

Brian Waite Project Manager Marketing Business Unit

Chevron Environmental Management Company 6101 Bollinger Canyon Road San Ramon, CA 94583 Tel (925) 790-6486 BWaite@Chevron.com

November 16, 2012

Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Re: Chevron Facility # 93864

Address: 5101 Telegraph Avenue, Oakland, CA

RECEIVED

11:23 am, Nov 20, 2012

Alameda County Environmental Health

I have reviewed the attached report titled Addendum to Case Closure Request and dated November 16, 2012.

I agree with the conclusions and recommendations presented in the referenced report. The information in this report is accurate to the best of my knowledge and all local Agency/Regional Board guidelines have been followed. This report was prepared by Conestoga-Rovers & Associates, upon whose assistance and advice I have relied.

This letter is submitted pursuant to the requirements of California Water Code Section 13267(b)(1) and the regulating implementation entitled Appendix A pertaining thereto.

I declare under penalty of perjury that the foregoing is true and correct.

Sincerely,

Brian A. Waite

Digitally signed by Brian A. Waite
Dis: cn=Brian A. Waite, o=Chevron Environmental Management Company,
ou=Marketing Business Unit, email=BWaite@chevron.com, c=US
Date: 2012;11.16 12:26:32-08:00*

Brian Waite Project Manager

Enclosure: Report

10969 Trade Center Drive Rancho Cordova, California 95670 Telephone: (916) 889-8900

(910) 003-0300

Fax: (916) 889-8999

http://www.craworld.com

November 16, 2012

Reference No. 611951D

Mr. Mark Detterman, P.G., C.E.G. Alameda County Environmental Health (ACEH) 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Re: Addendum to Case Closure Request Former Chevron Service Station 93864 5101 Telegraph Avenue Oakland, California Case No. RO0000351

Dear Mr. Detterman:

Conestoga-Rovers & Associates (CRA) is submitting this *Addendum to Case Closure Request* for the site referenced above (Figure 1) on behalf of Chevron Environmental Management Company (Chevron). CRA previously submitted the August 12, 2011 *Case Closure Request* (Attachment A), in which case closure was requested based on low-risk conditions. To date, a response to this request has not been received from ACEH.

The purpose of this addendum is to present the results of our evaluation of current site conditions to the general and media-specific closure criteria included in the recently adopted *Low-Threat Underground Storage Tank Case Closure Policy* (the "policy"). The site meets the stated closure criteria; therefore, we are requesting ACEH concur that the site meets low-threat case closure criteria and grant case closure. A summary of the policy, an evaluation of the site conditions to the policy case closure criteria, and our conclusions and recommendations are presented below.

PURPOSE OF THE LOW THREAT UNDERGROUND STORAGE TANK CASE CLOSURE POLICY

On August 17, 2012, the State Water Resources Control Board (SWRCB) adopted the policy via Resolution 2012-0016. The intent of the policy is to increase cleanup process efficiency at petroleum release sites. A benefit of improved efficiency is the preservation of limited resources for mitigation of releases posing the greatest threat to human and environmental health. Per the policy, sites that meet the specified general and media-specific criteria pose a low threat to human health, safety, or the environment and are appropriate for case closure pursuant to Health and Safety Code section 25296.10. The policy further states that those sites

Equal Employment Opportunity Employer

Reference No. 611951D

-2-

that meet the criteria for low-threat closure do not require further corrective action and shall be issued a uniform closure letter. The general and media-specific criteria are described below.

GENERAL CRITERIA

The eight general criteria that must be satisfied by all candidate sites, and the site-specific evaluation for each of these criteria, are presented below.

a. The unauthorized release is located within the service area of a public water system.

<u>Satisfied:</u> Water for the site and surrounding vicinity is provided by the East Bay Municipal Utility District (EBMUD) from distant surface water sources.

b. The unauthorized release consists only of petroleum.

<u>Satisfied</u>: The unauthorized release at the site has been characterized as a release of petroleum-based products (gasoline and related constituents). It should be noted that the upgradient Autopro facility (Figure 2) has been shown to be contributing to impacts beneath the site.

c. The unauthorized ("primary") release from the UST system has been stopped.

<u>Satisfied</u>: Petroleum storage and handling facilities that were the source of the release (fuel dispensers, product piping, and USTs) were removed from the site in 1991.

d. Free product has been removed to the maximum extent practicable.

<u>Satisfied</u>: No light non-aqueous phase liquid (LNAPL) has been observed in the site wells.

e. A conceptual site model that assesses the nature, extent, and mobility of the release has been developed.

<u>Satisfied:</u> Previous reports and information included herein contain all elements of a conceptual site model.

f. Secondary source has been removed to the extent practicable.

<u>Satisfied:</u> Approximately 600 cubic yards of impacted soil was removed during UST and piping removal activities in 1991. Although dissolved total petroleum hydrocarbons as gasoline (TPHg) concentrations in onsite well C-3 have remained relatively stable over the past several

Reference No. 611951D

-3-

years, this appears due to impacted groundwater migrating beneath the site from the Autopro facility rather than the presence of residual secondary source material beneath the site.

g. Soil and groundwater has been tested for MTBE and results reported in accordance with Health and Safety Code section 25296.15.

<u>Satisfied:</u> Groundwater samples have been analyzed for MTBE, and reported in accordance with Health and Safety Code section 25296.15.

h. Nuisance as defined by Water Code section 13050 does not exist at the site.

<u>Satisfied:</u> Conditions defined as a "nuisance" in Water Code section 13050 do not exist at the site.

MEDIA-SPECIFIC CRITERIA

Impacts to human health and the environment can occur due to releases from USTs through contact with contaminated media (groundwater, surface water, soil, and soil vapor) via various exposure pathways. In the policy, the most common exposure scenarios have been combined into three media-specific criteria:

- 1. Groundwater
- 2. Vapor Intrusion to Indoor Air
- 3. Direct Contact and Outdoor Air Exposure

Candidate sites must satisfy all three of these criteria, described further below.

Groundwater

It is a fundamental tenet of the policy that if the closure criteria described in the policy are satisfied at an unauthorized petroleum release site, attaining background water quality is not feasible, and applicable water quality objectives (WQOs) will be attained through natural attenuation within a reasonable amount of time, prior to the expected need for use of any affected groundwater. If a site has groundwater with a designated beneficial use that is affected by an unauthorized release, to satisfy the media-specific criteria for groundwater, the contaminant plume that exceeds WQOs must be stable or decreasing in areal extent, and meet all of the additional characteristics of one of the five classes of sites listed in the policy as follows:

Reference No. 611951D

- 4 -

- 1. a. The contaminant plume that exceeds WQOs is less than 100 feet in length.
 - b. There is no free product.
 - c. The nearest existing water supply well or surface water body is greater than 250 feet from the defined plume boundary.
- 2. a. The contaminant plume that exceeds WQOs is less than 250 feet in length.
 - b. There is no free product.
 - c. The nearest existing water supply well or surface water body is greater than 1,000 feet from the defined plume boundary.
 - d. The dissolved concentration of benzene is less than 3,000 micrograms per liter (μ g/L) and the dissolved concentration of MTBE is less than 1,000 μ g/L.
- 3. a. The contaminant plume that exceeds WQOs is less than 250 feet in length.
 - b. Free product may be present below the site but does not extend off-site.
 - c. The plume has been stable or decreasing for a minimum of 5 years.
 - d. The nearest existing water supply well or surface water body is greater than 1,000 feet from the defined plume boundary.
 - e. The property owner is willing to accept a land use restriction if the regulatory agency requires a land use restriction as a condition of closure.
- 4. a. The contaminant plume that exceeds WQOs is less than 1,000 feet in length.
 - b. There is no free product.
 - c. The nearest existing water supply well or surface water body is greater than 1,000 feet from the defined plume boundary.
 - d. The dissolved concentration of benzene is less than 1,000 μ g/L and the dissolved concentration of MTBE is less than 1,000 μ g/L.
- 5. a. The regulatory agency determines, based on an analysis of site specific conditions, that under current and reasonably anticipated near-term future scenarios, the contaminant plume poses a low threat to human health and safety and to the environment and WQOs will be achieved within a reasonable time frame.

<u>Satisfied</u>: As discussed in Section 3.2 of Attachment A, the nearest surface water body appears to be Temescal Creek which, according to an area creek map, flows through an underground culvert beneath the property to the south across 51st Street (Figure 2) and thus is within 250 feet of the defined plume boundary. However, as the creek is confined to an underground culvert, it is protected and unlikely to be impacted by hydrocarbons from the site. The intent of the policy is to identify nearby surface water bodies that may be affected by petroleum hydrocarbon impacted groundwater. Given this information, the site satisfies the characteristics of Class 1 above in that the contaminant plume that exceeds WQOs

Reference No. 611951D

- 5 -

(Environmental Screening Levels [ESLs]) is less than 100 feet in length, there is no LNAPL, no water supply wells were identified within 250 feet of the defined plume boundary, and no surface water bodies are present within 250 feet of the defined plume boundary that are likely to be impacted. A copy of the most recent groundwater monitoring and sampling report is included as Attachment B.

Petroleum Vapor Intrusion to Indoor Air

The low-threat vapor intrusion criteria described below apply to sites where the release originated and impacted or potentially impacted adjacent parcels when: (1) existing buildings are occupied or may be reasonably expected to be occupied in the future, or (2) buildings for human occupancy are reasonably expected to be constructed in the future.

Petroleum release sites will satisfy the media-specific screening criteria for petroleum vapor intrusion if:

- a. Site-specific conditions at the release site satisfy all of the characteristics and criteria of scenarios 1 through 3 as applicable, or all of the characteristics and criteria of scenario 4 as applicable; or,
- b. A site-specific risk assessment for vapor intrusion is conducted and demonstrates that human health is protected to the satisfaction of the regulatory agency; or,
- c. The regulatory agency determines there is no significant risk of adversely affecting human health through the use of institutional or engineering controls.

Scenarios 1-4 of criteria (a) (existing building or future construction) are described below.

Scenario 1: Unweathered* LNAPL in Groundwater

- Depth to groundwater with unweathered* LNAPL is ≥30 feet below building foundation.
- Total TPH (TPHg + TPHd) in soil within 30 feet below building foundation is <100 milligrams per kilogram (mg/kg).

Scenario 2: Unweathered* LNAPL in Soil

- Unweathered* LNAPL in soil is ≥30 feet from building foundation in all directions, and depth to groundwater is >30 feet below building foundation.
- Total TPH in soil within 30 feet of building foundation in all directions is <100 mg/kg.

Reference No. 611951D

- 6 -

Scenario 3A: No LNAPL, dissolved phase benzene in groundwater

- Depth to groundwater is ≥5 feet below building foundation.
- Dissolved benzene in groundwater is <100 μg/L.
- Total TPH in soil within 5 feet below building foundation is <100 mg/kg.
- Oxygen (O₂) concentration in soil within 5 feet below building foundation is <4%, or no O₂ data.

Scenario 3B: No LNAPL, dissolved phase benzene in groundwater

- Depth to groundwater is ≥10 feet below building foundation.
- Dissolved benzene in groundwater is ≥100 µg/L and <1,000 µg/L.
- Total TPH in soil within 10 feet below building foundation is <100 mg/kg.
- O₂ concentration in soil within 10 feet below building foundation is <4%, or no O₂ data.

Scenario 3C: No LNAPL, dissolved phase benzene in groundwater

- Depth to groundwater is ≥5 feet below building foundation.
- Dissolved benzene in groundwater is <1,000 μg/L.
- Total TPH in soil within 5 feet below building foundation is <100 mg/kg.
- O_2 concentration in soil within 5 below building foundation is $\geq 4\%$.

Scenario 4A: Direct soil gas measurements at least 5 feet below grade (fbg) or foundation at sites without bioattenuation zone**

	Benzene µg/m³	Ethylbenzene µg/m³	Naphthalene µg/m³
Residential	<85	<1,100	<93
Commercial	<280	<3,600	<310

 $[\]mu g/m^3$ – micrograms per cubic meter

Scenario 4B: Direct soil gas measurements at least 5 fbg or foundation at sites with bioattenuation zone**

	Benzene µg/m³	Ethylbenzene µg/m³	Naphthalene µg/m³
Residential	<85,000	<1,100,000	<93,000
Commercial	<280,000	<3,600,000	<310,000

^{*}Unweathered LNAPL is comparable to recently dispensed fuel where product has not been subjected to significant volatilization or solubilization.

^{**}Bioattentuation zone = total TPH <100 mg/kg in upper 5' of soil, and \geq 4% oxygen in soil at 5' sample depth; a 1,000-fold bioattenuation of petroleum vapors is assumed for the zone.

Reference No. 611951D

-7-

Petroleum release sites shall satisfy the media-specific criteria for petroleum vapor intrusion to indoor air and be considered low-threat for the vapor intrusion to indoor air pathway if any of the above criteria are met.

<u>Satisfied:</u> The site satisfies scenario 3A of criteria (a) above. Benzene has not been detected in groundwater in onsite well C-3 since 2005, and generally has not been detected in perimeter wells MW-1, MW-2, and MW-5 over the course of monitoring. Benzene is periodically detected in downgradient well MW-3, but at concentrations well below $100 \,\mu\text{g/L}$ (1 $\,\mu\text{g/L}$ in September 2010 and 2011), and was not detected during the most recent event in March 2012. In this area, there is at least a 5-foot bioattenuation zone (depth to water typically 13 to 15 fbg), and total TPH concentrations in soil in the bioattenuation zone are less than $100 \, \text{mg/kg}$ (see Table 1 of Attachment A).

Additionally, the site satisfies criteria (b) above in that a previous site-specific risk assessment indicated no significant vapor intrusion risk, even under a residential land use scenario and with benzene present in groundwater at the time (see Appendix H of Attachment A).

Direct Contact and Outdoor Air Exposure

The policy describes conditions where direct contact with contaminated soil or inhalation of contaminants volatized to outdoor air poses a low threat to human health. Release sites where human exposure may occur satisfy the media-specific criteria for direct contact and outdoor air exposure and shall be considered low-threat if they meet any one of the following:

a. Maximum concentrations of petroleum constituents in soil are less than or equal to those listed in the table below for the specified depth below ground surface. The limits from 0 to 5 fbg protect from ingestion, dermal contact, and outdoor inhalation of volatile and particulate emissions. The 5 to 10 fbg limits protect from inhalation of volatile emissions only; the ingestion and dermal contact pathways are not considered significant. In addition, if exposure to construction workers or utility trench workers is reasonably anticipated, the concentration limits for Utility Worker shall also be satisfied.

Reference No. 611951D

	Ω	
_	\sim	_

	Residential		Commercial/Industrial		Utility Worker
Constituent	0–5 fbg (mg/kg)	Volatilization to outdoor air (5-10 fbg) (mg/kg)	0–5 fbg (mg/kg)	Volatilization to outdoor air (5–10 fbg) (mg/kg)	0-10 fbg (mg/kg)
Benzene	1.9	2.8	8.2	12	14
Ethylbenzene	21	32	89	134	314
Naphthalene	9.7	9.7	45	45	219
PAH*	0.063	NA	0.68	NA	4.5

^{*} Based on the seven carcinogenic polycyclic aromatic hydrocarbons (PAHs) as benzo(a)pyrene toxicity equivalent [BaPe]. The PAH screening level is only applicable where soil is affected by either waste oil and/or Bunker C fuel.

NA = not applicable

- b. Maximum concentrations of petroleum constituents in soil are less than levels that a site-specific risk assessment demonstrates will have no significant risk of adversely affecting human health.
- c. As a result of controlling exposure through the use of mitigation measures or through the use of institutional or engineering controls, the regulatory agency determines that the concentrations of petroleum constituents in soil will have no significant risk of adversely affecting human health.

<u>Satisfied</u>: The site meets characteristics of criteria (a) above. The maximum detected concentrations of benzene and ethylbenzene in soil samples collected in the 0 to 5 fbg and 5 to 10 fbg intervals do not exceed the most conservative limits (residential) (see Table 1 of Attachment A). No total oil and grease (TOG) was detected in the two soil samples collected beneath the used-oil UST; therefore, soil does not appear impacted by waste oil and the PAH screening levels, including naphthalene, are not applicable.

Additionally, the site satisfies criteria (b) above in that the previous risk assessment indicated no significant risk to site construction workers or hypothetical residents.

CONCLUSIONS AND RECOMMENDATIONS

Based on the information presented in this and previous reports, site conditions meet the general and media-specific criteria of a low-threat UST release case established in the policy, and therefore pose a low threat to human health, safety, and the environment. A completed

Reference No. 611951D

No. 68498 Exp. 9/30/ /3

-9-

SWRCB low-threat checklist is included as Attachment C. The site satisfies the case closure requirements of Health and Safety Code section 25296.10, and case closure is consistent with Resolution 92-49 that requires cleanup goals be met within a reasonable time frame. Therefore, on behalf of Chevron, CRA respectfully requests ACEH grant case closure.

As the impacted groundwater poses no significant threat to human health or the environment, effective immediately, Chevron shall cease groundwater monitoring and sampling activities pending a response and further direction from ACEH.

We appreciate your assistance on this project and look forward to your reply. Please contact James Kiernan at (916) 889-8917 if you have any questions or require additional information.

Sincerely,

CONESTOGA-ROVERS & ASSOCIATES

Benjamin R. Summersett

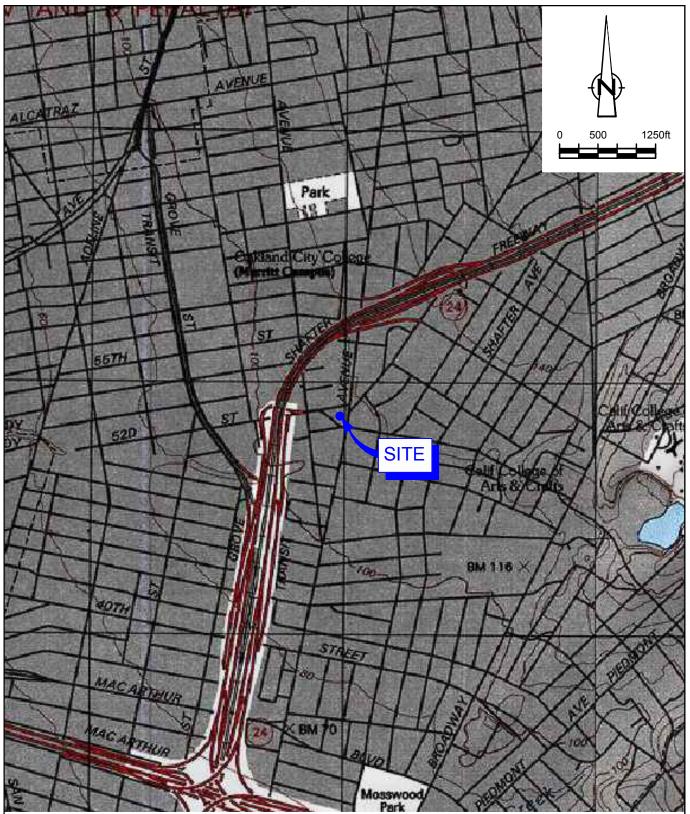
James P. Kiernan, P.E.

BS/de/11 Encl.

Figure 1 Vicinity Map Figure 2 Site Plan

Attachment A August 12, 2011 Case Closure Request

Attachment B Second Semi-Annual 2012 Groundwater Monitoring and Sampling Report

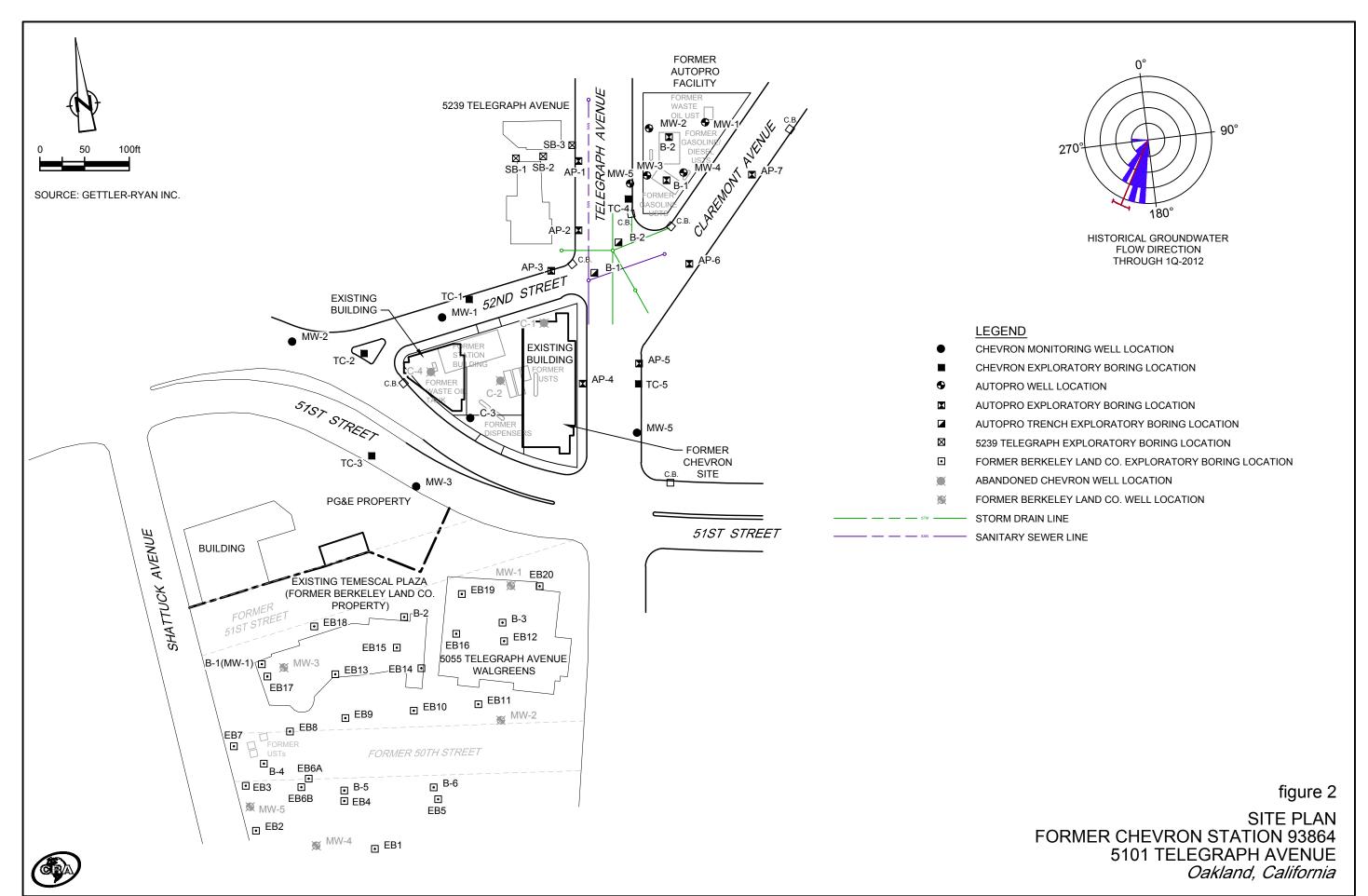

Attachment C Low-Threat Checklist

cc: Mr. Brian Waite, Chevron (electronic copy)

Mr. Howard Schindler, Temescal Triangle Investors, LLC

Mr. John Gwynn, Gwynn-Shields Company, Inc.

FIGURES



SOURCE: TOPO! MAPS.

figure 1

VICINITY MAP FORMER CHEVRON SERVICE STATION 93864 5101 TELEGRAPH AVENUE Oakland, California

ATTACHMENT A AUGUST 12, 2011 CASE CLOSURE REQUEST

10969 Trade Center Drive, Suite 107 Rancho Cordova, California 95670

Telephone: (916) 889-8900 Fax: (916) 889-8999

www.CRAworld.com

			RANSMITTAL	•
DATE:	Augus	st 12, 2011	REFERENCE NO.: PROJECT NAME:	611951 Former Chevron Station 9-3864 (RO351)
To:	Mr. Ma	ark Detterman, P.G., C.E.		
10.		eda County Environmenta		
		Iarbor Bay Parkway, Suit		
	Alame	eda, CA 94502-6577		
Please fine	d enclose	ed: Draft Originals Prints	⊠ Final □ Other	
Sent via:		☐ Mail ☐ Overnight Couri	Same Day Co	ourier EH FTP Site Electronic Upload
QUAN	TITY		DESCRIPT	TION
1		Case Closure Request		
	Requested Your Use		For Review and Comment	
Copy to:		Ms. Olivia Skance, Chevro Mr. Howard Schindler Mr. John Gwynn	on	1 K
Complete	ed by:	James P. Kiernan [Please Print]	Signed:	V

Filing: Correspondence File

Olivia Skance Team Lead Marketing Business Unit Chevron Environmental Management Company 6101 Bollinger Canyon Road San Ramon, CA 94583 Tel (925) 790-6521

August 12, 2011

Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Re:

Chevron Facility # 9-3864

Address: 5101 Telegraph Avenue, Oakland, California

I have reviewed the attached report titled <u>Case Closure Request</u> and dated <u>August 12, 2011</u>.

I agree with the conclusions and recommendations presented in the referenced report. The information in this report is accurate to the best of my knowledge and all local Agency/Regional Board guidelines have been followed. This report was prepared by Conestoga-Rovers & Associates, upon whose assistance and advice I have relied.

This letter is submitted pursuant to the requirements of California Water Code Section 13267(b)(1) and the regulating implementation entitled Appendix A pertaining thereto.

I declare under penalty of perjury that the foregoing is true and correct.

Sincerely,

Olivia Skance Project Manager

Enclosure: Report

CASE CLOSURE REQUEST

Former Chevron Service Station 9-3864 5101 Telegraph Avenue Oakland, California Case No. RO0000351

Prepared for:

Mr. Mark Detterman, P.G., C.E.G. Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

> Prepared by: Conestoga-Rovers & Associates

10969 Trade Center Drive, #107 Rancho Cordova, California U.S.A. 95670

Office: (916) 889-8900 Fax: (916) 889-8999

web: http:\\www.CRAworld.com

AUGUST 12, 2011 REF. NO. 611951 (6)

This report is printed on recycled paper.

CASE CLOSURE REQUEST

Former Chevron Service Station 9-3864 5101 Telegraph Avenue Oakland, California Case No. RO0000351

Christopher J. Benedict

lu-Bem dit

James P. Kiernan, P.E.

No. 68498 Exp. 9/30/11

> Prepared by: **Conestoga-Rovers** & Associates

10969 Trade Center Drive, #107 Rancho Cordova, California

U.S.A. 95670

Office: (916) 889-8900 (916) 889-8999 Fax:

web: http:\\www.CRAworld.com

AUGUST 12, 2011 REF. NO. 611951 (6) This report is printed on recycled paper.

TABLE OF CONTENTS

		THE SECOND STATE OF THE SE	D
			<u>Page</u>
1.0	INTRO	DUCTION	1
2.0	SITE D	ESCRIPTION AND BACKGROUND	1
_,,	2.1	NEARBY KNOWN RELEASES	
3.0	SITE CI	HARACTERISTICS	3
	3.1	GEOLOGY AND HYDROGEOLOGY	
	3.2	NEARBY WELLS AND SENSITIVE RECEPTORS	3
4.0	CONST	TTUENTS OF CONCERN	4
	4.1	SOIL	4
	4.2	GROUNDWATER	4
5.0	PETRO	LEUM HYDROCARBON SOURCES AND DISTRIBUTION	
	5.1	RELEASE SOURCE AND VOLUME	5
	5.2	POTENTIAL OFFSITE SOURCES	5
	5.3	PETROLEUM HYDROCARBONS IN SOIL	5
	5.4	PETROLEUM HYDROCARBONS IN GROUNDWATER	6
6.0	RISK E	VALUATION	7
	6.1	NEARBY WELLS AND SENSITIVE RECEPTORS	7
	6.2	POTENTIAL EXPOSURE PATHWAYS	8
	6.2.1	SOIL	8
	6.2.2	GROUNDWATER	8
	6.2.3	SURFACE WATER	8
	6.2.4	VAPOR INTRUSION	9
	6.3	COMPARISON TO ENVIRONMENTAL SCREENING LEVELS	9
	6.3.1	SOIL	9
	6.3.2	GROUNDWATER	10
	6.3.3	SOIL VAPOR	11
7.0	LOW-R	ISK GROUNDWATER CRITERIA	12
	7.1	THE LEAK HAS BEEN STOPPED AND ONGOING SOURCES,	
		INCLUDING LNAPL, HAVE BEEN REMOVED OR REMEDIATE	D12
	7.2	THE SITE HAS BEEN ADEQUATELY CHARACTERIZED	13
	7.3	THE DISSOLVED HYDROCARBON PLUME IS STABLE, DECREA	ASING,
		AND NOT MIGRATING	13
	7.4	NO WATER WELLS, DEEPER DRINKING	
		WATER AQUIFERS, SURFACE WATER, OR OTHER	
		SENSITIVE RECEPTORS ARE LIKELY TO BE IMPACTED	13
	7.5	THE SITE PRESENTS NO SIGNIFICANT RISK	
		TO HUMAN HEALTH OR THE ENVIRONMENT	14
8.0	CONCI	LUSIONS AND RECOMMENDATIONS	14

LIST OF FIGURES (Following Text)

FIGURE 1	VICINITY MAP
FIGURE 2	SITE PLAN
FIGURE 3	TPHG GROUNDWATER ISOCONCENTRATION MAP - MARCH 14, 2011
FIGURE 4	TPHG GROUNDWATER ISOCONCENTRATION MAP - DECEMBER 11, 1996
	<u>LIST OF TABLES</u> (Following Text)
TABLE 1	SOIL SAMPLE ANALYTICAL RESULTS
TABLE 2	GROUNDWATER SAMPLE ANALYTICAL RESULTS
	<u>LIST OF APPENDICES</u>
APPENDIX A	SUMMARY OF ENVIRONMENTAL INVESTIGATION AND REMEDIATION
APPENDIX B	HISTORICAL BORING LOGS
APPENDIX C	WELL SURVEY INFORMATION AND TEMESCAL CREEK MAP
APPENDIX D	PREVIOUS SITE PLANS
APPENDIX E	FIRST SEMI-ANNUAL 2011 GROUNDWATER MONITORING REPORT
APPENDIX F	HISTORICAL ISOCONCENTRATION MAPS AND NEARBY GROUNDWATER DATA
APPENDIX G	CONCENTRATION VERSUS TIME AND TREND GRAPHS AND DEGRADATION CALCULATIONS

PREVIOUS RISK ASSESSMENT RESULTS

APPENDIX H

1.0 INTRODUCTION

Conestoga-Rovers & Associates (CRA) is submitting this *Case Closure Request* on behalf of Chevron Environmental Management Company (Chevron) for former Chevron service station 9-3864 located at 5101 Telegraph Avenue in Oakland, California. Based on our review of the site background and conditions, this site meets the San Francisco Bay Regional Water Quality Control Board (RWQCB) criteria for closure as a low-risk groundwater case, as described in their January 5, 1996 memorandum entitled *Interim Guidance on Required Cleanup of Low-Risk Fuel Sites*. Please note that this closure request supersedes the June 26, 2009 *Site Status and Revised Work Plan* (work plan), to which a response was not received from Alameda County Environmental Health (ACEH), however, in our opinion the proposed work therein is no longer warranted. Presented below are the site description and background, site conditions and discussion of remaining impacts, an evaluation of potential risk, rationale for closure based on the low-risk criteria, and our conclusions and recommendations.

2.0 SITE DESCRIPTION AND BACKGROUND

The triangular site is located between 51stStreet, 52ndStreet, and Telegraph Avenue (Figure 1), and is currently developed with two, one- and two-story commercial buildings and associated parking and landscaping areas (known as Temescal Triangle); the buildings are occupied by various retail businesses and a restaurant. Land use in the vicinity of the site is mixed commercial and residential.

The site was occupied by a Chevron service station from approximately 1970 to 1991. Former station facilities included two 10,000-gallon and one 5,000-gallon steel gasoline underground storage tanks (USTs), a 1,000-gallon steel used-oil UST, and associated dispensers and piping. The station was demolished in 1991 and all aboveground and belowground facilities were removed. The site remained vacant until redevelopment with the existing buildings in the late-1990s. Current and former site features are shown on Figure 2.

Environmental work has been ongoing since 1990, and has included the installation of monitoring wells C-1 through C-4 and MW-1 through MW-5; the drilling of exploratory borings TC-1 through TC-5; and confirmation soil sampling during UST removals. In 1998, ownership of MW-4 was transferred to the responsible party at the upgradient former Autopro facility (5200 Telegraph Avenue) and it was re-named MW-5. Wells C-1, C-2, and C-4 were destroyed in 1996 and 1997 to facilitate site redevelopment. Remedial activities have included excavation and offsite disposal or aeration of

hydrocarbon-bearing soil (approximately 600 cubic yards), and the placement of Oxygen Release Compound® (ORC) in wells C-3 and MW-3. A summary of the environmental work is presented in Appendix A. The historical soil and groundwater sample analytical results are presented in Tables 1 and 2, respectively. The approximate well and boring locations are shown on Figure 2.

2.1 NEARBY KNOWN RELEASES

Based on our review of available documents, there are several known petroleum hydrocarbon releases in the nearby site vicinity. These releases and work performed are summarized below. Most of these facilities are shown on Figure 2.

Former Autopro

This upgradient facility (current smog test shop) was formerly an auto repair facility and Shell station with documented releases of gasoline (and related constituents), diesel, and waste oil. Elevated concentrations of total petroleum hydrocarbons as gasoline (TPHg) and diesel (TPHd) historically have been detected in wells MW-3 and MW-4 at the facility. During the most recent event in March 2011, these wells contained up to 6,900 micrograms per liter (μ g/L) TPHg, 8,400 μ g/L TPHd, and 18,000 μ g/L TPH as motor oil (TPHmo). Elevated concentrations of TPHg (up to 26,000 μ g/L) and TPHd (up to 4,500 μ g/L) were also historically detected in well MW-5 (former Chevron MW-4) in Telegraph Avenue adjacent to the facility. A groundwater sample collected in 2004 adjacent to a storm drain line in Telegraph Avenue downgradient of the facility contained 57,000 μ g/L TPHg and 29,000 μ g/L TPHd. Additional investigation to further evaluate the downgradient extent of contamination and potential preferential pathways is planned. Groundwater containing petroleum hydrocarbons has migrated from this facility beneath the subject site, and is discussed further in Section 5.4.

5239 Telegraph Avenue

Elevated concentrations of TPHg (up to $17,000 \,\mu\text{g/L}$) were detected in groundwater in 2007 beneath this property to the north (cross- to upgradient) of the subject site (Figure 2). The property is occupied by a vacant restaurant building; with no likely source of the contamination identified. As such, the case was closed by ACEH and the contamination attributed to the former Autopro facility.

Former Berkeley Land Company

The property to the south/southwest of the site across 51st Street (existing Temescal Plaza shopping center) was previously known as the Berkeley Land Company property at 5100 Telegraph Avenue, and was formerly occupied by a street car storage and

maintenance facility with several USTs. Numerous borings were drilled and several wells installed on the property (Figure 2), and soil and groundwater were found to be impacted with petroleum hydrocarbons, chlorinated solvents, and metals. Undocumented fill material (as deep as 17.5 feet below grade [fbg]) was also observed. Remediation was conducted and the case was closed in 1999 by ACEH; however, it was noted that petroleum hydrocarbons and chlorinated solvents remained in soil and/or groundwater.

Former Marshall Steel Cleaners

This former large dry cleaning facility (now Telegraph Business Park at 5427 Telegraph Avenue) located approximately 500 feet north-northeast (upgradient) of the site has documented releases of TPHg and Stoddard solvent; 17 USTs were removed from the property in 1992. In December 2010, up to 2,000 μ g/L TPHg and 12,000 μ g/L Stoddard solvent were detected in wells at the facility, and investigation is ongoing.

3.0 <u>SITE CHARACTERISTICS</u>

3.1 GEOLOGY AND HYDROGEOLOGY

The site is located on a gently sloping plane west of the Piedmont Hills, approximately 2 miles east of San Francisco Bay. The soil in the site vicinity consists of Late Pleistocene alluvium consisting of weakly consolidated, slightly weathered, poorly sorted, irregularly interbedded clay, silt, sand and gravel. Soil encountered during drilling at the site was reported to consist of interbedded layers of silt, clay, sand, and gravel with varying amounts of one or more of the other soil types within each layer. Copies of the historical boring logs are presented in Appendix B.

Groundwater was encountered during drilling at depths of approximately 12.5 to 17.5 fbg. Depth to groundwater in the wells has ranged from approximately 4.5 to 17.5 feet below top of casing (TOC), but typically fluctuates between 12 and 15 feet below TOC. The groundwater flow direction is generally to the southwest following the local topography (see rose diagram on Figure 2).

3.2 <u>NEARBY WELLS AND SENSITIVE RECEPTORS</u>

CRA reviewed California Department of Water Resources (DWR) and Alameda County Public Works Agency (ACPWA) files to identify any water-supply wells within 2,000 feet of the site. Seven wells were identified within the search radius (excluding monitoring wells): an industrial well approximately 750 feet north (cross- to upgradient), four

cathodic protection wells approximately 1,150 feet southeast (crossgradient), an irrigation well at Children's Hospital approximately 1,500 feet west (crossgradient), and a domestic well approximately 1,900 feet north-northeast (upgradient). The well survey results and a figure showing the identified well locations are presented in Appendix C.

There do not appear to be any sensitive receptors within 2,000 feet of the site in the downgradient direction with the exception of some residential areas at least 600 feet from well MW-3. The local water supply is provided by East Bay Municipal Utility District (EBMUD); the source is the Mokelumne River Basin in the Sierra Nevada range. Shallow groundwater in the site area is not likely to be used as a drinking water source in the foreseeable future. The nearest surface water body is Temescal Creek, which appears to flow in an underground culvert through the property to the south of the site across 51st Street. A map showing the creek location is presented in Appendix C.

4.0 CONSTITUENTS OF CONCERN

4.1 SOIL

Based on the historical data, the primary constituent of concern (COC) in remaining soil (i.e. not excavated) is TPHg; however, it was not detected in the majority of the soil samples (not considering borings TC-4 and MW-4 drilled adjacent to the Autopro facility). The samples with TPHg detections generally contained only low concentrations (up to 270 milligrams per kilogram [mg/kg]); higher concentrations (up to 980 mg/kg) were detected in the samples collected at 15.5 fbg (groundwater interface) from the sidewalls of the gasoline UST excavation, which was excavated to 18 fbg at which depth the soil no longer appeared to be impacted. Benzene, toluene, ethylbenzene, and xylenes (BTEX) are less significant COCs in soil, as they were only detected in a few samples at low concentrations (benzene detected in six samples at a maximum of only 0.069 mg/kg). Other constituents were not detected and therefore are not COCs in soil. Copies of previous site plans showing the excavation areas and confirmation sample locations are presented in Appendix D.

4.2 **GROUNDWATER**

Based on the monitoring results, and as with soil, the primary COC remaining in groundwater is TPHg. Ethylbenzene and xylenes are present in groundwater, but are insignificant COCs as only low concentrations (up to $1\,\mu g/L$) remain in one or two wells. Benzene is no longer detected and methyl tertiary butyl ether (MTBE) has not been

detected for at least several years. Therefore, these constituents are not COCs in groundwater.

5.0 <u>PETROLEUM HYDROCARBON SOURCES AND DISTRIBUTION</u>

5.1 RELEASE SOURCE AND VOLUME

Based on previous investigations and UST/piping removal confirmation sampling, the primary source(s) of the petroleum hydrocarbons appears to be the former UST system. Although the volume of released hydrocarbons is unknown, approximately 600 cubic yards of impacted soil was excavated and disposed or treated. This remedial action has adequately mitigated the release as evidenced by generally decreasing hydrocarbon concentrations in groundwater.

5.2 <u>POTENTIAL OFFSITE SOURCES</u>

Based on the historical data, the upgradient former Autopro facility appears to be contributing to the impacts at the site. This facility is discussed further in Section 5.4 below.

5.3 PETROLEUM HYDROCARBONS IN SOIL

Based on the analytical data, soil with residual COCs likely remains in the area of the former gasoline USTs and dispensers; however, concentrations are generally low. The COCs were also detected in the soil sample collected just above groundwater from the boring for upgradient well C-1, indicating that petroleum hydrocarbons were migrating beneath the site from an offsite source. The remedial excavations ranged from approximately 5 to 18 fbg, and appear to have removed the majority of hydrocarbon mass source in soil. Based on the analytical results and excavation activities, the extent of petroleum hydrocarbons in soil is adequately defined, and no further investigation is warranted. It should be noted that since the soil samples were collected in the early 1990s, concentrations likely have further decreased over time due to natural attenuation processes as evidenced by decreasing hydrocarbon concentrations in groundwater. The historical soil sample analytical results are presented in Table 1 (samples collected from areas that were later excavated are shaded).

5.4 PETROLEUM HYDROCARBONS IN GROUNDWATER

Groundwater has been monitored since 1990. Onsite well C-3 and downgradient well MW-3 are currently sampled semi-annually, and offsite perimeter wells MW-1, MW-2 and MW-5 are sampled annually. The COCs only remain in C-3 or MW-3 and generally have not been detected in MW-1, MW-2, or MW-5 throughout the course of monitoring. A copy of the first semi-annual 2011 groundwater monitoring report is presented in Appendix E.

Based on the monitoring results, groundwater containing the COCs remains beneath the site in the area of well C-3 downgradient of the former USTs and dispensers, as well as downgradient beneath 51st Street in the area of well MW-3. Groundwater containing the COCs also likely remains beneath the site upgradient of C-3; however, as previously mentioned, impacted groundwater is migrating beneath the site from the upgradient Autopro facility. Prior to its destruction in 1996, upgradient well C-1 consistently contained TPHg (up to 7,700 µg/L), BTEX (benzene up to 170 µg/L), and MTBE (up to 87 μg/L) (Appendix E). Groundwater samples collected in 1996 from Autopro borings AP-2 and AP-3 located upgradient of the subject site (Figure 2) contained up to 74,000 μg/L TPHd, 14,000 μg/L TPHg, and 130 μg/L benzene (Appendix F). Historical groundwater isoconcentration maps (prepared by others) incorporating the monitoring results at both sites are presented in Appendix F; these include maps of TPH as diesel (TPHd) and motor oil (TPHmo), which were not COCs at the subject site, but show the extent of the impacts from Autopro. Although the last analytical data in C-1 was from 1996, based on the current concentrations in groundwater at the Autopro facility, the contribution to impacts at the subject site likely remains significant. isoconcentration map of TPHg in groundwater is presented on Figure 3, which includes data from the Autopro facility. A TPHg isoconcentration map prepared using data from 1996 which was the last time all the site and Autopro wells were sampled is presented on Figure 4. As an upgradient source is contributing to the impacts beneath the site, it is not possible to accurately estimate the dissolved TPHg mass remaining.

Based on the perimeter borings and wells, the lateral extent of hydrocarbons in groundwater is adequately defined. The downgradient extent of dissolved hydrocarbons is defined by previous groundwater monitoring data from wells at the Berkeley Land Company property downgradient of the site across 51st Avenue (Appendix F), as was presented in the above-mentioned June 26, 2009 work plan.

Graphs of TPHg and benzene concentrations over time in wells C-3 and MW-3 are presented in Appendix G. As shown in the graphs, the TPHg concentrations in C-3 have remained relatively stable over the past 10 years, which, as source removal at the site

occurred 20 years ago, is indicative of continuing offsite contributions. Conversely, the TPHg concentrations in MW-3 are declining, indicating the plume has reached its maximum extent and is decreasing in size and mass due to natural attenuation. A comparison of the historical maximum and most recent TPHg, benzene, and MTBE concentrations in the wells is presented in Table A below.

TABLE A COMPARISON OF MAXIMUM AND MOST RECENT CONCENTRATIONS IN GROUNDWATER (concentrations in µg/L)						
	TP	Hg	Ben	zene		$MTBE^a$
Well ID	Max Conc.	Most Recent Conc.	Max Conc.	Most Recent Conc.	Max Conc.	Most Recent Conc.
C-3	34,000	3,400	390	<0.5	10	<0.5
	(12-6-94)	(3-14-11)	(12-21-92)	(3-14-11)	(9-15-04)	(3-14-11)
MW-1	350	<50	1.2	<0.5	<0.5	<0.5
	(6-17-94)	(3-14-11)	(6-17-94)	(3-14-11)	(all)	(3-14-11)
MW-2	330	<50	1.4	<0.5	<0.5	<0.5
	(6-17-94)	(3-14-11)	(6-17-94)	(3-14-11)	(all)	(3-14-11)
MW-3	13,000	1,300	610	<0.5	<0.5	<0.5
	(12-6-94)	(3-14-11)	(12-6-94)	(3-14-11)	(all)	(3-14-11)
MW-5	1,000	<50	25	<0.5	<0.5	<0.5
	(8-29-94)	(3-14-11)	(9-20-93)	(3-14-11)	(all)	(3-14-11)
a Only results obtained using EPA Method 8260 reported						
< Not detected at or above stated laboratory reporting limit						

6.0 RISK EVALUATION

To evaluate potential risks to human health or the environment associated with the residual petroleum hydrocarbons in soil and groundwater, CRA evaluated the presence of wells and potential sensitive receptors in the site vicinity, evaluated potential receptor exposure pathways, and performed a screening-level risk evaluation. We also relied on the results of a previous risk assessment (dated December 29, 1992) prepared for the site. The findings of the risk evaluation are presented below.

6.1 NEARBY WELLS AND SENSITIVE RECEPTORS

As described in Section 3.2, although several water-supply wells were identified within 2,000 feet, none were located in the downgradient direction and thus are unlikely to be impacted by petroleum hydrocarbons from the site. The local drinking water supply is obtained from distant surface water.

The site is in commercial use and therefore no sensitive receptors exist at the site. Some residential areas are located at least 600 feet downgradient from the site. However, drinking water is supplied by EBMUD.

Based on this information, there do not appear to be any wells or sensitive receptors that would likely be impacted by petroleum hydrocarbons from the site.

6.2 <u>POTENTIAL EXPOSURE PATHWAYS</u>

6.2.1 <u>SOIL</u>

As the site is generally capped with the existing development, potential exposure to any residual hydrocarbon-bearing soil beneath the site by the general public is de minimis. Therefore, the only identified potential exposure pathway is direct exposure by construction workers during trenching or excavation activities. However, the residual hydrocarbon concentrations in soil at shallow depths where a construction worker could be exposed were low and limited in extent. Additionally, the previous risk assessment indicated no significant risk to potential construction workers or hypothetical site residents. A copy of the previous risk assessment results is presented in Appendix H.

6.2.2 **GROUNDWATER**

The extent of impacted groundwater appears to be adequately defined, not migrating, and no water supply wells appear likely to be impacted. Therefore, no complete groundwater ingestion pathways exist and none are likely to exist in the foreseeable future based on the current municipal water supply. Based on the depth to groundwater encountered in the borings and excavations, it is unlikely any typical construction activities would encounter groundwater.

6.2.3 SURFACE WATER

The nearest surface water body appears to be Temescal Creek approximately 200 feet downgradient of the site. However, this section of the creek is confined to an underground culvert, and thus unlikely to be impacted by hydrocarbons from the site.

6.2.4 VAPOR INTRUSION

Remedial excavation was performed to remove/treat secondary hydrocarbon source soil. Benzene, considered the primary risk driver for vapor intrusion as it is a known human carcinogen, is no longer detected in groundwater indicating limited residual source in soil. Although TPHg remains in groundwater beneath the site, at least a portion appears to be originating from the upgradient Autopro facility. The previous risk assessment indicated no significant vapor intrusion risk, even under the most conservative residential land use scenario (Appendix H), and residual TPHg concentrations were higher at this time and benzene was present. Based on this information, potential vapor intrusion is not a concern.

6.3 COMPARISON TO ENVIRONMENTAL SCREENING LEVELS

The maximum residual COC concentrations in soil and groundwater were compared to the corresponding environmental screening levels (ESLs) established by the RWQCB in May 2008. The ESLs are for use as screening levels in determining if further evaluation is warranted, in prioritizing areas of concern, in establishing cleanup goals, and in estimation of potential health risks. As stated by the RWQCB, the ESLs are considered to be conservative. The presence of a chemical at a concentration above an ESL does not necessarily indicate that adverse impacts to human health or the environment are occurring; rather exceeding ESLs indicates that the potential for impacts may exist and that additional evaluation may be needed. Under most circumstances, the presence of a chemical in soil, groundwater, or soil gas at concentrations below the corresponding ESL can be assumed to not pose a significant, long-term (chronic) threat to human health and the environment. For soil vapor, the most recent groundwater concentrations were compared to the ESLs for evaluation of potential vapor intrusion concerns, where established.

6.3.1 SOIL

The only complete potential exposure pathway to residual hydrocarbons in soil is direct exposure by construction workers during trenching or excavation activities. Table B below presents a comparison of the maximum COC concentrations detected in remaining soil to the respective ESLs associated with construction/trench worker direct exposure concerns. The results were also compared to the shallow or deep soil ESLs (values are identical) for groundwater protection (soil leaching) at commercial sites where groundwater is a current or potential drinking water source.

TABLE B. COMPARISON OF MAXIMUM RESIDUAL SOIL CONCENTRATIONS TO ESLs (concentrations in mg/kg)

Constituent	Highest Detected Concentration Remaining in Soil	ESL for Construction/Trench Worker Exposure ¹	ESL for Groundwater Protection ²
TPHg	980 (#4; 15.5 fbg; 9/26/91)	4,200	83
Benzene	0.069 (#2; 5 fbg; 9/26/91) (#3; 15.5 fbg; 9/26/91)	12	0.044
Toluene	2.7 (#4; 15.5 fbg; 9/26/91)	650	2.9
Ethylbenzene	2.5 (#4; 15.5 fbg; 9/26/91)	210	3.3
Xylenes	5.5 (#4; 15.5 fbg; 9/26/91)	420	2.3

ESLs from Table K-3, Direct Exposure Soil Screening Levels, Construction/Trench Worker Exposure Scenario, in Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, RWOCB-May 2008

As shown above, the maximum detected COC concentrations in remaining soil are well below the respective ESLs for construction/trench worker exposure. The historical maximum TPHg, benzene, and xylenes concentrations (1991) slightly exceed the ESLs associated with groundwater protection; however, concentrations in groundwater are generally declining (benzene no longer detected) and therefore any residual impacted soil does not appear to be acting as a significant continuing source of hydrocarbons that would reverse overall improving trends. In addition, as these samples were collected 20 years ago, concentrations have likely decreased due to natural attenuation. To be conservative, the results were compared to the ESLs associated with sites where groundwater is a potential drinking water source; however, at this site drinking water is provided by EBMUD and groundwater is not likely to be used as a resource in the foreseeable future. Therefore, the residual hydrocarbons in soil do not appear to pose a significant threat to human health or the environment, as indicated in the previous risk assessment.

ESLs from Table A-2, Shallow Soil Screening Levels, Commercial/Industrial Land Use, Groundwater is a current or potential source of drinking water, in Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, RWQCB-May 2008

6.3.2 GROUNDWATER

As described above, there were no identified complete groundwater ingestion pathways. However, the most recent COC concentrations detected in groundwater were compared to the ESLs at sites where groundwater is a current or potential source of drinking water. The comparison is presented in Table C below.

TABLE C. COMPARISON OF MOST RECENT MAXIMUM GROUNDWATER CONCENTRATIONS TO ESLs (concentrations in µg/L)					
Constituent Highest Detected Concentration Remaining in Groundwater Groundwater ESL ¹					
TPHg	3,400	100			
Ethylbenzene	0.6	30			
Xylenes	Xylenes 1 20				

ESLs from Table C, ESLs for Deep Soils, groundwater is a current or potential drinking water resource, Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, RWQCB-May 2008

As shown above, the maximum detected TPHg concentration in groundwater exceeds the ESL. However, the source has been removed, and the plume is stable, decreasing, and not migrating, and no wells or sensitive receptors are likely to be impacted. Additionally, at least a portion of the detected TPHg is likely due to an offsite source. Therefore, the residual petroleum hydrocarbons in groundwater at the site do not appear to pose a significant threat to human health or the environment.

Degradation trend analysis estimates that the TPHg concentration in MW-3 will reach the ESL by February 2037 (Appendix G), which is a reasonable amount of time given the municipal water supply. An analysis was not performed for C-3 due to the offsite contributing source.

6.3.3 SOIL VAPOR

The most recent residual COC concentrations in groundwater were compared to the groundwater ESLs for evaluation of potential vapor intrusion concerns at residential sites (most conservative). However, as shown in Table D below, the only remaining COCs with corresponding ESLs are ethylbenzene and xylenes.

TABLE D. COMPARISON OF MOST RECENT MAXIMUM GROUNDWATER CONCENTRATIONS TO ESLs ASSOCIATED WITH VAPOR INTRUSION CONCERNS (concentrations in $\mu g/L$)

Constituent	Highest Detected Concentration Remaining in Groundwater	ESL ¹
Ethylbenzene	0.6	170,000
Xylenes	1.0	160,000

^{1.} ESLs from Table E-1, Groundwater Screening Levels for Evaluation of Potential Vapor Intrusion Concerns, in *Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater*, RWQCB-May 2008

As shown above, the residual concentrations in groundwater are well below the corresponding ESLs and thus do not pose a significant threat to human health. Regardless, as previously discussed, potential vapor intrusion does not appear to be a concern and no further work appears warranted.

7.0 LOW-RISK GROUNDWATER CRITERIA

The site meets the RWQCB criteria for classification as a low-risk groundwater case. As described in the RWQCB memorandum, a low-risk groundwater case has the following general characteristics:

- The leak has been stopped and ongoing sources, including light non-aqueous phase liquid (LNAPL), have been removed or remediated.
- The site has been adequately characterized.
- The dissolved hydrocarbon plume is not migrating.
- No water wells, deeper drinking water aquifers, surface water, or other sensitive receptors are likely to be impacted.
- The site presents no significant risk to human health or the environment.

Each low-risk groundwater case criteria, as it pertains to the site, is discussed below.

7.1 THE LEAK HAS BEEN STOPPED AND ONGOING SOURCES, INCLUDING LNAPL, HAVE BEEN REMOVED OR REMEDIATED

All original potential sources of the petroleum hydrocarbons from the subject site (former USTs, dispensers, and piping) were removed in 1991. The remedial excavation removed

the majority of the hydrocarbon mass from the original source areas. As previously described, hydrocarbons are migrating beneath the site from an offsite source, and likely contributing to the stable TPHg concentrations in C-3. Otherwise, concentrations in groundwater are decreasing, indicating any residual hydrocarbons in soil are not acting as a significant continuing source that would reverse these trends. LNAPL has not been observed in any of the wells. Based on this information, the leak has been stopped and ongoing sources have been removed.

7.2 THE SITE HAS BEEN ADEQUATELY CHARACTERIZED

Soil sample analytical results and excavation activities indicate that the extent of impacted soil has been adequately defined. Groundwater monitoring has been performed since 1990. The plume appears to be stable and the extent adequately defined. Concentrations are expected to continue to decrease over time due to natural attenuation.

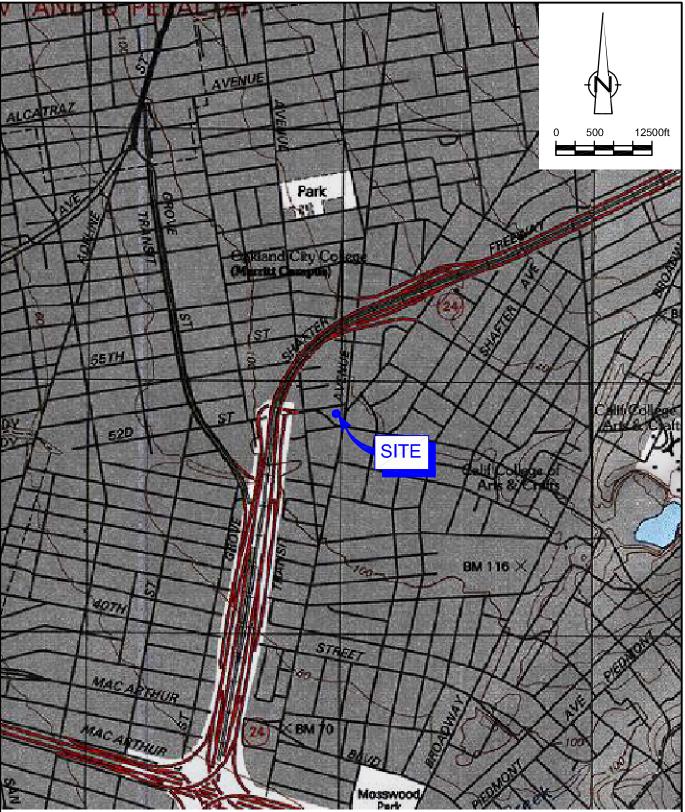
Although soil vapor sampling has not been performed, potential vapor intrusion does not appear to be a concern at the site based on the lack of benzene in soil and groundwater and the results of the previous risk assessment. Based on this information, the extent of impact has been defined to the degree necessary to demonstrate that the site does not present a significant threat to human health or the environment, and no further work is warranted.

7.3 THE DISSOLVED HYDROCARBON PLUME IS STABLE, DECREASING, AND NOT MIGRATING

Based on the monitoring results, the plume appears stable, shrinking, and not migrating. Natural attenuation is expected to continue to reduce the remaining concentrations to background levels. The TPHg concentration in MW-3 is estimated to reach the ESL by 2037.

7.4 NO WATER WELLS, DEEPER DRINKING WATER AQUIFERS, SURFACE WATER, OR OTHER SENSITIVE RECEPTORS ARE LIKELY TO BE IMPACTED

No water wells, surface water or other sensitive receptors were identified that are likely to be impacted by petroleum hydrocarbons from the site.

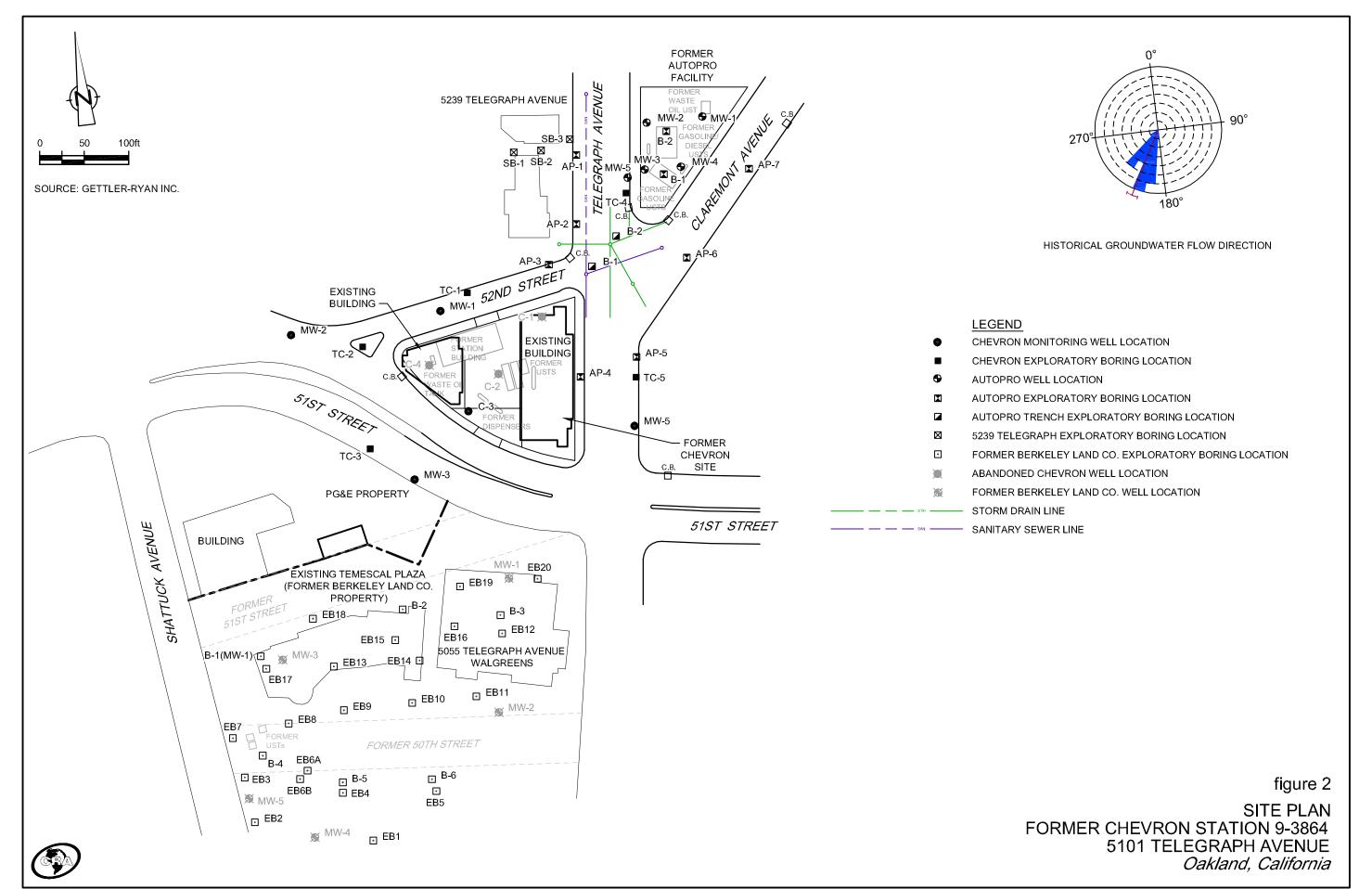

7.5 THE SITE PRESENTS NO SIGNIFICANT RISK TO HUMAN HEALTH OR THE ENVIRONMENT

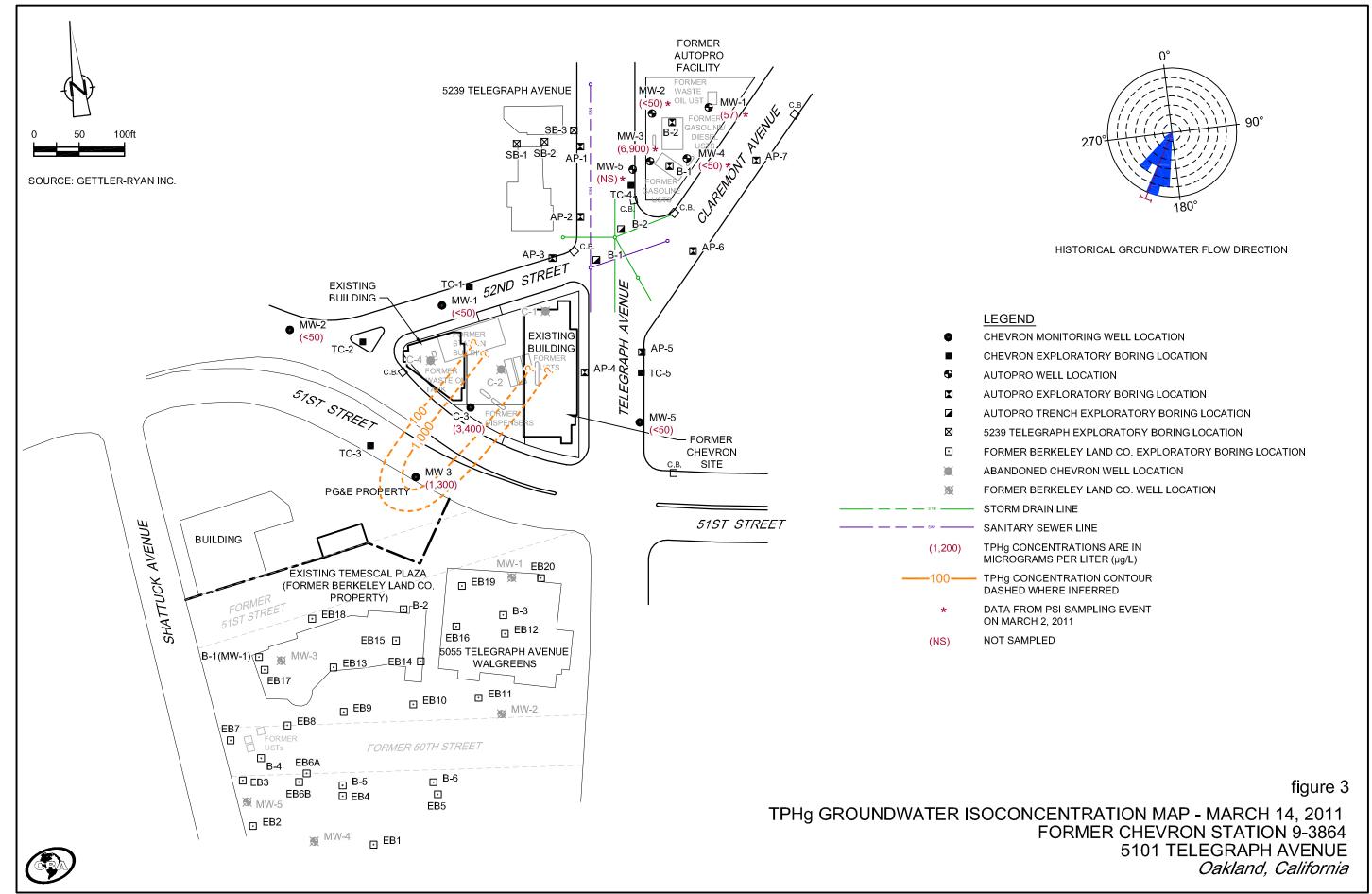
The site is generally capped with the existing development, thus potential exposure to any residual impacted soil by the general public is precluded. Regardless, the previous risk assessment indicated no significant risk to either construction workers or hypothetical residents. The maximum residual detected concentrations in soil of a few COCs exceeded the ESLs associated with groundwater protection; however, concentrations in groundwater are generally decreasing indicating the lack of a significant continuing soil source. Although impacted groundwater remains beneath the site, and an upgradient source is contributing to the impacts, natural attenuation is expected to continue to decrease concentrations to background levels over time. No sensitive receptors appear likely to be impacted given the plume appears stable, decreasing in size and mass, and is limited in extent. Potential vapor intrusion has been shown to not be a significant concern. Based on this information, the site does not pose a significant risk to human health or the environment.

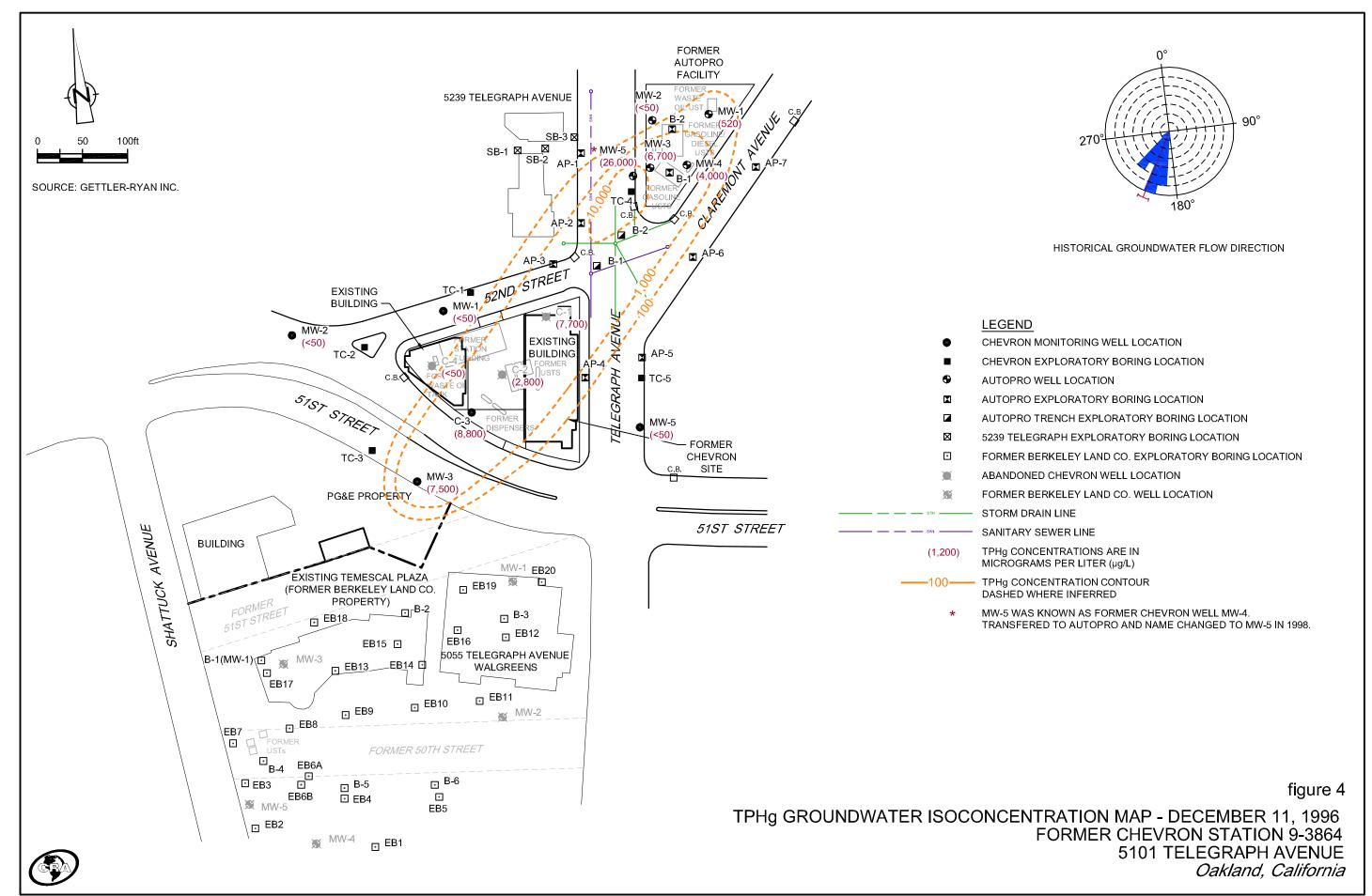
8.0 CONCLUSIONS AND RECOMMENDATIONS

Based on the site conditions and analytical data, the site satisfies the RWQCB criteria for classification as a low-risk groundwater case. The extent of hydrocarbons in soil and groundwater has been adequately defined and no further work is warranted. The dissolved hydrocarbon plume is stable, decreasing, and an upgradient source is contributing to site impacts. The residual petroleum hydrocarbons in soil and groundwater at the site do not pose a significant threat to human health or the environment. The site is expected to remain in commercial use for the foreseeable future. Therefore, on behalf of Chevron, CRA respectfully requests the site be considered for low-risk case closure.

FIGURES




SOURCE: TOPO! MAPS.


figure 1

VICINITY MAP FORMER CHEVRON SERVICE STATION 9-3864 5101 TELEGRAPH AVENUE Oakland, California

TABLES

TABLE 1 1 of 4

SOIL SAMPLE ANALYTICAL RESULTS FORMER CHEVRON SERVICE STATION 9-3864 5101 TELEGRAPH AVENUE OAKLAND, CA

Boring/ Sample ID	Sample Date	Sample Depth (fbg)	TPHd ←	ТРНg со	TOG oncentratio	Benzene ons in millgr		Ethylbenzene ogram (mg/kg) -	Xylenes	HVOCs
Exploratory and	d Monitoring	Well Borings								
C-1	11/14/90	15.5	NA	48	NA	<0.025	0.29	0.28	0.6	NA
C-2	11/14/90	10.5	NA	<1	NA	< 0.005	< 0.005	<0.005	<0.005	NA
	11/14/90	15.5	NA	25	NA	0.04	0.092	0.18	0.4	NA
C-3	11/15/90	10.5	NA	<1	NA	0.006	0.016	0.006	0.021	NA
	11/15/90	15.5	NA	270	NA	<0.25	0.87	1.5	3.4	NA
C-4	11/15/90	10.5	NA	<1	<50	< 0.005	< 0.005	<0.005	<0.005	ND
	11/15/90	15.5	NA	<1	<50	< 0.005	< 0.005	< 0.005	<0.005	ND
TC-1	11/30/92	10	NA	<0.3	NA	< 0.005	<0.005	< 0.005	<0.005	NA
	11/30/92	15	NA	<0.3	NA	<0.005	<0.005	<0.005	<0.005	NA
TC-2	11/30/92	10	NA	< 0.3	NA	< 0.005	< 0.005	< 0.005	< 0.005	NA
	11/30/92	15	NA	<0.3	NA	<0.005	<0.005	<0.005	<0.005	NA
TC-3	11/30/92	10	NA	<0.3	NA	< 0.005	< 0.005	< 0.005	<0.005	NA
	11/30/92	15	NA	<0.3	NA	<0.005	<0.005	<0.005	<0.005	NA
TC-4	12/1/92	7	NA	<0.3	NA	< 0.005	< 0.005	< 0.005	<0.005	NA
	12/1/92	10	NA	4.4	NA	< 0.005	0.019	0.013	0.019	NA
	12/1/92	13	NA	46	NA	< 0.05	0.18	0.12	0.07	NA
	12/1/92	16	NA	0.7	NA	< 0.005	< 0.005	< 0.005	< 0.005	NA

TABLE 1 2 of 4

SOIL SAMPLE ANALYTICAL RESULTS FORMER CHEVRON SERVICE STATION 9-3864 5101 TELEGRAPH AVENUE OAKLAND, CA

Boring/	Sample	Sample Depth	TPHd	ТРНд	TOG	Benzene		Ethylbenzene	Xylenes	HVOCs
Sample ID	Date	(fbg)	•	c	oncentratio	ons in millgr	ams per kil	ogram (mg/kg) -		
TC-5	12/1/92	10	NA	<0.3	NA	< 0.005	< 0.005	< 0.005	< 0.005	NA
	12/1/92	16	NA	<0.3	NA	< 0.005	<0.005	< 0.005	< 0.005	NA
B-1 (MW-1)	9/16/93	6.5	NA	<1	NA	<0.005	< 0.005	< 0.005	<0.015	NA
,	9/16/93	10.8	NA	<1	NA	< 0.005	<0.005	< 0.005	<0.015	NA
B-2 (MW-2)	9/20/93	6	NA	<1	NA	< 0.005	< 0.005	< 0.005	<0.015	NA
, ,	9/20/93	11.3	NA	<1	NA	< 0.005	< 0.005	< 0.005	<0.015	NA
B-3 (MW-3)	9/16/93	6.3	NA	<1	NA	<0.005	< 0.005	< 0.005	<0.015	NA
,	9/16/93	11.4	NA	<1	NA	< 0.005	< 0.005	< 0.005	< 0.015	NA
	9/16/93	14.5	NA	<1	NA	< 0.005	< 0.005	< 0.005	< 0.015	NA
	9/16/93	16.3	NA	1	NA	0.007	0.01	0.005	0.017	NA
B-4 (MW-4)	9/15/93	6.3	NA	<1	NA	<0.005	< 0.005	< 0.005	<0.015	NA
,	9/15/93	11.3	NA	300	NA	< 0.025	0.53	0.15	1.8	NA
B-5 (MW-5)	9/16/93	6.5	NA	<1	NA	<0.005	< 0.005	<0.005	<0.015	NA
2 3 (1111 3)	9/16/93	11.5	NA	<1	NA	< 0.005	< 0.005	< 0.005	< 0.015	NA
	9/16/93	14.5	NA	<1	NA	<0.005	< 0.005	<0.005	< 0.015	NA
Gasoline UST E	xcavation									
#1	9/18/91	13.5	NA	<1	NA	< 0.005	< 0.005	< 0.005	< 0.005	NA
#2	9/18/91	13.5	NA	1,300	NA	< 0.25	2.3	2.8	7.6	NA
#3	9/18/91	13.5	NA	46	NA	0.1	0.07	0.21	0.18	NA
#4	9/18/91	13.5	NA	160	NA	<0.12	<0.12	1.6	3.2	NA
#5	9/18/91	13.5	NA	64	NA	0.04	0.04	0.13	0.32	NA

TABLE 1 3 of 4

SOIL SAMPLE ANALYTICAL RESULTS FORMER CHEVRON SERVICE STATION 9-3864 5101 TELEGRAPH AVENUE OAKLAND, CA

Boring/ Sample ID	Sample Date	Sample Depth (fbg)	TPHd ◆	ТРНg ——— с	TOG oncentratio	Benzene ons in millgr		Ethylbenzene logram (mg/kg) -	Xylenes	HVOCs
•		y G.				Ö	,	3 . 3 3.		
#6	9/18/91	13.5	NA	190	NA	0.33	0.38	0.81	1.8	NA
#7	9/18/91	10	NA	<1	NA	< 0.005	< 0.005	< 0.005	< 0.005	NA
#8	9/18/91	10	NA	<1	NA	< 0.005	< 0.005	< 0.005	< 0.005	NA
#9	9/18/91	10	NA	<1	NA	< 0.005	< 0.005	< 0.005	0.007	NA
Dispenser and	Product Line	Excavation								
#10	9/18/91	2	NA	<1	NA	< 0.005	< 0.005	< 0.005	< 0.005	NA
#11	9/18/91	3	NA	<1	NA	0.008	0.009	< 0.005	0.01	NA
#12	9/18/91	2	NA	<1	NA	< 0.005	< 0.005	< 0.005	< 0.005	NA
#13	9/18/91	2	NA	53	NA	0.9	3.5	1.2	6.9	NA
Used-Oil UST l	Excavation									
#14	9/18/91	11	<10	<1	< 50	< 0.005	< 0.005	< 0.005	< 0.005	ND
#15	9/18/91	11.5	<10	<1	<50	< 0.005	< 0.005	< 0.005	< 0.005	ND
Gasoline UST (Over-Excavati	ion								
#1	9/26/91	15.5	NA	580	NA	< 0.12	1.4	1.5	3.9	NA
#3	9/26/91	15.5	NA	71	NA	0.069	0.12	0.22	0.57	NA
#4	9/26/91	15.5	NA	980	NA	< 0.12	2.7	2.5	5.5	NA
#5	9/26/91	15.5	NA	330	NA	< 0.12	0.81	1	2.7	NA
#6	9/26/91	15.5	NA	460	NA	<0.12	0.92	1.3	3	NA
Product Line O	ver-Excavatio	on								
#2	9/26/91	5	NA	2	NA	0.069	0.092	0.022	0.18	NA

TABLE 1 4 of 4

SOIL SAMPLE ANALYTICAL RESULTS FORMER CHEVRON SERVICE STATION 9-3864 5101 TELEGRAPH AVENUE OAKLAND, CA

Boring/ Sample ID	Sample Date	Sample Depth (fbg)	TPHd ←	ТРНg ——— с	TOG oncentratio	Benzene ons in millgr	Toluene ams per kil	Ethylbenzene logram (mg/kg) -	Xylenes	HVOCs
Samples of Exc	avated Soil A	erated and Used	as Backfill							
#7	10/10/91	N/A	NA	<1	NA	< 0.005	< 0.005	< 0.005	< 0.005	NA
#8	10/10/91	N/A	NA	<1	NA	< 0.005	< 0.005	< 0.005	< 0.005	NA
#9	10/10/91	N/A	NA	<1	NA	< 0.005	< 0.005	< 0.005	< 0.005	NA
#10	10/10/91	N/A	NA	<1	NA	< 0.005	< 0.005	< 0.005	< 0.005	NA
#11	10/10/91	N/A	NA	<1	NA	< 0.005	< 0.005	< 0.005	< 0.005	NA
#12	10/10/91	N/A	NA	<1	NA	< 0.005	< 0.005	< 0.005	< 0.005	NA
#13	10/10/91	N/A	NA	<1	NA	< 0.005	< 0.005	< 0.005	< 0.005	NA
#14	10/10/91	N/A	NA	<1	NA	< 0.005	< 0.005	< 0.005	< 0.005	NA
#15	10/10/91	N/A	NA	<1	NA	< 0.005	< 0.005	< 0.005	< 0.005	NA
#16	10/10/91	N/A	NA	<1	NA	< 0.005	< 0.005	< 0.005	< 0.005	NA
#17	10/10/91	N/A	NA	<1	NA	< 0.005	< 0.005	< 0.005	< 0.005	NA
#18	10/10/91	N/A	NA	<1	NA	< 0.005	< 0.005	< 0.005	< 0.005	NA
#19	10/10/91	N/A	NA	<1	NA	< 0.005	< 0.005	< 0.005	< 0.005	NA
#20	10/10/91	N/A	NA	<1	NA	< 0.005	< 0.005	< 0.005	< 0.005	NA
#21	10/10/91	N/A	NA	<1	NA	< 0.005	< 0.005	< 0.005	< 0.005	NA

Notes/Abbreviations:

TPHd/TPHg = Total petroleum hydrocarbons as diesel/gasoline

TOG = Total oil and grease

HVOCs = Halogenated volatile organic compounds by EPA Method 8010

fbg = feet below grade

NA = Not analyzed

< = Not detected at or above laboratory reporting limit

ND = Not detected; reporting limits vary

N/A = Not applicable

Note: Shaded samples were collected from soil that was later excavated

TABLE 2 10f 1

GROUNDWATER SAMPLE ANALYTICAL RESULTS FORMER CHEVRON SERVICE STATION 9-3864 5101 TELEGRAPH AVENUE OAKLAND, CA

Boring ID	Sample	ТРНд	Benzene	Toluene	Ethylbenzene	Xylenes
	Date	Concent	rations repo	rted in mic	rograms per liter	(ug/L)
TC-1	11/30/92	<50	< 0.4	< 0.3	< 0.3	< 0.4
TC-2	11/30/92	< 50	< 0.4	< 0.3	< 0.3	< 0.4
TC-3	11/30/92	< 50	< 0.4	< 0.3	< 0.3	< 0.4
TC-4	12/1/92	120,000	<200	<200	500	400
TC-5	12/1/92	2,400	<2	<2	<2	3

Abbreviations:

TPHg = Total petroleum hydrocarbons as gasoline

< = Not detected at or above stated laboratory reporting limit</p>

APPENDIX A

SUMMARY OF ENVIRONMENTAL INVESTIGATION AND REMEDIATION

SUMMARY OF ENVIRONMENTAL INVESTIGATION AND REMEDIATION FORMER CHEVRON SERVICE STATION 9-3864 5101 TELEGRAPH AVENUE, OAKLAND, CALIFORNIA

November 1990 Monitoring Well Installations

GeoStrategies, Inc. (GSI) installed onsite monitoring wells C-1 through C-4. Soil samples collected from the well borings at 10.5 and/or 15.5 feet below grade (fbg) contained up to 270 milligrams per kilogram (mg/kg) total petroleum hydrocarbons as gasoline (TPHg) and 0.04 mg/kg benzene. Details were presented in GSI's January 17, 1991 Well Installation Report.

September 1991 Station Demolition and Underground Storage Tank (UST) Removal

Blaine Tech Services, Inc. (Blaine Tech) oversaw the removal of three (two 10,000-gallon and one 5,000-gallon) steel gasoline USTs, a 1,000-gallon steel used-oil UST, dispensers, and product piping during station demolition. Soil samples collected beneath the gasoline USTs (13.5 fbg) and from the excavation sidewalls (10 fbg) contained up to 1,300 mg/kg TPHg and 0.33 mg/kg benzene. Soil samples collected at 2 or 3 fbg from the piping trenches contained up to 53 mg/kg TPHg and 0.9 mg/kg benzene. No hydrocarbons were detected in soil samples collected beneath the former used-oil UST.

The gasoline UST excavation was subsequently deepened to 17.5 to 18 fbg and the former piping trench was deepened to 5 fbg. Additional soil samples collected at 15.5 fbg from the sidewalls of the UST excavation contained up to 980 mg/kg TPHg and 0.069 mg/kg benzene. An additional soil sample collected at 5 fbg from the product line trench contained 2 mg/kg TPHg and 0.069 mg/kg benzene. Approximately 600 cubic yards of soil were removed; 300 cubic yards were disposed offsite and 300 were aerated, sampled, and re-used as backfill material. Details were presented in Blaine Tech's October 28, 1991 *Multiple Event Sampling Report*.

November/December 1992 Subsurface Investigation

Pacific Environmental Group, Inc. (PEG) advanced exploratory borings TC-1 through TC-5. Boring TC-4 was located adjacent to an upgradient former Shell service station to evaluate this potential offsite source. Soil samples collected at depths of 7 to 16 fbg contained up to 46 mg/kg TPHg, but no benzene. Groundwater samples were also collected from each boring. TPHg was only detected in the samples collected from TC-4 (120,000 micrograms per liter $[\mu g/L]$) and TC-5 (2,400 $\mu g/L$); no benzene was detected in the samples. Details were presented in PEG's untitled letter report dated December 18, 1992.

December 1992 Risk Assessment

Geraghty & Miller, Inc. (G&M) performed a risk assessment. The results indicated no significant threat to human health from residual petroleum hydrocarbons under a residential or commercial land use scenario, thus it was concluded no further remediation was necessary. Details were presented in G&M's December 29, 1992 *Risk-Based Analysis for the Former Chevron Service Station* #9-3864.

September 1993 Monitoring Well Installations

RESNA Industries (RESNA) installed offsite wells MW-1 through MW-5 adjacent to previous borings TC-1 through TC-5. Soil samples collected at depths of 6 to 16.3 fbg from the well borings contained up to 300 mg/kg TPHg and 0.007 mg/kg benzene (one sample). A well and

offsite source survey were also conducted. Details were presented in RESNA's October 18, 1993 *Report-Additional Subsurface Investigation*.

December 1996 and January 1997 Well Destructions

Gettler-Ryan Inc. (G-R) destroyed wells C-1, C-2, and C-4 to accommodate site redevelopment. Details were presented in G-R's January 14, 1997, and March 7, 1997 *Well Abandonment* reports.

1999-2004 Oxygen Release Compound® (ORC) Enhanced Oxygenation

ORC socks were placed in wells C-3 and MW-3 to reduce petroleum hydrocarbon concentrations in groundwater via enhanced biodegradation.

APPENDIX B HISTORICAL BORING LOGS

	MAJOR DIVIS	SIONS		TYPICAL NAMES
:VE		CLEAN GRAVELS WITH LITTLE	GW	WELL GRADED GRAVELS WITH OR WITHOUT SAND, LITTLE OR NO FINES
). 200 SIE	GRAVELS MORE THAN HALF	OR NO FINES	GP	POORLY GRADED GRAVELS WITH OR WITHOUT SAND, LITTLE OR NO FINES
D SOILS THAN NO	COARSE FRACTION IS LARGER THAN NO. 4 SIEVE SIZE	GRAVELS WITH	GM	SILTY GRAVELS, SILTY GRAVELS WITH SAND
COARSE-GRAINED SOILS MORE THAN HALF IS COARSER THAN NO. 200 SIEVE		OVER 15% FINES	GC	CLAYEY GRAVELS, CLAYEY GRAVELS WITH SAND
OARSE.		CLEAN SANDS WITH LITTLE	sw	WELL GRADED SANDS WITH OR WITHOUT GRAVEL, LITTLE OR NO FINES
C THAN	SANDS MORE THAN HALF	OR NO FINES	SP	POORLY GRADED SANDS WITH OR WITHOUT GRAVEL, LITTLE OR NO FINES
MOF	COARSE FRACTION IS SMALLER THAN NO. 4 SIEVE SIZE	SANDS WITH	SM	SILTY SANDS WITH OR WITHOUT GRAVEL
		OVER 15% FINES	sc	CLAYEY SANDS WITH OR WITHOUT GRAVEL
SIEVE			ML	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTS WITH SANDS AND GRAVELS
ILS N NO. 200	SILTS AN LIQUID LIMIT :		CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY CLAYS WITH SANDS AND GRAVELS, LEAN CLAYS
NED SO			OL	ORGANIC SILTS OR CLAYS OF LOW PLASTICITY
VE-GRAI			мн	INORGANIC SILTS, MICACEOUS OR DIATOMACIOUS, FINE SANDY OR SILTY SOILS, ELASTIC SILTS
FINE-GRAINED SOILS MORE THAN HALF IS FINER THAN NO. 200 SIEVE	SILTS AN LIQUID LIMIT GRE		СН	INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS
MORE			ОН	ORGANIC SILTS OR CLAYS OF MEDIUM TO HIGH PLASTICITY
	HIGHLY ORG	BANIC SOILS	PT	PEAT AND OTHER HIGHLY ORGANIC SOILS

LL

- Liquid Limit (%)

Ы

- Plastic Index (%)

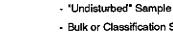
PID

- Volatile Vapors in ppm

MA

- Particle Size Analysis

2.5 YR 6/2


- Soil Color according to Munsell Soil Color Charts (1975 Edition)

5 GY 5/2

- GSA Rock Color Chart

- No Soil Sample Recoverd

- Bulk or Classification Sample

- First Encountered Ground Water Level

Penetration

Sample drive hammer weight • 140 pounds falling 30 inches. Blows required to drive sampler 1 foot are indicated on the logs

GeoStrategies Inc.

Unified Soil Classification - ASTM D 2488-85 and Key to Test Data

C-1 Chevron Service Statish No. 3864 C-1 Location: S101 Telegraph Avanue City: Oakland, California Sheet 1 Logged by Rom Drillion: Bayland Casing installation data: Cearing installation:	Field loca	ation of b	oring:				· .		Project No.:	7277	Date:	11/14/90	Boring No:
Comparison Com									Client:	Chevron Ser	rvice Station	No. 3864] ,
Logged by RCM Driller: Bayland of 2 Cauing installation data:			(S	ee Plate	2)					5101 Telegra	aph Avenue		T C-1
Cesing installation data: See Well Construction Detail) Top of Box Bevellon: 117.45 Datum: MSL									City;	Oakland, Ca			
Collaboration											Driller:	Bayland	of 2
Flote diameter: 8-Inches									Casing install	lation data:			
Sand			Hollow S	Stem Au	ger				l	(Se	e Well Const	ruction Deta	<u>il)</u>
PAVEMENT SECTION - 1.0 feet.	Hole dia	meter:	8-Inches	<u>.</u>					Top of Box E	levation: 117	.4 5	Datum: MS	L
PAVEMENT SECTION - 1.0 feet.		(F)						୍ଥ	Water Level	15,00'	19.25'		
PAVEMENT SECTION - 1.0 feet.	€ ۵	18 F 8	p ed	5 5 5 5 5 5	Ē	el di	_≅ <u>ख</u>	South Series	Time	10:20	11:45		<u> </u>
PAVEMENT SECTION - 1.0 feet.	# B	Bloy Bloy	£.88	Peg F	ge	Pag.	≱≅	9 is 0	Date	11/14/90	11/14/90		
PAVEMENT SECTION - 1.0 feet. 1		<u>.</u>			"			\ s.			Description		
PAVEMENT SECTION - 1.0 feet. 1									1				,
1					0		1						
1					1				PAVEN	MENT SECTIO	N - 1.0 feet.		
Silt (ML) - very dark gray (10YR 3/1), damp, medium stiff, low plasticity; 75% silt; 10% clay; 10% sand; 5% fine gravel; rootholes; organic matter. Sand (Sw) - brownish yellow (10YR 6/6), damp, medium dense; 85% sand; 10% fine gravel; 5% silt; Fe-oxide staining. Sand (Sw) - brownish yellow (10YR 6/6), damp, medium dense; 85% sand; 10% fine gravel; 5% silt; Fe-oxide staining.					1		1						
Silt (ML) - very dark gray (10YR 3/1), damp, medium stiff, low plasticity; 75% silt; 10% clay; 10% sand; 5% fine gravel; rootholes; organic matter. Sand (Sw) - brownish yellow (10YR 6/6), damp, medium dense; 85% sand; 10% fine gravel; 5% silt; Fe-oxide staining. Sand (Sw) - brownish yellow (10YR 6/6), damp, medium dense; 85% sand; 10% fine gravel; 5% silt; Fe-oxide staining.					1		1						
Sand					2		1						-
Sand					1		1		İ				
SILT (ML) - very dark gray (10YR 3/1), damp, medium stiff, low plasticity; 75% silt; 10% clay; 10% sand; 5% fine gravel; rootholes; organic matter. SAND (SW) - brownish yellow (10YR 6/6), damp, medium dense; 85% sand; 10% fine gravel; 5% silt; Fe-oxide staining. SAND (SW) - brownish yellow (10YR 6/6), damp, medium dense; 85% sand; 10% fine gravel; 5% silt; Fe-oxide staining. SAND (SW) - brownish yellow (10YR 6/6), damp, medium dense; 85% sand; 10% fine gravel; 5% silt; Fe-oxide staining.					∃ 3	<u> </u>	1			 ·-			
SILT (ML) - very dark gray (10YR 3/1), damp, medium stiff, low plasticity; 75% silt; 10% clay; 10% sand; 5% fine gravel; rootholes; organic matter. SAND (SW) - brownish yellow (10YR 6/6), damp, medium dense; 85% sand; 10% fine gravel; 5% silt; Fe-oxide staining. SAND (SW) - brownish yellow (10YR 6/6), damp, medium dense; 85% sand; 10% fine gravel; 5% silt; Fe-oxide staining. SAND (SW) - brownish yellow (10YR 6/6), damp, medium dense; 85% sand; 10% fine gravel; 5% silt; Fe-oxide staining.			-		1							-	
SILT (ML) - very dark gray (10YR 3/1), damp, medium stiff, low plasticity; 75% silt; 10% clay; 10% sand; 5% fine gravel; rootholes; organic matter. SAND (SW) - brownish yellow (10YR 6/6), damp, medium dense; 85% sand; 10% fine gravel; 5% silt; Fe-oxide staining. SAND (SW) - brownish yellow (10YR 6/6), damp, medium dense; 85% sand; 10% fine gravel; 5% silt; Fe-oxide staining. SAND (SW) - brownish yellow (10YR 6/6), damp, medium dense; 85% sand; 10% fine gravel; 5% silt; Fe-oxide staining.		· ·			4								
SAND (SW) - brownish yellow (10YR 6/6), damp, medium dense; 85% sand; 10% fine gravel; 5% silt; Fe-oxide staining. SAND (GC) - dark greenish gray (5GY 4/1), saturated, medium dense; 65% gravel; 20% sand; 15% clay. Sand; 15		500	S&H	C-1-	1		1		SILT (N	IL) - verv dar	k grav (10YF	3/1), damp	medium
gravel; rootholes; organic matter. Gamma 0				5		1		stiff, low	v plasticity: 75	% silt: 10%	clay: 10% sa	and: 5% fine	
SAND (SW) - brownish yellow (10YR 6/6), damp, medium dense; 85% sand; 10% fine gravel; 5% silt; Fe-oxide staining. 11					1 -	_	1						
SAND (SW) - brownish yellow (10YR 6/6), damp, medium dense; 85% sand; 10% fine gravel; 5% silt; Fe-oxide staining. Sand	<u> </u>				a		1		gravor,	100410100, 01	gumo marrot	•	
SAND (SW) - brownish yellow (10YR 6/6), damp, medium dense; 85% sand; 10% fine gravel; 5% silt; Fe-oxide staining. 11		†			┨		1						
SAND (SW) - brownish yellow (10YR 6/6), damp, medium dense; 85% sand; 10% fine gravel; 5% silt; Fe-oxide staining. 11		 -			7		1	11111					
11 S&H C-1- 10 SAND (SW) - brownish yellow (10YR 6/6), damp, medium dense; 85% sand; 10% fine gravel; 5% silt; Fe-oxide staining. 11 12 13 14 CLAYEY GRAVEL with SAND (GC) - dark greenish gray (5GY 4/1), saturated, medium dense; 65% gravel; 20% sand; 15% clay. 17 18 19 19 19 19 19 19			 		┤ ′		1						
11 S&H C-1- 10 SAND (SW) - brownish yellow (10YR 6/6), damp, medium dense; 85% sand; 10% fine gravel; 5% silt; Fe-oxide staining. 11 12 13 14 CLAYEY GRAVEL with SAND (GC) - dark greenish gray (5GY 4/1), saturated, medium dense; 65% gravel; 20% sand; 15% clay. 17 18 19 19 19 19 19 19		ļ			8					······································			
11	· 				┪	\vdash	1			77767-04-34-54-54-5-5-4-1			
11 S&H C-1- 10				-	9		1	 ::::	-				
0		11	 		1		1	:::::	SAND	SW) - browni	sh vellow (1	0YB 6/6) da	mp
13	0		S&H	C-1-	10		1	1:::					
11			1 2 2		1		1					g. a., o., o	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
12		<u> </u>		10.0	11		1		1 0 0/110	o starring.			
13		-			┨"		1		<u> </u>				·
13					12		1						
11 CLAYEY GRAVEL with SAND (GC) - dark greenish gray (5GY 4/1), saturated, medium dense; 65% gravel; 20% sand; 15% clay.					"~		1	1	 				
11 CLAYEY GRAVEL with SAND (GC) - dark greenish gray (5GY 4/1), saturated, medium dense; 65% gravel; 20% sand; 15% clay.	 				12	ļ	1	1.11	├ ──				
11			-		1.3	<u> </u>	{	1.5/0/0/	 			· · ·	
11	 				111		1	1/1/					
808 11 S&H C-1- 15	<u> </u>	11	-	<u> </u>	┤ ' 		{	1///	CLAVE	V GDAVEL W	th SAND (C	C) dark are	onich grav
15 15.5 sand; 15% clay.	808		S&LI	C 1	4 -		 	1//					
16 17 17 17 16 16 17 17 16 16 17 17 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17	300		Jan		13		∤ <u>⊼</u>	Y///			medium 08	ise, os% gr	avei, ∠∪%
17		13		15.5	4.5		 -	1///	Sano; 1	o% clay.			
			-		۱'۵		1	1///	 				
					٠,,	ļ.—	1	1/1/					
18					' '	<u> </u>	-	1///	-				
					_ ا	<u> </u>	1	1.6.1					
	ļ	<u> </u>			18		{	1/1					
	ļ	<u> </u>			1,_		1	1///					
Pamada:	Dome-1:	<u>!</u>	l		<u> 19</u>		L	<u> </u>					
Remarks:	nemarks:												
Log of Boring BORING N		S	Chunk	- حا مما			· -	Log of	Boring				BORING NO.

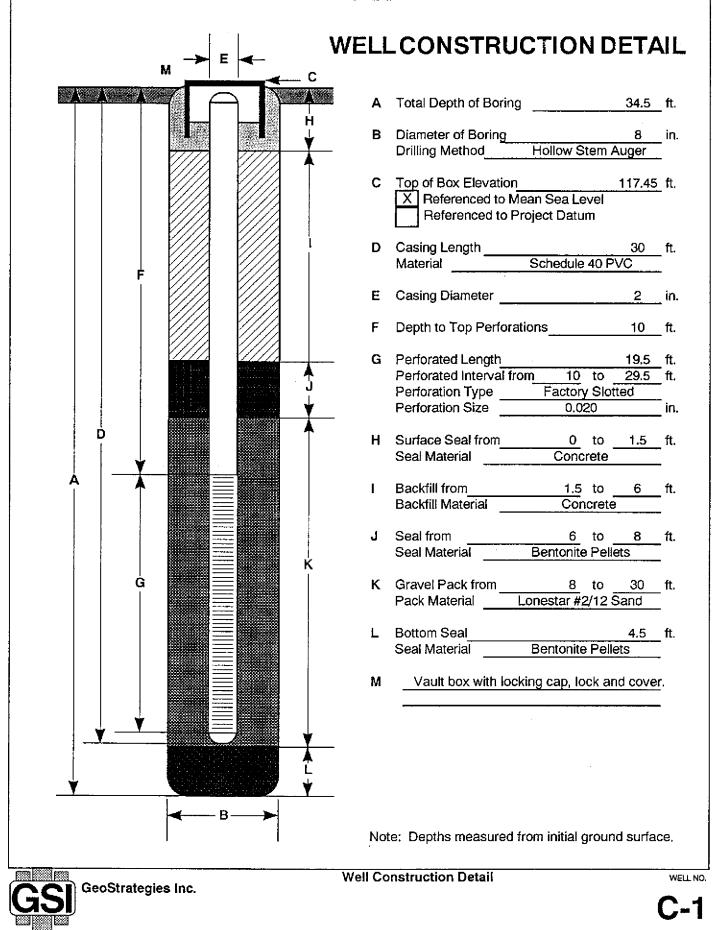
JOB NUMBER 7277

PREVIEWED BY RG/CEG

DATE 11/90

REVISED DATE

Field loca	ation of b	oring:						Project No.:		Date:	11/14/90	Boring No:
								Client:	Chevron Ser		No. 3864	C-1
		(S	ee Plate	2)				Location:	5101 Telegra			1
								City:	Oakland, Ca			Sheet 2
1								Logged by:		Driller:	Bayland	of 2
								Casing install	ation data:			
Drilling r		Hollow S		ger							155	
Hole dia	meter:	8-Inches	\$,		Top of Box E	levation:	ı . 	Datum:	
	, <u>a</u>			7	_		් දි	Water Level				
Cld (mdd)	Blows/ft. or essure (pr	Type of Sample	Sample	Depth (ft.)	Sample	Well	- Gig	Time				
-8	Blows/ft. or Pressure (psi)	≥ %	85	8	చ	>6	Soil Group Symbol (USCS)	Date		<u> </u>		
				<u> </u>			8	0.175	(O A N ID (O O)	Description		(0 (0)
	7	0011	0.4			¥			Y SAND (SC			
14.2	8 6	S&H	C-1- 20.5	20	-	1			ed, medium d	<u>епse; 75% s</u>	and; 15% C	ay; 10%
	0		20.5	21	2	-	\mathbb{H}/\mathbb{Z}	gravel.	Y SILT (ML/C	1 \ vallowie	h brown (10	VD 5/6\
				 ~ '		1	\mathbb{H}/A		ed, stiff; 65%			
				22		1	\mathbb{H}/A	Saturate	zu, 3till, 00 zo	· .	y, 1070 iii c	Serio.
			<u> </u>	-								
				23								,
							111/2/					
				24			14:22	SAND	vith CLAY (S	W-SC) - darl	cyellowish b	rown (10YR
	7			1		1	1: //		turated, medi			
42.8	10	S&H	C-1-	25			1 ://	WANTED AND THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED I	gravel.			
	19		25.5	1			1://		<u> </u>		·	
				26	_		//					
				1			1://					
				27			l: //					
							1 : //					
				28			//					
				<u> </u>]	<i>ii</i> //					
	_			29	_	ļ						
	4	0011				ļ			CLAY (CL) -			
19.0	7	S&H	C-1-	30		<u> </u>	$V//\lambda$		ery stiff, med	lium plasticit	y; 70% clay	; 25% sand;
	12		30.5	۱.,	.	į	Y///	5% silt.				
				31	<u> </u>					-,		
		:		200								
				32			V//2					
-				33	-	1	$V//\lambda$				•	
	7			33		1	$Y//\lambda$	COLOD	CHANGE to	etrona brow	ın /7 5VD 4	6) hard:
	16	SPT		34		1	Y///		ng sand to 30			oj, naru,
	29	<u> </u>		"	-	1		111010431	ng cara to be	o ,o ac oolo it		
				35		1						
				1				Bottom	of sample at	34.5 feet.		
				36					of boring at 3			
				1		1		11/14/90				
				37						•		
				1		1						
				38		1						
]								
				39								
Remarks												
F 100 100 100 100 100 100 100 100 100 10	1000						Lon of F	1 1 1				BORING NO


GeoStrategies Inc.

JOB NUMBER 7277

REVIEWED BY RG/CEG

DATE 11/90

REVISED DATE

7277

REVIEWED BY RG/CEG DHP

DATE 11/90 REVISED DATE

Field loca	ation of b	oring:						Project No.:		Date:	11/14/90	Boring No:
									Chevron Ser		No. 3864	C-2
		(S	ee Plate	2)					5101 Telegra			
									Oakland, Ca			Sheet 1
									RCM	Driller:	Bayland	of 2
								Casing installa				_
Drilling r		Hollow S		ger							ruction Detai	1)
Hole dia	meter:	8-Inches	3			,		Top of Box El			Datum: MSI	-
	(jg			-	_		Soil Group Symbol (USCS)	Water Level	15.5'	15.4'		
PiO (ppm)	Blows/ft. or Pressure (psi)	Type of Sample	Sample Number	Depth (ft.)	Sample	Welf	\\ \text{§} \\ \text{§} \\ \text{§}	Time	14:45	8:45		
. ē	Blo	₽8	& 5	8	డ్	> 6	ig 6	Date	11/14/90	11/15/90	1	
	<u></u>						À			Description		
				_								
				0				5445				
				١.				PAVEM	ENT SECTIO	N - 1.0 feet.		
		ļ		1		{						
		· · · · · · · · · · · · · · · · · · ·	ļ	1			111/2	OLAY (E)	(OUT (A) (C)	4	0.04)
				2			111//				k gray (10YF	
				3		}	111//	mealum	sun, mediun	i piasticity; t	60% silt; 40%	ciay.
-				٦					,			
				4		-						
	200			, ~			$\mathbb{H}\mathbb{Z}$	Increasi	na sand to 1	0% · gravel to	o 5%; organi	matter at
0	200	S&H	C-2-	5			111/2	5.5 feet.	ng sand to 1	U/e, gravert	0 5 %, Organi	o maner at
	250	push	5.5	"			111/2	2.2 1661				
· · · - · - · · · · · · · · · · · · · ·	230	pusii	5.5	6			111//					
				١٠.			11177		<u></u>			
· · · · · · · · · · · · · · · · · · ·				7			111/2					
				′			11/1/					
				8			17//					
				∤ ັ		}						
	-			9		İ	1//				 	
	3			1				CLAYE	SAND (SC	- dark vello	wish brown (*	IOYR 4/4).
0	4	S&H	C-2-	10		1	1///				; 20% clay; 1	
	7		10.5	1	_		1///				4); increasing	
				11	-		17//	at 10.5 f				
				1			1///		************			· · · · · · · · · · · · · · · · · · ·
				12			1///					
				1		1	1//					
· · · · · · · · · · · ·				13		1	1/1/					
				1]	16.6%					
				14				GRAVE	L with CLAY	and SAND (GW-GC) - gr	enish gray
	6						1.6/				se; 65% grav	
914	8	S&H	C-2-	15			i (1)		% clay; stro			
	11		15.5]		ÅÅ	1.50/0		-	•	-	
				16		- -	1.5/			······································		
]			1.1/					
				17			11/					
							1.1/					
				18			1:1/		•	 		
							1. 16					
				19			7.					
Remarks:	:											
province (0000000) pr										··		

GSI

GeoStrategies Inc.

Log of Boring

BORING NO

C-2

JOB NUMBER REVIEW
7277

REVIEWED BY RG/CEG

DATE 11/90

REVISED DATE

Field loca	ation of b	oring:						Project No.:			11/14/90	Boring No:
				- 1				Client:	Chevron Ser		No. 3864	C-2
		(S	ee Plate	2)				Location:	5101 Telegra			
								City:	Oakland, Ca			Sheet 2
										Driller:	Bayland	of 2
50 het	41 . 1							Casing install	ation data:		-	
Drilling n		Hollow S		ger				Ť. 45			[[]	
Hole diar	neter:	8-Inches	\$,	, <u></u>		T	Top of Box E	ievauon:		Datum:	
	Blows/ft. of Pressure (psł)	m	m =	2	_		Soil Group Symbol (USCS)	Water Level				
PIO (ppm)	ws/f	Type of Sample	Sample Number	Depth (ft.)	Sample	Well	85	Time				
- 5	명 88년	ිරී≏	8 ₹	ð	8	-0	S E	Date				
							ගි	- CDAVE	T Sh OAND	Description	(5)/ 4/4) - 55	
	6	0011		-					L with SAND			
86.5	14 17	S&H	C-2-	20				aense;	60% gravel; 3	35% Sanu; 5	% SIIT; FE-OXI	de staining.
	17		20.5	21								
				2								
				22								
-												
-				23								
					\vdash							
-				24								
	0			-	\neg		ار نول و					
	0	S&H		25	//			Very loc	se at 25.5 fe	et.		
	1			1	H							
				26								
				1			11/					
				27			1://					
				1 .			//				•	
				28								
				29					vith CLAY and			
	14		C-2-]					10YR 4/4), sa		dium dense;	55% sand;
5.0	11	S&H	30.0	30			:://		avel; 10% clay			
	12_]			ZZZ	SANDY	CLAY (CL) -	brownish ye	llow (10YR (6/6), damp,
				31				very sti	ff, medium pla	asticity; 65%	clay; 35% s	and.
]								
				32								

				33					of sample at			
				٠,					of boring at 3	5U.5 100t.		
				34				11/14/9	U			
				25								
			l	35								
				36								
		1		30								
				37								
				3'								
				38	$\vdash \vdash \vdash \mid$					•	· · · · · · · · · · · · · · · · · · ·	
				1 ~ .	$\vdash \vdash \vdash$					<u> </u>		
				39								
Remarks		<u> </u>					1					
			· · · · · · · · · · · · · · · · · · ·									

GSI

GeoStrategies Inc.

Log of Boring

BORING NO.

C-2

JOB NUMBER REVISED BY RICCEG DATE REVISED DATE REVISED DATE
7277 PHP 11/90

À			A	Total Depth of Boring	30.5 ft
			H B	Diameter of Boring Drilling Method Hollow Stem Au	8 ir uger
			С	Top of Box Elevation 1 X Referenced to Mean Sea Level Referenced to Project Datum	<u>116.16</u> ft
			D	Casing Length Schedule 40 PV	30ft
			E	Casing Diameter	<u>2</u> ir
			F	Depth to Top Perforations	<u>10</u> ft
			G	Perforated Length Perforated Interval from 10 to Perforation Type Factory Slotte	ed
	D		Н Н	Perforation Size 0.020 Surface Seal from 0 to Seal Material Concrete	
A			1	Backfill from 1.5 to Backfill Material Concrete	<u>6</u> ft
			J	Seal from 6 to Seal Material Bentonite Pellet	8 ft s
	G		к к	Gravel Pack from 8 to Pack Material Lonestar #2/12 Sa	30 ft
			L	Bottom Seal Seal Material Bentonite Pellet	<u>0.5</u> ft
			М	Vault box with locking cap, lock and	cover.
-	\ \ \ \ \ \ \ \ \ \		_		
			L ∀		
		B	No	te: Depths measured from initial ground	surface.

JOB NUMBER 7277

REVIEWED BY RG/CEG

DATE 11/90 ____

REVISED DATE

Field loc	ation of t	poring:							7277	Date:	11/15/90	Boring No:		
								Client:	Chevron Ser		No. 3864	C-3		
		(9	ee Plate	2)				Location:	5101 Telegra			L		
								City:	Oakland, Ca			Sheet 1		
										Driller:	Bayland	of 2		
D-102		11-11-	3					Casing install						
Drilling r		Hollow		ger							truction Detai			
Hole dia	1	8-Inches	S T					Top of Box E			Datum: MSI	-		
	Blows/ft. of Pressure (psi)	o		2			Soil Graup Symbol (USCS)	Water Level	15.5'	17.1'				
Old (mode)	or //	Type of Sample	Semple	Depth (ft.)	Sample	Well	8.5	Time	10:05	15:30				
_ 5	E SE	j r≥vg	ගී දු	- P	ශී		ŠĘ	Date	11/15/90	11/15/90	<u> </u>			
		i				<u> </u>	<u> </u>			Description				
				٦,	 	1								
	 	ļ		0		-		PAVEMENT SECTION - 1,0 feet.						
			ļ	1		-		PAVEIV	IEMI SECTIO	14 - 1.0 leet.				
				┤ '		ł		CLAVE	Y SILT (ML/C	I) yong da	d brown (10)	(D 2/2)		
	-			2		1		damo r	nedium plasti	city 60% eil	t: 35% clav:	n 2/2),		
	 	<u> </u>		\		1		sand.	neulum piastii	Jiny, 00 /0 SII	it, 35 /6 Clay,	270 III C		
 		<u> </u>		3		1	$\parallel \parallel \prime /$	Saliu.				 		
1	<u> </u>			1		1	111//							
				4										
0	500	S&H	C-3-	'		-	11177	Madius	stiff, damp; o	raania mat	tor at 4 E foot	 ,		
⊢—്	300	push	4.5	5		-	111//	Median	i suii, dairip, c	nganic mad	iei al 4.5 leei	••		
		pusii	4.5	3										
				6	<u> </u>	-	111//							
· · • · · · · · · · · · · · · · · · · ·				٠,		1								
				7		-					W			
				∤ ′		1								
		 		8	\vdash	1								
		<u> </u>		٦ ا	\vdash	{								
				9	-	-	111/2							
	7			ັ		1	ШZ	SAND	vith SILT (SW	-SM) - dark	vellowish bro	wn (10VR		
0	15	S&H	C-3-	10		1	[::1]		mp, dense; 85					
	17		10.5	┧					matter; Fe-ox			io gravor,		
			7010	11			:	organio	matter, r o oz	ado blaning	"	•.		
	, ,			' '					***					
				12										
		 		† · -		1				, _ , _ , _ , _ , _ , _ , _ , _ , _ , _				
				13										
				-			1//							
		 		14			1///							
	7	<u> </u>		1			1//	CLAYE	Y SAND with	GRAVEL (S	C) - dark gree	enish orav		
890	14	S&H	C-3-	15			1//		1), saturated,					
 	16	1	15.5	-		77	1///	fine gra				j, 10/V		
	8			16		立	1///	,,,,o g, a		······				
995	13	SPT		•			1///							
	16			17		_	1//			·····				
-				1		Ā	1///							
				18		-	1/1					——————————————————————————————————————		
	_						177.			······································				
:				19			1:1:1:1:1:				···			
Remarks:							<u> </u>				······································			
SS 8888 8	Log of Boring BORING NO.													

JOB NUMBER 7277

GeoStrategies Inc.

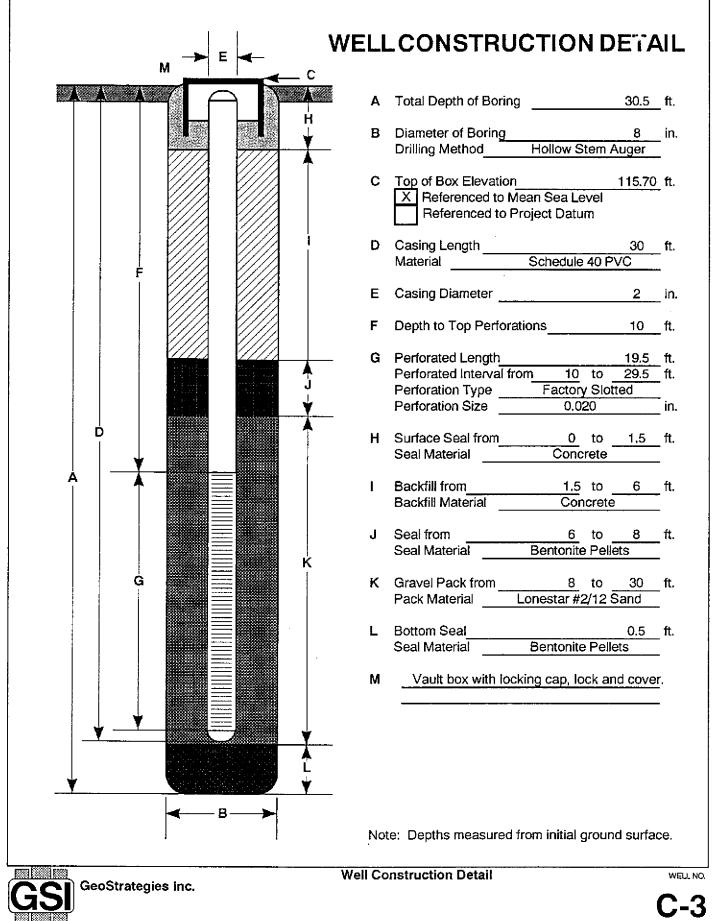
REVIEWED BY RG/CEG

DATE 11/90

REVISED DATE

Cocation: 5101 Telegraph Avenue Chy:	Field loca	ation of b	oring:						Project No.:		Date:	11/15/90	Boring No:
Clay Clay]								Client:			No. 3864	- C-3
Logged by: RCM			(S	ee Plate	2)								l
Cessing installation data: Cessing instal									•				
Description Description											Driller:	Bayland	of 2
Folia diameter: 8-Inches									Casing install	ation data:			
Reference of the control of the cont					ger							T =	
SILTY SAND (SM) - yellowish brown (10YR 5/4), saturated, medium dense; 65% sand; 30% slit; 5% fine gravel; gray green staining to 20.0 feet. CLAYEY GRAVEL with SAND (GC) - dark yellowish brown (10YR 3/4), saturated, medium dense; 55% gravel; 25% sand; 20% clay. 23	Hole diar	neter:	8-Inches	3	,	,			· ·	levation:		Datum:	,
SILTY SAND (SM) - yellowish brown (10YR 5/4), saturated, medium dense; 65% sand; 30% slit; 5% fine gravel; gray green staining to 20.0 feet. CLAYEY GRAVEL with SAND (GC) - dark yellowish brown (10YR 3/4), saturated, medium dense; 55% gravel; 25% sand; 20% clay. 23		. (s		_ •	÷			ر روي					
SILTY SAND (SM) - yellowish brown (10YR 5/4), saturated, medium dense; 65% sand; 30% slit; 5% fine gravel; gray green staining to 20.0 feet. CLAYEY GRAVEL with SAND (GC) - dark yellowish brown (10YR 3/4), saturated, medium dense; 55% gravel; 25% sand; 20% clay. 23	₽ (É	ws/ft or ire (p	9e of e)qп	nple	€. E	eldi	/e⊪ stail	1 Sp.	Time				
SILTY SAND (SM) - yellowish brown (10YR 5/4), saturated, medium dense; 65% sand; 30% slit; 5% fine gravel; gray green staining to 20.0 feet. CLAYEY GRAVEL with SAND (GC) - dark yellowish brown (10YR 3/4), saturated, medium dense; 55% gravel; 25% sand; 20% clay. 23	_ <u>_</u>	Blo Bser	Sar	Sei	0	8	ح ح	Soil (Date				
\$2.8 5 \$8.H \$C-3 20 20.5 21 20.5 21 20.5 21 20.5 21 20.5 21 20.5 21 20.5 21 20.5 21 20.5 21 20.5 21 20.5 21 20.5 2								ŝ					
10					4								
CLAYEY GRAVEL with SAND (GC) - dark yellowish brown (10YR 3/4), saturated, medium dense; 55% gravel; 25% sand; 20% clay. 23 24 8	32.8		S&H		20								lt; 5% fine
Drown (10YR 3/4), saturated, medium dense; 55% gravel; 25% sand; 20% clay. 25% sand; 20% clay. 25% sand; 20% clay. 25% sand; 20% clay. 25% sand; 20% clay. 25% sand; 20% clay. 25% sand; 20% clay. 26% sand; 20% sand; 20% sand; 30% clay. 26% sand; 20% sand; 30% clay. 26% sand; 20% sand; 30% sand; 5% sit. 26% sand; 20% sand; 2		10		20.5				1./././					
22 25% sand; 20% clay. 23 24 24 2 25 25 26 27 27 28 28 29 29 29 29 29 29 29 29 29 29 29 29 29					21			1/1/					
23					-	ļ		10/0/0/				aium aense;	55% gravel;
24	-				22			1///	25% sa	no; 20% clay.	·		
24								9/9/9/	···-				
Sample at 25.5 feet Dense at 25.5 feet					23				-		•		
Sample at 25.5 feet Dense at 25.5 feet				^t-	٠,			1/9/9/					
24.1 15 S&H C-3- 18 25.5 26 27 28 28 29 30 4 30 5 5 6 6 6 7 8 8 8 9.0 15 S&H C-3- 18 30.5 31 32 8 8 8 30.5 31 8 9.0 15 S&H C-3- 18 32 8 8 8 33.5 31 8 9.0 15 S&H C-3- 18 32 8 9.0 15 S&H C-3- 18 30.5 31 8 9.0 15 S&H C-3- 18 30.5 31 8 9.0 15 S&H C-3- 18 30.5 31 8 9.0 15 S&H C-3- 18 30.5 31 8 9.0 15 S&H C-3- 18 30.5 6 6 7 8 8 8 9.0 15 S&H C-3- 19 10 10 10 10 10 10 10 10 10 10 10 10 10		0			24	_		1.7.7					
Dense at 25.5 feet. Dense at 25.5 feet. Dense at 25.5 feet. Dense at 25.5 feet. Dense at 25.5 feet. Dense at 25.5 feet. Dense at 25.5 feet. Dense at 25.5 feet. Dense at 25.5 feet. CLAYEY SAND (SC) - brownish yellow (10YR 6/6), damp, dense; 70% sand; 30% clay. SANDY CLAY (CL) - brownish yellow (10YR 6/6), damp, hard; 65% clay; 30% sand; 5% silt. Bottom of sample at 30.5 feet. Bottom of boring at 30.5 feet. 11/15/90 33 34 35 36 37 38 39	241		COLI		25			777					
26	24.1		San		25			1././	Donne	ot OF F foot	*		
27 28 28 29 30 30.5 31 30.5 31 32 Bottom of sample at 30.5 feet. Bottom of boring at 30.5 feet. 11/15/90 38 39 39		10	-	25.5	امدا				Dense	al 25.5 leet.			
28					20			10/0/1					
28					27			1//					,
Samp, dense; 70% sand; 30% clay. Sand; 30% clay.					27			1///					
29 30 30 30 30 30 30 30 3					28			1///	CLAVE	V SAND (SC)	- brownish	reliow /10VF	3 6/6)
8					20	-		1///					10,0,,
8 9.0 15 S&H C-3- 30					29			1///	Gump, c	101100, 7070 0	4,10, 00 /0 OK	~y·	
9.0 15 S&H C-3- 30 hard; 65% clay; 30% sand; 5% silt. 18 30.5 31 32 Bottom of sample at 30.5 feet. Bottom of boring at 30.5 feet. 11/15/90 34 35 36 37 38 39		8							SANDY	CLAY (CL) -	brownish ve	llow (10YR	6/6), damp,
18 30.5 31 32 Bottom of sample at 30.5 feet. Bottom of boring at 30.5 feet. 11/15/90 34 35 35 36 37 38 39	9.0		S&H	C-3-	30			12.2.2					ο, ο, σαπ,ρ,
31 Bottom of sample at 30.5 feet. Bottom of boring at 30.5 feet. 11/15/90 34 35 36 37 38									112.0, 00	70 0129, 0070	55.110, 570 5.		
Bottom of sample at 30.5 feet. Bottom of boring at 30.5 feet. 11/15/90 34 35 36 37 38 39		-,-		0010	31								
Bottom of boring at 30.5 feet. 11/15/90 34 35 36 37 38 39					1								
Bottom of boring at 30.5 feet. 11/15/90 34 35 36 37 38 39					32				Bottom	of sample at	30,5 feet.		
33 11/15/90 34 35 36 37 38 39 39					1								
34					33						· · · · · · · · · · · · · · · · · · ·		
35 35 36 37 38 39 39 39					1								
36 37 38 39 39 39 39 39 39 39					34								
36 37 38 39 39 39 39 39 39 39					1								
37 38 39 39 39 39 39 39 39 39 39 39 39 39 39					35							······································	
37 38 39 39 39 39 39 39 39 39 39 39 39 39 39					1								
38 39 39					36								
38 39 39]								
39					37								
39									,				
					38								
Remarket					39								
Tremarks.	Remarks:						-						

GSI

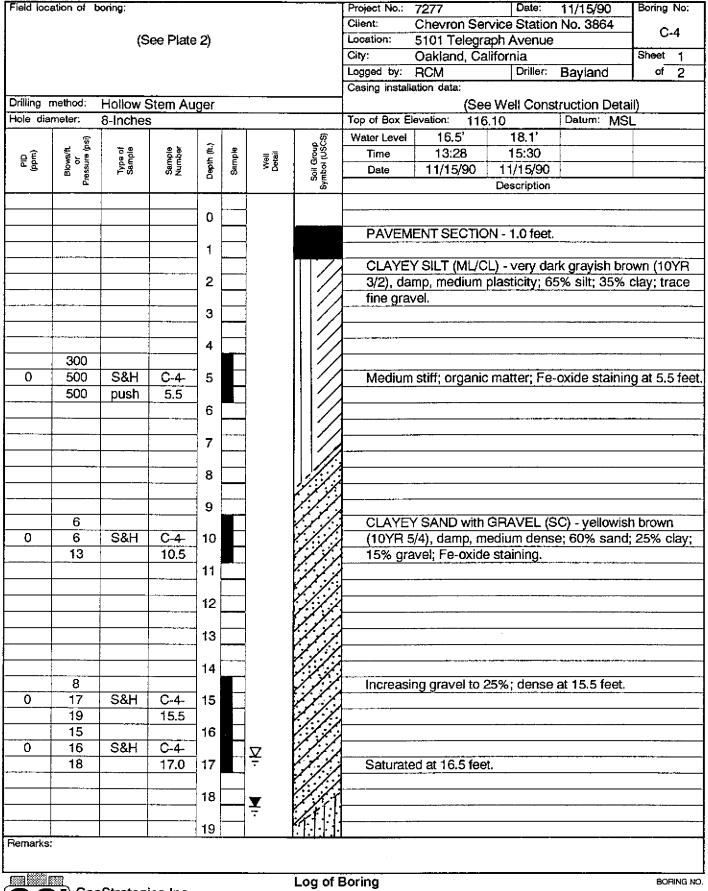

GeoStrategies Inc.

Log of Boring

BORING NO.

C-3

JOB NUMBER REVIEWED BY ROCCES DATE REVISED DATE REVISED DATE 7277 11/90



JOB NUMBER 7277

REVIEWED BY RG/CEG DHG

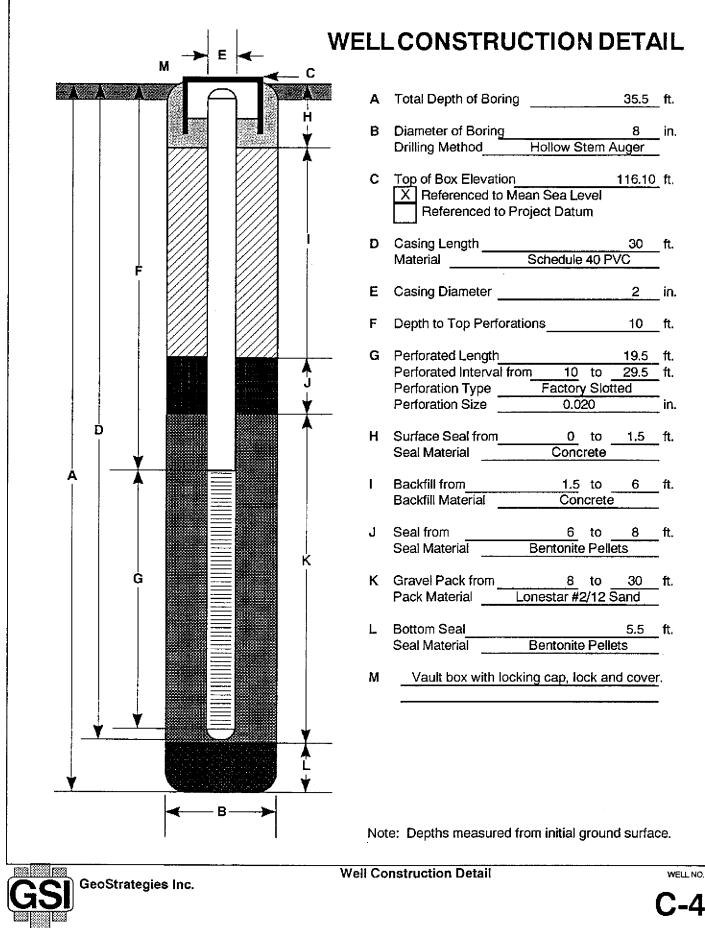
DATE 11/90

FIEVISED DATE

GeoStrategies Inc.

JOB NUMBER 7277

DHS


DATE

REVISED DATE

Field location of boring:								Project No.:		Date:	11/15/90	Boring No:
								Client:	Chevron Se		No. 3864	- C-4
1		(S	ee Plate	2)				Location:	5101 Telegra			
								City:	Oakland, Ca			Sheet 2
								Logged by:	RCM	Driller:	Bayland	of 2
						· · · · · · · · · · · · · · · · · · ·		Casing install	ation data:			
Drilling (Hollow 9	Stem Au	iger								
Hole dia	meter:	8-Inches	3					Top of Box E	levation:		Datum:	
	<u>@</u>	"					(S)	Water Level				
Pro (ppm)	Blows/ft. or Pressure (ps)	Type of Sample	Sampte Number	Depth (ft.)	Sample	20 %	l So	Time				
<u>₽</u> ₽	Blow	gr. San	Na Na) je	Sam	Welf Detail	D of	Date				
	Ě			3			Soil Group Symbol (USCS)			Description		
	3						11111	SILTY	SAND (SM) -	yellowish bro	own (10YR 5	5/4).
0	7	S&H	C-4-	20					ed, medium d			
	12		20.5				1 (1.1:1:		en discolora			
				21			T (-
	1			1			1-1-1-1					
				22			141/11/1			•	· .	
···		<u> </u>		1			1:1:1:1					
		 		23]. : .]:					
·	 							Increasi	ing gravel to	25% at 24.5	feet	
	 			24			1 [1]]].	11101000	ing graveries	2070 01 2 110	1000	
	7							SAND (SW) - pale ye	allow (2 5Y 7	/6) saturate	ed dense:
0	18	S&H	C-4-	25			1111111		nd; 5% silt.	311017 (2.01 7	, o,, balarate	70, 001150,
	29		25.5				-	33 /0 34	nu, 576 3nt.			
			25.5	26			10 m	GDAVE	L with SILT a	nd CAND /C	MACAN NO	llowich
				20			1					
				07	├ ┤				10YR 5/4), sa	aturateu, uer	ise, 70% gra	avei, 20%
				27	ļ		[• •]	sand; 1	U% SIII.			
		 										
		-		28								
		 			-		F : 1					
				29				OT 437	21- OAND (O	13 6-6-	. /5\/ -//\	
	4	0011	~ .					CLAY W	vith SAND (C	L) - light gra	y (5Y 7/1), o	amp, very
0	13	S&H	C-4-	30			V//		dium to high	plasticity; 70	0% clay; 20%	% sand; 10%
	11		30.5					silt.				
				31			V///					
							Y///					
				32			Y///					
							1///					
				33			1///					
				34								
	7]			V//	Increasi	ing sand to 30	0% at 35.5 fe	et.	
0	8	S&H	C-4-	35			V//					
	8		35.5] :			V//					
				36				Bottom	of sample at	35.5 feet.		
]					of boring at 3			
				37				11/15/9				
				1				. ,, -		·		
				38			j					·•
				1 - 1								
				39								
Remarks	:	 	<u> </u>				1				• • • • • • • • • • • • • • • • • • • •	
	ecosts						Log of I	Sauta :				
୍ ପ୍ରେମ୍ବର ନ୍ୟୁନ୍ତି ବିଲ୍ଲା	93-898-T						I AM AT I	KATIDA				BORING NO.

GeoStrategies Inc.

DATE 11/90 JOB NUMBER REVIEWED BY RG/CEG REVISED DATE REVISED DATE 7277 DHP

7277

REVIEWED BY RG/CEG

REVISED DATE

11/90

WELL LOG KEY TO ABBREVIATIONS

Drilling Method

Gravel Pack

HSA - Hollow stem auger

CA - Coarse aquarium sand

CFA - Continous flight auger Air - Reverse air circulation

Sampling Method

Cal. Mod. - California modified split-spoon sampler (2" inner diameter) driven 18" by a

140-pound hammer having a 30" drop. Where penetration resistance is

designated "P", sampler was instead pushed by drill rig. Disturbed - Sample taken from drill-return materials as they surfaced.

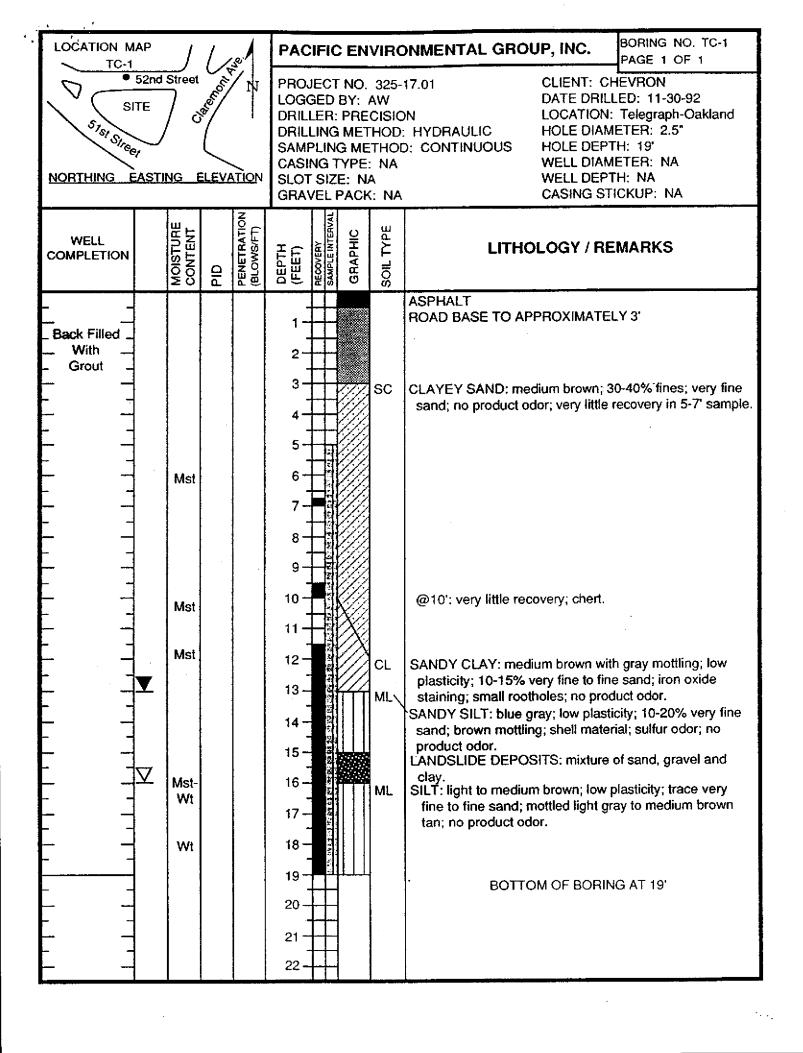
Shelby - Shelby Tube thin-walled sampler (3" diameter), where sampler is pushed by drill-rig.

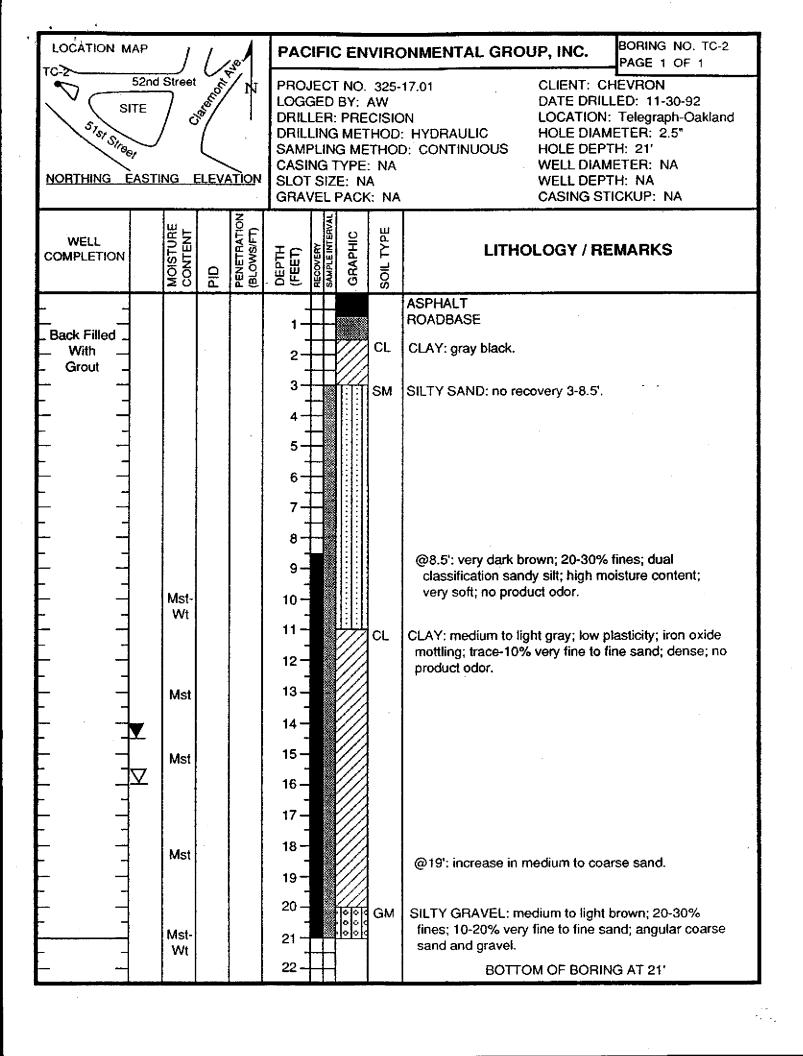
Moisture Content	Sorting	<u>Plasticity</u>		H-NU (ppm)
Dry - Dry	PS - Poorty sorted	L - Low	•	ND - No detection
Dp - Damp	MS - Moderately sorted	M - Mod	derate	
Mst - Molst	WS - Well sorted	H - Higl	h	
Wt -Wet				
Sat - Saturated			Ţ	Sample Preserved for Laboratory Testing
<u>Symbols</u>				
	sampled_/	sample		
Static ground water	level interval			
Density (Blows/Foot - C	al Mod Sampler)			
Sands and gravels		Sitts and Clays		
0 - 5 - Very Loo	se	0-2	- Very Soft	
5 - 13 - Loose		2-4	- Soft	
13 - 38 - Medium	dense	4-9	-Firm	
38 - 63 - Dense		9-17	- Stiff	
over 63 - Very den	se	17 - 37	 Very Stiff 	
		37 - 72	- Hard	
		over 72	- Very Hard	

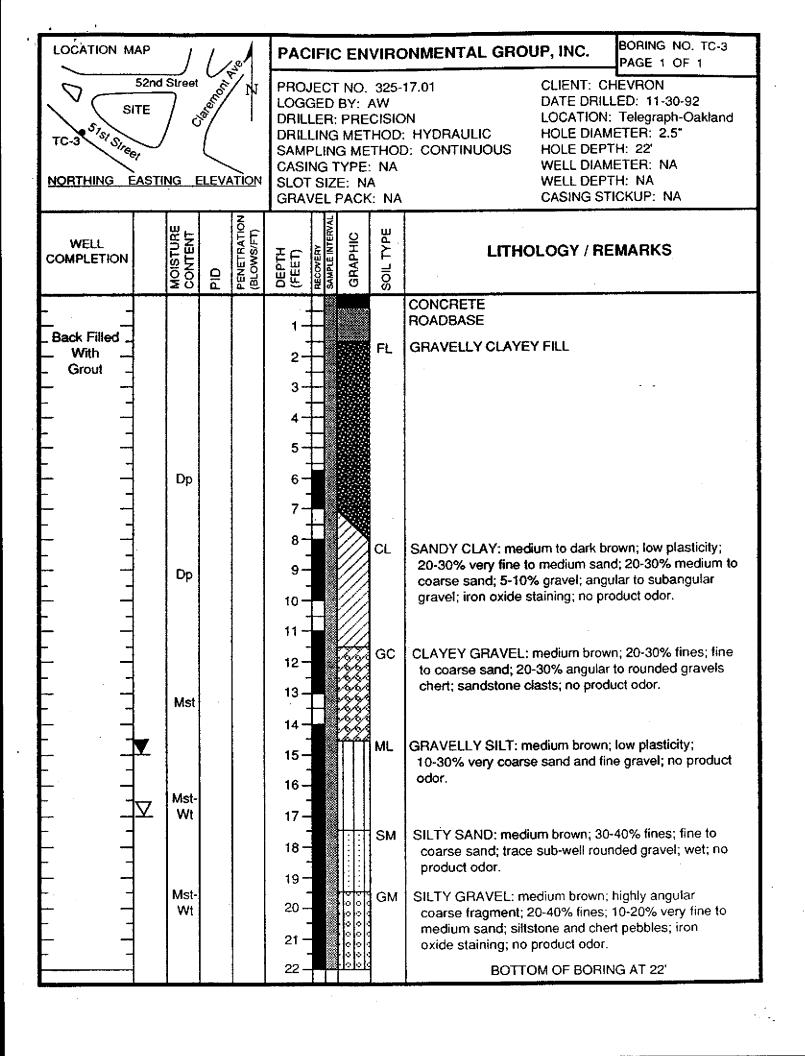
GRAIN - SIZE SCALE

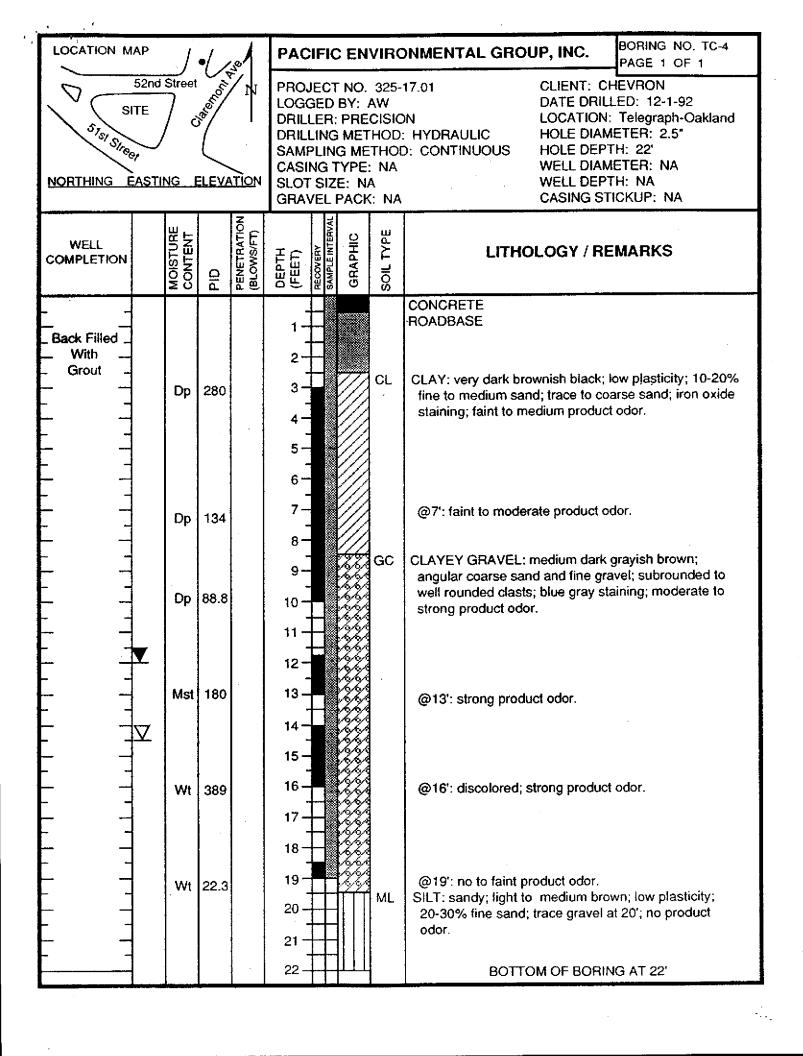
GRADE LIMITS

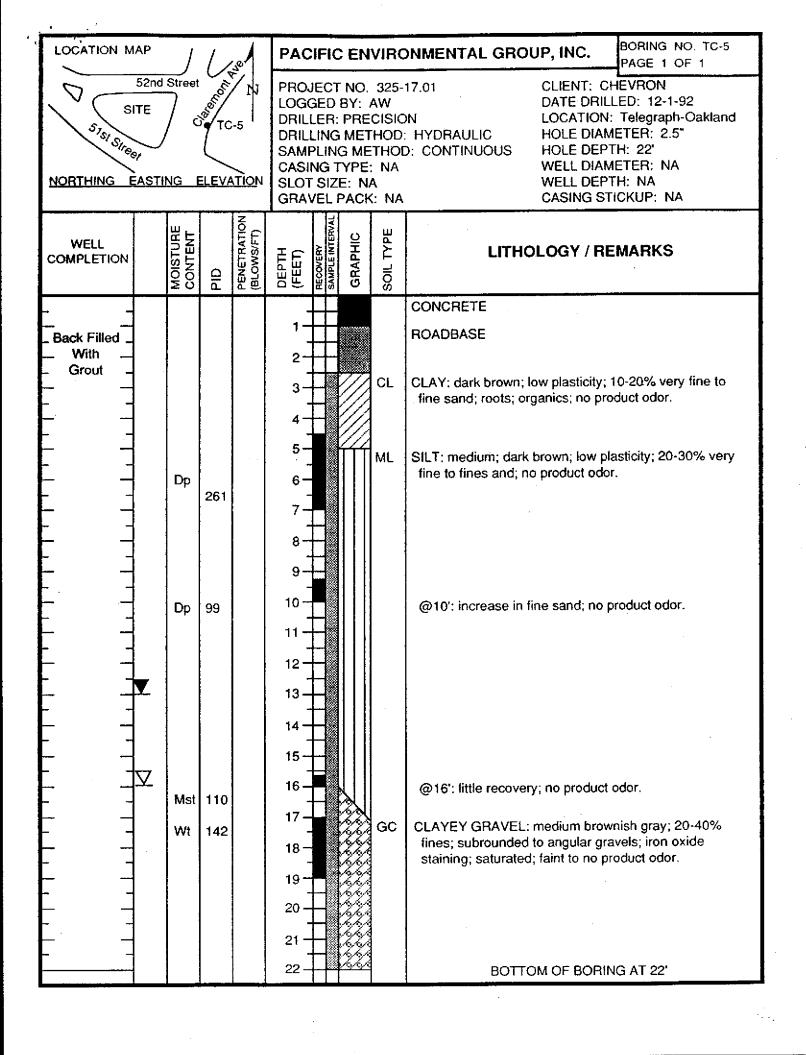
U.S. Standard

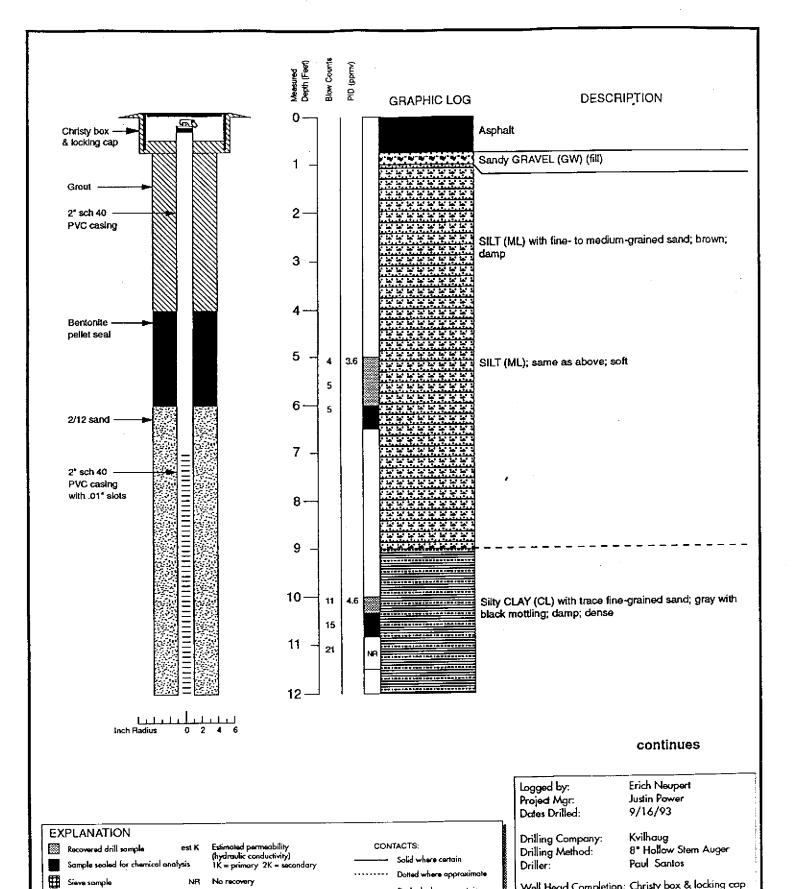

GRADE NAME


inch sleve size			
 12.0 		Boulders	
3.0 3.0 in		Cobbles	
0.19 No. 4		Gravels	
0.08	coarse		
No. 40	medium	Sand	
			
110. 200		Silt	
		Clay Size	


→ (
Primary Divisions S				oup /Gra _l	ohic Typical Names
COARSE GRAINED	GRAVELS	CLEAN GRAVELS	GW	000	Well graded gravels, gravel-sand mixtures; little or no fines
SOILS more than	coarse fraction larger than	(less than 5% fines)	GP	000	Poorly graded gravels or gravel-sand mixtures; little or no fines
half is larger than #200 sieve	#4 sieve	GRAVEL	GМ	000	Silty gravels, gravel-sand-silt mixtures
·		WITH FINES	GC		Clayey gravels, gravel-sand-clay mixtures
·	SANDS	CLEAN SANDS	sw		Well graded sands, gravelly sands, little or no fines
	half of coarse fraction smaller than #4 sieve	(less than 5% fines) SANDS WITH FINES	SP		Poorly graded sands or gravelly sands; little or no fines
			SM		Silty sands, sand-silt mixtures
			sc		Clayey sands, sand-clay mixtures, plastic fines
FINE GRAINED	SILTS AN	ML		Inorganic silts and very fine sand, rock flour, silty or clayey fine sands or clayey silts, with slight plasticity	
SOILS more than half is smaller than	liquio less th	CL		Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays	
			OL		Organic sitts and organic sitty clays of low plasticity
#200 sieve	SILTS AN	ID CLAYS	мн		Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts
	liquio more th	СН		Inorganic clays of high plasticity, fat clays	
		ОН		Organic clays of medium to high plasticity, organic silts	
HIGHL	HIGHLY ORGANIC SOILS				Peat and other highly organic soils




Unified Soil Classification System



PROJECT NO. 17075.01

Water level during drilling

Water level in completed well

10/93

Sieve sample

Grab sample

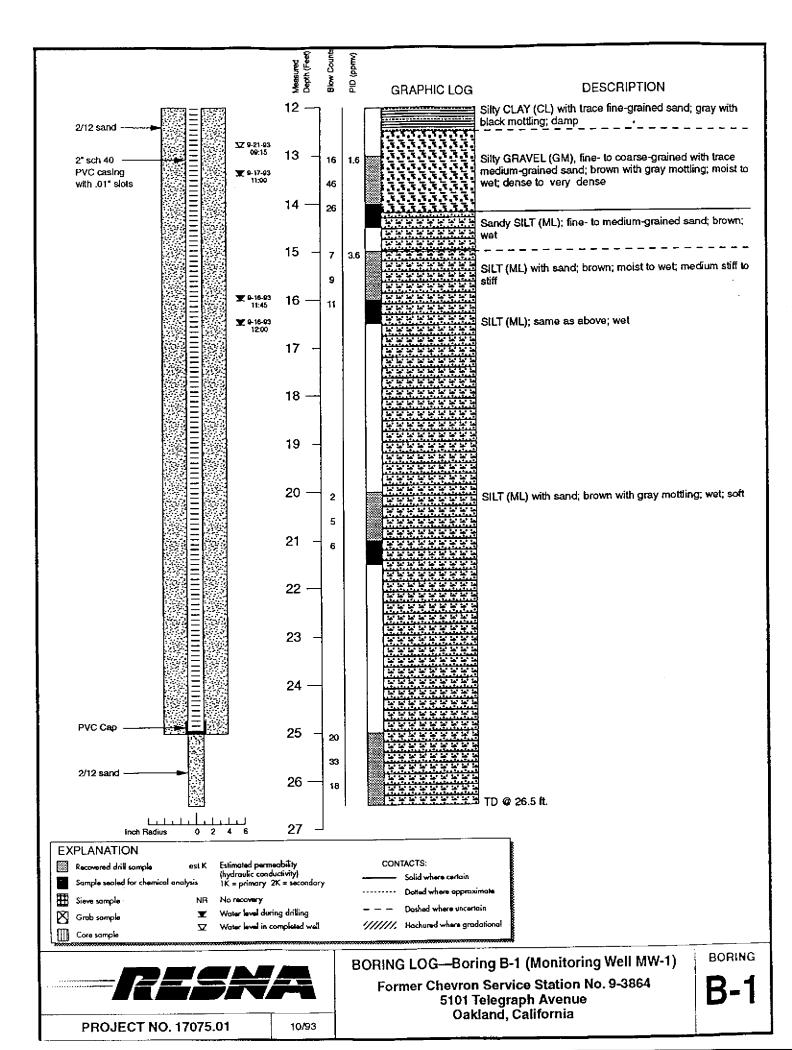
Core sample

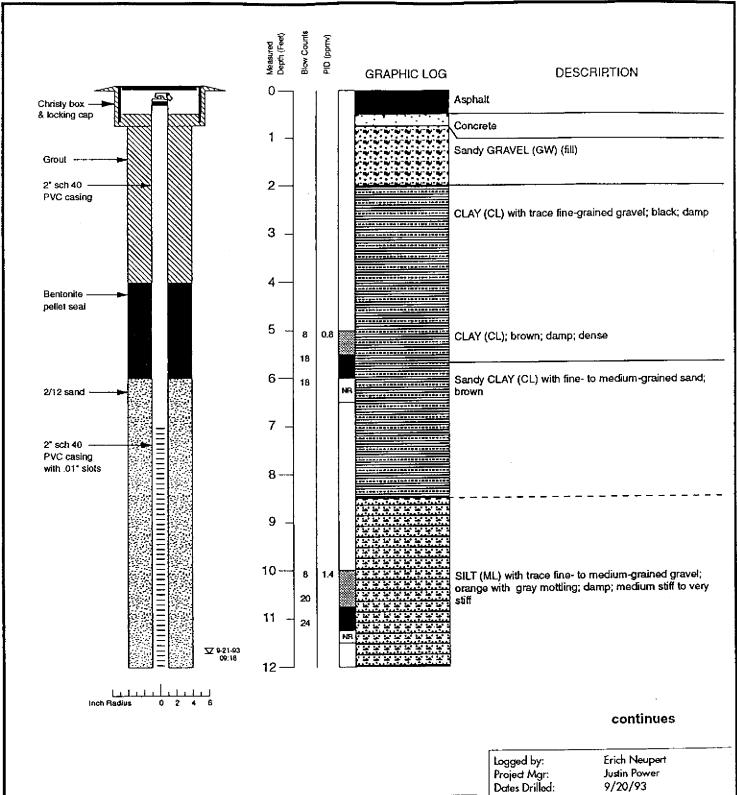
BORING LOG—Boring B-1 (Monitoring Well MW-1)

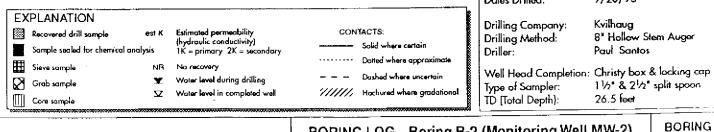
////// Hachured where gradational

Type of Sampler:

TD (Total Depth):

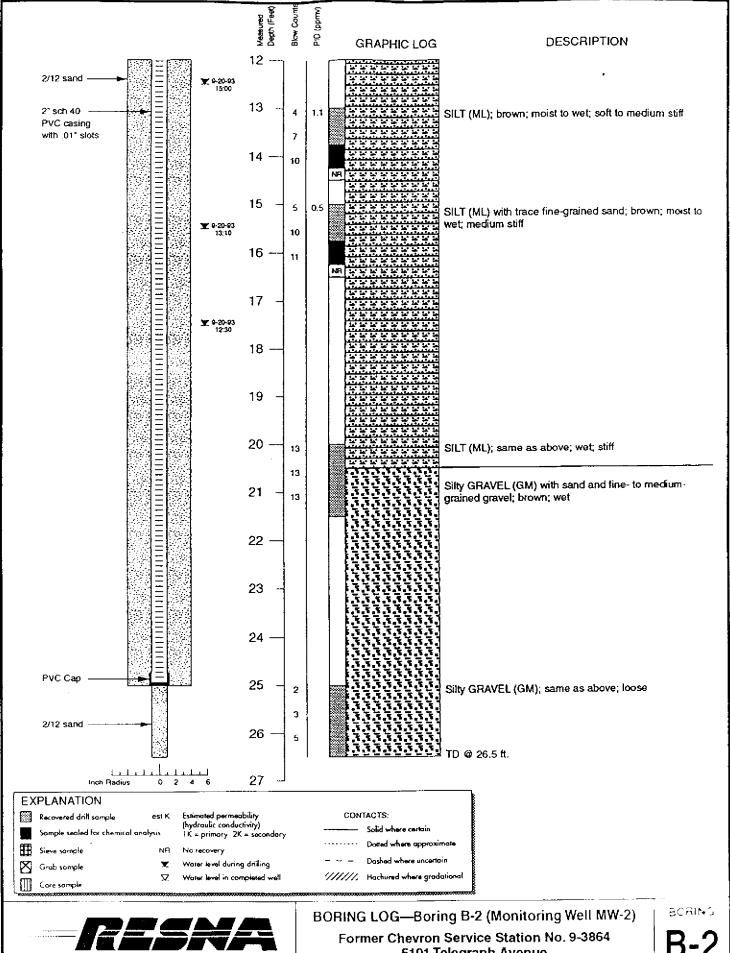

Former Chevron Service Station No. 9-3864 5101 Telegraph Avenue Oakland, California


BORING


11/2" & 21/2" split spoon

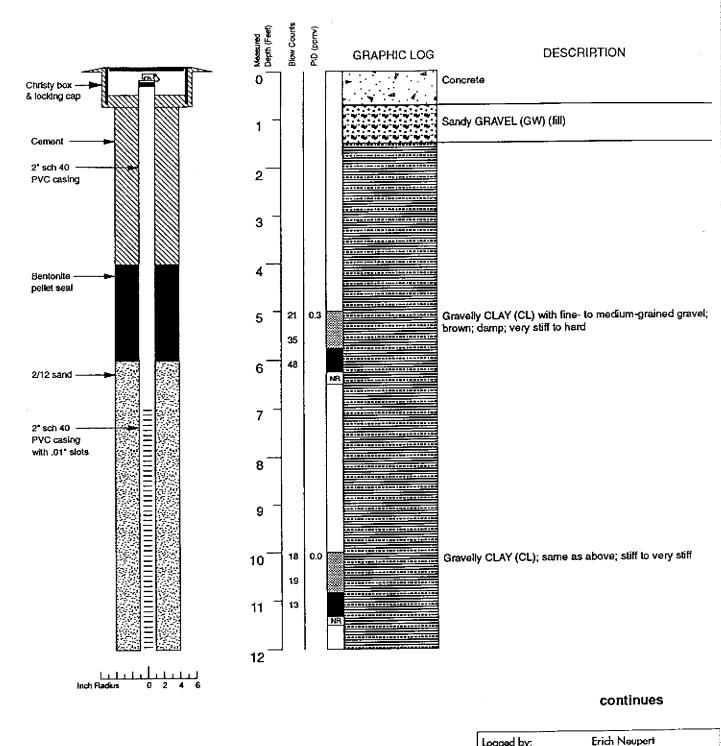
Well Head Completion: Christy box & locking cap

26.5 feet



BORING LOG—Boring B-2 (Monitoring Well MW-2)

Former Chevron Service Station No. 9-3864 5101 Telegraph Avenue Oakland, California R₋2



PROJECT NO. 17075.01

10/93

5101 Telegraph Avenue Oakland, California

EXPLANATION

Recovered drill sample

Sample sealed for chemical analysis

Sieve sample

Grab sample Core sample

Estimated permeability
(hydraulic conductivity)
1 K = primary 2K = secondary

No гесочегу

Water level during drilling Water level in completed well

CONTACTS:

Solid where certain Datted where approximate

Dashed where uncertain ////// Hachured where gradational Logged by:

Project Mgr: Justin Power 9/16/93 Dates Drilled:

Drilling Company: Drilling Method:

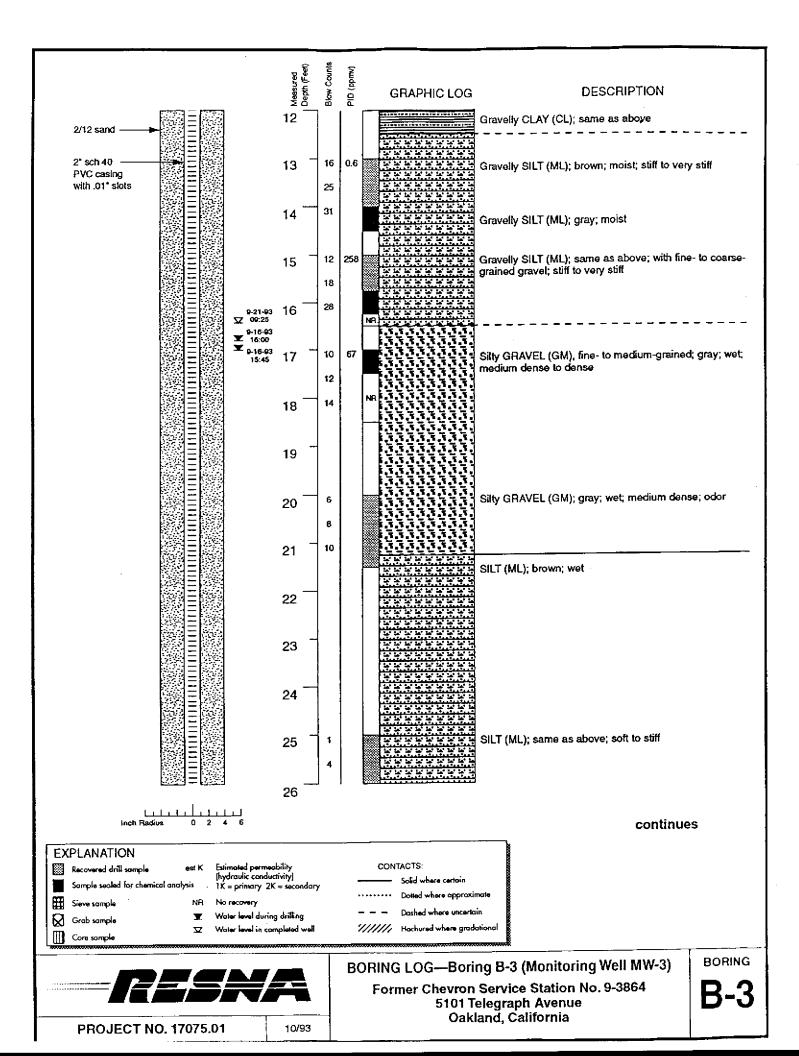
Kvilhaug 8" Hollow Stem Auger

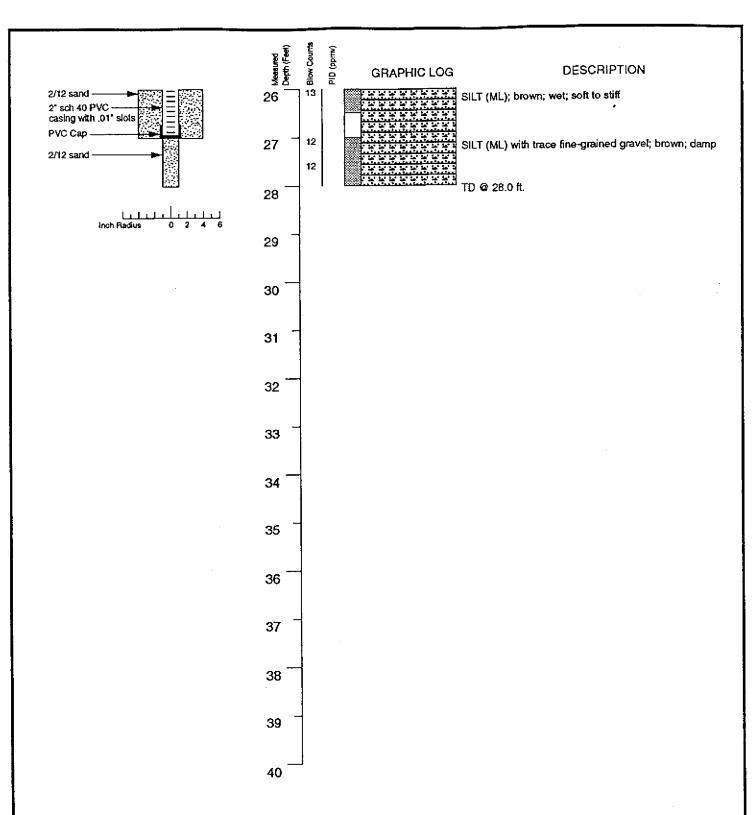
Paul Santos Driller:

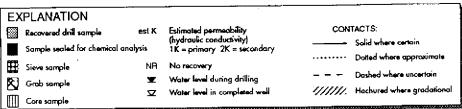
Well Head Completion: Christy box & locking cap 21/2" split spoon

Type of Sampler: TD (Total Depth):

28.0 feet

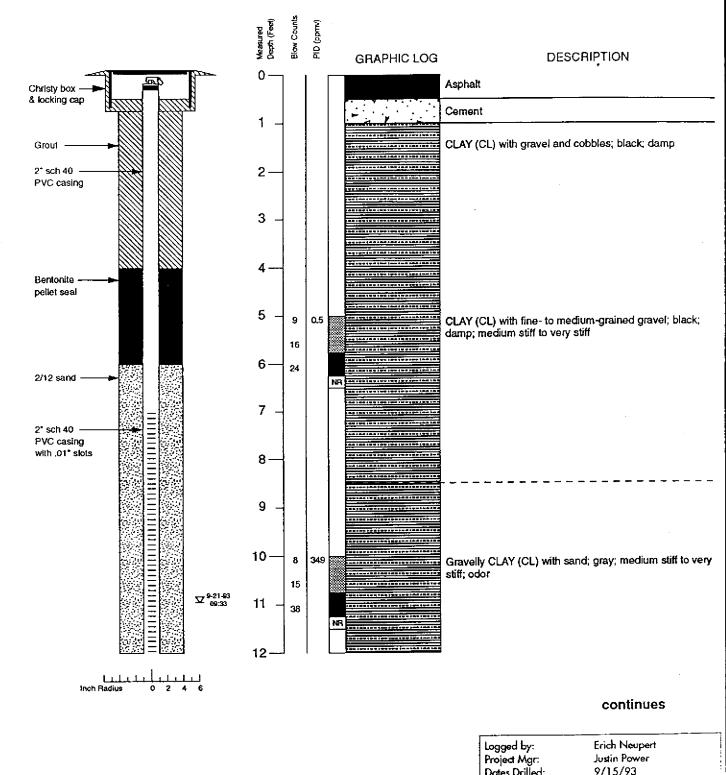

BORING LOG-Boring B-3 (Monitoring Well MW-3)


Former Chevron Service Station No. 9-3864 5101 Telegraph Avenue Oakland, California


BORING

PROJECT NO. 17075.01

10/93



BORING LOG—Boring B-3 (Monitoring Well MW-3)

Former Chevron Service Station No. 9-3864 5101 Telegraph Avenue Oakland, California **R**-3

BORING

Estimated permeability (hydraulic conductivity) Sample sealed for chemical analysis 1K = primary 2K = secondary

> Water level during drilling Water level in completed well

CONTACTS: Solid where certain Dotted where approximate

Dates Drilled: 9/15/93

Kvilhaug Drilling Company:

8" Hollow Stem Auger Drilling Method:

Driller: Paul Santos

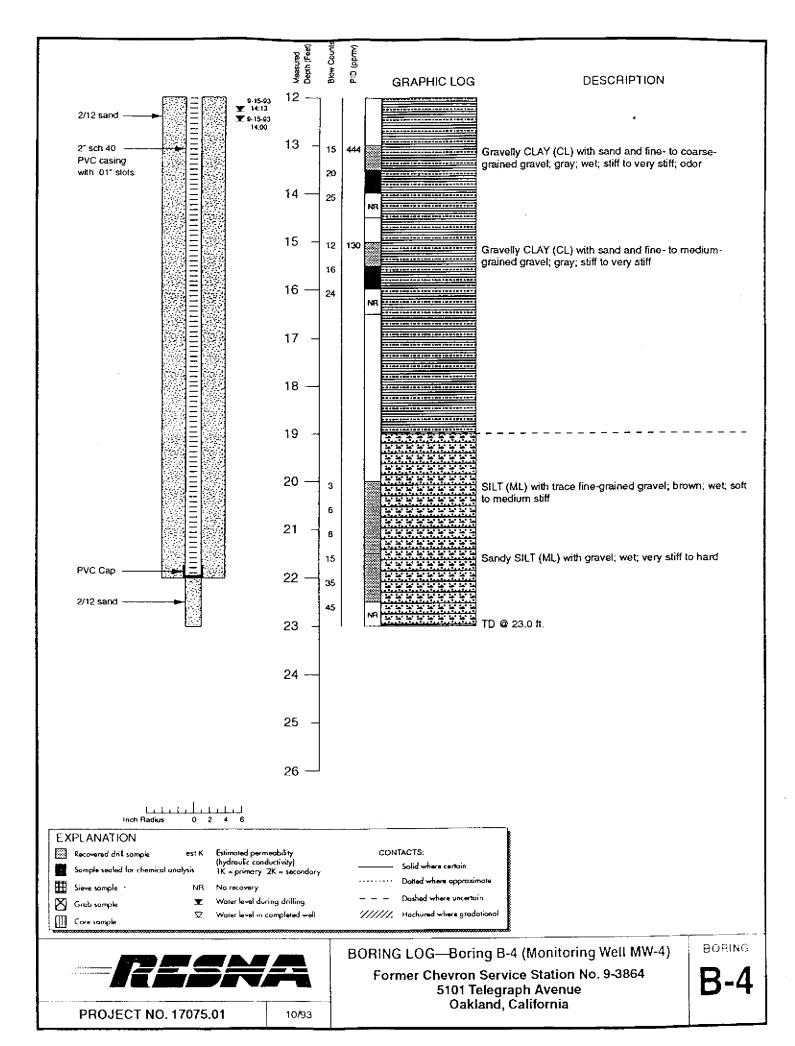
Well Head Completion: Christy box & locking cap 11/2" & 21/2" split spoon Type of Sampler: 23.0 feet

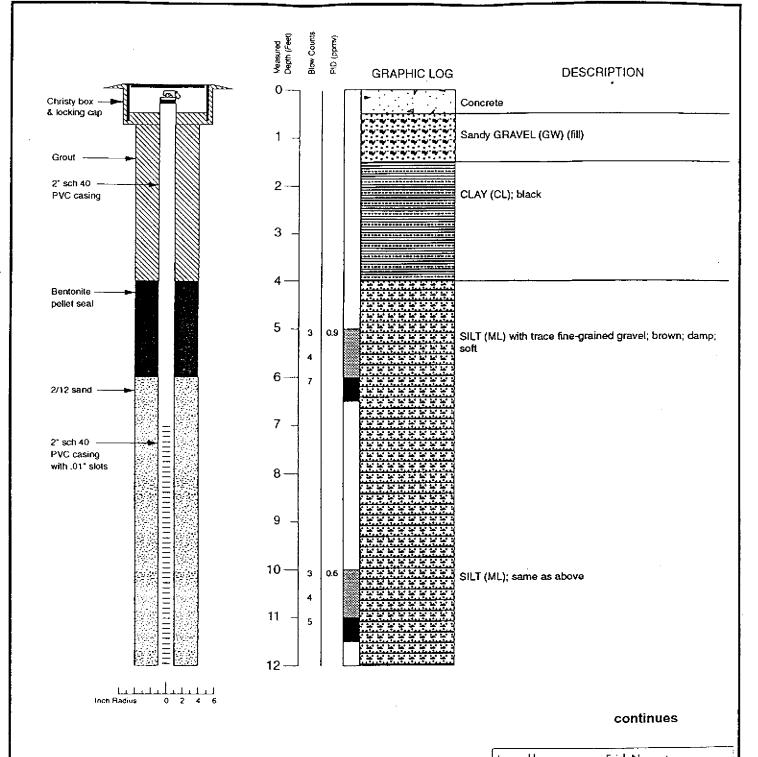
TD (Total Depth):

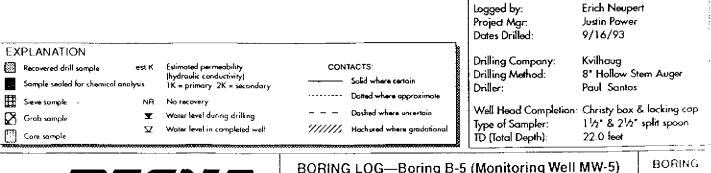
BORING

Former Chevron Service Station No. 9-3864 5101 Telegraph Avenue Oakland, California

BORING LOG—Boring B-4 (Monitoring Well MW-4)

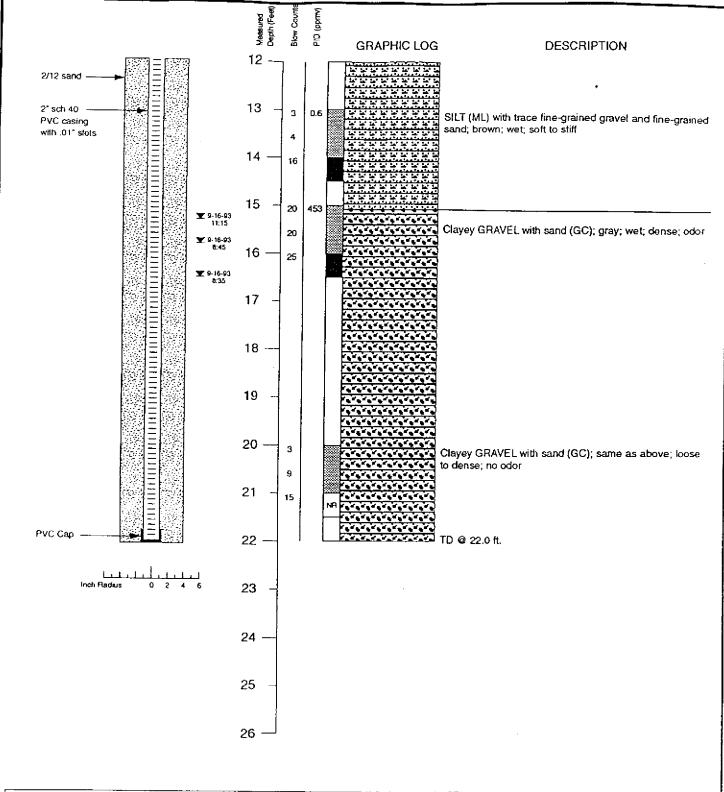

PROJECT NO. 17075.01

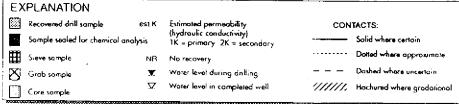

Sieve sample


Grab sample

Core sample

10/93

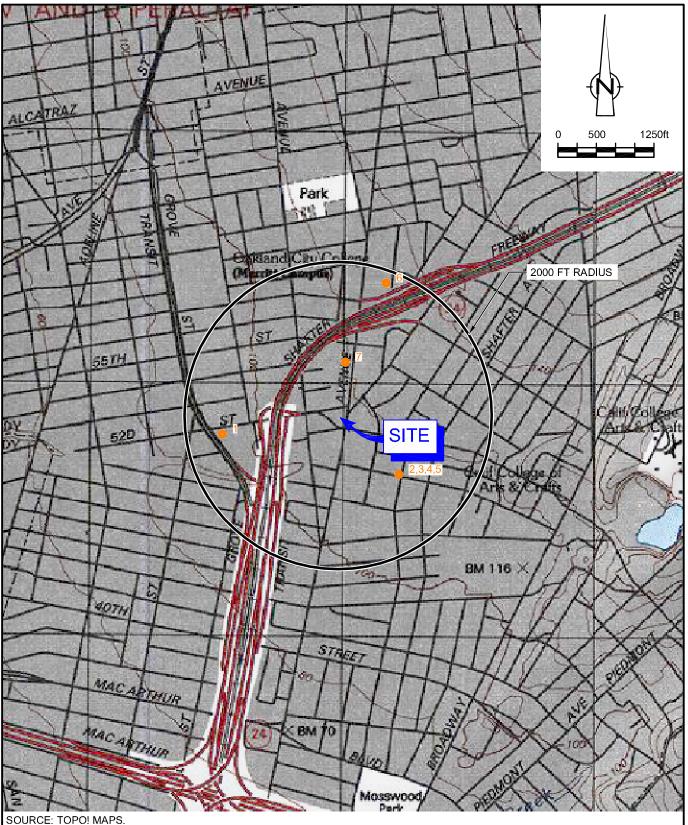




BORING LOG—Boring B-5 (Monitoring Well MW-5)

BORING LOG—Boring 8-5 (Monitoring Well MW-5)

Former Chevron Service Station No. 9-3864 5101 Telegraph Avenue Oakland, California BORING

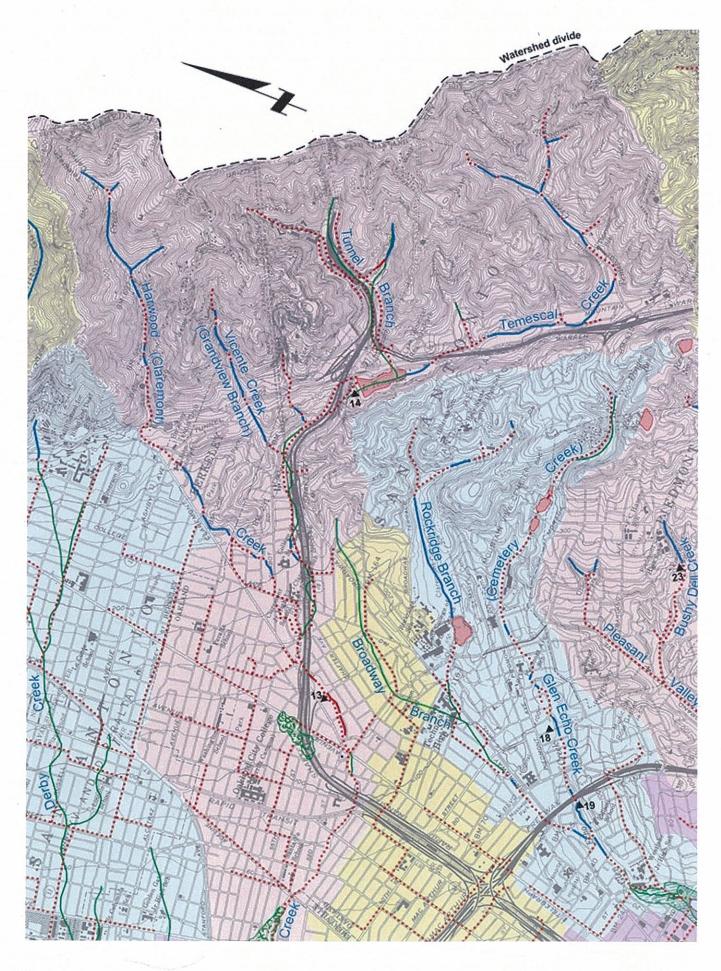

B-5

APPENDIX C

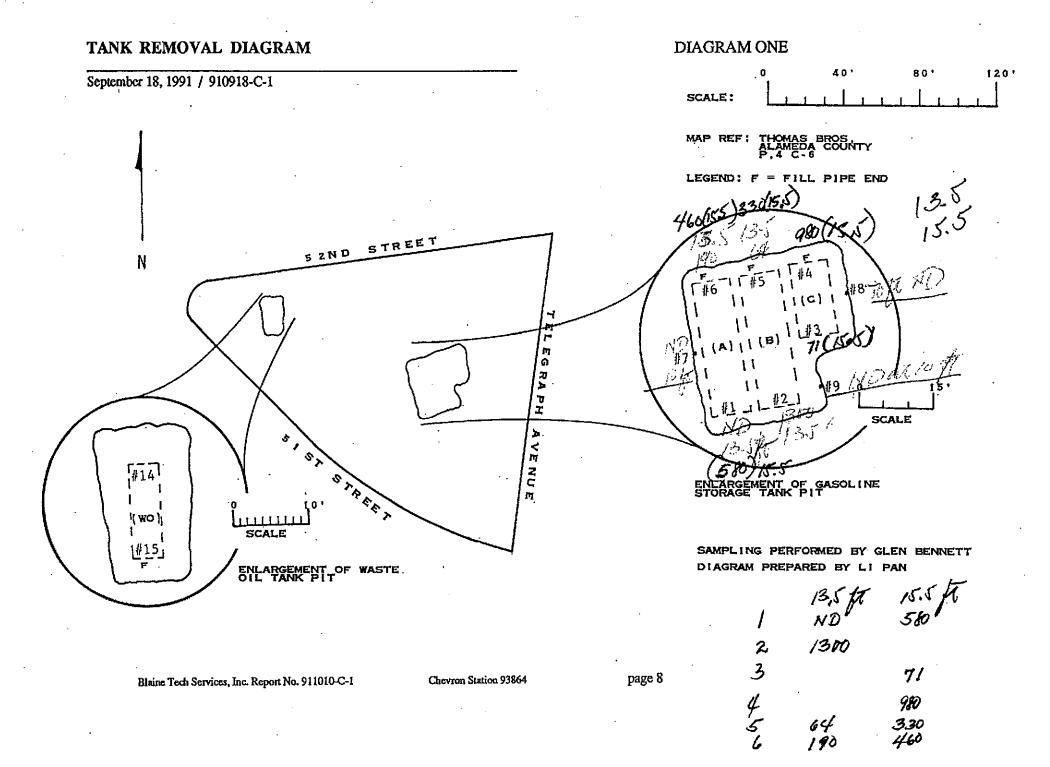
WELL SURVEY INFORMATION AND TEMESCAL CREEK MAP

WELL SURVEY RESULTS FORMER CHEVRON STATION 9-3864 5101 TELEGRAPH AVENUE OAKLAND, CALIFORNIA

Well No./	Well Owner	Well Addres	SS	Total Well	Date	Distance/Direction from	Well Use
Figure ID		Street	City	Depth (ft)	Installed	Site (ft) (approx)	
1	Children's Hospital	747 52nd Street 49th Street and	Oakland	125	1/20/1992	1,500 W	Irrigation
2	Pacific Gas & Electric	Webster 49th Street and 49th Street and	Oakland	120	2/19/1976	1,150 SE	Cathodic Protection
3	EBMUD	Webster 49th Street and	Oakland	13	12/1/1997	1,150 SE	Cathodic Protection
4	EBMUD	Webster	Oakland	53	5/1/1975	1,150 SE	Cathodic Protection
5	EBMUD	Webster	Oakland	53	5/1/1975	1,150 SE	Cathodic Protection
6	Angela Delucchi	5629 Vincente Street	Oakland	75	Unknown	1,900 NE	Domestic
7	Marshall Steel Co.	5427 Telegraph	Oakland	40	Unknown	750 N	Industrial

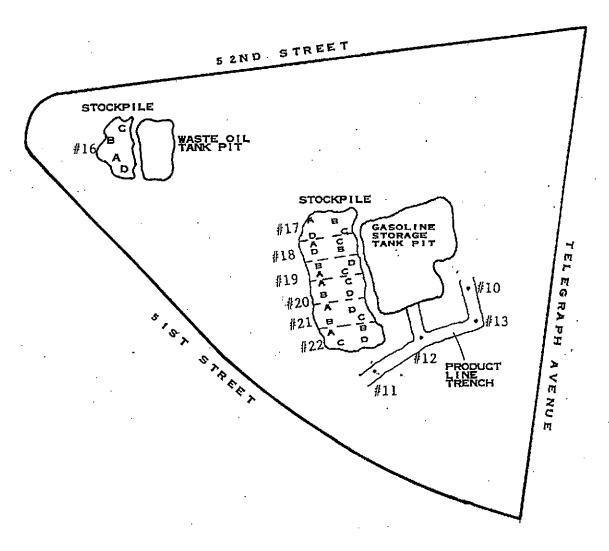


WELL SURVEY MAP FORMER CHEVRON SERVICE STATION 9-3864 5101 TELEGRAPH AVENUE Oakland, California

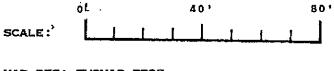


LEGEND

APPROXIMATE WELL LOCATION



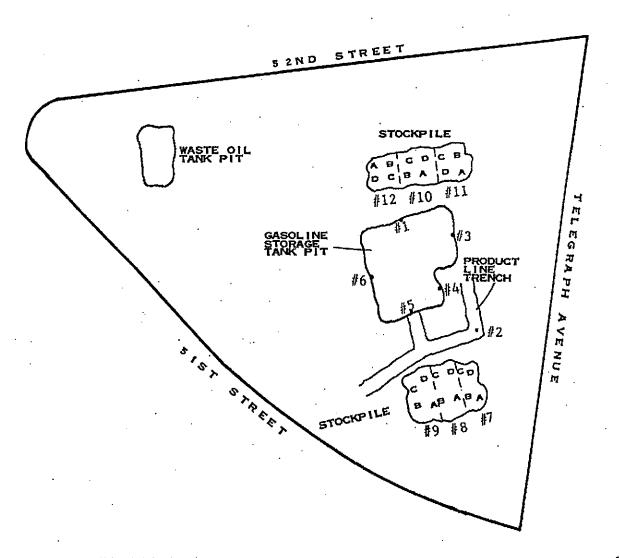
APPENDIX D PREVIOUS SITE PLANS



TANK REMOVAL DIAGRAM

September 18, 1991 / 910918-C-1

DIAGRAM TWO



MAP REF: THOMAS BROS, ALAMEDA COUNTY P.4 C-6

SAMPLING PERFORMED BY GLEN BENNETT DIAGRAM PREPARED BY LI PAN

ADDITIONAL EXCAVATION DIAGRAM

September 26, 1991 / 910926-C-1

SCALE:

MAP REF: THOMAS BROS ALAMEDA COUNTY
P.4 C-6

SAMPLING PERFORMED BY GLEN BENNETT DIAGRAM PREPARED BY LI PAN

Blaine Tech Services, Inc. Report No. 911010-C-1

Chevron Station 93864

APPENDIX E

FIRST SEMI-ANNUAL 2011 GROUNDWATER MONITORING REPORT

TRANSMITTAL

May 4, 2011 G-R #386358

TO:

Mr. James Kiernan

Conestoga-Rovers & Associates 10969 Trade Center Drive, Suite 107

Rancho Cordova, CA 95670

FROM:

Deanna L. Harding

Project Coordinator

Gettler-Ryan Inc.

6747 Sierra Court, Suite J

Dublin, California 94568

Former Chevron Service Station RE:

#9-3864 (MTI)

5101 Telegraph Avenue Oakland, California

RO 0000351

WE HAVE ENCLOSED THE FOLLOWING:

COPIES	DATED	DESCRIPTION
1	April 29, 2011	Groundwater Monitoring and Sampling Report First Semi-Annual Event of March 14, 2011

COMMENTS:

Pursuant to your request, we are providing you with copies of the above referenced report for your use and distribution to the following (including PDF submittal of the entire report to GeoTracker):

Enclosures

WELL CONDITION STATUS SHEET

Client/Facility #: Site Address: City:		egraph A	venue			-	Job# Event Date: Sampler:	386358 3 - 1			
WELL ID	Vault Frame Condition	Gasket/ O-Ring (M)missing	BOLTS (M) Missing (R) Replaced	Bolt Flanges B= Broken S= Stripped R≈Retap	APRON Condition C=Cracked B=Broken G=Gone	Grout Seal (Deficient) inches from TOC	Casing (Condition prevents tight cap seal)	REPLACE LOCK Y/N	REPLACE CAP Y/N	WELL VAULT Manufacture/Size/ # of Bolts	Pictures Taken Yes / No
C-3	0.1	OK	1-5	O.K	0.6	0.K	0.K	2	7	12"EMCO/2	No
MW-1			1-5				0			8" EMCO/2	
$m\omega_{-2}$			1-5							8" E1400/2	
MW-3			3 - 5	,		/			1	8"Boart. C. /3	
MW-5	V	V	0.K	V	V	1	1		V	8" EMCO/2	
Comments	Insta	Hed gar	sket-	Mw-3					 .		
							····				

April 29, 2011 G-R Job #386358

Ms. Stacie H. Frerichs Chevron Environmental Management Company 6111 Bollinger Canyon Road, Room 3596 San Ramon, CA 94583

RE: First Semi-Annual Event of March 14, 2011

Groundwater Monitoring & Sampling Report Former Chevron Service Station #9-3864 5101 Telegraph Avenue Oakland, California

Dear Ms. Frerichs:

This report documents the most recent groundwater monitoring and sampling event performed by Gettler-Ryan Inc. (G-R) at the referenced site. All field work was conducted in accordance with G-R Standard Operating Procedure - Groundwater Sampling (attached). A joint groundwater monitoring and sampling event was conducted on a different date with the former Autopro, located at 5200 Telegraph Avenue, Oakland, California, however data was not received.

Static groundwater levels were measured and the wells were checked for the presence of separate-phase hydrocarbons. Static water level data, groundwater elevations, and separate-phase hydrocarbon thickness (if any) are presented in the attached Table 1. A Potentiometric Map is included as Figure 1.

Groundwater samples were collected from the monitoring wells and submitted to a state certified laboratory for analyses. The field data sheets for this event are attached. Analytical results are presented in the table(s) listed below. The chain of custody document and laboratory analytical report are also attached. All groundwater and decontamination water generated during sampling activities was removed from the site, per the Standard Operating Procedure.

Please call if you have any questions or comments regarding this report. Thank you.

Sincerely,

Deanna L. Harding Project Coordinator

Douglas J. Lee

Senior Geologist, P.G. No. 6882

Figure 1: Potentiometric Map

Table 1: Groundwater Monitoring Data and Analytical Results

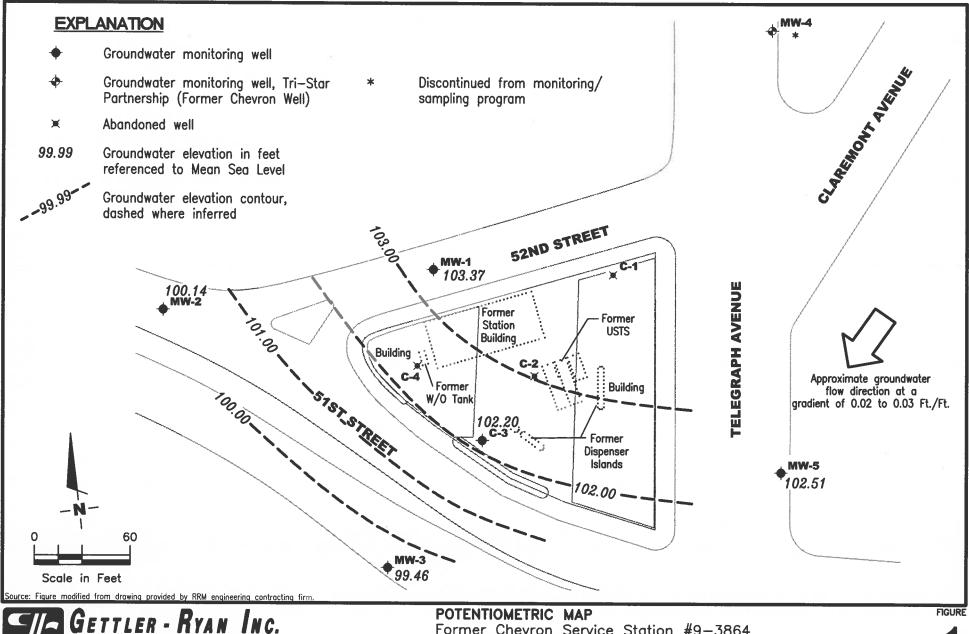

Table 2: Dissolved Oxygen Concentrations

Table 3: Groundwater Analytical Results - Oxygenate Compounds Attachments: Standard Operating Procedure - Groundwater Sampling

Field Data Sheets

Chain of Custody Document and Laboratory Analytical Reports

No. 6882

6747 Sierra Court, Suite J Dublin, CA 94568 (925) 551-7555 Former Chevron Service Station #9-3864 5101 Telegraph Avenue

Oakland, California

DATE March 14, 2011 REVISED DATE

PROJECT NUMBER 386358

REVIEWED BY

WELL ID/	TOC	GWE	DTW	TPH-GRO	В	T	E	X	MTBE
DATE	(ft.)	(msl)	(ft.)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)
C-3				(3)					
12/06/90	115.70	98.84	16.86	210	2.0	< 0.5	< 0.5	1.0	
12/06/90 (D)		9 0		220	2.0	0.6	<0.5	2.0	1 75 7
06/06/91	115.70	100.01	15.69	6,400	310	21	16	21	7 .00 .0
09/16/92	115.70	99.81	15.89	7,100	130	26	12	30	
12/04/91	115.70	100.32	15.38	5,100	120	18	17	20	-
06/02/92	115.70	100.30	15.40	6,700	140	44	17	37	1 55 -7
12/21/92	115.70	101.79	13.91	13,000	390	360	100	410	
03/11/93	115.70	101.95	13.75	5,100	86	20	12	23	122
06/11/93	115.70	101.03	14.67	7,200	91	38	19	38	
09/13/93	115.70	100.17	15.53	6,800	100	52	41	75	
12/14/93	115.70	101.30	14.40	8,600	74	23	18	36	
03/16/94	115.70	101.44	14.26	6,000	100	42	27	30	
06/17/94	115.70	100.60	15.10	15,000	170	120	120	270	
08/29/94	115.70	100.30	15.40	26,000	51	<0.5	58	107	
12/06/94	115.70	101.90	13.80	34,000	88	140	98	390	
03/31/95	115.70	102.91	12.79	2,800	42	<5.0	<5.0	6.6	
06/24/95	115.70	100.84	14.86	5,200	34	<10	<10	13	
09/12/95	115.70	100.76	14.94	7,000	45	<10	28	42	
12/29/95	115.70	102.12	13.58	5,100	20	<10	<10	19	<50
02/29/96	115.70	102.88	12.82	2,600	15	<5.0	17	16	<25
06/26/96	115.70	101.32	14.38	4,400	<10	<10	<10	<10	<50
09/12/96	115.70	100.75	14.95	5,800	73	22	18	17	61
12/11/96	115.70	103.08	12.62	8,800	81	<20	<20	37	200
03/31/97	115.70	100.70	15.00	8,100	38	62	30	42	38
06/29/97	115.70	100.08	15.62	5,800	<10	<10	<10	67	<50
09/30/97	115.70	100.70	15.00	6,200	<10	28	21	27	130
12/12/97	115.70	103.68	12.02	330	1.6	1.1	<1.0	3.4	<5.0
02/19/98	115.70	103.26	12.44	110	1.7	<0.5	<0.5	0.51	<2.5
06/16/98	115.70	102.29	13.41	7,400	63	16	<10	<10	170
08/31/98	115.70	101.70	14.00	4,400	6.4	<2.5	5.4	16	15
12/23/98	115.70	102.91	12.79	11,000	83	37	69	76	86
03/09/99	115.70	102.70	13.00	6,500	45	38	17	30	110
06/23/991	115.70	101.92	13.78		1 A E				
09/30/99	115.70	99.70	16.00	3,870	29.7	8.72	7.08	7.75	<50
02/29/00	115.70	102.14	13.56	2,660	22.5	<5.0	11.2	11.6	<50

	<u> </u>			Oakiand,	California				
WELL ID/	TOC	GWE	DTW	TPH-GRO	В	Τ	E	X	MTBE
DATE	(fi.)	(msl)	(ft)	(μg/L)	(µg/L)	(μg/L)	(µg/L)	(μg/L)	(µg/L)
C-3 (cont)						1007	200	nitura (non constitution of the constitution o	
09/18/003	115.70	103.25	12.45	7404	6.0	4.5	<2.5	6.0	<13
03/21/013	115.70	102.05	13.65	1,7004	21	12	14	19	59
09/04/013	115.70	101.09	14.61	4,100	<10	4.8	6.5	14	<5.0/<2 ⁵
03/22/023,6	115.70	102.49	13.21	3,600	<5.0	<5.0	6.1	<15	<2.5
09/16/023	115.70	100.39	15.31	4,000	<10	<5.0	4.3	<10	7.9
03/28/033	115.70	101.38	14.32	2,400	<2.5	<2.5	5.5	<7.5	<13
09/02/033,7	115.70	101.33	14.37	2,800	1	0.9	0.9	4	<0.5
03/18/04 ^{7,8}	115.70	101.56	14.14	5,300	< 0.5	<0.5	<0.5	<0.5	< 0.5
09/15/047	115.70	101.50	14.20	3,200	0.8	0.8	1	3	10
03/11/057	115.70	102.79	12.91	4,200	0.6	0.5	1	3	<0.5
09/29/057	115.70	101.13	14.57	4,900	0.6	0.5	2	3	<0.5
03/24/06	115.70	INACCESSIBLE -							
09/12/067	115.70	101.29	14.41	5,900	<1	<1	<1	2	<1
03/05/07	115.70	102.81	12.89	4,600	< 0.5	<0.5	0.8	2	<0.5
09/21/077	115.70	101.39	14.31	5,000	< 0.5	<0.5	0.6	1	<0.5
03/06/087	115.70	102.15	13.55	3,600	< 0.5	<0.5	1	i	<0.5
09/05/087	115.70	101.00	14.70	2,700	< 0.5	<0.5	0.9	1	<0.5
03/30/097	115.70	102.28	13.42	4,200	<0.5	< 0.5	0.8	3	<0.5
09/15/09 ⁷	115.70	100.55	15.15	4,700	< 0.5	<0.5	<0.5	1	<0.5
03/02/107	115.70	102.22	13.48	3,600	< 0.5	< 0.5	<0.5	î	<0.5
09/09/10 ⁷	115.70	100.73	14.97	3,800	< 0.5	< 0.5	<0.5	1	<0.5
03/14/117	115.70	102.20	13.50	3,400	<0.5	<0.5	0.6	i	<0.5
MW-1									
09/20/93	115.05	102.37	12.68	<50	< 0.5	< 0.5	<0.5	<1.5	
12/14/93	115.05	105.01	10.04	<50	<0.5	<0.5	<0.5	<0.5	
03/16/94	115.05	103.10	11.95	<50	<0.5	1.7	<0.5	2.1	
06/17/94	115.05	102.51	12.54	350	1.2	3.7	2.0	12	
08/29/94	115.05	101.98	13.07	<50	<0.5	<0.5	<0.5	< 0.5	
12/06/94	115.05	104.45	10.60	140	0.9	2.8	1.1	4.2	
03/31/95	115.05	104.74	10.31	<50	<0.5	< 0.5	<0.5	<0.5	
06/24/95	115.05	102.44	12.61	<50	<0.5	<0.5	<0.5	<0.5	
09/12/95	115.05	102.00	13.05	<50	<0.5	<0.5	<0.5	<0.5	
02/02/96	115.05	106.19	8.86	<50	<0.5	<0.5	<0.5	<0.5	<2.5
					0.0	-0.5	21.0	70.5	~4.3

	Oakland, California													
WELL ID/	TOC	GWE	DTW	TPH-GRO	В	1	E	X	MTBE					
DATE	(fi.)	(msl)	(ft.)	(μg/L)	(µg/L)	(μg/L)	(µg/L)	(μg/L)	(µg/L)					
MW-1 (cont)														
02/29/96	115.05	105.39	9.66	<50	< 0.5	< 0.5	< 0.5	<0.5	<2.5					
06/26/96	115.05	102.85	12.20	<50	< 0.5	<0.5	<0.5	<0.5	<2.5					
09/12/96	115.05	101.55	13.50	<50	< 0.5	<0.5	<0.5	<0.5	<2.5					
12/11/96	115.05	105.90	9.15	<50	< 0.5	<0.5	<0.5	<0.5	<2.5					
03/31/97	115.05	102.30	12.75	<50	< 0.5	<0.5	<0.5	<0.5	<2.5					
06/29/97	115.05	102.01	13.04	<50	< 0.5	<0.5	<0.5	<0.5	<2.5					
09/30/97	115.05	101.80	13.25	<50	< 0.5	<0.5	<0.5	<0.5	<2.5					
12/12/97	115.05	106.06	8.99	<50	< 0.5	< 0.5	<0.5	<0.5	<2.5					
02/19/98	115.05	105.64	9.41	<50	< 0.5	< 0.5	<0.5	<0.5	<2.5					
06/16/98	115.02	103.48	11.54	<50	< 0.5	<0.5	<0.5	<0.5	2.6					
08/31/98	115.02	102.51	12.51	<50	< 0.5	<0.5	<0.5	<0.5	<2.5					
12/23/98	115.02	103.03	11.99	<50	< 0.5	<0.5	<0.5	<0.5	<2.5					
03/09/99	115.02	104.57	10.45	<50	< 0.5	<0.5	<0.5	<0.5	<2.5					
09/30/99	115.02	102.07	12.95	SAMPLED ANNU										
02/29/00	115.02	105.90	9.12	<50	< 0.5	0.816	< 0.5	< 0.5	< 5.0					
09/18/00	115.02	104.14	10.88		55									
03/21/01	115.02	104.01	11.01	< 50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5					
09/04/01	115.02	103.60	11.42		<u> </u>	-			/<2 ⁵					
03/22/026	115.02	104.68	10.34	100	< 0.50	24	0.80	4.9	15					
09/16/02	115.02	102.35	12.67	SAMPLED ANNU.	ALLY									
03/28/03	115.02	103.29	11.73	< 50	< 0.50	< 0.50	< 0.50	<1.5	<2.5					
09/02/03	115.02	102.74	12.28	SAMPLED ANNU.	ALLY		1979-2014 1 <u>20-2</u>	-						
03/18/047	115.02	103.11	11.91	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5					
09/15/04	115.02	101.89	13.13	SAMPLED ANNU.	ALLY	(**)		()						
03/11/05 ⁷	115.02	104.29	10.73	< 50	< 0.5	2	< 0.5	< 0.5	< 0.5					
09/29/05	115.02	101.97	13.05	SAMPLED ANNU.	ALLY		==							
03/24/06 ⁷	115.02	104.61	10.41	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5					
09/12/06	115.02	101.91	13.11	SAMPLED ANNUA	ALLY	7 20 0								
03/05/07 ⁷	115.02	103.93	11.09	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5					
09/21/07	115.02	102.07	12.95	SAMPLED ANNUA	ALLY	52000000 1222	##							
03/06/08 ⁷	115.02	102.92	12.10	<50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5					
09/05/08	115.02	102.54	12.48	SAMPLED ANNUA		10 miles 17 miles								
03/30/09 ⁷	115.02	103.64	11.38	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5					
09/15/09	115.02	102.06	12.96	SAMPLED ANNUA	ALLY			\ <u>~</u>						

WELL ID/	TOC	GWE	DTW	TPH-GRO	В	7	E	X	MTBE
DATE	(fi.)	(msl)	(fl.)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-1 (cont)				3. 3	and an arrangement of the second		W.G/	AFO FI	W-8/2
03/02/107	115.02	103.27	11.75	<50	< 0.5	-0.5	-0.5	.0.5	
09/09/10	115.02	102.24	12.78	SAMPLED ANNU		<0.5	<0.5	<0.5	<0.5
03/14/117	115.02	103.37	11.65	<50					**
00/14/11	115.02	103.37	11.05	<50	<0.5	<0.5	<0.5	<0.5	<0.5
MW-2									
09/20/93	112.08	99.93	12.15	< 50	< 0.5	< 0.5	< 0.5	<1.5	
12/14/93	112.08	97.36	14.72	< 50	< 0.5	< 0.5	<0.5	<0.5	
03/16/94	112.08	100.92	11.16	<50	< 0.5	1.1	<0.5	0.9	
06/17/94	112.08	100.41	11.67	330	1.4	3.3	1.9	11	
08/29/94	112.08	100.08	12.00	<50	< 0.5	< 0.5	<0.5	<0.5	
12/06/94	112.08	102.57	9.51	<50	< 0.5	<0.5	<0.5	< 0.5	(
03/31/95	112.08	103.24	8.84	<50	< 0.5	< 0.5	<0.5	<0.5	
06/24/95	112.08	100.44	11.64	<50	< 0.5	< 0.5	< 0.5	<0.5	
09/12/95	112.08	100.00	12.08	<50	< 0.5	< 0.5	<0.5	<0.5	
12/29/95	112.08	101.58	10.50	<50	< 0.5	< 0.5	<0.5	< 0.5	<2.5
02/29/96	112.08	104.08	8.00	<50	< 0.5	< 0.5	< 0.5	<0.5	<2.5
06/26/96	112.08	100.58	11.50	<50	< 0.5	< 0.5	< 0.5	<0.5	<2.5
09/12/96	112.08	99.81	12.27	<50	< 0.5	< 0.5	< 0.5	<0.5	<2.5
12/11/96	112.08	104.17	7.91	<50	< 0.5	< 0.5	< 0.5	<0.5	<2.5
03/31/97	112.08	100.20	11.88	<50	< 0.5	< 0.5	< 0.5	<0.5	<2.5
06/29/97	112.08	99.89	12.19	<50	< 0.5	< 0.5	< 0.5	<0.5	<2.5
09/30/97	112.08	99.46	12.62	<50	< 0.5	< 0.5	<0.5	<0.5	<2.5
12/12/97	112.08	102.85	9.23	< 50	< 0.5	< 0.5	< 0.5	<0.5	<2.5
02/19/98	112.08	104.87	7.21	< 50	< 0.5	< 0.5	< 0.5	<0.5	<2.5
06/16/98	112.03	101.10	10.93	<50	< 0.5	< 0.5	<0.5	<0.5	<2.5
08/31/98	112.03	99.69	12.34	<50	< 0.5	< 0.5	<0.5	<0.5	<2.5
12/23/98	112.03	100.59	11.44	<50	< 0.5	< 0.5	<0.5	<0.5	<2.5
03/09/99	112.03	103.23	8.80	<50	< 0.5	< 0.5	<0.5	<0.5	<2.5
09/30/99	112.03	101.22	10.81	SAMPLED ANNUA		E			
02/29/00	112.03	105.12	6.91	<50	< 0.5	< 0.5	< 0.5	<0.5	<5.0
09/18/00	112.03	101.00	11.03						
03/21/01	112.03	101.61	10.42	<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5
09/04/01	112.03	101.04	10.99						/<2 ⁵
03/22/02	112.03	102.14	9.89	<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
					-100	0.00	0.50	~1.J	~4.5

Table 1
Groundwater Monitoring Data and Analytical Results

WELL ID/	TOC	GWE	DTW	TPH-GRO	В	T	E	X	MTBE
DATE	(fi.)	(msl)	(ft.)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-2 (cont)	- 1079								9.77
09/16/02	112.03	100.02	12.01	SAMPLED ANNUA	ALLY				
03/28/03	112.03	101.23	10.80	<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
09/02/03	112.03	100.15	11.88	SAMPLED ANNUA					
03/18/047	112.03	101.04	10.99	<50	<0.5	<0.5	< 0.5	<0.5	< 0.5
09/15/04	112.03	99.15	12.88	SAMPLED ANNUA					
03/11/057	112.03	102.13	9.90	<50	<0.5	<0.5	< 0.5	< 0.5	< 0.5
09/29/05	112.03	99.33	12.70	SAMPLED ANNUA					
03/24/067	112.03	103.04	8.99	<50	<0.5	< 0.5	< 0.5	< 0.5	<0.5
09/12/06	112.03	98.97	13.06	SAMPLED ANNUA					
03/05/077	112.03	101.57	10.46	<50	< 0.5	<0.5	< 0.5	<0.5	<0.5
09/21/07	112.03	99.35	12.68	SAMPLED ANNUA					~0.5
03/06/08 ⁷	112.03	100.98	11.05	<50	<0.5	<0.5	< 0.5	<0.5	<0.5
09/05/08	112.03	99.22	12.81	SAMPLED ANNUA					~0.5
03/30/097	112.03	101.23	10.80	<50	<0.5	<0.5	<0.5	<0.5	<0.5
09/15/09	112.03	98.84	13.19	SAMPLED ANNUA				~0.5 	~0.3
03/02/10 ⁷	112.03	101.34	10.69	<50	<0.5	<0.5	<0.5	< 0.5	<0.5
09/09/10	112.03	99.00	13.03	SAMPLED ANNUA					~ ~
03/14/117	112.03	100.14	11.89	<50	<0.5	<0.5	<0.5	<0.5	<0.5
				XXVIII.			-015	-0.5	-015
MW-3									
09/20/93	113.67	97.25	16.42	6,600	400	11	32	23	
12/14/93	113.67	98.95	14.72	8,400	390	9.4	13	<2.5	
03/16/94	113.67	98.45	15.22	6,900	260	30	32	27	
06/17/94	113.67	97.62	16.05	10,000	190	61	58	190	
08/29/94	113.67	97.44	16.23	7,200	74	9.8	26	24	
12/06/94	113.67	99.35	14.32	13,000	610	86	88	140	
03/31/95	113.67	99.98	13.69	4,300	120	<10	12	<10	-
06/24/95	113.67	98.02	15.65	6,200	210	24	29	12	
09/12/95	113.67	97.68	15.99	7,200	190	<20	<20	<20	
12/29/95	113.67	99.67	14.00	7,100	200	<10	45	24	<50
02/29/96	113.67	100.91	12.76	1,200	30	<5.0	<5.0	<5.0	<25
06/26/96	113.67	98.44	15.23	7,900	180	<20	35	28	240
09/12/96	113.67	97.73	15.94	11,000	150	<5.0	35	28	170
			~~	4 4 9 0 0 0	100	~J.U	J J	40	170

Table 1
Groundwater Monitoring Data and Analytical Results

				Oakianu,	California				
WELL ID/	TOC	GWE	DTW	TPH-GRO	В	Т	E	X	MTBE
DATE	(fi.)	(msl)	(ft.)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(μg/L)	(µg/L)
MW-3 (cont)									
03/31/97	113.67	98.23	15.44	8,700	100	<10	20	23	50
06/29/97	113.67	97.99	15.68	9,300	120	28	22	19	150
09/30/97	113.67	97.76	15.91	8,200	78	<10	22	25	96
12/12/97	113.67	100.82	12.85	68	1.8	<0.5	<0.5	<0.5	<2.5
02/19/98	113.67	100.41	13.26	220	5.6	1.5	<0.5	<0.5	6.1
06/16/98	113.63	99.12	14.51	7,500	97	21	21	27	160
08/31/98	113.63	98.62	15.01	7,600	24	<2.5	9.5	16	38
12/23/98	113.63	100.03	13.60	5,800	69	<50	<50	<50	<250
03/09/99	113.63	99.59	14.04	5,300	<10	<10	16	20	88
06/23/991	113.63								
07/19/99 ¹	113.63					7			
09/30/99	113.63	96.74	16.89	8,660	53.7	16.9	17	19.6	132
02/29/00	113.63	INACCESSIBLE							132
09/18/00 ³	113.63	100.41	13.22	2,4004	14	6.8	4.7	7.4	28
03/21/013	113.63	98.88	14.75	7,6004	41	30	<25	50	160
09/04/01	113.63	INACCESSIBLE - CA					-23		
03/22/023	113.63	99.46	14.17	7,600	<10	4.2	11	<25	< 5.0
09/16/023	113.63	97.34	16.29	5,900	<20	<10	7.7	<15	21
03/28/033	113.63	98.67	14.96	3,500	<20	3.3	7.3	10	<13
09/02/03 ^{3,7}	113.63	98.20	15.43	4,500	3	2	2	5	<0.5
03/18/04 ^{7,8}	113.63	98.91	14.72	5,300	3	1	3	4	<0.5
09/15/04	113.63	INACCESSIBLE - CA			<u></u>	-			
03/11/05 ⁷	113.63	99.72	13.91	4,500	2	1	2	4	<0.5
09/29/057	113.63	98.06	15.57	5,300	3	1	2	4	<0.5
03/24/067	113.63	100.10	13.53	3,300	1	0.6	1	2	<0.5
09/12/06 ⁷	113.63	98.16	15.47	6,100	2	1	2	4	<0.5
03/05/07	113.63	99.69	13.94	4,000	1	0.6	0.8	2	<0.5
09/21/077	113.63	98.24	15.39	5,900	2	1	1	4	<0.5
03/06/08 ⁷	113.63	99.02	14.61	3,900	2	0.8	2	3	<0.5
09/05/08 ⁷	113.63	98.13	15.50	5,100	ī	0.7	2	3	<0.5
03/30/097	113.63	99.13	14.50	4,800	2	0.7	1	3	<0.5
09/15/09	113.63	INACCESSIBLE						3	<0.5
03/02/107	113.63	99.41	14.22	<50	<0.5	< 0.5	<0.5	<0.5	<0.5
09/09/10 ⁷	113.63	98.32	15.31	4,000	1	0.5	0.7	3	<0.5
03/14/117	113.63	99.46	14.17	1,300	<0.5	<0.5	<0.5	0.6	<0.5

Table 1
Groundwater Monitoring Data and Analytical Results

WELL ID/	TOC	GWE	DTW	TPH-GRO	В	T	r	X	MTBE
DATE	(fi.)	(msl)	(ft.)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)
MW-5						2.3			4.5
09/20/93	116.74	101.43	15.31	590	25	1.8	0.6	2.0	rana.
12/14/93	116.74	102.19	14.55	210	11	6.3	2.3	6.1	
03/16/94	116.74	101.77	14.97	270	12	16	4.8	17	
06/17/94	116.74	101.36	15.38	220	24	17	6.7	28	
08/29/94	116.74	101.54	15.20	1,000	<0.5	<0.5	<0.5	<0.5	1516
12/06/94	116.74	102.09	14.65	110	9.2	9.7	2.2	11	
03/31/95	116.74	103.04	13.70	<50	< 0.5	<0.5	<0.5	< 0.5	
06/24/95	116.74	101.95	14.79	<50	< 0.5	<0.5	<0.5	<0.5	
09/12/95	116.74	102.15	14.59	<50	< 0.5	<0.5	<0.5	< 0.5	
12/29/95	116.74	101.76	14.98	<50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5
02/29/96	116.74	103.07	13.67	<50	< 0.5	< 0.5	<0.5	<0.5	<2.5
06/26/96	116.74	102.50	14.24	<50	<0.5	< 0.5	<0.5	< 0.5	<2.5
09/12/96	116.74	102.12	14.62	<50	< 0.5	<0.5	<0.5	<0.5	<2.5
12/11/96	116.74	102.93	13.81	<50	< 0.5	< 0.5	<0.5	<0.5	<2.5
03/31/97	116.74	101.29	15.45	< 50	< 0.5	< 0.5	< 0.5	<0.5	<2.5
06/29/97	116.74	102.07	14.67	< 50	< 0.5	< 0.5	<0.5	<0.5	<2.5
09/30/97	116.74	101.89	14.85	<50	< 0.5	< 0.5	< 0.5	<0.5	<2.5
12/12/97	116.74	102.99	13.75	<50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5
02/19/98	116.74	103.68	13.06	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5
06/16/98	116.70	102.35	14.35	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5
08/31/98	116.70	101.54	15.16	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5
12/23/98	116.70	102.15	14.55	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5
03/09/99	116.70	102.63	14.07	< 50	< 0.5	< 0.5	< 0.5	<0.5	<2.5
09/30/99	116.70	100.80	15.90	SAMPLED ANNUA	ALLY			2 may 2 co	
02/29/00	116.70	103.40	13.30	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0
09/18/00	116.70	101.62	15.08		3 3			10123 1 22	
03/21/01	116.70	102.04	14.66	< 50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5
09/04/01	116.70	101.26	15.44				44	155	/<2 ⁵
03/22/026	116.70	101.99	14.71	< 50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
09/16/02	116.70	101.02	15.68	SAMPLED ANNUA	ALLY				22
03/28/03	116.70	101.65	15.05	< 50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
09/02/03	116.70	101.34	15.36	SAMPLED ANNUA				(55	
03/18/047	116.70	102.14	14.56	< 50	1	0.7	1	3	< 0.5
09/15/04	116.70	101.30	15.40	SAMPLED ANNUA	ALLY			<u></u>	
03/11/057	116.70	102.50	14.20	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5

Table 1
Groundwater Monitoring Data and Analytical Results

WELL ID/	TOC	GWE	DTW	TPH-GRO	В	Ť	E	X	MTBE
DATE	(fi.)	(msl)	(ft)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	Λ (μg/L)	
MW-5 (cont)					168/4-/	(F8/ F1)	(HS/L)	(μg/L)	(µg/L)
09/29/05	116.70	101.23	15.47	SAMPLED ANNUA	ALLY				
03/24/06 ⁷	116.70	102.77	13.47	<50	<0.5				
09/12/06	116.70	102.03	14.67	SAMPLED ANNUA		<0.5	<0.5	<0.5	<0.5
03/05/07	116.70	102.03	14.67	<50	<0.5	-0.5	-0.5		
09/21/07	116.70	101.10	15.60	SAMPLED ANNUA		<0.5	<0.5	<0.5	< 0.5
03/06/08 ⁷	116.70	102.20	14.50	<50	<0.5				
09/05/08	116.70	101.24	15.46	SAMPLED ANNUA		<0.5	<0.5	< 0.5	< 0.5
03/30/097	116.70	101.90	14.80	<50					5 == 1 M20025
09/15/09	116.70	100.83	15.87		<0.5	<0.5	<0.5	< 0.5	< 0.5
$3/02/10^7$	116.70	102.40	14.30	SAMPLED ANNUA <50		-0.5		=	
9/09/10	116.70	101.00			<0.5	<0.5	<0.5	< 0.5	< 0.5
03/14/11 ⁷	116.70	102.51	15.70	SAMPLED ANNUA			(**	: 2 2	7 4- 7
5/14/11	110.70	102.51	14.19	<50	<0.5	<0.5	<0.5	<0.5	<0.5
C-1									
2/06/90	117.45	102.11	15.34	1,900	17	11	3.0	21	
6/06/91	117.45	102.83	14.62	3,400	21	15	11	18	22
2/04/91	117.45	102.97	14.48	2,700	22	16	13	23	
6/02/92	117.45	102.92	14.53	1,900	170	170	13	83	
09/16/92	117.45	102.52	14.93	810	5.8	5.7	2.0	6.3	
2/21/92	117.45	103.72	13.73	75	2.4	2.9	1.4	4.7	
3/11/93	117.45	103.62	13.83	150	2.4	20	3.3	23	
6/11/93	117.45	103.26	14.19	400	4.3	2.3	1.0	3.5	
9/13/93	117.45	102.85	14.60	4,100	62	43	34	57	
2/14/93	117.45	103.67	13.78	3,100	9.5	4.5	1.2	11	
3/16/94	117.45	103.44	14.01	410	6.3	3.1	1.3	4.5	
6/17/94	117.45	102.90	14.55	3,700	100	42	30	91	
8/29/94	117.45	102.96	14.49	2,600	15	< 0.5	6.7	9.7	-
2/06/94	117.45	104.04	13.41	510	2.0	2.2	1.7	9.4	
3/31/95	117.45	105.33	12.12	5,440	9.0	2.3	2.0	3.6	
6/24/95	117.45	103.45	14.00	260	5.8	1.0	0.94	0.88	
9/12/95	117.45	103.42	14.03	650	14	1.1	1.6	2.4	
2/29/95	117.45	104.50	12.95	990	32	6.3	4.0	3.2	46
2/29/96	117.45	105.27	12.18	840	2.5	<1.0	2.6	7.3	<5.0

Table 1
Groundwater Monitoring Data and Analytical Results

Oakiand, Camorina												
WELL ID/	TOC	GWE	DTW	TPH-GRO	В	Τ	E	X	MTBE			
DATE	(fi.)	(msl)	(ft)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(μg/L)	(µg/L)			
C-1												
06/26/96	117.45	103.72	13.73	290	3.6	0.73	1.0	1.1	9.9			
09/12/96	117.45	103.32	14.13	1,200	17	1.8	4.0	4.4	24			
12/11/96	117.45	104.66	12.79	7,700	<10	53	19	44	87			
ABANDONED							.,	***	67			
C-2												
12/06/90	116.16	100.82	15.34	210	140	9.0	2.0	11				
06/06/91	116.16	101.54	14.62	4,800	340	23	19	23	222			
12/04/91	116.16	100.73	15.43	3,900	85	15	9.1	15				
06/02/92	116.16	101.74	14.42	3,300	76	9.2	14	15	107.1			
09/16/92	116.16	101.35	14.81	3,000	16	15	3.4	7.5	7==7			
12/21/92	116.16	102.79	13.37	2,200	21	12	7.1	15				
03/11/93	116.16	102.69	13.47	2,200	33	24	12	25	2575 1 			
06/11/93	116.16	102.18	13.98	2,600	21	25	11	26				
09/13/93	116.16	101.61	14.55	2,100	31	25	18	39				
12/14/93	116.16	102.46	13.70	3,800	<2.5	24	12	20				
03/16/94	116.16	102.51	13.65	2,600	12	15	10	17				
06/17/94	116.16	102.87	13.29	2,400	17	19	28	71				
08/29/94	116.16	111.60	4.56	3,000	29	15	20	4.2				
12/06/94	116.16	102.98	13.18	1,900	7.9	30	14	31				
03/31/95	116.16	104.10	12.06	890	<1.3	<1.3	2.6	<1.3				
06/24/95	116.16	102.19	13.97	730	4.8	< 0.5	5.4	0.96				
09/12/95	116.16	102.28	13.88	1,600	<2.5	<2.5	5.4	<2.5				
12/29/95	116.16	103.31	12.85	1,000	9.1	2.7	8.7	2.7	19			
02/29/96	116.16	104.09	12.07	850	<2.5	<2.5	8.7	11	<12			
06/26/96	116.16	102.50	13.66	2,500	14	< 5.0	13	6.3	<25			
09/12/96	116.16	102.25	13.91	1,800	26	19	17	31	37			
12/11/96	116.16	103.82	12.34	2,800	< 5.0	34	14	<5.0	41			
ABANDONED												
C-4									(7)			
12/06/90	116.10	98.42	17.68	< 50	< 0.5	< 0.5	< 0.5	< 0.5	*830			
12/18/90	116.10	***	N==6	<50	< 0.5	< 0.5	<0.5	<0.5	20006 ***			
06/06/91	116.10	99.61	16.49	< 50	1.0	1.0	< 0.5	0.7				
12/04/91	116.10	99.28	16.82	70	6.5	9.8	1.7	8.6	44			

Table 1
Groundwater Monitoring Data and Analytical Results

				Oakiaiiu,	California				
WELL ID/	TOC	GWE	DTW	TPH-GRO	В	Τ	E	X	MTBE
DATE	(fi.)	(msl)	(ft.)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)
C-4 (cont)						*	- 		
06/02/92	116.10	99.18	16.92	70	3.0	4.4	1.8	9.0	
09/16/92	116.10	98.39	17.71	<50	1.4	1.8	<0.5	1.1	
12/21/92	116.10	100.74	15.36	<50	0.6	0.7	<0.5	1.5	1570.1
03/11/93	116.10	100.61	15.49	<50	<0.5	<0.5	<0.5	<1.5	
06/11/93	116.10	99.83	16.27	52	0.9	3.1	0.7	3.8	
09/13/93	116.10	98.92	17.18	64	0.9	1.0	<0.5	1.7	
12/14/93	116.10	101.03	15.07	<50	<0.5	0.8	<0.5	0.7	6 80 3
03/16/94	116.10	100.19	15.91	<50	< 0.5	1.0	<0.5	0.8	
06/17/94	116.10	99.46	16.64	230	0.6	2.2	2.2	11	
08/29/94	116.10	99.05	17.05	<50	<0.5	<0.5	<0.5	<0.5	
12/06/94	116.10	101.52	14.58	<50	<0.5	<0.5	<0.5	<0.5	
03/31/95	116.10	102.26	13.84	<50	<0.5	<0.5	<0.5	<0.5	
06/24/95	116.10	100.05	16.05	<50	<0.5	<0.5	<0.5	<0.5	
09/12/95	116.10	99.87	16.23	<50	<0.5	<0.5	<0.5	<0.5	
2/29/95	116.10	101.35	14.75	<50	<0.5	<0.5	<0.5		
02/29/96	116.10	102.40	13.70	<50	<0.5	<0.5	<0.5	<0.5 <0.5	<2.5
06/26/96	116.10	100.30	15.80	<50	<0.5	<0.5	<0.5	<0.5	<2.5 <2.5
09/12/96	116.10	99.67	16.43	<50	<0.5	<0.5	<0.5	<0.5	
12/11/96	116.10	103.18	12.92	<50	<0.5	<0.5	<0.5	<0.5	<2.5 <2.5
ABANDONED	(200, 53, 30, 5)				0.2	-0.5	0.5	₹0.5	~2.3
MW-4									
09/20/93	118.10	107.17	10.93	5,800	16	4.2	35	40	
2/14/93	118.10	108.33	9.77	7,100	19	6.5	24	48	
3/16/94	118.10	107.99	10.11	8,500	83	43	60	35 70	-
06/17/94	118.10	107.20	10.90	21,000	150	20	140	350	
18/29/94	118.10	107.28	10.82	10,000	86	71	44	85	
2/06/94	118.10	108.70	9.40	13,000	68	56	67	110	A653
3/31/95	118.10	109.31	8.79	6,700	100	9.4	26	23	
6/24/95	118.10	107.60	10.50	6,300	<20	<20	<20		
9/12/95	118.10	107.90	10.20	7,100	65	16	<10	24	
2/29/95	118.10	108.86	9.24	3,300	<10	<10	12	21	720
2/29/96	118.10	111.85	6.25	5,100	<10	37	23	14	720
16/26/96	118.10	107.92	10.18	6,800	<20	<20	<20	21	85
19/12/96	118.10	107.53	10.57	13,000	150	<10	38	<20 35	<100 240

WELL ID/	TOC	GWE	DTW	TPH-GRO	В	4	E		and all the contract and a series
DATE	(fi.)	(msl)	(fi.)	(μg/L)	μg/L)	`\^`\^\\`\^\\\\\\\\\\\\\\\\\\\\\\\\\\\		X	MTBE
	9-9	(IMSI)	(Ju)	(P8/1-)	(Pg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)
MW-4 (cont)									
12/11/96	118.10	109.39	8.71	26,000	<20	<20	<20	170	<100
03/31/97	118.10	107.18	10.92	12,000	120	74	45	70	240
06/29/97	118.10	106.43	11.67	8,800	24	<10	35	36	62
09/30/97	118.10	107.20	10.90	10,000	<10	<10	37	35	72
12/12/97	118.10	105.16	12.94	4,600	95	41	20	25	91
02/19/98	118.10	110.33	7.77	5,400	87	16	32	31	110
06/16/98 ²	118.08	107.82	10.26	10,000	<20	<20	35	37	150
NOT MONITORI	ED/SAMPLED								
								8	
TRIP BLANK									
2/06/90				<50	<0.5	<0.5	<0.5	<0.5	
2/18/90				<50	<0.5	<0.5	<0.5	<0.5	
6/06/91				<50	<0.5	<0.5	<0.5	<0.5	25-12
2/04/91	122			<50	<0.5	<0.5	<0.5	<0.5	••
06/02/92				<50	<0.5	<0.5	<0.5	<0.5	1944
9/16/92				<50	<0.5	<0.5	<0.5	<0.5	
2/21/92				<50	<0.5	<0.5	<0.5	<0.5	: 2
3/11/93	(22)			<50	<0.5	<0.5	<0.5	<1.5	
06/11/93				<50	<0.5	<0.5	<0.5	<1.5	
9/13/93	1 12			<50	<0.5	<0.5	<0.5	<1.5	
2/14/93				<50	<0.5	<0.5	<0.5	<0.5	1
3/16/94				<50	< 0.5	<0.5	<0.5	<0.5	
06/17/94		: DOX		<50	<0.5	<0.5	<0.5	<0.5	
8/29/94				<50	<0.5	<0.5	<0.5		
2/06/94) <u>444</u>)			<50	<0.5	<0.5	<0.5	<0.5	
3/31/95				<50	<0.5	<0.5	<0.5	<0.5	
06/24/95		100 1 		<50	<0.5	<0.5	<0.5	<0.5	
9/12/95	()			<50	<0.5	<0.5	<0.5 <0.5	<0.5	
2/29/95				<50	<0.5	<0.5		<0.5	
2/29/96				<50	<0.5		<0.5	<0.5	
16/26/96			555 5	<50 <50		<0.5	<0.5	<0.5	<2.5
9/12/96		A.B.		<50 <50	<0.5	<0.5	<0.5	<0.5	<2.5
2/11/96					<0.5	<0.5	<0.5	<0.5	
3/31/97		22		<50	<0.5	<0.5	<0.5	< 0.5	<2.5
3/31/7/		**		<50	<0.5	<0.5	< 0.5	< 0.5	<2.5

Table 1
Groundwater Monitoring Data and Analytical Results

WELL ID/	TOC	GWE	DTW	TPH-GRO	В	T	E	X	MTBE
DATE	(fl.)	(msl)	(ft)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
RIP BLANK (co	ont)						W		
06/29/97	=			<50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5
9/30/97		9 54 4		<50	< 0.5	<0.5	<0.5	<0.5	<2.5
12/12/97				<50	< 0.5	<0.5	<0.5	<0.5	<2.5
2/19/98				<50	< 0.5	< 0.5	<0.5	<0.5	<2.5
6/16/98	2-50-0-			<50	< 0.5	< 0.5	<0.5	<0.5	<2.5
8/31/98	7.75	M]9		<50	< 0.5	<0.5	<0.5	<0.5	<2.5
2/23/98				<50	< 0.5	< 0.5	<0.5	<0.5	2.9
3/09/99				<50	<0.5	<0.5	<0.5	<0.5	<2.5
9/30/99		7.		<50	< 0.5	<0.5	<0.5	<0.5	<5.0
2/29/00	===	2 4. 2		<50	< 0.5	<0.5	<0.5	<0.5	<5.0
9/18/00				<50	< 0.50	< 0.50	<0.50	< 0.50	<2.5
3/21/01		1441		<50	< 0.50	< 0.50	<0.50	< 0.50	<2.5
9/04/01	(==)		.55	<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
)A							100 AT		
3/22/02		(()		<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
9/16/02	-			< 50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
3/28/03				< 50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
9/02/037				<50	< 0.5	< 0.5	<0.5	<0.5	<0.5
3/18/04 ⁷	(100)			<50	<0.5	< 0.5	< 0.5	<0.5	<0.5
9/15/04 ⁷				< 50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5
3/11/05 ⁷		(44		<50	< 0.5	< 0.5	< 0.5	<0.5	< 0.5
9/29/05 ⁷				<50	< 0.5	< 0.5	< 0.5	<0.5	<0.5
3/24/06 ⁷				< 50	< 0.5	< 0.5	< 0.5	<0.5	< 0.5
9/12/067			**	<50	< 0.5	< 0.5	< 0.5	<0.5	< 0.5
3/05/07				<50	< 0.5	< 0.5	<0.5	<0.5	< 0.5
9/21/07 ⁷	2 5 5 3			<50	< 0.5	< 0.5	< 0.5	<0.5	< 0.5
3/06/087	3 4.6 0			<50	< 0.5	< 0.5	< 0.5	<0.5	< 0.5
9/05/087	1 <u>444</u> 1			<50	< 0.5	< 0.5	<0.5	<0.5	< 0.5
3/30/09 ⁷				<50	< 0.5	< 0.5	<0.5	<0.5	<0.5

Table 1

Groundwater Monitoring Data and Analytical Results

Former Chevron Service Station #9-3864 5101 Telegraph Avenue Oakland, California

EXPLANATIONS:

Groundwater monitoring data and laboratory analytical results prior to February 9, 2000, were compiled from reports prepared by Blaine Tech Services, Inc.

TOC = Top of Casing

GRO = Gasoline Range Organics

 $(\mu g/L)$ = Micrograms per liter

(ft.) = Feet

B = Benzene

-- = Not Measured/Not Analyzed

GWE = Groundwater Elevation

T = Toluene

(D) = Duplicate

(msl) = Mean sea level

E = Ethylbenzene

QA = Quality Assurance/Trip Blank

DTW = Depth to Water

X = Xylenes

TPH = Total Petroleum Hydrocarbons

MTBE = Methyl Tertiary Butyl Ether

- Transfer of title to Tri-Star Partnership, Inc. effective July 14, 1998.
- ORC in well.
- Laboratory report indicates gasoline C6-C12.
- ⁵ MTBE by EPA Method 8260.
- Split samples taken by Harding ESE.
- BTEX and MTBE by EPA Method 8260.
- 8 ORC removed from well.

ORC installed.

Table 2

Dissolved Oxygen Concentrations

Former Chevron Service Station #9-3864 5101 Telegraph Avenue Oakland, California

WELL ID	DATE	PRE-PURGE (mg/L)	POST-PURGE (mg/L)
C-3 ¹	09/18/00	3.64	(mg/L)
	03/21/01	1.00	
	09/04/01	1.40	22
	03/22/02	1.10	200
	09/16/02	1.20	
	03/28/03 ²	9==0	
	09/02/03	0.80	<u></u>
	03/18/04 ³	0.56	25.
MW-3 ¹	09/18/00	4.01	
	03/21/01	1.30	
	09/04/01	INACCESSIBLE - CAR PARKED (OVER WELL
	03/22/02	1.30	
	09/16/02	1.00	7.7
	$03/28/03^2$		**
	09/02/03	0.90	
	$03/18/04^3$	1.21	-

EXPLANATIONS:

(mg/L) = Milligrams per liter

^{-- =} Not Measured

ORC in well.

Meter inoperable; unable to take Dissolved Oxygen measurements

³ ORC removed from well.

Table 3 Groundwater Analytical Results - Oxygenate Compounds Former Chevron Service Station #9-3864

5101 Telegraph Avenue Oakland, California

WELL ID	DATE	TBA	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB
		(µg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)
C-3	09/04/01	<100	<2	<2	<2	<2	<2	<2
	09/02/03	27.000 200	<0.5					
	03/18/04		< 0.5					-
	09/15/04		10			22		
	03/11/05		< 0.5					Massace Secretaries
	09/29/05		< 0.5				N	
	03/24/06	INACCESSIBLE - CAR I		ER WELL		22		
	09/12/06	0. ** 0	<1				25.55 25 :	(-11- 2)
	03/05/07	(44)	< 0.5					LATE:
	09/21/07	-	<0.5		***	-		1. H= 14
	03/06/08	••	< 0.5			-		
	09/05/08		<0.5	-	-			1557
	03/30/09		<0.5				()	
	09/15/09		<0.5				% 	: :
	03/02/10		<0.5		2425			(111)
	09/09/10		<0.5				N 55 4	
	03/14/11		<0.5			_		
						_	? }	
MW-1	09/04/01	<100	<2	<2	<2	<2	<2	<2
	03/18/04		< 0.5			134		
	09/15/04	SAMPLED ANNUALLY			-	7 <u>472</u> 8		
	03/11/05	••	< 0.5		(44)			
	03/24/06	••	< 0.5			y== ()		-
	03/05/07		< 0.5					22
	03/06/08		< 0.5			122	95.5% 	
	03/30/09		< 0.5					
	03/02/10		< 0.5					
	03/14/11		< 0.5	-	3 3			-
								55
MW-2	09/04/01	<100	<2	<2	<2	<2	<2	<2
	03/18/04		< 0.5			-	=== ===	2.00 2.00
	09/15/04	SAMPLED ANNUALLY						0000
	03/11/05		< 0.5	1999				44
	03/24/06		< 0.5					<u></u>

Table 3 Groundwater Analytical Results - Oxygenate Compounds Former Chevron Service Station #9-3864

Chevron Service Station #9-38
 5101 Telegraph Avenue
 Oakland, California

WELL ID	DATE	TBA	МТВЕ	DIPE	ETBE	TAME	1,2-DCA	EDB
		(µg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)
MW-2 (cont)	03/05/07		< 0.5	: :	WAR			
	03/06/08		< 0.5					
	03/30/09	**	< 0.5			-		
	03/02/10	<u> 202</u>	< 0.5	<u></u>				i. i:
	03/14/11	=	<0.5	:===	_	_	_	_
MW-3	09/02/03		<0.5					
	03/18/04		< 0.5					0 <u>222</u> 3
	09/15/04	INACCESSIBLE - CAR F		ER WELL		===		
	03/11/05		< 0.5				00000F	49.00000 (Marine)
	09/29/05	***	< 0.5				Note W	1224
	03/24/06		< 0.5			<u></u>	7	
	09/12/06		< 0.5					
	03/05/07		< 0.5				18976 1887	1950
	09/21/07		< 0.5					See 1
	03/06/08		< 0.5	-				
	09/05/08	e-m	< 0.5					
	03/30/09		< 0.5					
	09/15/09	INACCESSIBLE						2000 2000
	03/02/10		< 0.5				-	
	09/09/10		< 0.5		==:	(022)		<u>.</u>
	03/14/11		<0.5	-	()	-	. -	
MW-5	09/04/01	<100	<2	<2	<2	<2	<2	<2
	03/18/04		< 0.5					
	09/15/04	SAMPLED ANNUALLY						
	03/11/05	••	< 0.5	2042	-			
	03/24/06		< 0.5					
	03/05/07	••	< 0.5				. 	-
	03/06/08	••	< 0.5					

As of 03/14/11

Table 3

Groundwater Analytical Results - Oxygenate Compounds Former Chevron Service Station #9-3864

5101 Telegraph Avenue Oakland, California

		(μg/L)		DIPE (μg/L)				EDB
and the second s		V. 6. – /	7-8	(P5/L)	μ8/11/	(µg/L)	(µg/L)	(μg/L)
MW-5 (com)	03/30/09		< 0.5	75	: 	9 94 5		
	03/02/10		< 0.5	-				
	03/14/11		< 0.5	-	-	<u> </u>	-	

Table 3

Groundwater Analytical Results - Oxygenate Compounds

Former Chevron Service Station #9-3864 5101 Telegraph Avenue Oakland, California

EXPLANATIONS:

TBA = t-Butyl alcohol

MTBE = Methyl Tertiary Butyl Ether

DIPE = di-Isopropyl ether

ETBE = Ethyl t-butyl ether

TAME = t-Amyl methyl ether

1,2-DCA = 1,2-Dichloroethane

EDB = 1,2-Dibromoethane

 $(\mu g/L)$ = Micrograms per liter

-- = Not Analyzed

ANALYTICAL METHOD:

EPA Method 8260 for Oxygenate Compounds

STANDARD OPERATING PROCEDURE -GROUNDWATER SAMPLING

Gettler-Ryan Inc. (GR) field personnel adhere to the following procedures for the collection and handling of groundwater samples prior to analysis by the analytical laboratory. All work is performed in accordance with the GR Health & Safety Plan and all client-specific programs. The scope of work and type of analysis to be performed is determined prior to commencing field work.

Prior to sampling, the presence or absence of free-phase hydrocarbons is determined using an interface probe. Product thickness, if present, is measured to the nearest 0.01 foot and is noted in the field notes. In addition, all depth to water level measurements are collected with a static water level indicator and are also recorded in the field notes, prior to purging and sampling any wells.

After water levels are collected and prior to sampling, if purging is to occur, each well is purged a minimum of three well casing volumes of water using pre-cleaned pumps (stack, peristaltic or Grundfos), or disposable bailers. Temperature, pH and electrical conductivity are measured a minimum of three times during the purging (additional parameters such as dissolved oxygen, oxidation reduction potential, turbidity may also be measured, depending on specific scope of work.). Purging continues until these parameters stabilize.

Groundwater samples are collected using disposable bailers. The water samples are transferred from the bailer into appropriate containers. Pre-preserved containers, supplied by analytical laboratories, are used. When pre-preserved containers are not available, the laboratory is instructed to preserve the sample as appropriate. Duplicate samples are collected for the laboratory to use in maintaining quality assurance/quality control standards, as directed by the scope of work. The samples are labeled to include the job number, sample identification, collection date and time, analysis, preservation (if any), and the sample collector's initials. The water samples are placed in a cooler, maintained at 4°C for transport to the laboratory. Once collected in the field, all samples are maintained under chain of custody until delivered to the laboratory.

The chain of custody document includes the job number, type of preservation, if any, analysis requested, sample identification, date and time collected, and the sample collector's name. The chain of custody is signed and dated (including time of transfer) by each person who receives or surrenders the samples, beginning with the field personnel and ending with the laboratory personnel.

As requested by Chevron Environmental Management Company, the purge water and decontamination water generated during sampling activities is transported by IWM to Chemical Waste Management located in Kettleman Hills, California.

Client/Facility#:	Chevron #9	-3864			Job N	umber:	386358		
Site Address:	5101 Telegi	aph Ave	nue			Date:			- (inclusive)
City:	Oakland, C			_	Samp		3-14-11		_ (inclusive)
	- Juniaria, G				Samp	ier.	- Jo 4		-
Well ID	C-3			D	ate Moi	nitored:	3-14-11		
Well Diameter		n.							-
Total Depth	<i>A</i> :	t.		Volume Factor		3/4"= 0.02 4"= 0.66			4.5
Depth to Water			l Check if water		` ,			.50 12 = 5.60	<u>'</u>
	15.60						rı. Estimated Purge Volun	X	
Depth to Water		e [(Height of	Water Column x	0.20) +	DTWI:	16.62	2 Contact Purge Volum	ie	_ gal.
	_			•			Time Started:		(2400 hrs)
Purge Equipment:			Sampling Equip			_	Time Completed Depth to Product		
Disposable Bailer			Disposable Bailei	r			Depth to Water:		- ft
Stainless Steel Bailer	r		ressure Bailer				Hydrocarbon Thi		ft
Stack Pump			Discrete Bailer				Visual Confirmati	on/Description:	
Suction Pump Grundfos			Peristaltic Pump				Skimmer / Absor	hant Sack (aire	(a. a. a. a.)
Peristaltic Pump			ED Bladder Pur	•			Amt Removed fro	om Skimmer:	e one) nal
QED Bladder Pump			Other:				Amt Removed fro	om Well:	gal
Other:							Water Removed:	4	
Outer							Product Transfer	red to:	
Start Time (nume	\:		144 11						
Start Time (purge		<u> </u>	Weathe			, <u>K</u>	an		
Sample Time/Dat							Odor: WIN _	morder	a te
Approx. Flow Rat							none		
Did well de-water	? <u>no</u> 11	yes, Time		Volum	e:	g	al. DTW @ Samp	ling: <u>13.</u>	80
Time	Volume (gal.)	pН	Conductivity	/ _	Tempera	ature	D.O.	ORP	
(2400 hr.)	volume (gai.)	pπ	(µmhos/cm - ((E)	(0)	F)	(mg/L)	(mV)	
0726	3	7.21	846		17.	<u> </u>			
0732		7.36	841		17.	2			
<u>0738</u>	<u> </u>	7.27	8 49		17.	3			
<u> </u>			LABORATOR	SA INE	ORMA.	TION			
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. T		LABOR		AN	ALYSES	
(-3	x voa vial	YES	HCL		LANCA	STER	TPH-GRO(8015)/BTEX	+MTBE(8260)	
	5								
				-			<u> </u>		
				+					
				-		+			
		<u> </u>							
COMMENTS:									
Add/Replaced Lo	ock:	Add/l	Replaced Plu	a:		-	Add/Renlaced Bolt		

Client/Facility#:	Chevron #9	-3864		Job N	lumber:	386358	
Site Address:	5101 Teleg	raph Ave	nue	Even	t Date:	3-14-11	(inclusive)
City:	Oakland, C			—– Samp		Joe	(moldsive)
						30€	
Well ID	mw-1			Date Mo	nitored:	3-14-11	
Well Diameter	2	n.	ſ	Volume	3/4"= 0.02		011 0 00
Total Depth	21.61	ft.		Factor (VF)	4"= 0.66		3"= 0.38 12"= 5.80
Depth to Water	11.65	t.	۔ Check if water o	column is less	then 0.50) ft.	
	9-96	_xVF	17 = /1	69 x3 case	volume =	Estimated Purge Volume:	5 S gal.
Depth to Water v	w/ 80% Recharg	e [(Height of	Water Column x	0.20) + DTW]: _	13.6	4	
Purge Equipment:			Committee Carrier			Time Started: Time Completed:	(2400 hrs) (2400 hrs)
Disposable Bailer			Sampling Equip			Depth to Product:	(2400 fils)
Stainless Steel Bailer	. —		Disposable Bailer Pressure Bailer			Depth to Water:	ft
Stack Pump			Piscrete Bailer			Hydrocarbon Thickne	
Suction Pump			Peristaltic Pump			Visual Confirmation/	Description/
Grundfos			NED Bladder Pum			Skimmer / Absorbant	Sock (gircle one)
Peristaltic Pump			other:			Amt Removed from S	Skimmer: gal
QED Bladder Pump						Amt Removed from V	Vell:gal
Other:	-					Water Removed: Product Transferred t	0.
						T Toddot Transierred [0
Start Time (purge)	1015		10/0 04/0	- 0 1141	0	,	
		2		r Conditions:	<u>,</u>	un	
Sample Time/Dat						Odor: Y / 🕪	
Approx. Flow Rate		_gpm.		nt Description	n: <u></u>	rone	
Did well de-water	? <u>90</u> 1	fyes, Time	\	/olume:	9	al. DTW @ Sampling	: 11.78
Time	Malana a da al S		Conductivity	Temper	ature	D.O.	ORP
(2400 hr.)	Volume (gal.)	pН	(µmhos/cm -			, ,,	mV)
1020	115	7.48	1315	16.	9		
1024	3.5	7.43	1292		0		
1028	5,5	7.36	1287				
			APORATOR	VINEODIA	TION		
SAMPLE ID	(#) CONTAINER	REFRIG.	ABORATOR PRESERV. T		ATORY	ANALY	SES.
MW-1	x voa vial	YES	HCL			TPH-GRO(8015)/BTEX+MT	
							J. (0200)
COMMENTS:							_
Add/Replaced Lo	ock:	Add/l	Replaced Pluc	1:		Add/Replaced Rolf:	

Client/Facility#: Site Address: City:	Chevron #9 5101 Telegi Oakland, C	aph Ave	nue	Eve	Number: nt Date:		11	- (inclusive)
Well ID Well Diameter Total Depth Depth to Water Depth to Water Purge Equipment: Disposable Bailer Stainless Steel Bailer Stack Pump Suction Pump Grundfos Peristaltic Pump QED Bladder Pump Other:	24.38 1 11.89 1 12.49	xVF Ø	Check if water c	Date M Volume Factor (VF) olumn is les 12 x3 ca: 220) + DTWJ:	3/4"= 0.0 4"= 0.6 ss then 0.50 se volume =	2 1"= 0.04 2" 26 5"= 1.02 6"= 0 ft. Estimated Purge Vo Time Started: Time Comple Depth to Prod Depth to Wate Hydrocarbon Visual Confirm Skimmer / Abs	ted:	gal. (2400 hrs) (2400 hrs) ft ft ft
Start Time (purge): Sample Time/Date Approx. Flow Rate Did well de-water? Time (2400 hr.) / O S 6 // O 4	e: <u> </u>	3-)4-// gpm. yes, Time: pH 7.25 7.30 7.32	Water Co Sedimen	t Description	on:	Cair Odor: Y·/N None gal. DTW @ Sar D.O. (mg/L)	orpling: /2./	
			15051505					
SAMPLE ID	(#) CONTAINER	REFRIG.	ABORATORY PRESERV. TY		ATION PRATORY		MALVOES	
MW-2	x voa vial	YES	HCL		CASTER	TPH-GRO(8015)/BT	ANALYSES EX+MTBE(8260)	
COMMENTS								
Add/Replaced Loc	ck.	۵۸۸/۱	Replaced Plug			Add/Panlaced Pd	-14.	

Client/Facility#:	Chevron #9	-3864		Job Numbe	er: 386358	
Site Address:	5101 Telegi	raph Ave	nue	Event Date	3-14-11	(inclusive)
City:	Oakland, C	A		Sampler:	Jue	
Well ID Well Diameter Total Depth Depth to Water Depth to Water v Purge Equipment: Disposable Bailer Stainless Steel Bailer Stack Pump Suction Pump Grundfos Peristaltic Pump QED Bladder Pump Other:	26.79 14.17 12.62 N/ 80% Recharg	xVF xVF e [(Height of the second secon	Check if water c	olumn is less then 0 23 case volume 20) + DTW]:	d: 3 -14-11 0.02 1"= 0.04 2"= 0 0.66 5"= 1.02 6"= 1.050 ft. e = Estimated Purge Volum G9 Time Started: Time Completed: Depth to Product Depth to Water: Hydrocarbon Thic Visual Confirmati Skimmer / Absort Amt Removed fro Water Removed:	.17 3"= 0.38 .50 12"= 5.80 ne:
Start Time (purge) Sample Time/Date Approx. Flow Rate Did well de-water Time (2400 hr.) @9 0 6 @9 1 2 @9 1 7	e: <u>0930 /</u>	gpm.	Water Co Sedimen	olor: <u>c/ea/</u> t Description: olume: Temperature	Nome	ORP (mV)
			10001500			
SAMPLE ID MW-7	(#) CONTAINER (x voa vial	REFRIG. YES	ABORATORY PRESERV. TY HCL	Y INFORMATION PE LABORATORY LANCASTER	Y ANA	ALYSES +MTBE(8260)
Add/Replaced Lo	ock:	Add/F	Replaced Plug		Add/Replaced Bolt:	

Client/Facility#:	Chevron #9	-3864		Job l	Number:	386358		
Site Address:	5101 Telegi	raph Ave	nue	Ever	it Date:	3-14-11	(inclus	sive)
City:	Oakland, C	A		Sam	oler:	301		5.00)
Well ID	_mw-5			Date Mo	onitored:	3-14-11		
Well Diameter	2 i	n.		Volume	3/4"= 0.02		7 21-020	
Total Depth	21.65 1	t.		Factor (VF)	4"= 0.66			
Depth to Water		t. 🔲	Check if water	column is less	then 0.50) ft.		
	7.46	xVF O	.17 = 1.	27 x3 cas	e volume =	Estimated Purge Volume	: gal.	
Depth to Water v	v/ 80% Recharg	e [(Height of	Water Column x	(0.20) + DTW]:	15.6	2	9	
						Time Started:		00 hrs)
Purge Equipment:			Sampling Equip			Time Completed:_ Depth to Product:_		00 hrs) ft
Disposable Bailer			Disposable Baile	r		Depth to Water:		n
Stainless Steel Bailer			Pressure Bailer			Hydrocarbon Thick	ness:/	ft
Stack Pump			Discrete Bailer		<u> </u>	Visual Confirmation	n/Description:	
Suction Pump Grundfos			Peristaltic Pump		<u></u>	Skimmer / Absorbe	ant Sock (circle one)	
Peristaltic Pump			QED Bladder Pui	· —		Amt Removed from	n Skimmer:	nal
QED Bladder Pump		(Other:			Amt Removed from	n Well:	gai
Other:						Water Removed:_		_
Other.						Product Transferre	d to:	
Start Time (purge)	: 0,942		Weathe	er Conditions	· Do	eu,		
Sample Time/Date		3-14-11		Color:	1-	Odor: Y / 🕪		
Approx. Flow Rate		gpm.		ent Descriptio				
Did well de-water?						10ML	14 5 6	
Did Well de-Water	: <u>710</u> 11	yes, mine	· — — —	Volume:	9	ıal. DTW @ Sampli	ng: <u>14,30</u>	
Time	Volume (gal.)	рН	Conductivit			D.O.	ORP	
(2400 hr.)	(3.1.)		(µmhos/cm -	µS) (©/	F)	(mg/L)	(mV)	
0947	1.5	7-63	1097	16.	9			
0951	<u> </u>	7.38	1125		.4			
0955		7.42	1129	1 17	.8			
			ADODATO					
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. 1	RY INFORMA	RATORY	ΔΝΔΙ	LYSES	
MW-5	a x voa vial		HCL			TPH-GRO(8015)/BTEX+I		\dashv
							(0_00)	-
- 8								
								
								\dashv
COMMENTS:								
					<u>.</u>			
Add/Renlaced Lo	ck:	A ala!!	Pontogod Div			A-1-1/D		

CRA MTI Project # 61H-195						51	Analyses Requested					7 Grp #1237309							
Facility #: SS#9-3864 G-R#386358 G	obal ID#T0600	0100343		Т	Matrix						Р	rese	erva	tion	Coc	des	-		Preservative Codes
Site Address: 5101 TELEGRAPH AVENUE,	OAKLAND,	CA				- 1	1	#	비	_			\dashv		\Box	\Box	\Box		H = HCI T = Thiosulfate
Chevron PM: MTI Lead	Consultant CF	RAKJ K	iernan	╁		H	j			Silica Gel Cleanup						- 1			N = HNO ₃ B = NaOH S = H ₂ SO ₄ O = Other
Consultant/Office: G-R, Inc., 6747 Sierra Co					€ 8		5	ᆔ		호			Ш						
Consultant Prj. Mgr.: Deanna L. Harding (d				1	Potable NPDES		of Containers	8260 75 8021		80	-			Ш				- [☐ J value reporting needed Must meet lowest detection limits
Consultant Phone #: 925-551-7555 Fax #: 925-551-7899				-			ខ្ញុំ	X 2					_'	- U					possible for 8260 compounds
	Fax #: <u>925-</u>	551-7899	_					8260	<u>දූ</u>	윮	- 1	S	Method	Method					8021 MTBE Confirmation
Sample:						. ایرا		<u>ш</u>	TPH 8015 MOD GRO	TPH 8015 MOD DRO	គ	Oxygenates	2						Confirm highest hit by 8260
	Date	Time	ع ام		- E	Air	₹	₩ .	912	8		ő	Pag	le g					Confirm all hits by 8260
Sample Identification		Time Collected	Grab	Soft	Water	Ö	흥	BTEX + MTBE	E	£	8260 full scan	1	Total Lead	Dissolved Lead				Ì	Run oxy's on highest hit Run oxy's on all hits
C-3	1-14-11	0850	✓ <u> </u>		V		6		커		-	7	-	믝	\dashv	+	+	-	Comments / Remarks
		1038		\perp			6	7	7				\neg		\neg		_	\top	
mw-2 mw-3		1115	Н-	╄		4	6	4	4		\Box						\top	\top	- Collection date
MW-5	 	0930	1/	┦	1/	1	6		4	\perp	\perp								3-14-11 per M. Chalinder. Jmp
Mass	 	1005	V	╁—	V		6	4	4	4	_	_	\perp				\perp	\perp	Thaunaur. Jiry
				╁	\vdash	-	-	\dashv	-	\dashv	\dashv	_	4	\dashv	_	\bot	\perp	\perp	Silain
			_	+		-	+	+	+	-+	\dashv	\dashv	\dashv		+	-	\bot	+	_
				1			十	\top	+	+	-+	+	\dashv	+	+	+	+	+	
									\dagger	\top	_	\dashv	\dashv	\dashv	+	+	+	+	
			_				\Box							1		\top	+	+	-
				╀		_	4	\perp	4				\perp	\Box					
7	Li	Polloguia		\vdash			_			\perp		Щ		\perp					
Turnaround Time Requested (TAT) (please cli STD 7AT 72 hour 48 hou	•	Relinquis	A Defect								ate 4-1	Ti LES	THE JUL	Re	Ceive	ed by	/	موسره	Date Time
24 hour 4 day 5 day	•	Relinquis	hed by	5								1	ne			od by:			
		C.,							4/	14/		16	356	1	F	ED)	K.	4	Date Time
Data Package Options (please circle if required) QC Summary Type I - Futl Refinquished					The section to the section of the se					Da	ate	Tir	ne	Pé	Celle	b by:		 k A	Date Time
Type VI (Raw Data) ☐ Coelt Deliverable not needed Relinquished b				Com	mercial	Carrie	er:							Be	cahe	aley:	1	$\frac{N}{M}$	
WIP (RWQCB)				ed≝x		Ott	ner_						_		30110	Wij	w	11	Date Time
Disk		Tempera	ture Up	on Re	ceipt_	1.3	3-1	. f					C°	Cu	stock	Sea	ls lat	act?	19/15 No 19/155
			-	Contract of the last	100		-	-			-						7 11		140

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fex: 717-656-2681 • www.lancesterlabs.com

ANALYTICAL RESULTS

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425 Prepared for:

Chevron c/o CRA Suite 107 10969 Trade Center Dr Rancho Cordova CA 95670

March 21, 2011

Project: 93864

Submittal Date: 03/15/2011 Group Number: 1237309 PO Number: 93864 Release Number: MTI State of Sample Origin: CA RECEIVED

MAR 21 2011

GETILER-RYAN INC.
GENERAL CONTRACTORS

 Client Sample Description
 Lancaster Labs (LLI) #

 C-3-W-110314 Grab Water
 6229978

 MW-1-W-110314 Grab Water
 6229979

 MW-2-W-110314 Grab Water
 6229980

 MW-3-W-110314 Grab Water
 6229981

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

ELECTRONIC

MW-5-W-110314 Grab Water

COPY TO

ELECTRONIC

COPY TO ELECTRONIC

COPY TO

Gettler-Ryan, Inc.

Chevron c/o CRA

Chevron

Attn: Rachelle Munoz

6229982

Attn: Report Contact

Attn: Anna Avina

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2500 Fax: 717-656-2661 • www.lancasterlabs.com

Questions? Contact your Client Services Representative Jill M Parker at (717) 656-2300 Ext. 1241

Respectfully Submitted,

Maria S. Lord Senior Specialist

Uh. la S. And

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: C-3-W-110314 Grab Water

Facility# 93864 Job# 386358 MTI# 61H-1951 GRD

5101 Telegraph-Oakland T0600100343 C-1

LLI Sample # WW 6229978

LLI Group # 1237309 Account # 12099

Project Name: 93864

Collected: 03/14/2011 08:50 by JA

Chevron c/o CRA

Suite 107

Submitted: 03/15/2011 09:30 Reported: 03/21/2011 11:59

10969 Trade Center Dr Rancho Cordova CA 95670

TOC1-

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B	u g/1	u g/1	
10943	Benzene	71-43-2	N.D.	0.5	1
10943	Ethylbenzene	100-41-4	0.6	0.5	ī
10943	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	1
10943	Toluene	108-88-3	N.D.	0.5	1
10943	Xylene (Total)	1330-20-7	1	0.5	1
GC Vol	atiles SW-846	8015B	u g/1	ug/l	
01728	TPH-GRO N. CA water C6-C12	n.a.	3,400	50	1

General Sample Comments

State of California Lab Certification No. 2501

Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Tim	ıe	Analyst	Dilution Factor
10943	BTEX/MTBE 8260 Water	SW-846 8260B	1	P110762AA	03/17/2011	04:01	Holly Berry	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	P110762AA	03/17/2011	04:01	Holly Berry	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	11076A07A	03/18/2011	23:53	Katrina T	1
							Longenecker	
01146	GC VOA Water Prep	SW-846 5030B	1	11076A07A	03/18/2011	23:53	Katrina T	1
							Longenecker	

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-1-W-110314 Grab Water

Facility# 93864 Job# 386358 MTI# 61H-1951 GRD

5101 Telegraph-Oakland T0600100343 MW-1

LLI Sample # WW 6229979 LLI Group # 1237309 Account # 12099

Project Name: 93864

Collected: 03/14/2011 10:38 by JA

Chevron c/o CRA

Suite 107

Submitted: 03/15/2011 09:30 Reported: 03/21/2011 11:59

10969 Trade Center Dr Rancho Cordova CA 95670

TOMW1

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l	ug/l	
10943	Benzene	71-43-2	N.D.	0.5	1
10943	Ethylbenzene	100-41-4	N.D.	0.5	1
10943	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	ī
10943	Toluene	108-88-3	N.D.	0.5	1
10943	Xylene (Total)	1330-20-7	N.D.	0.5	1
GC Vol	atiles SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water C6-C12	n.a.	N.D.	50	1

General Sample Comments

State of California Lab Certification No. 2501 Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution
No.					Date and Time	_	Factor
10943	BTEX/MTBE 8260 Water	SW-846 8260B	1	P110762AA	03/17/2011 04:28	Holly Berry	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	P110762AA	03/17/2011 04:28	Holly Berry	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	11076A07A	03/18/2011 18:15		1
						Longenecker	
01146	GC VOA Water Prep	SW-846 5030B	1	11076A07A	03/18/2011 18:15		1
						Longenecker	

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-2-W-110314 Grab Water

Facility# 93864 Job# 386358 MTI# 61H-1951 GRD

5101 Telegraph-Oakland T0600100343 MW-2

LLI Sample # WW 6229980

LLI Group # 1237309 Account # 12099

Project Name: 93864

Collected: 03/14/2011 11:15 by JA

Chevron c/o CRA

Suite 107

Submitted: 03/15/2011 09:30 Reported: 03/21/2011 11:59 10969 Trade Center Dr Rancho Cordova CA 95670

TOMW2

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l	ug/l	
10943	Benzene	71-43-2	N.D.	0.5	1
10943	Ethylbenzene	100-41-4	N.D.	0.5	1
10943	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	1
10943	Toluene	108-88-3	N.D.	0.5	1
10943	Xylene (Total)	1330-20-7	N.D.	0.5	1
GC Vol	atiles SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water C6-C12	n.a.	N.D.	50	1

General Sample Comments

State of California Lab Certification No. 2501 Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10943	BTEX/MTBE 8260 Water	SW-846 8260B	1	F110761AA	03/17/2011 06:59	Anita M Dale	1
	GC/MS VOA Water Prep	SW-846 5030B	1	F110761AA	03/17/2011 06:59		1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	11076A07A	03/18/2011 19:13		ī
01146	GC VOA Water Prep	SW-846 5030B	1	11076A07A	03/18/2011 19:13	Longenecker Katrina T Longenecker	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-3-W-110314 Grab Water

Facility# 93864 Job# 386358 MTI# 61H-1951 GRD

5101 Telegraph-Oakland T0600100343 MW-3

LLI Sample # WW 6229981 LLI Group # 1237309

Account # 12099

Project Name: 93864

Collected: 03/14/2011 09:30

by JA

Chevron c/o CRA

Suite 107

Submitted: 03/15/2011 09:30

Reported: 03/21/2011 11:59

10969 Trade Center Dr Rancho Cordova CA 95670

TOMW3

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l	ug/l	
10943	Benzene	71-43-2	N.D.	0.5	1
10943	Ethylbenzene	100-41-4	N.D.	0.5	1
10943	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	1
10943	Toluene	108-88-3	N.D.	0.5	1
10943	Xylene (Total)	1330-20-7	0.6	0.5	1
C Vol	atiles SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water C6-C12	n.a.	1,300	50	1

General Sample Comments

State of California Lab Certification No. 2501

Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10943	BTEX/MTBE 8260 Water	SW-846 8260B	1	P110762AA	03/17/2011 04:56	Holly Berry	1
01163		SW-846 5030B	1	P110762AA	03/17/2011 04:56		1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	11076A07A	03/18/2011 19:39	Katrina T	1
						Longenecker	
01146	GC VOA Water Prep	SW-846 5030B	1	11076A07A	03/18/2011 19:39	Katrina T	1
						Longenecker	

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 *717-656-2300 Fax: 717-656-2681 * www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-5-W-110314 Grab Water

Facility# 93864 Job# 386358 MTI# 61H-1951 GRD

5101 Telegraph-Oakland T0600100343 MW-5

LLI Sample # WW 6229982 LLI Group # 1237309

Account # 12099

Project Name: 93864

Collected: 03/14/2011 10:05 by JA

Chevron c/o CRA

Suite 107

Submitted: 03/15/2011 09:30 Reported: 03/21/2011 11:59

10969 Trade Center Dr Rancho Cordova CA 95670

TOMW5

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor	
GC/MS	Volatiles SW-846	8260B	ug/l	ug/l		
10943	Benzene	71-43-2	N.D.	0.5	1	
10943	Ethylbenzene	100-41-4	N.D.	0.5	1	
10943	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	1	
10943	Toluene	108-88-3	N.D.	0.5	1	
10943	Xylene (Total)	1330-20-7	N.D.	0.5	1	
GC Vol	atiles SW-846	8015B	ug/l	ug/l		
01728	TPH-GRO N. CA water C6-C12	n.a.	N.D.	50	1	

General Sample Comments

State of California Lab Certification No. 2501 Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method		Trial#	Batch#	Analysis Date and Tir	ne	Analyst	Dilution Factor
10943	BTEX/MTBE 8260 Water	SW-846	8260B	1	F110761AA	03/17/2011	07:21	Anita M Dale	1
01163		SW-846	5030B	1	F110761AA	03/17/2011		Anita M Dale	1
01728	TPH-GRO N. CA water C6-C12	SW-846	8015B	1	11076A07A	03/18/2011	20:04	Katrina T	1
01146	GC VOA Water Prep	SW-846	5030B	1	11076A07A	03/18/2011	20:04	Longenecker Katrina T Longenecker	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Quality Control Summary

Client Name: Chevron c/o CRA Reported: 03/21/11 at 11:59 AM

Group Number: 1237309

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the

Laboratory Compliance Quality Control

Analysis Name	Blank Result	Blank MDL	Report <u>Units</u>	LCS %REC	LCSD %REC	LCS/LCSD <u>Limits</u>	RPD	RPD Max
Batch number: F110761AA	Sample numb	er(s): 622	29980.6229	982				
Benzene	N.D.	0.5	ug/l	99		79-120		
Ethylbenzene	N.D.	0.5	ug/l	97		79-120		
Methyl Tertiary Butyl Ether	N.D.	0.5	ug/l	95		76-120		
Toluene	N.D.	0.5	ug/l	98		79-120		
Xylene (Total)	N.D.	0.5	ug/l	95		80-120		
2 (,		0.5	49/1	93		80-120		
Batch number: P110762AA	Sample numbe	er(s): 622	9978-6229	979.62299	81			
Benzene	N.D.	0.5	ug/l	100	100	79-120	0	30
Ethylbenzene	N.D.	0.5	ug/l	96	96	79-120	0	30
Methyl Tertiary Butyl Ether	N.D.	0.5	ug/l	101	103	76-120	2	30
Toluene	N.D.	0.5	ug/l	98	98	79-120	1	30
Xylene (Total)	N.D.	0.5	ug/l	95	96	80-120	0	
		0.5	49/1	23	30	80-120	U	30
Batch number: 11076A07A	Sample numbe	er(s): 622	9978-6229	982				
TPH-GRO N. CA water C6-C12	N.D.	50.	ug/l	100	109	75-135	9	30

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD MAX	BKG Conc	DUP <u>Conc</u>	DUP RPD	Dup RPD Max
Batch number: F110761AA	Sample	number(s)	: 6229980	,62299	82 UNSP	K: 6229982			
Benzene	102	103	80-126	1	30				
Ethylbenzene	101	101	71-134	1	30				
Methyl Tertiary Butyl Ether	95	97	72-126	2	30				
Toluene	101	101	80-125	0	30				
Xylene (Total)	99	100	79-125	0	30				

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: UST VOCs by 8260B - Water Batch number: F110761AA

Dibromofluoromethane 1,2-Dichloroethane-d4

Toluene-d8

4-Bromofluorobenzene

*- Outside of specification

- (1) The result for one or both determinations was less than five times the LOO.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Quality Control Summary

Client Report	Name: Chevron ed: 03/21/11 a	c/o CRA t 11:59 AM		Group Number: 1237309
~	, ,		Surrogate	Quality Control
6229980	95	100	100	92
6229982	94	100	99	92
Blank	95	100	100	92
LCS	94	100	99	95
MS	94	102	99	97
MSD	93	101	99	96
Limits:	80-116	77-113	80-113	78-113
Analysis Batch nu	Name: UST VOCs by	y 8260B - Water		
	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
6229978	99	98	97	99
6229979	100	98	100	92
6229981	101	99	99	96
Blank	100	99	99	91
LCS	101	102	97	93
LCSD	101	101	98	94
Limits:	80-116	77-113	80-113	78-113
	Name: TPH-GRO N. mber: 11076A07A Trifluorotoluene-F	CA water C6-C12		
6229978 6229979	118 86			

6229979	86
6229980	84
6229981	115
6229982	85
Blank	90
LCS	95
LCSD	96

Limits: 63-135

*- Outside of specification

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

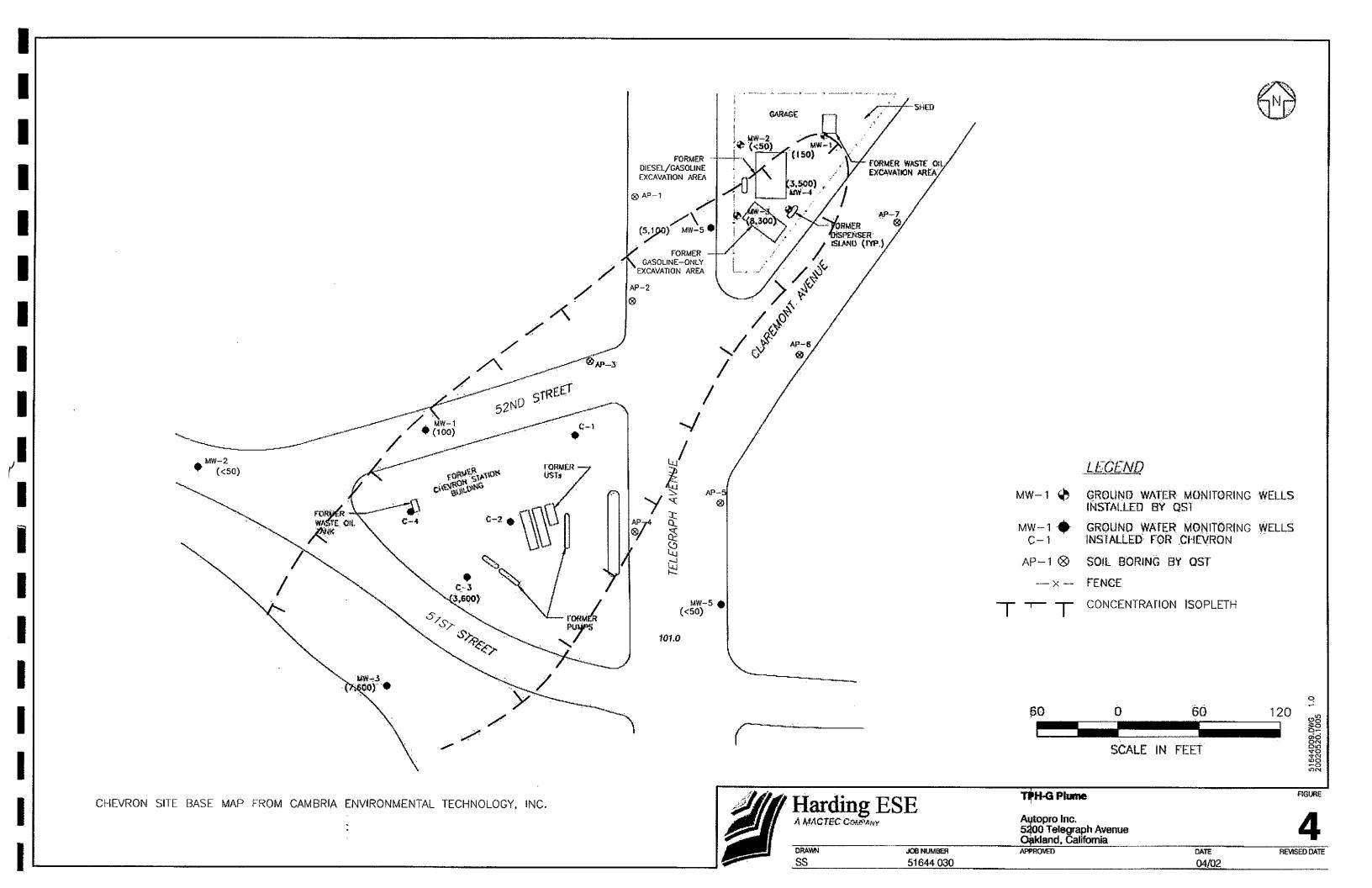
RL N.D.	Reporting Limit none detected	BMQL MPN	Below Minimum Quantitation Level Most Probable Number
TNTC	Too Numerous To Count	CP Units	cobalt-chloroplatinate units
IU	International Units	NTU	nephelometric turbidity units
umhos/cm	micromhos/cm	ng	nanogram(s)
С	degrees Celsius	ř	degrees Fahrenheit
meq	milliequivalents	ib.	pound(s)
g	gram(s)	kg	kilogram(s)
ug	microgram(s)	mg	milligram(s)
ml	milliliter(s)	Ĭ	liter(s)
m3	cubic meter(s)	ui	microliter(s)

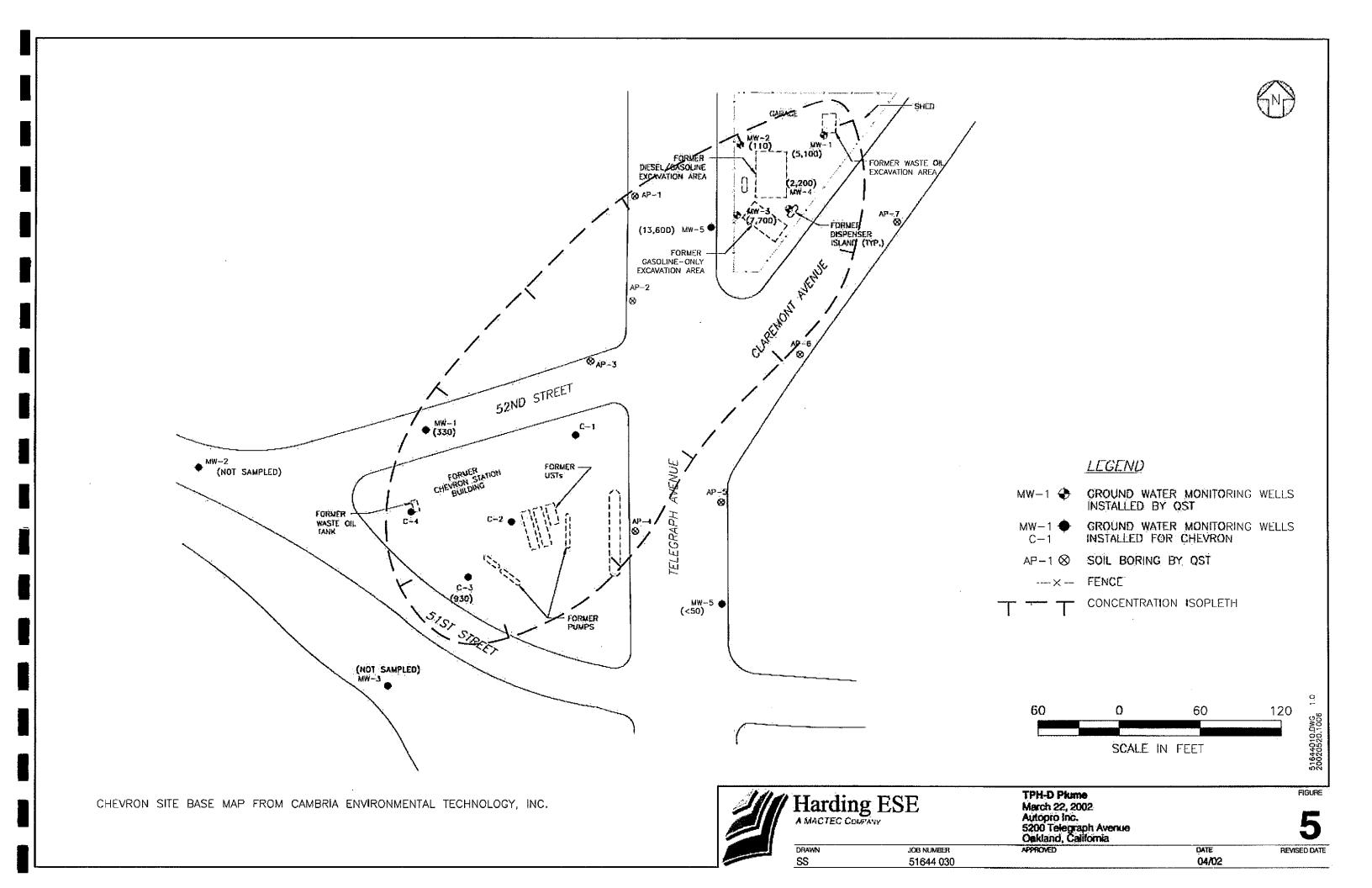
- less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- J estimated value The result is ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation (LOQ).</p>
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.
- ppb parts per billion
- Dry weight basis

 Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture. All other results are reported on an as-received basis.

U.S. EPA CLP Data Qualifiers:

	Organic Qualiflers		Inorganic Qualifiers
Α	TIC is a possible aldol-condensation product	В	Value is <crdl, but="" th="" ≥idl<=""></crdl,>
В	Analyte was also detected in the blank	E	Estimated due to interference
C	Pesticide result confirmed by GC/MS	M	Duplicate injection precision not met
D	Compound quantitated on a diluted sample	N	Spike sample not within control limits
E	Concentration exceeds the calibration range of the instrument	S	Method of standard additions (MSA) used for calculation
N	Presumptive evidence of a compound (TICs only)	U	Compound was not detected
Р	Concentration difference between primary and	W	Post digestion spike out of control limits
	confirmation columns >25%	*	Duplicate analysis not within control limits
U	Compound was not detected	+	Correlation coefficient for MSA < 0.995
X,Y,Z	Defined in case narrative		


Analytical test results meet all requirements of NELAC unless otherwise noted under the individual analysis.


Measurement uncertainty values, as applicable, are available upon request.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions, and Lancaster hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

APPENDIX F HISTORICAL ISOCONCENTRATION MAPS AND NEARBY GROUNDWATER DATA

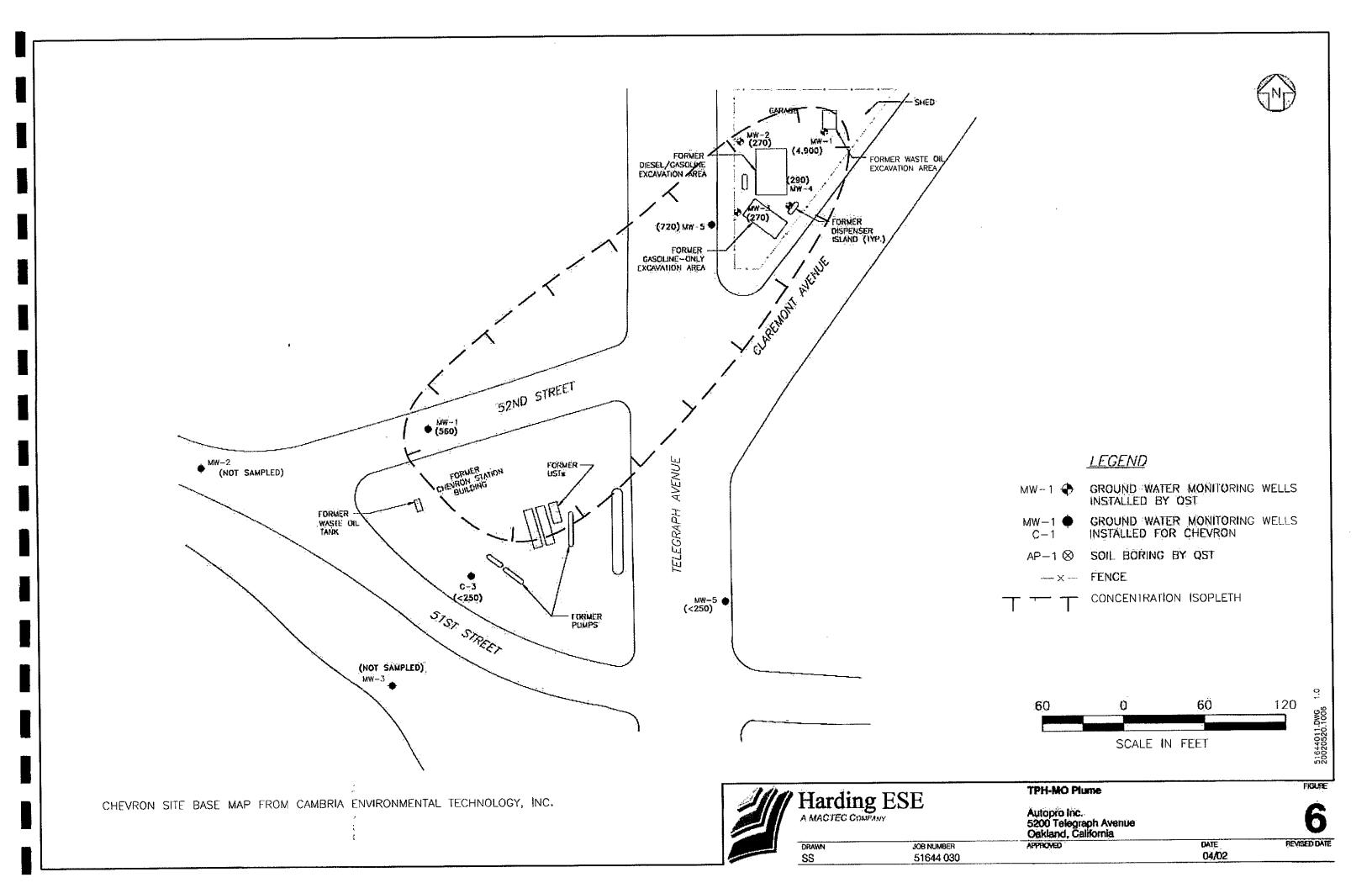


TABLE 2

ANALYTICAL RESULTS FOR GRAB GROUND WATER SAMPLES

Tri-Star Partnership Autopro Facility 5200 Telegraph Avenue Oakland, California

Sample LD.	Date Sampled	TPH-D (μg/L)	TPH-G (µg/L)	TPH-MO (µg/L)	Benzene (µg/L)	Toluene (μg/L)	Ethylbenzene (µg/L)	Total Xylenes (µg/L)	MTBE (µg/L)
AP-1	07/02/96	190 ^{d,}	1,400 ^{b,J,}	<250	<0.5	2.9	<0.5	3.1	<5.0
AP-2	07/02/96	74,000 ^{d,h1}	7,900 ^{6,4,6} 1	<250	69	12	20	43	60
AP-3	07/02/96	47,000 ^{8,h,f}	1 4 ,000 ^{6,4,63}	<250	130	16	45	44	100
AP-4	07/02/96	<50	<50	<250	<0.5	<0.5	<0.5	<0.5	<5.0
AP-5	07/02/96	<50	<50	<250	<0.5	<0.5	<0.5	<0.5	<5.0
AP-6	07/02/96	410 ^{g1}	<50	1,900	<0.5	<0,5	<0.5	<0.5	<5.0
AP-7	07/02/96	<50	<50	<250	<0.5	<0.5	<0.5	<0.5	<5.0
MCE	_			_	1.0	150	700	1,750	35*
1		L	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>

Notes:

TPH-D = Total Petroleum Hydrocarbons as Diesel.

TPH-G = Total Petroluem Hydrocarbons as Gasoline.

TPH-MO = Total Petroleum Hydrocarbons as Motor Oil.

MTBE = methyl tertiary butyl ether.

 μ g/L = micrograms per liter or parts per billion (ppb).

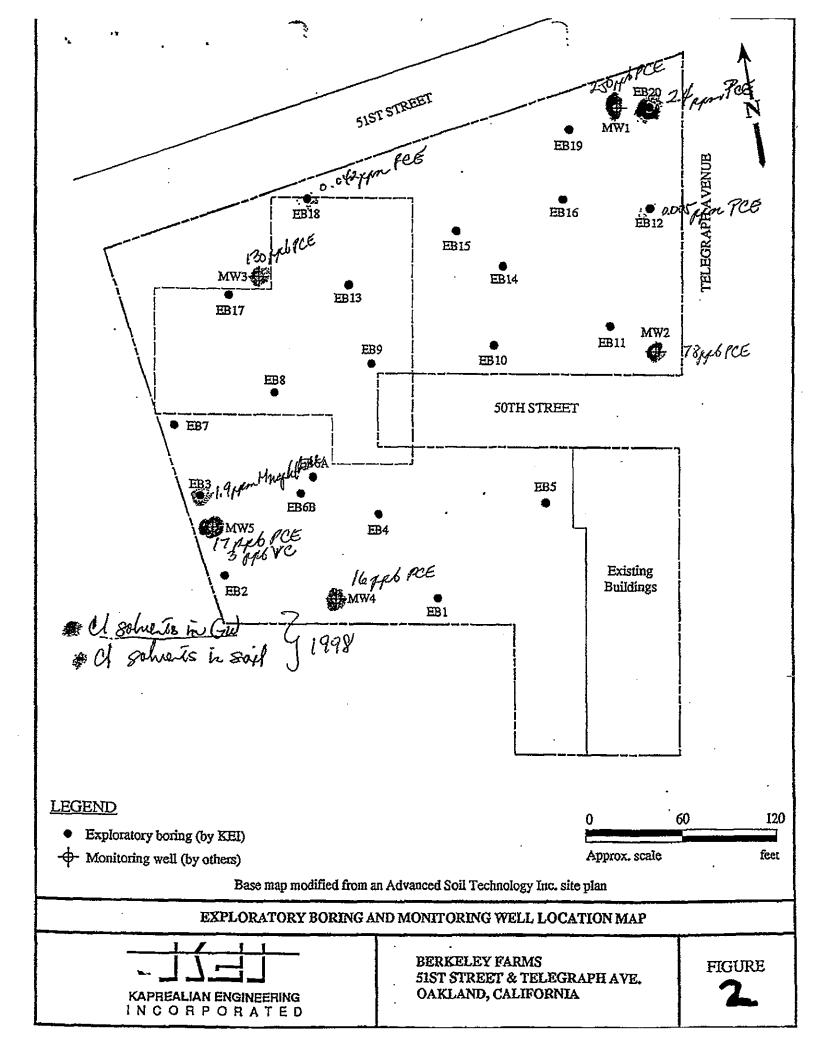
- < = less than listed detection limit.
- = not applicable.
- * = DHS Action Level.

MCL = primary Maximum Contaminant Limit as defined by the California Department of Health Services (DHS) Drinking Water Standards.

- b = heavier gasoline-range compounds are significant (aged gasoline?).
- d = gasoline-range compounds having broad chromatographic peaks are significant; biologically altered gasoline?
- g = strongly aged gasoline or diesel-range compounds are significant.
- h = lighter than water immiscible sheen is present.
- 1 = liquid sample that contains greater than ~ 5 vol. % sediment.
- 1 = no recognizable pattern.

TABLE 3

GROUNDWATER ANALYTICAL RESULTS - UTILITY TRENCH BACKFILL BORING


Autopro Facility 5200 Telegraph Avenue Oakland, California

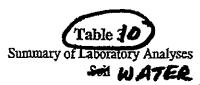
Börmel(D)	Date Sampled	Ferala Little	hap eline Gody	TPHC.	Benzene.	erolicae) (1997)	Parkyligates (c		E (VIII.)	0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0
SB-1	08/07/04	29,000	<2,500	57,000	9.5	11	36	29	<5.0	ND⁺
ALMORES.	400 Halles		WAS AND		West Disa	概划608年	E6024/00 #444	1100	SE BEE	

Notes:

TPHd = Total Petroleum Hydrocarbons as Diesel
TPHmo = Total Petroleum Hydrocarbons as Motor Oil
TPHg = Total Petroleum Hydrocarbons as Gasoline
MTBE = methyl tertlary butyl ether.
MCL = (Maximum Contaminant Level) ND* = Not detected for all oxygenates
µg/L = micrograms per liter or parts per billion (ppb).
<= less than listed detection limits.

Checked AL Approved 6

Date	Weil#	TPH as	Total	THE	Benzene		Emvi	
			ΝĐ	1/2	14 A 5 2019 22 1 1110 1 1	····	// benzenes	SECONO POR SE
11/25/96	MWI	WELL WAS I	NACCESSIBLE	ND	Ghi	ND	KD	NO
	MW2	,	ND	ND	ND	ND	ND	ND
	MW4		NACCESSIBLE					
	MW5	ND	ND	ND	ND	ND	ND	ND
8/30/96	MW1		ND	ИD	ИD	ND	ND	ND
	MW2		ND	ND	ND	ND	ND	ND
	MW4		NACCESSIBLE					
	MW5	64	ND	ND	ND	ND	ND	ND
5/21/96	MW1		ND	ND	ND	ND	ND	ND .
	MW2		ND	ND	ND	ND	ND	ND
	MW3	WELL WAS I	DESTROYED ON	FEBRUAR	RY 29, 1996			
	MW4	WELL WAS I	NACCESSIBLE		-		•	
	MW5	200+	ND	ND	ND	ND	ND	ND
2/19/96	MW1		ND	ND	1.0	6.2	0.60	3.9
	MW2	*****	ND	ND	0.82	4.8	0.52	3.5
	MW3		ND	ND	1.4	8.1	0.73	4.4
	MW4	WELL WAS I	NACCESSIBLE			-	2	•••
	MW5	ND	ND	ND	1.1	6.7	0.63	4.2
10/6/95	MW1	~-	ND	69◆	ND	ND	ND	ND
	MW2		ΝD	ND	ND	ИD	ND	ND
	MW3	_	ND	ND	ND	ND	ND	ND
	MW4		ND	ND	ND	ND	ND	ND
	MW5		ЙD	ND	ND	ND	ND	ND
9/18/95**	MW1		ND	81+	ND	ND	ND	ND
	MW2		ND	ND	ND	ND	ND	ND
	MW3		ND	ND	ND	ND	ND	ND
	MW4		ND	ND	ND	ND	ND	ND
	MW5	-	ND	ND	ND	ND	ND	ND
8/24/95**	MW1	****		63	ND	1.1	ND	0.86
	MW2	-	_	ND	ND	0.57	ND	0.56
	MW3	_	***	ND	ND	0.50	ND	0.70
	MW4		_	ND	ND	0.53	ND	0.60
	MW5		-	ND	ND	0.81	ND	0.72

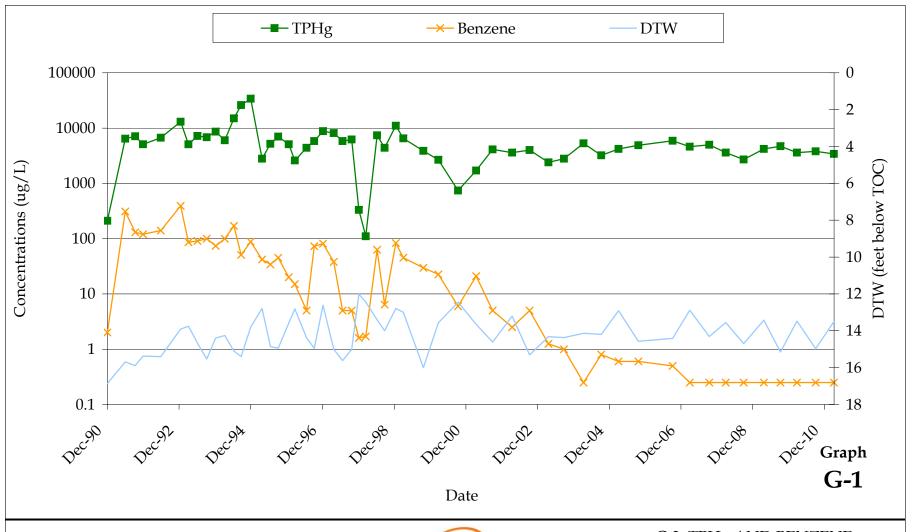

Date	Well #	TPH as	ΤÖC	TPIE as	Benzene	Tolliene	Effyl	Xvlenes
5/23/95	MW1		ND	100) TO	310	3.50	
3,23,33	MW2			100+	ND	ND	ИD	ND
			ND	ND	ND	ND	ND	ND
	MW3		ND	ND	ND	ND	ND	ND
	MW4	-	ND	ND	ND	ND	ND	ND
	MW5		ND	ND	ND	ND	ND	ND
2/25/95	MWI	_	ND	81+	ND	ND	ND	ND
	MW2		· ND	ND	ND	ND	ND	ND
	MW3		ND	ND	ND	ND	ND	ND
	MW4		ND	ND	ND	ND	ND	ND
	MW5		ND	ND	ND	ND	ИĎ	ND
6/29/93	MW1*		ND	76♦	ND	ND	ND	ND
	MW2*		ND	ND	ND	ND	ND	ND
	MW3*		ND	ND	ND	ND	ND	ND
	MW4*	_	ND	ND	ND	ND	ND	ND
	MW5*	-	ND	ND	0.64	ND	ND	ND
	•							

- Sequoia Analytical Laboratory reported that the hydrocarbons detected did not appear to be gasoline.
- * TPH as diesel and all EPA method 8270 constituents were non-detectable.
- ** TOG was sampled on September 8, 1995, instead of August 24, 1995. Furthermore, the analytical results of the ground water samples (toluene and xylenes) collected on August 24, 1995, were inconsistent with the previous analytical results for these wells.
- + Sequoia Analytical Laboratory reported that the hydrocarbons detected appeared to be a kerosene and non-kerosene mixture.
- ND = Non-detectable.
 - Indicates analysis was not performed.

Results are in micrograms per liter (µg/L), except for TOG, which is in milligrams per liter (mg/L).

Francisco	WATER									
Dete	Sample Number	cis i 2 Dichlor eftiene	letrachioro ethene	Trustiero- eillene	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	- Chloroform:				
5/29/97	1.47771	***************************************				N				
3129191	MW1	WELL WAS INA		•						
	MW2	ND	18	0.88	ND	1.4				
•	MW4 MW5	WELL WAS INA								
	TAT AA ?	10	86	. 17	ND	ND				
2/27/97	MW1	ND	450	10	ND	ND				
&	MW2++	ND	17	68	ND	2.0				
3/19/97	MW4	WELL WAS INA	CCESSIBLE							
	MW5 ·	0.57	14	1.4	ND	ND				
11/25/96	MW1	ND	18	60	ND	2.6				
	MW2	ND	16	0.54	ND	2.8				
	MW4	WELL WAS INA			2120	2.0				
	MW5	ND	ND	ND	ND	0.8				
8/30/96	MW1	2.1	ND	4,4	ND	ND				
	MW2	ND	10	1.1	ND	ND				
	MW4	WELL WAS INA		4.1	7477	ND				
	MW5◆	7.0	12	6.0	ND	ND				
5/21/96	MW1+	4.1	ND	4.8	NID					
	MW2++	ND	10	ND	ND ND	53 16				
	MW3			TITADV 20 100	K IND	16				
	MW4	WELL WAS DESTROYED ON FEBRUARY 29, 1996 WELL WAS INACCESSIBLE								
	MW5+++	14	15	8.3	ND	13				
			15	0.5	1412	1.5				
2/19/96	MW1	ND	8.7	ND	ND	2.9				
	MW2	ND	8.0	ND	ND	2.6				
	MW3	. ND	ND	ND	ND	ND				
•	MW4	WELL WAS INAC	CCESSIBLE							
	MW5	2.1	9.3	1.9	ND	ND				
10/6/95	MW1	1.7	19	3.7	ND	1.3				
	MW2	ND	8.9	1.0	ND	5.9				
	MW3	5.7	13	6.2	ND	1.1				
	MW4	5.4	12	6.1	ND	0.53				
	MW5 9	9.1	8.2	5.3	ND	ND				
8/24/95	MW1	3.4	240	5.0	ND	3.2				
	MW2*	ND	28	1.1	ND	15				
	MW3**	5.1	- 50	9	ND .	0.78				
	MW4	ND	9.7	ND	ND	2.4				
	MW5**	17	49	11	ND	ND				
8/26/97	MW-1	WELL WAS	IN ACCESSIBL			_				
	MW-Z	NP	18	0.88	ND	1.4				
/	MW-4	WELL WAS								
	MW-S	Weu ob	CTUNCTED DT	480 47 R.						

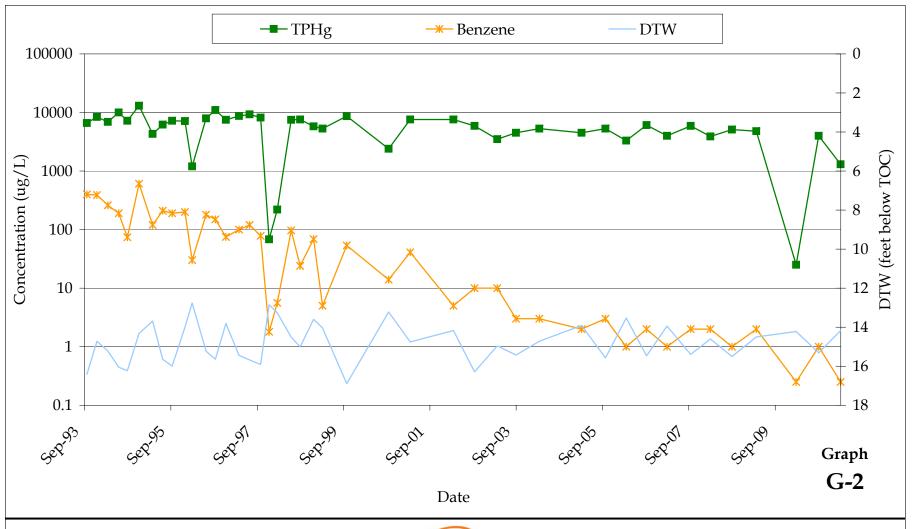
Det	Sample Muniber	cis († 2 Dichlero ethene	Truachioro chenes	Tichloto , cheje	Viny Cajorine	Chicoforni
5/23/95	MW1	ND	450	ND	ND	ND
	MW2	ND	45	ND	ND	ND
	MW3	5.1	74	9.1	ND	ND
•	MW4	ND	8.8	ND	ND	ND
	MW5	16	5 8	11	ND	ND
2/25/95	MW1	ND	360	ND	ND	ND
	MW2	ND	41	1.9	ND	ND
	MW3	6.9	52	9.4	ND	ND
	MW4	ND	6.4	ND	ND	ND
	MW5	8.3	25	6.6	ND	ND
6/29/93	MW1	ND	250	ND	ND	ND
	MW2	ND	78	ND	ND	ND
	MW3	5.5	130	11	ND	ND
	MW4	ND	16	0.68	ND	ND
	MW5	24	17	5.9	3.0	ND


All EPA method 8010 constituents were non-detectable, except for the above compounds.

- + Trans-1,2-Dichloroethene was detected at a concentration of 0.60 μg/L.
- Chloroform was detected at a concentration of 7.0 μg/L.
- * 1,1,1-Trichlorethane was detected at a concentration of 0.73 μg/L.
- ** Trans-1,2-Dichlorethene was detected at concentrations of 0.59 μg/L and 0.76 μg/L in MW3 and MW5, respectively.
- + Bromodichloromethane was detected at 19 mg/L and Dibromochloromethane at 5.7 μg/L.
- ++ Bromodichloromethane was detected at 5.8 μ g/L and Dibromochloromethane at 3.3 μ g/L.
- +++ Bromodichloromethane was detected at 5.0 μ g/L and Dibromochloromethane at 4.3 μ g/L.
- ND = Non-detectable.

Results are in micrograms per liter (µg/L), unless otherwise indicated.

APPENDIX G


CONCENTRATION VERSUS TIME AND TREND GRAPHS AND DEGRADATION CALCULATIONS

FORMER CHEVRON STATION 9-3864 5101 TELEGRAPH AVENUE OAKLAND, CALIFORNIA

C-3: TPHg AND BENZENE CONCENTRATIONS OVER TIME

FORMER CHEVRON STATION 9-3864 5101 TELEGRAPH AVENUE OAKLAND, CALIFORNIA

MW-3: TPHg AND BENZENE CONCENTRATIONS OVER TIME

PREDICTED TIME TO REACH TPHg ESL IN MW-3 FORMER CHEVRON STATION 9-3864 5101 TELEGRAPH AVENUE OAKLAND, CALIFORNIA

 $y = b e^{ax}$

===>

 $x = \ln(y/b) / a$

where: $y = concentration in \mu g/L$

a = decay constant

b = concentration at time (x)

x = time in days

Total Petroleum Hydrocarbons as Gasoline (TPHg)

Given

ESL:

y

Constituent

Constant: b

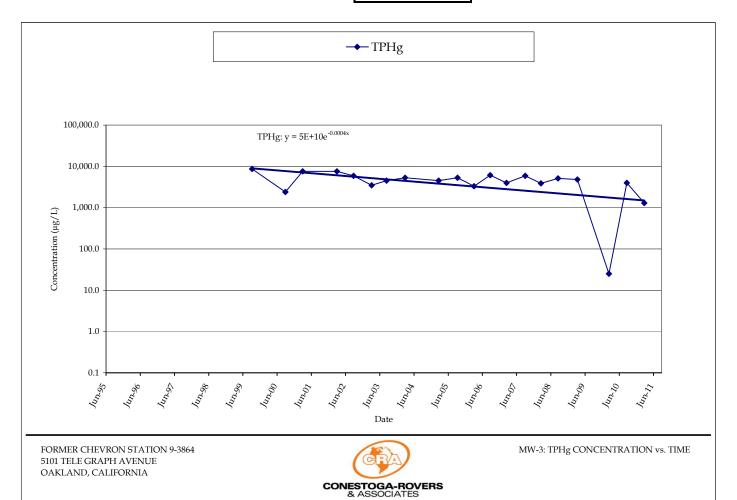
Constant:

Starting date for current trend:

100 5.00E+10 -4.00E-04 6/24/1995

Calculate

Attenuation Half Life (years):


(-ln(2)/a)/365.25

4.74

Estimated Date to Reach ESL:

 $(x = \ln(y/b) / a)$

Feb 2037

APPENDIX H PREVIOUS RISK ASSESSMENT RESULTS

Table 8-1. Comparison of Calculated Health-Based Remediation Goals to Site-Related Concentrations, Former Chevron Service Station #9-3864, 5101 Telegraph Avenue, Oakland, California.

		Calcu	lated HBGs		Site	trations	Does Site Exceed	
	Construction	Adult	Child	Minimum	Current Data			Historical
Constituent	Worker	Resident	Resident	HBG	UCL	Maximum	Maximum	HBG?
SOIL	· · - · - · ·							
VOCs								
Benzene	20	0.53	0.56	0.53	0.022	0.069	NA	Ma
Ethylbenzene	800	2,400	480	480	0.39	2.5	NA NA	No
Foluene	1,300	960	190	190	0.34	2.7		No
Xylen es	700	8,100	1,700	700	0.93		NA	· No
	•	-,	2,.00	700	0.33	5.5	NA	No
<u>ГРН</u>								
TPH as diesel	5,600	14,000	1,900	1,900	#N/A	78	NA	No
TPH as gasoline	63,000	11,000	1,700	1,700	130	980	NA	No
<u>Metal</u>								110
Lead *	340	1.600	200	•			•	
LAdu	340	1,600	200	200	0.43	0.60	NA	No
GROUND WATER	_							
VOCs								
Benzene	NE	190	200	190	0.11	0.13	0,34	
Ethylbenzene	NE	89,000	19,000	19,000	0.011	0.012	0.019	No
Coluene	NE	87,000	19,000	19,000	0.025	0.026		No
Cylenes	NE	20,000	4,400	4,400	0.025	0.020	0.17	No
		-	•	,,,,,,,	V.U2U	0.030	0.083	No
TPH as Gasoline	NE	310	70	70	6.5	7.1	7.1	No

Footnotes appear on page 2.

Comparison of Calculated Health-Based Remediation Goals to Site-Related Concentrations, Former Chevron Service Station #9-3864, Table 8-1. 5101 Telegraph Avenue, Oakland, California.

Soil concentrations are reported in milligrams per kilogram (mg/kg); ground-water concentrations are reported in milligrams per liter (mg/L).

HBGs for lead were calculated using the biokinetic/uptake model.

HBG Health-based remediation goal.

Historical maximum concentrations are not relevant for soil, only for ground water. NA

Not evaluated. Ground water exposure was not evaluated for the construction worker since the residential exposure is a more significant NE potential exposure scenario. TPH

Total petroleum hydrocarbons.

Upper 95 percent confidence limit on the mean. UCL

VOCs Volatile organic compounds.

ATTACHMENT B SECOND SEMI-ANNUAL 2012 GROUNDWATER MONITORING AND SAM	PLING REPORT

TRANSMITTAL

November 1, 2012 G-R #386358

TO:

Mr. James Kiernan

Conestoga-Rovers & Associates 10969 Trade Center Drive, Suite 107 Rancho Cordova, CA 95670

FROM:

Deanna L. Harding Project Coordinator Gettler-Ryan Inc.

6747 Sierra Court, Suite J Dublin, California 94568 RE: Former Chevron Service Station

#9-3864 (MTI)

5101 Telegraph Avenue Oakland, California

RO 0000351

WE HAVE ENCLOSED THE FOLLOWING:

COPIES	DATED	DESCRIPTION
1	October 31, 2012	Groundwater Monitoring and Sampling Report Second Semi-Annual Event of September 20, 2012

COMMENTS:

Pursuant to your request, we are providing you with copies of the above referenced report for <u>your</u> <u>use and distribution to the following (including PDF submittal of the entire report to GeoTracker):</u>

Ms. Alexis Fischer, Chevron Environmental Management Company, 6101 Bollinger Canyon Road, San Ramon, CA 94583

cc: Mr. Chuck Headlee, RWQCB-San Francisco Bay Region, 1515 Clay St., Suite 1400, Oakland, CA 94612 (No Hard Copy)

Mr. John Gwynn, Gwynn-Schields & Associates, 300 Lakeside Dr., Ste. 1980, Oakland, CA 94612

Mr. Mark Detterman, Alameda County Health Care Services, Dept. of Environmental Health, 1131 Harbor Bay Parkway, Suite 250, Alameda, CA 94502-6577

(No Hard Copy-CRA UPLOAD TO ALAMEDA CO.)

Enclosures

trans/9-3864-OS

WELL CONDITION STATUS SHEET

	Chevron #9-3864	Job#	386358	
	5101 Telegraph Avenue	Event Date:	9.20.12	
City:	Oakland, CA	Sampler:	Fr	

							Sampler.		FT		
WELL ID	Vault Frame Condition	Gasket/ O-Ring (M)missing	BOLTS (M) Missing (R) Replaced	Bolt Flanges B= Broken S= Stripped R=Retap	APRON Condition C=Cracked B=Broken G=Gone	Grout Seal (Deficient) inches from TOC	Casing (Condition prevents tight cap seal)	REPLACE LOCK Y (S)	REPLACE CAP Y (10)	WELL VAULT Manufacture/Size/ # of Bolts	Pictures Taken Yes / No
C-3	OL			5=1			\rightarrow			Facedonia	
Mw-1	OIL			8=2						Em (2) 12" 2	
MW-2	OL			S=2						Emco 12" 2 Emco 18" 2 Emco 18" 2	
MW-3			~ Tu a	CC 2551 [C2"					EM(0 8 2	
MW-5	OK						\rightarrow	4	4	Enco 8" 2	
							- 1-				
							===				
						48					

Comments		

October 31, 2012

Ms. Alexis Fischer Chevron Environmental Management Company 6101 Bollinger Canyon Road San Ramon, CA 94583

RE: Second Semi-Annual Event of September 20, 2012

Groundwater Monitoring & Sampling Report Former Chevron Service Station #9-3864 5101 Telegraph Avenue Oakland, California

Dear Ms. Espino Devine:

This report documents the most recent groundwater monitoring and sampling event performed by Gettler-Ryan Inc. (G-R) at the referenced site. All field work was conducted in accordance with G-R Standard Operating Procedure - Groundwater Sampling (attached). A joint groundwater monitoring and sampling event was conducted with the former Autopro, located at 5200 Telegraph Avenue, Oakland, California.

Static groundwater levels were measured and the wells were checked for the presence of separate-phase hydrocarbons. Static water level data, groundwater elevations, and separate-phase hydrocarbon thickness (if any) are presented in the attached Table 1. A Potentiometric Map is included as Figure 1.

Groundwater samples were collected from the monitoring wells and submitted to a state certified laboratory for analyses. The field data sheets for this event are attached. Analytical results are presented in the table(s) listed below. The chain of custody document and laboratory analytical report are also attached. All groundwater and decontamination water generated during sampling activities was removed from the site, per the Standard Operating Procedure.

Please call if you have any questions or comments regarding this report. Thank you.

Sincerely,

Deanna L. Harding Project Coordinator

Senior Geologist, P.G. No. 6882

Figure 1: Potentiometric Map

Table 1: Groundwater Monitoring Data and Analytical Results

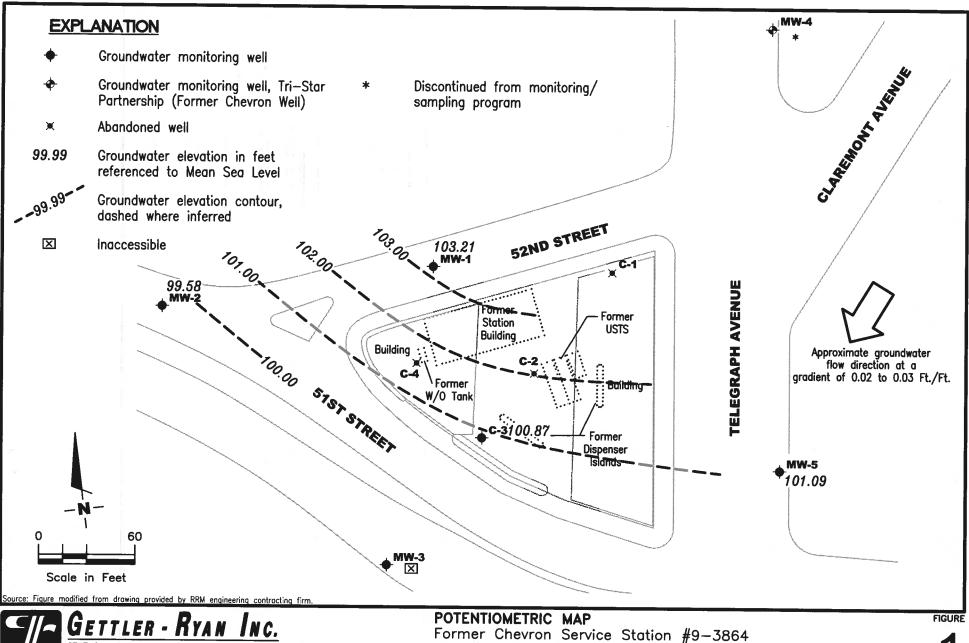

Table 2: Dissolved Oxygen Concentrations

Table 3: Groundwater Analytical Results - Oxygenate Compounds Attachments: Standard Operating Procedure - Groundwater Sampling

Field Data Sheets

Chain of Custody Document and Laboratory Analytical Reports

Joint groundwater Monitoring Data-Test Only Smog Station (Former Autopro)

5101 Telegraph Avenue

Oakland, Čalifornia

6747 Sierra Court, Suite J (925) 551-7555

REVIEWED BY

DATE September 20, 2012 REVISED DATE

FILE NAME: P:\Enviro\Chevron\9-3864\Q12-9-3864.DWG | Layout Tab: Pot3

PROJECT NUMBER

386358

Table 1
Groundwater Monitoring Data and Analytical Results

				Oakland,	California				
WELL ID/	TOC	GWE	DTW	TPH-GRO	В	$oldsymbol{ au}$	E	X	MTBE
DATE	(fi.)	(msl)	(ft)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)
C-3						•			
12/06/90	115.70	98.84	16.86	210	2.0	<0.5	<0.5	1.0	
2/06/90 (D)				220	2.0	0.6	<0.5	2.0	
06/06/91	115.70	100.01	15.69	6,400	310	21	16	2.0	
9/16/92	115.70	99.81	15.89	7,100	130	26	12	30	
2/04/91	115.70	100.32	15.38	5,100	120	18	17	20	
6/02/92	115.70	100.30	15.40	6,700	140	44	17	37	
2/21/92	115.70	101.79	13.91	13,000	390	360	100	410	
3/11/93	115.70	101.95	13.75	5,100	86	20	12		
6/11/93	115.70	101.03	14.67	7,200	91	38	19	23	
9/13/93	115.70	100.17	15.53	6,800	100	52		38	
2/14/93	115.70	101.30	14.40	8,600	74	23	41	75 26	
3/16/94	115.70	101.44	14.26	6,000	100	42	18	36	
6/17/94	115.70	100.60	15.10	15,000	170	120	27	30	
8/29/94	115.70	100.30	15.40	26,000	51		120	270	
2/06/94	115.70	101.90	13.80	34,000	88	<0.5 140	58	107	
3/31/95	115.70	102.91	12.79	2,800	42	<5.0	98	390	
6/24/95	115.70	100.84	14.86	5,200	34		<5.0	6.6	
9/12/95	115.70	100.76	14.80			<10	<10	13	
2/29/95	115.70	102.12	13.58	7,000	45	<10	28	42	
2/29/96	115.70	102.12	12.82	5,100	20	<10	<10	19	<50
6/26/96	115.70	101.32	14.38	2,600	15	<5.0	17	16	<25
9/12/96	115.70	100.75		4,400	<10	<10	<10	<10	<50
2/11/96	115.70	103.08	14.95	5,800	73	22	18	17	61
3/31/97	115.70	100.70	12.62	8,800	81	<20	<20	37	200
6/29/97	115.70		15.00	8,100	38	62	30	42	38
9/30/97	115.70	100.08	15.62	5,800	<10	<10	<10	67	<50
2/12/97	115.70	100.70	15.00	6,200	<10	28	21	27	130
2/12/97 2/19/98	115.70	103.68	12.02	330	1.6	1.1	<1.0	3.4	<5.0
6/16/98		103.26	12.44	110	1.7	<0.5	< 0.5	0.51	<2.5
	115.70	102.29	13.41	7,400	63	16	<10	<10	170
8/31/98	115.70	101.70	14.00	4,400	6.4	<2.5	5.4	16	15
2/23/98	115.70	102.91	12.79	11,000	83	37	69	76	86
3/09/99	115.70	102.70	13.00	6,500	45	38	17	30	110
06/23/99 ¹	115.70	101.92	13.78	••					
9/30/99	115.70	99.70	16.00	3,870	29.7	8.72	7.08	7.75	< 50
02/29/00	115.70	102.14	13.56	2,660	22.5	< 5.0	11.2	11.6	<50

Table 1 Groundwater Monitoring Data and Analytical Results

WELL ID/	TOC	GWE	DTW	TPH-GRO	В	T	E	X	
DATE	(fi.)	(msl)	(fl.)	(µg/L)	ω (μg/L)	(µg/L)	L (µg/L)		MTBE
			y= /	(P8/A)	\P5(4)	(P\$/4)	(<i>PS</i> /4)	(μg/L)	(µg/L)
C-3 (cont)	4.2.00		ng garanana	A	500 (Tario)				
09/18/003	115.70	103.25	12.45	7404	6.0	4.5	<2.5	6.0	<13
03/21/01 ³	115.70	102.05	13.65	1,700 ⁴	21	12	14	19	59
09/04/01 ³	115.70	101.09	14.61	4,100	<10	4.8	6.5	14	<5.0/<2 ⁵
03/22/02 ^{3,6}	115.70	102.49	13.21	3,600	<5.0	<5.0	6.1	<15	<2.5
09/16/023	115.70	100.39	15.31	4,000	<10	< 5.0	4.3	<10	7.9
03/28/033	115.70	101.38	14.32	2,400	<2.5	<2.5	5.5	<7.5	<13
09/02/03 ^{3,7}	115.70	101.33	14.37	2,800	1	0.9	0.9	4	< 0.5
03/18/04 ^{7,8}	115.70	101.56	14.14	5,300	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
09/15/04 ⁷	115.70	101.50	14.20	3,200	0.8	0.8	1	3	10
03/11/057	115.70	102.79	12.91	4,200	0.6	0.5	1	3	< 0.5
09/29/05 ⁷	115.70	101.13	14.57	4,900	0.6	0.5	2	3	< 0.5
03/24/06	115.70	INACCESSIBLE -		ED OVER WELL	: ***				
09/12/067	115.70	101.29	14.41	5,900	<1	<1	<1	2	<1
03/05/077	115.70	102.81	12.89	4,600	< 0.5	< 0.5	0.8	2	< 0.5
09/21/07	115.70	101.39	14.31	5,000	< 0.5	< 0.5	0.6	Ĭ	< 0.5
03/06/087	115.70	102.15	13.55	3,600	< 0.5	< 0.5	1	Ĩ	< 0.5
09/05/087	115.70	101.00	14.70	2,700	< 0.5	< 0.5	0.9	1	< 0.5
03/30/097	115.70	102.28	13.42	4,200	< 0.5	< 0.5	0.8	3	< 0.5
09/15/097	115.70	100.55	15.15	4,700	< 0.5	< 0.5	< 0.5	1	< 0.5
03/02/107	115.70	102.22	13.48	3,600	< 0.5	< 0.5	< 0.5	1	< 0.5
09/09/107	115.70	100.73	14.97	3,800	< 0.5	< 0.5	< 0.5	1	< 0.5
03/14/117	115.70	102.20	13.50	3,400	< 0.5	< 0.5	0.6	1	< 0.5
09/13/117	115.70	100.88	14.82	3,800	< 0.5	< 0.5	0.6	1	< 0.5
03/21/127	115.70	103.13	12.57	2,400	< 0.5	0.9	0.5	< 0.5	< 0.5
09/20/12 ⁷	115.70	100.87	14.83	4,500	<0.5	<0.5	<0.5	1	<0.5
MW-1									
09/20/93	115.05	102.27	12.60	-50					
12/14/93	115.05	102.37	12.68	<50	<0.5	<0.5	<0.5	<1.5	
	115.05	105.01	10.04	<50	<0.5	<0.5	< 0.5	< 0.5	()
03/16/94	115.05	103.10	11.95	<50	<0.5	1.7	< 0.5	2.1	
06/17/94	115.05	102.51	12.54	350	1.2	3.7	2.0	12	
08/29/94	115.05	101.98	13.07	<50	<0.5	< 0.5	< 0.5	< 0.5	
12/06/94	115.05	104.45	10.60	140	0.9	2.8	1.1	4.2	
03/31/95	115.05	104.74	10.31	<50	< 0.5	< 0.5	< 0.5	< 0.5	

Table 1 Groundwater Monitoring Data and Analytical Results

WELL ID/	TOC	GWE	DTW	TPH-GRO	В	7	E	X	MTBE
DATE	(fi.)	(msl)	(ft.)	(μg/L)	(μg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)
MW-1 (cont)							4.6/	AFG Therese	(4.8. A)
06/24/95	115.05	102.44	12.61	<50	< 0.5	<0.5	<0.5	<0.5	
09/12/95	115.05	102.00	13.05	<50	<0.5	<0.5	<0.5	<0.5	
02/02/96	115.05	106.19	8.86	<50	<0.5	<0.5	<0.5	<0.5	<2.5
02/29/96	115.05	105.39	9.66	<50	<0.5	<0.5	<0.5	<0.5	<2.5 <2.5
06/26/96	115.05	102.85	12.20	<50	<0.5	<0.5	<0.5	<0.5	<2.5 <2.5
09/12/96	115.05	101.55	13.50	<50	<0.5	<0.5	<0.5	<0.5	<2.5 <2.5
12/11/96	115.05	105.90	9.15	<50	<0.5	<0.5	<0.5	<0.5	<2.5 <2.5
03/31/97	115.05	102.30	12.75	<50	<0.5	<0.5	<0.5	<0.5	
06/29/97	115.05	102.01	13.04	<50	<0.5	<0.5	<0.5	<0.5	<2.5 <2.5
09/30/97	115.05	101.80	13.25	<50	<0.5	<0.5	<0.5	<0.5	<2.5 <2.5
12/12/97	115.05	106.06	8.99	<50	<0.5	<0.5	<0.5	<0.5	<2.5
02/19/98	115.05	105.64	9.41	<50	<0.5	<0.5	<0.5	<0.5	<2.5
06/16/98	115.02	103.48	11.54	<50	<0.5	<0.5	<0.5	<0.5	2.6
08/31/98	115.02	102.51	12.51	<50	<0.5	<0.5	<0.5	<0.5	<2.5
12/23/98	115.02	103.03	11.99	<50	<0.5	<0.5	<0.5	<0.5	<2.5
03/09/99	115.02	104.57	10.45	<50	<0.5	<0.5	<0.5	<0.5	<2.5 <2.5
09/30/99	115.02	102.07	12.95	SAMPLED ANNUA					
02/29/00	115.02	105.90	9.12	<50	<0.5	0.816	<0.5	<0.5	<5.0
09/18/00	115.02	104.14	10.88	••					~5.0
03/21/01	115.02	104.01	11.01	<50	< 0.50	< 0.50	< 0.50	<0.50	<2.5
09/04/01	115.02	103.60	11.42						/<2 ⁵
03/22/02 ⁶	115.02	104.68	10.34	100	< 0.50	24	0.80	4.9	15
09/16/02	115.02	102.35	12.67	SAMPLED ANNUA					
03/28/03	115.02	103.29	11.73	<50	<0.50	< 0.50	<0.50	<1.5	<2.5
09/02/03	115.02	102.74	12.28	SAMPLED ANNUA					
03/18/04 ⁷	115.02	103.11	11.91	<50	<0.5	<0.5	<0.5	<0.5	< 0.5
09/15/04	115.02	101.89	13.13	SAMPLED ANNUA					~0. <i>3</i>
03/11/05 ⁷	115.02	104.29	10.73	<50	<0.5	2	<0.5	<0.5	<0.5
09/29/05	115.02	101.97	13.05	SAMPLED ANNUA					
)3/24/06 ⁷	115.02	104.61	10.41	<50	<0.5	<0.5	<0.5	<0.5	<0.5
09/12/06	115.02	101.91	13.11	SAMPLED ANNUA				~0.5 	~0.3
03/05/07 ⁷	115.02	103.93	11.09	<50	<0.5	<0.5	<0.5	<0.5	<0.5
09/21/07	115.02	102.07	12.95	SAMPLED ANNUA				~0.5 	~0.5
03/06/08 ⁷	115.02	102.92	12.10	<50	<0.5	<0.5	<0.5	<0.5	<0.5
09/05/08	115.02	102.54	12.48	SAMPLED ANNUA				C.0-	~0.5

Table 1
Groundwater Monitoring Data and Analytical Results

Former Chevron Service Station #9-3864 5101 Telegraph Avenue

Oakland, California

WELL THE	ELL ID/ TOC GWE DTW TPH-GRO B T F X MTRE													
DATE	(fi.)	GWE (msl)	*()*()*()*()*()*()*()*()*()*()*()*()*()*		В	$\mathbf{T}_{\hat{oldsymbol{\cup}}}$	E	X	MTBE					
	U.J	(MSI)	(ft)	(µg/L)	(μg/L)	(μg/L)	(µg/L)	(μg/L)	(µg/L)					
MW-1 (cont)														
03/30/097	115.02	103.64	11.38	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5					
09/15/09	115.02	102.06	12.96	SAMPLED ANNU	ALLY									
$03/02/10^7$	115.02	103.27	11.75	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5					
09/09/10	115.02	102.24	12.78	SAMPLED ANNU	ALLY		79750 20 46 0	1000 122						
03/14/11 ⁷	115.02	103.37	11.65	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5					
09/13/11	115.02	99.52	15.50	SAMPLED ANNU	ALLY									
03/21/127	115.02	105.76	9.26	<50	< 0.5	3	< 0.5	< 0.5	< 0.5					
09/20/12	115.02	103.21	11.81	SAMPLED ANNU		-	-	-	-					
MW-2														
09/20/93	112.08	99.93	12.15	<50	<0.5	<0.5	<0.5	.1 F						
12/14/93	112.08	97.36	14.72	<50	<0.5	<0.5	<0.5 <0.5	<1.5						
03/16/94	112.08	100.92	11.16	<50	<0.5	1.1		<0.5	155					
06/17/94	112.08	100.41	11.67	330	1.4	3.3	<0.5	0.9	***					
08/29/94	112.08	100.08	12.00	<50	< 0.5	<0.5	1.9	11	380					
2/06/94	112.08	102.57	9.51	<50	<0.5	<0.5	<0.5	<0.5	-					
3/31/95	112.08	103.24	8.84	<50	<0.5	<0.5	<0.5	<0.5	-					
06/24/95	112.08	100.44	11.64	<50	<0.5	<0.5	<0.5	<0.5						
9/12/95	112.08	100.00	12.08	<50	<0.5	<0.5	<0.5	<0.5						
2/29/95	112.08	101.58	10.50	<50	<0.5	<0.5	<0.5	<0.5						
02/29/96	112.08	104.08	8.00	<50	<0.5	<0.5	<0.5	<0.5	<2.5					
06/26/96	112.08	100.58	11.50	<50	<0.5	<0.5	<0.5	<0.5	<2.5					
09/12/96	112.08	99.81	12.27	<50	<0.5	<0.5	<0.5	<0.5	<2.5					
2/11/96	112.08	104.17	7.91	<50	<0.5	<0.5	<0.5	<0.5	<2.5					
3/31/97	112.08	100.20	11.88	<50	<0.5		<0.5	<0.5	<2.5					
06/29/97	112.08	99.89	12.19	<50	<0.5	<0.5 <0.5	<0.5	<0.5	<2.5					
09/30/97	112.08	99.46	12.62	< 50	<0.5	<0.5	<0.5	<0.5	<2.5					
2/12/97	112.08	102.85	9.23	< 50	<0.5	<0.5	<0.5	<0.5	<2.5					
02/19/98	112.08	104.87	7.21	<50	<0.5		<0.5	<0.5	<2.5					
06/16/98	112.03	101.10	10.93	<50	<0.5	<0.5	<0.5	<0.5	<2.5					
08/31/98	112.03	99.69	12.34	<50 <50	<0.5	<0.5	<0.5	<0.5	<2.5					
12/23/98	112.03	100.59	11.44	<50 <50	<0.5	<0.5	<0.5	<0.5	<2.5					
03/09/99	112.03	103.23	8.80	<50	<0.5 <0.5	<0.5	<0.5	<0.5	<2.5					
09/30/99	112.03	101.22	10.81	SAMPLED ANNUA		<0.5	<0.5	<0.5	<2.5					
	112.00	101.22	10.01	SAIVIFLED ANNUA	ALL I									

Table 1
Groundwater Monitoring Data and Analytical Results

					California				
WELL ID/	TOC	GWE	DTW	TPH-GRO	В	T	E	X	MTBE
DATE	(fi.)	(msl)	(fi)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)
MW-2 (cont)								127 - 5.8	22.000/4/10/2004/404-00
02/29/00	112.03	105.12	6.91	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0
09/18/00	112.03	101.00	11.03						
03/21/01	112.03	101.61	10.42	<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5
09/04/01	112.03	101.04	10.99						/<2 ⁵
03/22/02	112.03	102.14	9.89	<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
09/16/02	112.03	100.02	12.01	SAMPLED ANNU					
03/28/03	112.03	101.23	10.80	<50	<0.50	< 0.50	< 0.50	<1.5	<2.5
09/02/03	112.03	100.15	11.88	SAMPLED ANNU					
03/18/047	112.03	101.04	10.99	<50	<0.5	< 0.5	< 0.5	<0.5	<0.5
09/15/04	112.03	99.15	12.88	SAMPLED ANNUA					~0.5
03/11/057	112.03	102.13	9.90	<50	<0.5	< 0.5	< 0.5	<0.5	<0.5
09/29/05	112.03	99.33	12.70	SAMPLED ANNUA					~0.3
03/24/067	112.03	103.04	8.99	<50	<0.5	< 0.5	<0.5	<0.5	<0.5
09/12/06	112.03	98.97	13.06	SAMPLED ANNUA					~0.5
03/05/077	112.03	101.57	10.46	<50	<0.5	< 0.5	<0.5	<0.5	
09/21/07	112.03	99.35	12.68	SAMPLED ANNUA			~0.3 		<0.5
03/06/087	112.03	100.98	11.05	<50	<0.5	<0.5	<0.5	<0.5	
09/05/08	112.03	99.22	12.81	SAMPLED ANNUA					<0.5
03/30/097	112.03	101.23	10.80	<50	<0.5	<0.5	<0.5	<0.5	-0.5
09/15/09	112.03	98.84	13.19	SAMPLED ANNUA					<0.5
03/02/107	112.03	101.34	10.69	<50	<0.5	<0.5	<0.5	<0.5	
09/09/10	112.03	99.00	13.03	SAMPLED ANNUA					<0.5
03/14/117	112.03	100.14	11.89	<50	<0.5	<0.5	<0.5	<0.5	-0.5
09/13/11	112.03	98.64	13.39	SAMPLED ANNUA				~0.3 	<0.5
03/21/127	112.03	104.28	7.75	<50	<0.5	<0.5	<0.5		
09/20/12	112.03	99.58	12.45	SAMPLED ANNU				<0.5	<0.5
			22.10	SAMI EED AMIC	ADDI	£	-	* - *	
MW-3									
09/20/93	113.67	97.25	16.42	6,600	400	11	32	23	
12/14/93	113.67	98.95	14.72	8,400	390	9.4	13	<2.5	
03/16/94	113.67	98.45	15.22	6,900	260	30	32	<2.3 27	<u></u>
06/17/94	113.67	97.62	16.05	10,000	190	61	58		#.E.C
08/29/94	113.67	97.44	16.23	7,200	74	9.8	26	190	220 0
12/06/94	113.67	99.35	14.32	13,000	610	9.8 86		24	200.4 ()
	110.07	77.33	17.32	13,000	010	80	88	140	

Table 1 Groundwater Monitoring Data and Analytical Results

99.98 98.02 97.68 99.67 100.91 98.44 97.73	13.69 15.65 15.99 14.00 12.76	TPH-GRO (μg/L) 4,300 6,200 7,200 7,100	Β (μg/L) 120 210 190	Τ (μg/L) <10 24	E (µg/L)	Χ (μg/L) <10	MTBE (µg/L)
99.98 98.02 97.68 99.67 100.91 98.44	13.69 15.65 15.99 14.00	4,300 6,200 7,200	120 210	<10	12		(µg/L)
98.02 97.68 99.67 100.91 98.44	15.65 15.99 14.00	6,200 7,200	210			<10	
98.02 97.68 99.67 100.91 98.44	15.65 15.99 14.00	6,200 7,200	210			<10	
97.68 99.67 100.91 98.44	15.99 14.00	7,200		24		2. N. M.	
99.67 100.91 98.44	14.00		190		29	12	1.55 N
100.91 98.44		7 100	170	<20	<20	<20	5 2
98.44	12.76	7,100	200	<10	45	24	<50
		1,200	30	<5.0	< 5.0	<5.0	<25
97 73	15.23	7,900	180	<20	35	28	240
77.73	15.94	11,000	150	<5.0	35	28	170
99.86	13.81	7,500	75	8.8	30	45	110
98.23	15.44	8,700	100	<10	20	23	50
97.99	15.68	9,300	120	28	22	19	150
97.76	15.91	8,200	78	<10	22	25	96
100.82	12.85	68	1.8	< 0.5	< 0.5	<0.5	<2.5
100.41	13.26	220	5.6	1.5	<0.5	<0.5	6.1
99.12	14.51	7,500	97	21	21	27	160
98.62	15.01	7,600	24	<2.5	9.5	16	38
100.03	13.60	5,800	69	<50	<50	<50	<250
99.59	14.04	5,300	<10	<10	16	20	88
		·		-			
3 48		9 22 3					
96.74	16.89	8,660	53.7	16.9	17	19.6	132
INACCESSIBLE							
100.41	13.22	2,400 ⁴	14	6.8	4.7		28
		(a) (b) (c)					160
		100500.000					
							<5.0
		7.0					21
							<13
							<0.5
							<0.5
							<0.5
							<0.5
			•		- I		<0.5
							<0.5 <0.5
	98.88 INACCESSIBLE - 0 99.46 97.34 98.67 98.20 98.91	98.88 14.75 INACCESSIBLE - CAR PARKED O' 99.46 14.17 97.34 16.29 98.67 14.96 98.20 15.43 98.91 14.72 INACCESSIBLE - CAR PARKED O' 99.72 13.91 98.06 15.57 100.10 13.53 98.16 15.47	98.88 14.75 7,600 ⁴ INACCESSIBLE - CAR PARKED OVER WELL 99.46 14.17 7,600 97.34 16.29 5,900 98.67 14.96 3,500 98.20 15.43 4,500 98.91 14.72 5,300 INACCESSIBLE - CAR PARKED OVER WELL 99.72 13.91 4,500 98.06 15.57 5,300 100.10 13.53 3,300 98.16 15.47 6,100	98.88 14.75 7,600 ⁴ 41 INACCESSIBLE - CAR PARKED OVER WELL 99.46 14.17 7,600 <10 97.34 16.29 5,900 <20 98.67 14.96 3,500 <20 98.20 15.43 4,500 3 98.91 14.72 5,300 3 INACCESSIBLE - CAR PARKED OVER WELL 99.72 13.91 4,500 2 98.06 15.57 5,300 3 100.10 13.53 3,300 1 98.16 15.47 6,100 2	98.88 14.75 7,600 ⁴ 41 30 INACCESSIBLE - CAR PARKED OVER WELL	98.88 14.75 7,600 ⁴ 41 30 <25 INACCESSIBLE - CAR PARKED OVER WELL	98.88 14.75 7,600 ⁴ 41 30 <25 50 INACCESSIBLE - CAR PARKED OVER WELL

Table 1 Groundwater Monitoring Data and Analytical Results

		Name of the Control o		G III	Camornia				
WELL ID/	TOC	GWE	DTW	TPH-GRO	В	7	E	X	MTBE
DATE	(fi.)	(msl)	(ft.)	(μg/L)	(μg/L)	(μg/L)	(µg/L)	(μg/L)	(µg/L)
MW-3 (cont)									
09/21/077	113.63	98.24	15.39	5,900	2	1	1	4	<0.5
03/06/087	113.63	99.02	14.61	3,900	2	0.8	2	3	<0.5
09/05/087	113.63	98.13	15.50	5,100	1	0.7	2	3	<0.5
03/30/097	113.63	99.13	14.50	4,800	2	0.7	1	3	<0.5
09/15/09	113.63	INACCESSIBLE			_		-		
03/02/107	113.63	99.41	14.22	<50	< 0.5	< 0.5	<0.5	<0.5	<0.5
09/09/107	113.63	98.32	15.31	4,000	1	0.5	0.7	3	<0.5
03/14/117	113.63	99.46	14.17	1,300	<0.5	<0.5	<0.5	0.6	<0.5
09/13/117	113.63	97.88	15.75	4,300	1	0.6	0.7	3	<0.5
03/21/127	113.63	100.13	13.50	<50	< 0.5	<0.5	<0.5	< 0.5	<0.5
09/20/12	113.63	INACCESSIBLE		9-7-1 9- 4-1	=	-		-	-0.5
									177
MW-5									
09/20/93	116.74	101.43	15.31	590	25	1.8	0.6	2.0	122
12/14/93	116.74	102.19	14.55	210	11	6.3	2.3	6.1	
03/16/94	116.74	101.77	14.97	270	12	16	4.8	17	
06/17/94	116.74	101.36	15.38	220	24	17	6.7	28	122
08/29/94	116.74	101.54	15.20	1,000	< 0.5	< 0.5	< 0.5	< 0.5	
12/06/94	116.74	102.09	14.65	110	9.2	9.7	2.2	11	-
03/31/95	116.74	103.04	13.70	<50	< 0.5	< 0.5	< 0.5	< 0.5	
06/24/95	116.74	101.95	14.79	<50	< 0.5	< 0.5	< 0.5	< 0.5	
09/12/95	116.74	102.15	14.59	< 50	< 0.5	<0.5	< 0.5	< 0.5	
12/29/95	116.74	101.76	14.98	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5
02/29/96	116.74	103.07	13.67	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5
06/26/96	116.74	102.50	14.24	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5
09/12/96	116.74	102.12	14.62	<50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5
12/11/96	116.74	102.93	13.81	<50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5
03/31/97	116.74	101.29	15.45	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5
06/29/97	116.74	102.07	14.67	<50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5
09/30/97	116.74	101.89	14.85	<50	< 0.5	< 0.5	< 0.5	<0.5	<2.5
12/12/97	116.74	102.99	13.75	<50	< 0.5	< 0.5	< 0.5	<0.5	<2.5
02/19/98	116.74	103.68	13.06	<50	< 0.5	< 0.5	< 0.5	<0.5	<2.5
06/16/98	116.70	102.35	14.35	<50	< 0.5	< 0.5	< 0.5	<0.5	<2.5
08/31/98	116.70	101.54	15.16	<50	< 0.5	< 0.5	< 0.5	<0.5	<2.5

Table 1
Groundwater Monitoring Data and Analytical Results

WELL ID/	TOC	GWE	DTW	TPH-GRO	Camorma B	constant Terrorial	E	X	
DATE	(fl.)	(msl)	(ft.)	(μg/L)	ω (μg/L)	1 (μg/L)	L (μg/L)	.*.*.*.*.*.*.*.*.*.*.*.*.	MTBE
	· · · · · · · · · · · · · · · · · · ·		<u> </u>	(P6/ H)	(pg/4)	(µg/L)	(μg/L)	(μg/L)	(µg/L)
MW-5 (cont)	444.70								
12/23/98	116.70	102.15	14.55	<50	<0.5	< 0.5	< 0.5	< 0.5	<2.5
03/09/99	116.70	102.63	14.07	<50	<0.5	< 0.5	< 0.5	< 0.5	<2.5
09/30/99	116.70	100.80	15.90	SAMPLED ANNU					
02/29/00	116.70	103.40	13.30	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
09/18/00	116.70	101.62	15.08						
03/21/01	116.70	102.04	14.66	<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5
09/04/01	116.70	101.26	15.44						/ <2 ⁵
03/22/02 ⁶	116.70	101.99	14.71	< 50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
09/16/02	116.70	101.02	15.68	SAMPLED ANNU.	ALLY				
03/28/03	116.70	101.65	15.05	< 50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
09/02/03	116.70	101.34	15.36	SAMPLED ANNU	ALLY				
03/18/047	116.70	102.14	14.56	<50	1	0.7	1	3	< 0.5
09/15/04	116.70	101.30	15.40	SAMPLED ANNUA	ALLY				
03/11/05 ⁷	116.70	102.50	14.20	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
09/29/05	116.70	101.23	15.47	SAMPLED ANNUA	ALLY				
03/24/06 ⁷	116.70	102.77	13.93	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
09/12/06	116.70	102.03	14.67	SAMPLED ANNUA	ALLY				
03/05/077	116.70	102.03	14.67	<50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5
09/21/07	116.70	101.10	15.60	SAMPLED ANNUA	ALLY				
03/06/08 ⁷	116.70	102.20	14.50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
09/05/08	116.70	101.24	15.46	SAMPLED ANNUA	ALLY				
03/30/09 ⁷	116.70	101.90	14.80	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
09/15/09	116.70	100.83	15.87	SAMPLED ANNUA	ALLY				
03/02/10 ⁷	116.70	102.40	14.30	<50	< 0.5	<0.5	< 0.5	<0.5	< 0.5
09/09/10	116.70	101.00	15.70	SAMPLED ANNUA					
03/14/11 ⁷	116.70	102.51	14.19	<50	< 0.5	<0.5	< 0.5	<0.5	< 0.5
09/13/11	116.70	103.81	12.89	SAMPLED ANNUA					
03/21/12 ⁷	116.70	102.33	14.37	<50	< 0.5	1	< 0.5	<0.5	<0.5
09/20/12	116.70	101.09	15.61	SAMPLED ANNU		-			
									_
C-1									
12/06/90	117.45	102.11	15.34	1,900	17	11	3.0	21	553
06/06/91	117.45	102.83	14.62	3,400	21	15	11	18	***
12/04/91	117.45	102.97	14.48	2,700	22	16	13	23	##:

Table 1
Groundwater Monitoring Data and Analytical Results

				Oakland,	California				
WELL ID/	TOC	GWE	DTW	TPH-GRO	В	\mathbf{T}	E	X	мтве
DATE	(fi.)	(msl)	(ft)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
C-1 (cont)									, , ,
06/02/92	117.45	102.92	14.53	1,900	170	170	13	83	
09/16/92	117.45	102.52	14.93	810	5.8	5.7	2.0	6.3	
12/21/92	117.45	103.72	13.73	75	2.4	2.9	1.4	4.7	
03/11/93	117.45	103.62	13.83	150	2.4	20	3.3	23	••
06/11/93	117.45	103.26	14.19	400	4.3	2.3	1.0	3.5	••
09/13/93	117.45	102.85	14.60	4,100	62	43	34	5.5 57	
12/14/93	117.45	103.67	13.78	3,100	9.5	4.5	1.2	37 11	
03/16/94	117.45	103.44	14.01	410	6.3	3.1	1.3	4.5	
06/17/94	117.45	102.90	14.55	3,700	100	42	30		
08/29/94	117.45	102.96	14.49	2,600	15 -	<0.5	6.7	91 9.7	
12/06/94	117.45	104.04	13.41	510	2.0	2.2			
03/31/95	117.45	105.33	12.12	5,440	9.0	2.2	1.7	9.4	
06/24/95	117.45	103.45	14.00	260	5.8		2.0	3.6	
09/12/95	117.45	103.42	14.03	650	14	1.0	0.94	0.88	
12/29/95	117.45	104.50	12.95	990	32	1.1	1.6	2.4	••
02/29/96	117.45	105.27	12.18	840	2.5	6.3	4.0	3.2	46
06/26/96	117.45	103.72	13.73	290		<1.0	2.6	7.3	<5.0
09/12/96	117.45	103.72	14.13	1,200	3.6 17	0.73	1.0	1.1	9.9
12/11/96	117.45	104.66	12.79	7,700		1.8	4.0	4.4	24
ABANDONED	117.43	104.00	12.79	7,700	<10	53	19	44	87
C-2									
12/06/90	116.16	100.82	15.34	210	140	9.0	2.0	11	
06/06/91	116.16	101.54	14.62	4,800	340	23	19	23	
12/04/91	116.16	100.73	15.43	3,900	85	15	9.1	15	
06/02/92	116.16	101.74	14.42	3,300	76	9.2	14	15	
09/16/92	116.16	101.35	14.81	3,000	16	15	3.4	7.5	
12/21/92	116.16	102.79	13.37	2,200	21	12	7.1	15	
03/11/93	116.16	102.69	13.47	2,200	33	24	12	25	
06/11/93	116.16	102.18	13.98	2,600	21	25	11	26	
09/13/93	116.16	101.61	14.55	2,100	31	25	18	39	
12/14/93	116.16	102.46	13.70	3,800	<2.5	24	12	20	
03/16/94	116.16	102.51	13.65	2,600	12	15	10	17	
06/17/94	116.16	102.87	13.29	2,400	17	19	28	71	
08/29/94	116.16	111.60	4.56	3,000	29	15	20	4.2	
				- ,		• •	20	7.4	

Table 1
Groundwater Monitoring Data and Analytical Results

Carianu, Camornia											
WELL ID/	TOC	GWE	DTW	TPH-GRO	В	T	E	X	MTBE		
DATE	(fi.)	(msl)	(ft)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(μg/L)	(µg/L)		
C-2 (cont)											
12/06/94	116.16	102.98	13.18	1,900	7.9	30	14	31			
03/31/95	116.16	104.10	12.06	890	<1.3	<1.3	2.6	<1.3			
06/24/95	116.16	102.19	13.97	730	4.8	<0.5	5.4	0.96			
09/12/95	116.16	102.28	13.88	1,600	<2.5	<2.5	5.4	<2.5			
12/29/95	116.16	103.31	12.85	1,000	9.1	2.7	8.7	2.7	19		
02/29/96	116.16	104.09	12.07	850	<2.5	<2.5	8.7	11	<12		
06/26/96	116.16	102.50	13.66	2,500	14	<5.0	13	6.3	<25		
09/12/96	116.16	102.25	13.91	1,800	26	19	17	31	37		
12/11/96	116.16	103.82	12.34	2,800	<5.0	34	14	<5.0	41		
ABANDONED				,			••	٥.0	71		
C-4											
12/06/90	116.10	98.42	17.68	< 50	< 0.5	< 0.5	< 0.5	< 0.5			
12/18/90	116.10			<50	< 0.5	< 0.5	<0.5	<0.5			
06/06/91	116.10	99.61	16.49	<50	1.0	1.0	<0.5	0.7			
12/04/91	116.10	99.28	16.82	70	6.5	9.8	1.7	8.6			
06/02/92	116.10	99.18	16.92	70	3.0	4.4	1.8	9.0			
09/16/92	116.10	98.39	17.71	<50	1.4	1.8	< 0.5	1.1			
12/21/92	116.10	100.74	15.36	<50	0.6	0.7	<0.5	1.5			
03/11/93	116.10	100.61	15.49	< 50	< 0.5	< 0.5	< 0.5	<1.5	••		
06/11/93	116.10	99.83	16.27	52	0.9	3.1	0.7	3.8			
09/13/93	116.10	98.92	17.18	64	0.9	1.0	< 0.5	1.7			
12/14/93	116.10	101.03	15.07	<50	< 0.5	0.8	< 0.5	0.7			
03/16/94	116.10	100.19	15.91	<50	< 0.5	1.0	< 0.5	0.8			
06/17/94	116.10	99.46	16.64	230	0.6	2.2	2.2	11			
08/29/94	116.10	99.05	17.05	<50	< 0.5	< 0.5	< 0.5	< 0.5			
12/06/94	116.10	101.52	14.58	<50	< 0.5	< 0.5	< 0.5	< 0.5			
03/31/95	116.10	102.26	13.84	<50	< 0.5	< 0.5	< 0.5	< 0.5			
06/24/95	116.10	100.05	16.05	<50	< 0.5	< 0.5	< 0.5	< 0.5			
09/12/95	116.10	99.87	16.23	<50	< 0.5	< 0.5	< 0.5	<0.5			
12/29/95	116.10	101.35	14.75	<50	< 0.5	< 0.5	< 0.5	<0.5	<2.5		
02/29/96	116.10	102.40	13.70	<50	< 0.5	< 0.5	< 0.5	<0.5	<2.5		
06/26/96	116.10	100.30	15.80	< 50	< 0.5	< 0.5	<0.5	<0.5	<2.5		

10

Table 1
Groundwater Monitoring Data and Analytical Results

WELL ID/ DATE	TOC	GWE	DTW	TPH-GRO	В	7	antinga Erasa	X	MTBE
DAIL	(fi.)	(msl)	(ft)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)
C-4 (cont)				7,0		······································	(1-82)	(1-6/2)	(#g/ 4)
09/12/96	116.10	99.67	16.43	<50	-0.5	.0. #			
12/11/96	116.10	103.18		<50	<0.5	<0.5	<0.5	<0.5	<2.5
ABANDONED	110.10	103.18	12.92	<50	<0.5	<0.5	<0.5	<0.5	<2.5
MW-4									
09/20/93	118.10	107.17	10.93	5,800	16	4.2	35	48	
12/14/93	118.10	108.33	9.77	7,100	19	6.5	24	35	
03/16/94	118.10	107.99	10.11	8,500	83	43	60	70	
06/17/94	118.10	107.20	10.90	21,000	150	20	140	350	
08/29/94	118.10	107.28	10.82	10,000	86	71	44	85	
12/06/94	118.10	108.70	9.40	13,000	68	56	67	110	
03/31/95	118.10	109.31	8.79	6,700	100	9.4	26	23	
06/24/95	118.10	107.60	10.50	6,300	<20	<20	<20	24	
09/12/95	118.10	107.90	10.20	7,100	65	16	<10	21	
12/29/95	118.10	108.86	9.24	3,300	<10	<10	12	14	720
02/29/96	118.10	111.85	6.25	5,100	<10	37	23	21	85
06/26/96	118.10	107.92	10.18	6,800	<20	<20	<20	<20	<100
09/12/96	118.10	107.53	10.57	13,000	150	<10	38	35	240
12/11/96	118.10	109.39	8.71	26,000	<20	<20	<20	170	<100
03/31/97	118.10	107.18	10.92	12,000	120	74	45	70	240
06/29/97	118.10	106.43	11.67	8,800	24	<10	35	36	62
09/30/97	118.10	107.20	10.90	10,000	<10	<10	37	35	72
12/12/97	118.10	105.16	12.94	4,600	95	41	20	25	91
02/19/98	118.10	110.33	7.77	5,400	87	16	32	31	110
06/16/98 ²	118.08	107.82	10.26	10,000	<20	<20	35	37	150
NOT MONITORED	D/SAMPLED			,				3,	150
TRIP BLANK									
12/06/90				<50	< 0.5	< 0.5	<0.5	<0.5	
12/18/90			272	<50	<0.5	<0.5	<0.5	<0.5	
06/06/91			440	<50	<0.5	<0.5	<0.5	<0.5	
12/04/91			55	<50	<0.5	<0.5	<0.5	<0.5	
06/02/92	177		**	<50	<0.5	<0.5	<0.5	<0.5	
09/16/92				<50	<0.5	<0.5	<0.5	<0.5	

Table 1 Groundwater Monitoring Data and Analytical Results

WELL ID/	TOC	GWE	DTW	TPH-GRO	В	T	E	X	MTBE
DATE	(fi.)	(msl)	(fl.)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(μg/L)	(μg/L)
FDID DI ANIZ (-				(CG: -/	(F8.)	1%. S	(µg/4)	<u></u> μ8/ <i>L</i> J	(µg/1.)
TRIP BLANK (c 12/21/92	2 52-m2/4 # 0.1			~~~	417547946	*			
03/11/93	-			<50	<0.5	<0.5	< 0.5	< 0.5	
06/11/93				<50	<0.5	<0.5	< 0.5	<1.5	855
				<50	< 0.5	<0.5	< 0.5	<1.5	() == ()
09/13/93		-		<50	< 0.5	< 0.5	< 0.5	<1.5	-
12/14/93	7.7	-	1.77	<50	< 0.5	< 0.5	<0.5	<0.5	
03/16/94	8.556			<50	< 0.5	< 0.5	< 0.5	< 0.5	, /
06/17/94	1			<50	<0.5	< 0.5	< 0.5	< 0.5	-
08/29/94			-	<50	< 0.5	< 0.5	< 0.5	< 0.5	
12/06/94			155	<50	< 0.5	< 0.5	< 0.5	< 0.5	
03/31/95		U na .()	:	< 50	< 0.5	< 0.5	< 0.5	< 0.5	
06/24/95		-	122	<50	< 0.5	< 0.5	< 0.5	< 0.5	
09/12/95		7 22 1		<50	< 0.5	< 0.5	< 0.5	< 0.5	
12/29/95				<50	< 0.5	< 0.5	< 0.5	< 0.5	1 <u>44</u>
02/29/96		-		<50	< 0.5	< 0.5	< 0.5	<0.5	<2.5
6/26/96				<50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5
09/12/96	2000	200		<50	< 0.5	< 0.5	< 0.5	< 0.5	170000 1 22
2/11/96			-	<50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5
3/31/97	(500)			< 50	< 0.5	< 0.5	<0.5	< 0.5	<2.5
06/29/97	2.00			<50	< 0.5	<0.5	<0.5	< 0.5	<2.5
9/30/97	X == 0	122	==	< 50	< 0.5	< 0.5	< 0.5	<0.5	<2.5
2/12/97		-	==	<50	< 0.5	< 0.5	<0.5	<0.5	<2.5
2/19/98				<50	< 0.5	<0.5	<0.5	<0.5	<2.5
6/16/98	***			< 50	<0.5	<0.5	<0.5	<0.5	<2.5
08/31/98	\$ ≅ \$0			<50	<0.5	<0.5	<0.5	<0.5	<2.5
2/23/98		==	***	<50	<0.5	<0.5	<0.5	<0.5	2.9
3/09/99	3 -	-		<50	<0.5	<0.5	<0.5	<0.5	<2.5
9/30/99				<50	<0.5	<0.5	<0.5	<0.5	<5.0
2/29/00	1			<50	<0.5	<0.5	<0.5	<0.5	<5.0
9/18/00		-		<50	< 0.50	<0.50	<0.50	<0.50	<2.5
3/21/01		75.50 75.50		<50	< 0.50	< 0.50	<0.50	<0.50	<2.5
9/04/01				<50	<0.50	<0.50	< 0.50	<1.5	<2.5
QA					0.50	50.50	~0.50	~1.5	<2.3
3/22/02				<50	< 0.50	< 0.50	< 0.50	<1.5	-2 5
9/16/02				<50	<0.50	<0.50	<0.50		<2.5
03/28/03	1			<50	<0.50	<0.50		<1.5	<2.5
				~30	~0.30	<0.50	< 0.50	<1.5	<2.5

Table 1 Groundwater Monitoring Data and Analytical Results

Former Chevron Service Station #9-3864 5101 Telegraph Avenue Oakland, California

WELL ID/	TOC	GWE	DTW	TPH-GRO	В	4	£	X	MTBE
DATE	(fi.)	(msl)	(ft.)	(μg/L)	(µg/L)	(µg/L)	(μg/L)	(μg/L)	(µg/L)
(cont)									-
9/02/037			-	<50	< 0.5	<0.5	< 0.5	<0.5	<0.5
3/18/04 ⁷	 -			<50	< 0.5	<0.5	<0.5	<0.5	<0.5
9/15/04 ⁷		2 34 0	842	<50	<0.5	<0.5	<0.5	<0.5	<0.5
3/11/05 ⁷	122		(55	<50	< 0.5	< 0.5	<0.5	<0.5	<0.5
9/29/057		-	155	<50	< 0.5	< 0.5	< 0.5	<0.5	<0.5
3/24/06 ⁷	(155)			<50	< 0.5	<0.5	< 0.5	<0.5	<0.5
9/12/06 ⁷		••		<50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5
3/05/07 ⁷	·		100	<50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5
9/21/07 ⁷	(**			<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
3/06/08 ⁷				<50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5
9/05/087				<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
3/30/09 ⁷	7 44 2		-	<50	< 0.5	< 0.5	< 0.5	<0.5	< 0.5
ISCONTINUED)								

13

Table 1

Groundwater Monitoring Data and Analytical Results

Former Chevron Service Station #9-3864 5101 Telegraph Avenue Oakland, California

EXPLANATIONS:

Groundwater monitoring data and laboratory analytical results prior to February 9, 2000, were compiled from reports prepared by Blaine Tech Services, Inc.

TOC = Top of Casing

GRO = Gasoline Range Organics

 $(\mu g/L)$ = Micrograms per liter

(ft.) = Feet

B = Benzene

-- = Not Measured/Not Analyzed

GWE = Groundwater Elevation

T = Toluene

(D) = Duplicate

(msl) = Mean sea level

E = Ethylbenzene

QA = Quality Assurance/Trip Blank

DTW = Depth to Water

X = Xylenes

TPH = Total Petroleum Hydrocarbons

MTBE = Methyl Tertiary Butyl Ether

ORC installed.

Transfer of title to Tri-Star Partnership, Inc. effective July 14, 1998.

ORC in well.

Laboratory report indicates gasoline C6-C12.

⁵ MTBE by EPA Method 8260.

Split samples taken by Harding ESE.

⁷ BTEX and MTBE by EPA Method 8260.

⁸ ORC removed from well.

Table 2 Dissolved Oxygen Concentrations

Former Chevron Service Station #9-3864 5101 Telegraph Avenue Oakland, California

WELL ID	DATE	PRE-PURGE (mg/L)	POST-PURGE (mg/L)
C-3 ¹	09/18/00	3.64	
	03/21/01	1.00	2001 1 -1
	09/04/01	1.40	
	03/22/02	1.10	-
	09/16/02	1.20	
	$03/28/03^2$	9 22	
	09/02/03	0.80	
	03/18/04 ³	0.56	-
MW-3 ¹	09/18/00	4.01	
	03/21/01	1.30	-
	09/04/01	INACCESSIBLE - CAR PARKED OV	ER WELL
	03/22/02	1.30	
	09/16/02	1.00	==
	$03/28/03^2$		
	09/02/03	0.90	24
	$03/18/04^3$	1.21	

EXPLANATIONS:

(mg/L) = Milligrams per liter

^{-- =} Not Measured

ORC in well.

² Meter inoperable; unable to take Dissolved Oxygen measurements

³ ORC removed from well.

Table 3 Groundwater Analytical Results - Oxygenate Compounds

WELL ID	DATE	TBA	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB
		(μg/L)	(µg/L)	(μg/L)	(μg/L)	(µg/L)	(µg/L)	(μg/L)
MW-2	09/04/01	<100	<2	<2	<2	<2	<2	<2
	03/18/04		< 0.5		·			
	09/15/04	SAMPLED ANNUAL	LY		: ***	1 - 1	V <u>22</u>	Score Communication Communicat
	03/11/05		< 0.5		5 <u>22</u> 6			
	03/24/06	-	< 0.5			4== 1		
	03/05/07	1 <u>22</u>	< 0.5					<u></u>
	03/06/08	CO.C.	< 0.5			••		122
	03/30/09		< 0.5	₩	:: <u></u> :			1800
	03/02/10	1	< 0.5					
	03/14/11		< 0.5				200	
	03/21/12	-	<0.5		200	-	-	===
MW-3	09/02/03		< 0.5				22	221
	03/18/04		< 0.5					
	09/15/04	INACCESSIBLE - CA	R PARKED OVER	R WELL		44		
	03/11/05		< 0.5					1000
	09/29/05	-	< 0.5			enere Pierre		1001
	03/24/06		< 0.5				20	122
	09/12/06		< 0.5			200 Mil.		-
	03/05/07		< 0.5			9009 		
	09/21/07	201	< 0.5					7 1
	03/06/08	55	< 0.5					7625
	09/05/08		<0.5		1 <u>22</u>		==:	4.579
	03/30/09		<0.5			555 		2 27 0
	09/15/09	INACCESSIBLE						
	03/02/10	••	< 0.5				400	-2)
	09/09/10	••	<0.5			<u></u>	202 2	4 7.
	03/14/11	22	<0.5			577) 	1. 74. 5	A. Marie C
	09/13/11		<0.5	0/40/00 0 /40 /			122	0 == 0.
	03/21/12		<0.5	(1		273	7221	
	09/20/12	INACCESSIBLE		-	1222		(57)	(333 0)

Table 3 Groundwater Analytical Results - Oxygenate Compounds

WELL ID	DATE	TBA	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB
		(µg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(μg/L)	(μg/L)
C-3	09/04/01	<100	<2	<2	<2	<2	<2	<2
	09/02/03		<0.5					
	03/18/04	-	< 0.5					
	09/15/04	177	10			122	-	:==
	03/11/05		< 0.5	44	(222)			
	09/29/05		< 0.5					
	03/24/06	INACCESSIBLE - CAR F	ARKED OVE	R WELL				<u> </u>
	09/12/06		<1) (24)	-	-	
	03/05/07		< 0.5				5000 	
	09/21/07	<u> </u>	< 0.5					9-20
	03/06/08		< 0.5	1 88				22
	09/05/08		< 0.5	- (- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1				10000
	03/30/09		< 0.5	-				
	09/15/09		< 0.5					22
	03/02/10		< 0.5	(me)				220
	09/09/10		< 0.5	9 45 2				37%
	03/14/11		< 0.5					
	09/13/11	22	< 0.5					253
	03/21/12	-	< 0.5	(() (())	D##CT			
	09/20/12	_	1	-	_	- C-18	-	0==
MW-1	09/04/01	<100	<2	2			2	
	03/18/04		<0.5	<2	<2	<2	<2	<2
	09/15/04	SAMPLED ANNUALLY	\0. 5	Y== 1		-	7.	10.00
	03/11/05		<0.5					-
	03/24/06		<0.5	(** *				
	03/05/07		<0.5	New 1			Topic I	-
	03/06/08	==- ==-	<0.5	19 -1 0 200-77		-		0 00 2
	03/30/09		<0.5		, 	5.5 3	()	
	03/02/10	 	<0.5	3F5		**	-	
	03/14/11	550 	<0.5	S pe		MG 444	-	-
	03/21/12		<0.5	1 == 932		8.	9 75)	(11- .0
	03/21/12		~U. 3	-		3.50	(H+)	0

Table 3 Groundwater Analytical Results - Oxygenate Compounds Former Chevron Service Station #9-3864

WELL ID	DATE	TBA	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB
		(μg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(μg/L)	(μg/L)
MW-2	09/04/01	<100	<2	<2	<2	<2	<2	<2
	03/18/04		< 0.5	==				
	09/15/04	SAMPLED ANNUAL			1			<u></u>
	03/11/05	(55	< 0.5		22 44 7		(<u>==</u>	
	03/24/06	(ma	< 0.5	22			1001 1001	
	03/05/07		< 0.5	20		XXXX	998	
	03/06/08		< 0.5				22	<u></u> -
	03/30/09		< 0.5			122	22	50 :
	03/02/10		<0.5	42	420			7.7.4
	03/14/11	72.7% L	< 0.5					
	03/21/12		< 0.5	**				200
								150
MW-3	09/02/03		<0.5					
	03/18/04		< 0.5				22	
	09/15/04	INACCESSIBLE - CA	R PARKED OVE	R WELL	(**):		42	333
	03/11/05		< 0.5					7.55.65 7.55.65
	09/29/05		< 0.5				-	Name 2
	03/24/06		< 0.5				220	9449
	09/12/06		< 0.5	**	-			
	03/05/07		< 0.5				100	2.573
	09/21/07		< 0.5				2000 	120
	03/06/08		< 0.5				<u>==</u>)	22-02
	09/05/08		< 0.5				22	-
	03/30/09	**	< 0.5					1970
	09/15/09	INACCESSIBLE						
	03/02/10	**	< 0.5			20.000	200	PAGES
	09/09/10		<0.5			<u> </u>	<u></u>	
	03/14/11		<0.5		(22)	-	 -	0 55 4
	09/13/11		<0.5			-	1.77.E	D ala ni
	03/21/12	-	<0.5	**	20.00 		VIII.	V2000
	09/20/12	INACCESSIBLE		_	22	_	07 0	-

Table 3 Groundwater Analytical Results - Oxygenate Compounds Former Chevron Service Station #9-3864

5101 Telegraph Avenue Oakland, California

WELL ID	DATE	TBA (µg/L)	MTBE (µg/L)	DIPE (μg/L)	ETBE (µg/L)	TAME (µg/L)	1,2-DCA (μg/L)	EDB (µg/L)
MW-5	09/04/01	<100	<2	<2	<2	<2	<2	<2
	03/18/04		<0.5					~2
	09/15/04	SAMPLED ANNUA		57		-		
	03/30/09		<0.5					
	03/11/05	6 55	< 0.5	==				
	03/24/06		< 0.5			9.000	-	-
	03/05/07	122	< 0.5					
	03/06/08		< 0.5		2 34€ 2	-	<u> </u>	
	03/02/10		< 0.5		4 <u>==</u> 4			
	03/14/11	**	< 0.5		-	3	-	
	03/21/12	22	< 0.5					

Table 3

Groundwater Analytical Results - Oxygenate Compounds

Former Chevron Service Station #9-3864 5101 Telegraph Avenue Oakland, California

EXPLANATIONS:

TBA = t-Butyl alcohol

MTBE = Methyl Tertiary Butyl Ether

DIPE = di-Isopropyl ether

ETBE = Ethyl t-butyl ether

TAME = t-Amyl methyl ether

1,2-DCA = 1,2-Dichloroethane

EDB = 1,2-Dibromoethane

 $(\mu g/L)$ = Micrograms per liter

-- = Not Analyzed

ANALYTICAL METHOD:

EPA Method 8260 for Oxygenate Compounds

STANDARD OPERATING PROCEDURE - GROUNDWATER SAMPLING

Gettler-Ryan Inc. (GR) field personnel adhere to the following procedures for the collection and handling of groundwater samples prior to analysis by the analytical laboratory. All work is performed in accordance with the GR Health & Safety Plan and all client-specific programs. The scope of work and type of analysis to be performed is determined prior to commencing field work.

Prior to sampling, the presence or absence of free-phase hydrocarbons is determined using an interface probe. Product thickness, if present, is measured to the nearest 0.01 foot and is noted in the field notes. In addition, all depth to water level measurements are collected with a static water level indicator and are also recorded in the field notes, prior to purging and sampling any wells.

After water levels are collected and prior to sampling, if purging is to occur, each well is purged a minimum of three well casing volumes of water using pre-cleaned pumps (stack, peristaltic or Grundfos), or disposable bailers. Temperature, pH and electrical conductivity are measured a minimum of three times during the purging (additional parameters such as dissolved oxygen, oxidation reduction potential, turbidity may also be measured, depending on specific scope of work.). Purging continues until these parameters stabilize.

Groundwater samples are collected using disposable bailers. The water samples are transferred from the bailer into appropriate containers. Pre-preserved containers, supplied by analytical laboratories, are used. When pre-preserved containers are not available, the laboratory is instructed to preserve the sample as appropriate. Duplicate samples are collected for the laboratory to use in maintaining quality assurance/quality control standards, as directed by the scope of work. The samples are labeled to include the job number, sample identification, collection date and time, analysis, preservation (if any), and the sample collector's initials. The water samples are placed in a cooler, maintained at 4°C for transport to the laboratory. Once collected in the field, all samples are maintained under chain of custody until delivered to the laboratory.

The chain of custody document includes the job number, type of preservation, if any, analysis requested, sample identification, date and time collected, and the sample collector's name. The chain of custody is signed and dated (including time of transfer) by each person who receives or surrenders the samples, beginning with the field personnel and ending with the laboratory personnel.

A laboratory supplied trip blank accompanies each sampling set. The trip blank is analyzed for some or all of the same compounds as the groundwater samples.

As requested by Chevron Environmental Management Company, the purge water and decontamination water generated during sampling activities is transported by Clean Harbors Environmental Services to Evergreen Oil located in Newark, California.

Client/Facility#:	Chevron #9	-3864		Job Number:		
Site Address:	5101 Telegi	aph Ave	nue	Event Date:	9.20.12	(inclusive)
City:	Oakland, C	A	Ŋ	Sampler:	FT	(
Well ID Well Diameter Total Depth Depth to Water Depth to Water Purge Equipment: Disposable Bailer Stainless Steel Bailer Stack Pump Suction Pump Grundfos Peristaltic Pump QED Bladder Pump Other:	29.10 f 14.83 f 14.21 w/ 80% Recharg	xVF \ \ e [(Height of \ \	Check if water colu	or (VF) 4"= 0.6 mn is less then 0.56 x3 case volume = 0 + DTWJ: \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	06 5"= 1.02 6"= 1.50 Oft. Estimated Purge Volume: 7.	(2400 hrs) (2400 hrs) (2400 hrs) ft ft ft scription: cock (circle one) mmer: gal
Start Time (purge) Sample Time/Dat Approx. Flow Rate Did well de-water Time (2400 hr.) 0951 0957	e: 1030 / e:	gpm.	Weather Color Water Color Sediment D Conductivity (µmhos/cm µS)	CLEAL escription:	SUPPY Odor: (A) N S NO NE gal. DTW @ Sampling: D.O. OR (mg/L) (mV	P
SAMPLE ID C-3 COMMENTS:	(#) CONTAINER (x voa vial	REFRIG. YES	ABORATORY IN PRESERV. TYPE HCL EM CO	LABORATORY	ANALYSE: TPH-GRO(8015)/BTEX+MTBE	
Add/Replaced Lo	ck:	Add/F	Replaced Plug:		Add/Replaced Bolt:	

Client/Facility#:	Chevron #9-3864	Job Number:	386358	
Site Address:	5101 Telegraph Avenue	Event Date:	9.20.12	(inclusive)
City:	Oakland, CA	Sampler:	FT	(inclusive)
Well ID	Mw-1	Data Manitana di		
Well Diameter	2 in.	Date Monitored:	9-20.12	
Total Depth	21.60 ft.	Volume 3/4"= 0.00 Factor (VF) 4"= 0.66		= 0.38
Depth to Water			- 11 0 11-0	5.80
Departo Water		vater column is less then 0.50		
Depth to Water w	v/ 80% Recharge [(Height of Water Colu	x3 case volume = imri x 0.20) + DTWJ;	Estimated Purge Volume:	gal.
Purge Equipment:		Equipment:	Time Started: Time Completed:	(2400 hrs)
Disposable Bailer	Disposable	•	Depth to Product:	ft
Stainless Steel Bailer			Depth to Water:	ft
Stack Pump	Discrete Ba		Hydrocarbon Thickness:	ft
Suction Pump	Peristaltic P	/	Visual Confirmation/Descrip	otion:
Grundfos	QED Bladde		Skimmer / Absorbant Sock	(circle one)
Peristaltic Pump	Other:		Amt Removed from Skimme	er: gal
QED Bladder Pump			Amt Removed from Well: Water Removed:	gal
Other:			Product Transferred to:	
Start Time (purge)	: We	eather Conditions:		9
Sample Time/Date	e: / Wa	iter color:	Odor: Y / N	
Approx. Flow Rate		diment Description:	<u></u>	
Did well de-water?	If yes, Time:		al. DTW @ Sampling:	
Time				
(2400 hr.)		uctivity Temperature cm - μS) (C / F)	D.O. ORP	
, ,	(20111100)	ωπ μο) (Ο / Γ)	(mg/L) (mV)	
				
				
				_
				
SAMPLE ID	(#) CONTAINER REFRIG. PRESE	TORY INFORMATION		
SAMPLE ID		RV. TYPE LABORATORY ICL LANCASTER 1	ANALYSES	
	/ X100 VICE 120	LANCASTER I	TPH-GRO(8015)/BTEX+MTBE(82	60)
				
COMMENTS:		<u> </u>	·	
COMMENIO:		710		- <u> </u>
	EN	(25F)		
Add/Poplaced 1 -	ok:	DI .		
Add/Replaced Loc	ck: Add/Replaced	PIUO: A	Add/Replaced Bolt:	

Cilent/Facility#:	Chevron #9	-3004		Job	Number:	386358			
Site Address:	5101 Telegr	aph Ave	nue	Eve	nt Date:	9.	20.12		(inclusive)
City:	Oakland, C	A		Sam	pler:		1		. (
Well ID	MW-2	_	_	Date M	onitored:	9.	20-12		
Well Diameter		<u>n.</u>		/olume	3/4"= 0.02	1"= 0.04	2"= 0.17	3"= 0.38	,
Total Depth		<u>t.</u>	F	actor (VF)	4"= 0.66	5"= 1.02	6"= 1.50	12"= 5.80	(10)
Depth to Water	12.45 f	<u>t.</u>	Check if water co	olumn is les	s then 0.50	ft.			J
	11-94	xVF	=	x3 cas	se volume = [Estimated Pur	ge Volume:	-	nal
Depth to Water	w/ 80% Recharg	e [(Height of	Water Column x 0	.20) + DTW]:					_ gai.
				•		Time St	arted:		(2400 hrs)
Purge Equipment:		•	Sampling Equipm	ent:		Time C	ompleted:		(2400 hrs)
Disposable Bailer		[Disposable Bailer			Depth to	o Product: o Water:		ft ´
Stainless Steel Baile		F	Pressure Bailer			Hydroca	rbon Thickne	88.	ft ft
Stack Pump			Discrete Bailer			Visual C	confirmation/D	escription:	u
Suction Pump			Peristaltic Pump			l			
Grundfos			QED Bladder Pump		.53	Amt Re	r / Absorbant	Sock (circle	e one) gai
Peristaltic Pump QED Bladder Pump		C	Other:			Amt Rei	noved from V	/eli:	gal
Other:						₩ Water R	emoved:		
Other						Product	Transferred to):	
Sample Time/Da Approx. Flow Rat Did well de-water Time (2400 hr.)	te:	gpm.	Water Co Sediment	Temp	on:	Odor: Y / al. DTW @ D.O. (mg/L)) Sampling	DRP nV)	
			LABORATORY	INFORM	ATION			-	
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TY	PE LABO	RATORY		ANALYS		
	x voa vial	YES	HCL	LANG	CASTER T	PH-GRO(801	5)/BTEX+MTI	BE(8260)	
									
									
						<u> </u>			
	<i>E</i> 1								
					-				
					13				
			. 4						
COMMENTS:			Mo EMCO 8	4					
			EMCO 8	" (25					
Add/Replaced Lo	ock:	Add/F	Replaced Plug:		A	.dd/Replace	ed Bolt:		

Client/Facility#:	Chevron #9	-3864		Job	Number:	386358		
Site Address:	5101 Telegr	aph Aven	ue	Eve	nt Date:	9.	20.12	(inclusive)
City:	Oakland, CA	<u> </u>		Sam	pler:			
Well ID Well Diameter	MW-3	٦.	Г.		onitored:	μ		
Total Depth	26.79 ft	_		Volume Factor (VF)	3/4"= 0.02 4"= 0.66		2"= 0.17 6"= 1.50	3"= 0.38 12"= 5.80
Depth to Water	PIA tt		_ heck if water o	<u> </u>			0 - 1.50	12 - 5.60
	NA		=				e Volumo:	1
Depth to Water	w/ 80% Recharge	= [(Height of W	/ater Column x 0	.20) + DTW]:		Time Sta		
Purge Equipment:		Sa	mpling Equipm	ent·				(2400 hrs) (2400 hrs)
Disposable Bailer			sposable Bailer			Depth to	Product:	ft
Stainless Steel Baile	r		essure Bailer			Depth to	Water:	ft
Stack Pump			screte Bailer			Hydrocai	bon Thickness onfirmation/De	s:ft
Suction Pump			ristaltic Pump	-		Visual Ci	niimation/De	scription;
Grundfos			D Bladder Pumi	, —		Skimmer	/ Absorbant S	lock (circle one)
Peristaltic Pump			her:			Amt∕Rem	oved from Ski	immer: gal
QED Bladder Pump						Amt Rem Water Re	oved from We	ell:gal
Other:						Product 1	ransferred to:	
						L		
Start Time (purge):		Weather	Conditions	/			
Sample Time/Dat			Water Co			Oden V /	<u> </u>	
Approx. Flow Rat						Odor: Y /	·	
Did well de-water				t Description				
Did Well de-Water	·	yes, rime:	—у	oiume:	ga	al. DTW @	Sampling:	
Time (2400 hr.)	Volume (gal.)	pH	Conductivity (µmhos/cm - µS	•	erature / F)	D.O. (mg/L)	OF (m	
2.			ABORATOR	/ INFORM	ATION			
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TY		RATORY		ANALYSE	2
	x voa vial	YES	HCL	-		PH-GRO(8015)/BTEX+MTBI	
							,	-(0200)
								
								
								
COMMENTS:		IMAC	CESSIBL	E CA	- PANI	CED 0.	ver w	ELL
Add/Replaced Lo	ock:	Add/Re	eplaced Plug	ELTE	A	dd/Replace	d Bolt	

Client/Facility#:					umber: 386358				
Site Address:	ress: 5101 Telegraph Avenue				Date:	 (inclusive)			
City:	Oakland, CA			Samp	ler:	F	0.12	(
Well ID Well Diameter Total Depth Depth to Water Depth to Water v Purge Equipment: Disposable Bailer	21.69 f 15.61 f	_xVF	Check if water co	x3 case 20) + DTW]:	3/4"= 0.02 4"= 0.66 then 0.50 volume = [2 1"= 0.04 5"= 1.02 ft. Estimated Purge Time Start Time Com Depth to P	20-n 2"= 0.17 3"= 6"= 1.50 12"= 5 Volume: ed:	0.38 5.80 gal. (2400 hrs) (2400 hrs)	
Stainless Steel Bailer Stack Pump Suction Pump Grundfos Peristaltic Pump QED Bladder Pump Other:		 	Pressure Bailer Pressure Bailer Discrete Bailer Peristaltic Pump QED Bladder Pump Other:			Depth to V Hydrocarb Visual Con Skimmer / Amt Remo Water Rem	Vater:	ftft on: ircle one) :galgal	
Start Time (purge) Sample Time/Date Approx. Flow Rate Did well de-water Time (2400 hr.)	e:	gpm.	Water Co Sediment	Description olume:	: gature	Odor: Y / N al. DTW @ S D.O. (mg/L)			
SAMPLEID	(#) CONTAINER x voa vial	REFRIG. YES	PRESERV. TYP		ATORY	PH-GRO(8015)/	ANALYSES BTEX+MTBE(826)	0)	
COMMENTS:			M/o Encos	BH OK					
Add/Replaced Lo	ck:	Add/	Replaced Plug:		A	.dd/Replaced	Bolt:		

Chevron California Region Analysis Request/Chain of Custody

Laboratories			Acct.	#:_[091	04		Sam	For I	Land	aster 79	Labo 180	rator 08	ies u	1 90 Q(nty Group #:	010	352	
992\$12	-ø2					20		Aı	naly	808	Requ	este	d			C#133	1000		ñ
Facility #: SS#9-3864-OML G-R#386358 Global ID#T	0600100343	M	atrix					P	rese	rva	ion C	ode	-		_	All Colors of the second of	- 10-		_
5101 TELEGRAPH AVENUE, OAKLAND, C	A	1			田	H		\Box								H = HCl	rative Co	cies Osulfate	
ΔE OF	RAKJ Kierna	. .					due									N = HNO ₃	B = Na	OH	
Carlo DC BILL SIATES Court Stille To	INC. CO. COLOR		တ	8	_		충						İ		П	S = H ₂ SO ₄	O = Ot		_
Consultant/Office:		o Nation		aine	밁	ı	Silica Gel Cleanup									☐ J value repo	-		
Consultant Prj. Mgr.:			U rotation	Containers	8		8			ᅦ	1					Must meet le possible for	owest dete 8260 com	iction limi pounds	ts
Consultant Prj. Mgr.: Consultant Phone #: Sampler: Peanna L. Harding (deanna@grinc.) Fax #: Pax #	51-7899	-		ō	8260 🔀 8021	2	8			Method	Method	ļ				8021 MTBE Co	onfirmation	1	
Sampler: FRANK TERRITON		1		pe r		8			ages	3	Σ D			1		☐ Confirm high	est hit by	8260	
	Time G S S S S S S S S S S S S S S S S S S		¥	Total Number	BTEX + MTBE	TPH 8015 MOD GRO	PH 8015 MOD DRO	8260 full scan	Oxygenates	g	Dissolved Lead					☐ Confirm all h	its by 826	0	
Sample Identification Date Collected	Time & E	- S	Water Oil □	otal	<u>\$</u>	8	8	象	입	Total Lead	SOLVe					Runo			
2	Collected で 3	δ V		7		틧	티	8	4	뤼	8	+	<u> </u>		\square	☐ Run o>			
	030	┞╌┞	V	0	4	$\overset{\sim}{+}$	\dashv	\dashv	+	-	+	+	-	-	\square	Comments /	Remarks	3	1
					$\vdash \vdash$	-	+	┰┼	+	\dashv		-		_	Н				1
				_	\vdash	-	┰	+	+	+	+	╁╌			Н				i
					\vdash	\dashv	+	\dashv	+	\dashv	+-	+-			Н				
					\vdash	+	+	+	+	+	+-	+			\vdash				1
						\neg			十	\top	+				Н				1
															Н				1
					_	\perp	\perp	1	\bot										
		-				_	\bot	\perp	_	_			Ш						
		\vdash	+	\dashv	-	-	+	-	+	- -	-								1
		-		\dashv	\dashv	+	+	+	+	+		\vdash			\dashv				1
Turnaround Time Requested (TAT) (please circle)	Relinquished by:	لــــا مہ				_	Da	te	Tim	20	Bece	ived t					T	T	4
TD. TAT 72 hour 48 hour	Frank	I-	en	-	<u>~</u>	٩		'n	125		a	ived t	te	lge	~	- 2%	Date SEP12	Time	1
24 hour 4 day 5 day	Relinquished by	1-				~	Da	te	Tim		Rece		<i>-</i> J·				Date	Time	
Data Basinara Catlana ()	Relinquished by:	you				عع	S <i>EF</i>	200	162 Tim		Door		OH	<u>}_</u>			ļ		1
Data Package Options (please circle if required) QC Summary Type I - Full EDF/EDD					/		Da		ाया	16	Hece	d bevi	y:				Date	Time	
Type VI (Raw Data) Coelt Deliverable not needed	Relinquished by 0	comme	rcial Car	rier:							Rece	ived b	 y:	-		/	Pate	Time	3
WIP (RWQCB)	UPS Fe	dEx	C	ther_						[2	2	_ <		9h	1/12	92	My
Disk	Temperature Upo	n Rece	ipt		<u>3"</u>					c°	Custo	ody Se	ads i	ntact	?	(Yes) No	1415	1515	9/4/

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2881 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425 Prepared for:

Chevron L4310 6001 Bollinger Canyon Rd. San Ramon CA 94583

October 16, 2012

Project: 93864

State of Sample Origin: CA

Submittal Date: 09/21/2012 Group Number: 1337351 PO Number: 0015110328 Release Number: WAITE OCT 1 2 2012

GETTLER-RYAN INC.
GENERAL CONTRACTORS

Client Sample Description
C-3-W-120920 Grab Water

Lancaster Labs (LLI) # 6797868

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

ELECTRONIC

CRA c/o Gettler-Ryan

Attn: Rachelle Munoz

COPY TO ELECTRONIC

Chevron c/o CRA

Attn: Report Contact

COPY TO ELECTRONIC

Chevron

Attn: Anna Avina

COPY TO

CHOTTOH

Attn: James Kiernan

ELECTRONIC

Conestoga-Rovers & Associates

COPY TO

Respectfully Submitted,

Jill M. Parker Senior Specialist

(717) 556-7262

Lancaster Laboratories

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: C-3-W-120920 Grab Water

Facility# 93864 Job# 386358 GRD

5101 Telegraph Ave-Oakland T0600100343 C-3

LLI Sample # WW 6797868

LLI Group # 1337351 Account # 10904

Project Name: 93864

Collected: 09/20/2012 10:30

by FT

Chevron

L4310

Submitted: 09/21/2012 15:15 Reported: 10/16/2012 13:07

6001 Bollinger Canyon Rd.

San Ramon CA 94583

TA003

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l	ug/l	
10943	Benzene	71-43-2	N.D.	0.5	1
10943	Ethylbenzene	100-41-4	N.D.	0.5	1
10943	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	1
10943	Toluene	108-88-3	N.D.	0.5	1
10943	Xylene (Total)	1330-20-7	1	0.5	1
GC Vol	atiles SW-846	8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water C6-C12	n.a.	4,500	50	1

General Sample Comments

State of California Lab Certification No. 2501

Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10943	BTEX/MTBE 8260 Water	SW-846 8260B	1	P122702AA	09/26/2012 21:00	Emily R Styer	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	P122702AA	09/26/2012 21:00		1
01728	TPH-GRO N. CA water C6- C12	SW-846 8015B	1	12267B20A	09/24/2012 16:22	Marie D John	1
01146	GC VOA Water Prep	SW-846 5030B	1	12267B20A	09/24/2012 16:22	Marie D John	1

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 *717-656-2300 Fax: 717-656-2681 * www.lancasterlabs.com

Page 1 of 2

Quality Control Summary

Client Name: Chevron

Reported: 10/16/12 at 01:07 PM

Group Number: 1337351

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank <u>MDL</u>	Report <u>Units</u>	LCS %REC	LCSD %REC	LCS/LCSD <u>Limits</u>	RPD	RPD Max
Batch number: P122702AA	Sample num	ber(s): 67	97868					
Benzene	N.D.	0.5	ug/l	106	104	77-121	2	30
Ethylbenzene	N.D.	0.5	ug/l	98	98	79-120	1	30
Methyl Tertiary Butyl Ether	N.D.	0.5	ug/l	103	102	68-121	1	30
Toluene	N.D.	0.5	ug/l	107	106	79-120	1	30
Xylene (Total)	N.D.	0.5	ug/l	101	99	77-120	2	30
Batch number: 12267B20A	Sample num	ber(s): 679	7868					
TPH-GRO N. CA water C6-C12	N.D.	50.	ug/l	101	96	75-135	6	30

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: UST VOCs by 8260B - Water

Batch number: P122702AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromoffuorobenzene	
6797868	94	97	102	110	
Blank	94	101	102	91	
LCS	94	100	102	94	
LCSD	93	99	101	95	
Limits:	80-116	77-113	80-113	78-113	

Analysis Name: TPH-GRO N. CA water C6-C12

Batch number: 12267B20A

Trifluorotoluene-F

6797868	129
Blank	73
LCS	94
LCSD	79

Limits: 63-135

*- Outside of specification

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Quality Control Summary

Client Name: Chevron

Reported: 10/16/12 at 01:07 PM

Group Number: 1337351

*- Outside of specification

(2) The unspiked result was more than four times the spike added.

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

Lancaster Laboratories

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

RL	Reporting Limit	BMQL	Below Minimum Quantitation Level
N.D.	none detected	MPN	Most Probable Number
TNTC	Too Numerous To Count	CP Units	cobalt-chloroplatinate units
IU	International Units	NTU	nephelometric turbidity units
umhos/cm	micromhos/cm	ng	nanogram(s)
С	degrees Celsius	ř	degrees Fahrenheit
meq	milliequivalents	lb.	pound(s)
g	gram(s)	kg	kilogram(s)
μg	microgram(s)	mg	milligram(s)
mL	milliliter(s)	Ľ	liter(s)
m3	cubic meter(s)	μL	microliter(s)
		pg/L	picogram/liter

- less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than

ppm parts per million - One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.

ppb parts per billion

Dry weight basis

Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture. All other results are reported on an as-received basis.

Data Qualifiers:

C – result confirmed by reanalysis.

J - estimated value - The result is ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation (LOQ).

U.S. EPA CLP Data Qualifiers:

Organic Qualifiers Inorganic Qualifiers TIC is a possible aldol-condensation product В Value is <CRDL, but ≥IDL В Analyte was also detected in the blank Ε Estimated due to interference Pesticide result confirmed by GC/MS M Duplicate injection precision not met Compound quantitated on a diluted sample N Spike sample not within control limits Concentration exceeds the calibration range of E S Method of standard additions (MSA) used the instrument for calculation Presumptive evidence of a compound (TICs only) U Compound was not detected Concentration difference between primary and W Post digestion spike out of control limits confirmation columns >25% Duplicate analysis not within control limits Compound was not detected Correlation coefficient for MSA < 0.995 X.Y.Z Defined in case narrative

Analytical test results meet all requirements of NELAC unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

Times are local to the area of activity. Parameters listed in the 40 CFR part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions, and Lancaster hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

3768 08

TEST ONLY SMOG STATION (FORMER AUTOPRO) 5200 Telegraph Ave. Oakland, CA

Joint Monitoring Event of September 25, 2012

DATA PROVIDED

By

Professional Service Industries Inc.

TABLE 1

SUMMARY OF GROUNDWATER ELEVATIONS

Test Only SMOG Station (Former Autopro) 5200 Telegraph Avenue, Oakland, California

Well Number	TOC Elevation (ft msl)	Date	Depth to Groundwater (ft)	Groundwater Elevation (ft msl)		
MW-1	123.49	12/22/08	11.67	111.82		
	[3/4/09	8.50	114.99		
		5/1/09	12.58	110.91		
		7/20/09	13.30	110.19		
		3/2/10	10.17	113.32		
		9/23/10	13.56	101.88		
		3/2/11	10.55	112.94		
		7/21/11	12.66	102.78		
		3/21/12	10.03	105.41		
		9/25/12	13.72	109.77		
MW-2	122.69	12/22/08	10.96	111.73		
		3/4/09	7.83	114.86		
		5/1/09	11.91	110.78		
		7/20/09	12.64	110.05		
	ļ	3/2/10	9.49	113.20		
		9/23/10	13.02	101.60		
	Ι Γ	3/2/11	9.98	112.71		
		7/21/11	12.11	102.51		
		3/21/12	9.47	105.15		
		9/25/12	13.07	109.62		
MW-3	121.87	12/22/08	10.30	111.57		
	[3/4/09	7.22	114.65		
		5/1/09	11.30	110.57		
		7/20/09	11.93	109.94		
		3/2/10	8.94	112.93		
		9/23/10	12.15	101.62		
		3/2/11	9.23	112.64		
		7/21/11	11.34	102.43		
		3/21/12	8.65	105.12		
		9/25/12	12.32	109.55		
MW-4	122.30	12/22/08	10.36	111.94		
		3/4/09	7.47	114.83		
		5/1/09	10.97	111.33		
		7/20/09	11.56	110.74		
		3/2/10	8.89	113.41		
		9/23/10	11.64	102.61		
		3/2/11	8.92	113.38		
		7/21/11	10.86	103.39		
		3/21/12	8.51	105.74		
		9/25/12	12.32	109.98		

Notes:

ft msl = feet with respect to mean sea level

TABLE 2

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS Test Only SMOG Station (Former Autopro) 5200 Telegraph Avenue, Oakland, California

Sample Number	Date	TPH-G	TPH-D	трн-мо	Benzene	n-Butyl- benzene	sec-Butyl- benzene	tert-Butyl- benzene	Isopropyl- benzene	Ethyl- benzene	p- Isopropyl- toluene	Naph- thalene	n-Propyl- benzene	Toluene	1,2,4- Trimethyl- benzane	1,3,5- Trimethyl- benzene	Total Xylenes
MW-1	12/22/08	390	150	<100	<0.5	5.5	3.9	<1.0	3.2	<0.5	<1.0	2.0	7.3	<0.5	<1.0	<1.0	<1.5
	3/4/09	360	64	<100	<0.5	1.8	1,8	<1.0	1.3	0.63	<1.0	1,3	2.8	<0.5	<1.0	<1.0	1.1
	5/1/09	120	130	<100	<0.5	1.5	2.0	<1.0	1.3	<0.5	<1.0	<1.0	2.8	<0.5	<1.0	<1.0	<1.5
	7/20/09	<50	110	330	<0.5	<1.0	<1.0	<1.0	<1.0	<0.5	<1.0	<1.0	1.3	<0.5	<1.0	<1.0	<1.5
	3/2/10	<50	<50	<100	<0.5	1.1	1.7	<1.0	1.1	<0.5	<1.0	<1.0	2.1	<0.5	<1.0	<1.0	<1.5
	9/23/10	<50	<50	<100	<0.5	<1.0	1.2	<1.0	<1.0	<0.5	<1.0	<1.0	<1.0	<0.5	<1.0	<1.0	<1.5
	3/2/11	57	110	<100	<0.5	<1.0	3.2	<1.0	2.5	<0.5	<1.0	<1,0	4.5	<0.5	<1,0	<1.0	<1.5
	7/21/11	<50	430	<100	<0.5	2,1	1.8	<1.0	1.7	<0.5	<1.0	<1.0	3.9	<0.5	<1.0	<1.0	<1.5
	3/21/12	700	100	<100	<0.5	2.2	1.9	<1.0	2.1	<0.5	<1.0	<1.0	4.3	<0.5	<1.0	<1.0	<1.5
	9/25/12	<50	<50	<100	<0.5	<1.0	<1.0	<1.0	<1.0	<0.5	<1.0	<1.0	<1.0	<0.5	<1.0	<1.0	<1.5
MW-2	12/22/08	<50	<50	<100	<0.5	<1.0	<1.0	<1.0	<1.0	<0.5	<1.0	<1.0	<1.0	<0.5	<1.0	<1.0	<1.5
	3/4/09	<50	<50	<100	<0.5	<1.0	<1.0	<1.0	<1.0	0.76	<1.0	1.4	<1.0	<0.5	1.1	<1.0	1.7
	5/1/09	<50	<50	<100	<0.5	<1.0	<1.0	<1.0	<1.0	<0.5	<1.0	<1.0	<1.0	<0.5	<1.0	<1.0	<1.5
	7/20/09	<50	59	<100	<0.5	<1.0	<1.0	<1.0	<1.0	<0.5	<1.0	<1.0	<1.0	<0.5	<1.0	<1.0	<1.5
	3/2/10	<50	<50	<100	<0.5	<1.0	<1.0	<1.0	<1.0	<0.5	<1.0	<1.0	<1.0	<0.5	<1.0	<1.0	<1.5
	9/23/10	<50	<50	<100	<0.5	<1.0	<1.0	<1.0	<1.0	<0.5	<1.0	<1.0	<1.0	<0.5	<1.0	<1,0	<1.5
	3/2/11	<50	<50	<100	<0.5	<1.0	<1.0	<1.0	<1.0	<0.5	<1.0	<1.0	<1.0	<0.5	<1.0	<1.0	<1.5
	7 /21/11	<50	<50	<100	<0.5	<1.0	<1.0	<1.0	<1.0	<0.5	<1.0	<1.0	<1.0	<0.5	<1.0	<1.0	<1.5
	3/21/12	<50	<50	<100	<0.5	<1.0	<1.0	<1.0	<1.0	<0.5	<1.0	<1.0	<1.0	<0.5	<1.0	<1.0	<1.5
	9/25/12	<50	<50	<100	<0.5	<1.0	<1.0	<1.0	<1.0	<0.5	<1.0	<1.0	<1.0	<0.5	<1.0	<1.0	<1.5
MVV-3	12/22/08	3,600	1,400	<100	<0.5	<1.0	<1.0	<1.0	39	<0.5	14	<1.0	60	<0.5	<1.0	23	9.8
	3/4/09	3,400	1,000	<100	2.2	17	7,4	<1.0	34	3,9	8.3	2.5	67	3.1	<1.0	1.8	8.68
	5/1/09	2,700	1,700	<100	<0.5	20	7.2	<1.0	21	2.2	7.5	<1.0	44	1.2	<1.0	<1.0	3.9
	7/20/09	2,100	1,400	<100	<0.5	19	9.8	<1.0	25	1.5	5.6	1.0	57	1.1	<1.0	<1.0	4.5
	3/2/10	4,500	1,000	<100	0.8	<1.0	8.8	<1.0	26	2,1	6,6	<1.0	58	2.0	<1.0	<1.0	4.1
	9/23/10	230	880	270	<0.5	13	8.4	<1.0	20	0.88	3.5	<1.0	40	0.63	<1.0	<1.0	3.2
	3/2/11	6,900	1,900	<100	<0.5	<1.0	13	<1.0	38	2.5	8.4	<1.0	81	1,1	<1.0	<1.0	7.2
-	7/21/11	1,600	1,700	1,100	<0.5	9.9	6.2	<1.0	15	0.64	3.0	1.1	29	<0.5	<1.0	<1.0	2.2
	3/21/12	2,500	800	<100	<0.5	18	8.3	<1.0	33	1.6	5,2	<1.0	75	1.0	<1.0	<1.0	4.1
	9/25/12	1,800	1,500	<100	0.67	22	8.2	<1.0	20	0.74	5.2	<1.0	47	0.93	<1.0	<1.0	2.4
MW-4	12/22/08	1,200	700	<100	<0.5	18	9.3	<1.0	10	<0.5	9.0	<1.0	21	<0.5	<1.0	<1.0	<1.5
	3/4/09	1,300	410	<100	<0.5	8.4	6.2	1.0	11	1.1	3.6	1.7	22	<0.5	<1.0	<1.0	1.2
	5/1/09	590	400	<100	2.6	6.4	4.8	<1.0	5.8	9.4	2.1	21	13	<0.5	<1.0	<1.0	<1.5
	7/20/09	440	260	<100	<0.5	4.4	3.5	<1.0	3.8	<0.5	1.6	<1.0	7.9	<0.5	<1.0	<1.0	<1.5
	3/2/10	860	370	<100	<0.5	<1.0	4.0	<1.0	4.3	0.57	2.0	<1.0	7.6	<0.5	<1.0	1.9	<1.5
[9/23/10	<50	82	<100	<0.5	1.6	2,0	<1.0	1.7	<0.5	<1.0	<1.0	2.2	<0.5	<1.0	<1.0	<1,5
	3/2/11	<50	8,400	18,000	<0.5	<1.0	2.8	<1.0	2.6	<0.5	1.3	<1.0	4.2	<0.5	<1.0	<1.0	<1.5
Į	7 /21/11	810	1,100	1,200	<0.5	1.1	1.5	<1.0	1.1	<0.5	<1.0	<1.0	1.6	<0.5	<1.0	<1.0	<1.5
	3/21/12	810	120	<100	<0.5	2.1	1.9	<1.0	1.8	<0.5	1.1	<1.0	3.3	<0.5	<1.0	<1.0	<1.5
	9/25/12	<50	520	<100	<0.5	2.0	1.4	<1.0	<1.0	<0.5	<1.0	<1.0	1.4	<0.5	<1.0	<1.0	<1.5

Notes:
TPH-G = Total Petroleum Hydrocarbons as Gasoline
TPH-MO = Total Petroleum Hydrocarbons as Motor Oil
All VOCs not listed were below their laboratory reporting limit.

TPH-D = Total Petroleum Hydrocarbons as Diesel
The units for all presented values are µg/L = Micrograms per liter
< = The "less than" symbol indicates not detected above the laboratory reporting limit shown.

ATTACHMENT C LOW-THREAT CHECKLIST

Site Name: Chevron #9-3864

Site Address: 5101 Telegraph Avenue, Oakland

Site meets the criteria of the Low-Threat Underground Storage Tank (UST) Case Closure Policy as described below.¹

General Criteria General criteria that must be satisfied by all candidate sites:	
Is the unauthorized release located within the service area of a public water system?	⊠Yes □ No
Does the unauthorized release consist only of petroleum?	⊠ Yes □ No
Has the unauthorized ("primary") release from the UST system been stopped?	⊠ Yes □ No
Has free product been removed to the maximum extent practicable?	☐ Yes ☐ No ☒ NA
Has a conceptual site model that assesses the nature, extent, and mobility of the release been developed?	⊠ Yes □ No
Has secondary source been removed to the extent practicable?	⊠ Yes □ No
Has soil or groundwater been tested for MTBE and results reported in accordance with Health and Safety Code Section 25296.15?	⊠ Yes □ No
Does nuisance as defined by Water Code section 13050 exist at the site?	□ Yes ⊠ No
Are there unique site attributes or site-specific conditions that demonstrably increase the risk associated with residual petroleum constituents?	□ Yes ⊠ No
Media-Specific Criteria Candidate sites must satisfy all three of these media-specific criteria:	
1. Groundwater: To satisfy the media-specific criteria for groundwater, the contaminant plume that exceeds water quality objectives must be stable or decreasing in areal extent, and meet all of the additional characteristics of one of the five classes of sites:	
Is the contaminant plume that exceeds water quality objectives stable or decreasing in areal extent?	⊠ Yes □ No □ NA
Does the contaminant plume that exceeds water quality objectives meet all of the additional characteristics of one of the five classes of sites?	⊠ Yes □ No □ NA
If YES, check applicable class: ⊠ 1 □ 2 □ 3 □ 4 □ 5	

¹ Refer to the Low-Threat Underground Storage Tank Case Closure Policy for closure criteria for low-threat petroleum UST sites.

Site Name: Chevron #9-3864

Site Address: 5101 Telegraph Avenue, Oakland

	co	r sites with releases that have not affected groundwater, do mobile nstituents (leachate, vapors, or light non-aqueous phase liquids) ntain sufficient mobile constituents to cause groundwater to exceed groundwater criteria?	□ Yes	□ No	⊠ NA
Th co	e sit nditi	troleum Vapor Intrusion to Indoor Air: te is considered low-threat for vapor intrusion to indoor air if site-specific ons satisfy all of the characteristics of one of the three classes of sites ugh c) or if the exception for active commercial fueling facilities applies.			
to ex	cept cept	site an active commercial petroleum fueling facility? tion: Satisfaction of the media-specific criteria for petroleum vapor intrusion for air is not required at active commercial petroleum fueling facilities, in cases where release characteristics can be reasonably believed to an unacceptable health risk.	□ Yes	⊠ No	
	a.	Do site-specific conditions at the release site satisfy all of the applicable characteristics and criteria of scenarios 1 through 3 or all of the applicable characteristics and criteria of scenario 4?	⊠Yes	□ No [□ NA
		If YES, check applicable scenarios: □ 1 □ 2 図 3 □ 4			
	b.	Has a site-specific risk assessment for the vapor intrusion pathway been conducted and demonstrates that human health is protected to the satisfaction of the regulatory agency?	⊠ Yes	□ No	□ NA
	C.	As a result of controlling exposure through the use of mitigation measures or through the use of institutional or engineering controls, has the regulatory agency determined that petroleum vapors migrating from soil or groundwater will have no significant risk of adversely affecting human health?	□ Yes	□ No	⊠ NA
3.	Th	rect Contact and Outdoor Air Exposure: e site is considered low-threat for direct contact and outdoor air exposure if e-specific conditions satisfy one of the three classes of sites (a through c).			
	a.	Are maximum concentrations of petroleum constituents in soil less than or equal to those listed in Table 1 for the specified depth below ground surface (bgs)?	⊠ Yes	□ No	□ NA
	b.	Are maximum concentrations of petroleum constituents in soil less than levels that a site specific risk assessment demonstrates will have no significant risk of adversely affecting human health?	⊠ Yes	□ No	□ NA
	C.	As a result of controlling exposure through the use of mitigation measures or through the use of institutional or engineering controls, has the regulatory agency determined that the concentrations of petroleum constituents in soil will have no significant risk of adversely affecting human health?	□ Yes	□ No	⊠ NA