

#### RECEIVED

9:46 am, May 05, 2010

Alameda County Environmental Health

<u>May 3, 2010</u> (date)

Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Re: Chevron Facility #\_9-3864\_\_\_\_\_

Address: 5101 Telegraph Avenue, Oakland, California

I have reviewed the attached report titled *First Semi-Annual 2010 Groundwater Monitoring Report* and dated May 3, 2010.

I agree with the conclusions and recommendations presented in the referenced report. The information in this report is accurate to the best of my knowledge and all local Agency/Regional Board guidelines have been followed. This report was prepared by Conestoga-Rovers & Associates, upon whose assistance and advice I have relied.

This letter is submitted pursuant to the requirements of California Water Code Section 13267(b)(1) and the regulating implementation entitled Appendix A pertaining thereto.

I declare under penalty of perjury that the foregoing is true and correct.

Sincerely,

SHFrencho

Stacie H. Frerichs Project Manager

Enclosure: Report

**Stacie H. Frerichs** Team Lead Marketing Business Unit

Chevron Environmental Management Company 6001 Bollinger Canyon Road San Ramon, CA 94583 Tel (925) 842-9655 Fax (925) 842-8370



10969 Trade Center Drive, Suite 106, Rancho Cordova, CA 95670 Telephone: 916-889-8900 Facsimile: 916-889-8999 www.CRAworld.com

May 3, 2010

Reference No. 611951

Mr. Mark Detterman P.G., C.E.G. Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Re: First Semi-Annual 2010 Groundwater Monitoring Report Former Chevron Service Station No. 9-3864 5101 Telegraph Avenue Oakland, California LOP Case RO0000351

Dear Mr. Detterman:

Conestoga-Rovers & Associates (CRA) is submitting the attached *Groundwater Monitoring and Sampling Report* (report) to Alameda County Environmental Health (ACEH) on behalf of Chevron Environmental Management Company (Chevron) for the site referenced above. The report (prepared by Gettler-Ryan Inc. and dated March 25, 2010) presents the results of the monitoring and sampling of wells C-3, MW-1, MW-2, MW-3, and MW-5 during first quarter 2010. Wells C-3 and MW-3 are sampled on a semi-annual basis during the first and third quarters, and wells MW-1, MW-2 and MW-5 are sampled annually during the first quarter. Also attached are Figure 1 (Vicinity Map) showing the site location, and Figure 2 (Concentration Map) presenting the first semi-annual 2010 analytical results along with a rose diagram.

Please note that CRA previously prepared and submitted the June 26, 2009 *Site Status and Revised Work Plan* that proposed additional investigation to evaluate shallow soil vapor quality at the site and if impacted groundwater continues to migrate beneath the site from an upgradient offsite source (Figure 2). We are awaiting approval from ACEH to implement the proposed scope of work.

Equal Employment Opportunity Employer



May 3, 2010

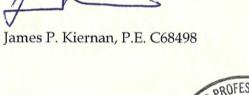
Reference No. 611951

Please contact Mr. James Kiernan at (916) 889-8917 if you have any questions or require additional information.

2

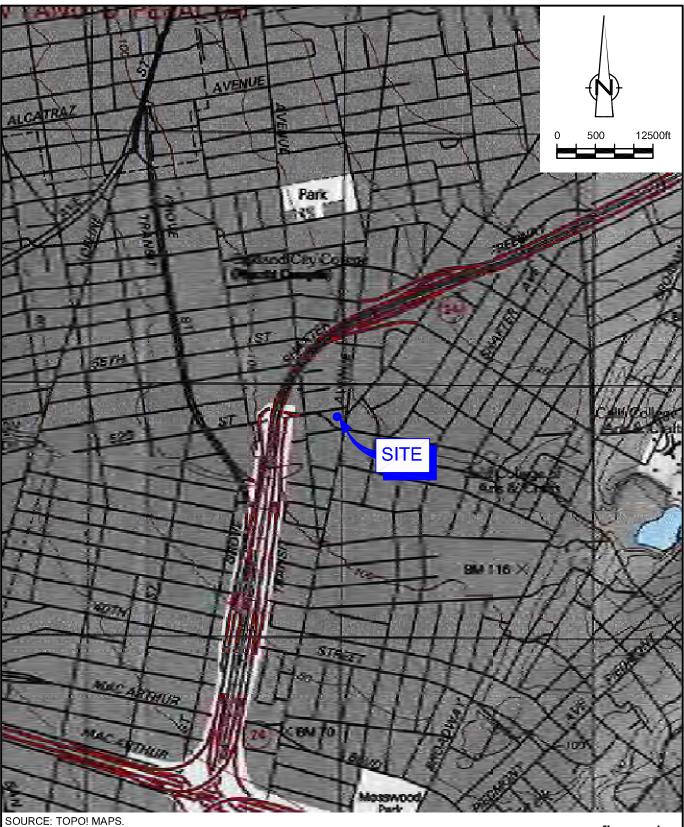
Sincerely,

CONESTOGA-ROVERS & ASSOCIATES


Christopher J. Benedict

CB/jt/5 Encl.

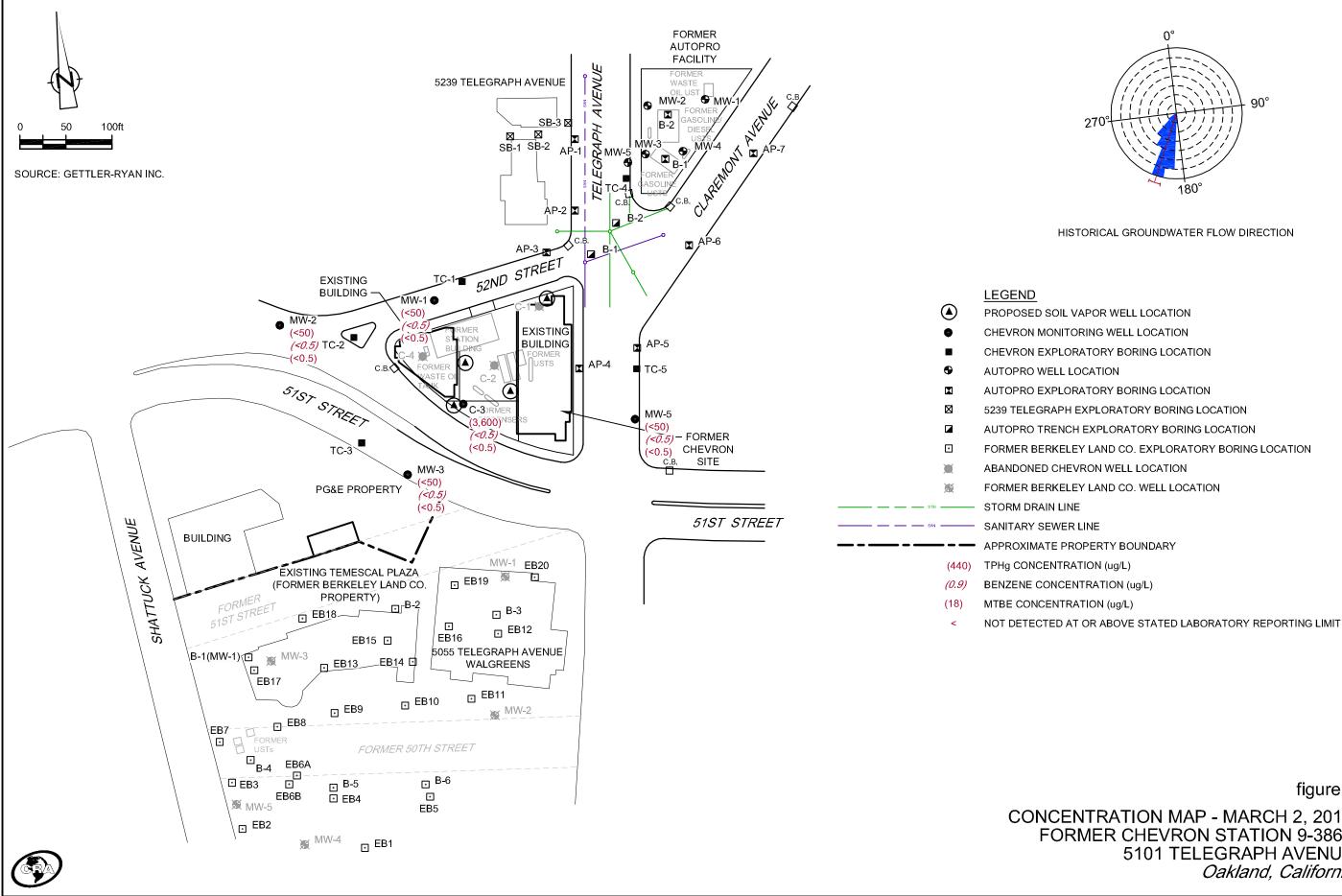
Figure 1Vicinity MapFigure 2Concentration Map - March 2, 2010


Attachment A Groundwater Monitoring and Sampling Report

cc: Ms. Stacie Frerichs, Chevron






FIGURES



### figure 1



VICINITY MAP FORMER CHEVRON SERVICE STATION 9-3864 5101 TELEGRAPH AVENUE *Oakland, California* 



611951-118(005)GN-WA002 APR 27/2010

**CONCENTRATION MAP - MARCH 2, 2010** FORMER CHEVRON STATION 9-3864 **5101 TELEGRAPH AVENUE** Oakland, California

figure 2

### ATTACHMENT A

### GROUNDWATER MONITORING AND SAMPLING REPORT



TRANSMITTAL

March 31, 2010 G-R #386358

- TO: Mr. James Kiernan Conestoga-Rovers & Associates 10969 Trade Center Drive, Suite 107 Rancho Cordova, CA 95670
- FROM: Deanna L. Harding Project Coordinator Gettler-Ryan Inc. 6747 Sierra Court, Suite J Dublin, California 94568

RE: Former Chevron Service Station #9-3864 (MTI) 5101 Telegraph Avenue Oakland, California RO 0000351

WE HAVE ENCLOSED THE FOLLOWING:

| COPIES | DATED          | DESCRIPTION                                                                            |
|--------|----------------|----------------------------------------------------------------------------------------|
| 2      | March 25, 2010 | Groundwater Monitoring and Sampling Report<br>First Semi-Annual Event of March 2, 2010 |

#### COMMENTS:

Pursuant to your request, we are providing you with copies of the above referenced report for <u>your</u> <u>use and distribution to the following:</u>

Ms. Stacie H. Frerichs, Chevron Environmental Management Company, P.O. Box 6012, Room K2200, San Ramon, CA 94583

Please provide any comments/changes and propose any groundwater monitoring modifications for the next event prior to *April 14, 2010*, at which time this final report will be distributed to the following:

 cc: Mr. Chuck Headlee, RWQCB-San Francisco Bay Region, 1515 Clay St., Suite 1400, Oakland, CA 94612 (No Hard Copy)
 Mr. John Gwynn, Gwynn-Schields & Associates, 300 Lakeside Dr., Ste. 1980, Oakland, CA 94612

Mr. Mark Detterman, Alameda County Health Care Services, Dept. of Environmental Health, 1131 Harbor Bay Parkway, Suite 250, Alameda, CA 94502-6577 (No Hard Copy-UPLOAD TO ALAMEDA CO.)

Enclosures trans/9-3864-SHF



Stacie H. Frerichs Team Lead Marketing Business Unit Chevron Environmental Management Company 6001 Bollinger Canyon Road San Ramon, CA 94583 Tel (925) 842-9655 Fax (925) 842-8370

----

March 31, 2010 (date)

Alameda County Health Care Services 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Re: Chevron Facility #9-3864

Address: 5101 Telegraph Ave., Oakland, California

I have reviewed the attached routine groundwater monitoring report dated March 31, 2010

I agree with the conclusions and recommendations presented in the referenced report. The information in this report is accurate to the best of my knowledge and all local Agency/Regional Board guidelines have been followed. This report was prepared by Gettler-Ryan, Inc., upon whose assistance and advice I have relied.

This letter is submitted pursuant to the requirements of California Water Code Section 13267(b)(1) and the regulating implementation entitled Appendix A pertaining thereto.

I declare under penalty of perjury that the foregoing is true and correct.

Sincerely,

rencho

Stacie H. Frerichs Project Manager

Enclosure: Report

### WELL CONDITION STATUS SHEET

| Client/Facility #: | Chevron                  | #9-3864                         |                                      |                                                     |                                                       |                                                 | Job #                                               | 386358       |                         |                                            |                            |
|--------------------|--------------------------|---------------------------------|--------------------------------------|-----------------------------------------------------|-------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------|--------------|-------------------------|--------------------------------------------|----------------------------|
| Site Address:      | 5101 Tel                 | egraph A                        | venue                                |                                                     |                                                       | •                                               | Event Date:                                         | 3-7          |                         | ······································     |                            |
| City:              | Oakland                  | , CA                            |                                      |                                                     |                                                       |                                                 | Sampler:                                            |              |                         |                                            |                            |
| WELL ID            | Vault Frame<br>Condition | Gasket/<br>O-Ring<br>(M)missing | BOLTS<br>(M) Missing<br>(R) Replaced | Bolt Flanges<br>B= Broken<br>S= Stripped<br>R=Retap | APRON<br>Condition<br>C=Cracked<br>B=Broken<br>G=Gone | Grout Seal<br>(Deficient)<br>inches from<br>TOC | Casing<br>(Condition<br>prevents tight<br>cap seal) |              | REPLACE<br>CAP<br>Y / N | WELL VAULT<br>Manufacture/Size/ # of Bolts | Pictures Taken<br>Yes / No |
| C-3                | 0.10                     | OK                              | O·K                                  | (1) of (2)<br>5                                     | O.IC                                                  | O·K                                             | OK                                                  | N            | N                       | 12'EMC0/2                                  | NO                         |
| mw-1               |                          |                                 | Ĩ.                                   | (1) of(2)                                           |                                                       | 1                                               | 1                                                   |              | (                       | 12'EMCO/2<br>8' CMCO/2                     |                            |
| MW-2               |                          |                                 |                                      | (1) = (2)<br>5                                      |                                                       |                                                 |                                                     |              |                         | "                                          |                            |
| ww.z               |                          |                                 |                                      | AII (3)<br>S                                        |                                                       |                                                 |                                                     |              |                         | 8" Bood/11, 13                             |                            |
| mw-5               | $\mathbf{V}$             | V                               | $\checkmark$                         | O.K                                                 | $\overline{\mathbf{v}}$                               | $\overline{\mathbf{v}}$                         | $\checkmark$                                        | $\mathbf{V}$ |                         | 8"Boart/L./3<br>8"Emco/2                   |                            |
|                    |                          |                                 |                                      |                                                     |                                                       |                                                 |                                                     |              |                         |                                            | Y                          |
|                    |                          |                                 |                                      |                                                     |                                                       |                                                 |                                                     |              |                         |                                            |                            |
|                    |                          | 14                              |                                      |                                                     |                                                       |                                                 |                                                     |              |                         |                                            |                            |
| ус.                |                          |                                 |                                      | ·                                                   |                                                       |                                                 |                                                     |              |                         |                                            |                            |
|                    |                          |                                 |                                      |                                                     |                                                       |                                                 |                                                     |              |                         |                                            |                            |
|                    |                          |                                 |                                      |                                                     |                                                       |                                                 |                                                     |              |                         |                                            |                            |
|                    |                          |                                 |                                      |                                                     |                                                       |                                                 |                                                     | -+           |                         |                                            |                            |
|                    |                          |                                 |                                      |                                                     |                                                       |                                                 |                                                     |              |                         |                                            |                            |
|                    |                          |                                 |                                      |                                                     |                                                       | ——                                              |                                                     |              |                         |                                            |                            |
|                    |                          | A                               | I.                                   | <u>I</u>                                            | <u>_</u>                                              |                                                 |                                                     |              |                         |                                            | 22                         |

Comments



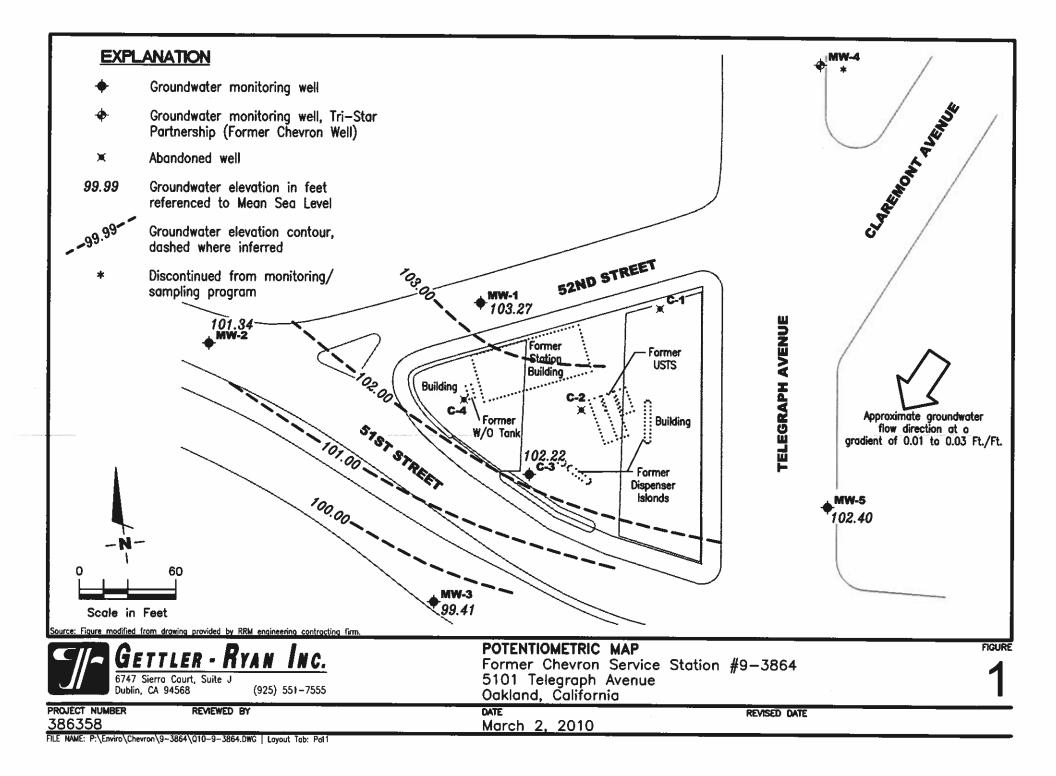
March 25, 2010 G-R Job #386358

Ms. Stacie H. Frerichs Chevron Environmental Management Company 6111 Bollinger Canyon Road, Room 3596 San Ramon, CA 94583

RE: First Semi-Annual Event of March 2, 2010 Groundwater Monitoring & Sampling Report Former Chevron Service Station #9-3864 5101 Telegraph Avenue Oakland, California

Dear Ms. Frerichs:

This report documents the most recent groundwater monitoring and sampling event performed by Gettler-Ryan Inc. (G-R) at the referenced site. All field work was conducted in accordance with G-R Standard Operating Procedure - Groundwater Sampling (attached). A joint groundwater monitoring and sampling event was conducted at the former Autopro, located at 5200 Telegraph Avenue, Oakland, California.


Static groundwater levels were measured and the wells were checked for the presence of separate-phase hydrocarbons. Static water level data, groundwater elevations, and separate-phase hydrocarbon thickness (if any) are presented in the attached Table 1. A Potentiometric Map is included as Figure 1.

Groundwater samples were collected from the monitoring wells and submitted to a state certified laboratory for analyses. The field data sheets for this event are attached. Analytical results are presented in the table(s) listed below. The chain of custody document and laboratory analytical report are also attached. All groundwater and decontamination water generated during sampling activities was removed from the site, per the Standard Operating Procedure.

Please call if you have any questions or comments regarding this report. Thank you.

Sincerely,

lard. Deanna L. Harding Project Coordinator o. 6882 Douglas J. Lee Senior Geologist, P.G. No. 6882 Figure 1: Potentiometric Map Groundwater Monitoring Data and Analytical Results Table 1: Table 2: **Dissolved Oxygen Concentrations** Table 3: Groundwater Analytical Results - Oxygenate Compounds Attachments: Standard Operating Procedure - Groundwater Sampling Field Data Sheets Chain of Custody Document and Laboratory Analytical Reports Joint Groundwater Monitoring Data - Test Only SMOG Station (Former Autopro)



| WELL ID/              | TOC    | GWE    | DTW   | TPH-GRO | B      | Ť      | E      | x      | MTBE   |
|-----------------------|--------|--------|-------|---------|--------|--------|--------|--------|--------|
| DATE                  | (11.)  | (msl)  | (ft.) | (µg/L)  | (µg/L) | (µg/L) | (µg/L) | (pg/L) | (µg/L) |
| C-3                   |        |        |       |         |        |        |        |        |        |
| 12/06/90              | 115.70 | 98.84  | 16.86 | 210     | 2.0    | <0.5   | <0.5   | 1.0    |        |
| 12/06/90 (D)          |        |        |       | 220     | 2.0    | 0.6    | <0.5   | 2.0    |        |
| 06/06/91              | 115.70 | 100.01 | 15.69 | 6,400   | 310    | 21     | 16     | 21     |        |
| 09/16/92              | 115.70 | 99.81  | 15.89 | 7,100   | 130    | 26     | 10     | 30     |        |
| 12/04/91              | 115.70 | 100.32 | 15.38 | 5,100   | 120    | 18     | 12     | 20     |        |
| 06/02/92              | 115.70 | 100.30 | 15.40 | 6,700   | 140    | 44     | 17     | 37     |        |
| 12/21/92              | 115.70 | 101.79 | 13.91 | 13,000  | 390    | 360    | 100    | 410    |        |
| 03/11/93              | 115.70 | 101.95 | 13.75 | 5,100   | 86     | 20     | 12     | 23     |        |
| 06/11/93              | 115.70 | 101.03 | 14.67 | 7,200   | 91     | 38     | 12     | 38     |        |
| 09/13/93              | 115.70 | 100.17 | 15.53 | 6,800   | 100    | 52     | 41     | 75     |        |
| 12/14/93              | 115.70 | 101.30 | 14.40 | 8,600   | 74     | 23     | 18     | 36     |        |
| 03/16/94              | 115.70 | 101.44 | 14.26 | 6,000   | 100    | 42     | 27     | 30     |        |
| 06/17/94              | 115.70 | 100.60 | 15.10 | 15,000  | 170    | 120    | 120    | 270    |        |
| 08/29/94              | 115.70 | 100.30 | 15.40 | 26,000  | 51     | <0.5   | 58     | 107    |        |
| 12/06/94              | 115.70 | 101.90 | 13.80 | 34,000  | 88     | 140    | 98     | 390    |        |
| 03/31/95              | I15.70 | 102.91 | 12.79 | 2,800   | 42     | <5.0   | <5.0   | 6.6    |        |
| 06/24/95              | 115.70 | 100.84 | 14.86 | 5,200   | 34     | <10    | <10    | 13     |        |
| 09/12/95              | 115.70 | 100.76 | 14.94 | 7,000   | 45     | <10    | 28     | 42     |        |
| 12/29/95              | 115.70 | 102.12 | 13.58 | 5,100   | 20     | <10    | <10    | 19     | <50    |
| 02/29/96              | 115.70 | 102.88 | 12.82 | 2,600   | 15     | <5.0   | 17     | 16     | <25    |
| 06/26/96              | 115.70 | 101.32 | 14.38 | 4,400   | <10    | <10    | <10    | <10    | <50    |
| 09/12/96              | 115.70 | 100.75 | 14.95 | 5,800   | 73     | 22     | 18     | 17     | 61     |
| 12/11/96              | 115.70 | 103.08 | 12.62 | 8,800   | 81     | <20    | <20    | 37     | 200    |
| 03/31/97              | 115.70 | 100.70 | 15.00 | 8,100   | 38     | 62     | 30     | 42     | 38     |
| 06/29/97              | 115.70 | 100.08 | 15.62 | 5,800   | <10    | <10    | <10    | 67     | <50    |
| 09/30/97              | 115.70 | 100.70 | 15.00 | 6,200   | <10    | 28     | 21     | 27     | 130    |
| 12/12/97              | 115.70 | 103.68 | 12.02 | 330     | 1.6    | 1.1    | <1.0   | 3.4    | <5.0   |
| 02/19/98              | 115.70 | 103.26 | 12.44 | 110     | 1.7    | <0.5   | <0.5   | 0.51   | <2.5   |
| 06/16/98              | 115.70 | 102.29 | 13.41 | 7,400   | 63     | 16     | <10    | <10    | 170    |
| 08/31/98              | 115.70 | 101.70 | 14.00 | 4,400   | 6.4    | <2.5   | 5.4    | 16     | 15     |
| 12/23/98              | 115.70 | 102.91 | 12.79 | 11,000  | 83     | 37     | 69     | 76     | 86     |
| 03/09/99              | 115.70 | 102.70 | 13.00 | 6,500   | 45     | 38     | 17     | 30     | 110    |
| 06/23/99 <sup>1</sup> | 115.70 | 101.92 | 13.78 |         |        |        |        |        |        |
| 09/30/99              | 115.70 | 99.70  | 16.00 | 3,870   | 29.7   | 8.72   | 7.08   | 7.75   | <50    |
| 02/29/00              | 115.70 | 102.14 | 13.56 | 2,660   | 22.5   | <5.0   | 11.2   | 11.6   | <50    |

| WELL ID/                | тос    | GWE            | DTW   | TPH-GRO          | B            | T           | E E          | x      | MTBE                 |
|-------------------------|--------|----------------|-------|------------------|--------------|-------------|--------------|--------|----------------------|
| DATE                    | (11)   | (msl)          | (ft.) | (µg/L)           | (µg/L)       | (µg/L)      | (µg/L)       | (pg/L) | (µg/L)               |
| C-3 (cont)              |        |                |       |                  |              |             |              |        |                      |
| 09/18/00 <sup>3</sup>   | 115.70 | 103.25         | 12.45 | 740 <sup>4</sup> | 6.0          | 4.5         | <2.5         | 6.0    | <13                  |
| 03/21/01 <sup>3</sup>   | 115.70 | 102.05         | 13.65 | 1,7004           | 21           | 12          | 14           | 19     | 59                   |
| 09/04/01 <sup>3</sup>   | 115.70 | 101.09         | 14.61 | 4,100            | <10          | 4.8         | 6.5          | 19     | -5.0/<2              |
| 03/22/02 <sup>3,6</sup> | 115.70 | 102.49         | 13.21 | 3,600            | <5.0         | 4.8<br><5.0 | 6.1          | <15    | <2.5                 |
| 09/16/02 <sup>3</sup>   | 115.70 | 100.39         | 15.31 | 4,000            | <10          | <5.0        | 4.3          | <10    | 7.9                  |
| 03/28/03 <sup>3</sup>   | 115.70 | 101.38         | 14.32 | 2,400            | <2.5         | <2.5        | 5.5          | <7.5   | <13                  |
| 09/02/03 <sup>3,7</sup> | 115.70 | 101.33         | 14.37 | 2,400            | 1            | 0.9         | 0.9          | 4      | <0.5                 |
| 03/18/04 <sup>7,8</sup> | 115.70 | 101.56         | 14.14 | 5,300            | <0.5         | <0.5        | <0.5         | <0.5   | <0.5<br><0.5         |
| 09/15/04 <sup>7</sup>   | 115.70 | 101.50         | 14.20 | 3,200            | 0.8          | 0.8         | 1            | 3      | <0.3<br>10           |
| 03/11/05 <sup>7</sup>   | 115.70 | 102.79         | 12.91 | 4,200            | 0.6          | 0.5         | 1            | 3      | <0.5                 |
| 09/29/057               | 115.70 | 101.13         | 14.57 | 4,900            | 0.6          | 0.5         | 2            | 3      | <0.5<br><0.5         |
| 03/24/06                | 115.70 | INACCESSIBLE - |       |                  |              |             |              |        |                      |
| 09/12/06 <sup>7</sup>   | 115.70 | 101.29         | 14.41 | 5,900            | <1           | <1          | <1           | 2      | <br><1               |
| 03/05/077               | 115.70 | 102.81         | 12.89 | 4,600            | <0.5         | <0.5        | 0.8          | 2      |                      |
| 09/21/077               | 115.70 | 101.39         | 14.31 | 5,000            | <0.5         | <0.5        | 0.6          | 2      | <0.5                 |
| 03/06/08 <sup>7</sup>   | 115.70 | 102.15         | 13.55 | 3,600            | <0.5         | <0.5        | 1            | 1      | <0.5                 |
| 09/05/08 <sup>7</sup>   | 115.70 | 101.00         | 14.70 | 2,700            | <0.5         | <0.5        | 0.9          | 1      | <0.5                 |
| 03/30/09 <sup>7</sup>   | 115.70 | 102.28         | 13.42 | 4,200            | <0.5         | <0.5        | 0.8          | 3      | <0.5                 |
| 09/15/09 <sup>7</sup>   | 115.70 | 100.55         | 15.15 | 4,700            | <0.5         | <0.5        | <0.5         | 3<br>T | <0.5                 |
| 03/02/10 <sup>7</sup>   | 115.70 | 102.22         | 13.48 | 3,600            | <0.5<br><0.5 | <0.5        | <0.5<br><0.5 | 1      | <0.5<br>< <b>0.5</b> |
| MW-1                    |        |                |       |                  |              |             |              |        |                      |
| 09/20/93                | 115.05 | 102.37         | 12.68 | <50              | <0.5         | <0.5        | <0.5         | <1.5   |                      |
| 12/14/93                | 115.05 | 105.01         | 10.04 | <50              | <0.5         | <0.5        | <0.5         | <0.5   |                      |
| 03/16/94                | 115.05 | 103.10         | 11.95 | <50              | <0.5         | 1.7         | <0.5         | 2.1    |                      |
| 06/17/94                | 115.05 | 102.51         | 12.54 | 350              | 1.2          | 3.7         | 2.0          | 12     |                      |
| 08/29/94                | 115.05 | 101.98         | 13.07 | <50              | <0.5         | <0.5        | <0.5         | <0.5   |                      |
| 2/06/94                 | 115.05 | 104.45         | 10.60 | 140              | 0.9          | 2.8         | 1.1          | 4.2    |                      |
| )3/31/95                | 115.05 | 104.74         | 10.31 | <50              | <0.5         | <0.5        | <0.5         | <0.5   |                      |
| 6/24/95                 | 115.05 | 102.44         | 12.61 | <50              | <0.5         | <0.5        | <0.5         | <0.5   |                      |
| 09/12/95                | 115.05 | 102.00         | 13.05 | <50              | <0.5         | <0.5        | <0.5         | <0.5   |                      |
| 02/02/96                | 115.05 | 106.19         | 8.86  | <50              | <0.5         | <0.5        | <0.5         | <0.5   | <2.5                 |
| 02/29/96                | 115.05 | 105.39         | 9.66  | <50              | <0.5         | <0.5        | <0.5         | <0.5   | <2.5                 |
| )6/26/96                | 115.05 | 102.85         | 12.20 | <50              | <0.5         | <0.5        | <0.5         | <0.5   | <2.5                 |

| WELL ID/              | TOC    | GWE    | DTW   | TPH-GRO       | B      | T        | E        | X        | MTBE                     |
|-----------------------|--------|--------|-------|---------------|--------|----------|----------|----------|--------------------------|
| DATE                  | (1)    | (msl)  | (ft.) | (µg/L)        | (µg/L) | (µg/L)   | (µg/L)   | (µg/L)   | (µg/L)                   |
| MW-1 (cont)           |        |        |       |               |        |          |          |          |                          |
| 09/12/96              | 115.05 | 101.55 | 13.50 | <50           | <0.5   | <0.5     | <0.5     | <0.5     | <2.5                     |
| 12/11/96              | 115.05 | 105.90 | 9.15  | <50           | <0.5   | <0.5     | <0.5     | <0.5     | <2.5                     |
| 03/31/97              | 115.05 | 102.30 | 12.75 | <50           | <0.5   | <0.5     | <0.5     | <0.5     | <2.5                     |
| 06/29/97              | 115.05 | 102.01 | 13.04 | <50           | <0.5   | <0.5     | <0.5     | <0.5     | <2.5                     |
| 09/30/97              | 115.05 | 101.80 | 13.25 | <50           | <0.5   | <0.5     | <0.5     | <0.5     | <2.5                     |
| 12/12/97              | 115.05 | 106.06 | 8.99  | <50           | <0.5   | <0.5     | <0.5     | <0.5     | <2.5                     |
| 02/19/98              | 115.05 | 105.64 | 9.41  | <50           | <0.5   | <0.5     | <0.5     | <0.5     | <2.5                     |
| 06/16/98              | 115.02 | 103.48 | 11.54 | <50           | <0.5   | <0.5     | <0.5     | <0.5     | 2.6                      |
| 08/31/98              | 115.02 | 102.51 | 12.51 | <50           | <0.5   | <0.5     | <0.5     | <0.5     | <2.5                     |
| 12/23/98              | 115.02 | 103.03 | 11.99 | <50           | <0.5   | <0.5     | <0.5     | <0.5     | <2.5                     |
| 03/09/99              | 115.02 | 104.57 | 10.45 | <50           | <0.5   | <0.5     | <0.5     | <0.5     | <2.5                     |
| 09/30/99              | 115.02 | 102.07 | 12.95 | SAMPLED ANNUA |        | -0.5     | -0.5     | -0.5     | -2.3                     |
| 02/29/00              | 115.02 | 105.90 | 9.12  | <50           | <0.5   | 0.816    | <0.5     | <0.5     | <5.0                     |
| 09/18/00              | 115.02 | 104.14 | 10.88 |               | -0.5   |          |          | -0.5     |                          |
| 03/21/01              | 115.02 | 104.01 | 11.01 | <50           | <0.50  | <0.50    | <0.50    | <0.50    | <br><2.5                 |
| 09/04/01              | 115.02 | 103.60 | 11.42 |               | -0.50  | -0.50    | -0.50    | ~0.50    | ~2.3<br>/<2 <sup>5</sup> |
| )3/22/02 <sup>6</sup> | 115.02 | 104.68 | 10.34 | 100           | <0.50  | 24       | 0.80     | 4.9      | /~2                      |
| 9/16/02               | 115.02 | 102.35 | 12.67 | SAMPLED ANNUA |        |          |          | 4.7      |                          |
| 3/28/03               | 115.02 | 103.29 | 11.73 | <50           | <0.50  | <0.50    | <0.50    | <1.5     | <2.5                     |
| 9/02/03               | 115.02 | 102.74 | 12.28 | SAMPLED ANNUA |        | -0.50    |          |          |                          |
| 03/18/04 <sup>7</sup> | 115.02 | 103.11 | 11.91 | <50           | <0.5   | <0.5     | <0.5     | <0.5     | <br><0.5                 |
| 9/15/04               | 115.02 | 101.89 | 13.13 | SAMPLED ANNUA |        | -0.5     | <0.5<br> |          |                          |
| 03/11/05 <sup>7</sup> | 115.02 | 104.29 | 10.73 | <50           | <0.5   | 2        | <0.5     | <0.5     |                          |
| 9/29/05               | 115.02 | 101.97 | 13.05 | SAMPLED ANNUA |        |          | -0.5     | ~0.5     | <0.5                     |
| )3/24/06 <sup>7</sup> | 115.02 | 104.61 | 10.41 | <50           | <0.5   | <0.5     | <0.5     | <0.5     |                          |
| 9/12/06               | 115.02 | 101.91 | 13.11 | SAMPLED ANNUA |        |          |          |          | <0.5                     |
| )3/05/07 <sup>7</sup> | 115.02 | 103.93 | 11.09 | <50           | <0.5   | <br><0.5 | <0.5     | <0.5     | -0.5                     |
| 9/21/07               | 115.02 | 102.07 | 12.95 | SAMPLED ANNUA |        |          |          |          | <0.5                     |
| 3/06/087              | 115.02 | 102.92 | 12.10 | <50           | <0.5   | <0.5     | <0.5     |          |                          |
| 09/05/08              | 115.02 | 102.54 | 12.10 | SAMPLED ANNUA |        | ~0.5     |          | <0.5     | <0.5                     |
| )3/30/09 <sup>7</sup> | 115.02 | 103.64 | 11.38 | <50           | <0.5   | <0.5     |          |          |                          |
| 9/15/09               | 115.02 | 102.06 | 12.96 | SAMPLED ANNUA |        |          | <0.5     | <0.5     | <0.5                     |
| 03/02/10 <sup>7</sup> | 115.02 | 103.27 | 11.75 | <50           | <0.5   | <br><0.5 | <br><0.5 | <br><0.5 | <br><0.5                 |

|                       | TOC    | GWE    | DTW   | TPH-GRO       | B      | Т      | E            | x            | MTBE                     |
|-----------------------|--------|--------|-------|---------------|--------|--------|--------------|--------------|--------------------------|
| DATE                  | (11.)  | (msl)  | (ft.) | (µg/L)        | (µg/L) | (µg/L) | (µg/L)       | (pg/L)       | (µg/L)                   |
| MW-2                  |        |        |       |               |        |        |              |              |                          |
| 09/20/93              | 112.08 | 99.93  | 12.15 | <50           | <0.5   | <0.5   | <0.5         | <1.5         |                          |
| 12/14/93              | 112.08 | 97.36  | 14.72 | <50           | <0.5   | <0.5   | <0.5         | <0.5         |                          |
| 03/16/94              | 112.08 | 100.92 | 11.16 | <50           | <0.5   | 1.1    | <0.5         | 0.9          |                          |
| 06/17/94              | 112.08 | 100.41 | 11.67 | 330           | 1.4    | 3.3    | 1.9          | 0.9<br>11    |                          |
| 08/29/94              | 112.08 | 100.08 | 12.00 | <50           | <0.5   | <0.5   | <0.5         | <0.5         |                          |
| 12/06/94              | 112.08 | 102.57 | 9.51  | <50           | <0.5   | <0.5   | <0.5         | <0.5         |                          |
| 03/31/95              | 112.08 | 103.24 | 8.84  | <50           | <0.5   | <0.5   | <0.5         | <0.5         |                          |
| 06/24/95              | 112.08 | 100.44 | 11.64 | <50           | <0.5   | <0.5   | <0.5         |              |                          |
| 09/12/95              | 112.08 | 100.00 | 12.08 | <50           | <0.5   | <0.5   | <0.5         | <0.5<br><0.5 |                          |
| 12/29/95              | 112.08 | 101.58 | 10.50 | <50           | <0.5   | <0.5   | <0.5<br><0.5 | <0.5         |                          |
| 02/29/96              | 112.08 | 104.08 | 8.00  | <50           | <0.5   | <0.5   | <0.5         | <0.5         | <2.5                     |
| 06/26/96              | 112.08 | 100.58 | 11.50 | <50           | <0.5   | <0.5   | <0.5<br><0.5 | <0.5<br><0.5 | <2.5                     |
| 09/12/96              | 112.08 | 99.81  | 12.27 | <50           | <0.5   | <0.5   | <0.5<br><0.5 | <0.5<br><0.5 | <2.5<br><2.5             |
| 12/11/96              | 112.08 | 104.17 | 7.91  | <50           | <0.5   | <0.5   | <0.5<br><0.5 | <0.5<br><0.5 |                          |
| 03/31/97              | 112.08 | 100.20 | 11.88 | <50           | <0.5   | <0.5   | <0.5         | <0.5<br><0.5 | <2.5                     |
| 06/29/97              | 112.08 | 99.89  | 12.19 | <50           | <0.5   | <0.5   | <0.5         | <0.5         | <2.5<br><2.5             |
| 09/30/97              | 112.08 | 99.46  | 12.62 | <50           | <0.5   | <0.5   | <0.5         | <0.5         | <2.5                     |
| 12/12/97              | 112.08 | 102.85 | 9.23  | <50           | <0.5   | <0.5   | <0.5         | <0.5         | <2.5<br><2.5             |
| 2/19/98               | 112.08 | 104.87 | 7.21  | <50           | <0.5   | <0.5   | <0.5         | <0.5         | <2.5<br><2.5             |
| )6/16/98              | 112.03 | 101.10 | 10.93 | <50           | <0.5   | <0.5   | <0.5         | <0.5         | <2.5<br><2.5             |
| 8/31/98               | 112.03 | 99.69  | 12.34 | <50           | <0.5   | <0.5   | <0.5         | <0.5         | <2.3<br><2.5             |
| 12/23/98              | 112.03 | 100.59 | 11.44 | <50           | <0.5   | <0.5   | <0.5         | <0.5         |                          |
| )3/09/99              | 112.03 | 103.23 | 8.80  | <50           | <0.5   | <0.5   | <0.5         | <0.5         | <2.5<br><2.5             |
| 9/30/99               | 112.03 | 101.22 | 10.81 | SAMPLED ANNUA |        | -0.5   |              | ~0.5         |                          |
| 2/29/00               | 112.03 | 105.12 | 6.91  | <50           | <0.5   | <0.5   | <0.5         | <0.5         | <br><5.0                 |
| 9/18/00               | 112.03 | 101.00 | 11.03 |               |        | -0.5   | -0.5         |              |                          |
| 3/21/01               | 112.03 | 101.61 | 10.42 | <50           | <0.50  | <0.50  | <0.50        | <0.50        | <br><2.5                 |
| 9/04/01               | 112.03 | 101.04 | 10.99 |               | -0.50  |        | ~0.50        | ~0.50        | <2.5<br>/<2 <sup>5</sup> |
| 3/22/02               | 112.03 | 102.14 | 9.89  | <50           | <0.50  | <0.50  | <0.50        | <br><1.5     | <2.5                     |
| 9/16/02               | 112.03 | 100.02 | 12.01 | SAMPLED ANNUA |        |        | ~0.50        |              |                          |
| 3/28/03               | 112.03 | 101.23 | 10.80 | <50           | <0.50  | <0.50  | <0.50        | <1.5         | <br><2.5                 |
| 9/02/03               | 112.03 | 100.15 | 11.88 | SAMPLED ANNUA |        | ~0.50  | <0.50        |              |                          |
| 03/18/04 <sup>7</sup> | 112.03 | 101.04 | 10.99 | <50           | <0.5   | <0.5   | < 0.5        | <br><0.5     | <br><0.5                 |
| 9/15/04               | 112.03 | 99.15  | 12.88 | SAMPLED ANNUA |        | -0.5   |              |              |                          |
| 3/11/05 <sup>7</sup>  | 112.03 | 102.13 | 9.90  | <50           | <0.5   | <0.5   | <br><0.5     | <br><0.5     | <0.5                     |

| WELL ID/              | тос    | GWE    | DTW   | TPH-GRO       | B      | Т                | E          | x            | MTBE                  |
|-----------------------|--------|--------|-------|---------------|--------|------------------|------------|--------------|-----------------------|
| DATE                  | (ft.)  | (msl)  | (ft.) | (µg/L)        | (µg/L) | (µg/L)           | (µg/L)     | (pg/L)       | (µg/L)                |
| MW-2 (cont)           |        |        |       |               |        |                  |            |              |                       |
| 09/29/05              | 112.03 | 99.33  | 12.70 | SAMPLED ANNUA |        |                  |            |              |                       |
| 03/24/06 <sup>7</sup> | 112.03 | 103.04 | 8.99  | <50           | <0.5   | <0.5             | <0.5       | <br><0.5     | <br><0.5              |
| 09/12/06              | 112.03 | 98.97  | 13.06 | SAMPLED ANNUA |        | -0.5             |            |              |                       |
| 03/05/077             | 112.03 | 101.57 | 10.46 | <50           | <0.5   | <0.5             | <0.5       | <0.5         |                       |
| 09/21/07              | 112.03 | 99.35  | 12.68 | SAMPLED ANNUA |        |                  |            |              | <0.5                  |
| 03/06/087             | 112.03 | 100.98 | 11.05 | <50           | <0.5   | <0.5             | <br><0.5   |              |                       |
| 09/05/08              | 112.03 | 99.22  | 12.81 | SAMPLED ANNUA |        |                  |            | <0.5         | <0.5                  |
| 03/30/09 <sup>7</sup> | 112.03 | 101.23 | 10.80 | <50           | <0.5   | <0.5             | <br><0.5   |              |                       |
| 09/15/09              | 112.03 | 98.84  | 13.19 | SAMPLED ANNUA |        |                  |            | <0.5         | <0.5                  |
| 03/02/107             | 112.03 | 101.34 | 10.69 | <50           | <0.5   | <br><0 <b>.5</b> | <0.5       | <br><0.5     | -0.5                  |
|                       |        |        |       | -50           | ~0.5   | ~0.5             | ~0.5       | <0.5         | <0.5                  |
| MW-3                  |        |        |       |               |        |                  |            |              |                       |
| 09/20/93              | 113.67 | 97.25  | 16.42 | 6,600         | 400    | 11               | 32         | 23           |                       |
| 12/14/93              | 113.67 | 98.95  | 14.72 | 8,400         | 390    | 9.4              | 13         | <2.5         |                       |
| 03/16/94              | 113.67 | 98.45  | 15.22 | 6,900         | 260    | 30               | 32         | 27           |                       |
| 06/17/94              | 113.67 | 97.62  | 16.05 | 10,000        | 190    | 61               | 58         | 190          |                       |
| 08/29/94              | 113.67 | 97.44  | 16.23 | 7,200         | 74     | 9.8              | 26         | 24           |                       |
| 12/06/94              | 113.67 | 99.35  | 14.32 | 13,000        | 610    | 86               | 88         | 140          |                       |
| 03/31/95              | 113.67 | 99.98  | 13.69 | 4,300         | 120    | <10              | 12         | <10          |                       |
| 06/24/95              | 113.67 | 98.02  | 15.65 | 6,200         | 210    | 24               | 29         | 12           |                       |
| 09/12/95              | 113.67 | 97.68  | 15.99 | 7,200         | 190    | <20              | <20        | <20          |                       |
| 12/29/95              | 113.67 | 99.67  | 14.00 | 7,100         | 200    | <10              | 45         | 24           | <br><50               |
| 02/29/96              | 113.67 | 100.91 | 12.76 | 1,200         | 30     | <5.0             | <5.0       | <5.0         | <30<br><25            |
| 06/26/96              | 113.67 | 98.44  | 15.23 | 7,900         | 180    | <20              | 35         | 28           | <ul><li>240</li></ul> |
| 09/12/96              | 113.67 | 97.73  | 15.94 | 11,000        | 150    | <5.0             | 35         | 28           | 170                   |
| 12/11/96              | 113.67 | 99.86  | 13.81 | 7,500         | 75     | 8.8              | 30         | 28<br>45     | 110                   |
| 03/31/97              | 113.67 | 98.23  | 15.44 | 8,700         | 100    | <10              | 20         | 23           | 50                    |
| 06/29/97              | 113.67 | 97.99  | 15.68 | 9,300         | 120    | 28               | 20         | 19           | 150                   |
| 09/30/97              | 113.67 | 97.76  | 15.91 | 8,200         | 78     | <10              | 22         | 25           | 96                    |
| 12/12/97              | 113.67 | 100.82 | 12.85 | 68            | 1.8    | <0.5             | <0.5       | <0.5         | 96<br><2.5            |
| 02/19/98              | 113.67 | 100.41 | 13.26 | 220           | 5.6    | 1.5              | <0.5       | <0.5<br><0.5 | <2.5<br>6.1           |
| 06/16/98              | 113.63 | 99.12  | 14.51 | 7,500         | 97     | 21               | 21         | <0.3<br>27   |                       |
| 08/31/98              | 113.63 | 98.62  | 15.01 | 7,600         | 24     | <2.5             | 9.5        | 16           | 160                   |
| 12/23/98              | 113.63 | 100.03 | 13.60 | 5,800         | 69     | <50              | 9.5<br><50 | <50          | 38<br><250            |

| WELL ID/                | ТОС    | GWE              | DTW   | TPH-GRO            | B        | Т      | E        | X        | MTBE         |
|-------------------------|--------|------------------|-------|--------------------|----------|--------|----------|----------|--------------|
| DATE                    | (ft.)  | (msl)            | (fl.) | (µg/L)             | (µg/L)   | (µg/L) | (µg/L)   | (pg/L)   | (µg/L)       |
| MW-3 (cont)             |        |                  |       |                    | _        |        |          |          |              |
| )3/09/99                | 113.63 | 99.59            | 14.04 | 5,300              | <10      | <10    | 16       | 20       | 88           |
| )6/23/99 <sup>1</sup>   | 113.63 |                  |       |                    |          |        |          |          |              |
| 07/19/99 <sup>1</sup>   | 113.63 |                  |       |                    |          |        |          |          |              |
| 09/30/99                | 113.63 | 96.74            | 16.89 | 8,660              | 53.7     | 16.9   | 17       | 19.6     | 132          |
| )2/29/00                | 113.63 | INACCESSIBLE     |       |                    |          |        |          |          |              |
| )9/18/00 <sup>3</sup>   | 113.63 | 100.41           | 13.22 | 2,400 <sup>4</sup> | 14       | 6.8    | 4.7      | 7.4      | 28           |
| 3/21/01 <sup>3</sup>    | 113.63 | 98.88            | 14.75 | 7,600 <sup>4</sup> | 41       | 30     | <25      | 50       | 160          |
| 9/04/01                 | 113.63 | INACCESSIBLE - C |       |                    |          |        |          |          |              |
| 3/22/02 <sup>3</sup>    | 113.63 | 99.46            | 14.17 | 7,600              | <10      | 4.2    | 11       | <25      | <5.0         |
| 9/16/02 <sup>3</sup>    | 113.63 | 97.34            | 16.29 | 5,900              | <20      | <10    | 7.7      | <15      | 21           |
| )3/28/03 <sup>3</sup>   | 113.63 | 98.67            | 14.96 | 3,500              | <20      | 3.3    | 7.3      | 10       | <13          |
| 09/02/03 <sup>3,7</sup> | 113.63 | 98.20            | 15.43 | 4,500              | 3        | 2      | 2        | 5        | <0.5         |
| )3/18/04 <sup>7,8</sup> | 113.63 | 98.91            | 14.72 | 5,300              | 3        | 1      | 3        | 4        | <0.5<br><0.5 |
| 9/15/04                 | 113.63 | INACCESSIBLE - C |       |                    |          |        |          | +        | ~0.5         |
| 3/11/057                | 113.63 | 99.72            | 13.91 | 4,500              | 2        | 1      | 2        | 4        | <0.5         |
| )9/29/05 <sup>7</sup>   | 113.63 | 98.06            | 15.57 | 5,300              | 3        | 1      | 2        | 4        | <0.5<br><0.5 |
| )3/24/06 <sup>7</sup>   | 113.63 | 100.10           | 13.53 | 3,300              | 1        | 0.6    | 1        | 2        | <0.5         |
| 9/12/06 <sup>7</sup>    | 113.63 | 98.16            | 15.47 | 6,100              | 2        | 1      | 2        | 4        | <0.5<br><0.5 |
| 3/05/077                | 113.63 | 99.69            | 13.94 | 4,000              | 1        | 0.6    | 0.8      | 2        | <0.5         |
| 9/21/077                | 113.63 | 98.24            | 15.39 | 5,900              | 2        | 1      | 1        | 4        | <0.3<br><0.5 |
| 3/06/08 <sup>7</sup>    | 113.63 | 99.02            | 14.61 | 3,900              | 2        | 0.8    | 2        | 3        | <0.5<br><0.5 |
| 9/05/087 -              | t13.63 | 98.13            | 15.50 | 5,100              | 1        | 0.7    | 2        | 3        |              |
| 3/30/09 <sup>7</sup>    | 113.63 | 99.13            | 14.50 | 4,800              | 2        | 0.7    | 2        | 3        | <0.5         |
| 9/15/09                 | 113.63 | INACCESSIBLE     |       |                    |          |        |          |          | <0.5         |
| 3/02/10 <sup>7</sup>    | 113.63 | <b>99.4</b> 1    | 14.22 | <50                | <br><0.5 | <0.5   | <br><0.5 | <br><0.5 |              |
|                         |        |                  |       | -50                | -V-J     | ~0.0   | ~0.3     | ~0.5     | <0.5         |
| AW-5                    |        |                  |       |                    |          |        |          |          |              |
| 9/20/93                 | 116.74 | 101.43           | 15.31 | 590                | 25       | 1.8    | 0.6      | 2.0      |              |
| 2/14/93                 | 116.74 | 102.19           | 14.55 | 210                | 11       | 6.3    | 2.3      | 6.1      |              |
| 3/16/94                 | 116.74 | 101.77           | 14.97 | 270                | 12       | 16     | 4.8      | 17       |              |
| 6/17/94                 | 116.74 | 101.36           | 15.38 | 220                | 24       | 17     | 6.7      | 28       |              |
| 8/29/94                 | 116.74 | 101.54           | 15.20 | 1,000              | <0.5     | <0.5   | <0.5     | <0.5     |              |
| 2/06/94                 | 116.74 | 102.09           | 14.65 | 110                | 9.2      | 9.7    | 2.2      | 11       |              |
| 3/31/95                 | 116.74 | 103.04           | 13.70 | <50                | <0.5     | <0.5   | <0.5     | <0.5     |              |

Oakland, California

| WELL ID/              | ТОС    | GWE    | DTW   | TPH-GRO                  | Ð      | T      | Ł      | x      | MTBE             |
|-----------------------|--------|--------|-------|--------------------------|--------|--------|--------|--------|------------------|
| DATE                  | (fL)   | (msl)  | (1)   | (µg/L)                   | (µg/L) | (µg/L) | (µg/L) | (pg/L) | (µg/L)           |
| MW-5 (cont)           |        |        |       |                          |        |        |        |        |                  |
| 06/24/95              | 116.74 | 101.95 | 14.79 | <50                      | <0.5   | <0.5   | <0.5   | <0.5   |                  |
| 09/12/95              | 116.74 | 102.15 | 14.59 | <50                      | <0.5   | <0.5   | <0.5   | <0.5   |                  |
| 12/29/95              | 116.74 | 101.76 | 14.98 | <50                      | <0.5   | <0.5   | <0.5   | <0.5   | <2.5             |
| 02/29/96              | 116.74 | 103.07 | 13.67 | <50                      | <0.5   | <0.5   | <0.5   | <0.5   | <2.5             |
| 06/26/96              | 116.74 | 102.50 | 14.24 | <50                      | <0.5   | <0.5   | <0.5   | <0.5   | <2.5             |
| 09/12/96              | 116.74 | 102.12 | 14.62 | <50                      | <0.5   | <0.5   | <0.5   | <0.5   | <2.5             |
| 12/11/96              | 116.74 | 102.93 | 13.81 | <50                      | <0.5   | <0.5   | <0.5   | <0.5   | <2.5             |
| 03/31/97              | 116.74 | 101.29 | 15.45 | <50                      | <0.5   | <0.5   | <0.5   | <0.5   | <2.5             |
| 06/29/97              | 116.74 | 102.07 | 14.67 | <50                      | <0.5   | <0.5   | <0.5   | <0.5   | <2.5             |
| 09/30/97              | 116.74 | 101.89 | 14.85 | <50                      | <0.5   | <0.5   | <0.5   | <0.5   | <2.5             |
| 12/12/97              | 116.74 | 102.99 | 13.75 | <50                      | <0.5   | <0.5   | <0.5   | <0.5   | <2.5             |
| 02/19/98              | 116.74 | 103.68 | 13.06 | <50                      | <0.5   | <0.5   | <0.5   | <0.5   | <2.5             |
| 06/16/98              | 116.70 | 102.35 | 14.35 | <50                      | <0.5   | <0.5   | <0.5   | <0.5   | <2.5             |
| 08/31/98              | 116.70 | 101.54 | 15.16 | <50                      | <0.5   | <0.5   | <0.5   | <0.5   | <2.5             |
| 12/23/98              | 116.70 | 102.15 | 14.55 | <50                      | <0.5   | <0.5   | <0.5   | <0.5   | <2.5             |
| 03/09/99              | 116.70 | 102.63 | 14.07 | <50                      | <0.5   | <0.5   | <0.5   | <0.5   | <2.5             |
| 09/30/99              | 116.70 | 100.80 | 15.90 | SAMPLED ANNUA            |        |        | -0.5   | -0.5   | ~&.J<br>==       |
| 02/29/00              | 116.70 | 103.40 | 13.30 | <50                      | <0.5   | <0.5   | <0.5   | <0.5   | <5.0             |
| 09/18/00              | 116.70 | 101.62 | 15.08 | - <u>1</u> 2 - 41 - 5- 4 |        |        | -0.5   |        |                  |
| 03/21/01              | 116.70 | 102.04 | 14.66 | <50                      | <0.50  | <0.50  | <0.50  | <0.50  | <2.5             |
| 09/04/01              | 116.70 | 101.26 | 15.44 |                          |        |        | -0.00  | -0.50  | /<2 <sup>5</sup> |
| )3/22/02 <sup>6</sup> | 116.70 | 101.99 | 14.71 | <50                      | <0.50  | <0.50  | <0.50  | <1.5   | <2.5             |
| 09/16/02              | 116.70 | 101.02 | 15.68 | SAMPLED ANNUA            |        |        |        |        | ~2,5             |
| 03/28/03              | 116.70 | 101.65 | 15.05 | <50                      | <0.50  | <0.50  | <0.50  | <1.5   | <2.5             |
| 09/02/03              | 116.70 | 101.34 | 15.36 | SAMPLED ANNUA            |        |        |        |        | ~2.5             |
| 03/18/04 <sup>7</sup> | 116.70 | 102.14 | 14.56 | <50                      | I      | 0.7    |        | 3      | <br><0.5         |
| 09/15/04              | H16.70 | 101.30 | 15.40 | SAMPLED ANNUA            |        |        |        | J<br>  |                  |
| 03/11/05 <sup>7</sup> | 116.70 | 102.50 | 14.20 | <50                      | <0.5   | <0.5   | <0.5   | <0.5   | < 0.5            |
| 09/29/05              | 116.70 | 101.23 | 15.47 | SAMPLED ANNUA            |        | -0.5   | ~0.5   |        |                  |
| 03/24/067             | 116.70 | 102.77 | 13.93 | <50                      | <0.5   | <0.5   | <0.5   | <0.5   | <0.5             |
| 09/12/06              | 116.70 | 102.03 | 14.67 | SAMPLED ANNUA            |        |        | -0.5   | -0.5   |                  |
| 03/05/077             | 116.70 | 102.03 | 14.67 | <50                      | <0.5   | <0.5   | <0.5   | <0.5   | <0.5             |
| 09/21/07              | 116.70 | 101.10 | 15.60 | SAMPLED ANNUA            |        |        |        |        |                  |
| 03/06/08 <sup>7</sup> | 116.70 | 102.20 | 14.50 | <50                      | <0.5   | <0.5   | <0.5   | <0.5   | <0.5             |
| 09/05/08              | 116.70 | 101.24 | 15.46 | SAMPLED ANNUA            |        |        | ~0.5   |        | -0.5             |

|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                       |                   | Camornia    |             |                       |             |                 |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------|-------------------|-------------|-------------|-----------------------|-------------|-----------------|
| WELL ID/<br>DATE | TOC<br>(%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GWE<br>(masl) | DTW<br>(fi.)          | TPH-GRO<br>(µg/L) | В<br>(µg/L) | Т<br>(pg/L) | E<br>(µg/L)           | X<br>(pg/L) | MTBE<br>(Jug/L) |
| MW-5 (cont)      | and the state of t |               | and the second second |                   | N 8 72      | 161-2       | and the second second | 300.04      | (19.1)          |
| 03/30/097        | 116.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 101.90        | 14.80                 |                   |             |             | 1.72.4                |             |                 |
| 09/15/09         | 116.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100.83        |                       | <50               | <0.5        | <0.5        | <0.5                  | <0.5        | <0.5            |
| 03/02/107        | 116.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               | 15.87                 | SAMPLED ANNU      |             |             |                       |             | 5.              |
| 03/02/10         | 110-70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 102.40        | 14.30                 | <50               | <0.5        | <0.5        | <0.5                  | <0.5        | <0.5            |
| C-1              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                       |                   |             |             |                       |             |                 |
| 12/06/90         | 117.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 102.11        | 15.34                 | 1,900             | 17          | 11          | 3.0                   | 21          |                 |
| 06/06/91         | 117.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 102.83        | 14.62                 | 3,400             | 21          | 15          | 11                    |             | -               |
| 12/04/91         | 117.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 102.97        | 14.48                 | 2,700             | 21          | 15          | 13                    | 18<br>23    |                 |
| 6/02/92          | 117.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 102.92        | 14.53                 | 1,900             | 170         | 170         | 13                    | 83          | -               |
| 09/16/92         | 117.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 102.52        | 14.93                 | 810               | 5.8         | 5.7         | 2.0                   | 6.3         | -               |
| 12/21/92         | 117.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 103.72        | 13.73                 | 75                | 2.4         | 2.9         | 1.4                   | 6.3<br>4.7  |                 |
| 03/11/93         | 117.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 103.62        | 13.83                 | 150               | 2.4         | 20          | 3.3                   | 23          | 2               |
| 6/11/93          | 117.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 103.26        | 14.19                 | 400               | 4.3         | 2.3         | 3.5<br>1.0            | 3.5         |                 |
| 9/13/93          | 117.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 102.85        | 14.60                 | 4,100             | 62          | 43          | 34                    | 57          | 0               |
| 2/14/93          | 117.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 103.67        | 13.78                 | 3,100             | 9.5         | 4.5         | 1.2                   | 11          |                 |
| 3/16/94          | 117.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 103.44        | 14.01                 | 410               | 6.3         | 3.1         | 1.2                   | 4.5         | 7               |
| 6/17/94          | 117.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 102.90        | 14.55                 | 3,700             | 100         | 42          | 30                    | 91          | 1.4             |
| 8/29/94          | 117.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 102.96        | 14.49                 | 2,600             | 15          | <0.5        | 6.7                   | 9.7         |                 |
| 2/06/94          | 117.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 104.04        | 13.41                 | 510               | 2.0         | 2.2         | 1.7                   | 9.4         | -               |
| 3/31/95          | 117.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 105.33        | 12.12                 | 5,440             | 9.0         | 2.3         | 2.0                   | 3.6         | 2               |
| 6/24/95          | 117.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 103.45        | 14.00                 | 260               | 5.8         | 1.0         | 0.94                  | 0.88        |                 |
| 9/12/95          | 117.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 103.42        | 14.03                 | 650               | 14          | 1.1         | 1.6                   | 2.4         | -               |
| 2/29/95          | 117.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 104.50        | 12.95                 | 990               | 32          | 6.3         | 4.0                   | 3.2         | 46              |
| 2/29/96          | 117.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 105.27        | 12.18                 | 840               | 2.5         | <1.0        | 2.6                   | 7.3         | <5.0            |
| 6/26/96          | 117.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 103.72        | 13.73                 | 290               | 3.6         | 0.73        | 1.0                   | 1.1         | 9.9             |
| 9/12/96          | 117.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 103.32        | 14.13                 | 1,200             | 17          | 1.8         | 4.0                   | 4.4         | 24              |
| 2/11/96          | 117.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 104.66        | 12.79                 | 7,700             | <10         | 53          | 19                    | 44          | 87              |
| ABANDONED        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                       |                   |             |             | - 7                   |             | 07              |
| C-2              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                       |                   |             |             |                       |             |                 |
| 12/06/90         | 116.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100.82        | 15.34                 | 210               | 140         | 9.0         | 2.0                   | 11          |                 |
| 6/06/91          | 116.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 101.54        | 14.62                 | 4,800             | 340         | 23          | 19                    | 23          | -               |
| 2/04/91          | 116.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100.73        | 15.43                 | 3,900             | 85          | 15          | 9.1                   | 15          | -               |
| )6/02/92         | 116.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 101.74        | 14.42                 | 3,300             | 76          | 9.2         | 14                    | 15          | -               |

| WELL ID/   | TOC    | GWE     | DTW   | TPH-GRO                | B            | Ť            | E                                            | x      | MTBE   |
|------------|--------|---------|-------|------------------------|--------------|--------------|----------------------------------------------|--------|--------|
| DATE       | (fl.)  | (msl)   | (fL)  | (µg/L)                 | (µg/L)       | (µg/L)       | (µg/L)                                       | (µg/L) | (µg/L) |
| C-2 (cont) |        |         |       |                        |              |              |                                              |        |        |
| 09/16/92   | 116.16 | 101.35  | 14.81 | 3,000                  | 16           | 15           | 3.4                                          | 7.5    |        |
| 12/21/92   | 116.16 | 102.79  | 13.37 | 2,200                  | 21           | 12           | 7.1                                          | 15     |        |
| 03/11/93   | 116.16 | 102.69  | 13.47 | 2,200                  | 33           | 24           | 12                                           | 25     |        |
| 06/11/93   | 116.16 | 102.18  | 13.98 | 2,600                  | 21           | 25           | 11                                           | 26     |        |
| 09/13/93   | 116.16 | 101.61  | 14.55 | 2,100                  | 31           | 25           | 18                                           | 39     |        |
| 12/14/93   | 116.16 | 102.46  | 13.70 | 3,800                  | <2.5         | 24           | 12                                           | 20     |        |
| 03/16/94   | 116.16 | 102.51  | 13.65 | 2,600                  | 12           | 15           | 10                                           | 17     |        |
| 06/17/94   | 116.16 | 102.87  | 13.29 | 2,400                  | 17           | 19           | 28                                           | 71     |        |
| 08/29/94   | 116.16 | 111.60  | 4.56  | 3,000                  | 29           | 15           | 20                                           | 4.2    |        |
| 12/06/94   | 116.16 | 102.98  | 13.18 | 1,900                  | 7.9          | 30           | 14                                           | 31     |        |
| 03/31/95   | 116.16 | 104.10  | 12.06 | 890                    | <1.3         | <1.3         | 2.6                                          | <1.3   |        |
| 06/24/95   | 116.16 | 102.19  | 13.97 | 730                    | 4.8          | <0.5         | 5.4                                          | 0.96   |        |
| 09/12/95   | 116.16 | 102.28  | 13.88 | 1,600                  | <2.5         | <2.5         | 5.4                                          | <2.5   |        |
| 12/29/95   | 116.16 | 103.31  | 12.85 | 1,000                  | 9.1          | 2.7          | 8.7                                          | 2.7    | 19     |
| 02/29/96   | 116.16 | 104.09  | 12.07 | 850                    | <2.5         | <2.5         | 8.7                                          | 11     | <12    |
| 06/26/96   | 116.16 | 102.50  | 13.66 | 2,500                  | 14           | <5.0         | 13                                           | 6.3    | <25    |
| 09/12/96   | 116.16 | 102.25  | 13.91 | 1,800                  | 26           | 19           | 17                                           | 31     | 37     |
| 12/11/96   | 116.16 | 103.82  | 12.34 | 2,800                  | <5.0         | 34           | 14                                           | <5.0   | - 41   |
| ABANDONED  |        | N 6-291 |       | n n samm()-∭ () i m () |              | • • •        |                                              | 0.0    |        |
| C-4        |        |         |       |                        |              |              |                                              |        |        |
| 12/06/90   | 116.10 | 98.42   | 17.68 | <50                    | <0.5         | <0.5         | <0.5                                         | -0 E   |        |
| 12/18/90   | 116.10 |         |       | <50                    | <0.5<br><0.5 | <0.5<br><0.5 | <0.5<br><0.5                                 | <0.5   |        |
| 06/06/91   | 116.10 | 99.61   | 16.49 | <50                    | 1.0          | 1.0          | <0.5<br><0.5                                 | <0.5   |        |
| 12/04/91   | 116.10 | 99.28   | 16.82 | 70                     | 6.5          | 9.8          | <0.5<br>1.7                                  | 0.7    |        |
| 06/02/92   | 116.10 | 99.18   | 16.92 | 70                     | 3.0          | 9.8<br>4.4   | 1.7                                          | 8.6    |        |
| 09/16/92   | 116.10 | 98.39   | 17.71 | <50                    | 1.4          | 4.4          | 1.8<br><0.5                                  | 9.0    |        |
| 12/21/92   | 116.10 | 100.74  | 15.36 | <50                    | 0.6          | 0.7          | <0.5<br><0.5                                 | 1.1    |        |
| 03/11/93   | 116.10 | 100.61  | 15.49 | <50                    | <0.5         | <0.5         | <0.5<br><0.5                                 | 1.5    |        |
| 06/11/93   | 116.10 | 99.83   | 16.27 | 52                     | <0.5<br>0.9  | 3.1          | 0.5                                          | <1.5   |        |
| 9/13/93    | 116.10 | 98.92   | 17.18 | 64                     | 0.9          | 1.0          | <0.5                                         | 3.8    |        |
| 12/14/93   | 116.10 | 101.03  | 15.07 | <50                    | <0.5         | 0.8          | <0.5<br><0.5                                 | 1.7    |        |
| 3/16/94    | 116.10 | 100.19  | 15.91 | <50                    | <0.5<br><0.5 | 1.0          | <0.5                                         | 0.7    |        |
| 06/17/94   | 116.10 | 99.46   | 16.64 | 230                    | 0.6          | 2.2          | 2.2                                          | 0.8    |        |
| 08/29/94   | 116.10 | 99.05   | 17.05 | <50                    | <0.5         | <0.5         | <0.5                                         | 11     |        |
|            |        |         | 17.00 | -20                    | <b>∼</b> 0.5 | <b>N</b> .5  | <v.5< td=""><td>&lt;0.5</td><td></td></v.5<> | <0.5   |        |

| 20         20           5.10         101           5.10         102           5.10         100           5.10         101           5.10         101           5.10         101           5.10         101           5.10         102           5.10         103           5.10         103           5.10         107           5.10         108 | .52       14.58         .26       13.84         .05       16.05         87       16.23         .35       14.75         .40       13.70         .30       15.80         67       16.43         .18       12.92                                                                                                                                                                               | <50<br><50<br><50<br><50<br><50<br><50<br><50                                                                                                                                                                                                                                                                                                                                                                          | (µg/L)<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5                                                                                                                                                                                                                                                                                                   | (µg/L)<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5                                                                                                                                                                                                                                                                                                                                                                                                           | E<br>(µg/L)<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5                                                                                                                                                                                                                                                                                                                                                                                                                                    | X<br>(pg/L)<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5 | MTBE<br>(µg/L)<br><br><br><2.5<br><2.5<br><2.5<br><2.5<br><2.5<br><2.5<br><2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5.10       102         5.10       100         5.10       101         5.10       101         5.10       102         5.10       101         5.10       102         5.10       103         5.10       103         5.10       107                                                                                                                     | .26       13.84         .05       16.05         87       16.23         .35       14.75         .40       13.70         .30       15.80         67       16.43         .18       12.92                                                                                                                                                                                                       | <50<br><50<br><50<br><50<br><50<br><50<br><50<br><50<br><50                                                                                                                                                                                                                                                                                                                                                            | <0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5                                                                                                                                                                                                                                                                                                             | <0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5                                                                                                                                                                                                                                                                                                                                                                                                                     | <0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5                | <br><br><2.5<br><2.5<br><2.5<br><2.5<br><2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5.10       102         5.10       100         5.10       101         5.10       101         5.10       102         5.10       101         5.10       102         5.10       103         5.10       103         5.10       107                                                                                                                     | .26       13.84         .05       16.05         87       16.23         .35       14.75         .40       13.70         .30       15.80         67       16.43         .18       12.92                                                                                                                                                                                                       | <50<br><50<br><50<br><50<br><50<br><50<br><50                                                                                                                                                                                                                                                                                                                                                                          | <0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5                                                                                                                                                                                                                                                                                                                     | <0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5                        | <br><br><2.5<br><2.5<br><2.5<br><2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5.10       102         5.10       100         5.10       101         5.10       101         5.10       102         5.10       102         5.10       102         5.10       103         5.10       103         5.10       107                                                                                                                     | .26       13.84         .05       16.05         87       16.23         .35       14.75         .40       13.70         .30       15.80         67       16.43         .18       12.92                                                                                                                                                                                                       | <50<br><50<br><50<br><50<br><50<br><50<br><50                                                                                                                                                                                                                                                                                                                                                                          | <0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5                                                                                                                                                                                                                                                                                                                     | <0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5                        | <br><br><2.5<br><2.5<br><2.5<br><2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5.10 100<br>5.10 99,<br>5.10 101<br>5.10 102<br>5.10 100<br>5.10 103<br>5.10 103                                                                                                                                                                                                                                                                  | .05       16.05         .87       16.23         .35       14.75         .40       13.70         .30       15.80         67       16.43         .18       12.92                                                                                                                                                                                                                              | <50<br><50<br><50<br><50<br><50<br><50                                                                                                                                                                                                                                                                                                                                                                                 | <0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5                                                                                                                                                                                                                                                                                                                             | <0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5                                                                                                                                                                                                                                                                                                                                                                                                                                     | <0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.5<br><0.5<br><0.5<br><0.5<br><0.5<br><0.5                                | <br><2.5<br><2.5<br><2.5<br><2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 5.10 99.<br>5.10 101<br>5.10 102<br>5.10 100<br>5.10 103<br>5.10 103                                                                                                                                                                                                                                                                              | 87       16.23         .35       14.75         .40       13.70         .30       15.80         67       16.43         .18       12.92                                                                                                                                                                                                                                                       | <50<br><50<br><50<br><50<br><50                                                                                                                                                                                                                                                                                                                                                                                        | <0.5<br><0.5<br><0.5<br><0.5<br><0.5                                                                                                                                                                                                                                                                                                                                     | <0.5<br><0.5<br><0.5<br><0.5<br><0.5                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.5<br><0.5<br><0.5<br><0.5<br><0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.5<br><0.5<br><0.5<br><0.5<br><0.5                                        | <pre> &lt;2.5 &lt;2.5 &lt;2.5 &lt;2.5 &lt;2.5</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| .10 102<br>.10 100<br>.10 99.<br>.10 103                                                                                                                                                                                                                                                                                                          | .35       14.75         .40       13.70         .30       15.80         67       16.43         .18       12.92                                                                                                                                                                                                                                                                              | <50<br><50<br><50<br><50                                                                                                                                                                                                                                                                                                                                                                                               | <0.5<br><0.5<br><0.5<br><0.5                                                                                                                                                                                                                                                                                                                                             | <0.5<br><0.5<br><0.5<br><0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <0.5<br><0.5<br><0.5<br><0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.5<br><0.5<br><0.5<br><0.5                                                | <2.5<br><2.5<br><2.5<br><2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| .10 100<br>.10 99.<br>.10 103                                                                                                                                                                                                                                                                                                                     | .40 13.70<br>.30 15.80<br>67 16.43<br>.18 12.92                                                                                                                                                                                                                                                                                                                                             | <50<br><50<br><50                                                                                                                                                                                                                                                                                                                                                                                                      | <0.5<br><0.5<br><0.5                                                                                                                                                                                                                                                                                                                                                     | <0.5<br><0.5<br><0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.5<br><0.5<br><0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.5<br><0.5<br><0.5                                                        | <2.5<br><2.5<br><2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| .10 99.<br>.10 103<br>.10 107                                                                                                                                                                                                                                                                                                                     | .30 15.80<br>67 16.43<br>.18 12.92                                                                                                                                                                                                                                                                                                                                                          | <50<br><50                                                                                                                                                                                                                                                                                                                                                                                                             | <0.5<br><0.5                                                                                                                                                                                                                                                                                                                                                             | <0.5<br><0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <0.5<br><0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.5<br><0.5                                                                | <2.5<br><2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| .10 103                                                                                                                                                                                                                                                                                                                                           | 67 16.43<br>.18 12.92                                                                                                                                                                                                                                                                                                                                                                       | <50                                                                                                                                                                                                                                                                                                                                                                                                                    | <0.5                                                                                                                                                                                                                                                                                                                                                                     | <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.5                                                                        | <2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| .10 107                                                                                                                                                                                                                                                                                                                                           | .18 12.92                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.5                                                                        | -2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                   | .17 10.03                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                   | .17 10.02                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                             | 5,800                                                                                                                                                                                                                                                                                                                                                                                                                  | 16                                                                                                                                                                                                                                                                                                                                                                       | 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 48                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                             | 7,100                                                                                                                                                                                                                                                                                                                                                                                                                  | 19                                                                                                                                                                                                                                                                                                                                                                       | 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 35                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| .10 107                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                             | 8,500                                                                                                                                                                                                                                                                                                                                                                                                                  | 83                                                                                                                                                                                                                                                                                                                                                                       | 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 70                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| .10 107                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                             | 21,000                                                                                                                                                                                                                                                                                                                                                                                                                 | 150                                                                                                                                                                                                                                                                                                                                                                      | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 350                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| .10 107                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                             | 10,000                                                                                                                                                                                                                                                                                                                                                                                                                 | 86                                                                                                                                                                                                                                                                                                                                                                       | 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 85                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| .10 108                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                             | 13,000                                                                                                                                                                                                                                                                                                                                                                                                                 | 68                                                                                                                                                                                                                                                                                                                                                                       | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 110                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| .10 109                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                             | 6,700                                                                                                                                                                                                                                                                                                                                                                                                                  | 100                                                                                                                                                                                                                                                                                                                                                                      | 9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 23                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| .10 107                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| .10 107                                                                                                                                                                                                                                                                                                                                           | .90 10.20                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| .10 108                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             | 720                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| .10 111                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             | 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| .10 107.                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| .10 107.                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| .10 109.                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| .10 107.                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| .10 106.                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             | 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| .10 107.                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| .10 105.                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             | 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| .10 110.                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| .08 107.                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                   | 10         107.           10         108.           10         111.           10         107.           10         107.           10         107.           10         107.           10         107.           10         107.           10         107.           10         106.           10         105.           10         105.           10         110.           08         107. | 10         107.90         10.20           10         108.86         9.24           10         111.85         6.25           10         107.92         10.18           10         107.53         10.57           10         107.18         10.92           10         107.18         10.92           10         107.18         10.92           10         107.16         12.94           10         110.33         7.77 | 10 $107.90$ $10.20$ $7,100$ $10$ $108.86$ $9.24$ $3,300$ $10$ $111.85$ $6.25$ $5,100$ $10$ $107.92$ $10.18$ $6,800$ $10$ $107.53$ $10.57$ $13,000$ $10$ $107.53$ $10.57$ $13,000$ $10$ $107.18$ $10.92$ $12,000$ $10$ $107.18$ $10.92$ $12,000$ $10$ $107.20$ $10.90$ $10,000$ $10$ $105.16$ $12.94$ $4,600$ $10$ $110.33$ $7.77$ $5,400$ $08$ $107.82$ $10.26$ $10,000$ | 10 $107.90$ $10.20$ $7,100$ $65$ $10$ $108.86$ $9.24$ $3,300$ $<10$ $10$ $111.85$ $6.25$ $5,100$ $<10$ $10$ $111.85$ $6.25$ $5,100$ $<10$ $10$ $107.92$ $10.18$ $6,800$ $<20$ $10$ $107.53$ $10.57$ $13,000$ $150$ $10$ $107.53$ $10.57$ $13,000$ $120$ $10$ $107.18$ $10.92$ $12,000$ $120$ $10$ $107.18$ $10.92$ $12,000$ $120$ $10$ $107.20$ $10.90$ $10,000$ $<10$ $10$ $105.16$ $12.94$ $4,600$ $95$ $10$ $110.33$ $7.77$ $5,400$ $87$ $08$ $107.82$ $10.26$ $10,000$ $<20$ | 10 $107.90$ $10.20$ $7,100$ $65$ $16$ $10$ $108.86$ $9.24$ $3,300$ $<10$ $<10$ $10$ $111.85$ $6.25$ $5,100$ $<10$ $37$ $10$ $107.92$ $10.18$ $6,800$ $<20$ $<20$ $10$ $107.53$ $10.57$ $13,000$ $150$ $<10$ $10$ $107.53$ $10.57$ $13,000$ $150$ $<10$ $10$ $107.18$ $10.92$ $12,000$ $120$ $74$ $10$ $106.43$ $11.67$ $8,800$ $24$ $<10$ $10$ $107.20$ $10.90$ $10,000$ $<10$ $<10$ $10$ $105.16$ $12.94$ $4,600$ $95$ $41$ $10$ $110.33$ $7.77$ $5,400$ $87$ $16$ $08$ $107.82$ $10.26$ $10,000$ $<20$ $<20$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                       | 10 $107.90$ $10.20$ $7,100$ $65$ $16$ $<10$ $21$ $10$ $108.86$ $9.24$ $3,300$ $<10$ $<10$ $12$ $14$ $10$ $111.85$ $6.25$ $5,100$ $<10$ $37$ $23$ $21$ $10$ $107.92$ $10.18$ $6,800$ $<20$ $<20$ $<20$ $<20$ $10$ $107.92$ $10.18$ $6,800$ $<20$ $<20$ $<20$ $<20$ $10$ $107.53$ $10.57$ $13,000$ $150$ $<10$ $38$ $35$ $10$ $109.39$ $8.71$ $26,000$ $<20$ $<20$ $<20$ $<20$ $10$ $107.18$ $10.92$ $12,000$ $120$ $74$ $45$ $70$ $10$ $106.43$ $11.67$ $8,800$ $24$ $<10$ $35$ $36$ $10$ $105.16$ $12.94$ $4,600$ $95$ $41$ $20$ $25$ $10$ $110.33$ $7.77$ $5,400$ $87$ $16$ $32$ $31$ $08$ $107.82$ $10.26$ $10,000$ $<20$ $<20$ $<20$ $35$ $37$ |

| WELL ID/   | TOC | GWE   | DTW   | TPH-GRO | B            | T            | E            | x            | MTBE         |
|------------|-----|-------|-------|---------|--------------|--------------|--------------|--------------|--------------|
| DATE       | (1) | (msl) | (ft.) | (µg/L)  | (µg/L)       | (µg/L)       | (µg/L)       | (µg/L)       | (µg/L)       |
| TRIP BLANK |     |       |       |         |              |              |              |              |              |
| 12/06/90   |     |       |       | <50     | <0.5         | <0.5         | <0.5         | <0.5         |              |
| 12/18/90   |     |       |       | <50     | <0.5         | <0.5         | <0.5         | <0.5         |              |
| 06/06/91   |     |       |       | <50     | <0.5         | <0.5         | <0.5         | <0.5         |              |
| 12/04/91   |     |       |       | <50     | <0.5         | <0.5         | <0.5         | <0.5         |              |
| 06/02/92   |     |       |       | <50     | <0.5         | <0.5         | <0.5         | <0.5         |              |
| 09/16/92   |     |       |       | <50     | <0.5         | <0.5         | <0.5         | <0.5         |              |
| 2/21/92    |     |       |       | <50     | <0.5         | <0.5         | <0.5         | <0.5         |              |
| 03/11/93   |     |       |       | <50     | <0.5         | <0.5         | <0.5         | <1.5         |              |
| 06/11/93   |     |       |       | <50     | <0.5         | <0.5         | <0.5         | <1.5         |              |
| 09/13/93   |     |       |       | <50     | <0.5         | <0.5         | <0.5         | <1.5         |              |
| 12/14/93   |     |       |       | <50     | <0.5         | <0.5         | <0.5         | <0.5         |              |
| 03/16/94   |     |       |       | <50     | <0.5         | <0.5         | <0.5         | <0.5         |              |
| 6/17/94    |     |       |       | <50     | <0.5         | <0.5         | <0.5         | <0.5         |              |
| 8/29/94    |     |       |       | <50     | <0.5         | <0.5         | <0.5         | <0.5         |              |
| 2/06/94    |     |       |       | <50     | <0.5         | <0.5         | <0.5         | <0.5         |              |
| 3/31/95    |     |       |       | <50     | <0.5         | <0.5         | <0.5         | <0.5         |              |
| 6/24/95    |     |       |       | <50     | <0.5         | <0.5         | <0.5         | <0.5         |              |
| 9/12/95    |     |       |       | <50     | <0.5         | <0.5         | <0.5         | <0.5         |              |
| 2/29/95    |     |       |       | <50     | <0.5         | <0.5         | <0.5         | <0.5         |              |
| 2/29/96    |     |       |       | <50     | <0.5         | <0.5         | <0.5         | <0.5         | <br><2.5     |
| 6/26/96    |     |       |       | <50     | <0.5         | <0.5         | <0.5         | <0.5         | <2.5<br><2.5 |
| 9/12/96    |     |       |       | <50     | <0.5         | <0.5         | <0.5         | <0.5         |              |
| 2/11/96    |     |       |       | <50     | <0.5         | <0.5         | <0.5         | <0.5         |              |
| 3/31/97    |     |       |       | <50     | <0.5         | <0.5         | <0.5         | <0.5         | <2.5<br><2.5 |
| 6/29/97    |     |       |       | <50     | <0.5         | <0.5         | <0.5         | <0.5         | <2.5<br><2.5 |
| 9/30/97    |     |       |       | <50     | <0.5         | <0.5         | <0.5         | <0.5         | <2.5<br><2.5 |
| 2/12/97    |     |       |       | <50     | <0.5         | <0.5         | <0.5         | <0.5         | <2.5<br><2.5 |
| 2/19/98    |     |       |       | <50     | <0.5         | <0.5         | <0.5         | <0.5<br><0.5 |              |
| 6/16/98    |     |       |       | <50     | <0.5         | <0.5         | <0.5<br><0.5 | <0.5<br><0.5 | <2.5         |
| 8/31/98    |     |       |       | <50     | <0.5         | <0.5         | <0.5<br><0.5 | <0.5<br><0.5 | <2.5         |
| 2/23/98    |     |       |       | <50     | <0.5<br><0.5 | <0.5         | <0.5<br><0.5 |              | <2.5         |
| 3/09/99    |     | -     |       | <50     | <0.5         | <0.5         | <0.5<br><0.5 | <0.5         | 2.9          |
| 9/30/99    |     |       |       | <50     | <0.5<br><0.5 |              |              | <0.5         | <2.5         |
| 2/29/00    |     |       |       | <50     | <0.5<br><0.5 | <0.5<br><0.5 | <0.5<br><0.5 | <0.5<br><0.5 | <5.0<br><5.0 |

| WELL ID/<br>DATE             | TOC<br>(ft.) | GWE<br>(msl) | DTW<br>(ft.) | TPH-GRO<br>(µg/L) | B<br>(µg/L)   | Т<br>(µg/L) | E<br>(µg/L) | X.<br>(pg/L) | MTBI<br>(µg/L) |
|------------------------------|--------------|--------------|--------------|-------------------|---------------|-------------|-------------|--------------|----------------|
| TRIP BLANK (con              | nt)          |              |              |                   |               |             |             |              |                |
| 09/18/00                     | -            | -            | -            | <50               | <0.50         | <0.50       | <0.50       | <0.50        | <2.5           |
| 03/21/01                     | -            | - H- H-      | -            | <50               | <0.50         | <0,50       | <0.50       | <0.50        | <2.5           |
| 09/04/01                     | 4            | -            | ÷.           | <50               | <0.50         | <0.50       | <0.50       | <1.5         | <2.5           |
| QA                           |              |              |              |                   | Contra Contra |             | . (         |              |                |
| 3/22/02                      | -            | -            | -            | <50               | <0.50         | <0.50       | <0.50       | <1.5         | 2.5            |
| 09/16/02                     |              | -            | -            | <50               | <0.50         | <0.50       | <0.50       | <1.5         | <2.5           |
| 3/28/03                      |              |              | -            | <50               | <0.50         | <0.50       | <0.50       | <1.5         | 2.5            |
| <b>)9/02/03</b> <sup>7</sup> |              | ÷.           | ÷            | <50               | <0.5          | <0.5        | <0.5        | <0.5         | <0.5           |
| 3/18/047                     |              | -            | -            | <50               | <0.5          | <0.5        | <0.5        | <0.5         | <0.5           |
| 9/15/04 <sup>7</sup>         | -            | -            |              | <50               | <0.5          | <0.5        | <0.5        | <0.5         | <0.5           |
| 03/11/057                    | -            |              | -            | <50               | <0.5          | <0,5        | <0.5        | <0.5         | <0.5           |
| 9/29/057                     | -            | -            | -            | <50               | <0.5          | <0.5        | <0.5        | <0.5         | <0.5           |
| 3/24/067                     |              | -            | -            | <50               | <0.5          | <0.5        | <0.5        | <0.5         | <0.5           |
| 9/12/067                     | -            |              | -            | <50               | <0.5          | <0.5        | <0.5        | <0.5         | <0.5           |
| 3/05/077                     | -            |              | -            | <50               | <0.5          | <0.5        | <0.5        | <0.5         | <0.5           |
| 9/21/077                     | -            |              | **           | <50               | <0.5          | <0.5        | <0.5        | <0.5         | <0.5           |
| 3/06/08 <sup>7</sup>         | -            |              | -            | <50               | <0.5          | <0.5        | <0.5        | <0.5         | <0.5           |
| 9/05/087                     | -            | -            |              | <50               | <0.5          | <0.5        | <0.5        | <0.5         | <0.5           |
| 3/30/097                     |              | -            | -            | <50               | <0.5          | <0.5        | <0.5        | <0.5         |                |
| DISCONTINUED                 |              |              |              |                   | -0.2          | -0.2        | ~0.5        | ~0.3         | <0.5           |

#### **EXPLANATIONS:**

Groundwater monitoring data and laboratory analytical results prior to February 9, 2000, were compiled from reports prepared by Blaine Tech Services, Inc.

TOC = Top of Casing (ft.) = FeetGWE = Groundwater Elevation (msl) = Mean sea level DTW = Depth to Water TPH = Total Petroleum Hydrocarbons

GRO = Gasoline Range Organics B = BenzeneT = TolueneE = EthylbenzeneX = XylenesMTBE = Methyl Tertiary Butyl Ether

 $(\mu g/L) =$  Micrograms per liter -- = Not Measured/Not Analyzed (D) = Duplicate QA = Quality Assurance/Trip Blank

- 1 ORC installed.
- 2 Transfer of title to Tri-Star Partnership, Inc. effective July 14, 1998.
- 3 ORC in well.
- 4 Laboratory report indicates gasoline C6-C12.
- 5 MTBE by EPA Method 8260.
- 6 Split samples taken by Harding ESE.
- 7 BTEX and MTBE by EPA Method 8260.
- 8 ORC removed from well.

#### Table 2 **Dissolved Oxygen Concentrations** Former Chevron Service Station #9-3864 5101 Telegraph Avenue Oakland, California

| WELL ID           | DATE                  | PRE-PURGE<br>(mg/L)                       | POST-PURGE<br>(mg/L) |
|-------------------|-----------------------|-------------------------------------------|----------------------|
| C-3 <sup>1</sup>  | 09/18/00              | 3.64                                      | -                    |
|                   | 03/21/01              | 1.00                                      | **                   |
|                   | 09/04/01              | 1.40                                      |                      |
|                   | 03/22/02              | 1.10                                      | -                    |
|                   | 09/16/02              | 1.20                                      |                      |
|                   | 03/28/03 <sup>2</sup> |                                           |                      |
|                   | 09/02/03              | 0.80                                      |                      |
|                   | 03/18/043             | 0.56                                      | 2                    |
| WW-3 <sup>1</sup> | 09/18/00              | 4.01                                      | . <u></u>            |
|                   | 03/21/01              | 1.30                                      |                      |
|                   | 09/04/01              | <b>INACCESSIBLE - CAR PARKED OVER WEL</b> | .L                   |
|                   | 03/22/02              | 1.30                                      | -                    |
|                   | 09/16/02              | 1.00                                      |                      |
|                   | 03/28/03 <sup>2</sup> |                                           |                      |
|                   | 09/02/03              | 0.90                                      | 4                    |
|                   | 03/18/04 <sup>3</sup> | 1.21                                      | e.                   |
|                   |                       |                                           |                      |

#### **EXPLANATIONS:**

(mg/L) = Milligrams per liter

-- Not Measured

<sup>1</sup> ORC in well.

<sup>2</sup> Meter inoperable; unable to take Dissolved Oxygen measurements
 <sup>3</sup> ORC removed from well.

# Table 3 Groundwater Analytical Results - Oxygenate Compounds Former Chevron Service Station #9-3864 5101 Telegraph Avenue Oakland, California

| WELL ID  | DATE     | TBA              | MTBE            | DIPE   | ETBE   | TAME   | 1,2-DCA | EDB    |
|----------|----------|------------------|-----------------|--------|--------|--------|---------|--------|
| <u> </u> |          | (µg/L)           | (µg/L)          | (µg/L) | (µg/L) | (µg/L) | (µg/L)  | (µg/L) |
| C-3      | 09/04/01 | <100             | <2              | <2     | <2     | <2     | <2      | 2      |
|          | 09/02/03 |                  | <0.5            |        |        |        |         |        |
|          | 03/18/04 |                  | <0.5            |        |        |        |         |        |
|          | 09/15/04 |                  | 10              |        |        |        |         |        |
|          | 03/11/05 |                  | <0.5            |        |        |        |         |        |
|          | 09/29/05 |                  | <0.5            |        |        |        |         |        |
|          | 03/24/06 | INACCESSIBLE - ( | CAR PARKED OVER | R WELL |        |        |         |        |
|          | 09/12/06 |                  | <1              |        |        |        |         |        |
|          | 03/05/07 |                  | <0.5            |        |        |        |         |        |
|          | 09/21/07 | •                | <0.5            |        |        |        |         |        |
|          | 03/06/08 | ••               | <0.5            |        |        | ••     |         |        |
| 09       | 09/05/08 |                  | <0.5            |        |        |        |         |        |
|          | 03/30/09 |                  | <0.5            |        |        |        |         |        |
| 09       | 09/15/09 | ••               | <0.5            |        |        |        |         |        |
|          | 03/02/10 | -                | <0.5            |        | -      | -      |         |        |
|          |          |                  |                 |        |        |        |         |        |
| IW-1     | 09/04/01 | <100             | <2              | <2     | ~2     | <2     | <2      | <2     |
|          | 03/18/04 |                  | <0.5            | -      | 2      |        | -       |        |
|          | 09/15/04 | SAMPLED ANNUA    |                 |        | -      | -      | -       |        |
|          | 03/11/05 |                  | <0.5            |        |        |        |         | -      |
|          | 03/24/06 |                  | <0.5            |        | 120    |        | -       |        |
|          | 03/05/07 |                  | <0.5            | -      | -      |        |         |        |
|          | 03/06/08 |                  | <0.5            | -      | -      |        | -       |        |
|          | 03/30/09 |                  | <0.5            | -      | -      |        | -       |        |
|          | 03/02/10 | _                | <0.5            | -      | -      | -      | -       | -      |
|          |          |                  |                 |        |        |        |         |        |
| W-2      | 09/04/01 | <100             | <2              | <2     | <2     | <2     | 2       | <2     |
|          | 03/18/04 |                  | <0.5            | -      | - in 1 |        |         | -      |
|          | 09/15/04 | SAMPLED ANNUA    | LLY             |        | -      |        | 1 ++ 1  |        |
|          | 03/11/05 |                  | <0.5            | -      |        |        | 1.2     | -      |
|          | 03/24/06 |                  | <0.5            |        |        |        | -       | -      |
|          | 03/05/07 |                  | <0.5            |        | -      | -      | -       |        |

# Table 3 Groundwater Analytical Results - Oxygenate Compounds Former Chevron Service Station #9-3864 5101 Telegraph Avenue Oakland, California

| WELL ID    | DATE     | ТВА<br>(µg/L)     | МТВЕ<br>(µg/L) | DIPE<br>(µg/L) | ETBE<br>(pg/L) | TAME<br>(#g/L) | 1,2-DCA<br>(µg/L) | EDB<br>(pg/L) |
|------------|----------|-------------------|----------------|----------------|----------------|----------------|-------------------|---------------|
| W-2 (cont) | 03/06/08 | -                 | <0.5           |                | -              |                |                   | -             |
|            | 03/30/09 | -                 | <0.5           | 4              | -              | -              | -                 | -             |
|            | 03/02/10 | -                 | <0,5           | -              | -              | -              | -                 | ÷             |
| MW-3       | 09/02/03 |                   | <0.5           |                | -              |                | -                 | 2             |
|            | 03/18/04 |                   | <0.5           |                | -              |                | **                | -             |
|            | 09/15/04 | INACCESSIBLE - CA |                | R WELL         | -              |                | -                 | -             |
|            | 03/11/05 |                   | <0.5           |                |                |                |                   | -             |
| (          | 09/29/05 |                   | <0.5           |                |                | 2              | -                 |               |
|            | 03/24/06 |                   | <0.5           |                | -              | -              | -                 |               |
|            | 09/12/06 |                   | <0.5           |                | *              |                | -                 |               |
|            | 03/05/07 |                   | <0.5           |                | *              | -              | -                 | (44.)         |
|            | 09/21/07 | ••                | <0.5           |                | +              | -              | -                 |               |
|            | 03/06/08 |                   | <0.5           |                |                | -              |                   | -             |
|            | 09/05/08 | ••                | <0.5           |                |                | - 22           | +                 |               |
|            | 03/30/09 |                   | <0.5           |                | -              | -              | -                 | -             |
|            | 09/15/09 | INACCESSIBLE      |                |                | -              | -              | (H) (H)           |               |
|            | 03/02/10 |                   | <0.5           |                |                | -              | -                 | -             |
|            |          |                   |                |                |                |                |                   |               |
| MW-5       | 09/04/01 | <100              | <2             | <2             | <2             | <2             | <2                | <2            |
|            | 03/18/04 |                   | <0.5           |                |                |                |                   |               |
|            | 09/15/04 | SAMPLED ANNUAL    |                |                |                |                |                   |               |
|            | 03/11/05 | **                | <0.5           |                |                |                |                   |               |
|            | 03/24/06 |                   | <0.5           |                |                |                |                   |               |
|            | 03/05/07 |                   | <0.5           |                |                |                | **                |               |
|            | 03/06/08 |                   | <0.5           |                |                |                |                   |               |
|            | 03/30/09 |                   | <0.5           |                |                |                | ••                |               |
|            | 03/02/10 |                   | <0.5           |                |                |                |                   | _             |

# Table 3 Groundwater Analytical Results - Oxygenate Compounds Former Chevron Service Station #9-3864 5101 Telegraph Avenue Oakland, California

#### **EXPLANATIONS:**

TBA = t-Butyl alcohol MTBE = Methyl Tertiary Butyl Ether DIPE = di-Isopropyl ether ETBE = Ethyl t-butyl ether TAME = t-Amyl methyl ether 1,2-DCA = 1,2-Dichloroethane EDB = 1,2-Dibromoethane  $(\mu g/L) =$  Micrograms per liter -- = Not Analyzed

#### **ANALYTICAL METHOD:**

EPA Method 8260 for Oxygenate Compounds

#### STANDARD OPERATING PROCEDURE -GROUNDWATER SAMPLING

Gettler-Ryan Inc. (GR) field personnel adhere to the following procedures for the collection and handling of groundwater samples prior to analysis by the analytical laboratory. All work is performed in accordance with the GR Health & Safety Plan and all client-specific programs. The scope of work and type of analysis to be performed is determined prior to commencing field work.

Prior to sampling, the presence or absence of free-phase hydrocarbons is determined using an interface probe. Product thickness, if present, is measured to the nearest 0.01 foot and is noted in the field notes. In addition, all depth to water level measurements are collected with a static water level indicator and are also recorded in the field notes, prior to purging and sampling any wells.

After water levels are collected and prior to sampling, if purging is to occur, each well is purged a minimum of three well casing volumes of water using pre-cleaned pumps (stack, peristaltic or Grundfos), or disposable bailers. Temperature, pH and electrical conductivity are measured a minimum of three times during the purging (additional parameters such as dissolved oxygen, oxidation reduction potential, turbidity may also be measured, depending on specific scope of work.). Purging continues until these parameters stabilize.

Groundwater samples are collected using disposable bailers. The water samples are transferred from the bailer into appropriate containers. Pre-preserved containers, supplied by analytical laboratories, are used. When pre-preserved containers are not available, the laboratory is instructed to preserve the sample as appropriate. Duplicate samples are collected for the laboratory to use in maintaining quality assurance/quality control standards, as directed by the scope of work. The samples are labeled to include the job number, sample identification, collection date and time, analysis, preservation (if any), and the sample collector's initials. The water samples are placed in a cooler, maintained at 4°C for transport to the laboratory. Once collected in the field, all samples are maintained under chain of custody until delivered to the laboratory.

The chain of custody document includes the job number, type of preservation, if any, analysis requested, sample identification, date and time collected, and the sample collector's name. The chain of custody is signed and dated (including time of transfer) by each person who receives or surrenders the samples, beginning with the field personnel and ending with the laboratory personnel.

A laboratory supplied trip blank accompanies each sampling set. The trip blank is analyzed for some or all of the same compounds as the groundwater samples.

As requested by Chevron Environmental Management Company, the purge water and decontamination water generated during sampling activities is transported by IWM to Chemical Waste Management located in Kettleman Hills, California.

N;\California\forms\chevron-SOP-Sept. 2009



| Client/Facility#:<br>Site Address:<br>City:                                                                                                                                                                                                  | Chevron #9<br>5101 Telega<br>Oakland, Ca  | aph Avenue                                                                                                                                                                                             |                                   | t Date:                                 | 386358<br>3-2<br>50-2                                                                                                            | 10                                                                                                                              |                                                        | (inclusive)                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------|
| Well ID<br>Well Diameter<br>Total Depth<br>Depth to Water<br>Depth to Water w<br>Purge Equipment:<br>Disposable Bailer<br>Stainless Steel Bailer<br>Stack Pump<br>Suction Pump<br>Grundfos<br>Peristaltic Pump<br>QED Bladder Pump<br>Other: | 2-9.08<br>13-48<br>15-60<br>W 80% Recharg | n.<br>t.<br>L. Check if wate<br>xVF Ø.17 = 2<br>e [(Height of Water Column<br>Sampling Equi<br>Disposable Bailer<br>Discrete Bailer<br>Discrete Bailer<br>Peristaltic Pump<br>QED Bladder Pu<br>Other: | x 0.20) + DTW]: _<br>pment:<br>er | 3/4"= 0.02<br>4"= 0.66<br>then 0.50 ft. | timated Purge<br>Time Star<br>Time Con<br>Depth to I<br>Depth to I<br>Hydrocart<br>Visual Co<br>Skimmer<br>Amt Remo<br>Water Rem | 2"= 0.17<br>6"= 1.50<br>e Volume:<br>npleted:<br>Water:<br>Water:<br>oon Thicknee<br>nfirmation/D<br>/ Absorbant<br>oved from S | ss:<br>escription:<br>Sock (circle<br>kimmer:<br>fell: | gal.<br>ft<br>ft<br>ft<br>ft<br>ft<br>ft<br>ft<br>ft<br>ft |
| Start Time (purge)<br>Sample Time/Dat<br>Approx. Flow Rate<br>Did well de-water<br>Time<br>(2400 hr.)<br><u>1046</u><br><u>1052</u><br><u>1057</u>                                                                                           | e: <u>//////</u><br>e:                    | 3-2-10 Water                                                                                                                                                                                           | tyTemper                          | lean_0                                  |                                                                                                                                  | Sampling:<br>0<br>(n                                                                                                            | nV)                                                    |                                                            |

|           | LABORATORY INFORMATION |         |               |            |                               |  |  |  |  |  |  |
|-----------|------------------------|---------|---------------|------------|-------------------------------|--|--|--|--|--|--|
| SAMPLE ID | (#) CONTAINER          | REFRIG. | PRESERV. TYPE | LABORATORY | ANALYSES                      |  |  |  |  |  |  |
| C-3       | 6 x voa vial           | YES     | HCL           | LANCASTER  | TPH-GRO(8015)/BTEX+MTBE(8260) |  |  |  |  |  |  |
|           | <u></u>                |         | <u> </u>      |            |                               |  |  |  |  |  |  |
| <u> </u>  | ┟╴───┟                 | ·       |               |            |                               |  |  |  |  |  |  |
|           |                        |         |               | <u> </u>   |                               |  |  |  |  |  |  |
|           |                        |         |               |            |                               |  |  |  |  |  |  |
|           |                        |         |               |            |                               |  |  |  |  |  |  |
|           |                        |         |               | ······     |                               |  |  |  |  |  |  |
| L         | L                      |         |               |            |                               |  |  |  |  |  |  |

#### COMMENTS:

Add/Replaced Lock: \_\_\_\_\_

Add/Replaced Bolt: \_\_\_\_



| Client/Facility#:      | Chevron #9     | 9-3864         |                                 | Job Number:             | 386358                |                      |                  |
|------------------------|----------------|----------------|---------------------------------|-------------------------|-----------------------|----------------------|------------------|
| Site Address:          | 5101 Teleg     | raph Ave       | nue                             | Event Date:             | * <u></u>             | -10                  | -<br>(incluciva) |
| City:                  | Oakland, C     |                |                                 | Sampler:                | Jor                   |                      | (inclusive)      |
|                        |                |                |                                 |                         |                       |                      |                  |
| Well ID                | mw -1          |                |                                 | Date Monitored          | 3-2.                  | 10                   |                  |
| Well Diameter          |                | in.            | Volu                            | me 3/4"= 0.             | .02 1"= 0.04          | 2"= 0.17 3"= 0.3     |                  |
| Total Depth            | 21.57          | <u>ft.</u>     | Fact                            | or (VF) 4"= 0.          |                       | 6"= 1.50 12"= 5.80   |                  |
| Depth to Water         |                |                | Check if water colu             |                         |                       |                      |                  |
| <b>D</b>               | 9.82           | xVF            | 17 = 1.67                       | x3 case volume          | ■ Estimated Purge     | e Volume: <u>5</u>   | _ gal.           |
| Depth to Water v       | w/ 80% Recharg | Je [(Height of | Water Column x 0.20)            | + dtwj: <u>13. 7</u>    |                       |                      |                  |
| Purge Equipment:       |                |                | Sampling Equipment              |                         | Time Star<br>Time Con |                      | (2400 hrs)       |
| Disposable Bailer      | /              |                | Disposable Bailer               |                         | Depth to I            | Product:             | Z ft             |
| Stainless Steel Bailer |                |                | Pressure Bailer                 |                         | Depth to 1            |                      | ft               |
| Stack Pump             |                |                | Discrete Bailer                 |                         |                       | oon Thickness:       |                  |
| Suction Pump           |                | F              | Peristaltic Pump                | ······                  |                       |                      |                  |
| Grundfos               |                | C              | ED Bladder Pump                 |                         | Skimmer               | Absorbant Sock (circ | e one)           |
| Peristaltic Pump       |                | C              | Other:                          |                         | Amt Remo              | ved from Skimmer:    |                  |
| QED Bladder Pump       |                |                |                                 |                         | Water Rei             |                      | gal              |
| Other:                 | <u> </u>       |                |                                 |                         | Product Tr            | ansferred to:        |                  |
| Chart Time (           |                |                |                                 |                         |                       |                      |                  |
| Start Time (purge)     |                | 201            | Weather Co                      | / /                     | lam                   |                      |                  |
| Sample Time/Dat        |                |                |                                 |                         | _Odor: Y /            | レ                    |                  |
| Approx. Flow Rat       |                |                | Sediment D                      |                         |                       |                      |                  |
| Did well de-water      |                | f yes, Time    | : Volu                          | me:                     | gal. DTW @ :          | Sampling: <u>12.</u> | 36               |
| Time<br>(2400 hr.)     | Volume (gal.)  | pН             | Conductivity<br>(µmhos/cm - (s) | Temperature             | D.O.                  | ORP                  |                  |
| 08-11                  | 16             | - 24           | (primosran - po)                | (Ce/F)                  | (mg/L)                | (mV)                 |                  |
| 0008                   |                | 7.57           | 1296                            | 18.0                    |                       |                      |                  |
| 0017                   |                | 7.4.5          | 1272                            | 11.7                    |                       |                      |                  |
|                        |                |                |                                 |                         |                       | •••                  |                  |
|                        |                |                |                                 | ·                       |                       |                      |                  |
| SAMPLEID               | (#) CONTAINER  | REFRIG.        | ABORATORY IN                    |                         |                       |                      |                  |
| MW-1                   | x voa vial     |                | PRESERV. TYPE<br>HCL            | LABORATORY<br>LANCASTER |                       | ANALYSES             |                  |
|                        |                |                |                                 | LANCADIER               |                       | BTEX+MTBE(8260)      |                  |
|                        |                |                |                                 |                         |                       |                      |                  |
|                        |                |                |                                 |                         |                       | <u> </u>             |                  |
|                        |                | 1              |                                 |                         |                       |                      |                  |

COMMENTS:

Add/Replaced Lock: \_\_\_\_\_

Add/Replaced Plug: \_\_\_\_\_

Add/Replaced Bolt: \_\_\_\_



| Client/Facility#                     | Chevron #9                            | -3864          |                      | Job Number:         | 386358                            |                    |                          |
|--------------------------------------|---------------------------------------|----------------|----------------------|---------------------|-----------------------------------|--------------------|--------------------------|
| Site Address:                        | 5101 Telegi                           | raph Ave       | nue                  | Event Date:         | 3-2-10                            |                    | (inclusive)              |
| City:                                | Oakland, C                            |                | ····                 | Sampler:            | 500                               |                    | (inclusive)              |
|                                      |                                       |                |                      |                     |                                   |                    |                          |
| Well ID                              | Mw-2                                  |                |                      | Date Monitored:     | 3-2.10                            | )                  |                          |
| Well Diameter                        | 2                                     | in.            | Volur                | me 3/4"= 0.         |                                   | 0.17 3*= 0.38      | <b>'</b> 1               |
| Total Depth                          | 24.361                                | ft.            |                      | or (VF) 4"≃ 0.      |                                   | 1.50 12*= 5.80     |                          |
| Depth to Water                       | 10.69                                 |                | Check if water colun | nn is less then 0.5 | 50 ft.                            |                    | J                        |
|                                      | _13.67                                | xvf <u></u>    | 17 = 2.32            | x3 case volume      | = Estimated Purge Volu            | me:                | gal.                     |
| Depth to Water                       | w/ 80% Recharg                        | IE [(Height of | Water Column x 0.20) | + dtwj: <u>13-4</u> | 2                                 |                    |                          |
| Purge Equipment:                     |                                       |                | Sampling Equipment:  |                     | Time Started:<br>Time Complete    | d:                 | (2400 hrs)<br>(2400 hrs) |
| Disposable Bailer                    |                                       |                | Disposable Bailer    | /                   | Depth to Produ                    | ct:/               | (2400 his)               |
| Stainless Steel Baile                |                                       |                | Pressure Bailer      |                     | Depth to Water                    |                    | ft                       |
| Stack Pump                           |                                       | 0              | Discrete Bailer      | <u> </u>            | Hydrocarbon Ti<br>Visual Confirma | itlon/Description: | ft                       |
| Suction Pump                         |                                       | F              | Peristaltic Pump     |                     |                                   |                    |                          |
| Grundfos                             | <u> </u>                              |                | ED Bladder Pump      | ·                   | Skimmer / Abso<br>Amt Removed f   | rbant Sock (circle |                          |
| Peristaltic Pump<br>QED Bladder Pump | · · · · · · · · · · · · · · · · · · · | C              | )ther:               |                     | Amt Removed f                     |                    | gai                      |
| Other:                               |                                       |                |                      |                     | Water Removed                     |                    | gui                      |
|                                      |                                       |                |                      |                     | Product Transfe                   | rred to:           |                          |
| Start Time (purge                    | ): 0845                               |                | Weather Co           | nditions:           | Rain                              |                    |                          |
| Sample Time/Da                       |                                       | 3-2-10         |                      |                     | Odor: Y / OD                      |                    |                          |
| Approx. Flow Ra                      |                                       | gpm.           | Sediment De          |                     |                                   |                    |                          |
| Did well de-water                    | r?li                                  | f yes, Time    |                      | · ·                 | gal. DTW @ Sam                    | oling: <u>11.5</u> | 1                        |
| Time                                 | Volume (cel)                          | -11            | Conductivity         | Temperature         | D. <b>O</b> .                     | ORP                |                          |
| (2400 hr.)                           | Volume (gal.)                         | рH             | (µmhos/cm (µS)       | 0 / F )             | (mg/L)                            | (mV)               |                          |
| 0855                                 | 2.5                                   | 7.30           | 994                  | _18.1               |                                   |                    |                          |
| 0902                                 |                                       | 7:25           | 1020                 | 18.0                |                                   |                    |                          |
| 0908                                 | <u> </u>                              | 1.23           | 1015                 | 17.7                |                                   |                    |                          |
|                                      |                                       |                |                      |                     |                                   |                    |                          |
|                                      |                                       |                | ABORATORY IN         | FORMATION           |                                   |                    |                          |
| SAMPLE ID<br>M.W-V                   | (#) CONTAINER                         | REFRIG.        | PRESERV. TYPE        | LABORATORY          |                                   | ALYSES             |                          |
| 11.0-0                               | <u>()</u> x voa vial                  | YES            | HCL                  | LANCASTER           | TPH-GRO(8015)/BTE)                | (+MTBE(8260)       |                          |

| MW-V |                                       | YES | LANCASTER    | TPH-GRO(8015)/BTEX+MTBE(8260)         |
|------|---------------------------------------|-----|--------------|---------------------------------------|
|      | 82                                    |     | <br>         |                                       |
|      | I                                     |     |              |                                       |
|      | · · · · · · · · · · · · · · · · · · · |     |              |                                       |
|      |                                       |     | <br>         |                                       |
|      |                                       |     | <br>         |                                       |
|      |                                       |     |              |                                       |
|      |                                       |     |              | · · · · · · · · · · · · · · · · · · · |
|      |                                       |     |              | ······                                |
|      |                                       |     | <br>f        |                                       |
|      | ,,,,,                                 |     | <br><u> </u> |                                       |

#### COMMENTS:

Add/Replaced Lock:

| Add/Replaced | Plug: _ |
|--------------|---------|
|--------------|---------|

Add/Replaced Bolt: \_\_\_\_



| Client/Facility#:                    | Chevron #9-38      | 64                              | Job Number:                                   | 386358                                   |                          |
|--------------------------------------|--------------------|---------------------------------|-----------------------------------------------|------------------------------------------|--------------------------|
| Site Address:                        | 5101 Telegraph     | Avenue                          | Event Date:                                   | 3-2-10                                   | (inclusive)              |
| City:                                | Oakland, CA        |                                 | Sampler:                                      | For                                      |                          |
|                                      |                    |                                 |                                               |                                          |                          |
| Well ID                              | mw-3               |                                 | Date Monitored:                               | 3-2.10                                   |                          |
| Well Diameter                        | <u> </u>           |                                 | Volume 3/4"= 0.02                             | 2 1"= 0.04 2"= 0.1                       | 7 3"= 0.38               |
| Total Depth                          | <u>26.77 ft.</u>   |                                 | Factor (VF) 4"= 0.66                          |                                          | 0 12"= 5.80              |
| Depth to Water                       | 14.22#             |                                 | column is less then 0.50                      |                                          |                          |
| Dauth to Minte                       | <u>12.55</u> XVI   | = 0.17 = 2                      | $\frac{.13}{$                                 | Estimated Purge Volume                   | : <u>6 -5</u> _gal.      |
| Depth to water v                     | W 80% Recharge ((H | eight of Water Column x         | 0.20) + DTWJ: 16.73                           | Time Started:                            |                          |
| Purge Equipment:                     |                    | Sampling Equip                  | mont.                                         | Time Completed:                          | (2400 hrs)<br>(2400 hrs) |
| Disposable Bailer                    |                    | Disposable Bailer               |                                               | Depth to Product:                        | ft                       |
| Stainless Steel Bailer               | -                  | Pressure Bailer                 |                                               | Depth to Water:                          | ft                       |
| Stack Pump                           |                    | Discrete Bailer                 |                                               | Hydrocarbon Thick<br>Visual Confirmation |                          |
| Suction Pump                         |                    | Peristaltic Pump                |                                               |                                          |                          |
| Grundfos                             |                    | QED Bladder Pun                 | np                                            | Skimmer / Absorba<br>Amt Removed from    | nt Sock (circle one)     |
| Peristaltic Pump<br>QED Bladder Pump |                    | Other:                          |                                               | Amt Removed from                         | Well:gal                 |
| Other:                               |                    |                                 |                                               | Water Removed:                           |                          |
| 01101                                |                    |                                 |                                               | Product Transferred                      | to:                      |
| Start Time (purge)                   | 0956               | N/eathe                         | r Conditions:                                 | •                                        |                          |
| Sample Time/Dat                      |                    |                                 | , <u>, , , , , , , , , , , , , , , , , , </u> | Odor: Q/N L                              | ~ <u></u>                |
| Approx. Flow Rate                    |                    |                                 | nt Description:                               |                                          | unt                      |
| Did well de-water                    |                    |                                 |                                               |                                          | 15 4 4                   |
|                                      |                    |                                 | volume y                                      | al. DTW @ Samplir                        | 19: <u>/ ) 0 @</u>       |
| Time<br>(2400 hr.)                   | Volume (gai.) p    | H Conductivity<br>(µmhos/cm - µ |                                               | D.O.<br>(mg/L)                           | ORP                      |
| 1008                                 | 2 6                | 94 863                          | 187                                           | (119rc)                                  | (mV)                     |
| 1014                                 | 4 6.               | 90 <u>81</u>                    | 10,0 -                                        |                                          | ···                      |
| 1018                                 | 6.5 6.             | 41 861                          | <u> </u>                                      |                                          |                          |
|                                      |                    |                                 |                                               |                                          |                          |
|                                      |                    |                                 |                                               |                                          |                          |
|                                      |                    |                                 | Y INFORMATION                                 |                                          |                          |

| SAMPLE ID | (#) CONTAINER | REFRIG. | PRESERV. TYPE | LABORATORY | ANALYSES                      |
|-----------|---------------|---------|---------------|------------|-------------------------------|
| NW-3      | 🧷 x voa vial  | YES     | HCL           |            | TPH-GRO(8015)/BTEX+MTBE(8260) |
|           | - E           |         |               |            |                               |
|           |               |         |               |            |                               |
|           |               |         |               |            |                               |
|           |               |         |               |            |                               |
|           |               |         |               |            | <u></u>                       |
|           |               |         |               |            |                               |
|           |               |         |               |            |                               |
|           |               |         |               |            |                               |

#### COMMENTS:

=



| Client/Facility#:                                                                                                                                           | Chevron #9-3864                                                                                                            | Job Number:                                                                      | 386358                                                                                                                                                                                                                                                                         |                  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--|--|--|--|
| Site Address:                                                                                                                                               | 5101 Telegraph Avenue                                                                                                      | Event Date:                                                                      | 3-2-10                                                                                                                                                                                                                                                                         | –<br>(inclusive) |  |  |  |  |
| City:                                                                                                                                                       | Oakland, CA                                                                                                                | Sampler:                                                                         | - Sec                                                                                                                                                                                                                                                                          | ·                |  |  |  |  |
| Well ID                                                                                                                                                     | mw-s                                                                                                                       | Date Monitored:                                                                  | 3-2-10                                                                                                                                                                                                                                                                         |                  |  |  |  |  |
| Well Diameter<br>Total Depth                                                                                                                                | $\frac{2}{2l\cdot G\cdot 3} \frac{\text{in.}}{\text{ft.}}$                                                                 | Volume         3/4"= 0.02           Factor (VF)         4"= 0.66                 | 1"= 0.04 2"= 0.17 3"= 0.34<br>5"= 1.02 6"= 1.50 12"= 5.80                                                                                                                                                                                                                      |                  |  |  |  |  |
| Depth to Water<br>Depth to Water v                                                                                                                          |                                                                                                                            | column is less then 0.50 f<br>2 x3 case volume = E<br>0.20) + DTW]: <u>15,76</u> | stimated Purge Volume:                                                                                                                                                                                                                                                         | _ gal.           |  |  |  |  |
| Purge Equipment:<br>Disposable Bailer<br>Stainless Steel Bailer<br>Stack Pump<br>Suction Pump<br>Grundfos<br>Peristaltic Pump<br>QED Bladder Pump<br>Other: | Sampling Equip<br>Disposable Bailer<br>Pressure Bailer<br>Discrete Bailer<br>Peristaltic Pump<br>QED Bladder Pur<br>Other: | mp                                                                               | Time Started:<br>Time Completed:<br>Depth to Product:<br>Depth to Water:<br>Hydrocarbon Thickness<br>Visual Confirmation/Description:<br>Skimmer / Absorbant Sock (circ<br>Amt Removed from Skimmer:<br>Amt Removed from Skimmer:<br>Water Removed:<br>Product Transferred to: | le one)          |  |  |  |  |
| Start Time (purge)<br>Sample Time/Dat<br>Approx. Flow Rate<br>Did well de-water<br>Time<br>(2400 hr.)<br>0720<br>0726<br>0726                               | e: <u>0740/3-2-1</u> 0 Water (<br>e:gpm. Sedime                                                                            | Color: <u>Clean</u> Cont Description: <u>-</u><br>Volume: <u>ga</u>              | Detern<br>Detern<br>Detern<br>D.O. ORP<br>(mg/L) (mV)                                                                                                                                                                                                                          | 84               |  |  |  |  |

|              |               | L       | ABORATORY IN  | FORMATION  |                               |
|--------------|---------------|---------|---------------|------------|-------------------------------|
| SAMPLE ID    | (#) CONTAINER | REFRIG. | PRESERV. TYPE | LABORATORY | ANALYSES                      |
| MW.S         | x voa vial    | YES     | HCL           |            | TPH-GRO(8015)/BTEX+MTBE(8260) |
|              | 240 C         |         |               |            |                               |
|              |               |         |               |            |                               |
|              |               |         |               |            |                               |
|              |               |         |               |            |                               |
|              |               |         |               |            |                               |
|              |               |         |               |            |                               |
|              | i             |         |               |            |                               |
| <u>├</u> ─── |               |         |               |            |                               |
| L            |               |         |               |            |                               |

#### COMMENTS:

Add/Replaced Lock: \_\_\_\_\_

Add/Replaced Bolt: \_\_\_\_\_

|                                                                                                                                                                   | Chevr  | on Ca            | alife                                                  | orr     | nia       | Re            | θĢ              | io                | n.                 | Aı                 | าต                                    | ly:          | sis               | s R                   | e    | qu             | le   | st/     | C             | hai                                        | in c                   | of Ci                                                    | ısto           | d |   |               |                   |                        |                      |     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------|--------------------------------------------------------|---------|-----------|---------------|-----------------|-------------------|--------------------|--------------------|---------------------------------------|--------------|-------------------|-----------------------|------|----------------|------|---------|---------------|--------------------------------------------|------------------------|----------------------------------------------------------|----------------|---|---|---------------|-------------------|------------------------|----------------------|-----|
| Lancaster<br>Laboratories                                                                                                                                         |        |                  |                                                        |         |           |               |                 |                   |                    |                    | -                                     | _            |                   |                       |      |                |      |         | e only        |                                            |                        | 01                                                       |                |   |   |               |                   |                        |                      |     |
|                                                                                                                                                                   |        | RA MTI Proje     |                                                        |         |           | ect# 61H-1951 |                 |                   | Analyses Requested |                    |                                       |              |                   |                       |      | [Group# 118443 |      |         |               |                                            | 3                      |                                                          |                |   |   |               |                   |                        |                      |     |
| Facility #:       SS#9-3864       G-R#386358       Global ID#T0600100343         Site Address:       5101       TELEGRAPH AVENUE, OAKLAND, CA         Chevron PM: |        |                  |                                                        |         | Matrix    |               | T               | Ħ                 | T.                 |                    | P                                     | 7886         | servation Codes   |                       |      |                |      |         |               | Pi<br>H = HC                               | resen<br>Ci            | <b>T</b> = Thiosulfate                                   |                |   |   |               |                   |                        |                      |     |
|                                                                                                                                                                   |        |                  |                                                        |         | e Si      | ន្ម           | 200             |                   |                    | Silica Gel Cleanup |                                       |              |                   |                       |      |                |      |         | Ľ             | N = HN<br>S = H <sub>2</sub> :<br>J J valu | SO4                    | 8 = Na<br>O = Ot<br>rting need                           | her            | 4 |   |               |                   |                        |                      |     |
| Consultant Prj. Mgr.:<br>Consultant Prj. Mgr.:<br>Consultant Phone #:925-551-7555<br>Fax #: 925-551-7899                                                          |        |                  |                                                        |         | D Potable |               | of Containers   | X 8021 [          | X 8021 [           | X 8021 [           | X 8021 [                              | X 8021       | X 8021            | 1208 X 8021           |      |                |      |         |               | 8                                          |                        |                                                          |                |   | P | Must<br>possi | meet k<br>ble for | owest deta<br>8260 com | action lim<br>pounds | its |
| Sampler: JOEAJEMIA                                                                                                                                                | Date   | Time             |                                                        | uposite | er        | ې<br>۲        | Total Number of | BTEX + MTBE \$260 | TPH 8015 MOD GPO   | TPH 8015 MOD DRO   | 8260 full scen                        | Oxygenates   | Total Lead Method | Dissolved Lead Method |      |                |      |         |               | ] Confi<br>] Confi                         | rm higi<br>m ali h     | onfirmation<br>nest hit by<br>nits by 826<br>ky's on hig | 8260<br>Ю      |   |   |               |                   |                        |                      |     |
| Sample Identification Collected                                                                                                                                   |        | Collected        |                                                        |         | Water     | □<br>ē        | Tota            | 19TE)             | Ĕ                  | Ĕ                  | 88                                    |              | B                 | Disso                 |      |                |      |         |               | Run oxy's on all hits                      |                        |                                                          |                |   |   |               |                   |                        |                      |     |
| C-3<br>Mw.1<br>Mw.2                                                                                                                                               | 3-2-10 | 1110             | ř.                                                     | ╧       |           | ╞┤            | 6               | Y                 | ン                  |                    | -+                                    |              |                   | +                     | ┢    |                |      |         |               | <b>Comm</b>                                | ents /                 | Remark                                                   | <b>B</b><br>10 | 1 |   |               |                   |                        |                      |     |
|                                                                                                                                                                   | ┠━┨╴┤  | 0920             | ╉╉                                                     | ╉┈      |           | ┢┤            | 6               | N<br>N            |                    |                    | -+                                    | -+           | +                 | +                     | -    | +              | +    | +       | 4             |                                            |                        |                                                          |                |   |   |               |                   |                        |                      |     |
|                                                                                                                                                                   |        | 0740             | V                                                      | +       | V         | ╞╌┧           | Ġ               | 7                 | 7                  | -+                 | -+                                    | -            |                   | +                     | ╪    | +              |      | +       |               |                                            |                        |                                                          |                |   |   |               |                   |                        |                      |     |
|                                                                                                                                                                   |        |                  |                                                        |         |           |               |                 |                   | -                  |                    |                                       |              |                   |                       |      |                |      | +       |               |                                            |                        |                                                          | 1.1.1          |   |   |               |                   |                        |                      |     |
|                                                                                                                                                                   |        |                  |                                                        | ╉╌      |           | ╞╌╎           |                 |                   |                    | _                  | -+                                    | +            |                   | +                     | +    | $\frac{1}{1}$  | -    |         |               |                                            |                        |                                                          |                |   |   |               |                   |                        |                      |     |
|                                                                                                                                                                   |        |                  |                                                        | ╞       |           | ┝╌╂           |                 |                   |                    |                    |                                       |              | +                 |                       | +    |                | ╁    |         |               |                                            |                        |                                                          |                |   |   |               |                   |                        |                      |     |
| Turnaround Time Requested (TAT) (please circle)       STD_TAX     72 hour     48 hour       24 hour     4 day     5 day                                           |        |                  | Reinfruished by:<br>Belleguished by:                   |         |           |               |                 |                   |                    | 3-:                | Date Time<br>3-2-10 1141<br>Date Time |              | 45                |                       |      |                | e    | des des |               |                                            | Date<br>3/2/10         |                                                          |                |   |   |               |                   |                        |                      |     |
| Data Package Options (please circle if required)<br>QC Summary Type i - Full EDF/EDD                                                                              |        | Relinquished by: |                                                        |         | $\sim$    |               |                 |                   |                    | Date Time          |                                       | 19           | Received by:      |                       |      | S.C.           |      |         |               |                                            | Dete<br>3/2/10<br>Date | Time                                                     | 1              |   |   |               |                   |                        |                      |     |
| Type VI (Raw Data) Coelt Deliverable not needed WIP (RWQCB)                                                                                                       |        |                  | Relinquished by Commercial Carrier:<br>UPS Feder Other |         |           |               |                 |                   |                    |                    |                                       | Received by: |                   |                       |      |                |      |         | Date<br>31310 | Time<br>0910                               | 1                      |                                                          |                |   |   |               |                   |                        |                      |     |
| Disk                                                                                                                                                              |        | Tempera          | ature Up                                               | on R    | ecelpt_   | _             | 0.4             | -34               | 2                  |                    |                                       |              | င°                | Cus                   | tody | Seat           | s In | ct?     |               |                                            | No                     |                                                          |                | 1 |   |               |                   |                        |                      |     |

Lancaster Laboratories, Inc., 2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 (717) 656-2300 Copies: White and yellow should accompany samples to Lancaster Laboratories. The pink copy should be retained by the client.

4804.01 (nonth) Rev. 10/12/06



**Analysis Report** 

2425 New Holland Piles, PO Box 12425, Lancesler, PA 17605-2425 • 717-656-2000 For: 717-656-2661 • www.lancesleriebs.com

## ANALYTICAL RESULTS

Prepared for:

Chevron c/o CRA Suite 110 2000 Opportunity Drive Roseville CA 95678 RECEIVED

MAR 1, 2010

GETTLER-RYAN INC. GENERAL CONTRACTORS

Lancaster Labs (LLI) #

5918311

5918312

5918313

5918314

5918315

916-677-3407 Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

March 11, 2010

Project: 93864

Samples arrived at the laboratory on Wednesday, March 03, 2010. The PO# for this group is 93864 and the release number is MTI. The group number for this submittal is 1184439.

Client Sample Description C-3-W-100302 Grab Water MW-1-W-100302 Grab Water MW-2-W-100302 Grab Water MW-3-W-100302 Grab Water MW-5-W-100302 Grab Water

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

ELECTRONIC Gettler-Ryan, Inc. COPY TO

Attn: Cheryl Hansen





2425 New Holland File, PO Box 12425, Lancasler, PA 17605-2425 • 717-656-2500 Fex: 717-656-2681 • www.lancesterlabs.com

Questions? Contact your Client Services Representative Jill M Parker at (717) 656-2300

Respectfully Submitted,

alerin I Tomylin  $\mathcal{A}$ 

Valerie L. Tomayko Group Leader





2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

# Sample Description: C-3-W-100302 Grab Water LLI Sample # WW 5918311 Facility# 93864 Job# 386358 MTI# 61H-1951 GRD LLI Group # 1184439 5101 Telegraph-Oakland T0600100343 C-3 CA

Account Number: 12099

2000 Opportunity Drive Roseville CA 95678

Chevron c/o CRA

Suite 110

#### Project Name: 93864

Collected: 03/02/2010 11:10 by JA

Submitted: 03/03/2010 09:10 Reported: 03/11/2010 at 10:00 Discard: 04/11/2010

TELC3

| CAT<br>No. | Analysis Name               | CAS Number | As Received<br>Result | As Received<br>Method<br>Detection Limit | Dilution<br>Factor |
|------------|-----------------------------|------------|-----------------------|------------------------------------------|--------------------|
| GC/MS      | Volatiles SW-846            | 8260B      | ug/l                  | ug/1                                     |                    |
| 06054      | Benzene                     | 71-43-2    | N.D.                  | 0.5                                      | 1                  |
| 06054      | Ethylbenzene                | 100-41-4   | N.D.                  | 0.5                                      | 1                  |
| 06054      | Methyl Tertiary Butyl Ether | 1634-04-4  | N.D.                  | 0.5                                      | 1                  |
| 06054      | Toluene                     | 108-88-3   | N.D.                  | 0.5                                      | 1                  |
| 06054      | Xylene (Total)              | 1330-20-7  | 1                     | 0.5                                      | 1                  |
| GC Vo      | latiles SW-846              | 8015B      | ug/l                  | ug/1                                     |                    |
| 01728      | TPH-GRO N. CA water C6-C12  | n.a.       | 3,600                 | 50                                       | 1                  |

#### General Sample Comments

State of California Lab Certification No. 2501 Trip blank vials were not received by the laboratory for this sample group.

All\_QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

| CAT<br>No. | Analysis Name                                                   | Method                                       | Trial#      | Batch#                              | Analysis<br>Date and Time                                | Analyst                                              | Dilution<br>Factor |
|------------|-----------------------------------------------------------------|----------------------------------------------|-------------|-------------------------------------|----------------------------------------------------------|------------------------------------------------------|--------------------|
| 06054      | GC/MS VOA Water Prep<br>BTEX+MTBE by 8260B<br>GC VOA Water Prep | SW-846 5030B<br>SW-846 8260B<br>SW-846 5030B | 1<br>1<br>1 | T100631AA<br>T100631AA<br>10063A07A | 03/05/2010 00:40<br>03/05/2010 00:40<br>03/04/2010 12:24 | Nicholas P Riehl<br>Nicholas P Riehl<br>Marie D John | 1                  |
|            | TPH-GRO N. CA water C6-C12                                      | SW-846 8015B                                 | 1           | 10063A07A                           | 03/04/2010 12:24                                         | Marie D John<br>Marie D John                         | 1                  |





2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 \* 717-656-2300 Fax: 717-656-2681 \* www.lancasteriabs.com

| Page | 1 | of | 1 |
|------|---|----|---|
|      |   |    |   |

# Sample Description: MW-1-W-100302 Grab Water LLI Sample # WW 5918312 Facility# 93864 Job# 386358 MTI# 61H-1951 GRD LLI Group # 1184439 5101 Telegraph-Oakland T0600100343 MW-1 CA

Account Number: 12099

2000 Opportunity Drive Roseville CA 95678

Chevron c/o CRA

Suite 110

#### Project Name: 93864

Collected: 03/02/2010 08:32 by JA

Submitted: 03/03/2010 09:10 Reported: 03/11/2010 at 10:00 Discard: 04/11/2010

#### TELM1

| CAS Number  | As Raceived<br>Result                                                             | As Received<br>Method<br>Detection Limit                                                                                                  | Dilution<br>Factor                                                                                                                                                                                                                                                                                                                                                           |
|-------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6 8260B     | ug/l                                                                              | ug/1                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                              |
| 71-43-2     | N.D.                                                                              | 0.5                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                            |
| 100-41-4    | N.D.                                                                              | 0.5                                                                                                                                       | ī                                                                                                                                                                                                                                                                                                                                                                            |
| r 1634-04-4 | N.D.                                                                              | 0.5                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                            |
| 108-88-3    | N.D.                                                                              | 0.5                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                            |
| 1330-20-7   | N.D.                                                                              | 0.5                                                                                                                                       | ī                                                                                                                                                                                                                                                                                                                                                                            |
| 6 8015B     | ug/1                                                                              | ug/l                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                              |
| n.a.        | N.D.                                                                              | 50                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                            |
|             | 6 8260B<br>71-43-2<br>100-41-4<br>r 1634-04-4<br>108-88-3<br>1330-20-7<br>6 8015B | CAS Number Result<br>6 8260B ug/l<br>71-43-2 N.D.<br>100-41-4 N.D.<br>r 1634-04-4 N.D.<br>108-88-3 N.D.<br>1330-20-7 N.D.<br>6 8015B ug/l | As Raceived<br>Result         Method<br>Detection Limit           6 8260B         ug/l         ug/l           71-43-2         N.D.         0.5           100-41-4         N.D.         0.5           1634-04-4         N.D.         0.5           108-88-3         N.D.         0.5           1330-20-7         N.D.         0.5           6 8015B         ug/l         ug/l |

#### General Sample Comments

State of California Lab Certification No. 2501 Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

| CAT Analysis Name<br>No.                                                                                              | Nethod                                                       | Trial# Batch#                                            | Analysis<br>Date and Time                                                    | Analyst                          | Dilution<br>Factor |
|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------|--------------------|
| 01163 GC/MS VOA Water Prep<br>06054 BTEX+MTBE by 8260B<br>01146 GC VOA Water Prep<br>01728 TPH-GRO N. CA water C6-C12 | SW-846 5030B<br>SW-846 8260B<br>SW-846 5030B<br>SW-846 8015B | 1 T100631AA<br>1 T100631AA<br>1 10063A07A<br>1 10063A07A | 03/04/2010 22:43<br>03/04/2010 22:43<br>03/04/2010 12:51<br>03/04/2010 12:51 | Nicholas P Riehl<br>Marie D John | 1<br>1<br>1        |





2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 \* 717-656-2300 Fax: 717-656-2681 \* www.lancasterlabs.com

| Page | 1 | of | 1 |
|------|---|----|---|
|      |   |    |   |

# Sample Description: MW-2-W-100302 Grab Water LLI Sample # WW 5918313 Facility# 93864 Job# 386358 MTI# 61H-1951 GRD LLI Group # 1184439 5101 Telegraph-Oakland T0600100343 MW-2 CA

Account Number: 12099

2000 Opportunity Drive Roseville CA 95678

Chevron c/o CRA

Suite 110

## Project Name: 93864

Collected: 03/02/2010 09:20 by JA

Submitted: 03/03/2010 09:10 Reported: 03/11/2010 at 10:00 Discard: 04/11/2010

TELM2

| CAT<br>No. | Analysis Name               | CAS Number | As Recaived<br>Result | As Received<br>Nethod<br>Detection Limit | Dilution<br>Factor |
|------------|-----------------------------|------------|-----------------------|------------------------------------------|--------------------|
| GC/MS      | Volatiles SW-846            | 8260B      | ug/1                  | ug/l                                     |                    |
| 06054      | Benzene                     | 71-43-2    | N.D.                  | 0.5                                      | 1                  |
| 06054      | Ethylbenzene                | 100-41-4   | N.D.                  | 0.5                                      | 1                  |
| 06054      | Methyl Tertiary Butyl Ether | 1634-04-4  | N.D.                  | 0.5                                      | 1                  |
| 06054      | Toluene                     | 108-88-3   | N.D.                  | 0.5                                      | î                  |
| 06054      | Xylene (Total)              | 1330-20-7  | N.D.                  | 0.5                                      | ĩ                  |
| GC Vol     | latiles SW-846              | 8015B      | ug/1                  | ug/1                                     |                    |
| 01728      | TPH-GRO N. CA water C6-C12  | n.a.       | N.D.                  | 50                                       | 1                  |

#### General Sample Comments

State of California Lab Certification No. 2501 Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

| CAT<br>No.     | Analysis Name                                                                                 | Method                                                       | Trial#           | Batch#                                           | Analysis<br>Date and Time                                                    | Analyst                                                              | Dilution<br>Factor |
|----------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------|--------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------|
| 06054<br>01146 | GC/MS VOA Water Prep<br>BTEX+MTBE by 8260B<br>GC VOA Water Prep<br>TPH-GRO N. CA water C6-C12 | SW-846 5030B<br>SW-846 8260B<br>SW-846 5030B<br>SW-846 8015B | 1<br>1<br>1<br>1 | T100631AA<br>T100631AA<br>10063A07A<br>10063A07A | 03/04/2010 23:06<br>03/04/2010 23:06<br>03/04/2010 13:18<br>03/04/2010 13:18 | Nicholas P Riehl<br>Nicholas P Riehl<br>Marie D John<br>Marie D John | 1<br>1<br>1<br>1   |





2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-658-2681 • www.lancasterlabs.com

Page 1 of 1

| Sample | Description: | MW-3-W-100302 Gr | ab Water      |       |          | LLI | Sample : | # W | W 5918314 |
|--------|--------------|------------------|---------------|-------|----------|-----|----------|-----|-----------|
|        |              | Facility# 93864  | Job# 386358   | MTI#  | 61H-1951 |     | Group    |     | -         |
|        |              | 5101 Telegraph-C | akland T06001 | 00343 | MW-3     |     | -        | Ċ   | 'A        |

#### Project Name: 93864

Collected: 03/02/2010 10:30 by JA

Submitted: 03/03/2010 09:10 Reported: 03/11/2010 at 10:00 Discard: 04/11/2010 Chevron c/o CRA Suite 110 2000 Opportunity Drive Roseville CA 95678

Account Number: 12099

#### TELM3

| CAT<br>No. | Analysis Name               | CAS Number | As Received<br>Result | As Received<br>Method<br>Detection Limit | Dilution<br>Factor |
|------------|-----------------------------|------------|-----------------------|------------------------------------------|--------------------|
| GC/MS      | Volatiles SW-846            | 8260B      | ug/l                  | ug/l                                     |                    |
| 06054      | Benzene                     | 71-43-2    | N.D.                  | 0.5                                      | 1                  |
| 06054      | Ethylbenzene                | 100-41-4   | N.D.                  | 0.5                                      | 1                  |
| 06054      | Methyl Tertiary Butyl Ether | 1634-04-4  | N.D.                  | 0.5                                      | 1                  |
| 06054      | Toluene                     | 108-88-3   | N.D.                  | 0.5                                      | 1                  |
| 06054      | Xylene (Total)              | 1330-20-7  | N.D.                  | 0.5                                      | 1                  |
| GC Vol     | latiles SW-846              | 8015B      | ug/1                  | ug/1                                     |                    |
| 01728      | TPH-GRO N. CA water C6-C12  | n.a.       | N.D.                  | 50                                       | 1                  |

#### General Sample Comments

State of California Lab Certification No. 2501 Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

| CAT<br>No.     | Analysis Name                           | Method                                       | Trial#      | Batch#                              | Analysie<br>Date and Time                                | Analyst                                              | Dilution<br>Factor |
|----------------|-----------------------------------------|----------------------------------------------|-------------|-------------------------------------|----------------------------------------------------------|------------------------------------------------------|--------------------|
| 06054<br>01146 | BTEX+MTBE by 8260B<br>GC VOA Water Prep | SW-846 5030B<br>SW-846 8260B<br>SW-846 5030B | 1<br>1<br>1 | T100631AA<br>T100631AA<br>10063A07A | 03/04/2010 23:30<br>03/04/2010 23:30<br>03/04/2010 13:44 | Nicholas P Riehl<br>Nicholas P Riehl<br>Marie D John | 1<br>1<br>1<br>1   |
| 01/28          | TPH-GRO N. CA water C6-C12              | SW-846 8015B                                 | 1           | 10063A07A                           | 03/04/2010 13:44                                         | Marie D John                                         | 1                  |





2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-658-2300 Fax: 717-858-2681 • www.lancasterlabs.com

| Page | 1 | of | 1 |
|------|---|----|---|
|      |   |    |   |

# Sample Description: MW-5-W-100302 Grab Water LLI Sample # WW 5918315 Facility# 93864 Job# 386358 MTI# 61H-1951 GRD LLI Group # 1184439 5101 Telegraph-Oakland T0600100343 MW-5 CA

Account Number: 12099

2000 Opportunity Drive Roseville CA 95678

Chevron c/o CRA

Suite 110

#### Project Name: 93864

Collected: 03/02/2010 07:40 by JA

Submitted: 03/03/2010 09:10 Reported: 03/11/2010 at 10:00 Discard: 04/11/2010

#### TELM5

| CAT<br>No. | Analysis Name               | CAS Number | As Received<br>Result | As Received<br>Nethod<br>Detection Limit | Dilution<br>Factor |
|------------|-----------------------------|------------|-----------------------|------------------------------------------|--------------------|
| GC/MS      | Volatiles SW-846            | 8260B      | ug/l                  | ug/1                                     |                    |
| 06054      | Benzene                     | 71-43-2    | N.D.                  | 0.5                                      | 1                  |
| 06054      | Ethylbenzene                | 100-41-4   | N.D.                  | 0.5                                      | 1                  |
| 06054      | Methyl Tertiary Butyl Ether | 1634-04-4  | N.D.                  | 0.5                                      | 1                  |
| 06054      | Toluene                     | 108-88-3   | N.D.                  | 0.5                                      | 1                  |
| 06054      | Xylene (Total)              | 1330-20-7  | N.D.                  | 0.5                                      | 1                  |
| GC Vol     | atiles SW-846               | 8015B      | ug/l                  | ug/l                                     |                    |
| 01728      | TPH-GRO N. CA water C6-C12  | n.a.       | N.D.                  | 50                                       | 1                  |

#### General Sample Comments

State of California Lab Certification No. 2501 Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

| CAT<br>No. | Analysis Name              | Method       | Trial# | Batch#    | Analysis<br>Date and Time | Analyst          | Dilution<br>Factor |
|------------|----------------------------|--------------|--------|-----------|---------------------------|------------------|--------------------|
| 01163      | GC/MS VOA Water Prep       | SW-846 5030B | 1      | T100631AA | 03/04/2010 23:53          | Nicholas P Riehl | 1                  |
| 06054      | BTEX+MTBE by 8260B         | SW-846 8260B | 1      | T100631AA | 03/04/2010 23:53          |                  | 1                  |
| 01146      | GC VOA Water Prep          | SW-846 5030B | 1      | 10063A07A | 03/04/2010 14:11          |                  | 1                  |
| 01728      | TPH-GRO N. CA water C6-C12 | SW-846 8015B | 1      | 10063A07A | 03/04/2010 14.11          | Marie D John     | 1                  |





2425 New Holland Pike, PO Box 12425, Lancaster, PA 17805-2425 • 717-856-2300 Fax: 717-856-2681 • www.lancasteriabs.com

Page 1 of 2

## Quality Control Summary

Client Name: Chevron c/o CRA Reported: 03/11/10 at 10:00 AM Group Number: 1184439

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

# Laboratory Compliance Quality Control

| Analysis Name               | Blank<br><u>Result</u> | Blank<br>MDL | Report<br><u>Units</u> | lcs<br><u>%rrc</u> | LCSD<br><u>%REC</u> | LCS/LCSD<br>Limits | RPD | RPD Max |
|-----------------------------|------------------------|--------------|------------------------|--------------------|---------------------|--------------------|-----|---------|
| Batch number: T100631AA     | Sample num             | ber(s): 593  | 18311-5918             | 315                |                     |                    |     |         |
| Benzene                     | N.D.                   | 0.5          | ug/l                   | 103                | 103                 | 79-120             | 0   | 30      |
| Ethylbenzene                | N.D.                   | 0.5          | ug/l                   | 93                 | 95                  | 79-120             | 3   | 30      |
| Methyl Tertiary Butyl Ether | N.D.                   | 0.5          | ug/l                   | 102                | 101                 | 76-120             | ì   | 30      |
| Toluene                     | N.D.                   | 0.5          | ug/l                   | 99                 | 100                 | 79-120             | 1   | 30      |
| Xylene (Total)              | N.D.                   | 0.5          | ug/l                   | 94                 | 96                  | 80-120             | 2   | 30      |
| Batch number: 10063A07A     | Sample num             | per(s): 59:  | 18311-5918             | 315                |                     |                    |     |         |
| TPH-GRO N. CA water C6-C12  | N.D.                   | 50.          | ug/l                   | 100                | 109                 | 75-135             | 9   | 30      |

## Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

| Analysis Name                                                                                                  | MS<br><u>BREC</u>                         | MSD<br><u>%RBC</u> | MS/MSD<br><u>Limits</u>                                     | RPD     | RPD<br>MAX | BKG<br><u>Conc</u> | DUP<br>Conc | DUP<br><u>RPD</u> | Dup RPD<br>Max |
|----------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------|-------------------------------------------------------------|---------|------------|--------------------|-------------|-------------------|----------------|
| Batch number: T100631AA<br>Benzene<br>Ethylbenzene<br>Methyl Tertiary Butyl Ether<br>Toluene<br>Xylene (Total) | Sample<br>115<br>105<br>43*<br>111<br>104 | number(s)          | : 5918311<br>80-126<br>71-134<br>72-126<br>80-125<br>79-125 | -591831 | 5 UNSP     | K: P914790         |             |                   |                |
| Batch number: 10063A07A<br>TPH-GRO N. CA water C6-C12                                                          | Sample :<br>89                            | number(s)          | : 5918311<br>63-154                                         | -591831 | 5 UNSPI    | K: P917393         |             |                   |                |

## Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

|         | Name: BTEX+MTBE by 8260B<br>ber: T100631AA |                       |            |                      |
|---------|--------------------------------------------|-----------------------|------------|----------------------|
|         | Dibromofluoromethane                       | 1,2-Dichloroethane-d4 | Toluene-d8 | 4-Bromofluorobenzene |
| 5918311 | 99                                         | 100                   | 105        | 106                  |
| 5918312 | 99                                         | 102                   | 102        | 103                  |
| 5918313 | 98                                         | 99                    | 102        | 102                  |
| 5918314 | 98                                         | 100                   | 103        | 102                  |
| 5918315 | 102                                        | 102                   | 102        | 104                  |

\*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.





2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

# Quality Control Summary

| _                                                                              |                                                                                 | Surrow | gate Quality Contro | .1      |
|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------|---------------------|---------|
| 01 a.u.l.                                                                      | 1.04                                                                            |        | _                   |         |
| Blank                                                                          | 101                                                                             | 100    | 101                 | 101     |
| LCS                                                                            | 99                                                                              | 103    | 101                 | 101     |
| LCSD                                                                           | 99                                                                              | 102    | 103                 | 103     |
| MS                                                                             | 101                                                                             | 102    | 102                 | 101     |
| imits:                                                                         | 80-116                                                                          | 77-113 | 80-113              | 78-113  |
|                                                                                | ber: 10063A07A<br>Trifluorotoluene                                              | -F     | ж.                  |         |
| 5918311                                                                        | Trifluorotoluene<br>200*                                                        | -F     | 18.<br>             |         |
| 5918311<br>5918312                                                             | Trifluorotoluene<br>200*<br>101                                                 | - F    | (B                  |         |
| 5918311<br>5918312<br>5918313                                                  | Trifluorotoluene<br>200*<br>101<br>100                                          | - F    | а<br>               |         |
| 5918311<br>5918312<br>5918313<br>5918314                                       | Trifluorotoluene<br>200*<br>101<br>100<br>101                                   | - F    | 191<br>             |         |
| 5918311<br>5918312<br>5918313<br>5918314<br>5918315                            | Trifluorotoluene<br>200*<br>101<br>100<br>101<br>101                            | - F    | 95<br>              |         |
| 5918311<br>5918312<br>5918313<br>5918314<br>5918315<br>3lank                   | Trifluorotoluene<br>200*<br>101<br>100<br>101<br>101<br>99                      | - F    | це.<br>             | <u></u> |
| 5918311<br>5918312<br>5918313<br>5918314<br>5918315<br>5918315<br>Blank<br>LCS | Trifluorotoluene<br>200*<br>101<br>100<br>101<br>101<br>99<br>112               | - F    | э <u>е</u>          |         |
| 5918311<br>5918312<br>5918313<br>5918314<br>5918315<br>Blank<br>LCS<br>LCSD    | Trifluorotoluene<br>200*<br>101<br>100<br>101<br>101<br>101<br>99<br>112<br>113 | - F    | а<br>               |         |
| 5918311<br>5918312<br>5918313<br>5918314<br>5918315<br>5918315<br>Blank<br>LCS | Trifluorotoluene<br>200*<br>101<br>100<br>101<br>101<br>99<br>112               | - F    | а<br>               |         |

\*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

(2) The unspiked result was more than four times the spike added.

# Lancaster Laboratories Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

| N.D.     | none detected         | BMQL         | Below Minimum Quantitation Level               |
|----------|-----------------------|--------------|------------------------------------------------|
| TNTC     | Too Numerous To Count | MPN          | Most Probable Number                           |
| IU       | International Units   | CP Units     | cobalt-chloroplatinate units                   |
| umhos/cm | micromhos/cm          | NTU          | nephelometric turbidity units                  |
| C        | degrees Celsius       | F            | degrees Fahrenheit                             |
| Cai      | (diet) calories       | ib.          | pound(s)                                       |
| meq      | milliequivalents      | kg           | kilogram(s)                                    |
| g        | gram(s)               | mg           | milligram(s)                                   |
| ug       | microgram(s)          | I            | liter(s)                                       |
| ug       | milliliter(s)         | ui           | microliter(s)                                  |
| m3       | cubic meter(s)        | fib >5 um/ml | fibers greater than 5 microns in length per ml |

< less than – The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.

> greater than

ppm parts per million – One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.

ppb parts per billion

**Dry weight** basis Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture.

U.S. EPA data qualifiers:

### **Organic Qualifiers**

- A TIC is a possible aldol-condensation product
- B Analyte was also detected in the blank
- C Pesticide result confirmed by GC/MS
- D Compound quatitated on a diluted sample
- E Concentration exceeds the calibration range of the instrument
- J Estimated value
- N Presumptive evidence of a compound (TICs only)
- P Concentration difference between primary and confirmation columns >25%
- U Compound was not detected
- X,Y,Z Defined in case narrative

# Inorganic Qualifiers

- B Value is <CRDL, but ≥IDL
- E Estimated due to interference
- M Duplicate injection precision not met
- N Spike amount not within control limits
- S Method of standard additions (MSA) used for calculation
- U Compound was not detected
- W Post digestion spike out of control limits
- Duplicate analysis not within control limits
- + Correlation coefficient for MSA < 0.995

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY – In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.

# TEST ONLY SMOG STATION (FORMER AUTOPRO) 5200 Telegraph Ave. Oakland, CA

Joint Monitoring Event of March 2, 2010

# DATA PROVIDED By Professional Service Industries Inc.

# TABLE 1

# SUMMARY OF GROUNDWATER ELEVATIONS Test Only SMOG Station (Former Autopro) 5200 Telegraph Avenue, Oakland, CA

| Well Number | TOC Elevation<br>(ft msl) | Date     | Depth to Groundwater<br>(ft) | Groundwater Elevatior<br>(ft msl) |
|-------------|---------------------------|----------|------------------------------|-----------------------------------|
| MW-1        | 115.44                    | 12/22/08 | 11.67                        | 103.77                            |
|             |                           | 3/4/09   | 8.50                         | 106.94                            |
|             |                           | 5/1/09   | 12.58                        | 102.86                            |
|             |                           | 7/20/09  | 13.30                        | 102.14                            |
|             |                           | 3/2/10   | 10.17                        | 105.27                            |
| MW-2        | 114.62                    | 12/22/08 | 10.96                        | 103.66                            |
|             |                           | 3/4/09   | 7.83                         | 106.79                            |
|             |                           | 5/1/09   | 11.91                        | 102.71                            |
|             |                           | 7/20/09  | 12.64                        | 101.98                            |
|             |                           | 3/2/10   | 9.49                         | 105.13                            |
| MW-3        | 113.77                    | 12/22/08 | 10.30                        | 103.47                            |
|             |                           | 3/4/09   | 7.22                         | 106.55                            |
|             |                           | 5/1/09   | 11.30                        | 102.47                            |
|             |                           | 7/20/09  | 11.93                        | 101.84                            |
|             |                           | 3/2/10   | 8.94                         | 104.83                            |
| MW-4        | 114.25                    | 12/22/08 | 10.36                        | 103.89                            |
|             |                           | 3/4/09   | 7.47                         | 106.78                            |
|             |                           | 5/1/09   | 10.97                        | 103.28                            |
|             | [                         | 7/20/09  | 11.56                        | 102.69                            |
|             |                           | 3/2/10   | 8.89                         | 105.36                            |

Notes:

ft msl = feet with respect to mean sea level