

Jillian Holloway Project Manager Marketing Business Unit **Chevron Environmental** Management Company 6101 Bollinger Canyon Road San Ramon, CA 94583 Tel (925) 790-3513 JillianHolloway@chevron.com

September 12, 2014

RECEIVED

By Alameda County Environmental Health at 2:42 pm, Sep 12, 2014

Alameda County Health Care Services Agency **Environmental Health Services Environmental Protection** 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Re: Unocal No. 5484 (351812) 18950 Lake Chabot Road, Castro Valley, California ACEH Fuel Leak Case No. RO0000352 GeoTracker Global ID T0600101453

I have reviewed the attached report dated September 12, 2014.

I agree with the conclusions and recommendations presented in the referenced report. The information in this report is accurate to the best of my knowledge and all local Agency/Regional Board guidelines have been followed. This report was prepared by AECOM, upon whose assistance and advice I have relied.

This letter is submitted pursuant to the requirements of California Water Code Section 13257(b)(1) and the regulating implementation entitled Appendix A pertaining thereto.

I declare under penalty of perjury that the foregoing is true and correct to the best of my knowledge.

Sincerely,

fillian Holloway Jillian Holloway

Project Manager

Attachment: Focused Site Conceptual Model by AECOM

AECOM 2020 L Street, Suite 400 Sacramento, CA 95811 www.aecom.com 916 414 5800 tel 916 414 5850 fax

September 12, 2014

Keith Nowell Alameda County Health Care Services Agency Environmental Health Services Environmental Protection 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Subject: Focused Site Conceptual Model Unocal No. 5484 (351812) 18950 Lake Chabot Road, Castro Valley, California Fuel Leak Case No. RO0000352 Geotracker Global ID # T0600101453

Dear Mr. Nowell,

On behalf of Chevron Environmental Management Company's (EMC's) affiliate, Union Oil Company of California ("Union Oil"), AECOM has prepared this Focused Site Conceptual Model for the Unocal No. 5484 site located at 18950 Lake Chabot Road in Castro Valley, California.

The Focused Site Conceptual Model updates the February 20, 2014 Site Conceptual model in response to the July 25, 2014 email from Alameda County Environmental Health (ACEH) requesting the performance of a Soil, Groundwater, and Soil Gas Investigation.

Remarks/Signatures

The interpretations in the attached documents represent AECOM's professional opinions which are based on currently available information and are arrived at in accordance with currently accepted hydrogeologic and engineering practices at this time and location. Other than this, no warranty is implied or intended.

If you have any questions regarding this project, please contact James Harms at (916) 361-6412.

Sincerely,

James Harms 🖍 Project Manager

Jessica Law, PG No. 8840 Project Geologist Stamped: <u>09/12/2014</u>

cc: Jillian Holloway EMC (via electronic copy) Abdi Fugfugosh and Shukri Noor, property owners (via paper copy)

Attachments

Attachment A Focused Site Conceptual Model

Attachment A

Focused Site Conceptual Model

SCM Element	SCM Sub-Element	Description	Reference	Data Tables/Graphics	Data Gaps	Work to Address Data Gap
		A site conceptual model (SCM) has been developed and was submitted to ACEH on February 20, 2014. This focused SCM updates that SCM with the recent investigations requested by ACEH with the goal of moving the site towards closure.	AECOM, 2014, Site Conceptual Model, Unocal No. 5484 (351812), February 20.		May 30, 2014 email, Technical Comment 1: General Criteria e- It is ACEHs opinion that the site does not meet the LTCP General Criteria e. General Criteria e has not been satisfied until a site is considered closable by ACEH.	9/12/2014 Focused SCM
Sensitive receptors	Surface water and water supply wells	An Alameda County Public Works Agency (ACPW) well search was conducted in July 2014 within a naf-mile radius of the site. A Department of Water Resources (DWR) well search was performed in 2006 within a one-mile radius of the site for the sensitive receptor survey (Delta 2006). Table 1 contains the well search information, the well locations are also shown on Figure 1. While the MTBE plume has been delineated to below the ESL by the existing monitoring wells, there is the potential for the plume to pass between downgradient well MW-5 and previously abandoned well MW-4. Therefore, this potential scenario has been considered and the potential maximum plume boundaris in the received to the site well from the 2006 DVR search and 2014 ACPW search and 2014 acPW search in and 2014 acpword the aximum plume boundary (Figure 1 and Figure 2). Therefore, further delineation of the plume boundary is not necessary. No additional groundwater (SWRCB 2012). The necessary were downgradient gap between MW-5 and new abandoned MW-4 is not feasible (Figure 3). The closest section of Chabot Creek is over one-mile to the south. There are noted drained or buried sections of Chabot Creek to the site within 1.000 feet. There is a noted length of greater than 24" culver or storm drain that is approximately 750 feet downgradient of the site to the southwest. In connects to an engineered channel and then finally to Chabot Creek (and the aquitic receptor SAn Figure 3). There are noted drained or buried sections of Chabot Creek to the exite within 1.000 feet. There is a noted length of greater than 24" culver to storm drain that is approximately 750 feet downgradient of the site to the southwest. In connects to an engineered channel and then finally to Chabot Creek (and the aquitic receptor SAn Francisco Bay Region Region all Water Cuality Control Board (SFRWQCB) Environmental Screening Levels (ESL. The concentration of neghthalene in MW-7 exceeds the aquatic receptor ESL (24 ugl.), however MW-2 and MW-5 are downgradient of the source area	Delta, 2006. Sensitive Receptor Survey Report, August 22. SWRCB 2012, Technical Justification for Groundwater Media- Specific Criteria, April 24. Creek and Watershed Map of Hayward & San Leandro, 2011	Table 1 - Water Supply Well Search Figure 1 - Receptor Map Figure 2 - Plume Extents Map Figure 3 - Groundwater Elevation Contour Map	May 30, 2014 email, Technical Comment 2: Media Specific Groundwater criteria - Groundwater monitoring well MW-7, located near the southern property boundary, demonstrates the highest contaminant concentrations reported for the existing monitoring well network. Historic analytical data for well MW-7 indicate persistent fluctuations of total petroleum hydrocarbons as gasoline (TPHg) concentrations range from 450 micrograms per liter (ug/L) to 2,800 ug/L, most recently reported at 1,900 ug/L. These concentrations indicate residual source material may reside beneath the station building. Plotting groundwater flow, which has been consistently been to the southwest, through well MW-7 suggests the plume is passing between well MW-5 and previously abandoned well MW-4. ACEH is of the opinion that the contaminant plume has not been defined, there by the Media Specific Groundwater criteria for plume length, distance to the nearest surface water body from the plume boundary and distance to the nearest supply well from the plume boundary are not met. July 21, 21014 Meeting Discussion: ACEH wanted the location of Chabot Creek to be verified. July 25, 2014 ACEH Email: Identification of all sensitive receptors identified within 2,000 feet, including foundation types, wells and surface water bodies	Added results of ACPW well search to Table 1 and to Figures 1 and 2.
Distribution of Petroleum Hydrocarbons	Soil Vapor	The site is an active gasoline service station and is planned to be for the foreseeable future. The site therefore qualifies for the exemption to the vapor intrusion to indoor air criteria as stipulated in the low threat closure policy. Two soil vapor wells were installed on August 20, 2014 and sampled on August 26, 2014 (AECOM 2014), Figure 4 . Analytical results for TPHg, BTEX, and MTBE in soil vapor were detected above laboratory reporting limits at the site boundary but at concentrations below the residential screening levels. Table 2 . Naphthalene was the primary constituent of concern for vapor intrusion based on the concentrations in shallow groundwater, however, naphthalene was not detected in any of the vapor samples. Naphthalene concentrations in groundwater greater than the ESL for groundwater to indoor air criteria of 160 µg/L have not been measured at the site (AECOM 2014). The maximum concentration was 150 µg/L at WH-7 in the sample collected on January 30, 2010. The ESL for groundwater to indoor air criteria is only applicable to sites where the depth to groundwater is 10 feet bgs or deeper therefore a soil vapor investigation to determine the indoor vapor risk to down gradient properties was conducted. Naphthalene was not detected in any of the vapor samples. There was leakage observed in the upgradient vapor sample, SV-1, therefore those results were not considered for this evaluation. However the downgradient sample, SV-2, is valid and is the true indicator for potential off site vapor intrusion risk. For downgradient off site properties, which are primarily residential, the shallow groundwater depth optentially negates the bioattenuation zone. However, the oxygen percentage observed in SV-2 at the edge of the site was 17%, this is well above the 4% level cited in the LTCP scenario 4 which greatly enhances (1000-fold) the subsurfaces that there is no vapor intrusion risk to the downgradient residences posed by groundwater migrating from the site (AECOM 2014). Additionally an August	AECOM 2014, Report on Soil, Groundwater, and Soil Gas Investigation, September 12	Figure 4 - Soil Vapor Sample Locations Table 2 -Soil Vapor Analytical Results and Comparison to CHHSLs and ESLs Table 3 - Downgradient Foundation Construction	<u>May 30, 2014 email, Technical Comment 3:</u> Media Specific Vapor Intrusion to Indoor Air - The site is situated in a residential neighborhood. Based on the reported depth to groundwater beneath the site, as shallow as 2.99 feet below the ground surface (bgs). ACEH is of the opinion that the site does meet the bioattenuation zone criteria. It is unclear to ACEH that the waste oil underground storage tank, in the vicinity of MW-7, has been analyzed for the appropriate analysis suite and that MW-7 has most recently been reported to contain 41 µg/L naphthalene, with recent concentrations varying up to 150 µg/L. The San Francisco Bay Region Regional Water Quality Control Board (SFRWQCB) Environmental Screening Levels (ESL) concentration for naphthalene presented in Table E-1 (Groundwater Screening Levels for Evaluation of Potential Vapor Intrusion) is 160 µg/L. Based on our review, it is unclear to ACEH that the Media Specific Vapor Intrusion to Indoor Air criteria has been met.	Investigated downgradient foundation types on 8/26/2014.

SCM Element	SCM Sub-Element	Description	Reference	Data Tables/Graphics	Data Gaps	Work to Address Data Gap
					July 25, 2014 ACEH Email: There is the potential of naphthalene vapor intrusion risk due to shallow groundwater (shallowest reported as less than 3 feet bgs). Due to the uncertainty in depth of the vadose zone, the use of Environmental Screening Levels (ESLs) for groundwater to vapor intrusion are not appropriate (i.e. requires depth to water greater than 10 feet). Therefore, please recover soil gas samples from two on site locations; one near the waste oil tank pit, the suspected source area, and one near the property boundary down gradient of the pit.	Soil Vapor was investigated in August 2014 investigation. No screening level exceedances were found.
	Groundwater	Chart 1 through Chart 5 show the statistical trends for various compounds in MW-2 and MW-7. Chart 5 demonstrates that concentrations at MW-7 have been stable over the last nine years, even though historical groundwater trends for naphthalene in MW-7 show variability The linear trends for all data MW-7 in Chart 6 still shows a slight decrease. AECOM analyzed the water level fluctuation and the effect that the shallow bedrock has on those fluctuations. There were no clear cut trends to be found between the well construction (screen intervals) and bedrock interface without conducting a much more involved study. The soil vapor investigation eliminated the concern that may be related to falsely shallow depths to water observed in monitoring wells due to confined conditions within the screened zones. Groundwater was not encountered in either of the soil vapor monitoring wells installed in August 2014. The depth to groundwater at MW-7, near SV-1, was 9.02 feet below the top of casing (bTOC), approximately 9.5 feet bgs. The depth to water in MW-2, near SV-2, was 6.63 feet bTOC, approximately 7 feet bgs. The soil vapor data from SV-2 shows that even with water within 2 feet of the vapor sampling depth there are no significant vapors to pose a risk to indoor air downgradient of the site. During the foundation survey conducted by AECOM it was noted that there is a hillside that rises above the elevation of the site to the southwest. The downgradient potential plume extent was adjusted to account for the hillside's effect on groundwater flow which pushes the direction more to the south as groundwater travels downgradient, Figure 1 and Figure 2 .		Charts 1 through 5 - Mann Kendall Statistical Analysis of Groundwater in select wells. Chart 6 - Historical Groundwater Trends for MW-7 Figure 1 - Receptor Map Figure 2 - Plume Extents Map	<u>July 25, 2014 ACEH Email:</u> Expanded trend analysis for naphthalene in groundwater monitoring well MW-7 to include all repeated spikes in concentration over time, ranging to 130 micrograms per liter (µg/L) on March 3, 1994, 120 µg/L on March 1, 1995, and 150 µg/L on January 13, 2010. Please include all historical naphthalene concentration data for the concentration trend graph for groundwater monitoring well MW-7. <u>July 25, 2014 ACEH Email:</u> Evaluation of depth to water in wells and correlation to vadose zone thickness and the effect of shallow bedrock beneath the site on the depth to groundwater. <u>July 25, 2014 ACEH Email:</u> Resume analyzing for diesel in well MW-7 for future groundwater monitoring events	Chart 6. Researched bedrock depth versus screen intervals. Further groundwater monitoring is not necessary if no wells or surface water bodies are beyond the maximum plume extent from the LTCP Justification Paper plus 1,000 feet.
	Soil	The low threat closure policy specifies the analyses required to meet the media specific direct contact and outdoor air exposure criteria which include benzene. ethylbenzene in all samples collected after excavation from 0 to 5 feet are below the residential criteria in Table 1 of the LTCP for direct contact. Soil concentrations form 5 to 10 feet are below the residential criteria in Table 1 of the LTCP for direct contact. Soil concentrations form 5 to 10 feet are below the residential criteria in Table 1 of the LTCP except for ethylbenzene in boring B-7 at 10 feet in November 1989 (AECOM 2014a), see Table 4 . The soil criteria from 5-10 feet screen for outdoor air exposure which is limited by asphalt covering the surface of the site and minimal compared to the vapors created by the site operation as a fueling station. The potential source of PAHs and naphthalene at the site is the former waste oil tank. The tank base samples were collected at 8 feet bgs therefore the presence of PAHs and naphthalene from 5 to 10 feet are only a concern for utility worker exposure. Any subsurface work in the vicinity of the former waste oil tank would be performed by workers trained to deal with potentially impacted soil due to the site being an active service station.	AECOM, 2014a, Case Closure Summary, Unocal No. 5484 (351812), February 20. AECOM 2014b, Report on Soil, Groundwater, and Soil Gas Investigation, September 12.	Table 4 - Soil Sample Concentrations by Depth Table 5 - Soil Chemical Analytical Results Table 6 - Soil Chemical Analytical Results - PAHs	May 30, 2014 email, Technical Comment 4: Media Specific Direct Contact and Outdoor Air Exposure - It is unclear to ACEH that the waste oil underground storage tank has been analyzed for the appropriate analyses suit as limited sampling for chemicals listed in Table 1 of the LTCP at the appropriate depths has been performed. July 25, 2014 ACEH Email: Naphthalene was not an analyte in the analysis suite for the former waste oil tank. Groundwater concentration of Naphthalene has been observed in well MW-7 indicating the former waste oil tank it is the possible source. The site has potential for vapor intrusion issues due to the shallow groundwater levels (shallowest reported as less than 3 feet below grade surface)	Tabulated the concentrations in the 0 to 5-foot bgs and 5 to10-foot bgs zones for chemicals listed in Table 1 of the LTCP. Soil and Soil Vapor were investigated in August 2014 investigation. No screening level exceedances were found.

Tables

Table 1 Water Supply Well Search Unocal No. 5484 (351812), RO352 18950 Lake Chabot Road Castro Valley, California

Well Owner	Date Installed	Total Depth (feet)	Use	Distance from Site (ft)	Direction from site	Source	Comment
Wilbert Martin	3/1977	50	Irrigation	3200	northeast	2006 DWR and 2014 ACPW	
Lorri Timond	not specified	unknown	not specified	4000	southeast	2006 DWR	
Eden Township Hospital	not specified	unknown	not specified	3900	south	2006 DWR	
Foothill Baptist Church	not specified	unknown	not specified	2700	south-southeast	2006 DWR	
C.H. Gossett	6/29/1954	70	Domestic	7,900	east	2014 ACPW	
Rees	8/1964	76	Domestic	6,000	south-southeast	2014 ACPW	
Bill Jensen	8/1/1980	220	Domestic	6,000	south-southeast	2014 ACPW	Deepening of well installed in 1964

Notes:

Well address not included due to privacy concerns.

DWR - Department of Water Resources

ACPW = Alameda County Public Works Department

Table 2 Soil Vapor Analytical Results and Comparison to CHHSLs and ESLs RO352, Unocal No. 5484 (351812) 18950 Lake Chabot Road Castro Valley, California

SAMPLE ID	DATE	DEPTH	TPH-g	Benzene	Toluene	Ethylbenzene	MTBE	Total Xylenes	Naphthalene
		(feet)	(μg/m³)	(μ g/m ³)	(μg/m ³)	(μg/m ³)	(µg/m³)	(μg/m³)	(µg/m³)
				Screening Lev	rels				
Soil Vapor CHHSLs (a)									
future commercial/industrial (AF=0.0005)		NA	280	890,000	3,600	29,000	2,100,000	310
future residential (AF=0.001)			NA	85	320,000	1,100	8,600	740,000	93
Soil Vapor ESLs (b)									
Commercial/industrial Default AF=0.001			2,496,600	423	1,314,000	4,906	47,169	438,000	361
Future commercial/industrial (adjusted; /	AF=0.0005)(c)		4,993,200	846	2,628,000	9,811	94,338	876,000	721
Residential Default AF=0.002			297,214	42	156,429	487	4,679	52,143	36
Future residential (adjusted; AF=0.001)(c)		594,429	84	312,857	973	9,359	104,286	72
LTCP Soil Gas Criteria - No Bioattent	uation Zone								
Residential			NA	85	NA	1,100	NA	NA	93
Commercial			NA	280	NA	3,600	NA	NA	310
LTCP Soil Gas Criteria - With Bioatter	ntuation Zone								
Residential			NA	85,000	NA	1,100,000	NA	NA	93,000
Commercial			NA	280,000	NA	3,600,000	NA	NA	310,000
				Soil Vapor Res	ults				
SV-1-V-N-5-20140826	8/26/2014	5	42,000	5.9	19	5.6	<4.2	24.5	<24
SV-1-V-Y-5-20140826	8/26/2014	5	42,000	6.1	22	6.7	<4.2	27.8	<24
SV-2-V-N-5-20140826	8/26/2014	5	1,500	11	130	28	6.4	128	<25
EB-V-N-20140827	8/27/2014		<230	<3.6	<4.2	<4.9	<4.0	<9.8	<23

Notes:

bgs = Below ground surface

 $\mu g/m^3 = Micrograms per cubic meter$

TPH-GRO = Total Petroleum Hydrocarbons as Gasoline Range Organics

B = Benzene

T = Toluene

E = Ethylbenzene

X = Total xylenes

MTBE = Methyl t-butyl ether.

ND<# = Analyte was not detected at or above indicated laboratory method detection limit

J = Laboratory estimated value

Bold values indicate concentration is above the laboratory

method detection limit

ID = Identification

- (a) OEHHA Soil Gas Screening Numbers. Updated 9/23/10. Table 2. Values for buildings constructed with engineered fill below sub-slab gravel (i.e., representative of a future scenario and based on soil vapor to indoor air AFs of approximately 0.001 (residential) and 0.0005 (commercial/industrial), consistent with CalEPA (2011) Vapor Intrusion Guidance.
- (b) SFRWQCB, 2013 = San Franciso Bay Regional Water Quality Control Board, December 2013 update to Environmental Screening Levels. Summary Table E.

(c) Values adjusted based on CalEPA's (2011) recommended attenuation factors for a future use scenario.

Table 3 Downgradient Foundation Construction RO352, Unocal No.5484 (351812) 18950 Lake Chabot Road, Castro Valley, CA

Address	Foundation Type (Observed From Street)
Lake Chabot Road	
18935 to 18951	Slab on Grade
18979 to 18981	Crawl Space
18983	Crawl Space
19051	Crawl Space
Keith Avenue	
3278	Crawl Space
3270	Crawl Space
3262	Crawl Space
3252	Crawl Space
3246	Crawl Space
3230	Crawl Space
3222	Crawl Space
3214	Crawl Space
3206	Slab garage, first floor living space
3213	First floor slab
3215	Slab garage, first floor living space
3227/3229	1st floor slab
3237	Crawl Space
3245	Crawl Space
3253	Crawl Space
3261	Crawl Space
3269	Crawl Space
3277	Crawl Space
Huber Drive	
18915	Crawl Space
18918/18910	Crawl Space
18909	Crawl Space
Heidi Street	
18898	First floor slab

Research Notes:

Foundation Type by site walk on 8/26/2014 by AECOM.

Table 4 Soil Sample Concentrations by Depth Unocal No. 5484 (351812), RO352 18950 Lake Chabot Road Castro Valley, California

			Sample		Ethyl-
Sample		Sample	Depth	Benzene	benzene
Location	Date	Area	(fbg)	(ppm)	(ppm)
		0-5 Feet Below G	Fround Surface		
Applied GeoSyste	ms, 1988, Report	of Subsurface Envir	onmental Investig	gation, April 30.	
S-5-B2 (MW-2)	7/12-13/1988	MW-2	5	0.16	0.66
S-5-B3 (MW-3)	7/12-13/1988	MW-3	5	0.83	3.81
Applied GeoSyste	ms 1990, Report o	on Soil Excavation, A	Aeration, and San	npling, March 30.	
S-5.0-B7	11/17-18/1989	Southeast of Waste Oil UST	5	<0.050	<0.050
S-5.0-B8	11/17-18/1989	South of Waste Oil UST	5		
Kaprealian Engine	ering, Inc. (KEI), F	Results of Soil and G	Groundwater Inve	stigation, June 27, 1	1991
		East Along			0.05
EB1 (3)	5/7/1991	Sidewalk	3	ND	0.05
MW7 (4.5)*	5/7/1991	MW-7	4.5	ND	ND
Delta Consultants,	Inc., 2005, Basel	ine Assessment Rep	ort, March 3, 200	5.	
		South of Waste			
B-1	1/13/2005	Oil UST	1.5	<0.005	<0.005
		5-10 Feet Below	Ground Surface		
Applied GeoSyste	ms, 1988, Report	of Subsurface Envir	onmental Investig	gation, April 30.	
S-5-B2 (MW-2)	7/12-13/1988	MW-2	5	0.16	0.66
S-5-B3 (MW-3)	7/12-13/1988	MW-3	5	0.83	3.81
Applied GeoSyste	ms 1990, Report o	on Soil Excavation, A	Aeration, and San	npling, March 30.	
S-8.5-B4 (MW-4)	5/23-24/1989	MW-4	8.5	<0.050	<0.050
S-8.5-B5 (MW-5)	5/23-24/1989	MW-5	8.5	<0.050	<0.050
S-8.5-B6 (MW-6)	5/23-24/1989	MW-6	8	<0.050	<0.050
Applied GeoSyste	ms 1990, Report o	on Soil Excavation, A	Aeration, and San	npling, March 30.	
S-6-T2S	6/13/1989		6	4.2	39
S-0728-1A	7/28/1989		+	<0.050	<0.050
S-15-PIT	8/1/1989	- Gasolene UST -	15	<0.050	<0.050
S-0803-1B	8/3/1989		+	<0.050	<0.050
S-0803-1W	8/3/1989		++	<0.050	<0.050
S-0711-WT1	7/11/1989	Waste Oil UST	8	<1.0	15
S-0711-WT2	7/11/1989	Excavation	8	<0.5	2.1
Applied GeoSyste	ms 1990, Report o	on Soil Excavation, A	Aeration, and San	npling, March 30.	
S-5.0-B7	11/17-18/1989	Southeast of	5	<0.050	<0.050
S-10.0-B7	11/17-18/1989	Waste Oil UST	10	0.062	160
S-5.0-B8	11/17-18/1989	- South of Waste -	5		
S-9.5-B8	11/17-18/1989	- Oil UST -	9.5	0.34	4.1
S-10.0-B8	11/17-18/1989		10		
S-10.0-B9	11/17-18/1989	South of Gasoline USTs	10	1.1	2
S-10.0-B10	11/17-18/1989	South of B-9	10	0.27	5.6
S-10.0-B11	11/17-18/1989	West of Waste Oil UST	10	0.074	1.2
Kaprealian Engine	ering, Inc. (KEI), F	Results of Soil and G	Groundwater Inve	stigation, June 27, 1	1991
EB1 (6.5)	5/7/1991		6.5	0.16	0.73
MW7 (4.5)*	5/7/1991	MW-7	4.5	ND	ND
MW7 (10)*	5/7/1991		10	0.048	0.5
Delta Consultants,	, Inc., 2005, Baseli	ine Assessment Rep	ort, March 3, 200	5.	

Table 4 Soil Sample Concentrations by Depth Unocal No. 5484 (351812), RO352 18950 Lake Chabot Road Castro Valley, California

B-2	1/13/2005	Southeast of	6.5	<0.024	0.95
B-2	1/13/2005	Gasoline USTs	7	<0.005	<0.005
Delta Consultants	s, Inc., 2009, Well I	Replacement Report, A	April 2, 2009.		
MW-4A@9	2/18/2009	MW-4A	9	<0.005	<0.005
MW-4B@10	2/18/2009	MW-4B	10	< 0.005	< 0.005

Abbreviations and Notes:

TOG = Total oil and grease by Method SM 503

TPHd = Total petroleum hydrocarbons as diesel by EPA Method 8015 TPHg = Total petroleum hydrocarbons as gasoline by EPA Method 8015 Benzene, toluene ethylbenzene and total xylenes by EPA Method 8020 MTBE = Methyl tert butyl ether by EPA Method 8020

HVOC = Halogenated Volatile Organic Compounds by EPA Method 8010 fbg = Feet below grade

mg/kg = Milligrams per kilogram

ppm = Parts per million

ND = Not detected at or above laboratory detection limits

<x.xx = Not detected at or above laboratory detection limit indicated

* = TOG and all EPA Method 8010 constinuents were nondetectable.

? = Approximate depth

1234 = Sample point overexcavated

+ = Floor excavation

++ = Sidewall of excavation

shaded = exceeds LTCP Table 1

Table 5 Soil Chemical Analytical Results RO352, Unocal No. 5484 (351812) 18950 Lake Chabot Road Castro Valley, California

							TPH-	TPH-	TPH-Motor		
			Ethylbenz		Xylenes		Gasoline	Diesel	Oil		
Sample ID	Date	Benzene	ene	Toluene	(Total)	MTBE	(C6-C12)	(C6-C12)	(C6-C12)	Napthalene	PAH ¹
0 to 5 feet bgs											
LTCP Residential		1.9	21							9.7	0.063
LTCP Commercial		8.2	89							45	0.68
LTCP Utility Worker		14	314							219	4.5
Shallow Soil ESL		0.044	3.3	2.9	2.3	0.023	100	100	100	1.2	
SV-1-S-N-5-20140820	8/20/2014	<0.0050	<0.0050	<0.0050	<0.010	<0.0050	<4.0	<2.0	4.7	<0.0030	<0.0030
SV-2-S-N-5-20140820	8/20/2014	<0.0050	<0.0050	<0.0050	<0.010	<0.0050	<4.0	<2.0	4.7	<0.0030	0.008792
5 to 10 feet bgs											
LTCP Residential		2.8	32							9.7	NA
LTCP Commercial		12	134							45	NA
LTCP Utility Worker		14	314							219	4.5
Soil ESL		0.044	3.3	2.9	2.3	0.023	100	100	100	1.2	
SV-1-S-N-6.5-20140820	8/20/2014	<0.0050	<0.0050	<0.0050	<0.010	<0.0050	<4.0	2.3	13	<0.0030	<0.0030

Notes:

Analyses were conducted by USEPA methods 8260 and 8015B modified.

Non-detected analytes are reported as less than (<) practical quantitation limits.

Bold = Analyte detected above practical quantitation limits

All results are in milligrams per kilogram (mg/kg)

¹Calculated Toxcity Equivalent of benzo(a)pyrene, see Table 2 for calculation.

ESL - Environmental Screening Levels, California Regional Water Quality Control Board, San Francisco Bay Region, February 2013 update

NA = Not Applicable

ND = Not Detected

MTBE = Methyl t-butyl ether.

-- = none specified

Table 6 Soil Chemical Analytical Results - PAHs RO352, Unocal No. 5484 (351812) 18950 Lake Chabot Road Castro Valley, California

Sample ID	SV-1-S-N-5-20140820	SV-1-S-N-6.5-20140820	SV-2-S-N-5-20140820	PEF
Benzo(a)pyrene	<0.0030	0.0062	<0.0030	1
Benzo(a)anthracene	<0.0030	0.0072	<0.0030	0.1
Benzo(b)fluoranthene	<0.0030	0.0081	<0.0030	0.1
Benzo(k)fluoranthene	<0.0030	0.0033	<0.0030	0.1
Chrysene	<0.0030	0.0072	<0.0030	0.01
Dibenz(a,h)anthracene	<0.0030	<0.0030	<0.0030	0.34
Indeno(1,2,3-cd)pyrene	<0.0030	<0.0030	<0.0030	0.1
BaPe	<0.0030	0.008792	<0.0030	

Notes:

Analyses were conducted by USEPA methods 82670-SIM

Non-detected analytes are reported as less than (<) practical quantitation limits.

Bold = Analyte detected above practical quantitation limits

All results are in milligrams per kilogram (mg/kg)

BaPe = Toxicity equivalent for benzo(a)pyrene calculated as the sum of the 7 carcinogenic PAHs, factors taken from the

3-15-2012 Technical Justification for Soil Screening Levels for Direct Contact and Outdoor Air Exposure Pathways.

PEF = OEHHA Potency Equivalent Factor for carcinogenic PAHs.

PAHs = Poly-aromatic Hydrocarbons.

Figures

DD\GIS\Projects\FSCM\Figure2_Plume_extents_351812_.mxd

SCALE	7	<u>-</u>			180° RICAL GROUNDWATER LOW DIRECTION 4Q90 TO 1Q13		undwater Flow Direction raulic Gradient = 0.15 Feet per Foot	undwater Contour Line in Feet Above Mean Sea Level shed Where Inferred)	undwater Elevation in Feet Above Mean Sea Level	troyed Monitoring Well Boring erground Storage Tank	itoring Well	202
			_				DESIGNE	D BY:		REVISION	S	
		Ш	Ground	water Elevat	ion Contour Map	AECOM	ТС	2 2	NO.:	DESCRIPTION:	DATE:	BY:
SHE	-	FIGU	Unocal Se	ervice Station #54	484 (351812), RO352		DRAWN	BY:				
	()			18950 Lake Ch	abot Road		ТС	2				
of 1	ω	IME		Castro Valley.	California	10461 OLD PLACERVILLE ROAD, SUITE 170	CHECKEI	D BY:				
<u>.</u>		Ĩ,				SACRAMENTO, CALIFORNIA 95827 PHONE: (916) 361-6400	JH	1 [
~		"IL	SCALE:	DATE:	PROJECT NUMBER:	FAX: (916) 361-6401	APPROVE	D BY:				
			1" = 30'	2/12/2013	60284081	WEB: HTTP://WWW.AECOM.COM	JH	1				

SCALE				180° L GROUNDWATER V DIRECTION 90 TO 1Q13			. VAPOR WELL LOCATION IITORING WELL LOCATION TROYED MONITORING WELL LOCATION . BORING LOCATION TH CTRIC ER ER TR 4" OR LARGER NE NE NOWN RM	Ŭ				
						Π		DESIGNED BY:		REVISION	S	
			Sol	I Vapor Samp	le Locations	П	AECOM		NO.:	DESCRIPTION:	DATE:	BY:
SHE		FIGU	Unoca	No 5484 (35	1812) RO352	П		DRAWN BY:				
	N	REZ	1	8050 Laka Cha	hat Bood		AECOM TECHNICAL SERVICES	JH				
f UMB	+->	UMB					2020 L STREET, SUITE 170	CHECKED BY:				
H		8	(Jastro Valley, C	alitornia]	PHONE: (916) 414-5800	JL	┢─┤			
			SCALE:	DATE:	PROJECT NUMBER:	11	FAX: (916) 414-5850	APPROVED BY:	\vdash			
			1" = 30'	09/08/2014	60267030	\square		JH				

Charts

Chart 1: Mann-Kendall Statistical Method Worksheet

Site-- RO 352, Unocal #5484 Compound-- TPHg Well-- MW-7

Input data from four to ten sampling events in Row 10.

Date:	03/26/04	03/17/05	03/31/06	02/16/07	01/21/08	02/25/09	01/13/10	03/30/11	03/30/12	03/08/13	Events
Concentration (ug/L):	2800	2700	450	1600	1,300	1,000	1,800	680	1900	1900	10
											Sum
Compared to Event 1	*****	-1	-1	-1	-1	-1	-1	-1	-1	-1	-9
Compared to Event 2	*****	*****	-1	-1	-1	-1	-1	-1	-1	-1	-8
Compared to Event 3	*****	*****	*****	1	1	1	1	1	1	1	7
Compared to Event 4	*****	*****	*****	*****	-1	-1	1	-1	1	1	
Compared to Event 5	*****	*****	*****	*****	*****	-1	1	-1	1	1	1
Compared to Event 6	*****	*****	*****	*****	*****	*****	1	-1	1	1	2
Compared to Event 7	*****	*****	*****	*****	*****	*****	*****	-1	1	1	0
Compared to Event 8	*****	*****	*****	*****	*****	*****	*****	*****	1	1	2
Compared to Event 9	****	****	****	*****	*****	*****	****	*****	*****	0	

Mann-Kendall Statistic 'S' = -5

Statistical Confidence Level

>90% Confidence

ISI≥ 15 ISI≥ 20

No Trend **Result:**

Result: No Trend

>95% Confidence

Chart 2: Mann-Kendall Statistical Method Worksheet

Site-- RO 352, Unocal #5484 Compound-- MTBE 8021 Well-- MW-2

Input data from four to ten sampling events in Row 10.

Date:	12/05/95	02/25/09	01/13/10	03/30/11	03/30/12	03/08/13				Events
Concentration (ug/L):	390	220	260	46	17	2.7				6
										 Sum
Compared to Event 1	*****	-1	-1	-1	-1	-1				-5
Compared to Event 2	*****	*****	1	-1	-1	-1				-2
Compared to Event 3	*****	*****	*****	-1	-1	-1				-3
Compared to Event 4	*****	*****	*****	*****	-1	-1				-2
Compared to Event 5	*****	*****	*****	*****	*****	-1				-1
Compared to Event 6	*****	*****	*****	*****	*****	*****				
Compared to Event 7	*****	*****	*****	*****	*****	*****	*****			0
Compared to Event 8	*****	*****	*****	*****	*****	*****	*****	*****		
Compared to Event 9	*****	*****	*****	*****	*****	****	****	*****	****	

Mann-Kendall Statistic 'S' = -13

Statistical Confidence Level

>90% Confidence

ISI≥ 8

ISI≥ 10

Result: Decreasing Trend

Result: Decreasing Trend

>95% Confidence

Chart 3: Mann-Kendall Statistical Method Worksheet

Site-- RO 352, Unocal #5484 Compound-- MTBE 8021 Well-- MW-7

Input data from four to ten sampling events in Row 10.

Date:	03/26/04	03/17/05	02/16/07	01/21/08	02/25/09	01/13/10	03/30/11	03/30/12	03/08/13	Events
Concentration (ug/L):	1200	940	350	250	130	240	44	79	42	9
										 Sum
Compared to Event 1	*****	-1	-1	-1	-1	-1	-1	-1	-1	-8
Compared to Event 2	*****	*****	-1	-1	-1	-1	-1	-1	-1	-7
Compared to Event 3	*****	*****	*****	-1	-1	-1	-1	-1	-1	-6
Compared to Event 4	*****	*****	*****	*****	-1	-1	-1	-1	-1	-5
Compared to Event 5	*****	*****	*****	*****	*****	1	-1	-1	-1	-2
Compared to Event 6	*****	*****	*****	*****	*****	*****	-1	-1	-1	-3
Compared to Event 7	*****	*****	*****	*****	*****	*****	*****	1	-1	0
Compared to Event 8	*****	*****	*****	*****	*****	*****	*****	*****	-1	-1
Compared to Event 9	*****	*****	*****	*****	*****	*****	*****	*****	****	

Mann-Kendall Statistic 'S' = -32

Statistical Confidence Level

>90% Confidence

ISI≥ 13 ISI≥ 17

Decreasing Trend Result:

Decreasing Trend Result:

>95% Confidence

Chart 4: Mann-Kendall Statistical Method Worksheet

Site-- RO 352, Unocal #5484 Compound-- Benzene Well-- MW-7

Input data from four to ten sampling events in Row 10.

Date:	03/26/04	03/17/05	03/31/06	02/16/07	01/21/08	02/25/09	01/13/10	03/30/11	03/30/12	03/08/13	Events
Concentration (ug/L):	37	5	8.7	11	11	15	10	5	13.0	5.8	10
											Sum
Compared to Event 1	*****	-1	-1	-1	-1	-1	-1	-1	-1	-1	-9
Compared to Event 2	*****	*****	1	1	1	1	1	-1	1	1	6
Compared to Event 3	*****	*****	*****	1	1	1	1	-1	1	-1	3
Compared to Event 4	*****	*****	*****	*****	0	1	-1	-1	1	-1	-1
Compared to Event 5	*****	*****	*****	*****	*****	1	-1	-1	1	-1	-1
Compared to Event 6	*****	*****	*****	*****	*****	*****	-1	-1	-1	-1	-4
Compared to Event 7	*****	*****	*****	*****	*****	*****	*****	-1	1	-1	0
Compared to Event 8	*****	*****	*****	*****	*****	*****	*****	*****	1	1	2
Compared to Event 9	*****	*****	*****	*****	*****	*****	*****	*****	*****	-1	-1

Mann-Kendall Statistic 'S' = -5

Statistical Confidence Level

>90% Confidence

>95% Confidence

ISI≥ 15

ISI≥ 20

Result: No Trend

Result: No Trend

Chart 5: Mann-Kendall Statistical Method Worksheet

Site-- RO 352, Unocal #5484 Compound-- Naphthalene Well-- MW-7

Input data from four to ten sampling events in Row 10.

Date:	03/26/04	03/31/06	02/16/07	01/21/08	02/25/09	01/13/10	03/30/11	03/30/12	03/08/13	Events
Concentration (ug/L):	17	6.2	37	40	27	150	8	32	41	9
										 Sum
Compared to Event 1	*****	-1	1	1	1	1	-1	1	1	4
Compared to Event 2	*****	*****	1	1	1	1	1	1	1	7
Compared to Event 3	*****	*****	*****	1	-1	1	-1	-1	1	
Compared to Event 4	*****	*****	*****	*****	-1	1	-1	-1	1	-1
Compared to Event 5	*****	*****	*****	*****	*****	1	-1	1	1	2
Compared to Event 6	*****	*****	*****	*****	*****	*****	-1	-1	-1	-3
Compared to Event 7	*****	*****	*****	*****	*****	*****	*****	1	1	0
Compared to Event 8	*****	*****	*****	*****	*****	*****	*****	*****	1	1
Compared to Event 9	*****	*****	*****	*****	*****	*****	*****	*****	****	

Mann-Kendall Statistic 'S' = 10

Statistical Confidence Level

>90% Confidence

>95% Confidence

ISI≥ 13

ISI≥ 17

Result: No Trend

Result: No Trend

