SNOW CLEANERS INC.

EXPERT FINISHING • ALL LEATHER GOODS

MAIN OFFICE & PLANT

38 WEST SONORA ST. STOCKTON. CA 95203 **209 / 547-1454**

RECEIVED

9:08 am, Mar 24, 2010

Alameda County
Environmental Health

March 22, 2010

Mr. Jerry Wickham Alameda County Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

SUBJECT: SUBSURFACE SOIL GAS AND CRAWL SPACE AIR INVESTIGATION

REPORT CERTIFICATION ACEH Case # RO 0000357

Snow Cleaners

2678 Coolidge Avenue

Oakland, CA

Dear Mr. Wickham:

You will find enclosed one copy of the following document prepared by P&D Environmental, Inc.

 Soil Gas and Crawl Space Air Investigation Report (SG19-SG23, CS1-CS3) dated March 22, 2010 (document 0298.R8).

I declare, under penalty of perjury, that the information and/or recommendations contained in the above-mentioned work plan for the subject site is true and correct to the best of my knowledge.

Should you have any questions, please do not hesitate to call me at (800) 818-7669.

Cordially,

Snow Cleaners, Inc.

Harold an Learn

Harold Turner President

Cc: Mr. LeRoy Griffin, Oakland Fire Department, Emergency Services, 250 Frank Ogawa Plaza, Suite 3341, Oakland, CA 94612 (with enclosure)

0298.L47

"SERVING THE CLEANING INDUSTRY FOR OVER 90 YEARS"

P&D ENVIRONMENTAL, INC.

55 Santa Clara Ave, Suite 240 Oakland, CA 94610 (510) 658-6916

March 22, 2010 Report 0298.R8

Mr. Harold Turner Snow Cleaners 2678 Coolidge Avenue Oakland, CA

SUBJECT: SOIL GAS AND CRAWL SPACE AIR INVESTIGATION REPORT

(SG19-SG23, C1-C3)

ACDEH Case # RO 0000357

Snow Cleaners

2678 Coolidge Avenue

Oakland, CA

Dear Mr. Turner:

P&D Environmental Inc. (P&D) is pleased to present this report documenting the collection of soil gas samples and crawl space air samples in the vicinity of the subject site to further evaluate the presence and extent of petroleum hydrocarbon and tetrachloroethene (PCE). All sample collection activities were performed on February 19, 2010. A Site Location Map is attached as Figure 1 and a Site Vicinity Map Detail showing sample collection locations is attached as Figure 2.

Field activities were performed in accordance with the scope of work set forth in P&D's Subsurface Investigation Work Plan dated November 24, 2009 (document 0298.W4). The Work Plan was approved in a letter from the Alameda County Department of Environmental Health (ACDEH) dated December 5, 2009.

All work was performed under the direct supervision of a professional geologist and in accordance with guidelines set forth in the following documents.

- Tri-Regional Board Staff Recommendations for Preliminary Evaluation and Investigation of Underground Tank Sites" dated August 10, 1990 and "Appendix A - Workplan for Initial Subsurface Investigation" dated August 20, 1991,
- California Code of Regulations Title 23 Sections 2720-2728;
- San Francisco Bay Regional Water Quality Control Board (SFRWQCB) "Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater" dated May 2008,
- Department of Toxic Substances Control (DTSC) "Advisory Active Soil Gas Investigations" dated January 13, 2003,
- DTSC "Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air" dated December 15, 2004, revised February 7, 2005,

• DTSC "Vapor Intrusion Mitigation Advisory" revised May 8, 2009.

BACKGROUND

A detailed site history is provided in P&D's Subsurface Investigation Report dated August 19, 2009 (document 0298.R6). Additional subsequent document review results for historic topographic maps, City of Oakland storm drain and sanitary sewer maps, Alameda County Flood Control District maps and a creek and watershed map of Oakland and Berkeley are provided in P&D's November 24, 2009 Subsurface Investigation Work Plan (document 0298.W4). Historic soil gas sample results are attached with this investigation report as Table 1.

FIELD ACTIVITIES

Prior to performing field activities, permits were obtained from the Alameda County Public Works Agency (ACPWA), drilling locations were marked with white paint, Underground Service Alert was notified for underground utility location, a health and safety plan was prepared, and site access was obtained from offsite property owners. Notification of the sample collection date was also provided to the ACDEH.

Soil Gas Sample Collection

All of the soil gas samples were collected using temporary soil gas sampling wells. The surface cover materials at each of the soil gas sample collection locations consisted of concrete at location SG19, and bare earth adjacent to concrete cover materials at the remaining locations. temporary wells were constructed by penetrating the concrete surface cover at location SG19 with a rotohammer and then driving a hollow 1-inch diameter Geoprobe steel rod with an expendable tip with a slide hammer at all of the locations to a depth of five feet below the ground surface. The expendable tip in the drill rod was then dislodged, and a 7-foot length of 0.250-inch outside diameter (0.187-inch inside diameter) Teflon tube was inserted to the bottom of the hollow rod. Prior to inserting the Teflon tubing the lowermost 6 inches of the Teflon tube was perforated at several locations by notching the sides of the tube with a clean razor blade. A #2/16 Lonestar sack sand was then added to the annular space between the hollow rod and the Teflon tube as the hollow rod was withdrawn from the ground until the lowermost 8 inches of the hole was filled with sand. Granular bentonite (with grains measuring approximately 2 millimeters in diameter and similar in size to kitty litter) were placed in the annular space above the sand to the ground surface. The bentonite was hydrated and the 6-liter Suma purge canister and 1-liter Suma sample canister were then connected to the Teflon tubing using the configuration shown in Figure 3. At the time that the sampling manifold was assembled, the vacuum for the sample canister was checked with a vacuum gauge and recorded. The temporary well was then undisturbed for a minimum of 30 minutes prior to purging for sample collection to allow soil gas equilibration.

Following the equilibration period and prior to purging the soil gas from the temporary soil gas sampling well, a 10 minute leak check of the sampling manifold was performed by closing the valve located between the filter and the pressure gauge, opening the purge canister valve, and recording the manifold system vacuum (see Figure 3). No purge testing was done because no mobile laboratory was at the site. A default of three purge volumes was extracted prior to sample

March 22, 2010 Report 0298.R8

collection. The purge time was calculated using a nominal flow rate provided by the flow controller of 200 milliliters per minute. Purge volume calculations are provided in Appendix A of this report.

Following completion of purging three purge volumes, the valve to the purge canister was closed and a tracer gas (2-Propanol) was placed in a dish adjacent to the purge canister and a clear Rubbermaid bin was placed over the top of the temporary well, the sampling manifold, and the 1-liter Summa sample canister. The vapor concentration of the 2-Propanol was monitored with a photoionization detector (PID) until 2-Propanol vapor concentrations appeared to have equilibrated. The PID was equipped with a 10.6 eV bulb and calibrated with a 100 ppm isobutylene standard prior to use. The Rubbermaid bin was then temporarily and partially lifted long enough to open the sample canister valve and the bin was then replaced over the sampling equipment and the 2-Propanol vapor concentrations were then again monitored with the PID. Once the vacuum for the sample canister decreased to 5 inches of mercury, the Rubbermaid lid was removed and the Summa sample canister valve closed.

One duplicate soil gas sample was collected into a one-liter Summa canister at location SG21 using a stainless steel sampling tee. Following soil gas sample collection, a PID was connected to the Teflon tubing to obtain a preliminary field value for the sample collection location. The soil gas samples were then stored in a box and promptly shipped to the laboratory for extraction and analysis. Measurements of vacuums, purging and equilibration time intervals, and PID readings were recorded on Soil Gas Sampling Data Sheets that are provided in Appendix A of this report. The field PID value obtained from the Teflon tube following sample collection was recorded in the last column of the Soil Gas Sampling Data Sheet. At the time of soil gas sample collection, a substantial number of car parts, including a radiator were observed to be present at and around the SG22 sample collection location. All of the PID values obtained from the Teflon tube following soil gas sample collection were 0 with the exception of location SG22, where the PID value was 10 ppm.

No precipitation occurred during the week preceding the soil gas sampling or on the day of soil gas sampling (February 19, 2010). Weather data, including precipitation and barometric pressure for the day of the sampling event and also for the month of February 2010 is provided as Appendix B. The weather station is located at the intersection of Encinal Avenue and Lafayette Street in Alameda at an elevation of 15 feet, approximately 2.5 miles to the southeast of the subject site. The subject site is located at an elevation of approximately 135 feet above sea level. An internet link to the weather station information is provided in Appendix B.

All drilling rods and associated drilling fittings were cleaned with an Alconox solution wash and clean water rinse followed by a clean water rinse using steam distilled water. New Teflon tubing was used at each sample collection location. Clean, unused vacuum gages and stainless steel tee and valve assemblies were used at each sample collection location. Following soil gas sample collection the Teflon tubing was pulled from each temporary soil gas sampling well and a 1-inch diameter solid steel rod was driven through the bentonite and sand to the total depth of temporary soil gas well construction. The solid steel rod was then removed, and the borehole filled with neat cement.

Crawl Space Air Sample Collection

The building construction at 3320 Davis Street and at 2682 Coolidge Avenue is not slab on grade. Both structures were observed to have crawl spaces with no visible means of access to the crawl space other than through mesh-covered ventilation holes measuring approximately 4 inches tall and 12 inches long. On February 19, 2010 two air samples (CS1 and CS2) were collected from the crawl space at 3320 Davis Street and one air sample (CS3) was collected from the crawl space at 2682 Coolidge Avenue at locations shown on Figure 2 using procedures described below. In addition, one duplicate crawl space air sample (CS3-DUP) was collected using a stainless steel sampling tee at location CS3, and one ambient air sample was collected with the flow controller intake at a height of approximately 4.5 feet above the ground surface on the rear porch of the property located at 3319 Davis Street, Oakland, California (see Figure 2).

The crawl space air samples and the ambient air sample were collected during business hours into SIM-certified 6-liter Summa canisters equipped with SIM-certified 8-hour flow controllers. The duplicate sample was collected with a SIM-certified stainless steel tee

The building width at 3320 Davis Street is approximately 30 feet, and the building width at 2682 Coolidge Avenue in the vicinity of SG3 is approximately 12 feet wide. A high density polyethylene tube was secured with wire to the end of a steel rod and the steel rod was inserted through the vents into the crawl spaces so that the end of the tube was located at the proposed crawl space air sample collection locations shown on Figure 2. Following placement of the rod and tubing beneath the building, an air pump was used to purge air from each tube for approximately one minute. The end of each tube was then connected to the flow controller inlet and the valve to the Summa canister was then opened for each of the samples.

For the duplicate sample, the end of the tube was connected to the stainless steel tee. After approximately 8 hours, the valves to the Summa canisters were closed, and the Summa canisters were stored in a box and promptly shipped to the laboratory for extraction and analysis. Chain of custody procedures were observed for all sample handling.

GEOLOGY AND HYDROGEOLOGY

The hydrogeology at the site is complex and not completely understood. The interpreted groundwater flow direction and associated contaminant movement in the vicinity of the site was developed using multiple lines of evidence (topography, lithology, soil discoloration, contaminant concentration distribution, and the measured depth to water in different wells). Geologic cross sections and a discussion of site geology are provided in P&D's Subsurface Investigation Report dated August 19, 2009 (document 0298.R6).

Based on review of regional geologic maps from U. S. Geological Survey Professional Paper 943, "Flatland Deposits - Their Geology and Engineering Properties and Their Importance to Comprehensive Planning," by E. J. Helley and K. R. Lajoie, 1979, the materials underlying the subject site and it's immediate vicinity consist of Late Pleistocene alluvium (Qpa). Late Pleistocene alluvium is described as weakly consolidated, slightly weathered, poorly sorted, irregularly interbedded clay, silt, sand, and gravel.

Review of the boring logs from historic investigations and the current investigation shows that the subsurface materials encountered in the boreholes consist predominantly of fine-grained materials consisting of clay, silty clay, and silt, with lesser amounts of coarse-grained materials consisting of silty sand, sand and some gravel lenses.

LABORATORY RESULTS

All of the soil gas and crawl space air samples were analyzed at Air Toxics Limited of Folsom, California for the following analytes.

- VOCs, including PCE, TCE, DCE, vinyl chloride, BTEX, naphthalene, and the tracer gas 2-Propanol by modified EPA Method TO15,
- Total Petroleum Hydrocarbons as Stoddard solvent (TPH-SS) by EPA Method TO3 GC/FID.

The sample results are summarized in tables attached with this report as follows.

- Table 2 summarizes the current investigation soil gas sample results.
- Table 3 summarizes current investigation crawl space air sample results.
- Table 4 summarizes the soil gas risk and hazard calculation results.
- Table 5A summarizes the preliminary ambient and indoor air risk calculation results.
- Table 5B summarizes the preliminary ambient and indoor air hazard calculation results.
- Table 5C summarizes the preliminary ambient and indoor air risk and hazard calculation results.

Copies of the laboratory analytical reports and chain of custody documentation are attached with this report as Appendix C.

RISK AND HAZARD EVALUATION

The only complete pathway for exposure at the properties evaluated is considered to be potential vapor intrusion from soil gas to indoor air. In accordance with DTSC guidance recommendations, a concentration of one half of the detection limit was used for compounds that were not detected but which were suspected of potentially being present at the air sample collection locations (TCE for crawl space air sample CS3, and PCE and TCE for the ambient air sample).

Soil Gas

The SFRWQCB May 2008 ESL guidance document "Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater" section 2.7 references the DTSC Vapor Intrusion guide (Interim Final Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air, revised 2/7/05) for interpretation of sample results exceeding ESLs. The ESL Guidance document indicates that the recommended approach of DTSC for sensitive land use scenarios (i.e.-residential) is appropriate. The DTSC guidance document ("Guidance For The Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air" revised February 7, 2005) recommends

March 22, 2010 Report 0298.R8

that if look up table screening levels are exceeded, that a site-specific evaluation of the site be conducted using appropriate fate and transport modeling (Step 7 in the guidance document). DTSC recommends that the USEPA Johnson and Ettinger (JE) model be used (USEPA Vapor Intrusion Model, 2003). The model predicts risk and hazard from indoor vapor concentrations based on soil gas concentrations. The CalEPA Human and Ecological Risk Division (HERD) has developed a California-specific screening-mode spreadsheet for calculation of the predicted risk and hazard resulting from exposure to chemicals from vapor intrusion which include the volatile petroleum hydrocarbons and HVOCs encountered at the site. The most recently updated version of the spreadsheet is dated February 2009.

The February 2009 HERD screening-mode spreadsheet was used to calculate the predicted risk and hazard index associated with the soil gas sample results. The risk and hazard were calculated using spreadsheet default values and a soil type of silt (SI). The default values assume a residential land use exposure scenario. Evaluation of hazard associated with TPH-SS using the DTSC JE model spreadsheet is not possible because TPH is not one of the chemicals available in the chemical properties lookup table for use in the model. Additionally, TPH is not considered a carcinogen, and it is therefore not possible to calculate risk for TPH-SS.

The predicted risk and hazard from vapor intrusion for the residential structure located at 2688 Coolidge Avenue was calculated by using the results from soil gas sample SG19. The predicted risk and hazard from vapor intrusion for the residential structure located at 2621 34th Avenue was calculated using the highest concentration for each detected chemical from samples SG20, SG21, SG22, SG23, and duplicate sample SG21-DUP. The highest soil gas concentrations from all of these samples were encountered in sample SG22.

The cumulative hazard quotient was calculated to be less than one for each of the properties. The cumulative risk for each property was calculated to be as follows.

```
2688 Coolidge Avenue - 1.1 per million.
2621 34<sup>th</sup> Avenue – 1.8 per million.
```

The HERD vapor intrusion screening-mode spreadsheet output results for each detected chemical are summarized in Table 4, along with the calculated cumulative hazard and risk for each property. The spreadsheet model input, interim calculations (intercalcs) and output sheets for each calculation are attached with this report as Appendix D.

Ambient and Crawl Space Air

The preliminary risk and hazard from vapor intrusion for the ambient air sample and for each of the crawl space air samples was calculated by using equations identified in Appendix C of the DTSC "Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air" dated December 15, 2004, revised February 7, 2005.

The preliminary ambient and indoor air risk calculation results are provided in Table 5A, and the preliminary ambient and indoor air hazard calculation results are provided in Table 5B. The preliminary ambient and indoor air risk and hazard calculation results are summarized in Table 5C.

The cumulative hazard quotient was calculated to be less than one for each of the samples. The cumulative risk for each sample was calculated to be as follows.

3320 Davis Street

Sample CS1 - 67 per million. Sample CS1 - 77 per million.

2682 Coolidge Avenue Sample CS3 - 9 per million.

Ambient Air 7 per million.

DISCUSSION AND RECOMMENDATIONS

Soil Gas

Site Vicinity Map Details showing soil gas concentrations at a depth of 5 feet for TPH-Stoddard solvent, benzene, PCE, and TCE are attached with this report as Figures 4, 5, 6 and 7, respectively. The absence of PCE and TCE in the soil gas samples at concentrations exceeding SFRWQCB May 2008 Table E ESLs shows that the horizontal extent of HVOCs has been defined (see Figures 6 and 7).

Review of Table 4 shows that the majority of the calculated risk at 2688 Coolidge Avenue is from benzene and ethylbenzene, and that all of the calculated risk at 2621 34th Avenue is from benzene and ethylbenzene. A Site Vicinity Map Detail showing detected MBTEX compounds in groundwater in the vicinity of the subject site is attached as Figure 8.

Because a soil type of silt and the highest soil gas concentrations encountered in all of the samples were used at the 2621 34th Avenue property, the calculated risk and hazard provide a conservative assessment of the data.

The DTSC recommends that when the calculated cumulative incremental risk from vapor intrusion to indoor air exceeds one per million, or when the calculated cumulative hazard quotient from vapor intrusion to indoor air exceeds one, that indoor air samples be collected on a semi-annual basis and that permanent sub-slab monitoring points and/or permanent vadose zone monitoring points be installed. Based on these results, an indoor air study is warranted at each property.

Based on the presence of car parts in the vicinity of soil gas sample collection location SG22, it is possible that the petroleum hydrocarbons detected at this location could be the result of activities related to car repair or maintenance at the 2621 34th Avenue property.

Ambient and Crawl Space Air

Bay Area Air Quality Management District ambient air monitoring station data was not readily available for comparison with the ambient air or crawl space air sample results.

In accordance with DTSC "Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air" dated December 15, 2004, revised February 7, 2005 Appendix B, the attenuation factor for a building with a crawl space is considered to be 1.0, meaning that no attenuation is considered to occur between the crawl space and the building interior.

As discussed for soil gas, the DTSC recommends that when the calculated cumulative incremental risk for indoor air exceeds one per million, or when the calculated cumulative hazard quotient for indoor air exceeds one, that indoor air samples be collected on a semi-annual basis and that permanent sub-slab monitoring points and/or permanent vadose zone monitoring points be installed. However, the DTSC also states that representative samples from two different seasons need to be collected and evaluated prior to determining actual risk and hazard at a site. For this reason, the results provided in Tables 5A through 5C are considered preliminary.

Review of the ambient air sample preliminary risk calculation results (Table 5A) shows that including PCE and TCE at concentrations of one half of their detection limits results in a preliminary cumulative risk of 7.3 per million. If PCE and TCE are not included in the preliminary ambient air risk calculation, the calculated preliminary cumulative risk is 7.0 per million. Review of Table 5A also shows that 6.7 million of the total preliminary risk is from benzene.

Review of Table 3 shows that benzene was detected in the ambient air sample and the CS3 air sample at concentrations of 0.56 and 0.65 ug/m3, respectively. Benzene was also detected in air samples CS1 and CS2 at concentrations of 4.7 and 5.3 ug/m3, respectively. The benzene and other BTEX compounds detected in all of the air samples are approximately one order of magnitude greater in the CS1 and CS2 air samples than in the CS3 and ambient air samples. Review of Figure 5 suggests that elevated benzene concentrations are present in soil gas in the vicinity of the 3320 Davis Street property. However, review of Figure 8 shows that benzene was not detected in groundwater in the vicinity of the 3320 Davis Street property. Review of laboratory reports provided in previous investigation reports for the site show that the detection limits for groundwater samples collected from boreholes B13 through B18 and B22 were 10 ug/L or less except for B13, B14 at 25 foot depth, and B17, where the detection limits were 50, 25, and 500 ug/L, respectively.

Review of Table 5A shows that the air sample CS3 calculated preliminary total risk is 9.2 per million, with 7.8 per million of the preliminary total risk from benzene and less than 1 per million of the preliminary total risk from the detected PCE. At locations CS1 and CS2, the calculated preliminary total risk is 67 and 78 per million, respectively, with 56 and 63 per million from benzene, respectively.

In accordance with DTSC guidance, P&D recommends that air sampling be performed at locations CS1, CS2 and CS3 six months from the February 2010 sampling event to determine if sample results are obtained that are consistent with the February 2010 sample results, allowing an actual and not preliminary assessment of risk and hazard for indoor air quality.

DISTRIBUTION

A copy of this report will be uploaded to the ACDEH website, in accordance with ACDEH requirements. In addition, a copy of this report will be uploaded to the GeoTracker database, and one copy of this report will be mailed to LeRoy Griffin of the City of Oakland Fire Department

LIMITATIONS

This report was prepared solely for the use of Snow Cleaners. The content and conclusions provided by P&D in this assessment are based on information collected during our investigation, which may include, but not be limited to, visual site inspections; interviews with the site owner, regulatory agencies and other pertinent individuals; review of available public documents; subsurface exploration and our professional judgment based on said information at the time of preparation of this document. Any subsurface sample results and observations presented herein are considered to be representative of the area of investigation; however, geological conditions may vary between borings and may not necessarily apply to the general site as a whole. If future subsurface or other conditions are revealed which vary from these findings, the newly revealed conditions must be evaluated and may invalidate the findings of this report.

This report is issued with the understanding that it is the responsibility of the owner, or his representative, to ensure that the information contained herein is brought to the attention of the appropriate regulatory agencies, where required by law. Additionally, it is the sole responsibility of the owner to properly dispose of any hazardous materials or hazardous wastes left onsite, in accordance with existing laws and regulations.

This report has been prepared in accordance with generally accepted practices using standards of care and diligence normally practiced by recognized consulting firms performing services of a similar nature. P&D is not responsible for the accuracy or completeness of information provided by other individuals or entities used in this report. This report presents our professional judgment based upon data and findings identified in this report and interpretation of such data based upon our experience and background, and no warranty, either express or implied, is made. The conclusions presented are based upon the current regulatory climate and may require revision if future regulatory changes occur.

March 22, 2010 Report 0298.R8

Should you have any questions, please do not hesitate to contact us at (510) 658-6916.

Sincerely,

P&D Environmental, Inc.

Paul H. King President

Professional Geologist #5901

Expires: 12/31/11

Attachments:

Table 1 – Summary of Historical Soil Gas Sample Results

M. King

Table 2 – Summary of Current Investigation Soil Gas Sample Results

Table 3 – Summary of Ambient Air and Crawl Space Air Sample Results

Table 4 – Summary of Soil Gas Risk and Hazard Evaluation Calculation Results

Table 5A – Preliminary Ambient and Indoor Air Risk Calculation Results

Table 5B – Preliminary Ambient and Indoor Air Hazard Calculation Results

Table 5C – Preliminary Ambient and Indoor Air Risk and Hazard Calculation Results Summary

Figure 1 – Site Location Map

Figure 2 – Site Vicinity Map Detail Showing Sample Collection Locations

Figure 3 – Typical Soil Gas Sample Collection Manifold

Figure 4 – Site Vicinity Map Detail Showing TPH-Stoddard Solvent in Soil Gas at 5 Foot Depth

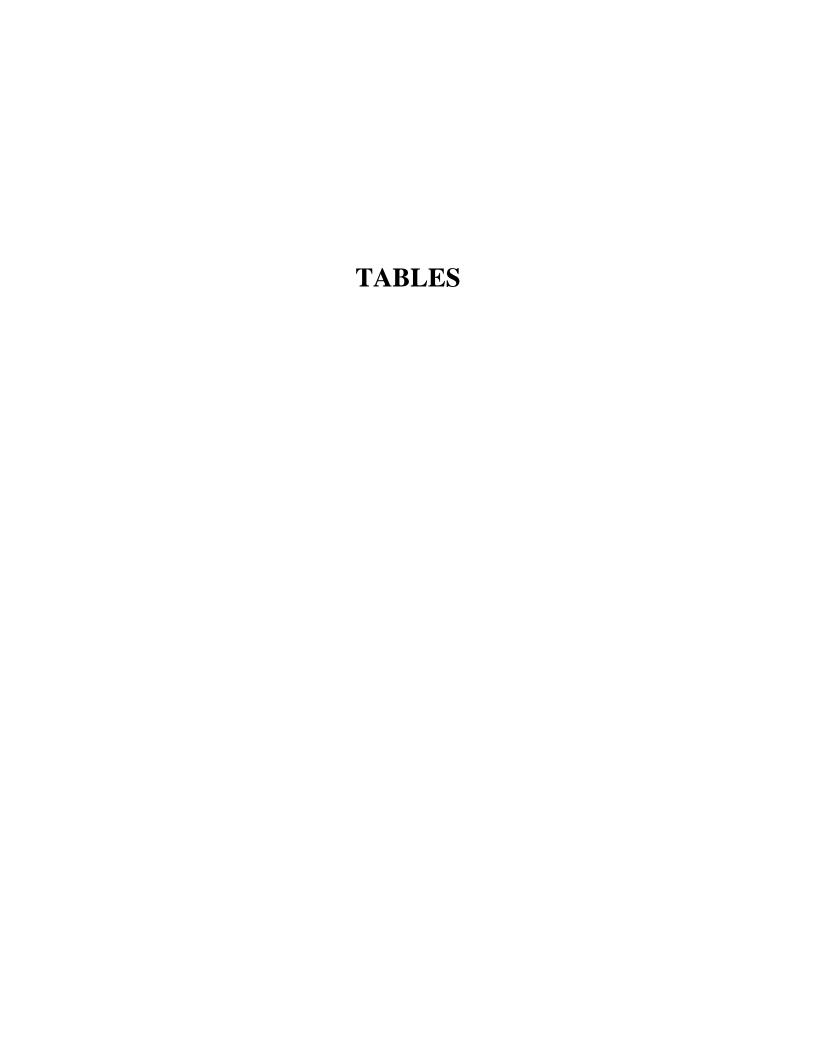
Figure 5 – Site Vicinity Map Detail Showing Benzene in Soil Gas at 5 Foot Depth

Figure 6 – Site Vicinity Map Detail Showing PCE in Soil Gas at 5 Foot Depth

Figure 7 – Site Vicinity Map Detail Showing TCE in Soil Gas at 5 Foot Depth

Figure 8 – Site Vicinity Map Detail Showing Detected MBTEX Compounds in Groundwater

Appendix A – Soil Gas Sampling Purge Calculations and Field Data Sheets


Appendix B – Weather Information

Appendix C – Laboratory Analytical Reports and Chain of Custody Documentation

Appendix D – HERD February 2009 Vapor Intrusion Risk and Hazard Spreadsheet Calculations

PHK/sic

0298.R8

TABLE 1 SUMMARY OF HISTORICAL SOIL GAS SAMPLE RESULTS

Sample ID	Sample Date	PCE	TCE	cis-1,2-DCE	trans1,2DCE	Vinyl Chloride	TPH-SS	Benzene	Toluene	Ethyl- benzene	m,p-Xylenes	o-Xylenes	Naphthalene	2-Propanol, #
SG1	6/30/2008	990	8.9	ND<4.5	ND<4.5	ND<2.9	5,500	61	590	57	230	74	NA	NA
SG2	6/30/2008	8,300	12,000	3,700	110	60	82,000	110	1,000	100	350	110	NA	NA
SG2-DUP	6/30/2008	8,300	12,000	3,500	110	57	83,000	100	1,000	98	380	120	NA	NA
SG3	6/30/2008	1,000	10	ND<4.4	ND<4.4	ND<2.9	2,800	40	510	62	240	74	NA	NA
SG4	6/30/2008	180	ND<6.5	ND<4.8	ND<4.8	ND<3.1	2,100	52	440	48	180	58	NA	NA
SG5	6/30/2008	170	6.7	ND<4.7	ND<4.7	ND<3.0	2,500	53	500	57	220	70	NA	NA
SG6, *	7/30/2008	550	34	ND<4.4	ND<4.4	ND<2.9	NA	ND<3.6	4.9	ND<4.9	ND<4.9	ND<4.9	NA	ND<11
SG6-DUP	7/30/2008	210	18	ND<4.7	ND<4.7	ND<3.0	NA	ND<3.8	ND<4.5	ND<5.2	ND<5.2	ND<5.2	NA	ND<12
SG7	7/30/2008	5,100	920	ND<12	ND<12	ND<7.9	NA	19	ND<12	ND<13	ND<13	ND<13	NA	ND<30
SG8	7/30/2008	2,600	30	ND<9.1	ND<9.1	ND<5.8	NA	38	17	ND<9.9	ND<9.9	ND<9.9	NA	680
SG9	7/30/2008	13	ND<10	ND<7.4	ND<7.4	ND<4.8	NA	ND<6.0	ND<7.0	ND<8.1	ND<8.1	ND<8.1	NA	3,400
SG10	7/30/2008	ND<7.9	ND<6.3	14	ND<4.6	ND<3.0	NA	7.4	12	5.5	30	13	NA	ND<11
SG11	7/30/2008	230	8.8	6.8	ND<4.8	ND<3.1	NA	12	15	ND<5.2	17	6.7	NA	12
SG12	8/29/2008	2,200	38	ND<4.8	ND<4.8	ND<3.1	NA	9.8	7.4	ND<5.2	5.2	ND<5.2	NA	ND<12
SG12-DUP	8/29/2008	2,200	38	ND<4.6	ND<4.6	ND<3.0	NA	9.8	7.4	ND<5.0	ND<5.0	ND<5.0	NA	14
SG13	8/29/2008							High Vacuum.	No Sample Collecte	d.				
SG14	8/29/2008	ND<7.9	ND<6.3	ND<4.6	ND<4.6	ND<3.0	NA	15	100	12	33	13	NA	62
SG15	8/29/2008	ND<17	ND<14	ND<10	ND<10	ND<6.5	NA	ND<8.1	1,600	290	1,000	400	NA	25
SG16	8/29/2008	ND<8.8	ND<6.9	ND<5.1	ND<5.1	ND<3.3	NA	ND<4.1	59	36	130	40	NA	ND<13
SG17	8/29/2008	ND<7.9	ND<6.3	ND<4.6	ND<4.6	ND<3.0	NA	4.6	56	12	52	18	NA	ND<11
SG18	8/29/2008							High Vacuum.	No Sample Collecte	d.				
ESL		410	1,200	7,300	15,000	31	10,000	84	63,000	980	Combined	= 21,000	72	None

Abbreviations and Notes: PCE = Tetrachloroethene

TCE = Trichloroethene

cis-1,2-DCE = cis-1,2-Dichloroethene

trans-1,2-DCE = trans-1,2-Dichloroethene TPH-SS = Total Petroleum Hydrocarbons as Stoddard solvent.

= 2-Propanol used as tracer/leak detection during sample collection.

ND = Not Detected.
NA = Not Analyzed.

INA = Not Analyzed.

a = Laboratory analytical note: exceeds instruments calibration range.

* = Soil Gas sample SG6 additionally had a detection of methylene chloride at a concentration of 10 micrograms per cubic meter (µg/m3), which is below the respective ESL value of 5,200 µg/m3.

ESL= Environmental Screening Level, developed by San Francisco Bay – Regional Water Quality Control Board

(SF-RWQCB), from Table E – Indoor Air and Soil Gas (Vapor Intrusion Concerns)

Shallow Soil Gas Screening Levels for Residential Land Use.

Values in bold exceed their respective ESL values.

Results in µg/m3, unless otherwise indicated.

TABLE 2 SUMMARY OF CURRENT INVESTIGATION SOIL GAS SAMPLE RESULTS

Sample ID	Sample Date	PCE	TCE	cis-1,2-DCE	trans1,2DCE	Vinyl Chloride	TPH-SS	Benzene	Toluene	Ethyl- benzene	m,p-Xylenes	o-Xylenes	Naphthalene	2-Propanol, #
SG19	2/19/2010	11	ND<6.8	ND<5.0	ND<5.0	ND<3.2	5,400	84	1,100	150	700	200	ND<27	28
SG20	2/19/2010	ND<8.5	ND<6.7	ND<5.0	ND<5.0	ND<3.2	ND<360	ND<4.0	7.3	ND<5.4	ND<5.4	ND<5.4	ND<26	ND<12
SG21	2/19/2010	ND<8.2	ND<6.5	ND<4.8	ND<4.8	ND<3.1	4,000	29	990	74	240	60	ND<25	ND<12
SG21-Lab Duplicate		NA	NA	NA	NA	NA	4,000	NA	NA	NA	NA	NA	NA	NA
SG21-DUP	2/19/2010	ND<8.2	ND<6.5	ND<4.8	ND<4.8	ND<3.1	3,800	27	920	70	220	54	ND<25	ND<12
SG22	2/19/2010	ND<39	ND<31	ND<23	ND<23	ND<15	88,000	35	23,000, a	1,600	4,000	760	ND<120	ND<57
SG23	2/19/2010	ND<24	ND<19	ND<14	ND<14	ND<9.0	24,000	34	2,600	180	450	120	ND< 74	ND<35
SG23-Lab Duplicate		NA	NA	NA	NA	NA	25,000	NA	NA	NA	NA	NA	NA	NA
ESL		410	1,200	7,300	15,000	31	10,000	84	63,000	980	Combined	! = 21,000	72	None

Abbreviations and Notes: PCE = Tetrachloroethene

TCE = Trichloroethene

cis-1,2-DCE = cis-1,2-Dichloroethene

trans-1,2-DCE = trans-1,2-Dichloroethene

TPH-SS = Total Petroleum Hydrocarbons as Stoddard solvent.
= 2-Propanol used as tracer/leak detection during sample collection.
ND = Not Detected.

NA = Not Analyzed.

a = Laboratory analytical note: exceeds instruments calibration range.

ESL= Environmental Screening Level, developed by San Francisco Bay – Regional Water Quality Control Board (SF-RWQCB), from Table E – Indoor Air and Soil Gas (Vapor Intrusion Concerns)

Shallow Soil Gas Screening Levels for Residential Land Use.

Values in bold exceed their respective ESL values. Results in micrograms per cubic meter (µg/m3), unless otherwise indicated.

TABLE 3 SUMMARY OF AMBIENT AIR AND CRAWL SPACE AIR SAMPLE RESULTS

Sample ID	Sample Date	PCE	TCE	cis-1,2-DCE	trans1,2DCE	Vinyl Chloride	TPH-SS	Benzene	Toluene	Ethyl- benzene	m,p-Xylenes	o-Xylenes	Naphthalene
CS1	2/19/2010	0.38	0.44	ND<0.12	ND<0.60	ND< 0.039	310	4.7	48	9.4	36	11	ND<4.0
CS1-Lab Duplicate		NA	NA	NA	NA	NA	280	NA	NA	NA	NA	NA	NA
CS2	2/19/2010	1.2	3.2	ND<0.13	ND<0.64	ND< 0.041	300	5.3	50	9.3	35	10	ND< 4.2
CS3	2/19/2010	0.23	ND<0.17	ND<0.12	ND<0.63	ND<0.040	ND<230	0.65	3.7	0.77	3.6	1.0	ND< 4.1
CS3-DUP	2/19/2010	ND<0.21	ND<0.17	ND<0.12	ND<0.63	ND<0.040	ND<230	0.64	3.9	0.79	3.7	1.0	ND< 4.1
AMBIENT	2/19/2010	ND<0.22	ND<0.17	ND<0.13	ND<0.64	ND< 0.041	ND<230	0.56	1.3	0.29	0.98	0.34	ND< 4.2
ESL		0.41	1.2	7.3	15	0.031	10	0.084	63	0.98	Combine	d = 21	0.072

Abbreviations and Notes:

PCE = Tetrachloroethene

TCE = Trichloroethene

cis-1,2-DCE = cis-1,2-Dichloroethene

trans-1,2-DCE = trans-1,2-Dichloroethene

TPH-SS = Total Petroleum Hydrocarbons as Stoddard solvent.

ND = Not Detected.

NA = Not Analyzed.

ESL= Environmental Screening Level, developed by San Francisco Bay - Regional Water Quality Control Board

(SF-RWQCB), from Table E – Indoor Air Screening Levels (Vapor Intrusion Concerns) for Residential Land Use. Values in bold exceed their respective ESL values.

Results in micrograms per cubic meter (µg/m3), unless otherwise indicated.

TABLE 4
SUMMARY OF SOIL GAS RISK AND HAZARD EVALUATION CALCULATION RESULTS

RESIDENTIAL EXP	OSURE SCENAR	IO				
			Incremental	Hazard		
			risk from	quotient		
			vapor	from vapor		
			intrusion to	intrusion to		
			indoor air,	indoor air,		
	Concentration	Sample Result	carcinogen	noncarcinogen		
Chemical	$(\mu g/m^3)$	Location	(unitless)	(unitless)	NOTES	CAS#
2688 Coolidge Avenu	e					
Tetrachloroethene	11	SG19	2.2E-08	2.4E-04		127184
Benzene	84	SG19	9.2E-07	2.5E-03		71432
Toluene	1,100	SG19	NA	3.2E-03		108883
Ethyl Benzene	150	SG19	1.3E-07	1.2E-04		100414
m,p-xylene	700	SG19	NA	5.7E-03	used p-xylene CAS #	106423
o-xylene	200	SG19	NA	1.8E-03		95476
		TOTAL	1.1E-06	1.3E-02		
2621 34th Avenue						
Benzene	35	SG22	3.8E-07	1.0E-03		71432
Toluene	23,000	SG22	NA	6.7E-02		108883
Ethyl Benzene	1,600	SG22	1.4E-06	1.3E-03		100414
m,p-xylene	4,000	SG22	NA	3.2E-02	used p-xylene CAS #	106423
o-xylene	760	SG22	NA	6.7E-03		95476
		TOTAL	1.8E-06	1.1E-01		
NOTES:			1.02 00	1.12 01		
2688 Coolidge Avenue	e used SG19 for exp	osure risk and haza	rd evaluation.			
2621 34th Avenue use						
The highest concentrat						
HERD spreadsheet def						

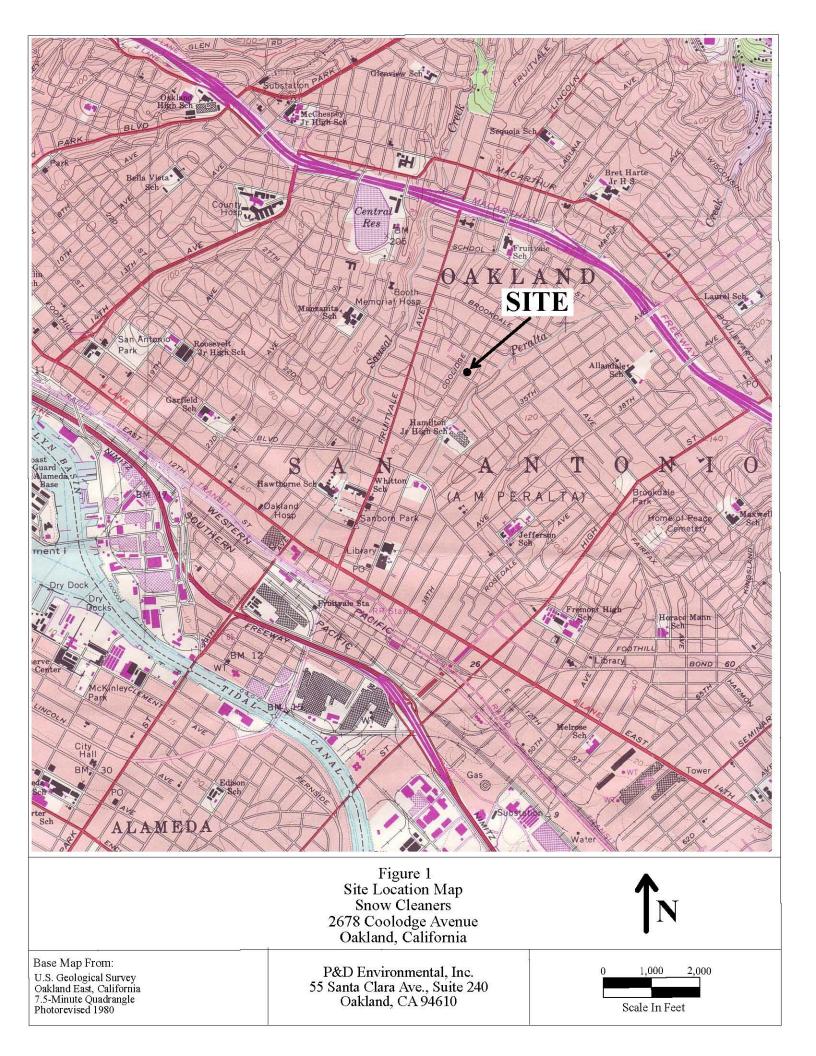
0298.R8 **TABLE 5A**

PRELIMINARY AMBIENT AND INDOOR AIR RISK CALCULATION RESULTS

CS1 PCE TCE Benze Tolue Ethyll m,p-X o-Xyl CS2 PCE TCE Benze TCE Benze Tolue Ethyll c-Xyl CS3 PCE	mpound E E szene	Unit Risk Factor ug/m3			X	Exposure Duration	X	Concentration in	all				Calculated Individual	Calculated	
Formula Units Location Comp CS1 PCE Benze Tolue Ethyll m,p-X o-Xyl CS2 PCE TCE Benze Tolue Ethyll m,p-X o-Xyl CS3 PCE	mpound E E izene uene	Unit Risk Factor ug/m3	NAR	Exposure Frequency	X	•	v	Concentration in	all				Individual	Calculated	
Formula Units Location Comp CS1 PCE Benze Tolue Ethyll m,p-X o-Xyl CS2 PCE TCE Benze Tolue Ethyll m,p-X o-Xyl CS3 PCE	mpound E E uzene uene	Unit Risk Factor ug/m3		Exposure Frequency	X	•	v	Concentration in	all					Culculated	
Units Location Comp CS1 PCE Benze Tolue Ethyll m,p-X o-Xyl CS2 PCE Benze Tolue Ethyll m,p-X o-Xyl CS3 PCE BCS3 PCE	npound E E Izene uene	Factor ug/m3 5.9E-06	X	Frequency	X	•	v	Concentration in	all				Compound	Cumulative	
Location Comp CS1 PCE Benze Tolue Ethyll m.p-X o-Xyl CS2 PCE Benze Tolue Ethyll m.p-X o-Xyl CS3 PCE Benze Tolue Ethyll m.p-X o-Xyl	E E nzene uene	5.9E-06		350 days/yr			Λ	Air		Averaging Time	X	365	Incremental Carcinogenic Risk	Incremental Carcinogenic Risk	Notes
Location Comp CS1 PCE Benze Tolue Ethyll m.p-X o-Xyl CS2 PCE Benze Tolue Ethyll m.p-X o-Xyl CS3 PCE Benze Tolue Ethyll m.p-X o-Xyl	E E nzene uene	5.9E-06		330 days/y1		30 yrs		ug/m3		70 yrs		days/yr			
CS1 PCE TCE Benze Tolue Ethyll m,p-X o-Xyl CS2 PCE TCE Benze Tolue Ethyll n,p-X o-Xyl CS3 PCE	E E nzene uene					30 y18		ug/m3		70 yıs		uays/yi			
CS1 PCE TCE Benze Tolue Ethyll m,p-X o-Xyl CS2 PCE TCE Benze Tolue Ethyll n,p-X o-Xyl CS3 PCE	E E nzene uene														
Benze Tolue Ethyll m,p-X o-Xyl CS2 PCE TCE Benze Tolue Ethyll m,p-X o-Xyl CS3 PCE	nzene uene			350		30		0.38		70		365	9.2137E-07		
Tolue Ethyll m,p-X o-Xyl CS2 PCE TCE Benze Tolue Ethyll m,p-X o-Xyl	uene	2.0E-06		350		30		0.44		70		365	3.61644E-07		
Ethyll m,p-X o-Xyl CS2 PCE TCE Benze Tolue Ethyll m,p-X o-Xyl		2.9E-05		350		30		4.7		70		365	5.6014E-05		
m,p-X o-Xyl CS2 PCE TCE Benze Tolue Ethyll m,p-X o-Xyl CS3 PCE	vlbenzene	0.0E+00		350		30		48		70		365	0		
o-Xyl CS2 PCE TCE Benze Tolue Ethyll m,p-X o-Xyl CS3 PCE		2.5E-06		350		30		9.4		70		365	9.6575E-06		
CS2 PCE TCE Benze Tolue Ethyll m,p-X o-Xyl CS3 PCE	-Xylenes	0.0E+00		350		30		36		70		365	0		
CS2 PCE TCE Benze Tolue Ethyll m,p-X o-Xyl CS3 PCE	ylenes	0.0E+00		350		30		11		70		365	0.0000E+00	6.6954E-05	
TCE Benze Tolue Ethyll m,p-X o-Xyl CS3 PCE	-														
Benze Tolue Ethyll m,p-X o-Xyl CS3 PCE	Ε	5.9E-06		350		30		1.2		70		365	2.90959E-06		
Tolue Ethyll m,p-X o-Xyl CS3 PCE	Е	2.0E-06		350		30		3.2		70		365	2.63014E-06		
Ethyll m,p-X o-Xyl CS3 PCE	izene	2.9E-05		350		30		5.3		70		365	6.31644E-05		
m,p-X o-Xyl CS3 PCE	uene	0.0E+00		350		30		50		70		365	0		
o-Xyl CS3 PCE	ylbenzene	2.5E-06		350		30		9.3		70		365	9.55479E-06		
o-Xyl CS3 PCE	-Xylenes	0.0E+00		350		30		35		70		365	0		
		0.0E+00		350		30		10		70		365	0	7.8259E-05	
mor	Ε	5.9E-06		350		30		0.23		70		365	5.577E-07		
TCE	Е	2.0E-06		350		30		0.085		70		365	6.9863E-08		
Benze	izene	2.9E-05		350		30		0.65		70		365	7.747E-06		
Tolue	uene	0.0E+00		350		30		3.7		70		365	0		
Ethyll	ylbenzene	2.5E-06		350		30		0.77		70		365	7.911E-07		
	•	0.0E+00		350		30		3.6		70		365	0		
o-Xyl	ylenes	0.0E+00		350		30		1		70		365	0.000E+00	9.1652E-06	
Ambient PCE	7	5.9E-06		350		30		0.11		70		265	2.66712E-07		
Ambient PCE TCE										70		365			
Benze		2.0E-06 2.9E-05		350 350	\vdash	30		0.085 0.56		70		365 365	6.9863E-08 6.67397E-06		
				350		30				70		365	0.6/39/E-06		
Tolue		0.0E+00 2.5E-06		350		30		1.3 0.29		70		365	2.97945E-07		
	ylbenzene	0.0E+00		350		30		0.29		70		365			
•	,	0.0E+00 0.0E+00		350		30		0.98		70		365	0	7.2005E.06	
o-Xyl	ylenes	0.0E+00		330		30		0.34		/0		303	U	7.3085E-06	
NOTES:															
	l analysis. tl	he Unit Ris	sk Fa	actor units are	exr	ressed as 1 o	ver	ug/m3, but the Uni	t Risk Fac	tor value used	d for	calcuation	is not.		
					-			OK sheet (last upd							
								e of one half of the		,	ed fo	or risk calcu	lation.		
Where duplicate s	low high lig			•											

0298.R8 **TABLE 5B**

PRELIMINARY AMBIENT AND INDOOR AIR HAZARD CALCULATION RESULTS

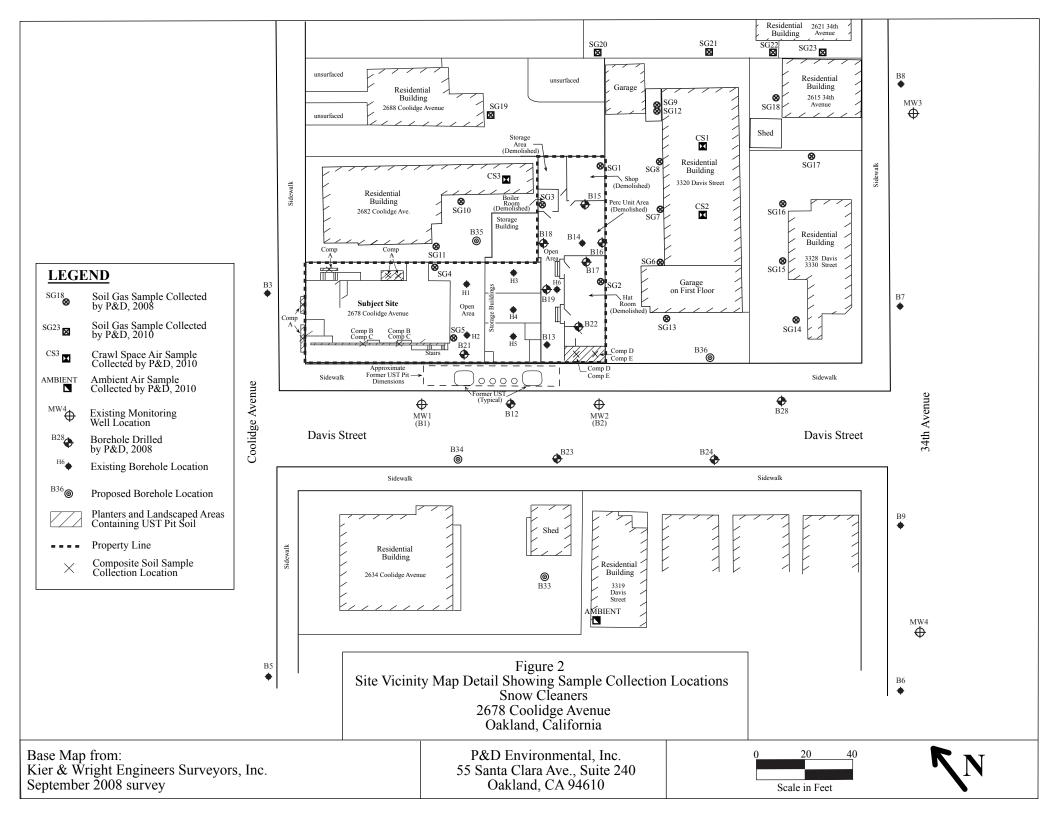
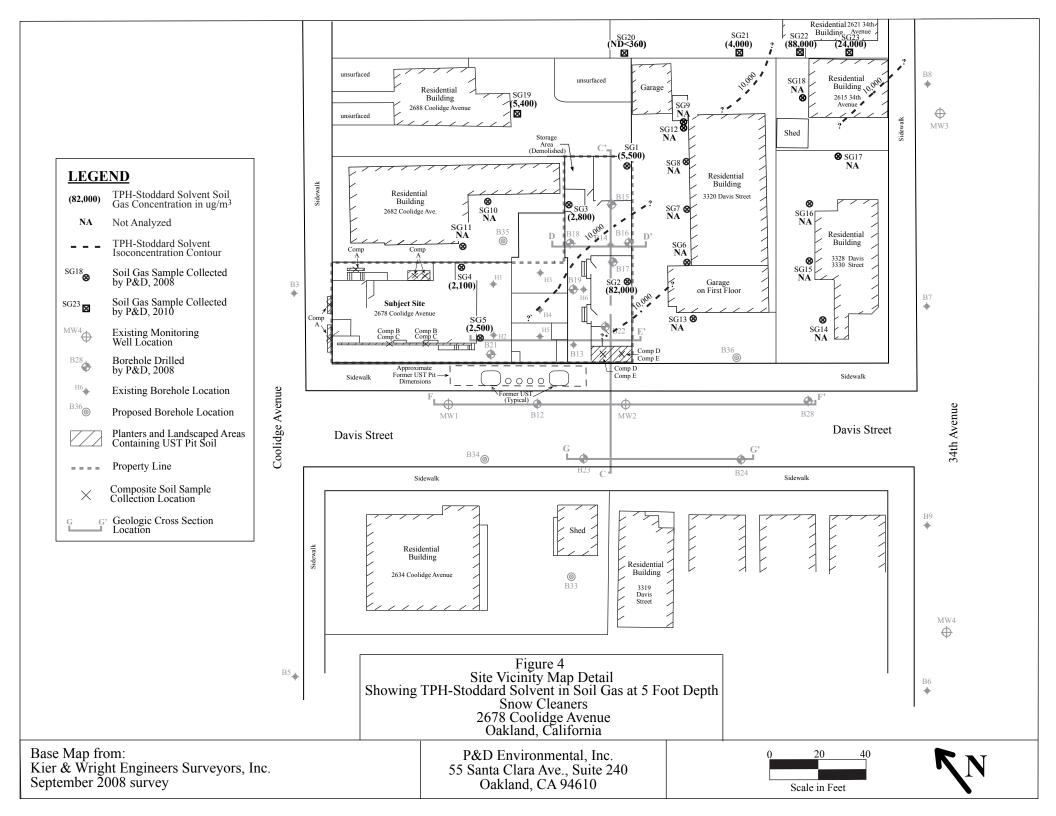
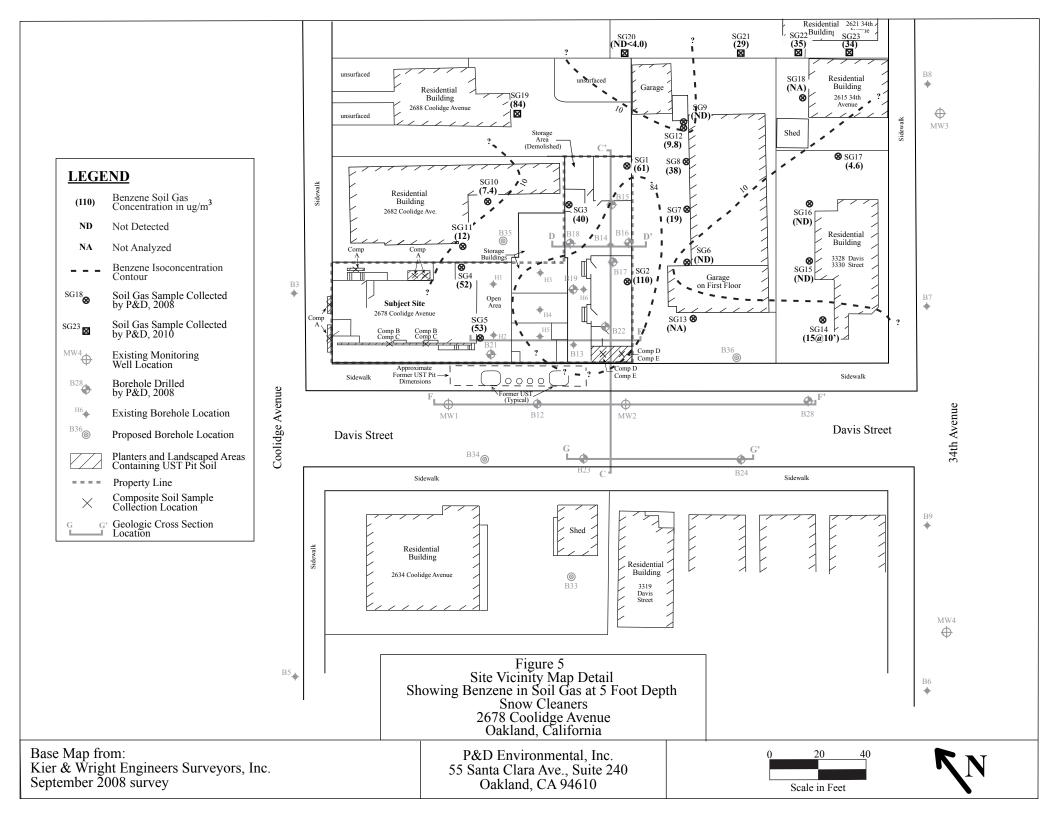

BASED O	N ONE SAMPL	ING EVENT ONL	Y													
	TIAL EXPOSU													Calculated		
		1 Over Reference							Conversion of	all				Individual Compound	Calculated Cumulative	
		Factor		Exposure		Exposure	Concentration in		Air Conc from	divided				Hazard	Hazard	
Formula		Concentration	X	Frequency	X	Duration X	Air	X	ug/m3 to mg/m3	by	Time	X	365	Quotient	Quotient	Notes
Units		1/(mg/m3)		350 days/yr		30 yrs	ug/m3		(mg/m3)/(ug/m3))	30 yrs		days/yr			
Location	Compound	1														
CS1	PCE	28.571		350		30	0.38		0.001		30		365	1.0411E-02		
CDI	TCE	1.67		350		30	0.44		0.001		30		365	7.0320E-04		
	Benzene	33.33		350		30	4.7		0.001		30		365	1.5021E-01		
	Toluene	3.33		350		30	48		0.001		30		365	1.5327E-01		
	Ethylbenzene	1.0		350		30	9.4		0.001		30		365	9.0137E-03		
	m,p-Xylenes	10		350		30	36		0.001		30		365	3.4521E-01		
	o-Xylenes	10		350		30	11		0.001		30		365	1.0548E-01	7.7430E-01	
CS2	PCE	28.571		350		30	1.2		0.001		30		365	3.2877E-02		
	TCE	1.67		350		30	3.2		0.001		30		365	5.1142E-03		
	Benzene	33.33		350		30	5.3		0.001		30		365	1.6939E-01		
	Toluene	3.33		350		30	50		0.001		30		365	1.5966E-01		
	Ethylbenzene	1.0		350		30	9.3		0.001		30		365	8.9178E-03		
	m,p-Xylenes	10		350		30	35		0.001		30		365	3.3562E-01		
	o-Xylenes	10		350		30	10		0.001		30		365	9.5890E-02	8.0746E-01	
CS3	PCE	28.571		350		30	0.23		0.001		30		365	6.3014E-03		
	TCE	1.67		350		30	0.085		0.001		30		365	1.3584E-04		
	Benzene	33.33		350		30	0.65		0.001		30		365	2.0774E-02		
	Toluene	3.33		350		30	3.7		0.001		30		365	1.1815E-02		
	Ethylbenzene	1.0		350		30	0.77		0.001		30		365	7.3836E-04		
	m,p-Xylenes	10		350		30	3.6		0.001		30		365	3.4521E-02		
	o-Xylenes	10		350		30	1		0.001		30		365	9.5890E-03	8.3874E-02	<u> </u>
Ambient	PCE	28.571		350		30	0.11		0.001		30		365	3.0137E-03		
	TCE	1.67		350		30	0.085	_	0.001		30		365	1.3584E-04		-
	Benzene	33.33		350		30	0.56		0.001		30		365	1.7898E-02		
	Toluene	3.33		350		30	1.3		0.001		30		365	4.1511E-03		
	Ethylbenzene	1.0		350	L	30	0.29		0.001		30		365	2.7808E-04		
	m,p-Xylenes	10		350		30	0.98		0.001		30		365	9.3973E-03		
	o-Xylenes	10		350	L	30	0.34		0.001		30		365	3.2603E-03	3.8134E-02	-
NOTES:																
Reference	Factor Concentrate	tion value obtained	froi	m HERD Soil	Gas	Screeing Model	VLOOK sheet (las	t ur	odated 2/4/09).							
Reference	Factor Concentra	tion values used we	re a	ıs follows (val	ues	in mg/m3):		Ĺ								
	PCE	0.035														
	TCE	0.60														
	Benzene	0.03														
	Toluene	0.30														
	Ethylbenzene	1.0														
	m,p-Xylenes	4														
	o-Xylenes	0.1 is RFC fo		- 1	<u> </u>			Ļ	1		L			1		
		ht indicates compou						lir	nit was used for h	azard calc	culation.					
Where dup	olicate samples we	ere analyzed, the hig	ghes	st concentration	n fo	or all analyses wa	s used.				<u> </u>					

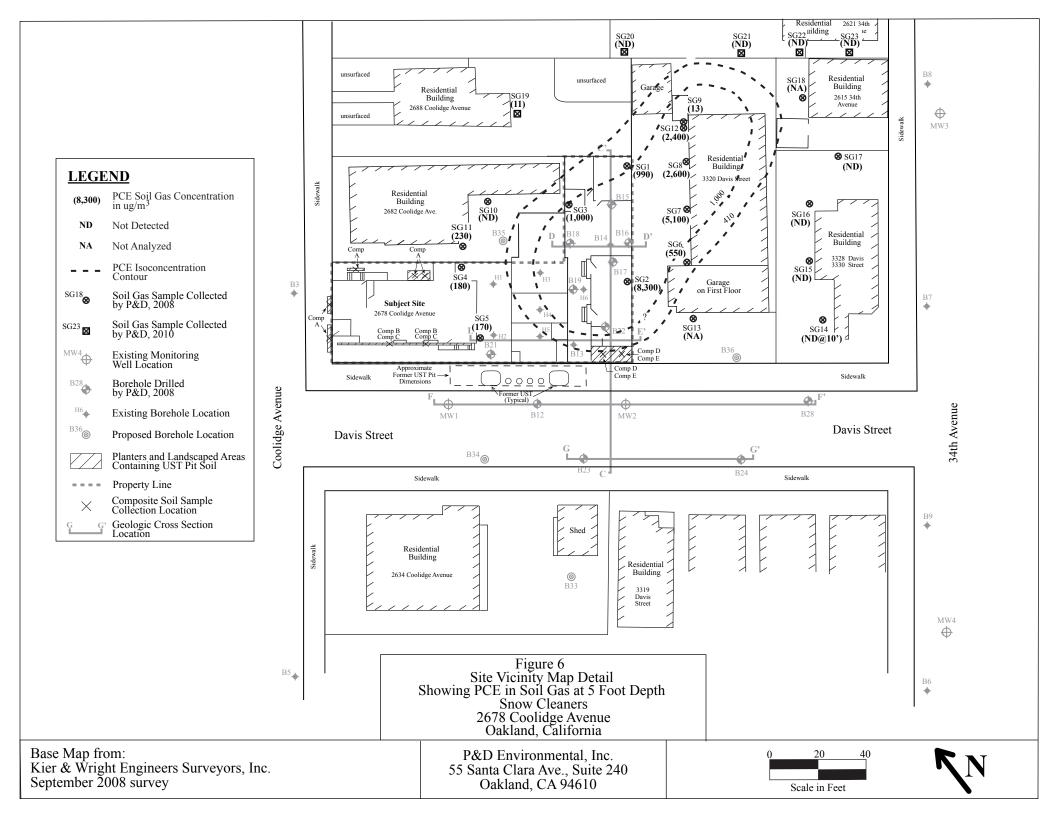
0298.R8 **TABLE 5C**

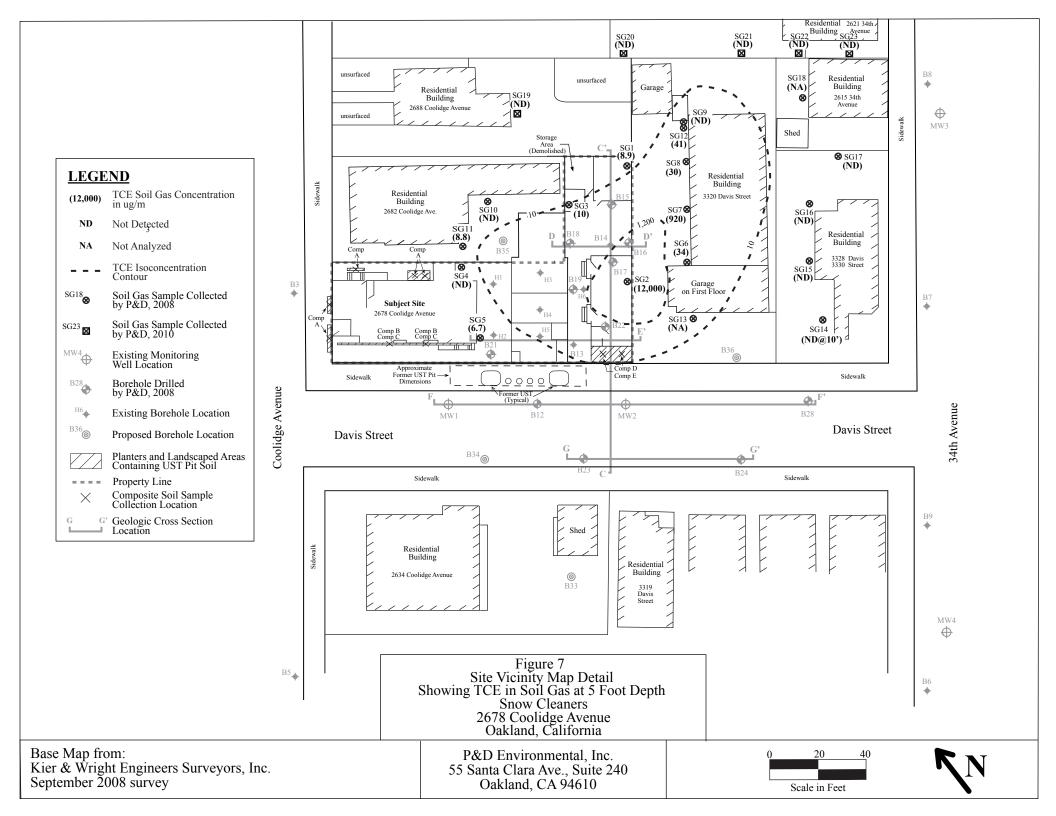
PRELIMINARY AMBIENT AND INDOOR AIR RISK AND HAZARD CALCULATION RESULTS SUMMARY

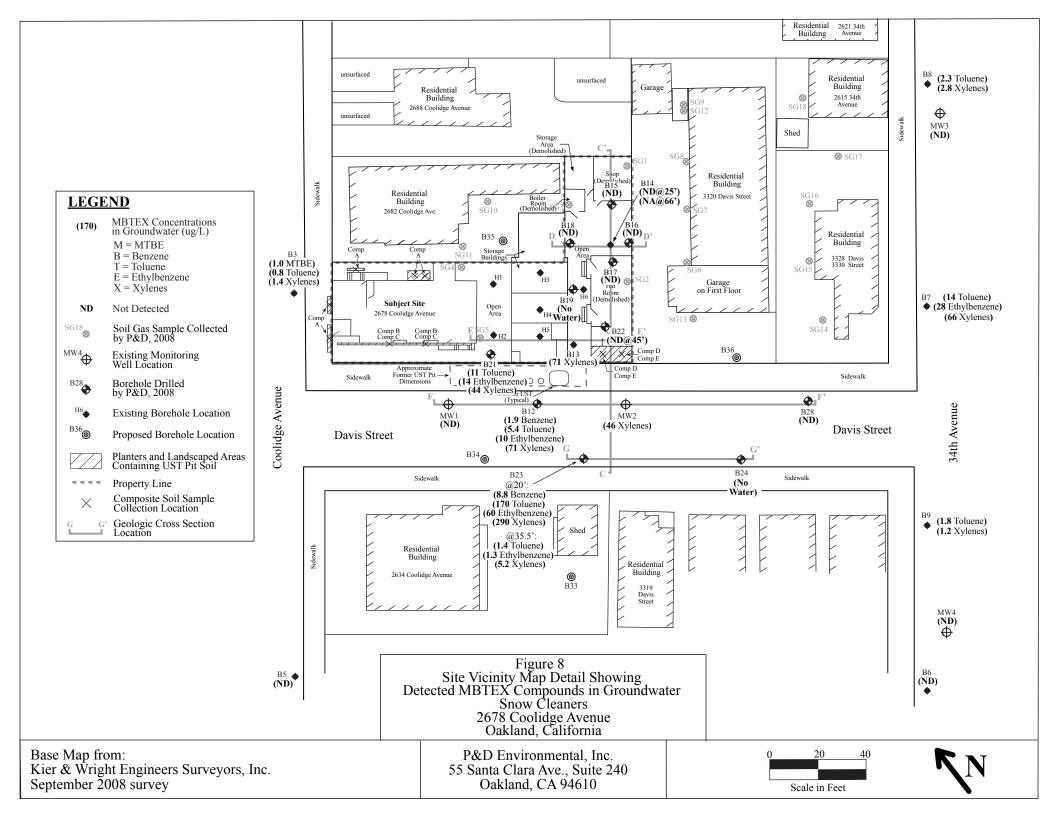
BASED ON ONE SAMPLING EVENT ONLY RESIDENTIAL EXPOSURE SCENARIO Calculated Calculated Cumulative Cumulative Calculated Incremental Incremental Incremental Cumulative Calculated Incremental Guidance for Action or Response Air Sample Collection Carcinogenic Carcinogenic Carcinogenic Date Risk Risk Quotient Alternate Description To Time) Indoor Air Sampling Events Needed) CS1 2/19/2010 6.70E-05 0.000067 0.77 67 in a million Monitoring based on incremental carcinogenic risk CS2 2/19/2010 7.83E-05 0.0000783 0.81 78 in a million Monitoring based on incremental carcinogenic risk Ambient 2/19/2010 7.31E-06 0.00000731 0.0381 7 in a million None- sample is outdoor ambient air												1	
RESIDENTIAL EXPOSURE SCENARIO Calculated Calculated Calculated Cumulative Cumulative Cumulative Cumulative Cumulative Calculated DTSC-Recommended Guidance for Action or Response (Minimum of Two Adequately-Spaced (With Respect Designation Date Risk Risk Quotient Alternate Description To Time) Indoor Air Sampling Events Needed) CS1 2/19/2010 6.70E-05 0.000067 0.77 67 in a million Monitoring based on incremental carcinogenic risk CS2 2/19/2010 7.83E-05 0.0000783 0.81 78 in a million Monitoring based on incremental carcinogenic risk Ambient 2/19/2010 7.31E-06 0.00000731 0.0381 7 in a million None- sample is outdoor ambient air													
Calculated Calculated Cumulative Cumulative Cumulative Calculated DTSC-Recommended DTSC-Recommended Guidance for Action or Response Carcinogenic Carcinogenic Carcinogenic Risk Misk Quotient Alternate Description Date Risk Risk Quotient Alternate Description To Time) Indoor Air Sampling Events Needed) CS1 2/19/2010 6.70E-05 0.000067 0.77 67 in a million Monitoring based on incremental carcinogenic risk CS2 2/19/2010 7.83E-05 0.0000783 0.81 78 in a million Monitoring based on incremental carcinogenic risk CS3 2/19/2010 9.17E-06 0.00000917 0.084 9 in a million Monitoring based on incremental carcinogenic risk Ambient 2/19/2010 7.31E-06 0.00000731 0.0381 7 in a million None- sample is outdoor ambient air													
Cumulative Cumulative Calculated DTSC-Recommended Guidance for Action or Response Air Sample Collection Carcinogenic Carcinogenic Hazard Carcinogenic Risk (Minimum of Two Adequately-Spaced (With Respect Designation Date Risk Risk Quotient Alternate Description To Time) Indoor Air Sampling Events Needed) CS1 2/19/2010 6.70E-05 0.000067 0.77 67 in a million Monitoring based on incremental carcinogenic risk CS2 2/19/2010 7.83E-05 0.0000783 0.81 78 in a million Monitoring based on incremental carcinogenic risk CS3 2/19/2010 9.17E-06 0.00000917 0.084 9 in a million Monitoring based on incremental carcinogenic risk Ambient 2/19/2010 7.31E-06 0.00000731 0.0381 7 in a million None- sample is outdoor ambient air	RESIDENTIAL EXP	EXPOSURE SCENA	ARIO										
Cumulative Cumulative Calculated DTSC-Recommended DTSC-Recommended Guidance for Action or Response													
Sample Incremental Incremental Cumulative Calculated Incremental Guidance for Action or Response Air Sample Collection Carcinogenic Carcinogenic Hazard Carcinogenic Risk (Minimum of Two Adequately-Spaced (With Respect Minimum of Two Adequately-Spaced (With Res		Calculated	Calculated				F	Recomme	ndations E	Based on			
Air Sample Collection Carcinogenic Carcinogenic Hazard Carcinogenic Risk (Minimum of Two Adequately-Spaced (With Respect Designation Date Risk Risk Quotient Alternate Description To Time) Indoor Air Sampling Events Needed) CS1 2/19/2010 6.70E-05 0.000067 0.77 67 in a million Monitoring based on incremental carcinogenic risk CS2 2/19/2010 7.83E-05 0.0000783 0.81 78 in a million Monitoring based on incremental carcinogenic risk CS3 2/19/2010 9.17E-06 0.00000917 0.084 9 in a million Monitoring based on incremental carcinogenic risk Ambient 2/19/2010 7.31E-06 0.00000731 0.0381 7 in a million None- sample is outdoor ambient air		Cumulative	Cumulative	Calculated			Ι	DTSC-Red	commend	ed			
Designation Date Risk Risk Quotient Alternate Description To Time) Indoor Air Sampling Events Needed) CS1 2/19/2010 6.70E-05 0.000067 0.77 67 in a million Monitoring based on incremental carcinogenic risk CS2 2/19/2010 7.83E-05 0.0000783 0.81 78 in a million Monitoring based on incremental carcinogenic risk CS3 2/19/2010 9.17E-06 0.00000917 0.084 9 in a million Monitoring based on incremental carcinogenic risk Ambient 2/19/2010 7.31E-06 0.00000731 0.0381 7 in a million None- sample is outdoor ambient air	Sample	e Incremental	Incremental	Cumulative	Calculate	d Incremental		Guidance 1	for Action	or Respor	ise		
CS1 2/19/2010 6.70E-05 0.000067 0.77 67 in a million Monitoring based on incremental carcinogenic risk CS2 2/19/2010 7.83E-05 0.0000783 0.81 78 in a million Monitoring based on incremental carcinogenic risk CS3 2/19/2010 9.17E-06 0.00000917 0.084 9 in a million Monitoring based on incremental carcinogenic risk Ambient 2/19/2010 7.31E-06 0.00000731 0.0381 7 in a million None- sample is outdoor ambient air	Air Sample Collection	ction Carcinogenic	Carcinogenic	Hazard	Carcinoge	enic Risk	((Minimum	of Two A	Adequately	-Spaced (Wit	h Respect	
CS2 2/19/2010 7.83E-05 0.0000783 0.81 78 in a million Monitoring based on incremental carcinogenic risk CS3 2/19/2010 9.17E-06 0.00000917 0.084 9 in a million Monitoring based on incremental carcinogenic risk Ambient 2/19/2010 7.31E-06 0.00000731 0.0381 7 in a million None- sample is outdoor ambient air	Designation Date	Risk	Risk	Quotient	Alternate	Description	7	To Time) l	Indoor Ai	r Sampling	Events Need	led)	
CS2 2/19/2010 7.83E-05 0.0000783 0.81 78 in a million Monitoring based on incremental carcinogenic risk CS3 2/19/2010 9.17E-06 0.00000917 0.084 9 in a million Monitoring based on incremental carcinogenic risk Ambient 2/19/2010 7.31E-06 0.00000731 0.0381 7 in a million None- sample is outdoor ambient air													
CS3 2/19/2010 9.17E-06 0.00000917 0.084 9 in a million Monitoring based on incremental carcinogenic risk Ambient 2/19/2010 7.31E-06 0.00000731 0.0381 7 in a million None- sample is outdoor ambient air	CS1 2/19/2010	/2010 6.70E-05	0.000067	0.77	67 in a mi	llion	N	Monitoring	g based or	n incremen	tal carcinoger	nic risk	
CS3 2/19/2010 9.17E-06 0.00000917 0.084 9 in a million Monitoring based on incremental carcinogenic risk Ambient 2/19/2010 7.31E-06 0.00000731 0.0381 7 in a million None- sample is outdoor ambient air													
Ambient 2/19/2010 7.31E-06 0.00000731 0.0381 7 in a million None- sample is outdoor ambient air	CS2 2/19/2010	/2010 7.83E-05	0.0000783	0.81	78 in a mi	llion	N	Monitoring	g based or	incremen	tal carcinoger	nic risk	
Ambient 2/19/2010 7.31E-06 0.00000731 0.0381 7 in a million None- sample is outdoor ambient air													
	CS3 2/19/2010	/2010 9.17E-06	0.00000917	0.084	9 in a mil	lion	N	Monitoring	g based or	incremen	tal carcinoger	nic risk	
NOTES.	Ambient 2/19/2010	/2010 7.31E-06	0.00000731	0.0381	7 in a mil	lion	N	None- sam	ple is out	door ambie	ent air		
NOTIFIC.													
NOTES.													
<u>NOTES:</u>	NOTES:												
DTSC-Recommended Response Guidelines		DTSC-Recom	mended Respo	nse Guidelines									
Risk Hazard Response Activities		Risk		<u>Hazard</u>		Response	A	Activities					
Less than 1 in a million less than 1.0 Minimal Determine that the soil vapor plume is stable.		Less than 1 in	a million	less than 1.0		Minimal	Ι	Determine	that the s	oil vapor p	lume is stable	e.	
1 to 100 in a million 1.0 to 3.0 Monitoring Install permanent sublsab monitoring points and collect soil gas		1 to 100 in a m	nillion	1.0 to 3.0		Monitoring	I	Install peri	nanent su	blsab mon	itoring points	and collect so	il gas
samples and indoor air samples semi-annually.							s	samples ar	nd indoor	air samples	s semi-annual	lly.	
More than 100 in a million more than 3.0 Mitigation Institute engineering controls to mitigate exposure and collect soil		More than 100	in a million	more than 3.0		Mitigation	I	Institute er	ngineering	controls to	o mitigate exp	posure and col	lect soil
gas samples and indoor air samples semi-annually to verify							g	gas sample	es and ind	oor air sam	ples semi-an	nually to verif	y
mitigation of exposure.							n	mitigation	of exposu	ıre.			

FIGURES




Figure 3
Typical Soil Gas Sample Collection Manifold
Snow Cleaners
2678 Coolidge Avenue
Oakland, California


P&D Environmental, Inc. 55 Santa Clara Ave., Suite 240 Oakland, CA 94610

APPENDIX A

Soil Gas Sampling Purge Calculations and Field Data Sheets

Soil Gas Purge Volume Calculations

One Purge Volume is calculated as the volume of the tubing interior plus the volume of the sand interval of the borehole.

The tubing interior volume is calculated as follows:

V tubing = pi x (r x r) x h, where pi = 3.14, r = 0.187 in./2, and h = 7 ft.

V tubing = $3.14 \times (0.0935 \times 0.0935) \times (7 \text{ ft. } \times 12 \text{ in./ft.}) =$ 2.31 cubic inches

The sand interval volume is calculated as follows:

V sand interval = pi x (r x r) x h x porosity, where pi = 3.14, r = 1.0 in./2, h = 8 in., and porosity = 0.35

V sand interval = $3.14 \times (0.5 \times 0.5) \times 8 \times 0.35 =$ 2.20 cubic inches

The total volume for one purge volume is V tubing + V sand interval, where

V total = 2.31 cubic inches + 2.20 cubic inches = 4.50 cubic inches

To convert to cubic centimeters:

V total = 4.50 cubic inches x 16.39 cubic centimeters/cubic inches = 73.8 cubic centimeters

The total volume to be purged is 3 purge volumes.

V purge total = 73.8 cubic centimeters x 3 = 221 cubic centimeters

The flow controller has a nominal flow rate of 200 cubic centimeters per minute.

The purge time is calculated as follows:

T purge = 221 cubic centimeters/200 cubic centimeters per minute = 1.11 minutes

Converting the purge time to seconds,1.11 minutes x 60seconds/ minute = 66 seconds

SOIL GAS S	SAMPLING I	DATA SHEET													
Address	2672	RELIDI	GE AVE								+ · · · · · · · · · · · · · · · · · · ·			k i i	
Job# Date	Shari	KE.	4	Probe Method (c o PRT	neck one)	:								-	
	er ML	1		Y Temp Well							2.2			t 1	1
P&D Sample Drilling Com	pany VIF	20 HEX.		1.											
				and the second											- 1
				Comple							T:	Begin			İ
ļ		1		Sample Canister Initial	Start leak	End leak	ADDITIONAL			Start of	Time and conc. (ppm)	sample collection	End sample collection		Į
Son Gas	Probe	Time		Vacuum	check	check	leak check			tracer gas	of tracer	vacuum (In.	vacuum (In.		İ
Lecation Designation	Depth (Ft.)	Probe Installed	Canieter #	Check (in Hg) and time	vacuum (In. Hg) and time	vacuum (in Hg) and time	vacuum (In. Hg) and time	Start PURGE time	End PURGE time	equilibration time	gas equilibration	Hg) and time	Hg) and	NOTES	Į.
sg 19	5	\$ 58	Canister # 34083	vac - 34.5	vac - 26		vac	unc		tirite.	conc 26		time vac - 5	NOTES	Ì
	J.			time 0945	:me/19500	Caime 1000	time	time I I HAW	time 1 / 44 0	7 time 1143	time LAR	time 1149	17me/2494	5 1250	0
						Came (CCC)	uno		ament the	Lancit (2)	THE TO	. 4810 11 11	· Wile IV C. i	2 120-	Oppor
sg 26	5	1220	3048	vac - 30)	vac-36	vac - 26	var				conc 34	Vac-,28	var = 5		
1 JUL .			in the	time/553	time 16 5 6	time /605	time	1606	Vime I/ AT	17 mallot	Zatime I LIO	Aumai & IIA	2 time 16165	5 1617	anda.
					615.37	1605	une		•						oppm
sg 31	~ <	12.00	36503	vac - 30	vac 37	vac-37	vac				QC 2000	··· 29	vac 🖛 📆	38 1600	
			ير ماروس	time (1/3)	1000 12/2 E	time / 4 4 5	time	time 1536 N	SimalK 276	7 mar 37	2 Am LUNY	د المراجعة	n 1557	88 1600 B	oppm
				W 7 7 7	**************************************	1742	une	" Jeac	2 J. L. C. Similar	(31193)(July	anel Delpa	Dune 15-07 1.	المالي المالية	J.P.
SG 21			34692	vac := 20	vac		vac				cone			. <u>-</u>	
SG 21			31010	time 1434	time	time	time	time	time	time .	time	time	vac	!	
V-1	al a a a			- FC 54	2-11 C		u.i.e	, anne	uine.	unic .		une	ame	PAR MUNT	/
sg 22	5	1125	341653	vac - 30	~ ⊃ β	vac - 28					as	3a	vac - 5	can part	and
00 21.5	ر	. : (1).)	. مرديطها س	time 13:14		time / 336		uma 15160	O 1000 15 57	7.mo/E 172	2, 100/501/1	1 mai 5 712	W.m.at 6 19 to	0 1532	2000
					""4 J J J P	عارروا الاست	une	une ()	C michael	. Landair	uniez wie	Unie John	Dang 1263	6 73 3	10 ppm
SG 23	K	11.27	34120	vac - 36	vac -28	vac - 28	vac				conc 34	Vac - 28	vac +- 5		**
ر پر				time [214		time (228		time 1 209 0	ANE Lamit	7 time /21/1	Ctime 1 3ius	A time 1 314	20mg 1516	1532	n nal.
				1217	1210	- (XXO				Laurel 2001	S WING COLOR	7.4mg (OF 1)	1214 C	NO 100 PE	o ppu
SG				vac	var	vac	vac				conc	vac	var		
~				time	time	time	time	time	time	time	time	time	time		
							1					unic	unic		
sg				······································	vac	vac	vac		 	1 "	conc	vac	vac		
J. J		etime e in it is		time	time	time	time	time	time	time	time	time	time		· · · · ·
	· · · · · ·	. 													
SG		7		vac	vac -	vac	vac				conc	vac	vac		
		÷		time	time	time	time	time	time	time	time	time	time		
			هر سدر بنواد این داد. د							-	3110			:	
SG				var	vac	ivac	vac				conc	var	,		
~~				time	time	time	time	time	time	time	time	time	time		
	4		-	mile			uin.		Unic	unic	unic	- 4116	ante		
SG				i	//ac	vac	vac	· · · · · · · · · · · · · · · · · · ·			conc	\/ac		.	
		4.2		time	time	time	time	lime :	timo	time	conc.	vac time	Val.		
	<u></u>	. 1		unic	Citie	unie	ane	une	ume	une	time	urrje	ame		
SG	+				war	var		: : : : - - - - - - - - - -			conc	: vac			
	3 <u>1</u>			time	time	time	vdL time	time	timo.	time	time	vac time	vac	}-	
	·			wile	urne	une	une	ume	ame	ume	ume	ume	une		
SG													-11 t	÷	
55	\$ 4.0 mm			vac	vac	vac	VaC			41	conc.	vac	vac		
			<u> </u>	time	time	time	time	time	time	time	time	time	time		1

SOIL GAS SAMPLING DA Address 2178 C Job# 6498 K Date 2/19/10 P&D Sampler MLI	ATA SHEET	A FIR SAL	IPLE										
Job# 6498. K	ELLE.	AVC	Probe Method (c	heck one)									
Date 3/19/10 P&D Sampler M.L.L	S		o PRT o Temp Well										* * * * * * * * * * * * * * * * * * * *
Drilling Company V(R	DUEK		0 101112										
													- 0 0 a c
•										_	Begin		· · · · · -
Soil Gas Probe Location Depth Designation (Ft.)	Time Probe Installed	Canister#	Sample Canister Initial Vacuum Check (In. Hg) and time	Start leak check vacuum (In. Hg) and time	End leak check vacuum (in Hg) and time	ADDITIONAL leak check vacuum (In. Hg) and time	Start PURGE time	End PURGE	Start of tracer gas equilibration time	Time and conc. (ppm) of tracer gas equilibration	sample collection vacuum (In Hg) and time	End sample collection vacuum (In Hg) and time	NOTES
651		and and	vac	vac	vac	vac				conc	vac 34	Svac -	16 FEET INTO
651		21004	time	time	time	time	time 1008 15	time/00715	time	time			16 FEET INTO
ee .		7	vac	vac	vac	vac				conc.	vac 20	5ac - 35	16 FEET INTO
e6 65 ⊋		32120	time	time	time	time	time 101335	5time 10132	time	time	time 1014	Vime! 8/43	CRAWL SHACE
									-				
86			vac	vac	vac	vac				conc	vac -30	vac - 7 Otime 171500	6 FEET INTO
ee 65 3		13674	time	time	time	time	time091230	Dtime09133	Aime	time	time 9150	Otime 171500	CRAWL SPACE
<u> </u>				_ ·- · · · ·									a sa
262			vac	vac	vac	vac				conc.	vac - 30	vac = 5	
200		34258	time	time	time	time	time	time	time	time	time 1150	Otime 171500	W 0 0 101
563 Dup SG		77252											100 1 00
130			vac time	time	vac time	vac time	tme	time	time	conc.	vac time	vac time	
			attie	une	in ite	ane	e		mne	ume	une	une	
SC			vac	vac	vac	vac				conc.	vac - 30	vac =/	
AMBIANT		3734	time	time	time	time	time	time	time	time	time OK 55	April 16550	0
												10.500	
SG			vac	vac	vac	vac				conc	vac	vac	
			time	time	time	time	time	time	time	time	time	time	e e e e
				- · · · · · · · · · · · · · · · · · · ·									
SG	- +		vac	vac	vac	vac				conc.	vac	vac	
			time	time	time	time	time	time	time	time	time	time	
SG				:									11 H H H H H H H H H H H H H H H
55			time	time	vac time	vac time	time	time	time	time	vac	vac	
		La a a a a a a a a a a a a a a a a a a					arno	anre		wire .	wine .	anic	
SG		i	vac	vac	vac	vac	· · · · · · · · · · · · · · · · · · ·			conc.	vac	vac	en en en en en en en en en en en en en e
			time	time	time	time	time	time	time	time	time	time	
SG			vac	vac	vac	vac				conc	vac	vac	
L i		ļ.4	time	time	time	time	time	time	time	time	time	time	
]	.1		:						+				
SG		L4 - 1 - 2 - 1	vac	vac	vac	vac ,			4	conc	vac	vac	
		L1	time	time	time	time	time	time	time	time	time	time	
sg													
30	1.	<u>:</u>	vac time	time	vac	vac time	time	time	time	conc.	vac	vac	
L			ame	ume	ume	arrie	une	time	arne	time	time	time	

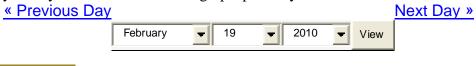
.

•

APPENDIX B

Weather Information

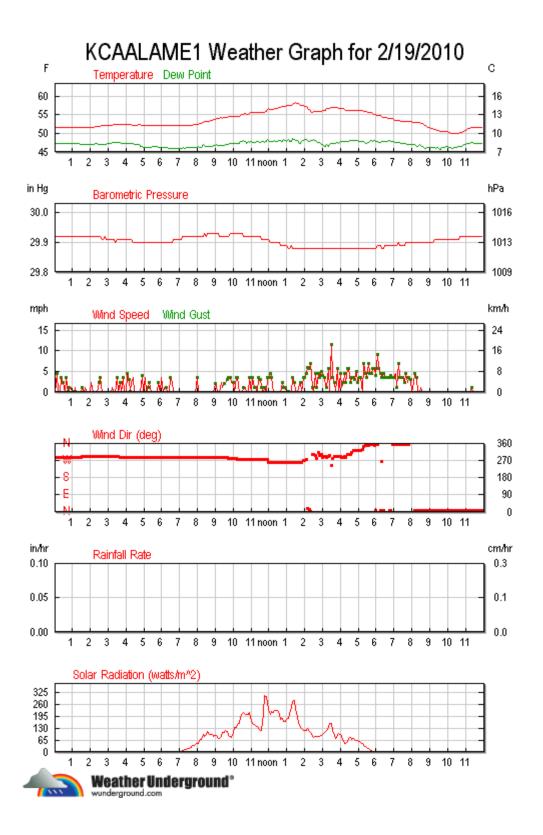
About This PWS:

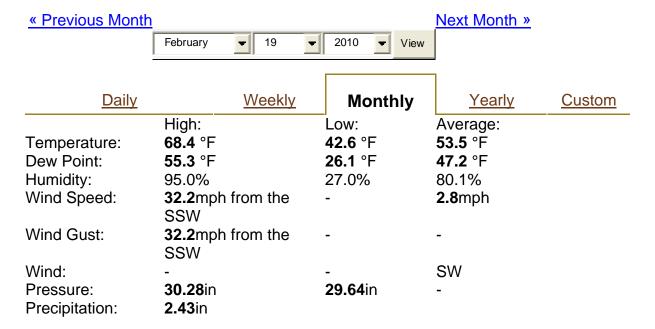

Lat: N 37 ° 46 ' 3 " (37.768 °) **Lon:** W 122 ° 15 ' 18 " (-122.255 °)

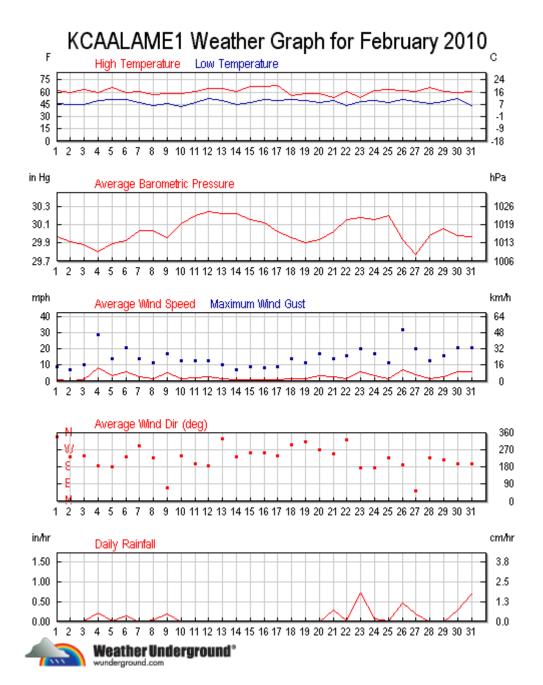
Elevation (ft): 15

Hardware: Davis Vantage Pro 2
Weather Station Software

Encinal Avenue & Lafayette St., Alameda, CA


http://www.wunderground.com/weatherstation/WXDailyHistory.asp?ID=KCAALAME1&day=19&year=2010&month=2&graphspan=day


Daily	<u>Week</u>	ly	Mo	<u>onthly</u>		<u>Yearly</u>	<u>Custom</u>
		Current	:High:		Low:	Average:	
Temperatu	ıre:	63.5 °F	58.3 °F		49.9°	F 53.6 °F	
Dew Point	:	44.0 °F	48.5 °F		45.8°	F 47.1 °F	
Humidity:		49%	88%		68%	79%	
Wind Spee	ed:	3.5 mph	11.5 mph		-	1.6 mph	
Wind Gust	:	3.5 mph	11.5 mph		-	-	
Wind:		NW .	-		-	NW	
Pressure:		30.15 in	29.93 in		29.88	in-	
Precipitation	on:	0.00 in					


Statistics for the rest of the month:

	High:	Low:	Average:
Temperature:	68.4 °F	42.6 °F	53.5 °F
Dew Point:	55.3 °F	26.1 °F	47.2 °F
Humidity:	95.0%	27.0%	80.1%
Wind Speed:	32.2mph from the SSW	-	2.8 mph
Wind Gust:	32.2mph from the SSW	-	_
Wind:	-	-	SW
Pressure:	30.28 in	29.64 in	-

http://www.wunderground.com/weatherstation/WXDailyHistory.asp?ID=KCAALAME1&day=19&year=2010&month=2&graphspan=month

APPENDIX C

Laboratory Analytical Reports and Chain of Custody Documentation

3/9/2010 Mr. Paul King P & D Environmental 55 Santa Clara Suite 240 Oakland CA 94610

Project Name: Snow Cleaners 2678 Coolidge Ave, Oakland

Project #: 0298

Workorder #: 1002488A

Dear Mr. Paul King

The following report includes the data for the above referenced project for sample(s) received on 2/24/2010 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kyle Vagadori at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kyle Vagadori

Project Manager

Kya Vych

WORK ORDER #: 1002488A

Work Order Summary

CLIENT: Mr. Paul King BILL TO: Mr. Paul King

P & D Environmental

55 Santa Clara

Suite 240

P & D Environmental

55 Santa Clara

Suite 240

Suite 240

Oakland, CA 94610 Oakland, CA 94610

PHONE: 510-658-6916 **P.O.** #

FAX: 510-834-0772 **PROJECT** # 0298 Snow Cleaners 2678 Coolidge Ave,

DATE RECEIVED: 02/24/2010 CONTACT: Oakland Kyle Vagadori 03/09/2010

			RECEIPT	FINAL
FRACTION #	NAME	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	CS1	Modified TO-15	3.5 "Hg	5 psi
01B	CS1	Modified TO-15	3.5 "Hg	5 psi
02A	CS2	Modified TO-15	5.0 "Hg	5 psi
02B	CS2	Modified TO-15	5.0 "Hg	5 psi
03A	CS3	Modified TO-15	4.5 "Hg	5 psi
03B	CS3	Modified TO-15	4.5 "Hg	5 psi
04A	CS3-DUP	Modified TO-15	4.5 "Hg	5 psi
04B	CS3-DUP	Modified TO-15	4.5 "Hg	5 psi
05A	AMBIENT	Modified TO-15	5.0 "Hg	5 psi
05B	AMBIENT	Modified TO-15	5.0 "Hg	5 psi
06A	Lab Blank	Modified TO-15	NA	NA
06B	Lab Blank	Modified TO-15	NA	NA
06C	Lab Blank	Modified TO-15	NA	NA
06D	Lab Blank	Modified TO-15	NA	NA
07A	CCV	Modified TO-15	NA	NA
07B	CCV	Modified TO-15	NA	NA
07C	CCV	Modified TO-15	NA	NA

Continued on next page

WORK ORDER #: 1002488A

Work Order Summary

CLIENT: Mr. Paul King BILL TO: Mr. Paul King

P & D Environmental
P & D Environmental
Suite 240
P & D Environmental
Suite 240
Suite 240

Oakland, CA 94610 Oakland, CA 94610

PHONE: 510-658-6916 **P.O.** #

FAX: 510-834-0772 **PROJECT** # 0298 Snow Cleaners 2678 Coolidge Ave,

DATE RECEIVED: 02/24/2010 Oakland Kyle Vagadori **DATE COMPLETED:** 03/09/2010

			RECEIPT	FINAL
FRACTION #	<u>NAME</u>	<u>TEST</u>	VAC./PRES.	PRESSURE
07D	CCV	Modified TO-15	NA	NA
08A	LCS	Modified TO-15	NA	NA
08B	LCS	Modified TO-15	NA	NA
08C	LCS	Modified TO-15	NA	NA
08D	LCS	Modified TO-15	NA	NA

CERTIFIED BY:

Sinda d. Fruman

DATE: 03/09/10

Laboratory Director

Certfication numbers: CA NELAP - 02110CA, LA NELAP/LELAP- AI 30763, NY NELAP - 11291, UT NELAP - 9166389892, AZ Licensure AZ0719

Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act,

Accreditation number: E87680, Effective date: 07/01/09, Expiration date: 06/30/10

Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

LABORATORY NARRATIVE Modified TO-15 Full Scan/SIM P & D Environmental Workorder# 1002488A

Five 6 Liter Summa Canister (SIM Certified) samples were received on February 24, 2010. The laboratory performed analysis via modified EPA Method TO-15 using GC/MS in the Full Scan and SIM acquisition modes. The method involves concentrating up to 1.0 liters of air. The concentrated aliquot is then flash vaporized and swept through a water management system to remove water vapor. Following dehumidification, the sample passes directly into the GC/MS for analysis.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	TO-15	ATL Modifications
ICAL %RSD acceptance criteria	=30% RSD with 2<br compounds allowed out to < 40% RSD	For Full Scan: 30% RSD with 4 compounds allowed out to < 40% RSD For SIM: Project specific; default criteria is =30% RSD with 10% of compounds allowed out to < 40% RSD</td
Daily Calibration	+- 30% Difference	For Full Scan: = 30% Difference with four allowed out up to </=40%.; flag and narrate outliers For SIM: Project specific; default criteria is </= 30% Difference with 10% of compounds allowed out up to </=40%.; flag and narrate outliers</td
Blank and standards	Zero air	Nitrogen
Method Detection Limit	Follow 40CFR Pt.136 App. B	The MDL met all relevant requirements in Method TO-15 (statistical MDL less than the LOQ). The concentration of the spiked replicate may have exceeded 10X the calculated MDL in some cases

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

The results for each sample in this report were acquired from two separate data files originating from the same analytical run. The two data files have the same base file name and are differentiated with a "sim" extension on the SIM data file.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - Q Exceeds quality control limits.
 - U Compound analyzed for but not detected above the reporting limit.
 - UJ- Non-detected compound associated with low bias in the CCV
 - N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

- a-File was requantified
- b-File was quantified by a second column and detector
- r1-File was requantified for the purpose of reissue

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

Client Sample ID: CS1

Lab ID#: 1002488A-01A

No Detections Were Found.

Client Sample ID: CS1 Lab ID#: 1002488A-01B

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Tetrachloroethene	0.030	0.056	0.21	0.38
Trichloroethene	0.030	0.082	0.16	0.44
Benzene	0.076	1.5	0.24	4.7
Toluene	0.030	13	0.11	48
Ethyl Benzene	0.030	2.2	0.13	9.4
m,p-Xylene	0.061	8.4	0.26	36
o-Xylene	0.030	2.5	0.13	11
-				

Client Sample ID: CS2

Lab ID#: 1002488A-02A

No Detections Were Found.

Client Sample ID: CS2 Lab ID#: 1002488A-02B

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Tetrachloroethene	0.032	0.17	0.22	1.2
Trichloroethene	0.032	0.59	0.17	3.2
Benzene	0.080	1.7	0.26	5.3
Toluene	0.032	13	0.12	50
Ethyl Benzene	0.032	2.1	0.14	9.3
m,p-Xylene	0.064	8.0	0.28	35
o-Xylene	0.032	2.4	0.14	10

Client Sample ID: CS3

Lab ID#: 1002488A-03A

No Detections Were Found.

Client Sample ID: CS3 Lab ID#: 1002488A-03B

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

Client Sample ID: CS3 Lab ID#: 1002488A-03B

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Tetrachloroethene	0.032	0.034	0.21	0.23
Benzene	0.079	0.20	0.25	0.65
Toluene	0.032	0.99	0.12	3.7
Ethyl Benzene	0.032	0.18	0.14	0.77
m,p-Xylene	0.063	0.82	0.27	3.6
o-Xylene	0.032	0.23	0.14	1.0

Client Sample ID: CS3-DUP

Lab ID#: 1002488A-04A

No Detections Were Found.

Client Sample ID: CS3-DUP Lab ID#: 1002488A-04B

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Benzene	0.079	0.20	0.25	0.64
Toluene	0.032	1.0	0.12	3.9
Ethyl Benzene	0.032	0.18	0.14	0.79
m,p-Xylene	0.063	0.86	0.27	3.7
o-Xylene	0.032	0.24	0.14	1.0

Client Sample ID: AMBIENT

Lab ID#: 1002488A-05A
No Detections Were Found.

Client Sample ID: AMBIENT

Lab ID#: 1002488A-05B

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Benzene	0.080	0.18	0.26	0.56
Toluene	0.032	0.34	0.12	1.3
Ethyl Benzene	0.032	0.067	0.14	0.29
m,p-Xylene	0.064	0.22	0.28	0.98
o-Xylene	0.032	0.078	0.14	0.34

Client Sample ID: CS1 Lab ID#: 1002488A-01A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	s022618	Date of Collection: 2/19/10 6:11:00 PM
Dil. Factor:	1.52	Date of Analysis: 2/26/10 09:24 PM

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Naphthalene	0.76	Not Detected	4.0	Not Detected

•	•	Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	109	70-130
Toluene-d8	108	70-130
4-Bromofluorobenzene	102	70-130

Client Sample ID: CS1 Lab ID#: 1002488A-01B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

 File Name:
 s022618sim
 Date of Collection: 2/19/10 6:11:00 PM

 Dil. Factor:
 1.52
 Date of Analysis: 2/26/10 09:24 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
cis-1,2-Dichloroethene	0.030	Not Detected	0.12	Not Detected
trans-1,2-Dichloroethene	0.15	Not Detected	0.60	Not Detected
Tetrachloroethene	0.030	0.056	0.21	0.38
Trichloroethene	0.030	0.082	0.16	0.44
Vinyl Chloride	0.015	Not Detected	0.039	Not Detected
Benzene	0.076	1.5	0.24	4.7
Toluene	0.030	13	0.11	48
Ethyl Benzene	0.030	2.2	0.13	9.4
m,p-Xylene	0.061	8.4	0.26	36
o-Xylene	0.030	2.5	0.13	11

	,	Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	109	70-130	
Toluene-d8	110	70-130	
4-Bromofluorobenzene	103	70-130	

Client Sample ID: CS2 Lab ID#: 1002488A-02A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	s022619	Date of Collection: 2/19/10 6:14:00 PM
Dil. Factor:	1.61	Date of Analysis: 2/26/10 10:04 PM

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Naphthalene	0.80	Not Detected	4.2	Not Detected

	· ,	Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	109	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	104	70-130	

Client Sample ID: CS2 Lab ID#: 1002488A-02B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	s022619sim	Date of Collection: 2/19/10 6:14:00 PM
Dil. Factor:	1.61	Date of Analysis: 2/26/10 10:04 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
cis-1,2-Dichloroethene	0.032	Not Detected	0.13	Not Detected
trans-1,2-Dichloroethene	0.16	Not Detected	0.64	Not Detected
Tetrachloroethene	0.032	0.17	0.22	1.2
Trichloroethene	0.032	0.59	0.17	3.2
Vinyl Chloride	0.016	Not Detected	0.041	Not Detected
Benzene	0.080	1.7	0.26	5.3
Toluene	0.032	13	0.12	50
Ethyl Benzene	0.032	2.1	0.14	9.3
m,p-Xylene	0.064	8.0	0.28	35
o-Xylene	0.032	2.4	0.14	10

•	,	Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	110	70-130	
Toluene-d8	109	70-130	
4-Bromofluorobenzene	100	70-130	

Client Sample ID: CS3 Lab ID#: 1002488A-03A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	e030108	Date of Collection: 2/19/10 5:15:00 PM
Dil. Factor:	1.58	Date of Analysis: 3/1/10 12:16 PM

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Naphthalene	0.79	Not Detected	4.1	Not Detected

•		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	100	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	97	70-130

Client Sample ID: CS3 Lab ID#: 1002488A-03B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	e030108sim	Date of Collection: 2/19/10 5:15:00 PM
Dil. Factor:	1.58	Date of Analysis: 3/1/10 12:16 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
cis-1,2-Dichloroethene	0.032	Not Detected	0.12	Not Detected
trans-1,2-Dichloroethene	0.16	Not Detected	0.63	Not Detected
Tetrachloroethene	0.032	0.034	0.21	0.23
Trichloroethene	0.032	Not Detected	0.17	Not Detected
Vinyl Chloride	0.016	Not Detected	0.040	Not Detected
Benzene	0.079	0.20	0.25	0.65
Toluene	0.032	0.99	0.12	3.7
Ethyl Benzene	0.032	0.18	0.14	0.77
m,p-Xylene	0.063	0.82	0.27	3.6
o-Xylene	0.032	0.23	0.14	1.0

	,	Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	99	70-130
Toluene-d8	98	70-130
4-Bromofluorobenzene	97	70-130

Client Sample ID: CS3-DUP Lab ID#: 1002488A-04A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	e030109	Date of Collection: 2/19/10 5:15:00 PM
Dil. Factor:	1.58	Date of Analysis: 3/1/10 01:13 PM

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Naphthalene	0.79	Not Detected	4.1	Not Detected

•	•	Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	97	70-130
Toluene-d8	99	70-130
4-Bromofluorobenzene	96	70-130

Client Sample ID: CS3-DUP Lab ID#: 1002488A-04B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	e030109sim	Date of Collection: 2/19/10 5:15:00 PM
Dil. Factor:	1.58	Date of Analysis: 3/1/10 01:13 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
cis-1,2-Dichloroethene	0.032	Not Detected	0.12	Not Detected
trans-1,2-Dichloroethene	0.16	Not Detected	0.63	Not Detected
Tetrachloroethene	0.032	Not Detected	0.21	Not Detected
Trichloroethene	0.032	Not Detected	0.17	Not Detected
Vinyl Chloride	0.016	Not Detected	0.040	Not Detected
Benzene	0.079	0.20	0.25	0.64
Toluene	0.032	1.0	0.12	3.9
Ethyl Benzene	0.032	0.18	0.14	0.79
m,p-Xylene	0.063	0.86	0.27	3.7
o-Xylene	0.032	0.24	0.14	1.0

	•	Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	97	70-130
Toluene-d8	98	70-130
4-Bromofluorobenzene	97	70-130

Client Sample ID: AMBIENT Lab ID#: 1002488A-05A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	e030110	Date of Collection: 2/19/10 4:55:00 PM
Dil. Factor:	1.61	Date of Analysis: 3/1/10 02:00 PM

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Naphthalene	0.80	Not Detected	4.2	Not Detected

•	•	Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	95	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	96	70-130

Client Sample ID: AMBIENT Lab ID#: 1002488A-05B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

 File Name:
 e030110sim
 Date of Collection: 2/19/10 4:55:00 PM

 Dil. Factor:
 1.61
 Date of Analysis: 3/1/10 02:00 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
cis-1,2-Dichloroethene	0.032	Not Detected	0.13	Not Detected
trans-1,2-Dichloroethene	0.16	Not Detected	0.64	Not Detected
Tetrachloroethene	0.032	Not Detected	0.22	Not Detected
Trichloroethene	0.032	Not Detected	0.17	Not Detected
Vinyl Chloride	0.016	Not Detected	0.041	Not Detected
Benzene	0.080	0.18	0.26	0.56
Toluene	0.032	0.34	0.12	1.3
Ethyl Benzene	0.032	0.067	0.14	0.29
m,p-Xylene	0.064	0.22	0.28	0.98
o-Xylene	0.032	0.078	0.14	0.34

	•	Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	97	70-130
Toluene-d8	98	70-130
4-Bromofluorobenzene	98	70-130

Client Sample ID: Lab Blank Lab ID#: 1002488A-06A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	s022606	Date	of Collection: NA	
Dil. Factor:	1.00	Date of Analysis: 2/26/10 12:56 PM		/10 12:56 PM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Compound	(ppbv)	(bbpa)	(ug/ilia)	(ug/iiiə)
Naphthalene	0.50	Not Detected	2.6	Not Detected

		Wethod	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	96	70-130	
4-Bromofluorobenzene	97	70-130	

Client Sample ID: Lab Blank Lab ID#: 1002488A-06B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

		D ((D II) 1 NA
File Name:	s022606sim	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 2/26/10 12:56 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
cis-1,2-Dichloroethene	0.020	Not Detected	0.079	Not Detected
trans-1,2-Dichloroethene	0.10	Not Detected	0.40	Not Detected
Tetrachloroethene	0.020	Not Detected	0.14	Not Detected
Trichloroethene	0.020	Not Detected	0.11	Not Detected
Vinyl Chloride	0.010	Not Detected	0.026	Not Detected
Benzene	0.050	Not Detected	0.16	Not Detected
Toluene	0.020	Not Detected	0.075	Not Detected
Ethyl Benzene	0.020	Not Detected	0.087	Not Detected
m,p-Xylene	0.040	Not Detected	0.17	Not Detected
o-Xylene	0.020	Not Detected	0.087	Not Detected

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	104	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	97	70-130	

Client Sample ID: Lab Blank Lab ID#: 1002488A-06C

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	e030107	Date	of Collection: NA	
Dil. Factor:	1.00	Date of Analysis: 3/1/10 11:24 AM		0 11:24 AM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Naphthalene	0.50	Not Detected	2.6	Not Detected

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	95	70-130
Toluene-d8	98	70-130
4-Bromofluorobenzene	98	70-130

Client Sample ID: Lab Blank Lab ID#: 1002488A-06D

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	e030107sim	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 3/1/10 11:24 AM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
cis-1,2-Dichloroethene	0.020	Not Detected	0.079	Not Detected
trans-1,2-Dichloroethene	0.10	Not Detected	0.40	Not Detected
Tetrachloroethene	0.020	Not Detected	0.14	Not Detected
Trichloroethene	0.020	Not Detected	0.11	Not Detected
Vinyl Chloride	0.010	Not Detected	0.026	Not Detected
Benzene	0.050	Not Detected	0.16	Not Detected
Toluene	0.020	Not Detected	0.075	Not Detected
Ethyl Benzene	0.020	Not Detected	0.087	Not Detected
m,p-Xylene	0.040	Not Detected	0.17	Not Detected
o-Xylene	0.020	Not Detected	0.087	Not Detected

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	98	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	98	70-130	

Client Sample ID: CCV Lab ID#: 1002488A-07A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: s022604 Date of Collection: NA

Dil. Factor: 1.00 Date of Analysis: 2/26/10 11:02 AM

Compound%RecoveryNaphthalene87

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	101	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	104	70-130

Client Sample ID: CCV Lab ID#: 1002488A-07B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: s022604sim Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 2/26/10 11:02 AM

Compound	%Recovery
cis-1,2-Dichloroethene	114
trans-1,2-Dichloroethene	110
Tetrachloroethene	105
Trichloroethene	107
Vinyl Chloride	107
Benzene	115
Toluene	113
Ethyl Benzene	123
m,p-Xylene	128
o-Xylene	130

		Method Limits		
Surrogates	%Recovery			
1,2-Dichloroethane-d4	102	70-130		
Toluene-d8	104	70-130		
4-Bromofluorobenzene	106	70-130		

Client Sample ID: CCV Lab ID#: 1002488A-07C

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: e030102 Date of Collection: NA

Dil. Factor: 1.00 Date of Analysis: 3/1/10 07:35 AM

Compound%RecoveryNaphthalene88

		Wethod
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	97	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	101	70-130

Client Sample ID: CCV Lab ID#: 1002488A-07D

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: e030102sim Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 3/1/10 07:35 AM

Compound	%Recovery
cis-1,2-Dichloroethene	80
trans-1,2-Dichloroethene	80
Tetrachloroethene	78
Trichloroethene	79
Vinyl Chloride	81
Benzene	78
Toluene	79
Ethyl Benzene	80
m,p-Xylene	80
o-Xylene	80

		Method			
Surrogates	%Recovery	Limits			
1,2-Dichloroethane-d4	98	70-130			
Toluene-d8	100	70-130			
4-Bromofluorobenzene	102	70-130			

Client Sample ID: LCS Lab ID#: 1002488A-08A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: s022603 Date of Collection: NA

Dil. Factor: 1.00 Date of Analysis: 2/26/10 10:09 AM

Compound%RecoveryNaphthalene95

		Wethod
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	110	70-130
Toluene-d8	103	70-130
4-Bromofluorobenzene	110	70-130

Client Sample ID: LCS Lab ID#: 1002488A-08B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: s022603sim Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 2/26/10 10:09 AM

Compound	%Recovery
cis-1,2-Dichloroethene	106
trans-1,2-Dichloroethene	107
Tetrachloroethene	97
Trichloroethene	101
Vinyl Chloride	110
Benzene	107
Toluene	106
Ethyl Benzene	121
m,p-Xylene	129
o-Xylene	129

		Method Limits		
Surrogates	%Recovery			
1,2-Dichloroethane-d4	106	70-130		
Toluene-d8	107	70-130		
4-Bromofluorobenzene	109	70-130		

Client Sample ID: LCS Lab ID#: 1002488A-08C

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: e030103 Date of Collection: NA

Dil. Factor: 1.00 Date of Analysis: 3/1/10 08:16 AM

Compound%RecoveryNaphthalene98

		wetnoa
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	102	70-130
Toluene-d8	101	70-130
4-Bromofluorobenzene	101	70-130

Client Sample ID: LCS Lab ID#: 1002488A-08D

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: e030103sim Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 3/1/10 08:16 AM

Compound	%Recovery
cis-1,2-Dichloroethene	95
trans-1,2-Dichloroethene	95
Tetrachloroethene	92
Trichloroethene	93
Vinyl Chloride	98
Benzene	91
Toluene	91
Ethyl Benzene	97
m,p-Xylene	97
o-Xylene	97

		Method		
Surrogates	%Recovery	Limits		
1,2-Dichloroethane-d4	103	70-130		
Toluene-d8	101	70-130		
4-Bromofluorobenzene	103	70-130		

CHAIN OF CUSTODY RECORD

PAGE __ OF _L

	(519) 658-6916						000) ; () <u>(</u>	<u> </u>	116	S	1\L	, 	PAG	0	F
	PROJECT HUMBER:				NAME:								T	1	/	
i	0298 Re 2678 cao 04 kian						NATAINERS ANALYSSIES! TE CE TO THE TOTAL									
	SAMPLED BY: (PRI	NTED: AND	SIGNAT	IDEL				L S	1 3	Ď š	131		I/I :	& /		
į	Michael DE				plant	1 De alex		82 ×	3	13		////		REWARKS		(S
	SAMPLE NUMBER	DATE	TIME	TYPE		SAMPLE LOC	ATION FINAL VACUUS	NUMBER OF CONTAINERS			//		PRESERVICE			
OAB	CS1	2/19/10	181120	Air	-29,	5 21004	-6		X	X			None	Nomal	Front	Aroul
OZAB	CSQ	2/19/10	181430	Air	-29.	5 32120	-5		X	T _X	+		i)	FI	à.	
03AB	CS 3	2/19/10	1715	AiR	-30	13674	-7	1	X	×			ħ	۸	<i>I</i> ³	3
OVAR	CS3-JUP	2/19/10	1715	AIR	- 30	34258	-5		×	×			1)	54	P)	^
OSAG.	AMBIANT	2/19/10	1655	Air	-30	3734	-6		X	—			n	<i>)</i> ' ,	, ,	,
1										+						
I					760	έx		 -	\sqcap	11	-				·	
ŀ						DY SEAL IN										
ŀ					YNO	NONE TEMP	VA-		П	\prod						
							i		╂┼	++		\square				
	RELINGUISHED BY: (Minin	_	DATE SY33/10	TIME		: (SIGNATURE)		TOTAL I	10. 0F SA 5 SHP163 10. OF CO	MPRES (1)	5		RATORY:		
	RELINCUISHED BY: (SICHATURE)	DATE	TIME	RECEIVED BY	(SIGNATURE)	103	LABO		Y CON	TAC	T: LABO	FLATORY PI 6) 985	HONE NU	MBER:
	RELINCUISHED BY: (SIGNATURE))	DATE	TIME	RECEIVED FO	R LABORATORY	BY:	17.7 <i>L</i>	SAL	PLE /	NAL.	YSIS RE	OUEST SHE		·U
	Results and billing to P&D Environmental, I lab@pdenviro.com	nc.	<u>-</u>	· ·		RFHARKS:				· · · · · ·						
_						<u> </u>										j

3/8/2010 Mr. Paul King P & D Environmental 55 Santa Clara Suite 240 Oakland CA 94610

Project Name: Snow Cleaners 2678 Coolidge Ave, Oakland

Project #: 0298

Workorder #: 1002488B

Dear Mr. Paul King

The following report includes the data for the above referenced project for sample(s) received on 2/24/2010 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-3 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kyle Vagadori at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kyle Vagadori

Project Manager

Kya Vych

WORK ORDER #: 1002488B

Work Order Summary

CLIENT: Mr. Paul King BILL TO: Mr. Paul King

P & D Environmental
55 Santa Clara
Suite 240

P & D Environmental
55 Santa Clara
Suite 240

Suite 240

Oakland, CA 94610 Oakland, CA 94610

PHONE: 510-658-6916 P.O.#

FAX: 510-834-0772 **PROJECT** # 0298 Snow Cleaners 2678 Coolidge Ave,

DATE RECEIVED: 02/24/2010 CONTACT: Oakland Kyle Vagadori DATE COMPLETED: 03/08/2010

			RECEIPT	FINAL
FRACTION #	<u>NAME</u>	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	CS1	Modified TO-3	3.5 "Hg	5 psi
01AA	CS1 Lab Duplicate	Modified TO-3	3.5 "Hg	5 psi
02A	CS2	Modified TO-3	5.0 "Hg	5 psi
03A	CS3	Modified TO-3	4.5 "Hg	5 psi
04A	CS3-DUP	Modified TO-3	4.5 "Hg	5 psi
05A	AMBIENT	Modified TO-3	5.0 "Hg	5 psi
06A	Lab Blank	Modified TO-3	NA	NA
07A	LCS	Modified TO-3	NA	NA

CERTIFIED BY:

Linda S. Fruman

DATE: 03/08/10

Laboratory Director

Certfication numbers: CA NELAP - 02110CA, LA NELAP/LELAP- AI 30763, NY NELAP - 11291, UT NELAP - 9166389892, AZ Licensure AZ0719

Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act, Accreditation number: E87680, Effective date: 07/01/09, Expiration date: 06/30/10

Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

LABORATORY NARRATIVE Modified TO-3 P & D Environmental Workorder# 1002488B

Five 6 Liter Summa Canister (SIM Certified) samples were received on February 24, 2010. The laboratory performed analysis for volatile organic compounds in air via modified EPA Method TO-3 using gas chromatography with flame ionization detection. The method involves concentrating up to 200 mL of sample. The concentrated aliquot is then dry purged to remove water vapor prior to entering the chromatographic system.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	TO-3	ATL Modifications
Daily Calibration Standard Frequency	Prior to sample analysis and every 4 - 6 hrs	Prior to sample analysis and after the analytical batch = 20 samples.</td
Initial Calibration Calculation	4-point calibration using a linear regression model	5-point calibration using average Response Factor
Initial Calibration Frequency	Weekly	When daily calibration standard recovery is outside 75 - 125 %, or upon significant changes to procedure or instrumentation
Moisture Control	Nafion system	Sorbent system
Minimum Detection Limit (MDL)	Calculated using the equation DL = A+3.3S, where A is intercept of calibration line and S is the standard deviation of at least 3 reps of low level standard	40 CFR Pt. 136 App. B
Preparation of Standards	Levels achieved through dilution of gas mixture	Levels achieved through loading various volumes of the gas mixture

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

There were no analytical discrepancies.

Definition of Data Qualifying Flags

Seven qualifiers may have been used on the data analysis sheets and indicate as follows:

- B Compound present in laboratory blank greater than reporting limit.
- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.

- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the detection limit.
- M Reported value may be biased due to apparent matrix interferences.

File extensions may have been used on the data analysis sheets and indicates as follows:

- a-File was requantified
- b-File was quantified by a second column and detector
- r1-File was requantified for the purpose of reissue

Summary of Detected Compounds MODIFIED EPA METHOD TO-3 GC/FID

Client Sample ID: CS1 Lab ID#: 1002488B-01A

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ppmv)	(ug/L)	(ppmv)	(ug/L)
Stoddard Solvent	0.038	0.22	0.053	0.31

Client Sample ID: CS1 Lab Duplicate

Lab ID#: 1002488B-01AA

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ppmv)	(ug/L)	(ppmv)	(ug/L)
Stoddard Solvent	0.038	0.22	0.048	0.28

Client Sample ID: CS2

Lab ID#: 1002488B-02A

Compound	Rpt. Limit	Rpt. Limit	Amount	Amount
	(ppmv)	(ug/L)	(ppmv)	(ug/L)
Stoddard Solvent	0.040	0.23	0.051	0.30

Client Sample ID: CS3

Lab ID#: 1002488B-03A

No Detections Were Found.

Client Sample ID: CS3-DUP

Lab ID#: 1002488B-04A
No Detections Were Found.

Client Sample ID: AMBIENT

Lab ID#: 1002488B-05A
No Detections Were Found.

Fluorobenzene (FID)

Client Sample ID: CS1 Lab ID#: 1002488B-01A

MODIFIED EPA METHOD TO-3 GC/FID

File Name: Dil. Factor:	d030311 1.52		Date of Collection: 2/19/10 6:11:00 PM Date of Analysis: 3/3/10 06:46 PM					
Compound	Rpt. Limit (ppmv)	Rpt. Limit (ug/L)	Amount (ppmv)	Amount (ug/L)				
Stoddard Solvent	0.038	0.22	0.053	0.31				
Container Type: 6 Liter Sun	nma Canister (SIM Certified)							
Surrogates		%Recovery		Method Limits				

104

75-150

Client Sample ID: CS1 Lab Duplicate Lab ID#: 1002488B-01AA

File Name: Dil. Factor:	d030316 1.52		Date of Collection: 2/19/10 6:11:00 PM Date of Analysis: 3/3/10 10:46 PM					
Compound	Rpt. Limit (ppmv)	Rpt. Limit (ug/L)	Amount (ppmv)	Amount (ug/L)				
Stoddard Solvent	0.038	0.22	0.048	0.28				
Container Type: 6 Liter Sun	nma Canister (SIM Certified)							
Surrogates		%Recovery		Method Limits				
Fluorobenzene (FID)	_	103		75-150				

Client Sample ID: CS2 Lab ID#: 1002488B-02A

File Name: Dil. Factor:	d030312 1.61		Date of Collection: 2/19/10 6:14:00 PN Date of Analysis: 3/3/10 07:58 PM						
Compound	Rpt. Limit (ppmv)	Rpt. Limit (ug/L)	Amount (ppmv)	Amount (ug/L)					
Stoddard Solvent	0.040	0.23	0.051	0.30					
Container Type: 6 Liter Sur	mma Canister (SIM Certified)								
Surrogates		%Recovery		Method Limits					
Fluorobenzene (FID)		104		75-150					

Client Sample ID: CS3 Lab ID#: 1002488B-03A

File Name: Dil. Factor:	d030313 1.58		Date of Collection: 2/19/10 5:15:00 PM Date of Analysis: 3/3/10 08:46 PM						
Compound	Rpt. Limit (ppmv)	Rpt. Limit (ug/L)	Amount (ppmv)	Amount (ug/L)					
Stoddard Solvent	0.040	0.23	Not Detected	Not Detected					
Container Type: 6 Liter Sun	nma Canister (SIM Certified)								
Surrogates		%Recovery		Method Limits					
Fluorobenzene (FID)		104		75-150					

Client Sample ID: CS3-DUP Lab ID#: 1002488B-04A

File Name: Dil. Factor:	d030314 1.58		Date of Collection: 2/19/10 5:15:00 PM Date of Analysis: 3/3/10 09:19 PM						
Compound	Rpt. Limit (ppmv)	Rpt. Limit (ug/L)	Amount (ppmv)	Amount (ug/L)					
Stoddard Solvent	0.040	0.23	Not Detected	Not Detected					
Container Type: 6 Liter Sun	nma Canister (SIM Certified)								
Surrogates		%Recovery		Method Limits					
Fluorobenzene (FID)		102		75-150					

Client Sample ID: AMBIENT Lab ID#: 1002488B-05A

File Name: Dil. Factor:	d030315 1.61		Date of Collection: 2/19/10 4:55:00 PM Date of Analysis: 3/3/10 09:52 PM					
Compound	Rpt. Limit (ppmv)	Rpt. Limit (ug/L)	Amount (ppmv)	Amount (ug/L)				
Stoddard Solvent	0.040	0.23	Not Detected	Not Detected				
Container Type: 6 Liter Sun	nma Canister (SIM Certified)							
Surrogates		%Recovery		Method Limits				
Fluorobenzene (FID)		103		75-150				

Client Sample ID: Lab Blank Lab ID#: 1002488B-06A

File Name: Dil. Factor:	d030310 1.00	Date of Collection: NA Date of Analysis: 3/3/10 05:56 PM						
Compound	Rpt. Limit (ppmv)	Rpt. Limit (ug/L)	Amount (ppmv)	Amount (ug/L)				
Stoddard Solvent	0.025	0.14	Not Detected	Not Detected				
Container Type: NA - Not A	pplicable							
Surrogates		%Recovery		Method Limits				
Fluorobenzene (FID)		105		75-150				

Client Sample ID: LCS Lab ID#: 1002488B-07A

MODIFIED EPA METHOD TO-3 GC/FID

File Name: d030307 Date of Collection: NA

Dil. Factor: 1.00 Date of Analysis: 3/3/10 03:10 PM

Compound %Recovery

Stoddard Solvent 121

Container Type: NA - Not Applicable

Surrogates%RecoveryMethod
LimitsFluorobenzene (FID)10375-150

1002488

CHAIN OF CUSTODY RECORD

PAGE DE

(510) 658-6916.							2 1 ()			~	7	^	• • •	/GE	UP .
PROJECT NUMBER:		T	PROJEC	T NAME:				T	7	इ		177	7	7	_
		ľ	SN	Mis 1	CLEANER) C	1					II	/	/	
0298.2	3											//	/ ,	/	
		٠,	2 W	المحت المانية المحادث أنها ا	LIDGE AVE	-		Ι.		16	7 7	'	' /	•	
				(100					レット	c/ 71	//	//	ų /		
SAMPLED BY: (PE				. /	1 11 1		NUMBER OF CONTAINERS	WALTERS (ES)							
Michael DE	TENT		Mi	chair	Wicken	Me		18/2°	[2]		/ /	/ &	7	REMAR	RKS
SAMPLE NUMBER	DATE	3MIT	TYPE	idit	SAMPLE LOCALINA CONTRA	TION FINAL	1 7 8			11		/ E	/		
CS1	2/9/10	181120	AiR	-29		# 0hoo	1	1 1		-	\leftarrow		 		
260					3 .21007		1	14	ا ما	+	╂	None	Non	al Var	<u> </u>
C52	2/19/10	181436	AIR	-29	5 32130	-5		X	Tx	+		63	13		
CS3	2/19/10	1715	100	-30	t to leave			П	П	I					
	,			├ ─	13674		1-1-	KL	X	\bot		ħ	٨	Ĥ	
CS3-JUP	2/19/10	1715	AIR	- 30	34258	-5	-		╁	- -		n	5.		
		İ	~				 	什	쒸	+			51	'	N
AMBIANT	2/19/10	1655	Air	-30	3734	-6		K	习			h)¢	20	,,
				<u> </u>		·			\prod	\perp					
				Ŧ50		······································	 -	++	H	_					
					DX SEAL INT	ACT?	 	╂┼	H	+	-				
				YN	NONE TEMP	A		11	+	+					
RELINQUISHED BY:	SCNATURE	,	DATE	TIME						$oxed{\Box}$					
Austant Win	eli in in		Nay.		RECEIVED BY:				3 0F SA	3	5		RATORY:	_	
RELINQUISHED BY:	SICNATURE	,	DATE	TIME	RECEIVED BY:	(SIGNATURE)	2905	TATAL NA (Sec)				- /- /- /- /- /- /- /- /- /- /- /- /- /-	TIP T	PHONE N	
RELINQUISHED BY: (CICHATURE						,	KYLL	E VA	(A)X	oRi	191	6198	5-10	OU.
		'	DATE .	TIME	RECEIVED FOR (SIGNATURE)	LABORATORY	8Y;		SAL	PLE /	ANAL	YSIS RE	QUEST S	HEET	
Results and billing t								Į.					·/ /·		

3/9/2010 Mr. Paul King P & D Environmental 55 Santa Clara Suite 240 Oakland CA 94610

Project Name: Snow Cleaners 2678 Coolidge Ave, Oakland

Project #: 0298

Workorder #: 1002489A

Dear Mr. Paul King

The following report includes the data for the above referenced project for sample(s) received on 2/24/2010 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kyle Vagadori at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kyle Vagadori

Project Manager

Kya Vych

WORK ORDER #: 1002489A

Work Order Summary

CLIENT: Mr. Paul King BILL TO: Mr. Paul King

P & D Environmental
55 Santa Clara
Suite 240

P & D Environmental
55 Santa Clara
Suite 240

Suite 240

Oakland, CA 94610 Oakland, CA 94610

PHONE: 510-658-6916 P.O.#

FAX: 510-834-0772 **PROJECT** # 0298 Snow Cleaners 2678 Coolidge Ave,

DATE RECEIVED: 02/24/2010 CONTACT: Oakland Kyle Vagadori 03/09/2010

			RECEIPT	FINAL
FRACTION #	<u>NAME</u>	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	SG-19	Modified TO-15	6.2 "Hg	15 psi
02A	SG-20	Modified TO-15	5.8 "Hg	15 psi
03A	SG-21	Modified TO-15	4.8 "Hg	15 psi
04A	SG-21 DUP	Modified TO-15	5.0 "Hg	15 psi
05A	SG-22	Modified TO-15	4.0 "Hg	15 psi
06A	SG-23	Modified TO-15	21.4 "Hg	15 psi
07A	Lab Blank	Modified TO-15	NA	NA
07B	Lab Blank	Modified TO-15	NA	NA
08A	CCV	Modified TO-15	NA	NA
08B	CCV	Modified TO-15	NA	NA
09A	LCS	Modified TO-15	NA	NA
09B	LCS	Modified TO-15	NA	NA

CERTIFIED BY:

Linda d. Fruman

03/09/10

DATE:

Laboratory Director

Certfication numbers: CA NELAP - 02110CA, LA NELAP/LELAP- AI 30763, NY NELAP - 11291, UT NELAP - 9166389892, AZ Licensure AZ0719

Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act, Accreditation number: E87680, Effective date: 07/01/09, Expiration date: 06/30/10

Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

LABORATORY NARRATIVE Modified TO-15 P & D Environmental Workorder# 1002489A

Six 1 Liter Summa Canister samples were received on February 24, 2010. The laboratory performed analysis via modified EPA Method TO-15 using GC/MS in the full scan mode.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	TO-15	ATL Modifications
Daily CCV	= 30% Difference</td <td><!--= 30% Difference; Compounds exceeding this criterion<br-->and associated data are flagged and narrated.</td>	= 30% Difference; Compounds exceeding this criterion<br and associated data are flagged and narrated.
Sample collection media	Summa canister	ATL recommends use of summa canisters to insure data defensibility, but will report results from Tedlar bags at client request
Method Detection Limit	Follow 40CFR Pt.136 App. B	The MDL met all relevant requirements in Method TO-15 (statistical MDL less than the LOQ). The concentration of the spiked replicate may have exceeded 10X the calculated MDL in some cases

Receiving Notes

Sample SG-23 was placed on hold per the client's request.

Sample SG-23 was received with significant vacuum remaining in the canister. The residual canister vacuum resulted in elevated reporting limits.

Sample SG-23 was removed from "Hold" and placed on "Active" status per client request on 2/26/10.

Analytical Notes

Dilution was performed on sample SG-22 due to the presence of high level target species.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - Q Exceeds quality control limits.
 - U Compound analyzed for but not detected above the reporting limit.

- UJ- Non-detected compound associated with low bias in the CCV
- N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

- a-File was requantified
- b-File was quantified by a second column and detector
- r1-File was requantified for the purpose of reissue

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: SG-19 Lab ID#: 1002489A-01A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Tetrachloroethene	1.3	1.6	8.6	11
2-Propanol	5.1	11	12	28
Benzene	1.3	26	4.1	84
Toluene	1.3	300	4.8	1100
Ethyl Benzene	1.3	35	5.5	150
m,p-Xylene	1.3	160	5.5	700
o-Xylene	1.3	45	5.5	200

Client Sample ID: SG-20

Lab ID#: 1002489A-02A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Toluene	1.2	1.9	4.7	7.3

Client Sample ID: SG-21

Lab ID#: 1002489A-03A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Benzene	1.2	9.2	3.8	29
Toluene	1.2	260	4.5	990
Ethyl Benzene	1.2	17	5.2	74
m,p-Xylene	1.2	55	5.2	240
o-Xylene	1.2	14	5.2	60

Client Sample ID: SG-21 DUP

Lab ID#: 1002489A-04A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Benzene	1.2	8.5	3.9	27
Toluene	1.2	240	4.6	920
Ethyl Benzene	1.2	16	5.2	70
m,p-Xylene	1.2	51	5.2	220
o-Xylene	1.2	12	5.2	54

Summary of Detected Compounds MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: SG-22 Lab ID#: 1002489A-05A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Benzene	5.8	11	18	35
Toluene	5.8	6100 E	22	23000 E
Ethyl Benzene	5.8	380	25	1600
m,p-Xylene	5.8	920	25	4000
o-Xylene	5.8	170	25	760

Client Sample ID: SG-23

Lab ID#: 1002489A-06A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Benzene	3.5	10	11	34
Toluene	3.5	700	13	2600
Ethyl Benzene	3.5	40	15	180
m,p-Xylene	3.5	100	15	450
o-Xylene	3.5	28	15	120

Client Sample ID: SG-19 Lab ID#: 1002489A-01A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

 File Name:
 d022715
 Date of Collection: 2/19/10 12:49:00 PM

 Dil. Factor:
 2.55
 Date of Analysis: 2/27/10 05:14 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	1.3	Not Detected	3.2	Not Detected
cis-1,2-Dichloroethene	1.3	Not Detected	5.0	Not Detected
trans-1,2-Dichloroethene	1.3	Not Detected	5.0	Not Detected
Tetrachloroethene	1.3	1.6	8.6	11
Trichloroethene	1.3	Not Detected	6.8	Not Detected
2-Propanol	5.1	11	12	28
Benzene	1.3	26	4.1	84
Toluene	1.3	300	4.8	1100
Ethyl Benzene	1.3	35	5.5	150
m,p-Xylene	1.3	160	5.5	700
o-Xylene	1.3	45	5.5	200
Naphthalene	5.1	Not Detected	27	Not Detected

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	100	70-130	
1,2-Dichloroethane-d4	92	70-130	
4-Bromofluorobenzene	98	70-130	

Client Sample ID: SG-20 Lab ID#: 1002489A-02A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

 File Name:
 d022716
 Date of Collection: 2/19/10 4:16:00 PM

 Dil. Factor:
 2.50
 Date of Analysis: 2/27/10 05:42 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	1.2	Not Detected	3.2	Not Detected
cis-1,2-Dichloroethene	1.2	Not Detected	5.0	Not Detected
trans-1,2-Dichloroethene	1.2	Not Detected	5.0	Not Detected
Tetrachloroethene	1.2	Not Detected	8.5	Not Detected
Trichloroethene	1.2	Not Detected	6.7	Not Detected
2-Propanol	5.0	Not Detected	12	Not Detected
Benzene	1.2	Not Detected	4.0	Not Detected
Toluene	1.2	1.9	4.7	7.3
Ethyl Benzene	1.2	Not Detected	5.4	Not Detected
m,p-Xylene	1.2	Not Detected	5.4	Not Detected
o-Xylene	1.2	Not Detected	5.4	Not Detected
Naphthalene	5.0	Not Detected	26	Not Detected

		Method
Surrogates	%Recovery	Limits
Toluene-d8	98	70-130
1,2-Dichloroethane-d4	93	70-130
4-Bromofluorobenzene	96	70-130

Client Sample ID: SG-21 Lab ID#: 1002489A-03A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

 File Name:
 d022717
 Date of Collection: 2/19/10 3:57:00 PM

 Dil. Factor:
 2.41
 Date of Analysis: 2/27/10 06:29 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	1.2	Not Detected	3.1	Not Detected
cis-1,2-Dichloroethene	1.2	Not Detected	4.8	Not Detected
trans-1,2-Dichloroethene	1.2	Not Detected	4.8	Not Detected
Tetrachloroethene	1.2	Not Detected	8.2	Not Detected
Trichloroethene	1.2	Not Detected	6.5	Not Detected
2-Propanol	4.8	Not Detected	12	Not Detected
Benzene	1.2	9.2	3.8	29
Toluene	1.2	260	4.5	990
Ethyl Benzene	1.2	17	5.2	74
m,p-Xylene	1.2	55	5.2	240
o-Xylene	1.2	14	5.2	60
Naphthalene	4.8	Not Detected	25	Not Detected

		Method
Surrogates	%Recovery	Limits
Toluene-d8	104	70-130
1,2-Dichloroethane-d4	97	70-130
4-Bromofluorobenzene	98	70-130

Client Sample ID: SG-21 DUP Lab ID#: 1002489A-04A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

 File Name:
 d022718
 Date of Collection: 2/19/10 3:57:00 PM

 Dil. Factor:
 2.42
 Date of Analysis: 2/27/10 06:54 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	1.2	Not Detected	3.1	Not Detected
cis-1,2-Dichloroethene	1.2	Not Detected	4.8	Not Detected
trans-1,2-Dichloroethene	1.2	Not Detected	4.8	Not Detected
Tetrachloroethene	1.2	Not Detected	8.2	Not Detected
Trichloroethene	1.2	Not Detected	6.5	Not Detected
2-Propanol	4.8	Not Detected	12	Not Detected
Benzene	1.2	8.5	3.9	27
Toluene	1.2	240	4.6	920
Ethyl Benzene	1.2	16	5.2	70
m,p-Xylene	1.2	51	5.2	220
o-Xylene	1.2	12	5.2	54
Naphthalene	4.8	Not Detected	25	Not Detected

		Method
Surrogates	%Recovery	Limits
Toluene-d8	104	70-130
1,2-Dichloroethane-d4	96	70-130
4-Bromofluorobenzene	96	70-130

Client Sample ID: SG-22 Lab ID#: 1002489A-05A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

 File Name:
 d030911
 Date of Collection: 2/19/10 3:28:00 PM

 Dil. Factor:
 11.6
 Date of Analysis: 3/9/10 12:59 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	5.8	Not Detected	15	Not Detected
cis-1,2-Dichloroethene	5.8	Not Detected	23	Not Detected
trans-1,2-Dichloroethene	5.8	Not Detected	23	Not Detected
Tetrachloroethene	5.8	Not Detected	39	Not Detected
Trichloroethene	5.8	Not Detected	31	Not Detected
2-Propanol	23	Not Detected	57	Not Detected
Benzene	5.8	11	18	35
Toluene	5.8	6100 E	22	23000 E
Ethyl Benzene	5.8	380	25	1600
m,p-Xylene	5.8	920	25	4000
o-Xylene	5.8	170	25	760
Naphthalene	23	Not Detected	120	Not Detected

E = Exceeds instrument calibration range.

•		Method
Surrogates	%Recovery	Limits
Toluene-d8	100	70-130
1,2-Dichloroethane-d4	113	70-130
4-Bromofluorobenzene	93	70-130

Client Sample ID: SG-23 Lab ID#: 1002489A-06A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

 File Name:
 d030910
 Date of Collection: 2/19/10 3:16:00 PM

 Dil. Factor:
 7.05
 Date of Analysis: 3/9/10 12:35 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	3.5	Not Detected	9.0	Not Detected
cis-1,2-Dichloroethene	3.5	Not Detected	14	Not Detected
trans-1,2-Dichloroethene	3.5	Not Detected	14	Not Detected
Tetrachloroethene	3.5	Not Detected	24	Not Detected
Trichloroethene	3.5	Not Detected	19	Not Detected
2-Propanol	14	Not Detected	35	Not Detected
Benzene	3.5	10	11	34
Toluene	3.5	700	13	2600
Ethyl Benzene	3.5	40	15	180
m,p-Xylene	3.5	100	15	450
o-Xylene	3.5	28	15	120
Naphthalene	14	Not Detected	74	Not Detected

		Method
Surrogates	%Recovery	Limits
Toluene-d8	102	70-130
1,2-Dichloroethane-d4	113	70-130
4-Bromofluorobenzene	93	70-130

Client Sample ID: Lab Blank Lab ID#: 1002489A-07A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	d022707a	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 2/27/10 12:02 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
trans-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Tetrachloroethene	0.50	Not Detected	3.4	Not Detected
Trichloroethene	0.50	Not Detected	2.7	Not Detected
2-Propanol	2.0	Not Detected	4.9	Not Detected
Benzene	0.50	Not Detected	1.6	Not Detected
Toluene	0.50	Not Detected	1.9	Not Detected
Ethyl Benzene	0.50	Not Detected	2.2	Not Detected
m,p-Xylene	0.50	Not Detected	2.2	Not Detected
o-Xylene	0.50	Not Detected	2.2	Not Detected
Naphthalene	2.0	Not Detected	10	Not Detected

		Method
Surrogates	%Recovery	Limits
Toluene-d8	99	70-130
1,2-Dichloroethane-d4	96	70-130
4-Bromofluorobenzene	96	70-130

Client Sample ID: Lab Blank Lab ID#: 1002489A-07B

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: d030909 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 3/9/10 11:38 AM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
trans-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Tetrachloroethene	0.50	Not Detected	3.4	Not Detected
Trichloroethene	0.50	Not Detected	2.7	Not Detected
2-Propanol	2.0	Not Detected	4.9	Not Detected
Benzene	0.50	Not Detected	1.6	Not Detected
Toluene	0.50	Not Detected	1.9	Not Detected
Ethyl Benzene	0.50	Not Detected	2.2	Not Detected
m,p-Xylene	0.50	Not Detected	2.2	Not Detected
o-Xylene	0.50	Not Detected	2.2	Not Detected
Naphthalene	2.0	Not Detected	10	Not Detected

		Method
Surrogates	%Recovery	Limits
Toluene-d8	100	70-130
1,2-Dichloroethane-d4	112	70-130
4-Bromofluorobenzene	92	70-130

Client Sample ID: CCV Lab ID#: 1002489A-08A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: d022703a Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 2/27/10 10:12 AM

Compound	%Recovery
Vinyl Chloride	97
cis-1,2-Dichloroethene	106
trans-1,2-Dichloroethene	102
Tetrachloroethene	108
Trichloroethene	102
2-Propanol	101
Benzene	104
Toluene	104
Ethyl Benzene	114
m,p-Xylene	118
o-Xylene	120
Naphthalene	110

,		Method
Surrogates	%Recovery	Limits
Toluene-d8	102	70-130
1,2-Dichloroethane-d4	96	70-130
4-Bromofluorobenzene	97	70-130

Client Sample ID: CCV Lab ID#: 1002489A-08B

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: d030902 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 3/9/10 08:08 AM

Compound	%Recovery
Vinyl Chloride	108
cis-1,2-Dichloroethene	103
trans-1,2-Dichloroethene	108
Tetrachloroethene	99
Trichloroethene	106
2-Propanol	108
Benzene	108
Toluene	106
Ethyl Benzene	102
m,p-Xylene	103
o-Xylene	102
Naphthalene	96

		Method
Surrogates	%Recovery	Limits
Toluene-d8	102	70-130
1,2-Dichloroethane-d4	114	70-130
4-Bromofluorobenzene	92	70-130

Client Sample ID: LCS Lab ID#: 1002489A-09A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: d022704a Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 2/27/10 10:29 AM

Compound	%Recovery
Vinyl Chloride	96
cis-1,2-Dichloroethene	103
trans-1,2-Dichloroethene	100
Tetrachloroethene	99
Trichloroethene	96
2-Propanol	96
Benzene	97
Toluene	93
Ethyl Benzene	106
m,p-Xylene	111
o-Xylene	112
Naphthalene	97

,		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	101	70-130	
1,2-Dichloroethane-d4	94	70-130	
4-Bromofluorobenzene	98	70-130	

Client Sample ID: LCS Lab ID#: 1002489A-09B

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: d030907 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 3/9/10 10:42 AM

Compound	%Recovery
Vinyl Chloride	70
cis-1,2-Dichloroethene	97
trans-1,2-Dichloroethene	102
Tetrachloroethene	96
Trichloroethene	103
2-Propanol	99
Benzene	103
Toluene	95
Ethyl Benzene	101
m,p-Xylene	100
o-Xylene	98
Naphthalene	80

,		Method
Surrogates	%Recovery	Limits
Toluene-d8	102	70-130
1,2-Dichloroethane-d4	112	70-130
4-Bromofluorobenzene	95	70-130

P & D ENVIRONMENTAL, INC. 55 Santa Clara Ave, Suite 240 Onkland, CA 94610

CHAIN OF CUSTODY RECORD

PROJECT NUMBER:			PROJECT		ITALIEDS				,				//			
0298 #	_]-	SNO (26-	78 C	LEANERS POLIDEE AL ID, CA	UE .						//				
			OA	KLAL	D, CA			ES).		4	1/	//	/ /	/		
SAMPLED BY: (PR				due l	Deschene		NUMBER OF CONTAINERS	AMAL Yals(ES)			//	//	THE SERVATIVE	RE	MARK	(S
SAMPLE NUMBER	DATE	TIME	TYPE	WIT	SAMPLE LOCATIO	MFINAL	NOS	74 23			//	/ å	#/			
SG-19	2/19/10	12494	TO Y GAS	-29,		-5	L	X	/			Nox	N	ormal	7~	m A
56-20	्यीष/10	161655	96 14 GA	-28	3048	-5	i	٨	ᅶ			Λ		'n	Ĥ	st
56-21	2/19/10	155738	Silyeas	- 29	36503	-5		本	×			u	<u></u>		A	11
SGAL DUP	2/19/10	5573	Silen	-29	34092	-5	ì	Z	K			<i>)</i> 1	37		Ŋ	11
56-23	2/19/10	152850	EN/CAS	-29	34 653	-5		X	×			Ŋ	71	'n	<u> </u>	1)
56-23	2/19/10	15/600	Silyas	-38	34120	- 24		스	X			**	1 14	OLL	<u>></u>	#
				CHS	TODY SEAL INTA	СТ?			1							
				Y	NONE TEMP				1							
RELINQUISHED BY:	denes		DATE 2/23/0	THE	RECEINED BY: (S		5925	C	15 34	SAMPLES MERT) CONTAINED MERT)	5 6		BORATO	RY: ≥ <u> </u>		
RELINQUISHED BY:	(SIGNATUR	Ξ)	DATE	3MIT	RECEIVED BY: (S	GNATURE)	<u>, 195 -</u>	LABO	DRAT	DRY CO	NTAC	T: LA	BORATO	RY PHON	AE MU	
RELINQUISHED BY:	(SIGNATURE	Ξ)	DATE	TIME	RECEIVED FOR LI	ABORATORY	BY:	57		AMPLE	ANAL	YSIS	REQUEST FS (X)	SHEET		<u>. </u>
Results and billing to P&D Environmental, lab@pdenviro.com	lo: Inc.				REMARKS:	- PROP		<u> </u>								

Mr. Paul King
P & D Environmental

55 Santa Clara

Suite 240

3/9/2010

Oakland CA 94610

Project Name: Snow Cleaners 2678 Coolidge Ave, Oakland

Project #: 0298

Workorder #: 1002489B

Dear Mr. Paul King

The following report includes the data for the above referenced project for sample(s) received on 2/24/2010 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-3 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kyle Vagadori at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kyle Vagadori

Project Manager

Kya Vych

DATE COMPLETED:

WORK ORDER #: 1002489B

Work Order Summary

CLIENT: Mr. Paul King BILL TO: Mr. Paul King

P & D Environmental P & D Environmental

55 Santa Clara Suite 240 55 Santa Clara Suite 240

Oakland, CA 94610 Oakland, CA 94610

PHONE: 510-658-6916 P.O.#

03/09/2010

FAX: 510-834-0772 **PROJECT** # 0298 Snow Cleaners 2678 Coolidge Ave,

DATE RECEIVED: 02/24/2010 Oakland Kyle Vagadori

			RECEIPT	FINAL
FRACTION #	<u>NAME</u>	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	SG-19	Modified TO-3	6.2 "Hg	15 psi
02A	SG-20	Modified TO-3	5.8 "Hg	15 psi
03A	SG-21	Modified TO-3	4.8 "Hg	15 psi
03AA	SG-21 Lab Duplicate	Modified TO-3	4.8 "Hg	15 psi
04A	SG-21 DUP	Modified TO-3	5.0 "Hg	15 psi
05A	SG-22	Modified TO-3	4.0 "Hg	15 psi
06A	SG-23	Modified TO-3	21.4 "Hg	15 psi
06AA	SG-23 Lab Duplicate	Modified TO-3	21.4 "Hg	15 psi
07A	Lab Blank	Modified TO-3	NA	NA
07B	Lab Blank	Modified TO-3	NA	NA
08A	LCS	Modified TO-3	NA	NA
08B	LCS	Modified TO-3	NA	NA

CERTIFIED BY:

Linda d. Fruman

03/09/10

Laboratory Director

Certfication numbers: CA NELAP - 02110CA, LA NELAP/LELAP- AI 30763, NY NELAP - 11291, UT NELAP - 9166389892, AZ Licensure AZ0719

Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act,

Accreditation number: E87680, Effective date: 07/01/09, Expiration date: 06/30/10

Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

LABORATORY NARRATIVE Modified TO-3 P & D Environmental Workorder# 1002489B

Six 1 Liter Summa Canister samples were received on February 24, 2010. The laboratory performed analysis for volatile organic compounds in air via modified EPA Method TO-3 using gas chromatography with flame ionization detection. The method involves concentrating up to 200 mL of sample. The concentrated aliquot is then dry purged to remove water vapor prior to entering the chromatographic system.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	TO-3	ATL Modifications
Daily Calibration Standard Frequency	Prior to sample analysis and every 4 - 6 hrs	Prior to sample analysis and after the analytical batch = 20 samples.</td
Initial Calibration Calculation	4-point calibration using a linear regression model	5-point calibration using average Response Factor
Initial Calibration Frequency	Weekly	When daily calibration standard recovery is outside 75 - 125 %, or upon significant changes to procedure or instrumentation
Moisture Control	Nafion system	Sorbent system
Minimum Detection Limit (MDL)	Calculated using the equation DL = A+3.3S, where A is intercept of calibration line and S is the standard deviation of at least 3 reps of low level standard	40 CFR Pt. 136 App. B
Preparation of Standards	Levels achieved through dilution of gas mixture	Levels achieved through loading various volumes of the gas mixture

Receiving Notes

Sample SG-23 was placed on hold per the client's request.

Sample SG-23 was removed from "Hold" and placed on "Active" status per client request on 2/26/10.

Analytical Notes

There were no analytical discrepancies.

Definition of Data Qualifying Flags

Seven qualifiers may have been used on the data analysis sheets and indicate as follows:

- B Compound present in laboratory blank greater than reporting limit.
- J Estimated value.

- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the detection limit.
- M Reported value may be biased due to apparent matrix interferences.

File extensions may have been used on the data analysis sheets and indicates as follows:

- a-File was requantified
- b-File was quantified by a second column and detector
- r1-File was requantified for the purpose of reissue

Summary of Detected Compounds MODIFIED EPA METHOD TO-3 GC/FID

Client Sample ID: SG-19 Lab ID#: 1002489B-01A

	Rpt. Limit	Rpt. Limit	Amount	Amount	
Compound	(ppmv)	(ug/L)	(ppmv)	(ug/L)	
Stoddard Solvent	0.064	0.37	0.94	5.4	

Client Sample ID: SG-20

Lab ID#: 1002489B-02A

No Detections Were Found.

Client Sample ID: SG-21 Lab ID#: 1002489B-03A

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ppmv)	(ug/L)	(ppmv)	(ug/L)
Stoddard Solvent	0.060	0.35	0.69	4.0

Client Sample ID: SG-21 Lab Duplicate

Lab ID#: 1002489B-03AA

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ppmv)	(ug/L)	(ppmv)	(ug/L)
Stoddard Solvent	0.060	0.35	0.68	4.0

Client Sample ID: SG-21 DUP

Lab ID#: 1002489B-04A

	RDT. LIMIT	Kpt. Liillit	Amount	Amount
Compound	(ppmv)	(ug/L)	(ppmv)	(ug/L)
Stoddard Solvent	0.060	0.35	0.65	3.8

Client Sample ID: SG-22

Lab ID#: 1002489B-05A

Compound	Rpt. Limit (ppmv)	Rpt. Limit (ug/L)	Amount (ppmv)	Amount (ug/L)
Compound	(ррпта)	(ug/L)	(рріпу)	(ug/L)
Stoddard Solvent	0.12	0.68	15	88

Client Sample ID: SG-23 Lab ID#: 1002489B-06A

Summary of Detected Compounds MODIFIED EPA METHOD TO-3 GC/FID

Client Sample ID: SG-23 Lab ID#: 1002489B-06A

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ppmv)	(ppmv) (ug/L) (ppmv)	(ppmv)	(ug/L)
Stoddard Solvent	0.18	1.0	4.1	24

Client Sample ID: SG-23 Lab Duplicate

Lab ID#: 1002489B-06AA

	Rpt. Limit	Rpt. Limit Rpt. Limit	Amount	Amount
Compound	(ppmv)	(ug/L)	(ppmv)	(ug/L)
Stoddard Solvent	0.18	1.0	4.3	25

Client Sample ID: SG-19 Lab ID#: 1002489B-01A

MODIFIED EPA METHOD TO-3 GC/FID

File Name:	d030403	Date	of Collection: 2/19/	/10 12:49:00 PN	
Dil. Factor: Compound	2.55	Date of Analysis: 3/4/10 09:46 AM			
	Rpt. Limit (ppmv)	Rpt. Limit (ug/L)	Amount (ppmv)	Amount (ug/L)	
Stoddard Solvent	0.064	0.37	0.94	5.4	
Container Type: 1 Liter Sumi	ma Canister				
Surrogates		%Recovery		Method Limits	
Fluorobenzene (FID)		103		75-150	

Fluorobenzene (FID)

Client Sample ID: SG-20 Lab ID#: 1002489B-02A

MODIFIED EPA METHOD TO-3 GC/FID

File Name:	d030404	Dat	te of Collection: 2/19/	10 4:16:00 PM					
Dil. Factor:	2.50	Dat	Date of Analysis: 3/4/10 10:19 AM						
Compound	Rpt. Limit (ppmv)	Rpt. Limit (ug/L)	Amount (ppmv)	Amount (ug/L)					
Stoddard Solvent	0.062	0.36	Not Detected	Not Detected					
Container Type: 1 Liter Sum	ma Canister								
				Method					
Surrogates		%Recovery		Limits					

103

75-150

Client Sample ID: SG-21 Lab ID#: 1002489B-03A

File Name: Dil. Factor:	d030405 2.40	Date of Collection: 2/19/10 3:57:00 PM Date of Analysis: 3/4/10 10:51 AM						
Compound	Rpt. Limit (ppmv)	Rpt. Limit (ug/L)	Amount (ppmv)	Amount (ug/L)				
Stoddard Solvent	0.060	0.35	0.69	4.0				
Container Type: 1 Liter Sum	ma Canister							
Surrogates		%Recovery		Method Limits				
Fluorobenzene (FID)		102		75-150				

Client Sample ID: SG-21 Lab Duplicate Lab ID#: 1002489B-03AA

MODIFIED EPA METHOD TO-3 GC/FID

File Name:	d030406 Date of Collection: 2/19/10 3:5 2.40 Date of Analysis: 3/4/10 11:24					
Dil. Factor:	2.40	Date	of Analysis: 3/4/10	11:24 AM		
Compound	Rpt. Limit (ppmv)	Rpt. Limit (ug/L)	Amount (ppmv)	Amount (ug/L)		
Stoddard Solvent	0.060	0.35	0.68	4.0		

Container Type: 1 Liter Summa Canister

		Method
Surrogates	%Recovery	Limits
Fluorobenzene (FID)	101	75-150

Fluorobenzene (FID)

Client Sample ID: SG-21 DUP Lab ID#: 1002489B-04A

MODIFIED EPA METHOD TO-3 GC/FID

File Name:	d030407	407 Date of Collection: 2/19/10 3:5							
Dil. Factor:	2.42	Date	Date of Analysis: 3/4/10 12:04 PM						
Compound	Rpt. Limit (ppmv)	Rpt. Limit (ug/L)	Amount (ppmv)	Amount (ug/L)					
Stoddard Solvent	0.060	0.35	0.65	3.8					
Container Type: 1 Liter Sum	ma Canister								
				Method					
Surrogates		%Recovery		Limits					

101

75-150

Client Sample ID: SG-22 Lab ID#: 1002489B-05A

File Name: Dil. Factor:	d030409 4.66	Date of Collection: 2/19/10 3:28:00 PM Date of Analysis: 3/4/10 01:27 PM						
Compound	Rpt. Limit (ppmv)	Rpt. Limit (ug/L)	Amount (ppmv)	Amount (ug/L)				
Stoddard Solvent	0.12	0.68	15	88				
Container Type: 1 Liter Sum	ma Canister							
Surrogates		%Recovery		Method Limits				
Fluorobenzene (FID)		101		75-150				

Client Sample ID: SG-23 Lab ID#: 1002489B-06A

File Name:	d030903	Date of Collection: 2/19/10 3:16:00						
Dil. Factor:	7.05	Date	of Analysis: 3/9/10	10:10 AM				
Compound	Rɒt. Limit (ppmv)	Rpt. Limit (ug/L)	Amount (ppmv)	Amount (ug/L)				
Stoddard Solvent	0.18	1.0	4.1	24				
Container Type: 1 Liter Summa	Canister							
Surrogates		%Recovery		Method Limits				
Fluorobenzene (FID)		98		75-150				

Client Sample ID: SG-23 Lab Duplicate Lab ID#: 1002489B-06AA

File Name: Dil. Factor:	d030904 7.05	Date of Collection: 2/19/10 3:16: Date of Analysis: 3/9/10 10:42 A					
Compound	Rpt. Limit (ppmv)	Rpt. Limit (ug/L)	Amount (ppmv)	Amount (ug/L)			
Stoddard Solvent	0.18	1.0	4.3	25			

Surrogates	%Recovery	Limits
Fluorobenzene (FID)	95	75-150

Client Sample ID: Lab Blank Lab ID#: 1002489B-07A

File Name:	d030402	Dat	e of Collection: NA				
Dil. Factor:	1.00	Dat	e of Analysis: 3/4/10	09:03 AM			
Compound	Rpt. Limit (ppmv)	Rpt. Limit (ug/L)	Amount (ppmv)	Amount (ug/L)			
Stoddard Solvent	0.025	0.14	Not Detected	Not Detected			
Container Type: NA - Not App	licable						
Surrogates		%Recovery		Method Limits			
Fluorobenzene (FID)		110		75-150			

Client Sample ID: Lab Blank Lab ID#: 1002489B-07B

File Name: Dil. Factor:	d030902 1.00		Date of Collection: NA Date of Analysis: 3/9/10 09:25 AM						
Compound	Rpt. Limit (ppmv)	Rpt. Limit (ug/L)	Amount (ppmv)	Amount (ug/L)					
Stoddard Solvent	0.025	0.14	Not Detected	Not Detected					
Container Type: NA - Not App	olicable								
Surrogates		%Recovery		Method Limits					
Fluorobenzene (FID)		98	_	75-150					

Client Sample ID: LCS Lab ID#: 1002489B-08A

MODIFIED EPA METHOD TO-3 GC/FID

File Name: d030410 Date of Collection: NA

Dil. Factor: 1.00 Date of Analysis: 3/4/10 02:01 PM

Compound %Recovery

Stoddard Solvent 121

Container Type: NA - Not Applicable

Surrogates%RecoveryLimitsFluorobenzene (FID)9675-150

Client Sample ID: LCS Lab ID#: 1002489B-08B

MODIFIED EPA METHOD TO-3 GC/FID

File Name: d030905 Date of Collection: NA

Dil. Factor: 1.00 Date of Analysis: 3/9/10 11:15 AM

Compound %Recovery

Stoddard Solvent 104

Container Type: NA - Not Applicable

Surrogates%RecoveryMethod LimitsFluorobenzene (FID)10275-150

P & D ENVIRONMENTAL, INC. 55 Seate Claim Ave, State 248 Continued, CA 94610 Continued Continued on Continued Cont

CHAIN OF CUSTODY RECORD

PAGE ____OF ____

PROJECT NUMBER:			SNOW CLEANERS 2678 COOLIDEE AUE OAKLAND, CA				(E)	14	/-a/_		//		/ *				
SAMPLED BY: (PR	,		- ,	du. b	Descheno		NERS NERS	Ž			//	/ /	PRESCHAME	* /	REM	veks	
SAMPLE HIMBER	DATE	TIME	TYPE	wit ikcoor	SMBIF LOCATIO	WFINAL	NUMBER OF CONTAINERS	25			//	$^{\prime}/$	£.	/			
56-19	0/19/10	124642	807/ ₆₁₆	-39	5 34083	-5		X	$\overline{}$	口		1~	مار	Norm	۵,	Then A	430
56-20	2/19/10	61685	Solly	-28	3049	-5	1	Z	7		1		1	<u> </u>	- -	9 1	i
56-21	2/19/10	1537%	314/s45	-29	36503	-5		X	;		-	и		,h	- 4	11	_
SGal DUP	elm/le_	S57 \$	Silver	- <u>2</u> 9	34092	-5		Z	-			,,		37	17	я	_
156-23	2/19/10	52850	Silen	-29	34653	-5		X				1	,	71	<u>٠</u>	9	
56-23	2/19/10	15/600	Sily 5	-29	34120	- 24		X	-			+;		MOI	Ď	#	
				7718	TODY SEAL INTA	ст											
RELINQUISHED BY:	SONATURE	•	DATE	TiskE iJDD	RECEIPED BY: (S		Ana C	li. r	NE 24	SAMP I	1	6		RATORY:	 		_
RELINDUISHED BY:	(SIGNATUR	Ε)	DATE	THAC	RECEIVED BY: (S	<u> </u>	LAB	ORA	DRY (CONT	CT.	A90	2 78 XI RATORY PI 6) 985	HOME		*	
RELUNGUISHED BY:	SIGNATURE	<u>.</u>]	DATE	THUE	E RECEIVED FOR LABORATORY (SIGNATURE)			, K.		SALCPI.	E AN	ALYS!	S RED	DUEST SHE DNEST SHE		<u>«О</u>	-
Results and billing to P&D Environmental, lab@pdenviro.com	o: Inc.		1		REMARKS:	- PROP	anol	<u>. </u>	NA.					<u> </u>	 ŧs		_

APPENDIX D

HERD February 2009 Vapor Intrusion Risk and Hazard Spreadsheet Calculations

Report 0298.R8 SG19 Benzene

SG-SCREEN DTSC PA Version 2.0; 04/ Vapor Intrusion Guidance Soil Gas Concentration Data Interim Final 12/04 **ENTER ENTER ENTER** (last modified 2/4/09) Reset to Soil Soil Defaults Chemical OR gas gas CAS No. conc., conc., C_{g} (numbers only, C_{q} no dashes) Chemical $(\mu g/m^3)$ (ppmv)

MORE ↓ 71432

ENTER Depth	ENTER	ENTER	ENTER		ENTER
below grade to bottom of enclosed space floor, L _F (15 or 200 cm)	Soil gas sampling depth below grade, L _s (cm)	Average soil temperature, T _S (°C)	Vadose zone SCS soil type (used to estimate soil vapor permeability)	OR	User-defined vadose zone soil vapor permeability, k _v (cm²)
15	152.4	24	SI		1.00E-08

Enter either a vadose zone SCS soil type OR a user-defined permeability.

8.40E+01

MORE	
4	

ENTER	ENTER	ENTER	ENTER
Vandose zone	Vadose zone	Vadose zone	Vadose zone
SCS	soil dry	soil total	soil water-filled
soil type	bulk density,	porosity,	porosity,
Lookup Soil	ρ_b^A	n ^v	θ_{w}^{v}
Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)
	1.5	0.43	0.15

_	N	т	_	D
_	ľ	ч	_	п

Benzene

Average vapor flow rate into bldg. (Leave blank to calculate)

Q_{soil}
(L/m)

MORE	
Ψ.	

ENTER Averaging	ENTER Averaging	ENTER	ENTER
time for	time for	Exposure	Exposure
carcinogens,	noncarcinogens,	duration,	frequency,
AT _C	AT _{NC}	ED	EF
(yrs)	(yrs)	(yrs)	(days/yr)
	To St		873
70	30	30	350

Report 0298.R8 SG19 Benzene

INTERMEDIATE CALCULATIONS SHEET

Source- building separation, L _T (cm)	Vadose zone soil air-filled porosity, θ _a ^V (cm ³ /cm ³)	Vadose zone effective total fluid saturation, $S_{le} \ (cm^3/cm^3)$	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k _{ra} (cm ²)	Vadose zone soil effective vapor permeability, k, (cm²)	Floor- wall seam perimeter, X _{crack} (cm)	Soil gas conc. (µg/m³)	Bldg. ventilation rate, Q _{building} (cm ³ /s)
137.4	0.280	0.263	6.91E-09	0.833	ERROR	4,000	8.40E+01	3.39E+04
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, $\Delta H_{v,TS}$ (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature,	Vadose zone effective diffusion coefficient, D ^{eff} _v (cm ² /s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	7,977	5.29E-03	2.17E-01	1.80E-04	6.86E-03	137.4
Convection path length,	Source vapor conc., C _{source} (μg/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm³/s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{bullding} (µg/m³)
15	8.40E+01	1.25	8.33E+01	6.86E-03	5.00E+03	3.50E+10	9.22E-04	7.74E-02

Reference
conc.,
RfC
(mg/m ³)
3.0E-02

Report 0298.R8 SG19 Benzene

RESULTS SHEET

INCREMENTAL RISK CALCULATIONS:

Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)
72	
9.2E-07	2.5E-03

MESSAGE SUMMARY BELOW:

DTSC

Vapor Intrusion Guidance

Reset to Defaults

	Soil	Gas Concentration	n Data	Interim Final 12/04
ENTER	ENTER		ENTER	(last modified 2/4/09)
	Soil		Soil	
Chemical	gas	OR	gas	
CAS No.	conc.,		conc.,	
(numbers only,	Cg		C_{g}	
no dashes)	(μg/m ³)		(ppmv)	Chemical
108883	1.10E+03			Toluene

MORE **↓**

ENTER Depth	ENTER	ENTER	ENTER		ENTER
below grade to bottom of enclosed space floor, L _F (15 or 200 cm)	Soil gas sampling depth below grade, L _s (cm)	Average soil temperature, T _S (°C)	Vadose zone SCS soil type (used to estimate soil vapor permeability)	OR	User-defined vadose zone soil vapor permeability, k _v (cm²)
15	152.4	24	SI		1.00E-08

Enter either a vadose zone SCS soil type OR a user-defined permeability.

MORE	
4	

ENTER	ENTER	ENTER	ENTER
Vandose zone	Vadose zone	Vadose zone	Vadose zone
SCS	soil dry	soil total	soil water-filled
soil type	bulk density,	porosity,	porosity,
Lookup Soil	ρ_b^A	n ^v	θ_{w}^{V}
Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)
	1.5	0.43	0.15

Average vapor flow rate into bldg. (Leave blank to calculate) Q_{soil} (L/m)

5

MORE
•

ENTER Averaging	ENTER Averaging	ENTER	ENTER	
time for	time for	Exposure	Exposure	
carcinogens,	noncarcinogens,	duration,	frequency,	
AT_C	AT _{NC}	ED	EF	
(yrs)	(yrs)	(yrs)	(days/yr)	
	Tr Wi			
70	30	30	350	

SG19 Toluene

INTERMEDIATE CALCULATIONS SHEET

Source- building separation,	Vadose zone soil air-filled porosity,	Vadose zone effective total fluid saturation,	Vadose zone soil intrinsic permeability,	Vadose zone soil relative air permeability,	Vadose zone soil effective vapor permeability,	Floor- wall seam perimeter,	Soil gas	Bldg. ventilation rate,
L_{T}	$\theta_{a}^{\;V}$	S_{te}	k_i	k_{rg}	k,	X _{crack}	conc.	Q _{building}
(cm)	(cm ³ /cm ³)	(cm ³ /cm ³)	(cm ²)	(cm ²)	(cm ²)	(cm)	(μg/m³)	(cm ³ /s)
137.4	0.280	0.263	6.91E-09	0.833	ERROR	4,000	1.10E+03	3.39E+04
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, $\Delta H_{v,TS}$ (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m³/mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, μ _{TS} (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} _V (cm ² /s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	9,001	6.29E-03	2.58E-01	1.80E-04	6.79E-03	137.4
Convection path length,	Source vapor conc., C _{source} (μg/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^l) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (µg/m³)
(0111)	(Mg/III)	(0111)	(0111 70)	(0111 70)	(0111)	(umicoo)	(difficos)	(му/111 /
15	1.10E+03	1.25	8.33E+01	6.79E-03	5.00E+03	4.63E+10	9.15E-04	1.01E+00

Unit risk	Reference
factor,	conc.,
URF	RfC
$(\mu g/m^3)^{-1}$	(mg/m³)

NA 3.0E-01

RESULTS SHEET

INCREMENTAL RISK CALCULATIONS:

Incremental	Hazard		
risk from	quotient		
vapor	from vapor		
intrusion to	intrusion to		
indoor air,	indoor air,		
carcinogen	noncarcinogen		
(unitless)	(unitless)		
NA	3.2E-03		

MESSAGE SUMMARY BELOW:

DATA ENTRY SHEET

DTSC

SG19 Ethylbenzene

SG-SCREEN
PA Version 2.0; 04/

Reset to Defaults

	Soil	Gas Concentration	on Data	Vapor Intrusion Guidance Interim Final 12/04
ENTER	ENTER Soil	ado concentrativ	ENTER Soil	(last modified 2/4/09)
Chemical CAS No. (numbers only,	gas conc.,	OR	gas conc., C _q	
no dashes)	(μg/m ³)		(ppmv)	Chemical
		-		
100414	1.50E+02			Ethylbenzene

MORE **↓**

ENTER Depth	ENTER	ENTER	ENTER		ENTER
below grade to bottom of enclosed space floor, L _F (15 or 200 cm)	Soil gas sampling depth below grade, L _s (cm)	Average soil temperature, T _S (°C)	Vadose zone SCS soil type (used to estimate soil vapor permeability)	OR	User-defined vadose zone soil vapor permeability, k _v (cm²)
15	152.4	24	SI		1.00E-08

Enter either a vadose zone SCS soil type OR a user-defined permeability.

MORE	
4	

ENTER	ENTER	ENTER	ENTER
Vandose zone	Vadose zone	Vadose zone	Vadose zone
SCS	soil dry	soil total	soil water-filled
soil type	bulk density,	porosity,	porosity,
Lookup Soil	ρ_b^A	n ^v	θ_{w}^{v}
Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)
	1.5	0.43	0.15

Е	N	т	Е	F

Average vapor flow rate into bldg. (Leave blank to calculate)

Q_{soil}

(L/m)

MORE	
•	

ENTER Averaging	ENTER Averaging	ENTER	ENTER
time for	time for	Exposure	Exposure
carcinogens,	noncarcinogens,	duration,	frequency,
AT _C	AT _{NC}	ED	EF
(yrs)	(yrs)	(yrs)	(days/yr)
	9		277
70	30	30	350

INTERMEDIATE CALCULATIONS SHEET

SG19 Ethylbenzene

Source- building separation,	Vadose zone soil air-filled porosity,	Vadose zone effective total fluid saturation,	Vadose zone soil intrinsic permeability,	Vadose zone soil relative air permeability,	Vadose zone soil effective vapor permeability,	Floor- wall seam perimeter,	Soil gas	Bldg. ventilation rate,
L _T	$\theta_{\rm a}{}^{\sf V}$	S_{te}	k _i	k_{rg}	k,	X_{crack}	conc.	Q _{building}
(cm)	(cm ³ /cm ³)	(cm ³ /cm ³)	(cm ²)	(cm ²)	(cm ²)	(cm)	(μg/m³)	(cm ³ /s)
137.4	0.280	0.263	6.91E-09	0.833	ERROR	4,000	1.50E+02	3.39E+04
A							Madaaa	
Area of enclosed	Crack-	Crack	Enthalpy of	Henry's law	Henry's law	Vapor	Vadose zone	
space	to-total	depth	vaporization at	constant at	constant at	viscosity at	effective	Diffusion
below	area	below	ave. soil	ave. soil	ave. soil	ave. soil	diffusion	path
grade,	ratio,	grade,	temperature,	temperature.	temperature,	temperature,	coefficient,	length,
A _B	8247		$\Delta H_{v,TS}$	H _{TS}	H' _{TS}		D ^{eff} _V	
	η	Z _{crack}				μ_{TS}		L _d
(cm ²)	(unitless)	(cm)	(cal/mol)	(atm-m ³ /mol)	(unitless)	(g/cm-s)	(cm ² /s)	(cm)
1.00E+06	5.00E-03	15	9.994	7.43E-03	3.05E-01	1.80E-04	5.85E-03	137.4
1.00L+00	3.00L-03	13	3,334	7.45L-03	3.03L-01	1.00L-04	3.83L-03	137.4
						Exponent of	Infinite	
			Average	Crack		equivalent	source	Infinite
Convection	Source		vapor	effective		foundation	indoor	source
path	vapor	Crack	flow rate	diffusion	Area of	Peclet	attenuation	bldg.
length,	conc.,	radius,	into bldg.,	coefficient,	crack,	number,	coefficient,	conc.,
Lp	C _{source}	r _{crack}	Q_{soil}	D ^{crack}	A _{crack}	exp(Pef)	α	C _{building}
(cm)	(μg/m³)	(cm)	(cm ³ /s)	(cm ² /s)	(cm ²)	(unitless)	(unitless)	(μg/m ³)
	-				~		8. 8.	
15	1.50E+02	1.25	8.33E+01	5.85E-03	5.00E+03	2.36E+12	8.32E-04	1.25E-01

Unit	
risk	Reference
factor,	conc.,
URF	RfC
$(\mu g/m^3)^{-1}$	(mg/m ³)

2.5E-06 1.0E+00

RESULTS SHEET

INCREMENTAL RISK CALCULATIONS:

Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)
1.3E-07	1.2E-04

MESSAGE SUMMARY BELOW:

Report 0298.R8 DATA ENTRY SHEET SG19 p-Xylene

SG-SCREEN PA Version 2.0; 04/

> Reset to Defaults

	Soil	Gas Concentration	on Data	Vapor Intrusion Guidance Interim Final 12/04
ENTER	ENTER Soil		ENTER Soil	(last modified 2/4/09)
Chemical CAS No. (numbers only,	gas conc., C _g	OR	gas conc., C _g	
no dashes)	(μg/m ³)	_	(ppmv)	Chemical
106423	7.00E+02			p-Xylene

MORE ↓

ENTER Depth	ENTER	ENTER	ENTER		ENTER
below grade to bottom of enclosed space floor, L _F (15 or 200 cm)	Soil gas sampling depth below grade, L _s (cm)	Average soil temperature, T _S (°C)	Vadose zone SCS soil type (used to estimate soil vapor permeability)	OR	User-defined vadose zone soil vapor permeability, k _v (cm²)
15	152.4	24	SI		1.00E-08

Enter either a vadose zone SCS soil type OR a user-defined permeability.

MORE ↓

ENTER	ENTER	ENTER	ENTER
Vandose zone	Vadose zone	Vadose zone	Vadose zone
SCS	soil dry	soil total	soil water-filled
soil type	bulk density,	porosity,	porosity,
Lookup Soil	ρ_b^A	n ^v	θ_{w}^{V}
Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)
100 (A)			
	1.5	0.43	0.15

ENTER

DTSC

Average vapor flow rate into bldg. (Leave blank to calculate)

Q_{soil}

(L/m)

5

MORE **↓**

ENTER Averaging	ENTER Averaging	ENTER	ENTER
time for	time for	Exposure	Exposure
carcinogens,	noncarcinogens,	duration,	frequency,
AT _C	AT _{NC}	ED	EF
(yrs)	(yrs)	(yrs)	(days/yr)
70	30	30	350

END

DTSC / HERD

Last Update: 11/1/03

INTERMEDIATE CALCULATIONS SHEET

Source- building separation, L _T (cm)	Vadose zone soil air-filled porosity, $\theta_a^{\ \ \ \ \ \ \ \ }$ (cm ³ /cm ³)	Vadose zone effective total fluid saturation, S _{le} (cm³/cm³)	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k _{rg} (cm²)	Vadose zone soil effective vapor permeability, k _v (cm ²)	Floor- wall seam perimeter, X _{crack} (cm)	Soil gas conc. (µg/m³)	Bldg. ventilation rate, Q _{building} (cm ³ /s)
107.4	0.000	0.000	C 01 F 00	0.000	EDDOD	4.000		2.205.04
137.4	0.280	0.263	6.91E-09	0.833	ERROR	4,000	7.00E+02	3.39E+04
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, ΔH _{V,TS} (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m³/mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, μ _{TS} (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} v (cm ² /s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	10,083	7.22E-03	2.96E-01	1.80E-04	6.00E-03	137.4
Convection path length,	Source vapor conc., C _{source} (μg/m³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (µg/m³)
(CIII)	(μg/111 /	(CIII)	(0111 /3)	(0111 / 3)	(OIII)	(unitiess)	(unitiess)	(μg/111)
15	7.00E+02	1.25	8.33E+01	6.00E-03	5.00E+03	1.17E+12	8.45E-04	5.92E-01

Unit risk	Reference
factor,	conc.,
URF	RfC
$(\mu g/m^3)^{-1}$	(mg/m^3)

1.0E-01

NA END

INCREMENTAL RISK CALCULATIONS:

Incremental	Hazard		
risk from	quotient		
vapor	from vapor		
intrusion to	intrusion to		
indoor air,	indoor air,		
carcinogen	noncarcinogen		
(unitless)	(unitless)		
NA	5.7E-03		

MESSAGE SUMMARY BELOW:

ENTER

User-defined

vadose zone

soil vapor

permeability,

(cm²)

1.00E-08

SG-SCREEN DTSC PA Version 2.0; 04/ Vapor Intrusion Guidance Interim Final 12/04 Soil Gas Concentration Data **ENTER ENTER ENTER** (last modified 2/4/09) Reset to Soil Soil Defaults Chemical OR gas gas CAS No. conc., conc., (numbers only, C_{q} C_{g} Chemical no dashes) $(\mu g/m^3)$ (ppmv) 95476 2.00E+02 o-Xylene

ENTER ENTER ENTER ENTER Depth MORE below grade Soil gas Vadose zone to bottom sampling Average SCS soil type of enclosed depth soil space floor, (used to estimate OR below grade, temperature, T_{S} soil vapor (°C) (15 or 200 cm) (cm) permeability)

152.4

15

Enter either a vadose zone SCS soil type OR a user-defined permeability.

24

ENTER	ENTER	ENTER	ENTER	ENTER
Vandose zone	Vadose zone	Vadose zone	Vadose zone	Average vapor
SCS	soil dry	soil total	soil water-filled	flow rate into bldg.
soil type	bulk density,	porosity,	porosity,	(Leave blank to calculate)
Lookup Soil	ρ_b^A	n ^v	θ_{w}^{V}	Q_{soil}
Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)	(L/m)
10			× × × × × × × × × × × × × × × × × × ×	
	1.5	0.43	0.15	5

		ENTER	ENTER	
Averaging time for	Averaging time for	Exposure	Exposure	
	noncarcinogens,	duration, frequ		
AT _C AT _{NC} (yrs) (yrs)		ED ED	EF	
		(yrs)	(days/yr)	

END

MORE •

MORE **↓**

INTERMEDIATE CALCULATIONS SHEET

Source- building separation, L_T	Vadose zone soil air-filled porosity, $\theta_a^{\ V}$	Vadose zone effective total fluid saturation, S _{te}	Vadose zone soil intrinsic permeability, k _i	Vadose zone soil relative air permeability, k _{ra}	Vadose zone soil effective vapor permeability, k,	Floor- wall seam perimeter, X _{crack}	Soil gas conc.	Bldg. ventilation rate, Q _{building}
(cm)	(cm ³ /cm ³)	(cm ³ /cm ³)	(cm ²)	(cm ²)	(cm ²)	(cm)	(μg/m³)	(cm ³ /s)
	1 1	n - November 200						
137.4	0.280	0.263	6.91E-09	0.833	ERROR	4,000	2.00E+02	3.39E+04
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, $\Delta H_{v,TS}$ (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m³/mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, μ _{TS} (g/cm-s)	Vadose zone effective diffusion coefficient, Deff v (cm²/s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	10,245	4.88E-03	2.00E-01	1.80E-04	6.79E-03	137.4
Convection path length,	Source vapor conc.,	Crack radius,	Average vapor flow rate into bldg.,	Crack effective diffusion coefficient,	Area of crack,	Exponent of equivalent foundation Peclet number,	Infinite source indoor attenuation coefficient,	Infinite source bldg. conc.,
Lp	C_{source}	r _{crack}	Q_{soil}	D ^{crack}	A _{crack}	exp(Pef)	α	C_{building}
(cm)	$(\mu g/m^3)$	(cm)	(cm ³ /s)	(cm ² /s)	(cm ²)	(unitless)	(unitless)	(μg/m³)
15	2.00E+02	1.25	8.33E+01	6.79E-03	5.00E+03	4.63E+10	9.15E-04	1.83E-01

Unit risk	Reference
factor,	conc.,
URF	RfC
$(\mu g/m^3)^{-1}$	(mg/m^3)

NA 1.0E-01

INCREMENTAL RISK CALCULATIONS:

Incremental	Hazard		
risk from	quotient		
vapor	from vapor		
intrusion to	intrusion to		
indoor air,	indoor air,		
carcinogen	noncarcinogen		
(unitless)	(unitless)		
NA	1.8E-03		

MESSAGE SUMMARY BELOW:

Report 0298.R8 DATA ENTRY SHEET SG19 PCE

SG-SCREEN PA Version 2.0; 04/

> Reset to Defaults

	Soil	Gas Concentration	on Data	Vapor Intrusion Guidance Interim Final 12/04
Chemical CAS No. (numbers only,	ENTER Soil gas conc., C _g	OR	ENTER Soil gas conc., C _q	(last modified 2/4/09)
no dashes)	(μg/m³)		(ppmv)	Chemical
127184	1.10E+01			Tetrachloroethylene

MORE **↓**

ENTER Depth	ENTER	ENTER	ENTER		ENTER
below grade to bottom of enclosed space floor, L _F (15 or 200 cm)	Soil gas sampling depth below grade, L _s (cm)	Average soil temperature, T _S (°C)	Vadose zone SCS soil type (used to estimate soil vapor permeability)	OR	User-defined vadose zone soil vapor permeability, k _v (cm²)
15	152.4	24	SI		1.00E-08

Enter either a vadose zone SCS soil type OR a user-defined permeability.

MORE **↓**

ENTER	ENTER	ENTER	ENTER
Vandose zone	Vadose zone	Vadose zone	Vadose zone
SCS	soil dry	soil total	soil water-filled
soil type	bulk density,	porosity,	porosity,
Lookup Soil	ρ_b^A	n ^v	θ_{w}^{V}
Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)
130			
	1.5	0.43	0.15

ENTER

DTSC

Average vapor flow rate into bldg. (Leave blank to calculate)

Q_{soil}
(L/m)

5

MORE ↓

ENTER Averaging	ENTER Averaging	ENTER	ENTER
time for	time for	Exposure	Exposure
carcinogens,	noncarcinogens,	duration,	frequency,
AT_C	AT _{NC}	ED	EF
(yrs)	(yrs)	(yrs)	(days/yr)
	Tr Wi		
70	30	30	350

SG19 PCE

Source-building separation, L _T (cm)	Vadose zone soil air-filled porosity, $\theta_a^{\ V}$ (cm³/cm³)	Vadose zone effective total fluid saturation, S_{le} (cm^3/cm^3)	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k_{ra} (cm^2)	Vadose zone soil effective vapor permeability, k, (cm²)	Floor- wall seam perimeter, X _{crack} (cm)	Soil gas conc. (µg/m³)	Bldg. ventilation rate, Q _{building} (cm³/s)
137.4	0.280	0.263	6.91E-09	0.833	ERROR	4,000	1.10E+01	3.39E+04
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, $\Delta H_{v.TS}$ (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m³/mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, μ _{TS} (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} _V (cm ² /s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	9,410	1.74E-02	7.14E-01	1.80E-04	5.62E-03	137.4
Convection path length, Lp (cm)	Source vapor conc., C _{source} (µg/m³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (µg/m³)
15	1.10E+01	1.25	8.33E+01	5.62E-03	5.00E+03	7.73E+12	8.09E-04	8.90E-03

Unit	
risk	Reference
factor,	conc.,
URF	RfC
(μg/m³) ⁻¹	(mg/m³)

5.9E-06 3.5E-02

Report 0298.R8 SG19 PCE

INCREMENTAL RISK CALCULATIONS:

Incremental	Hazard	
risk from	quotient	
vapor	from vapor	
intrusion to	intrusion to	
indoor air,	indoor air,	
carcinogen	noncarcinogen	
(unitless)	(unitless)	
70 72		
2.2E-08	2.4E-04	

MESSAGE SUMMARY BELOW:

Report 0298.R8 DATA ENTRY SHEET SG22 Benzene

SG-SCREEN PA Version 2.0; 04/

> Reset to Defaults

	Soil	Gas Concentration	on Data	Interim Final 12/04
ENTER	ENTER		ENTER	(last modified 2/4/09)
2000	Soil		Soil	
Chemical	gas	OR	gas	
CAS No.	conc.,		conc.,	
(numbers only,	C_{q}		C _q	
no dashes)	(μg/m ³)		(ppmv)	Chemical
71432	3.50E+01			Benzene

MORE **↓**

ENTER Depth	ENTER	ENTER	ENTER		ENTER
below grade to bottom of enclosed space floor, L _F	Soil gas sampling depth below grade, L _s (cm)	Average soil temperature, T _S (°C)	Vadose zone SCS soil type (used to estimate soil vapor permeability)	OR	User-defined vadose zone soil vapor permeability, k _v (cm ²)
15	152.4	24	SI		1.00E-08

Enter either a vadose zone SCS soil type OR a user-defined permeability.

Λ	ORE	
	J.	
	•	

ENTER	ENTER	ENTER	ENTER
Vandose zone	Vadose zone	Vadose zone	Vadose zone
SCS	soil dry	soil total	soil water-filled
soil type	bulk density,	porosity,	porosity,
Lookup Soil	ρ_b^A	n ^v	θ_{w}^{v}
Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)
1N 50			
	1.5	0.43	0.15

_	N	т	_	D
_	ľ	ч	_	п

DTSC

Vapor Intrusion Guidance

Average vapor flow rate into bldg. (Leave blank to calculate)

Q_{soil}

(L/m)

MORE	
¥	

ENTER Averaging	ENTER Averaging	ENTER	ENTER
time for	time for	Exposure	Exposure
carcinogens,	carcinogens, noncarcinogens,		frequency,
AT _C	AT _C AT _{NC}		EF
(yrs)	(yrs)	(yrs)	(days/yr)
	To St		873
70 30		30	350

INTERMEDIATE CALCULATIONS SHEET

Source-building separation, L _T (cm)	Vadose zone soil air-filled porosity, $\theta_a^{\ \ V}$ (cm ³ /cm ³)	Vadose zone effective total fluid saturation, S _{te} (cm³/cm³)	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k _{rg} (cm ²)	Vadose zone soil effective vapor permeability, k, (cm²)	Floor- wall seam perimeter, X _{crack} (cm)	Soil gas conc. (µg/m³)	Bldg. ventilation rate, Q _{building} (cm ³ /s)
137.4	0.280	0.263	6.91E-09	0.833	ERROR	4,000	3.50E+01	3.39E+04
10								o.
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, $\Delta H_{v,TS}$ (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m³/mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature,	Vadose zone effective diffusion coefficient, Deff v (cm²/s)	Diffusion path length,
1.00E+06	5.00E-03	15	7,977	5.29E-03	2.17E-01	1.80E-04	6.86E-03	137.4
Convection path length,	Source vapor conc., C _{source}	Crack radius, r _{crack}	Average vapor flow rate into bldg., Q _{soil}	Crack effective diffusion coefficient, D ^{crack}	Area of crack, A _{crack}	Exponent of equivalent foundation Peclet number, exp(Pe ^f)	$\begin{array}{c} \text{Infinite} \\ \text{source} \\ \text{indoor} \\ \text{attenuation} \\ \text{coefficient,} \\ \alpha \end{array}$	Infinite source bldg. conc., C _{building}
(cm)	(μg/m³)	(cm)	(cm ³ /s)	(cm ² /s)	(cm ²)	(unitless)	(unitless)	(μg/m³)
15	3.50E+01	1.25	8.33E+01	6.86E-03	5.00E+03	3.50E+10	9.22E-04	3.23E-02

Unit	
risk	Reference
factor,	conc.,
URF	RfC
$(\mu g/m^3)^{-1}$	(mg/m ³)

2.9E-05 3.0E-02

INCREMENTAL RISK CALCULATIONS:

Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)
72	
3.8E-07	1.0E-03

MESSAGE SUMMARY BELOW:

DATA ENTRY SHEET

DTSC

SG22 Toluene

SG-SCREEN A Version 2.0; 04/

> Reset to Defaults

				Vapor Intrusion Guidance
	Soil	Gas Concentration	Interim Final 12/04	
ENTER	ENTER		ENTER	(last modified 2/4/09)
375° 71 F	Soil		Soil	
Chemical	gas	OR	gas	
CAS No.	conc.,		conc.,	
(numbers only,	C_{g}		C _q	
no dashes)	(μg/m³)		(ppmv)	Chemical
108883	2.30E+04			Toluene

MORE ↓

ENTER Depth	ENTER	ENTER	ENTER		ENTER
below grade to bottom of enclosed space floor, L _F (15 or 200 cm)	Soil gas sampling depth below grade, L _s (cm)	Average soil temperature, T _S (°C)	Vadose zone SCS soil type (used to estimate soil vapor permeability)	OR	User-defined vadose zone soil vapor permeability, k _v (cm²)
15	152.4	24	SI		1.00E-08

Enter either a vadose zone SCS soil type OR a user-defined permeability.

/IC	R	Е
,	¥	
•	Ψ_	

ENTER	ENTER	ENTER	ENTER
Vandose zone	Vadose zone	Vadose zone	Vadose zone
SCS	soil dry	soil total	soil water-filled
soil type	bulk density,	porosity,	porosity,
Lookup Soil	ρ_b^A	n ^v	θ_{w}^{V}
Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)
	1.5	0.43	0.15

Average vapor
flow rate into bldg.
(Leave blank to calculate)
Q_{soil}
(L/m)
5

MORE **↓**

ENTER Averaging	ENTER Averaging	ENTER	ENTER
time for	time for	Exposure	Exposure
carcinogens,	noncarcinogens,	duration,	frequency,
AT_C	AT _{NC}	ED	EF
(yrs)	(yrs)	(yrs)	(days/yr)
	Tr Wi		
70	30	30	350

Source-building separation, L_T (cm)	Vadose zone soil air-filled porosity, $\theta_a^{\ \ \ \ \ \ \ \ }$ (cm^3/cm^3)	Vadose zone effective total fluid saturation, Ste (cm³/cm³)	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k _{ra} (cm ²)	Vadose zone soil effective vapor permeability, k, (cm²)	Floor- wall seam perimeter, X _{crack} (cm)	Soil gas conc. (µg/m³)	Bldg. ventilation rate, Q _{building} (cm ³ /s)
137.4	0.280	0.263	6.91E-09	0.833	ERROR	4,000	2.30E+04	3.39E+04
10	'							
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, $\Delta H_{v,TS}$ (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m³/mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature,	Vadose zone effective diffusion coefficient, Deff v (cm²/s)	Diffusion path length, L _d (cm)
		9						*
Convection path length,	Source vapor conc., C _{source}	Crack radius, r _{crack}	Average vapor flow rate into bldg., Q _{soil}	Crack effective diffusion coefficient, D ^{crack}	Area of crack, A _{crack}	Exponent of equivalent foundation Peclet number, exp(Pe ^f)	Infinite source indoor attenuation coefficient,	Infinite source bldg. conc., C _{building}
(cm)	(μg/m ³)	'crack (cm)	(cm ³ /s)	(cm ² /s)	(cm ²)	(unitless)	(unitless)	Obuilding (μg/m ³)
(0111)	(Mg/111)	(OIII)	(6111 70)	(0111 70)	(0111)	(dilitioss)	(unitioss)	(Mg/III)
15	2.30E+04	1.25	8.33E+01	6.79E-03	5.00E+03	4.63E+10	9.15E-04	2.10E+01

Unit risk	Reference
factor,	conc.,
URF	RfC
$(\mu g/m^3)^{-1}$	(mg/m^3)

3.0E-01

NA END

INCREMENTAL RISK CALCULATIONS:

Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)
	0.75.00
NA	6.7E-02

MESSAGE SUMMARY BELOW:

DTSC

Vapor Intrusion Guidance

SG22 Ethylbenzene

SG-SCREEN
A Version 2.0; 04/

Reset to Defaults

	Soil	Gas Concentration	on Data	Interim Final 12/04
ENTER	ENTER		ENTER	(last modified 2/4/09)
	Soil		Soil	100
Chemical	gas	OR	gas	
CAS No.	conc.,		conc.,	
(numbers only,	C _g		C_{g}	
no dashes)	(μg/m ³)		(ppmv)	Chemical
100414	1.60E+03			Ethylbenzene

MORE
4

ENTER Depth	ENTER	ENTER	ENTER		ENTER
below grade to bottom of enclosed space floor, L _F (15 or 200 cm)	Soil gas sampling depth below grade, L _s (cm)	Average soil temperature, T _S (°C)	Vadose zone SCS soil type (used to estimate soil vapor permeability)	OR	User-defined vadose zone soil vapor permeability, k _v (cm²)
15	152.4	24	SI		1.00E-08

Enter either a vadose zone SCS soil type OR a user-defined permeability.

ı	WORE	
	4	

ENTER	ENTER	ENTER	ENTER
Vandose zone	Vadose zone	Vadose zone	Vadose zone
SCS	soil dry	soil total	soil water-filled
soil type	bulk density,	porosity,	porosity,
Lookup Soil	ρ_b^A	n ^v	θ_{w}^{V}
Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)
100 (A)			
	1.5	0.43	0.15

ENTER

Average vapor flow rate into bldg. (Leave blank to calculate) Q_{soil} $\underline{(L/m)}$

5

MORE	
•	

ENTER	ENTER	ENTER	ENTER	
Averaging time for	Averaging time for	Exposure	Exposure	
carcinogens, noncarcinogens		duration,	frequency,	
AT _C	AT _{NC}	ED	EF	
(yrs)	(yrs)	(yrs)	(days/yr)	
	70 30		7	
70	30	30	350	

SG22 Ethylbenzene

Source-building separation, L_T	Vadose zone soil air-filled porosity, $\theta_a^{\ \ \ \ \ \ \ \ }$	Vadose zone effective total fluid saturation, S _{le}	Vadose zone soil intrinsic permeability, k _i	Vadose zone soil relative air permeability, k _{ra}	Vadose zone soil effective vapor permeability, k,	Floor- wall seam perimeter, X _{crack}	Soil gas conc.	Bldg. ventilation rate, Q _{building}
(cm)	(cm ³ /cm ³)	(cm ³ /cm ³)	(cm ²)	(cm ²)	(cm ²)	(cm)	(μg/m ³)	(cm ³ /s)
(0111)	(0, 0)	(6111761117)	(0)	(0)	(0)	(6111)	(Fg/···)	(6 70)
137.4	0.280	0.263	6.91E-09	0.833	ERROR	4,000	1.60E+03	3.39E+04
Area of							Vadose	
enclosed	Crack-	Crack	Enthalpy of	Henry's law	Henry's law	Vapor	zone	D.W
space	to-total	depth	vaporization at	constant at	constant at	viscosity at	effective	Diffusion
below	area ratio,	below grade,	ave. soil temperature.	ave. soil temperature.	ave. soil temperature.	ave. soil temperature.	diffusion coefficient.	path length,
grade,								
A _B	η	Z_{crack}	$\Delta H_{v,TS}$	H _{TS}	H' _{TS}	μ_{TS}	Deff	L_d
(cm ²)	(unitless)	(cm)	(cal/mol)	(atm-m ³ /mol)	(unitless)	(g/cm-s)	(cm ² /s)	(cm)
1.00E+06	5.00E-03	15	9,994	7.43E-03	3.05E-01	1.80E-04	5.85E-03	137.4
			Average	Crack		Exponent of equivalent	Infinite source	Infinite
Convection	Source		vapor	effective		foundation	indoor	source
path	vapor	Crack	flow rate	diffusion	Area of	Peclet	attenuation	bldg.
length,	conc.,	radius,	into bldg.,	coefficient,	crack,	number,	coefficient,	conc.,
Lp	C_{source}	r _{crack}	Q_{soil}	D ^{crack}	A _{crack}	exp(Pef)	α	C_{building}
(cm)	(μg/m³)	(cm)	(cm ³ /s)	(cm ² /s)	(cm ²)	(unitless)	(unitless)	(μg/m³)
	-		56 05				31.1 Oc	
15	1.60E+03	1.25	8.33E+01	5.85E-03	5.00E+03	2.36E+12	8.32E-04	1.33E+00

Unit	
risk	Reference
factor,	conc.,
URF	RfC
$(\mu g/m^3)^{-1}$	(mg/m ³)

2.5E-06 1.0E+00

END

DTSC / HERD

Last Update: 11/1/03

INCREMENTAL RISK CALCULATIONS:

Incremental	Hazard		
risk from	quotient		
vapor	from vapor		
intrusion to	intrusion to		
indoor air,	indoor air,		
carcinogen	noncarcinogen		
(unitless)	(unitless)		
1.4E-06	1.3E-03		

MESSAGE SUMMARY BELOW:

DTSC

SG-SCREEN A Version 2.0; 04/

> Reset to Defaults

	Soil	Gas Concentration	on Data	Vapor Intrusion Guidance Interim Final 12/04
ENTER	ENTER Soil		ENTER Soil	(last modified 2/4/09)
Chemical	gas	OR	gas	
CAS No. (numbers only,	conc., C _g		conc., C _g	
no dashes)	(μg/m³)		(ppmv)	Chemical
106423	4.00E+03			p-Xylene

MORE ↓

ENTER Depth	ENTER	ENTER	ENTER		ENTER
below grade to bottom of enclosed space floor, L _F (15 or 200 cm)	Soil gas sampling depth below grade, L _s (cm)	Average soil temperature, T _S (°C)	Vadose zone SCS soil type (used to estimate soil vapor permeability)	OR	User-defined vadose zone soil vapor permeability, k _v (cm ²)
15	152.4	24	SI		1.00E-08

Enter either a vadose zone SCS soil type OR a user-defined permeability.

MORE	
•	

ENTER	ENTER	ENTER	ENTER
Vandose zone	Vadose zone	Vadose zone	Vadose zone
SCS	soil dry	soil total	soil water-filled
soil type	bulk density,	porosity,	porosity,
Lookup Soil	ρ_b^A	n ^v	θ_{w}^{V}
Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)
	1.5	0.43	0.15

Е	N	т	Е	F

Average vapor flow rate into bldg. (Leave blank to calculate)

Q_{soil}

(L/m)

5

MORE
4

ENTER Averaging	ENTER Averaging	ENTER	ENTER
time for	time for	Exposure	Exposure
carcinogens,	noncarcinogens,	duration,	frequency,
AT_C	AT _{NC}	ED	EF
(yrs)	(yrs)	(yrs)	(days/yr)
	7		873
70	30	30	350

Source- building separation,	Vadose zone soil air-filled porosity,	Vadose zone effective total fluid saturation,	Vadose zone soil intrinsic permeability,	Vadose zone soil relative air permeability,	Vadose zone soil effective vapor permeability,	Floor- wall seam perimeter,	Soil gas	Bldg. ventilation rate,
L _T	$\theta_{a}^{\;V}$	S_{te}	k_i	k_{rg}	k,	X _{crack}	conc.	Q _{building}
(cm)	(cm ³ /cm ³)	(cm ³ /cm ³)	(cm ²)	(cm ²)	(cm ²)	(cm)	(μg/m³)	(cm ³ /s)
50		2 2000000000000000000000000000000000000		24 100000		754992070		
137.4	0.280	0.263	6.91E-09	0.833	ERROR	4,000	4.00E+03	3.39E+04
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, $\Delta H_{v,TS}$ (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m³/mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature,	Vadose zone effective diffusion coefficient, Deff (cm²/s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	10,083	7.22E-03	2.96E-01	1.80E-04	6.00E-03	137.4
Convection path length,	Source vapor conc., C _{source}	Crack radius, r _{crack}	Average vapor flow rate into bldg., Q _{soil}	Crack effective diffusion coefficient, D ^{crack}	Area of crack, A _{crack}	Exponent of equivalent foundation Peclet number, exp(Pe ^f)	Infinite source indoor attenuation coefficient,	Infinite source bldg. conc., C _{building}
(cm)	(μg/m³)	(cm)	(cm ³ /s)	(cm ² /s)	(cm ²)	(unitless)	(unitless)	(μg/m³)
15	4.00E+03	1.25	8.33E+01	6.00E-03	5.00E+03	1.17E+12	8.45E-04	3.38E+00

Unit risk	Reference
factor,	conc.,
URF	RfC
$(\mu g/m^3)^{-1}$	(mg/m ³)
NA	1.0E-01

NA END

INCREMENTAL RISK CALCULATIONS:

Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen noncarcinog	
(unitless)	(unitless)
NA	3.2E-02

MESSAGE SUMMARY BELOW:

DATA ENTRY SHEET

DTSC

SG22 o-Xylene

SG-SCREEN	
A Version 2.0; 04	/

Reset to Defaults

	Soil	Gas Concentration	on Data	Vapor Intrusion Guidance Interim Final 12/04
ENTER	ENTER Soil		ENTER Soil	(last modified 2/4/09)
Chemical CAS No. (numbers only,	gas conc., C _q	OR	gas conc., C _g	
no dashes)	(μg/m ³)		(ppmv)	Chemical
		_		
95476	7.60E+02			o-Xylene

MORE ↓

ENTER Depth	ENTER	ENTER	ENTER		ENTER
below grade to bottom of enclosed space floor, L _F (15 or 200 cm)	Soil gas sampling depth below grade, L _s (cm)	Average soil temperature, T _S (°C)	Vadose zone SCS soil type (used to estimate soil vapor permeability)	OR	User-defined vadose zone soil vapor permeability, k _v (cm²)
15	152.4	24	SI		1.00E-08

Enter either a vadose zone SCS soil type OR a user-defined permeability.

MORE	
4	

ENTER	ENTER	ENTER	ENTER
Vandose zone	Vadose zone	Vadose zone	Vadose zone
SCS	soil dry	soil total	soil water-filled
soil type	bulk density,	porosity,	porosity,
Lookup Soil	ρ_b^A	n ^v	θ_{w}^{v}
Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)
N S			
	1.5	0.43	0.15

ENTER

Average vapor flow rate into bldg. (Leave blank to calculate)

Q_{soil}

(L/m)

MORE
4

ENTER Averaging	ENTER Averaging	ENTER	ENTER Exposure	
time for	time for	Exposure		
carcinogens, noncarcinogen		duration,	frequency,	
AT _C	AT _{NC}	ED	EF	
(yrs) (yrs)		(yrs)	(days/yr)	
70 30		30	350	

Source- building separation,	Vadose zone soil air-filled porosity,	Vadose zone effective total fluid saturation,	Vadose zone soil intrinsic permeability,	Vadose zone soil relative air permeability,	Vadose zone soil effective vapor permeability,	Floor- wall seam perimeter,	Soil gas	Bldg. ventilation rate,
L _T	$\theta_{a}^{\;V}$	S_{te}	k _i	k_{rg}	k,	X _{crack}	conc.	Q _{building}
(cm)	(cm ³ /cm ³)	(cm ³ /cm ³)	(cm ²)	(cm ²)	(cm ²)	(cm)	(μg/m³)	(cm ³ /s)
137.4	0.280	0.263	6.91E-09	0.833	ERROR	4,000	7.60E+02	3.39E+04
Area of							Vadose	
enclosed	Crack-	Crack	Enthalpy of	Henry's law	Henry's law	Vapor	zone	Diff. rains
space	to-total	depth below	vaporization at ave. soil	constant at ave. soil	constant at ave. soil	viscosity at ave. soil	effective diffusion	Diffusion path
grade,	area ratio,	grade,	temperature,	temperature,	temperature,	temperature,	coefficient,	length,
				the second secon	100		D ^{eff} _V	
A _B	η	Z _{crack}	$\Delta H_{v,TS}$	H _{TS}	H' _{TS}	μ_{TS}	1000	L _d
(cm ²)	(unitless)	(cm)	(cal/mol)	(atm-m ³ /mol)	(unitless)	(g/cm-s)	(cm ² /s)	(cm)
1.00E+06	5.00E-03	15	10,245	4.88E-03	2.00E-01	1.80E-04	6.79E-03	137.4
1.000+06	3.00E-03	15	10,245	4.000-03	2.00E-01	1.60E-04	0.79E-03	137.4
						Exponent of	Infinite	
			Average	Crack		equivalent	source	Infinite
Convection	Source		vapor	effective		foundation	indoor	source
path	vapor	Crack	flow rate	diffusion	Area of	Peclet	attenuation	bldg.
length,	conc.,	radius,	into bldg.,	coefficient,	crack,	number,	coefficient,	conc.,
Lp	C_{source}	r _{crack}	Q_{soil}	D ^{crack}	A _{crack}	exp(Pef)	α	C_{building}
(cm)	$(\mu g/m^3)$	(cm)	(cm ³ /s)	(cm^2/s)	(cm ²)	(unitless)	(unitless)	$(\mu g/m^3)$
	5		22				20 00	
15	7.60E+02	1.25	8.33E+01	6.79E-03	5.00E+03	4.63E+10	9.15E-04	6.95E-01

Unit risk	Reference
factor,	conc.,
URF	RfC
(μg/m ³) ⁻¹	(mg/m ³)
	~
NA	1.0E-01

INCREMENTAL RISK CALCULATIONS:

Incremental	Hazard	
risk from	quotient	
vapor	from vapor	
intrusion to	intrusion to	
indoor air,	indoor air,	
carcinogen	noncarcinogen	
(unitless)	(unitless)	
NA	6.7E-03	

MESSAGE SUMMARY BELOW: