SNOW CLEANERS INC.

EXPERT FINISHING • ALL LEATHER GOODS

MAIN OFFICE & PLANT

38 WEST SONORA ST. STOCKTON, CA 95203 209 / 547-1454

January 11, 2010

RECEIVED

2:13 pm, Jan 12, 2010

Alameda County Environmental Health

Mr. Jerry Wickham Alameda County Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

Since 1910

SUBJECT: GROUNDWATER MONITORING AND SAMPLING REPORT CERTIFICATION ACEH Case # RO 0000357 Snow Cleaners 2678 Coolidge Avenue Oakland, CA

Dear Mr. Wickham:

You will find enclosed one copy of the following document prepared by P&D Environmental, Inc.

• Groundwater Monitoring and Sampling Report (December 1, 2009 Sampling Event) dated January 11, 2010 (document 0298.R7).

declare, under penalty of perjury, that the information and/or recommendations contained in the above-mentioned work plan for the subject site is true and correct to the best of my knowledge.

Should you have any questions, please do not hesitate to call me at (800) 818-7669.

Cordially, Snow Cleaners, Inc.

ul man

Hárold Turner President

Cc: Mr. LeRoy Griffin, Oakland Fire Department, Emergency Services, 250 Frank Ogawa Plaza, Suite 3341, Oakland, CA 94612 (with enclosure)

0298 L42

"SERVING THE CLEANING INDUSTRY FOR OVER 90 YEARS"

P&D ENVIRONMENTAL, INC.

55 Santa Clara Ave, Suite 240 Oakland, CA 94610 (510) 658-6916

January 11, 2010 Report 0298.R7

Mr. Harold Turner Snow Cleaners 2678 Coolidge Avenue Oakland, CA

SUBJECT: GROUNDWATER MONITORING AND SAMPLING REPORT (DECEMBER 1, 2009 SAMPLING EVENT) ACDEH Case # RO 0000357 Snow Cleaners 2678 Coolidge Avenue Oakland, CA

Dear Mr. Turner:

P&D Environmental Inc. (P&D) is pleased to present this report documenting the monitoring and sampling of four groundwater monitoring wells, designated as MW1 through MW4, at the subject site. Field activities were performed on December 1, 2009. A Site Location Map is attached as Figure 1, and a Site Vicinity Map showing the groundwater monitoring well locations is attached as Figure 2.

The well sampling was performed in accordance with a letter from Jerry Wickham of the Alameda County Department of Environmental Health (ACDEH) dated September 24, 2009 which included the approval of recommendations set forth in P&D's August 19, 2009 Subsurface Investigation Report (document 0298.R6). The recommendations included monitoring the existing groundwater monitoring wells on a monthly basis for water level fluctuations for one year and sampling the wells on a semi-annual basis for Total Petroleum Hydrocarbons (TPH) and Volatile Organic Compounds (VOCs).

BACKGROUND

Underground Storage Tanks (USTs) associated with the former dry cleaning facility were removed and associated limited excavation of the UST pit was performed by others in 1990. In January, 1994 two groundwater monitoring wells (MW1 and MW2) were installed by others in Davis Street approximately five feet south of the former UST pit. P&D subsequently oversaw the installation of groundwater monitoring wells MW3 and MW4 on September 9, 2008. A detailed discussion of the site background and historic monitoring, sampling, and investigation information are provided in P&D's Subsurface Investigation Report dated August 19, 2009 (document 0298.R6).

FIELD ACTIVITIES

Since the previous monitoring and sampling event on September 18, 2008, P&D personnel monitored wells MW1, MW2, MW3, and MW4 for depth to water measurements on September 26, 2008, August 20, September 24, October 29, November 25, November 30, and December 1, 2009. The depth to water was measured to the nearest 0.01 foot using an electric water level indicator. All four monitoring wells were monitored for depth to water with the exceptions of MW1 and MW2 on November 25, 2009 and MW2 on November 30, 2009. On these dates cars were parked on tip of the wells. A summary of the depth to water measurements is attached with this report as Table 1.

On December 1, 2009, P&D personnel monitored wells MW1, MW2, MW3, and MW4 for the depth to water measurements to the nearest 0.01 foot using an electric water level indicator and for the presence of free product or sheen using a transparent bailer. No free product or sheen was observed in any of the groundwater monitoring wells.

Each well was purged of a minimum of three casing volumes of water or until it was purged dry. During purging operations, the field parameters of electrical conductivity, temperature, and pH were monitored. No sheen, petroleum hydrocarbon odor, or solvent odor was detected on the purge water from any of the wells, except for well MW2, which had observable sheen and a moderate to strong petroleum hydrocarbon (mineral spirits) odor. Once the field parameters were observed to stabilize during well purging and a minimum of three casing volumes had been purged, or the well was purged dry, water samples were collected from each of the wells using a clean disposable bailer. No sheen or separate phase layers of petroleum hydrocarbons were observed on the groundwater samples from any of the wells, with the exception of the sample collected from well MW2, which was observed to have sheen. The water samples were transferred from the disposable bailers to 40-milliliter glass VOA vials and 1-liter amber glass bottles that were sealed with Teflon-lined screw caps. The VOA vials were overturned and tapped to assure that no air bubbles were present. The VOA vials and bottles were observed for all sample handling. Records of the field parameters measured during well purging are attached with this report.

GEOLOGY AND HYDROGEOLOGY

Review of Figure 1 shows that the site is located near the top of a northeasterly-trending interfluvial (ridge-like) structure. The topography in the area surrounding the site slopes to the east and south. Peralta Creek is located approximately 500 feet to the east and approximately 400 feet to the southeast of the subject site. The creek flows towards the southwest. Portions of the creek located directly to the east of the site are lined with concrete. Based on evaluation of the concrete channel for Peralta Creek that is located beneath Davis Street, the water that flows through Peralta Hacienda Historic Park is not the same water that flows in Peralta Creek on the north side of Davis Street.

Based on review of documents obtained from the City of Oakland and from the County Flood Control District (see P&D's November 24, 2009 Subsurface Investigation Work Plan (document 0298.W4)), it was determined that the water flowing in the creek through the Park is groundwater that originates from the storm drain that is located beneath Humboldt Street (located to the southeast of Peralta Creek), and that Peralta Creek flows in an underground concrete-lined channel beginning at the north side of Davis Street. The water flowing in the Creek channel in the Park drains through a grate at the south end of the park into the underground concrete-lined channel that contains Peralta Creek.

Although the site vicinity topography slopes to the east and south, the area between Coolidge Avenue (bordering the property on the west) and 34^{th} Avenue (the first street encountered to the east of the site) is remarkably flat. Almost all of the change in elevation between the site and Peralta Creek occurs to the east of 34^{th} Avenue. Based on these observations, the anticipated groundwater flow direction in the vicinity of the site is toward the southeast, towards Peralta Creek.

Based on review of regional geologic maps from U. S. Geological Survey Professional Paper 943, "Flatland Deposits - Their Geology and Engineering Properties and Their Importance to Comprehensive Planning," by E. J. Helley and K. R. Lajoie, 1979, the materials underlying the subject site and it's immediate vicinity consist of Late Pleistocene alluvium (Qpa). Late Pleistocene alluvium is described as weakly consolidated, slightly weathered, poorly sorted, irregularly interbedded clay, silt, sand, and gravel.

The site geology and hydrogeology is complex, and a detailed discussion of the site geology and hydrogeology is provided in P&D's Subsurface Investigation Report dated August 19, 2009 (document 0298.R6). The interpreted groundwater flow direction in the vicinity of the site was developed using multiple lines of evidence (topography, lithology, soil discoloration, contaminant concentration distribution, and the measured depth to water in the different wells). Groundwater is interpreted to generally move in an unconfined A-aquifer in the immediate vicinity of the site towards the southeast, based on the elevations and slope of the surface of the fine-grained materials that are encountered beginning at a depth of approximately 25 feet bgs in the vicinity of the site. Based on the presence of coarse-grained materials at depths greater than 30 feet bgs that are located between borehole B6 and well MW3, groundwater is interpreted to move vertically in a southerly-trending paleo-channel from the A-aquifer to a confined B-aquifer in the area between the northeast side of the subject site and 34th Avenue, and then move horizontally in the B-aquifer to the south towards Peralta Creek and Peralta Hacienda Historical Park.

Review of the water levels in Table 1 and on Figure 2 shows that the water levels in wells MW1 and MW4 have been consistently similar, and that the water levels in wells MW2 and MW3 have been consistently similar, with a difference of approximately 6 feet in the elevations between the two sets of wells.

LABORATORY RESULTS

All of the groundwater samples were analyzed at McCampbell Analytical, Inc. (McCampbell) of Pacheco, California. McCampbell is a State-accredited hazardous waste testing laboratory. The samples were analyzed for Total Petroleum Hydrocarbons as Gasoline (TPH-G) and for Total Petroleum Hydrocarbons as Stoddard solvent (TPH-SS) by EPA Methods 5030B in conjunction with EPA Method 8021B and modified EPA Method 8015B, and for Total Petroleum Hydrocarbons as Diesel (TPH-D) and for Total Petroleum Hydrocarbons as Bunker Oil (TPH-BO) by EPA Method 3510C in conjunction with EPA Method 8015C. In addition, all of the samples were analyzed for

January 11, 2010009 Report 0298.R7

VOCs including Methyl tert-Butyl Ether (MTBE), and benzene, toluene, ethylbenzene, and total xylenes (BTEX) by EPA Method 8260B.

No analytes were detected in the groundwater samples collected from wells MW1 and MW4, with the exceptions of chloroform in MW1 at a concentration of 0.71 micrograms per liter (ug/L), and cis-1,2-dichloroethene and chloroform in well MW4 at concentrations of 5.8 and 0.97 ug/L, respectively. No analytes were detected in well MW3 with the exception of TPH-D, TPH-BO, chloroform, and bromoform at concentrations of 63, 120, 1.3, and 0.57 ug/L, respectively. Review of the laboratory report shows that the TPH-D and TPH-BO results are both described as diesel-range compounds with no recognizable pattern. In well MW2, TPH-G, TPH-SS, TPH-D, and TPH-BO, were detected at concentrations of 34,000, 47,000, 74,000, 91,000 ug/L, respectively. Review of the laboratory report shows that the TPH-G and TPH-SS results are both described as Stoddard solvent/mineral spirit-range compounds. The TPH-D and TPH-BO results are both described as Stoddard solvent/mineral spirit-range compounds, diesel-range compounds with no recognizable pattern, and oil-range compounds. Additionally, in well MW2 cis-1,2-dichloroethene, vinyl chloride, and 1,2,4-trimethylbenzene were detected at concentrations of 1,800, 73, and 140 ug/L, respectively.

The groundwater sample results are summarized in Table 2, and copies of the laboratory analytical reports and chain of custody documentation are attached with this report.

DISCUSSION AND RECOMMENDATIONS

Review of the water levels in Table 1 and on Figure 2 shows that the water levels in wells MW1 and MW4 have been consistently similar, and that the water levels in wells MW2 and MW3 have been consistently similar, with a difference of approximately 6 feet in the elevations between the two sets of wells. As discussed in the geology and hydrogeology section above, the site geology and hydrogeology are complex. However, groundwater is interpreted to generally move in an unconfined A-aquifer in the immediate vicinity of the site towards the southeast, groundwater is interpreted to move vertically in a southerly-trending paleo-channel from the A-aquifer to a confined B-aquifer in the area between the northeast side of the subject site and 34th Avenue, and then move horizontally in the B-aquifer to the south towards Peralta Creek and Peralta Hacienda Historical Park.

During well sampling, the only well where odor or sheen were detected was in well MW2. Since the previous monitoring and sampling event on September 18, 2008 TPH has remained not detected in wells MW1 and MW4, and the three VOCs detected in these wells were the same VOCs detected in 2008, with all VOC concentrations continuing to remain below their respective May 2008 Table A San Francisco Bay Regional Water Quality Control Board groundwater Environmental Screening Levels (ESLs). In well MW3, the only detected compounds were 63 ug/L TPH-D and 120 ug/L TPH-BO, with only TPH-BO exceeding the May 2008 Table A residual fuel groundwater ESL of 100 ug/L. In well MW2, all detected compound concentrations have increased since 2008, with the exception of 1,2,4-Trimethylbenzene, which remained the same.

In well MW2, TPH-G, TPH-SS, TPH-D, and TPH-BO, were detected at concentrations of 34,000, 47,000, 74,000, 91,000 ug/L, respectively. Review of the laboratory report shows that the TPH-G

January 11, 2010009 Report 0298.R7

and TPH-SS results are both described as Stoddard solvent/mineral spirit-range compounds. The TPH-D and TPH-BO results are both described as Stoddard solvent/mineral spirit-range compounds, diesel-range compounds with no recognizable pattern, and oil-range compounds. Additionally, in well MW2 cis-1,2-dichloroethene, vinyl chloride, and 1,2,4-trimethylbenzene were detected at concentrations of 1,800, 73, and 140 ug/L, respectively.

Based on the sample results, P&D recommends that the monthly monitoring and semi-annual sampling of the wells be continued.

DISTRIBUTION

A copy of this report will be uploaded to the ACDEH website, in accordance with ACDEH requirements. In addition, a copy of this report will be uploaded to the GeoTracker database, and one copy of this report will be mailed to LeRoy Griffin of the City of Oakland Fire Department

LIMITATIONS

This report was prepared solely for the use of Snow Cleaners. The content and conclusions provided by P&D in this assessment are based on information collected during our investigation, which may include, but not be limited to, visual site inspections; interviews with the site owner, regulatory agencies and other pertinent individuals; review of available public documents; subsurface exploration and our professional judgment based on said information at the time of preparation of this document. Any subsurface sample results and observations presented herein are considered to be representative of the area of investigation; however, geological conditions may vary between borings and may not necessarily apply to the general site as a whole. If future subsurface or other conditions are revealed which vary from these findings, the newly revealed conditions must be evaluated and may invalidate the findings of this report.

This report is issued with the understanding that it is the responsibility of the owner, or his representative, to ensure that the information contained herein is brought to the attention of the appropriate regulatory agencies, where required by law. Additionally, it is the sole responsibility of the owner to properly dispose of any hazardous materials or hazardous wastes left onsite, in accordance with existing laws and regulations.

This report has been prepared in accordance with generally accepted practices using standards of care and diligence normally practiced by recognized consulting firms performing services of a similar nature. P&D is not responsible for the accuracy or completeness of information provided by other individuals or entities used in this report. This report presents our professional judgment based upon data and findings identified in this report and interpretation of such data based upon our experience and background, and no warranty, either express or implied, is made. The conclusions presented are based upon the current regulatory climate and may require revision if future regulatory changes occur.

January 11, 2010009 Report 0298.R7

Should you have any questions, please do not hesitate to contact us at (510) 658-6916.

Sincerely,

P&D Environmental, Inc.

W1, King

Paul H. King President Professional Geologist #5901 Expires: 12/31/11

Attachments:

Table 1 – Summary of Groundwater Elevation Data Table 2 - Summary of Groundwater Sample Results

Figure 1 - Site Location Map Figure 2 - Site Vicinity Map Groundwater Monitoring/Well Purging Data Sheets Laboratory Reports and Chain of Custody Documentation

PHK/sjc 0298.R7

TABLES

Well No	Date	Top Of Casing Elevation (ft)**	Depth To Water (ft)	Water Table Elevation (ft)
MW1	12/1/2009	132.78	23.36	109.42
	11/30/2009		23.42	109.36
	11/25/2009		car parked on well	could not measure
	10/29/2009		23.10	109.68
	9/24/2009		23.40	109.38
	8/20/2009		22.88	109.90
	9/26/2008		23.00	109.78
	9/18/2008		23.02	109.76
	2/20/2003		20.65	112.13
	1/18/2003		20.06	112.72
MW2	12/1/2009	133.59	18.46	115.13
	11/30/2009		car parked on well	could not measure
	11/25/2009		car parked on well	could not measure
	10/29/2009		17.46	116.13
	9/24/2009		18.83	114.76
	8/20/2009		18.46	115.13
	9/18/2008		18.50	115.09
	2/20/2003		13.09	120.50
	1/18/2003		11.55#	122.04
MW3	12/1/2009	136.35	21.16	115.19
111113	11/30/2009	150.55	21.10	115.21
	11/25/2009		21.02	115.33
	10/29/2009		19.95	116.40
	9/24/2009		21.67	114.68
	8/20/2009		21.08	115.27
	9/26/2008		20.91	115.44
	9/19/2008		23.69	112.66
	9/18/2008		28.06	108.29
	9/15/2008		33.31	103.04
	9/15/2008*		26.80	109.55
MW4	12/1/2009	134.09	25.31	108.78
	11/30/2009		25.37	108.72
	11/25/2009		25.26	108.83
	10/29/2009		25.06	109.03
	9/24/2009		25.37	108.72
	8/20/2009		24.86	109.23
	9/26/2008		25.00	109.09
	9/19/2008		25.00	109.09
	9/18/2008		25.02	109.07
	9/15/2008		25.11	108.98
	9/15/2008*		25.03	109.06

NOTES:

* = Prior to well development.
** = Wells surveyed on September 22-23, 2008.

= Depth to water not corrected for free product thickness; free product with thickness of 0.02 feet encountered.

MW1	Sample Date 12/1/2009 9/18/2008	TPH-G	TPH-SS	TPH-D	TPH-MO	TPH-BO	VOCs by 8260B
MW1		NID					
		ND<50	ND<50	ND<50	NA	ND<100	ND, except: Chloroform=0.71
		ND<50	ND<50	ND<50	NA	ND<100	ND, except: Chloroform=0.74
	10/27/2004	ND<50	ND<50	ND<50	ND<250	NA	ND, except: Chloroform=0.78
	2/20/2003	ND<50	ND<50	ND<50	ND<250	NA	ND, except:
							Chloroform=1.2, Xylenes = 0.61
							Aylenes = 0.01
	5/15/1995	ND<50	NA	NA	NA	NA	** ND
	12/22/1994	ND<50	NA	NA	NA	NA	** ND
	9/14/1994	ND, a	NA	NA	NA	NA	** ND
	7/29/1994	ND<50	NA	NA	NA	NA	** ND
	5/31/1994 1/24/1994	ND<50 ND<50	NA NA	NA ND	NA NA	NA NA	** ND
1000							** ND
MW2	12/1/2009	34,000, b,c	47,000, b,c	74,000, b,d,e,f	NA	91,000, b,d,e,f	ND, except:
							cis-1,2-dichloroethene= 1,800 , Vinyl Chloride = 73 ,
							1,2,4-Trimethylbenzene = 140
	0/10/2011	44.000 -		a a coo a -			
	9/18/2008	11,000, с,ь	14,000	28,000, b,d,e	NA	33,000	ND, except:
							cis-1,2-dichloroethene= 880, Vinyl Chloride = 44,
							1,2,4-Trimethylbenzene = 140,
							1,3,5-Trimethylbenzene = 41
	10/27/2004	320,000, c	500 000	280.000 LJP	ND ~50 000	NA	****
	10/27/2004	320,000, C	500,000	280,000 , b,d, f	ND<50,000	INA	*ND, except: cis-1,2-dichloroethene = 3,300
	2/20/2003	76,000, b,c	75,000	370,000, b,d,f	37,000	NA	ND, except:
							Toluene = 47 ,
							Ethylbenzene = 43 ,
							Xylenes =160,
							cis-1,2-Dichloroethene = 360,
							trans-1,2-Dichloroethene = 22 ,
							n-Butyl benzene = 43,
							Isopropylbenzene = 35,
							sec-Butyl benzene = 48,
							n-Propyl benzene = 86,
							4-Isopropyl toluene = 25,
							1,3,5-Trimethylbenzene = 160, Naphthalene = 32 ,
							Vinyl Chloride = 24 .
	5/15/1995	12,000, c	NA	NA	NA	NA	**Benzene = 17 ,
							**Toluene = 96 ,
							**Ethylbenzene = 50,
							**Xylenes = 200
	12/22/1994	20,000, a,c	NA	NA	NA	NA	**D 00
	12/22/1994	20,000, a,c	101	1111	101	1411	**Benzene = 22, **Toluene = 170,
							**Ethylbenzene = 89 ,
							**Xylenes = 470
	12/22/1004						
	12/22/1994						ND, except:
							+Benzene $= 21$,
							+Toluene = 170, +Ethylbenzene = 48,
							+Ethylbenzene = 48, +Xylenes = 180,
							+Xylenes = 180, +cis-1,2-Dichloroethene = 1,100,
							+trans-1,2-Dichloroethene = 1,100,
							+1,1-Dichloroethane = 2.8,
							+Chloroethane = 6.7
	9/14/1994	200,000, b,c	NA	NA	NA	NA	**Benzene = ND < 15
							<pre>**Toluene = 170, **Ethylbenzene = 400,</pre>
							**Ethylbenzene = 400, **Xylenes = 2,600
							,,
	9/14/1994						ND, except:
							+Benzene $= 24$
							+Toluene $=$ 440,
							+Ethylbenzene = 300,
							+Xylenes = 830
							+cis-1,2-dichloroethene = 720
							+Chloroform = 25, +Acetone = 120

TABLE 2 SUMMARY OF GROUNDWATER SAMPLE RESULTS

			ary of Laborato				
l Number	Sample Date	TPH-G	TPH-SS	TPH-D	TPH-MO	TPH-BO	VOCs by 8260B
	7/29/1994	21,000, b, c	NA	NA	NA	NA	**Benzene = 21, **Toluene = 150, **Ethylbenzene = 53, **Xylenes = 150
	5/31/1994	6,400, c	NA	NA	NA	NA	**Benzene = 15, **Toluene = 100, **Ethylbenzene = 43, **Xylenes = 220
	1/28/1994	2,800, c	NA	12,000, d	NA	NA	ND, except: **Xylenes = 43
	1/19/1994++	3,400, c	NA	20,000	NA	NA	**Benzene = 15, **Toluene = 180, **Ethylbenzene = 39, **Xylenes = 200
MW3	12/1/2009 9/18/2008	ND<50 ND<50	ND<50 ND<50	63, e ND<50	NA NA	120, e ND<100	ND ND, except: Bromoform = 0.57, Chloroform = 1.3
MW4	12/1/2009	ND<50	ND<50	ND<50	NA	ND<100	ND, except: Cis-1,2-dichloroethene = 5.8, Chloroform = 0.97
	9/18/2008	ND<50	ND<50	ND<50	NA	ND<100	ND, except: Cis-1,2-dichloroethene = 4.8, Chloroform = 0.96
ESL		100	100	100	100	100	Benzene = 1.0, Toluene = 40, Ethylbenzene = 30, Xylenes = 20, cis-1,2-Dichloroethene=6.0, trans-1,2-Dichloroethene = 10, 1,1-Dichloroethane = 5.0, Chloroethane = 12, Vinyl Chloride = 0.5, Naphthalene = 17, Chloroform = 70, Bromoform = 100, Acetone = 6,300, n-Butylbenzene = None, Isopropylbenzene = None,

Abbreviations and Notes: TPH-G = Total Petroleum Hydrocarbons as Gasoline

TPH-SS = Total Petroleum Hydrocarbons as Stoddard solvent

TPH-D = Total Petroleum Hydrocarbons as Diesel

TPH-MO = Total Petroleum Hydrocarbons as Motor Oil TPH-BO = Total Petroleum Hydrocarbons as Bunker Oil

VOCs = Volatile Organic Compounds

ND = Not Detected.

NA = Not Analyzed.

a = Laboratory Note: one to a few isolated peaks present.
 b = Laboratory Note: lighter than water immiscible sheen/product present.
 c = Laboratory Note: results reported as gasoline consist of Stoddard Solvent/mineral spirit.

d = Laboratory Note: results reported as diesel consist of Stoddard Solvent/mineral spirit.

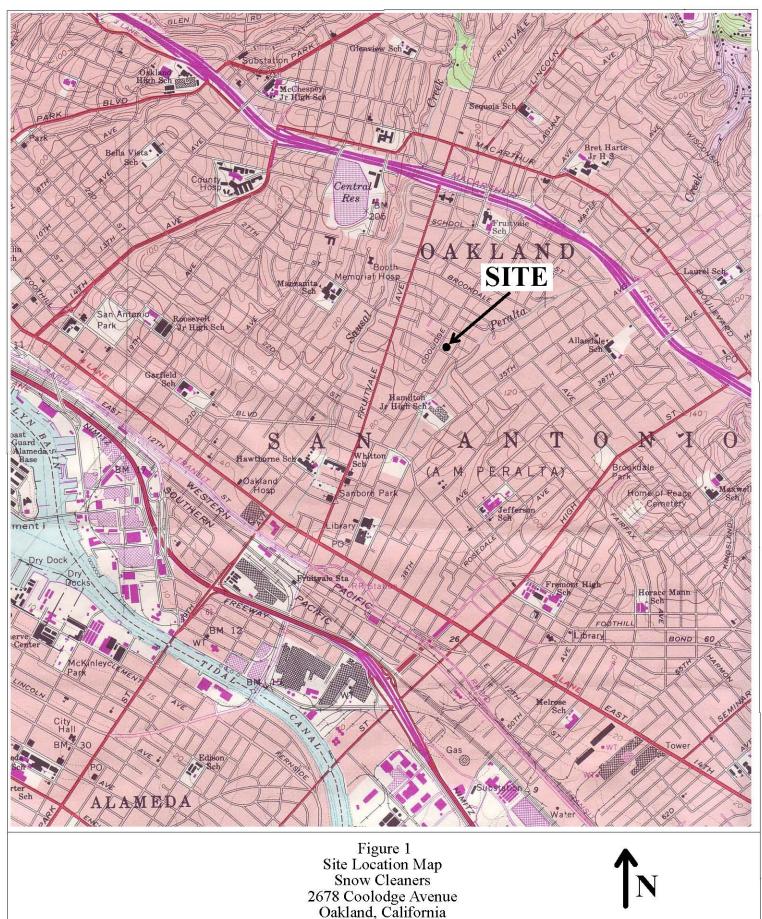
e = results reported as diesel consist of diesel range compounds; no recognizable pattern.

f = results reported as diesel consist of oil range compounds.

* = MW2 VOC detection limits are all increased because of a sample dilution factor of 500.

** = Analysis by EPA Method 8020.

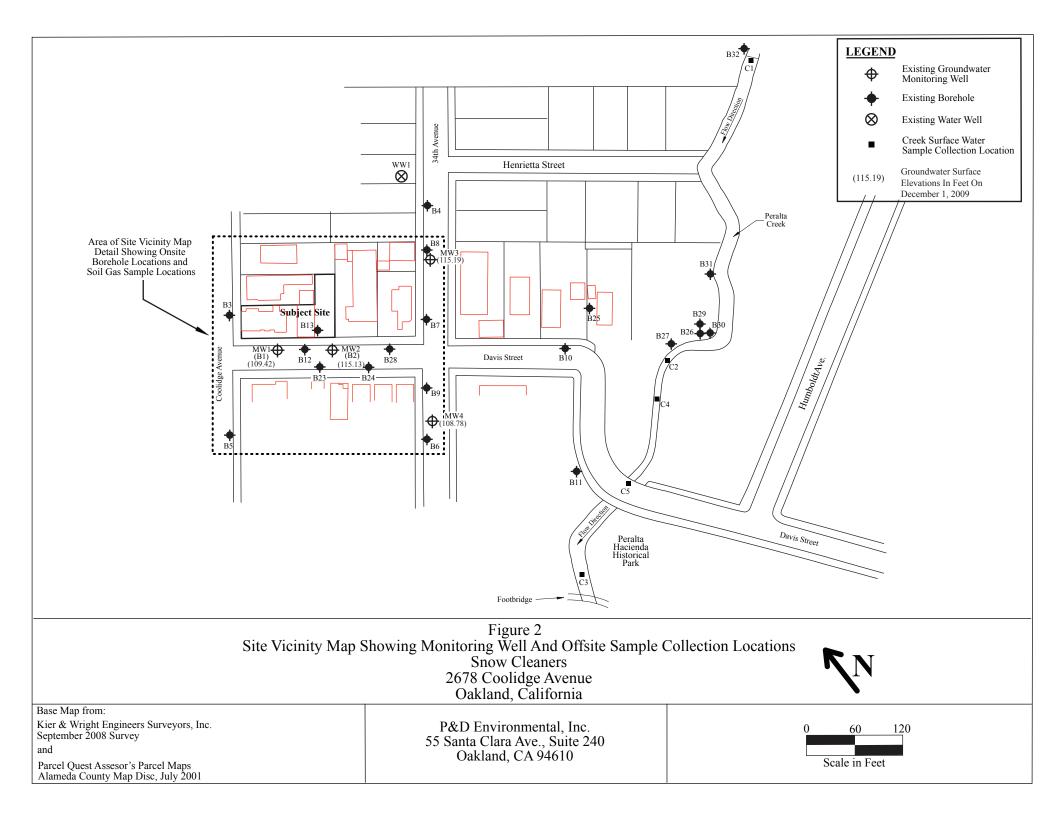
+ = Samples subcontracted to different lab for VOC analysisby EPA Method 8260..


++ = Well Development Water stored at site in drum; submitted to lab on January 28, 1994. '

ESL=Environmental Screening Level, developed by San Francisco Bay - Regional Water Quality Control Board (SF-RWQCB)) updated May 2008,

from Table A – Shallow Soil Screening Levels, Groundwater is a current or potential source of drinking water.

Values in bold indicate concentrations that exceed their respective ESL values. Results are in micrograms per liter (μ g/L), unless otherwise noted.


FIGURES

Base Map From: U.S. Geological Survey Oakland East, California 7.5-Minute Quadrangle Photorevised 1980

P&D Environmental, Inc. 55 Santa Clara Ave., Suite 240 Oakland, CA 94610 1,000 2,000

Scale In Feet

WELL MONITORING AND PURGE DATA SHEETS

P&D ENVIRONMENTAL GROUNDWATER MONITORING/WELL PURGING DATA SHEB

Site Name	Show Cleaners
Job No	0798
TOC to Wat	er (ft.) <u>23.36</u>
Well Depth	(tt.) 44.5
Well Diame	ter?'' (0,16)
Gal./Casin	g vol. 3.4
	3001= 10.2

SHEBT	
Well No. /	1W-1
Date 12/	1/09
Sheen)
Free Produc	t Thickness_Ø
	ection Method
TEMPERATURE	ELECTRICAL CONDUCTIVITY US/CM
19:4	608
19.0	$\frac{647}{747}$
19.0	676
18.9	631
189	604
189	597
18.9	579
18.4	557
18.6	554
 	
sample time	=> 1250hrs

GAL. PURGED TIME DH .29 . 1 b . 3 J + ď ት 1 \cap JD 4 2 6.D 5 J ፞፞፞፞፞፞፞፞፞፝፞፝፞፝፞፝ 6.06 7 \cap 04 6. 8 ን J đ 6 b 23 9 7 9. . 36 q 2 0 10.7 241 6.3 10.5 24 3 6. NOTES: No sheen + no odo-

PURGE10.92

P&D ENVIRONMENTAL GROUNDWATER MONITORING/WELL PURGING DATA SHEET

1

Well Depth	(fr.) 24.6		Pree Prod	uct Thickness
Well Diame	ster <u>4" (0,64</u>	6)		llection Method
Gal./Casir	-		Desp	osable bailer
TIME	Jud = 12.0 GAL. PURGED	н	TEMPERATURE	ELECTRICAL CONDUCTIVITY
1308	1.3	6.32	20.5	650
1310	2.07	6.27	20.4	635
1312	4.0	6.29	20.4	642
1314	_5:3	6.29	20.4	640
1316	6.7	6,31	20.4	636
1318	8.0	6.32	20.4	638
1320	9.3	6.32	20.3	635
1322	10.7	6.32	51-20-22.3	640
1529	19.0	6.55	20.0	633
			and an ability of the state of the	and a star and a star of the
<u>. 4</u>				
	·····		ander Minika in Angly in the second secon	ча <u>ници и на дока у про 1977 г. н. ст. ст. ст. ст. ст. ст. ст.</u>
	مر منها اور او او او او او او او و و و و و و و			

PURGE10.92

P&D ENVIRONMENTAL GROUNDWATER MONITORING/WELL PURGING DATA SHEET

site Name Snow Cleaner		
JOB NO. 0298	Date 12/1/09	
TOC to Water (ft.) 21.1	6 sheen No	
Well Depth (ft.) 35.4	Pree Product Thickness	
Well Diameter 2" (0		
Gal./Casing Vol. 2.3	Disposable bailer-	
3001=1		
TIME GAL. PURGED	DH TEMPERATURE CONDUCTIVITY	
1440 0.8	7.00 18.9 348	
1992 1.5	6.95 18.7 367	
1446 2.3	6.83 18.6 407	
1448 3.1	6.83 18.6 428	
1451 3.8	6.86 18.5 461	
1454 4.6	6.90 18.5 487 well	
1458 - 5.4	6.89 18.4 511 dewate~	3?
1507 6th	Will dewater u @ ~ 6.0gallons	-
La sic		
••••••••••••••••••••••••••••••••••••••		
	anne a tha ann an Anna ann	
NOTES: Started out	mod-strong sulfur odo-+ decreased through o. + Dur,	
No phe ada	Mod-strong sulfur odo-+ decreased throughout purge	
PURGE10.92	/ www.	

PLD ENVIRONMENTAL GROUNDWATER MONITORING/WELL PURGING DATA SHEET

site Name <u>Show Cleaners</u>	Site Name
JOB NO. 0298	JOD NO
TOC to Water (ft.) 25.31	TOC to Wat
Well Depth (ft.) 37.2	
Well Diameter $\frac{\lambda''(0,16)}{\lambda''(0,16)}$	Well Diame
Gal./Casing Vol. 7.0	Gal./Casin
3401=6.0	

Well No. MW-4 Date 12/1/69 Sheen No

Free Product Thickness

Sample Collection Method____

Disposable bailer VITY_ps/cm

.....

	3001=6.0		°C	BLECTRICA
TIME	GAL. PURGED	DH	TEMPERATURE	CONDUCTIV
1257	0.6	7.42	19.3	344
1259	1.3	6.80	19.1	395
1401	2.0	6.51	19.0	451
1403	2.6	6.50	19.0	463
		and the second division of the second divisio		1178
1405	3.3	6.50	18.8	478
1407	4,0	6.51	18.8	488
1410	4.6	6,51	18.7	480
1412	<u> </u>	6.50	18,7	476
1415		6.51	18,7	475
	<u></u> b. U	0.)[
<u> </u>				
				
		·	مر بر از با بران از انداز بر بران از انداز بر بران از انداز بران می می مراد ا	·
NOTES:	No sheen	+ No oder	-	
			e time=) 1420)hrc
		<u> </u>	11/2/1/1	

PURGEI0.92

LABORATORY REPORTS AND CHAIN OF CUSTODY DOCUMENTATION

	Analytical, Inc. Ouality Counts"	Web: www.m	llow Pass Road, Pittsburg, ccampbell.com E-mail: m one: 877-252-9262 Fax:	ain@mccampbell.com
P & D Environmental	Client Project ID: #0298;	Snow Cleaners	Date Sampled:	12/01/09
55 Santa Clara, Ste.240	Oakland		Date Received:	12/02/09
Oakland, CA 94610	Client Contact: Steve Car	mack	Date Reported:	12/08/09
Oanana, CA 94010	Client P.O.:		Date Completed:	12/04/09

WorkOrder: 0912064

December 08, 2009

Dear Steve:

Enclosed within are:

- 1) The results of the **4** analyzed samples from your project: **#0298; Snow Cleaners Oakland,**
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

San	VIRONMENTAL, Its Clars Ave, Suite 240 Dakland, CA 94610 (510) 658-6916	INC.			CHAIN OF CL	ISTOD	DY I	RECO	RD	00	9/2064 Page 1 of L
	PROJECT NUMBER:			Sno	NAME: W Cleaners Oakland		Es).		$\left \right $		
	SAMPLED BY: (PRI Steve Car		SIGNAT	URE)	h	NUMBER OF	H Musical			PRESERVATIVE	REMARKS
	SAMPLE NUMBER	DATE	TIME	TYPE	SAMPLE LOCATION	₹ <u></u> 0	A	171	11	a	
+	MW-1	12/1/09	1250	Hao		7	X	X		CEN	ermal Turner and
+	MW-2 MW-3		1520			7	X		++	++	1-10
+	MW-4	V	1420	¥		7	X	X			
						+			\ddagger	_	
ł											
t	ICE / 1"2-00	(+	+++	++		
	GOOD CONDITIO HEAD SPACE AE DECHLORINATE	SENT V	CONTA	WEDO							
ŀ	PRESERVATION	VOAS 1040	A COLUMN A COLUMN	RVED IN	LAB		$\left + \right $	+++	++		
Ē				-	2		++		++		
	RELINQUISHED BY:	SICNATURE		BATE	TIME RECEIVED BY: (SIGNATE	RE)	TOTAL M	2. OF SAMPLES SHPHENT) 1. OF CONTAINED SHPHENT)	4	LABORA	mobell Analytic
F	RELINQUISHED BY: (SIGNATURE	17	DATE	TIME RECEIVED BY: (SIGNATU	RÉ)		RATORY CO	INTACT:	LABORA	TORY PHONE NUMB
4	RELINQUISHED BY: (SIGNATURE) /	DATE	TIME RECEIVED FOR LABORAT	ORY BY:	17	SAMPLE	ANALY		EST SHEET
	Results and billing to P&D Environmental, lab@pdenviro.com	x Inc.			REMARKS:	All 60	tles				

1534 Willow Pass Rd Pittsburg, CA 94565-1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252-9262				Wor	kOrder	: 0912	064	C	lientCod	le: PDEO				
	WaterTrax	WriteOn	EDF	Exce	el	Fax	Ŀ	🖌 Email		HardCopy	Thire	dParty	□ J-	flag
Report to: Steve Carmack P & D Environmental 55 Santa Clara, Ste.240 Oakland, CA 94610 (510) 658-6916 FAX 510-834-0152	Email: lab@pdenviro.com cc: PO: ProjectNo: #0298; Snow Cleaners Oakland				Bill to: Accounts Payable P & D Environmental 55 Santa Clara, Ste.240 Oakland, CA 94610					Requested TAT: 5 d Date Received: 12/02/2 Date Printed: 12/02/2				
Lab ID Client ID		Matrix	Collection Date	lold 1	2	3	Req 4	uested 5	Tests (Se 6	ee legend 7 8	below) 9	10	11	12

0912064-001	MW-1	Water	12/1/2009 12:50	В	А	А					
0912064-002	MW-2	Water	12/1/2009 13:35	В	А	А					
0912064-003	MW-3	Water	12/1/2009 15:20	В	А	Α					
0912064-004	MW-4	Water	12/1/2009 14:20	В	Α	A					

Test Legend:

1	8260B_W	2	G-
6		7	
11		12	

2	G-MBTEX_W
7	
12	

3	TPH_W	
8		

4	
•	
9	

5	
10	

The following SampIDs: 001A, 002A, 003A, 004A contain testgroup.

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Prepared by: Melissa Valles

"When Ouality Counts"

Sample Receipt Checklist

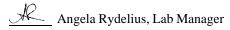
Client Name:	P & D Environme	ntal			Date a	nd Time Received:	12/2/2009	4:32:34 PM
Project Name:	#0298; Snow Cle	aners Oakla	nd		Check	list completed and re	eviewed by:	Melissa Valles
WorkOrder N°:	0912064	Matrix <u>Water</u>			Carrier	: <u>Rob Pringle (M</u>	AI Courier)	
		9	Chain of Cu	stody (C	COC) Informa	tion		
Chain of custody	present?		Yes	✓	No 🗆			
Chain of custody	signed when relinqui	shed and receiv	ved? Yes	✓	No 🗆			
Chain of custody	agrees with sample I	abels?	Yes	✓	No 🗌			
Sample IDs noted	by Client on COC?		Yes	\checkmark	No 🗆			
Date and Time of	collection noted by Cl	ient on COC?	Yes	\checkmark	No 🗆			
Sampler's name r	noted on COC?		Yes	✓	No 🗆			
			<u>Sample</u>	Receipt	Information			
Custody seals int	tact on shipping conta	iner/cooler?	Yes		No 🗆		NA 🔽	
Shipping containe	er/cooler in good cond	lition?	Yes	✓	No 🗆			
Samples in prope	er containers/bottles?		Yes	\checkmark	No 🗆			
Sample containe	rs intact?		Yes	\checkmark	No 🗆			
Sufficient sample	e volume for indicated	test?	Yes	✓	No 🗌			
		<u>Sample F</u>	Preservation	n and Ho	old Time (HT)	Information		
All samples recei	ived within holding tim	e?	Yes	✓	No 🗌			
Container/Temp E	Blank temperature		Coole	er Temp:	2.6°C		NA 🗆	
Water - VOA vial	ls have zero headspa	ce / no bubbles	? Yes	✓	No 🗆	No VOA vials submi	itted 🗆	
Sample labels ch	necked for correct pre	servation?	Yes	✓	No 🗌			
Metal - pH accep	table upon receipt (p⊢	1<2)?	Yes		No 🗆		NA 🗹	
Samples Receive	ed on Ice?		Yes	✓	No 🗆			
		(Ic	e Type: WE	TICE)			
* NOTE: If the "N	No" box is checked, se	ee comments b	elow.					

Client contacted:

Date contacted:

Contacted by:

Comments:


McCampbell A	Analytical, In ality Counts"	<u>ıc.</u>		Web: www.mccamp	Pass Road, Pittsburg, C bell.com E-mail: mair 877-252-9262 Fax: 9	n@mccampbell.com				
P & D Environmental		Project II	D: #029	98; Snow	12/01/09					
		s Öakla				Date Sampled: 12/01/09 Date Received: 12/02/09				
55 Santa Clara, Ste.240	Climat	7	<u>C(</u>	7						
	Client	_ontact:	Steve	Carmack	Date Extracted:					
Oakland, CA 94610	Client F	2.0.:			Date Analyzed	12/04/09				
	Volatile Organi	cs by P&	&T and	GC/MS (Basic Ta	rget List)*					
Extraction Method SW5030B	0	·		od SW8260B	C ,	Work Order: 0912	064			
Lab ID				0912064	1-001B					
Client ID				0)1200-						
Matrix										
Compound	Concentration *	mcentration * DF Reporting Limit Compound					DF	Reporting Limit		
Acetone	ND	1.0	10	tert-Amyl methyl e	ther (TAME)	ND	1.0	0.5		
Benzene	ND	1.0	0.5	Bromobenzene		ND	1.0	0.5		
Bromochloromethane	ND	1.0	0.5	Bromodichlorometh	ane	ND	1.0	0.5		
Bromoform	ND	1.0	0.5	Bromomethane		ND	1.0	0.5		
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TB	A)	ND	1.0	2.0		
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene		ND	1.0	0.5		
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide		ND	1.0	0.5		
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene		ND	1.0	0.5		
Chloroethane	ND	1.0	0.5	Chloroform		0.71	1.0	0.5		
Chloromethane	ND	1.0	0.5	2-Chlorotoluene		ND	1.0	0.5		
4-Chlorotoluene	ND	1.0	0.5	Dibromochloromethane		ND	1.0	0.5		
1,2-Dibromo-3-chloropropane	ND	1.0	0.2	1,2-Dibromoethane		ND	1.0	0.5		
Dibromomethane	ND	1.0	0.5	1,2-Dichlorobenzen		ND	1.0	0.5		
1,3-Dichlorobenzene	ND	1.0	0.5	1,4-Dichlorobenzen		ND	1.0	0.5		
Dichlorodifluoromethane	ND	1.0	0.5	1,1-Dichloroethane		ND	1.0	0.5		
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.5	1,1-Dichloroethene		ND	1.0	0.5		
cis-1,2-Dichloroethene	ND	1.0	0.5	trans-1,2-Dichloroe		ND	1.0	0.5		
1,2-Dichloropropane	ND	1.0	0.5	1,3-Dichloropropan		ND	1.0	0.5		
2,2-Dichloropropane	ND	1.0	0.5	1,1-Dichloropropen		ND	1.0	0.5		
cis-1,3-Dichloropropene	ND	1.0	0.5	trans-1,3-Dichlorop	oropene	ND	1.0	0.5		
Diisopropyl ether (DIPE)	ND	1.0	0.5	Ethylbenzene		ND	1.0	0.5		
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.5	Freon 113		ND	1.0	10		
Hexachlorobutadiene 2-Hexanone	ND ND	<u>1.0</u> 1.0	0.5	Hexachloroethane Isopropylbenzene		ND ND	<u>1.0</u> 1.0	0.5		
		1.0				ND	1.0			
4-Isopropyl toluene Methylene chloride	ND ND	1.0	0.5	Methyl-t-butyl ethe 4-Methyl-2-pentance		ND	1.0	0.5		
Naphthalene	ND	1.0	0.5	n-Propyl benzene	Dife (MIDK)	ND	1.0	0.5		
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloro	athana	ND	1.0	0.5		
1.1.2.2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene		ND	1.0	0.5		
Toluene	ND	1.0	0.5	1,2,3-Trichlorobenz	zene	ND	1.0	0.5		
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroetha		ND	1.0	0.5		
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene		ND	1.0	0.5		
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloroprop	oane	ND	1.0	0.5		
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylben		ND	1.0	0.5		
Vinvl Chloride	ND	1.0	0.5	Xvlenes		ND	1.0	0.5		
				Recoveries (%)						
%SS1:	9			%SS2:		10	6			
%\$\$31. %\$\$3:	9			70002.		10	5			
Comments:										

Comments:

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

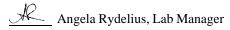
WcCampbell	Analytical, In ality Counts"	<u>nc.</u>		Web: www.mccam	v Pass Road, Pittsburg, C pbell.com E-mail: main : 877-252-9262 Fax: 9	n@mccampbell.com				
P & D Environmental	Client I	ent Project ID: #0298; Snow Date Sampled				12/01/09				
	Cleaner	rs Oaklaı	nd		Date Received:	Date Received: 12/02/09				
55 Santa Clara, Ste.240	Client	Contact:	Steve (Carmack	Date Extracted:	12/04/09				
Oakland, CA 94610	Client H		Store		Date Analyzed	12/04/09				
,						12/04/09				
	Volatile Organi	-		GC/MS (Basic Ta	rget List)*					
Extraction Method SW5030B		Analy	tical Meth	od SW8260B		Work Order: 0912	064			
Lab ID					4-002B					
Client ID					V-2					
Matrix			Reporting	Wa	iter	<u> </u>		Reportin		
Compound	Concentration *	DF	Limit	Compou	ind	Concentration *	DF	Limit		
Acetone	ND<1000	100	10	tert-Amyl methyl	ether (TAME)	ND<50	100	0.5		
Benzene	ND<50	100	0.5	Bromobenzene	1	ND<50	100	0.5		
Bromochloromethane	ND<50	100	0.5	Bromodichloromet	hane	ND<50	100	0.5		
Bromoform	ND<50	100	0.5	Bromomethane		ND<50	100	0.5		
2-Butanone (MEK)	ND<200	100	2.0	t-Butyl alcohol (TH	BA)	ND<200	100	2.0		
n-Butyl benzene	ND<50	100	0.5	sec-Butyl benzene		ND<50	100	0.5		
tert-Butyl benzene	ND<50	100	0.5	Carbon Disulfide		ND<50	100	0.5		
Carbon Tetrachloride	ND<50	100	0.5	Chlorobenzene		ND<50	100	0.5		
Chloroethane	ND<50	100	0.5	Chloroform		ND<50	100	0.5		
Chloromethane	ND<50	100	0.5	2-Chlorotoluene		ND<50	100	0.5		
4-Chlorotoluene	ND<50	100	0.5	Dibromochloromet		ND<50	100	0.5		
1,2-Dibromo-3-chloropropane	ND<20	100	0.2	1,2-Dibromoethane		ND<50	100	0.5		
Dibromomethane	ND<50	100	0.5	1,2-Dichlorobenzer		ND<50	100	0.5		
1,3-Dichlorobenzene	ND<50	100	0.5	1,4-Dichlorobenzer		ND<50	100	0.5		
Dichlorodifluoromethane	ND<50	100	0.5	1,1-Dichloroethan		ND<50	100	0.5		
1,2-Dichloroethane (1,2-DCA)	ND<50	100	0.5	1,1-Dichloroethene		ND<50	100	0.5		
cis-1,2-Dichloroethene	1800	100	0.5	trans-1,2-Dichloro		ND<50	100	0.5		
1,2-Dichloropropane	ND<50	100	0.5	1,3-Dichloropropa		ND<50	100	0.5		
2,2-Dichloropropane	ND<50	100	0.5	1,1-Dichloroprope		ND<50	100	0.5		
cis-1,3-Dichloropropene	ND<50	100	0.5	trans-1,3-Dichloro	propene	ND<50	100	0.5		
Diisopropyl ether (DIPE)	ND<50	100	0.5	Ethylbenzene		ND<50	100	0.5		
Ethyl tert-butyl ether (ETBE)	ND<50	100	0.5	Freon 113		ND<1000	100	10		
Hexachlorobutadiene	ND<50	100	0.5	Hexachloroethane		ND<50	100	0.5		
2-Hexanone	ND<50	100	0.5	Isopropylbenzene		ND<50	100	0.5		
4-Isopropyl toluene	ND<50	100	0.5	Methyl-t-butyl eth		ND<50	100	0.5		
Methylene chloride	ND<50	100	0.5	4-Methyl-2-pentan	one (MIBK)	ND<50	100	0.5		
Naphthalene	ND<50	100	0.5	n-Propyl benzene	.1	ND<50	100	0.5		
Styrene	ND<50	100	0.5	1,1,1,2-Tetrachlor		ND<50	100	0.5		
1,1,2,2-Tetrachloroethane Toluene	ND<50 ND<50	100 100	0.5	Tetrachloroethene 1,2,3-Trichloroben		ND<50 ND<50	<u>100</u> 100	0.5		
1,2,4-Trichlorobenzene	ND<50	100	0.5	1.1.1-Trichloroeth		ND<50	100	0.5		
1,1,2-Trichloroethane	ND<50	100	0.5	Trichloroethene		ND<50	100	0.5		
Trichlorofluoromethane	ND<50	100	0.5	1,2,3-Trichloropro	pane	ND<50	100	0.5		
1,2,4-Trimethylbenzene	140	100	0.5	1.3.5-Trimethylber		ND<50	100	0.5		
Vinvl Chloride	73	100	0.5	Xvlenes		ND<50	100	0.5		
	. 12			Recoveries (%)						
0/ 551.	17		- Spare I	%SS2:		10	5			
%SS1: %SS3:		<u>)2</u> 2		%332:		1 10	3			
%SS3: Comments: b6	9	4		1						

Comments: b6

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.


McCampbell A	Analytical, In	<u>ıc.</u>		Web: www.mccamp	Pass Road, Pittsburg, C bell.com E-mail: main 877-252-9262 Fax: 9	n@mccampbell.com		
P & D Environmental		Project II	D: #029	98; Snow	12/01/09			
		s Öakla			Date Sampled: Date Received:	12/02/09		
55 Santa Clara, Ste.240			<u> </u>	~ 1				
	Client C	Contact:	Steve (Carmack	Date Extracted:	12/04/09		
Oakland, CA 94610	Client P	2.0.:			Date Analyzed	12/04/09		
	Volatile Organi	cs by P&	&T and	GC/MS (Basic Ta	rget List)*			
Extraction Method SW5030B	· · · · · · · · · · · · · · · · · · ·	·		od SW8260B	-g)	Work Order: 0912	064	
Lab ID			lieur meth	0912064	4 002B			
Client ID				0912084 MW				
Matrix				Wa				
Compound	Concentration *	Reporting						Reporting Limit
Acetone	ND	1.0	10	tert-Amyl methyl e	ther (TAME)	ND	1.0	0.5
Benzene	ND	1.0	0.5	Bromobenzene		ND	1.0	0.5
Bromochloromethane	ND	1.0	0.5	Bromodichlorometh	nane	ND	1.0	0.5
Bromoform	ND	1.0	0.5	Bromomethane		ND	1.0	0.5
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TB	A)	ND	1.0	2.0
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene		ND	1.0	0.5
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide		ND	1.0	0.5
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene		ND	1.0	0.5
Chloroethane	ND	1.0	0.5	Chloroform		ND	1.0	0.5
Chloromethane	ND	1.0	0.5	2-Chlorotoluene		ND	1.0	0.5
4-Chlorotoluene	ND	1.0	0.5	Dibromochloromethane		ND	1.0	0.5
1,2-Dibromo-3-chloropropane	ND	1.0	0.2	1,2-Dibromoethane		ND	1.0	0.5
Dibromomethane	ND	1.0	0.5	1,2-Dichlorobenzen	e	ND	1.0	0.5
1,3-Dichlorobenzene	ND	1.0	0.5	1,4-Dichlorobenzen		ND	1.0	0.5
Dichlorodifluoromethane	ND	1.0	0.5	1,1-Dichloroethane		ND	1.0	0.5
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.5	1,1-Dichloroethene		ND	1.0	0.5
cis-1,2-Dichloroethene	ND	1.0	0.5	trans-1,2-Dichloroe		ND	1.0	0.5
1,2-Dichloropropane	ND	1.0	0.5	1,3-Dichloropropan		ND	1.0	0.5
2,2-Dichloropropane	ND	1.0	0.5	1,1-Dichloropropen		ND	1.0	0.5
cis-1,3-Dichloropropene	ND	1.0	0.5	trans-1,3-Dichlorop	propene	ND	1.0	0.5
Diisopropyl ether (DIPE)	ND	1.0	0.5	Ethylbenzene		ND	1.0	0.5
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.5	Freon 113		ND	1.0	10
Hexachlorobutadiene	ND	1.0	0.5	Hexachloroethane		ND	1.0	0.5
2-Hexanone	ND	1.0	0.5	Isopropylbenzene		ND	1.0	0.5
4-Isopropyl toluene	ND	1.0	0.5	Methyl-t-butyl ethe		ND	1.0	0.5
Methylene chloride	ND	1.0	0.5	4-Methyl-2-pentane	JIE (MIDK)	ND ND	1.0	0.5
Naphthalene Styrene	ND ND	<u>1.0</u> 1.0	0.5	n-Propyl benzene 1,1,1,2-Tetrachloro	athana	ND ND	<u>1.0</u> 1.0	0.5
1.1.2.2-Tetrachloroethane	ND	1.0		Tetrachloroethene		ND ND		
Toluene	ND	1.0	0.5	1,2,3-Trichlorobenz	zene	ND ND	1.0	0.5
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroetha		ND	1.0	0.5
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene		ND	1.0	0.5
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloroprop	oane	ND	1.0	0.5
1,2,4-Trimethylbenzene	ND	1.0	0.5	1.3.5-Trimethylben		ND	1.0	0.5
Vinvl Chloride	ND	1.0	0.5	Xvlenes		ND	1.0	0.5
				Recoveries (%)				
%SS1:	10			%SS2:		10	4	
%\$\$31. %\$\$3:	9			/0002.		10		
Comments:								

Comments:

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

McCampbell	Analytical, In ality Counts"	<u>ıc.</u>		Web: www.mccamp	Pass Road, Pittsburg, C bell.com E-mail: main 877-252-9262 Fax: 9	n@mccampbell.com		
P & D Environmental		Project II	D: #029	98; Snow	12/01/09			
		s Oakla		-,	Date Sampled:			
55 Santa Clara, Ste.240					Date Received:			
	Client 0	Contact:	Steve (Carmack	Date Extracted:	12/04/09		
Oakland, CA 94610	Client F	P.O.:			Date Analyzed	12/04/09		
	Volatile Organi	cs by P&	&T and	GC/MS (Basic Ta	rget List)*			
Extraction Method SW5030B	8	•		od SW8260B	0	Work Order: 0912	064	
Lab ID				0912064	4-004B			
Client ID				MW				
Matrix				Wat				
Compound	Concentration *	DF	Reporting Limit	Compour		Concentration *	DF	Reporting Limit
Acetone	ND	1.0	10	tert-Amyl methyl e	ther (TAME)	ND	1.0	0.5
Benzene	ND	1.0	0.5	Bromobenzene		ND	1.0	0.5
Bromochloromethane	ND	1.0	0.5	Bromodichlorometh	ane	ND	1.0	0.5
Bromoform	ND	1.0	0.5	Bromomethane		ND	1.0	0.5
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TB	A)	ND	1.0	2.0
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene		ND	1.0	0.5
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide		ND	1.0	0.5
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene		ND	1.0	0.5
Chloroethane	ND	1.0	0.5	Chloroform		0.97	1.0	0.5
Chloromethane	ND	1.0	0.5	2-Chlorotoluene		ND	1.0	0.5
4-Chlorotoluene	ND	1.0	0.5	Dibromochloromethane		ND	1.0	0.5
1,2-Dibromo-3-chloropropane	ND	1.0	0.2	1,2-Dibromoethane (EDB)		ND	1.0	0.5
Dibromomethane	ND	1.0	0.5	1,2-Dichlorobenzen		ND	1.0	0.5
1,3-Dichlorobenzene	ND	1.0	0.5	1,4-Dichlorobenzen		ND	1.0	0.5
Dichlorodifluoromethane	ND	1.0	0.5	1,1-Dichloroethane		ND	1.0	0.5
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.5	1,1-Dichloroethene		ND	1.0	0.5
cis-1,2-Dichloroethene	5.8	1.0	0.5	trans-1,2-Dichloroe		ND	1.0	0.5
1,2-Dichloropropane	ND	1.0	0.5	1,3-Dichloropropan		ND	1.0	0.5
2,2-Dichloropropane	ND	1.0	0.5	1,1-Dichloropropen		ND	1.0	0.5
cis-1,3-Dichloropropene	ND	1.0	0.5	trans-1,3-Dichlorop	ropene	ND	1.0	0.5
Diisopropyl ether (DIPE)	ND	1.0	0.5	Ethylbenzene		ND	1.0	0.5
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.5	Freon 113		ND	1.0	10
Hexachlorobutadiene	ND	<u>1.0</u> 1.0	0.5	Hexachloroethane		ND ND	1.0	0.5
2-Hexanone	ND	1.0	0.5	Isopropylbenzene		1 1	1.0	0.5
4-Isopropyl toluene Methylene chloride	ND ND	1.0	0.5	Methyl-t-butyl ethe 4-Methyl-2-pentance		ND ND	<u>1.0</u> 1.0	0.5
					Dile (MIDK)	ND		
Naphthalene Styrene	ND ND	<u>1.0</u> 1.0	0.5	n-Propyl benzene 1,1,1,2-Tetrachloro	ethane	ND ND	<u>1.0</u> 1.0	0.5
1.1.2.2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene	cinalle	ND ND		
Toluene	ND ND	1.0	0.5	1,2,3-Trichlorobenz	ene	ND ND	<u>1.0</u> 1.0	0.5
1,2,4-Trichlorobenzene	ND	1.0	0.5	1.1.1-Trichloroetha		ND	1.0	0.5
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene		ND	1.0	0.5
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloroprop	Dane	ND	1.0	0.5
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylben	zene	ND	1.0	0.5
Vinvl Chloride	ND	1.0	0.5	Xvlenes		ND	1.0	0.5
		Sur	rogate F	Recoveries (%)				
%SS1:	10)1		%SS2:		10	8	
%SS3:	10							
Comments:								

Comments:

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

	McCampbell Analyt		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269							
P & D Er	nvironmental	Client Project ID:		Date Sampled: 12/01/	Date Sampled: 12/01/09					
55 Santa I	Clara, Ste.240	Cleaners Oakland		Date Received: 12/02/	09					
55 Sana	Clara, Su.240	Client Contact: S	teve Carmack	Date Extracted: 12/03/	09					
Oakland,	CA 94610	Client P.O.:		Date Analyzed: 12/03/	09					
	Gasoline Range(C6-C12), Stode	-	C9-C12) Volatile Hy alytical methods: SW8021			Solvent [*] Order: 0				
Lab ID	Client ID	Matrix	TPH(g)	TPH(ss)	DF	% SS	Comment			
001A	MW-1	w	ND	ND	1	96				
002A	MW-2	W	34,000	47,000	20	116	d5,b6			
003A	MW-3	W	ND	ND	1	97				
004A	MW-4	W	ND	ND	1	99				
	Reporting Limit for DF =1;	W	50	50		μg/I				
Ν	D means not detected at or above the reporting limit	S	NA	NA		NA				

* water and vapor samples are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts in mg/L.

cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

b6) lighter than water immiscible sheen/product is presentd5) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?)

DHS ELAP Certification 1644

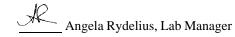
	Campbell Analy "When Ouality Count		Inc.		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269							
P & D Environ	mental			ID: #0	D: #0298; Snow Cleaners Date Sampled:			12/01/	12/01/09			
55 Santa Clara, Ste.240			and				Date Received:	12/02/	09			
55 Santa Clara,	Clier	t Contact	t: Stev	ve Carmack		Date Extracted:	12/02/	09				
Oakland, CA 94	610	t P.O.:				Date Analyzed:	12/02/	09-12/0	3/09			
		To	tal Extrac	ctable P	etroleum Hydrod	carbo	ns*					
Extraction method:	SW3510C		Analytica	al methods	: SW8015B			W	ork Order:	0912064		
Lab ID	b ID Client ID Matrix			Т	PH-Diesel (C10-C23)	Т	PH-Bunker Oil (C10-C36)	DF	% SS	Comments		
0912064-001A	MW-1		W		ND		ND	1	96			
0912064-002A	MW-2		W		74,000	91,000		20	81	e11,e2,e7,b6		
0912064-003A	MW-3		W		63	120		1	97	e2		
0912064-004A MW-4		MW-4			ND	ND		1	96			

Reporting Limit for $DF = 1$;	W	50	100	μg/L
ND means not detected at or above the reporting limit	S	NA	NA	mg/Kg

* water samples are reported in $\mu g/L$, wipe samples in $\mu g/$ wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / STLC / STLC / TCLP extracts are reported in $\mu g/L$.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:


b6) lighter than water immiscible sheen/product is present

e2) diesel range compounds are significant; no recognizable pattern

e7) oil range compounds are significant

e11) stoddard solvent/mineral spirit (?)

DHS ELAP Certification 1644

McCampbell Analytical, Inc. "When Ouality Counts"

QC SUMMARY REPORT FOR SW8260B

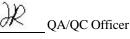
W.O. Sample Matrix: Water			QC Matrix: Water				BatchID: 47398			WorkOrder: 0912064		
EPA Method SW8260B	Extra	Extraction SW5030B Spiked Sample ID: 0912064-004									04B	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND	10	79.1	81.5	2.94	78.7	78.1	0.826	70 - 130	30	70 - 130	30
Benzene	ND	10	96.4	96.1	0.294	93.3	92.8	0.465	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	50	75.7	84.2	10.6	77.9	77.5	0.483	70 - 130	30	70 - 130	30
Chlorobenzene	ND	10	101	99.2	1.58	99.8	101	1.59	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	10	101	104	2.94	99.5	99.5	0	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	10	90.1	92	2.10	88.2	86.8	1.60	70 - 130	30	70 - 130	30
1,1-Dichloroethene	ND	10	114	112	1.29	111	110	1.44	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	10	91.9	95.5	3.81	89.8	89	0.891	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	10	87.2	91.6	4.88	86.3	85.5	0.947	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND	10	89.1	93.6	4.88	88.1	88.6	0.631	70 - 130	30	70 - 130	30
Toluene	ND	10	104	104	0	98.7	99.9	1.19	70 - 130	30	70 - 130	30
Trichloroethene	ND	10	122	121	1.02	120	121	0.317	70 - 130	30	70 - 130	30
%SS1:	101	25	93	95	2.54	96	95	0.683	70 - 130	30	70 - 130	30
%SS2:	108	25	101	100	0.830	105	105	0	70 - 130	30	70 - 130	30
%SS3:	102	2.5	99	99	0	99	98	1.92	70 - 130	30	70 - 130	30

BATCH 47398 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0912064-001B	12/01/09 12:50 PM	12/04/09	12/04/09 12:42 AM	0912064-002B	12/01/09 1:35 PM	12/04/09	12/04/09 1:21 AM
0912064-003B	12/01/09 3:20 PM	12/04/09	12/04/09 2:43 PM	0912064-004B	12/01/09 2:20 PM	12/04/09	12/04/09 2:38 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Bm

QC Matrix: Water W.O. Sample Matrix: Water BatchID: 47396 WorkOrder: 0912064 EPA Method SW8021B/8015Bm Extraction SW5030B Spiked Sample ID: 0912064-004A MSD MS-MSD LCS LCSD LCS-LCSD Spiked MS Sample Acceptance Criteria (%) Analyte % RPD MS / MSD LCS/LCSD RPD µg/L µg/L % Rec. % Rec. % Rec. % Rec. % RPD RPD TPH(btex) 107 2.65 104 103 70 - 130 70 - 130 ND 60 104 1.44 20 20 10 97.2 90.5 MTBE ND 110 12.1 86.4 70 - 130 2.0 70 - 130 20 4.62 Benzene ND 10 102 104 2.49 103 108 4.27 70 - 130 20 70 - 130 20 Toluene ND 10 101 104 2.89 103 107 3.92 70 - 130 2.0 70 - 13020 Ethylbenzene ND 10 99.5 102 2.82 99.9 105 5.21 70 - 130 20 70 - 130 20 Xylenes ND 30 102 105 2.27 102 108 5.86 70 - 130 2.0 70 - 130 20 20 %SS: 99 10 100 104 3.65 105 104 1.31 70 - 130 20 70 - 130 All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 47396 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0912064-001A	12/01/09 12:50 PM	12/03/09	12/03/09 6:19 PM	0912064-002A	12/01/09 1:35 PM	12/03/09	12/03/09 5:49 PM
0912064-003A	12/01/09 3:20 PM	12/03/09	12/03/09 4:50 PM	0912064-004A	12/01/09 2:20 PM	12/03/09	12/03/09 5:19 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8015B

W.O. Sample Matrix: Water QC Matrix: Water							BatchID: 47369			WorkOrder 0912064			
EPA Method SW8015B	Extra	traction SW3510C					Spiked Sample ID: N/A						
Analyte	Sample	Sample Spiked MS MSD			MS-MSD	LCS	LCSD LCS-LCSD		Acceptance Criteria (%)				
Analyte	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
TPH-Diesel (C10-C23)	N/A	1000	N/A	N/A	N/A	101	101	0	N/A	N/A	70 - 130	30	
%SS:	N/A	2500	N/A	N/A	N/A	95	95	0	N/A	N/A	70 - 130	30	
All target compounds in the Metho NONE	d Blank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following	exceptions:				

BATCH 47369 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0912064-001A	12/01/09 12:50 PM	1 12/02/09	12/02/09 9:18 PM	0912064-002A	12/01/09 1:35 PM	I 12/02/09	12/03/09 3:45 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification 1644

QA/QC Officer

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8015B

W.O. Sample Matrix: Water QC Matrix: Water							BatchID: 47397			WorkOrder 0912064		
EPA Method SW8015B		Spiked Sample ID:					: N/A					
Analyte	Sample					LCS	LCSD LCS-LCSD		Acceptance Criteria (%)			
	µg/L					% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH-Diesel (C10-C23)	N/A	1000	N/A	N/A	N/A	111	111	0	N/A	N/A	70 - 130	30
%SS:	N/A	2500	N/A	N/A	N/A	101	100	0.900	N/A	N/A	70 - 130	30
All target compounds in the Metho NONE										1,111	70 150	50

BATCH 47397 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0912064-003A	12/01/09 3:20 PM	1 12/02/09	12/03/09 3:45 PM	0912064-004A	12/01/09 2:20 PM	12/02/09	12/03/09 12:39 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification 1644

A QA/QC Officer