob Robles, Environmental Protection Coordinator – Texaco to Tom Peacock, Alameda County Environmental Health Department re: ENV-Service Stations, Quarterly Groundwater Monitoring Report, 2225 Telegraph Avenue, Oakland, California.

ACRONYM LIST

µg/L	Micrograms per liter
μs	Microsiemens
1,2-DCA	1,2-dichloroethane
acfm	Actual cubic feet per minute
AS	Air sparge
bgs	Below ground surface
BTEX	Benzene, toluene, ethylbenzene, and total xylenes
CEQA	California Environmental Quality Act
cfm	Cubic feet per minute
COC	Chain of Custody
CPT	Cone Penetration (Penetrometer) Test
DIPE	Di-isopropyl ether
DO	Dissolved oxygen
DOT	Department of Transportation
DPE	Dual-phase extraction
DTW	Depth to water
EDB	1,2-dibromoethane
EPA	Environmental Protection Agency
ESL	Environmental screening level
ETBE	Ethyl tertiary butyl ether
FID	Flame-ionization detector
fpm	Feet per minute
GAC	Granular activated carbon
gpd	Gallons per day
gpm	Gallons per minute
GWPTS	Groundwater pump and treat system
HVOC	Halogenated volatile organic compound
J	Estimated value between MDL and PQL
LEL	Lower explosive limit
LPC	Liquid-phase carbon
LRP	Liquid-ring pump
LUFT	Leaking underground fuel tank
LUST	Leaking underground storage tank
MCL	Maximum contaminant level
MDL	Method detection limit
mg/kg	Milligrams per kilogram
mg/L	Milligrams per liter
mg/m³	Milligrams per cubic meter
MPE	Multi-phase extraction
MRL	Method reporting limit
msl	Mean sea level
MTBE	Methyl tertiary butyl ether
MTCA	Model Toxics Control Act
NAI	Natural attenuation indicators
NAPL	Non-aqueous phase liquid

NEPA	National Environmental Policy Act
NGVD	National Geodetic Vertical Datum
NPDES	National Pollutant Discharge Elimination System
O&M	Operations and Maintenance
ORP	Oxidation-reduction potential
OSHA	Occupational Safety and Health Administration
OVA	Organic vapor analyzer
P&ID	Process & Instrumentation Diagram
PAH	Polynuclear aromatic hydrocarbon
PCB	Polychlorinated biphenyl
PCE	Tetrachloroethene or perchloroethylene
PID	Photo-ionization detector
PLC	Programmable logic control
POTW	Publicly owned treatment works
ppmv	Parts per million by volume
PQL	Practical quantitation limit
psi	Pounds per square inch
PVC	Polyvinyl chloride
QA/QC	Quality assurance/quality control
RBSL	Risk-based screening levels
RCRA	Resource Conservation and Recovery Act
RL	Reporting limit
scfm	Standard cubic feet per minute
SSTL	Site-specific target level
STLC	Soluble threshold limit concentration
SVE	Soil vapor extraction
SVOC	Semivolatile organic compound
TAME	Tertiary amyl methyl ether
ТВА	Tertiary butyl alcohol
TCE	Trichloroethene
TOC	Top of well casing elevation; datum is msl
TOG	Total oil and grease
TPHd	Total petroleum hydrocarbons as diesel
TPHg	Total petroleum hydrocarbons as gasoline
TPHmo	Total petroleum hydrocarbons as motor oil
TPHs	Total petroleum hydrocarbons as stoddard solvent
TRPH	Total recoverable petroleum hydrocarbons
UCL	Upper confidence level
USCS	Unified Soil Classification System
USGS	United States Geologic Survey
UST	Underground storage tank
VCP	Voluntary Cleanup Program
VOC	Volatile organic compound
VPC	Vapor-phase carbon

Product Line	AB6 Hand Auger-HLA CPT3 Cone Penetration Text Boring	PROJECT NO. 2229
-HLA -ALTON EA	HP3 Hydropunch Boring DP2 - Direct Push Boring	PLATE 2

4	
Ņ	
5 .	
PROJECT NO. 2229	
PLATE	
4	

C' Cross Section	20	
-Product Line	AB6 Hand Auger-HLA	PROJECT NO. 2229
-HLA -ALTON	HP3 Hydropunch Boring DP2 Direct Push Boring	PLATE 6

C. 29.5 FT. 0 <0.10		
T. 19 FT. 2 0 <0.10	1. FT. <0.10	
g-Product Line	AB6 Hand Auger-HLA CPT3 Cone Penetration Text Boring	PROJECT NO. 2229
g – HLA g – ALTON	HP3 Hydropunch Boring	PLATE
g-EA	Direct Push Boring	10

29.5 FT. <0.0010	
19 FT. 21 FT. 0 <0.0010 <0.0010	
AB6 Hand Auger-HLA CPT3 Cone Penetration Text Boring	PROJECT NO. 2229
-FILA HP3 -ALTON DP2 -EA Direct Push Boring	PLATE 11

29.5 FT. <0.0050			
			1
. <u>19 FT.</u> 21 FT. <0.0050 <0.0050			ideal dalldh awb C
			ra rea nav an and a
			A Denorte / 222002 DS
			nelden (70946) Octo
AB6		PROJECT NO.	NII Drylarte/ 02
-Product Line CPT3	Penetration Text Boring	2229	ollow and
	punch Boring	PLATE	OPU / P
-ALTON DP2	t Push Boring	12	MNOXAL
			11.

F. EXXONMOBIL/ExxonMobil Projects/022229 (70235) Oakland/Reports/222903.R24 CPT HP DP/R23 P13

NI

	PROJECT NO.
CPT3 😥 Cone Penetration Text Boring	2229
HP3 🖶 Hydropunch Boring	PLATE
DP2 - Direct Push Boring	13

TABLE 1A CUMULATIVE SOIL ANLYTICAL RESULTS Former Exxon Service Station 70235 2225 Telegraph Avenue Oakland, California (Page 1 of 6)

Sample	Sample	Depth	TPHd	TPHg	MTBE	В	т	E	×	Total Lead	HVOCs	TPHmo	TOG
ID	Date	(feet bgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Soil Boring Sa	imples												
B-1 (HLA)	10/04/88	8.0		<10		0.05	<0.1	<0.2	<0.1				
B-1 (HLA)	10/04/88	13.0		2,000		<5	16	10	41				
B-2 (HLA)	10/04/88	7.0	-	<10		<0.05	<0.1	<0.2	<0.1		3 		
B-2 (HLA)	10/04/88	13.5	10000	<10		<0.05	<0.1	<0.2	<0.1				1000
B-3 (HLA)	10/04/88	7.0		<10		0.06	<0.1	<0.2	<0.1			1.000	_
B-3 (HLA)	10/04/88	13.5	1.255	11,000		40	390	84	370	-			
	44/47/00	40 E		-10		<0.0E	-0.1	<0.0	-0.1				
D-4 (NLA)	11/17/00	15.5		<10		<0.05	~ 0.1	<0.Z	\0.1				
B-5 (HLA)	1989-1992e	5.5		ND		ND	ND	ND	ND				
B-5 (HLA)	1989-1992e	9.5		ND		ND	ND	ND	ND				
B-5 (HLA)	1989-1992e	12.5		ND		ND	ND	ND	ND			_	
B-6 (HLA)	1989-1992e	6.0		ND		ND	ND	ND	ND	(100 m)			
B-6 (HLA)	1989-1992e	9.5		ND		ND	ND	ND	ND	***			
B-6 (HLA)	1989-1992e	12.0		3,000		40	40	110	450				
B-7 (HLA)	1989-1992e	6.0		24		0.64	0.4	0.9	3.4				
B-7 (HLA)	1989-1992e	9.5		ND		0.5	ND	0.7	1				
B-7 (HLA)	1989-1992e	12.0		1,400		20	20	72	190				
B-1 (Alton)	03/10/01	5 5		240		12	0.87	11	77				
B-1 (Alton)	03/19/91	10.5		10 000		81	660	310	1 600				
B-1 (Alton)	03/19/91	15.5		4 400		8.4	77	56	310			_	
Bir (Kittohi)	00,10,01	1010		1,100					0.0				
B-2 (Alton)	03/19/91	5.5		880		1	7.2	11	47				
B-2 (Alton)	03/19/91	10.5		2,400	_	3.5	38	26	150				
B-2 (Alton)	03/19/91	14.5		9,900		33	170	150	980			—	
	00/10/01					-0.000	-0.000	-0.000	-0.000				
B-3 (Alton)	03/19/91	5.5		<1.0		< 0.003	<0.003	< 0.003	<0.003		See.		
B-3 (Alton)	03/19/91	10.5		11		0.022	0.14	0.18	3.2				
B-4 (Alton)	03/19/91	5.5		<10		0.036	<0.003	<0.003	< 0.003		-		
B-4 (Alton)	03/19/91	10.5	1999 (7		0.37	0.15	0.18	0.93				
= (/ 4(0))/	00/10/01	1010					0.10	0.10					

TABLE 1ACUMULATIVE SOIL ANLYTICAL RESULTSFormer Exxon Service Station 702352225 Telegraph AvenueOakland, California(Page 2 of 6)

Sample	Sample	Depth	TPHd	TPHg	MTBE	В	Т	E	Х	Total Lead	HVOCs	TPHmo	TOG
ID	Date	(feet bgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(ma/ka)
B-5 (Alton)	03/19/91	5.5		310		0.82	3.6	4.2	22				
B-5 (Alton)	03/19/91	10.5		40		0.69	1.4	0.58	3.2			3.000	ंग्रह
B-6 (Alton)	03/19/91	5.5		<1.0		0.054	0.003	0.005	0.011				
B-6 (Alton)	03/19/91	10.5		2		0.15	0.067	0.019	0.09				
B-7 (Alton)	03/19/91	5.5		<1.0		<0.003	<0.003	<0.003	<0.003				
B-7 (Alton)	03/19/91	10.5		<1.0		<0.003	<0.003	<0.003	<0.003	—			
B-8 (Alton)	03/19/91	5.5		<1.0		<0.003	<0.003	< 0.003	<0.003)(
B-8 (Alton)	03/19/91	10.5		<1.0		0.048	0.013	<0.003	0.025				
B-9 (Alton)	03/19/91	5.5)			-						<50
B-9 (Alton)	03/19/91	10.5											<50
B-9 (Alton)	03/19/91	14.5											<50
B-10 (Alton)	03/19/91	5.5		<1.0		0.085	<0.003	0.006	<0.003				
B-10 (Alton)	03/19/91	10.5		2	****	0.27	0.075	0.026	0.1		53615		
S-9-GP1	03/29/00	9.0		<1	<0.001a	<0.001	<0.001	<0.001	<0.001			<u> </u>	
S-11-GP1	03/29/00	11.0		<1	<0.001a	<0.001	<0.001	<0.001	<0.001				
S-9-GP2	03/29/00	9.0		<1	<0.001a	<0.001	<0.001	<0.001	<0.001				
S-11-GP2	03/29/00	11.0		<1	<0.001a	<0.001	<0.001	<0.001	<0.001				-
MW-6E	10/05/88	13.0		<10		<0.05	<0.1	<0.2	<0.1				
MW-6F	10/05/88	13.0		<10		<0.05	<0.1	<0.2	<0.1				
MW-6G	11/16/88	13.5		5.2		<0.05	<0.1	<0.2	<0.1				
MW-6H	11/16/88	13.5		1,000		<0.5	3.2	3.2	19				
MW-6I	11/17/88	13.5		<10		<0.05	<0.1	<0.2	<0.1				
S-5-MW6J	04/06/01	5.0	<2	<1	<0.01	<0.001	<0.001	<0.001	<0.001			<10	
S-10-MW6J	04/06/01	10.0	<2	<5	<0.01	<0.005	<0.005	< 0.005	<0.005			<10	
S-15-MW6J	04/06/01	15.0	<2	<1	<0.01	<0.001	<0.001	<0.001	<0.001	· · · · ·		<10	
S-20-MW6J	04/06/01	20.0	<2	<1	<0.01	<0.001	<0.001	0.013	0.037	-		<10	_
S-5-B5	03/01/07	5.0	1.6c,d	<0.10	<0.0050	<0.0010	<0.0010	<0.0010	<0.0010	-	1000	<10	

TABLE 1ACUMULATIVE SOIL ANLYTICAL RESULTSFormer Exxon Service Station 702352225 Telegraph AvenueOakland, California(Page 3 of 6)

Sample	Sample	Depth	TPHd	TPHg	MTBE	В	т	E	х	Total Lead	HVOCs	TPHmo	TOG
ID	Date	(feet bgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)						
S-5-B7	03/05/07	5.0	<1.0	<0.10	<0.0050	<0.0010	<0.0010	<0.0010	< 0.0010			<10	
S-10-B7	03/05/07	10.0	<1.0	<0.10	<0.0050	<0.0010	<0.0010	<0.0010	<0.0010		-	<10	-
S-15-B7	03/05/07	15.0	<1.0	<0.10	<0.0050	<0.0010	<0.0010	<0.0010	<0.0010		-	<10	
S-16.5-B7	03/05/07	16.5	<1.0	<0.10	<0.0050	<0.0010	<0.0010	<0.0010	<0.0010			<10	
S-19-B7	03/05/07	19.0	1.0c	<0.10	<0.0050	<0.0010	<0.0010	<0.0010	<0.0010		-	<10	-
S-21-B7	03/05/07	21.0	<1.0	<0.10	<0.0050	<0.0010	<0.0010	<0.0010	<0.0010			<10	
S-5-B8	03/01/07	5.0	1.2c,d	<0.10	<0.0050	<0.0010	<0.0010	<0.0010	<0.0010			<10	
S-10-B8	03/01/07	10.0	<1.0	<0.10	<0.0050	<0.0010	<0.0010	<0.0010	<0.0010			<10	
S-5-B9	03/02/07	5.0	1.3c,d	<0.10	<0.0050	<0.0010	<0.0010	<0.0010	<0.0010	—		<10	
S-10-B9	03/02/07	10.0	1.8c,d	1.3	0.016	0.13	0.11	0.042	0.17			<10	
S-11-B9	03/02/07	11.0	1.8c,d	12	<0.0050	0.18	0.36	0.22	0.92			<10	
S-15-B9	03/06/07	15.0	<1.0	1.9	0.0067	0.48	0.032	0.042	0.12			<10	
S-19.5-B9	03/06/07	19.5	<1.0	<0.10	0.005	0.0068	<0.0010	<0.0010	<0.0010			<10	
S-23.5-B9	03/06/07	23.5	<1.0	<0.10	<0.0050	<0.0010	<0.0010	<0.0010	<0.0010			<10	
S-29.5-B9	03/06/07	29.5	<1.0	<0.10	<0.0050	<0.0010	<0.0010	<0.0010	<0.0010			<10	
S-10-DP1	10/28/08	10.0	6.0	<0.50	0.030	0.17	<0.0050	0.032	0.066			<25	
S-15-DP1	10/28/08	15.0	<5.0	5.8	<0.0050	0.094	0.057	0.057	0.13			<25	
S-20-DP1	10/28/08	20.0	<5.0	<0.50	<0.0050	<0.0050	<0.0050	<0.0050	0.021			<25	
S-25-DP1	10/28/08	25.0	36	<0.50	0.0052	<0.0050	<0.0050	<0.0050	<0.010			27	
S-30-DP1	10/28/08	30.0	7.9	<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.010		<u></u>	<25	
S-10-DP2	10/28/08	10.0	34	<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.010			26	
S-15-DP2	10/28/08	15.0	13	<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.010			<25	
S-20-DP2	10/28/08	20.0	17	<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.010			<25	
S-25-DP2	10/28/08	25.0	15	<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.010			<25	
S-30-DP2	10/28/08	30.0	<5.0	<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.010			<25	
S-5-CPT1	10/22/08	5.0	<5.0	<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.010			<25	
S-5-CPT2	10/22/08	5.0	<5.0	<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.010			<25	
S-5-CPT3	10/22/08	5.0	11	<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.010			41	

TABLE 1A CUMULATIVE SOIL ANLYTICAL RESULTS Former Exxon Service Station 70235 2225 Telegraph Avenue Oakland, California (Page 4 of 6)

Sample	Sample	Depth	TPHd	TPHg	MTBE	В	т	E	X	Total Lead	HVOCs	TPHmo	TOG
ID	Date	(feet bgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Fuel Dispens	er Samples												
AB-1	1988-1992e	8.0		65		1.9	3.4	1	4.2				
AB-2	1988-1992e	Surface		7,200		<0.0025	43	14	140				
AB-2	1988-1992e	2.0		78		0.83	2.1	0.76	4				
AB-3	1988-1992e	2.0		540		<0.0025	<0.005	<0.0025	18				
AB-4	1988-1992e	6.0		<1		<0.0025	<0.005	<0.0025	<0.0025				
AB-5	1988-1992e	6.0		5		<0.0025	<0.005	0.021	0.016				
AB-6	1988-1992e	5.0		<1		<0.0025	<0.005	<0.0025	<0.0025				
Tank Pit Sam	noles												
Tank Pit Botto	om												
TG1	11/27/91	13.0		130		0.37	2	3	82				
TG2	11/27/91	13.0		10.000		130	950	280	1,100				
TG3	11/27/91	13.0		6.300		76	540	200	900				
TG4	11/27/91	13.0		130		0.77	7.3	3.3	18				
TG5	11/27/91	13.0		10		0.65	0.0084	0.14	0.16				
TG6	11/27/91	13.0		12		<0.050	0.2	0.23	1				
Tank Pit Side	wall												
TG7	12/03/91	12.0		430		1.7	15	7.2	34	<10			
TG8	12/03/91	12.0		240		1.7	7.9	4.4	19	<10			
TG9	12/03/91	12.0		<1.0	5797.S	0.052	0.033	0.021	0.067	13			
TG10	12/03/91	12.0		1.7	7777 A	0.051	<0.005	0.044	<0.005	13			
TG11	12/03/91	12.0		420	TTTT.	1.5	10	6.2	29	13			
TG12	12/03/91	12.0		660	<u>1110</u> 7	4.3	24	11	49	<10			
Used-Oil Tan	k Pit Sample												
WO1	11/27/91	7.0	22	1.1		0.0057/200a	<0.005/1,200a	0.015/380a	<0.005/2,100a	<10	NDb	2	580
Product Line	Trench Samples												
PL1	12/06/91	2.0		<4.0		<0.020	0.077	0.035	0.140				
PL2	12/06/91	2.0		<1.0		<0.005	< 0.005	<0.005	<0.005				
PL3	12/06/91	2.0		150		0.690	0.450	2.3	7.3				
PL4	12/06/91	2.0		330		2.7	17	5.7	29				
PL5	12/06/91	2.0		<1.0		0.0053	<0.005	0.0088	0.0086				
PL6	12/06/91	2.0		4.9		<0.020	0.048	0.052	0.033				
PL7	12/06/91	2.0		38		<0.020	0.095	0.180	0.250				
PL8	12/06/91	2.0		5.8		0.330	0.590	0.080	0.720				
PL9	12/06/91	2.0		1.9		<0.005	<0.005	<0.005	<0.005				
PL10	12/06/91	2.0		<1.0		<0.005	<0.005	< 0.005	<0.005				

TABLE 1ACUMULATIVE SOIL ANLYTICAL RESULTSFormer Exxon Service Station 702352225 Telegraph AvenueOakland, California(Page 5 of 6)

Sample	Sample	Depth	TPHd	TPHg	MTBE	В	Т	E	х	Total Lead	HVOCs	TPHmo	TOG
ID	Date	(feet bgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Soil Stockpile S	Samples												
SS1-4	Nov-Dec 1991			120		<0.020	0.370	0.910	1.7	<1.0			
SS5-8	Nov-Dec 1991			180		<0.050	1.9	1.7	7.8				
SS9-12	Nov-Dec 1991			270		0.170	8.9	5.4	26				
SS13-16	Nov-Dec 1991			30		0.022	0.480	0.300	1.5				
SS17-20	Nov-Dec 1991			130		<0.020	1.8	1.9	7.8				
SS21-24	Nov-Dec 1991			<1.0		<0.005	<0.005	<0.005	0.011				
SS25-28	Nov-Dec 1991		35	1.2		<0.005	<0.005	0.025	0.0083		NDb		
EA1-4	Nov-Dec 1991			46		<0.250	0.110	0.130	1.5				
EA5-8	Nov-Dec 1991			94		<0.500	0.610	0.400	5.8				
EA9-12	Nov-Dec 1991			390		<1.0	2.3	3.2	24				
EA13-16	Nov-Dec 1991			80		0.150	0.830	0.700	4.3		_		
EA17-20	Nov-Dec 1991			1,200		<1.0	16	18	100				
EA21-24	Nov-Dec 1991			980		1.1	20	16	90				
EA25-28	Nov-Dec 1991			1,900		12	88	37	190	19			
EA29-32	Nov-Dec 1991			4,200		17	190	94	480				
SP-1-1	03/29/00			<1	<0.001a	<0.001	<0.001	<0.001	< 0.001	4.35	ND		
SP-1-1(1-4)	04/06/01		<2	<1	<0.01			1.000	 8	4.68	ND	<10	
SP-1 (1-4)	03/07/07		<1.0	<0.10	<0.0050	<0.0010	<0.0010	<0.0010	<0.0010	14		<10	
Comp(SP-1)	10/28/08		8.8	6.7	<0.0050	<0.0050	<0.0050	<0.0050	<0.010	10.6	ND	<25	

TABLE 1A CUMULATIVE SOIL ANLYTICAL RESULTS Former Exxon Service Station 70235 2225 Telegraph Avenue Oakland, California (Page 6 of 6)

Notes:	Alton wells B-5	through B-9 were advanced into monitoring wells MW6E through MW6I.
TPHg	=	Total petroleum hydrocarbons as gasoline analyzed using modified EPA Method 8015M/8015B.
TPHd	=	Total petroleum hydrocarbons as diesel analyzed using modified EPA Method 8015M/8015B.
MTBE	=	Methyl tertiary butyl ether analyzed using EPA Method 8260B.
BTEX	=	Benzene, toluene, ethylbenzene, and total xylenes analyzed using EPA Method 8020 or 8021B.
Total Lead	=	Total lead analyzed using EPA Method 6010B.
HVOCs	=	Halogenated volatiles organic compounds using EPA Method 8260B.
TPHmo	=	Total petroleum hydrocarbons as motor oil analyzed using Modified EPA Method 8015M/8015B.
TOG	=	Total oil and grease analyzed using EPA Method 5520.
TAME	=	Tertiary amyl methyl ether analyzed using EPA Method 8260B.
TBA	=	Tertiary butyl alcohol analyzed using EPA Method 8260B.
DIPE	=	Di-isopropyl ether analyzed using EPA Method 8260B.
EDB	=	1,2-dibromoethane analyzed using EPA Method 8260B.
1,2-DCA	=	1,2-dichloroethane analyzed using EPA Method 8260B.
ETBE	=	Ethyl tertiary butyl ether analyzed using EPA Method 8260B.
Ethanol	=	Ethanol analyzed using EPA Method 8260B.
Cadmium	=	Cadmium analyzed using EPA Method 6010.
Chromium	=	Chromium analyzed using EPA Method 6010.
Nickel	=	Nickel analyzed using EPA Method 6010.
Zinc	=	Zinc analyzed using EPA Method 6010.
ND	=	Analytes not detected at or above the laboratory method reporting limit.
feet bgs	=	Feet below ground surface.
mg/kg	=	Milligrams per kilogram.
	=	Not Analyzed/Not Applicable/Not sampled.
а	=	Analyzed using EPA Method 8021B.
b	=	Analyzed using EPA Method 8240.
с	=	Hydrocarbon pattern does not resemble the requested fuel.
d	=	Analyte detected in associated method blank.
е	=	Exact sampling date unclear from previous consultant reports.

TABLE 1B

ADDITIONAL CUMULATIVE SOIL ANALYTICAL RESULTS-VOCs

Former Exxon Service Station 70235

2225 Telegraph Avenue

Oakland, California

(Page 1 of 3)

Sample	Sample	Depth	TAME	TBA	DIPE	EDB	1,2-DCA	ETBE	Ethanol
ID	Date	(feet bgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(ma/ka)	(ma/ka)
Soil Boring S	Samples								
Prior to March	2007, soil boring	samples were not a	inalyzed for these	analytes.					
S-5-B5	03/01/07	5.0	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	
S-5-B7	03/05/07	5.0	<0.0050	<0.020	<0.0050	<0.0050	<0.0050	<0.0050	<0.10
S-10-B7	03/05/07	10.0	<0.0050	<0.020	< 0.0050	<0.0050	<0.0050	< 0.0050	<0.10
S-15-B7	03/05/07	15.0	<0.0050	<0.0050	< 0.0050	<0.0050	<0.0050	<0.0050	<0.10
S-16.5-B7	03/05/07	16.5	<0.0050	<0.020	<0.0050	<0.0050	< 0.0050	<0.0050	<0.10
S- 19-B7	03/05/07	19.0	<0.0050	<0.0050	<0.0050	< 0.0050	<0.0050	<0.0050	<0.10
S-21-B7	03/05/07	21.0	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.10
S-5-B8	03/01/07	5.0	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	
S-10-B8	03/01/07	10.0	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	
3-5-B9	03/02/07	5.0	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	
6-10-B9	03/02/07	10.0	<0.0050	0.045	<0.0050	< 0.0050	< 0.0050	< 0.0050	
S-11-B9	03/02/07	11.0	<0.025	0.067	<0.025	<0.025	< 0.025	< 0.025	
S-15-B9	03/06/07	15.0	<0.0050	0.034	<0.0050	<0.0050	< 0.0050	<0.0050	
S-19.5-B9	03/06/07	19.5	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	
S-23.5-B9	03/06/07	23.5	<0.0050	<0.0050	< 0.0050	<0.0050	<0.0050	<0.0050	
6-29.5-B9	03/06/07	29.5	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	
5-10-DP1	10/28/08	10.0	<0.010	<0.050	<0.010	<0.0050	<0.0050	<0.010	<0.25
6-15-DP1	10/28/08	15.0	<0.010	<0.050	<0.010	< 0.0050	< 0.0050	< 0.010	<0.25
-20-DP1	10/28/08	20.0	<0.010	<0.050	<0.010	<0.0050	< 0.0050	<0.010	<0.25
-25-DP1	10/28/08	25.0	<0.010	<0.050	<0.010	<0.0050	< 0.0050	< 0.010	<0.25
-30-DP1	10/28/08	30.0	<0.010	<0.050	<0.010	<0.0050	< 0.0050	<0.010	<0.25
-10-DP2	10/28/08	10.0	<0.010	<0.050	<0.010	<0.0050	<0.0050	<0.010	<0 25
-15-DP2	10/28/08	15.0	<0.010	<0.050	<0.010	<0.0050	<0.0050	< 0.010	<0.25
-20-DP2	10/28/08	20.0	<0.010	<0.050	<0.010	<0.0050	< 0.0050	< 0.010	<0.25
-25-DP2	10/28/08	25.0	<0.010	<0.050	<0.010	< 0.0050	< 0.0050	<0.010	<0.25
-30-DP2	10/28/08	30.0	<0.010	<0.050	<0.010	<0.0050	<0.0050	<0.010	<0.25
-5-CPT1	10/22/08	5.0	<0.010	<0.050	<0.010	<0.0050	<0.0050	<0.010	<0.25
S-5-CPT2	10/22/08	5.0	<0.010	<0.050	< 0.010	<0.0050	<0.0050	<0.010	<0.20
S-5-CPT3	10/22/08	5.0	<0.010	<0.050	<0.010	<0.0050	<0.0050	<0.010	<0.20

TABLE 1B ADDITIONAL CUMULATIVE SOIL ANALYTICAL RESULTS-VOCs Former Exxon Service Station 70235

2225 Telegraph Avenue

Oakland, California (Page 2 of 3)

Sample Sample Depth TAME TBA DIPE EDB 1,2-DCA ETBE Ethanol ID (feet bgs) Date (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg)

Fuel Dispenser Samples

Not analyzed for these analytes.

Tank Pit Samples

Not analyzed for these analytes.

Used-Oil Tank Pit Sample

Not analyzed for these analytes.

Product Line Trench Samples

Not analyzed for these analytes.

Soil Stockpile Samples

Prior to March 2007, soil stockpile samples were not analyzed for these analytes.

SP-1 (1-4)	03/07/07	 <0.0050	<0.020	<0.0050	<0.0050	<0.0050	< 0.0050	<0.10
Comp(SP-1)	10/28/08	 <0.010	< 0.050	< 0.010	< 0.0050	<0.0050	<0.010	<0.25

TABLE 1B ADDITIONAL CUMULATIVE SOIL ANALYTICAL RESULTS-VOCs Former Exxon Service Station 70235 2225 Telegraph Avenue Oakland, California (Page 3 of 3)

Notes:	Alton wells B-	5 through B-9 were advanced into monitoring wells MW6E through MW6I.
TPHg	=	Total petroleum hydrocarbons as gasoline analyzed using modified EPA Method 8015M/8015B.
TPHd	=	Total petroleum hydrocarbons as diesel analyzed using modified EPA Method 8015M/8015B.
MTBE	=	Methyl tertiary butyl ether analyzed using EPA Method 8260B.
BTEX	=	Benzene, toluene, ethylbenzene, and total xylenes analyzed using EPA Method 8020 or 8021B.
Total Lead	=	Total lead analyzed using EPA Method 6010B.
HVOCs	=	Halogenated volatiles organic compounds using EPA Method 8260B.
TPHmo	=	Total petroleum hydrocarbons as motor oil analyzed using Modified EPA Method 8015M/8015B.
TOG	=	Total oil and grease analyzed using EPA Method 5520.
TAME	=	Tertiary amyl methyl ether analyzed using EPA Method 8260B.
TBA	=	Tertiary butyl alcohol analyzed using EPA Method 8260B.
DIPE	=	Di-isopropyl ether analyzed using EPA Method 8260B.
EDB	=	1,2-dibromoethane analyzed using EPA Method 8260B.
1,2-DCA	Ξ	1,2-dichloroethane analyzed using EPA Method 8260B.
ETBE	=	Ethyl tertiary butyl ether analyzed using EPA Method 8260B.
Ethanol	=	Ethanol analyzed using EPA Method 8260B.
Cadmium	=	Cadmium analyzed using EPA Method 6010.
Chromium	=	Chromium analyzed using EPA Method 6010.
Nickel	=	Nickel analyzed using EPA Method 6010.
Zinc	=	Zinc analyzed using EPA Method 6010.
ND	=	Analytes not detected at or above the laboratory method reporting limit.
feet bgs	=	Feet below ground surface.
mg/kg	=	Milligrams per kilogram.
	=	Not Analyzed/Not Applicable/Not sampled.
а	=	Analyzed using EPA Method 8021B.
b	=	Analyzed using EPA Method 8240.
С	=	Hydrocarbon pattern does not resemble the requested fuel.
d	=	Analyte detected in associated method blank.
е	=	Exact sampling date unclear from previous consultant reports.
TABLE 1C ADDITIONAL CUMULATIVE SOIL ANALYTICAL RESULTS-METALS Former Exxon Service Station 70235 2225 Telegraph Avenue Oakland, California (Page 1 of 2)

Sample	Sample	Depth	Cadmium	Chromium	Nickel	Zinc	Sulfides	Cyanide
ID	Date	(feet bgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Soil Boring Sa Not analyzed fo	amples or these analytes.							
Fuel Dispense Not analyzed fo	or Samples or these analytes.							
Tank Pit Samp Not analyzed fo	bles or these analytes.							
<u>Used-Oil Tank</u> WO1	E Pit Sample 11/27/91	7.0	1.3	48	81	42		
Product Line 1 Not analyzed fo	Trench Samples or these analytes.							
Soil Stockpile	Samples							
SS1-4	Nov-Dec 1991							
SS5-8	Nov-Dec 1991							
SS9-12	Nov-Dec 1991							
SS13-16	Nov-Dec 1991							
SS17-20	Nov-Dec 1991						<1.0	<0.5
SS21-24	Nov-Dec 1991						<1.0	<0.5
SS25-28	Nov-Dec 1991							
EA1-4	Nov-Dec 1991							
EA5-8	Nov-Dec 1991							
EA9-12	Nov-Dec 1991							
EA13-16	Nov-Dec 1991							
EA17-20	Nov-Dec 1991							
EA21-24	Nov-Dec 1991							
EA25-28	Nov-Dec 1991		<1.0b	43b	55b	41b		
EA29-32	Nov-Dec 1991							
SP-1-1	03/29/00							
SP-1-1(1-4)	04/06/01							
SP-1 (1-4)	03/07/07							
Comp(SP-1)	10/28/08	***						

TABLE 1C ADDITIONAL CUMULATIVE SOIL ANALYTICAL RESULTS-METALS Former Exxon Service Station 70235 2225 Telegraph Avenue Oakland, California (Page 2 of 2)

Notes:	Alton wells B-5 thro	ugh B-9 were advanced into monitoring wells MW6E through MW6i.
TPHg	=	Total petroleum hydrocarbons as gasoline analyzed using modified EPA Method 8015M/8015B.
TPHd	=	Total petroleum hydrocarbons as diesel analyzed using modified EPA Method 8015M/8015B.
MTBE	=	Methyl tertiary butyl ether analyzed using EPA Method 8260B.
BTEX	=	Benzene, toluene, ethylbenzene, and total xylenes analyzed using EPA Method 8020 or 8021B.
Total Lead	=	Total lead analyzed using EPA Method 6010B.
HVOCs	=	Halogenated volatiles organic compounds using EPA Method 8260B.
TPHmo	=	Total petroleum hydrocarbons as motor oil analyzed using Modified EPA Method 8015M/8015B.
TOG	=	Total oil and grease analyzed using EPA Method 5520.
TAME	=	Tertiary amyl methyl ether analyzed using EPA Method 8260B.
TBA	=	Tertiary butyl alcohol analyzed using EPA Method 8260B.
DIPE	=	Di-isopropyl ether analyzed using EPA Method 8260B.
EDB	=	1,2-dibromoethane analyzed using EPA Method 8260B.
1,2-DCA	=	1,2-dichloroethane analyzed using EPA Method 8260B.
ETBE	=	Ethyl tertiary butyl ether analyzed using EPA Method 8260B.
Ethanol	=	Ethanol analyzed using EPA Method 8260B.
Cadmium	=	Cadmium analyzed using EPA Method 6010.
Chromium	=	Chromium analyzed using EPA Method 6010.
Nickel	=	Nickel analyzed using EPA Method 6010.
Zinc	=	Zinc analyzed using EPA Method 6010.
ND	=	Analytes not detected at or above the laboratory method reporting limit.
feet bgs	=	Feet below ground surface.
mg/kg	=	Milligrams per kilogram.
<u>1155</u> 0	=	Not Analyzed/Not Applicable/Not sampled.
а	=	Analyzed using EPA Method 8021B.
b	=	Analyzed using EPA Method 8240.
С	=	Hydrocarbon pattern does not resemble the requested fuel.
d	=	Analyte detected in associated method blank.
е	=	Exact sampling date unclear from previous consultant reports.

TABLE 2A CUMULATIVE GRAB GROUNDWATER ANALYTICAL RESULTS Former Exxon Service Station 70235 2225 Telegraph Avenue Oakland, California

(Page 1 of 2)

Sample	Sample	TPHd	TPHg	TPHmo	MTBE	В	Т	E	Х	TOG	HVOCs
ID	Date	(µg/L)									
Cas Daraha Car											
W-13-CP1	03/20/00		<50		-2	<0.5	<0.5	<0.5	-0.5		
W-13-GF1	03/29/00		<50		~2	<0.5	<0.5	<0.5	<0.5		_
W-23-GP1	03/29/00		<00		<2	<0.5	<0.5	<0.5	<0.5		
W-12-GP2	03/29/00		100		<2	<0.5	<0.5	<0.5	<0.5		_
W-23-GP2	03/29/00		<50		<2	<0.5	<0.5	< 0.5	<0.5		—
Boring Sample	<u>×s</u>										
W-15-B7	03/05/07	66b	<50	<470	0.54	<0.50	<0.50	<0.50	<0.50		-
W-22-B7	03/05/07	220b	<50	<470	<0.50	<0.50	<0.50	<0.50	<0.50		_
W-14-B8	03/02/07	1 9006	<50	2 800b	<0.50	<0.50	<0.50	<0.50	<0.50		
W-1+20	00/02/07	1,0000	-00	2,0000	-0.00	-0.00	-0.00	-0.00	-0.00		
W-14-16-B9	03/06/07	1,000b	38,000	<480	120	15,000	890	700	1,700	_	-
W-22.5-24-B9	03/06/07	81b	490	<480	17	160	21	12	40		
CPT Samples											
W-15-CPT1	10/24/08	26,000	2,400	720	<10	500	1,400	750	3,700		_
W-38-CPT1	10/24/08	380	670	340	<2.5	65	110	21	79		_
W-15 -CPT2	10/27/08	260	990	<250	2.0	<0.50	<0.50	<0.50	<1.0		—
W-29 -CPT2	10/27/08	d	60	d	0.66	<0.50	<0.50	<0.50	<1.0	_	
W-39 -CPT2	10/27/08	160	<50	<250	<0.50	<0.50	<0.50	<0.50	<1.0		-
				d							
W-14 -CPT3	10/23/08	d	20,000	d	59	4,200	2,400	860	4,100	-	
W- 41-CPT3	10/23/08	470	84	<250	1.9	27	10	3.5	18	—	
Used-Oil Tank	Pit Sample										
UOW	11/27/91	18 000	550			12/15a	4.9/7a	19/20a	72/<5a	580	70c
									2		
W-Comp	10/26/00										

TABLE 2A CUMULATIVE GRAB GROUNDWATER ANALYTICAL RESULTS Former Excon Service Station 70235 2225 Telegraph Avenue Oakland, California (Page 2 of 2)

Notes:		
TPHd	=	Total petroleum hydrocarbons as diesel analyzed using EPA Method 8015M or 8015B.
TPHg	=	Total petroleum hydrocarbons as gasoline analyzed using modified EPA Method 8015M.
TPHmo	=	Total petroleum hydrocarbons as motor oil analyzed using EPA Method 8015B
MTBE	=	Methyl tertiary butyl ether analyzed using EPA Method 8021B or 8260B.
BTEX	=	Benzene, toluene, ethylbenzene, and total xylenes analyzed using EPA Method 8021B.
TOG	=	Total oil and grease analyzed using EPA Method 5520.
HVOCs	=	Halogenated volatile organic compounds analyzed using EPA Method 8240 or 624.
TAME	=	Tertiary amyl methyl ether analyzed using EPA Method 8260B.
TBA	=	Tertiary butyl alcohol analyzed using EPA Method 8260B.
DIPE	=	Di-isopropyl ether analyzed using EPA Method 8260B.
EDB	=	1,2-dibromoethane analyzed using EPA Method 8260B.
1,2-DCA	=	1,2-dichloroethane analyzed using EPA Method 8260B.
ETBE	=	Ethyl tertiary butyl ether analyzed using EPA Method 8260B.
Ethanol	=	Ethanol analyzed using EPA Method 8260B.
Arsenic	=	Arsenic analyzed using EPA Method 200.7
Lead	=	Lead analyzed using EPA Method 200.7
Cadmium	=	Cadmium analyzed using EPA Method 200.7
Chromium	=	Chromium analyzed using EPA Method 200.7
Copper	=	Copper analyzed using EPA Method 200.7
Iron	=	Iron analyzed using EPA Method 200.7
Nickel	=	Nickel analyzed using EPA Method 200.7
Silver	=	Silver analyzed using EPA Method 200.7
Zinc	=	Zinc analyzed using EPA Method 200.7
µg/L	=	Micrograms per liter.
	=	Not sampled/Not analyzed.
а	=	Analyzed using EPA Method 624.
b	=	Hydrocarbon pattern does not resemble the requested fuel.
с	=	Bromoform.
d	=	Insufficient sample volume.

TABLE 2B

ADDITIONAL CUMULATIVE GRAB GROUNDWATER ANALYTICAL RESULTS - VOCs

Former Exxon Service Station 70235

2225 Telegraph Avenue Oakland, California

(Page 1 of 2)

Sample	Sample	TAME	TBA	DIPE	EDB	1,2-DCA	ETBE	Ethanol
ID	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
GeoProbe Samples	S							
Not analyzed for the	se analytes.							
Boring Samples								
W-15-B7	03/05/07	<0.50	<10	<0.50	<0.50	<0.50	<0.50	<100
W-22-B7	03/05/07	<0.50	<10	<0.50	<0.50	<0.50	<0.50	<100
W/ 44 DD	00/00/07	-0.50	-10	-0.50		0.70		
W-14-B8	03/02/07	<0.50	<12	<0.50	<0.50	<0.50	<0.50	<100
W-14-16-B9	03/06/07	<50	<500	<50	<50	<50	<50	<10.000
W-22.5-24-B9	03/06/07	<1.0	<10	3.4	<1.0	<1.0	<10	<200
CPT Samples								
W-15-CPT1	10/24/08	<10	270	<10	<10	<10	<10	<1.000
W-38-CPT1	10/24/08	<2.5	<25	<2.5	<2.5	<2.5	<2.5	<250
14/ 45 ODTO			-					
W-15-CP12	10/27/08	<0.50	<5.0	<0.50	< 0.50	<0.50	<0.50	<50
W-29-CP12	10/27/08	< 0.50	<5.0	<0.50	<0.50	<0.50	<0.50	<50
W-39 -CPT2	10/27/08	<0.50	<5.0	<0.50	<0.50	<0.50	<0.50	<50
W-14 -CPT3	10/23/08	<10	260	<10	<10	<10	<10	<1 000
W- 41-CPT3	10/23/08	<0.50	<5.0	<0.50	<0.50	<0.50	<0.50	<50
	10/20/00	0.00	010	0.00	0.00	0.00	-0.00	-00
Used-Oil Tank Pit S	Sample							
Not analyzed for the	se analytes.							
W-Comp	10/26/00	11 AMAG			1000		-	
W-15 -CPT2 W-29 -CPT2 W-39 -CPT2 W-14 -CPT3 W- 41-CPT3 Used-Oil Tank Pit S Not analyzed for thes W-Comp	10/27/08 10/27/08 10/23/08 10/23/08 10/23/08 Sample se analytes. 10/26/00	<0.50 <0.50 <10 <0.50	<5.0 <5.0 <5.0 260 <5.0	<0.50 <0.50 <10 <0.50	<0.50 <0.50 <10 <0.50	<0.50 <0.50 <10 <0.50	<0.50 <0.50 <10 <0.50	<50 <50 <1,000 <50

TABLE 2B

ADDITIONAL CUMULATIVE GRAB GROUNDWATER ANALYTICAL RESULTS -VOCs

Notes:		
TPHd	=	Total petroleum hydrocarbons as diesel analyzed using EPA Method 8015M or 8015B.
TPHg	=	Total petroleum hydrocarbons as gasoline analyzed using modified EPA Method 8015M.
TPHmo	=	Total petroleum hydrocarbons as motor oil analyzed using EPA Method 8015B
MTBE	=	Methyl tertiary butyl ether analyzed using EPA Method 8021B or 8260B.
BTEX	=	Benzene, toluene, ethylbenzene, and total xylenes analyzed using EPA Method 8021B.
TOG	=	Total oil and grease analyzed using EPA Method 5520.
HVOCs	=	Halogenated volatile organic compounds analyzed using EPA Method 8240 or 624.
TAME	=	Tertiary amyl methyl ether analyzed using EPA Method 8260B.
TBA	=	Tertiary butyl alcohol analyzed using EPA Method 8260B.
DIPE	=	Di-isopropyl ether analyzed using EPA Method 8260B.
EDB	=	1,2-dibromoethane analyzed using EPA Method 8260B.
1,2-DCA	=	1,2-dichloroethane analyzed using EPA Method 8260B.
ETBE	=	Ethyl tertiary butyl ether analyzed using EPA Method 8260B.
Ethanol	=	Ethanol analyzed using EPA Method 8260B.
Arsenic	=	Arsenic analyzed using EPA Method 200.7
Lead	=	Lead analyzed using EPA Method 200.7
Cadmium	=	Cadmium analyzed using EPA Method 200.7
Chromium	=	Chromium analyzed using EPA Method 200.7
Copper	=	Copper analyzed using EPA Method 200.7
Iron	=	Iron analyzed using EPA Method 200.7
Nickel	=	Nickel analyzed using EPA Method 200.7
Silver	=	Silver analyzed using EPA Method 200.7
Zinc	=	Zinc analyzed using EPA Method 200.7
µg/L	=	Micrograms per liter.
	=	Not sampled/Not analyzed.
а	=	Analyzed using EPA Method 624.
b	=	Hydrocarbon pattern does not resemble the requested fuel.
с	=	Bromoform.
d	=	Insufficient sample volume.

TABLE 2C

ADDITIONAL CUMULATIVE GRAB GROUNDWATER ANALYTICAL RESULTS -METALS

Former Exxon Service Station 70235 2225 Telegraph Avenue Oakland, California

(Page 1 of 2)

Sample ID	Sample Date	Arsenic (µg/L)	Lead (µg/L)	Cadmium (µg/L)	Chromium (µg/L)	Copper (µg/L)	Iron (µg/L)	Nickel (µg/L)	Silver (µg/L)	Zinc (µg/L)
GeoProbe Not analyze	Samples ed for these anal	ytes.								
Boring Sa Not analyze	mples ed for these anal	ytes.								
<u>CPT Samp</u> Not analyze	ples ed for these anal	ytes.								
<u>Used-Oil 1</u> UOW	ank Pit Sample 11/27/91	-	<100	<5	<10			30		10
W-Comp	10/26/00	11.5	<5	<5	<10	<10	825	27.5	<10	28.5

TABLE 2C

ADDITIONAL CUMULATIVE GRAB GROUNDWATER ANALYTICAL RESULTS -METALS

Notes		
TDHA	_	
	_	Total petroleum nyorocarbons as olesei analyzed using EPA Method 8015M or 8015B.
TPUmo	_	Total petroleum nyorocarbons as gasoline analyzed using modified EPA Method 8015M.
	-	total petroleum nyorocarbons as motor oli analyzed using EPA Method 8015B
	=	Methyl tertiary butyl ether analyzed using EPA Method 8021B or 8260B.
BIEX	=	Benzene, toluene, ethylbenzene, and total xylenes analyzed using EPA Method 8021B.
TOG	=	I otal oil and grease analyzed using EPA Method 5520.
HVOCS	=	Halogenated volatile organic compounds analyzed using EPA Method 8240 or 624.
TAME	=	Tertiary amyl methyl ether analyzed using EPA Method 8260B.
IBA	=	lertiary butyl alcohol analyzed using EPA Method 8260B.
DIPE	=	Di-isopropyl ether analyzed using EPA Method 8260B.
EDB	=	1,2-dibromoethane analyzed using EPA Method 8260B.
1,2-DCA	=	1,2-dichloroethane analyzed using EPA Method 8260B.
ETBE	=	Ethyl tertiary butyl ether analyzed using EPA Method 8260B.
Ethanol	=	Ethanol analyzed using EPA Method 8260B.
Arsenic	=	Arsenic analyzed using EPA Method 200.7
Lead	=	Lead analyzed using EPA Method 200.7
Cadmium	=	Cadmium analyzed using EPA Method 200.7
Chromium	=	Chromium analyzed using EPA Method 200.7
Copper	=	Copper analyzed using EPA Method 200.7
Iron	=	Iron analyzed using EPA Method 200.7
Nickel	=	Nickel analyzed using EPA Method 200.7
Silver	=	Silver analyzed using EPA Method 200,7
Zinc	=	Zinc analyzed using EPA Method 200.7
µg/L	=	Micrograms per liter.
	=	Not sampled/Not analyzed.
а	=	Analyzed using EPA Method 624.
b	=	Hydrocarbon pattern does not resemble the requested fuel.
с	=	Bromoform.
d	=	Insufficient sample volume.

TABLE 3A CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA Former Exxon Service Station 70235 2225 Telegraph Avenue Oakland, California

Well ID	Sampling	TOC Elev.	DTW	GW Elev.	NAPL	TPHd	TPHg	TPHmo	MTBE 8021B	MTBE 8260B	В	Т	E	x
	Date	(feet)	(feet)	(feet)	(feet)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW6A	June 1988	Well insta	lled.											
MW6A	06/24/88	98.99i									<0.5	<1	<2	<1
MW6A	07/11/88	98.99i	13.25	85.74										
MW6A	10/20/88	98.99i									0.6	<1	<2	<1
MW6A	12/15/88	98.99i	13.40	85.59i										
MW6A	09/07/89	98.99i					ND				2.0	ND	ND	ND
MW6A	05/11/90	98.99i	12.87	86.12i			<500				150	6.2	<0.25	13
MW6A	10/16/90	98.99i	13.27	85.72i										
MW6A	12/06/90	98.99i	13.28	85.71i										
MW6A	02/08/91	98.99i	12.49	86.50i										
MW6A	05/07/91	98.99i	11.94	87.05i			2,700				700	64	67	74
MW6A	06/26/91	98.99i	12.87	86.12i										
MW6A	08/05/91	98.99i	13.44	85.55i										
MW6A	08/14/91	98.99i	13.47	85.52i			ND				3.6	<0.5	<0.5	<0.5
MW6A	09/11/91	98.99i	13.48	85.51i										
MW6A	10/16/91	98.99i	13.64	85.35i										
MW6A	12/30/91	Well dama	aged.											
MW6A	05/02/92	Well destr	oyed.											
MW6B	June 1988	Well instal	lled.											
MW6B	06/24/88	98.81i					34347				<0.5	<1	<2	5.0
MW6B	07/11/88	98.81i	12.86	85.95i										
MW6B	10/20/88	98.81i				_					41	<1	<2	<1
MW6B	12/15/88	98.81i	12.94	85.87i										
MW6B	09/07/89	98.81i					2,700				70	3.0	ND	160
MW6B	04/30/90	98.81i	12.53	86.28i			168				45	8.0	60	22
MW6B	10/16/90	98.81i	12.73	86.08i										
MW6B	12/06/90	98.81i	12.74	86.07i										
MW6B	01/14/91	98.81i	12.57	86.24i										
MW6B	02/08/91	98.81i	12.16	86.65i										
MW6B	04/02/91	98.81i	11.50	87.31i										
MW6B	05/07/91	98.81i	12.02	86.79i			3.300				240	6.0	20	660
MW6B	05/31/91	98.81i	12.40	86.41i										
MW6B	06/26/91	98.81i	12.69	86.12i										
MW6B	08/05/91	98.81i	12.95	85.86i										_
MW6B	08/14/91	98.81i	12.93	85.88i		_	980				9.1	42	310	150
				00.00.			000				0.1	144	010	100

TABLE 3A CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA Former Exxon Service Station 70235

2225 Telegraph Avenue Oakland, California

Well ID	Sampling	TOC Elev.	DTW	GW Elev.	NAPL	TPHd	TPHg	TPHmo	MTBE 8021B	MTBE 8260B	В	Т	E	Х
	Date	(feet)	(feet)	(feet)	(feet)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW6B	09/11/91	98.81i	13.01	85.80i								<u></u>		
MW6B	10/16/91	98.81i	13.09	85.72i							—			
MW6B	12/30/91	98.81i	12.62	86.19i										
MW6B	12/31/91	98.81i		100			1,200				46	<5.0	85	220
MW6B	02/25/92	98.81i	11.81	87.00i										
MW6B	03/25/92	98.81i	11.58	87.23i			190				31	8.6	84	8.6
MW6B	06/16/92	15.34	12.54	2.80			1,700				44	1.7	7.2	230
MW6B	09/08/92	15.34	12.87	2.47	No		2,900				35	8.3	110	330
MW6B	11/05/92	15.34	12.70	2.64	No		1,400				29	<0.5	75	190
MW6B	12/14/92	15.34	12.19	3.15	No									_
MW6B	01/28/93	15.34	11.39	3.95	No									
MW6B	02/11/93	15.34	11.70	3.64	No		210				1.2	<0.5	2.8	4.3
MW6B	03/09/93	15.34	11.70	3.64	No						—			
MW6B	04/14/93	15.34	11.87	3.47	No									
MW6B	05/11/93	15.34	12.22	3.12	No		570				54	2.4	37	36
MW6B	06/17/93	15.34	12.46	2.88	No				—					
MW6B	07/26/93	15.34	12.72	2.58	No									
MW6B	08/10/93	15.34	12.82	2.52	No	_	1,300				48	2.4	28	44
MW6B	09/21/93	15.34	13.08	2.26	No								_	
MW6B	10/27/93	15.34	13.18	2.16	No		1,300			—	23	1.7	25	250
MW6B	11/23/93	15.34	13.07	2.27	No		1000							
MW6B	12/17/93	15.34		•••		_								
MW6B	02/16/94	15.34	12.07	3.27			300				16	<0.5	3.5	2.4
MW6B	05/31/94	15.34	12.42	2.92	No		690				21	3.9	11	36
MW6B	08/30/94	17.48j	13.02	4.46	No		260				4	0.62	0.82	4
MW6B	11/11/94	17.48j	11.72	5.76	No		300			—	60	2	1.2	2.4
MW6B	02/27/95	17.48j	11.84	5.64	No		180		1		28	2.6	0.65	1.6
MW6B	05/30/95	17.48j	12.09	5.39	No		200				23	3.6	0.88	2.3
MW6B	08/30/95	17.48j	12.76	4.72	No		120		42		3.8	3.6	0.61	0.69
MW6B	11/26/96	17.48j	12.26	5.22	No		<50		<30		<0.5	<0.5	<0.5	<0.5
MW6B	02/27/97	17.48j	11.73	5.75	No		<50		<30		<0.5	<0.5	<0.5	0.80
MW6B	05/21/97	17.48j	12.70	4.78	No		<50		<30		<0.5	<0.5	<0.5	<0.5
MW6B	08/18/97	17.48j	12.89	4.59	No	20 mm (m	380		<30		4.3	<0.5	1.2	1.5
MW6B	03/13/98	17.48j	11.15	6.33	No		360		<6.2		93	4.9	4.1	12
MW6B	04/20/98	17.48j	11.49	5.99	No		110		5.5		19	1.3	1.5	3.9
MW6B	07/21/98	21.37	12.18	9.19	No		<50	—	8.7		0.84	0.59	<0.5	<0.5
MW6B	10/06/98	21.37	12.70	8.67	No		190		6.0		2.4	0.56	0.51	1.2
MW6B	01/11/99	21.37	12.48	8.89	No		50		3.9		1.2	<0.5	<0.5	0.95
MM 6B	04/08/99	21.37	11.52	9.85	No		85		14.0		4.4	<0.5	<0.5	<0.5

Page 2 of 23

Former Exxon Service Station 70235 2225 Telegraph Avenue Oakland, California

Well ID	Sampling	TOC Elev.	DTW	GW Elev.	NAPL	TPHd	TPHg	TPHmo	MTBE 8021B	MTBE 8260B	В	Т	E	X
	Date	(feet)	(feet)	(feet)	(feet)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW6B	07/19/99	21.37	11.39	9.98	No		<50		<2.50		<0.5	<0.5	<0.5	<0.5
MW6B	07/27/99	21.37	12.71	8.66	No									
MW6B	10/25/99	21.37	12.49	8.88	No		260		<2		2.3	<0.5	<0.5	<0.5
MW6B	01/27/00	21.37	11.80	9.57	No		770		13		210	4.8	4.9	13
MW6B	04/03/00	21.37	11.61	9.76	No		670		3.4		110	6.6	3.8	9.45
MW6B	07/05/00	21.37	12.27	9.10	No		<50		2.1		0.89	<0.5	<0.5	<0.5
MW6B	10/04/00	21.37	12.67	8.70	No		<50		54		<0.5	<0.5	<0.5	2
MW6B	10/05/00	21.37						<1,000						
MW6B	01/04/01	21.37	12.47	8.90	No		<50		35		<0.5	<0.5	<0.5	<0.5
MW6B	04/03/01	21.37	11.81	9.56	No		<50	internet (7.8		<0.5	<0.5	<0.5	<0.5
MW6B	07/05/01	21.37	12.44	8.93	No		<50		3		<0.5	<0.5	<0.5	<0.5
MW6B	10/03/01	21.37	12.52	8.85	No		310		10		2.1	<0.5	6.5	11.6
MW6B	Oct-01	21.09	Well sur	veyed in comp	liance with	AB 2886 require	ements.							
MW6B	01/02/02	21.09	11.25	9.84	No		710		21.8	3 44- 5	99.5	4.40	3.30	7.40
MW6B	04/02/02	21.09	11.72	9.37	No		<50.0	<100	12.2		0.60	<0.50	<0.50	<0.50
MW6B	07/01/02	21.09	12.34	8.75	No		<50	<100a	10.7		<0.5	<0.5	<0.5	<0.5
MW6B	10/02/02	21.09	12.71	8.38	No		<50.0	<100	10.9		<0.5	<0.5	<0.5	<0.5
MW6B	01/07/03	21.09	11.65	9.44	No		82.5	<50	20.8	27.8	3.7	0.5	<0.5	0.8
MW6B	06/17/03	21.09	12.09	9.00	No		<50.0	<100	7.3	6.10a	0.50	<0.5	<0.5	<0.5
MW6B	07/16/03	21.09	12.29	8.80	No		<50.0	<100	11.0	8.5	<0.50	<0.5	<0.5	<0.5
MW6B	10/07/03	21.09	12.63	8.46	No	<50	<50.0	<100	4.1	3.10	<0.50	<0.5	<0.5	<0.5
MW6B	01/14/04	21.09	11.50	9.59	No	54	62.0	<100	9.0	11.0	2.10	<0.5	<0.5	<0.5
MW6B	06/03/04	21.09	12.12	8.97	No		56.0	<100	6.2	5.90	0.60	<0.5	<0.5	<0.5
MW6B	08/12/04	21.09	с	С	С	<50c	94.0c	<100c		3.40c	0.70c	<0.5c	<0.5c	0.9c
MW6B	11/04/04	21.09	12.27	8.82	No	<50	<50.0	143		2.60	<0.50	<0.5	<0.5	0.7
MW6B	02/01/05	21.09	11.48	9.61	No	<100	55.9	<100		7.50	1.30	<0.5	<0.5	<0.5
MW6B	05/03/05	21.09	11.48	9.61	No	<50	<50.0	<100		4.90	0.50	<0.5	<0.5	0.8
MW6B	08/04/05	21.09	12.23	8.86	No	<50.0	<50.0	<100		5.99	<0.500	<0.500	<0.500	0.692
MW6B	10/27/05	21.09	12.60	8.49	No	<50.0	<50.0	<50.0		1.65	<0.50	0.94f	<0.50	1.29
MW6B	01/26/06	21.09	11.39	9.70	No	83d	510	<500		12	130	12	14	39
MW6B	04/28/06	21.09	10.99	10.10	No	240d	3,100	<470		43	920h	110	130	290
MW6B	07/05/06	21.09	12.05	9.04	No	<47.6	79.4	<95.2		11.4	2.95	<1.00	<1.00	<3.00
MW6B	10/27/06	21.09	12.53	8.56	No	<47	<50.0	<470		2.25	0.63	<0.50	<0.50	<0.50
MW6B	01/19/07	21.09	12.05	9.04	No	<47	<50.0	<470		3.75	<0.50	<0.50	<0.50	<0.50
MW6B	04/24/07	21.09	11.71	9.38	No	60.9d	<50.0	<46.9		4.19	0.51	<0.50	<0.50	<0.50
MW6B	07/24/07	21.09	12.24	8.85	No	<47	<50	<470		3.2	0.80	<0.50	<0.50	<0.50
MW6B	12/03/07	21.09	12.71	8.38	No	<47	64	<470		2.8	2.5	<0.50	<0.50	<0.50
MW6B	03/06/08	21.09	11.50	9.59	No	52d	330	<470		6.2	60	2.5	4.1	5.4
MW6B	06/26/08	21.09	12.76	8.33	No	<47	<50	<470		6.4	<0.50	<0.50	<0.50	<0.50

Page 3 of 23

TABLE 3A CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA Former Exxon Service Station 70235

2225 Telegraph Avenue Oakland, California

Well ID	Sampling Date	TOC Elev. (feet)	DTW (feet)	GW Elev. (feet)	NAPL (feet)	TPHd (µg/L)	TPHg (µg/L)	TPHmo (µg/L)	MTBE 8021B (µg/L)	MTBE 8260B (µg/L)	B (µg/L)	Т (µg/L)	E (µg/L)	Х (µg/L)
MW6B	08/12/08	21.09	12.89	8.20	No	72.0d,m,n	<50.0	89.3m		3.59	1.52	<0.50	<0.50	1.18
MW6B	10/23/08	21.09	13.18	7.91	No	<50	<50	<250		6.1	<0.50	<0.50	<0.50	<1.0
MW6E	10/04/88	98.99i	Wellins	talled.										
MW6E	10/20/88	98.99i									1.1	<2	<1	3.4
MW6E	12/15/88	98.99i	13.70	85.29i										
MW6E	09/07/89	98.99i					220				3.0	ND	ND	ND
MW6E	04/30/90	98.99i	13.43	85.56i			250				57	<5.0	<5.0	53
MW6E	10/16/90	98.99i	13.77	85.22i										_
MW6E	12/06/90	98.99i	13.95	85.04i				1						
MW6E	01/14/91	98.99i	13.95	85.04i										
MW6E	02/08/91	98.99i	13.20	85.79i										
MW6E	04/02/91	98.99i	12.28	86.71i										
MW6E	05/07/91	98.99i	13.48	85.51i		_	160				32	1.0	2.2	1.4
MW6E	05/31/91	98.99i	14.09	84.90i										
MW6E	06/26/91	98.99i	12.54	86.45i										
MW6E	08/05/91	98.99i	14.39	84.60i										
MW6E	08/14/91	98.99i	14.18	84.81i			ND				0.9	<0.5	<0.5	<0.5
MW6E	09/11/91	98.99i	14.73	84.26i										
MW6E	10/16/91	98.99i	14.40	84.59i										
MW6E	12/30/91	98.99i	13.39	85.60i										
MW6E	12/31/91	98.99i					90		—		3.1	<0.5	<0.5	<0.5
MW6E	02/25/92	98.99i	13.16	85.83i									_	_
MW6E	03/25/92	98.99i	12.15	86.84i			830				41	1.0	3.8	16
MW6E	06/16/92	15.23	13.54	1.69			3,400				300	23	68	510
MW6E	09/08/92	15.23	14.78	0.45	No		480				27	<0.5	3.6	21
MW6E	11/05/92	15.23				,								
MW6E	12/14/92	15.23												
MW6E	01/28/93	15.23	11.62	3.61	No									
MW6E	02/11/93	15.23	12.85	2.38	No		270				15	<0.5	<0.5	8.7
MW6E	03/09/93	15.23	12.83	2.40	No						-			
MW6E	04/14/93	15.23			No					/===				
MW6E	05/11/93	15.23	13.59	1.64	No		<50				2.3	<0.5	1.4	3.2
MW6E	06/17/93	15.23	13.74	1.49	No									
MW6E	07/26/93	15.23	14.01	1.22	No									
MW6E	08/10/93	15.23	14.13	1.10	No		1,700				130	2.7	23	140
MW6E	09/21/93	15.23	14.20	1.03	No									
MW6E	10/27/93	15.23	14.34	0.89	No		100				6.0	<0.5	<0.5	<0.5

Former Exxon Service Station 70235 2225 Telegraph Avenue Oakland, California

Well ID	Sampling	TOC Elev.	DTW	GW Elev.	NAPL	TPHd	TPHg	TPHmo	MTBE 8021B	MTBE 8260B	В	Т	E	Х
	Date	(feet)	(feet)	(feet)	(feet)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW6E	11/23/93	15.23	13.97	1.26	No		—							
MW6E	12/17/93	15.23	13.08	2.15	No								-	
MW6E	02/16/94	15.23	13.34	1.89	No		640				45	<0.5	12	15
MW6E	05/31/94	15.23	13.82	1.41	No		52				1.5	0.97	<0.5	<0.5
MW6E	08/30/94	17.63j	14.32	3.31	No		920				22	0.98	5.2	33
MW6E	11/11/94	17.63j	13.92	3.71	No		910				13	2.4	13	2.5
MW6E	02/27/95	17.63j	12.96	4.67	No		<50				1.9	1.3	<0.5	0.83
MW6E	05/30/95	17.63j	13.20	4.43	No		<50			_	<0.5	<0.5	<0.5	<0.5
MW6E	08/30/95	17.63j	13.85	3.78	No		1,500		11		91	2.3	56	59
MW6E	11/26/96	17.63j	12.94	4.69	No		<50		<30		1.1	<0.5	<0.5	<0.5
MW6E	02/27/97	17.63j	12.28	5.35	No		<50		<30		<0.5	<0.5	<0.5	<0.5
MW6E	05/21/97	17.63j	13.60	4.03	No		160	—	<5		10	1.4	5.5	4.8
MW6E	08/18/97	17.63j	13.75	3.88	No		66		<30		<0.5	<0.5	<0.5	<0.5
MW6E	03/13/98	17.63j	11.36	6.27	No		<50		<2.5		<0.5	<0.5	<0.5	<0.5
MW6E	04/20/98	17.63j	11.88	5.75	No		<50		<2.5		<0.5	<0.5	<0.5	<0.5
MW6E	07/21/98	21.58	13.10	8.48	No		1,200		<10		81	3.1	28	77
MW6E	10/06/98	21.58	13.55	8.03	No		<50		6.6		1.4	0.51	<0.5	0.97
MW6E	01/11/99	21.58	13.40	8.18	No		<50		5.1		<0.5	<0.5	<0.5	<0.5
MW6E	04/08/99	21.58	12.04	9.54	No		<50		4.7		<0.5	<0.5	<0.5	<0.5
MW6E	07/19/99	21.58	11.59	9.99	No									रुपर :
MW6E	07/27/99	21.58	13.65	7.93	No									
MW6E	10/25/99	21.58	13.52	8.06	No		<50		2.5		<0.5	<0.5	<0.5	<0.5
MW6E	01/27/00	21.58	11.71	9.87	No		<50		2.3		<0.5	<0.5	<0.5	<0.5
MW6E	04/03/00	21.58	12.11	9.47	No		<50		<2		0.51	<0.5	<0.5	<0.5
MW6E	07/05/00	21.58	12.91	8.67	No		<50		<2		3.7	<0.5	<0.5	<0.5
MW6E	10/04/00	21.58	13.35	8.23	No		<50		<2		4.1	<0.5	<0.5	<0.5
MW6E	10/05/00	21.58			:		1 944	<1,000				0000		
MW6E	01/04/01	21.58	13.09	8.49	No		61		<2		11	<0.5	<0.5	<0.5
MW6E	04/03/01	21.58	12.39	9.19	No		<50		<2		<0.5	<0.5	<0.5	<0.5
MW6E	07/05/01	21.58	13.21	8.37	No		210		<2		80	<0.5	0.94	2.3
MW6E	10/03/01	21.58	13.30	8.28	No		<50	: 	<2		2.8	<0.5	<0.5	<0.5
MW6E	Oct-01	21.24	Well sur	veyed in comp	liance with	AB 2886 require	ements.							
MW6E	01/02/02	21.24	10.11	11.13	No		<100	h	<0.5		<0.50	<0.50	<0.50	<0.50
MW6E	04/02/02	21.24	12.11	9.13	No		<50.0	<100	0.70		<0.50	<0.50	<0.50	<0.50
MW6E	07/01/02	21.24	12.46	8.78	No		56.0	<100a	<0.5		19.9	<0.5	<0.5	<0.5
MW6E	10/02/02	21.24	13.48	7.76	No	<u></u>	<50.0	<100	0.8		0.5	<0.5	<0.5	<0.5
MW6E	01/07/03	21.24	11.81	9.43	No		<50.0	<50	<0.5	<0.50	0.5	<0.5	<0.5	<0.5
MW6E	06/17/03	21.24	12.72	8.52	No		<50.0	153	<0.5	<0.50	<0.50	<0.5	<0.5	<0.5
MW6E	07/16/03	21.24	12.92	8.32	No		<50.0	<100	<0.5	<0.50	4.50	<0.5	<0.5	<0.5

Page 5 of 23

Well ID	Sampling	TOC Elev.	DTW	GW Elev.	NAPL	TPHd	TPHa	TPHmo	MTBE 8021B	MTBE 8260B	В	Т	E	X
	Date	(feet)	(feet)	(feet)	(feet)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW6E	10/07/03	21.24	13.34	7.90	No	<50	<50.0	<100	0.9	0.60	2.50	<0.5	<0.5	<0.5
MW6E	01/14/04	21.24	11.92	9.32	No	<50	<50.0	<100	<0.5	<0.50	0.50	<0.5	<0.5	<0.5
MW6E	06/03/04	21.24	12.97	8.27	No	<50	<50.0	<100	<0.5	<0.50	<0.50	<0.5	<0.5	<0.5
MW6E	08/12/04	21.24	с	С	С	<50c	<50.0c	<100c		<0.50c	4.30c	<0.5c	<0.5c	0.8c
MW6E	11/04/04	21.24	12.68	8.56	No	<50	<50.0	124		<0.50	<0.50	<0.5	<0.5	<0.5
MW6E	02/01/05	21.24	11.75	9.49	No	<100	<50.0	<100		<0.50	<0.50	<0.5	<0.5	<0.5
MW6E	05/03/05	21.24	11.93	9.31	No	64d	<50.0	116		<0.50	<0.50	<0.5	<0.5	<0.5
MW6E	08/04/05	21.24	12.92	8.32	No	96.2d	87.9	122		<0.500	14.1	<0.500	<0.500	0.792
MW6E	10/27/05	21.24	13.24	8.00	No	<50.0	<50.0	<50.0		< 0.500	<0.50	0.91f	<0.50	1.22
MW6E	01/26/06	21.24	11.78	9.46	No	<50	<50	<500		<0.50	7.2	0.67	0.71	2.0
MW6E	04/28/06	21.24	11.27	9.97	No	<47	<50	<470		<0.50	<0.50	<0.50	<0.50	<0.50
MW6E	07/05/06	21.24	12.67	8.57	No	149	<50.0	316		<0.500	<1.00	<1.00	<1.00	<3.00
MW6E	10/27/06	21.24	13.34	7.90	No	<47	<50.0	<470		<0.500	<0.50	0.81	<0.50	1.26
MW6E	01/19/07	21.24	12.66	8.58	No	<47	<50.0	<470		<0.500	2.33	<0.50	<0.50	<0.50
MW6E	04/24/07	21.24	12.00	9.24	No	82.2d	<50.0	76.7		< 0.500	<0.50	<0.50	<0.50	<0.50
MW6E	07/24/07	21.24	13.02	8.22	No	70d	55	<470		<0.50	18	<0.50	<0.50	<0.50
MW6E	12/03/07	21.24	13.24	8.00	No	<47	<50	<470		<0.50	<0.50	<0.50	<0.50	<0.50
MW6E	03/06/08	21.24	11.79	9.45	No	<47	<50	<470		<0.50	<0.50	<0.50	<0.50	<0.50
MW6E	06/26/08	21.24	13.15	8.09	No	<47	<50	<470		< 0.50	<0.50	<0.50	<0.50	<0.50
MW6E	08/12/08	21.24	13.32	7.92	No	72.7d,m,n	<50.0	112m		<0.500	6.74	< 0.50	<0.50	3.51
MW6E	10/23/08	21.24	13.52	7.72	No	<50	<50	<250		<0.50	<0.50	<0.50	<0.50	<1.0
MW6F	10/05/88	99.91i	Well ins	talled.										
MW6F	10/25/88	99.91i		1000			ND				<0.5	<1	<2	2.4
MW6F	12/15/88	99.91i	14.48	85.43i										
MW6F	09/07/89	99.91i		<u>1997</u> 2			ND				ND	ND	ND	ND
MW6F	04/30/90	99.91i	14.14	85.77i			ND				ND	ND	ND	ND
MW6F	10/16/90	99.91i	14.77	85.14i				_						
MW6F	12/06/90	99.91i	14.81	85.10i										
MW6F	01/14/91	99.91i	14.73	85.18i	—									-
MW6F	02/08/91	99.91i	13.73	86.18ii										
MW6F	04/02/91	99.91i	12.38	87.53i										-
MW6F	05/07/91	99.91i	13.67	86.24i		_	ND				ND	<0.5	<0.5	<0.5
MW6F	05/31/91	99.91i	14.43	85.48i			107 III. III.							
MW6F	06/26/91	99.91i	14.81	85.10i										
MW6F	08/05/91	99.91i	14.96	84.95i										
MW6F	08/14/91	99.91i	14.87	85.04i			ND				ND	<0.5	<0.5	<0.5
MW6F	09/11/91	99.91i	15.11	84.80i										

TABLE 3A CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA

Former Exxon Service Station 70235 2225 Telegraph Avenue Oakland, California

Well ID	Sampling	TOC Elev.	DTW	GW Elev.	NAPL	TPHd	TPHg	TPHmo	MTBE 8021B	MTBE 8260B	В	Т	E	x
	Date	(feet)	(feet)	(feet)	(feet)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW6F	10/16/91	99.91i	15.16	84.75i								5775		1000
MW6F	12/30/91	99.91i	13.78	86.13i										
MW6F	12/31/91	99.91i					ND				ND	<0.5	<0.5	<0.5
MW6F	02/25/92	99.91i	12.68	87.23i		·								1.000
MW6F	03/25/92	99.91i	11.93	87.98i			ND				ND	<0.5	<0.5	<0.5
MW6F	06/16/92	16.46	14.34	2.12			ND				ND	<0.5	<0.5	<0.5
MW6F	09/08/92	16.46	14.75	1.71	No	· · · · ·	<50			_	<0.5	<0.5	<0.5	<0.5
MW6F	11/05/92	16.46	14.35	2.11	No	· · · · ·	<50				<0.5	<0.5	<0.5	<0.5
MW6F	12/14/92	16.46	12.90	3.56	No								·	
MW6F	01/28/93	16.46	11.60	4.86	No									
MW6F	02/11/93	16.46	12.25	4.21	No		<50	_			<0.5	<0.5	<0.5	<0.5
MW6F	03/09/93	16.46	12.50	3.96	No									
MW6F	04/14/93	16.46	12.71	3.75	No									
MW6F	05/11/93	16.46	13.63	2.83	No		<50							
MW6F	06/17/93	16.46	14.02	2.44	No						_			
MW6F	07/26/93	16.46		7.57										
MW6F	08/10/93	16.46		7,55								1000		
MW6F	09/21/93	16.46	14.80	1.66	No									
MW6F	10/27/93	16.46	14.85	1.61	No		<50				<0.5	<0.5	<0.5	<0.5
MW6F	11/23/93	16.46	Well ina	ccessible.										
MW6F	12/17/93	16.46	13.86	2.60	No						1000			
MW6F	02/16/94	16.46	13.08	3.38	No		<50				<0.5	<0.5	<0.5	<0.5
MW6F	05/31/94	16.46	14.06	2.40	No		<50				<0.5	<0.5	<0.5	<0.5
MW6F	08/30/94	18.58j	14.84	3.74	No		<50				<0.5	<0.5	<0.5	<0.5
MW6F	11/11/94	18.58j	12.60	5.98	No		<50				<0.5	0.54	<0.5	<0.5
MW6F	02/27/95	18.58j	12.75	5.83	No		<50				6.2	3.0	0.82	3.5
MW6F	05/30/95	18.58j	13.16	5.42	No		<50				<0.5	<0.5	<0.5	<0.5
MW6F	08/30/95	18.58j	14.31	4.27	No		<50		<10		<0.5	<0.5	<0.5	<0.5
MW6F	11/26/96	18.58j	13.29	5.29	No		<50	-	<30		<0.5	<0.5	<0.5	<0.5
MW6F	02/27/97	18.58j	-	2.000		_							-	
MW6F	05/21/97	18.58j	14.18	4.40	No									
MW6F	08/18/97	18.58j	14.69	3.89	No									
MW6F	03/13/98	18.58j	10.93	7.65	No		<50		<2.5		<0.5	<0.5	<0.5	<0.5
MW6F	04/20/98	18.58j	11.77	6.81	No									
MW6F	07/21/98	22.51	13.62	8.89	No									
MW6F	10/06/98	22.51	13.52	8.99	No									
MW6F	01/11/99	22.51	14.06	8.45	No									
MW6F	04/08/99	22.51	11.86	10.65	No	—								
MW6F	07/19/99	22.51		8 <u>222</u>	<u></u>									

Page 7 of 23

Well ID	Sampling	TOC Elev.	DTW	GW Elev.	NAPL	TPHd	TPHg	TPHmo	MTBE 8021B	MTBE 8260B	В	Т	E	X
	Date	(feet)	(feet)	(feet)	(feet)	(µg/L)	(µg/Ľ)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW6F	07/27/99	22.51	Well ina	ccessible.										
MW6F	10/25/99	22.51	12.63	9.88	No									
MW6F	01/27/00	22.51	12.23	10.28	No				—					0.000
MW6F	04/03/00	22.51	12.11	10.40	No									_
MW6F	07/05/00	22.51	13.38	9.13	No		<50		<2		<0.5	<0.5	<0.5	<0.5
MW6F	10/04/00	22.51	14.02	8.49	No		<50		<2		<0.5	<0.5	<0.5	0.7
MW6F	10/05/00	22.51						<1,000						
MW6F	01/04/01	22.51	13.69	8.82	No		<50		<2		<0.5	<0.5	<0.5	<0.5
MW6F	04/03/01	22.51	12.55	9.96	No		<50		<2		<0.5	<0.5	<0.5	<0.5
MW6F	07/05/01	22.51	13.74	8.77	No		<50		<2		<0.5	<0.5	<0.5	<0.5
MW6F	10/03/01	22.51	13.82	8.69	No		<50		<2		<0.5	<0.5	<0.5	<0.5
MW6F	Oct-01	22.17	Well su	rveyed in comp	liance with	AB 2886 require	ments.							
MW6F	01/02/02	22.17	9.16	13.01	No		<100	-	<0.5		<0.50	<0.50	<0.50	<0.50
MW6F	04/02/02	22.17	12.14	10.03	No		<50.0	<100	<0.50		<0.50	<0.50	<0.50	<0.50
MW6F	07/01/02	22.17	13.46	8.71	No		<50	<100a	<0.5		<0.5	<0.5	<0.5	<0.5
MW6F	10/02/02	22.17	14.19	7.98	No		<50.0	<100	<0.5		<0.5	<0.5	<0.5	<0.5
MW6F	01/07/03	22.17	11.73	10.44	No		<50.0	<50	<0.5	<0.50	<0.5	<0.5	<0.5	<0.5
MW6F	06/17/03	22.17	13.13	9.04	No		<50.0	<100	<0.5	<0.50	<0.50	<0.5	<0.5	<0.5
MW6F	07/16/03	22.17	13.51	8.66	No		<50.0	<100	<0.5	<0.50	<0.50	<0.5	<0.5	<0.5
MW6F	10/07/03	22.17	14.05	8.12	No	<50	<50.0	<100	<0.5	<0.50	<0.50	<0.5	<0.5	<0.5
MW6F	01/14/04	22.17	11.90	10.27	No	<50	<50.0	<100	<0.5	<0.50	<0.50	<0.5	<0.5	<0.5
MW6F	06/03/04	22.17	13.45	8.72	No	<50	<50.0	<100	<0.5	<0.50	<0.50	<0.5	<0.5	<0.5
MW6F	08/12/04	22.17	С	с	С	52c	<50.0c	<100c		<0.50c	<0.50c	<0.5c	<0.5c	<0.5c
MW6F	11/04/04	22.17	13.03	9.14	No	<50	<50.0	109		<0.50	<0.50	<0.5	<0.5	<0.5
MW6F	02/01/05	22.17	11.56	10.61	No	<100	<50.0	<100		<0.50	<0.50	<0.5	<0.5	<0.5
MW6F	05/03/05	22.17	11.92	10.25	No	<50	<50.0	<100		<0.50	<0.50	<0.5	<0.5	<0.5
MW6F	08/04/05	22.17	13.42	8.75	No	<50.0	<50.0	<100		<0.500	<0.500	<0.500	<0.500	<0.500
MW6F	10/27/05	22.17	13.88	8.29	No	<50.0	<50.0	<50.0		<0.500	<0.50	0.93f	<0.50	<0.50
MW6F	01/26/06	22.17	11.83	10.34	No	<50	<50	<500		<0.50	<0.50	<0.50	<0.50	<0.50
MW6F	04/28/06	22.17	10.96	11.21	No	<47	<50	<470		<0.50	<0.50	<0.50	<0.50	<0.50
MW6F	07/05/06	22.17	13.05	9.12	No	<47.6	<50.0	<95.2		<0.500	<1.00	<1.00	<1.00	<3.00
MW6F	10/27/06	22.17	14.06	8.11	No	<47	<50.0	<470		<0.500	<0.50	<0.50	<0.50	<0.50
MW6F	01/19/07	22.17	13.06	9.11	No	<47	<50.0	<470		<0.500	<0.50	<0.50	<0.50	<0.50
MW6F	04/24/07	22.17	12.01	10.16	No	103d	<50.0	93.5		<0.500	<0.50	<0.50	<0.50	<0.50
MW6F	07/24/07	22.17	13.61	8.56	No	<47	<50	<470		<0.50	< 0.50	<0.50	<0.50	<0.50
MW6F	12/03/07	22.17	13.80	8.37	No									
MW6F	03/06/08	22.17	11.77	10.40	No	<47	<50	<470		<0.50	<0.50	<0.50	<0.50	<0.50
MW6F	06/26/08	22.17	13.74	8.43	No	<47	<50	<470		<0.50	<0.50	<0.50	<0.50	<0.50
MW6F	08/12/08	22.17	14.00	8.17	No	<47.6m,n	<50.0	75.5m		<0.500	<0.50	<0.50	<0.50	<0.50

Well ID	Sampling Date	TOC Elev. (feet)	DTW (feet)	GW Elev. (feet)	NAPL (feet)	TPHd (µg/L)	TPHg (µg/L)	TPHmo (µg/L)	MTBE 8021B (µg/L)	MTBE 8260B (µg/L)	B (µa/L)	T (µg/L)	E (ua/L)	X (µq/L)
MW6F	10/23/08	22.17	14.28	7.89	No	<50	<50	<250		<0.50	<0.50	<0.50	<0.50	<1.0
MW6G	11/16/88	99.16i	Wellins	talled.										
MW6G	12/07/88	99.16i		(1997) (1997)										
MW6G	12/15/88	99.16i	12.22	86.94i			ND	_			<0.5	<1	<2	<1
MW6G	09/07/89	99.16i					ND				ND	ND	ND	ND
MW6G	04/30/90	99.16i	11.73	87.43i			ND				ND	ND	ND	ND
MW6G	10/16/90	99.16i	12.28	86.88i										
MW6G	12/06/90	99.16i	12.27	86.89i								-		
MW6G	01/14/91	99.16i	12.14	87.02i										
MW6G	02/08/91	99.16i	11.44	87.72i										
MW6G	04/02/91	99.16i	10.03	89.13i										
MW6G	05/07/91	99.16i	11.00	88.16i			ND				ND	<0.5	<0.5	<0.5
MW6G	05/31/91	99.16i	11.75	87.41i										
MW6G	06/26/91	99.16i	12.91	86.25i										
MW6G	08/05/91	99.16i	12.43	86.73i										
MW6G	08/14/91	99.16i	12.43	86.73i			ND		_		ND	<0.5	<0.5	<0.5
MW6G	09/11/91	99.16i	12.48	86.68i										
MW6G	10/16/91	99.16i	12.64	86.52i										
MW6G	12/30/91	99.16i	11.80	87.36i								7.000 N		
MW6G	12/31/91	99.16i					ND				ND	<0.5	<0.5	<0.5
MW6G	02/25/92	99.91i	10.32	88.84i										
MW6G	03/25/92	99.91i	9.93	89.23i			ND				ND	<0.5	<0.5	<0.5
MW6G	06/16/92	14.71	11.88	2.83			ND				ND	<0.5	<0.5	<0.5
MW6G	09/08/92	14.71	12.20	2.51	No		<50				<0.5	<0.5	<0.5	<0.5
MW6G	11/05/92	14.71	12.02	2.69	No		<50				<0.5	<0.5	<0.5	<0.5
MW6G	12/14/92	14.71	10.95	3.76	No							-		
MW6G	01/28/93	14.71	9.56	5.15	No									
MW6G	02/11/93	14.71	10.04	4.67	No		<50				<0.5	<0.5	<0.5	<0.5
MW6G	03/09/93	14.71	10.10	4.61	No									
MW6G	04/14/93	14.71	10.43	4.28	No									
MW6G	05/11/93	14.71	11.05	3.66	No		<50				<0.5	<0.5	<0.5	<0.5
MW6G	06/17/93	14.71	11.49	3.22	No								0	
MW6G	07/26/93	14.71	11.98	2.73	No									
MW6G	08/10/93	14.71	12.17	2.54	No		<50				<0.5	<0.5	<0.5	<0.5
MW6G	09/21/93	14.71	12.42	2.29	No								Victor	1000
MW6G	10/27/93	14.71	13.47	1.24	No		<50				<0.5	<0.5	<0.5	<0.5
MW6G	11/23/93	14.71	12.48	2.23	No								1000	3000

TABLE 3A CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA Former Exxon Service Station 70235

2225 Telegraph Avenue Oakland, California

Well ID	Sampling	TOC Elev.	DTW	GW Elev.	NAPL	TPHd	TPHg	TPHmo	MTBE 8021B	MTBE 8260B	В	Т	E	X
	Date	(feet)	(feet)	(feet)	(feet)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW6G	12/17/93	14.71	11.19	3.52	No				1444	244				
MW6G	02/16/94	14.71	10.62	4.09	No		<50				<0.5	<0.5	<0.5	<0.5
MW6G	05/31/94	14.71	11.40	3.31	No		<50				<0.5	<0.5	<0.5	<0.5
MW6G	08/30/94	16.82j	12.32	4.50	No		<50				<0.5	<0.5	<0.5	<0.5
MW6G	11/11/94	16.82j	11.06	5.76	No		58				0.58	1.6	<0.5	1.6
MW6G	02/27/95	16.82j	10.32	6.50	No		<50				0.86	0.99	<0.5	0.51
MW6G	05/30/95	16.82j	10.77	6.05	No		<50				<0.5	<0.5	<0.5	<0.5
MW6G	08/30/95	16.82j	11.92	4.90	No		<50		<10		<0.5	<0.5	<0.5	<0.5
MW6G	11/26/96	16.82j	11.12	5.70	No		<50		<30		<0.5	<0.5	<0.5	<0.5
MW6G	02/27/97	16.82j												
MW6G	05/21/97	16.82j	11.76	5.06	No									
MW6G	08/18/97	16.82j	12.23	4.59	No									
MW6G	03/13/98	16.82j	9.13	7.69	No		<50		4.4		<0.5	<0.5	<0.5	<0.5
MW6G	04/20/98	16.82j	9.73	7.09	No									
MW6G	07/21/98	20.72	11.15	9.57	No									
MW6G	10/06/98	20.72	11.91	8.81	No									
MW6G	01/11/99	20.72	12.00	8.72	No									
MW6G	04/08/99	20.72	10.04	10.68	No						_			
MW6G	07/19/99	20.72												
MW6G	07/27/99	20.72	11.75	8.97	No									
MW6G	10/25/99	20.72	11.76	8.96	No									
MW6G	01/27/00	20.72	11.46	9.26	No									
MW6G	04/03/00	20.72	10.00	10.72	No								***	
MW6G	07/05/00	20.72	11.24	9.48	No		<50	7777 4	<2		<0.5	<0.5	<0.5	<0.5
MW6G	10/04/00	20.72	11.88	8.84	No		<50		<2		<0.5	<0.5	<0.5	<0.5
MW6G	10/05/00	20.72						<1,000		<u> </u>				
MW6G	01/04/01	20.72	11.56	9.16	No		<50		<2		<0.5	<0.5	<0.5	<0.5
MW6G	04/03/01	20.72	10.45	10.27	No		<50	1111	<2		<0.5	<0.5	<0.5	<0.5
MW6G	07/05/01	20.72	11.51	9.21	No		<50		<2		0.75	<0.5	<0.5	<0.5
MW6G	10/03/01	20.72	11.63	9.09	No	—	<50		<2		<0.5	<0.5	<0.5	<0.5
MW6G	Oct-01	20.46	Wellsur	veyed in comp	liance with	AB 2886 require	ements.							
MW6G	01/02/02	20.46	9.15	11.31	No		<100		1.8		<0.50	<0.50	<0.50	<0.50
MW6G	04/02/02	20.46	10.19	10.27	No		<50.0	<100	1.10		<0.50	<0.50	<0.50	<0.50
MW6G	07/01/02	20.46	11.35	9.11	No		<50	<100a	1.3		<0.5	<0.5	<0.5	<0.5
MW6G	10/02/02	20.46	11.99	8.47	No		<50.0	<100	0.7		<0.5	<0.5	<0.5	<0.5
MW6G	01/07/03	20.46	9.97	10.49	No		<50.0	<50	1.3	2.0	<0.5	<0.5	<0.5	<0.5
MW6G	06/17/03	20.46	10.98	9.48	No		<50.0	<100	1.5	1.6	<0.50	<0.5	<0.5	<0.5
MW6G	07/16/03	20.46	11.37	9.09	No		<50.0	<100	1.2	0.9	<0.50	<0.5	<0.5	<0.5
MW6G	10/07/03	20.46	11.90	8.56	No	<50	<50.0	<100	0.8	0.80	<0.50	<0.5	<0.5	<0.5

Page 10 of 23

Former Exxon Service Station 70235 2225 Telegraph Avenue Oakland, California

Well ID	Sampling	TOC Elev.	DTW	GW Elev.	NAPL	TPHd	TPHa	TPHmo	MTBE 8021B	MTBE 8260B	В	Т	F	
	Date	(feet)	(feet)	(feet)	(feet)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW6G	01/14/04	20.46	10.10	10.36	No	<50	<50.0	<100	1.0	1.40	<0.50	<0.5	<0.5	<0.5
MW6G	06/03/04	20.46	11.10	9.36	No	<50	<50.0	<100	1.40	1.4	<0.50	<0.5	<0.5	<0.5
MW6G	08/12/04	20.46	с	с	с	99c	<50.0c	1 01c	100	1.10c	<0.50c	<0.5c	<0.5c	<0.5c
MW6G	11/04/04	20.46	11.18	9.28	No	<50	<50.0	<100		<0.50	<0.50	<0.5	<0.5	<0.5
MW6G	02/01/05	20.46	9.79	10.67	No	<100	<50.0	<100		3.40	<0.50	<0.5	<0.5	<0.5
MW6G	05/03/05	20.46	9.95	10.51	No	<50	<50.0	<100		1.40	<0.50	<0.5	<0.5	<0.5
MW6G	08/04/05	20.46	11.22	9.24	No	<50.0	<50.0	<100		1.42	<0.500	<0.500	<0.500	<0.500
MW6G	10/27/05	20.46	11.76	8.70	No	<50.0	<50.0	61.3		0.810	<0.50	0.93f	<0.50	<0.50
MW6G	01/26/06	20.46	11.07	9.39	No	<50	<50	<500		1.8	<0.50	<0.50	<0.50	<0.50
MW6G	04/28/06	20.46	9.11	11.35	No	<47	<50	<470		2.8	<0.50	<0.50	<0.50	<0.50
MW6G	07/05/06	20.46	10.70	9.76	No	88.6	<50.0	277	_	2.49	<1.00	<1.00	<1.00	<3.00
MW6G	10/27/06	20.46	11.75	8.71	No	<47	61.9	<470		1.40	<0.50	<0.50	<0.50	<0.50
MW6G	01/19/07	20.46	10.94	9.52	No	<47	<50.0	<470	die auf ene	1.34	<0.50	<0.50	<0.50	<0.50
MW6G	04/24/07	20.46	10.40	10.06	No	<47.6	<50.0	<47.6		2.17	<0.50	<0.50	<0.50	<0.50
MW6G	07/24/07	20.46	11.49	8.97	No	<47	<50	<470		1.3	<0.50	<0.50	<0.50	<0.50
MW6G	12/03/07	20.46	11.60	8.86	No	<47	<50	<470		0.88	<0.50	<0.50	<0.50	<0.50
MW6G	03/06/08	20.46	9.79	10.67	No	<47	<50	<470		2.0	<0.50	<0.50	<0.50	<0.50
MW6G	06/26/08	20.46	11.43	9.03	No	<47	<50	<470		1.6	<0.50	<0.50	<0.50	<0.50
MW6G	08/12/08	20.46	11.94	8.52	No	99.1d,m,n	<50.0	135m		1.35	<0.50	<0.50	<0.50	<0.50
MW6G	10/23/08	20.46	12.34	8.12	No	<50	<50	<250		1.4	<0.50	<0.50	<0.50	<1.0
	11/10/00	Woll install	od											
	12/07/99	07.02	eu.								1 200	220	110	220
	12/07/00	97.93	12.26	95 57							1,200	520	110	220
	00/07/80	97.93	12.50	05.571			660				480	<10	16	<15
	09/07/09	97.93	12 10	95 921			630				700	30	21	50
MM/6H	10/16/90	97.931	12.10	85 75							700		51	
MW/6H	12/06/90	97 93	12.10	85 64i										
MW6H	01/14/91	97 93	12.20	85 71i										
MW6H	02/08/91	97 93i	11 03	86.00i										
MW/6H	02/02/91	97 93i	11.59	86 34i										
MW6H	05/07/91	97 93i	12.24	85 69i			570				95	14	15	21
MW/6H	05/31/91	97 93i	12.22	85 71i										
MW6H	06/26/91	97 93i	14.34	83 59i										
MW6H	08/05/91	97 93i	12 62	85 31i										
MW6H	08/14/91	97.93i	12.02	85 50i			540				52	9.9	11	18
MW6H	09/11/91	97 93i	12.40	85 10i										
MW6H	10/16/91	97 93i	12.00	85 22i										
	10/10/01	07.00	12.71	00.22										

Page 11 of 23

Former Exxon Service Station 70235 2225 Telegraph Avenue Oakland, California

Well ID	Sampling	TOC Elev.	DTW	GW Elev.	NAPL	TPHd	TPHg	TPHmo	MTBE 8021B	MTBE 8260B	B	T	E	X
	Date	(Ieel)	(ieel)	(Teel)	(Teet)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW6H	12/30/91	97.93i	12.16	85.77i										
MW6H	12/31/91	97.93i	1933))	5 7.57 1			790				52	28	22	42
MW6H	02/25/92	97.93i	12.17	85.76i										
MW6H	03/25/92	97.93i	11.65	86.28i			920		—		170	52	25	54
MW6H	06/16/92	14.47	12.12	2.35			460				31	11	6.8	16
MW6H	09/08/92	14.47	12.30	2.17	No		780	_			69	23	17	18
MW6H	11/05/92	14.47	12.05	2.42	No		3,400				500	260	85	160
MW6H	12/14/92	14.47	11.65	2.82	No		-							
MW6H	01/28/93	14.47	11.57	2.90	No									
MW6H	02/11/93	14.47	12.22	2.25	No		2,500				410	170	28	130
MW6H	03/09/93	14.47	12.02	2.45	No									
MW6H	04/14/93	14.47	12.02	2.45	No									
MW6H	05/11/93	14.47	12.35	2.12	No		4,200				490	270	80	210
MW6H	06/17/93	14.47	12.22	2.25	No				_					
MW6H	07/26/93	14.47	12.32	2.15	No									
MW6H	08/10/93	14.47	12.30	2.17	No		650				83	22	14	29
MW6H	09/21/93	14.47	12.79	1.68	No									
MW6H	10/27/93	14.47	13.93	0.54	No		1,600				130	90	29	130
MW6H	11/23/93	14.47	12.46	2.01	No									
MW6H	12/17/93	14.47	12.08	2.39	No		0.000							
MW6H	02/16/94	14.47	12.31	2.16	No		<50				<0.5	<0.5	<0.5	2.9
MW6H	05/31/94	14.47	12.46	2.01	No		1,800				370	220	65	210
MW6H	08/30/94	16.58j	12.72	3.86	No		1,900				130	90	19	86
MW6H	11/11/94	16.58j	11.98	4.60	No		13,000				1,700	1,400	260	1,800
MW6H	02/27/95	16.58j	11.8 9	4.69	No		320		<u> </u>		450	120	28	79
MW6H	05/30/95	16.58j	12.05	4.53	No		2,300		1000		960	260	64	200
MW6H	08/30/95	16.58j	12.34	4.24	No		2,100		50		590	35	24	74
MW6H	11/26/96	16.58j	11.87	4.71	No		1,200		<30		320	110	22	85
MW6H	02/27/97	16.58j	11.58	5.00	No		1,800		<200		760	31	8.4	44
MW6H	05/21/97	16.58j	12.23	4.35	No		1,100		81		640	18	5.4	45
MW6H	08/18/97	16.58j	12.29	4.29	No		870		26		200	3.6	2.4	7.4
MW6H	03/13/98	20.47	11.44	9.03	No		5,300		<125		1,900	720	100	470
MW6H	04/20/98	20.47	11.58	8.89	No		6,000		2,700		1,500	600	91	440
MW6H	07/21/98	20.47	11.97	8.50	No		2,200		1,600		740	44	15	63
MW6H	10/06/98	20.47	12.23	8.24	No		5,400		3,000		1,900	<25	<25	76
MW6H	01/11/99	20.47	12.17	8.30	No		2,600		4,300		1,200	<12	<12	20
MW6H	04/08/99	20.47	11.56	8.91	No		13,000		13,000		3,400	1,300	260	1,200
MW6H	07/19/99	20.47	11.71	8.76	No		<2,000		6,920	8,520	732	<20	<20	<20
MW6H	07/27/99	20.47	12.39	8.08	No					())				

Page 12 of 23

Former Exxon Service Station 70235 2225 Telegraph Avenue Oakland, California

Well ID	Sampling	TOC Elev.	DTW	GW Elev.	NAPL	TPHd	TPHa	TPHmo	MTBE 8021B	MTBE 8260B	B	т	F	X
	Date	(feet)	(feet)	(feet)	(feet)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(μg/L)	(µg/L)
MW6H	10/25/99	20.47	12.16	8.31	No		700	177 3	4,000		360	1.1	0.68	2
MW6H	01/27/00	20.47	11.60	8.87	No		9,100		7,600	all all us	2,400	840	150	670
MW6H	04/03/00	20.47	11.62	8.85	No		12,000	÷	8,800		2,800	1,100	230	1,020
MW6H	07/05/00	20.47	11.93	8.54	No		12,000	<u>1153</u> 50	8,000		1,200	56	13	92
MW6H	10/04/00	20.47	12.16	8.31	No		4,400	12220	8,400		1,500	23	12	80.6
MW6H	10/05/00	20.47						<1,000						
MW6H	01/04/01	20.47	12.03	8.44	No		2,300	1222	3,800		880	15	6.4	33.9
MW6H	04/03/01	20.47	11.73	8.74	No		7,800	<u>wei</u> tt	5,100		2,000	730	140	590
MW6H	07/05/01	20.47	11.98	8.49	No		2,300	1000	3,200		630	25	10	40.8
MW6H	10/03/01	20.47	12.1	8.37	No		1,400		550		270	5.6	4.2	11.6
MW6H	Oct-01	20.20	Well su	rveyed in comp	liance with	AB 2886 require	ments.							
MW6H	01/02/02	20.20	11.14	9.06	No		47,100		4,260		7,880	5,220	1,060	4,460
MW6H	04/02/02	20.20	11.68	8.52	No		17,500	<500	1,590	3 -	2,280	1,290	282	1,090
MW6H	07/01/02	20.20	11.97	8.23	No		5,370	<100a	1,910		1,170	200	44.0	158
MW6H	10/02/02	20.20	12.20	8.00	No		2,570	<100	899		655	13.0	8.0	25.0
MW6H	01/07/03	20.20	11.58	8.62	No		12,500	<50	1,700	2,500	2,480	1,340	250	1,120
MW6H	06/17/03	20.20	11.82	8.38	No		6,330	<100	1,490	1,660	604	104	44.0	152
MW6H	07/16/03	20.20	12.89	7.31	No		3,170	<100	1,270	1,170	614	20.0	9.5	31.8
MW6H	10/07/03	20.20	12.10	8.10	No		2,090	<100	612	640	433	11.6	6.7	22.5
MW6H	01/14/04	20.20	11.55	8.65	No	390	6,320	<100	59.0	1,250	1,340	517	117	515
MW6H	06/03/04	20.20	11.92	8.28	No		3,330	<100	604	632	546	128	38.4	140
MW6H	08/12/04	20.20	с	с	с	174c	1,920c	<100c	1000	426c	330c	17.9c	9.3c	35.3c
MW6H	11/04/04	20.20	11.86	8.34	No	578	8,090	552		442	1,280	620	185	822
MW6H	02/01/05	20.20	11.55	8.65	No	616	9,500	193		335	1,360	764	214	844
MW6H	05/03/05	20.20	11.54	8.66	No	560d	9,120	168		323	1,320	886	245	928
MW6H	08/04/05	20.20	11.89	8.31	No	269d	1,810	143		268	349	57.0	20.1	70.0
MW6H	10/27/05	20.20	12.10	8.10	No	228	942	98.5		164	154	23.1f	6.09	23.2
MW6H	01/26/06	20.20	11.54	8.66	No	910d	20,000	<500		270	3,200	3,400	660	3,100
MW6H	04/28/06	20.20	11.29	8.91	No	550d	11,000	<470		160	2,000	1,500	380	1,600
MW6H	07/05/06	20.20	11.90	8.30	No	273	2,360	114		82.9	389	111	39.5	125
MW6H	10/27/06	20.20	12.08	8.12	No	120d	1,460	<470		69.4	215	27.9	16.2	43.4
MW6H	01/19/07	20.20	11.81	8.39	No	290d	4,950	<470		77.5	831	638	129	451
MW6H	04/24/07	20.20	11.52	8.68	No	997d	13,800	140	1-18-1	90.5	1,330	1,420	357	1,360
MW6H	07/24/07	20.20	11.90	8.30	No	150d	1,600	<470		56	300	110	29	100
MW6H	12/03/07	20.20	12.03	8.17	No	140d,I	1,800	<470		51	420	14	8.3	33
MW6H	03/06/08	20.20	11.81	8.39	No	280d	4,400	<470		48	630	540	130	460
MW6H	06/26/08	20.20	12.41	7.79	No	320d	3,700	<470		40	930	100	130	550
MW6H	08/12/08	20.20	12.40	7.80	No	740d,m,n	5,010	294m		29.8	684	354	114	466
MW6H	10/23/08	20.20	12.47	7.73	No									

Page 13 of 23

Well ID	Sampling Date	TOC Elev. (feet)	DTW (feet)	GW Elev. (feet)	NAPL (feet)	TPHd (µg/L)	TPHg (µg/L)	TPHmo (µg/L)	MTBE 8021B (µg/L)	MTBE 8260B (µg/L)	B (µg/L)	T (µg/L)	E (µg/L)	X (µg/L)
MW6H	10/30/08	20.20				<50	2,100	<250		23	270	64	35	120
MW6I	11/17/88	Well instal	led.											
MW6I	12/07/88	97.60i					ND				<0.5	<1	<2	<1
MW6I	12/15/88	97.60i	12.83	84.77i										
MW6I	09/07/89	97.60i					ND				ND	ND	ND	ND
MW6I	04/30/90	97.60i	12.66	84.94i			ND				ND	ND	ND	ND
MW6I	10/16/90	97.60i	12.71	84.89i										
MW6I	12/06/90	97.60i	12.75	84.85i										
MW6I	01/14/91	97.60i	12.55	85.05i										
MW6I	02/08/91	97.60i	12.32	85.28i										
MW6I	04/02/91	97.60i	12.22	85.38i										
MW6I	05/07/91	97.60i	12.61	84.99i			ND				ND	<0.5	<0.5	<0.5
MW6I	05/31/91	97.60i	12.82	84.78i										
MW6I	06/26/91	97.60i	12.93	84.67i										
MW6I	08/05/91	97.60i	13.01	84.59i										
MW6I	08/14/91	97.60i	12.98	84.62i			ND				ND	<0.5	<0.5	<0.5
MW6I	09/11/91	97.60i	13.11	84.49i									_	
MW6I	10/16/91	97.60i	13.04	84.56i										
MW6I	12/30/91	97.60i	12.72	84.88i							-	***		
MW6I	12/31/91	97.60i					ND				ND	<0.5	<0.5	<0.5
MW6I	02/25/92	97.60i	12.45	85.15i										
MW6I	03/25/92	97.60i	12.12	85.48i			ND				ND	<0.5	<0.5	<0.5
MW6I	06/16/92	14.14	12.75	1.39			ND				ND	<0.5	<0.5	<0.5
MW6I	09/08/92	14.14	12.84	1.30	No		<50	-	-		<0.5	<0.5	<0.5	<0.5
MW6I	11/05/92	14.14	12.75	1.39	No		<50				<0.5	<0.5	<0.5	<0.5
MW6I	12/14/92	14.14	12.40	1.74	No									
MW6I	01/28/93	14.14	12.20	1.94	No									
MW6I	02/11/93	14.14	12.40	1.74	No		<50				<0.5	<0.5	<0.5	<0.5
MW6I	03/09/93	14.14	12.45	1.69	No				·					
MW6I	04/14/93	14.14	12.43	1.71	No									
MW6I	05/11/93	14.14	12.73	1.41	No		<50				<0.5	<0.5	<0.5	<0.5
MW6I	06/17/93	14.14	12.78	1.36	No									
MW6I	07/26/93	14.14	12.92	1.22	No									
MW6I	08/10/93	14.14	12.97	1.17	No		<50			_	<0.5	<0.5	<0.5	<0.5
MW6I	09/21/93	14.14	13.02	1.12	No				_					
MW6I	10/27/93	14.14	13.10	1.04	No	1	<50				<0.5	<0.5	<0.5	1.1
MW6	11/23/93	14.14	13.02	1.12	No									

Former Exxon Service Station 70235 2225 Telegraph Avenue Oakland, California

Well ID	Sampling	TOC Elev.	DTW	GW Elev.	NAPL	TPHd	TPHa	TPHmo	MTBE 8021B	MTRE 8260B	B	Т	E	
	Date	(feet)	(feet)	(feet)	(feet)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)
MW6I	12/17/93	14.14	12.65	1.49	No									
MW6I	02/16/94	14.14	12.66	1.48	No		<50				<0.5	<0.5	<0.5	<0.5
MW61	05/31/94	14.14	12.90	1.24	No		<50				<0.5	<0.5	<0.5	<0.5
MW6I	08/30/94	16.26j	13.06	3.20	No		<50				< 0.5	<0.5	<0.5	<0.5
MW6I	11/11/94	16.26j	15.20	1.06	No		53				0.62	1.8	<0.5	2.0
MW6I	02/27/95	16.26	12.51	3.75	No		<50				<0.5	<0.5	<0.5	<0.5
MW6I	05/30/95	16.26j	12.57	3.69	No		69				2.8	0.96	11	4.3
MW6I	08/30/95	16.26j	12.86	3.4	No		<50		<10		<0.5	<0.5	<0.5	<0.5
MW6I	11/26/96	16.26j	12.45	3.81	No		<50		<30		<0.5	<0.5	<0.5	<0.5
MW6I	02/27/97	16.26	12.24	4.02	No		<50		<30		< 0.5	<0.5	<0.5	<0.5
MW6i	05/21/97	16.26j	12.82	3.44	No		<50		<30		<0.5	<0.5	<0.5	<0.5
MW6I	08/18/97	16.26j	12.81	3.45	No		<50		<30		<0.5	<0.5	<0.5	<0.5
MW6I	03/13/98	16.26j												
MW6I	04/20/98	16.26j	12.14	4.12	No		<50		<2.5		<0.5	<0.5	<0.5	<0.5
MW6i	07/21/98	20.24	12.59	7.65	No		<50		<2.5		<0.5	<0.5	<0.5	<0.5
MW6i	10/06/98	20.24	12.81	7.43	No	107700-108								-
MW6I	01/11/99	20.24	12.74	7.50	No		<50		<2.5		<0.5	<0.5	<0.5	<0.5
MW6I	04/08/99	20.24	11.93	8.31	No									-
MW6i	07/19/99	20.24	11.75	8.49	No		281		17.6		35.4	9.1	7.4	30.7
MW 61	07/27/99	20.24	12.95	7.29	No									
MW6I	10/25/99	20.24	12.79	7.45	No									
MW6I	01/27/00	20.24	12.06	8.18	No		<50		<2		<0.5	<0.5	<0.5	<0.5
MW6	04/03/00	20.24	12.24	8.00	No									
MW6I	07/05/00	20.24	12.48	7.76	No		<50	/ 2222	<2		<0.5	<0.5	<0.5	<0.5
MW6I	10/04/00	20.24	-											
MW6I	10/05/00	20.24						<1,000					-	
MW6	01/04/01	20.24	12.54	7.70	No		<50		<2		<0.5	<0.5	<0.5	<0.5
MW6I	04/03/01	20.24	12.32	7.92	No		<50	0 808	<2		<0.5	<0.5	<0.5	<0.5
MW6I	07/05/01	20.24	12.55	7.69	No		<50	0.575	<2		<0.5	<0.5	<0.5	<0.5
MW6I	10/01/01	19.87	Well sur	veyed in compl	iance with	AB 2886 requir	ements.							
MW6I	10/03/01	20.24	12.67	7.57	No		<50		<2		<0.5	<0.5	<0.5	<0.5
MW6I	01/02/02	19.87	10.98	8.89	No		<100		<0.5		<0.50	<0.50	<0.50	<0.50
MW6I	04/02/02 b	19.87	12.24	7.63	No									
MW6I	07/01/02	19.87	12.51	7.36	No		<50	<100a	<0.5		<0.5	<0.5	<0.5	<0.5
MW6I	10/02/02 b	19.87	12.72	7.15	No									
MW6I	01/07/03	19.87	12.09	7.78	No		<50.0	<50	<0.5	1.10	<0.5	<0.5	<0.5	<0.5
MW6I	06/17/03 b	19.87			-			1000						
MW6I	07/16/03	19.87	12.49	7.38	No		<50.0	<100	<0.5	<0.50	<0.50	<0.5	<0.5	<0.5
MW6I	10/07/03 b	19.87	12.64	7.23	No					<u>115</u> 29				

Page 15 of 23

TABLE 3A CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA Former Exxon Service Station 70235

2225 Telegraph Avenue Oakland, California

Well ID	Sampling	TOC Elev.	DTW	GW Elev.	NAPL	TPHd	TPHg	TPHmo	MTBE 8021B	MTBE 8260B	B	T	E	X
	Date	(feet)	(feet)	(feet)	(feet)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW6	01/14/04	19.87	12.13	7.74	No		<50.0	<100	<0.5	<0.50	<0.50	<0.5	<0.5	<0.5
MW6I	06/03/04 b	19.87	12.56	7.31	No					3.000				
MW6I	08/12/04	19.87	С	С	С	99c	<50.0c	155c		<0.50c	<0.50c	<0.5c	<0.5c	0.8c
MW6!	11/04/04 b	19.87	12.33	7.54	No									
MW6I	02/01/05	19.87	12.09	7.78	No	<100	<50.0	<100		<0.50	<0.50	<0.5	<0.5	<0.5
MW6I	05/03/05 b	19.87	12.16	7.71	No									
MW6I	08/04/05	19.87	12.46	7.41	No	54.2d	<50.0	<100		< 0.500	<0.500	<0.500	<0.500	<0.500
MW6I	10/27/05 b	19.87	12.58	7.29	No									-
MW6I	01/26/06	19.87	12.04	7.83	No	<50	<50	<500		< 0.50	<0.50	<0.50	<0.50	<0.50
MW6I	04/28/06 b	19.87	11.94	7.93	No		-	22220						
MW6I	07/05/06	19.87	13.06	6.81	No	<47.6	<50.0	<95.2		< 0.500	<1.00	<1.00	<1.00	<3.00
MW6I	10/27/06 b	19.87	12.64	7.23	No									
MW6	01/19/07	19.87	12.41	7.46	No	<47	<50.0	<470		<0.500	<0.50	<0.50	<0.50	0.62
MW6I	04/24/07 b	19.87	12.11	7.76	No									
MW6I	07/24/07	19.87	12.51	7.36	No	<47	<50	<470		<0.50	< 0.50	<0.50	<0.50	<0.50
MW6I	12/03/07	19.87	12.64	7.23	No	<47	<50	<470		< 0.50	<0.50	<0.50	<0.50	<0.50
MW6I	03/06/08	19.87	11.97	7.90	No	<47	<50	<470		< 0.50	<0.50	<0.50	<0.50	<0.50
MW6I	06/26/08 b	19.87	12.54	7.33	No									
MW6I	08/12/08	19.87	12.53	7.34	No	81.3d,m,n	<50.0	137m		< 0.500	<0.50	<0.50	<0.50	<0.50
MW6I	10/23/08 b	19.87	12.56	7.31	No					and the				
MW6J	04/06/01	Well install	ed.											
MW6J	07/05/01	20.72	13.47	7.25	No		<50	0.222	<2	1222.0	<0.5	<0.5	<0.5	<0.5
MW6J	10/03/01	20.72	13.57	7.15	No		<50		<2		<0.5	<0.5	<0.5	<0.5
MW6J	Oct-01	20.75	Well sur	veved in comp	liance with	AB 2886 require	ments		~2		-0.0	-0.5	-0.0	~0.5
MW6J	01/02/02	20.75	13.19	7.56	No		<100		<0.5		<0.50	<0.50	<0.50	<0.50
MW6J	04/02/02	20.75	13.74	7.01	No		<50.0	<100	1.00		0.80	<0.50	<0.50	0.80
MW6J	07/01/02	20.75	13.58	7,17	No	_	<50	<100a	<0.5		<0.5	<0.5	<0.00	<0.5
MW6J	10/02/02	20.75	13.79	6.96	No		<50.0	<100	<0.5		<0.0	<0.5	<0.0	<0.0
MW6J	01/07/03	20.75	13.49	7.26	No		<50.0	<50	0.60	1 30	<0.5	<0.0	<0.5	<0.5
MW6J	06/17/03	20.75	13.76	6.99	No		<50.0	<100	3.00	0.70	<0.0	<0.5	<0.5	<0.5
MW6J	07/16/03	20.75	13.57	7.18	No		<50.0	<100	0.70	0.60	<0.00	<0.5	<0.5	<0.5
MW6J	10/07/03	20.75	13.74	7.01	No		<50.0	<100	11	1.20	<0.00	<0.5	<0.5	<0.5
MW6J	01/14/04	20.75	13.46	7 29	No	<50	<50.0	<100	1.1	1.20	<0.00	<0.5	<0.5	<0.5
MW6J	06/03/04	20.75	13.72	7.03	No	<50	<50.0	<100	5.1	10.2	~0.00	~0.0 <0.5	~0.5	<0.5 <0.5
MW6J	08/12/04	20.75	C	, .00 C	0	<50c	<50.0 <50.0c	<100	0.1	3 300	1.400	~U.5 2.1o	1 20	<0.0 4 6o
MW6J	11/04/04	20.75	13.68	7 07	No	<50	<50.00	116		3.500	0.60	2.10	1.30 -0 E	4.00
MW6J	02/01/05	20.75	13 47	7.28	No	<100	<50.0	<100		5.50	<0.50	0.5	<0.5	<0.0
	220100	20110	10.17			-100	-00.0	-100		0.00	~0.00	~0.0	~U.0	0.0

Well ID	Sampling	TOC Elev.	DTW	GW Elev.	NAPL	TPHd	TPHa	TPHmo	MTBE 8021B	MTBE 8260B	B	Т	F	X
	Date	(feet)	(feet)	(feet)	(feet)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)
MW6J	05/03/05	20.75	13.66	7.09	No	<50	<50.0	<100		3.00	0.70	0.9	0.6	0.8
MW6J	08/04/05	20.75	13.75	7.00	No	55.8d	<50.0	130		<0.500	<0.500	<0.500	<0.500	<0.500
MW6J	10/27/05	20.75	13.71	7.04	No	<50.0	<50.0	<50.0		2.48	<0.50	0.94f	<0.50	< 0.50
MW6J	01/26/06	20.75	13.4 9	7.26	No	<50	<50	<500		6.2	<0.50	<0.50	<0.50	<0.50
MW6J	04/28/06	20.75	13.56	7.19	No	<47	<50	<470		7.2	<0.50	<0.50	<0.50	<0.50
MW6J	07/05/06	20.75	13.75	7.00	No	<47.6	<50.0	<95.2		7.73	<1.00	<1.00	<1.00	<3.00
MW6J	10/27/06	20.75	13.66	7.09	No	<47	67.7	<470		9.15	<0.50	< 0.50	< 0.50	<0.50
MW6J	01/19/07	20.75	13.51	7.24	No	<47	<50.0	<470		12.1	<0.50	<0.50	<0.50	<0.50
MW6J	04/24/07	20.75	13.76	6.99	No	<47.6	<50.0	<47.6		12.8	<0.50	<0.50	<0.50	<0.50
MW6J	07/24/07	20.75	14.01	6.74	No	<47	<50	<470		16	< 0.50	<0.50	<0.50	<0.50
MW6J	12/03/07	20.75	13.71	7.04	No	<47	<50	<470		29	< 0.50	< 0.50	<0.50	<0.50
MW6J	03/06/08	20.75	Well ina	ccessible due	to encroach	ment permit res	trictions.							
MW6J	06/26/08	20.75	Well ina	ccessible due	to encroach	ment permit res	trictions.							
MW6J	08/12/08	20.75	Well ina	ccessible due	to encroach	ment permit res	trictions.							
MW6J	10/23/08	20.75	13.40	7.35	No	<50	<50	<250		10	<0.50	<0.50	<0.50	<1.0
RW1	05/10/90	97.89i	Wellins	talled.										
RW1	10/16/90	97.89i	12.24	85.65i										
RW1	01/14/91	97.89i	12.80	85.09i										
RW1	02/08/91	97.89i	12.53	85.36i										÷
RW1	05/31/91	97.89i	12.86	85.03i										
RW1	08/05/91	97.89i	13.19	84.70i										
RW1	08/13/91	97.89i	14.05	83.84i										
RW1	09/11/91	97.89i	15.96	81.93i				_						
RW1	10/16/91	97.89i	16.00	81.89i										
RW1	12/30/91	97.89i	12.65	85.24i		4								
RW1	02/25/92	97.89i	14.40	83.49i										
RW1	03/25/92	97.89i												
RW1	06/16/92	14.42	12.37	2.05			6.200				620	1 400	240	1 400
RW1	09/08/92 - 0	5/31/94	Not mon	itored or same	led.						020	1,100	210	1,100
RW1	08/30/94	16.79i	Well res	urveved.										
RW1	08/30/94 - 1	0/16/98	Not mon	itored or same	led.									
RW1	01/11/99	20.24	12.37	7 87	No			-						
RW1	04/08/99	20.24	10.41	9.83	No									
RW1	07/19/99	20.24												
RW1	07/27/99	20.24	12,76	7,48	No									
RW1	10/25/99	20.24	12.50	7.74	No									
RW1	01/27/00	20.24	12.11	8.13	No					_ ==				
				0.10										

Well ID	Sampling Date	TOC Elev. (feet)	DTW (feet)	GW Elev. (feet)	NAPL (feet)	TPHd (µg/L)	TPHg (µg/L)	TPHmo (µg/L)	MTBE 8021B (µg/L)	MTBE 8260B (μg/L)	B (µg/L)	т (µg/L)	E (µg/L)	X (µg/L)
RW1	04/03/00	20.24	12.07	8.17	No									
RW1	07/05/00	20.24		••••										
RW1	10/04/00	20.24							1					
RW1	10/05/00	20.24								_				
RW1	01/04/01	20.24	13.90	6.34	No		8,000		2,500		1,200	65	250	258
RW1	04/03/01	20.24	11.92	8.32	No		4,100	_	610		62	<2.5	18	61
RW1	07/05/01	20.24	Well ina	iccessible.										
RW1	10/03/01	20.24	12.32	8.32	No		11,000	(2001)	4,100	<u>(11-1</u>)	1,900	780	150	700
RW1	Oct-01	20.43	Well su	rveyed in comp	liance with	AB 2886 requirem	ents.							
RW1	01/02/02	20.43	10.85	9.58	No		32,000	(200)	7,760		358	2,270	894	4,820
RW1	04/02/02	20.43	11.72	8.71	No		4,220	<500	922		172	22.5	106	340
RW1	07/01/02	20.43	12.17	8.26	No		2,500	<100a	986		176	8.0	71.0	75.0
RW1	10/02/02	20.43	12.44	7.99	No		2,970	1,720	1,310	870 -2	197	11.0	70.0	69.0
RW1	01/07/03	20.43	11.64	8.79	No		2,210	1,340	747	1,010	134	12.0	33.0	53.0
RW1	06/17/03	20.43	11.98	8.45	No		3,850	316	645	847	48.9	38.7	46.1	197
RW1	07/16/03	20.43	12.11	8.32	No		2,640	2,080	730	615	78.5	20.0	47.5	166
RW1	10/07/03	20.43	12.35	8.08	No	1,340	2,310	1,040	744	578	118	7.6	25.1	52.1
RW1	01/14/04	20.43	11.61	8.82	No	4,240	4,230	5,640	7.8	328	52.7	65.8	42.7	543
RW1	06/03/04	20.43	12.12	8.31	No		2,910	1,840	234	250	79.9	6.0	28.6	67.2
RW1	08/12/04	20.43	с	с	с		1,980c	164c	3100	107c	146c	5.7c	18.1c	10.9c
RW1	11/04/04	20.43	12.06	8.37	No	2,570	127,000	1,790		386	130	5,150	4,020	24,300
RW1	02/01/05	20.43	11.55	8.88	No	3,530	2,880	4,680		78.7	25.3	13.3	49.3	258
RW1	05/03/05	20.43	11.58	8.85	No	6,830d,e	2,490	14,600		91.3	33.8	18.4	17.3	97.7
RW1	08/04/05	20.43	12.10	8.33	No	2,430d	3,080	3,410		49.6	193	20.4	48.2	117
RW1	10/27/05	20.43	12.32	8.11	No	1,970	348	2,960		36.3	9.40	1.99f	2.22	5.36
RW1	01/26/06	20.43	11.55	8.88	No	5,000d	640	<10,000		72	13	7.5	1.8	5.2
RW1	04/28/06	20.43	11.23	9.20	No	950d	810	1,500		30	18	12	4.9	19
RW1	07/05/06	20.43	11.96	8.47	No	687	1,020	886		40.0	25.0	4.77	4.67	11.4
RW1	10/27/06	20.43	12.31	8.12	No	550d	937	600		45.4	21.1	4.82	5.37	8.14
RW1	01/19/07	20.43	11.96	8.47	No	2,500d	1,070	2,500		33.4	21.9	2.22	3.40	6.99
RW1	04/24/07	20.43	11.61	8.82	No	k	806	k		28.0	20.9	2.77	2.81	5.46
RW1	07/24/07	20.43	12.20	8.23	No	2,100d	510	3,500d		17	18	1.8	0.92	2.0
RW1	12/03/07	20.43	12.30	8.13	No	1,100d,I	400	1,700d		12	18	1.4	1.6	1.8
RW1	03/06/08	20.43	11.62	8.81	No	380d	490	480		22	18	1.6	<1.0	1.7
RW1	06/26/08	20.43	12.52	7.91	No	1,100d	560	1,800d		20	51	3.1	2.0	4.2
RW1	08/12/08	20.43	12.51	7.92	No	16,500d,e.m.n	1,720	20,400m		16.8	391	29.7	29.7	52.5
RW1	10/23/08	20.43	12.68	7.75	No									
RW1	10/30/08	20.43				930	2,500	1,200		18	21	7.9	11	15

TABLE 3A CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA Former Exxon Service Station 70235

2225 Telegraph Avenue Oakland, California

Well ID	Sampling	TOC Elev.	DTW	GW Elev.	NAPL	TPHd	TPHg	TPHmo	MTBE 8021B	MTBE 8260B	В	Т	E	X
	Date	(feet)	(feet)	(feet)	(feet)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW6D	07/06/88	98.78i	Well ins	stalled.										
MW6D	07/11/88	98.78i	13.48	85.24i	0.025 in.						220	27	<20	<10
MW6D	10/20/88	98.78i			1000		(710	74	22	110
MW6D	12/15/88	98.78i	13.44	85.34i			2.444							
MW6D	09/07/89	98.78i	***				2,200				600	26	58	31
MW6D	04/30/90	98.78i	13.19	85.59i			3,600				800	150	310	280
MW6D	05/10/90	98.78i	Wellow	er-drilled into	recovery well	RW2								
RW2	10/16/90	98.11i	12.77	85.34i			0.000							
RW2	02/08/91	98. 1 1i	13.11	85.00i			Setter							
RW2	04/02/91	98.11i	11.70	86.41i										
RW2	05/07/91	98.11i	14.09	84.02i			11,000				3,200	480	150	780
RW2	05/31/91	98.11i	16.01	82.10i										
RW2	06/26/91	98.11i	14.60	83.51i										
RW2	08/05/91	98.11i	14.00	84.11i										
RW2	08/13/91	98.11i	21.30	76.81i			1							
RW2	09/11/91	98.11i	19.97	78.14i										
RW2	10/16/91	98.11i	15.19	82.92i			(7)							
RW2	12/30/91	98.11i	13.19	84.92i										
RW2	02/25/92	98.11i	16.27	81.84i			2							
RW2	03/25/92	98.11i		(1)/1			1							<u>, 22.2</u>);
RW2	06/16/92	14.61	12.86	1.75			28,000				2,900	1,000	120	2,700
RW2	09/08/92- 0	5/31/94	Not mor	nitored or sam	pled.									
RW2	08/30/94- 0	4/20/98	Not mor	nitored or sam	pled.									
RW2	08/30/94	17.02j	Well res	surveyed.										
RW2	07/21/98	20.44	12.65	7.79	No		3,500		170		240	100	41	96
RW2	10/06/98	20.44	13.06	7.38	No		3,200	_	200		120	48	56	120
RW2	01/11/99	20.44	12.88	7.56	No		3,300		350		150	17	35	40
RW2	04/08/99	20.44	11.76	8.68	sheen									
RW2	07/19/99	20.44	11.61	8.83	No		1,980		160	499	44	4.16	22.3	11.6
RW2	07/27/99	20.44	13.26	7.18	No									
RW2	10/25/99	20.44	12.96	7.48	No		1,800		440		51	<0.5	4.7	9.5
RW2	01/27/00	20.44	12.70	7.74	No		1,900		750		38	<2.5	4.8	10.4
RW2	04/03/00	20.44	11.97	8.47	No		2,100		300		28	2.4	1.4	0.73
RW2	07/05/00	20.44	12.50	7.94	No		2,300		230		20	<2.5	5.3	8
RW2	10/04/00	20.44	12.97	7.47	No		1,300		570		42	<2.5	15	17.7
RW2	10/05/00	20.44						<1,000				****		
RW2	01/04/01	20.44	13.71	6.73	No		1,000		380		33	<2.5	13	17.7

Former Exxon Service Station 70235 2225 Telegraph Avenue Oakland, California

Well ID	Sampling Date	TOC Elev. (feet)	DTW (feet)	GW Elev. (feet)	NAPL (feet)	TPHd (µg/L)	TPHg (µg/L)	TPHmo (µg/L)	MTBE 8021B (µg/L)	MTBE 8260B (µg/L)	Β (µg/L)	Т (µg/L)	E (µg/L)	 (μg/L)
RW2	04/03/01	20.44	12.10	8.34	No		1,300	V. <u></u>	99	(internet)	18	2.1	16	19.4
RW2	07/05/01	20.44	Well ina	ccessible.				1						
RW2	10/03/01	20.44	12.8	7.64	No		1,900	1	240		35	4.4	34	105
RW2	Oct-01	20.64	Well sur	veyed in comp	bliance with A	AB 2886 requirer	ments.							
RW2	01/02/02	20.64	10.22	10.42	No		2,440		76.0		24.4	6.20	26.2	83.0
RW2	04/02/02	20.64	12.02	8.62	No		1,460	260	47.5	5440 C	8.60	3.30	5.30	29.1
RW2	07/01/02	20.64	12.51	8.13	No		1,380	<100a	39.9		11.0	1.8	17.9	45.0
RW2	10/02/02	20.64	12.91	7.73	No		720	<100	46.9	(mint)	5.5	1.7	3.7	11.9
RW2	01/07/03	20.64	11.61	9.03	No		1,180	197	48.0	56.0	12.3	3.6	12.2	25.6
RW2	06/17/03	20.64	12.32	8.32	No		1,070	<100	29.7	26.4	13.9	4.4	11.8	16.9
RW2	07/16/03	20.64	12.51	8.13	No		1,200	295	32.9	19.3	6.60	4.1	10.9	12.3
RW2	10/07/03	20.64	12.81	7.83	No	332	1,170	<100	55.0	50.2	8.70	1.1	9.3	12.2
RW2	01/14/04	20.64	11.70	8.94	No	167	1,250	<100	8.4	128	18.0	4.4	8.6	10.7
RW2	06/03/04	20.64	12.93	7.71	No		1,100	1,310	17.0	10.9	6.70	1.3	4.0	11.5
RW2	08/12/04	20.64	с	с	с	438c	1,110c	521c		32.8c	7.00c	1.5c	3.1c	10.2c
RW2	11/04/04	20.64	12.30	8.34	No	503	506	419		r	4.30	5.9	6.2	16.0
RW2	02/01/05	20.64	11.61	9.03	No	725	640	1,400		13.7	5.30	1.5	4.0	3.8
RW2	05/03/05	20.64	11.72	8.92	No	493d,e	1,130	801		8.20	10.3	1.1	5.8	6.3
RW2	08/04/05	20.64	12.46	8.18	No	3,020d	1,060	3,810		9.02	6.36	0.848	1.90	2.47
RW2	10/27/05	20.64	12.71	7.93	No	716	163	703		8.74	<0.50	<0.50	<0.50	0.95
RW2	01/26/06	20.64	11.65	8.99	No	410d	620a	<500		5.1	6.1 a	1.2 a	4.3 a	2.1 a
RW2	04/28/06	20.64	11.24	9.40	No	300d	680	<470		2.6	9.7	1.2	5.3	2.9
RW2	07/05/06	20.64	12.33	8.31	No	284	946	221		< 0.500	8.87	1.05	1.81	3.10
RW2	10/27/06	20.64	12.78	7.86	No	240d	920	<470		4.59	<0.50	<0.50	3.65	3.09
RW2	01/19/07	20.64	12.29	8.35	No	230d	794	<470		3.72	6.32	2.27	<0.50	3.09
RW2	04/24/07	20.64	11.81	8.83	No	652d	1,170	332		3.01	7.21	<0.50	6.74	6.15
RW2	07/24/07	20.64	12.51	8.13	No	250d	970	<470		2.5	9.1	<0.50	2.8	1.9
RW2	12/03/07	20.64	12.71	7.93	No	660d,I	460	660d	_	6.8	7.5	<2.5	<2.5	<2.5
RW2	03/06/08	20.64	11.61	9.03	No	610d	750	620d		2.2	8.5	<2.5	2.7	<2.5
RW2	06/26/08	20.64	12.71	7.93	No	500d	400	580d		1.6	5.6	<1.0	<1.0	1.1
RW2	08/12/08	20.64	12.81	7.83	No	372d,m,n	317	222m		1.36	37.3	<0.50	4.13	3.99
RW2	10/23/08	20.64	12.97	7.67	No	190	370	<250		<0.50	3.2	<0.50	5.5	8.1
MW6C	06/15/88	99.89i	Well ins	talled.										
MW6C	06/24/88	99.89i		***							7,400	7.1	170	2,300
MW6C	07/11/88	99.89i	14.21	85.68i				_						8.000
MW6C	10/20/88	99.89i)							9,500	65	170	850
MW6C	12/15/88	99.89i	14.10	85.79i	(****)						-			ंग्ला

Page 20 of 23

TABLE 3A CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA Former Exxon Service Station 70235

2225 Telegraph Avenue Oakland, California

Well ID	Sampling	TOC Elev.	DTW (foot)	GW Elev.	NAPL (foot)	TPHd	TPHg (ug/l)	TPHmo	MTBE 8021B	MTBE 8260B	B	T	E	X
	Date	(ieet)	(Teel)	(iteel)	(Ieel)	(µg/∟)	(µg/r)	(µg/r)	(µg/r)	(µg/r)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW6C	09/07/89	99.89i	-				18,000	****			7,900	430	350	1,100
MW6C	04/30/90	99.89i	13.81	86.68i		<u> </u>	30,000		—		6,100	1,500	1,000	2,700
MW6C	05/10/90		Wellove	er-drilled into re	ecovery well	RW3								
RW3	10/16/90	98.97i	13.29	85.68i										
RW3	01/14/91	98.97i	14.50	84.47i								7 <u>-531</u>		
RW3	02/08/91	98.97i	12.54	86.43i										
RW3	04/02/91	98.97i	11.39	87.58i										
RW3	05/07/91	98.97i	12.47	86.50i			5,800				4,200	640	220	670
RW3	05/31/91	98.97i	16.31	82.66i										
RW3	06/26/91	98.97i	15.50	83.47i										
RW3	08/05/91	98.97i	13.69	85.28i										
RW3	08/13/91	98.97i	13.67	85.30i							3.000	S 152		
RW3	08/14/91	98.97i					3,800				2,300	300	49	360
RW3	09/11/91	98.97i	13.77	85.20i								3775		
RW3	10/16/91	98.97i	16.66	82.31i										
RW3	11/05/91	Well destro	oyed.											
RW3A	08/24/92- 0	4/20/98	Not mon	itored or samp	oled.									
RW3A	08/24/92		Well ins	talled in place	of RW3.									
RW3A	07/21/98	21.75	13.08	8.67	No		280		16		97	<1.2	<1.2	<1.2
RW3A	10/06/98	21.89	13.72	8.17	No		78		26		26	0.89	<0.5	<0.5
RW3A	01/11/99	21.75	12.00	9.75	No		1,000		230	are fare the	490	5.0	<5.0	7.4
RW3A	04/08/99	21.75	11.90	9.85	No		130		11		70	<1.0	<1.0	<1.0
RW3A	07/19/99	21.75	11.75	10.00	No		989		16.4		393	6.40	5.70	15.0
RW3A	07/27/99	21.75	13.68	8.07	No				—			2000		
RW3A	10/25/99	21.75	13.61	8.14	No		150		19		53	<0.5	<0.5	<0.5
RW3A	01/27/00	21.75	12.22	9.53	No		500		12		210	0.59	1.40	2.29
RW3A	04/03/00	21.75	12.00	9.75	No		1,100		16		420	1.6	1.8	1.4
RW3A	07/05/00	21.75	13.01	8.74	No		1,200	6 <u>0004</u>	16		440	1.4	2.5	1.9
RW3A	10/04/00	21.75	13.60	8.15	No		390		8.3		160	1.1	1.5	2.6
RW3A	10/05/00	21.75		2227		1.000		<1,000			***	200		1.00
RW3A	01/04/01	21.75	13.65	8.10	No		500	2002	12		230	0.97	1.1	1.4
RW3A	04/03/01	21.75	12.30	9.45	No		710		7.5		290	<0.5	<0.5	<0.5
RW3A	07/05/01	21.75	13.28	8.47	No		640		9		280	1.4	1.6	2.7
RW3A	10/03/01	21.75	13.58	8.17	No		<50	-	12		21	<0.5	<0.5	<0.5
RW3A	Oct-01	21.89	Well sur	veyed in comp	liance with A	AB 2886 require	ements.							
RW3A	01/02/02	21.89	10.80	11.09	No		<100	-	11.2		<0.50	<0.50	<0.50	<0.50
RW3A	04/02/02	21.89	12.03	9.86	No		55.7	<100	11.0		1.30	<0.50	<0.50	<0.50

Page 21 of 23

- - -

Well ID	Sampling	TOC Elev.	DTW	GW Elev.	NAPL	TPHd	TPHg	TPHmo	MTBE 8021B	MTBE 8260B	В	Т	E	X
	Date	(feet)	(feet)	(feet)	(feet)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
RW3A	07/01/02	21.89	13.13	8.76	No		275	<100 a	21.7		60.4	<0.5	2.4	4.2
RW3A	10/02/02	21.89	13.70	8.19	No		138	114	11.1		53.4	<0.5	<0.5	0.7
RW3A	01/07/03	21.89	11.77	10.12	No		<50.0	<50	22.4	30.9	1.5	<0.5	<0.5	<0.5
RW3A	06/17/03	21.89	12.82	9.07	No		54.5	<100	12.8	16.0	7.40	<0.5	<0.5	<0.5
RW3A	07/16/03	21.89	13.40	8.49	No		112	<100	18.0	13.6	26.0	<0.5	<0.5	<0.5
RW3A	10/07/03	21.89	13.93	7.96	No	124	62.6	<100	10.4	11.3	7.30	<0.5	<0.5	<0.5
RW3A	01/14/04	21.89	11.55	10.34	No	401	<50.0	<100	11.7	16.2	3.10	<0.5	<0.5	<0.5
RW3A	06/03/04	21.89	13.43	8.46	No		79.0	<100	19.4	22.4	6.30	<0.5	<0.5	<0.5
RW3A	08/12/04	21.89	С	с	с	1,190c	<50.0c	296c	1000	16.2c	<0.50c	<0.5c	<0.5c	<0.5c
RW3A	11/04/04	21.89	12.91	8.98	No	178	<50.0	122		5.40	<0.50	1.7	0.7	3.6
RW3A	02/01/05	21.89	11.63	10.26	No	<100	<50.0	<100		11.8	<0.50	<0.5	<0.5	<0.5
RW3A	05/03/05	21.89	11.79	10.10	No	158d	<50.0	<100		8.50	<0.50	<0.5	<0.5	<0.5
RW3A	08/04/05	21.89	12.99	8.90	No	687d	89.9	107		16.7	26.0	0.645	<0.500	0.835
RW3A	10/27/05	21.89	13.49	8.40	No	140	<50.0	79.1		4.00	9.63	<0.50	<0.50	0.65
RW3A	01/26/06	21.89	11.76	10.13	No	210d	100a	<500		17	5.6a	<0.50a		<0.50a
RW3A	04/28/06	21.89	10.96	10.93	No	140g	82	<470		19	2.6	<0.50	<0.50	<0.50
RW3A	07/05/06	21.89	13.12	8.77	No	340	50.0	<95.2		8.11	1.37	<1.00	<1.00	<3.00
RW3A	10/27/06	21.89	13.48	8.41	No	63d	789	<470		10.6	287	1.29	<0.50	2.03
RW3A	01/19/07	21.89	12.69	9.20	No	49d	<50.0	<470	—	6.25	2.08	<0.50	<0.50	<0.50
RW3A	04/24/07	21.89	12.12	9.77	No	<47.6	107	<47.6		4.95	17.9	<0.50	<0.50	0.57
RW3A	07/24/07	21.89	13.11	8.78	No	<47	<500	<470		8.5	240	<5.0	<5.0	<5.0
RW3A	12/03/07	21.89	13.35	8.54	No	61d,I	1,200g	<470		12	700	<10	<10	13
RW3A	03/06/08	21.89	11.69	10.20	No	<47	52	<470		4.4	1.5	<0.50	<0.50	<0.50
RW3A	06/26/08	21.89	13.46	8.43	No	<47	120	<470		10	29	<0.50	<0.50	<0.50
RW3A	08/12/08	21.89	13.67	8.22	No	100d,m,n	59.3	146m		9.63	19.5	<0.50	<0.50	<0.50
RW3A	10/23/08	21.89	13.97	7.92	No									-
RW3A	10/30/08	21.89				<50	<50	<250		6.5	0.99	<0.50	<0.50	<1.0

TABLE 3A CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA Former Exxon Service Station 70235 2225 Telegraph Avenue Oakland, California

Notes:		
TOC Elev.	=	Top of well casing elevation; datum is mean sea level.
DTW	=	Depth to water.
GW Elev.	=	Groundwater elevation; datum is mean sea level.
NAPL	=	Non-aqueous phase liquid.
sheen	=	Liquid-phase hydrocarbon present as sheen.
in.	=	Inches of floating product.
TPHd	=	Total petroleum hydrocarbons as diesel analyzed using EPA Method 5030/8015B (modified).
TPHg	=	Total petroleum hydrocarbons as gasoline analyzed using EPA Method 5030/8015B (modified).
TPHmo	=	Total petroleum hydrocarbons as motor oil using EPA Method 8015B.
MTBE 8021B	=	Methyl tertiary butyl ether analyzed using EPA Method 8021B.
MTBE 8260B	=	Methyl tertiary butyl ether analyzed using EPA Method 8260B.
BTEX	=	Benzene, toluene, ethylbenzene, and total xylenes analyzed using EPA Method 602 or 8021B.
EDB	=	1,2-dibromoethane analyzed using EPA Method 8260B.
1,2-DCA	=	1,2-dichloroethane analyzed using EPA Method 8260B.
TAME	=	Tertiary amyl methyl ether analyzed using EPA Method 8260B.
TBA	=	Tertiary butyl alcohol analyzed using EPA Method 8260B.
ETBE	=	Ethyl tertiary butyl ether analyzed using EPA Method 8260B.
DIPE	=	Di-isopropyl ether analyzed using EPA Method 8260B.
Ethanol	=	Ethanol analyzed using EPA Method 8260B.
µg/L	=	Micrograms per liter.
<	=	Less than the stated laboratory reporting limit.
	=	Not analyzed/Not measured/Not sampled.
а	=	Analyses performed past EPA recommended holding time.
b	=	Well sampled semi-annually.
С	=	Groundwater elevation data invalidated; analytical results suspect.
d	=	Hydrocarbon pattern is present in the requested fuel quantitation range but does not resemble the pattern of the requested fuel.
е	=	TRPH-diesel surrogate was diluted out due to sample matrix
f	=	Analyte detected in Matrix Spike and Matrix Spike Duplicate.
g	=	Elevated result due to single analyte peak in quantitation range.
h	=	Initial analysis within EPA recommended hold time. Re-analysis for dilution performed past hold time.
i	=	Based on assigned benchmark with elevation arbitrarily set at 100 feet.
j	=	Benchmark is City of Oakland #37J.
k	=	Sample container broken in shipment. Analyses not performed.
1	=	Analyte detected in associated method blank.
m	=	Sample received above recommended temperature.
n	=	Analyte detected in bailer bank.

TABLE 3B ADDITIONAL CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA Former Exxon Service Station 70235

2225 Telegraph Avenue Oakland, California

Well ID	Sampling	EDB	1,2-DCA	TAME	TBA	ETBE	DIPE	Ethanol
	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW6A	June 1988	Well installed.						
MW6A	06/24/88 - 12/31/91	Not analyzed for	or these analytes.					
MW6A	05/02/92	Well destroyed						
MW6B	June 1988	Well installed.						
MW6B	06/24/88 - 10/02/02	Not analyzed for	r these analytes.					
MW6B	01/07/03	<0.50	<0.50	<0.50	<10.0	<0.50	<0.50	
MW6B	06/17/03	<0.50	<0.50	<0.50	<10.0	<0.50	<0.50	<100
MW6B	07/16/03	<0.50	< 0.50	<0.50	<10.0	<0.50	<0.50	<100
MW6B	10/07/03	<0.50	<0.50	<0.50	<10.0	<0.50	<0.50	<100
MW6B	01/14/04	<0.50	<0.50	<0.50	<10.0	<0.50	< 0.50	<50.0
MW6B	06/03/04	<0.50	<0.50	<0.50	<10.0	<0.50	< 0.50	<50.0
MW6B	08/12/04	<0.50c	<0.50c	<0.50c	<10.0c	<0.50c	<0.50c	<50.0c
MW6B	11/04/04	<0.50	<0.50	<0.50	<10.0	<0.50	< 0.50	<50.0
MW6B	02/01/05	<0.50	< 0.50	<0.50	<10.0	<0.50	< 0.50	<50.0
MW6B	05/03/05	<0.50	<0.50	<0.50	<10.0	<0.50	<0.50	<50.0
MW6B	08/04/05	<0.500	<0.500	<0.500	<10.0	<0.500	<0.500	<50.0
MW6B	10/27/05	<0.500	<0.500	<0.500	<20.0	<0.500	<0.500	<100
MW6B	01/26/06	<0.50	< 0.50	0.56	<20	<0.50	< 0.50	<100
MW6B	04/28/06	<0.50	15	<0.50	27	<0.50	3.6	1000
MW6B	07/05/06	<0.500	<0.500	<0.500	<10.0	<0.500	<0.500	<50.0
MW6B	10/27/06	<0.500	<0.500	<0.500	<10.0	<0.500	< 0.500	1.000
MW6B	01/19/07	<0.500	<0.500	< 0.500	<10.0	<0.500	<0.500	<50.0
MW6B	04/24/07	<0.500	<0.500	<0.500	<10.0	<0.500	< 0.500	2000
MW6B	07/24/07	<0.50	<0.50	<0.50	<20	<0.50	< 0.50	
MW6B	12/03/07	<0.50	<0.50	<0.50	<10	<0.50	< 0.50	
MW6B	03/06/08	<0.50	<0.50	<0.50	<5.0	<0.50	< 0.50	
MW6B	06/26/08	<0.50	< 0.50	<0.50	<10	<0.50	< 0.50	
MW6B	08/12/08	<0.500	<0.500	<0.500	<10.0	<0.500	<0.500	
MW6B	10/23/08	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	<50
MW6E	10/04/88	Well installed.						
MW6E	10/20/88 - 10/02/02	Not analyzed for	r these analytes.					
MW6E	01/07/03	<0.50	<0.50	<0.50	<10.0	<0.50	<0.50	10000
MW6E	06/17/03	<0.50	< 0.50	< 0.50	<10.0	< 0.50	<0.50	<100
MW6E	07/16/03	<0.50	<0.50	<0.50	<10.0	<0.50	<0.50	<100
MW6E	10/07/03	<0.50	<0.50	<0.50	<10.0	<0.50	<0.50	<100
MW6E	01/14/04	<0.50	<0.50	<0.50	<10.0	<0.50	<0.50	<50.0
MW6E	06/03/04	<0.50	<0.50	<0.50	<10.0	<0.50	<0.50	<50.0
MW6E	08/12/04	<0.50c	<0.50c	<0.50c	<10.0c	<0.50c	<0.50c	<50.0c
MW6E	11/04/04	<0.50	<0.50	<0.50	<10.0	< 0.50	<0.50	<50.0
					. = - =			

Page 1 of 8

- - 7

TABLE 3B ADDITIONAL CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA Former Exxon Service Station 70235

2225 Telegraph Avenue Oakland, California

WellJD	Sampling	EDB	12-004	TAME	TRA	ETPE	DIDE	Ethopol
VVGRID	Date	(ug/L)	(ua/L)	(ua/L)	(ug/L)			
MALCE	02/01/05	(P3-)	(F3 -7	(F9)	(49-)	(P3-C)	(P9/C)	(µg/c/
	02/01/05	<0.50	<0.50	<0.50	<10.0	<0.50	<0.50	<50.0
MARE	09/04/05	<0.50	<0.50	<0.50	<10.0	<0.50	<0.50	<50.0
MAAGE	10/27/05	<0.500	<0.500	<0.500	< 10.0	<0.500	<0.500	<50.0
	01/26/06	<0.000	<0.500	<0.500	<20.0	<0.500	<0.500	<100
MAKE	01/20/00	<0.50	<0.50	<0.50	<20	<0.50	<0.50	<100
	04/20/00	<0.50	<0.50	<0.50	<20	<0.50	< 0.50	
	10/07/06	<0.500	<0.500	<0.500	<10.0	<0.500	<0.500	<50.0
	01/10/07	<0.500	<0.500	<0.500	<10.0	<0.500	<0.500	
IVIVOE	01/19/07	<0.500	<0.500	<0.500	<10.0	<0.500	<0.500	<50.0
	04/24/07	<0.500	<0.500	<0.500	<10.0	<0.500	<0.500	
MVV6E	07/24/07	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	
MW6E	12/03/07	<0.50	<0.50	<0.50	<10	<0.50	< 0.50	
MW6E	03/06/08	<0.50	<0.50	< 0.50	<5.0	<0.50	<0.50	-
MW6E	06/26/08	<0.50	<0.50	< 0.50	<10	<0.50	<0.50	
MW6E	08/12/08	<0.500	<0.500	<0.500	<10.0	<0.500	<0.500	
MW6E	10/23/08	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	<50
	10/05/00							
	10/05/66	VVeli installed.						
	10/20/88 - 10/02/02	Not analyzed to	or these analytes.	-0.50		.0.50		
NIVV 6F	01/07/03	<0.50	<0.50	<0.50	<10.0	<0.50	< 0.50	
IVIVV OF	06/17/03	<0.50	<0.50	<0.50	<10.0	<0.50	<0.50	<100
MVV6F	07/16/03	<0.50	<0.50	<0.50	<10.0	<0.50	< 0.50	<100
MW6F	10/07/03	<0.50	<0.50	<0.50	<10.0	<0.50	< 0.50	<100
MVV6F	01/14/04	<0.50	<0.50	<0.50	<10.0	<0.50	<0.50	<50.0
MW6F	06/03/04	<0.50	<0.50	<0.50	<10.0	< 0.50	< 0.50	<50.0
MW6F	08/12/04	<0.50c	<0.50c	<0.50c	<10.0c	<0.50c	<0.50c	<50.0c
MW6F	11/04/04	<0.50	<0.50	<0.50	<10.0	< 0.50	<0.50	<50.0
MW6F	02/01/05	<0.50	<0.50	<0.50	<10.0	<0.50	<0.50	<50.0
MW6F	05/03/05	<0.50	1.70	0.90	<10.0	<0.50	<0.50	<50.0
MW6F	08/04/05	<0.500	<0.500	<0.500	<10.0	<0.500	<0.500	<50.0
MW6F	10/27/05	<0.500	<0.500	<0.500	<20.0	<0.500	<0.500	<100
MW6F	01/26/06	<0.50	<0.50	<0.50	<20	<0.50	<0.50	<100
MW6F	04/28/06	<0.50	<0.50	<0.50	<20	<0.50	<0.50	(****
MW6F	07/05/06	<0.500	<0.500	<0.500	<10.0	<0.500	<0.500	<50.0
MW6F	10/27/06	<0.500	<0.500	<0.500	<10.0	<0.500	< 0.500	(****
MW6F	01/19/07	<0.500	<0.500	<0.500	<10.0	< 0.500	< 0.500	<50.0
MW6F	04/24/07	<0.500	<0.500	<0.500	<10.0	< 0.500	< 0.500	-
MW6F	07/24/07	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	
MW6F	12/03/07			1464 (March 1	2 2			
MW6F	03/06/08	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	
MW6F	06/26/08	<0.50	< 0.50	<0.50	<10	<0.50	<0.50	
MW6F	08/12/08	<0.500	<0.500	<0.500	<10.0	< 0.500	< 0.500	
MW6F	10/23/08	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	<50
					-			

Well ID	Sampling	EDB	1,2-DCA	TAME	TBA	ETBE	DIPE	Ethanol
	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW6G	11/16/88	Well installed.						
MW6G	12/07/88 - 10/02/02	Not analyzed fo	r these analytes.					
MW6G	01/07/03	<0.50	<0.50	<0.50	<10.0	<0.50	< 0.50	
MW6G	06/17/03	<0.50	<0.50	<0.50	<10.0	<0.50	< 0.50	<100
MW6G	07/16/03	<0.50	<0.50	<0.50	<10.0	<0.50	< 0.50	<100
MW6G	10/07/03	<0.50	< 0.50	<0.50	<10.0	<0.50	< 0.50	<100
MW6G	01/14/04	<0.50	<0.50	<0.50	<10.0	<0.50	<0.50	<50.0
MW6G	06/03/04	<0.50	<0.50	<0.50	<10.0	<0.50	<0.50	<50.0
MW6G	08/12/04	<0.50c	<0.50c	<0.50c	<10.0c	<0.50c	<0.50c	<50.0
MW6G	11/04/04	<0.50	<0.50	<0.50	<10.0	<0.50	<0.50	<50.00
MW6G	02/01/05	<0.50	<0.50	<0.00	<10.0	<0.50	<0.00	<50.0
MW6G	05/03/05	<0.50	<0.00	<0.00	<10.0	<0.50	<0.50	<50.0
MMG	08/04/05	<0.00	<0.00	<0.00	<10.0	<0.50	<0.00	<50.0
	10/27/05	<0.500	<0.500	<0.500	<20.0	<0.500	<0.500	<00.0
MAKEC	01/26/06	<0.500	<0.500	<0.000	<20.0	<0.500	<0.500	<100
MAKEC	01/20/00	<0.50	<0.50	<0.50	<20	<0.50	<0.50	<100
MAKEC	04/20/00	<0.50	<0.50	<0.50	<20	<0.50	<0.50	< 100
NAVAG	10/27/06	<0.500	<0.500	<0.500	<10.0	<0.500	<0.500	<0.00
	10/27/00	<0.500	<0.500	<0.500	<10.0	<0.500	<0.500	<100
NING	01/19/07	<0.500	<0.500	<0.500	<10.0	<0.500	<0.500	<50.0
NAVOG	04/24/07	<0.500	<0.500	<0.500	<10.0	<0.500	<0.500	<50.0
NING	07724/07	<0.50	<0.50	<0.50	< 5.0	<0.50	<0.50	<100
MAKE	12/03/07	<0.50	<0.50	<0.50	<10	<0.50	<0.50	<100
NIVOG	03/06/08	< 0.50	<0.50	<0.50	< 5.0	<0.50	<0.50	<100
MVV6G	06/26/08	<0.50	<0.50	<0.50	<10	<0.50	<0.50	<100
MWbG	08/12/08	<0.500	<0.500	<0.500	<10.0	<0.500	<0.500	<50.0
MW6G	10/23/08	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	<50
MACH	D 00							
		vven installed.						
	12/07/88- 10/02/02	Not analyzed to	mese analytes.	-0.50	050	-0.50	7 50	
	01/07/03	<0.50	<0.50	<0.50	952	<0.50	7.50	
MVV6H	06/17/03	<0.50	<0.50	<0.50	678	<0.50	7.10	<100
MVV6H	07/16/03	<0.50	14.6	0.70	307	<0.50	6.20	<100
MW6H	10/07/03	<0.50	<0.50	<0.50	294	<0.50	7.40	<100
VIVV6H	01/14/04	<0.50	<0.50	<0.50	883	<0.50	6.80	<50.0
MVV6H	06/03/04	<0.50	<0.50	<0.50	541	<0.50	5.80	<50.0
MW6H	08/12/04	<0.50c	<0.50c	<0.50c	754c	<0.50c	5.40c	<50.0c
MVV6H	11/04/04	<0.50	<0.50	<0.50	<10.0	<0.50	< 0.50	<50.0
MW6H	02/01/05	<0.50	<0.50	<0.50	625	<0.50	4.20	<50.0
MW6H	05/03/05	<0.50	<0.50	< 0.50	436	<0.50	3.10	<50.0
MW6H	08/04/05	<0.500	<0.500	<0.500	530	<0.500	3.73	<50.0
MW6H	10/27/05	<0.500	<0.500	<0.500	422	<0.500	4.62	<100
MW6H	01/26/06	<25	<25	<25	<1,000	<25	<25	<5,000

TABLE 3B ADDITIONAL CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA

Well ID	Sampling	EDB	1,2-DCA	TAME	TBA	ETBE	DIPE	Ethanol
	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW6H	04/28/06	<25	<25	<25	<1,000	<25	<25	<5.000
MW6H	07/05/06	<0.500	< 0.500	<0.500	137	<0.500	2.41	<50.0
MW6H	10/27/06	<0.500	< 0.500	< 0.500	131	<0.500	3.61	<100
MW6H	01/19/07	<0.500	25.7	28.1	161	< 0.500	2.96	<50.0
MW6H	04/24/07	<0.500	< 0.500	<0.500	173	< 0.500	1.97	<50.0
MW6H	07/24/07	<0.50	<0.50	<0.50	140	< 0.50	3.8	<100
MW6H	12/03/07	<0.50	<0.50	<0.50	150	< 0.50	7.0	<100
MW6H	03/06/08	<0.50	<0.50	< 0.50	92	< 0.50	1.8	<100
MW6H	06/26/08	<0.50	<0.50	< 0.50	80	< 0.50	1.6	<100
MW6H	08/12/08	<0.500	<0.500	<0.500	66.6	<0.500	1.79	<50.0
MW6H	10/30/08	<0.50	<0.50	<0.50	76	<0.50	2.4	<50
MW6	Dec-88	Well installed.						
MW6l	12/07/88 - 10/02/02	Not analyzed for	or these analytes.					
MW6I	01/07/03	<0.50	<0.50	<0.50	<10.0	<0.50	<0.50	
MW6	06/17/03 b				2017-0 		201300 (
MW6I	07/16/03	<0.50	<0.50	<0.50	16.4	<0.50	<0.50	<100
MW6I	10/07/03 b							
MW6l	01/14/04	<0.50	<0.50	<0.50	<10.0	<0.50	<0.50	<50.0
MW6I	05/03/04 b						222	1000 C
MW6I	06/03/04 b		377 S	1000				-
MW6I	08/12/04	<0.50c	<0.50c	<0.50c	<10.0c	<0.50c	<0.50c	<50.0c
MW 6I	11/04/04 b		,	: ::::: ::				1.000
MW6I	02/01/05	<0.50	< 0.50	<0.50	<10.0	<0.50	<0.50	<50.0
MW6	08/04/05	<0.500	<0.500	<0.500	<10.0	<0.500	<0.500	<50.0
MW61	10/27/05 b		5555 (1777			1. 1.1.5
MW6i	01/26/06	<0.50	<0.50	<0.50	<20	<0.50	<0.50	<100
MW6I	04/28/06 b				1.000	<u>355</u> 3.0	17775	0
MW6I	07/05/06	<0.500	<0.500	<0.500	<10.0	<0.500	<0.500	<50.0
MVV6	10/27/06 b			8.000 E		777-2 3	(****)	C RER
MVV6	01/19/07	<0.500	<0.500	<0.500	<10.0	<0.500	<0.500	<50.0
MVV6I	04/24/07 b	10000		(Here)	-	htin (
MVV6	07/24/07	<0.50	< 0.50	<0.50	<5.0	<0.50	< 0.50	
MWG	12/03/07	<0.50	<0.50	<0.50	<10	<0.50	<0.50	<100
MVV6	03/06/08	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	() and a
MWG	06/26/08 b							
	08/12/08	<0.500	<0.500	<0.500	<10.0	<0.500	<0.500	
MAAPI	10/23/08 b					-		1 <u>- 1 - 1 - 1</u>
MW6J	04/06/01	Well installed						
MW6J	07/05/01 - 10/02/02	Not analyzed fo	r these analytes.					
MW6J	01/07/03	<0.50	<0.50	<0.50	<10.0	<0.50	<0.50	
MW6J	06/17/03	<0.50	0.90	<0.50	<10.0	<0.50	<0.50	<100
				0.00	10.0	.0.00	-0.00	-100

Former Exxon Service Station 70235 2225 Telegraph Avenue Oakland, California

 (μg/L) <100 <100 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <100 <100
<pre><100 <100 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <100 <100 <100</pre>
<100 <100 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <100 <100
<100 <50.0 <50.0c <50.0 <50.0 <50.0 <50.0 <100 <100
<50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <100 <100
<50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <100 <100
<50.0c <50.0 <50.0 <50.0 <100 <100
<50.0 <50.0 <50.0 <100 <100
<50.0 <50.0 <50.0 <100 <100
<50.0 <50.0 <100 <100
<50.0 <100 <100
<100 <100
<100
<50.0
<50.0
<50
<100
<100
<100
<50.0
<50.0
<50.00
<50.00
<50.0
<50.0
<50.0
<100
< 500
<100
< 100
<100
< 100
<50.0
<50.0
<100

Page 5 of 8
TABLE 3B ADDITIONAL CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA

Former Exxon Service Station 70235 2225 Telegraph Avenue Oakland, California

Well ID	Sampling	EDB	1,2-DCA	TAME	TBA	ETBE	DIPE	Ethanol
	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
RW1	12/03/07	<0.50	<0.50	<0.50	<10	<0.50	<0.50	<100
RW1	03/06/08	<0.50	<0.50	<0.50	37	< 0.50	< 0.50	<100
RW1	06/26/08	<0.50	<0.50	<0.50	18	< 0.50	< 0.50	<100
RW1	08/12/08	0.710	< 0.500	< 0.500	23.3	< 0.500	< 0.500	<50.0
RW1	10/30/08	<0.50	<0.50	<0.50	43	<0.50	<0.50	<50
MW6D	07/06/88	Well installed.	nan namme an earl a tartest					
MW6D	07/11/88 - 04/30/90	Not analyzed for	or these analytes.					
MW6D	05/10/90	Well over-drille	d into recovery well RW2.					
RW2	10/16/90 - 10/02/02	Not analyzed to	or these analytes.				0.50	
RW2	01/07/03	< 0.50	<0.50	<0.50	<10.0	<0.50	<0.50	
RW2	06/17/03	<0.50	<0.50	<0.50	<10.0	<0.50	<0.50	<100
RW2	07/16/03	<0.50	<0.50	<0.50	<10.0	<0.50	<0.50	<100
RW2	10/07/03	<0.50	<0.50	<0.50	<10.0	<0.50	< 0.50	<100
RW2	01/14/04	<0.50	<0.50	<0.50	370	<0.50	<0.50	<50.0
RW2	06/03/04	<0.50	<0.50	<0.50	370	<0.50	<0.50	<50.0
RW2	08/12/04	1.30c	<0.50c	<0.50c	<10.0c	<0.50c	<0.50c	<50.0c
RW2	11/04/04	<0.50	<0.50	<0.50	<10.0	<0.50	<0.50	<50.0
RW2	02/01/05	<0.50	<0.50	<0.50	<10.0	<0.50	<0.50	<50.0
RW2	05/03/05	<0.50	<0.50	<0.50	<10.0	<0.50	<0.50	<50.0
RW2	08/04/05	<0.500	<0.500	<0.500	<10.0	<0.500	<0.500	<50.0
RW2	10/27/05	<0.500	<0.500	<0.500	<20.0	<0.500	<0.500	<100
RW2	01/26/06	<0.50	<0.50	<0.50	<20	<0.50	<0.50	<100
RW2	04/28/06	<0.50	<0.50	<0.50	<20	<0.50	<0.50	
RW2	07/05/06	<0.500	<0.500	<0.500	<10.0	<0.500	<0.500	<50.0
RW2	10/27/06	<0.500	<0.500	< 0.500	<10.0	<0.500	<0.500	
RW2	01/19/07	<0.500	<0.500	<0.500	<10.0	<0.500	<0.500	<50.0
RW2	04/24/07	<0.500	<0.500	< 0.500	<10.0	<0.500	<0.500	
RW2	07/24/07	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	
RW2	12/03/07	<0.50	<0.50	<0.50	<10	<0.50	<0.50	_
RW2	03/06/08	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	
RW2	06/26/08	<0.50	<0.50	<0.50	<10	<0.50	<0.50	
RW2	08/12/08	<0.500	<0.500	<0.500	<10.0	< 0.500	<0.500	
RW2	10/23/08	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	<50
MWAC	06/15/88	Well installed						
MWGC	06/24/88 - 04/20/00	Not analyzed for	r these analytes					
MMAGC	05/10/90	Well over drille	d into recovery well R\M/2					

 RW3
 10/16/90 - 10/16/91
 Not analyzed for these analytes.

 RW3
 11/05/91
 Well destroyed.

RW3A 08/24/92 Well installed in place of RW3.

TABLE 3B ADDITIONAL CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA

Former Exxon Service Station 70235 2225 Telegraph Avenue Oakland, California

Well ID	Sampling	EDB	1,2-DCA	TAME	ТВА	ETBE	DIPE	Ethanol
	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
RW3A	08/24/98 - 10/02/02	Not analyzed for these analytes.						
RW3A	01/07/03	<0.50	<0.50	<0.50	<10.0	<0.50	<0.50	Creater and a second
RW3A	06/17/03	<0.50	<0.50	<0.50	<10.0	<0.50	1.20	<100
RW3A	07/16/03	<0.50	< 0.50	< 0.50	<10.0	<0.50	1.40	<100
RW3A	10/07/03	<0.50	<0.50	< 0.50	<10.0	<0.50	1.40	<100
RW3A	01/14/04	<0.50	<0.50	<0.50	<10.0	<0.50	2.20	<50.0
RW3A	06/03/04	<0.50	< 0.50	< 0.50	<10.0	<0.50	1.20	<50.0
RW3A	08/12/04	<0.50c	<0.50c	<0.50c	<10.0c	<0.50c	1.10c	<50.0c
RW3A	11/04/04	<0.50	< 0.50	< 0.50	<10.0	<0.50	<0.50	<50.0
RW3A	02/01/05	<0.50	<0.50	< 0.50	<10.0	<0.50	2.10	<50.0
RW3A	05/03/05	<0.50	<0.50	<0.50	<10.0	<0.50	0.60	<50.0
RW3A	08/04/05	<0.500	<0.500	<0.500	<10.0	<0.500	<0.500	<50.0
RW3A	10/27/05	<0.500	<0.500	<0.500	<20.0	<0.500	0.980	<100
RW3A	01/26/06	<0.50	<0.50	< 0.50	<20	<0.50	3.2	<100
RW3A	04/28/06	<0.50	<0.50	<0.50	<20	<0.50	1.5	<100
RW3A	07/05/06	<0.500	<0.500	<0.500	<10.0	<0.500	1.20	<50.0
RW3A	10/27/06	<0.500	< 0.500	< 0.500	17.3	<0.500	3.90	<100
RW3A	01/19/07	<0.500	1.30	<0.500	<10.0	<0.500	1.55	<50.0
RW3A	04/24/07	<0.500	<0.500	< 0.500	<10.0	<0.500	1.61	<50.0
RW3A	07/24/07	<0.50	<0.50	<0.50	<5.0	<0.50	3.1	<100
RW3A	12/03/07	<0.50	<0.50	< 0.50	30	<0.50	7.5	<100
RW3A	03/06/08	<0.50	< 0.50	<0.50	<5.0	<0.50	0.88	<100
RW3A	06/26/08	<0.50	< 0.50	<0.50	13	<0.50	3.0	<100
RW3A	08/12/08	<0.500	<0.500	<0.500	<10.0	<0.500	1.40	<50.0
RW3A	10/30/08	<0.50	<0.50	<0.50	<5.0	<0.50	1.4	<50

TABLE 3B ADDITIONAL CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA

Former Exxon Service Station 70235 2225 Telegraph Avenue Oakland, California

Notes:		
TOC Elev.	=	Top of well casing elevation; datum is mean sea level.
DTW	=	Depth to water.
GW Elev.	=	Groundwater elevation; datum is mean sea level.
NAPL	=	Non-aqueous phase liquid.
sheen	=	Liquid-phase hydrocarbon present as sheen.
in.	=	Inches of floating product.
TPHd	=	Total petroleum hydrocarbons as diesel analyzed using EPA Method 5030/8015B (modified).
TPHg	=	Total petroleum hydrocarbons as gasoline analyzed using EPA Method 5030/8015B (modified).
TPHmo	=	Total petroleum hydrocarbons as motor oil using EPA Method 8015B.
MTBE 8021B	=	Methyl tertiary butyl ether analyzed using EPA Method 8021B.
MTBE 8260B	=	Methyl tertiary butyl ether analyzed using EPA Method 8260B.
BTEX	=	Benzene, toluene, ethylbenzene, and total xylenes analyzed using EPA Method 602 or 8021B.
EDB	=	1,2-dibromoethane analyzed using EPA Method 8260B.
1,2-DCA	=	1,2-dichloroethane analyzed using EPA Method 8260B.
TAME	=	Tertiary amyl methyl ether analyzed using EPA Method 8260B.
TBA	=	Tertiary butyl alcohol analyzed using EPA Method 8260B.
ETBE	=	Ethyl tertiary butyl ether analyzed using EPA Method 8260B.
DIPE	=	Di-isopropyl ether analyzed using EPA Method 8260B.
Ethanol	=	Ethanol analyzed using EPA Method 8260B.
µg/L	=	Micrograms per liter.
<	=	Less than the stated laboratory reporting limit.
ALC: N	=	Not analyzed/Not measured/Not sampled.
а	=	Analyses performed past EPA recommended holding time.
b	=	Well sampled semi-annually.
с	=	Groundwater elevation data invalidated; analytical results suspect.
d	=	Hydrocarbon pattern is present in the requested fuel quantitation range but does not resemble the pattern of the requested fuel.
е	=	TRPH-diesel surrogate was diluted out due to sample matrix
f	=	Analyte detected in Matrix Spike and Matrix Spike Duplicate.
g	=	Elevated result due to single analyte peak in quantitation range.
h	=	Initial analysis within EPA recommended hold time. Re-analysis for dilution performed past hold time.
i	=	Based on assigned benchmark with elevation arbitrarily set at 100 feet.
j	=	Benchmark is City of Oakland #37J.
k	=	Sample container broken in shipment. Analyses not performed.
I	=	Analyte detected in associated method blank.
m	=	Sample received above recommended temperature.
n	=	Analyte detected in bailer bank.

TABLE 4 WELL CONSTRUCTION DETAILS Former Exxon Service Station 70235 2225 Telegraph Avenue Oakland, California

Well ID	Well Installation Date	TOC Elevation (feet)	Borehole Diameter (inches)	Total Depth of Boring (feet bgs)	Well Depth (feet bgs)	Casing Diameter (inches)	Well Casing Material	Screened Interval (feet bgs)	Slot Size (inches)	Filter Pack Interval (feet bgs)	Filter Pack Material
MW6A	Well destroye	ed in 1992.									
MW6B	June 1988	21.09	8	21.5	19	2	PVC	9-19	0.020	7-20	#3 Sand
MW6E	10/04/88	21.24	10.5	21.5	20.5	4	PVC	10-19.5	0.020	8-21.5	#3 Sand
MW6F	10/05/88	22.17	10.5	22	20	4	PVC	10-19.5	0.020	8-22	#3 Sand
MW6	11/16/88	20.46	8	20	20	4	PVC	10-19.5	0.020	8-20	#3 Sand
MW6H	11/16/88	20.20	8	21	20	4	PVC	10-19.5	0.020	8-21	#3 Sand
MW6!	11/17/88	19.87	8	21	20	4	PVC	10-19.5	0.020	8-21	#3 Sand
MW6J	04/06/01	20.75	8	23	23	2	PVC	6-23	0.020	6-23	#2/12 Sand
RW1	05/10/90	20.43	12	25	25	4	PVC	9.5-24.5	0.020	8.5-25	#3 Sand
MW6D RW2	Well converte 07/06/88	d to groundwate 20.64	er recovery well F 12	W2 in 1990. 25	25	4	PVC	9.5-24.5	0.020	9.5-25	#3 Sand
MW6C RW3	Well converte Well destroye	ed to groundwate ed in 1991 and re	er recovery well F eplaced with well	₹W3 in 1990. RW3A in 1992 <i>.</i>							
RW3A	08/24/92	21.89	12	21.5	21.5	4	PVC	9-21	0.020	8-21.5	#3 Sand
VW1	06/05/92	NS	NS	11	11	4	PVC	6-11	0.020	NS	NS
VW2	06/05/92	NS	NS	11	11	4	PVC	6-11	0.020	NS	NS
VW3	08/24/92	NS	12	13.5	13.5	4	PVC	4-13.5	0.050	4-13.5	Aquarium Sand

Notes:

TOC = Top of well casing elevation; datum is mean sea level.

PVC = Polyvinyl chloride.

feet bgs = feet below ground surface.

NS = Not specified.

TABLE 5VAULT AND CONDUIT DEPTHSFormer Exxon Service Station 702352225 Telegraph Avenue,Oakland, California(Page 1 of 1)

Vault	Type of Vault	Provider	Depth	Determination By
Designation		r tovidei	(in feet)	Determination By
235				
V1	TV (Cable)		1.5	USA Markings/ Privated Utility Locator
V2	Electrical	PG&E	2	USA Markings/ Privated Utility Locator
V3	Water	EBMUD	2	USA Markings/ Privated Utility Locator
V4	Water	private - station	2	Private Utility Locator
V5	Unknown	Tr <u>ances</u>		concrete cover
V6	Electrical	private - station	0.5	Private Utility Locator
V7	Telephone	Bell System		heavy concrete double door lid
V8	Traffic Control	City of Oakland	2	City of Oakland MapPrivate Utility Locator
V9	Traffic Control	City of Oakland	2	City of Oakland MapPrivate Utility Locator
V10	Electrical	City of Oakland	2	City of Oakland MapPrivate Utility Locator
V11	Electrical	City of Oakland	2	City of Oakland MapPrivate Utility Locator
V12	Electrical	City of Oakland	2	City of Oakland MapPrivate Utility Locator
V13	Telephone	Bell System	1.5	USA Markings /Private Utility Locator
V14	Gas	PG&E	1.5	USA Markings/ Privated Utility Locator
V15	Sewer	City of Oakland	2	Private Utility Locator
V16	Gas	PG&E	1.5	USA Markings/ Privated Utility Locator
V17	Gas	Gas	1.5	USA Markings/ Privated Utility Locator
V18	Electrical	PG&E	2	USA Markings/ Privated Utility Locator
V19	Water	EBMUD	S	Field Observations
SD1	Storm Drain	Private - Station	0.5	Field Observations
SD2	Storm Drain	Private - Station	0.5	Field Observations
SD3	Storm Drain	Private - Station	0.5	Field Observations

Conduit	Street	Approximate Distance From the Edge of theProperty	Depth (in feet)	Determination By
Storm Drain	Telegraph Avenue	8	9	Map/Field Observations
Electric City of Oakland	Telegraph Avenue	14	2	Map/Private Utility Locator
Sewer	Telegraph Avenue	25	5	Map/Field Observations
PG&E Gas	Telegraph Avenue	27	5	USA Markings/ Map/Field Observations
PG&E Electric	Telegraph Avenue	33	5	USA Markings/ Map/Field Observations
PG&E Electric	Telegraph Avenue	37	5	USA Markings/ Map/Field Observations
EBMUD -Water	Telegraph Avenue	42	5	USA Markings/ Map/Field Observations
AT&T	Telegraph Avenue	46	5	USA Markings/ Field Observations
Sewer	Telegraph Avenue	49	5	Map/Field Observations
PG&E Electric	Telegraph Avenue	60	5	USA Markings/ Map/Field Observations
PG&E Electric	Telegraph Avenue	65	5	USA Markings/ Map/Field Observations
AT&T	Telegraph Avenue	70	5	USA Markings/ Field Observations
Sewer	Telegraph Avenue	75	5	Map/Field Observations
PG&E Electric	West Grand Avenue	2	2	USA Markings/ Map/Privated Utility Locator
AT&T	West Grand Avenue	5	1.5	USA Markings/ Privated Utility Locator
PG&E Gas	West Grand Avenue	9	1.5	USA Markings/ /Maps/Private Utility Locator
EBMUD -Water	West Grand Avenue	26	Not Determined	Maps
Sewer	West Grand Avenue	30	Not Determined	Maps
Storm Drain	West Grand Avenue	60	Not Determined	Maps

TABLE 6 GRAB GROUNDWATER INTERVAL SAMPLING DETAILS Former Exxon Service Station 70235 2225 Telegraph Avenue Oakland, California (Page 1 of 1)

Sample	Sample	Sample	Wait Time	Number of	Number of
Location	Interval	Date	Minutes	1 Liter Ambers	40ml Voas
CPT Samples					
CPT1	14' - 18'	10/24/08	60	2	6
CPT1	28' - 32'	10/24/08	60	Insufficient Water Volume	Insufficient Water Volume
CPT1	38' - 42'	10/24/08	54	2	6
CPT2	12' - 18'	10/27/08	5	2	6
CPT2	26' - 32	10/27/08	16	Insufficient Water Volume	6
CPT2	36' - 42	10/27/08	50	2	6
CPT3	12' - 14'	10/23/08	60	Insufficient Water Volume	6
CPT3	22' - 26'	10/23/08	60	Insufficient Water Volume	Insufficient Water Volume
CPT3	35' - 39'	10/23/08	60	Insufficient Water Volume	Insufficient Water Volume
CPT3	35' - 42'	10/23/08	30	1	6

.

APPENDIX A

CORRESPONDENCE

ALAMEDA COUNTY HEALTH CARE SERVICES

AGENCY

SEP () & 2008

BY

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

September 5, 2008

Jennifer Sedlachek ExxonMobil 4096 Piedmont, Ave., #194 Oakland, CA 94611

DAVID J. KEARS, Agency Director

Subject: Fuel Leak Case No. RO0000358 and Geotracker Global ID T0600101354, Exxon 7-0235, 2225 Telegraph Ave., Oakland, CA 94612

Dear Ms. Sedlachek:

Alameda County Environmental Health (ACEH) staff has reviewed the *Work Plan for Groundwater Assessment* dated August 22, 2008, the *Site Conceptual Model* dated July 1, 2008 and the *Off-Site Delineation Investigation Report* dated April 27, 2007 submitted by Environmental Resolutions, Inc. (ERI). The work plan proposes on-site lateral and vertical delineation for soil and groundwater using cone penetrometer testing (CPT), Hydropunch[®] and dual-tube direct push technologies to advance the borings and collect samples to enable you to complete a corrective action plan.

ACEH generally concurs with both the proposed scope of work and requests that you perform the proposed scope of work and address the following technical comments in the report requested below.

Please provide 72-hour hour advance written notification to me (e-mail preferred) prior to the start of field activities.

TECHNICAL COMMENTS

1. **Utility Survey and Cross-section.** ERI presented a utility survey of the area. However, no sewer or other utility laterals were shown from the site to the utilities. Please submit an updated utility survey map showing the laterals. Also, include the locations of the pipelines on cross-section B-B' and C-C' in the report requested below.

TECHNICAL REPORT REQUEST

Please submit technical reports to Alameda County Environmental Health (Attention: Barbara Jakub), according to the following schedule:

- October 24, 2008 Third Quarter Groundwater Monitoring Report
- January 5, 2008 Soil and Water Investigation Report

- January 21, 2008 First Quarter Groundwater Monitoring Report
- April 20, 2008 Second Quarter Groundwater Monitoring Report
- July 20, 2008 Third Quarter Groundwater Monitoring Report

These reports are being requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request.

ELECTRONIC SUBMITTAL OF REPORTS

ACEH's Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of reports in electronic form. The electronic copy replaces paper copies and is expected to be used for all public information requests, regulatory review, and compliance/enforcement activities. Instructions for submission of electronic documents to the Alameda County Environmental Cleanup Oversight Program FTP site are provided on the attached "Electronic Report Upload Instructions." Submission of reports to the Alameda County FTP site is an addition to existing requirements for electronic submittal of information to the State Water Resources Control Board (SWRCB) Geotracker website. In September 2004, the SWRCB adopted regulations that require electronic submittal of information for all groundwater cleanup programs. For several years, responsible parties for cleanup of leaks from underground storage tanks (USTs) have been required to submit groundwater analytical data, surveyed locations of monitoring wells, and other data to the Geotracker database over the Internet. Beginning July 1, 2005, these same reporting requirements were added to Spills, Leaks, Investigations, and Cleanup (SLIC) sites. Beginning July 1, 2005, electronic submittal of a complete copy of all reports for all sites is required in Geotracker (in PDF format). Please visit the SWRCB website for more information on these requirements (http://www.swrcb.ca.gov/ust/electronic_submittal/report_rqmts.shtml.

PERJURY STATEMENT

All work plans, technical reports, or technical documents submitted to ACEH must be accompanied by a cover letter from the responsible party that states, at a minimum, the following: "I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge." This letter must be signed by an officer or legally authorized representative of your company. Please include a cover letter satisfying these requirements with all future reports and technical documents submitted for this fuel leak case.

PROFESSIONAL CERTIFICATION & CONCLUSIONS/RECOMMENDATIONS

The California Business and Professions Code (Sections 6735, 6835, and 7835.1) requires that work plans and technical or implementation reports containing geologic or engineering evaluations and/or judgments be performed under the direction of an appropriately registered or certified professional. For your submittal to be considered a valid technical report, you are to present site specific data, data interpretations, and recommendations prepared by an appropriately licensed professional and include the professional registration stamp, signature,

Ms. Sedlachek RO0000358 September 5, 2008, Page 3

and statement of professional certification. Please ensure all that all technical reports submitted for this fuel leak case meet this requirement.

UNDERGROUND STORAGE TANK CLEANUP FUND

Please note that delays in investigation, later reports, or enforcement actions may result in your becoming ineligible to receive grant money from the state's Underground Storage Tank Cleanup Fund (Senate Bill 2004) to reimburse you for the cost of cleanup.

AGENCY OVERSIGHT

If it appears as though significant delays are occurring or reports are not submitted as requested, we will consider referring your case to the Regional Board or other appropriate agency, including the County District Attorney, for possible enforcement actions. California Health and Safety Code, Section 25299.76 authorizes enforcement including administrative action or monetary penalties of up to \$10,000 per day for each day of violation.

If you have any questions, please call me at (510) 639-1287 or send me an electronic mail message at barbara.jakub@acgov.org.

Sincerely,

Barbara Jak

Barbara Jakub, P.G.^V Hazardous Materials Specialist

Enclosure: ACEH Electronic Report Upload (ftp) Instructions

cc: Ms. Paula Sime, ERI, 601 N McDowell Blvd., Petaluma, CA 94954
 Leroy Griffin, Oakland Fire Department, 250 Frank H. Ogawa Plaza, Ste. 3341, Oakland, CA 94612-2032
 Donna Drogos, ACEH
 Barbara Jakub, ACEH
 File

Alameda County Environmental Cleanun	ISSUE DATE: July 5, 2005			
Oversight Programs	REVISION DATE: December 16, 2005			
(LOP and SLIC)	PREVIOUS REVISIONS: October 31, 2005			
SECTION: Miscellaneous Administrative Topics & Procedures	SUBJECT: Electronic Report Upload (ftp) Instructions			

Effective January 31, 2006, the Alameda County Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of all reports in electronic form to the county's ftp site. Paper copies of reports will no longer be accepted. The electronic copy replaces the paper copy and will be used for all public information requests, regulatory review, and compliance/enforcement activities.

REQUIREMENTS

- Entire report including cover letter must be submitted to the ftp site as a single portable document format (PDF) with no password protection. (Please do not submit reports as attachments to electronic mail.)
- It is preferable that reports be converted to PDF format from their original format, (e.g., Microsoft Word) rather than scanned.
- Signature pages and perjury statements must be included and have either original or electronic signature.
- Do not password protect the document. Once indexed and inserted into the correct electronic case file, the document will be secured in compliance with the County's current security standards and a password. Documents with password protection will not be accepted.
- Each page in the PDF document should be rotated in the direction that will make it easiest to read on a computer monitor.
- Reports must be named and saved using the following naming convention:
 - RO# Report Name_Year-Month-Date (e.g., RO#5555_WorkPlan_2005-06-14)

Additional Recommendations

A separate copy of the tables in the document should be submitted by e-mail to your Caseworker in Excel format.
 These are for use by assigned Caseworker only.

Submission Instructions

- 1) Obtain User Name and Password:
 - a) Contact the Alameda County Environmental Health Department to obtain a User Name and Password to upload files to the ftp site.
 - i) Send an e-mail to <u>dehloptoxic@acgov.org</u>
 - ог
 - ii) Send a fax on company letterhead to (510) 337-9335, to the attention of Alicia Lam-Finneke.
 - b) In the subject line of your request, be sure to include "ftp PASSWORD REQUEST" and in the body of your request, include the Contact Information, Site Addresses, and the Case Numbers (RO# available in Geotracker) you will be posting for.
- 2) Upload Files to the ftp Site
 - a) Using Internet Explorer (IE4+), go to ftp://alcoftp1.acgov.org
 - (i) Note: Netscape and Firefox browsers will not open the FTP site.
 - b) Click on File, then on Login As.
 - c) Enter your User Name and Password. (Note: Both are Case Sensitive.)
 - d) Open "My Computer" on your computer and navigate to the file(s) you wish to upload to the ftp site.
 - e) With both "My Computer" and the ftp site open in separate windows, drag and drop the file(s) from "My Computer" to the ftp window.
- 3) Send E-mail Notifications to the Environmental Cleanup Oversight Programs
 - a) Send email to <u>dehloptoxic@acgov.org</u> notify us that you have placed a report on our ftp site.
 - b) Copy your Caseworker on the e-mail. Your Caseworker's e-mail address is the entire first name then a period and entire last name at acgov.org (e.g., firstname.lastname@acgov.org)
 - c) The subject line of the e-mail must start with the RO# followed by Report Upload. (e.g., Subject: RO1234 Report Upload)

APPENDIX B

FIELD PROTOCOLS

FIELD PROTOCOL

Site Safety Plan

Field work is performed by ERI personnel in accordance with a Site Safety Plan developed for the site. This plan described the basic safety requirements for the subsurface investigation and the drilling of soil borings at the work site. The Site Safety Plan is applicable to personnel and subcontractors of ERI. Personnel at the site are informed of the contents of the Site Safety Plan before work begins. A copy of the Site Safety Plan is kept at the work site and is available for reference by appropriate parties during the work. The ERI geologist will act as the Site Safety Officer.

Drilling of Soil Borings

Prior to the drilling of soil borings, ERI will acquire necessary permits from the appropriate agency(ies). ERI will also contact Underground Service Alert (USA) and a private underground utility locator before drilling to help locate public utility lines at the site. ERI will clear the proposed locations to a depth of approximately 8 feet, before drilling to reduce the risk of damaging underground structures.

Soil borings will be drilled with a direct-push drill rig. Core samples will be continuously collected from the soil borings. Drill rods and sampling equipment will be steam-cleaned before use to minimize the possibility of crosshole contamination. The rinsate will be containerized and stored on site. ERI will coordinate with ExxonMobil for appropriate disposal of the rinsate.

Drilling will be performed under the observation of a field geologist, and the earth materials in the boring will be identified using visual and manual methods, and classified as drilling progresses using the Unified Soil Classification System.

Soil samples will be monitored with a photo-ionization detector (PID), which measures hydrocarbon concentrations in the ambient air or headspace above the soil sample. Field instruments such as the PID are useful for indicating relative levels of hydrocarbon vapors, but do not detect concentrations of hydrocarbons with the same precision as laboratory analyses. Soil samples selected for possible chemical analysis will be sealed promptly with Teflon® tape and plastic caps. The samples will be labeled and placed in iced storage for transport to the laboratory. Chain-of-Custody records will be initiated by the geologist in the field, updated throughout handling of the samples, and sent with the samples to the laboratory. Copies of these records will be in the final report. Cuttings generated during drilling will be placed in drums and covered and left at the site. ERI will coordinate with ExxonMobil for the soil to be removed to an appropriate disposal facility.

APPENDIX C

PERMITS

Alameda County Public Works Agency - Water Resources Well Permit

Plattan	399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510	5 D)782-1939		
Application Approved	on: 10/02/2008 By jamesy	Permit Numbers: W2008-0721 Permits Valid from 10/22/2008 to 10/30/2008		
Application Id:	1222962208522	City of Project Site:Oakland		
Site Location: Project Start Date:	10/22/2008	Completion Date: 10/30/2008		
Requested Inspection: Scheduled Inspection:	:10/22/2008 :10/22/2008 at 1:30 PM (Contact your inspector, R	r, Ron Smalley at (510) 670-5407, to confirm.)		
Applicant:	Environmental Resolutions - Rebekah Westrup	Phone: 707-766-2000		
Property Owner:	The Valero Companies 685 W 3rd St., Hanford, CA 93230	Phone:		
Client:	** same as Property Owner **			
	۔ Receipt Number: WR2008-0347 Payer Name : Environmental Resolutions Inc.l	Total Due:\$230.00Total Amount Paid:\$230.00Paid By: MCPAID IN FULL		

Works Requesting Permits:

Borehole(s) for Investigation-Contamination Study - 8 Boreholes Driller: Gregg Drilling - Lic #: 485165 - Method: DP

Specifications

Permit	issued Dt	Expire Dt	#	Hole Diam	Max Depth
Number			Boreholes		
W2008-	10/02/2008	01/20/2009	8	2.00 in.	50.00 ft
0721					

Specific Work Permit Conditions

1. Backfill bore hole by tremie with cement grout or cement grout/sand mixture. Upper two-three feet replaced in kind or with compacted cuttings. All cuttings remaining or unused shall be containerized and hauled off site.

2. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time.

3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.

4. Prior to any drilling activities, it shall be the applicant's responsibility to contact and coordinate an Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits or agreements required for that Federal, State, County or City, and follow all City or County Ordinances. No work shall begin until all the permits and requirements have been approved or obtained. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County an Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.

5. Applicant shall contact Ron Smalley for an inspection time at 510-670-5407 at least five (5) working days prior to

Work Total: \$230.00

Alameda County Public Works Agency - Water Resources Well Permit

starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.

6. Permitte, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.

7. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

8. Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this permit application. Boreholes shall not be converted to monitoring wells, without a permit application process.

APPENDIX D

CPT PROTOCOL AND REPORT

Cone Penetration Testing Procedure (CPT)

Gregg Drilling & Testing, Inc. carries out all Cone Penetration Tests (CPT) using an integrated electronic cone system, *Figure CPT*. The soundings were conducted using a 20 ton capacity cone with a tip area of 15 cm² and a friction sleeve area of 225 cm². The cone is designed with an equal end area friction sleeve and a tip end area ratio of 0.85.

The cone takes measurements of cone bearing (q_c) , sleeve friction (f_s) and penetration pore water pressure (u_2) at 5cm intervals during penetration to provide a nearly continuous hydrogeologic log. CPT data reduction and interpretation is performed in real time facilitating on-site decision making. The above mentioned parameters are stored on disk for further analysis and reference. All CPT soundings are performed in accordance with revised (2002) ASTM standards (D 5778-95).

The cone also contains a porous filter element located directly behind the cone tip (u_2) , *Figure CPT*. It consists of porous plastic and is 5.0mm thick. The filter element is used to obtain penetration pore pressure as the cone is advanced as well as Pore Pressure Dissipation Tests (PPDT's) during appropriate pauses in penetration. It should be noted that prior to penetration, the element is fully saturated with silicon oil under vacuum pressure to ensure accurate and fast dissipation.

Figure CPT

When the soundings are complete, the test holes are grouted using a Gregg In Situ support rig. The grouting procedures generally consist of pushing a hollow CPT rod with a "knock out" plug to the termination depth of the test hole. Grout is then pumped under pressure as the tremie pipe is pulled from the hole. Disruption or further contamination to the site is therefore minimized.

Groundwater Sampling (GWS)

Gregg In Situ, Inc. conducts groundwater sampling using a Hydropunch[®] type groundwater sampler, *Figure GWS*. The groundwater sampler has a retrievable stainless steel or disposable PVC screen with steel drop off tip. This allows for samples to be taken at multiple depth intervals within the same sounding location. In areas of slower water recharge, provisions may be made to set temporary PVC well screens during sampling to allow the drill rig to advance to the next sample location while the groundwater is allowed to infiltrate.

The groundwater sampler operates by advancing 1 ³/₄ inch hollow push rods with the filter tip in a closed configuration to the base of the desired sampling interval. Once at the desired sample depth, the push rods are retracted; exposing the encased filter screen and allowing groundwater to infiltrate hydrostatically from the formation into the inlet screen. A small diameter bailer (approximately $\frac{1}{2}$ or $\frac{3}{4}$ inch) is lowered through the push rods into the screen section for sample collection. The number of downhole trips with the bailer and time necessary to complete the sample collection at each depth interval is a function of sampling protocols, volume requirements, and the yield characteristics and storage capacity of the formation. Upon completion of sample collection, the push rods and sampler, with the exception of the PVC screen and steel drop off tip are retrieved to the ground surface, decontaminated and prepared for the next sampling event.

A summary of the groundwater samples collected, including the sampling date, depth and location identification, is presented in Table 1 and the corresponding CPT plot.

Figure GWS

For a detailed reference on direct push groundwater sampling, refer to Zemo et. al., 1992.

Avg. Interval: 0.328 (ft)

SBT: Soil Behavior Type (Robertson 1990)

APPENDIX E

BORING LOGS

Project No.: Site: Daniel Parsons					cxon grapi	Service Static n Ave., Oakla	Date Drilled: Drilling Co.: Drilling Method: Sampling Method: Sampling Method: Borehole Diameter: Casing Diameter: Location N-S Location E-W		Date Drilled: Drilling Co.: Drilling Method: Sampling Method: Borehole Diameter: Casing Diameter: Location N-S Location E-W	: 10/28/2008 : Woodward Drilling : Direct Push : Continuous Core : 2" : N/A : 2122791.5 : 6050591.5		
Review Signati	ved E ure:	By:	i H A J	Heidi L. D	ieffer	bach-Carle	P.G. 6793		Total Depth: First GW Depth:	: 30.5 feet bgs : 16 feet bgs		
Depth (ft)	Blow Count	OVM/PID (ppmv)	Sample	Column	uscs	Sample C No I Not Des	Condition Recovery Sampled Scribed Sample Served Sample DESCR	Water Levels	red Groundwater	Boring: DP1		
0-						Asphalt]] <mark>[° ° -</mark> Concrete		
-		29.1				Cleared wit	th hand auger to 8 feet bgs					
5			**		CL	Sandy CLA (60% Clay	AY: light olive gray (5Y 6/2m), / 0% Silt / 40% Sand / 0%Gr	moist, non-plastic avel)	<u> </u>			
-			ł		C	oundy of			, 10/0)			
10-		44.1	88		CL	@10 feet b	ogs: decreasing sand, low pla Sand: olive gray (5Y 5/2), me	sticity pist, low plasticity (8	0/0/20/0)	_ Neat Cement		
-		1,900			CL SC	CLAY: olive Clayey SAI (35/0/65/0) SAND: fine (5/0/95/0) @13 feet b	AY: olive (5Y 5/3m), moist, moderate plasticity, trace sand (90/0/10/0) yey SAND: fine-grained, greenish gray (5GY 5/1m), moist, poorly graded (0/65/0) ND: fine-grained, olive gray (5Y 5/1m), moist, poorly graded, trace clay 0/95/0) 3 feet bgs: becoming wet					
15-		165	88		SP	@16 feet b	⊉16 feet bgs: becoming saturated, finer grained, dark gray (5Y 4/1m)					
					сн	CLAY: gra	yish brown (2.5Y 5/2m), mois	st, high plasticity, tra	ce silt (95/5/0/0)			

ERI						BORING LOG DP1 (Page 2 of 2) Date Drilled: Drilling Co.: Drilling Method: Sampling Method:		: 10/28/2008 : Woodward Drilling : Direct Push : Continuous Core		
Project Site: Logged Review Signati	Project No.: : Former Exxon Service Station 70235 Borehole Diameter: Site: : 2225 Telegraph Ave., Oakland, California Location N-S Logged By: : Daniel Parsons Location E-W Reviewed By: : Heidi L. Dieffenbach-Carle, P.G. 6793 Total Depth: First GW Depth: First GW Depth:						: 2" : N/A : 2122791.5 : 6050591.5 : 30.5 feet bgs : 16 feet bgs			
Depth (ft)	Blow Count	OVM/PID (ppmv)	Sample	Column	uscs	Sample C No I Des	ondition Recovery Sampled scribed Sample served Sample DESCR	Water Levels	red Groundwater	Boring: DP1
20-		0.0	***		СН	CLAY: gray	vish brown (2.5Y 5/2m), mois	t, high plasticity, tra 3m), wet, low plastic	ce silt (95/5/0/0)	
- 25— - -		0.0			CH	CLAY: ligh @24 to 24. grains Sandy CLA	t olive brown (2.5Y 5/4m), we 5 feet bgs: with trace coarse AY: light olive brown (2.5Y 5/4	- Neat Cement		
- 30					SP	SAND with saturated,	Clay: fine- to medium-graine moderately graded (10/0/90/0	ed, yellowish brown D)	(10YR 5/4m)	
-	-					Total Depti	n @ 30.5 teet bgs, 10:30, 10/	28/2008		
35-										

Project No.: : Former Exxon Service Stat Site: : 2225 Telegraph Ave., Oakl Logged By: : Daniel Parsons Reviewed By: : Heidi L. Dieffenbach-Carle Signature: : Heidi L. Dieffenbach-Carle					Service Si h Ave., Oa s nbach-Car	BORING LOC ation 70235 kland, California e, P.G. 67937	GDP2 (Page 2 of 2)	Date Drilled: Drilling Co.: Drilling Method: Sampling Method: Borehole Diameter: Casing Diameter: Location N-S Location E-W Total Depth: First GW Depth:	: 10/28/2008 : Woodward Drilling : Direct Push : Continuous Core : 2" : N/A : 2122775.4 : 6050562.2 : 30.5 feet bgs : 17 feet bgs
Depth (ft)	Blow Count	OVM/PID (ppmv)	Sample	Columin	USCS		Water Levels	tered Groundwater	Boring: DP2
20- - - - - - - - - - - - - - - - - - -					CL Grand CL	AY with Sand: light olive brown (2) sticity (80/0/20/0) dy CLAY: light olive brown (2.5) 0/35/0) velly CLAY with Sand: olive (5Y ular gravel to 1-inch diameter (5 dy CLAY: olive (5Y 5/3m), mois rse-grained sand (65/0/35/0) ND with Clay: fine-grained, light of rly graded (20/0/80/0) al Depth @ 30.5 feet bgs, 13:15,	2.5Y 5/4m), wet, moder 5/3m), moist, low p 5/0/10/35)_ t, moderate plastici Dive brown (2.55Y 10/28/2008	oderate	-Neat Cement
40-									

APPENDIX F

LABORATORY ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY RECORDS

November 07, 2008

Paula Sime Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

DI	EC	12	Π	VI	
	NOV	1	0	2008	

BY:....

Subject: Calscience Work Order No.: 08-10-2501 Client Reference: ExxonMobil 70235

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 10/29/2008 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

Note that the Chain-of-Custody Record and Sample Receipt Form are integral parts of this report.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Cecile & en Sain

Calscience Environmental Laboratories, Inc. Cecile deGuia Project Manager

CA-ELAP ID: 1230 • NELAP ID: 03220CA • CSDLAC ID: 10109 • SCAQMD ID: 93LA0830 A A 7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 • FAX: (714) 894-7501

nel c

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Work Order No: Preparation: Method:

Date Received:

10/29/08 08-10-2501 EPA 3550B EPA 8015B (M)

Page 1 of 2

Project: ExxonMobil 70235

Client Sample Numb	er		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
S-10-DP1			08-10-2501-1-A	10/28/08 09:40	Solid	GC 50	10/31/08	11/01/08 01:00	081031B09
Comment(s):	-The sample extract wa	as subjected to	o Silica Gel treatment	t prior to analys	is.				
Parameter		Result	RL	DF	Qual	<u>Units</u>			
TPH as Motor Oil		ND	25	1		mg/kg			
Surrogates:		<u>REC (%)</u>	Control Limits		<u>Qual</u>				
Decachlorobiphenyl		107	61-145						
S-15-DP1			08-10-2501-2-A	10/28/08 09:45	Solid	GC 50	10/31/08	11/01/08 01:15	081031B09
Comment(s):	-The sample extract wa	as subjected to	o Silica Gel treatment	prior to analys	is.				
Parameter		Result	<u>RL</u>	DF	<u>Qual</u>	<u>Units</u>			
TPH as Motor Oil		ND	25	1		mg/kg			
Surrogates:		<u>REC (%)</u>	Control Limits		Qual				
Decachlorobiphenyl		102	61-145						
0.00.004								44/04/09	

S-20-DP1		08-10-2501-3-A	10/28/08 10:00	Solid	GC 50	10/31/08	11/01/08 01:30	081031B09
Comment(s):	-The sample extract was subject	ed to Silica Gel treatme	nt prior to analys	sis.				
Parameter	Result	RL	DF	<u>Qual</u>	<u>Units</u>			
TPH as Motor Oil	ND	25	1		mg/kg			
Surrogates:	REC (%) Control Limits		<u>Qual</u>				
Decachlorobiphenyl	105	61-145						

S-25-DP1		08-10-2501-4-A	10/28/08 10:15	Solid	GC 50	10/31/08	11/01/08 01:45	081031B09	
Comment(s):	-The sample extract was subjected to	o Silica Gel treatment	prior to analys	is.					
Parameter	Result	<u>RL</u>	DF	<u>Qual</u>	<u>Units</u>				
TPH as Motor Oil	27	25	1		mg/kg				
Surrogates:	<u>REC (%)</u>	Control Limits		Qual					
Decachlorobiphenyl	106	61-145							

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

nel c

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received: Work Order No: Preparation: Method:

EPA 8015B (M)

10/29/08

08-10-2501

EPA 3550B

Page 2 of 2

Project: ExxonMobil 70235

-									
Client Sample Numb	er		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
S-30-DP1			08-10-2501-5-A	10/28/08 10:25	Solid	GC 50	10/31/08	11/01/08 02:00	081031B09
Comment(s):	-The sample extract wa	as subjected to	o Silica Gel treatment	prior to analys	is.				
Parameter		<u>Result</u>	<u>RL</u>	DE	Qual	Units			
TPH as Motor Oil		ND	25	1		mg/kg			
Surrogates:		<u>REC (%)</u>	Control Limits		Qual				
Decachlorobiphenyl		106	61-145						
Method Blank			099-12-254-611	N/A	Solid	GC 50	10/31/08	10/31/08 22:31	081031B09
Parameter		<u>Result</u>	RL	DF	Qual	Units			
TPH as Motor Oil		ND	25	1		mg/kg			
Surrogates:		<u>REC (%)</u>	Control Limits		Qual				
Decachlorobiphenyl		109	61-145						

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

nel c

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Work Order No: Preparation: Method:

Date Received:

10/29/08 08-10-2501 EPA 3550B EPA 8015B (M)

Page 1 of 2

Project: ExxonMobil 70235

Client Sample Numb	er		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
S-10-DP1			08-10-2501-1-A	10/28/08 09:40	Solid	GC 50	10/31/08	11/01/08 01:00	081031B08	
Comment(s):	-The sample extract wa	as subjected to	o Silica Gel treatment	prior to analys	is.					
Parameter		Result	RL	DF	<u>Qual</u>	Units				
TPH as Diesel		6.0	5.0	1		mg/kg				
Surrogates:		<u>REC (%)</u>	Control Limits		Qual					
Decachlorobiphenyl		107	61-145							
S-15-DP1			08-10-2501-2-A	10/28/08 09:45	Solid	GC 50	10/31/08	11/01/08 01:15	081031B08	
Comment(s):	-The sample extract wa	as subjected to	o Silica Gel treatment	prior to analys	is.					Ī
Parameter		Result	<u>RL</u>	DF	<u>Qual</u>	<u>Units</u>				
TPH as Diesel		ND	5.0	1		mg/kg				
Surrogates:		REC (%)	Control Limits		<u>Qual</u>					
Decachlorobiphenyl		102	61-145							
S-20-DP1			08-10-2501-3-A	10/28/08	Solid	GC 50	10/31/08	11/01/08	081031B08	3

The second s			10:00			01:30
Comment(s):	-The sample extract was subject	ed to Silica Gel treatme	ent prior to analys	sis.		
<u>Parameter</u>	Result	RL	DF	<u>Qual</u>	<u>Units</u>	
TPH as Diesel	ND	5.0	1		mg/kg	
Surrogates:	<u>REC (</u>	%) Control Limits		<u>Qual</u>		
Decachlorobiphenyl	105	61-145				

S-25-DP1		08-10-2501-4-A	10/28/08 10:15	Solid	GC 50	10/31/08	11/01/08 01:45	081031B08	
Comment(s):	-The sample extract was subjected t	o Silica Gel treatmen	t prior to analys	is.					
Parameter	Result	RL	DF	<u>Qual</u>	<u>Units</u>				
TPH as Diesel	36	5.0	1		mg/kg				
Surrogates:	<u>REC (%)</u>	Control Limits		Qual					
Decachlorobiphenyl	106	61-145							

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

nel c

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Work Order No: Preparation: Method:

Date Received:

EPA 3550B EPA 8015B (M)

10/29/08

08-10-2501

Page 2 of 2

Project: ExxonMobil 70235

Client Sample Numb	er		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
S-30-DP1			08-10-2501-5-A	10/28/08 10:25	Solid	GC 50	10/31/08	11/01/08 02:00	081031B08
Comment(s):	-The sample extract wa	s subjected to	o Silica Gel treatment	prior to analys	is.				
Parameter		Result	RL	DF	Qual	<u>Units</u>			
TPH as Diesel		7.9	5.0	1		mg/kg			
Surrogates:		REC (%)	Control Limits		<u>Qual</u>				
Decachlorobiphenyl		106	61-145						
Method Blank			0 99-12-275- 2,273	N/A	Solid	GC 50	10/31/08	10/31/08 22:31	081031B08
Parameter		Result	RL	DF	Qual	Units			
TPH as Diesel		ND	5.0	1		mg/kg			
Surrogates:		<u>REC (%)</u>	Control Limits		<u>Qual</u>				
Decachlorobiphenyl		109	61-145						

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

nel c

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Work Order No: Preparation: Method:

Date Received:

08-10-2501 EPA 5030B EPA 8015B (M)

Page 1 of 2

10/29/08

Project: ExxonMobil 70235

								-
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
S-10-DP1		08-10-2501-1-A	10/28/08 09:40	Solid	GC 5	10/31/08	10/31/08 15:49	081031B01
Parameter	Result	<u>RL</u>	DF	<u>Qual</u>	Units			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene - FID	75	42-126						
S-15-DP1		08-10-2501-2-A	10/28/08 09:45	Solid	GC 1	11/03/08	11/03/08 17:05	081103B02
Parameter	Result	RL	DF	Qual	Units			
TPH as Gasoline	5.8	5.0	10		mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene - FID	77	42-126						
S-20-DP1		08-10-2501-3-A	10/28/08 10:00	Solid	GC 5	10/31/08	10/31/08 17:39	081031B01
Parameter	Result	RL	DF	Qual	Units			

 Surrogates:
 REC (%)
 Control Limits

 1.4-Bromofluorobenzene - FID
 74
 42-126

ND

0.50

S-25-DP1		08-10-2501-4-A	10/28/08 10:15	Solid	GC 5 10/31/08	10/31/08 18:15	081031B01
Parameter	<u>Result</u>	RL	DF	Qual	<u>Units</u>		
TPH as Gasoline	ND	0.50	1		mg/kg		
Surrogates:	<u>REC (%)</u>	Control Limits		Qual			
1.4-Bromofluorobenzene - FID	72	42-126					

1

Qual

mg/kg

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

TPH as Gasoline

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

10/29/08 08-10-2501 EPA 5030B EPA 8015B (M)

Project: ExxonMobil 70235

Project: ExxonMobil 70235 Page 2 of 2									
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
S-30-DP1		08-10-2501-5-A	10/28/08 10:25	Solid	GC 5	10/31/08	10/31/08 19:12	081031B01	
Parameter	Result	<u>RL</u>	DF	Qual	Units				
TPH as Gasoline	ND	0.50	1		mg/kg				
Surrogates:	REC (%)	Control Limits		<u>Qual</u>					
1,4-Bromofluorobenzene - FID	-Bromofluorobenzene - FID 74								
Method Blank		099-12-279-2,391	N/A	Solid	GC 5	10/31/08	10/31/08 11:02	081031B01	
Parameter	Result	RL	DF	Qual	Units				
TPH as Gasoline	ND	0.50	1		mg/kg				
Surrogates:	<u>REC (%)</u>	Control Limits		Qual					
1,4-Bromofluorobenzene - FID	72	42-126							
Method Blank		099-12-279-2,397	N/A	Solid	GC 1	11/03/08	11/03/08 13:22	081103B02	
Parameter	Result	RL	DE	<u>Qual</u>	<u>Units</u>				
TPH as Gasoline	ND	5.0	10		mg/kg				
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>					
1,4-Bromofluorobenzene - FID	75	42-126							

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

Page 8 of 29

Analytical Report

nel c

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received:10/29/08Work Order No:08-10-2501Preparation:EPA 5030BMethod:EPA 8021BUnits:mg/kgPage 1 of 2

Project: ExxonMobil 70235

Client Sample Number			Lab Sample Number		Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
S-10-DP1		1	08-10-	2501-1-A	10/28/08 09:40	Solid	GC 8	10/30/08	10/30/08 11:45	081029B01
Parameter Benzene Toluene Surrogates:	<u>Result</u> 0.17 ND <u>REC (%)</u>	<u>RL</u> 0.0050 0.0050 <u>Control</u> <u>Limits</u>	<u>DF</u> 1 1	<u>Qual</u> <u>Qual</u>	<u>Parameter</u> Ethylbenzene Xylenes (total)			<u>Result</u> 0.032 0.066	<u>RL</u> 0.0050 0.010	<u>DF Qual</u> 1 1
1,4-Bromofluorobenzene S-15-DP1	110	51-129	08-10-	2501-2-A	10/28/08	Solid	GC 8	10/30/08	10/30/08	081029B01
	and and a star			1,11,41	09:45	с. 1			12:20	<
Parameter Benzene Toluene <u>Surrogates:</u> 1,4-Bromofluorobenzene	<u>Result</u> 0.094 0.057 <u>REC (%)</u> 111	<u>RL</u> 0.0050 0.0050 <u>Control</u> <u>Limits</u> 51-129	<u>DF</u> 1 1	Qual Qual	Parameter Ethylbenzene Xylenes (total)			<u>Result</u> 0.057 0.13	<u>RL</u> 0.0050 0.010	<u>DF Qual</u> 1 1
S-20-DP1			08-10-	2501-3-A	10/28/08 10:00	Solid	GC 8	10/30/08	10/30/08 12:54	081029B01
Parameter Benzene Toluene <u>Surrogates:</u> 1,4-Bromofluorobenzene	Result ND ND REC (%) 108	<u>RL</u> 0.0050 0.0050 <u>Control</u> <u>Limits</u> 51-129	<u>DF</u> 1 1	<u>Qual</u> Qual	<u>Parameter</u> Ethylbenzene Xylenes (total)			<u>Result</u> ND 0.021	<u>RL</u> 0.0050 0.010	DF Qual 1 1
S-25-DP1			08-10-	2501 -4- A	10/28/08 10:15	Solid	GC 8	10/30/08	10/30/08 13:28	081029B01
Parameter Benzene Toluene <u>Surrogates:</u> 1,4-Bromofluorobenzene	<u>Result</u> ND ND <u>REC (%)</u> 106	RL 0.0050 0.0050 <u>Control Limits</u> 51-129	<u>DF</u> 1 1	<u>Qual</u> Qual	<u>Parameter</u> Ethylbenzene Xylenes (total)			<u>Result</u> ND ND	<u>RL</u> 0.0050 0.010	<u>DF Qual</u> 1 1
S-30-DP1		120	08-10-	2501-5-A	10/28/08 10:25	Solid	GC 8	10/30/08	10/30/08 14:02	081029B01
Parameter Benzene Toluene <u>Surrogates:</u> 1,4-Bromofluorobenzene	Result ND ND REC (%) 109	<u>RL</u> 0.0050 0.0050 <u>Control</u> <u>Limits</u> 51-129	<u>DF</u> 1 1	<u>Qual</u> Qual	Parameter Ethylbenzene Xylenes (total)			<u>Result</u> ND ND	<u>RL</u> 0.0050 0.010	<u>DF Qual</u> 1 1

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

nel c

Method Blank	099-12-657-172	N/A	Solid	GC 8	10/29/08	10/30/08	081029B01
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Project: ExxonMobil 70235						Pa	ge 2 of 2
		Method: Units:				EP	A 8021B mg/kg
Petaluma, CA 94954-2312		Preparati	on:			EP	A 5030B
601 North McDowell Blvd.		Work Ord	ler No:			08-	-10-2501
Environmental Resolutions, Inc.		Date Rec	eived:				10/29/08

							04.1	~		
Parameter	Result	RL	DE	Qual	Parameter	<u>Result</u>	RL	DF	Qual	
Benzene	ND	0.0050	1		Ethylbenzene	ND	0.0050	1		
Toluene	ND	0.0050	1		Xylenes (total)	ND	0.010	1		
Surrogates:	<u>REC (%)</u>	Control		<u>Qual</u>						
		Limits								
1,4-Bromofluorobenzene	123	51-129								

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

Page 10 of 29

Analytical Report

nelic

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312
 Date Received:
 10/29/08

 Work Order No:
 08-10-2501

 Preparation:
 EPA 5030B

 Method:
 EPA 8260B

 Units:
 mg/kg

 Page 1 of 3

Project: ExxonMobil 70235

Client Sample Number			La	ab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Tim Analyze	le d	QC Batch ID
S-10-DP1			08-10-	2501-1-A	10/28/08 09:40	Solid	GC/MS XX	10/30/08	10/31/01 06:39	3	081030L03
Parameter	Result	RL	DF	Qual	Parameter			Result	<u>RL</u>	DF	Qual
1,2-Dibromoethane	ND	0.0050	1		Diisopropyl Eth	er (DIPE)		ND	0.010	4	
1,2-Dichloroethane	ND	0.0050	1		Ethyl-t-Butyl Et	her (ETBE)		ND	0.010	1	
Methyl-t-Butyl Ether (MTBE)	0.030	0.0050	1		Tert-Amyl-Meth	nyl Ether (Tr	AME)	ND	0.010	1	
Tert-Butyl Alcohol (TBA)	ND	0.050	1		Ethanol		,	ND	0.25	1	
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>	Surrogates:		,	<u>REC (%)</u>	Control Limits		Qual
Dibromofluoromethane	98	73-139			1,2-Dichloroeth	nane-d4		102	73-145		
Toluene-d8	101	90-108			1,4-Bromofluor	obenzene		96	71-113		
S-15-DP1			08-10-	2501-2-A	10/28/08 09:45	Solid	GC/MS XX	11/02/08	11/02/04 18:14	3	081102L01
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
1.2-Dibromoethane	ND	0.0050	1		Diisopropyl Eth	er (DIPE)		ND	0.010	1	
1.2-Dichloroethane	ND	0.0050	1		Ethyl-t-Butyl Et	ther (ETBE)		ND	0.010	1	
Methyl-t-Butyl Ether (MTBE)	ND	0.0050	1		Tert-Amvl-Meth	nvl Ether (T	AME)	ND	0.010	1	
Tert-Butyl Alcohol (TBA)	ND	0.050	1		Ethanol			ND	0.25	1	
Surrogates:	<u>REC (%)</u>	Control		<u>Qual</u>	Surrogates:		1	REC (%)	<u>Control</u>	71	<u>Qual</u>
Dibromofluoromethane	100	73-139			1.2-Dichloroeth	nane-d4		107	73-145		
Toluene-d8	102	90-108			1,4-Bromofluor	obenzene		96	71-113		
S-20-DP1		a fi	08-10-	2501-3-A	10/28/08 10:00	Solid	GC/MS XX	10/30/08	10/31/0 07:31	3	081030L03
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
1.2-Dibromoethane	ND	0.0050	1		Diisopropyl Eth	er (DIPE)		ND	0.010	1	
1.2-Dichloroethane	ND	0.0050	1		Ethyl-t-Butyl Et	her (ETBE)		ND	0.010	-i	
Methyl-t-Butyl Ether (MTBE)	ND	0.0050	1		Tert-Amvl-Meth	nvl Ether (T	AME)	ND	0.010	1	
Tert-Butyl Alcohol (TBA)	ND	0.050	1		Ethanol	,	_,	ND	0.25	1	
Surrogates:	<u>REC (%)</u>	Control		<u>Qual</u>	Surrogates:		1	REC (%)	<u>Control</u>	55	Qual
Dibromofluoromethane	103	73-139			1.2-Dichloroeth	ane-d4		106	73-145		
Toluene-d8	99	90-108			1,4-Bromofluor	obenzene		94	71-113		

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

nel c

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312
 Date Received:
 10/29/08

 Work Order No:
 08-10-2501

 Preparation:
 EPA 5030B

 Method:
 EPA 8260B

 Units:
 mg/kg

 Page 2 of 3

Project: ExxonMobil 70235

Client Sample Number			La	ab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Tir Analyze	ne ed	QC Batch ID
S-25-DP1			08-10-	2501-4-A	10/28/08 10:15	Solid	GC/MS XX	10/30/08	10/31/0 07:57	8	081030L03
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
1,2-Dibromoethane	ND	0.0050	1		Diisopropyl Eth	ner (DIPE)		ND	0.010	1	
1,2-Dichloroethane	ND	0.0050	1		Ethyl-t-Butyl E	ther (ETBE)	ND	0.010	1	
Methyl-t-Butyl Ether (MTBE)	0.0052	0.0050	1		Tert-Amyl-Met	hyl Ether (T	AME)	ND	0.010	1	
Tert-Butyl Alcohol (TBA)	ND	0.050	1		Ethanol		,	ND	0.25	1	
Surrogates:	REC (%)	Control		<u>Qual</u>	Surrogates:			REC (%)	Control		<u>Qual</u>
Dibromofluoromethane	104	Limits 73-139			1,2-Dichloroeth	hane-d4		109	<u>Limits</u> 73-145		
Toluene-d8	101	90-108			1,4-Bromofluo	robenzene		94	71-113		
S-30-DP1		0.02	08-10-	2501-5-A	10/28/08 10:25	Solid	GC/MS XX	10/30/08	10/31/0 08:23	8	081030L03
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
1,2-Dibromoethane	ND	0.0050	1		Diisopropyl Eth	ner (DIPE)		ND	0.010	1	
1,2-Dichloroethane	ND	0.0050	1		Ethyl-t-Butyl Et	ther (ETBE)	ND	0.010	1	
Methyl-t-Butyl Ether (MTBE)	ND	0.0050	1		Tert-Amyl-Met	hyl Ether (T	AME)	ND	0.010	1	
Tert-Butyl Alcohol (TBA)	ND	0.050	1		Ethanol			ND	0.25	1	
Surrogates:	REC (%)	Control		<u>Qual</u>	Surrogates:		1	<u>REC (%)</u>	Control		<u>Qual</u>
Dibromofluoromethane	104	<u>Limits</u> 73_130			1.2-Dichloroeth	nane_d4		110	Z2 145		
Toluene-d8	100	90-108			1,4-Bromofluo	robenzene		91	71-113		
Method Blank			099-12	-796-432	N/A	Solid	GC/MS XX	10/30/08	10/31/0 01:00	8	081030L03
Parameter	Result	RL	DF	Qual	Parameter			Result	RI	DF	Qual
1.2-Dibromoethane	ND	0.0050	<u>. DT.</u>	diam	Diisopropyl Eth			ND	0.010	4	Gua
1.2-Dichloroethane	ND	0.0050	-		Ethyl_t_Butyl E	ther (ETRE	`	ND	0.010	- 1	
Methyl_t_Butyl Ether (MTRE)	ND	0.0050	3		Tert-Amid-Met	hvl Ether (T		ND	0.010	1	
Tert-Butyl Alcobol (TBA)	ND	0.050	1		Fthanol		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ND	0.010	1	
Surrogates:	REC (%)	Control		Qual	Surrogates:			REC (%)	Control	4	Qual
		Limits							Limits		
Dibromofluoromethane	104	73-139			1,2-Dichloroet	hane-d4		106	73-145		
Toluene-d8	98	90-108			1,4-Bromofluo	robenzene		88	71-113		

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

nel c

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received:10/29/08Work Order No:08-10-2501Preparation:EPA 5030BMethod:EPA 8260BUnits:mg/kgPage 3 of 3

Project: ExxonMobil 70235

Client Sample Number			La	b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Ti I Analyz	ne ∋d	QC Batch ID
Method Blank			099-12	-796-446	N/A	Solid	GC/MS XX	11/02/08	11/02/ 12:07)8 '	081102L01
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
1,2-Dibromoethane	ND	0.0050	1		Diisopropyl Eth	er (DIPE)		ND	0.010	1	
1,2-Dichloroethane	ND	0.0050	1		Ethyl-t-Butyl Et	her (ETBE))	ND	0.010	1	
Methyl-t-Butyl Ether (MTBE)	ND	0.0050	1		Tert-Amyl-Meth	yl Ether (T.	AME)	ND	0.010	1	
Tert-Butyl Alcohol (TBA)	ND	0.050	1		Ethanol			ND	0.25	1	
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits		<u>Qual</u>	Surrogates:			<u>REC (%)</u>	Control Limits		<u>Qual</u>
Dibromofluoromethane	114	73-139			1,2-Dichloroeth	ane-d4		121	73-145		
Toluene-d8	101	90-108			1,4-Bromofluor	obenzene		85	71-113		

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

Date Received: Work Order No: Preparation: Method: 10/29/08 08-10-2501 EPA 3550B EPA 8015B (M)

Project ExxonMobil 70235

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
S-10-DP1	Solid	GC 50	10/31/08	2	11/01/08	081031509
Parameter	MS %REC	MSD %REC	<u>%REC CL</u>	<u>RPD</u>	RPD CL	Qualifiers
TPH as Motor Oil	93	90	64-130	4	0-15	

RPD - Relative Percent Difference, CL - Control Limit

FAX: (714) 894-7501

Quality Control - Spike/Spike Duplicate

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received: Work Order No: Preparation: Method: 10/29/08 08-10-2501 EPA 3550B EPA 8015B (M)

Project ExxonMobil 70235

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
S-10-DP1	Solid	GC 50	10/31/08		10/31/08	081031508
Parameter	MS %REC	MSD %REC	<u>%REC CL</u>	<u>RPD</u>	RPD CL	Qualifiers
TPH as Diesel	93	98	64-130	4	0-15	

RPD - Relative Percent Difference, CL - Control Limit

494 • FAX: (714) 894-7501

Quality Control - Spike/Spike Duplicate

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received: Work Order No: Preparation: Method: 10/29/08 08-10-2501 EPA 5030B EPA 8015B (M)

Project ExxonMobil 70235

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
S-10-DP1	Solid	GC 5	10/31/08		10/31/08	081031501
Parameter	MS %REC	MSD %REC	<u>%REC CL</u>	<u>RPD</u>	RPD CL	Qualifiers
TPH as Gasoline	85	86	48-114	2	0-23	

RPD - Relative Percent Difference, CL - Control Limit

Quality Control - Spike/Spike Duplicate

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received: Work Order No: Preparation: Method:

10/29/08 08-10-2501 EPA 5030B EPA 8021B

Project ExxonMobil 70235

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
08-10-2231-1	Solid	GC 8	10/29/08		10/30/08	081029501
Parameter	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	117	119	58-118	2	0-24	3
Toluene	111	111	61-109	0	0-20	3
Ethylbenzene	117	118	59-113	1	0-20	3
p/m-Xylene	123	124	55-115	1	0-20	3
o-Xylene	116	116	56-110	0	0-20	3
Methyl-t-Butyl Ether (MTBE)	98	116	65-113	16	0-9	4,3

RPD - Relative Percent Difference , CL - Control Limit

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 •

5-5494 • FAX: (714) 894-7501

Date Received: Work Order No: Preparation: Method:

nel c

10/29/08 08-10-2501 EPA 5030B EPA 8260B

Project ExxonMobil 70235

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
S-30-DP1	Solid	GC/MS XX	10/30/08	12	10/31/08	081030502
Parameter	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
Benzene	80	76	79-115	5	0-13	3
Carbon Tetrachloride	75	72	55-139	4	0-15	
Chlorobenzene	74	71	79-115	4	0-17	3
1,2-Dibromoethane	81	80	70-130	1	0-30	
1,2-Dichlorobenzene	67	67	63-123	0	0-23	
1,1-Dichloroethene	75	72	69-123	5	0-16	
Ethylbenzene	77	74	70-130	5	0-30	
Toluene	76	73	79-115	4	0-15	3
Trichloroethene	78	83	66-144	7	0-14	
Vinyl Chloride	94	102	60-126	8	0-14	
Methyl-t-Butyl Ether (MTBE)	101	106	68-128	5	0-14	
Tert-Butyl Alcohol (TBA)	70	77	44-134	10	0-37	
Diisopropyl Ether (DIPE)	89	87	75-123	3	0-12	
Ethyl-t-Butyl Ether (ETBE)	101	102	75-117	1	0-12	
Tert-Amyl-Methyl Ether (TAME)	98	99	79-1 15	1	0-12	
Ethanol	70	62	42-138	12	0-28	

RPD - Relative Percent Difference , CL - Control Limit

Muhan

10/29/08

 Environmental Resolutions, Inc. Date Received: 601 North McDowell Blvd. Work Order No: 08-10-2501 Preparation: EPA 5030B Petaluma, CA 94954-2312 Method: EPA 8260B

Project ExxonMobil 70235

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
08-10-2730-4	Solid	GC/MS XX	11/02/08		11/02/08	081102501
Parameter	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	89	99	79-115	10	0-13	
Carbon Tetrachloride	95	112	55-139	16	0-15	4
Chlorobenzene	87	98	79-115	12	0-17	
1,2-Dibromoethane	87	100	70-130	14	0-30	
1,2-Dichlorobenzene	86	93	63-123	8	0-23	
1,1-Dichloroethene	99	111	69-123	11	0-16	
Ethylbenzene	92	103	70-130	12	0-30	
Toluene	90	100	79-115	11	0-15	
Trichloroethene	87	98	66-144	12	0-14	
Vinyl Chloride	121	112	60-126	8	0-14	
Methyl-t-Butyl Ether (MTBE)	97	110	68-128	13	0-14	
Tert-Butyl Alcohol (TBA)	70	95	44-134	30	0-37	
Diisopropyl Ether (DIPE)	96	103	75-123	8	0-12	
Ethyl-t-Butyl Ether (ETBE)	94	97	75-117	4	0-12	
Tert-Amyl-Methyl Ether (TAME)	91	100	79-115	9	0-12	
Ethanol	86	100	42-138	14	0-28	

RPD - Relative Percent Difference, CL - Control Limit

Date Received: Work Order No: Preparation: Method: N/A 08-10-2501 EPA 3550B EPA 8015B (M)

Project: ExxonMobil 70235

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Date Prepared Analyzed		LCS/LCSD Batch Number		
099-12-254-611	Solid	GC 50	10/31/08	10/31/	08	081031B09	- Et	
Parameter	LCS	6REC LCSD	<u>%REC %</u>	REC CL	<u>RPD</u>	RPD CL	Qualifiers	
TPH as Motor Oil	95	98		75-123	3	0-12		

RPD - Relative Percent Difference, CL - Control Limit

Date Received: Work Order No: Preparation: Method: N/A 08-10-2501 EPA 3550B EPA 8015B (M)

Project: ExxonMobil 70235

Quality Control Sample ID	Matrix	Instru	Date strument Prepar		e Date ired Analyzed			LCS/LCSD Bato Number	h
099-12-275-2,273	Solid	GC	50	10/31	/08	10/3 ⁻	1/08	081031B08	
Parameter	LCS	<u>%REC</u>	LCSD %	<u> 6REC</u>	<u>%RE</u>	CCL	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
TPH as Diesel	90		90		75	-123	0	0-12	

RPD - Relative Percent Difference, CL - Control Limit

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 •

FAX: (714) 894-7501

Date Received: Work Order No: Preparation: Method: N/A 08-10-2501 EPA 5030B EPA 8015B (M)

Project: ExxonMobil 70235

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Bate Number	ch
099-12-279-2,397	Şolid	GC 1	11/03/08	11/03/08	081103B02	
Parameter	LCS	%REC LCSD	<u>%REC %F</u>	EC CL RPI	<u>PD CL</u>	<u>Qualifiers</u>
TPH as Gasoline	104	4 88	7	0-124 17	0-18	

RPD - Relative Percent Difference , CL - Control Limit

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 •

• FAX: (714) 894-7501

Date Received: Work Order No: Preparation: Method: N/A 08-10-2501 EPA 5030B EPA 8015B (M)

Project: ExxonMobil 70235

Quality Control Sample ID	Matrix	Instrume	Da nt Prep	Date Prepared		ite yzed	LCS/LCSD Bate Number	h
099-12-279-2,391	Solid	GC 5	10/3	1/08	10/3	1/08	081031B01	
Parameter	LCS	<u>%REC L0</u>	CSD %REC	<u>%R</u> E		<u>RPD</u>	RPD CL	Qualifiers
TPH as Gasoline	86		86	70	-124	1	0-18	

RPD - Relative Percent Difference, CL - Control Limit

Quality Control - LCS/LCS Duplicate

nel c

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received: Work Order No: Preparation: Method:

N/A 08-10-2501 EPA 5030B

EPA 8021B

Project: ExxonMobil 70235

Quality Control Sample ID	Matrix	Instrume	D nt Pre	ate pared	Date Analyzed	LCS/LCSD Bato Number	h
099-12-657-172	Solid	GC 8	10/	29/08	10/30/08	081029B01	
Parameter	LCS %	REC L	CSD %REC	%REC	CL RPD	RPD CL	Qualifiers
Benzene	113		113	70-1	18 0	0-7	
Toluene	105		106	71-1	07 1	0-8	
Ethylbenzene	109		114	66-1	20 4	0-7	
p/m-Xylene	114		120	66-1	20 5	0-8	
o-Xylene	107		113	66-1	14 5	0-9	
Methyl-t-Butyl Ether (MTBE)	111		106	70-1	12 5	0-12	

RPD - Relative Percent Difference, CL - Control Limit

Quality Control - LCS/LCS Duplicate

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312 nel c

Date Received: Work Order No: Preparation: Method: N/A 08-10-2501 EPA 5030B EPA 8260B

Project: ExxonMobil 70235

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Anal	ate yzed	LCS/LCSD Numbe	Batch r
099-12-796-432	Solid	GC/MS XX	10/30/08	10/30/08		081030L	03
Parameter	LCS %REC	LCSD %REC	%REC CL	ME_CL	<u>RPD</u>	RPD CL	Qualifiers
Benzene	86	86	84-114	79-119	1	0-7	
Carbon Tetrachloride	83	85	66-132	55-143	3	0-12	
Chlorobenzene	86	86	87-111	83-115	0	0-7	
1,2-Dibromoethane	89	88	80-120	73-127	1	0-20	
1,2-Dichlorobenzene	87	87	79-115	73-121	1	0-8	
1,1-Dichloroethene	84	85	73-121	65-129	2	0-12	
Ethylbenzene	91	90	80-120	73-127	0	0-20	
Toluene	85	85	78-114	72-120	0	0-7	
Trichloroethene	89	88	84-114	79-119	1	0-8	
Vinyl Chloride	112	108	63-129	52-140	3	0-15	
Methyl-t-Butyl Ether (MTBE)	112	114	77-125	69-133	2	0-11	
Tert-Butyl Alcohol (TBA)	98	88	47-137	32-152	10	0-27	
Diisopropyl Ether (DIPE)	94	91	76-130	67-139	3	0-8	
Ethyl-t-Butyl Ether (ETBE)	106	107	76-124	68-132	1	0-12	
Tert-Amyl-Methyl Ether (TAME)	103	103	82-118	76-124	1	0-11	
Ethanol	68	69	59-131	47-143	1	0-21	

Total number of LCS compounds : 16 Total number of ME compounds : 1 Total number of ME compounds allowed : 1 LCS ME CL validation result : Pass

RPD - Relative Percent Difference, CL - Control Limit

Mulum

Quality Control - LCS/LCS Duplicate

Environmental Resolutions, Inc. 601 North McDowell Blvd.

Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

08-10-2501 EPA 5030B EPA 8260B

N/A

Project: ExxonMobil 70235

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Anal	ite yzed	LCS/LCSD Numbe	Batch r
099-12-796-446	Solid	GC/MS XX	11/02/08	11/02/08		081102L	01
Parameter	LCS %REC	LCSD %REC	<u>%REC CL</u>	ME_CL	RPD	RPD CL	Qualifiers
Benzene	102	98	84-114	79-119	4	0-7	
Carbon Tetrachloride	107	102	66-132	55-143	4	0-12	
Chlorobenzene	101	98	87-111	83-115	3	0-7	
1,2-Dibromoethane	104	101	80-120	73-127	2	0-20	
1,2-Dichlorobenzene	98	95	79-115	73-121	4	0-8	
1,1-Dichloroethene	107	104	73-121	65-129	3	0-12	
Ethylbenzene	108	104	80-120	73-127	4	0-20	
Toluene	103	99	78-114	72-120	4	0-7	
Trichloroethene	102	100	84-114	79-119	3	0-8	
Vinyl Chloride	113	125	63-129	52-140	10	0-15	
Methyl-t-Butyl Ether (MTBE)	107	108	77-125	69-133	1	0-11	
Tert-Butyl Alcohol (TBA)	68	78	47-137	32-152	14	0-27	
Diisopropyl Ether (DIPE)	107	^o 103	76-130	67-139	4	0-8	
Ethyl-t-Butyl Ether (ETBE)	104	102	76-124	68-132	2	0-12	
Tert-Amyl-Methyl Ether (TAME)	107	103	82-118	76-124	4	0-11	
Ethanol	66	77	59-131	47-143	15	0-21	

Total number of LCS compounds : 16 Total number of ME compounds : 0

Total number of ME compounds allowed : 1

LCS ME CL validation result : Pass

RPD - Relative Percent Difference, CL - Control Limit

Ma

hhm

Glossary of Terms and Qualifiers

Work Order Number: 08-10-2501

Qualifier	Definition
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
А	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
E	Concentration exceeds the calibration range.
ł	Compound did not meet method-described identification guidelines. Identification was based on additional GC/MS characteristics.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
Х	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.

Cecile de Guia

Paula M. Sime [psime@ERI-US.com] From: October 30, 2008 12:27 Sent: Cecile de Guia To: Subject: RE: ExxonMobil 70235; 08-10-2501 Hi Cecile, Standard 10-day TAT will be fine for these samples. Thank you. Paula ----Original Message-----From: Cecile de Guia [mailto:CdeGuia@calscience.com] Sent: Thursday, October 30, 2008 12:23 PM To: Paula M. Sime Cc: Rebekah Westrup Subject: ExxonMobil 70235; 08-10-2501 Importance: High Hi, Please verify the TAT for the attached COC? If the COC wasn't marked for TAT, our default is 10 days, normal TAT. Also, do we report the HVOCs also with 8260B? Pelase advise. Thank you, Cecile <<08-10-2501.PDF>> Cecile Rose L. de Guia Project Manager Calscience Environmental Laboratories, Inc. 7440 Lincoln Way Garden Grove, CA 92841-1427 Tel.: 714-895-5494 Ext. 141 Fax : 714-894-7501 cdeguia@calscience.com PRIVACY NOTICE: This email (and/or the documents attached to it) is intended only for the use of the

individual or entity to which it is addressed and may contain information that is privileged, confidential, or exempt from disclosure under applicable Federal or State law. If the reader of this message is not the intended recipient or the employee or agent responsible for delivering the message to the intended recipient, you are hereby notified that any dissemination, distribution, or copying of this communication is strictly prohibited. If you have received this communication in error, please notify us immediately by telephone or else to arrange for the return of the documents REPORT SECURITY NOTICE: The client or recipient of any attached analytical report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience Environmental Laboratories, Inc. is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience Environmental Laboratories, Inc. for any defense to any litigation which arises.

- ಕ್ರಾಂ

							1.000								-	2		_	
Galecience ·	Consultant Na	me: Environme	ntal Resolut	ions, Inc.		E	Exxon	Mobi	l Eng	ineer	Jenr	nifer	C. S	edla	chek	<u>}</u>			
Environmental	Addr	ess: 601 North I	McDowell B	oulevard		-	Tele	phon	ie Nu	mber	(510) 54	7-81	96			-		
Laboratories, Inc.	City/State	Zip: Petaluma,	California 9	4954		-1:		A	Accou	int #:	_								
7440 Lincoln Way	Project Man	ager Paula Sime	•						F	°O #:	4510	0174	131						
Garden Grove, CA 92841	Telephone Num	ber: (707) 766-2	2000			-		Fa	acility	ID #	702	35	6						
TEL: (714) 895-5494	ÉRI Job Num	ber: 222903X				_		0	Globa	I ID#	T06	0010	135	4					
FAX: (714) 894-7501	ampler Name: (P	rint) <u>Rebelu</u>	h Aller	there 1				Sit	e Ada	reas	222	5 Te	legra	iph A	venu	Je			
ExonMobil	Sampler Signat	ture: /////	In AT	Wito				City,	, Stat	e Zip	Oak	land	, Cal	iforn	ia				
Shipping Method: 🗹 Lab Courler 🔲 Hand	Deliver 🗌 Cor	nmerciał Express	C Othe	a:		-													
TAT PROVIDE:	Special in	structions:			112111			Matrix	x					An	alyze	For:			
24 hour 72 hour EDF Re	ort 7 CA Ox	ys = MTBE, T	BA, TAME	, ETBE, I	DIPE, 1,2-D	CA, EDB.				-		0151		8	8			_	5
48 hour 96 hour	Use silic	a gel cleanup	for all TPF	ld analys	BS .					151	151	olla	218	8260	280			300	9 p
8.day	HOVs - 8	BO10 List by 82	260B	•						1 80	96	totor	8	Sixis	lol 8			S 82	Lea
	DATE	TIME	0010	00040	005050		later	Soll	apor	H	Hd	HH	P	Š	thar			ğ	otal
Sample ID / Description	DATE		COMP	GRAB	PRESERV	NUMBER	5		>	-	-	F	-	N	ш	\vdash		픡	
5-10 - DP1	10/28/0	8 9:40		X	ICE	1		X		X	X	X	X	X	X				
5- 15- DPI		9:45		X	1	1		X		X	X	X	X	X	X				
5 - 20 - DPI		10:00		X		1		X		X	X	X	X	X	X				
S-25-0Pl		10:15		X		1		X		X	X	X	x	x	X			1	
S = 20 - 001		10.03	1	V	1 Å	1		X		Ŷ	X	X	x	X	X			1	1
3 30 - DFI		10:23					-	2		Δ.	\sim	$\Gamma $	A	1	P	\vdash	\rightarrow	-	+
and the later of the second second second																	\rightarrow	_	
	1																		
			-	<u> </u>											-	\vdash	-+	-+	+
														L					_
																		+	+
															-		\rightarrow	-+	-+-
					02	1		1											
Relinquished by: 11 Date	10-28-08	Time \\	50	Received b	Y:	× n	C	er	Time	115	D	Labo	rator	y Co	mmer	nts:			
Mundal A vour			# 000 MALES		1	o	াক						Tem	peratu	ure Up	pon Re	eceipt:		
20	ົ້	2	22			1	1210/02/02	2 0					Sam	ple C	ontain	iers In	tact?		
Relinquished by: A pate	10-2001		150	Received b	y: WC	balm	CE	r.	Time	101	5		VOA	s Fre	e of H	leadsp	xace?		
690510637412	10/29/05	in	K						10	29	08								
	10 1 1100	,0	1/2																

(w)

Page 1 of 1

~

(250))

ī.

Calscience • WORK ORDER #: 08 -□ □ - □ 5 □ □
SAMPLE RECEIPT FORM Cooler _ of
CLIENT: DATE: 10/29/08
TEMPERATURE: (Criteria: 0.0 °C - 6.0 °C, not frozen)
Temperature $2 \cdot 1.8^{\circ}C + 1.8^{\circ}C (CF) = 3 \cdot 9^{\circ}C \square Blank \square Sample$
Sample(s) outside temperature criteria (PM/APM contacted by:).
☐ Sample(s) outside temperature criteria but received on ice/chilled on same day of sampling.
☐ Received at ambient temperature, placed on ice for transport by Courier.
Ambient Temperature:
CUSTODY SEALS INTACT:
Cooler One Cooler No (Not Intact) Not Present Initial:
□ Sample □ □ No (Not Intact) ☑ Not Present Initial:
SAMPLE CONDITION:
Yes No N/A
Proper preservation noted on sample label(s)
Volatile analysis container(s) free of headspace
Tedlar bag(s) free of condensation
CONTAINER TYPE:
Solid: □4ozCGJ □8ozCGJ □16ozCGJ □Sleeve □EnCores® □TerraCores® □
Water: □VOA □VOAh □VOAna₂ □125AGB □125AGBh □125AGBpo₄ □1AGB □1AGBna₂
□1AGBs □500AGB □500AGBs □250CGB □250CGBs □1PB □500PB □500PBna □250PB
□ 250PBn □ 125PB □ 125PBznna □ 100PBsterile □ 100PBna₂ □ □ □ □
Air: TedIar® Summa® Checked/Labeled by: Container: C:Clear A:Amber P:Poly/Plastic G:Glass J:Jar B:Bottle Reviewed by:

SOP T100_090 (10/23/08)

.

40 (A) (A)

November 13, 2008

Paula Sime Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

D	EC	<u>)</u> []	Π	VI	ZN
	NOV	1	3	2008	IJ

B Y:

Subject:Calscience Work Order No.:08-10-2730Client Reference:ExxonMobil 70235

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 10/31/2008 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

Note that the Chain-of-Custody Record and Sample Receipt Form are integral parts of this report.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Pecile & en Sain

Calscience Environmental Laboratories, Inc. Cecile deGuia Project Manager

CA-ELAP ID: 1230

 230
 •
 NELAP ID: 03220CA
 •
 CSDLAC ID: 10109
 •
 SCAQMD ID: 93LA0830

 7440 Lincoln Way, Garden Grove, CA 92841-1427
 •
 TEL:(714) 895-5494
 •
 FAX: (714) 894-7501

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Work Order No: Preparation: Method:

Date Received:

EPA 3550B EPA 8015B (M)

10/31/08

08-10-2730

Project: ExxonMobil 70235

Project: Exxo	nMobil 70235							Pa	age 1 of 2
Client Sample Numb	er		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
S-10-DP2			08-10-2730-1-A	10/28/08 12:35	Solid	GC 50	10/31/08	11/01/08 02:14	081031B09
Comment(s):	-The sample extract was	subjected to	o Silica Gel treatment	prior to analys	is.				
Parameter		Result	RL	DE	Qual	<u>Units</u>			
TPH as Motor Oil		26	25	1		mg/kg			
Surrogates:		<u>REC (%)</u>	Control Limits		Qual				
Decachlorobiphenyl		111	61-145						
S-15-DP2			08-10-2730-2-A	10/28/08 12:45	Solid	GC 50	10/31/08	11/01/08 02:29	081031B09
Comment(s):	-The sample extract was	subjected to	o Silica Gel treatment	prior to analys	is.				
Parameter		Result	RL	DF	Qual	<u>Units</u>			
TPH as Motor Oil		ND	25	1		mg/kg			

	ND	25	1
Surrogates:	<u>REC (%)</u>	Control Limits	Qual
Decachlorobiphenyl	110	61-145	

S-20-DP2		08-10-2730-3-A	10/28/08 13:00	Solid	GC 50	10/31/08	11/01/08 02:44	081031B09	
Comment(s):	-The sample extract was subjected to	o Silica Gel treatment	prior to analys	is.					
Parameter	Result	RL	DE	Qual	Units				
TPH as Motor Oil	ND	25	1		mg/kg				
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>					
Decachlorobiphenyl	109	61-145							

S-25-DP2		08-10-2730-4-A	10/28/08 13:07	Solid	GC 50	10/31/08	11/01/08 02:59	081031B09
Comment(s):	-The sample extract was subjected to	o Silica Gel treatmen	t prior to analys	sis.				
Parameter	Result	<u>RL</u>	DF	<u>Qual</u>	Units			
TPH as Motor Oil	ND	25	1		mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		Qual				

61-145

Decachlorobiphenyl

RL - Reporting Limit , DF - Dilution Factor Qual - Qualifiers .

111

nel c

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received: Work Order No: Preparation: Method:

Page 2 of 2

EPA 8015B (M)

10/31/08

08-10-2730

EPA 3550B

Pro	iect:	Exxon	Mobil	70235
110	1000	LVVAL		10200

Client Sample Numb	er		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
S-30-DP2			08-10-2730-5-A	10/28/08 13:15	Solid	GC 50	10/31/08	11/01/08 03:15	081031B09
Comment(s):	-The sample extract wa	as subjected to	o Silica Gel treatment	prior to analys	is.				
Parameter		Result	RL	DE	Qual	Units			
TPH as Motor Oil		ND	25	1		mg/kg			
Surrogates:		<u>REC (%)</u>	Control Limits		<u>Qual</u>				
Decachlorobiphenyl		109	61-145						
Method Blank			099-12-254-611	N/A	Solid	GC 50	10/31/08	10/31/08 22:31	081031B09
Parameter		<u>Result</u>	RL	DF	Qual	Units			
TPH as Motor Oil		ND	25	1		mg/kg			
Surrogates:		<u>REC (%)</u>	Control Limits		Qual				
Decachlorobiphenyl		109	61-145						

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

nel c

11.00%

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received: Work Order No: Preparation: Method:

Page 1 of 2

EPA 8015B (M)

08-10-2730

EPA 3550B

Project: Exxo	nMobil 70235							Pa	ge 1 of 2
Client Sample Numb	er		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
S-10-DP2			08-10-2730-1-A	10/28/08 12:35	Solid	GC 50	10/31/08	11/01/08 02:14	081031B08
Comment(s):	-The sample extract was	subjected to	Silica Gel treatment	prior to analys	is.				
Parameter		Result	RL	DE	Qual	Units			
TPH as Diesel		34	5.0	1		mg/kg			
Surrogates:		<u>REC (%)</u>	Control Limits		Qual				
Decachlorobiphenyl		111	61-145						
S-15-DP2			08-10-2730-2-A	10/28/08	Solid	GC 50	10/31/08	11/01/08	081031B08

			12:45		02:29
Comment(s):	-The sample extract was subject	cted to Silica Gel trea	tment prior to analysis.		
Parameter	<u>Resul</u>	<u>t RL</u>	DF Qual	Units	
TPH as Diesel	13	5.0	1	mg/kg	
Surrogates:	REC	(%) Control Limits	<u>Qual</u>	l	
Decachlorobiphenyl	110	61-145			

S-20-DP2		08-10-2730-3-A	10/28/08 13:00	Solid	GC 50	10/31/08	11/01/08 02:44	081031B08
Comment(s):	-The sample extract was subjected	to Silica Gel treatmen	t prior to analys	is.				
Parameter	<u>Result</u>	RL	DF	Qual	Units			
TPH as Diesel	17	5.0	1		mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
Decachlorobiphenyl	109	61-145						
			10/00/00	Callel	00 50	10/24/09	11/01/08	091021009

S-25-DP2		08-10-2730-4-A	10/28/08 13:07	Solid	GC 50	10/31/08	02:59	061031506	
Comment(s):	-The sample extract was subjected to	Silica Gel treatment	prior to analys	is.					
Parameter	Result	<u>RL</u>	DE	<u>Qual</u>	Units				
TPH as Diesel	15	5.0	1		mg/kg				
Surrogates:	<u>REC (%)</u>	Control Limits		Qual					
Decachlorobiphenyl	111	61-145							

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

Analytical Report

Method:

Date Received: Work Order No: Preparation:

10/31/08 08-10-2730 EPA 3550B EPA 8015B (M)

Page 2 of 2

Project: ExxonMobil 70235

Client Sample Numb	er		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
S-30-DP2			08-10-2730-5-A	10/28/08 13:15	Solid	GC 50	10/31/08	11/01/08 03:15	081031B08	
Comment(s):	-The sample extract wa	s subjected to	Silica Gel treatment	prior to analys	is.					
Parameter		Result	RL	DF	Qual	<u>Units</u>				
TPH as Diesel		ND	5.0	1		mg/kg				
Surrogates:		<u>REC (%)</u>	Control Limits		<u>Qual</u>					
Decachlorobiphenyl		109	61-145							
Method Blank			0 99-12-275- 2,273	N/A	Solid	GC 50	10/31/08	10/31/08 22:31	081031B08	
Parameter		<u>Result</u>	RL	DF	<u>Qual</u>	<u>Units</u>				
TPH as Diesel		ND	5.0	1		mg/kg				
Surrogates:		<u>REC (%)</u>	Control Limits		<u>Qual</u>					
Decachlorobiphenyl		109	61-145							

RL - Reporting Limit DF - Dilution Factor , Qual - Qualifiers

Page 6 of 27

Analytical Report

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

08-10-2730 EPA 5030B EPA 8015B (M)

10/31/08

Project: ExxonMobil 70235

Project: ExxonMobil 70235							Pa	ige 1 of 2	
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
S-10-DP2		08-10-2730-1-A	10/28/08 12:35	Solid	GC 24	10/31/08	11/01/08 04:41	081031B03	
Parameter	Result	RL	DF	Qual	<u>Units</u>				
TPH as Gasoline	ND	0.50	1		mg/kg				
Surrogates:	<u>REC (%)</u>	Control Limits		Qual					
1,4-Bromofluorobenzene - FID	81	42-126							
S-15-DP2		08-10-2730-2-A	10/28/08 12:45	Solid	GC 24	10/31/08	11/01/08 05:14	081031B03	
Parameter	<u>Result</u>	RL	DF	Qual	Units				
TPH as Gasoline	ND	0.50	1		mg/kg				
Surrogates:	<u>REC (%)</u>	Control Limits		Qual					
1,4-Bromofluorobenzene - FID	80	42-126							
S-20-DP2		08-10-2730-3-A	10/28/08 13:00	Solid	GC 24	10/31/08	11/01/08 05:48	081031B03	
Parameter	Result	RL	DF	<u>Qual</u>	<u>Units</u>				
TPH as Gasoline	ND	0.50	1		mg/kg				
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>					
1,4-Bromofluorobenzene - FID	80	42-126							
S-25-DP2		08-10-2730-4-A	10/28/08 13:07	Solid	GC 24	10/31/08	11/01/08 06:21	081031B03	
Parameter	Result	RL	DF	Qual	Units				
TPH as Gasoline	ND	0.50	1		mg/kg				
Surrogates:	<u>REC (%)</u>	Control Limits		Qual					
1.4-Bromofluorobenzene - FID	79	42-126							

DF - Dilution Factor , Qual - Qualifiers RL - Reporting Limit

m Al

nel c

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Project: ExxonMobil 70235

Work Order No: Preparation: Method:

Date Received:

Page 2 of 2

EPA 8015B (M)

10/31/08

08-10-2730

EPA 5030B

Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
S-30-DP2		08-10-2730-5-A	10/28/08 13:15	Solid	GC 24	10/31/08	11/01/08 07:28	081031B03	
Parameter	Result	RL	DF	<u>Qual</u>	<u>Units</u>				
TPH as Gasoline	ND	0.50	1		mg/kg				
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>					
1,4-Bromofluorobenzene - FID	79	42-126							
Method Blank		099-12-279-2,390	N/A	Solid	GC 24	10/31/08	10/31/08 22:01	081031B03	
Parameter	Result	RL	DE	Qual	Units				
TPH as Gasoline	ND	0.50	1		mg/kg				
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>					
1,4-Bromofluorobenzene - FID	80	42-126							

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

nel c

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received:	10/31/08
Work Order No:	08-10-2730
Preparation:	EPA 5030B
Method:	EPA 8021B
Units:	mg/kg
	Page 1 of 2

Project: ExxonMobil 70235

S-10-DP2			08-10-5					and the second se	and the second sec		
			00-10-2	2730-1-A	10/28/08 12:35	Solid	GC 21	11/05/08	11/05/08 15:34	3	081105B01
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
Benzene	ND	0.0050	1		Ethylbenzene			ND	0.0050	1	
Toluene	ND	0.0050	1		Xylenes (total)			ND	0.010	1	
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits		<u>Qual</u>							
1,4-Bromofluorobenzene	105	51-129									
S-15-DP2			08-10-3	2730-2-A	10/28/08 12:45	Solid	GC 21	11/05/08	11/05/08 17:13	3	081105B01
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	<u>Qual</u>
Benzene	ND	0.0050	1		Ethylbenzene			ND	0.0050	1	
Toluene	ND	0.0050	1		Xylenes (total)			ND	0.010	1	
<u>Surrogates:</u>	<u>REC (%)</u>	Control Limits		<u>Qual</u>							
1,4-Bromofluorobenzene	103	51-129									
S-20-DP2			08-10- 3	2730-3-A	10/28/08 13:00	Solid	GC 21	11/05/08	11/05/08 17:45	3	081105B01
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
Benzene	ND	0 0050	1		Ethylbenzene			ND	0.0050	1	
Toluene	ND	0.0050	1		Xvlenes (total)			ND	0.010	1	
Surrogates:	REC (%)	Control Limits		Qual					0.010		
1,4-Bromofluorobenzene	100	51-129									
S-25-DP2			08-10-	2730-4-A	10/28/08 13:07	Solid	GC 21	11/05/08	11/05/00 18:47	3	081105B01
Parameter	<u>Result</u>	<u>RL</u>	DF	Qual	Parameter			<u>Result</u>	RL	DF	Qual
Benzene	ND	0.0050	1		Ethylbenzene			ND	0.0050	1	
Toluene	ND	0.0050	1		Xylenes (total)			ND	0.010	1	
Surrogates:	<u>REC (%)</u>	Control		<u>Qual</u>							
1,4-Bromofluorobenzene	96	51-129									
S-30-DP2			08-10-	2730-5-A	10/28/08 13:15	Solid	GC 21	11/05/08	11/05/01 19:20	3	081105B01
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
Benzene	ND	0.0050	1		Ethylbenzene			ND	0.0050	1	
Toluene	ND	0.0050	1		Xylenes (total)			ND	0.010	1	
<u>Surrogates:</u>	<u>REC (%)</u>	Control Limits	-	Qual						201	
1,4-Bromofluorobenzene	99	51-129									

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

nel c

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method: Units:

EPA 8021B mg/kg Page 2 of 2

10/31/08

08-10-2730

EPA 5030B

Project: ExxonMobil 70235

Client Sample Number			La	ab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/T Analy	Time zed	QC Batch ID
Method Blank			099-12	-657-176	N/A	Solid	GC 21	11/05/08	11/05 13:5	/08 55	081105B01
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
Benzene	ND	0.0050	1		Ethylbenzene			ND	0.0050	1	
Toluene	ND	0.0050	1		Xylenes (total)			ND	0.010	1	
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>							
1,4-Bromofluorobenzene	100	51-129									

Qual - Qualifiers

DF - Dilution Factor ,

RL - Reporting Limit ,

nel c

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312
 Date Received:
 10/31/08

 Work Order No:
 08-10-2730

 Preparation:
 EPA 5030B

 Method:
 EPA 8260B

 Units:
 mg/kg

 Page 1 of 3

Project: ExxonMobil 70235

Client Sample Number			La	ib Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/T Analyz	ime zed	QC Batch ID
S-10-DP2			08-10-	2730-1-A	10/28/08 12:35	Solid	GC/MS XX	11/02/08	11/02 14:1	/08 8	081102L01
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
1,2-Dibromoethane	ND	0.0050	1		Diisopropyl Eth	er (DIPE)		ND	0.010	1	
1,2-Dichloroethane	ND	0.0050	1		Ethyl-t-Butyl Eth	her (ETBE))	ND	0.010	1	
Methyl-t-Butyl Ether (MTBE)	ND	0.0050	1		Tert-Amyl-Meth	yl Ether (T	AME)	ND	0.010	1	
Tert-Butyl Alcohol (TBA)	ND	0.050	1		Ethanol			ND	0.25	1	
Surrogates:	REC (%)	Control		<u>Qual</u>	Surrogates:]	REC (%)	Control		Qual
		Limits							Limits		
Dibromofluoromethane	116	73-139			1,2-Dichloroeth	ane-d4		125	73-145		
Toluene-d8	101	90-108			1,4-Bromofluor	obenzene		91	71-113		
S-15-DP2			08-10-	2730-2-A	10/28/08 12:45	Solid	GC/MS XX	11/02/08	11/02 14:4	/08 4	081102L01
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
1.2-Dibromoethane	ND	0 0050	8		Diisopronyl Eth	er (DIPE)		ND	0.010	Э	
1.2-Dichloroethane	ND	0.0050	1		Ethvl-t-Butvl Eth	her (ETBE))	ND	0.010	1	
Methyl-t-Butyl Ether (MTBE)	ND	0.0050	1		Tert-Amvl-Meth	v Ether (T	AME)	ND	0.010	4	
Tert-Butyl Alcohol (TBA)	ND	0.050	i		Ethanol	. j (,,	ND	0.25	1	
Surrogates:	REC (%)	Control		Qual	Surrogates:			REC (%)	Control		Qual
		Limits					-		Limits		
Dibromofluoromethane	115	73-139			1,2-Dichloroeth	ane-d4		123	73-145		
Toluene-d8	102	90-108			1,4-Bromofluor	obenzene		90	71-113		
S-20-DP2			08-10-	2730-3-A	10/28/08 13:00	Solid	GC/MS XX	11/02/08	11/02 15:1	/08 1	081102L01
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
1.2-Dibromoethane	ND	0 0050	1		Diisopropyl Eth	er (DIPF)		ND	0.010	1	
1.2-Dichloroethane	ND	0.0050	1		Ethyl-t-Butyl Eth	her (FTRE))	ND	0.010		
Methyl-t-Butyl Ether (MTBE)	ND	0.0050	1		Tert-Amvl-Meth	vi Ether (T	AME)	ND	0.010		
Tert-Butyl Alcohol (TBA)	ND	0.050	1		Ethanol	.j. Lator (1.		ND	0.25	4	
Surrogates:	REC (%)	Control	11	Qual	Surrogates:			REC (%)	Control	- 3	Qual
<u></u>		Limits							Limits		
Dibromofluoromethane	116	73-139			1,2-Dichloroeth	ane-d4		126	73-145		
Toluene-d8	101	90-108			1,4-Bromofluor	obenzene		86	71-113		

RL - Reporting Limit DF - Dilution Factor Qual - Qualifiers

nel c

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312
 Date Received:
 10/31/08

 Work Order No:
 08-10-2730

 Preparation:
 EPA 5030B

 Method:
 EPA 8260B

 Units:
 mg/kg

 Page 2 of 3

Project: ExxonMobil 70235

Client Sample Number			La	ab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/T Analy	îime zed	QC Batch ID
S-25-DP2			08-10-	2730-4-A	10/28/08 13:07	Solid	GC/MS XX	11/02/08	11/02 12:3	/08 33	081102L01
Parameter	Result	RL	DE	Qual	Parameter			Result	RL	DF	Quai
1,2-Dibromoethane	ND	0.0050	1		Diisopropyl Eth	er (DIPE)		ND	0.010	1	
1,2-Dichloroethane	ND	0.0050	1		Ethyl-t-Butyl Et	her (ETBE)		ND	0.010	1	
Methyl-t-Butyl Ether (MTBE)	ND	0.0050	1		Tert-Amyl-Meth	nyl Ether (T	AME)	ND	0.010	1	
Tert-Butyl Alcohol (TBA)	ND	0.050	1		Ethanol		,	ND	0.25	1	
Surrogates:	REC (%)	Control		Qual	Surrogates:			REC (%)	Control		Qual
		<u>Limits</u>							Limits		
Dibromofluoromethane	120	73-139			1,2-Dichloroeth	ane-d4		132	73-145		
Toluene-d8	101	90-108			1,4-Bromofluor	obenzene		89	71-113		
S-30-DP2			08-10-	2730-5-A	10/28/08 13:15	Solid	GC/MS XX	11/04/08	11/04 17:4	/08 19	081104L01
Parameter	Result	RL	DF	Qual	Parameter			Result	RI	DF	Qual
1.2-Dibromoethane	ND	0.0050	1		Diisopropyl Eth	er (DIPF)		ND	0.010	4	
1.2-Dichloroethane	ND	0.0050	1		Ethyl-t-Butyl Et	her (FTRF)		ND	0.010	4	
Methyl-t-Butyl Ether (MTBE)	ND	0.0050	÷.		Tert-Amvl-Meth	wi Ether (T		ND	0.010	4	
Tert-Butyl Alcohol (TBA)	ND	0.050	- î		Ethanol	in calor (17	(IIIC)	ND	0.010	4	
Surrogates:	REC (%)	Control	10	Qual	Surrogates:			REC (%)	Control		Qual
		Limits			ourre gareer				Limits		dedan
Dibromofluoromethane	117	73-139			1,2-Dichloroeth	nane-d4		126	73-145		
Toluene-d8	102	90-108			1,4-Bromofluor	obenzene		86	71-113		
Method Blank			099-12	-796-446	N/A	Solid	GC/MS XX	11/02/08	11/02 12:0	/08)7	081102L01
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
1,2-Dibromoethane	ND	0.0050	1		Diisopropyl Eth	er (DIPE)		ND	0.010	1	
1,2-Dichloroethane	ND	0.0050	1		Ethyl-t-Butyl Et	her (ETBE)		ND	0.010	1	
Methyl-t-Butyl Ether (MTBE)	ND	0.0050	1		Tert-Amvl-Meth	v Ether (T	AME)	ND	0.010	1	
Tert-Butyl Alcohol (TBA)	ND	0.050	1		Ethanol		,	ND	0.25	1	
Surrogates:	REC (%)	Control		<u>Qual</u>	Surrogates:		<u> </u>	REC (%)	<u>Control</u>	2	Qual
Dibromofluoromethane	114	73-139			1.2-Dichloroeth	ane-d4		121	72.145		
Toluene-d8	101	90-108			1,4-Bromofluor	obenzene		85	71-113		

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

nel c

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received:10/31/08Work Order No:08-10-2730Preparation:EPA 5030BMethod:EPA 8260BUnits:mg/kgPage 3 of 3

Project: ExxonMobil 70235

Client Sample Number			La	b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/T Analyz	me æd	QC Batch ID
Method Blank			099-12	-796-452	N/A	Solid	GC/MS XX	11/04/08	11/04/ 13:4	08 7	081104L01
Parameter	Result	<u>RL</u>	DF	<u>Qual</u>	Parameter			<u>Result</u>	RL	DE	Qual
1,2-Dibromoethane	ND	0.0050	1		Diisopropyl Ethe	er (DIPE)		ND	0.010	1	
1,2-Dichloroethane	ND	0.0050	1		Ethyl-t-Butyl Eth	ner (ETBE)	1	ND	0.010	1	
Methyl-t-Butyl Ether (MTBE)	ND	0.0050	1		Tert-Amyl-Methy	yl Ether (T.	AME)	ND	0.010	1	
Tert-Butyl Alcohol (TBA)	ND	0.050	1		Ethanol			ND	0.25	1	
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>	Surrogates:			<u>REC (%)</u>	Control Limits		Qual
Dibromofluoromethane	113	73-139			1,2-Dichloroetha	ane-d4		119	73-145		
Toluene-d8	100	90-108			1,4-Bromofluoro	benzene		85	71-113		

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

Date Received: Work Order No: Preparation: Method: 10/31/08 08-10-2730 EPA 3550B EPA 8015B (M)

Project ExxonMobil 70235

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number	
08-10-2501-1	Solid	GC 50	10/31/08		11/01/08	081031509	
Parameter	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers	
TPH as Motor Oil	93	90	64-130	4	0-15		

RPD - Relative Percent Difference, CL - Control Limit

895-5494 • FAX: (714) 894-7501

Date Received: Work Order No: Preparation: Method:

10/31/08 08-10-2730 EPA 3550B EPA 8015B (M)

Project ExxonMobil 70235

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
08-10-2501-1	Solid	GC 50	10/31/08		10/31/08	081031508
Parameter	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
TPH as Diesel	93	98	64-130	4	0-15	

RPD - Relative Percent Difference , CL - Control Limit

) 895-5494 • FAX: (714) 894-7501

Date Received: Work Order No:	
Preparation:	
Method:	

10/31/08 08-10-2730 EPA 5030B NWTPH-Gx

Project ExxonMobil 70235

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number	
08-10-2628-6	Solid	GC 24	10/31/08		11/01/08	081031501	
Parameter	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers	
TPH as Gasoline	79	78	48-114	2	0-23		

RPD - Relative Percent Difference , CL - Control Limit

10/31/08

Date Received: Environmental Resolutions, Inc. 08-10-2730 Work Order No: 601 North McDowell Blvd. Preparation: EPA 5030B Petaluma, CA 94954-2312 Method: EPA 8021B

Project ExxonMobil 70235

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
S-10-DP2	Solid	GC 21	11/05/08		11/05/08	081105S01
Parameter	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	107	102	58-118	5	0-24	
Toluene	100	94	61-109	6	0-20	
Ethylbenzene	99	94	59-113	5	0-20	
p/m-Xylene	102	97	55-115	5	0-20	
o-Xylene	96	93	56-110	3	0-20	
Methyl-t-Butyl Ether (MTBE)	577	580	65-113	1	0-9	3

RPD - Relative Percent Difference , CL - Control Limit

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 •

FAX: (714) 894-7501

Date Received: Work Order No: Preparation: Method: 10/31/08 08-10-2730 EPA 5030B EPA 8260B

Project ExxonMobil 70235

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
S-25-DP2	Solid	GC/MS XX	11/02/08		11/02/08	081102S01
Parameter	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	89	99	79-115	10	0-13	
Carbon Tetrachloride	95	112	55-139	16	0-15	4
Chlorobenzene	87	98	79-115	12	0-17	
1,2-Dibromoethane	87	100	70-130	14	0-30	
1,2-Dichlorobenzene	86	93	63-123	8	0-23	
1,1-Dichloroethene	99	111	69-123	11	0-16	
Ethylbenzene	92	103	70-130	12	0-30	
Toluene	90	100	79-115	11	0-15	
Trichloroethene	87	98	66-144	12	0-14	
Vinyl Chloride	121	112	60-126	8	0-14	
Methyl-t-Butyl Ether (MTBE)	97	110	68-128	13	0-14	
Tert-Butyl Alcohol (TBA)	70	95	44-134	30	0-37	
Diisopropyl Ether (DIPE)	96	103	75-123	8	0-12	
Ethyl-t-Butyl Ether (ETBE)	94	97	75-117	4	0-12	
Tert-Amyl-Methyl Ether (TAME)	91	100	79-115	9	0-12	
Ethanol	86	100	42-138	14	0-28	

RPD - Relative Percent Difference , CL - Control Limit

Date Received: Work Order No: Preparation: Method:

10/31/08 08-10-2730 EPA 5030B EPA 8260B

Project ExxonMobil 70235

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
08-10-2784-2	Solid	GC/MS XX	11/04/08		11/04/08	081104S01
Parameter	MS %REC	MSD %REC	<u>%REC CL</u>	RPD	RPD CL	Qualifiers
Benzene	87	87	79-115	0	0-13	
Carbon Tetrachloride	90	92	55-139	2	0-15	
Chlorobenzene	87	88	79-115	1	0-17	
1,2-Dibromoethane	93	94	70-130	1	0-30	
1,2-Dichlorobenzene	85	86	63-123	1	0-23	
1,1-Dichloroethene	97	89	69-123	9	0-16	
Ethylbenzene	90	91	70-130	1	0-30	
Toluene	88	89	79-115	1	0-15	
Trichloroethene	84	87	66-144	3	0-14	
Vinyl Chloride	103	91	60-126	12	0-14	
Methyl-t-Butyl Ether (MTBE)	101	98	68-128	3	0-14	
Tert-Butyl Alcohol (TBA)	71	73	44-134	3	0-37	
Diisopropyl Ether (DIPE)	92	90	75-123	2	0-12	
Ethyl-t-Butyl Ether (ETBE)	92	90	75-117	2	0-12	
Tert-Amyl-Methyl Ether (TAME)	96	93	79-115	4	0-12	
Ethanol	86	80	42-138	7	0-28	

RPD - Relative Percent Difference , CL - Control Limit

Mulum

Date Received: Work Order No: Preparation: Method:

N/A 08-10-2730 EPA 3550B EPA 8015B (M)

Project: ExxonMobil 70235

Quality Control Sample ID	Matrix	Instrument	Date Prepare	Da ed Anal	ate lyzed	LCS/LCSD Bate Number	h
099-12-254-611	Solid	GC 50	10/31/0	8 10/3	1/08	081031B09	
Parameter	LCS	KREC LCS	<u>D %REC</u>	<u>%REC CL</u>	RPD	RPD CL	Qualifiers
TPH as Motor Oil	95	e e	8	75-123	3	0-12	

RPD - Relative Percent Difference, CL - Control Limit

Environmental Resolutions, Inc.	Date Received:	N/A
601 North McDowell Blvd.	Work Order No:	08-10-2730
Petaluma, CA 94954-2312	Preparation:	EPA 3550B
	Method:	EPA 8015B (M)

Project: ExxonMobil 70235

Quality Control Sample ID	Matrix	Instru	ument	Dat Prepa	e ired	Da Anal	te /zed	LCS/LCSD Bate Number	h
099-12-275-2,273	Solid	GC	; 50	10/31	/08	10/31	/08	081031B08	
Parameter	LCS	<u>%REC</u>	<u>LCSD </u>	6REC	<u>%RE</u>	C CL	<u>RPD</u>	RPD CL	Qualifiers
TPH as Diesel	90		90		75	-123	0	0-12	

RPD - Relative Percent Difference , CL - Control Limit

hA

Date Received: Work Order No: Preparation: Method:

nel c

N/A 08-10-2730 EPA 5030B EPA 8015B (M)

Project: ExxonMobil 70235

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Dal Analy	e zed	LCS/LCSD Batc Number	h
099-12-279-2,390	Sol i d	GC 24	10/31/08	10/31	/08	081031B03	
Parameter	LCS	<u>%REC LCSE</u>	%REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
TPH as Gasoline	90	8	7	70-124	3	0-18	

RPD - Relative Percent Difference, CL - Control Limit

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

N/A 08-10-2730 EPA 5030B EPA 8021B

Project: ExxonMobil 70235

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Anal	ate yzed	LCS/LCSD Bato Number	:h
099-12-657-176	Solid	GC 21	11/05/08	11/0	5/08	081105B01	
Parameter	LCS %	REC LCSD	%REC	<u>%REC CL</u>	<u>RPD</u>	RPD CL	Qualifiers
Benzene	101	101	I	70-118	0	0-7	
Toluene	93	93		71-107	0	0-8	
Ethylbenzene	93	92		66-120	0	0-7	
p/m-Xylene	96	96		66-120	0	0-8	
o-Xylene	92	92		66-114	0	0-9	
Methyl-t-Butyl Ether (MTBE)	545	547	7	70-112	0	0-12	х

RPD - Relative Percent Difference, CL - Control Limit

FAX: (714) 894-7501

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312 nel c

Date Received: Work Order No: Preparation: Method: N/A 08-10-2730 EPA 5030B EPA 8260B

Project: ExxonMobil 70235

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Anal	ite yzed	LCS/LCSD I Numbe	Batch r
099-12-796-446	Solid	GC/MS XX	11/02/08	11/02	/08	081102L	01
Parameter	LCS %REC	LCSD %REC	%REC CL	ME_CL	<u>RPD</u>	RPD CL	Qualifiers
Benzene	102	98	84-114	79-119	4	0-7	
Carbon Tetrachloride	107	102	66-132	55-143	4	0-12	
Chlorobenzene	101	98	87-111	83-115	3	0-7	
1,2-Dibromoethane	104	101	80-120	73-127	2	0-20	
1,2-Dichlorobenzene	98	95	79-115	73-121	4	0-8	
1,1-Dichloroethene	107	104	73-121	65-129	3	0-12	
Ethylbenzene	108	104	80-120	73-127	4	0-20	
Toluene	103	99	78-114	72-120	4	0-7	
Trichloroethene	102	100	84-114	79-119	3	0-8	
Vinyl Chloride	113	125	63-129	52-140	10	0-15	
Methyl-t-Butyl Ether (MTBE)	107	108	77-125	69-133	1	0-11	
Tert-Butyl Alcohol (TBA)	68	78	47-137	32-152	14	0-27	
Diisopropyl Ether (DIPE)	107	103	76-130	67-139	4	0-8	
Ethyl-t-Butyl Ether (ETBE)	104	102	76-124	68-132	2	0-12	
Tert-Amyl-Methyl Ether (TAME)	107	103	82-118	76-124	4	0-11	
Ethanol	66	77	59-131	47-143	15	0-21	

Total number of LCS compounds : 16 Total number of ME compounds : 0 Total number of ME compounds allowed : 1 LCS ME CL validation result : Pass

RPD - Relative Percent Difference, CL - Control Limit

Mulum

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received:	N/A
Work Order No:	08-10-2730
Preparation:	EPA 5030B
Method:	EPA 8260B

Project: ExxonMobil 70235

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Analy	te /zed	LCS/LCSD I Numbe	Batch r
099-12-796-452	Solid	GC/MS XX	11/04/08	11/04/	08	081104L	01
Parameter	LCS %REC	LCSD %REC	%REC CL	ME_CL	<u>RPD</u>	RPD CL	Qualifiers
Benzene	107	110	84-114	79-119	2	0-7	
Carbon Tetrachloride	112	116	66-132	55-143	3	0-12	
Chlorobenzene	107	110	87-111	83-115	2	0-7	
1,2-Dibromoethane	107	111	80-120	73-127	4	0-20	
1,2-Dichlorobenzene	106	107	79-115	73-121	1	0-8	
1,1-Dichloroethene	120	125	73-121	65-129	5	0-12	
Ethylbenzene	115	118	80-120	73-127	3	0-20	
Toluene	109	110	78-114	72-120	1	0-7	
Trichloroethene	110	113	84-114	79-119	3	0-8	
Vinyl Chloride	124	126	63-129	52-140	2	0-15	
Methyl-t-Butyl Ether (MTBE)	121	115	77-125	69-133	4	0-11	
Tert-Butyl Alcohol (TBA)	86	92	47-137	32-152	7	0-27	
Diisopropyl Ether (DIPE)	109	105	76-130	67-139	4	0-8	
Ethyl-t-Butyl Ether (ETBE)	111	106	76-124	68-132	4	0-12	
Tert-Amyl-Methyl Ether (TAME)	112	108	82-118	76-124	4	0-11	
Ethanol	103	103	59-131	47-143	0	0-21	

Total number of LCS compounds : 16 Total number of ME compounds : 1 Total number of ME compounds allowed : 1 LCS ME CL validation result : Pass

> CL - Control Limit RPD - Relative Percent Difference ,

ha

Glossary of Terms and Qualifiers

Work Order Number: 08-10-2730

Qualifier	Definition
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
А	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
E	Concentration exceeds the calibration range.
I	Compound did not meet method-described identification guidelines. Identification was based on additional GC/MS characteristics.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
Х	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.

CHAIN OF CUSTODY RECORD

					a line allow	-			20.00				6		-	/		
nsultant Name:	Environmen	tal Resoluti	ons, Inc.		E	xxon	Mobi	l Engi	ineer	Jen	nifer	C. S	edla	chek				
Address:	601 North M	CDowell Bo	oulevard			Tele	phon	e Nur	nber	(510) 54	7-81	96					
City/State/Zip:	Petaluma, C	alifornia 9	4954				A	Accou	int#:									
roject Manager	Paula Sime				50 9)			P	20 #:	451	0174	1131						
ohone Number:	(707) 766-20	000			2		Fa	acility	ID #	702	35							
U Job Number:	222903X				2			Globa	110#	T06	0010	0135	4					
r Name: (Print)	hebely	LANE	stude		2		Sit	e Add	ireas	222	5 Te	legra	aph A	venu	le			
pler Signature:	hebel	w On	Vulle		 2		City	, State	e Zip	Oak	land	, Cal	iforn	ia				_
r 🗌 Commer	clai Express	Othe	r:															
Special Instru	ctions:						Matrix	x					Ал	alyze	For:			
7 CA Oxys =	MTBE, TE	BA, TAME	, ETBE, C	DIPE, 1,2-D	CA, EDB.					6	0151	-	8	8				010
Use silica ge	el cleanup to action limit	orall 1PH <12 µa/i	id analyse	S .					0151	0151	oil 8	21E	826	326(100		9 pg
HOVs - 8010	List by 82	60B							98	98	notor	8	Skyo	Ion Ion			20 20	ĕ
DATE	TIME	COMP	CRAR	DRESERV	NUMBER	Vater	Soil	apor	Hd	Hd	Hd	E	S	tha			Ž I	otal I
	- Inne	COM	- CIUND	TREDERV	NOMBER	2		-	1	E.	V		1	v.		-+-	-+-	-
10 28 08	12:35		<u>×</u> .	ICE	_ <u>_</u>		X		X	X	Ķ	X	X	X		-+	_	4
	12:45		X		1		X		X	X	X,	K	K	X				
	13:00		X		1		X		X	X	X	X	X	X				
	13:07		×		1		X		X	X	X	X	X	Х				
\vee	13:15		X	\vee	1		X		X	×	X	X	X	X				
									7					<u>е</u>				
										-						+	+	+
		· · · · · · · · · · · · · · · · · · ·					-						<u> </u>				+	+
									i									
																1		
							-					-				\neg	+	+
								_			_	1			_		-	_
				Theorem is the information provide														
																	T	T
2808	Time	13D	Received to	To-On	Jally 10	C 62 /30	/08	Time	142	9	Labo	Tem Sam	y Cor peratu ple Co s Free	nmen ire Up ontain e of H	its: oon Rec ers Intr earlso:	ceipt: act?		
	Address: City/State/Zip: roject Manager whone Number: I Job Number: r Name: (Print) pler Signature: r Commer Special Instru 7 CA Oxys = Use silica ge Set TBA deti HOVS - 8010 DATE 10 28 08 28 08 - 30-08	Address: Environmen Address: 601 North M City/State/Zip: Petaluma, C roject Manager Paula Sime whone Number: (222903X) r Name: (Print) Lob Number: 222903X r Commercial Express Special Instructions: 7 CA Oxys = MTBE, TE Use silica gel cleanup fr Set TBA detection limit HOVs - 8010 List by 82 DATE TIME 10 28 0 13:.07 13:.00 13:.07 13:.01 13:.07 13:.02 13:.07 13:.03 13:.07 13:.04 13:.07 13:.05 13:.07 13:.07 13:.07 13:.07 13:.07 13:.07 <t< td=""><td>Insultant Name: Environmental Resolution Address: 601 North McDowell Bold City/State/Zip: Petaluma, California Project Manager Paula Sime whone Number: (707) 766-2000 Ri Job Number: 222903X In Name: (Print) Robotical A Mark point Signature: Industrian Industriant Commercial Express Other Special Instructions: 7 CA Oxys = MTBE, TBA, TAME Use silica gel cleanup for all TPH Set TBA detection limit <12 ug/L.</td> HOVs - 8010 List by 8260B DATE DATE TIME I 2:45 I 3:.00 I 3:.00 I 3:.01 I 3:.00 I 3:.01 I 3:.00 I 3:.00 I 3:.00 I 3:.00</t<>	Insultant Name: Environmental Resolution Address: 601 North McDowell Bold City/State/Zip: Petaluma, California Project Manager Paula Sime whone Number: (707) 766-2000 Ri Job Number: 222903X In Name: (Print) Robotical A Mark point Signature: Industrian Industriant Commercial Express Other Special Instructions: 7 CA Oxys = MTBE, TBA, TAME Use silica gel cleanup for all TPH Set TBA detection limit <12 ug/L.	Insultant Name: Environmental Resolutions, Inc. Address: 501 North McDowell Boulevard City/State/Zip: Petaluma, California 94954 roject Manager Paula Sime whone Number: (707) 766-2000 RI Job Number: 222903X rr Name: (Print) Lobokal A Vestrick pler Signature: Image: Market Market r Commercial Express Other: Special Instructions: 7 CA Oxys = MTBE, TBA, TAME, ETBE, D 7 CA Oxys = MTBE, TBA, TAME, ETBE, D Use silica gel cleanup for all TPHd analyse Set TBA detection limit <12 ug/L.	Insultant Name: Environmental Resolutions, Inc. Address: 601 North MoDowell Boulevard City/State/Zip: Petaluma, California 94954 roject Manager Paula Sime whone Number: (707) 766-2000 Rt Job Number: 222903X rr Name: (Print) Job Number: 222903X rr Name: (Print) Job Number: 222903X r Name: (Print) Job Number: 222903X r Commercial Express Other: Special Instructions: 7 CA Oxys = MTBE, TBA, TAME, ETBE, DIPE, 1,2-D Use silica gel cleanup for all TPHd analyses. Set TBA detection limit <12 ug/L.	Isultant Name: Environmental Resolutions, Inc. Address: 501 North McDowell Boulevard City/State/Zip: Petaluma, California 94954 roject Manager Paula Sime Mone Number: (707) 766-2000 Received by: Intelligence of the system Mone Number: (707) 766-2000 Received by: Special Instructions: r Commercial Express © Other: Special Instructions: 7 CA Oxys = MTBE, TBA, TAME, ETBE, DIPE, 1,2-DCA, EDB. Use silica gel cleanup for all TPHd analyses. Set TBA detection limit <12 ug/L.	Isuitant Name: Environmental Resolutions, Inc. Exxon Address: 601 North McDowell Boulevard Tele Chy/State/Zip: Petaluma, California 94954 roject Manager Paula Sime whone Number: (707) 766-2000 Received by: Address: (707) 766-2000 Received by: Special Instructions: CA Oxys = MTBE, TBA, TAME, ETBE, DIPE, 1,2-DCA, EDB. Use silica gel cleanup for all TPHd analyses. Set TBA detection limit <12 ug/L.	isultant Name: Environmental Resolutions, Inc. ExxonMobi Address: 501 North McDowell Boulevard Telephor City/State/Zip: Petaluma, California 94954 ////////////////////////////////////	Isultant Name: Environmental Resolutions, Inc. Address: 501 North MoDowell Boulevard City/State/Zip: Petaluma, California 94964 roject Manager Paula Sime intone Number: (707) 766-2000 It Job Number: 222903X r Name: (Print) Commercial Express Special Instructions: 7 CA Oxys = MTBE, TBA, TAME, ETBE, DIPE, 1,2-DCA, EDB. Use silica gel cleanup for all TPHd analyses. Set TBA detection limit <12 ug/L. HOVs - 8010 List by 8260B DATE TIME COMP GRAB PRESERV NUMBER 10 28 0/3 12:35 X ICE X I X ISON X	Issuitant Name: Environmental Resolutions, Inc. ExxonMobil Engineer Address: 501 North McDowell Boulevard Telephone Number City/State/Zip: Petaluma, Celifornia 94954 Account #: roject Manager Paula Sime PO #: PO #: whone Number: (707) 766-2000 Facility ID # et Job Number: 222903X Global ID# r Name: (Print) Abbota Alforme for Signature: Alforme Matrix Facility ID # r Commercial Express Other: Site Address City, State Zip Special instructions: 7 CA Oxys = MTBE, TBA, TAME, ETBE, DIPE, 1,2-DCA, EDB. Matrix Fig. 98 V Se 3010 List by 8260B II II X X DATE TIME COMP GRAB PRESERV NUMBER Matrix IQ 28 0/G I2:35 X ICE X X IQ 28 0/G I2:35 X ICE X X IQ 28 0/G I2:35 X ICE X X IQ 28 0/G II X X X <	Isultant Name: Environmental Resolutions, Inc. ExxonMobil Engineer Jem Address: 601 North McDowell Boulevard Telephone Number (510 City/State/Zip: Petaluma, California 94964 Account #: roject Manager Paula Sime P0 # 451 whone Number: (707) 766-2000 Facility ID # 702 Blob Number: 222903X Global ID# 706 r Name: (Print) Robokal A VEStrop Site Address 222 pier Signature: (Matrix) Facility ID # 702 Special Instructions: Other: Site Address 222 Special Instructions: Other: Site Address 222 Special Instructions: Time COMP GRAB PRESERV NUMBER P I/OVs - 8010 List by 8260B Matrix Time Site Address Site Address I/O 2/S 0'S 1/2:45 X I X X I/O 2/S 0'S 1/2:45 X I X X I/O 2/S 0'S X I X X X I/O 2/S 0'S X I X X X I/O 2/S 0'S X<	suitant Name: Environmental Resolutions, Inc. ExxonMobil Engineer Jennifer Address: 501 North McDowell Boulevard Telephone Number (510) 54 City/State/Zip Petaluma, California 64964 Account #: roject Manager Paula Sime P0 #: 451017/ whone Number: (2707) 766-2000 Global ID# T060010 U Job Number: 2223 Te Global ID# T060010 Ste Address: Omercial Express Other: Special Instructions: 7 CA Oxys = MTBE, TBA, TAME, ETBE, DIPE, 1,2-DCA, EDB. Matrix Yes silica gel cleanup for all TPHd analyses. Set TBA detection limit <12 ug/L.	suitant Name: Environmental Resolutions, Inc. ExxonMobil Engineer Jennifer C. S Address: 501 North McDowell Boulevard Telephone Number (510) 547-81 City/State/Zip Petaluma, California 84964 Account #: roject Manager Paula Sime Politic 100 1000 whone Number: (200) 766-2000 Global ID# 70235 U Job Number: 22203X Global ID# 70235 Poir: Stite Address 2225 Telegra Dier Signature: Matrix Stite Address Matrix Time Stite Address Special Instructions: Matrix Stite Address CAXys = MTBE, TBA, TAME, ETBE, DIPE, 1,2-DCA, EDB. Matrix Stite Address Use silica gel cleanup for all TPHd analyses. Stite Address Stite Address Stite Address 12.5 X 1 C.E X X MATE TIME COMP GRAB PRESERV< NUMBER	suitant Name: Environmental Resolutions, Inc. Address: S01 North McDowell Boulevard Telephone Number (S10) 547-8196 City/State/Zip: Petaluma, Cellfornia 94964 Telephone Number (S10) 547-8196 roject Manager Paula Sime P0 #: 4510174131 roject Manager Paula Sime Facility ID # 70235 roject Manager Paula Sime Global ID# To6001010354 r Name: (Print) Facility ID # 70235 Special Instructions: Address: Soft Telegraph A r CA Oxys = MTBE, TBA, TAME, ETBE, DIPE, 1,2-DCA, EDB. Matrix Andress Libe silica gel cleanup for all TPHd analyses. Set TBA detection limit <12 ug/L.	suitant Name: Environmental Resolutions, Inc. Address: 301 North McDowell Boulevard City/State/Zip: Petaluma, California 94964 City/State/Zip: Petaluma, California Address: Dipertermine/City, State Zip Odder: Special Instructions: Commercial Express Dother: Set TBA detection limit <12 ug/L.	Isuitant Name: Environmental Resolutions, Inc. Address: 501 North McDowell Bodevard City/State/Zip: Petaluma, California 84954 City/State/Zip: Petaluma, California 84954 roject Manager Paula Sime hone Number: (207) 766-2000 John McDowell Bodevard John McDowell Bodevard John McDowell Bodevard John McDowell Bodevard John Mumber: (207) 766-2000 John McDowell A Westry for John McDowell A Westry for John McDowell A Westry for Sige all Instructions: Commercial Express One Matrix Matrix Matrix Matrix Analyze For: Commercial Express Dother: Special Instructions: Analyze For: Matrix Matrix Matrix Matrix Matrix Matrix Matrix Matrix Matrix Matrix	Suitant Neme: Environmental Resolutions, Inc. Address: S01 North McDowell Boulevard City/State/Zip: Petal Sime income Number: Color Top 766-2000 U do Number: Color Top 766-	Suitant Name: Environmental Resolutions, Inc. Exconti/oblil Engineer Jennifier C. Sediachek Address: 501 North McDowell Boulevard Telephone Number (510) 547-8196 City/StetzZip: Petatuma, California 64954 Po # 4510174131 rojact Manager Paula Sime Po # 4510174131 Po # 4510174131 hone Number: (207) 765-200 Global ID# T02035 Global ID# T02035 bior Signature:

14

Page 1 of 1

0.730

←alscience · WORK ORDER #: 08- [] [] -	2730
SAMPLE RECEIPT FORM	Cooler of
CLIENT: ERT DATE	: 10/31 108
TEMPERATURE: (Criteria: 0.0 °C – 6.0 °C, not frozen)	
Temperature $4 \cdot 1^{\circ}C + 1.8^{\circ}C(CF) = 2 \cdot 4^{\circ}C \square Blank$	[™] Sample
Sample(s) outside temperature criteria (PM/APM contacted by:).	
□ Sample(s) outside temperature criteria but received on ice/chilled on same day of samp	ling.
☐ Received at ambient temperature, placed on ice for transport by Courier.	
Ambient Temperature: 🗆 Air 🔤 Filter	Initial: <u>N</u>
CUSTODY SEALS INTACT:	1
Cooler	Initial: M
Sample D No (Not Intact)	Initial: <u>ALSC</u>
SAMPLE CONDITION:	
Yes No	> N/A
Sampler's name indicated on COC	
Sample container label(s) consistent with COC.	
Sample container(s) intact and good condition	
Correct containers and volume for analyses requested	
Proper preservation noted on sample label(s)	
Volatile analysis container(s) free of headspace	ı Z
Tedlar bag(s) free of condensation	
CONTAINER TYPE:	
Solid: 4ozCGJ 8ozCGJ 16ozCGJ Sleeve EnCores® TerraCore	s®
/ Water: □VOA □VOAh □VOAna₂ □125AGB □125AGBh □125AGBpo₄	□1AGB □1AGBna₂
□1AGBs □500AGB □500AGBs □250CGB □250CGBs □1PB □500PB	□500PBna □250PB
□250PBn □125PB □125PBznna □100PBsterile □100PBna₂ □	□ □
Air: Tedlar® Summa® Chec Container: C:Clear A:Amber P:Poly/Plastic G:Glass J:Jar B:Bottle Preservative: h:HCL n:HNO3 na2:Na2S2O3 na:NaOH po4:H3PO4 s:H2SO4 znna:ZnAc2+NaOH	ked/Labeled by: <u>//.s.C</u> Reviewed by: <u>//.s.C</u> Scanned by: <u>///.s.C</u>

SOP T100_090 (10/23/08)

November 04, 2008

Paula Sime Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

MI	ECI	EI	VE	M
Ň	NOV	06	2008	W
R	Y:			

Subject:Calscience Work Order No.:08-10-2156Client Reference:ExxonMobil 70235

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 10/24/2008 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

Note that the Chain-of-Custody Record and Sample Receipt Form are integral parts of this report.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Cecile & er Sain

Calscience Environmental Laboratories, Inc. Cecile deGuia Project Manager

CA-ELAP ID: 1230 • NELAP ID: 03220CA • CSDLAC ID: 10109 • S 7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 •

• FAX: (714) 894-7501

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Work Order No: Preparation: Method:

Date Received:

10/24/08 08-10-2156 EPA 3550B EPA 8015B (M)

Project: ExxonMobil 70235

Project: Exxo	nMobil 70235							Pa	ige 1 of 1
Client Sample Numb	er		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
S-5-CPT3			08-10-2156-1-A	10/22/08 10:45	Solid	GC 43	10/30/08	10/31/08 02:33	081030B04
Comment(s):	-The sample extract wa	s subjected to	o Silica Gel treatment	prior to analys	is.				
Parameter		Result	<u>RL</u>	DF	Qual	Units			
TPH as Motor Oil		41	25	1		mg/kg			
Surrogates:		REC (%)	Control Limits		Qual				
Decachlorobiphenyl		107	61-145						
S-5-CPT1			08-10-2156-2-A	10/22/08 11:50	Solid	GC 43	10/30/08	10/31/08 01:53	081030B04
Comment(s):	-The sample extract wa	s subjected to	o Silica Gel treatment	prior to analys	is.				

Common (S).	Fille sample exilact was subjected to	o Oliica Gei treatmen	it prior to analysis	•		
Parameter	<u>Result</u>	RL	DF	<u>Qual</u>	Units	
TPH as Motor Oil	ND	25	1		mg/kg	
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>		
Decachlorobiphenyl	113	61-145				

S-5-CPT2			08-10-2156-3-A	10/22/08 15:00	Solid	GC 43	10/30/08	10/31/08 02:12	081030B04
Comment(s):	-The sample extract was	s subjected to	o Silica Gel treatment	prior to analys	is.				
Parameter		Result	RL	DE	<u>Qual</u>	<u>Units</u>			
TPH as Motor Oil		ND	25	1		mg/kg			
Surrogates:		<u>REC (%)</u>	Control Limits		Qual				
Decachlorobiphenyl		93	61-145						
Method Blank			099-12-254-610	N/A	Solid	GC 43	10/30/08	10/30/08 21:55	081030B04
Parameter		Result	<u>RL</u>	DF	<u>Qual</u>	<u>Units</u>			
TPH as Motor Oil		ND	25	1		mg/kg			
Surrogates:		<u>REC (%)</u>	Control Limits		Qual				
D									

DF - Dilution Factor RL - Reporting Limit , Qual - Qualifiers

nel c

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received: Work Order No: Preparation: Method:

10/24/08 08-10-2156 EPA 3550B EPA 8015B (M)

Page 1 of 1

Project: ExxonMobil 70235

Client Sample Numbe	er		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
S-5-CPT3			08-10-2156-1-A	10/22/08 10:45	Solid	GC 43	10/30/08	10/31/08 02:33	081030B05
Comment(s):	-The sample extract was	subjected to	Silica Gel treatment	prior to analys	is.				
Parameter		Result	RL	DF	Qual	Units			
TPH as Diesel		11	5.0	1		mg/kg			
Surrogates:		<u>REC (%)</u>	Control Limits		<u>Qual</u>				
Decachlorobiphenyl		107	61-145						
S-5-CPT1			08-10-2156-2-A	10/22/08 11:50	Solid	GC 43	10/30/08	10/31/08 01:53	081030B05
Comment(s):	-The sample extract was	s subjected to	Silica Gel treatment	prior to analys	is.				
Parameter		<u>Result</u>	<u>RL</u>	DF	<u>Qual</u>	Units			
TPH as Diesel		ND	5.0	1		mg/kg			
Surrogates:		<u>REC (%)</u>	Control Limits		<u>Qual</u>				
Decachlorobiphenyl		113	61-145						
S-5-CPT2			08-10-2156-3-A	10/22/08 15:00	Solid	GC 43	10/30/08	10/31/08 02:12	081030B05
Comment(s):	-The sample extract was	s subjected to	o Silica Gel treatment	prior to analys	is.				
Parameter		<u>Result</u>	<u>RL</u>	DF	<u>Qual</u>	Units			
TPH as Diesel		ND	5.0	1		mg/kg			
Surrogates:		<u>REC (%)</u>	Control Limits		<u>Qual</u>				
Decachlorobiphenyl		93	61-145						
Method Blank			099-12-275-2,271	N/A	Solid	GC 43	10/30/08	10/30/08 21:55	081030B05
Parameter		Result	RL	DF	Qual	Units			
TDU D' '		ND	 E 0						
IPH as Diesel		ND	5.0	1		mg/kg			
Surrogates:		REC (%)	Control Limits		<u>Qual</u>				
Decachlorobiphenyl		98	61-145						

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

nel c

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Work Order No: Preparation: Method:

Date Received:

10/24/08 08-10-2156 EPA 5030B EPA 8015B (M)

Page 1 of 1

Project: ExxonMobil 70235

Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
S-5-CPT3		08-10-2156-1-A	10/22/08 10:45	Solid	GC 5	10/24/08	10/25/08 02:26	081024B01
Parameter	Result	RL	DF	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	67	42-126						
S-5-CPT1		08-10-2156-2-A	10/22/08 11:50	Solid	GC 5	10/24/08	10/25/08 03:03	081024B01
Parameter	<u>Result</u>	RL	DF	Qual	<u>Units</u>			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene - FID	69	42-126						
S-5-CPT2		08-10-2156-3-A	10/22/08 15:00	Solid	GC 5	10/24/08	10/25/08 03:39	081024B01
Parameter	Result	RL	DF	Qual	Units			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene - FID	72	42-126						
Method Blank		099-12-279-2,367	N/A	Solid	GC 5	10/24/08	10/24/08 20:59	081024B01
Parameter	Result	RL	DF	Qual	Units			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene - FID	72	42-126						

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

him

nel c

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received:10/24/08Work Order No:08-10-2156Preparation:EPA 5030BMethod:EPA 8021BUnits:mg/kgPage 1 of 1

Project: ExxonMobil 70235

Client Sample Number			La	ib Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/T Analyz	'ime zed	QC Batch ID
S-5-CPT3			08-10-3	2156-1-A	10/22/08 10:45	Solid	GC 8	10/29/08	10/30 07:0	/08 2	081029B01
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
Benzene	ND	0.0050	1		Ethylbenzene			ND	0.0050	1	
Toluene	ND	0.0050	1		Xylenes (total)			ND	0.010	1	
<u>Surrogates:</u>	<u>REC (%)</u>	Control		Qual							
1,4-Bromofluorobenzene	102	Limits 51-129									
S-5-CPT1	8.76		08-10-	2156-2-A	10/22/08 11:50	Solid	GC 8	10/29/08	10/30 07:3	/08 16	081029B01
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
Benzene	ND	0.0050	1		Ethylbenzene			ND	0.0050	1	
Toluene	ND	0.0050	1		Xylenes (total)			ND	0.010	1	
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>	, , ,						
1,4-Bromofluorobenzene	104	51-129									
S-5-CPT2			08-10-	2156-3-A	10/22/08 15:00	Solid	GC 8	10/29/08	10/30 08:0	/08 9	081029B01
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
Benzene	ND	0.0050	1		Ethylbenzene			ND	0.0050	1	
Toluene	ND	0.0050	1		Xylenes (total)			ND	0.010	1	
Surrogates:	<u>REC (%)</u>	Control		Qual							
1,4-Bromofluorobenzene	105	<u>Limits</u> 51-129									
Method Blank	8.1		099-12	-657-172	N/A	Solid	GC 8	10/29/08	10/30 04:1	/08 3	081029B01
Parameter	Result	RL	DE	Qual	Parameter			Result	RL	DF	Qual
Benzene	ND	0.0050	1		Ethylbenzene			ND	0.0050	1	
Toluene	ND	0.0050	1		Xylenes (total)			ND	0.010	1	
Surrogates:	<u>REC (%)</u>	<u>Control</u>		<u>Qual</u>						•	
1,4-Bromofluorobenzene	123	<u>Limits</u> 51-129									

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

200

Analytical Report

nel c

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312
 Date Received:
 10/24/08

 Work Order No:
 08-10-2156

 Preparation:
 EPA 5030B

 Method:
 EPA 8260B

 Units:
 mg/kg

 Page 1 of 2

Project: ExxonMobil 70235

Client Sample Number			La	b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Ti Analyz	me ed	QC Batch ID
S-5-CPT3			08-10-2	2156-1-A	10/22/08 10:45	Solid	GC/MS XX	10/28/08	10/28/ 14:31	08 1	081028L01
Parameter	<u>Result</u>	<u>RL</u>	DF	<u>Qual</u>	Parameter			<u>Result</u>	RL	DE	Qual
1,2-Dibromoethane	ND	0.0050	1		Diisopropyl Eth	ner (DIPE)		ND	0.010	1	
1,2-Dichloroethane	ND	0.0050	1		Ethyl-t-Butyl Et	ther (ETBE))	ND	0.010	1	
Methyl-t-Butyl Ether (MTBE)	ND	0.0050	1		Tert-Amyl-Meth	hyl Ether (T.	AME)	ND	0.010	1	
Tert-Butyl Alcohol (TBA)	ND	0.050	1		Ethanol			ND	0.25	1	
Surrogates:	<u>REC (%)</u>	Control		<u>Qual</u>	Surrogates:]	REC (%)	Control		<u>Qual</u>
		Limits							<u>Limits</u>		
Dibromofluoromethane	101	73-139			1,2-Dichloroeth	nane-d4		105	73-145		
Toluene-d8	101	90-108			1,4-Bromofluor	robenzene		98	71-113		
S-5-CPT1			08-10-	2156-2-A	10/22/08 11:50	Solid	GC/MS U	11/01/08	11/01/ 15:4	08 9	081101L01
Parameter	Result	RL	DF	Qual	Parameter			Result	<u>RL</u>	DE	Qual
1.2-Dibromoethane	ND	0.0050	1		Diisopropy Eth	ner (DIPE)		ND	0.010	1	
1.2-Dichloroethane	ND	0.0050	1		Ethyl-t-Butyl Et	ther (ETBE)	ND	0.010	1	
Methyl-t-Butyl Ether (MTBE)	ND	0.0050	1		Tert-Amyl-Metl	hyl Ether (T	AME)	ND	0.010	1	
Tert-Butyl Alcohol (TBA)	ND	0.050	1		Ethanol			ND	0.25	1	
Surrogates:	REC (%)	Control		Qual	Surrogates:			REC (%)	Control		Qual
		Limits							Limits		
Dibromofluoromethane	127	73-139			1,2-Dichloroeth	hane-d4		130	73-145		
Toluene-d8	103	90-108			1,4-Bromofluor	robenzene		90	71-113		
S-5-CPT2	2.45		08-10-	2156-3-A	10/22/08 15:00	Solid	GC/MS EE	10/28/08	10/28/ 19:5	/08 4	081028L01
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
1 2-Dibromoethane	ND	0.0050	34		Diisopropyl Eth	her (DIPE)		ND	0.010	1	
1 2-Dichloroethane	ND	0.0050	1		Ethvl-t-Butvl E	ther (ETBE)	ND	0.010	1	
Methyl-t-Butyl Ether (MTBE)	ND	0.0050	1		Tert-Amvl-Met	hyl Ether (T	AME)	ND	0.010	1	
Tert-Butyl Alcohol (TBA)	ND	0.050	1		Ethanol	- ·	·	ND	0.25	1	
Surrogates:	REC (%)	Control		Qual	Surrogates:			REC (%)	Control		<u>Qual</u>
<u></u> - <u>-</u> - <u>-</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u> <u>-</u>		Limits							Limits		
Dibromofluoromethane	105	73-139			1,2-Dichloroeth	hane-d4		106	73-145		
Toluene-d8	99	90-108			1,4-Bromofluo	robenzene		95	71-113		

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

nel c

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312
 Date Received:
 10/24/08

 Work Order No:
 08-10-2156

 Preparation:
 EPA 5030B

 Method:
 EPA 8260B

 Units:
 mg/kg

 Page 2 of 2

Project: ExxonMobil 70235

Client Sample Number			La	b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Ti Analyz	me ed	QC Batch ID
Method Blank			099-12	-796-424	N/A	Solid	GC/MS XX	10/28/08	10/28/ 12:40	08 6	081028L01
Parameter	Result	RL	DE	Qual	Parameter			Result	RL	DF	Qual
1,2-Dibromoethane	ND	0.0050	1		Diisopropyl Eth	ner (DIPE)		ND	0.010	1	
1,2-Dichloroethane	ND	0.0050	1		Ethyl-t-Butyl Et	ther (ETBE)	1	ND	0.010	1	
Methyl-t-Butyl Ether (MTBE)	ND	0.0050	1		Tert-Amyl-Meth	hyl Ether (T.	AME)	ND	0.010	1	
Tert-Butyl Alcohol (TBA)	ND	0.050	1		Ethanol			ND	0.25	1	
Surrogates:	<u>REC (%)</u>	Control		Qual	Surrogates:			<u>REC (%)</u>	Control		<u>Qual</u>
		Limits							Limits		
Dibromofluoromethane	109	73-139			1,2-Dichloroeth	nane-d4		111	73-145		
Toluene-d8	101	90-108			1,4-Bromofluor	robenzene		91	71-113		
Method Blank	A 1993		099-12	-796-426	N/A	Solid	GC/MS EE	10/28/08	10/28/ 16:39	08 9	081028L01
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
1 2-Dibromoethane	ND	0 0050	- 1		Diisopropyl Eth	ner (DIPE)		ND	0.010	1	
1.2-Dichloroethane	ND	0.0050	4		Ethvl-t-Butvl Et	ther (ETBE))	ND	0.010	1	
Methyl-t-Butyl Ether (MTBE)	ND	0.0050	1		Tert-Amvl-Met	hvl Ether (T	AME)	ND	0.010	1	
Tert-Butyl Alcohol (TBA)	ND	0.050	1		Ethanol		···· _ ,	ND	0.25	1	
Surrogates:	REC (%)	Control		<u>Qual</u>	Surrogates:			<u>REC (%)</u>	Control		Qual
Dibromofluoromothana	109	72 120			1.2-Dichloroeth	aana-d4		107	73-146		
Toluopo d8	00	00 109			1.4-Bromofluor			03	71-112		
		30-100				TODON ZONO			11-110		
Method Blank		-1-4	099-12	-796-443	N/A	Solid	GC/MS U	11/01/08	11/01/ 12:53	08 3	081101L01
Parameter	Result	RL	DE	Qual	Parameter			Result	RL	DF	Qual
1.2-Dibromoethane	ND	0.0050	1		Diisopropyl Eth	ner (DIPE)		ND	0.010	1	
1.2-Dichloroethane	ND	0.0050	1		Ethyl-t-Butyl E	ther (ETBE))	ND	0.010	1	
Methyl-t-Butyl Ether (MTBE)	ND	0.0050	1		Tert-Amvl-Met	hyl Ether (T	AME)	ND	0.010	1	
Tert-Butyl Alcohol (TBA)	ND	0.050	1		Ethanol		,	ND	0.25	1	
Surrogates:	<u>REC (%)</u>	Control Limits	12	<u>Qual</u>	Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits		<u>Qual</u>
Dibromofluoromethane	130	73-139			1,2-Dichloroet	hane-d4		123	73-145		
Toluene-d8	103	90-108			1,4-Bromofluo	robenzene		88	7 1- 113		

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

Environmental Resolutions, Inc.

601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received: Work Order No: Preparation: Method: 10/24/08 08-10-2156 EPA 3550B EPA 8015B (M)

Project ExxonMobil 70235

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
S-5-CPT1	Solid	GC 43	10/30/08		10/31/08	081030S04
Parameter	MS %REC	MSD %REC	<u>%REC CL</u>	<u>RPD</u>	RPD CL	Qualifiers
TPH as Motor Oil	97	91	64-130	6	0-15	

RPD - Relative Percent Difference, CL - Control Limit

Mulhan

Date Received: Work Order No: Preparation: Method: 10/24/08 08-10-2156 EPA 3550B EPA 8015B (M)

Project ExxonMobil 70235

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
S-5-CPT1	Solid	GC 43	10/30/08		10/31/08	081030\$05
Parameter	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
TPH as Diesel	72	71	64-130	2	0-15	

RPD - Relative Percent Difference, CL - Control Limit

FAX: (714) 894-7501

Date Received: Work Order No: Preparation: Method: 10/24/08 08-10-2156 EPA 5030B EPA 8015B (M)

Project ExxonMobil 70235

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
08-10-2163-1	Solid	GC 5	10/24/08		10/25/08	081024501
Parameter	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
TPH as Gasoline	44	34	48-114	25	0-23	3,4

RPD - Relative Percent Difference, CL - Control Limit

Mulum

nel c

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received: Work Order No: Preparation: Method: 10/24/08 08-10-2156 EPA 5030B EPA 8021B

Project ExxonMobil 70235

Quality Control Sample ID	Matrix	Instrument	Date Prepared	°	Date Analyzed	MS/MSD Batch Number	
08-10-2231-1	Solid	GC 8	10/29/08		10/30/08	081029501	
Parameter	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers	
Benzene	117	119	58-118	2	0-24	3	
Toluene	111	111	61-109	0	0-20	3	
Ethylbenzene	117	118	59-113	1	0-20	3	
p/m-Xylene	123	124	55-115	1	0-20	3	
o-Xylene	116	116	56-110	0	0-20	3	
Methyl-t-Butyl Ether (MTBE)	98	116	65-113	16	0-9	4,3	

RPD - Relative Percent Difference , CL - Control Limit

Mulhan

Environmental Resolutions, Inc.	Date Received:	10/24/08
601 North McDowell Blvd.	Work Order No:	08-10-2156
Petaluma, CA 94954-2312	Preparation:	EPA 5030B
	Method:	EPA 8260B

Project ExxonMobil 70235

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
08-10-2348-1	Solid	GC/MS EE	10/28/08		10/28/08	081028501
Parameter	MS %REC	MSD %REC	<u>%REC CL</u>	<u>RPD</u>	RPD CL	Qualifiers
Benzene	94	92	79-115	2	0-13	
Carbon Tetrachloride	105	102	55-139	3	0-15	
Chlorobenzene	91	89	79-115	2	0-17	
1,2-Dibromoethane	81	79	70-130	2	0-30	
1,2-Dichlorobenzene	84	83	63-123	1	0-23	
1,1-Dichloroethene	88	87	69-123	2	0-16	
Ethylbenzene	101	99	70-130	2	0-30	
Toluene	96	94	79-115	2	0-15	
Trichloroethene	98	98	66-144	0	0-14	
Vinyl Chloride	78	82	60-126	4	0-14	
Methyl-t-Butyl Ether (MTBE)	98	84	68-128	15	0-14	4
Tert-Butyl Alcohol (TBA)	62	57	44-134	9	0-37	
Diisopropyl Ether (DIPE)	100	100	75-123	1	0-12	
Ethyl-t-Butyl Ether (ETBE)	86	86	75-117	0	0-12	
Tert-Amyl-Methyl Ether (TAME)	94	93	79-115	0	0-12	
Ethanol	58	57	42-138	1	0-28	

RPD - Relative Percent Difference, CL - Control Limit

Mulum

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

10/24/08 08-10-2156 EPA 5030B EPA 8260B

Project ExxonMobil 70235

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number	
S-5-CPT3	Solid GC/MS XX		10/28/08		10/28/08	081028501	
Parameter	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers	
Benzene	90	87	79-115	4	0-13		
Carbon Tetrachloride	88	82	55-139	7	0-15		
Chlorobenzene	89	85	79-115	5	0-17		
1,2-Dibromoethane	94	95	70-130	1	0-30		
1,2-Dichlorobenzene	87	85	63-123	3	0-23		
1,1-Dichloroethene	70	60	69-123	16	0-16	3	
Ethylbenzene	90	85	70-130	6	0-30		
Toluene	89	86	79-115	4	0-15		
Trichloroethene	88	85	66-144	4	0-14		
Vinyl Chloride	68	68	60-126	1	0-14		
Methyl-t-Butyl Ether (MTBE)	105	104	68-128	1	0-14		
Tert-Butyl Alcohol (TBA)	127	132	44-134	4	0-37		
Diisopropyl Ether (DIPE)	95	92	75-123	3	0-12		
Ethyl-t-Butyl Ether (ETBE)	102	99	75-117	3	0-12		
Tert-Amyl-Methyl Ether (TAME)	100	101	79-115	1	0-12		
Ethanol	63	72	42-138	13	0-28		

RPD - Relative Percent Difference, CL - Control Limit

nel c

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received: Work Order No: Preparation: Method: 10/24/08 08-10-2156 EPA 5030B EPA 8260B

Project ExxonMobil 70235

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
08-10-2683-2	Solid	GC/MS U	11/01/08		11/01/08	081101S01
Parameter	MS %REC	MSD %REC	<u>%REC CL</u>	RPD	RPD CL	Qualifiers
Benzene	97	92	79 -1 15	6	0-13	
Carbon Tetrachloride	120	116	55-139	3	0-15	
Chlorobenzene	94	90	79-115	4	0-17	
1,2-Dibromoethane	85	81	70-130	5	0-30	
1,2-Dichlorobenzene	92	90	63-123	2	0-23	
1,1-Dichloroethene	96	98	69-123	2	0-16	
Ethylbenzene	96	93	70-130	3	0-30	
Toluene	97	93	79-115	4	0-15	
Trichloroethene	96	93	66-144	3	0-14	
Vinyl Chloride	95	95	60-126	0	0-14	
Methyl-t-Butyl Ether (MTBE)	89	88	68-128	1	0-14	
Tert-Butyl Alcohol (TBA)	54	55	44-134	1	0-37	
Diisopropyl Ether (DIPE)	93	90	75-123	3	0-12	
Ethyl-t-Butyl Ether (ETBE)	92	93	75-117	1	0-12	
Tert-Amyl-Methyl Ether (TAME)	98	91	79-115	7	0-12	
Ethanol	58	53	42-138	9	0-28	

RPD - Relative Percent Difference, CL - Control Limit

Mulhan

Date Received:	
Work Order No:	
Preparation:	
Method:	

N/A 08-10-2156 EPA 3550B EPA 8015B (M)

Project: ExxonMobil 70235

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da I Anal	te vzed	LCS/LCSD Bato Number	:h
099-12-254-610	Solid	GC 43	10/30/08	10/31	1/08	081030B04	
Parameter	LCS	KEC LCSD	%REC	<u>%REC CL</u>	<u>RPD</u>	RPD CL	Qualifiers
TPH as Motor Oil	115	7 11	0	75-123	6	0-12	

RPD - Relative Percent Difference , CL - Control Limit

Date Received: Work Order No: Preparation: Method:

N/A 08-10-2156 EPA 3550B EPA 8015B (M)

Project: ExxonMobil 70235

Quality Control Sample ID	Matrix	Instrument	Date Prepare	Da d Anal	ate yzed	LCS/LCSD Bate Number	sh
099-12-275-2,271	Solid	GC 43	10/30/0	8 10/3	0/08	081030B05	
Parameter	LCS	<u> «REC LCS</u>	D %REC	<u>%REC CL</u>	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
TPH as Diesel	93	8	34	75-123	9	0-12	

RPD - Relative Percent Difference, CL - Control Limit

494 • FAX: (714) 894-7501

Date Received: Work Order No: Preparation: Method: N/A 08-10-2156 EPA 5030B EPA 8015B (M)

Project: ExxonMobil 70235

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyze	d	LCS/LCSD Bate Number	h
099-12-279-2,367	Solid	GC 5	10/24/08	10/24/08	L.,	081024B01	
Parameter	LCSS	<u>%REC LCSD</u>	%REC %	REC CL	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
TPH as Gasoline	78	78	3	70-124	0	0-18	

RPD - Relative Percent Difference, CL - Control Limit

him

N/A

08-10-2156

EPA 5030B

EPA 8021B

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received: Work Order No: Preparation: Method: nel c

Project: ExxonMobil 70235

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Ba Number	itch
099-12-657-172	Solid	GC 8	10/29/08	10/30/08	081029B01	
Parameter	LCS %	REC LCSD	<u>%REC %</u>	REC CL R	PD RPD CL	Qualifiers
Benzene	113	113	1	70-118 (0-7	
Toluene	105	106	i I	71-107	1 0-8	
Ethylbenzene	109	114	li i	66-120 4	4 0-7	
p/m-Xylene	114	120)	66-120 5	5 0-8	
o-Xylene	107	113	\$	66-114 5	5 0-9	
Methyl-t-Butyl Ether (MTBE)	111	106	i	70-112 5	5 0-12	

RPD - Relative Percent Difference, CL - Control Limit

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received:N/AWork Order No:08-10-2156Preparation:EPA 5030BMethod:EPA 8260B

Project: ExxonMobil 70235

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Anal	ite yzed	LCS/LCSD Numbe	Batch r
099-12-796-426 Parameter	Solid	GC/MS EE	10/28/08	10/28	/08	081028L	01
	LCS %REC	LCSD %REC	%REC CL	ME CL	RPD	RPD CL	Qualifiers
Benzene	89	89	84-114	79-119	0	0-7	
Carbon Tetrachloride	108	104	66-132	55-143	4	0-12	
Chlorobenzene	87	86	87-111	83-115	1	0-7	
1.2-Dibromoethane	93	94	80-120	73-127	1	0-20	
1.2-Dichlorobenzene	85	84	79-115	73-121	0	0-8	
1.1-Dichloroethene	87	81	73-121	65-129	6	0-12	
Ethylbenzene	95	95	80-120	73-127	0	0-20	
Toluene	90	90	78-114	72-120	1	0-7	
Trichloroethene	90	90	84-114	79-119	1	0-8	
Vinyl Chloride	84	85	63-129	52-140	1	0-15	
Methyl-t-Butyl Ether (MTBE)	95	93	77-125	69-133	2	0-11	
Tert-Butvi Alcohol (TBA)	98	96	47-137	32-152	2	0-27	
Diisopropyl Ether (DIPE)	95	86	76-130	67-139	10	0-8	x
Ethyl-t-Butyl Ether (ETBE)	90	89	76-124	68-132	1	0-12	
Tert-Amyl-Methyl Ether (TAME)	98	99	82-118	76-124	1	0-11	
Ethanol	101	93	59-131	47-143	9	0-21	

Total number of LCS compounds : 16 Total number of ME compounds : 1 Total number of ME compounds allowed : 1

LCS ME CL validation result : Pass

X: LCS/LCS Duplicate RPD was out of control (above the upper control limit). The spike and spike duplicate was within control limits and, therefore, the sample data was reported without further clarification.

RPD - Relative Percent Difference . CL - Control Limit

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312 nel c

Date Received: Work Order No: Preparation: Method: N/A 08-10-2156 EPA 5030B EPA 8260B

Project: ExxonMobil 70235

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Anal	nte yzed	LCS/LCSD I Number	Batch
099-12-796-424	Solid	GC/MS XX	10/28/08	10/28	/08	081028L	01
Parameter	LCS %REC	LCSD %REC	%REC CL	ME_CL	RPD	RPD CL	Qualifiers
Benzene	104	104	84-114	79-119	0	0-7	
Carbon Tetrachloride	110	108	66-132	55-143	2	0-12	
Chlorobenzene	102	102	87-111	83-115	0	0-7	
1,2-Dibromoethane	107	106	80-120	73-127	1	0-20	
1,2-Dichlorobenzene	103	102	79-115	73-121	1	0-8	
1,1-Dichloroethene	84	80	73-121	65-129	5	0-12	
Ethylbenzene	104	104	80-120	73-127	1	0-20	
Toluene	104	103	78-114	72-120	1	0-7	
Trichloroethene	103	103	84-114	79-119	0	0-8	
Vinyl Chloride	86	84	63-129	52-140	1	0-15	
Methyl-t-Butyl Ether (MTBE)	121	119	77-125	69-133	1	0-11	
Tert-Butyl Alcohol (TBA)	131	135	47-137	32-152	3	0-27	
Diisopropyl Ether (DIPE)	108	107	76-130	67-139	1	0-8	
Ethyl-t-Butyl Ether (ETBE)	118	115	76-124	68-132	2	0-12	
Tert-Amyl-Methyl Ether (TAME)	117	114	82-118	76-124	3	0-11	
Ethanol	75	65	59-131	47-143	14	0-21	

Total number of LCS compounds : 16 Total number of ME compounds : 0 Total number of ME compounds allowed : 1 LCS ME CL validation result : Pass

RPD - Relative Percent Difference, CL - Control Limit

Environmental Resolutions, Inc.

601 North McDowell Blvd. Petaluma, CA 94954-2312 nel c

Date Received: Work Order No: Preparation: Method: N/A 08-10-2156 EPA 5030B EPA 8260B

Project: ExxonMobil 70235

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Anal	te /zed	LCS/LCSD Batch Number		
099-12-79 6-44 3	Solid	GC/MS U	11/01/08	11/01	08	081101L	01	
Parameter	LCS %REC	LCSD %REC	%REC CL	ME_CL	RPD	RPD CL	Qualifiers	
Benzene	96	100	84-114	79-119	4 0-7			
Carbon Tetrachloride	118	123	66-132	66-132 55-143		0-12		
Chlorobenzene	91	96	87-111	83-115 5		0-7		
1,2-Dibromoethane	97	101	80-120	73-127	4	0-20		
1,2-Dichlorobenzene	93	92	79- 115	73-121	1	0-8		
1,1-Dichloroethene	98	109	73-121	65-129	10	0-12		
Ethylbenzene	93	97	80-120	73-127	4	0-20		
Toluene	96	103	78-114	72-120	7	0-7		
Trichloroethene	93	98	84-114	79-119	5	0-8		
Vinyl Chloride	96	107	63-129	52-140	11	0-15		
Methyl-t-Butyl Ether (MTBE)	96	102	77-125	69-133	6	0-11		
Tert-Butyl Alcohol (TBA)	88	97	47-137	32-152	10	0-27		
Diisopropyl Ether (DIPE)	94	96	76-130	67-139	2	0-8		
Ethyl-t-Butyl Ether (ETBE)	95	98	76-124	68-132	3	0-12		
Tert-Amyl-Methyl Ether (TAME)	99	102	82-118	76-124	2	0-11		
Ethanol	88	95	59-131	47-143	8	0-21		

Total number of LCS compounds : 16 Total number of ME compounds : 0 Total number of ME compounds allowed : 1 LCS ME CL validation result : Pass

RPD - Relative Percent Difference, CL - Control Limit

Mulhan

hhm

Work Order Number: 08-10-2156

Qualifier	Definition
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
А	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
E	Concentration exceeds the calibration range.
I	Compound did not meet method-described identification guidelines. Identification was based on additional GC/MS characteristics.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
х	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.

			CHA	NIN OF CI		ECORD							(2	219	~	/			Pa
	nsultant Name:	Environmen	tal Resolut	ions, Inc.		E	xxon	Mobil	Engl	neer .	Jenn	ifer (C. Se	edlad	chek				1
Environmental	Address:	601 North M	CDowell Bo	oulevard		-	Telephone Number (510) 547-8196												
Laboratories, inc.	City/State/Zip:	Petaluma, C	California 9	4954			Account #:						- 107 -						
7440 Lincoln Way F	roject Manager	Paula Sime							P	0 #: 4	4510	174	131						
Jarden Grove, CA 92841 Tele	phone Number:	(707) 766-2	000			-		Fa	cility	ID#	7023	5							
/EL: (714) 895-5494 E	RI Job Number:	222903X						G	loba		T060	010	1354	F					
AX: (714) 894-7501 Sampl	er Name: (Print)	REBER	A MA	ESTRU	1P	-		Site	Add	1989	2225	Tele	egra	ph A	venu	e			
ExonMobil Sam	pler Signature:	hele	her a	Wir	1			City,	State	Zip	Dakl	and,	Cali	forni	a				
hipping Method: 🗹 Lab Courier 🗌 Hand Delive	er 🗌 Commer	cial Express	C Othe	r:						-	_						-		
AT PROVIDE;	Special Instru	ctions:						Matrix				75 1		Ала	alyze I	For:			01
24 hour 72 hour EDF Report	7 CA Oxys =	MTBE, TE	BA, TAME	, ETBE, D Id analyse	DIPE, 1,2-D PS	CA, EDB.				8	g	8015	8	808	30B			B	601
48 hour 96 hour	Set TBA dete	ection limit	<12 ug/L.				e e			3016	ğ	or oil	021	S 82	826			826(ad
a s day	HOVs - 8010	List by 82	60B		r	1	5	_	5	무	P	mote	x	N OX	anol			ő	alLe
Sample ID / Description	DATE	TIME	COMP	GRAB	PRESERV	NUMBER	Wat	Sol	Vap	di	Ē	HEL	E	7 CF	튪			¥	Tot
5-5-CPT3	10/22/08	10:45			ICE	SLEEVE		X		X	X	X	X	X	X				
ST 5 COTI	1	11150			1	1		X		X	X	X	X	x	X				
<u> </u>		11.50				$\left \right $		V		~	5		C	<u>v</u>					
5-5-CPT2	V	15:00			V	\vee		X		λ	×	X	X	X	X			_	
											1								
								\vdash	-	1			-					_	-
				İ															
	1																		
								\vdash	-		-+		-						-
								\square		-	-	-							-
							_	\vdash	_	-4		-		_					
- 1					0.														
relinguished by Although Data Data	12-02	Time 101	WD	Received h	AS-	X	-0	1	Time	184	51.	ahr							
Whitelan Allow Carolo		1.1.2	N I		Y	0	C	~		13 11	ſ	Labol	Tom		ina Lie	ius.	anaint		
A					Der	n la am			ioj	24/0	8		Semi		ne up	ore in	eceipi Mact?		
telinquished by Detel ().	ROS	Time	30	Received b	eann	ye a			Time	10:3	30		VOA	s Fre	e of H	eadsp	bace?		
- TOD VO	- Jacob															-			

Calscience .	WORK ORDER #:	08-7	0=2	Page 24 of 24
Environmental S	AMPLE RECEIP	T FORM	Cooler	of /
Laboratories, inc.			10/2/1	100
CLIENT: <u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>		DATE:	00/24/	/08
TEMPERATURE: (Criteria: 0.0 °C	C = 6.0 °C, not frozen)			
Temperature $\underline{\diamond} \cdot \underline{\flat} \circ C + 1$	$1.8 ^{\circ}C(CF) = -\frac{4}{100} \cdot \frac{4}{100} \cdot \frac{1}{100} $	C 🗆 Blank	Sample	
Sample(s) outside temperature c	riteria (PM/APM contacted by:).		
Sample(s) outside temperature of	criteria but received on ice/chilled	on same day of sa	mpling.	
□ Received at ambient temperat	ture, placed on ice for transp	oort by Courier.		
Ambient Temperature: □Air	□Filter	<u>_</u>		Initial:
CUSTODY SEALS INTACT:	ann cùi			
Cooler	□ No (Not Intact)	Not Present		Initial: <u>b</u> .C
□ Sample □	No (Not Intact)	D Not Present		Initial: <u>RN</u>
SAMPLE CONDITION:			-	
		Yes	No	N/A
Chain-Of-Custody document(s) rec	eived with samples			
Sampler's name indicated on COC				
Sample container label(s) consister	nt with COC			
Sample container(s) intact and goo	d condition			
Correct containers and volume for	analyses requested	V		
Proper preservation noted on samp	ble label(s)	🗆		Ľ,
Volatile analysis container(s) free o	f headspace	🔲		
Tedlar bag(s) free of condensation.		🛛		1
CONTAINER TYPE:				
Solid: 🗆 4ozCGJ 🗆 8ozCGJ 🗆	16ozCGJ 🗹 Sleeve 🗆 EnCc	ores® □TerraCo	ores® 🛛	
Water: 🛛 VOA 🗍 VOAh 🗍 VO)Ana₂ □125AGB □125AG	Bh □125AGBp	o₄ □1AGE	3 □1AGBna₂
□1AGBs □500AGB □500AGE	Bs □250CGB □250CGBs	□1PB □500P	B 🗆 500 PI	Bna 🗆 250PB
□250PBn □125PB □125PBzr	nna 🛛 100PBsterile 🗍 100F	Bna₂ □]
Air: □Tedlar® □Summa® □				N. T
Container: C:Clear A:Amber P:Poly/Plas	tic G:Glass J:Jar B:Bottle	CI	h eçked/L abe Reviev	Hed by: \underline{KN} wed by: \underline{MSC}
Preservative: h:HCL n:HNO ₃ na ₂ :Na ₂ S ₂ O ₃	na:NaOH po4:H3PO4 s:H2SO4	znna:ZnAc ₂ +NaOH	Scan	ned by: <u>RN</u>

0.00

10.00

0.0020111

1

SOP T100_090 (10/23/08)
Page 1 of 25

Supplemental Report 1

November 18, 2008

The original report has been revised/corrected.

Paula Sime Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Subject:Calscience Work Order No.:08-10-2729Client Reference:ExxonMobil 70235

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 10/31/2008 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

Note that the Chain-of-Custody Record and Sample Receipt Form are integral parts of this report.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Cecile & en Sain

Calscience Environmental Laboratories, Inc. Cecile deGuia Project Manager

CA-ELAP ID: 1230 · NELAP ID: 03220CA 7440 Lincoln Way, Garden Grove, C

 NELAP ID: 03220CA
 CSDLAC ID: 10109
 SCAQMD ID: 93LA0830

 7440 Lincoln Way, Garden Grove, CA 92841-1427
 TEL:(714) 895-5494
 FAX: (714) 894-7501

CASE NARRATIVE

Calscience Work Order No.: 08-10-2729 Client Reference: ExxonMobil 70235

On November 17, 2008, Calscience Environmental Laboratories, Inc. received from Rebekah Westrup, a request to include the halogenated volatile organic compounds with the EPA 8260B target list. The halogenated VOCs were inadvertently omitted in the final report.

The report and Geotracker edd have been amended to report full scan for EPA 8260B.

Environmental Resolutions, Inc.	Date Received:	10/31/08
601 North McDowell Blvd.	Work Order No:	08-10-2729
Petaluma, CA 94954-2312	Preparation:	EPA 3050B
	Method:	EPA 6010B

Project: ExxonMobil 70235

Page 1 of 1

Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
COMP(SP-1)		08-10-2729-5-A	10/28/08 13:30	Solid	ICP 5300	11/03/08	11/04/08 20:38	081103L05
Parameter	Result	RL	DE	Qual	<u>Units</u>			
Lead	10.6	0.500	1		mg/kg			
Method Blank		097-01-002-11,687	N/A	Solid	ICP 5300	11/03/08	11/03/08 19:56	081103L05
Parameter	Result	RL	DF	Qual	<u>Units</u>			
Lead	ND	0.500	1		mg/kg			

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

Unin

Environmental Resolutions, Inc.	Date Received:	10/31/08
601 North McDowell Blvd.	Work Order No:	08-10-2729
Petaluma, CA 94954-2312	Preparation:	EPA 3550B
	Method:	EPA 8015B (M)

Project: ExxonMobil 70235

Page 1 of 1

Client Sample Numb	er		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
COMP(SP-1)			08-10-2729-5-A	10/28/08 13:30	Solid	GC 50	11/03/08	11/04/08 02:11	081103B03
Comment(s):	-The sample extract was	subjected to	o Silica Gel treatment	prior to analys	is.				
Parameter		<u>Result</u>	RL	DF	<u>Qual</u>	<u>Units</u>			
TPH as Motor Oil		ND	25	1		mg/kg			
Surrogates:		REC (%)	Control Limits		Qual				
Decachlorobiphenyl		86	61-145						
Method Blank			099-12-254-612	N/A	Solid	GC 50	11/03/08	11/03/08 23:43	081103B03
Parameter		Result	<u>RL</u>	DF	Qual	<u>Units</u>			
TPH as Motor Oil		ND	25	1		mg/kg			
Surrogates:		<u>REC (%)</u>	Control Limits		Qual				
Decachlorobiphenyl		85	61-145						

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

Mhm

No. of the second se		
Environmental Resolutions, Inc.	Date Received:	10/31/08
601 North McDowell Blvd. Petaluma, CA 94954-2312	Work Order No:	08-10-2729
	Preparation:	EPA 3550B
	Method:	EPA 8015B (M)

Project: ExxonMobil 70235

Page 1 of 1

Client Sample Numb	er		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
COMP(SP-1)			08-10-2729-5-A	10/28/08 13:30	Solid	GC 50	11/03/08	11/04/08 02:11	081103B02
Comment(s):	-The sample extract wa	s subjected to	o Silica Gel treatment	prior to analys	is.				
Parameter		Result	RL	DF	Qual	<u>Units</u>			
TPH as Diesel		8.8	5.0	1		mg/kg			
<u>Surrogates:</u>		<u>REC (%)</u>	Control Limits		Qual				
Decachlorobiphenyl		86	61-145						
Method Blank			099-12-275-2,279	N/A	Solid	GC 50	11/03/08	11/03/08 23:43	081103B02
Parameter		Result	<u>RL</u>	DF	Qual	Units			
TPH as Diesel		ND	5.0	1		mg/kg			
Surrogates:		REC (%)	Control Limits		Qual				
Decachlorobiphenyl		85	61-145						

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

him

Environmental Resolutions, Inc.	Date Received:	10/31/08
601 North McDowell Blvd.	Work Order No:	08-10-2729
Petaluma, CA 94954-2312	Preparation:	EPA 5030B
	Method:	EPA 8015B (M)

Project: ExxonMobil 70235

Page 1 of 1

Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
COMP(SP-1)		08-10-2729-5-A	10/28/08 13:30	Solid	GÇ 1	11/03/08	11/04/08 20:08	081103B03	
Parameter	Result	RL	DE	Qual	<u>Units</u>				
TPH as Gasoline	6.7	0.50	1		mg/kg				
Surrogates:	REC (%)	Control Limits		<u>Qual</u>					
1,4-Bromofluorobenzene - FID	88	42-126							
Method Blank		099-12-279-2,401	N/A	Solid	GC 1	11/03/08	11/04/08 05:17	081103B03	
Parameter	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>				
TPH as Gasoline	ND	0.50	1		mg/kg				
Surrogates:	REC (%)	Control Limits		<u>Qual</u>					
1,4-Bromofluorobenzene - FID	73	42-126							

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

MMM

Environmental Resolution	ons, inc.				Date Rec	eived:					10/31/08	
601 North McDowell Blv	d.			Work Order No:					08-10-2729			
Petaluma, CA 94954-2312					Preparatio	יחכ			EDA 5030B			
,					Method						- 0000D	
										EP	A 8021B	
					Units:						mg/kg	
Project: ExxonMobil 70	235									Pa	ge 1 of 1	
Client Sample Number			Le	ab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/I Analy	lime zed	QC Batch ID	
COMP(SP-1)			08-10-	2729-5-A	10/28/08 13:30	Solid	GC 21	11/05/08	11/05 19:0	5/08 53	081105B01	
Parameter	Result	<u>RL</u>	DF	Qual	Parameter			Result	RL	DF	Qual	
Benzene	ND	0.0050	1		Ethylbenzene			ND	0.0050	1		
Toluene	ND	0.0050	1		Xylenes (total)			ND	0.010	1		
Surrogates:	<u>REC (%)</u>	Control Limits		Qual								
1,4-Bromofluorobenzene	106	51-129										
Method Blank			0 99 -12	-657-176	N/A	Solid	GC 21	11/05/08	11/05 13:5	5/08 55	081105B01	
Parameter	Result	RL	DE	Qual	Parameter			Result	RL	DF	Qual	
Benzene	ND	0.0050	1		Ethylbenzene			ND	0.0050	1		
Toluene	ND	0.0050	1		Xylenes (total)			ND	0.010	1		
Surrogates:	<u>REC (%)</u>	<u>Control</u>		<u>Qual</u>						-		
1,4-Bromofluorobenzene	100	51-129										

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

Mmm_

Environmental Resolutions, Inc.	Date Received:	10/31/08
601 North McDowell Blvd.	Work Order No:	08-10-2729
Petaluma, CA 94954-2312	Preparation:	EPA 5030B
	Method:	EPA 8260B
	Units:	mg/kg
Project: ExxonMobil 70235		Page 1 of 2

Lab Sample Date/Time Date Date/Time Matrix QC Batch ID **Client Sample Number** Instrument Prepared Collected Analyzed Number COMP(SP-1) 08-10-2729-5-A 11/06/08 10/28/08 Solid GC/MS Q 11/06/08 081106L01 13:30 16:50 **Parameter** Result RL DF Qual Result Parameter <u>RL</u> <u>DF</u> Qual Acetone ND 0.12 1 2,2-Dichloropropane ND 0.0050 1 0.0050 Bromobenzene ND 1 1,1-Dichloropropene ND 0.0050 1 Bromochloromethane ND 0.0050 c-1,3-Dichloropropene ND 0.0050 1 1 Bromodichloromethane ND 0.0050 1 t-1,3-Dichloropropene ND 0.0050 1 Bromoform ND 0.0050 2-Hexanone ND 1 0.050 1 Bromomethane ND 0.025 Isopropylbenzene ND 1 0.0050 1 2-Butanone ND 0.050 p-Isopropyltoluene ND 1 0.0050 1 n-Butylbenzene ND 0.0050 Methylene Chloride 1 ND 0.050 1 sec-Butylbenzene ND 0.0050 4-Methyl-2-Pentanone 1 ND 0.050 1 tert-Butylbenzene ND 0.0050 Naphthalene 1 ND 0.050 1 Carbon Disulfide ND 0.050 1 n-Propylbenzene ND 0.0050 1 Carbon Tetrachloride ND 0.0050 Styrene ND 1 0.0050 1 Chlorobenzene ND 0.0050 1 1,1,1,2-Tetrachloroethane ND 0.0050 1 Chloroethane 1,1,2,2-Tetrachloroethane ND 0.0050 ND 1 0.0050 1 Chloroform ND 0.0050 1 Tetrachloroethene ND 0.0050 1 Chloromethane ND 0.025 1.2.3-Trichlorobenzene ND 1 0.010 1 2-Chlorotoluene ND 0.0050 1 1,2,4-Trichlorobenzene ND 0.0050 1 ND 4-Chlorotoluene 0.0050 1.1.1-Trichloroethane 1 ND 0.0050 1 Dibromochloromethane ND 0.0050 1 1,1,2-Trichloroethane ND 0.0050 1 1,2-Dibromo-3-Chloropropane ND 1,1,2-Trichloro-1,2,2-Trifluoroethane 0.010 1 ND 0.050 1 1,2-Dibromoethane ND 0.0050 1 Trichloroethene ND 0.0050 1 Dibromomethane ND 0.0050 1 1,2,3-Trichloropropane ND 0.0050 1 1,2-Dichlorobenzene ND 0.0050 1 1,2,4-Trimethylbenzene ND 0.0050 1 ND 0.0050 1.3-Dichlorobenzene 1 Trichlorofluoromethane ND 0.050 1 1.4-Dichlorobenzene ND 0.0050 1 1.3.5-Trimethylbenzene ND 0.0050 1 ND Dichlorodifluoromethane 0.0050 1 Vinyl Acetate ND 0.050 1 1.1-Dichloroethane ND 0.0050 Vinvi Chloride 1 ND 0.0050 1 1,2-Dichloroethane ND 0.0050 1 Methyl-t-Butyl Ether (MTBE) ND 0.0050 1 1.1-Dichloroethene ND 0.0050 1 Tert-Butyl Alcohol (TBA) ND 0.050 1 c-1,2-Dichloroethene ND 0.0050 Diisopropyl Ether (DIPE) 1 ND 0.010 1 Ethyl-t-Butyl Ether (ETBE) t-1.2-Dichloroethene ND 0.0050 1 ND 0.010 1 1,2-Dichloropropane ND Tert-Amyl-Methyl Ether (TAME) 0.0050 1 ND 0.010 1 1,3-Dichloropropane ND 0.0050 1 Ethanol ND 0.25 1 Surrogates: **REC (%)** Control Qual Surrogates: REC (%) <u>Control</u> <u>Qual</u> <u>Limits</u> <u>Limits</u> Dibromofluoromethane 115 73-139 1,2-Dichloroethane-d4 127 73-145 Toluene-d8 101 90-108 1,4-Bromofluorobenzene 106 71-113

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

hhu

Environmental Resolutions, Inc.	Date Received:	10/31/08
601 North McDowell Blvd.	Work Order No:	08-10-2729
Petaluma, CA 94954-2312	Preparation:	EPA 5030B
	Method: Units:	EPA 8260B mg/kg
Project: ExxonMobil 70235		Page 2 of 2

Client Sample Number			La	ib Sample Number	Date/Time Collected	Matrix I	nstrument	Date Prepared	Date/ Analy	lime zed	QC Batch ID
Method Blank			099-12	-796-473	N/A	Solid	GC/MS Q	11/06/08	11/06/08 13:35		081106L01
Parameter	Result	RL	DE	Qual	Parameter			Result	RL	DF	Qual
Acetone	ND	0.12	1		2,2-Dichloroph	opane		ND	0.0050		1
Bromobenzene	ND	0.0050	1		1,1-Dichloroph	opene		ND	0.0050	1	
Bromochloromethane	ND	0.0050	1		c-1,3-Dichloro	propene		ND	0.0050		
Bromodichloromethane	ND	0.0050	1		t-1,3-Dichlorop	propene		ND	0.0050	1	
Bromoform	ND	0.0050	1		2-Hexanone			ND	0.050	1	
Bromomethane	ND	0.025	1		Isopropylbenze	ene		ND	0.0050	1	
2-Butanone	ND	0.050	1		p-Isopropyltolu	Jene		ND	0.0050	- 3	
n-Butylbenzene	ND	0.0050	1		Methylene Chl	loride		ND	0.050	1	
sec-Butylbenzene	ND	0.0050	1		4-Methyl-2-Pe	ntanone		ND	0.050		
tert-Butylbenzene	ND	0.0050	1		Naphthalene			ND	0.050		
Carbon Disulfide	ND	0.050	1		n-Propylbenze	ene		ND	0.0050	- 4	
Carbon Tetrachloride	ND	0.0050	1		Styrene			ND	0.0050		
Chlorobenzene	ND	0.0050	1		1,1,1,2-Tetrac	hioroethane		ND	0.0050	- 4	
Chloroethane	ND	0.0050	1		1,1,2,2-Tetrac	hloroethane		ND	0.0050	1	
Chloroform	ND	0.0050	1		Tetrachioroeth	nene		ND	0.0050	- 4	
Chloromethane	ND	0.025	1		1,2,3-Trichlord	obenzene		ND	0.010	1	
2-Chlorotoluene	ND	0.0050	1		1,2,4-Trichlord	obenzene		ND	0.0050	1	
4-Chlorotoluene	ND	0.0050	1		1,1,1-Trichloro	pethane		ND	0.0050	1	
Dibromochloromethane	ND	0.0050	1		1,1,2-Trichloro	oethane		ND	0.0050	1	
1,2-Dibromo-3-Chloropropane	ND	0.010	1		1,1,2-Trichlord	-1,2,2-Trifluor	oethane	ND	0.050	1	
1,2-Dibromoethane	ND	0.0050	1		Trichloroethen	ie		ND	0.0050	1	
Dibromomethane	ND	0.0050	1		1,2,3-Trichloro	opropane		ND	0.0050	1	
1,2-Dichlorobenzene	ND	0.0050	1		1,2,4-Trimethy	Ibenzene		ND	0.0050	1	
1,3-Dichlorobenzene	ND	0.0050	1		Trichlorofluoro	methane		ND	0.050	1	
1,4-Dichlorobenzene	ND	0.0050	1		1,3,5-Trimethy	Ibenzene		ND	0.0050	1	
Dichlorodifluoromethane	ND	0.0050	1		Vinyl Acetate			ND	0.050	1	
1,1-Dichloroethane	ND	0.0050	1		Vinyl Chloride			ND	0.0050	1	
1,2-Dichloroethane	ND	0.0050	1		Methyl-t-Butyl	Ether (MTBE)		ND	0.0050	1	
1,1-Dichloroethene	ND	0.0050	1		Tert-Butyl Alco	ohol (TBA)		ND	0.050	1	
c-1,2-Dichloroethene	ND	0.0050	1		Diisopropyl Et	her (DIPE)		ND	0.010	1	
t-1,2-Dichloroethene	ND	0.0050	1		Ethyl-t-Butyl E	ther (ETBE)		ND	0.010	1	
1,2-Dichloropropane	ND	0.0050	1		Tert-Amyl-Met	thyl Ether (TAI	NE)	ND	0.010	1	
1,3-Dichloropropane	ND	0.0050	1		Ethanol	-	•	ND	0.25	1	
Surrogates:	REC (%)	Control		Qual	Surrogates:			REC (%)	Control		Qual
		Limits							Limits		
Dibromofluoromethane	116	73-139			1,2-Dichloroet	hane-d4		123	73-145		
Toluene-d8	100	90-108			1,4-Bromofluo	robenzene		91	71-113		

RL - Reporting Limit , DF - Dilution Factor ,

Qual - Qualifiers

Calscience nvironmental Quality Control - Spike/Spike Duplicate *aboratories, Inc.*

Environmental Resolutions, Inc.	Date Received:	10/31/08
601 North McDowell Blvd.	Work Order No:	08-10-2729
Petaluma, CA 94954-2312	Preparation:	EPA 3050B
	Method:	EPA 6010B

Project ExxonMobil 70235

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
08-11-0106-2	Solid	ICP 5300	11/03/08		11/03/08	081103505
Parameter	MS %REC	MSD %REC	<u>%REC CL</u>	<u>RPD</u>	RPD CL	Qualifiers
Lead	97	97	75-125	0	0-20	

RPD - Relative Percent Difference, CL - Control Limit

Ama_

Quality Control - PDS / PDSD

Date Received	10/31/08
Work Order No:	08-10-2729
Preparation:	EPA 3050B
Method:	EPA 6010B
	Date Received Work Order No: Preparation: Method:

Project: ExxonMobil 70235

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date	e Analyzed	PDS/PDSD Batch Number
08-11-0106-2	Solid	ICP 5300	11/03/08	1	1/03/08	081103505
Parameter	PDS %REC	PDSD %REC	<u>%REC CL</u>	<u>RPD</u>	RPD CL	Qualifiers
Lead	92	94	75-125	2	0-20	

RPD - Relative Percent Difference , CL - Control Limit

hhu

Environmental Resolutions, Inc.	Date Received:	10/31/08
601 North McDowell Blvd.	Work Order No:	08-10-2729
Petaluma, CA 94954-2312	Preparation:	EPA 3550B
	Method:	EPA 8015B (M)

Project ExxonMobil 70235

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
COMP(SP-1)	Solid	GC 50	11/03/08		11/04/08	081103503
Parameter	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
TPH as Motor Oil	105	96	64-130	9	0-15	

RPD - Relative Percent Difference, CL - Control Limit Mmm

Calscience Finvironmental Quality Control - Spike/Spike Duplicate aboratories, Inc.

Date Received:	10/31/08
Work Order No:	08-10-2729
Preparation:	EPA 3550B
Method:	EPA 8015B (M)
	Date Received: Work Order No: Preparation: Method:

Project ExxonMobil 70235

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
COMP(SP-1)	Solid	GC 50	11/03/08		11/04/08	081103502
Parameter	MS %REC	MSD %REC	<u>%REC CL</u>	<u>RPD</u>	RPD CL	Qualifiers
TPH as Diesel	82	72	64-130	12	0-15	

RPD - Relative Percent Difference, CL - Control Limit

hhm_

Environmental Resolutions, Inc.	Date Received:	10/31/08
601 North McDowell Blvd.	Work Order No:	08-10-2729
Petaluma, CA 94954-2312	Preparation:	EPA 5030B
	Method:	EPA 8015B (M)

Project ExxonMobil 70235

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
08-10-2831-6	Solid	GC 1	11/03/08		11/04/08	081103S02
Parameter	MS %REC	MSD %REC	<u>%REC CL</u>	RPD	RPD CL	Qualifiers
TPH as Gasoline	105	86	48-114	19	0-23	

RPD - Relative Percent Difference , CL - Control Limit MMM

Calscience nvironmental Quality Control - Spike/Spike Duplicate aboratories, Inc.

Environmental Resolutions, Inc.	Date Received:	10/31/08
601 North McDowell Blvd.	Work Order No:	08-10-2729
Petaluma, CA 94954-2312	Preparation:	EPA 5030B
	Method:	EPA 8021B

Project ExxonMobil 70235

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
08-10-2730-1	Solid	GC 21	11/05/08		11/05/08	081105501
Parameter	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
	407	400	50.440	2	0.04	
Benzene	107	102	58-118	5	0-24	
Toluene	100	94	61-109	6	0-20	
Ethylbenzene	99	94	59-113	5	0-20	
p/m-Xylene	102	97	55-115	5	0-20	
o-Xylene	96	93	56-110	3	0-20	
Methyl-t-Butyl Ether (MTBE)	577	580	65-113	1	0-9	3

RPD - Relative Percent Difference , CL - Control Limit

Mmm_

Calscience Invironmental Aboratories, Inc.

Date Received:	10/31/08
Work Order No:	08-10-2729
Preparation:	EPA 5030B
Method:	EPA 8260B
	Date Received: Work Order No: Preparation: Method:

Project ExxonMobil 70235

Quality Control Sample ID	Matrix	Instrument	Date Prepared	[An	Date alyzed	MS/MSD Batch Number
08-11-0217-7	Solid	GC/MS Q	11/06/08	11	/06/08	081106501
3						
Parameter	MS %REC	MSD %REC	<u>%REC CL</u>	RPD	RPD CL	Qualifiers
Benzene	89	87	79-115	2	0-13	
Carbon Tetrachloride	90	88	55-139	2	0-15	
Chlorobenzene	88	86	79-115	1	0-17	
1,2-Dibromoethane	97	95	70-130	2	0-30	
1,2-Dichlorobenzene	88	85	63-123	4	0-23	
1,1-Dichloroethene	85	86	69-123	2	0-16	
Ethylbenzene	91	89	70-130	3	0-30	
Toluene	91	89	79-115	1	0-15	
Trichloroethene	88	86	66-144	3	0-14	
Vinyl Chloride	102	102	60-126	1	0-14	
Methyl-t-Butyl Ether (MTBE)	97	100	68-128	3	0-14	
Tert-Butyl Alcohol (TBA)	86	90	44-134	4	0-37	
Diisopropyl Ether (DIPE)	86	86	75-123	0	0-12	
Ethyl-t-Butyl Ether (ETBE)	95	97	75-117	1	0-12	
Tert-Amyi-Methyl Ether (TAME)	106	106	79-115	0	0-12	
Ethanol	80	81	42-138	1	0-28	

RPD - Relative Percent Difference , CL - Control Limit

hun_

Environmental Resolutions, Inc.	Date Received:	N/A
601 North McDowell Blvd.	Work Order No:	08-10-2729
Petaluma, CA 94954-2312	Preparation:	EPA 3050B
	Method:	EPA 6010B

Project: ExxonMobil 70235

Quality Control Sample ID	Matrix	Instru	ument	Dat Prepa	ie ared	Da Anal	ite yzed	LCS/LCSD Bate Number	h
097-01-002-11,687	Solid	ICP	5300	11/03	/08	11/03	3/08	081103L05	
Parameter	LCS	<u>%REC</u>	LCSD %	REC	%RE	<u>C CL</u>	RPD	RPD CL	Qualifiers
Lead	108	3	106		80	-120	2	0-20	

RPD - Relative Percent Difference , CL - Control Limit

MMM

ľ

Date Received:	N/A
Work Order No:	08-10-2729
Preparation:	EPA 3550B
Method:	EPA 8015B (M)
	Date Received: Work Order No: Preparation: Method:

Project: ExxonMobil 70235

Quality Control Sample ID	Matrix	Instr	ument	Dat Prepa	e ired	Da Anal	te /zed	LCS/LCSD Bato Number	:h
099-12-254-612	Solid	GC	50	11/03	/08	11/04	/08	081103B03	
Parameter	LCS	%REC	LCSD 9	<u>%REC</u>	<u>%R</u> E	EC CL	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
TPH as Motor Oil	91		99		75	-123	8	0-12	

RPD - Relative Percent Difference , CL - Control Limit

MMM

Environmental Resolutions, Inc.	Date Received:	N/A
601 North McDowell Blvd.	Work Order No:	08-10-2729
Petaluma, CA 94954-2312	Preparation:	EPA 3550B
	Method:	EPA 8015B (M)

Project: ExxonMobil 70235

Quality Control Sample ID	Matrix	Instru	iment F	Date Prepared	Da Anal	ite yzed	LCS/LCSD Bate Number	h
099-12-275-2,279	Solid	GC	50 ⁻	1/03/08	11/03	3/08	081103B02	
Parameter	LCS	<u>%REC</u>	LCSD %RE	<u>C %R</u>	EC CL	RPD	RPD CL	Qualifiers
TPH as Diesel	76		82	75	5-123	9	0-12	

RPD - Relative Percent Difference, CL - Control Limit

Quality Control - LCS/LCS Duplicate

Environmental Resolutions, Inc. Date Received

601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received:	N/A
Work Order No:	08-10-2729
Preparation:	EPA 5030B
Method:	EPA 8015B (M)

Project: ExxonMobil 70235

Quality Control Sample ID	Matrix	Instrun	Da nent Prep	ate bared	Da Anal	ate lyzed	LCS/LCSD Bate Number	:h
099-12-279-2,401	Solid	GC 1	11/0	3/08	11/04	4/08	081103B03	
Parameter	LCS	<u>%REC</u>	LCSD_%REC	<u>%R</u>	EC CL	<u>RPD</u>	RPD CL	Qualifiers
TPH as Gasoline	82	1	85	70)-124	4	0-18	

RPD - Relative Percent Difference , CL - Control Limit

hhu

Quality Control - LCS/LCS Duplicate

Environmental Resolutions, Inc.Date Received:N/A601 North McDowell Blvd.Work Order No:08-10-2729Petaluma, CA 94954-2312Preparation:EPA 5030BMethod:EPA 8021B

Project: ExxonMobil 70235

Quality Control Sample ID	Matrix	Instrument	Date Prepare	Da d Ana	ate lyzed	LCS/LCSD Bate Number	ch
099-12-657-176	Solid	GC 21	11/05/08	3 11/0	5/08	081105B01	
Parameter	LCS %F	EC LCSD	%REC	%REC CL	RPD	RPD CL	<u>Qualifiers</u>
Benzene	101	101		70-118	0	0-7	
Toluene	93	93		71-107	0	0-8	
Ethylbenzene	93	92		66-120	0	0-7	
p/m-Xylene	96	96		66-120	0	0-8	
o-Xylene	92	92		66-114	0	0-9	
Methyl-t-Butyl Ether (MTBE)	545	547		70-112	0	0-12	х

RPD - Relative Percent Difference , CL - Control Limit

ha

Quality Control - LCS/LCS Duplicate

Environmental Resolutions, Inc.	Date Received:	N/A
601 North McDowell Blvd.	Work Order No:	08-10-2729
Petaluma, CA 94954-2312	Preparation:	EPA 5030B
	Method:	EPA 8260B

Project: ExxonMobil 70235

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Anal	ite yzed	LCS/LCSD Numbe	Batch r
099-12-796-473	Solid	GC/MS Q	11/06/08	11/06	/08	081106L	01
Parameter	LCS %REC	LCSD %REC	<u>%REC CL</u>	ME_CL	RPD	RPD CL	Qualifiers
Benzene	95	97	84-114	79-119	1	0-7	
Carbon Tetrachloride	96	95	66-132	55-143	1	0-12	
Chlorobenzene	96	98	87-111	83-115	2	0-7	
1,2-Dibromoethane	103	99	80-120	73-127	4	0-20	
1,2-Dichlorobenzene	100	104	79-115	73-121	4	0-8	
1,1-Dichloroethene	92	93	73-121	65-129	1	0-12	
Ethylbenzene	101	101	80-120	73-127	1	0-20	
Toluene	97	98	78-114	72-120	1	0-7	
Trichloroethene	97	95	84-114	79-119	2	0-8	
Vinyl Chloride	111	110	63-129	52-140	1	0-15	
Methyl-t-Butyl Ether (MTBE)	104	103	77-125	69-133	1	0-11	
Tert-Butyl Alcohol (TBA)	83	82	47-137	32-152	1	0-27	
Diisopropyl Ether (DIPE)	96	97	76-130	67-139	1	0-8	
Ethyl-t-Butyl Ether (ETBE)	105	103	76-124	68-132	1	0-12	
Tert-Amyi-Methyl Ether (TAME)	112	111	82-118	76-124 1		0-11	
Ethanol	75	72	59-131	47-143	4	0-21	

Total number of LCS compounds : 16 Total number of ME compounds : 0 Total number of ME compounds allowed :

LCS ME CL validation result : Pass

hu

RPD - Relative Percent Difference, CL - Control Limit

1

Automa_

Glossary of Terms and Qualifiers

Work Order Number: 08-10-2729

Qualifier	Definition
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
А	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
Е	Concentration exceeds the calibration range.
I	Compound did not meet method-described identification guidelines. Identification was based on additional GC/MS characteristics.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
Х	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.

	Calscience ·	Co	nsultant Name: Addrees:	Environmen 601 North M	tal Resoluti	ions, Inc. Sulevard	مەر		Exxon Tok	Mobil	Eng A Nu	inser mber	Jen (51)	nifer	C. S	edia	chek			-0	
	aboratories, Inc		City/State/Zip:	Petaluma, C	alifornia 9	4954		-			CCOL	unt#:	1011								
7	7440 Lincoin Ŵay	P	roject Manager	Paula Sime							f	PO #:	451	0174	131						
G	arden Grove, CA 92841	Telep	hone Number:	(707) 766-2	000					Fe	- aclilty	v ID #	702	35							
T	EL: (714) 895-5494	EF	l Job Number:	222903X						Ċ	Biobe	et ID#	T06	0010	1354	1				the second	-
F/	AX: (714) 894-7501	Sample	r Name: (Print)	Repok	ah All	Latrun				Site	e Add	inese	222	5 Tel	eara	oh A	venu	A			-
s	ExonMobil hipping Method: Z Lab Courier	Sam	pler Signature: r 🔲 Commer	Aubrelu dal Express	Other	dag 1				City,	Stat	a Zip	Oak	land	Cali	forn	ia				-
τ,	AT	ROVIDE:	Special Instru	ctions:					Γ	Matrix		-				An	alvze F	For			
	24 hour 72 hour 48 hour 96 hour 8 day	EDF Report	7 CA Oxys = Use silica ge Set TBA det HOVs - 8010	MTBE, TE I cleanup f action limit List by 82	A, TAME or all TPH <12 ug/L. 60B	, ETBE, I Id analyse	DIPE, 1,2-D 98.	CA, EDB.				d 8015B	g 8015B	notor oil 80151	X 8021B	Oxys 8260B	nol 8260B		Cs 8260B	Lead 6010	
	Sample ID / Description	1	DATE	TIME	COMP	GRAB	PRESERV	NUMBER	Water	Sol	Vapor	HUT	HPH	TPH	BTE	7 CA	Etha		P P	Tota	
	SP-1		10/28/08	13:30	×			4		X		X	X	X	X	X	X		X	X	
	slinguished by: Athin t	A Date		Time		Received M															
le	Minguished by	Date 10	30-08	Time (30.	Received by	i IonOl	malley	CE 16/	2 30/c 1	Time	'42	4	Labor	ratory Temp Samp VOAs	eratu le Co Free	nment re Upo Intaine of He	s: on Rece irs Intac adspac	eipt: xt? xe?		

1911

10.00

......

Calscience · WORK ORDE	:R #: 08- 00-25	229
Anticonmental SAMPLE REC	EIPT FORM Coole	er of
CLIENT: ERI	DATE: 17	0131108
TEMPERATURE: (Criteria: 0.0 °C – 6.0 °C, not frozen)		
Temperature $\underline{-} \cdot \underline{-} \circ C + 1.8 \circ C (CF) = \underline{-} 2$	<u>-</u> • <u>−</u> °C □Blank ⊡Sa	ample
Sample(s) outside temperature criteria (PM/APM contacted	by:).	
☐ Sample(s) outside temperature criteria but received on ice/	chilled on same day of sampling.	÷
\Box Received at ambient temperature, placed on ice for t	ransport by Courier.	
Ambient Temperature: Air Filter		Initial: NC
CUSTODY SEALS INTACT:	_	
Cooler No (Not Intact)	Not Present	Initial: <u>M</u>
Sample	Not Present	Initial: <u>A.S.C</u>
SAMPLE CONDITION:		176751
	Yes No	N/A
Chain-Of-Custody document(s) received with samples		
Sampler's name indicated on COC.		
Sample container label(s) consistent with COC		
Sample container(s) intact and good condition		
Correct containers and volume for analyses requested		
Proper preservation noted on sample label(s)		
Volatile analysis container(s) free of headspace		, Zî
Tedlar bag(s) free of condensation		Z
CONTAINER TYPE:		
Solid: □4ozCGJ □8ozCGJ □16ozCGJ ØSleeve □]EnCores®]
Water: □VOA □VOAh □VOAna₂ □125AGB □1	I25AGBh □125AGBpo₄ □1A	GB ⊡1AGBna₂
□1AGBs □500AGB □500AGBs □250CGB □250C	GBs □1PB □500PB □500	PBna □250PB
□250PBn □125PB □125PBznna □100PBsterile □]100PBna2 🛛	□
Air: ☐Tedlar® ☐Summa® ☐ Container: C:Clear A:Amber P:Poly/Plastic G:Glass J:Jar B:Bottle Preservative: h:HCL n:HNO3 na2:Na2S2O3 na:NaOH po4:H3PO4 s:H3	Checked/La Revi ₂SO₄ znna:ZnAc₂+NaOH Sca	beled by: <u>U.S.C</u> iewed by: <u>biL</u> anned by: <u>biS.C</u>

SOP T100_090 (10/23/08)

November 07, 2008

Paula Sime Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

DI	EC]2	Π	VI	
	NOV	1	0	2008	
B	Y:				

Subject: Calscience Work Order No.: 08-10-2257 Client Reference: ExxonMobil 70235

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 10/25/2008 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

Note that the Chain-of-Custody Record and Sample Receipt Form are integral parts of this report.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Cecile & en Sain

Calscience Environmental Laboratories, Inc. Cecile deGuia Project Manager

 230
 NELAP ID: 03220CA
 CSDLAC ID: 10109
 SCAQMD ID: 93LA0830

 7440 Lincoln Way, Garden Grove, CA 92841-1427
 TEL:(714) 895-5494
 FAX: (714) 894-7501

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Work Order No: Preparation: Method:

Date Received:

08-10-2257 EPA 3510C EPA 8015B (M)

10/25/08

Project: ExxonMobil 70235

Project: Exxo	nMobil 70235							Pa	age 1 of 1
Client Sample Numb	er		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
W-15-CPT1			08-10-2257-1-G	10/24/08 09:45	Aqueous	GC 43	10/29/08	10/31/08 19:43	081029B18
Comment(s):	-The sample extract was	s subjected to	Silica Gel treatment	prior to analy	sis.				
Parameter		Result	RL	DF	Qual	Units			
TPH as Motor Oil		720	250	1		ug/L			
Surrogates:		<u>REC (%)</u>	Control Limits		<u>Qual</u>				
Decachlorobiphenyl		132	68-140						
W-38-CPT1			08-10-2257-2-G	10/24/08 12:00	Aqueous	GC 43	10/29/08	10/31/08 20:02	081029B18
Comment(s):	-The sample extract wa	s subjected to	o Silica Gel treatment	t prior to analy	sis.				
<u>Parameter</u>		Result	<u>RL</u>	DF	<u>Qual</u>	Units			
TPH as Motor Oil		340	250	1	, e	ug/L			
Surrogates:		<u>REC (%)</u>	Control Limits		Qual				
Decachlorobiphenyl		94	68-140						
Method Blank			099-12-234-333	N/A	Aqueous	GC 43	10/29/08	10/31/08 15:23	081029B18
Parameter		Result	RL	DF	Qual	Units			
				_					
1 PH as Motor Oil		ND	250	T		ug/L			
Surrogates:		<u>REC (%)</u>	Control Limits		<u>Qual</u>				
Decachlorobiphenyl		97	68-140						

Decachlorobiphenyl

Page 3 of 22

Analytical Report

nel c

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Work Order No: Preparation: Method:

Date Received:

08-10-2257 EPA 3510C EPA 8015B (M)

Page 1 of 1

10/25/08

Project: ExxonMobil 70235

Client Sample Numb	er		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
W-15-CPT1			08-10-2257-1-G	10/24/08 09:45	Aqueous	GC 43	10/29/08	11/04/08 16:27	081029B17
Comment(s):	-The sample extract was	subjected to	Silica Gel treatment	prior to analys	sis.				
Parameter		Result	RL	DF	Qual	Units			
TPH as Diesel		26000	500	10		ug/L			
Surrogates:		<u>REC (%)</u>	Control Limits		Qual				
Decachlorobiphenyl		95	68-140						
W-38-CPT1			08-10-2257-2-G	10/24/08 12:00	Aqueous	GC 43	10/29/08	10/31/08 20:02	081029B17
Comment(s):	-The sample extract was	subjected to	Silica Gel treatment	prior to analy	sis.				
Parameter		Result	<u>RL</u>	DF	Qual	<u>Units</u>			
TPH as Diesel		380	50	1		ug/L			
Surrogates:		<u>REC (%)</u>	Control Limits		<u>Qual</u>				
Decachlorobiphenyl		94	68-140						
Method Blank		7	099-12-330-800	N/A	Aqueous	GC 43	10/29/08	10/31/08 15:23	081029B17
Decomptor		Result	RI	DE	Qual	Units			
Faranieler		Result			<u>QUUI</u>	Onto			
TPH as Diesel		ND	50	1		ug/L			
Surrogates:		<u>REC (%)</u>	Control Limits		<u>Qual</u>				
Decachlorobiphenyl		97	68-140						

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

nel c

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Work Order No: Preparation: Method:

Date Received:

10/25/08 08-10-2257 EPA 5030B EPA 8015B (M)

Page 1 of 1

Project: ExxonMobil 70235

-								
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
W-15-CPT1		08-10-2257-1-F	10/24/08 09:45	Aqueous	GC 18	10/29/08	10/30/08 07:51	081029B02
Parameter	Result	RL	DF	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	2400	1000	20		ug/L			
Surrogates:	<u>REC (%)</u>	Control Limits		Qual				
1,4-Bromofluorobenzene	115	38-134						
W-38-CPT1		08-10-2257-2-F	10/24/08 12:00	Aqueous	GC 18	10/29/08	10/30/08 08:24	081029B02
Parameter	<u>Result</u>	<u>RL</u>	DF	Qual	<u>Units</u>			
TPH as Gasoline	670	100	2		ug/L			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene	117	38-134						
Method Blank		099-12-436-2,439	N/A	Aqueous	GC 18	10/29/08	10/30/08 03:56	081029B02
Parameter	Result	RL	DE	Qual	Units	<u>4</u> .		
TPH as Gasoline	ND	50	1		ug/L			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene	111	38-134						

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

nel c

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received: 10/25/08 Work Order No: 08-10-2257 Preparation: EPA 5030B Method: EPA 8021B Units: ug/L Page 1 of 1

Project: ExxonMobil 70235

Client Sample Number			La	b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/1 Analy	Time zed	QC Batch ID
W-15-CPT1			08-10-2	2257-1-E	10/24/08 09:45	Aqueous	GC 8	10/29/08	10/29 22:3	/08 35	081028B02
Parameter	Result	RL	DF	Qual	Parameter			<u>Result</u>	<u>RL</u>	DF	Qual
Benzene	500	12	25		Ethylbenzene			750	12	25	5
Toluene	1400	12	25		Xylenes (total)			3700	25	25	5
Surrogates:	<u>REC (%)</u>	Control		<u>Qual</u>							
1,4-Bromofluorobenzene	116	<u>Limits</u> 70-130									
W-38-CPT1			08-10-2	2257-2-D	10/24/08 12:00	Aqueous	GC 8	10/28/08	10/28 16:	3/08 07	081028B01
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
Benzene	65	0.50	1		Ethylbenzene			21	0.50	<u></u> 1	
Toluene	110	0.50	1		Xylenes (total)			79	1.0	1	
Surrogates:	<u>REC (%)</u>	<u>Control</u>		<u>Qual</u>							
		Limits									
1,4-Bromofluorobenzene	114	70-130								_	
Method Blank			099-12	-667-251	N/A	Aqueous	GC 8	10/28/08) 10/20 11:	8/08 35	081028B01
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
Benzene	ND	0.50	1		Ethylbenzene			ND	0.50	1	
Toluene	ND	0.50	1		Xylenes (total)			ND	1.0	1	
Surrogates:	<u>REC (%)</u>	Control		<u>Qual</u>							
		<u>Limits</u>									
1,4-Bromofluorobenzene	113	70-130								_	
Method Blank			099-12	2-667-253	N/A	Aqueous	GC 8	10/28/00	3 10/2 09:	9/08 38	081028B02
Perameter	Result	RI	DE	Qual	Parameter			Result	RL	DF	= Qual
Parameter	ND	0.50	1	<u></u>	Ethylbenzene			ND	0.50	1	_ <u></u>
Toluene	ND	0.50	1		Xvienes (total)			ND	1.0	1	
Surrogates:	REC (%)	Control	,	Qual							
<u>ourogateor</u>		Limits									
1,4-Bromofluorobenzene	125	70-130									

nel c

1210260

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received:10/25/08Work Order No:08-10-2257Preparation:EPA 5030BMethod:EPA 8260BUnits:ug/LPage 1 of 2

Project: ExxonMobil 70235

Client Sample Number			La N	b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Ti Analyz	me ed	QC Batch ID
W-15-CPT1	-		08-10-2	257-1-B	10/24/08 09:45	Aqueous	GC/MS BB	11/06/08	11/06/ 17:14	08 -	081106L01
Parameter	Result	RL	DF	Qual	Parameter			Result	<u>RL</u>	DF	Qual
1,2-Dibromoethane	ND	10	20		Diisopropyl E	ther (DIPE)		ND	10	20)
1,2-Dichloroethane	ND	10	20		Ethyl-t-Butyl E	Ether (ETBE)		ND	10	20)
Methyl-t-Butyl Ether (MTBE)	ND	10	20		Tert-Amyl-Me	thyl Ether (T	AME)	ND	10	20)
Tert-Butyl Alcohol (TBA)	270	100	20		Ethanol			ND	1000	20)
Surrogates:	<u>REC (%)</u>	Control		<u>Qual</u>	Surrogates:			<u>REC (%)</u>	Control		<u>Qual</u>
	05	Limits			Diberrooftung			06	Limits		
1,2-Dichloroethane-04	95	/3-15/			Dibromotiuor	ometnane		90	82-142		
l oluene-d8	99	82-112			1,4-Bromonue	brobenzene	_	97	75-105		
W-38-CPT1			08-10-2	2257-2-B	10/24/08 12:00	Aqueous	GC/MS L	11/06/08	11/06/ 16:51	08 3	081106L01
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
1 2-Dibromoethane	ND	2.5	5		Diisopropyl E	ther (DIPE)		ND	2.5	5	
1 2-Dichloroethane	ND	2.5	5		Ethvl-t-Butvl I	Ether (ETBE)		ND	2.5	5	
Methyl-t-Butyl Ether (MTBE)	ND	2.5	5		Tert-Amvl-Me	thy Ether (T	AME)	ND	2.5	5	
Tert-Butyl Alcohol (TBA)	ND	25	5		Ethanol			ND	250	5	
<u>Surrogates:</u>	REC (%)	<u>Control</u>	Ū	<u>Qual</u>	Surrogates:			<u>REC (%)</u>	Control		<u>Qual</u>
1.2-Dichloroethane-d4	97	<u>Limits</u> 73-157			Dibromofluor	omethane		102	82-142		
Toluene_d8	101	82-112			1.4-Bromoflue	orobenzene		100	75-105		
Method Blank	101	02 112	099-12	-650-238	N/A	Aqueous	GC/MS L	11/06/08	11/06/	08 I	081106L01
		_	_								
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
1,2-Dibromoethane	ND	0.50	1		Diisopropyl E	ther (DIPE)		ND	0.50	1	
1,2-Dichloroethane	ND	0.50	1		Ethyl-t-Butyl	Ether (ETBE)	I	ND	0.50	1	
Methyl-t-Butyl Ether (MTBE)	ND	0.50	1		Tert-Amyl-Me	ethyl Ether (T.	AME)	ND	0.50	1	
Tert-Butyl Alcohol (TBA)	ND	5.0	1		Ethanol			ND	50	1	
Surrogates:	<u>REC (%)</u>	Control		Qual	Surrogates:			<u>REC (%)</u>	Control Limits		<u>Qual</u>
1.2-Dichloroethane-d4	97	73-157			Dibromofluor	omethane		100	82-142		
Toluene-d8	98	82-112			1,4-Bromoflu	orobenzene		100	75-105		

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

nel c

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312
 Date Received:
 10/25/08

 Work Order No:
 08-10-2257

 Preparation:
 EPA 5030B

 Method:
 EPA 8260B

 Units:
 ug/L

 Page 2 of 2

Project: ExxonMobil 70235

Client Sample Number			La	ib Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed		QC Batch ID
Method Blank	1	1.1	09 9 -12	-650-239	N/A	Aqueous	GC/MS BB	11/06/08	11/06/ 12:3	/08 1	081106L01
Parameter	Result	RL	DF	Qual	Parameter			Result	<u>RL</u>	DF	Qual
1,2-Dibromoethane	ND	0.50	1		Diisopropyl Et	her (DIPE)		ND	0.50	1	
1,2-Dichloroethane	ND	0.50	1		Ethyl-t-Butyl E	ther (ETBE)		ND	0.50	1	
Methyl-t-Butyl Ether (MTBE)	ND	0.50	1		Tert-Amyl-Met	thyl Ether (T.	AME)	ND	0.50	1	
Tert-Butyl Alcohol (TBA)	ND	5.0	1		Ethanol			ND	50	1	
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>	Surrogates:			REC_(%)	Control Limits		<u>Qual</u>
1,2-Dichloroethane-d4	98	73-157			Dibromofluoro	methane		96	82-142		
Toluene-d8	98	82-112			1,4-Bromofluc	robenzene		96	75-105		

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received: Work Order No: Preparation: Method: 10/25/08 08-10-2257 EPA 5030B EPA 8015B (M)

Project ExxonMobil 70235

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
08-10-2372-3	Aqueous	GC 18	10/29/08		10/30/08	081029502
Parameter	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
TPH as Gasoline	77	73	68-122	6	0-18	

RPD - Relative Percent Difference, CL - Control Limit

Mulhan

nel c.

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received: Work Order No: Preparation: Method:

10/25/08 08-10-2257 EPA 5030B EPA 8021B

Project ExxonMobil 70235

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
08-10-2272-1	Aqueou	us GC 8	10/28/08		10/28/08	081028501
Parameter	MS %REC	MSD %REC	<u>%REC CL</u>	<u>RPD</u>	RPD CL	Qualifiers
Benzene	113	108	57-129	4	0-23	
Toluene	108	103	50-134	5	0-26	
Ethylbenzene	108	108	58-130	0	0-26	
p/m-Xylene	110	111	58-130	1	0-28	
o-Xylene	107	108	57-123	1	0-26	
Methyl-t-Butyl Ether (MTBE)	106	107	44-134	1	0-27	

RPD - Relative Percent Difference , CL - Control Limit

nelac

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received: Work Order No: Preparation: Method:

10/25/08 08-10-2257

EPA 5030B

EPA 8021B

Project ExxonMobil 70235

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
08-10-2160-6	Aqueous	GC 8	10/28/08		10/29/08	081028502
Parameter	MS %REC	MSD %REC	<u>%REC CL</u>	<u>RPD</u>	RPD CL	Qualifiers
Benzene	121	115	57-129	5	0-23	
Toluene	116	113	50-134	3	0-26	
Ethylbenzene	117	116	58-130	1	0-26	
p/m-Xvlene	122	121	58-130	1	0-28	
o-Xvlene	117	117	57-123	0	0-26	
Methyl-t-Butyl Ether (MTBE)	111	107	44-134	3	0-27	

RPD - Relative Percent Difference , CL - Control Limit

nel c'

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received: Work Order No: Preparation: Method:

Project ExxonMobil 70235

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
08-11-0381-1	Aqueous	GC/MS L	11/06/08	4.10	11/06/08	081106S01
Parameter	MS %REC	MSD %REC	<u>%REC CL</u>	<u>RPD</u>	RPD CL	Qualifiers
Benzene	92	103	86-122	12	0-8	4
Carbon Tetrachloride	89	102	78-138	14	0-9	4
Chlorobenzene	93	102	90-120	10	0-9	4
1,2-Dibromoethane	96	107	70-130	11	0-30	
1,2-Dichlorobenzene	95	108	89-119	13	0-10	4
1,1-Dichloroethene	88	102	52-142	15	0-23	
Ethylbenzene	90	101	70-130	11	0-30	
Toluene	94	103	85-127	9	0-12	
Trichloroethene	89	104	78-126	16	0-10	4
Vinyl Chloride	109	111	56-140	2	0-21	
Methyl-t-Butyl Ether (MTBE)	101	112	64-136	10	0-28	
Tert-Butyl Alcohol (TBA)	109	117	27-183	7	0-60	
Diisopropyl Ether (DIPE)	93	103	78-126	10	0-16	
Ethyl-t-Butyl Ether (ETBE)	97	107	67-133	9	0-21	
Tert-Amyl-Methyl Ether (TAME)	97	106	63-141	9	0-21	
Ethanol	90	93	11-167	4	0-64	

RPD - Relative Percent Difference , CL - Control Limit

Mulana

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received: Work Order No: Preparation: Method:

10/25/08 08-10-2257 EPA 5030B

EPA 8260B

Project ExxonMobil 70235

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
08-10-2752-2	Aqueous	GC/MS BB	11/06/08		11/06/08	081106S01
Parameter	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	95	93	86-122	2	0-8	
Carbon Tetrachloride	92	93	78-138	1	0-9	
Chlorobenzene	96	96	90-120	0	0-9	
1,2-Dibromoethane	91	93	70-130	2	0-30	
1,2-Dichlorobenzene	100	98	89-119	3	0-10	
1,1-Dichloroethene	83	90	52-142	8	0-23	
Ethylbenzene	90	93	70-130	3	0-30	
Toluene	91	92	85-127	1	0-12	
Trichloroethene	93	92	78-126	1	0-10	
Vinyl Chloride	102	103	56-140	1	0-21	
Methyl-t-Butyl Ether (MTBE)	89	88	64-136	1	0-28	
Tert-Butyl Alcohol (TBA)	98	91	27-183	7	0-60	
Diisopropyl Ether (DIPE)	90	88	78-126	2	0-16	
Ethyl-t-Butyl Ether (ETBE)	88	86	67-133	2	0-21	
Tert-Amyl-Methyl Ether (TAME)	91	89	63-141	2	0-21	
Ethanol	92	91	11-167	1	0-64	

RPD - Relative Percent Difference, CL - Control Limit

Date Received: Work Order No: Preparation: Method: N/A 08-10-2257 EPA 3510C EPA 8015B (M)

Project: ExxonMobil 70235

Quality Control Sample ID	Matrix	Instr	ument	Date Prepar	ed	Da Anal	te /zed	LCS/LCSD Bate Number	:h
099-12-234-333	Aqueous	GC	C 43	10/29/	08	10/31	/08	081029B18	
Parameter	LCS ?	<u>6REC</u>	LCSD %F	REC	<u>%RE</u>	C CL	RPD	RPD CL	Qualifiers
TPH as Motor Oil	103	1	102		75	-117	1	0-13	

RPD - Relative Percent Difference , CL - Control Limit

Date Received: Work Order No: Preparation: Method: N/A 08-10-2257 EPA 3510C EPA 8015B (M)

Project: ExxonMobil 70235

Quality Control Sample ID	Matrix	Instrument	Date Prepar	e D red Ana	ate alyzed	LCS/LCSD Bate Number	ch
099-12-330-800	Aqueous	GC 43	10/29/	08 10/3	31/08	081029B17	
Parameter	LCS	6REC LCSE	%REC	%REC CL	RPD	RPD CL	<u>Qualifiers</u>
TPH as Diesel	91	8	3	75-117	10	0-13	

RPD - Relative Percent Difference , CL - Control Limit

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received: Work Order No: Preparation: Method: N/A 08-10-2257 EPA 5030B EPA 8015B (M)

Project: ExxonMobil 70235

Quality Control Sample ID	Matrix	Instru	ument	Dat Prepa	e ired	Da Anal	ite yzed	LCS/LCSD Bate Number	h
099-12-436-2,439	Aqueous	GĊ	18	10/29	/08	10/30	0/08	081029B02	
Parameter	LCS 9	REC	LCSD %	REC	<u>%R</u> E		RPD	RPD CL	Qualifiers
TPH as Gasoline	86		85		78	-120	2	0-10	

RPD - Relative Percent Difference , CL - Control Limit

nel c

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received: Work Order No: Preparation: Method: N/A 08-10-2257 EPA 5030B EPA 8021B

Project: ExxonMobil 70235

Quality Control Sample ID	Matrix	Instrument	Date Prepar	e Da red Ana	ate lyzed	LCS/LCSD Bate Number	h
099-12-667-251	Aqueous	GC 8	10/28/	08 10/2	8/08	081028B01	
Parameter	LCS %	REC LCS	<u> </u>	<u>%REC CL</u>	RPD	RPD CL	Qualifiers
Benzene	100	1	00	70-118	0	0-9	
Toluene	96	ç	5	66-114	1	0-9	
Ethylbenzene	100	1	D1	72-114	1	0-9	
p/m-Xvlene	102	1	03	74-116	1	0-9	
o-Xvlene	100	1	01	72-114	1	0-9	
Methyl-t-Butyl Ether (MTBE)	100	9	99	41-137	2	0-13	

RPD - Relative Percent Difference , CL - Control Limit

A 7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 • H

5-5494 • FAX: (714) 894-7501

Date Received: Work Order No: Preparation: Method: N/A 08-10-2257

EPA 5030B

EPA 8021B

Project: ExxonMobil 70235

Quality Control Sample ID	Matrix	Instru	ument	Date Prepared	Da Ana	ate lyzed	LCS/LCSD Bato Number	h
099-12-667-253	Aqueous	GC	8	10/28/08	10/2	9/08	081028B02	
Parameter	LCS %	6REC	LCSD %R	EC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	110		107		70-118	3	0-9	
Toluene	105		100		66-114	4	0-9	
Ethylbenzene	108		108		72-114	0	0-9	
p/m-Xylene	113		112		74-116	1	0-9	
o-Xylene	109		106		72-114	2	0-9	
Methyl-t-Butyl Ether (MTBE)	112		107		41-137	4	0-13	

RPD - Relative Percent Difference, CL - Control Limit

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 •

-5494 • FAX: (714) 894-7501

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: N/A Work Order No: 08-10-2257 Preparation: EPA 5030B Method: EPA 8260B

Project: ExxonMobil 70235

LCS %REC 102	GC/MS L LCSD %REC	11/06/08	11/06/	08	081106L0)1
LCS %REC 102	LCSD %REC					
102		<u>%REG GL</u>	ME_CL	RPD	RPD CL	Qualifiers
	101	87-117	82-122	0	0-7	
102	103	78-132	69-141	2	0-8	
104	104	88-118	83-123	0	0-8	
110	104	80-120	73-127	6	0-20	
103	102	88-118	83-123	2	0-8	
102	100	71-131	61-141	2	0-14	
102	102	80-120	73 - 127	0	0-20	
101	103	85-127	78-134	2	0-7	
101	102	85-121	79-127	1	0-11	
112	109	64-136	52-148	3	0-10	
107	102	67-133	56-144	5	0-16	
122	108	34-154	14-174	12	0-19	
100	99	80-122	73-129	1	0-8	
104	103	73-127	64-136	1	0-11	
106	102	69-135	58-146	4	0-12	
110	97	34-124	19-139	13	0-44	
	104 110 103 102 102 101 101 112 107 122 100 104 106 110	1041041101041031021021001021021011031011021121091071021221081009910410310610211097	10410488-11811010480-12010310288-11810210071-13110210280-12010110385-12710110285-12111210964-13610710267-13312210834-1541009980-12210410373-12710610269-1351109734-124	104 104 $88-118$ $83-123$ 110 104 $80-120$ $73-127$ 103 102 $88-118$ $83-123$ 102 100 $71-131$ $61-141$ 102 102 $80-120$ $73-127$ 101 103 $85-127$ $78-134$ 101 102 $85-121$ $79-127$ 112 109 $64-136$ $52-148$ 107 102 $67-133$ $56-144$ 122 108 $34-154$ $14-174$ 100 99 $80-122$ $73-129$ 104 103 $73-127$ $64-136$ 106 102 $69-135$ $58-146$ 110 97 $34-124$ $19-139$	104 104 $88-118$ $83-123$ 0 110 104 $80-120$ $73-127$ 6 103 102 $88-118$ $83-123$ 2 102 100 $71-131$ $61-141$ 2 102 102 $80-120$ $73-127$ 0 101 103 $85-127$ $78-134$ 2 101 102 $85-121$ $79-127$ 1 112 109 $64-136$ $52-148$ 3 107 102 $67-133$ $56-144$ 5 122 108 $34-154$ $14-174$ 12 100 99 $80-122$ $73-129$ 1 104 103 $73-127$ $64-136$ 1 106 102 $69-135$ $58-146$ 4 110 97 $34-124$ $19-139$ 13	104 104 $88-118$ $83-123$ 0 $0-8$ 110 104 $80-120$ $73-127$ 6 $0-20$ 103 102 $88-118$ $83-123$ 2 $0-8$ 102 100 $71-131$ $61-141$ 2 $0-14$ 102 102 $80-120$ $73-127$ 0 $0-20$ 101 103 $85-127$ $78-134$ 2 $0-7$ 101 102 $85-121$ $79-127$ 1 $0-11$ 112 109 $64-136$ $52-148$ 3 $0-10$ 107 102 $67-133$ $56-144$ 5 $0-16$ 122 108 $34-154$ $14-174$ 12 $0-19$ 100 99 $80-122$ $73-129$ 1 $0-8$ 104 103 $73-127$ $64-136$ 1 $0-11$ 106 102 $69-135$ $58-146$ 4 $0-12$ 110 97 $34-124$ $19-139$ 13 $0-44$

Total number of ME compounds : 0 Total number of ME compounds allowed :

LCS ME CL validation result : Pass

RPD - Relative Percent Difference, CL - Control Limit

1

. AA

Environmental Resolutions, Inc.

601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received: Work Order No: Preparation: Method:

N/A 08-10-2257 EPA 5030B EPA 8260B

Project: ExxonMobil 70235

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Anal	ite yzed	LCS/LCSD Numbe	Batch r
099-12-650-239	D-239 Aqueous GC/MS BB 11/06/08 11/06/08		08	081106L	01		
Parameter	LCS %REC	LCSD %REC	%REC CL	ME_CL	RPD	RPD CL	Qualifiers
Benzene	114	109	87-117	82-122	4	0-7	
Carbon Tetrachloride	120	111	78-132	69-141	7	0-8	
Chlorobenzene	112	110	88-118	83-123	2	0-8	
1,2-Dibromoethane	114	105	80-120	73-127	8	0-20	
1,2-Dichlorobenzene	115	113	88-118	83-123	2	0-8	
1,1-Dichloroethene	108	102	71-131	61-141	5	0-14	
Ethylbenzene	113	109	80-120	73-127	4	0-20	
Toluene	116	110	85-127	78-134	6	0-7	
Trichloroethene	111	109	85-121	79-127	2	0-11	
Vinyl Chloride	130	127	64-136	52-148	2	0-10	
Methyl-t-Butyl Ether (MTBE)	112	102	67-133	56-144	9	0-16	
Tert-Butyl Alcohol (TBA)	106	104	34-154	14-174	2	0-19	
Diisopropyl Ether (DIPE)	111	105	80-122	73-129	6	0-8	
Ethyl-t-Butyl Ether (ETBE)	109	104	73-127	64-136	5	0-11	
Tert-Amyl-Methyl Ether (TAME)	112	107	69-135	58-146	4	0-12	
Ethanol	102	99	34-124	19-139	3	0-44	
Total number of LCS compounds : 16							

Total number of LCS compounds : 16 Total number of ME compounds : 0 Total number of ME compounds allowed : 1 LCS ME CL validation result : Pass

RPD - Relative Percent Difference, CL - Control Limit

Mulum

ha

Glossary of Terms and Qualifiers

Work Order Number: 08-10-2257

Qualifier	Definition
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
А	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
E	Concentration exceeds the calibration range.
I	Compound did not meet method-described identification guidelines. Identification was based on additional GC/MS characteristics.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
х	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.

CHAIN OF CUSTODY RECORD

Calscience - Con	sultant Name:	Environment	al Resolution	ons, Inc.		E	xxonl	Mobil	Engi	neer	Jenn	ifer (C. Se	edlac	hek				_
Environmental	Address:	601 North M	cDowell Bo	ulevard		т 6	Tele	phon	e Nun	nber_	(510) 547	-819	96					
Laboratories, Inc.	City/State/Zip:	Petaluma, C	alifornia 94	954				A	ccou	nt #:									
7440 Lincoln Way Pr	oject Manager	Paula Sime					3		P	o #:	4510	0174	131						
Garden Grove, CA 92841 Telep	hone Number:	(707) 766-20	000			(225)	V	Fa	icility	ID #	7023	35							
TEL: (714) 895-5494 ER	I Job Number:	222903X				\sim		C	Sloba	11D#	T060	0010	1354	1					
FAX: (714) 894-7501 Sample	r Name: (Print)	Rebeka	h A We	strup				Site	e Add	1855	2225	5 Tel	egra	ph A	venu	e			
ExonMobil Same	oler Signature:	Cal Express	U An ☐ Other	terno				City,	State	Zip	Oak	land,	Cali	forni	a				_
TAT PROVIDE:	Special Instru	ctions:					1	Matrix	,					Ana	ilyze F	For:			
24 hour 72 hour EDF Report 48 hour 96 hour 8 day	7 CA Oxys = Use silica ge Set TBA dete HOVs - 8010	MTBE, TB I cleanup fr ection limit List by 82	A, TAME, or all TPH <12 ug/L. 50B	d analyse	DIPE, 1,2-D es.	CA, EDB.				ld 8015B	lg 8015B	motor oil 8015	EX 8021B	Oxys 8260B	anol 8260B		DCs 8260B	al Lead 6010	
Sample ID / Description	DATE	TIME	COMP	GRAB	PRESERV	NUMBER	Wate	Soil	Vapo	HTT:	HAT	HdT	BTE	7 CA	Ē		- DAH	Totz	
W-15-CPT 1	10/24/08	9:45	- 	Х	HCL	2 L	X			X	Х	X	Χ	χ	Х				L
W-38 - CPT1	10/24/08	12:00		Х			X			X	X	X	x	X	X				
																_		_	+
								_	<u></u>							_	+	+	+
									-					-		+	+	+-	╉
							-	-		-	-						+	+	╋
																		1	t
																\top		Τ	t
and the second secon																			T
1 14																			
Relinquished by: 10 (Malla) Date 10	24/08	Time 13	38	Received b		F	5	A	Time	13	18	Labo	rato Tem	y Col perati	mmer ure Up	n ts: con Re ^r	ceipt:		
Relinquished by	24-03.	Time (130	Received b	y;				Time				Sam VOA	ple C s Fre	ontain e of H	ers Inta leadspa	act? ace?		
450 TE#SID617861			f	abo J	\sim	CEI	(0	0/2	27/0	9C	9	:3	0						

Page 21 of 22

Page 1 of 1

WORK ORDER #:	08-00	2-2	Page 22 of 22
SAMPLE RECEIP	T FORM		er \ of \
eboratories, Inc.			125 1 10
	D	ATE: <u>10</u>	
Temperature $2.8 \text{ °C} + 1.8 \text{ °C} (\text{CF}) = 4.6$	°C ⊟Bla	nk Ms	ample
□ Sample(s) outside temperature criteria (PM/APM contacted by:)		inpro
Sample(s) outside temperature criteria but received on ice/chilled of the sample sa	, on same day of s	samoling.	
Received at ambient temperature, placed on ice for transpo	ort by Courier		
Ambient Temperature: Air Filter	,		Initial:
CUSTODY SEALS INTACT:		100 Contraction (100	
Cooler	Not Preser	nt	Initial: 5
Sample Sample No (Not Intact)	Vot Preser	nt	Initial:
SAMPLE CONDITION:			
Chain Of Custady degument(s) received with complex	Yes	No	N/A
Sampler's name indicated on COC			
Sampler's name indicated on COC	L		
Sample container(s) intact and good condition	rty -		
Correct containers and volume for analyses requested	- F		
Proper preservation noted on sample label(s)	. 4		
Volatile analysis container(s) free of headspace	. Ľ		
Tedlar bag(s) free of condensation			4
Solid: 1407CGJ 1807CGJ 1607CGJ Sleeve 1EnCor	res® □Terra	Cores® [7
Water: UVOA UVOAh UVOAna, U125AGB U125AG	Bh 🗆 125AGF		GB []1AGBna
□1AGBs □500AGB □500AGBs □250CGB □250CGBs		PB []500	OPBna 250PB
□250PBn □125PB □125PBznna □100PBsterile □100PB	Bna ₂		
Air: ☐Tedlar® ☐Summa® ☐ Container: C:Clear A:Amber P:Poly/Plastic G:Glass J:Jar B:Bottle Preservative: h:HCL n:HNO3 na2:Na2S2O3 na:NaOH po4:H3PO4 s:H2SO4 z	- znna:ZnAc₂+NaOH	Checked/La Rev Sc	abeled by: <u> .(</u> viewed by: <u>).(</u> anned by: <u>),(</u>

Эł.

SOP T100_090 (10/23/08)

November 10, 2008

Paula Sime Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

DI	ECI	Σ	Π	VI	
Ń	NOV	1	0	2008	

BY:-----

Subject: Calscience Work Order No.: 08-10-2494 Client Reference: ExxonMobil 70235

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 10/29/2008 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

Note that the Chain-of-Custody Record and Sample Receipt Form are integral parts of this report.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Cecile & er Sain

Calscience Environmental Laboratories, Inc. Cecile deGuia Project Manager

CA-ELAP ID: 1230 • NELAP ID: 03220CA • CSDLAC ID: 10109 • SCAQMD ID: 93LA0830 7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 • FAX: (714) 894-7501

nel c

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received: Work Order No: Preparation: Method:

EPA 8015B (M) Page 1 of 1

10/29/08

08-10-2494

EPA 3510C

Project: ExxonMobil 70235

									-
Client Sample Numb	er		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
W-15-CPT2			08-10-2494-1-H	10/27/08 09:50	Aqueous	GC 47	10/31/08	11/03/08 23:36	081031B10
Comment(s):	-The sample extract was	subjected to	Silica Gel treatment	prior to analys	sis.				
Parameter		Result	<u>RL</u>	DF	<u>Qual</u>	<u>Units</u>			
TPH as Motor Oil		ND	250	1		ug/L			
Surrogates:		<u>REC (%)</u>	Control Limits		Qual				
Decachlorobiphenyl		105	68-140						

W-39-CPT2			08-10-2494-3-H	10/27/08 12:00	Aqueous	GC 47	10/31/08	11/03/08 23:53	081031B10
Comment(s):	-The sample extract was	subjected to	o Silica Gel treatment	prior to analy	sis.				
Parameter		<u>Result</u>	RL	DF	<u>Qual</u>	<u>Units</u>			
TPH as Motor Oil		ND	250	1		ug/L			
Surrogates:		<u>REC (%)</u>	Control Limits		Qual				
Decachlorobiphenyl		103	68-140						
Method Blank			099-12-234-334	N/A	Aqueous	GC 47	10/31/08	11/03/08 15:56	081031B10
Parameter		Result	<u>RL</u>	DF	<u>Qual</u>	<u>Units</u>			
TPH as Motor Oil		ND	250	1		ug/L			
Surrogates:		<u>REC (%)</u>	Control Limits		<u>Qual</u>				
Decachlorobiphenyl		114	68-140						

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

inel c

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Work Order No: Preparation: Method:

Date Received:

10/29/08 08-10-2494 EPA 3510C EPA 8015B (M)

Page 1 of 1

Project: ExxonMobil 70235

									_	
Client Sample Numb	er		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
W-15-CPT2			08-10-2494-1-H	10/27/08 09:50	Aqueous	GC 47	10/31/08	11/03/08 23:36	081031B09	
Comment(s):	-The sample extract wa	s subjected to	o Silica Gel treatment	prior to analy	sis.					
Parameter		<u>Result</u>	RL	DF	Qual	Units				
TPH as Diesel		260	50	1		ug/L				
Surrogates:		<u>REC (%)</u>	Control Limits		Qual					
Decachlorobiphenyl		105	68-140							
W-39-CPT2			08-10-2494-3-H	10/27/08 12:00	Aqueous	GC 47	10/31/08	11/03/08 23:53	081031B09	
Comment(s):	-The sample extract wa	s subjected to	o Silica Gel treatment	prior to analy	sis.					
Parameter	·	Result	<u>RL</u>	DF	<u>Qual</u>	<u>Units</u>				
TPH as Diesel		160	50	1		ug/L				
Surrogates:		<u>REC (%)</u>	Control Limits		<u>Qual</u>					
Decachlorobiphenyl		103	68-140							
Method Blank			099-12-330-801	N/A	Aqueous	GC 47	10/31/08	11/03/08 15:56	081031B09	
Parameter		<u>Result</u>	<u>RL</u>	DF	Qual	<u>Units</u>				
TPH as Diesel		ND	50	1		ug/L				
Surrogates:		REC (%)	Control Limits		Qual					

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

114

68-140

Decachlorobiphenyl

nel c

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Project: ExxonMobil 70235

Work Order No: Preparation: Method:

Date Received:

Page 1 of 1

EPA 8015B (M)

10/29/08

08-10-2494

EPA 5030B

Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
W-15-CPT2		08-10-2494-1-D	10/27/08 09:50	Aqueous	GC 24	10/29/08	10/29/08 18:42	081029B01
Parameter	Result	RL	DF	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	990	50	1		ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene	120	38-134						
W-29-CPT2	1	08-10-2494-2-D	10/27/08 10:40	Aqueous	GC 24	10/29/08	10/29/08 19:16	081029B01
Parameter	Result	RL	<u></u> <u></u> <u></u>	Qual	Units			
TPH as Gasoline	60	50	1		ug/L			
Surrogates:	<u>REC (%)</u>	Control Limits		Qual				
1,4-Bromofluorobenzene	83	38-134						
W-39-CPT2		08-10-2494-3-D	10/27/08 12:00	Aqueous	GC 24	10/29/08	10/29/08 19:49	081029B01
Parameter	Result	RL	DF	Qual	Units			
TPH as Gasoline	ND	50	1		ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene	82	38-134						
Method Blank	č,	09 9 -12-436-2,437	N/A	Aqueous	GC 24	10/29/08	10/29/08 14:48	081029B01
Parameter	<u>Result</u>	<u>RL</u>	DF	Qual	<u>Units</u>			
TPH as Gasoline	ND	50	1		ug/L			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene	80	38-134						

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

ug/L

QC Batch ID

081104B01

Qual

081031B01

Qual

081031B01

Qual

081031B01

Qual

081104B01

Qual

Analytical Report

10/29/08 Date Received: Environmental Resolutions, Inc. Work Order No: 08-10-2494 601 North McDowell Blvd. Preparation: EPA 5030B Petaluma, CA 94954-2312 Method: EPA 8021B Units: Page 1 of 1 Project: ExxonMobil 70235 Date Date/Time Date/Time Lab Sample Matrix Instrument Prepared Analyzed **Client Sample Number** Collected Number 11/04/08 08-10-2494-1-E 11/04/08 10/27/08 GC 8 Aqueous W-15-CPT2 09:50 13:52 <u>RL</u> <u>DF</u> Qual Parameter Result <u>RL</u> DF Parameter Result ND Benzene ND 0.50 1 Ethylbenzene 0.50 1 ND Xylenes (total) ND 1.0 1 0.50 Toluene 1 REC (%) Control Qual Surrogates: **Limits** 112 1,4-Bromofluorobenzene 70-130 10/31/08 10/27/08 GC 8 10/31/08 W-29-CPT2 08-10-2494-2-E Aqueous 10:40 17:14 <u>DF</u> DF Result RL RL <u>Qual</u> Parameter Parameter Result ND 0.50 Ethylbenzene Benzene ND 0.50 1 1 Xylenes (total) ND 1.0 ND 0.50 1 Toluene 1 **REC (%)** Control Qual Surrogates: Limits 105 1,4-Bromofluorobenzene 70-130 10/27/08 12:00 10/31/08 08-10-2494-3-D GC 8 10/31/08 Aqueous W-39-CPT2 16:41 RL <u>DF</u> RL DF Qual Parameter Result Parameter <u>Result</u> Ethylbenzene ND 0.50 1 Benzene ND 0.50 1 ND Xylenes (total) ND 1.0 1 0.50 Toluene 1 Qual Surrogates: REC (%) Control <u>Limits</u> 104 70-130 1,4-Bromofluorobenzene 10/31/08 10/31/08 **Method Blank** 099-12-667-255 N/A Aqueous GC 8 09:53 RL DF RL DF Qual Parameter Result Parameter Result ND ND Ethvlbenzene 0.50 0.50 1 Benzene 1 ND 0.50 Xylenes (total) ND 1.0 1 Toluene 1 <u>REC (%)</u> Control <u>Qual</u> Surrogates: **Limits** 1,4-Bromofluorobenzene 110 70-130 11/04/08 11/04/08 **Method Blank** 099-12-667-257 N/A Aqueous GC 8 11:03 RL <u>DF</u> Qual Parameter Result <u>RL</u> DF **Result** Parameter Ethylbenzene ND 0.50 1 ND 0.50 1 Benzene ND ND 0.50 Xylenes (total) 1.0 1 Toluene 1 <u>Qual</u> REC (%) Control Surrogates: Limits 113 70-130 1,4-Bromofluorobenzene

DF - Dilution Factor RL - Reporting Limit , Qual - Qualifiers ,

FAX: (714) 894-7501 7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 •

nel c

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312
 Date Received:
 10/29/08

 Work Order No:
 08-10-2494

 Preparation:
 EPA 5030B

 Method:
 EPA 8260B

 Units:
 ug/L

 Page 1 of 2

Project: ExxonMobil 70235

Client Sample Number			La	ib Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Tim Analyzed	e QC Batch ID
W-15-CPT2			08-10-2	2494-1-C	10/27/08 09:50	Aqueous	GC/MS BB	11/07/08	11/08/08 02:29	081107L01
Parameter	Result	RL	DF	Qual	Parameter			<u>Result</u>	<u>RL</u>	<u>DF Qual</u>
1.2-Dibromoethane	ND	0.50	1		Diisopropyl Et	ther (DIPE)		ND	0.50	1
1,2-Dichloroethane	ND	0.50	1		Ethyl-t-Butyl E	Ether (ETBE))	ND	0.50	1
Methyl-t-Butyl Ether (MTBE)	2.0	0.50	1		Tert-Amyl-Me	thyl Ether (T	AME)	ND	0.50	1
Tert-Butyl Alcohol (TBA)	ND	5.0	1		Ethanol			ND	50	1
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>	Surrogates:			<u>REC (%)</u>	Control Limits	<u>Qual</u>
1,2-Dichloroethane-d4	90	73-157			Dibromofluoro	omethane		102	82-142	
Toluene-d8	106	82-112			1,4-Bromofluc	orobenzene		99	75-105	
W-29-CPT2			08-10-	2494-2-B	10/27/08 10:40	Aqueous	GC/MS L	11/06/08	11/06/08 20:35	8 081106L01
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF Qual
1.2 Dibromoethane	ND	0.50	1		Diisopropyl Et	ther (DIPE)		ND	0.50	1
1.2-Dichloroethane	ND	0.50	1		Ethyl-t-Butyl	Ether (ETBE)	ND	0.50	1
Methyd-t-Butyd Ether (MTBE)	0.66	0.50	1		Tert-Amvi-Me	thy Ether (T	AME)	ND	0.50	1
Tert-Butyl Alcohol (TBA)	ND	5.0			Ethanol		,	ND	50	1
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits		<u>Qual</u>	Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits	<u>Qual</u>
1.2-Dichloroethane-d4	96	73-157			Dibromofluor	omethane		100	82-142	
Toluene-d8	100	82-112			1,4-Bromoflue	orobenzene		99	75-105	
W-39-CPT2			08-10-	2494-3-B	10/27/08 12:00	Aqueous	GC/MS L	11/06/08	11/06/08 21:03	8 081106L01
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF Qual
1.2-Dibromoethane	ND	0.50	1		Diisopropyl E	ther (DIPE)		ND	0.50	1
1.2-Dichloroethane	ND	0.50	i		Ethvi-t-Butvi I	Ether (ETBE	:)	ND	0.50	1
Methyl-t-Butyl Ether (MTBE)	ND	0.50	1		Tert-Amyl-Me	ethyl Ether (T	AME)	ND	0.50	1
Tert-Butyl Alcohol (TBA)	ND	5.0	1		Ethanol			ND	50	1
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits		<u>Qual</u>	Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits	<u>Qual</u>
1.2-Dichloroethane-d4	96	73-157			Dibromofluor	omethane		102	82-142	
Toluene-d8	98	82-112			1,4-Bromoflu	orobenzene		98	75-105	

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

nel c

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312
 Date Received:
 10/29/08

 Work Order No:
 08-10-2494

 Preparation:
 EPA 5030B

 Method:
 EPA 8260B

 Units:
 ug/L

 Page 2 of 2

Project: ExxonMobil 70235

Client Sample Number			La	b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/T Analyz	ime æd	QC Batch ID
Method Blank			099-12-	-650-238	N/A	Aqueous	GC/MS L	11/06/08	11/06/ 14:4	08 1	081106L01
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
1,2-Dibromoethane	ND	0.50	1		Diisopropyl Et	ther (DIPE)		ND	0.50	1	
1,2-Dichloroethane	ND	0.50	1		Ethyl-t-Butyl E	Ether (ETBE)		ND	0.50	1	
Methyl-t-Butyl Ether (MTBE)	ND	0.50	1		Tert-Amyl-Me	thyl Ether (TA	ME)	ND	0.50	1	
Tert-Butyl Alcohol (TBA)	ND	5.0	1		Ethanol		,	ND	50	1	
<u>Surrogates:</u>	<u>REC (%)</u>	<u>Control</u> Limits		<u>Qual</u>	Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits		Qual
1,2-Dichloroethane-d4	97	73-157			Dibromofluoro	omethane		100	82-142		
Toluene-d8	98	82-112			1,4-Bromofluc	orobenzene		100	75-105		
Method Blank	Selection of the		099-12-	650-243	N/A	Aqueous	GC/MS BE	8 11/07/08	11/07/ 21:4	08 7	081107L01
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
1,2-Dibromoethane	ND	0.50	1		Diisopropyl Et	ther (DIPE)		ND	0.50	1	
1,2-Dichloroethane	ND	0.50	1		Ethyl-t-Butyl E	Ether (ETBE)		ND	0.50	1	
Methyl-t-Butyl Ether (MTBE)	ND	0.50	1		Tert-Amyl-Me	thyl Ether (TA	AME)	ND	0.50	1	
Tert-Butyl Alcohol (TBA)	ND	5.0	1		Ethanol			ND	50	1	
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits		<u>Qual</u>	Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits		<u>Qual</u>
1,2-Dichloroethane-d4	101	73-157			Dibromofluoro	omethane		95	82-142		
Toluene-d8	103	82-112			1,4-Bromofluc	orobenzene		96	75-105		

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

Environmental Resolutions, Inc.Date Received:10/29/08601 North McDowell Blvd.Work Order No:08-10-2494Petaluma, CA 94954-2312Preparation:EPA 5030BMethod:EPA 8015B (M)

Project ExxonMobil 70235

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
08-10-2496-1	Aqueous	GC 24	10/29/08		10/29/08	081029501
Parameter	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
TPH as Gasoline	87	83	68-122	4	0-18	

RPD - Relative Percent Difference, CL - Control Limit

Date Received: Work Order No: Preparation: Method:

08-10-2494

EPA 5030B

EPA 8021B

Project ExxonMobil 70235

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
08-10-1267-1	Aqueous	GC 8	10/31/08		10/31/08	081031S01
Parameter	MS %REC	MSD %REC	<u>%REC CL</u>	<u>RPD</u>	RPD CL	Qualifiers
Benzene	93	103	57-129	6	0-23	
Toluene	92	96	50-134	4	0-26	
Ethylbenzene	93	98	58-130	3	0-26	
p/m-Xylene	104	108	58-130	3	0-28	
o-Xylene	101	104	57-123	3	0-26	
Methyl-t-Butyl Ether (MTBE)	93	101	44-134	5	0-27	

RPD - Relative Percent Difference, CL - Control Limit

nel c

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received: Work Order No: Preparation: Method:

10/29/08 08-10-2494 EPA 5030B EPA 8021B

Project ExxonMobil 70235

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
W-15-CPT2	Aqueo	ıs GC 8	11/04/08		11/04/08	081104501
Parameter	<u>MS %REC</u>	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
Benzene	101	104	57-129	3	0-23	
Toluene	100	99	50-134	1	0-26	
Ethylbenzene	105	105	58-130	0	0-26	
p/m-Xylene	110	110	58-130	0	0-28	
o-Xylene	103	103	57-123	0	0-26	
Methyl-t-Butyl Ether (MTBE)	102	106	44-134	4	0-27	

RPD - Relative Percent Difference, CL - Control Limit

Environmental Resolutions, Inc. 601 North McDowell Blvd.

Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

10/29/08 08-10-2494 EPA 5030B EPA 8260B

Project ExxonMobil 70235

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Ar	Date nalyzed	MS/MSD Batch Number
08-11-0381-1	Aqueous	GC/MS L	11/06/08	1'	1/06/08	081106S01
Parameter	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	92	103	86-122	12	0-8	4
Carbon Tetrachloride	89	102	78-138	14	0-9	4
Chlorobenzene	93	102	90-120	10	0-9	4
1,2-Dibromoethane	96	107	70-130	11	0-30	
1,2-Dichlorobenzene	95	108	89-119	13	0-10	4
1,1-Dichloroethene	88	102	52-142	15	0-23	
Ethylbenzene	90	101	70-130	11	0-30	
Toluene	94	103	85-127	9	0-12	
Trichloroethene	89	104	78-126	16	0-10	4
Vinyl Chloride	109	111	56-140	2	0-21	
Methyl-t-Butyl Ether (MTBE)	101	112	64-136	10	0-28	
Tert-Butyl Alcohol (TBA)	109	117	27-183	7	0-60	
Diisopropyl Ether (DIPE)	93	103	78-126	10	0-16	
Ethyl-t-Butyl Ether (ETBE)	97	107	67-133	9	0-21	
Tert-Amyl-Methyl Ether (TAME)	97	106	63-141	9	0-21	
Ethanol	90	93	11-167	4	0-64	

RPD - Relative Percent Difference, CL - Control Limit

Allama

nel c

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received: Work Order No: Preparation: Method: 10/29/08 08-10-2494 EPA 5030B EPA 8260B

Project ExxonMobil 70235

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
08-11-0642-5	Aqueous	GC/MS BB	11/07/08		11/07/08	081107S01
Parameter	MS %REC	MSD %REC	<u>%REC CL</u>	<u>RPD</u>	<u>RPD CL</u>	<u>Qualifiers</u>
Benzene	102	100	86-122	3	0-8	
Carbon Tetrachloride	110	109	78-138	1	0-9	
Chlorobenzene	100	100	90-120	0	0-9	
1,2-Dibromoethane	95	96	70-130	0	0-30	
1,2-Dichlorobenzene	100	98	89-119	2	0-10	
1,1-Dichloroethene	103	100	52-142	3	0-23	
Ethylbenzene	100	99	70-130	1	0-30	
Toluene	106	103	85-127	2	0-12	
Trichloroethene	97	100	78-126	3	0-10	
Vinyl Chloride	109	108	56-140	1	0-21	
Methyl-t-Butyl Ether (MTBE)	107	103	64-136	4	0-28	
Tert-Butyl Alcohol (TBA)	109	108	27-183	1	0-60	
Diisopropyl Ether (DIPE)	106	105	78-126	2	0-16	
Ethyl-t-Butyl Ether (ETBE)	109	105	67-133	4	0-21	
Tert-Amyl-Methyl Ether (TAME)	104	104	63-141	0	0-21	
Ethanol	89	78	11-167	14	0-64	

RPD - Relative Percent Difference, CL - Control Limit

Date Received: Work Order No: Preparation: Method: N/A 08-10-2494 EPA 3510C EPA 8015B (M)

Project: ExxonMobil 70235

Quality Control Sample ID	Matrix	Instrument	Date Instrument Prepar		Date d Analyzed		h
099-12-234-334	Aqueous	GC 47	10/31/0	8 11/03	3/08	081031810	
Parameter	LCS	6REC LCSD	%REC	<u>%REC CL</u>	<u>RPD</u>	RPD CL	Qualifiers
TPH as Motor Oil	94	10	2	75-117	9	0-13	

RPD - Relative Percent Difference , CL - Control Limit

Date Received: Work Order No: Preparation: Method: nel Ci

08-10-2494

EPA 3510C

EPA 8015B (M)

Project: ExxonMobil 70235

Quality Control Sample ID	Matrix	Instru	ument	Dat Prepa	e ired	Da Anal	te /zed	LCS/LCSD Bato Number	h
099-12-330-801	Aqueous	GC	47	10/31	/08	11/03	/08	081031B09	
Parameter	LCS %	<u> «REC</u>	LCSD 9	<u> KREC</u>	<u>%RE</u>	<u>C CL</u>	RPD	RPD CL	Qualifiers
TPH as Diesel	93		94		75-	117	1	0-13	

RPD - Relative Percent Difference, CL - Control Limit

Date Received: Work Order No: Preparation: Method: N/A 08-10-2494 EPA 5030B EPA 8015B (M)

Project: ExxonMobil 70235

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Dai Analy	te vzed	LCS/LCSD Bato Number	h
099-12-436-2,437	Aqueous	GC 24	10/29/08	10/29	/08	081029B01	
Parameter	LCS 9	6REC LCSD	%REC 9	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
TPH as Gasoline	91	90		78-120	1	0-10	

RPD - Relative Percent Difference , CL - Control Limit

nel c

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received: Work Order No: Preparation: Method: N/A 08-10-2494 EPA 5030B EPA 8021B

Project: ExxonMobil 70235

Quality Control Sample ID	Matrix	Instrum	nent Pr	Date epared	Da Anal	ate lyzed	LCS/LCSD Bato Number	h
099-12-667-255	Aqueous	GC 8	3 10	10/31/08		1/08	081031B01	
Parameter	LCS %	REC	LCSD %REC	<u>%R</u>	EC CL	RPD	RPD CL	Qualifiers
Benzene	107		107	70	0-118	0	0-9	
Toluene	100		101	6	5-114	1	0-9	
Ethylbenzene	105		104	73	2-114	2	0-9	
p/m-Xylene	109		110	74	4-116	0	0-9	
o-Xvlene	103		103	72	2-114	1	0-9	
Methyl-t-Butyl Ether (MTBE)	111		111	4	1-137	0	0-13	

RPD - Relative Percent Difference, CL - Control Limit

h. M

nel c

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received: Work Order No: Preparation: Method: N/A 08-10-2494 EPA 5030B EPA 8021B

Project: ExxonMobil 70235

Quality Control Sample ID	Matrix	Instr	ument	Dat Prepa	e red Ar	Date nalyzed	LCS/LCSD Bato Number	h
099-12-667-257	Aqueous	G	GC 8		/08 11	/04/08	081104B01	
Parameter	LCS %	<u> KREC</u>	LCSD %	REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
Benzene	105		100		70-118	5	0-9	
Toluene	98		93		66-1 14	6	0-9	
Ethylbenzene	105		98		72-114	6	0-9	
p/m-Xylene	109		103		74-116	5	0-9	
o-Xylene	102		98		72-114	4	0-9	
Methyl-t-Butyl Ether (MTBE)	105		107		41-137	2	0-13	

RPD - Relative Percent Difference, CL - Control Limit

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 • I

494 • FAX: (714) 894-7501

Date Received: Environmental Resolutions, Inc. Work Order No: 601 North McDowell Blvd. Preparation: Petaluma, CA 94954-2312 Method:

Project: ExxonMobil 70235

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Analy	nte yzed	LCS/LCSD Batch Number		
099-12-650-238	Aqueous	GC/MS L	11/06/08	11/06/08		081106L	D1	
Parameter	LCS %REC	LCSD %REC	%REC CL	ME_CL	RPD	<u>RPD CL</u>	Qualifiers	
Benzene	102	101	87-117	82-122	0	0-7		
Carbon Tetrachloride	102	103	78-132	69-141	2	0-8		
Chlorobenzene	104	104	88-118	83-123	0	0-8		
1,2-Dibromoethane	110	104	80-120	73-127	6	0-20		
1.2-Dichlorobenzene	103	102	88-118	83-123	2	0-8		
1.1-Dichloroethene	102	100	71-131	61-141	2	0-14		
Ethylbenzene	102	102	80-120	73-127	0	0-20		
Toluene	101	103	85-127	78-134	2	0-7		
Trichloroethene	101	102	85-121	79-127	1	0-11		
Vinyl Chloride	112	109	64-136	52-148	3	0-10		
Methyl-t-Butyl Ether (MTBE)	107	102	67-133	56-144	5	0-16		
Tert-Butyl Alcohol (TBA)	122	108	34-154	14-174	12	0-19		
Dijsopropyl Ether (DIPE)	100	99	80-122	73-129	1	0-8		
Ethvl-t-Butvl Ether (ETBE)	104	103	73-127	64-136	1	0-11		
Tert-Amyl-Methyl Ether (TAME)	106	102	69-135	58-146	4	0-12		
Ethanol	110	97	34-124	19-139	13	0-44		
T-tal sumber of LCS compounds : 16								

Total number of LCS compounds : 16 Total number of ME compounds : 0 Total number of ME compounds allowed : 1 LCS ME CL validation result : Pass

> CL - Control Limit RPD - Relative Percent Difference ,

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 • FAX: (714) 894-7501

N/A 08-10-2494

EPA 5030B EPA 8260B

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:

N/A 08-10-2494 EPA 5030B EPA 8260B

Project: ExxonMobil 70235

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Analy	te /zed	LCS/LCSD I Numbe	Batch
099-12-650-243	Aqueous	GC/MS BB	11/07/08	11/07/	08	081107L	01
Parameter	LCS %REC	LCSD %REC	%REC CL	ME_CL	RPD	RPD CL	Qualifiers
Benzene	98	101	87-117	82-122	3	0-7	
Carbon Tetrachloride	102	104	78-132	69-141	2	0-8	
Chlorobenzene	100	102	88-118	83-123	1	0-8	
1.2-Dibromoethane	99	98	80-120	73-127	0	0-20	
1.2-Dichlorobenzene	99	99	88-118	83-123	0	0-8	
1 1-Dichloroethene	101	99	71-131	61-141	1	0-14	
Fthylbenzene	103	102	80-120	73-127	0	0-20	
Toluene	102	98	85-127	78-134	4	0-7	
Trichloroethene	105	107	85-121	7 9- 127	2	0-11	
Vinyl Chloride	109	110	64-136	52-148	1	0-10	
Methyl-t-Butyl Ether (MTBE)	98	101	67-133	56-144	4	0-16	
Tert-Butyl Alcobol (TBA)	102	108	34-154	14-174	6	0-19	
Diisopropyl Ether (DIPE)	98	100	80-122	73-129	2	0-8	
Ethyl t Butyl Ether (ETBE)	98	104	73-127	64-136	6	0-11	
Tot-Amid-Methyl Ether (TAME)	97	102	69-135	58-146	5	0-12	
Ethanol	98	79	34-124	19-139	22	0-44	

Total number of LCS compounds : 16 Total number of ME compounds : 0 Total number of ME compounds allowed : 1 LCS ME CL validation result : Pass

> CL - Control Limit RPD - Relative Percent Difference,

ha

Glossary of Terms and Qualifiers

Work Order Number: 08-10-2494

<u>Qualifier</u>	Definition
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
А	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
Е	Concentration exceeds the calibration range.
ł	Compound did not meet method-described identification guidelines. Identification was based on additional GC/MS characteristics.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
х	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.

.....

			СНА	IN OF CL		ECORD							(24	92	7)		Pa	ge
Palasianan .	Consultant Name	e: Environmen	tal Resoluti	ons, Inc.		E	xxon	Mobi	l Engi	neer	Jerir	nifer	C. Se	odlac	chek				
- arscience	Addres	: 601 North N	CDowell Bo	oulevard			Tela	phon	e Nur	mber	(510) 547	7-819	96					
aboratories, Inc.	City/State/Zi	p: Petaluma, C	alifornia 94	4954				1	Accou	int#:									_
7440 Lincoln Way	Project Manage	er Paula Sime				-			F	PO #:	451	0174	131					11.1	
Garden Grove, CA 92841	Telephone Numbe	r: (707) 766-2	000					F	acility	/ 1D #	702	35							
TEL: (714) 895-5494	ERI Job Numbe	r: 222903X							Globa	il ID#	T06	0010	1354	1					_
FAX: (714) 894-7501	Sampler Name: (Prin	it) Rebalu	th Alle	tr/e		-		Sit	e Add	iress	222	5 Tel	egra	ph A	venu	8			
ExonMobil	Sampler Signatur	e: Yhyl	Aul Mel	A'				City	, Stat	e Zip	Oak	land,	Cali	forni	a	_			_
Shipping Method: 🗹 Lab Courier 🗌 H	and Deliver 🗌 Comm	ercial Express	Othe	r:		-							-	N.	7	- W 2		-	
TAT PROVID	E: Special Inst	ructions:		STOP 1	NDE 12 D			Matri	×		r	6		Ana	alyze	For:		121	-
24 hour 72 hour EDF	Report 7 CA Oxys	el cleanup 1	or all TPH	i, ETBE, L id analysi	DIPE, 1,∠-D 8\$.	CA, EDB.				28	58	1801	18	Zeob	60B		E S	8	
48 hour 96 hour	Set TBA d	etection limit	<12 ug/L.							801	801	tor o	802	ys 8	0182		826	eac	
8 day	HQVs - 80	10 List by 82	2608	L	[1	ter	1	ğ	먹	BH	H	M	0 X	han		ŐÇ	tal	
Sample ID / Description	DATE	TIME	COMP	GRAB	PRESERV	NUMBER	ŝ	ő	<al></al>	11	F	₽.	8	2	Ш	- 1		Ĕ	
W- 15 - CPT2	10/27/08	9:50		X	- HCI	2L	X			Х	X	X	X	X	X	2			
W- 29 - CPT2	1	10:40		X	HCI	6 VOA	X				X		X	X	X	- 11			
W- 39 - CPT		12:00		X	HCI	6 VOA	X	-	-	X	X	X	X	X	X		-		
		-					\vdash	┢	$\frac{1}{1}$	┢	┢	\vdash			1			+	
		-																	_
							<u> </u>	-	-		ļ	<u> </u>			-			-	N)
		+	<u> </u>				\vdash	+	-	-	┝	┢	\vdash	\vdash	-			+	-
			+				+-	+	┢╌	┢	\vdash			\vdash	\square				
					00				1										
Relinquished by:	Date 103002	Time \\	CO.	Received	by: 6	× (5	-09	Tim	111	50	Lab	Terr Sarr	ry Co iperat iple C	omme ture U Contair	nts: pon R ners Ir	ecelpt: ntact?		
Relinquished by:	Date U-JOUU	Time \	100	Received	by: UUU	um			1 mil		10	1	VUA	s rre	e or F	Teads	Jeice (-
675 9063 9250	10/29/08	10	15						1	025	110	8							

Page 1 of 1

	лер #: 08- [] [0 -[2	Page 22 of 23
Environmental SAMDLE RE		
Laboratories, inc.		
CLIENT: ERT	DATE: _	10129108
TEMPERATURE: (Criteria: 0.0 °C – 6.0 °C, not frozen)		
Temperature $1.4^{\circ}C + 1.8^{\circ}C(CF) =$	<u>3.2_</u> °C □Blank 4	18ample
Sample(s) outside temperature criteria (PM/APM contact	ed by:).	
☐ Sample(s) outside temperature criteria but received on id	e/chilled on same day of sampling	J.
Received at ambient temperature, placed on ice for	r transport by Courier.	
Ambient Temperature: Air Filter		Initial: <u>M</u>
CUSTODY SEALS INTACT:		
Cooler No (Not Intact)	Not Present	Initial: <u>M</u>
□ Sample □ □ No (Not Intact)	🛱 Not Present	Initial: <u>47.S.C</u>
SAMPLE CONDITION:		
	Yes No	N/A
Chain-Ot-Custody document(s) received with samples		
Sampler's name indicated on COC		
Sample container label(s) consistent with COC		
Sample container(s) intact and good condition		
Correct containers and volume for analyses requested		
Proper preservation noted on sample label(s)		
Volatile analysis container(s) free of headspace		
Tedlar bag(s) free of condensation		× I
CONTAINER TYPE:		
Solid: 🗆 4ozCGJ 🗆 8ozCGJ 🗆 16ozCGJ 🗇 Sleeve	EnCores® TerraCores®	,
Water: □VOA ŹVŎAh □VOAna₂ □125AGB [□125AGBh □125AGBpo₄ 🛛	1AGB 1AGBna2
□1AGBs □500AGB □500AGBs □250CGB □25	0CGBs	500PBna 🗆 250PB
□250PBn □125PB □125PBznna □100PBsterile	□100PBna ₂ □	
Air: Tedlar® Summa® Container: C:Clear A:Amber P:Poly/Plastic G:Glass J:Jar B:Bottle Preservative: h:HCL n:HNO3 na2:Na2S2O3 na:NaOH po4:H3PO4	Checke s:H₂SO₄ znna :ZnAc₂+NaOH	d/Labeled by: <u>んじく</u> Reviewed by: <u>P</u> Scanned by: <u>んん</u> えく

SOP T100_090 (10/23/08)

÷

ļ

.

WORK ORDER #: 08-10-2494

Laboratories, Inc. SAMPLE ANOMALY FORM

Calscience

nvironmental

CHAIN OF	CUSTODY	(COC):			Comn	nents:						
☐ Not rel ☐ No dat ☐ COC n ☐ Incom	inquished by e/time relinqu ot received w olete informat	client – no iished ith samples tion regardi										
SAMPLES	- CONTAIN	ERS & LA	BELS:		Com	ments:						
☐ Sample ☐ Sample ☐ Holdin ☐ Insuffie ☐ Insuffie ☐ Sample ☐ Sample ☐ Sample ☐ Sample ☐ P ☐ # ☐ Sample	es NOT RECE es received b g time expired cient quantition per container(servative not e labels illegil e labels do no ample ID's mate and Time roject Information of containers of	IVED but lis ut NOT LIS d – list samples for analy s) used – lis ed on label ble – note te ble – note te ble – note te ble atton collected atton	sted on CO TED on CO ole ID(s) an rsis – list te st test – list test a ost/containe DC – Note i	DC DC and test est and notify lab er type in comments								
	eaking roken					14.						
	/ithout Labels	5										
Other:												
VOA HEA	DSPACE - C	Containers	with Bub	ble > 6mm o	or ¼ inch:							
Sample #	Container ID(s)	# of Vials Received	Sample #	Container ID(s)	# of Vials Received	Sample #	Container ID(s)	# of Vials Received				
	F	6										
3	EF	6										
Commonto			8	+								
comments.	, on ments.											
					Initia	and Date	1075C 10.	-29-0h				
131					mua		VULL 10	-1 -0				

SOP T100_081 (09/19/08)

November 06, 2008

Paula Sime Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312 NOV 1 0 2008

BY:-----

Subject: Calscience Work Order No.: 08-10-2157 Client Reference: ExxonMobil 70235

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 10/24/2008 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

Note that the Chain-of-Custody Record and Sample Receipt Form are integral parts of this report.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Cecile & en Sain

Calscience Environmental Laboratories, Inc. Cecile deGuia Project Manager

CA-ELAP ID: 1230 • NELAP ID: 03220CA • CSDLAC ID: 10109 • SCAQMD ID: 93LA0830 7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 • FAX: (714) 894-7501

Page 1 of 1

Analytical Report

Environmental Resolutions, Inc.	Date Received:	10/24/08
601 North McDowell Blvd. Petaluma, CA 94954-2312	Work Order No: Preparation: Method:	08-10-2157 EPA 3510C EPA 8015B (M)

Project: ExxonMobil 70235

Client Sample Numb	er		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
W-41-CPT3			08-10-2157-2-G	10/23/08 15:30	Aqueous	GC 43	10/29/08	11/04/08 12:58	081029B18
Comment(s):	-The sample extract was	s subjected to	o Silica Gel treatment	prior to analys	sis.				
Parameter		<u>Result</u>	RL	DF	Qual	Units			
TPH as Motor Oil		ND	250	1		ug/L			
Surrogates:		<u>REC (%)</u>	Control Limits		Qual				
Decachlorobiphenyl		117	68-140						
Method Blank			099-12-234-333	N/A	Aqueous	GC 43	10/29/08	10/31/08 15:23	081029B18
Parameter		Result	<u>RL</u>	DF	Qual	<u>Units</u>			
TPH as Motor Oil		ND	250	1		ug/L			
Surrogates:		<u>REC (%)</u>	Control Limits		Qual				
Decachlorobiphenyl		97	68-140						

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

Page 1 of 1

ł

Analytical Report

Environmental Resolutions, Inc.	Date Received:	10/24/08
601 North McDowell Blvd.	Work Order No:	08-10-2157
Petaluma, CA 94954-2312	Preparation:	EPA 3510C
	Method:	EPA 8015B (M)

Project: ExxonMobil 70235

Client Sample Numb	er		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
W-41-CPT3			08-10-2157-2-G	10/23/08 15:30	Aqueous	GC 43	10/29/08	11/04/08 12:58	081029B17	
Comment(s):	-The sample extract wa	s subjected to	o Silica Gel treatment	t prior to analy:	sis.					-
Parameter		Result	<u>RL</u>	DF	<u>Qual</u>	<u>Units</u>				
TPH as Diesel		470	50	1		ug/L				
Surrogates:		<u>REC (%)</u>	Control Limits		Qual					
Decachlorobiphenyl		117	68-140							
Method Blank			0 99 -12-330-800	N/A	Aqueous	GC 43	10/29/08	10/31/08 15:23	081029B17	
Parameter		<u>Result</u>	RL	DE	Qual	<u>Units</u>				
TPH as Diesel		ND	50	1		ug/L				
Surrogates:		<u>REC (%)</u>	Control Limits		Quai					
Decachlorobiphenvl		97	68-140							

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

Mulum

ļ,

Analytical Report

Environmental Resolutions, Inc.			Date Re	ceived:				10/24/08	
601 North McDowell Blvd.			Work Order No:				08-10-2157		
Petaluma, CA 94954-2312			Preparation:				EF	PA 5030B	
			Method:				EPA 8	3015B (M)	
Project: ExxonMobil 70235							Pa	age 1 of 1	
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
W-14-CPT3		08-10-2157-1-F	10/23/08 12:30	Aqueous	GC 18	10/27/08	10/27/08 14:13	081027B01	
Parameter	Result	RL	DE	Qual	Units				
TPH as Gasoline	20000	1000	20		ug/L				
Surrogates:	<u>REC (%)</u>	Control Limits		Qual					
1,4-Bromofluorobenzene	131	38-134							
W-41-CPT3		08-10-2157-2-D	10/23/08 15:30	Aqueous	GC 18	10/24/08	10/24/08 23:37	081024B01	
Parameter	Result	RL	DE	Qual	Units				
TPH as Gasoline	84	50	1		ug/L				
Surrogates:	<u>REC (%)</u>	Control Limits		Qual					
1,4-Bromofluorobenzene	118	38-134							
Method Blank		099-12-436-2,419	N/A	Aqueous	GC 18	10/24/08	10/24/08 11:24	081024B01	
Parameter	Result	<u>RL</u>	DF	Qual	<u>Units</u>				
TPH as Gasoline	ND	50	1		ug/L				
Surrogates:	<u>REC (%)</u>	Control Limits		Qual					
1,4-Bromofluorobenzene	112	38-134							
Method Blank		099-12-436-2,426	N/A	Aqueous	GC 18	10/27/08	10/27/08 10:17	081027B01	
Parameter	Result	RL	DF	Qual	Units				
TPH as Gasoline	ND	50	1		ug/L				
Surrogates:	<u>REC (%)</u>	Control Limits		Qual	0				
1,4-Bromofluorobenzene	47	38-134							

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

Analytical Report

	and the second se										
Environmental Resolut	tions, Inc.				Date Rec	eived:				10	/24/08
601 North McDowell B	lvd.				Work Ord	der No:			C	8-10)-2157
Petaluma, CA 94954-2	2312				Prenarati	00.			5	DA	5030D
	-012				Mothod	011.					00000
					wethod.				E	:PA	8021B
					Units:						ug/L
Project: ExxonMobil 7	0235								F	'age	1 of 1
Client Sample Number			La	ab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Tim Analyze	ie d Q	C Batch ID
W-14-CPT3			08-10 -3	2157-1-E	10/23/08 12:30	Aqueous	GC 8	10/28/08	10/29/0 00:02	3 0	81028B01
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
Benzene	4200	5.0	10		Ethvlbenzene			860	50	10	4(40)
Toluene	2400	5.0	10		Xylenes (total)			4100	10	10	
Surrogates:	<u>REC (%)</u>	<u>Control</u>		<u>Qual</u>							
1,4-Bromofluorobenzene	125	<u>Limits</u> 70-130									
W-41-CPT3			08-10-	21 57-2- Е	10/23/08 15:30	Aqueous	GC 8	10/28/08	10/28/0 23:29	3 0	81028B01
Parameter	Result	RL	DF	Qual	Parameter			Result		DE	Qual
Benzene	27	0.50	1		Ethvlbenzene			3.5	0.50	1	<u></u>
Toluene	10	0.50	1		Xylenes (total)			18	1.0	1	
Surrogates:	<u>REC (%)</u>	Control		<u>Qual</u>						•	
1,4-Bromofluorobenzene	111	<u>Limits</u> 70-130									
Method Blank			099-12	-667-251	N/A	Aqueous	GC 8	10/28/08	10/28/0 11:35	B 0	81028B01
Parameter	Result	Ð	DE	Qual	Parameter			Deput			Qual
Renzene	ND		1	Guai	Ethylhonzono				<u>KL</u>	<u>יוט</u>	Qual
Toluene	ND	0.50	1		Xvienes (total)				1.0	1	
Surrogates:	REC (%)	<u>Control</u>	1	Qual	Agrence (total)				1.0	100	
1,4-Bromofluorobenzene	113	<u>Limits</u> 70-130									

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

Analytical Report

Environmental Resolutio	ns, Inc.				Date Re	ceived:				10/24/08	
601 North McDowell Blvg	d.				Work Or	der No:			0	8-10-2157	
Petaluma CA 94954-23	12				Prenarat	ion'			Ē	PA 5030B	
· • • • • • • • • • • • • • • • • • • •	12										
					Methoa:				E	PA 8260B	
					Units:					ug/L	
Project: ExxonMobil 702	235								P	age 1 of 1	
Client Sample Number			La N	b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Tim Analyzed	e J QC Batch ID	
W-14-CPT3			08-10-2	2157 -1-A	10/23/08 12:30	Aqueous	GC/MS L	11/04/08	11/04/08 14:08	081104L01	
Parameter	<u>Result</u>	<u>RL</u>	DF	Qual	Parameter			Result	RL	DF Qual	
1,2-Dibromoethane	ND	10	20	11	Diisopropyl Et	ther (DIPE)		ND	10	20	
1,2-Dichloroethane	ND	10	20		Ethyl-t-Butyl E	ther (ETBE)		ND	10	20	
Methyl-t-Butyl Ether (MTBE)	59	10	20		Tert-Amyl-Me	thyl Ether (TA	ME)	ND	10	20	
Tert-Butyl Alcohol (TBA)	260	100	20		Ethanol		·	ND	1000	20	
Surrogates:	<u>REC (%)</u>	<u>Control</u>		Qual	Surrogates:			REC (%)	Control	Qual	
		Limits							Limits		
1,2-Dichloroethane-d4	102	73-1 57			Dibromofluoro	omethane		100	82-142		
Toluene-d8	98	82-112			1,4-Bromofluc	probenzene		98	75-105		
W-41-CPT3			08-10-2	2157-2-A	10/23/08	Aqueous	GC/MS L	11/04/08	11/04/08	081104L01	
					15:30				19:35		
Parameter	Result	<u>RL</u>	DF	Qual	15:30 Parameter			Result	19:35	<u>DF Qual</u>	
Parameter 1,2-Dibromoethane	<u>Result</u> ND	<u>RL</u> 0.50	DF 1	Qual	15:30 Parameter Diisopropyl Et	ther (DIPE)		Result ND	19:35 <u>RL</u> 0.50	<u>DE Qual</u> 1	
Parameter 1,2-Dibromoethane 1,2-Dichloroethane	<u>Result</u> ND ND	<u>RL</u> 0.50 0.50	<u>DF</u> 1 1	Qual	15:30 Parameter Diisopropyl Et Ethyl-t-Butyl E	ther (DIPE)		Result ND ND	19:35 <u>RL</u> 0.50 0.50	DF Qual 1	
Parameter 1,2-Dibromoethane 1,2-Dichloroethane Methyl-t-Butyl Ether (MTBE)	<u>Result</u> ND ND 1.9	<u>RL</u> 0.50 0.50 0.50	<u>DF</u> 1 1 1	Qual	15:30 Parameter Diisopropyl Et Ethyl-t-Butyl E Tert-Amyl-Me	ther (DIPE) Ether (ETBE)		Result ND ND ND	RL 0.50 0.50 0.50 0.50	<u>DF Qual</u> 1 1	
Parameter 1,2-Dibromoethane 1,2-Dichloroethane Methyl-t-Butyl Ether (MTBE) Tert-Butyl Alcohol (TBA)	<u>Result</u> ND ND 1.9 ND	<u>RL</u> 0.50 0.50 0.50 5.0	<u>DF</u> 1 1 1	Qual	15:30 Parameter Diisopropyl Et Ethyl-t-Butyl E Tert-Amyl-Me Ethanol	ther (DIPE) Ether (ETBE) thyl Ether (T <i>F</i>	AME)	Result ND ND ND ND	RL 0.50 0.50 0.50 50	DF Qual 1 1 1	
Parameter 1,2-Dibromoethane 1,2-Dichloroethane Methyl-t-Butyl Ether (MTBE) Tert-Butyl Alcohol (TBA) <u>Surrogates:</u>	<u>Result</u> ND ND 1.9 ND <u>REC (%)</u>	<u>RL</u> 0.50 0.50 0.50 5.0 <u>Control</u>	<u>DF</u> 1 1 1	Qual Qual	15:30 Parameter Diisopropyl El Ethyl-t-Butyl E Tert-Amyl-Me Ethanol Surrogates:	ther (DIPE) Ether (ETBE) thyl Ether (TA	ME)	Result ND ND ND ND REC (%)	19:35 <u>RL</u> 0.50 0.50 0.50 50 <u>Control</u>	DF Qual 1 1 1 1 <u>Qual</u>	
Parameter 1,2-Dibromoethane 1,2-Dichloroethane Methyl-t-Butyl Ether (MTBE) Tert-Butyl Alcohol (TBA) <u>Surrogates:</u>	Result ND ND 1.9 ND REC (%)	RL 0.50 0.50 0.50 5.0 <u>Control</u> Limits	<u>DF</u> 1 1 1	Qual Qual	15:30 Parameter Diisopropyl El Ethyl-t-Butyl E Tert-Amyl-Me Ethanol Surrogates:	ther (DIPE) Ether (ETBE) thyl Ether (TA	AME)	Result ND ND ND ND REC (%)	RL 0.50 0.50 0.50 0.50 0.50 <u>Control</u> Limits	DF Qual 1 1 1 1 Qual	
Parameter 1,2-Dibromoethane 1,2-Dichloroethane Methyl-t-Butyl Ether (MTBE) Tert-Butyl Alcohol (TBA) <u>Surrogates:</u> 1,2-Dichloroethane-d4 Toluono d8	Result ND ND 1.9 ND REC (%) 116	<u>RL</u> 0.50 0.50 5.0 <u>Control</u> <u>Limits</u> 73-157	<u>DF</u> 1 1 1	Qual Qual	15:30 Parameter Diisopropyl El Ethyl-t-Butyl E Tert-Amyl-Me Ethanol Surrogates: Dibromofluoro	ther (DIPE) Ether (ETBE) thyl Ether (TA	AME)	Result ND ND ND REC (%) 114	19:35 <u>RL</u> 0.50 0.50 0.50 50 <u>Control</u> <u>Limits</u> 82-142 82-142	DF Qual 1 1 1 1 Qual	
Parameter 1,2-Dibromoethane 1,2-Dichloroethane Methyl-t-Butyl Ether (MTBE) Tert-Butyl Alcohol (TBA) <u>Surrogates:</u> 1,2-Dichloroethane-d4 Toluene-d8	<u>Result</u> ND 1.9 ND <u>REC (%)</u> 116 98	<u>RL</u> 0.50 0.50 5.0 <u>Control</u> <u>Limits</u> 73-157 82-112	<u>DF</u> 1 1 1	Qual	15:30 Parameter Diisopropyl El Ethyl-t-Butyl E Tert-Amyl-Me Ethanol Surrogates: Dibromofluoro 1,4-Bromofluor	ther (DIPE) Ether (ETBE) thyl Ether (TA probenzene	AME)	Result ND ND ND REC (%) 114 100	19:35 <u>RL</u> 0.50 0.50 50 <u>Control</u> <u>Limits</u> 82-142 75-105	DF Qual 1 1 1 1 <u>Qual</u>	
Parameter 1,2-Dibromoethane 1,2-Dichloroethane Methyl-t-Butyl Ether (MTBE) Tert-Butyl Alcohol (TBA) <u>Surrogates:</u> 1,2-Dichloroethane-d4 Toluene-d8 Method Blank	Result ND 1.9 ND REC (%) 116 98	RL 0.50 0.50 5.0 <u>Control</u> Limits 73-157 82-112	<u>DF</u> 1 1 1 1 099-12-	Qual Qual 650-237	15:30 Parameter Diisopropyl El Ethyl-t-Butyl E Tert-Amyl-Me Ethanol Surrogates: Dibromofluoro 1,4-Bromofluo N/A	ther (DIPE) Ether (ETBE) thyl Ether (TA protentane probenzene Aqueous	AME) GC/MS L	Result ND ND ND REC (%) 114 100 11/04/08	19:35 <u>RL</u> 0.50 0.50 50 <u>Control</u> <u>Limits</u> 82-142 75-105 11/04/08 12:19	DF Qual 1 1 1 Qual 3 081104L01	
Parameter 1,2-Dibromoethane 1,2-Dichloroethane Methyl-t-Butyl Ether (MTBE) Tert-Butyl Alcohol (TBA) <u>Surrogates:</u> 1,2-Dichloroethane-d4 Toluene-d8 Method Blank Parameter	Result ND 1.9 ND REC (%) 116 98	RL 0.50 0.50 5.0 <u>Control</u> Limits 73-157 82-112 RL	DF 1 1 1 1 099-12: DF	Qual Qual -650-237	15:30 Parameter Diisopropyl Et Ethyl-t-Butyl E Tert-Amyl-Me Ethanol Surrogates: Dibromofluor 1,4-Bromofluor N/A Parameter	ther (DIPE) Ether (ETBE) thyl Ether (TA pomethane probenzene Aqueous	AME) GC/MS L	Result ND ND ND ND 114 100 11/04/08	19:35 <u>RL</u> 0.50 0.50 50 <u>Control</u> <u>Limits</u> 82-142 75-105 11/04/08 12:19 <u>RL</u>	DF Qual 1 1 1 Qual 3 081104L01 DF Qual	
Parameter 1,2-Dibromoethane 1,2-Dichloroethane Methyl-t-Butyl Ether (MTBE) Tert-Butyl Alcohol (TBA) Surrogates: 1,2-Dichloroethane-d4 Toluene-d8 Method Blank Parameter 1,2-Dibromoethane	Result ND 1.9 ND REC (%) 116 98 Result ND	RL 0.50 0.50 5.0 <u>Control</u> Limits 73-157 82-112 RL 0.50	DF 1 1 1 1 099-12: DF 1	Qual Qual -650-237	15:30 Parameter Diisopropyl Et Ethyl-t-Butyl E Tert-Amyl-Me Ethanol Surrogates: Dibromofluor 1,4-Bromofluor N/A Parameter Diisopropyl Et	ther (DIPE) Ether (ETBE) thyl Ether (TA pomethane probenzene Aqueous	AME) GC/MS L	Result ND ND ND ND 114 100 11/04/08 Result ND	19:35 <u>RL</u> 0.50 0.50 50 <u>Control</u> <u>Limits</u> 82-142 75-105 11/04/08 12:19 <u>RL</u> 0.50	DF Qual 1 1 1 Qual 3 081104L01 DF Qual 1	
Parameter 1,2-Dibromoethane 1,2-Dichloroethane Methyl-t-Butyl Ether (MTBE) Tert-Butyl Alcohol (TBA) Surrogates: 1,2-Dichloroethane-d4 Toluene-d8 Method Blank Parameter 1,2-Dibromoethane 1,2-Dichloroethane 1,2-Dichloroethane	Result ND 1.9 ND REC (%) 116 98 Result ND	<u>RL</u> 0.50 0.50 5.0 <u>Control</u> <u>Limits</u> 73-157 82-112 <u>RL</u> 0.50 0.50	<u>DF</u> 1 1 1 1 099-12: <u>DF</u> 1 1	Qual Qual -650-237 Qual	15:30 Parameter Diisopropyl Et Ethyl-t-Butyl E Tert-Amyl-Me Ethanol Surrogates: Dibromofluor 1,4-Bromofluor N/A Parameter Diisopropyl Et Ethyl-t-Butyl E	ther (DIPE) Ether (ETBE) thyl Ether (TA pomethane probenzene Aqueous ther (DIPE) Ether (ETBE)	AME) GC/MS L	Result ND ND ND ND 114 100 11/04/08 Result ND	19:35 <u>RL</u> 0.50 0.50 50 <u>Control</u> <u>Limits</u> 82-142 75-105 11/04/08 12:19 <u>RL</u> 0.50 0.50 0.50	DF Qual 1 1 1 Qual 3 081104L01 DF Qual 1	
Parameter 1,2-Dibromoethane 1,2-Dichloroethane Methyl-t-Butyl Ether (MTBE) Tert-Butyl Alcohol (TBA) Surrogates: 1,2-Dichloroethane-d4 Toluene-d8 Method Blank Parameter 1,2-Dibromoethane 1,2-Dichloroethane Methyl-t-Butyl Ether (MTBE)	Result ND 1.9 ND REC (%) 116 98 Result ND ND	RL 0.50 0.50 5.0 <u>Control</u> Limits 73-157 82-112 RL 0.50 0.50 0.50 0.50	DF 1 1 1 1 099-12: DF 1 1 1	Qual Qual -650-237	15:30 Parameter Diisopropyl Et Ethyl-t-Butyl E Tert-Amyl-Me Ethanol Surrogates: Dibromofluor 1,4-Bromofluor N/A Parameter Diisopropyl Et Ethyl-t-Butyl E Tert-Amyl-Me	ther (DIPE) Ether (ETBE) thyl Ether (TA pomethane probenzene Aqueous ther (DIPE) Ether (ETBE)	AME) GC/MSL	Result ND ND ND ND 114 100 11/04/08 Result ND ND	19:35 <u>RL</u> 0.50 0.50 50 <u>Control</u> <u>Limits</u> 82-142 75-105 11/04/08 12:19 <u>RL</u> 0.50 0.50 0.50 0.50	DF Qual 1 1 1 Qual 3 081104L01 DF Qual 1 1	
Parameter 1,2-Dibromoethane 1,2-Dichloroethane Methyl-t-Butyl Ether (MTBE) Tert-Butyl Alcohol (TBA) Surrogates: 1,2-Dichloroethane-d4 Toluene-d8 Method Blank Parameter 1,2-Dibromoethane 1,2-Dichloroethane Methyl-t-Butyl Ether (MTBE) Tert-Butyl Alcohol (TBA)	Result ND 1.9 ND REC (%) 116 98 Result ND ND ND ND	RL 0.50 0.50 5.0 <u>Control</u> Limits 73-157 82-112 RL 0.50 0.50 0.50 0.50 5.0	DF 1 1 1 1 099-12: DF 1 1 1 1	Qual Qual -650-237 Qual	15:30 Parameter Diisopropyl Eth Ethyl-t-Butyl E Tert-Amyl-Me Ethanol Surrogates: Dibromofluor 1,4-Bromofluor 1,4-Bromofluor N/A Parameter Diisopropyl Et Ethyl-t-Butyl E Tert-Amyl-Me Ethanol	ther (DIPE) Ether (ETBE) thyl Ether (TA pomethane probenzene Aqueous ther (DIPE) Ether (ETBE)	AME) GC/MSL	Result ND ND ND ND 114 100 11/04/08 Result ND ND ND ND	19:35 <u>RL</u> 0.50 0.50 50 <u>Control</u> <u>Limits</u> 82-142 75-105 11/04/08 12:19 <u>RL</u> 0.50 0.50 0.50 0.50 50 50 50 50 50 50 50 50 50	DF Qual 1 1 1 Qual 3 081104L01 DF Qual 1 1 1 1	
Parameter 1,2-Dibromoethane 1,2-Dichloroethane Methyl-t-Butyl Ether (MTBE) Tert-Butyl Alcohol (TBA) Surrogates: 1,2-Dichloroethane-d4 Toluene-d8 Method Blank Parameter 1,2-Dichloroethane 1,2-Dibromoethane Method Blank Parameter 1,2-Dichloroethane Methyl-t-Butyl Ether (MTBE) Tert-Butyl Alcohol (TBA) Surrogates:	Result ND 1.9 ND REC (%) 116 98 Result ND ND	RL 0.50 0.50 5.0 <u>Control</u> Limits 73-157 82-112 RL 0.50 0.50 0.50 0.50 5.0 <u>Control</u> Limits	<u>DF</u> 1 1 1 1 099-12- 099-12- 1 1 1 1	Qual Qual -650-237 Qual	15:30 Parameter Diisopropyl El Ethyl-t-Butyl E Tert-Amyl-Me Ethanol Surrogates: Dibromofluoro 1,4-Bromofluo N/A Parameter Diisopropyl El Ethyl-t-Butyl E Tert-Amyl-Me Ethanol Surrogates:	ther (DIPE) Ether (ETBE) thyl Ether (TA probenzene Aqueous ther (DIPE) Ether (ETBE) thyl Ether (TA	AME) GC/MSL	Result ND ND REC (%) 114 100 11/04/08 Result ND ND ND Result ND	19:35 <u>RL</u> 0.50 0.50 <u>50</u> <u>Control</u> <u>Limits</u> 82-142 75-105 11/04/08 12:19 <u>RL</u> 0.50 0.50 0.50 50 <u>Control</u> <u>Limits</u>	DF Qual 1 1 1 Qual 3 081104L01 DF Qual 1 1 1 Qual	
Parameter 1,2-Dibromoethane 1,2-Dichloroethane Methyl-t-Butyl Ether (MTBE) Tert-Butyl Alcohol (TBA) Surrogates: 1,2-Dichloroethane-d4 Toluene-d8 Method Blank Parameter 1,2-Dichloroethane 1,2-Dibromoethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane Methyl-t-Butyl Ether (MTBE) Tert-Butyl Alcohol (TBA) Surrogates: 1,2-Dichloroethane	Result ND 1.9 ND REC (%) 116 98 Result ND REC (%) 81	RL 0.50 0.50 5.0 <u>Control</u> Limits 73-157 82-112 RL 0.50 0.50 0.50 5.0 <u>Control</u> Limits 73-157	<u>DF</u> 1 1 1 1 099-12- 099-12- 1 1 1 1	Qual Qual -650-237 Qual Qual	15:30 Parameter Diisopropyl El Ethyl-t-Butyl E Tert-Amyl-Me Ethanol Surrogates: Dibromofluoro 1,4-Bromofluo N/A Parameter Diisopropyl El Ethyl-t-Butyl E Tert-Amyl-Me Ethanol Surrogates: Dibromofluoro	ther (DIPE) Ether (ETBE) thyl Ether (TA probenzene Aqueous ther (DIPE) Ether (ETBE) thyl Ether (TA	AME) GC/MSL	Result ND ND ND 114 100 11/04/08 Result ND ND ND 11/04/08 Result ND ND	19:35 <u>RL</u> 0.50 0.50 50 <u>Control</u> <u>Limits</u> 82-142 75-105 11/04/08 12:19 <u>RL</u> 0.50 0.50 0.50 50 <u>Control</u> <u>Limits</u> 82-142	DF Qual 1 1 1 Qual 3 081104L01 DF Qual 1 1 1 Qual	

RL - Reporting Limit , DF - Dilution Factor Qual - Qualifiers

Calscience nvironmental Quality Control - Spike/Spike Duplicate aboratories, Inc.

Environmental Resolutions, Inc.	Date Received:	10/24/08
601 North McDowell Blvd.	Work Order No:	08-10-2157
Petaluma, CA 94954-2312	Preparation:	EPA 5030B
	Method:	EPA 8015B (M)

Project ExxonMobil 70235

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
08-10-2019-1	Aqueous	GC 18	10/24/08		10/24/08	081024S01
Parameter	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
TPH as Gasoline	92	89	68-122	3	0-18	

RPD - Relative Percent Difference, CL - Control Limit

Calscience nvironmental Quality Control - Spike/Spike Duplicate aboratories, Inc.

Environmental Resolutions, Inc.	Date Received:	10/24/08
601 North McDowell Blvd.	Work Order No:	08-10-2157
Petaluma, CA 94954-2312	Preparation:	EPA 5030B
	Method:	EPA 8015B (M)

Project ExxonMobil 70235

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
08-10-2270-1	Aqueous	GC 18	10/27/08		10/27/08	081027501
Parameter	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
TPH as Gasoline	87	87	68-122	0	0-18	

RPD - Relative Percent Difference, CL - Control Limit

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 •

5494 • FAX: (714) 894-7501

alscience nvironmental aboratories, Inc.

Quality Control - Spike/Spike Duplicate

Environmental Resolutions, Inc.	Date Received:	10/24/08
601 North McDowell Blvd.	Work Order No:	08-10-2157
Petaluma, CA 94954-2312	Preparation:	EPA 5030B
	Method:	EPA 8021B

Project ExxonMobil 70235

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
08-10-2272-1	Aqueous	GC 8	10/28/08		10/28/08	081028501
Parameter	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	113	108	57-129	4	0-23	
Toluene	108	103	50-134	5	0-26	
Ethylbenzene	108	108	58-130	0	0-26	
p/m-Xylene	110	111	58-130	1	0-28	
o-Xylene	107	108	57-123	1	0-26	
Methyl-t-Butyl Ether (MTBE)	106	107	44-134	1	0-27	

RPD - Relative Percent Difference, CL - Control Limit

Calscience nvironmental Quali *Laboratories, Inc.*

Quality Control - Spike/Spike Duplicate

Environmental Resolutions, Inc.Date Received:10/24/08601 North McDowell Blvd.Work Order No:08-10-2157Petaluma, CA 94954-2312Preparation:EPA 5030BMethod:EPA 8260B

Project ExxonMobil 70235

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
08-10-2160-18	Aqueous	GC/MS L	11/04/08		11/04/08	081104S01
Parameter	MS %REC	MSD %REC	<u>%REC CL</u>	RPD	RPD CL	Qualifiers
Benzene	104	103	86-122	1	0-8	
Carbon Tetrachloride	105	102	78-138	4	0-9	
Chlorobenzene	102	99	90-120	3	0-9	
1,2-Dibromoethane	108	102	70-130	5	0-30	
1,2-Dichlorobenzene	107	99	89-119	8	0-10	
1,1-Dichloroethene	111	108	52-142	2	0-23	
Ethylbenzene	100	99	70-130	2	0-30	
Toluene	93	90	85-127	4	0-12	
Trichloroethene	95	94	78-126	1	0-10	
Vinyl Chloride	104	103	56-140	1	0-21	
Methyl-t-Butyl Ether (MTBE)	44	83	64-136	10	0-28	3
Tert-Butyl Alcohol (TBA)	114	106	27-183	7	0-60	
Diisopropyl Ether (DIPE)	103	102	78-126	0	0-16	
Ethyl-t-Butyl Ether (ETBE)	104	102	67-133	2	0-21	
Tert-Amyl-Methyl Ether (TAME)	108	103	63-141	4	0-21	
Ethanol	102	88	11-167	15	0-64	

RPD - Relative Percent Difference , CL - Control Limit

MM

alscience nvironmental Quality Control - LCS/LCS Duplicate aboratories, Inc.

Environmental Resolutions, Inc.	Date Received:	N/A
601 North McDowell Blvd.	Work Order No:	08-10-2157
Petaluma, CA 94954-2312	Preparation:	EPA 3510C
	Method:	EPA 8015B (M)

Project: ExxonMobil 70235

Quality Control Sample ID	Matrix	Instrument		Date ment Prepared		Date ed Analyzed		LCS/LCSD Batc Number	h
099-12-234-333	Aqueous	GC	43	10/29	/08	10/31	/08	081029B18	
Parameter	LCS %	KREC	LCSD	<u>%REC</u>	<u>%RE</u>	C CL	<u>RPD</u>	RPD CL	Qualifiers
TPH as Motor Oil	103		102		75	-117	1	0-13	

RPD - Relative Percent Difference, CL - Control Limit

Environmental Resolutions, Inc. 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received:	N/A
Work Order No:	08-10-2157
Preparation:	EPA 3510C
Method:	EPA 8015B (M)

Project: ExxonMobil 70235

Quality Control Sample ID	Matrix	Instrument		Date ent Prepared		e Date red Analyzed		LCS/LCSD Batc Number	h
099-12-330-800	Aqueous	GC	43	10/29	/08	10/3 ⁻	/08	081029B17	
Parameter	LCS	%REC	LCSD 9	6REC	<u>%R</u>	EC CL	RPD	RPD CL	Qualifiers
TPH as Diesel	91		83	3.4	75	-117	10	0-13	

RPD - Relative Percent Difference, CL - Control Limit

Calscience nvironmental Quality Control - LCS/LCS Duplicate *aboratories, Inc.*

Environmental Resolutions, Inc.	Date Received:	N/A
601 North McDowell Blvd.	Work Order No:	08-10-2157
Petaluma, CA 94954-2312	Preparation:	EPA 5030B
	Method:	EPA 8015B (M)

Project: ExxonMobil 70235

Quality Control Sample ID	Matrix	Instrument		Date Prepared	Date d Analyzed		LCS/LCSD Batc Number	h
099-12-436-2,419	Aqueous	GC	18	10/24/08	10/24	/08	081024B01	
Parameter	LCS %	<u>REC</u>	LCSD %R	EC S	%REC CL	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
TPH as Gasoline	93		91		78-120	2	0-10	

RPD - Relative Percent Difference, CL - Control Limit

aboratories, Inc.		
Environmental Resolutions, Inc.	Date Received:	
601 North McDowell Blvd.	Work Order No:	08-1
Petaluma, CA 94954-2312	Preparation:	EPA

Preparation: Method:

N/A 0-2157 EPA 5030B EPA 8015B (M)

Project: ExxonMobil 70235

Quality Control Sample ID	Matrix	Instrument		Date Prepared	Date Analyzed		LCS/LCSD Batc Number	h
099-12-436-2,426	Aqueous	GC 1	8	10/27/08	10/27	/08	081027B01	
Parameter	LCS %	<u>REC</u>	LCSD %RE	<u>C %R</u>	EC CL	<u>RPD</u>	RPD CL	Qualifiers
TPH as Gasoline	90		88	78	3-120	2	0-10	

RPD - Relative Percent Difference, CL - Control Limit

ha

Environmental Resolutions, Inc.Date Received:N/A601 North McDowell Blvd.Work Order No:08-10-2157Petaluma, CA 94954-2312Preparation:EPA 5030BMethod:EPA 8021B

Project: ExxonMobil 70235

Quality Control Sample ID	Matrix	Instrument	Date Prepare	Da d Ana	ate lyzed	LCS/LCSD Bate Number	h
099-12-667-251	Aqueous	GC 8	10/28/08	B 10/2	8/08	081028B01	
Parameter	LCS %	REC LCSD	%REC	<u>%REC CL</u>	RPD	RPD CL	Qualifiers
Benzene	100	100)	70-118	0	0-9	
Toluene	96	95		66-114		0-9	
Ethylbenzene	100	101		72-114 1		0-9	
p/m-Xylene	102	103	3	74-116	1	0-9	
o-Xylene	100	101		72-114	1	0-9	
Methyl-t-Butyl Ether (MTBE)	100	99		41-137	2	0-13	

RPD - Relative Percent Difference, CL - Control Limit

Mulama

Quality Control - LCS/LCS Duplicate

Environmental Resolutions, Inc.	Date Received:	N/A
601 North McDowell Blvd.	Work Order No:	08-10-2157
Petaluma, CA 94954-2312	Preparation:	EPA 5030B
	Method:	EPA 8260B

Project: ExxonMobil 70235

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Anal	ite yzed	LCS/LCSD I Numbe	Batch r
099-12-650-237	Aqueous	GC/MS L	11/04/08	11/04	/08	081104L	01
Parameter	LCS %REC	LCSD %REC	%REC CL	ME_CL	RPD	RPD CL	Qualifiers
Benzene	106	103	87-117	82-122	3	0-7	
Carbon Tetrachloride	105	100	78-132	69-141	5	0-8	
Chlorobenzene	101	101	88-118	83-123	0	0-8	
1,2-Dibromoethane	110	105	80-120	73-127	5	0-20	
1,2-Dichlorobenzene	104	105	88-118	83-123	1	0-8	
1,1-Dichloroethene	98	105	71-131	61-141	7	0-14	
Ethylbenzene	102	100	80-120	73-127	1	0-20	
Toluene	102	103	85-127	78-134	1	0-7	
Trichloroethene	96	95	85-121	79-127	1	0-11	
Vinyl Chloride	101	106	64-136	52-148	5	0-10	
Methyl-t-Butyl Ether (MTBE)	108	111	67-133	56-144	2	0-16	
Tert-Butyl Alcohol (TBA)	116	100	34-154	14-174	14	0-19	
Diisopropyl Ether (DIPE)	102	99	80-122	73-129	2	0-8	
Ethyl-t-Butyl Ether (ETBE)	104	106	73-127	64-136	2	0-11	
Tert-Amyl-Methyl Ether (TAME)	109	100	69-135	58-146	9	0-12	
Ethanol	103	100	34-124	19-139	3	0-44	

Total number of LCS compounds : 16

Total number of ME compounds : 0 Total number of ME compounds allowed :

LCS ME CL validation result : Pass

RPD - Relative Percent Difference, CL - Control Limit

1

hun

Work Order Number: 08-10-2157

Qualifier	Definition
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
А	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
E	Concentration exceeds the calibration range.
I	Compound did not meet method-described identification guidelines. Identification was based on additional GC/MS characteristics.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
Х	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.

£

10.0

Page 1 of 1

										~	/	·					_		
Galscience - Co	nsultant Name:	Environmen	tal Resoluti	ons, Inc.		E	xxon	Mobi	l Engi	neer	Jenr	nifer	C. S	edla	chek				
Environmental	Address: 601 North McDowell Boulevard				Telephone Number (510) 547-8196														
Laboratories, Inc.	City/State/Zip:	Petaluma, C	alifornia 9	4954				A	lccou	int #:					_				
7440 Lincoln Way P	roject Manager	Paula Sime							F	PO #:	4510	0174	131						
Garden Grove, CA 92841 Telephone Number: (707) 766-2000			.0		Fa	acility	1D #	7023	35										
TEL: (714) 895-5494 EF	য় Job Number:	222903X			-			0	3loba	I ID#	T06	0010	1354	4					
FAX: (714) 894-7501 Sample	er Name: (Print)	Rebe	cah A'	Westn	A	9 3		Site	e Add	ress	222	5 Tel	egra	ph A	venu	18			
ExonMobil Sam	pler Signature:	dal Express	hull Dother	Jul h	2	6). 24		City,	Stat	e Zip	Oak	land,	Cal	iforni	ia			_	
	Special Instru	ctions:					1	Matri						4-				-	
	7 CA Oxys =	MTBE, TE	A, TAME	ETBE, C	DIPE, 1,2-D	CA, EDB.		Wateria	\square			15	-	Ana	m	POF:	T		P P
	Use silica ge	l cleanup f	or all TPH	d analyse	es.					158	15B	1 80	18	260	109			80B	160
	Set TBA det	ection limit	<12 ug/L.							80	8	tor o	802	ys 8	182			82(eac
24, 8, 08 y	HOVS-0010	LISE DY 02	006		1 1		ter	-	ō	먼	BH	H mo	ă	0 V	Jano			ő	tal L
Sample ID / Description	DATE	TIME	COMP	GRAB	PRESERV	NUMBER	Wa	š	Vaj	Ħ	F	Idi	BT	7 C	Ξ.			Ŧ	10
W- 14-CPT3	10/23/08	12:30		X	HCI	6 VOA	x) <u>9</u>	X		X	X	X				
W-41-CPT3	"	1530		×	HCYL	6 VOAS	- X			X	×	X	\times	×	X				
~																			
			3														_		
			_														1		
									-	_		_	_	-		+	+	-	_
															_		\square	_	
1111					0-								_				+	-	
Relinquished by	23-00 43-08		10 3D	Received by	, Dann	yle a	° C.	EL.	Time /c	9/2	108 30	Labo	raton Temp Samp VOAs	y Con beratu ble Co s Free	nmen re Up ontaine e of He	ts: on Rec ars Inte eadspa	ceipt: act? ace?		
57060952	23	1ime /	20	Received by	<u>y</u> w o o o o o o	4			lime				VUAS	s Free	or He	adspa	109?	بتغنية	

 (\mathbf{r})

Si 198

0.013

s.		08_7	0_2	Page 19 of 19
Environmental	AMDI E RECEIR	TEOPM	Casler	
🚣 aboratories, Inc. 🗳			Cooler	
CLIENT: ERI		DATE:	10/24/	108
TEMPERATURE: (Criteria: 0.0 °	C – 6.0 °C, not frozen)			
Temperature <u>d.b</u> °C + 1	$1.8^{\circ}C(CF) = 4.4^{\circ}C$	C 🗆 Blank	1 Sample	
Sample(s) outside temperature of sample	riteria (PM/APM contacted by:).		
Sample(s) outside temperature o	criteria but received on ice/chilled	on same day of sa	mpling.	
□ Received at ambient temperat	ture, placed on ice for transp	oort by Courier.		
Ambient Temperature: 🛛 Air	Filter			Initial:
CUSTODY SEALS INTACT:				
□ Cooler □	No (Not Intact)	Not Present		Initial: D.L
□ Sample □	No (Not Intact)	Not Present	•	Initial: <u>RN</u>
SAMPLE CONDITION:				
		Yes	No	N/A
Chain-Of-Custody document(s) rec	eived with samples			
Sampler's name indicated on COC	· · · · · · · · · · · · · · · · · · ·	Ľ		
Sample container label(s) consister	nt with COC	Ľ		
Sample container(s) intact and goo	d condition			
Correct containers and volume for	analyses requested	🗹		
Proper preservation noted on samp	ble label(s)			
Volatile analysis container(s) free c	of headspace	🗹		
Tedlar bag(s) free of condensation	·	🗆		Ľ
CONTAINER TYPE:				
Solid: 🛛 4ozCGJ 🗍 8ozCGJ 🗍	16ozCGJ Sleeve EnCo	ores®	ores® 🗆_	
Water: 🛛 VOA 🗹 VOAh 🗆 VO)Ana₂ □125AGB □125AG	Bh 🗌 125AGBp	o₄ 🗹1AGE	3 □1AGBna₂
□1AGBs □500AGB □500AGE	Bs □250CGB □250CGBs	□1PB □500P	B []500PE	3na 🗆 250 PB
□250PBn □125PB □125PBzr	nna 🗆 100PBsterile 🔲 100P	Bna2]
Air: Tedlar® Summa® 🗆				Net
Container: C:Clear A:Amber P:Poly/Plas Preservative: h:HCL n:HNO ₃ na ₂ :Na ₂ S ₂ O ₃	stic G:Glass J:Jar B:Bottle na:NaOH po₄:H₃PO₄ s:H₂SO₄	Cl znna:ZnAc ₂ +NaOH	heçked/Labe Reviev Scanı	led by: <u>KN</u> ved by: <u>WSC</u> ned by: <u>RN</u>

SOP	T100_	090	(10/23/08)

11112

APPENDIX G

SURVEY DATA

GITODE	ELEV (PVL)	ELEV (BUX)	ELEV (GND)
2692353 2694622 2694622 2694954 2692085 2692085 2693117 2691447 2691447 2692665 2693550 2694594 2690956 2691260 2699737 269217 2692656 2693738 2692442 2693711 2692652 2693711 2692652 2693724 2692456	21. 09 21. 24 22. 17 20. 46 20. 20 19. 87 20. 75 20. 43 20. 64 21. 89	21, 36 22, 07 22, 78 20, 82 20, 75 20, 32 20, 98 21, 17 21, 38 22, 42	21.0 21.0 20.9 19.9 20.9 20.9 20.9 21.5 21.3 21.3 21.0 21.5 21.5 21.4
S FROM GPS IN OBSERVA ICE EPOCH	DBSERVATIONS TION FILES AN 2000, 35,	USING D BASED	

Date: October, 2001 1255 Starboard Dr. Scale: 1'' = 50'West Sacramento Sheet 1 of 1 California 95691 Revised: 11-3-08 (916) 372-8124 Field Book: MW-31, 44 paulg@morrowsurveying.com Dwg. No. 1873-053 JL

APPENDIX H

WASTE DOCUMENTATION

ADO1 N. Vasco R	SERVICES VASCO RC pad, Livermore, California 94551 • (1	AD, LLC 925) 447-0491	Α	723420	5 # E
Frun : 50 363		бтаяз; Тато; Нер;	icket: 10914 Date: 11/25 Time: 12:55 Scale 0 10 8 10 8 10 8 10	01 /2000 0148-12:55:03 11 Scale OutScale: ****	Insporting any unauthorize to this facility for disposal Persons violating this prohibits and criminal prosecution. remain in vehicles.
LU-Coment 1997014	DELEMO ENVIRONNENER Fuck Environ 25.4.22006 MODULE	Not Yone: '''' I DUMP TRUCK	(), 60		WARNING: Tra hazardous waste prohibited by law. re subject to civ All children must Absolutely no sei
linist: In ObiA(Louinent: Urigin:	SZEXXON MORTLE - A Balancials & Services	thankit, that	*		E d commodity aster, whose d authority of a with Section a Professions int Standards e.
Wriver:	5010/Secil brum Septite the	3.08 Unit	ts Unite	0,	MASTER CERTIFICAT that the following described ac occurrent who is a comparise d by Chapter 7 (commencing d by Chapter 7 (commencing y the division of Measurement y the division of Measurement of Food & Agricultur
CUSTOMER] 15 US-{5] NOV 2 6	V Li zoos	WEIGHA THIS IS TO CERTIFY was weighed, messure syneture is on this or securacy, as prescribe 12700, achmistered b Code, achmistered b code, achmistered b

Ir Al P.O Dav	iquid wa Box 227 Ais, CA 95	ste disposal d (530) 617	ompany 753-1829	CUSTOME P.O.	ATE 10	02?	-08	
CHA TO	ARGE	ERI		D, W	AY OF	Frid	ay	
ADE	DRESS		ORIGIN 2	25	Tele	ara	ph 17	re
			DESTINATION	Ockle	ans	L, El	7	
			DESCRIPTION	QTY / F	IRS	RATE	CHARGES	
×	Monitori	ng well dewater	ng / pump test	50		39	19 50)
	Auger rin	nsate	Underground storage tank (UST)					
	Spill/ rel	ease (not UST r	elated) Surface Impoundment					
	Drums		Above ground storage tank					
	Solids							
	Washou	t						
Co	olor	BRN	Sani-chlor					
00	dor	Å,	Filters					
Sc	olids	ý e	Powersorb Sheet					
Ot	her		Powersorb Boom					
Transporter E21 THIS TOTAL WILL STAND AS CORRECT UNLESS NOTIFIED OF CORRECTION WITHIN FIVE DAYS TERMS NET 30 DAYS. THE CUSTOMER AGREES TO PAY A FINANCE CHARG PER MONTH. WHICH IS AN ANNUAL RATE OF 24% ON PAST DUE ACCOU				OF 2% VTS.	SALES TO TO	TAX TAL O LECT	19.5	U