

Andrew E. Cullen Vice President Energy and Telecommunication Services

RECEIVED

3:56 pm, Oct 12, 2010

Alameda County Environmental Health

October 11, 2010

Mr. Paresh Khatri Hazardous Materials Specialist Alameda County Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

Re: 2010 Semi-Annual Monitoring and Sampling Report Former Penske Truck Leasing Facility 725 Julie Ann Way, Oakland, California Alameda County Site ID RO0000354 Stantec PN: 185702145 200.0001

Dear Mr. Khatri:

Subsequent to this cover letter is the 3rd quarter well monitoring report for the former Penske Truck Leasing site located at 725 Julie Ann Way, Oakland, CA.

As an authorized representative of our company Penske Truck Leasing, the following statement is listed below:

I, Andrew Cullen declare under penalty of perjury that the information and/or recommendations contained in the attached document or report are true and correct to the best of my knowledge.

Please let me know if you have any questions or concerns.

Sincerely,

Andrew E. Cullen

aec/kmy

Penske Truck Leasing Rt. 10 Green Hills PO Box 7635 Reading, PA 19603-7635

Tel 610 775 6406 Fax 610 775 6442 Cell 610 207 2580 andrew.cullen@penske.com GoPenske.com

Stantec Consulting Corporation 57 Lafayette Circle 2nd Floor Lafayette CA 94549 Tel: (925) 299-9300 Fax: (925) 299-9302

October 1, 2010

Mr. Paresh Khatri Hazardous Materials Specialist Alameda County Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

(To Be Sent Via Electronic Upload to Alameda County ftp)

Re: 2010 Semi-Annual Monitoring and Sampling Report Former Penske Truck Leasing Facility 725 Julie Ann Way, Oakland, California Alameda County Site ID RO0000354 Stantec PN: 185702145 200.0001

Dear Mr. Khatri:

Stantec Consulting Corporation (Stantec), on behalf of Penske Truck Leasing Company (Penske), has prepared this 2010 Semi-Annual Groundwater Monitoring Report for the Former Penske Truck Leasing Facility (site) located at 725 Julie Ann Way in Oakland, California. There are ten onsite groundwater monitoring wells associated with the site. Well construction details are presented on Table 1. This report documents the procedures and results of the monitoring and sampling events conducted in the Second and Third Quarter 2010.

QUARTERLY GROUNDWATER MONITORING

Groundwater levels were measured by Blaine Tech Services, Inc. (Blaine Tech) in all ten wells in the second quarter 2010 (May 10, 2010) and in the third quarter 2010 (July 16, 2010). An oil/water interface meter graduated to 0.01 foot was used to determine the presence of free-phase product. No free-phase fuel product was measured in any of the wells. Depth-to-groundwater measurements and surveyed wellhead top-of-casing elevations were used to calculate groundwater surface elevations. The water-level measurements taken during the second and third quarters of 2010 are presented in Table 2.

SEMI-ANNUAL GROUNDWATER MONITORING AND SAMPLING PROCEDURES

On July 16, 2010, wells MW-1R, MW-2, MW-4, MW-7R, MW-8, OW-1, and OW-2 were sampled by Blaine Tech. Prior to sampling, wells were purged of approximately three well casing volumes using a diaphragm pump fitted with new, disposable tubing for each well. During purging, the evacuated water was periodically measured for pH, electrical conductivity, and temperature, and visually inspected for color, presence of free product, and turbidity. Downhole dissolved oxygen (DO) measurements and oxidation reduction potential (ORP) measurements were recorded pre- and post-purging at each well. Physical parameters, purge volumes for each well, visual observations, and sampling notes were recorded on field data sheets and are included in Appendix A.

Mr. Paresh Khatri October 1, 2010 Page 2 of 3

2010 Semi-Annual Monitoring and Sampling Report

Upon removal of the appropriate purge volume and stabilization of the measured field parameters, samples were collected from each well using a new, disposable bailer. Samples were collected into laboratory-supplied containers and stored cold during delivery to a state-certified analytical laboratory.

ANALYTICAL PROGRAM

Groundwater samples were analyzed for the following constituents:

- Total petroleum hydrocarbons as diesel (TPHd) by U.S. Environmental Protection Agency (US EPA) Method 8015M with silica gel treatment;
- □ TPH as gasoline (TPHg) by US EPA Method 8015M (soil) and US EPA Method 8260B (groundwater);
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX), and methyl tertiary-butyl ether (MTBE) by US EPA Method 8260B; and,
- □ Ethylene dichloride (EDC) and ethylene dibromide (EDB) by US EPA Method 8260B.

WASTE MANAGEMENT AND DISPOSAL

Purge/rinsate water generated during groundwater sampling activities was stored in California DOT-approved 55-gallon steel drums and left onsite pending characterization and disposal.

RESULTS

Groundwater Monitoring Results

Groundwater elevation data from the May 10, 2010, and July 16, 2010, are presented in Table 2. The Second and Third Quarter potentiometric surface maps are included as Figures 3 and 4, respectively.

May 2010 depth-to-groundwater measurements ranged from 4.13 to 5.52 feet below the top of casing, corresponding to a range of groundwater elevations of -0.05 to 0.96 feet relative to the local City of Oakland datum. Groundwater flow direction was toward the southwest.

July 2010 depth-to-groundwater measurements ranged from 4.31 to 5.90 feet below the top of casing, corresponding to a range of groundwater elevations of -0.32 to 0.92 feet relative to the local City of Oakland datum. Groundwater flow direction was toward the southwest.

No sheen or measurable fuel product was observed during the Second or Third Quarter monitoring events.

Groundwater Sample Analytical Results

Field parameter data of pH, DO, and ORP are presented in Table 3 and groundwater sample analytical results are presented in Table 4. Results for TPHd, TPHg, BTEX, and MTBE are shown on Figure 5. The following summarizes groundwater chemical results:

Mr. Paresh Khatri October 1, 2010 Page 3 of 3

2010 Semi-Annual Monitoring and Sampling Report

- □ TPHd was reported in all seven groundwater samples at concentrations ranging from 360 micrograms per liter (µg/L; well MW-8) to 12,000 µg/L (well MW-4). TPHd concentrations reported in wells OW-1 and OW-2 increased from the previous sampling event in April 2009. The TPHd concentration reported in replacement well MW-1R is consistent with historical data from MW-1. The TPHd concentration reported in replacement well MW-7R is lower than historical data from well MW-7.
- □ TPHg was reported in four of seven groundwater samples at concentrations ranging from 52 µg/L (well MW-7R) to 120 µg/L (wells MW-1R and MW-4). Reported concentrations of TPHg are generally consistent with historical data. The reported concentration in well OW-2 represents a slight decrease compared to historical data, and this event represents the first time TPHg has not been detected above the reporting limit in OW-1.
- Benzene was reported only in the sample from well MW-7R, at a concentration of 0.63 µg/L.
- □ MTBE was reported in five of the seven groundwater samples at concentrations ranging from 1.6 µg/L (well MW-4) to 5.1 µg/L (well OW-1). Toluene, ethylbenzene, EDC, and EDB were not detected at or above laboratory reporting limits in any of the seven groundwater samples analyzed.
- DO values ranged from 1.07 mg/L to 2.91 mg/L.

CONCENTRATION TRENDS

The following is a summary of concentration trends for each of the chemical constituents.

TPHd – A plot depicting TPHd concentrations over time is included as Figure 5.

- □ TPHd concentrations in wells MW-8, MW-2, OW-1, and OW-2 have increased since the previous sampling event.
- TPHd concentrations reported at replacement wells MW-1R and MW-7R are lower than those reported at previous wells MW-1 and MW-7, although the concentration in well MW-1R is consistent with historical data.
- As illustrated on Figure 5, concentrations of TPHd in wells MW-1, MW-2, MW-4, MW-7, and MW-8 have decreased from historical high concentrations observed before Fenton's treatment in October 2000, while concentrations have increased in wells OW-1 and OW-2.
- **TPHg** A plot depicting TPHg concentrations over time is included as Figure 6.
 - □ All detectable TPHg concentrations decreased since than the previous sampling event.
 - April 2009 was the first time TPHg has not been detected above the reporting limit in OW-1.
 - □ As illustrated on Figure 6, concentrations of TPHg in all wells have decreased from historical high concentrations observed prior to October 2000.

Mr. Paresh Khatri October 1, 2010 Page 4 of 3

2010 Semi-Annual Monitoring and Sampling Report

- **BTEX** A plot depicting benzene concentrations over time is included as Figure 7.
 - Benzene concentrations continue to decline in site wells, most notably in well MW-1. Well MW-7R was the only well with a detection, but the concentration is less than 1 μg/L.
 - □ Toluene, ethylbenzene, and xylenes have not been detected since 2001.

<u>MTBE</u> – A plot depicting MTBE concentrations over time is included as Figure 8.

- □ MTBE concentrations in site wells are typically low, with values in the 5-10 µg/L range in most wells. The current data set is consistent with historical site data.
- Well OW-2 has historically reported the highest concentrations of MTBE dating to December 1999. Since this time, MTBE concentrations have declined from a historical high concentration of 17 μg/L to 4.9 μg/L.

EDC/EDB

Lead scavengers EDC and EDB have not been detected in groundwater since first analyzed in April 2009.

DISCUSSION AND CONCLUSIONS

Wells MW-1R and MW-7R are appropriately screened to observe free-product on the groundwater table based on measured static groundwater and the well screen interval. The chemical data reported for MW-1R is similar to historical MW-1 data, while initial groundwater chemical data from well MW-7R is lower than historical MW-7 data. This relationship will be evaluated during future monitoring. A preliminary assessment of wells that are appropriately screened (MW-1R andMW-7R) versus the old wells that had submerged screens (MW-1 and MW-7) indicates that the concentrations are the same or lower than previously observed.

Project Status

In correspondence dated December 17, 2009, the ACEHS requested the submittal of a FS/CAP following installation of wells MW-1R and MW-7R. Based on the absence of free-phase product in well MW-1R, we recommend one additional sampling event to evaluate conditions in the new wells prior to preparing a FS/CAP.

In accordance with Stantec's October 27, 2009, *Monitoring Well Installation Work Plan*, Stantec will continue to monitor wells MW-1R and MW-7R for free-phase fuel product on a quarterly basis for remainder of the year along with wells MW-2, MW-4, MW-4, MW-5, MW-6, MW-8, OW-1, and OW-2. The third quarterly groundwater monitoring event will be conducted during the fourth quarter 2010.

Mr. Paresh Khatri October 1, 2010 Page 5 of 3

2010 Semi-Annual Monitoring and Sampling Report

If you have any questions regarding this document or the findings herein presented, please contact the undersigned at (925) 299-9300.

Sincerely,

STANTEC CONSULTING CORPORATION

Evather

Eva Hey Project Manager Tel: (925) 299-9300 Fax: (925) 299-9302 eva.hey@stantec.com

Meil Docom

Neil Doran, P.G., #8503 Senior Geologist Tel: (916) 384-0722 Fax: (916) 861-0430 <u>neil.doran@stantec.com</u>

cc: Mr. Andrew Cullen, Penske Truck Leasing, Reading PA

LIST OF ATTACHMENTS

- Table 1:Well Construction Details
- Table 2: Groundwater Elevation Data
- Table 3:Field Parameter Data
- Table 4: Groundwater Analytical Results
- Figure 1: Site Location Map
- Figure 2: Site Plan
- Figure 3: Groundwater Elevation Surface Contour Map May 2010
- Figure 4:Groundwater Elevation Surface Contour Map July 2010
- Figure 5: Fuel Hydrocarbons Constituents in Groundwater
- Figure 6: TPHd versus Time
- Figure 7: TPHg versus Time
- Figure 8: Benzene versus Time
- Figure 9: MTBE versus Time

Appendix A: Groundwater Sample Collection Logs

Appendix B: Water Sample Laboratory Reports and Chain-of-Custody Forms

TABLES

2010 Semi-Annual Monitoring and Sampling Report Former Penske Truck Leasing Facility 725 Julie Ann Way, Oakland, California Alameda County Site ID RO0000354 Stantec PN: 185702145 200.0001 October 1, 2010

TABLE 1

WELL CONSTRUCTION DETAILS

Former Penske Facility - 725 Julie Ann Way , Oakland, CA

Well	Total Depth (feet bgs)	Screen Length (feet)	Screen Interval (feet bgs)			Top of Casing Elevation (feet msl)
MW-1	35	25	10.0	-	35.0	5.43
MW-1R	20	16.5	3.5	-	20.0	4.73
MW-2	30	20	10.0	-	30.0	6.20
MW-3	35	25	10.0	-	35.0	6.10
MW-4	33.5	27	6.5	-	33.5	5.18
MW-5	35	25	6.0	-	31.0	4.71
MW-6	25	10	15.0	-	25.0	5.37
MW-7	29	15	14.0	-	29.0	5.38
MW-7R	20	16.5	3.5	-	20.0	4.50
MW-8	28	18	10.0	-	28.0	5.44
OW-1	13.5	na	na		na	5.09
OW-2	14.0	na	na		na	5.39

na: not available

Well		Elevation	Depth to Water	Groundwater Elevation
No.	Date	(Feet) ^(a,b)	(Feet)	(Feet)
MW-1	02/20/97	5.43	5.41	0.02
	05/28/97		5.98	-0.55
	09/19/97		6.45	-1.02
	11/17/97		6.14	-0.71
	02/27/98		4.83	0.60
	05/27/98		6.42	-0.99
	10/01/98		6.49	-1.06
	12/22/98		6.35	-0.92
	12/28/99		7.34	-1.91
	03/14/00		4.95	0.48
	06/28/00		5.54	-0.11
	09/14/00		6.41	-0.98
	12/11/00		6.08	-0.65
	03/14/01		6.11	-0.68
	06/13/01		5.68	-0.25
	08/29/01		6.13	-0.70
	12/12/01		5.31	0.12
	04/11/02		5.21	0.22
	12/05/02		5.85	-0.42
	04/22/09		5.03	0.40
		ned on January 11, 2010 and	replaced with well MW-1R or	
MW-1R	02/08/10	4.73	4.41	0.32
	05/10/10		4.58	0.15
	07/16/10		4.98	-0.25
MW-2	02/20/97	6.20	6.26	-0.06
	05/28/97		6.65	-0.45
	09/19/97		6.90	-0.70
	11/17/97		6.75	-0.55
	02/27/98		5.31	0.89
	05/27/98		5.87	0.33
	10/01/98		6.95	-0.75
	12/22/98		6.70	-0.50
	12/28/99		7.08	-0.88
	03/15/00		5.45	0.75
	06/28/00		6.37	-0.17
	09/14/00		6.86	-0.66
	12/11/00		7.33	-1.13
	03/14/01		5.75	0.45
	06/13/01		6.33	-0.13
	08/29/01		6.71	-0.51
	12/12/01		5.92	0.28
	04/11/02		5.88	0.32
	12/05/02		6.56	-0.36
	12/05/02		6.56	-0.36
	04/22/09		5.52	0.68
	02/08/10		5.28	0.92
	05/10/10		5.46	0.74
	07/16/10	•	5.80	0.40

Well		Elevation	Depth to Water	Groundwater Elevation
No.	Date	(Feet) ^(a,b)	(Feet)	(Feet)
MW-3	02/20/97	6.10	6.36	-0.26
	05/28/97		6.62	-0.52
	09/19/97		6.83	-0.73
	11/17/97		6.77	-0.67
	02/27/98		5.38	0.72
	05/27/98		6.05	0.05
	10/01/98		6.95	-0.85
	12/22/98		6.73	-0.63
	12/28/99		7.22	-1.12
	03/14/00		NM	NM
	06/28/00		6.37	-0.27
	09/14/00		7.06	-0.96
	12/11/00		6.68	-0.58
	03/14/01		5.85	0.25
	06/13/01		6.34	-0.24
	08/29/01		6.70	-0.60
	12/12/01		5.95	0.15
	04/11/02		5.86	0.24
	12/05/02		6.55	-0.45
	12/05/02		6.55	-0.45
	04/22/09		NM	NM
	02/08/10		5.31	0.79
	05/10/10		5.52	0.58
	07/16/10		5.90	0.20
MW-4	02/20/97	5.18	5.29	-0.11
	05/28/97		5.66	-0.48
	09/19/97		6.00	-0.82
	11/17/97		6.06	-0.88
	02/27/98		4.66	0.52
	05/27/98		5.98	-0.80
	10/01/98		5.23	-0.05
	12/22/98		6.57	-1.39
	12/28/99		6.54	-1.36
	03/14/00		4.86	0.32
	06/28/00		5.55	-0.37
	09/14/00		6.05	-0.87
	12/11/00		5.93	-0.75
	03/14/01		5.04	0.14
	06/13/01		5.25	-0.07
	08/29/01		5.89	-0.71
	12/12/01		5.14	0.04
	04/11/02		4.96	0.22
	12/05/02		5.68	-0.50
	04/22/09		4.67	0.51
	02/08/10		4.71	0.47
	05/10/10		4.55	0.63
	07/16/10		5.12	0.06

Well		Elevation	Depth to Water	Groundwater Elevation
No.	Date	(Feet) ^(a,b)	(Feet)	(Feet)
MW-5	02/20/97	4.71	4.68	0.03
	05/28/97		5.21	-0.50
	09/19/97		5.43	-0.72
	11/17/97		5.28	-0.57
	02/27/98		4.10	0.61
	05/27/98		5.40	-0.69
	10/01/98		5.42	-0.71
	12/22/98		5.40	-0.69
	12/28/99		5.73	-1.02
	03/14/00		NM	NM
	06/28/00		5.11	-0.40
	09/14/00		NM	NM
	12/11/00		5.48	-0.77
	03/14/01		4.57	0.14
	06/13/01		5.05	-0.34
	08/29/01		5.34	-0.63
	12/12/01		4.79	-0.08
	04/11/02		4.66	0.05
	12/05/02		5.32	-0.61
	04/22/09		NM	NM
	02/08/10		4.13	0.58
	05/10/10		4.20	0.51
	07/16/10		4.44	0.27
MW-6	02/20/97	5.37	5.38	-0.01
	05/28/97		5.93	-0.56
	09/19/97		6.15	-0.78
	11/17/97		6.06	-0.69
	02/27/98		4.74	0.63
	05/27/98		5.40	-0.03
	10/01/98		6.37	-1.00
	12/22/98		6.06	-0.69
	12/28/99		6.40	-1.03
	03/14/00		NM	NM
	06/28/00		6.71	-1.34
	09/14/00		6.17	-0.80
	12/11/00		NM	NM
	03/14/01		5.11	0.26
	06/13/01		6.65	-1.28
	08/29/01	,	6.00	-0.63
	12/12/01		5.33	0.04
	04/11/02		5.15	0.22
	12/05/02		5.90	-0.53
	04/22/09		NM	NM
	02/08/10		4.56	0.81
	05/10/10		4.79	0.58
	07/16/10		5.03	0.34

Well		Elevation	Depth to Water	Groundwater Elevation
No.	Date	(Feet) ^(a,b)	(Feet)	(Feet)
MW-7	02/20/97	5.38	5.70	-0.32
	05/28/97		5.46	-0.08
-	09/19/97		5.91	-0.53
	11/17/97		5.59	-0.21
	02/27/98		4.68	0.70
	05/27/98		5.17	0.21
	10/01/98		5.80	-0.42
	12/22/98		5.78	-0.40
	12/28/99		7.72	-2.34
	03/14/00		4.50	0.88
	06/28/00		5.51	-0.13
	09/14/00		5.93	-0.55
	12/11/00		5.72	-0.34
	03/14/01		4.58	0.80
	06/13/01		5.18	0.20
	08/29/01		5.53	-0.15
	12/12/01		4.73	0.65
	04/11/02		4.68	0.70
	12/05/02		5.25	0.13
	04/22/09		4.58	0.80
	Well MW-7	abandoned on January 11, 2	010 and replaced with well MV	V-7R on January 12, 2010.
MW-7R	02/08/10	4.50	4.28	0.22
	05/10/10		4.55	-0.05
	07/16/10		4.82	-0.32
MW-8	02/20/97	5.44	5.10	0.34
	05/28/97		5.68	-0.24
	09/19/97		5.95	-0.51
	11/17/97		5.91	-0.47
	02/27/98		4.50	0.94
	05/27/98		6.10	-0.66
	10/01/98		6.13	-0.69
_	12/22/98		6.10	-0.66
_	12/28/99		6.30	-0.86
_	03/14/00		5.01	0.43
-	06/28/00		5.47	-0.03
	09/14/00		5.99	-0.55
	12/11/00	,	5.84	-0.40
	03/14/01		4.90	0.54
	06/13/01		5.40	0.04
	08/29/01		5.80	-0.36
	12/12/01		5.05	0.39
	04/11/02		4.95	0.49
	12/05/02		5.42	0.02
	04/22/09		4.94	0.50
	02/08/10		4.31	1.13
	05/10/10		4.54	0.90
	07/16/10		4.80	0.64

Well		Elevation	Depth to Water	Groundwater Elevation
No.	Date	(Feet) ^(a,b)	(Feet)	(Feet)
OW-1	12/28/99	5.09	5.77	-0.68
	03/15/00		4.47	0.62
	06/29/00		4.95	0.14
	08/29/01		5.01	0.08
	09/14/00		5.31	-0.22
	12/11/00		5.17	-0.08
	03/14/01		4.54	0.55
	06/13/01		4.75	0.34
	12/12/01		4.80	0.29
	04/11/02		4.52	0.57
	12/05/02		5.13	-0.04
	04/22/09		4.19	0.90
	02/08/10		4.20	0.89
	05/10/10		4.13	0.96
	07/16/10		4.31	0.78
OW-2	12/28/99	5.39	6.08	-0.69
	03/15/00		4.76	0.63
	06/29/00		5.15	0.24
	09/14/00		5.60	-0.21
	12/11/00		5.45	-0.06
	03/14/01		4.77	0.62
	06/13/01		5.01	0.38
	08/29/01		5.31	0.08
	12/12/01		5.10	0.29
	04/11/02		4.83	0.56
	12/05/02		5.42	-0.03
	04/22/09		4.52	0.87
	02/08/10		4.41	0.98
	05/10/10		4.49	0.90
	07/16/10		4.47	0.92

Notes:

(a) - All well elevations resurveyed to site benchmark on February 10, 1993.

(b) - Wells MW-1R and MW-7R resurveyed on February 19, 2010

NM - Not Measured

Well		рН	D.O.	ORP
No.	Date	(units)	(mg/L)	(millivolts)
MW-1	12/28/99	7.92	0.87	-211
	03/14/00	7.29	1.12	-23
	06/28/00	8.26	0.55	-248
	09/14/00	6.92	0.36	-316
	12/11/00	7.05	1.34	-55
	03/14/01	7.07	1.24	-66
	06/13/01	7.05	1.20	-109
	08/29/01	7.78	NM	-63
	12/12/01	6.93	1.28	-4
	04/12/02	6.72	0.37	-56
	12/05/02	7.01	NM	-79
	04/22/09	6.94	0.08	-57/102
			andoned on January 11, 2010	
		-	vell MW-1R on January 12, 2	
MW-1R	02/08/10	7.27	1.07	NM 100/ 150
	07/16/10	7.14	0.15	-139/-152
MW-2	12/28/99	7.94	0.96	-38
	03/15/00	7.28	1.43	-255
	06/28/00	7.52	0.89	-221
	09/14/00	7.44	0.61	-310
	12/11/00	7.28	1.96	24
	03/14/01	7.34	1.46	11
	06/13/01	7.07	0.95	-12
	08/29/01	7.24	NM	70
	12/12/01	7.13	0.88	13
	04/11/02	7.25	0.66	126
	12/05/02	7.01	0.14	-32
	04/22/09	6.91	0.17	143/-12
	02/08/10	6.91	3.56	NM
	07/16/10	7.19	0.40	104/72
MW-3	12/28/99	NM	NM	NM
	03/14/00	NM	NM	NM
	06/28/00	NM	NM	NM
	09/14/00	NM	NM	NM
	12/11/00	NM	NM	NM
	03/14/01	NM	NM	NM
	06/13/01	NM	NM	NM
	08/29/01	NM	NM	NM
	12/13/01	NM	NM	NM
	04/11/02	NM	NM	NM
	12/05/02	NM	NM	NM
	04/22/09	NM	NM	NM
	02/08/10	NM	NM	NM

Well		рН	D.O.	ORP
No.	Date	(units)	(mg/L)	(millivolts)
MW-4	12/28/99	7.38	0.80	-201
	03/14/00	6.97	2.11	35
	06/28/00	6.87	3.57	-34
	09/14/00	7.23	1.06	16
	12/11/00	6.99	2.27	74
	03/14/01	6.81	1.28	-91
	06/13/01	6.97	0.97	-30
	08/29/01	7.45	NM	104
	12/13/01	6.88	0.34	199
	04/12/02	6.77	0.95	12
	12/05/02	6.81	0.56	-13
	04/22/09	6.71	0.16	-67/-68
	02/08/10	6.92	2.38	NM
MW-5	12/28/99	7.55	1.14	-118
	03/14/00	NM	NM	NM
	06/28/00	7.57	1.79	-103
	09/14/00	NM	NM	NM
	12/11/00	7.28	4.14	-11
	03/14/01	NM	NM	NM
	06/13/01	7.04	3.61	-44
	08/29/01	NM	NM	NM
	12/13/01	7.05	3.26	52
	04/11/02	7.04	2.28	-524
	12/05/02	NM	NM	NM
	04/22/09	NM	NM	NM
MW-6	12/28/99	NM	NM	NM
	03/14/00	NM	NM	NM
	06/28/00	NM	NM	NM
	09/14/00	NM	NM	NM
	12/11/00	NM	NM	NM
	03/14/01	NM	NM	NM
	06/13/01	NM	NM	NM
	08/29/01	NM	NM	NM
	12/13/01	NM	NM	NM
	04/11/02	NM	NM	NM
	12/05/02	NM	NM	NM
	04/22/09	NM	NM	NM
	02/08/10	NM	NM	NM
	07/16/10	6.99	0.47	-107/-124

Well		рН	D.O.	ORP
No.	Date	(units)	(mg/L)	(millivolts)
MW-7	12/28/99	7.94	1.30	-58
	03/14/00	7.23	1.05	-260
	06/28/00	7.18	5.76	-164
	09/14/00	7.06	0.65	-306
	12/12/00	7.02	1.25	-70
	03/14/01	7.10	0.94	-6
	06/13/01	7.03	1.77	-94
	08/29/01	7.34	NM	58
	12/12/01	7.09	0.98	47
	04/12/02	6.60	0.71	0
	12/05/02	6.96	0.14	10
	04/22/09	7.09	0.17	-37/-98
			indoned on January 11, 2010 vell MW-7R on January 12, 2	
MW-7R	02/08/10	7.43	2.32	NM
		7.28	0.12	-148/-105
MW-8	12/28/99	7.79	0.42	-136
	03/14/00	7.05	1.53	-27
	06/28/00	8.86	1.87	-77
	09/14/00	7.32	1.07	-166
	12/12/00	7.05	1.16	-61
	03/14/01	7.21	2.55	16
	06/13/01	7.10	2.43	-21
	08/29/01	7.52	NM	9
	12/13/01	7.15	1.55	12
	04/12/02	6.58	1.83	-10
	12/05/02	6.91	0.07	-88
	04/22/09	7.13	2.72	98/30
	02/08/10	7.09	3.58	NM
	07/16/10	7.26	0.29	68/0
OW-1	12/28/99	7.67	0.99	-89
	03/15/00	7.31	1.16	-55
	06/29/00	6.34	3.29	-48
	09/14/00	7.02	0.98	-115
	12/12/00	6.94	1.98	-5
	03/14/01	7.04	2.89	-5
	06/13/01	6.76	1.11	-58
	08/29/01	7.04	NM	-39
	12/12/01	6.83	1.17	-46
	04/11/02	7.19	0.75	-31
	12/05/02	6.88	0.03	-79
	04/22/09	6.80	0.29	-77/-88
	02/08/10	6.98	2.91	NM
	07/16/10	7.03	0.41	-81/-118

Well	Dete	pH (unite)	D.O.	ORP (millivolto)
No.	Date	(units)	(mg/L)	(millivolts)
OW-2	12/28/99	7.69	1.79	-58
	03/15/00	7.25	0.99	-35
	06/29/00	6.44	2.39	-66
	09/14/00	7.21	1.33	-89
	12/12/00	6.90	1.44	-76
	03/14/01	7.16	2.68	-54
	06/13/01	6.97	1.15	-92
	08/29/01	7.16	NM	-93
	12/12/01	6.81	1.36	-61
	04/11/02	7.08	0.89	-44
	12/05/02	6.85	0.01	-95
	04/22/09	6.89	0.35	-103/-90
	02/08/10	7.10	2.12	NM
	07/16/10	7.11	0.38	-107/-13

Notes:

D.O. - Dissolved Oxygen

mg/L - milligrams per liter

ORP - Oxidation Reduction Potential

NM - Not Measured

						Ethyl			Ethylene	Ethylene
Well		TPHd	TPHg	Benzene	Toluene	Benzene	Xylenes	MTBE	Dichloride	Dibromide
No.	Date				-	(µ/L)	-	-		
MW-1	02/20/97	200,000	2,900	260	61	42	96	NS	NA	NA
	05/28/97	28,000	2,100	230	42	55	110	NS	NA	NA
	09/19/97	2,700,000	110,000	230	140	250	700	ND	NA	NA
	11/17/97	950,000	40,000	240	190 ^(c)	270 ^(c)	880 ^(c)	ND ^(c)	NA	NA
	02/27/98	1,200,000	380,000	50	50	200	800	ND	NA	NA
	05/27/98	280,000	13,000	110	13	66	390	ND	NA	NA
	10/01/98	63,000	1,300	43	1.2	15	84	ND	NA	NA
	12/22/98	79,000	2,000	32	ND ^(e)	23 ^(e)	130 ^(e)	ND	NA	NA
	12/28/99	43,000	1,700	49	1.3	11	24	ND	NA	NA
	03/14/00	4,300	540	59	1.3	12	23	NA	NA	NA
	06/28/00	290,000	1,300	26	ND	ND	23	ND	NA	NA
	09/14/00	770,000	1,100	34	ND	3.9	17	ND	NA	NA
	12/11/00	28,000	2,000	10	ND	ND	9.3	ND	NA	NA
	03/14/01	8,400	350	12	ND	ND	ND	ND	NA	NA
	06/13/01	13,000	340	6.4	ND	ND	1.6	ND	NA	NA
	08/29/01	26,000	140	0.5	ND	ND	ND	ND	NA	NA
	12/12/01 04/12/02	5,600 23,000	160 260	0.65	ND ND	ND ND	ND	ND NA	NA	NA NA
	12/05/02		340	3.4 2.2		ND	ND		NA	NA
	04/22/09	17,000 3,200	240	<0.50	ND <0.50	<0.50	ND <1.0	6.0 2.6	NA <0.50	<0.50
	DUP	12,000	310	< 0.50	< 0.50	< 0.50	<1.0	2.0	<0.50	< 0.50
	DOP								ary 12, 2010.	<0.50
	02/08/10	5,600	120 ^(k)		<0.50	<0.50	1		<0.50	<0.50
MW-1R				< 0.50			< 0.50	<0.50		
Dup	02/08/10	5,800	110 ^(k)	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
	07/16/10	770	110 ^(k)	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Dup	07/16/10	960	120 ^(k)	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
MW-2	02/20/97	1,000 ^(h)	ND	ND	ND	ND	ND	NS	NA	NA
	05/28/97	3,700 ^(b,h)	ND	ND	ND	ND	ND	NS	NA	NA
	09/19/97	4100	ND	ND	ND	ND	ND	ND	NA	NA
	11/17/97	1300	ND	ND	ND	ND	ND	ND	NA	NA
	02/27/98	340	ND	ND	0.9	ND	ND	ND	NA	NA
	05/27/98	1300	ND	ND	ND	ND	ND	ND	NA	NA
	10/01/98	3,500 ⁽ⁱ⁾	3,200	ND	ND	ND	ND	ND	NA	NA
	12/22/98	1,200 ^(j,k)	67 ^(d)	ND	ND	ND	ND	ND	NA	NA
	12/28/99	750	ND	ND	ND	ND	ND	ND	NA	NA
	03/15/00	92	ND	ND	ND	ND	ND	ND	NA	NA
	06/28/00	ND	ND	ND	ND	ND	ND	ND	NA	NA
	09/14/00	120	ND	ND	ND	ND	ND	ND	NA	NA
	12/11/00	ND	ND	ND	ND	ND	ND	ND	NA	NA
	03/14/01	75	ND	ND	ND	ND	ND	ND	NA	NA
	06/13/01	ND	ND	ND	ND	ND	ND	ND	NA	NA
	08/29/01	ND	ND	ND	ND	ND	ND	ND	NA	NA
	12/12/01	150*	ND	ND	ND	ND	ND	ND	NA	NA
	04/12/02	ND	ND	ND	ND	ND	ND	NA	NA	NA
	12/05/02	57*	ND	ND	ND	ND	ND	ND	NA 10.50	NA 10.50
	04/22/09	140 870 ^(k)	<50	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	< 0.50	< 0.50
	02/08/10		<50	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	<0.50	< 0.50
	07/16/10	<50	<50	<0.50	<0.50	<0.50	<1.0	1.5	<0.50	<0.50

						Ethyl			Ethylene	Ethylene
Well		TPHd	TPHg	Benzene	Toluene	Benzene	Xylenes	MTBE	Dichloride	Dibromide
No.	Date					(µ/L)				
MW-3	02/20/97	140 ^(h)	ND	ND	ND	ND	ND	NS	NA	NA
	05/28/97	240 ^(b,h)	ND	ND	ND	ND	ND	NS	NA	NA
	09/19/97	ND	ND	0.7	ND	ND	ND	ND	NA	NA
	11/17/97	ND	ND	ND	ND	ND	ND	ND	NA	NA
	02/27/98	ND	ND	ND	ND	ND	ND	ND	NA	NA
	05/27/98	ND	ND	ND	ND	ND	ND	ND	NA	NA
	10/01/98	56 ^(I)	ND	ND	ND	ND	ND	ND	NA	NA
				Well MW-3	no longer inc	luded in samp	oling program	n		
MW-4	02/20/97	470,000	64,000	ND	ND	ND	ND	NS	NA	NA
	05/28/97	1,000,000	11,000	ND	ND	ND	ND	NS	NA	NA
	09/19/97	2,600,000	37,000	260	ND	ND	ND	ND	NA	NA
	11/17/97	57,000	4,400	25	ND ^(c)	ND ^(c)	ND ^(c)	ND ^(c)	NA	NA
	02/27/98	9,300	580	2.7	0.8	0.8	3	ND	NA	NA
	05/27/98	11,000	3,900	1.4	0.6	ND	ND	ND	NA	NA
	10/01/98	670,000	2,400	5.7	ND	ND	4.6	ND	NA	NA
	12/22/98	3,700	200	ND ^(p)	NA	NA				
	12/28/99	5,800	1,000	ND	ND	ND	ND	ND	NA	NA
	03/14/00	4,800	350	ND	ND	ND	ND	NA	NA	NA
	06/28/00	8,400	120	ND	ND	ND	ND	ND	NA	NA
	09/14/00	19,000	130	ND	ND	ND	ND	ND	NA	NA
	12/11/00	730	120	ND	ND	ND	ND	ND	NA	NA
	03/14/01	580	50	ND	ND	ND	ND	ND	NA	NA
	06/13/01	260	54	ND	ND	ND	ND	ND	NA	NA
	08/29/01	30,000	940	ND	ND	ND	ND	ND	NA	NA
	12/13/01	260	50	ND	ND	ND	ND	ND	NA	NA
	04/12/02	230	50	ND	ND	ND	ND	NA	NA	NA
	12/05/02	1,500	50	ND	ND	ND	ND	ND	NA	NA
	04/22/09	13,000	480	<0.50	<0.50	<0.50	<0.50	3.0	<0.50	<0.50
	02/08/10	12,000	120 ^(k)	<0.50	<0.50	<0.50	<0.50	1.6	<0.50	<0.50
	07/16/10	2,700	210 ^(k)	<0.50	<0.50	<0.50	<0.50	4.2	<0.50	<0.50
MW-5	02/20/97	1,100 ^(h)	ND	ND	ND	ND	ND	NS	NA	NA
	05/28/97	560 ^(b,q)	60 ^(m)	ND	ND	ND	ND	NS	NA	NA
	09/19/97	1,000	70	ND	ND	ND	ND	ND	NA	NA
	11/17/97	1,100	70	0.6	0.7	0.5	ND	5	NA	NA
	02/27/98	ND	ND	ND	ND	ND	ND	5	NA	NA
	05/27/98	770	ND	ND	ND	ND	ND	ND	NA	NA
	10/01/98	630	ND	ND	ND	ND	ND	ND	NA	NA
	12/22/98	890 ^(r)	ND	ND	ND	ND	ND	ND	NA	NA
	12/28/99	440	ND	ND	ND	ND	ND	ND	NA	NA
	03/15/00	NS	NS	NS	NS	NS	NS	NS	NA	NA
	06/28/00	110*	ND	ND	ND	ND	ND	ND	NA	NA
	09/14/00	NS	NS	NS	NS	NS	NS	NS	NA	NA
	12/11/00	130	ND	ND	ND	ND	ND	ND	NA	NA
	03/14/01	NS	NS	NS	NS	NS	NS	NS	NA	NA
	06/13/01	120	ND	ND	ND	ND	ND	ND	NA	NA
	08/29/01	NS	NS	NS	NS	NS	NS	NS	NA	NA
	12/13/01	530*	ND	ND	ND	ND	ND	ND	NA	NA
	04/11/02	230*	ND	ND	ND	ND	ND	NA	NA	NA
				Well MW-5	no longer inc	luded in samp	oling progran	n		

						Ethyl			Ethylene	Ethylene
Well		TPHd	TPHg	Benzene	Toluene	Benzene	Xylenes	MTBE	Dichloride	Dibromide
No.	Date					(μ/L)				
MW-7	02/20/97	1,500,000	15,000	81	51	ND	ND	NS	NA	NA
	05/28/97	440,000	390,000	ND	ND	ND	ND	NS	NA	NA
	09/19/97	910,000	3,600	110	64	37	ND	ND	NA	NA
	11/17/97	18,000,000	15,000	110	41 ^(c)	12 ^(c)	110 ^(c)	ND ^(c)	NA	NA
	02/27/98	290,000	45,000	80	60	ND	ND	ND	NA	NA
	05/27/98	1,600	140	2.3	0.9	0.9	3	ND	NA	NA
	10/01/98	89,000	710	39	2.4	11	31	ND	NA	NA
	12/22/98	240,000	3,900	51	ND	ND	ND	ND	NA	NA
	12/28/99	300,000	2,300	51	5.3	13	27	ND	NA	NA
	03/14/00	640,000	620	31	5.3	9.9	31	NA	NA	NA
	06/28/00	2,900,000	3,200#	15	ND	3.2	30	ND	NA	NA
	09/14/00	15,000,000	1,900	11	ND	10	39	ND	NA	NA
	12/12/00	340,000	4,500	5	ND	ND	17	ND	NA	NA
	03/14/01	170,000	8,000	5	ND	ND	ND	ND	NA	NA
	06/13/01	19,000	100	0.99	ND	ND	ND	6.2	NA	NA
	08/29/01	27,000	120	3.9	ND	ND	ND	5	NA	NA
	12/12/01	6,900	610	0.5	ND	ND	ND	ND	NA	NA
	04/12/02	2,600	110	0.5	ND	ND	ND	NA	NA	NA
	12/05/02	9,100	290	0.5	ND	ND	ND	5.7	NA	NA
	04/22/09	1,900	56	<0.50	<0.50	<0.50	<1.0	3.4	<0.50	<0.50
		Well MW-		ed on January	11, 2010 and	d replaced wit	h well MW-7	R on Janu	uary 12, 2010.	
MW-7R	02/08/10	560	52 ^(k)	0.63	<0.50	<0.50	<0.50	2.4	<0.50	<0.50
	07/16/10	12,000	4,000 ^(K)	2.6	<50	0.8	6.9	2.5	<50	<50
MW-8	02/20/97	2,500	340 ^(a)	2.1	53	7.1	94	NS	NA	NA
	05/28/97	200 ^(b,s)	480 ^(a)	2.5	12	ND	76	NS	NA	NA
	09/19/97	7,000	1,000	0.8	5	0.5	130	ND	NA	NA
	11/17/97	520	250	1.4	2.1	0.7	3	ND	NA	NA
	02/27/98	150	ND	ND	ND	ND	ND	ND	NA	NA
	05/27/98	70	ND	ND	ND	ND	ND	ND	NA	NA
	10/01/98	440 ^(t)	ND	ND	ND	ND	ND	ND	NA	NA
	12/22/98	NS	NS	NS	NS	NS	NS	NS	NA	NA
	12/28/99	130	ND	ND	ND	ND	ND	ND	NA	NA
	03/14/00	170	ND	ND	ND	ND	ND	NA	NA	NA
	06/28/00	300*	ND	ND	ND	ND	ND	ND	NA	NA
	09/14/00	310	ND	ND	ND	ND	ND	ND	NA	NA
	12/11/00	15,000	ND	ND	ND	ND	ND	ND	NA	NA
	03/14/01	130	ND	ND	ND	ND	ND	ND	NA	NA
	06/13/01	100	ND	ND	ND	ND	ND	ND	NA	NA
	08/29/01	160*	ND	ND	ND	ND	ND	ND	NA	NA
	12/13/01	97*	ND	ND	ND	ND	ND	ND	NA	NA
	04/12/02	ND	ND	ND	ND	ND	ND	NA	NA	NA
	12/05/02	97	ND	ND	ND	ND	ND	ND	NA	NA
	04/22/09	<50	<50	<0.50	<0.50	<0.50	<1.0	2.9	<0.50	<0.50
	02/08/10	360 ^(k)	<50	<0.50	<0.50	<0.50	<0.50	1.7	<0.50	<0.50
	07/16/10	<50	<50	<0.50	<0.50	<0.50	<0.50	1.6	<0.50	<0.50

Well No.	Date	TPHd	TPHg	Benzene	Toluene	Ethyl Benzene (μ/L)	Xylenes	MTBE	Ethylene Dichloride	Ethylene Dibromide
OW-1	12/28/99	7,700	3,400	11	ND	ND	2.6	ND	NA	NA
	03/15/00	5,300	700	1.7	ND	ND	ND	ND	NA	NA
	06/29/00	1,300*	140#	4	ND	ND	2.2	6.6	NA	NA
	09/14/00	5,800	180	ND	ND	ND	ND	ND	NA	NA
	12/12/00	230	110	3.4	ND	ND	ND	ND	NA	NA
	03/14/01	2,200	110	4	ND	ND	0.5	ND	NA	NA
	06/13/01	1,500	120	2.5	ND	ND	ND	ND	NA	NA
	08/29/01	1,200*	130#	ND	ND	ND	ND	ND	NA	NA
	12/12/01	3,100*	76#	ND	ND	ND	ND	ND	NA	NA
	04/11/02	3,600*	300#	ND	ND	ND	ND	NA	NA	NA
	12/05/02	490#	78#	ND	ND	ND	ND	ND	NA	NA
	04/22/09	1,600	130	<0.50	<0.50	<0.50	<1.0	8.9	<0.50	<0.50
	02/08/10	11,000	<50	<0.50	<0.50	<0.50	<0.50	5.1	<0.50	<0.50
	07/16/10	85	57 ^(k)	<0.50	<0.50	<0.50	<0.50	4.3	<0.50	<0.50
OW-2	12/28/99	3,300	770	36	ND	ND	1.7	16	NA	NA
	03/15/00	1,100	350	24	ND	ND	ND	9.3	NA	NA
	06/29/00	850	160	7.4	ND	ND	ND	13	NA	NA
	09/14/00	6,300	590	26	0.79	ND	1.7	17	NA	NA
	12/12/00	320	210	6.6	ND	ND	ND	7.4	NA	NA
	03/14/01	960	320	5.6	ND	ND	ND	ND	NA	NA
	06/13/01	900	250	2.9	ND	ND	ND	10	NA	NA
	08/29/01	1,400	270	5.3	ND	ND	ND	ND	NA	NA
	12/12/01	4,100	280	14	ND	ND	ND	11	NA	NA
	04/11/02	4,100	820	6.4	ND	ND	ND	NA	NA	NA
	12/05/02	500	230	0.5	ND	ND	ND	5.6	NA	NA
	04/22/09	2,100	210	<0.50	<0.50	<0.50	<1.0	6.8	<0.50	<0.50
	02/08/10	10,000	140 ^(k)	<0.50	<0.50	<0.50	<0.50	4.9	<0.50	<0.50
	07/16/10	2,000	210 ^(K)	<0.50	<0.50	<0.50	<0.50	5.7	<0.50	<0.50
TB	02/08/10	NA	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
	07/16/10	NA	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
EB	02/08/10	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
	07/16/10	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50

Notes:

mg/L - micrograms per liter

- Well not sampled
- TPHd Total Petroleum Hydrocarbons as diese - Not detected at or above the laboratory detection limit
- TPHq Total Petroleum Hydrocarbons as gaso
- NA - Not analyzed EΒ -equipment blank

MTBE - Methyl tert butyl ether

- (a) Laboratory reports that chromatogram indicates gasoline and unidentified hydrocarbons >C8.
- (b) Laboratory reports that the laboratory control sample failed for this batch, as well as when it was initially

analyzed on 6/3/97. All results should be considered as estimated values. No additional sample was available for re-extraction.

(c) - Laboratory reports reporting limits for diesel and gas/BTEX elevated due to high levels of target compound. Samples run at dilution. (d) - Laboratory reports the peak pattern present in this sample represents an unknown mixture atypical of gasoline in the range of

n-C09 to greater than n-C12. Quantitation is based on a gasoline reference in the range of n-C07 to n-C12 only.

(e) - Laboratory reports reporting limit(s) raised due to high level of analyte present in sample.

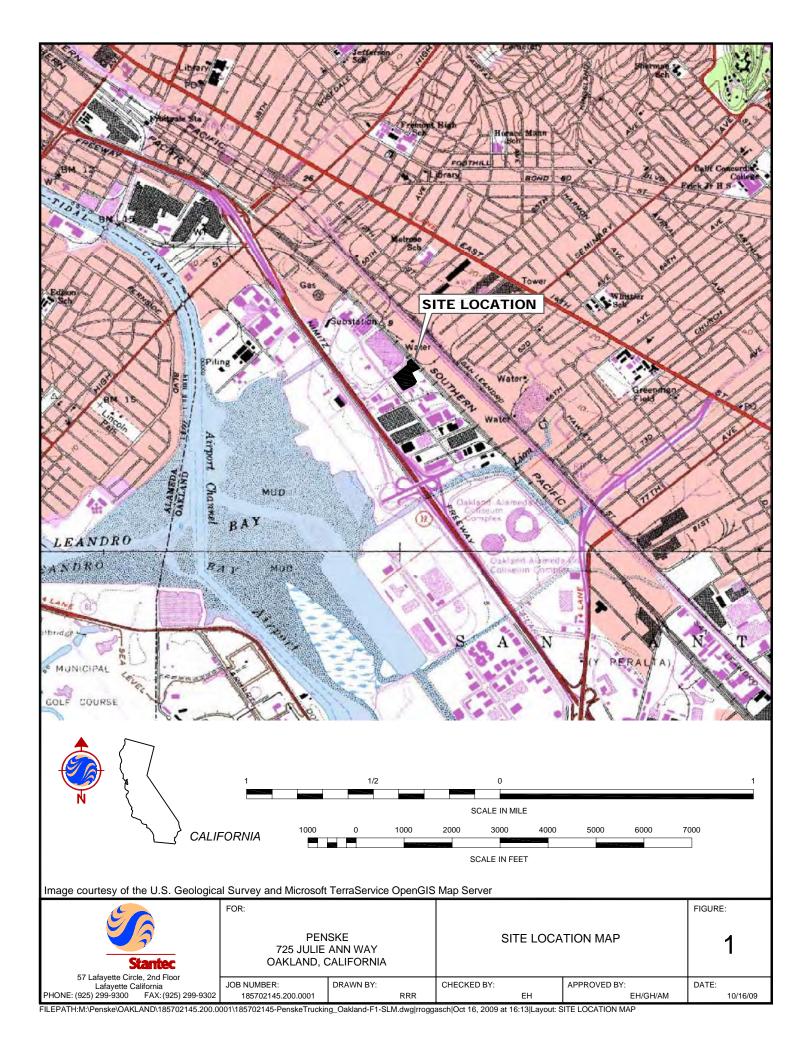
(f) - Laboratory reports the hydrocarbon pattern present in this sample represents an unknown mixture in the range of n-C09 to n-C36. Quantitation is based on a diesel reference between n-C10 and n-C24 only.

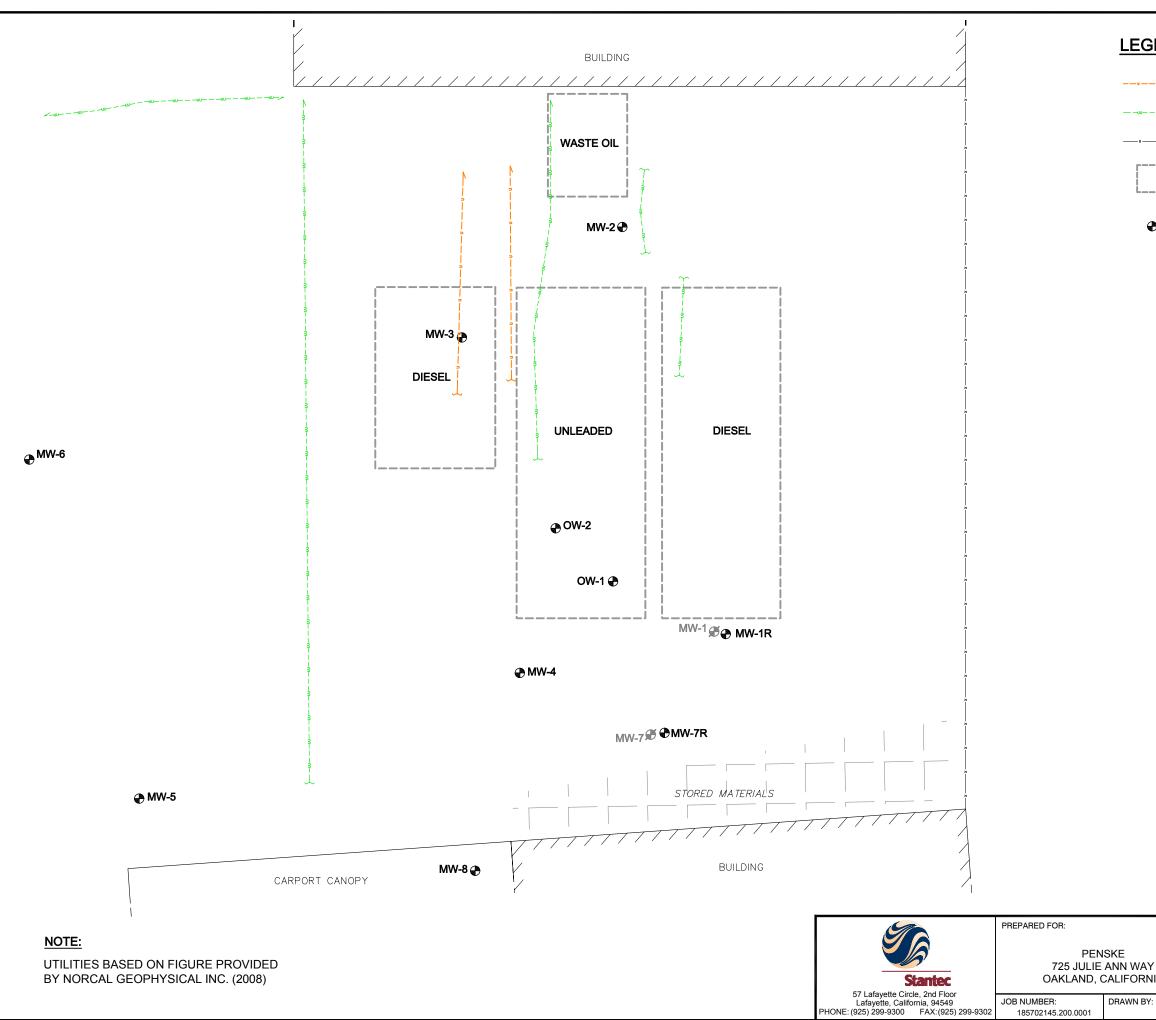
(g) - Laboratory reports that chromatogram indicates diesel and unidentified hydrocarbons >C20.

(h) - Analyzed by USEPA Method 8015, modified.

(i) - Analyzed by USEPA Method 8020.

(j) - Diesel range concentration reported. A nonstandard diesel pattern was observed in the chromatogram.

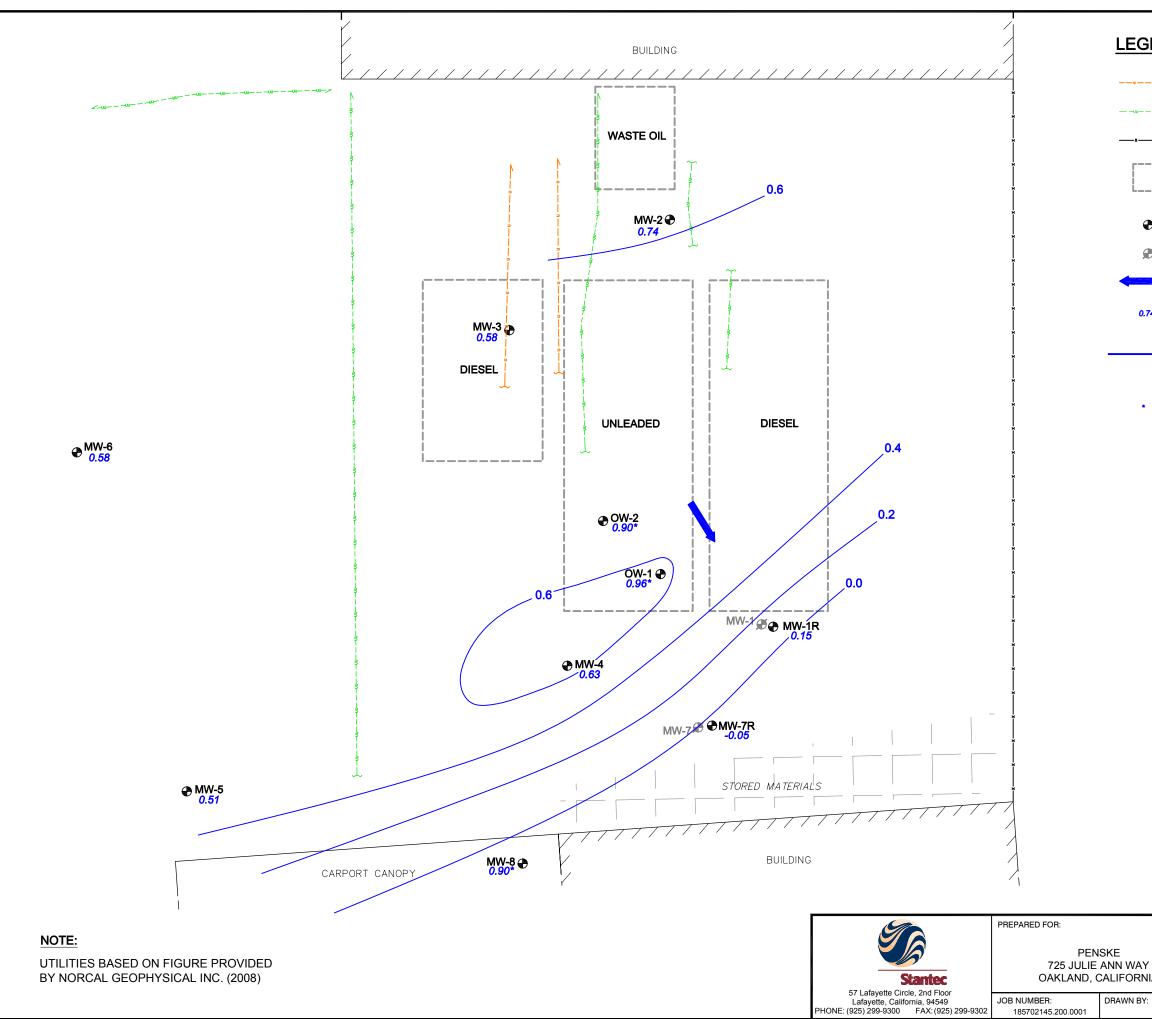

- * Hydrocarbon reported does not match the diesel standard.
- # Hydrocarbon reported (in the gasoline range) does not match lab standard.
- (k) Sample exhibits chromatographic pattern that does not resemble standard.
 - Ethylene dichloride reported as 1,2-Dichloroethane


Ethylene dibromide reported as 1,2-Dibromoethane

NS ND

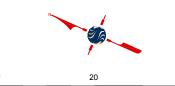
FIGURES

2010 Semi-Annual Monitoring and Sampling Report Former Penske Truck Leasing Facility 725 Julie Ann Way, Oakland, California Alameda County Site ID RO0000354 Stantec PN: 185702145 200.0001 October 1, 2010



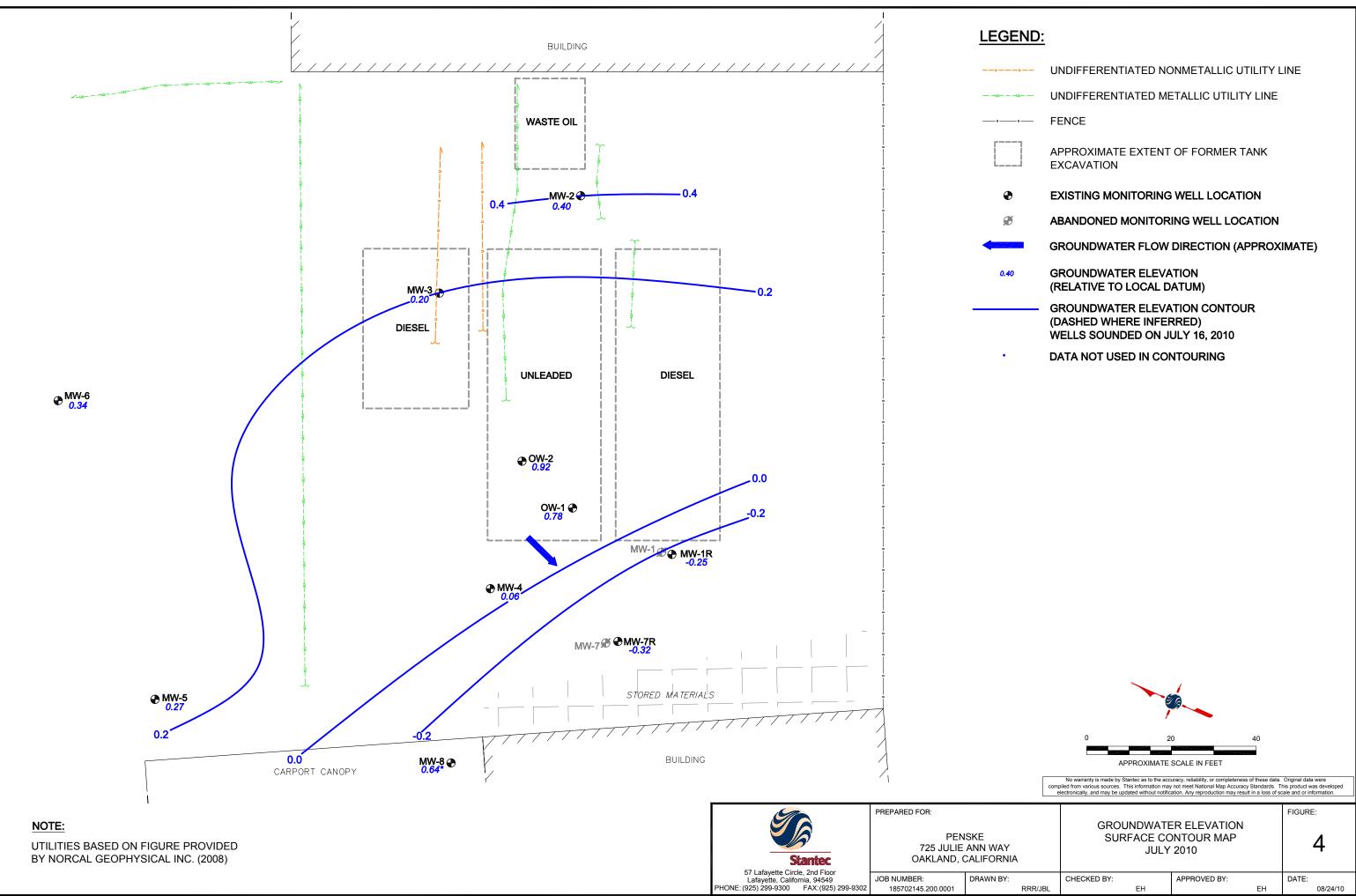
LEGEND:

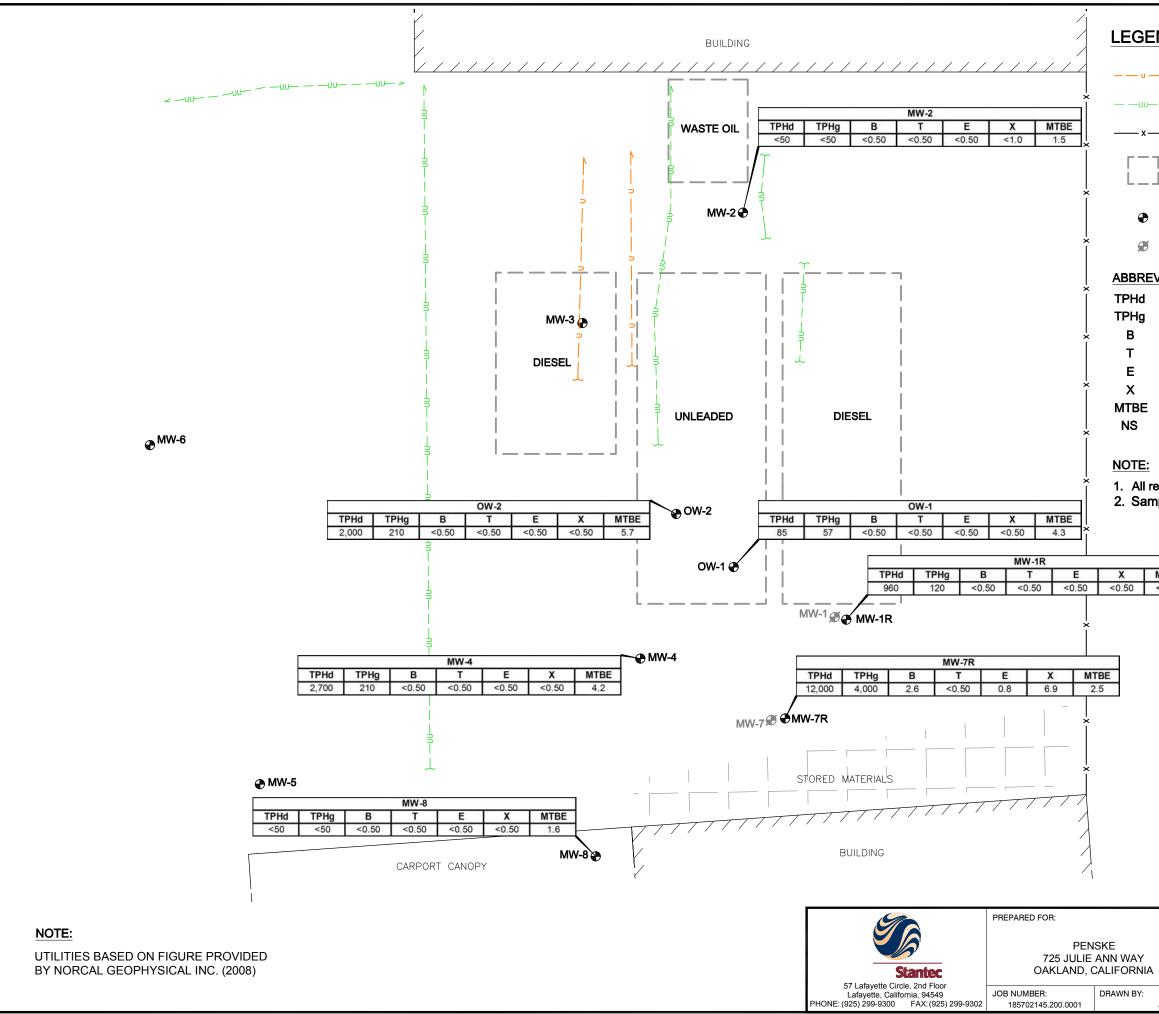
	UNDIFFERENTIATED NONMETALLIC UTILITY LINE
	UNDIFFERENTIATED METALLIC UTILITY LINE
x	FENCE
	APPROXIMATE EXTENT OF FORMER TANK EXCAVATION
	EXISTING MONITORING WELL LOCATION


	0 2	0	40						
	APPROXIMATE	SCALE IN FEET							
	No warranty is made by Stantec as to the acc illed from various sources. This information may lectronically, and may be updated without notific	not meet National Map Accuracy	Standards. Th	his product was developed					
				FIGURE:					
, IA	SITE		2						
	CHECKED BY:	APPROVED BY:	E 11	DATE:					
RRR/JBL	EH		EH	08/24/10					

LEGEND:

	UNDIFFERENTIATED NONMETALLIC UTILITY LINE
	UNDIFFERENTIATED METALLIC UTILITY LINE
x	FENCE
	APPROXIMATE EXTENT OF FORMER TANK EXCAVATION
Ð	EXISTING MONITORING WELL LOCATION
Ð	ABANDONED MONITORING WELL LOCATION
	GROUNDWATER FLOW DIRECTION (APPROXIMATE)
).74	GROUNDWATER FLOW DIRECTION (APPROXIMATE) GROUNDWATER ELEVATION (RELATIVE TO LOCAL DATUM)


DATA NOT USED IN CONTOURING


APPROXIMATE SCALE IN FEET

No warranty is made by Stantec as to the accuracy, reliability, or completeness of these data. Original data were compiled from various sources. This information may not meet National Map Accuracy Standards. This product was developed electronically, and may be updated without notification. Any reproduction may result in a loss of scale and or information.

IA	GROUNDWATE SURFACE CC MAY	NTOUR MAP		FIGURE:
	CHECKED BY:	APPROVED BY:		DATE:
RRR/JBL	EH		EH	08/24/10
RRR/JBL	EH		EH	08/24/10

- u 	UNDIFFERENTIATED NONMETALLIC UTILITY LINE
	UNDIFFERENTIATED METALLIC UTILITY LINE
x	FENCE
	APPROXIMATE EXTENT OF FORMER TANK EXCAVATION
Ð	EXISTING MONITORING WELL LOCATION
Ð	ABANDONED MONITORING WELL LOCATION
	GROUNDWATER FLOW DIRECTION (APPROXIMATE)
0.40	GROUNDWATER ELEVATION (RELATIVE TO LOCAL DATUM)
	GROUNDWATER ELEVATION CONTOUR (DASHED WHERE INFERRED) WELLS SOUNDED ON JULY 16, 2010

LEGEND:

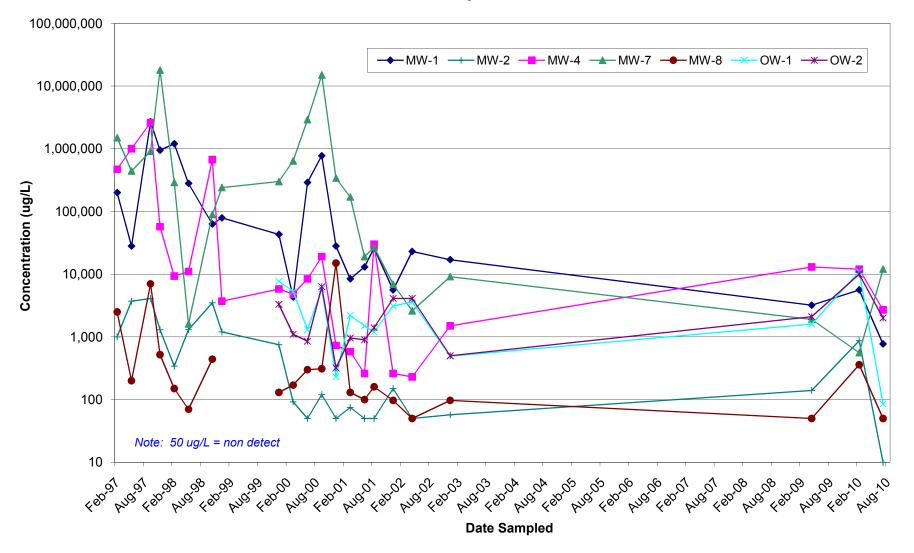
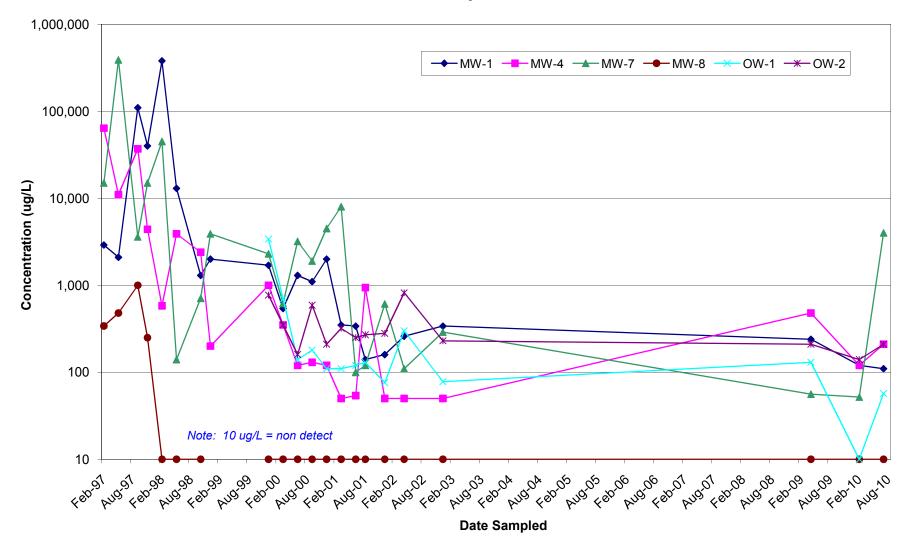
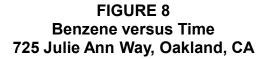
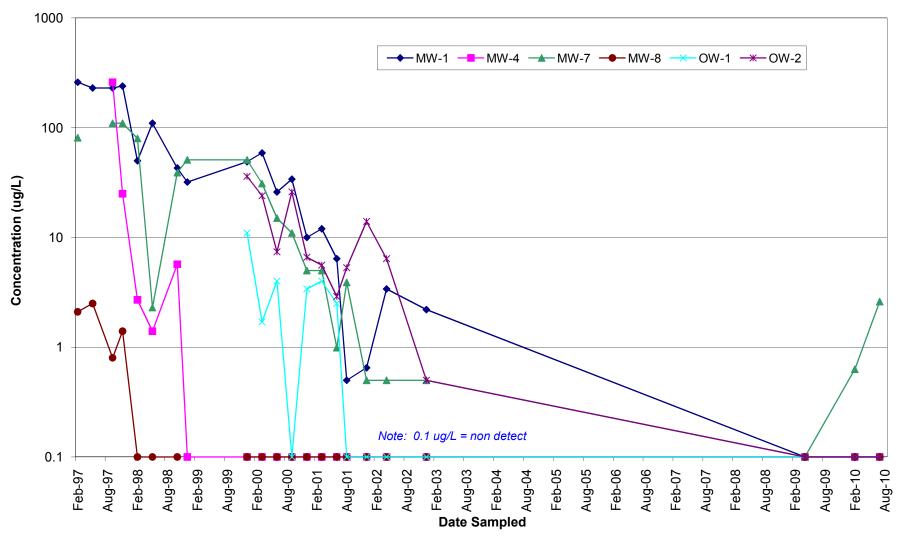
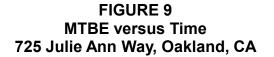
- UNDIFFERENTIATED NONMETALLIC UTILITY LINE — — u — — UNDIFFERENTIATED METALLIC UTILITY LINE FENCE APPROXIMATE EXTENT OF FORMER TANK EXCAVATION Ð **EXISTING MONITORING WELL LOCATION** ABANDONED MONITORING WELL LOCATION Ø **ABBREVIATIONS:** - Total Petroleum Hydrocarbons as diesel - Total Petroleum Hydrocarbons as gasoline - Benzene
 - Toluene
 - Ethylbenzene
 - Total Xylenes
 - Methyl tert-butyl ether
 - Not Sampled

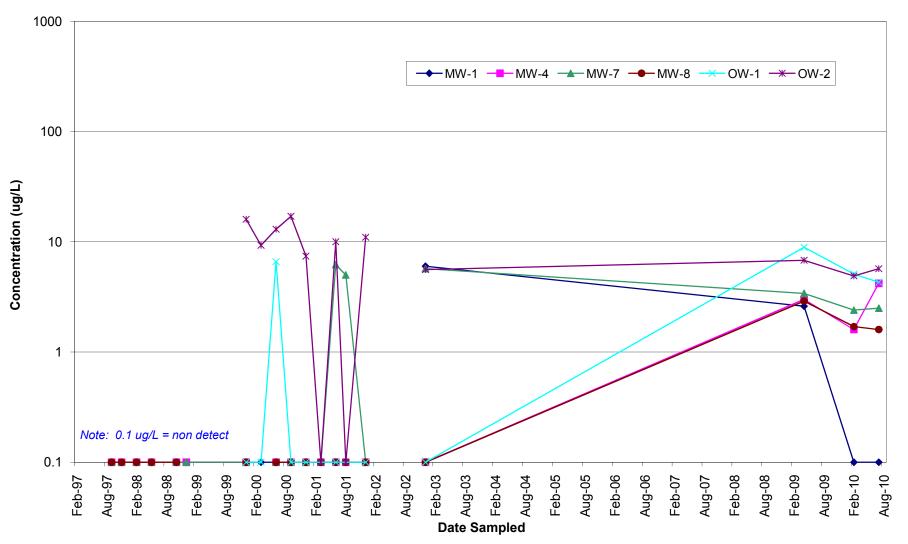
1. All results in micrograms per liter (µg/L). 2. Samples collected July 16, 2010.

MTBE
<0.50
<0.50

	0 2	0	40							
			_							
	APPROXIMATE	SCALE IN FEET								
No warranty is made by Stantec as to the accuracy, reliability, or completeness of these data. Original data were compiled from various sources. This information may not meet National Map Accuracy Standards. This product was developed electronically, and may be updated without notification. Any reproduction may result in a loss of scale and or information.										
				FIGURE:						
	FUEL HYDR	OCARBONS								
	CONSTIT			5						
IA	GROUNI		5							
	CHECKED BY:	APPROVED BY:		DATE:						
JBL/RRR	EH		EH	09/15/10						

FIGURE 6 TPHd versus Time 725 Julie Ann Way, Oakland, CA


FIGURE 7 TPHg versus Time 725 Julie Ann Way, Oakland, CA

APPENDIX A Groundwater Sample Collection Logs

2010 Semi-Annual Monitoring and Sampling Report Former Penske Truck Leasing Facility 725 Julie Ann Way, Oakland, California Alameda County Site ID RO0000354 Stantec PN: 185702145 200.0001 October 1, 2010

FIELD DATA SHEETS Second Quarter 2010

WELLHEAD INSPECTION CHECKLIST

 Date
 5-10-10
 Client
 STANTEC

 Site Address
 725
 JULIE ANN WY
 DAKLAND, CA

 Job Number
 /0.05 / 0.- ES /
 Technician
 Feature

Site Address	725 Jui	-18 Ar	N W.	٢	DAKLA	ND, C	Â	
Job Number	100510	- FSI		_ Teo	chnician	F		
Well ID	Well Inspected - No Corrective Action Required	Water Bailed From Wellbox	Wellbox Components Cleaned	Керіасео	Debris Removed From Wellbox	Lock Replaced	Other Action Taken (explain below)	Well Not Inspected (explain below)
MW-1								
Mw-2				<u>۸</u>				×
mn-3		V						*
MW.4							V	
MN-5								~
MW .6								**
MW - 7A						÷		
MW-8				••				* *
0~-1			·					**
0w-2								1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	-							
		r	1					
					·······			
		7	·					
NOTES:	t			DROP 1	FIT 1	<i>a</i> y	l	
MW.4 NO			AB,	STRIPP		2 LID G" BOLT	- K	SOLTS
				JIF(FI	<u>e + (/)</u>	4	<u> </u>	
							<u>.</u>	
			2.24		·			
BLAINE TECH SERVIC	es, INC.	SAN JOSE	SACRAMENTO	D LOS ANG	ELES SAN	DIEGO		www.blainetech.com

Page _____ of _____

Project # 100510 - FSZ Date 5-10.10 Client STANTEC

Site 725 JULIE ANN WAY OAKLAND, CA

Well ID	Time	Well Size (in.)	Sheen / Odor	1	Thickness of Immiscible Liquid (ft.)	Immiscibles Removed	1	Depth to well bottom (ft.)	Survey Point: TOB or TOC	Notes	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
MW-1	1425	2	DDOR		. منبيوين	National and	4.58	19.52	TOC		
nn z	1420	Ч		Carrier -	agajitikan .	Ning(Classers	5.46	28.78	Survey of the second se		
nw-3	1418	Ц		gggalanich	egypter	NAMES OF ADDRESS OF AD	5.52	33.30			
nw-d	1328	ન			eebw.	44622755564ap	4.55	37.06			
Aw.s	1401	4		daggaansi o	-gg6(2504**-	-	4.20	31.05			
Aw.6	1415	ч			a Magazan.	436000640m	4.79	24.35			
AL-NU	1430	2	0 DoR	éssource	-	critetionicanyan,	4 55	19.29			
MW-8	1338	ц	ODOR		distance	REGRETING.	4.54	25.70	- -	Ne -	
02-1	1345	4		Ølation.		QCC/cabitragene	4.13	1335			
0~-2	1355	Ŋ		e e e e e e e e e e e e e e e e e e e	•••••••••	and the first second	4.44	14.04	V		
	* A(l wells	gauge	o with	Interfac	e probe	. No SPH	detected			
									~		
			ē.						1		

BLAINE TECH SERVICES, INC. SAN JOSE SACRAMENTO LOS ANGELES SAN DIEGO SEATTLE

www.blainetech.com

FIELD DATA SHEETS Third Quarter 2010

S. . or Purge Water Drum Lo

Client:

Stantie

Site Address	: <u>725</u>	dine A	mr Way		
STATUS O	E DRUM	S) UPO	NARR	VAL	

STATUS OF DRUM(S) UPON ARRIVAL							
Date	1 1	21810	7/16/10				
Number of drum(s) empty:	3						
Number of drum(s) 1/4 full:							
Number of drum(s) 1/2 full:							
Number of drum(s) 3/4 full:							
Number of drum(s) full:	1 (Sont)	19					
Total drum(s) on site:	4	19	0				
Are the drum(s) properly labeled?	M						
Drum ID & Contents:	purge Mp	Pines Migg					
If any drum(s) are partially or totally filled, what is the first use date:							

- If you add any SPH to an empty or partially filled drum, drum must have at least 20 gals. of Purgewater or DI Water.

-If drum contains SPH, the drum MUST be steel AND labeled with the appropriate label.

-All BTS drums MUST be labeled appropriately.

STATUS OF DRUM(S) UPON	DEPARTI	JRE				
Date	4/22/02	2/8/10	716:0			
Number of drums empty:	~					
Number of drum(s) 1/4 full:	1	1				
Number of drum(s) 1/2 full:						
Number of drum(s) 3/4 full:						
Number of drum(s) full:	1954T	22	3			
Total drum(s) on site:	6	23	3			
Are the drum(s) properly labeled?	Y	Y	Y			
	grow your	5				
Drum ID & Contents:	XALLE WY	Karden Cont				
Drum ID & Contents: LOCATION OF DRUM(S)	- August	Ku Zavita				1
			collong do	or, hy hol	lavd	
LOCATION OF DRUM(S)			rolling do	er, hy he	lave	
LOCATION OF DRUM(S) Describe location of drum(s): Near			rolling do	er, hy he	lart	
LOCATION OF DRUM(S) Describe location of drum(s): Near FINAL STATUS Number of new drum(s) left on site	MW-7A			er, hy he	Lave	
LOCATION OF DRUM(S) Describe location of drum(s): Near FINAL STATUS Number of new drum(s) left on site this event	MW-7A	, alone .	3	or, hy hol	lave	
LOCATION OF DRUM(S) Describe location of drum(s): Near FINAL STATUS Number of new drum(s) left on site this event Date of inspection:	MW-7A	, alone .	3	or, hy hol	Lavd	

TEST EQUIPMENT CALIBRATION LOG

PROJECT NAI	NEL ytec @	Pensko		PROJECT NU	MBER 20716-PCL		
EQUIPMENT NAME	EQUIPMENT NUMBER	DATE/TIME OF TEST	STANDARD USED	S EQUIPMENT READING	CALIBRATED TO: OR WITHIN 10%:	TEMP.	INITIALS
Myronz		7/16/10	4710pH 3900pts	4.21/7.05/99	7	25.9	R
Au							
2 2 22		20 				4. 5.	
			· · ·		· · · ·		
		· · · · · · · · · · · · · · · · · · ·					
		Э. Х.	· ·				
i So fije		¥.;					

WELLHEAD INSPECTION CHECKLIST

Page _____ of _

Well ID	1		<u></u>	. 160	chnician	P.Gruis	<u>h</u>	
venit	Well Inspected - No Corrective Action Required	Water Bailed From Wellbox	Wellbox Components Cleaned	Cap Replaced	Debris Removed From Wellbox	Lock Replaced	Other Action Taken (explain below)	Well Not Inspected (explain below)
MU-IR	×							
MV-2				۸.			¥	
MW-3				-			A	
MU-4							ĸ	
MU-5					~~~~~~~	-	K	·
MW-6							K	
MV-7R	/							
MW-8					na mana ang ang ang ang ang ang ang ang ang		_ K	
Ow-1							<u> </u>	
Ow-2							K	
2.94 2.94								-
		-						
			· · ·					
OTES: NW-	-2, MW-3,1	MW-K-	lid not	sermable.	-1/2 = 40	el deter		
OTES: <u>hw-</u> Mw-4, 12, 8, 01	V-1,0W-2 -	72/27.	ibs strip	org				
		-		·				
						200 	· •	
			-					

WELL GAUGING DATA

Project # 100716-PC1

Date 7/6/10

Client Stantec

Site 725 Julie Ann Wy, Oakland

Well ID	Time	Well Size (in.)	Sheen / Odor	Depth to Immiscible Liquid (ft.)	Immiscibles Removed	Depth to water (ft.)	Depth to well bottom (ft.)	Survey Point: TOB or	Notes
<u>mu-1</u> R	750	2				4.98	19.50		
MW-2	758	ų				550	28-78		
MU-3	815	4				5-90	35.35		
MV-4	802	4				5.12	33-12		
MUF 5	826	4				4,44	31.00		
MU-6	830	Ц				5.03	24.32		
MU-TR	822	2				4.82	19.25		
MW-8	810	4				4.80	25.70	-	
OW-1	535	Ц				4.31	(3.34		
0W-2	438	Ц				84.47	14.01		
*									

BLAINE TECH SERVICES, INC. SAN JOSE SACRAMENTO LOS ANGELES SAN DIEGO SEATTLE

www.blainetech.com

	FORING DATA	ASHEEL				
-1	Client: Stantec					
		Date: Hudio				
-	Well Diameter	r: ② 3 4	6 8			
1.50	Depth to Wate	er (DTW): 🗛 , 🦋	ś			
		· · · · · · · · · · · · · · · · · · ·				
VC Grade	D.O. Meter (if	req'd):	YSI HACH			
[(Height of Water	Column x 0.20) + DTW]: 7-5	58			
	. ^		➤ Disposable Bailer Extraction Port Dedicated Tubing			
~	Well Diamet	ter Multiplier Well 0.04 4"	Diameter Multiplier 0.65			
$\frac{1}{V_{\text{olumes}}} = \frac{Q_{\text{olumes}}}{Calculated V_{\text{olumes}}}$	Gals. 2" olume 3"	0.16 6" 0.37 Other	1.47			
Cond. H (mS or AS)	Turbidity (NTUs)	Gals. Removed	Observations			
6 2573	344	2,8				
5 2791	165	4.6				
4 2718	121	and an				
· ·						
	Gallons actuall	v evacuated.				
		-	r. È 111			
۵.			L L			
@						
	Oxygenates (5)	Other:	inguate & 1252			
·ge: 0.62 2 0.1	S ^{mg} / _L P	ost-purge:	O. S mg/L			
D.O. (if req'd): Pre-purge: $0.5^{mg/L}$ Post-purge: $0.8^{mg/L}$ Post-purge: $0.8^{mg/L}$ Post-purge: -13° mV Post-purge: -15° m						
	$\frac{1}{4.50}$ 1	Client: $5+2$, 1 Date: $\frac{1}{160}$ Well Diameter Well Diameter Chief of Water Column to Water Client: $\frac{1}{20}$ Depth to Water Thickness of H D.O. Meter (iff Cond. Mater Column to 0.20 Waterra Peristaltic Extraction Pump Other Calculated Volume $\frac{1^2}{2^n}$ $\frac{1^2}{3^n}$ Cond. Turbidity (NTUS) Calculated Volume $\frac{1^2}{2^n}$ $\frac{1^2}{3^n}$ $\frac{1^2}{2^n}$	Client: $Shawfec$ Date: $H(lo[lO)$ Well Diameter: $O 3 4$ $A \leq SO$ Depth to Water (DTW): H_1 , h_1 Thickness of Free Product (fermination of the second of the se			

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

W_LL MONIT	FORING DAT.	A SHEL ſ			
Project #: 100716-PC1	Client: Stantec				
Sampler: PC	Date: Hulio				
Well I.D.: W W-2	Well Diamete	r: 2 3 4	6 8		
Total Well Depth (TD): 78-78	Depth to Wate	er (DTW):5.80	·		
Depth to Free Product:	Thickness of I	Free Product (fee	et):		
Referenced to: PVC Grade	D.O. Meter (if	f req'd): (YSI HACH		
DTW with 80% Recharge [(Height of Water	Column x 0.20) + DTW]: _{1 છ} ્ય	.0		
Disposable Bailer	Waterra Peristaltic ction Pump 	Sampling Method: Other:	Bailer ★Disposable Bailer Extraction Port Dedicated Tubing		
$\frac{14.9}{1 \text{ Case Volume}} (\text{Gals.}) \times \frac{3}{\text{Specified Volumes}} = \frac{144.7}{\text{Calculated Volumes}}$	Gals.	0.04 4" 0.16 6" 0.37 Other	0.65		
Temp Cond. Time ($^{\circ}F \circ 1^{\circ}C$) pH (mS or μ S) 916 [9.9 (656) 3659	Turbidity (NTUs) 30	Gals. Removed	Observations		
922 19-2 7.13 42.18	7.7	30			
926 19.0 7.19 4331	26	45			
Did well dewater? Yes No		y evacuated: 45	5		
Sampling Date: 7/10/13 Sampling Time	:930	Depth to Water	: 590		
Sample I.D.:M W-2	Laboratory:	Kiff CalScience	Other CET		
	Oxygenates (5)	Other: See Co	c ***		
	Duplicate I.D. (Oxygenates (5)	(if applicable): Other:			
D.O. (if req'd): Pre-purge: QUO	^{mg} / _L Po	ost-purge:	J. Com		
O.R.P. (if req'd): Pre-purge: 104	mV 🖉 Po	ost-purge:	72		

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-/

Project #: 100716-PC1	Client: Stantec					
Sampler: PC	Date: 7/10/10					
Well I.D.: MW-4	Well Diameter: 2 3 4 6 8					
Total Well Depth (TD): 33.17	Depth to Water (DTW): 5.12					
Depth to Free Product:	Thickness of Free Product (feet):					
Referenced to: PVC Gra	ade D.O. Meter (if req'd): YSI HACH					
DTW with 80% Recharge [(Height of	Water Column x 0.20) + DTW]: しっチン					
Purge Method: Bailer Disposable Bailer Positive Air Displacement ÆElectric Submersible O	Waterra Sampling Method: Bailer Peristaltic X Disposable Bailer Extraction Pump Extraction Port ther Dedicated Tubing Other:					
$\frac{1}{1 \text{ Case Volume}} = \frac{3}{2}$	$\frac{Well Diameter Multiplier Well Diameter Multiplier}{1" 0.04 4" 0.65}$ $\frac{1}{2" 0.16 6" 1.47}$ $\frac{1}{3" 0.37 0 \text{ther } \text{radius}^2 * 0.163}$					
Temp Cor Time (°F or °C) pH (mS or	Turbidity					
130 217 6A9 8960	5 55 55					
2" saburerstole paup deployed to	typ of obstruction ~ 13' down					
Did well dewater? No	Gallons actually evacuated: 14					
Sampling Date: 7/10/10 Samplin	g Time: 1310 Depth to Water: 5-15					
Sample I.D. MW-H Laboratory: Kiff CalScience Other CET						
Analyzed for: TPH-G BTEX MTBE TPH-D Oxygenates (5) Other: See Loc						
EB I.D. (if applicable): ^(a) Time Duplicate I.D. (if applicable):						
Analyzed for: TPH-G BTEX MTBE T	PH-D Oxygenates (5) Other:					
D.O. (if req'd): Pre-purge: 0.47	Post-purge: $O.22$					
O.R.P. (if req'd): Pre-purge: -10-	mV Post-purge: -12H					

WAL MONITORING DATA SHEAT

Project #: 100716-PC1	Client: Stav	Client: Stantec				
Sampler: PC		Date: Hillo				
Well I.D.: MW-7R	Well Diameter	r: ② 3 4	6 8			
Total Well Depth (TD): 19.25	Depth to Wate	er (DTW): 4-8-	7.			
Depth to Free Product:		Free Product (fe				
Referenced to: PVC Grade	D.O. Meter (if	req'd):	YSI HACH			
DTW with 80% Recharge [(Height of Wa	ter Column x 0.20)+DTW]: 7-	71			
Electric Submersible Other_	Waterra Peristaltic traction Pump Gals. Volume	Sampling Method Other er <u>Multiplier Well</u> 0.04 4" 0.16 6" 0.37 Othe	★ Disposable Bailer Extraction Port Dedicated Tubing Diameter Multiplier 0.65 1.47			
Temp Cond. Time (°F or °C) pH (mS or (LS)	Turbidity (NTUs)	Gals. Removed	Observations			
12.00 19.7 7.27 4252	(43	13				
1202 19.9 7.28 3726	112	4.6				
1206 19.3 7.28 3616	62	7				
Did well dewater? Yes No	Gallons actually	· · · · · · · · · · · · · · · · · · ·				
Sampling Date: 7/16/10 Sampling Tim	me: [2]5	Depth to Wate	r: 4.96			
Sample I.D.: MW-7R	Laboratory:	Kiff CalScience	e Other CET			
Analyzed for: TPH-G BTEX MTBE TPH-D	Oxygenates (5)	Other: See Co	°C			
EB I.D. (if applicable):	Duplicate I.D. (if applicable):				
Analyzed for: TPH-G BTEX MTBE TPH-D	•• • • • • • • • • • • • • • • • • • • •	Other:				
D.O. (if req'd): Pre-purge: OAZ	^{mg} / _L Pc	ost-purge:	0.24 ^{mg} /L			
O.R.P. (if req'd): Pre-purge: ~ 48	mV Po	ost-purge:	-105 mV			

	II URING DATA SHELT				
Project #: 100716-PC1	Client: Stantec				
Sampler: PC	Date: 71610				
Well I.D.: MW-8	Well Diameter: 2 3 4 6 8				
Total Well Depth (TD): 25-70	Depth to Water (DTW): 4.80				
Depth to Free Product:	Thickness of Free Product (feet):				
Referenced to: PVC Grade	D.O. Meter (if req'd): YSI HACH				
DTW with 80% Recharge [(Height of Wat	ter Column x 0.20) + DTW]: 8,98				
Purge Method: Bailer Disposable Bailer Positive Air Displacement Ext Electric Submersible Other	Waterra Sampling Method: Bailer Peristaltic X Disposable Bailer traction Pump Extraction Port Dedicated Tubing Other: Well Diameter Multiplier Well Diameter Multiplier				
$\frac{3 - 6}{1 \text{ Case Volume}} (\text{Gals.}) \times \frac{3}{\text{Specified Volumes}} = \frac{49 - 3}{\text{Calculated}}$					
Temp Cond. Time (°F or °C) pH (mS or µS)	Turbidity (NTUs) Gals. Removed Observations				
948 18.5 7-22 6364	33 13.5				
952 18-7 7-B 6061	26 27				
956 18-6 726 6066	18 41				
Did well dewater? Yes No	Gallons actually evacuated: Ц				
Sampling Date: 7/10/10 Sampling Tir	me: Depth to Water: 7.69				
Sample I.D.: MIN - 8	Laboratory: Kiff CalScience Other CET				
Analyzed for: TPH-G BTEX MTBE TPH-D	Oxygenates (5) Other: See Coc				
EB I.D. (if applicable):	Duplicate I.D. (if applicable):				
Analyzed for: TPH-G BTEX MTBE TPH-D	Oxygenates (5) Other:				
D.O. (if req'd): Pre-purge: 0-29	$^{mg}/_{L}$ Post-purge: $750-26$ $^{mg}/_{L}$				
D.R.P. (if req'd): Pre-purge: 69	mV Post-purge: \mathcal{P} \mathcal{W} mV				

Project #: 100716-PC1	Client: Stav	Client: Stantec						
Sampler: PC	Date: 7/10/10							
Well I.D.: OW-	Well Diameter	: 2 3 🌢	6 8					
Total Well Depth (TD): 334	Depth to Wate	r (DTW):4.31						
Depth to Free Product:	Thickness of F	Free Product (fe	et):					
Referenced to: PVC Grade	D.O. Meter (if	'req'd):	YSI HACH					
DTW with 80% Recharge [(Height of Wate	r Column x 0.20) + DTW]: 🔥	-12					
DTW with 80% Recharge [(Height of Water Column x 0.20) + DTW]: Image: Column x 0.20 + DTW]: I								
F	Well Diamet	· · · · · · · · · · · · · · · · · · ·	Diameter Multiplier					
5.9 (Gals.) X 3 = 17.7	Gals.	0.16 6"	0.65					
1 Case Volume Specified Volumes Calculated V	/olume 3"	0.37 Other	radius ² * 0.163					
Temp Cond. Time (°F or C) pH (mS or pS)	Turbidity (NTUs)	Gals. Removed	Observations					
1018 195 7-04 13354	L4 Î	6						
1021 20.1 7.05 3269	2.4	12						
1024 2058 7.03 3222	(8	18						
Did well dewater? Yes No		y evacuated: 18	A State of					
Sampling Date: 7/10/10 Sampling Tim	le:jozo	Depth to Water	: 4.40					
Sample I.D.: O W-1 Laboratory: Kiff CalScience Other CET								
Analyzed for: TPH-G BTEX MTBE TPH-D Oxygenates (5) Other: See Coc								
EB I.D. (if applicable):								
Analyzed for: TPH-G BTEX MTBE TPH-D	Oxygenates (5)	Other:						
D.O. (if req'd): Pre-purge: Ø.4	^{mg} / _L Po	ost-purge:	@,35 . mg/L					
O.R.P. (if req'd): Pre-purge: -81	mV 📡 Po	ost-purge:	-118 mV					

W ... LL MONITORING DATA SHELT

				T				
Project #: 10	0716-	PCI		Client: Stan	tec			
Sampler: PC				Date: 7(6)(0				
Well I.D.:	A.	1	<u></u>	Well Diameter:	2 3 (4)	6 8		
Total Well D	<u></u>			Depth to Water	· (DTW): ५.५ व	?		
Depth to Free				Thickness of Fi	ree Product (fee	et):		
Referenced to		PVC	Grade	D.O. Meter (if 1		YSI HACH		
		urge [(H	eight of Water	Column x 0.20)	+ DTW]: (6.3	6		
Purge Method: 1	Bailer Disposable Ba Positive Air E Electric Subrr	ailer Displaceme		Waterra Peristaltic ction Pump	Sampling Method:			
G 1 Case Volume	als.) X Specif	3 fied Volum	$\frac{18 - 6}{Calculated Vol$	Well Diamete 1" 2" 2" 3"	r <u>Multiplier</u> Well I 0.04 4" 0.16 6" 0.37 Other	Diameter <u>Multiplier</u> 0.65 1.47 radius ² * 0.163		
Time	Temp (°F or℃)	рН	Cond. (mS or uS)	Turbidity (NTUs)	Gals. Removed	Observations		
1240	21.2	チッレン	3152	5	6.2			
1043	209	石之	3142	3	12.4			
1040	20.8	11-5	3122	3	19			
Did well dew	vater?	Yes	No	Gallons actuall	y evacuated:	9		
Sampling Da	ite: 7/10	110	Sampling Tim	e: 1052	Depth to Wate	r: 4.57		
Sample I.D.:	0 W-2			Laboratory:	Kiff CalScience	e Other CET		
Analyzed for	: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: See Ca	30		
EB I.D. (if ap	oplicable)	•	@ Time	Duplicate I.D. ((if applicable):			
Analyzed for	TPH-G	BTEX	MTBE TPH-D	- 50	Other:			
D.O. (if req'd	l): Pr	e-purge:	0-36	^{mg} / _L P	ost-purge:	0-27 ^{mg} /L		
O.R.P. (if rec	q'd): Pr	e-purge:	-107-	mV P	ost-purge:	-123 mV		

W_LL MONITORING DATA SHELT

Stantec

APPENDIX B

Water Sample Laboratory Reports and Chain-of-Custody Forms

2010 Semi-Annual Monitoring and Sampling Report Former Penske Truck Leasing Facility 725 Julie Ann Way, Oakland, California Alameda County Site ID RO0000354 Stantec PN: 185702145 200.0001 October 1, 2010

and setting to the

H

Laboratory Job Number 221310 ANALYTICAL REPORT

Stantec 57 Lafayette Circle Lafayette, CA 94549-4321

Project : STANDARD Location : 725 Julie Ann Way Level : II

<u>Sample ID</u>	<u>Lab ID</u>
MW-1R	221310-001
MW-2	221310-002
MW-4	221310-003
MW-7R	221310-004
MW-8	221310-005
OW-1	221310-006
OW-2	221310-007
DUPLICATE	221310-008
EQUIPMENT BLANK	221310-009
TRIP BLANK	221310-010

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Signature: _//w/

Project Manager

Date: <u>07/26/2010</u>

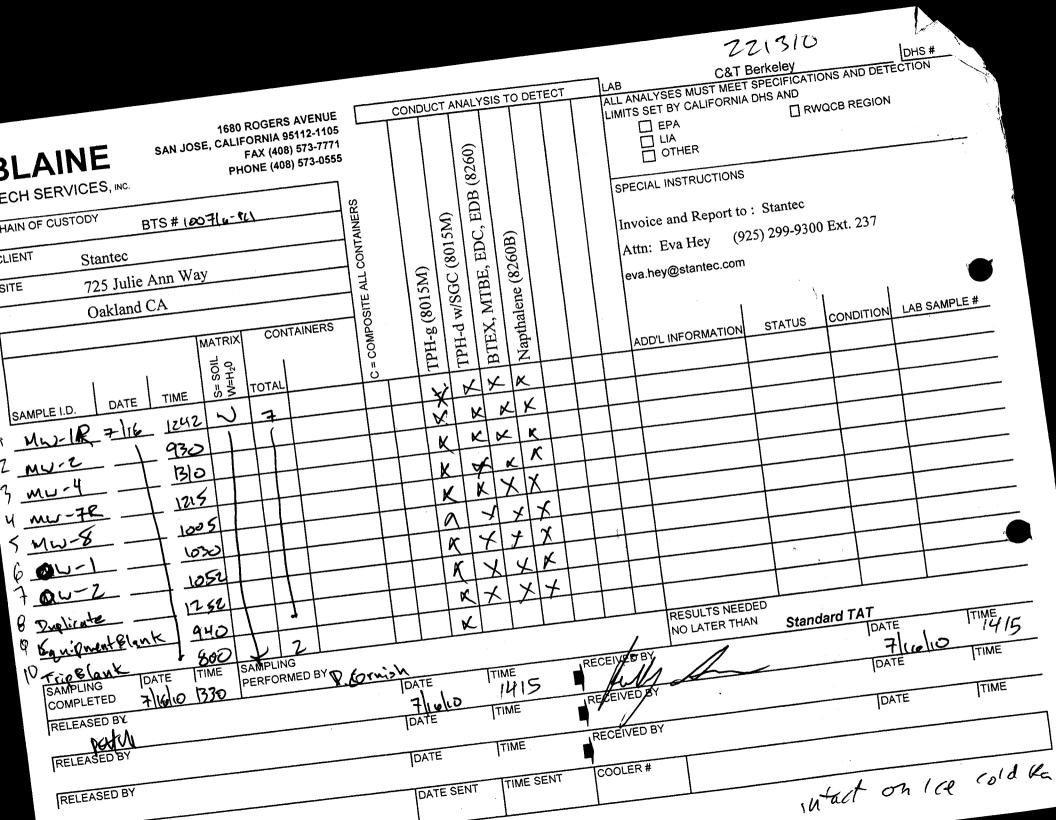
NELAP # 01107CA

CASE NARRATIVE

Laboratory number: 221310 Client: Stantec Location: 725 Julie Ann Way Request Date: 07/16/10 Samples Received: 07/16/10

This data package contains sample and QC results for ten water samples, requested for the above referenced project on 07/16/10. The samples were received cold and intact.

TPH-Purgeables and/or BTXE by GC (EPA 8015B):


No analytical problems were encountered.

TPH-Extractables by GC (EPA 8015B):

No analytical problems were encountered.

Volatile Organics by GC/MS (EPA 8260B):

No analytical problems were encountered.

COOLER RECEIPT CHECKLIST Curtis & Tompkin	ns, Ltd.
Login # <u>7213it</u> Date Received <u>716/to</u> Number of coolers <u>1</u> Client <u>STANTRC</u> Project <u>725</u> JULIE APP Way	
Date Opened <u>HI6[10</u> By (print) <u>HIVILLopuel(sign)</u> <u>Muffuel(sign)</u> <u>By (print)</u> <u>(sign)</u>	
1. Did cooler come with a shipping slip (airbill, etc)YES XO Shipping infoYES	>
2A. Were custody seals present? □ YES (circle) on cooler on samples □ K How many Name Date 2B. Were custody seals intact upon arrival? YES NO- 3. Were custody papers dry and intact when received? YES NO-	0 - 74
 4. Were custody papers filled out properly (ink, signed, etc)?NO 5. Is the project identifiable from custody papers? (If so fill out top of form)YES NO 6. Indicate the packing in cooler: (if other, describe) 	
Bubble WrapFoam blocksBagsNoneCloth materialCardboardStyrofoamPaper towels7. Temperature documentation:StyrofoamStyrofoam	
Type of ice used: ☑ Wet □ Blue/Gel □ None Temp(°C)	
Samples Received on ice & cold without a temperature blank	
Samples received on ice directly from the field. Cooling process had begun	
8. Were Method 5035 sampling containers present? YES I If YES, what time were they transferred to freezer?	6 0
	NO NO
	NO
12. Do the sample labels agree with custody papers?	NO
	NO
14. Are the samples appropriately preserved?	N/A
15. Are bubbles > 6mm absent in VOA samples? YES NO NO 16. Was the client contacted concerning this sample delivery? YES YES	N/A
If YES, Who was called?ByDate:	
COMMENTS	

SOP Volume:Client ServicesSection:1.1.2Page:1 of 1

Rev. 6 Number 1 of 3 Effective: 23 July 2008 Z:\qc\forms\checklists\Cooler Receipt Checklist_rv6.doc

		Total	Volatil	.e Hydrocar	bons	
Lab #: Client:	221310 Stantec			Location: Prep:		725 Julie Ann Way EPA 5030B
Project#: Matrix: Units:	STANDARD Water ug/L			Analysis: Sampled: Received:		EPA 8015B 07/16/10 07/16/10
Field ID: Type: Lab ID:	MW-1R SAMPLE 221310-001			Diln Fac: Batch#: Analyzed:		1.000 165009 07/17/10
Ana	alyte		Result		RL	
Gasoline C7-C1	12		110 Y		50	
Sur	rogate	%REC	Limits			
Bromofluorober		95	70-140			
Field ID:	MW-2			Diln Fac:		1.000
Type: Lab ID:	SAMPLE 221310-002			Batch#: Analyzed:		165009 07/18/10
				111012/200		
	alyte		Result		RL	
Gasoline (1/-(1		ND)		50	
Gasoline C7-C1		ND			50	
Surr	rogate	%REC	Limits		50	
	rogate				50	
Surr	rogate	%REC	Limits	Diln Fac:	50	1.000
Surr Bromofluorober Field ID: Type:	nzene (FID) MW-4 SAMPLE	%REC	Limits	Batch#:	50	165009
Surr Bromofluorober Field ID:	nzene (FID) MW-4	%REC	Limits		50	
Surn Bromofluorober Field ID: Type: Lab ID: Ana	MW-4 SAMPLE 221310-003	%REC 87	Limits 70-140 Result	Batch#:	RL	165009
Surn Bromofluorober Field ID: Type: Lab ID:	MW-4 SAMPLE 221310-003	%REC 87	Limits 70-140	Batch#:		165009
Surn Bromofluorober Field ID: Type: Lab ID: Gasoline C7-C1 Surn	nzene (FID) MW-4 SAMPLE 221310-003 Alyte 12 rogate	%REC 87 %REC	Limits 70-140 Result 210 Y Limits	Batch#:	RL	165009
Surn Bromofluorober Field ID: Type: Lab ID: Gasoline C7-C1	nzene (FID) MW-4 SAMPLE 221310-003 Alyte 12 rogate	* REC 87	Limits 70-140 Result 210 Y	Batch#:	RL	165009
Surn Bromofluorober Field ID: Type: Lab ID: Gasoline C7-C1 Surn Bromofluorober Field ID:	nzene (FID) MW-4 SAMPLE 221310-003 Alyte 12 nzene (FID) MW-7R	%REC 87 %REC	Limits 70-140 Result 210 Y Limits	Batch#: Analyzed: Diln Fac:	RL	2.000
Surn Bromofluorober Field ID: Type: Lab ID: Gasoline C7-C1 Bromofluorober	nzene (FID) MW-4 SAMPLE 221310-003 Alyte 12 nogate nzene (FID)	%REC 87 %REC	Limits 70-140 Result 210 Y Limits	Batch#: Analyzed:	RL	165009 07/18/10
Surr Bromofluorober Field ID: Type: Lab ID: Gasoline C7-C1 Surr Bromofluorober Field ID: Type: Lab ID:	nzene (FID) MW-4 SAMPLE 221310-003 alyte 12 nzene (FID) MW-7R SAMPLE	*REC 87 *REC 91	Limits 70-140 Result 210 Y Limits	Batch#: Analyzed: Diln Fac: Batch#:	RL	165009 07/18/10 2.000 165078
Surr Bromofluorober Field ID: Type: Lab ID: Gasoline C7-C1 Surr Bromofluorober Field ID: Type: Lab ID:	nzene (FID) MW-4 SAMPLE 221310-003 alyte 12 nogate nzene (FID) MW-7R SAMPLE 221310-004 alyte	*REC 87 *REC 91	Limits 70-140 Result 210 Y Limits 70-140	Batch#: Analyzed: Diln Fac: Batch#:	RL 50	165009 07/18/10 2.000 165078
Surr Bromofluorober Field ID: Type: Lab ID: Gasoline C7-C1 Surr Bromofluorober Field ID: Type: Lab ID: Casoline C7-C1	nzene (FID) MW-4 SAMPLE 221310-003 alyte 12 nogate nzene (FID) MW-7R SAMPLE 221310-004 alyte	*REC 87 *REC 91	Limits 70-140 Result 210 Y Limits 70-140 Result	Batch#: Analyzed: Diln Fac: Batch#:	RL 50	165009 07/18/10 2.000 165078

		Total	Volatil	.e Hydrocar	bons	
Lab #: Client: Project#:	221310 Stantec STANDARD			Location: Prep: Analysis:		725 Julie Ann Way EPA 5030B EPA 8015B
Matrix: Units:	Water ug/L			Sampled: Received:		07/16/10 07/16/10
Field ID:	MW-8			Diln Fac:		1.000
Type: Lab ID:	SAMPLE 221310-005			Batch#: Analyzed:		165009 07/18/10
Ana Gasoline C7-C1	lyte 2	NI	Result		RL 50	
Surre Bromofluoroben	ogate zene (FID)	%REC 86	Limits 70-140			
Field ID: Type: Lab ID:	OW-1 SAMPLE 221310-006			Diln Fac: Batch#: Analyzed:		1.000 165009 07/18/10
Ana Gasoline C7-C1	lyte 2		Result		RL 50	
	ogate	%REC	Limits			
Bromofluoroben		84	70-140			
Field ID: Type: Lab ID:	OW-2 SAMPLE 221310-007			Diln Fac: Batch#: Analyzed:		1.000 165009 07/18/10
Ana Gasoline C7-C1	lyte 2		Result 210 Y		RL 50	
	ogate	%REC	Limits			
Bromofluoroben	zene (FID)	105	70-140			
Field ID: Type: Lab ID:	DUPLICATE SAMPLE 221310-008			Diln Fac: Batch#: Analyzed:		1.000 165009 07/18/10
Ana Gasoline C7-C1	lyte 2		Result 120 Y		RL 50	
Surre Bromofluoroben	ogate zene (FID)	% REC 93	Limits 70-140			

Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit $_{\rm Page\ 2\ of\ 3}$

		Total	Volatil	.e Hydrocar	bons	
Lab #: Client: Project#:	221310 Stantec STANDARD			Location: Prep: Analysis:		725 Julie Ann Way EPA 5030B EPA 8015B
Matrix: Units:	Water ug/L			Sampled: Received:		EPA 8015B 07/16/10 07/16/10
Field ID: Type:	EQUIPMENT BLA SAMPLE	NK		Diln Fac: Batch#:		1.000 165009
Lab ID:	221310-009		Demult	Analyzed:		07/18/10
Anal Gasoline C7-C12	yte	NI	Result		RL 50	
					50	
Bromofluorobong	gate	%REC 97	Limits 70-140			
Bromofluorobenz	ene (FID)	97	70-140			
Field ID: Type:	TRIP BLANK SAMPLE			Diln Fac: Batch#:		1.000 165009
Lab ID:	221310-010			Analyzed:		07/17/10
Anal	yte		Result		RL	
Gasoline C7-C12		NI)		50	
Surro	gate		Limits			
Bromofluorobenz	ene (FID)	83	70-140			
Type: Lab ID: Diln Fac:	BLANK QC552513 1.000			Batch#: Analyzed:		165009 07/17/10
Anal			Result		RL	
Gasoline C7-C12		NI)		50	
Surro			Limits			
Bromofluorobenz	ene (FID)	87	70-140			
Type: Lab ID: Diln Fac:	BLANK QC552783 1.000			Batch#: Analyzed:		165078 07/20/10
Anal			Result		RL	
		·				
Gasoline C7-C12		NI			50	

Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit $_{\rm Page\ 3\ of\ 3}$

	Total	Volatile Hydrocarbo	ons
Lab #:	221310	Location:	725 Julie Ann Way
Client:	Stantec	Prep:	EPA 5030B
Project#:	STANDARD	Analysis:	EPA 8015B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC552514	Batch#:	165009
Matrix:	Water	Analyzed:	07/17/10
Units:	ug/L		

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	1,053	105	73-127

Surrogate	%REC	Limits
Bromofluorobenzene (FID)	94	70-140

		Total Volatile Hydrocarbons	
Lab #:	221310	Location:	725 Julie Ann Way
Client:	Stantec	Prep:	EPA 5030B
Project#:	STANDARD	Analysis:	EPA 8015B
Field ID:	MW-1R	Batch#:	165009
MSS Lab ID:	221310-001	Sampled:	07/16/10
Matrix:	Water	Received:	07/16/10
Units:	ug/L	Analyzed:	07/18/10
Diln Fac:	1.000		

Type:	MS			Lab ID:	(QC552515		
	Analyte	MSS Re	sult	Spike	d	Result	%REC	Limits
Gasoline	C7-C12	11	1.2	2,000	1	2,000	94	68-120
	Surrogate	%REC	Limits					
Bromofluc	probenzene (FID)	98	70-140					
Туре:	MSD			Lab ID:	Q	QC552516		
	Analyte		Spiked		Result	%REC	Limits	RPD Lim
Gasoline	C7-C12		2,000		2,019	95	68-120	1 20
	Surrogate	%REC	Limits					

Bromofluorobenzene (FID) 98 70-140

	Tota	l Volatile Hydrocarbo	ons	
Lab #:	221310	Location:	725 Julie Ann Way	
Client:	Stantec	Prep:	EPA 5030B	
Project#:	STANDARD	Analysis:	EPA 8015B	
Type:	LCS	Diln Fac:	1.000	
Lab ID:	QC552784	Batch#:	165078	
Matrix:	Water	Analyzed:	07/20/10	
Units:	ug/L			

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	935.3	94	73-127
Surrogate	%REC Limits			

Bromofluorobenzene (FID) 88 70-140

Total Volatile Hydrocarbons					
Lab #:	221310	Location:	725 Julie Ann Way		
Client:	Stantec	Prep:	EPA 5030B		
Project#:	STANDARD	Analysis:	EPA 8015B		
Field ID:	ZZZZZZZZZ	Batch#:	165078		
MSS Lab ID:	221325-001	Sampled:	07/19/10		
Matrix:	Water	Received:	07/19/10		
Units:	ug/L	Analyzed:	07/20/10		
Diln Fac:	1.000				

Туре:	MS			Lab	ID:		QC552785			
	Analyte	MSS Re	sult		Spike	d	Result	%REC	Lin	its
Gasoline	C7-C12	1	3.38		2,000		1,697	84	68-	120
	Surrogate	%REC	Limits							
Bromofluo	robenzene (FID)	100	70-140							
Type:	MSD			Lab	ID:		QC552786			
	Analyte		Spiked			Result	%REC	Limits	RPD	Lim
Gasoline	C7-C12		2,000			1,781	88	68-120	5	20
	Surrogate	%REC	Limits							

Bromofluorobenzene (FID) 96 70-140

Sequence File: \\Lims\gdrive\ezchrom\Projects\GC04\Sequence\198.seq Sample Name: mss,221310-001,165009,tvh Data File: \\Lims\gdrive\ezchrom\Projects\GC04\Data\198_008 Instrument: GC04 (Offline) Vial: N/A Operator: Tvh 1. Analyst (lims2k3\tvh1) Method Name: \\Lims\gdrive\ezchrom\Projects\GC04\Method\tvhbtxe197.met

 Software Version 3.1.7

 Run Date: 7/17/2010 11:36:35 PM

 Analysis Date: 7/19/2010 12:01:30 PM

 Sample Amount: 5
 Multiplier: 5

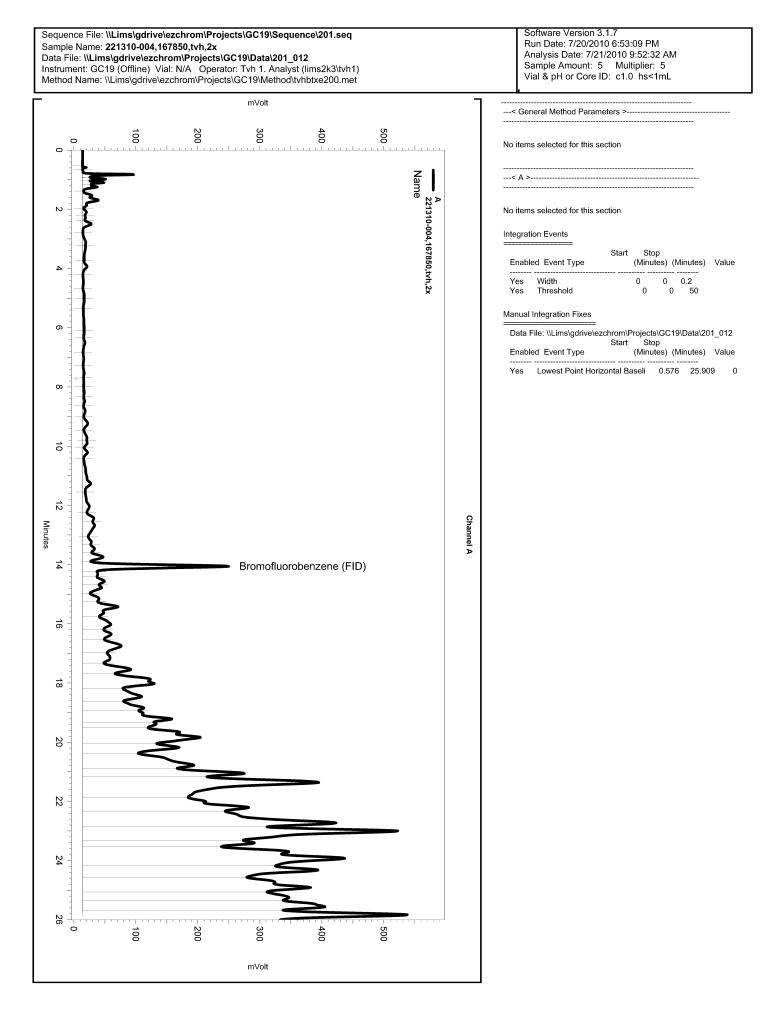
 Vial & pH or Core ID: a1.0 hs<1.0ml</td>

---< General Method Parameters >---No items selected for this section ----< A >-----No items selected for this section Integration Events Stop Start (Minutes) (Minutes) Value Enabled Event Type Yes Width 0 0 0.2 0 0 Yes Threshold 50 Manual Integration Fixes Data File: \\Lims\gdrive\ezchrom\Projects\GC04\Data\198_008 Start Stop Enabled Event Type (Minutes) (Minutes) Value Lowest Point Horizontal Baseli Split Peak 14.898 0.084 26.017 Yes 0 0 Yes 0

Channel

⊳

Sequence File: \\Lims\gdrive\ezchrom\Projects\GC04\Sequence\198.seq Sample Name: 221310-003,165009,tvh Data File: \\Lims\gdrive\ezchrom\Projects\GC04\Data\198_012 Instrument: GC04 (Offline) Vial: N/A Operator: Tvh 1. Analyst (lims2k3\tvh1) Method Name: \\Lims\gdrive\ezchrom\Projects\GC04\Method\tvhbtxe197.met


Software Version 3.1.7 Run Date: 7/18/2010 2:07:24 AM Analysis Date: 7/19/2010 12:01:58 PM Sample Amount: 5 Multiplier: 5 Vial & pH or Core ID: a1.0

---< General Method Parameters >--No items selected for this section ----< A >----No items selected for this section Integration Events Stop Start (Minutes) (Minutes) Value Enabled Event Type Yes Width 0 0 0.2 0 0 Yes Threshold 50 Manual Integration Fixes
 Start
 Stop

 Enabled
 Event Type
 (Minutes)
 Value
 0 26.017 0 0 Lowest Point Horizontal Baseli Split Peak 14.87 Yes 0 Yes

Channel

⊳

Sequence File: \\Lims\gdrive\ezchrom\Projects\GC04\Sequence\198.seq Sample Name: 221310-006,165009,tvh Data File: \\Lims\gdrive\ezchrom\Projects\GC04\Data\198_017 Instrument: GC04 (Offline) Vial: N/A Operator: Tvh 1. Analyst (lims2k3\tvh1) Method Name: \\Lims\gdrive\ezchrom\Projects\GC04\Method\tvhbtxe197.met

	neral Method Parame	eters >			
No item	s selected for this se	ction			
No item	s selected for this se	ction			
Integrat	ion Events				
	ed Event Type		Stop (Minute	es) (Minutes)	Valu
Yes Yes	Width Threshold		00	0 0.2 0 50	
Manual	Integration Fixes				
	File: \\Lims\gdrive\ezo	chrom∖F Start	Stop)	
Enabl				es) (Minutes)	
Yes Yes	Lowest Point Horiz Split Peak	ontal Ba	aseli 14.234	0 26.017	7 (

Channel A

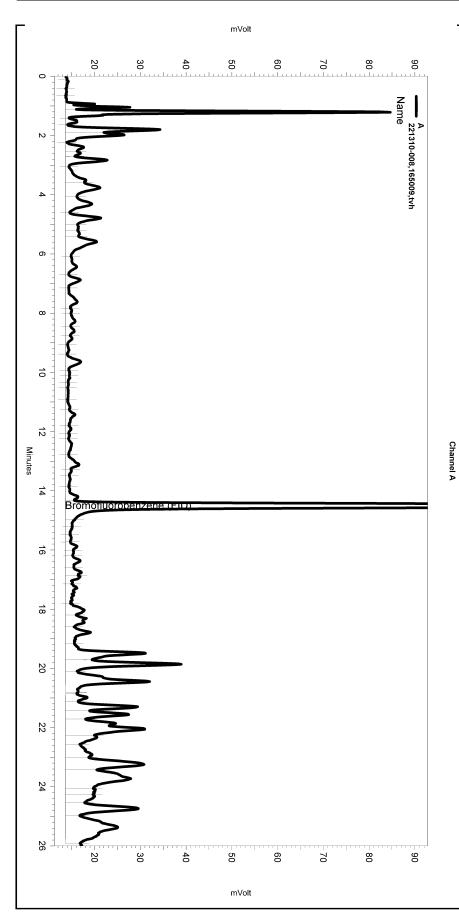
Software Version 3.1.7 Run Date: 7/18/2010 5:16:30 AM Analysis Date: 7/19/2010 12:02:32 PM Sample Amount: 5 Multiplier: 5 Vial & pH or Core ID: a1.0 hs<1.0ml

Page 2 of 4 (35) Curtis & Tompkins Ltd.

Sequence File: \\Lims\gdrive\ezchrom\Projects\GC04\Sequence\198.seq Sample Name: 221310-007,165009,tvh Data File: \\Lims\gdrive\ezchrom\Projects\GC04\Data\198_018 Instrument: GC04 (Offline) Vial: N/A Operator: Tvh 1. Analyst (lims2k3\tvh1) Method Name: \\Lims\gdrive\ezchrom\Projects\GC04\Method\tvhbtxe197.met

Software Version 3.1.7 Run Date: 7/18/2010 5:56:21 AM Analysis Date: 7/19/2010 12:02:40 PM Sample Amount: 5 Multiplier: 5 Vial & pH or Core ID: a1.0 hs<1.0ml

---< General Method Parameters >---No items selected for this section ----< A >-----No items selected for this section Integration Events Stop Start (Minutes) (Minutes) Value Enabled Event Type Yes Width 0 0 0.2 0 0 Yes Threshold 50 Manual Integration Fixes
 Start
 Stop


 Enabled
 Event Type
 (Minutes)
 (Minutes)
 Value
 Lowest Point Horizontal Baseli Split Peak 14.80 0 26.017 0 0 Yes 0 14.806 Yes

Channel

⊳

Page 2 of 4 (39) Curtis & Tompkins Ltd.

Sequence File: \\Lims\gdrive\ezchrom\Projects\GC04\Sequence\198.seq Sample Name: 221310-008,165009,tvh Data File: \\Lims\gdrive\ezchrom\Projects\GC04\Data\198_019 Instrument: GC04 (Offline) Vial: N/A Operator: Tvh 1. Analyst (lims2k3\tvh1) Method Name: \\Lims\gdrive\ezchrom\Projects\GC04\Method\tvhbtxe197.met Software Version 3.1.7 Run Date: 7/18/2010 6:34:38 AM Analysis Date: 7/19/2010 12:02:47 PM Sample Amount: 5 Multiplier: 5 Vial & pH or Core ID: a1.0 hs<1.0ml

----< General Method Parameters >----No items selected for this section ----< A >-----No items selected for this section Integration Events Stop Start (Minutes) (Minutes) Value Enabled Event Type Yes Width 0 0 0.2 0 0 Yes Threshold 50 Manual Integration Fixes
 Start
 Stop

 Enabled
 Event Type
 (Minutes)
 (Minutes)
 Value
 0 26.017 0 0 Lowest Point Horizontal Baseli Split Peak 14.96 Yes 0 Yes

Sequence File: \\Lims\gdrive\ezchrom\Projects\GC04\Sequence\198.seq Sample Name: ccv/lcs,qc552514,165009,tvh,s15105,2.5/5000 Data File: \\Lims\gdrive\ezchrom\Projects\GC04\Data\198_005 Instrument: GC04 (Offline) Vial: N/A Operator: Tvh 1. Analyst (lims2k3\tvh1) Method Name: \\Lims\gdrive\ezchrom\Projects\GC04\Method\tvhbtxe197.met

Software Version 3.1.7 Run Date: 7/17/2010 7:59:41 PM Analysis Date: 7/19/2010 10:12:53 AM Sample Amount: 5 Multiplier: 5 Vial & pH or Core ID: {Data Description}

---< General Method Parameters >---No items selected for this section ----< A >-----No items selected for this section Integration Events Stop Start (Minutes) (Minutes) Value Enabled Event Type Yes Width 0 0 0.2 0 0 Yes Threshold 50 Manual Integration Fixes Data File: \\Lims\gdrive\ezchrom\Projects\GC04\Data\198_005 Start Stop Enabled Event Type (Minutes) (Minutes) Value Lowest Point Horizontal Baseli 0 26.017 Manual Peak 22.33 22.59 0 Yes 0 Yes

Channel

⊳

		Total Ext	racta	ble Hydrocarbo	ns
Lab #: Client:	221310 Stantec			Location: Prep:	725 Julie Ann Way EPA 3520C
Project#: Matrix: Units: Diln Fac:	STANDARD Water ug/L 1.000			Analysis: Sampled: Received: Prepared:	EPA 8015B 07/16/10 07/16/10 07/19/10
Batch#:	165039			Analyzed:	07/20/10
Field ID: Type:	MW-1R SAMPLE			Lab ID: Cleanup Method:	221310-001 EPA 3630C
	alyte		sult	RL	
Diesel C10-C2	4		770	50	
Sur: o-Terphenyl	rogate		imits 0-129		
Field ID: Type:	MW-2 SAMPLE			Lab ID: Cleanup Method:	221310-002 EPA 3630C
Ana	alyte		sult	RL	
Diesel C10-C2	4	ND		50	
o-Terphenyl	rogate		imits 0-129		
Field ID: Type:	MW-4 SAMPLE			Lab ID: Cleanup Method:	221310-003 EPA 3630C
And Diesel C10-C2	alyte		sult 700	RL 50	
o-Terphenyl	rogate		<u>imits</u> 0-129		
Field ID: Type:	MW-7R SAMPLE			Lab ID: Cleanup Method:	221310-004 EPA 3630C
An Diesel C10-C2	alyte		sult	RL 50	
		12,		50	
o-Terphenyl	rogate		imits 0-129		
Field ID: Type:	MW-8 SAMPLE			Lab ID: Cleanup Method:	221310-005 EPA 3630C
And Diesel C10-C2	alyte 4	Re: ND	sult	RL 50	
Sur	rogate	%REC L	imits		
o-Terphenyl			0-129		

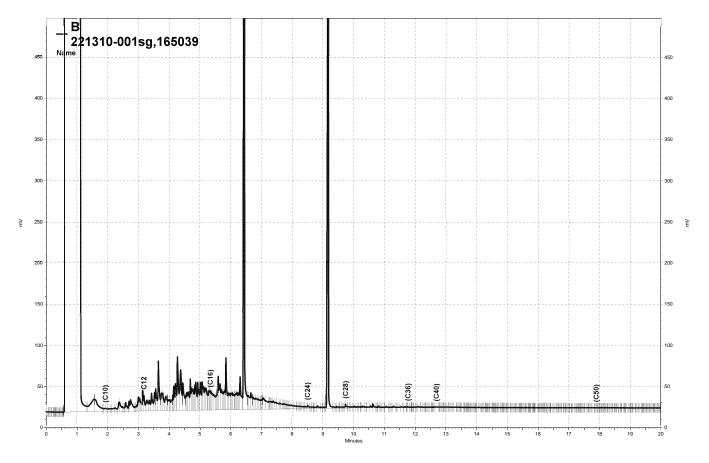
Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit $_{\rm Page\ 1\ of\ 2}$

		Total I	Extracta	ble Hydrocarbo	ns
Lab #: Client: Project#:	221310 Stantec STANDARD			Location: Prep: Analysis:	725 Julie Ann Way EPA 3520C EPA 8015B
Matrix: Units: Diln Fac: Batch#:	Water ug/L 1.000 165039			Sampled: Received: Prepared: Analyzed:	07/16/10 07/16/10 07/19/10 07/20/10
Field ID:	OM 1			Lab ID:	221310-006
Type:	OW-1 SAMPLE			Cleanup Method:	
Ana Diesel C10-C24	lyte		Result 85 Y	RL 50	
o-Terphenyl	ogate	%REC 95	Limits 60-129		
Field ID: Type:	OW-2 Sample			Lab ID: Cleanup Method:	221310-007 EPA 3630C
Ana Diesel C10-C24	lyte		Result 2,000	RL 50	
o-Terphenyl	ogate	%REC 100	Limits 60-129		
0-letblielly1		TOO	00-129		
Field ID: Type:	DUPLICATE SAMPLE			Lab ID: Cleanup Method:	221310-008 EPA 3630C
Ana Diesel C10-C24	lyte		Result 960	RL 50	
o-Terphenyl	ogate	%REC 90	Limits 60-129		
Field ID: Type:	EQUIPMENT BLA SAMPLE	NK		Lab ID: Cleanup Method:	221310-009 EPA 3630C
Ana Diesel C10-C24	lyte	NI	Result	RL 50	
Surr o-Terphenyl	ogate	%REC 111	Limits 60-129		
Type: Lab ID:	BLANK QC552613			Cleanup Method:	EPA 3630C
Ana Diesel C10-C24	lyte	NI	Result	RL 50	
Surr	ogate	% REC			
o-Terphenyl		112	60-129		
Y= Sample exhi ND= Not Detected	bits chromatogr	aphic pa	attern whi	ich does not resem	ble standard

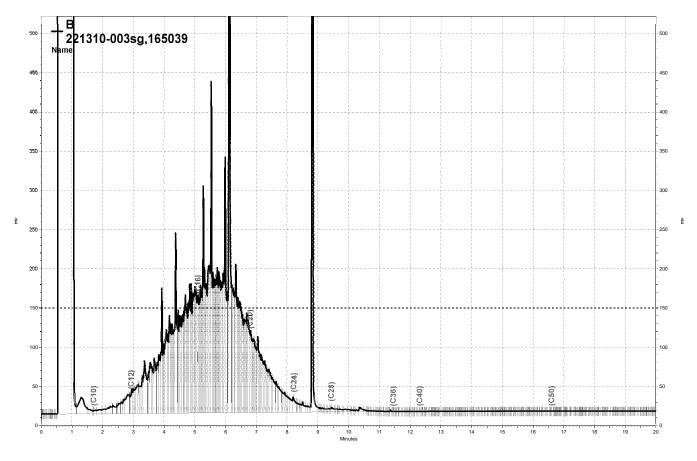
ND= Not Detected RL= Reporting Limit Page 2 of 2

20 of 42

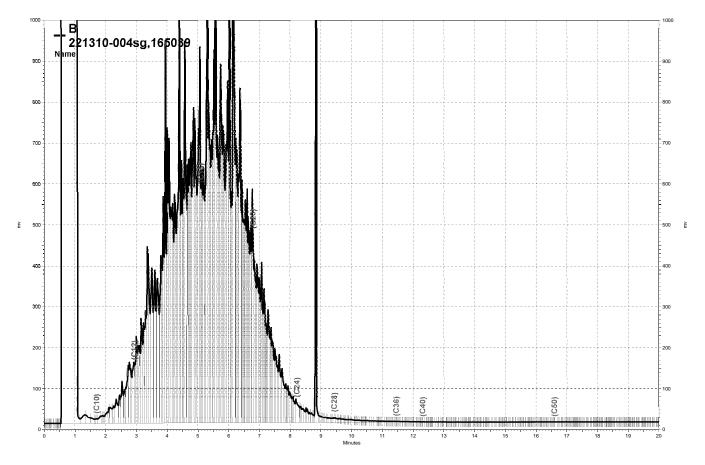
Total Extractable Hydrocarbons					
Lab #:	221310	Location:	725 Julie Ann Way		
Client:	Stantec	Prep:	EPA 3520C		
Project#:	STANDARD	Analysis:	EPA 8015B		
Туре:	LCS	Diln Fac:	1.000		
Lab ID:	QC552614	Batch#:	165039		
Matrix:	Water	Prepared:	07/19/10		
Units:	ug/L	Analyzed:	07/20/10		

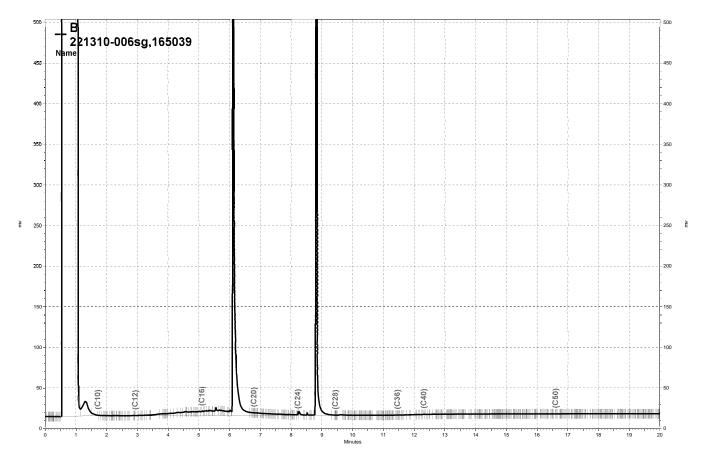

Cleanup Method: EPA 3630C

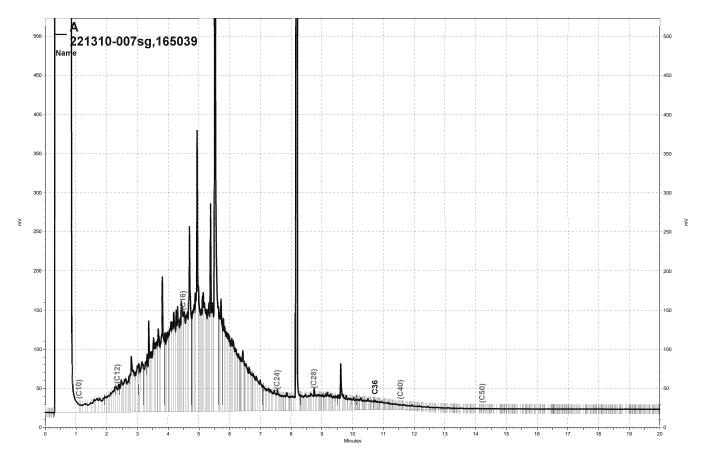
Analyte		Spiked	Result	%REC	Limits
Diesel C10-C24	2,500		2,342	94	54-125
Surrogate	%REC	Limits			
o-Terphenyl	127	60-129			

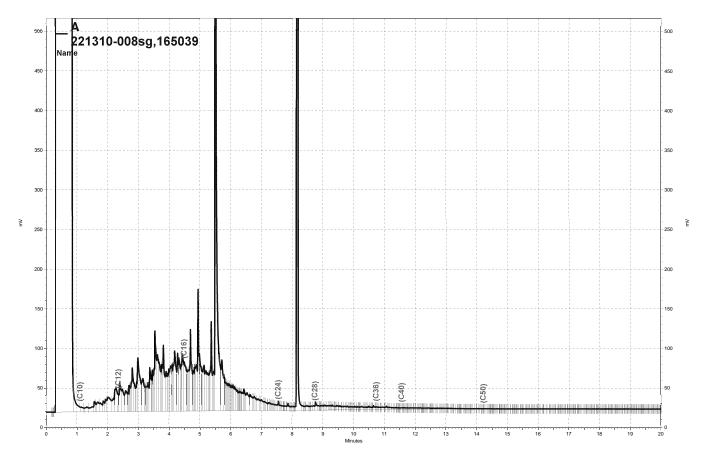


Total Extractable Hydrocarbons					
Lab #:	221310	Location:	725 Julie Ann Way		
Client:	Stantec	Prep:	EPA 3520C		
Project#:	STANDARD	Analysis:	EPA 8015B		
Field ID:	ZZZZZZZZZZ	Batch#:	165039		
MSS Lab ID:	221305-004	Sampled:	07/15/10		
Matrix:	Water	Received:	07/16/10		
Units:	ug/L	Prepared:	07/19/10		
Diln Fac:	1.000	Analyzed:	07/20/10		

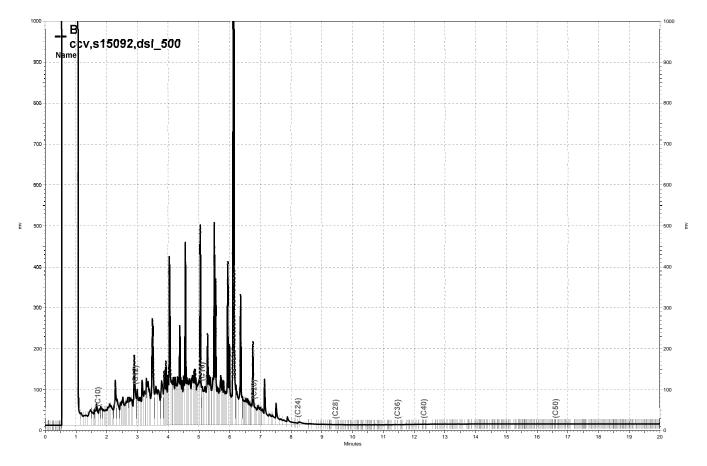

Type:	MS			Lab ID:	Q	2552615			
	Analyte	MSS Res	ult	Spiked	•	Result	%REC	Limi	ts
Diesel (C10-C24	23	.97	2,500		1,949	77	46-1	31
	Surrogate	%REC	Limits						
o-Terphe	enyl	98	60-129						
Type:	MSD			Lab ID:	Q	2552616			
	Analyte		Spiked		Result	%REC	Limits	RPD	Lim
Diesel (C10-C24		2,500		1,961	77	46-131	1	61
o-Terphe	Surrogate enyl	% REC 103	Limits 60-129						


-\\Lims\gdrive\ezchrom\Projects\GC14B\Data\201b014, B


-\\Lims\gdrive\ezchrom\Projects\GC15B\Data\201b012, B



-\\Lims\gdrive\ezchrom\Projects\GC15B\Data\201b013, B



-\\Lims\gdrive\ezchrom\Projects\GC15B\Data\201b015, B

-\\Lims\gdrive\ezchrom\Projects\GC17A\Data\201a013, A

-\\Lims\gdrive\ezchrom\Projects\GC15B\Data\201b005, B

Purgeable Organics by GC/MS Lab #: 221310 Location: 725 Julie Ann Way Client: Stantec Prep: EPA 5030B Project#: STANDARD Analysis: EPA 8260B Field ID: MW-1R Batch#: 165090 Lab ID: 221310-001 Sampled: 07/16/10 Matrix: Received: Water 07/16/10 Units: ug/L Analyzed: 07/21/10 Diln Fac: 1.000

Analyte	Result	RL	
MTBE	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	ND	0.5	
Toluene	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	
Naphthalene	ND	2.0	

Surrogate	%REC	Limits	
Dibromofluoromethane	105	80-122	
1,2-Dichloroethane-d4	128	71-140	
Toluene-d8	102	80-120	
Bromofluorobenzene	106	80-121	

ND= Not Detected RL= Reporting Limit Page 1 of 1

Purgeable Organics by GC/MS Lab #: 221310 Location: 725 Julie Ann Way Client: Stantec Prep: EPA 5030B Project#: STANDARD Analysis: EPA 8260B Field ID: MW-2 Batch#: 165090 Lab ID: 221310-002 Sampled: 07/16/10 Matrix: Received: Water 07/16/10 Units: ug/L Analyzed: 07/21/10 Diln Fac: 1.000

Analyte	Result	RL	
MTBE	1.5	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	ND	0.5	
Toluene	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	
Naphthalene	ND	2.0	

Surrogate	%REC	Limits	
Dibromofluoromethane	105	80-122	
1,2-Dichloroethane-d4	125	71-140	
Toluene-d8	103	80-120	
Bromofluorobenzene	106	80-121	

ND= Not Detected RL= Reporting Limit Page 1 of 1

Purgeable Organics by GC/MS Lab #: 221310 Location: 725 Julie Ann Way Client: Stantec Prep: EPA 5030B Project#: STANDARD Analysis: EPA 8260B Field ID: MW-4Batch#: 165090 Lab ID: 221310-003 Sampled: 07/16/10 Matrix: Received: Water 07/16/10 Units: ug/L Analyzed: 07/21/10 Diln Fac: 1.000

Analyte	Result	RL	
MTBE	4.2	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	ND	0.5	
Toluene	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	
Naphthalene	ND	2.0	

Surrogate	%REC	Limits	
Dibromofluoromethane	105	80-122	
1,2-Dichloroethane-d4	129	71-140	
Toluene-d8	103	80-120	
Bromofluorobenzene	108	80-121	

ND= Not Detected RL= Reporting Limit Page 1 of 1

Purgeable Organics by GC/MS					
Lab #:	221310	Location:	725 Julie Ann Way		
Client:	Stantec	Prep:	EPA 5030B		
Project#:	STANDARD	Analysis:	EPA 8260B		
Field ID:	MW-7R	Batch#:	165181		
Lab ID:	221310-004	Sampled:	07/16/10		
Matrix:	Water	Received:	07/16/10		
Units:	ug/L	Analyzed:	07/23/10		
Diln Fac:	1.000				

Analyte	Result	RL	
MTBE	2.5	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	2.6	0.5	
Toluene	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Ethylbenzene	0.8	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	
Naphthalene	6.9	2.0	

Surrogate	%REC	Limits	
Dibromofluoromethane	112	80-122	
1,2-Dichloroethane-d4	124	71-140	
Toluene-d8	98	80-120	
Bromofluorobenzene	109	80-121	

ND= Not Detected RL= Reporting Limit Page 1 of 1

Purgeable Organics by GC/MS Lab #: 221310 Location: 725 Julie Ann Way Client: Stantec Prep: EPA 5030B Project#: STANDARD Analysis: EPA 8260B Field ID: MW-8 Batch#: 165090 Lab ID: 221310-005 Sampled: 07/16/10 Matrix: Received: Water 07/16/10 Units: ug/L Analyzed: 07/21/10 Diln Fac: 1.000

Analyte	Result	RL	
MTBE	1.6	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	ND	0.5	
Toluene	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	
Naphthalene	ND	2.0	

Surrogate	%REC	Limits	
Dibromofluoromethane	105	80-122	
1,2-Dichloroethane-d4	126	71-140	
Toluene-d8	103	80-120	
Bromofluorobenzene	109	80-121	

ND= Not Detected RL= Reporting Limit Page 1 of 1

Purgeable Organics by GC/MS Lab #: 221310 Location: 725 Julie Ann Way Client: Stantec Prep: EPA 5030B Project#: STANDARD Analysis: EPA 8260B Field ID: OW-1 Batch#: 165090 Lab ID: 221310-006 Sampled: 07/16/10 Matrix: Received: Water 07/16/10 Units: ug/L Analyzed: 07/21/10 Diln Fac: 1.000

Analyte	Result	RL	
MTBE	4.3	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	ND	0.5	
Toluene	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	
Naphthalene	ND	2.0	

Surrogate	%REC	Limits	
Dibromofluoromethane	106	80-122	
1,2-Dichloroethane-d4	125	71-140	
Toluene-d8	102	80-120	
Bromofluorobenzene	107	80-121	

ND= Not Detected RL= Reporting Limit Page 1 of 1

Purgeable Organics by GC/MS Lab #: 221310 Location: 725 Julie Ann Way Client: Stantec Prep: EPA 5030B Project#: STANDARD Analysis: EPA 8260B Field ID: OW-2 Batch#: 165090 Lab ID: 221310-007 Sampled: 07/16/10 Matrix: Received: Water 07/16/10 Units: ug/L Analyzed: 07/21/10 Diln Fac: 1.000

Analyte	Result	RL	
MTBE	5.7	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	ND	0.5	
Toluene	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	
Naphthalene	ND	2.0	

Surrogate	%REC	Limits	
Dibromofluoromethane	106	80-122	
1,2-Dichloroethane-d4	126	71-140	
Toluene-d8	103	80-120	
Bromofluorobenzene	105	80-121	

ND= Not Detected RL= Reporting Limit Page 1 of 1

Purgeable Organics by GC/MS 221310 Location: 725 Julie Ann Way Stantec Prep: EPA 5030B STANDARD Analysis: FDA 8260B

Project#:	STANDARD	Analysis:	EPA 8260B
Field ID:	DUPLICATE	Batch#:	165090
Lab ID:	221310-008	Sampled:	07/16/10
Matrix:	Water	Received:	07/16/10
Units:	ug/L	Analyzed:	07/21/10
Diln Fac:	1.000		

Analyte	Result	RL	
MTBE	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	ND	0.5	
Toluene	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	
Naphthalene	ND	2.0	

Surrogate	%REC	Limits	
Dibromofluoromethane	104	80-122	
1,2-Dichloroethane-d4	125	71-140	
Toluene-d8	103	80-120	
Bromofluorobenzene	106	80-121	

ND= Not Detected RL= Reporting Limit Page 1 of 1

Lab #:

Client:

Purgeable Organics by GC/MS

Lab #:	221310	Location:	725 Julie Ann Way
Client:	Stantec	Prep:	EPA 5030B
Project#:	STANDARD	Analysis:	EPA 8260B
Field ID:	EQUIPMENT BLANK	Batch#:	165090
Lab ID:	221310-009	Sampled:	07/16/10
Matrix:	Water	Received:	07/16/10
Units:	ug/L	Analyzed:	07/21/10
Diln Fac:	1.000		

Analyte	Result	RL	
MTBE	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	ND	0.5	
Toluene	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	
Naphthalene	ND	2.0	

Surrogate	%REC	Limits
Dibromofluoromethane	105	80-122
1,2-Dichloroethane-d4	125	71-140
Toluene-d8	102	80-120
Bromofluorobenzene	110	80-121

ND= Not Detected RL= Reporting Limit Page 1 of 1

QC552833

Batch QC Report

BS

		Purgeable Organics by GC/MS	
Lab #:	221310	Location:	725 Julie Ann Way
Client:	Stantec	Prep:	EPA 5030B
Project#:	STANDARD	Analysis:	EPA 8260B
Matrix:	Water	Batch#:	165090
Units:	ug/L	Analyzed:	07/21/10
Diln Fac:	1.000		

 Analyte
 Spiked
 Result
 %REC
 Limits

 Benzene
 20.00
 22.90
 114
 80-122

 Toluene
 20.00
 21.37
 107
 80-120

Lab ID:

Surrogate	%REC	Limits
Dibromofluoromethane	102	80-122
1,2-Dichloroethane-d4	119	71-140
Toluene-d8	103	80-120
Bromofluorobenzene	106	80-121

Type:	BSD			Lab ID:	QC55	52834			
	Analyte		Spiked		Result	%REC	Limits	RPD	Lim
Benzene			20.00		22.92	115	80-122	0	20
Toluene			20.00		21.96	110	80-120	3	20
	Surrogate	%REC	Limits						
Dibromof	luoromethane	104	80-122						

71-140

80-120

80-121

116

103

106

RPD=	Relative	Percent	Difference
Page 1	of 1		

1,2-Dichloroethane-d4

Bromofluorobenzene

Toluene-d8

Batch QC Report

Purgeable Organics by GC/MS					
Lab #:	221310	Location:	725 Julie Ann Way		
Client:	Stantec	Prep:	EPA 5030B		
Project#:	STANDARD	Analysis:	EPA 8260B		
Type:	BLANK	Diln Fac:	1.000		
Lab ID:	QC552835	Batch#:	165090		
Matrix:	Water	Analyzed:	07/21/10		
Units:	ug/L				

Analyte	Result	RL	
MTBE	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	ND	0.5	
Toluene	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	
Naphthalene	ND	2.0	

Surrogate	%REC	Limits	
Dibromofluoromethane	105	80-122	
1,2-Dichloroethane-d4	122	71-140	
Toluene-d8	101	80-120	
Bromofluorobenzene	107	80-121	

ND= Not Detected RL= Reporting Limit Page 1 of 1

Batch QC Report

Purgeable Organics by GC/MS					
Lab #:	221310	Location:	725 Julie Ann Way		
Client:	Stantec	Prep:	EPA 5030B		
Project#:	STANDARD	Analysis:	EPA 8260B		
Matrix:	Water	Batch#:	165181		
Units:	ug/L	Analyzed:	07/23/10		
Diln Fac:	1.000				

Type: BS		Lab ID:	QC553188	
Analyte	Spik	ed Resul	lt %RE	C Limits
Benzene	2	5.00 2	6.27 105	80-122
Toluene	2	5.00 2	7.72 111	80-120
Surrogate	%REC Lim	its		
Dibromofluoromethane	111 80-	122		
1 2 Dichloroothana d/	111 71	140		

DIDIONIOLIUOLONECHANE		00-122
1,2-Dichloroethane-d4	111	71-140
Toluene-d8	100	80-120
Bromofluorobenzene	98	80-121

Type: BSD	La	ab ID: QC553	189			
Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Benzene	25.00	26.77	107	80-122	2	20
Toluene	25.00	26.98	108	80-120	3	20
Surrogate	%REC Limits					
Dibromofluoromethane	106 80-122					

Dibromofluoromethane	106	80-122
1,2-Dichloroethane-d4	113	71-140
Toluene-d8	105	80-120
Bromofluorobenzene	98	80-121

Batch QC Report

Purgeable Organics by GC/MS					
Lab #:	221310	Location:	725 Julie Ann Way		
Client:	Stantec	Prep:	EPA 5030B		
Project#:	STANDARD	Analysis:	EPA 8260B		
Type:	BLANK	Diln Fac:	1.000		
Lab ID:	QC553190	Batch#:	165181		
Matrix:	Water	Analyzed:	07/23/10		
Units:	ug/L				

Analyte	Result	RL	
MTBE	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	ND	0.5	
Toluene	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	
Naphthalene	ND	2.0	

Surrogate	%REC	Limits	
Dibromofluoromethane	108	80-122	
1,2-Dichloroethane-d4	116	71-140	
Toluene-d8	102	80-120	
Bromofluorobenzene	105	80-121	

ND= Not Detected RL= Reporting Limit Page 1 of 1