

Eric HetrickProject Manager
Marketing Business Unit

Chevron Environmental Management Company 6101 Bollinger Canyon Road San Ramon, CA 94583 Tel (925) 790-6491 ehetrick@chevron.com

June 29, 2015

RECEIVED

By Alameda County Environmental Health 3:02 pm, Jul 30, 2015

Alameda County Health Care Services 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Re: Former Chevron Service Station 95607

5269 Crow Canyon Road

Castro Valley, CA ACEH Case #RO 0350

I have reviewed the attached Groundwater Monitoring Well Installation Report.

The information in this report is accurate to the best of my knowledge and all local Agency/Regional Board guidelines have been followed. This report was prepared by Conestoga Rovers Associates, upon who assistance and advice I have relied.

This letter is submitted pursuant to the requirements of California Water Code Section 13267(b)(1) and the regulating implementation entitled Appendix A pertaining thereto.

I declare under penalty of perjury that the foregoing is true and correct to the best of my knowledge.

Sincerely,

Eric Hetrick Project Manager

Attachment: Groundwater Monitoring Well Installation Report

5900 Hollis Street, Suite A, Emeryville, California 94608 Telephone: (510) 420-0700 Fax: (510) 420-9170

www.CRAworld.com

June 29, 2015 Reference No. 311950

Mr. Mark Detterman Alameda County Environmental Health Services 1131 Harbor Bay Parkway Alameda, California 94502

Re: Groundwater Monitoring Well Installation Report

Former Chevron Station 95607 5269 Crow Canyon Road

Castro Valley, California Fuel Leak Case RO0350

Dear Mr. Detterman:

Conestoga-Rovers & Associates (CRA) is submitting this Groundwater Monitoring Well Installation Report on behalf of Chevron Environmental Management Company (Chevron) for the site referenced above (Figures 1 and 2). CRA installed well C-17 downgradient of well C-9 and between existing well C 16 and former well C-15 (Figure 2) on the adjoining offsite property. The well was installed according to the January 20, 2014 Work Plan for Groundwater Monitoring Well Installation, which was approved by ACEHS in a letter dated March 5, 2014 (Attachment A). To accomplish the scope of work, CRA conducted the following.

Site Specific Health and Safety Plan

CRA prepared a site specific health and safety plan to protect site workers. The plan was reviewed and signed by site workers and visitors. The plan was kept onsite during the field work.

Permits and Access

CRA obtained drilling permit # W2015-0350 from Alameda County Public Works Agency (ACPWA) (Attachment B) and scheduled the required inspections prior to beginning field work. CRA notified the property manager and accessed the offsite property to install the monitoring well.

Equal Employment Opportunity Employer

Underground Utility Location and Utility Clearance

Prior to drilling, CRA contacted Underground Service Alert to mark existing underground utilities near the drilling location. CRA contracted Norcal Geophysical Consultants, Inc. of Cotati, California to verify underground utility locations near the proposed well location. On May 12, 2015, the monitoring well location was hand cleared of utilities to 8 feet below grade (fbg).

Well Installation

After clearing to 8 fbg, the borehole was advanced using 4-inch diameter hand augers to a maximum depth of 19 fbg. The well was constructed using 1-inch diameter Schedule 40 PVC casing with a 0.010 inch slotted screen from approximately 10-19 fbg. The filter pack consisted of #2/12 sand from the bottom of the boring to approximately 2 feet above the screened interval. The well annulus had a 2 foot bentonite seal above the screen and sand pack, with the remainder backfilled with Portland Type I/II cement to approximately 1 foot below grade. The well location was inaccessible by vehicles and therefore the well was installed differently than described in the approved work plan. The following changes were a result of the change in drilling methodology:

- Use of a 4-inch diameter hand auger instead of a truck mounted drill rig with 8-inch diameter hollow stem augers.
- The well was constructed using a 1-inch diameter well casing instead of a 2-inch diameter well casing.
- Installation of 10 feet of well screen instead of 5 feet of well screen.

These changes were requested by CRA in an email to the regulator on May 1, 2015 and were approved via email on May 4, 2015 (Attachment A). Additionally, the well was not advance to the planned depth of 20 fbg because a hard layer of silt stone was encountered in the borehole. A boring log showing the lithological descriptions and well construction details is included (Attachment C).

Soil Sampling

Soil samples were collected at 5, 10, 15 and 18 fbg using a hand auger. Chevron and CRA safety policies require the first 8 feet to be cleared of underground utilities, so the 5 fbg sample was

collected from disturbed from the hand auger bucket using 6 inch steam cleaned steel tubes. CRA attempted to collect undisturbed soil samples below 8 fbg using a slide hammer. However, the soil was wet and the samples slipped back into to the hole from the slide hammer. Therefore, samples below 8 fbg were also disturbed and were collected from the hand augur bucket. Soil samples were screened using a photo ionization detector and recorded on the boring log. Soil was logged using the ASTM D2488 06 Unified Soil Classification System (USCS). Samples were sealed, labeled, logged on a chain of custody, placed on ice, and transported to Eurofins Lancaster Laboratories (Eurofins) of Lancaster, Pennsylvania for analysis.

Well Development and Sampling

The well was developed on May 21, 2015 and sampled on May 28, 2015 by Gettler-Ryan, Inc. (G-R) of Dublin, California. The groundwater sample was released to Eurofins for analysis. G-R's Groundwater Monitoring and Sampling Package is presented as Attachment D.

Chemical Analysis

Soil samples were analyzed for the following:

- Total petroleum hydrocarbons as gasoline (TPHg) by Environmental Protection Agency (EPA)
 Method 8015B modified
- Benzene, toluene, ethylbenzene, total xylenes (BTEX) methyl tertiary butyl ether (MTBE) and naphthalene by EPA Method 8260B

Groundwater samples were analyzed for the following:

- TPHg by EPA Method 8015B modified
- BTEX, MTBE and naphthalene by EPA Method 8260B
- 7-Oxygenates (Tert-butyl alcohol, Di isopropyl ether, Etyl tertiary butyl ether, Tert-amyl methyl ether, 1,2-Dibromoethane, 1,2-Dichloroethane and Ethanol) by EPA Method 8260B

Soil Analytical results

No petroleum hydrocarbons were detected in soil during this investigation, except 18 milligrams per kilogram (mg/kg) TPHg at 10 fbg in C 17. Eurofin's Analysis Report is included as Attachment E. Soil analytical results are included on the Cumulative Soil Data Table (Table 1).

Groundwater Analytical Results

The analytical results for the May 28, 2015 initial groundwater sampling event for well C 17 are shown in Table A below. Eurofin's Analysis Report is included as Attachment E.

	TABLE A: C-17 GROUNDWATER ANALYTICAL DATA May 28, 2015												
	May 28, 2015												
ТРНд	Benzene	Toluene	Ethyl- benzene	Total Xylenes	МТВЕ	Ethanol	ТВА	DIPE	ETBE	TAME	EDB	1,2-DCA	
(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	
2,600	9	<0.5	0.9 J	0.9 J	<0.5	<50	4 J	<0.5	<0.5	<0.5	<0.5	<0.5	

TPHg = Total petroleum hydrocarbons - gasoline range organics

MTBE = Methyl tert butyl ether TBA = Tert-butyl alcohol

DIPE = Diisopropyl ether ETBE = Ethyl tertiary butyl ether

TAME = Tert-amyl methyl ether EDB = 1.2-Dibromoethane (Ethylene dibromide)

1,2-DCA = 1,2-Dichloroethane

J = Estimated value –The result is <u>></u> the Method Detection Limit. and < the Limit of Quantitation

Waste Disposal

Soil cuttings generated during the well installation were placed in a Department of Transportation approved 55 gallon drum and temporarily stored onsite pending analytical profiling.

On May 28, 2015, Clean Harbors Environmental Services transported and disposed of the waste at their San Jose, California facility. A copy of the waste manifest is included in Attachment F.

Well Surveying

On June 10, 2015, Virgil Chavez Land Surveying, Inc. (Chavez) of Vallejo, California, a California licensed land surveyor, surveyed the top of casing and ground surface elevations of wells C-17 and C-9 relative to mean sea level. The horizontal well coordinate was also measured in accordance with AB2886 (GeoTracker) requirements. The survey information has been uploaded into the GeoTracker database. Chavez's well survey information is included in Attachment G.

Well Completion Reports

Department of Water Resources (DWR) Well Completion Reports are confidential documents and are therefore not included in this report. On June 23, 2015, CRA submitted the forms to the DWR and ACPWA under a separate cover.

Conclusions and Recommendations

CRA successfully installed monitoring well C-17. CRA recommends to monitor the newly installed well quarterly to establish petroleum hydrocarbon concentration trends. The well will be monitored using low flow techniques on a quarterly schedule and the results will be reported in quarterly monitoring reports.

We appreciate your assistance with this project. Please contact Judy Gilbert of CRA at (510) 420-3314 or Mr. Eric Hetrick of Chevron at (925) 790-6491 if you have any questions or comments.

Sincerely,

CONESTOGA-ROVERS & ASSOCIATES

Brandon S. Wilken, PG 7564

BY/mws/44

Judy A. Gilbert

Encl.

Figure 1

Vicinity Map

Figure 2

Site Plan

- 6 -

Table 1 Cumulative Soil Data

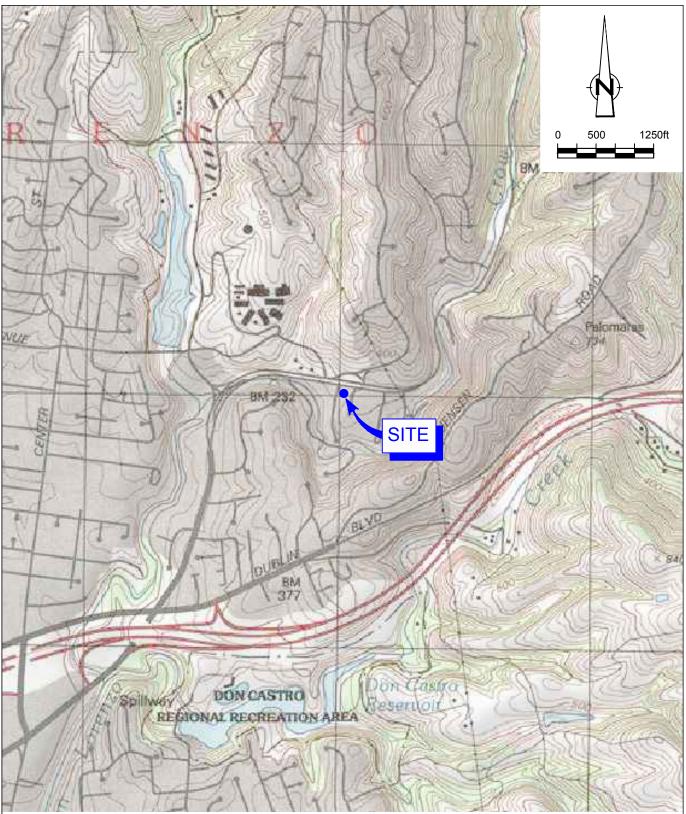
Attachment A Regulatory Correspondence

Attachment B ACPWA Permit
Attachment C Boring Log

Attachment D Groundwater Monitoring and Sampling Package

Attachment E Laboratory Analytical Reports

Attachment F Waste Disposal Project Summary and Manifest

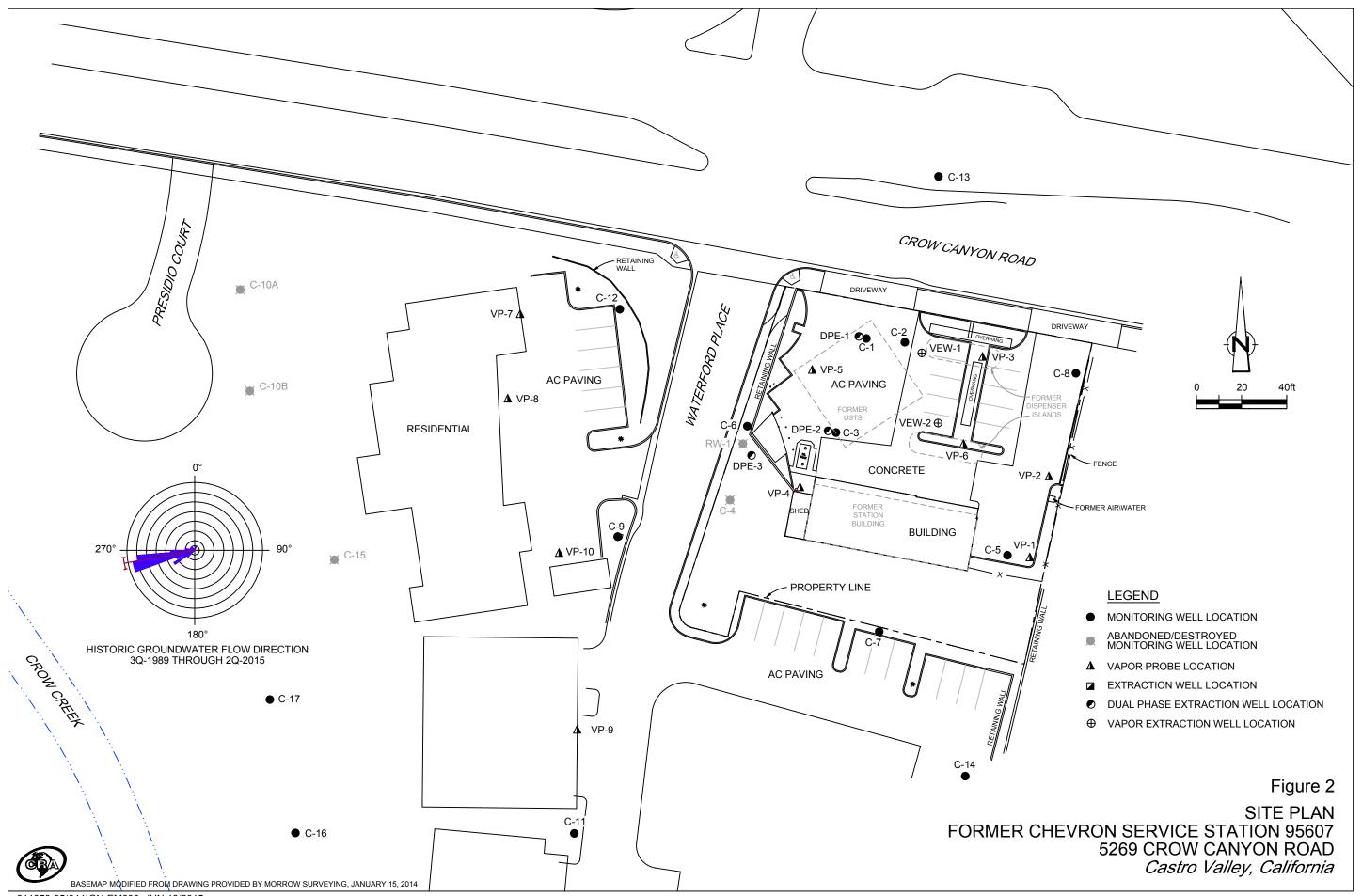

Attachment G Survey Data

cc.: Mr. Eric Hetrick, Chevron EMC (electronic copy)

Mr. Kevin Hinkley, Property Owner

Ms. Diane Riggs, Forest Creek Townhomes Association

Figures


SOURCE: TOPO! MAPS.

VICINITY MAP FORMER CHEVRON STATION 95607 5269 CROW CANYON ROAD

Figure 1

69 CROW CANYON ROAD *Castro Valley, California*

Table

												Naph-	Acenaph-	Acenaph-	-	Benzo (a)	Benzo (a)	Benzo (b) Fluoran-	Benzo (g, h, i)	Benzo (k) Fluoran-		Dibenz (a, h)	Fluoran-		Indeno (1, 2, 3-cd)	Naph-	Phenan-		
Sample ID	Date	Depth	TOG	TPHd	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Lead	thalene ^b	thene	thylene	Anthracene		Pyrene	thene	Perylene	thene	Chrysene	Anthracene	thene	Fluorene	Pyrene	thalene ^c	threne	Pyrene	Notes
Low-Threat Un	deraround Stoi	fbg age Tank Case	Closure Crit	teria ^a											Concentratio	ns in mg/kg													
Vapor Intrusion					100	T															l			T					
LNAPL)		10		-	+			ļ										ļ	-				<u> </u>		-			<u> </u>	i
Direct Contact	(0-5 fbg)	Residential Commercial				1.9 2.8		21 32				9.7 9.7					0.063 NA									0.063 NA			ı
Volatilization to	Outdoor Air	Residential				8.2		89				45					0.68									0.68			i
(5-10 fbg)		Commercial				12		134				45					NA									NA			1
Diret Contact ()-10 fbg)	Manhan				14		314				219					4.5									4.5			
Monitoring We	lls																												
C-12	2/22/1990	14.5-16			200	1.7	4.7	3.4	18																				
C-13	2/23/1990	14.5-16			<1	<0.05	<0.05	<0.05	< 0.05																				
0.45	0/01/1000				40	.0.05	0.40	.0.05	-0.05																				
C-15	2/24/1990	9.5-11			10	<0.05	0.10	<0.05	<0.05																				
C-17	5/12/2015	5			<0.5	<0.0005	<0.001	<0.001	<0.001	<0.0005		<0.001																	
C-17	5/12/2015	10			18	<0.025	<0.051	<0.051	<0.051	<0.025		<0.051																	
C-17	5/12/2015	15			<0.5	<0.0005	< 0.001	< 0.001	< 0.001	<0.0005		< 0.001																	
C-17	5/12/2015	18			<0.5	<0.0005	<0.001	<0.001	< 0.001	<0.0005		<0.001																	
UST Pit	/ . /																												
AF (#2)	10/2/1990	17	<30	<1.0	2.8	0.37	<0.0050	0.010	0.17	-																			Excavated on 10/11/90
AF (#7)	10/11/1990	22.5			<1.0	<0.0050	<0.0050	<0.0050	<0.0050																				
Aop (#1)	10/2/1990	18	<30	<1.0	<1.0	0.020	0.023	0.0078	0.019	_	<0.050																		Excavated on 10/5/90
Aop (#4)	10/5/1990	11			2.0	0.026	0.053	0.068	0.33																				2.00 valed 511 25/5/50
BF (#6)	10/2/1990	17			<1.0	<0.0050	<0.0050	<0.0050	<0.0050																				
5 (112)	/ . /																												
Bop (#3)	10/2/1990	16 19.5			440	3.9 0.73	2.0 0.58	11 2.6	42 12	-	-	_	_	_	_	_	-	_	_	_	-	-	_	_	_	_	_	_	
Bop (#1)	10/5/1990	19.5			75	0.75	0.36	2.0	12																				
CF (#5)	10/2/1990	15			<1.0	<0.0050	<0.0050	<0.0050	<0.0050	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
CF (#1)	10/11/1990				11	0.27	0.074	0.27	1.1																				
Cop (#4)	10/2/1990	16			2.2	0.20	0.0058	0.017	0.042	-	-	_	_	_	-	_	_	_	-	_	-	_	_	_	_	_	_	_	
Cop (#2)	10/5/1990	20			240	1.5	9.5	7.0	34	_	-	-	-	-	_	-	_	_	-	-	_	_	-	-	_	-	_	_	
Cop (#3)	10/5/1990	15			55	0.30	0.80	1.5	8.0	-	-	-	-	-	-	_	_	_	_	_	_	_	_	_	_	_	_	_	
Cop (#2)	10/11/1990	22.5			1,300	5.2	37	28	140																				
Product Lines																													
PL (#7)	10/2/1990	3.5			<1.0	<0.0050	<0.0050	<0.0050	<0.0050																				
PL (#8)	10/2/1990	3.5			<1.0	<0.0050	<0.0050	<0.0050	0.0097																				
Soil Vapor Bori																													
SV-1 (SS-1)	8/19/1996	5		-	<1.0	<0.005	<0.005	<0.005	<0.005					-															
SV-1 (SS-1)	8/19/1996	10			<1.0	<0.005	<0.005	<0.005	<0.005																				
SV-1 (SS-1)	8/19/1996	21			<1.0	<0.005	<0.005	<0.005	0.014																				
SV-2 (SS-2)	8/19/1996	3			<1.0	<0.005	<0.005	<0.005	<0.005																				
SV-2 (SS-2)	8/19/1996	8			<1.0	<0.005	<0.005	<0.005	<0.005																				
SV-2 (SS-2)	8/19/1996	10			<1.0	<0.005	<0.005	<0.005	<0.005																				
SV-2 (SS-2)	8/19/1996	21			<1.0	<0.005	<0.005	<0.005	<0.005																				
3v 2 (33-2)	0/ 13/ 1330	21			\1.0	\U.UU3	\0.003	\0.00J	\U.UUJ																			-	
SV-3 (SS-3)	8/19/1996	5			<1.0	<0.005	<0.005	<0.005	<0.005																				
SV-3 (SS-3)	8/20/1996	10			<1.0	<0.005	<0.005	< 0.005	<0.005																				
SV-3 (SS-3)	8/20/1996	21			17	0.67	0.74	0.38	1.2																				
•																													

																		Benzo (b)) Benzo	Benzo (k)		Dibenz			Indeno				
												Naph-	Acenaph-	Acenaph-		Benzo (a)	Benzo (a)	Fluoran-		Fluoran-		(a, h)	Fluoran-		(1, 2, 3-cd)	Naph-	Phenan-		
Sample ID	Date	Depth	TOG	TPHd	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Lead	thalene ^b	thene	thylene	Anthracene	Anthracene	Pyrene	thene	Perylene	thene	Chrysene	Anthracene	thene	Fluorene	Pyrene	thalene ^c	threne	Pyrene	Notes
		fbg													Concentratio	ns in mg/kg													
Low-Threat Und			Closure Cri	teria ^a		Т		_		1												1			1	1	1	1	
Vapor Intrusion	to Indoor Air ((0-10 fbg) (No			100																								
LNAPL)																-				-	1		+	1		<u> </u>			
Direct Contact ((0-5 fbg)	Residential				1.9		21				9.7					0.063									0.063			
Volatilization to	Outdoor Air	Commercial Residential			 -	2.8 8.2		32 89				9.7 45	+-	-		-	0.68		+-		- -	-	- -		-	NA 0.68			
(5-10 fbg)	Outdoor Air	Commercial				12		134				45					NA									NA			
Diret Contact (C	0-10 fba)	Othicy				14		314				219					4.5									4.5			
	== ,= 9,	14/						1 02.						-	1	1			_			1					-	<u> </u>	
SV-4 (SS-4)	8/20/1996	6			<1.0	<0.005	<0.005	<0.005	0.012																				
SV-4 (SS-4)	8/20/1996	9.5			<1.0	<0.005	<0.005	<0.005	<0.005																				
SV-4 (SS-4)	8/20/1996	23.5			97	0.59	<0.010	1.0	2.9																				
34 4 (33 4)	0/20/1550	23.3			3,	0.55	10.010	1.0	2.5																				
SV-5 (SS-5)	8/20/1996	5			<1.0	<0.005	<0.005	<0.005	<0.005																				
SV-5 (SS-5)	8/20/1996	10			<1.0	<0.005	<0.005	<0.005	<0.005																				
SV-5 (SS-5)	8/20/1996	24.5			<1.0	<0.005	<0.005	<0.005	<0.005																				
SV-6 (SS-6)	8/20/1996	5			<1.0	<0.005	<0.005	<0.005	<0.005																				
		10				<0.005	<0.005	<0.005	<0.005	_		_		_		_		_											
SV-6 (SS-6)	8/20/1996	10			<1.0																								
SV-6 (SS-6)	8/20/1996	25			61	0.85	0.65	1.2	3.6																				
CV 7 (CC 7)	9/20/1006	-			-1.0	<0.00F	٠٠ ٥٥٠	<0.00F	<0.00F																				
SV-7 (SS-7)	8/20/1996	3			<1.0	<0.005	<0.005	<0.005	<0.005																				
SV-7 (SS-7)	8/20/1996	10			<1.0	<0.005	<0.005	<0.005	<0.005																				
SV-7 (SS-7)	8/20/1996	25			400	2.3	2.7	9.3	40																				
C) / O /CC O)	0/20/1006	-			-1.0	40 00F	10.005	10.005	10.005																				
SV-8 (SS-8)	8/20/1996	5			<1.0	<0.005	<0.005	<0.005	<0.005																				
SV-8 (SS-8)	8/20/1996	10			<1.0	<0.005	<0.005	<0.005	<0.005																				
SV-8 (SS-8)	8/20/1996	25			<1.0	<0.005	<0.005	<0.005	<0.005																				
Soil Borings	7/5/2006	-			.4.0	.0.0005	.0.004	-0.004	.0.004	.0.000																			
SB-1 SB-1	7/5/2006 7/6/2006	5 10			<1.0 <1.0	<0.0005 0.0006	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	<0.0005																			
SB-1	7/6/2006	15			1.7	0.0008	0.001	<0.001	0.001	<0.0005																			
SB-1	7/6/2006	18			6.5	0.026	< 0.001	0.019	0.003	<0.0005				_															
SB-1	7/6/2006	20			22	0.005	< 0.001	0.025	0.040	<0.0005				_															
SB-1	7/6/2006	25			520	0.99	0.83	11	28	<0.062	,			_															
SB-1	7/6/2006	30			58	0.017	0.007	0.21	0.44	<0.002				_															
SB-1	7/6/2006	35			<1.0	0.001	0.007	0.004	0.009	0.0006																			
SB-2	7/5/2006	5			2.1	<0.0005		<0.001	<0.001	< 0.0005	;																		
SB-2	7/7/2006	10.5			1,300	0.071	< 0.001	0.36	0.18	<0.062																			
SB-2	7/7/2006	15			63	<.003	< 0.005	0.013	<0.005	< 0.003																			
SB-2	7/7/2006	20			68	0.013	0.010	0.41	0.10	<0.002																			
SB-2	7/7/2006	23.5			330	< 0.063	<0.13	0.77	<0.13	< 0.063																			
SB-3	7/5/2006	5			<1.0	0.0006	<0.001	<0.001	<0.001	<0.0005																			
SB-3	7/6/2006	10			<1.0	0.000	0.001	<0.001	<0.001	<0.0005																			
																												-	
SB-3	7/6/2006	15			<1.0	<0.0005		<0.001	<0.001	<0.0005						-													
SB-3	7/6/2006	20			6.7	<0.0005		0.006	0.01	<0.0005																			
SB-3	7/6/2006	25			2.8	0.001	0.001	0.22	0.55	<0.0005																			
SB-3	7/6/2006	31.5			1,100	<0.063	< 0.13	7.0	22 450	<0.063																			
SB-3	7/6/2006	35 29 5			4,600	5.5 0.0006	28	96	450	<0.062						-													
SB-3	7/6/2006	38.5			<1.0	0.0006	< 0.001	0.001	0.002	<0.0005																			

																		Benzo (b)) Benzo	Benzo (k)	ı	Dibenz			Indeno				
				TOU. 1		_		5:1 !!	w 1			Naph-		Acenaph-		Benzo (a)	Benzo (a)		(g, h, i)	Fluoran-	.	(a, h)	Fluoran-		(1, 2, 3-cd)		Phenan-	_	
Sample ID	Date	Depth fbg	TOG	TPHd	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Lead	thalene ^b	thene	tnyiene	Anthracene Concentration		Pyrene	thene	Perylene	tnene	Cnrysene	Anthracene	tnene	Fluorene	Pyrene	thalene	tnrene	Pyrene	Notes
Low-Threat Un	deraround Stor	-	Closure Cı	riteria ^a											Concentration	113 111 1116/116													
Vapor Intrusion					100																								
LNAPL)											-										-								
Direct Contact	(0-5 fbg)	Residential				1.9		21			-	9.7		-		-	0.063			-						0.063			
Volatilization t	o Outdoor Air	Commercial Residential				2.8 8.2		32 89				9.7 45					0.68									0.68			
(5-10 fbg)	o outuooi Aii	Commercial				12		134	-			45		-			NA NA			-	-					NA			
Diret Contact (0-10 fbg)	Othicy				14		314				219					4.5									4.5			
SB-4 SB-4	7/5/2006 7/6/2006	5 10			<1.0 <1.0	<0.0005 0.0009	<0.001 0.001	<0.001 <0.001	<0.001 0.002	<0.0005 <0.0005																			
SB-4	7/6/2006	15			<1.0	< 0.0005	< 0.001	<0.001	< 0.002	<0.0005																			
SB-4	7/6/2006	20			<1.0	0.0008	0.001	<0.001	0.001	< 0.0005																			
SB-4	7/6/2006	25			630	< 0.063	< 0.13	4.0	22	< 0.063																			
SB-4	7/6/2006	30			950	1.1	1.0	10	50	<0.063																			
SB-4	7/6/2006	35 40			550 730	0.85	0.58 0.73	5.3	26	<0.063	-	-		-											-	-			
SB-4 SB-4	7/6/2006 7/6/2006	45			720 240	0.72 0.43	0.73	14 4.7	69 19	<0.063 <0.063																			
SB-4	7/6/2006	47.5			<1.0	0.0008	<0.001	<0.001	0.002	<0.005																			
SB-5	7/5/2006	5			<1.0	< 0.0005	< 0.001	<0.001	< 0.001	<0.0005																			
SB-5	7/7/2006	10			<1.0	0.003	0.003	<0.001	0.002	<0.0005																			
SB-5 SB-5	7/7/2006 7/7/2006	15 20			<1.0 <1.0	0.004 0.003	0.004 0.003	<0.001 <0.001	0.002 0.001	<0.0005 <0.0005																			
SB-5	7/7/2006	25			3.3	< 0.0005	< 0.003	<0.001	< 0.001	<0.0005																			
SB-5	7/7/2006	30			590	0.64	0.80	8.4	35	<0.062																			
SB-5	7/7/2006	32			980	14	60	34	180	< 0.062																			
Soil Vapor Prol	205																												
VP-1	9/17/2013	3.5			< 1	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005		< 0.001																	
VP-1	9/17/2013				< 1.0	< 0.0005		< 0.001	< 0.001	< 0.0005		< 0.001																	
VP-1	9/17/2013																												
VP-1	9/17/2013	7			< 1	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005		< 0.001																	
VP-1	9/17/2013																												
VP-1	9/17/2013	12			< 1	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005		< 0.001																	
VD 2	0 /17 /2012	2.5			. 1	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005		< 0.001																	
VP-2 VP-2	9/17/2013 9/17/2013				<1 <1	< 0.0005 < 0.0005		< 0.001 < 0.001	< 0.001 < 0.001	< 0.0005 < 0.0005		< 0.001 < 0.001																	
VP-2	9/17/2013				<1	< 0.0005		< 0.001				< 0.001																	
VP-2	9/17/2013				< 1.0	< 0.0005		< 0.001		< 0.0005		< 0.001																	
	, ,					,																							
VP-3	9/17/2013	3.5			2.8	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005		0.001																	
VP-3	9/17/2013				<1.0	< 0.0005		< 0.0009	< 0.0009	< 0.0005		< 0.0009																	
VP-3	9/17/2013				1.2	< 0.0005		< 0.001	< 0.001	< 0.0005		< 0.001																	
VP-3	9/17/2013	12			<1	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005		< 0.001																	
V/D A	9/17/2013	3.5			<1 N	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005		< 0.001																	
VP-4 VP-4	9/17/2013				<1.0 <1	< 0.0005 < 0.0005		< 0.001 < 0.001		< 0.0005 < 0.0005		< 0.001 < 0.001																	
A1 I	7/11/2013				~1	- 0.0003	- 0.001	- 0.001	- 0.001	- 0.0003	-	- 0.001		-	-		-			-					-				
VP-5	9/18/2013	3.5			<1	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005		< 0.001																	
VP-5	9/18/2013				<1.0	< 0.0005		< 0.001		< 0.0005		< 0.001																	
VP-5	9/18/2013				<1.0		< 0.001	< 0.001		< 0.0005		< 0.001																	
VP-5	9/18/2013	12			<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005		< 0.001																	
T.T. (0./40./20:-				_					. 0 2225																			
VP-6	9/18/2013				<1 260	< 0.0005		< 0.001		< 0.0005		< 0.001																	
VP-6 VP-6	9/18/2013				260 31	<0.026	<0.051 <0.048	1.7 0.097	0.80	<0.026		5.0 0.096			-				-	-									
VP-6 VP-6	9/18/2013 9/18/2013				<1.0	<0.024 < 0.0005		< 0.097	<0.048 < 0.001	<0.024 < 0.0005		< 0.001																	
*1 0	J, 10, 2013	14			1.0	- 0.0003	- 0.001	- 0.001	- 0.001	. 0.0003	_	- 0.001																	

Sample ID Date Depth TOG TPHd TPHg Benzene Toluene Ethylbenzene Xylenes MTBE Lead Italiene It	 9.7 9.7		thene	Ca	Anthracene A oncentrations in	nthracene	. ,	Fluoran- thene	(g, h, i) Perylene	Fluoran- thene	Chrysene	(a, h) Anthracene	Fluoran- thene	Fluorene	(1, 2, 3-cd) Pyrene	Naph- thalene ^c	Phenan- threne	Pyrene	Notes
The Low-Threat Underground Storage Tank Case Closure Criteria	 9.7 9.7			Ca			. y.cc	<u> </u>	- c.y.cc		<u> </u>	<u> </u>			. ,			- y.e.ie	
Vapor Intrusion to Indoor Air (0-10 fbg) (No LNAPL)	9.7 9.7																		
Direct Contact (0-5 fbg) Residential 1.9 21 9.7	9.7 9.7				j.														
Direct Contact (0-5/bg) Commercial 2.8 32 9.7	9.7	9.7																	
Volatilization to Outdoor Air Residential 8.2 89 45							0.063									0.063			
Commercial 12 134 45	45						0.68									0.68			
Diret Contact (0-10 fbg) 14 314 219 VP-7 9/16/2013 3.5 <1.0							NA NA									NA			
VP-7 9/16/2013 3.5 <1.0 < 0.0005 < 0.001 < 0.001 < 0.0005 < 0.00 VP-7 9/16/2013 5 <1.0 < 0.0005 < 0.001 < 0.001 < 0.001 < 0.0005 < 0.00 VP-7 9/16/2013 7 <1.0 < 0.0005 < 0.001 < 0.001 < 0.001 < 0.0005 < 0.00 VP-8 9/16/2013 3.5 <1.0 < 0.0005 < 0.001 < 0.001 < 0.001 < 0.0005 < 0.00 VP-8 9/16/2013 3.5 <1.0 < 0.0005 < 0.001 < 0.001 < 0.001 < 0.0005 < 0.00 VP-8 9/16/2013 5 <1 < 0.0005 < 0.001 < 0.001 < 0.001 < 0.0005 < 0.00 VP-8 9/16/2013 7 <1 < 0.0005 < 0.001 < 0.001 < 0.001 < 0.0005 < 0.00 VP-9 9/17/2013 3.5 <1.0 < 0.0005 < 0.001 < 0.001 < 0.001 < 0.0005 < 0.00 VP-9 9/17/2013 5 <1.0 < 0.0005 < 0.0009 < 0.0009 < 0.0009 < 0.0005 < 0.00 VP-9 9/17/2013 5.5 <1.0 < 0.0005 < 0.001 < 0.001 < 0.001 < 0.0005 < 0.00 VP-9 9/17/2013 6.5 <1.0 < 0.0005 < 0.001 < 0.001 < 0.001 < 0.0005 < 0.00 VP-9 9/17/2013 7 <1.0 < 0.0005 < 0.001 < 0.001 < 0.001 < 0.0005 < 0.00 VP-9 9/17/2013 7 <1.0 < 0.0005 < 0.001 < 0.001 < 0.001 < 0.0005 < 0.00 VP-9 9/17/2013 7 <1.0 < 0.0005 < 0.001 < 0.001 < 0.001 < 0.0005 < 0.00 VP-9 9/17/2013 7 <1.0 < 0.0005 < 0.001 < 0.001 < 0.001 < 0.0005 < 0.00 VP-9 9/17/2013 7 <1.0 < 0.0005 < 0.001 < 0.001 < 0.001 < 0.0005 < 0.00 VP-9 9/17/2013 7 <1.0 < 0.0005 < 0.001 < 0.001 < 0.001 < 0.0005 < 0.00 VP-10 9/16/2013 3.5 <1.0 < 0.0005 < 0.001 < 0.001 < 0.001 < 0.0005 < 0.00 VP-10 9/16/2013 5 <1.0 < 0.0005 < 0.001 < 0.001 < 0.001 < 0.0005 < 0.00 VP-10 9/16/2013 5 <1.0 < 0.0005 < 0.001 < 0.001 < 0.001 < 0.0005 < 0.00	219						4.5						-			4.5			
VP-7 9/16/2013 5 <1.0 <0.0005 <0.001 <0.001 <0.001 <0.0005 <0.00 VP-7 9/16/2013 7 <1 <0.0005 <0.001 <0.001 <0.001 <0.0005 <0.00 VP-8 9/16/2013 3.5 <1.0 <0.0005 <0.001 <0.001 <0.001 <0.0005 <0.00 VP-8 9/16/2013 5 <1 <0.0005 <0.001 <0.001 <0.001 <0.0005 <0.00 VP-8 9/16/2013 7 <1 <0.0005 <0.001 <0.001 <0.001 <0.0005 <0.00 VP-9 9/16/2013 7 <1 <0.0005 <0.001 <0.001 <0.001 <0.0005 <0.00 VP-9 9/17/2013 3.5 <1.0 <0.0005 <0.001 <0.0001 <0.001 <0.0005 <0.00 VP-9 9/17/2013 5.5 <1.0 <0.0005 <0.0009 <0.0009 <0.0009 <0.0009 <0.0005 <0.00 VP-9 9/17/2013 5.5 <1.0 <0.0005 <0.001 <0.001 <0.001 <0.0005 <0.00 VP-9 9/17/2013 6.5 <1.0 <0.0005 <0.001 <0.001 <0.001 <0.0005 <0.00 VP-9 9/17/2013 6.5 <1.0 <0.0005 <0.001 <0.001 <0.001 <0.0005 <0.00 VP-9 9/17/2013 6.5 <1.0 <0.0005 <0.001 <0.001 <0.001 <0.0005 <0.00 VP-9 9/17/2013 3.5 <1.0 <0.0005 <0.001 <0.001 <0.001 <0.0005 <0.00 VP-9 9/17/2013 5.5 <1.0 <0.0005 <0.001 <0.001 <0.001 <0.0005 <0.00 VP-9 9/17/2013 5.5 <1.0 <0.0005 <0.001 <0.001 <0.001 <0.0005 <0.00 VP-9 9/17/2013 5.5 <1.0 <0.0005 <0.001 <0.001 <0.0001 <0.0005 <0.00 VP-9 9/17/2013 5.5 <1.0 <0.0005 <0.001 <0.001 <0.0001 <0.0005 <0.00 VP-9 9/17/2013 5.5 <1.0 <0.0005 <0.001 <0.001 <0.0001 <0.0005 <0.00 VP-10 9/16/2013 3.5 <1.0 <0.0005 <0.001 <0.001 <0.001 <0.0005 <0.00 VP-10 9/16/2013 5.5 <1.0 <0.0005 <0.001 <0.001 <0.001 <0.0005 <0.00 VP-10 9/16/2013 5.5 <1.0 <0.0005 <0.001 <0.0001 <0.0001 <0.0005 <0.00 VP-10 9/16/2013 5.5 <1.0 <0.0005 <0.001 <0.0001 <0.0001 <0.0005 <0.00 VP-10 9/16/2013 5.5 <1.0 <0.0005 <0.001 <0.0001 <0.0001 <0.0005 <0.00 VP-10 9/16/2013 5.5 <1.0 <0.0005 <0.0001 <0.0001 <0.0001 <0.0005 <0.00 VP-10 9/16/2013 5.5 <1.0 <0.0005 <0.0001 <0.0001 <0.0001 <0.0005 <0.00 VP-10 9/16/2013 5.5 <1.0 <0.0005 <0.0001 <0.0001 <0.0001 <0.0005 <0.00 VP-10 9/16/2013 5.5 <1.0 <0.0005 <0.0001 <0.0001 <		1			I	- '													
VP-7 9/16/2013 7 <1 <0.0005 <0.001 <0.001 <0.001 <0.0005 <0.0005 <0.0005 <0.001 <0.0001 <0.0005 <0.0005 <0.0005 <0.0005 <0.001 <0.0001 <0.0001 <0.00005 <0.0005 <0.0001 <0.0001 <0.00005 <0.0005 <0.0001 <0.0001 <0.0001 <0.00005 <0.00005 <0.0000 <0.0001 <0.0001 <0.00005 <0.00005 <0.0000 <0.0001 <0.0001 <0.00005 <0.00005 <0.0000 <0.0001 <0.00005 <0.00005 <0.0001 <0.00005 <0.00005 <0.0000 <0.00009 <0.00009 <0.00009 <0.00005 <0.0000 <0.0000 <0.00009 <0.00009 <0.000009 <0.00009 <0.00005 <0.0000 <0.0000 <0.00009 <0.00009 <0.000009 <0.00005 <0.0000 <0.0000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.0000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.00000 <0.00000 <0.000000 <0.00000 <0.000000 <0.000000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00000 <0.00	< 0.001	< 0.001																	
VP-8 9/16/2013 3.5 <1.0 <0.0005 <0.001 <0.001 <0.001 <0.0005 <0.00 VP-8 9/16/2013 5 <1 <0.0005 <0.001 <0.001 <0.001 <0.0005 <0.00 VP-8 9/16/2013 7 <1 <0.0005 <0.001 <0.001 <0.001 <0.0005 <0.00 VP-9 9/17/2013 3.5 <- <1.0 <0.0005 <0.0009 <0.0009 <0.0009 <0.0009 <0.0005 <0.00 VP-9 9/17/2013 5.5 <- <1.0 <0.0005 <0.001 <0.001 <0.001 <0.0005 <0.00 VP-9 9/17/2013 6.5 <- <1.0 <0.0005 <0.001 <0.001 <0.001 <0.0005 <0.00 VP-9 9/17/2013 6.5 <- <1.0 <0.0005 <0.001 <0.001 <0.001 <0.0005 <0.00 VP-9 9/17/2013 6.5 <- <1.0 <0.0005 <0.001 <0.001 <0.001 <0.0005 <0.00 VP-9 9/17/2013 7 <- <1.0 <0.0005 <0.001 <0.001 <0.001 <0.0005 <0.00 VP-9 9/17/2013 7 <- <1.0 <0.0005 <0.001 <0.001 <0.001 <0.0005 <0.00 VP-9 9/17/2013 7 <- <1.0 <0.0005 <0.001 <0.001 <0.001 <0.0005 <0.00 VP-9 9/16/2013 3.5 <- <1.0 <0.0005 <0.001 <0.001 <0.001 <0.0005 <0.00 VP-10 9/16/2013 5 <- <1.0 <0.0005 <0.001 <0.001 <0.001 <0.0005 <0.00 VP-10 9/16/2013 5 <- <1.0 <0.0005 <0.001 <0.001 <0.001 <0.0005 <0.00 VP-10 9/16/2013 5 <- <1.0 <0.0005 <0.001 <0.001 <0.001 <0.0005 <0.00 VP-10 9/16/2013 5 <- <1.0 <0.0005 <0.001 <0.001 <0.001 <0.0005 <0.00 VP-10 9/16/2013 5 <- <1.0 <0.0005 <0.001 <0.001 <0.001 <0.0005 <0.00 VP-10 9/16/2013 5 <- <1.0 <0.0005 <0.001 <0.001 <0.001 <0.0005 <0.00 VP-10 9/16/2013 5 <- <1.0 <0.0005 <0.001 <0.001 <0.001 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.00	< 0.001	< 0.001																	
VP-8 9/16/2013 5 <1 <0.0005 <0.001 <0.001 <0.001 <0.0005 <0.00 VP-8 9/16/2013 7 <1 <0.0005 <0.001 <0.0001 <0.001 <0.0005 <0.00 VP-9 9/17/2013 3.5 <1.0 <0.0005 <0.0009 <0.0009 <0.0009 <0.0009 <0.0005 <0.00 VP-9 9/17/2013 5 <1.0 <0.0005 <0.0001 <0.0001 <0.0001 <0.0005 <0.00 VP-9 9/17/2013 5.5 <1.0 <0.0005 <0.001 <0.0001 <0.0001 <0.0005 <0.00 VP-9 9/17/2013 6.5 <1.0 <0.0005 <0.001 <0.001 <0.001 <0.0005 <0.00 VP-9 9/17/2013 6.5 <1 <0.0005 <0.001 <0.001 <0.001 <0.0005 <0.00 VP-9 9/17/2013 7	< 0.001	< 0.001																	
VP-8 9/16/2013 5																			
VP-8 9/16/2013 7 <1 <0.0005 <0.001 <0.001 <0.001 <0.0005 <0.00 VP-9 9/17/2013 3.5 <1.0 <0.0005 <0.0009 <0.0009 <0.0009 <0.0009 <0.0005 <0.000 VP-9 9/17/2013 5 <1.0 <0.0005 <0.0001 <0.0001 <0.0001 <0.0005 <0.000 VP-9 9/17/2013 5.5 <1.0 <0.0005 <0.001 <0.0001 <0.0001 <0.0001 <0.0005 <0.00 VP-9 9/17/2013 6.5 <1 <0.0005 <0.001 <0.0001 <0.0001 <0.0001 <0.0005 <0.00 VP-9 9/17/2013 7 <1.0 <0.0005 <0.001 <0.0001 <0.0001 <0.0005 <0.00 VP-9 9/17/2013 7		< 0.001																	
VP-9 9/17/2013 3.5 <1.0 < 0.0005 < 0.0009 < 0.0009 < 0.0009 < 0.0005 <0.000 VP-9 9/17/2013 5 <1.0 < 0.0005 < 0.0001 < 0.001 < 0.001 < 0.0005 <0.000 VP-9 9/17/2013 5.5 <1.0 < 0.0005 < 0.001 < 0.001 < 0.001 < 0.0005 <0.00 VP-9 9/17/2013 6.5 <1 < 0.0005 < 0.001 < 0.001 < 0.001 < 0.0005 <0.00 VP-9 9/17/2013 7 <1 < 0.0005 < 0.001 < 0.001 < 0.001 < 0.0005 <0.00 VP-10 9/16/2013 3.5 <1.0 < 0.0005 < 0.001 < 0.001 < 0.001 < 0.0005 <0.00 VP-10 9/16/2013 5 <1.0 < 0.0005 < 0.001 < 0.001 < 0.001 < 0.0005 <0.00 VP-10 9/16/2013 5 <1.0 < 0.0005 < 0.001 < 0.001 < 0.001 < 0.0005 <0.00 VP-10 9/16/2013 5 <1.0 < 0.0005 < 0.001 < 0.001 < 0.001 < 0.0005 <0.00 VP-10 9/16/2013 5 <1.0 < 0.0005 < 0.001 < 0.001 < 0.001 < 0.0005 <0.00		< 0.001																	
VP-9 9/17/2013 5 <1.0 <0.0005 <0.001 <0.001 <0.001 <0.0005 <0.00 VP-9 9/17/2013 6.5 <1 <0.0005 <0.001 <0.001 <0.001 <0.0005 <0.00 VP-9 9/17/2013 6.5 <1 <0.0005 <0.001 <0.001 <0.001 <0.0005 <0.00 VP-9 9/17/2013 7 < <1.0 <0.0005 <0.001 <0.001 <0.001 <0.0005 <0.00 VP-10 9/16/2013 3.5 <- <1.0 <0.0005 <0.001 <0.001 <0.001 <0.0005 <0.00 VP-10 9/16/2013 5 <1.0 <0.0005 <0.001 <0.001 <0.001 <0.0005 <0.00 VP-10 9/16/2013 5 <1.0 <0.0005 <0.001 <0.001 <0.001 <0.0005 <0.00	< 0.001	- < 0.001																	
VP-9 9/17/2013 5 <1.0 <0.0005 <0.001 <0.001 <0.001 <0.0005 <0.00 VP-9 9/17/2013 6.5 <1 <0.0005 <0.001 <0.001 <0.001 <0.0005 <0.00 VP-9 9/17/2013 7 <1 <0.0005 <0.001 <0.001 <0.001 <0.0005 <0.00 VP-10 9/16/2013 3.5 <- <1.0 <0.0005 <0.001 <0.001 <0.001 <0.0005 <0.00 VP-10 9/16/2013 5 <1.0 <0.0005 <0.001 <0.001 <0.001 <0.0005 <0.00 VP-10 9/16/2013 5 <1.0 <0.0005 <0.001 <0.001 <0.001 <0.0005 <0.00 VP-10 9/16/2013 5 <1.0 <0.0005 <0.001 <0.001 <0.001 <0.0005 <0.00	-0.000	ZO 0000																	
VP-9 9/17/2013 5.5 <- <1.0 < 0.0005 < 0.001 < 0.001 < 0.001 < 0.0005 < 0.00 VP-9 9/17/2013 6.5 <- <1 < 0.0005 < 0.001 < 0.001 < 0.001 < 0.0005 < 0.00 VP-9 9/17/2013 7 <- < <- < < < < < < < < < < < < < < < <- <				-															
VP-9 9/17/2013 6.5 <- <- <- <- <- <- <- <- <- <- <- <-		. 0.004																	
VP-9 9/17/2013 7		- < 0.001	_	-		-			-				-						
VP-10 9/16/2013 3.5 <- <1.0 < 0.0005 < 0.001 < 0.001 < 0.001 < 0.0005 < 0.00 VP-10 9/16/2013 5 <- <1.0 < 0.0005 < 0.001 < 0.001 < 0.001 < 0.0005 < 0.00																			
VP-10 9/16/2013 5 <- <1.0 < 0.0005 < 0.001 < 0.001 < 0.001 < 0.0005 < 0.00																			
., .,	< 0.001	< 0.001																	
VP-10 9/16/2013 7 <1 < 0.0005 < 0.001 < 0.001 < 0.001 < 0.0005 < 0.00	< 0.001	< 0.001																	
	< 0.001	- < 0.001																	
V . F. C W.																			
Vapor Extraction Wells VEW-1-5 12/16/2013 5 <1.0 0.001 <0.001 0.001 <0.001 <0.0005 8.98 <0.00	<0.001 <0.002	8.98 <0.001	<0.003	<0.003	<0.003	0.004	0.006	0.011	0.013	<0.003	0.009	<0.003	0.006	<0.003	0.004	<0.003	0.006	0.008	
, ,			<0.003	<0.003	<0.003	0.004	<0.003	0.011	0.013	<0.003	0.009	<0.003	< 0.033	<0.003	<0.004	0.067	0.051	0.008	
	6.1 0.006			<0.003	0.004	0.007	0.004	0.006	<0.003	< 0.003	0.009	<0.003	0.005	0.008	<0.003	1.1	0.031	0.01	
	2.1 0.008			0.004	0.004	0.007	0.004	0.005	<0.003	<0.003	0.005	<0.003	0.007	0.008	< 0.003	0.55	0.022	0.015	
				0.004	<0.003	0.004	0.003	0.004	0.007	<0.003	0.006	<0.003	0.004	0.005	<0.003	0.056	0.011	0.005	
			<0.003	<0.003	<0.003 <0.003	<0.003	<0.003 0.004	<0.003 0.006	<0.003	<0.003	<0.003 0.006	<0.003	< 0.003	<0.003 <0.003	<0.003	0.004 0.009	<0.003	<0.003	
			<0.003	<0.003		<0.003			<0.003	<0.003		<0.003	0.004		<0.003		<0.003	0.004	
VEW-2-17 12/19/2013 17 1.3 0.003" <0.001" 0.005" 0.002" <0.0005" 9.58 <0.00	<0.001 <0.003	9.58 <0.001°	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	
Dual-Phase Extraction Wells																			
DPE-1-5 12/18/2013 5 <9.6 0.001 <0.001 <0.001 <0.001 <0.001 <0.005 11.0 <0.00	<0.001 <0.033	11.0 < 0.001	<0.033	< 0.033	< 0.033	<0.033	0.051	0.036	0.10	< 0.033	0.079	<0.033	<0.033	< 0.033	<0.033	<0.033	< 0.033	0.040	
			<0.003	<0.003	< 0.003	<0.003	< 0.003	< 0.003	< 0.003	<0.003	<0.003	< 0.003	<0.003	< 0.003	< 0.003	< 0.003	<0.003	<0.003	
			<0.003	< 0.003	<0.003	<0.003	<0.003	< 0.003	<0.003	<0.003	<0.003	< 0.003	<0.003	< 0.003	<0.003	<0.003	< 0.003	<0.003	
			<0.003	<0.003	<0.003 0.017	<0.003	<0.003 0.004	<0.003	< 0.003	<0.003 0.004	< 0.003	<0.003	<0.003 0.010	<0.003 0.023	<0.003	0.012	0.012 0.047	<0.003 0.020	
	12 0.045			0.019 0.025	0.017	0.012 0.011	0.004	<0.003 0.005	0.006 0.006	0.004	0.009 0.009	<0.003 <0.003	0.010	0.023	<0.003 0.004	5.6 8.5	0.047	0.020	
			< 0.003	< 0.023	<0.003	<0.003	<0.003	< 0.003	<0.003	< 0.003	< 0.003	<0.003	< 0.003	< 0.003	< 0.004	0.027	<0.003	<0.003	
			< 0.003	< 0.003	<0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	<0.003	< 0.003	< 0.003	< 0.003	< 0.003	0.008	< 0.003	<0.003	
			< 0.003	< 0.003	<0.003	< 0.003	< 0.003	0.003	< 0.003	< 0.003	< 0.003	< 0.003	<0.003	< 0.003	< 0.003	0.044	< 0.003	< 0.003	
			0.011	<0.003	0.020	0.015	0.020	0.018	0.017	0.007	0.014	<0.003	0.042	0.025	0.005	0.020	0.072	0.055	
			0.006	<0.003	0.014	0.011	0.016	0.011	0.012	0.005	0.013	<0.003	0.029	0.018	0.004	0.053	0.056	0.038	
					0.05-														
			<0.003	<0.003	<0.003	<0.003	< 0.003	0.005	<0.003	<0.003	< 0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	
			<0.003 <0.003	<0.003 <0.003	<0.003 <0.003	<0.003 <0.003	<0.003 <0.003	<0.003 <0.003	<0.003 <0.003	<0.003 <0.003	0.006 <0.003	<0.003 <0.003	<0.003 <0.003	<0.003 <0.003	<0.003 <0.003	<0.003 0.058	0.008 <0.003	0.007 <0.003	
			<0.003	<0.003	<0.003	0.003	0.003	0.003	0.005	<0.003	0.006	< 0.003	0.003	<0.003	<0.003	< 0.003	0.003	0.010	
	4.3 0.021			0.013	0.014	0.005	0.004	< 0.003	0.003	< 0.003	<0.003	<0.003	0.007	0.028	<0.003	3.9	0.040	0.010	
	4.0 0.013			0.006	0.006	<0.003	< 0.003	< 0.003	<0.003	< 0.003	<0.003	< 0.003	0.003	0.011	< 0.003	2.2	0.016	0.005	
										10.003	٠٥.٥٥٥		0.005	0.011	٠٥.٥٥٥	2.2	0.010	0.005	
	0.003 < 0.003	6.12 0.003	<0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	<0.003	< 0.003	< 0.003	<0.003	<0.003	<0.003	< 0.003	<0.003	<0.003	<0.003	
	<0.0009 <0.003	5.72 <0.0009	<0.003 <0.003		<0.003 <0.003	<0.003 <0.003	<0.003	< 0.003	<0.003 <0.003		<0.003 <0.003	<0.003 <0.003	<0.003 <0.003	<0.003 <0.003	<0.003 <0.003	<0.003 0.006	<0.003 <0.003	<0.003 <0.003	
DPE-2-50 12/20/2013 50 5.6 0.29 0.004 0.034 0.047 <0.0005 5.83 0.16	<0.0009 <0.003 <0.001 <0.003	5.72 <0.0009 4.90 <0.001	<0.003	<0.003	<0.003				<0.003	<0.003	<0.003	<0.003	<0.003	< 0.003	<0.003	<0.003	<0.003	<0.003	

TABLE 1 **CUMULATIVE SOIL ANALYTICAL DATA** FORMER CHEVRON SERVICE STATION 95607

5269 CROW CANYON ROAD, CASTRO VALLEY, CALIFORNIA

												Month					_ ,,	Benzo (b)	Benzo	Benzo (k)		Dibenz			Indeno	N h			
												Naph-	Acenaph-	Acenaph-		Benzo (a)	Benzo (a)	Fluoran-	(g, h, ı)	Fluoran-		(a, h)	Fluoran-		(1, 2, 3-cd)	Naph-	Phenan-		
Sample ID	Date	Depth	TOG	TPHd	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Lead	thalene ^o	thene	thylene	Anthracene	Anthracene	Pyrene	thene	Perylene	thene	Chrysene	Anthracene	thene	Fluorene	Pyrene	thalene ^c	threne	Pyrene	Notes
		fbg													Concentration	ns in mg/kg													
Low-Threat Un	derground Store	age Tank Case	Closure Crite	ria ^a																									
Vapor Intrusion LNAPL)	to Indoor Air (0-10 fbg) (No			100												-					-							
Discot Courts at	(0 F ft)	Residential				1.9		21				9.7					0.063									0.063			
Direct Contact	(U-5 JBG)	Commercial				2.8		32				9.7					NA									NA			
Volatilization to	Outdoor Air	Residential				8.2		89				45					0.68									0.68			
(5-10 fbg)		Commercial				12		134				45					NA									NA			
Diret Contact (C	0-10 fbg)	Othicy				14		314				219					4.5									4.5			
DPE-3-5	12/17/2013	5			<1.0	<0.0005	<0.001	<0.001	<0.001	<0.0005	13.2	<0.001	<0.003	<0.003	<0.003	0.005	0.006	0.009	0.009	<0.003	0.009	0.004	0.007	<0.003	0.007	<0.003	0.005	0.01	
DPE-3-10	1/10/2014	10			<0.042	<.0005	< 0.001	<0.001	< 0.001	< 0.0005	13.9	< 0.001	< 0.003	0.004	< 0.003	0.012	0.020	0.019	0.023	0.008	0.019	0.005	0.026	< 0.003	0.019	0.006	0.021	0.039	
DPE-3-15	1/10/2014	15			19	0.43	0.001	0.047	0.018	0.001	10.5	0.26	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	0.18	0.004	< 0.003	
DPE-3-20	1/10/2014	20			700	7.7	0.87	14	65	< 0.025	9.61	3.3	0.010	0.011	0.008	0.004	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	0.005	0.016	< 0.003	2.7	0.023	0.008	
DPE-3-25	1/10/2014	25			12	0.54	0.002	0.46	0.082	0.002	8.98	0.081	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	0.031	< 0.003	< 0.003	
DPE-3-30	1/10/2014	30			< 0.044	0.002	< 0.001	0.001	0.002	0.005	6.78	< 0.001	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	
DPE-3-35	1/10/2014	35			< 0.045	< 0.0005	< 0.001	< 0.001	< 0.001	0.002	5.51	< 0.001	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	
DPE-3-40	1/10/2014	40			< 0.047	0.0009	< 0.001	< 0.001	< 0.001	< 0.0005	6.65	< 0.001	0.005	< 0.003	0.018	0.016	0.015	0.015	0.014	0.008	0.014	< 0.003	0.033	0.024	0.007	0.040	0.068	0.043	

Notes/Abbreviations

mg/kg = Milligrams per kilogram.

<x = Indicates chemical not detected at or above reporting limit x.</p>

fbg = Feet below grade.

ND = Non-detect.

-- = Not analyzed for this constituent.

100 = Excavated sample location.

NE = Not established.

2006, 2013, 2014 samples

Total petroleum hydrocarbons as gasoline (TPHg) by EPA Method 8015M.

Benzene, toluene, ethylbenzene and xylenes (BTEX) by EPA Method 8260B.

Methyl tertiary butyl ether (MTBE) and Naphthalene by EPA Method 8260B.

Total Lead by EPA Method 6010

Based on the seven carcinogenic poly-aromatic hydrocarbons (PAHs) as benzo(a)pyrene toxicity equivalent [BAPE]. PAH by EPA Method 8270

1996 samples

TPHg by Modified EPA Method 8015.

BTEX by EPA Method 8020.

1990 samples

TPHg by EPA Method 3550/8015.

BTEX by EPA Method 5020/8015/8020.

Lead by California LUFT Manual, 12/87. Total oil and grease (TOG) by SM 503 D&E.

^a The Low Threat Underground Storage Tank Case Closure Policy was established in 2012 by the State Water Board to provide standard statewide closure criteria for low threat UST sites that are subject to Chapter 6.7 of Division 20 of the Health and Safety Code and Chapter 16 of Division 3 of Title 23 of the California Code of Regulations

^b Naphthalene by EPA Method 8260B

^c Naphthalene by EPA Method 8270C

^d The recovery for the sample internal standard is outside the QC acceptance limits. The following corrective action was taken: The sample was re-analyzed and the QC is again outside of the acceptance limits, indicating a matrix effect. The data is reported from the initial trial.

e The concentration reported for ethylbenzene is estimated since it exceeds the calibration range of the instrument when determined by the low level method, but is less than the quantitation limit when determined by the high level method. The result reported is from the high level determination.

Attachment A

Regulatory Correspondence

ALAMEDA COUNTY HEALTH CARE SERVICES

AGENCY

ALEX BRISCOE, Agency Director

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

March 5, 2014

Mr. Eric Hetrick Chevron Corporation 6101 Bollinger Canyon Road San Ramon, CA 94583 (sent via electronic mail to: ehetrick@chevron.com) Kevin & Julia Hinkley Kevin Hinkley Service 5269 Crow Canyon Road Castro Valley, CA 94552

Subject:

Conditional Approval of Work Plan; Fuel Leak Case No. RO0000350 and GeoTracker Global

ID T0600100344, Chevron #9-5607, 5269 Crow Canyon Road, Castro Valley, CA 94552

Dear Mr. Hetrick, and Mr. and Ms. Hinkley:

Alameda County Environmental Health (ACEH) staff has reviewed the case file for the above referenced site including the *Work Plan for Groundwater Monitoring Well Installation*, dated January 20, 2014. The document was prepared and submitted on your behalf by Conestoga-Rovers & Associates (CRA). Thank you for submitting the work plan.

As requested by the November 12, 2013 directive letter for the site, the work plan proposed the installation of one monitoring well downgradient of well C-9 in order to define the length of the groundwater plume downgradient of the site at a location approximately 20 to 25 feet upgradient of Crow Creek. The work plan also proposed delaying execution of the work plan until the dual-phase extraction (DPE), currently under construction, has completed operation to the extent practicable. The work plan argued that continued groundwater monitoring at well C-9 may subsequently indicate decreasing dissolved hydrocarbon concentrations in well C-9 to the extent that the plume could be considered defined within the existing well network.

Based on ACEH staff review of the documents the proposed scope of work is conditionally approved for implementation provided that the technical comments below are incorporated during the proposed field investigation. ACEH notes that well C-9 contains a 25 foot screen interval and significant dilution can occur and therefore the decreasing trend must account for the representativeness of the data from this well. Submittal of a further revised work plan or work plan addendum for this scope of work is not required unless an alternate scope of work outside that described in the work plan or technical comments below is proposed. We request that you perform the proposed work, and send us the reports described below. Please provide 72-hour advance written notification to this office (e-mail preferred to: mark.detterman@acgov.org) prior to the start of field activities.

TECHNICAL COMMENTS

- Work Plan Modifications The referenced work plan proposes a series of actions with which ACEH
 is in general agreement of undertaking, however; ACEH requests one modification to the approach.
 Please submit a report by the date specified below.
 - a. Well Screen Interval ACEH is in general agreement with the well screen interval from 10 or 15 feet below grade surface (bgs) to 20 feet bgs, provided groundwater is encountered within this interval.

Mr. Hetrick, and Mr. and Ms. Hinkley RO0000350 March 5, 2014, Page 2

TECHNICAL REPORT REQUEST

Please upload technical reports to the ACEH ftp site (Attention: Mark Detterman), and to the State Water Resources Control Board's Geotracker website, in accordance with the specified file naming convention below, according to the following schedule:

 TBD – 9 Months After System Startup - Soil and Groundwater Investigation Report File to be named: RO350 SWI L yyyy-mm-dd

These reports are being requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request.

Should you have any questions, please contact me at (510) 567--6876 or send me an electronic mail message at mark.detterman@acgov.org.

Sincerely,

CC:

Digitally signed by Mark E. Detterman DN: cn=Mark E. Detterman, o, ou,

email, c=US

Date: 2014.03.05 10:02:47 -08'00'

Mark E. Detterman, PG, CEG Senior Hazardous Materials Specialist

Enclosures: Attachment 1 – Responsible Party (ies) Legal Requirements / Obligations and

Electronic Report Upload (ftp) Instructions

Brandon Wilken, 5900 Hollis Street, Suite A, Emeryville, CA 94608

(sent via electronic mail to bwilken@craworld.com)

Judy Gilbert, Conestoga-Rovers & Assoc., 5900 Hollis Street, Suite A, Emeryville, CA 94608; (sent via electronic mail to: jgilbert@CRAworld.com)

Dilan Roe, ACEH (sent via electronic mail to dilan.roe@acgov.org)

Mark Detterman, ACEH (sent via electronic mail to mark.detterman@acgov.org)

Electronic File, GeoTracker

Attachment 1

Responsible Party(ies) Legal Requirements/Obligations

REPORT/DATA REQUESTS

These reports/data are being requested pursuant to Division 7 of the California Water Code (Water Quality), Chapter 6.7 of Division 20 of the California Health and Safety Code (Underground Storage of Hazardous Substances), and Chapter 16 of Division 3 of Title 23 of the California Code of Regulations (Underground Storage Tank Regulations).

ELECTRONIC SUBMITTAL OF REPORTS

ACEH's Environmental Cleanup Oversight Programs (Local Oversight Program [LOP] for unauthorized releases from petroleum Underground Storage Tanks [USTs], and Site Cleanup Program [SCP] for unauthorized releases of non-petroleum hazardous substances) require submission of reports in electronic format pursuant to Chapter 3 of Division 7, Sections 13195 and 13197.5 of the California Water Code, and Chapter 30, Articles 1 and 2, Sections 3890 to 3895 of Division 3 of Title 23 of the California Code of Regulations (23 CCR). Instructions for submission of electronic documents to the ACEH FTP site are provided on the attached "Electronic Report Upload Instructions."

Submission of reports to the ACEH FTP site is in addition to requirements for electronic submittal of information (ESI) to the State Water Resources Control Board's (SWRCB) Geotracker website. In April 2001, the SWRCB adopted 23 CCR, Division 3, Chapter 16, Article 12, Sections 2729 and 2729.1 (Electronic Submission of Laboratory Data for UST Reports). Article 12 required electronic submittal of analytical laboratory data submitted in a report to a regulatory agency (effective September 1, 2001), and surveyed locations (latitude, longitude and elevation) of groundwater monitoring wells (effective January 1, 2002) in Electronic Deliverable Format (EDF) to Geotracker. Article 12 was subsequently repealed in 2004 and replaced with Article 30 (Electronic Submittal of Information) which expanded the ESI requirements to include electronic submittal of any report or data required by a regulatory agency from a cleanup site. The expanded ESI submittal requirements for petroleum UST sites subject to the requirements of 23 CCR, Division, 3, Chapter 16, Article 11, became effective December 16, 2004. All other electronic submittals required pursuant to Chapter 30 became effective January 1, 2005. Please visit the SWRCB website for more information these requirements: (http://www.waterboards.ca.gov/water_issues/programs/ust/electronic_submittal/).

PERJURY STATEMENT

All work plans, technical reports, or technical documents submitted to ACEH must be accompanied by a cover letter from the responsible party that states, at a minimum, the following: "I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge." This letter must be signed by an officer or legally authorized representative of your company. Please include a cover letter satisfying these requirements with all future reports and technical documents submitted for this fuel leak case.

PROFESSIONAL CERTIFICATION & CONCLUSIONS/RECOMMENDATIONS

The California Business and Professions Code (Sections 6735, 7835, and 7835.1) requires that work plans and technical or implementation reports containing geologic or engineering evaluations and/or judgments be performed under the direction of an appropriately registered or certified professional. For your submittal to be considered a valid technical report, you are to present site specific data, data interpretations, and recommendations prepared by an appropriately licensed professional and include the professional registration stamp, signature, and statement of professional certification. Please ensure all that all technical reports submitted for this fuel leak case meet this requirement.

UNDERGROUND STORAGE TANK CLEANUP FUND

Please note that delays in investigation, late reports, or enforcement actions may result in your becoming ineligible to receive grant money from the state's Underground Storage Tank Cleanup Fund (Senate Bill 2004) to reimburse you for the cost of cleanup.

AGENCY OVERSIGHT

If it appears as though significant delays are occurring or reports are not submitted as requested, we will consider referring your case to the Regional Board or other appropriate agency, including the County District Attorney, for possible enforcement actions. California Health and Safety Code, Section 25299.76 authorizes enforcement including administrative action or monetary penalties of up to \$10,000 per day for each day of violation.

Alameda County Environmental Cleanup Oversight Programs (LOP and SCP)

REVISION DATE: July 25, 2012

ISSUE DATE: July 5, 2005

PREVIOUS REVISIONS: October 31, 2005; December 16, 2005; March 27, 2009; July 8, 2010

SECTION: Miscellaneous Administrative Topics & Procedures

SUBJECT: Electronic Report Upload (ftp) Instructions

The Alameda County Environmental Cleanup Oversight Programs (petroleum UST and SCP) require submission of all reports in electronic form to the county's FTP site. Paper copies of reports will no longer be accepted. The electronic copy replaces the paper copy and will be used for all public information requests, regulatory review, and compliance/enforcement activities.

REQUIREMENTS

- Please do not submit reports as attachments to electronic mail.
- Entire report including cover letter must be submitted to the ftp site as a single Portable Document Format (PDF) with no password protection.
- It is preferable that reports be converted to PDF format from their original format, (e.g., Microsoft Word) rather than scanned.
- Signature pages and perjury statements must be included and have either original or electronic signature.
- <u>Do not</u> password protect the document. Once indexed and inserted into the correct electronic case file, the document will be secured in compliance with the County's current security standards and a password. Documents with password protection will not be accepted.
- Each page in the PDF document should be rotated in the direction that will make it easiest to read on a computer monitor.
- Reports must be named and saved using the following naming convention:

RO#_Report Name_Year-Month-Date (e.g., RO#5555_WorkPlan_2005-06-14)

Submission Instructions

- 1) Obtain User Name and Password
 - a) Contact the Alameda County Environmental Health Department to obtain a User Name and Password to upload files to the ftp site.
 - i) Send an e-mail to deh.loptoxic@acgov.org
 - b) In the subject line of your request, be sure to include "ftp PASSWORD REQUEST" and in the body of your request, include the Contact Information, Site Addresses, and the Case Numbers (RO# available in Geotracker) you will be posting for.
- 2) Upload Files to the ftp Site
 - a) Using Internet Explorer (IE4+), go to ftp://alcoftp1.acgov.org
 - (i) Note: Netscape, Safarí, and Firefox browsers will not open the FTP site as they are NOT being supported at this time.
 - b) Click on Page located on the Command bar on upper right side of window, and then scroll down to Open FTP Site in Windows Explorer.
 - c) Enter your User Name and Password. (Note: Both are Case Sensitive.)
 - d) Open "My Computer" on your computer and navigate to the file(s) you wish to upload to the ftp site.
 - e) With both "My Computer" and the ftp site open in separate windows, drag and drop the file(s) from "My Computer" to the ftp window.
- 3) Send E-mail Notifications to the Environmental Cleanup Oversight Programs
 - a) Send email to deh.loptoxic@acgov.org notify us that you have placed a report on our ftp site.
 - b) Copy your Caseworker on the e-mail. Your Caseworker's e-mail address is the entire first name then a period and entire last name @acgov.org. (e.g., firstname.lastname@acgov.org)
 - c) The subject line of the e-mail must start with the RO# followed by **Report Upload**. (e.g., Subject: RO1234 Report Upload). If site is a new case without an RO#, use the street address instead.
 - d) If your document meets the above requirements and you follow the submission instructions, you will receive a notification by email indicating that your document was successfully uploaded to the ftp site.

Gilbert, Judy

From: Detterman, Mark, Env. Health <Mark.Detterman@acgov.org>

Sent: Monday, May 04, 2015 10:12 AM

To: Gilbert, Judy

Subject: RE: Former Chevron 95607 - Downgradient Monitoring Well Installation

Hi Judy,

Yes, I had gotten a notice that CRA had obtained the installation permit. It's unfortunate that the road no longer exists. In regards to the smaller borehole diameter, ACEH would not have an objection; however, would request an extra effort at developing the well as the smaller diameter is a bit more difficult to clean properly. And that can produce problems with the quality of groundwater samples thereafter (more sediment with the potential for absorbed TPH). In regards to the quote, I believe it relates to the first sentence in the "Well Installation" section that the borehole would be to a maximum of 20 ft; however, a 10 foot screen section is also acceptable provided it is rationalized as an appropriate interval. While ACEH prefers shorter screen intervals, it is also necessary to collect sufficient water from the wells and to ensure they are screened below the water table.

Hope this helps,

Mark Detterman

Senior Hazardous Materials Specialist, PG, CEG

Alameda County Environmental Health

1131 Harbor Bay Parkway Alameda, CA 94502

Direct: 510.567.6876 Fax: 510.337.9335

Email: mark.detterman@acgov.org

PDF copies of case files can be downloaded at:

http://www.acgov.org/aceh/lop/ust.htm

From: Gilbert, Judy [mailto:jqilbert@craworld.com]

Sent: Friday, May 01, 2015 10:30 AM **To:** Detterman, Mark, Env. Health

Subject: Former Chevron 95607 - Downgradient Monitoring Well Installation

Hi Mark – We're moving forward with installing the additional monitoring well between C-16 and former well C-15 as described in our January 20, 2014 work and approved in your letter dated March 5, 2014. In preparing to install the well we have not been able to find a way to safely access the proposed well location area with a vehicle. The driller has indicated a willingness to hand auger the well. However, they will use a 6.5 inch diameter hand auger instead of an 8 inch diameter auger as described in the work plan. They would still install a 2 inch diameter well as planned. Any objections to the use of this smaller auger? Even though the attached site plan shows an "access road" our reconnaissance of the area has indicated that this road does not currently exist.

Also, could you clarify this statement from your March 5, 2014 letter

a. **Well Screen Interval** – ACEH is in general agreement with the well screen interval from 10 or 15 feet below grade surface (bgs) to 20 feet bgs, provided groundwater is encountered within this interval.

In our work plan we indicated a 5 foot well screen (from 10 to 15 feet bgs). Are you indicating in the statement above that we could install a 10 foot well screen from 10 to 20 feet bgs?

Thanks

Judy A. Gilbert Conestoga-Rovers & Associates (CRA)

5900 Hollis Street, Suite A Emeryville, CA 94608

Phone: 510.420.3314 Fax: 510.420.9170 Cell: 510.459.0460

Email: jgilbert@CRAworld.com

www.CRAworld.com
Think before you print

Think before you print Perform every task the safe way, the right way, every time!

This communication and any accompanying document(s) are confidential and are intended for the sole use of the addressee. If you are not the intended recipient, please notify me at the telephone number shown above or by return e-mail and delete this e-mail and any copies. You are advised that any disclosure, copying, distribution, or the taking of any action in reliance upon the communication without consent is strictly prohibited. Thank you.

CRA and GHD have merged! To learn more, visit www.CRAworld.com/ghd

Attachment B

ACPWA Permit

Alameda County Public Works Agency - Water Resources Well Permit

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 04/28/2015 By jamesy

Permit Numbers: W2015-0350 Permits Valid from 05/12/2015 to 05/12/2015

City of Project Site: Castro Valley

Application Id: 1429117284180 Site Location:

20435 Waterford Pl., Castro Valley

Completion Date: 05/12/2015

Phone: --

Project Start Date: 05/12/2015 Assigned Inspector: Contact Sam Brathwaite at (925) 570-7609 or sbrathwaite@groundzonees.com

Applicant: Conestoga Rovers & Associates - Belew Yifru Phone: 510-420-3356

5900 Hollis Street, Suite A, Emeryville, CA 94608 Forest Creek Townhomes Association Inc.

20111 Waterford Place, Castro Valley, CA 94552

Client: Chevron EMC Phone: --

6101 Bollinger Canyon Road, San Ramon, CA 94583

\$397.00

\$397.00 Receipt Number: WR2015-0198 Total Amount Paid: **PAID IN FULL** Payer Name: Conestoga Rovers & Paid By: CHECK

Associates

Works Requesting Permits:

Well Construction-Monitoring-Monitoring - 1 Wells

Driller: Gregg Drilling and Testing - Lic #: 485165 - Method: hstem Work Total: \$397.00

Specifications

Property Owner:

Permit #	Issued Date	Expire Date	Owner Well Id	Hole Diam.	Casing Diam.	Seal Depth	Max. Depth
W2015- 0350	04/28/2015	08/10/2015	C-17	8.00 in.	2.00 in.	8.00 ft	20.00 ft

Specific Work Permit Conditions

- 1. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.
- 2. Permittee, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.
- 3. Prior to any drilling activities, it shall be the applicant's responsibility to contact and coordinate an Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits or agreements required for that Federal, State, County or City, and follow all City or County Ordinances. No work shall begin until all the permits and requirements have been approved or obtained. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County an Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.
- 4. Compliance with the well-sealing specifications shall not exempt the well-sealing contractor from complying with appropriate State reporting-requirements related to well construction or destruction (Sections 13750 through 13755

Alameda County Public Works Agency - Water Resources Well Permit

(Division 7, Chapter 10, Article 3) of the California Water Code). Contractor must complete State DWR Form 188 and mail original to the Alameda County Public Works Agency, Water Resources Section, within 60 days. Include permit number and site map.

- 5. Applicant shall submit the copies of the approved encroachment permit to this office within 10 days.
- 6. Applicant shall contact assigned inspector listed on the top of the permit at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.
- 7. Wells shall have a Christy box or similar structure with a locking cap or cover. Well(s) shall be kept locked at all times. Well(s) that become damaged by traffic or construction shall be repaired in a timely manner or destroyed immediately (through permit process). No well(s) shall be left in a manner to act as a conduit at any time.
- 8. Minimum surface seal thickness is two inches of cement grout placed by tremie.
- 9. Minimum seal (Neat Cement seal) depth for monitoring wells is 5 feet below ground surface(BGS) or the maximum depth practicable or 20 feet.
- 10. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

Attachment C

Boring Log

BORING / WELL LOG

REMARKS

Conestoga Rovers & Associates 5900 Hollis Street Suite A Emeryvile, CA 94608 Telephone: 510-420-0700

Fax:

CLIENT NAME Chevron Environmental Management Company JOB/SITE NAME Former Chevron Service Station 95607 5269 Crow Canyon Rd, Castro Valley, CA **LOCATION** PROJECT NUMBER 311950 Gregg Drilling and Testing, Inc., C-57 #485165 **DRILLER DRILLING METHOD** Hand Auger 4" **BORING DIAMETER** LOGGED BY Belew Yifru **REVIEWED BY** B. Wilken, PG# 7564

BORING/WELL NAME C-17 12-May-15 **DRILLING STARTED** 12-May-15 DRILLING COMPLETED WELL DEVELOPMENT DATE (YIELD) 21-May-15 243.08 ft above msl **GROUND SURFACE ELEVATION** TOP OF CASING ELEVATION 245.88 ft above msl **SCREENED INTERVALS** 10 to 19 fbg **DEPTH TO WATER (First Encountered)** 10.00 fbg (12-May-15) **DEPTH TO WATER (Static)** 11.05 fbg (21-May-15)

Cleared to 8 fbg with hand auger. Drilling refusal at 19 fbg due to weathered bedrock.

PID (ppm)	BLOW	SAMPLE ID	EXTENT	DEPTH (fbg)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (fbg)	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	LL DIAGRAM
EC2013.GPJ DEFAULT.GDT 6/24/15		C-17- 5	\(\rangle\)		SM	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Top Soil Silty SAND: Light brown; moist; non plastic.	1.0		■ Portland Type I/II
LOGS/311950-BORING LOGS D		0.47.40		 	ML		Sandy SILT: Dark brown; moist; low plasticity.	9.0		■ Hydrated Bentonite Chips Monterey Sand #2/12
WELL LOG (PID) I:CHEVRON/3119\311950 9-5607 CASTRO VALLEY\311950-BORING LOGS\311950-BORING LOGS DEC2013.GPJ DEFAULT.GDT 6/24/15 28 A D R A A B A B A B A B A B A B A B A B A B A B B		C-17- 10		 	CL		CLAY: Dark brown; moist; medium plasticity. @ 10 fbg wet.			■ 1"-diam., 0.010" Slotted Schedule 40 PVC
VELL LOG (PID) I:\CHEVRON\3119\3119		C-17- 18			SM		Silty SAND: Light brown; moist; non plastic.	16.0		Bottom of Boring @ 19 fbg

Attachment D

Groundwater Monitoring and Sampling Package

TRANSMITTAL

June 2, 2015

G-R #386539

TO:

Ms. Judy Gilbert

Conestoga-Rovers and Associates

5900 Hollis Street, Suite A Emeryville, CA 94608

FROM:

Deanna L. Harding

Project Coordinator Gettler-Ryan Inc.

6805 Sierra Court, Suite G Dublin, California 94568 RE: Chevron Service Station

#9-5607

5269 Crow Canyon Road Castro Valley, California

RO 0000350

RWQCB-Case No. 01-0375

WE HAVE ENCLOSED THE FOLLOWING:

COPIES

DESCRIPTION

VIA PDF

Groundwater Monitoring and Sampling Data Package Well Development and Sampling Events of May 21 & 28, 2015

COMMENTS:

Pursuant to your request, we are providing you with copies of the above referenced data for your use.

Please provide us the updated historical data prior to the next monitoring and sampling event for our field use.

Please feel free to contact me if you have any comments/questions.

trans/9-5607

Chevron # 9-5607 Event of May 21st, 2015

WELL CONDITION STATUS SHEET

Client/							and or Ar		II fires han II		
Facility #:	Chevror	#9-5607					Job #:	386539			
Site Address:		ow Canyor	Road	 -		-	Event Date:	00000	2	/21/10	
City:		/alley, CA				-	Sampler:			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
WELL ID	Vault Frame Condition	Gasket/ O-Ring (M) Missing (R) Replaced	Bolts (M) Missing (R) Replaced	Bolt Flanges B=Broken S=Stripped R=Retaped	Apron Condition C=Cracked B=Broken G=Gone	Grout Seal (Deficient) Inches from TOC	Casing (Condition prevents tight cap seal)	REPLACE LOCK Y/N	REPLACE CAP Y/N	WELL VAULT Manufacture/Size/ # of Bolts	Pictures Taken Y/N
C·17	ok	NA			OL			7	N	Monoment	~
							:				
Comments				***					-		

STANDARD OPERATING PROCEDURE – WELL DEVELOPMENT GROUNDWATER SAMPLING

Gettler-Ryan Inc. (GR) field personnel adhere to the following procedures for the collection and handling of groundwater samples prior to analysis by the analytical laboratory. All work is performed in accordance with the GR Health & Safety Plan and all client-specific programs. The scope of work and type of analysis to be performed is determined prior to commencing field work.

Prior to well development, each well is monitored for the presence of free-phase hydrocarbons and the depth to water is recorded. Wells are then developed by alternately surging the well with the bailer, then purging the well with a pump to remove accumulated sediments and draw groundwater into the well. Development continues until the groundwater parameters (temperature, pH, and conductivity) have stabilized.

Prior to sampling, the presence or absence of free-phase hydrocarbons is determined using an interface probe. Product thickness, if present, is measured to the nearest 0.01 foot and is noted in the field notes. In addition, all depth to water level measurements are collected with a static water level indicator and are also recorded in the field notes, prior to purging and sampling any wells.

After water levels are collected and prior to sampling, if purging is to occur, each well is purged a minimum of three well casing volumes of water using pre-cleaned pumps (stack, peristaltic or Grundfos), or disposable bailers. Temperature, pH and electrical conductivity are measured a minimum of three times during the purging (additional parameters such as dissolved oxygen, oxidation reduction potential, turbidity may also be measured, depending on specific scope of work.). Purging continues until these parameters stabilize.

Groundwater samples are collected using disposable bailers. The water samples are transferred from the bailer into appropriate containers. Pre-preserved containers, supplied by analytical laboratories, are used. When pre-preserved containers are not available, the laboratory is instructed to preserve the sample as appropriate. Duplicate samples are collected for the laboratory to use in maintaining quality assurance/quality control standards, as directed by the scope of work. The samples are labeled to include the job number, sample identification, collection date and time, analysis, preservation (if any), and the sample collector's initials. The water samples are placed in a cooler, maintained at 4°C for transport to the laboratory. Once collected in the field, all samples are maintained under chain of custody until delivered to the laboratory.

The chain of custody document includes the job number, type of preservation, if any, analysis requested, sample identification, date and time collected, and the sample collector's name. The chain of custody is signed and dated (including time of transfer) by each person who receives or surrenders the samples, beginning with the field personnel and ending with the laboratory personnel.

A laboratory supplied trip blank accompanies each sampling set. The trip blank is analyzed for some or all of the same compounds as the groundwater samples.

As requested by Chevron Environmental Management Company, the purge water and decontamination water generated during sampling activities is transported by Clean Harbors Environmental Services to Seaport Environmental located in Redwood City, California.

WELL MONITORING/DEVELOPMENT FIELD DATA SHEET

Client/Facility#: Chevron #9-5607	Job Number:	386539	
Site Address: 5269 Crow Canyon Road	Event Date:	5/21/15	(inclusive)
City: Castro Valley, CA	– Sampler:	JH	***************************************
	-		
Well ID C-17	Date Monitored:	5/21/15	<u></u>
Well Diameter <u>1</u> in.			
Initial Total Depth 21.65 ft.		/4"= 0.02 1"= 0.04 2"= 0.17 4"= 0.66 5"= 1.02 6"= 1.50	3"= 0.38 12"= 5.80
Final Total Depth 21.65 ft.	Tactor (VF)	4"= 0.66 5"= 1.02 6"= 1.50	12 - 5.60
	umn is less then 0.50		
		Estimated Purge Volume: 4.2	У gal.
Depth to Water w/ 80% Recharge [(Height of Water Column x 0.2	0) + DTW]: 13-17	Time Started:	(2400 brs)
Durgo Equipments Complex Equipments	-4.	Time Completed:	
Purge Equipment: Sampling Equipme Disposable Bailer Disposable Bailer	ont:	Depth to Product:	
Stainless Steel Bailer Y Pressure Bailer		Depth to Water:	ft
Stack Pump Metal Filters		Hydrocarbon Thickness:	
Peristaltic Pump Peristaltic Pump		Visual Confirmation/Descriptio	n:
QED Bladder Pump Others Others		Skimmer / Absorbant Sock (cir	cle one)
Other:Other:		Amt Removed from Skimmer:_	Itr
		Amt Removed from Well:	
		Water Removed:	ltr
Start Time (purge): 0730 Weather (Conditions:	Clouds	
	lor: Clark	Odor: Y / N	
	Description:	Heavy	
		pal. DTW @ Sampling:	
Conductivity			
rine volume nH (us/ms	Temperature / F)	D.O. ORP	
	20.7	(mg/L) (mV)	
0755 .5 7.61 936 0810 1.0 7.60 922	20.6		/
0830 1.5 7.58 913	20.5		/
0 950 20 7.55 910	20.2		
0915 2.5 7.52 904	21.1		
0935 3.0 7.48 899 0955 3.5 7.47 896	20.1		
0955 3.5 7.47 896 1020 4.0 7.45 892	20.0		<u>·</u>
1055 4.5 7.41 850	20.0		
1130 5.0 7.36 887	19.9		
SAMPLE ID (#) CONTAINER REFRIG. PRESERV. TY	/ INFORMATION PE LABORATORY	ANALYSES	1
COMMENTS: INITIAL CGI READING:	pri		
DEVELOP ONLY	V		
Add/Replaced Gasket: Add/Replaced Bolt:	Add/Replaced Loci	k: Add/Replaced P	lina.

Chevron # 9-5607 Event of May 28th, 2015

WELL CONDITION STATUS SHFFT

_
Pictures Taken Y

WELL MONITORING/SAMPLING FIELD DATA SHEET

Client/Facility#: Site Address:	Chevron #9-5607 5269 Crow Canyo	n Road	Job Number: Event Date:	386539	(inclusive)
City:	Castro Valley, CA		Sampler:	5.28.15	(mciusive)
Oity.	oastro valley, on		Sampler.	FT	
Well ID Well Diameter Total Depth Depth to Water Depth to Water Purge Equipment:	w/ 80% Recharge [(Heigh	Check if water column	or (VF) 4"= 0.50 or is less then 0.50 x3 case volume = -DTW]: 13.29	.66 5"= 1.02 6"= 1.50 1) ft. Estimated Purge Volume: 1.4	3"= 0.38 2"= 5.80 2 gal. (2400 hrs) (2400 hrs)
Disposable Bailer		Disposable Bailer		Depth to Product:	ft
Stainless Steel Baile	er	Pressure Bailer		Depth to Water: Hydrocarbon Thickness:	t ft
Stack Pump		Metal Filters		Visual Confirmation/Des	
Peristaltic Pump QED Bladder Pump		Peristaltic Pump QED Bladder Pump			
Other:		Other:		Skimmer / Absorbant So	
0.1.011		Odioi		Amt Removed from Skin Amt Removed from Wel	
				Water Removed:	itr Itr
Start Time (purge	e): \230	Weather Co	nditions:	S	
Sample Time/Da		 _		<u> </u>	
Approx. Flow Ra		Sediment De		SILTY	
			· · · · · · · · · · · · · · · · · · ·		11 36
Did well de-wate	r? No If yes	s, Time: Vo	nume:	gal. DTW @ Sampling:	11.25
Time (2400 hr.)	Volume (gal.) pH	Conductivity ((15)/ mS µmhos/cm)	Temperature	D.O. ORF (mg/L) (mV	
1240	257.5		18.6		_
1250	.50 7.5	1 670	18.7	<i>—</i> //	
1300	1.0 7.5.	<u> </u>	18.8		
		LABORATORY IN	FORMATION		
SAMPLE ID	(#) CONTAINER REF			ANALY	'SES
C-17	x voa vial YE	S HCL	LANCASTER	TPH-GRO(8015)/BTEX+MTBE	(8260)/8 OXYS(8260)
				 	
COMMENTS:					
Add/Replaced Ga	sket: Add/Re	placed Bolt:	Add/Replaced Loc	k: Add/Replaced	f Plug:

Chevron California Region Analysis Request/Chain of Custody

e e	urofins	Lancaste			A	.cct. #	For Eurofins Lancaster Laboratories use only # Sample # Instructions on reverse side correspond with circled numbers.																					
		Laborato		207 52 1								istructio		10	side cor											101	61	
1		Client Int						4	Ma	atrix			(5)			A	nalys	ses	Requ	uest	ed				SCR	#:		
Facil	9-5607-OML (G-R#38653	9 Globa	MERITOR	3001 003	44																				т		
Site 5/2/89	CROW CANY	ON ROAD,	CASTR	OVALL	EY, CA					•	Ί				<u></u>											sults in Dry W	-	v i
Che veri PN				Lea Githe				Sediment	Ground	Surface		s,	8260 🔀	8260	Cleanup	eanup		(0)							Mu	its possible fo	st detection	100
	र्शिपरyan Inc., 6		<u> </u>		Dublin,	CA 9	4561	Sec	Ū	ઝ		Containers	82	82	Gel	Gel Cleanup		826								mpounds 21 MTBE Con	ıfirmation	
	nnacLHarding		grinc.co	om .							1.	Cont	E	8015 K	out Silica	with Silica			etho	Method						nfirm highest nfirm all hits b	hit by 826	
l	FRANK TERKINONI					1	Potable	NPDES	Air	oer of	8021	801		5 with		Oxygenates							Rui	n oxy n oxy	's on high			
Sampler	FRANK TERKINONI Soil Collected					3	l ö l					١ź	+ MTBE	P3	RO 8015	RO 8015	8260 Full Scan	Oxo	Lead	Dissolved Lead								1
(2)			Soil			Grab	Jmo.	Soil		Water	lio	Total	BTEX -	TPH-GRO	TPH-DRO	TPH-DRO	160 F	00	Total Le	ssolv								
36	imple identific		Depth	-	Time	10	10	S	_	Α.	10	<u> </u>	<u> </u>	 [<u>↓Ë</u>	لظا	8	\coprod	لظا	لقا	-		\vdash	\vdash	6	Rema		
	QA 5.28.15					+-	+-	\vdash	W	/	-	1	X	X	-	$\vdash \vdash$				\vdash	$\left \cdot \cdot \right $		H		-	ase forwa sults dire		
		C-17		1	1310	X			4	/		6	X	X				X							Le	ad Consu		ind
7														1				`								cc: G	i-R.	
	Property and the second																											
			 '	 	 	<u> </u> -	\sqcup	 	_			'	lacksquare	<u> </u>	\square	$ar{ar{\Box}}$			Ш									
	and the second second		 	1	-	₩	+	<u>—</u>	\vdash			\vdash	 	\vdash	$\vdash \vdash$	$\vdash \vdash$		$\vdash \vdash$	$\vdash\vdash$	\vdash			\vdash	$\vdash\vdash$	ł			
	*****		$\vdash \vdash \vdash$		\vdash	 	 	\vdash	\vdash		\vdash	\vdash	\vdash	$\vdash \vdash$	$\vdash \vdash$	\vdash	H	$\vdash\vdash$	\longrightarrow	\vdash	\vdash	\dashv		\vdash				
						H							一	\vdash	\square	\square		\Box	\Box			\neg	$\mid - \mid$	1				
								\Box			\Box		\Box						\square	\square		\Box						
-			 			╫		-	-		 	\vdash	 	$\vdash\vdash$	\vdash	$\mid - \mid \mid$		$\vdash\vdash$	\vdash	\square	$\vdash \vdash$	\dashv	\vdash		1			
7 Turi	naround Time R	equested (T	AT) (pleas	se circle)		Relino	quished	d by	_	_			Date		-	Time			Recei	ved by	//		12/2	-	Dat	.e	Time	9
7	Standard	5 day		4 day		1	- 0	1		-			+	29.1			10-			4						5/29/15		
	72 hour	48 hour		24 ho ⊞ D		Relinquished b							Date			Time			Receiv	ve g bý	1				Date	е	Time	
8 Data	a Package (circle	e (circle if required) EDD (circle if required) Relinqu				elinquished by Commercial Carrier: Received by							Date	e	Time													
					JPS _					·	-		her_						27-27-				L	7				
Туре	VI (Raw Data)		Other	r:		1	T€	əmpr	eratı	ure U	pon	Rec	eipt			°	°C	1	Cu	ıstoc	dy Se	als	Intac	:t?		Yes	!	No

Attachment E

Laboratory Analytical Reports

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

ANALYTICAL RESULTS

Prepared by:

Prepared for:

Eurofins Lancaster Laboratories Environmental 2425 New Holland Pike Lancaster, PA 17601 Chevron L4310 6001 Bollinger Canyon Rd. San Ramon CA 94583

June 09, 2015

Project: 95607

Submittal Date: 05/30/2015 Group Number: 1565155 PO Number: 0015164161 Release Number: HETRICK State of Sample Origin: CA

Client Sample Description Lancaster Labs (LL) #

QA-T-150528 NA Water 7908389 C-17-W-150528 Grab Groundwater 7908390

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

Regulatory agencies do not accredit laboratories for all methods, analytes, and matrices. Our scopes of accreditation can be viewed at http://www.eurofinsus.com/environment-testing/laboratories/eurofins-lancaster-laboratories-environmental/resources/certifications/.

ELECTRONIC Conestoga-Rovers & Associates Attn: Judy Gilbert

COPY TO

ELECTRONIC Chevron

COPY TO

ELECTRONIC Chevron c/o CRA

COPY TO

ELECTRONIC Gettler-Ryan Inc. Attn: Gettler Ryan

COPY TO

Attn: Anna Avina

Attn: Report Contact

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Respectfully Submitted,

Amek Carter Specialist

(717) 556-7252

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: QA-T-150528 NA Water

Facility# 95607 Job# 386539 GRD

5269 Crow Canyon-Castro Va T0600100344

LL Group # 1565155 Account # 10904

LL Sample # WW 7908389

Project Name: 95607

Reported: 06/09/2015 18:48

Collected: 05/28/2015 Chevron

L4310

Submitted: 05/30/2015 09:45 6001 Bollinger Canyon Rd.

San Ramon CA 94583

CCCQA

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
GC/MS	Volatiles SW-84	5 8260B	ug/l	ug/l	
10945	Benzene	71-43-2	N.D.	0.5	1
10945	Ethylbenzene	100-41-4	N.D.	0.5	1
10945	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	1
10945	Toluene	108-88-3	N.D.	0.5	1
10945	Xylene (Total)	1330-20-7	N.D.	0.5	1
GC Vo	latiles SW-84	6 8015B	ug/l	ug/l	
01728	TPH-GRO N. CA water C6-C12	n.a.	N.D.	50	1

General Sample Comments

CA ELAP Lab Certification No. 2792

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Tim	ıe	Analyst	Dilution Factor
10945	BTEX/MTBE	SW-846 8260B	1	Z151553AA	06/04/2015	12:33	Brett W Kenyon	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	Z151553AA	06/04/2015	12:33	Brett W Kenyon	1
01728	TPH-GRO N. CA water	SW-846 8015B	1	15152A20A	06/01/2015	13:34	Marie D	1
	C6-C12						Beamenderfer	
01146	GC VOA Water Prep	SW-846 5030B	1	15152A20A	06/01/2015	13:34	Marie D Beamenderfer	1

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: C-17-W-150528 Grab Groundwater

Facility# 95607 Job# 386539 GRD

5269 Crow Canyon-Castro Va T0600100344

LL Group # 1565155 Account # 10904

LL Sample # WW 7908390

Project Name: 95607

Reported: 06/09/2015 18:48

Collected: 05/28/2015 13:10 by FT Chevron

L4310

Submitted: 05/30/2015 09:45 6001 Bollinger Canyon Rd.

San Ramon CA 94583

CCC17

CAT No.	Analysis Name		CAS Number	Resul	t	Method Detection Limit	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l		ug/l	
10945	t-Amyl methyl ether		994-05-8	N.D.		0.5	1
10945	Benzene		71-43-2	9		0.5	1
10945	t-Butyl alcohol		75-65-0	4	J	2	1
10945	1,2-Dibromoethane		106-93-4	N.D.		0.5	1
10945	1,2-Dichloroethane		107-06-2	N.D.		0.5	1
10945	Ethanol		64-17-5	N.D.		50	1
10945	Ethyl t-butyl ether		637-92-3	N.D.		0.5	1
10945	Ethylbenzene		100-41-4	0.9	J	0.5	1
10945	di-Isopropyl ether		108-20-3	N.D.		0.5	1
10945	Methyl Tertiary Buty	/l Ether	1634-04-4	N.D.		0.5	1
10945	Toluene		108-88-3	N.D.		0.5	1
10945	Xylene (Total)		1330-20-7	0.9	J	0.5	1
GC Vo	latiles	SW-846	8015B	ug/l		ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	2,600		250	5

General Sample Comments

CA ELAP Lab Certification No. 2792

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10945	BTEX + 8 Oxygenates 8260 Water	SW-846 8260B	1	Z151553AA	06/04/2015 16:33	Brett W Kenyon	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	Z151553AA	06/04/2015 16:33	Brett W Kenyon	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	15152A20A	06/01/2015 20:33	Marie D Beamenderfer	5
01146	GC VOA Water Prep	SW-846 5030B	1	15152A20A	06/01/2015 20:33	Marie D Beamenderfer	5

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: Chevron Group Number: 1565155

Reported: 06/09/2015 18:48

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank <u>MDL</u>	Report <u>Units</u>	LCS <u>%REC</u>	LCSD %REC	LCS/LCSD <u>Limits</u>	RPD	RPD <u>Max</u>
Batch number: Z151553AA	Sample numbe	er(s): 790	8389-7908	390				
t-Amyl methyl ether	N.D.	0.5	ug/l	88	90	75-120	3	30
Benzene	N.D.	0.5	ug/l	84	84	78-120	0	30
t-Butyl alcohol	N.D.	2.	uq/l	96	96	78-121	0	30
1,2-Dibromoethane	N.D.	0.5	uq/l	90	85	80-120	6	30
1,2-Dichloroethane	N.D.	0.5	ug/l	89	89	72-127	0	30
Ethanol	N.D.	50.	uq/l	85	87	49-144	2	30
Ethyl t-butyl ether	N.D.	0.5	uq/l	87	89	69-120	2	30
Ethylbenzene	N.D.	0.5	uq/l	88	83	80-120	5	30
di-Isopropyl ether	N.D.	0.5	uq/l	85	86	70-124	1	30
Methyl Tertiary Butyl Ether	N.D.	0.5	ug/l	90	95	75-120	5	30
Toluene	N.D.	0.5	ug/l	89	84	80-120	5	30
Xylene (Total)	N.D.	0.5	ug/l	92	86	80-120	7	30
Batch number: 15152A20A	Sample numbe	er(s): 790	8389-7908	390				
TPH-GRO N. CA water C6-C12	N.D.	50.	ug/l	92		80-139		

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	MS <u>%REC</u>	MSD %REC	MS/MSD <u>Limits</u>	RPD	RPD <u>MAX</u>	BKG <u>Conc</u>	DUP <u>Conc</u>	DUP <u>RPD</u>	Dup RPD <u>Max</u>
	_								

Batch number: 15152A20A Sample number(s): 7908389-7908390 UNSPK: P906526 TPH-GRO N. CA water C6-C12 108 108 92-144 1 30

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: BTEX + 8 Oxygenates 8260 Water

Batch number: Z151553AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
7908389	104	102	102	94
7908390	87	82	103	101
Blank	93	88	95	96

*- Outside of specification

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: Chevron Group Number: 1565155

Reported: 06/09/2015 18:48

Surrogate Quality Control

LCS	101	97	99	106
LCSD	102	100	93	102
Limits:	80-116	77-113	80-113	78-113

Analysis Name: TPH-GRO N. CA water C6-C12 Batch number: 15152A20A Trifluorotoluene-F

	TTIIIGOTOTO
7908389	97
7908390	102
Blank	97
LCS	100
MS	102
MSD	101
Limits:	63-135

(2) The unspiked result was more than four times the spike added.

^{*-} Outside of specification

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

Chevron California Region Analysis Request/Chain of Custody

euro euro	Lancas		cct. # _	t. # 10904 For Eurofins Lancaster Laboratories use only Group # 1565155 Sample # 7906389-90 Instructions on reverse side correspond with circled numbers.																				
	Labora			5291	5-6	23				mstru	-40	52162.0G/S	se side				neitheir me com	maarchiide		000000000000000000000000000000000000000			1 of 1	<i> </i>
1		Informati					4)	Matr	ix	-	(5)	inge gerene		Analy	ses	Requ	uest	ed				SCR #:	
Facil 93#9- 560	7-OML G-R#386	539 Glok	alYB#T0	5001003	44																			
	W CANYON ROA	D, CAST]								☐ Results in Dry Weig	
Cheverp PM	CRAJG		Lea GIPB				diment	Ground	Surface	و	Sie	₹ □ 0928	Gel Cleanun	eanup		260)							Must meet lowest de	etection
^{Con} Tettefiq ya	an Inc., 6805 Sier	ra Court,	Suite G,	Dublin,	CA 94	456	Se	Q (กี	j	% HE	8		Sel Cle		826	1						compounds 8021 MTBE Confirm	nation
Consultant Project M	¹⁹ Harding, deanna	@grinc.	com]] <u> </u>	Z Silica	Silica Gel Cleanup			Method	Method					Confirm highest hit l	by 8260
Consultant Phone # (925) 551-	7444 x180		~					Potable	ָרָל אָלָיִי	֓֞֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	S021		1 >	with		Oxygenates							-	n highest hit
Sampler FVA	NIL TERKIN	juot			3	Composite					MTBF	<u>8</u>	3O 8015	3O 8015	8260 Full Scan	o XX	ead	Dissolved Lead						
(2)	Identification	Soil Depth	U	ected	Grab	omo	Soil	Water		= -	BTEX	TPH-GRO	TPH-DRO	TPH-DRO	90 Fi	00	Total Lead	ssolv				Toping to passa (1977)		
Sample				Time		0	တ ၂	$\frac{s}{W}$		-	ACCOUNT NAME OF THE OWNER, OWNER, OWNER, OWNER, OWNER,	F	F	JĒ.	8	ļ	To	Di					6 Remark	S
	QA 5.28.15						-	<u></u>	+	12	4	-	+							\dashv	_		Please forward results directly	
	C-17			1310				1	+	6			十	-		X				_			Lead Consulta	
															1					1			cc: G-R	•
	· · · · · · · · · · · · · · · · · · ·										_													
									_	-	_	_	_		-						_			
					H							-	+	_						_	_			
					H	-	\dashv			-		+-	-	_					_		_		1	
							\exists		_	1	\top	1	 							\dashv	\dashv			
0.000																								
7) Turnarour	nd Time Requested	(TAT) (ple	ase circle)		Reling	uished b					Date			Time			Receiv	red by				CONSCIONATE AND AND	Date Ti	mo C
Stand	_	(TAT) (pic	4 day		A	-0	7	<u> </u>	<i>'</i>	`		29.	.15		10-			W			%		5/25/15	me 10 — 9
72 ho	ur 48 hou	r	24 ho	F/EDD		uished b	y A	ler			Date	i Waz	115	Time	35	$ \sqrt{} $	Receiv	red by 1	FX	,			Date Ti	me
8 Data Pack	age (circle if required)	ED	D (circle if r	equired)	Relino	uished	d by (Comme	rcial C	arrie		* * !		1 (8	. 6		Receiv	ed by		-			Date: Ti	me
Type I - Full EDFFLAT (default)				PS _			FedE	x≥	<u> </u>	0	ther					·	4	52		_		W5		
Type VI (Raw Data) Other:					Temperature Upon Receipt°C Custody Seals Intact?							Yes	No											

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

RL N.D.	Reporting Limit none detected	BMQL MPN	Below Minimum Quantitation Level Most Probable Number
TNTC	Too Numerous To Count	CP Units	cobalt-chloroplatinate units
IU	International Units	NTU	nephelometric turbidity units
umhos/cm	micromhos/cm	ng	nanogram(s)
С	degrees Celsius	F	degrees Fahrenheit
meq	milliequivalents	lb.	pound(s)
g	gram(s)	kg	kilogram(s)
μg	microgram(s)	mg	milligram(s)
mL	milliliter(s)	L	liter(s)
m3	cubic meter(s)	μL	microliter(s)
		pg/L	picogram/liter

< less than

> greater than

ppm parts per million - One ppm is equivalent to one milligram per kilogram (mg/kg) or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter per liter of gas.

ppb parts per billion

Dry weight Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture. All other results are reported on an

as-received basis.

Laboratory Data Qualifiers:

B - Analyte detected in the blank

C - Result confirmed by reanalysis

E - Concentration exceeds the calibration range

J (or G, I, X) - estimated value ≥ the Method Detection Limit (MDL or DL) and the < Limit of Quantitation (LOQ or RL)

P - Concentration difference between the primary and confirmation column >40%. The lower result is reported.

U - Analyte was not detected at the value indicated

V - Concentration difference between the primary and confirmation column >100%. The reporting limit is raised due to this disparity and evident interference...

Additional Organic and Inorganic CLP qualifiers may be used with Form 1 reports as defined by the CLP methods. Qualifiers specific to Dioxin/Furans and PCB Congeners are detailed on the individual Analysis Report.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, ISO17025) unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Times are local to the area of activity. Parameters listed in the 40 CFR Part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL, LLC BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL AND (B) WHETHER EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

ANALYTICAL RESULTS

Prepared by:

Prepared for:

Eurofins Lancaster Laboratories Environmental 2425 New Holland Pike Lancaster, PA 17601 ChevronTexaco 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

May 22, 2015

Project: 95607

Submittal Date: 05/13/2015 Group Number: 1560751 PO Number: 0015164161 Release Number: HETRICK State of Sample Origin: CA

 Client Sample Description
 Lancaster Labs (LL) #

 C-17-S-5-150512 NA Soil
 7885458

 C-17-S-10-150512 NA Soil
 7885459

 C-17-S-15-150512 NA Soil
 7885460

 C-17-S-18-150512 NA Soil
 7885461

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

Regulatory agencies do not accredit laboratories for all methods, analytes, and matrices. Our scopes of accreditation can be viewed at http://www.eurofinsus.com/environment-testing/laboratories/eurofins-lancaster-laboratories-environmental/resources/certifications/.

ELECTRONIC CRA Attn: Judy Gilbert

COPY TO

ELECTRONIC Chevron Attn: CRA EDD

COPY TO

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Respectfully Submitted,

Amek Carter Specialist

(717) 556-7252

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: C-17-S-5-150512 NA Soil

Facility# 95607 CRAW

5269 Crow Canyon-Castro Va T0600100344

LL Sample # SW 7885458

LL Group # 1560751 Account # 10880

Project Name: 95607

Collected: 05/12/2015 08:20 by BY ChevronTexaco

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 05/13/2015 09:15 Reported: 05/22/2015 19:57

C17-5

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	mg/kg	mg/kg	mg/kg	
10237	Benzene		71-43-2	N.D.	0.0005	0.005	0.97
10237	Ethylbenzene		100-41-4	N.D.	0.001	0.005	0.97
10237	Methyl Tertiary B	utyl Ether	1634-04-4	N.D.	0.0005	0.005	0.97
10237	Naphthalene		91-20-3	N.D.	0.001	0.005	0.97
10237	Toluene		108-88-3	N.D.	0.001	0.005	0.97
10237	Xylene (Total)		1330-20-7	N.D.	0.001	0.005	0.97
GC Vol	latiles	SW-846	8015B modified	mg/kg	mg/kg	mg/kg	
01725	TPH-GRO N. CA soi	l C6-C12	n.a.	N.D.	0.5	1.0	25.96

General Sample Comments

CA ELAP Lab Certification No. 2792

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor
10237	VOCs 8260 BTEX/MTBE/Naph Soil	SW-846 8260B	1	B151352AA	05/15/2015	18:57	Angela D Sneeringer	0.97
00374	GC/MS - Bulk Soil Prep	SW-846 5035A Modified	1	201513337639	05/13/2015	18:48	Mitchell R Washel	n.a.
00374	GC/MS - Bulk Soil Prep	SW-846 5035A Modified	2	201513337639	05/13/2015	18:48	Mitchell R Washel	n.a.
06646	GC/MS HL Bulk Sample Prep	SW-846 5035A Modified	1	201513337639	05/13/2015	18:48	Mitchell R Washel	n.a.
01725	TPH-GRO N. CA soil C6-C12	SW-846 8015B modified	1	15134A34A	05/14/2015	20:12	Jeremy C Giffin	25.96
01150	GC - Bulk Soil Prep	SW-846 5035A Modified	1	201513337639	05/13/2015	18:49	Mitchell R Washel	n.a.

^{*=}This limit was used in the evaluation of the final result

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: C-17-S-10-150512 NA Soil

Facility# 95607 CRAW

5269 Crow Canyon-Castro Va T0600100344

LL Sample # SW 7885459

LL Group # 1560751 Account # 10880

Project Name: 95607

Collected: 05/12/2015 09:00 by BY ChevronTexaco

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 05/13/2015 09:15 Reported: 05/22/2015 19:57

C1710

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	mg/kg	mg/kg	mg/kg	
10237	Benzene		71-43-2	N.D.	0.025	0.25	50.71
10237	Ethylbenzene		100-41-4	N.D.	0.051	0.25	50.71
10237	Methyl Tertiary	Butyl Ether	1634-04-4	N.D.	0.025	0.25	50.71
10237	Naphthalene		91-20-3	N.D.	0.051	0.25	50.71
10237	Toluene		108-88-3	N.D.	0.051	0.25	50.71
10237	Xylene (Total)		1330-20-7	N.D.	0.051	0.25	50.71
Repo	rting limits were	raised due t	to interference fro	om the sample matr	ix.		
GC Vol	latiles	SW-846	8015B modified	l mg/kg	mg/kg	mg/kg	
01725	TPH-GRO N. CA so	il C6-C12	n.a.	18	2.0	4.0	101.21

General Sample Comments

CA ELAP Lab Certification No. 2792

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Tim	e	Analyst	Dilution Factor
10237	VOCs 8260 BTEX/MTBE/Naph Soil	SW-846 8260B	1	Q151411AA	05/21/2015	16:47	Anita M Dale	50.71
00374	GC/MS - Bulk Soil Prep	SW-846 5035A Modified	1	201513337639	05/13/2015	18:48	Mitchell R Washel	n.a.
00374	GC/MS - Bulk Soil Prep	SW-846 5035A Modified	2	201513337639	05/13/2015	18:48	Mitchell R Washel	n.a.
06646	GC/MS HL Bulk Sample Prep	SW-846 5035A Modified	1	201513337639	05/13/2015	18:45	Mitchell R Washel	n.a.
01725	TPH-GRO N. CA soil C6-C12	SW-846 8015B modified	1	15134A34A	05/14/2015	21:59	Jeremy C Giffin	101.21
01150	GC - Bulk Soil Prep	SW-846 5035A	1	201513337639	05/13/2015	18:46	Mitchell R Washel	n.a.

^{*=}This limit was used in the evaluation of the final result

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: C-17-S-15-150512 NA Soil

Facility# 95607 CRAW

5269 Crow Canyon-Castro Va T0600100344

LL Sample # SW 7885460 LL Group # 1560751

Account # 10880

Project Name: 95607

Collected: 05/12/2015 09:30 by BY ChevronTexaco

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 05/13/2015 09:15 Reported: 05/22/2015 19:57

C1715

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	mg/kg	mg/kg	mg/kg	
10237	Benzene		71-43-2	N.D.	0.0005	0.005	1.03
10237	Ethylbenzene		100-41-4	N.D.	0.001	0.005	1.03
10237	Methyl Tertiary	Butyl Ether	1634-04-4	N.D.	0.0005	0.005	1.03
10237	Naphthalene		91-20-3	N.D.	0.001	0.005	1.03
10237	Toluene		108-88-3	N.D.	0.001	0.005	1.03
10237	Xylene (Total)		1330-20-7	N.D.	0.001	0.005	1.03
GC Vol	atiles	SW-846	8015B modified	mg/kg	mg/kg	mg/kg	
01725	TPH-GRO N. CA so	il C6-C12	n.a.	N.D.	0.5	1.0	26.12

General Sample Comments

CA ELAP Lab Certification No. 2792

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Tim	ıe	Analyst	Dilution Factor
10237	VOCs 8260 BTEX/MTBE/Naph Soil	SW-846 8260B	1	B151352AA	05/15/2015	19:19	Angela D Sneeringer	1.03
00374	GC/MS - Bulk Soil Prep	SW-846 5035A Modified	1	201513337639	05/13/2015	18:48	Mitchell R Washel	n.a.
00374	GC/MS - Bulk Soil Prep	SW-846 5035A Modified	2	201513337639	05/13/2015	18:48	Mitchell R Washel	n.a.
06646	GC/MS HL Bulk Sample Prep	SW-846 5035A Modified	1	201513337639	05/13/2015	18:42	Mitchell R Washel	n.a.
01725	TPH-GRO N. CA soil C6-C12	SW-846 8015B modified	1	15134A34A	05/14/2015	20:47	Jeremy C Giffin	26.12
01150	GC - Bulk Soil Prep	SW-846 5035A Modified	1	201513337639	05/13/2015	18:43	Mitchell R Washel	n.a.

^{*=}This limit was used in the evaluation of the final result

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: C-17-S-18-150512 NA Soil

Facility# 95607 CRAW

5269 Crow Canyon-Castro Va T0600100344

LL Sample # SW 7885461 LL Group # 1560751

Account # 10880

Project Name: 95607

Collected: 05/12/2015 09:55 by BY ChevronTexaco

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 05/13/2015 09:15 Reported: 05/22/2015 19:57

C1718

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	mg/kg	mg/kg	mg/kg	
10237	Benzene		71-43-2	N.D.	0.0005	0.005	1.02
10237	Ethylbenzene		100-41-4	N.D.	0.001	0.005	1.02
10237	Methyl Tertiary Bu	ıtyl Ether	1634-04-4	N.D.	0.0005	0.005	1.02
10237	Naphthalene		91-20-3	N.D.	0.001	0.005	1.02
10237	Toluene		108-88-3	N.D.	0.001	0.005	1.02
10237	Xylene (Total)		1330-20-7	N.D.	0.001	0.005	1.02
GC Vol	latiles	SW-846	8015B modified	mg/kg	mg/kg	mg/kg	
01725	TPH-GRO N. CA soil	l C6-C12	n.a.	N.D.	0.5	1.0	25.13

General Sample Comments

CA ELAP Lab Certification No. 2792

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Tim	ne	Analyst	Dilution Factor
10237	VOCs 8260 BTEX/MTBE/Naph Soil	SW-846 8260B	1	B151352AA	05/15/2015	19:42	Angela D Sneeringer	1.02
00374	GC/MS - Bulk Soil Prep	SW-846 5035A Modified	1	201513337639	05/13/2015	18:48	Mitchell R Washel	n.a.
00374	GC/MS - Bulk Soil Prep	SW-846 5035A Modified	2	201513337639	05/13/2015	18:48	Mitchell R Washel	n.a.
06646	GC/MS HL Bulk Sample Prep	SW-846 5035A Modified	1	201513337639	05/13/2015	18:39	Mitchell R Washel	n.a.
01725	TPH-GRO N. CA soil C6-C12	SW-846 8015B modified	1	15134A34A	05/14/2015	21:23	Jeremy C Giffin	25.13
01150	GC - Bulk Soil Prep	SW-846 5035A Modified	1	201513337639	05/13/2015	18:40	Mitchell R Washel	n.a.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: ChevronTexaco Group Number: 1560751

Reported: 05/22/2015 19:57

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank MDL**	Blank <u>LOQ</u>	Report <u>Units</u>	LCS %REC	LCSD %REC	LCS/LCSD <u>Limits</u>	RPD	RPD <u>Max</u>
Batch number: B151352AA	Sample numb	er(s): 78	85458,7885	460-7885461					
Benzene	N.D.	0.0005	0.005	mq/kq	100	102	80-120	3	30
Ethylbenzene	N.D.	0.001	0.005	mg/kg	99	101	80-120	2	30
Methyl Tertiary Butyl Ether	N.D.	0.0005	0.005	mg/kg	112	108	72-120	4	30
Naphthalene	N.D.	0.001	0.005	mg/kg	106	96	64-120	10	30
Toluene	N.D.	0.001	0.005	mg/kg	100	102	80-120	3	30
Xylene (Total)	N.D.	0.001	0.005	mg/kg	99	101	80-120	3	30
Batch number: Q151411AA	Sample numb	er(s): 78	85459						
Benzene	N.D.	0.025	0.25	mg/kg	106	100	80-120	6	30
Ethylbenzene	N.D.	0.050	0.25	mg/kg	102	97	80-120	6	30
Methyl Tertiary Butyl Ether	N.D.	0.025	0.25	mg/kg	101	94	72-120	7	30
Naphthalene	N.D.	0.050	0.25	mg/kg	82	76	64-120	8	30
Toluene	N.D.	0.050	0.25	mg/kg	106	99	80-120	7	30
Xylene (Total)	N.D.	0.050	0.25	mg/kg	102	95	80-120	8	30
Batch number: 15134A34A	Sample numb	er(s): 78	85458-7885	5461					
TPH-GRO N. CA soil C6-C12	N.D.	0.5	1.0	mg/kg	91	92	73-120	1	30

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: VOCs 8260 BTEX/MTBE/Naph Soil

Batch number: B151352AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
7885458	107	102	99	93
7885460	107	105	100	95
7885461	105	102	100	94
Blank	107	106	94	93
LCS	104	107	102	104
LCSD	105	104	102	103
Limits:	50-141	54-135	52-141	50-131

Analysis Name: VOCs 8260 BTEX/MTBE/Naph Soil

Batch number: Q151411AA

Dibromofluoromethane 1,2-Dichloroethane-d4 Toluene-d8 4-Bromofluorobenzene

*- Outside of specification

- **-This limit was used in the evaluation of the final result for the blank
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Group Number: 1560751 Client Name: ChevronTexaco

Reported: 05/22/2015 19:57

Surrogate Quality Control

7885459	82	86	87	85
Blank	88	95	93	88
LCS	97	104	102	98
LCSD	90	93	93	89
Limits:	50-141	54-135	52-141	50-131

Analysis Name: TPH-GRO N. CA soil C6-C12 Batch number: 15134A34A

Trifluorotoluene-F

	TTIIIGOTOL
7885458	84
7885459	89
7885460	90
7885461	88
Blank	100

LCSD 103 Limits: 50-142

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Chevron California Region Analysis Request/Chain of Custody

eurofins Lancaster Laboratories Acct. #_	1088	SO For	Euro Group	fins L # <u>/ </u>	ancas 560	ter La 75/	aborat	ories _ Sar	Environple #	nme	ntal u	se or	1 ^{1y} 5 8	8-6	5/			_				
OS ILIS ~ Ø [Environmental	(4)		ins	struction	(5)	verse s	ide con		alys													
1) Client Information Facility # WBS		IVIALITA			\mathbb{P}				larys	C3 I	T	ICSIC	-u				SCF	R #:				
FORMER CHEVRON 95607 Site Address 5269 CROW CANYON RD Chevron PM Lead Consultant ERIC HETRICIK Consultant/Office CRK/EMERYVILLE CA Consultant Project Mgr. JUDY GILBERT Consultant Phone # 510 420 3314 Sampler 33	sod	Potable Ground NPDES Surface	Air 🗆	Total Number of Containers	< + MTBE 8021	TPH-GRO 8015 💢 8260 🗌	TPH-DRO 8015 without Silica Gel Cleanup 🗌	TPH-DRO 8015 with Silica Gel Cleanup	8260 Full Scan	Oxygenates	Total Lead Method	Dissolved Lead Method	A DITTHALE BY 8260				J M lir cc B(B(C)	esults in D value repc lust meet I nits possik ompounds 021 MTBE onfirm hig onfirm all I un	orting no powest do ble for 8 Confirm nest hit nits by 8 oxy's c	eeded detection 260 mation by 8260 3260 on highest	hit	
2 Soil Collected Grant Sample Identification Depth Date Time	Com	Water	ĺ≅	ots	BTEX	[높	ᇤ	Ë	260		otal	isso	₹			ŀ	6)	Re	marl	(\$		
				Ħ	×	X					-		X				\sim					
C - 17 - 5 5 5 12 15 8:20		X		H	₩	X				_	\dashv		\frac{1}{\times}	\dashv	\dashv	\dashv	ı	GASE				
C-17-10 10 5/12/15 9:00		2	-	┞.	H÷	X				_		_						SULT				
C-17-15 15 5/12/13 9:30			-	Ш	X	X							X	_			اأوز	bert	₽ Ch	awor	10-	م
C-17-18 18 s/12/15 9:55		×											X									
7) Turnaround Time Requested (TAT) (please circle)	nquished by	,		<u> </u>	Date			Time			Receiv	ed by					D	ate	Ī	Гime	(9)	
Standard 5 day 4 day	inquished by	lfer	<u> </u>		Date	/12, MAY		Time	.·3	,	Receiv	10 red by	Sa X	Gp-	_		D	MAY L ate	7	133 <i>g</i> Fime	3	
8 Data Package (circle if required) Relin	inquished by	,			Date			Time			Receiv	ed by				-	D	ate	\Box	Гime		Selferan
Type I - Full Type VI (Raw Data)	linguished	I by Commer	cial C	arrier							Re¢eiv	ed by		1	Á		//D	ate		Γime		
No. 10. 10.	UPS	-	edEx	\ /		Oth	her_				41		M	$\cdot \int_{\Lambda}$	/	(11/	$_{N}$ $/\!\!\!/$	5.15.		915		
EDFFLAT (default) Other:	Tem	nperature l	Jpon	Red	ceipt	<u>G.1</u>	٠/٠	6	C.				y Se		ntac	<i>⊾ν</i> ν t?		Yes	$\frac{1}{2}$	No	,	

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

RL	Reporting Limit	BMQL	Below Minimum Quantitation Level
N.D.	none detected	MPN	Most Probable Number
TNTC	Too Numerous To Count	CP Units	cobalt-chloroplatinate units
IU	International Units	NTU	nephelometric turbidity units
umhos/cm	micromhos/cm	ng	nanogram(s)
С	degrees Celsius	F	degrees Fahrenheit
meq	milliequivalents	lb.	pound(s)
g	gram(s)	kg	kilogram(s)
μg	microgram(s)	mg	milligram(s)
mĹ	milliliter(s)	Ĺ	liter(s)
m3	cubic meter(s)	μL	microliter(s)
		pg/L	picogram/liter

< less than

> greater than

ppm parts per million - One ppm is equivalent to one milligram per kilogram (mg/kg) or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter per liter of gas.

ppb parts per billion

Dry weight Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture. All other results are reported on an

as-received basis.

Laboratory Data Qualifiers:

B - Analyte detected in the blank

C - Result confirmed by reanalysis

E - Concentration exceeds the calibration range

J (or G, I, X) - estimated value ≥ the Method Detection Limit (MDL or DL) and the < Limit of Quantitation (LOQ or RL)

P - Concentration difference between the primary and confirmation column >40%. The lower result is reported.

U - Analyte was not detected at the value indicated

V - Concentration difference between the primary and confirmation column >100%. The reporting limit is raised due to this disparity and evident interference...

Additional Organic and Inorganic CLP qualifiers may be used with Form 1 reports as defined by the CLP methods. Qualifiers specific to Dioxin/Furans and PCB Congeners are detailed on the individual Analysis Report.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, ISO17025) unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Times are local to the area of activity. Parameters listed in the 40 CFR Part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL, LLC BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL AND (B) WHETHER EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

Attachment F

Waste Disposal Project Summary and Manifest

5900 Hollis Street, Suite A Emeryville, California 94608

Telephone: (510) 420-0700 Fax: (510) 420-9170

www.CRAworld.com

PROJECT SUMMARY

	1 14	OJECT SOIVII	VIAIVI		
To:	North American Waste Trac	rking Desk	Ref. No:	311950-WR30)09-COOR
CHEVRON PM:	Eric Hetrick	Simily Desir	EMC BUSINESS UNIT:	MBU	os coch
FROM:	Mohamed Ibrahim		DATE:	June 13, 2015	
SUPPLIER PM:	Judy Gilbert		SUPPLIER COMPANY	CRA	
Dr. Chauran	•	· Hazardaus and No	n Hazardous Wasta		
RE: Chevron	95607–WR3009- Disposal of	Hazardous and NO	II-Hazardous waste		
•	or Waste Pick-up and Disposa aminated with petroleum pro		•	•	
GENERATOR/SITE	INFORMATION				
Facility ID: 95	5607		Facility Name: Chevron	95607	
Location: 52	269 Crow Canyon Rd. Castro \	/alley, CA 94552			
WASTESTREAM IN	NFORMATION				
Profile: <u>CH70</u>	0224	Wastestream Nam	e: <u>Soil Contaminated w</u> (Non-Hazardous)	ith Petroleum F	<u>'roducts</u>
SHIPPING INFORM	MATION				
Transporter:	Clean Harbor Environ	mental Services, Inc	: .		
DISPOSAL FACILIT	Y INFORMATION				
Manifest No.:	WR3009-001		Ship	Date: 5/28/	15
Facility:	Clean Harbor San Jose	e, LLC.	Received	Date: 6/3/1	5
Location:	1021 Berryessa Road,	San Jose, CA 95133			
ATTACHMENTS					
Final Manifest(s)/	Bill of Lading	~	DTSC Stamped Manifest		
Generator Manife	est(s)/Bill of Lading	V	LDR (if applicable)		
Profile Approval (i	if available)	V	Signed Profile		✓
Analytical		V	Certificate of Destruction	n (COD)	
Other:					

A	NON-HAZARDOUS	3. Emergency Response Phone 1-800-424-9300	4. Waste Tracking Number WR3009-001										
	5. Generator's Name and Mailing Address Chevron 95607 PO Box 6004 - Chevron EMC Waste Desk San Ramon, CA 94583 Generator's Site Address (if different than mailing address) 5269 Crow Canyon Rd. CASTRO VALLEY, CA 94552 Generator's Phone: 877 386-6044												
	6. Transporter 1 Company Name Clear Harbors Environmental Sex 7. Transporter 2 Company Name	ruries FNC	U.S. EPA ID Number MAD 03 932 2250 U.S. EPA ID Number	5									
	r. Hanspotot a company Name		U.S. CEA ID INGINIDA										
	8. Designated Facility Name and Site Address Clean Harbors San Jose, LLC 1021 Berryessa Road San Jose, CA 95133 Facility's Phone: 408-441-0962		U.S. EPA ID Number C A D 0 5 9 4 9 4	3 1 0									
	9. Waste Shipping Name and Description	10. Containers	11. Total 12. Unit										
		No. Type	Quantity Wt./Vol.										
GENERATOR	NON DOT REGULATED MATERIAL (Soil Contaminated with Petroleum Products, Non-Hazardous)	001 DM	200 P										
- GEN	2.												
	3.												
	4.												
	1. PROFILE #CH700224 present). WR3009 ERG: SO #001517179: 14. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment a	N/A	e, splash protection (if l										
V	marked and labeled/placarded, and are in all respects in proper condition for transport according to applic Generator's/Offeror's Printed/Typed Name ASAGENT FOR CHEVRON Signature States ASAGENT SIGNATURE		- AS AGENT Month	Day Year 28 15									
INTL	15. International Shipments Import to U.S. Export from												
H	Transporter Signature (for exports only): 16. Transporter Acknowledgment of Receipt of Materials	Date leaving U.S.:											
TRANSPORTER	Transporter 1 Printed/Typed Name Tilm & Fellelia Transporter 2 Printed/Typed Name Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature Signature	gnature R	Month Month	Day Year Day Year									
F													
A	17. Discrepancy Indication Space Quantity Type	Residue	Partial Rejection	ill Rejection									
CILITY	17b. Alternate Facility (or Generator)	Manifest Reference Number:	U.S. EPA ID Number										
DESIGNATED FACILITY	Facility's Phone: 17c. Signature of Alternate Facility (or Generator)		Month	Day Year									
- DESIG													
	18. Designated Facility Owner or Operator: Certification of receipt of materials covered by the manifest exce	nt as noted in Item 17a											
		gnatatie / /	A	Day Year									

A	NON-HAZARDOUS	1. Generator ID Number		Andread Street Control	3. Emergency Resp		The Personal Property of the	racking Nu		
1	WASTE MANIFEST	CAR 0 0 0 1 4 9	/ 1 6	1	1-800-424			VP.3009	-001	
	5. Generator's Name and Maili	ing Address			Generator's Site Add	ress (if different	than mailing add	ress)		
Ш		Chevron EMC Waste	Desk		5269 C	ow Cany	on Rd.			
	San Ramon, CA			1	CASTRO	VALLEY,	CA 945	552		1
1	Generator's Phone: 6. Transporter 1 Company Nam						U.S. EPA ID	Number		
	a leave Ha	HADOIS EAVIRON	imente	1	BULLET	TON			9322250	
	7. Transporter 2 Company Nan	me		00,		1.7.6	U.S. EPA ID		//2/	
	8. Designated Facility Name ar	nd Site Address					U.S. EPA ID	Number		
V.		San Jose, LUC								
	1021 Berryess: San Jose, CA									
	Facility's Phone: 409-4						CA	D 0 5	9 4 9 4 3	1 0
Mi	9. Waste Shipping Nam	and the state of			10. (ontainers	11. Total	12. Unit		
	9. Waste Shipping Nam	ie and Description			No.	Туре	Quantity	Wt./Vol.		
R		GULATED MATERIAL		4						
ATO	(Soil Cont.	aminated with Petro	leum Produ	icts,	001	DM	200	P		
GENERATOR		DGD I								
GEN	2.									
Ĩ					- All A			2.011		
	3.									
Н	J.									
	4.					-		+		
Ш										
	13. Special Handling Instructio	ons and Additional Information	// V		ans of com-					
	1. PROFILE #CH7	100224	preser	at).		, goggle:	, splash	proced	tion (if lig	mas
	Mr. Action of the second		WR3009	ERG:	N/A					
	1×5	3								
Ш	-9	n.								
	14. GENERATOR'S/OFFERO	R'S CERTIFICATION: I hereby declare the	at the contents of this	consignment a	re fully and accuratel	described abov	e by the proper s	hipping nam	e, and are classified, page	kaged,
b		rded, and are in all respects in proper cond				I national govern			n n n	
	Generators/Offerors Printed/1	Typed Name	400	MON SI	nature			AGE		
V	15. International Shipments	BELEW YIFR	U		71		FAI	CCE	MC 5 2	8 15
INT	de anto analysis and	Import to U.S.	1_	Export from		of entry/exit:				
	Transporter Signature (for exp 16. Transporter Acknowledgme				Date	leaving U.S.:				
TRANSPORTER	Transporter 1 Printed/Typed N	Name	m	Sic	nature	v	18		Month Da	y Year
P. P.	5227	14hm 0 1	euch	·		7/6	-6-		1712	215
ISN	Transporter 2 Printed/Typed N	Vame			gnature	/	40		Month Da	y Year
TR/									_ []	
A	17. Discrepancy									
1	17a. Discrepancy Indication S	Space Quantity	Туре		Residue		Partial R	oigation	T sull D	ejection
		La Quantity	ш туре		L Hesidue		L Farual F	ejection		ejection
					Manifest Refere	nce Number:				
1	17b. Alternate Facility (or Gen	erator)					U.S. EPA II	Number 1		
FACILITY										
> FA	Facility's Phone:						3			
TEL	17c. Signature of Alternate Fa	cility (or Generator)		1					Month Da	y Year
SNA								Sec. 31.0.482.00		
DESIGNATED										
- D										
	10 Decimented Facility Co.	r or Operators Cartification of acceptant	toriola accessed by the	monifest	at an poted in them 47	•				
	18. Designated Facility Owner Printed/Typed Name	r or Operator: Certification of receipt of mat	lenals covered by the		ot as noted in Item 17 gnature	a			Month Da	y Year
1	Timed Typed Name				griaturo					y Teal

Profile Summary Report

C	CHC2CO	Character FMC		Ch 0.5.60	7 5360 6 6	Control Valley	64	0.4552
Generator	CH6369	Chevron EMC		Road	7 5269 Crow Canyon	Castro valley	CA	94552
Customer	CH3122	Chevron EMC		6001 Bollinger	r Canyon Road	San Ramon	CA	94583
<u>Clean Harbors</u> <u>Profile No.</u>		Waste Description	Waste Classification Codes	<u>Profile Type</u>	<u>Approval Status</u>	Exp. Date		
CH584769		ris contaminated w/Petroleum oducts, Non-Hazardous	CNO	I	Expired	9/13/2013		
	EPA/State/	Provincial Waste Codes						
	DOT Ship In	<u>formation</u>	NON DOT REGULATED M.	ATERIAL, (SOIL/D	EBRIS CONTAMINATED	WITH PETROLEUM P	PRODUCTS, NON-I	HAZARDOUS)
	Approved Fa	<u>icilities</u>	AKR - Akron, OH (Kent) - AC, CRR - Cranston, RI (Eagan, MN - AC, ELM - E Lexington, SC - RC, LIN Sacramento, CA - AC, SJ	ALR) - RC, DNR - I Monte, CA - AC, - Linden, NJ - RC,	Denton, TX - RC, DOR - GM - Grassy Mountain, MMA - Mason, MI (Lai	- Dolton, IL - RC, DR UT Facility, JAR - Jac nsing) - AC, MRA - M	- Deer Trail, CO F ckson, MS (Atlanti arlborough, MA -	facility, EAA - c) - RC, LER - AC, SCA -
CH700224	Soil Contam	inated With Petroleum Products, Non-Hazardous	CBP	I	Approved	5/15/2016		
	EPA/State/	Provincial Waste Codes	; OUTS3191					
	DOT Ship In	<u>formation</u>	NON DOT REGULATED M.	ATERIAL, (SOIL C	ONTAMINATED WITH P	ETROLUEM PRODUCT	S, NON-HAZARDO	DUS)
	Approved Fa	<u>acilities</u>	AG - Aragonite, UT Facili Facility, KP - Kimball, NE					
CH744343	Construction	, Demolition Debris and Soil (Non- Regulated)	CNO	I	Expired	1/24/2015		
	EPA/State/	Provincial Waste Codes	; OUTS4091					
	DOT Ship In	<u>formation</u>	NON DOT REGULATED M.	ATERIAL, (CONST	RUCTION, DEMOLITION	I DEBRIS AND SOIL)		
	Approved Fa	<u>acilities</u>	AG - Aragonite, UT Facili Facility, LT - La Porte, TX					ntain, UT
CH744829	Petroleum	Contact Water, Non-Hazardous	CNOS	1	Expired	1/24/2015		_
	EPA/State/I	Provincial Waste Codes	; OUTS6091		·			
	DOT Ship In	<u>formation</u>	NON DOT REGULATED M.	ATERIAL, (PETROI	EUM CONTACT WATER	, NON-HAZARDOUS)		
	Approved Fa	<u>acilities</u>	BL - Buttonwillow, CA Fa SJ - San Jose, CA Facility			irassy Mountain, UT F	Facility, LT - La Po	rte, TX Facility,
CH745101	CORROSIVE	LIQUIDS UN3266 (HAZARDOUS)	CCSS	I	Expired	1/23/2015		
	EPA/State/	Provincial Waste Codes	D002; 122, OUTS110H					
	DOT Ship In	<u>formation</u>	RQ, UN3266, WASTE CO PG III (D002)	RROSIVE LIQUID,	BASIC, INORGANIC, N	.O.S., (CALCIUM OXI	DE, CALCIUM HYE	DROXIDE), 8,
	Approved Fa	<u>acilities</u>	AG - Aragonite, UT Facili Facility, KP - Kimball, NE - Wilmington, CA Facility	Facility, LS - Los				

Report Printed On: 6/13/2015 5:55:30 PM

Page 1 of 2

WASTE MATERIAL PROFILE SHEET

Clean Harbors Profile No. CH700224

CITY

A. GENERAL INFORMATION
GENERATOR EPA ID #/REGISTRATION #

CAR000149716

CH3122

GENERATOR NAME:

Chevron EMC

GENERATOR CODE (Assigned by Clean Harbors) CH6369

Castro Valley

STATE/PROVINCE CA ZIP/POSTAL CODE

PHONE: (408) 433-1990

ADDRESS Chevron 95607 5269 Crow Canyon Road

CUSTOMER CODE (Assigned by Clean Harbors) ADDRESS 6001 Bollinger Canyon Road CUSTOMER NAME:

San Ramon

Chevron EMC STATE/PROVINCE

ZIP/POSTAL CODE CA

94583

94552

B. WASTE DESCRIPTION

WASTE DESCRIPTION:

Soil Contaminated With Petroleum Products, Non-Hazardous

PROCESS GENERATING WASTE: Investigation or Remediation of Past Contamination associated with UST Corrective Action 40 CFR

IS THIS WASTE CONTAINED IN SMALL PACKAGING CONTAINED WITHIN A LARGER SHIPPING CONTAINER? No

C. PHYSICAL PROPERT	IES (at 25C or 77F)								
PHYSICAL STATE SOLID WITHOUT FE POWDER MONOLITHIC SOLIE LIQUID WITH NO SE LIQUID/SOLID MIXT	DLIDS	% BY VOLUME (Approx.)	1 2 3 TOP 0.00			s)	TOTAL ORGANIC CARBON <- 1% 1-9% >= 10%		
% FREE LIQUID % SETTLED SOLID % TOTAL SUSPENDI SLUDGE GAS/AEROSOL		ODOR NONE MILD STRONG Describe:	> 10,000 MELTING POINT < 140 (<6 140-200 (✓ > 200 (>9	CAR					
FLASH POINT °F (°C) < 73 (<23) 73 - 100 (23-38) 101 -140 (38-60) 141 -200 (60-93) > 200 (>93)	pH <= 2 2.1 - 6.9 7 (Neutral) 7.1 - 12.4 >= 12.5	SPECIFIC GRAVITY < 0.8 (e.g. Gasoline) 0.8-1.0 (e.g. Ethanol) 1.0 (e.g. Water) 1.0-1.2 (e.g. Antifreeze) > 1.2 (e.g. Methylene Chloride)	ASH < 0.1 0.1 - 1.0 1.1 - 5.0 5.1 - 20.0	0.1 - 1.0					
BENZENE C6-C12-TPH-GRO CONSTRUCTION D LEAD SOIL	EBRIS (CONCRETE	, ASPHALT, PPE)		19 0.0 5.5	.0000000 .0000000 .000000 .000000	70 1	7.70000 0.00000 5.00000 3.20000 0.00000	00 00 00	PPM % PPM %
	IFORCED HOSE >12" L >3")?	JGE METAL DEBRIS OR OTHER LARG ONG, METAL WIRE >12" LONG, META					YES	•	NO
	NITAINI ANIV METALOIN	DOWNERDED OF OTHER FINELY DIVI					YES		NO NO
DOES THIS WASTE CO	ONTAIN OR HAS IT CON GICAL WASTE, PATHO	NTACTED ANY OF THE FOLLOWING; A LOGICAL WASTE, HUMAN OR ANIMAL	NIMAL WASTES, HUMAN BLO			1	YES	~	
DOES THIS WASTE CO FLUIDS, MICROBIOLO POTENTIALLY INFECT I acknowledge that	ONTAIN OR HAS IT CON GICAL WASTE, PATHO IOUS MATERIAL? this waste material is nei	NTACTED ANY OF THE FOLLOWING; A	NIMAL WASTES, HUMAN BLO DERIVED SERUMS OR PROT	TEINS OR ANY OTH	ER		YES	~	
DOES THIS WASTE CO FLUIDS, MICROBIOLO POTENTIALLY INFECT I acknowledge that based on my knowl	ONTAIN OR HAS IT CON GICAL WASTE, PATHO IOUS MATERIAL? this waste material is nei	NTACTED ANY OF THE FOLLOWING; A LOGICAL WASTE, HUMAN OR ANIMAL ither infectious nor does it contain any or elect the answer below that applies:	NIMAL WASTES, HUMAN BLO DERIVED SERUMS OR PROT	TEINS OR ANY OTH	ER		YES	_	NO
DOES THIS WASTE CO FLUIDS, MICROBIOLO POTENTIALLY INFECT I acknowledge that based on my knowl The waste was nev	ONTAIN OR HAS IT CON GICAL WASTE, PATHO IOUS MATERIAL? this waste material is nei edge of the material. Se er exposed to potentially	NTACTED ANY OF THE FOLLOWING; A LOGICAL WASTE, HUMAN OR ANIMAL ither infectious nor does it contain any or elect the answer below that applies:	NIMAL WASTES, HUMAN BLC DERIVED SERUMS OR PROT ganism known to be a threat to b	TEINS OR ANY OTH	ER			Y	
DOES THIS WASTE CO FLUIDS, MICROBIOLO POTENTIALLY INFECT I acknowledge that based on my knowl The waste was new Chemical disinfection	ONTAIN OR HAS IT CON GICAL WASTE, PATHO IOUS MATERIAL? this waste material is nei edge of the material. Se er exposed to potentially on or some other form of	NTACTED ANY OF THE FOLLOWING; A LOGICAL WASTE, HUMAN OR ANIMAL ither infectious nor does it contain any or lect the answer below that applies: infectious material.	NIMAL WASTES, HUMAN BLC DERIVED SERUMS OR PROT ganism known to be a threat to b	TEINS OR ANY OTH	ER		YES	Y	NO
FLUIDS, MICROBIOLO POTENTIALLY INFECT I acknowledge that based on my knowl The waste was nev Chemical disinfection ACKNOWLEDGE THAT	ONTAIN OR HAS IT CON GICAL WASTE, PATHO IOUS MATERIAL? this waste material is nei edge of the material. Se er exposed to potentially on or some other form of THIS PROFILE MEETS	NTACTED ANY OF THE FOLLOWING; A LOGICAL WASTE, HUMAN OR ANIMAL ither infectious nor does it contain any or elect the answer below that applies: infectious material. sterilization has been applied to the was	ANIMAL WASTES, HUMAN BLC DERIVED SERUMS OR PROT ganism known to be a threat to be te. CKAGING REQUIREMENTS.	TEINS OR ANY OTH	ER		YES YES	Y	NO NO

/WINWEB/Profile\Waste Profile.rdl

Clean Harbors Profile No. CH700224

E. CONSTITUENTS

Are these values based on testing or knowledge?

Knowledge V Testing

If constituent concentrations are based on analytical testing, analysis must be provided. Please attach document(s) using the link on the Submit tab.

Please indicate which constituents below apply. Concentrations must be entered when applicable to assist in accurate review and expedited approval of your waste profile. Please note that the total regulated metals and other constituents sections require answers.

RCRA	REGULATED METALS	REGULATORY LEVEL (mg/l)	TCLP mg/l	TOTAL	UOM	NOT APPLIC	CABLE	
D004	ARSENIC	5.0				~		
D005	BARIUM	100.0				<u> </u>		
D006	CADMIUM	1.0				∵		
D007	CHROMIUM	5.0		9.04		-		
D008	LEAD	5.0		13.2000000	PPM			
D009	MERCURY	0.2		73.2000000				
D010		1.0					•••••	
	SELENIUM SILVER	5.0				······›		
D011		3.0						
2010	VOLATILE COMPOUNDS			OTHER CONSTITUENTS	8	MAX	UOM	NOT APPLICABLE
D018	BENZENE	0.5		DDOMINE				1
D019	CARBON TETRACHLORIDE	0.5		BROMINE				<u> </u>
D021	CHLOROBENZENE	100.0		CHLORINE				
D022	CHLOROFORM	6.0		FLUORINE				<u> </u>
D028	1,2-DICHLOROETHANE	0.5		IODINE				V
D029	1,1-DICHLOROETHYLENE	0.7		SULFUR	210101		01010101	V
D035	METHYL ETHYL KETONE	200.0		POTASSIUM				~
D039	TETRACHLOROETHYLENE	0.7		SODIUM				<u> </u>
D040	TRICHLOROETHYLENE	0.5		AMMONIA				V
D043	VINYL CHLORIDE	0.2		CYANIDE AMENABLE				
		***********	*******	CYANIDE REACTIVE				
Door	SEMI-VOLATILE COMPOUN			CYANIDE TOTAL			•••••	-
D023	o-CRESOL	200.0		SULFIDE REACTIVE				
D024	m-CRESOL	200.0						
D025	p-CRESOL	200.0		HOCs		PCBs		
D026	CRESOL (TOTAL)	200.0		NONE		✓ NONE		
D027	1,4-DICHLOROBENZENE	7.5		< 1000 PPM		< 50 F		
D030	2,4-DINITROTOLUENE	0.13	34111111	>= 1000 PPM		>=50		
D032	HEXACHLOROBENZENE	0.13		1				T IO TUE
D033	HEXACHLOROBUTADIENE	0.5	100000000000000000000000000000000000000				RE PRESENT GULATED B	
D034	HEXACHLOROETHANE	3.0		8 1		CFR 761?		
D036	NITROBENZENE	2.0				YES	S	NO
D037	PENTACHLOROPHENOL	100.0						
D038	PYRIDINE	5.0						
D041	2,4,5-TRICHLOROPHENOL	400.0		0-1				
		2.0						
D042	2,4,6-TRICHLOROPHENOL							
2010	PESTICIDES AND HERBICIT							
D012	ENDRIN	0.02						
D013	LINDANE	0.4						
D014	METHOXYCHLOR	10.0						
D015	TOXAPHENE	0.5						
D016	2,4-D	10.0		7				
D017	2,4,5-TP (SILVEX)	1.0						
D020	CHLORDANE	0.03						
D031	HEPTACHLOR (AND ITS EPOXIL	DE) 0.008	••••••					
	TIONAL HAZARDS HIS WASTE HAVE ANY UNDISCLO	SED HAZARDS OR PRIO	R INCIDENTS	ASSOCIATED WITH IT, WHICH	I COULD AF	FECT THE WAY I	T SHOULD B	E HANDLED?
YES	NO (If yes, explain)							
	SE ALL THAT APPLY							
	A REGULATED SUBSTANCES	EXPLOSIVE		FUMING		✓ OSHA	DECL!! ATT	CARCINOCENS
								CARCINOGENS
PUL	YMERIZABLE	RADIOACTIVE		REACTIVE MATER	IAL	NONE	OF THE ABO	DVE

Clean Harbors Profile No. CH700224

REGULA	TORY	STATI	JS					
YES	~	NO	USEPA HAZARDOUS	WASTE?				
YES	~	NO	DO ANY STATE WAST	'E CODES APPLY?				
			Texas Waste Code	outs3191				-
YES	V	NO		ROVINCIAL WASTE CODES APPLY?				
YES	~	NO	IS THIS WASTE DOOL	HIBITED FROM LAND DISPOSAL WITHOU	T ELIPTHED TREATMENT DE	D 40 CED DART 2692		
120	1	140	LDR CATEGORY:	Not subject to LDR	TORTHER INCATMENT	11 40 OF 11 AIL 200!		
			VARIANCE INFO:	Not subject to LDN				
YES	~	NO	IS THIS A UNIVERSAL	.WASTE?				
YES	~	NO	IS THE GENERATOR	OF THE WASTE CLASSIFIED AS CONDIT	IONALLY EXEMPT SMALL QU	JANTITY GENERATOR	(CESQG)?	
YES		NO	IS THIS MATERIAL GO	DING TO BE MANAGED AS A RCRA EXEM	MPT COMMERCIAL PRODUCT	T, WHICH IS FUEL (40	CFR 261.2 (C)(2)(II))?	
YES	~	NO	DOES TREATMENT O	F THIS WASTE GENERATE A F006 OR F	019 SLUDGE?			
YES		NO	IS THIS WASTE STRE	AM SUBJECT TO THE INORGANIC META	L BEARING WASTE PROHIB	ITION FOUND AT 40 CF	R 268.3(C)?	
YES	~	NO	DOES THIS WASTE C	ONTAIN VOC'S IN CONCENTRATIONS >=	500 PPM?			
YES	,	NO	DOES THE WASTE CO	ONTAIN GREATER THAN 20% OF ORGAN	IIC CONSTITUENTS WITH A	VAPOR PRESSURE >=	.3KPA (.044 PSIA)?	
YES	V	NO		ONTAIN AN ORGANIC CONSTITUENT WI				
YES	~	NO		ULATED (SUPERFUND) WASTE ?				
YES	V	NO		ECT TO ONE OF THE FOLLOWING NESH,	AF RULES?			
	lane.			iic NESHAP (HON) rule (subpart G)	Pharmaceuticals produ	uction (subpart GGG)		
YES		NO		HAZARDOUS WASTE, DOES THIS WASTE				
123								. (. 2
	YES			te stream come from a facility with one of the s because the original source of the waste it				
	YES		NO Is the generat	ing source of this waste stream a facility wit	h Total Annual Benzene (TAB)	>10 Mg/year?		
	Wha	t is the	TAB quantity for your fa	ncility? Megaç	ram/year (1 Mg = 2,200 lbs)			
	The	basis f	or this determination is:	Knowledge of the Waste Or Test Data		Knowledge	Testing	
	Des	cribe th	ne knowledge :					3
G. DOT	TDG II	IFORM	MATION					
OT/TDG	PROPE	R SHI	PPING NAME:					
				L, (SOIL CONTAMINATED WITH PET	ROLUEM PRODUCTS. N	ON-HAZARDOUS)		
			REQUIREMENTS			230 (1120000000000000000000000000000000000		
			FREQUENCY ONE T	TIME WEEKLY MONTHLY QUART	ERLY YEARLY 🗸 OTHE	ER As Needed		
		CC	NTAINERIZED	Ви	K LIQUID	BULK	SOLID	
2-2	CONT	AINEF	RS/SHIPMENT	GALLONS/SHIPMENT: 0 I	Min -0 Max GAL.	SHIPMENT UOM:	TON	YARD
TORAGE			2	SALESHOOTHI WENT. U	min -o wax		MENT: 0 Min - 0 Max	171110
ONTAINE	JBIC Y		OX PALLET			TONS/TARDS/SHIPN	IENT. OWIN - O WAX	
	TE TA							
	HER:	MIX	DRUM SIZE: 55					
			DRUM SIZE: 33			·		
I. SPECIA								
COMME			ESTS: Goggles, Splash Protection	on (if liquids present)				
Near Level								
	R'S CEI	RTIFICA	TION					
GENERATO certify that	am aut	norized re repre	to execute this document as	an authorized agent, I hereby certify that all inform If Clean Harbors discovers a discrepancy during t				
CENERATO certify that camples sub deems neces	I am aut mitted a ssary, to	norized re repre reflect	to execute this document as sentative of the actual waste the discrepancy.	e.If Clean Harbors discovers à discrépancy during t	he approval process, Generator gra		rity to amend the profile, as Clea	
GENERATO certify that samples sub deems nece	I am aut mitted a ssary, to	norized re repre reflect	to execute this document as sentative of the actual waste			nts Clean Harbors the autho		

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

ANALYTICAL RESULTS

Prepared by:

Prepared for:

Eurofins Lancaster Laboratories Environmental 2425 New Holland Pike Lancaster, PA 17601 ChevronTexaco 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

January 20, 2014

Project: 95607

Submittal Date: 01/11/2014 Group Number: 1445316 PO Number: 0015118368 Release Number: HOPKINS/HETRICK State of Sample Origin: CA

Lancaster Labs (LL) #
7333586
7333587
7333588
7333589
7333590
7333591
7333592
7333593

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

ELECTRONIC Chevron Attn: CRA EDD

COPY TO

ELECTRONIC CRA Attn: Judy Gilbert
COPY TO

Respectfully Submitted,

Natalie X-2

Natalie R. Luciano Senior Specialist

(717) 556-7258

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: DPE-3-S-10-140110 Grab Soil

Facility# 95607 CRAW

5269 Crow Canyon-Castro Va T0600100344

LL Sample # SW 7333586 LL Group # 1445316

Account # 10880

Project Name: 95607

Collected: 01/10/2014 09:05 by AG ChevronTexaco

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 01/11/2014 09:25

Reported: 01/20/2014 17:12

DP310

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	mg/kg	mg/kg	mg/kg	
10237	Benzene		71-43-2	N.D.	0.0005	0.005	0.96
10237	C6-C12-TPH-GRO		n.a.	N.D.	0.042	0.11	0.96
10237	Ethylbenzene		100-41-4	N.D.	0.001	0.005	0.96
10237	Methyl Tertiary Buty	yl Ether	1634-04-4	N.D.	0.0005	0.005	0.96
10237	Naphthalene		91-20-3	N.D.	0.001	0.005	0.96
10237	Toluene		108-88-3	N.D.	0.001	0.005	0.96
10237	Xylene (Total)		1330-20-7	N.D.	0.001	0.005	0.96
GC/MS	Semivolatiles	SW-846	8270C	mg/kg	mg/kg	mg/kg	
10724	Acenaphthene		83-32-9	N.D.	0.003	0.017	1
10724	Acenaphthylene		208-96-8	0.004	0.003	0.017	1
10724	Anthracene		120-12-7	N.D.	0.003	0.017	1
10724	Benzo(a)anthracene		56-55-3	0.012	0.003	0.017	1
10724	Benzo(a)pyrene		50-32-8	0.020	0.003	0.017	1
10724	Benzo(b)fluoranthen	e	205-99-2	0.019	0.003	0.017	1
10724	Benzo(g,h,i)perylen	е	191-24-2	0.023	0.003	0.017	1
10724	Benzo(k)fluoranthen	е	207-08-9	0.008	0.003	0.017	1
10724	Chrysene		218-01-9	0.019	0.003	0.017	1
10724	Dibenz(a,h)anthrace	ne	53-70-3	0.005	0.003	0.017	1
10724	Fluoranthene		206-44-0	0.026	0.003	0.017	1
10724	Fluorene		86-73-7	N.D.	0.003	0.017	1
10724	Indeno(1,2,3-cd)pyre	ene	193-39-5	0.019	0.003	0.017	1
10724	Naphthalene		91-20-3	0.006	0.003	0.017	1
10724	Phenanthrene		85-01-8	0.021	0.003	0.017	1
10724	Pyrene		129-00-0	0.039	0.003	0.017	1
Metals	5	SW-846	6010B	mg/kg	mg/kg	mg/kg	
06955	Lead		7439-92-1	13.9	0.495	1.49	1

General Sample Comments

CA ELAP Lab Certification No. 2792; CA NELAP Lab Certification No. 10276CA

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record									
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor		
10237	GRO C6-C12/BTEX/MTBE/Naph Soil	SW-846 8260B	1	B140151AA	01/15/2014 07:18	Stephanie A Selis	0.96		
00374	GC/MS - Bulk Soil Prep	SW-846 5035A Modified	1	201401333603	01/13/2014 09:17	Larry E Bevins	n.a.		
00374	GC/MS - Bulk Soil Prep	SW-846 5035A Modified	2	201401333603	01/13/2014 09:17	Larry E Bevins	n.a.		

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: DPE-3-S-10-140110 Grab Soil

Facility# 95607 CRAW

5269 Crow Canyon-Castro Va T0600100344

LL Sample # SW 7333586 LL Group # 1445316

Account # 10880

Project Name: 95607

Collected: 01/10/2014 09:05 by AG ChevronTexaco

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 01/11/2014 09:25 Reported: 01/20/2014 17:12

DP310

Labo	ratory Sample A	nalysis Record		
Method	Trial# Batch#	Analysis	Analyst	Dilution
		Date and Time		Factor
CM-846 EU3EV	1 20140133	83603 01/13/2014 00:0	1 Larry F Begins	n a

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor
06646	GC/MS HL Bulk Sample Prep	SW-846 5035A Modified	1	201401333603	01/13/2014	09:01	Larry E Bevins	n.a.
10724	PAH's 8270C Soil	SW-846 8270C	1	14017SLA026	01/20/2014	01:58	Holly Berry	1
10814	BNA Soil Microwave PAH	SW-846 3546	1	14017SLA026	01/17/2014	16:40	JoElla L Rice	1
06955	Lead	SW-846 6010B	1	140135708002	01/14/2014	08:36	Joanne M Gates	1
05708	SW SW846 ICP/ICP MS Digest	SW-846 3050B	1	140135708002	01/13/2014	22:37	Annamaria Kuhns	1

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: DPE-3-S-15-140110 Grab Soil

Facility# 95607 CRAW

5269 Crow Canyon-Castro Va T0600100344

LL Sample # SW 7333587 LL Group # 1445316

Account # 10880

Project Name: 95607

Collected: 01/10/2014 09:35 by AG ChevronTexaco

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 01/11/2014 09:25 Reported: 01/20/2014 17:12

DP315

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	mg/kg	mg/kg	mg/kg	
10237	Benzene		71-43-2	0.43	0.024	0.24	47.26
10237	C6-C12-TPH-GRO		n.a.	19	2.1	5.2	47.26
10237	Ethylbenzene		100-41-4	0.047	0.001	0.005	1.02
10237	Methyl Tertiary But	yl Ether	1634-04-4	0.001	0.0005	0.005	1.02
10237	Naphthalene		91-20-3	0.26	0.001	0.005	1.02
10237	Toluene		108-88-3	0.001	0.001	0.005	1.02
10237	Xylene (Total)		1330-20-7	0.018	0.001	0.005	1.02
GC/MS	Semivolatiles	SW-846	8270C	mg/kg	mg/kg	mg/kg	
10724	Acenaphthene		83-32-9	N.D.	0.003	0.017	1
10724	Acenaphthylene		208-96-8	N.D.	0.003	0.017	1
10724	Anthracene		120-12-7	N.D.	0.003	0.017	1
10724	Benzo(a)anthracene		56-55-3	N.D.	0.003	0.017	1
10724	Benzo(a)pyrene		50-32-8	N.D.	0.003	0.017	1
10724	Benzo(b)fluoranthen	е	205-99-2	N.D.	0.003	0.017	1
10724	Benzo(g,h,i)perylen	е	191-24-2	N.D.	0.003	0.017	1
10724	Benzo(k)fluoranthen	е	207-08-9	N.D.	0.003	0.017	1
10724	Chrysene		218-01-9	N.D.	0.003	0.017	1
10724	Dibenz(a,h)anthrace	ne	53-70-3	N.D.	0.003	0.017	1
10724	Fluoranthene		206-44-0	N.D.	0.003	0.017	1
10724	Fluorene		86-73-7	N.D.	0.003	0.017	1
10724	Indeno(1,2,3-cd)pyr	ene	193-39-5	N.D.	0.003	0.017	1
10724	Naphthalene		91-20-3	0.18	0.003	0.017	1
10724	Phenanthrene		85-01-8	0.004	0.003	0.017	1
10724	Pyrene		129-00-0	N.D.	0.003	0.017	1
Metals	5	SW-846	6010B	mg/kg	mg/kg	mg/kg	
06955	Lead		7439-92-1	10.5	0.490	1.47	1

General Sample Comments

CA ELAP Lab Certification No. 2792; CA NELAP Lab Certification No. 10276CA

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10237	GRO C6-C12/BTEX/MTBE/Naph Soil	SW-846 8260B	1	B140151AA	01/15/2014 09:10	Stephanie A Selis	1.02
10237	GRO C6-C12/BTEX/MTBE/Naph Soil	SW-846 8260B	1	R140191AA	01/19/2014 18:29	Sarah A Guill	47.26

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: DPE-3-S-15-140110 Grab Soil

Facility# 95607 CRAW

5269 Crow Canyon-Castro Va T0600100344

LL Sample # SW 7333587 LL Group # 1445316

Account # 10880

Project Name: 95607

Collected: 01/10/2014 09:35 by AG ChevronTexaco

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 01/11/2014 09:25 Reported: 01/20/2014 17:12

DP315

Laboratory Sample Analysis Record										
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor		
00374	GC/MS - Bulk Soil Prep	SW-846 5035A Modified	1	201401333603	01/13/2014	09:17	Larry E Bevins	n.a.		
00374	GC/MS - Bulk Soil Prep	SW-846 5035A Modified	2	201401333603	01/13/2014	09:17	Larry E Bevins	n.a.		
06646	GC/MS HL Bulk Sample Prep	SW-846 5035A Modified	1	201401333603	01/13/2014	09:04	Larry E Bevins	n.a.		
10724	PAH's 8270C Soil	SW-846 8270C	1	14017SLA026	01/19/2014	21:33	Holly Berry	1		
10814	BNA Soil Microwave PAH	SW-846 3546	1	14017SLA026	01/17/2014	16:40	JoElla L Rice	1		
06955	Lead	SW-846 6010B	1	140135708002	01/14/2014	08:40	Joanne M Gates	1		
05708	SW SW846 ICP/ICP MS Digest	SW-846 3050B	1	140135708002	01/13/2014	22:37	Annamaria Kuhns	1		

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: DPE-3-S-20-140110 Grab Soil

Facility# 95607 CRAW

5269 Crow Canyon-Castro Va T0600100344

LL Sample # SW 7333588 LL Group # 1445316

Account # 10880

Project Name: 95607

Collected: 01/10/2014 09:50 by AG ChevronTexaco

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 01/11/2014 09:25 Reported: 01/20/2014 17:12

DP320

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	mg/kg	mg/kg	mg/kg	
10237	Benzene		71-43-2	7.7	0.025	0.25	50.81
10237	C6-C12-TPH-GRO		n.a.	700	22	56	508.13
10237	Ethylbenzene		100-41-4	14	0.051	0.25	50.81
10237	Methyl Tertiary But	yl Ether	1634-04-4	N.D.	0.025	0.25	50.81
10237	Naphthalene		91-20-3	3.3	0.051	0.25	50.81
10237	Toluene		108-88-3	0.87	0.051	0.25	50.81
10237	Xylene (Total)		1330-20-7	65	0.51	2.5	508.13
GC/MS	Semivolatiles	SW-846	8270C	mg/kg	mg/kg	mg/kg	
10724	Acenaphthene		83-32-9	0.010	0.003	0.017	1
10724	Acenaphthylene		208-96-8	0.011	0.003	0.017	1
10724	Anthracene		120-12-7	0.008	0.003	0.017	1
10724	Benzo(a)anthracene		56-55-3	0.004	0.003	0.017	1
10724	Benzo(a)pyrene		50-32-8	N.D.	0.003	0.017	1
10724	Benzo(b)fluoranthen	.e	205-99-2	N.D.	0.003	0.017	1
10724	Benzo(g,h,i)perylen	.e	191-24-2	N.D.	0.003	0.017	1
10724	Benzo(k)fluoranthen	.e	207-08-9	N.D.	0.003	0.017	1
10724	Chrysene		218-01-9	N.D.	0.003	0.017	1
10724	Dibenz(a,h)anthrace	ne	53-70-3	N.D.	0.003	0.017	1
10724	Fluoranthene		206-44-0	0.005	0.003	0.017	1
10724	Fluorene		86-73-7	0.016	0.003	0.017	1
10724	Indeno(1,2,3-cd)pyr	ene	193-39-5	N.D.	0.003	0.017	1
10724	Naphthalene		91-20-3	2.7	0.003	0.017	1
10724	Phenanthrene		85-01-8	0.023	0.003	0.017	1
10724	Pyrene		129-00-0	0.008	0.003	0.017	1
Metals	5	SW-846	6010B	mg/kg	mg/kg	mg/kg	
06955	Lead		7439-92-1	9.61	0.490	1.47	1

General Sample Comments

CA ELAP Lab Certification No. 2792; CA NELAP Lab Certification No. 10276CA

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record									
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor		
10237	GRO C6-C12/BTEX/MTBE/Naph Soil	SW-846 8260B	1	R140191AA	01/19/2014 19:16	Sarah A Guill	50.81		
10237	GRO C6-C12/BTEX/MTBE/Naph Soil	SW-846 8260B	1	R140191AA	01/19/2014 19:40	Sarah A Guill	508.13		

Account

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: DPE-3-S-20-140110 Grab Soil

Facility# 95607 CRAW

5269 Crow Canyon-Castro Va T0600100344

LL Sample # SW 7333588 LL Group # 1445316

10880

Project Name: 95607

Collected: 01/10/2014 09:50 by AG ChevronTexaco

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 01/11/2014 09:25 Reported: 01/20/2014 17:12

DP320

Laboratory Sample Analysis Record										
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor		
00374	GC/MS - Bulk Soil Prep	SW-846 5035A Modified	1	201401333603	01/13/2014	09:17	Larry E Bevins	n.a.		
00374	GC/MS - Bulk Soil Prep	SW-846 5035A Modified	2	201401333603	01/13/2014	09:17	Larry E Bevins	n.a.		
06646	GC/MS HL Bulk Sample Prep	SW-846 5035A Modified	1	201401333603	01/13/2014	09:06	Larry E Bevins	n.a.		
10724	PAH's 8270C Soil	SW-846 8270C	1	14017SLA026	01/19/2014	21:57	Holly Berry	1		
10814	BNA Soil Microwave PAH	SW-846 3546	1	14017SLA026	01/17/2014	16:40	JoElla L Rice	1		
06955	Lead	SW-846 6010B	1	140135708002	01/14/2014	08:44	Joanne M Gates	1		
05708	SW SW846 ICP/ICP MS Digest	SW-846 3050B	1	140135708002	01/13/2014	22:37	Annamaria Kuhns	1		

Account

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: DPE-3-S-25-140110 Grab Soil

Facility# 95607 CRAW

5269 Crow Canyon-Castro Va T0600100344

LL Sample # SW 7333589 LL Group # 1445316

10880

Project Name: 95607

Collected: 01/10/2014 10:10 by AG ChevronTexaco

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 01/11/2014 09:25 Reported: 01/20/2014 17:12

DP325

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	mg/kg	mg/kg	mg/kg	
10237	Benzene		71-43-2	0.54	0.025	0.25	49.12
10237	C6-C12-TPH-GRO		n.a.	12	2.2	5.4	49.12
10237	Ethylbenzene		100-41-4	0.46	0.049	0.25	49.12
10237	Methyl Tertiary Buty	/l Ether	1634-04-4	0.002	0.0005	0.005	0.99
10237	Naphthalene		91-20-3	0.081	0.001	0.005	0.99
10237	Toluene		108-88-3	0.002	0.001	0.005	0.99
10237	Xylene (Total)		1330-20-7	0.082	0.001	0.005	0.99
GC/MS	Semivolatiles	SW-846	8270C	mg/kg	mg/kg	mg/kg	
10724	Acenaphthene		83-32-9	N.D.	0.003	0.017	1
10724	Acenaphthylene		208-96-8	N.D.	0.003	0.017	1
10724	Anthracene		120-12-7	N.D.	0.003	0.017	1
10724	Benzo(a)anthracene		56-55-3	N.D.	0.003	0.017	1
10724	Benzo(a)pyrene		50-32-8	N.D.	0.003	0.017	1
10724	Benzo(b)fluoranthene	2	205-99-2	N.D.	0.003	0.017	1
10724	Benzo(g,h,i)perylene	9	191-24-2	N.D.	0.003	0.017	1
10724	Benzo(k)fluoranthene	9	207-08-9	N.D.	0.003	0.017	1
10724	Chrysene		218-01-9	N.D.	0.003	0.017	1
10724	Dibenz(a,h)anthracen	ne	53-70-3	N.D.	0.003	0.017	1
10724	Fluoranthene		206-44-0	N.D.	0.003	0.017	1
10724	Fluorene		86-73-7	N.D.	0.003	0.017	1
10724	Indeno(1,2,3-cd)pyre	ene	193-39-5	N.D.	0.003	0.017	1
10724	Naphthalene		91-20-3	0.031	0.003	0.017	1
10724	Phenanthrene		85-01-8	N.D.	0.003	0.017	1
10724	Pyrene		129-00-0	N.D.	0.003	0.017	1
Metals	5	SW-846	6010B	mg/kg	mg/kg	mg/kg	
06955	Lead		7439-92-1	8.98	0.490	1.47	1

General Sample Comments

CA ELAP Lab Certification No. 2792; CA NELAP Lab Certification No. 10276CA

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10237	GRO C6-C12/BTEX/MTBE/Naph Soil	SW-846 8260B	1	B140151AA	01/15/2014 09:32	Stephanie A Selis	0.99
10237	GRO C6-C12/BTEX/MTBE/Naph Soil	SW-846 8260B	1	R140191AA	01/19/2014 18:53	Sarah A Guill	49.12

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: DPE-3-S-25-140110 Grab Soil

Facility# 95607 CRAW

5269 Crow Canyon-Castro Va T0600100344

LL Sample # SW 7333589

LL Group # 1445316 Account # 10880

Project Name: 95607

Collected: 01/10/2014 10:10 by AG ChevronTexaco

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 01/11/2014 09:25

Reported: 01/20/2014 17:12

DP325

Laboratory Sample Analysis Record									
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor	
00374	GC/MS - Bulk Soil Prep	SW-846 5035A Modified	1	201401333603	01/13/2014	09:17	Larry E Bevins	n.a.	
00374	GC/MS - Bulk Soil Prep	SW-846 5035A Modified	2	201401333603	01/13/2014	09:17	Larry E Bevins	n.a.	
06646	GC/MS HL Bulk Sample Prep	SW-846 5035A Modified	1	201401333603	01/13/2014	09:09	Larry E Bevins	n.a.	
10724	PAH's 8270C Soil	SW-846 8270C	1	14017SLA026	01/19/2014	22:21	Holly Berry	1	
10814	BNA Soil Microwave PAH	SW-846 3546	1	14017SLA026	01/17/2014	16:40	JoElla L Rice	1	
06955	Lead	SW-846 6010B	1	140135708002	01/14/2014	08:48	Joanne M Gates	1	
05708	SW SW846 ICP/ICP MS	SW-846 3050B	1	140135708002	01/13/2014	22:37	Annamaria Kuhns	1	

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: DPE-3-S-30-140110 Grab Soil

Facility# 95607 CRAW

5269 Crow Canyon-Castro Va T0600100344

LL Sample # SW 7333590 LL Group # 1445316

Account # 10880

Project Name: 95607

Collected: 01/10/2014 10:30 by AG ChevronTexaco

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 01/11/2014 09:25 Reported: 01/20/2014 17:12

DP330

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	mg/kg	mg/kg	mg/kg	
10237	Benzene		71-43-2	0.002	0.0005	0.005	0.99
10237	C6-C12-TPH-GRO		n.a.	N.D.	0.044	0.11	0.99
10237	Ethylbenzene		100-41-4	0.001	0.001	0.005	0.99
10237	Methyl Tertiary But	yl Ether	1634-04-4	0.005	0.0005	0.005	0.99
10237	Naphthalene		91-20-3	N.D.	0.001	0.005	0.99
10237	Toluene		108-88-3	N.D.	0.001	0.005	0.99
10237	Xylene (Total)		1330-20-7	0.002	0.001	0.005	0.99
GC/MS	Semivolatiles	SW-846	8270C	mg/kg	mg/kg	mg/kg	
10724	Acenaphthene		83-32-9	N.D.	0.003	0.017	1
10724	Acenaphthylene		208-96-8	N.D.	0.003	0.017	1
10724	Anthracene		120-12-7	N.D.	0.003	0.017	1
10724	Benzo(a)anthracene		56-55-3	N.D.	0.003	0.017	1
10724	Benzo(a)pyrene		50-32-8	N.D.	0.003	0.017	1
10724	Benzo(b)fluoranthen	е	205-99-2	N.D.	0.003	0.017	1
10724	Benzo(g,h,i)perylen	е	191-24-2	N.D.	0.003	0.017	1
10724	Benzo(k)fluoranthen	е	207-08-9	N.D.	0.003	0.017	1
10724	Chrysene		218-01-9	N.D.	0.003	0.017	1
10724	Dibenz(a,h)anthrace	ne	53-70-3	N.D.	0.003	0.017	1
10724	Fluoranthene		206-44-0	N.D.	0.003	0.017	1
10724	Fluorene		86-73-7	N.D.	0.003	0.017	1
10724	Indeno(1,2,3-cd)pyr	ene	193-39-5	N.D.	0.003	0.017	1
10724	Naphthalene		91-20-3	N.D.	0.003	0.017	1
10724	Phenanthrene		85-01-8	N.D.	0.003	0.017	1
10724	Pyrene		129-00-0	N.D.	0.003	0.017	1
Metals	3	SW-846	6010B	mg/kg	mg/kg	mg/kg	
06955	Lead		7439-92-1	6.78	0.490	1.47	1

General Sample Comments

CA ELAP Lab Certification No. 2792; CA NELAP Lab Certification No. 10276CA

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

		Laborat	ory Sa	mple Analysis	s Record		
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10237	GRO C6-C12/BTEX/MTBE/Naph Soil	SW-846 8260B	1	B140151AA	01/15/2014 07:40	Stephanie A Selis	0.99
00374	GC/MS - Bulk Soil Prep	SW-846 5035A Modified	1	201401333603	01/13/2014 09:17	Larry E Bevins	n.a.
00374	GC/MS - Bulk Soil Prep	SW-846 5035A Modified	2	201401333603	01/13/2014 09:17	Larry E Bevins	n.a.

^{*=}This limit was used in the evaluation of the final result

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: DPE-3-S-30-140110 Grab Soil

Facility# 95607 CRAW

5269 Crow Canyon-Castro Va T0600100344

LL Sample # SW 7333590 LL Group # 1445316

Account # 10880

Project Name: 95607

Collected: 01/10/2014 10:30 by AG ChevronTexaco

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 01/11/2014 09:25

Reported: 01/20/2014 17:12

DP330

Method Dilution Trial# Batch# Analysis Analyst

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor
06646	GC/MS HL Bulk Sample Prep	SW-846 5035A Modified	1	201401333603	01/13/2014	09:12	Larry E Bevins	n.a.
10724	PAH's 8270C Soil	SW-846 8270C	1	14017SLA026	01/19/2014	22:45	Holly Berry	1
10814	BNA Soil Microwave PAH	SW-846 3546	1	14017SLA026	01/17/2014	16:40	JoElla L Rice	1
06955	Lead	SW-846 6010B	1	140135708002	01/14/2014	08:52	Joanne M Gates	1
05708	SW SW846 ICP/ICP MS Digest	SW-846 3050B	1	140135708002	01/13/2014	22:37	Annamaria Kuhns	1

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: DPE-3-S-35-140110 Grab Soil

Facility# 95607 CRAW

5269 Crow Canyon-Castro Va T0600100344

LL Sample # SW 7333591 LL Group # 1445316

Account # 10880

Project Name: 95607

Collected: 01/10/2014 10:55 by AG ChevronTexaco

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 01/11/2014 09:25 Reported: 01/20/2014 17:12

DP335

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	mg/kg	mg/kg	mg/kg	
10237	Benzene		71-43-2	N.D.	0.0005	0.005	1.02
10237	C6-C12-TPH-GRO		n.a.	N.D.	0.045	0.11	1.02
10237	Ethylbenzene		100-41-4	N.D.	0.001	0.005	1.02
10237	Methyl Tertiary Buty	yl Ether	1634-04-4	0.002	0.0005	0.005	1.02
10237	Naphthalene		91-20-3	N.D.	0.001	0.005	1.02
10237	Toluene		108-88-3	N.D.	0.001	0.005	1.02
10237	Xylene (Total)		1330-20-7	N.D.	0.001	0.005	1.02
GC/MS	Semivolatiles	SW-846	8270C	mg/kg	mg/kg	mg/kg	
10724	Acenaphthene		83-32-9	N.D.	0.003	0.017	1
10724	Acenaphthylene		208-96-8	N.D.	0.003	0.017	1
10724	Anthracene		120-12-7	N.D.	0.003	0.017	1
10724	Benzo(a)anthracene		56-55-3	N.D.	0.003	0.017	1
10724	Benzo(a)pyrene		50-32-8	N.D.	0.003	0.017	1
10724	Benzo(b)fluoranthen	е	205-99-2	N.D.	0.003	0.017	1
10724	Benzo(g,h,i)perylen	e	191-24-2	N.D.	0.003	0.017	1
10724	Benzo(k)fluoranthen	е	207-08-9	N.D.	0.003	0.017	1
10724	Chrysene		218-01-9	N.D.	0.003	0.017	1
10724	Dibenz(a,h)anthrace	ne	53-70-3	N.D.	0.003	0.017	1
10724	Fluoranthene		206-44-0	N.D.	0.003	0.017	1
10724	Fluorene		86-73-7	N.D.	0.003	0.017	1
10724	Indeno(1,2,3-cd)pyre	ene	193-39-5	N.D.	0.003	0.017	1
10724	Naphthalene		91-20-3	N.D.	0.003	0.017	1
10724	Phenanthrene		85-01-8	N.D.	0.003	0.017	1
10724	Pyrene		129-00-0	N.D.	0.003	0.017	1
Metals	5	SW-846	6010B	mg/kg	mg/kg	mg/kg	
06955	Lead		7439-92-1	5.51	0.500	1.50	1

General Sample Comments

CA ELAP Lab Certification No. 2792; CA NELAP Lab Certification No. 10276CA

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

		Laborat	ory Sa	mple Analysi	s Record		
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10237	GRO C6-C12/BTEX/MTBE/Naph Soil	SW-846 8260B	1	B140151AA	01/15/2014 08:02	Stephanie A Selis	1.02
00374	GC/MS - Bulk Soil Prep	SW-846 5035A Modified	1	201401333603	01/13/2014 09:17	Larry E Bevins	n.a.
00374	GC/MS - Bulk Soil Prep	SW-846 5035A Modified	2	201401333603	01/13/2014 09:17	Larry E Bevins	n.a.

^{*=}This limit was used in the evaluation of the final result

Account

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: DPE-3-S-35-140110 Grab Soil

Facility# 95607 CRAW

5269 Crow Canyon-Castro Va T0600100344

LL Sample # SW 7333591 LL Group # 1445316

10880

Project Name: 95607

Collected: 01/10/2014 10:55 by AG ChevronTexaco

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 01/11/2014 09:25 Reported: 01/20/2014 17:12

Reported: 01/20/2014

DP335

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor
06646	GC/MS HL Bulk Sample Prep	SW-846 5035A Modified	1	201401333603	01/13/2014	09:14	Larry E Bevins	n.a.
10724	PAH's 8270C Soil	SW-846 8270C	1	14017SLA026	01/19/2014	23:09	Holly Berry	1
10814	BNA Soil Microwave PAH	SW-846 3546	1	14017SLA026	01/17/2014	16:40	JoElla L Rice	1
06955	Lead	SW-846 6010B	1	140135708002	01/14/2014	08:56	Joanne M Gates	1
05708	SW SW846 ICP/ICP MS Digest	SW-846 3050B	1	140135708002	01/13/2014	22:37	Annamaria Kuhns	1

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: DPE-3-S-40-140110 Grab Soil

Facility# 95607 CRAW

5269 Crow Canyon-Castro Va T0600100344

LL Sample # SW 7333592 LL Group # 1445316

Account # 10880

Project Name: 95607

Collected: 01/10/2014 12:30 by AG ChevronTexaco

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 01/11/2014 09:25 Reported: 01/20/2014 17:12

DP340

CAT	Analysis Name		CAS Number	As Received	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution
No.	Analysis Name		CAS Number	Result	Decection Himit	Quantitation	Factor
GC/MS	Volatiles s	SW-846	8260B	mg/kg	mg/kg	mg/kg	
10237	Benzene		71-43-2	0.0009	0.0005	0.005	1.06
10237	C6-C12-TPH-GRO		n.a.	N.D.	0.047	0.12	1.06
10237	Ethylbenzene		100-41-4	N.D.	0.001	0.005	1.06
10237	Methyl Tertiary Butyl	Ether	1634-04-4	N.D.	0.0005	0.005	1.06
10237	Naphthalene		91-20-3	N.D.	0.001	0.005	1.06
10237	Toluene		108-88-3	N.D.	0.001	0.005	1.06
10237	Xylene (Total)		1330-20-7	N.D.	0.001	0.005	1.06
accej The accej	recovery for the sampl ptance limits. The fol sample was re-analyzed ptance limits, indicat rted from the initial	lowing c and the ing a ma	orrective action QC is again outs	was taken: ide of the			
GC/MS	Semivolatiles S	5W-846	8270C	mg/kg	mg/kg	mg/kg	
10724	Acenaphthene		83-32-9	0.005	0.003	0.017	1
10724	Acenaphthylene		208-96-8	N.D.	0.003	0.017	1
10724	Anthracene		120-12-7	0.018	0.003	0.017	1
10724	Benzo(a)anthracene		56-55-3	0.016	0.003	0.017	1
10724	Benzo(a)pyrene		50-32-8	0.015	0.003	0.017	1
10724	Benzo(b)fluoranthene		205-99-2	0.015	0.003	0.017	1
10724	Benzo(g,h,i)perylene		191-24-2	0.014	0.003	0.017	1
10724	Benzo(k)fluoranthene		207-08-9	0.008	0.003	0.017	1
10724	Chrysene		218-01-9	0.014	0.003	0.017	1
10724	Dibenz(a,h)anthracene	2	53-70-3	N.D.	0.003	0.017	1
10724	Fluoranthene		206-44-0	0.033	0.003	0.017	1
10724	Fluorene		86-73-7	0.024	0.003	0.017	1
10724	Indeno(1,2,3-cd)pyrer	ıe	193-39-5	0.007	0.003	0.017	1
10724 10724	Naphthalene Phenanthrene		91-20-3	0.040	0.003	0.017	1
10724			85-01-8	0.068	0.003	0.017	1 1
10/24	Pyrene		129-00-0	0.043	0.003	0.017	1
Metals	3	SW-846	6010B	mg/kg	mg/kg	mg/kg	
06955	Lead		7439-92-1	6.65	0.485	1.46	1

General Sample Comments

CA ELAP Lab Certification No. 2792; CA NELAP Lab Certification No. 10276CA

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution
No.					Date and Time		Factor
10237	GRO C6-C12/BTEX/MTBE/Naph	SW-846 8260B	1	B140151AA	01/15/2014 08:25	Stephanie A Selis	1.06

Account

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: DPE-3-S-40-140110 Grab Soil

Facility# 95607 CRAW

5269 Crow Canyon-Castro Va T0600100344

LL Sample # SW 7333592 LL Group # 1445316

10880

Project Name: 95607

Collected: 01/10/2014 12:30 by AG ChevronTexaco

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 01/11/2014 09:25

Reported: 01/20/2014 17:12

Reported: 01/20/2014 17:12

DP340

Laboratory Sample Analysis Record													
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Tir	me	Analyst	Dilution Factor					
00374	GC/MS - Bulk Soil Prep	SW-846 5035A Modified	1	201401333603	01/13/2014	09:17	Larry E Bevins	n.a.					
00374	GC/MS - Bulk Soil Prep	SW-846 5035A Modified	2	201401333603	01/13/2014	09:17	Larry E Bevins	n.a.					
06646	GC/MS HL Bulk Sample Prep	SW-846 5035A Modified	1	201401333603	01/13/2014	09:17	Larry E Bevins	n.a.					
10724	PAH's 8270C Soil	SW-846 8270C	1	14017SLA026	01/19/2014	23:33	Holly Berry	1					
10814	BNA Soil Microwave PAH	SW-846 3546	1	14017SLA026	01/17/2014	16:40	JoElla L Rice	1					
06955	Lead	SW-846 6010B	1	140135708002	01/14/2014	09:00	Joanne M Gates	1					
05708	SW SW846 ICP/ICP MS Digest	SW-846 3050B	1	140135708002	01/13/2014	22:37	Annamaria Kuhns	1					

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: WASTE-1-W-140110 Grab Water

Facility# 95607 CRAW

5269 Crow Canyon-Castro Va T0600100344

LL Sample # WW 7333593

LL Group # 1445316 Account # 10880

Project Name: 95607

Collected: 01/10/2014 13:45 by AG ChevronTexaco

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 01/11/2014 09:25 Reported: 01/20/2014 17:12

WASTE

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-8	46 8260B	ug/l	ug/l	ug/l	
10945	Benzene	71-43-2	4	0.5	1	1
10945	C6-C12-TPH-GRO	n.a.	680	22	50	1
10945	Ethylbenzene	100-41-4	N.D.	0.5	1	1
10945	Methyl Tertiary Butyl Eth	er 1634-04-4	N.D.	0.5	1	1
10945	Naphthalene	91-20-3	N.D.	1	4	1
10945	Toluene	108-88-3	1	0.5	1	1
10945	Xylene (Total)	1330-20-7	37	0.5	1	1

General Sample Comments

CA ELAP Lab Certification No. 2792; CA NELAP Lab Certification No. 10276CA

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10945	BTEX/MTBE/Naph + GRO -	SW-846 8260B	1	F140151AA	01/15/2014 09:43	Anita M Dale	1
	Water						
01163	GC/MS VOA Water Prep	SW-846 5030B	1	F140151AA	01/15/2014 09:43	Anita M Dale	1

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Page 1 of 3

Quality Control Summary

Client Name: ChevronTexaco Group Number: 1445316

Reported: 01/20/14 at 05:12 PM

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank MDL**	Blank <u>LOO</u>	Report <u>Units</u>	LCS %REC	LCSD %REC	LCS/LCSD <u>Limits</u>	RPD	RPD Max
Batch number: B140151AA	Sample num	ber(s):	7333586-733	3587,73335	89-73335	92			
Benzene	N.D.	0.0005	0.005	mg/kg	99	102	80-120	3	30
C6-C12-TPH-GRO	N.D.	0.044	0.11	mg/kg	114	114	80-131	0	30
Ethylbenzene	N.D.	0.001	0.005	mg/kg	93	95	80-120	2	30
Methyl Tertiary Butyl Ether	N.D.	0.0005		mg/kg	101	101	69-126	0	30
Naphthalene	N.D.	0.001	0.005	mg/kg	84	88	59-123	4	30
Toluene	N.D.	0.001	0.005	mg/kg	92	94	80-120	2	30
Xylene (Total)	N.D.	0.001	0.005	mg/kg	96	96	80-120	0	30
Aylene (local)	N.D.	0.001	0.005	ilig/kg	90	90	80-120	U	30
Batch number: F140151AA	Sample num		7333593						
Benzene	N.D.	0.5	1	ug/l	97		78-120		
C6-C12-TPH-GRO	N.D.	22.	50	ug/l	105	104	80-160	1	30
Ethylbenzene	N.D.	0.5	1	ug/l	91		79-120		
Methyl Tertiary Butyl Ether	N.D.	0.5	1	uq/l	88		75-120		
Naphthalene	N.D.	1.	4	uq/l	73		47-126		
Toluene	N.D.	0.5	ī	ug/l	97		80-120		
Xylene (Total)	N.D.	0.5	1	ug/l	97		80-120		
Aylene (local)	N.D.	0.5	-	ug/ I	<i>J</i> /		00 120		
Batch number: R140191AA	Sample num	ber(s):	7333587-733	3589					
Benzene	N.D.	0.025	0.25	mg/kg	105	100	80-120	5	30
C6-C12-TPH-GRO	N.D.	2.2	5.5	mg/kg	102	107	80-131	5	30
Ethylbenzene	N.D.	0.050	0.25	mg/kg	104	99	80-120	5	30
Methyl Tertiary Butyl Ether	N.D.	0.025	0.25	mg/kg	110	104	69-126	6	30
Naphthalene	N.D.	0.050	0.25	mg/kg	92	90	59-123	3	30
Toluene	N.D.	0.050	0.25	mg/kg	104	100	80-120	4	30
Xylene (Total)	N.D.	0.050	0.25	mg/kg	103	98	80-120	5	30
Batch number: 14017SLA026	Comple num	box(a):	7333586-733	2502					
Acenaphthene	N.D.	0.003	0.017	mq/kq	102		83-111		
Acenaphthylene	N.D.	0.003	0.017	mg/kg	109		83-127		
Anthracene	N.D.	0.003	0.017	mg/kg	104		82-118		
Benzo(a)anthracene	N.D.	0.003	0.017	mg/kg	95		81-117		
Benzo(a)pyrene	N.D.	0.003	0.017	mg/kg	107		84-122		
Benzo(b)fluoranthene	N.D.	0.003	0.017	mg/kg	112		76-124		
Benzo(g,h,i)perylene	N.D.	0.003	0.017	mg/kg	104		77-122		
Benzo(k)fluoranthene	N.D.	0.003	0.017	mg/kg	96		80-125		
Chrysene	N.D.	0.003	0.017	mg/kg	86		77-116		
Dibenz(a,h)anthracene	N.D.	0.003	0.017	mg/kg	111		81-123		
Fluoranthene	N.D.	0.003	0.017	mg/kg	90		79-123		
Fluorene	N.D.	0.003	0.017	mg/kg	99		86-118		
Indeno(1,2,3-cd)pyrene	N.D.	0.003	0.017	mg/kg	110		77-122		
Naphthalene	N.D.	0.003	0.017	mg/kg	99		77-115		
Phenanthrene	N.D.	0.003	0.017	mg/kg	101		85-116		
Pyrene	N.D.	0.003	0.017	mg/kg	101		81-114		
- 1		3.003	0.01/	7 113	101		O		

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Page 2 of 3

Quality Control Summary

Client Name: ChevronTexaco Group Number: 1445316

Reported: 01/20/14 at 05:12 PM

Blank Blank Blank Report LCS LCSD LCS/LCSD Analysis Name Result MDL** LOQ <u>Units</u> %REC %REC <u>Limits</u> RPD RPD Max Batch number: 140135708002 Sample number(s): 7333586-7333592

Lead N.D. 0.500 1.50 mg/kg 105 80-120

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	MS <u>%REC</u>	MSD <u>%REC</u>	MS/MSD <u>Limits</u>	RPD	RPD <u>MAX</u>	BKG <u>Conc</u>	DUP Conc	DUP RPD	Dup RPD <u>Max</u>
Batch number: F140151AA	Sample	number(s)	: 7333593	UNSPK:	P3334	92			
Benzene	103	103	72-134	1	30				
Ethylbenzene	96	97	71-134	2	30				
Methyl Tertiary Butyl Ether	89	92	72-126	3	30				
Naphthalene	74	76	52-125	2	30				
Toluene	98	100	80-125	2	30				
Xylene (Total)	100	102	79-125	2	30				
Batch number: 14017SLA026	Sample	number(s)	: 7333586	-733359	2 UNSP	K: 7333586			
Acenaphthene	98	97	61-128	1	30				
Acenaphthylene	104	104	67-130	0	30				
Anthracene	99	100	41-142	1	30				
Benzo(a)anthracene	91	89	32-150	3	30				
Benzo(a)pyrene	100	101	36-151	1	30				
Benzo(b)fluoranthene	101	101	29-150	1	30				
Benzo(g,h,i)perylene	109	107	41-147	2	30				
Benzo(k)fluoranthene	93	94	44-145	0	30				
Chrysene	84	82	28-146	2	30				
Dibenz(a,h)anthracene	113	112	54-142	1	30				
Fluoranthene	74	75	30-151	2	30				
Fluorene	90	91	55-128	1	30				
Indeno(1,2,3-cd)pyrene	109	110	44-147	0	30				
Naphthalene	97	97	44-142	0	30				
Phenanthrene	95	97	34-147	2	30				
Pyrene	97	98	29-148	1	30				
Batch number: 140135708002						K: P316168			
Lead	3750	-2010	75-125	59*	20	1,330	1,570	17	20
	(2)	(2)							

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: 8260 Ext. Soil Master w/GRO

Batch number: B140151AA

Dibromofluoromethane 1,2-Dichloroethane-d4 Toluene-d8 4-Bromofluorobenzene

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Page 3 of 3

Quality Control Summary

	Name: Chevron7ed: 01/20/14 at			Group Nu	umber: 1445316
-1	, , ,		Surrogate	Quality	Control
E222E26	106	100	_		00110101
7333586	106	109	95	103	
7333587	99	98	100	114	
7333589	101	104	98	107	
7333590	106	103	98	100	
7333591	108	105	95	96	
7333592	128	115	151*	54	
Blank	105	103	99	99	
LCS	102	102	97	114	
LCSD	102	103	100	108	
Limits:	50-141	54-135	52-141	50-131	
	Name: UST VOCs + mber: F140151AA	GRO by 8260B-Wate	r		
	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluo	probenzene
7333593	99	100	95	94	
Blank	100	97	98	94	
LCS	98	98	97	97	
LCSD	99	95	99	95	
MS	99	98	97	95	
MSD	99	99	97	93	
Limits:	80-116	77-113	80-113	78-113	
	Name: 8260 Ext. S	oil Master w/GRO			
Batch nur	mber: R140191AA				
	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluc	orobenzene
7333588	87	83	86	92	
Blank	111	104	100	99	
LCS	118	112	107	107	
LCSD	110	103	101	99	
Limits:	50-141	54-135	52-141	50-131	
	Name: PAH's 82700 mber: 14017SLA026	! Soil			
Datcii ilul		2 Eluorobinhanul	Torphopul d14		
	Nitrobenzene-d5	2-Fluorobiphenyl	Terphenyl-d14		
7333586	86	102	104	-	
7333587	85	94	95		
7333588	92	98	103		
7333589	86	94	99		
7333590	89	97	105		
7333591	93	100	107		
7333592	92	101	109		
Blank	94	100	110		
LCS	93	101	108		
MS	91	100	106		
MSD	90	100	105		
Limits:	60-120	69-120	66-137		

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Chevron California Region Analysis Request/Chain of Custody

413	Lancaster	Laboratories science.
717	Where quality is a	science.

Acct. #: 10880 For Lancaster Laboratories use only Sample #: 1333586 - 93 SCR#:

246114

											l			Ana	alyses	s Re	ques	sted			9	11	17	75 51	\Diamond	
Facility #: WEXYO	· (9560	7					T						Pre	serv	ation	Co	des				Pres	erva	tive Cod	es	1
Site Address: <u>5269</u>	CVON	4 CANI	100 Y	201	cistro	Valley	CA						sanup				(010	(gong)			N=	: HCI : HNO₃ : H₂SO₄		T = Thios B = NaO O = Othe	Н	
	Chevron PM: EVIC HETVICK Lead Consultant: Consultant/Office: CRA EWEVIVINE									ers							D	77				value re	eporti	ng needed		1
Consultant/Office:						Total Number of Containers	∫ 8021 □	.	Silica Gel Cleanup			82608	19 (1	6			. —			est detect		;				
Consultant Phone #: 🗍										of O	8260 ₈ 12				7421	32	12	Z			802	1 MTBE	Cont	firmation		
Sampler: Acam				19/1	YAY	USTIM			<u>i</u> e	mber	•	OQP	TPH 8015 MOD DRO	Oxygenates		_		Japh Knahm			1			st hit by 82 s by 8260	260	
Service Order #:		•	No	n SAR:					log	Z	₩ +	015 1	015 0	l lo	429	工	T	Ş			1			s on highe	est hit	
Field Point Name	Matrix	Repeat Sample	Top Depth	Year M	lonth Day	Time Collected	New Field Pt.	Grab	Composite	Tota	BTEX + MTBE	TPH 8015 MOD	TPH 8015 MO 8260 full scan		Lead 7420	TPH9	P	YN.			1			s on all hi		
DrE-3-16'	1100				01 16	0905		V		I	X					X	X	\times			Co	mment	s/R	emarks	n	1
DpE-3-15'	1102		151	2014	01 10	0935				1	X					X	\times	X			16/	ease	- γ	MM		
DPE-3-20'	1102		20'	2014	01 10	0750		\vee	1_	1	X					X	X	\times			14 0	La i	ا ۸ ۸	MAL	on	
DPE-3-251	SOIL			2014		Of of					X			_		X	X	X			-1			(
DPE-3-301	SOIL			2014		1030		1	1_		\times	_		_ _		X	K,	X			M	lek.	٠. ١	(6 il) a	الآن ا	
DPE-3-351	SOIL			2014		1055		V		1	X			4		Ŋ,	\geq	X			CON	ta (+	300 300	ly 6ilbert	TIVI KY Damos	11/1
DPE -3-40'	soil	<u> </u>	40'		01 10	1230		$ \vee $	1	1	X					X	X	X								
Waste-1	water		ļ	2014	01 10	1345		1	V	14	X			_ _	_	X	\nearrow	\times			1,11	100/AC	シン	CA DE	,	1
	_			ļ			ļ	1	<u> </u>	ļ	1_1	_		_		<u> </u>		_			1	PICS	1.0.	/ /^/AIM/	10/85	
	<u> </u>						<u> </u>	<u> </u>	1			\dashv		- -	_	ļ				\perp	1/2//	NO	A CY	rd, sam I wan	1	
			ļ				<u> </u>	-	-			_		-					_		1 4	Y (>CY	i vev	()()1-10		
-	<u> </u>							\vdash	-				+	-	-	ļ				-	1 4	ici (H).	,		
Turnaround Time Red	uested	(TAT) (ple	ase circl	e)		Relinquishe	d by:	IM	<u> </u>) 	<u> </u>		Da		Tim		Rece	ived	by:		J			Date	Time	1
STD, TAT	72 hour		48 hour	, 	_	Relinquishe		NS.	<u>W</u>	0_			Da		Tim		Rec	ived l	hv.					Date	Time	1
24 hour	4 day		day (1 WEG	(X)	Telliquisite	cu agy.		1/					ic	1 #111	١	11000	\\	Uy.					Date	11110	
Data Package Options	s (please	circle if req	uired)			Relinquishe	d by:	-					Da	te	Tim	е	Rece	ived I	by:					Date	Time	
	Typo i i un						Relinguished by Commercial Carrier:						\top	Receiyed by:				Date	Time							
Type VI (Raw Data)						UÞ\$	FedEx		0	ther_							52				Unly	352				
Disk						Temperatur	e Upon Re	ceipt	2	<u>`</u> L"	c	0				-	Cust	ody S	eals Ir	ntact?	(Ý	es	No			

Natalie Luciano

From:

Ginsburg, Adam <aginsburg@craworld.com>

Sent:

Wednesday, January 15, 2014 5:32 PM

To:

Natalie Luciano

Subject:

Chevron Facility 95607 - Change to listed analytes

Hello Natalie,

I sent 1 water and 7 soil samples (8 total) to your lab this past Friday. I neglected to put PAHs by 8270 on that Chain of Custody. Is it too late to add them to the list of analyses?

Also, please let me know if you need any additional information to identify this Chain of Custody.

Thanks,

Adam Ginsburg

Conestoga-Rovers & Associates (CRA)

2300 Clayton Road, Suite 920 <----- Please note new address

Concord, CA 94520

Phone: 925.849.1016

<---- Please note new phone

Fax: 510.420.9170 Cell: 510.290.7061

Email: aginsburg@CRAworld.com

www.CRAworld.com Think before you print 📥

1

PAHS added to soils only since not no appropriate PAH container received for the water sample. MKz hieliy

Lancaster Laboratories Environmental

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

RL	Reporting Limit	BMQL	Below Minimum Quantitation Level
N.D.	none detected	MPN	Most Probable Number
TNTC	Too Numerous To Count	CP Units	cobalt-chloroplatinate units
IU	International Units	NTU	nephelometric turbidity units
umhos/cm	micromhos/cm	ng	nanogram(s)
С	degrees Celsius	F	degrees Fahrenheit
meq	milliequivalents	lb.	pound(s)
g	gram(s)	kg	kilogram(s)
μg	microgram(s)	mg	milligram(s)
mL	milliliter(s)	L	liter(s)
m3	cubic meter(s)	μL	microliter(s)
		pg/L	picogram/liter

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter per liter of gas.
- ppb parts per billion
- **Dry weight**basis
 Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture. All other results are reported on an as-received basis.

Data Qualifiers:

C - result confirmed by reanalysis.

J - estimated value – The result is ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation (LOQ).

U.S. EPA CLP Data Qualifiers:

	Organic Qualifiers		Inorganic Qualifiers
Α	TIC is a possible aldol-condensation product	В	Value is <crdl, but="" th="" ≥idl<=""></crdl,>
В	Analyte was also detected in the blank	Ε	Estimated due to interference
С	Pesticide result confirmed by GC/MS	M	Duplicate injection precision not met
D	Compound quantitated on a diluted sample	N	Spike sample not within control limits
Ε	Concentration exceeds the calibration range of	S	Method of standard additions (MSA) used
	the instrument		for calculation
N	Presumptive evidence of a compound (TICs only)	U	Compound was not detected
Р	Concentration difference between primary and	W	Post digestion spike out of control limits
	confirmation columns >25%	*	Duplicate analysis not within control limits
U	Compound was not detected	+	Correlation coefficient for MSA < 0.995
X,Y,Z	Defined in case narrative		

Analytical test results meet all requirements of NELAC unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

Times are local to the area of activity. Parameters listed in the 40 CFR part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL, LLC BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL AND (B) WHETHER EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

Attachment G

Survey Data

Virgil Chavez Land Surveying

721 Tuolumne Street Vallejo, California 94590 (707) 553-2476 • Fax (707) 553-8698

June 17, 2015 Project No.: 3467-01

Belew Yifru Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, Ca. 94608

Subject:

Monitoring Well Survey 5269 Crow Canyon Road

Castro Valley, Ca

Dear Belew:

This is to confirm that we have proceeded at your request to survey the new well at the above referenced location. The survey was completed on June 12, 2015. The benchmark for this survey was a standard Alameda County bronze disc stamped HEY-GLI-1979 located in the top of curb at the easterly return of the northeast corner of Heyer Ave. and Gliddon Street. The latitude, longitude and coordinates are for top of casings and are based on the California State Coordinate System, Zone III (NAD83), Epoch (unknown) Benchmark Elevation = 332.363 feet (NGVD 29).

<u>Latitude</u>	<u>Longitude</u>	<u>ude</u> <u>Northing</u> <u>Easting</u>		Elev.	Desc.		
				268.55	RIM C-9		
37.7021431	-122.0484114	2081834.15	6113724,12	267.66	TOC C-9		
				244.64	GRD C-16		
37.7017760	-122.0488972	2081702.85	6113581.39	246.69	TOC C-16		
				243.08	GRD C-17		
37.7019378	-122.0489396	2081761.93	6113570.10	245.88	TOC C-17		

No 6323
Exp 13:31:16

Sincerely,

Virgil D. Chavez, PLS 6323