SNOW CLEANERS INC.

EXPERT FINISHING • ALL LEATHER GOODS

MAIN OFFICE & PLANT

38 WEST SONORA ST STOCKTON, CA 95203 ²⁰Becember 2, 2010

RECEIVED

4:00 pm, Dec 14, 2010

Alameda County Environmental Health

Mr. Jerry Wickham Alameda County Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

SUBJECT: WELL INSTALLATION REPORT CERTIFICATION ACEH Case # RO 0000357 Snow Cleaners 2678 Coolidge Avenue Oakland, CA

Dear Mr. Wickham:

You will find enclosed one copy of the following document prepared by P&D Environmental, Inc.

Well Installation Report (DP1 Through DP4, VE1, VE2) dated December 2, • 2010 (document 0298.R11).

I declare, under penalty of perjury, that the information and/or recommendations contained in the above-mentioned work plan for the subject site is true and correct to the best of my knowledge.

Should you have any questions, please do not hesitate to call me at (800) 818-7669.

Cordially, Snow Cleaners, Inc.

maun

Harold Turner President

Cc: Mr. LeRoy Griffin, Oakland Fire Department, Emergency Services, 250 Frank Ogawa Plaza, Suite 3341, Oakland, CA 94612 (with enclosure)

0298.L58

"SERVING THE CLEANING INDUSTRY FOR OVER 90 YEARS"

P&D ENVIRONMENTAL, INC.

55 Santa Clara Ave, Suite 240 Oakland, CA 94610 (510) 658-6916

December 2, 2010 Report 0298.R11

Mr. Harold Turner Snow Cleaners 2678 Coolidge Avenue Oakland, CA

SUBJECT: WELL INSTALLATION REPORT (DP1 THROUGH DP4, VE1, VE2) ACDEH Case # RO 0000357 Snow Cleaners 2678 Coolidge Avenue Oakland, CA

Dear Mr. Turner:

P&D Environmental Inc. (P&D) is pleased to present this report documenting the installation of four dual phase extraction wells (DP1 through DP4) and two soil vapor extraction wells (VE1 and VE2) at the subject site. Well installation was performed on September 27 through 29, 2010. The wells were developed on October 5, 2010 and groundwater samples were collected from the dual phase wells on October 15, 2010. A Site Location Map is attached as Figure 1, and a Site Vicinity Map Detail showing the well locations is attached as Figure 2. Field activities were performed in accordance with the scope of work set forth in P&D's Draft Corrective Action Plan dated June 29, 2010 (document 0298.W5). The Work Plan was approved in a letter from the Alameda County Department of Environmental Health (ACDEH) dated September 9, 2010.

All work was performed under the direct supervision of an appropriately registered professional. This investigation was performed in accordance with guidelines set forth in the document "Tri-Regional Board Staff Recommendations for Preliminary Evaluation and Investigation of Underground Tank Sites" dated August 10, 1990 and "Appendix A - Workplan for Initial Subsurface Investigation" dated August 20, 1991; and California Code of Regulations Title 23 Sections 2720-2728.

BACKGROUND

The site is surrounded by residential properties, some of which are zoned for mixed residential and commercial use, and is located in a residential neighborhood. Peralta Creek is located approximately 500 feet to the east and approximately 400 feet to the southeast of the subject site. The site is presently used as a dry cleaning pick up and drop off facility with dry cleaning performed at an offsite location. The site was historically used as a dry cleaning plant from approximately 1907 to 1993 or 1994. It is P&D's understanding that a total of six Stoddard solvent Underground Storage Tanks (USTs) were removed from beneath the sidewalk adjacent to Davis Street in 1990. Limited excavation of the UST pit was performed to a depth of 15 feet. In January 1994 groundwater

monitoring wells MW1 and MW2 were installed. Subsurface investigation drilling resumed in September 2004 with the drilling of boreholes B3 through B7. A Preferential Pathway/Conduit Study and also a Sensitive Receptor Survey were prepared in 2005. Additional boreholes (B8 through B11, B13 and B14) were drilled in 2007, and in 2008 the following samples were collected: soil gas samples SG1 through SG18; soil and water from boreholes B12, B15 through B19 and B21 through B32; and creek samples C1 through C5 from Peralta Creek. In addition, groundwater monitoring wells MW3 and MW4 were installed in 2008 near the subject site. In 2009 it was determined that the Peralta Creek water flowing through Peralta Hacienda Historical Park (located to the southeast of the site and immediately south of Davis Street) is groundwater that originates from the storm drain that is located beneath Humboldt Street (located to the southeast of Peralta Creek and to the north of Davis Street), and that Peralta Creek flows in an underground concrete-lined channel beginning at the north side of Davis Street. The water flowing in the Creek channel in the Park drains through a grate at the south end of the park into the underground concrete-lined channel that contains Peralta Creek.

A detailed site history is provided in P&D's Subsurface Investigation Report dated August 19, 2009 (document 0298.R6). The 2009 report documented historical investigations and the collection and results of soil, groundwater, creek and soil gas samples, and the installation and sampling of groundwater monitoring wells MW3 and MW4. Additional subsequent document review results for historic topographic maps, City of Oakland storm drain and sanitary sewer maps, Alameda County Flood Control District maps and a creek and watershed map of Oakland and Berkeley related to Peralta Creek drainage are provided in P&D's November 24, 2009 Subsurface Investigation Work Plan (document 0298.W4). Additional subsequent soil gas and building crawl space air sample results for samples collected on February 19, 2010 are provided in P&D's March 22, 2010 Soil Gas and Crawl Space Air Investigation Report (document 0298.R8). The most recent well sampling event occurred on May 21, 2010 and is documented in P&D's Groundwater Monitoring and Sampling Report dated June 18, 2010 (document 0298.R9). The most recent building crawl space air sample results for samples collected on August 9, 2010 are provided in P&D's September 15, 2010 Crawl Space Air Sampling Report (document 0298.R10).

FIELD ACTIVITIES

Prior to performing field activities, permit W2010-0674 was obtained from the Alameda County Public Works Agency (ACPWA), drilling locations were marked with white paint, Underground Service Alert was notified for underground utility location, and a health and safety plan was prepared. Notification of the drilling dates was also provided to the ACDEH.

Well Installation

On September 27, 28 and 29, 2010 P&D personnel oversaw the installation of four dual-phase groundwater/soil vapor extraction wells (DP1 through DP4) and two soil vapor extraction wells (VE1 and VE2) at the subject site. Exploration Geoservices, Inc. of San Jose, California performed the well installation. The locations of the wells at the site are shown in Figure 2.

The boreholes for dual-phase groundwater/soil vapor extraction wells (DP1 through DP4) were drilled to total depths of 37.0, 25.0, 27.0, and 38.0 feet below the ground surface (bgs), respectively.

The boreholes for soil vapor extraction wells (VE1 and VE2) were drilled to total depths of 15.0 and 17.0 feet bgs, respectively. Each borehole was drilled using a truck-mounted drill rig with 12-inch outside diameter hollow stem augers. Soil samples were collected at geologic contacts as defined be nearby boreholes for lithologic logging purposes using a California-modified split-spoon sampler lined with brass tubes driven by a 140-pound hammer falling 30 inches. Blow counts were recorded every six inches. The soil in the brass tubes and the soil cuttings from drilling were classified lithologically in the field in accordance with standard geologic field techniques and the Unified Soil Classification System. No soil samples were retained for laboratory analysis. Copies of the boring logs are attached with this report as Appendix A.

The wells were constructed using 4-inch diameter Schedule 40 PVC pipe with 0.020-inch factory slot placed in the bottom of the borehole to approximate total depths with screen lengths (in feet) as follows.

Total	Screen
<u>Depth</u>	Length
37	14
29	14
27	14
38	15
15	5
17	7
	Total <u>Depth</u> 37 29 27 38 15 17

The lowermost 4 feet of the borehole for DP2 was filled with bentonite pellets to a depth of 25.0 feet bgs prior to well construction. The annular space surrounding the slotted PVC pipe for all of the wells was filled with #2/12 RMC Pacific Materials sack sand to a height of one foot above the top of the slotted interval. A one-foot thick layer of bentonite pellets was placed above the sand and hydrated. The remaining annular space was filled with neat cement grout to approximately one foot bgs. At location DP3 the annular space was filled with neat cement grout to approximately 1.5 feet bgs. On November 10, 2010 the PVC well pipe for each well was extended to above the ground surface and the remaining annular space was filled with concrete to a height of approximately 0.2 feet above the ground surface. No permanent well covers were constructed over any of the wells because of future extraction from well.

The top of each of the PVC well pipes were secured with a watertight locking plug. Well construction specifications for dual phase extraction wells DP1 through DP4 and for the soil vapor extraction wells VE1 and VE2 are provided in Well Construction Diagrams attached with this report as Appendix B.

All drilling and sampling equipment was either previously unused clean material, or was cleaned by steam cleaning or with an Alconox solution followed by a clean water rinse prior to use in each borehole. Soil and water generated during drilling activities were stored in drums onsite, pending analysis and appropriate disposal.

Well Surveying

The elevations and horizontal locations for the top of the PVC casing for each of the new wells were surveyed in accordance with GeoTracker requirements by Kier & Wright Engineers Surveyors, Inc. of Livermore, California on October 5, 2010. The top of casing elevations for each well are provided in Table 1 and a copy of the survey information provided by the surveyor is attached with this report as Appendix C.

Well Development

On October 5, 2010 wells DP1, DP2, DP3, and DP4 were developed by surging and over-pumping by Environmental Field Services of Patterson, California. Prior to development, the wells were monitored for depth to water to the nearest 0.01 feet using an electric water level indicator. The measured depth to groundwater prior to development on October 5, 2010 in wells DP1, DP2, DP3, and DP4 was 25.42, 20.96, 19.14, and 25.03 feet, respectively. The depth to water measurements are summarized in Table 1.

During development of the wells Environmental Field Services personnel did not detect petroleum hydrocarbon or solvent odors or sheen on the water purged from wells DP2 and DP3, but did detect petroleum hydrocarbon odor and petroleum hydrocarbon sheen on the water purged from well DP1, and petroleum hydrocarbon odor, but no sheen on the water purged from well DP4. Approximately 80, 30, 40, and 70 gallons of water was purged from wells DP1, DP2, DP3, and DP4, respectively. Wells DW1 and DW3 were also noted to have purged dry during well development activities. Water removed from the wells during development was stored in drums onsite, pending characterization and appropriate disposal. Well development data sheets are attached with this report as Appendix D.

Well Sampling

On October 15, 2010, P&D personnel monitored wells DP1 through DP4 and MW1 through MW4. The wells were monitored for depth to water and the presence of free product or sheen. The depth to water was measured to the nearest 0.01 foot using an electric water level indicator and the presence of free product or sheen was evaluated using a transparent bailer. No free product or sheen was observed in any of the wells. The depth to water measurements are summarized in Table 1.

Each well was purged of a minimum of three casing volumes of water. During purging operations, the field parameters of electrical conductivity, temperature, and pH were monitored. Petroleum hydrocarbon sheen and petroleum hydrocarbon odor was detected on the purge water from all of the wells, with the odor on the water from well DP4 being described as a very slight mineral spirits-like odor, the odor from well DP1 being described as a moderate to strong mineral spirits like-odor, the odor from well DP2 being described as a moderate shoe polish-like odor, and the odor from well DP3 being described as a moderate to strong shoe polish-like odor. Once the field parameters were observed to stabilize during well purging and a minimum of three casing volumes had been purged, water samples were collected from each of the wells. The water samples were transferred from the disposable bailers to 40-milliliter glass VOA vials and 1-liter amber glass bottles that were sealed with Teflon-lined screw caps. The VOA vials were overturned and tapped to assure that no air

bubbles were present. The VOA vials and bottles were then transferred to a cooler with ice, pending transport to the laboratory. Chain of custody procedures were observed for all sample handling. Records of the field parameters measured during well purging for wells DP1 through DP4 are attached with this report as Appendix E. The records of the field parameters measured during well purging for wells MW1 through MW4 are provided in a separate report documenting the semi-annual well sampling for the second half of 2010 for the site groundwater monitoring network.

Water levels were subsequently measured in the wells on November 12, 19 and 23 using procedures described above. The water level measurements are summarized in Table 1.

WEATHER INFORMATION

Weather data, including precipitation for the period of September 25 to November 25, 2010 is provided as Appendix F. The information provides a record of dates and amounts of rainfall in the vicinity of the site. The weather station is located at the intersection of Encinal Avenue and Lafayette Street in Alameda at an elevation of 15 feet, approximately 2.5 miles to the southeast of the subject site. The subject site is located at an elevation of approximately 135 feet above sea level. An internet link to the weather station information is provided with the weather information in Appendix F.

Review of the summary tables in Appendix F shows that precipitation occurred during the period of September 25, 2010 (shortly before installation of the wells) to November 25, 2010 (at the conclusion of water level evaluations in the new wells) as follows.

October 16 -0.06 inches October 22 -0.02 inches October 23 -0.14 inches October 24 -0.24 inches October 25 -0.01 inches October 29 -0.09 inches October 30 -0.03 inches November 1 - 0.01 inches November 7 - 0.66 inches November 9 - 0.06 inches November 10 - 0.05 inches November 18 - 0.01 inches November 19 - 0.45 inches November 20 - 0.69 inches November 21 - 0.15 inches November 22 - 0.09 inches November 23 - 0.17 inches

GEOLOGY AND HYDROGEOLOGY

The hydrogeology at the site is complex and not completely understood. The interpretation of groundwater flow direction and associated contaminant movement in the vicinity of the site was developed using multiple lines of evidence (topography, lithology, soil discoloration, contaminant

concentration distribution, and the measured depth to water in different wells). Geologic cross sections and an in-depth discussion of site geology are provided in P&D's Subsurface Investigation Report dated August 19, 2009 (document 0298.R6).

Review of Figure 1 shows that the site is located near the top of a northeasterly-trending interfluvial (ridge-like) structure. The topography in the area surrounding the site slopes to the east and south. Although the site vicinity topography slopes to the east and south, the area between Coolidge Avenue (bordering the property on the west) and 34th Avenue (the first street encountered to the east of the site) has very little change in surface elevation. Almost all of the change in elevation between the site and Peralta Creek occurs to the east of 34th Avenue.

Peralta Creek is located approximately 500 feet to the east and approximately 400 feet to the southeast of the subject site. The creek flows towards the southwest. Portions of the creek located directly to the east of the site are lined with concrete. Based on evaluation of the concrete channel for Peralta Creek that is located beneath Davis Street, the water that flows through Peralta Hacienda Historic Park is not the same water that flows in Peralta Creek on the north side of Davis Street. Based on review of documents obtained from the City of Oakland and from the County Flood Control District (see P&D's November 24, 2009 Subsurface Investigation Work Plan (document 0298.W4)), it was determined that the water flowing in the creek through the Park is groundwater that originates from the storm drain that is located beneath Humboldt Street (located to the southeast of Peralta Creek and to the north of Davis Street), and that Peralta Creek flows in an underground concrete-lined channel beginning at the north side of Davis Street. The water flowing in the Creek flows in an underground concrete-lined channel that contains Peralta Creek.

Based on review of regional geologic maps from U. S. Geological Survey Professional Paper 943, "Flatland Deposits - Their Geology and Engineering Properties and Their Importance to Comprehensive Planning," by E. J. Helley and K. R. Lajoie, 1979, the materials underlying the subject site and it's immediate vicinity consist of Late Pleistocene alluvium (Qpa). Late Pleistocene alluvium is described as weakly consolidated, slightly weathered, poorly sorted, irregularly interbedded clay, silt, sand, and gravel. Review of the boring logs from historical investigations and the current investigation shows that the subsurface materials encountered in the boreholes consist predominantly of fine-grained materials consisting of clay, silty clay, and silt, with lesser amounts of coarse-grained materials consisting of silty sand, sand and some gravel lenses.

Comparison of the materials encountered in the boreholes with the materials shown on the geologic cross sections provided in P&D's Draft Corrective Action Plan dated June 29, 2010 (document 0298.W5) shows very good correlation. The locations of geologic cross sections C-C' through F-F' are shown on Figure 2. The geologic cross sections are shown in Figures 3 through 6. Water levels measured in wells DP1 through DP4 and MW2 on November 23, 2010 are shown on the geologic cross-sections.

Groundwater is interpreted to generally move in an unconfined A-water-bearing zone in the immediate vicinity of the site northeastwards and eastwards in the vicinity of the former UST pit and then towards the southeast (towards Peralta Creek) to the north of the former UST pit, based on the elevations and slope of the surface of the fine-grained materials that are encountered beginning at a

depth of approximately 25 feet bgs in the vicinity of the site. Based on the presence of coarsegrained materials at depths greater than 30 feet bgs that are located between borehole B6 and well MW3, groundwater is interpreted to move vertically in a southerly-trending paleo-channel from the A-water-bearing zone to a confined B-water-bearing zone in the area between the northeast side of well DP2 at the subject site and 34th Avenue, and then move horizontally in the B-water-bearing zone to the south towards Peralta Creek and Peralta Hacienda Historical Park.

Review of Table 1 and Figure 3 shows that there is a change in water table elevation of approximately 4.5 to 5.0 feet between wells DP2 and DP1. There is a horizontal distance of approximately 18 feet between these two wells, and the location of this change in water table elevation corresponds with the increase in depth to fine-grained materials which are encountered at a depth of approximately 22 to 25 feet bgs between well DP2 and Davis Street to the southwest. Figure 3 also shows that the thickness of the water layer overlying the fine-grained materials to the southwest of DP2 is approximately 4 feet. Review of geologic cross sections D-D', E-E' and F-F' in Figures 4, 5, and 6 shows that the lowest point of the surface of the fine-grained materials is approximately coincident with C-C' at D-D', is approximately 15 feet to the northwest of C-C' at E-E', and is approximately 31 feet to the northwest of C-C' at F-F', suggesting a east-northeasterlytrending channel in the surface of the fine-grained materials that drains the area beneath the former UST pit towards the northeast and towards the change in water table elevation of approximately 4.5 to 5.0 feet that is located between wells DP2 and DP1 identified above. Although Figure 3 shows DP3 projected onto cross section C-C', Figure 5 shows that well DP3 is located approximately 15 feet to the northwest of cross section C-C' near or at the lowest point of the east-northeasterlytrending channel.

Based on water level information available through November 23, 2010, the historically measured depth to water in the monitoring wells located near the subject site has ranged from 11.49 to 18.83 feet in well MW2; 16.95 to 22.97 feet in well MW3 (after September 19, 2008); 19.07 to 23.92 feet in well MW1; and 21.18 to 25.86 feet in well MW4. Review of historical groundwater monitoring well water levels shows that the water levels in wells MW2 and MW3 (screened in the A-water-bearing zone) have been consistently similar, and that the water levels in wells MW1 and MW4 (screened in the B-water-bearing zone) have been consistently similar, with a difference of approximately 6 to 7 feet in the elevations between the two sets of wells during dry season months and a difference of approximately 8 to 10 feet during wet season months. The water elevations in the wells that are screened in the B-water-bearing zone. Additionally, both the A-water-bearing zone and the B-water-bearing zone respond similarly to seasonal changes in water levels, with a seasonal vertical range of water elevations to date of approximately 7.0 feet in wells MW2 and MW3, and approximately 4.0 feet in wells MW1 and MW4. Historical well water level measurements are provided under separate cover in the semi-annual well sampling reports.

Figure 7 is a graph of water level elevations in October and November 2010 for all of the groundwater monitoring wells in the groundwater monitoring network for the subject site. Review of Figure 7 shows the following.

- Water levels in wells MW2, DP2 and DP3 are similar.
- Water levels and changes in water levels in wells DP1 and DP4 are similar.

- Water levels and changes in water levels in wells MW1 and MW4 are similar.
- Changes in water levels in wells DP2 and DP3 are similar.
- Changes in water levels in wells MW2 and MW3 are similar in that the water levels in both of these wells increased at times when water levels in DP1 through DP4 decreased.
- The change in water level in well MW3 was substantially greater than the change in water level in any other well.
- The change in water levels in wells DP2, DP3 and MW2 was greater than in DP1 and DP4 between November 19 and 23, 2010 following more than one inch of precipitation.

LABORATORY RESULTS

All of the groundwater samples were analyzed at McCampbell Analytical, Inc. (McCampbell) of Pacheco, California. McCampbell is a State-accredited hazardous waste testing laboratory. The samples were analyzed for Total Petroleum Hydrocarbons as Gasoline (TPH-G) and for Total Petroleum Hydrocarbons as Stoddard solvent (TPH-SS) by EPA Methods 5030B in conjunction with EPA Method 8021B and modified EPA Method 8015B, and for Total Petroleum Hydrocarbons as Diesel (TPH-D) and for Total Petroleum Hydrocarbons as Bunker Oil (TPH-BO) by EPA Method 3510C in conjunction with EPA Method 8015C. In addition, all of the samples were analyzed for Volatile Organic Compounds (VOCs) including Methyl tert-Butyl Ether (MTBE); benzene, toluene, ethylbenzene, and total xylenes (BTEX); and halogenated volatile organic compounds (HVOCs) by EPA Method 8260B. The DP1 through DP4 groundwater sample results are summarized in Tables 2A and 2B, and copies of the laboratory analytical reports and chain of custody documentation are attached with this report.

TPH-G was detected in the samples collected from groundwater extraction wells DP1, DP2, DP3, and DP4 at concentrations of 10,000, 4,800, 5,700, and 1,800 ug/L, respectively; TPH-SS was detected in the same samples at concentrations of 5,100, 2,900, 8,000, and 1,500 ug/L, respectively; TPH-D was detected in the same samples at concentrations of 9,000, 3,900, 10,000, and 1,200 ug/L, respectively; and TPH-BO was detected in the same samples at concentrations of 9,000, 3,900, 10,000, and 1,200 ug/L, respectively; and TPH-BO was detected in the same samples at concentrations of 9,800, 2,900, 9,800, and 920 ug/L, respectively. Review of the laboratory report shows that the laboratory observed sheen on the sample collected from well DP1, and the TPH-G and TPH-SS results are both described as Stoddard solvent/mineral spirit-range compounds for the samples collected from all four groundwater extraction wells. The laboratory describes both the TPH-D and TPH-BO results as consisting of both Stoddard solvent/mineral spirit-range compounds and oil-range compounds for the groundwater sample collected from well DP1; as consisting of both Stoddard solvent/mineral spirit-range compounds and oil-range compounds, oil-range compounds, and diesel-range compounds with no recognizable pattern for the samples collected from well DP2 and DP4; and as consisting of Stoddard solvent/mineral spirit-range compounds, oil-range compounds, and diesel-range compounds with no recognizable pattern for the sample collected from well DP3.

The only additional analytes detected in the samples collected from wells DP1 and DP2 were cis-1,2-dichloroethene detected in both samples at concentrations of 17,000 and 22,000 ug/L, respectively, and vinyl chloride in the sample from well DP2 at a concentration of 2,600 ug/L. In well DP3 cis-1,2-dichloroethene, trans-1,2,-dichloroethene, and vinyl chloride were detected at concentrations of 44, 4.5, and 28 ug/L, respectively; toluene, ethylbenzene, total xylenes and naphthalene were detected at concentrations of 2.7, 4.0, 23, and 7.5 ug/L, respectively; and six other

VOCs associated with petroleum hydrocarbons were detected in the groundwater sample collected from well DP3 at concentrations ranging from 4.4 to 69 ug/L. Tetrachloroethene (PCE), trichloroethene (TCE), cis-1,2-dichloroethene, trans-1,2-dichloroethene, and vinyl chloride were detected in the groundwater sample collected from well DP4 at concentrations of 22, 40, 80, 33, and 2.9 ug/L, respectively. Two other VOCs associated with petroleum hydrocarbons were detected in the groundwater sample collected from well DP4 at concentrations of 3.8 and 4.5 ug/L.

DISCUSSION AND RECOMMENDATIONS

Based upon water samples collected from new wells DP1 through DP4 and from previously existing wells MW1 through MW4 on October 15, 2010, water quality data is shown on Figures 8 through 14 for TPH-Stoddard solvent, an alternative interpretation of TPH-Stoddard solvent using TPH-D data, benzene, PCE, TCE, cis-1,2-DCE, and vinyl chloride, respectively. Review of the figures shows that the current distribution of petroleum and HVOCs in groundwater is consistent with the previous interpretation of the distribution of petroleum and HVOCs in groundwater provided in P&D's Draft Corrective Action Plan dated June 29, 2010 (document 0298.W5), with the following notable exceptions.

- Figure 8 shows that the extent of TPH-Stoddard solvent concentrations exceeding 10,000 ug/L is not as great as previously shown.
- Figure 11 and 12 show that PCE and TCE concentrations exceeding the May 2008 Table A RWQCB ESL were detected in DP4 indicating that PCE and TCE groundwater concentrations extend northward towards 2682 Coolidge Avenue and are presently not defined to the north.
- Figure 13 shows that cis-1,2-DCE concentrations exceeding 10,000 ug/L were encountered at DP1 and DP2, and exceeding 1,000 ug/L were encountered at MW2. These areas of cis-1,2-DCE concentrations exceeding 1,000 ug/L are identified on Figure 13 as two separate areas of elevated cis-1,2-DCE concentrations. Concentrations of cis-1,2-DCE exceeding the May 2008 Table A RWQCB ESL were detected in all of the wells except for MW1 and MW3. Cis-1,2-DCE concentrations have also increased in wells MW2 and MW4 since the previous sampling event. The cis-1,2-DCE concentrations in DP4 indicate that cis-1,2-DCE groundwater concentrations exceeding the ESL extend northward towards 2682 Coolidge Avenue and are presently not defined to the north.
- Figure 14 shows that vinyl chloride concentrations of 2,600 and 160 ug/L were encountered at DP1 and MW2, respectively. These two areas of vinyl chloride exceeding 100 ug/L are identified on Figure 14 as two separate areas of elevated vinyl chloride concentrations. In addition to locations DP1 and MW2, concentrations of vinyl chloride exceeding the May 2008 Table A RWQCB ESL were also detected at locations DP3 and DP4 at concentrations of 28 and 2.9 ug/L, respectively. The vinyl chloride concentration in well MW2 has increased since the previous sampling event. The vinyl chloride concentrations in DP4 indicates that vinyl chloride groundwater concentrations exceeding the ESL extend northward towards 2682 Coolidge Avenue and are presently not defined to the north.

Although 2,600 ug/L vinyl chloride was detected in the groundwater sample collected from DP1, vinyl chloride has historically been detected in soil gas at location SG2 at a concentration of 60 ug/m3 (see Figure 2, see also Figure 19 of P&D's Draft Corrective Action Plan dated June 29, 2010). Similarly, P&D's September 15, 2010 Crawl Space Air Sampling Report (document 0298.R10) shows that vinyl chloride was not detected in any of the crawl space air samples that were collected from beneath 2682 Coolidge Avenue or 3320 Davis Street during either the February 19 or the August 9, 2010 air sampling events.

Table 1 and Figure 3 show that the water levels in October and November 2010 in wells DP1 and DP4 are approximately 4.5 to 5.0 feet lower than the water levels in nearby wells DP2, DP3 and MW2. In P&D's Draft Corrective Action Plan dated June 29, 2010 (document 0298.W5) P&D had proposed that a groundwater extraction test be performed at well DP1 for groundwater extraction design purposes. The objective of the groundwater extraction test was to evaluate the radius of influence and amount of drawdown that could be produced at wells DP2, DP3, DP4 and MW2 during extraction from well DP1. However, based on the differences in water levels between wells DP1 and DP4 and the nearby wells DP2, DP3 and MW2, it is presently unlikely that the effects of pumping will be measureable at locations DP2, DP3 and MW2.

P&D recommends that water level monitoring be continued on a monthly basis for all of the wells in the groundwater monitoring network to evaluate changes in water levels during the rainy season. P&D recommends that the proposed groundwater and vapor extraction feasibility tests be performed near the end of the second quarter of 2011 once water levels have been evaluated in the new wells during the rainy season and groundwater levels have receded adequately to expose the sand layer between the depths of 15 and 20 feet bgs that is shown on Figure 3.

P&D also recommends that the new wells DP1 through DP4 and previously existing well MW2 be sampled on a quarterly basis and that the previously existing wells MW1, MW3 and MW4 continue to be sampled on a semi-annual basis. P&D recommends that locations for additional groundwater grab samples to define the horizontal extent of petroleum and HVOCs in groundwater to the north of DP4 be further evaluated following a minimum of two quarterly well sampling events.

DISTRIBUTION

A copy of this report will be uploaded to the ACDEH website, in accordance with ACDEH requirements. In addition, a copy of this report will be uploaded to the GeoTracker database, and one copy of this report will be mailed to LeRoy Griffin of the City of Oakland Fire Department. California Department of Water Resources well completion reports were provided to the ACPWA under separate cover.

LIMITATIONS

This report was prepared solely for the use of Snow Cleaners, Inc. The content and conclusions provided by P&D in this assessment are based on information collected during our investigation, which may include, but not be limited to, visual site inspections; interviews with the site owner, regulatory agencies and other pertinent individuals; review of available public documents; subsurface exploration and our professional judgment based on said information at the time of preparation of

this document. Any subsurface sample results and observations presented herein are considered to be representative of the area of investigation; however, geological conditions may vary between borings and may not necessarily apply to the general site as a whole. If future subsurface or other conditions are revealed which vary from these findings, the newly revealed conditions must be evaluated and may invalidate the findings of this report.

This report is issued with the understanding that it is the responsibility of the owner, or his representative, to ensure that the information contained herein is brought to the attention of the appropriate regulatory agencies, where required by law. Additionally, it is the sole responsibility of the owner to properly dispose of any hazardous materials or hazardous wastes left onsite, in accordance with existing laws and regulations.

This report has been prepared in accordance with generally accepted practices using standards of care and diligence normally practiced by recognized consulting firms performing services of a similar nature. P&D is not responsible for the accuracy or completeness of information provided by other individuals or entities used in this report. This report presents our professional judgment based upon data and findings identified in this report and interpretation of such data based upon our experience and background, and no warranty, either express or implied, is made. The conclusions presented are based upon the current regulatory climate and may require revision if future regulatory changes occur.

Should you have any questions, please do not hesitate to contact us at (510) 658-6916.

Sincerely, ONAL P&D Environmental, Inc. 27, King PAUL H. KING No. 5901 0 Paul H. King Professional Geologist #5901 TEOFCALIFO Expires: 12/31/11

Attachments:

Table 1 - Summary of Monitoring Well Groundwater Elevation Data

Table 2A - Summary of Groundwater Sample Results – DP1 through DP4 – TPH and MBTEX Table 2B - Summary of Groundwater Sample Results – DP1 through DP4 – Chlorinated

Hydrocarbons and Other VOCs

Table 3 - Summary of Groundwater Sample Results - MW1 through MW4

Figure 1 - Site Location Map

- Figure 2 Site Vicinity Map Detail Showing Sample Collection Locations and Geologic Cross Sections C-C', D-D', E-E', F-F', and G-G'
- Figure 3 Geologic Cross Section C-C' Showing TPH-Stoddard Solvent in Soil
- Figure 4 Geologic Cross Section D-D' Showing TPH-Stoddard Solvent in Soil
- Figure 5 Geologic Cross Section E-E' Showing TPH-Stoddard Solvent in Soil
- Figure 6 Geologic Cross Section F-F' Showing TPH-Stoddard Solvent in Soil
- Figure 7 Graph of Water Levels in Site Groundwater Monitoring Network Wells
- Figure 8 Site Vicinity Map Detail Showing TPH-Stoddard Solvent in Groundwater
- Figure 9 Site Vicinity Map Detail Showing Alternative Interpretation of TPH-Stoddard Solvent in Groundwater Using TPH-D Data
- Figure 10 Site Vicinity Map Detail Showing Benzene in Groundwater
- Figure 11 Site Vicinity Map Detail Showing PCE in Groundwater
- Figure 12 Site Vicinity Map Detail Showing TCE in Groundwater
- Figure 13 Site Vicinity Map Detail Showing cis-1,2-DCE in Groundwater
- Figure 14 Site Vicinity Map Detail Showing Vinyl Chloride in Groundwater
- Appendix A Boring Logs
- Appendix B Well Construction Diagrams
- Appendix C Survey Data
- Appendix D Well Development Data Sheets
- Appendix E Well Monitoring/Purge Data Sheets
- Appendix F Weather Information
- Appendix G Laboratory Analytical Reports and Chain of Custody Documentation

PHK/mld/sjc 0298.R11

TABLES

TABLE 1SUMMARY OF GROUNDWATER ELEVATION DATA

Well No	Date	Top Of Casing	Depth To Water	Water Table	Change in
		Elevation (ft)**	<u>(ft)</u>	Elevation (ft)	Water Table
					Elevation (ft)
DP1	11/23/2010	137.22	26.47	110.75	0.24
	11/19/2010		26.71	110.51	0.13
	11/12/2010		26.84	110.38	-0.33
	10/15/2010***	136.39	25.68	110.71	-0.26
	10/5/2010*		25.42	110.97	0.33
	9/28/2010*		25.75	110.64	
DP2	11/23/2010	136.59	20.94	115.65	0.71
	11/19/2010		21.65	114.94	-0.07
	11/12/2010		21.58	115.01	0.35
	10/15/2010***	135.77	21.11	114.66	-0.15
	10/5/2010*		20.96	114.81	-1.39
	9/28/2010*		19.57	116.20	
	,,_,,_,		-,		
DP3	11/23/2010	135.75	19.26	116.49	0.89
	11/19/2010		20.15	115.60	-0.09
	11/12/2010		20.06	115.69	0.47
	10/15/2010***	134 51	19 29	115.22	-0.15
	10/5/2010*	101.01	19.14	115.22	0.28
	9/28/2010*		10.42	115.09	0.20
	7/20/2010		17.42	115.07	
DP4	11/23/2010	137.60	26.24	111.36	0.21
	11/19/2010		26.45	111.15	0.16
	11/12/2010		26.61	110.99	-0.38
	10/15/2010***	136 77	25.40	111 37	-0.37
	10/5/2010*	100.17	25.03	111.37	0.79
	9/28/2010*		25.03	110.95	0.79
	7/20/2010		23.02	110.95	
VE1	11/12/2010	136.64	No	Water Encounte	red
VE2	11/12/2010	137.20	17.26	119.94	N/A
N (XX71	11/10/2010	122.79	22.95	100.02	0.07
IVI VV I	11/19/2010	132.78	23.83	108.93	0.07
	10/15/2010		23.92	108.86	
MW2	11/23/2010	133 59	16 69	116.90	0.97
111112	11/10/2010	155.57	17.66	115.93	-0.07
	11/12/2010		17.50	116.00	-0.07
	10/15/2010		18.06	115.52	0.47
	10/13/2010		10.00	115.55	
MW3	11/19/2010	136.35	21.15	115.20	1.82
	10/15/2010		22.97	113 38	
	10/10/2010		,,	112.20	
MW4	11/19/2010	134.09	25.79	108.30	0.07
	10/15/2010		25.86	108.23	
	10, 10, 2010		20.00	100.20	

NOTES:

* = Prior to well development.

** = Wells DP1 through DP4 surveyed on October 5, 2010.

*** = Extension added to PVC well pipe for DP1 through DP4 on November 10, 2010.

N/A = Not Applicable.

 TABLE 2A

 SUMMARY OF GROUNDWATER SAMPLE RESULTS - DP1 THROUGH DP4 - TPH AND MBTEX

Well Number	Sample Date	TPH-G	TPH-SS	TPH-D	TPH-BO	MTBE	Benzene	Toluene	Ethylbenzene	Total Xylenes
DP1	10/15/2010	10,000, b,c,g	5,100, b,c,g	9,000, b,d,f	9,800, b,d,f	ND<500	ND<500	ND<500	ND<500	ND<500
DP2	10/15/2010	4,800, a,c	2,900, a, c	3,900, d,e	2,900, d,e	ND<1,000	ND<1,000	ND<1,000	ND<1,000	ND<1,000
DP3	10/15/2010	5,700, c	8,000, c	10,000, d,e,f	9,800, d,e,f	ND<1.7	ND<1.7	2.7	4.0	23
DP4	10/15/2010	1,800, c,g	1,500, c,g	1,200, d,e	920, d,e	ND<1.7	ND<1.7	ND<1.7	ND<1.7	ND<1.7
ESL		100	100	100	100	5.0	1.0	40	30	20

Abbreviations and Notes:

TPH-G = Total Petroleum Hydrocarbons as Gasoline

TPH-SS = Total Petroleum Hydrocarbons as Stoddard solvent

TPH-D = Total Petroleum Hydrocarbons as Diesel

TPH-BO = Total Petroleum Hydrocarbons as Bunker Oil

MTBE = Methyl tertiary-Butyl Ether

ND = Not Detected.

-- = See TPH-G results in the line above.

a = Laboratory Note: one to a few isolated peaks present.

b = Laboratory Note: lighter than water immiscible sheen/product present.

c = Laboratory Note: results reported as gasoline and Stoddard solvent consist of Stoddard Solvent/mineral spirit.

d = Laboratory Note: results reported as diesel and bunker oil consist of Stoddard Solvent/mineral spirit.

e = Laboratory Note: results reported as diesel and bunker oil consist of diesel range compounds; no recognizable pattern.

f = Laboratory Note: results reported as diesel and bunker oil consist of oil range compounds.

g = Laboratory Note: no recognizable pattern.

ESL=Environmental Screening Level, developed by San Francisco Bay - Regional Water Quality Control Board (SF-RWQCB)) updated May 2008,

from Table A – Shallow Soil Screening Levels, Groundwater is a current or potential source of drinking water.

Values in bold indicate concentrations that exceed their respective ESL values.

Results are in micrograms per liter (µg/L), unless otherwise noted.

TABLE 2B SUMMARY OF GROUNDWATER SAMPLE RESULTS - DPI THROUGH DP4 - CHLORINATED HYDROCARBONS AND OTHER VOCs

Well Number	Sample Date	PCE	TCE	cis-1,2-DCE	trans-1,2-DCE	Vinyl Chloride	Other VOCs by 8260B
DP1	10/15/2010	ND<500	ND<500	17,000	ND<500	2,600	All ND
DP2	10/15/2010	ND<1,000	ND<1,000	22,000	ND<1,000	ND<1,000	All ND
DP3	10/15/2010	ND<1.7	ND<1.7	44	4.5	28	ND, except: Naphthalene = 7.5, n-Butyl benzene = 4.4, 1,2,4-Trimethylbenzene = 69, 1,3,5-Trimethylbenzene = 24 sec-Butyl benzene = 6.0, Isopropylbenzene = 7.2, n-Propyl benzene = 10,
DP4	10/15/2010	22	40	80	33	2.9	ND, except: tert-Butyl benzene = 3.8, 4-Isopropyl toluene = 4.5
ESL		5.0	5.0	6.0	10	0.5	Naphthalene = 17, n-Butyl benzene = None, 1,2,4-Trimethylbenzene = None, 1,3,5-Trimethylbenzene = None, sec-Butyl benzene = None, Isopropylbenzene = None, tert-Butyl benzene = None, n-Propyl benzene = None

Abbreviations and Notes:

PCE = Tetrachloroethene.

TCE = Trichloroethene.

cis-1,2-DCE = cis-1,2-Dichloroethene.

trans-1,2-DCE = trans-1,2-Dichloroethene. VOCs = Volatile Organic Compounds

ND = Not Detected.

ESL=Environmental Screening Level, developed by San Francisco Bay - Regional Water Quality Control Board (SF-RWQCB)) updated May 2008,

from Table A – Shallow Soil Screening Levels, Groundwater is a current or potential source of drinking water.

Values in bold indicate concentrations that exceed their respective ESL values.

Results are in micrograms per liter (µg/L), unless otherwise noted.

TABLE 3

SUMMARY OF GROUNDWATER SAMPLE RESULTS - MW1 THROUGH MW4

Well Number	Sample Date	TPH-G	TPH-SS	TPH-D	TPH-MO	TPH-BO	VOCs by 8260B
1001	10/15/2010	ND <50	ND <50	ND <50	NA	ND <00	ND av cents Chloroform-0.85
IVI VV 1	5/21/2010	ND<50	ND<50	ND<50	NA	ND<100	ND except: Chloroform=0.80
	12/1/2010	ND<50	ND <50	ND <50	NA	ND<100	ND, except: Chloroform=0.71
	0/18/2009	ND<50	ND<50	ND<50	NA	ND<100	ND, except: Chloroform=0.71
	9/16/2008	ND<30	ND-50	140<.00	INA	ND<100	ND, except. Chiofofofini=0.74
	10/27/2004	ND<50	ND<50	ND<50	ND<250	NA	ND, except: Chloroform=0.78
	2/20/2002	ND <50	ND <50	ND <50	ND -250	NA	ND avaanti
	2/20/2005	140<50	140<50	140<.50	110~250	na -	Chloroform=1.2
							Yvlanes = 0.61
							Aylenes = 0.01
	5/15/1005	ND~50	NA	NA	NA	NA	** ND
	12/22/1004	ND -50	NA	NA	NA	NA	** ND
	12/22/1994	ND<50	INA	INA	NA	NA	** ND
	9/14/1994	ND, a	NA	NA	NA	NA	** ND
	7/29/1994	ND<50	NA	NA	NA	NA	** ND
	5/31/1994	ND<50	NA	NA	NA	NA	** ND
	1/24/1994	ND<50	NA	ND	NA	NA	** ND
MW2	10/15/2010	3.600, a.b.g	3.900, a.b.g	25.000, b.h.i.i	NA	22,000, b.h.i.i	ND excent:
		· / · · · / · / · / · / · / · / · / · /	., ., ., ., .,				cis-1.2-dichloroethene=1.500.
							Vinvl Chloride =160.
							1,2,4-Trimethylbenzene = 100
							,,
	5/21/2010	2.400. g	2.500. g	3.900, h.i.i	NA	4.700. h.i. i	ND excent:
		-,,8	-,, g	-,,-,		-,,-,,	cis-1 2-dichloroathana-1 700
							Vinyl Chloride -180
							1.2.4-Trimethylbenzene = 89
							-,_,,,,, -,,
	12/1/2009	34,000 b.c	47,000 b.c	74.000 bdef	NA	91.000 b.d.e.f	ND excent:
		54,000, 6,0	47,000, b,c	/4,000, 0,0,0,0,0		, 1,000, D,u,c,i	ais 1.2 dishloroathana-1.800
							Vinul Chlorida -73
							1 2 4-Trimethylbenzene – 140
1							1,2,4-111meuryIDenzene = 140
	0/18/2000	11.000 - 5	14 000	28 000 1 3 -	NA	22.000	NT.
	<i>J</i> /10/2000	11,000, 0,0	14,000	20,000, 0,0,0	na	33,000	ND, except:
							cis-1,2-dichloroethene=880,
							Vinyl Chloride =44,
							Xylenes = 46,
							1,2,4-1 million the line in the second secon
							1,5,5-1 fimelinyibenzene = 41
	10/27/2004	220.000	500 000	200.000 1.1.6	NID 50.000		
	10/27/2004	320,000, c	500,000	280,000 , b,d, f	ND<50,000	NA	*ND, except:
							cis-1,2-dichloroethene =3,300
	2/20/2003	76,000, b,c	75,000	370,000, b,d,f	37,000	NA	ND, except:
							Toluene $=$ 47,
							Ethylbenzene =43,
							Xylenes =160,
							cis-1.2-Dichloroethene =360
							trans-1.2-Dichloroethene =22
							n-Butyl benzene = 43.
							Isonronylhenzene = 35
							sec-Butyl benzene = 48.
							n-Propyl benzene = 86
							4-Isopropyl toluene = 25.
							1,3,5-Trimethylbenzene = 160,
							Naphthalene $=32$,
							Vinyl Chloride =24.
							,
	5/15/1005	12 000 -	NA	NA	NA	NA	**P 17
	5/15/1995	12,000, c	1874	1974	INA	INA	Benzene =17,
							**10iuene = 96,
							**Ethylbenzene =50,
							Aylenes =200
	12/22/1004	20.000	N [*]	N [*]	N A	NA	**D 44
1	12/22/1994	20,000, a,c	NA	INA	INA	INA	**Benzene =22,
1							** Toluene = 1/0,
							**Ethylbenzene =89,
1							Ayienes =4/0
	12/22/1004						
1	12/22/1994						ND, except:
1							+Benzene = 21,
							+Toluene = 170,
							+Ethylbenzene = 48,
							+Xylenes = 180,
							+cis-1,2-Dichloroethene = 1,100,
1							+trans-1,2-Dichloroethene = 15,
1							+1,1-Dichloroothane = 2.8,
1							TCHIOrocitane = 0.7
1							
1	9/14/1994	200,000, b,c	NA	NA	NA	NA	**Benzene = ND < 15
1							**Toluene = 170,
1							**Ethylbenzene = 400,
							**Xylenes = 2,600
	9/14/1994						ND, except:
1							+Benzene = 24
1							+Toluene = 440,
1							+Ethylbenzene = 300,
							+Xylenes = 830
1							+cis-1,2-dichloroethene = 720
1							+Chloroform = 25,
1							+Acetone = 120

TABLE 3

SUMMARY OF GROUNDWATER SAMPLE RESULTS - MW1 THROUGH MW4

Well Number	Sample Date	TPH-G	TPH-SS	TPH-D	TPH-MO	TPH-BO	VOCs by 8260B
MW2 Continued	7/29/1994	21,000, b, c	NA	NA	NA	NA	**Benzene = 21, **Toluene = 150, **Ethylbenzene = 53, **Xylenes = 150
	5/31/1994	6,400, c	NA	NA	NA	NA	**Benzene = 15, **Toluene = 100, **Eihylbenzene = 43, **Xylenes = 220
	1/28/1994	2,800, c	NA	12,000, d	NA	NA	ND, except: **Xylenes = 43
	1/19/1994++	3,400, c	NA	20,000	NA	NA	**Benzene = 15, **Toluene = 180, **Eihylhenzene = 39, **Xylenes = 200
MW3	10/15/2010 5/21/2010 12/1/2009 9/18/2008	ND<50 ND<50 ND<50 ND<50	ND<50 ND<50 ND<50 ND<50	ND<50 ND<50 63, e ND<50	NA NA NA	ND<100 ND<100 120, e ND<100	ND ND ND, except: Bromoform = 0.57, Chloroform = 1.3
MW4	10/15/2010	ND<50	ND<50	ND<50	NA	ND<100	ND, except: Cis-1.2-dichloroethene = 8.4 , Trans-1.2-dichloroethene = 0.84, Chloroform = 1.3
	5/21/2010	ND<50	ND<50	ND<50	NA	ND<100	ND, except: Cis-1,2-dichloroethene = 8.7 , Chloroform = 1.3
	12/1/2009	ND<50	ND<50	ND<50	NA	ND<100	ND, except: Cis-1,2-dichloroethene = 5.8, Chloroform = 0.97
	9/18/2008	ND<50	ND<50	ND<50	NA	ND<100	ND, except: Cis-1,2-dichloroethene = 4.8, Chloroform = 0.96
ESL		100	100	100	100	100	Berzene = 1.0, Toluene = 40, Ethylbenzene = 30, Xylenes = 20, Terachloroethene = 5.0, Trichloroethene = 5.0, cisi-1,2-Dichloroethene = 10, 1,1-Dichloroethene = 10, 1,1-Dichloroethene = 10, Chloroethane = 12, Vinyl Chloride = 0.5, Naphthalene = 17, Chloroform = 70, Bromoform = 100, Acetone = 6,300, n-Butyl benzene = None, 1,3,5-Trimethylbenzene = None, Isopropylbenzene = None, Isopropylbenzene = None, tert-Butyl benzene = None, tert-Butyl benzene = None,

- Abbreviations and Notes: TPH-G = Total Petroleum Hydrocarbons as Gasoline TPH-SS = Total Petroleum Hydrocarbons as Stoddard solvent TPH-D = Total Petroleum Hydrocarbons as Diesel TPH-MO = Total Petroleum Hydrocarbons as Bunker Oil TPH-BO = Total Petroleum Hydrocarbons as Bunker Oil

- TPH-MO = Total Petroleum Hydrocarbons as Motor Oil
 TPH-BO = Total Petroleum Hydrocarbons as Banker Oil
 VOCs = Volatile Organic Compounds
 ND = Not Detected.
 NA = Not Analyzad.
 -- s See TPH-G results in the line above.
 a = Laboratory Note: ingitter than water immiscible sheen/product present.
 b = Laboratory Note: lighter than water immiscible sheen/product present.
 c = Laboratory Note: results reported as gasoline consist of Stoddard Solvent/mineral spirit.
 d = Laboratory Note: results reported as gasoline consist of Stoddard Solvent/mineral spirit.
 d = Laboratory Note: results reported as gasoline consist of Stoddard Solvent/mineral spirit.
 e = results reported as diesel consist of oil diesel range compounds; no recognizable pattern.
 f = results reported as diesel consist of Stoddard Solvent consist of Stoddard Solvent/mineral spirit.
 i = Laboratory Note: results reported as gasoline and Bunker oil consist of Stoddard Solvent/mineral spirit.
 i = Laboratory Note: results reported as diesel and bunker oil consist of Stoddard Solvent/mineral spirit.
 i = Laboratory Note: results reported as diesel and bunker oil consist of Giodard Solvent/mineral spirit.
 i = Laboratory Note: results reported as diesel and bunker oil consist of Gi ange compounds;
 k = Laboratory Note: results reported as diesel and bunker oil consist of Gi ange compound.
 k = Laboratory Note: results reported as diesel and bunker oil consist of Gi ange compound.
 k = Laboratory Note: results reported as diesel and bunker oil consist of Gi ange compound.
 k = Laboratory Note: results reported as diesel and bunker oil consist of Gi ange compound.
 k = Laboratory Note: results reported as diesel of a sample dilution factor of 500.
 *** Analysis by EPA Method 8200.
 + = Samples subcontracted to different lab for VOC analysisby EPA Method 8260.</li

FIGURES

Oakland, CA 94610

7.5-Minute Quadrangle Photorevised 1980

Scale In Feet

APPENDIX A

Boring Logs

P&D ENVIRONMENTAL, INC.

в	DRING	NO.:	DP1 project no.: 0298 project	NAME:	Snow	Cleaners, 2	2678 Coolidg	ge Avenue,	Oakland		
BORING LOCATION: In Rear Yard of Subject Site Approximately 60 feet NNE of Davis Street ELEVATION AND DATUM: None											
DI	RILLIN	G AC	GENCY: Exploration Geoservices	DRILLE	r: Joł	nn	DATE & TIME STARTED: DATE &		DATE & TIME FINISHED:		
D	RILLIN	iG E	QUIPMENT: Mobile B-40 Hollow Stem Auger		1230 1500		1500				
С	OMPLE	TIO	N DEPTH: 37.0 Feet BEDROCK DEPTH: 1	LOGGI	ED BY:	CHECKED BY:					
FI	RST W	ATEI	R DEPTH: 28.0 Feet NO. OF SAMPLES: N	lone			MI	_D	PHK		
	DEPTH (FT.)		DESCRIPTION	GRAPHIC COLUMN	BLOW COUNT PER 6"	WELL CONSTRUCTION LOG	UIA		REMARKS		
			0.0 to 3.5 ft. Dark brown organic clay (OL); medium stiff, moist. No Petroleum Hydrocarbon (PHC) or Solvent odor.	OL		See Well Construction Diagram	0	Borehole d using a true O.D. hollo	rilled from 0.0 to 37.0 ft ck-mounted 12-inch w stem auger drill rig.		
	5		3.5 to 10.5 ft. Brown silt (ML); stiff, moist. No PHC or Solvent odor.	ML			0	Soil collec logging us California sampler dr down-hole inches.	ted for lithologic mg a 2-inch O.D. Modified split spoon iven by a 140-pound hammer falling 30		
	10		8.0 ft. Bluish gray staining with slight PHC (Stoddard- solvent) odor.		8		3				
			10.5 to 15.0 ft. Greenish gray gravelly silty sand (SW); medium dense, moist, with abundant angular gravel - to 1-inch diameter, and orange and black mottling. Moderate PHC (Stoddard solvent) odor.	sw	89						
	15				4 5 8		2				
	20		15.0 to 22.5 ft. Greenish gray silt (ML); stiff, moist. Slight PHC (Stoddard solvent) odor at 16.0 ft.	ML	10		0				
	25		22.5 to 26.0 ft. Orange-brown gravelly silty sand (SW); dense, moist. Strong PHC (Stoddard solvent) odor at 23.0 ft.	sw	10	Ţ	218	Water enco	untered at 28.0 ft during		
	30		26.0 to 37.0 ft. Gray gravelly silty sand (SM); dense, moist, with some angular to sub-rounded gravel <0.75-inch diameter. Strong PHC (Stoddard solvent)- odor. Saturated at 28.0 ft.	SM		Ā	558	casing wate 25.83 ft. at at 1550. Fir measured a	r level measured at 1530 and again at 25.82 nal water level t 25.75 ft at 1600.		
P&D ENVIRONMENTAL, INC.

PAGE _____ OF ____

В	BORING NO.: DP1 PROJECT NO.: 0298 PROJECT NAME: Snow Cleaners, 2678 Coolidge Avenue, Oakland									
F	ORIN	G LOC	ATION: In Rear Yard of Subject Site Approximately 60	fee	t NNE	of D	avis Street	ELEVA	TION AND DA	atum: None
D	RILLI	NGAC	ENCY: Exploration Geoservices		DRILLEI	r: Jo	hn	DATE & TIME	E STARTED:	DATE & TIME FINISHED:
	RILLI	NG EO	QUIPMENT: Mobile B-40 Hollow Stem Auger					9/28/ 123	/10 0	9/28/10 1500
c	OMPL	ETIO	N DEPTH: 37.0 Feet BEDROCK DEPTH:	No	t Encou	unter	ed	LOGGI	ED BY:	CHECKED BY:
F	IRST V	VATEF	a depth: 28.0 Feet NO. OF SAMPLES:	Nc	one			MI	D	PAK
DEPTH (FT.)			DESCRIPTION			BLOW COUNT PER 6"	WELL CONSTRUCTION LOG	QIA		REMARKS
	- 30		 26.0 to 37.0 ft. Gray gravelly silty sand (SM); dense moist, with some angular to subrounded gravel <0.75-inch diameter. Strong PHC (Stoddard solvent) odor. Saturated at 28.0 ft. 		SM		See Well Construction Diagram	0		
	35							514		
									Borehole t well constr 9/28/10.	erminated at 37.0 ft. and ructed in borehole on

project no.: 0298 BORING NO.: DP2 PROJECT NAME: Snow Cleaners, 2678 Coolidge Avenue, Oakland BORING LOCATION: In Rear Yard of Subject Site Approximately 45 feet NNE of Davis Street ELEVATION AND DATUM: None DATE & TIME FINISHED: **Exploration Geoservices** DATE & TIME STARTED: DRILLING AGENCY: DRILLER: John 9/27/10 9/27/10 Mobile B-40 Hollow Stem Auger 1230 1600 DRILLING EQUIPMENT: LOGGED BY: CHECKED BY: COMPLETION DEPTH: 29.0 Feet **BEDROCK DEPTH:** Not Encountered MLD FIRST WATER DEPTH: 24.0 Feet MK None NO. OF SAMPLES: WELL CONSTRUCTION LOG DEPTH (FT.) BLOW COUNT PER 6" **GRAPHIC COLUMN** DESCRIPTION E REMARKS See Well Borehole drilled from 0.0 to 25.0 ft Construction using a truck-mounted 12-inch 0 Diagram 0.0 to 11.0 ft. Brown silt (ML); very stiff, dry to O.D. hollow stem auger drill rig. moist, with bluish gray mottling at 9.0 ft. Slight Petroleum Hydrocarbon (PHC) (Stoddard solvent) odor. Soil collected for lithologic logging using a 2-inch O.D. ML 3 5 _ California Modified split spoon sampler driven by a 140-pound 0.0 to 3.0 ft. Angular to sub-angular gravel to 1-inch _ down-hole hammer falling 30 diameter. inches. 4 6 11 10 3 5 7 12 123 15 Water encountered during drilling 11.0 to 24.5 ft. Bluish gray gravelly silty sand (SW); medium dense, moist. Strong PHC (Stoddard solvent) at 24.0 ft. From top of PVC well casing water level measured at SW odor. 18.49 ft. at 1442, and again at 19.44 at 1557. Final water level measured at 19.57 ft at 1620. Y Ms. Vicky Hamlin with ACPWA 20 on site to observe and document pouring of sanitary seal. 22.0 to 23.0 ft. Abundant sub-rounded gravel to 1-inch diameter. 23.5 to 24.5 ft. increase in clay content. The portion of the borehole from ∇ 25.0 to 29.0 ft that was created Saturated at 24.0 ft. with the 2-inch diameter O.D. 98 10 25 California modified split spoon 12 18 10 13 24 5 6 sampler was backfilled to 24.5 to 29.0 ft. Light brown silty clay (CL); hard, 3 CL 25.0 ft. with bentonite pellets. moist, with orange and black mottling. Borehole terminated at 25.0 ft. and No PHC or Solvent odor at 25.5 ft. well constructed in borehole on 9/27/10. 0 6 30

P&D ENVIRONMENTAL, INC.

PAGE <u>1</u> OF <u>1</u>

P&D ENVIRONMENTAL, INC.

В	BORING NO.: DP3 PROJECT NO.: 0298 PROJECT NAME: Snow Cleaners, 2678 Coolidge Avenue, Oakland										
в	BORING LOCATION: Adjacent to Rear Yard of Subject Site Approximately 2 feet NNE of sidewalk ELEVATION AND DATUM: None										
D	RILLIN	iG A(GENCY: Exploration Geoservices		DRILLE	r: Jol	hn	DATE & TIME	E STARTED:	DATE & TIME FINISHED:	
D	RILLI	IG E	QUIPMENT: Mobile B-40 Hollow Stem Auger	-				085	50	1530	
с	OMPLI	ετιο	DN DEPTH: 27.0 Feet BEDRO	ock depth: N	ot Enco	unter	ed	LOGGI	ED BY:	CHECKED BY:	
F	IRST W	ATE	r depth: 23.0 Feet NO. OF	SAMPLES: N	one			ML	.D	PAK	
	DEPTH (FT.)		DESCRIPTION		GRAPHIC COLUMN	BLOW COUNT PER 6"	WELL CONSTRUCTION LOG	E REMARKS			
	5		0.0 to 0.3 ft. concrete. 0.3 to 5.0 ft. Brown clay (CL); stiff, m Strong Petroleum Hydrocarbon (PHC) (S solvent) odor. Bluish gray staining at 4.0 ft. 5.0 to 16.5 ft. Greenish gray sandy silt medium stiff, moist, with orange and black Strong PHC (Stoddard solvent) od Coarse sand from 5.0 to 10.0 ft. Angular to sub-rounded gravel <1-inch diar 10.0 to 20.0 ft.	oist toddard (ML); c mottling lor neter from	CL	-	See Well Construction Diagram	0 219 103	Borehole d using a true O.D. hollo Soil collec logging us California sampler dr down-hole inches.	rilled from 0.0 to 27.0 ft. ck-mounted 12-inch w stem auger drill rig. ted for lithologic ing a 2-inch O.D. Modified split spoon iven by a 140-pound hammer falling 30	
	15 20 25		 16.5 to 25.5 ft. Bluish gray fine sand (SP); stiff, moist to saturated at 23.0 ft. Strong PHC (Stoddard solvent) odd Intervals of coarse sand and angular to sub gravel to 0.75-inch diameter. between 17.5 and 23.0 to 25.5 ft. 25.5 to 27.0 ft. Brown silty clay (CL); hard with orange and bluish gray mottling. Slig (Stoddard solvent) odor. 	medium or. p-rounded to 18.0 ft.	SP CL	8 8 8 10 10 8 12 13 8 15 22	₹ ∑	525 208 6	Water enco at 23.0 ft. 1 casing wat 20.49 ft. at 19.87 at 12 measured a Ms. Vicky on site to o pouring of	puntered during drilling From top of PVC well er level measured at 1110, and again at 250. Final water level at 19.42 ft at 1610. Hamlin with ACPWA bserve and document sanitary seal.	
	30								Borehole to well constr 9/27/10.	erminated at 27.0 ft. and ucted in borehole on	

P&D ENVIRONMENTAL, INC.

в	BORING NO.: DP4 PROJECT NO.: 0298 PROJECT NAME: Snow Cleaners, 2678 Coolidge Avenue, Oakland										
в	ORING	G LOG	CATION: In Rear Yard of Subject Site Approximately 7	70 fe	et NNI	E of I	Davis Street	ELEVA	TION AND DA	тим: None	
D	RILLIN	G AC	ENCY: Exploration Geoservices		DRILLE	r: Jol	hn	DATE & TIMI	E STARTED:	DATE & TIME FINISHED:	
D	RILLI	NG EO	QUIPMENT: Mobile B-40 Hollow Stem Auger					9/28 084	.5	9/28/10 1600	
с	OMPL	ετιο	N DEPTH: 38.0 Feet BEDROCK DEPTH:	ed	LOGGI	ED BY:	CHECKED BY:				
F	IRST W	ATEI	R DEPTH: 30.0 Feet NO. OF SAMPLES:	No	ne			MLD		PAK	
	DEPTH (FT.)		DESCRIPTION		GRAPHIC COLUMN	BLOW COUNT PER 6"	WELL CONSTRUCTION LOG	A REMARKS			
F			0.0 to 0.3 ft. concrete.				See Well		Borehole d	rilled from 0.0 to 38.0 ft	
			0.3 to 4.0 ft. Dark brown organic clay (OL); medium stiff, moist. No Petroleum Hydrocarbon (PHC) or Solvent odor.		OL		Diagram	0	using a truc O.D. hollov	ek-mounted 12-inch w stem auger drill rig.	
E									Soil collect	ted for lithologic	
	5		4.0 to 12.5 ft. Brown silt (ML); stiff, moist.						Soil collected for lithologic logging using a 2-inch O.D. California Modified split spoon sampler driven by a 140-pound down-hole hammer falling 30 inches.		
E		_	No PHC or Solvent odor.		ML			0			
F		_	6.0 to 12.5 ft. clayey.	_							
E	10	_		_							
E											
		_	12.5 to 14.5 ft. Greenish grav gravelly silty sand (SW))·							
E			medium dense, moist, with angular gravel < 1-inch diameter, and orange and black mottling.		SW			0			
E	15	_	No PHC or Solvent odor.								
			14.5 to 21.5 ft Greenish grav silt (ML): stiff								
			moist. No PHC or Solvent odor .								
E		_	18.0 to 21.5 ft. orange mottling.		ML						
_	20	_									
_		_				18		0			
F		_	21.5 to 23.0 ft. Grayish brown gravelly silty sand		SW	30 32		0			
E			(5 w), very dense, moist to wet at 25.0 ft, with orange mottling and abundant angular to sub-rounded gravel			-		3			
E		_						-			
E	25	_	_				Ţ		Water enco	untered during drilling	
			23.0 to 38.0 ft. Gray gravelly silty sand (SM); loose, moist to saturated, with some angular to sub-rounded gravel to 0.75-inch diameter. Strong PHC (Stoddard solvent) odor		SM				at 30.0 ft. f casing wate 26.98 ft. at at 1311. Fir at 25.82 ft a	er level measured at 1226 and again at 25.60 hal water level measured at 1630.	
E			Saturated at 30.0 ft.								
\vdash	30	_		—			¥	82			

project no.: 0298 BORING NO.: DP4 PROJECT NAME: Snow Cleaners, 2678 Coolidge Avenue, Oakland BORING LOCATION: In Rear Yard of Subject Site Approximately 70 feet NNE of Davis Street ELEVATION AND DATUM: None DATE & TIME FINISHED: DATE & TIME STARTED: DRILLING AGENCY: **Exploration Geoservices** DRILLER: John 9/28/10 1600 9/28/10 DRILLING EQUIPMENT: Mobile B-40 Hollow Stem Auger 0845 LOGGED BY: CHECKED BY: COMPLETION DEPTH: 38.0 Feet **BEDROCK DEPTH:** Not Encountered MLD MK FIRST WATER DEPTH: 30.0 Feet None NO. OF SAMPLES: WELL CONSTRUCTION LOG DEPTH (FT. **GRAPHIC** COLUMN BLOW COUNT PER 6" DESCRIPTION E REMARKS 30 See Well Construction 138 Diagram 23.0 to 38.0 ft. Gray gravelly silty sand (SM); loose, moist to saturated, with some angular to sub-rounded SM gravel to 0.75-inch diameter. Strong PHC (Stoddard solvent) odor. 35 281 Saturated at 30.0 ft. Borehole terminated at 38.0 ft. and well constructed in borehole on 9/28/10. ____ _ ____ _

P&D ENVIRONMENTAL, INC.

PAGE _2_ OF _2_

P&D ENVIRONMENTAL, INC.

В	BORING NO.: VE1 PROJECT NO.: 0298 PROJECT NAME: Snow Cleaners, 2678 Coolidge Avenue, Oakland										
в	BORING LOCATION: In Rear Yard of Subject Site Approximately 70 feet NNE of Davis Street ELEVATION AND DATUM: None										
D	RILLIN	GAG	GENCY: Exploration Geoservices	DRILLE	r: Joh	n	DATE & TIME STARTED: DATE & TIME FINISHED		DATE & TIME FINISHED:		
D	RILLIN	IG E	QUIPMENT: Mobile B-40 Hollow Stem Auger				144	5	9/27/10 1630		
с	OMPLI	ETIO	N DEPTH: 15.0 Feet BEDROCK DEPTH: N	ed	LOGG	ED BY:	CHECKED BY:				
Fl	RST W	ATEI	R DEPTH: Not Encountered NO. OF SAMPLES: N	one			MLD		PAK		
DEPTH (FT.)			DESCRIPTION	GRAPHIC COLUMN	BLOW COUNT PER 6"	WELL CONSTRUCTION LOG	PID		REMARKS		
			0.0 to 0.3 ft. concrete.	OL		See Well Construction Diagram	0	Borehole d using a truc O.D. hollov	rilled from 0.0 to 15.0 ft ck-mounted 12-inch w stem auger drill rig.		
	5		4.0 to 8.0 ft. Brown silt (ML); medium stiff, moist No PHC or Solvent odor	ML	_		0	Soil collect logging usi California sampler dr down-hole inches.	ing a 2-inch O.D. Modified split spoon iven by a 140-pound hammer falling 30		
	 10		8.0 to 10.5 ft. Greenish brown silty clay (CL); very	CL	3		4	Water not e drilling	encountered during		
			10.5 to 11.5 ft. Greenish gray gravelly silty sand (SW); SW 0 loose, moist, with angular coarse gravel to 0.5-inch diameter. 5 10 Slight PHC (Stoddard solvent) odor. 65 5 11.5 to 15.0 ft. Greenish gray clayey silt (ML); ML 5 No PHC or Solvent odor. 0 0		4	Ms. Vicky on site to o pouring of	Hamlin with ACPWA bserve and document sanitary seal.				
	15			- - - -				Borehole te well constr 9/27/10.	erminated at 15.0 ft. and ucted in borehole on		
	20			-							
	25										
				- - - - -							
E	30			-							

P&D ENVIRONMENTAL, INC.

в	BORING NO.: VE2 PROJECT NO.: 0298 PROJECT NAME: Snow Cleaners, 2678 Coolidge Avenue, Oakland									
В	ORING	LOC	ATION: In Rear Yard of Subject Site Approximately 7	75 fe	et NNI	E of I	Davis Street	ELEVA	TION AND DA	тим: None
DF	RILLIN	G AC	ENCY: Exploration Geoservices		DRILLEI	a: Joh	ın	DATE & TIMI	E STARTED:	DATE & TIME FINISHED:
DI	RILLIN	G E(UIPMENT: Mobile B-40 Hollow Stem Auger		080	0	0930			
С	OMPLE	TIO	N DEPTH: 17.0 Feet BEDROCK DEPTH:	ed	LOGGI	ED BY:	CHECKED BY:			
FI	RST W	ATEF	DEPTH: Not Encountered NO. OF SAMPLES:	No	ne			MI	.D	PHK
DEPTH (FT.)			DESCRIPTION			BLOW COUNT PER 6"	WELL CONSTRUCTION LOG	PID		REMARKS
			0.0 to 0.3 ft. concrete.				See Well		Borehole d	rilled from 0.0 to 17.0 ft
			0.3 to 3.0 ft. Dark brown organic clay and silt (OL); stiff, moist. No Petroleum Hydrocarbon (PHC) or Solvent odor.		OL		Diagram	0	using a truc O.D. hollov	ek-mounted 12-inch w stem auger drill rig.
	5		3.0 to 9.0 ft. Brown silt (ML); stiff, moist, mottled bluish gray. Slight PHC (Stoddard solvent) odor.		ML			8	Soil collec logging usi California sampler dr down-hole inches.	ted for lithologic ing a 2-inch O.D. Modified split spoon iven by a 140-pound hammer falling 30
	10		9.0 to 15.0 ft. Greenish gray gravelly silty sand (SW); medium dense, with abundant angular gravel <1-inch diameter, and orange and black mottling. Slight PHC (Stoddard solvent) odor.		SW	6 7 7		6	Water not e drilling	ncountered during
	15	_				1		2		
			15.0 to 17.0 ft. Greenish gray sandy silt (ML); stiff, moist, with minor angular gravel to 0.25-inch diameter. Slight PHC (Stoddard solvent) odor.		ML	4 8		0		
	20								Borehole te well constr 9/29/10.	rminated at 17.0 ft. and ucted in borehole on
E		_		_						
E										
	25	_								
				_						
F		_								
E		_								
E	30	_								

APPENDIX B

Well Construction Diagrams

WELL CONSTRUCTION DIAGRAM

_ft.

WELL CONSTRUCTION DIAGRAM

136.00

29.0* ft.

<u>12.0 in.</u>

247 ft.

0.8 ft.

4.0 in.

_11.0* ft.

<u>14.0 ft</u>.

0.020 in.

1.0 ft.

0.2 ft.

8.0 ft.

1.0 ft.

<u>15.0 ft</u>.

4.0 ft.

0.0 ft.

WELL CONSTRUCTION DIAGRAM

ft.

in.

WELL CONSTRUCTION DIAGRAM

in.

P&D ENVIRONMENTAL, INC. 55 Santa Clara Avenue, Suite 240 Oakland, CA 94610 (510) 658-6916

WELL CONSTRUCTION DIAGRAM

WELL CONSTRUCTION DIAGRAM

137.55

1.0 ft.

0.2 ft.

7.0 ft.

APPENDIX C

Survey Data

TABLE OF WELL ELEVATIONS

& COORDINATES

JOB# A08629-1

AT

2678 COOLIDGE AVENUE

OAKLAND FOR

P&D ENVIRONMENTAL

Survey performed by or under the direction of Kevin J. Martin, L.S. 8345

	CCS83, ZONE 3 (1991.35) NORTHING (FT.) / LATITUDE	CCS83, ZONE 3 (1991.35) EASTING (FT.) / LONGITUDE	NAVD 88 ELEVATION	
WELL ID #	(DEC.)	(DEC.)	(FT.)	DESCRIPTION
DP1	2114151.4	6065646.5	136.90	GROUND 1' NORTH
	37.7885810	-122.2166156	136.39	PVC NOTCH N. SIDE
			136.85	GROUND AT N. EDGE OF HOLE
DP2	21174133.8	6065634.7	136.00	GROUND 1' NORTH
	37.7885320	-122.2166554	135.77	PVC NOTCH N. SIDE
			136.00	GROUND AT N. EDGE OF HOLE
DP3	2114124.0	6065612.7	135.41	CONCRETE 1' NORTH
	37.7885040	-122.2167308	134.51	PVC NOTCH N. SIDE
			135.30	CONC. AT N. EDGE OF HOLE
DP4	2114173.0	6065641.9	137.17	CONCRETE 1' NORTH
	37.7886400	-122.2166329	136.77	PVC NOTCH N. SIDE
			137.02	CONC. AT N. EDGE OF HOLE
VE1	2114167.7	6065640.6	137.13	CONCRETE 1' NORTH
	37.7886254	-122.2166371	136.64	PVC NOTCH N. SIDE
			137.10	CONC. AT N. EDGE OF HOLE
VE2	2114169.8	6065660.3	137.60	CONCRETE 1' NORTH
	37.7886322	-122.2165691	137.20	PVC NOTCH N. SIDE
			137.55	CONC. AT N. EDGE OF HOLE

VERTICAL CONTROL BASED ON: BENCH MARK: SAN LEANDRO NW BASE (NGS) (PID# HT0003)

BENCH MARK DISK EST. BY CGS IN 1947

DESCRIBED BY COAST AND GEODETIC SURVEY 1947 THE STATION IS NEAR THE CENTER LINE OF 54TH AVENUE AND IN THE NORTHEAST SIDE OF THE RAILROAD RIGHT OF WAY IN EAST OAKLAND. IT IS ABOUT 1/4 MILE SOUTHEAST OF A VERY LARGE GAS BIN AND IN A SMALL OPEN SPACE FORMED BY A Y FORK OF A SPUR TRACK.

ELEVATION = 11.5 FT., NAVD88 (ADJUSTED +/-2CM)

APPENDIX D

Well Development Data Sheets

10/5/2010 Date:__

Technician: <u>P. Arroyo</u>

.

Well ID	Casing Diameter	Total Depth	DTP	DTW	Thicknes
DP-1	4"	36.7		25.42	
DP-2	4"	24.7		20.96	-
DP-3	4"	26.51	• • • • • • • • • • • • • • • • • • •	19.14	
DP-4	4"	35.45		25.03	
	•				

Field Data Sheet

Project Name: Snow Cleaners

Oakland, CA Location:

.

.

Project	Number:	0298

S	Comments
·	
<u> </u>	
· <u>.</u>	

.

.

.

.

.

Project Name:	Snow Cleaners	Date:	10/05/10
Project Number:	298	Well ID:	DP-1
Method Of Purging:	Honda Pump	Well Diameter:	4"
Initial Depth to Water:	25.42	Casing Volume:	7.44
Total Depth of Well:	36.7	Pump Depth:	36
Total Depth After Dvlp.:	36.7	Total Casing Vol. Removed:	10

Volume Purged (gal.)	Time	DTW	Conductivity (uS/cm)	pН	Temp. °C	Turbidity (NTU)	Comments:
Initial	1152		510	7.28	34.1	>1000	dark brown
8	1159	29.51	683	7.23	22.1	>1000	dark brown
16	1208	dry	597	6.92	26.1	>1000	dry
24	1425	dry	522	7.09	18.7	>1000	dry
32	1430	30.15	552	6.88	18.4	>1000	brown
40	1436	dry	735	7.06	18.3	>1000	dry
48	1503	33.61	477	7.16	18.7	>1000	light brown
56	1508	dry	553	7.2	18.5	>1000	dry
64	1524	dry	554	7.1	20.6	>1000	dry
72	1540	dry	545	7.22	19	>1000	dry
80	1554	dry	472	7.27	18.5	>1000	dry

pH Calibration

Buffer Solution: 3 Point Calibration: 4, 7, 10

•

.

.

Notes:

:

.

Water had odor during gauing and surging, water also has a sheen.

.

Well went dry after each well volume was removed.

www.environmentalfieldwork.com

Project Name:	Snow Cleaners	Date:	10/05/10
Project Number:	298	Well ID:	DP-2
Method Of Purging:	Honda Pump	Well Diameter:	4"
Initial Depth to Water:	20.96	Casing Volume:	2.44
Total Depth of Well:	24.65	Pump Depth:	24.65
Total Depth After	24.7	Total Casing Vol. Removed:	10

volume Purged (gal.)	Time	DTW	Conductivity (uS/cm)	pН	Temp. °C	Turbidity (NTU)	Comments:
Initial	1350		843	8.35	22	>1000	dark brown
3	1353	24.35	944	7.87	21.7	>1000	dark brown
6	1357	24.35	743	7.55	27.8	>1000	dark brown
9	1408	24.33	640	7.38	28.4	>1000	brown
12	1422	24.35	603	7.16	25.5	>1000	light brown
15	1438	24.34	525	7.3	31.4	>1000	cloudy
18	1453	24.35	532	7.33	32.6	228	cloudy
21	1512	24.33	509	7.36	33	79.5	cloudy
24	1535	24.35	508	7.23	30	88.6	clearing
27	1603	24.33	498	6.84	28.5	244	clearing
30	1616	24.35	494	6.87	25	235	clearing

pH Calibration

•

.

Buffer Solution: 3 Point Calibration: 4, 7, 10

.

.

.

· .

.

www.environmentalfieldwork.com

.

.

Project Name:	Snow Cleaners	Date:	10/05/10	
Project Number:	298	Well ID:	DP-3	
Method Of Purging:	Honda Pump	Well Diameter:	4"	
Initial Depth to Water:	19.14	Casing Volume:	4.84	
Total Depth of Well:	26.48	Pump Depth:	24.65	
Total Depth After Dvlp.:	26.51	Total Casing Vol. Removed:	8	

Volume Purged (gal.)	Time	DTW	Conductivity (uS/cm)	pН	Temp. °C	Turbidity (NTU)	Comments:
Initial	1442		944	7.08	27.1	>1000	dark brown
5	1445	21.7	985	6.97	22.5	>1000	dark brown
10	1449	24.15	1000	6.87	22.2	>1000	dark brown
15	1453	25.89	940	6.91	22.3	>1000	dry
20	1507	25.19	553	6.74	26	382	light brown
25	1516	21.38	583	7.1	30.9	833	cloudy
30	1539	_	555	6.76	28.2	>1000	dry
35	1610	26.22	544	6.75	24	>1000	dry
40	1635	26.31	542	6.9	24.2	597	dry
45							
50							

pH Calibration

Buffer Solution: 3 Point Calibration: 4, 7, 10

Notes:

.

.

.

www.environmentalfieldwork.com

.

. .

Project Name:	Snow Cleaners	Date:	10/05/10
Project Number:	298	Well ID:	DP-4
Method Of Purging:	Honda Pump	Well Diameter:	4"
Initial Depth to Water:	25.03	Casing Volume:	6.62
Total Depth of Well:	35.06	Pump Depth:	35
Total Depth After Dvlp.:	35.45	Total Casing Vol. Removed:	10

.

					- 		
Volume Purged (gal.)	Time	DTW	Conductivity (uS/cm)	рН	Temp. °C	Turbidity (NTU)	Comments:
Initial	1013		562	9.17	22.4	>1000	Dark Brown
7	1016	27.35	549	9.28	20.3	>1000	Dark Brown
14	1021	28.2	500	8.47	20.6	>1000	Dark Brown
21	1025	29.1	467	8.05	21.1	>1000	Dark Brown
28	1031	29.4	440	7.64	21.4	>1000	Brown
35	1037	29.69	436	7.52	21.8	>1000	Brown
42	1044	29.9	428	7.41	22.1	>1000	Light Brown
49	1053	30.02	420	7.26	22.6	>1000	Clearing
56	1101	30.14	415	7.18	23	873	Clearing
63	1110	30.21	411	7.1	23.3	870	Clear
70	1122	30.3	409	7.11	23.5	575	Clear

pH Calibration

Buffer Solution: 3 Point Calibration: 4,7,10

.

.

Notes:

.

.

Water had odor during gauging and surging.

www.environmentalfieldwork.com

.

Daily Field Report

Date: 10/5/2010

Company: P & D Environmental

Contact: Paul King

Project Name: Snow Cleaners

Location: Oakland, Ca

Prepared by:

Environmental Field Services, LLC

Peter Arroyo

227 Palomino Way

Patterson Ca, 95363 (209)321-6255

Fax: (209) 892-1190

Notes:

Arrive on-site, locate & open well, allow well to equilibrate.

Well was gauged using a Solonist water level meter(TD & DTW). Well were surged with a 3.66" surge block for

10 minutes. All equipment was decontaminated before arriving, using Alcanox & water.

Monitoring wells were purged with a Honda pump, speed controlled with a ball valve.

Dedicated 1/2" poly tubing was used in the wells & disposed of after use.

Purge water was contained in 55 gallon poly drums that were sealed and labelled (Non Hazardous)

Four drums were left on-site.

All wells / drums were sealed before departure, all trash generated by EFS was removed as well.

APPENDIX E

Well Monitoring/Purge Data Sheets

					(\overline{a})
	GROUN	P&D ENVIR DWATER MONITO	ONMENTAL RING/WBLL PURGING	312	U
Site Name _	Snow Clean	<u>ers</u>	Well No	0798	DPI
Job No.	0298		Date 10/	15/10	
TOC to Wate	er (ft.) 2568	~	Sheen	Ves	
Well Depth	(ft.) <u>37.0</u>		Free Produ	/ ct Thickness	Ø
Well Diamet	er4"(0.6-	(6)	Sample Col	lection Metho	ođ
Gal./Casing	1 Vol. 714		Dispo	sable baile	<u>~</u>
THE	312129	7.3		BLECTRICAL	m Misles
1550	CAL PORGED	5.91	194	585	
1553	4.9	5.82	18.9	605	
1557	7.4	5.78	18,5	599	
1600	4.9	5.73	18.5	578	
1603	12.3	5.69	18.5	552	
1607	14.8	5.69	18.5	539	
1611	17.3	5,69	18.4	527	
1615	19.7	5.67	18.3	531	
1671	73.7	5.70	18.3	528	
·····	+ 				
			······································		·····
•			a dia dia ka 1990, amin'ny fisiana		
<u></u>	and the second se		terapile tile for Annie and a set the		<u></u>
					
				······································	<u></u>
<u></u>					
NOTES: 1	c story	· · · ·	- a cha		
<u> </u>	-mod 11/17-35/A	NA: SPIENT ODO	to sheen i		
		JANA	c mc = / 1650	• • • • • • • • • • • • • • • • • • • 	

1.8

PURGE10.92

			/	$\overline{\mathbf{z}}$
GROUND	P&D ENVIRONATER MONITOR	ONMENTAL RING/WBLL PURGING	(
site Name Snow Cleaner	DATA S.	MEET Wall No	pP2	
JOD NO. 0298	<u> </u>	Date 101	15/10	
TOC to Water (ft.) 31.11		Sheen V	e 5	
Well Depth (ft.) 25.0		Pree Produ	ct Thickness	Ø
Well Diameter 4" (0.646	$\overline{)}$	Sample Col	lection Method	
Gal./Casing Vol. 2.6		PISPOS	able bailer	
TIME GAL. PURGED 160 0.8 1112 1.7	5.76 <u>5.76</u>	$\frac{19.5}{10.1}$	ELECTRICAL CONDUCTIVITY/ 704 721	us/cn
<u>1612 1.7</u> <u>1644 2.6</u>	5.84	- 18,9	768	T
$\frac{1647}{1649}$ <u>3.4</u> <u>1649</u> <u>4.3</u>	5,83	18.8	724 711	Well
1654 <u>5.2</u>	5.82	18.8	664	- devertering
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5.80	18,7	654	-
1703 7.8	5.80	18.7	647-	-
				-
				-
			·	-
				-
				-
				-
				-
NOTES: mod phc od (- like shoet	elish sic SS/Finderings) + S	sheen	-
l.	5	neletime = 171	0	

PURGE10.92

٢

	GROUN	P&D ENVI DWATER MONIT	RONMENTAL DRING/WBLL PURGING	
	Sauch	DATA	SHEET	DD7
Site Name	Show Cleaner	<u>~</u>	Well No.	11-5
Job No	0218		Date 10	/15/10
TOC to Wate	r (ft.) <u>19.29</u>	•	Sheen V	<u>es</u>
Well Depth	(ft.) <u>27.0'</u>		Free Proc	luct Thickness Ø
Well Diamet	er_ <u>4"(0.616</u>	<u>)</u>	Sample Co	ollection Method
Gal./Casing	vol. <u>5.0</u>		Dis	posable bailer
	31-1=1.	5.6	Эr	BLECTRICAL 4. c/.
TIME	GAL. PURGED	DH	TEMPERATURE	CONDUCTIVITY MUTCH
1730	1.6	5.78	<u> </u>	755
1733	3.3	5.78	19.7	774
1735	<u>5.</u> D	5.79	6	790
1737	6,6	5.79	19.5	793
1739	8.3	5.79	[9.5	787
1741	10.0	5.80	19.5	-776
1744	11.6	5,80	19.4	769
1746	17 2	5.80	19.4	755
1249		<u> </u>		-7.7.2
11 .	13.0	2:00	<u> </u>	<u> </u>
· <u> </u>				And the state of t
<u></u>				
	•			
<u></u>	چىنى بى ب			
		ماماندور بن من ے		·····
				and the second second second second
				and a second and a s
<u></u>			<u>مستقد کی کار بر منظورات اور می</u>	97 <u>994 - 28. 26. – 26. – 27. – 28. – 28. – 28. – 28. –</u>
	TO ST			• Mile Recomptone and a second s
NOTES:	heent modep	hc od - Cl	Ke shae rolish)	
		Samale.	tince 180	<u>00</u>
PURGE10.92		7-		

P&D ENVIRONMENTAL GROUNDWATER MONITORING/WELL PURGING DATA SHEET

5.1

		DAIA		กกป
Site Name	Jnow Cleaner	<u>j</u>	Well No	<u> </u>
Job No	0298		Date 10/1	5/10
TOC to Wat	er (ft.) 25.40	<u></u>	Sheen y	'CS
Well Depth	(ft.) 38.0		/ Pree Produ	ct Thickness 🖉
Well Diame	ter 4" (0.64	6)	Sample Col	lection Method
Gal./Casin	y vol. 8.2		Dispe	sable bailer
	30-1=24.6		20	BLECTRICAL
TIME	GAL. PURGED	pH (DQ	TEMPERATURE	CONDUCTIVITY M
144.7	2.8	6,01	00,5	<u> 775</u>
1452	_5.5	5.62	_18.8	468
1456	8,2	5.61		412
1500	11.0	5.65	18.4	<u> </u>
1504	<u>13.7</u>	<u>5.71</u>	18, 5	404
1507	16.4	5.71	18,3 -	407
1511	19.2	5.72	18.3	409
1514	20.9	5.76	(8.3	<u> </u>
1521	24.6	5,79	18,3	413
<u>a</u>	ماند برای میرود. <u>بر را میرود و برای میرود و برای میرود و میرود میرو</u>			
				978) 2. <u>1 </u>
	/1	······		a a the second se
·····	Sheen +	verylight -	light phc (SS) od	107,
			Sonyle ti	me = 1530hrs

PURGE10.92

APPENDIX F

Weather Information

About This PWS:

Lat: N 37 ° 46 ' 3 " (37.768 °) Lon: W 122 ° 15 ' 18 " (-122.255 °) Elevation (ft): 15 Hardware: Davis Vantage Pro 2

Encinal Avenue & Lafayette St., Alameda, CA

http://www.wunderground.com/weatherstation/WXDailyHistory.asp?ID=KCAALAME1 &graphspan=custom&month=9&day=25&year=2010&monthend=11&dayend=25&year end=2010

HISTORY TOLE CAALAMET											
Encinal & Lafayette, A	Alameda, CA	— <u>Currer</u>	<u>nt Conditio</u>	<u>ns</u>							
Daily Summar	y for Sept	ember 2	5, 2010 -	Novembe	r 25, 2010						
September	25	2010	- TO	November	▼ 25	2010	Go				
Daily		We	ekly	Monthl	Ϋ́	Yearly	Custom				
	High:	Low:		Average:							
Temperature:	95.9 °F	39.6 ⁰F		61.8 °F							
Dew Point:	61.9 °F	-18.2 °F		51.1 ℉							
Humidity:	96.0%	15.0%		70.9%							
Wind Speed:	116.2mp	h-		4.0mph							
	from the West			·							
Wind Gust:	116.2mpl from the	n-		-							
	West										
Wind:	-	-		West							
Pressure: Precipitation:	30.39 in 2.96 in	20.30 in		-							

History for KCAALAME1

Custom	Date R	ange's Tal	bular Dat	a					
2010	Temp. (℉)	Dew Point (℉)	Humidity (%)	Sea Level F (in)	Pressure	Visibility (mi)	Wind (mph)	Gust Speed (mph)	Precip (in)
Septemb er	hig av lo h g w	high avg low	hig av lo h g w	high avg	low	hig av lo h g w	high avg	high	sum
1 2 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	I g w 90 56 24 86 58 27 92 75 44 90 82 64 90 71 40 91 62 19 90 80 63 92 82 67 87 73 48 90 67 31 90 77 54 87 77 59 90 75 55 91 84 67	29.88 - 29.85 - 29.91 - 29.92 - 29.82 - 29.71 - 29.78 - 29.82 - 29.93 - 29.93 - 29.94 - 29.94 - 29.94 - 29.94 - 29.94 - 29.94 - 29.94 - 29.94 - 29.94 -	29.72 29.72 29.84 29.79 29.68 29.64 29.68 29.76 29.82 29.86 29.83 29.87 29.85 29.87 29.87 29.90	II G W 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13 13 12 12 12 12 10 15 18 16 14 12 14 13 13 13	0.00 0.00
16 17 19 20 21 22 23 24 25 26 27 28 29 30 2010 October	74 64 58 70 64 60 76 65 58 77 65 58 69 61 57 69 61 56 78 65 56 86 69 55 92 73 59 86 70 56 96 75 59 96 78 64 85 70 60 73 64 56 Temp. (°F) hig av lo h g w	62 58 54 62 60 58 61 58 55 60 56 2 55 53 50 54 52 51 56 53 49 59 55 47 59 54 47 59 54 47 59 54 46 58 55 50 58 55 53 Dew Point (°F) high avg low	90 81 64 93 86 74 93 79 57 92 75 50 89 77 58 85 74 54 85 67 44 81 60 29 82 57 22 90 63 28 87 55 19 79 49 20 86 62 35 92 76 56 Humidity (%) hig av lo h g w lo	29.94 - 29.88 - 29.89 - 29.85 - 29.74 - 29.84 - 29.94 - 29.99 - 29.96 - 29.90 - 29.82 - 29.80 - 29.83 - Sea Level F (in) high avg	29.82 29.79 20.30 29.70 29.66 29.68 29.84 29.91 29.82 29.77 29.70 29.70 29.64 29.68 ressure		14 2 14 3 116 3 16 4 22 8 20 9 16 4 15 3 12 2 12 3 9 2 12 2 14 5 14 5 Wind (mph) high avg	14 14 16 22 20 16 15 12 12 9 12 14 14 14 Gust Speed (mph) high	0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 22	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29.95 - 29.92 - 29.87 - 29.88 - 30.01 - 30.11 - 30.14 - 30.19 - 30.10 - 29.93 - 29.96 - 29.98 - 29.99 - 29.99 - 29.99 - 29.99 - 29.99 - 29.99 - 29.99 - 29.99 - 29.99 - 29.99 - 29.99 - 29.99 - 29.99 - 29.99 - 29.91 - 29.98 - 30.00 - 29.97 -	29.84 29.92 29.86 29.81 29.81 29.86 30.01 30.07 30.08 29.90 29.83 29.87 29.90 29.90 29.90 29.90 29.90 29.94 29.94 29.94 29.94 29.94 29.94 29.94 29.94		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12 5 18 17 13 18 14 13 15 12 12 12 12 12 12 12 12 12 12 12 12 12	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0

2010	Tem (℉)	p.	Dev (°F)	v Po	int	Hur	nidi	ty	Sea Le	evel F	ressure	Vis (mi	sibili [.] i)	ty	Winc (mph	1) 	Gust Speed	Precip (in)
23	64 5	58 53	55	52	48	90	82	59	29 99	-	29 92	_	·/ -	-	23	10	23	0.14
24	64 6	31 57	62	58	5/	96	۵ <u>۵</u>	82	20.00	_	20.02	_	_	_	28	13	28	0.24
25	67 5	58 57	57	51	16	01	77	102	20.00		20.02		_		17	5	17	0.24
26	60 5	57 50	10	15	30	94	65	25	30.00	_	20.00	_	-	_	18	5	18	0.01
20	67 5		43	20	10	00	52	20	20.07	-	29.90	_	-	-	10	2	10	0.00
20	75 6	00 40 00 51	10	12	20	70	52	20	20.02	-	29.94	-	-	-	11	2	14	0.00
20	66 6	2 51	49	40	12	20	60	21 50	29.90	-	29.00	-	-	-	10	2	14	0.00
20	62 5		57	40 50	40	03	00	60	20.00	-	20.76	_	-	-	16	5	16	0.03
21	71 6	20 02	57	51	49	92	70	16	20.00	-	29.70	-	-	-	12	2	10	0.03
<u>51</u>	Tom	51 52 n	. 55 Dov	, Do	47 int	09	12 midi	40	Soo L		30.04 2000		- Shili	-	Wine	3	Lio Guat Speed	0.00 Brogin
2010	(°F)	ρ.	_tev (°F)	VFO		пиі (%)	mai	ιy	(in)	evel r	ressure	(mi	i)	ιy	(mph	ı 1)	(mph)	(in)
Novemb	hig a	av lo	hiat	200		hig	av	lo	hiah	21/0	low	hig	j av	lo	hiah	21/0	hiah	eum
er	h g	y w	ingi	lavy	,1000	h	g	W	nign	avy	10 00	h	g	w	nign	avy	nign	Sum
<u>1</u>	72 6	62 51	58	52	48	93	74	44	30.28	-	30.18	-	-	-	13	3	13	0.01
<u>2</u>	77 6	64 54	- 58	53	50	90	71	45	30.24	-	30.03	-	-	-	9	2	9	0.00
<u>3</u>	77 6	65 54	- 60	55	51	92	73	50	30.07	-	29.96	-	-	-	9	2	9	0.00
<u>4</u>	80 6	67 57	60	57	54	92	72	41	29.99	-	29.81	-	-	-	12	2	12	0.00
<u>5</u>	66 6	60 56	58	54	52	92	81	66	29.88	-	29.79	-	-	-	13	4	13	0.00
<u>6</u>	68 6	50 56	55	53	52	89	79	61	30.00	-	29.81	-	-	-	15	4	15	0.00
<u>7</u>	60 5	57 53	57	52	45	93	85	71	30.00	-	29.93	-	-	-	21	9	21	0.66
<u>8</u>	64 5	56 49	48	45	42	84	68	46	30.08	-	29.98	-	-	-	14	5	14	0.00
<u>9</u>	64 5	54 45	51	45	37	91	75	39	30.10	-	29.95	-	-	-	17	5	17	0.06
<u>10</u>	63 5	56 50	52	47	42	93	74	48	30.08	-	29.96	-	-	-	18	4	18	0.05
<u>11</u>	67 5	56 46	46	40	30	87	60	28	30.34	-	30.08	-	-	-	17	2	17	0.00
<u>12</u>	68 5	56 47	49	45	39	85	69	38	30.39	-	30.25	-	-	-	12	2	12	0.00
<u>13</u>	72 5	59 47	50	43	33	88	59	27	30.27	-	30.07	-	-	-	12	2	12	0.00
<u>14</u>	78 6	67 54	- 53	49	45	76	54	38	30.09	-	29.94	-	-	-	15	4	15	0.00
<u>15</u>	78 7	70 60	54	50	46	70	50	35	30.02	-	29.93	-	-	-	17	4	17	0.00
<u>16</u>	73 6	62 54	- 55	51	47	86	70	40	30.01	-	29.92	-	-	-	15	3	15	0.00
<u>17</u>	71 5	57 49	51	47	41	90	71	36	30.04	-	29.94	-	-	-	12	3	12	0.00
<u>18</u>	63 5	54 48	50	47	44	92	78	58	30.06	-	29.90	-	-	-	13	4	13	0.01
<u>19</u>	55 5	51 45	51	48	43	92	88	80	29.90	-	29.75	-	-	-	16	4	16	0.45
<u>20</u>	57 4	19 46	47	44	40	92	84	64	29.77	-	29.56	-	-	-	31	10	31	0.69
<u>21</u>	59 5	51 46	47	42	39	85	73	56	30.05	-	29.63	-	-	-	24	10	24	0.15
<u>22</u>	60 5	53 49	52	46	43	88	77	58	30.16	-	30.04	-	-	-	20	6	20	0.09
<u>23</u>	56 5	51 44	- 51	40	26	91	67	40	30.04	-	29.89	-	-	-	25	13	25	0.17
24	51 4	45 40	32	27	17	67	50	28	30.12	-	30.03	-	-	-	18	5	18	0.00

APPENDIX G

Laboratory Analytical Reports and Chain of Custody Documentation

McCampbell An "When Quality	nalytical, Inc.	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269					
P & D Environmental	Client Project ID: #0298; Si	Date Sampled:	10/15/10				
55 Santa Clara, Ste 240			Date Received:	10/18/10			
	Client Contact: Steve Carr	Date Reported: 10/25/10					
Oakland, CA 94610	Client P.O.:		Date Completed:	10/25/10			

WorkOrder: 1010484

October 25, 2010

Dear Steve:

Enclosed within are:

- 1) The results of the **4** analyzed samples from your project: **#0298; Snow Cleaners, Oakland,**
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

P & D EN 55 San	VIRONMENTAL, ats Clars Ave, Suite 240 Dakland, CA 94610 (510) 658-6916	INC.			101	0484 CHAIN O	F CUS	TOE	I Y	REC	COF	RD	PAG	E L OF L
	PROJECT NUMBER:		P	RDJECT	NAME:	CL				10g	17	11	1/	/
	.0798 Juoi)now	Oakland			â						
	SAMPLED BY: (PRINTED AND SIGNATU Steve Carmack				Afth		MARER OF	SEL THE	all all	1/		MESERVA III	REMARKS	
+	DW DP-1	DATE	тме 630	TYPE Had		SAMPLE LOCA	אסת	7 7	X	7	4		- Nor	T
tr t	SI CON-2 DP-2 DH-3 DP-3 DH-4		710 800	T				7777	X X X	K X X		Ī	1	K
	· · · · · · · · · · · · · · · · · · ·				4.0							+		
				Di	OD CONI AD SPAC CHEORIN	THON_ EABSENT_ VATED IN LAB_ VOAS 080	APPROPRIATE CONTAINERS PRESERVED IN METALS OTH	LAB_						
			_	PH	ESERVA			+-						
. [RELINQUISHED BY:	SICNATURE)		DATE	TIME	RECEIVED BY:	(SIGNATURE)		TOTAL NO	OF SAM	PLES	4 4	BORATORY:	Lell Analytical
1	RELINQUISHED BY: (SIGNATURE)	19	BATE	TIME 1900	RECEIVED BY:	(SIGNATURE)	-6 BY:	LABOR	ATORY	ylei	IACT: LA	BORATORY	PHONE NUMBER:
	Results and billing to: P&D Environmental, Inc. Iab@pdenviro.com					REMARKS: All bottles preserved of HCL.					HCL.			

•

1534 Willow Pass Rd Pittsburg, CA 94565-1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252-926	94565-1701 52					Work	Order:	: 1010	484	Client	Code: PD	DEO				
		WaterTrax	WriteOr	n 🗌 EDF		Excel	Į	Fax	√ E	Email	HardC	Сору	Thire	dParty	□ J-	flag
Report to:							Bill to:					Req	uested	TAT:	5 c	days
Steve Carmack		Email: la	ab@pdenviro	o.com			Ac	counts	Payable							
P & D Environmer	ntal	CC:					P٤	& D Env	/ironmenta	al						
55 Santa Clara, S	ste.240	PO:					55	Santa	Clara, Ste.	.240		Dat	e Recei	ived:	10/18/	2010
Oakland, CA 946	510	ProjectNo: #	0298; Snow	Cleaners, Oakland	ł		Oa	kland,	CA 94610			Dat	e Print	ed:	10/18/	2010
(510) 658-6916	FAX 510-834-0152															
									Reques	sted Tests	s (See lege	end b	elow)			
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4	5 6	7	8	9	10	11	12
1010484-001	DP-1		Water	10/15/2010 16:30		В	Α	А								
1010484-002	DP-2		Water	10/15/2010 17:10		В	Α	Α								

 \square

10/15/2010 18:00

10/15/2010 18:30

в

в

А

А

А

А

Test Legend:

1010484-003

1010484-004

1	8260B_W	2
6		7
11		12

2	G-MBTEX_W	
7		1
12		٦

Water

Water

3	TPH_W
8	

4	
9	

5	
10	

The following SampIDs: 001A, 002A, 003A, 004A contain testgroup.

DP-3

DP-4

Prepared by: Maria Venegas

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

"When Ouality Counts"

Sample Receipt Checklist

Client Name:	P & D Environme	ntal			Date a	nd Time Received:	10/18/2010	5:00:57 PM		
Project Name:	#0298; Snow Cle	aners, Oakl	and		Check	list completed and re	eviewed by:	Maria Venegas		
WorkOrder N°:	1010484	Matrix Wate	<u>r</u>		Carrier	: Rob Pringle (M	AI Courier)			
			Chain of Cu	istody (C	COC) Informa	tion				
Chain of custody	present?		Yes	\checkmark	No 🗆					
Chain of custody signed when relinquished and received?				\checkmark	No 🗆					
Chain of custody	agrees with sample l	abels?	Yes	✓	No 🗌					
Sample IDs noted	by Client on COC?		Yes	\checkmark	No 🗆					
Date and Time of	collection noted by Cli	ent on COC?	Yes	✓	No 🗆					
Sampler's name r	noted on COC?		Yes	✓	No 🗆					
Sample Receipt Information										
Custody seals int	tact on shipping conta	iner/cooler?	Yes		No 🗆		NA 🔽			
Shipping container/cooler in good condition?			Yes	\checkmark	No 🗆					
Samples in prope	er containers/bottles?		Yes	✓	No 🗆					
Sample containe	rs intact?		Yes	\checkmark	No 🗆					
Sufficient sample	e volume for indicated	test?	Yes	✓	No 🗌					
		<u>Sample</u>	Preservatio	n and Ho	old Time (HT)	Information				
All samples recei	ived within holding time	e?	Yes	✓	No 🗌					
Container/Temp E	Blank temperature		Cool	er Temp:	4°C		NA 🗆			
Water - VOA vial	ls have zero headspa	ce / no bubble	s? Yes	✓	No 🗆	No VOA vials submi	itted 🗆			
Sample labels ch	necked for correct pres	servation?	Yes	\checkmark	No 🗌					
Metal - pH accep	table upon receipt (pH	<2)?	Yes		No 🗆		NA 🗹			
Samples Receive	ed on Ice?		Yes	\checkmark	No 🗆					
		(1	Ice Type: WE	ET ICE)					
* NOTE: If the "No" box is checked, see comments below.										

Client contacted:

Date contacted:

Contacted by:

Comments:

McCampbell Analytical, Inc. "When Ouality Counts"				1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269						
P & D Environmental	Client l	Project ID): #029	98; Snow	10/15/10					
55 Gaute Class Sta 240	Cleane	rs, Oakla	nd		Date Received: 10/18/10					
55 Santa Clara, Ste.240	Client	Contact:	Steve (Carmack	Date Extracted:	10/22/10				
Oakland, CA 94610 Client P.O.:					Date Analyzed:	: 10/22/10				
	Volatile Orga	nics by P	&T and	d GC/MS (Basic Ta	arget List)*					
Extraction Method: SW5030B	_	Analyti	cal Metho	od: SW8260B	-	Work Order: 1010	0484			
Lah ID				1010484	-001B					
Client ID				DP-	1					
Matrix				Wat	er					
Compound	Concentration *	DE	Reporting	Compour		Concentration *	DE	Reporting		
Asstance		DF 1000	Limit	tout Amul mothul at		ND <500	DF	Limit		
Benzene	ND<500	1000	0.5	Bromobenzene	iner (TAME)	ND<500	1000	0.5		
Bromochloromethane	ND<500	1000	0.5	Bromodichlorometh	ane	ND<500	1000	0.5		
Bromoform	ND<500	1000	0.5	Bromomethane		ND<500	1000	0.5		
2-Butanone (MEK)	ND<2000	1000	2.0	t-Butyl alcohol (TB)	A)	ND<2000	1000	2.0		
n-Butyl benzene	ND<500	1000	0.5	sec-Butyl benzene		ND<500	1000	0.5		
tert-Butyl benzene	ND<500	ND<500 1000 0.5 Carbon Dis		Carbon Disulfide		ND<500	1000	0.5		
Carbon Tetrachloride	ND<500	1000	0.5	Chlorobenzene		ND<500	1000	0.5		
Chloroethane	ND<500	1000	0.5	Chloroform		ND<500	1000	0.5		
Chloromethane	ND<500	1000	0.5	2-Chlorotoluene		ND<500	1000	0.5		
4-Chlorotoluene	ND<500	1000	0.5	Dibromochlorometh	ane	ND<500	1000	0.5		
1,2-Dibromo-3-chloropropane	ND<200	1000	0.2	1,2-Dibromoethane	(EDB)	ND<500	1000	0.5		
Dibromomethane	ND<500	1000	0.5	1,2-Dichlorobenzene		ND<500	1000	0.5		
1,3-Dichlorobenzene	ND<500	1000	0.5	1,4-Dichlorobenzene	8	ND<500	1000	0.5		
1.2 Dichloroothone (1.2 DCA)	ND<500	1000	0.5	1,1-Dichloroethane		ND<500	1000	0.5		
ris-1 2-Dichloroethene	17.000	1000	0.5	trans_1_2_Dichloroe	thene	ND<500	1000	0.5		
1 2-Dichloropropage	ND<500	1000	0.5	1 3-Dichloropropan	e	ND<500	1000	0.5		
2.2-Dichloropropane	ND<500	1000	0.5	1.1-Dichloropropen	e	ND<500	1000	0.5		
cis-1,3-Dichloropropene	ND<500	1000	0.5	trans-1,3-Dichlorop	ropene	ND<500	1000	0.5		
Diisopropyl ether (DIPE)	ND<500	1000	0.5	Ethylbenzene		ND<500	1000	0.5		
Ethyl tert-butyl ether (ETBE)	ND<500	1000	0.5	Freon 113		ND<10,000	1000	10		
Hexachlorobutadiene	ND<500	1000	0.5	Hexachloroethane		ND<500	1000	0.5		
2-Hexanone	ND<500	1000	0.5	Isopropylbenzene		ND<500	1000	0.5		
4-Isopropyl toluene	ND<500	1000	0.5	Methyl-t-butyl ether	r (MTBE)	ND<500	1000	0.5		
Methylene chloride	ND<500	1000	0.5	4-Methyl-2-pentano	one (MIBK)	ND<500	1000	0.5		
Naphthalene	ND<500	1000	0.5	n-Propyl benzene	.1	ND<500	1000	0.5		
Styrene	ND<500	1000	0.5	1,1,1,2-Tetrachloro	ethane	ND<500	1000	0.5		
1,1,2,2-Tetrachloroethane	ND<500	1000	0.5	1 2 2 Trichlorobang		ND<500	1000	0.5		
1 2 4 Tricklorebengene	ND<500	1000	0.5	1,2,3-Irichlorobenz	ene	ND<500	1000	0.5		
1 1 2-Trichloroethane	ND<500	1000	0.5	Trichloroethene		ND<500	1000	0.5		
Trichlorofluoromethane	ND<500	1000	0.5	1.2.3-Trichloropropage		ND<500	1000	0.5		
1.2.4-Trimethylbenzene	ND<500	1000	0.5	1.3.5-Trimethylbenzene		ND<500	1000	0.5		
Vinvl Chloride	2600	1000	0.5	Xvlenes	· · ·	ND<500	1000	0.5		
		Surro	gate Re	ecoveries (%)						
%SS1:	8	9		%SS2:		1(02			
%SS3:	7	1								
Comments:										

Comments:

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

%SS = Percent Recovery of Surrogate Standard DF = Dilution Factor

McCampbell An "When Ouality"		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269								
P & D Environmental	Client	Project ID	: #029	98; Snow	10/15/10	10/15/10				
	Clean	ers, Oaklaı	nd		Date Received: 10/18/10					
55 Santa Clara, Ste.240		Contact:	Steve (Carmack	Date Extracted:	10/22/10				
Oakland, CA 94610	Client	P.O.:			Date Analyzed:	: 10/22/10				
	Volatile Orga	nics by P	&T an	d GC/MS (Basic Ta	arget List)*					
Extraction Method: SW5030B	-	Analytic	cal Metho	od: SW8260B		Work Order: 1010	0484			
Lab ID				1010484	002B					
Client ID				DP-	-2					
Matrix				Wat	er					
Compound	Concentration *	DF	Reporting Limit	Compour	nd	Concentration *	DF	Reporting Limit		
Acetone	ND<20,000	2000	10	tert-Amyl methyl et	ther (TAME)	ND<1000	2000	0.5		
Benzene	ND<1000	2000	0.5	Bromobenzene		ND<1000	2000	0.5		
Bromochloromethane	ND<1000	2000	0.5	Bromodichlorometh	ane	ND<1000	2000	0.5		
Bromoform	ND<1000	2000	0.5	Bromomethane		ND<1000	2000	0.5		
2-Butanone (MEK)	ND<4000	2000	2.0	t-Butyl alcohol (TB.	A)	ND<4000	2000	2.0		
n-Butyl benzene	ND<1000	2000	0.5	sec-Butyl benzene		ND<1000	2000	0.5		
tert-Butyl benzene	ND<1000	2000	0.5	Carbon Disulfide		ND<1000	2000	0.5		
Carbon Tetrachloride	ND<1000	2000	0.5	Chlorobenzene		ND<1000	2000	0.5		
Chloroethane	ND<1000	2000	0.5	Chloroform		ND<1000	2000	0.5		
Chloromethane	ND<1000	2000	0.5	2-Chlorotoluene		ND<1000	2000	0.5		
4-Chlorotoluene	ND<1000	2000	0.5	Dibromochlorometh	ane	ND<1000	2000	0.5		
1,2-Dibromo-3-chloropropane	ND<400	2000	0.2	1,2-Dibromoethane	(EDB)	ND<1000	2000	0.5		
1.3 Dichlorobenzene	ND<1000	2000	0.5	1.4 Dichlorobenzen	1.4-Dichlorobenzene		2000	0.5		
Dichlorodifluoromethane	ND<1000	2000	0.5	1 1-Dichloroethane		ND<1000	2000	0.5		
1.2-Dichloroethane (1.2-DCA)	ND<1000	2000	0.5	1 1-Dichloroethene		ND<1000	2000	0.5		
cis-1.2-Dichloroethene	22,000	2000	0.5	trans-1.2-Dichloroe	thene	ND<1000	2000	0.5		
1.2-Dichloropropane	ND<1000	2000	0.5	1.3-Dichloropropan	e	ND<1000	2000	0.5		
2.2-Dichloropropane	ND<1000	2000	0.5	1.1-Dichloropropen	e	ND<1000	2000	0.5		
cis-1,3-Dichloropropene	ND<1000	2000	0.5	trans-1,3-Dichlorop	ropene	ND<1000	2000	0.5		
Diisopropyl ether (DIPE)	ND<1000	2000	0.5	Ethylbenzene		ND<1000	2000	0.5		
Ethyl tert-butyl ether (ETBE)	ND<1000	2000	0.5	Freon 113		ND<20,000	2000	10		
Hexachlorobutadiene	ND<1000	2000	0.5	Hexachloroethane		ND<1000	2000	0.5		
2-Hexanone	ND<1000	2000	0.5	Isopropylbenzene		ND<1000	2000	0.5		
4-Isopropyl toluene	ND<1000	2000	0.5	Methyl-t-butyl ether	r (MTBE)	ND<1000	2000	0.5		
Methylene chloride	ND<1000	2000	0.5	4-Methyl-2-pentance	one (MIBK)	ND<1000	2000	0.5		
Naphthalene	ND<1000	2000	0.5	n-Propyl benzene		ND<1000	2000	0.5		
Styrene	ND<1000	2000	0.5	1,1,1,2-Tetrachloro	ethane	ND<1000	2000	0.5		
1,1,2,2-Tetrachloroethane	ND<1000	2000	0.5	Tetrachloroethene		ND<1000	2000	0.5		
Toluene	ND<1000	2000	0.5	1,2,3-Trichlorobenz	ene	ND<1000	2000	0.5		
1,2,4-Trichlorobenzene	ND<1000	2000	0.5	1,1,1-Trichloroetha	ne	ND<1000	2000	0.5		
Trichlorofluoromethane	ND<1000	2000	0.5	1 2 3 Trichlorogram	Trichloroethene		2000	0.5		
1.2.4 Trimethylbergers	ND<1000	2000	0.5	1,2,5-111CHIOFOPFOP	zane	ND<1000	2000	0.5		
Vinyl Chloride	ND<1000	2000	0.5	1,5,5-111methylben/	zene	ND<1000	2000	0.5		
		Surro	aste D	acoveries (%)			2000	0.5		
0/ 551.		00	gate Kt			4.	12			
%551: % \$\$3.		90 #		%552:		1 10	15			
Commente: h1		π		1						

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in μ g/wipe.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

%SS = Percent Recovery of Surrogate Standard DF = Dilution Factor

McCampbell Analytical, Inc. "When Ouality Counts"				1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269						
P & D Environmental	Client	Project ID	: #029	0298; Snow Date Sampled: 10/1						
	Cleane	ers, Oaklan	ıd		Date Received:	10/18/10				
55 Santa Clara, Ste.240	Client	Contact:	Steve (Carmack	Date Extracted:	10/22/10				
Oakland, CA 94610	Client	P.O.:			Date Analyzed	: 10/22/10				
	Volatilo Orga	nice by D	&T on	d CC/MS (Basia Ta	raot List)*					
Enter diam Mathe I. SW(5020D	volatile Orga				iiget List)	West-Osten 1010	101			
Extraction Method: Sw5030B		Analytic	al Metho	Dd: SW8200B		work Order: 1010	484			
Lab ID				1010484	-003B					
Client ID				DP-	-3					
Matrix		. h	Donostino	Wat	er	<u>г г</u>		Denerting		
Compound	Concentration *	DF	Limit	Compour	ıd	Concentration *	DF	Limit		
Acetone	ND<33	3.3	10	tert-Amyl methyl et	her (TAME)	ND<1.7	3.3	0.5		
Benzene	ND<1.7	3.3	0.5	Bromobenzene		ND<1.7	3.3	0.5		
Bromochloromethane	ND<1.7	3.3	0.5	Bromodichlorometh	ane	ND<1.7	3.3	0.5		
Bromoform	ND<1.7	3.3	0.5	Bromomethane		ND<1.7	3.3	0.5		
2-Butanone (MEK)	ND<6.7	3.3	2.0	t-Butyl alcohol (TBA)		ND<6.7	3.3	2.0		
n-Butyl benzene	4.4	3.3	0.5	sec-Butyl benzene		6.0	3.3	0.5		
tert-Butyl benzene	ND<1./	3.3	0.5	Chlanshangang		ND<1.7	3.3	0.5		
Carbon Tetrachloride	ND<1.7	3.3	0.5	Chloroform		ND<1.7	3.3	0.5		
Chloroethane	ND<1./	3.3	0.5	Chlorotorm		ND<1.7	3.3	0.5		
4 Chlorotoluono	ND<1.7	3.3	0.5	2-Chiorototuene Dibromochloromethane		ND<1.7	3.3	0.5		
1.2 Dibromo 3 chloropropana	ND<0.67	3.3	0.3	1.2 Dibromoethane	(FDR)	ND<1.7	3.3	0.5		
Dibromomethane	ND<1.7	3.3	0.5	1.2-Dichlorobenzene		ND<1.7	3.3	0.5		
1.3-Dichlorobenzene	ND<1.7	3.3	0.5	1 4-Dichlorobenzene		ND<1.7	3.3	0.5		
Dichlorodifluoromethane	ND<1.7	3.3	0.5	1.1-Dichloroethane		ND<1.7	3.3	0.5		
1.2-Dichloroethane (1.2-DCA)	ND<1.7	3.3	0.5	1.1-Dichloroethene		ND<1.7	3.3	0.5		
cis-1,2-Dichloroethene	44	3.3	0.5	trans-1,2-Dichloroet	thene	4.5	3.3	0.5		
1,2-Dichloropropane	ND<1.7	3.3	0.5	1,3-Dichloropropane	e	ND<1.7	3.3	0.5		
2,2-Dichloropropane	ND<1.7	3.3	0.5	1,1-Dichloropropend	e	ND<1.7	3.3	0.5		
cis-1,3-Dichloropropene	ND<1.7	3.3	0.5	trans-1,3-Dichlorop	ropene	ND<1.7	3.3	0.5		
Diisopropyl ether (DIPE)	ND<1.7	3.3	0.5	Ethylbenzene		4.0	3.3	0.5		
Ethyl tert-butyl ether (ETBE)	ND<1.7	3.3	0.5	Freon 113		ND<33	3.3	10		
Hexachlorobutadiene	ND<1.7	3.3	0.5	Hexachloroethane		ND<1.7	3.3	0.5		
2-Hexanone	ND<1.7	3.3	0.5	Isopropylbenzene		7.2	3.3	0.5		
4-Isopropyl toluene	ND<1.7	3.3	0.5	Methyl-t-butyl ether	r (MTBE)	ND<1.7	3.3	0.5		
Methylene chloride	ND<1.7	3.3	0.5	4-Methyl-2-pentano	ne (MIBK)	ND<1.7	3.3	0.5		
Naphthalene	7.5	3.3	0.5	n-Propyl benzene		10	3.3	0.5		
Styrene	ND<1.7	3.3	0.5	1,1,1,2-Tetrachloro	ethane	ND<1.7	3.3	0.5		
1,1,2,2-Tetrachloroethane	ND<1.7	3.3	0.5	Tetrachloroethene		ND<1.7	3.3	0.5		
Toluene	2.7	3.3	0.5	1,2,3-Trichlorobenz	ene	ND<1.7	3.3	0.5		
1,2,4-Trichlorobenzene	ND<1.7	3.3	0.5	1,1,1-Trichloroetha	ne	ND<1.7	3.3	0.5		
Triablerofluoromethane	ND<1.7	2.2	0.5	1 2 2 Trichloroprop	000	ND<1.7	2.2	0.5		
1.2.4. Trimethylbenzone	MD<1./	3.3	0.5	1.2.5-Trimothylbor	2010	ND<1./	3.3	0.5		
Vinyl Chloride	28	3.3	0.5	Xylenes	Lene	24	3.3	0.5		
	20	Surro	v.J rate Ra	$\frac{1}{2}$		43	2.2	0.5		
0/ 661.		Surros	Sait Rt				0			
%551: %\$\$2:		<u>89</u> 22		%552:		9	ð			
Commonte:		5.0		1						

Comments:

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

%SS = Percent Recovery of Surrogate Standard DF = Dilution Factor

McCampbell An "When Oualit"		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269							
P & D Environmental	Clien	ent Project ID: #0298; Snow Date Sampled:			10/15/10				
	Clear	ers, Oaklan	d		Date Received: 10/18/10				
55 Santa Clara, Ste.240		t Contact: S	Steve (Carmack	Date Extracted:	10/23/10			
Oakland, CA 94610	Clien	t P.O.:			Date Analyzed:	10/23/10			
	Volatile Org	anics by P&	&T an	d GC/MS (Basic Ta	nrget List)*				
Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 1010484									
Lab ID				1010484	-004B				
Client ID				DP-	4				
Matrix				Wat	er				
Compound	Concentration	* DF	Reporting Limit	Compour	ıd	Concentration *	DF	Reporting Limit	
Acetone	ND<33	3.3	10	tert-Amyl methyl et	her (TAME)	ND<1.7	3.3	0.5	
Benzene	ND<1.7	3.3	0.5	Bromobenzene		ND<1.7	3.3	0.5	
Bromochloromethane	ND<1.7	3.3	0.5	Bromodichlorometh	ane	ND<1.7	3.3	0.5	
Bromoform	ND<1.7	3.3	0.5	Bromomethane		ND<1.7	3.3	0.5	
2-Butanone (MEK)	ND<6.7	3.3	2.0	t-Butyl alcohol (TB	ND<6.7	3.3	2.0		
n-Butyl benzene	ND<1.7	3.3	0.5	sec-Butyl benzene		ND<1.7	3.3	0.5	
tert-Butyl benzene	3.8	3.3	0.5	Carbon Disulfide		ND<1.7	3.3	0.5	
Carbon Tetrachloride	ND<1.7	3.3	0.5	Chlorobenzene		ND<1.7	3.3	0.5	
Chloroethane	ND<1.7	3.3	0.5	Chloroform		ND<1.7	3.3	0.5	
Chloromethane	ND<1.7	3.3	0.5	2-Chlorotoluene		ND<1.7	3.3	0.5	
4-Chlorotoluene	ND<1.7	3.3	0.5	Dibromochlorometh	ane	ND<1.7	3.3	0.5	
1,2-Dibromo-3-chloropropane	ND<0.67	3.3	0.2	1,2-Dibromoethane (EDB)		ND<1.7	3.3	0.5	
1.3 Dichlorobenzene	ND<1.7	3.3	0.5 1.4 Dichlorohongono			ND<1.7	3.3	0.5	
Dichlorodifluoromethane	ND<1.7	3.3	0.5	1.1-Dichloroethane	5	ND<1.7	3.3	0.5	
1.2-Dichloroethane (1.2-DCA)	ND<1.7	3.3	0.5	1.1-Dichloroethene		ND<1.7	3.3	0.5	
cis-1 2-Dichloroethene	80	3.3	0.5	trans-1 2-Dichloroet	thene	33	3.3	0.5	
1.2-Dichloropropane	ND<1.7	3.3	0.5	1.3-Dichloropropan	e	ND<1.7	3.3	0.5	
2.2-Dichloropropane	ND<1.7	3.3	0.5	1.1-Dichloropropen	e	ND<1.7	3.3	0.5	
cis-1,3-Dichloropropene	ND<1.7	3.3	0.5	trans-1,3-Dichlorop	ropene	ND<1.7	3.3	0.5	
Diisopropyl ether (DIPE)	ND<1.7	3.3	0.5	Ethylbenzene		ND<1.7	3.3	0.5	
Ethyl tert-butyl ether (ETBE)	ND<1.7	3.3	0.5	Freon 113		ND<33	3.3	10	
Hexachlorobutadiene	ND<1.7	3.3	0.5	Hexachloroethane		ND<1.7	3.3	0.5	
2-Hexanone	ND<1.7	3.3	0.5	Isopropylbenzene		ND<1.7	3.3	0.5	
4-Isopropyl toluene	4.5	3.3	0.5	Methyl-t-butyl ether	r (MTBE)	ND<1.7	3.3	0.5	
Methylene chloride	ND<1.7	3.3	0.5	4-Methyl-2-pentano	ne (MIBK)	ND<1.7	3.3	0.5	
Naphthalene	ND<1.7	3.3	0.5	n-Propyl benzene		ND<1.7	3.3	0.5	
Styrene	ND<1.7	3.3	0.5	1,1,1,2-Tetrachloro	ethane	ND<1.7	3.3	0.5	
1,1,2,2-Tetrachloroethane	ND<1.7	3.3	0.5	Tetrachloroethene		22	3.3	0.5	
Toluene	ND<1.7	3.3	0.5	1,2,3-Trichlorobenz	ene	ND<1.7	3.3	0.5	
1,2,4-Trichlorobenzene	ND<1.7	3.3	0.5	1,1,1-Trichloroetha	ne	ND<1.7	3.3	0.5	
1,1,2-Iffichioroethane	ND<1.7	3.3	0.5	1 2 2 Trichlorog	000	40 ND -1 7	5.5	0.5	
1.2.4. Trimethylbenzone	ND<1.7	3.3	0.5	1.2.5-Trimothylbar	2010	ND<1.7	3.3	0.5	
Vinyl Chloride	2 0	3.3	0.5	Xylenes	Lene	ND<1.7	33	0.5	
	4.9	Surros	U.J	Coveries (%)		ΠD<1./	2.2	0.5	
w.001	1	Surrog	ale Ki				4		
%SS1:		<u>89</u> 02		%SS2:		9	4		
Commontor k1	l	73							

Comments: b1

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

%SS = Percent Recovery of Surrogate Standard DF = Dilution Factor

	CCampbell Analyt	ical, Inc.	1534 W Web: www.r Telep	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269						
P & D Environ	mental	Client Project I	D: #0298; Snow Clear	ners,	Date Sampled:	10/15/2	10			
55 Santa Clara	Sto 240	Oakland Date Received:				10/18/	10/18/10			
55 Saina Clara,	, Ste.240	Client Contact	: Steve Carmack	10/18/	10					
Oakland, CA 94	4610	Client P.O.:			Date Analyzed:	10/23/	10			
Total Extractable Petroleum Hydrocarbons*										
Extraction method:	SW3510C	Analytica	l methods: SW8015B			We	ork Order:	1010484		
Lab ID Client ID Matrix			TPH-Diesel (C10-C23)	T	PH-Bunker Oil (C10-C36)	DF	% SS	Comments		
1010484-001A	001A DP-1		9000		9800	10	91	e11,e7,b6		
1010484-002A	DP-2	W	3900	2900		1	81	e11,e2,b1		
1010484-003A	DP-3	W	10,000	9800		1	83	e11,e2,e7		
1010484-004A	DP-4	W	1200		920	1	90	e11,e2,b1		

Reporting Limit for DF =1;	W	50	100	μg/L
ND means not detected at or above the reporting limit	S	NA	NA	mg/Kg

* water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in $\mu g/L.$

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

%SS = Percent Recovery of Surrogate Standard. DF = Dilution Factor

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

b1) aqueous sample that contains greater than ~1 vol. % sediment

b6) lighter than water immiscible sheen/product is present

e2) diesel range compounds are significant; no recognizable pattern

e7) oil range compounds are significant

e11) stoddard solvent/mineral spirit (?)

When Ouality Counts"			1534 Willow Web: www.mccamp Telephone:	Pass Road, Pittsburg, CA 94565-170 pbell.com E-mail: main@mccampbe 877-252-9262 Fax: 925-252-9269	l ll.com		
P&DE	Environmental	Client Project ID:	#0298; Snow	Date Sampled: 10/15/10	0		
55 Santa	a Clara, Ste.240	Cleaners, Oaklan	d	Date Received: 10/18/10	0		
		Client Contact:	Steve Carmack	Date Extracted: 10/20/10	0-10/21/	/10	
Oakland	l, CA 94610	Client P.O.:		Date Analyzed: 10/20/10	0-10/21/	/10	
G	asoline Range (C6-C12) and Stodd	lard Solvent Rang	e (C9-C12) Volatile Hydu	rocarbons as Gasoline and S	Stoddar Work (rd Solve	ent*
Lab ID	Client ID	Matrix	TPH(g)	TPH(ss)	DF	% SS	Comments
001A	DP-1	w	10,000	5100	33	106	d5,d9,b6
002A	DP-2	W	4800	2900	1	101	d5,d6,b1
003A	DP-3	W	5700	8000	10	97	d5
004A	DP-4	W	1800	1500	1	108	d5,d9,b1
<u> </u>	Reporting Limit for DF =1:	w	50	50		<u> </u> 110/I	<u> </u>
	ND means not detected at or above the reporting limit	S	NA	NA		NA	

* water and vapor samples are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts in mg/L.

cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference.

%SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

b1) aqueous sample that contains greater than ~1 vol. % sediment

b6) lighter than water immiscible sheen/product is present

d5) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?)

d6) one to a few isolated non-target peaks present in the TPH(g) chromatogram

d9) no recognizable pattern

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water	QC Matrix: Water					BatchID: 53879			WorkOrder: 1010484			
EPA Method: SW8260B	Extraction SW5030B Spiked Sample ID: 1010472-0)12B				
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptanc	e Criteria (%)
Analyte	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND	10	82.4	83.1	0.820	99.4	112	11.9	70 - 130	30	70 - 130	30
Benzene	ND	10	105	104	0.926	113	111	1.83	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	50	75.3	78.7	4.20	90.1	86.2	4.43	70 - 130	30	70 - 130	30
Chlorobenzene	ND	10	107	105	1.32	120	121	0.703	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	10	96	97	1.03	110	110	0	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	10	103	100	2.57	109	103	5.95	70 - 130	30	70 - 130	30
1,1-Dichloroethene	ND	10	104	102	1.25	108	103	4.58	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	10	108	107	1.36	121	118	2.68	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	10	97.4	96.9	0.528	102	99.3	2.71	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND	10	104	105	0.590	121	122	0.664	70 - 130	30	70 - 130	30
Toluene	ND	10	106	105	0.977	112	112	0	70 - 130	30	70 - 130	30
Trichloroethene	ND	10	110	108	2.21	121	119	1.04	70 - 130	30	70 - 130	30
%SS1:	101	25	93	92	1.11	99	95	4.25	70 - 130	30	70 - 130	30
%SS2:	100	25	104	104	0	102	101	0.451	70 - 130	30	70 - 130	30
%SS3:	97	2.5	98	99	0.912	99	99	0	70 - 130	30	70 - 130	30
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:												

BATCH 53879 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1010484-001B	10/15/10 4:30 P	10/22/10	10/22/10 10:03 PM	1010484-002B	10/15/10 5:10 PI	10/22/10	10/22/10 10:47 PN
1010484-003B	10/15/10 6:00 P	10/22/10	10/22/10 11:29 PM	1010484-004B	10/15/10 6:30 PI	10/23/10	10/23/10 12:12 AN

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND cont significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

R_QA/QC Officer

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8015B

W.O. Sample Matrix: Water QC Matrix: Water				BatchID: 53890 WorkOrder: 1010484				84					
EPA Method: SW8015B	Extra	ction SW	3510C				Spiked Sample ID: N/A						
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	ce Criteria (%)		
Analyte	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	MS/MSD RPD LCS/LCSD R			
TPH-Diesel (C10-C23)	N/A	1000	N/A	N/A	N/A	124	125	1.03	N/A	N/A	70 - 130	30	
%SS:	N/A	625	N/A	N/A	N/A	110	108	1.68	N/A	N/A	70 - 130	30	
All target compounds in the Method NONE	Blank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following	exceptions:				

BATCH 53890 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1010484-001A	10/15/10 4:30 P	N 10/18/10	10/23/10 8:10 AN	1010484-002A	10/15/10 5:10 PM	10/18/10	10/23/10 10:20 AN
1010484-003A	10/15/10 6:00 P	N 10/18/10	10/23/10 7:05 AN	1010484-004A	10/15/10 6:30 PM	10/18/10	10/23/10 3:51 AN

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND cont significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification 1644

A QA/QC Officer

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Water	QC Matrix: Water					BatchID: 53878 Wo			Work	orkOrder: 1010484		
EPA Method: SW8015Bm	Extrac	tion SW	5030B					5	Spiked Sar	nple ID	: 1010472-0)12A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	e Criteria (%)
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex)	ND	60	91.1	105	13.7	92.9	81.9	12.5	70 - 130	20	70 - 130	20
MTBE	ND	10	110	115	4.20	114	117	2.17	70 - 130	20	70 - 130	20
Benzene	ND	10	103	107	4.14	111	111	0	70 - 130	20	70 - 130	20
Toluene	ND	10	92.5	103	10.4	99.9	101	0.664	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	92.5	96	3.69	99.1	98.7	0.377	70 - 130	20	70 - 130	20
Xylenes	ND	30	105	109	4.03	111	112	0.505	70 - 130	20	70 - 130	20
%SS:	99	10	100	106	6.09	106	105	0.818	70 - 130	20	70 - 130	20
All target compounds in the Method B NONE	lank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following	exceptions:			

BATCH 53878 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1010484-001A	10/15/10 4:30 P	N 10/21/10	10/21/10 7:54 PM	1010484-002A	10/15/10 5:10 PI	M 10/20/10	10/20/10 1:10 AN
1010484-002A	10/15/10 5:10 P	N 10/20/10	10/20/10 10:23 PM	1010484-003A	10/15/10 6:00 PI	N 10/20/10	10/20/10 2:10 AN
1010484-004A	10/15/10 6:30 P	N 10/20/10	10/20/10 3:09 AN				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND cont significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high ma or analyte content, or inconsistency in sample containers.

R_QA/QC Officer