| EXPERT FINISHING · ALL L                                        |                                                              |
|-----------------------------------------------------------------|--------------------------------------------------------------|
| MAIN OFFICE & PLANT<br>38 WEST SONORA ST.<br>STOCKTON, CA 95203 | Since 1910                                                   |
| 209 / 547-1454                                                  | RECEIVED                                                     |
| May 9, 2018                                                     | By Alameda County Environmental Health 9:20 am, May 13, 2016 |
| Ms. Dilan Roe                                                   |                                                              |

Alameda County Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

SUBJECT: CRAWL SPACE AIR SAMPLING REPORT CERTIFICATION ACEH Case # RO 0000357 Snow Cleaners 2678 Coolidge Avenue Oakland, CA

Dear Mr. Wickham:

You will find enclosed one copy of the following document prepared by P&D Environmental Inc.

Crawl Space Air Sampling Report dated May 9, 2016 (document 0298.R19).

I declare, under penalty of perjury, that the information and/or recommendations contained in the above-mentioned work plan for the subject site is true and correct to the best of my knowledge.

Should you have any questions, please do not hesitate to call me at (800) 818-7669.

Cordially, Snow Cleaners, Inc.

el m term

Harold Turner President

0298.L100

"SERVING THE CLEANING INDUSTRY FOR OVER SO YEARS"

# **P&D** ENVIRONMENTAL, INC.

55 Santa Clara Ave, Suite 240 Oakland, CA 94610 (510) 658-6916

May 9, 2016 Report 0298.R19

Mr. Harold Turner Snow Cleaners, Inc. 2678 Coolidge Avenue Oakland, CA

SUBJECT: CRAWL SPACE AIR SAMPLING REPORT (CS1 THROUGH CS3 AND AA1) ACDEH Case # RO 0000357 Snow Cleaners 2678 Coolidge Avenue Oakland, CA

Dear Mr. Turner:

P&D Environmental, Inc. (P&D) has prepared this report documenting the collection of crawl space air samples CS1 and CS2 at 3320 Davis Street and CS3 at 2682 Coolidge Avenue and ambient air sample Ambient 1 at 3319 Davis Street in Oakland, California on April 26, 2016. The crawl space and ambient air samples were collected during an 8-hour period during the day. This work was performed in response to a letter from the Alameda County Department of Environmental Health (ACDEH) dated January 20, 2016 requesting that the samples be collected in accordance with procedures set forth in P&D's Subsurface Investigation Work Plan dated November 24, 2009 (document 0298.W4).

A Site Location Map (Figure 1) and a Site Vicinity Map Detail showing the sample collection locations (Figure 2) are attached with this report. All work was performed under the direct supervision of a California professional geologist.

## BACKGROUND

Underground Storage Tanks (USTs) associated with the former dry cleaning facility were removed and associated limited excavation of the UST pit was performed by others in 1990. In January, 1994 two groundwater monitoring wells (MW1 and MW2) were installed by others at offsite locations in Davis Street near the former UST pit. P&D subsequently preformed a review of available files for the site, installed an absorbent sock in well MW2 as an interim remedial measure for collection of free product, and collected water samples from the wells on February 20, 2003. Documentation of the well sampling is provided in P&D's March 10, 2003 Groundwater Monitoring and Sampling Report (document 0298.R1).

P&D subsequently collected groundwater grab samples, creek water samples, soil gas samples, and oversaw the installation of groundwater monitoring wells MW3 and MW4 at offsite locations on September 9, 2008. A detailed discussion of the investigation including multiple figures showing

the extent of impacted groundwater and geologic cross sections A-A' through G-G' are provided in P&D's Subsurface Investigation Report dated August 19, 2009 (document 0298.R6).

Documentation of the collection of additional soil gas samples and the collection of crawl space air samples is provided in P&D's March 22, 2010 Soil Gas and Crawl Space Air Investigation Report (document 0298.R8) and P&D's September 15, 2010 Crawl Space Air Investigation Report (document 0298.R10). On September 27 through 29, 2010 P&D oversaw the installation of dual-phase extraction wells DP1 through DP4, and vapor extraction wells VE1 and VE2. The initial monitoring and sampling of the new wells was performed on October 15, 2010 in conjunction with the periodic monitoring and sample results, the report included revised figures showing the extent of petroleum and volatile organic compounds (VOCs) in soil and groundwater. Documentation of the well installation is provided in P&D's Well Installation Report dated December 2, 2010 (document 0298.R11).

On December 13, 2010 a vapor extraction feasibility test was performed at well DP1. During 2011 a discharge permit was obtained from East Bay Municipal Utility District (EBMUD), a groundwater extraction pump was installed in well DP1, and groundwater extraction feasibility testing was performed beginning May 23, 2011 through June 2, 2011 and again from June 8 through June 30, 2011. Documentation of the vapor extraction and groundwater extraction feasibility testing is provided in P&D's April 16, 2012 Vapor Extraction and Groundwater Extraction Feasibility Test Report (document 0298.R13).

Groundwater extraction was resumed on August 28, 2012 and continued until March 21, 2013. During the December 12 and 13, 2012 well sampling event, effervescing was observed in some of the groundwater samples, and the samples were subsequently analyzed for dissolved gases. Documentation of the groundwater extraction and semi-annual well sampling is provided in P&D's March 25, 2013 Semi-Annual Groundwater Monitoring, Sampling and Remediation Status Report (document 0298.R16). Documentation of groundwater well monitoring and sampling on May 14, 2013 is provided in P&D's Groundwater Monitoring and Sampling Report (document 0298.R17).

Following receipt of an Authority To Construct dated June 3, 2013 from the Bay Area Air Quality Management District (BAAQMD) a Soil Vapor Extraction (SVE) system was constructed at the site with initial start up of the SVE system in January 2014 and subsequent restarting and testing of the system in February 2014. Based on elevated vapor concentrations the SVE system operation was discontinued at the end of February 2014. Documentation of the SVE system operation in January and February 2014 and the results of groundwater sampling events that occurred in November and December 2013, June 2014 and July 2015 are provided in P&D's January 18, 2016 Remediation Progress and Groundwater Monitoring Report (document 0298.R18).

Following receipt of a January 20, 2016 letter from the ACDEH that commented on P&D's January 18, 2016 report, P&D restarted the groundwater extraction system on February 1, 2016 with continuous operation of the groundwater treatment system beginning on April 11, 2016. Similarly, the SVE system was restarted on May 6, 2016 with continuous operation of the SVE system beginning on May 11, 2016.

# FIELD ACTIVITIES

The building construction at 3320 Davis Street and at 2682 Coolidge Avenue where crawl space air samples were collected on April 26, 2016 (see Figure 2) is not slab on grade. Both structures were observed to have crawl spaces with no visible means of access to the crawl space other than through mesh-covered ventilation holes measuring approximately 4 inches tall and 12 inches long. On April 26, 2016 two air samples (CS1 and CS2) were collected from the crawl space at 3320 Davis Street and one air sample (CS3) was collected from the crawl space at 2682 Coolidge Avenue at locations shown on Figure 2 using procedures described below. In addition, one duplicate crawl space air sample (CS3-DUP) was collected using a stainless steel sampling tee at location CS3, and one ambient air sample was collected with the flow controller intake at a height of approximately 4.5 feet above the ground surface on the rear porch of the property located at 3319 Davis Street, Oakland, California (see Figure 2).

The crawl space air samples and the ambient air sample were collected during business hours into SIM-certified 6-liter Summa canisters equipped with SIM-certified 8-hour flow controllers. The duplicate sample was collected with a SIM-certified stainless steel tee

The building width at 3320 Davis Street is approximately 30 feet, and the building width at 2682 Coolidge Avenue in the vicinity of SG3 is approximately 12 feet wide. A <sup>1</sup>/<sub>4</sub>-inch outside diameter polyethylene tube was secured with wire to the end of a steel rod and the steel rod was inserted through a crawl space vent into the crawl space at each sampling location so that the end of the tube was located at each of the crawl space air sample collection locations shown on Figure 2. Following placement of the rod and tubing beneath the building, an air pump was used to purge air at 20 L/min. from each tube for approximately one minute. The end of each tube was then connected to the flow controller inlet and the valve to the Summa canister was then opened for each of the samples.

For the duplicate sample, the end of the tube was connected to the stainless steel tee. After approximately 8 hours, the valves to the Summa canisters were closed, and the Summa canisters were stored in a box and promptly shipped to the laboratory for extraction and analysis. Chain of custody procedures were observed for all sample handling.

## WEATHER

Weather data, including precipitation and barometric pressure for the date of crawl space and ambient air sample collection (April 26, 2016), and for the two weeks preceding and twelve days following the sample collection event are provided in Appendix B. Review of the weather data shows that approximately 0.12 inches of precipitation occurred during the 5 days preceding the sample collection event.

The weather station is located between E 25<sup>th</sup> Street and Wakefield Avenue northwest of the intersection of E 25<sup>th</sup> Street and 23<sup>rd</sup> Avenue in Oakland at an elevation of 150 feet above sea level, approximately 0.7 miles to the west-northwest of the subject site. The subject site is located at an elevation of approximately 135 feet above sea level. An internet link to the weather station information is provided in Appendix B.

# GEOLOGY AND HYDROGEOLOGY

A detailed discussion of the site geology and hydrogeology is provided in P&D's January 18, 2016 Remediation Progress and Groundwater Monitoring Report (document 0298.R18).

# LABORATORY ANALYSIS

The crawl space and ambient air samples were analyzed at Eurofins Air Toxics, Limited in Folsom, California (Air Toxics). The samples were analyzed for Total Petroleum Hydrocarbons as Stoddard solvent (TPH-SS) using EPA Method TO-3. Additionally, the samples were analyzed for methyl-tert-butyl ether (MTBE), benzene, toluene, ethylbenzene, and xylenes (BTEX), naphthalene, and the Haolgenated Volatile Organic Compounds (HVOCs) Tetrachloroethene (PCE), Trichloroethene (TCE), cis-1,2-Dichloroethene (cis-1,2-DCE), trans-1,2-Dichloroethene (trans-1,2-DCE), and vinyl chloride using EPA Method TO-15.

The crawl space and associated ambient air sample results are summarized in Table 1 and copies of all of the laboratory analytical reports and chain of custody documentation are attached with this report as Appendix C. Historical crawl space and associated ambient air sample results are also included in Table 1.

# RISK AND HAZARD ANALYSIS

The only complete pathway for contaminant exposure at the subject site is considered to be potential vapor intrusion from soil gas to crawl space air. Risk analysis is the evaluation of the predicted increased incidence of cancer resulting from exposure to Chemicals of Potential Concern (COPCs), and is reported for each COPC as the incremental carcinogenic risk. Hazard analysis is the evaluation of the predicted increased non-cancer adverse health effects resulting from exposure to COPCs, and is reported for each COPC as the hazard quotient. In addition, cumulative incremental carcinogenic risk (the total of the risks posed by all of the COPCs in a sample when all of the individual COPC risks are added together) and hazard indices (the total of the hazards posed by all of the COPCs in a sample when all of the individual COPC hazards are added together) were also calculated for all detected compounds for each sample.

The cumulative incremental risk is calculated as the increased number of cases of cancer that might develop in a population of one million people in addition to the background risk of Americans developing cancer. According to the American Cancer Society the background risk for an American eventually developing cancer during their life time is one chance in two (also expressed as 500,000 per million, or expressed as 5E-01). In determining what is an acceptable level of risk, the California Department of Toxic Substances Control (DTSC) has determined that lifetime incremental cumulative cancer risks posed by a site should not exceed 1 per million without further evaluation. The DTSC recommends that activities to reduce exposure to COPCs be evaluated when the cumulative risk exceeds 100 per million. The DTSC also recommends that further action be evaluated when the hazard quotient exceeds 1. These recommendations are based on conservative (erring on the side of caution) assumptions in determining actions associated with calculated risk or hazard.

The incremental carcinogenic risk and hazard quotient were calculated for each detected compound for each of the indoor and ambient air samples using equations for health risk-based screening levels considering a single chemical for indoor air inhalation provided in section 3.2.3 of the Interim Final (Revision 2) February 2016 San Francisco Bay RWQCB User's Guide: Derivation and Application of Environmental Screening Levels (the User's Guide). The Inhalation Unit Risk factor (IUR) value used for risk calculation and the Reference Concentration (RfC) value used for hazard calculation were obtained from the February 2016 SFRWQCB User's Guide (Revision 2) Table IP-2 Toxicity Values, and were verified to be consistent with the DTSC Human and Ecological Risk Office (HERO) Human Health Risk Assessment (HHRA) Note Number 3 dated January 2016 and the US Environmental Protection Agency Region 9 Regional Screening Level indoor air values for compounds that were detected that are not listed in HHRA Note Number 3.

TPH-SS is not considered to be a carcinogen, and for this reason there is no IUR for TPH-G, and risk is not calculated for TPH-SS. In addition, DTSC does not provide a TPH-SS RfC for hazard evaluation. The TPH-SS RfC of 130  $\mu$ g/m3 that was used for calculation of the TPH-SS hazard was obtained from the February 2016 (Revision 2) RWQCB User's Guide Table IP-2 Toxicity Values.

Default exposure values provided in the February 2016 SFRWQCB User's Guide Table IP-3 for a residential exposure scenario of

- Exposure time of 24 hours per day,
- Exposure frequency of 350 days per year, and
- Exposure duration for 26 years

and default exposure values provided in the DTSC HERO Vapor Intrusion Screening Model for Soil Gas VLOOKUP Table (last updated December 2014) of

- Averaging time for carcinogens of 70 years, and
- Averaging time for non-carcinogens of 26 years

were used for evaluation of all of the crawl space air and ambient air samples. The crawl space air and associated ambient air incremental risk calculation results are provided in Table 2A, and the crawl space and associated ambient air hazard quotient calculation results are provided in Table 2B. The crawl space and associated ambient air cumulative incremental carcinogenic risk and hazard index results are summarized in Table 2C. Historical crawl space air sample and associated ambient air cumulative incremental carcinogenic risk and hazard index results are also included in the tables. The historical risk and hazard have been recalculated on the attached tables using the most current values for toxicity and exposure.

## DISCUSSION AND RECOMMENDATIONS

Review of Table 1 shows that TPH-SS was detected in all of the crawl space air samples that were collected on April 26, 2016 and that TPH-SS was not detected in the ambient air sample. Review of Table 1 also shows that TCE was only detected in crawl space air sample CS2 at a concentration of 0.38 ug/m<sup>3</sup>, and that PCE was detected in crawl space air samples CS1 and CS2 at concentrations of 0.26 and 0.99 ug/m<sup>3</sup>, respectively.

Page 5 of 8 **P&D ENVIRONMENTAL, INC.** 

Review of Table 2C shows that the calculated incremental risk for the April 26, 2016 crawl space air sampling event is greater than the calculated incremental risk associated with the ambient air sample. The calculated incremental risk associated with the most recent air sampling event on April 26, 2016 is 12.4 in a million at location CS1, is 14.0 in a million at location CS2, and is 13.3 in a million at location CS3 (CS3-DUP is 13.6 in a million, see Table 2C). By comparison, the calculated incremental risk for the ambient air sample is 5.0 in a million. Review of Table 2C also shows that the hazard identified for crawl space air is more than 1.0 at all crawl space air sample locations. None of the calculated risk values for any of the sampling events have exceeded 100 in a million (see Table 2C).

Review of Tables 2A and 2B shows that the risk and hazard associated with locations CS1 through CS3 is predominantly related to benzene and naphthalene. Similarly, review of Table 2A shows that the calculated risk associated with PCE in sample CS1 and TCE in sample CS2 are each less than 1 in a million. The calculated risk associated with PCE in sample CS2 is 2.08 in a million. Review of Table 2B shows that almost all of the hazard in all of the crawl space air samples is associated with the detected TPH-SS.

Naphthalene and benzene have both historically been detected in groundwater at and near the subject site at concentrations exceeding RWQCB February 2016 (Revision 2) Table GW-3 Groundwater Vapor Intrusion Human Health Risk Screening Levels for deep groundwater for a fine-coarse scenario with a residential exposure scenario. Historical evaluation of soil gas samples at a limited number of locations (SG19 through SG23) did not reveal the presence of naphthalene, and similarly naphthalene has not been detected in historical crawl space air samples. Benzene has historically been detected in both soil gas and crawl space air samples. TPH-SS has historically been detected in groundwater , soil gas, and crawl space air samples.

The detected TCE concentration of 0.38 ug/m<sup>3</sup> in crawl space air sample CS2 does not exceed the TCE Accelerated Response Action Level (ARAL) for a residential exposure scenario as identified in the RWQCB October 16, 2014 Draft Interim Framework for Assessment of Vapor Intrusion at TCE-Contaminated Sites in the San Francisco Bay Region. The ARAL is intended to be protective of pregnant women based on a hazard quotient of 1 for protection of developing fetuses.

Based on the sample results P&D recommends that the SVE system be increased and the same crawl spaces be re-sampled one month after the SVE system vacuum is increased. P&D also recommends that the sample results be provided to the property owners where the crawl space air samples were collected.

## **DISTRIBUTION**

A copy of this report will be uploaded to the ACDEH and GeoTracker databases.

## LIMITATIONS

This report was prepared solely for the use of Snow Cleaners, Inc. The content and conclusions provided by P&D in this assessment are based on information collected during our investigation, which may include, but not be limited to, visual site inspections; interviews with the site owner,

regulatory agencies and other pertinent individuals; review of available public documents; subsurface exploration and our professional judgment based on said information at the time of preparation of this document. Any subsurface sample results and observations presented herein are considered to be representative of the area of investigation; however, geological conditions may vary between borings and may not necessarily apply to the general site as a whole. If future subsurface or other conditions are revealed which vary from these findings, the newly revealed conditions must be evaluated and may invalidate the findings of this report.

This report is issued with the understanding that it is the responsibility of the owner, or his representative, to ensure that the information contained herein is brought to the attention of the appropriate regulatory agencies, where required by law. Additionally, it is the sole responsibility of the owner to properly dispose of any hazardous materials or hazardous wastes left onsite, in accordance with existing laws and regulations.

This report has been prepared in accordance with generally accepted practices using standards of care and diligence normally practiced by recognized consulting firms performing services of a similar nature. P&D is not responsible for the accuracy or completeness of information provided by other individuals or entities which is used in this report. This report presents our professional judgment based upon data and findings identified in this report and interpretation of such data based upon our experience and background, and no warranty, either express or implied, is made. The conclusions presented are based upon the current regulatory climate and may require revision if future regulatory changes occur.

Should you have any questions, please do not hesitate to contact us at (510) 658-6916.

Sincerely, P&D Environmental, Inc. Paul H. King Professional Geologist #5901 Expires: 12/31/17

Attachments:

 Table 1 - Summary of Crawl Space and Ambient Air Sample Results

Table 2A - Crawl Space and Ambient Air Risk Calculation Results

Table 2B - Crawl Space and Ambient Air Hazard Calculation Results

Table 2C - Crawl Space and Ambient Air Risk and Hazard Calculation Results Summary

Figure 1 - Site Location Map

Figure 2 - Site Vicinity Map Detail Showing Sample Collection Locations

Appendix A - Crawl Space Air Sampling Data Sheet

Appendix B - Weather Information

Appendix C - Laboratory Analytical Reports and Chain of Custody Documentation

PHK/ sjc 0298.R19

# **TABLES**

Table 1 Summary of Crawl Space and Ambient Air Sample Results

| Sample ID                                         | Sample Date      | PCE         | TCE            | cis-1,2-DCE    | trans1,2DCE      | Vinyl<br>Chloride | TPH-SS      | TPH-G         | MTBE         | Benzene          | Toluene             | Ethyl-<br>benzene | m,p-Xylenes          | o-Xylenes          | Naphthalene |
|---------------------------------------------------|------------------|-------------|----------------|----------------|------------------|-------------------|-------------|---------------|--------------|------------------|---------------------|-------------------|----------------------|--------------------|-------------|
| CS1                                               | 4/26/2016        | 0.26        | ND<0.17        | ND<0.12        | ND<0.62          | ND<0.040          | 3,500       |               |              | 0.51             | 2.4                 | 0.82              | 1.7                  | 0.78               | 0.48, a     |
| CS1                                               | 2/19/2010        | 0.38        | 0.44           | ND<0.12        | ND<0.60          | ND<0.039          | 310         |               |              | 4.7              | 48                  | 9.4               | 36                   | 11                 | ND<4.0      |
| CS1-Lab Duplicate                                 |                  | NA          | NA             | NA             | NA               | NA                | 280         |               |              |                  |                     |                   |                      |                    |             |
| CS2                                               | 4/26/2016        | 0.99        | 0.38           | ND<0.12        | ND<0.60          | ND<0.039          | 1,800       |               |              | 0.55             | 3.0                 | 0.78              | 1.7                  | 0.79               | 0.41, a     |
| CS2                                               | 2/19/2010        | 1.2         | 3.2            | ND<0.13        | ND<0.64          | ND<0.041          | 300         |               |              | 5.3              | 50                  | 9.3               | 35                   | 10                 | ND<4.2      |
| CS3                                               | 4/26/2016        | ND<0.22     | ND<0.17        | ND<0.13        | ND<0.64          | ND<0.041          | 5,800       |               |              | 0.41             | 1.6                 | 0.58              | 1.4                  | 0.61               | 0.71, a     |
| CS3                                               | 2/19/2010        | 0.23        | ND<0.17        | ND<0.12        | ND<0.63          | ND<0.040          | ND<230      |               |              | 0.65             | 3.7                 | 0.77              | 3.6                  | 1.0                | ND<4.1      |
| CS3-DUP                                           | 4/26/2016        | ND<0.22     | ND<0.17        | ND<0.13        | ND<0.64          | ND<0.041          | 5,000       |               |              | 0.42             | 1.5                 | 0.59              | 1.4                  | 0.62               | 0.72, a     |
| CS3-DUP                                           | 2/19/2010        | ND<0.21     | ND<0.17        | ND<0.12        | ND<0.63          | ND<0.040          | ND<230      |               |              | 0.64             | 3.9                 | 0.79              | 3.7                  | 1.0                | ND<4.1      |
| CS4                                               | 8/9/2010         | ND<0.22     | 1.3            | ND<0.13        | ND<0.65          | ND<0.042          |             | 570           | ND<0.59      | 1.8              | 4.0                 | 0.37              | 1.0                  | 0.56               | ND<4.3      |
| CS5                                               | 8/9/2010         | 0.36        | 1.7            | ND<0.12        | ND<0.61          | ND<0.040          |             | 530           | ND<0.56      | 1.6              | 4.1                 | 0.38              | 1.0                  | 0.56               | ND<4.1      |
| CS6                                               | 8/9/2010         | ND<0.24     | 0.64           | ND<0.14        | ND<0.71          | ND<0.046          |             | 1,000         | ND<0.64      | 3.1              | 2.9                 | 0.39              | 1.1                  | 0.65               | ND<4.7      |
| CS6-DUP                                           | 8/9/2010         | ND<0.24     | 0.64           | ND<0.14        | ND<0.69          | ND<0.045          |             | 1,100         | ND<0.63      | 3.1              | 2.9                 | 0.39              | 1.1                  | 0.63               | ND<4.6      |
| AMBIENT                                           | 4/26/2016        | ND<0.20     | ND<0.16        | ND<0.12        | ND<0.58          | ND<0.037          | ND<210      |               |              | 0.46             | 1.1                 | 0.22              | 0.74                 | 0.33               | ND<3.8      |
| AMBIENT                                           | 8/9/2010         | ND<0.26     | ND<0.21        | ND<0.16        | ND<0.78          | ND<0.050          |             | ND<200        | ND<0.71      | 0.31, a          | 0.66                | ND<0.17           | ND<0.34              | ND<0.17            | ND<5.1      |
| AMBIENT                                           | 2/19/2010        | ND<0.22     | ND<0.17        | ND<0.13        | ND<0.64          | ND<0.041          | ND<230      |               |              | 0.56             | 1.3                 | 0.29              | 0.98                 | 0.34               | ND<4.2      |
| ESL                                               |                  | 0.48        | 0.48           | 8.3            | 83               | 0.0095            | 140         | 590           | 11           | 0.097            | 310                 | 1.1               | Combin               | ed = 100           | 0.083       |
|                                                   |                  |             |                |                |                  |                   |             |               |              |                  |                     |                   |                      |                    |             |
| Abbreviations and Note<br>PCE = Tetrachloroethene | <u>s:</u>        | 1           |                |                |                  |                   |             |               |              |                  |                     |                   |                      |                    |             |
| TCE = Trichloroethene                             |                  | +           |                |                |                  |                   |             |               |              |                  |                     |                   |                      |                    |             |
| cis-1,2-DCE = cis-1,2-Di                          | chloroethene     |             |                |                | <u> </u>         |                   |             |               |              |                  |                     |                   |                      |                    |             |
| trans-1,2-DCE = trans-1,2                         |                  |             |                |                |                  |                   |             |               |              |                  |                     |                   |                      |                    |             |
| TPH-SS = Total Petroleu                           |                  |             | solvent        |                |                  |                   |             |               |              |                  |                     |                   |                      |                    |             |
| TPH-G = Total Petroleum                           |                  |             |                |                |                  |                   |             |               |              |                  |                     |                   |                      |                    |             |
| MTBE = Methyl tertiary-                           | butyl ethe       |             |                |                |                  |                   |             |               |              |                  |                     |                   |                      |                    |             |
| ND = Not Detected.                                |                  |             |                |                |                  |                   |             |               |              |                  |                     |                   |                      |                    |             |
| = Not Analyzed.                                   |                  |             |                |                |                  |                   |             |               |              |                  |                     |                   |                      |                    |             |
| a = Laboratory Analytical                         | note: Estimated  | Value       |                |                |                  |                   |             |               |              |                  |                     |                   | -                    |                    |             |
| ESL = Environmental Sci                           |                  |             | co Bay – Reg   | ional Water Qu | ality Control Bo | ard updated Fe    | bruary 2016 | (Revision 2), | from Table L | A-1 – Indoor Air | Direct Exposure Hun | an Health Risk    | Screening Levels for | Residential Land I |             |
| Values in bold exceed th                          |                  |             |                |                |                  |                   |             |               |              |                  |                     |                   |                      |                    |             |
| Results and ESLs in micr                          | ograms per cubic | meter (µg/n | 13), unless ot | herwise indica | tec              |                   |             |               |              |                  |                     |                   |                      |                    |             |

#### Table 2A Crawls Space and Ambient Air Risk Calculation Results

|                    |                         |                      |                   |                      |                      | -   |                                |                   |                                   |                  |            |   |          |                                                                    |                                 |                      |
|--------------------|-------------------------|----------------------|-------------------|----------------------|----------------------|-----|--------------------------------|-------------------|-----------------------------------|------------------|------------|---|----------|--------------------------------------------------------------------|---------------------------------|----------------------|
| Equation           |                         | Concentration in Air | X Exposure Time X | Exposure Frequency X | Exposure<br>Duration | x   | Inhalation Unit<br>Risk Factor | all divided<br>by | Averaging Time<br>for Carcinogens | x                | 365 X      | ( | 24       | Calculated Individual<br>Compound Incremental<br>Carcinogenic Risk | Cumulative<br>Carcinogenic Risk | Comments             |
| Units              |                         | (ug/m3)              | (hrs/day)         | (days/yr)            | (yrs)                |     | (ug/m3)                        |                   | (yrs)                             |                  | (days/yr)  |   | (hr/day) |                                                                    |                                 |                      |
| Location           | Compound                |                      |                   |                      |                      |     |                                |                   |                                   |                  |            |   |          |                                                                    |                                 |                      |
|                    |                         |                      |                   |                      |                      | S   | amples Collected               | April 26, 201     | 6                                 |                  |            |   |          |                                                                    |                                 |                      |
|                    |                         |                      |                   |                      |                      |     |                                |                   |                                   |                  |            |   |          |                                                                    |                                 |                      |
| CS1<br>CS1         | Benzene<br>Ethylbenzene | 0.510 0.820          | 24 24             | 350                  | 26                   |     | 2.90E-05<br>2.50E-06           |                   | 70 70                             |                  | 365 365    |   | 24 24    | 5.27E-06<br>7.30E-07                                               |                                 | Residential Exposure |
| CS1                | Naphthalene             | 0.480                | 24                | 350                  | 26                   |     | 3.40E-05                       |                   | 70                                |                  | 365        |   | 24       | 5.81E-06                                                           |                                 |                      |
| CS1                | PCE                     | 0.260                | 24                | 350                  | 26                   | -   | 5.90E-06                       |                   | 70                                |                  | 365        |   | 24       | 5.46E-07                                                           | 1.2E-05                         |                      |
| CS2                | Benzene                 | 0.550                | 24                | 350                  | 26                   |     | 2.90E-05                       |                   | 70                                |                  | 365        |   | 24       | 5.68E-06                                                           | 122 05                          | Residential Exposure |
| CS2<br>CS2         | Ethylbenzene            | 0.780                | 24                | 350                  | 26                   | -   | 2.50E-05                       |                   | 70                                |                  | 365        |   | 24       | 6.95E-07                                                           |                                 | Residential Exposure |
| CS2                | Naphthalene             | 0.410                | 24                | 350                  | 26                   |     | 3.40E-05                       |                   | 70                                |                  | 365        |   | 24       | 4.96E-06                                                           |                                 |                      |
| CS2                | PCE                     | 0.990                | 24                | 350                  | 26                   | _   | 5.90E-06                       |                   | 70                                |                  | 365        |   | 24       | 2.08E-06                                                           |                                 |                      |
| CS2                | TCE                     | 0.380                | 24                | 350                  | 26                   |     | 4.10E-06                       |                   | 70                                |                  | 365        |   | 24       | 5.55E-07                                                           | 1.4E-05                         |                      |
| CS3                | Benzene                 | 0.41                 | 24                | 350                  | 26                   |     | 2.90E-05                       |                   | 70                                |                  | 365        |   | 24       | 4.23E-06                                                           |                                 | Residential Exposure |
| CS3                | Ethylbenzene            | 0.580                | 24                | 350                  | 26                   | _   | 2.50E-06                       |                   | 70                                |                  | 365        |   | 24<br>24 | 5.16E-07                                                           |                                 |                      |
| CS3                | Naphthalene             | 0.710                | 24                | 350                  | 26                   |     | 3.40E-05                       |                   | 70                                |                  | 365        |   | 24       | 8.60E-06                                                           | 1.3E-05                         |                      |
| CS3-DUP            | Benzene                 | 0.420                | 24                | 350                  | 26                   | -   | 2.90E-05                       |                   | 70                                |                  | 365        |   | 24       | 4.34E-06                                                           |                                 | Residential Exposure |
| CS3-DUP            | Ethylbenzene            | 0.590                | 24                | 350                  | 26                   |     | 2.50E-06                       |                   | 70                                |                  | 365        |   | 24       | 5.25E-07                                                           |                                 | <b>*</b>             |
| CS3-DUP            | Naphthalene             | 0.720                | 24                | 350                  | 26                   |     | 3.40E-05                       |                   | 70                                |                  | 365        |   | 24       | 8.72E-06                                                           | 1.4E-05                         |                      |
| AMBIENT            | Benzene                 | 0.460                | 24                | 350                  | 26                   |     | 2.90E-05                       |                   | 70                                |                  | 365        |   | 24       | 4.75E-06                                                           |                                 | Residential Exposure |
|                    | Ethylbenzene            | 0.220                | 24                | 350                  | 26                   |     | 2.50E-06                       |                   | 70                                |                  | 365        |   | 24       | 1.96E-07                                                           |                                 | Residential Exposure |
|                    |                         |                      |                   |                      |                      | -   |                                |                   |                                   |                  |            |   |          |                                                                    | 4.9E-06                         |                      |
|                    |                         |                      |                   |                      | I                    | S   | amples Collected               | August 9, 201     | 0                                 |                  |            |   |          | I                                                                  | 1                               | 1                    |
| CS4                | Benzene                 | 1.8                  | 24                | 350                  | 26                   |     | 2.90E-05                       |                   | 70                                |                  | 365        |   | 24       | 1.86E-05                                                           |                                 | Residential Exposure |
| CS4                | Ethylbenzene            | 0.37                 | 24                | 350                  | 26                   | _   | 2.50E-06                       |                   | 70                                |                  | 365        |   | 24       | 3.29E-07                                                           |                                 |                      |
| CS4                | TCE                     | 1.30                 | 24                | 350                  | 26                   |     | 4.10E-06                       |                   | 70                                |                  | 365        |   | 24       | 1.90E-06                                                           | 2.1E-05                         |                      |
| CS5                | Benzene                 | 1.6                  | 24                | 350                  | 26                   |     | 2.90E-05                       |                   | 70                                |                  | 365        |   | 24       | 1.65E-05                                                           |                                 | Residential Exposure |
| CS5                | Ethylbenzene            | 0.38                 | 24                | 350                  | 26                   |     | 2.50E-06                       |                   | 70                                |                  | 365        |   | 24       | 3.38E-07                                                           |                                 | Residential Exposure |
| CS5                | PCE                     | 0.36                 | 24                | 350                  | 26                   |     | 5.90E-06                       |                   | 70                                |                  | 365        |   | 24       | 7.56E-07                                                           |                                 |                      |
| CS5                | TCE                     | 1.7                  | 24                | 350                  | 26                   | _   | 4.10E-06                       |                   | 70                                |                  | 365        |   | 24       | 2.48E-06                                                           | 2.0E-05                         |                      |
|                    |                         |                      |                   |                      |                      |     |                                |                   |                                   |                  |            |   |          |                                                                    | 2.0E-03                         |                      |
| CS6<br>CS6         | Benzene<br>Ethylbenzene | 3.10<br>0.39         | 24 24             | 350<br>350           | 26<br>26             |     | 2.90E-05<br>2.50E-06           |                   | 70<br>70                          |                  | 365<br>365 |   | 24<br>24 | 3.20E-05<br>3.47E-07                                               |                                 | Residential Exposure |
| CS6                | TCE                     | 0.64                 | 24                | 350                  | 26                   |     | 4.10E-06                       |                   | 70                                |                  | 365        |   | 24       | 9.35E-07                                                           |                                 |                      |
|                    |                         |                      |                   |                      |                      |     |                                |                   |                                   |                  |            |   |          |                                                                    | 3.3E-05                         |                      |
| GG ( DI ID         | 5                       | 2.10                 |                   | 350                  | 24                   | _   | 0.007.05                       |                   |                                   |                  | 365        |   | 2.1      | 0.007.05                                                           |                                 | D. 11. 11.D.         |
| CS6-DUP<br>CS6-DUP | Benzene<br>Ethylbenzene | 3.10<br>0.39         | 24 24             | 350                  | 26<br>26             |     | 2.90E-05<br>2.50E-06           |                   | 70<br>70                          |                  | 365        |   | 24<br>24 | 3.20E-05<br>3.47E-07                                               |                                 | Residential Exposure |
| CS6-DUP            | TCE                     | 0.64                 | 24                | 350                  | 26                   |     | 4.10E-06                       |                   | 70                                |                  | 365        |   | 24       | 9.35E-07                                                           |                                 |                      |
|                    |                         |                      |                   |                      |                      |     |                                |                   |                                   |                  |            |   |          |                                                                    | 3.3E-05                         |                      |
| AMBIENT            | Benzene                 | 0.31                 | 24                | 350                  | 26                   | -   | 2.90E-05                       |                   | 70                                |                  | 365        |   | 24       | 3.20E-06                                                           |                                 | Residential Exposure |
|                    |                         |                      |                   |                      |                      |     |                                |                   |                                   |                  |            |   |          |                                                                    | 3.2E-06                         |                      |
|                    | I                       | 1                    |                   |                      | 1                    | San | nples Collected Fe             | ebruary 19, 20    | 010                               | 1<br>TT          | I          |   |          | I                                                                  | 1                               | 1                    |
| CS1                | Benzene                 | 4.7                  | 24                | 350                  | 26                   | +   | 2.90E-05                       |                   | 70                                | $\left  \right $ | 365        |   | 24       | 4.85E-05                                                           |                                 | Residential Exposure |
| CS1                | Ethylbenzene            | 9.4                  | 24                | 350                  | 26                   |     | 2.50E-06                       |                   | 70                                |                  | 365        |   | 24       | 8.37E-06                                                           |                                 |                      |
| CS1                | PCE                     | 0.38                 | 24                | 350                  | 26                   | _   | 5.90E-06                       |                   | 70                                | $\square$        | 365        |   | 24       | 7.99E-07                                                           |                                 |                      |
| CS1                | TCE                     | 0.44                 | 24                | 350                  | 26                   |     | 4.10E-06                       |                   | 70                                | $\vdash$         | 365        |   | 24       | 6.43E-07                                                           | 5.8E-05                         |                      |
|                    |                         |                      |                   |                      |                      |     |                                |                   |                                   |                  |            |   |          |                                                                    |                                 |                      |
| CS2                | Benzene                 | 5.3                  | 24                | 350                  | 26                   | _   | 2.90E-05                       |                   | 70                                |                  | 365        |   | 24       | 5.47E-05                                                           |                                 | Residential Exposure |
| CS2<br>CS2         | Ethylbenzene<br>PCE     | 9.3                  | 24 24             | 350                  | 26<br>26             | +   | 2.50E-06<br>5.90E-06           |                   | 70 70                             | +                | 365<br>365 |   | 24<br>24 | 8.28E-06<br>2.52E-06                                               |                                 |                      |
| CS2                | TCE                     | 3.2                  | 24                | 350                  | 26                   |     | 4.10E-06                       |                   | 70                                |                  | 365        |   | 24       | 4.67E-06                                                           |                                 |                      |
|                    |                         |                      |                   |                      |                      | 1   |                                |                   |                                   |                  |            |   |          |                                                                    | 7.0E-05                         |                      |

#### Table 2A Crawls Space and Ambient Air Risk Calculation Results

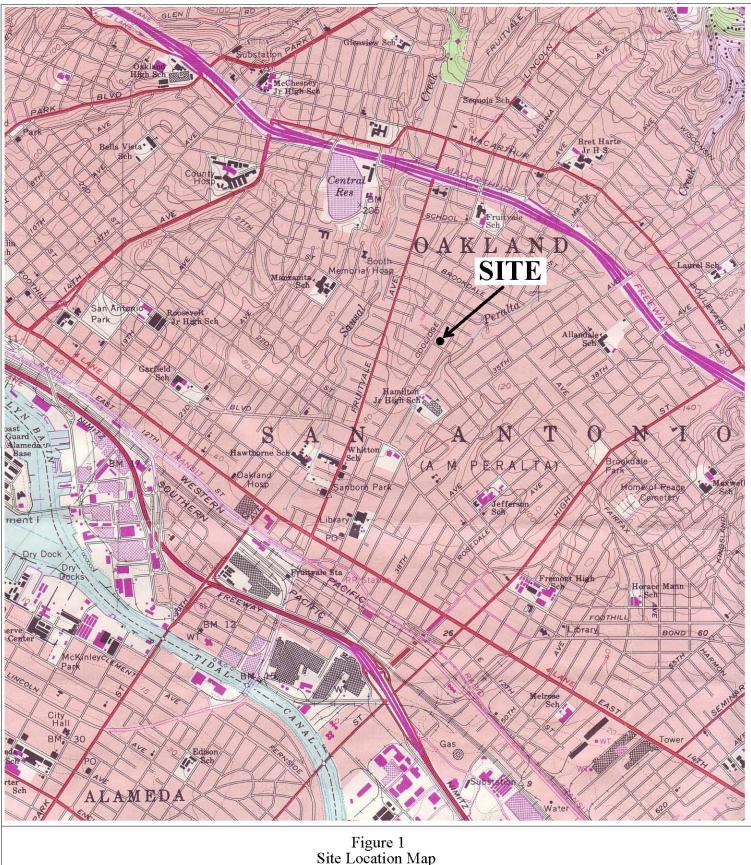
| Equation     |              | Concentration in Air | X Exposure Time | X Exposure Frequency X | Exposure<br>Duration | x | Inhalation Unit<br>Risk Factor | all divided<br>by | Averaging Time<br>for Carcinogens | x | 365       | X | 24       | Calculated Individual<br>Compound Incremental | Cumulative<br>Carcinogenic Risk | Comments             |
|--------------|--------------|----------------------|-----------------|------------------------|----------------------|---|--------------------------------|-------------------|-----------------------------------|---|-----------|---|----------|-----------------------------------------------|---------------------------------|----------------------|
|              |              |                      |                 |                        |                      |   |                                |                   |                                   |   |           |   |          | Carcinogenic Risk                             |                                 |                      |
| Units        |              | (ug/m3)              | (hrs/day)       | (days/yr)              | (yrs)                |   | (ug/m3)                        |                   | (yrs)                             |   | (days/yr) |   | (hr/day) |                                               |                                 |                      |
| CS3          | Benzene      | 0.65                 | 24              | 350                    | 26                   | - | 2.90E-05                       |                   | 70                                |   | 365       |   | 24       | 6.71E-06                                      |                                 | Residential Exposure |
| CS3          | Ethylbenzene | 0.77                 | 24              | 350                    | 26                   |   | 2.50E-06                       |                   | 70                                |   | 365       |   | 24       | 6.86E-07                                      |                                 |                      |
| CS3          | PCE          | 0.23                 | 24              | 350                    | 26                   | 1 | 5.90E-06                       |                   | 70                                | 1 | 365       |   | 24       | 4.83E-07                                      |                                 |                      |
|              |              |                      |                 |                        |                      |   |                                |                   |                                   |   |           |   |          |                                               | 7.9E-06                         |                      |
| CS3-DUP      | Benzene      | 0.64                 | 24              | 350                    | 26                   | - | 2.90E-05                       |                   | 70                                |   | 365       |   | 24       | 6.61E-06                                      |                                 | Residential Exposure |
| CS3-DUP      | Ethylbenzene | 0.79                 | 24              | 350                    | 26                   | 1 | 2.50E-06                       |                   | 70                                |   | 365       |   | 24       | 7.03E-07                                      |                                 |                      |
|              |              |                      |                 |                        |                      |   |                                |                   |                                   |   |           |   |          |                                               | 7.3E-06                         |                      |
| AMBIENT      | Benzene      | 0.56                 | 24              | 350                    | 26                   |   | 2.90E-05                       |                   | 70                                |   | 365       |   | 24       | 5.78E-06                                      |                                 | Residential Exposure |
| AMBIENT      | Ethylbenzene | 0.29                 | 24              | 350                    | 26                   |   | 2.50E-06                       |                   | 70                                |   | 365       |   | 24       | 2.58E-07                                      |                                 |                      |
|              |              |                      |                 |                        |                      |   |                                |                   |                                   |   |           |   |          |                                               | 6.0E-06                         |                      |
|              |              |                      |                 |                        |                      |   |                                |                   |                                   |   |           |   |          |                                               |                                 |                      |
| Notes:       |              |                      |                 |                        |                      |   |                                |                   |                                   |   |           |   |          |                                               |                                 |                      |
| PCE = Tetrac | hloroethene. |                      |                 |                        |                      |   |                                |                   |                                   |   |           |   |          |                                               |                                 |                      |
| TCE = Trichl | oroethene.   |                      |                 |                        |                      |   |                                |                   |                                   |   |           |   |          |                                               |                                 |                      |

Table 2B

|                    |                         |                        |                    |                       | Crawl Spa              | ace and Ambie     | ent Air Hazard Calcu                              | latio | n Results  |   |          |                                    |                                                         |              |                      |
|--------------------|-------------------------|------------------------|--------------------|-----------------------|------------------------|-------------------|---------------------------------------------------|-------|------------|---|----------|------------------------------------|---------------------------------------------------------|--------------|----------------------|
|                    |                         |                        |                    |                       |                        |                   |                                                   |       |            |   |          |                                    |                                                         |              |                      |
|                    |                         |                        |                    |                       |                        |                   |                                                   |       |            |   |          |                                    |                                                         |              |                      |
| Equation           |                         | Concentration in Air X | Exposure X<br>Time | Exposure<br>Frequency | X Exposure<br>Duration | all divided<br>by | Averaging Time<br>for Non-cancer<br>Toxic Effects | X     | 365        | X | 24       | X Reference<br>Concentration (Rfc) | Calculated<br>Individual<br>Compound Hazard<br>Quotient | Hazard Index | Comments             |
| Units              |                         | (ug/m3)                | (hrs/day)          | (days/yr)             | (yrs)                  |                   | (yrs)                                             |       | (days/yr)  |   | (hr/day) | (ug/m3)                            |                                                         |              |                      |
| Location           | Compound                |                        |                    |                       |                        |                   |                                                   |       |            |   |          |                                    |                                                         |              |                      |
|                    |                         |                        |                    |                       |                        |                   |                                                   |       |            |   |          |                                    |                                                         |              |                      |
|                    | L.                      |                        |                    |                       | 1 1                    | Samples Co        | ollected April 26, 20                             | 16    |            |   | 0        |                                    |                                                         | 0            |                      |
| 001                | TDU CC                  | 2,500                  | 24                 | 250                   | 21                     |                   | 26                                                |       | 245        |   | 24       | 1.205.02                           | 2.505.01                                                |              | D 11 JUD             |
| CS1<br>CS1         | TPH-SS<br>Benzene       | 3,500 0.51             | 24<br>24           | 350<br>350            | 26                     |                   | 26<br>26                                          |       | 365<br>365 |   | 24<br>24 | 1.30E+02<br>3.00E+00               | 2.58E+01<br>1.63E-01                                    |              | Residential Exposure |
| CS1<br>CS1         | Toluene                 | 2.4                    | 24 24              | 350                   | 26                     | +                 | 26                                                | -     | 365        | - | 24       | 3.00E+00                           | 7.67E-03                                                |              |                      |
| CS1                | Ethylbenzene            | 0.82                   | 24                 | 350                   | 26                     |                   | 26                                                |       | 365        | 1 | 24       | 1.00E+02                           | 7.86E-04                                                |              |                      |
| CS1                | m,p-Xylene              | 1.70                   | 24                 | 350                   | 26                     |                   | 26                                                |       | 365        |   | 24       | 1.00E+02                           | 1.63E-02                                                |              |                      |
| CS1                | o-Xylene                | 0.78                   | 24                 | 350                   | 26                     |                   | 26                                                |       | 365        |   | 24       | 1.00E+02                           | 7.48E-03                                                |              |                      |
| CS1                | Naphthalene             | 0.48                   | 24                 | 350                   | 26                     |                   | 26                                                |       | 365        |   | 24       | 3.00E+00                           | 1.53E-01                                                |              |                      |
| CS1                | PCE                     | 0.26                   | 24                 | 350                   | 26                     |                   | 26                                                |       | 365        |   | 24       | 3.50E+01                           | 7.12E-03                                                |              |                      |
|                    |                         |                        |                    |                       |                        |                   |                                                   |       |            |   |          |                                    |                                                         | 2.6E+01      |                      |
| CS2                | TPH-SS                  | 1,800                  | 24                 | 350                   | 26                     | -                 | 26                                                |       | 365        |   | 24       | 1.30E+02                           | 1.33E+01                                                |              | Residential Exposure |
| CS2<br>CS2         | Benzene                 | 0.55                   | 24                 | 350                   | 26                     |                   | 26                                                |       | 365        |   | 24       | 3.00E+02                           | 1.76E-01                                                |              | Residential Exposure |
| CS2<br>CS2         | Toluene                 | 3                      | 24                 | 350                   | 26                     |                   | 26                                                |       | 365        |   | 24       | 3.00E+00                           | 9.59E-03                                                |              |                      |
| CS2                | Ethylbenzene            | 0.78                   | 24                 | 350                   | 26                     |                   | 26                                                |       | 365        |   | 24       | 1.00E+03                           | 7.48E-04                                                |              |                      |
| CS2                | m,p-Xylene              | 1.70                   | 24                 | 350                   | 26                     |                   | 26                                                |       | 365        |   | 24       | 1.00E+02                           | 1.63E-02                                                |              |                      |
| CS2                | o-Xylene                | 0.79                   | 24                 | 350                   | 26                     |                   | 26                                                |       | 365        |   | 24       | 1.00E+02                           | 7.58E-03                                                |              |                      |
| CS2                | Naphthalene             | 0.41                   | 24                 | 350                   | 26                     |                   | 26                                                |       | 365        |   | 24       | 3.00E+00                           | 1.31E-01                                                |              |                      |
| CS2                | PCE                     | 0.99                   | 24                 | 350                   | 26                     |                   | 26                                                |       | 365        |   | 24       | 3.50E+01                           | 2.71E-02                                                |              |                      |
| CS2                | TCE                     | 0.38                   | 24                 | 350                   | 26                     |                   | 26                                                |       | 365        |   | 24       | 2.00E+00                           | 1.82E-01                                                | 1.4E+01      |                      |
|                    |                         |                        |                    |                       |                        | -                 |                                                   |       |            |   |          |                                    |                                                         | 1.4E+01      |                      |
| CS3                | TPH-SS                  | 5,800                  | 24                 | 350                   | 26                     |                   | 26                                                |       | 365        |   | 24       | 1.30E+02                           | 4.28E+01                                                |              | Residential Exposure |
| CS3                | Benzene                 | 0.41                   | 24                 | 350                   | 26                     |                   | 26                                                |       | 365        |   | 24       | 3.00E+00                           | 1.31E-01                                                |              | Residential Exposure |
| CS3                | Toluene                 | 1.6                    | 24                 | 350                   | 26                     |                   | 26                                                |       | 365        |   | 24       | 3.00E+02                           | 5.11E-03                                                |              |                      |
| CS3                | Ethylbenzene            | 0.58                   | 24                 | 350                   | 26                     |                   | 26                                                |       | 365        |   | 24       | 1.00E+03                           | 5.56E-04                                                |              |                      |
| CS3                | m,p-Xylene              | 1.40                   | 24                 | 350                   | 26                     |                   | 26                                                |       | 365        |   | 24       | 1.00E+02                           | 1.34E-02                                                |              |                      |
| CS3                | o-Xylene                | 0.61                   | 24                 | 350                   | 26                     |                   | 26                                                |       | 365        |   | 24       | 1.00E+02                           | 5.85E-03                                                |              |                      |
| CS3                | Naphthalene             | 0.71                   | 24                 | 350                   | 26                     |                   | 26                                                |       | 365        |   | 24       | 3.00E+00                           | 2.27E-01                                                | 4.3E+01      |                      |
|                    |                         |                        |                    |                       |                        |                   |                                                   |       |            |   |          |                                    |                                                         | 4.512±01     |                      |
| CS3-DUP            | TPH-SS                  | 5,000                  | 24                 | 350                   | 26                     | +                 | 26                                                | -     | 365        | - | 24       | 1.30E+02                           | 3.69E+01                                                |              | Residential Exposure |
| CS3-DUP            | Benzene                 | 0.42                   | 24                 | 350                   | 26                     |                   | 26                                                |       | 365        |   | 24       | 3.00E+00                           | 1.34E-01                                                |              | Let the point        |
| CS3-DUP            | Toluene                 | 1.5                    | 24                 | 350                   | 26                     |                   | 26                                                |       | 365        |   | 24       | 3.00E+02                           | 4.79E-03                                                |              |                      |
| CS3-DUP            | Ethylbenzene            | 0.59                   | 24                 | 350                   | 26                     |                   | 26                                                |       | 365        |   | 24       | 1.00E+03                           | 5.66E-04                                                |              |                      |
| CS3-DUP            | m,p-Xylene              | 1.40                   | 24                 | 350                   | 26                     |                   | 26                                                |       | 365        | - | 24       | 1.00E+02                           | 1.34E-02                                                |              |                      |
| CS3-DUP<br>CS3-DUP | o-Xylene<br>Naphthalene | 0.62                   | 24<br>24           | 350<br>350            | 26                     |                   | 26<br>26                                          | -     | 365<br>365 |   | 24<br>24 | 1.00E+02<br>3.00E+00               | 5.95E-03<br>2.30E-01                                    |              |                      |
| C33-DUr            | ivapiunaiene            | 0.72                   | 24                 | 550                   | 20                     |                   | 20                                                |       | 303        |   | 24       | 5.00E+00                           | 2.30E-01                                                | 3.7E+01      |                      |
|                    |                         |                        |                    | 2.50                  |                        |                   |                                                   |       |            | - |          | 0.007.07                           | 4 4872 04                                               |              |                      |
| AMBIENT            | Benzene                 | 0.46                   | 24                 | 350                   | 26                     |                   | 26                                                |       | 365        |   | 24       | 3.00E+00                           | 1.47E-01                                                |              | Residential Exposure |
| AMBIENT<br>AMBIENT | Toluene<br>Ethylbenzene | 0.22                   | 24<br>24           | 350<br>350            | 26                     |                   | 26<br>26                                          | -     | 365<br>365 |   | 24<br>24 | 3.00E+02<br>1.00E+03               | 3.52E-03<br>2.11E-04                                    |              |                      |
| AMBIENT            | m,p-Xylene              | 0.22                   | 24                 | 350                   | 26                     |                   | 26                                                |       | 365        | - | 24       | 1.00E+03<br>1.00E+02               | 2.11E-04<br>3.16E-03                                    |              |                      |
| AMBIENT            | o-Xylene                | 0.33                   | 24                 | 350                   | 26                     | -                 | 26                                                | -     | 365        | - | 24 24    | 1.00E+02                           | 3.16E-03                                                |              |                      |
|                    |                         | 5,555                  |                    | 550                   |                        | 1                 |                                                   | 1     |            | 1 |          | 1.001102                           | 2.2.00 00                                               | 1.6E-01      |                      |

Table 2B

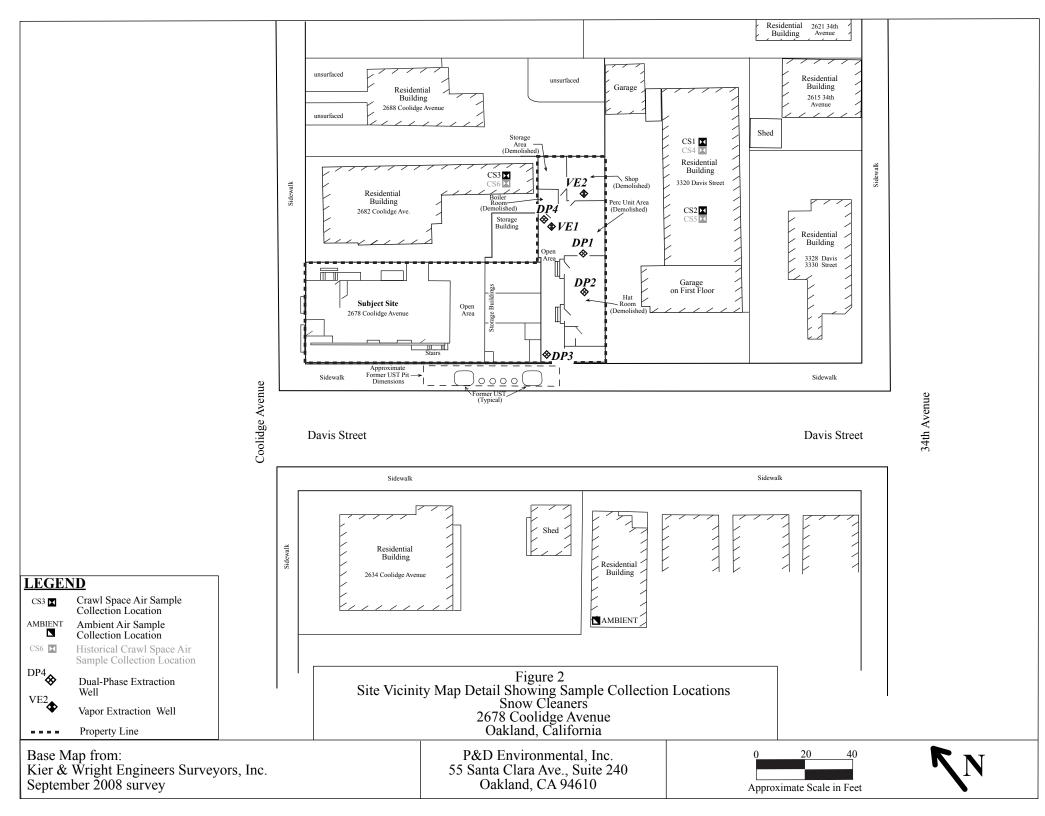
| Equation   |                            | Concentration in Air X | Exposure 2<br>Time | K Exposure<br>Frequency | X Exposure<br>Duration | all divided Averaging Time<br>by for Non-cancer<br>Toxic Effects | X   | 365 X      | 24       | X        | Reference<br>Concentration (Rfc) | Calculated<br>Individual<br>Compound Hazard<br>Quotient | Hazard Index | Comments             |
|------------|----------------------------|------------------------|--------------------|-------------------------|------------------------|------------------------------------------------------------------|-----|------------|----------|----------|----------------------------------|---------------------------------------------------------|--------------|----------------------|
| Units      |                            | (ug/m3)                | (hrs/day)          | (days/yr)               | (yrs)                  | (yrs)                                                            |     | (days/yr)  | (hr/day) |          | (ug/m3)                          |                                                         |              |                      |
| Location   | Compound                   |                        |                    |                         |                        |                                                                  |     |            |          |          |                                  |                                                         |              |                      |
|            |                            |                        |                    |                         |                        | Samples Collected August 9, 2                                    | 010 |            |          |          |                                  |                                                         |              |                      |
|            |                            |                        |                    |                         |                        |                                                                  |     |            |          |          |                                  |                                                         |              |                      |
| CS4        | TPH-G                      | 570                    | 24                 | 350                     | 26                     | 26                                                               |     | 365        | 24       |          | 5.70E+02                         | 9.59E-01                                                |              | Residential Exposure |
| CS4        | Benzene                    | 1.8                    | 24                 | 350                     | 26                     | 26                                                               | -   | 365        | 24       |          | 3.00E+00                         | 5.75E-01                                                |              |                      |
| CS4<br>CS4 | Toluene                    | 4.0<br>0.37            | 24<br>24           | 350<br>350              | 26                     | 26                                                               |     | 365        | 24<br>24 |          | 3.00E+02<br>1.00E+03             | 1.28E-02<br>3.55E-04                                    |              |                      |
| CS4        | Ethylbenzene<br>m,p-Xylene | 1.0                    | 24                 | 350                     | 26<br>26               | 26                                                               |     | 365<br>365 | 24       |          | 1.00E+03                         | 9.59E-03                                                |              |                      |
| CS4        | o-Xylene                   | 0.56                   | 24                 | 350                     | 26                     | 26                                                               |     | 365        | 24       |          | 1.00E+02<br>1.00E+02             | 5.37E-03                                                |              |                      |
| CS4        | TCE                        | 1.3                    | 24                 | 350                     | 26                     | 26                                                               |     | 365        | 24       |          | 2.00E+02                         | 6.23E-01                                                |              |                      |
|            |                            |                        |                    |                         |                        |                                                                  |     |            |          |          |                                  |                                                         | 2.2E+00      |                      |
| CS5        | TPH-G                      | 530                    | 24                 | 350                     | 26                     | 26                                                               |     | 365        | 24       |          | 5.70E+02                         | 8.92E-01                                                |              | Residential Exposure |
| CS5        | Benzene                    | 1.6                    | 24                 | 350                     | 26                     | 26                                                               |     | 365        | 24       |          | 3.00E+00                         | 5.11E-01                                                |              | Residential Exposure |
| CS5        | Toluene                    | 4.1                    | 24                 | 350                     | 26                     | 26                                                               |     | 365        | 24       |          | 3.00E+02                         | 1.31E-02                                                |              |                      |
| CS5        | Ethylbenzene               | 0.38                   | 24                 | 350                     | 26                     | 26                                                               |     | 365        | 24       |          | 1.00E+03                         | 3.64E-04                                                |              |                      |
| CS5        | m,p-Xylene                 | 1.0                    | 24                 | 350                     | 26                     | 26                                                               |     | 365        | 24       |          | 1.00E+02                         | 9.59E-03                                                |              |                      |
| CS5        | o-Xylene                   | 0.56                   | 24                 | 350                     | 26                     | 26                                                               |     | 365        | 24       |          | 1.00E+02                         | 5.37E-03                                                |              |                      |
| CS5        | PCE                        | 0.36                   | 24                 | 350                     | 26                     | 26                                                               |     | 365        | 24       |          | 3.50E+01                         | 9.86E-03                                                |              |                      |
| CS5        | TCE                        | 1.7                    | 24                 | 350                     | 26                     | 26                                                               | -   | 365        | 24       |          | 2.00E+00                         | 8.15E-01                                                | 2.3E+00      |                      |
| CS6        | TPH-G                      | 1,000                  | 24                 | 350                     | 26                     | 26                                                               |     | 365        | 24       |          | 5.70E+02                         | 1.68E+00                                                |              | Residential Exposure |
| CS6        | Benzene                    | 3.1                    | 24                 | 350                     | 26                     | 26                                                               |     | 365        | 24       |          | 3.00E+02                         | 9.91E-01                                                |              | Residential Exposure |
| CS6        | Toluene                    | 2.9                    | 24                 | 350                     | 26                     | 26                                                               |     | 365        | 24       |          | 3.00E+02                         | 9.27E-03                                                |              |                      |
| CS6        | Ethylbenzene               | 0.39                   | 24                 | 350                     | 26                     | 26                                                               |     | 365        | 24       |          | 1.00E+03                         | 3.74E-04                                                |              |                      |
| CS6        | m,p-Xylene                 | 1.1                    | 24                 | 350                     | 26                     | 26                                                               |     | 365        | 24       |          | 1.00E+02                         | 1.05E-02                                                |              |                      |
| CS6        | o-Xylene                   | 0.65                   | 24                 | 350                     | 26                     | 26                                                               |     | 365        | 24       |          | 1.00E+02                         | 6.23E-03                                                |              |                      |
| CS6        | TCE                        | 0.6                    | 24                 | 350                     | 26                     | 26                                                               |     | 365        | 24       |          | 2.00E+00                         | 3.07E-01                                                | 3.0E+00      |                      |
|            |                            |                        |                    |                         |                        |                                                                  |     |            |          |          |                                  |                                                         |              |                      |
| CS6-DUP    | TPH-G                      | 1,100                  | 24                 | 350                     | 26                     | 26                                                               | -   | 365        | 24       |          | 5.70E+02                         | 1.85E+00                                                |              | Residential Exposure |
| CS6-DUP    | Benzene                    | 3.1                    | 24                 | 350                     | 26                     | 26                                                               |     | 365        | 24       | <u> </u> | 3.00E+00                         | 9.91E-01                                                |              |                      |
| CS6-DUP    | Toluene                    | 2.9                    | 24                 | 350                     | 26                     | 26                                                               |     | 365        | 24       |          | 3.00E+02                         | 9.27E-03                                                |              |                      |
| CS6-DUP    | Ethylbenzene               | 0.39                   | 24                 | 350                     | 26                     | 26                                                               |     | 365        | 24       |          | 1.00E+03                         | 3.74E-04                                                |              |                      |
| CS6-DUP    | m,p-Xylene                 | 1.1                    | 24                 | 350                     | 26                     | 26                                                               |     | 365        | 24       |          | 1.00E+02                         | 1.05E-02                                                |              |                      |
| CS6-DUP    | o-Xylene                   | 0.63                   | 24                 | 350                     | 26                     | 26                                                               |     | 365        | 24       |          | 1.00E+02                         | 6.04E-03                                                |              |                      |
| CS6-DUP    | TCE                        | 0.6                    | 24                 | 350                     | 26                     | 26                                                               |     | 365        | 24       |          | 2.00E+00                         | 3.07E-01                                                | 3.2E+00      |                      |
| AMBIENT    | Benzene                    | 0.31                   | 24                 | 350                     | 26                     | 26                                                               |     | 365        | 24       |          | 3.00E+00                         | 9.91E-02                                                |              | Residential Exposure |
| AMBIENT    | Toluene                    | 0.66                   | 24                 | 350                     | 26                     | 26                                                               |     | 365        | 24       |          | 3.00E+00<br>3.00E+02             | 2.11E-02                                                |              | Residential Exposure |
| *          |                            | 0100                   |                    |                         | 20                     | 20                                                               | -   |            | 21       |          |                                  |                                                         | 1.0E-01      |                      |


Table 2B

|               |                         |                        |                    |                       | Crawl Space and Ar                  | nbient Air Hazard Calcu                               | lation Results |   |          |   |                                  |                                                         |              |                      |
|---------------|-------------------------|------------------------|--------------------|-----------------------|-------------------------------------|-------------------------------------------------------|----------------|---|----------|---|----------------------------------|---------------------------------------------------------|--------------|----------------------|
|               |                         |                        |                    |                       |                                     |                                                       |                |   |          |   |                                  |                                                         |              |                      |
| Equation      |                         | Concentration in Air X | Exposure X<br>Time | Exposure<br>Frequency | X Exposure all divic<br>Duration by | led Averaging Time<br>for Non-cancer<br>Toxic Effects | X 365          | X | 24       | x | Reference<br>Concentration (Rfc) | Calculated<br>Individual<br>Compound Hazard<br>Quotient | Hazard Index | Comments             |
| Units         |                         | (ug/m3)                | (hrs/day)          | (days/yr)             | (yrs)                               | (yrs)                                                 | (days/yr)      | ) | (hr/day) |   | (ug/m3)                          |                                                         |              |                      |
| Location      | Compound                |                        |                    |                       |                                     |                                                       |                |   |          |   |                                  |                                                         |              |                      |
|               |                         |                        |                    |                       | Somulas                             | Collected February 19,                                | 2010           |   |          |   |                                  |                                                         |              |                      |
|               |                         |                        |                    |                       | Samples                             | onected repruary 19,                                  | 2010           |   |          |   |                                  |                                                         |              |                      |
| CS1           | TPH-SS                  | 310                    | 24                 | 350                   | 26                                  | 26                                                    | 365            |   | 24       |   | 1.30E+02                         | 2.29E+00                                                |              | Residential Exposure |
| CS1           | Benzene                 | 4.7                    | 24                 | 350                   | 26                                  | 26                                                    | 365            |   | 24       |   | 3.00E+00                         | 1.50E+00                                                |              |                      |
| CS1           | Toluene                 | 48                     | 24                 | 350                   | 26                                  | 26                                                    | 365            | - | 24       |   | 3.00E+02                         | 1.53E-01                                                |              |                      |
| CS1           | Ethylbenzene            | 9.4                    | 24                 | 350                   | 26                                  | 26                                                    | 365            | + | 24       |   | 1.00E+03                         | 9.01E-03                                                |              |                      |
| CS1<br>CS1    | m,p-Xylene<br>o-Xylene  | 36                     | 24<br>24           | 350<br>350            | 26<br>26                            | 26<br>26                                              | 365<br>365     | _ | 24<br>24 |   | 1.00E+02<br>1.00E+02             | 3.45E-01<br>1.05E-01                                    |              |                      |
| CS1<br>CS1    | PCE                     | 0.38                   | 24                 | 350                   | 26                                  | 26                                                    | 365            |   | 24       |   | 3.50E+01                         | 1.04E-02                                                |              |                      |
| CS1           | TCE                     | 0.44                   | 24                 | 350                   | 26                                  | 26                                                    | 365            |   | 24       |   | 2.00E+00                         | 2.11E-01                                                |              |                      |
| 001           | 102                     | 0.11                   | 21                 | 5500                  | 20                                  | 20                                                    | 000            |   | 21       |   | 21002100                         | Diffib of                                               | 4.6E+00      |                      |
|               |                         |                        |                    |                       |                                     |                                                       |                |   |          |   |                                  |                                                         |              |                      |
| CS2           | TPH-SS                  | 300                    | 24                 | 350                   | 26                                  | 26                                                    | 365            |   | 24       |   | 1.30E+02                         | 2.21E+00                                                |              | Residential Exposure |
| CS2           | Benzene                 | 5.3                    | 24                 | 350                   | 26                                  | 26                                                    | 365            |   | 24       |   | 3.00E+00                         | 1.69E+00                                                |              |                      |
| CS2           | Toluene                 | 50                     | 24                 | 350                   | 26                                  | 26                                                    | 365            | _ | 24       |   | 3.00E+02                         | 1.60E-01                                                |              |                      |
| CS2           | Ethylbenzene            | 9.3                    | 24                 | 350                   | 26                                  | 26                                                    | 365            | _ | 24       |   | 1.00E+03                         | 8.92E-03                                                |              |                      |
| CS2<br>CS2    | m,p-Xylene<br>o-Xylene  | 35                     | 24<br>24           | 350<br>350            | 26                                  | 26                                                    | 365<br>365     | _ | 24<br>24 |   | 1.00E+02<br>1.00E+02             | 3.36E-01<br>9.59E-02                                    |              |                      |
| CS2<br>CS2    | PCE                     | 1.2                    | 24                 | 350                   | 26                                  | 26                                                    | 365            | _ | 24       |   | 3.50E+01                         | 9.59E-02<br>3.29E-02                                    |              |                      |
| CS2<br>CS2    | TCE                     | 3.2                    | 24                 | 350                   | 26                                  | 26                                                    | 365            | _ | 24       |   | 2.00E+00                         | 1.53E+00                                                |              |                      |
| 001           | 101                     | للمدة لي               | 21                 | 330                   | 20                                  | 20                                                    | 500            |   | 2.       |   | 2.002100                         | 1002100                                                 | 6.1E+00      |                      |
|               |                         | 0.55                   | 2.1                | 2.50                  |                                     |                                                       | 0.45           |   |          |   | 0.007.00                         | 0.0072.04                                               |              |                      |
| CS3<br>CS3    | Benzene<br>Toluene      | 0.65 3.7               | 24<br>24           | 350<br>350            | 26<br>26                            | 26<br>26                                              | 365<br>365     |   | 24<br>24 |   | 3.00E+00<br>3.00E+02             | 2.08E-01<br>1.18E-02                                    |              | Residential Exposure |
| CS3           | Ethylbenzene            | 0.77                   | 24 24              | 350                   | 26                                  | 26                                                    | 365            |   | 24       |   | 1.00E+02                         | 7.38E-04                                                |              |                      |
| CS3           | m,p-Xylene              | 3.6                    | 24                 | 350                   | 26                                  | 26                                                    | 365            | _ | 24       |   | 1.00E+02                         | 3.45E-02                                                |              |                      |
| CS3           | o-Xylene                | 1.0                    | 24                 | 350                   | 26                                  | 26                                                    | 365            |   | 24       |   | 1.00E+02                         | 9.59E-02                                                |              |                      |
| CS3           | PCE                     | 0.23                   | 24                 | 350                   | 26                                  | 26                                                    | 365            |   | 24       |   | 3.50E+01                         | 6.30E-03                                                |              |                      |
|               |                         |                        |                    |                       |                                     |                                                       |                |   |          |   |                                  |                                                         | 2.7E-01      |                      |
| CS3-DUP       | Benzene                 | 0.64                   | 24                 | 350                   | 26                                  | 26                                                    | 365            |   | 24       |   | 3.00E+00                         | 2.05E-01                                                |              | Residential Exposure |
| CS3-DUP       | Toluene                 | 3.9                    | 24                 | 350                   | 26                                  | 26                                                    | 365            | + | 24       | 1 | 3.00E+00                         | 1.25E-02                                                |              | residential Exposure |
| CS3-DUP       | Ethylbenzene            | 0.79                   | 24                 | 350                   | 26                                  | 26                                                    | 365            | + | 24       |   | 1.00E+02                         | 7.58E-04                                                |              |                      |
| CS3-DUP       | m,p-Xylene              | 3.7                    | 24                 | 350                   | 26                                  | 26                                                    | 365            | 1 | 24       | 1 | 1.00E+02                         | 3.55E-02                                                |              |                      |
| CS3-DUP       | o-Xylene                | 1.0                    | 24                 | 350                   | 26                                  | 26                                                    | 365            |   | 24       |   | 1.00E+02                         | 9.59E-03                                                |              |                      |
|               |                         |                        |                    |                       |                                     |                                                       |                |   |          |   |                                  |                                                         | 2.6E-01      |                      |
| AMBIENT       | Benzene                 | 0.56                   | 24                 | 350                   | 26                                  | 26                                                    | 365            | + | 24       |   | 3.00E+00                         | 1.79E-01                                                |              | Residential Exposure |
| AMBIENT       | Toluene                 | 1.3                    | 24                 | 350                   | 26                                  | 26                                                    | 365            |   | 24       | 1 | 3.00E+02                         | 4.16E-03                                                |              | an entre and         |
| AMBIENT       | Ethylbenzene            | 0.29                   | 24                 | 350                   | 26                                  | 26                                                    | 365            |   | 24       |   | 1.00E+03                         | 2.78E-04                                                |              |                      |
| AMBIENT       | m,p-Xylene              | 0.98                   | 24                 | 350                   | 26                                  | 26                                                    | 365            |   | 24       |   | 1.00E+02                         | 9.40E-03                                                |              |                      |
| AMBIENT       | o-Xylene                | 0.34                   | 24                 | 350                   | 26                                  | 26                                                    | 365            |   | 24       |   | 1.00E+02                         | 3.26E-03                                                |              |                      |
|               |                         |                        |                    |                       |                                     |                                                       |                | + |          | + |                                  |                                                         | 2.0E-01      |                      |
|               |                         |                        |                    |                       |                                     |                                                       |                |   |          |   |                                  |                                                         |              |                      |
| Notes:        |                         |                        |                    |                       |                                     |                                                       |                |   |          |   |                                  |                                                         |              |                      |
|               | al Petroleum Hydrocarbo | ons as Gasoline        |                    |                       |                                     |                                                       |                | _ |          | 1 |                                  |                                                         |              |                      |
| PCE = Tetrach |                         |                        |                    |                       |                                     |                                                       |                | _ |          |   |                                  |                                                         |              |                      |
| TCE = Trichlo | roethene                |                        |                    |                       |                                     |                                                       |                |   |          | 1 |                                  |                                                         |              |                      |

Table 2C Crawl Space and Ambient Air Risk and Hazard Calculation Results Summary

|                            | Calculated             | Calculated                        | Calculated             |                    |                                                                                           |
|----------------------------|------------------------|-----------------------------------|------------------------|--------------------|-------------------------------------------------------------------------------------------|
|                            | Cumulative Incremental | Cumulative Incremental            | Cumulative Incremental | Calculated         | Recommendations Based on                                                                  |
| Air Sample                 | Carcinogenic           | Carcinogenic Risk                 | Carcinogenic Risk      | Hazard             | DTSC-Recommended                                                                          |
| Designation                | Risk                   | Alternate Description             | Alternate Description  | Index              | Guidance for Action or Response                                                           |
| <b>x</b>                   |                        |                                   |                        |                    |                                                                                           |
| Location                   |                        | -                                 |                        |                    |                                                                                           |
|                            |                        |                                   | Samples Collecte       | d April 26, 2016   |                                                                                           |
|                            |                        |                                   |                        |                    |                                                                                           |
| CS1                        | 1.24E-05               | 0.0000124                         | 12.4 in a million      | 26                 | Evaluate need for action - risk greater than 1 in a million, and hazard greater than 1.0. |
| CS2                        | 1.40E-05               | 0.0000140                         | 14.0 in a million      | 14                 | Evaluate need for action - risk greater than 1 in a million, and hazard greater than 1.0. |
|                            |                        |                                   |                        |                    |                                                                                           |
| CS3                        | 1.33E-05               | 0.0000133                         | 13.3 in a million      | 43                 | Evaluate need for action - risk greater than 1 in a million, and hazard greater than 1.0. |
| CS3-DUP                    | 1.36E-05               | 0.0000136                         | 13.6 in a million      | 37                 | Evaluate need for action - risk greater than 1 in a million, and hazard greater than 1.0. |
|                            | 11502 05               | 0.0000100                         |                        | 57                 |                                                                                           |
| AMBIENT                    | 4.95E-06               | 0.00000495                        | 5.0 in a million       | 0.16               | Not Applicable - Ambient Air                                                              |
|                            |                        |                                   |                        |                    |                                                                                           |
|                            |                        |                                   | Samples Collecte       | d August 9, 2010   |                                                                                           |
|                            |                        |                                   | <u> </u>               |                    |                                                                                           |
| CS4                        | 2.08E-05               | 0.0000208                         | 20.8 in a million      | 2.2                | Evaluate need for action - risk greater than 1 in a million, and hazard greater than 1.0. |
| CS5                        | 2.01E-05               | 0.0000201                         | 20.1 in a million      | 2.3                | Evaluate need for action - risk greater than 1 in a million, and hazard greater than 1.0. |
| 000                        | LIGILI 00              | 010000201                         | 2011 III U IIIIIIOII   | 2.0                | Dradate need for action in the grouter and the animon, and nature grouter and the         |
| CS6                        | 3.33E-05               | 0.0000333                         | 33.3 in a million      | 3.0                | Evaluate need for action - risk greater than 1 in a million, and hazard greater than 1.0. |
| CS6-DUP                    | 3.33E-05               | 0.0000333                         | 33.3 in a million      | 3.2                | Evaluate need for action - risk greater than 1 in a million, and hazard greater than 1.0. |
| C30-D01                    | 5.55E-05               | 0.0000555                         | 55.5 III a IIIIII0II   | 5.4                | Evaluate need for action - risk greater than 1 in a minion, and nazard greater than 1.0.  |
| AMBIENT                    | 3.20E-06               | 0.00000320                        | 3.2 in a million       | 0.10               | Not Applicable - Ambient Air                                                              |
|                            |                        |                                   |                        |                    |                                                                                           |
|                            |                        |                                   | Samples Collected      | February 19, 2010  |                                                                                           |
|                            |                        |                                   | Sumples concered       | r obrum y 19, 2010 |                                                                                           |
| CS1                        | 5.84E-05               | 0.0000584                         | 58.4 in a million      | 4.6                | Evaluate need for action - risk greater than 1 in a million, and hazard greater than 1.0. |
| CS2                        | 7.02E-05               | 0.0000702                         | 70.2 in a million      | 6.1                | Evaluate need for action - risk greater than 1 in a million, and hazard greater than 1.0. |
| 0.52                       | 7.02E-03               | 0.0000702                         | 70.2 III a IIIIII0II   | 0.1                | Evaluate need for action - risk greater than 1 in a minion, and nazard greater than 1.0.  |
| CS3                        | 7.88E-06               | 0.00000788                        | 7.9 in a million       | 0.27               | Evaluate need for action - risk greater than 1 in a million.                              |
| CS3-DUP                    | 7.31E-06               | 0.00000731                        | 7.3 in a million       | 0.26               | Products and for action with empty days 1 in a willing                                    |
| CS3-DUP                    | 7.51E-00               | 0.00000731                        | 7.5 in a million       | 0.26               | Evaluate need for action - risk greater than 1 in a million.                              |
| AMBIENT                    | 6.04E-06               | 0.00000604                        | 6.0 in a million       | 0.20               | Not Applicable - Ambient Air                                                              |
|                            |                        |                                   |                        |                    |                                                                                           |
|                            |                        |                                   |                        |                    |                                                                                           |
| Notes:                     |                        |                                   |                        |                    |                                                                                           |
|                            | IATRIX FOR VAPOR INTRU |                                   |                        |                    |                                                                                           |
| <u>Risk</u>                | Response               | Activities                        |                        |                    |                                                                                           |
| Less than 1 in a million   | No Further Action      | None                              |                        |                    |                                                                                           |
|                            |                        |                                   |                        |                    |                                                                                           |
| 1 to 100 in a million      | Evaluate Need          | Possible Actions                  |                        |                    |                                                                                           |
|                            | for Action             | o Additional Data Collection      |                        |                    |                                                                                           |
|                            |                        | o Monitoring                      |                        |                    |                                                                                           |
|                            |                        | o Additional Risk Characterizatio | n                      |                    |                                                                                           |
|                            |                        | o Mitigation                      |                        |                    |                                                                                           |
|                            |                        | o Source Remediation              |                        |                    |                                                                                           |
| More than 100 in a million | Response               | o Vapor Intrusion Mitigation      |                        |                    |                                                                                           |
|                            | Action Needed          | o Source Remediation              |                        |                    |                                                                                           |


**FIGURES** 



Site Location Map Snow Cleaners 2678 Coolodge Avenue Oakland, California

Base Map From: U.S. Geological Survey Oakland East, California 7.5-Minute Quadrangle Photorevised 1980

P&D Environmental, Inc. 55 Santa Clara Ave., Suite 240 Oakland, CA 94610 0 1,000 2,000 Approximate Scale In Feet



# **APPENDIX A**

**Crawl Space Air Sampling Data Sheet** 

| 2678 CA<br>298<br>4/26/16<br>= MLBD   | BLIDGE AVE. | , OAKLAND                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------|-------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4/26/16<br>e MLBD                     |             |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| e MLBD                                |             |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |             |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |             | 10 State In State Institut Security of                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| low Controller #                      | Canister #  | Sample Canister Initial<br>Vacuum Check (In. Hg)<br>and time                                                   | Begin sample<br>collection vacuum<br>(In. Hg) and time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | End sample collection<br>vacuum (In. Hg) and<br>time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 933                                   | 34237       | vac - 30                                                                                                       | vac - 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | vac -5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PURGE VOLUME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                       |             | time 0801                                                                                                      | time 085740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | time 171702                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 201/MIN FOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                       |             |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IMINUTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3854                                  | 25244       | vac - 30                                                                                                       | vac - 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | vac - 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |             | time 0805                                                                                                      | time 085912                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | time 171751                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 152/7                                 | 14124       | 2.5                                                                                                            | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 13261                                 | 17107       |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |             | time 0820                                                                                                      | time 091500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | time 17 do de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 24 500                                | 32962       | 100 a 2a                                                                                                       | 100 - 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 57500                                 | 00100       |                                                                                                                | time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | time 17 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |             | unio v e A                                                                                                     | 11500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 auce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |             | vac                                                                                                            | vac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | vac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |             | time                                                                                                           | time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |             |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| · · · · · · · · · · · · · · · · · · · |             | vac                                                                                                            | vac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | vac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |             | time                                                                                                           | time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       | ř           |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |             | vac                                                                                                            | vac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | vac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |             | time                                                                                                           | time .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |             |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |             |                                                                                                                | vac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | vac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |             | ume                                                                                                            | lime                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |             | vac                                                                                                            | vac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | vac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |             | time                                                                                                           | time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |             |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |             | vac                                                                                                            | vac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | vac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |             | time                                                                                                           | time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |             |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |             | vac                                                                                                            | vac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | vac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |             | time                                                                                                           | time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |             |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |             | the second s |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |             | ume                                                                                                            | ume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | une                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4378                                  | 11892       | vac - 30                                                                                                       | vac - 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | vac -2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1010                                  | 1101~       | time 0203                                                                                                      | time 081445                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | time 180650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |             | time 0803                                                                                                      | time 081443                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | time 180630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       | 3854        |                                                                                                                | 1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 | ime       0801       ime       085740         3854       252444       vac       -30       ime         05267       14124       vac       -30       ime         05267       33962       vac       -30       ime         040       33962       vac       vac       vac         14124       vac       vac       vac       vac         14124       vac       vac       vac       vac         14125       14124       vac       vac       vac         14125       14124 | ime       0201       ime       085740       ime       171702         3854       252444       vac       -30       vac       -30       ime       171751         05267       14124       vac       -30       vac       -30       vac       -4.5         05267       14124       vac       -30       vac       -30       vac       -6         05267       14124       vac       -30       vac       -30       vac       -6         05267       14124       vac       -30       vac       -30       vac       -6         05200       10001500       time 1717000       time 1717000       time       1717000         34500       33962       vac       -30       vac       -5       time       04200       time       1717000         34500       33962       vac       -30       vac       vac       vac       vac       -5         100       100       vac       vac       vac       vac       vac       vac       -5         101       vac       vac       vac       vac       vac       vac       vac         101       vac       vac       vac |

# **APPENDIX B**

Weather Information

#### https://www.wunderground.com/personal-weather-station/dashboard?ID=KCAOAKLA51#history/s20160412/e20160508/mcustom/weather-station/dashboard?ID=KCAOAKLA51#history/s20160412/e20160508/mcustom/weather-station/dashboard?ID=KCAOAKLA51#history/s20160412/e20160508/mcustom/weather-station/dashboard?ID=KCAOAKLA51#history/s20160412/e20160508/mcustom/weather-station/dashboard?ID=KCAOAKLA51#history/s20160412/e20160508/mcustom/weather-station/dashboard?ID=KCAOAKLA51#history/s20160412/e20160508/mcustom/weather-station/dashboard?ID=KCAOAKLA51#history/s20160412/e20160508/mcustom/weather-station/dashboard?ID=KCAOAKLA51#history/s20160412/e20160508/mcustom/weather-station/dashboard?ID=KCAOAKLA51#history/s20160412/e20160508/mcustom/weather-station/dashboard?ID=KCAOAKLA51#history/s20160412/e20160508/mcustom/weather-station/dashboard?ID=KCAOAKLA51#history/s20160508/mcustom/weather-station/dashboard?ID=KCAOAKLA51#history/s20160508/mcustom/weather-station/dashboard?ID=KCAOAKLA51#history/s20160508/mcustom/weather-station/weather-station/weather-station/weather-station/weather-station/weather-station/weather-station/weather-station/weather-station/weather-station/weather-station/weather-station/weather-station/weather-station/weather-station/weather-station/weather-station/weather-station/weather-station/weather-station/weather-station/weather-station/weather-station/weather-station/weather-station/weather-station/weather-station/weather-station/weather-station/weather-station/weather-station/weather-station/weather-station/weather-station/weather-station/weather-station/weather-station/weather-station/weather-station/weather-station/weather-station/weather-station/weather-station/weather-station/weather-station/weather-station/weather-station/weather-station/weather-station/weather-station/weather-station/weather-station/weather-station/weather-station/weather-station/weather-station/weather-station/weather-station/weather-station/weather-station/weather-station/weather-station/weather-station/weather-station/weather-station/weather-

About This Weather Station

Weather Station ID: KCAOAKLA51 Station Name: Highland Terrace Latitude / Longitude: N 37 ° 47 ' 31 ", W 122 ° 13 ' 44 " Elevation: 150 City: Oakland State: CA Hardware: Davis Vantage Vue (Wireless) Software: Cumulus v1.9.4

#### Weather History Table

April 12, 2016 - May 8, 2016

| 2016 | Tempera        | ture           |                | Dew Poir       | nt             |                | Humidit     | у           |             | Speed  |       |        | Pressure        |          |              | Precip.<br>Accum |
|------|----------------|----------------|----------------|----------------|----------------|----------------|-------------|-------------|-------------|--------|-------|--------|-----------------|----------|--------------|------------------|
| Apr  | High           | Avg            | Low            | High           | Avg            | Low            | High        | Avg         | Low         | High   | Avg   | Gust   | High            | Avg      | Low          | Sum              |
| 12   | 61.9 °F        | 55.6 °F        | <b>51.7</b> °F | 52.5 °F        | <b>49.6</b> °F | 47.6 °F        | <b>93</b> % | <b>81</b> % | <b>66</b> % | 11 mph | 3 mph | 15 mph | 30.26 in        | 30.22 in | 30.17 in     | <b>0</b> in      |
| 13   | <b>63</b> °F   | <b>56</b> °F   | <b>49</b> °F   | 51.5 °F        | 47.4 °F        | 42.4 °F        | <b>89</b> % | 74 %        | <b>50</b> % | 12 mph | 2 mph | 16 mph | 30.25 in        | 30.17 in | 30.1 in      | <b>0</b> in      |
| 14   | 63 °F          | 55.7 °F        | 47.9 °F        | 52.1 °F        | 46.7 °F        | <b>41</b> °F   | <b>95</b> % | <b>73</b> % | <b>51</b> % | 9 mph  | 3 mph | 20 mph | 30.19 in        | 30.14 in | 30.08 in     | 0.17 in          |
| 15   | 71.2 °F        | 58.8 °F        | <b>48</b> °F   | 46.1 °F        | 42.3 °F        | 38.5 °F        | 77 %        | <b>57</b> % | 33 %        | 11 mph | 3 mph | 16 mph | 30.18 in        | 30.14 in | 30.09 in     | <b>0</b> in      |
| 16   | 81.6 °F        | 65.7 °F        | 52.5 °F        | 51.2 °F        | 44.2 °F        | 35.4 °F        | 82 %        | <b>51</b> % | 20 %        | 7 mph  | 1 mph | 15 mph | 30.13 in        | 30.09 in | 30.05 in     | <b>0</b> in      |
| 17   | 83.6 °F        | 67.9 °F        | 54.4 °F        | 53.2 °F        | 46.9 °F        | 40.6 °F        | 77 %        | <b>49</b> % | 31 %        | 8 mph  | 2 mph | 10 mph | 30.07 in        | 30.03 in | <b>30</b> in | <b>0</b> in      |
| 18   | 83.9 °F        | 68.1 °F        | 55.1 °F        | 54.2 °F        | 45.7 °F        | 39.1 °F        | <b>66</b> % | 46 %        | 33 %        | 9 mph  | 2 mph | 10 mph | 30.08 in        | 30.05 in | 30.02 in     | <b>0</b> in      |
| 19   | 80.1 °F        | 66.6 °F        | 56.6 °F        | 51.1 °F        | 41.9 °F        | 31.3 °F        | 61 %        | 43 %        | 18 %        | 5 mph  | 1 mph | 11 mph | 30.05 in        | 29.98 in | 29.91 in     | <b>0</b> in      |
| 20   | 72.6 °F        | 62.7 °F        | 52.8 °F        | 56.7 °F        | 46.1 °F        | 35.6 °F        | <b>87</b> % | <b>57</b> % | <b>29</b> % | 9 mph  | 2 mph | 14 mph | 29.99 in        | 29.96 in | 29.93 in     | <b>0</b> in      |
| 21   | 68.7 °F        | 61.7 °F        | 57.2 °F        | 57.6 °F        | 55.1 °F        | 52.7 °F        | <b>91</b> % | 80 %        | 61 %        | 15 mph | 3 mph | 18 mph | 29.96 in        | 29.92 in | 29.89 in     | <b>0</b> in      |
| 22   | 60.7 °F        | 58.2 °F        | 52.9 °F        | 55.5 °F        | 50.8 °F        | <b>44.3</b> °F | <b>93</b> % | 77 %        | <b>59</b> % | 17 mph | 6 mph | 24 mph | 30.13 in        | 29.98 in | 29.83 in     | 0.12 in          |
| 23   | 65.1 °F        | <b>57.1</b> °F | <b>48.5</b> °F | <b>52</b> °F   | <b>48.7</b> °F | <b>46</b> °F   | <b>92</b> % | 74 %        | <b>57</b> % | 12 mph | 2 mph | 16 mph | 30.23 in        | 30.18 in | 30.13 in     | <b>0</b> in      |
| 24   | 68.4 °F        | 58.2 °F        | 51.4 °F        | 50.3 °F        | <b>47</b> °F   | 39.1 °F        | <b>89</b> % | <b>68</b> % | <b>49</b> % | 11 mph | 3 mph | 21 mph | 30.15 in        | 30.06 in | 29.98 in     | <b>0</b> in      |
| 25   | 65.7 °F        | 56.1 °F        | 47.6 °F        | <b>45.1</b> °F | 38.4 °F        | 33.2 °F        | <b>78</b> % | <b>53</b> % | 32 %        | 13 mph | 4 mph | 18 mph | 30.07 in        | 30.04 in | 30.01 in     | <b>0</b> in      |
| 26   | 64.3 °F        | 55.6 °F        | <b>48.5</b> °F | <b>48.8</b> °F | <b>45.3</b> °F | <b>41.6</b> °F | <b>89</b> % | <b>69</b> % | 47 %        | 11 mph | 2 mph | 16 mph | 30.1 in         | 30.08 in | 30.05 in     | <b>0</b> in      |
| 27   | 64.6 °F        | 55.1 °F        | <b>48.6</b> °F | 53.6 °F        | <b>47.2</b> °F | 41.4 °F        | 94 %        | <b>76</b> % | <b>55</b> % | 18 mph | 3 mph | 18 mph | 30.07 in        | 29.97 in | 29.87 in     | 0.09 ir          |
| 28   | 68.2 °F        | 58.2 °F        | <b>48.9</b> °F | <b>52</b> °F   | <b>48.1</b> °F | 44.1 °F        | <b>87</b> % | <b>70</b> % | <b>51</b> % | 12 mph | 3 mph | 14 mph | 30.01 in        | 29.95 in | 29.89 in     | <b>0</b> in      |
| 29   | 67.9 °F        | 57.7 °F        | <b>51</b> °F   | 51.9 °F        | <b>48.9</b> °F | 46.5 °F        | <b>89</b> % | 74 %        | <b>54</b> % | 16 mph | 4 mph | 17 mph | 30.08 in        | 30.01 in | 29.93 in     | <b>0</b> in      |
| 30   | 80.3 °F        | 66.7 °F        | 53.5 °F        | <b>49.5</b> °F | <b>43.3</b> °F | <b>38</b> °F   | 77 %        | 46 %        | <b>24</b> % | 12 mph | 3 mph | 19 mph | 29.97 in        | 29.9 in  | 29.83 in     | <b>0</b> in      |
| 2016 | <b>T</b>       |                |                | Dew Poir       |                |                |             |             |             | Owned  |       |        | Deserves        |          |              | Precip           |
|      | Tempera        |                | Law            |                |                | Law            | Humidit     | •           | Law         | Speed  | A     | Curch  | Pressure        |          | Law          | Accun            |
| May  | High           | Avg            | Low            | High           | Avg            | Low            | High        | Avg         | Low         | High   | Avg   | Gust   | High            | Avg      | Low          | Sum              |
| 1    | 81.3 °F        | 66 °F          | 53.5 °F        | 53.6 °F        | 48.4 °F        | 40.9 °F        | 92 %        | 55 %        | 29 %        | 11 mph | 3 mph | 18 mph | 29.98 in        | 29.9 in  | 29.82 in     | 0 in             |
| 2    | 66.3 °F        | <b>57.9</b> °F | <b>52.7</b> °F | <b>54.2</b> °F | <b>51.7</b> °F | <b>49.9</b> °F | 92 %        | 81 %        | 64 %        | 9 mph  | 3 mph | 12 mph | 30.09 in        | 30.03 in | 29.98 in     | <b>0</b> in      |
| 3    | <b>70.2</b> °F | <b>59</b> °F   | 53 °F          | 55.4 °F        | 52.1 °F        | <b>49.8</b> °F | 91 %        | <b>79</b> % | <b>55</b> % | 8 mph  | 2 mph | 11 mph | <b>30.07</b> in | 30 in    | 29.93 in     | <b>0</b> in      |
| 4    | 66.4 °F        | 58.6 °F        | 54.1 °F        | 53.3 °F        | 51.7 °F        | 50.4 °F        | 90 %        | 78 %        | <b>59</b> % | 13 mph | 2 mph | 14 mph | 29.96 in        | 29.92 in | 29.87 in     | <b>0</b> in      |
| 5    | 64.9 °F        | <b>59.9</b> °F | 55.6 °F        | 54.2 °F        | 52.4 °F        | <b>51</b> °F   | 88 %        | 77 %        | 64 %        | 8 mph  | 3 mph | 13 mph | 29.92 in        | 29.9 in  | 29.87 in     | <b>0</b> in      |
| 6    | <b>57.8</b> °F | 55.6 °F        | <b>54</b> °F   | 52.8 °F        | 51.9 °F        | 50.8 °F        | <b>93</b> % | <b>87</b> % | 81 %        | 6 mph  | 2 mph | 10 mph | 29.93 in        | 29.9 in  | 29.86 in     | 0.09 ir          |
| 7    | 60.7 °F        | 56.8 °F        | 54.3 °F        | 55.3 °F        | 53 °F          | 51.4 °F        | <b>93</b> % | <b>87</b> % | 80 %        | 7 mph  | 1 mph | 10 mph | <b>30.01</b> in | 29.96 in | 29.91 in     | 0.15 in          |
| 3    | 67.1 °F        | 58.8 °F        | 54.6 °F        | 55.8 °F        | 53.4 °F        | <b>51</b> °F   | <b>95</b> % | 83 %        | <b>66</b> % | 9 mph  | 2 mph | 14 mph | <b>30.02</b> in | 29.99 in | 29.97 in     | 0.03 ir          |
| 5    | 64.9 °F        | <b>59.9</b> °F | 55.6 °F        | 54.2 °F        | 52.4 °F        | <b>51</b> °F   | 88 %        | 77 %        | 64 %        | 8 mph  | 3 mph | 13 mph | 29.92 in        | 29.9 in  | 29.87 in     | <b>0</b> in      |
| 6    | <b>57.8</b> °F | 55.6 °F        | 54 °F          | 52.8 °F        | 51.9 °F        | 50.8 °F        | <b>93</b> % | <b>87</b> % | 81 %        | 6 mph  | 2 mph | 10 mph | 29.93 in        | 29.9 in  | 29.86 in     | 0.09 ir          |
| 7    | 60.7 °F        | 56.8 °F        | 54.3 °F        | 55.3 °F        | <b>53</b> °F   | 51.4 °F        | <b>93</b> % | <b>87</b> % | <b>80</b> % | 7 mph  | 1 mph | 10 mph | 30.01 in        | 29.96 in | 29.91 in     | 0.15 ir          |
| 3    | 67.1 °F        | 58.8 °F        | 54.6 °F        | 55.8 °F        | 53.4 °F        | 51 °F          | <b>95</b> % | 83 %        | 66 %        | 9 mph  | 2 mph | 14 mph | 30.02 in        | 29.99 in | 29.97 in     | 0.03 ir          |

# **APPENDIX C**

# Laboratory Analytical Reports and Chain of Custody Documentation

- Air Toxics Workorder # 1604616A CS1 Through CS3, CS3-DUP, and AMBIENT TO-15 Results
- Air Toxics Workorder # 1604616B CS1 Through CS3, CS3-DUP, and AMBIENT TO-3 Results



5/3/2016 Mr. Paul King P & D Environmental 55 Santa Clara Suite 240 Oakland CA 94610

Project Name: SNOW CLEANERS 2678 COOLIDGE AVE OAKLAND Project #: 0298 Workorder #: 1604616A

Dear Mr. Paul King

The following report includes the data for the above referenced project for sample(s) received on 4/28/2016 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Eurofins Air Toxics Inc. for your air analysis needs. Eurofins Air Toxics Inc. is committed to providing accurate data of the highest quality. Please feel free the Project Manager: Kyle Vagadori at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kga Vych

Kyle Vagadori Project Manager

180 Blue Ravine Road, Suite B Folsom, CA 95630



## WORK ORDER #: 1604616A

#### Work Order Summary

| CLIENT:         | Mr. Paul King<br>P & D Environmental<br>55 Santa Clara<br>Suite 240<br>Oakland, CA 94610 | BILL TO:      | Mr. Paul King<br>P & D Environmental<br>55 Santa Clara<br>Suite 240<br>Oakland, CA 94610 |
|-----------------|------------------------------------------------------------------------------------------|---------------|------------------------------------------------------------------------------------------|
| PHONE:          | 510-658-6916                                                                             | <b>P.O.</b> # |                                                                                          |
| FAX:            | 510-834-0772                                                                             | PROJECT #     | 0298 SNOW CLEANERS 2678                                                                  |
| DATE RECEIVED:  | 04/28/2016                                                                               | CONTACT:      | COOLIDGE AVE OAKLAND<br>Kyle Vagadori                                                    |
| DATE COMPLETED: | 05/03/2016                                                                               | continent     | Kyle vagadoli                                                                            |

|            |           |                | RECEIPT    | FINAL    |
|------------|-----------|----------------|------------|----------|
| FRACTION # | NAME      | <u>TEST</u>    | VAC./PRES. | PRESSURE |
| 01A        | CS1       | Modified TO-15 | 4.3 "Hg    | 5 psi    |
| 01B        | CS1       | Modified TO-15 | 4.3 "Hg    | 5 psi    |
| 02A        | CS2       | Modified TO-15 | 3.7 "Hg    | 4.9 psi  |
| 02B        | CS2       | Modified TO-15 | 3.7 "Hg    | 4.9 psi  |
| 03A        | CS3       | Modified TO-15 | 5.1 "Hg    | 5 psi    |
| 03B        | CS3       | Modified TO-15 | 5.1 "Hg    | 5 psi    |
| 04A        | CS3-DUP   | Modified TO-15 | 5.3 "Hg    | 4.9 psi  |
| 04B        | CS3-DUP   | Modified TO-15 | 5.3 "Hg    | 4.9 psi  |
| 05A        | AMBIENT   | Modified TO-15 | 2.2 "Hg    | 5.1 psi  |
| 05B        | AMBIENT   | Modified TO-15 | 2.2 "Hg    | 5.1 psi  |
| 06A        | Lab Blank | Modified TO-15 | NA         | NA       |
| 06B        | Lab Blank | Modified TO-15 | NA         | NA       |
| 07A        | CCV       | Modified TO-15 | NA         | NA       |
| 07B        | CCV       | Modified TO-15 | NA         | NA       |
| 08A        | LCS       | Modified TO-15 | NA         | NA       |
| 08AA       | LCSD      | Modified TO-15 | NA         | NA       |
| 08B        | LCS       | Modified TO-15 | NA         | NA       |
| 08BB       | LCSD      | Modified TO-15 | NA         | NA       |

CERTIFIED BY:

layes

DATE: 05/03/16

DECEIDT

TTNLA T

Technical Director

Certification numbers: AZ Licensure AZ0775, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704434-15-9, UT NELAP CA0093332015-6, VA NELAP - 8113, WA NELAP - C935 Name of Accreditation Body: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005, Effective date: 10/18/2015, Expiration date: 10/17/2016. Eurofins Air Toxics Inc.. certifies that the test results contained in this report meet all requirements of the NELAC standards

> This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, Inc. 180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

Page 2 of 25

🛟 eurofins

### LABORATORY NARRATIVE Modified TO-15 Full Scan/SIM P & D Environmental Workorder# 1604616A

Five 6 Liter Summa Canister (SIM Certified) samples were received on April 28, 2016. The laboratory performed analysis via modified EPA Method TO-15 using GC/MS in the Full Scan and SIM acquisition modes. The method involves concentrating up to 1.0 liters of air. The concentrated aliquot is then flash vaporized and swept through a water management system to remove water vapor. Following dehumidification, the sample passes directly into the GC/MS for analysis.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Requirement TO-15 ATL Modifications ICAL %RSD acceptance </=30% RSD with 2 For Full Scan: criteria 30% RSD with 4 compounds allowed out to < 40% RSD compounds allowed out to < 40% RSD For SIM: Project specific; default criteria is </=30% RSD with 10% of compounds allowed out to < 40% RSD **Daily Calibration** +- 30% Difference For Full Scan: </= 30% Difference with four allowed out up to </=40%.; flag and narrate outliers For SIM: Project specific; default criteria is </= 30% Difference with 10% of compounds allowed out up to </=40%.; flag and narrate outliers Blank and standards Zero air Nitrogen Method Detection Limit Follow 40CFR Pt.136 The MDL met all relevant requirements in Method App. B TO-15 (statistical MDL less than the LOQ). The concentration of the spiked replicate may have exceeded 10X the calculated MDL in some cases

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

## **Receiving Notes**

There were no receiving discrepancies.

### **Analytical Notes**

As per project specific client request the laboratory has reported estimated values for Naphthalene, Benzene and Vinyl Chloride that are below the Reporting Limit but greater than the Method Detection Limit. Results are reported as qualified with high probability for false positive.

The results for each sample in this report were acquired from two separate data files originating from



the same analytical run. The two data files have the same base file name and are differentiated with a "sim" extension on the SIM data file.

# **Definition of Data Qualifying Flags**

Nine qualifiers may have been used on the data analysis sheets and indicates as follows:

B - Compound present in laboratory blank greater than reporting limit (background subtraction not performed).

- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the reporting limit.
- UJ- Non-detected compound associated with low bias in the CCV
- N The identification is based on presumptive evidence.
- CN See case narrative explanation

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue



# Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

## **Client Sample ID: CS1**

#### Lab ID#: 1604616A-01A

| Compound    | Rpt. Limit | Amount  | Rpt. Limit | Amount  |
|-------------|------------|---------|------------|---------|
|             | (ppbv)     | (ppbv)  | (ug/m3)    | (ug/m3) |
| Naphthalene | 0.78       | 0.092 J | 4.1        | 0.48 J  |

#### **Client Sample ID: CS1**

#### Lab ID#: 1604616A-01B

| Compound          | Rpt. Limit<br>(ppbv) | Amount<br>(ppbv) | Rpt. Limit<br>(ug/m3) | Amount<br>(ug/m3) |
|-------------------|----------------------|------------------|-----------------------|-------------------|
| Tetrachloroethene | 0.031                | 0.038            | 0.21                  | 0.26              |
| Benzene           | 0.078                | 0.16             | 0.25                  | 0.51              |
| Toluene           | 0.031                | 0.63             | 0.12                  | 2.4               |
| Ethyl Benzene     | 0.031                | 0.19             | 0.14                  | 0.82              |
| m,p-Xylene        | 0.062                | 0.40             | 0.27                  | 1.7               |
| o-Xylene          | 0.031                | 0.18             | 0.14                  | 0.78              |

#### **Client Sample ID: CS2**

#### Lab ID#: 1604616A-02A

| Compound    | Rpt. Limit<br>(ppbv) | Amount<br>(ppbv) | Rpt. Limit<br>(ug/m3) | Amount<br>(ug/m3) |  |
|-------------|----------------------|------------------|-----------------------|-------------------|--|
| Naphthalene | 0.76                 | 0.078 J          | 4.0                   | 0.41 J            |  |

## **Client Sample ID: CS2**

#### Lab ID#: 1604616A-02B

| Compound          | Rpt. Limit<br>(ppbv) | Amount<br>(ppbv) | Rpt. Limit<br>(ug/m3) | Amount<br>(ug/m3) |
|-------------------|----------------------|------------------|-----------------------|-------------------|
| Tetrachloroethene | 0.030                | 0.14             | 0.21                  | 0.99              |
| Trichloroethene   | 0.030                | 0.071            | 0.16                  | 0.38              |
| Benzene           | 0.076                | 0.17             | 0.24                  | 0.55              |
| Toluene           | 0.030                | 0.79             | 0.11                  | 3.0               |
| Ethyl Benzene     | 0.030                | 0.18             | 0.13                  | 0.78              |
| m,p-Xylene        | 0.061                | 0.38             | 0.26                  | 1.7               |
| o-Xylene          | 0.030                | 0.18             | 0.13                  | 0.79              |



# Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

## **Client Sample ID: CS3**

#### Lab ID#: 1604616A-03A

| Compound    | Rpt. Limit | Amount | Rpt. Limit | Amount  |
|-------------|------------|--------|------------|---------|
|             | (ppbv)     | (ppbv) | (ug/m3)    | (ug/m3) |
| Naphthalene | 0.80       | 0.14 J | 4.2        | 0.71 J  |

#### **Client Sample ID: CS3**

#### Lab ID#: 1604616A-03B

| Compound      | Rpt. Limit<br>(ppbv) | Amount<br>(ppbv) | Rpt. Limit<br>(ug/m3) | Amount<br>(ug/m3) |
|---------------|----------------------|------------------|-----------------------|-------------------|
| Benzene       | 0.080                | 0.13             | 0.26                  | 0.41              |
| Toluene       | 0.032                | 0.43             | 0.12                  | 1.6               |
| Ethyl Benzene | 0.032                | 0.13             | 0.14                  | 0.58              |
| m,p-Xylene    | 0.064                | 0.31             | 0.28                  | 1.4               |
| o-Xylene      | 0.032                | 0.14             | 0.14                  | 0.61              |

### **Client Sample ID: CS3-DUP**

#### Lab ID#: 1604616A-04A

|             | Rpt. Limit | Amount | Rpt. Limit | Amount  |  |
|-------------|------------|--------|------------|---------|--|
| Compound    | (ppbv)     | (ppbv) | (ug/m3)    | (ug/m3) |  |
| Naphthalene | 0.81       | 0.14 J | 4.2        | 0.72 J  |  |

#### **Client Sample ID: CS3-DUP**

#### Lab ID#: 1604616A-04B

| Compound      | Rpt. Limit<br>(ppbv) | Amount<br>(ppbv) | Rpt. Limit<br>(ug/m3) | Amount<br>(ug/m3) |
|---------------|----------------------|------------------|-----------------------|-------------------|
| Benzene       | 0.081                | 0.13             | 0.26                  | 0.42              |
| Toluene       | 0.032                | 0.40             | 0.12                  | 1.5               |
| Ethyl Benzene | 0.032                | 0.14             | 0.14                  | 0.59              |
| m,p-Xylene    | 0.065                | 0.32             | 0.28                  | 1.4               |
| o-Xylene      | 0.032                | 0.14             | 0.14                  | 0.62              |

### **Client Sample ID: AMBIENT**

#### Lab ID#: 1604616A-05A

No Detections Were Found.



# Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

# **Client Sample ID: AMBIENT**

### Lab ID#: 1604616A-05B

| Compound      | Rpt. Limit<br>(ppbv) | Amount<br>(ppbv) | Rpt. Limit<br>(ug/m3) | Amount<br>(ug/m3) |
|---------------|----------------------|------------------|-----------------------|-------------------|
| Benzene       | 0.073                | 0.14             | 0.23                  | 0.46              |
| Toluene       | 0.029                | 0.28             | 0.11                  | 1.1               |
| Ethyl Benzene | 0.029                | 0.050            | 0.13                  | 0.22              |
| m,p-Xylene    | 0.058                | 0.17             | 0.25                  | 0.74              |
| o-Xylene      | 0.029                | 0.076            | 0.13                  | 0.33              |



# Client Sample ID: CS1 Lab ID#: 1604616A-01A MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

| File Name:   | v050214    | Date of Collection: 4/26/16 5:17:00 PN |            |         |  |
|--------------|------------|----------------------------------------|------------|---------|--|
| Dil. Factor: | 1.56       | Date of Analysis: 5/2/16 06:48 PM      |            |         |  |
| Compound     | Rpt. Limit | Amount                                 | Rpt. Limit | Amount  |  |
|              | (ppbv)     | (ppbv)                                 | (ug/m3)    | (ug/m3) |  |
| Naphthalene  | 0.78       | 0.092 J                                | 4.1        | 0.48 J  |  |

J = Estimated value.

| Surrogates            | %Recovery | Method<br>Limits |
|-----------------------|-----------|------------------|
| 1,2-Dichloroethane-d4 | 105       | 70-130           |
| Toluene-d8            | 100       | 70-130           |
| 4-Bromofluorobenzene  | 106       | 70-130           |



# Client Sample ID: CS1 Lab ID#: 1604616A-01B MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

٦

| File Name:<br>Dil. Factor: | v050214sim<br>1.56   | Date of Collection: 4/26/16 5:17:00 F<br>Date of Analysis: 5/2/16 06:48 PM |                       |                   |
|----------------------------|----------------------|----------------------------------------------------------------------------|-----------------------|-------------------|
| Compound                   | Rpt. Limit<br>(ppbv) | Amount<br>(ppbv)                                                           | Rpt. Limit<br>(ug/m3) | Amount<br>(ug/m3) |
| cis-1,2-Dichloroethene     | 0.031                | Not Detected                                                               | 0.12                  | Not Detected      |
| trans-1,2-Dichloroethene   | 0.16                 | Not Detected                                                               | 0.62                  | Not Detected      |
| Tetrachloroethene          | 0.031                | 0.038                                                                      | 0.21                  | 0.26              |
| Trichloroethene            | 0.031                | Not Detected                                                               | 0.17                  | Not Detected      |
| Vinyl Chloride             | 0.016                | Not Detected                                                               | 0.040                 | Not Detected      |
| Benzene                    | 0.078                | 0.16                                                                       | 0.25                  | 0.51              |
| Toluene                    | 0.031                | 0.63                                                                       | 0.12                  | 2.4               |
| Ethyl Benzene              | 0.031                | 0.19                                                                       | 0.14                  | 0.82              |
| m,p-Xylene                 | 0.062                | 0.40                                                                       | 0.27                  | 1.7               |
| o-Xylene                   | 0.031                | 0.18                                                                       | 0.14                  | 0.78              |

|                       |           | Method |  |
|-----------------------|-----------|--------|--|
| Surrogates            | %Recovery | Limits |  |
| 1,2-Dichloroethane-d4 | 104       | 70-130 |  |
| Toluene-d8            | 102       | 70-130 |  |
| 4-Bromofluorobenzene  | 109       | 70-130 |  |



# Client Sample ID: CS2 Lab ID#: 1604616A-02A MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

| File Name:<br>Dil. Factor: |                      |                  |                       | of Collection: 4/26/16 5:17:00 PM<br>of Analysis: 5/2/16 07:24 PM |  |
|----------------------------|----------------------|------------------|-----------------------|-------------------------------------------------------------------|--|
| Compound                   | Rpt. Limit<br>(ppbv) | Amount<br>(ppbv) | Rpt. Limit<br>(ug/m3) | Amount<br>(ug/m3)                                                 |  |
| Naphthalene                | 0.76                 | 0.078 J          | 4.0                   | 0.41 J                                                            |  |

J = Estimated value.

| Surrogates            | %Recovery | Method<br>Limits |
|-----------------------|-----------|------------------|
| 1,2-Dichloroethane-d4 | 107       | 70-130           |
| Toluene-d8            | 102       | 70-130           |
| 4-Bromofluorobenzene  | 103       | 70-130           |



# Client Sample ID: CS2 Lab ID#: 1604616A-02B MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

٦

| File Name:<br>Dil. Factor: | v050215sim<br>1.52   | Date of Collection: 4/26/16 5:17:00 PM<br>Date of Analysis: 5/2/16 07:24 PM |                       |                   |
|----------------------------|----------------------|-----------------------------------------------------------------------------|-----------------------|-------------------|
| Compound                   | Rpt. Limit<br>(ppbv) | Amount<br>(ppbv)                                                            | Rpt. Limit<br>(ug/m3) | Amount<br>(ug/m3) |
| cis-1,2-Dichloroethene     | 0.030                | Not Detected                                                                | 0.12                  | Not Detected      |
| trans-1,2-Dichloroethene   | 0.15                 | Not Detected                                                                | 0.60                  | Not Detected      |
| Tetrachloroethene          | 0.030                | 0.14                                                                        | 0.21                  | 0.99              |
| Trichloroethene            | 0.030                | 0.071                                                                       | 0.16                  | 0.38              |
| Vinyl Chloride             | 0.015                | Not Detected                                                                | 0.039                 | Not Detected      |
| Benzene                    | 0.076                | 0.17                                                                        | 0.24                  | 0.55              |
| Toluene                    | 0.030                | 0.79                                                                        | 0.11                  | 3.0               |
| Ethyl Benzene              | 0.030                | 0.18                                                                        | 0.13                  | 0.78              |
| m,p-Xylene                 | 0.061                | 0.38                                                                        | 0.26                  | 1.7               |
| o-Xylene                   | 0.030                | 0.18                                                                        | 0.13                  | 0.79              |

|                       |           | Method |  |
|-----------------------|-----------|--------|--|
| Surrogates            | %Recovery | Limits |  |
| 1,2-Dichloroethane-d4 | 104       | 70-130 |  |
| Toluene-d8            | 103       | 70-130 |  |
| 4-Bromofluorobenzene  | 107       | 70-130 |  |



#### Client Sample ID: CS3 Lab ID#: 1604616A-03A MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

| File Name:   | v050216    | Date of Collection: 4/2 |            |         |
|--------------|------------|-------------------------|------------|---------|
| Dil. Factor: | 1.61       | Date of Analysis: 5/2/1 |            |         |
| Compound     | Rpt. Limit | Amount                  | Rpt. Limit | Amount  |
|              | (ppbv)     | (ppbv)                  | (ug/m3)    | (ug/m3) |
| Naphthalene  | 0.80       | 0.14 J                  | 4.2        | 0.71 J  |

J = Estimated value.

|                       |           | Method |
|-----------------------|-----------|--------|
| Surrogates            | %Recovery | Limits |
| 1,2-Dichloroethane-d4 | 102       | 70-130 |
| Toluene-d8            | 102       | 70-130 |
| 4-Bromofluorobenzene  | 109       | 70-130 |



#### Client Sample ID: CS3 Lab ID#: 1604616A-03B MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

٦

| File Name:<br>Dil. Factor: | v050216sim<br>1.61   |                  | Date of Collection: 4/26/16 5:20:00 PM<br>Date of Analysis: 5/2/16 08:00 PM |                   |  |
|----------------------------|----------------------|------------------|-----------------------------------------------------------------------------|-------------------|--|
| Compound                   | Rpt. Limit<br>(ppbv) | Amount<br>(ppbv) | Rpt. Limit<br>(ug/m3)                                                       | Amount<br>(ug/m3) |  |
| cis-1,2-Dichloroethene     | 0.032                | Not Detected     | 0.13                                                                        | Not Detected      |  |
| trans-1,2-Dichloroethene   | 0.16                 | Not Detected     | 0.64                                                                        | Not Detected      |  |
| Tetrachloroethene          | 0.032                | Not Detected     | 0.22                                                                        | Not Detected      |  |
| Trichloroethene            | 0.032                | Not Detected     | 0.17                                                                        | Not Detected      |  |
| Vinyl Chloride             | 0.016                | Not Detected     | 0.041                                                                       | Not Detected      |  |
| Benzene                    | 0.080                | 0.13             | 0.26                                                                        | 0.41              |  |
| Toluene                    | 0.032                | 0.43             | 0.12                                                                        | 1.6               |  |
| Ethyl Benzene              | 0.032                | 0.13             | 0.14                                                                        | 0.58              |  |
| m,p-Xylene                 | 0.064                | 0.31             | 0.28                                                                        | 1.4               |  |
| o-Xylene                   | 0.032                | 0.14             | 0.14                                                                        | 0.61              |  |

|                       |           | Method |  |
|-----------------------|-----------|--------|--|
| Surrogates            | %Recovery | Limits |  |
| 1,2-Dichloroethane-d4 | 105       | 70-130 |  |
| Toluene-d8            | 103       | 70-130 |  |
| 4-Bromofluorobenzene  | 110       | 70-130 |  |



#### Client Sample ID: CS3-DUP Lab ID#: 1604616A-04A MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

| File Name:   | v050217    | Date of Collection: 4/26/16  |            |         |
|--------------|------------|------------------------------|------------|---------|
| Dil. Factor: | 1.62       | Date of Analysis: 5/2/16 09: |            |         |
| Compound     | Rpt. Limit | Amount                       | Rpt. Limit | Amount  |
|              | (ppbv)     | (ppbv)                       | (ug/m3)    | (ug/m3) |
| Naphthalene  | 0.81       | 0.14 J                       | 4.2        | 0.72 J  |

٦

#### J = Estimated value.

| Surrogates            | %Recovery | Method<br>Limits |
|-----------------------|-----------|------------------|
| 1,2-Dichloroethane-d4 | 106       | 70-130           |
| Toluene-d8            | 101       | 70-130           |
| 4-Bromofluorobenzene  | 106       | 70-130           |



#### Client Sample ID: CS3-DUP Lab ID#: 1604616A-04B MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

٦

| File Name:<br>Dil. Factor: | v050217sim<br>1.62   | Date of Collection: 4/26/16 5:20:00 PM<br>Date of Analysis: 5/2/16 09:25 PM |                       |                   |
|----------------------------|----------------------|-----------------------------------------------------------------------------|-----------------------|-------------------|
| Compound                   | Rpt. Limit<br>(ppbv) | Amount<br>(ppbv)                                                            | Rpt. Limit<br>(ug/m3) | Amount<br>(ug/m3) |
| cis-1,2-Dichloroethene     | 0.032                | Not Detected                                                                | 0.13                  | Not Detected      |
| trans-1,2-Dichloroethene   | 0.16                 | Not Detected                                                                | 0.64                  | Not Detected      |
| Tetrachloroethene          | 0.032                | Not Detected                                                                | 0.22                  | Not Detected      |
| Trichloroethene            | 0.032                | Not Detected                                                                | 0.17                  | Not Detected      |
| Vinyl Chloride             | 0.016                | Not Detected                                                                | 0.041                 | Not Detected      |
| Benzene                    | 0.081                | 0.13                                                                        | 0.26                  | 0.42              |
| Toluene                    | 0.032                | 0.40                                                                        | 0.12                  | 1.5               |
| Ethyl Benzene              | 0.032                | 0.14                                                                        | 0.14                  | 0.59              |
| m,p-Xylene                 | 0.065                | 0.32                                                                        | 0.28                  | 1.4               |
| o-Xylene                   | 0.032                | 0.14                                                                        | 0.14                  | 0.62              |

|                       |           | Method |
|-----------------------|-----------|--------|
| Surrogates            | %Recovery | Limits |
| 1,2-Dichloroethane-d4 | 105       | 70-130 |
| Toluene-d8            | 102       | 70-130 |
| 4-Bromofluorobenzene  | 110       | 70-130 |



#### Client Sample ID: AMBIENT Lab ID#: 1604616A-05A MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

| File Name:   | v050218    | Date of Collection: 4/26/16 |            |              |
|--------------|------------|-----------------------------|------------|--------------|
| Dil. Factor: | 1.46       | Date of Analysis: 5/2/16 10 |            |              |
| Compound     | Rpt. Limit | Amount                      | Rpt. Limit | Amount       |
|              | (ppbv)     | (ppbv)                      | (ug/m3)    | (ug/m3)      |
| Naphthalene  | 0.73       | Not Detected                | 3.8        | Not Detected |

| Sumerates             | 1/ Decement | Method |
|-----------------------|-------------|--------|
| Surrogates            | %Recovery   | Limits |
| 1,2-Dichloroethane-d4 | 105         | 70-130 |
| Toluene-d8            | 100         | 70-130 |
| 4-Bromofluorobenzene  | 100         | 70-130 |



### Client Sample ID: AMBIENT Lab ID#: 1604616A-05B MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

٦

| File Name:<br>Dil. Factor: |                      |                  | of Collection: 4/26/16 6:06:00 PM<br>of Analysis: 5/2/16 10:00 PM |                   |
|----------------------------|----------------------|------------------|-------------------------------------------------------------------|-------------------|
| Compound                   | Rpt. Limit<br>(ppbv) | Amount<br>(ppbv) | Rpt. Limit<br>(ug/m3)                                             | Amount<br>(ug/m3) |
| cis-1,2-Dichloroethene     | 0.029                | Not Detected     | 0.12                                                              | Not Detected      |
| trans-1,2-Dichloroethene   | 0.15                 | Not Detected     | 0.58                                                              | Not Detected      |
| Tetrachloroethene          | 0.029                | Not Detected     | 0.20                                                              | Not Detected      |
| Trichloroethene            | 0.029                | Not Detected     | 0.16                                                              | Not Detected      |
| Vinyl Chloride             | 0.015                | Not Detected     | 0.037                                                             | Not Detected      |
| Benzene                    | 0.073                | 0.14             | 0.23                                                              | 0.46              |
| Toluene                    | 0.029                | 0.28             | 0.11                                                              | 1.1               |
| Ethyl Benzene              | 0.029                | 0.050            | 0.13                                                              | 0.22              |
| m,p-Xylene                 | 0.058                | 0.17             | 0.25                                                              | 0.74              |
| o-Xylene                   | 0.029                | 0.076            | 0.13                                                              | 0.33              |

|                       |           | Method |
|-----------------------|-----------|--------|
| Surrogates            | %Recovery | Limits |
| 1,2-Dichloroethane-d4 | 107       | 70-130 |
| Toluene-d8            | 100       | 70-130 |
| 4-Bromofluorobenzene  | 105       | 70-130 |



#### Client Sample ID: Lab Blank Lab ID#: 1604616A-06A MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

| File Name:   | v050208a   | Date of Collection: NA           |            | 6 11:38 AM   |
|--------------|------------|----------------------------------|------------|--------------|
| Dil. Factor: | 1.00       | Date of Analysis: 5/2/16 11:38 A |            |              |
| Compound     | Rpt. Limit | Amount                           | Rpt. Limit | Amount       |
|              | (ppbv)     | (ppbv)                           | (ug/m3)    | (ug/m3)      |
| Naphthalene  | 0.50       | Not Detected                     | 2.6        | Not Detected |

| Surrogates            | %Recovery | Method<br>Limits |
|-----------------------|-----------|------------------|
| 1,2-Dichloroethane-d4 | 103       | 70-130           |
| Toluene-d8            | 100       | 70-130           |
| 4-Bromofluorobenzene  | 98        | 70-130           |



#### **Client Sample ID: Lab Blank** Lab ID#: 1604616A-06B MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

٦

| File Name:<br>Dil. Factor: | v050208sima<br>1.00  |                  | of Collection: NA<br>of Analysis: 5/2/1 | 6 11:38 AM        |
|----------------------------|----------------------|------------------|-----------------------------------------|-------------------|
| Compound                   | Rpt. Limit<br>(ppbv) | Amount<br>(ppbv) | Rpt. Limit<br>(ug/m3)                   | Amount<br>(ug/m3) |
| cis-1,2-Dichloroethene     | 0.020                | Not Detected     | 0.079                                   | Not Detected      |
| trans-1,2-Dichloroethene   | 0.10                 | Not Detected     | 0.40                                    | Not Detected      |
| Tetrachloroethene          | 0.020                | Not Detected     | 0.14                                    | Not Detected      |
| Trichloroethene            | 0.020                | Not Detected     | 0.11                                    | Not Detected      |
| Vinyl Chloride             | 0.010                | Not Detected     | 0.026                                   | Not Detected      |
| Benzene                    | 0.050                | 0.0028 J         | 0.16                                    | 0.0090 J          |
| Toluene                    | 0.020                | Not Detected     | 0.075                                   | Not Detected      |
| Ethyl Benzene              | 0.020                | Not Detected     | 0.087                                   | Not Detected      |
| m,p-Xylene                 | 0.040                | Not Detected     | 0.17                                    | Not Detected      |
| o-Xylene                   | 0.020                | Not Detected     | 0.087                                   | Not Detected      |

J = Estimated value.

|                       |           | Method |
|-----------------------|-----------|--------|
| Surrogates            | %Recovery | Limits |
| 1,2-Dichloroethane-d4 | 104       | 70-130 |
| Toluene-d8            | 100       | 70-130 |
| 4-Bromofluorobenzene  | 102       | 70-130 |



Toluene-d8

4-Bromofluorobenzene

# Air Toxics

#### Client Sample ID: CCV Lab ID#: 1604616A-07A MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

| File Name:                 | v050203    | Date of Collec                    | tion: NA |
|----------------------------|------------|-----------------------------------|----------|
| Dil. Factor:               | 1.00       | Date of Analysis: 5/2/16 07:21 AN |          |
| Compound                   |            | %Recovery                         |          |
| Naphthalene                |            | 75                                |          |
| Container Type: NA - Not A | Applicable |                                   |          |
|                            |            |                                   | Method   |
| Surrogates                 |            | %Recovery                         | Limits   |
| 1,2-Dichloroethane-d4      |            | 105                               | 70-130   |

103 107 70-130

70-130

| Page | 20 | of | 25 |
|------|----|----|----|
|------|----|----|----|



#### Client Sample ID: CCV Lab ID#: 1604616A-07B MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

1

| File Name:<br>Dil. Factor: | v050203sim<br>1.00 | Date of Collection: NA<br>Date of Analysis: 5/2/16 07 | :21 AM |
|----------------------------|--------------------|-------------------------------------------------------|--------|
| Compound                   |                    | %Recovery                                             |        |
| cis-1,2-Dichloroethene     |                    | 108                                                   |        |
| trans-1,2-Dichloroethene   |                    | 107                                                   |        |
| Tetrachloroethene          |                    | 105                                                   |        |
| Trichloroethene            |                    | 106                                                   |        |
| Vinyl Chloride             |                    | 113                                                   |        |
| Benzene                    |                    | 108                                                   |        |
| Toluene                    |                    | 111                                                   |        |
| Ethyl Benzene              |                    | 110                                                   |        |
| m,p-Xylene                 |                    | 110                                                   |        |
| o-Xylene                   |                    | 112                                                   |        |

|                       |           | Method |
|-----------------------|-----------|--------|
| Surrogates            | %Recovery | Limits |
| 1,2-Dichloroethane-d4 | 107       | 70-130 |
| Toluene-d8            | 104       | 70-130 |
| 4-Bromofluorobenzene  | 108       | 70-130 |



#### **Client Sample ID: LCS** Lab ID#: 1604616A-08A MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

| File Name:<br>Dil. Factor:   | v050205<br>1.00 |           |                  |
|------------------------------|-----------------|-----------|------------------|
| Compound                     |                 |           |                  |
| Naphthalene                  |                 | 63        | 60-140           |
| Container Type: NA - Not App | olicable        |           |                  |
| Surrogates                   |                 | %Recovery | Method<br>Limits |
| 1,2-Dichloroethane-d4        |                 | 106       | 70-130           |
| Toluene-d8                   |                 | 102       | 70-130           |
| 4-Bromofluorobenzene         |                 | 104       | 70-130           |



#### **Client Sample ID: LCSD** Lab ID#: 1604616A-08AA MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

| File Name:<br>Dil. Factor:  | v050206<br>1.00 | Date of Collect<br>Date of Analys | tion: NA<br>is:   5/2/16 10:07 AM |
|-----------------------------|-----------------|-----------------------------------|-----------------------------------|
| Compound                    |                 | %Recovery                         |                                   |
| Naphthalene                 |                 | 60                                | 60-140                            |
| Container Type: NA - Not Ap | plicable        |                                   | Method                            |
| Surrogates                  |                 | %Recovery                         | Limits                            |
| 1,2-Dichloroethane-d4       |                 | 105                               | 70-130                            |
| Toluene-d8                  |                 | 101                               | 70-130                            |
| 4-Bromofluorobenzene        |                 | 99                                | 70-130                            |



#### Client Sample ID: LCS Lab ID#: 1604616A-08B MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

٦

| File Name:<br>Dil. Factor: | v050205sim<br>1.00 | Date of Collec<br>Date of Analy | ction: NA<br>sis:  5/2/16 09:25 AM |
|----------------------------|--------------------|---------------------------------|------------------------------------|
| Compound                   |                    | %Recovery                       | Method<br>Limits                   |
| cis-1,2-Dichloroethene     |                    | 91                              | 70-130                             |
| trans-1,2-Dichloroethene   |                    | 94                              | 70-130                             |
| Tetrachloroethene          |                    | 90                              | 70-130                             |
| Trichloroethene            |                    | 90                              | 70-130                             |
| Vinyl Chloride             |                    | 100                             | 70-130                             |
| Benzene                    |                    | 92                              | 70-130                             |
| Toluene                    |                    | 94                              | 70-130                             |
| Ethyl Benzene              |                    | 93                              | 70-130                             |
| m,p-Xylene                 |                    | 90                              | 70-130                             |
| o-Xylene                   |                    | 95                              | 70-130                             |

| ······                |           | Method |
|-----------------------|-----------|--------|
| Surrogates            | %Recovery | Limits |
| 1,2-Dichloroethane-d4 | 106       | 70-130 |
| Toluene-d8            | 103       | 70-130 |
| 4-Bromofluorobenzene  | 108       | 70-130 |



#### Client Sample ID: LCSD Lab ID#: 1604616A-08BB MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

| File Name:<br>Dil. Factor: | v050206sim<br>1.00 | Date of Collection: NA<br>Date of Analysis: 5/2/16 10:07 AM |                  |  |  |  |
|----------------------------|--------------------|-------------------------------------------------------------|------------------|--|--|--|
| Compound                   |                    | %Recovery                                                   | Method<br>Limits |  |  |  |
| cis-1,2-Dichloroethene     |                    | 90                                                          | 70-130           |  |  |  |
| trans-1,2-Dichloroethene   |                    | 94                                                          | 70-130           |  |  |  |
| Tetrachloroethene          |                    | 89                                                          | 70-130           |  |  |  |
| Trichloroethene            |                    | 90                                                          | 70-130           |  |  |  |
| Vinyl Chloride             |                    | 99                                                          | 70-130           |  |  |  |
| Benzene                    |                    | 92                                                          | 70-130           |  |  |  |
| Toluene                    |                    | 94                                                          | 70-130           |  |  |  |
| Ethyl Benzene              |                    | 92                                                          | 70-130           |  |  |  |
| m,p-Xylene                 |                    | 88                                                          | 70-130           |  |  |  |
| o-Xylene                   |                    | 92                                                          | 70-130           |  |  |  |

| ·····                 |           | Method |
|-----------------------|-----------|--------|
| Surrogates            | %Recovery | Limits |
| 1,2-Dichloroethane-d4 | 106       | 70-130 |
| Toluene-d8            | 103       | 70-130 |
| 4-Bromofluorobenzene  | 105       | 70-130 |

| -        | P&D                                                                  | ENVI<br>55 Sant<br>Oa |                                                         |                               |                                                   | L, INC                | DYI               |             |        |           | , ind   | N. C. M.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10-3-<br>10-3-1<br>10-3-1 | //    | //      | //                            | T /        | <u>ge o</u> |          |
|----------|----------------------------------------------------------------------|-----------------------|---------------------------------------------------------|-------------------------------|---------------------------------------------------|-----------------------|-------------------|-------------|--------|-----------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------|---------|-------------------------------|------------|-------------|----------|
|          | project number:<br>0292                                              |                       | PI<br>2                                                 | ROJECT<br>SNOI<br>X78<br>OAKL | NAME:<br><i>UCL</i><br><i>COO</i><br><i>AUD</i> , | EANER<br>LIPEE<br>CA  | S<br>AVE          | CONTAINERS  | 41 10- | E         | Burn Ch | SELECTION OF THE PARTY OF THE P |                           |       |         | 42                            |            |             |          |
|          | SAMPLED BY: (PRIN<br>Michael BASS-DE                                 | è                     |                                                         | · .                           | live Ra                                           | w-Des                 | dere              | NUMBER OF ( | AN     | 12 <br>13 | ALL N   | Ella I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |       |         | PRESERVATIVE                  | /          |             |          |
|          | SAMPLE NUMBER                                                        | DATE                  | TIME                                                    | TYPE                          | SAN                                               | VIPLE LOC<br>計 がごでが   | ATION<br>IC FRVAL | IWNN        | P/2    |           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |       | ' /     | PRES                          | RE         | MARKS       |          |
|          | CSI                                                                  | 4/20/16               | 885740<br>171763                                        | APR                           | 3422                                              |                       | -5                | Ĩi          | X      |           | X       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |       | 14      | NEIN                          |            | TAT         |          |
| 4        | <u>C52</u>                                                           |                       | 08321                                                   | 1                             | 2524                                              |                       | - 4.5             | i           | X      |           | X       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |       |         |                               | JEEK       | 1           | <u>.</u> |
| 4        | <u>CS3</u>                                                           |                       | 17200                                                   |                               | 1412                                              | 4 -20                 | - 6               | l           | X      |           | X       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |       |         |                               |            |             |          |
| A        | CS3-DUP                                                              |                       | 1915ac                                                  |                               | 3396                                              | 2 -30                 | -5                | 1           | X      |           | X       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |       |         |                               |            |             |          |
| AL_      | ANBIENT                                                              |                       | 081445<br>180650                                        | V                             | 11892                                             | 2 -30                 | <u>-2</u>         | 1           | X      |           | X       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |       | 4       | 4                             | V          | ¥           |          |
|          | ······                                                               |                       |                                                         |                               |                                                   |                       |                   |             |        |           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |       |         |                               |            |             |          |
|          |                                                                      |                       |                                                         |                               |                                                   |                       |                   | <u> </u>    |        |           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |       |         |                               |            |             |          |
|          |                                                                      |                       |                                                         |                               |                                                   |                       |                   |             |        |           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |       |         |                               |            |             |          |
|          |                                                                      |                       |                                                         |                               |                                                   |                       |                   | -           |        |           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |       |         |                               |            |             |          |
|          |                                                                      |                       |                                                         |                               |                                                   |                       |                   |             |        |           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |       | ustod   | v Slag                        | Infaci     |             |          |
| <b>_</b> |                                                                      |                       |                                                         |                               |                                                   |                       |                   |             |        |           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |       |         | UND T                         | 272300.003 | Il a        |          |
| -        |                                                                      |                       | <u> </u>                                                |                               |                                                   |                       |                   | -           |        |           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |       |         |                               | ATZ        |             |          |
| 1        | ELINQUISHED BY: (SIGNAT                                              | lin                   |                                                         | DATE<br>61-28-0               | TIME<br>1220                                      | RECEIVE               | BY; (SIG)         | AR          | RE)    | <br>>>    | T       | otal No. o<br>This Shipe<br>otal No. o<br>This Shipe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Containe                  | 5     |         | BORATO                        |            | vici.ctl    | ~~~~~    |
| RJ       | ÉLINQUISHED BY: (SIGNATI                                             | JRE)                  |                                                         | DATE                          | TIME                                              | RECEIVEI              | D BY: (SIGN       | VATU        | RE)    |           | L       | ABORA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TORY                      | CONTA | CT: LAE | BORATÓ                        | RY PHON    | IE NUMBER   |          |
| R        | ELINQUISHED BY: (SIGNAT                                              | URE)                  |                                                         | DATE                          | TIME                                              | RECEIVED<br>(SIGNATUI |                   | ORAT        | ORY    | BY:       | S       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EANAI                     |       |         | <u>/6 '6</u><br>Sheet<br>( X) |            | 3339        |          |
| P        | Results and billing to:<br>&D Environmental, Inc.<br>ab@pdenviro.com |                       | <del>1818-19-19-19-19-19-19-19-19-19-19-19-19-19-</del> | L                             | <u></u>                                           | REMARKS               | S:<br>l           | - L         | iTE    | R         | 502     | шA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ; 81                      | IR FI | ew Ce   | une                           |            |             | <u></u>  |



5/5/2016 Mr. Paul King P & D Environmental 55 Santa Clara Suite 240 Oakland CA 94610

Project Name: SNOW CLEANERS 2678 COOLIDGE AVE OAKLAND Project #: 0298 Workorder #: 1604616B

Dear Mr. Paul King

The following report includes the data for the above referenced project for sample(s) received on 4/28/2016 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-3 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Eurofins Air Toxics Inc. for your air analysis needs. Eurofins Air Toxics Inc. is committed to providing accurate data of the highest quality. Please feel free the Project Manager: Kyle Vagadori at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kga Vych

Kyle Vagadori Project Manager

180 Blue Ravine Road, Suite B Folsom, CA 95630



#### WORK ORDER #: 1604616B

#### Work Order Summary

| CLIENT:         | Mr. Paul King       | BILL TO:         | Mr. Paul King                         |
|-----------------|---------------------|------------------|---------------------------------------|
|                 | P & D Environmental |                  | P & D Environmental                   |
|                 | 55 Santa Clara      |                  | 55 Santa Clara                        |
|                 | Suite 240           |                  | Suite 240                             |
|                 | Oakland, CA 94610   |                  | Oakland, CA 94610                     |
| PHONE:          | 510-658-6916        | <b>P.O.</b> #    |                                       |
| FAX:            | 510-834-0772        | <b>PROJECT</b> # | 0298 SNOW CLEANERS 2678               |
| DATE RECEIVED:  | 04/28/2016          | CONTACT:         | COOLIDGE AVE OAKLAND<br>Kyle Vagadori |
| DATE COMPLETED: | 05/05/2016          | continent        | ityle v ugudoli                       |

| FRACTION # | NAME      | TEST          | RECEIPT<br>VAC./PRES. | FINAL<br>PRESSURE |
|------------|-----------|---------------|-----------------------|-------------------|
| 01A        | CS1       | Modified TO-3 | 4.3 "Hg               | 5 psi             |
| 02A        | CS2       | Modified TO-3 | 3.7 "Hg               | 4.9 psi           |
| 03A        | CS3       | Modified TO-3 | 5.1 "Hg               | 5 psi             |
| 04A        | CS3-DUP   | Modified TO-3 | 5.3 "Hg               | 4.9 psi           |
| 05A        | AMBIENT   | Modified TO-3 | 2.2 "Hg               | 5.1 psi           |
| 06A        | Lab Blank | Modified TO-3 | NA                    | NĂ                |
| 07A        | LCS       | Modified TO-3 | NA                    | NA                |
| 07AA       | LCSD      | Modified TO-3 | NA                    | NA                |

CERTIFIED BY:

layes

05/05/16 DATE:

Technical Director

Certification numbers: AZ Licensure AZ0775, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704434-15-9, UT NELAP CA0093332015-6, VA NELAP - 8113, WA NELAP - C935 Name of Accreditation Body: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005, Effective date: 10/18/2015, Expiration date: 10/17/2016. Eurofins Air Toxics Inc.. certifies that the test results contained in this report meet all requirements of the NELAC standards

> This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, Inc. 180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

🎲 eurofins

#### LABORATORY NARRATIVE Modified TO-3 P & D Environmental Workorder# 1604616B

Five 6 Liter Summa Canister (SIM Certified) samples were received on April 28, 2016. The laboratory performed analysis for volatile organic compounds in air via modified EPA Method TO-3 using gas chromatography with flame ionization detection. The method involves concentrating up to 200 mL of sample. The concentrated aliquot is then dry purged to remove water vapor prior to entering the chromatographic system.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

| Requirement                             | ТО-3                                                                                                                                                                                 | ATL Modifications                                                                                                           |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Daily Calibration Standard<br>Frequency | Prior to sample<br>analysis and every 4 - 6<br>hrs                                                                                                                                   | Prior to sample analysis and after the analytical batch = 20 samples.</td                                                   |
| Initial Calibration Calculation         | 4-point calibration<br>using a linear<br>regression model                                                                                                                            | 5-point calibration using average Response Factor                                                                           |
| Initial Calibration Frequency           | Weekly                                                                                                                                                                               | When daily calibration standard recovery is outside 75 - 125 %, or upon significant changes to procedure or instrumentation |
| Moisture Control                        | Nafion system                                                                                                                                                                        | Sorbent system                                                                                                              |
| Minimum Detection Limit<br>(MDL)        | Calculated using the<br>equation $DL = A+3.3S$ ,<br>where A is intercept of<br>calibration line and S<br>is the standard<br>deviation of at least 3<br>reps of low level<br>standard | 40 CFR Pt. 136 App. B                                                                                                       |
| Preparation of Standards                | Levels achieved<br>through dilution of gas<br>mixture                                                                                                                                | Levels achieved through loading various volumes of the gas mixture                                                          |

#### **Receiving Notes**

There were no receiving discrepancies.

#### **Analytical Notes**

There were no analytical discrepancies.

#### **Definition of Data Qualifying Flags**

Seven qualifiers may have been used on the data analysis sheets and indicate as follows:

- B Compound present in laboratory blank greater than reporting limit.
- J Estimated value.



- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the detection limit.
- M Reported value may be biased due to apparent matrix interferences.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue



### Summary of Detected Compounds MODIFIED EPA METHOD TO-3 GC/FID

Client Sample ID: CS1

#### Lab ID#: 1604616B-01A

| Compound                  | Rpt. Limit<br>(ppmv) | Rpt. Limit<br>(ug/L) | Amount<br>(ppmv) | Amount<br>(ug/L) |
|---------------------------|----------------------|----------------------|------------------|------------------|
| Stoddard Solvent          | 0.039                | 0.23                 | 0.60             | 3.5              |
| Client Sample ID: CS2     |                      |                      |                  |                  |
| Lab ID#: 1604616B-02A     |                      |                      |                  |                  |
| Compound                  | Rpt. Limit<br>(ppmv) | Rpt. Limit<br>(ug/L) | Amount<br>(ppmv) | Amount<br>(ug/L) |
| Stoddard Solvent          | 0.038                | 0.22                 | 0.31             | 1.8              |
| Client Sample ID: CS3     |                      |                      |                  |                  |
| Lab ID#: 1604616B-03A     |                      |                      |                  |                  |
| Compound                  | Rpt. Limit<br>(ppmv) | Rpt. Limit<br>(ug/L) | Amount<br>(ppmv) | Amount<br>(ug/L) |
| Stoddard Solvent          | 0.040                | 0.23                 | 0.99             | 5.8              |
| Client Sample ID: CS3-DUP |                      |                      |                  |                  |
| Lab ID#: 1604616B-04A     |                      |                      |                  |                  |
| Compound                  | Rpt. Limit<br>(ppmv) | Rpt. Limit<br>(ug/L) | Amount<br>(ppmv) | Amount<br>(ug/L) |
| Stoddard Solvent          | 0.040                | 0.24                 | 0.87             | 5.0              |

#### **Client Sample ID: AMBIENT**

Lab ID#: 1604616B-05A

No Detections Were Found.



#### Client Sample ID: CS1 Lab ID#: 1604616B-01A MODIFIED EPA METHOD TO-3 GC/FID

| File Name:       | d050404    | Date of Collection: 4/26/16 5:17:0 |        |        |  |
|------------------|------------|------------------------------------|--------|--------|--|
| Dil. Factor:     | 1.56       | Date of Analysis: 5/4/16 01:17 PM  |        |        |  |
| Compound         | Rpt. Limit | Rpt. Limit                         | Amount | Amount |  |
|                  | (ppmv)     | (ug/L)                             | (ppmv) | (ug/L) |  |
| Stoddard Solvent | 0.039      | 0.23                               | 0.60   | 3.5    |  |

| Surrogates          | %Recovery | Method<br>Limits |
|---------------------|-----------|------------------|
| Fluorobenzene (FID) | 99        | 75-150           |



#### Client Sample ID: CS2 Lab ID#: 1604616B-02A MODIFIED EPA METHOD TO-3 GC/FID

| File Name:       | d050405    | Date of Collection: 4/26/16 5:17:0 |        |        |  |  |
|------------------|------------|------------------------------------|--------|--------|--|--|
| Dil. Factor:     | 1.52       | Date of Analysis: 5/4/16 01:56 PM  |        |        |  |  |
| Compound         | Rpt. Limit | Rpt. Limit                         | Amount | Amount |  |  |
|                  | (ppmv)     | (ug/L)                             | (ppmv) | (ug/L) |  |  |
| Stoddard Solvent | 0.038      | 0.22                               | 0.31   | 1.8    |  |  |

| Surrogates          | %Recovery | Method<br>Limits |
|---------------------|-----------|------------------|
| Fluorobenzene (FID) | 99        | 75-150           |



#### Client Sample ID: CS3 Lab ID#: 1604616B-03A MODIFIED EPA METHOD TO-3 GC/FID

| File Name:       | d050406    | Date of Collection: 4/26/16 5:20: |        |        |  |
|------------------|------------|-----------------------------------|--------|--------|--|
| Dil. Factor:     | 1.61       | Date of Analysis: 5/4/16 02:28 P  |        |        |  |
| Compound         | Rpt. Limit | Rpt. Limit                        | Amount | Amount |  |
|                  | (ppmv)     | (ug/L)                            | (ppmv) | (ug/L) |  |
| Stoddard Solvent | 0.040      | 0.23                              | 0.99   | 5.8    |  |

| Surrogates          | %Recovery | Method<br>Limits |
|---------------------|-----------|------------------|
| Fluorobenzene (FID) | 100       | 75-150           |



#### Client Sample ID: CS3-DUP Lab ID#: 1604616B-04A MODIFIED EPA METHOD TO-3 GC/FID

| File Name:<br>Dil. Factor: | d050407<br>1.62 |      | e of Collection: 4/20<br>e of Analysis: 5/4/1 |     |                  |                  |  |
|----------------------------|-----------------|------|-----------------------------------------------|-----|------------------|------------------|--|
| Compound                   | ound Rpt. Limit |      | • • • • •                                     |     | Amount<br>(ppmv) | Amount<br>(ug/L) |  |
| Stoddard Solvent           | 0.040           | 0.24 | 0.87                                          | 5.0 |                  |                  |  |

-

| Surrogates          | %Recovery | Method<br>Limits |
|---------------------|-----------|------------------|
| Fluorobenzene (FID) | 102       | 75-150           |



#### Client Sample ID: AMBIENT Lab ID#: 1604616B-05A MODIFIED EPA METHOD TO-3 GC/FID

| File Name:       | d050408    |            | 26/16 6:06:00 PM |              |  |
|------------------|------------|------------|------------------|--------------|--|
| Dil. Factor:     | 1.46       |            | /16 03:46 PM     |              |  |
| Compound         | Rpt. Limit | Rpt. Limit | Amount           | Amount       |  |
|                  | (ppmv)     | (ug/L)     | (ppmv)           | (ug/L)       |  |
| Stoddard Solvent | 0.036      | 0.21       | Not Detected     | Not Detected |  |

-

| Surrogates          | %Recovery | Method<br>Limits |
|---------------------|-----------|------------------|
| Fluorobenzene (FID) | 101       | 75-150           |



#### Client Sample ID: Lab Blank Lab ID#: 1604616B-06A MODIFIED EPA METHOD TO-3 GC/FID

| File Name:       | d050403    | Date of Collection: NA            |              |              |  |  |  |  |  |
|------------------|------------|-----------------------------------|--------------|--------------|--|--|--|--|--|
| Dil. Factor:     | 1.00       | Date of Analysis: 5/4/16 12:01 PM |              |              |  |  |  |  |  |
| Compound         | Rpt. Limit | Rpt. Limit                        | Amount       | Amount       |  |  |  |  |  |
|                  | (ppmv)     | (ug/L)                            | (ppmv)       | (ug/L)       |  |  |  |  |  |
| Stoddard Solvent | 0.025      | 0.14                              | Not Detected | Not Detected |  |  |  |  |  |

| _                   |           | Method |
|---------------------|-----------|--------|
| Surrogates          | %Recovery | Limits |
| Fluorobenzene (FID) | 97        | 75-150 |



#### Client Sample ID: LCS Lab ID#: 1604616B-07A MODIFIED EPA METHOD TO-3 GC/FID

| Compound                            | %Recovery | Method<br>Limits |  |  |
|-------------------------------------|-----------|------------------|--|--|
| Ote defend Only and                 |           |                  |  |  |
| Stoddard Solvent                    | 103       | 60-140           |  |  |
| Container Type: NA - Not Applicable |           |                  |  |  |
| Surrogates                          | %Recovery | Method<br>Limits |  |  |



#### Client Sample ID: LCSD Lab ID#: 1604616B-07AA MODIFIED EPA METHOD TO-3 GC/FID

| File Name:<br>Dil. Factor:   | d050415<br>1.00 |           | Date of Collection: NA Date of Analysis: 5/4/16 08:10 PM |  |  |  |  |  |
|------------------------------|-----------------|-----------|----------------------------------------------------------|--|--|--|--|--|
| Compound<br>Stoddard Solvent |                 | %Recovery | Methoo<br>Limits<br>60-140                               |  |  |  |  |  |
|                              |                 | 112       |                                                          |  |  |  |  |  |
| Container Type: NA - Not A   | oplicable       |           |                                                          |  |  |  |  |  |
|                              |                 |           | Method                                                   |  |  |  |  |  |
| Surrogates                   |                 | %Recovery | Limits                                                   |  |  |  |  |  |
| Fluorobenzene (FID)          |                 | 88        | 75-150                                                   |  |  |  |  |  |

| -   | P&D                                                                | ENVI<br>55 Sant<br>Oa | RON<br>a Clara<br>akland,<br>(510) 65 | MEN<br>Ave., S<br>CA 946<br>58-6916 | NTAI<br>uite 240<br>510 | L, IŃC               |                   |             |       |           |          | N. I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | E.D.Y                            | /     | /    | //      |                         |                                  | OF         |
|-----|--------------------------------------------------------------------|-----------------------|---------------------------------------|-------------------------------------|-------------------------|----------------------|-------------------|-------------|-------|-----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------|------|---------|-------------------------|----------------------------------|------------|
|     | PROJECT NUMBER:                                                    |                       | PI<br>E                               | ROJECT<br>SNOI<br>X 78<br>OAKL      | NAME:                   | EANER<br>UPEE<br>CA  | 'S<br>AVE         | CONTAINERS  | 41.1. | E SIS(ES) | ET THE   | CELEVEL IN THE PARTY IS THE PAR |                                  |       | /    |         | 42                      | /                                |            |
|     | SAMPLED BY: (PRIN<br>Wichael BASS-DE                               | ,                     |                                       | · .                                 | las Ro                  | is-Der               | dere              | NUMBER OF ( | AN    | 12        | NON:     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | ' /   | /    |         | ALLENALINE              |                                  |            |
|     | SAMPLE NUMBER                                                      | DATE                  | TIME                                  | TYPE                                | SAI                     | MPLE LOC             | ATION<br>AL FAVAL | MUMIN       | / j   |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |       | /    | PRES    |                         | REMA                             | RKS        |
|     | <u>CS 1</u>                                                        | 4/20/16               | 085740                                | APR                                 | 3422                    |                      | - 5               | Ĩ           | X     |           | ×        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |       |      | REALE   | 1                       | EK T                             | -A T-      |
| 4   | CSZ                                                                |                       | 02591                                 | <u> </u>                            | 2524                    |                      | - 4.5             | i           | X     |           | X        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |       |      | 1       |                         | <u></u>                          | <u> </u>   |
| 4   | <u>CS3</u>                                                         |                       | 17200                                 |                                     | 1412                    | 4 -20                | - 6               | l           | X     |           | X        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |       |      |         |                         |                                  |            |
| 4   | CS3-DUP                                                            |                       | 9913ca                                |                                     | 3396                    | 2 -30                | -5                | 1           | X     |           | $\times$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |       |      |         |                         |                                  |            |
| AL_ | AHBIENT                                                            |                       | 021445                                | V                                   | 1189                    | 2 -30                | - 2               | 1           | X     |           | X        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |       |      | V       |                         | 1                                | V          |
| R   | ELINQUISHED, BY: (SIGNATI                                          | URE)                  |                                       | DATE                                | TIME                    |                      |                   |             |       |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | f Samulas                        |       |      | Kion    | ical Ir<br>2 Tem<br>EA1 | <u>p fle</u><br>2                | 3          |
| 1   | Michan Pass loc                                                    |                       |                                       | 4-28-                               | 6 17.22                 | RECEIVE              | Hart              | AU          | RE)   |           | T        | otal No, o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | f Samples<br>nent)<br>f Containt | ers G | >    | LABOI   | ATORY:                  | <i>a</i>                         | LUD        |
| RE  | ELINQUISHED BY: (SIGNATI                                           | JRE)                  | <b></b>                               | DATE                                | TIME                    | RÉCEIVE              | D BY: (SIG)       | VATU        | (RE)  |           | L        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | CONT  | ACT: | LABOF   | LATÓRY I                | <u>k iouu</u><br>phone n<br>5-33 | UMBER:     |
| RI  | ELINQUISHED BY: (SIGNAT)                                           | URE)                  |                                       | DATE                                | TIME                    | RECEIVED<br>(SIGNATU | ) FOR LAB<br>RE)  | ORAT        | ORY   | BY:       | S        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E ANAI                           | YSIS  |      | UEST SE |                         | <i>لى عر</i> هي                  | <u>J {</u> |
| P   | esults and billing to:<br>&D Environmental, Inc.<br>b@pdenviro.com |                       |                                       | L                                   | £                       | REMARK               | S:<br>Į           | - 2         | iTE   | R         | 501      | ura                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ; 81                             | HR H  | ieu  | دوی ر   | nele                    | ĸ.                               |            |