Atlantic Richfield Company
 (a BP affiliated company)

P.O. Box 1257

San Ramon, CA 94583
Phone: (925) 275-3801
Fax: (925) 275-3815

29 December 2006

Re: Corrective Action Plan
Former BP Station \# 11117
7210 Bancroft Avenue
Oakland, California
ACEH Case \# RO0000356
"I declare, that to the best of my knowledge at the present time, that the information and/or recommendations contained in the attached document are true and correct."

Submitted by:

Paul Supple
Environmental Business Manger

Mr. Paul Supple
Environmental Business Manager
Atlantic Richfield Company (a BP affiliated company)
PO Box 1257
San Ramon, California 94583
Submitted via ENFOS

RE: CORRECTIVE ACTION PLAN, FORMER BP SERVICE STATION No. 11117 7210 BANCROFT AVENUE, OAKLAND, CALIFORNIA ACEHS CASE No. RO0000356

Dear Mr. Supple,
Broadbent \& Associates, Inc. is pleased to present the enclosed Corrective Action Plan for the above-referenced facility. This Corrective Action Plan was prepared in response to a letter request from the Alameda County Environmental Health Services (ACEHS) dated 2 June 2006. In accordance with that request, this Corrective Action Plan includes discussion of the site background, previous investigations, regional and site geology and hydrogeology, preferential pathways, sensitive receptors, risk assessment and cleanup objectives, remediation options, and recommended approach.

Should you have any questions concerning this Corrective Action Plan, please do not hesitate to contact us at (530) 566-1400.

Sincerely,
BROADBENT \& ASSOCIATES, INC.

Thomas A. Venus, P.E.
Senior Engineer

Robert H. Miller, P.G.
Principal Hydrogeologist

Enclosure

cc: Mr. Steven Plunkett, ACEHS (Submitted via ACEHS ftp site) Ms. Liz Sewell, ConocoPhillips (Submitted via COC ftp site)
Mr. Jim Givens, One Eastmont Town Center, Oakland, California 94605-1907
Ms. Diane Clark, Eastmont Town Center CX LLC, 7200 Bancroft Avenue, Oakland, California 94605-2403

Prepared for

Mr. Paul Supple
Environmental Business Manager
Atlantic Richfield Company
P.O. Box 1257

San Ramon, California 94583

Prepared by

CORRECTIVE ACTION PLAN

Former BP Service Station No. 11117
7210 Bancroft Avenue, Oakland, California ACEH Case No. RO0000356

BROADBENT \& ASSOCIATES, INC. ENGINEERING, WATER RESOURCES \& ENVIRONMENTAL.

1324 Mangrove Avenue, Suite 212
Chico, California 95926
(530) 566-1400
www.broadbentinc.com

December 2006

Project No. 06-08-649

Table of Contents

List of Tables ii
List of Figures ii
List of Appendices ii
Section 1: Introduction 1
Section 2: Site Background 1
2.1 Site Description 1
2.2 Previous Environmental Activities 1
Section 3: Site Conditions 5
3.1 Regional Geology and Hydrogeology 5
3.2 Site Geology and Hydrogeology 5
3.3 Distribution of Hydrocarbons in Soil 6
3.4 Distribution of Hydrocarbons in Ground Water 6
3.5 Hydrocarbon Trends in Ground Water 7
Section 4: Preferential Pathway Analysis 7
Section 5: Sensitive Receptors. 8
Section 6: Risk Assessment. 8
Section 7: Remedial Actions Taken 9
Section 8: \quad Screening of Remediation Technologies 9
8.1 No Action and Monitored Natural Attenuation 10
8.2 Excavation, Soil Vapor Extraction, and Bioventing 10
8.3 Bioremediation 10
8.4 Ground Water Extraction and Treatment 10
8.5 Biosparging 11
8.6 In-Situ Oxidation 11
8.7 Dual-Phase Extraction and Treatment. 12
Section 9: Alternatives Evaluation 12
Section 10: Recommended Approach 13
Section 11: Closure 13
Section 12: References 14

List of Tables

1 Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses
 2 Summary of Fuel Additives Analytical Data
 3 Historical Ground-Water Flow Direction and Gradient (with Rose Diagram)

List of Figures

1 Site Location Map

2 Ground Water Elevation Contours and Analytical Summary Map
3 Historic Depth to Water Measurements
4 Gasoline Range Organics Iso-Concentration Contours Map
5 Benzene Iso-Concentration Contours Map
6 MTBE Iso-Concentration Contours Map
7 Historic Hydrocarbon Concentrations in MW-2
8 Historic Hydrocarbon Concentrations in MW-4

List of Appendices

A Soil Boring/Monitoring Well Construction Logs
B Historic Soil and Ground-Water Analytical Data and Sample Locations
C Geologic Cross-Sections
D Underground Utilities Map

1.0 INTRODUCTION

On behalf of the Atlantic Richfield Company, RM - a BP affiliated company, Broadbent \& Associates, Inc. (BAI) has prepared this Corrective Action Plan (CAP) for the Former BP Service Station No.11117, located at 7210 Bancroft Avenue, Oakland, California (Site). This CAP was prepared in response to a letter request from the Alameda County Health Care Services Environmental Health Program (ACEH) dated 2 June 2006. Specifically, ACEH technical comments within the 2 June 2006 letter stated that the purpose of the CAP will be to propose cost-effective final cleanup objectives for the entire contaminant plume and remedial alternatives for soil and ground water that will adequately protect human health and safety, the environment, eliminate nuisance conditions, and protect water resources. Furthermore, the objectives of the CAP will be to detail at least three technically and economically feasible methods to restore and protect beneficial uses of water and to meet the cleanup objectives for each contaminant established in the CAP. In accordance with the letter request of 2 June 2006 and California Code of Regulations Title 23 Section 2725, this CAP includes discussions on the site background and previous investigations, regional and Site geology and hydrogeology, preferential pathways, sensitive receptors, risk assessment and cleanup objectives, remediation options, and recommended approach. Tables, figures, and appendices referenced within the CAP are provided following the conclusion of the document's text.

2.0 SITE BACKGROUND

2.1 Site Description

The Site is an active 76-brand gasoline retail outlet located on the northeastern corner of Bancroft Avenue and $73^{\text {rd }}$ Avenue in Oakland, California (Figure 1). The land use in the immediate vicinity of the Site is mixed commercial and residential. BP acquired the facility from Mobil Oil Corporation in 1989. In January 1994, BP transferred the property to TOSCO Marketing Company and has not operated the facility since that time.

The Site consists of a service station building and three 12,000-gallon gasoline underground storage tanks (USTs) and one 10,000 -gallon diesel UST with associated piping and dispensers. The Site is covered with asphalt or concrete surfacing except for planters along the southeastern and southwestern property boundaries and at the north corner of the property.

2.2 Previous Environmental Activities

A summary of environmental work previously performed at the Site is presented below.
1984 UST Replacement: In 1984, the pre-existing USTs at the Site were removed and three gasoline USTs (6,000 -gallon, 10,000 -gallon, and 12,000-gallon) and one 6,000 -gallon diesel UST were installed immediately to the east. The newly installed USTs were single-walled fiberglass USTs. An associated UST removal report is not on file. It is unknown whether a UST removal report was in fact prepared. No documentation was reportedly found referencing the conditions of the removed USTs or reporting evidence of hydrocarbon impacts in the soil and ground water, if any, at the time of the UST removal.

1989 Phase II Environmental Audit: In December 1989, a Phase II environmental audit was conducted on the adjacent Eastmont Town Center site located to the north and northwest of the former BP Site. Part of the respective Phase II study relevant to the former BP Site included the installation of monitoring well MW-3 near the western boundary of the former BP Site. The analytical results of soil samples collected from 10 and 20 feet below ground surface (bgs) from MW-3 reported total petroleum hydrocarbons (TPH), benzene, toluene, ethyl benzene, and total xylenes (BTEX), and oil and grease concentrations below their respective
laboratory reporting limits. The analytical results of ground-water samples from MW-3 reported TPH and benzene concentrations of 2,700 micrograms per liter ($\mu \mathrm{g} / \mathrm{L}$) and $530 \mu \mathrm{~g} / \mathrm{L}$, respectively.

1991 Phase I Subsurface Investigation: In December 1991, two soil borings (MW-1 and MW-2) were drilled on-site to total depths of 40 feet bgs, soil samples were collected at 10 foot intervals between 5 and 25 feet bgs and the respective borings were subsequently converted into monitoring wells MW-1 and MW-2. First ground water was encountered at approximately 30 feet bgs. The analytical results of the soil samples from MW-1 and MW-2 reported total petroleum hydrocarbons as gasoline (TPH-g) and BTEX at concentrations below their respective laboratory reporting limits.

Borings MW-4 and MW-6 were advanced to total depths of 40 feet bgs, and boring B-5 was advanced to 50 feet bgs. First ground water was encountered at approximately 30 feet bgs in borings MW-4 and MW-6, and no free water was encountered in boring B-5. The analytical results of soil samples collected at 30 feet bgs from B-5 and MW-6 reported TPH-g and BTEX at concentrations below their respective laboratory reporting limits. The maximum TPH-g and BTEX concentrations in soil reported in MW-4 were 6,000 milligrams per kilograms ($\mathrm{mg} / \mathrm{kg}$) and $34 \mathrm{mg} / \mathrm{kg}$, respectively, from 20 feet bgs. Borings MW-4 and MW-6 were subsequently converted into monitoring wells.

1994 Baseline Assessment Report: In September 1994, a supplemental Site assessment was conducted at the Site. Four exploratory soil borings (THP-1, TB-2, TB-3, TB-4) were advanced to a maximum depth of 45 feet bgs, north of the former and existing UST complexes (THP-1), at the former service bays (TB-2), north of the northern pump island (TB-3), and at a former pump island (TB-4). Additionally, one soil sample was collected from beneath each of the five dispensers (TD-1 through TD-5). Ground water was encountered in TB-2 and TB-3 at approximately 33 to 36 feet bgs and ground-water samples were collected from TB-2 and TB-3 via temporary well points. Maximum concentrations of $16 \mathrm{mg} / \mathrm{kg}$ TPH-g (TD-3), TPH as diesel (TPHd) at concentrations ranging from $110 \mathrm{mg} / \mathrm{kg}$ to $5,800 \mathrm{mg} / \mathrm{kg}$ (TD-1 through TD-5), and benzene at concentrations below laboratory reporting limits were reported in soil samples. No TPH-g was detected at concentrations above the laboratory reporting limits and a maximum concentration of $0.7 \mu \mathrm{~g} / \mathrm{L}$ benzene (TB3) was reported in ground-water samples. Boring MW-7 was advanced to a total depth of 45 feet bgs, and borings MW-8 and MW-9 were advanced to total depths of 40 feet bgs. First encountered ground water was at approximately 27 feet bgs to 32 feet bgs. No TPH-g or BTEX were detected above their respective laboratory reporting limits in soil samples collected from 25 feet bgs in each boring. The three borings were subsequently converted into monitoring wells MW-7 through MW-9.

1997 Offsite Well Installation: In July 1997, one boring (MW-10) was drilled off-site to a depth of approximately 37.5 feet bgs. Soil samples were collected and the boring was subsequently converted into a monitoring well. First ground water was encountered at approximately 26 feet bgs. No TPH-g, BTEX or methyl tertiary butyl ether (MTBE) was detected in soil samples at concentrations above their respective laboratory reporting limits in MW-10. No TPH-g or BTEX was detected in the ground-water sample from MW-10 at concentrations above their respective laboratory reporting limits. However, MTBE was detected at a concentration of $13 \mu \mathrm{~g} / \mathrm{L}$ using EPA Method 8020.

1998 UST and Associated Piping and Dispenser Removal: In August 1998, the three gasoline USTs (6,000gallon, 10,000 -gallon, and 12,000 -gallon) and one 6,000 -gallon diesel UST, and associated dispensers and piping were removed from the Site. There was no visible evidence of leakage from the USTs removed. A total of eight native soil samples were collected from beneath each end of the removed USTs at depths of 14 to 16 feet bgs, and a total of 18 soil samples were collected from the former dispenser locations and from beneath the associated product lines at three feet bgs. TPH-g was detected in five of the eight UST excavation samples at concentrations ranging from $3.7 \mathrm{mg} / \mathrm{kg}$ (S-15-T2S) to $5,300 \mathrm{mg} / \mathrm{kg}$ (S-15-T1S). TPH-d was detected at $630 \mathrm{mg} / \mathrm{kg}$ (S-15-T1N) and $800 \mathrm{mg} / \mathrm{kg}$ (S-15-T1S) in two samples, benzene concentrations ranged between $0.40 \mathrm{mg} / \mathrm{kg}$ ($\mathrm{S}-15-\mathrm{T} 1 \mathrm{~N}$) to $0.95 \mathrm{mg} / \mathrm{kg}$ ($\mathrm{S}-16-\mathrm{T} 3 \mathrm{~N}$) in three samples, MTBE concentrations
ranged between $0.028 \mathrm{mg} / \mathrm{kg}$ ($\mathrm{S}-14-\mathrm{T} 4 \mathrm{~S}$) to $5.3 \mathrm{mg} / \mathrm{kg}$ ($\mathrm{S}-16-\mathrm{T} 3 \mathrm{~N}$) in seven samples, and lead was not detected in the sample analyzed for lead. TPH-g was detected in nine of the eighteen dispenser and product line samples with concentrations ranging between $1.4 \mathrm{mg} / \mathrm{kg}$ (S-3-PL12) to $7,200 \mathrm{mg} / \mathrm{kg}$ (S-3-D4). TPH-d was detected between $4.8 \mathrm{mg} / \mathrm{kg}$ (S-3-PL3) to $190 \mathrm{mg} / \mathrm{kg}$ (S-3-PL11) in five samples, benzene was detected between $0.0089 \mathrm{mg} / \mathrm{kg}$ (S-3-PL-12) to $22 \mathrm{mg} / \mathrm{kg}$ (S-3-D4) in three samples, and MTBE was detected between $0.048 \mathrm{mg} / \mathrm{kg}$ (S-3-PL12) to $15 \mathrm{mg} / \mathrm{kg}$ (S-3-PL1) in ten samples. During the 1998 UST replacement activities, approximately 389 tons of soil and backfill were transported off-site for disposal. The existing 10,000-gallon diesel and three 12,000 -gallon gasoline USTs were installed as replacements.

1999 Ground-Water Recovery Test: In April 1999, a ground-water recovery test was performed on wells

 MW-1 through MW-4, MW-6, MW-7 and MW-10 to assess the spatial variation in hydraulic conductivity in the shallow water-bearing zone across the Site. The hydraulic conductivity values estimated from the recovery testing are presented in Alisto Engineering Group's Results of Recovery Testing dated 4 June 1999. Testing by the Bouwer-Rice method yielded hydraulic conductivities of $2.46 \times 10^{-2} \mathrm{ft} / \mathrm{min}$ for MW-1, 2.42 x $10^{-4} \mathrm{ft} / \mathrm{min}$ for MW-2, $3.82 \times 10^{-4} \mathrm{ft} / \mathrm{min}$ for MW-3, $5.75 \times 10^{-4} \mathrm{ft} / \mathrm{min}$ for $\mathrm{MW}-4,1.99 \times 10^{-2} \mathrm{ft} / \mathrm{min}$ for MW-6, $1.09 \times 10^{-4} \mathrm{ft} / \mathrm{min}$ for MW-7, and $8.78 \times 10^{-5} \mathrm{ft} / \mathrm{min}$ for MW-10. The geometric mean of the hydraulic conductivity and flow velocity values were calculated to be 1.37×10^{-5} feet per second and 73.85 feet per year, respectively.1999 Extraction Well Installation: In November 1999, two 4-inch diameter wells (EX-1 and EX-2) were installed on-site to facilitate potential remedial activities at the Site. Well EX-1 was drilled to 39.5 feet bgs and EX-2 was drilled to 36.5 feet bgs. Ground water was first encountered at 26 feet bgs. No TPH-G or BTEX, and relatively low MTBE concentrations were reported in soil samples collected from EX-1 and EX-2.

2000 Interim Remedial Action and Recovery Testing: Between March 16 and April 30, 2000, interim remedial activities were conducted at the Site to evaluate the effectiveness of hydrocarbon and MTBE reduction using short-term ground-water extraction. During eight extraction events, approximately 10,900 gallons of ground water was extracted from wells EX-1, EX-2 and MW-2. During the extraction events, stable to slightly decreasing hydrocarbon and MTBE concentration trends were exhibited in samples collected from wells MW-2 and EX-1, located immediately southwest of the existing USTs. Samples from well EX-2, located north of the existing USTs, exhibited lower hydrocarbon and MTBE concentrations than MW-2 and EX-1. In April 2000, during the batch extraction events, recovery tests were conducted on wells EX-1, EX-2 and MW-2. Based on the recovery test measurements, the calculated hydraulic conductivity values ranged from $1.85 \times 10^{-4} \mathrm{ft} / \mathrm{min}$ to $8.33 \times 10^{-4} \mathrm{ft} / \mathrm{min}$ with resulting flow velocities of $16 \mathrm{ft} /$ year to $73 \mathrm{ft} /$ year at well MW-2. The calculated hydraulic conductivity values ranged from $2.02 \times 10^{-5} \mathrm{ft} / \mathrm{min}$ to $3.85 \times 10^{-5} \mathrm{ft} / \mathrm{min}$ for well EX-1 with resulting flow velocities of 1.8 to $3.4 \mathrm{ft} / \mathrm{yr}$. And a well EX-2, the calculated hydraulic conductivity values ranged from $3.04 \times 10^{-4} \mathrm{ft} / \mathrm{min}$ to $2.13 \times 10^{-3} \mathrm{ft} / \mathrm{min}$ for resulting flow velocities of 27 $\mathrm{ft} /$ year to $187 \mathrm{ft} /$ year. The geometric mean of these values is a hydraulic conductivity of $3.0 \times 10^{-4} \mathrm{ft} / \mathrm{min}$ and resulting flow velocity of 26 ft /year.

2000 Potential Receptor Survey, Expanded Site Plan and Well Search: In October 2000, Alisto Engineering Group completed a potential receptor survey, prepared an expanded site plan with neighboring property parcel information and underground utilities mapped, and identified wells in the vicinity of the Site. A review of the files of the California Department of Water Resources (DWR) was performed to identify all known wells within a one-half mile radius of the Site. The results of the well search revealed that there were 17 wells other than the onsite monitoring wells. Of these, 11 were offsite monitoring wells, four were cathodic protection wells, one an industrial well, and one an irrigation well for a nearby cemetery. No domestic/municipal water supply wells were identified from review of the DWR files. Copies of the completion logs from the DWR files for these wells are contained within the 19 October 2000 Alisto report.

2001 Dual-Phase Extraction Pilot Test: During October 29, through November 2, 2001, a dual-phase soil vapor and ground-water extraction (DPE) pilot test was performed on the monitoring wells with the highest historical hydrocarbon concentrations (i.e., MW-2 and MW-4) and the extraction wells (EX-1 and EX-2) at the Site. The DPE test results indicated that the vacuum influence was limited to within 18 to 28 feet of the extraction well. Water levels typically decreased several feet in the extraction wells and had a varied response in the observation wells. Estimated vapor-phase removal rates were approximately 200 -pounds of hydrocarbon per day in wells MW-4 and EX-1, and less than 5 -pounds of hydrocarbon per day in wells MW2 and EX-2. Soil vapor concentrations showed a decreasing trend in wells MW-4 and EX-1 during the shortterm pilot tests. Grab water samples collected before and after the pilot tests remained the same order of magnitude. A total of 6,500 gallons of water was extracted during the DPE pilot test and appropriately disposed off-Site. Overall, the test results indicated that DPE is a feasible remedial alternative for the Site and ACEH approved Cambria's August 8, 2002, Dual Phase Extraction Pilot Test Report as a Corrective Action Plan (CAP).

2005 Soil and Water Investigation: In Fall 2005, URS completed nine Geoprobe soil borings with colocated Hydropunch borings. The first phase of the work was onsite source area characterization: five boring locations (A-1 through A-5) were advanced in the vicinity of the possible hydrocarbon source areas such as locations of the former and current USTs, product dispensers, and in the vicinity of MW-4 to adequately characterize the lateral and vertical extent of petroleum hydrocarbons in soils in the identified source areas. An offsite assessment was completed during the second phase of work (borings A-7 through A-10) to further define the downgradient, cross-gradient, and upgradient extent of the groundwater plume. (Soil boring A-6 was unable to be advanced due to close proximity to electric lines and product piping. Maximum concentrations of gasoline range organics (GRO), benzene, and methyl tert-butyl ether (MTBE) were detected in soil at concentrations of $490 \mathrm{mg} / \mathrm{kg}$ [A-4 (23.5-24')], $28 \mathrm{mg} / \mathrm{kg}$ [A-5 (35-35.5')], and $0.84 \mathrm{mg} / \mathrm{kg}$ [A-1 (46$\left.46.5^{\prime}\right)$], respectively. Maximum concentrations of GRO, benzene, and MTBE were detected in ground water at concentrations of $510,000 \mu \mathrm{~g} / \mathrm{L}\left[\mathrm{A}-2\left(21.3^{\prime}\right)\right], 11,000 \mu \mathrm{~g} / \mathrm{L}\left[\mathrm{A}-4\left(34-36^{\prime}\right)\right]$, and $39,000 \mu \mathrm{~g} / \mathrm{L}\left[\mathrm{A}-4\left(34-36^{\prime}\right)\right]$, respectively.

The cross-gradient and downgradient lateral extents of the dissolved hydrocarbon plume were characterized during this last investigation. However, the vertical extent of dissolved phase hydrocarbons on the southern portion of the Site was not defined. Specifically, significantly elevated concentrations were detected in ground-water Hydropunch samples collected from the bottom depths of soil borings A-2, A-3, and A-4. The bottom Hydropunch sample from boring A-2 (40-42 ft bgs) contained concentrations of GRO, benzene, and MTBE at $36,000 \mu \mathrm{~g} / \mathrm{L}, 1,800 \mu \mathrm{~g} / \mathrm{L}$, and $110 \mu \mathrm{~g} / \mathrm{L}$, respectively. The bottom Hydropunch sample from boring A-3 (34-36 ft bgs) contained concentrations of GRO, benzene, and MTBE at $12,000 \mu \mathrm{~g} / \mathrm{L}, 21 \mu \mathrm{~g} / \mathrm{L}$, and 8.3 $\mu \mathrm{g} / \mathrm{L}$, respectively. The bottom Hydropunch sample from boring A-4 (34-36 ft bgs) contained GRO, benzene, and MTBE concentrations of $120,000 \mu \mathrm{~g} / \mathrm{L}, 11,000 \mu \mathrm{~g} / \mathrm{L}$, and $39,000 \mu \mathrm{~g} / \mathrm{L}$, respectively. Therefore, the vertical extent of dissolved phase petroleum hydrocarbon contamination remains unknown in this southern area of the Site. A work plan for soil and water investigation to delineate the vertical extent of contamination in the southern portion of the Site was submitted to ACEH in October 2006.

To date, a total of eleven wells have been installed at the Site: wells MW-1 through MW-4, MW-6 through MW-10, EX-1 and EX-2. Monitoring well locations are shown on Figure 2. Wells MW-1 and MW-2 are screened from approximately 20 feet bgs to 40 feet bgs; well MW-3 is screened from 30 to 45 feet bgs; wells MW-4 and MW-6 are screened from approximately 20 to 40 feet bgs; well MW-7 is screened from approximately 25 to 45 feet bgs; wells MW-8 and MW-9 are screened from approximately 25 to 40 feet bgs; and well MW-10 is screened from approximately 15 to 35 feet bgs. Wells EX-1 and EX-2 are screened from approximately 18 feet bgs to 38 feet bgs and 15 feet bgs to 35 feet bgs, respectively. Existing soil boring and well construction logs are provided in Appendix A.

A quarterly ground-water monitoring program was initiated at the Site in January 1992 and is ongoing. Currently this schedule stipulates quarterly monitoring of all wells and quarterly collection of samples from wells MW-2, MW-4, MW-7, MW-10, EX-1, and EX-2; semi-annual collection of samples from MW-9 (first and third quarters); and annual collection of samples from MW-1, MW-3, MW-6, and MW-8 (first quarter). The laboratory analytical data of the ground-water monitoring program are included as Table 1 and Table 2. Historical ground-water flow directions at the Site are presented in Table 3. Historic soil and water concentrations and sampling locations are shown in Appendix B.

3.0 SITE CONDITIONS

3.1 Regional Geology and Hydrogeology

According to the East Bay Plain Groundwater Basin Beneficial Use Evaluation Report (California Regional Water Quality Control Board - San Francisco Bay Region/SFRWQCB, June 1999), the Site is located within the Oakland Sub-Area of the East Bay Plain of the San Francisco Basin. The Oakland Sub-Area contains a sequence of alluvial fans. The alluvial fill thickness ranges from 300 to 700 feet deep. There are no welldefined aquitards such as estuarine mud. The largest and deepest wells in this sub-area historically pumped one to two million gallons per day at depths greater than 200 feet. Overall, sustainable yields are low due in part to low recharge potential. The Merrit sand in West Oakland was an important part of the early water supply for the City of Oakland. However, it is shallow (less than 60 feet), and before the turn of the century, septic systems contaminated the water supply wells.

Throughout most of the Alameda County portion of the East Bay Plain, from Hayward north to Albany, water level contours show that the general direction of ground water flow is from east to west or from the Hayward Fault to the San Francisco Bay. Ground-water flow direction generally correlates to topography. Flow direction and velocity are also influenced by buried stream channels that typically are oriented in an east-west direction. In the southern end of the study area however, near the San Lorenzo Sub-Area, the direction of flow may not be this simple. According to information presented in East Bay Plain Groundwater Basin Beneficial Use Evaluation Report, the small set of water level measurements available seemed to show that the ground water in the upper aquifers may be flowing south, with the deeper aquifers, the Alameda Formation, moving north. The nearest natural drainage is Arroyo Viejo, located approximately 1,300 feet south-southeast of the Site. The Arroyo Viejo channel flows generally east to west, but flows northnorthwestward before turning southwest again south of the Site.

3.2 Site Geology and Hydrogeology

The Site elevation is approximately 50 feet above mean sea level. The water table fluctuates seasonally and has risen about 10 feet since 1992. Figure 3 presents historic depth to water measurements for wells MW-2, MW-4, EX-1, and EX-2 at the Site. The static depth to water in monitoring wells at the Site has ranged between an historic minimum of 9.49 ft bgs (MW-3 on $5 / 22 / 2000$) and maximum of 34.07 feet bgs (MW-2 on $12 / 27 / 1993$). However, it is possible that the minimum measurement was an anomaly, as the next minimum depth to water measurement was 12.04 ft bgs (MW-8 on $1 / 18 / 2005$). Historically, depth-to-water measurements have more typically ranged around 15 to 20 feet bgs (Table 1). Ground-water flow direction during the third quarter monitoring event on 29 August 2006 was to the northeast at a gradient of $0.006 \mathrm{ft} / \mathrm{ft}$ (Figure 2). Based on historical quarterly ground-water monitoring data, potentiometric contours would indicate that local ground-water generally flows towards the north-northeast. Although this flow direction seems contrary to the surface topography and assumed flow direction towards the west-southwest, they are similar to the recent ground-water flow directions reported at the nearby Chevron Station across the street at 7225 Bancroft Avenue. Historic ground-water flow directions and gradients for the Site are summarized in Table 3, along with a rose diagram graphically illustrating this trend in flow directions.

The Site is typically underlain by clays with 1 to 4 foot thick intervals of sands and gravels to a total explored depth of approximately 45 feet bgs. Boring logs for wells MW-1, MW-2, MW-6 and MW-7 indicate less than 5 feet of sand and/or gravel encountered, while those for wells MW-3, MW-4, MW-8, MW-9, MW-10, EX-1 and EX-2 indicate more than 10 feet of sand and/or gravel encountered. The lithology observed in the most recent soil borings A-1 through A-5 and A-7 through A-10 was predominately a clay gravel layer in the first foot. Silty clays and clayey silts were then encountered to a depth of approximately 14 to 20 ft bgs. Clayey sands and sandy and clayey gravels were then encountered to a depth of approximately 25 to 30 ft bgs. Gravels and sands were then encountered to a depth of approximately $45 \mathrm{ft} \mathrm{bgs}$. Silty clay was encountered below 45 ft bgs, specifically in boring A-1, where the total depth explored was 46 ft bgs. Off-site borings to the east were similar with the exception that clayey silt was encountered at a depth of approximately 35 ft bgs. Off-site boring A-10 varied greatly from all other borings. An angular gravel fill was encountered beneath a mulch layer to three feet bgs. Predominately silt or silty sand underlies the fill to approximately 35 feet bgs. Silty gravel was encountered from 35 to the total depth sampled of 39 feet bgs. Ground water was first encountered during drilling at depths ranging from 19 feet to 25 feet bgs. Soil boring logs are included within Appendix A. Geologic cross-sections of the Site are provided in Appendix C.

3.3 Distribution of Hydrocarbons in Soil

Previous soil borings and excavation samples found detectable concentrations of hydrocarbons above the ground-water table principally around the southern dispensers and southern end of the current UST pit. During the 1991 subsurface investigation, significant concentrations of TPH-G in soil above the ground-water tables were detected during the drilling of well MW-4 in the southeastern portion of the Site. In the boring of MW-4, TPH-G was reported at $240 \mathrm{mg} / \mathrm{kg}$ at $15 \mathrm{ft} \mathrm{bgs}, 6,000 \mathrm{mg} / \mathrm{kg}$ at 20 ft bgs, and $1,100 \mathrm{mg} / \mathrm{kg}$ at 25 ft bgs. Interestingly, petroleum hydrocarbons were not detected in soil samples from drilling of well MW-2 between the southern dispenser island and the former and existing UST pits.

During the 1998 environmental activities to remove and replace the USTs and associated piping and dispensers, soil sampling beneath the eastern product dispenser of the island south and closest to the station building detected contamination as TPH-G up to $7,200 \mathrm{mg} / \mathrm{kg}$. Soil sampling also detected contamination as TPH-G up to $5,300 \mathrm{mg} / \mathrm{kg}$ at 15 ft bgs in the southwest corner of the UST pit, $480 \mathrm{mg} / \mathrm{kg}$ at 15 ft bgs in the southeast corner of the UST pit, and $810 \mathrm{mg} / \mathrm{kg}$ at 16 ft bgs from near the middle of the eastern side of the UST pit. Approximately 389 tons of soil and backfill from the UST cavity and product line trenches was excavated during replacement of the UST system in 1998. No detectable concentrations of TPH-G or BTEX in soil were found during drilling of extraction wells EX-1 and EX-2 in 1999, on either north or south sides of the present UST pit. During the 2005 soil and water investigation at the Site, low to significant concentrations of petroleum hydrocarbons were detected in soil samples during drilling of borings A-2, A-3, A-4, and A-5. TPH-G was detected at $120 \mathrm{mg} / \mathrm{kg}$ in boring A-2 at $30-30.5 \mathrm{ft} \mathrm{bgs}, 220 \mathrm{mg} / \mathrm{kg}$ in boring A-3 at $26-26.5 \mathrm{ft}$ bgs, and $490 \mathrm{mg} / \mathrm{kg}$ in boring A-4 at $23.5-24 \mathrm{ft}$ bgs. The available information seems to indicate that the majority of soil contamination is located under the vicinity of the southern dispenser islands.

3.4 Distribution of Hydrocarbons in Ground Water

The highest hydrocarbon concentrations in ground water have been found in the area below the southern dispenser island in wells MW-2, MW-4, and EX-1. As Separate Phase Hydrocarbons (SPH) were historically detected in well MW-2 between 1993 and 1998, samples were not routinely analyzed. When samples were analyzed, concentrations of TPH-G/GRO in well MW-2 ranged from $3,700 \mu \mathrm{~g} / \mathrm{L}$ to $560,000 \mu \mathrm{~g} / \mathrm{L}$. Similarly, concentrations of Benzene and MTBE have ranged between $190 \mu \mathrm{~g} / \mathrm{L}$ to $32,000 \mu \mathrm{~g} / \mathrm{L}$ and $826 \mu \mathrm{~g} / \mathrm{L}$ to 95,000 $\mu \mathrm{g} / \mathrm{L}$, respectively, from well MW-2. Similarly, measurable SPH was reported in well MW-4 in September 2001. Otherwise, concentrations of TPH-G/GRO in well MW-4 have ranged from $2,700 \mu \mathrm{~g} / \mathrm{L}$ to $7,400,000$ $\mu \mathrm{g} / \mathrm{L}$, while concentrations of Benzene and MTBE have ranged between $23 \mu \mathrm{~g} / \mathrm{L}$ to $60,000 \mu \mathrm{~g} / \mathrm{L}$ and 120
$\mu \mathrm{g} / \mathrm{L}$ to $92,000 \mu \mathrm{~g} / \mathrm{L}$, respectively, from well MW-4. Concentrations of TPH-G/GRO in well EX-1 have ranged from $3,500 \mu \mathrm{~g} / \mathrm{L}$ to $22,000 \mu \mathrm{~g} / \mathrm{L}$, while concentrations of Benzene and MTBE have ranged from <25 $\mu \mathrm{g} / \mathrm{L}$ to $3,200 \mu \mathrm{~g} / \mathrm{L}$ and $1,100 \mu \mathrm{~g} / \mathrm{L} 3,000 \mu \mathrm{~g} / \mathrm{L}$, respectively.

High concentrations of petroleum hydrocarbons were also discovered in ground-water samples collected in 2005 from Hydropunch borings. Again, the highest concentrations appeared to be located under the southern end of the Site, southwest to southeast of the southern dispenser island at the Site. Boring A-2 southwest of the southern pump island detected concentrations of GRO at $510,000 \mu \mathrm{~g} / \mathrm{L}$, Benzene at $1,800 \mu \mathrm{~g} / \mathrm{L}$, and MTBE at $110 \mu \mathrm{~g} / \mathrm{L}$. Boring A-3 in the southern corner of the Site south of the southern pump island detected concentrations of GRO at $25,000 \mu \mathrm{~g} / \mathrm{L}$, Benzene at $21 \mu \mathrm{~g} / \mathrm{L}$, and MTBE at $8.3 \mu \mathrm{~g} / \mathrm{L}$. Boring A-4 southeast of the southern pump island and adjacent to well MW-4 detected concentrations of GRO at $150,000 \mu \mathrm{~g} / \mathrm{L}$, Benzene at $11,000 \mu \mathrm{~g} / \mathrm{L}$, and MTBE at $39,000 \mu \mathrm{~g} / \mathrm{L}$. Based on a review of the data from the 2005 investigation, URS concluded that the lateral extent of dissolved phase hydrocarbons in soil and ground water had been completed. The horizontal extents of GRO, Benzene, and MTBE in ground water are exhibited in iso-concentration contour maps, provided as Figure 3, Figure 4, and Figure 5, respectively.

3.5 Hydrocarbon Trends in Ground Water

Trends in depth to the potentiometric ground-water table and hydrocarbon concentrations in ground water were created from the historic data in Table 1. Figure 7 presents a chart of historic TPH-G/GRO, Benzene, and MTBE concentrations in samples from well MW-2. Figure 8 presents a chart of historic TPH-G/GRO, Benzene, and MTBE concentrations in samples from well MW-4. As can be seen in Figure 7 and Figure 8, concentration trends of hydrocarbons have been mostly stable with some notable exceptions. Concentrations of TPH-G/GRO, Benzene, and MTBE were simultaneously reduced several orders of magnitude in June 2002 in well MW-2 (Figure 7). It is unknown whether this observation was attributed to DPE testing in November 2001. Concentrations of TPH-G/GRO, Benzene, and MTBE were similarly reduced several orders of magnitude in well MW-4 in May 1999. It is not known with certainty whether this observation was an effect attributed to ground water recovery testing conducted in April 1999. In addition, it is not known with certainty the reasons for the relatively low concentration of MTBE in May 2004, or highly elevated concentration of GRO in November 2004 for well MW-4. However, these reported concentrations do not seem wholly consistent with hydrocarbon trends at the Site.

4.0 PREFERENTIAL PATHWAY ANALYSIS

An underground utility site survey was conducted in October 2000 by Alisto Engineering Group to identify potential man-made migration pathways and conduits, and to assess whether preferential pathways and conduits may promote the migration of petroleum hydrocarbons. An additional underground utility survey was recently conducted by URS Corporation to augment the previous survey and verify the depths of the underground utilities in the area of the Site. A map showing the locations of the underground utilities in the area of the Site is presented in Appendix D. As mentioned previously, geologic cross-sections showing the locations and depths of the underground utilities in the Site vicinity are presented in Appendix C. Based on the locations and relatively shallow depths of the underground utilities (maximum depth of approximately 10 ft), the lithology and the typical depth to water at the Site (dependably between approximately 12 and 34 ft bgs, but typically between 15 to 20 ft bgs), man-made preferential dissolved petroleum hydrocarbon migration pathways and conduits are unlikely to exist on or off the Site.

5.0 SENSITIVE RECEPTORS

In October 2000, Alisto Engineering Group completed a potential receptor survey, prepared an expanded site plan with neighboring property parcel information and underground utilities mapped, and identified wells in the vicinity of the Site. A review of the files of the California Department of Water Resources (DWR) was performed to identify all known wells within a one-half mile radius of the Site. The results of the well search revealed that there were 17 wells other than the onsite monitoring wells. Of these, 11 were offsite monitoring wells, four were cathodic protection wells, one an industrial well, and one an irrigation well for a nearby cemetery. No domestic/municipal water supply wells were identified from review of the DWR files. Copies of the completion logs from the DWR files for these wells are contained within the 19 October 2000 Alisto report.

6.0 RISK ASSESSMENT

A formal risk assessment has not been performed, nor is this section proposed to take the place of one. To have some understanding of the risks posed by contamination at the Site and approximate target concentrations for contamination cleanup however, hydrocarbon concentrations in soil and ground water were compared to the Environmental Screening Levels (ESLs) in the California Regional Water Quality Control Board's (RWQCB) Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Volume 1, Summary Tier 1 Lookup Tables, Interim Final - February 2005. Although the historic past use of the Site is unknown, anticipated future Site activities and use will most probably remain commercial/industrial as at present, due in part to its high-visibility location to traffic at the corner of a principal street with a main regional thoroughfare. Therefore, the ESLs scenario that was considered in the lookup tables was for impacted shallow soil (less than approximately 10 ft bgs) under commercial/industrial land use with ground water not a current or potential source of drinking water. According to the East Bay Plain Groundwater Basin Beneficial Use Evaluation Report, the City of Oakland does not have "any plans to develop local ground-water resources for drinking water purposes, because of existing or potential saltwater intrusion, contamination, or poor or limited quantity." However, the San Francisco RWQCB's basin plan denotes existing beneficial uses of municipal and domestic supply (MUN), industrial process supply (PROC), industrial service supply (IND), and agricultural supply (AGR) for the East Bay Plain ground-water basin.

Chemicals of potential concern are those hydrocarbons previously detected above background in soil and ground-water monitoring conducted at the Site. This list includes the compound identified as TPH-G/GRO, and the fuel constituents or additives Benzene, Toluene, Ethylbenzene, total Xylenes, MTBE, tert-Butyl Alcohol (TBA), and Tert-Amyl Methyl Ether (TAME). There is currently no ESL for TAME. However, it is believed likely that the higher concentrations of TPH-G/GRO, Benzene, and MTBE, will drive the scope and level of remediation. The relevant soil and ground-water ESLs for the Site are summarized below. As recommended in the referenced document, ESLs for residential land use are provided for comparison.

Matrix	Units	TPH-G/ GRO	Benzene	Toluene	Ethyl- benzene	Xylenes	MTBE	TBA
Shallow Soil - Residential Use $(<3 \mathrm{~m}$ bgs $)$	$\mathrm{mg} / \mathrm{kg}$	100	0.18	9.3	32	11	2.0	57
Shallow Soil - Commercial Use $(<3 \mathrm{~m}$ bgs $)$	$\mathrm{mg} / \mathrm{kg}$	400	0.38	9.3	32	11	5.6	110
Ground Water	$\mu \mathrm{g} / \mathrm{L}$	500	46	130	290	100	1800	18000

7.0 REMEDIAL ACTIONS TAKEN

As mentioned previously in Section 2.2, during the 1998 UST replacement activities approximately 389 tons of excavated soil and backfill were transported offsite for disposal. TPH-G concentrations within soil stockpile samples ranged from 2.0 to $19 \mathrm{mg} / \mathrm{kg}$, with an average concentration of $8.8 \mathrm{mg} / \mathrm{kg}$ TPH-G. Benzene concentrations ranged from non-detect ($<0.0050 \mathrm{mg} / \mathrm{kg}$) to $0.022 \mathrm{mg} / \mathrm{kg}$, with an average concentration of $0.0095 \mathrm{mg} / \mathrm{kg}$. MTBE was not analyzed for or reported.

As an interim remedial measure, Cambria Environmental Technology of Oakland and Onyx Industrial Services of Benicia, California conducted weekly vacuum extraction events from wells EX-1, EX-2 and MW2 on March 16, March 23, March 30, April 6, April 27, and April 28, 2000. Laboratory analytical results of samples collected before and after most of the events showed that impacted ground water with significant and relatively stable concentrations of petroleum hydrocarbons was being extracted: TPH-G concentrations averaged $125,000 \mu \mathrm{~g} / \mathrm{L}$ from MW-2, $44,000 \mu \mathrm{~g} / \mathrm{L}$ from EX-1, and $250 \mu \mathrm{~g} / \mathrm{L}$ from EX-2; Benzene concentrations averaged $15,000 \mu \mathrm{~g} / \mathrm{L}$ from MW-2, and $4,700 \mu \mathrm{~g} / \mathrm{L}$ from EX-1, but $<0.5 \mu \mathrm{~g} / \mathrm{L}$ from EX-2; MTBE concentrations averaged $28,000 \mu \mathrm{~g} / \mathrm{L}$ from MW-2, $5,700 \mu \mathrm{~g} / \mathrm{L}$ from EX-1, and $790 \mu \mathrm{~g} / \mathrm{L}$ from EX-2. Between 900 and 1,700 gallons were extracted from the wells during each event, for a total of approximately 10,900 gallons extracted. However, no estimate of gallons extracted from each well per event was reported. Therefore, total pounds of petroleum contaminants removed were not able to be calculated.

Between 29 October and 2 November 2001, a Dual-Phase Extraction pilot test was performed on monitoring wells with the highest historical hydrocarbon concentrations (i.e. MW-2 and MW-4) and the extraction wells (EX-1 and EX-2). During the first day of testing, step vacuum tests were conducted on the four wells. Field measurements of organic vapors from wells MW-4 and EX-1 increased to more than 13,000 parts per million by volume (ppmv) with increasing applied vacuum. Field organic vapor readings for wells MW-2 and EX-2 were generally less than $1,000 \mathrm{ppmv}$ and did not show a systematic variation with applied vacuum. Constant vacuum tests were performed during the remaining four days of pilot testing: three days on well MW-4 and an eight hour test on well EX-1. Due to the observed SPH sheen and proximity to wells MW-4 and EX-1, a short-duration (50 -minute) constant vacuum test was conducted on well MW-2. During the step vacuum tests, the estimated vapor-phase hydrocarbon removal rates were less than five pounds of hydrocarbon per day at wells MW-2 and EX-2, less than 31 pounds of hydrocarbon per day at well MW-4, and less than 160 pounds of hydrocarbon per day at well EX-1. During the constant vacuum tests, the estimated hydrocarbon removal rates ranged from approximately 21 to 194 pounds of hydrocarbon per day at well MW-4, and 49 to 193 pounds of hydrocarbon per day at well EX-1. These removal rates were based on field readings of organic vapors, which included a combined measure of soil vapors and hydrocarbons stripped from ground water under vacuum. Following the conclusion of the DPE pilot test, approximately 6,500 gallons of extracted ground water containing $26,000 \mu \mathrm{~g} / \mathrm{L}$ GRO, $890 \mu \mathrm{~g} / \mathrm{L}$ Benzene, and $9,500 \mu \mathrm{~g} / \mathrm{L}$ MTBE was transported from the Site for offsite treatment and disposal.

8.0 SCREENING OF REMEDIATION TECHNOLOGIES

The technologies listed in the Central Valley Regional Water Quality Control Board 16 April 2004 Appendix A - Reports Tri-Regional Board Staff Recommendations for Preliminary Investigation and Evaluation of Underground Tank Sites are screened for viability in this section. In addition to the technologies listed, a NoAction option will be evaluated. The No-Action option is typically included in feasibility studies to represent the baseline do-nothing action for comparison purposes. The technologies assessed in this initial screening are listed in the matrix below. Also presented is the media each technology would address.

Summary of Technologies Evaluated

	Media	
	Soil	Water
No Action	X	X
Excavation	X	
Soil Vapor Extraction	X	
Bioventing	X	
Bioremediation	X	X
Ground Water Extraction and Treatment		X
Biosparging		X
In-Situ Oxidation		X
Dual-Phase Extraction and Treatment	X	X
Monitored Natural Attenuation		X

8.1 No Action and Monitored Natural Attenuation

Based on the hydrocarbon concentration trends in ground water, the no action option or a remediation strategy that employs monitored natural attenuation (MNA) would not be expected to be acceptable to ACEH unless implemented in conjunction with an active form of remediation or unless MNA-specific monitoring indicates that natural attenuation processes are occurring at the Site. The no-action option is retained as a baseline for comparison. MNA is retained for possible combination with other active technologies.

8.2 Excavation, Soil Vapor Extraction, and Bioventing

At this time, deeper soil impacts are known to exist in the vicinity of the southern dispenser. These technologies would not address the significant concentrations of hydrocarbons in ground water at the Site. The technologies specific to soil - excavation, soil vapor extraction (SVE), and bioventing - are therefore screened from consideration at this time. These technologies may be reassessed at a future date, however, if future data indicates a change in the status of the impacts and if the work could be performed to coincide with an action such as a line upgrade where excavation or drilling activities would not disrupt station operations.

8.3 Bioremediation

Bioremediation can be promoted in ground water through a variety of techniques, including bioaugmentation, or nutrient addition. For petroleum hydrocarbon sites, bioremediation is typically a component of MNA, SVE, bioventing, biosparging, in-situ oxidation, and DPE. This technology is retained for use in conjunction with other technologies, but will not be implemented as a stand-alone technology.

8.4 Ground Water Extraction and Treatment

In Ground Water Extraction and Treatment (GWET), ground water is pumped through a series of canisters containing activated carbon to which dissolved organic contaminants adsorb. This technology requires periodic replacement or regeneration of saturated carbon. Costs are typically high if used as the primary treatment on waste streams with high contaminant concentration levels. GWET will not be retained for further evaluation based on poor cost-effectiveness when compared to other technologies.

8.5 Biosparging

In biosparging, air is injected under pressure below the water table to increase ground water oxygen concentrations and enhance the rate of biological degradation of organic contaminants by naturally-occurring microbes. Biosparging increases mixing in the saturated zone, which increases the contact between ground water and soil. The ease and low cost of installing small-diameter air injection points allows considerable flexibility in the design and construction of a remediation system. Biosparging is a full-scale technology.

The following general factors may limit the applicability and effectiveness of the process:

- A permeability differential, such as a clay layer, above the air injection zone can reduce the effectiveness of biosparging.
- Where vertical air flow is restricted due to the presence of less permeable strata, sparging can push contaminated ground water away from the injection point. In these cases, a ground water recovery system may be needed.
- Vapors may rise through the vadose zone and be released into the atmosphere.

The predominant clay layer from the surface to ground water in the presumed source area near the southern dispenser island is thought to reduce the likely effectiveness of biosparging at the Site. Therefore, biosparging will not be retained for further evaluation.

8.6 In-Situ Oxidation

In-situ oxidation encompasses a wide range of technologies, including liquid chemical oxidant injection (e.g., hydrogen peroxide) and injection of air or ozone into the subsurface. The objective is to increase the oxygen content of ground water and enhance the rate of aerobic degradation of organic contaminants by naturally occurring microbes. For best results, factors that must be considered include redox conditions, saturation rates, presence of nutrient trace elements, pH , temperature, and permeability of the subsurface materials. InSitu Oxidation is a full-scale technology.

The following general factors may limit the applicability and effectiveness of the process:

- A ground-water circulation system may need to be created so that contaminants do not escape from zones of active biodegradation.
- Where the subsurface is heterogeneous, it is difficult to circulate the oxygenated solution throughout every portion of the contaminated zone. Higher permeability zones are cleaned up much faster because ground water flow rates are greater.
- High iron content in subsurface materials can rapidly reduce concentrations of oxygenated solutions.
- Amended hydrogen peroxide can be consumed very rapidly near the injection well, which can create two significant problems: biological growth can be limited to the region near the injection well, limiting adequate contamination/micro-organism contact throughout the contaminated zone; and biofouling of wells can retard the input of nutrients.
- A surface treatment system, such as air stripping or carbon adsorption, may be required to treat extracted ground water prior to re-injection or disposal.

In-situ oxidation is a potentially effective treatment technology for the Site and will be retained for further evaluation and comparison of viable treatment alternatives.

8.7 Dual-Phase Extraction and Treatment

In DPE, a high vacuum system is applied to simultaneously remove liquid and gas from low permeability or heterogeneous formations. The vacuum extraction well(s) include a screened section in the zone of contaminated soils and ground water. As vacuum is applied to an extraction well, soil vapor is extracted, and ground water is entrained by the extracted vapors. Once above grade, the extracted vapors and ground water are separated and treated. DPE is a full scale technology.

Results of pilot testing in Fall 2001 indicate that DPE and treatment is a feasible remedial alternative for the Site.

9.0 ALTERNATIVES EVALUATION

Based on the initial technology screening above, the following technologies have been retained to assemble the alternatives that will be evaluated:

- Alternative 1: No Action/MNA
- Alternative 2: In-Situ Oxidation
- Alternative 3: DPE

Using the July 1993 joint US EPA/US Air Force Remediation Technologies Screening Matrix and Reference Guide, each of the alternatives are evaluated against the following screening factors:

- Overall Cost? Design, construction, and operation and maintenance (O\&M) costs of the core process that defines each technology, exclusive of mobilization, demobilization, and pre- and posttreatment costs.
- Capital or O\&M Intensive? Is the technology capital-intensive, with significant costs for design and construction; O\&M-intensive, with significant costs for labor, operation, maintenance, and repair; both; or neither?
- Commercial Availability? Relative number of vendors that can design, construct, and maintain the technology.
- Typically Part of a Treatment Train? Is additional treatment necessary, after the use of this technology, to clean up the contaminated media?
- Residuals Produced (Solid, Liquid, Vapor)? If use of the technology produces residuals that require management, are they solids, liquids, or vapors?
- Minimum Contaminant Concentration Achievable? Minimum contaminant concentration achievable by the technology, measured in $\mathrm{mg} / \mathrm{kg}$ for soil technologies, $\mu \mathrm{g} / \mathrm{L}$ for ground water, and $\mathrm{mg} / \mathrm{kg}$ and $\mu \mathrm{g} / \mathrm{kg}$ for air emissions/off-gases.
- Addresses Toxicity, Mobility, or Volume? What parameter(s) of the contaminated media toxicity, mobility, or volume - is the technology primarily designed to address?
- Long-Term Effectiveness/Permanence? Does use of the technology maintain protection of human health and the environment, over time, after cleanup objectives have been met?
- Time to Complete Cleanup? Time required to clean up a "standard" site using the technology ("Standard" site is 20,000 tons for soil and $1,000,000$ gallons for ground water).
- System Reliability/Maintainability? Degree of system reliability and level of maintenance required when using the technology.
- Awareness of Remediation Consulting Community? Degree to which the technology is known to remediation consultants.
- Regulatory/Permitting Acceptability? Degree to which use of the technology is acceptable to regulating and permitting agencies.
- Community Acceptability? Degree to which use of the technology is acceptable to the public.

The following table presents relative ratings per screening factor for the three alternatives retained from the screening process above. The relative ratings are from the previously referenced US EPA/US Air Force guide.

Screening Factor	No Action/MNA	In-Situ Oxidation	DPE
Overall cost	Better	Average	Average
Capital or O\&M intensive?	O\&M	O\&M	O\&M
Commercial availability	Not Applicable	Better	Better
Typically part of a treatment train?	No	No	Yes
Residuals produced?	None	None	Liquid, Vapor
Minimum contaminant concentrations achievable	Worse	Better	Average
Addresses toxicity, mobility or volume?	None	Toxicity	Volume
Long-term effectiveness/permanence	No	Yes	Yes
Time to complete cleanup	Worse	Average	Average
System reliability/maintainability	Better	Worse	Average
Awareness of remediation consulting community	Better	Better	Better
Regulatory/permitting acceptability	Worse	Average	Average
Community acceptability	Worse	Better	Better

10.0 RECOMMENDED APPROACH

Based upon the alternatives evaluation, the proposed remedy for implementation at Station No. 11117 is Alternative 3: DPE. Adding to its favor is the fact that pilot testing has proven DPE a viable treatment technology at the Site.

11.0 CLOSURE

The findings presented in this document are based upon: observation of field personnel from previous consultants, the points investigated, and results of laboratory tests performed by various laboratories. Our services were performed in accordance with the generally accepted standard of practice at the time this document was written. No other warranty, expressed on implied was made. This report has been prepared for the exclusive use of Atlantic Richfield Company. It is possible that variations in soil or ground-water conditions could exist beyond points explored in this investigation. Also changes in site conditions could occur in the future due to variations in rainfall, temperature, regional water usage, or other factors.

12.0 REFERENCES

Hunter Environmental Services, Inc., 20 December 1989. Phase II Environmental Audit, Eastmont Mall Property, Oakland, Alameda County, California.

Hydro Environmental Technologies, Inc., 25 August 1992. Phase I Subsurface Investigation, BP Oil Facility No. 11117, 7210 Bancroft Avenue, Oakland, California.

US EPA and US Air Force, July 1993. Remediation Technologies Screening Matrix and Reference Guide. EPA 542-B-93-005.

California Regional Water Quality Control Board - Central Valley Region, 16 April 2004. Appendix AReports Tri-Regional Board Staff Recommendations for Preliminary Investigation and Evaluation of Underground Tank Sites.

EMCON Northwest, Inc., 27 December 1994. Baseline Assessment Report, Site Number 11117, 7210 Bancroft Avenue, Oakland, California.

Hydro Environmental Technologies, Inc., 9 March 1995. Site Assessment Report, BP Oil Station No. 11117, 7210 Bancroft Avenue, Oakland, California.

US EPA, March 1997. Expedited Site Assessment Tools for Underground Storage Tank Sites - A Guide for Regulators. EPA 510-B-97-001.

Pacific Environmental Group, Inc., 20 October 1997. Off Site Well Installation Report, BP Oil Facility \#11117, 7210 Bancroft Avenue, Oakland, California.

Environmental Resolutions, Inc., 20 November 1998. Underground Storage Tank and Associated Piping and Dispenser Removal, Tosco 76 Service Station 11117, 7210 Bancroft Avemue, Oakland, California.

California Regional Water Quality Control Board, San Francisco Bay Region, Groundwater Committee, June 1999. East Bay Plain Groundwater Basin Beneficial Use Evaluation Report, Alameda County and Contra Costa Counties, CA.

Alisto Engineering Group, 4 June 1999. Results of Recovery Testing, Former BP Oil Site No. 11117, 7210 Bancroft Avenue, Oakland, California.

Cambria Environmental Technology, Inc., 15 August 2000. Well Installation, Interim Remedial Action and Recovery Testing Report, Former BP Oil Site No. 11117, 7210 Bancroft Avenue, Oakland, California.

Alisto Engineering Group, 19 October 2000. Potential Receptor Survey, Expanded Site Plan and Well Search, BP Oil Company Service Station No. 11117, 7210 Bancroft Avenue, Oakland, California.

Cambria Environmental Technology, Inc., 8 August 2002. Dual Phase Extraction Pilot Test Report, Former BP Oil Site No. 11117, 7210 Bancroft Avenue, Oakland, Califormia.

URS Corporation, 28 November 2003. Soil and Groundwater Investigation Workplan, former BP Service Station \#11117, 7210 Bancroft Avenue, Oakland, California, ACHCS Fuel Leak Case No. RO0000356.

California Regional Water Quality Control Board, San Francisco Bay Region, February 2005. Screening for Environmental Concerns at Sites With Contaminated Soil and Groundwater, Volume 1: Summary Tier 1 Lookup Tables, Interim Final.

URS Corporation, 30 November 2005. Soil and Water Investigation Report, Former BP Service Station \#11117, 7210 Bancroft Avenue, Oakland, California, ACEH Case No. RO0000356.

Alameda County Health Care Services Agency, Environmental Health Services, 2 June 2006. Letter from Mr. Steven Plunkett (ACEH), to Mr. Paul Supple (BP West Coast Product LLC), Ms. Liz Sewell (ConocoPhillips), Mr. Jim Givens (One Eastmont Town Center), and Ms. Diane Clark (Eastmont Town Center CX LLC), re: Fuel Leak Case No. RO0000356, 7210 Bancroft Avenue, Oakland, California.

Broadbent \& Associates, Inc., 16 October 2006. Work Plan for Onsite Soil and Ground-Water Investigation, Former BP Station \#11117, 7210 Bancroft Avenue, Oakland, California.

Broadbent \& Associates, Inc., 27 October 2006. Third Quarter 2006 Ground-Water Monitoring Report, Former BP Station \#11117, 7210 Bancroft Avenue, Oakland, California.

LIST OF TABLES

Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses Table 2. Summary of Fuel Additives Analytical Data

Table 3. Historical Ground-Water Flow Direction and Gradient (with Rose Diagram)

Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses
Station \#11117, 7210 Bancroft Ave., Oakland, CA

Well and Sample Date	P/NP	TOC Elevation (feet msl)	Deptis to Water (feet bgs)	Product Thickness (feet)	Water Level Elevation (feet msl)	Concentrations in ($\mu \mathrm{g} / \mathrm{L}$)						$\begin{gathered} (\mathrm{mg} / \mathrm{L}) \\ \mathrm{DO} \end{gathered}$	Lab	pH	Comments
						$\begin{aligned} & \text { GRO/ } \\ & \text { TPHg } \end{aligned}$	Benzene	Toluene	Ethyl- Benzene	Total Xylenes	MTBE				
EX-1															
05/04/2004	P	- \quad	-1629		-	12,000	2,300	430	740	1,100	2,500	-	SEQM	6.8	h.
08/31/2004	P	--	19.39	.	-	13,000	2,500	95	650	1,500	2,100	-	SEQM	6.7	h
1/23/2004	P	-	1790	+ $+\quad$	$=$	13,000	2,700	94	460	1,700	3,000	-	SEQM	6.9	, \quad,
01/18/2005	P	--	14.20	.	-	16,000	2,100	390	570	2,500	2,200	-	SEQM	6.6	
06/29/2005	P	$-$	1422	$-$	-	6,400	1,100	52	280	790	, 1,400	-	SEQM	72	
09/01/2005	P	-17.22	…….......	- -	7,900	2,000	94	400	870	2,000	-	SEQM	6.7	
11/03/2005	P	- , +	, 19.92	-	-	22,000	3,200	640	550	3,300	3,000	0;88	SEQM	6.8	
02/14/2006	P	\cdots	- 15.40	\cdots	-	3,500	25	<25	<25	74	1,100	-	SEQM	6.8	
5/30/2006	P	$-$	1343	-	-	8,600	1,400	120	490	1300	1.400	\cdots	SEQM	6.8	
8/29/2006	-	.a.......in	17.74	-	\cdots	22,000	2,900	210	1,400	3,600	2,500 \cdots	-	TAMC	6.9	
EX-2															
05/04/2004	P	-	$16,65$	-	-	50	0.63	<0.50	Q. 50	0.66	46	\cdots	SEQM	6.7	h.
08/31/2004	P	-	-19.90	\cdots	-	<250	<2.5	<2.5	<2.5	<2.5	130	-	SEQM	6.9	h .
11/23/2004	P		18.36	-1	-1	<50	074	<0.50	0.83	30	58.8	-	SEQM	6.6	\|
01/18/2005	P	\%	14.67	:.........	\cdots	<50	<0.50	<0.50	<0.50	0.69	6.5	-	SEQM	6.5	
06/29/2005	P	-	14.60	-		<50	<0.50.	<0.50	<0.50	050	24.4	\cdots	SEQM	6.8.	5
09/01/2005	P	-	17.28	-	\%	<50	<0.50	1.4	<0.50	1.4	55	-	SEQM	7.0	
11/03/2005	P	-	20.42	$-$	-	<50	0.50	60.50	<050	14	39	077	SEQM	6.9	N
02/14/2006	P	,	14.54	,	-	220	<0.50	3.2	7.5	33	0.72	--	SEQM	7.0	
5/30/2006	P	-	1335	$1,1,$	-	<50	0.50	<0.50	<0.50	0.70	78	-	SEQM	69	Y
8/29/2006	-	\cdots	17.92	\%.......	.	66	0.67	<0.50	0.79	1.9	94	--	TAMC	7.0	
MW-1															
1/5/1992	-	498	3316	$=$	16.64	57000	2,400	1000	1100	3,100	$-$	-	-	-	
1/10/1992	--	49.8	33.16	-	16.64	-	-	-	-	-	--	-	-	-	
6/6/5/1992	-	49.8	29.01	$=$	20.79	31,000	2,800	2100	800	2,300	$-$	-	-	-	
7/24/1992	-	49.8	29.45	-	20.35	-	-	-	- -	--	- -	-	-*	\cdots	
7/27/1992	-	49.8	29.45	$-$	2035	-	-	-	-	-	-	-	-	-	
9/15/1992	-	49.8	30.53	-	19.27	40,000	3,400	3,000	1,300	3,400	-	-	ANA	-	c
9/15/1992	-	-	, - -	- -	-	36,000	3,800	3,400	1,400	3,800	-	-	ANA	-	- d

Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses
Station \#11117, 7210 Bancroft Ave., Oakland, CA

Well and Sample Date	P/NP	TOC Elevation (feet msl)	Depth to Water (feet bgs)	Product Thickness (feet)	Water Level Elevation (feet msl)	Concentrations in ($\mu \mathrm{g} / \mathrm{L}$)						$\begin{gathered} (\mathrm{mg} / \mathrm{L}) \\ \mathrm{DO} \end{gathered}$	Lab	pH	Comments
						$\begin{aligned} & \hline \text { GRO/ } \\ & \text { TPHg } \end{aligned}$	Benzene	Toluene	Ethyl- Benzene	Total Xylenes	MTBE				
MW-1 Cont.															
12/15/1992	-	498	3126	-	18.54,	27,000	1,700	580	700	1,900	\geq	-	ANA	-	C
12/15/1992	-	--	-	-	-	22,000	1,500	440	510	1,300	-	-	ANA	\cdots	d
3/15/1993	-	-	-	-	$-$	15,000	1,100	860	440	1,400	-	-	PACE	-	$\mathrm{d}_{3} 1$
3/15/1993	-	49.8	24.8	-	25	17,000	1,700	1,200	590	1,800	-	-	PACE	-	1
6/771993	-	- 49.8	25.01	-	2479	750	0.8	08	<0.	<0.5	$-$	-	PACE	\bigcirc	1
6/7/1993	-	-	-	-	-	720	0.7	0.7	<0.5	<0.5	- - - .	-	PACE	-	d, 1
9,23/1993	-	49.8	287	$=$	21.1	40,000	4,000	500	920	3000	6,619	T	PACE	-	e,
- 12/27/1993	-	-	-	:	--	21,000	1,700	380	830	2,400	9,219	-	PACE	-	e, l, d
12/27/1993	-	498	2866	-	21.14	27,000	2,000	400	940	2,600	13,558	$-$	PACE	-	$\mathrm{e} 1$
4/5/1994	-	: .-. --	--	-	-	29,000	3,700	1,000	1,000	3,100	9,672	1.3	PACE	-	e, 1 , d
- 4/5/1994	-	4988	2637	-	23,43,	27,000.	3,400	930,	950	2,900	8.595	-	PACE	-	el
7/22/1994	--	49.8	26.54	-	23.26	1,700	220	2.3	2	3.4	262	2.0	PACE	-	e, ! . \quad.
10/13/1994	-	49.8	27.46	$-$	2234	1,200	250	21	-0,	3.2	321	26	PACE	-	$\text { e, } 1$
1/25/1995	-	49.8	20.96	--	28.84	1,000	420	8	13	4	--	-	ATI	-	
4/19/1993	-	- 49.8	- 19.59	-	3021:	5,200	420	51.	230	340	$-$	60	ATI	-	,
7/5/1995	--	49.8	19.61	-	30.19	320	4.2	<0.50	<0.50	<1.0	-	4.6	ATI	--	
10/5/1995	$-$	49.8	24.4	-	25.4	5,800	1,000	40	31,	180	7800	23	AT]	-	
1/12/1996	--	49.8	25.44	: \quad -	24.36	370	<0.50	<0.50	<0.50	<1.0	<5.0	3.7	ATI	--	
4/22/1996	-	49.8 ,	18.02	$-$	31.78	<50	0.5	<1	<1	<1	- < 10	39	SPL	-	$\square \quad$,
7/2/1996	-	49.8	19.72	\%	30.08	--	--	--	--	-	- --	--	--	--	
7/3/1996	-	49.8	-	-		$\bigcirc 250$	<2.5	<5	<5	<5	< 50	36	SPL	-	
11/8/1996	-	49.8	19.98	-	29.82	<50	<0.5	<1.0	<1.0	<1.0	<10	4.3	SPL	--	
1/3/1997	-	49.8	19.49	$-$	3031 ,	<50	<0.5	14	10	<10	<10	4.6	SPL	-	R
4/28/1997	-	49.8	20.2	--	29.6	<50	<0.5	<1.0	<1.0	<1.0	<10	3.9	SPL	--	
7/1/1997	-	49.8	2253	$-$	27.27	<50	<0.5	<1.0	<10	<1.0	<10	39	SPL	-	
10/2/1997	--	49.8	24.27	-	25.53	<50	<0.5	<1.0	<1.0	<1.0	<10	4.6	SPL	-	
¢ 1/91998	-	498	21,07		28.73	<50	0.5	<10	<10	<10	≤ 10	42	SPL	-	
5/6/1998	--	49.8	14.94	-	34.86	60	<0.5	<1.0	<1.0	<1.0	<10	3.8	SPL	-	……:........
7/2171998	-	49.8	1511	-	34.69	70	0.5	<1.0	<10	<1,0	<10	3.8	SPL	-	.
12/30/1998	-	49.8	19.95	-	29.85	-	-	-	--	-	-	-	-	-	
2/2/1999	-	498	19.12	-	. 30.68	420	<10.	<10	$\leqslant 0$	<10	390	-	SPL	-	

Page 2 of 21

Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses
Station \#11117, 7210 Bancroft Ave., Oakland, CA

Well and Sample Date	P/NP	TOC Elevation (feet msl)	Depth to Water (feet bgs)	Product Thickness (feet)	Water Level Elevation (feet msl)	Concentrations in ($\mu \mathrm{g} / \mathrm{L}$)						$\begin{gathered} (\mathrm{mg} / \mathrm{L}) \\ \mathrm{DO} \end{gathered}$	Lab	pH	Comments
						$\begin{aligned} & \text { GRO/ } \\ & \text { TPHg } \end{aligned}$	Benzene	Toluene	Ethyl- Benzene	Total Xylenes	MTBE				
MW-1 Cont.															
5/10/1999	-	49.8	15.51	4	34.29	,	\cdots	$-$	-	-	- \%	-	-	-	
9/23/1999	-	49.8	21.65	-	28.15	440	49	<1.0	<1.0	<1.0	910	-	SPL	-	
12/23/1999	-	49:8	22,32	-	27.48	-	-	-	-	$-$	- - -	-	-	-	
3/27/2000	-	49.8	15.72	--	34.08	2,500	230	3	83	36	4,400	-	PACE	-	
- 5/22/2000	-	49.8	1692	-	$32,88$	- ${ }^{\text {a }}$	$=$	4	$-$	- \quad,	- - +	- ${ }^{1}$	-	-	
8/31/2000	-	49.8	20.12	... -	29.68	1,700	18.	5.5	7.9	5	$\therefore 510$	--	PACE	--	
121112000	-	49.8	20.72	-	29.08	- - ,	- \quad -	-	U	\square	-	- \quad,	-	-	
3/20/2001	--	49.8	15.91	\%	33.89	880	38.2	<0.5	24.1	<1.5	391	-	PACE	-	
6/19/2001	-	- 498	18.38	-	31.42	- \quad	\square	- - \quad -	$-$	5	$=$	$-$	-	-	
9/20/2001	--	49.8	21.23	-	28.57	3,200	400	19.8	42 ..	32.5	2,510	-	‥PACE	-	
12/27/2001	$-$	49.8	1672	-	33.08	750	70.1	0.536	474	3.76	- 649	-	PACE	-	
2/28/2002	-	49.8	15.25	- -	34,55	<50	<0.5	<0.5	<0.5	<1.0	8.7	--	PACE	--	-
-6/28/2002	-	49.8	16.57	-	3323	110	0.977	<0.5	0.818	$\bigcirc 10$	$8,35$	-	PACE	$-$	
9/12/2002	--	49.8	18.41	- -	31.39	98	2.7	1.5	1.5	5.4	48	-	SEQ	6.9	
12/12/2002	-	49.8	2026	$-$	2954	210	19	<0.50	<0.50	$<0,50$	32	-	SEQ	6.8	
3/10/2003	-	49.8	16.22	- --	33.58	<50	<0.50	<0.50	<0.50	<0.50	3.2	\cdots	SEQ	6.9	
5/12/2003	\bigcirc	49.8	143	$-$	355	< 50	<0.50	<0.50	<0,50	<0,50	<25	-	SEQ	71	
8/27/2003	-	49.8	18.15	- -	31.65	<50	<0.50	<0.50	<0.50	<0.50	4.2	-	SEQ	7.1	n
11/10/2003	P	49.80	1924	-	3056	<50	<0.50	0050	<0,50	<0.50	0.51	-	SEQM	6.8	\square
02/03/2004	P	49.80	14.84	$\because-$	34.96	<50	<0.50	<0.50	<0.50	<0.50	<0.50	-	SEQM	7.0	
05/04/2004	P	4980	$14,67$	-	3513	<50	<0,50	<0.50	<0.50	<0.50	<0.50	-	SEQM	7.1	,
08/31/2004	P	49.80	17.75	--	32.05	<50	<0.50	<0.50	<0.50	<0.50	0.50	--	SEQM	7.1	
11/23/2004	-	4980 ,	16.03	-	3377 ,	-	-	-	-	- -	- $-\quad+$	-	-	-	
01/18/2005	P	49.80 .	12.47	- -	37.33	<50	<0.50	<0.50	<0.50	<0.50	<0.50	-	SEQM	6.9	
06/29/2005	-	49.80	12:65	$-$	3715	-	-	-	-	-	-	\checkmark	-	-	
09/01/2005	--	49.80	15.79	--	34.01	-	-	-	-	-	-	-	-	--	
11703/2005	-	49.80	18.55	$-$	31.25	-	\cdots	\cdots	-	\cdots	$-$	-	-	-	
02/14/2006	P	49.80	12.29	\cdots	37.51	51	<0.50	<0.50	<0.50	<0.50	<0.50	-	SEQM	7.0	w
5/30/2006	-	49.80	12.15	-	37.65	-	-	-	-	σ		-	-	-	
8/29/2006	-	49.80	16.37	--	33.43	-	--	-	-	-	-	-	--	--	

Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses
Station \#11117, 7210 Bancroft Ave., Oakland, CA

Well and Sample Date	P/NP	TOC Elevation (fect msl)	Depth to Water (feet bgs)	Product Thickness (fect)	Water Level Elevation (feet msl)	Concentrations in ($\mu \mathrm{g} / \mathrm{L}$)						$\begin{gathered} (\mathrm{mg} / \mathrm{L}) \\ \mathrm{DO} \end{gathered}$	Lab	pH	Comments
						$\begin{aligned} & \text { GROI } \\ & \text { TPHg } \end{aligned}$	Benzene	Toluene	EthylBenzene	Total Xylenes	MTBE				
MW-2															
1/5/1992	-	5107	-	π	$=$	-	-	-	-	\cdots	-	-	-	-	r
1/10/1992	-	51.07	-	--	-	-	-	-	-	-	-. -	-	-	-	r
6/6/5/1992	-	5107	30.05	-	21.02	11000	2,000	180	490	1,900	-	-	-	-	, \quad +
7/24/1992	-	51.07	30.72	--	20.35	-	-	-	--	-	--	-	-	--	
7/27/1992	\bigcirc	$\bigcirc 51.07$	30.52	-	20.55	\%	-	-	-	-	-	- -1	\cdots	-	48
9/15/1992	-	51.07	31.56	- -	19.51	75,000	2,000	6,500	2,300	13,000	-	-	ANA	-	c
12/15/1992	\cdots	51.07 ,	32,4	$-$	18.67	34,000	6,200	8,900	2000	7,900	-	-	ANA	\cdots	c
3/15/1993	-	51.07	26.14	-	24.93	150,000	12,000	18,000	3,200	22,000	82,000	\cdots	PACE	-	e
6/7/1993	-	51.07	26.38	$-$	24.69	- ${ }^{\text {a }}$	- +	\cdots	- +	- ${ }^{\text {a }}$	$-$	-	-	-	f
9/23/1993	-	51.07	31.43	- -	17.72	--	- -	-	-	-	-	-	-	$-$	f
12/27/1993	\square	51.07.	34.07	$4=$	1593	- \quad -	-	-	- $\quad \cdots$	\cdots	$=$	-	-	-	f
4/5/1994	-	51.07	30.44	-	17.33	- --.	--	-	-	-	-	-	-	-	f
7/22/1994	-	\% 51.07	28.51	-	2176	$-$	-	-	\cdots	- + -	-	-	-	-	f
10/13/1994	--	51.07	29.33	--	21.04	- -	-	-	- :	- - -	- -- "	-	--	-	f
1/25/1995	-	51.07	25.55	$-$	21.27	-	-	-	- \quad	-	-	-	-	-	f
4/19/1995	--	51.07	19.78	--	31.17	-	- -	-	\cdots	-	-	-	-	-	r
7/5/1995	\square	51.07	2088	-	30.1	140000	14,000	30.000	3,500	26,000	$-$	-	ATI	\cdots	,
10/5/1995	-	51.07	$\cdots 24.68$	-	26.99	-	-	-	-	-	--	-	--	--	f
1/12/1996	1	51.07	2572	-	2529	-	\cdots	\cdots	- -	- ${ }^{2}$	-	-	-	-	If
4/27/1996	-	51.07	19.33	-	31.66	--	- -	-	-	-	-	-	-	-	f
7/2/1996	$=$	- 51.07	20.01	$=$	31.02 ,	$-$	- \quad,	$=$	$-$	-	$-$	\checkmark	- +	$-$	f
11/8/1996	--	51.07	20.28	-	30.78	--	--	-	--	-	-	-	-	-	f
1/3/1997		5107	1987	$-$	31.18	-	-	-	-	-	-	-	-	\cdots	f
4/28/1997	-	51.07	20.59	-	30.47	560,000	1,200	1,300	290	2,310	6,100	3.9	SPL	-	
711/1997	-		2	-	-	150,000	14,000	13,000	1800	14,200	57,000	-	SPL	-	d
7/1/1997	--	51.07	22.9	--	28.16	24,000	15,000	16,000	4,900	24,400	63,000	3.7	SPL	-	
-10/2/1997	-	51.07	2465	$-$	26.4 ,	\sim	-	-	- -	-		-	-	-	世 \quad —
10/3/1997	-	51.07	-	-	-	250,000	32,000	39,000	6,000	42,000	160,000	4.5	SPL	--	
1/9/1998	-		-	$-$	-	300,000	20,000	25000	5,200	37,000	84,000	-	SPL	-	d
1/9/1998	-	51.07	21.22	-	29.84	420,000	23,000	29,000	5,800	43,000	75,000	4.0	SPL	-	
. 2/2/1998	-	51.07	20.11	-	30.96	410,000	27,000	43,000	6700	50,000	20,000	-	SPL	-	

Page 4 of 21

Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses
Station \#11117, 7210 Bancroft Ave., Oakland, CA

Well and Sample Date	P / NP	TOC Elevation (feet msl)	Depth to Water (feet bgs)	Product Thickness (fect)	Water Level Elevation (fect msl)	Concentrations in ($\mu \mathrm{g} / \mathrm{L}$)						$\begin{gathered} (\mathrm{mg} / \mathrm{L}) \\ \text { DO } \end{gathered}$			
						$\begin{aligned} & \text { GRO/ } \\ & \text { TPHg } \end{aligned}$	Benzene	Toluene	Ethyl- Benzenc	Total Xylenes	MTBE		Lab	pH	Comments
MW-2 Cont.															
5/6/1998	-	5107	+ 151,		3596	180,000	25,000	26,000	3,400	22,900	35,000	3.7	SPL	-	
7/21/1998	-	51.07	15.31	--	35.75	270,000	21,000	20,000	2,700	18,800	34,000	3.8	SPL	--	
12/301998	-	51.07	21.1\%	$-$	29.87	300,000	22,000	24,000	4,200	26,000	89000195000	-	SPL	-	3
5/10/1999	-	51.07	16.68	\square	34.39	220,000	20,000	20,000	2,800	20,000	100,000	--	SPL	-	. + . 4.
- 9/23/1999	\cdots	51.07	22.5	2	28.57	160,000	21,000	24,000	2900	20,000	44,000	-	SPL	\bigcirc	
12/23/1999	--	51.07	22.64	-	28.43	170,000	25,000	41,000	3,100	24,000	40,000	--	PACE	--	k \cdots,
- 3/27/2000	-	51.07	16.88	12	3419	140,000	15,000	25,000	3400	21,000	19,000	-	PACE	-	
5/22/2000	--	51.07	17.75	- -	33.32	150,000	18,000	31,000	3,500	22,000	26,000	-	PACE	-	2, ب.a.e.
8/31/2000	$-$	51.07	21.97	$-$	29.1	200,000	16,000	26,000	2.500	16,000	38,000	-	PACE	-	
12/11/2000	-	51.07	22.05	--	29.02	130,000	18,600	30,000	3,250	20,600	21,700	-	PACE	-	
, 3/20/2001	-	51.07	1775		33.32	140,000	15900	24,800	3700	22,100	12,900	-	PACE	-	
6/19/2001	--	51.07	20.15	$-$	30.92	130,000	15,100	19,500	3,300	21,400	20,300	--	PACE	-	\%
9/20/2001	-	5107	2214		28.93	110,000	12.400	12,600	2,230	13,000	39500	-	PACE	-	, \% ${ }^{\text {a }}$ -
12/27/2001	--	51.07	18.17	-	32.9	150,000	17,500	26,000	3,050	19,500	27,500	--	PACE	-	:
- $2 / 28 / 2002$	-	- 51.07	17.42	-	3365	120,000	13,900	18,800	3030	19,600	17,300	-	PACE	-	O
6/28/2002	-	51.07	17.04	-	34.03	3,700	190	23.3	139	287	826	-	PACE	--	u
9/12/2002	-	51.07	19.52	ψ	31.55	100,000	13,000	22,000	3,600	20,000	18,000	-	SEQ	6.6	
12/12/2002	-	51.07	21.08	:	29.99	120,000	13,000	21,000	4,400	25,000	16,000	--	SEQ	6.6	W,
3/10/2003	-	5107	17.84	$-$	33.23	100,000	17,000	21.000	3,400	20;000	4,400	-	SEQ	$6: 8$	
5/12/2003	--	51.07	16.66	-	34.41	150,000	16,000	24,000	3,500	22,000	3,600	--	SEQ	7.1	
8/27/2003	-	51.07	19.65	4	+3142	120,000	14,000	12,000	3900	20,000	5,100	-	SEQ	6.9	n
11/10/2003	P	51.07	20.80	-	30.27	97,000	12,000	9,500	3,600	15,000	4,200	-	SEQM	6.7	M, M.
02/03/2004	P	51.07	16.82	$-$	34.25	130,000	14,000	19,000	3,400	20,000	1,900	-	SEQM	6.8	
05/04/2004	P	51.07	16.19	\cdots	34.88	120,000	12,000	16,000	3,700	22,000	2,500	--	SEQM	6.7	\cdots
08/31/2004	P	51.07	19.50	\geq	31.57	99,000	10,000	13,000	3,700	18,000	3.400	-	SEQM	6.8	4 2×2
11/23/2004	P	51.07	18.20	-	32.87	110,000	8,200	17,000	4,000	23,000	2,400	-	SEQM	6.7	5
01/18/2005	P	51.07	1491	$-$	36.16	96,000	6,500	14,000	3,500	21,000	3,700	-	SEQM	6.6	母 \quad,
06/29/2005	P	51.07	13.98	-	37.09	54,000	6,200	4,900	3,300	12,000	3,600	-	SEQM	7.3	\%
09/01/2005	P	51.07	17.00	$-$	34.07	58,000	6,300	6,000	3,300	15,000	5,100	-	SEQM	70	?
11/03/2005	P	51.07	20.25	-	30.82	63,000	7,400	3,700	3,300	10,000	3,700	0.66	SEQM	6.7	
02/14/2006	P	51.07	1372	-	37.35	97,000	7,500	11,000	4,300	16,000	, 3,400	-	SEQM	69	世

Page 5 of 21

Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses
Station \#11117, 7210 Bancroft Ave., Oakland, CA

Well and Sample Date	P/NP	TOC Elevation (feet msl)	Depth to Water (feet bgs)	Product Thickness (feet)	Water Level Elevation (fect msl)	Concentrations in ($\mu \mathrm{g} / \mathrm{L}$)						$\left\lvert\, \begin{gathered} (\mathrm{mg} / \mathrm{L}) \\ \text { Do } \end{gathered}\right.$	Lab	pH	Comments
						$\begin{aligned} & \hline \text { GRO/ } \\ & \text { TPHg } \end{aligned}$	Benzene	Toluene	Ethyl- Benzene	Total Xyicnes	MTBE				
MW-2 Cont.															
5/30/2006	P	51.07	13.50	-	37.57	28,000.	5,200	2,500	1,500	3300	2,300	-	SEQM	6.7	
8/29/2006	-	51.07	18.16	-	32.91	65,000	7,200	4,500	3,200	11,000	13,000	-	TAMC	6.7	
MW-3															
15/1992	-	49.95	3369	-	16.26	7400	790	23	210	40	-	-	-	-	. \quad.
1/10/1992	--	49.95	33.74	--	16.21	-	-	-	-	-	-	-	-	--	
6/5/1992	-	49.95	29.65	-	203	2,000	130	53	93	20	-	-	$\stackrel{-}{-}$	-	
7/24/1992	-	49.95	30.14	--	19.81	--	-	--	--	-	-	-	-	--	
71271992	-	49.95	30.14	-	19.81	\cdots	-	-	-	-	-	\cdots	-	-	\% ${ }^{4}$ \%
9/15/1992	\cdots	49.95	31.07	-	18.88	450	55	3.1	34	7.1	-	-	ANA	-	
12/15/1992	-	49.95	31.93	-	18.02	12.000	940	<50	310	120	-	-	ANA	-	${ }^{\text {c }}$
3/15/1993	-	49.95	25.71	-	24.24	<50	<0.5	<0.5	<0.5	<0.5	--	-	PACE	-	1
67711993	-	49.95	25.8	-	24.15	150	36	0.5	0.9	13	-	-	PACE	-	1.
9/23/1993	-	49.95	29.18	--	20.77	--	-	-	--	-	-	-	--	-	
9/24/1993	-	49.95	-	-	-	160	8.4	005	37	13	153	-	PACE	-	1
12/27/1993	--	49.95	29.25	-	20.7	9,400	1,100	48	530	120	2,871	-	PACE	-	e, 1
4/5/1994	-	49.95	26.84	-	23.11	7,000	860	19	330	32	10.414	20	PACE	-	1.
7/22/1994	-	49.95	26.9	-	23.11	<50	<0.5	<0.5	<0.5	<0.5	<5.0	2.1	PACE	--	1
10/13/1994	-	4995	27.83	-	22.12	<50	0.5	0.5	0.5	0.5	5.0	26	PACE	-	\cdots
1/25/1995	-	49.95	21.65	-	28.3	<50	<0.5	<0.5	<0.5	<1	--	-	ATI	-	
4/19/1995	-	49.95	1933	-	30.62	2,400	170	8	130	27	-	5.0	ATI	-	
7/5/1995	-	49.95	20.27	-	29.68	<50	<0.50	<0.50	<0.50	<1.0	-	4.4	ATI	-	
101/1995	-	49.95	2373	-	26.22	2300	210.	31	10.	51	2400	42	ATI	-	
1/12/1996	-	49.95	24.84	--	25.11	<50	<0.50	<0.50	<0.50	<1.0	<5.0	4.1	ATI	-	
4/22/1996	-	49.95	18.6	-	31.35	<50	<0.5	<1	<1	4	10	4.4	SPL	-	$\%$
7/2/1996	-	49.95	18.88	--	31.07	<50	<0.5	<1	<1	<1	<10	4.2	SPL	-	
11/8/1996	-	4995	19,14	-	3081	<50	0.5	<1.0	<10	$\stackrel{10}{ }$	10	44	SPL	-	
1/3/1997	-	49.95	18.72	-	31.23	<50	<0.5	<1.0	<1.0	<1.0	<10	4.6	SPL	-	
4/28/1997	-	49.95	19.38	-	30.57	<50	<0.5	<10	410	110	<10	42	SPL	-	:
71111997	-	49.95	21.65	-	28.3	<50	<0.5	<1.0	<1.0	<1.0	<10	3.8	SPL	--	
102/1997	-	49.95	23,45	-	26.5	<50	<0.5	$\leqslant 10$	<10	110	<10	4.5	SPL	-	

Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses
Station \#11117, 7210 Bancroft Ave., Oakland, CA

Well and Sample Date	P/NP	TOC Elevation (feet ms)	Depth to Water (fect bgs)	Product Thickness (feet)	Water Level Elevation (feet msl)	Concentrations in ($\mu \mathrm{g} / \mathrm{L}$)						$\begin{gathered} (\mathrm{mg} / \mathrm{L}) \\ \mathrm{DO} \end{gathered}$	Lab	pH	Comments
						$\begin{aligned} & \text { GRO/ } \\ & \text { TPHg } \end{aligned}$	Benzene	Toluene	Ethyl- Benzene	Total Xylenes	MTBE				
Mw-3 Cont.															
1/911998	-	49.95	20.1	$-$	29.85	<50	<0.5	<10	610	<10	10 -	41	SPL	-	Man
5/6/1998	-	49.95	15.57	- -- .-	34.38	<50	<0.5	<1.0	<1.0	<1.0	<10	3.8	SPL	-	
7/21/1998	-	49.95	- 15.88	$-$	3407	51.	<0.5	<10	<1.0	<1.0	<10	38	SPL	-	
7/21/1998	-	-	-	-	-	60	<0.5	<1.0	<1.0	<1.0	<10	-	SPL	-	d
12/30/1998	-	4995	203	-	29.65	-	-	-	-	- \quad -	$=$	-	SPL	-	
2/2/1999	-	49.95	19.75	--	30.2	<50	$<1,0$	<1.0	<1.0	<1.0	<10	--	SPL	-	
5/10/1999	-	49.95	1617\%	-	3378	- \quad -	$-$	$-$	- \times	4	-	-	-	-	
9/23/1999	-	49.95	22.05	- - - - -	27.9	-	-	--.	- - -	-	$\cdots-$	-	-	-	
12/23/1999	-	-4995	22-5	-	274	-	- ${ }^{2}$	-	- \quad -	-	-	\cdots	-	\cdots	
3/27/2000	-	49.95	16.4	-	33.55	350	22	<0.5	<0.5	<0.5	580	--	PACE	--	
5/22/2000	-	4995	9.49	-	40.46	-	-	-	- +	-	$-$	- \rightarrow	, +	\cdots	t
8/31/2000	-	49.95	13.02	- -	36.93	-	-	--	- \quad -	-	- -	--	--	--	t
19/11/2000	-	49.95	1330	$-$	36.65 ,	-	\triangle	-	- ${ }^{\text {a }}$ -	$=$	\cdots	-	-	-	t
3/20/2001	--	49.95	16.49	$\cdots-$	33.46	1,000	66.4	0.597	6.96	<1.5	398	-	PACE	-	
6/1972001	-	49.95	-1882	4	31.13 ,	-	-	- ${ }^{\text {a }}$	-a/	- -	米	-	-	-	
9/20/2001	-	49.95	21.59	- - .	28.36	230	<0.5	0.593	<0.5	<1.5	289	-	PACE	-	
1227/2001	$-$	49.95	17.37	$-$	3258	-	$-$	-	->,	- \times	$=$	-	-	-	
2/28/2002	--	49.95	15.81	$\cdots-\cdots$	34.14 .	<50	<0.5	<0.5	<0.5	<1.0	0.58	-	PACE	.	
6/28/2002	-	49.95	1709	-	32.86	- -	- ${ }^{1}$	-	- \quad -	- \square^{\square}		-	-	-	,
9/12/2002	-	49.95	18.8	--	31.15	52	3.3	8.6	1.7	12	11	-	SEQ	7.0	
$12 / 12 / 3002$	-	$49: 95$	20.57	$-$	29.38	-	--	- ,	-	- -	- - -	-		-	
3/10/2003	--	49.95	16.68	\cdots	33.27	<50	<0.50	<0.50	<0.50	<0.50	<2.5	-	SEQ	7.0	
$5 / 12 / 2003$	-	49.95	1472	$-$	35.23	\checkmark	-	-	\cdots	-	-	-	-	-	WO M
8/27/2003	-	49.95	18.5	--	31.45	<50	<0.50	<0.50	<0.50	0.5	<0.50	--	--	7.1	n
1/10/2003	--	49.95	1966	τ	30.29	-	-	-	-	-	-	-	-	-	
02/03/2004	P	49.95	15.33	-	34.62	<50	<0.50	<0.50	<0.50	<0.50	<0.50	-	SEQM	7.0	
08/31/2004	p	4995	18.3	$-$	8182	<50	0.50	<0.50	0050	00.50	<0.50	-	SEQM	71	
11/23/2004	--	49.95	16.48	-	33.47	-	-	-	--	--	-	-	--	\cdots	
01/18/2005	P	49.95	1306	\square	3689	<50	<0.50	00.50	<0.50	<0,50	<0.50	-	SEQM	69	எ० \quad,
06/29/2005	-	49.95	13.00	--	36.95	-	-	-	--	--	-	-	-	--	
09/01/2005	-	-49.95	16.00		33.95		-	\cdots	-	-	-	-1		-	

Page 7 or 21

Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses
Station \#11117, 7210 Bancroft Ave., Oakland, CA

Well and Sample Date	P/NP	TOC Elevation (feet msl)	Depth to Water (feet bgs)	Product Thickness (feet)	Water Level Elevation (feet msl)	Concentrations in ($\mu \mathrm{g} / \mathrm{L}$)						$\left\lvert\, \begin{gathered} (\mathrm{mg} / \mathrm{L}) \\ \mathrm{DO} \end{gathered}\right.$	Lab	pH	
						$\begin{aligned} & \mathrm{GRO} / \\ & \mathrm{TPHg} \end{aligned}$	Benzene	Toluene	Ethyl- Benzene	Total Xylenes	MTBE				Comments
MW-3 Cont.															
11/03/2005	-	49.95	18.91	$-$	$31: 04$	-	-	-	$-$	-	-	-	-	$-$	
02/14/2006	P	49.95	12.90	--	37.05	86	<0.50	<0.50	<0.50	0.55	<0.50	-	SEQM	7.3	
5/30/2006	-	4995	12.55		37.40	-		-	-		- + ,	-	- ${ }^{\text {a }}$	-	
8/29/2006	--	49.95	16.68	-	33.27		-			-				--	\%...
MW-4															
7/24/1992,	-	50.76	30.02	-	20.74	42,000	3,200	3,600	1.400	4100	$-$	$-$	-	-	2
7/27/1992	-	50.76	30.02	-	20.74	-	--	-	--	-	-	-	-	-	
9/15/1992	-	5076	31.14 +		19:62	55,000	7,600	13,000	2,800	9,500		-	ANA	-	c
12/15/1992	-	50.76	31.98	-	18.78	36,000	3,700	4,700	1,200	4,000	:	-	ANA	-	cer
3/15/1993	\bigcirc	50.76	25.34	-2	3542	69,000:	7,600	15,000	2,500	11,000	-	-	PACE	-	1 1,
6/7/1993	--	50.76	25.67	--	25.09	73,000	10,000	19,000	3,400	14,000	-	--	PACE	-	1 ,
- 9/23/1993	-	50.76	2937		2139	-	-	-	-	- ,	$-$	$-$	-	-	$1 \times \square \quad$,
9/24/1993	--	-	-	-	-	59,000	5;300	10,000	2,200	8,400	309	-	PACE	-	d
9/24/1993	-	50.76	$=$	-	4	68,000	14,000	2,100	8,600	990	390,	-	PACE	-	- , 1
12/27/1993	-	50.76	29.4	5 4	21.36	32,000	2,500	4,400	1,300	4,400	387	\%	PACE	--	1- 1
4/5/1994	-	5076	2709	-	23.67	64,000	6,500	14,000	1900	9,600	- 413	14	PACE	-	1
7/22/1994	-	-	\cdots	-	-	85,000	11,000	21,000	3,300	14,000	435	-	PACE	-	d, 1
7/22/1994	-	5076	2733	-	23.43 ,	85,000:	10,000	20,000	3,200	13,000	796	08	PACE	-	
10/13/1994	-	-	--	-	- -	51,000	7,400	13,000	2,100	9,100	773	-	PACE	--	d, 1
10/13/1994	-	50.76	28.25	$-$	22.51	51,000	7,100	13,000	2,100	8,900	506,	29	PACE	$-$	e.1, +
1/25/1995	-	50.76	21.85	- -	28.91	26,000	3,600	9,600	1,200	6,400	:	\cdots	ATI	-	M, \% - \%
1/25/1995	-	\bigcirc	$-$	$-$	4	28,000	4,200	12,000	1,500	7,800	-	-	ATI	-	d
4/19/1995	--	50.76	19.44	--	31.32	89,000	12,000	24,000	3,500	18,000	-	5.1	ATI	-	
4/19/1995	-	$-$		$-$		100,000	12,000	26,000	3,800	21,000	-	-	ATI	-	d
7/5/1995	-	50.76	20.52	\cdots	30.24	130,000	13,000	29,000	3,300	25,000	\%	4.3	ATI	-	
10/5/1995	-	50.76	2423	-	26.53	110,000	10,000	23,000	3,600	17,000	34,000	21	ATr	-	\%
1/12/1996	-	50.76	25.34	--	25.42	46,000	3,500	8,300	1,100	8,000	3,000	3.3	ATI	--	M, \%
1/12/1996	-	-	-		-	40,000	3,500	9,000	1200	8,700	4,300	-	ATI	-	d.
4/22/1996	-	50.76	19.13	-	31.63	40,000	5,100	9,600	980	11,800	29,000	3.2	SPL	--	
4/22/1996	-	-	-	-	-	61,000	8,300	16,000	1.600	15,200	36,000	-	SPL	-	0

Page 8 of 21

Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses
Station \#11117, 7210 Bancroft Ave., Oakland, CA

Well and Sample Date	P/NP	TOC Elevation (feet msl)	Depth to Water (feet bgs)	Product Thickness (feet)	Water Level Elevation (feet msl)	Concentrations in ($\mu \mathrm{g} / \mathrm{L}$)						$\begin{gathered} (\mathrm{mg} / \mathrm{L}) \\ \mathrm{DO} \end{gathered}$	Lab	pH	Comments
						$\begin{aligned} & \hline \mathrm{GRO} / \\ & \text { TPHg } \end{aligned}$	Benzene	Toluene	Ethyl- Benzene	Total Xylenes	MTBE				
MW-4 Cont.															
-7/2/1996	-	-	$-$	$-$	$-$	78,000	9,800	21,000	1,900	15,300	42,000	-	SPL	-	d
7/2/1996	--	50.76	20.67	- --	30.09	74,000	9,800	21,000	2,100	16,600	41,000	3.4	SPL	-	
11/8/1996	-	50.76	20.95	$=$	2981	100,000	7,900	16,000	2,500	13,700	37,000	37	SPL	\square	
11/8/1996	-	--	-	--	--	110,000	9,100	20,000	3,000	15,400	39,000	-	SPL	-	d
1/3/1997	-	5076	2054	2	3022	99,000	17,000	30,000	4300	22700	79,000	42	SPL	-	+ \quad,
1/3/1997	--	--	-	- -	-	66,000	12,000	19,000	2,900	15,000	69,000	--	SPL	-	d
4/28/1997	-	5076	21,28	-	2948	130,000	12,000	28,000	3,800	21,000	37,000	39	SPL	-	Maveravala
4/28/1997	--	--	--	-	$\therefore-$	110,000	11,000	26,000	3,200	18,200	34,000	--	SPL	-	d
7/1/1997	\sim	$\bigcirc 5076$	23.61	$-$	27.15	110,000	16,000	25,000	4900	24,400	37,000	36	SPL	-	
10/2/1997	--	50.76	$\because 25.39$. -	25.37	-	-	-	-	-	-	--	--	\cdots	
10/3/1997	-	$-$	-	$-$	$+$	71.000	8,600	8700	2,900	13,500	84,000	-	SPL	-	d
10/3/1997	-	50.76	- - -	---	- - - -	66,000	8,200	8,600	2,700	13,400	80,000	4.4	SPL	-	
,19/1998	-	5076	2125	$-$	29.51	100,000	97700	3200	1,500	4,700	92,000	38	SPL	-	UQ
5/6/1998	-	-	-	-	-	440,000	8,000	39,000	14,000	70,000	<5000	-	SPL	--	d
5/6/1998	-	50.76	15,96		34.8	430000	6,900	31,000	11000	56,000	<5000	39	SPL.	-	
7/21/1998	-	-	--	-	\cdots	210,000	11,000	27,000	5,600	26,800	29,000	--	SPL	-	d
7/21/1998	-	50.76	16.1.	$=$	3466	250,000	11,000	26,000	5,500	26,900	29,000	3.7	$\mathrm{SPL}+$	-	
12/30/1998	-	50.76	20,91	-	29.85	370,000	11,000	22,000	8,500	40,000	90000/92000	--	SPL	-	$\cdots \mathrm{j}$
2/2/1999	-	50.76	20.3	-	30.63	190,000	4,100	19,000	4800	32,000	28,000	-	SPL	\checkmark	
$\therefore 5 / 10 / 1999$	--	50.76	16.63	-	34.13	2,700	23	7.1	$8: 1$	25	120	--	SPL	--	
9/23/1999	$-$	50.76	2248	$-$	28.28	180,000	11,000	29,000	7,000	38.000	12,000	-	SPL	\cdots	
12/23/1999	-	50.76	22.94	-	27.82	66,000	6,300	5,200	2,200	7,800	35,000	-	PACE	--	k
3/27/2000	-	50.76	16.84	$-$	33.92	120000	8,700	12,000	3,800	16,000	27,000	-	PACE	-	
5/22/2000	--	50.76	17.85	--	32.91	110,000	7,600	16,000	4,400	20,000	25,000	-	PACE	--	
8/31/2000	-	50.76	21.71	$-$	29.05	110,000	8,800	7,600	3.400	14,000	18,000	-	PACE	-	
12/11/2000	-	50.76	22.05	-	28.71	70,000	4,580	3,480	2,550	9,220	24,400	-	PACE	-	
3/20/2001	-	5076	17.68	-	3308	100,000	7100	4,530	2540	9.370	63,100	-	PACE	-	
6/19/2001	-	50.76	19.4	--	31.36	180,000	7,430	14,600	5,400	25,300	36,100	-	PACE	-	
9/20/2001	\sim	50.76	27.01	-	28.75	:	\square	-	-	-		-	--	-	$\mathrm{f}, \mathrm{~m}$
12/27/2001	-	50.76	17.96	-	32.8	120,000	6,880	9,030	2,840	14,600	32,300	-	PACE	-	
2/28/2002	-	50,76	. 17.06	-	33.7	80,000	4,920	5,450	2,220	12,300	35,900	-	PACE	-	, \%

Page 9 of 21

Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses
Station \#11117, 7210 Bancroft Ave., Oakland, CA

Well and Sample Date	P / NP	TOC Elevation (feet msl)	Depth to Water (feet bgs)	Product Thickness (feet)	Water Level Elevation (feet msl)	Concentrations in ($\mu \mathrm{g} / \mathrm{L}$)						$\left\|\begin{array}{c} (\mathrm{mg} / \mathrm{L}) \\ \mathrm{DO} \end{array}\right\|$	Lab	pH	Comments
						$\begin{aligned} & \text { GROI } \\ & \text { TPHg } \end{aligned}$	Benzene	Toluene	Ethyl- Benzene	Total Xylenes	MTBE				
MW-4 Cont.															
6/28/2002	-	50.76	-17.76	-	+ 33	48,000	2,780	2770	1,530	6,790	25,100	\cdots	PACE	-	
9/12/2002	-	50.76	19.45	-	31.31	46,000	4,500	6,800	2,600	10,000	9,100	-	SEQ	6.8	
12/12/2002	-	50.76	21.29	-	29.47	36,000	5,200	3,400	2,000	6,500	12,000	-	SEQ	67.	
3/10/2003	-	50.76	17.16	--	33.6	70,000	7,000	4,800	3,300	13,000	29,000	--	SEQ	6.7	
5/12/2003	-	50.76	14.51	-	36.25	75,000	7,600	3700	3400	13,000	26,000	-	SEQ	6.8	
8/27/2003	--	50.76	19.32	-	31.44	77,000	7,500	1,300	2,100	4,000	32,000	--	SEQ	6.8	n, 5
11/10/2003	P	50.76	2036	$=$	30.40	110,000	7,100	3100	2,100	5800	25,000	-	SEQM	6.6	
02/03/2004	P	50.76	16.51	,	34.25	160,000	8,400	9,700	5,000	23,000	26,000	-	SEQM	6.7	
05/04/2004	P	50.76	$16.47 \times$	\leqslant	3429	110,000.	8,100	7500	4,300	17,000	<250	-	SEQM	6.7	,
08/31/2004	P	50.76	19.16	--	31.60	91,000	6,600	8,400	3;700	14,000	14,000	- -	SEQM	6.7	
11/23/2004	P	50.76	18.02	$\cdots \times$	32.74	7,400,000	20,000	150000	320000	1,400,000	23,000	\because	SEQM	6.6	S
01/18/2005	P	50.76	:14.21	--	36.55	170,000	5,400	14,000	6,900	33,000	8,800 :	-	SEQM	6.5	5
06/29/2005	P	50.76	13.86	$-$	36.90	640,000	3,500	25,000	24,000	110,000	1700 ,	-	SEQM	72	+ \quad -
09/01/2005	P	50.76	16.89	--	33.87	100,000	3,800	11,000	4,900	33,000	1,100	-	SEQM	6.7	
11/03/2005	T	50.76	19.33	$-$	31.43	490,000	4.700	11,000	10000	49,000	1,500	0.5	SEQM	6.6	
02/14/2006	P	50.76	13.55	-	37.21	970,000	60,000	7,000	36,000	140,000	38,000	-	SEQM	6.8	5
5/30/2006	P	5076	13.52	$-$	37.24	140,000	30000	6,600	6,200	29,000	560,	-	SEQM	6.6	
8/29/2006	--	50.76	17.52	$\cdots-\cdots$	33.24	52,000	4,700	2,500	3,500	12,000	1,800	--	TAMC	6.7	
MW-6															
$7 / 24 / 1992$	$-$	5032	30.63 ,	L.	19.69	ND	1.6	ND	ND,	ND	\pm	- \quad	4	\cdots	- \quad,
7/27/1992	-	50.32	30.63	-	19.69	-	-	.	.	-	- -	-	,	-	
9/15/1992	-	50.32	31.52		18.8	< 50	<0.5	<0.5	<0.5	0.5	T	-	ANA	\cdots	, \quad -
12/15/1992	\%	50.32	32.42	-	17.9	58	1.3	<0.5	<0.5	<0.5	--	--	ANA	\cdots	
3/15/1993	-	50.32	26.29	$-$	24.03	<50	<0.5	$0.6 \times$	<0.5	07.	$-$	-	PACE	-	1
6/7/1993	-	50.32	26.33	-	23.99	<50	<0.5	<0.5	<0.5	1.5	-	-	PACE	-	1
9/23/1993	-	50.32	2964	$-$	20.68	$-$	-		-	-	-	\cdots		-	\square. \quad -
9/24/1993	-	50.32	--	--	--	<50	<0.5	<0.5	<0.5	<0.5	28.5	--	PACE	--	1
12/27/1993	--	50.32	2975	-	20.57	-50	<05	0.5	<05	<0.5	554	-	PACE	-	e,
4/5/1994	--	50.32	27.26	-	23.06	<50	<0.5	<0.5	<0.5	<0.5	295	1.7	PACE	--	e, I
7/22/1994	-	50.32	27.34	-	2298	350	0.5	0.5	0.5	<0.5	419	45	PACE	-	e, ${ }^{\text {a }}$,

Page 10 of 21

Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses
Station \#11117, 7210 Bancroft Ave., Oakland, CA

Well and Sample Date	P/NP	TOC Elevation (feet msl)	Depth to Water (feet bgs)	Product Thickness (feet)	Water Level Elevation (fect ms!)	Concentrations in ($\mu \mathrm{g} / \mathrm{L}$)						$\left\|\begin{array}{c} (\mathrm{mg} / \mathrm{L}) \\ \mathrm{DO} \end{array}\right\|$	Lab	pH	Comments
						$\begin{aligned} & \mathrm{GRO} / \\ & \mathrm{TPHg} \end{aligned}$	Benzene	Toluene	Ethyl- Benzene	Total Xylenes	MTBE				
MW-6 Cont.															
10/13/1994	-	50.32	-	2 $=$	$=$	-	-	-	- \quad,	W, ${ }^{2}$	$-$	-	-	-	g
1/25/1995	--	50.32	22.16	- -	28.16	240	6	<0.5	<0.5	<1	--	-	ATI	--	
- 4/19/1995	-	50.32	-		-		\square	-	-	-	$-\square$	\bigcirc	-	-	B
7/5/1995	-	50.32	20.8	-	29.52	180	<0.50	<0.50	<0.50	<1.0	-	4.9	ATI	-	
10/5/1995	-	5032	24.2	-	26.12	860	<5.0	<5.0	<50	<10	3,600	2.8	ATI	\square	
1/12/1996	-	50.32	25.3	-	25.02	860	<5.0	<5.0	<5.0	<10	2,800	4.2	ATI	-	
4/22/1996	-	50.32	19.13	-	3119	<50	<0.5	<1	<1-	<1	470	43	SPL	-	
- 7/2/1996	-	50.32	20.66	.	. 29.66	100	<0.5	<1	<1.	<1	1,100	4.2	SPL	-	
11/8/1996	-	5032	2098		2934	1,100.	<5	<10	10	10	1,500	43	SPL	-	
- $1 / 3 / 1997$	-	50.32	20.53	-	29.79	<50	<0.5	$<1: 0$	<1.0	<1.0	450	4.5	SPL	-	
4/28/1997	- ,	5032	21.25	$-$	29.07	1,400	605	<10	<1.0	<1.0	3,500	4.4	SPL	-	2
7/1/1997	\cdots	50.32	23.4 "	--	26.92	6,100	<0.5	<1.0	<1.0	<1.0	9,100	3.9	SPL	-	
10/2/1997	-	5032	2516	-	2516.	-	-	$-$	-	-	-a	- \quad \%	-	-	, \quad,
10/3/1997	--	50.32	--	- -	330	<0.5	<1.0.	<1.0	<1.0	2,600	4.4	SPL	-	
\% 1971998	-	5032	2113	$-$	2919	<50	<0.5	<10	<1,0	<10	-10	43	SPL	-	PY
5/6/1998	-	50.32	16.11	--	-34.21	410	<0.5	<1.0	<1.0	<1.0	500	3.6	SPL	--	
-7/21/1998	-	5032	1633	-	33.99	4,300	<5	110	<10	<10	3,800	40	SPL	-	, \quad ?
12/30/1998	-	50.32	20.89 .	\cdots	29.43	-	\cdots	\div	-	-	\cdots	-	-	--	
2/2/1999	-	50.32	202	-	3012	-	\square	- \quad,	$-$	\cdots	$\square \square$	-	-	-	\|
5/10/1999	-	50.32	16.75	\%	33.57	--	-	…	-	-	--	--	-	-	
9/23/1999	-	5032	22.55	\checkmark	2777	<50	<10	<10	<1,0	<1.0	1.600	-	SPL	\cdots	, \quad,
12/23/1999	-	50.32	23	-	27.32	-	-	--	-	-	-	-	-	-	
3/27/2000	$-$	5032	1689	$-$	33.43	1,700	4.4	0.54	<0,5	1	14,000	-	PACE	-	
5/22/2000	-	50.32	18.02	. --	32.3	-	-	-	-	-	-	-	-	--	
\% 8/31/2000	-	50.32	21.62		28.7	1,200	<05	<0.5	0.5	005	$\bigcirc 3900$	-	PACE	-	
12/11/2000	--	50.32	21.81	- -	28.51	--	-	-	-	-	--	-	-	-	
, 3/20/2001	-	5032	1697		33.3	3,300	00.5	<05	<0.5	<15	3,760	-	PACE	-	
6/19/2001	--	50.32	19.3	--	31.02	--	-	-	-	-	-	-	-	-	
9/20/2001	-	50.32	22	-	28.32	2,200	2,04	8.1	3.62	137	2,460	-	PACE	-	
12/27/2001	-	50.32	17.85	--	32.47	830	0.59	<0.5	<0.5	<1.0	1,040	-	PACE	--	
- $2 / 28 / 2002$	-	50.32	1631	-	34.01	1,100.	<0.5	<0.5	<0.5	<10	1.450	-	PACE	-	

Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses
Station \#11117, 7210 Bancroft Ave., Oakland, CA

Well and Sample Date	P/NP	TOC Elevation (feet msl)	Depth to Water (feet bgs)	Product Thickness (feet)	Water Level Elevation (feet msl)	Concentrations in ($\mu \mathrm{g} / \mathrm{L}$)						$\left.\begin{gathered} (\mathrm{mg} / \mathrm{L}) \\ \mathrm{DO} \end{gathered} \right\rvert\,$	Lab	pH	Comments
						$\begin{aligned} & \hline \mathrm{GRO} / \\ & \mathrm{TPHg} \end{aligned}$	Benzene	Toluene	Ethyl- Benzene	Total Xylenes	MTBE				
MW-6 Cont.															
6/28/2002	-	5032	, 17.57		3275	<50	<0.5	<0,	<05	<10	1,020	-	PACE	-	- \quad -
9/12/2002	--	50.32	19.27	-	31.05	190	1.9	4.6	1	7.3	480	\cdots	SEQ	7.1	
12/12/2002	-	5032	20.94	-	2938	270	25	<2.5	<2.	<2.5	500 ,	4	SEQ	69	
3/10/2003	--	50.32	17.11	-	33.21	110	<0.50	<0.50	<0.50	<0.50	190	-	SEQ	7.0	
5/12/2003	-	50.32	15.18	$-\quad$	3514.	50	<0.50	<0.50	<0.50	<0.50	36	-	SEQ	7.0	, \quad,
8/27/2003	-	50.32	18.9	--	31.42	<50	<0.50	<0.50	<0.50	<0.50	8.9	-	SEQ	7.0	\cdots
11/10/2003	P	प 50.32	2013	-	30.19 \%	< 50	<0.50	<0.50	<0,50	<0.50	4,5	-	SEQM	6.8	V, \quad,
02/03/2004	NP	50.32	$\bigcirc 15.83$	--	34.49	<50	<0.50	<0,50	<0.50	<0.50	<0.50	--	SEQM	6.9	
05/04/2004	P	- 50,32,	15.62	$-$	3470	<50	<0.50	<0.50	<0.50	<0.50	- $24 \times$	-	SEQM	6.9	
08/31/2004	P	- 50.32	18.56	.3.......	31.76	<50	<0.50	<0.50	<0.50	<0.50	27	\cdots	SEQM	7.0	
11/23/2004	P,	5032	16.95	-	33.37	\square	--	- \quad -	- -	-	- -	-	4	-	$\mid \sqrt{2}$
01/18/2005	P	50.32	13.61	-	36.71	<50	<0.50	<0.50	<0.50	<0.50	I. 3	-	SEQM	6.8	
06/29/2005	\cdots	50.32	13.55	-	$3677 \times$	\checkmark	- +	- \quad -	-	- -		\cdots	\cdots	-	
09/01/2005	-	50.32	16.52	--	33.80	-	\square	\% - -	-	-	-	-	--	-	
11/03/2005	-	50.32	1928	-	31:04	-	-	-	-	-	$-$	-	-	-	$\square \quad \mathrm{C}$
02/14/2006	\cdots	50.32	-	-	. \because -	\cdots	-	- - -	-	--	$\cdots-\quad \cdots$	-	-	-	g
5/30/2006	$=$	50.32	$-$	-	Kiza	$=$	-	+	-	-	- + +	W,	-	-	g
8/29/2006	-	50.32	17.15	-	33.17	-	-	-	-	-	$\because-\quad \therefore$	-	-	-	
MW-7															
1/25/1995	\cdots	51.4	21.67	$-$	29.73 ,	<50	0.5	<0.5	0.5	<1	W + -	7.0	ATI	-	
4/19/1995	--	51.4	25.27	--	26.13	<50	<0.5	<0.5	<0.5	<1	-	5.0	ATI	-	
7/5/1995	\cdots	51.4	24.63	-	2677	<50	60.50	60.50	<0.50	<1,0		42	ATI	-	
10/5/1995	--	51.4	28.21	-	23.19	83	<0.50	<0.50	<0.50	<1.0	77	4.5	ATI	--	
1/12/1996	-	51.4	- 2929	$-$	2211.	63	<0.50	<0.50	60.50	<1.0	120	48	ATI	-	5
4/22/1996	--	51.4	23.11	-	28.29	<50	<0.5	<1	<1	<1	13	4.8	SPL	--	
7/2/1996	-	51.4	23.56	-	27.84	, 50	<0.5	<1	1	<1	<10	48	SPL	-	
11/8/1996	-	51.4	20.06	-	31.34	<50	<0.5	<1.0	<1.0	<1.0	<10	5.1	SPL	-	
1/3/1997	-	51.4	23.42	$-$	2798	<50	<0.5	<10	<1.0	<1.0	<10	4.7	SPL	-	
4/28/1997	-	51.4	24.12	--	27.28	<50	<0.5	<1.0	<1.0	<1.0	<10	3.9	SPL	-	
:7/1/1997	-	51.4	26,4,	-	25%	<50	<0.5	<10	<1.0	<10	- <10	42	SPL	-	

Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses
Station \#11117, 7210 Bancroft Ave., Oakland, CA

Well and Sample Date	P/NP	TOC Elevation (feet msl)	Depth to Water (feet bgs)	Product Thickness (feet)	Water Level Elevation (feet msl)	Concentrations in ($\mu \mathrm{g} / \mathrm{L}$)						$\left\lvert\, \begin{gathered} (\mathrm{mg} / \mathrm{L}) \\ \mathrm{DO} \end{gathered}\right.$	Lab	pH	
						$\begin{aligned} & \text { GRO/ } \\ & \text { TPHg } \end{aligned}$	Benzene	Tolaene	Ethyl- Benzene	Total Xylenes	MTBE				Comments
MW-7 Cont.															
-10/2/1997	-	51.4	28.14	-	+2326	<50	05	<10	10	<10	<10	4.7	SPL	-	$\cdots \square$,
1/9/1998	--	51.4	24.02	--	27.38	<50	<0.5	<1.0	<1.0	<1.0	<10	4.1	SPL	--	
5/6/1998	-	51.4	21		30.4	1,900	<0.5	40	<10	<10	18800	3.5	SPL	-	
7/21/1998	-	51.4	21.17	-	30.23	50	<0.5	<1.0	<1.0	<1.0	<10	3.7	SPL	-	
12/3071998	-	51.4	22.13	-	29.27	-	\cdots	-	--	\square	$-$	-	-	-	
2/2/1999	--	51.4	22.08	--	29.32	\cdots	-	-	\cdots -	-	-	-	-	--	
5/10/1999	\cdots	- 51.4	18.58	-7	3282	- $+\cdots$	\cdots	\cdots	- \quad -	-	-	\%	-	-	LIOP
9/23/1999	,	51.4	24.29	- - . .	27.11	70	<1.0	<1.0	<10	<1.0	- 4,700	-	SPL	--	
12/23/1999	\square	514	24.53	$-$	2687	- -	-2,	\square	U	$=$	-	-	-	-	
3/27/2000	--	51.4	18.58	+	32.82	910	<0.5	<0.5 :	<0.5	<0.5	2,600 :	--	PACE	-	
5/22/2000	-	51.4,	19.49	-	3191 -	- + -	-	- -	, - - ,	- \times,	-	-	\square	-	
8/31/2000	\bigcirc	51.4	22.53	-	28.87	440	<0.5	<0.5	<0.5	<0.5	900	\cdots	PACE	--	
12/11/2000	-	51.4	22.75		28.65	-	-	-	-	- -	- -	-	-	-	
3/20/2001	--	51.4	18.79	--	32.61	1,100	<0.5	<0.5	<0.5	<1.5	1,210	-	PACE	--	
6/19/2001	\cdots	51.4	19.82	-	31.58	-	-		-	- ${ }^{\square}$	-	-	-	-	, \quad,
9/20/2001	-	51.4	21.35	--	30.05	1,300	1.21	<0.5	<0.5	<1.5	1,550	\cdots	PACE	-	
1227/2001	-	51.4	2036	-	3104	510	<0.5	05	<0.	<10	643	- \quad -	PACE	-	
2/28/2002	-	51.4	21.86	,	29.54	250	<0.5	<0.5	<0.5	<1.0	317	-	PACE		
6/28/2002	-	51.4,	22.64	$-$	28.76	<50	0.5	<0.5	<0.5	<10,	102	-	PACE	-	, \quad, \quad,
9/12/2002	-	51.4	23.51	-	27.89	<50	<0.5	<0.5	<0.5	1	$\cdots 14$	--	SEQ	7.5	
12/12/2002	-	51.4	23.75	$-$	2765	$\bigcirc 50$	<0.5	<0.5	<0.5	0.5	2.5	-	SEQ	7.5	
3/10/2003	--	51.4	21.25	-	30.15	61	<0.50	<0.50	<0.50	<0.50	$99:$	--	SEQ	7.6	
5/12/2003	-	51.4	2144	$-$	2996	<100	<10	≤ 10	<10	<10	120	-	SEQ	76	
8/27/2003	--	51.4	23.3	-	28.1	120	<0.50	<0.50	<0.50	<0.50	84	-	SEQ	7.6	n
11/10/2003	P	51.40	2024	\square	3116	230	<10	10	<10	<1.0	92	-	SEQM	67	0
02/03/2004	P	51.40	20.63	: $\%$	30.77	<250	<2.5	<2.5	<2.5	<2.5	91	-	SEQM	7.5	
05/04/2004	P	51.40 ,	21.89	$-$	29.51	<250	25	$<2,5$	<25	<2.5	190	-	SEQM	7.6	k
08/31/2004	P	51.40	23.16	-	28.24	<500	<5.0	<5.0	<5.0	<5.0	220	-	SEQM	7.3	
11/23/2004	\mathbf{P}	51.40	21.65	- -	2975	590	25	50	11	51	290	-	SEQM	71	
01/18/2005	P	51.40	16.28	-	35.12	<250	<2.5	<2.5	<2.5	2.5	92	-	SEQM	7.3	
06/29/2005	P .	51.40	14,50	- -	3690	2,200	43	97	92	390	250	-	SEQM	8.0	

Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses
Station \#11117, 7210 Bancroft Ave., Oakland, CA

Well and Sample Date	P/NP		Depth to Water (feet bgs)	Product Thickness (feet)	Water Level Elevation (feet msl)	Concentrations in ($\mu \mathrm{g} / \mathrm{L}$)						$\begin{gathered} (\mathrm{mg} / \mathrm{L}) \\ \mathrm{Do} \end{gathered}$	Lab	pH	Comments
						$\begin{aligned} & \hline \text { GRO/ } \\ & \text { TPHg } \end{aligned}$	Benzene	Toluene	Ethyl- Benzene	Total Xylenes	MTBE				
mw-7 Cont.															
09/01/2005	P	51.40	20.41	-	30.99	<500	<5.0	<5.0	<5.0	<50	60	-	SEQM	75	\because
11/03/2005	P	51.40	21.00	-	30.40	130	<1,0	<1.0	<1.0	1.0	130	0.63	SEQM	7.2	w
02/14/2006	P	51.40	1631	-	3509	100	<0.50	<0.50	5050	0.87	62	-	SEQM	7.4	:
5/30/2006	P	51.40	17.58	-	33.82	<50	<0.50	<0.50	<0.50	<0.50	9.1	-	SEQM	7.2	
8/29/2006	-	51.40	18.64	-	32.76	100	2.5	22.5	2.5	<2.5.	140	-	TAMC	6.9	
MW-8															
1/25/1995	-	50.88	31.59	-	19.29	54	<0.5	<0.5	<0.5	<1	-	7.1	ATI	-	
4/19/1995	-	50.88	1918	-	317	<50	<0.5	<0,	0.5	4	-	51	ATI	-	
7/5/1995	-	50.88	19.03	-	31.85	<50	<0.50	<0.50	<0.50	<1.0	-	4.5	ATI	-	
10/5/1995	-	50.88	24.4	-	26.48	<50	<0.50	-0.50	<0.50	<10	<50.	4.1	ATI	-	
1/12/1996	-	50.88	25.51	--	25.37	<50	<0.50	<0.50	<0.50	<1.0	<5.0	4.6	ATI	-	
4/22/1996	-	50.88	18	-	32.88	<50	<0.5	4	<1	<1	<10	48	SPL	-	Max
72/1996	-	50.88	19.83	-	31.05	<50	<0.5	<1	<1	<1	<10	4.5	SPL	--	
-11/8/1996	-	50.88	20.09	-	30.79	50	<0.5	<10	<1,0	110	410	47	SPL	-	\because,
1/3/1997	-	50.88	19.72	-	31.16	<50	<0.5	$<1,0$	<1.0	<1.0	<10	4.4	SPL	-	
4/28/1997	-	50:88	20.44	\cdots	30.44	550	<0.5	110	410	10	10	4.	SPL	-	
7/1/1997	-	50.88	22.72	- -	28.16	<50	<0.5	<1.0	<1.0	<1.0	<10	3.8	SPL	--	
102/1997	-	5088	2451	$=$	2637	<50	<0.5	<1.0	110	410	10	42	SPL	-	
1/9/1998	--	50.88	21.17	--	29.71	<50	<0.5	<1.0	<1.0	<1.0	<10	3.5	SPL	-	
5/6/1998	-	50.88	1834	-	32.54	-50.	0.5	<10	10	10	40	36	SPL	\cdots	
7/21/1998	--	50.88	18.55	-	32.33	90	<0.5	<1.0	<1.0	<1.0	<10	3.3	SPL	--	
12/30/1998	-	50.88	20.4	-	30.48	-	-	-	-	-	-	-	\square	-	
2/2/1999	-	50.88	19.28	-	31.6	-	-	-	-	-	-	--	--	-	
5/10/1999	-	50.88	15.62	-	3526	-	-	-	-	-	-	-	-	-	\square,
9/23/1999	\cdots	50.88	21.74	-	29.14	-	-	-	-	--	-	-	-	--	
13/23/1999.	\cdots	5088	22,83	-	28.05	\triangle	-	-	-	-	\bigcirc	-	\bigcirc	-	$1, ~, ~$
3/27/2000	-	50.88	16.25	-	34.63	<50	<0.5	<0.5	<0.5	<0.5	<0.5	-	PACE	-	
5/22/2000	-	50.88	17.06	-	3382	-	-	-	-	-	-	-	-	-	:
8/31/2000	-	50.88	21.72	-	29.16	-	-	--	-	-	-	-	--	-	
12/11/2000	-	50:88	2203	-	28.85	\cdots	-	-	-	-	-	-		-	

Page 14 of 21

Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses
Station \#11117, 7210 Bancroft Ave., Oakland, CA

Well and Sample Date	P/NP	TOC Elevation (feet ms)	Depth to Water (feet bgs)	Product Thickness (feet)	Water Level Elevation (feet msl)	Concentrations in ($\mu \mathrm{g} / \mathrm{L}$)						$\left.\begin{gathered} (\mathrm{mg} / \mathrm{L}) \\ \mathrm{DO} \end{gathered} \right\rvert\,$			
						$\begin{aligned} & \hline \text { GRO/ } \\ & \text { TPHg } \end{aligned}$	Benzene	Toluene	Ethyl- Benzene	Total Xylenes	MTBE		Lab	pH	Comments
MW-8 Cont.															
- 3/20/2001,	-	50888	1623 ,	-	3465	<50	<0.5	<0,5	<0.5	<1.5	0991	-	PACE	-	
6/19/2001	--	50.88	19.35	-	31.53	-	-	-	--	--	--	-	-	-	
9/20/2001	\square	50.88	21.95		28.93	-	-	$\stackrel{ }{ }$	-	-	-	-	-	-	
12/27/2001	--	50.88	16.98	-	33.9	-	-	-	--	--	--	--	-	-	\cdots
2/28/2002	-	- 50.88	1538	\cdots	35.5	<50	0.5	00.5	<0.5	<10.	<0, 5	-	PACE	-	
6/28/2002	-	50.88	16.97	-	33.91	-	-	-	-	-	\cdots	--	--	--	
9/12/2002	$-$	50.88	19.47%	$=$	31.41	\square	\bigcirc	-	4	$-$	$-$, \quad \%	-	-	
12/12/2002	-	50.88	20.84	-	30.04	$\cdots-$	-	-	\cdots	\therefore -	$\because-$	-	--	--	
3/10/2003	-	50.88 ,	16.56	\sim	3432 ,	50	<0.50	<0.50	<0.50	<0.50	3	-	SEQ	71	
5/12/2003	-	50.88	13.63	- -	37.25	-	-	-	--	: --	\therefore--	-	-	-	
8/27/2003	-	50.88	189	, -	3198	-	-	-	-	\bigcirc	-	\square	$-$	-	π
11/10/2003	\cdots	50.88	19.68	- -	31.20	-	- -	-	--	--	--	-	:	-	
02/03/2004	P	50.88	1476	-	3612	<50	<0.50	<0.50	00.50	<0.50	<0.50	-	SEQM	7.5	
05/04/2004	-	50.88	14.69	-	36.19	-	-	-	-	-	-	--	-	-	
08/31/2004	U-	50.88	18.08	$-$	3280	ψ	$-$	-	$-$	$-$	2	-	-	\cdots	
11/23/2004	NP	50.88	15.77	- -	35.11	- -	-	,	-	-	. --	--	-	--	
01/18/2005	P	50.88	-12.04	-	-3884	<50	<0,50	<050	<0,50	0.50	<0,50	- $=$	SEQM	7.0	
06/29/2005	-	50.88	--	--	--	-	--	--	--	--	--	-	-	-	v \cdots
09/01/2005	$-$	5088	1612	-	3476	$-$	$-$	-	-	$-$	-	\cdots	\cdots	-	W, \quad,
11/03/2005	-	50.88	19.42	-	31.46	-	--	-	-	- -	-	--	--	-	
02/14/2006	P	50.88	12.43	$-$	38.45	<50	<0.50	<0.50	<0.50	<0.50	<0.50	-	SEQM	70	a
5/30/2006	-	50.88	12.40	--	38.48	--	-	-	-	--	--	--	-	-	
8/29/2006	\square	50.88	17.16	$-$	33.72	$-$	$-$	-	-	-	\bigcirc	$-$	-	-	
MW-9															
1/25/1995	-	51.05	22.32	-	28.73	<50	<0.5	<0.5	<0.5	<1	-	7.4	ATI	-	
-4/19/1995	-	51.05	1986		3119	<50	<0.5	<0.5	<05	<1		52	ATI	-	
7/5/1995	-	51.05	20.78	--	30.27	<50	<0.50	<0.50	<0.50	<1.0	-	4.4	ATI	-	
10/5/1995	-	$-$		$-$	$-$	52	<0.50	6050	<0.50	1.0	160	-	ATI	-	d
10/5/1995	-	51.05	24.33	-	26.72	<50	<0.50	<0.50	<0.50	<1.0	-	2.3	ATI	-	
1/12/1996	-	51.05	25.44	-	25.61	<50	<0.50	<0,50	<0.50	<10	- 50	32	ATI	-	आ \%-

Page 15 of 21

Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses
Station \#11117, 7210 Bancroft Ave., Oakland, CA

Well and Sample Date	P/NP	TOC Elevation (feet msl)	Depth to Water (feet bgs)	Product Thickness (feet)	Water Level Elevation (feet msl)	Concentrations in ($\mu \mathrm{g} / \mathrm{L}$)						$\begin{gathered} (\mathrm{mg} / \mathrm{L}) \\ \mathrm{DO} \end{gathered}$			
						$\begin{aligned} & \mathrm{GRO} / \\ & \mathrm{TPHg} \end{aligned}$	Benzene	Toluene	Ethyl- Benzene	Total Xylenes	MTBE		Lab	pH	Comments
MW-9 Cont.															
4/22/1996	\square	51.05	-18.01\%	-	+ 33.04	<50	<0.5	<1	<1	<1	11	3.5	SPL	-	
7/2/1996	--	51.05	19.7	-	31.35	<50	<0.5	<1	<1	<1	<10	3.3	SPL	-	
11/8/1996	-	51,05	1996	-	31.09	50	<0.5	<10	<10	<1.0	≤ 10	37	SPL	-	
1/3/1997	-	51.05	19.52	- -	31.53	<250	<2.5	<5.0	<5.0	<5.0	<50	4.4	SPL	-	
4/28/1997	-	51.05	2022	$=$	30.83 .	<50	<0.5	<10	<10	<10	<10	4.0	SPL	-	
7/1/1997	--	51.05	- 22.59	$-^{-}$	28.46	<50	<0.5	<1.0	<1.0	<1.0	<10	3.9	SPL	--	2m+
10/2/1997	-	5105	2433	$-$	2672	$4 .$	-	$=$	- $=$	- ,	-	\cdots	\cdots	-	W ,
10/3/1997	-	51.05	$\therefore-$	$\because-$	-	<50	<0.5	<1.0	<1.0	<1.0	<10	4.4	SPL	-	-
17911998	- +	5105	$2111{ }^{2}$	-1	29.94	- 50	0.5	<10	<10	$\leqslant 10$	410	3.9	SPL	\bigcirc	
5/6/1998	-	51.05	18:26	\cdots--	32.79	<50	<0.5	<10	$\therefore<1.0$	<1.0	<10	4.0	SPL	-	
7/21/1998	\cdots	51.05	18.46,	$-$	32.59	1-70,	<0.5	<10	110	<1.0	<10,	37	SPL	\cdots	
12/30/1998	-	51.05	-	\cdots	-	-	-	--	--	-	--	--	-	-	g
2/2/1999	$-$	51.05	-		$-$	-	-	$-$	4	- -	-	-	- \quad,	-	B
5/10/1999	-	51.05	--	… --	--:	\bigcirc	$-$	\cdots	- -	-	-	-	.	-	- g
9/23/1999	\sim	51.05	$=$	Y	-	\cdots	-	- ${ }^{2}$	$-$	-	-	-	-	-	B
12/23/1999	--	51.05	-	-	-	$\cdots-$	--	- - - -	-	-	- -	\cdots	--	-	$\therefore \mathrm{g}$
3/27/2000	$-$	5105	-	$-$	-	-	- -2	- ${ }^{2}$	-	-	2	-	-	-	B
5/22/2000	-	51.05	- -	-	\therefore	\%	--	,	-	-		-	-	-	g ,
8/31/2000	5	51.05	-	$-$	-	4	$-$	$-$	$-$	-	-	-	-	-	E
12/11/2000	-	51.05	- - ...	-	-	--	-	- -	$\therefore-$	-	, -- -	-	--	-	g
3/20/2001	-	51.05	-	\geq	-	$1=$	\square	- \quad,	$-$	-	-	-	$-$	-	E
6/19/2001	-	51.05	- --	, --	-	.	-	-	--	--	- -	-	-	-	g
9/20/2001	-	51.05	222	-	28.85	6300	2.87	<0.5	<0.5	<1.5	8,640	-	PACE	-	+
12/27/2001	-	51.05	18.92	-	32.13	-	-	-	--	--	-	-	--	-	:
2/28/2002	-	51.05	1722	$-$	3383	19,000	1,560	61.3	84	111	20,900	\sim	PACE	-	+ , +
6/28/2002	-	51.05	18.2	--	32.85	-	-	-	-	--	--	-	-	--	\%.
9/12/2002	-	51.05	19.92	-	31.3	5,100	570	180	<25	220	6,400	-	SEQ	68.	N. a
12/12/2002	-	51.05	21.78	--	29.27	--	-	-	-	-	--	--	--	-	
3/10/2003	\%	51.05	1825	$-$	32.8	26,000	2,500	<100	<100	<100	33,000	-	SEQ	6.9	
5/12/2003	-	51.05	16.29	-	34.76	-	-	-	-	-	-	-	SEQ	-	
$8 / 27 / 2003$	-	51.05	19.69	-	3136	11,000	830	<50	550	<50	6,300	-	SEQ	7.1	n

Page 16 of 21

Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses
Station \#11117, 7210 Bancroft Ave., Oakland, CA

Well and Sample Date	P/NP	TOC Elevation (fect msl)	Depth to Water (feet bgs)	Product Thickness (fect)	Water Level Elevation (feet msl)	Concentrations in ($\mu \mathrm{g} / \mathrm{L}$)						$\begin{gathered} (\mathrm{mg} / \mathrm{L}) \\ \mathrm{DO} \end{gathered}$	Lab	pH	Comments
						$\begin{aligned} & \text { GRO/ } \\ & \text { TPHg } \end{aligned}$	Benzene	Tolate	EthylBenzene	Total Xylenes	MTBE				
MW-9 Cont.															
11/10/2003	-	51.05	19,97	$-$	31.08	-	-	-	-	$=$	-	-	-	-	
02/03/2004	P	51.05	17.23	--	33.82	6,200	180	<50	<50	<50	2,100	-	SEQM	7.2	
05/04/2004	-	51.05	17.17	-	33.88	-	\square	-	-	- +	\because	-	$\square \times$	\checkmark	
08/31/2004	P	51.05	19.71	-	31.34	$<2,500$	210	<25	<25	<25	1,500	-	SEQM	7.0	
1 11123/2004	-	51.05	18.58	-	- 32, ${ }^{2} 7$	-	-	- ${ }^{\text {a }}$	-	-	-	,	- ${ }^{\text {a }}$,	-	, \quad, \quad,
01/18/2005	P	51.05	14.98	. - -	. $36.07 \ldots$	490	32	<2.5	<2.5	8.9	$\cdots 130 \cdots$	--	SEQM	6.9	
06/29/2005	-	51.05	1474	-	-36.311,	$-$	\bigcirc	$=$	- +	$\square \square$	W, ${ }^{2}$	-	-	-	
09/01/2005	P	51.05	17.42	-	33.63	3,500	1,300	<25	<25	28	$\bigcirc 240$	-	SEQM	6.9	H.3.a.
11/03/2005	-	51.05	19.90	-	31.5	- , \%	- \quad,		-	, - ,			- ,	\cdots	W,
02/14/2006	P	51.05	12.95	$\therefore-$	38.10 \%	2,700	<25	<25	<25	<25	2,200	-	SEQM	7.0	w
5/30/2006	\square	- 51.05	13.76	2	37.29,	- - ,	- $\quad \cdots$	$-$	4	-	-	-		-	
8/29/2006	-	51.05	17.86	-	33.19	1,200	580	<25	<25	<25	$\cdots<25$	\cdots	TAMC	6.9	
MW-10															
$1 / 9 / 1998$	-	-	20.97	-	-	50		<10	<10	<10	cio	43	SPL	-	h
5/6/1998	--	--	18.07	-	- $-\cdots$	800	<0.5	<1.0	<1.0	<1.0	980	3.9	SPL	--	h
-7/21/1998	-	-	¢1828	-	$-$	80	<0.5	<10	<10	<10	<10	40	SPL	-	h
$\therefore 12 / 30 / 1998$	-	\cdots	22.22	-	-	-	--	-	-	-	--	-	-	--	h
2/2/1999	\cdots	-	2183	-	-	940	<10	110	10	≤ 10	690	\cdots	SPL	-	h
- 5/10/1999	--	--	17.99	-	-	-	-	\cdots	-	-	--	-	-	-	1
9/23/1999	-		22.61	$-$	-	<50	<10	<10	<10	14	1,000	\square	SPL	-	h
12/23/1999	-	-	23.75	- -	-	--	-	-	-	--	--	-	--	--	h
3/27/2000	-	$-$	18.83	$-$	$-$	1900	<0,5	<0.5	0.5	<0.5	28,000	-	PACE	-	h
5/22/2000	--	-	19.47	--	--	-	-	-	-	-	-	-	--	\cdots	h
8/31/2000	-	$-$	22.64	-	$-$	1700	<0.5	60.5	0.5	<0.5	13,000	-	PACE	-	4
12/11/2000	-	.	22.84	-	,	--	-	-	-	-	--	-	--	--	1
3/20/2001	-	-	19.57	-	-	16000	<0.5	<0,5	0.5	615	11,900	$-$	PACE	-	h
6/19/2001	--	- .-	20.63	\cdots -	: - -	-	-	-	-	-	--	-	-	-	h
9/20/2001	-		2307	-	$-$	$5 ; 800$	<0.5	<0.5	<05	15	8,160	-	PACE	-	h
12/27/2001	-	-	20.92	-	-	6,600	17.3	14.5	<12.5	<25	7,750	-	PACE	--	h
2/28/2002	-	-	18.52	-	-	3,600	10.8	<0.5	<0.5	$<1,0$	5380	-	PACE	-	¢ h \%

Page 17 of 21

Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses
Station \#11117, 7210 Bancroft Ave., Oakland, CA

Well nnd Sample Date	P/NP	TOC Elevation (feet msl)	Depth to Water (feet bgs)	Product Thickness (fect)	Water Level Elevation (feet msl)	Concentrations in ($\mu \mathrm{g} / \mathrm{L}$)						$\begin{gathered} (\mathrm{mg} / \mathrm{L}) \\ \text { Do } \end{gathered}$	Lab	pH	Comments
						$\begin{aligned} & \hline \mathrm{GRO} / \\ & \mathrm{TPHg} \end{aligned}$	Benzene	Toluene	Ethyl- Benzene	Total Xylenes	MTBE				
MW-10 Cont.															
-6/28/2002	-	-	18:41	$\square-$		<50	05	405	0.5	<10	2,570	\cdots	PACE	-	h .
9/12/2002	-	-	20.57	--	-	660	<5.0	<5.0	<5.0	<5.0	3,300	-	SEQ	7.2	h
12/12/2002	-	-	22.8	-	-	1,400	55.	<5.0	550	<5.0	3,300	-	SEQ	69	\cdots
3/10/2003	--	-	19.26	-	-	1,700	<5.0	<5.0	5.3	15	2,800	-	SEQ	6.9	h
5/12/2003	-	-	179	-	-	1,500	<12	<12	$\leqslant 12$	<12	2,200	-	SEQ	69	$\cdots \mathrm{h}$
8/27/2003	--	-	20.82	--	-	4,100	<25	<25	<25	<25	2,800	-	SEQ	7.0	n, h
11/10/2003	P	-	2192	-	$\stackrel{\square}{ }$	-5,000	50	S50	550	550	3,300	-	SEQM	68	
02/03/2004	P	-	18.52	--	-	5,100	<50	<50	<50	<50	2,300	-	SEQM	7.0	$\cdots \mathrm{q}$
05/04/2004	P	-	1763	-	-	<2,500	<25	23	25	25	1,600	-	SEQM	68	IMO.
08/31/2004	P	-	20.67	-	-	<5,000	<50	<50	<50	<50	1,900	--	SEQM	7.0	
11/23/2004	P	-	19.79	-	- -	2.600	25	25	S2	25	2300	-	SEQM	$6: 8$	M. M
01/18/2005	P	-	16.13	-	-	560	<5.0	< 5.0	<5.0	<5.0	530	-	SEQM	6.9	
06/29/2005	P	-	15:56	-	"-".	110	19	4.6	4.2	17	71	-	SEQM	6.8	No
09/01/2005	P	-	18.10	--	- -	<250	2.5	<2.5	2.5	<2.5	280	-	SEQM	6.9	
11/03/2005	P	-	20.90	-	:	800	5.0	<50.	5:0	70	770	0.71	SEQM	6.8	IN
02/14/2006	P	--	15.58	-:	-	600	<0.50	<0.50	<0.50	<0.50	400	-	SEQM	7.1	$\cdots \quad \mathrm{x}$
5/30/2006	P	-	1470	, ${ }^{-}$	-	95	<0.50	<0.50	<0. 50	<0.50	<0.50.	\cdots	SEQM	67	
8/29/2006	-	-	18.69	-	-	250	< 5.0	< 5.0	<5.0	< 5.0	490	-	TAMC	6.7	
QC-2															
-9/15/1992	-	-	\checkmark	\square	\square	<50	60.5	<0.5	0.5	<0.5	-	-	ANA	\cdots	$1+$
12/15/1992	-	--	-	-	--	<50	<0.5	<0.5	<0.5	<0.5	-	-	ANA	-	$\cdots \mathrm{i}$
3/15/1993	-	-	-	-	-	50	<0.5	605	00.5	<0.5	\cdots	-	PACE	-	11
$6 / 7 / 1993$	-	-	-	-	--	<50	<0.5	<0.5	<0.5	<0.5	--	-	PACE	-	i, 1
9/24/1993	-	-	\cdots	-	-	50	<0.5	<0.5	0.5	<0.5	5.0	-	PACE	-	1,
12/27/1993	-	-	-	-	-	<50	<0.5	<0.5	<0.5	<0.5	<5.0	-	PACE	-	i, 1
4/5/1994	-	-	-	-		50	05	<0.5	<0.5.	<0.5	45.0	-	PACE	\cdots	, 1,1,
7/22/1994	--	--	-	-	-	<50	<0.5	<0.5	<0.5	<0.5	<5.0	--	PACE	--	i, 1
10/13/1994	-	-	$=$	-	\cdots	550	<0.5	<05	<0.5	<0.5	5.0	-	PACE	-	+1
1/25/1995	-	-	\cdots	-	--	<50	<0.5	2	0.6	1	-	\cdots	ATI	-	i
4/19/1995	-	-	-	-	-	<50	0.5	0.5	0.5	<0.5	-	-	ATI	-	1

Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses
Station \#11117, 7210 Bancroft Ave., Oakland, CA

Well and Sample Date	P/NP	TOC Elevation (feet msl)	Depth to Water (feet bgs)	Product Thickness (feet)	Water Level Elevation (feet msl)	Concentrations in ($\mu \mathrm{g} / \mathrm{L}$)						$\left\|\begin{array}{c} (\mathrm{mg} / \mathrm{L}) \\ \mathrm{DO} \end{array}\right\|$	Lab	pH	Comments
						$\begin{aligned} & \text { GRO/ } \\ & \text { TPHg } \end{aligned}$	Benzene	Toluene	Ethyl- Benzenc	Total Xylenes	MTBE				
QC-2 Cont.															
- 7/5/1995	\square	$-$	$-$	$-$	4	<50	<0.50	<0.50	<0.50	10	- 4 -	\checkmark	ATI.	-	1
10/5/1995	-	--	*	- -	-	<50	<0.50	<0.50	<0.50	<1.0	<5.0	-	ATI	-	i
1/12/1996	\square	5	$-$	\square -	2	<50	<0.50	60.50	<050	410	<5:0	-	ATI	-	- 1,
4/22/1996	--	--	-	.	……...	<50	<0.5	<1	<1	<1	<10	-	SPL	--	i
7/2/1996	-	$-$	1π	$-$	we	<50	0.5	4	<1,	<1	- <10	-	SPL	$\underline{ }$	$1 \times \quad 1$

ABBREVIATIONS AND SYMBOLS:

$<=$ Not detected at or laboratory reporting limit
.-- = Not analyzed/applicable/measurable
$\mu \mathrm{g} / \mathrm{L}=$ Micrograms per liter
ANA $=$ Anamatrix, lnc.
$\mathrm{ATI}=$ Analytical Technologies, Inc.
DO $=$ Dissolved oxygen
DTW $=$ Depth to water in ft bgs
ft bgs $=$ Feet below ground surface
ft MSL $=$ Feet above mean sea level
GRO $=$ Gasoline range organics
GWE = Groundwater elevation in ft MSL
$\mathrm{mg} / \mathrm{L}=$ Milligrams per liter
MTBE $=$ Methyl tert butyl ether
NP $=$ Well not purged prior to sampling
$\mathrm{P}=$ Well purged prior to sampling
PACE = Pace, Inc.
SEQ/SEQM = Sequoia/Sequoia Morgan Hill Analytical
SPL = Southern Petroleum Laboratories
TOC $=$ Top of casing in ft MSL
TPH-g $=$ Total petroleum hydrocarbons as gasoline

FOOTNOTES:
$\mathrm{c}=$ Concentrations reported as diesel from MW-1, MW-2 and MW-4 are primarily due to the presence of a lighter petroleum product, possibly gasoline or kerosene.
$\mathrm{d}=$ Blind duplicate
$\mathrm{e}=\mathrm{A}$ copy of the documentation for this data is included in Appendix C of Alisto report 10-018-05-004
$\mathrm{f}=$ Well not sampled due to presence of free product (FP)
$\mathrm{g}=$ Well inaccessible
$h=$ TOC not surveyed
$\mathrm{i}=$ Travel blank.
$\mathrm{j}=$ EPA method by 802018260 .
$\mathrm{k}=$ Samples ran outside of EPA recommended hold time.
$k=$ Samples ran outside of EPA recommended hold time.
$1=$ A copy of the documentation for this data can be found in Blaine Tech Services report 010619-C-2. The MTBE datn for the March 15, 1993 and June 7, 1993 events have been destroyed.
$\mathrm{m}=$ Thickness of SPH is only an estimate. The resulting GWE will not be used in contouring.
$n=$ Samples analyzed by EPA Method 8260 B for $\mathrm{TPH}-\mathrm{g}$, benzene, toluene, ethylbenzene, total xylenes, and fuel oxygenates
$0=$ Discrete peak (a) C6-C7.
$\mathrm{q}=$ Discrete peak @ C5-C6.
$r=$ Well was dry
$s=$ Sheen in well.
$t=$ DTW and resulting GWE were anomalous and not used in groundwater contouring.
$u=$ Anomalously low concentrations reported from Cambria. Do not appear to support historic trends.
$\mathrm{v}=$ Unable to locate well.
$w=$ The hydrocarbon result for GRO was partly due to individual peaks in the quantitation range.
$\mathrm{x}=$ Initial analysis for MTBE within holding time but required dilution.

NOTES:

Casing elevations surveyed to the nearest 0.01 ft MSL
GWE adjusted assuming a specific gravity of 0.75 for FP
During the third quarter of 2002, URS Corporation assumed groundwater monitoring activities for BP.

range resulting in a higher concentration being reported.
Beginning in second quarter 2004, the carbon range for GRO was changed from $\mathrm{C} 6-\mathrm{Cl0}$ to $\mathrm{C} 4-\mathrm{Cl} 2$.
Values for pH and DO are field measurements.
 accuracy of this information.

Table 2. Summary of Fuel Additives Analytical Data
Station \#11117, 7210 Bancroft Ave., Oakland, CA

Well and Sample Date	Concentrations in ($\mu \mathrm{g} / \mathrm{L}$)								Comments
	Ethanol	TBA	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	
EX-1									
05/04/2004	<5,000	<1,000	2,500	25	25,	38	<25	- 35	
08/31/2004	$<10,000$	<2,000	2,100	<50	< 50	<50	<50	<50	
11/23/2004	<5,000	41,000	3,000	<25	<25	74	25	25	Q \quad, \quad, \quad,
01/18/2005	<5,000	$<1,000$	2,200	<25	<25	54	<25	<25	a
06/29/2005	<5,000	<1,000	1,400	25	25,	- 30	<25	<25	
09/01/2005	$<5,000$	<1,000	2,000	<25	<25	46	<25	<25	
11/03/2005	<5,000	$<1,000$	3,000	<25	S2	87	12	< 25	UNO
02/14/2006	<15,000	$<1,000$	1,100	<25	<25	<25	<25	<25	a $\cdots \cdots{ }^{\text {a }}$
5/30/2006	<15000	<1,000	1,400	<25	<25	37	<25	C25	a
8/29/2006	$<15,000$	$<1,000$	2,500	<25	<25	56	<25	<25	
EX-2									
05/04/2004	<100	20	2-46	0.50	00.50	<0.50.	0.50	-0.50	
08/31/2004	<500	<100	130	<2.5	<2.5	3.4	<2.5	<2.5	
11/23/2004	<100,	$\bigcirc 20$	5 5.8	00.50	<050	<0.50	<0.50	<0.50	2 \quad,
01/18/2005	<100	<20	6.5	<0.50	<0.50	<0.50	<0.50	<0.50	$a \mathrm{a}$
06/29/2005	100	-20	24	0.50	<0, ${ }^{50}$	<0.50	<0.50	<0.50,	,
09/01/2005	<100	<20	55	<0.50	<0.50 \%	0.56	<0.50	<0.50	
11/03/2005	<100	$\bigcirc 20$	$39 \times$	00.50	<0.50	0.80	<0,50	<0.50	
02/14/2006	<300	<20	0.72	<0.50	<0.50	<0.50	<0.50	…<0.50	$\cdots \cdots \quad \therefore$
5/30/2006	<300	20	78	0.50	00.50	0.50	<0.50	<0.50,	
8/29/2006	<300	<20	94	<0.50	<0.50	0.98	<0.50	<0.50	
MW-1									
88/27/2003	<100	<2	4.2,	<0.50	<0.50,	- 050	$-$	-	, \quad, \quad, ,
11/10/2003	<100	<20	0.51	<0.50	<0.50	<0.50	--	--	\cdots.. . . .
02/03/2004	<100	<20	<0.50	<050	<0.50	<0.50	<0.50	< 0.50	+ \quad, \quad, \quad +
05/04/2004	<100	<20	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
0831/2004	<100	, 20	050	<0.50	<0, 00	0.50	<0,50	c0.50	
01/18/2005	<100	<20	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	a
02/14/2006	<300	20	<0.50	<0.50	0.50	<0.50	<0.50	0.50	a
MW-2									

Table 2. Summary of Fuel Additives Analytical Data
Station \#11117, 7210 Bancroft Ave., Oakland, CA

Well and Sample Date	Concentrations in ($\mu \mathrm{g} / \mathrm{L}$)								Comments
	E1hanol	TBA	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	
MW-2 Cont.									
88/27/2003	<25000	<5,000	5,100	<120	<120	140	-	\cdots	
11/10/2003	< 50,000	<10,000	4,200	<250	<250	<250	- -	- --	
02/03/2004	<100,000	<20,000	1,900	<500	<500	<500	<500	<500	
05/04/2004	< 50,000	<10,000	2,500	<250	<250	<250	<250	<250	
08/31/2004	<50,000	<10,000	3,400	250	- 250	<250	<250	<250	
11/23/2004	< 50,000	<10,000	2,400	<250	<250	<250	<250	<250	
01/18/2005	20,000	<4,000	3,700	<100	<100	<100	<100	<100	4
06/29/2005	<10,000	<2,000	3,600	<50	<50	72	<50	<50	
$09 / 01 / 2005$	<20,000	<4,000	5,100	<100	- 100	100	<100	<100	V. W , \quad,
11/03/2005	<20,000	<4,000	3,700	- ... <100	<100	100	<100	<100	
02/14/2006	<60,000	<4,000	3,400	<100	<100	<100	<100	<100	a
5/30/2006	$<60,000$	$<4,000$	2,300	<100	<100	<100	<100	<100	
8/29/2006	$<60,000$	4,000	13,000	<100	$\underline{100}$	100	<100	-100	
MW-3									
8/27/2003	<100	<20	<0.50	<0.50	<0:50	<0.50	--	-	
02/03/2004	<100	20	< 050	< 0.50	<050	40.50	<0.50	- 60.50	O 2 O \quad,
08/31/2004	<100	<20	$<0 ; 50$	<0.50	<0.50	<0.50	<0.50	<0.50	
01/18/2005	<100	20	<0.50	<0.50	0050	<050	<0,50	0.50	a
02/14/2006	<300	<20	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	a
MW-4									
8/27/2003	<50,000	<10,000	32,000	250	<250	250	-		
11/10/2003	<100,000	$<20,000$	25,000	<500	<500	<500	..- .	-	
02/03/2004	<100,000	<20,000	26,000	<500	$\leqslant 500$	<500	<500	<500	
05/04/2004	< 50,000	$<10,000$	<250	<250	<250	<250	<250	<250	
08/31/2004	<50,000	<10,000	14,000	-250	<250	250	$\bigcirc 50$	<250	
11/23/2004	< 500,000	<100,000	23,000	<2,500	$<2,500$	$<2,500$	<2,500	$<2,500$	
01/182005	<50,000	<10,000	8,800	250	250	<250	<250	- 250	a
06/29/2005	$<50,000$	$<10,000$	1,700	<250	<250	<250	<250	<250	
09/01/2005	<100,000	<20,000	1,100	<500	<500.	<500	<500	<500	
11/03/2005	<100,000	$<20,000$	1,500	<500	<500	<500	<500	<500	

Table 2. Summary of Fuel Additives Analytical Data
Station \#11117, 7210 Bancroft Ave., Oakland, CA

Well and Sample Date	Concentrations in ($\mu \mathrm{g} / \mathrm{L}$)								Comments
	Ethanol	TBA	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	
MW-4 Cont.									
02/14/2006	< 300,000	$<20,000$	38,000	<500	<500	1,000	< 500	<500	a
5/30/2006	<300,000	<20000	560	<500	<500	<500	<500	- 500	Q \quad + \quad, \quad,
8/29/2006	<300,000	$<20,000$	1,800	<500	<500	<500	<500	<500	
MW-6									
8/27/2003	<100	<20	89	<050	<0,50	\ll0,50	- \quad -	$-$	Q \quad U \quad, \quad, \quad,
11/10/2003	<100	<20	4.5	<0.50	$<0,50$	<0.50	. - - .	-	
02/03/2004	<100	<20	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	a
05/04/2004	<100	<20	24	<0.50	<0.50	<0.50	<0.50	<0.50	
08/3112004	<100	- <20	-27	<0.50	<0, 0	<0.50	<0.50	00.50	N
01/18/2005	<100	<20	1.3	<0.50	<0.50	<0.50	<0.50	<0.50	a
MW-7									
8/27/2003	<100	- < 20	84	<050	-0.50	<0.50	$-$	$-$, \quad,
11/10/2003	<200	<40	92	<1.0	<1.0	$\because<1.0$	-	$\cdots-\cdots$	
02/03/2004	<500	<100	- 91	<2.	<25	25	2.5	2.5	1
05/04/2004	<500	<100	190	<2.5	<2.5	<2.5	<2.5	<2.5	
08/31/2004	<1,000	<200	220	<50	-50.	< 50	<5.0	< 5.0	
11/23/2004	<500	<100	290	<2.5	<2.5	<2.5	<2.5	… <2.5	
01/18/2005	<500	<100	92	25	$\times 25$	<2.5	-25,	45,	a
06/29/2005	<500	<100	250	<2.5	<2.5	<2.5	<2.5	<2.5	
09/01/2005	<1,000	<200	60	<5.0	50.	50	450.	50	Q
11/03/2005	<200	<40	130	<1.0	<1.0	<1.0	<1.0	$<1: 0$	\
02/14/2006	<300	<20	62	<0.50	$<0,50$	<0.50	<0.50	< <0.50	\square
5/30/2006	<300	<20	9.1	<0.50	<0.50	<0.50	<0.50	<0.50	
8/29/2006	$<1,500$	<100	140	<2.5	<2.5	<2.5	2.5	2.5	
MW-8									
02/03/2004	<100	<20	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
01/18/2005	<100	<20	<0.50	<0.50	<0.50	<0.50	<050	<0.50	n
02/14/2006	<300	<20	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	\mathfrak{a}
MW-9									

Table 2. Summary of Fuel Additives Analytical Data

Station \#11117, 7210 Bancroft Ave., Oakland, CA

Well and Sample Date	Concentrations in ($\mu \mathrm{g} / \mathrm{L}$)								Comments
	Ethanel	TBA	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	
MW-9 Cont.									
8/27/2003	<10,000	<2,000	6,300	<50	<50	<50	-	-	
02/03/2004	<10;000	<2,000	2,100	<50	<50	<50	<50	-50,	\mathbf{a}
08/31/2004	<5,000	<1,000	1,500	<25	<25	<25	<25	<25	
01/18/2005	\$500	150	130	<2,5	<25	<2,	2,	2.5	\square
09/01/2005	<5,000	2,700	240	<25	<25	<25	<25	<25	
02/14/2006	<15,000	<1,000	2,200	<25	< 25	<25	25	425	a
8/29/2006	$<15,000$	2,100	<25	<25	<25	<25	<25	<25	
MW-10									
8/27/2003	<5,000.	< 1,000	2,800	<25.	25	≤ 25	$-$	-	$10 \left\lvert\, \begin{aligned} & 10 \end{aligned}\right.$
11/10/2003	<10,000	<2,000	3,300	<50	<50	<50	-	\ldots -	
02/03/2004	<10,000	<, 000	2300	<50	< 50	<50	<30	<50	8
05/04/2004	<5,000	<1,000	1,600	<5	<25	<25	<25	<25	
08/31/2004	<10,000	<2,000	1,900	<50	<50	<50	< 50	550	U \quad U
11/23/2004	<3,000	<1,000	2,300	<25	<25	<25	<25	<25	
01/18/2005	<1,000	<200	530	< 50	2, 5.0	<5.0	50	<50	a
06/29/2005	<100	<20	71	<0.50	$\therefore<0.50$	<0.50	<0.50	<0.50	
09/01/2005	<500	<100	- 280	25	2.5	<2,5	<25	25	Q
11/03/2005	$<1,000$	<200	770	<5.0	<5.0	<5.0	<5.0	<5.0	
02/14/2006	<300	34	400	<0.50	<0,50	1.2	<0, 0	< 0.50	\because, b
5/30/2006	<300	<20	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
8/29/2006	<3,000	<200	490	<5.0	- <50	$\bigcirc 5.0$	5.0	< 5.0	

ABBREVIATIONS AND SYMBOLS

-- Not analyzed/applicable/measurable
$<=$ Not detected above reported detection limit
1,2-DCA $=1,2$-Dichlorocthane
$\mu \mathrm{g} / \mathrm{L}=$ Micrograms per Liter
DIPE $=$ Di-isopropyl ether
$E D B=1,2$-Dibromoethane
ETBE $=$ Ethyl tert-butyl ether
MTBE $=$ Methyl tert-butyl ether
TAME $=$ tert-Amyl methyl ether
TBA $=$ tert-Butyl alcohol

FOOTNOTES:

=: The continuing calibration verficiation for ethanol was outside of client contractual acceptance limits. However, it was within method acceptance limits. The data should still be useful for its intended purpose.
$b=$ Initial analysis for MTBE within holding time but required dilution.
NOTES:
All volatile organic compounds analyzed using EPA Method 8260 B .
Note: The data within this table collected prior to April 2006 was provided to Broadbent \& Associates, Inc. by Atlantic Richfield Company and their previous consultants. Broadbent \& Associates, Inc. has not verified the accurncy of this information.

Table 3. Historical Ground-Water Flow Direction and Gradient
Station \#11117, 7210 Bancroft Ave., Oakland, CA

Date Sampled	Approximate Flow Direction	Approximate Hydraulic Gradient
9/12/2002	Northeast	0.03
(12/12/2002	N-W Northeast	Wamanay
3/10/2003	Northeast	0.03
V 5/12	Wentertheast	W2, 0055
8/27/2003	North-Northeast	0.036
\% $1 / 1012003$	N.... North Northeas	0.012
2/3/2004	Northeast	0.013
W, 5/4/2004	W.W. Northeast	-ave.ala
8/31/2004	Northeast	0.010
- $1123 / 2004$	- Norli-Northeast	004 .
1/18/2005	Northeast	0.02
1-1290005	We. ${ }^{\text {a }}$ Variable	2/ve. $0.003,0.006$
9/1/2005	North	0.03
M. 113/2005		
2/14/2006	North-Northeast	0.02
5/302006	W	Weren 0.03 .
8/29/2006	Northeast	0.006

Note: The data within this table collected prior to April 2006 was provided to Broadbent \& Associates, Inc. by Atlantic Richfield Company and their previous consultants. Broadbent \& Associntes, Inc. has not verified the accuracy of this information.

LIST OF FIGURES

Figure 1. Site Location Map
Figure 2. Ground-Water Elevation Contours and Analytical Summary Map Figure 3. Historic Depth to Water Measurements
Figure 4. Gasoline Range Organics Iso-Concentration Contours Map
Figure 5. Benzene Iso-Concentration Contours Map
Figure 6. MTBE Iso-Concentration Contours Map
Figure 7. Historic Hydrocarbon Concentrations in MW-2
Figure 8. Historic Hydrocarbon Concentrations in MW-4

LEGEND	
-	Monitoring well location
Well	- Well designation
ELEV	- Ground-water elevaiion (tIMSL)
Benzene MTBE	GRO, Benzene and MTBE concentrations in micrograms per lifer ($\mu \mathrm{g} / \mathrm{L}$)
$\stackrel{1}{0,006}$	Ground-water flow gradient and direction (fift)
33.50	Ground-water elevation contour (t/MSL)
$<$	Not detected at or above laboratory reporting limit
NM	Not measured
NS	Not sampled
NA	Not available, well elevation not surveyed

Figure 3. Historical Depth to Water Measurements Station \#11117, 7210 Bancroft Ave., Oakland, California

HOTE: SITE MAP ADAPTED FROM CAMBRIA ENVIRONMENTAL FIGLIRES SITE DMMESIONS AND FACILITY LOCATIONS NOT VERIFIED.

Station \#11117
7210 Bancroft Avenue Oakland, California

Gasoline Range Organics in Ground Water Iso-Concentration Contours Map 26 August 2006

Figure 1324 Mangrove Ave. Suite 212, Chico, Califomia 95926
Project No.: 06-08-649 Date: 12/28/06 4

Figure 7. Historic Hydrocarbon Concentrations in MW-2
Station \#11117, 7210 Bancroft Ave., Oakland, California

$\begin{aligned} & \operatorname{TOG} \\ & -\mathrm{BENZENE} \\ & \mathrm{MTBE} \end{aligned}$

Figure 8. Historic Hydrocarbon Concentrations in MW-4 Station \#11117, 7210 Bancroft Ave., Oakland, California

- TPHG
$-\overline{-B E N Z E N E}$
MTBE

APPENDIX A.

CONFIDENTIAL

STATE OF CALIFORNIA DWR WELL COMPLETION REPORT
 (WELL LOGS)

REMOVED

CONFIDENTIAL

STATE OF CALIFORNIA DWR WELL COMPLETION REPORT
 (WELL LOGS)

REMOVED

CONFIDENTIAL

STATE OF CALIFORNIA DWR WELL COMPLETION REPORT
 (WELL LOGS)

REMOVED

HYDRO-
ENVIR NMENTAL TECHNOLOGIES, INC.

SOIL BORING LOG MW-6 AND
WELL CONSTRUCTION MW-6
BP Oil Station No. 11117
7210 Bancroft Avenue Oakland, CA

PLATE
A-12

JOB NO.
9-029

CONFIDENTIAL

STATE OF CALIFORNIA DWR WELL COMPLETION REPORT
 (WELL LOGS)

REMOVED

CONFIDENTIAL

STATE OF CALIFORNIA DWR WELL COMPLETION REPORT
 (WELL LOGS)

REMOVED

CONFIDENTIAL

STATE OF CALIFORNIA DWR WELL COMPLETION REPORT
 (WELL LOGS)

REMOVED

CONFIDENTIAL

STATE OF CALIFORNIA DWR WELL COMPLETION REPORT
 (WELL LOGS)

REMOVED

CONFIDENTIAL

STATE OF CALIFORNIA DWR WELL COMPLETION REPORT
 (WELL LOGS)

REMOVED

Cambria Environmenial Technology, Inc.
1144-65th St.
Oakland, CA 94608
Telephone: (510) 420-0700
Fax: (510) 420-9170

CLIENT NAME	BP Ofl Company	BORING/WELL NAME	EX-1
JOB/SITE NAME	BP-11117	DRILLING STARTED	30-Nov-99
location	7210 Bancroft Avenue, Oakland, California	DRILLING COMPLETED	30-Nov-99

Conlinued from Previous Page

Cambria Environmenial Technology, Inc. 1144-65th St.
Oakland, CA 94608
Telephone: (510) 420-0700
Fax: (510) $420-9170$

CLIENT NAME	BP Oil Company	$\begin{array}{ll}\text { BORING/WELL NAME } & \text { EX-2 } \\ \text { DRILLING STARTED } & 30-\text { Nov- } 99\end{array}$	
JOB/SITE NAME	BP-11117		
LOCATION	7210 Bancroft Avenue, Oakland, California	DRILLING COMPLETED 30-Nov-99	
PROJECT NUMBER	852-1546	WELL DEVELOPMENT DATE (YIELD) 30-Nov-99	
DRILLER	V\&W Drilling	GROUND SURFACE ELEVATION Not Surveyed	
DRILLING METHOD	Hollow-stem auger	TOP OF CASING ELEVATION NA	
BORING DIAMETER	$10^{\prime \prime}$	SCREENED INTERVAL 15 to 35 ft bgs	
LOGGED BY	J. Jones	DEPTH TO WATER (First Encountered) 26.0 ft (30-Nov-99)	$\bar{\square}$
REVIEWED BY	K. Rahman, RG	DEPTH TO WATER (Static) 22.64 ft (30-Nov-99)	F
REMARKS	Hand augered to 5' bgs; located between tra	losure and UST slab.	

CLIENT NAME	BP Oil Company	BORING/WELL NAME	EX-2
JOB/SITE NAME	BP-11117	DRILLING STARTED	30-Nov-99
LOCATION	7210 Bancroft Avenue, Oakland, California	drilling completed	30-NOV-99

Continued from Previous Page

1333 Broadway, Suite 800 Oakland, California 94612							P		
				Boreho	: A				
				Total		5 f	bgs.		
PROJECT INFORMATION				DRILLING INFORMATION					
Projact: Former BP Sitell 11117 Soil and Water Investigation				Drilling Company: Gregg Drilling and Testing, Inc.					
Site Location: 7210 Bancroft Ave, Oakland, CA				Driller: Paul Rogers					
Project Manager: Lynelle Onishi				Type of Drlling Rig: Geoprobe					
PG: Barbara Jakub				Drilling Method: 4.25" Simco Augers					
Geologist: Andrew Fowler				Sampling Method: Split spoon, every 5^{\prime}					
Job Number: 38487353.0 A 034				Date(s) Drilled: 9/27/05					
BORING INFORMATION									
Groundwater Depth: 22.6 feet bgs.				Boring Location: Adjacent to north west enrtance on Bancroft Ave.					
Air Knife or Hand Auger Dapth: 5.0 feet				Boring Dlameter: 4.25"					
Coordinates		Y		Boring Type: Exploratory					
	$$	Lithalogic Description			0 0 9	骨			Comments
BP/Atlantic Richfield Company			Page 1 of 2	Borehole ID : A-1					

$\begin{aligned} & \text { ⿹\zh26灬 } \\ & \text { 品 } \\ & \text { } \\ & \text { 言 } \\ & 0 \end{aligned}$		Lithologic Description	W	$\begin{aligned} & \widehat{E} \\ & \text { 믐 } \\ & \text { 음 } \end{aligned}$			Comments
		＠25＇becomes wet． GRAVELLY SAND：Gray（ 5 Y 5／1），loose，wel，70\％iline－ccarse rounded sand， 30% subrounded grave！up to 1.5 cm diameter，no odor． SANDY GRAVEL：Dark gray（ 5 Y 4／1），loose，wet， 65% fine anguiar graval up to 30 mm diameter， 20% fine－coarse send， 15% sill，no odor．	SM	2 116 22			Hydropunch driven from 32＇to 34 in separale hole， 3 feet from A－1．After 1 hour，no water was availible for sampling．

	$\begin{aligned} & \bar{\circ} \\ & \underset{N}{\text { N }} \end{aligned}$	Lithologic Description		$\begin{aligned} & \widehat{E} \\ & \text { 豆 } \\ & \frac{0}{2} \end{aligned}$		$\begin{aligned} & \text { 글 } \\ & \text { O} \\ & 0.0 \\ & \boxed{x} \end{aligned}$	Comments
		@27' 1 " layer of red, well Indurated sandstone @30' gravel clasts become angular SAND: Dark greenish gray (Gley 1 3/10Y), loose, wel, 100% medium coarse well rounded sand, minor clay, strong hydrocarbon odor. NO RECOVERY: Refusal () 38.5'	SP	209 40 259			Hydropunch driven from 40^{\prime} to 42^{\prime} in separate hole, 3 feel from A-2. Sample collected (A-2 (940-42). Strong resistance encountered from 32 'to 42 '

1333 Broadway, Suite 800 Oakland, California 94612						G	F	F	NC	
					Boreh	:				
					Total		fe			
PROJECT INFORMATION				DRILLING INFORMATION						
Project: Former BP Site \# 11117 Soil and Water Investigation				Drilling Company: Gregg Drilling and Testing, Inc.						
Site Location: 7210 Bancroft Ave, Oakland, CA				Driller: Paul Rogers						
Project Manager: Lynelle Onishi				Type of Drilling Rig: Geoprobe						
PG: Barbara Jakub				Drilling Method: ${ }^{\text {2 }}$ Direct Push						
Geologist: Andrew Fowler				Sampling Method: Continuous Core						
Job Number: 38487353.0A034				Date(s) Drilled: 9/27/05						
BORING INFORMATION										
Groundwater Depth: 19.24 feet bgs.				Boring Location: South corner of property						
Air Knife or Hand Augar Depth: 5.0 feet				Boring Diameter: $\mathbf{2}^{\prime \prime}$						
		\mathbf{Y}		Boring Type: Exploratory						
		Lithologic Description				¢	首			Comments
BP/Atlantic Richfield Company Pa				Page 1 of 2		Borehole ID : A-3				

	$\begin{aligned} & \bar{\circ} \\ & \underset{\omega}{\mathrm{E}} \\ & \stackrel{n}{6} \end{aligned}$	Lithologic Description	$\begin{aligned} & 0 \\ & 0 \\ & \hdashline 3 \end{aligned}$	$\begin{aligned} & \text { 듬 } \\ & \text { 음 } \end{aligned}$	$\stackrel{0}{\square}$ $\mathbf{0}$ $\underline{0}$ E 0	碞	Comments
		SAND: Ollve brown (2.5Y 4/3), very loose, wet, 100% fine - medlum sand, minor clay, strong hydrocarbon odor. CLAYEY GRAVEL: Dark greenish gray (Gley1 4/10GM, medium dense, dry, 60\% angular medium gravel, 30% clay, 10% fine sand, strong hydrocarbon odor. NO RECOVERY: Sluffing. © 27 ' 1 " layer of red (5YR 5/6), well induraled sandstone.	$\begin{array}{\|l\|} \hline \mathrm{SP} \\ \hline \mathrm{GM} \\ \hline \end{array}$	88	13:25 A-3@ 23.5- 24 13:50 A-3 (9) 26. 26.5 14:15 A-3 @ $34{ }^{-}$ grab water sample		Hydropnuch driven from 34^{\prime} to 36^{\prime} in separate hole, 3 feet from A-3. Sample collecied (A-3@34-36').

	$\begin{aligned} & \text { ㅁ } \\ & \text { 号 } \\ & \text { 心 } \end{aligned}$	Lithologic Description	O	틀 믄 믐			Comments
		SAND: Olive brown ($2.5 \mathrm{Y} 4 / 3$), loose, wet, 100% medium sand, minor angular gravel up to 3 cm diameter, strong hydracarbon odor. NO RECOVERY: No recovery due to sluffing from 28^{\prime} to 35^{\prime} Refusal © 35° bgs.	SP	2537	water sample 13:35 A-4 (0) 23.5 - 24 13:55 A-4 (0) 31.5 32 14:50 A-4 © 34 - 36 hydro -punch sample		Hydropunch driven from 34^{\prime} to 36^{\prime} in separate hole, 3 feet from A-4. Sample collected ($A-4 @ 34-36$).

		LOG OF BORING	Borehole ID：A－5				
	$\begin{aligned} & \bar{\circ} \\ & \stackrel{⿱ 匕 日 心}{\sigma} \end{aligned}$	Lithologic Description	¢	产		准	Comments
		rounded coarse sand，minor gravel． （a） 25^{\prime} gravel increase to 30% CLAYEY SANDY GRAVEL：Dark grayish brown（2．5Y 4／2），medlum dense，dry， 60% angular gravel upto 5 cm dlamelar，20\％coarse anguar sand， 15% clay， 5% silt，strong hydrocarbon odor，green staining．	GM				Hydropunch driven from 28^{\prime} to 30^{\prime} in separate hole， feet from water in hydropunch hole after 1 hour．

LOG OF BORING

PROJECT INFORMATION	DRILLING INFORMATION
Project: Former BP Site \#11117 Soil and Water Investigation	Drilling Company: Gregg Drilling and Testing, Inc.
Site Location: 7210 Bancroft Ave, Oakland, CA	Driller: Paul Rogers
Project Manager: Lynelle Onishi	Type of Drilling Rig: Geoprobe
PG: Barbara Jakub	Drilling Method: 4.5" Simco Augers
Geologist: Barbara Jakub	Sampling Method: 18" Split Spoon
Job Number: 38487353.0A034	Date(s) Drilled: 11/7/05
BORING INFORMATION	
Groundwater Depth: 25 feet bgs	Boring Location: In center of planter, across 73rd Ave. from Site.
Air Knife or Hand Auger Depth: 5.0 feet	Boring Diameter: 4.5'
Coordinates: X (Y	Boring Type: Exploratory

$\begin{aligned} & \text { 哥 } \\ & \text { き } \\ & \stackrel{5}{\circ} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	$\begin{aligned} & \overline{0} \\ & \underset{\sim}{E} \\ & \text { N } \end{aligned}$	Lithologic Description	$\begin{aligned} & 0 \\ & 0 \\ & \end{aligned}$	응 응 음	$\begin{aligned} & \varrho \\ & \frac{\varrho}{\mathbb{O}} \\ & \underset{D}{E} \\ & \infty \end{aligned}$		Comments
		MUCLH: Mulch cover to 0.2 feet bgs. FILL: Angular gravel fill with clasts up to 120 mm in diameler. CLAYEY SILT: Dark brown (10YR 3/3). 80% Silt, 15% clay, 5% sand. SILT: Brown (10 YR 4/3), medium stiff, damp, 85\% silt, 10% clay, 4% fine sand, 1% angular gravel up to 80 mm diameter, low plasticily. Trace black specs. SILTY SAND: Erown (7.5YR 4/3), loose, damp, 55\% fine sand, 40\% siti, 3% clay, 2% gravel, nan plastic. Fines downward. SILT: Yellowish brown (10YR 5/4), stiff, damp, 85% silt, 10% clay, 5% fine sand, low plasticity. Manganese staining. Silt content increases. 95\% Silt, 5\% clay. Medium stiff.			09:4B A-10 10:02 A-10 @ 10.5-11' 10:05 A-10 @ 15.5-16' $10: 10$ A-10		Boring grouted with neat Portland Cement. Top $3^{\prime \prime}$ finished to grade with cement. Top 5^{\prime} logged from hand auger/ airknife cuttings.

		Lithologic Description	$\begin{aligned} & \text { W } \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { E} \\ & \text { 를 } \\ & \text { 믐 } \end{aligned}$			Comments
		SANDY SILT: Yellowish brown (10YR 5/4), soft, moist, 80% silt, 17% fine sand, 3\% clay. Trace black specs and white granules (possibly feldspar) up to 30 mm in diameter. SILT: Yellowish brown (10YR 5/4), soft, wet to saturated, 75\% sill, 10% clay, 10% gravel, 5% sand. Angular chert gravel at base up to 30 mm in diameter. SILTY GRAVEL: Yellowish brown (10YR 5/4), dense, wet, 70\% angular to sub-angular gravel up to 30 mm in diameter with chert and sandstone clasts, 17% sill, 10% sand, 3% clay.	GM		10:19 A-10 @ 10:20 A-10 @ 25^{\prime} (water) 10:33 A-10 @ 10:42 A-10 @ $35.5-36$ 11:07 A-10 @ 39' (water)		Hydropunch driven from 39^{\prime} to 41^{\prime} in separate hole, 3 feel from A-10. Sample taken (A-10@39'). Total depth 39 feet bgs.

APPENDIX B.

HISTORIC SOIL AND WATER ANALYTICAL DATA AND SAMPLE LOCATIONS

SOIL SAMPLES SUMMARY OF ANALYTICAL RESULTS

BP Oil Facility No. 11117

7210 Bancroft Avenue Oakland, California

Sample Description	Date.	TPHg (ppm)	$\begin{gathered} \mathrm{B} \\ (\mathrm{ppm}) \end{gathered}$	$\begin{gathered} \mathrm{T} \\ (\mathrm{ppm}) \end{gathered}$	$\begin{gathered} \mathrm{E} \\ (\mathrm{ppm}) \end{gathered}$	$\begin{gathered} \mathrm{X} \\ (\mathrm{ppm}) \end{gathered}$
MW-1 (3) 5^{\prime}	12/27/91	ND	ND	ND	ND	ND
MW-1 © 15'	12/27/9y.	ND	ND	ND	ND	ND
MW-1 (c) 25^{\prime}	12/27/91	ND	ND	ND	ND	ND
MW-2 (3) 5^{\prime}	12/27/91	ND	ND	ND	ND	ND
MW-2 @ 15'	12/27/91	ND	ND	ND	ND	ND
MW-2 @ 25	12/27/91	ND	ND	ND	ND	ND
MW-4 @ 15'	7/22/92	240	ND	6.6	5.7	27
MW-4 © 20'	7/22/92	6,000	34	450	190	780
MW-4 @ 25'	7/22/92	1,100	1.6	36	27	140
B-5-30 30	7/22/92	ND	ND	ND	ND	ND
MW-6 30 ${ }^{\circ}$	7/23/92	ND	ND	ND	ND	ND

$\mathrm{TPHg}=$ Total petroleum hydrocarbons as gasoline
$B=$ Benzene
$\mathrm{T}=$ Toluene
$E=$ Ethylbenzene
$X=$ Total Xylenes
ND = Not detected above the laboratory method detection limit
TPHg and BTEX analyses EPA 8015/8020 (DHS modified).

Site Number 11117
7210 Bancroft Avenue, Oakland, California
Soil Sample Results of Analyses (ppm)

Sample Number	$\begin{aligned} & \text { Depth } \\ & \text { (feet) } \end{aligned}$	Date Collected	Califomia DHS LUFT Method California DHS LUFT TPH-G Method Hydrocarbon Scan			EPA Method 5030/8020			
			TPH-G	TPH-D	TPH-O	Benzene	Toluene	Ethylbenzene	Total Xylenes
TD-1 **	n / a	09/08/94	4.4	2,100	85	$n d^{*}$	0.077	0.042	0.26
TD-2	n / a	09/08/94	$n d$	160	50	$n d$	$n d$	$n d$	$n d$
TD-3	n / a	09/08/94	16	5,800	880	$n d^{*}$	0.088	0.053	0.51
TD-4	n / a	09/08/94	$n d$	110	36	$n d$.nd	$n d$	$n d$
TD-5	n / a	09/08/94	$n d$	2,400	340	$n d$	$n d$	$n d$	0.008
THP-1-22' ***	22	09/08/94	$n d$	nd					
TB2-S-13.5-14!	13.5-14	09/14/94	$n d$						
TB3-5-11'	11	09/14/94	$n d$						
TB4-S-6.5-7'	6.5-7	09/14/94	$n d$	nd	$n d$	$n d$	$n d$	- $\boldsymbol{n d}$	nd

Groundwater Sample Results of Analyses (ppb)

Sample Number	$\begin{aligned} & \text { Depth to } \\ & \text { Water } \\ & \text { (feet) } \\ & \hline \end{aligned}$	Date Sampled	California DHS LUFT Method TPH-G	California DHS LUFT Method Hydrocarbon Scan		BTEX EPA Method 5030/8020			
			TPH-G	TPH-D	TPH-O	Benzene	Toluene	Ethylbenzene	$\begin{aligned} & \text { Total } \\ & \text { Xylenes } \end{aligned}$
$\begin{aligned} & \text { TB2-W-36' } \\ & \text { TB3-W-36 } \end{aligned}$	$\begin{aligned} & 36 \\ & 36 \end{aligned}$	$\begin{aligned} & 09 / 14 / 94 \\ & 09 / 14 / 94 \end{aligned}$	$\begin{aligned} & n d \\ & n d \end{aligned}$	$\begin{aligned} & n d^{* *} \\ & n d^{*} \end{aligned}$	$\begin{aligned} & n d^{*} \\ & n d^{*} \end{aligned}$	$\begin{gathered} n d \\ 0.7 \end{gathered}$	$\begin{gathered} n d \\ 0.6 \end{gathered}$	$n d$ $n d$	$n d$ $n d$
				```TW \(=\) Torto well. \(\mathrm{TB}=\) Toseo boring. TD \(=\) Tosto dispenser boil sample. THP \(=\) Toseo HydroPusch. SGP \(=\) Soil gas probe. * \(=\) Rnived method reporing limits (ace Iaboratory report in Attachroent D). \({ }_{4}^{4 *}=\) TD- \(^{4}\) through TD-5 are referred to as PD-1 through PD-5 on iab reports. **中 \(=\) MP-1 is referred to as PHP-1 on Iab report.```					



## 73RD AVENUE

## FN 23490002

## EXPLANATION

Soil Sample Location

S-15-T1N - Tank/Product Line/Dispenser number		
Depth		
Soil Sample		



APPROXIMATE SCALE


RESULTS OF LABORATORY ANALYSES OF SOIL SAMTPLES
Toseo 76 Service Stalion 11117
7210 Bancroft Avenue
Oakland, California
(Page $10{ }^{2}$ )


RESULTS OF 1,ABORATORY ANALYSES OF SOIL SAMPLES
Tosco 76 Service Staion 11117
7210 Bancrolt Avenue
Oaklanu, California
(Page 2 of 2 )

Sample ${ }^{\text {f }}$	Plate 2   Callout	Dale Sampled	$\begin{gathered} \text { Depth } \\ (f 1 \mathrm{bg} s) \end{gathered}$	TEPHd $<\ldots .$	TPPHS	MTBE	8	T	E	X	Total Lead $\qquad$
Soil-Stockpile											
SP-1-(1-4)	NA	8/14/98	NA	9.3	16	NA	0.011	0.016	0.039	0.23	26
SP-2-(1-4)	NA	8114/98	NA	17	19	NA	0.022	ND	0.034	0.11	30
SP-3-(1-4)	NA	$8 / 14 / 98$	NA	4.6	2.0	NA	ND	ND	ND	0.011	21
5P-4-(1-4)	NA	8/14/98	NA	5.3	2.4	NA	ND	ND	ND	0.014	23

Notes:
S-15-TIN $\quad \therefore \quad$ Suil Siniple - depth - UST munher/tud.
S-3-PLI $=$ Suil Sample - depth - product line sample aumber.
S-3-Di $=$ Suil Smuple - depth - dispenser number.
SP-1-(1-f) $\quad=\quad$ Stockpiled soil sample - stockpite nunber - soil slecve number.
TEPHd $\quad=\quad$ Total extractable petroleum hydrocarbons as diesel inalyzed usimg EPA method 8015 (modified).
TPPHg $\quad=\quad$ Total purguble petroleum liydrocarbons as gasoline ntalyzat usiag EPA method 8015 (arodified)
MTBE $\quad=\quad$ Methyl ueriary butyl chacr analyzat using EPA nuthoud 8020.
BTEX $\quad=\quad$ Beizene, toluenc. eltyl benzene, and total xylenes amalyzed usiag EPA methed 8020.
Toual Lead $=$ Total threstold limit conceniration or lead antlyzed using EPA nethrel 6010 .
fobs
Fees below ground surface.
ppm $=$ Parts per nuillion.
NA $\quad=\quad$ Nol :nnalyzal/awt pplicathe.
ND . Nut detected at or above tatherary mednad detection fimits.

* . $=$ MTBE conlimmed using EPA method 8260.

SOIL SAMPLE ANALYTICAL RESULTS
BP STATION No． 11117
7210 BANCROFT AVENUE，OAKLAND，CALIFORNIA

| Sample No． | Date | TPHg <br> $(\mathrm{ppm})$ | B <br> $(\mathrm{ppm})$ | T <br> $(\mathrm{ppm})$ | E <br> $(\mathrm{ppm})$ | $\mathbf{X}$ <br> $(\mathrm{ppm})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MW－7－25＇（1） | $10 / 6 / 94$ | $\mathrm{ND}<1.0$ | $\mathrm{ND}<0.005$ | $\mathrm{ND}<0.005$ | $\mathrm{ND}<0.005$ | $\mathrm{ND}<0.005$ |
| MW－8－25＇ | $10 / 6 / 94$ | $\mathrm{ND}<1.0$ | $\mathrm{ND}<0.005$ | $\mathrm{ND}<0.005$ | $\mathrm{ND}<0.005$ | $\mathrm{ND}<0.005$ |
| MW－9－25＇ | $10 / 6 / 94$ | $\mathrm{ND}<1.0$ | $\mathrm{ND}<0.005$ | $\mathrm{ND}<0.005$ | $\mathrm{ND}<0.005$ | $\mathrm{ND}<0.005$ |

## Notes：

Sample No．：	Soil boring designation and sample collection depth．
Date：	Sample collection date．
TPHg：	Total petroleum hydrocarbons as gasoline by EPA Method 8015 （modified）．
BTEX：	Benzene，toluene，ethylbenzene and total xylenes by EPA Method 8020 （modified）．
ppm：	Parts per million（mg／kg）．
ND：	Not detected in concentrations exceeding the indicated laboratory method detection limit（MDL）．
（1）：	Rock and gravel encountered at 25 ft bgs．Sample collected at $26.5 \mathrm{bgs}$.

Summary of Soil Analytical Data

Sample ID -   Depth	TPPH-g.	Benzene	- Toluene	Ethylbenzene	Xylenes	MtBE
MW-10-6	$<0.1 \mathrm{mg} / \mathrm{kg}$	$<1 \mu \mathrm{~g} / \mathrm{kg}$	$<2 \mu \mathrm{~g} / \mathrm{kg}$	$<2 \mu \mathrm{~g} / \mathrm{kg}$	$<2 \mu \mathrm{~g} / \mathrm{kg}$	$<100 \mu \mathrm{~g} / \mathrm{kg}$
MW-10-11'	$<0.1 \mathrm{mg} / \mathrm{kg}$	$<1 \mu \mathrm{~g} / \mathrm{kg}$	$<2, \mu \mathrm{~g} / \mathrm{kg}$	$<2 \mu \mathrm{~g} / \mathrm{kg}$	$\leqslant 2 \mu \mathrm{~g} / \mathrm{kg}$	$<100 \mu \mathrm{~g} / \mathrm{kg}$
M17-10-30'	$<0.1 \mathrm{mg} / \mathrm{kg}$	$<1 \mu \mathrm{~g} / \mathrm{kg}$	$<2 \mu \mathrm{~g} / \mathrm{kg}$	$<2 \mu \mathrm{~g} / \mathrm{kg}$	<2 $\mu \mathrm{g} / \mathrm{kg}$	$<100 \mu \mathrm{~g} / \mathrm{kg}$
MW-10-35'	$<0.1 \mathrm{mg} / \mathrm{kg}$	$<1 \mu \mathrm{~g} / \mathrm{kg}$	$<2 \mu \mathrm{~g} / \mathrm{kg}$	$<2 \mu \mathrm{~g} / \mathrm{kg}$	$<2 \mu \mathrm{~g} / \mathrm{kg}$	$<100 \mu \mathrm{~g} / \mathrm{kg}$
Notes:   $\mathrm{mg} / \mathrm{kg}=$ milligrams per kilogram   $\mu \mathrm{g} / \mathrm{kg} .=$ micrograms per kilogram						

## CAMBRIA

Soll Analytical Data - BP Oil Site No. 11117.
7210 Bancroft Avenue, Oakland, Califomia

Sample ID   (Depth - ft bgs)	Date   Sampled	$\begin{gathered} \mathrm{TPHg} \\ (\mathrm{mg} / \mathrm{kg}) \end{gathered}$	Benzene $(\mathrm{mg} / \mathrm{kg})$	Toluene $(\mathrm{mg} / \mathrm{kg})$	Ethylbenzene (mg/kg)	Xylenes   ( $\mathrm{mg} / \mathrm{kg}$ )	$\begin{aligned} & \text { MTBE } \\ & (\mathrm{mg} / \mathrm{kg}) \end{aligned}$	Total Lead (mg/kg)	$\begin{gathered} \text { TOC } \\ \left(\% / w / w^{\prime}\right) \end{gathered}$
EPA Method: 8015 m			8260	8260	8260	8260	8260	6010	Walkley-Black
EX-1-15.5	11/30/99	$<1.0$	$<0.005$	$<0.005$	<0.005	<0.005	0.011	-	-
EX-1-21	11/30/99	<1.0	$<0.005$	$<0.005$	$<0.005$	$<0,005$	$<0.005$	-	-
EX-1-25.5	11/30/99	-	-	.	-	-	-	-	$<0.318$
EX-1-36	11/30/99	-	-	-	-	-	-	-	<0.318
EX-2-11	11/30/99	<1.0	$<0.005$	$<0.005$	$<0.005$	$<0.005$	0.012	-	-.
EX-2-15.5	11130/99	-	-	-	-	-	-	-	$<0.318$
EX-2-20.5	11/30/99	$<1.0$	$<0.005$	$<0.005$	$<0.005$	$<0.005$	$<0.005$	-	-
COMP	11/30/99	1.0	0.016	0.096	0.042	0.236	0.17	5.85	-

## Abbreviations and Notes:

$\mathrm{TPHg}=$ Total petroleum hydrocarbons as gaboline
MTBE = Methyl tert-butyl ether
TOC $=$ Total organic carbon
$\mathrm{mg} / \mathrm{kg}=$ Milligrams per Kilogram


## Soil Analytical Data

Former BP \#11117
7210 Bancroft Ave., Oakland, CA

Soil Sample ID	Sample   Depth (feet bgs)	Date   Sampled	$\begin{gathered} \text { GRO } \\ (\mathrm{mg} / \mathrm{kg}) \end{gathered}$	Benzene (mg/kg)	Toluene ( $\mathrm{mg} / \mathrm{kg}$ )	Ethylbenzene ( $\mathrm{mg} / \mathrm{kg}$ )	Xylenes   ( $\mathrm{mg} / \mathrm{kg}$ )	$\begin{gathered} \mathrm{TBA} \\ (\mathrm{mg} / \mathrm{kg}) \end{gathered}$	MTBE   ( $\mathrm{mg} / \mathrm{kg}$ )	$\begin{gathered} \text { Lead } \\ (\mathrm{mg} / \mathrm{kg}) \end{gathered}$
A-1 (6-6.5')	6.0	09/27/05	$\mathrm{ND}<0.10$	ND<0.0050	$\mathrm{ND}<0.0050$	ND<0.0050	ND<0.0050	$\mathrm{ND}<0.020$	$\mathrm{ND}<0.0050$	NA
A-1 (11-11.5')	11.0	09/27/05	ND<0.10	ND<0.0050	$\mathrm{ND}<0.0050$	ND<0.0050	$\mathrm{ND}<0.0050$	$\mathrm{ND}<0.020$	$\mathrm{ND}<0.0050$	NA
A-1 (16-16.5')	16.0	09/27/05	$\mathrm{ND}<0.099$	$\mathrm{ND}<0.0050$	$\mathrm{ND}<0.0050$	ND<0.0050	ND<0.0050	$\mathrm{ND}<0.020$	$\mathrm{ND}<0.0050$	NA
A-1 (21-21.5')	21.0	09/27/05	ND<0.10	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	$\mathrm{ND}<0.0050$	$\mathrm{ND}<0.0050$	NA
A-1 (25.5-26')	25.5	09/27/05	ND<0.10	$\mathrm{ND}<0.0050$	$\mathrm{ND}<0.0050$	$\mathrm{ND}<0.0050$	ND<0.0050	ND<0.0050	$\mathrm{ND}<0.0050$	NA
A-1 (30.5-31)	30.5	09/27/05	ND<0.099	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	$\mathrm{ND}<0.020$	$\mathrm{ND}<0.0050$	NA
A-1 (35.5-36')	35.5	09/27/05	ND<0.10	$\mathrm{ND}<0.0050$	ND<0.0050	ND<0.0050	ND<0.0050	$\mathrm{ND}<0.0050$	$\mathrm{ND}<0.0050$	NA
A-1 (39-39.5')	39.0	09/27/05	76	$\mathrm{ND}<0.10$	ND<0.10	0.11	0.11	ND<10	$\mathrm{ND}<0.050$	NA
A-1 (46-46.5 $)$	46.0	09/27/05	$\mathrm{ND}<2.5$	$\mathrm{ND}<0.050$	$\mathrm{ND}<0.050$	$\mathrm{ND}<0.050$	ND<0.050	ND<5.0	0.84	NA
A-2 (5-5.5')	5.0	09/27/05	ND<0.099	$\mathrm{ND}<0.0050$	$\mathrm{ND}<0.0050$	$\mathrm{ND}<0.0050$	ND<0.0050	ND<0.020	$\mathrm{ND}<0.0050$	NA
A-2 (10-10.5')	10.0	09/27/05	$\mathrm{ND}<0.099$	$\mathrm{ND}<0.0050$	$\mathrm{ND}<0.0050$	ND<0.0050	ND<0.0050	$\mathrm{ND}<0.020$	ND<0.0050	NA
A-2 (15-15.5')	15.0	09/27/05	$\mathrm{ND}<0.10$	$\mathrm{ND}<0.0050$	ND<0.0050	ND<0.0050	$\mathrm{ND}<0.0050$	$\mathrm{ND}<0.0050$	$\mathrm{ND}<0.0050$	NA
A-2 (19.5-20')	19.5	09/27/05	ND<0.10	ND<0.0050	ND<0.0050	$\mathrm{ND}<0.0050$	ND<0.0050	ND<0.0050	$\mathrm{ND}<0.0050$	NA
A-2 (25-25.5')	25.0	09/27/05	34	$\mathrm{ND}<0.10$	$\mathrm{ND}<0.10$	$\mathrm{ND}<0.10$	ND $<0.10$	$\mathrm{ND}<10$	$\mathrm{ND}<0.050$	NA
A-2 (30-30.5')	30.0	09/27/05	120	ND<0.25	$\mathrm{ND}<0.25$	ND<0.25	$\mathrm{ND}<0.25$	$\mathrm{ND}<25$	ND<0.12	NA
A-2 (33.5-34')	33.5	09/27/05	17	$\mathrm{ND}<0.050$	$\mathrm{ND}<0.050$	0.25	0.99	ND<5.0	$\mathrm{ND}<0.025$	NA
A-3 (5-5.5')	5.0	09/27/05	0.27	ND<0.6050	ND<0.0050	$\mathrm{ND}<0.0050$	$\mathrm{ND}<0.0050$	ND<0.020	0.0050	NA
A-3 (14.5-15')	14.5	09/27/05	0.13	ND<0.0050	ND<0.0050	$\mathrm{ND}<0.0050$	$\mathrm{ND}<0.0050$	ND<0.020	$\mathrm{ND}<0.0050$	NA
A-3 (19.5-20')	19.5	09/27/05	ND<0.10	$\mathrm{ND}<0.0050$	ND<0.0050	ND<0.0050	ND<0.0050	$\mathrm{ND}<0.020$	$\mathrm{ND}<0.0050$	NA
A-3 (23.5-24')	23.5	09/27/05	ND<0.10	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	$\mathrm{ND}<0.020$	$\mathrm{ND}<0.0050$	NA
A-3 (26-26.5')	26.0	09/27/05	220	ND<1.0	$\mathrm{ND}<1.0$	4.5	18	$\mathrm{ND}<100$	$\mathrm{ND}<0.50$	8.5

## Soil Analytical Data

Former BP \#11117
7210 Bancroft Ave., Oakland, CA

Soil Sample ID	Sample Depth (feet bgs)	Date Sampled	$\begin{gathered} \mathrm{GRO} \\ (\mathrm{mg} / \mathrm{kg}) \end{gathered}$	Benzene ( $\mathrm{mg} / \mathrm{kg}$ )	Toluene ( $\mathrm{mg} / \mathrm{kg}$ )	Ethylbenzene ( $\mathrm{mg} / \mathrm{kg}$ )	Xylenes   ( $\mathrm{mg} / \mathrm{kg}$ )	$\begin{gathered} \text { TBA } \\ (\mathrm{mg} / \mathrm{kg}) \end{gathered}$	$\begin{gathered} \mathrm{MTBE} \\ (\mathrm{mg} / \mathrm{kg}) \end{gathered}$	$\begin{gathered} \text { Lead } \\ (\mathrm{mg} / \mathrm{kg}) \end{gathered}$
A-4 (5-5.5')	5.0	09/26/05	ND<0.10	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.020	ND<0.0050	NA
A-4 (15-15.5)	15.0	09/26/05	ND<0.10	$\mathrm{ND}<0.0050$	ND<0.0050	ND<0.0050	$\mathrm{ND}<0.0050$	ND<0.020	ND<0.0050	NA
A-4 (19.5-20')	19.5	09/26/05	0.44	$\mathrm{ND}<0.0050$	$\mathrm{ND}<0.0050$	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	NA
A-4 (23.5-24')	23.5	09/26/05	490	ND<1.0	18	18	87	ND<100	ND<0.0050	11
A-4 (31.5-32')	31.5	09/26/05	5.1	0.15	0.088	0.24	1.1	ND<5.0	0.48	NA
A-5 (5-5.5')	5.0	09/26/05	ND<0.10	ND<0.0050	ND<0.0050	ND<0.0050	$\mathrm{ND}<0.0050$	ND<0.020	ND<0.0050	NA.
A-5 (10-10.5')	10.0	09/26/05	$\mathrm{ND}<0.10$	$\mathrm{ND}<0.6050$	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.020	ND<0.0050	NA
A-5 (15-15.5)	15.0	09/26/05	0.34	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.020	0.0085	NA
A-5 (19.5-20')	19.5	09/26/05	ND<0.10	$\mathrm{ND}<0.0050$	ND<0.0050	ND<0.0050	$\mathrm{ND}<0.0050$	ND<0.020	0.0053	NA
A-5 (22-22.5')	22.0	09/26/05	ND<0.099	$\mathrm{ND}<0.0050$	ND<0.0050	ND<0.0050	$\mathrm{ND}<0.0050$	ND<0.020	0.0058	NA
A-5 (25-25.5')	25.0	09/26/05	0.23	ND<0.0050	$\mathrm{ND}<0.0050$	ND<0.0050	$\mathrm{ND}<0.0050$	0.022	0.035	NA
A-5 (30-30.5')	30.0	09/26/05	1.3	0.0068	0.014	0.032	0.18	ND<0.020	0.015	NA
A-5 (35-35.5')	35.0	09/26/05	28	0.11	0.81	0.57	3.1	ND $<5.0$	0.030	NA
A-7 (6-6.5)	6.0	11/03/05	ND<0.10	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.020	ND<0.0050	NA
A-7 (11-11.5')	11.0	11/03/05	ND<0.099	$\mathrm{ND}<0.0050$	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.020	ND<0.0050	NA
A-7 (16-16.5')	16.0	11/03/05	ND<0.10	$\mathrm{ND}<0 . \mathrm{C050}$	ND<0.0050	ND<0.0050	$\mathrm{ND}<0.0050$	ND<0.020	$\mathrm{ND}<0.0050$	NA
A-7 (21-21.5')	21.0	11/03/05	ND<0.098	$\mathrm{ND}<0.0049$	ND<0.0049	ND<0.0049	$\mathrm{ND}<0.0049$	ND<0.020	ND<0.0049	NA
A-7 (25.5-26')	25.5	11/03/05	ND<25	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<50	0.43	NA
A-7 (36-36.5')	36.0	11/03/05	ND<0.10	ND<0.0050	ND<0.0050	ND<0.0050	$\mathrm{ND}<0.0050$	ND<0.020	0.0064	NA

Soil Analytical Data
Former BP \#11117
7210 Bancroft Ave., Oakland, CA

Soil Sample ID	Sample   Depth   (feet bgs)	Date Sampled	$\begin{gathered} \text { GRO } \\ (\mathrm{mg} / \mathrm{kg}) \end{gathered}$	$\begin{aligned} & \text { Benzene } \\ & (\mathrm{mg} / \mathrm{kg}) \end{aligned}$	$\begin{aligned} & \text { Toluene } \\ & (\mathrm{mg} / \mathrm{kg}) \end{aligned}$	$\begin{aligned} & \text { Ethylbenzene } \\ & (\mathrm{mg} / \mathrm{kg}) \end{aligned}$	$\begin{aligned} & \text { Xylenes } \\ & (\mathrm{mg} / \mathrm{kg}) \end{aligned}$	$\begin{gathered} \text { TBA } \\ (\mathrm{mg} / \mathrm{kg}) \end{gathered}$	$\begin{gathered} \text { MTBE } \\ (\mathrm{mg} / \mathrm{kg}) \end{gathered}$	$\begin{gathered} \text { Lead } \\ (\mathrm{mg} / \mathrm{kg}) \end{gathered}$
A-8 (6-6.5')	6.0	11/03/05	ND<0.10	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.020	ND<0.0050	NA
A-8 (11-11.5')	11.0	11/03/05	ND<0.10	ND<0.0050	ND<0.1050	ND<0.0050	$\mathrm{ND}<0.0050$	$\mathrm{ND}<0.020$	ND<0.0050	NA
A-8 (15.5-16')	15.5	11/03/05	ND<0.099	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	$\mathrm{ND}<0.020$	$\mathrm{ND}<0.0050$	NA
A-8 (21-21.5)	21.0	11/03/05	$\mathrm{ND}<0.10$	ND<0.0050	$\mathrm{ND}<0.0050$	ND<0.0050	ND<0.0050	ND<0.020	ND<0.0050	NA
A-8 (25-25.5')	25.0	11/03/05	$\mathrm{ND}<0.099$	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	$\mathrm{ND}<0.020$	$\mathrm{ND}<0.0050$	NA
A-8 (30-30.5')	30.0	11/03/05	ND<0.10	ND<0.0050	ND<0.0050	ND<0.0050	$\mathrm{ND}<0.0050$	$\mathrm{ND}<0.020$	$\mathrm{ND}<0.0050$	NA
A-8 (36-36.5')	36.0	11/03/05	$\mathrm{ND}<0.10$	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	$\mathrm{ND}<0.020$	$\mathrm{ND}<0.0050$	NA
A-9 (6-6.5')	6.0	11/03/05	ND<0.099	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.020	ND<0.0050	NA
A-9 (11-11.5')	11.0	11/03/05	ND<0.10	ND<0.0050	ND<0.0050	ND<0.0050	$\mathrm{ND}<0.0050$	$\mathrm{ND}<0.020$	$\mathrm{ND}<0.0050$	NA
A-9 (16-16.5')	16.0	11/03/05	ND<0.099	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	$\mathrm{ND}<0.020$	ND<0.0050	NA
A-9 (21-21.5')	21.0	11/03/05	ND<0.098	ND<0.0049	$\mathrm{ND}<0.0049$	ND<0.0049	ND<0.0049	$\mathrm{ND}<0.020$	$\mathrm{ND}<0.0049$	NA
A-9 (25-25.5')	25.0	11/03/05	ND<0.099	ND<0.0050	ND<0.0050	ND<0.0050	$\mathrm{ND}<0.0050$	$\mathrm{ND}<0.020$	ND<0.0050	NA
A-9 (31-31.5')	31.0	11/03/05	ND<2.5	ND<0.050	ND<0.050	ND<0.050	ND<0.050	ND<5.0	0.16	NA
A-9 (36-36.5')	36.0	11/03/05	ND<0.099	$\mathrm{ND}<0.0050$	ND<0.0050	ND<0.0050	ND<0.0050	$\mathrm{ND}<0.020$	ND<0.0050	NA
A-10 (5.5-6')	5.5	11/07/05	ND<0.10	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.020	ND<0.0050	NA
A-10 (10.5-11')	10.5	11/07/05	ND<0.10	ND<0.6050	$\mathrm{ND}<0.0050$	ND<0.0050	ND<0.0050	$\mathrm{ND}<0.020$	$\mathrm{ND}<0.0050$	NA
A-10 (15.5-16')	15.5	11/07/05	ND<0.10	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	$\mathrm{ND}<0.020$	$\mathrm{ND}<0.0050$	NA
A-10 (20.5-21')	20.5	11/07/05	ND<0.10	$\mathrm{ND}<0.0050$	$\mathrm{ND}<0.0050$	ND<0.0050	ND<0.0050	$\mathrm{ND}<0.020$	ND<0.0050	NA
A-10 (25.5-26')	25.5	11/07/05	ND<0.10	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	$\mathrm{ND}<0.020$	ND<0.0050	NA
A-10 (30.5-31')	30.5	11/07/05	ND<0.10	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	$\mathrm{ND}<0.020$	ND<0.0050	NA
A-10 (35.5-36')	35.5	11/07/05	ND<0.10	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.020	ND<0.0050	NA

## Soil Analytical Data

Former BP \#11133
2220 98th Ave., Oakland, CA
Notes: All Samples analyzed by EPA Method 8260B. Di-isopropyl ether, 1,2-dibromoethane, 1,2-
dichloroethane, ethyl tertiary butyl ether, tertiary amyl methyl ether and ethanol were not detected at or above their respective laboratory reporting limit.
Total lead analyzed by EPA Method 6000/7000 series for soil disposal purposes.
bgs = below ground surface
GRO = Gasoline range organics
TBA $=$ tert-butyl alcohol
MTBE $=$ Methyl tert-butyl ether
$\mathrm{mg} / \mathrm{kg}=$ milligrams per kilogram
$\mathrm{ND}<=$ Not detected at or above stated laboratory reporting limit
NA = Not analyzed

Soil Boring Groundwater Analytical Data
Former BP \#11117
7210 Bancroft Ave., Oakland, CA

Sample ID	DTW or Hydropunch screen interval (feet bgs)	Date Sampled	$\begin{gathered} \text { GRO } \\ (\mathrm{ug} / \mathrm{L}) \end{gathered}$	Benzene (ug/L)	Toluene (ug/L)	Ethylbenzene (ug/L)	Xylenes (ug/L)	$\begin{gathered} \text { TBA } \\ (\mathrm{ug} / \mathrm{L}) \end{gathered}$	MTBE   (ug/L)
A-1 (22.6')	22.6	09/27/05	ND<50	$\mathrm{ND}<0.50$	$\mathrm{ND}<0.50$	$\mathrm{ND}<0.50$	$\mathrm{ND}<0.50$	ND<20	ND<0.50
A-2 (21.3')	21.3	09/27/05	510,000	ND<250	ND<250	7,200	29,000	$\mathrm{ND}<10,000$	ND $<250$
A-2 (40'-42')	40-42	09/27/05	36,000	1,800	97	1,300	1,200	ND<1,000	110
A-3 (19.4')	19.4	09/27/05	25,000	12	43	500	1,900	ND<500	$\mathrm{ND}<12$
A-3 (34'-36')	34-36	09/27/05	12,000	21	24	$\mathrm{ND}<5.0$	130	ND<200	8.3
A-4 (21.6')	21.6	09/26/05	150,000	2,500	7,300	5,500	18,000	ND<2,000	820
A-4 (34'-36')	34-36	09/26/05	120,000	11,000	2,400	4,000	19,000	ND<10,000	39,000
A-5 (19.5')	19.5	09/26/05	790	10	$\mathrm{ND}<2.5$	2.8	3.8	350	510
A-8 (24.6')	24.6	11/03/05	ND<50	$\mathrm{ND}<0.50$	$\mathrm{ND}<0.50$	$\mathrm{ND}<0.50$	$\mathrm{ND}<0.50$	ND<20	$\mathrm{ND}<0.50$
A-9 (24.2')	24.2	11/03/05	68	$\mathrm{ND}<0.50$	$\mathrm{ND}<0.50$	$\mathrm{ND}<0.50$	ND<0.50	ND<20	20
A-10 (25')	25	11/07/05	ND<50	ND $<0.50$	$\mathrm{ND}<0.50$	$\mathrm{ND}<0.50$	0.50	ND<20	$\mathrm{ND}<0.50$
A-10 (39')	39	11/07/05	51	ND<0.50	ND<0.50	$\mathrm{ND}<0.50$	ND<0.50	ND<20	27

## Soil Boring Groundwater Analytical Data

## Former BP \#11117

7210 Bancroft Ave., Oakland, CA
Notes: All Samples analyzed by EPA Method 8260B. Di-isopropyl ether, 1,2-dibromoethane, 1,2-dichloroethane, ethyl tertiary butyl ether, tertiary amyl methyl ether and ethanol were not detected at or above their respective laboratory reporting limit. Total lead analyzed by EPA Method 6000/7000 series for soil disposal purposes.

```
DTW = Depth to water
 bgs = below ground surface
 GRO = Gasoline range organics
 TBA = tert-butyl alcohol
MTBE = Methyl tert-butyl ether
 ug/L = micrograms per liter
 ND< = Not detected at or above stated laboratory reporting limit
 NA = Not analyzed
```


## APPENDIX C.

GEOLOGIC CROSS SECTIONS




SOIL CONCENTRATIONS (ppm)				
Sample ID	Date	TPH-g	Benzene	MTBE
EX-1-15.5	11/30/99	ND<1.0	ND<0.005	0.011
EX-1-21	11/30/99	ND<1.0	ND<0.005	ND<0.005
MW-2-5	12127/91	ND	ND	ND
MW-2-15	1227/91	ND	ND	ND
MW-2-25	12/27/91	ND	ND	ND
MW-4-15	7/2192	240	ND	-
MW-4.20	712292	6,000	34	-
MW-4.25	7/2203	1,100	1.6	-
MW-10-6	-	ND<0.1	ND<0.001	ND<0.1
MW-10-30	-	ND<0.1	ND<0.001	ND<0. 1
MW-10-35	-	ND<0.1	ND<0.001	ND<0.1
S-15-T1N	8/14/98	480	0.4	1.6
S-15-T1S	8/14/98	5,300	ND	ND


LEGEND	
cL	Gravelly clyy, sandy ciays, slly days, leand clys
ML	Sills and very fina sands
SW-SM, Sc	Gravelly andor stly to clayey sand
GP-GM	Sandy yndor sily gra
MW-4	Well or Soill Boring Number Distance and Direcion of Projection
	Soil Type using the Unified Soll Classilication System Analyzed Soll Sampla
$\nabla^{7^{\text {semag }}}$	-Sitaic water Ievelddale
	Total dieph of foring
+2\%	Soil sample analytical resuits with TPH-g. Benzene and MTBE concentrations in milligrams per kilogram ( $\mathrm{mg} / \mathrm{kg}$ ) shown on table




SOIL CONCENTRATIONS (ppm)				
Sample ID	Date	TPH-g	Benzene	MTBE
EX-2-11	11/30/99	ND<1.0	ND<0.005	ND<0.005
EX-2-20.5	11/30/99	ND<1.0	ND<0.005	ND<0.005
MW-1-5	12/27/91	ND	ND	ND
MW-1-15	12/27/91	ND	ND	ND
MW-1-25	12/27/91	ND	ND	ND
MW-8-25	10/6/94	ND<1.0	-	-
MW-10-6	771797	ND<1.0	-	-
MW-10-11	777197	N $1<1.0$	-	-
MW-10-30	77197	ND<1.0	-	-
MW-10-35	$771 / 97$	ND<1.0	-	-
S-3-PL.9	8/14/98	ND	ND	ND
S-14-T4S	8/14/98	ND	ND	0.028
S-15-T4N	8/14/98	ND	ND	0.26
TB4-S-6.5-7	9/14/94	ND	ND	ND
TD-5	918/94	ND	ND	ND
(proj. 14' NW) TPH-1-22	9/8/94	ND	ND	ND

CL Gravelly clays, sandy clys, sily clays, lean clays
ML Sills and very fre sands
SW-SM, SC Grvelly andor silly to clayey sand
GP-GM Sandy andor sily gravel
WW-1 Weillar Soil Boing Nuntrer

Anval Andyzed Soil Smple
$\mathbf{F}^{\text {sna }}$-Staic waler levaldale
$\nabla^{\operatorname{mos} a}$ - First necunleradd waterdale
1 Tola depth of boing
THPP-122 --Soil sample analytical resulis wilh TPH-g, Berrzan and MTBEE concentrabions in
per kiogram (mgkgy) shown on table
Uuility intornation provided by PGEE, EEMUD, and City of Oakand


	Project No. 38486396	GEOLOGIC CROSS SECTION$\mathrm{B} \cdot \mathrm{~B}^{\prime \prime}$	
14S	Former BP Service Station \#11117 7210 Bancroft Avenue Oakland, California		$4$

## APPENDIX D.

UNDERGROUND UTILITIES SITE MAP


