SNOW CLEANERS INC. EXPERT FINISHING . ALL LEATHER GOODS

MAIN OFFICE & PLANT

38 WEST SONORA ST. STOCKTON, CA 95203 209 / 547-1454

RECEIVED

11:47 am, Sep 23, 2010

Alameda County Environmental Health

September 15, 2010

Mr. Jerry Wickham Alameda County Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

SUBJECT: CRAWL SPACE AIR SAMPLING REPORT CERTIFICATION ACEH Case # RO 0000357 Snow Cleaners 2678 Coolidge Avenue Oakland, CA

Dear Mr. Wickham:

You will find enclosed one copy of the following document prepared by P&D Environmental. Inc.

Crawl Space Air Sampling Report (CS4-CS6) dated September 15, 2010 ٠ (document 0298,R10).

I declare, under penalty of perjury, that the information and/or recommendations contained in the above-mentioned work plan for the subject site is true and correct to the best of my knowledge.

Should you have any questions, please do not hesitate to call me at (800) 818-7669.

Cordially. Snow Cleaners, Inc.

m Tur

Harold Turner President

Mr. LeRoy Griffin, Oakland Fire Department, Emergency Services, 250 Frank Cc: Ogawa Plaza, Suite 3341, Oakland, CA 94612 (with enclosure)

0298.L56

"SERVING THE CLEANING INDUSTRY FOR OVER 90 YEARS"

P&D ENVIRONMENTAL, INC.

55 Santa Clara Ave, Suite 240 Oakland, CA 94610 (510) 658-6916

September 15, 2010 Report 0298.R10

Mr. Harold Turner Snow Cleaners 2678 Coolidge Avenue Oakland, CA

SUBJECT: CRAWL SPACE AIR SAMPLING REPORT (CS4-CS6) ACDEH Case # RO 0000357 Snow Cleaners 2678 Coolidge Avenue Oakland, CA

Dear Mr. Turner:

P&D Environmental Inc. (P&D) is pleased to present this report documenting the collection of crawl space air samples at the residential buildings at 3220 Davis Street and 2682 Coolidge Avenue in the vicinity of the subject site. In addition, one ambient air sample was collected at 3319 Davis Street. The samples were collected on August 9, 2010 at locations where air samples had previously been collected on February 19, 2010. This work was performed in accordance with a letter from the Alameda County Department of Environmental Health (ACDEH) dated April 8, 2010. A Site Location Map is attached as Figure 1 and a Site Vicinity Map Detail showing sample collection locations is attached as Figure 2.

All work was performed under the direct supervision of a professional geologist and in accordance with guidelines set forth in the following documents.

- Tri-Regional Board Staff Recommendations for Preliminary Evaluation and Investigation of Underground Tank Sites" dated August 10, 1990 and "Appendix A Workplan for Initial Subsurface Investigation" dated August 20, 1991,
- California Code of Regulations Title 23 Sections 2720-2728;
- San Francisco Bay Regional Water Quality Control Board (SFRWQCB) "Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater" dated May 2008,
- Department of Toxic Substances Control (DTSC) "Advisory Active Soil Gas Investigations" dated January 13, 2003,
- DTSC "Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air" dated December 15, 2004, revised February 7, 2005,
- DTSC "Vapor Intrusion Mitigation Advisory" revised May 8, 2009,
- DTSC "Advisory Active Soil Gas Investigations" dated March 3, 2010.

BACKGROUND

A detailed site history is provided in P&D's Subsurface Investigation Report dated August 19, 2009 (document 0298.R6). Additional subsequent document review results for historic topographic maps, City of Oakland storm drain and sanitary sewer maps, Alameda County Flood Control District maps and a creek and watershed map of Oakland and Berkeley are provided in P&D's November 24, 2009 Subsurface Investigation Work Plan (document 0298.W4). Additional subsequent results for soil gas sample collection and crawl space air sample collection on February 19, 2010 are provided in P&D's Soil Gas and Crawl Space Air Investigation Report (document 0298.R8) dated March 22, 2010. Historical crawl space air sample results are summarized in Table 1.

FIELD ACTIVITIES

Prior to performing field activities, a health and safety plan was prepared, and site access was obtained from offsite property owners. Notification of the sample collection date was also provided to the ACDEH.

Crawl Space Air Sample Collection

The building construction at 3320 Davis Street and at 2682 Coolidge Avenue is not slab on grade. Both structures were observed to have crawl spaces with no visible means of access to the crawl space other than through mesh-covered ventilation holes measuring approximately 4 inches tall and 12 inches long. On August 9, 2010 two crawl space air samples designated as CS4 and CS5 (previously sampled at locations CS1 and CS2 in February 2010) were collected from the crawl space at 3320 Davis Street and one air sample designated as CS6 (previously sampled at location CS3 in February 2010) was collected from the crawl space at 2682 Coolidge Avenue. In addition, one duplicate crawl space air sample (CS6-DUP) was collected location CS6 at the time that sample CS6 was collected using a stainless steel sampling tee, and one ambient air sample was collected with the flow controller intake at a height of approximately 4.5 feet above the ground surface on the rear porch of the property located at 3319 Davis Street (at the same location previously sampled for ambient air in February 2010). The sample collection locations are shown in Figure 2.

The crawl space air samples and the ambient air sample were collected during business hours into SIM-certified 6-liter Summa canisters equipped with SIM-certified 8-hour flow controllers. The duplicate sample was collected with a SIM-certified stainless steel tee.

The building width at 3320 Davis Street is approximately 30 feet, and the building width at 2682 Coolidge Avenue in the vicinity of SG3 is approximately 12 feet wide. A high density polyethylene tube was secured with wire to the end of a steel rod and the steel rod was inserted through the vents into the crawl spaces so that the end of the tube was located at the crawl space air sample collection locations shown on Figure 2. Following placement of the rod and tubing beneath the building, an air pump was used to purge air from each tube for approximately one minute. The end of each tube was

then connected to a flow controller inlet that was located on top of a Summa canister, and the valve to the Summa canister was then opened for collection of each of the samples.

For the duplicate sample, the end of the tube from the crawl space was connected to the stainless steel tee, and the stainless steel tee was connected to two Summa canisters. After approximately 8 hours, the valves to the Summa canisters were closed, and the Summa canisters were stored in a box and subsequently shipped to the laboratory for extraction and analysis. Chain of custody procedures were observed for all sample handling. Measurements of Summa canister initial and final vacuums, the flow rate during initial purging of the tubing prior to sample collection, beginning and ending sample collection times, and PID readings collected from the sample tubing at the end of sample collection were recorded on Crawl Space Air Sampling Data Sheets that is provided in Appendix A of this report.

No precipitation occurred during the week preceding the soil gas sampling or on the day of soil gas sampling (August 9, 2010). Weather data, including precipitation and barometric pressure for the day of the sampling event and also for the months of July and August 2010 is provided as Appendix B. The weather station is located at the intersection of Encinal Avenue and Lafayette Street in Alameda at an elevation of 15 feet, approximately 2.5 miles to the southeast of the subject site. The subject site is located at an elevation of approximately 135 feet above sea level. An internet link to the weather station information is provided in Appendix B.

LABORATORY RESULTS

All of the crawl space and ambient air samples were analyzed at Air Toxics Limited of Folsom, California for the following analytes.

• VOCs, including PCE, TCE, cis-1,2-DCE, trans-1,2-DCE, vinyl chloride, MTBE, BTEX, and Total Petroleum Hydrocarbons as Gasoline (TPH-G) by modified EPA Method TO15.

The sample results are summarized in table 2 attached with this report. Copies of the laboratory analytical reports and chain of custody documentation are attached with this report as Appendix C.

RISK AND HAZARD EVALUATION

The only complete pathway for exposure at the properties evaluated is considered to be potential vapor intrusion from soil gas to indoor air. In accordance with DTSC guidance recommendations, a concentration of one half of the detection limit was used for compounds that were not detected but which were suspected of potentially being present at the air sample collection locations (PCE for crawl space air samples CS4 and CS6, and PCE, TCE, ethylbenzene, m,p-xylenes, and o-xylenes for the ambient air sample).

Ambient and Crawl Space Air

The incremental risk and hazard from vapor intrusion for the ambient air sample and for each of the crawl space air samples was calculated by using equations identified in Appendix C of the DTSC

"Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air" dated December 15, 2004, revised February 7, 2005.

The ambient and indoor air incremental risk calculation results are provided in Table 3A, and the ambient and indoor air hazard calculation results are provided in Table 3B. The ambient and indoor air risk and hazard calculation results are summarized in Table 3C.

The cumulative hazard quotient was calculated to be less than one for each of the samples. The incremental risk for each sample was calculated to be as follows.

<u>3320 Davis Street</u> Sample CS4 - 23 per million. Sample CS5 - 22 per million.

2682 Coolidge Avenue Sample CS6 - 38 per million.

Ambient Air 4 per million.

DISCUSSION AND RECOMMENDATIONS

Bay Area Air Quality Management District ambient air monitoring station data was not readily available for comparison with the ambient air or crawl space air sample results.

In accordance with DTSC "Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air" dated December 15, 2004, revised February 7, 2005 Appendix B, the attenuation factor for a building with a crawl space is considered to be 1.0, meaning that no attenuation is considered to occur between the crawl space and the building interior.

The DTSC recommends that when the calculated cumulative incremental risk for indoor air exceeds one per million, or when the calculated cumulative hazard quotient for indoor air exceeds one, that indoor air samples be collected on a semi-annual basis and that permanent sub-slab monitoring points and/or permanent vadose zone monitoring points be installed. However, the DTSC also states that representative samples from two different seasons need to be collected and evaluated prior to determining actual risk and hazard at a site. Crawl space and ambient air samples have now been collected on February 19, 2010 and August 9, 2010 during two different seasons.

Review of Tables 3A and 3B for the most recent sampling event in August 2010 shows that almost all of the risk and almost all of the hazard for each of the samples is from benzene. Similarly, Review of Tables 3A and 3B for the February 2010 sampling event shows that almost all of the risk and almost all of the hazard for each of the samples was also from benzene.

Comparisons of the calculated incremental risk and hazard for the samples collected on February 19, 2010 and August 9, 2010 are provided in Tables 4A and 4B, respectively. Review of Table 4A shows that risk decreased at 3320 Davis Street and in the ambient air sample, and increased at 2682

Coolidge Avenue. However, all of the results obtained in August 2010 are similar to the results obtained in February 2010, and none of the results indicate that mitigation measures are warranted at this time. Similarly, review of Table 4B shows similar trends of decreased hazard at 3320 Davis Street and in the ambient air sample, and increased hazard at 2682 Coolidge Avenue, and that the results obtained in August 2010 are similar to the results obtained in February 2010. None of the calculated hazard values exceed one, indicating that neither mitigation or monitoring are warranted based on hazard values.

In accordance with DTSC guidance, P&D recommends that air sampling be performed at locations previously sampled at six month intervals to verify that future air quality conditions are not changing from the conditions detected to date.

DISTRIBUTION

A copy of this report will be uploaded to the ACDEH website, in accordance with ACDEH requirements. In addition, a copy of this report will be uploaded to the GeoTracker database, and one copy of this report will be mailed to LeRoy Griffin of the City of Oakland Fire Department

LIMITATIONS

This report was prepared solely for the use of Snow Cleaners. The content and conclusions provided by P&D in this assessment are based on information collected during our investigation, which may include, but not be limited to, visual site inspections; interviews with the site owner, regulatory agencies and other pertinent individuals; review of available public documents; subsurface exploration and our professional judgment based on said information at the time of preparation of this document. Any subsurface sample results and observations presented herein are considered to be representative of the area of investigation; however, geological conditions may vary between borings and may not necessarily apply to the general site as a whole. If future subsurface or other conditions are revealed which vary from these findings, the newly revealed conditions must be evaluated and may invalidate the findings of this report.

This report is issued with the understanding that it is the responsibility of the owner, or his representative, to ensure that the information contained herein is brought to the attention of the appropriate regulatory agencies, where required by law. Additionally, it is the sole responsibility of the owner to properly dispose of any hazardous materials or hazardous wastes left onsite, in accordance with existing laws and regulations.

This report has been prepared in accordance with generally accepted practices using standards of care and diligence normally practiced by recognized consulting firms performing services of a similar nature. P&D is not responsible for the accuracy or completeness of information provided by other individuals or entities used in this report. This report presents our professional judgment based upon data and findings identified in this report and interpretation of such data based upon our experience and background, and no warranty, either express or implied, is made. The conclusions presented are based upon the current regulatory climate and may require revision if future regulatory changes occur.

Should you have any questions, please do not hesitate to contact us at (510) 658-6916.

Sincerely,

P&D Environmental, Inc.

Paul H. King President Professional Geologist #5901 Expires: 12/31/11

Attachments:

Table 1 - Summary of Historical Ambient Air and Crawl Space Air Sample Results

Table 2 - Summary of Ambient Air and Crawl Space Air Sample Results - Current Investigation

 Table 3A - Ambient and Indoor Air Risk Calculation Results

Table 3B - Ambient and Indoor Air Hazard Calculation Results

Table 3C - Ambient and Indoor Air Risk and Hazard Calculation Results Summary

Table 4A - Ambient and Indoor Air Risk Calculation Comparison

Table 4B - Ambient and Indoor Air Hazard Calculation Comparison

Figure 1 - Site Location Map Figure 2 - Site Vicinity Map Detail Showing Sample Collection Locations

Appendix A - Crawl Space Air Sampling Data Sheet

Appendix B - Weather Information

Appendix C - Laboratory Analytical Reports and Chain of Custody Documentation

PHK/mld/sjc 0298.R10

TABLES

TABLE 1 SUMMARY OF HISTORICAL AMBIENT AIR AND CRAWL SPACE AIR SAMPLE RESULTS

Sample ID	Sample Date	PCE	TCE	cis-1,2-DCE	trans1,2DCE	Vinyl Chloride	TPH-SS	Benzene	Toluene	Ethyl- benzene	m,p-Xylenes	o-Xylenes	Naphthalene
CS1	2/19/2010	0.38	0.44	ND<0.12	ND<0.60	ND< 0.039	310	4.7	48	9.4	36	11	ND< 4.0
CS1-Lab Duplicate		NA	NA	NA	NA	NA	280	NA	NA	NA	NA	NA	NA
CS2	2/19/2010	1.2	3.2	ND<0.13	ND<0.64	ND< 0.041	300	5.3	50	9.3	35	10	ND< 4.2
CS3	2/19/2010	0.23	ND<0.17	ND<0.12	ND<0.63	ND<0.040	ND<230	0.65	3.7	0.77	3.6	1.0	ND< 4.1
CS3-DUP	2/19/2010	ND<0.21	ND<0.17	ND<0.12	ND<0.63	ND<0.040	ND<230	0.64	3.9	0.79	3.7	1.0	ND< 4.1
AMBIENT	2/19/2010	ND<0.22	ND<0.17	ND<0.13	ND<0.64	ND<0.041	ND<230	0.56	1.3	0.29	0.98	0.34	ND< 4.2
ESL		0.41	1.2	7.3	15	0.031	10	0.084	63	0.98	Combin	ed = 21	0.072
Abbreviations and Note PCE = Tetrachloroethene TCE = Trichloroethene cis-1,2-DCE = cis-1,2-Di trans-1,2-DCE = trans-1,	bbreviations and Notes: CE = Tetrachloroethene CE = Trichloroethene s-1,2-DCE = cis-1,2-Dichloroethene ans-1,2-DCE = trans-1,2-Dichloroethene												

TPH-SS = Total Petroleum Hydrocarbons as Stoddard solvent. ND = Not Detected.

NA = Not Analyzed.

ESL= Environmental Screening Level, developed by San Francisco Bay – Regional Water Quality Control Board (SF-RWQCB), from Table E – Indoor Air Screening Levels (Vapor Intrusion Concerns) for Residential Land Use. Values in bold exceed their respective ESL values. Results in micrograms per cubic meter (μ g/m³), unless otherwise indicated.

 TABLE 2

 SUMMARY OF AMBIENT AIR AND CRAWL SPACE AIR SAMPLE RESULTS - CURRENT INVESTIGATION

Sample ID	Sample Date	PCE	TCE	cis-1,2-DCE	trans1,2DCE	Vinyl Chloride	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	m,p-Xylenes	o-Xylenes	Naphthalene
CS4	8/9/2010	ND<0.22	1.3	ND<0.13	ND<0.65	ND<0.042	570	ND<0.59	1.8	4.0	0.37	1.0	0.56	ND< 4.3
CS5	8/9/2010	0.36	1.7	ND<0.12	ND<0.61	ND< 0.040	530	ND<0.56	1.6	4.1	0.38	1.0	0.56	ND< 4.1
CS6	8/9/2010	ND<0.24	0.64	ND<0.14	ND<0.71	ND< 0.046	1,000	ND<0.64	3.1	2.9	0.39	1.1	0.65	ND< 4.7
CS6-DUP	8/9/2010	ND<0.24	0.64	ND<0.14	ND<0.69	ND< 0.045	1,100	ND<0.63	3.1	2.9	0.39	1.1	0.63	ND< 4.6
AMBIENT	8/9/2010	ND<0.26	ND<0.21	ND<0.16	ND<0.78	ND< 0.050	ND<200	ND<0.71	0.31, a	0.66	ND<0.17	ND<0.34	ND<0.17	ND< 5.1
ESL		0.41	1.2	7.3	15	0.031	10	9.4	0.084	63	0.98	Combin	ed = 21	0.072
Abbreviations and Note PCE = Tetrachloroothene TCE = Trichloroothene cis-1,2-DCE = cis-1,2-Di trans-1,2-DCE = trans-1, TPH-G = Total Petroleun MTBE = Methyl tertiary- ND = Not Detected. a = Laboratory Analytical ESL= Environmental Scr (SF-RWQCB), from Tabl Values in bold exceed th Results in micrograms per	SL 0.41 1.2 7.3 15 0.031 10 9.4 0.084 63 0.98 Combined = 21 0.072 Ubbreviations and Notes: VCE = Tetrachloroethene VCE = Tetrachloroe													

TABLE 3A

AMBIENT AND INDOOR AIR RISK CALCULATION RESULTS

											1				
BASED C	N AUGUST 9.20	010 SAMPI	JNO	FEVENT O	NLY	7							Calculated		
RESIDEN	TIAL EXPOSU	RE SCENA	RIC)									Individual	Calculated	
itiboito Bi													Compound	Cumulative	
									all				Incremental	Incremental	
		Unit Risk		Exposure		Exposure		Concentration in	divided	Averaging			Carcinogenic	Carcinogenic	
Formula		Factor	x	Frequency	x	Duration	x	Air	hv	Time	x	365	Risk	Risk	Notes
1 ormuna		T detoi	~	Trequency		Durution		7111	0 y	Time	21	505	Ribk	Risk	1003
Units		ug/m3		350 days/yr		30 yrs		ug/m3		70 yrs		days/yr			
		Ū				,		U U		-					
Location	Compound														
CS4	PCE	5.9E-06		350		30		0.11		70		365	2.6671E-07		Not detected.
	TCE	2.0E-06		350		30		1.3		70		365	1.06849E-06		
	Benzene	2.9E-05		350		30		1.8		70		365	2.1452E-05		
	Toluene	0.0E+00		350		30		4.0		70		365	0.0000E+00		
	Ethylbenzene	2.5E-06		350		30		0.37		70		365	3.8014E-07		
	m,p-Xylenes	0.0E+00		350		30		1.0		70		365	0.0000E+00		
	o-Xvlenes	0.0E+00		350		30		0.56		70		365	0.0000E+00	2.3167E-05	
CS5	PCE	5.9E-06		350		30		0.36		70		365	8.72877E-07		
	TCE	2.0E-06		350		30		1.7		70		365	1.39726E-06		
	Benzene	2.9E-05		350		30		1.6		70		365	1.90685E-05		
	Toluene	0.0E+00		350		30		4.1		70		365	0.0000E+00		
	Ethylbenzene	2.5E-06		350		30		0.38		70		365	3.90411E-07		
	m.p-Xvlenes	0.0E+00		350		30		1.0		70		365	0.0000E+00		
	o-Xvlenes	0.0E+00		350		30		0.56		70		365	0.0000E+00	2.1729E-05	
	,														
CS6	PCE	5.9E-06		350		30		0.12		70		365	2.910E-07		Not detected.
	TCE	2.0E-06		350		30		0.64		70		365	5.26027E-07		
	Benzene	2.9E-05		350		30		3.1		70		365	3.695E-05		
	Toluene	0.0E+00		350		30		2.9		70		365	0.000E+00		
	Ethylbenzene	2.5E-06		350		30		0.39		70		365	4.007E-07		
	m,p-Xylenes	0.0E+00		350		30		1.1		70		365	0.000E+00		
	o-Xylenes	0.0E+00		350		30		0.65		70		365	0.000E+00	3.816E-05	
Ambient	PCE	5.9E-06		350		30		0.13		70		365	3.15205E-07		Not detected.
	TCE	2.0E-06		350		30		0.105		70		365	8.63014E-08		Not detected.
	Benzene	2.9E-05		350		30		0.31		70		365	3.69452E-06		
	Toluene	0.0E+00		350		30		0.66		70		365	0.000E+00		
	Ethylbenzene	2.5E-06		350		30		0.085		70		365	8.73288E-08		Not detected.
	m,p-Xylenes	0.0E+00		350		30		0.17		70		365	0.000E+00		Not detected.
	o-Xylenes	0.0E+00		350		30		0.085		70		365	0.000E+00	4.18336E-06	Not detected.
NOTES:															
For dimen	sional analysis, th	e Unit Risk	Fact	or units are ex	xpres	ssed as 1 over	r ug/	m3, but the Unit R	isk Factor	value used for	cal	cuation is a	not.		
Unit Risk	Factor value obtai	ned from HI	ERD	Soil Gas Scr	eein	g Model VLO	JOK	sheet (last updated	1 2/4/09).						
	Yellow high ligh	nt indicates c	comp	oound was no	t det	ected and val	ue o	f one half of the de	tection lim	it was used fo	r ris	k calculati	on.		
Where dup	plicate samples we	ere analyzed,	the	highest conce	entra	tion for all a	nalys	es was used.							

TABLE 3B

AMBIENT AND INDOOR AIR HAZARD CALCULATION RESULTS

BASED (N AUGUST 9,201	0 SAMPLING EV	EN'	T ONLY													
RESIDE	TIAL EXPOSURI	E SCENARIO													Calculated		
															Individual	Calculated	
		1 Over Reference								Conversion of	all				Compound	Cumulative	
		Factor		Exposure		Exposure		Concentration in		Air Conc from	divided	Averaging			Hazard	Hazard	
Formula		Concentration	Х	Frequency	Х	Duration	Х	Air	Х	ug/m3 to mg/m3	by	Time	Х	365	Quotient	Quotient	Notes
										<u> </u>							
Units		1/(mg/m3)		350 days/yr		30 yrs		ug/m3		(mg/m3)/(ug/m3)		30 yrs		days/yr			
Location	Compound																
CS4	PCE	28.57		350		30		0.11		0.001		30		365	3.0137E-03		Not detected.
	TCE	1.67		350		30		1.3		0.001		30		365	2.0776E-03		
	Benzene	33.33		350		30		1.8		0.001		30		365	5.7534E-02		
	Toluene	3.33		350		30		4.0		0.001		30		365	1.2785E-02		
	Ethylbenzene	1.0		350		30		0.37		0.001		30		365	3.5479E-04		
	m,p-Xylenes	10		350		30		1.0		0.001		30		365	9.5890E-03		
	o-Xylenes	10		350		30		0.56		0.001		30		365	5.3699E-03	9.0725E-02	
CS5	PCE	28.57		350		30		0.36		0.001		30		365	9.8630E-03		
	TCE	1.67		350		30		1.7		0.001		30		365	2.7169E-03		
	Benzene	33.33		350		30		1.6		0.001		30		365	5.1136E-02		
	Toluene	3.33		350		30		4.1		0.001		30		365	1.3092E-02		
	Ethylbenzene	1.0		350		30		0.38		0.001		30		365	3.6438E-04		
	m,p-Xylenes	10		350		30		1.0		0.001		30		365	9.5890E-03		
	o-Xylenes	10		350		30		0.56		0.001		30		365	5.3699E-03	9.2132E-02	
CS6	PCE	28.57		350		30		0.12		0.001		30		365	3.2877E-03		Not detected.
	TCE	1.67		350		30		0.64	_	0.001		30		365	1.0228E-03		
	Benzene	33.33		350		30		3.1		0.001		30		365	9.9077E-02		
	Toluene	3.33		350		30		2.9		0.001		30		365	9.2601E-03		
	Ethylbenzene	1.0		350		30		0.39		0.001		30		365	3.7397E-04		
	m,p-Xylenes	10		350		30		1.1		0.001		30		365	1.0548E-02		
	o-Xylenes	10		350		30		0.65		0.001		30		365	6.2329E-03	1.2980E-01	
Ambient	PCE	28.57		350		30		0.13		0.001		30		365	3.5616E-03		Not detected.
	TCE	1.67		350		30		0.105		0.001		30		365	1.6781E-04		Not detected.
	Benzene	33.33		350		30		0.31		0.001		30		365	9.9077E-03		
	Toluene	3.33		350		30		0.66		0.001		30		365	2.1075E-03		N . 1 1
	Ethylbenzene	1.0		350		30		0.085	_	0.001		30		365	8.150/E-05		Not detected.
	m,p-Xylenes	10		350		30		0.17	_	0.001		30		365	1.6301E-03	1.02715.02	Not detected.
	o-Xylenes	10		350		30		0.085		0.001		30		365	8.150/E-04	1.82/IE-02	Not detected.
NOTEC																	
NOTES:	Franka Commentation						VIC	OV shart (last sur		1 2/4/00)							
Reference	Factor Concentratio	n value obtained inc		HERD Soll Gas	s Sci	reeing Model	VLC	JOK sneet (last upo	late	a 2/4/09).							
Reference	Factor Concentratio	n values used were	as 1	ollows (values	ın n	ng/m3):											
	TCE	0.055			$\left \right $				-				-				
	Panzana	0.00			$\left \right $				-				-				
	Toluene	0.05	-						-	+							
	Ethylhongong	0.50	-						-	+							
<u> </u>	m n Vylence	1.0	<u> </u>	1					\vdash	+							
<u>├</u> ──	ni,p-Ayienes	0.1 is PEC f		ach m n a	\vdash				\vdash	+							
	Vellow bigh light :	U.1 IS KFU IC	леа	e not detoctod	and .	value of one l	half a	f the detection limi	 t	as used for borrow	calculatio				1		
Whore du	licate samples were	analyzed the highe	st c	oncentration for	n al	analyses wa	s jise	d	L W	as used for indeale	calcuidtit						

TABLE 3C

AMBIENT AND INDOOR AIR RISK AND HAZARD CALCULATION RESULTS SUMMARY

						1		1			
BASED ON A	AUGUST 9,2	010 SAMPLIN	IG EVENT ON	LY							
RESIDENTIA	AL EXPOSU	JRE SCENARI	10								
		Calculated	Calculated					Recommendations B	ased on		
		Cumulative	Cumulative	Calculated				DTSC-Recommende	d		
	Sample	Incremental	Incremental	Cumulative	Calculate	d Incremental		Guidance for Action	or Response		
Air Sample	Collection	Carcinogenic	Carcinogenic	Hazard	Carcinog	enic Risk		(Minimum of Two A	dequately-Spaced (With	Respect	
Designation	Date	<u>Risk</u>	<u>Risk</u>	<u>Quotient</u>	Alternate	Description		To Time) Indoor Air	Sampling Events Neede	<u>ed)</u>	
CS4	8/9/2010	2.32E-05	0.0000232	0.091	23.2 in a	million		Monitoring based on	incremental carcinogen	ic risk	
CS5	8/9/2010	2.17E-05	0.0000217	0.092	21.7 in a	million		Monitoring based on	incremental carcinogen	ic risk	
CS6	8/9/2010	3.82E-05	3.82E-05 0.0000382 0.13			million		Monitoring based on	incremental carcinogen	ic risk	
Ambient	8/9/2010	4.18E-06	0.00000418	0.018	4.18 in a	million		None- sample is outd	oor ambient air		
<u>NOTES:</u>											
		DTSC-Recom	mended Respor	nse Guidelines							
		<u>Risk</u>		<u>Hazard</u>		Response		<u>Activities</u>			
		Less than 1 in a	a million	less than 1.0		Minimal		Determine that the so	il vapor plume is stable	•	
		1 to 100 in a m	illion	1.0 to 3.0		Monitoring		Install permanent sub	olsab monitoring points	and collect soil	gas
								samples and indoor a	ir samples semi-annuall	у.	
		More than 100	in a million	more than 3.0		Mitigation		Institute engineering	controls to mitigate exp	osure and colle	ect soil
							gas samples and indoor air samples semi-annually to verify				
								mitigation of exposur	re.		

TABLE 4A

BASED ON 7	FWO SAMPLING EVE	NTS ONLY	
RESIDENTI	AL EXPOSURE SCENA	ARIO	
		2/19/2010	8/9/2010
		Calculated	Calculated
		Cumulative	Cumulative
		Incremental	Incremental
Air Sample		Carcinogenic	Carcinogenic
Designation	Address	Risk	Risk
CS1, CS4	3320 Davis St.	6.70E-05	2.32E-05
CS2, CS5	3320 Davis St.	7.83E-05	2.17E-05
CS3, CS6	2682 Coolidge Ave.	9.17E-06	3.82E-05
Ambient	3319 Davis St.	7.31E-06	4.18E-06

AMBIENT AND INDOOR AIR RISK CALCULATION COMPARISON

TABLE 4B

BASED ON TW	VO SAMPLING EVENT	rs or	NLY	
RESIDENTIAI	EXPOSURE SCENAR	OI		
			2/19/2010	8/9/2010
			Calculated	Calculated
			Cumulative	Cumulative
Air Sample			Hazard	Hazard
Designation	Address		Quotient	Quotient
CS1, CS4	3320 Davis St.		0.77	0.091
CS2, CS5	3320 Davis St.		0.81	0.092
CS3, CS6	2682 Coolidge Ave.		0.084	0.13
Ambient	3319 Davis St.		0.038	0.018

AMBIENT AND INDOOR AIR HAZARD CALCULATION COMPARISON

FIGURES

Oakland, CA 94610

7.5-Minute Quadrangle Photorevised 1980

Scale In Feet

APPENDIX A

Crawl Space Air Sampling Field Data Sheets

CRAWL SPACE AIR

and p = 2 + 1	SOIL CAS SAM	PLING DA	TA SHEET	ATE MALT	115									·····	
Miles Control Control <thcontrol< th=""> <thcontrol< th=""> <thco< th=""><th>Job # 029</th><th></th><th>ech nec</th><th>AVC, CARL</th><th>Probe Method (cl</th><th>heck one) 🕻</th><th>RAWL SP</th><th>ACE AIR SA</th><th>MARE.</th><th></th><th></th><th></th><th></th><th></th><th>·····</th></thco<></thcontrol<></thcontrol<>	Job # 029		ech nec	AVC, CARL	Probe Method (cl	heck one) 🕻	RAWL SP	ACE AIR SA	MARE.						·····
State Content of LP Provide for an interview State of the state o	Date 8/9/	10			o PRT	+							······································		
Bit Gin Doop The max device in the max of the last in the formation of the last in the last i	Drilling Compan	ly ly						1	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	·	····••••••••••••••••••••••••••••••••••		
Bit Gas Proce The end standard of the processing of the procesing of the processing of the processing of the procesin			• • • • • • • • • • • • • •	· · ·····	ļ			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		i	· · · · · · · · · · · · · · · · · · ·	·		· ·
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Soil Gas F Location [Designation] (Probe Depth (Ft.)	Time Probe Installed	Canister #	Sample Canister Initial Vacuum Check (In. Hg) and time	Start leak check vacuum (In. Hg) and time	End leak check vacuum (In. Hg) and time	ADDITIONAL leak check vacuum (In. Hg) and time	Start PURGE	End PURGE	Start of tracer gas equilibration time	Time and conc. (ppm) of tracer gas equilibration	Begin sample collection vacuum (In. Hg) and time	End sample collection vacuum (In. Hg) and time	NOTES
C54 33124 umc 230 ume u	86-				vac 29	vac	vac	vac	10:05:30	10:06:30		conc.	vac 30	vac 1	FLOW RATE > 204 und
360 21 C 12 use use use use use loc 24 35 use use loc 24 35 use use loc 24 35 use u	C54			23924	time© 830	time	time	time	time	time	time	time	time (C'O'	15 ime 18130	PID: Oppu
255 21/C12 um/2825 um um<	30 -			· ······	vac 29.5	vac	vac	vac	10:24:20	10:25:20		conc.	vac 30	vac 6	FLOW RATE 7 JOL/MINS
BBC JS 25,257 vac vac <thvac< th=""> <thva< td=""><td>195</td><td></td><td>·</td><td>21012</td><td>time(835</td><td>time</td><td>time</td><td>time</td><td>time</td><td>ltime</td><td>time</td><td>time</td><td>time/6 25</td><td>30 time 18260</td><td>APID: Oppu</td></thva<></thvac<>	195		·	21012	time(835	time	time	time	time	ltime	time	time	time/6 25	30 time 18260	APID: Oppu
SL 2,52,57 time@ 240, imme time time time time time time time time SG 1,29,41 time@242,5 time <	60				vac 29,5	vac	vac	vac	07:54:00	69.55:00		conc.	vac 30	vac 7,5	FLOW ZATE: 7201/1000
See 1 2 9 1 1 vac vac <thvac< th=""> <thva< td=""><td>CS6</td><td></td><td>• · · · · · · · · · · · · · · · · · · ·</td><td>25257</td><td>time0840</td><td>time</td><td>time</td><td>time</td><td>time</td><td>time</td><td>time</td><td>time</td><td>time09580</td><td>() time 17580</td><td>PID. oppon</td></thva<></thvac<>	CS6		• · · · · · · · · · · · · · · · · · · ·	25257	time0840	time	time	time	time	time	time	time	time09580	() time 17580	PID. oppon
CLC- 12941 tme/245 tme tme <tm< td=""><td>se-</td><td></td><td>T.</td><td></td><td>vac 29,5</td><td>vac</td><td>vac</td><td>vac</td><td>01:54:00</td><td>09.55:a</td><td>)</td><td>conc.</td><td>vac 30</td><td>vac 6.5</td><td>· · · · · · · · · · · · · · · · · · ·</td></tm<>	se-		T.		vac 29,5	vac	vac	vac	01:54:00	09.55:a)	conc.	vac 30	vac 6.5	· · · · · · · · · · · · · · · · · · ·
Open vac vac vac vac vac vac vac vac AN Dright 3 5 3 4 4 1 time	CSG-		<u>i. j</u>	12941	time0245	time	time	time	time	time	time	time	tim09580	Otime 7580	á
An Briant 3 5 2441 time	SO I	·	÷ • • • • • • • • • • • • • • • • • • •		vac 2R	vac	vac	var		· • • • • • • • • • • • • • • • • • • •		CORC	10 mar 10.6	vac *7	
Conc vac vac vac imme i	AMBIENT			35249	time@130	time	time	time	time	time	time	time	time0743	2)ime 18,180	2
Imme GOT VaC <	se-		<u> </u>	· · · · · · · · · · · · · · · · · · ·	vac	vac	vac	vac	<u> </u>	·		conc	vac	vac	· · · · · · · · · · · · · · · · · · ·
SO- VaC VaC <td></td> <td></td> <td></td> <td></td> <td>time</td> <td></td>					time	time	time	time	time	time	time	time	time	time	
Vac Vac Vac Vac Vac Vac Vac Vac Imme Imme </td <td>-00-</td> <td></td> <td>· · · · · · · · ·</td> <td></td> <td> <u></u></td> <td>+</td> <td></td> <td></td> <td></td> <td>++</td> <td></td> <td>,</td> <td></td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td></td>	-00-		· · · · · · · · ·		<u></u>	+				++		,		· · · · · · · · · · · · · · · · · · ·	
Order Unite Unite Unite Unite Unite Unite Unite Unite OP Vac Vac Vac Vac Vac Vac Vac Vac SOP Vac Vac Vac Vac Vac Vac SOP Vac <t< td=""><td>-00</td><td></td><td></td><td>·····. ·······························</td><td>time</td><td>time</td><td>time</td><td>time</td><td>timo</td><td>timo</td><td>timo</td><td>conc.</td><td>vac</td><td>vac</td><td>·····</td></t<>	-00			·····. ·······························	time	time	time	time	timo	timo	timo	conc.	vac	vac	·····
BC ivac vac vac vac vac vac vac 10me 10me 10me 10me 10me 10me 10me 10me 10me 8C vac vac vac vac vac vac vac vac 10me 10me 10me 10me 10me 10me 10me 10me 8C vac vac vac vac vac vac vac Vac vac vac vac conc vac vac Vac vac vac vac vac vac vac Vac vac vac vac vac vac vac Vac	┣		an baanna - anna a								une	ume	ume	ume	
time 83 vac 10me time time time time time time time time time 83 vac vac vac vac vac vac vac vac 10me time time time time time time time time 84 vac vac vac vac vac vac vac vac 94 time time time time time time time 84 vac vac vac vac vac vac vac 94 vac vac vac vac vac vac vac 94 time time time time time time time 94 vac vac vac vac vac vac vac 94 vac vac vac vac vac time time <td>86-</td> <td></td> <td></td> <td>• · · · · · · · · · · · · · · · · · · ·</td> <td>ivac</td> <td>vac</td> <td>vac</td> <td>vac</td> <td>i</td> <td>+</td> <td>**************************************</td> <td>conc.</td> <td>vac</td> <td>vac</td> <td></td>	86-			• · · · · · · · · · · · · · · · · · · ·	ivac	vac	vac	vac	i	+	**************************************	conc.	vac	vac	
OC vac va			· · · · · · · · · · · · · · · · · · ·	······	time	time	time	time	time	time	time	time	time	time	
CG Vac time SG Vac Vac Vac Vac Vac Vac Vac Vac Vac SG Vac Vac Vac Vac Vac Vac Vac Vac time time time time time time time time time SG Vac Vac Vac Vac Vac Vac Vac Vac SG Vac Vac Vac Vac Vac Vac Vac SG Vac Vac Vac Vac Vac Vac Vac SG Vac Vac Vac Vac Vac Vac Vac Vac Vac Vac Vac Vac Vac Vac Vac Vac Vac Vac Vac Vac Vac Vac Vac Vac Vac Vac Vac Vac Vac Vac Vac			· · ·	• • • • • • • • • • • • • • • • • • •	<u></u>	<u> </u>		- <u>1</u>		· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	·····
Vac vac <td>99-</td> <td></td> <td><u></u></td> <td></td> <td>vac</td> <td>vac</td> <td>vac</td> <td>vac</td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td>- I</td> <td></td> <td>conc.</td> <td>vac</td> <td>vac</td> <td>:</td>	99-		<u></u>		vac	vac	vac	vac	· · · · · · · · · · · · · · · · · · ·	- I		conc.	vac	vac	:
SG vac vac vac vac vac vac vac vac time time time time time time time time time SG vac vac vac vac vac vac vac Vac vac vac vac vac vac vac Vac vac vac vac vac vac Vac vac vac vac vac Vac vac vac vac vac Vac vac vac vac Vac vac vac vac Vac vac vac vac Vac vac vac vac Vac vac vac vac Vac vac vac vac		·····	<u>+</u>		une	ume	ume	time	time	time	time	time	time	time	<u></u>
Vac vac vac vac vac vac vac Vac vac vac vac vac vac Vac vac vac vac vac Vac vac vac vac Vac vac vac vac Vac vac vac vac Vac vac vac vac Vac vac vac vac Vac vac vac vac Vac vac vac vac Vac vac vac vac Vac vac vac vac Vac vac vac vac Vac vac vac vac Vac vac vac vac	66	·	••• ••••••••		vac	var	vac	var		· · · · · · · · · · · · · · · · · · · 		conc	vac		
SC vac vac vac vac vac vac time time time time time time time SC vac vac vac vac vac time time time time time time time time time time time time			• • •		time	time	time	time	time	time	time	time	time	time	· · · · · · · · · · · · · · · · · · ·
SC vac vac vac vac vac vac time time time time time time time CONC vac vac vac vac vac Vac vac vac vac vac time time time time time Vac vac vac vac vac vac vac vac	· · · · · · · · · · · · · · · · · · ·														
time time time time time time time time CO vac vac vac vac vac vac time time time time time time time Vac vac vac vac vac vac Vac vac vac vac vac	80				vac	vac	vac	vac				'conc.	vac	vac	
Conc vac vac vac vac vac time time time time time time vac vac vac vac vac					time	time	time	time	time	time	time	time	time	time	
SC vac vac vac vac vac vac time time time time time time time			Container, and and						····		·····	· · · · · · · · · · · · · · · · · · ·			
time time time time time time time time	60				vac	vac	vac	vac		<u>.</u>		conc	vac	vac	
Set vac vac vac conc vac vac				· · · · · · · · · · · · · · · · · · · ·	time	time	time	time	time	time	time	time	time	time	
The time time time time time time time tim	<u>a</u>		<u></u>						· · ···· · ··· · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			
			· · · · · · · · · · · · · · · · · · ·	· ·····	time	vac time	vac	vac	timo	time	timo	conc.	vac	vac	

APPENDIX B

Weather Information

About This PWS:

```
Lat: N 37 ° 46 ' 3 " ( 37.768 ° )
Lon: W 122 ° 15 ' 18 " ( -122.255 ° )
Elevation (ft): 15
Hardware: Davis Vantage Pro 2
Weather Station Software
```

Encinal Avenue & Lafayette St., Alameda, CA

http://www.wunderground.com/weatherstation/WXDailyHistory.asp?ID=KCAALAME1&gr aphspan=day&month=8&day=9&year=2010

« Previous Day	August	- 9	– 2010	- View	Next Day »
	ļ				
Deile)M(a a khy		Manthly	Veerby	Custom
Dally	VVEEKIY			reany	Custom
	Tamananatuma	Current:	High:	Low:	Average:
	Temperature:	/0.8 °F	68.3 °F	54./°F	59.9 °F
	Humidity:	ЭЭ.2 Г 44%	55.5 F	51.2 F	55.0 F 78%
	Wind Speed	2.3mph	12.7mph	-	3.0mph
	Wind Gust:	2.3mph	12.7mph	-	-
	Wind:	West	-	-	WNW
	Pressure:	29.89 in	29.85 in	29.79 in	-
	Precipitation:	0.00 in			
	Solar Radiation:	497.0	-		
		watts/m^	2		
Statistics for the re	est of the month:				
	High:			Low:	Average:
Temperature:	102.8 °F			52.6 °F	61.3 °F
Dew Point:	60.7 °F			43.9 °F	53.0 °F
Humidity:	93.0%			15.0%	76.3%
Wind Speed:	23.0 mph from t	he North		-	3.8 mph
Wind Gust:	23.0mph from t	he North		-	-
Wind:	-			-	West
Pressure:	29.98 in			29.67 in	-
Precipitation:	0.00 in				

http://www.wunderground.com/weatherstation/WXDailyHistory.asp?ID=KCAALAME1&da y=9&year=2010&month=7&graphspan=month <u>« Previous Month</u> <u>Next Month »</u>

	July	9 2010	▼ View	
Daily	Weekly	Monthly	Yearly	<u>Custom</u>
	_	High:	Low:	Average:
	Temperature:	83.8 °F	52.3 °F	61.1 °F
	Dew Point:	59.4 °F	45.7 °F	52.7 °F
	Humidity:	91.0%	28.0%	75.2%
	Wind Speed:	21.0 mph from the SW	-	4.3 mph
	Wind Gust:	21.0 mph from the SW	-	-
	Wind:	-	-	WNW
	Pressure: Precipitation:	30.08 in 0.00 in	29.78 in	-

$\label{eq:http://www.wunderground.com/weatherstation/WXDailyHistory.asp?ID=KCAALAME1&day=9&year=2010&month=8&graphspan=month$

« Previous Month				Next Month »
	August	9 2010	View	_
			7	
Daily	Weekly	Monthly	Yearly	<u>Custom</u>
		High:	Low:	Average:
	Temperature:	102.8 °F	52.6 °F	61.3 °F
	Dew Point:	60.7 °F	43.9 °F	53.0 °F
	Humidity:	93.0%	15.0%	76.3%
	Wind Speed:	23.0mph from the North	-	3.8 mph
	Wind Gust:	23.0mph from the North	-	-
	Wind:	-	-	West
	Pressure: Precipitation:	29.98 in 0.00 in	29.67 in	-

APPENDIX C

Laboratory Analytical Reports and Chain of Custody Documentation

9/20/2010 Mr. Paul King P & D Environmental 55 Santa Clara Suite 240 Oakland CA 94610

Project Name: SNOW CLEANERS 2678 COOLIDGE AVE OAKLAND Project #: 0298.R10 Workorder #: 1008356R1

Dear Mr. Paul King

The following report includes the data for the above referenced project for sample(s) received on 8/16/2010 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kyle Vagadori at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kga Vych

Kyle Vagadori Project Manager

WORK ORDER #: 1008356R1

Work Order Summary

CLIENT:	Mr. Paul King P & D Environmental 55 Santa Clara Suite 240 Oakland, CA 94610	BILL TO:	Mr. Paul King P & D Environ 55 Santa Clara Suite 240 Oakland, CA 9	mental 94610	
PHONE:	510-658-6916	P.O. #			
FAX:	510-834-0772	PROJECT #	0298.R10 SNO	W CLEANERS	2678
DATE RECEIVED:	08/16/2010	CONTACT	COOLIDGE A	VE OAKLAND	
DATE COMPLETED	08/30/2010	contact.	Kyle Vagadoll		
DATE REISSUED:	09/20/2010				
				RECEIPT	FINAL
FRACTION #	NAME	TEST		VAC./PRES.	PRESSURE
01A	CS-4	Modified TO-1	15	5.5 "Hg	5 psi
01B	CS-4	Modified TO-1	15	5.5 "Hg	5 psi
02A	CS-5	Modified TO-1	15	4.0 "Hg	5 psi
02B	CS-5	Modified TO-1	15	4.0 "Hg	5 psi
03A	CS-6	Modified TO-1	15	7.5 "Hg	5 psi
03B	CS-6	Modified TO-1	15	7.5 "Hg	5 psi
04A	CS-6 DUP	Modified TO-1	15	7.0 "Hg	5 psi
04B	CS-6 DUP	Modified TO-1	15	7.0 "Hg	5 psi
05A	AMBIENT	Modified TO-1	15	9.5 "Hg	5 psi
05B	AMBIENT	Modified TO-1	15	9.5 "Hg	5 psi
06A	Lab Blank	Modified TO-1	15	NA	NA
06B	Lab Blank	Modified TO-1	15	NA	NA
07A	CCV	Modified TO-1	15	NA	NA
07B	CCV	Modified TO-1	15	NA	NA
08A	LCS	Modified TO-1	15	NA	NA
08B	LCS	Modified TO-1	15	NA	NA

CERTIFIED BY:

Sinda d. Fruman

DATE: <u>09/20/10</u>

Laboratory Director

Certfication numbers: CA NELAP - 02110CA, LA NELAP/LELAP- AI 30763, NY NELAP - 11291, UT NELAP - 9166389892, AZ Licensure AZ0719 Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act, Accreditation number: E87680, Effective date: 07/01/09, Expiration date: 06/30/10 Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

> 180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000. (800) 985-5955. FAX (916) 985-1020

LABORATORY NARRATIVE Modified TO-15 Full Scan/SIM P & D Environmental Workorder# 1008356R1

Five 6 Liter Summa Canister (SIM Certified) samples were received on August 16, 2010. The laboratory performed analysis via modified EPA Method TO-15 using GC/MS in the Full Scan and SIM acquisition modes. The method involves concentrating up to 1.0 liters of air. The concentrated aliquot is then flash vaporized and swept through a water management system to remove water vapor. Following dehumidification, the sample passes directly into the GC/MS for analysis.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Requirement	TO-15	ATL Modifications
ICAL %RSD acceptance criteria	=30% RSD with 2<br compounds allowed out to < 40% RSD	For Full Scan: 30% RSD with 4 compounds allowed out to < 40% RSD For SIM: Project specific; default criteria is =30% RSD with<br 10% of compounds allowed out to < 40% RSD
Daily Calibration	+- 30% Difference	For Full Scan: = 30% Difference with four allowed out up to<br =40%.; flag and narrate outliers<br For SIM: Project specific; default criteria is = 30% Difference<br with 10% of compounds allowed out up to =40%.; flag<br and narrate outliers
Blank and standards	Zero air	Nitrogen
Method Detection Limit	Follow 40CFR Pt.136 App. B	The MDL met all relevant requirements in Method TO-15 (statistical MDL less than the LOQ). The concentration of the spiked replicate may have exceeded 10X the calculated MDL in some cases

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Receiving Notes

The Chain of Custody was missing method information. ATL proceeded with the analysis as per the original contract or verbal agreement.

Analytical Notes

A single point calibration for TPH referenced to Gasoline was performed for each daily analytical batch. Recovery is reported as 100% in the associated results for each CCV.

The reported CCV for each daily batch may be derived from more than one analytical file due to the client's request for non-standard compounds.

Non-standard compounds may have different acceptance criteria than the standard TO-14A/TO-15 compound list as per contract or verbal agreement.

THE WORKORDER WAS REISSUED ON 09-20-10 TO REPORT VINYL CHLORIDE AND NAPHTHALENE PER CLIENT'S REQUEST.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

B - Compound present in laboratory blank greater than reporting limit (background subtraction not performed).

- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the reporting limit.
- UJ- Non-detected compound associated with low bias in the CCV
- N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

Client Sample ID: CS-4

Lab ID#: 1008356R1-01A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Trichloroethene	0.033	0.24	0.18	1.3
Benzene	0.082	0.57	0.26	1.8
Toluene	0.033	1.1	0.12	4.0
Ethyl Benzene	0.033	0.086	0.14	0.37
m,p-Xylene	0.066	0.24	0.28	1.0
o-Xylene	0.033	0.13	0.14	0.56

Client Sample ID: CS-4

Lab ID#: 1008356R1-01B

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
TPH ref. to Gasoline (MW=100)	41	140	170	570

Client Sample ID: CS-5

Lab ID#: 1008356R1-02A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Tetrachloroethene	0.031	0.053	0.21	0.36
Trichloroethene	0.031	0.31	0.17	1.7
Benzene	0.078	0.50	0.25	1.6
Toluene	0.031	1.1	0.12	4.1
Ethyl Benzene	0.031	0.087	0.13	0.38
m,p-Xylene	0.062	0.23	0.27	1.0
o-Xylene	0.031	0.13	0.13	0.56

Client Sample ID: CS-5

Lab ID#: 1008356R1-02B

Compound	Rpt. Limit	Amount	Rpt. Limit	Amount
	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
TPH ref. to Gasoline (MW=100)	39	130	160	530

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

Client Sample ID: CS-6

Lab ID#: 1008356R1-03A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Trichloroethene	0.036	0.12	0.19	0.64
Benzene	0.090	0.98	0.28	3.1
Toluene	0.036	0.78	0.13	2.9
Ethyl Benzene	0.036	0.089	0.16	0.39
m,p-Xylene	0.072	0.25	0.31	1.1
o-Xylene	0.036	0.15	0.16	0.65

Client Sample ID: CS-6

Lab ID#: 1008356R1-03B

	Rpt. Limit	Amount	Rpt. Limit	Amount	
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)	
TPH ref. to Gasoline (MW=100)	45	250	180	1000	

Client Sample ID: CS-6 DUP

Lab ID#: 1008356R1-04A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Trichloroethene	0.035	0.12	0.19	0.64
Benzene	0.088	0.97	0.28	3.1
Toluene	0.035	0.78	0.13	2.9
Ethyl Benzene	0.035	0.089	0.15	0.39
m,p-Xylene	0.070	0.26	0.30	1.1
o-Xylene	0.035	0.14	0.15	0.63

Client Sample ID: CS-6 DUP

Lab ID#: 1008356R1-04B

Compound	Rpt. Limit	Amount	Rpt. Limit	Amount
	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
TPH ref. to Gasoline (MW=100)	44	270	180	1100

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

Client Sample ID: AMBIENT

Lab ID#: 1008356R1-05A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Benzene	0.098	0.097 J	0.31	0.31 J
Toluene	0.039	0.17	0.15	0.66

Client Sample ID: AMBIENT

Lab ID#: 1008356R1-05B

No Detections Were Found.

Client Sample ID: CS-4 Lab ID#: 1008356R1-01A MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

٦

File Name: Dil. Factor:	c082623r1 1.64	Date Date	e of Collection: 8/9 e of Analysis: 8/27	/10 6:13:00 PM /10 03:14 AM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
cis-1,2-Dichloroethene	0.033	Not Detected	0.13	Not Detected
trans-1,2-Dichloroethene	0.16	Not Detected	0.65	Not Detected
Tetrachloroethene	0.033	Not Detected	0.22	Not Detected
Trichloroethene	0.033	0.24	0.18	1.3
Benzene	0.082	0.57	0.26	1.8
Toluene	0.033	1.1	0.12	4.0
Ethyl Benzene	0.033	0.086	0.14	0.37
m,p-Xylene	0.066	0.24	0.28	1.0
o-Xylene	0.033	0.13	0.14	0.56
Methyl tert-butyl ether	0.16	Not Detected	0.59	Not Detected
Vinyl Chloride	0.016	Not Detected	0.042	Not Detected

	, ,	Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	99	0-0
Toluene-d8	90	0-0
4-Bromofluorobenzene	102	0-0

Client Sample ID: CS-4 Lab ID#: 1008356R1-01B MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

1

File Name:	u082707r1	2707r1 Date of Collection: 8/9/10 6:13:00 PM 1.64 Date of Analysis: 8/27/10 06:42 PM		/10 6:13:00 PM
Dil. Factor:	1.64			/10 06:42 PM
Compound	Rpt. Limit	Amount	Rpt. Limit	Amount
	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Naphthalene	0.82	Not Detected	4.3	Not Detected
TPH ref. to Gasoline (MW=100)	41	140	170	570

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	106	0-0
Toluene-d8	96	0-0
4-Bromofluorobenzene	103	0-0

Client Sample ID: CS-5 Lab ID#: 1008356R1-02A MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

1

File Name: Dil. Factor:	c082624r1 1.55	Date of Collection: 8/9/10 6:26:00 PM Date of Analysis: 8/27/10 03:47 AM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
cis-1,2-Dichloroethene	0.031	Not Detected	0.12	Not Detected
trans-1,2-Dichloroethene	0.16	Not Detected	0.61	Not Detected
Tetrachloroethene	0.031	0.053	0.21	0.36
Trichloroethene	0.031	0.31	0.17	1.7
Benzene	0.078	0.50	0.25	1.6
Toluene	0.031	1.1	0.12	4.1
Ethyl Benzene	0.031	0.087	0.13	0.38
m,p-Xylene	0.062	0.23	0.27	1.0
o-Xylene	0.031	0.13	0.13	0.56
Methyl tert-butyl ether	0.16	Not Detected	0.56	Not Detected
Vinyl Chloride	0.016	Not Detected	0.040	Not Detected

21		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	100	0-0
Toluene-d8	93	0-0
4-Bromofluorobenzene	102	0-0

Client Sample ID: CS-5 Lab ID#: 1008356R1-02B MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

٦

File Name:	u082708r1 Date of Collection: 8/9/10 6:26:00 PM		/10 6:26:00 PM	
Dil. Factor:	1.55 Date of Analysis: 8/27/10 08:03 PM		/10 08:03 PM	
Compound	Rpt. Limit	Amount	Rpt. Limit	Amount
	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Naphthalene	0.78	Not Detected	4.1	Not Detected
TPH ref. to Gasoline (MW=100)	39	130	160	530

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	104	0-0
Toluene-d8	97	0-0
4-Bromofluorobenzene	103	0-0

Client Sample ID: CS-6 Lab ID#: 1008356R1-03A MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

1

File Name: Dil. Factor:	c082621r1 1.79	Date of Collection: 8/9/10 5:58:00 PM Date of Analysis: 8/27/10 01:16 AM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
cis-1,2-Dichloroethene	0.036	Not Detected	0.14	Not Detected
trans-1,2-Dichloroethene	0.18	Not Detected	0.71	Not Detected
Tetrachloroethene	0.036	Not Detected	0.24	Not Detected
Trichloroethene	0.036	0.12	0.19	0.64
Benzene	0.090	0.98	0.28	3.1
Toluene	0.036	0.78	0.13	2.9
Ethyl Benzene	0.036	0.089	0.16	0.39
m,p-Xylene	0.072	0.25	0.31	1.1
o-Xylene	0.036	0.15	0.16	0.65
Methyl tert-butyl ether	0.18	Not Detected	0.64	Not Detected
Vinyl Chloride	0.018	Not Detected	0.046	Not Detected

	, ,	Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	96	0-0
Toluene-d8	91	0-0
4-Bromofluorobenzene	102	0-0

Client Sample ID: CS-6 Lab ID#: 1008356R1-03B MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

٦

File Name:	u082709r1 Date of Collection: 8/9/10 5:58:00 PM			/10 5:58:00 PM
Dil. Factor:	1.79 Date of Analysis: 8/27/10 09:21 PM			/10 09:21 PM
Compound	Rpt. Limit	Amount	Rpt. Limit	Amount
	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Naphthalene	0.90	Not Detected	4.7	Not Detected
TPH ref. to Gasoline (MW=100)	45	250	180	1000

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	101	0-0
Toluene-d8	95	0-0
4-Bromofluorobenzene	102	0-0

Client Sample ID: CS-6 DUP Lab ID#: 1008356R1-04A MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

٦

File Name: Dil. Factor:	c082622r1 1.75	Date of Collection: 8/9/10 5:58:00 PM Date of Analysis: 8/27/10 01:52 AM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
cis-1,2-Dichloroethene	0.035	Not Detected	0.14	Not Detected
trans-1,2-Dichloroethene	0.18	Not Detected	0.69	Not Detected
Tetrachloroethene	0.035	Not Detected	0.24	Not Detected
Trichloroethene	0.035	0.12	0.19	0.64
Benzene	0.088	0.97	0.28	3.1
Toluene	0.035	0.78	0.13	2.9
Ethyl Benzene	0.035	0.089	0.15	0.39
m,p-Xylene	0.070	0.26	0.30	1.1
o-Xylene	0.035	0.14	0.15	0.63
Methyl tert-butyl ether	0.18	Not Detected	0.63	Not Detected
Vinyl Chloride	0.018	Not Detected	0.045	Not Detected

	, , , , , , , , , , , , , , , , , , ,	Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	96	0-0
Toluene-d8	89	0-0
4-Bromofluorobenzene	101	0-0

Client Sample ID: CS-6 DUP Lab ID#: 1008356R1-04B MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

٦

File Name:	u082710r1	Date	of Collection: 8/9	/10 5:58:00 PM
Dil. Factor:	1.75	Date	of Analysis: 8/27/	/10 10:05 PM
Compound	Rpt. Limit	Amount	Rpt. Limit	Amount
	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Naphthalene	0.88	Not Detected	4.6	Not Detected
TPH ref. to Gasoline (MW=100)	44	270	180	1100

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	101	0-0
Toluene-d8	94	0-0
4-Bromofluorobenzene	102	0-0

Client Sample ID: AMBIENT Lab ID#: 1008356R1-05A MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

٦

File Name: Dil. Factor:	c082625r1 1.96	Date Date	of Collection: 8/9 of Analysis: 8/27	/10 6:28:00 PM /10 04:21 AM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
cis-1,2-Dichloroethene	0.039	Not Detected	0.16	Not Detected
trans-1,2-Dichloroethene	0.20	Not Detected	0.78	Not Detected
Tetrachloroethene	0.039	Not Detected	0.26	Not Detected
Trichloroethene	0.039	Not Detected	0.21	Not Detected
Benzene	0.098	0.097 J	0.31	0.31 J
Toluene	0.039	0.17	0.15	0.66
Ethyl Benzene	0.039	Not Detected	0.17	Not Detected
m,p-Xylene	0.078	Not Detected	0.34	Not Detected
o-Xylene	0.039	Not Detected	0.17	Not Detected
Methyl tert-butyl ether	0.20	Not Detected	0.71	Not Detected
Vinyl Chloride	0.020	Not Detected	0.050	Not Detected

J = Estimated value.

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	99	0-0
Toluene-d8	93	0-0
4-Bromofluorobenzene	91	0-0

Client Sample ID: AMBIENT Lab ID#: 1008356R1-05B MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

٦

File Name:	u082711r1	Date	of Collection: 8/9	/10 6:28:00 PM
Dil. Factor:	1.96	Date	of Analysis: 8/27	/10 10:47 PM
Compound	Rpt. Limit	Amount	Rpt. Limit	Amount
	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Naphthalene	0.98	Not Detected	5.1	Not Detected
TPH ref. to Gasoline (MW=100)	49	Not Detected	200	Not Detected

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	99	0-0
Toluene-d8	94	0-0
4-Bromofluorobenzene	101	0-0

Client Sample ID: Lab Blank Lab ID#: 1008356R1-06A MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

٦

File Name: Dil. Factor:	c082607 1.00	Date Date	of Collection: NA of Analysis: 8/26	/10 12:27 PM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
cis-1,2-Dichloroethene	0.020	Not Detected	0.079	Not Detected
trans-1,2-Dichloroethene	0.10	Not Detected	0.40	Not Detected
Tetrachloroethene	0.020	Not Detected	0.14	Not Detected
Trichloroethene	0.020	Not Detected	0.11	Not Detected
Benzene	0.050	Not Detected	0.16	Not Detected
Toluene	0.020	Not Detected	0.075	Not Detected
Ethyl Benzene	0.020	Not Detected	0.087	Not Detected
m,p-Xylene	0.040	Not Detected	0.17	Not Detected
o-Xylene	0.020	Not Detected	0.087	Not Detected
Methyl tert-butyl ether	0.10	Not Detected	0.36	Not Detected
Vinyl Chloride	0.010	Not Detected	0.026	Not Detected

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	98	70-130	
Toluene-d8	95	70-130	
4-Bromofluorobenzene	83	70-130	

Client Sample ID: Lab Blank Lab ID#: 1008356R1-06B MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

٦

File Name:	u082706	Date	of Collection: NA	/10 05:50 PM
Dil. Factor:	1.00	Date	of Analysis: 8/27	
Compound	Rpt. Limit	Amount	Rpt. Limit	Amount
	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Naphthalene	0.50	Not Detected	2.6	Not Detected
TPH ref. to Gasoline (MW=100)	25	Not Detected	100	Not Detected

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	103	70-130
Toluene-d8	96	70-130
4-Bromofluorobenzene	101	70-130

Client Sample ID: CCV Lab ID#: 1008356R1-07A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

1

File Name: c082602		Date of Collection: NA	
Dil. Factor: 1.00 Compound		Date of Analysis: 8/26/10 09:02 AM	
		%Recovery	
cis-1,2-Dichloroethene		87	
trans-1,2-Dichloroethene		90	
Tetrachloroethene		95	
Trichloroethene		93	
Benzene		108	
Toluene		102	
Ethyl Benzene		110	
m,p-Xylene		104	
o-Xylene		103	
Methyl tert-butyl ether		83	
Vinyl Chloride		88	

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	102	70-130
Toluene-d8	107	70-130
4-Bromofluorobenzene	100	70-130

Client Sample ID: CCV Lab ID#: 1008356R1-07B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

٦

File Name: Dil. Factor:	u082702 1.00	Date of Collection: NA Date of Analysis: 8/27/10 01:58 PM					
Compound			%Recovery				
Naphthalene			125				
TPH ref. to Gasoline (MW=	100)		100				
Container Type: NA - Not	Applicable						
			Method				
Surrogates		%Recovery	Limits				
1,2-Dichloroethane-d4		92	70-130				
Toluene-d8		98	70-130				
4-Bromofluorobenzene		102	70-130				

Client Sample ID: LCS Lab ID#: 1008356R1-08A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

٦

File Name: Dil. Factor:	c082603 1.00	Date of Collection: NA Date of Analysis: 8/26/10 09:42 AM				
Compound		%Recovery				
cis-1,2-Dichloroethene		80				
trans-1,2-Dichloroethene		84				
Tetrachloroethene		90				
Trichloroethene		85				
Benzene		99				
Toluene		91				
Ethyl Benzene		105				
m,p-Xylene		99				
o-Xylene		98				
Methyl tert-butyl ether		78				
Vinyl Chloride		90				

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	100	70-130
Toluene-d8	106	70-130
4-Bromofluorobenzene	99	70-130

Client Sample ID: LCS Lab ID#: 1008356R1-08B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	u082703	Date of Collection: NA					
Dil. Factor:	1.00	Date of Analysis: 8/27/10 02:43 PM					
Compound			%Recovery				
Naphthalene			119				
TPH ref. to Gasoline (MW=10	0)		Not Spiked				
Container Type: NA - Not A	oplicable						
			Method				
Surrogates		%Recovery	Limits				
1,2-Dichloroethane-d4		93	70-130				
Toluene-d8		96	70-130				
4-Bromofluorobenzene		104	70-130				

& D En	VIRONMENTAL	, Inc.			•							10083
55 Sar (ata Clara Ave, Suite 240 Dakland, CA 94610 (510) 658-6916				C	HAIN O	F CU	STOD	DY F	RECO	RD	
	PROJECT NUMBER:	、 、	P	RDJECT	NAME					11	17,	
	0298, KIC	Ø		5Nou 2678 OAK	I CLE 8 Cool LAND	EANERS IDGE AVE			رودي:			
	SAMPLED BY: (PR Michael DESC	INTED AND	SICNATI	URE)	1 iles	chemen		BER OF		///	[]	REMARKS
	SAMPLE NUMBER	DATE	TIME	TYPE	ÎNÎT VACULA	SAMPLE LOCA	NON FINAL	NUN	V/	[]]		
OIA -	CS-4	8/9/10	181300	Air	- 30	SUMMAT 2392	4 - 7					PID: OPPN
02A •	<u>CS-5</u> CS-6	8/9/10	175800		<u>-30</u> -30	25257	- 7.5		┠╌┠╌	┟╌╀╌╉╌		PiD: OPPN PiD: OPPM
OHA .	CS-6 DUP	8/9/10	175200	V	- 30	12941	-6.5					
USH *	AMBLENT	8/9/10	183800	ALR	-28,5	35249	1		$\left \cdot \right $	┟╌╂╌╂╌	++	·
					 	•	· · · · · · · · · · · · · · · · · · ·		┟─┼──	┟┈╎┈┥╴	╂╌╂╴	
						********		_				
						••••••••••••••••••••••••••••••••••••••		<u> </u>	$\left \cdot \right $	┠┼┼	╀╾╋╴	
							· · · · · · · · · · · · · · · · · · ·					
		1					- 		╀╌╂┈	┠╌┼╌┼┈	┼╌╂╴	
						·····			┼┼╴	┟┼┼	+	
	RELINQUISHED BY:	(SIGNATURE)	DATE 8/9/10	TIME 1020	RECEIVED BY:	(SIGNATUR	E)	TOTAL HC (THE ROTAL MO (THES	L OF SAMPLES SHITHOUT) OF CONTAMON SHITHOUT)	5	LABORATORY: AIR TOXICS, LTD.
	RELINQUISHED BY:	(SICNATURE)	DATE	TIME	RECEIVED BY:	(SIGNATUR	E) BEN	KVIE	ATORY CO	RI	LABORATORY PHONE NUMBER: (916)985-1000
RELINQUISHED BY: (SICH		(SICNATURE)	DATE TIME RECEIVED FOR LABORATC			RY BY:		SAMPLE	SIS REQUEST SHEET)YES (X)NO		
	Results and billing P&D Environmental, lab O pdenviro.com	to: Inc.			CUSTC Y N(N	DY SEAL INTA	GT?	1050	>	<u></u>		

Fedlex

.