

Eric Hetrick Project Manager Marketing Business Unit Chevron Environmental Management Company 6101 Bollinger Canyon Road San Ramon, CA 94583 Tel (925) 790-6491 ehetrick@chevron.com

October 26, 2015

Alameda County Health Care Services 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Re: Former Chevron Service Station 95607 5269 Crow Canyon Road Castro Valley, CA ACEH Case #RO 0350

I have reviewed the attached Monthly Remedial Progress Report – September 2015.

The information in this report is accurate to the best of my knowledge and all local Agency/Regional Board guidelines have been followed. This report was prepared by GHD, upon who assistance and advice I have relied.

This letter is submitted pursuant to the requirements of California Water Code Section 13267(b)(1) and the regulating implementation entitled Appendix A pertaining thereto.

I declare under penalty of perjury that the foregoing is true and correct to the best of my knowledge.

Sincerely,

2-A-2

Eric Hetrick Project Manager

Attachment: Monthly Remedial Progress Report - September 2015

October 26, 2015

Reference No. 311950

Mr. Mark Detterman Alameda County Environmental Health Services 1131 Harbor Bay Parkway Alameda, California 94502

Re: Monthly Remedial Progress Report – September 2015 Former Chevron Station 9-5607 5269 Crow Canyon Road Castro Valley, California Fuel Leak Case RO0350

Dear Mr. Detterman:

GHD, on behalf of Chevron Environmental Management Company (EMC), is providing this *Monthly Remedial Progress Report – September 2015* (Report), for the site referenced above (Figure 1). This report was prepared in accordance with Alameda County Environmental Health Services (ACEHS) Approval of the Remedial Action Plan, dated December 11, 2013. This report includes a monthly and cumulative summary of the dual-phase extraction (DPE) system operations for the reporting period between August 19, 2015 and September 16, 2015 (Tables 1 through 4).

The soil vapor extraction (SVE) portion of the DPE system has been shut down for repair since July 4, 2015 due to equipment malfunction. On August 19, 2015, GHD and its contractors conducted an investigation on the SVE system and identified the two heater units to be the source of the malfunction. GHD is in the process of completing the heater repair. No vapor sample was collected for laboratory analyses in September 2015 due to the SVE equipment failure. No hydrocarbon was recovered via the vapor phase in September 2015.

GHD continued the operation of the groundwater extraction and treatment system (GWET) in the month of September 2015. GWET system compliance testing and sampling was performed on September 2, 2015 in accordance with system operational permits. During the reporting period, approximately 0.15 pounds of TPHg and 0.014 pounds of benzene were removed via the dissolved phase (Table 2). A summary of the DPE system operational performance for the month of September 2015 is presented below.

VAPOR-PHASE EXTRACTION DATA - SEPTEMBER 2015

Soil Vapor Influent Flow Rate (average scfm)	System Off for Repair
Soil Vapor Laboratory Influent Concentrations (TPHg ppmv)	System Off for Repair
Soil Vapor Laboratory Influent Concentrations (Benzene ppmv)	System Off for Repair
Soil Vapor Mass Removal (Ib TPHg/period)	0 pound
Soil Vapor Mass Removal (Ib Benzene/period)	0 pound
Soil Vapor Extraction Period Operating Uptime (hours)	0 hour
Soil Vapor Treatment Destruction Efficiency (%)	System Off for Repair

ppmv - parts per million by volume

scfm - standard cubic feet per minute

DISSOLVED-PHASE EXTRACTION DATA - SEPTEMBER 2015

Maximum Groundwater Extraction Rate (gpm)	0.40 gpm
Average Groundwater Extraction Rate (gpm)	0.40 gpm
Dissolved-Phase Mass Removal Rate (lb TPHg/period)	0.15 pounds
Dissolved-Phase Mass Removal Rate (lb Benzene/period)	0.014 pounds
Total Volume Groundwater Treated (gallons)	14,000 gallons
Groundwater Extraction Period Operating Uptime (hours)	578.5 hours

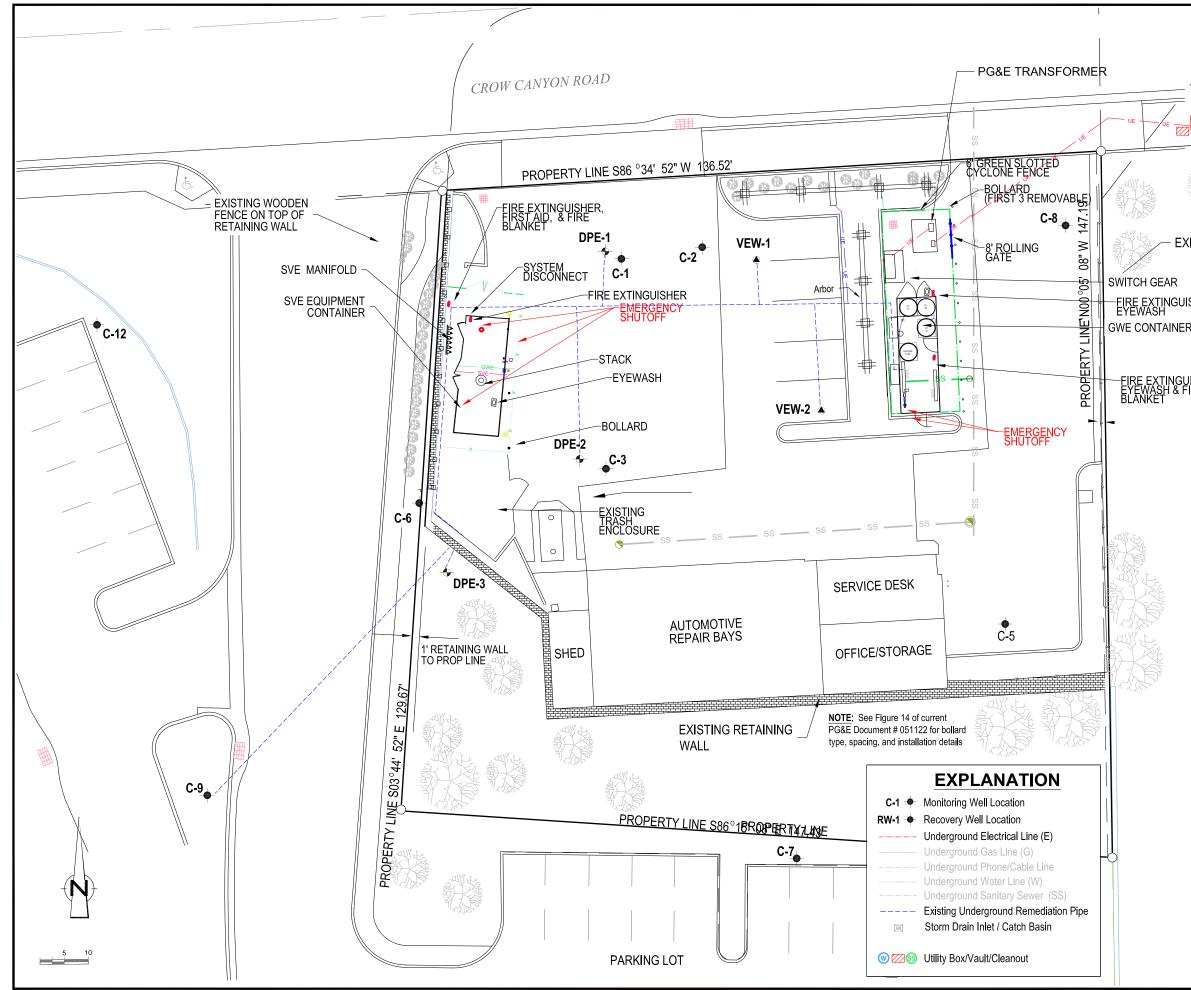
gpm – gallons per minute

Please contact Judy Gilbert of GHD at (510) 420-3314, if you have any questions or comments.

Sincerely,

GHD

Branch A Wilke


Brandon S. Wilken, PG 7564

AL/de/50

Figure 1	General Site Plan
Table 1	Groundwater Extraction & Treatment System – Hydrocarbon Analytical Data
Table 2	Groundwater Extraction & Treatment System - Operational and Hydrocarbon
	Mass Removal Data
Table 3	Soil Vapor Extraction System - Operational Data
Table 4	Soil Vapor Extraction System - Hydrocarbon Analytical and Mass Removal Data
Attachment A	Eurofins Lancaster Laboratory Analytical Report – September 23, 2015

c.c.: Mr. Eric Hetrick, Chevron EMC *(electronic copy)* Mr. Kevin Hinkley, Property Owner Ms. Diane Riggs, Forest Creek Townhomes Association

	CLIEN	IT
	CHEVRON ENVIR MANAGEMENT	
	PROJE	СТ
	FORMER CHEVR #9-560 5269 CROW CAN CASTRO VAL	ON STATION 7 IYON ROAD LEY, CA
	TITLE	
(ISTING 5' WOOD FENCE SHER,	GENERAL SIT	E PLAN
2	PROJECT	#311950
JISHER, IRE		
٥	DRAWING S	STATUS
	N° Revision Nº Revision 1 RELOCATE GWE TRAILER 1 ADD SVE-1 AND SVE-2 2 RELOCATE GWE TRAILER 3 AS-BUILT	Date By 10/12/13 DK 10/23/13 DK 3/25/14 DS 10/10/14 DS
	SCALE VERIF	ICATION 1" ON ORIGINAL.
	EMERYV	
	Source Reference: Designed By: Date: DS 10/10/2014 Drafted By: Date: DS 10/10/2014 Reviewed By: Date: DK 10/23/2014 Scale: 1:10	Drawing N [≗] FIG 1

Tables

Table 1 Groundwater Extraction and Treatment System Hydrocarbon Analytical Data Former Chevron Station # 9-5607 5269 Crow Canyon Road, Castro Valley, California

			li	nfluent					Mid	lfluent 1					Μ	lidfluent 2						Effluent			
Sample	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	МТВЕ	рН ^а
Date	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.	/
(mm/dd/yy)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	
09/12/14	6,000	1,800	19	120	94	4.0	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<50	<0.5	<0.5	<0.5	<0.5	<0.5	7.4
10/13/14	7,500	1,600	37	76	630	4.0	<50	2.0	<0.5	<0.5	<0.5	<0.5	NM	<0.5	<0.5	<0.5	<0.5	<0.5	<50	<0.5	<0.5	<0.5	<0.5	<0.5	
11/06/14	8,000	990	140	100	590	<10	<50	2.0	<0.5	<0.5	<0.5	<0.5	NM	NM	NM	NM	NM	NM	<50	<0.5	<0.5	<0.5	<0.5	<0.5	
12/02/14	7,000	780	150	160	810	4.0	<50	2.0	<0.5	<0.5	<0.5	<0.5	NM	NM	NM	NM	NM	NM	<50	<0.5	<0.5	<0.5	<0.5	<0.5	7.3
01/14/15	3,700	290	36	33	390	3.0	<50	<0.5	<0.5	<0.5	<0.5	<0.5	NM	NM	NM	NM	NM	NM	<50	<0.5	<0.5	<0.5	<0.5	<0.5	, , , , , , , , , , , , , , , , , , ,
02/04/15	4,100	190	14	<0.5	350	3.0	<50	<0.5	<0.5	<0.5	<0.5	<0.5	NM	NM	NM	NM	NM	NM	<50	<0.5	<0.5	<0.5	<0.5	<0.5	,
03/03/15	4,300	280	45	43	320	2.0	<50	<0.5	<0.5	<0.5	<0.5	<0.5	NM	NM	NM	NM	NM	NM	<50	<0.5	<0.5	<0.5	<0.5	<0.5	6.8
04/16/15	1,800	180	6.0	0.8	92	2.0	<50	<0.5	<0.5	<0.5	<0.5	<0.5	NM	NM	NM	NM	NM	NM	<50	<0.5	<0.5	<0.5	<0.5	<0.5	,
05/14/15	2,900	570	16	42	89	3.0	<50	<0.5	<0.5	<0.5	<0.5	<0.5	NM	NM	NM	NM	NM	NM	<50	<0.5	<0.5	<0.5	<0.5	<0.5	,
06/23/15	380	3.0	<0.5	<0.5	5.0	2.0	<50	<0.5	<0.5	<0.5	<0.5	<0.5	NM	NM	NM	NM	NM	NM	<50	<0.5	<0.5	<0.5	<0.5	<0.5	7.2
07/20/15	480	2.0	<0.5	<0.5	6.0	2.0	<50	<0.5	<0.5	<0.5	<0.5	<0.5	NM	NM	NM	NM	NM	NM	<50	<0.5	<0.5	<0.5	<0.5	<0.5	
08/05/15	380	1.0	<0.5	<0.5	3.0	3.0	<50	<0.5	<0.5	<0.5	<0.5	<0.5	NM	NM	NM	NM	NM	NM	<50	<0.5	<0.5	<0.5	<0.5	<0.5	
09/02/15	1,300	120	3.0	2.0	14	2.0	<50	<0.5	<0.5	<0.5	<0.5	<0.5	NM	NM	NM	NM	NM	NM	<50	<0.5	<0.5	<0.5	<0.5	<0.5	7.2

Notes and Abbreviations:

mm/dd/yy = month/day/year

Conc. = concentration

TPHg = total petroleum hydrocarbons quantified as gasoline

MTBE = methyl tertiary butyl ether

- µg/L = micrograms per liter
- <X.X = not detected at or below the detection limit indicated
- a = pH measured in the field
- NM = Not meaured due to nondetect at MID-1

TPHg analyzed by EPA Method 8015M.

Benzene, toluene, ethylbenzene, and total xylenes analyzed by EPA Method 8260B.

MTBE analyzed by EPA Method 8260B.

Table 2 Groundwater Extraction and Treatment System Operational and Hydrocarbon Mass Removal Data Former Chevron Station # 9-5607 5269 Crow Canyon Road, Castro Valley, California

								TPHg			Benzene			MTBE	
Date	Well	Operating	Totalizer	Period	Period Operational	Cumulative	TPHg	Period	Cumulative	Benzene	Period	Cumulative	MTBE	Period	Cumulative
(mm/dd/yy)	IDs	Time (hours)	Reading (gallons)	Volume (gallons)	Flow Rate (gpm)	Volume (gallons)	Concentration (µg/L)	Removal ² (pounds)	Removal (pounds)	Concentration (µg/L)	Removal ² (pounds)	Removal (pounds)	Concentration (µg/L)	Removal ² (pounds)	Removal (pounds)
9/12/14 9:00	DPE-1 - DPE-3, C-9		330,400	0		0									
9/12/14 14:00	DPE-1 - DPE-3, C-9	5.0	331,500		3.67	1,100	6,000	0.06	0.06	1,800	0.02	0.02	4.0	0.00004	0.00004
9/29/14 14:00	DPE-1 - DPE-3, C-9 DPE-1 - DPE-3, C-9	408.0	331,500	1,100 500	0.02	1,600	6,000	0.08	0.08	1,800	0.02	0.02	4.0	0.00004	0.00004
<u> </u>	DPE-1 - DPE-3, C-9	165.0	332,000	700	0.02	2,300		0.03	0.08		0.01	0.02		0.00002	0.00003
10/13/14 11:00	DPE-1 - DPE-3, C-9	105.0	341,085	8,385	0.82	10,685	7,500	0.52	0.12	1,600	0.01	0.03	4.0	0.0002	0.0008
10/20/14 11:30	DPE-1 - DPE-3, C-9	165.5	348,600	7,515	0.76	18,200		0.47	1.1		0.11	0.25		0.0003	0.0004
10/27/14 11:00	DPE-1 - DPE-3, C-9	167.5	354,200	5,600	0.56	23,800		0.35	1.5		0.10	0.32		0.0002	0.0008
11/6/14 13:15	DPE-1 - DPE-3, C-9	242.3	364,390	10,190	0.70	33,990	8,000	0.68	2.1	990	0.08	0.41	10	0.0009	0.002
11/21/14 13:50	DPE-1 - DPE-3, C-9	360.6	373,033	8,643	0.40	42,633		0.58	2.7		0.07	0.48		0.0007	0.002
12/2/14 15:15	DPE-1 - DPE-3, C-9	265.4	379,635	6,602	0.41	49,235	7,000	0.39	3.1	780	0.04	0.52	4.0	0.0002	0.003
12/16/14 11:30	DPE-1 - DPE-3, C-9	332.3	399,600	19,965	1.00	69,200		1.17	4.3		0.13	0.65		0.0007	0.003
12/31/14 10:30	DPE-1 - DPE-3, C-9	359.0	436,625	37,025	1.72	106,225		2.16	6.4		0.24	0.89		0.001	0.004
1/14/15 11:25	DPE-1 - DPE-3, C-9	336.9	461,160	24,535	1.21	130,760	3,700	0.76	7.2	290	0.06	0.95	3.0	0.0006	0.005
1/23/15 14:35	DPE-1 - DPE-3, C-9	219.2	472,688	11,528	0.88	142,288		0.36	7.5		0.03	0.98		0.0003	0.005
2/4/15 11:00	DPE-1 - DPE-3, C-9	284.4	486,220 13,532 0.79 155,820				4,100	0.46	8.0	190	0.02	1.0	3.0	0.0003	0.006
2/17/15 14:30	DPE-1 - DPE-3, C-9	315.5	491,310	5,090	0.27	160,910		0.17	8.2		0.01	1.0		0.0001	0.006
3/3/15 14:25	DPE-1 - DPE-3, C-9	335.9	504,915	13,605	0.68	174,515	4,300	0.49	8.7	280	0.03	1.0	2.0	0.0002	0.006
3/11/15 11:45	DPE-1 - DPE-3, C-9	189.3	507,364	2,449				0.09	8.8		0.01	1.0		0.00004	0.006
3/16/15 12:00	DPE-1 - DPE-3, C-9	120.2	509,837	2,473	0.34	179,437		0.09	8.8		0.01	1.1		0.00004	0.006
4/2/15 9:30	DPE-1 - DPE-3, C-9	405.5	525,400	15,563	0.64	195,000		0.56	9.4		0.04	1.1		0.0003	0.006
4/16/15 14:30	DPE-1 - DPE-3, C-9	341.0	546,110	20,710	1.01	215,710	1,800	0.31	9.7	180	0.03	1.1	2.0	0.0003	0.007
4/30/15 10:20	DPE-1 - DPE-3, C-9	331.8	559,100	12,990	0.65	228,700		0.20	9.9		0.02	1.1		0.0002	0.007
5/14/15 12:15	DPE-1 - DPE-3, C-9	337.9	562,200	3,100	0.15	231,800	2,900	0.08	10.0	570	0.01	1.2	3.0	0.0001	0.007
5/29/15 9:30	DPE-1 - DPE-3, C-9	357.3	576,000	13,800	0.64	245,600		0.33	10.3		0.07	1.2		0.0002	0.007
6/23/15 11:45	DPE-1 - DPE-3, C-9	602.3	597,000	21,000	0.58	266,600	380	0.07	10.4	3.0	0.0005	1.2	2.0	0.0004	0.008
7/20/15 9:00	DPE-1 - DPE-3, C-9	645.2	616,830	19,830	0.51	286,430	480	0.08	10.5	2.0	0.0003	1.2	2.0	0.0003	0.008
8/5/15 15:15	DPE-1 - DPE-3, C-9	390.2	627,335	10,505	0.45	296,935	380	0.03	10.5	1.0	0.0001	1.2	3.0	0.0003	0.008
8/19/15 15:00	DPE-1 - DPE-3, C-9	335.8	635,900	8,565	0.43	305,500		0.03	10.5		0.0001	1.2		0.0002	0.008
9/2/15 14:00	DPE-1 - DPE-3, C-9	239.0	641,700	5,800	0.40	311,300	1,300	0.06	10.6	120	0.0058	1.2	2.0	0.0001	0.009
9/16/15 17:30	DPE-1 - DPE-3, C-9	339.5	649,900	8,200	0.40	319,500		0.09	10.7		0.0082	1.2		0.0001	0.009
Agency Limits															
				Total Ex	tracted Volume (gal):	319,500	Pounds Removed:	0.15	10.7	Pounds Removed:	0.014	1.2	Pounds Removed:	0.0002	0.009
			A		nal Flow Rate (gpm) ³ :		Gallons Removed ⁴ :			Gallons Removed ⁴ :			Gallons Removed ⁴ :		
Reporting Period: 8/19	/2015 - 9/16/2015		Averag	e Operation	iai riow kate (gpiii) .	0.63	Cumulative Results S	0.02 Since Start-up:	1.75	Gallons Kelhoved .	0.0019	0.17	Gallons Kellloved .	0.00004	0.001
Number of Days during					days		Number Days since S				369				
Gallons of Extracted Gr	round Water			14,000	-		Cumulative Total Ga	lions Extracted			319,500	-			
Average Flow Rate					gpm		Average Flow Rate ³	(7011 - 2			0.60				
Pounds of TPHg Remov	ea			0.15			Cumulative Pounds of	of TPHg Remove	a		10.7				
TPHg Removal Rate					lbs/day		TPHg Removal Rate	(lbs/day			
Pounds of Benzene Ren				0.014			Cumulative Pounds of		ovea		1.2				
Benzene Removal Rate					lbs/day		Benzene Removal Ra					lbs/day			
Pounds of MTBE Remo	vea			0.0002	lbs lbs/day		Cumulative Pounds of		ea		0.009				
MTBE Removal Rate				0.00001	ius/uay		MTBE Removal Rate				0.00002	ius/uay			

Formulas and Assumptions:

1. Hour meter readings taken at the end of the site visit

2. Mass Removed During the Period = Volume of Water Extracted (gallons) x Concentration (μ g/L) x (g/10⁶ μ g) x (lb/453.6g) x (3.785 L/gal)

3. When concentration of individual parameters were not detected, the concentration was assumed to be half the detection limit for calculation purposes.

Average Flow Rate = (Volume of Extracted Water (gal) / Number of Operational Days) * (60 minutes/hour) * (24 hours/day)

4. Gallons Removed = (Mass (lb) / Density (g/cc)) x 453.6 (g/lb) x (L/1000 cc) x (gal/3.785 L)

Density: = 0.73 g/cc TPHg

= 0.88 g/cc Benzene

= 0.74 g/cc MTBE

Abbreviations:

- TPHg = total petroleum hydrocarbons as gasoline
- MTBE = methyl tertiary butyl ether
 - L = liter
- gal = gallon
- gpm = gallon per minute
- $\mu g/L = micrograms per liter$
- g = grams
- cc = cubic centimeter
- lb = pounds

Date	Operating	Operating	Hour	System	Period	Blower	INF-1	INF-1	INF-1	INF-1	INF-2	INF-2	INF-2	INF-2	Effluent	Effluent	Effluent	Dilution	Pre-Oxidizer	Post-Oxidizer	INF-2	Effluent	Mass Removal	Destruction
	Wells	Time	Meter	Uptime	Operation	Vacuum	Vacuum	Temperature	Measured Flow	Calculated Flow	Pressure ¹	Temperature	Measured Flow ¹	Calculated Flow	Flow Rate	Flow Rate	Vapor	Air	Temp	Temp	OVA	PID	based on OVA	Efficiency
(mm/dd/yy hh:mm)	(open)	(hours)	(hours)	(%)	(hours)	(inHg)	(inHg)	(°F)	(acfm)	(scfm)	(inH ₂ O)	(°F)	(acfm)	(scfm)	(scfm)	(scfh)	(cubic feet)	(% open)	(°F)	(°F)	(ppmv)	(ppmv)	(ppd)	(%)
				. ,				<u> </u>																
9/12/14 14:00	C9, DPE-1 - DPE3, VE-1, VE-2	0.0	4014	0%	0.0	NM	3.00	NM	NM	NM	10.0	155	294	259	259	15,517	0	20	747	NM	8000	20.0	663.8	99.8%
9/29/14 14:00	C9, DPE-1 - DPE3, VE-1, VE-2	5.5	4019	1.3%	5.5	15.0	2.81	93	165	143	11	189	255	213	213	12,784	70,312	20	880	NM	NM	0.0	NM	100.0%
10/6/14 11:00	C9, DPE-1 - DPE3, VE-1, VE-2	5.0	4024	3.0%	5.0	15.0	2.81	83	144	127	10	176	255	217	217	13,014	65,070	25	899	NM	560	0.2	39.0	100.0%
10/13/14 14:00	C9, DPE-1 - DPE-3	106.0	4130	62.0%	106.0	14.5	2.35	68	191	176	10.9	180	268	227	227	13,621	1,443,865	0	750	883	1100	5.0	80.1	99.5%
10/20/14 11:30	C9, DPE-1 - DPE-3	166.0	4296	100.3%	166.0	15.0	3.18	79	140	123	10.5	171	255	219	219	13,133	2,180,062	0	750	927	650	0.3	45.6	100.0%
10/27/14 11:00	C9, DPE-1, DPE-2	117.0	4413	69.9%	117.0	15.0	4.1	61	161	141	11.6	160	270	236	236	14,189	1,660,164	0	750	897	700	0.4	53.1	99.9%
11/6/14 13:15	C9, DPE-3, DPE-2	67.0	4480	27.7%	67.0	20.0	5.0	61	146	123	10.7	61	146	152	123	7,394	495,403	0	701	900	1250	0.0	60.9	100.0%
11/21/14 13:50 12/2/14 15:15	C9, DPE-3, DPE-2 C9, DPE-3, DPE-2	188.6 113.3	4669 4782	52.3% 42.7%	188.6 113.3	20.0	5.3 7.4	68 63	132 103	109 78	11.1 3.3	174 169	176 157	151 133	109 78	6,517 4,696	1,229,109 532,051	0	698 697	809 785	558 1215	0.4	27.0 51.8	99.9% 100.0%
12/16/14 11:30	C9, DPE-3, DPE-2	249.1	5031	75.0%	249.1	18.5	10.2	64	61	41	4.3	172	118	100	100	5,977	1,488,981	0	700	785	1650	3.0	52.7	99.8%
12/31/14 10:30	C9, DPE-3, DPE-2	359.1	5390	100.0%	359.1	22.0	10.0	72	133	88	7.2	172	133	112	112	6,710	2,409,733	0	698	707	425	5.0	15.2	98.8%
1/14/15 11:25	C9, DPE-3, DPE-2	336.5	5727	99.9%	336.5	23.0	8.1	71	148	107	9.8	176	148	126	126	7,550	2,540,450	0	700	752	1,000	0.5	40.4	100%
1/23/15 14:35	C9, DPE-3, DPE-2	219.1	5946	100.0%	219.1	23.0	7.1	76	157	118	9.6	174	157	134	134	8,030	1,759,403	0	700	764	915	3.5	39.3	99.6%
2/4/15 11:00	C9, DPE-2	281.0	6227	98.8%	281.0	22.0	8.3	75	137	98	5.9	183	137	114	114	6,848	1,924,213	0	698	738	715	0.7	26.2	99.9%
2/17/15 14:30	C9, DPE-2	82.3	6309	26.1%	82.3	21.5	10.1	62	136	91	6.9	170	136	116	116	6,955	572,382	0	698	682	515	0.1	19.2	100.0%
3/3/15 14:25	C9, DPE-1	167.0	6476	49.7%	167.0	23.0	11.1	79	118	73	4.0	185	118	98	98	5,853	977,400	0	690	698	295	0.4	9.2	99.9%
3/11/15 11:45	C9, DPE-3	25.9	6502	13.7%	25.9	23.0	10.9	67	118	75	7.2	151	118	104	104	6,226	161,266	0	710	740	480	0.2	16.0	100.0%
3/16/15 12:00	C9, DPE-3	28.7	6531	23.9%	28.7	23.0	10.2	67	121	80	7.1	175	121	102	102	6,145	176,359	0	700	689	235	0.0	7.7	100.0%
4/2/15 9:30	C9, DPE-3	223.8	6754	55.2%	223.8	23.0	8.4	73	146	104	10.0	177	146	124	124	7,445	1,666,264	0	698	688	125	0.4	5.0	99.7%
4/16/15 14:30	DPE-2, DPE-3	340.8	7095	99.9%	340.8	23.0	8.4	87	137	95	6.8	199	137	112	112	6,696	2,282,011	0	699	700	210	0.6	7.5	99.7%
4/30/15 10:20	DPE-1, DPE-2	236.9	7332	71.4%	236.9	23.0	8.2	86	137	96	4.6	193	137	112	112	6,722	1,592,355	0	701	699	140	0.8	5.0	99.4%
5/14/15 12:15	DPE-1, VEW-2	21.2	7353	6.3%	21.2	23.0	13.0	81	98	54	1.9	187	223	183	183	10,970	232,565	40	698	693	75	0.0	4.4	100.0%
5/29/15 9:30	DPE-1, VEW-2	259.6	7613	72.7%	259.6	23.0	11.8	79	44	26	4.2	180	118	98	98	5,901	1,531,975	50	699	724	190	2.3	6.0	98.8%
6/23/15 11:45	DPE-1, VEW-2	177.9	7791	29.5%	177.9	23.0	10.1	79	175	114	5.6	190	118	97	97	5,830	1,037,208	0	700	746	280	2.0	8.7	99.3%
7/4/15 3:35	DPE-1, VEW-2	132.6	7923	51.8%	132.6	SVE SYSTEM	DOWN FOR I	REPAIR																
Permit Conditions:										<300				<300	·	·			>600	•				>98.5%
inH ₂ O °F acfm scfm % INF-1 INF-2 NM LEL ppmv PID FID OVA ppd 1. 2. Compliance: BAAQMD Requirements: Flow Rate < 300 scfm Oxidizer Temperature > 0 Benzene Emission Limit <	600 degrees Fahrenheit in electri < 0.017ppd	order. INF-2 pr are accurate cor	essure used	d to convert / LEL reading	acfm to scfm. gs		pressure {ab	s}] * [standard ten	perature {abs} / operat	ing temperature {abs}])														
Destruction Efficiency (m 98.50% 97.00% 90.00% Note: If outlet VOC < 10	neasured as hexane) ppmv, destruction efficiency requ		VOC < 200	and <2,000 p	opmv																			

Abbreviations and Notes:	
Reporting period: GWE off from 7/4/2	015 to 9/16/2015.
mm/dd/yy = month/day/year	
hh:mm = hour : minute	
inHg = inches of mercury	
inH_2O = inches of water	
^o F = degrees Fahrenheit	
acfm = actual cubic feet per minute	
scfm = standard cubic feet per minute (flow	in scfm = flow in acfm * [operating pressure{abs} / standard pressu
% = percentage	
INF-1 = pre-dilution system influent	
INF-2 = post-dilution system influent	
NM = not measured	
LEL = Lower Explosive Limit	
ppmv = parts per million by volume	
PID = photo-ionization detector	
FID = flame ionization detector	
OVA = organic vapor analyzer	
ppd = pounds per day	
 INF-2 flow read from chart recorder. 	INF-2 pressure used to convert acfm to scfm.
2. = water in pipe; unable to measure accurate	urate concentration/ LEL readings
Compliance:	
BAAQMD Requirements:	
Flow Rate < 300 scfm	
Oxidizer Temperature > 600 degrees Fahrenheit in electric catal	ytic mode and > 1400 degrees in thermal catalytic mode
Benzene Emission Limit < 0.017ppd	
Destruction Efficiency (measured as hexane)	
98.50%	VOC >2,000 ppmv
97.00%	VOC >200 and <2,000 ppmv
90.00%	VOC < 200 ppmv
Note: If outlet VOC < 10 ppmv, destruction efficiency requireme	nt is waived

Table 3 Soil Vapor Extraction System **Operational Data** Former Chevron Station # 9-5607

5269 Crow Canyon Road, Castro Valley, California

Table 4 Soil Vapor Extraction System Hydrocarbon Analytical and Mass Removal Data Former Chevron Station # 9-5607 5269 Crow Canyon Road, Castro Valley, California

				Concent	rations ¹						TPHg			Benzene			MTBE		V	oc	
Date			IN	F-2			Fffl	uent		Removal	Cumulative	Emission	Removal	Cumulative	Emission	Removal	Cumulative	Emission	Removal	Emission	Destructio
(mm/dd/yy hh:mm)	Operating Wells	TPHg (ppmv)	Benzene (ppmv)	MTBE	VOC (ppmv)	TPHg (ppmv)	Benzene (ppmv)	MTBE (ppmv)	VOC (ppmv)	Rate ^{2, 6} (ppd)	Removed ⁷ (pounds)	Rate ^{2, 6} (ppd)	Rate ^{3, 6} (ppd)	Removed ⁷ (pounds)	Rate ^{3, 6} (ppd)	Rate ^{4, 6} (ppd)	Removed ⁷ (pounds)	Rate ^{4, 6} (ppd)	Rate ^{5, 6} (ppd)	Rate ^{5, 6} (ppd)	Efficiency (%)
0/40/444400											u										
9/12/14 14:00	C9, DPE-1 - DPE3, VE-1, VE-2	4,200	44	38	4,282	46	0.39	0.19	46.58	405.2	0.0	4.4	3.3	0.0	0.029	3.2	0.0	0.02	355.3	3.9	98.9%
9/29/14 14:00	C9, DPE-1 - DPE3, VE-1, VE-2									333.8	84.7	3.7	2.7	0.7	0.024	2.7	0.7	0.01	292.7	3.2	98.9%
10/6/14 11:00	C9, DPE-1 - DPE3, VE-1, VE-2									339.8	154.9	3.7	2.8	1.3	0.025	2.7	1.2	0.01	298.0	3.2	98.9%
10/13/14 11:00	C9, DPE-1 - DPE-3	1,500	10	< 20	1,530	<5	< 0.5	< 0.5	< 6.0	127.0	1185.9	0.42	0.7	8.9	0.017	1.5	10.5	0.04	111.4	0.4	99.6%
10/20/14 11:30	C9, DPE-1 - DPE-3									122.5	2048.8	0.41	0.6	13.3	0.016	1.4	20.6	0.04	107.4	0.4	99.6%
10/27/14 11:00	C9, DPE-1, DPE2									132.3	2670.0	0.44	0.7	16.6	0.017	1.6	27.9	0.04	116.1	0.5	99.6%
11/6/14 13:15	C9, DPE-2, DPE3									85.0	2973.3	0.23	0.4	18.2	0.009	1.0	31.5	0.02	74.5	0.2	99.6%
11/21/14 13:50	C9, DPE-2, DPE-3*	558 0.01		0.01	558	0.31	0.0020	< 0.002	0.31	31.3	3430.3	0.01	0.0	19.9	0.00006	0.0	35.4	0.00007	27.0	0.01	99.9%
12/2/14 15:15	C9, DPE-2, DPE-3	1,000	12	9	1,021	0.23	0.0012	< 0.001	0.23	49.6	3621.3	0.007	0.5	21.0	0.00003	0.4	36.3	0.00003	43.5	0.006	100.0%
12/16/14 11:30	C9, DPE-2, DPE-3									37.2	4071.3	0.009	0.3	25.2	0.00003	0.3	39.8	0.00003	32.6	0.007	100.0%
12/31/14 10:30	C9, DPE-2, DPE-3									41.7	4661.5	0.010	0.4	30.7	0.00004	0.3	44.4	0.00004	36.6	0.008	100.0%
1/14/15 11:25	C9, DPE-2, DPE-3	870	13.00	4.7	888	0.08	< 0.001	< 0.001	0.08	40.8	5240.3	0.004	0.5	36.8	0.00004	0.2	48.0	0.00004	35.8	0.003	100.0%
1/23/15 14:35	C9, DPE-2, DPE-3									43.4	5625.0	0.004	0.5	41.3	0.00004	0.2	49.8	0.00004	38.1	0.00	100.0%
2/4/15 11:00	C9, DPE-2	800	17	7	824	1.5	0.014	0.0012	1.52	34.1	6078.7	0.06	0.6	47.5	0.0005	0.3	52.6	0.00004	30.2	0.06	99.8%
2/17/15 14:30	C9, DPE-2									34.6	6196.4	0.06	0.6	49.5	0.0005	0.3	53.6	0.00005	30.7	0.06	99.8%
3/3/15 14:25	C9, DPE-1	320	5.4	2.5	328	0.076	< 0.001	< 0.001	0.078	11.6	6357.3	0.003	0.2	52.0	0.00003	0.1	54.8	0.00003	10.3	0.002	100.0%
3/11/15 11:45	C9, DPE-3									12.4	6370.3	0.003	0.2	52.2	0.00003	0.1	54.9	0.00003	10.9	0.003	100.0%
3/16/15 12:00	C9, DPE-3									12.2	6385.0	0.003	0.2	52.4	0.00003	0.1	55.0	0.00003	10.8	0.003	100.0%
4/2/15 9:30	C9, DPE-3									14.8	6511.0	0.004	0.2	54.1	0.00004	0.1	55.9	0.00004	13.1	0.003	100.0%
4/16/15 14:30	DPE-2, DPE-3	250	2.7	1.1	254	0.84	0.008	0.002	0.850	10.4	6690.1	0.03	0.1	56.1	0.0003	0.0	56.9	0.00007	9.1	0.03	99.7%
4/30/15 10:20	DPE-1, DPE-2									10.4	6793.1	0.04	0.1	56.9	0.0003	0.0	57.3	0.00007	9.1	0.03	99.7%
5/14/15 12:15	DPE-1, VEW-2	160	2.8	0.71	164	0.11	<0.032	< 0.036	0.178	10.9	6802.5	0.008	0.1	57.0	0.002	0.0	57.3	0.002	9.6	0.01	99.9%
5/29/15 9:30	DPE-1, VEW-2									5.9	6893.3	0.004	0.1	58.3	0.001	0.0	57.7	0.001	5.2	0.01	99.9%
6/23/15 11:45	DPE-1, VEW-2	2,300	35.0	11.0	2,346	0.48	< 0.032	< 0.001	0.513	83.4	7224.0	0.02	1.0	62.2	0.001	0.4	59.1	0.00003	73.1	0.02	100.0%
7/4/15 3:35	DPE-1, VEW-2	SVE SYSTEM OFF	FOR REPAIR							83.4 a	7684.7 a	0.02 a	1.0 a	67.7 a	0.001 a	0.4 a	61.0 a	0.00003 a	73.1 a	0.02 a	100.0% a
				1		L		Period F	ounds Removed ⁹ :	TPHg =	0		Benzene =	0	I	MTBE =	0	I		l	
									Pounds Removed:	TPHg =			Benzene =	67.7		MTBE =	61.0				

Notes:

1. TPHg, Benzene, and MTBE analyzed by EPA Method 8015/8020. Vapor samples were collected in 1-liter tedlar bags unless otherwise noted.

2. Molecular weight of TPHg assumed to be 100 lb/lb-mole as hexane.

3. Molecular weight of Benzene assumed to be 78 lb/lb-mole.

4. Molecular weight of MTBE assumed to be 88 lb/lb-mole.

5. Molecular weight of VOCs assumed to be 86 lb/lb-mole as hexane.

6. Removal/Emission Rate (ppd) = C (ppmv) x Q (scfm) x (1lb-mole/386ft³) x MW (lb/lb-mole) x 60 min/hr x 24 hr/day x 10^{-6}

С	= concentration
---	-----------------

7. Cumulative TPHg / Benzene / MTBE removed = Previous Total + (Average of Previous and Current Removal Rates * Operation Interval)

8. Influent not measured due to water in vapor stream. Individual well samples were collected at a lower vacuum at this time.

9. Reporting period: SVE system off for repair from 7/4/2015 to 9/16/2015.

a. Air sample was not taken before system malfunction occurred. Used 6/23/15 sample data to calculate removal and efficiency rate and cumulative removed.

BAAQMD Requirements:

Flow Rate < 300 scfm

Oxidizer Temperature > 600 deg Fahrenheit in electric catalytic mode and > 1400 degrees in thermal catalytic mode

Benzene Emission Limit < 0.017 ppd

Destruction efficiency (measured as hexane)

98.50% VOC >2,000 ppmv

97.00% VOC >200 and <2,000 ppmv

90.00% VOC < 200 ppmv

Note: If outlet VOC < 10 ppmv, destruction efficiency requirement is waived

mm/dd/yy = month/day/year

Abbreviations:

hh:mm = hours : minutes

TPHg = total petroluem hydrocarbons as gasoline

MTBE = methyl tertiary butyl ether

VOC = volatile organic compounds

ppmv = parts per million by volume

ppd = pounds per day

lb = pounds

 ft^3 = cubic feet

scfm = standard cubic feet per minute

INF-1 = pre-dilution system influent

INF-2 = post-dilution system influent

TBD = Sample taken during this time and are awaiting results

n/a = Not available due to SVE equipment malfunction

INI	1			C-	-9			DPE-1											DPE-2							DPE-3	3						VEW-1							VEW-2			
Date Vacu	ium Ma	anifold Vacuum	Casing Vacuum	low Flow Conc w/ I	FID Conc w/ OVA	Mass removal based	Mass removal based	d Manifold	Manifold Vacuun	n Casing Vacuu	m Flow	Flow Conc w/ Fl	D Conc w/ OVA	Mass removal based	Mass removal based	Manifold Vacuum	Casing Vacuum	Flow	Flow Conc	/FID Conc w/OVA	Mass removal based	Mass removal based	Manifold Vacuum	Casing Vacuum	Flow Flow	w Conc w/	/FID Conc w/OVA	Mass removal based	Mass removal based	Manifold Vacuum	Casing Vacuum	Flow Flow	Conc w/FID	Conc w/ OVA Mass	removal based	Mass removal based	Manifold Vacuum	Casing Vacuum Flo	ow Flow v	Conc w/FID	Conc w/ OVA	Mass removal based	Mass removal based
(mm/dd/yy) (inl	lg)	(inHg)	(inWC) (a	cfm) (scfm) (ppmy) (ppmy)	on FID (ppd)	on OVA (baa)	ug/L	(inHg)	(inWC)	(acfm) ((scfm) (ppmy)	(ppmy)	on FID (ppd)	on OVA (ppd)	(inHg)	(inWC)	(acfm)	(scfm) (pp	(ymgg) (yr	on FID (ppd)	on OVA (ppd)	(inHg)	(inWC)	(acfm) (scfr	m) (ppm)	v) (ppmy)	on FID (ppd)	on OVA (ppd)	(inHg)	(inWC)	(acfm) (scfm)	(ppmy)	(ymgg)	n FID (ppd)	on OVA (ppd)	(inHg)	(inWC) (acf	fm) (scfm) r	r (ppmy)	(ppmy)	on FID (ppd)	on OVA (ppd)
9/29/14 11:00 2.	.8/	4.2	(C) (.		165	сс (ррс)	2.4	NM	<u> </u>		(, (42 12,000 +	12,000	162	162	4.2	(e,	45	37 4.(1 120	47	12	(т., (рр. 10 г. 20	45	0.1	0.8	(8/	(e,	<u> </u>	12.000 +	4,300	196	(7	(8)	(45	20		
9/29/14 11:00 2. 9/29/14 14:00 2.	8 0	4.3	27	50 40 355 4E 40 2000		5.2	2.4		4.4	29	52	42 12,000 + 35 12,000 +	12,000	103	103	4.3	20	45	37 4,0		47	15	4.4	29	50 50 50 50		45	0.4	0.8	4.3	20	59 48	12,000 +	4,300	180	07 NA	4.3	28 0		45	30	1	
10/6/14 9:00 2.	8	2.7	37	43 40 2900 63 57 500	190	92	3.5	NM	2.7	37	69	33 12,000 + 63 12,000 +		2/1	2/1	2.8	36	38	33 4,: //5 2 3		33	12	2.7	38	56 51	2 000	33	0.8	0.5	2.8	30	<u> </u>	12,000 +	3 080	164	//A	2.8	38 50	0 46	22	33		
10/6/14 11:45 2.	8	2.7	36	50 45 1300	220	19	3.5	NM	2.0	36	58	52 12,000 +	12,000	199	199	2.7	40	38	34 3 (80 890	33	10	2.0	36	63 56	6 <u>415</u>	110	7 5	2.0	2.7	36	47 38	5000	1 200	60	14	2.0	36 5	40	31	35	0	0.5
10/13/14 14:00 2.	8	2.2	30	39 37 NM	2700	NA	32	NM	2.7	30	35	33 NM	44,000	#N/A	464	2.2	30	35	33 N	1 3,200	NA	34	2.2	30	97 91	1 NM	600	NA	18	2.2	30	NA NA	NM	950	NA	NA	2.2	30 4	1 38	NM	50	NA	0.6
10/20/14 9:30 2.	3	2.3	31	42 39 4400	1500	55	120	NM	2.3	31	39	36 15.000 +	13.000 +	176	152	2.3	31	36	34 2.4	0 1.050	26	11	2.2	30	36 34	4 695	390	7.5	4.2	2.3	31	NA NA	500	260	NA	NA	2.3	31 30	6 34	32.0	30	0	0.3
10/20/14 12:00 3.	2	3.1	42	50 45 4800	1750	69	25	NM	3.1	42	45	40 15,000 +	13,000 +	194	168	3.0	41	42	38 2,5	50 1,210	31	15	3.1	42	42 38	8 800	500	10	6.0														
10/27/14 10:15 4.	1	3.9	53	88 77 4000	1500	99	37	NM	3.9	53	59	52 15,000 +	12,000 +	249	200	3.9	53	69	61 1,9	0 855	37	17	3.9	53	60 53	3 1,100	0 700	19	12														
10/27/14 11:30 4.	1	4.0	55	93 81 3780	1390	98	36	NM	4.0	55	62	54 15,000 +	12,000 +	260	208	4.0	55	73	64 1,7	50 810	36	17	4.0	55	65 57	7 965	540	18	10														
11/6/14 10:40 5.	0	3.7	NM	55 48 490	NM	7.5	NA	NM	3.7	NM	NA	NA ++	NM	NA	NA	3.7	NM	64	56 9) NM	18	NA	3.6	NM	69 60	0 645	NM	12	NA														
11/6/14 13:15 5.	0	5.0	NM	51 42 4,300	NM	58	NA	NM								5.0	NM	NA	NA 9	D NM	17	NA	5.0	NM	88 73	3 590	NM	14	NA														
11/21/14 13:50 5.	3	4.8	NM	46 44 NM	3,200	NA	46	NM								4.7	NM	78	75 N	1 1,050	NA	25	4.8	NM	108 104	04 NM	740	NA	25														
12/2/14 15:15 7.	4	5.5	NM	55 52 NM	5,200	NA	86	NM								5.5	NM	72	67 N	1 760	NA	16	5.5	NM	68.0 64	4 NM	610	NA	12														
12/16/14 11:30 10	.2	2.5	NM	.12 118 NM	3,600	NA	136	NM								2.5	NM	113	119 N	1 55	NA	2.1	2.5	NM	NA NA	A NM	1,550	NA	NA														
12/31/14 10:30 10	.0	2.3	NM	59 63 NM	3,010	NA	60	NM								2.3	NM	107	113 N	1 165	NA	6.0	2.3	NM	91 96	6 NM	810	NA	25														
1/14/15 11:25 8.	1	6.8	92	69 61 NM	1,300	NA	26	NM								6.7	91	85	76 N	1 410	NA	10	6.8	92	88 78	8 NM	1,990	NA	50														
1/23/15 14:35 7.	1	6.7	88	58 52 NM	1,120	NA	19	11,000								6.7	88	NA	NA N	1 540	NA	NA	6.7	88	93 83	3 NM	1,380	NA	37														
2/4/15 11:00 8.	3	7.7	108	91 78 NM	805	NA	20	NM								6.3	84	57	52 N	1 745	NA	12																					
2/17/15 14:30 10	.1	7.9	130	66 56 NM	5,420	NA	97	NM								3.5	41	65	66 N	1 45	NA	1.0																					
3/3/15 10:15 9.	1	8.7	122	76 62 NM	205	NA	4.1	NM								7.0	NM	54	47 N	1 55	NA	0.8																					
3/3/15 14:25 11	.1	10.7	122	61 45 NM	280	NA	4.0	NM	10.7	NM	NA	NA NM	251	NA	NA																												
3/11/15 11:45 10	.9	10.1	NM	73 56 NM	400	NA	7.1	NM															10.1	NM	74 56	6 605	305	11	5.5														
3/16/15 12:00 10	.2	9.5	NM	47 36 NM	175	NA	2.0	NM															11.0	NM	76 55	5 NM	320	NA	5.7														
4/2/15 9:30 8.	4	7.6	108	41 35 1,350	140	15	1.6	NM	NM	NM	NM	NM 470	60	NA	NA	NM	NM	NM	NM 3	205	NA	NA	7.7	81	72 61	1 1,100	0 120	22	2.4	NM	NM	NM NM	120	25	NA	NA	NM		M NM	750	160	NA	NA
4/16/15 14:30 8.	4	8.3	108	38 32 NM	420	NA	4.2	NM								8.4	8	43	35 N	1 45	NA	0.5	8.3	108	67 56	6 NM	335	NA	6.0														
4/30/15 10:20 8.	2	8.2	108	73 61 NM	1,100	NA	21	NM	9.0	NM	66	53 NM	115	NA NA	2.0	7.2	NM	68	59 N	1 40	NA	0.8	7.3	NM	62 54	4 NM	298	NA	5.2	7.1	108	NA NA	NM	10	NM	NA	9.2	NM 5	8 NA	NM	900	NM	NA
5/14/15 12:15 13	.0	10.1	NM		950	NA	NA	NA	7.8	NM	61	52 NM	143	NA	2.4	9.5	NM	75	59 N	1 27	NA	0.5	10.3	NM		VI NM	70	NA	NA	9.0	NM	NA NA	NM	16	NM	NA	9.0	NM 53	2 58	NA	215	NA	4.0
5/29/15 9:30 11	.8	10.3			825				9.5				900		NA	NM	NM	NM	NM N		NM	NM	NM	NM		VI NM	75	NA	NA	NM		NM NM		15	NM	NA	9.0				930		
6/23/15 11:45 10	.1								10.0	NM	147	112 NM	1,760		63																						10.0	NM 15		NM	1,450	NM	80
7/4/15 3:35	- SVE sy	ystem down for repain	rs																																								
	•	I		· · ·		· · · · · · · · · · · · · · · · · · ·					· · ·			·				· · ·	1		·			· · · · · · · · · · · · · · · · · · ·							· · · · ·		· · · · ·	1									

......

......

<u>Abbreviations:</u> in WC = Inches of water column acfm = actual cubic feet per minute

LEL = lower explosive limit PID = photo ionization detector

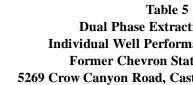
Conc = Concentration ppmv = Parts per million by volume

DTW = Depth to Water fbg = Feet below ground surface

NM = Not Measured off = Well and/or system off during this time

ppd = pounds per day flow in scfm = flow in acfm * [operating pressure{abs} / standard pressure {abs}] * [standard temperature {abs} / operating temperature {abs}] pounds per day removed = C (ppmv) x Q (scfm) x (1lb-mole/386ft3) x MW (lb/lb-mole) x 60 min/hr x 24 hr/day x 10-6

C = concentration


Q = flow MW = molecular weight LEL assumed to be that of hexane (11,000 ppmv)

LEL percentage to ppm conversion = (LEL%/100)*(11,000 ppm/LEL %) Gallons in 1 cubic foot = 7.48

Groundwater Flow = (strokes per minute*((PI*(radius of well (ft.)^2)*(well depth (ft)-length of pump (ft)))/7.48) Temperature for calculating scfm is assumed to be INF-1 temperature

a = While pumps operational, tygon tubing showed vacuum, indicating dewatering success. Manual DTW collects while individual pump is off for 10 minutes. b = Vacuum too high to get PID and LEL readings

c = water in flow stream; sum of other flows subtracted from total influent flow to estimate flow d = Concentration data taken using a flame ionization detector

5
action System
rmance Data Table
tation # 9-5607
astro Valley, California

Attachment A Eurofins Lancaster Laboratory Analytical Report – September 23, 2015

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

ANALYTICAL RESULTS

Prepared by:

Eurofins Lancaster Laboratories Environmental 2425 New Holland Pike Lancaster, PA 17601 Prepared for:

ChevronTexaco 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

September 23, 2015

Project: 95607

Submittal Date: 09/03/2015 Group Number: 1590153 PO Number: 0015164161 Release Number: HETRICK State of Sample Origin: CA

<u>Client Sample Description</u> EFF-W-150902 Grab Groundwater MID-1-W-150902 Grab Groundwater INF-W-150902 Grab Groundwater QA-T-150902 NA Water Lancaster Labs (LL) # 8034108 8034110 8034111 8034112

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

Regulatory agencies do not accredit laboratories for all methods, analytes, and matrices. Our scopes of accreditation can be viewed at <u>http://www.eurofinsus.com/environment-testing/laboratories/eurofins-lancaster-laboratories-environmental/resources/certifications/</u>.

ELECTRONIC GHD Attn: Andy Leung COPY TO ELECTRONIC GHD Attn: Matt B. Smith COPY TO ELECTRONIC CRA Attn: Judy Gilbert COPY TO ELECTRONIC Chevron Attn: GHD EDD COPY TO

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Respectfully Submitted,

Amek Carts

Amek Carter Specialist

(717) 556-7252

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description:	EFF-W-150902 Grab Groundwater	LL Sample	#	WW 8034108
	Facility# 95607 CRAW	LL Group	#	1590153
	5269 Crow Canyon Rd-Castro T0600100344		#	10880

Project Name: 95607

Collected: 09/02/2015	09:00 by	GB C	ChevronTexaco
		6	5001 Bollinger Canyon Rd L4310
Submitted: 09/03/2015	09:30	S	San Ramon CA 94583
Reported: 09/23/2015	10:05		

CCVEF

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l	ug/l	ug/l	
10335	Acetone	67-64-1	N.D.	6	20	1
10335	t-Amyl methyl ether	994-05-8	N.D.	0.5	1	1
10335	Benzene	71-43-2	N.D.	0.5	1	1
10335	Bromobenzene	108-86-1	N.D.	1	5	1
10335	Bromochloromethane	74-97-5	N.D.	1	5	1
10335	Bromodichloromethane	75-27-4	N.D.	0.5	1	1
10335	Bromoform	75-25-2	N.D.	0.5	4	1
10335	Bromomethane	74-83-9	N.D.	0.5	1	1
10335	2-Butanone	78-93-3	N.D.	3	10	1
10335	t-Butyl alcohol	75-65-0	N.D.	5	20	1
10335	n-Butylbenzene	104-51-8	N.D.	1	5	1
10335	sec-Butylbenzene	135-98-8	N.D.	1	5	1
10335	tert-Butylbenzene	98-06-6	N.D.	1	5	1
10335	Carbon Disulfide	75-15-0	N.D.	1	5	1
10335	Carbon Tetrachloride	56-23-5	N.D.	0.5	1	1
10335	Chlorobenzene	108-90-7	N.D.	0.5	1	1
10335	Chloroethane	75-00-3	N.D.	0.5	1	1
10335	2-Chloroethyl Vinyl Ether	110-75-8	N.D.	2	10	1
	2-Chloroethyl vinyl ether may preserve this sample.	not be recovered	if acid was used to			
10335	Chloroform	67-66-3	N.D.	0.5	1	1
10335	Chloromethane	74-87-3	N.D.	0.5	1	1
10335	2-Chlorotoluene	95-49-8	N.D.	1	5	1
10335	4-Chlorotoluene	106-43-4	N.D.	1	5	1
10335	1,2-Dibromo-3-chloropropane	96-12-8	N.D.	2	5	1
10335	Dibromochloromethane	124-48-1	N.D.	0.5	1	1
10335	1,2-Dibromoethane	106-93-4	N.D.	0.5	1	1
10335	Dibromomethane	74-95-3	N.D.	0.5	1	1
10335	1,2-Dichlorobenzene	95-50-1	N.D.	1	5	1
10335	1,3-Dichlorobenzene	541-73-1	N.D.	1	5	1
10335	1,4-Dichlorobenzene	106-46-7	N.D.	1	5	1
10335	Dichlorodifluoromethane	75-71-8	N.D.	0.5	1	1
10335	1,1-Dichloroethane	75-34-3	N.D.	0.5	1	1
10335	1,2-Dichloroethane	107-06-2	N.D.	0.5	1	1
10335	1,1-Dichloroethene	75-35-4	N.D.	0.5	1	1
10335	cis-1,2-Dichloroethene	156-59-2	N.D.	0.5	1	1
10335	trans-1,2-Dichloroethene	156-60-5	N.D.	0.5	1	1
10335	1,2-Dichloropropane	78-87-5	N.D.	0.5	1	1
10335	1,3-Dichloropropane	142-28-9	N.D.	0.5	1	1
10335	2,2-Dichloropropane	594-20-7	N.D.	0.5	1	1
10335	1,1-Dichloropropene	563-58-6	N.D.	1	5	1
10335	cis-1,3-Dichloropropene	10061-01-5	N.D.	0.5	1	1
10335	trans-1,3-Dichloropropene	10061-02-6	N.D.	0.5	1	1
10335	Ethanol	64-17-5	N.D.	50	250	1
10335	Ethyl t-butyl ether	637-92-3	N.D.	0.5	1	1
10335	Ethylbenzene	100-41-4	N.D.	0.5	1	1
10335	Freon 113	76-13-1	N.D.	2	10	1
10335	Hexachlorobutadiene	87-68-3	N.D.	2	5	1
10335	2-Hexanone	591-78-6	N.D.	3	10	1
10335	di-Isopropyl ether	108-20-3	N.D.	0.5	1	1
		*-This limit w	as used in the evaluation of t	he final regult		

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description:	EFF-W-150902 Grab Groundwater	LL Sample	#	WW 8034108
	Facility# 95607 CRAW	LL Group	#	1590153
	5269 Crow Canyon Rd-Castro T0600100344	Account	#	10880

Project Name: 95607

Collected: 09/02/2015 09:00	by GB	ChevronTexaco
		6001 Bollinger Canyon Rd L4310
Submitted: 09/03/2015 09:30		San Ramon CA 94583
Reported: 09/23/2015 10:05		

CCVEF

GC/NS Volatiles SW-846 822-8 N.D. ug/l ug/l ug/l 10335 proporphisme 99-87-6 N.D. 1 5 1 10335 proporphisme 99-87-6 N.D. 1 5 1 10335 Methyl Tertiary Buryl Ether 164-0-4 N.D. 2 4 1 10335 Methylanechloride 75-09-2 N.D. 2 4 1 10335 styptame 100-42-5 N.D. 1 5 1 10335 tryptamene 100-42-5 N.D. 0.5 1 1 10335 tryptamene 100-42-5 N.D. 0.5 1 1 10335 tryptamene 100-42-5 N.D. 0.5 1 1 10335 tryptamene 10-6-6 N.D. 0.5 1 1 10335 tryptamene 10-6-6 N.D. 0.5 1 1 10335 tryptamene 79-06-	CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
10335 p-Teopropyleouene 99-87-6 N.D. 1 5 1 10335 Methyl Tertiary Butyl Ether 168-40-4 N.D. 3 10 1 10335 Methyl Tertiary Butyl Ether 108-10-1 N.D. 3 10 1 10335 Methylen Choride 75-09-2 N.D. 1 5 1 10335 Methylen Choride 91-20-3 N.D. 1 5 1 10335 Styrene 100-42-5 N.D. 0.5 1 1 10335 Styrene 100-42-5 N.D. 0.5 1 1 10335 Styrene 108-65-1 N.D. 0.5 1 1 10335 Styrene 108-88-3 N.D. 0.5 1 1 10335 Styrene 108-88-3 N.D. 0.5 1 1 10335 Styrene 10-82-5 N.D. 0.5 1 1 10335 Styrene 70-16 N.D. 0.5 1 1 10335 Styrene <	GC/MS	Volatiles SW-846	8260B	ug/l	ug/l	ug/l	
10335 Nethyl Terriary Butyl Ether 1634-04-4 N.D. 0.5 1 1 10335 Methylare Chloride 75-09-2 N.D. 2 4 1 10335 Methylare Chloride 75-09-2 N.D. 1 5 1 10335 N-Propylenzene 103-65-1 N.D. 1 5 1 10335 Syrrene 104-25-5 N.D. 1 5 1 10335 Syrrene 104-25-5 N.D. 0.5 1 1 10335 Tetrachloroethane 79-44-5 N.D. 0.5 1 1 10335 1,2,3-Trichlorobenzene 87-61-6 N.D. 1 5 1 10335 1,2,3-Trichloroethane 71-65-6 N.D. 1 1 1 10335 1,2,3-Trichloroethane 79-00-5 N.D. 0.5 1 1 10335 1,2,3-Trichloroethane 79-01-6 N.D. 0.5 1 1 10335 1,2,3-Trichloroethane 79-01-6 N.D. 0.5 1 1		1 11					
1035 4-Methyl-2-pentanome 108-10-1 N.D. 3 10 1 10355 Methylane Choride 75-09-2 N.D. 1 5 1 10355 Methylane Choride 91-20-3 N.D. 1 5 1 10355 Styrene 100-42-5 N.D. 1 5 1 10355 Styrene 100-42-5 N.D. 0.5 1 1 10355 Styrene 100-42-5 N.D. 0.5 1 1 10355 Tetrachloroethane 79-34-5 N.D. 0.5 1 1 10355 Tetrachloroethane 79-41-5 N.D. 0.5 1 1 10355 1,2,2-Trichlorobenzene 120-82-1 N.D. 0.5 1 1 10355 1,1,1-Trichloroethane 79-01-6 N.D. 0.5 1 1 10355 Trichloroflowemetane 75-69-4 N.D. 0.5 1 1 10355 Trichloroptopane 96-18-4 N.D. 1 5 1 10355 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
10335 Methylen chloride 75-09-2 N.D. 2 4 1 10335 Naphthalene 91-0-3 N.D. 1 5 1 10335 n-Propylenzene 103-65-1 N.D. 1 5 1 10335 fttyrene 100-42-5 N.D. 0.5 1 1 10335 fttyrene 127-18-4 N.D. 0.5 1 1 10335 fttyrene 10-8-8-3 N.D. 0.5 1 1 10335 fttyrene 10-82-1 N.D. 1 5 1 10335 ftyrene 10-82-6 N.D. 0.5 1 1 10335 ftyrene 10-82-6 N.D. 0.5 1 1 10335 ftyrene 70-0-5 N.D. 0.5 1 1 10335 ftyrene 79-01-6 N.D. 0.5 1 1 10335 ftyrene 79-01-6 N.D. 1 5 1 10335 ftyrene 79-01-6 N.D. 1 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
10335 N.phithalene 91-20-3 N.D. 1 5 1 10335 Drepopthenzene 100-42-5 N.D. 1 5 1 10335 Styrene 100-42-5 N.D. 0.5 1 1 10335 1,1,2,2-Tetrachloroethane 79-34-5 N.D. 0.5 1 1 10335 Tetrachloroethane 127-18-4 N.D. 0.5 1 1 10335 Toleane 120-82-1 N.D. 0.5 1 1 10335 1,2,3-Trichloroetnzene 87-61-6 N.D. 0.5 1 1 10335 1,1.2-Trichloroetnzene 79-01-6 N.D. 0.5 1 1 10335 1,1.2-Trichloroetnzene 79-01-6 N.D. 0.5 1 1 10335 1,2,3-Trichloroptorgane 96-18-4 N.D. 0.5 1 1 10335 1,2,4-Trimethylbenzene 95-63-6 N.D. 1 5 1 10335 1,3,5-Trimethylbenzene 95-47-6 N.D. 0.5 1 1 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
103:5 n-Tropylenzene 103-65-1 N.D. 1 5 1 103:5 Styrene 100-42-5 N.D. 0.5 1 1 103:5 1,1,2,2-Tetrachloroethane 630-30-6 N.D. 0.5 1 1 103:5 1,1,2,2-Tetrachloroethane 79-34-5 N.D. 0.5 1 1 103:5 Tetrachloroethane 127-18-4 N.D. 0.5 1 1 103:5 Toluene 108-88-3 N.D. 0.5 1 1 103:5 1,2.4-Trichlorobenzene 120-82-1 N.D. 0.5 1 1 103:5 1,1.2-Trichloroethane 79-00-5 N.D. 0.5 1 1 103:5 Trichloroethane 79-00-6 N.D. 0.5 1 1 103:5 Trichloroethane 75-69-4 N.D. 0.5 1 1 103:5 1,2.4-Trimethylbenzene 95-63-6 N.D. 1 5 1 103:5 1,2.4-Trimethylbenzene 95-63-6 N.D. 0.5 1 1 <		-					
10335Styreic100-42-5N.D.151103351,1,2,2-Tetrachloroethane630-20-6N.D.0.511103351,1,2,2-Tetrachloroethane79-34-5N.D.0.51110335Tetrachloroethane127-18-4N.D.0.511103351,2,3-Trichlorobenzene87-61-6N.D.151103351,2,3-Trichlorobenzene87-61-6N.D.151103351,2,4-Trichloroethane71-55-6N.D.0.511103351,1,1-Trichloroethane79-00-5N.D.0.511103351,2,3-Trichloroptane75-69-4N.D.0.511103351,2,3-Trichloroptane95-69-6N.D.151103351,2,3-Trichloroptane95-69-6N.D.151103351,3,5-Trimethylbenzene106-67-8N.D.151103350,41,41,4175-01-4N.D.0.511103350,41,4175-01-4N.D.0.511103350,54100111103350,544.0111103350,544.0111103350,544.011103350,544.011103350,544.011103350,544.0 <td< td=""><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td></td<>		1					
10335 1, 1, 2, 2-Tetrachloroethane 630-20-6 N.D. 0.5 1 1 10335 1, 1, 2, 2-Tetrachloroethane 79-34-5 N.D. 0.5 1 1 10335 Tetrachloroethene 107-18-4 N.D. 0.5 1 1 10335 Toluene 108-88-3 N.D. 0.5 1 1 10335 1, 2, 3-Trichlorobenzene 17-61-6 N.D. 1 5 1 10335 1, 2, 4-Trichlorobenzene 17-55-6 N.D. 0.5 1 1 10335 1, 1, 2-Trichloroethane 79-01-6 N.D. 0.5 1 1 10335 Trichloroethane 79-01-6 N.D. 0.5 1 1 10335 J., 2-Trithloroethane 75-69-4 N.D. 1 5 1 10335 J., 3-Trithehylbenzene 95-63-6 N.D. 1 1 1 10335 J., 5-Trimehylbenzene 95-63-6 N.D. 1 1 1 10335 Mip-Xylene 17060-67-8 N.D. 0.5 1		11					
103551,1,2,2-Tetrachloroethame79-34-5N.D.0.51110335Tetrachloroetheme177-18-4N.D.0.51110335Tolueme106-88-3N.D.0.511103351,2,3-Trichlorobenzene87-61-6N.D.151103351,2,4-Trichloroethame71-05-6N.D.0.511103351,1,1-Trichloroethame79-00-5N.D.0.51110335Trichlorofthame79-01-6N.D.0.51110335Trichloroetheme79-01-6N.D.0.511103351,2,3-Trichloroethame75-69-4N.D.0.511103351,2,3-Trimethylbenzene96-63-6N.D.151103351,2,3-Trimethylbenzene108-67-8N.D.151103350,2,3-Trimethylbenzene108-67-8N.D.0.511103350,5,5111111103350,5,5111111103350,5,5111111103351,3,5-Trimethylbenzene106-67-8N.D.0.511103350,47-6N.D.0.5111103350,511111103350,40100.51110335 <t< td=""><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td></t<>		-					
10335 Tetrachloroethene 127-18-4 N.D. 0.5 1 1 10335 Toluene 108-88-3 N.D. 0.5 1 1 10335 1,2,4-Trichlorobenzene 120-82-1 N.D. 1 5 1 10335 1,1.1-Trichloroethane 71-55-6 N.D. 0.5 1 1 10335 1,1.2-Trichloroethane 79-00-5 N.D. 0.5 1 1 10335 Trichloroethane 79-01-6 N.D. 0.5 1 1 10335 Trichloroethene 79-01-6 N.D. 0.5 1 1 10335 1,2,3-Trichloroethene 75-69-4 N.D. 1 5 1 10335 1,2,4-Trimethylbenzene 95-63-6 N.D. 1 5 1 10335 1,2,3-Trinethylbenzene 108-67-8 N.D. 0.5 1 1 10335 oryl tene 195601-23-1 N.D. 0.5 1 1 10335 oryl tene 195601-23-1 N.D. 0.5 1 1							
10335 Toluene 108-88-3 N.D. 0.5 1 1 10335 1,2,3-Trichlorobenzene 87-61-6 N.D. 1 5 1 10335 1,2,4-Trichlorobenzene 120-82-1 N.D. 1 5 1 10335 1,1,1-Trichlorobenzene 71-55-6 N.D. 0.5 1 1 10335 Trichlorobenzene 79-01-6 N.D. 0.5 1 1 10335 Trichloropthene 75-69-4 N.D. 0.5 1 1 10335 1,2,3-Trichloroptane 96-18-4 N.D. 1 5 1 10335 1,2,4-Trimethylbenzene 95-63-6 N.D. 1 5 1 10335 1,2,3-Trichloroptane 95-67-8 N.D. 1 1 1 10335 n,2,3-Trichloroptane 95-47-6 N.D. 0.5 1 1 10335 n-2,4-Trimethylbenzene 108-67-8 N.D. 0.5 1 1 10335 n-2,4-Trimethylbenzene 108-67-8 N.D. 0.5 1 1 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
10335 1,2,4-Trichlorobenzene 120-82-1 N.D. 1 5 1 10335 1,1,1-Trichloroethame 71-55-6 N.D. 0.5 1 1 10335 1,1,2-Trichloroethame 79-01-5 N.D. 0.5 1 1 10335 Trichlorofloromethane 79-01-6 N.D. 0.5 1 1 10335 Trichloropthane 75-69-4 N.D. 0.5 1 1 10335 1,2,3-Trimethylbenzene 95-63-6 N.D. 1 5 1 10335 1,3,5-Trimethylbenzene 100-67-8 N.D. 1 5 1 10335 0,3,5-Trimethylbenzene 175-01-4 N.D. 0.5 1 1 10335 0-Xylene 95-47-6 N.D. 0.5 1 1 10335 0-Xylene 95-47-6 N.D. 0.5 1 1 01728 TPH-GRO N. CA water C6-C12 n.a. N.D. 0.5 1 1 06024 Antimony 7440-36-0 N.D. 0.33 2.0 1 <							
10335 1,1/1-Trichloroethame 71-55-6 N.D. 0.5 1 1 10333 1,1,2-Trichloroethame 79-00-5 N.D. 0.5 1 1 10335 Trichloroethame 79-01-6 N.D. 0.5 1 1 10335 Trichloroethame 75-69-4 N.D. 0.5 1 1 10335 1,2,3-Trichloropopane 96-18-4 N.D. 1 5 1 10335 1,2,3-5-Trimethylbenzene 108-67-8 N.D. 1 5 1 10335 1,3,5-Trimethylbenzene 108-67-8 N.D. 0.5 1 1 10335 0,yllene 179601-23-1 N.D. 0.5 1 1 10335 o-Xylene 95-47-6 N.D. 0.5 1 1 10335 o-Xylene 95-47-6 N.D. 0.5 1 1 01728 TPH-GRO N. CA water C6-C12 n.a. N.D. 0.5 1 1 06024 Antimony 7440-36-0 N.D. 0.33 2.0 1							
10335 1,1,2-Trichloroethane 79-00-5 N.D. 0.5 1 1 10335 Trichlorofluoromethane 79-01-6 N.D. 0.5 1 1 10335 Trichlorofluoromethane 75-69-4 N.D. 1 5 1 10335 1,2,3-Trichloropropane 96-18-4 N.D. 1 5 1 10335 1,2,3-Trimethylbenzene 108-67-8 N.D. 1 5 1 10335 1,3,5-Trimethylbenzene 108-67-8 N.D. 0.5 1 1 10335 0,3,5-Trimethylbenzene 175-01-4 N.D. 0.5 1 1 10335 o-Xylene 95-47-6 N.D. 0.5 1 1 10335 TPH-GRO N. CA water C6-C12 n.a. N.D. 0.5 1 1 01728 TPH-GRO N. CA water C6-C12 n.a. N.D. 0.33 2.0 1 06024 Antimony 7440-36-0 N.D. 0.33 2.0 1 06025 Barium 7440-38-2 5.5 0.54 4.0 <							
10335 Trichloroethene 79-01-6 N.D. 0.5 1 1 10335 Trichlorofluoromethane 75-69-4 N.D. 0.5 1 1 10335 1,2,3-Trichloropopane 96-18-4 N.D. 1 5 1 10335 1,2,4-Trimethylbenzene 95-63-6 N.D. 1 5 1 10335 1,3,5-Trimethylbenzene 95-63-6 N.D. 1 5 1 10335 Vinyl Chloride 75-01-4 N.D. 0.5 1 1 10335 o-Xylene 179601-23-1 N.D. 0.5 1 1 10335 o-Xylene 95-47-6 N.D. 0.5 1 1 01728 TPH-GRO N. CA water C6-C12 n.a. N.D. 0.5 100 1 06024 Antimony 7440-36-0 N.D. 0.33 2.0 1 06025 Arsenic 7440-39-3 184 0.92 4.0 1 06026 Barium 7440-43-9 N.D. 0.701 1.0 1							
10335 Trichlorofluoromethane 75-69-4 N.D. 0.5 1 1 10335 1,2,3-Trichloropropane 96-18-4 N.D. 1 5 1 10335 1,2,4-Trimethylbenzene 95-63-6 N.D. 1 5 1 10335 1,3,5-Trimethylbenzene 108-67-8 N.D. 0.5 1 1 10335 winyl Chloride 75-01-4 N.D. 0.5 1 1 10335 oryl ylene 179601-23-1 N.D. 0.5 1 1 10335 o-Xylene 95-47-6 N.D. 0.5 1 1 01728 TPH-GRO N. CA water C6-C12 n.a. N.D. 50 100 1 06024 Antimony 7440-36-0 N.D. 0.33 2.0 1 06025 Arsenic 7440-38-2 5.5 0.54 4.0 1 06026 Barium 7440-43-9 N.D. 0.071 1.0 1 06028 Cadmium 7440-43-9 N.D. 0.23 1.0 1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
10335 1,2,3-Trichloropropane 96-18-4 N.D. 1 5 1 10335 1,2,4-Trimethylbenzene 95-63-6 N.D. 1 5 1 10335 1,3,5-Trimethylbenzene 108-67-8 N.D. 1 5 1 10335 Vinyl Chloride 75-01-4 N.D. 0.5 1 1 10335 o-Xylene 95-47-6 N.D. 0.5 1 1 10335 o-Xylene 95-47-6 N.D. 0.5 1 1 01728 TPH-GRO N. CA water C6-C12 n.a. N.D. 0.33 2.0 1 06024 Antimony 7440-36-0 N.D. 0.33 2.0 1 06025 Arsenic 7440-38-2 5.5 0.54 4.0 1 06027 Beryllium 7440-47-3 N.D. 0.071 1.0 1 06031 Chromium 7440-47-3 N.D. 0.70 4.0 1 06032 Cobalt 7440-47-3 N.D. 0.10 1.0 1 06032							
10335 1,2,4-Trimethylbenzene 95-63-6 N.D. 1 5 1 10335 1,3,5-Trimethylbenzene 108-67-8 N.D. 1 5 1 10335 1,3,5-Trimethylbenzene 108-67-8 N.D. 0.5 1 1 10335 m+p-Xylene 179601-23-1 N.D. 0.5 1 1 10335 o-Xylene 95-47-6 N.D. 0.5 1 1 01728 TPH-GRO N. CA water C6-C12 n.a. N.D. 50 100 1 Metals SW-846 6020 ug/l ug/l ug/l 1 06024 Antimony 7440-36-0 N.D. 0.33 2.0 1 06025 Arsenic 7440-38-2 5.5 0.54 4.0 1 06026 Barium 7440-43-9 N.D. 0.071 1.0 1 06031 Chromium 7440-43-9 N.D. 0.770 4.0 1 06032 Cadmium 7440-43-9 N.D. 0.701 1.0 1 06032							
10335 1,3,5-Trimethylbenzene 108-67-8 N.D. 1 5 1 10335 Vinyl Chloride 75-01-4 N.D. 0.5 1 1 10335 orbp-Xylene 179601-23-1 N.D. 0.5 1 1 10335 o-Xylene 95-47-6 N.D. 0.5 1 1 01728 TPH-GRO N. CA water C6-C12 n.a. N.D. 50 100 1 06024 Antimony 7440-36-0 N.D. 0.33 2.0 1 06025 Arsenic 7440-38-2 5.5 0.54 4.0 1 06026 Barium 7440-39-3 184 0.92 4.0 1 06027 Beryllium 7440-43-9 N.D. 0.23 1.0 1 06031 Chromium 7440-48-4 0.15 J 0.10 1 1 06032 Cobalt 7440-48-4 0.15 J 0.10 1 1 06033 Copper 7440-48-7 N.D. 0.25 1.0 1 1 <td></td> <td></td> <td></td> <td>N.D.</td> <td>1</td> <td></td> <td></td>				N.D.	1		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10335		108-67-8	N.D.	1	5	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10335	Vinyl Chloride	75-01-4	N.D.	0.5	1	1
GC Volatiles SW-846 8015B ug/l ug/l ug/l ug/l 01728 TPH-GRO N. CA water C6-C12 n.a. N.D. 50 100 1 Metals SW-846 6020A ug/l ug/l ug/l ug/l 06024 Antimony 7440-36-0 N.D. 0.33 2.0 1 06025 Arsenic 7440-38-2 5.5 0.54 4.0 1 06026 Barium 7440-43-9 N.D. 0.071 1.0 1 06027 Beryllium 7440-43-9 N.D. 0.071 1.0 1 06026 Barium 7440-43-9 N.D. 0.071 1.0 1 06028 Cadmium 7440-43-9 N.D. 0.70 4.0 1 06031 Chromium 7440-43-9 N.D. 0.10 1.0 1 06032 Cobalt 7440-48-4 0.15 J 0.10 1.0 1 06035 Lead 7439-92-1 0.32 J 0.40 4.0 1 06035 Lead	10335		179601-23-1	N.D.	0.5	1	1
Oliver TPH-GRO N. CA water C6-C12 n.a. N.D. 50 100 1 Metals SW-846 6020A ug/l ug/l ug/l ug/l 06024 Antimony 7440-36-0 N.D. 0.33 2.0 1 06025 Arsenic 7440-38-2 5.5 0.54 4.0 1 06026 Barium 7440-41-7 N.D. 0.071 1.0 1 06027 Beryllium 7440-43-9 N.D. 0.071 1.0 1 06026 Barium 7440-43-9 N.D. 0.071 1.0 1 06028 Cadmium 7440-43-9 N.D. 0.70 4.0 1 06031 Chromium 7440-48-4 0.15 J 0.10 1 1 06032 Cobalt 7440-48-4 0.15 J 0.10 1.0 1 06033 Copper 7440-58 0.98 J 0.40 4.0 1 06038 Molybdenum 7439-98-7 1.0 0.13 2.0 1 1	10335	o-Xylene	95-47-6	N.D.	0.5	1	1
Metals SW-846 6020A ug/l ug/l ug/l ug/l 06024 Antimony 7440-36-0 N.D. 0.33 2.0 1 06025 Arsenic 7440-38-2 5.5 0.54 4.0 1 06026 Barium 7440-39-3 184 0.922 4.0 1 06027 Beryllium 7440-41-7 N.D. 0.071 1.0 1 06028 Cadmium 7440-43-9 N.D. 0.23 1.0 1 06028 Cadmium 7440-47-3 N.D. 0.70 4.0 1 06031 Chromium 7440-48-4 0.15 J 0.10 1.0 1 06032 Cobalt 7440-68-8 0.98 J 0.40 4.0 1 06033 Copper 7440-20-8 0.92 J 1 1 06035 Lead 7440-22-0 1.2 J 0.13 2.0 1 06038 Molybdenum	GC Vol	latiles SW-846	8015B	ug/l	ug/l	ug/l	
06024Antimony7440-36-0N.D.0.332.0106025Arsenic7440-38-25.50.544.0106026Barium7440-39-31840.924.0106027Beryllium7440-41-7N.D.0.0711.0106028Cadmium7440-43-9N.D.0.231.0106031Chromium7440-47-3N.D.0.704.0106032Cobalt7440-48-40.15J0.101.0106033Copper7440-50-80.98J0.404.0106035Lead7439-92-10.32J0.132.0106039Nickel7440-02-01.2J0.944.0106041Selenium7782-49-2N.D.0.504.0106045Thallium7440-22-4N.D.0.111.0106048Vanadium7440-62-2N.D.0.221.01	01728	TPH-GRO N. CA water C6-C12	n.a.	N.D.	50	100	1
06025 Arsenic 7440-38-2 5.5 0.54 4.0 1 06026 Barium 7440-39-3 184 0.92 4.0 1 06027 Beryllium 7440-41-7 N.D. 0.071 1.0 1 06028 Cadmium 7440-41-7 N.D. 0.23 1.0 1 06028 Cadmium 7440-43-9 N.D. 0.70 4.0 1 06031 Chromium 7440-47-3 N.D. 0.70 4.0 1 06032 Cobalt 7440-47-3 N.D. 0.10 1.0 1 06033 Copper 7440-48-4 0.15 J 0.10 1.0 1 06035 Lead 7440-50-8 0.98 J 0.40 4.0 1 06035 Lead 7439-92-1 0.32 J 0.13 2.0 1 06039 Nickel 7440-02-0 1.2 J 0.94 4.0 1 <t< td=""><td>Metals</td><td>s SW-846</td><td>6020A</td><td>ug/l</td><td>ug/l</td><td>ug/l</td><td></td></t<>	Metals	s SW-846	6020A	ug/l	ug/l	ug/l	
06026 Barium 7440-39-3 184 0.92 4.0 1 06027 Beryllium 7440-41-7 N.D. 0.071 1.0 1 06028 Cadmium 7440-43-9 N.D. 0.23 1.0 1 06031 Chromium 7440-47-3 N.D. 0.70 4.0 1 06032 Cobalt 7440-48-4 0.15 J 0.10 1.0 1 06033 Copper 7440-50-8 0.98 J 0.40 4.0 1 06035 Lead 7439-92-1 0.32 J 0.13 2.0 1 06038 Molybdenum 7439-98-7 1.0 0.255 1.0 1 06039 Nickel 7440-02-0 1.2 J 0.94 4.0 1 06041 Selenium 7782-49-2 N.D. 0.50 4.0 1 06042 Silver 7440-22-4 N.D. 0.11 1.0 1 06048 Vanadium 7440-22-0 N.D. 0.15 1.0 1	06024	Antimony	7440-36-0	N.D.	0.33	2.0	1
06027 Beryllium 7440-41-7 N.D. 0.071 1.0 1 06028 Cadmium 7440-43-9 N.D. 0.23 1.0 1 06031 Chromium 7440-47-3 N.D. 0.70 4.0 1 06032 Cobalt 7440-47-3 N.D. 0.70 4.0 1 06032 Cobalt 7440-48-4 0.15 J 0.10 1.0 1 06033 Copper 7440-50-8 0.98 J 0.40 4.0 1 06035 Lead 7439-92-1 0.32 J 0.13 2.0 1 06038 Molybdenum 7439-98-7 1.0 0.25 1.0 1 06039 Nickel 7440-02-0 1.2 J 0.94 4.0 1 06041 Selenium 7782-49-2 N.D. 0.50 4.0 1 06042 Silver 7440-22-4 N.D. 0.11 1.0 1	06025	Arsenic	7440-38-2	5.5	0.54	4.0	1
O6028 Cadmium 7440-43-9 N.D. 0.23 1.0 1 06031 Chromium 7440-47-3 N.D. 0.70 4.0 1 06032 Cobalt 7440-48-4 0.15 J 0.10 1.0 1 06033 Copper 7440-50-8 0.98 J 0.40 4.0 1 06035 Lead 7439-92-1 0.32 J 0.13 2.0 1 06038 Molybdenum 7439-92-7 1.0 0.25 1.0 1 06039 Nickel 7440-02-0 1.2 J 0.94 4.0 1 06041 Selenium 7782-49-2 N.D. 0.50 4.0 1 06042 Silver 7440-22-4 N.D. 0.11 1.0 1 06045 Thallium 7440-28-0 N.D. 0.15 1.0 1 06045 Thallium 7440-28-0 N.D. 0.15 1.0 1	06026	Barium	7440-39-3	184	0.92	4.0	1
06031 Chromium 7440-47-3 N.D. 0.70 4.0 1 06032 Cobalt 7440-48-4 0.15 J 0.10 1.0 1 06033 Copper 7440-50-8 0.98 J 0.40 4.0 1 06035 Lead 7439-92-1 0.32 J 0.13 2.0 1 06038 Molybdenum 7439-98-7 1.0 0.25 1.0 1 06039 Nickel 7440-02-0 1.2 J 0.94 4.0 1 06041 Selenium 7782-49-2 N.D. 0.50 4.0 1 06042 Silver 7440-22-4 N.D. 0.11 1.0 1 06045 Thallium 7440-28-0 N.D. 0.15 1.0 1 06048 Vanadium 7440-62-2 N.D. 0.12 1.0 1	06027	Beryllium	7440-41-7	N.D.	0.071	1.0	1
06032 Cobalt 7440-48-4 0.15 J 0.10 1.0 1 06033 Copper 7440-50-8 0.98 J 0.40 4.0 1 06035 Lead 7439-92-1 0.32 J 0.13 2.0 1 06038 Molybdenum 7439-98-7 1.0 0.25 1.0 1 06039 Nickel 740-02-0 1.2 J 0.94 4.0 1 06041 Selenium 7782-49-2 N.D. 0.50 4.0 1 06045 Stilver 7440-22-4 N.D. 0.11 1.0 1 06045 Thallium 7440-28-0 N.D. 0.15 1.0 1 06045 Thallium 7440-28-0 N.D. 0.15 1.0 1 06048 Vanadium 7440-62-2 N.D. 0.22 1.0 1	06028	Cadmium	7440-43-9	N.D.	0.23	1.0	1
06033 Copper 7440-50-8 0.98 J 0.40 4.0 1 06035 Lead 7439-92-1 0.32 J 0.13 2.0 1 06038 Molybdenum 7439-98-7 1.0 0.25 1.0 1 06039 Nickel 7440-02-0 1.2 J 0.94 4.0 1 06041 Selenium 7782-49-2 N.D. 0.50 4.0 1 06042 Silver 7440-22-4 N.D. 0.11 1.0 1 06045 Thallium 7440-22-4 N.D. 0.15 1.0 1 06048 Vanadium 7440-62-2 N.D. 0.15 1.0 1							
06035 Lead 7439-92-1 0.32 J 0.13 2.0 1 06038 Molybdenum 7439-98-7 1.0 0.25 1.0 1 06039 Nickel 7440-02-0 1.2 J 0.94 4.0 1 06041 Selenium 7782-49-2 N.D. 0.50 4.0 1 06042 Silver 7440-22-4 N.D. 0.11 1.0 1 06045 Thallium 7440-22-4 N.D. 0.15 1.0 1 06048 Vanadium 7440-62-2 N.D. 0.12 1.0 1							
06038Molybdenum7439-98-71.00.251.0106039Nickel7440-02-01.2J0.944.0106041Selenium7782-49-2N.D.0.504.0106042Silver7440-22-4N.D.0.111.0106045Thallium7440-28-0N.D.0.151.0106048Vanadium7440-62-2N.D.0.221.01							
06039Nickel7440-02-01.2J0.944.0106041Selenium7782-49-2N.D.0.504.0106042Silver7440-22-4N.D.0.111.0106045Thallium7440-28-0N.D.0.151.0106048Vanadium7440-62-2N.D.0.221.01							
06041Selenium7782-49-2N.D.0.504.0106042Silver7440-22-4N.D.0.111.0106045Thallium7440-28-0N.D.0.151.0106048Vanadium7440-62-2N.D.0.221.01		1					
06042 Silver 7440-22-4 N.D. 0.11 1.0 1 06045 Thallium 7440-28-0 N.D. 0.15 1.0 1 06048 Vanadium 7440-62-2 N.D. 0.22 1.0 1							
06045 Thallium 7440-28-0 N.D. 0.15 1.0 1 06048 Vanadium 7440-62-2 N.D. 0.22 1.0 1							
06048 Vanadium 7440-62-2 N.D. 0.22 1.0 1							
110 00 0 N.D. 7.1 50.0 1	06049	21IIC	/440-66-6	м	/.4	30.0	Ť
SW-846 7470A ug/l ug/l ug/l		SW-846	7470A	ug/l	ug/l	ug/l	
00259 Mercury 7439-97-6 N.D. 0.050 0.20 1	00259	Mercury	7439-97-6	N.D.	0.050	0.20	1

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description:	EFF-W-150902 Grab Groundwater	LL Sample	#	WW 8034108
	Facility# 95607 CRAW	LL Group	#	1590153
	5269 Crow Canyon Rd-Castro T0600100344	Account	#	10880

Project Name: 95607

Collected:	09/02/2015 09	9:00 by GE	ChevronTexaco
			6001 Bollinger Canyon Rd L4310
Submitted:	09/03/2015 09	9:30	San Ramon CA 94583
Reported:	09/23/2015 10	0:05	

CCVEF

CAT No.	Analysis Name		CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
Wet C	hemistry S	SW-846	9012A	ug/l	ug/l	ug/l	
08255	Total Cyanide (water))	57-12-5	N.D.	5.0	10	1
	\$	SW-846	9066	ug/l	ug/l	ug/l	
02393	Phenols (water)		n.a.	N.D.	15	40	1
	1	EPA 166	42	ug/l	ug/l	ug/l	
08079	HEM (oil & grease)		n.a.	N.D.	1,400	5,000	1

General Sample Comments

CA ELAP Lab Certification No. 2792

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

	Laboratory Sample Analysis Record							
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor
10335	8260 Full List w/ Sep. Xylenes	SW-846 8260B	1	W152522AA	09/10/2015	09:51	Stephanie A Selis	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	W152522AA	09/10/2015	09:51	Stephanie A Selis	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	15252B20A	09/10/2015	20:59	Brett W Kenyon	1
01146	GC VOA Water Prep	SW-846 5030B	1	15252B20A	09/10/2015	20:59	Brett W Kenyon	1
06024	Antimony	SW-846 6020A	1	152470639001A	09/09/2015	07:37	Choon Y Tian	1
06025	Arsenic	SW-846 6020A	1	152470639001A	09/09/2015	07:37	Choon Y Tian	1
06026	Barium	SW-846 6020A	1	152470639001D	09/09/2015	07:37	Choon Y Tian	1
06027	Beryllium	SW-846 6020A	1	152470639001A	09/09/2015	07:37	Choon Y Tian	1
06028	Cadmium	SW-846 6020A	1	152470639001A	09/09/2015	07:37	Choon Y Tian	1
06031	Chromium	SW-846 6020A	1	152470639001A	09/09/2015	07:37	Choon Y Tian	1
06032	Cobalt	SW-846 6020A	1	152470639001A	09/09/2015	07:37	Choon Y Tian	1
06033	Copper	SW-846 6020A		152470639001A	09/09/2015	07:37	Choon Y Tian	1
06035	Lead	SW-846 6020A	1	152470639001A	09/09/2015	07:37	Choon Y Tian	1
06038	Molybdenum	SW-846 6020A	1	152470639001C	09/09/2015	07:37	Choon Y Tian	1
06039	Nickel	SW-846 6020A	1	152470639001A	09/09/2015	07:37	Choon Y Tian	1
06041	Selenium	SW-846 6020A	1	152470639001B	09/09/2015	07:37	Choon Y Tian	1
06042	Silver	SW-846 6020A	1	152470639001A	09/09/2015	07:37	Choon Y Tian	1
06045	Thallium	SW-846 6020A	1	152470639001A	09/09/2015	07:37	Choon Y Tian	1
06048	Vanadium	SW-846 6020A	1	152470639001A	09/09/2015	07:37	Choon Y Tian	1
06049	Zinc	SW-846 6020A	1	152470639001A	09/09/2015	07:37	Choon Y Tian	1
00259	Mercury	SW-846 7470A	1	152515713005	09/10/2015	10:04	Damary Valentin	1
10639	ICPMS - Water, 3020A - U4	SW-846 3010A modified	1	152470639001	09/08/2015	09:46	James L Mertz	1
05713	WW SW846 Hg Digest	SW-846 7470A	1	152515713005	09/09/2015	10:06	James L Mertz	1
08255	Total Cyanide (water)	SW-846 9012A	1	15254117101A	09/11/2015	13:27	Venia B McFadden	1
02393	Phenols (water)	SW-846 9066	1	15252120101A	09/09/2015	18:58	Venia B McFadden	1

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: EFF-W-150902 Grab Groundwater Facility# 95607 CRAW 5269 Crow Canyon Rd-Castro T0600100344

LL Sample # WW 8034108 LL Group # 1590153 Account # 10880

Project Name: 95607

Collected:	09/02/2015	09:00	by GB
------------	------------	-------	-------

Submitted: 09/03/2015 09:30 Reported: 09/23/2015 10:05 ChevronTexaco 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

CCVEF

Laboratory Sample Analysis Record									
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor		
08256	Cyanide Water Distillation	SW-846 9012A	1	15254117101A	09/11/2015 10:25	Nancy J Shoop	1		
08123	Phenol Distillation (SW-846)	SW-846 9065	1	15252120101A	09/09/2015 09:55	Nancy J Shoop	1		
08079	HEM (oil & grease)	EPA 1664A	1	15254807901A	09/11/2015 16:56	Michelle L Lalli	1		

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description	: MID-1-W-150902 Grab Groundwater	LL Sample	#	WW 8034110
	Facility# 95607 CRAW	LL Group	#	1590153
	5269 Crow Canyon Rd-Castro T0600100344	Account	#	10880

Project Name: 95607

Collected:	09/02/2015 09:20) by GB	ChevronTexaco
			6001 Bollinger Canyon Rd L4310
Submitted:	09/03/2015 09:30)	San Ramon CA 94583
Reported:	09/23/2015 10:05	5	

CCVM1

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-84	46 8260B	ug/l	ug/l	ug/l	
10945	Benzene	71-43-2	N.D.	0.5	1	1
10945	Ethylbenzene	100-41-4	N.D.	0.5	1	1
10945	Methyl Tertiary Butyl Ethe	er 1634-04-4	N.D.	0.5	1	1
10945	Toluene	108-88-3	N.D.	0.5	1	1
10945	Xylene (Total)	1330-20-7	N.D.	0.5	1	1
GC Vol	latiles SW-84	46 8015B	ug/l	ug/l	ug/l	
01728	TPH-GRO N. CA water C6-C12	n.a.	N.D.	50	100	1

General Sample Comments

CA ELAP Lab Certification No. 2792

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10945	BTEX/MTBE	SW-846 8260B	1	P152542AA	09/11/2015 12:17	Brett W Kenyon	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	P152542AA	09/11/2015 12:17	Brett W Kenyon	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	15252B20A	09/10/2015 21:27	Brett W Kenyon	1
01146	GC VOA Water Prep	SW-846 5030B	1	15252B20A	09/10/2015 21:27	Brett W Kenyon	1

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description:	INF-W-150902 Grab Groundwater	LL	Sample	#	WW 80341	L11
	Facility# 95607 CRAW	$\mathbf{L}\mathbf{L}$	Group	#	1590153	
	5269 Crow Canyon Rd-Castro T0600100344	Acc	ount	#	10880	

Project Name: 95607

Collected:	09/02/2015 09:3	0 by GB	ChevronTexaco
			6001 Bollinger Canyon Rd L4310
Submitted:	09/03/2015 09:3	0	San Ramon CA 94583
Reported:	09/23/2015 10:0	5	

CCVIN

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-84	5 8260B	ug/l	ug/l	ug/l	
10945	Benzene	71-43-2	120	0.5	1	1
10945	Ethylbenzene	100-41-4	2	0.5	1	1
10945	Methyl Tertiary Butyl Ether	1634-04-4	2	0.5	1	1
10945	Toluene	108-88-3	3	0.5	1	1
10945	Xylene (Total)	1330-20-7	14	0.5	1	1
GC Vol	latiles SW-84	6 8015B	ug/l	ug/l	ug/l	
01728	TPH-GRO N. CA water C6-C12	n.a.	1,300	50	100	1

General Sample Comments

CA ELAP Lab Certification No. 2792

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10945	BTEX/MTBE	SW-846 8260B	1	P152542AA	09/11/2015 12:43	Brett W Kenyon	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	P152542AA	09/11/2015 12:43	Brett W Kenyon	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	15252B20A	09/10/2015 21:54	Brett W Kenyon	1
01146	GC VOA Water Prep	SW-846 5030B	1	15252B20A	09/10/2015 21:54	Brett W Kenyon	1

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: QA-T-150902 NA Water Facility# 95607 CRAW 5269 Crow Canyon Rd-Castro T0600100344

LL Sample # WW 8034112 LL Group # 1590153 Account # 10880

Project Name: 95607

Collected: 09/02/2015

Submitted: 09/03/2015 09:30 Reported: 09/23/2015 10:05

CCVTB

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-84	5 8260B	ug/l	ug/l	ug/l	
10945	Benzene	71-43-2	N.D.	0.5	1	1
10945	Ethylbenzene	100-41-4	N.D.	0.5	1	1
10945	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	1	1
10945	Toluene	108-88-3	N.D.	0.5	1	1
10945	Xylene (Total)	1330-20-7	N.D.	0.5	1	1
GC Vol	latiles SW-84	5 8015B	ug/l	ug/l	ug/l	
01728	TPH-GRO N. CA water C6-C12	n.a.	N.D.	50	100	1

ChevronTexaco

San Ramon CA 94583

6001 Bollinger Canyon Rd L4310

General Sample Comments

CA ELAP Lab Certification No. 2792

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10945	BTEX/MTBE	SW-846 8260B	1	D152541AA	09/11/2015 14:15	Daniel H Heller	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	D152541AA	09/11/2015 14:15	Daniel H Heller	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	15252B20A	09/10/2015 13:38	Brett W Kenyon	1
01146	GC VOA Water Prep	SW-846 5030B	1	15252B20A	09/10/2015 13:38	Brett W Kenyon	1

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Group Number: 1590153

Client Name: ChevronTexaco Reported: 09/23/2015 10:05

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

Laboratory Compliance Quality Control

<u>Analysis Name</u>	Blank <u>Result</u>	Blank MDL**	Blank <u>LOO</u>	Report <u>Units</u>	LCS <u>%REC</u>	LCSD <u>%REC</u>	LCS/LCSD <u>Limits</u>	<u>RPD</u>	RPD <u>Max</u>
Batch number: D152541AA	Sample nu	mber(s): 8	034112						
Benzene	N.D.	0.5	1	ug/l	94		78-120		
Ethylbenzene	N.D.	0.5	1	ug/l	88		78-120		
Methyl Tertiary Butyl Ether	N.D.	0.5	1	ug/l	89		75-120		
Toluene	N.D.	0.5	1	ug/l	90		80-120		
Xylene (Total)	N.D.	0.5	1	ug/l	90		80-120		
Batch number: P152542AA	Sample nu	mber(s): 8	034110-80	34111					
Benzene	N.D.	0.5	1	uq/l	98	99	78-120	1	30
Ethylbenzene	N.D.	0.5	1	ug/l	96	96	78-120	1	30
Methyl Tertiary Butyl Ether	N.D.	0.5	1	ug/l	106	109	75-120	2	30
Toluene	N.D.	0.5	1	ug/l	96	97	80-120	1	30
Xylene (Total)	N.D.	0.5	1	ug/l	99	100	80-120	1	30
Batch number: W152522AA	Sample nu	mber(s): 8	034108						
Acetone	N.D.	6.	20	ug/l	109		58-138		
t-Amyl methyl ether	N.D.	0.5	1	ug/1	96		75-120		
Benzene	N.D.	0.5	1	ug/l	105		78-120		
Bromobenzene	N.D.	1.	5	ug/1 ug/1	103		80-120		
Bromochloromethane	N.D.	1.	5	ug/1 ug/1	94		80-120		
Bromodichloromethane	N.D.	0.5	1	ug/1 ug/1	95		73-120		
Bromoform	N.D.	0.5	4	ug/1 ug/1	97		61-121		
Bromomethane	N.D.	0.5	1	ug/1 ug/1	88		53-130		
2-Butanone	N.D.	3.	10	ug/1 ug/1	103		62-131		
		з. 5.	20		103		78-121		
t-Butyl alcohol	N.D.			ug/l	90				
n-Butylbenzene	N.D.	1.	5	ug/l			68-120		
sec-Butylbenzene	N.D.	1.	5	ug/l	95		75-120		
tert-Butylbenzene	N.D.	1.	5	ug/l	95		74-121		
Carbon Disulfide	N.D.	1.	5	ug/l	93		58-126		
Carbon Tetrachloride	N.D.	0.5	1	ug/l	90		74-130		
Chlorobenzene	N.D.	0.5	1	ug/l	105		80-120		
Chloroethane	N.D.	0.5	1	ug/l	96		56-120		
2-Chloroethyl Vinyl Ether	N.D.	2.	10	ug/l	93		42-152		
Chloroform	N.D.	0.5	1	ug/l	102		80-120		
Chloromethane	N.D.	0.5	1	ug/l	93		65-129		
2-Chlorotoluene	N.D.	1.	5	ug/l	100		78-121		
4-Chlorotoluene	N.D.	1.	5	ug/l	98		78-120		
1,2-Dibromo-3-chloropropane	N.D.	2.	5	ug/l	80		55-131		
Dibromochloromethane	N.D.	0.5	1	ug/l	96		72-120		
1,2-Dibromoethane	N.D.	0.5	1	ug/l	104		80-120		
Dibromomethane	N.D.	0.5	1	ug/l	99		80-120		
1,2-Dichlorobenzene	N.D.	1.	5	ug/l	100		80-120		
1,3-Dichlorobenzene	N.D.	1.	5	ug/l	99		80-120		
1,4-Dichlorobenzene	N.D.	1.	5	ug/l	100		80-120		

*- Outside of specification

**-This limit was used in the evaluation of the final result for the blank

(1) The result for one or both determinations was less than five times the LOQ.

Analysis Report

Group Number: 1590153

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: ChevronTexaco Reported: 09/23/2015 10:05

Blank Blank Blank Report LCS LCSD LCS/LCSD RPD Analysis Name Result MDL** LOQ Units %REC %REC <u>Limits</u> RPD Max Dichlorodifluoromethane N.D. 0.5 1 ug/l 76 55-127 1,1-Dichloroethane 0.5 1 107 80-120 N.D. ug/l 1,2-Dichloroethane ug/l 100 72-127 N.D. 0.5 1 1,1-Dichloroethene 0.5 1 105 76-124 N.D. ug/l cis-1,2-Dichloroethene N.D. 0.5 1 ug/l 101 80-120 trans-1,2-Dichloroethene N.D. 0.5 1 ug/l 104 80-120 1,2-Dichloropropane ug/l 80-120 N.D. 0.5 1 109 1,3-Dichloropropane N.D. 0.5 1 ug/l 107 80-120 ug/l 71-125 2,2-Dichloropropane N.D. 0.5 1 91 1,1-Dichloropropene N.D. 1. 5 ug/l 96 80-126 uq/l cis-1,3-Dichloropropene 0.5 99 80-120 N.D. 1 trans-1,3-Dichloropropene 0.5 1 ug/l 103 76-120 N.D. ug/l Ethanol N.D. 50. 250 107 49-144 Ethyl t-butyl ether N.D. 0.5 1 uq/1100 69-120 Ethylbenzene ug/l 78-120 N.D. 0.5 105 1 Freon 113 2. 10 uq/1100 67-127 N.D. ug/l Hexachlorobutadiene 2. 82 60-120 N.D. 5 2-Hexanone N.D. 10 ug/l 108 59 - 1273. ug/l di-Isopropyl ether 0.5 117 70-124 N.D. 1 Isopropylbenzene N.D. 1. 5 ug/l 102 80-120 76-120 p-Isopropyltoluene 5 ug/l N.D. 1. 91 Methyl Tertiary Butyl Ether ug/l 100 0.5 75-120 N.D. 1 4-Methyl-2-pentanone Methylene Chloride 10 ug/l 59-130 N.D. 3. 107 77-121 N.D. 2. 4 ug/l 106 59-120 Naphthalene N.D. 1. 5 ug/l 73 n-Propylbenzene N.D. 1. 5 ug/l 103 75-130 N.D. Styrene 1. 5 ug/l 98 80-120 1, 1, 1, 2-Tetrachloroethane N.D. 0.5 1 ug/l 98 80-120 1,1,2,2-Tetrachloroethane N.D. 0.5 1 ug/l 103 65-131 ug/l Tetrachloroethene N.D. 0.5 1 105 80-122 Toluene N.D. 0.5 1 ug/l 107 80-120 ug/l 1,2,3-Trichlorobenzene N.D. 5 74 69-120 1. N.D. ug/l 1,2,4-Trichlorobenzene 1. 5 82 73-120 1,1,1-Trichloroethane N.D. 0.5 1 ug/l 88 66-126 1,1,2-Trichloroethane N.D. 0.5 1 ug/l 103 80-120 Trichloroethene N.D. 0.5 1 ug/l 102 80-120 Trichlorofluoromethane 0.5 1 89 60-142 N.D. ug/l 1,2,3-Trichloropropane N.D. 1. 5 ug/l 103 76-120 5 97 75-120 1,2,4-Trimethylbenzene N.D. 1. ug/l ug/l 1,3,5-Trimethylbenzene 5 97 80-120 N.D. 1. Vinyl Chloride N.D. 0.5 1 ug/l 92 69-120 ug/l m+p-Xylene N.D. 0.5 1 103 80-120 o-Xylene N.D. 0.5 1 ug/l 101 79-120 Batch number: 15252B20A Sample number(s): 8034108,8034110-8034112 TPH-GRO N. CA water C6-C12 N.D. 50. 100 ug/l 98 94 71-138 4 30 Batch number: 152470639001A Sample number(s): 8034108 Antimony N.D. 0.33 2.0 uq/l 91 80-120 ug/l 80-120 Arsenic N.D. 0.54 4.0 104 Beryllium 0.071 1.0 ug/l 106 80-120 N.D. ug/l Cadmium 99 80-120 N.D. 0.23 1.0 ug/l 100 Chromium N.D. 0.70 4.0 80-120 ug/l 80-120 Cobalt. N.D. 0.10 1.0 100 ug/l 0.40 100 80-120 Copper N.D. 4.0 Lead N.D. 0.13 2.0 uq/l 104 80-120

*- Outside of specification

**-This limit was used in the evaluation of the final result for the blank

(1) The result for one or both determinations was less than five times the LOQ.

Analysis Report

Group Number: 1590153

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: ChevronTexaco Reported: 09/23/2015 10:05

Reporteda. 09/29/2019 10.00	Blank	Blank	Blank	Report	LCS	LCSD	LCS/LCSD		RPD
<u>Analysis Name</u> Nickel Silver Thallium Vanadium Zinc	Result N.D. N.D. N.D. N.D. N.D. N.D.	<u>MDL**</u> 0.94 0.11 0.15 0.22 7.4	LOO 4.0 1.0 1.0 30.0	Units ug/l ug/l ug/l ug/l ug/l	<u>%REC</u> 100 101 103 101 100	<u>%REC</u>	Limits 80-120 80-120 80-120 80-120 80-120 80-120	<u>RPD</u>	<u>Max</u>
Batch number: 152470639001B Selenium	Sample numk N.D.	per(s): 80 0.50	034108 4.0	ug/l	101		80-120		
Batch number: 152470639001C Molybdenum	Sample numk N.D.	per(s): 80 0.25	034108 1.0	ug/l	99		80-120		
Batch number: 152470639001D Barium	Sample numk N.D.	oer(s): 80 0.92	034108 4.0	ug/l	104		80-120		
Batch number: 152515713005 Mercury	Sample numk N.D.	oer(s): 80 0.050	0.20	ug/l	96		80-120		
Batch number: 15252120101A Phenols (water)	Sample numk N.D.	per(s): 80 15.	034108 40	ug/l	103		82-109		
Batch number: 15254117101A Total Cyanide (water)	Sample numk N.D.	ber(s): 80 5.0	034108 10	ug/l	106		90-110		
Batch number: 15254807901A HEM (oil & grease)	Sample numk N.D.	per(s): 80 1,400.	034108 5,000	ug/l	85	90	78-114	6	11

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

	MS	MSD	MS/MSD		RPD	BKG	DUP	DUP	Dup RPD
<u>Analysis Name</u>	<u>%REC</u>	<u>%REC</u>	<u>Limits</u>	<u>RPD</u>	<u>MAX</u>	<u>Conc</u>	Conc	RPD	<u>Max</u>
Batch number: D152541AA	Sample	number(s)	: 8034112	UNSPK:	P0397	66			
Benzene	90	103	78-120	14	30				
Ethylbenzene	85	98	78-120	14	30				
Methyl Tertiary Butyl Ether	84	95	75-120	13	30				
Toluene	87	100	80-120	14	30				
Xylene (Total)	87	99	80-120	13	30				
Batch number: W152522AA	Sample	number(s)	: 8034108	UNSPK:	P0291	03			
Acetone	91	97	58-138	6	30				
t-Amyl methyl ether	89	92	75-120	4	30				
Benzene	110	112	78-120	1	30				
Bromobenzene	106	105	80-120	1	30				
Bromochloromethane	89	90	80-120	2	30				
Bromodichloromethane	95	96	73-120	1	30				
Bromoform	90	91	61-121	1	30				
Bromomethane	94	93	53-130	1	30				
2-Butanone	78	79	62-131	2	30				
t-Butyl alcohol	83	89	78-121	7	30				
n-Butylbenzene	96	99	68-120	3	30				

*- Outside of specification

**-This limit was used in the evaluation of the final result for the blank

(1) The result for one or both determinations was less than five times the LOQ.

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: ChevronTexaco Reported: 09/23/2015 10:05 Group Number: 1590153

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

	MS	MSD	MS/MSD		RPD	BKG	DUP	DUP	Dup RPD
<u>Analysis Name</u>	%REC	%REC	Limits	RPD	MAX	Conc	Conc	RPD	Max
sec-Butylbenzene	106	108	75-120	3	30				
tert-Butylbenzene	103	103	74-121	0	30				
Carbon Disulfide	106	106	58-126	1	30				
Carbon Tetrachloride	100	100	74-130	1	30				
Chlorobenzene	107	108	80-120	1	30				
Chloroethane	107	105	56-120	2	30				
2-Chloroethyl Vinyl Ether	0*	0*	42-152	0	30				
Chloroform	103	102	80-120	1	30				
Chloromethane	103	100	65-129	3	30				
2-Chlorotoluene	107	107	78-121	0	30				
4-Chlorotoluene	106	106	78-120	0	30				
1,2-Dibromo-3-chloropropane	71	70	55-131	1	30				
Dibromochloromethane	94	93	72-120	1	30				
1,2-Dibromoethane	100	99	80-120	1	30				
Dibromomethane	92	95	80-120	3	30				
1,2-Dichlorobenzene	98	99	80-120	1	30				
1,3-Dichlorobenzene	103	102	80-120	1	30				
1,4-Dichlorobenzene	103	104	80-120	1	30				
Dichlorodifluoromethane	98	96	55-127	2	30				
1,1-Dichloroethane	103	111	80-120	7	30				
1,2-Dichloroethane	95	98	72-127	3	30				
1,1-Dichloroethene	114	114	76-124	0	30				
cis-1,2-Dichloroethene	101	104	80-120	3	30				
trans-1,2-Dichloroethene	110	111	80-120	1	30				
1,2-Dichloropropane	108	108	80-120	0	30				
				2	30				
1,3-Dichloropropane	105 102	103 103	80-120 71-125	1	30				
2,2-Dichloropropane	102			2	30				
1,1-Dichloropropene		108	80-126	2	30				
cis-1,3-Dichloropropene	98	98	80-120	1	30				
trans-1,3-Dichloropropene	100	99	76-120	1 22	30				
Ethanol	120	149*	49-144						
Ethyl t-butyl ether	100	102	69-120	2	30				
Ethylbenzene	112	111	78-120	1	30				
Freon 113	124	125	67-127	1	30				
Hexachlorobutadiene	84	97	60-120	15	30				
2-Hexanone	93	99	59-127	6	30				
di-Isopropyl ether	114	116	70-124	1	30				
Isopropylbenzene	105	107	80-120	2	30				
p-Isopropyltoluene	98	98	76-120	0	30				
Methyl Tertiary Butyl Ether	92	96	75-120	4	30				
4-Methyl-2-pentanone	92	94	59-130	3	30				
Methylene Chloride	102	102	77-121	0	30				
Naphthalene	67	73	59-120	8	30				
n-Propylbenzene	113	112	75-130	1	30				
Styrene	100	100	80-120	1	30				
1,1,1,2-Tetrachloroethane	98	96	80-120	2	30				
1,1,2,2-Tetrachloroethane	98	97	65-131	1	30				
Tetrachloroethene	116	115	80-122	1	30				
Toluene	111	110	80-120	1	30				
1,2,3-Trichlorobenzene	66*	72	69-120	9	30				
1,2,4-Trichlorobenzene	76	81	73-120	6	30				
1,1,1-Trichloroethane	97	98	66-126	1	30				

*- Outside of specification

**-This limit was used in the evaluation of the final result for the blank

(1) The result for one or both determinations was less than five times the LOQ.

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: ChevronTexaco Reported: 09/23/2015 10:05 Group Number: 1590153

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name 1,1,2-Trichloroethane Trichloroethene Trichlorofluoromethane 1,2,3-Trichloropropane 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Vinyl Chloride m+p-Xylene o-Xylene	MS <u>%REC</u> 95 110 110 98 105 103 107 108 103	MSD %REC 98 111 109 98 106 105 104 108 102	MS/MSD Limits 80-120 60-142 76-120 75-120 80-120 69-120 80-120 80-120 79-120	RPD 4 1 2 3 0 2	RPD <u>MAX</u> 30 30 30 30 30 30 30 30 30 30	BKG <u>Conc</u>		DUP <u>Conc</u>		DUP <u>RPD</u>	Dup RPD <u>Max</u>
Batch number: 152470639001A Antimony Arsenic Beryllium Cadmium Chromium Cobalt Copper Lead Nickel Silver Thallium Vanadium Zinc	Sample n 98 96 103 100 102 95 94 103 95 108 102 95	uumber(s) 102 105 106 102 99 100 99 105 100 100 103 107 102	$\begin{array}{c} : & 8034108 \\ & 75-125 \\ & 75-125 \\ & 75-125 \\ & 75-125 \\ & 75-125 \\ & 75-125 \\ & 75-125 \\ & 75-125 \\ & 75-125 \\ & 75-125 \\ & 75-125 \\ & 75-125 \\ & 75-125 \\ & 75-125 \\ & 75-125 \\ & 75-125 \\ & 75-125 \end{array}$	UNSPK: 3 5 2 3 5 5 5 5 5 4 5 7	803410 20 20 20 20 20 20 20 20 20 20 20 20 20	08 BKG: N.D. 5.5 N.D. N.D. 0.15 0.98 0.32 1.2 N.D. N.D. N.D. N.D. N.D.	8034 J J J J	108 N.D. 5.7 N.D. N.D. 0.11 0.96 0.32 1.3 N.D. N.D. N.D. N.D. N.D.	ປ ບ ບ ບ	0 (1) 3 (1) 0 (1) 0 (1) 35* (1) 2 (1) 2 (1) 7 (1) 0 (1) 0 (1) 0 (1) 0 (1)	20 20 20 20 20 20 20 20 20 20 20 20 20 2
Batch number: 152470639001B Selenium	97	96	: 8034108 75-125	2	20	N.D.		N.D.		0 (1)	20
Batch number: 152470639001C Molybdenum	98	109	: 8034108 75-125	10	20	1.0		0.65	J	44* (1)	20
Batch number: 152470639001D Barium	109	122	: 8034108 75-125	3	20	184		200		8	20
Batch number: 152515713005 Mercury	97	100	: 8034108 80-120	2	20	N.D.	P034	173 N.D.		0 (1)	20
Batch number: 15252120101A Phenols (water) Batch number: 15254117101A	91	102	: 8034108 82-109 : 8034108	11*	8		P034	669			
Total Cyanide (water) Batch number: 15254807901A	106		72-114 : 8034108			N.D.	1034	N.D.		0 (1)	20
HEM (oil & grease)	93		78-114								

Surrogate Quality Control

*- Outside of specification

**-This limit was used in the evaluation of the final result for the blank

(1) The result for one or both determinations was less than five times the LOQ.

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: ChevronTexaco Reported: 09/23/2015 10:05 Group Number: 1590153

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

	Name: BTEX/MTBE mber: D152541AA			
Daten nu	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
8034112	108	102	95	96
Blank	106	101	97	97
LCS	104	103	96	103
MS	103	103	97	102
MSD	103	102	97	101
Limits:	80-116	77-113	80-113	78-113
	Name: BTEX/MTBE mber: P152542AA			
Batti IIu	Dibromofluoromethane	1.2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
8034110	102	99	100	102
8034110	102	98	100	102
Blank	100	98	99	99
LCS	100	99	100	101
LCSD	100	100	98	99
Limits:	80-116	77-113	80-113	78-113
Analysis	Name: 8260 Full	List w/ Sep. Xvler	les	
Batcĥ nu	Name: 8260 Full mber: W152522AA Dibromofluoromethane	List w/ Sep. Xyler 1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
Batch nu 8034108	mber: W152522AA Dibromofluoromethane 96	1,2-Dichloroethane-d4 99	Toluene-d8 99	95
Batch nu 8034108 Blank	mber: W152522AA Dibromofluoromethane 96 93	1,2-Dichloroethane-d4 99 96	Toluene-d8 99 100	95 95
Batch nu 8034108 Blank LCS	mber: W152522AA Dibromofluoromethane 96 93 95	1,2-Dichloroethane-d4 99 96 100	Toluene-d8 99 100 101	95 95 98
Batch nu 8034108 Blank LCS MS	mber: W152522AA Dibromofluoromethane 96 93 95 90	1,2-Dichloroethane-d4 99 96 100 92	Toluene-d8 99 100 101 100	95 95 98 96
Batch nu 8034108 Blank LCS MS MSD	mber: W152522AA Dibromofluoromethane 96 93 95 90 92	1,2-Dichloroethane-d4 99 96 100 92 94	Toluene-d8 99 100 101 100 100	95 95 98 96 96
Batch nu 8034108 Blank LCS MS	mber: W152522AA Dibromofluoromethane 96 93 95 90	1,2-Dichloroethane-d4 99 96 100 92	Toluene-d8 99 100 101 100	95 95 98 96
Batch nu 8034108 Blank LCS MS Limits: Analysis	mber: W152522AA Dibromofluoromethane 96 93 95 90 92 80-116 Name: TPH-GRO N.	1,2-Dichloroethane-d4 99 96 100 92 94 77-113	Toluene-d8 99 100 101 100 100	95 95 98 96 96
Batch nu 8034108 Blank LCS MS Limits: Analysis	mber: W152522AA Dibromofluoromethane 96 93 95 90 92 80-116 Name: TPH-GRO N. mber: 15252B20A	1,2-Dichloroethane-d4 99 96 100 92 94 77-113	Toluene-d8 99 100 101 100 100	95 95 98 96 96
Batch nu 8034108 Blank LCS MS Limits: Analysis Batch nu	mber: W152522AA Dibromofluoromethane 96 93 95 90 92 80-116 Name: TPH-GRO N. mber: 15252B20A Trifluorotoluene-F	1,2-Dichloroethane-d4 99 96 100 92 94 77-113	Toluene-d8 99 100 101 100 100	95 95 98 96 96
Batch nu 8034108 Blank LCS MSD Limits: Analysis Batch nu 8034108	mber: W152522AA Dibromofluoromethane 96 93 95 90 92 80-116 Name: TPH-GRO N. mber: 15252B20A Trifluorotoluene-F 90	1,2-Dichloroethane-d4 99 96 100 92 94 77-113	Toluene-d8 99 100 101 100 100	95 95 98 96 96
Batch nu 8034108 Blank LCS MS MSD Limits: Analysis Batch nu 8034108 8034110	mber: W152522AA Dibromofluoromethane 96 93 95 90 92 80-116 Name: TPH-GRO N. mber: 15252B20A Trifluorotoluene-F 90 89	1,2-Dichloroethane-d4 99 96 100 92 94 77-113	Toluene-d8 99 100 101 100 100	95 95 98 96 96
Batch nu 8034108 Blank LCS MS MSD Limits: Analysis Batch nu 8034108 8034110	mber: W152522AA Dibromofluoromethane 96 93 95 90 92 80-116 Name: TPH-GRO N. mber: 15252B20A Trifluorotoluene-F 90 89 96	1,2-Dichloroethane-d4 99 96 100 92 94 77-113	Toluene-d8 99 100 101 100 100	95 95 98 96 96
Batch nu 8034108 Blank LCS MS Limits: Analysis Batch nu 8034108 8034108 8034111 8034112	mber: W152522AA Dibromofluoromethane 96 93 95 90 92 80-116 Name: TPH-GRO N. mber: 15252B20A Trifluorotoluene-F 90 89 96 87	1,2-Dichloroethane-d4 99 96 100 92 94 77-113	Toluene-d8 99 100 101 100 100	95 95 98 96 96
Batch nu 8034108 Blank LCS MSD Limits: Analysis Batch nu 8034108 8034110 8034111 8034112 Blank	mber: W152522AA Dibromofluoromethane 96 93 95 90 92 80-116 Name: TPH-GRO N. mber: 15252B20A Trifluorotoluene-F 90 89 96 87 91	1,2-Dichloroethane-d4 99 96 100 92 94 77-113	Toluene-d8 99 100 101 100 100	95 95 98 96 96
Batch nu 8034108 Blank LCS MSD Limits: Analysis Batch nu 8034108 8034110 8034111 8034112 Blank LCS	mber: W152522AA Dibromofluoromethane 96 93 95 90 92 80-116 Name: TPH-GRO N. mber: 15252B20A Trifluorotoluene-F 90 89 96 87 91 97	1,2-Dichloroethane-d4 99 96 100 92 94 77-113	Toluene-d8 99 100 101 100 100	95 95 98 96 96
Batch nu 8034108 Blank LCS MS Limits: Analysis Batch nu 8034108 8034108 8034111 8034112	mber: W152522AA Dibromofluoromethane 96 93 95 90 92 80-116 Name: TPH-GRO N. mber: 15252B20A Trifluorotoluene-F 90 89 96 87 91	1,2-Dichloroethane-d4 99 96 100 92 94 77-113	Toluene-d8 99 100 101 100 100	95 95 98 96 96

*- Outside of specification

**-This limit was used in the evaluation of the final result for the blank

(1) The result for one or both determinations was less than five times the LOQ.

Environmental Analysis Request/Chain of Custody

\$\$ C	eur	ofir	ns
--------	-----	------	----

	Lancaster Laboratories Environmental			Acct. #	<u>(</u>	285	30 Gr	oup#_	150	101	53	<u> </u>	Sample	•#	80	34	10	8-	12	-	
Client: Chevro	n EMC						Matrix	[A	Analy	ses	Requ	ieste	d		F	or Lab U	se Only
Project Name/#:	Castro Valley	Site ID #:	95607						1			F	Prese	ervat	ion C	Code	s		s	SF #:	
Project Manager:	Judy Gilbert	P.O. #:	Direct Bill	To Cł	nevro] <u>-</u>	rd bu												s	SCR #:	
Sampler: GRAEC	& BRUSICI Blui	PWSID #				mer	Ground Surface													Preserva	tion Codes
	332 8265	Quote #:				Sediment			ners										F	I = HCI	T = Thiosulfate
State where sample		E Effluent				1	ele III		ntai		0	0	020	0	∢	9065				N = HNO₃	B = NaOH
<u></u>					Composite		Potable NPDES		Total # of Containers	TPH-g by 8015M	BTEX by 8260	MTBE by 8260	METALS by 6020B	VOCs by 8260	TOG by 1664A	Phenolics by	9016		s	$S = H_2SO_4$	$P = H_3PO_4$
			1	Grab	du		Water	Other:	tal #	d b-l	EXI	ВП	TAI	Cs	a D	enol	β		c) = Other	
Sample Identifica	ation	Date	Time	อ็	ပိ	Soil		ð									CN			Ren	narks
EFF	· · · · · · · · · · · · · · · · · · ·		0400	X			X		17	×	×	×	×	×	×	×	×				
MID-2			0910	8			\times		6	×	×	×							I		-2, SAMPLE
MID-1		9.2.15		\times			×		6	×	×	×								ONLY IF N	/IID-1 > N.D.
INF		9.2.15	0930	X			X	 	6	×	×	×									
:			 																		
	e Requested (TAT) (please chec h TAT is subject to laboratory approv		dard 🗹 arges.)	Rush		Reli		by:			Da 9, 2,	ate , 15			Rece	eived	by:		_	Date	Time
Date results are nee	eded:						nquished				Da	ate	Ti	me	Rece	lived	by:			Date	Time
Rush results reques	sted by (please check): E-M	ail 🗌	Pho	ne 🗌																	
E-mail Address:	Judy.Gilbert@ghd.com mattl	hew.b.smith	n@ghd.cor	n		Reli	nquishèd	by:			Da	ate	Ti	me	Rece	eived	by:			Date	Time
Phone:							/														
Data Package Options (please check if required)				Relinquished by:			Da	ate	Ti	ne	Rece	eived	by:			Date	Time				
Type I (Validation/n	ion-CLP) 🗌 MA MCP																\				
Type III (Reduced n	non-CLP)					Reli	nquished	by:\			Da	ate	Ti	ne	Rece	eived	by:	1		Date	Time
Type IV (CLP SOW	/) 🗌 TX TRRP	P-13						```	\					1	Ú	Cid	\mathcal{N}	L		<i>â 3 15</i>	0930
Type VI (Raw Data	Only)					Reli	nquished	by C	omme	rcial	Carrie	er:								1.2	
EDD Required?	Yes 🗹 No 🗌 If ye	s, format:	Zip File			UPS	JPS FedEx Other Temperature upon receipt 122 °C							°C							

Eurofins Lancaster Laboratories Environmental, LLC • 2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300

🔅 eurofins

Lancaster Laboratories Environmental

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

RL N.D. TNTC IU umhos/cm C meq g µg mL mJ	Reporting Limit none detected Too Numerous To Count International Units micromhos/cm degrees Celsius milliequivalents gram(s) microgram(s) milliliter(s) cubic meter(s)	BMQL MPN CP Units NTU ng F Ib. kg mg L μL pg/L	Below Minimum Quantitation Level Most Probable Number cobalt-chloroplatinate units nephelometric turbidity units nanogram(s) degrees Fahrenheit pound(s) kilogram(s) milligram(s) liter(s) microliter(s) picogram/liter
<	less than		
>	greater than		
ppm		equivalent to milli	kilogram (mg/kg) or one gram per million grams. For grams per liter (mg/l), because one liter of water has a weight uivalent to one microliter per liter of gas.
ppb	parts per billion		
Dry weight basis		•	bisture content. This increases the analyte weight ample without moisture. All other results are reported on an

Laboratory Data Qualifiers:

- B Analyte detected in the blank
- C Result confirmed by reanalysis

as-received basis.

E - Concentration exceeds the calibration range

J (or G, I, X) - estimated value ≥ the Method Detection Limit (MDL or DL) and the < Limit of Quantitation (LOQ or RL)

P - Concentration difference between the primary and confirmation column >40%. The lower result is reported.

U - Analyte was not detected at the value indicated

V - Concentration difference between the primary and confirmation column >100%. The reporting limit is raised due to this disparity and evident interference...

Additional Organic and Inorganic CLP qualifiers may be used with Form 1 reports as defined by the CLP methods. Qualifiers specific to Dioxin/Furans and PCB Congeners are detailed on the individual Analysis Report.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, ISO17025) unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Times are local to the area of activity. Parameters listed in the 40 CFR Part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL, LLC BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL AND (B) WHETHER EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client.