SNOW CLEANERS INC.

MAIN OFFICE & PLANT

38 WEST SONORA ST. 1 STOCKTON, CA 95203

RECEIVED

3:51 pm, Apr 10, 2012

Alameda County Environmental Health

209ant/alt/24, 2012

Mr. Jerry Wickham Alameda County Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

SUBJECT: SEMI-ANNUAL GROUNDWATER MONITORING AND SAMPLING

REPORT CERTIFICATION ACEH Case # RO 0000357

role on turn

Snow Cleaners

2678 Coolidge Avenue

Oakland, CA

Dear Mr. Wickham:

You will find enclosed one copy of the following document prepared by P&D Environmental, Inc.

Groundwater Monitoring and Sampling Report (January Through December 2011) dated January 24, 2012 (document 0298.R14).

I declare, under penalty of perjury, that the information and/or recommendations contained in the above-mentioned work plan for the subject site is true and correct to the best of my knowledge.

Should you have any questions, please do not hesitate to call me at (800) 818-7669.

Cordially.

Snow Cleaners, inc.

Harold Turner President

Mr. LeRoy Griffin, Oakland Fire Department, Emergency Services, 250 Frank Cc: Ogawa Plaza, Suite 3341, Oakland, CA 94612 (with enclosure)

0298.L69

P&D ENVIRONMENTAL, INC.

55 Santa Clara Ave, Suite 240 Oakland, CA 94610 (510) 658-6916

January 24, 2012 Report 0298.R14

Mr. Harold Turner Snow Cleaners 2678 Coolidge Avenue Oakland, CA

SUBJECT: GROUNDWATER MONITORING AND SAMPLING REPORT

(JANUARY THROUGH DECEMBER 2011)

ACDEH Case # RO 0000357

Snow Cleaners

2678 Coolidge Avenue

Oakland, CA

Dear Mr. Turner:

P&D Environmental Inc. (P&D) is pleased to present this report documenting the monitoring and sampling of three groundwater monitoring wells designated as MW2 through MW4 located near the subject site, and four groundwater extraction wells designated as DP1 through DP4 located at the subject site. All of the wells in the groundwater monitoring network were monitored on December 5, 2011 and all of the wells were sampled on December 5 and 6, 2011 except for offsite groundwater monitoring well MW1 which was inaccessible due to a car being parked on top of the well. A Site Location Map is attached as Figure 1, and a Site Vicinity Map Detail showing all of the well locations is attached as Figure 2.

BACKGROUND

Underground Storage Tanks (USTs) associated with the former dry cleaning facility were removed and associated limited excavation of the UST pit was performed by others in 1990. In January, 1994 two groundwater monitoring wells (MW1 and MW2) were installed by others at offsite locations in Davis Street approximately five feet south of the former UST pit. P&D subsequently oversaw the installation of groundwater monitoring wells MW3 and MW4 at offsite locations on September 9, A detailed discussion of the site background and historical monitoring, sampling, and investigation are provided in P&D's Subsurface Investigation Report dated August 19, 2009 (document 0298.R6). On September 27 through 29, 2010 P&D oversaw the installation of dualphase extraction wells DP1 through DP4, and vapor extraction wells VE1 and VE2. A detailed discussion of well installation is provided in P&Ds Well Installation Report dated December 2, 2010 (document 0298.R11). The initial monitoring and sampling of the new wells was performed on October 15, 2010 in conjunction with the periodic monitoring and sampling of the existing offsite groundwater monitoring wells. Documentation of the October 15, 2010 sampling event is provided in P&D's Semi-Annual Groundwater Monitoring and Sampling Report (document 0298.R12) dated December 17, 2010.

In December 2010 a vapor extraction feasibility test was performed at well DP1. During 2011 a discharge permit was obtained from East Bay Municipal Utility District (EBMUD), a pump was installed in well DP1, and groundwater extraction feasibility testing was performed. Documentation of the vapor extraction and groundwater extraction feasibility testing is provided in P&D's Vapor Extraction and Groundwater Extraction Feasibility Test Report (document 0298.R13) dated January 24, 2012.

FIELD ACTIVITIES

P&D personnel monitored offsite groundwater monitoring wells MW2, MW3, and MW4, and onsite extraction wells DP1, DP2, DP3, and DP4 for depth to water on December 5, 2011 to the nearest 0.01 foot using an electric water level indicator. A summary of the depth to water measurements is attached with this report as Table 1.

On December 5, 2011 P&D personnel also monitored all of the wells for the presence of free product or sheen using a transparent bailer. No free product or sheen was observed in any of the groundwater monitoring wells or extraction wells with the exception of well DP1. In well DP1 the depth to water and depth to free product were measured to the nearest 1/32-inch with a steel tape and water-finding and product-finding paste. The measured free product thickness in well DP1 was 0.25 feet. No water was encountered in vapor extraction wells VE1 and VE2.

Following the measurement of depth to water and monitoring for free product or sheen on December 5, 2011, each well was purged with a peristaltic pump for a minimum of 15 minutes and sampled on either December 5 or December 6, 2011. Purging was performed at low flow rates to minimize turbulence and minimize the likelihood of sediments in the samples. During purging operations, the field parameters of electrical conductivity, temperature, pH, turbidity, and depth to water were monitored and recorded on a groundwater monitoring/well purging data sheet. The free product detected in well DP1 was pumped from the well (approximately 225 milliliters) and stored at the site in a 55-gallon steel drum. Petroleum hydrocarbon odors were detected on the purge water from wells MW2, DP1, DP2 and DP3, and petroleum hydrocarbon sheen was observed on the purge water from well DP1. Records of the field parameters measured during well purging are included with this report.

Once the field parameters were observed to stabilize, and the wells had been purged for a minimum of 15 minutes, water samples were collected directly from the discharge tubing from the pump. The samples were transferred to 40-milliliter glass Volatile Organic Analysis (VOA) vials and 1-liter amber glass bottles that were preserved with hydrochloric acid and sealed with Teflon-lined screw caps. The VOA vials were overturned and tapped to assure that no air bubbles were present. The VOA vials and bottles were then labeled and transferred to a cooler with ice, pending transport to the laboratory. Chain of custody procedures were observed for all sample handling. Records of the field parameters measured during well purging are attached with this report.

GEOLOGY AND HYDROGEOLOGY

Review of Figure 1 shows that the site is located near the top of a northeasterly-trending interfluvial (ridge-like) structure. The topography in the area surrounding the site slopes to the east and south.

Peralta Creek is located approximately 500 feet to the east and approximately 400 feet to the southeast of the subject site. The creek flows towards the southwest. Portions of the creek located directly to the east of the site are lined with concrete. Based on evaluation of the concrete channel for Peralta Creek that is located beneath Davis Street, the water that flows through Peralta Hacienda Historic Park is not the same water that flows in Peralta Creek on the north side of Davis Street.

The site geology and hydrogeology are complex, and a detailed discussion of the site geology and hydrogeology is provided in P&D's Subsurface Investigation Report dated August 19, 2009 (document 0298.R6). The interpreted groundwater flow direction in the vicinity of the site was developed using multiple lines of evidence (topography, lithology, soil discoloration, contaminant concentration distribution, and the measured depth to water in the different wells).

Groundwater is interpreted to generally move in an unconfined A-water-bearing zone in the immediate vicinity of the site northeastwards and eastwards in the vicinity of the former UST pit and then towards the southeast (towards Peralta Creek) to the north of the former UST pit, based on the elevations and slope of the surface of the fine-grained materials that are encountered beginning at a depth of approximately 25 feet below the ground surface (bgs) in the vicinity of the site. Based on the presence of coarse-grained materials at depths greater than 30 feet bgs that are located between borehole B6 and well MW3, groundwater is interpreted to move vertically in a southerly-trending paleo-channel from the unconfined A-water-bearing zone to a confined B-water-bearing zone in the area between the northeast side of well DP2 at the subject site and 34th Avenue, and then move horizontally in the B-water-bearing zone to the south towards Peralta Creek and Peralta Hacienda Historical Park.

Review of Table 1 and Figure 2 shows that historically there has been a difference in water table elevation of as much as approximately 4.5 to 5.0 feet between wells DP2 and DP1. The horizontal distance is approximately 18 feet between these two wells, and the location of this change in water table elevation corresponds with an increase in depth to fine-grained materials which are encountered at a depth of approximately 22 to 25 feet bgs between well DP2 and Davis Street to the southwest. Based on the depth of approximately 22 to 25 feet bgs to fine-grained materials between well DP2 and Davis Street to the southwest, the thickness of the water layer overlying the fine-grained materials to the southwest of DP2 ranges seasonally between approximately 1 and 4 feet. The depth to fine-grained materials and the saturated thickness of the water-bearing sediments to the northeast of DP2 is unknown. A discussion of geologic cross sections in P&Ds Well Installation Report dated December 2, 2010 (document 0298.R11) identifies a east-northeasterly-trending channel in the surface of the fine-grained materials that drains the area beneath the former UST pit towards the northeast and towards the change in water table elevation of approximately 4.5 to 5.0 feet that is located between wells DP2 and DP1.

Based on water level information available (see Table 1) the historically measured depth to water in the offsite groundwater monitoring wells MW1 through MW4 has ranged from 11.49 to 18.83 feet in well MW2; 16.95 to 22.97 feet in well MW3 (after September 19, 2008); 19.07 to 23.92 feet in well MW1; and 21.18 to 25.86 feet in well MW4. Review of historical groundwater monitoring well water levels shows that the water levels in wells MW2 and MW3 (screened in the A-water-bearing zone) have been consistently similar, and that the water levels in wells MW1 and MW4 (screened in the B-water-bearing zone) have been consistently similar, with a difference of approximately 6 to 7

feet in the elevations between the two sets of wells during dry season months and a difference of approximately 8 to 10 feet during wet season months. The water elevations in the wells that are screened in the A-water-bearing zone are higher than the water elevations in the wells that are screened in the B-water-bearing zone. Additionally, both the A-water-bearing zone and the B-water-bearing zone respond similarly to seasonal changes in water levels, with a seasonal vertical range of water elevations to date of approximately 7.0 feet in wells MW2 and MW3, and approximately 4.0 feet in wells MW1 and MW4. Historical well water levels are shown for August 2009 through December 2011 in Figure 3 to illustrate the relationships of water level changes for wells MW1 through MW4.

Figure 4 shows water level changes in all of the wells for October 2010 through December 2011 (wells DP1 through DP4 were not installed until September 2010). Review of Figure 4 shows the following.

- Water levels in wells MW2, DP2 and DP3 are similar.
- Water levels and changes in water levels in wells DP1 and DP4 are similar (the water level in well DP1 was depressed in June 2011 because of groundwater extraction in well DP1).
- Water levels and changes in water levels in wells MW1 and MW4 are similar.
- Changes in water levels in wells DP2 and DP3 are similar.

LABORATORY RESULTS

All of the groundwater samples were analyzed at McCampbell Analytical, Inc. (McCampbell) of Pacheco, California. McCampbell is a State-accredited hazardous waste testing laboratory. The samples were analyzed for Total Petroleum Hydrocarbons as Gasoline (TPH-G) and for Total Petroleum Hydrocarbons as Stoddard solvent (TPH-SS) by EPA Methods 5030B in conjunction with modified EPA Method 8015B, and for Total Petroleum Hydrocarbons as Diesel (TPH-D) and for Total Petroleum Hydrocarbons as Bunker Oil (TPH-BO) by EPA Method 3510C in conjunction with EPA Method 8015B. In addition, all of the samples were analyzed for Volatile Organic Compounds (VOCs) including Methyl tert-Butyl Ether (MTBE); benzene, toluene, ethylbenzene, and total xylenes (BTEX); and halogenated volatile organic compounds (HVOCs) by EPA Method 8260B. The groundwater sample results are summarized in Table 2, and copies of the laboratory analytical reports and chain of custody documentation are attached with this report.

No analytes were detected in the groundwater sample collected from well MW3, with the exception of carbon disulfide at a concentration of 1.9 micrograms per liter (ug/L), and no analytes were detected in the groundwater samples collected from wells MW4 and DP4, with the exceptions of cis-1,2-dichloroethene in MW4 at a concentration of 12 ug/L, and chloroform in both wells at concentrations of 1.2 and 0.96 ug/L, respectively.

TPH-G was detected in the samples collected from wells MW2, DP1, DP2, and DP3 at concentrations of 1,200, 2,000, 1,300, and 480 ug/L, respectively; TPH-SS was detected in the same four wells at concentrations of 1,800, 940, 480, and 630 ug/L, respectively; TPH-D was detected in the same four wells at concentrations of 2,400, 47,000, 670, and 3,600 ug/L, respectively; and TPH-BO was detected at concentrations of 2,700, 59,000, 1,000, and 4,500 ug/L, respectively. Review of

the laboratory report shows that the laboratory described the TPH-G and TPH-SS results for wells MW2, DP1, DP2 and DP3 as consisting of Stoddard solvent/mineral spirit-range compounds, with the samples from wells MW2, DP1, and DP2 having one to a few isolated peaks present in the TPH-G chromatogram.

The TPH-D and TPH-BO results for wells MW2, DP1, and DP4 are described by the laboratory as consisting of Stoddard solvent/mineral spirit-range compounds and diesel-range compounds with no recognizable pattern. The TPH-D and TPH-BO results for well DP1 are also described as oil-range compounds, and the DP2 results are described as diesel-range compounds with no recognizable pattern and oil-range compounds. The TPH-D and TPH-BO results for well DP3 are described as consisting of kerosene or jet fuel range compounds.

VOCs were detected in all of the wells. However, as discussed above, the detected VOCs in wells MW3, MW4 and DP4 were limited in number and concentration.

DISCUSSION AND RECOMMENDATIONS

All of the groundwater monitoring wells and dual phase extraction wells were sampled with the exception of well MW1, which was not accessible because a car was parked on top of the well. Petroleum hydrocarbon odors were detected on the purge water from wells MW2, DP1, DP2 and DP3, and petroleum hydrocarbon sheen was observed on the purge water from well DP1. No water was encountered in vapor extraction wells VE1 and VE2.

The water level in well DP2 was 3.95 feet higher than the water level in well DP1, which is located 18 feet horizontally from well DP1. This difference in water levels is consistent with historic differences in the water levels between these two wells, and is attributed to the geology of the site. A detailed discussion of the similarities and relationships of water level changes in the different wells is provided above in the geology and hydrogeology section of this report. Based on the geology identified in boreholes at and near these wells the groundwater drains from the vicinity of the former UST pit and the vicinity of wells DP2, DP3 and MW2 northeastwards towards well DP1. A detailed discussion of the extent of petroleum and HVOCs in groundwater with figures is provided in P&Ds Well Installation Report dated December 2, 2010 (document 0298.R11). A detailed discussion of observations regarding the extent of petroleum hydrocarbons and HVOCs in groundwater is also provided in P&D's December 17, 2010 Groundwater Monitoring and Sampling Report (document 0298.R12).

The decrease in TPH and VOC concentrations in well DP4 and the increase in TPH, PCE and TCE concentrations in well DP1 are suspected of being related to groundwater extraction feasibility testing that was performed at well DP1 during 2011. Based on the sample results, P&D recommends that wells DP1 through DP4 be sampled on a quarterly basis and that wells MW1, MW3 and MW4 be sampled on a semi-annual basis. P&D also recommends that site remediation be performed in accordance with recommendations set forth in P&D's Vapor Extraction and Groundwater Extraction Feasibility Test Report

DISTRIBUTION

A copy of this report will be uploaded to the ACDEH website, in accordance with ACDEH requirements. In addition, a copy of this report will be uploaded to the GeoTracker database, and one copy of this report will be mailed to LeRoy Griffin of the City of Oakland Fire Department

LIMITATIONS

This report was prepared solely for the use of Snow Cleaners. The content and conclusions provided by P&D in this assessment are based on information collected during our investigation, which may include, but not be limited to, visual site inspections; interviews with the site owner, regulatory agencies and other pertinent individuals; review of available public documents; subsurface exploration and our professional judgment based on said information at the time of preparation of this document. Any subsurface sample results and observations presented herein are considered to be representative of the area of investigation; however, geological conditions may vary between borings and may not necessarily apply to the general site as a whole. If future subsurface or other conditions are revealed which vary from these findings, the newly revealed conditions must be evaluated and may invalidate the findings of this report.

This report is issued with the understanding that it is the responsibility of the owner, or his representative, to ensure that the information contained herein is brought to the attention of the appropriate regulatory agencies, where required by law. Additionally, it is the sole responsibility of the owner to properly dispose of any hazardous materials or hazardous wastes left onsite, in accordance with existing laws and regulations.

This report has been prepared in accordance with generally accepted practices using standards of care and diligence normally practiced by recognized consulting firms performing services of a similar nature. P&D is not responsible for the accuracy or completeness of information provided by other individuals or entities used in this report. This report presents our professional judgment based upon data and findings identified in this report and interpretation of such data based upon our experience and background, and no warranty, either express or implied, is made. The conclusions presented are based upon the current regulatory climate and may require revision if future regulatory changes occur.

Should you have any questions, please do not hesitate to contact us at (510) 658-6916.

Sincerely,

P&D Environmental, Inc.

Paul H. King President

Professional Geologist #5901

Expires: 12/31/13

Table 1 – Summary of Groundwater Elevation Data

Table 2 - Summary of Groundwater Sample Results

Figure 1 - Site Location Map

Figure 2 – Site Vicinity Map Detail Showing Well Locations

Figure 3 – Graph of Water Levels in Site Groundwater Monitoring Network Wells for August 2009 Through December 2011

PAUL H. KING No. 5901

E OF CALIFO

Figure 4 – Graph of Water Levels in Site Groundwater Monitoring Network Wells for October 2010 Through December 2011

Groundwater Monitoring/Well Purging Data Sheets Laboratory Reports and Chain of Custody Documentation

PHK/sjc 0298.R14

TABLES

SUMMARY OF GROUNDWATER ELEVATION DATA

Well No	<u>Date</u>	Top Of Casing Elevation (ft)**	Depth To Water (ft)	Water Table Elevation (ft)	Change in Water Table Elevation
MW1	12/5/2011	132.78	car parked on well	could not measure	
MW I	9/2/2011	132.76	22.55	110.23	-1.62
	6/1/2011		20.93	111.85	-0.52
	5/20/2011		20.41	112.37	-0.95
	4/15/2011		19.46	113.32	-0.21
	3/18/2011 2/18/2011		19.25	113.53	2.65
	1/21/2011		21.90 20.76	110.88 112.02	-1.14 2.39
	12/10/2010		23.15	109.63	0.70
	11/19/2010		23.85	108.93	0.07
	10/15/2010		23.92	108.86	-0.42
	9/22/2010 8/20/2010		23.50 22.87	109.28 109.91	-0.63 -0.86
	7/16/2010		22.01	110.77	-0.95
	6/18/2010		21.06	111.72	-0.80
	5/21/2010		20.26	112.52	-1.02
	4/16/2010 3/19/2010		19.24 19.07	113.54	-0.17
	2/19/2010		20.56	113.71 112.22	1.49 0.52
	1/27/2010		21.08	111.70	2.28
	12/1/2009		23.36	109.42	0.06
	11/30/2009		23.42	109.36	-0.32
	11/25/2009 10/29/2009		car parked on well 23.10	could not measure 109.68	0.30
	9/24/2009		23.40	109.38	-0.52
	8/20/2009		22.88	109.90	0.12
	9/26/2008		23.00	109.78	0.02
	9/18/2008		23.02 20.65	109.76	-2.37 0.50
	2/20/2003 1/18/2003	132.78	20.65	112.13 112.72	-0.59
MW2	12/5/2011	133.59	18.10	115.49	-1.04
	9/2/2011 6/1/2011		17.06 15.07	116.53 118.52	-1.99 -1.04
	5/20/2011		14.03	119.56	-1.04
	4/15/2011		11.04	122.55	0.57
	3/18/2011		11.61	121.98	2.09
	2/18/2011		13.70	119.89	0.20
	1/21/2011 12/13/2010		13.90 15.78	119.69 117.81	1.88 -0.05
	12/10/2010		15.73	117.86	0.96
	11/23/2010		16.69	116.90	0.97
	11/19/2010		17.66	115.93	-0.07
	11/12/2010		17.59	116.00	0.47
	10/15/2010 9/22/2010		18.06 17.72	115.53 115.87	-0.34 -0.37
	8/20/2010		17.35	116.24	-0.60
	7/16/2010		16.75	116.84	-1.34
	6/18/2010		15.41	118.18	-1.37
	5/21/2010		14.04	119.55	-2.25
	4/16/2010		11.79	121.80	-0.30
	3/19/2010		11.49	122.10	1.91
	2/19/2010 1/27/2010		13.40 12.75	120.19 120.84	-0.65 5.71
	12/1/2010		18.46	115.13	-1.00
	11/30/2009		car parked on well	could not measure	
	11/25/2009		car parked on well	could not measure	
	10/29/2009		17.46	116.13	1.37
	9/24/2009 8/20/2009		18.83 18.46	114.76 115.13	-0.37 0.04
	9/18/2008		18.50	115.09	-5.41
	2/20/2003		13.09	120.50	-1.54
	1/18/2003	133.59	11.55*	122.04	
MW3	12/5/2011	136.35	20.51	115.84	0.78
IVI W.3	9/2/2011	130.33	21.29	115.84	-1.34
	6/1/2011		19.95	116.40	-0.98
	5/20/2011		18.97	117.38	-2.45
	4/15/2011		16.52 17.19	119.83 119.16	0.67 1.40
	3/18/2011 2/18/2011		18.59	117.76	-0.51
	1/21/2011		18.08	118.27	1.20
	12/10/2010		19.28	117.07	1.87
	11/19/2010		21.15	115.20	1.82
	10/15/2010 9/22/2010		22.97 22.55	113.38 113.80	-0.42 -0.93
	8/20/2010		21.62	114.73	-0.93 -1.25
	7/16/2010		20.37	115.98	-1.05
	6/18/2010		19.32	117.03	-0.59
	5/21/2010 4/16/2010		18.73 17.39	117.62 118.96	-1.34 -0.44
	3/19/2010		16.95	119.40	1.01
	2/19/2010		17.96	118.39	-0.25
	1/27/2010		17.71	118.64	3.45
	12/1/2009 11/30/2009		21.16 21.14	115.19 115.21	-0.02 -0.12
	11/30/2009		21.14 21.02	115.21	-0.12 -1.07
	10/29/2009		19.95	116.40	1.72
	9/24/2009		21.67	114.68	-0.59
	8/20/2009		21.08	115.27	-0.17
	9/26/2008		20.91	115.44	2.78
	9/19/2008 9/18/2008		23.69 28.06	112.66 108.29	4.37 5.25
	9/15/2008		33.31	103.04	-6.51
	9/15/2008	136.35	26.80	109.55	
<u></u>					

SUMMARY OF GROUNDWATER ELEVATION DATA

Well No	<u>Date</u>	Top Of Casing Elevation (ft)**	Depth To Water (ft)	Water Table Elevation (ft)	Change in Water Table Elevation
MW4	12/5/2011	134.09	25.20	108.89	-0.65
	9/2/2011 6/1/2011		24.55 22.98	109.54 111.11	-1.57 -0.52
	5/20/2011		22.46	111.63	-0.32 -1.87
	4/15/2011		20.59	113.50	0.76
	3/18/2011		21.35	112.74	1.59
	2/18/2011 1/21/2011		22.94 22.78	111.15 111.31	-0.16 2.32
	12/10/2010		25.10	108.99	0.69
	11/19/2010		25.79	108.30	0.07
	10/15/2010 9/22/2010		25.86 25.47	108.23 108.62	-0.39 -0.62
	8/20/2010		24.85	109.24	-0.82
	7/16/2010		24.03	110.06	-0.92
	6/18/2010 5/21/2010		23.11 22.33	110.98 111.76	-0.78 -0.97
	4/16/2010		21.36	112.73	-0.57
	3/19/2010		21.18	112.91	1.41
	2/19/2010 1/27/2010		22.59 23.11	111.50 110.98	0.52 2.20
	12/1/2010		25.31	108.78	0.06
	11/30/2009		25.37	108.72	-0.11
	11/25/2009		25.26 25.06	108.83 109.03	-0.20 0.31
	10/29/2009 9/24/2009		25.37	109.03	-0.51
	8/20/2009		24.86	109.23	0.14
	9/26/2008		25.00 25.00	109.09	0.00
	9/19/2008 9/18/2008		25.02	109.09 109.07	0.02 0.09
	9/15/2008		25.11	108.98	-0.08
	9/15/2008	134.09	25.03	109.06	
DP1	12/5/2011	137.22	25.17 (0.25) ##	112.24	-2.73
	9/2/2011 6/1/2011		22.25 23.69	114.97 113.53	1.44
	5/20/2011			- water level fluctuating.	
	4/15/2011		14.19	123.03	1.46
	3/18/2011 2/18/2011		15.65 18.91	121.57 118.31	3.26 -1.08
	1/21/2011		17.83	119.39	7.08
	12/13/2010		24.91	112.31	0.50
	12/10/2010 11/23/2010		25.41 26.47	111.81 110.75	1.06 0.24
	11/19/2010		26.71	110.73	0.13
	11/12/2010	137.22	26.84	110.38	-0.33
	10/15/2010 10/5/2010*		25.68 25.42	110.71 110.97	-0.26 0.33
	9/28/2010*	136.39	25.75	110.64	
DP2	12/5/2011	136.59	21.16	115.43	-0.79
2.2	9/2/2011	130.39	20.37	116.22	-1.89
	6/1/2011		18.48 No. Managed	118.11	
	5/20/2011 4/15/2011		Not Measured 13.12	123.47	1.06
	3/18/2011		14.18	122.41	2.73
	2/18/2011 1/21/2011		16.91 16.74	119.68 119.85	-0.17 3.40
	12/13/2010		20.14	116.45	-0.01
	12/10/2010		20.13	116.46	0.81
	11/23/2010		20.94	115.65	0.71
	11/19/2010 11/12/2010	136.59	21.65 21.58	114.94 115.01	-0.07 0.35
	10/15/2010		21.11	114.66	-0.15
	10/5/2010* 9/28/2010*	135.77	20.96 19.57	114.81 116.20	-1.39
DP3	12/5/2011 9/2/2011	135.75	20.20 19.07	115.55 116.68	0.33 1.31
	6/1/2011		17.09	118.66	1.71
	5/20/2011			Not Measured	0.27
	4/15/2011 3/18/2011		12.35 13.30	123.40 122.45	0.95 2.60
	2/18/2011		15.90	119.85	-0.27
	1/21/2011		15.63	120.12	2.61
	12/13/2010 12/10/2010		18.24 18.35	117.51 117.40	0.11 0.91
	11/23/2010		19.26	116.49	0.89
	11/19/2010	125.55	20.15	115.60	-0.09
	11/12/2010 10/15/2010	135.75	20.06 19.29	115.69 115.22	0.47 -0.15
	10/5/2010*		19.14	115.37	0.28
	9/28/2010*	134.51	19.42	115.09	
DP4	12/5/2011	137.60	23.18	114.42	-2.00
	9/2/2011 6/1/2011		21.18 19.31	116.42 118.29	-1.87
	5/20/2011			Not Measured	
	4/15/2011		13.14 14.42	124.46 123.18	1.28
	3/18/2011 2/18/2011		14.42 17.55	123.18 120.05	3.13 -0.46
	1/21/2011		17.09	120.51	6.76
	12/13/2010 12/10/2010		23.85 24.61	113.75 112.99	0.76 1.63
	11/23/2010		26.24	111.36	0.21
	11/19/2010	100.10	26.45	111.15	0.16
	11/12/2010 10/15/2010	137.60	26.61 25.40	110.99 111.37	-0.38 -0.37
	10/5/2010*		25.03	111.74	0.79
	9/28/2010*	136.77	25.82	110.95	
I					

NOTES:
Top of well casing amended on 11/12/2010 in preparation for vapor extraction pilot test.

* = Prior to well development.

*= Wells MW3 and MW4 surveyed on September 22-23, 2008; wells DP1 through DP4 surveyed on October 5, 2010.

#= Depth to water not corrected for free product thickness; free product with thickness of 0.02 feet encountered.

= Indicates free product thickness in feet. The water table elevation has been corrected for the presence of free product by assuming a specific gravity of 0.75.

Well Number Sumple Date TPH-15
10152010 ND-50 ND-50 ND-50 ND-50 NA ND-50 NA ND-100 Clawform-0.25 ND, except 1212000 ND-50 N
1015/2010 ND-50 ND-50 ND-50 ND-50 ND-50 NA ND-50 NA ND-100
\$24,2010 ND-50 ND-50 ND-50 ND-50 NA ND-100 ND, except Chiroform-0.30 ND-50 ND-50
121/2099 ND-50 N
121/2009 ND-50 N
918/2008 ND-50 ND-50 ND-50 ND-50 NA ND-50 NA ND-100 Chloroform-0.71 ND, except: Chloroform-0.74 ND, except: Chloroform-0.78 ND, except: Chloroform-0.78 ND, except: Chloroform-1.2, NJ, example of the chloroform-1.2, NJ, except:
9/18/2008 ND-50
1027/2004 ND-50 ND-50 ND-50 ND-20 NA NR, eeget
1027/2004 ND-50
Chloroform=1.78 ND-50 ND
200 2003 ND-50 ND-50 ND-50 ND-50 ND-50 ND-50 NA ND-50 ND-50 NA ND-50 NA NA NA NA NA NA ** ND
Chloroform=1.2, X y ses = 0.6
S15/1995 ND-50
S151995 ND-50
12721994 ND-50
Syl 14 1994 ND_5 NA NA NA NA NA NA NA N
7/29/1994 ND-50 NA NA NA NA NA NA NA N
S31/1994 ND-50 NA
MW2 12:52011 1,200, a.g 1,800, a.g 2,400, b.i NA 2,700, b.i ND, except
MW2 125/2011 1,200, a.g 1,800, a.g 2,400, b.i NA 2,700, b.i ND, except Tobase = 15, Ethybere = 18, Sylene = 57, cia-1,2-Dribtone = 18, Sylene = 57, cia-1,2-Dribtone = 18, Sylene = 57, cia-1,2-Dribtone = 12, Naphtaken = 98, Viny (Chindie = 50, n-Buyl benzene = 12, Naphtakene = 98, Viny (Chindie = 50, n-Buyl benzene = 13, Isopropybezene = 12, see-Buyl benzene = 13, Isopropybezene = 12, see-Buyl benzene = 17, 12,4-Trimethybenzene = 120, 13,5-Trimethybenzene = 120, 13,5-Trimethybenzene = 120, 13,5-Trimethybenzene = 120, 12,4-Trimethybenzene = 100, Vany (Chindie = 160, Vany
Tokene = 15. Ehlybergene = 18,
Ethybenzene = 18,
Xykns = 57, cis.1.2-Dichborechene = 110, trans-1,2-Dichborechene = 110, trans-1,2-Dichborechene = 110, trans-1,2-Dichborechene = 12, Naphthalene = 98, Vinyl Chloride = 50, a-Butyl benzene = 53, Isopropybenzene = 12, sec-Butyl benzene = 13, Isopropybenzene = 12, sec-Butyl benzene = 13, Isopropybenzene = 12, sec-Butyl benzene = 13, Isopropybenzene = 12, 12,4-Trimethybenzene = 130, 13,5-Trimethybenzene = 130, Vinyl Chloride = 160, Vinyl Chloride = 180, Vinyl Chloride = 73, Isopropybenzene = 140, Vinyl Chloride = 73, Isopropybenzene = 140, Vinyl Chloride = 44, Xykene = 46, Isopropybenzene = 140, Isop
cis-1,2-Dichiorocheme = 10, trans-1,2-Dichiorocheme = 12, Naphthalaen = 13, Naphthalaen = 9, Naphthalaen = 10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
trans-1,2-Dehloroethene = 12,
Vinj Chloride = 50, n-Buty benzene = 53, lsopropybenzene = 12, see-Buty benzene = 12, see-Buty benzene = 14, n-Propy benzene = 17, 1, 2, 4-Timedybenzene = 100, 1, 3, 5-Timedybenzene = 100, 1, 3, 5-Timedybenzene = 130, ND, except: cis-1, 2-dichlorocethene = 1, 500, Vinj Chloride = 160, 1, 2, 4-Timedybenzene = 100, Vinj Chloride = 160, 1, 2, 4-Timedybenzene = 100, Vinj Chloride = 160, 1, 2, 4-Timedybenzene = 100, Vinj Chloride = 180, 1, 2, 4-Timedybenzene = 180, Vinj Chloride = 180, 1, 2, 4-Timedybenzene = 180, Vinj Chloride = 180, 1, 2, 4-Timedybenzene = 180, Vinj Chloride = 180, 1, 2, 4-Timedybenzene = 180, Vinj Chloride = 180, 1, 2, 4-Timedybenzene = 140, Vinj Chloride = 140, Vinj Chloride = 140, Vinj Chloride = 44, Xylenes = 46, 1, 2, 4-Timedybenzene = 140, 1, 3, 5-Timedybenzene = 140
10/15/2010 3,600, a,b,g 3,900, a,b,g 25,000, b,b,i,j NA 22,000, b,b,i,j ND, except: cis-1,2-dichbroethene=1,500, Vany(Choride=160, 12,4-Trimethylbenzene=35, ND, except: cis-1,2-dichbroethene=1,700, Vany(Choride=180, 12,4-Trimethylbenzene=100) ND, except: cis-1,2-dichbroethene=1,700, Vany(Choride=180, 12,4-Trimethylbenzene=180, ND, except: cis-1,2-dichbroethene=1,800, Vany(Choride=73, 12,4-Trimethylbenzene=140, ND, except: cis-1,2-dichbroethene=1,800, Vany(Choride=73, 12,4-Trimethylbenzene=140, ND, except: cis-1,2-dichbroethene=1,800, Vany(Choride=44, ND, except: cis-1,2-dichbroethene=140, 1,3-Trimethylbenzene=140, 1,3-Trimethylbenze
Isopropy between = 12, see-Buty between = 12, see-Buty between = 13, n-Propyl between = 13, n-Propyl between = 13, n-Propyl between = 130, 13,5-Trimethylbenzen = 120, 13,5-Trimethylbenzen = 130, 13,5-Trimethylbenzen = 150, 12,4-Trimethylbenzen = 150, 12,4-Trimethylbenzen = 100, 12,4-Trimethylbenzen = 180, 12,4-Trimethylbenzen = 140, 13,5-Trimethylbenzen = 140, 1
Sec-Buty benzence = 8.4, n-Propty benzence = 17, n-Propty benzence = 17, n-Propty benzence = 17, n-Propty benzence = 18, n-Propty benzence = 10, n-Propty benzence
n-Propyl benzene = 17, 1,2,4-Trimethylbenzene = 120, 1,3,5-Trimethylbenzene = 120, 1,3,5-Trimethylbenzene = 120, 1,3,5-Trimethylbenzene = 15, 1,2,4-Trimethylbenzene = 15, 1,2,4-Trimethylbenzene = 15, 1,2,4-Trimethylbenzene = 10, 1,2,4-Trimethylbenzene = 140, 1,2,4-Trime
1,2,4-Trimethylbenzene = 120, 1,3,5-Trimethylbenzene = 120, 1,3,5-Trimethylbenzene = 120, 1,3,5-Trimethylbenzene = 120, 1,3,5-Trimethylbenzene = 130, ND, except: cis-1,2-dishbrorethene 1,500, Vinyl Chloride 160, 1,2,4-Trimethylbenzene 100, ND, except: cis-1,2-dishbrorethene 1,700, Vinyl Chloride 180, 1,2,4-Trimethylbenzene = 100, ND, except: cis-1,2-dishbrorethene 1,700, Vinyl Chloride 180, 1,2,4-Trimethylbenzene = 180, Vinyl Chloride 180, 1,2,4-Trimethylbenzene 180, Vinyl Chloride 180, ND, except: cis-1,2-dishbrorethene 1,800, Vinyl Chloride 1,2,4-Trimethylbenzene 1,2,4-Trimethylbenzen
10/15/2010 3,600, a,b,g 3,900, a,b,g 25,000, b,b,i,j NA 22,000, b,b,i,j ND, except: cis-1,2-dichlorochene 1,500, Vanyl Chloride 160, 1,2,4-Trimethylbenzene 100, ND, except: cis-1,2-dichlorochene 1,700, Vanyl Chloride 180, 1,2,4-Trimethylbenzene 80, ND, except: cis-1,2-dichlorochene 1,700, Vanyl Chloride 180, 1,2,4-Trimethylbenzene 80, ND, except: cis-1,2-dichlorochene 1,800, Vanyl Chloride 180, 1,2,4-Trimethylbenzene 1,800, Vanyl Chloride 180, ND, except: cis-1,2-dichlorochene 1,800, Vanyl Chloride 173, 1,2,4-Trimethylbenzene 140, ND, except: cis-1,2-dichlorochene 1,800, Vanyl Chloride 180, ND, except: cis-1,2-dichlorochene 1,800, ND, except: cis-1
Cis-12-dichloroethene 1,500, Vinyl Choride 160, 1,2,4-Trimethylbenzene 100 ND, except: Cis-12-dichloroethene 1,700, Vinyl Choride 180, 1,2,4-Trimethylbenzene 100 ND, except: Cis-12-dichloroethene 1,700, Vinyl Choride 180, 1,2,4-Trimethylbenzene 80, Vinyl Choride 180, 1,2,4-Trimethylbenzene 80, Vinyl Choride 180, 1,2,4-Trimethylbenzene 1,200, Vinyl Choride 1,2,4-Trimethylbenzene 1,400, Vinyl Choride 1,2,4-Trimethylbenzene 1,400, Vinyl Choride 1,2,4-Trimethylbenzene 1,200, Vinyl Choride 1,2,4-Trimethylbenzene 1,2
Vinyl Chloride = 140, 1,2,4-Trimethylbenzene = 100 ND, except: cis-1,2-dichloroethene = 1,700, Vinyl Chloride = 180, 1,2,4-Trimethylbenzene = 80 ND, except: cis-1,2-dichloroethene = 1,800, Vinyl Chloride = 180, 1,2,4-Trimethylbenzene = 80 ND, except: cis-1,2-dichloroethene = 1,800, Vinyl Chloride = 73, 1,2,4-Trimethylbenzene = 140, Vinyl Chloride = 73, 1,2,4-Trimethylbenzene = 140, Vinyl Chloride = 73, 1,2,4-Trimethylbenzene = 140, Vinyl Chloride = 43, Vinyl Chloride = 44, Vinyl Ch
1,2,4-Trimethylbenzene = 100
S/21/2010 2,400, g 2,500, g 3,900, h,i,j NA 4,700, h,i,j ND, except cis-1,2-dishbrorethere=1,700, Vinyl Chloride = 180, 1,2,4-Trimethylbenzene = 80 ND, except cis-1,2-dishbrorethere=1,800, Vinyl Chloride = 73, 1,2,4-Trimethylbenzene = 140, Vinyl Chloride = 73, 1,2,4-Trimethylbenzene = 140, Vinyl Chloride = 73, 1,2,4-Trimethylbenzene = 140, ND, except cis-1,2-dishbrorethere=1,800, Vinyl Chloride = 74, Xylenes = 46, 1,2,4-Trimethylbenzene = 140, 1,3,5-Trimethylbenzene = 140, 1,3,5-Trimethylb
12/1/2009 34,000, b,c 47,000, b,c 74,000, b,d,e,f NA 91,000, b,d,e,f NA 91,000, b,d,e,f ND, except:
Vinyl Chloride = 180, 1,24-Trimethylbenzene = 89 ND, except: cis-1,2-dichloroethene = 1,800, Vinyl Chloride = 73, 1,24-Trimethylbenzene = 140 ND, except: cis-1,2-dichloroethene = 1,800, Vinyl Chloride = 73, 1,2,4-Trimethylbenzene = 140 ND, except: cis-1,2-dichloroethene = 80, Vinyl Chloride = 74, Xylene = 46, Xylene = 46, 1,2,4-Trimethylbenzene = 140, 1,3,5-Trimethylbenzene = 1
1,2,4-Trimethylbenzene = 89 12/1/2009 34,000, b,c 47,000, b,c 74,000, b,d,e,f NA 91,000, b,d,e,f NA 91,000, b,d,e,f NA 91,000, b,d,e,f ND, except: cis-1,2-dichloroethene = 1,800, Vinyl Chloride = 73, 1,2,4-Trimethylbenzene = 140, ND, except: cis-1,2-dichloroethene = 80, Vinyl Chloride = 44, Xylens = 46, 1,2,4-Trimethylbenzene = 140, 1
12/1/2009 34,000, b,c 47,000, b,c 74,000, b,d,e,f NA 91,000, b,d,e,f ND, except: cis-1,2-dichloroethene 1,800,
Cis-1,2-dichloroethene 1,800, Vinyl Chloride 73, 1,2,4-Trimethylbenzene 140, Vinyl Chloride 73, 1,2,4-Trimethylbenzene 140, Vinyl Chloride 73, 1,2,4-Trimethylbenzene 140, Vinyl Chloride 74, Vinter 1,2-dichloroethene 80, Vinyl Chloride 44, Vinter 1,2-dichloroethene 80, Vinyl Chloride 44, Vinter 1,2-dichloroethene 140, 1,2-dichloroeth
Vinyl Chloride = 73, 12,4-Trimethylbenzene = 140 ND, except: cis-1,2-dichloroethene = 880, Vinyl Chloride = 44, Xykns = 44, Xykns = 46, 12,4-Trimethylbenzene = 140 ND, except: cis-1,2-dichloroethene = 880, Vinyl Chloride = 44, Xykns = 46, 12,4-Trimethylbenzene = 140, 1,3-5,7 intenthylbenzene = 41, 1,3-5,7 intenthylbenzene = 41, 1,3-5,7 intenthylbenzene = 43, 2,20,2003 76,000, b,c 75,000 370,000, b,d,f 37,000 NA ND, except: Cis-1,2-dichloroethene = 3,500 ND, except: Cis-1,2-dichloroeth
1,2,4-Trimethylbenzene = 140
9/18/2008 11,000, c,b 14,000 28,000, b,d,c NA 33,000 ND, except: cis-12-dichloroethene= 880, Vinyl Chloride = 44, Xylens = 46, 1,2.4-Trimethylbenzene = 140, 1,3.5-Trimethylbenzene = 41 10/27/2004 320,000, c 500,000 280,000, b,d, f ND 2/20/2003 76,000, b,c 75,000 370,000, b,d,f 37,000 NA **ND, except: Cis-12-dichloroethene = 3,300 ND, except: cis-12-dichloroet
cis-1.2-dichlorochene= 880,
Vinyl Chloride = 44, Xylenes = 46, 1,2,4-Trimethylbenzene = 140, 1,3,5-Trimethylbenzene = 41, 1,2,4-Trimethylbenzene = 41, 1,3,5-Trimethylbenzene = 41, 1,3,5-Trimethylbenzene = 43, 1,3,5-Trimethylbenzene = 3,300 1,3,5-Trimethylbenzene = 3,300 1,3,5-Trimethylbenzene = 3,300 1,3,5-Trimethylbenzene = 43, 1,3,5-Trimethylbenzene = 43, 1,3,5-Trimethylbenzene = 14, 1,3,5-Trimethylbenzene = 15, 1,3,5-Trimethylbenzene = 16, 1,3,5-Trimethylbenzene = 140, 1,3,5-Trimethylbenzene = 140, 1,3,5-Trimethylbenzene = 140, 1,3,5-Trimethylbenzene = 13, 1,3,5-Trimethylbenzene = 140, 1
Xylense = 46, 1,24-Trimethylbenzene = 140, 1,35-Trimethylbenzene = 140, 1,35-Trimethylbenzene = 41
1,2,4-Trimethylbenzene = 140, 1,3,5-Trimethylbenzene = 141, 1,3,5-Trimethylbenzene = 141, 1,3,5-Trimethylbenzene = 141, 1,3,5-Trimethylbenzene = 141, 1,3,5-Trimethylbenzene = 41, 1,3,5-Trimethylbenzene = 3,300 1,3,5-Trimethylbenzene = 140, 1,3,5-Trimethylbenzene = 3,300 1,3,5-
1,3,5-Trimethylbenzene = 41 10/27/2004 320,000, c 500,000 280,000, b,d, f ND<50,000 NA *ND, except: cis-1,2-dichloroethene = 3,300 ND, except: Tolene = 47, Ethylbenzene = 43,
220 2003 76,000, b,c 75,000 370,000, b,d,f 37,000 NA cis-1,2-dichloroethene = 3,300 ND, except: Tokene = 47, Ethylbenzene = 43, Xylenes = 160, cis-1,2-Dichloroethene = 360, trans-1,2-Dichloroethene = 22, n-Butyl benzene = 43, Isopropylbenzene = 35, sec-Butyl benzene = 48, n-Propyl benzene = 86,
2/20/2003 76,000, b,c 75,000 370,000, b,d,f 37,000 NA ND, except: Toluene = 47, Ethylbenzene = 43,
Toluene = 47. Elthybenzene = 43. Xylenes = 160. cis-1,2-Dichloroethene = 360. turs-1,2-Dichloroethene = 22. n-Buyl benzene = 43. Isopropybenzene = 35. sec-Buyl benzene = 48. n-Propyl benzene = 86.
Eithylbenzene = 43,
Xylenes = 160, cis-1,2-Dichloroethene = 360, trans-1,2-Dichloroethene = 22, n-Butyl benzene = 43, Isopropybenzene = 35, sec-Butyl benzene = 48, n-Propyl benzene = 48,
cis-1,2-Dichloroethene = 360, trans-1,2-Dichloroethene = 22, n-Butyl benzene = 43, Isopropylbenzene = 35, see-Butyl benzene = 48, n-Propyl benzene = 86,
trans-1,2-Dichloroethene = 22,
n-Butyl benzene = 43. Isopropybenzene = 35. see-Butyl benzene = 48. n-Propyl benzene = 86.
Isopropybenzene = 35. see-Butyl benzene = 48, n-Propyl benzene = 86,
sec-Butyl benzene = 48, n-Propyl benzene = 86,
4-Isopropyl toluene = 25.
1,3,5-TrimethyBenzene = 160, Naphthalme = 32,
Naprimaerie = 32, Vinyl Chloride = 24
5/15/1995 12,000, c NA NA NA NA NA **Benzene = 17,
**Toluene = 96 ,
**Ethylbenzene = 50,
**Xylenes = 200
12/22/1994 20,000, a,c NA NA NA NA **Benzene = 22 ,
**Toluene = 170,
**Ethylbenzene = 89, **Xydano = 470,
**Xyknes = 470 12/22/1994 ND, except:
10221994
+Tollene = 170,
+Ethylbenzene = 48,
+Xylenes = 180,
+cis-1,2-Dichloroethene = $1,100$,
+trans-1,2-Dichlorosten = 15,
+1,1-Dichlorocthane = 2.8, +Chlorocthane = 6.7
+C.horoemane = 0.7 9/14/1994 200,000, b,c NA NA NA NA NA **Benzene = ND < 15
200y000, up. 10. 10. 100 INC. Delizele - NO. 13
**Toluene = 170,
**Ethylbenzene = 400.
**Xylenes = 2,600
9/14/1994 ND, except:
+Benzene = 24,
+Benzene = 24, +Tohene = 440,
+Benzene = 24, +Toluene = 440, +Ethylbenzene = 3400,
+Benzene = 24, +Toluene = 440, +Ethylbenzene = 300, +Xyknes = 830,
+Benzene = 24, +Toluene = 440, +Ethylbenzene = 3400,

Well Number	Sample Date	TPH-G	TPH-SS	TPH-D	TPH-MO	TPH-BO	VOCs by 8260B
							•
MW2 Continued	7/29/1994	21,000, b, c	NA	NA	NA	NA	**Benzene = 21,
							**Toluene = 150,
							**Ethylbenzene = 53,
							**Xylenes = 150
	5/31/1994	6,400, c	NA	NA	NA	NA	**Benzene = 15,
							**Toluene = 100 ,
							**Ethylbenzene = 43,
	1/20/1004	2.000	NA	12.000 1	214	NA	**Xylenes = 220
	1/28/1994	2,800, с	NA	12,000, d	NA	NA	ND, except:
							**Xylenes = 43
	1/19/1994++	3,400, с	NA	20,000	NA	NA	**Benzene = 15,
							**Toluene = 180,
							**Ethylbenzene = 39,
							**Xylenes = 200
MW3	12/5/2011	ND<50	ND<50	ND<50	NA	ND<100	ND, except:
							Carbon disulfide = 1.9
	10/15/2010	ND<50	ND<50	ND<50	NA	ND<100	ND
	5/21/2010	ND<50	ND<50	ND<50	NA	ND<100	ND
	12/1/2009	ND<50	ND<50	63, e	NA	120, e	ND
	9/18/2008	ND<50	ND<50	ND<50	NA	ND<100	ND, except:
							Bromoform = 0.57 ,
							Chloroform = 1.3
MW4	12/5/2011	ND<50	ND<50	ND<50	NA	ND<100	ND, except:
IVI VV +	12/3/2011	NDC30	NDC30	NDCJU	INA	ND<100	
							Cis-1,2-dichloroethene = 12, Chloroform = 1.2
	10/15/2010	ND<50	ND<50	ND<50	NA	ND<100	ND, except:
	10/13/2010	140<50	ND<50	ND-30	14/4	140<100	Cis-1,2-dichloroethene = 8.4 ,
							Trans-1,2-dichloroethene = 0.84,
							Chloroform = 1.3
	5/21/2010	ND<50	ND<50	ND<50	NA	ND<100	ND, except:
							Cis-1,2-dichloroethene = 8.7 ,
							Chloroform = 1.3
	12/1/2009	ND<50	ND<50	ND<50	NA	ND<100	ND, except:
							Cis-1,2-dichloroethene = 5.8,
	9/18/2008	ND<50	ND<50	ND<50	NA	ND<100	Chloroform = 0.97 ND, except:
)/ TG 2000	112 (30	112 (30	110 00		115 (100	Cis-1,2-dichloroethene = 4.8,
							Chloroform = 0.96
DP1	12/6/2011	2,000, a,g	940, a,g	47,000, h,i,j	NA	59,000, h,i,j	ND, except:
DFI	12/0/2011	2,000, a,g	740, a,g	47,000, n,i,j	1974	27,000, 11,1,1	Tetrachloroethene = 2,800,
							Trichloroethene = 850,
							cis-1,2-Dichloroethene = 260
	10/15/2010	10,000, b,g,k	5,100, b,g	9,000, b,h,j	NA	9,800, b,h,j	ND, except:
							Cis-1,2-dichloroethene = 17,000,
							Vinyl Chloride = 2,600
DP2	12/6/2011	1,300, a,g	480, a,g	670, i,l	NA	1,000, i,l	ND, except:
							Cis-1,2-dichloroethene = 14,000
	10/15/2010	4,800, a,g	2,900, a,g	3,900, h,i	NA	2,900, h,i	ND, except:
							Cis-1,2-dichloroethene = 22,000

Report 0298.R14 TABLE 2

SUMMARY OF GROUNDWATER SAMPLE RESULTS

Well Number	Sample Date	TPH-G	TPH-SS	TPH-D	TPH-MO	TPH-BO	VOCs by 8260B
DP3	12/6/2011	480, g	630, g	3,600, m	NA	4,500, m	ND, except: Benzene = 0.97,
	10/15/2010	5,700, g	8,000, g	10,000, h,i,j	NA	9,800, h.i.j	Toluene = 1.1, Ethylbenzene = 1.7, Xylenes = 3.1, cis-1,2-Dichbrorethene = 22, trans-1,2-Dichbrorethene = 23, Vinyl Chloride = 17 Naphthalene = 2.2, n-Buryl benzene = 1.7, 1,2.4-Trimethylbenzene = 24, 1,3.5-Trimethylbenzene = 2.5, sec-Buryl benzene = 2.5, sec-Buryl benzene = 2.5, Isopropylbenzene = 2.8, n-Propyl benzene = 4.2, 4-Isopropyl toluene = 0.99 ND, except: Toluene = 2.7, Ethylbenzene = 4.0, Xylenes = 23, cis-1,2-Dichbrorethene = 44, trans-1,2-Dichbrorethene = 44, trans-1,2-Dichbrorethene = 4.5, Naphthalene = 7.5, n-Buryl benzene = 6.9, 1,3.5-Trimethylbenzene = 69, 1,3.5-Trimethylbenzene = 24, sec-Buryl benzene = 6.0, Isopropylbenzene = 7.2, n-Propyl benzene = 7.2,
DP4	12/5/2011	ND<50	ND<50	ND<50	NA	ND<100	ND, except:
1 <i>/</i> 1°4	10/15/2010	1,800, g,k	ND<50 1,500, g,k	1,200, h,i	NA NA	920, h,i	ND, except: Chloroform = 0.96 ND, except: Tetrachloroethene = 22,
							Tertachroremen = 22, Trichloroethene = 40, cis-1,2-Dichloroethene = 80, trans-1,2-Dichloroethene = 33, Vinyl Chloride = 2,9, tert-Butyl benzene = 3.8, 4-Isopropyl toluene = 4.5
ESL		100	100	100	100	100	Benzene = 1.0, Toluene = 40, Ethylbenzene = 30,
							Xylenes = 20, Tetrachloroethene = 5.0, Trichloroethene = 5.0, cis-1,2-Dichloroethene = 6.0, trams-1,2-Dichloroethene = 10, 1,1-Dichloroethane = 5.0, Chloroethane = 12, Vinyl Chloride = 0.5, Naphthalene = 17, Chloroform = 70, Bromoform = 100, Acetone = 6,300, n-Butyl benzene = None, 1,2-4-Trimethylbenzene = None, 1,3-5-Trimethylbenzene = None, see-Butyl benzene = None, tetr-Butyl benzene = None, tetr-Butyl benzene = None, tetr-Butyl benzene = None, carbon disulfide = None, Carbon disulfide = None, Carbon disulfide = None,

Abbreviations and Notes:

TPH-G = Total Petroleum Hydrocarbons as Gasoline
TPH-SS = Total Petroleum Hydrocarbons as Stoddard solvent
TPH-D = Total Petroleum Hydrocarbons as Diesel
TPH-MO = Total Petroleum Hydrocarbons as Motor Oil
TPH-BO = Total Petroleum Hydrocarbons as Motor Oil
TPH-BO = Total Petroleum Hydrocarbons as Bunker Oil
VOCs = Volatile Organic Compounds
ND = Not Detected.
NA = Not Analyzed.

- See: TPH-G graults in the line above.

- ND = Not Detected.
 NA = Not Analyzed.
 --- See TPH-G results in the line above.
 a = Laboratory Note: one to a few isolated peaks present.
 b = Laboratory Note: one to a few isolated peaks present.
 b = Laboratory Note: injustic peopret as gasoline consist of Stoddard Solvent/mineral spirit.
 d = Laboratory Note: results reported as diesel consist of Stoddard Solvent/mineral spirit.
 d = Laboratory Note: results reported as diesel consist of Stoddard Solvent/mineral spirit.
 e = results reported as diesel consist of direct peopret of the steel results reported as diesel consist of oil range compounds, no recognizable pattern.
 f = results reported as diesel consist of oil range compounds, no recognizable pattern.
 f = Laboratory Note: results reported as gasoline and Stoddard solvent consist of Stoddard Solvent/mineral spirit.
 h = Laboratory Note: results reported as diesel and bunker oil consist of Stoddard Solvent/mineral spirit.
 i= Laboratory Note: results reported as diesel and bunker oil consist of diesel range compounds; no recognizable pattern.
 j= Laboratory Note: results reported as diesel and bunker oil consist of diesel range compounds.

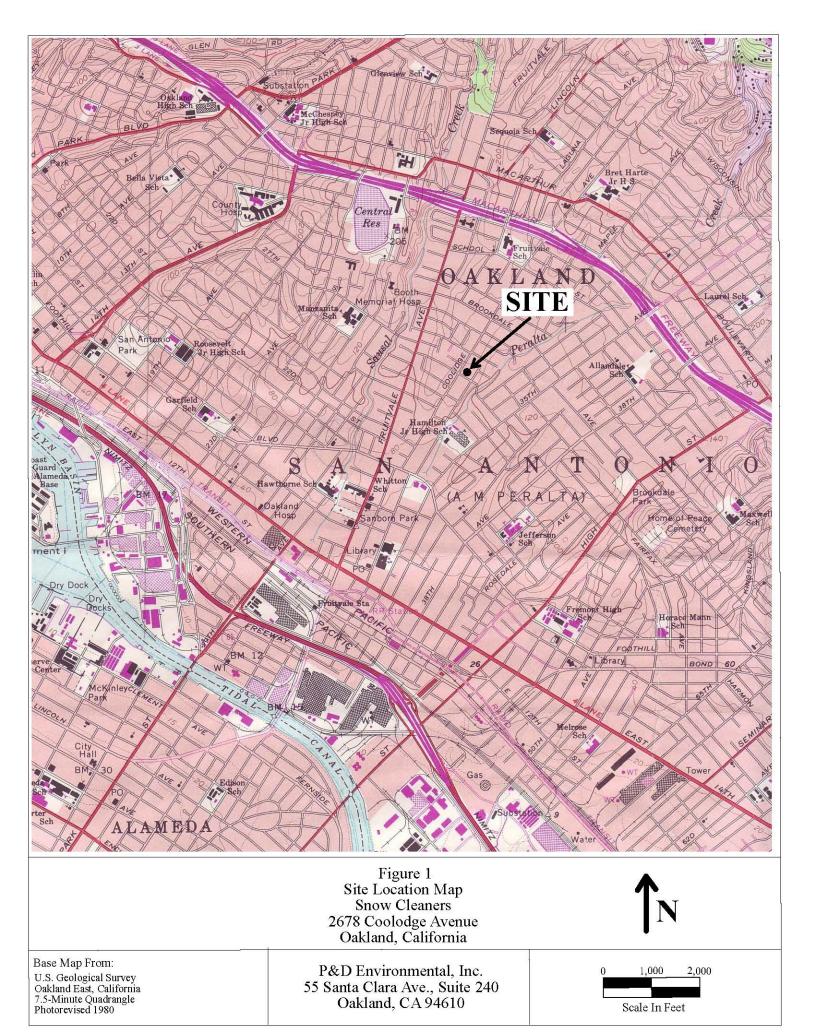
 m = Laboratory Note: results reported as diesel and bunker oil consist of gasoline range compounds.

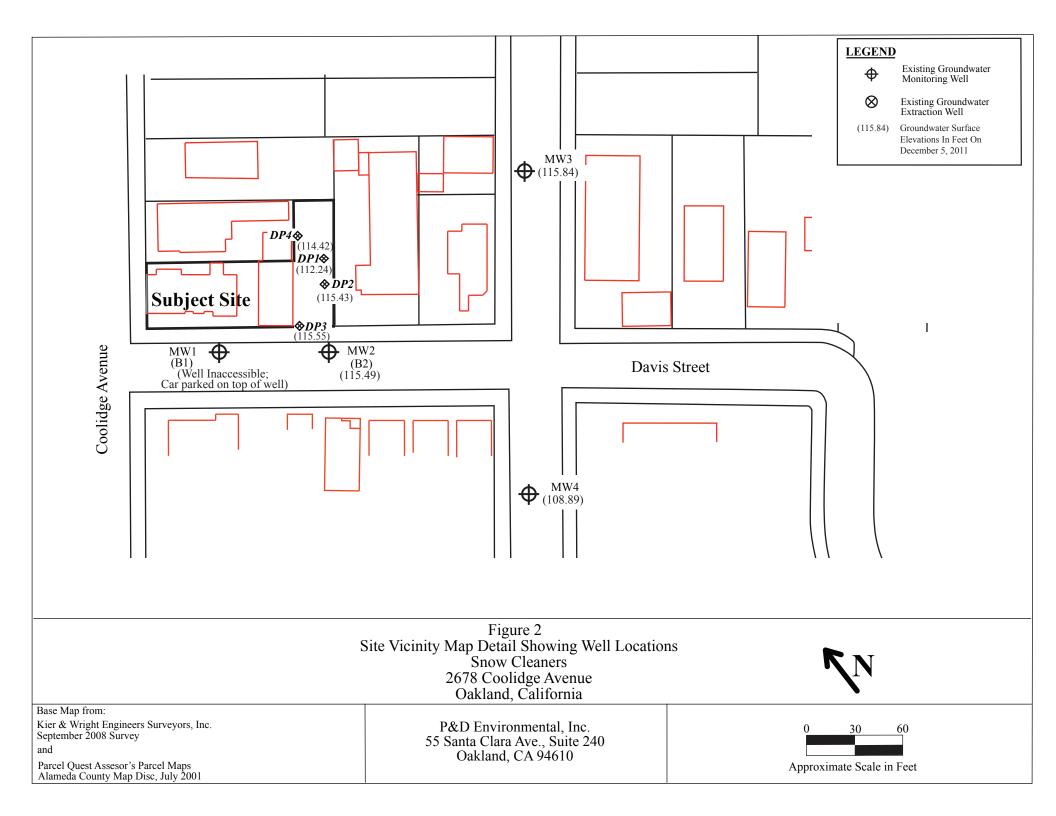
 m = Laboratory Note: results reported as diesel and bunker oil consist of gasoline range compounds.

 m = Laboratory Note: results reported as diesel and bunker oil consist of krosene or jet fuel range compounds.

 m = Laboratory Note: results reported as diesel and bunker oil consist of krosene or jet fuel range compounds.

 m = Laboratory Note: results reported as diesel and bunker oil consist of krosene or jet fuel range compounds.


 m = Laboratory Note: results reported as diesel and bunker oil consist of krosene or jet fuel range compounds.


 m = Laboratory Note: results reported as diesel and bunker oil consist of krosene or jet fuel range compounds.

 m = Laboratory Note: results reported as diesel and bunker oil consist of krosene or jet fuel range compounds.

 m = Laboratory

FIGURES

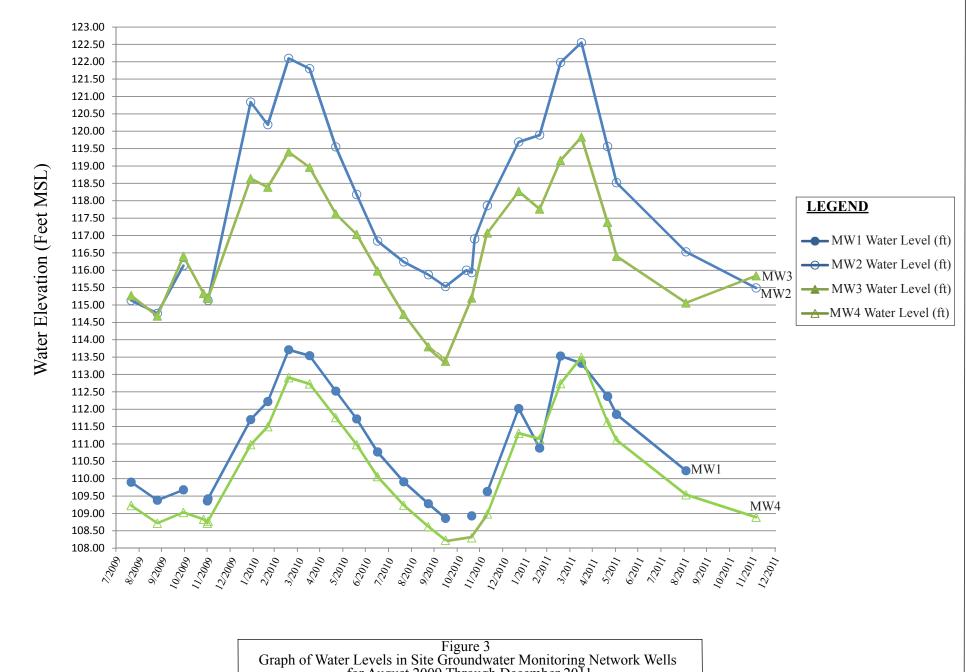
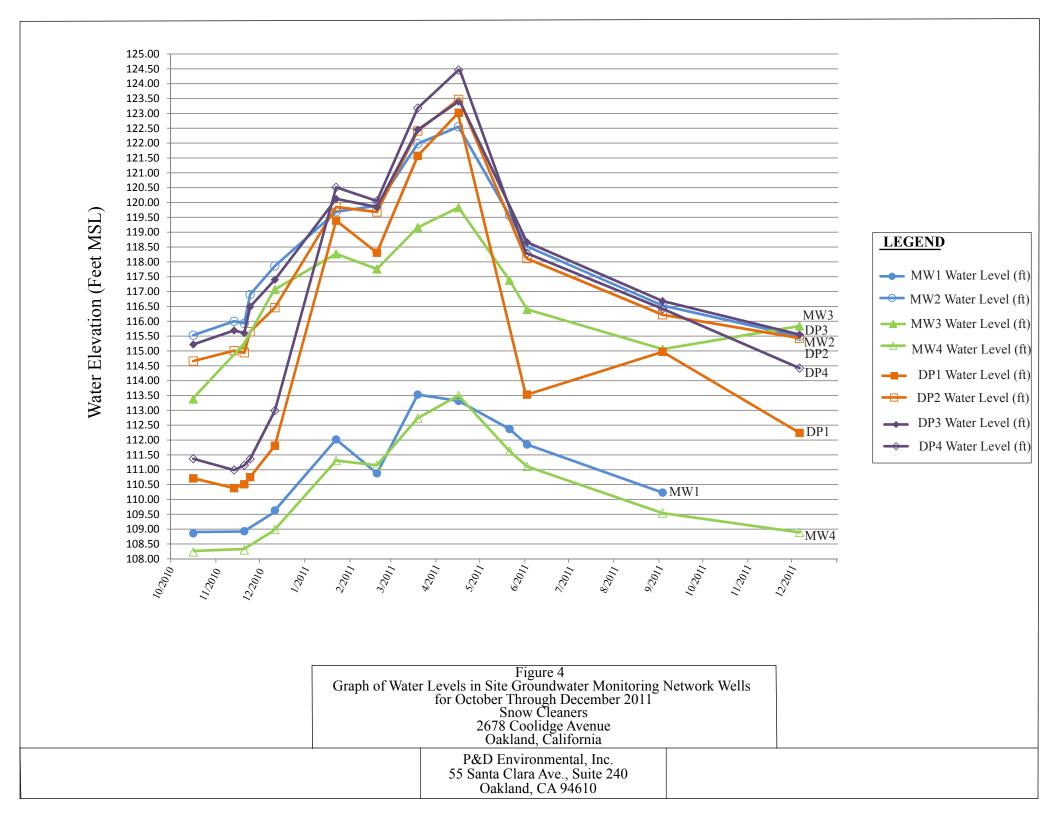



Figure 3
Graph of Water Levels in Site Groundwater Monitoring Network Wells for August 2009 Through December 2011
Snow Cleaners
2678 Coolidge Avenue
Oakland, California

P&D Environmental, Inc. 55 Santa Clara Ave., Suite 240 Oakland, CA 94610

GROUNDWATER MONITORING/WELL PURGING DATA SHEETS

P&D Environmental, Inc. Groundwater Monitoring/Well Purging Data Sheet Site Name Snow Cleuners MINT 0798 Job Number TOC to Water (ft.) Sheen Well Depth (ft.) Free Product Thickness Sample Collection Method Well Diameter No sample collected Flow Rate (mL/minute) Start Purge Time Vol. Electrical Conductivity <u>Turbidity</u> Purged Depth to Temperature Time (mL) Water (ft.) Нa (C_o) (uS/cm) (NTU) 814 NOTES Stability Parameters p.H. = +/- 0.1Sp. Conductivity = +/-3% Turbidity = +/- 10%

1 1

Site Name		leaners			Well No.	HX MW-2
Job Number	<u> </u>	198			Date 12/5/1	\
TOC to Wat	er (ft.)	8.10			Sheen None	
Well Depth	H.C. (ft.)	· k	Free Product Thickness	<u>Ø</u>		
Well Diame	ter 411		Sample Collection Meth	nod Peristathic		
Flow Rate (1	,	~JJ5				mused PEtubing
Start Purge	I	535			t - t	/
, and the second	Vol.				Electrical	
<u>Time</u>	Purged (mL)	Depth to Water (ft.)	<u>рН</u>	Temperature (C°)	Conductivity (µS/cm)	Turbidity (NTU)
1536	775	18,21	6.54	18.2	796	7.81
1541	1350	18.23	6.51	18.6	750	399
1545	2 250	18.24	6.50	18.9	749	4.81
1548	2.925	8.25	6.47	18.9	750	430
1550	7 27	End Po			1 2	
100	3,112	- cry 10	go_			
				4,9		
						-, <u>-</u> , -, -, -, -, -, -, -, -, -, -, -, -, -,

		100 C				
	47					
NOTES		Mad- da	one Stold.	tables ha	ider 1 Ma	Sheer
Stability Para	<u>ameters</u>	Tulet to t		at	x 22 f. + i	Sheen low topol casing
Sp. Conducti	vity = +/-3%	MW-I	Callanda?	a 16x51	VV 41. 116. PS	104 101 01 013
Turbidity =	1/* 10%		1011-0-161	<u>~ · · · · · · · · · · · · · · · · · · ·</u>	·	

ž.

Site Name	Snow C	leoners			Well No MW-	3
Job Number	- 1				Date 12/5/	
	er (ft.) }				Sheen None	
	ft.)				Free Product Thickness_	<u> </u>
Well Diamet	. ,	711			Sample Collection Metho	a Penstellic
	nL/minute) _^	1725			pump + new	PE tubia,
Start Purge 1	1 2	348				,
Time 1349 1354	Vol. Pursed (mL) 225 1,350	Depth to Water (ft.) 21.64 23.64	7.34 7.34	Temperature (C°) 19.5	Electrical. Conductivity. (uS/cm) 5 46	Turbidity (NTU) 3.20 9.22
135t 1400	2,700	23.58	7.78	19.0	397 390	2.83
1403	3,375	25.38	7.94	18.6	390	7.47
	<u>Endfirs</u>					·
				•		
					4	
			-			
					·	

NOTES						
NOTES		No Sheen	4 ve cys	<u> </u>		
Stability Para $p.H. = +/-0$.	1		•		c. 30 teer belo	w top of Consinge
Sp. Conducti Turbidity =	ivity = +/-3% +/- 10%	MW-3 coil	exted out	910		

. .

Sita Nama	Snas C	lenners	TOURIGNATE! W	onitoring, wen r	Well No. MW-	4
	03				Date 17/5/	/11
Job Number	er (ft.) 3	520			Sheen None	
	~ ر~	7.2			·	<i>K</i>
Well Depth					Free Product Thickness_	
Well Diamer					Sample Collection Metho	od <u>Francite</u>
Flow Rate (r	nL/minute)	347			Ching of New i	innsed Ptthing
Start Purge	Time	51				
	<u>Vol.</u> Purged	Depth to		Temperature	Electrical Conductivity	<u>Turbidity</u>
Time	(mL)	Water (ft.)	<u>рН</u>	(C°)	(μ <u>S/cm)</u>	(NTU)
1474	225	20,70	7.77	18,8	781	3831c 3.41
1756	1,125	35,79	6,60	18,9	416	0,29
1300	2,025	25.29	6.59	18,3	489	0.39
1304	2,925	25.29	6,53	18,3	421	0.00
1306	Ent bru	23,375				
					,	
					And the same of th	
					/ 	
						Allert Al
				·		
NOTES		No do	tnos	heen		
Stability Para p.H. = $\pm 1/-0$.					x 30 feat 1	place top of caring
Sp. Conducti Turbidity =	vity = +/-3%	MINI 4	10041) DE	e 1315.	<u> </u>	(
ruiolaity =	1/- 10/70	1,11,0-	COLLECTO	_ <u>~ \ </u>	 	

. .

P&D	Environmen	ital, Inc
A	amitaning/Wall	Durging

	Groundwa	ter Monitoring/Well P	urging Data Sheet	1
Site Name Snow (leaners		Well No. VP	-1 paged
Job Number	798	maa	Date 12/5/	110 12/6/11 6 forged
TOC to Water (ft.)			Sheen VC	5
	770		Free Product Thickness	0.19
Well Depth (ft.)	<u> </u>		Sample Collection Meth	Penetalkie
Well Diameter	1		Sample Collection Meth	od 1019 Act has
Flow Rate (mL/minute)	<u>~9,7,2</u>		- FLIMP O MED	unised petuling
Start Purge Time	32			
Vol			Electrical	Turbidity_
<u>Purged</u> Time (mL)	Depth to Water (ft.) pH	Temperature (C°)	Conductivity (µS/cm)	(NTU)
1173 225	75,42 6,8	7 17.1	478	34.70
1138 1,350	25.51 6.	76 17.6	470	66
1143 2,475		17.6	470	48.44
		17/	468	48.52
	<u>35.62</u> 6.1	0 11.0	10-	10 30
1147 3,375	Endryc			***
_	m.	Topot Tape =	25.5	
	116-	Top of Tape = Top of Sph =	7.0"	
Top of HaD =	4.0" -2		-	
	7/1			
				
				
				·
			···	
			. <u> </u>	
35.5 - 7.0	'' = 25.5' - 0.5'	8 = 24.92		
2551-40	1-1551-033	= 25.17		
50 Hills	s = 0.25' F	P cocuchion -	0.25' x 0.3	75 = 0.19
FF THICKNES.	$\frac{1}{1} = \frac{0.43}{1} = \frac{1}{1}$	17' 019/-	24 48'	<u> </u>
Corrected Wi	ater level = 25.			
NOTES	Removed from	reduct- ovier	to purging & S	empling Capprox 450 ml
Stability Parameters	Stars Stelland o	Just - do - +	heen Delace	istlectule Q 1200
p.H. = ± -0.1 Sp. Conductivity = ± -3	% - 1 1 1 1	6. 40-1 5 MO: 4 D	27.	Call

Turbidity = +/- 10% Inlit to thing set at approx 27 feet below topol casing

E 1

P&D Environmental, Inc. Groundwater Monitoring/Well Purging Data Sheet Snow Genera Job Number TOC to Water (ft.) Well Depth (ft.) 512-3 Free Product Thickness Sample Collection Method Feristattic Well Diameter Start Purge Time Vol. Electrical Conductivity **Turbidity** Purged Temperature Depth to Time (mL)Water (ft.) (C°) (µS/cm) (NTU) 0947 225 1,125 1,800 NOTES Staded Sdrat oder, No sheen Stability Parameters p.H. = +/-0.1Sp. Conductivity = $\pm \frac{-3\%}{}$

Turbidity = +/- 10%

P&D Environmental, Inc. Groundwater Monitoring/Well Purging Data Sheet Well No. Job Number TOC to Water (ft.) Free Product Thickness Well Depth (ft.) Sample Collection Method Fenstel Well Diameter Flow Rate (mL/minute) Start Purge Time Vol. Electrical <u>Turbidity</u> Purged Depth to Temperature Conductivity (mL)Water (ft.) (C°) (µS/cm) (NTU) <u>Time</u> pН 5,59 20.38 225 1079 1034 1038 1041 1043 **NOTES** Stability Parameters

 $p.H. = \pm /- 0.1$

Sp. Conductivity = $\pm \frac{1}{2}3\%$ Turbidity = $\pm \frac{10\%}{9}$

1 1

P&D Environmental, Inc.

Site Name	
Sheen None	
Well Depth (ft.) 38.0 Free Product Thickness Once Pr	
Well Depth (ft.) Free Product Thickness Well Diameter Free Product Thickness Sample Collection Method Jerry Flow Rate (mL/minute) Name of the policy of the product of	
Flow Rate (mL/minute) ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
Start Purge Time	Stattle
Start Purge Time	1PEtub
Purged (mL) Depth to Water (ft.) Temperature (L) Conductivity (MS/cm) Turbidity (NTU) 1449 450 23.36 6.78 17.9 373 7.10 1454 1,575 33.30 6.73 17.8 357 3.73 1457 2,250 33.32 6.71 17.6 357 3.11 1500 2925 33.34 6.71 17.7 360 3.67	
$\frac{1457}{1500}$ $\frac{2,350}{2,925}$ $\frac{93.32}{33.34}$ $\frac{6.71}{6.71}$ $\frac{17.6}{17.7}$ $\frac{357}{360}$ $\frac{3.11}{3.67}$	<u>)</u>
150's End Page	<u>-</u>
	-
	_
	_
	_
	_
	_
	-
	_
	_
	=
	_
·	_
	· -
	_
	_
	_
NOTES NO Sheen & no oder	
Stability Parameters p.H. = +/-0.1 Sp. Conductivity = +/-3% DOSY Colleged to the state of the	

Site Name _	Snow	Cleaners		· ·	Well No. VE	1
Job Number	4. /	298			Date $\frac{12}{5}$	/11
TOC to Wate	er (ft.)	. Water enc	ountered	•	Sheen	4
Well Depth	(ft.)	5.0			Free Product Thickness	P
Well Diamet	er	4"_			Sample Collection Met	hod
Flow Rate (r	mL/minute)	NA			Monitoredonl	4; No sample collecte.
Start Purge	Time	I/A				, ,
<u>Time</u>	Vol. Purged (mL)	Depth to Water (ft.)	Нg	<u>Temperature</u> (<u>C°</u>)	Electrical Conductivity (µS/cm)	Turbidity (NTU)
					· · · · · · · · · · · · · · · · · · ·	
	-/					
						
						4
						
				1 <u> </u>		
- 12 yr			1	/		
						
	<u></u>			1		
					\	
						
					\	
						A comment of the second
NOTES						
NOTES Stability Para p.H. = +/- 0. Sp. Conducti Turbidity = -	l vity = +/-3%	No sary	de collecti	ed; Manit	and only	

	5.		Froundwater M	onnoring/weil i	Well No VE	2	
Site Name		Cleaners			- Vien 110.	7	
Job Number					Date $17/5$	/ 11	
		water en	countered		Sheen	<u>/</u> 4	
Well Depth (1	ft.)17	0			Free Product Thickness	, Ø	
Well Diamete		1"			Sample Collection Met	hod	
Flow Rate (m	L/minute)	NA			Monitored or	nly No sam	ple collected
Start Purge Ti	ime	J/A				,, ,	
<u>Time</u>	Vol. Purged (mL)	Depth to Water (ft.)	рН	$\frac{\text{Temperature}}{(\underline{C}^{\circ})}$	Electrical Conductivity (µS/cm)	Turbidity (NTU)	
					<u> </u>		
					Wilder		
						W As y	
				na manaka a	With a signal and	-	
				SIL	-	- Mary	
-						-10/101	
				-		-	
					\	- Address of States	
					\		
				12.4	_	***************************************	
		1/8/					
						VI.	
	 .				\		
	··						
NOTES		Δla	Saralir	ollected:	Monitored only	,	
Stability Param p.H. = +/- 0.1	<u>eters</u>				/	/	
Sp. Conductivity Turbidity = +/-		W = A.W.	**		100		-

LABORATORY REPORTS AND CHAIN OF CUSTODY DOCUMENTATION

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Analytical Report

P & D Environmental	Client Project ID: #0298; Snow Cleaners, Oakland	Date Sampled:	12/05/11-12/06/11
55 Santa Clara, Ste.240		Date Received:	12/06/11
S Santa Clara, Sto.2 10	Client Contact: Steve Carmack	Date Reported:	12/14/11
Oakland, CA 94610	Client P.O.:	Date Completed:	12/14/11

WorkOrder: 1112151

December 14, 2011

Dear Steve:

Enclosed within are:

- 1) The results of the 7 analyzed samples from your project: #0298; Snow Cleaners, Oakland,
- 2) QC data for the above samples, and
- 3) A copy of the chain of custody.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions or concerns, please feel free to give me a call. Thank you for choosing McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

The analytical results relate only to the items tested.

		(CHA	IN (OF C	UST	ODY	RE	C	DR	D			11	12	15	1		P.	AGE -	<u> </u>	OF L
	P&D	ENVII 55 Santa Oa	RON a Clara kland, (510) 6:	MEN Ave., S CA 946 58-6916	NTAI uite 240 10	L, INC					1	/	/	//	1	//	7/	//	1			
	PROJECT NUMBER:		PI		NAME:	eaners (land	/	ONTAINERS	6	A. C. Sistes	125Be						//					
	SAMPLED BY: (PRIN		GNATU			9		NUMBER OF CONTAINERS	ANA	Multi.	1				/		For	SERVATIVE	/			
	SAMPLE NUMBER	DATE	TIME	TYPE	SAN	MPLE LO	CATION	N	/F	1	0	1	/ /		/	/:	7 2		I	REMAR	KS	
1	19W-1 SIC	_		_			sie.	-	-								106	No	chel	Turn	rend	
4	MW-2	12/5/11	1605	420				7	X		X	_									1	
T	mw-3		1410					7	X		X	-	-							é.		
(+)	MW-4	12/1/10	1315					7	X		X	-	-									
1	DP-7	12/6/11	1200					7	X		7	-	\dashv		_			-				
1	DP-3		1050					7	1		X	-						+				
1	DP-4	12/5/11	1510	1			-		X		X							1	,			
1	VIOL	10/5/11	1310	•				7	X		1							<u> </u>		-		
1		of the last					1000	+				-										
1																				100		
ı							44						CE /	.3.4	Fi		1					
													GOO	CON	DITIO	N_)	1 4	PROP	RIATE	1		
Ī												-	DECH	LORI	ATE	IN L	8	PRES	SERVED	IN LAB		
T						-							PRES	ERVA	rion.	7	088	RETAL	OTHER			
				10												V						
	RELINQUISHED BY: (SIGNAT			DATE,	TIME /S/2	RECEIVE	D BY: (SIG)	VATU	RE)		-10	This Sh	hipmen	unples t) ontainer t)			LABO	RATO				
I	RELINQUISHED BY: (SIGNATU	URE)	1 /	DATE	TIME	RECEIVE	ED BY: (SIG	NATU	RE)		L	A		RYC	1.1	2007/01/4	- 1 A A C C			9262	MBEI	R:
1	RELINQUISHED BY: (SIGNAT	URE)	. /.	DATE	TIME	RECEIVE (SIGNATI	D FOR LAB JRE)	ORAT	ORY	BY:		SAMI	-	NAL	YSIS		JEST SI					
	Results and billing to: P&D Environmental, Inc. lab@pdenviro.com					REMARK	KS:			A((ЬоН	les f	reser	reel	W	HCL						

19954

McCampbell Analytical, Inc.

FAX: 510-834-0152

CHAIN-OF-CUSTODY RECORD

ClientCode: PDEO

WorkOrder: 1112151

Page 1 of 1

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

(510) 658-6916

□WaterTrax WriteOn □ EDF Excel ☐ Fax ✓ Email HardCopy ☐ ThirdParty Report to: Bill to: Requested TAT: 5 days Steve Carmack Email: lab@pdenviro.com Accounts Payable P & D Environmental P & D Environmental cc: Date Received: 12/06/2011 PO: 55 Santa Clara, Ste.240 55 Santa Clara, Ste.240 Oakland, CA 94610 ProjectNo: #0298; Snow Cleaners, Oakland Oakland, CA 94610 Date Printed: 12/06/2011

					Requested Tests (See legend below)											
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
1112151-001	MW-2	Water	12/5/2011 16:05		В	Α										
1112151-002	MW-3	Water	12/5/2011 14:10		В	Α										
1112151-003	MW-4	Water	12/5/2011 13:15		В	Α										
1112151-004	DP-1	Water	12/6/2011 12:00		В	Α										
1112151-005	DP-2	Water	12/6/2011 10:10		В	Α										
1112151-006	DP-3	Water	12/6/2011 10:50		В	Α										
1112151-007	DP-4	Water	12/5/2011 15:10		В	Α										

Test Legend:

1	8260B_W	2	G-MBTEX_W	3	4	5
6		7		8	9	10
11		12				

The following SampIDs: 001A, 002A, 003A, 004A, 005A, 006A, 007A contain testgroup.

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

Prepared by: Melissa Valles

Comments:

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Sample Receipt Checklist

Jilent Name:	P & D Environ							5:34:18 PW
Project Name:	#0298; Snow 0	Cleaners, Oakland			Check	dist completed and	reviewed by:	Melissa Valles
VorkOrder N°:	1112151	Matrix: Water			Carrie	r: Rob Pringle ((MAI Courier)	
			Chain of Cu	ustody	(COC) Informa	<u>tion</u>		
Chain of custody	present?		Yes	✓	No 🗆			
Chain of custody	signed when rel	linquished and receive	ed? Yes	✓	No 🗆			
Chain of custody	agrees with san	mple labels?	Yes	✓	No 🗆			
Sample IDs noted	d by Client on Co	OC?	Yes	✓	No 🗆			
Date and Time of	f collection noted	d by Client on COC?	Yes	✓	No 🗆			
Sampler's name	noted on COC?		Yes	✓	No 🗆			
			<u>Sample</u>	Recei	pt Information			
Custody seals int	tact on shipping	container/cooler?	Yes		No 🗌		NA 🗹	
Shipping containe	er/cooler in good	d condition?	Yes	✓	No 🗌			
Samples in prope	er containers/bot	ttles?	Yes	✓	No 🗌			
Sample containe	rs intact?		Yes	✓	No 🗆			
Sufficient sample	e volume for indic	cated test?	Yes	✓	No 🗌			
		Sample	Preservatio	n and I	Hold Time (HT)	Information		
All samples recei	ived within holdir	ng time?	Yes	✓	No 🗆			
Container/Temp	Blank temperatu	ıre	Coole	er Temp	o: 3.4°C		NA 🗌	
Vater - VOA vial	s have zero hea	idspace / no bubbles?	Yes	✓	No 🗌	No VOA vials sub	mitted	
Sample labels ch	necked for correc	ct preservation?	Yes	✓	No 🗌			
Metal - pH accep	table upon recei	ipt (pH<2)?	Yes		No 🗆		NA 🗹	
Samples Receive	ed on Ice?		Yes	✓	No 🗆			
		(Ic	e Type: WE	T ICE)			
NOTE: If the "N	la" hay ia ahaak	ed, see comments belo	0147					

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

P & D Environmental	Client Project ID: #0298; Snow	Date Sampled: 12/05/11				
55 Santa Clara Sta 240	Cleaners, Oakland	Date Received: 12/06/11				
55 Santa Clara, Ste.240	Client Contact: Steve Carmack	Date Extracted: 12/12/11				
Oakland, CA 94610	Client P.O.:	Date Analyzed: 12/12/11				

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 1112151

Lab ID		1112151-001B										
Client ID		MW-2										
Matrix		Water	D.									
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit					
Acetone	ND<100	10	10	tert-Amyl methyl ether (TAME)	ND<5.0	10	0.5					
Benzene	ND<5.0	10	0.5	Bromobenzene	ND<5.0	10	0.5					
Bromochloromethane	ND<5.0	10	0.5	Bromodichloromethane	ND<5.0	10	0.5					
Bromoform	ND<5.0	10	0.5	Bromomethane	ND<5.0	10	0.5					
2-Butanone (MEK)	ND<20	10	2.0	t-Butyl alcohol (TBA)	ND<20	10	2.0					
n-Butyl benzene	5.3	10	0.5	sec-Butyl benzene	8.4	10	0.5					
tert-Butyl benzene	ND<5.0	10	0.5	Carbon Disulfide	ND<5.0	10	0.5					
Carbon Tetrachloride	ND<5.0	10	0.5	Chlorobenzene	ND<5.0	10	0.5					
Chloroethane	ND<5.0	10	0.5	Chloroform	ND<5.0	10	0.5					
Chloromethane	ND<5.0	10	0.5	2-Chlorotoluene	ND<5.0	10	0.5					
4-Chlorotoluene	ND<5.0	10	0.5	Dibromochloromethane	ND<5.0	10	0.5					
1,2-Dibromo-3-chloropropane	ND<2.0	10	0.2	1,2-Dibromoethane (EDB)	ND<5.0	10	0.5					
Dibromomethane	ND<5.0	10	0.5	1,2-Dichlorobenzene	ND<5.0	10	0.5					
1,3-Dichlorobenzene	ND<5.0	10	0.5	1,4-Dichlorobenzene	ND<5.0	10	0.5					
Dichlorodifluoromethane	ND<5.0	10	0.5	1,1-Dichloroethane	ND<5.0	10	0.5					
1,2-Dichloroethane (1,2-DCA)	ND<5.0	10	0.5	1,1-Dichloroethene	ND<5.0	10	0.5					
cis-1,2-Dichloroethene	310	10	0.5	trans-1,2-Dichloroethene	12	10	0.5					
1,2-Dichloropropane	ND<5.0	10	0.5	1,3-Dichloropropane	ND<5.0	10	0.5					
2,2-Dichloropropane	ND<5.0	10	0.5	1,1-Dichloropropene	ND<5.0	10	0.5					
cis-1,3-Dichloropropene	ND<5.0	10	0.5	trans-1,3-Dichloropropene	ND<5.0	10	0.5					
Diisopropyl ether (DIPE)	ND<5.0	10	0.5	Ethylbenzene	18	10	0.5					
Ethyl tert-butyl ether (ETBE)	ND<5.0	10	0.5	Freon 113	ND<100	10	10					
Hexachlorobutadiene	ND<5.0	10	0.5	Hexachloroethane	ND<5.0	10	0.5					
2-Hexanone	ND<5.0	10	0.5	Isopropylbenzene	12	10	0.5					
4-Isopropyl toluene	ND<5.0	10	0.5	Methyl-t-butyl ether (MTBE)	ND<5.0	10	0.5					
Methylene chloride	ND<5.0	10	0.5	4-Methyl-2-pentanone (MIBK)	ND<5.0	10	0.5					
Naphthalene	9.8	10	0.5	n-Propyl benzene	17	10	0.5					
Styrene	ND<5.0	10	0.5	1,1,1,2-Tetrachloroethane	ND<5.0	10	0.5					
1,1,2,2-Tetrachloroethane	ND<5.0	10	0.5	Tetrachloroethene	ND<5.0	10	0.5					
Toluene	15	10	0.5	1,2,3-Trichlorobenzene	ND<5.0	10	0.5					
1,2,4-Trichlorobenzene	ND<5.0	10	0.5	1,1,1-Trichloroethane	ND<5.0	10	0.5					
1,1,2-Trichloroethane	ND<5.0	10	0.5	Trichloroethene	ND<5.0	10	0.5					
Trichlorofluoromethane	ND<5.0	10	0.5	1,2,3-Trichloropropane	ND<5.0	10	0.5					
1,2,4-Trimethylbenzene	120	10	0.5	1,3,5-Trimethylbenzene	35	10	0.5					
Vinyl Chloride	50	10	0.5	Xylenes, Total	57	10	0.5					

Surrogate Recoveries (%)									
%SS1:	103	%SS2:	102						
%SS3:	101								

Comments:

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

^{*} water and vapor samples are reported in μ g/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in μ g/wipe.

P & D Environmental Client Project ID: #0298; Snow Date Sampled: 12/05/11 Cleaners, Oakland 12/06/11 Date Received: 55 Santa Clara, Ste.240 Client Contact: Steve Carmack Date Extracted: 12/10/11 Oakland, CA 94610 Client P.O.: Date Analyzed: 12/10/11

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 1112151

Lab ID		1112151-002B					
Client ID		MW-3					
Matrix				Water			
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	10	tert-Amyl methyl ether (TAME)	ND	1.0	0.5
Benzene	ND	1.0	0.5	Bromobenzene	ND	1.0	0.5
Bromochloromethane	ND	1.0	0.5	Bromodichloromethane	ND	1.0	0.5
Bromoform	ND	1.0	0.5	Bromomethane	ND	1.0	0.5
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA)	ND	1.0	2.0
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene	ND	1.0	0.5
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide	1.9	1.0	0.5
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene	ND	1.0	0.5
Chloroethane	ND	1.0	0.5	Chloroform	ND	1.0	0.5
Chloromethane	ND	1.0	0.5	2-Chlorotoluene	ND	1.0	0.5
4-Chlorotoluene	ND	1.0	0.5	Dibromochloromethane	ND	1.0	0.5
1,2-Dibromo-3-chloropropane	ND	1.0	0.2	1,2-Dibromoethane (EDB)	ND	1.0	0.5
Dibromomethane	ND	1.0	0.5	1,2-Dichlorobenzene	ND	1.0	0.5
1,3-Dichlorobenzene	ND	1.0	0.5	1,4-Dichlorobenzene	ND	1.0	0.5
Dichlorodifluoromethane	ND	1.0	0.5	1,1-Dichloroethane	ND	1.0	0.5
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.5	1,1-Dichloroethene	ND	1.0	0.5
cis-1,2-Dichloroethene	ND	1.0	0.5	trans-1,2-Dichloroethene	ND	1.0	0.5
1,2-Dichloropropane	ND	1.0	0.5	1,3-Dichloropropane	ND	1.0	0.5
2,2-Dichloropropane	ND	1.0	0.5	1,1-Dichloropropene	ND	1.0	0.5
cis-1,3-Dichloropropene	ND	1.0	0.5	trans-1,3-Dichloropropene	ND	1.0	0.5
Diisopropyl ether (DIPE)	ND	1.0	0.5	Ethylbenzene	ND	1.0	0.5
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.5	Freon 113	ND	1.0	10
Hexachlorobutadiene	ND	1.0	0.5	Hexachloroethane	ND	1.0	0.5
2-Hexanone	ND	1.0	0.5	Isopropylbenzene	ND	1.0	0.5
4-Isopropyl toluene	ND	1.0	0.5	Methyl-t-butyl ether (MTBE)	ND	1.0	0.5
Methylene chloride	ND	1.0	0.5	4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5
Naphthalene	ND	1.0	0.5	n-Propyl benzene	ND	1.0	0.5
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroethane	ND	1.0	0.5
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene	ND	1.0	0.5
Toluene	ND	1.0	0.5	1,2,3-Trichlorobenzene	ND	1.0	0.5
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroethane	ND	1.0	0.5
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene	ND	1.0	0.5
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropropane	ND	1.0	0.5
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylbenzene	ND	1.0	0.5
Vinyl Chloride	ND	1.0	0.5	Xylenes, Total	ND	1.0	0.5

Surrogate Recoveries (%)							
%SS1:	103	%SS2:	107				
%SS3:	105						

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

P & D Environmental	Client Project ID: #0298; Snow	Date Sampled: 12/05/11
55 Same Clara St. 240	Cleaners, Oakland	Date Received: 12/06/11
55 Santa Clara, Ste.240	Client Contact: Steve Carmack	Date Extracted: 12/10/11
Oakland, CA 94610	Client P.O.:	Date Analyzed: 12/10/11

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 1112151

Lab ID		1112151-003B					
Client ID		MW-4					
Matrix				Water			
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	10	tert-Amyl methyl ether (TAME)	ND	1.0	0.5
Benzene	ND	1.0	0.5	Bromobenzene	ND	1.0	0.5
Bromochloromethane	ND	1.0	0.5	Bromodichloromethane	ND	1.0	0.5
Bromoform	ND	1.0	0.5	Bromomethane	ND	1.0	0.5
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA)	ND	1.0	2.0
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene	ND	1.0	0.5
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide	ND	1.0	0.5
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene	ND	1.0	0.5
Chloroethane	ND	1.0	0.5	Chloroform	1.2	1.0	0.5
Chloromethane	ND	1.0	0.5	2-Chlorotoluene	ND	1.0	0.5
4-Chlorotoluene	ND	1.0	0.5	Dibromochloromethane	ND	1.0	0.5
1,2-Dibromo-3-chloropropane	ND	1.0	0.2	1,2-Dibromoethane (EDB)	ND	1.0	0.5
Dibromomethane	ND	1.0	0.5	1,2-Dichlorobenzene	ND	1.0	0.5
1,3-Dichlorobenzene	ND	1.0	0.5	1,4-Dichlorobenzene	ND	1.0	0.5
Dichlorodifluoromethane	ND	1.0	0.5	1,1-Dichloroethane	ND	1.0	0.5
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.5	1,1-Dichloroethene	ND	1.0	0.5
cis-1,2-Dichloroethene	12	1.0	0.5	trans-1,2-Dichloroethene	ND	1.0	0.5
1,2-Dichloropropane	ND	1.0	0.5	1,3-Dichloropropane	ND	1.0	0.5
2,2-Dichloropropane	ND	1.0	0.5	1,1-Dichloropropene	ND	1.0	0.5
cis-1,3-Dichloropropene	ND	1.0	0.5	trans-1,3-Dichloropropene	ND	1.0	0.5
Diisopropyl ether (DIPE)	ND	1.0	0.5	Ethylbenzene	ND	1.0	0.5
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.5	Freon 113	ND	1.0	10
Hexachlorobutadiene	ND	1.0	0.5	Hexachloroethane	ND	1.0	0.5
2-Hexanone	ND	1.0	0.5	Isopropylbenzene	ND	1.0	0.5
4-Isopropyl toluene	ND	1.0	0.5	Methyl-t-butyl ether (MTBE)	ND	1.0	0.5
Methylene chloride	ND	1.0	0.5	4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5
Naphthalene	ND	1.0	0.5	n-Propyl benzene	ND	1.0	0.5
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroethane	ND	1.0	0.5
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene	ND	1.0	0.5
Toluene	ND	1.0	0.5	1,2,3-Trichlorobenzene	ND	1.0	0.5
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroethane	ND	1.0	0.5
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene	ND	1.0	0.5
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropropane	ND	1.0	0.5
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylbenzene	ND	1.0	0.5
Vinyl Chloride	ND	1.0	0.5	Xylenes, Total	ND	1.0	0.5

Surrogate Recoveries (%)							
%SS1:	107	%SS2:	105				
%SS3:	103						

Comments

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

^{*} water and vapor samples are reported in μ g/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in μ g/wipe.

P & D Environmental Client Project ID: #0298; Snow Date Sampled: 12/06/11 Cleaners, Oakland 12/06/11 Date Received: 55 Santa Clara, Ste.240 Client Contact: Steve Carmack Date Extracted: 12/10/11 Oakland, CA 94610 Client P.O.: Date Analyzed: 12/10/11

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 1112151

Lab ID		1112151-004B					
Client ID		DP-1					
Matrix				Water			
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND<1000	100	10	tert-Amyl methyl ether (TAME)	ND<50	100	0.5
Benzene	ND<50	100	0.5	Bromobenzene	ND<50	100	0.5
Bromochloromethane	ND<50	100	0.5	Bromodichloromethane	ND<50	100	0.5
Bromoform	ND<50	100	0.5	Bromomethane	ND<50	100	0.5
2-Butanone (MEK)	ND<200	100	2.0	t-Butyl alcohol (TBA)	ND<200	100	2.0
n-Butyl benzene	ND<50	100	0.5	sec-Butyl benzene	ND<50	100	0.5
tert-Butyl benzene	ND<50	100	0.5	Carbon Disulfide	ND<50	100	0.5
Carbon Tetrachloride	ND<50	100	0.5	Chlorobenzene	ND<50	100	0.5
Chloroethane	ND<50	100	0.5	Chloroform	ND<50	100	0.5
Chloromethane	ND<50	100	0.5	2-Chlorotoluene	ND<50	100	0.5
4-Chlorotoluene	ND<50	100	0.5	Dibromochloromethane	ND<50	100	0.5
1,2-Dibromo-3-chloropropane	ND<20	100	0.2	1,2-Dibromoethane (EDB)	ND<50	100	0.5
Dibromomethane	ND<50	100	0.5	1,2-Dichlorobenzene	ND<50	100	0.5
1,3-Dichlorobenzene	ND<50	100	0.5	1,4-Dichlorobenzene	ND<50	100	0.5
Dichlorodifluoromethane	ND<50	100	0.5	1,1-Dichloroethane	ND<50	100	0.5
1,2-Dichloroethane (1,2-DCA)	ND<50	100	0.5	1,1-Dichloroethene	ND<50	100	0.5
cis-1,2-Dichloroethene	260	100	0.5	trans-1,2-Dichloroethene	ND<50	100	0.5
1,2-Dichloropropane	ND<50	100	0.5	1,3-Dichloropropane	ND<50	100	0.5
2,2-Dichloropropane	ND<50	100	0.5	1,1-Dichloropropene	ND<50	100	0.5
cis-1,3-Dichloropropene	ND<50	100	0.5	trans-1,3-Dichloropropene	ND<50	100	0.5
Diisopropyl ether (DIPE)	ND<50	100	0.5	Ethylbenzene	ND<50	100	0.5
Ethyl tert-butyl ether (ETBE)	ND<50	100	0.5	Freon 113	ND<1000	100	10
Hexachlorobutadiene	ND<50	100	0.5	Hexachloroethane	ND<50	100	0.5
2-Hexanone	ND<50	100	0.5	Isopropylbenzene	ND<50	100	0.5
4-Isopropyl toluene	ND<50	100	0.5	Methyl-t-butyl ether (MTBE)	ND<50	100	0.5
Methylene chloride	ND<50	100	0.5	4-Methyl-2-pentanone (MIBK)	ND<50	100	0.5
Naphthalene	ND<50	100	0.5	n-Propyl benzene	ND<50	100	0.5
Styrene	ND<50	100	0.5	1,1,1,2-Tetrachloroethane	ND<50	100	0.5
1,1,2,2-Tetrachloroethane	ND<50	100	0.5	Tetrachloroethene	2800	100	0.5
Toluene	ND<50	100	0.5	1,2,3-Trichlorobenzene	ND<50	100	0.5
1,2,4-Trichlorobenzene	ND<50	100	0.5	1,1,1-Trichloroethane	ND<50	100	0.5
1,1,2-Trichloroethane	ND<50	100	0.5	Trichloroethene	850	100	0.5
Trichlorofluoromethane	ND<50	100	0.5	1,2,3-Trichloropropane	ND<50	100	0.5
1,2,4-Trimethylbenzene	ND<50	100	0.5	1,3,5-Trimethylbenzene	ND<50	100	0.5
Vinyl Chloride	ND<50	100	0.5	Xylenes, Total	ND<50	100	0.5

Surrogate Recoveries (%) %SS1: 102 105 %SS2: %SS3: 103

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

P & D Environmental	Client Project ID: #0298; Snow	Date Sampled: 12/06/11
55 Same Clara St. 240	Cleaners, Oakland	Date Received: 12/06/11
55 Santa Clara, Ste.240	Client Contact: Steve Carmack	Date Extracted: 12/13/11
Oakland, CA 94610	Client P.O.:	Date Analyzed: 12/13/11

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Ar	nalytical Method: SW8260B	Work Order: 1112151
-------------------------------	---------------------------	---------------------

Lab ID		1112151-005B					
Client ID		DP-2					
Matrix				Water			
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND<5000	500	10	tert-Amyl methyl ether (TAME)	ND<250	500	0.5
Benzene	ND<250	500	0.5	Bromobenzene	ND<250	500	0.5
Bromochloromethane	ND<250	500	0.5	Bromodichloromethane	ND<250	500	0.5
Bromoform	ND<250	500	0.5	Bromomethane	ND<250	500	0.5
2-Butanone (MEK)	ND<1000	500	2.0	t-Butyl alcohol (TBA)	ND<1000	500	2.0
n-Butyl benzene	ND<250	500	0.5	sec-Butyl benzene	ND<250	500	0.5
tert-Butyl benzene	ND<250	500	0.5	Carbon Disulfide	ND<250	500	0.5
Carbon Tetrachloride	ND<250	500	0.5	Chlorobenzene	ND<250	500	0.5
Chloroethane	ND<250	500	0.5	Chloroform	ND<250	500	0.5
Chloromethane	ND<250	500	0.5	2-Chlorotoluene	ND<250	500	0.5
4-Chlorotoluene	ND<250	500	0.5	Dibromochloromethane	ND<250	500	0.5
1,2-Dibromo-3-chloropropane	ND<100	500	0.2	1,2-Dibromoethane (EDB)	ND<250	500	0.5
Dibromomethane	ND<250	500	0.5	1,2-Dichlorobenzene	ND<250	500	0.5
1,3-Dichlorobenzene	ND<250	500	0.5	1,4-Dichlorobenzene	ND<250	500	0.5
Dichlorodifluoromethane	ND<250	500	0.5	1,1-Dichloroethane	ND<250	500	0.5
1,2-Dichloroethane (1,2-DCA)	ND<250	500	0.5	1,1-Dichloroethene	ND<250	500	0.5
cis-1,2-Dichloroethene	14,000	500	0.5	trans-1,2-Dichloroethene	ND<250	500	0.5
1,2-Dichloropropane	ND<250	500	0.5	1,3-Dichloropropane	ND<250	500	0.5
2,2-Dichloropropane	ND<250	500	0.5	1,1-Dichloropropene	ND<250	500	0.5
cis-1,3-Dichloropropene	ND<250	500	0.5	trans-1,3-Dichloropropene	ND<250	500	0.5
Diisopropyl ether (DIPE)	ND<250	500	0.5	Ethylbenzene	ND<250	500	0.5
Ethyl tert-butyl ether (ETBE)	ND<250	500	0.5	Freon 113	ND<5000	500	10
Hexachlorobutadiene	ND<250	500	0.5	Hexachloroethane	ND<250	500	0.5
2-Hexanone	ND<250	500	0.5	Isopropylbenzene	ND<250	500	0.5
4-Isopropyl toluene	ND<250	500	0.5	Methyl-t-butyl ether (MTBE)	ND<250	500	0.5
Methylene chloride	ND<250	500	0.5	4-Methyl-2-pentanone (MIBK)	ND<250	500	0.5
Naphthalene	ND<250	500	0.5	n-Propyl benzene	ND<250	500	0.5
Styrene	ND<250	500	0.5	1,1,1,2-Tetrachloroethane	ND<250	500	0.5
1,1,2,2-Tetrachloroethane	ND<250	500	0.5	Tetrachloroethene	ND<250	500	0.5
Toluene	ND<250	500	0.5	1,2,3-Trichlorobenzene	ND<250	500	0.5
1,2,4-Trichlorobenzene	ND<250	500	0.5	1,1,1-Trichloroethane	ND<250	500	0.5
1,1,2-Trichloroethane	ND<250	500	0.5	Trichloroethene	ND<250	500	0.5
Trichlorofluoromethane	ND<250	500	0.5	1,2,3-Trichloropropane	ND<250	500	0.5
1,2,4-Trimethylbenzene	ND<250	500	0.5	1,3,5-Trimethylbenzene	ND<250	500	0.5
Vinyl Chloride	ND<250	500	0.5	Xylenes, Total	ND<250	500	0.5

Surrogate Recoveries (%)							
%SS1:	104	%SS2:	104				
%SS3:	102						
	•		<u>-</u>				

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

P & D Environmental Client Project ID: #0298; Snow Date Sampled: 12/06/11 Cleaners, Oakland 12/06/11 Date Received: 55 Santa Clara, Ste.240 Client Contact: Steve Carmack Date Extracted: 12/13/11 Oakland, CA 94610 Client P.O.: Date Analyzed: 12/13/11

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 1112151

Lab ID		1112151-006B					
Client ID		DP-3					
Matrix				Water			
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	10	tert-Amyl methyl ether (TAME)	ND	1.0	0.5
Benzene	0.97	1.0	0.5	Bromobenzene	ND	1.0	0.5
Bromochloromethane	ND	1.0	0.5	Bromodichloromethane	ND	1.0	0.5
Bromoform	ND	1.0	0.5	Bromomethane	ND	1.0	0.5
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA)	ND	1.0	2.0
n-Butyl benzene	1.7	1.0	0.5	sec-Butyl benzene	2.5	1.0	0.5
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide	ND	1.0	0.5
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene	ND	1.0	0.5
Chloroethane	ND	1.0	0.5	Chloroform	ND	1.0	0.5
Chloromethane	ND	1.0	0.5	2-Chlorotoluene	ND	1.0	0.5
4-Chlorotoluene	ND	1.0	0.5	Dibromochloromethane	ND	1.0	0.5
1,2-Dibromo-3-chloropropane	ND	1.0	0.2	1,2-Dibromoethane (EDB)	ND	1.0	0.5
Dibromomethane	ND	1.0	0.5	1,2-Dichlorobenzene	ND	1.0	0.5
1,3-Dichlorobenzene	ND	1.0	0.5	1,4-Dichlorobenzene	ND	1.0	0.5
Dichlorodifluoromethane	ND	1.0	0.5	1,1-Dichloroethane	ND	1.0	0.5
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.5	1,1-Dichloroethene	ND	1.0	0.5
cis-1,2-Dichloroethene	22	1.0	0.5	trans-1,2-Dichloroethene	2.3	1.0	0.5
1,2-Dichloropropane	ND	1.0	0.5	1,3-Dichloropropane	ND	1.0	0.5
2,2-Dichloropropane	ND	1.0	0.5	1,1-Dichloropropene	ND	1.0	0.5
cis-1,3-Dichloropropene	ND	1.0	0.5	trans-1,3-Dichloropropene	ND	1.0	0.5
Diisopropyl ether (DIPE)	ND	1.0	0.5	Ethylbenzene	1.7	1.0	0.5
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.5	Freon 113	ND	1.0	10
Hexachlorobutadiene	ND	1.0	0.5	Hexachloroethane	ND	1.0	0.5
2-Hexanone	ND	1.0	0.5	Isopropylbenzene	2.8	1.0	0.5
4-Isopropyl toluene	0.99	1.0	0.5	Methyl-t-butyl ether (MTBE)	ND	1.0	0.5
Methylene chloride	ND	1.0	0.5	4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5
Naphthalene	2.2	1.0	0.5	n-Propyl benzene	4.2	1.0	0.5
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroethane	ND	1.0	0.5
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene	ND	1.0	0.5
Toluene	1.1	1.0	0.5	1,2,3-Trichlorobenzene	ND	1.0	0.5
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroethane	ND	1.0	0.5
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene	ND	1.0	0.5
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropropane	ND	1.0	0.5
1,2,4-Trimethylbenzene	24	1.0	0.5	1,3,5-Trimethylbenzene	3.5	1.0	0.5
Vinyl Chloride	17	1.0	0.5	Xylenes, Total	3.1	1.0	0.5

Surrogate Recoveries (%)							
	%SS1:	114	%SS2:	114			
	%SS3:	101					

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

P & D Environmental	Client Project ID: #0298; Snow	Date Sampled: 12/05/11
55 Santa Clara Sta 240	Cleaners, Oakland	Date Received: 12/06/11
55 Santa Clara, Ste.240	Client Contact: Steve Carmack	Date Extracted: 12/13/11
Oakland, CA 94610	Client P.O.:	Date Analyzed: 12/13/11

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 1112151

Lab ID		1112151-007B								
Client ID		DP-4								
Matrix				Water						
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit			
Acetone	ND	1.0	10	tert-Amyl methyl ether (TAME)	ND	1.0	0.5			
Benzene	ND	1.0	0.5	Bromobenzene	ND	1.0	0.5			
Bromochloromethane	ND	1.0	0.5	Bromodichloromethane	ND	1.0	0.5			
Bromoform	ND	1.0	0.5	Bromomethane	ND	1.0	0.5			
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA)	ND	1.0	2.0			
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene	ND	1.0	0.5			
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide	ND	1.0	0.5			
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene	ND	1.0	0.5			
Chloroethane	ND	1.0	0.5	Chloroform	0.96	1.0	0.5			
Chloromethane	ND	1.0	0.5	2-Chlorotoluene	ND	1.0	0.5			
4-Chlorotoluene	ND	1.0	0.5	Dibromochloromethane	ND	1.0	0.5			
1,2-Dibromo-3-chloropropane	ND	1.0	0.2	1,2-Dibromoethane (EDB)	ND	1.0	0.5			
Dibromomethane	ND	1.0	0.5	1,2-Dichlorobenzene	ND	1.0	0.5			
1,3-Dichlorobenzene	ND	1.0	0.5	1,4-Dichlorobenzene	ND	1.0	0.5			
Dichlorodifluoromethane	ND	1.0	0.5	1,1-Dichloroethane	ND	1.0	0.5			
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.5	1,1-Dichloroethene	ND	1.0	0.5			
cis-1,2-Dichloroethene	ND	1.0	0.5	trans-1,2-Dichloroethene	ND	1.0	0.5			
1,2-Dichloropropane	ND	1.0	0.5	1,3-Dichloropropane	ND	1.0	0.5			
2,2-Dichloropropane	ND	1.0	0.5	1,1-Dichloropropene	ND	1.0	0.5			
cis-1,3-Dichloropropene	ND	1.0	0.5	trans-1,3-Dichloropropene	ND	1.0	0.5			
Diisopropyl ether (DIPE)	ND	1.0	0.5	Ethylbenzene	ND	1.0	0.5			
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.5	Freon 113	ND	1.0	10			
Hexachlorobutadiene	ND	1.0	0.5	Hexachloroethane	ND	1.0	0.5			
2-Hexanone	ND	1.0	0.5	Isopropylbenzene	ND	1.0	0.5			
4-Isopropyl toluene	ND	1.0	0.5	Methyl-t-butyl ether (MTBE)	ND	1.0	0.5			
Methylene chloride	ND	1.0	0.5	4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5			
Naphthalene	ND	1.0	0.5	n-Propyl benzene	ND	1.0	0.5			
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroethane	ND	1.0	0.5			
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene	ND	1.0	0.5			
Toluene	ND	1.0	0.5	1,2,3-Trichlorobenzene	ND	1.0	0.5			
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroethane	ND	1.0	0.5			
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene	ND	1.0	0.5			
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropropane	ND	1.0	0.5			
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylbenzene	ND	1.0	0.5			
Vinyl Chloride	ND	1.0	0.5	Xylenes, Total	ND	1.0	0.5			

	Surrogate Ro	ecoveries (%)	
%SS1:	102	%SS2:	103
%SS3:	98		

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

P & D Environmental	Client Project ID: #0298; Snow	Date Sampled:	12/05/11-12/06/11
55 Santa Clara, Ste.240	Cleaners, Oakland	Date Received:	12/06/11
	Client Contact: Steve Carmack	Date Extracted:	12/10/11-12/11/11
Oakland, CA 94610	Client P.O.:	Date Analyzed:	12/10/11-12/11/11

Gasoline Range (C6-C12) and Stoddard Solvent Range (C9-C12) Volatile Hydrocarbons as Gasoline and Stoddard Solvent*

Extraction method:	sw5030B	_	alytical methods: SW8015Bm		Work Order: 1112151			
Lab ID	Client ID	Matrix	TPH(g)	TPH(ss)	DF	% SS	Comment	
001A	MW-2	W	1200	1800	1	112	d5,d6	
002A	MW-3	W	ND	ND	1	107		
003A	MW-4	W	ND	ND	1	101		
004A	DP-1	W	2000	940	1	106	d5,d6	
005A	DP-2	W	1300	480	1	115	d5,d6	
006A	DP-3	W	480	630	1	108	d5	
007A	DP-4	W	ND	ND	1	101		
	porting Limit for DF =1;	W	50	50		μg/I		
ND me	ans not detected at or above the reporting limit	S	NA	NA		NA		

* water and vapor samples are reported in ug/L, soil/sludge/solid samples in mg/kg,	wipe samples in μg/wipe, product/oil/non-aqueous liquid samples and all TCLP &
SPLP extracts in mg/L.	

[#] cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference. %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: d5) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?)

d6) one to a few isolated non-target peaks present in the TPH(g) chromatogram

Angela Rydelius, Lab Manager

	•	Date Sampled:	12/05/11-12/06/11
55 Santa Clara, Ste.240	Cleaners, Oakland	Date Received:	12/06/11
	Client Contact: Steve Carmack	Date Extracted:	12/06/11
Oakland, CA 94610	Client P.O.:	Date Analyzed:	12/07/11-12/08/11

Total Extractable Petroleum Hydrocarbons*

Extraction method: SW3510C Analytical methods: SW8015B Work Order: 1112151

Lab ID	Client ID	Matrix	TPH-Diesel (C10-C23)	TPH-Bunker Oil (C10-C36)	DF	% SS	Comments
1112151-001A	MW-2	W	2400	2700	1	99	e2,e11
1112151-002A	MW-3	W	ND	ND	1	96	
1112151-003A	MW-4	W	ND	ND	1	98	
1112151-004A	DP-1	W	47,000	59,000	20	124	e11,e7,e2
1112151-005A	DP-2	W	670	1000	1	101	e2,e4
1112151-006A	DP-3	W	3600	3600 4500		102	e8
1112151-007A	DP-4	W	ND	ND	1	102	

Reporting Limit for DF =1; ND means not detected at or	W	50	100	μg/L
above the reporting limit	S	NA	NA	mg/Kg

^{*} water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

- e2) diesel range compounds are significant; no recognizable pattern
- e4) gasoline range compounds are significant.
- e7) oil range compounds are significant
- e8) kerosene/kerosene range/jet fuel range
- e11) stoddard solvent/mineral spirit (?)

Angela Rydelius, Lab Manager

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

[%]SS = Percent Recovery of Surrogate Standard. DF = Dilution Factor

"When Quality Counts"

QC SUMMARY REPORT FOR SW8260B

QC Matrix: Water BatchID: 63117 WorkOrder: 1112151 W.O. Sample Matrix: Water

EPA Method: SW8260B Extraction: S	W5030B						Spiked Sam	ple ID:	1112021-001a
Analyte	Sample	Sample Spiked MS MSD			MS-MSD	LCS	Acceptance Criteria (%)		
, way, c	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
tert-Amyl methyl ether (TAME)	ND	10	94.5	90	4.89	100	70 - 130	30	70 - 130
Benzene	ND	10	98.9	93.4	5.75	101	70 - 130	30	70 - 130
t-Butyl alcohol (TBA)	ND	50	103	99.2	3.23	115	70 - 130	30	70 - 130
Chlorobenzene	ND	10	89.8	85.6	4.77	101	70 - 130	30	70 - 130
1,2-Dibromoethane (EDB)	ND	10	91.1	87.4	4.10	107	70 - 130	30	70 - 130
1,2-Dichloroethane (1,2-DCA)	ND	10	94.9	88.6	6.85	115	70 - 130	30	70 - 130
1,1-Dichloroethene	ND	10	124	119	4.23	96.5	70 - 130	30	70 - 130
Diisopropyl ether (DIPE)	ND	10	108	104	3.84	111	70 - 130	30	70 - 130
Ethyl tert-butyl ether (ETBE)	ND	10	98.9	94.8	4.24	97.4	70 - 130	30	70 - 130
Methyl-t-butyl ether (MTBE)	ND	10	114	109	4.88	118	70 - 130	30	70 - 130
Toluene	ND	10	91.8	87	5.36	97.9	70 - 130	30	70 - 130
Trichloroethene	ND	10	92.8	88.4	4.89	97.1	70 - 130	30	70 - 130
%SS1:	105	25	117	116	0.253	108	70 - 130	30	70 - 130
%SS2:	111	25	109	109	0	105	70 - 130	30	70 - 130
%SS3:	85	2.5	99	97	1.97	93	70 - 130	30	70 - 130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 63117 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1112151-001B	12/05/11 4:05 PM	12/12/11	12/12/11 11:08 PM	1112151-002B	12/05/11 2:10 PM	12/10/11	12/10/11 12:38 PM
1112151-003B	12/05/11 1:15 PM	12/10/11	12/10/11 1:18 PM	1112151-004B	12/06/11 12:00 PM	12/10/11	12/10/11 8:01 PM
1112151-005B	12/06/11 10:10 AM	12/13/11	12/13/11 1:41 PM	1112151-006B	12/06/11 10:50 AM	12/13/11	12/13/11 9:57 PM
1112151-007B	12/05/11 3:10 PM	12/13/11	12/13/11 2:31 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = <math>100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QA/QC Officer

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 63228 WorkOrder: 1112151

EPA Method: SW8021B/8015Bm Extraction: S	W5030B					;	Spiked Sam	ple ID:	1112150-006A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
Analyse	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
TPH(btex) [£]	ND	60	106	107	0.711	113	70 - 130	20	70 - 130
MTBE	ND	10	85.2	96.8	12.8	110	70 - 130	20	70 - 130
Benzene	ND	10	104	105	1.42	96	70 - 130	20	70 - 130
Toluene	ND	10	103	102	1.11	98.9	70 - 130	20	70 - 130
Ethylbenzene	ND	10	101	100	0.535	92.5	70 - 130	20	70 - 130
Xylenes	ND	30	104	102	2.32	97.4	70 - 130	20	70 - 130
%SS:	106	10	107	106	1.12	103	70 - 130	20	70 - 130

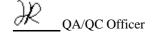
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 63228 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1112151-001A	12/05/11 4:05 PM	12/10/11	12/10/11 3:56 AM	1112151-001A	12/05/11 4:05 PM	12/10/11	12/10/11 4:22 PM
1112151-002A	12/05/11 2:10 PM	12/10/11	12/10/11 11:52 AM	1112151-003A	12/05/11 1:15 PM	12/10/11	12/10/11 12:22 PM
1112151-004A	12/06/11 12:00 PM	12/10/11	12/10/11 3:52 PM	1112151-005A	12/06/11 10:10 AM	12/10/11	12/10/11 12:52 PM
1112151-006A	12/06/11 10:50 AM	12/11/11	12/11/11 6:47 AM	1112151-007A	12/05/11 3:10 PM	12/10/11	12/10/11 1:52 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

QC SUMMARY REPORT FOR SW8015B

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 63173 WorkOrder: 1112151

EPA Method: SW8015B	Spiked Sample ID: N/A											
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)			
y to	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH-Diesel (C10-C23)	N/A	1000	N/A	N/A	N/A	111	116	4.48	N/A	N/A	70 - 130	30
%SS:	N/A	625	N/A	N/A	N/A	105	106	1.43	N/A	N/A	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 63173 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed	
1112151-001A	12/05/11 4:05 PM	12/06/11	12/07/11 8:33 PM	1112151-002A	12/05/11 2:10 PM	12/06/11	12/07/11 9:51 PM	l
1112151-003A	12/05/11 1:15 PM	12/06/11	12/08/11 1:35 AM	1112151-004A	12/06/11 12:00 PM	12/06/11	12/08/11 9:04 PM	l

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QA/QC Officer

DHS ELAP Certification 1644

QC SUMMARY REPORT FOR SW8015B

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 63231 WorkOrder: 1112151

EPA Method: SW8015B Extraction: SW3510C							Spiked Sample ID: N/A					
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	-LCSD Acceptance Criteri		Criteria (%)	
	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH-Diesel (C10-C23)	N/A	1000	N/A	N/A	N/A	100	99.4	0.964	N/A	N/A	70 - 130	30
%SS:	N/A	625	N/A	N/A	N/A	89	89	0	N/A	N/A	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 63231 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1112151-005A	12/06/11 10:10 AM	12/06/11	12/07/11 6:19 PM	1112151-006A	12/06/11 10:50 AM	12/06/11	12/07/11 5:09 PM
1112151-007A	12/05/11 3:10 PM	12/06/11	12/07/11 7:29 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

 $\% \ Recovery = 100 * (MS-Sample) / (Amount Spiked); \ RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).$

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QA/QC Officer

DHS ELAP Certification 1644