

10969 Trade Center Drive, Suite 107 Rancho Cordova, California 95670

Telephone: (916) 889-8900 Fax: (916) 889-8999

www.CRAworld.com

		TRA	NSMITTA	۱L	
DATE:	Augus	t 12, 2011	REFERENCE NO.:	: 611951	
			PROJECT NAME:		· Chevron Station 9-3864 .)
To:	Mr. Ma	ark Detterman, P.G., C.E.G.	·		
	Alame	da County Environmental He	alth		RECEIVED
	1131 H	Iarbor Bay Parkway, Suite 250			11:48 am, Aug 19, 2011
	Alame	da, CA 94502-6577			Alameda County
					Environmental Health
Please find	d enclose	d: Draft Originals	☐ Final☐ Other		
		Prints			
Sent via:		Mail	Same Day		
		Overnight Courier	\bigcirc Other $_$	ACEH FTP Site	e Electronic Upload
QUAN	TITY		DESCRI	IPTION	
1		Case Closure Request	DLOCKI	II IION	
⊠ For `	Requested Your Use	<u> </u>	eview and Comme	ent	
COMME	NTS:				
Copy to:	1	Ms. Olivia Skance, Chevron Mr. Howard Schindler Mr. John Gwynn		1 1	k
Complete	d by: _J	James P. Kiernan [Please Print]	Signed:	4	

Filing: Correspondence File

Olivia Skance Team Lead Marketing Business Unit Chevron Environmental Management Company 6101 Bollinger Canyon Road San Ramon, CA 94583 Tel (925) 790-6521

August 12, 2011

Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Re:

Chevron Facility # 9-3864

Address: 5101 Telegraph Avenue, Oakland, California

I have reviewed the attached report titled <u>Case Closure Request</u> and dated <u>August 12, 2011</u>.

I agree with the conclusions and recommendations presented in the referenced report. The information in this report is accurate to the best of my knowledge and all local Agency/Regional Board guidelines have been followed. This report was prepared by Conestoga-Rovers & Associates, upon whose assistance and advice I have relied.

This letter is submitted pursuant to the requirements of California Water Code Section 13267(b)(1) and the regulating implementation entitled Appendix A pertaining thereto.

I declare under penalty of perjury that the foregoing is true and correct.

Sincerely,

Olivia Skance Project Manager

Enclosure: Report

CASE CLOSURE REQUEST

Former Chevron Service Station 9-3864 5101 Telegraph Avenue Oakland, California Case No. RO0000351

Prepared for:

Mr. Mark Detterman, P.G., C.E.G. Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

> Prepared by: Conestoga-Rovers & Associates

10969 Trade Center Drive, #107 Rancho Cordova, California U.S.A. 95670

Office: (916) 889-8900 Fax: (916) 889-8999

web: http:\\www.CRAworld.com

AUGUST 12, 2011 REF. NO. 611951 (6)

This report is printed on recycled paper.

CASE CLOSURE REQUEST

Former Chevron Service Station 9-3864 5101 Telegraph Avenue Oakland, California Case No. RO0000351

Christopher J. Benedict

lu-Bem dit

James P. Kiernan, P.E.

No. 68498 Exp. 9/30/11

> Prepared by: **Conestoga-Rovers** & Associates

10969 Trade Center Drive, #107 Rancho Cordova, California

U.S.A. 95670

Office: (916) 889-8900 (916) 889-8999 Fax:

web: http:\\www.CRAworld.com

AUGUST 12, 2011 REF. NO. 611951 (6) This report is printed on recycled paper.

TABLE OF CONTENTS

		THE SECOND STATE OF THE SE	D
			<u>Page</u>
1.0	INTRO	DUCTION	1
2.0	SITE D	ESCRIPTION AND BACKGROUND	1
_,,	2.1	NEARBY KNOWN RELEASES	
3.0	SITE CI	HARACTERISTICS	3
	3.1	GEOLOGY AND HYDROGEOLOGY	
	3.2	NEARBY WELLS AND SENSITIVE RECEPTORS	3
4.0	CONST	TTUENTS OF CONCERN	4
	4.1	SOIL	4
	4.2	GROUNDWATER	4
5.0	PETRO	LEUM HYDROCARBON SOURCES AND DISTRIBUTION	
	5.1	RELEASE SOURCE AND VOLUME	5
	5.2	POTENTIAL OFFSITE SOURCES	5
	5.3	PETROLEUM HYDROCARBONS IN SOIL	5
	5.4	PETROLEUM HYDROCARBONS IN GROUNDWATER	6
6.0	RISK E	VALUATION	7
	6.1	NEARBY WELLS AND SENSITIVE RECEPTORS	7
	6.2	POTENTIAL EXPOSURE PATHWAYS	8
	6.2.1	SOIL	8
	6.2.2	GROUNDWATER	8
	6.2.3	SURFACE WATER	8
	6.2.4	VAPOR INTRUSION	9
	6.3	COMPARISON TO ENVIRONMENTAL SCREENING LEVELS	9
	6.3.1	SOIL	9
	6.3.2	GROUNDWATER	10
	6.3.3	SOIL VAPOR	11
7.0	LOW-R	ISK GROUNDWATER CRITERIA	12
	7.1	THE LEAK HAS BEEN STOPPED AND ONGOING SOURCES,	
		INCLUDING LNAPL, HAVE BEEN REMOVED OR REMEDIATE	D12
	7.2	THE SITE HAS BEEN ADEQUATELY CHARACTERIZED	13
	7.3	THE DISSOLVED HYDROCARBON PLUME IS STABLE, DECREA	ASING,
		AND NOT MIGRATING	13
	7.4	NO WATER WELLS, DEEPER DRINKING	
		WATER AQUIFERS, SURFACE WATER, OR OTHER	
		SENSITIVE RECEPTORS ARE LIKELY TO BE IMPACTED	13
	7.5	THE SITE PRESENTS NO SIGNIFICANT RISK	
		TO HUMAN HEALTH OR THE ENVIRONMENT	14
8.0	CONCI	LUSIONS AND RECOMMENDATIONS	14

LIST OF FIGURES (Following Text)

FIGURE 1	VICINITY MAP
FIGURE 2	SITE PLAN
FIGURE 3	TPHG GROUNDWATER ISOCONCENTRATION MAP - MARCH 14, 2011
FIGURE 4	TPHG GROUNDWATER ISOCONCENTRATION MAP - DECEMBER 11, 1996
	<u>LIST OF TABLES</u> (Following Text)
TABLE 1	SOIL SAMPLE ANALYTICAL RESULTS
TABLE 2	GROUNDWATER SAMPLE ANALYTICAL RESULTS
	<u>LIST OF APPENDICES</u>
APPENDIX A	SUMMARY OF ENVIRONMENTAL INVESTIGATION AND REMEDIATION
APPENDIX B	HISTORICAL BORING LOGS
APPENDIX C	WELL SURVEY INFORMATION AND TEMESCAL CREEK MAP
APPENDIX D	PREVIOUS SITE PLANS
APPENDIX E	FIRST SEMI-ANNUAL 2011 GROUNDWATER MONITORING REPORT
APPENDIX F	HISTORICAL ISOCONCENTRATION MAPS AND NEARBY GROUNDWATER DATA
APPENDIX G	CONCENTRATION VERSUS TIME AND TREND GRAPHS AND DEGRADATION CALCULATIONS

PREVIOUS RISK ASSESSMENT RESULTS

APPENDIX H

1.0 INTRODUCTION

Conestoga-Rovers & Associates (CRA) is submitting this *Case Closure Request* on behalf of Chevron Environmental Management Company (Chevron) for former Chevron service station 9-3864 located at 5101 Telegraph Avenue in Oakland, California. Based on our review of the site background and conditions, this site meets the San Francisco Bay Regional Water Quality Control Board (RWQCB) criteria for closure as a low-risk groundwater case, as described in their January 5, 1996 memorandum entitled *Interim Guidance on Required Cleanup of Low-Risk Fuel Sites*. Please note that this closure request supersedes the June 26, 2009 *Site Status and Revised Work Plan* (work plan), to which a response was not received from Alameda County Environmental Health (ACEH), however, in our opinion the proposed work therein is no longer warranted. Presented below are the site description and background, site conditions and discussion of remaining impacts, an evaluation of potential risk, rationale for closure based on the low-risk criteria, and our conclusions and recommendations.

2.0 SITE DESCRIPTION AND BACKGROUND

The triangular site is located between 51stStreet, 52ndStreet, and Telegraph Avenue (Figure 1), and is currently developed with two, one- and two-story commercial buildings and associated parking and landscaping areas (known as Temescal Triangle); the buildings are occupied by various retail businesses and a restaurant. Land use in the vicinity of the site is mixed commercial and residential.

The site was occupied by a Chevron service station from approximately 1970 to 1991. Former station facilities included two 10,000-gallon and one 5,000-gallon steel gasoline underground storage tanks (USTs), a 1,000-gallon steel used-oil UST, and associated dispensers and piping. The station was demolished in 1991 and all aboveground and belowground facilities were removed. The site remained vacant until redevelopment with the existing buildings in the late-1990s. Current and former site features are shown on Figure 2.

Environmental work has been ongoing since 1990, and has included the installation of monitoring wells C-1 through C-4 and MW-1 through MW-5; the drilling of exploratory borings TC-1 through TC-5; and confirmation soil sampling during UST removals. In 1998, ownership of MW-4 was transferred to the responsible party at the upgradient former Autopro facility (5200 Telegraph Avenue) and it was re-named MW-5. Wells C-1, C-2, and C-4 were destroyed in 1996 and 1997 to facilitate site redevelopment. Remedial activities have included excavation and offsite disposal or aeration of

hydrocarbon-bearing soil (approximately 600 cubic yards), and the placement of Oxygen Release Compound® (ORC) in wells C-3 and MW-3. A summary of the environmental work is presented in Appendix A. The historical soil and groundwater sample analytical results are presented in Tables 1 and 2, respectively. The approximate well and boring locations are shown on Figure 2.

2.1 NEARBY KNOWN RELEASES

Based on our review of available documents, there are several known petroleum hydrocarbon releases in the nearby site vicinity. These releases and work performed are summarized below. Most of these facilities are shown on Figure 2.

Former Autopro

This upgradient facility (current smog test shop) was formerly an auto repair facility and Shell station with documented releases of gasoline (and related constituents), diesel, and waste oil. Elevated concentrations of total petroleum hydrocarbons as gasoline (TPHg) and diesel (TPHd) historically have been detected in wells MW-3 and MW-4 at the facility. During the most recent event in March 2011, these wells contained up to 6,900 micrograms per liter (μ g/L) TPHg, 8,400 μ g/L TPHd, and 18,000 μ g/L TPH as motor oil (TPHmo). Elevated concentrations of TPHg (up to 26,000 μ g/L) and TPHd (up to 4,500 μ g/L) were also historically detected in well MW-5 (former Chevron MW-4) in Telegraph Avenue adjacent to the facility. A groundwater sample collected in 2004 adjacent to a storm drain line in Telegraph Avenue downgradient of the facility contained 57,000 μ g/L TPHg and 29,000 μ g/L TPHd. Additional investigation to further evaluate the downgradient extent of contamination and potential preferential pathways is planned. Groundwater containing petroleum hydrocarbons has migrated from this facility beneath the subject site, and is discussed further in Section 5.4.

5239 Telegraph Avenue

Elevated concentrations of TPHg (up to $17,000 \,\mu\text{g/L}$) were detected in groundwater in 2007 beneath this property to the north (cross- to upgradient) of the subject site (Figure 2). The property is occupied by a vacant restaurant building; with no likely source of the contamination identified. As such, the case was closed by ACEH and the contamination attributed to the former Autopro facility.

Former Berkeley Land Company

The property to the south/southwest of the site across 51st Street (existing Temescal Plaza shopping center) was previously known as the Berkeley Land Company property at 5100 Telegraph Avenue, and was formerly occupied by a street car storage and

maintenance facility with several USTs. Numerous borings were drilled and several wells installed on the property (Figure 2), and soil and groundwater were found to be impacted with petroleum hydrocarbons, chlorinated solvents, and metals. Undocumented fill material (as deep as 17.5 feet below grade [fbg]) was also observed. Remediation was conducted and the case was closed in 1999 by ACEH; however, it was noted that petroleum hydrocarbons and chlorinated solvents remained in soil and/or groundwater.

Former Marshall Steel Cleaners

This former large dry cleaning facility (now Telegraph Business Park at 5427 Telegraph Avenue) located approximately 500 feet north-northeast (upgradient) of the site has documented releases of TPHg and Stoddard solvent; 17 USTs were removed from the property in 1992. In December 2010, up to 2,000 μ g/L TPHg and 12,000 μ g/L Stoddard solvent were detected in wells at the facility, and investigation is ongoing.

3.0 <u>SITE CHARACTERISTICS</u>

3.1 GEOLOGY AND HYDROGEOLOGY

The site is located on a gently sloping plane west of the Piedmont Hills, approximately 2 miles east of San Francisco Bay. The soil in the site vicinity consists of Late Pleistocene alluvium consisting of weakly consolidated, slightly weathered, poorly sorted, irregularly interbedded clay, silt, sand and gravel. Soil encountered during drilling at the site was reported to consist of interbedded layers of silt, clay, sand, and gravel with varying amounts of one or more of the other soil types within each layer. Copies of the historical boring logs are presented in Appendix B.

Groundwater was encountered during drilling at depths of approximately 12.5 to 17.5 fbg. Depth to groundwater in the wells has ranged from approximately 4.5 to 17.5 feet below top of casing (TOC), but typically fluctuates between 12 and 15 feet below TOC. The groundwater flow direction is generally to the southwest following the local topography (see rose diagram on Figure 2).

3.2 <u>NEARBY WELLS AND SENSITIVE RECEPTORS</u>

CRA reviewed California Department of Water Resources (DWR) and Alameda County Public Works Agency (ACPWA) files to identify any water-supply wells within 2,000 feet of the site. Seven wells were identified within the search radius (excluding monitoring wells): an industrial well approximately 750 feet north (cross- to upgradient), four

cathodic protection wells approximately 1,150 feet southeast (crossgradient), an irrigation well at Children's Hospital approximately 1,500 feet west (crossgradient), and a domestic well approximately 1,900 feet north-northeast (upgradient). The well survey results and a figure showing the identified well locations are presented in Appendix C.

There do not appear to be any sensitive receptors within 2,000 feet of the site in the downgradient direction with the exception of some residential areas at least 600 feet from well MW-3. The local water supply is provided by East Bay Municipal Utility District (EBMUD); the source is the Mokelumne River Basin in the Sierra Nevada range. Shallow groundwater in the site area is not likely to be used as a drinking water source in the foreseeable future. The nearest surface water body is Temescal Creek, which appears to flow in an underground culvert through the property to the south of the site across 51st Street. A map showing the creek location is presented in Appendix C.

4.0 CONSTITUENTS OF CONCERN

4.1 SOIL

Based on the historical data, the primary constituent of concern (COC) in remaining soil (i.e. not excavated) is TPHg; however, it was not detected in the majority of the soil samples (not considering borings TC-4 and MW-4 drilled adjacent to the Autopro facility). The samples with TPHg detections generally contained only low concentrations (up to 270 milligrams per kilogram [mg/kg]); higher concentrations (up to 980 mg/kg) were detected in the samples collected at 15.5 fbg (groundwater interface) from the sidewalls of the gasoline UST excavation, which was excavated to 18 fbg at which depth the soil no longer appeared to be impacted. Benzene, toluene, ethylbenzene, and xylenes (BTEX) are less significant COCs in soil, as they were only detected in a few samples at low concentrations (benzene detected in six samples at a maximum of only 0.069 mg/kg). Other constituents were not detected and therefore are not COCs in soil. Copies of previous site plans showing the excavation areas and confirmation sample locations are presented in Appendix D.

4.2 **GROUNDWATER**

Based on the monitoring results, and as with soil, the primary COC remaining in groundwater is TPHg. Ethylbenzene and xylenes are present in groundwater, but are insignificant COCs as only low concentrations (up to $1\,\mu g/L$) remain in one or two wells. Benzene is no longer detected and methyl tertiary butyl ether (MTBE) has not been

detected for at least several years. Therefore, these constituents are not COCs in groundwater.

5.0 <u>PETROLEUM HYDROCARBON SOURCES AND DISTRIBUTION</u>

5.1 RELEASE SOURCE AND VOLUME

Based on previous investigations and UST/piping removal confirmation sampling, the primary source(s) of the petroleum hydrocarbons appears to be the former UST system. Although the volume of released hydrocarbons is unknown, approximately 600 cubic yards of impacted soil was excavated and disposed or treated. This remedial action has adequately mitigated the release as evidenced by generally decreasing hydrocarbon concentrations in groundwater.

5.2 <u>POTENTIAL OFFSITE SOURCES</u>

Based on the historical data, the upgradient former Autopro facility appears to be contributing to the impacts at the site. This facility is discussed further in Section 5.4 below.

5.3 PETROLEUM HYDROCARBONS IN SOIL

Based on the analytical data, soil with residual COCs likely remains in the area of the former gasoline USTs and dispensers; however, concentrations are generally low. The COCs were also detected in the soil sample collected just above groundwater from the boring for upgradient well C-1, indicating that petroleum hydrocarbons were migrating beneath the site from an offsite source. The remedial excavations ranged from approximately 5 to 18 fbg, and appear to have removed the majority of hydrocarbon mass source in soil. Based on the analytical results and excavation activities, the extent of petroleum hydrocarbons in soil is adequately defined, and no further investigation is warranted. It should be noted that since the soil samples were collected in the early 1990s, concentrations likely have further decreased over time due to natural attenuation processes as evidenced by decreasing hydrocarbon concentrations in groundwater. The historical soil sample analytical results are presented in Table 1 (samples collected from areas that were later excavated are shaded).

5.4 PETROLEUM HYDROCARBONS IN GROUNDWATER

Groundwater has been monitored since 1990. Onsite well C-3 and downgradient well MW-3 are currently sampled semi-annually, and offsite perimeter wells MW-1, MW-2 and MW-5 are sampled annually. The COCs only remain in C-3 or MW-3 and generally have not been detected in MW-1, MW-2, or MW-5 throughout the course of monitoring. A copy of the first semi-annual 2011 groundwater monitoring report is presented in Appendix E.

Based on the monitoring results, groundwater containing the COCs remains beneath the site in the area of well C-3 downgradient of the former USTs and dispensers, as well as downgradient beneath 51st Street in the area of well MW-3. Groundwater containing the COCs also likely remains beneath the site upgradient of C-3; however, as previously mentioned, impacted groundwater is migrating beneath the site from the upgradient Autopro facility. Prior to its destruction in 1996, upgradient well C-1 consistently contained TPHg (up to 7,700 µg/L), BTEX (benzene up to 170 µg/L), and MTBE (up to 87 μg/L) (Appendix E). Groundwater samples collected in 1996 from Autopro borings AP-2 and AP-3 located upgradient of the subject site (Figure 2) contained up to 74,000 μg/L TPHd, 14,000 μg/L TPHg, and 130 μg/L benzene (Appendix F). Historical groundwater isoconcentration maps (prepared by others) incorporating the monitoring results at both sites are presented in Appendix F; these include maps of TPH as diesel (TPHd) and motor oil (TPHmo), which were not COCs at the subject site, but show the extent of the impacts from Autopro. Although the last analytical data in C-1 was from 1996, based on the current concentrations in groundwater at the Autopro facility, the contribution to impacts at the subject site likely remains significant. isoconcentration map of TPHg in groundwater is presented on Figure 3, which includes data from the Autopro facility. A TPHg isoconcentration map prepared using data from 1996 which was the last time all the site and Autopro wells were sampled is presented on Figure 4. As an upgradient source is contributing to the impacts beneath the site, it is not possible to accurately estimate the dissolved TPHg mass remaining.

Based on the perimeter borings and wells, the lateral extent of hydrocarbons in groundwater is adequately defined. The downgradient extent of dissolved hydrocarbons is defined by previous groundwater monitoring data from wells at the Berkeley Land Company property downgradient of the site across 51st Avenue (Appendix F), as was presented in the above-mentioned June 26, 2009 work plan.

Graphs of TPHg and benzene concentrations over time in wells C-3 and MW-3 are presented in Appendix G. As shown in the graphs, the TPHg concentrations in C-3 have remained relatively stable over the past 10 years, which, as source removal at the site

occurred 20 years ago, is indicative of continuing offsite contributions. Conversely, the TPHg concentrations in MW-3 are declining, indicating the plume has reached its maximum extent and is decreasing in size and mass due to natural attenuation. A comparison of the historical maximum and most recent TPHg, benzene, and MTBE concentrations in the wells is presented in Table A below.

TABLE A COMPARISON OF MAXIMUM AND MOST RECENT CONCENTRATIONS IN GROUNDWATER (concentrations in µg/L)										
	TP	Hg	Ben	zene		$MTBE^a$				
Well ID	Max Conc.	Most Recent Conc.	Max Conc.	Most Recent Conc.	Max Conc.	Most Recent Conc.				
C-3	34,000	3,400	390	<0.5	10	<0.5				
	(12-6-94)	(3-14-11)	(12-21-92)	(3-14-11)	(9-15-04)	(3-14-11)				
MW-1	350	<50	1.2	<0.5	<0.5	<0.5				
	(6-17-94)	(3-14-11)	(6-17-94)	(3-14-11)	(all)	(3-14-11)				
MW-2	330	<50	1.4	<0.5	<0.5	<0.5				
	(6-17-94)	(3-14-11)	(6-17-94)	(3-14-11)	(all)	(3-14-11)				
MW-3	13,000	1,300	610	<0.5	<0.5	<0.5				
	(12-6-94)	(3-14-11)	(12-6-94)	(3-14-11)	(all)	(3-14-11)				
MW-5	1,000	<50	25	<0.5	<0.5	<0.5				
	(8-29-94)	(3-14-11)	(9-20-93)	(3-14-11)	(all)	(3-14-11)				
a	Only results	obtained usin	ng EPA Meth	nod 8260 repo:	rted					
<	Not detected	d at or above s	stated labora	tory reporting	g limit					

6.0 RISK EVALUATION

To evaluate potential risks to human health or the environment associated with the residual petroleum hydrocarbons in soil and groundwater, CRA evaluated the presence of wells and potential sensitive receptors in the site vicinity, evaluated potential receptor exposure pathways, and performed a screening-level risk evaluation. We also relied on the results of a previous risk assessment (dated December 29, 1992) prepared for the site. The findings of the risk evaluation are presented below.

6.1 NEARBY WELLS AND SENSITIVE RECEPTORS

As described in Section 3.2, although several water-supply wells were identified within 2,000 feet, none were located in the downgradient direction and thus are unlikely to be impacted by petroleum hydrocarbons from the site. The local drinking water supply is obtained from distant surface water.

The site is in commercial use and therefore no sensitive receptors exist at the site. Some residential areas are located at least 600 feet downgradient from the site. However, drinking water is supplied by EBMUD.

Based on this information, there do not appear to be any wells or sensitive receptors that would likely be impacted by petroleum hydrocarbons from the site.

6.2 <u>POTENTIAL EXPOSURE PATHWAYS</u>

6.2.1 <u>SOIL</u>

As the site is generally capped with the existing development, potential exposure to any residual hydrocarbon-bearing soil beneath the site by the general public is de minimis. Therefore, the only identified potential exposure pathway is direct exposure by construction workers during trenching or excavation activities. However, the residual hydrocarbon concentrations in soil at shallow depths where a construction worker could be exposed were low and limited in extent. Additionally, the previous risk assessment indicated no significant risk to potential construction workers or hypothetical site residents. A copy of the previous risk assessment results is presented in Appendix H.

6.2.2 **GROUNDWATER**

The extent of impacted groundwater appears to be adequately defined, not migrating, and no water supply wells appear likely to be impacted. Therefore, no complete groundwater ingestion pathways exist and none are likely to exist in the foreseeable future based on the current municipal water supply. Based on the depth to groundwater encountered in the borings and excavations, it is unlikely any typical construction activities would encounter groundwater.

6.2.3 SURFACE WATER

The nearest surface water body appears to be Temescal Creek approximately 200 feet downgradient of the site. However, this section of the creek is confined to an underground culvert, and thus unlikely to be impacted by hydrocarbons from the site.

6.2.4 VAPOR INTRUSION

Remedial excavation was performed to remove/treat secondary hydrocarbon source soil. Benzene, considered the primary risk driver for vapor intrusion as it is a known human carcinogen, is no longer detected in groundwater indicating limited residual source in soil. Although TPHg remains in groundwater beneath the site, at least a portion appears to be originating from the upgradient Autopro facility. The previous risk assessment indicated no significant vapor intrusion risk, even under the most conservative residential land use scenario (Appendix H), and residual TPHg concentrations were higher at this time and benzene was present. Based on this information, potential vapor intrusion is not a concern.

6.3 COMPARISON TO ENVIRONMENTAL SCREENING LEVELS

The maximum residual COC concentrations in soil and groundwater were compared to the corresponding environmental screening levels (ESLs) established by the RWQCB in May 2008. The ESLs are for use as screening levels in determining if further evaluation is warranted, in prioritizing areas of concern, in establishing cleanup goals, and in estimation of potential health risks. As stated by the RWQCB, the ESLs are considered to be conservative. The presence of a chemical at a concentration above an ESL does not necessarily indicate that adverse impacts to human health or the environment are occurring; rather exceeding ESLs indicates that the potential for impacts may exist and that additional evaluation may be needed. Under most circumstances, the presence of a chemical in soil, groundwater, or soil gas at concentrations below the corresponding ESL can be assumed to not pose a significant, long-term (chronic) threat to human health and the environment. For soil vapor, the most recent groundwater concentrations were compared to the ESLs for evaluation of potential vapor intrusion concerns, where established.

6.3.1 SOIL

The only complete potential exposure pathway to residual hydrocarbons in soil is direct exposure by construction workers during trenching or excavation activities. Table B below presents a comparison of the maximum COC concentrations detected in remaining soil to the respective ESLs associated with construction/trench worker direct exposure concerns. The results were also compared to the shallow or deep soil ESLs (values are identical) for groundwater protection (soil leaching) at commercial sites where groundwater is a current or potential drinking water source.

TABLE B. COMPARISON OF MAXIMUM RESIDUAL SOIL CONCENTRATIONS TO ESLs (concentrations in mg/kg)

Constituent	Highest Detected Concentration Remaining in Soil	ESL for Construction/Trench Worker Exposure ¹	ESL for Groundwater Protection ²
TPHg	980 (#4; 15.5 fbg; 9/26/91)	4,200	83
Benzene	0.069 (#2; 5 fbg; 9/26/91) (#3; 15.5 fbg; 9/26/91)	12	0.044
Toluene	2.7 (#4; 15.5 fbg; 9/26/91)	650	2.9
Ethylbenzene	2.5 (#4; 15.5 fbg; 9/26/91)	210	3.3
Xylenes	5.5 (#4; 15.5 fbg; 9/26/91)	420	2.3

ESLs from Table K-3, Direct Exposure Soil Screening Levels, Construction/Trench Worker Exposure Scenario, in Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, RWOCB-May 2008

As shown above, the maximum detected COC concentrations in remaining soil are well below the respective ESLs for construction/trench worker exposure. The historical maximum TPHg, benzene, and xylenes concentrations (1991) slightly exceed the ESLs associated with groundwater protection; however, concentrations in groundwater are generally declining (benzene no longer detected) and therefore any residual impacted soil does not appear to be acting as a significant continuing source of hydrocarbons that would reverse overall improving trends. In addition, as these samples were collected 20 years ago, concentrations have likely decreased due to natural attenuation. To be conservative, the results were compared to the ESLs associated with sites where groundwater is a potential drinking water source; however, at this site drinking water is provided by EBMUD and groundwater is not likely to be used as a resource in the foreseeable future. Therefore, the residual hydrocarbons in soil do not appear to pose a significant threat to human health or the environment, as indicated in the previous risk assessment.

ESLs from Table A-2, Shallow Soil Screening Levels, Commercial/Industrial Land Use, Groundwater is a current or potential source of drinking water, in Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, RWQCB-May 2008

6.3.2 GROUNDWATER

As described above, there were no identified complete groundwater ingestion pathways. However, the most recent COC concentrations detected in groundwater were compared to the ESLs at sites where groundwater is a current or potential source of drinking water. The comparison is presented in Table C below.

TABLE C. COMPARISON OF MOST RECENT MAXIMUM GROUNDWATER CONCENTRATIONS TO ESLs (concentrations in µg/L)									
Constituent Highest Detected Concentration Remaining in Groundwater Groundwater ESL ¹									
TPHg	3,400	100							
Ethylbenzene	0.6	30							
Xylenes	Xylenes 1 20								

ESLs from Table C, ESLs for Deep Soils, groundwater is a current or potential drinking water resource, Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, RWQCB-May 2008

As shown above, the maximum detected TPHg concentration in groundwater exceeds the ESL. However, the source has been removed, and the plume is stable, decreasing, and not migrating, and no wells or sensitive receptors are likely to be impacted. Additionally, at least a portion of the detected TPHg is likely due to an offsite source. Therefore, the residual petroleum hydrocarbons in groundwater at the site do not appear to pose a significant threat to human health or the environment.

Degradation trend analysis estimates that the TPHg concentration in MW-3 will reach the ESL by February 2037 (Appendix G), which is a reasonable amount of time given the municipal water supply. An analysis was not performed for C-3 due to the offsite contributing source.

6.3.3 SOIL VAPOR

The most recent residual COC concentrations in groundwater were compared to the groundwater ESLs for evaluation of potential vapor intrusion concerns at residential sites (most conservative). However, as shown in Table D below, the only remaining COCs with corresponding ESLs are ethylbenzene and xylenes.

TABLE D. COMPARISON OF MOST RECENT MAXIMUM GROUNDWATER CONCENTRATIONS TO ESLs ASSOCIATED WITH VAPOR INTRUSION CONCERNS (concentrations in $\mu g/L$)

Constituent	Highest Detected Concentration Remaining in Groundwater	ESL ¹
Ethylbenzene	0.6	170,000
Xylenes	1.0	160,000

^{1.} ESLs from Table E-1, Groundwater Screening Levels for Evaluation of Potential Vapor Intrusion Concerns, in *Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater*, RWQCB-May 2008

As shown above, the residual concentrations in groundwater are well below the corresponding ESLs and thus do not pose a significant threat to human health. Regardless, as previously discussed, potential vapor intrusion does not appear to be a concern and no further work appears warranted.

7.0 LOW-RISK GROUNDWATER CRITERIA

The site meets the RWQCB criteria for classification as a low-risk groundwater case. As described in the RWQCB memorandum, a low-risk groundwater case has the following general characteristics:

- The leak has been stopped and ongoing sources, including light non-aqueous phase liquid (LNAPL), have been removed or remediated.
- The site has been adequately characterized.
- The dissolved hydrocarbon plume is not migrating.
- No water wells, deeper drinking water aquifers, surface water, or other sensitive receptors are likely to be impacted.
- The site presents no significant risk to human health or the environment.

Each low-risk groundwater case criteria, as it pertains to the site, is discussed below.

7.1 THE LEAK HAS BEEN STOPPED AND ONGOING SOURCES, INCLUDING LNAPL, HAVE BEEN REMOVED OR REMEDIATED

All original potential sources of the petroleum hydrocarbons from the subject site (former USTs, dispensers, and piping) were removed in 1991. The remedial excavation removed

the majority of the hydrocarbon mass from the original source areas. As previously described, hydrocarbons are migrating beneath the site from an offsite source, and likely contributing to the stable TPHg concentrations in C-3. Otherwise, concentrations in groundwater are decreasing, indicating any residual hydrocarbons in soil are not acting as a significant continuing source that would reverse these trends. LNAPL has not been observed in any of the wells. Based on this information, the leak has been stopped and ongoing sources have been removed.

7.2 THE SITE HAS BEEN ADEQUATELY CHARACTERIZED

Soil sample analytical results and excavation activities indicate that the extent of impacted soil has been adequately defined. Groundwater monitoring has been performed since 1990. The plume appears to be stable and the extent adequately defined. Concentrations are expected to continue to decrease over time due to natural attenuation.

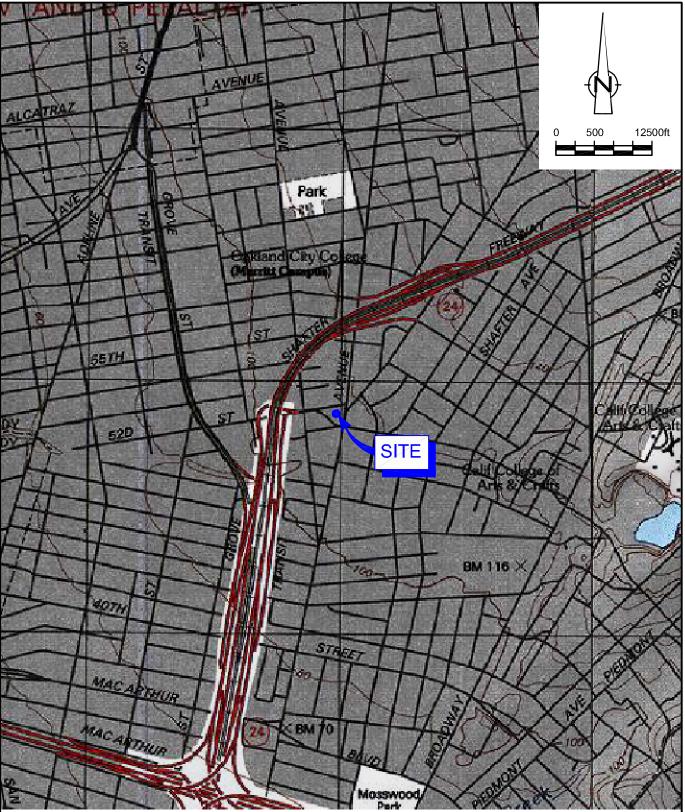
Although soil vapor sampling has not been performed, potential vapor intrusion does not appear to be a concern at the site based on the lack of benzene in soil and groundwater and the results of the previous risk assessment. Based on this information, the extent of impact has been defined to the degree necessary to demonstrate that the site does not present a significant threat to human health or the environment, and no further work is warranted.

7.3 THE DISSOLVED HYDROCARBON PLUME IS STABLE, DECREASING, AND NOT MIGRATING

Based on the monitoring results, the plume appears stable, shrinking, and not migrating. Natural attenuation is expected to continue to reduce the remaining concentrations to background levels. The TPHg concentration in MW-3 is estimated to reach the ESL by 2037.

7.4 NO WATER WELLS, DEEPER DRINKING WATER AQUIFERS, SURFACE WATER, OR OTHER SENSITIVE RECEPTORS ARE LIKELY TO BE IMPACTED

No water wells, surface water or other sensitive receptors were identified that are likely to be impacted by petroleum hydrocarbons from the site.

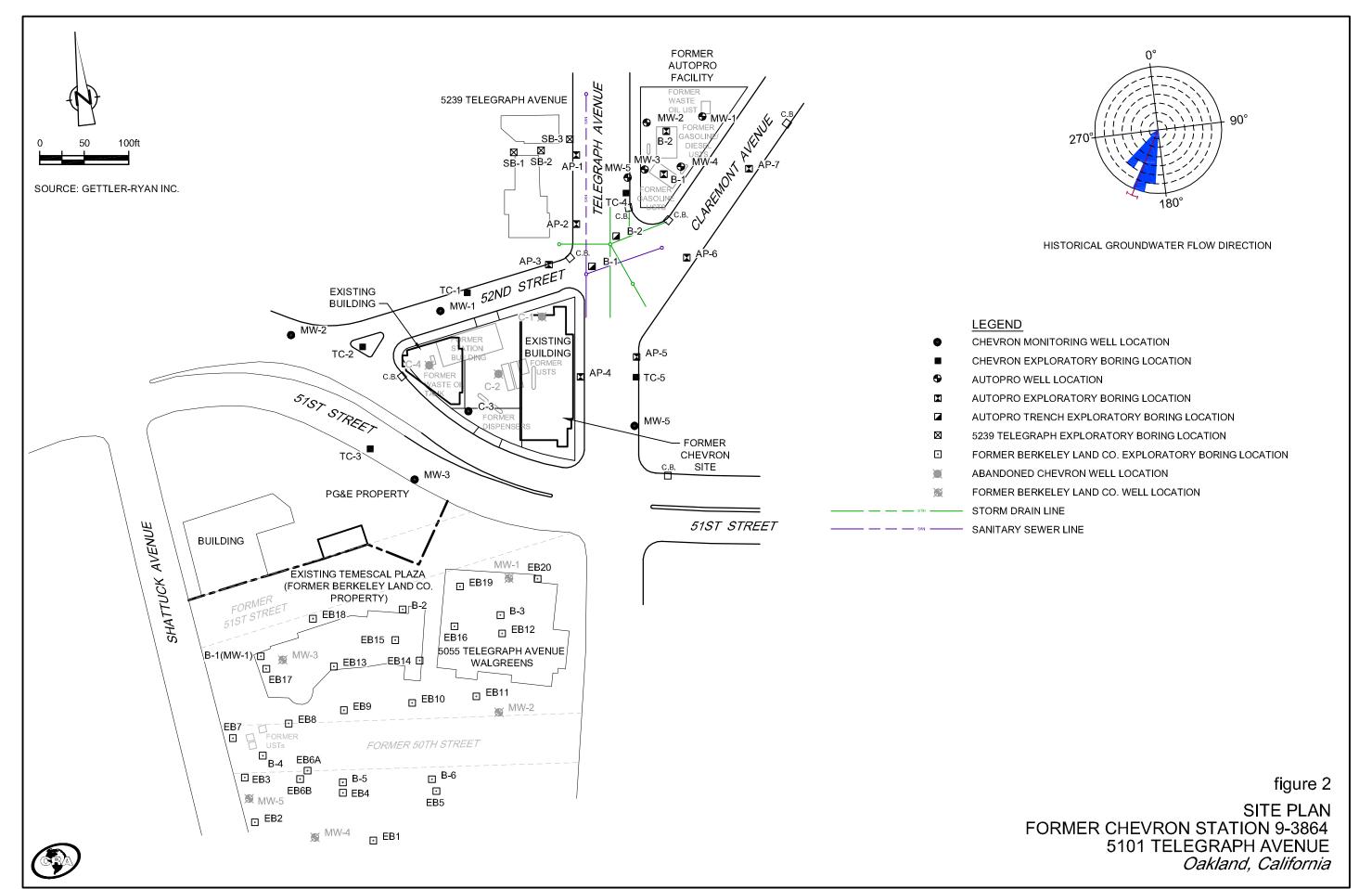

7.5 THE SITE PRESENTS NO SIGNIFICANT RISK TO HUMAN HEALTH OR THE ENVIRONMENT

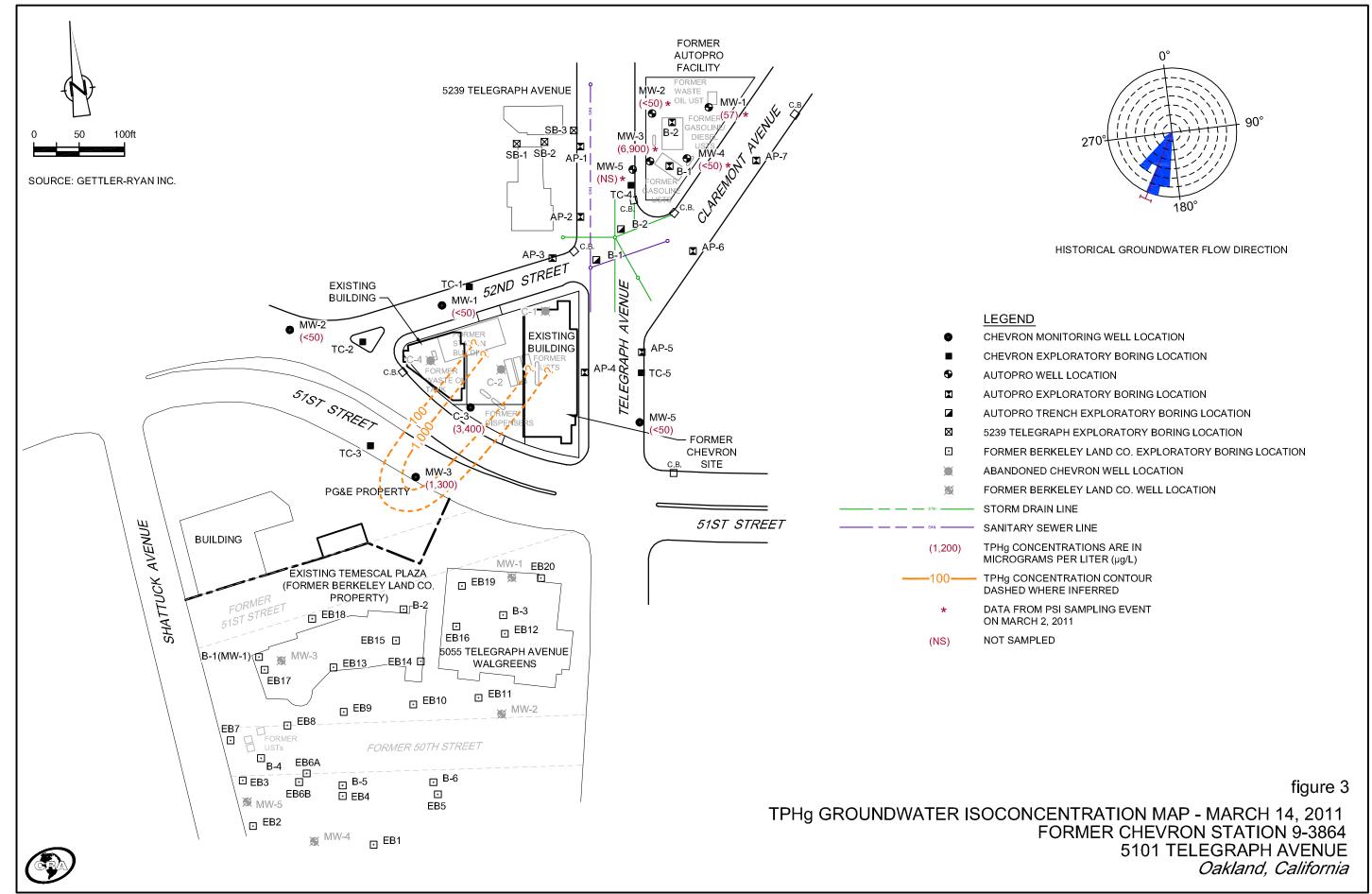
The site is generally capped with the existing development, thus potential exposure to any residual impacted soil by the general public is precluded. Regardless, the previous risk assessment indicated no significant risk to either construction workers or hypothetical residents. The maximum residual detected concentrations in soil of a few COCs exceeded the ESLs associated with groundwater protection; however, concentrations in groundwater are generally decreasing indicating the lack of a significant continuing soil source. Although impacted groundwater remains beneath the site, and an upgradient source is contributing to the impacts, natural attenuation is expected to continue to decrease concentrations to background levels over time. No sensitive receptors appear likely to be impacted given the plume appears stable, decreasing in size and mass, and is limited in extent. Potential vapor intrusion has been shown to not be a significant concern. Based on this information, the site does not pose a significant risk to human health or the environment.

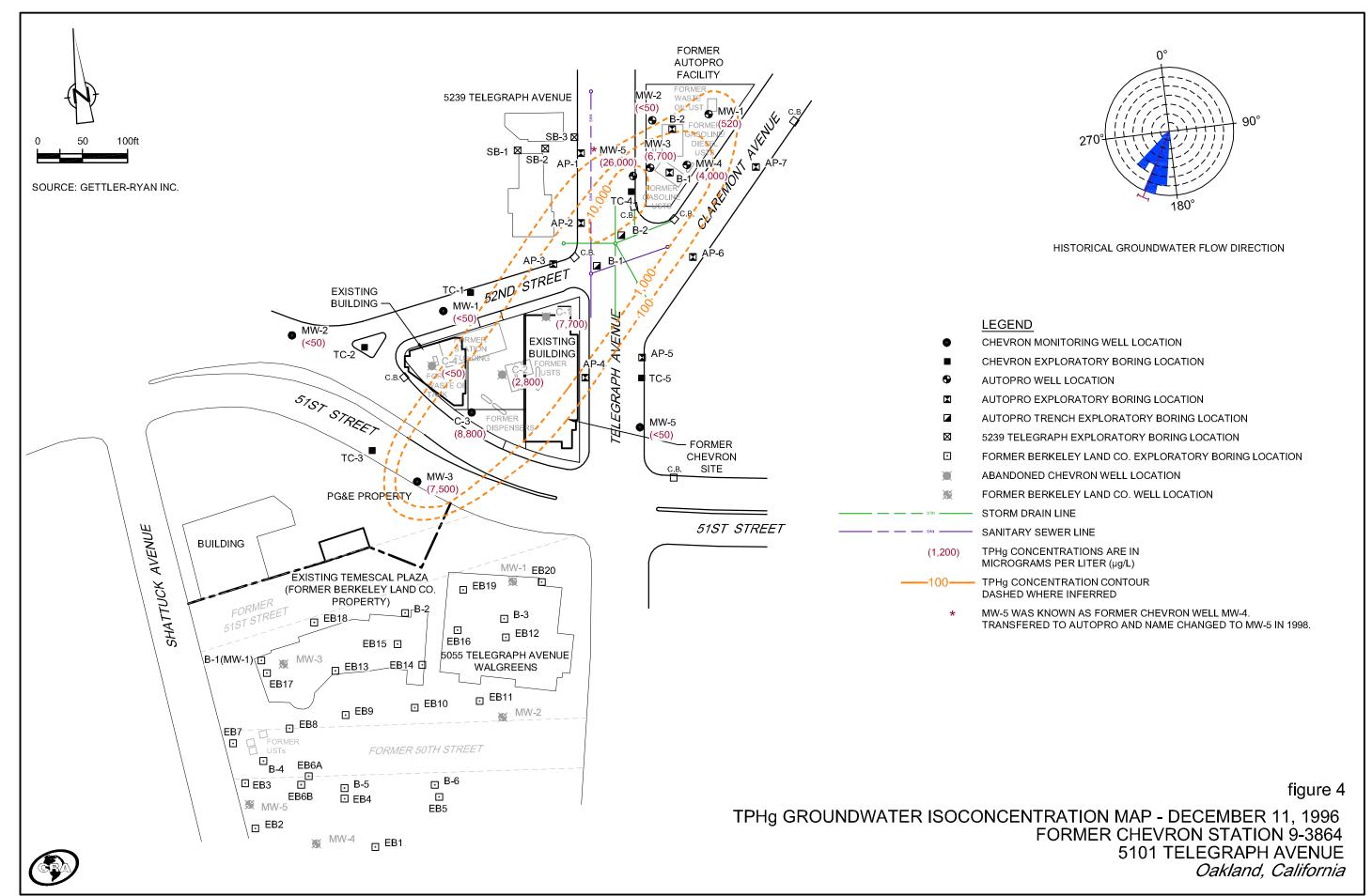
8.0 CONCLUSIONS AND RECOMMENDATIONS

Based on the site conditions and analytical data, the site satisfies the RWQCB criteria for classification as a low-risk groundwater case. The extent of hydrocarbons in soil and groundwater has been adequately defined and no further work is warranted. The dissolved hydrocarbon plume is stable, decreasing, and an upgradient source is contributing to site impacts. The residual petroleum hydrocarbons in soil and groundwater at the site do not pose a significant threat to human health or the environment. The site is expected to remain in commercial use for the foreseeable future. Therefore, on behalf of Chevron, CRA respectfully requests the site be considered for low-risk case closure.

FIGURES




SOURCE: TOPO! MAPS.


figure 1

VICINITY MAP FORMER CHEVRON SERVICE STATION 9-3864 5101 TELEGRAPH AVENUE Oakland, California

TABLES

TABLE 1 1 of 4

SOIL SAMPLE ANALYTICAL RESULTS FORMER CHEVRON SERVICE STATION 9-3864 5101 TELEGRAPH AVENUE OAKLAND, CA

Boring/	Sample	Sample Depth	TPHd	ТРНд	TOG	Benzene	Toluene	Ethylbenzene	Xylenes	HVOCs	
Sample ID	Date	(fbg)	•	← concentrations in millgrams per kilogram (mg/kg) —							
Exploratory and	d Monitoring	Well Borings									
C-1	11/14/90	15.5	NA	48	NA	<0.025	0.29	0.28	0.6	NA	
C-2	11/14/90	10.5	NA	<1	NA	< 0.005	< 0.005	< 0.005	< 0.005	NA	
	11/14/90	15.5	NA	25	NA	0.04	0.092	0.18	0.4	NA	
C-3	11/15/90	10.5	NA	<1	NA	0.006	0.016	0.006	0.021	NA	
	11/15/90	15.5	NA	270	NA	<0.25	0.87	1.5	3.4	NA	
C-4	11/15/90	10.5	NA	<1	<50	<0.005	< 0.005	<0.005	<0.005	ND	
	11/15/90	15.5	NA	<1	<50	< 0.005	<0.005	<0.005	<0.005	ND	
TC-1	11/30/92	10	NA	<0.3	NA	<0.005	<0.005	< 0.005	<0.005	NA	
	11/30/92	15	NA	<0.3	NA	<0.005	<0.005	<0.005	<0.005	NA	
TC-2	11/30/92	10	NA	< 0.3	NA	< 0.005	< 0.005	< 0.005	< 0.005	NA	
	11/30/92	15	NA	<0.3	NA	<0.005	<0.005	< 0.005	<0.005	NA	
TC-3	11/30/92	10	NA	<0.3	NA	< 0.005	< 0.005	< 0.005	<0.005	NA	
	11/30/92	15	NA	<0.3	NA	<0.005	<0.005	< 0.005	<0.005	NA	
TC-4	12/1/92	7	NA	<0.3	NA	< 0.005	< 0.005	< 0.005	<0.005	NA	
	12/1/92	10	NA	4.4	NA	< 0.005	0.019	0.013	0.019	NA	
	12/1/92	13	NA	46	NA	< 0.05	0.18	0.12	0.07	NA	
	12/1/92	16	NA	0.7	NA	< 0.005	<0.005	< 0.005	<0.005	NA	

TABLE 1 2 of 4

SOIL SAMPLE ANALYTICAL RESULTS FORMER CHEVRON SERVICE STATION 9-3864 5101 TELEGRAPH AVENUE OAKLAND, CA

Boring/	Sample	Sample Depth	TPHd	ТРНд	TOG	Benzene		Ethylbenzene	Xylenes	HVOCs
Sample ID	Date	(fbg)	•	c	oncentratio	ons in millgr	ams per kil	ogram (mg/kg) -		
TC-5	12/1/92	10	NA	<0.3	NA	< 0.005	< 0.005	< 0.005	< 0.005	NA
	12/1/92	16	NA	<0.3	NA	< 0.005	<0.005	< 0.005	< 0.005	NA
B-1 (MW-1)	9/16/93	6.5	NA	<1	NA	<0.005	< 0.005	< 0.005	<0.015	NA
,	9/16/93	10.8	NA	<1	NA	< 0.005	< 0.005	< 0.005	<0.015	NA
B-2 (MW-2)	9/20/93	6	NA	<1	NA	< 0.005	< 0.005	< 0.005	<0.015	NA
, ,	9/20/93	11.3	NA	<1	NA	< 0.005	<0.005	< 0.005	<0.015	NA
B-3 (MW-3)	9/16/93	6.3	NA	<1	NA	<0.005	< 0.005	< 0.005	<0.015	NA
,	9/16/93	11.4	NA	<1	NA	< 0.005	< 0.005	< 0.005	< 0.015	NA
	9/16/93	14.5	NA	<1	NA	< 0.005	< 0.005	< 0.005	< 0.015	NA
	9/16/93	16.3	NA	1	NA	0.007	0.01	0.005	0.017	NA
B-4 (MW-4)	9/15/93	6.3	NA	<1	NA	<0.005	< 0.005	< 0.005	<0.015	NA
,	9/15/93	11.3	NA	300	NA	< 0.025	0.53	0.15	1.8	NA
B-5 (MW-5)	9/16/93	6.5	NA	<1	NA	<0.005	< 0.005	<0.005	<0.015	NA
2 3 (1111 3)	9/16/93	11.5	NA	<1	NA	< 0.005	< 0.005	< 0.005	< 0.015	NA
	9/16/93	14.5	NA	<1	NA	<0.005	< 0.005	<0.005	< 0.015	NA
Gasoline UST E	xcavation									
#1	9/18/91	13.5	NA	<1	NA	< 0.005	< 0.005	< 0.005	< 0.005	NA
#2	9/18/91	13.5	NA	1,300	NA	<0.25	2.3	2.8	7.6	NA
#3	9/18/91	13.5	NA	46	NA	0.1	0.07	0.21	0.18	NA
#4	9/18/91	13.5	NA	160	NA	<0.12	<0.12	1.6	3.2	NA
#5	9/18/91	13.5	NA	64	NA	0.04	0.04	0.13	0.32	NA

TABLE 1 3 of 4

SOIL SAMPLE ANALYTICAL RESULTS FORMER CHEVRON SERVICE STATION 9-3864 5101 TELEGRAPH AVENUE OAKLAND, CA

Boring/	Sample	Sample Depth	TPHd	ТРНд	TOG	Benzene		Ethylbenzene	Xylenes	HVOCs
Sample ID	Date	(fbg)	•	co	oncentratio	ons in miligr	ams per Kil	ogram (mg/kg) -		
#6	9/18/91	13.5	NA	190	NA	0.33	0.38	0.81	1.8	NA
#7	9/18/91	10	NA	<1	NA	<0.005	< 0.005	< 0.005	<0.005	NA
#8	9/18/91	10	NA	<1	NA	< 0.005	< 0.005	< 0.005	< 0.005	NA
#9	9/18/91	10	NA	<1	NA	< 0.005	<0.005	< 0.005	0.007	NA
Dispenser and	Product Line	Excavation								
#10	9/18/91	2	NA	<1	NA	< 0.005	< 0.005	< 0.005	< 0.005	NA
#11	9/18/91	3	NA	<1	NA	0.008	0.009	< 0.005	0.01	NA
#12	9/18/91	2	NA	<1	NA	< 0.005	< 0.005	< 0.005	< 0.005	NA
#13	9/18/91	2	NA	53	NA	0.9	3.5	1.2	6.9	NA
Used-Oil UST l	Excavation									
#14	9/18/91	11	<10	<1	< 50	< 0.005	< 0.005	< 0.005	< 0.005	ND
#15	9/18/91	11.5	<10	<1	<50	< 0.005	< 0.005	< 0.005	< 0.005	ND
Gasoline UST (Over-Excavati	ion								
#1	9/26/91	15.5	NA	580	NA	< 0.12	1.4	1.5	3.9	NA
#3	9/26/91	15.5	NA	71	NA	0.069	0.12	0.22	0.57	NA
#4	9/26/91	15.5	NA	980	NA	< 0.12	2.7	2.5	5.5	NA
#5	9/26/91	15.5	NA	330	NA	< 0.12	0.81	1	2.7	NA
#6	9/26/91	15.5	NA	460	NA	<0.12	0.92	1.3	3	NA
Product Line O	ver-Excavatio	on								
#2	9/26/91	5	NA	2	NA	0.069	0.092	0.022	0.18	NA

TABLE 1 4 of 4

SOIL SAMPLE ANALYTICAL RESULTS FORMER CHEVRON SERVICE STATION 9-3864 5101 TELEGRAPH AVENUE OAKLAND, CA

Boring/ Sample ID	Sample Date	Sample Depth (fbg)	TPHd ←	ТРНg ——— с	TOG oncentratio	Benzene ons in millgr	Toluene ams per kil	Ethylbenzene logram (mg/kg) -	Xylenes	HVOCs
Samples of Exc	avated Soil A	erated and Used	as Backfill							
#7	10/10/91	N/A	NA	<1	NA	< 0.005	< 0.005	< 0.005	< 0.005	NA
#8	10/10/91	N/A	NA	<1	NA	< 0.005	< 0.005	< 0.005	< 0.005	NA
#9	10/10/91	N/A	NA	<1	NA	< 0.005	< 0.005	< 0.005	< 0.005	NA
#10	10/10/91	N/A	NA	<1	NA	< 0.005	< 0.005	< 0.005	< 0.005	NA
#11	10/10/91	N/A	NA	<1	NA	< 0.005	< 0.005	< 0.005	< 0.005	NA
#12	10/10/91	N/A	NA	<1	NA	< 0.005	< 0.005	< 0.005	< 0.005	NA
#13	10/10/91	N/A	NA	<1	NA	< 0.005	< 0.005	< 0.005	< 0.005	NA
#14	10/10/91	N/A	NA	<1	NA	< 0.005	< 0.005	< 0.005	< 0.005	NA
#15	10/10/91	N/A	NA	<1	NA	< 0.005	< 0.005	< 0.005	< 0.005	NA
#16	10/10/91	N/A	NA	<1	NA	< 0.005	< 0.005	< 0.005	< 0.005	NA
#17	10/10/91	N/A	NA	<1	NA	< 0.005	< 0.005	< 0.005	< 0.005	NA
#18	10/10/91	N/A	NA	<1	NA	< 0.005	< 0.005	< 0.005	< 0.005	NA
#19	10/10/91	N/A	NA	<1	NA	< 0.005	< 0.005	< 0.005	< 0.005	NA
#20	10/10/91	N/A	NA	<1	NA	< 0.005	< 0.005	< 0.005	< 0.005	NA
#21	10/10/91	N/A	NA	<1	NA	< 0.005	< 0.005	< 0.005	< 0.005	NA

Notes/Abbreviations:

TPHd/TPHg = Total petroleum hydrocarbons as diesel/gasoline

TOG = Total oil and grease

HVOCs = Halogenated volatile organic compounds by EPA Method 8010

fbg = feet below grade

NA = Not analyzed

< = Not detected at or above laboratory reporting limit

ND = Not detected; reporting limits vary

N/A = Not applicable

Note: Shaded samples were collected from soil that was later excavated

TABLE 2 10f 1

GROUNDWATER SAMPLE ANALYTICAL RESULTS FORMER CHEVRON SERVICE STATION 9-3864 5101 TELEGRAPH AVENUE OAKLAND, CA

Boring ID	Sample	ТРНд	Benzene	Toluene	Ethylbenzene	Xylenes
	Date	Concent	rations repo	rted in mic	rograms per liter	(ug/L)
TC-1	11/30/92	<50	< 0.4	< 0.3	< 0.3	< 0.4
TC-2	11/30/92	< 50	< 0.4	< 0.3	< 0.3	< 0.4
TC-3	11/30/92	< 50	< 0.4	< 0.3	< 0.3	< 0.4
TC-4	12/1/92	120,000	<200	<200	500	400
TC-5	12/1/92	2,400	<2	<2	<2	3

Abbreviations:

TPHg = Total petroleum hydrocarbons as gasoline

< = Not detected at or above stated laboratory reporting limit</p>

APPENDIX A

SUMMARY OF ENVIRONMENTAL INVESTIGATION AND REMEDIATION

SUMMARY OF ENVIRONMENTAL INVESTIGATION AND REMEDIATION FORMER CHEVRON SERVICE STATION 9-3864 5101 TELEGRAPH AVENUE, OAKLAND, CALIFORNIA

November 1990 Monitoring Well Installations

GeoStrategies, Inc. (GSI) installed onsite monitoring wells C-1 through C-4. Soil samples collected from the well borings at 10.5 and/or 15.5 feet below grade (fbg) contained up to 270 milligrams per kilogram (mg/kg) total petroleum hydrocarbons as gasoline (TPHg) and 0.04 mg/kg benzene. Details were presented in GSI's January 17, 1991 Well Installation Report.

September 1991 Station Demolition and Underground Storage Tank (UST) Removal

Blaine Tech Services, Inc. (Blaine Tech) oversaw the removal of three (two 10,000-gallon and one 5,000-gallon) steel gasoline USTs, a 1,000-gallon steel used-oil UST, dispensers, and product piping during station demolition. Soil samples collected beneath the gasoline USTs (13.5 fbg) and from the excavation sidewalls (10 fbg) contained up to 1,300 mg/kg TPHg and 0.33 mg/kg benzene. Soil samples collected at 2 or 3 fbg from the piping trenches contained up to 53 mg/kg TPHg and 0.9 mg/kg benzene. No hydrocarbons were detected in soil samples collected beneath the former used-oil UST.

The gasoline UST excavation was subsequently deepened to 17.5 to 18 fbg and the former piping trench was deepened to 5 fbg. Additional soil samples collected at 15.5 fbg from the sidewalls of the UST excavation contained up to 980 mg/kg TPHg and 0.069 mg/kg benzene. An additional soil sample collected at 5 fbg from the product line trench contained 2 mg/kg TPHg and 0.069 mg/kg benzene. Approximately 600 cubic yards of soil were removed; 300 cubic yards were disposed offsite and 300 were aerated, sampled, and re-used as backfill material. Details were presented in Blaine Tech's October 28, 1991 *Multiple Event Sampling Report*.

November/December 1992 Subsurface Investigation

Pacific Environmental Group, Inc. (PEG) advanced exploratory borings TC-1 through TC-5. Boring TC-4 was located adjacent to an upgradient former Shell service station to evaluate this potential offsite source. Soil samples collected at depths of 7 to 16 fbg contained up to 46 mg/kg TPHg, but no benzene. Groundwater samples were also collected from each boring. TPHg was only detected in the samples collected from TC-4 (120,000 micrograms per liter $[\mu g/L]$) and TC-5 (2,400 $\mu g/L$); no benzene was detected in the samples. Details were presented in PEG's untitled letter report dated December 18, 1992.

December 1992 Risk Assessment

Geraghty & Miller, Inc. (G&M) performed a risk assessment. The results indicated no significant threat to human health from residual petroleum hydrocarbons under a residential or commercial land use scenario, thus it was concluded no further remediation was necessary. Details were presented in G&M's December 29, 1992 *Risk-Based Analysis for the Former Chevron Service Station* #9-3864.

September 1993 Monitoring Well Installations

RESNA Industries (RESNA) installed offsite wells MW-1 through MW-5 adjacent to previous borings TC-1 through TC-5. Soil samples collected at depths of 6 to 16.3 fbg from the well borings contained up to 300 mg/kg TPHg and 0.007 mg/kg benzene (one sample). A well and

offsite source survey were also conducted. Details were presented in RESNA's October 18, 1993 *Report-Additional Subsurface Investigation*.

December 1996 and January 1997 Well Destructions

Gettler-Ryan Inc. (G-R) destroyed wells C-1, C-2, and C-4 to accommodate site redevelopment. Details were presented in G-R's January 14, 1997, and March 7, 1997 *Well Abandonment* reports.

1999-2004 Oxygen Release Compound® (ORC) Enhanced Oxygenation

ORC socks were placed in wells C-3 and MW-3 to reduce petroleum hydrocarbon concentrations in groundwater via enhanced biodegradation.

APPENDIX B HISTORICAL BORING LOGS

MAJOR DIVISIONS				TYPICAL NAMES
COARSE-GRAINED SOILS MORE THAN HALF IS COARSER THAN NO. 200 SIEVE	GRAVELS MORE THAN HALF COARSE FRACTION IS LARGER THAN NO. 4 SIEVE SIZE	CLEAN GRAVELS WITH LITTLE OR NO FINES	GW	WELL GRADED GRAVELS WITH OR WITHOUT SAND, LITTLE OR NO FINES
			GP	POORLY GRADED GRAVELS WITH OR WITHOUT SAND, LITTLE OR NO FINES
		GRAVELS WITH OVER 15% FINES	GM	SILTY GRAVELS, SILTY GRAVELS WITH SAND
			GC	CLAYEY GRAVELS, CLAYEY GRAVELS WITH SAND
	SANDS MORE THAN HALF COARSE FRACTION IS SMALLER THAN NO. 4 SIEVE SIZE	CLEAN SANDS WITH LITTLE OR NO FINES	sw	WELL GRADED SANDS WITH OR WITHOUT GRAVEL, LITTLE OR NO FINES
			SP	POORLY GRADED SANDS WITH OR WITHOUT GRAVEL, LITTLE OR NO FINES
		SANDS WITH OVER 15% FINES	SM	SILTY SANDS WITH OR WITHOUT GRAVEL
			sc	CLAYEY SANDS WITH OR WITHOUT GRAVEL
FINE-GRAINED SOILS MORE THAN HALF IS FINER THAN NO. 200 SIEVE	SILTS AND CLAYS LIQUID LIMIT 50% OFI LESS		ML	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTS WITH SANDS AND GRAVELS
			CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY CLAYS WITH SANDS AND GRAVELS, LEAN CLAYS
			OL	ORGANIC SILTS OR CLAYS OF LOW PLASTICITY
	SILTS AND CLAYS LIQUID LIMIT GREATER THAN 50%		мн	INORGANIC SILTS, MICACEOUS OR DIATOMACIOUS, FINE SANDY OR SILTY SOILS, ELASTIC SILTS
			СН	INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS
			ОН	ORGANIC SILTS OR CLAYS OF MEDIUM TO HIGH PLASTICITY
HIGHLY ORGANIC SOILS			PT	PEAT AND OTHER HIGHLY ORGANIC SOILS

LL

- Liquid Limit (%)

Ы

- Plastic Index (%)

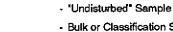
PID

- Volatile Vapors in ppm

MA

- Particle Size Analysis

2.5 YR 6/2


- Soil Color according to Munsell Soil Color Charts (1975 Edition)

5 GY 5/2

- GSA Rock Color Chart

- No Soil Sample Recoverd

- Bulk or Classification Sample

- First Encountered Ground Water Level

Penetration

Sample drive hammer weight • 140 pounds falling 30 inches. Blows required to drive sampler 1 foot are indicated on the logs

GeoStrategies Inc.

Unified Soil Classification - ASTM D 2488-85 and Key to Test Data

C-1 Chevron Service Statish No. 3864 C-1 Location: S101 Telegraph Avanue City: Oakland, California Sheet 1 Logged by Rom Drillion: Bayland Casing installation data: Cearing installation:	Field loca	ation of b	oring:				· .		Project No.:	7277	Date:	11/14/90	Boring No:
Comparison Com									Client:	Chevron Ser	rvice Station	No. 3864] ,,
Logged by RCM Driller: Bayland of 2 Cauing installation data:			(S	ee Plate	2)					5101 Telegra	aph Avenue		T C-1
Cesing installation data: See Well Construction Detail) Top of Box Bevellon: 117.45 Datum: MSL									City;	Oakland, Ca			
Collaboration											Driller:	Bayland	of 2
Flote diameter: 8-Inches									Casing install	lation data:			
Sand			Hollow S	Stem Au	ger				l	(Se	e Well Const	ruction Deta	<u>il)</u>
PAVEMENT SECTION - 1.0 feet.	Hole dia	meter:	8-Inches	<u>.</u>					Top of Box E	levation: 117	.4 5	Datum: MS	L
PAVEMENT SECTION - 1.0 feet.		(F)						୍ଥ	Water Level	15,00'	19.25'		
PAVEMENT SECTION - 1.0 feet.	e	18 F 8	p ed	5 5 5 5 5 5 5	£	e di	_≅ <u>ख</u>	South Series	Time	10:20	11:45		<u> </u>
PAVEMENT SECTION - 1.0 feet.	# B	Bloy Bloy	£.88	Peg F	ge	Pag.	≱≅	9 is 0	Date	11/14/90	11/14/90		
PAVEMENT SECTION - 1.0 feet. 1		<u>.</u>			"			\ s.			Description		
PAVEMENT SECTION - 1.0 feet. 1									1				,
1					0		1						
1					1				PAVEN	MENT SECTIO	N - 1.0 feet.		-
Silt (ML) - very dark gray (10YR 3/1), damp, medium stiff, low plasticity; 75% silt; 10% clay; 10% sand; 5% fine gravel; rootholes; organic matter. Sand (Sw) - brownish yellow (10YR 6/6), damp, medium dense; 85% sand; 10% fine gravel; 5% silt; Fe-oxide staining. Sand (Sw) - brownish yellow (10YR 6/6), damp, medium dense; 85% sand; 10% fine gravel; 5% silt; Fe-oxide staining.					1		1						
Silt (ML) - very dark gray (10YR 3/1), damp, medium stiff, low plasticity; 75% silt; 10% clay; 10% sand; 5% fine gravel; rootholes; organic matter. Sand (Sw) - brownish yellow (10YR 6/6), damp, medium dense; 85% sand; 10% fine gravel; 5% silt; Fe-oxide staining. Sand (Sw) - brownish yellow (10YR 6/6), damp, medium dense; 85% sand; 10% fine gravel; 5% silt; Fe-oxide staining.					1		1						
Sand					2		1						-
Sand					1		1		İ				
SILT (ML) - very dark gray (10YR 3/1), damp, medium stiff, low plasticity; 75% silt; 10% clay; 10% sand; 5% fine gravel; rootholes; organic matter. SAND (SW) - brownish yellow (10YR 6/6), damp, medium dense; 85% sand; 10% fine gravel; 5% silt; Fe-oxide staining. SAND (SW) - brownish yellow (10YR 6/6), damp, medium dense; 85% sand; 10% fine gravel; 5% silt; Fe-oxide staining. SAND (SW) - brownish yellow (10YR 6/6), damp, medium dense; 85% sand; 10% fine gravel; 5% silt; Fe-oxide staining.					∃ 3	<u> </u>	1						
SILT (ML) - very dark gray (10YR 3/1), damp, medium stiff, low plasticity; 75% silt; 10% clay; 10% sand; 5% fine gravel; rootholes; organic matter. SAND (SW) - brownish yellow (10YR 6/6), damp, medium dense; 85% sand; 10% fine gravel; 5% silt; Fe-oxide staining. SAND (SW) - brownish yellow (10YR 6/6), damp, medium dense; 85% sand; 10% fine gravel; 5% silt; Fe-oxide staining. SAND (SW) - brownish yellow (10YR 6/6), damp, medium dense; 85% sand; 10% fine gravel; 5% silt; Fe-oxide staining.			-		1							-	
SILT (ML) - very dark gray (10YR 3/1), damp, medium stiff, low plasticity; 75% silt; 10% clay; 10% sand; 5% fine gravel; rootholes; organic matter. SAND (SW) - brownish yellow (10YR 6/6), damp, medium dense; 85% sand; 10% fine gravel; 5% silt; Fe-oxide staining. SAND (SW) - brownish yellow (10YR 6/6), damp, medium dense; 85% sand; 10% fine gravel; 5% silt; Fe-oxide staining. SAND (SW) - brownish yellow (10YR 6/6), damp, medium dense; 85% sand; 10% fine gravel; 5% silt; Fe-oxide staining.		· ·			4								
SAND (SW) - brownish yellow (10YR 6/6), damp, medium dense; 85% sand; 10% fine gravel; 5% silt; Fe-oxide staining. SAND (GC) - dark greenish gray		500	S&H	C-1-	1		1		SILT (N	IL) - verv dar	k grav (10YF	3/1), damp	medium
gravel; rootholes; organic matter. Gamma 0				5		1		stiff, low	v plasticity: 75	% silt: 10%	clay: 10% sa	and: 5% fine	
SAND (SW) - brownish yellow (10YR 6/6), damp, medium dense; 85% sand; 10% fine gravel; 5% silt; Fe-oxide staining. 11					1 -	_	1						
SAND (SW) - brownish yellow (10YR 6/6), damp, medium dense; 85% sand; 10% fine gravel; 5% silt; Fe-oxide staining. Sand	<u> </u>				a		1		gravor,	100410100, 01	gumo marrot	•	
SAND (SW) - brownish yellow (10YR 6/6), damp, medium dense; 85% sand; 10% fine gravel; 5% silt; Fe-oxide staining. 11		†			┨		1						
SAND (SW) - brownish yellow (10YR 6/6), damp, medium dense; 85% sand; 10% fine gravel; 5% silt; Fe-oxide staining. 11		 -			7		1	11111					
11 S&H C-1- 10 SAND (SW) - brownish yellow (10YR 6/6), damp, medium dense; 85% sand; 10% fine gravel; 5% silt; Fe-oxide staining. 11 12 13 14 CLAYEY GRAVEL with SAND (GC) - dark greenish gray (5GY 4/1), saturated, medium dense; 65% gravel; 20% sand; 15% clay. 17 18 19 19 19 19 19 19			 		┤ ′		1						
11 S&H C-1- 10 SAND (SW) - brownish yellow (10YR 6/6), damp, medium dense; 85% sand; 10% fine gravel; 5% silt; Fe-oxide staining. 11 12 13 14 CLAYEY GRAVEL with SAND (GC) - dark greenish gray (5GY 4/1), saturated, medium dense; 65% gravel; 20% sand; 15% clay. 17 18 19 19 19 19 19 19		ļ			8					······································			
11	· 				┪	\vdash	1			77767-04-34-54-54-5-5-4-1			
11 S&H C-1- 10				-	9		1	 ::::	-				
0		11	 		1		1	:::::	SAND	SW) - browni	sh vellow (1	0YB 6/6) da	mp
13	0		S&H	C-1-	10		1	1:::					
11			1 2 2		1		1					o g. a., o., o	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
12		<u> </u>	 	10.0	11		1		1 0 0/110	o starring.			
13		-			┨"		1		<u> </u>				·
13					12		1						
11 CLAYEY GRAVEL with SAND (GC) - dark greenish gray (5GY 4/1), saturated, medium dense; 65% gravel; 20% sand; 15% clay.					"~		1	1	 				
11 CLAYEY GRAVEL with SAND (GC) - dark greenish gray (5GY 4/1), saturated, medium dense; 65% gravel; 20% sand; 15% clay.	 				12	ļ	1	1.11	├ ──				
11			-		1.3	<u> </u>	{	1.5/0/0/	 			· · ·	
11	 				111		1	1/1/					
808 11 S&H C-1- 15	<u> </u>	11	-	<u></u>	┤ ' 		{	1///	CLAVE	V CDAVEL W	th SAND (C	C) dark are	onich grav
15 15.5 sand; 15% clay.	808		S&LI	C 1	4 -		 	1//					
16 17 17 17 16 16 17 17 16 16 17 17 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17	300		Jan		13		∤ <u>⊼</u>	Y///			medium 08	ise, os% gr	avei, ∠∪%
17		13		15.5	4.5		 -	1///	Sano; 1	o% clay.			
			-		۱'۵		1	1///	 				
					٠,,	ļ.—	1	1/1/					
18					' '	<u> </u>	-	1///	-				
					_ ا	<u> </u>	1	1.6.1					
	ļ	<u> </u>			18		{	1/1					
	ļ	<u> </u>			1		1	1///					
Pamada:	Dome-1:	<u>!</u>	l		<u> 19</u>		L	<u> </u>					
Remarks:	nemarks:												
Log of Boring BORING N		S	Chunk	- حا مما			· -	Log of	Boring				BORING NO.

JOB NUMBER 7277

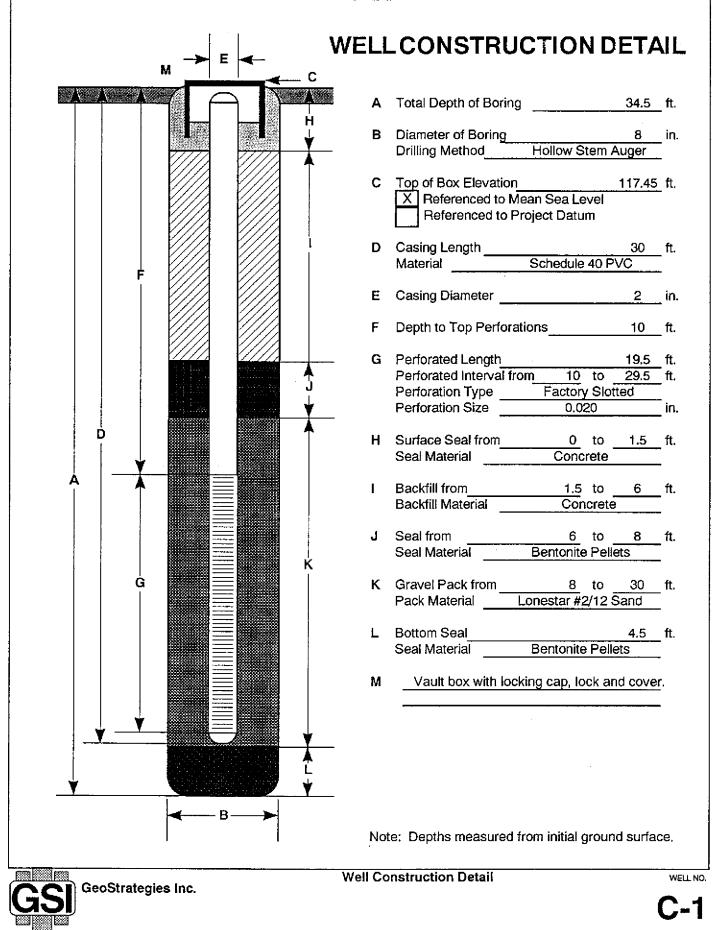
PREVIEWED BY RG/CEG

DATE 11/90

REVISED DATE

Field loca	ation of b	oring:						Project No.:		Date:	11/14/90	Boring No:
								Client:	Chevron Ser		No. 3864	C-1
		(S	ee Plate	2)				Location:	5101 Telegra			1
								City:	Oakland, Ca			Sheet 2
1								Logged by:		Driller:	Bayland	of 2
								Casing install	ation data:			
Drilling r		Hollow S		ger							155	
Hole dia	meter:	8-Inches	\$,		Top of Box E	levation:	ı . 	Datum:	
	, <u>a</u>			7	_		් දි	Water Level				
Cld (mdd)	Blows/ft. or essure (pr	Type of Sample	Sample	Depth (ft.)	Sample	Well	- Gig	Time				
-8	Blows/ft. or Pressure (psi)	≥ %	85	8	æ	>6	Soil Group Symbol (USCS)	Date		<u> </u>		
				<u> </u>			8	0.175	(O A N ID (O O)	Description		(0 (0)
	7	0011	0.4			¥			Y SAND (SC			
14.2	8 6	S&H	C-1- 20.5	20	-	1			ed, medium d	<u>епse; 75% s</u>	and; 15% C	ay; 10%
	0		20.5	21	2	-	\mathbb{H}/\mathbb{Z}	gravel.	Y SILT (ML/C	1 \ vallowie	h brown (10	VD 5/6\
				 ~ '		1	\mathbb{H}/A		ed, stiff; 65%			
				22		1	\mathbb{H}/A	Saturate	zu, 3till, 00 zo	· .	y, 1070 iii c	Serio.
			<u> </u>	-								
				23								,
							111/2/					
				24			14:7/2	SAND	vith CLAY (S	W-SC) - darl	cyellowish b	rown (10YR
	7			1		1	1: //		turated, medi			
42.8	10	S&H	C-1-	25			1 ://	WANTED AND THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED I	gravel.			
	19		25.5	1			1://		<u> </u>		·	
				26	_		//					
				1			1://					
				27			·: <i>'/</i> /					
							1 : //					
				28			//					
				<u> </u>]	<i>ii</i> //					
	_			29	_	ļ						
	4	0011				ļ			CLAY (CL) -			
19.0	7	S&H	C-1-	30		<u> </u>	$V//\lambda$		ery stiff, med	lium plasticit	y; 70% clay	; 25% sand;
	12		30.5	۱	.	į	Y///	5% silt.				
				31	<u> </u>					-,		
		:		20								
				32			V//2					
-				33	-	1	$V//\lambda$				•	
	7			33		1	$Y//\lambda$	COLOD	CHANGE to	etrona brow	ın /7 5VD 4	6) hard:
	16	SPT		34		1	Y///		ng sand to 30			oj, naru,
	29	<u> </u>		"	-	1		111010431	ng cara to be	-, - at 00,0 K		
				35		1						
				1				Bottom	of sample at	34.5 feet.		
				36					of boring at 3			
				1		1		11/14/90				
				37						•		
				1		1						
				38		1						
]								
				39								
Remarks												
F 100 100 100 100 100 100 100 100 100 10	1000						Lon of F	1 1 1				BORING NO

GSI


GeoStrategies Inc.

Log of Boring

BORING NO

C-1

JOB NUMBER REVIEWED BY RG/CEG DATE REVISED DATE REVISED DATE 7277 DYR 11/90

7277

REVIEWED BY RG/CEG DHP

DATE 11/90 REVISED DATE

Field loca	ation of b	oring:						Project No.:		Date:	11/14/90	Boring No:
								Client:	Chevron Ser		No. 3864	C-2
		(S	ee Plate	2)				Location:	5101 Telegra			
								City:	Oakland, Ca			Sheet 1
									RCM	Driller:	Bayland	of 2
								Casing install				
Drilling n		Hollow S		ger							ruction Deta	il)
Hole dia	neter:	8-Inches	3					Top of Box El			Datum: MSI	
	(3)						Soil Group Symbol (USCS)	Water Level	15.5'	15.4'		
PiO (ppm)	Blows/ft. or Pressure (psi)	Type of Sample	Sample Number	Depth (ft.)	Sample	Well		Time	14:45	8:45		
무효	Blov	₹.	San	\tilde{\tilde	S.	≯გ	jg	Date	11/14/90	11/15/90		
	Pn						3.			Description		
									,			
				0								
								PAVEM	ENT SECTIO	N - 1.0 feet.		
				1								
							ΠZ					
				2							k gray (10YF	
								medium	stiff, medium	n plasticity; 6	60% silt; 40%	clay.
				3			11177					
							111/2					
				4		}						
	200							Increasi	ng sand to 1	0%; gravel t	o 5%; organi	c matter at
0	200	S&H	C-2-	5			111//	5.5 feet.				
	250	push	5.5	1								
				6								
				7								
								·				
				8								
								~				
	-			9			1///					
	3			1	•			CLAYE	Y SAND (SC)) - dark yello	wish brown (10YR 4/4),
0	4	S&H	C-2-	10			1///	moist, m	edium dense	e; 70% sand	; 20% clay; 1	0% gravel
	7		10.5	1			1///				4); increasing	
				11			17/1	at 10.5 f				
				1								
				12			1///					
				1			1///					
				13			1/1/					
				1			13.5%					
				14				GRAVE	L with CLAY	and SAND (GW-GC) - gr	eenish grav
	6			1			1.6/0				se; 65% grav	
914	8	S&H	C-2-	15			j		0% clay; stro			
	11		15.5	1		⊽▼	10/0/0	· · · · · · · · · · · · · · · · · · ·				
		-		16		Ž Ž						
-		<u> </u>	_	1			1.1/2					
				17			(()			·		
				1			1.00/9					
		 		18			1:1/					
				1 -			1 /2					
				19			S				·	
Remarks:				<u> </u>			<u> </u>	<u>. </u>		0		
	3039						Log of F	Paring		· · · · · · · · · · · · · · · · · · ·		BORING NO

GeoStrategies Inc.

JOB NUMBER 7277

REVIEWED BY RG/CEG

DATE 11/90

REVISED DATE

Field loca	ation of b	oring:						Project No.:			11/14/90	Boring No:
				- 1				Client:	Chevron Ser		No. 3864	C-2
		(S	ee Plate	2)				Location:	5101 Telegra			
								City:	Oakland, Ca			Sheet 2
										Driller:	Bayland	of 2
50 het	41 . 1							Casing install	ation data:		-	
Drilling n		Hollow S		ger				Ť. 45			[[]	
Hole diar	neter:	8-Inches	\$,	, <u></u>		T	Top of Box E	ievauon:		Datum:	
	Blows/ft. of Pressure (psł)	m	m =	2	_		Soil Group Symbol (USCS)	Water Level				
PIO (ppm)	ws/f	Type of Sample	Sample Number	Depth (ft.)	Sample	Well	85	Time				
- 5	명 88년	ිරී≏	8 ₹	ð	8	-0	S E	Date				
							ගි	- CDAVE	T Sh OAND	Description	(5)/ 4/4) - 55	
	6	0011		-					L with SAND			
86.5	14 17	S&H	C-2-	20				aense;	60% gravel; 3	35% Sanu; 5	% SIIT; FE-OXI	de staining.
	17		20.5	21								
				2								
				22								
-												
-				23								
					\vdash							
-				24								
	0			-	\neg		ار نول و					
	0	S&H		25	//			Very loc	se at 25.5 fe	et.		
	1			1	H							
				26								
				1			11/					
				27			1://					
				1 .			//				•	
				28								
				29					vith CLAY and			
	14		C-2-]					10YR 4/4), sa		dium dense;	55% sand;
5.0	11	S&H	30.0	30			:://		avel; 10% clay			
	12_]			ZZZ	SANDY	CLAY (CL) -	brownish ye	llow (10YR 6	6/6), damp,
				31				very sti	ff, medium pla	asticity; 65%	clay; 35% s	and.
]								
				32								

				33					of sample at			
				٠,					of boring at 3	5U.5 100t.		
				34				11/14/9	U			
				25								
			l	35								
				36								
		1		30								
				37								
				3′								
				38	$\vdash \vdash \vdash \mid$					•	· · · · · · · · · · · · · · · · · · ·	
				1 ~ .	$\vdash \vdash \vdash$					<u> </u>		
				39								
Remarks		<u> </u>					1					
			· · · · · · · · · · · · · · · · · · ·									

GSI

GeoStrategies Inc.

Log of Boring

BORING NO.

C-2

JOB NUMBER REVISED BY RICCEG DATE REVISED DATE REVISED DATE
7277 PHP 11/90

À	<u> </u>		A	Total Depth of Boring	30.5 ft
			H B	Diameter of Boring Drilling Method Hollow Stem Au	8 ir uger
			С	Top of Box Elevation 1 X Referenced to Mean Sea Level Referenced to Project Datum	<u>116.16</u> ft
			D	Casing Length Schedule 40 PV	30ft
			E	Casing Diameter	<u>2</u> ir
			F	Depth to Top Perforations	<u>10</u> ft
			G	Perforated Length Perforated Interval from 10 to Perforation Type Factory Slotte	ed
	D		Н Н	Perforation Size 0.020 Surface Seal from 0 to Seal Material Concrete	
A			1	Backfill from 1.5 to Backfill Material Concrete	<u>6</u> ft
			J	Seal from 6 to Seal Material Bentonite Pellet	8 ft s
	G		к к	Gravel Pack from 8 to Pack Material Lonestar #2/12 Sa	30 ft
			L	Bottom Seal Seal Material Bentonite Pellet	<u>0.5</u> ft
			М	Vault box with locking cap, lock and	cover.
-	\		_		
			L ∀		
		B	No	te: Depths measured from initial ground	surface.

JOB NUMBER 7277

REVIEWED BY RG/CEG

DATE 11/90 REVISED DATE

Field loc	ation of t	poring:							7277	Date:	11/15/90	Boring No:
								Client: Chevron Service Station No. 3864				C-3
		(9	ee Plate	2)				Location:	5101 Telegra			L
								City:	Oakland, Ca			Sheet 1
										Driller:	Bayland	of 2
D-102		11-11-	3					Casing install				
Drilling r		Hollow		ger							truction Detai	
Hole dia	1	8-Inches	S T					Top of Box E			Datum: MSI	-
	Blows/ft. of Pressure (psi)	o		2			Soil Graup Symbol (USCS)	Water Level	15.5'	17.1'		
Old (mode)	or //	Type of Sample	Semple	Depth (ft.)	Sample	Well	8.5	Time	10:05	15:30		
_ 5	E SE	F~00	ගී දු	P.	ශී		ŠĘ	Date	11/15/90	11/15/90	<u> </u>	
		i				<u> </u>	<u> </u>			Description		
				٦,	 	1						
	 	ļ		0		-		DAVEN	ENT SECTIO	N 4 O foot		
			ļ	1		-		PAVEIV	IEMI SECTIO	14 - 1.0 leet.		
				┤ '		ł		CLAVE	Y SILT (ML/C	I) yong da	d brown (10)	(D 2/2)
	-			2		1		damo r	nedium plasti	city 60% eil	t: 35% clav:	n 2/2),
	 	<u> </u>		\		1		sand.	neulum piastii	Jiny, 00 /0 SII	it, 35 /6 Clay,	270 III C
 		<u> </u>		3		1	$\parallel \parallel \prime /$	Saliu.				
1	<u> </u>			1		1	111//					
				4								
0	500	S&H	C-3-	'		-	11177	Madius	stiff, damp; o	raania mat	tor at 4 E foot	 ,
⊢—്	300	push	4.5	5		1	111//	Median	i suii, dairip, c	nganic mad	iei al 4.5 leei	••
		pusii	4.5	3								
<u> </u>				6	<u> </u>	-	111//					
· · • · · · · · · · · · · · · · · · · ·				٠,		1						
				7		-					W	
				∤ ′		1						
		 		8	\vdash	1						
				٦ ا	\vdash	{						
				9	-	-	111/2					
	7			ັ		1	ШZ	SAND	vith SILT (SW	-SM) - dark	vellowish bro	wn (10VR
0	15	S&H	C-3-	10		1	[::1]		mp, dense; 85			
	17		10.5	┧					matter; Fe-ox			io gravor,
			7010	11			:	organio	matter, r o oz	ado blaning	"	•.
	, ,			' '					***			
				12								
		 		† · -		1				, _ , _ , _ , _ , _ , _ , _ , _ , _ , _		
				13								
				-			1//					
		 		14			1///					
	7	<u> </u>		1			1//	CLAYE	Y SAND with	GRAVEL (S	C) - dark gree	enish orav
890	14	S&H	C-3-	15			1//		1), saturated,			
 	16	1	15.5	-		77	1///	fine gra				j, 10/V
	8			16		立	1///	,,,,o g, a		······		
995	13	SPT		•			1///					
	16			17		_	1//			·····		
-				1		Ā	1///					
				18		-	1/1					——————————————————————————————————————
	_						177.			······································		
:				19			1:1:1:1:1:				···	
Remarks:							<u> </u>				······································	
		· · · · · · · · · · · · · · · · · · ·					Boring				BORING NO.	

JOB NUMBER 7277

GeoStrategies Inc.

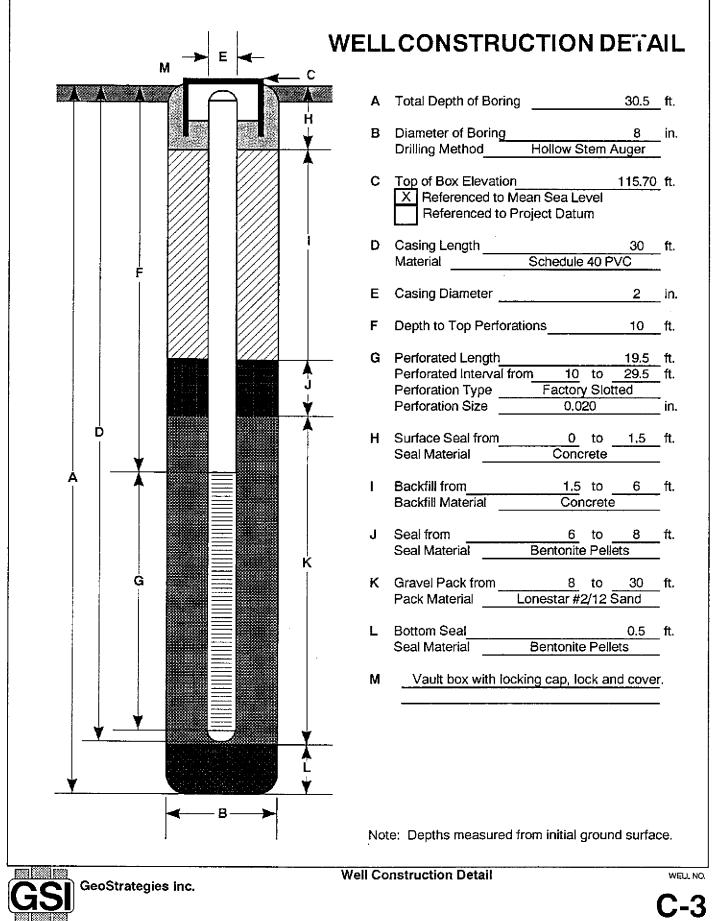
REVIEWED BY RG/CEG

DATE 11/90

REVISED DATE

Field loca	ation of b	oring:						Project No.:		Date:	11/15/90	Boring No:
]								Client:	Chevron Ser		No. 3864	- с-з Г
		(S	ee Plate	2)				Location:	5101 Telegra			L
								City:	Oakland, Ca			Sheet 2
								Logged by:	RCM	Driller:	Bayland	of 2
						·····		Casing install	ation data:			
Drilling r		Hollow S		ger							Ta .	70.00
Hole dia		8-Inches			,		T	Top of Box E	levation:		Datum:	
	Blows/ft, or Pressure (ps/)			3	_		Soil Group Symbol (USCS)	Water Level				
Old (ppm)	or (ft	Type of Sample	Sample Number	Depth (ft.)	Sample	Well Oetail	9 - 9 -	Time				
- 5	OBS B	E as	S S	8	ď	> 6	Soil	Date				<u></u>
				1	!	_	8			Description	/	
222	2			-					SAND (SM) - Y			
32.8	5	S&H	C-3-	20			1.1.1.1.		ed, medium de			іт; 5% тіпе
	10		20.5	0.1	, .		10/0/0/		gray green			llouvinh
				21			111		Y GRAVEL w			
				22			19/9/9/		10YR 3/4), sa		olum dense,	. 55% graver;
				-			111	25% Sa	nd; 20% clay.			
				23			999	···				
<u> </u>	-,			23				·		·		
			^_	24			1/9/					
	8			Z#			1./././					
24.1	15	S&H	C-3-	25			777					
24.1	18	SOLL	25.5	25			1././	Dongo	at 25.5 feet.			
	10		23.3	26				Delise	at 25.5 leet.			
				20			10/0/1					
				27			1//					
				21			1///					
			,	28	\vdash		1///	CLAYE	Y SAND (SC)	- brownish	reliow (10YF	3 6/6)
			_	-			1///		lense; 70% s			1 0,0,,
				29			1//	Gump, c		,,	- <u>,</u>	
	8			1				SANDY	CLAY (CL) -	brownish ve	llow (10YR	6/6), damp.
9.0	15	S&H	C-3-	30			ZZZ		5% clay; 30%			<u> </u>
	18		30.5	1				, , , , , , , , , , , , , , , , , , ,	<u>, </u>			
				31								
				1								
				32				Bottom	of sample at	30.5 feet.		
									of boring at 3			
				33				11/15/9				
				1				· · · · · · · · · · · · · · · · · · ·	- 11 - 11 - 11 - 11			
				34			1					
				1			•					
				35							· · · · · · · · · · · · · · · · · · ·	
				36								
				37						***************************************		
				38								
				39								
Remarks	:											
									1-1			

GSI


GeoStrategies Inc.

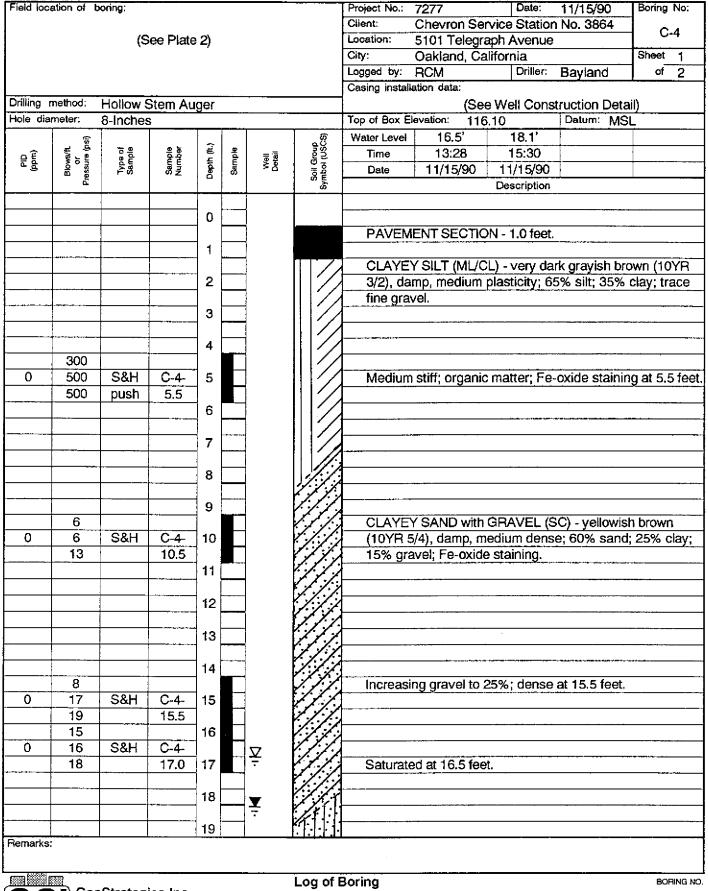
Log of Boring

BORING NO.

C-3

JOB NUMBER REVIEWED BY ROJCEG DATE REVISED DATE
7277 THE THE TRANSED DATE REVISED DATE REVISED DATE
11/90

JOB NUMBER 7277


REVIEWED BY RG/CEG

DATE 11/90

REVISED DATE

.____

Ē

GeoStrategies Inc.

JOB NUMBER

DHS

DATE 11/90

REVISED DATE

Field loca	ation of t	oring:						Project No.:		Date:	11/15/90	Boring No:
								Client:	Chevron Se		No. 3864	- C-4
		(S	ee Plate	2)				Location:	5101 Telegra			
								City:	Oakland, Ca			Sheet 2
								Logged by:	RCM	Driller:	Bayland	of 2
								Casing install	lation data:			
Drilling (method:	Hollow S	Stem Au	iger								
Hole dia	meter:	8-Inches	3					Top of Box E	levation:		Datum:	
	ଜି						T - 93	Water Level				
_ F	Blows/ft. or Pressure (ps)	<u>5</u> €	8 6	Depth (ft.)	eg e	≒ ≅	See	Time				
Ord (mdd)	wols o	Type of Sample	Sampte Number	뒱	Sample	Welf	<u>5</u> = 0	Date				
ĺ	n e	, "		0	"		Soil Group Symbol (USCS)			Description		<u> </u>
	3	1.					रिस्कें र	SILTYS	SAND (SM) -		wn (10YR 9	5/4)
0	7	S&H	C-4-	20					ed, medium d			
- <u>-</u> -	12		20.5						en discolora		<u> </u>	in, ongin
 	,	-	20.0	21				gray gr	SOIT GISCOIGIE			
	 	 		 								
				22			1:1,1-1 };				· .	
ļ				22			1777					
-				00	-		1:1:1:1:					
	-			23						050/ 045	£	
	ļ			1				increas	ing gravel to	25% at 24.5	Teet.	
 -	 		<u> </u>	24			[:[:]:]:				(0)	
	7			_			المرابات المرابات		SW) - pale ye	ellow (2.5Y 7	/6), saturate	ed, dense;
0	18	S&H	C-4-	25				95% sa	nd; 5% silt.			
	29		25.5					r				
				26					L with SILT a			
							1:0:41		10YR 5/4), sa	aturated, der	ise; 70% gra	avel; 20%
	<u></u>			27				sand; 1	0% silt.			-
				28								
				29								
	4							CLAY w	vith SAND (C	L) - light gra	y (5Y 7/1), d	lamp, very
0	13	S&H	C-4-	30				stiff, me	dium to high	plasticity; 70	% clay; 20%	% sand; 10%
	11		30.5					silt.				
			1	31				- v				
				1	\Box						**************************************	
				32								
l	 			- -								
				33								
				-								
				34			Y//2				·	
	7		·	~~			Y///	Increes	ing sand to 30	7% at 25 5 f	net	
0	8	S&H	C-4-	35	-		1///	IIICI GASI	ing sailu io o	0 /0 at 00.0 18		W
	8	Sort	35.5	33			1///					
	0		33,5	36				Dattac	of complete	25 5 foot		
				100					of sample at			
]		of boring at 3	.1991 C.CC		
	 			37	<u> </u>			11/15/9	J			
				_								
				38								
									·			
D	<u> </u>			39]		<u></u>		·	
Remarks	:								•			
											4	
FIG. 8000	3330°	•					Log of I	Boring				BORING NO.

GeoStrategies Inc.

DATE 11/90 JOB NUMBER REVIEWED BY RG/CEG REVISED DATE REVISED DATE 7277 DHP

JOB NUMBE 7277 PEMEWED BY RGACEG

DATE

REVISED DATE

REVISED DATE

11/90

WELL LOG KEY TO ABBREVIATIONS

Drilling Method

Gravel Pack

HSA - Hollow stem auger

CA - Coarse aquarium sand

CFA - Continous flight auger Air - Reverse air circulation

Sampling Method

Cal. Mod. - California modified split-spoon sampler (2" inner diameter) driven 18" by a

140-pound hammer having a 30" drop. Where penetration resistance is

designated "P", sampler was instead pushed by drill rig. Disturbed - Sample taken from drill-return materials as they surfaced.

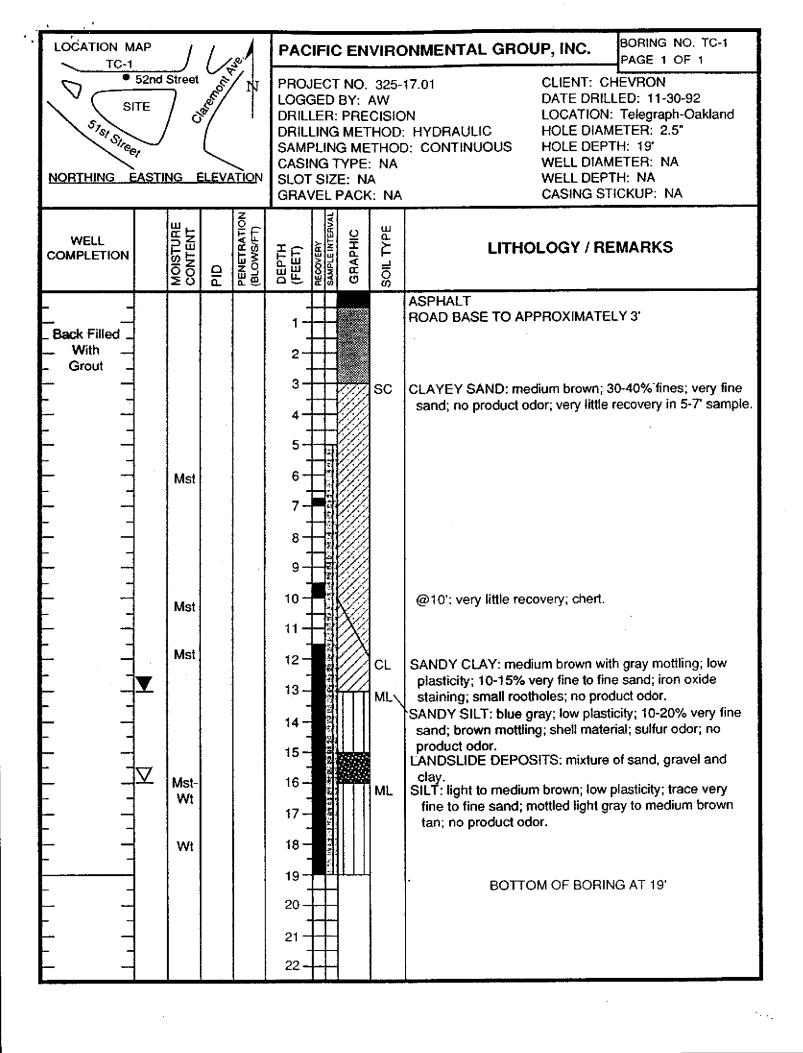
Shelby - Shelby Tube thin-walled sampler (3" diameter), where sampler is pushed by drill-rig.

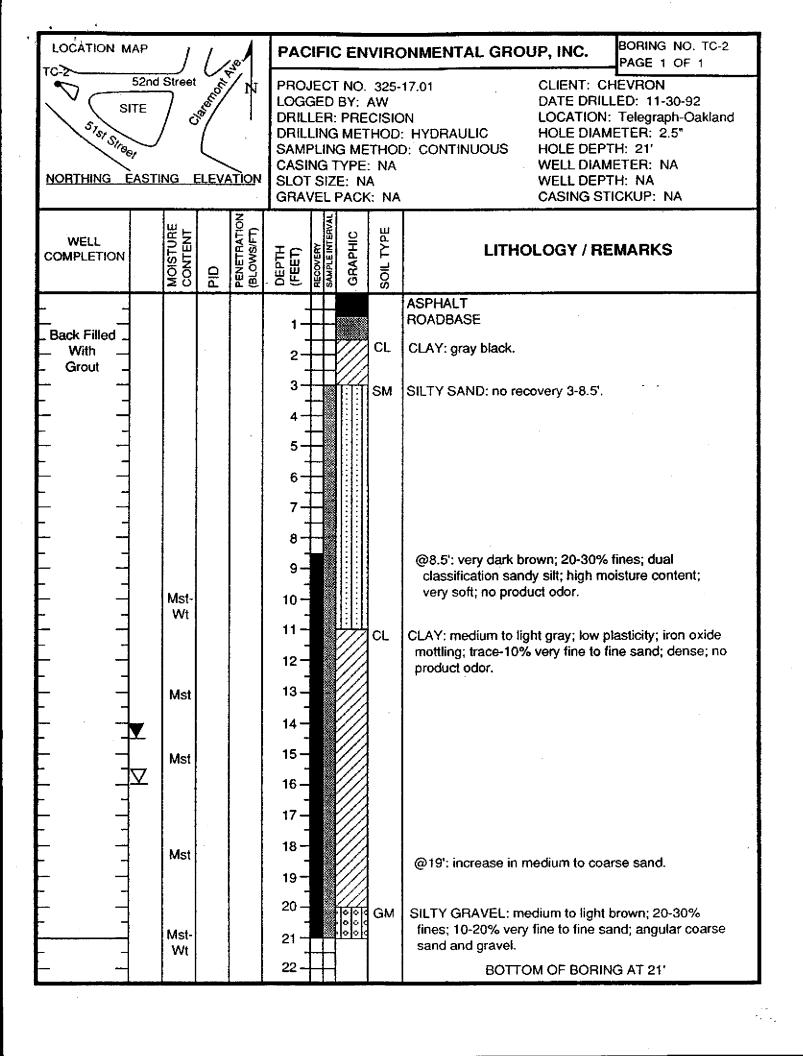
Moisture Content	Sorting	<u>Plasticity</u>	<u>H-NU (ppm)</u>
Dry - Dry	PS - Poorty sorted	L - Low	ND - No detection
Dp - Damp	MS - Moderately sorted	M - Modera	ate
Mst - Molst	WS - Well sorted	H - High	
Wt -Wet			<i>5</i>
Sat - Saturated:			Sample Preserved for Laboratory Testing
<u>Symbols</u>	·	9	
	sampled	sample recovery	
- Static ground water	er level		
Density (Blows/Foot -	Cal Mod Sampler)		
Sands and gravels		Silts and Clays	
0 - 5 - Very Lo	ose	0-2 -\	Very Soft
5-13 -Loose		2-4 -8	Soft
13 - 38 - Mediun	n dense	4-9 -F	im
38 - 63 - Dense		9-17 - S	Stiff
over 63 - Very de	ense	17 - 37 - \	/ery Stiff
		37 - 72 - H	ard .
		over 72 - V	ery Hard

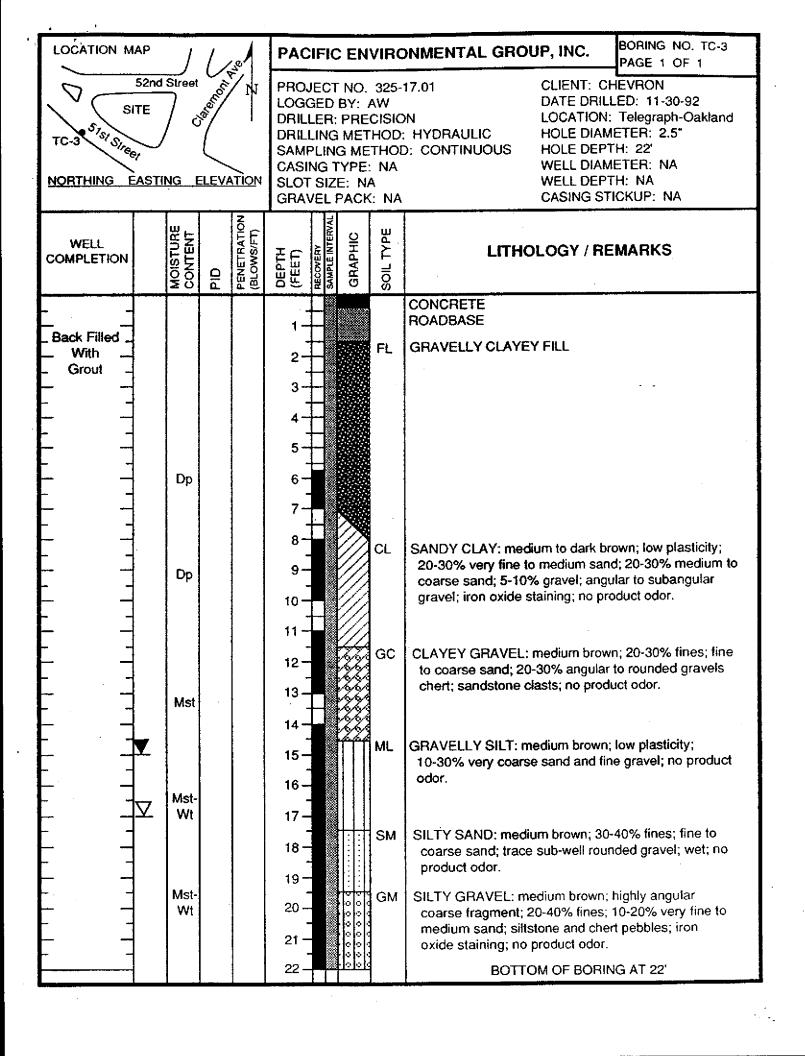
GRAIN - SIZE SCALE

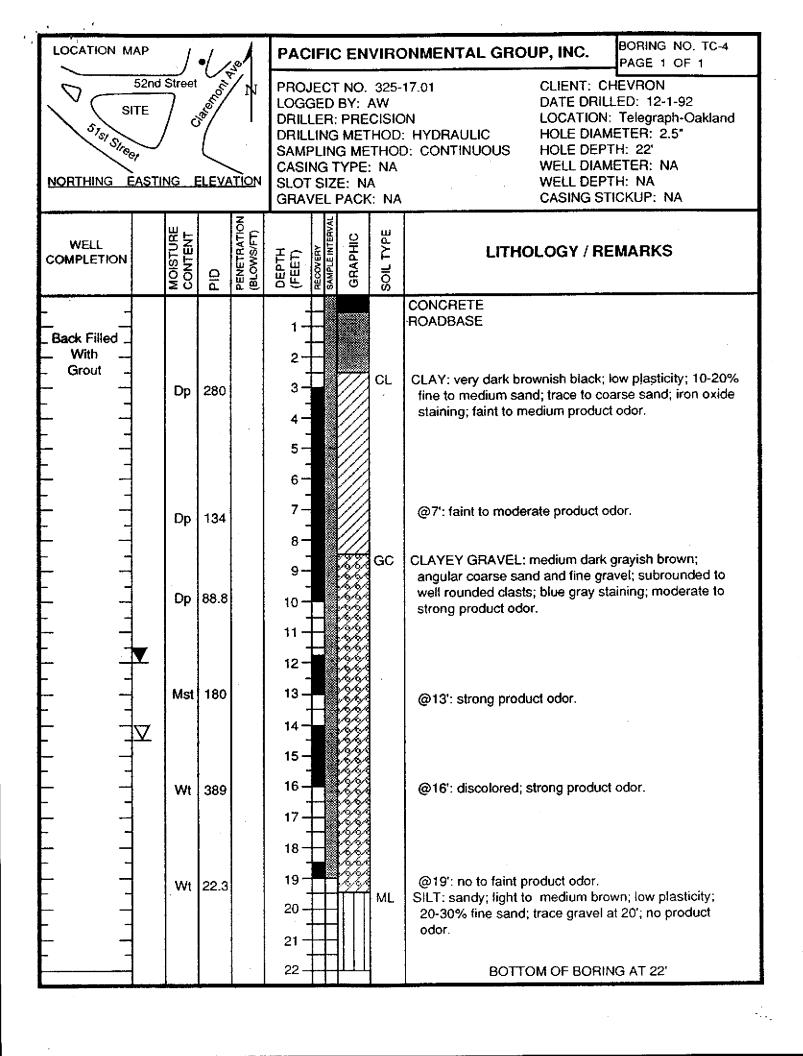
GRADE LIMITS

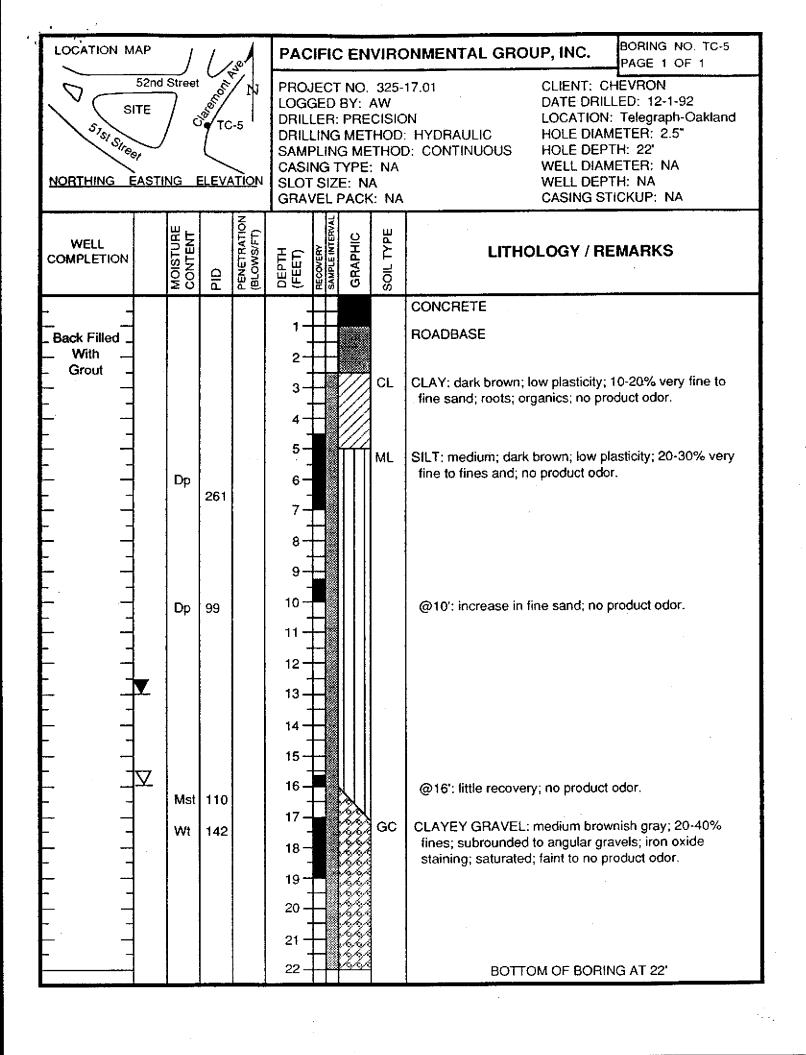
U.S. Standard

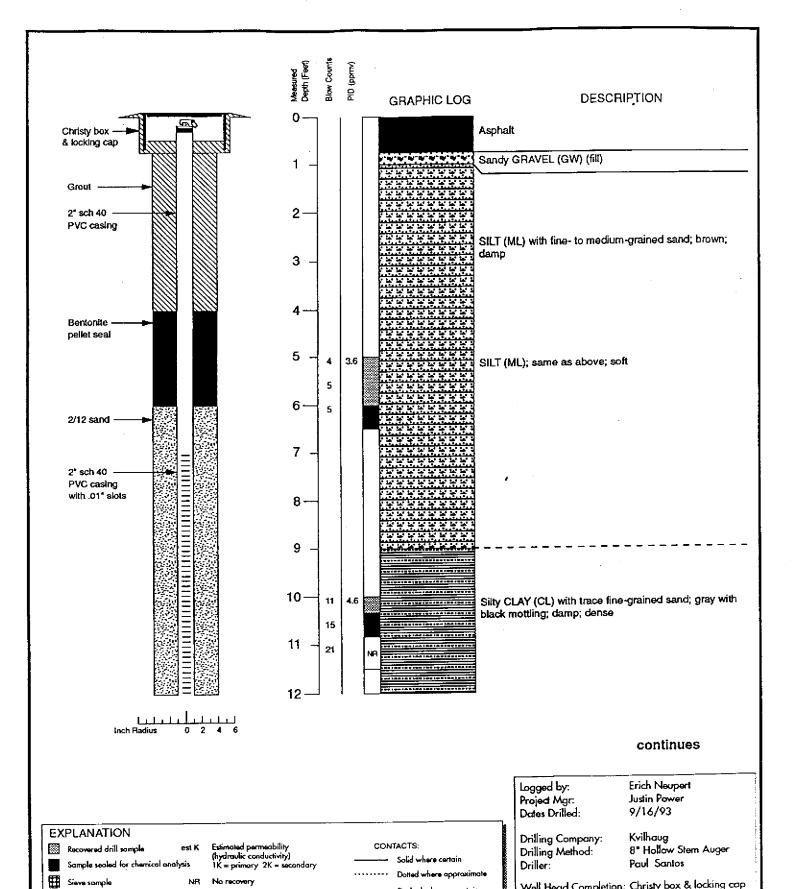

GRADE NAME


inch sleve size			
 12.0 		Boulders	
3.0 3.0 in		Cobbles	
0.19 No. 4		Gravels	
0.08	coarse		
No. 40	medium	Sand	
110. 200		Silt	
		Clay Size	


→ (
Primary	Divisions	Sy		oup /Gra _l	ohic Typical Names
COARSE GRAINED	GRAVELS	CLEAN GRAVELS	GW	000	Well graded gravels, gravel-sand mixtures; little or no fines
SOILS more than half is larger	coarse fraction larger than	(less than 5% fines)	GP	000	Poorly graded gravels or gravel-sand mixtures; little or no fines
than #200 sieve	#4 sieve	GRAVEL	GM	000	Silty gravels, gravel-sand-silt mixtures
·		WITH FINES	GC		Clayey gravels, gravel-sand-clay mixtures
	SANDS half of	CLEAN SANDS	sw		Well graded sands, gravelly sands, little or no fines
	coarse fraction smaller	(less than 5% fines)	SP		Poorly graded sands or gravelly sands; little or no fines
	than #4 sieve	SANDS WITH	SM		Silty sands, sand-silt mixtures
		FINES	sc		Clayey sands, sand-clay mixtures, plastic fines
FINE GRAINED	SILTS AN	ID CLAYS	ML		Inorganic silts and very fine sand, rock flour, silty or clayey fine sands or clayey silts, with slight plasticity
SOILS more than		l limit an 50%	CL		Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays
half is smaller than			OL		Organic silts and organic silty clays of low plasticity
#200 sieve	SILTS AN	ID CLAYS	мн		Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts
	•	d limit nan 50%	СН		Inorganic clays of high plasticity, fat clays
			он		Organic clays of medium to high plasticity, organic silts
HIGHL	Y ORGANIC	SOILS	Pt		Peat and other highly organic soils




Unified Soil Classification System



PROJECT NO. 17075.01

Water level during drilling

Water level in completed well

10/93

Sieve sample

Grab sample

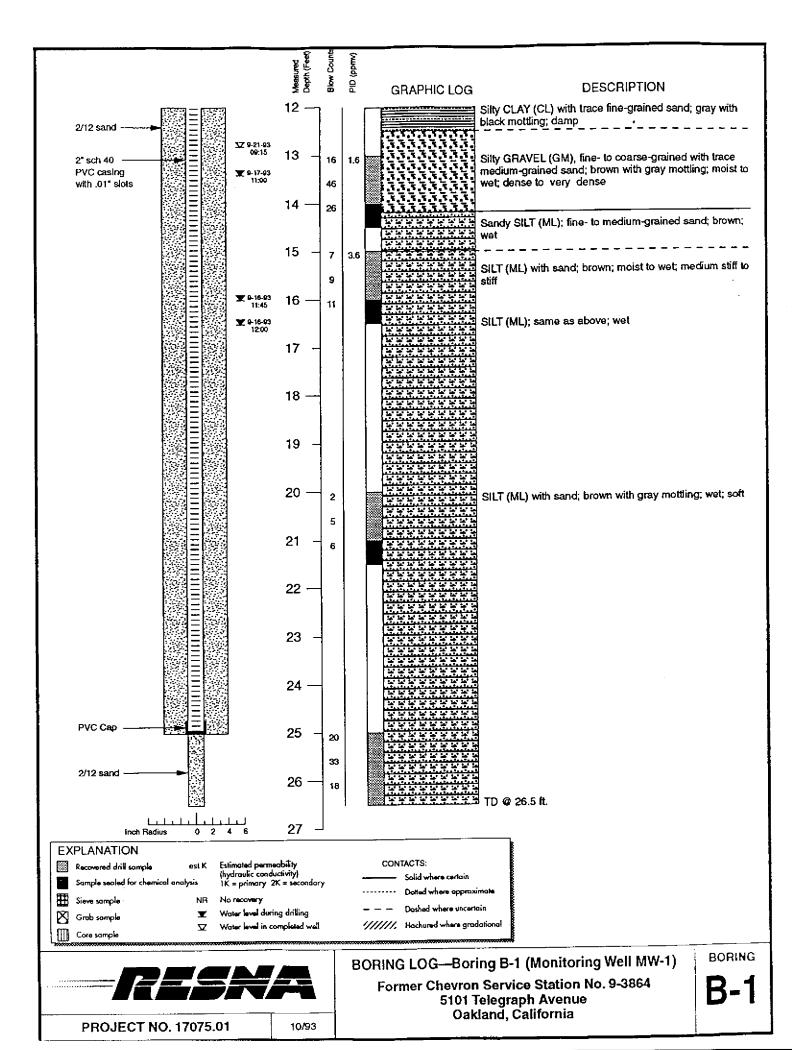
Core sample

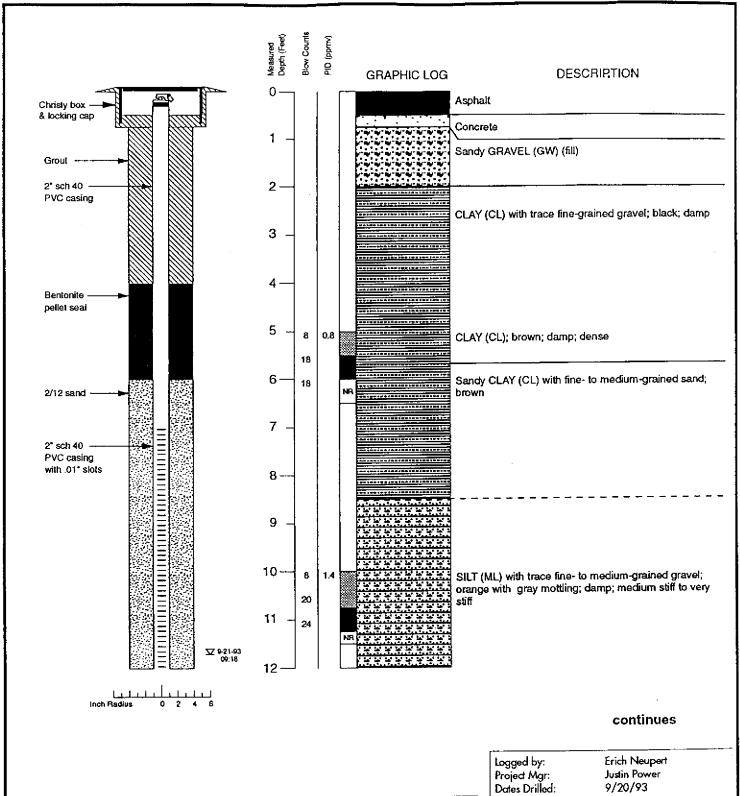
BORING LOG—Boring B-1 (Monitoring Well MW-1)

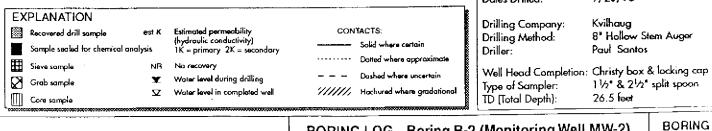
////// Hachured where gradational

Type of Sampler:

TD (Total Depth):

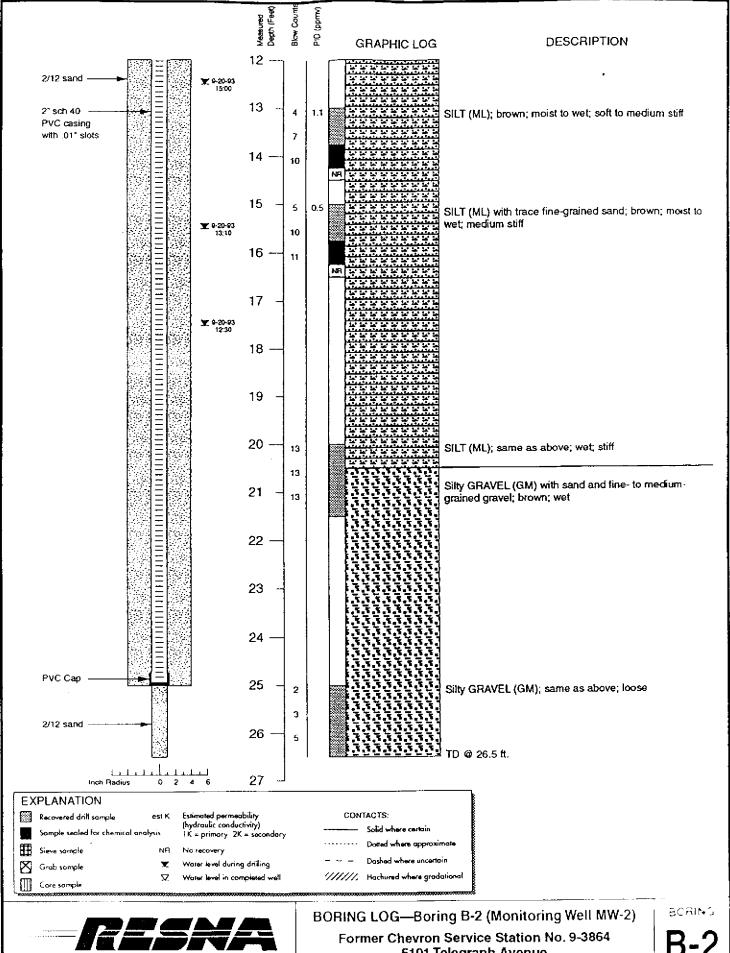

Former Chevron Service Station No. 9-3864 5101 Telegraph Avenue Oakland, California


BORING


11/2" & 21/2" split spoon

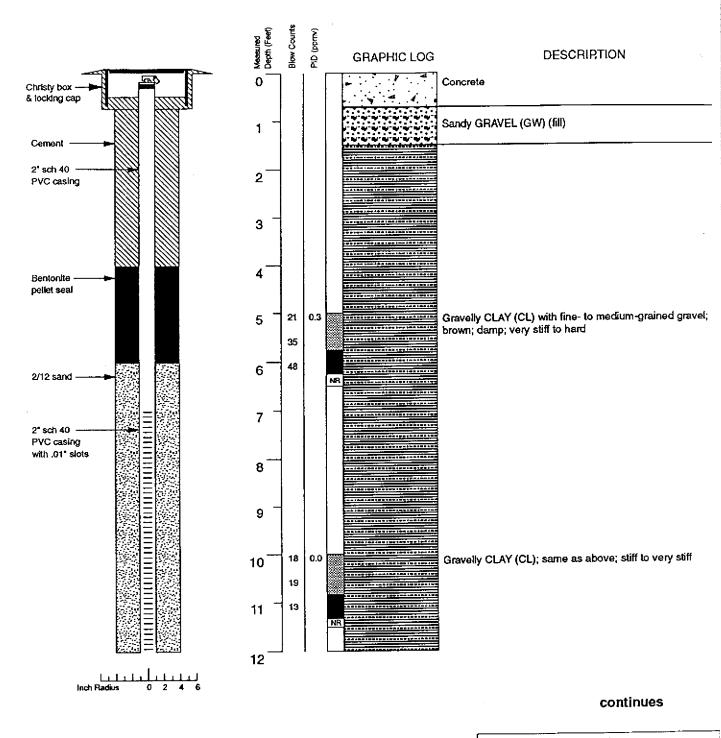
Well Head Completion: Christy box & locking cap

26.5 feet



BORING LOG—Boring B-2 (Monitoring Well MW-2)

Former Chevron Service Station No. 9-3864 5101 Telegraph Avenue Oakland, California R₋2



PROJECT NO. 17075.01

10/93

5101 Telegraph Avenue Oakland, California

EXPLANATION

Recovered drill sample

Sample sealed for chemical analysis Sieve sample

Grab sample Core sample

Estimated permeability
(hydraulic conductivity)
1 K = primary 2K = secondary No гесочегу

Water level during drilling Water level in completed well

CONTACTS:

Solid where certain Datted where approximate

Dashed where uncertain ////// Hachured where gradational

Logged by:

Erich Neupert Project Mgr: Justin Power 9/16/93 Dates Drilled:

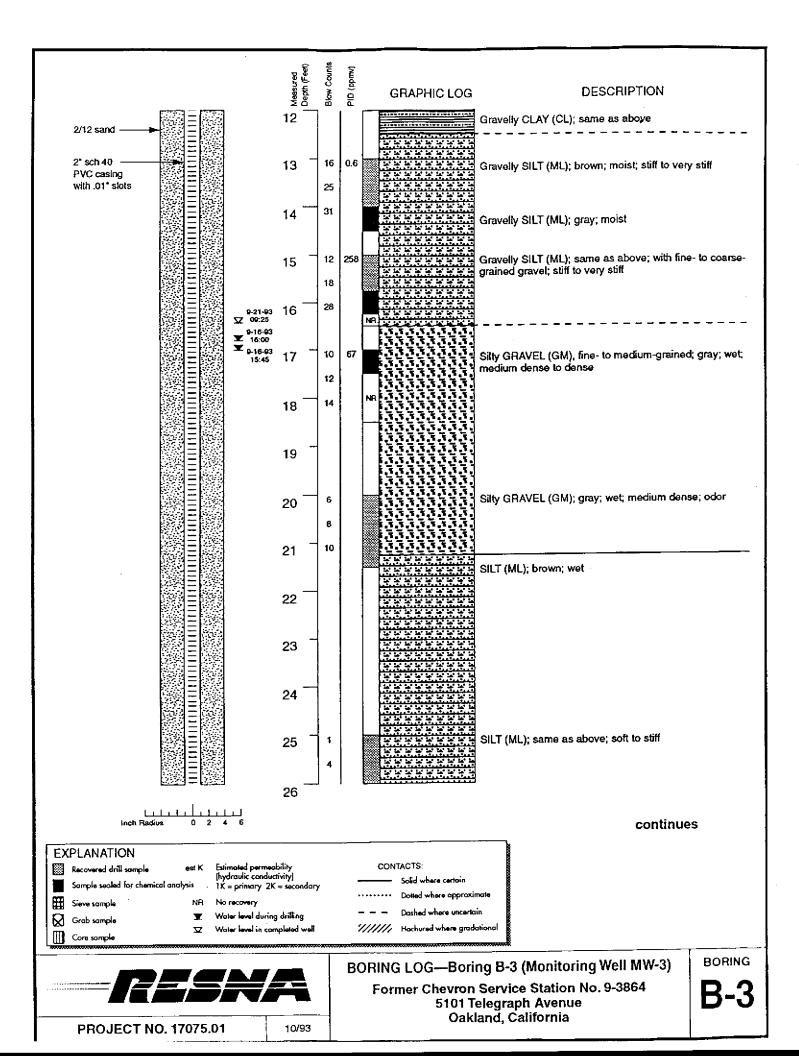
Drilling Company: Drilling Method:

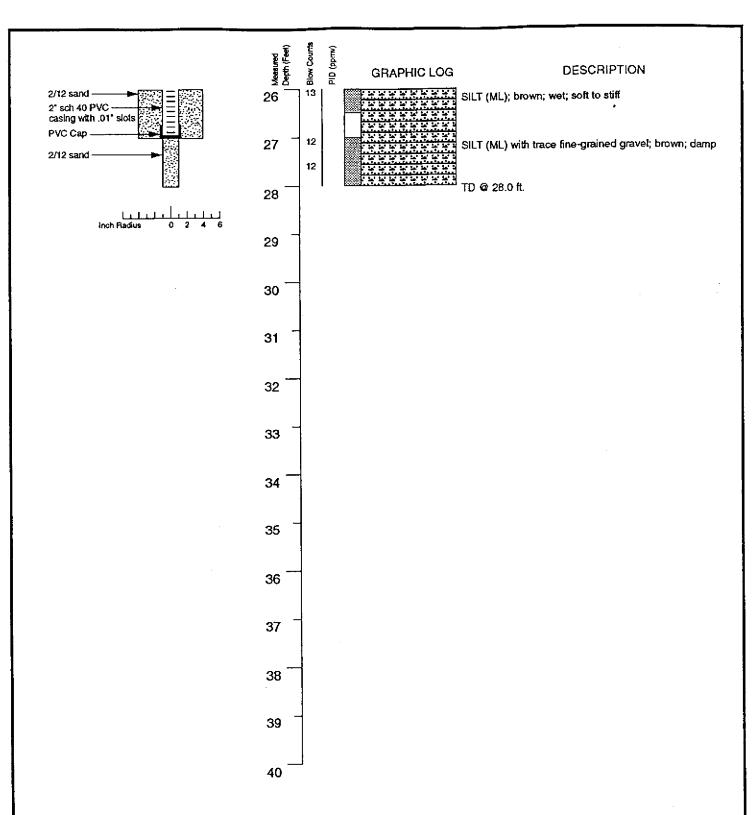
Kvilhaug 8" Hollow Stem Auger

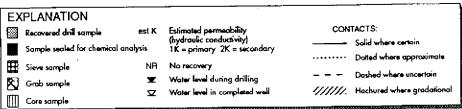
Paul Santos Driller:

Well Head Completion: Christy box & locking cap Type of Sampler: 21/2" split spoon

TD (Total Depth):

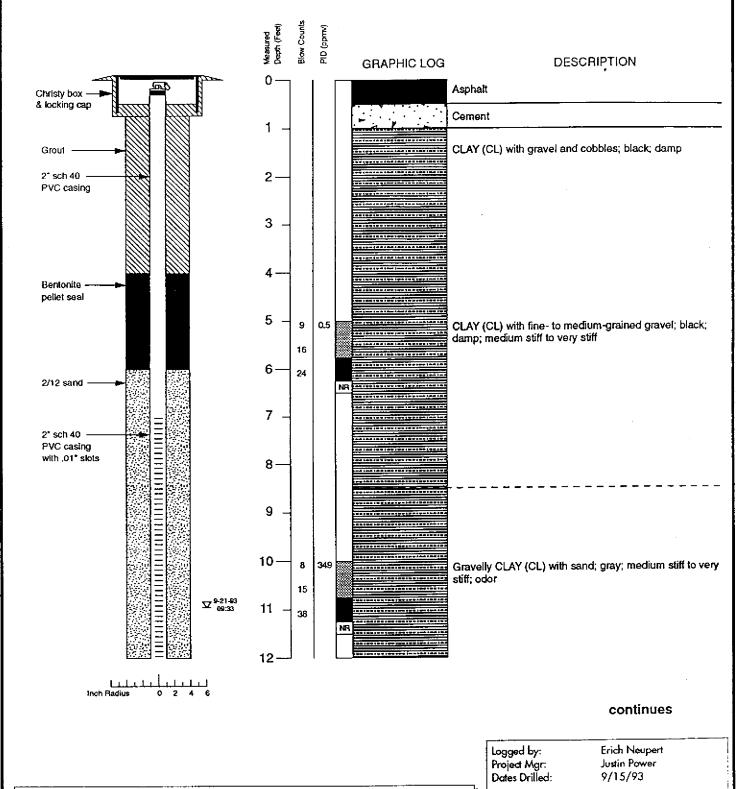

28.0 feet




BORING LOG-Boring B-3 (Monitoring Well MW-3)

Former Chevron Service Station No. 9-3864 5101 Telegraph Avenue Oakland, California

BORING



BORING LOG—Boring B-3 (Monitoring Well MW-3)

Former Chevron Service Station No. 9-3864 5101 Telegraph Avenue Oakland, California **R**-3

BORING

EXPLANATION

Recovered drill sample

Sample sealed for chemical analysis

Sieve sample

Grab sample

Core sample

Estimated permeability (hydraulic conductivity) 1K = primary 2K = secondary

Water level during drilling

Water level in completed well

CONTACTS:

Solid where certain

Dotted where approximate

Drilling Company:

Kvilhaug

Drilling Method:

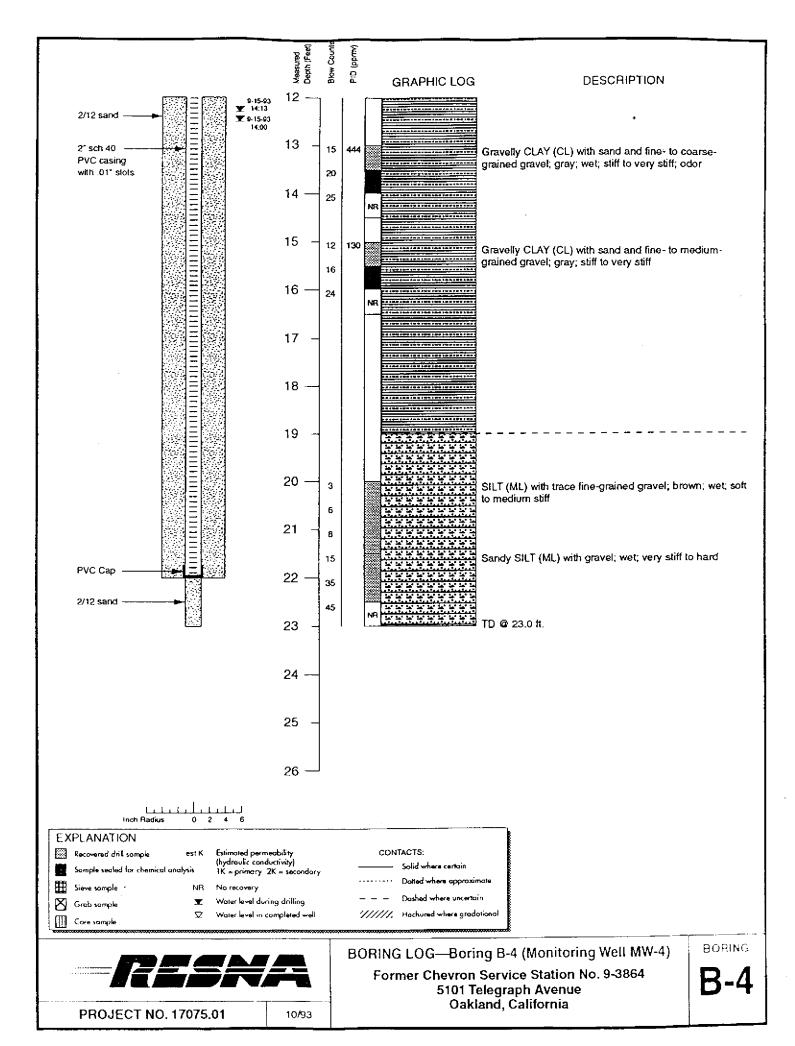
8" Hollow Stem Auger

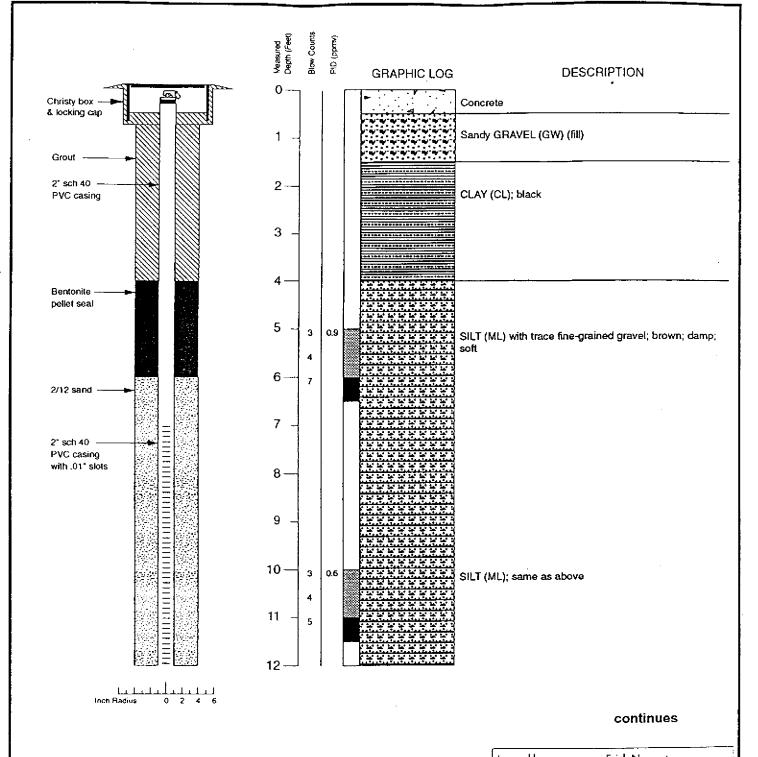
Driller: Paul Santos

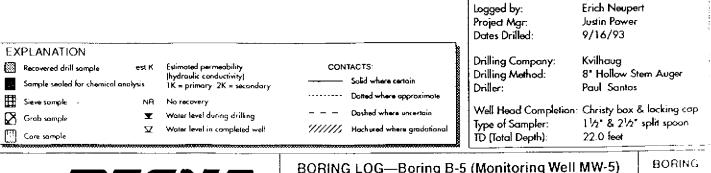
Well Head Completion: Christy box & locking cap 11/2" & 21/2" split spoon

Type of Sampler: TD (Total Depth):

23.0 feet

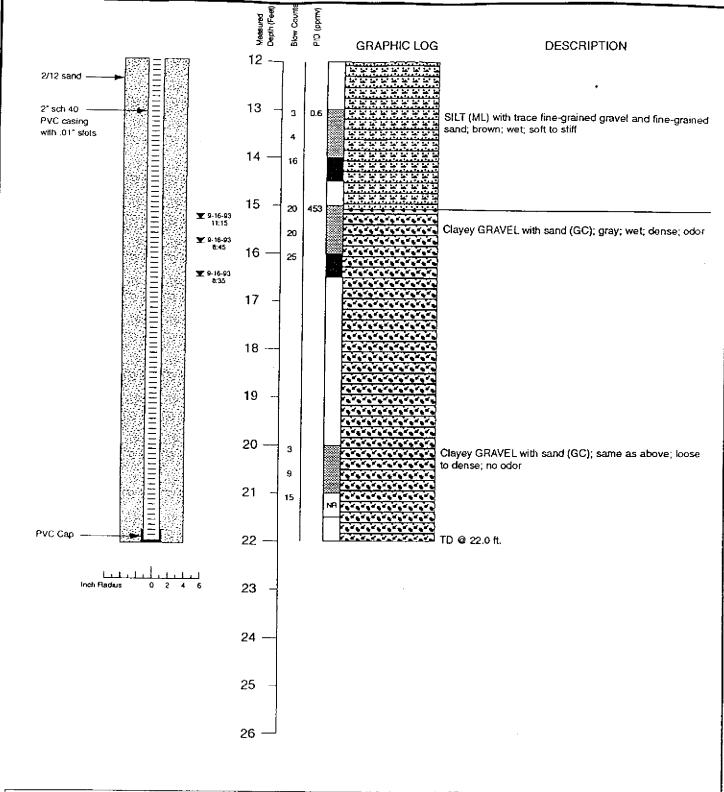

PROJECT NO. 17075.01

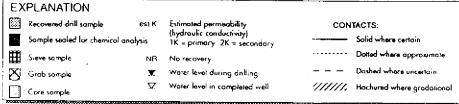

10/93


BORING LOG—Boring B-4 (Monitoring Well MW-4)

Former Chevron Service Station No. 9-3864 5101 Telegraph Avenue Oakland, California

BORING



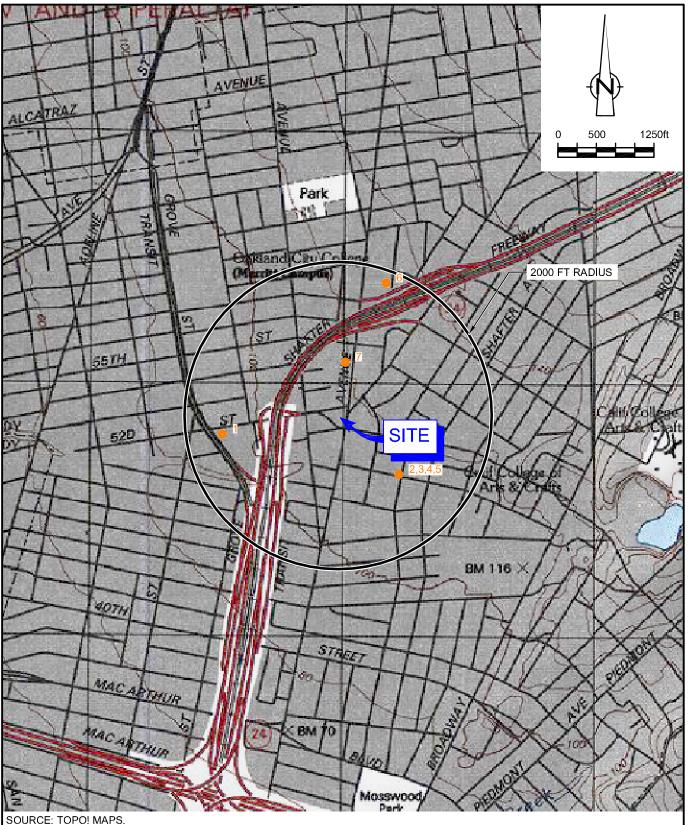


BORING LOG—Boring B-5 (Monitoring Well MW-5)

Former Chevron Service Station No. 9-3864 5101 Telegraph Avenue Oakland, California

BORING LOG—Boring 8-5 (Monitoring Well MW-5)

Former Chevron Service Station No. 9-3864 5101 Telegraph Avenue Oakland, California BORING

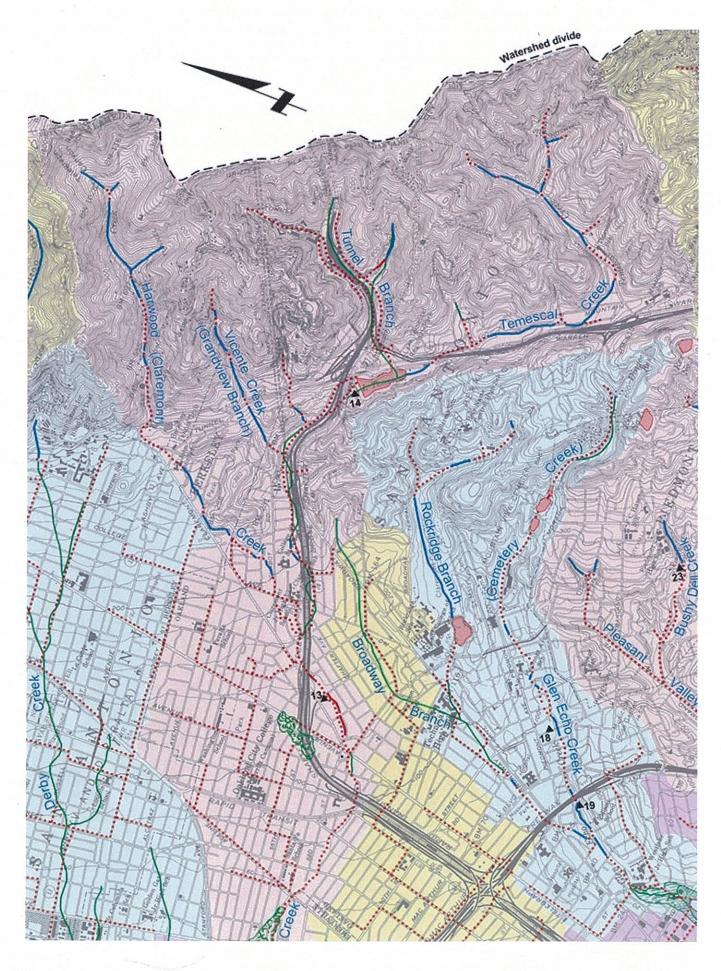

B-5

APPENDIX C

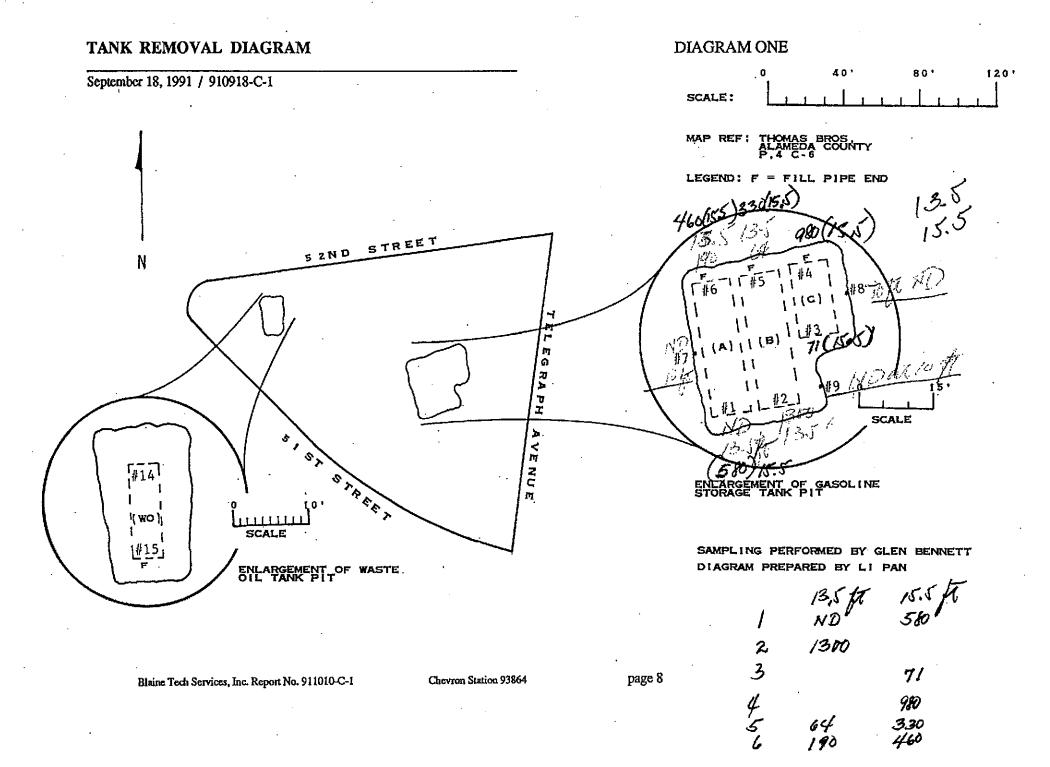
WELL SURVEY INFORMATION AND TEMESCAL CREEK MAP

WELL SURVEY RESULTS FORMER CHEVRON STATION 9-3864 5101 TELEGRAPH AVENUE OAKLAND, CALIFORNIA

Well No./	Well Owner	Well Addres	SS	Total Well	Date	Distance/Direction from	Well Use
Figure ID		Street	City	Depth (ft)	Installed	Site (ft) (approx)	
1	Children's Hospital	747 52nd Street 49th Street and	Oakland	125	1/20/1992	1,500 W	Irrigation
2	Pacific Gas & Electric	Webster 49th Street and 49th Street and	Oakland	120	2/19/1976	1,150 SE	Cathodic Protection
3	EBMUD	Webster 49th Street and	Oakland	13	12/1/1997	1,150 SE	Cathodic Protection
4	EBMUD	Webster	Oakland	53	5/1/1975	1,150 SE	Cathodic Protection
5	EBMUD	Webster	Oakland	53	5/1/1975	1,150 SE	Cathodic Protection
6	Angela Delucchi	5629 Vincente Street	Oakland	75	Unknown	1,900 NE	Domestic
7	Marshall Steel Co.	5427 Telegraph	Oakland	40	Unknown	750 N	Industrial

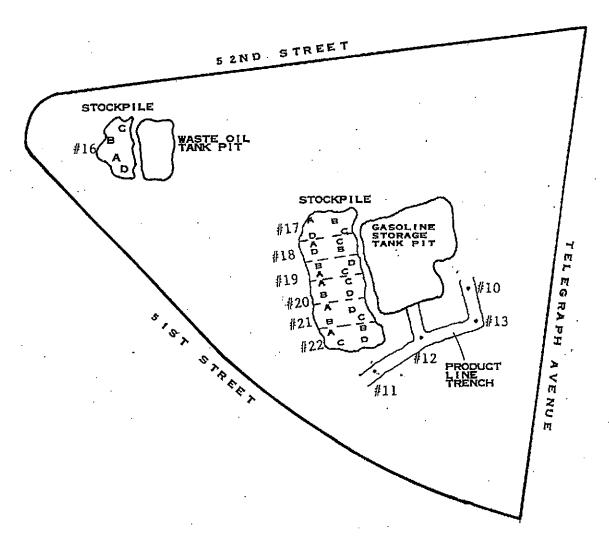


WELL SURVEY MAP FORMER CHEVRON SERVICE STATION 9-3864 5101 TELEGRAPH AVENUE Oakland, California

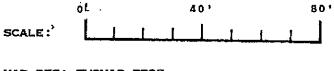


LEGEND

APPROXIMATE WELL LOCATION



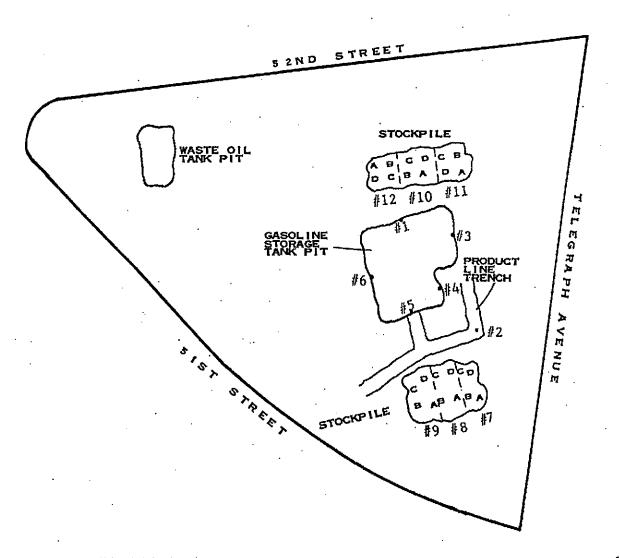
APPENDIX D PREVIOUS SITE PLANS



TANK REMOVAL DIAGRAM

September 18, 1991 / 910918-C-1

DIAGRAM TWO



MAP REF: THOMAS BROS, ALAMEDA COUNTY P.4 C-6

SAMPLING PERFORMED BY GLEN BENNETT DIAGRAM PREPARED BY LI PAN

ADDITIONAL EXCAVATION DIAGRAM

September 26, 1991 / 910926-C-1

SCALE:

MAP REF: THOMAS BROS ALAMEDA COUNTY
P.4 C-6

SAMPLING PERFORMED BY GLEN BENNETT DIAGRAM PREPARED BY LI PAN

Blaine Tech Services, Inc. Report No. 911010-C-1

Chevron Station 93864

APPENDIX E

FIRST SEMI-ANNUAL 2011 GROUNDWATER MONITORING REPORT

TRANSMITTAL

May 4, 2011 G-R #386358

TO:

Mr. James Kiernan

Conestoga-Rovers & Associates 10969 Trade Center Drive, Suite 107

Rancho Cordova, CA 95670

FROM:

Deanna L. Harding

Project Coordinator

Gettler-Ryan Inc.

6747 Sierra Court, Suite J

Dublin, California 94568

Former Chevron Service Station RE:

#9-3864 (MTI)

5101 Telegraph Avenue Oakland, California

RO 0000351

WE HAVE ENCLOSED THE FOLLOWING:

COPIES	DATED	DESCRIPTION
1	April 29, 2011	Groundwater Monitoring and Sampling Report First Semi-Annual Event of March 14, 2011

COMMENTS:

Pursuant to your request, we are providing you with copies of the above referenced report for your use and distribution to the following (including PDF submittal of the entire report to GeoTracker):

Enclosures

WELL CONDITION STATUS SHEET

Client/Facility #: Site Address: City:		egraph A	venue			-	Job# Event Date: Sampler:	386358 3 - 1			
WELL ID	Vault Frame Condition	Gasket/ O-Ring (M)missing	BOLTS (M) Missing (R) Replaced	Bolt Flanges B= Broken S= Stripped R≈Retap	APRON Condition C=Cracked B=Broken G=Gone	Grout Seal (Deficient) inches from TOC	Casing (Condition prevents tight cap seal)	REPLACE LOCK Y/N	REPLACE CAP Y/N	WELL VAULT Manufacture/Size/ # of Bolts	Pictures Taken Yes / No
C-3	0.1	OK	1-5	O.K	0.6	0.K	0.K	2	7	12"EMCO/2	No
MW-1			1-5				0			8" EMCO/2	
$m\omega_{-2}$			1-5							8" E1400/2	
MW-3			3 - 5	,		/			1	8"Boart. C. /3	
MW-5	V	V	0.K	V	V	1	1		V	8" EMCO/2	
Comments	Insta	Hed gar	sket-	Mw-3					 .		
							····				

April 29, 2011 G-R Job #386358

Ms. Stacie H. Frerichs Chevron Environmental Management Company 6111 Bollinger Canyon Road, Room 3596 San Ramon, CA 94583

RE: First Semi-Annual Event of March 14, 2011

Groundwater Monitoring & Sampling Report Former Chevron Service Station #9-3864 5101 Telegraph Avenue Oakland, California

Dear Ms. Frerichs:

This report documents the most recent groundwater monitoring and sampling event performed by Gettler-Ryan Inc. (G-R) at the referenced site. All field work was conducted in accordance with G-R Standard Operating Procedure - Groundwater Sampling (attached). A joint groundwater monitoring and sampling event was conducted on a different date with the former Autopro, located at 5200 Telegraph Avenue, Oakland, California, however data was not received.

Static groundwater levels were measured and the wells were checked for the presence of separate-phase hydrocarbons. Static water level data, groundwater elevations, and separate-phase hydrocarbon thickness (if any) are presented in the attached Table 1. A Potentiometric Map is included as Figure 1.

Groundwater samples were collected from the monitoring wells and submitted to a state certified laboratory for analyses. The field data sheets for this event are attached. Analytical results are presented in the table(s) listed below. The chain of custody document and laboratory analytical report are also attached. All groundwater and decontamination water generated during sampling activities was removed from the site, per the Standard Operating Procedure.

Please call if you have any questions or comments regarding this report. Thank you.

Sincerely,

Deanna L. Harding Project Coordinator

Douglas J. Lee

Senior Geologist, P.G. No. 6882

Figure 1: Potentiometric Map

Table 1: Groundwater Monitoring Data and Analytical Results

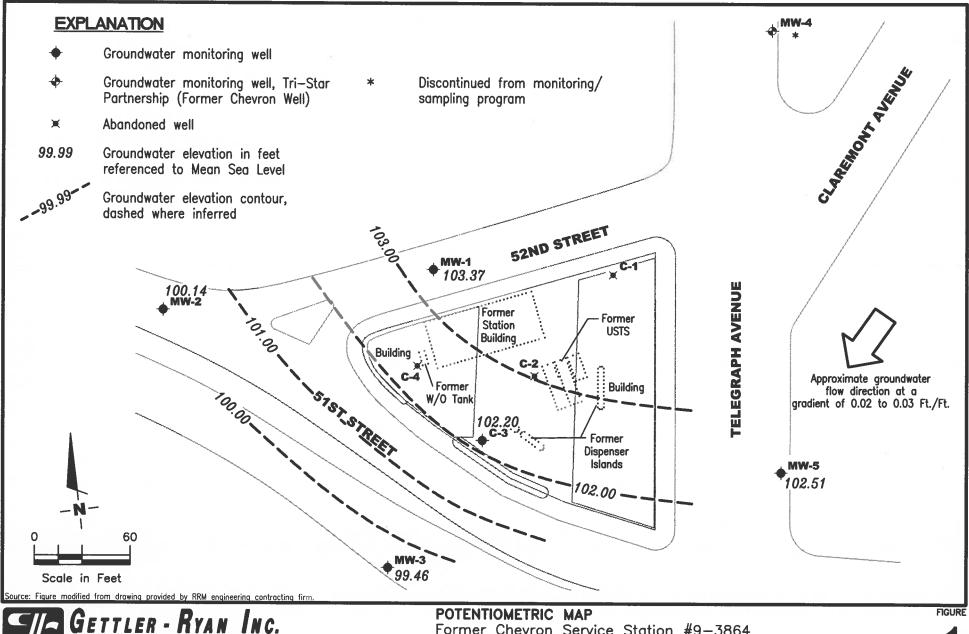

Table 2: Dissolved Oxygen Concentrations

Table 3: Groundwater Analytical Results - Oxygenate Compounds Attachments: Standard Operating Procedure - Groundwater Sampling

Field Data Sheets

Chain of Custody Document and Laboratory Analytical Reports

No. 6882

6747 Sierra Court, Suite J Dublin, CA 94568 (925) 551-7555 Former Chevron Service Station #9-3864 5101 Telegraph Avenue

Oakland, California

DATE March 14, 2011 REVISED DATE

PROJECT NUMBER 386358

REVIEWED BY

WELL ID/	TOC	GWE	DTW	TPH-GRO	В	T	E	X	MTBE
DATE	(ft.)	(msl)	(ft.)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)
C-3				(3)					
12/06/90	115.70	98.84	16.86	210	2.0	< 0.5	< 0.5	1.0	
12/06/90 (D)		9 0		220	2.0	0.6	<0.5	2.0	1 75 7
06/06/91	115.70	100.01	15.69	6,400	310	21	16	21	7 .00 .0
09/16/92	115.70	99.81	15.89	7,100	130	26	12	30	
12/04/91	115.70	100.32	15.38	5,100	120	18	17	20	-
06/02/92	115.70	100.30	15.40	6,700	140	44	17	37	1 55 -7
12/21/92	115.70	101.79	13.91	13,000	390	360	100	410	
03/11/93	115.70	101.95	13.75	5,100	86	20	12	23	122
06/11/93	115.70	101.03	14.67	7,200	91	38	19	38	
09/13/93	115.70	100.17	15.53	6,800	100	52	41	75	
12/14/93	115.70	101.30	14.40	8,600	74	23	18	36	
03/16/94	115.70	101.44	14.26	6,000	100	42	27	30	
06/17/94	115.70	100.60	15.10	15,000	170	120	120	270	
08/29/94	115.70	100.30	15.40	26,000	51	<0.5	58	107	
12/06/94	115.70	101.90	13.80	34,000	88	140	98	390	
03/31/95	115.70	102.91	12.79	2,800	42	<5.0	<5.0	6.6	
06/24/95	115.70	100.84	14.86	5,200	34	<10	<10	13	
09/12/95	115.70	100.76	14.94	7,000	45	<10	28	42	
12/29/95	115.70	102.12	13.58	5,100	20	<10	<10	19	<50
02/29/96	115.70	102.88	12.82	2,600	15	<5.0	17	16	<25
06/26/96	115.70	101.32	14.38	4,400	<10	<10	<10	<10	<50
09/12/96	115.70	100.75	14.95	5,800	73	22	18	17	61
12/11/96	115.70	103.08	12.62	8,800	81	<20	<20	37	200
03/31/97	115.70	100.70	15.00	8,100	38	62	30	42	38
06/29/97	115.70	100.08	15.62	5,800	<10	<10	<10	67	<50
09/30/97	115.70	100.70	15.00	6,200	<10	28	21	27	130
12/12/97	115.70	103.68	12.02	330	1.6	1.1	<1.0	3.4	<5.0
02/19/98	115.70	103.26	12.44	110	1.7	<0.5	<0.5	0.51	<2.5
06/16/98	115.70	102.29	13.41	7,400	63	16	<10	<10	170
08/31/98	115.70	101.70	14.00	4,400	6.4	<2.5	5.4	16	15
12/23/98	115.70	102.91	12.79	11,000	83	37	69	76	86
03/09/99	115.70	102.70	13.00	6,500	45	38	17	30	110
06/23/991	115.70	101.92	13.78		1 A E				
09/30/99	115.70	99.70	16.00	3,870	29.7	8.72	7.08	7.75	<50
02/29/00	115.70	102.14	13.56	2,660	22.5	<5.0	11.2	11.6	<50

WELL ID/	and the second		nana an <mark>agabb</mark> ana an		Camornia	 			
WELL ID/ DATE	TOC	GWE	DTW	TPH-GRO	В	T	E	X	MTBE
DATE	(fi.)	(msl)	(ft)	(μg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)
C-3 (cont)									
09/18/00 ³	115.70	103.25	12.45	740 ⁴	6.0	4.5	<2.5	6.0	<13
03/21/013	115.70	102.05	13.65	1,700 ⁴	21	12	14	19	59
09/04/01 ³	115.70	101.09	14.61	4,100	<10	4.8	6.5	14	<5.0/<2 ⁵
03/22/02 ^{3,6}	115.70	102.49	13.21	3,600	<5.0	< 5.0	6.1	<15	<2.5
09/16/02 ³	115.70	100.39	15.31	4,000	<10	< 5.0	4.3	<10	7.9
03/28/033	115.70	101.38	14.32	2,400	<2.5	<2.5	5.5	<7.5	<13
09/02/03 ^{3,7}	115.70	101.33	14.37	2,800	1	0.9	0.9	4	< 0.5
03/18/04 ^{7,8}	115.70	101.56	14.14	5,300	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
09/15/04 ⁷	115.70	101.50	14.20	3,200	0.8	0.8	1	3	10
03/11/05 ⁷	115.70	102.79	12.91	4,200	0.6	0.5	1	3	< 0.5
09/29/057	115.70	101.13	14.57	4,900	0.6	0.5	2	3	< 0.5
03/24/06	115.70	INACCESSIBLE -	VEHICLE PARK	ED OVER WELL		0	-		
09/12/06 ⁷	115.70	101.29	14.41	5,900	<1	<1	<1	2	<1
03/05/07	115.70	102.81	12.89	4,600	< 0.5	< 0.5	0.8	2	< 0.5
09/21/07	115.70	101.39	14.31	5,000	< 0.5	< 0.5	0.6	1	< 0.5
03/06/08 ⁷	115.70	102.15	13.55	3,600	< 0.5	< 0.5	1	1	< 0.5
09/05/08 ⁷	115.70	101.00	14.70	2,700	< 0.5	< 0.5	0.9	1	< 0.5
03/30/09 ⁷	115.70	102.28	13.42	4,200	<0.5	< 0.5	0.8	3	< 0.5
09/15/097	115.70	100.55	15.15	4,700	< 0.5	< 0.5	< 0.5	ī	< 0.5
03/02/10 ⁷	115.70	102.22	13.48	3,600	< 0.5	< 0.5	< 0.5	1	< 0.5
09/09/107	115.70	100.73	14.97	3,800	< 0.5	< 0.5	< 0.5	1	< 0.5
03/14/117	115.70	102.20	13.50	3,400	<0.5	<0.5	0.6	1	<0.5
/IW-1									
9/20/93	115.05	102.37	12.68	<50	< 0.5	< 0.5	< 0.5	<1.5	
2/14/93	115.05	105.01	10.04	<50	< 0.5	< 0.5	< 0.5	< 0.5	
3/16/94	115.05	103.10	11.95	<50	< 0.5	1.7	< 0.5	2.1	
06/17/94	115.05	102.51	12.54	350	1.2	3.7	2.0	12	
08/29/94	115.05	101.98	13.07	<50	< 0.5	< 0.5	< 0.5	< 0.5	
2/06/94	115.05	104.45	10.60	140	0.9	2.8	1.1	4.2	==
03/31/95	115.05	104.74	10.31	<50	< 0.5	< 0.5	< 0.5	< 0.5	
06/24/95	115.05	102.44	12.61	<50	< 0.5	< 0.5	< 0.5	< 0.5	
9/12/95	115.05	102.00	13.05	<50	< 0.5	< 0.5	< 0.5	< 0.5	
2/02/96	115.05	106.19	8.86	<50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5

				Oakland,	California				
WELL ID/	TOC	GWE	DTW	TPH-GRO	В	1	E	X	MTBE
DATE	(fi.)	(msl)	(ft.)	(μg/L)	(µg/L)	(μg/L)	(µg/L)	(μg/L)	(µg/L)
MW-1 (cont)									
02/29/96	115.05	105.39	9.66	<50	< 0.5	< 0.5	< 0.5	<0.5	<2.5
06/26/96	115.05	102.85	12.20	<50	< 0.5	<0.5	<0.5	<0.5	<2.5
09/12/96	115.05	101.55	13.50	<50	< 0.5	<0.5	<0.5	<0.5	<2.5
12/11/96	115.05	105.90	9.15	<50	< 0.5	<0.5	<0.5	<0.5	<2.5
03/31/97	115.05	102.30	12.75	<50	< 0.5	<0.5	<0.5	<0.5	<2.5
06/29/97	115.05	102.01	13.04	<50	< 0.5	<0.5	<0.5	<0.5	<2.5
09/30/97	115.05	101.80	13.25	<50	< 0.5	<0.5	<0.5	<0.5	<2.5
12/12/97	115.05	106.06	8.99	<50	< 0.5	< 0.5	<0.5	<0.5	<2.5
02/19/98	115.05	105.64	9.41	<50	< 0.5	< 0.5	<0.5	<0.5	<2.5
06/16/98	115.02	103.48	11.54	<50	< 0.5	<0.5	<0.5	<0.5	2.6
08/31/98	115.02	102.51	12.51	<50	< 0.5	<0.5	<0.5	<0.5	<2.5
12/23/98	115.02	103.03	11.99	<50	< 0.5	<0.5	<0.5	<0.5	<2.5
03/09/99	115.02	104.57	10.45	<50	< 0.5	<0.5	<0.5	<0.5	<2.5
09/30/99	115.02	102.07	12.95	SAMPLED ANNU					
02/29/00	115.02	105.90	9.12	<50	<0.5	0.816	< 0.5	< 0.5	< 5.0
09/18/00	115.02	104.14	10.88		55				
03/21/01	115.02	104.01	11.01	< 50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5
09/04/01	115.02	103.60	11.42		<u> </u>	-			/<2 ⁵
03/22/026	115.02	104.68	10.34	100	< 0.50	24	0.80	4.9	15
09/16/02	115.02	102.35	12.67	SAMPLED ANNU.	ALLY				
03/28/03	115.02	103.29	11.73	< 50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
09/02/03	115.02	102.74	12.28	SAMPLED ANNU.	ALLY		1979-2014 1 <u>20-2</u>	-	
03/18/047	115.02	103.11	11.91	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
09/15/04	115.02	101.89	13.13	SAMPLED ANNU.	ALLY	(**)		()	
03/11/05 ⁷	115.02	104.29	10.73	< 50	< 0.5	2	< 0.5	< 0.5	< 0.5
09/29/05	115.02	101.97	13.05	SAMPLED ANNU.	ALLY		==		
03/24/06 ⁷	115.02	104.61	10.41	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
09/12/06	115.02	101.91	13.11	SAMPLED ANNUA	ALLY	7 20 0			
03/05/07 ⁷	115.02	103.93	11.09	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
09/21/07	115.02	102.07	12.95	SAMPLED ANNUA	ALLY	52000000 1222	##		
03/06/08 ⁷	115.02	102.92	12.10	<50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5
09/05/08	115.02	102.54	12.48	SAMPLED ANNUA		10 miles 17 miles			
03/30/09 ⁷	115.02	103.64	11.38	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
09/15/09	115.02	102.06	12.96	SAMPLED ANNUA	ALLY			\ <u>~</u>	

WELL ID/	TOC	GWE	DTW	TPH-GRO	В	7	E	X	MTBE
DATE	(fi.)	(msl)	(fl.)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-1 (cont)				3. 3			W.G/	AFO FI	W-8/2
03/02/10 ⁷	115.02	103.27	11.75	<50	< 0.5	-0.5	-0.5	.0.5	
09/09/10	115.02	102.24	12.78	SAMPLED ANNU		<0.5	<0.5	<0.5	<0.5
03/14/117	115.02	103.37	11.65	<50					**
00/14/11	115.02	103.37	11.05	<50	<0.5	<0.5	<0.5	<0.5	<0.5
MW-2									
09/20/93	112.08	99.93	12.15	< 50	< 0.5	< 0.5	< 0.5	<1.5	
12/14/93	112.08	97.36	14.72	<50	< 0.5	< 0.5	<0.5	<0.5	
03/16/94	112.08	100.92	11.16	<50	< 0.5	1.1	<0.5	0.9	
06/17/94	112.08	100.41	11.67	330	1.4	3.3	1.9	11	
08/29/94	112.08	100.08	12.00	<50	< 0.5	< 0.5	<0.5	<0.5	
12/06/94	112.08	102.57	9.51	<50	< 0.5	<0.5	<0.5	< 0.5	(
03/31/95	112.08	103.24	8.84	<50	< 0.5	< 0.5	<0.5	<0.5	
06/24/95	112.08	100.44	11.64	<50	< 0.5	< 0.5	< 0.5	<0.5	
09/12/95	112.08	100.00	12.08	<50	< 0.5	<0.5	<0.5	<0.5	
12/29/95	112.08	101.58	10.50	<50	< 0.5	< 0.5	<0.5	< 0.5	<2.5
02/29/96	112.08	104.08	8.00	<50	< 0.5	< 0.5	< 0.5	<0.5	<2.5
06/26/96	112.08	100.58	11.50	<50	< 0.5	< 0.5	< 0.5	<0.5	<2.5
09/12/96	112.08	99.81	12.27	<50	< 0.5	< 0.5	< 0.5	<0.5	<2.5
12/11/96	112.08	104.17	7.91	<50	< 0.5	< 0.5	< 0.5	<0.5	<2.5
03/31/97	112.08	100.20	11.88	<50	< 0.5	< 0.5	< 0.5	<0.5	<2.5
06/29/97	112.08	99.89	12.19	<50	< 0.5	< 0.5	< 0.5	<0.5	<2.5
09/30/97	112.08	99.46	12.62	<50	< 0.5	< 0.5	<0.5	<0.5	<2.5
12/12/97	112.08	102.85	9.23	< 50	< 0.5	< 0.5	< 0.5	<0.5	<2.5
02/19/98	112.08	104.87	7.21	< 50	< 0.5	< 0.5	< 0.5	<0.5	<2.5
06/16/98	112.03	101.10	10.93	<50	< 0.5	< 0.5	<0.5	<0.5	<2.5
08/31/98	112.03	99.69	12.34	<50	< 0.5	< 0.5	<0.5	<0.5	<2.5
12/23/98	112.03	100.59	11.44	<50	< 0.5	< 0.5	<0.5	<0.5	<2.5
03/09/99	112.03	103.23	8.80	<50	< 0.5	< 0.5	<0.5	<0.5	<2.5
09/30/99	112.03	101.22	10.81	SAMPLED ANNUA		E			
02/29/00	112.03	105.12	6.91	<50	< 0.5	< 0.5	< 0.5	<0.5	<5.0
09/18/00	112.03	101.00	11.03						
03/21/01	112.03	101.61	10.42	<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5
09/04/01	112.03	101.04	10.99						/<2 ⁵
03/22/02	112.03	102.14	9.89	<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
					-100	0.00	0.50	~1.J	~4.5

Table 1
Groundwater Monitoring Data and Analytical Results

WELL ID/	TOC	GWE	DTW	TPH-GRO	В	T	E	X	MTBE
DATE	(fi.)	(msl)	(ft.)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-2 (cont)	- 1079								9.77
09/16/02	112.03	100.02	12.01	SAMPLED ANNUA	ALLY				
03/28/03	112.03	101.23	10.80	<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
09/02/03	112.03	100.15	11.88	SAMPLED ANNUA					
03/18/047	112.03	101.04	10.99	<50	<0.5	<0.5	< 0.5	<0.5	< 0.5
09/15/04	112.03	99.15	12.88	SAMPLED ANNUA					
03/11/057	112.03	102.13	9.90	<50	<0.5	<0.5	< 0.5	< 0.5	< 0.5
09/29/05	112.03	99.33	12.70	SAMPLED ANNUA					
03/24/067	112.03	103.04	8.99	<50	<0.5	< 0.5	< 0.5	< 0.5	<0.5
09/12/06	112.03	98.97	13.06	SAMPLED ANNUA					
03/05/077	112.03	101.57	10.46	<50	< 0.5	<0.5	< 0.5	<0.5	<0.5
09/21/07	112.03	99.35	12.68	SAMPLED ANNUA					~0.5
03/06/08 ⁷	112.03	100.98	11.05	<50	<0.5	<0.5	< 0.5	<0.5	<0.5
09/05/08	112.03	99.22	12.81	SAMPLED ANNUA					~0.5
03/30/097	112.03	101.23	10.80	<50	<0.5	<0.5	<0.5	<0.5	<0.5
09/15/09	112.03	98.84	13.19	SAMPLED ANNUA				~0.5 	~0.3
03/02/10 ⁷	112.03	101.34	10.69	<50	<0.5	<0.5	<0.5	< 0.5	<0.5
09/09/10	112.03	99.00	13.03	SAMPLED ANNUA					~ ~
03/14/117	112.03	100.14	11.89	<50	<0.5	<0.5	<0.5	<0.5	<0.5
				XXX			-015	-0.5	-015
MW-3									
09/20/93	113.67	97.25	16.42	6,600	400	11	32	23	
12/14/93	113.67	98.95	14.72	8,400	390	9.4	13	<2.5	
03/16/94	113.67	98.45	15.22	6,900	260	30	32	27	
06/17/94	113.67	97.62	16.05	10,000	190	61	58	190	
08/29/94	113.67	97.44	16.23	7,200	74	9.8	26	24	
12/06/94	113.67	99.35	14.32	13,000	610	86	88	140	
03/31/95	113.67	99.98	13.69	4,300	120	<10	12	<10	-
06/24/95	113.67	98.02	15.65	6,200	210	24	29	12	
09/12/95	113.67	97.68	15.99	7,200	190	<20	<20	<20	
12/29/95	113.67	99.67	14.00	7,100	200	<10	45	24	<50
02/29/96	113.67	100.91	12.76	1,200	30	<5.0	<5.0	<5.0	<25
06/26/96	113.67	98.44	15.23	7,900	180	<20	35	28	240
09/12/96	113.67	97.73	15.94	11,000	150	<5.0	35	28	170
			~~	4 4 9 0 0 0	100	~J.U	J J	40	170

Table 1
Groundwater Monitoring Data and Analytical Results

				Oakianu,	California				
WELL ID/	TOC	GWE	DTW	TPH-GRO	В	Т	E	X	MTBE
DATE	(fi.)	(msl)	(ft.)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(μg/L)	(µg/L)
MW-3 (cont)									
03/31/97	113.67	98.23	15.44	8,700	100	<10	20	23	50
06/29/97	113.67	97.99	15.68	9,300	120	28	22	19	150
09/30/97	113.67	97.76	15.91	8,200	78	<10	22	25	96
12/12/97	113.67	100.82	12.85	68	1.8	<0.5	<0.5	<0.5	<2.5
02/19/98	113.67	100.41	13.26	220	5.6	1.5	<0.5	<0.5	6.1
06/16/98	113.63	99.12	14.51	7,500	97	21	21	27	160
08/31/98	113.63	98.62	15.01	7,600	24	<2.5	9.5	16	38
12/23/98	113.63	100.03	13.60	5,800	69	<50	<50	<50	<250
03/09/99	113.63	99.59	14.04	5,300	<10	<10	16	20	88
06/23/991	113.63								
07/19/99 ¹	113.63					7			
09/30/99	113.63	96.74	16.89	8,660	53.7	16.9	17	19.6	132
02/29/00	113.63	INACCESSIBLE							132
09/18/00 ³	113.63	100.41	13.22	2,4004	14	6.8	4.7	7.4	28
03/21/013	113.63	98.88	14.75	7,6004	41	30	<25	50	160
09/04/01	113.63	INACCESSIBLE - CA					-23		
03/22/023	113.63	99.46	14.17	7,600	<10	4.2	11	<25	< 5.0
09/16/023	113.63	97.34	16.29	5,900	<20	<10	7.7	<15	21
03/28/033	113.63	98.67	14.96	3,500	<20	3.3	7.3	10	<13
09/02/03 ^{3,7}	113.63	98.20	15.43	4,500	3	2	2	5	<0.5
03/18/04 ^{7,8}	113.63	98.91	14.72	5,300	3	1	3	4	<0.5
09/15/04	113.63	INACCESSIBLE - CA			<u></u>	-			
03/11/05 ⁷	113.63	99.72	13.91	4,500	2	1	2	4	<0.5
09/29/057	113.63	98.06	15.57	5,300	3	1	2	4	<0.5
03/24/067	113.63	100.10	13.53	3,300	1	0.6	1	2	<0.5
09/12/06 ⁷	113.63	98.16	15.47	6,100	2	1	2	4	<0.5
03/05/07	113.63	99.69	13.94	4,000	1	0.6	0.8	2	<0.5
09/21/077	113.63	98.24	15.39	5,900	2	1	1	4	<0.5
03/06/08 ⁷	113.63	99.02	14.61	3,900	2	0.8	2	3	<0.5
09/05/08 ⁷	113.63	98.13	15.50	5,100	ī	0.7	2	3	<0.5
03/30/097	113.63	99.13	14.50	4,800	2	0.7	1	3	<0.5
09/15/09	113.63	INACCESSIBLE						3	<0.5
03/02/107	113.63	99.41	14.22	<50	<0.5	< 0.5	<0.5	<0.5	<0.5
09/09/10 ⁷	113.63	98.32	15.31	4,000	1	0.5	0.7	3	<0.5
03/14/117	113.63	99.46	14.17	1,300	<0.5	<0.5	<0.5	0.6	<0.5

Table 1
Groundwater Monitoring Data and Analytical Results

WELL ID/	TOC	GWE	DTW	TPH-GRO	В	T	r	X	MTBE
DATE	(fi.)	(msl)	(ft.)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)
MW-5						2.3			4.5
09/20/93	116.74	101.43	15.31	590	25	1.8	0.6	2.0	rana.
12/14/93	116.74	102.19	14.55	210	11	6.3	2.3	6.1	
03/16/94	116.74	101.77	14.97	270	12	16	4.8	17	
06/17/94	116.74	101.36	15.38	220	24	17	6.7	28	
08/29/94	116.74	101.54	15.20	1,000	<0.5	<0.5	<0.5	<0.5	1516
12/06/94	116.74	102.09	14.65	110	9.2	9.7	2.2	11	
03/31/95	116.74	103.04	13.70	<50	< 0.5	<0.5	<0.5	< 0.5	
06/24/95	116.74	101.95	14.79	<50	< 0.5	<0.5	<0.5	<0.5	
09/12/95	116.74	102.15	14.59	<50	< 0.5	<0.5	<0.5	< 0.5	
12/29/95	116.74	101.76	14.98	<50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5
02/29/96	116.74	103.07	13.67	<50	< 0.5	< 0.5	<0.5	<0.5	<2.5
06/26/96	116.74	102.50	14.24	<50	<0.5	< 0.5	<0.5	< 0.5	<2.5
09/12/96	116.74	102.12	14.62	<50	< 0.5	<0.5	<0.5	<0.5	<2.5
12/11/96	116.74	102.93	13.81	<50	< 0.5	< 0.5	<0.5	<0.5	<2.5
03/31/97	116.74	101.29	15.45	< 50	< 0.5	< 0.5	< 0.5	<0.5	<2.5
06/29/97	116.74	102.07	14.67	< 50	< 0.5	< 0.5	<0.5	<0.5	<2.5
09/30/97	116.74	101.89	14.85	<50	< 0.5	< 0.5	< 0.5	<0.5	<2.5
12/12/97	116.74	102.99	13.75	<50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5
02/19/98	116.74	103.68	13.06	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5
06/16/98	116.70	102.35	14.35	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5
08/31/98	116.70	101.54	15.16	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5
12/23/98	116.70	102.15	14.55	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5
03/09/99	116.70	102.63	14.07	< 50	< 0.5	< 0.5	< 0.5	<0.5	<2.5
09/30/99	116.70	100.80	15.90	SAMPLED ANNUA	ALLY			2 == 21	
02/29/00	116.70	103.40	13.30	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0
09/18/00	116.70	101.62	15.08		3 3			10123 1 22	
03/21/01	116.70	102.04	14.66	< 50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5
09/04/01	116.70	101.26	15.44				44	155	/<2 ⁵
03/22/026	116.70	101.99	14.71	< 50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
09/16/02	116.70	101.02	15.68	SAMPLED ANNUA	ALLY				22
03/28/03	116.70	101.65	15.05	< 50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
09/02/03	116.70	101.34	15.36	SAMPLED ANNUA				(55	
03/18/047	116.70	102.14	14.56	< 50	1	0.7	1	3	< 0.5
09/15/04	116.70	101.30	15.40	SAMPLED ANNUA	ALLY			<u></u>	
03/11/057	116.70	102.50	14.20	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5

Table 1
Groundwater Monitoring Data and Analytical Results

WELL ID/	TOC	GWE	DTW	TPH-GRO	В	Ť	E	X	MTBE
DATE	(fi.)	(msl)	(ft)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	Λ (μg/L)	
MW-5 (cont)					168/4-/	(F8/ F1)	(HS/L)	(μg/L)	(µg/L)
09/29/05	116.70	101.23	15.47	SAMPLED ANNUA	ALLY				
03/24/06 ⁷	116.70	102.77	13.47	<50	<0.5	-0.5			
09/12/06	116.70	102.03	14.67	SAMPLED ANNUA		<0.5	<0.5	<0.5	<0.5
03/05/07	116.70	102.03	14.67	<50	<0.5	-0.5	-0.5		
09/21/07	116.70	101.10	15.60	SAMPLED ANNUA		<0.5	<0.5	<0.5	< 0.5
03/06/08 ⁷	116.70	102.20	14.50	<50	<0.5				
09/05/08	116.70	101.24	15.46	SAMPLED ANNUA		<0.5	<0.5	< 0.5	< 0.5
03/30/097	116.70	101.90	14.80	<50					5 == 1 Material
09/15/09	116.70	100.83	15.87		<0.5	<0.5	<0.5	< 0.5	< 0.5
$3/02/10^7$	116.70	102.40	14.30	SAMPLED ANNUA <50		-0.5		=	
9/09/10	116.70	101.00			<0.5	<0.5	<0.5	< 0.5	< 0.5
03/14/11 ⁷	116.70	102.51	15.70	SAMPLED ANNUA			· · · · · · · · · · · · · · · · · · ·	: 2 2	7 4- 7
5/14/11	110.70	102.51	14.19	<50	<0.5	<0.5	<0.5	<0.5	<0.5
C-1									
2/06/90	117.45	102.11	15.34	1,900	17	11	3.0	21	
6/06/91	117.45	102.83	14.62	3,400	21	15	11	18	22
2/04/91	117.45	102.97	14.48	2,700	22	16	13	23	
6/02/92	117.45	102.92	14.53	1,900	170	170	13	83	
09/16/92	117.45	102.52	14.93	810	5.8	5.7	2.0	6.3	
2/21/92	117.45	103.72	13.73	75	2.4	2.9	1.4	4.7	
3/11/93	117.45	103.62	13.83	150	2.4	20	3.3	23	
6/11/93	117.45	103.26	14.19	400	4.3	2.3	1.0	3.5	
9/13/93	117.45	102.85	14.60	4,100	62	43	34	57	
2/14/93	117.45	103.67	13.78	3,100	9.5	4.5	1.2	11	
3/16/94	117.45	103.44	14.01	410	6.3	3.1	1.3	4.5	
6/17/94	117.45	102.90	14.55	3,700	100	42	30	91	
8/29/94	117.45	102.96	14.49	2,600	15	< 0.5	6.7	9.7	-
2/06/94	117.45	104.04	13.41	510	2.0	2.2	1.7	9.4	
3/31/95	117.45	105.33	12.12	5,440	9.0	2.3	2.0	3.6	
6/24/95	117.45	103.45	14.00	260	5.8	1.0	0.94	0.88	
9/12/95	117.45	103.42	14.03	650	14	1.1	1.6	2.4	
2/29/95	117.45	104.50	12.95	990	32	6.3	4.0	3.2	46
2/29/96	117.45	105.27	12.18	840	2.5	<1.0	2.6	7.3	<5.0

Table 1
Groundwater Monitoring Data and Analytical Results

				Oakiaiiu,	Camonia			- NO	
WELL ID/	TOC	GWE	DTW	TPH-GRO	В	Τ	E	X	MTBE
DATE	(fi.)	(msl)	(ft)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(μg/L)	(µg/L)
C-1									
06/26/96	117.45	103.72	13.73	290	3.6	0.73	1.0	1.1	9.9
09/12/96	117.45	103.32	14.13	1,200	17	1.8	4.0	4.4	24
12/11/96	117.45	104.66	12.79	7,700	<10	53	19	44	87
ABANDONED							.,	***	67
C-2									
12/06/90	116.16	100.82	15.34	210	140	9.0	2.0	11	
06/06/91	116.16	101.54	14.62	4,800	340	23	19	23	222
12/04/91	116.16	100.73	15.43	3,900	85	15	9.1	15	
06/02/92	116.16	101.74	14.42	3,300	76	9.2	14	15	107.1
09/16/92	116.16	101.35	14.81	3,000	16	15	3.4	7.5	7==7
12/21/92	116.16	102.79	13.37	2,200	21	12	7.1	15	
03/11/93	116.16	102.69	13.47	2,200	33	24	12	25	2575 1
06/11/93	116.16	102.18	13.98	2,600	21	25	11	26	
09/13/93	116.16	101.61	14.55	2,100	31	25	18	39	
12/14/93	116.16	102.46	13.70	3,800	<2.5	24	12	20	
03/16/94	116.16	102.51	13.65	2,600	12	15	10	17	
06/17/94	116.16	102.87	13.29	2,400	17	19	28	71	
08/29/94	116.16	111.60	4.56	3,000	29	15	20	4.2	
12/06/94	116.16	102.98	13.18	1,900	7.9	30	14	31	
03/31/95	116.16	104.10	12.06	890	<1.3	<1.3	2.6	<1.3	
06/24/95	116.16	102.19	13.97	730	4.8	< 0.5	5.4	0.96	
09/12/95	116.16	102.28	13.88	1,600	<2.5	<2.5	5.4	<2.5	
12/29/95	116.16	103.31	12.85	1,000	9.1	2.7	8.7	2.7	19
02/29/96	116.16	104.09	12.07	850	<2.5	<2.5	8.7	11	<12
06/26/96	116.16	102.50	13.66	2,500	14	< 5.0	13	6.3	<25
09/12/96	116.16	102.25	13.91	1,800	26	19	17	31	37
12/11/96	116.16	103.82	12.34	2,800	< 5.0	34	14	<5.0	41
ABANDONED									
C-4									1.7%
12/06/90	116.10	98.42	17.68	< 50	< 0.5	< 0.5	< 0.5	< 0.5	*830
12/18/90	116.10	***	N==6	<50	< 0.5	< 0.5	<0.5	<0.5	20006 ***
06/06/91	116.10	99.61	16.49	< 50	1.0	1.0	< 0.5	0.7	
12/04/91	116.10	99.28	16.82	70	6.5	9.8	1.7	8.6	

Table 1
Groundwater Monitoring Data and Analytical Results

Oakland, California ELL ID/ TOC GWE DTW TPH-GRO B T F Y MTPF												
TOC	GWE	DTW	TPH-GRO	В	T	E	X	MTBE				
(fi.)	(msl)	(ft.)	(μg/L)	(µg/L)	(μg/L)	(µg/L)	(μg/L)	(µg/L)				
					*							
116.10	99.18	16.92	70	3.0	4.4	1.8	9.0					
								2000				
								(**)				
								-				
								N am S				
								2=0				
								-				
								(5.5.)				
								(<u>==</u>				
								<2.5				
								<2.5 <2.5				
								<2.5				
								<2.5				
	135115	12.72	50	-0.5	0.5	~0.5	<0.5	~2.3				
118 10	107.17	10.93	5 900	16	4.2	25	40					
								-				
								720				
								85				
118.10	107.53	10.18	13,000	150	<10	<20 38	<20	<100				
	116.10 118.10 118.10 118.10 118.10 118.10 118.10 118.10 118.10 118.10 118.10 118.10 118.10 118.10 118.10 118.10 118.10 118.10 118.10	(fi.) (msl) 116.10 99.18 116.10 100.74 116.10 100.61 116.10 100.61 116.10 99.83 116.10 99.89 116.10 100.19 116.10 100.19 116.10 99.05 116.10 101.52 116.10 102.26 116.10 100.05 116.10 101.35 116.10 101.35 116.10 102.40 116.10 100.30 116.10 103.18 118.10 107.29 118.10 107.28 118.10 107.28 118.10 107.28 118.10 107.60 118.10 107.60 118.10 107.90 118.10 108.86 118.10 111.85 118.10 107.92	(ft.) (msl) (ft.) 116.10 99.18 16.92 116.10 98.39 17.71 116.10 100.74 15.36 116.10 100.61 15.49 116.10 99.83 16.27 116.10 99.892 17.18 116.10 101.03 15.07 116.10 100.19 15.91 116.10 100.19 15.91 116.10 99.46 16.64 116.10 99.05 17.05 116.10 101.52 14.58 116.10 102.26 13.84 116.10 100.05 16.05 116.10 100.05 16.05 116.10 101.35 14.75 116.10 101.35 14.75 116.10 103.30 15.80 116.10 103.18 12.92 118.10 107.20 10.90 118.10 107.28 10.82 118.10 107.28 10	TOC GWE DTW TPH-GRO (ft.) (misl) (ft.) (μg/L) 116.10 99.18 16.92 70 116.10 98.39 17.71 <50	TOC GWE DTW TPH-GRO B (Rs) (Rs) (Rs) (Rs) (Rs/L) (Rs/L) (Rs/L) 116.10 99.18 16.92 70 3.0 116.10 98.39 17.71 50 1.4 116.10 100.74 15.36 50 0.6 116.10 100.61 15.49 50 0.5 116.10 99.83 16.27 52 0.9 116.10 98.92 17.18 64 0.9 116.10 101.03 15.07 50 0.5 116.10 100.19 15.91 50 0.5 116.10 99.46 16.64 230 0.6 116.10 99.95 17.05 50 0.5 116.10 191.52 14.58 50 0.5 116.10 102.26 13.84 50 0.5 116.10 100.05 16.05 50 0.5 116.10 100.05 16.05 50 0.5 116.10 103.35 14.75 50 0.5 116.10 101.35 14.75 50 0.5 116.10 102.40 13.70 50 0.5 116.10 102.40 13.70 50 0.5 116.10 103.0 15.80 50 0.5 116.10 100.30 15.80 50 0.5 116.10 100.31 12.92 50 0.5 116.10 100.30 15.80 50 0.5 116.10 100.31 12.92 50 0.5 118.10 107.20 10.90 21.000 150 118.10 107.28 10.82 10.000 86 118.10 107.28 10.82 10.000 86 118.10 107.60 10.50 6,300 0.20 118.10 107.60 10.50 6,300 0.20 118.10 108.86 9.24 3,300 0.10 118.10 107.90 10.11 8.50 6.55 100 100 118.10 108.86 9.24 3,300 0.10 118.10 107.90 10.20 7,100 65 118.10 108.86 9.24 3,300 0.10 118.10 107.92 10.18 6,800 0.20	TOC GWE DTW TPH-GRO B T GE) GE) GE GE GE GE GE	TOC (Rs) (ms) (L) (ug/L) (ug/L	TOC GWE DTW TPH-GRO B T E X (fL) (mist) (fL) (pg/L) (pg/L) (pg/L) (pg/L) (pg/L) 116.10 99.18 16.92 70 3.0 4.4 1.8 9.0 116.10 99.39 17.7.71 <50 1.4 1.8 <0.5 1.1 116.10 100.74 15.36 <50 0.6 0.7 <0.5 1.5 116.10 190.61 15.49 <50 <0.5 <0.5 <0.5 <0.5 <1.5 116.10 99.83 16.27 52 0.9 3.1 0.7 3.8 116.10 99.83 16.27 52 0.9 3.1 0.7 3.8 116.10 99.83 16.27 52 0.9 3.1 0.7 3.8 116.10 100.13 15.07 <50 <0.5 0.8 <0.5 0.5 1.7 116.10 100.13 15.07 <50 <0.5 0.5 0.5 0.5 0.5 116.10 100.19 15.91 <50 <0.5 0.5 0.5 0.5 0.5 116.10 99.96 16.64 230 0.6 22 22 11 116.10 99.05 17.05 <50 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 116.10 101.52 14.58 <50 <0.5 <0.5 <0.5 <0.5 <0.5 116.10 100.52 13.84 <50 <0.5 <0.5 <0.5 <0.5 <0.5 116.10 100.52 14.58 <50 <0.5 <0.5 <0.5 <0.5 <0.5 116.10 100.53 16.05 <50 <0.5 <0.5 <0.5 <0.5 <0.5 116.10 100.09 8.7 16.23 <50 <0.5 <0.5 <0.5 <0.5 <0.5 116.10 100.35 14.75 <50 <0.5 <0.5 <0.5 <0.5 <0.5 116.10 100.35 14.75 <50 <0.5 <0.5 <0.5 <0.5 <0.5 116.10 100.35 14.75 <50 <0.5 <0.5 <0.5 <0.5 <0.5 116.10 100.35 14.75 <50 <0.5 <0.5 <0.5 <0.5 <0.5 116.10 100.35 14.75 <50 <0.5 <0.5 <0.5 <0.5 <0.5 116.10 100.35 14.75 <50 <0.5 <0.5 <0.5 <0.5 <0.5 116.10 100.30 15.80 <50 <0.5 <0.5 <0.5 <0.5 <0.5 116.10 100.30 15.80 <50 <0.5 <0.5 <0.5 <0.5 <0.5 116.10 100.30 15.80 <50 <0.5 <0.5 <0.5 <0.5 <0.5 116.10 100.30 15.80 <50 <0.5 <0.5 <0.5 <0.5 <0.5 116.10 100.30 15.80 <50 <0.5 <0.5 <0.5 <0.5 <0.5 116.10 100.30 15.80 <50 <0.5 <0.5 <0.5 <0.5 <0.5 116.10 100.30 15.80 <50 <0.5 <0.5 <0.5 <0.5 <0.5 116.10 100.31 12.20 10.90 21.000 150 20 140 350 118.10 107.29 10.11 8.500 83 43 60 70 118.10 107.29 10.11 8.500 83 43 60 70 118.10 107.20 10.90 21.000 150 20 140 350 118.10 107.28 10.82 10.000 86 71 44 85 118.10 107.20 10.90 21.000 150 20 140 350 118.10 107.20 10.90 21.000 150 20 140 350 118.10 107.28 10.82 10.000 86 71 44 85 118.10 107.20 10.90 21.000 150 20 140 350 118.10 107.20 10.90 21.000 150 20 140 350 118.10 107.20 10.90 21.000 150 20 140 350 118.10 107.20 10.90 21.000 150 20 120 120 120 120 140 118.10 107.90 10.20 7.100 65 16 60 20 20 20 20 20 20 20 20 20				

WELL ID/	TOC	GWE	DTW	TPH-GRO	В	4	E		at distriction and
DATE	(fi.)	(msl)	(fi.)	(μg/L)	μg/L)	`\^`\^\\`\^\\\\\\\\\\\\\\\\\\\\\\\\\\\		X	MTBE
	9-9	(IMSI)	(Ju)	(P8/1-)	(Pg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)
MW-4 (cont)									
12/11/96	118.10	109.39	8.71	26,000	<20	<20	<20	170	<100
03/31/97	118.10	107.18	10.92	12,000	120	74	45	70	240
06/29/97	118.10	106.43	11.67	8,800	24	<10	35	36	62
09/30/97	118.10	107.20	10.90	10,000	<10	<10	37	35	72
12/12/97	118.10	105.16	12.94	4,600	95	41	20	25	91
02/19/98	118.10	110.33	7.77	5,400	87	16	32	31	110
06/16/98 ²	118.08	107.82	10.26	10,000	<20	<20	35	37	150
NOT MONITORI	ED/SAMPLED								
								8	
TRIP BLANK									
2/06/90				<50	<0.5	<0.5	<0.5	<0.5	
2/18/90				<50	<0.5	<0.5	<0.5	<0.5	
6/06/91			22	<50	<0.5	<0.5	<0.5	<0.5	25-12
2/04/91	122			<50	<0.5	<0.5	<0.5	<0.5	••
06/02/92				<50	<0.5	<0.5	<0.5	<0.5	1944
9/16/92				<50	<0.5	<0.5	<0.5	<0.5	
2/21/92			22	<50	<0.5	<0.5	<0.5	<0.5	•
3/11/93	(22)			<50	<0.5	<0.5	<0.5	<1.5	
06/11/93				<50	<0.5	<0.5	<0.5	<1.5	
9/13/93	1 12			<50	<0.5	<0.5	<0.5	<1.5	
2/14/93				<50	<0.5	<0.5	<0.5	<0.5	1
3/16/94				<50	< 0.5	<0.5	<0.5	<0.5	
6/17/94		: DOX		<50	<0.5	<0.5	<0.5		
8/29/94	52899 5 44 3			<50	<0.5	<0.5	<0.5	<0.5	
2/06/94	100			<50	<0.5	<0.5	<0.5	<0.5	
3/31/95				<50	<0.5	<0.5	<0.5	<0.5	
6/24/95		100 1 		<50	<0.5	<0.5	<0.5	<0.5	
9/12/95	(/)		 	<50	<0.5	<0.5	<0.5 <0.5	<0.5	
2/29/95			20	<50	<0.5	<0.5		<0.5	
2/29/96				<50	<0.5 <0.5		<0.5	<0.5	
16/26/96			555 5	<50 <50		<0.5	<0.5	<0.5	<2.5
9/12/96		A.B.	***	<50 <50	<0.5	<0.5	<0.5	<0.5	<2.5
2/11/96			-		<0.5	<0.5	<0.5	<0.5	
3/31/97		22		<50	<0.5	<0.5	<0.5	< 0.5	<2.5
3/31/7/		**		<50	<0.5	<0.5	< 0.5	< 0.5	<2.5

Table 1
Groundwater Monitoring Data and Analytical Results

WELL ID/	TOC	GWE	DTW	TPH-GRO	B	T	E	X	MTBI
DATE	(fl.)	(msl)	(ft)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
RIP BLANK (co	ont)						W		
06/29/97	=			<50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5
9/30/97		9 56 8		<50	< 0.5	< 0.5	<0.5	<0.5	<2.5
2/12/97				<50	< 0.5	<0.5	<0.5	<0.5	<2.5
2/19/98				<50	< 0.5	< 0.5	<0.5	<0.5	<2.5
6/16/98	100 m			<50	< 0.5	< 0.5	<0.5	<0.5	<2.5
8/31/98	707-	10 00 79	-	<50	< 0.5	<0.5	<0.5	<0.5	<2.5
2/23/98				<50	< 0.5	< 0.5	<0.5	<0.5	2.9
3/09/99				<50	<0.5	<0.5	<0.5	<0.5	<2.5
9/30/99				<50	< 0.5	<0.5	<0.5	<0.5	<5.0
2/29/00		2 4. 3		<50	< 0.5	< 0.5	<0.5	<0.5	<5.0
9/18/00				<50	< 0.50	< 0.50	<0.50	< 0.50	<2.5
3/21/01		1-21		<50	< 0.50	< 0.50	<0.50	< 0.50	<2.5
9/04/01	(2)			<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
A							100 AT		2.5
3/22/02				<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
9/16/02	-	-		< 50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
3/28/03				< 50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
9/02/037		177		<50	< 0.5	< 0.5	<0.5	<0.5	<0.5
3/18/04 ⁷	(86)			<50	<0.5	<0.5	< 0.5	<0.5	<0.5
9/15/04 ⁷				< 50	< 0.5	< 0.5	< 0.5	<0.5	<0.5
3/11/05 ⁷	-		57	<50	< 0.5	< 0.5	<0.5	<0.5	<0.5
9/29/057		C ara		<50	< 0.5	< 0.5	<0.5	<0.5	<0.5
3/24/06 ⁷				<50	< 0.5	< 0.5	< 0.5	<0.5	<0.5
9/12/067			5.00° 	<50	< 0.5	< 0.5	< 0.5	<0.5	< 0.5
3/05/07				<50	< 0.5	< 0.5	<0.5	<0.5	< 0.5
9/21/07 ⁷	2 5.5 9			<50	< 0.5	< 0.5	<0.5	<0.5	< 0.5
3/06/087	(1 4.6 0)			<50	< 0.5	< 0.5	<0.5	<0.5	< 0.5
9/05/087	7 <u>444</u> 7		-	<50	< 0.5	< 0.5	<0.5	<0.5	< 0.5
3/30/09 ⁷		-	T.	<50	< 0.5	< 0.5	<0.5	<0.5	<0.5

Table 1

Groundwater Monitoring Data and Analytical Results

Former Chevron Service Station #9-3864 5101 Telegraph Avenue Oakland, California

EXPLANATIONS:

Groundwater monitoring data and laboratory analytical results prior to February 9, 2000, were compiled from reports prepared by Blaine Tech Services, Inc.

TOC = Top of Casing

GRO = Gasoline Range Organics

 $(\mu g/L)$ = Micrograms per liter

(ft.) = Feet

B = Benzene

-- = Not Measured/Not Analyzed

GWE = Groundwater Elevation

T = Toluene

(D) = Duplicate

(msl) = Mean sea level

E = Ethylbenzene

QA = Quality Assurance/Trip Blank

DTW = Depth to Water

X = Xylenes

TPH = Total Petroleum Hydrocarbons

MTBE = Methyl Tertiary Butyl Ether

- Transfer of title to Tri-Star Partnership, Inc. effective July 14, 1998.
- ORC in well.
- Laboratory report indicates gasoline C6-C12.
- ⁵ MTBE by EPA Method 8260.
- Split samples taken by Harding ESE.
- BTEX and MTBE by EPA Method 8260.
- ORC removed from well.

ORC installed.

Table 2

Dissolved Oxygen Concentrations

Former Chevron Service Station #9-3864 5101 Telegraph Avenue Oakland, California

WELL ID	DATE	PRE-PURGE (mg/L)	POST-PURGE (mg/L)			
C-3 ¹	09/18/00	3.64	(mg/L)			
	03/21/01	1.00				
	09/04/01	1.40	22			
	03/22/02	1.10	200			
	09/16/02	1.20				
	$03/28/03^2$	9==0				
	09/02/03	0.80	<u></u>			
	03/18/04 ³	0.56	25.			
1						
MW-3 ¹	09/18/00	4.01				
	03/21/01	1.30				
	09/04/01	INACCESSIBLE - CAR PARKED C	OVER WELL			
	03/22/02	1.30				
	09/16/02	1.00				
	$03/28/03^2$		**			
	09/02/03	0.90				
	$03/18/04^3$	1.21				

EXPLANATIONS:

(mg/L) = Milligrams per liter

^{-- =} Not Measured

ORC in well.

Meter inoperable; unable to take Dissolved Oxygen measurements

³ ORC removed from well.

Table 3 Groundwater Analytical Results - Oxygenate Compounds Former Chevron Service Station #9-3864

5101 Telegraph Avenue Oakland, California

WELL ID	DATE	TBA	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB
		(µg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)
C-3	09/04/01	<100	<2	<2	<2	<2	<2	<2
	09/02/03	27.000 200	<0.5					
	03/18/04		< 0.5					-
	09/15/04		10			22		
	03/11/05		< 0.5					Message -
	09/29/05		< 0.5				N	
	03/24/06	INACCESSIBLE - CAR I		ER WELL		22		
	09/12/06	3(**)	<1				25.55 25 :	(-11- 2)
	03/05/07	(44)	< 0.5					LATE:
	09/21/07	-	<0.5		***	-		1. H= 14
	03/06/08	••	< 0.5					
	09/05/08		<0.5	-	-			1557
	03/30/09		<0.5				()	
	09/15/09		<0.5				% 	: :
	03/02/10		<0.5		2425			(111)
	09/09/10		<0.5				1551	
	03/14/11		<0.5			_		
						_	? >	
MW-1	09/04/01	<100	<2	<2	<2	<2	<2	<2
	03/18/04		< 0.5			1341		
	09/15/04	SAMPLED ANNUALLY			-	7 <u>472</u> 8		
	03/11/05	••	< 0.5		(44)			
	03/24/06	••	< 0.5			y== ()		-
	03/05/07		< 0.5					22
	03/06/08		< 0.5			122	95.5% 	
	03/30/09		< 0.5					
	03/02/10		< 0.5					
	03/14/11		< 0.5		3 3			-
								55
MW-2	09/04/01	<100	<2	<2	<2	<2	<2	<2
	03/18/04		< 0.5			-	=== ===	2.00 2.00
	09/15/04	SAMPLED ANNUALLY						0000
	03/11/05		< 0.5	1999				44
	03/24/06		< 0.5					<u></u>

Table 3 Groundwater Analytical Results - Oxygenate Compounds Former Chevron Service Station #9-3864

Chevron Service Station #9-38
 5101 Telegraph Avenue
 Oakland, California

WELL ID	DATE	TBA	МТВЕ	DIPE	ETBE	TAME	1,2-DCA	EDB
		(µg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)
MW-2 (cont)	03/05/07		< 0.5	: :	WAR			
	03/06/08		< 0.5					
	03/30/09	**	< 0.5			-		
	03/02/10	<u> 202</u>	< 0.5	<u></u>				i. i:
	03/14/11	=	<0.5	:===	_	_	_	_
MW-3	09/02/03		<0.5					
	03/18/04		< 0.5					0 <u>222</u> 3
	09/15/04	INACCESSIBLE - CAR F		ER WELL		===		
	03/11/05		< 0.5				00000F	49.00000 (Marine)
	09/29/05	***	< 0.5				Note W	1224
	03/24/06		< 0.5			<u></u>	7	
	09/12/06		< 0.5					-
	03/05/07		< 0.5				18976 1887	1950
	09/21/07		< 0.5					See 1
	03/06/08		< 0.5	-				
	09/05/08	e-m	< 0.5					
	03/30/09		< 0.5					
	09/15/09	INACCESSIBLE						2000 2000
	03/02/10		< 0.5				-	
	09/09/10		< 0.5		==:	(022)		<u>.</u>
	03/14/11		<0.5	-	()	-	. -	
MW-5	09/04/01	<100	<2	<2	<2	<2	<2	<2
	03/18/04		< 0.5					
	09/15/04	SAMPLED ANNUALLY						
	03/11/05	••	< 0.5	2042	-			
	03/24/06		< 0.5					
	03/05/07	••	< 0.5				. 	
	03/06/08	••	< 0.5					

16

Table 3

Groundwater Analytical Results - Oxygenate Compounds Former Chevron Service Station #9-3864

5101 Telegraph Avenue Oakland, California

	DATE	(ue/L)	(µg/L)	DIPE (µg/L)		(Hg/L)	1,2-DCA (µg/L)	lun/I i
IW-5 (com)	03/30/09		<0.5				_	
	03/02/10		< 0.5					
	03/14/11		< 0.5	0.220	-		-	

Table 3

Groundwater Analytical Results - Oxygenate Compounds

Former Chevron Service Station #9-3864 5101 Telegraph Avenue Oakland, California

EXPLANATIONS:

TBA = t-Butyl alcohol

MTBE = Methyl Tertiary Butyl Ether

DIPE = di-Isopropyl ether

ETBE = Ethyl t-butyl ether

TAME = t-Amyl methyl ether

1,2-DCA = 1,2-Dichloroethane

EDB = 1,2-Dibromoethane

 $(\mu g/L)$ = Micrograms per liter

-- = Not Analyzed

ANALYTICAL METHOD:

EPA Method 8260 for Oxygenate Compounds

STANDARD OPERATING PROCEDURE -GROUNDWATER SAMPLING

Gettler-Ryan Inc. (GR) field personnel adhere to the following procedures for the collection and handling of groundwater samples prior to analysis by the analytical laboratory. All work is performed in accordance with the GR Health & Safety Plan and all client-specific programs. The scope of work and type of analysis to be performed is determined prior to commencing field work.

Prior to sampling, the presence or absence of free-phase hydrocarbons is determined using an interface probe. Product thickness, if present, is measured to the nearest 0.01 foot and is noted in the field notes. In addition, all depth to water level measurements are collected with a static water level indicator and are also recorded in the field notes, prior to purging and sampling any wells.

After water levels are collected and prior to sampling, if purging is to occur, each well is purged a minimum of three well casing volumes of water using pre-cleaned pumps (stack, peristaltic or Grundfos), or disposable bailers. Temperature, pH and electrical conductivity are measured a minimum of three times during the purging (additional parameters such as dissolved oxygen, oxidation reduction potential, turbidity may also be measured, depending on specific scope of work.). Purging continues until these parameters stabilize.

Groundwater samples are collected using disposable bailers. The water samples are transferred from the bailer into appropriate containers. Pre-preserved containers, supplied by analytical laboratories, are used. When pre-preserved containers are not available, the laboratory is instructed to preserve the sample as appropriate. Duplicate samples are collected for the laboratory to use in maintaining quality assurance/quality control standards, as directed by the scope of work. The samples are labeled to include the job number, sample identification, collection date and time, analysis, preservation (if any), and the sample collector's initials. The water samples are placed in a cooler, maintained at 4°C for transport to the laboratory. Once collected in the field, all samples are maintained under chain of custody until delivered to the laboratory.

The chain of custody document includes the job number, type of preservation, if any, analysis requested, sample identification, date and time collected, and the sample collector's name. The chain of custody is signed and dated (including time of transfer) by each person who receives or surrenders the samples, beginning with the field personnel and ending with the laboratory personnel.

As requested by Chevron Environmental Management Company, the purge water and decontamination water generated during sampling activities is transported by IWM to Chemical Waste Management located in Kettleman Hills, California.

Client/Facility#:	Chevron #9	-3864		Job I	Number:	386358	
Site Address:	5101 Telegi	aph Ave	nue	 Even	t Date:	3-14-11	(inclusive)
City:	Oakland, C	A		Sam	pler:	- To 4	
Well ID Well Diameter Total Depth Depth to Water Depth to Water Purge Equipment: Disposable Bailer Stainless Steel Bailer Stack Pump Suction Pump Grundfos Peristaltic Pump QED Bladder Pump	29.10 f 13.50 f 15.60 w/ 80% Recharg	n. t. xVF e [(Height of	Check if water 17 = 2 Water Column x Sampling Equip Disposable Bailer Pressure Bailer Discrete Bailer Peristaltic Pump DED Bladder Pur Other:	Volume Factor (VF) column is less 0.20) + DTW]:	3/4"= 0.02 4"= 0.66 then 0.50 e volume = 8	2 1"= 0.04 2"= 0.17 5"= 1.02 6"= 1.50 ft. Estimated Purge Volume: Time Started: Time Completed: Depth to Product: Depth to Water: Hydrocarbon Thickn Visual Confirmation/ Skimmer / Absorban Amt Removed from Amt Removed from Water Removed:	3"= 0.38 12"= 5.80 gal. (2400 hrs) (2400 hrs) ft ft ft thess: ft Description: at Sock (circle one) Skimmer: gal Well: gal
Other: =						Product Transferred	to:
Start Time (purge) Sample Time/Dat Approx. Flow Rate Did well de-water Time (2400 hr.) 6726 6732	e: <u>0850 1</u>	gpm. fyes, Time pH 7. 21 7.36 7.27	Conductivity (µmhos/cm - 1	nt Descriptio Volume: y	ea		g: <u>13.80</u> ORP (mV)
			LABORATOR				
SAMPLE ID	(#) CONTAINER x voa vial	YES	PRESERV. T		ASTER T	ANALY PH-GRO(8015)/BTEX+M	
COMMENTS:							
Add/Replaced Lo	ock:	Add/l	Replaced Plu	u.		Add/Replaced Bolt:	

Client/Facility#:	Chevron #9	-3864		Job N	lumber:	386358	
Site Address:	5101 Teleg	raph Ave	nue	Even	t Date:	3-14-11	(inclusive)
City:	Oakland, C			—– Samp		Joe	(moldsive)
						30€	
Well ID	mw-1			Date Mo	nitored:	3-14-11	
Well Diameter	2	n.	ſ	Volume	3/4"= 0.02		011 0 00
Total Depth	21.61	ft.		Factor (VF)	4"= 0.66		3"= 0.38 12"= 5.80
Depth to Water	11.65	t.	۔ Check if water o	column is less	then 0.50) ft.	
	9-96	_xVF	17 = /1	69 x3 case	volume =	Estimated Purge Volume:	5 S gal.
Depth to Water v	w/ 80% Recharg	e [(Height of	Water Column x	0.20) + DTW]: _	13.6	4	
Purge Equipment:			Committee Carrier			Time Started: Time Completed:	(2400 hrs) (2400 hrs)
Disposable Bailer			Sampling Equip			Depth to Product:	(2400 fils)
Stainless Steel Bailer	. —		Disposable Bailer Pressure Bailer			Depth to Water:	ft
Stack Pump			Piscrete Bailer			Hydrocarbon Thickne	
Suction Pump			Peristaltic Pump			Visual Confirmation/	Description/
Grundfos			NED Bladder Pum			Skimmer / Absorbant	Sock (gircle one)
Peristaltic Pump			other:			Amt Removed from S	Skimmer: gal
QED Bladder Pump						Amt Removed from V	Vell:gal
Other:	-					Water Removed: Product Transferred t	0.
						T Toddot Transierred [0
Start Time (purge)	1015		10/0 04/0	- 0 1141	0	,	
		2		r Conditions:	<u>,</u>	un	
Sample Time/Dat						Odor: Y / 🕪	
Approx. Flow Rate		_gpm.		nt Description	n: <u></u>	rone	
Did well de-water	? <u>90</u> 1	fyes, Time	\	/olume:	9	al. DTW @ Sampling	: 11.78
Time	Malana a da al S		Conductivity	Temper	ature	D.O.	ORP
(2400 hr.)	Volume (gal.)	pН	(µmhos/cm -			, ,,	mV)
1020	115	7.48	1315	16.	9		
1024	3.5	7.43	1292		0		
1028	5,5	7.36	1287				
			APORATOR	VINEODIA	TION		
SAMPLE ID	(#) CONTAINER	REFRIG.	ABORATOR PRESERV. T		ATORY	ANALY	SES.
MW-1	x voa vial	YES	HCL			TPH-GRO(8015)/BTEX+MT	
							J. (0200)
COMMENTS:							_
Add/Replaced Lo	ock:	Add/l	Replaced Pluc	1:		Add/Renlaced Rolf:	

Client/Facility#:	Chevron #9	-3864			Job Number:	386358		
Site Address:	5101 Telegi	raph Ave	nue		Event Date:	2 11	. []	- (inclusive)
City:	Oakland, C				Sampler:			_(micidalve)
					oampier.	500		-
Well ID	mw-2			Da	te Monitored:	3-14-	//	
Well Diameter	2	n.		Volume				י
Total Depth	24.38	- t.		Factor (V	3/4"= 0.0 F) 4"≈ 0.6		2"= 0.17 3"= 0.38 6"= 1.50 12"= 5.80	12
Depth to Water			Check if water	column i	s less then 0.5			_
	12.49	xVF Ø	.17 = 2	.12,	(3 case volume ≃	Estimated Purge	Volume: 6 .3	gal.
Depth to Water w	// 80% Recharg	e [(Height of	Water Column x	0.20) + D	TWJ: 14.3	8	Volume.	_ yaı.
						Time Starte		(2400 hrs)
Purge Equipment:			Sampling Equip			Time Comp Depth to Pr		(2400 hrs)
Disposable Bailer Stainless Steel Bailer			Disposable Baile	r -		Depth to W		n
Stack Pump			ressure Bailer	-			n Thickness:	ft
Suction Pump			Discrete Bailer	-		Visual Conf	irmation/Description:	
Grundfos			'eristaltic Pump ìED Bladder Pur			Skimmer / A	Absorbant Søck (circl	e one)
Peristaltic Pump			other:	пр —		Amt Remov	ed from Skimmer:	gal
QED Bladder Pump			Литет				ed from yvell:	gal
Other:						Water Remo	oved:/ nsferred to:	
						Froduct fra	nsierred to:	
Start Time (purge):	: 1050		10/a a d b a	C di		0		
Sample Time/Date		3-14-11		er Condi	1 —	lain	· ·	
· · · · · · · · · · · · · · · · · · ·				_	clear	Odor: Y·/N	<i></i>	
Approx. Flow Rate		_gpm.	Sedime			rone		
Did well de-water?) <u>no</u> II	yes, Time		Volume	:	gal. DTW @ S	ampling: <u>/2-/</u>	16
Time	\/aluma (mat \	-11	Conductivity	v . 7	emperature	D.O.	ORP	
(2400 hr.)	Volume (gal.)	рН	(µmhos/cm - į	(B) ((C) / F)	(mg/L)	(mV)	
1056	2	7.25	1161		17.4			
1100	4	7.30	114-	7	17,7			
1104	6.5	7:32	115	4	17.5			
_ =								
SAMPLE ID	(#) CONTAINER	REFRIG.	ABORATOR					
MW-2	x voa vial	YES	PRESERV. T		ABORATORY LANCASTER	TPU CPO/9045\/F	ANALYSES	
7/100	V/ X VOG VIGI	11.0	HCL	TI	LANCASTER	1PH-GRO(8015)/E	BTEX+MTBE(8260)	
								
				-				
COMMENTS:			<u> </u>					
								
						···		
			· · · · · · · · · · · · · · · · · · ·					
Add/Replaced Lo	ck:	NPPV	Replaced Dlu	a.		Add/Danlaced	D = U.	

Client/Facility#:	Chevron #9	-3864			Job Num	ber:	386358	
Site Address:	5101 Telegi	raph Ave	nue		Event Da	te:	3-14-11	(inclusive)
City:	Oakland, C	A			Sampler:		For	(moldsive)
					•			
Well ID	mw-3	_		D	ate Monito	red:	3-14-11	
Well Diameter	2	in.		Volume	3/4	"= 0.02		3"= 0.38
Total Depth	26.79	ft.		Factor		"= 0.66		12"= 5.80
Depth to Water	14.17 1	t. U	Check if water	column	is less ther	0.50	ft. Estimated Purge Volume:	6.4
Depth to Water v	w/ 80% Recharg	e [(Height of	Water Column x	0.20) +	DTW]:	6.69		
Purge Equipment:		5	Sampling Equip	ment:			Time Started: Time Completed:	(2400 hrs)
Disposable Bailer			Disposable Bailer				Depth to Product:	ft
Stainless Steel Bailer			Pressure Bailer			_	Depth to Water:	ft
Stack Pump		0	Discrete Bailer				Hydrocarbon Thicknet Visual Confirmation/E	
Suction Pump		F	Peristaltic Pump					
Grundfos			ΣED Bladder Pun				Skimmer / Absorbant	Sock (circle one)
Peristaltic Pump		C	Other:				Amt Removed from S	kimmer: gal Vell: gal
QED Bladder Pump							Water Removed:	
Other:							Product Transferred t	0:
Start Time (purge) Sample Time/Date Approx. Flow Rate Did well de-water? Time (2400 hr.) 0906 0912 0917	e: <u>0930 /</u>	_gpm.	Sedime	Color: _ nt Des Voluma , asy	c/ea.	(ge	D.O. (14.46 DRP mV)
			ABORATOR					
	(#) CONTAINER	REFRIG.	PRESERV. T	YPE	LABORATO		ANALY	
mw-27	(X Voa Viai	YES	HCL	-	LANCASTE	R	PH-GRO(8015)/BTEX+MT	BE(8260)
					 			
					 			
				-		-		
COMMENTS:								
Add/Replaced Lo	ck:	Add/F	Replaced Plud	a:		A	dd/Renlaced Bolt	

Client/Facility#:	Chevron #9	-3864		Job I	Number:	386358		
Site Address:	5101 Telegi	raph Ave	nue		t Date:	3-14-11		(inclusive)
City:	Oakland, C			Sam		Joy		(miciusive)
-						204		
Well ID	_mw-5			Date Mo	nitored:	3-14-11		
Well Diameter	2 i	n.	[V	'olume	3/4"= 0.02		17 3"= 0.38	
Total Depth	21.65 1	ft.		actor (VF)	4"= 0.66			
Depth to Water	14.19 1	t. 🔲	Check if water co	olumn is less	then 0.50	ft.		
	7.46	xVF O	17 = 1,2	. 7 x3 case	volume =	Estimated Purge Volume	e:	gal.
Depth to Water v	v/ 80% Recharg	e [(Height of	Water Column x 0.	20) + DTW]: _	15.6	<i>x</i>		
Purge Equipment:			Samulian Facilian	4		Time Started: Time Completed:		(2400 hrs) (2400 hrs)
Disposable Bailer			Sampling Equipme	ent:		Depth to Product:		(2400 IIIS)
Stainless Steel Bailer			Disposable Bailer Pressure Bailer		_	Depth to Water:_		/ft
Stack Pump			Piscrete Bailer			Hydrocarbon Thio		ft
Suction Pump			Peristaltic Pump			Visual Confirmation	on/Description:	
Grundfos			ED Bladder Pump			Skimmer / Absorb	ant Sock (circle	one)
Peristaltic Pump			other:	-		Amt Removed from	m Skimmer:	gal
QED Bladder Pump		_				Amt Removed from Water Removed:	m Well:	gal
Other:						Product Transferre		
							ou to	
Start Time (purge)	. 0000		\A/	0 - 100	<u> </u>	7		
		2 11 11	,	Conditions:		Cuy m		
Sample Time/Date		 ,		lor:	Lean	Odor: Y / 🕪 _		
Approx. Flow Rate		_gpm.		Description	n:	1000		
Did well de-water	? <u></u>	fyes, Time:		olume:	9	al. DTW @ Sampl	ing: <u>14,3</u>	0
Time	.,,		Conductivity	Tempe	rature	D.O.	ORP	
(2400 hr.)	Volume (gal.)	рН	(μmhos/cm - μS			(mg/L)	(mV)	
0947	1.5	7-63	1097	16	9			
0951	3	7.38	1125	17	:4			
0955	4	7.42	1129		.0			
14								
0.0001.515	/// COMMITTE		ABORATORY					
SAMPLE ID	(#) CONTAINER x voa vial	REFRIG.	PRESERV. TYP		RATORY		LYSES	
MW-5	x voa viai	YES	HCL	LANC	ASTER 7	TPH-GRO(8015)/BTEX+	-MTBE(8260)	
	2							
30					-			
COMMENTS:								
Add/Replaced Lo	ck:	Add/F	Replaced Plua:			Add/Renieced Rolf-		

CRA MTI Project # 61H-1951						51	Analyses Requested Gro # 123730						7 Grp # 1237309						
Facility #: SS#9-3864 G-R#386358 G	obal ID#T0600	0100343		Т	Matrix						Р	rese	erva	tion	Coc	des	-		Preservative Codes
Site Address: 5101 TELEGRAPH AVENUE,	OAKLAND,	CA				- 1	1	#	비	_			\dashv		\Box	\Box	\Box		H = HCI T = Thiosulfate
Chevron PM: MTI Lead	Consultant CF	RAKJ K	iernan	╁		H	j			Silica Gel Cleanup		- 1				- 1			N = HNO ₃ B = NaOH S = H ₂ SO ₄ O = Other
Consultant/Office: G-R, Inc., 6747 Sierra Co					€ 8		5	ᆔ		호			Ш						
Consultant Prj. Mgr.: Deanna L. Harding (d				1	Potable NPDES		of Containers	8260 75 8021		80	-			Ш				- [☐ J value reporting needed Must meet lowest detection limits
				-			ខ្ញុំ	X 2					_'	- U					possible for 8260 compounds
Sampler: JOE AJEMIAN	Fax #: <u>925-</u> :	551-7899	_					8260	<u>දූ</u>	윮	- 1	S	Method	Method					8021 MTBE Confirmation
Sampler. JUE ASEMIAN			ŧ			. ایرا		<u>ш</u>	TPH 8015 MOD GRO	TPH 8015 MOD DRO	គ្គ	Oxygenates	2						Confirm highest hit by 8260
	Date	Time	Grab		- E	Air	₹	₩ .	912	8		ő	Bad	le g					Confirm all hits by 8260
Sample Identification		Time Collected	Grab	Soft	Water	Ö	흥	BTEX + MTBE	E	E	8260 full scan	1	Total Lead	Dissolved Lead				Ì	Run oxy's on highest hit Run oxy's on all hits
C-3	1-14-11	0850	✓ <u> </u>		V		6		커		-	7	-	믝	\dashv	+	+	-	Comments / Remarks
		1038		\perp			6	7	7				\neg		\neg		_	\top	
mw-2 mw-3		1115	Н-	╄		4	6	4	4		\Box						\top	\top	- Collection date
MW-5	 	0930	1/	┦	1/	1	6		4	\perp	\perp								3-14-11 per M. Chalinder. Jmp
Mass	 	1005	V	╁—	V		6	4	4	4	_	_	\perp				\perp	\perp	Thaunaur. Jiry
				╁	\vdash	-	-	\dashv	-	\dashv	\dashv	_	4	\dashv	_	\bot	\perp	\perp	Silain
			_	+		-	+	+	+	-+	\dashv	\dashv	\dashv		+	-	\bot	+	_
				1			十	\top	+	+	-+	+	\dashv	+	+	+	+	+	
									\dagger	\top	_	\dashv	\dashv	\dashv	+	+	+	+	
			_				\Box							1		\top	+	+	-
				╀		_	4	\perp	4				\perp	\Box					
7	Li	Pollowski		\vdash			_			,		Щ		\perp					
Turnaround Time Requested (TAT) (please cli STD 7AT 72 hour 48 hou	•	Relinquis	A Defect								ate 4-1	Ti LES	THE JUL	Re	Ceive	ed by		موسره	Date Time
24 hour 4 day 5 day	•	Relinquis	hed by	5						_		1	ne			od by:			
		Relinquis							4/	14/		16	356	1	F	ED)	K.	4	Date Time
Data Package Options (please circle if required) QC Summary Type I - Full	DE/EDD	rioiiriquis	areu oy.		The section to the section of the se					Da	ate	Tir	ne	Pé	Celle	b by:		 k A	Date Time
Type VI (Raw Data)		Relinquis	hed by	Com	mercial	Carrie	er:							Be	cahe	aley:	1	$\frac{N}{M}$	
WIP (RWQCB)	wou	UPS	E	edĔx		Ott	ner						_		30110	Wij	w	11	Date Time
Disk Temperature U			ture Up	on Re	ceipt_	1.3	3-1	. f					C°	Cu	stock	Sea	ls lat	act?	1975 No 19755
			-	Contract of the last	100		-	-			-						7 11		140

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fex: 717-656-2681 • www.lancesterlabs.com

ANALYTICAL RESULTS

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425 Prepared for:

Chevron c/o CRA Suite 107 10969 Trade Center Dr Rancho Cordova CA 95670

March 21, 2011

Project: 93864

Submittal Date: 03/15/2011 Group Number: 1237309 PO Number: 93864 Release Number: MTI State of Sample Origin: CA

RECEIVED

MAR 21 2011

GETTLER-RYAN INC. GENERAL CONTRACTORS

Client Sample Description C-3-W-110314 Grab Water

MW-1-W-110314 Grab Water MW-2-W-110314 Grab Water MW-3-W-110314 Grab Water MW-5-W-110314 Grab Water Lancaster Labs (LLI) #

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

ELECTRONIC

COPY TO

Gettler-Ryan, Inc.

Attn: Rachelle Munoz

ELECTRONIC

Chevron c/o CRA

Attn: Report Contact

COPY TO

Attn: Anna Avina

ELECTRONIC COPY TO

Chevron

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2500 Fax: 717-656-2661 • www.lancasterlabs.com

Questions? Contact your Client Services Representative Jill M Parker at (717) 656-2300 Ext. 1241

Respectfully Submitted,

Maria S. Lord Senior Specialist

Uh. la S. And

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: C-3-W-110314 Grab Water

Facility# 93864 Job# 386358 MTI# 61H-1951 GRD

5101 Telegraph-Oakland T0600100343 C-1

LLI Sample # WW 6229978

LLI Group # 1237309

Account # 12099

Project Name: 93864

Collected: 03/14/2011 08:50

by JA

Chevron c/o CRA

Suite 107

Submitted: 03/15/2011 09:30 Reported: 03/21/2011 11:59

10969 Trade Center Dr

Rancho Cordova CA 95670

TOC1-

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B	u g/1	u g/1	
10943	Benzene	71-43-2	N.D.	0.5	1
10943	Ethylbenzene	100-41-4	0.6	0.5	1
10943	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	1
10943	Toluene	108-88-3	N.D.	0.5	1
10943	Xylene (Total)	1330-20-7	1	0.5	1
GC Vol	atiles SW-846	8015B	u g/1	ug/l	
01728	TPH-GRO N. CA water C6-C12	n.a.	3,400	50	1

General Sample Comments

State of California Lab Certification No. 2501

Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Tim	ıe	Analyst	Dilution Factor
10943	BTEX/MTBE 8260 Water	SW-846 8260B	1	P110762AA	03/17/2011	04:01	Holly Berry	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	P110762AA	03/17/2011	04:01	Holly Berry	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	11076A07A	03/18/2011	23:53	Katrina T	1
							Longenecker	
01146	GC VOA Water Prep	SW-846 5030B	1	11076A07A	03/18/2011	23:53	Katrina T	1
							Longenecker	

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-1-W-110314 Grab Water

Facility# 93864 Job# 386358 MTI# 61H-1951 GRD

5101 Telegraph-Oakland T0600100343 MW-1

LLI Sample # WW 6229979 LLI Group # 1237309 Account # 12099

Project Name: 93864

Collected: 03/14/2011 10:38 by JA

Chevron c/o CRA

Suite 107

Submitted: 03/15/2011 09:30 Reported: 03/21/2011 11:59

10969 Trade Center Dr Rancho Cordova CA 95670

TOMW1

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor	
GC/MS	Volatiles SW-846	8260B	ug/l	ug/l		
10943	Benzene	71-43-2	N.D.	0.5	1	
10943	Ethylbenzene	100-41-4	N.D.	0.5	1	
10943	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	1	
10943	Toluene	108-88-3	N.D.	0.5	1	
10943	Xylene (Total)	1330-20-7	N.D.	0.5	1	
GC Vol	atiles SW-846	8015B	ug/l	ug/l		
01728	TPH-GRO N. CA water C6-C12	n.a.	N.D.	50	1	

General Sample Comments

State of California Lab Certification No. 2501

Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

	'AT	Analysis Name	Method	Trial#	Batch#	Analysis		Analyst	Dilution	
	fo.				Date and Time		me		Factor	
1	0943	BTEX/MTBE 8260 Water	SW-846 8260B	1	P110762AA	03/17/2011	04:28	Holly Berry	1	
0	1163	GC/MS VOA Water Prep	SW-846 5030B	1	P110762AA	03/17/2011	04:28	Holly Berry	1	
0	1728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	11076A07A	03/18/2011	18:15	Katrina T	1	
	1146	GC VOA Water Prep	ON 046 F000D	_				Longenecker		
U	1140	GC VOA Water Prep	SW-846 5030B	1	11076A07A	03/18/2011	18:15	Katrina T Longenecker	1	
								polidenecyet		

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-2-W-110314 Grab Water

Facility# 93864 Job# 386358 MTI# 61H-1951 GRD

5101 Telegraph-Oakland T0600100343 MW-2

LLI Sample # WW 6229980

LLI Group # 1237309 Account # 12099

Project Name: 93864

Collected: 03/14/2011 11:15 by JA

Chevron c/o CRA

Suite 107

Submitted: 03/15/2011 09:30 Reported: 03/21/2011 11:59 10969 Trade Center Dr Rancho Cordova CA 95670

TOMW2

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l	ug/l	
10943	Benzene	71-43-2	N.D.	0.5	1
10943	Ethylbenzene	100-41-4	N.D.	0.5	1
10943	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	1
10943	Toluene	108-88-3	N.D.	0.5	1
10943	Xylene (Total)	1330-20-7	N.D.	0.5	1
GC Vol	atiles SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water C6-C12	n.a.	N.D.	50	1

General Sample Comments

State of California Lab Certification No. 2501 Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10943	BTEX/MTBE 8260 Water	SW-846 8260B	1	F110761AA	03/17/2011 06:59	Anita M Dale	1
	GC/MS VOA Water Prep	SW-846 5030B	1	F110761AA	03/17/2011 06:59		1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	11076A07A	03/18/2011 19:13		ī
01146	GC VOA Water Prep	SW-846 5030B	1	11076A07A	03/18/2011 19:13	Longenecker Katrina T Longenecker	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-3-W-110314 Grab Water

Facility# 93864 Job# 386358 MTI# 61H-1951 GRD

5101 Telegraph-Oakland T0600100343 MW-3

LLI Sample # WW 6229981 LLI Group # 1237309

Account # 12099

Project Name: 93864

Collected: 03/14/2011 09:30

by JA

Chevron c/o CRA

Suite 107

Submitted: 03/15/2011 09:30

Reported: 03/21/2011 11:59

10969 Trade Center Dr Rancho Cordova CA 95670

TOMW3

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l	ug/l	
10943	Benzene	71-43-2	N.D.	0.5	1
10943	Ethylbenzene	100-41-4	N.D.	0.5	1
10943	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	1
10943	Toluene	108-88-3	N.D.	0.5	1
10943	Xylene (Total)	1330-20-7	0.6	0.5	1
C Vol	atiles SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water C6-C12	n.a.	1,300	50	1

General Sample Comments

State of California Lab Certification No. 2501

Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10943	BTEX/MTBE 8260 Water	SW-846 8260B	1	P110762AA	03/17/2011 04:56	Holly Berry	1
01163		SW-846 5030B	1	P110762AA	03/17/2011 04:56		1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	11076A07A	03/18/2011 19:39	Katrina T	1
						Longenecker	
01146	GC VOA Water Prep	SW-846 5030B	1	11076A07A	03/18/2011 19:39	Katrina T	1
						Longenecker	

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 *717-656-2300 Fax: 717-656-2681 * www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-5-W-110314 Grab Water

Facility# 93864 Job# 386358 MTI# 61H-1951 GRD

5101 Telegraph-Oakland T0600100343 MW-5

LLI Sample # WW 6229982 LLI Group # 1237309

Account # 12099

Project Name: 93864

Collected: 03/14/2011 10:05 by JA

Chevron c/o CRA

Suite 107

Submitted: 03/15/2011 09:30 Reported: 03/21/2011 11:59

10969 Trade Center Dr Rancho Cordova CA 95670

TOMW5

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor	
GC/MS	Volatiles SW-846	8260B	ug/l	ug/l		
10943	Benzene	71-43-2	N.D.	0.5	1	
10943	Ethylbenzene	100-41-4	N.D.	0.5	1	
10943	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	1	
10943	Toluene	108-88-3	N.D.	0.5	1	
10943	Xylene (Total)	1330-20-7	N.D.	0.5	1	
GC Vol	atiles SW-846	8015B	ug/l	ug/l		
01728	TPH-GRO N. CA water C6-C12	n.a.	N.D.	50	1	

General Sample Comments

State of California Lab Certification No. 2501 Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method		Trial#	Batch#	Analysis Date and Tir	ne	Analyst	Dilution Factor
10943	BTEX/MTBE 8260 Water	SW-846	8260B	1	F110761AA	03/17/2011	07:21	Anita M Dale	1
01163		SW-846	5030B	1	F110761AA	03/17/2011		Anita M Dale	1
01728	TPH-GRO N. CA water C6-C12	SW-846	8015B	1	11076A07A	03/18/2011	20:04	Katrina T	1
01146	GC VOA Water Prep	SW-846	5030B	1	11076A07A	03/18/2011	20:04	Longenecker Katrina T Longenecker	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Quality Control Summary

Client Name: Chevron c/o CRA Reported: 03/21/11 at 11:59 AM

Group Number: 1237309

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the

Laboratory Compliance Quality Control

Analysis Name	Blank Result	Blank MDL	Report <u>Units</u>	LCS %REC	LCSD %REC	LCS/LCSD <u>Limits</u>	RPD	RPD Max
Batch number: F110761AA	Sample numb	er(s): 622	29980.6229	982				
Benzene	N.D.	0.5	ug/l	99		79-120		
Ethylbenzene	N.D.	0.5	ug/l	97		79-120		
Methyl Tertiary Butyl Ether	N.D.	0.5	ug/l	95		76-120		
Toluene	N.D.	0.5	ug/l	98		79-120		
Xylene (Total)	N.D.	0.5	ug/l	95		80-120		
2 (,		0.5	49/1	23		80-120		
Batch number: P110762AA	Sample numbe	er(s): 622	9978-6229	979.62299	81			
Benzene	N.D.	0.5	ug/l	100	100	79-120	0	30
Ethylbenzene	N.D.	0.5	ug/l	96	96	79-120	0	30
Methyl Tertiary Butyl Ether	N.D.	0.5	ug/l	101	103	76-120	2	30
Toluene	N.D.	0.5	ug/l	98	98	79-120	1	30
Xylene (Total)	N.D.	0.5	ug/l	95	96	80-120	0	
		0.5	49/1	23	30	80-120	U	30
Batch number: 11076A07A	Sample numbe	er(s): 622	9978-6229	982				
TPH-GRO N. CA water C6-C12	N.D.	50.	ug/l	100	109	75-135	9	30

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD MAX	BKG Conc	DUP <u>Conc</u>	DUP RPD	Dup RPD Max
Batch number: F110761AA	Sample	number(s)	: 6229980	,62299	82 UNSP	K: 6229982			
Benzene	102	103	80-126	1	30				
Ethylbenzene	101	101	71-134	1	30				
Methyl Tertiary Butyl Ether	95	97	72-126	2	30				
Toluene	101	101	80-125	0	30				
Xylene (Total)	99	100	79-125	0	30				

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: UST VOCs by 8260B - Water Batch number: F110761AA

Dibromofluoromethane 1,2-Dichloroethane-d4

Toluene-d8

4-Bromofluorobenzene

*- Outside of specification

- (1) The result for one or both determinations was less than five times the LOO.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Quality Control Summary

Client Report	Name: Chevron ed: 03/21/11 a	c/o CRA t 11:59 AM		Group Number: 1237309
~	, ,		Surrogate	Quality Control
6229980	95	100	100	92
6229982	94	100	99	92
Blank	95	100	100	92
LCS	94	100	99	95
MS	94	102	99	97
MSD	93	101	99	96
Limits:	80-116	77-113	80-113	78-113
Analysis Batch nu	Name: UST VOCs by	y 8260B - Water		
	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
6229978	99	98	97	99
6229979	100	98	100	92
6229981	101	99	99	96
Blank	100	99	99	91
LCS	101	102	97	93
LCSD	101	101	98	94
Limits:	80-116	77-113	80-113	78-113
	Name: TPH-GRO N. mber: 11076A07A Trifluorotoluene-F	CA water C6-C12		
6229978 6229979	118 86			

6229979	86
6229980	84
6229981	115
6229982	85
Blank	90
LCS	95
LCSD	96

Limits: 63-135

*- Outside of specification

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

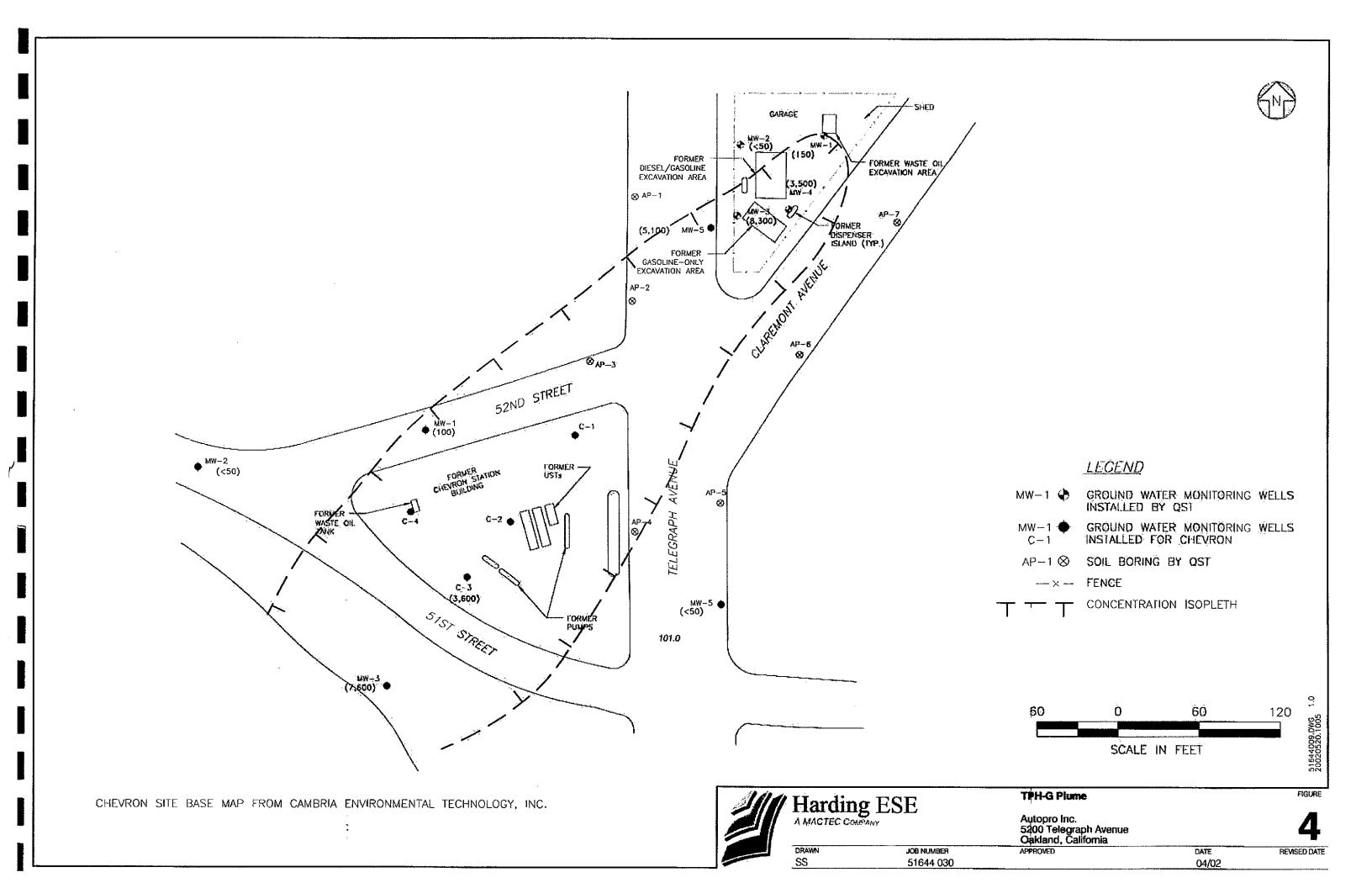
RL N.D.	Reporting Limit none detected	BMQL MPN	Below Minimum Quantitation Level Most Probable Number
TNTC	Too Numerous To Count	CP Units	cobalt-chloroplatinate units
IU	International Units	NTU	nephelometric turbidity units
umhos/cm	micromhos/cm	ng	nanogram(s)
С	degrees Celsius	ř	degrees Fahrenheit
meq	milliequivalents	ib.	pound(s)
g	gram(s)	kg	kilogram(s)
ug	microgram(s)	mg	milligram(s)
ml	milliliter(s)	Ĭ	liter(s)
m3	cubic meter(s)	ui	microliter(s)

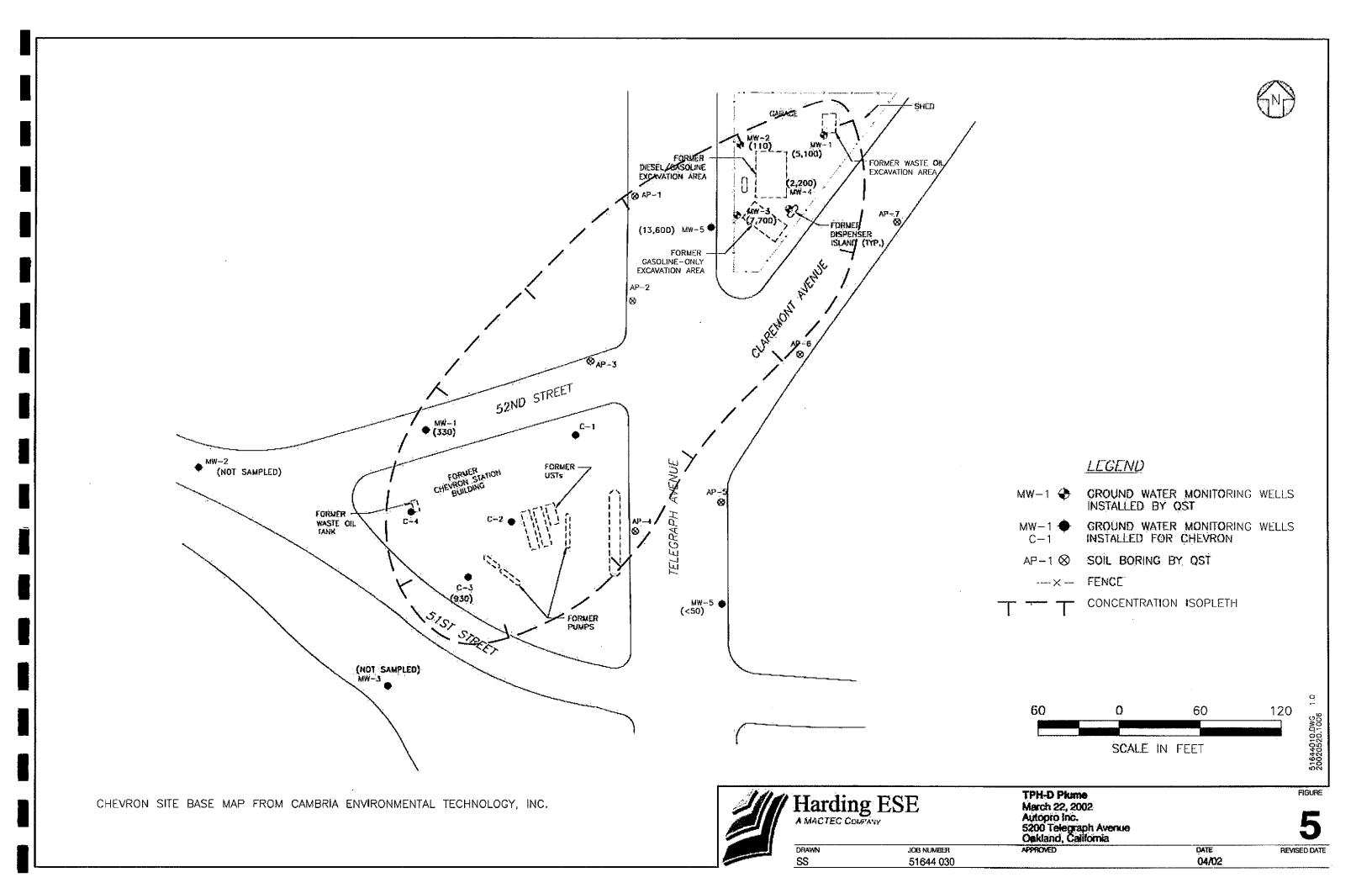
- less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- J estimated value The result is ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation (LOQ).</p>
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.
- ppb parts per billion
- Dry weight basis

 Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture. All other results are reported on an as-received basis.

U.S. EPA CLP Data Qualifiers:

	Organic Qualiflers		Inorganic Qualifiers
Α	TIC is a possible aldol-condensation product	В	Value is <crdl, but="" th="" ≥idl<=""></crdl,>
В	Analyte was also detected in the blank	E	Estimated due to interference
C	Pesticide result confirmed by GC/MS	M	Duplicate injection precision not met
D	Compound quantitated on a diluted sample	N	Spike sample not within control limits
E	Concentration exceeds the calibration range of the instrument	S	Method of standard additions (MSA) used for calculation
N	Presumptive evidence of a compound (TICs only)	U	Compound was not detected
Р	Concentration difference between primary and	W	Post digestion spike out of control limits
	confirmation columns >25%	*	Duplicate analysis not within control limits
U	Compound was not detected	+	Correlation coefficient for MSA < 0.995
X,Y,Z	Defined in case narrative		


Analytical test results meet all requirements of NELAC unless otherwise noted under the individual analysis.


Measurement uncertainty values, as applicable, are available upon request.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions, and Lancaster hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

APPENDIX F HISTORICAL ISOCONCENTRATION MAPS AND NEARBY GROUNDWATER DATA

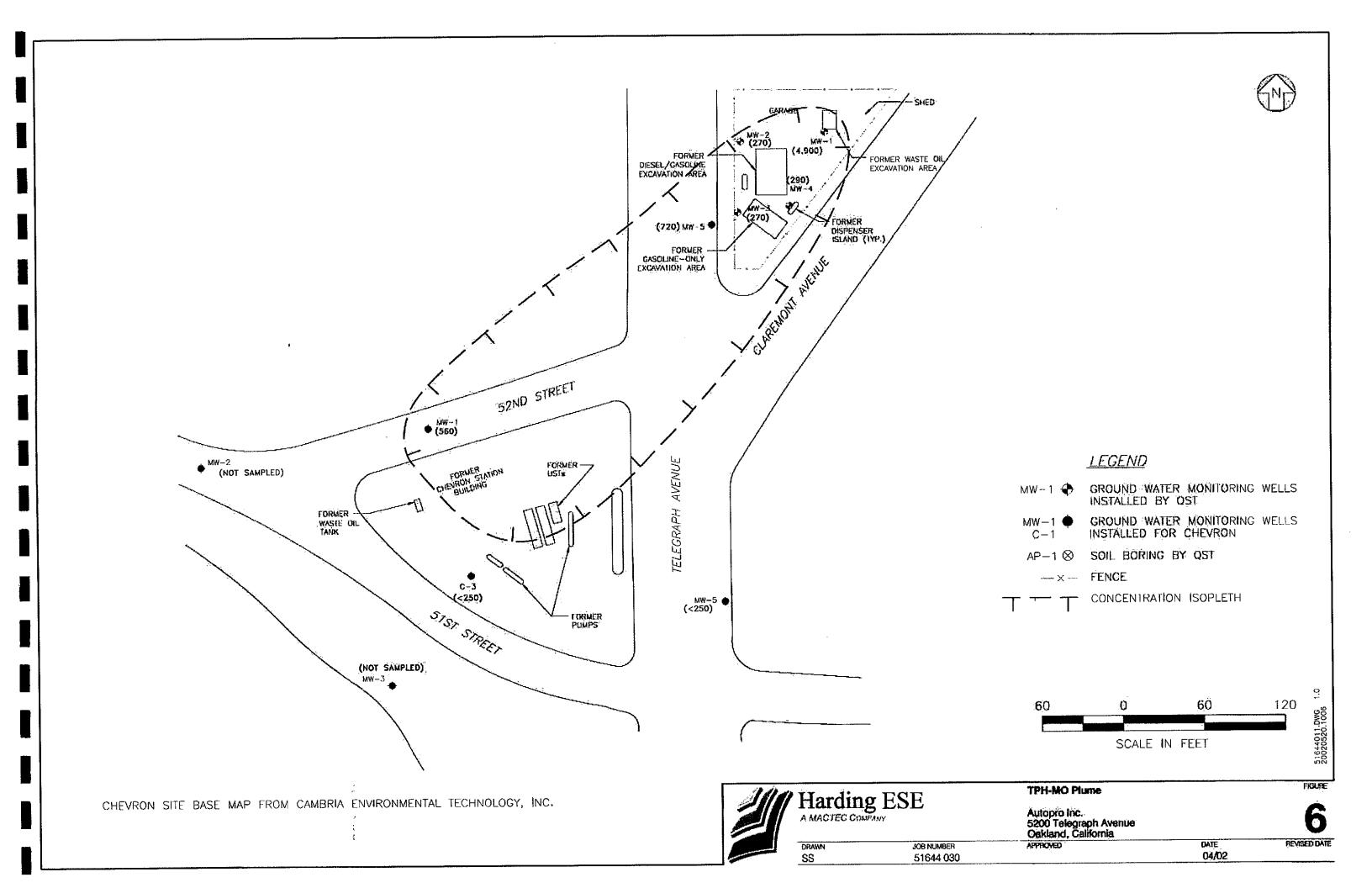


TABLE 2

ANALYTICAL RESULTS FOR GRAB GROUND WATER SAMPLES

Tri-Star Partnership Autopro Facility 5200 Telegraph Avenue Oakland, California

Sample LD.	Date Sampled	TPH-D (μg/L)	TPH-G (µg/L)	TPH-MO (µg/L)	Benzene (μg/L)	Toluene (μg/L)	Ethylbenzene (µg/L)	Total Xylenes (µg/L)	MTBE (µg/L)
AP-1	07/02/96	190 ^{d,}	1,400 ^{b,J,}	<250	<0.5	2.9	<0.5	3.1	<5.0
AP-2	07/02/96	74,000 ^{d,h1}	7,900 ^{6,4,6} 1	<250	69	12	20	43	60
AP-3	07/02/96	47,000 ^{8,h,f}	14,000 ^{6,4,6}	<250	130	16	45	44	100
AP-4	07/02/96	<50	<50	<250	<0.5	<0.5	<0.5	<0.5	<5.0
AP-5	07/02/96	<50	<50	<250	<0.5	<0.5	<0.5	<0.5	<5.0
AP-6	07/02/96	410 ^{g1}	<50	1,900	<0.5	<0,5	<0.5	<0.5	<5.0
AP-7	07/02/96	<50	<50	<250	<0.5	<0.5	<0.5	<0.5	<5.0
MCE	_			_	1.0	150	700	1,750	35*
1		L	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>

Notes:

TPH-D = Total Petroleum Hydrocarbons as Diesel.

TPH-G = Total Petroluem Hydrocarbons as Gasoline.

TPH-MO = Total Petroleum Hydrocarbons as Motor Oil.

MTBE = methyl tertiary butyl ether.

 μ g/L = micrograms per liter or parts per billion (ppb).

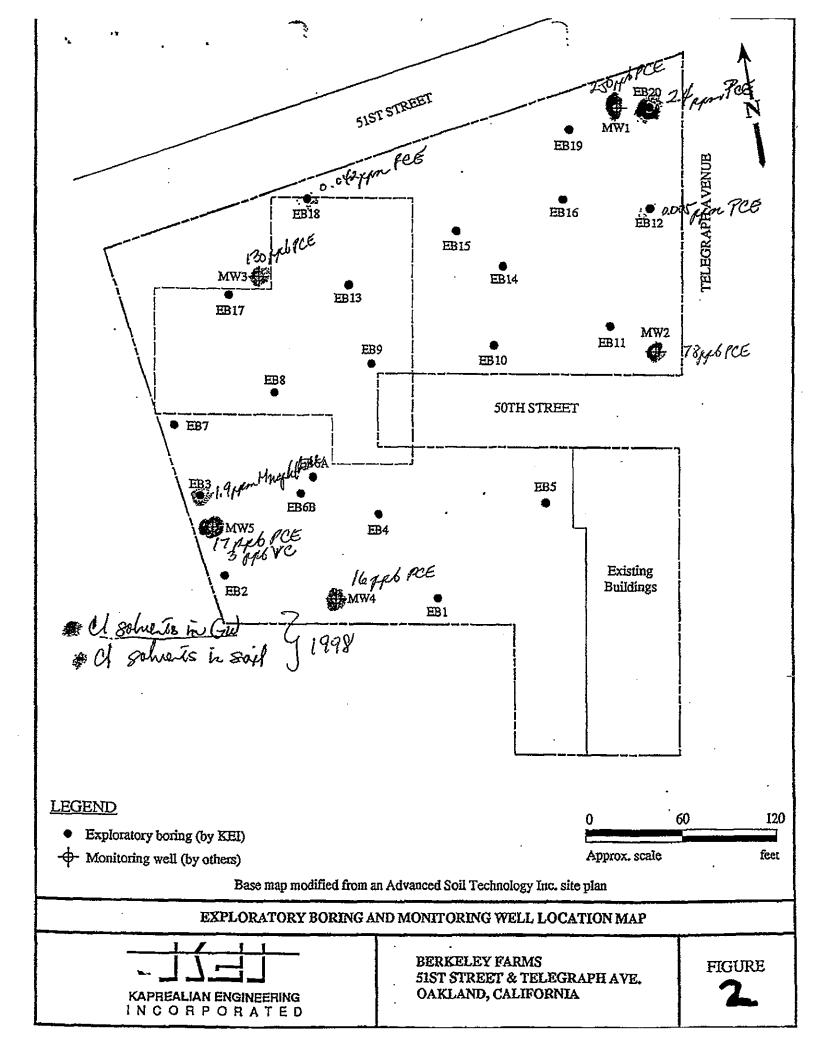
- < = less than listed detection limit.
- = not applicable.
- * = DHS Action Level.

MCL = primary Maximum Contaminant Limit as defined by the California Department of Health Services (DHS) Drinking Water Standards.

- b = heavier gasoline-range compounds are significant (aged gasoline?).
- d = gasoline-range compounds having broad chromatographic peaks are significant; biologically altered gasoline?
- ⁹ = strongly aged gasoline or diesel-range compounds are significant.
- h = lighter than water immiscible sheen is present.
- 1 = liquid sample that contains greater than ~ 5 vol. % sediment.
- I = no recognizable pattern.

TABLE 3

GROUNDWATER ANALYTICAL RESULTS - UTILITY TRENCH BACKFILL BORING


Autopro Facility 5200 Telegraph Avenue Oakland, California

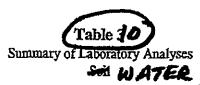
Börmel(D)	Date Sampled	Ferala Little	hap eline Gody	TPHC.	Benzene.	erolicae) (1997)	Parkyligalisadų: Livosyby		E (VIVE) (C)(III)	0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0
SB-1	08/07/04	29,000	<2,500	57,000	9.5	11	36	29	<5.0	ND⁺
ALMORES.	100 E 100 E		WAS AND		West Disa	概划608年	E6024/00 #444	1100	SE BEE	

Notes:

TPHd = Total Petroleum Hydrocarbons as Diesel
TPHmo = Total Petroleum Hydrocarbons as Motor Oil
TPHg = Total Petroleum Hydrocarbons as Gasoline
MTBE = methyl tertlary butyl ether.
MCL = (Maximum Contaminant Level) ND* = Not detected for all oxygenates
µg/L = micrograms per liter or parts per billion (ppb).
<= less than listed detection limits.

Checked AL Approved 6

Date	Weil#	TPH as	Total	THAT	Benzene		Emvi	
			ΝĐ	1/2	14 A 5 2019 22 1 1110 1 1	····	// benzenes	SECONO POR SE
11/25/96	MWI	WELL WAS I	NACCESSIBLE	ND	Ghi	ND	KD	NO
	MW2	,	ND	ND	ND	ND	ND	ND
	MW4		NACCESSIBLE					
	MW5	ND	ND	ND	ND	ND	ND	ND
8/30/96	MW1		ND	ИD	ИD	ND	ND	ND
	MW2		ND	ND	ND	ND	ND	ND
	MW4		NACCESSIBLE					
	MW5	64	ND	ND	ND	ND	ND	ND
5/21/96	MW1		ND	ND	ND	ND	ND	ND .
	MW2		ND	ND	ND	ND	ND	ND
	MW3	WELL WAS I	DESTROYED ON	FEBRUAR	RY 29, 1996			
	MW4	WELL WAS I	NACCESSIBLE		-		•	
	MW5	200+	ND	ND	ND	ND	ND	ND
2/19/96	MW1		ND	ND	1.0	6.2	0.60	3.9
	MW2	*****	ND	ND	0.82	4.8	0.52	3.5
	MW3		ND	ND	1.4	8.1	0.73	4.4
	MW4	WELL WAS I	NACCESSIBLE			-	2	•••
	MW5	ND	ND	ND	1.1	6.7	0.63	4.2
10/6/95	MW1	~-	ND	69◆	ND	ND	ND	ND
	MW2		ΝD	ND	ND	ИD	ND	ND
	MW3	_	ND	ND	ND	ND	ND	ND
	MW4		ND	ND	ND	ND	ND	ND
	MW5		ЙD	ND	ND	ND	ND	ND
9/18/95**	MW1		ND	81+	ND	ND	ND	ND
	MW2		ND	ND	ND	ND	ND	ND
	MW3		ND	ND	ND	ND	ND	ND
	MW4		ND	ND	ND	ND	ND	ND
	MW5	-	ND	ND	ND	ND	ND	ND
8/24/95**	MW1	****		63	ND	1.1	ND	0.86
	MW2	-	_	ND	ND	0.57	ND	0.56
	MW3	_	***	ND	ND	0.50	ND	0.70
	MW4		_	ND	ND	0.53	ND	0.60
	MW5			ND	ND	0.81	ND	0.72

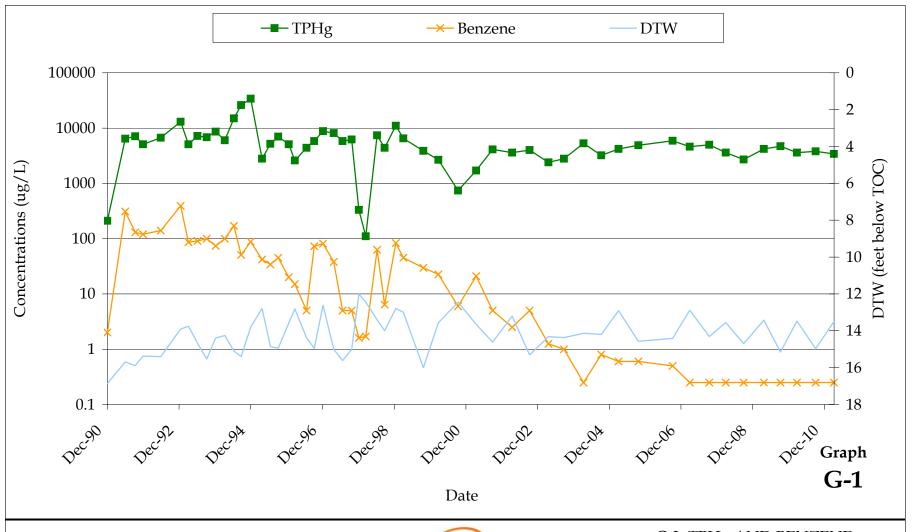

Date	Well #	TPH as	ΤÖC	TPIE as	Benzene	Toliene	Effyl	Xvlenes
5/23/95	MW1		ND	100) TO	310	3.50	
3,23,33	MW2			100+	ND	ND	ИD	ND
			ND	ND	ND	ND	ND	ND
	MW3		ND	ND	ND	ND	ND	ND
	MW4	-	ND	ND	ND	ND	ND	ND
	MW5		ND	ND	ND	ND	ND	ND
2/25/95	MWI	_	ND	81+	ND	ND	ND	ND
	MW2		· ND	ND	ND	ND	ND	ND
	MW3		ND	ND	ND	ND	ND	ND
	MW4		ND	ND	ND	ND	ND	ND
	MW5		ND	ND	ND	ND	ИĎ	ND
6/29/93	MW1*		ND	76♦	ND	ND	ND	ND
	MW2*		ND	ND	ND	ND	ND	ND
	MW3*		ND	ND	ND	ND	ND	ND
	MW4*	_	ND	ND	ND	ND	ND	ND
	MW5*	-	ND	ND	0.64	ND	ND	ND
	•							

- Sequoia Analytical Laboratory reported that the hydrocarbons detected did not appear to be gasoline.
- * TPH as diesel and all EPA method 8270 constituents were non-detectable.
- ** TOG was sampled on September 8, 1995, instead of August 24, 1995. Furthermore, the analytical results of the ground water samples (toluene and xylenes) collected on August 24, 1995, were inconsistent with the previous analytical results for these wells.
- + Sequoia Analytical Laboratory reported that the hydrocarbons detected appeared to be a kerosene and non-kerosene mixture.
- ND = Non-detectable.
 - Indicates analysis was not performed.

Results are in micrograms per liter (µg/L), except for TOG, which is in milligrams per liter (mg/L).

Francisco	WATER								
Dete	Sample Number	cis i 2 Dichlor eftiene	letrachioro ethene	Trustiero- ettene	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	- Chioroform:			
5/29/97	1.47771	***************************************				N			
3129191	MW1	WELL WAS INA		•					
	MW2	ND	18	0.88	ND	1.4			
•	MW4 MW5	WELL WAS INA							
	TAT AA ?	10	86	. 17	ND	ND			
2/27/97	MW1	ND	450	10	ND	ND			
&	MW2++	ND	17	68	ND	2.0			
3/19/97	MW4	WELL WAS INA	CCESSIBLE						
	MW5 ·	0.57	14	1.4	ND	ND			
11/25/96	MW1	ND	18	60	ND	2.6			
	MW2	ND	16	0.54	ND	2.8			
	MW4	WELL WAS INA			2120	2.0			
	MW5	ND	ND	ND	ND	0.8			
8/30/96	MW1	2.1	ND	4,4	ND	ND			
	MW2	ND	10	1.1	ND	ND			
	MW4	WELL WAS INA		4.1	7477	ND			
	MW5◆	7.0	12	6.0	ND	ND			
5/21/96	MW1+	4.1	ND	4.8	NID	50			
	MW2++	ND	10	ND	ND ND	53 16			
	MW3		TROYED ON FEB	TITADV 20 100	K IND	16			
	MW4	WELL WAS INA	CCESSIBLE	KOFIKI 23, 133	U				
	MW5+++	14	15	8.3	ND	13			
			15	0.5	1412	1.5			
2/19/96	MW1	ND	8.7	ND	ND	2.9			
	MW2	ND	8.0	ND	ND	2.6			
	MW3	. ND	ND	ND	ND	ND			
•	MW4	WELL WAS INAC	CCESSIBLE						
	MW5	2.1	9.3	1.9	ND	ND			
10/6/95	MW1	1.7	19	3.7	ND	1.3			
	MW2	ND	8.9	1.0	ND	5.9			
	MW3	5.7	13	6.2	ND	1.1			
	MW4	5.4	12	6.1	ND	0.53			
	MW5 9	9.1	8.2	5.3	ND	ND			
8/24/95	MW1	3.4	240	5.0	ND	3.2			
	MW2*	ND	28	1.1	ND	15			
	MW3**	5.1	- 50	9	ND ·	0.78			
	MW4	ND	9.7	ND	ND	2.4			
	MW5**	17	49	11	ND	ND			
8/26/97	MW-1	WELL WAS	IN ACCESSIBL			_			
	MW-Z	NP	18	0.88	ND	1.4			
/	MW-4	WELL WAS							
	MW-S	Weu ob	CTUNCTED DT	480 47 R.					

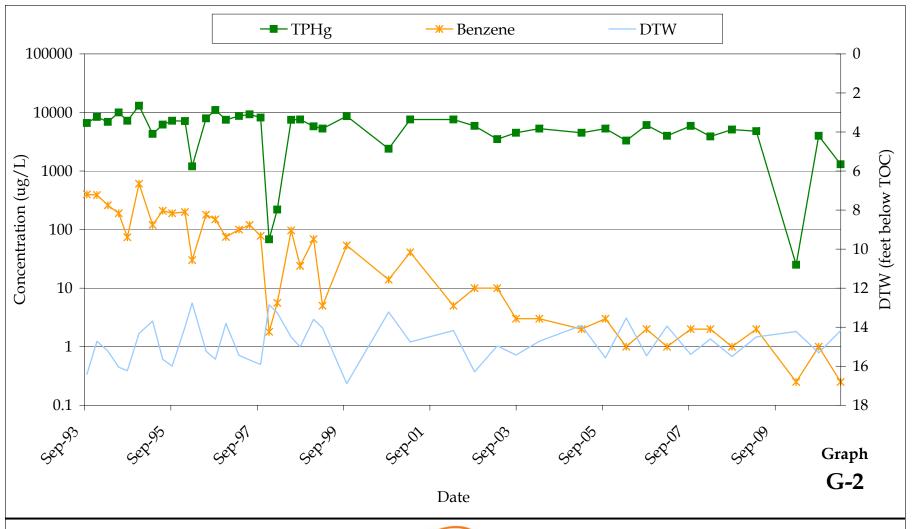
Dete	Sample Muniber	cis († 2 Dichlero ethene	Truachioro chenes	Tichloro ellene	Viny Chlorine	Chieroforms
5/23/95	MW1	ND	450	ND	ND	ND
	MW2	ND	45	ND	ND	ND
	MW3	5.1	74	9.1	ND	ND
•	MW4	ND	8.8	ND	ND	ND
	MW5	16	5 8	11	ND	ND
2/25/95	MW1	ND	360	ND	ND	ND
	MW2	ND	41	1.9	ND	ND
	MW3	6.9	52	9.4	ND	ND
	MW4	ND	6.4	ND	ND	ND
	MW5	8.3	25	6.6	ND	ND
6/29/93	MW1	ND	250	ND	ND	ND
	MW2	ND	78	ND	ND	ND
	MW3	5.5	130	11	ND	ND
	MW4	ND	16	0.68	ND	ND
	MW5	24	17	5.9	3.0	ND


All EPA method 8010 constituents were non-detectable, except for the above compounds.

- + Trans-1,2-Dichloroethene was detected at a concentration of 0.60 μg/L.
- Chloroform was detected at a concentration of 7.0 μg/L.
- * 1,1,1-Trichlorethane was detected at a concentration of 0.73 μg/L.
- ** Trans-1,2-Dichlorethene was detected at concentrations of 0.59 μg/L and 0.76 μg/L in MW3 and MW5, respectively.
- + Bromodichloromethane was detected at 19 mg/L and Dibromochloromethane at 5.7 μg/L.
- ++ Bromodichloromethane was detected at 5.8 μ g/L and Dibromochloromethane at 3.3 μ g/L.
- +++ Bromodichloromethane was detected at 5.0 μ g/L and Dibromochloromethane at 4.3 μ g/L.
- ND = Non-detectable.

Results are in micrograms per liter (µg/L), unless otherwise indicated.

APPENDIX G


CONCENTRATION VERSUS TIME AND TREND GRAPHS AND DEGRADATION CALCULATIONS

FORMER CHEVRON STATION 9-3864 5101 TELEGRAPH AVENUE OAKLAND, CALIFORNIA

C-3: TPHg AND BENZENE CONCENTRATIONS OVER TIME

FORMER CHEVRON STATION 9-3864 5101 TELEGRAPH AVENUE OAKLAND, CALIFORNIA

MW-3: TPHg AND BENZENE CONCENTRATIONS OVER TIME

PREDICTED TIME TO REACH TPHg ESL IN MW-3 FORMER CHEVRON STATION 9-3864 5101 TELEGRAPH AVENUE OAKLAND, CALIFORNIA

 $y = b e^{ax}$

===>

 $x = \ln(y/b) / a$

where: $y = concentration in \mu g/L$

a = decay constant

b = concentration at time (x)

x = time in days

Total Petroleum Hydrocarbons as Gasoline (TPHg)

Given

ESL:

y

Constituent

Constant: b

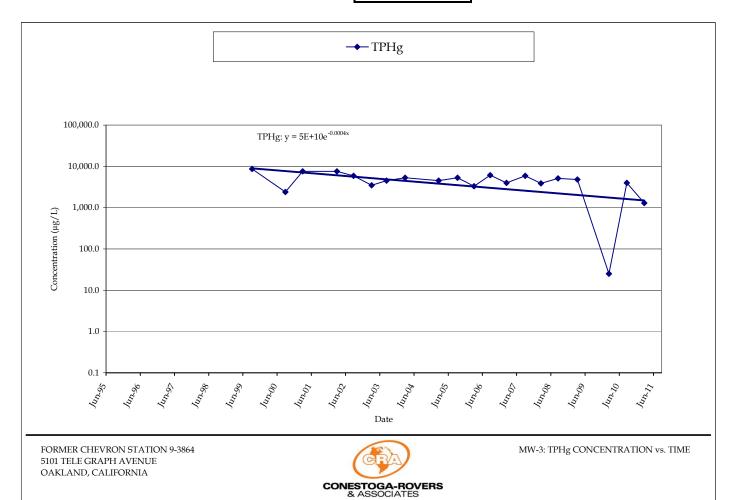
Constant:

Starting date for current trend:

100 5.00E+10 -4.00E-04 6/24/1995

Calculate

Attenuation Half Life (years):


(-ln(2)/a)/365.25

4.74

Estimated Date to Reach ESL:

 $(x = \ln(y/b) / a)$

Feb 2037

APPENDIX H PREVIOUS RISK ASSESSMENT RESULTS

Table 8-1. Comparison of Calculated Health-Based Remediation Goals to Site-Related Concentrations, Former Chevron Service Station #9-3864, 5101 Telegraph Avenue, Oakland, California.

		Caicu	lated HBGs		Site	Does Site		
	Construction	Adult	Child	Minimum		Related Concentent Data	Historical	Exceed
Constituent	Worker	Resident	Resident	HBG	UCL	Maximum	Maximum	HBG?
SOIL	· · · · · · · · · · · · · · · · · · ·							
VOCs								
Benzene	20	0.53	0.56	0.53	0.022	0.069	NA	No
Ethylbenzene	800	2,400	480	480	0,39	2.5	NA NA	
Toluene	1,300	960	190	190	0.34	2.7	NA NA	No
Xylen es	700	8,100	1,700	700	0.93	5.5		No
	•	,	-,,,,,,	100	0.53	3.3	NA	No
<u>TPH</u>								
TPH as diesel	5,600	14,000	1,900	1,900	#N/A	78	NA	No
TPH as gasoline	63,000	11,000	1,700	1,700	130	980	NA	No
<u>Metal</u>								140
Lead *	340	1.600	200	•			•	
LAdu	340	1,600	200	200	0.43	0.60	NA	No
GROUND WATER	_							
<u>VOCs</u>								
Benzene	NE	190	200	190	0.11	0.13	0.34	
Ethylbenzene	NE	89,000	19,000	19,000	0.011	0.13	0.3 4 0.019	No
Foluene	NE	87,000	19,000	19,000	0.025	0.012		No
Xylenes	NE	20,000	4,400	4,400	0.025	0.020	0.17	No
		-	•	ייידיר	V.VZU	0.030	0.083	No
TPH as Gasoline	NE	310	70	70	6.5	7.1	7.1	No

Footnotes appear on page 2.

Table 8-1. Comparison of Calculated Health-Based Remediation Goals to Site-Related Concentrations, Former Chevron Service Station #9-3864, 5101 Telegraph Avenue, Oakland, California.

Soil concentrations are reported in milligrams per kilogram (mg/kg); ground-water concentrations are reported in milligrams per liter (mg/L).

HBGs for lead were calculated using the biokinetic/uptake model.

HBG Health-based remediation goal.

NA Historical maximum concentrations are not relevant for soil, only for ground water.

NE Not evaluated. Ground water exposure was not evaluated for the construction worker since the residential exposure is a more significant potential exposure scenario.

TPH Total petroleum hydrocarbons.

UCL Upper 95 percent confidence limit on the mean.

VOCs Volatile organic compounds.