

Eric Hetrick Project Manager Marketing Business Unit Chevron Environmental Management Company 6101 Bollinger Canyon Road San Ramon, CA 94583 Tel (925) 790-6491 ehetrick@chevron.com

October 30, 2014

Alameda County Health Care Services 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Re: Former Chevron Service Station 95607 5269 Crow Canyon Road Castro Valley, CA ACEH Case #RO 0350 **RECEIVED**

By Alameda County Environmental Health at 10:05 am, Nov 03, 2014

I have reviewed the attached First Monthly Remedial Progress Report and As-Built Documents.

I agree with the conclusions and recommendations presented in the referenced report. This information in this report is accurate to the best of my knowledge and all local Agency/Regional Board guidelines have been followed. This report was prepared by Conestoga Rovers Associates, upon who assistance and advice I have relied.

This letter is submitted pursuant to the requirements of California Water Code Section 13267(b)(1) and the regulating implementation entitled Appendix A pertaining thereto.

I declare under penalty of perjury that the foregoing is true and correct to the best of my knowledge.

Sincerely,

2-A-2

Eric Hetrick Project Manager

Attachment: First Monthly Remedial Progress Report and As-Built Documents

5900 Hollis Street, Suite A Emeryville, California 94608 Telephone: (510) 420-0700 http://www.craworld.com

Fax: (510) 420-9170

October 30, 2014

Reference No. 311950

Mr. Mark Detterman Alameda County Environmental Health Services 1131 Harbor Bay Parkway Alameda, California 94502

Re: First Monthly Remedial Progress Report and As-Built Documents Former Chevron Station 95607 5269 Crow Canyon Road Castro Valley, California Fuel Leak Case RO0350

Dear Mr. Detterman:

Conestoga-Rovers & Associates (CRA), on behalf of Chevron Environmental Management Company (Chevron), is providing this first Monthly Remedial Progress Report (Report), for the site referenced above (Figure 1). This report was prepared in accordance with Alameda County Environmental Health Services (ACEHS) Approval of the Remedial Action Plan, dated December 11, 2013. As requested in the December 13, 2013 letter, this report includes the as-built drawings of the dual-phase extraction (DPE) system (Figure 2) and a summary of the DPE system operations conducted in the month of September 2014. The DPE system officially began full-time operation on September 29, 2014.

DPE system pre-startup compliance testing and sampling was performed on September 12, 2014 in accordance with system operational permits. During startup testing and since full-time operation began on September 29, 2014, approximately 65.79 pounds (lb) of total petroleum hydrocarbons as gasoline (TPHg) have been removed in vapor phase (Table 4), and approximately 0.08 lb of TPHg have been removed in dissolved phase (Table 2). A summary of the DPE system operational performance for the month of September 2014 is presented below.

Soil Vapor Influent Flow Rate (avg scfm)	236 scfm
Soil Vapor Laboratory Influent Concentrations (ppmv)	4,200 ppmv
Soil Vapor Mass Removal (lb TPHg/period)	65.79 lb
Soil Vapor Mass Removal (lb Benzene/period)	0.63 lb
Soil Vapor Extraction Period Operating Uptime (hours)	5.5 hours
Soil Vapor Treatment Destruction Efficiency (%)	98.9%

VAPOR-PHASE EXTRACTION DATA-SEPTEMBER 2014

ppmv - parts per million by volume

Equal Employment Opportunity Employer

October 30, 2014

Reference No. 311950

- 2 -

DISSOLVED-PHASE EXTRACTION DATA-SEPTEMBER 2014

Maximum Groundwater Extraction Rate (gpm)	3.7 gpm
Average Groundwater Extraction Rate (gpm)	2.54 gpm
Dissolved-Phase Mass Removal Rate (lb TPHg/period)	0.08 lb
Total Volume Groundwater Treated (gallons)	1,600 gallons
Groundwater Extraction Period Operating Uptime (hours)	11.5 hours

Please contact Darrell Smolko of CRA at (925) 334-8617 or Judy Gilbert of CRA at (510) 420-3314, if you have any questions or comments.

Sincerely,

CONESTOGA-ROVERS & ASSOCIATES

the

Darrell Smolko

JG/mws/32

Branch Stilk

Brandon S. Wilken, PG 7564

- c.c.: Mr. Eric Hetrick, Chevron EMC (*electronic copy*) Mr. Kevin Hinkley, Property Owner Ms. Diane Riggs, Forest Creek Townhomes Association
- Figure 1 General Site Plan
- Figure 2 GW Equipment Layout
- Figure 3 SVE Equipment Layout
- Figure 4 E1 Process Flow Diagram 1
- Figure 5 E2 Process Flow Diagram 2

October 30, 2014

Reference No. 311950

- 3 -

Table 1	Groundwater Extraction & Treatment System Hydrocarbon Analytical Data
Table 2	Groundwater Extraction & Treatment System Operational Data &
	Hydrocarbon Mass Removal
Table 3	Soil Vapor Extraction Operational Data
Table 4	Soil Vapor Extraction Analytical Data & Mass Removal
Attachment A:	December 11, 2013 ACEH Letter
Attachment B:	Laboratory Analytical Reports

FIGURES

CLIENT
CHEVRON ENVIRONMENTA MANAGEMENT COMPANY
PROJECT

AL

FORMER CHEVRON STATION #9-5607 5269 CROW CANYON ROAD CASTRO VALLEY, CA TITLE

GENERAL SITE PLAN

PROJECT #311950

DRAWING STATUS

IN-	Revision	Date	ву
1	RELOCATE GWE TRAILER	10/12/13	DK
1	ADD SVE-1 AND SVE-2	10/23/13	DK
2	RELOCATE GWE TRAILER	3/25/14	DS
3	AS-BUILT	10/10/14	DS
	SCALE VERIE	CATION	

THIS BAR MEASURES 1" ON ORIGINAL.

Scale: 1:10

& ASSOCIATES 5900 HOLLIS STREET, SUITE A EMERYVILLE CA 94608 PHONE: 510.420.0700 FAX: 510.420.9170 WWW.CRAWORLD.COM

Source Reference: Date: 10/10/2014 Designed By: Drawing N° DS Drafted By: DS Date: 10/10/2014 FIG 1 DS Reviewed By: Date: DK_____10/23/2014

EXISTING 5' WOOD FENCE

	CLIENT
	CHEVRON ENVIRONMENTAL MANAGEMENT COMPANY
	PROJECT
	FORMER CHEVRON STATION
-0	^{#9-5607} 5269 CROW CANYON ROAD
	CASTRO VALLEY, CA
	DUAL-PHASE EXTRACTION
	GW STSTEM LATOUT
	PROJECT #311950
	DRAWING STATUS
	N° Revision Date By 01 UPDATE WITH ACTUAL UNIT 10/24/13 DAK
	02 ADD FIRE DEPARTMENT KEY BOX 10/24/13 DAK 03 ADD SIGNAGE 10/24/13 DAK
3	
	THIS BAR MEASURES 1" ON ORIGINAL.
)	
	CONESTOGA-ROVERS & ASSOCIATES
	5900 HOLLIS STREET, SUITE A EMERYVILLE CA 94608 PHONE: 510.420.0700 EAX: 510 420 9170
	Source Reference:
	Designed By: Date: Drawing N° DS 10/8/2014
	Drafted By: Date: DS 10/8/2014 Reviewed By: Date: FIG 2
	Scale:

	CLIENT								
	CHEVRON ENVIRONMENTAL MANAGEMENT COMPANY								
	PROJECT								
	FORMER CHEVRON STATION								
SWING	#9-5607 5269 CROW CANYON ROAD CASTRO VALLEY, CA								
OORS	TITLE								
	DUAL-PHASE EXTRACTION SVE SYSTEM LAYOUT								
	PROJECT #311950								
	DRAWING STATUS N° Revision Date By 01 UPDATE WITH ACTUAL UNIT 10/24/13 DAK 02 FIRE DEPT KEY/SIGNAGE 10/24/13 DAK 01 0 0/24/13 DAK 02 FIRE DEPT KEY/SIGNAGE 10/24/13 DAK 01 0 0 0 02 FIRE DEPT KEY/SIGNAGE 10/24/13 DAK 03 0 0 0 04 0 0 0 05 0 0 0 04 0 0 0 05 0 0 0 04 0 0 0 04 0 0 0 05 0 0 0 05 0 0 0 04 0 0 0 05 0 0 0 05 0 0 0 05 0 0 0 05 0 0 0								
T INFO D:	CONESTOGA-ROVERS & ASSOCIATES 5900 HOLLIS STREET, SUITE A EMERYVILLE CA 94608 PHONE: 510.420.0700 FAX: 510.420.9170								
	www.craworld.com								
	Source Reference:Designed By:Date:Drawing N°:DS10/8/2014Drawing N°:Drafted By:Date:FIG 3Reviewed By:Date:FIG 3								
	Scale: 1:10								

TABLES

Table 1Groundwater Extraction and Treatment SystemInfluent and Effluent Hydrocarbon Concentration DataFormer Chevron Station # 9-56075269 Crow Canyon Road, Castro Valley, California

			Inf	luent			Midfluent 1							Midfluent 2							Effluent						
Sample	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	TPHg Benzene Toluene Ethylbenzene Xylenes MTBE T					TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE				
Date	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.			
(mm/dd/yy)	(µg/L)	(µg/L)	$(\mu g/L)$	(µg/L)	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	(µg/L)	$(\mu g/L)$	(µg/L)	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	(µg/L)	$(\mu g/L)$	(µg/L)	(µg/L)	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	(µg/L)	(µg/L)	$(\mu g/L)$	$(\mu g/L)$			
09/12/14	6,000	1,800	19	120	94	4	<50	< 0.5	< 0.5	<0.5	< 0.5	<0.5	<50	<0.5	< 0.5	<0.5	< 0.5	<0.5	<50	<0.5	< 0.5	<0.5	< 0.5	< 0.5			

Notes and Abbreviations:

mm/dd/yy = month/day/year

Conc. = concentration

TPHg = total petroleum hydrocarbons quantified as gasoline

MTBE = methyl tertiary butyl ether

 $\mu g/L = micrograms per liter$

<X.X = not detected at or below the detection limit indicated

TPHg analyzed by EPA Method 8015B.

Benzene, toluene, ethylbenzene, and total xylenes analyzed by EPA Method 8260B.

MTBE analyzed by EPA Method 8260B.

Table 2Groundwater Extraction and Treatment SystemOperational Data and Dissolved Phase Hydrocarbons Mass Removal DataFormer Chevron Station # 9-56075269 Crow Canyon Road, Castro Valley, California

							1	PHg			Benzene			MTBE		
Date	Well	Hour	Totalizer	Period	Period Operational	Cumulative	TPHg	Period	Cumulative	Benzene	Period	Cumulative	MTBE	Period	Cumulative	Notes
(mm/dd/yy)	IDs	Meter (hours)	(gallons)	Volume (gallons)	Flow Rate (gpm)	Volume (gallons)	(µg/L)	Removal (pounds)	Removal (pounds)	Concentration (µg/L)	Removal (pounds)	Removal (pounds)	Concentration (µg/L)	Removal (pounds)	Removal (pounds)	
9/12/14 9:00	DPE-1 - DPE-3, C-9	4008.5	330,400	0	0.0	0										
9/12/14 14:00	DPE-1 - DPE-3, C-9	4013.5	331,500	1,100	3.7	1,100	6,000	0.055	0.055	1,800	0.017	0.017	4	0.000	0.000	
9/29/14 14:00	DPE-1 - DPE-3, C-9	4019.0	332,000	500	1.5	1,600		0.025	0.080		0.008	0.024		0.000	0.000	
Agency Limits																
				Total Ex	tracted Volume (gal):	1,600	Pounds Removed:	0.080	0.080	Pounds Removed:	0.024	0.024	Pounds Removed:	0.000	0.000	
Average Operational Flow Rate (gpm) ³ : 2.54							Gallons Removed ⁴ :	0.013	0.013	Gallons Removed ⁴	0.003	0.003	Gallons Removed	0.000	0.000	
Reporting Period: S	Since System Startup Thr	ough September	r 29, 2014				Cumulative Results Since	Start-up:								
Number of Days du Gallons of Extracted	ring Reporting Period d Ground Water			17 1,600	days gal		Number Days since Start Cumulative Total Gallons	up s Extracted			17 1,600	days gal				
Average Flow Rate				2.54	gpm		Average Flow Rate ³				2.54	gpm				
Pounds of TPHg Re	emoved			0.080	lbs		Cumulative Pounds of TF	'Hg Removed			0.080	lbs				
IPHg Removal Rate	e Pomovod	IDS/day		1 PHg Kemoval Kate	nzono Domovo	d		0.005	IDS/day							
Benzene Removal R	Removed			0.024	lbs/dav		Benzene Removal Rate	iizene Kemove	u		0.024	lbs/dav				
Pounds of MTBE R	emoved			0.000	lbs		Cumulative Pounds of M'	FBE Removed			0.000					
MTBE Removal Ra	ite			0.000	lbs/day		MTBE Removal Rate				0.000	lbs/day				

Formulas and Assumptions:

1. Hour meter readings taken at the end of the site visit

2. Mass Removed During the Period = Volume of Water Extracted (gallons) x Concentration (μ g/L) x (g/10⁶ μ g) x (lb/453.6g) x (3.785 L/gal)

3. When concentration of individual parameters were not detected, the concentration was assumed to be half the detection limit for calculation purposes

Average Flow Rate = (Volume of Extracted Water (gal) / Number of Operational Days) * (60 minutes/hour) * (24 hours/day) 4. Gallons Removed = (Mass (lb) / Density (g/cc)) x 453.6 (g/lb) x (L/1000 cc) x (gal/3.785 L)

Density: = 0.73 g/cc TPHg

= 0.88 g/cc Benzene

= 0.74 g/cc MTBE

Abbreviations:

TPHg = total petroleum hydrocarbons as gasoline MTBE = methyl tertiary butyl etherL = litergal = gallongpm = gallon per minuteµg/L = micrograms per literg = gramscc = cubic centimeterNM = not measured

lb = pounds

Table 3: Soil Vapor Extraction System Operational Data Former Chevron Station # 9-5607 5269 Crow Canyon Road, Castro Valley, California

Date	Operating	Hour	System	Period	Blower	INF-1	INF-1	INF-1	INF-1	INF-1	INF-2	INF-2	INF-2	INF-2	Effluent	Dilution	Pre-Oxidizer	Post-Oxidizer	INF-2	INF-2	Effluent	Effluent	Mass Removal	Destruction
	Time	Meter	Uptime	Operation	Vacuum	Vacuum	Vacuum	Temperature	Measured Flow	Calculated Flow	Pressure	Temperature	Measured Flow ¹	Calculated Flow	Flow Rate	Air	Temp	Temp	FID	OVA	PID	OVA	based on PID	Efficiency
(mm/dd/yy hh:mm)	(hours)	(hours)	(%)	(hours)	(inHg)	(inHg)	(inH ₂ O)	(°F)	(acfm)	(scfm)	(inH ₂ O)	(°F)	(acfm)	(scfm)	(scfm)	(% open)	(°F)	(°F)	(ppmv)	(ppmv)	(ppmv)	(ppmv)	(ppd)	(%)
9/12/14 14:00	0.00	4013.5	0%	0.0	NM	3.00	41	NM	NM	NM	10.0	155	294	259	259	20	747	NM	NM	8000	20.0	NM	663.8	99.8%
9/29/14 14:00	5.50	4019.0	1.35%	5.5	15.0	2.81	38	93	165	143	11	189	255	213	213	20	880	NM	2,600	NM	0.0	NM	177.7	100.0%
Dormit Conditional															× 09 <i>5</i> 0/									
Approximations and Not	2001	< <u>\$00</u> < <u>\$00</u> >98.5%																						
mm/dd/vv	25.	= month/d:	av/vear																					
hh:mm		= hour : m	inute																					
inHg		= inches of	f mercury																					
inH ₂ O		= inches of	f water																					
°F		= degrees 1	Fahrenheit																					
acfm		= actual cu	abic feet per	minute																				
scfm		= standard cubic feet per minute (flow in scfm = flow in acfm * [operating pressure {abs}] * [standard temperature {abs}] / operating temperature {abs}])																						
%	= percentage																							
INF-1	= pre-dilution system influent																							
INF-2		= post-dilu	ition system	influent																				
NM		= not meas	sured																					
LEL		= Lower E	million buy	volumo																				
Philo		- parts per	nization det	ector																				
FID		= flame ior	nization dete	ector																				
OVA		= organic v	vapor analyz	zer																				
ppd		= pounds r	ber day																					
1.		= INF-2 flo	ow read from	m chart recorde	er. INF-2 pro	essure used to	o convert ac	cfm to scfm.																
Compliance																								
BAAOMD Roquirom	nte																							
Elow Rato < 300 ccfm																								
Ovidizor Tomporatur	> 600 downoor	Eabronho	it in alactri	ic catalytic m	ada and > 1	100 dogroop	in thorma	al catalytic mode																
Benzene Emission Lir	nit < 0.017ppd	i ancinc	in melecui	ic catalytic in		400 degrees	, in therme	in cutary tie mode																
Destruction Efficiency	(measured as	hexane)																						
98.50%		VOC >2.0)00 ppmv																					
97.00%	% VOC >200 and <2.000 ppmy																							
90.00%		VOC < 20	0 ppmv	1 Г																				
Note: If outlet VOC <	10 ppmv, dest	ruction eff	ficiency rec	quirement is v	waived																			
	11		2	<u>.</u>																				

Table 4: Soil Vapor Extraction System Analytical Data Mass Removal Former Chevron Station # 9-5607 5269 Crow Canyon Road, Castro Valley, California

				Company						TPHg			Benzene			MTBE				VOC
Date				Concent	trations															
		IN	F-2			Efflu	ient		Removal	Cumulative	Emission	Removal	Cumulative	Emission	Removal	Cumulative	Emission	Removal	Emission	Destruction Efficiency
(mm/dd/yy hh:mm)	TPHg	Benzene	MTBE	VOC	TPHg	Benzene	MTBE	VOC	Rate ^{2,6}	Removed ⁷	Rate ^{2, 6}	Rate ^{3, 6}	Removed ⁷	Rate ^{3, 6}	Rate ^{4, 6}	Removed ⁷	Rate ^{4, 6}	Rate ^{5, 6}	Rate ^{5,6}	Based on Laboratory Data
	(ppmv)	(ppmv)	(ppmv)	(ppmv)	(ppmv)	(ppmv)	(ppmv)	(ppmv)	(ppd)	(pounds)	(ppd)	(ppd)	(pounds)	(ppd)	(ppd)	(pounds)	(ppd)	(ppd)	(ppd)	(%)
9/12/14 14:00	4,200	44 M	38	4,282	46	0.39 M	0.19	46.58	348.5	0.00	3.82	3.31	0.00	0.03	3.23	0.00	0.02	355.28	3.95	98.9%
9/29/14 14:00									287.1	65.79	3.14	2.73	0.63	0.03	2.66	0.61	0.01	292.71	3.26	98.9%
Permit conditions														<0.017 ppd						>98.5% for >2,000 ppm inlet
																				>97% for >200-<2,000 ppm inlet
																				>90% for <200 ppm inlet
							Total P	ounds Removed:	TPHg =	66		Benzene =	0.6		MTBE =	0.61				
									•											

Notes:	Abbreviations:
1. TPHg, Benzene, and MTBE analyzed by EPA Method 8015/8020. Vapor samples were collected in 1-liter tedlar bags unless otherwise noted.	mm/dd/yy = month/day/year
2. Molecular weight of TPHg assumed to be 86 lb/lb-mole as hexane.	hh:mm = hours : minutes
3. Molecular weight of Benzene assumed to be 78 lb/lb-mole.	TPHg = total petroluem hydrocarbons as gasoline
4. Molecular weight of MTBE assumed to be 88 lb/lb-mole.	MTBE = methyl tertiary butyl ether
5. Molecular weight of VOCs assumed to be 86 lb/lb-mole as hexane.	VOC = volatile organic compounds
6. Removal/Emission Rate (ppd) = C (ppmv) x Q (scfm) x (1lb-mole/386ft ³) x MW (lb/lb-mole) x 60 min/hr x 24 hr/day x 10^{-6}	ppmv = parts per million by volume
C = concentration	ppd = pounds per day
Q = flow	= not measured
MW = molecular weight	lb = pounds
7. Cumulative TPHg / Benzene / MTBE removed = Previous Total + (Average of Previous and Current Removal Rates * Operation Interval)	$ft^3 = cubic feet$
8. Influent not measured due to water in vapor stream. Individual well samples were collected at a lower vacuum at this time.	scfm = standard cubic feet per minute
9. Destruction efficiency requirements not met, agency notified. Agency granted approval to restart system	INF-2 = post-dilution system influent
BAAQMD Requirements:	M = Reported value may be biased due to apparent matr
Flow Rate < 300 scfm	

Oxidizer Temperature > 600 deg Fahrenheit in electric catalytic mode and > 1400 degrees in thermal catalytic mode

Benzene Emission Limit < 0.017 ppd

Destruction efficiency (measured as hexane)

98.50% VOC >2,000 ppmv

97.00% VOC >200 and <2,000 ppmv

90.00% VOC < 200 ppmv

Note: If outlet VOC < 10 ppmv, destruction efficiency requirement is waived

trix interferences.

ATTACHMENT A:

DECEMBER 11, 2013 ACEH LETTER

ALAMEDA COUNTY HEALTH CARE SERVICES

ALEX BRISCOE, Agency Director

AGENCY

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

December 11, 2013

Mr. Eric Hetrick Chevron Corporation 6101 Bollinger Canyon Road San Ramon, CA 94583 (sent via electronic mail to: <u>ehetrick@chevron.com</u>)

Kevin & Julia Hinkley Kevin Hinkley Service 5269 Crow Canyon Road Castro Valley, CA 94552

Subject: Approval of RAP Addendum; Fuel Leak Case No. RO0000350 and GeoTracker Global ID T0600100344, Chevron #9-5607, 5269 Crow Canyon Road, Castro Valley, CA 94552

Dear Mr. Hetrick, and Mr. and Ms. Hinkley:

Alameda County Environmental Health (ACEH) staff has reviewed the case file for the above referenced site including the *Revised Drilling Scope of Work* (RAP Addendum), dated November 7, 2013, and the *Response to November 21, 2013 Technical Comments*, dated December 11, 2013. The documents were prepared and submitted on your behalf by Conestoga-Rovers & Associates (CRA). Thank you for submitting them.

The *Revised Drilling Scope of Work* (RAP Addendum) was prepared to document changes in remedial system presented in the *Remedial Action Plan Implementation Plan*, dated August 2, 2013 in order to address public comments and additional data that has been collected since that time. The *Response to November 21, 2013 Technical Comments*, dated December 11, 2013, was intended to incorporate responses to the November 21, 2013 letter from ACEH, for the Alameda County Building Department.

Based on ACEH staff review of the documents the proposed scope of work, including modifications included in the two documents, is approved. Submittal of a further revised work plan or work plan addendum for this scope of work is not required unless an alternate scope of work outside that described in the work plan or technical comments below is proposed. We request that you perform the proposed work, and send us the reports described below. Please provide 72-hour advance written notification to this office (e-mail preferred to: <u>mark.detterman@acgov.org</u>) prior to the start of field activities.

TECHNICAL COMMENTS

1. RAP Addendum Modifications – The referenced work plan proposes a series of actions with which ACEH is in general agreement of undertaking. Please submit a report by the date specified below.

TECHNICAL REPORT REQUEST

Please upload technical reports to the ACEH ftp site (Attention: Mark Detterman), and to the State Water Resources Control Board's Geotracker website, in accordance with the specified file naming convention below, according to the following schedule:

- January 20, 2014 Groundwater Monitoring Well Work Plan File to be named: RO350_WP_L_yyyy-mm-dd
- February 21, 2014 First DPE / SVE Post Implementation Quarterly Groundwater Monitoring and Well Installation Report; File to be named: RO350_GWM_R_yyyy-mm-dd

Mr. Hetrick, and Mr. and Ms. Hinkley RO0000350 December 11, 2013, Page 2

- 30 Days After DPE System Start Up First DPE System Remedial Progress Report and As-Built Documentation; File to be named: RO350_REM_R_yyyy-mm-dd
- TBD Quarterly Groundwater Monitoring File to be named: RO350_GWM_R_yyyy-mm-dd
- **TBD** Monthly DPE System Remedial Progress Reports File to be named: RO350_GWM_R_yyyy-mm-dd

These reports are being requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request.

Should you have any questions, please contact me at (510) 567--6876 or send me an electronic mail message at <u>mark.detterman@acgov.org</u>.

Sincerely,

Digitally signed by Mark Detterman DN: cn=Mark Detterman, o, ou, email=mark.detterman@acgov.org, c=US Date: 2013.12.11 14:26:34 -08'00'

Mark E. Detterman, PG, CEG Senior Hazardous Materials Specialist

- Enclosures: Attachment 1 Responsible Party (ies) Legal Requirements / Obligations and Electronic Report Upload (ftp) Instructions
- cc: Brandon Wilken, 5900 Hollis Street, Suite A, Emeryville, CA 94608 (sent via electronic mail to <u>bwilken@craworld.com</u>)

Judy Gilbert, Conestoga-Rovers & Assoc., 5900 Hollis Street, Suite A, Emeryville, CA 94608; (sent via electronic mail to: <u>jgilbert@CRAworld.com</u>)

Dilan Roe (sent via electronic mail to <u>dilan.roe@acgov.org</u>) Mark Detterman (sent via electronic mail to <u>mark.detterman@acgov.org</u>) Electronic File, GeoTracker

Attachment 1

Responsible Party(ies) Legal Requirements/Obligations

REPORT/DATA REQUESTS

These reports/data are being requested pursuant to Division 7 of the California Water Code (Water Quality), Chapter 6.7 of Division 20 of the California Health and Safety Code (Underground Storage of Hazardous Substances), and Chapter 16 of Division 3 of Title 23 of the California Code of Regulations (Underground Storage Tank Regulations).

ELECTRONIC SUBMITTAL OF REPORTS

ACEH's Environmental Cleanup Oversight Programs (Local Oversight Program [LOP] for unauthorized releases from petroleum Underground Storage Tanks [USTs], and Site Cleanup Program [SCP] for unauthorized releases of non-petroleum hazardous substances) require submission of reports in electronic format pursuant to Chapter 3 of Division 7, Sections 13195 and 13197.5 of the California Water Code, and Chapter 30, Articles 1 and 2, Sections 3890 to 3895 of Division 3 of Title 23 of the California Code of Regulations (23 CCR). Instructions for submission of electronic documents to the ACEH FTP site are provided on the attached "Electronic Report Upload Instructions."

Submission of reports to the ACEH FTP site is in addition to requirements for electronic submittal of information (ESI) to the State Water Resources Control Board's (SWRCB) Geotracker website. In April 2001, the SWRCB adopted 23 CCR, Division 3, Chapter 16, Article 12, Sections 2729 and 2729.1 (Electronic Submission of Laboratory Data for UST Reports). Article 12 required electronic submittal of analytical laboratory data submitted in a report to a regulatory agency (effective September 1, 2001), and surveyed locations (latitude, longitude and elevation) of groundwater monitoring wells (effective January 1, 2002) in Electronic Deliverable Format (EDF) to Geotracker. Article 12 was subsequently repealed in 2004 and replaced with Article 30 (Electronic Submittal of Information) which expanded the ESI requirements to include electronic submittal of any report or data required by a regulatory agency from a cleanup site. The expanded ESI submittal requirements for petroleum UST sites subject to the requirements of 23 CCR, Division, 3, Chapter 16, Article 11, became effective December 16, 2004. All other electronic submittals required pursuant to Chapter 30 became effective January 1. 2005. Please visit the SWRCB website more information these requirements: for on (http://www.waterboards.ca.gov/water_issues/programs/ust/electronic_submittal/).

PERJURY STATEMENT

All work plans, technical reports, or technical documents submitted to ACEH must be accompanied by a cover letter from the responsible party that states, at a minimum, the following: "I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge." This letter must be signed by an officer or legally authorized representative of your company. Please include a cover letter satisfying these requirements with all future reports and technical documents submitted for this fuel leak case.

PROFESSIONAL CERTIFICATION & CONCLUSIONS/RECOMMENDATIONS

The California Business and Professions Code (Sections 6735, 7835, and 7835.1) requires that work plans and technical or implementation reports containing geologic or engineering evaluations and/or judgments be performed under the direction of an appropriately registered or certified professional. For your submittal to be considered a valid technical report, you are to present site specific data, data interpretations, and recommendations prepared by an appropriately licensed professional and include the professional registration stamp, signature, and statement of professional certification. Please ensure all that all technical reports submitted for this fuel leak case meet this requirement.

UNDERGROUND STORAGE TANK CLEANUP FUND

Please note that delays in investigation, late reports, or enforcement actions may result in your becoming ineligible to receive grant money from the state's Underground Storage Tank Cleanup Fund (Senate Bill 2004) to reimburse you for the cost of cleanup.

AGENCY OVERSIGHT

If it appears as though significant delays are occurring or reports are not submitted as requested, we will consider referring your case to the Regional Board or other appropriate agency, including the County District Attorney, for possible enforcement actions. California Health and Safety Code, Section 25299.76 authorizes enforcement including administrative action or monetary penalties of up to \$10,000 per day for each day of violation.

Alamada County Environmental Cleanup	REVISION DATE: July 25, 2012				
Alameda County Environmental Cleanup Oversight Programs	ISSUE DATE: July 5, 2005				
(LOP and SCP)	PREVIOUS REVISIONS: October 31, 2005; December 16, 2005; March 27, 2009; July 8, 2010				
SECTION: Miscellaneous Administrative Topics & Procedures	SUBJECT: Electronic Report Upload (ftp) Instructions				

The Alameda County Environmental Cleanup Oversight Programs (petroleum UST and SCP) require submission of all reports in electronic form to the county's FTP site. Paper copies of reports will no longer be accepted. The electronic copy replaces the paper copy and will be used for all public information requests, regulatory review, and compliance/enforcement activities.

REQUIREMENTS

- Please <u>do not</u> submit reports as attachments to electronic mail.
- Entire report including cover letter must be submitted to the ftp site as a single Portable Document Format (PDF) with no password protection.
- It is preferable that reports be converted to PDF format from their original format, (e.g., Microsoft Word) rather than scanned.
- Signature pages and perjury statements must be included and have either original or electronic signature.
- <u>Do not</u> password protect the document. Once indexed and inserted into the correct electronic case file, the document will be secured in compliance with the County's current security standards and a password. Documents with password protection <u>will not</u> be accepted.
- Each page in the PDF document should be rotated in the direction that will make it easiest to read on a computer monitor.
- Reports must be named and saved using the following naming convention:

RO#_Report Name_Year-Month-Date (e.g., RO#5555_WorkPlan_2005-06-14)

Submission Instructions

- 1) Obtain User Name and Password
 - a) Contact the Alameda County Environmental Health Department to obtain a User Name and Password to upload files to the ftp site.
 - i) Send an e-mail to <u>deh.loptoxic@acgov.org</u>
 - b) In the subject line of your request, be sure to include "ftp PASSWORD REQUEST" and in the body of your request, include the Contact Information, Site Addresses, and the Case Numbers (RO# available in Geotracker) you will be posting for.
- 2) Upload Files to the ftp Site
 - a) Using Internet Explorer (IE4+), go to <u>ftp://alcoftp1.acgov.org</u>
 - (i) Note: Netscape, Safari, and Firefox browsers will not open the FTP site as they are NOT being supported at this time.
 - b) Click on Page located on the Command bar on upper right side of window, and then scroll down to Open FTP Site in Windows Explorer.
 - c) Enter your User Name and Password. (Note: Both are Case Sensitive.)
 - d) Open "My Computer" on your computer and navigate to the file(s) you wish to upload to the ftp site.
 - e) With both "My Computer" and the ftp site open in separate windows, drag and drop the file(s) from "My Computer" to the ftp window.
- 3) Send E-mail Notifications to the Environmental Cleanup Oversight Programs
 - a) Send email to <u>deh.loptoxic@acgov.org</u> notify us that you have placed a report on our ftp site.
 - b) Copy your Caseworker on the e-mail. Your Caseworker's e-mail address is the entire first name then a period and entire last name @acgov.org. (e.g., firstname.lastname@acgov.org)
 - c) The subject line of the e-mail must start with the RO# followed by **Report Upload**. (e.g., Subject: RO1234 Report Upload) If site is a new case without an RO#, use the street address instead.
 - d) If your document meets the above requirements and you follow the submission instructions, you will receive a notification by email indicating that your document was successfully uploaded to the ftp site.

ATTACHMENT B:

LABORATORY ANALYTICAL REPORTS

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

ANALYTICAL RESULTS

Prepared by:

Eurofins Lancaster Laboratories Environmental 2425 New Holland Pike Lancaster, PA 17601 Prepared for:

ChevronTexaco 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

September 29, 2014

Project: 95607

Submittal Date: 09/13/2014 Group Number: 1503190 PO Number: 0015157270 Release Number: HETRICK

State of Sample Origin: CA

Client Sample Description EFF-W-140912 Grab Groundwater MID-2-W-140912 Grab Groundwater MID-1-W-140912 Grab Groundwater INF-W-140912 Grab Groundwater Lancaster Labs (LL) # 7599096 7599097 7599098 7599099

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

ELECTRONIC Chevron COPY TO ELECTRONIC CRA COPY TO Attn: CRA EDD Attn: Judy Gilbert

Respectfully Submitted,

Matalie K - 2

Natalie R. Luciano Senior Specialist

(717) 556-7258

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: EFF-W-140912 Grab Groundwater Facility# 95607 CRAW 5269 Crow Canyon-Castro Va T0600100344

LL Sample # WW 7599096 LL Group # 1503190 Account # 10880

Project Name: 95607

COTTCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	Collected:	09/12/	/2014	15:00	by D	S
--	------------	--------	-------	-------	------	---

Submitted: 09/13/2014 08:50 Reported: 09/29/2014 12:55 ChevronTexaco 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

CCVEF

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-846 8	260B	ug/l	ug/l	ug/l	
10335	Acetone	67-64-1	N.D.	6	20	1
10335	t-Amyl methyl ether	994-05-8	N.D.	0.5	1	1
10335	Benzene	71-43-2	N.D.	0.5	1	1
10335	Bromobenzene	108-86-1	N.D.	1	5	1
10335	Bromochloromethane	74-97-5	N.D.	1	5	1
10335	Bromodichloromethane	75-27-4	N.D.	0.5	1	1
10335	Bromoform	75-25-2	N.D.	0.5	4	1
10335	Bromomethane	74-83-9	N.D.	0.5	1	1
10335	2-Butanone	78-93-3	N.D.	3	10	1
10335	t-Butyl alcohol	75-65-0	N.D.	5	20	1
10335	n-Butylbenzene	104-51-8	N.D.	1	5	1
10335	sec-Butylbenzene	135-98-8	N.D.	1	5	1
10335	tert-Butylbenzene	98-06-6	N.D.	1	5	1
10335	Carbon Disulfide	75-15-0	N.D.	1	5	1
10335	Carbon Tetrachloride	56-23-5	N.D.	0.5	1	1
10335	Chlorobenzene	108-90-7	N.D.	0.5	1	1
10335	Chloroethane	75-00-3	N.D.	0.5	1	1
10335	2-Chloroethyl Vinyl Ether	110-75-8	N.D.	2	10	1
	2-Chloroethyl vinyl ether may preserve this sample.	not be recovered	l if acid was use	ed to		
10335	Chloroform	67-66-3	N.D.	0.5	1	1
10335	Chloromethane	74-87-3	N.D.	0.5	1	1
10335	2-Chlorotoluene	95-49-8	N.D.	1	5	1
10335	4-Chlorotoluene	106-43-4	N.D.	1	5	1
10335	1,2-Dibromo-3-chloropropane	96-12-8	N.D.	2	5	1
10335	Dibromochloromethane	124-48-1	N.D.	0.5	1	1
10335	1,2-Dibromoethane	106-93-4	N.D.	0.5	1	1
10335	Dibromomethane	74-95-3	N.D.	0.5	1	1
10335	1,2-Dichlorobenzene	95-50-1	N.D.	1	5	1
10335	1,3-Dichlorobenzene	541-73-1	N.D.	1	5	1
10335	1,4-Dichlorobenzene	106-46-7	N.D.	1	5	1
10335	Dichlorodifluoromethane	75-71-8	N.D.	0.5	1	1
10335	1,1-Dichloroethane	75-34-3	N.D.	0.5	1	1
10335	1,2-Dichloroethane	107-06-2	N.D.	0.5	1	1
10335	1,1-Dichloroethene	75-35-4	N.D.	0.5	1	1
10335	cis-1,2-Dichloroethene	156-59-2	N.D.	0.5	1	1
10335	trans-1,2-Dichloroethene	156-60-5	N.D.	0.5	1	1
10335	1,2-Dichloropropane	78-87-5	N.D.	0.5	1	1
10335	1,3-Dichloropropane	142-28-9	N.D.	0.5	1	1
10335	2,2-Dichloropropane	594-20-7	N.D.	0.5	1	1
10335	1,1-Dichloropropene	563-58-6	N.D.	1	5	1
10335	cis-1,3-Dichloropropene	10061-01-5	N.D.	0.5	1	1
10335	trans-1,3-Dichloropropene	10061-02-6	N.D.	0.5	1	1
10335	Ethanol	64-17-5	N.D.	50	250	1
10335	Ethyl t-butyl ether	637-92-3	N.D.	0.5	1	1
10335	Ethylbenzene	100-41-4	N.D.	0.5	1	1
10335	Freon 113	76-13-1	N.D.	2	10	1
10335	Hexachlorobutadiene	87-68-3	N.D.	2	5	1
10335	2-Hexanone	591-78-6	N.D.	3	10	1
10335	di-Isopropyl ether	108-20-3	N.D.	0.5	1	1

Analysis Report

LL Sample # WW 7599096 LL Group # 1503190 Account # 10880

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: EFF-W-140912 Grab Groundwater Facility# 95607 CRAW 5269 Crow Canyon-Castro Va T0600100344

Project Name: 95607

Collected:	09	/12/2014	15:00	by DS
------------	----	----------	-------	-------

Submitted: 09/13/2014 08:50 Reported: 09/29/2014 12:55 ChevronTexaco 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

CCVEF

CAT No.	Analysis Name		CAS Number	As Re Resul	ceived t	As Received Method Detection Limit	As Received Limit of t* Quantitation	Dilution Factor	
GC/MS	Volatiles	SW-846	8260B	ug/l		ug/l	ug/l		
10335	Isopropylbenzene		98-82-8	N.D.		1	5	1	
10335	p-Isopropyltoluene		99-87-6	N.D.		1	5	1	
10335	Methyl Tertiary Buty	yl Ether	1634-04-4	N.D.		0.5	1	1	
10335	4-Methyl-2-pentanone	e	108-10-1	N.D.		3	10	1	
10335	Methylene Chloride		75-09-2	N.D.		2	3	1	
10335	Naphthalene		91-20-3	N.D.		1	5	1	
10335	n-Propylbenzene		103-65-1	N.D.		1	5	1	
10335	Styrene		100-42-5	N.D.		1	5	1	
10335	1,1,1,2-Tetrachloroe	ethane	630-20-6	N.D.		0.5	1	1	
10335	1,1,2,2-Tetrachloroe	ethane	79-34-5	N.D.		0.5	1	1	
10335	Tetrachloroethene		127-18-4	N.D.		0.5	1	1	
10335	Toluene		108-88-3	N.D.		0.5	1	1	
10335	1,2,3-Trichlorobenze	ene	87-61-6	N.D.		1	5	1	
10335	1,2,4-Trichlorobenze	ene	120-82-1	N.D.		1	5	1	
10335	1,1,1-Trichloroetha	ne	71-55-6	N.D.		0.5	1	1	
10335	1,1,2-Trichloroetha	ne	79-00-5	N.D.		0.5	1	1	
10335	Trichloroethene		79-01-6	N.D.		0.5	1	1	
10335	Trichlorofluorometha	ane	75-69-4	N.D.		0.5	1	1	
10335	1,2,3-Trichloropropa	ane	96-18-4	N.D.		1	5	1	
10335	1,2,4-Trimethylbenze	ene	95-63-6	N.D.		1	5	1	
10335	1,3,5-Trimethylbenze	ene	108-67-8	N.D.		1	5	1	
10335	Vinyl Chloride		75-01-4	N.D.		0.5	1	1	
10335	m+p-Xylene		179601-23-1	N.D.		0.5	1	1	
10335	o-Xylene		95-47-6	N.D.		0.5	1	1	
GC Vol	latiles	SW-846	8015B	ug/l		ug/l	ug/l		
01728	TPH-GRO N. CA water	C6-C12	n.a.	N.D.		50	100	1	
Metals	3	SW-846	6020A	ug/l		ug/l	ug/l		
06024	Antimony		7440-36-0	1.6	J	0.33	2.0	1	
06025	Arsenic		7440-38-2	3.1	J	0.82	4.0	1	
06026	Barium		7440-39-3	31.5		0.58	4.0	1	
06027	Beryllium		7440-41-7	N.D.		0.045	1.0	1	
06028	Cadmium		7440-43-9	N.D.		0.17	1.0	1	
06031	Chromium		7440-47-3	N.D.		0.50	4.0	1	
06032	Cobalt		7440-48-4	N.D.		0.10	1.0	1	
06033	Copper		7440-50-8	1.3	J	0.50	4.0	1	
06035	Lead		7439-92-1	N.D.		0.082	2.0	1	
06038	Molybdenum		7439-98-7	2.5		0.25	1.0	1	
06039	Nickel		7440-02-0	N.D.		0.79	4.0	1	
06041	Selenium		7782-49-2	N.D.		0.50	4.0	1	
06042	Silver		7440-22-4	N.D.		0.13	1.0	1	
06045	Thallium		7440-28-0	N.D.		0.15	1.0	1	
06048	Vanadium		7440-62-2	1.9		0.22	1.0	1	
06049	Zinc		7440-66-6	4.2	J	2.4	30.0	1	
		SW-846	7470A	ug/l		ug/l	ug/l		
00259	Mercury		7439-97-6	N.D.		0.060	0.20	1	

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description:	EFF-W-140912 Grab Groundwater	$\mathbf{L}\mathbf{L}$	Sample	#	WW 7599096
	Facility# 95607 CRAW	$\mathbf{L}\mathbf{L}$	Group	#	1503190
	5269 Crow Canyon-Castro Va T0600100344	Acc	ount	#	10880

Project Name: 95607

COTTCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	Collected:	09/12	2/2014	15:00	by	DS
--	------------	-------	--------	-------	----	----

Submitted: 09/13/2014 08:50 Reported: 09/29/2014 12:55 ChevronTexaco 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

CCVEF

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
Wet Ch	nemistry	SW-846	9012A	ug/l	ug/l	ug/l	
08255	Total Cyanide (water	<u>r</u>)	57-12-5	N.D.	5.0	10	1
		SW-846	9066	ug/l	ug/l	ug/l	
02393	Phenols (water)		n.a.	N.D.	15	40	1
		EPA 166	54A	ug/l	ug/l	ug/l	
08079	HEM (oil & grease)		n.a.	N.D.	1,400	5,000	1

General Sample Comments

CA ELAP Lab Certification No. 2792 Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	.me	Analyst	Dilution Factor
10335	8260 Full List w/ Sep. Xylenes	SW-846 8260B	1	N142591AA	09/16/2014	10:28	Linda C Pape	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	N142591AA	09/16/2014	10:28	Linda C Pape	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	14258B94A	09/16/2014	16:10	Miranda P Tillinghast	1
01146	GC VOA Water Prep	SW-846 5030B	1	14258B94A	09/16/2014	16:10	Miranda P Tillinghast	1
06024	Antimony	SW-846 6020A	1	142600639001A	09/18/2014	15:43	Maria A Orrs	1
06025	Arsenic	SW-846 6020A	1	142600639001A	09/18/2014	15:43	Maria A Orrs	1
06026	Barium	SW-846 6020A	1	142600639001D	09/18/2014	15:43	Maria A Orrs	1
06027	Beryllium	SW-846 6020A	1	142600639001A	09/18/2014	15:43	Maria A Orrs	1
06028	Cadmium	SW-846 6020A	1	142600639001A	09/18/2014	15:43	Maria A Orrs	1
06031	Chromium	SW-846 6020A	1	142600639001A	09/18/2014	15:43	Maria A Orrs	1
06032	Cobalt	SW-846 6020A	1	142600639001A	09/18/2014	15:43	Maria A Orrs	1
06033	Copper	SW-846 6020A	1	142600639001A	09/18/2014	15:43	Maria A Orrs	1
06035	Lead	SW-846 6020A	1	142600639001A	09/18/2014	15:43	Maria A Orrs	1
06038	Molybdenum	SW-846 6020A	1	142600639001C	09/19/2014	14:35	Maria A Orrs	1
06039	Nickel	SW-846 6020A	1	142600639001A	09/18/2014	15:43	Maria A Orrs	1
06041	Selenium	SW-846 6020A	1	142600639001B	09/18/2014	15:43	Maria A Orrs	1
06042	Silver	SW-846 6020A	1	142600639001A	09/18/2014	15:43	Maria A Orrs	1
06045	Thallium	SW-846 6020A	1	142600639001A	09/18/2014	15:43	Maria A Orrs	1
06048	Vanadium	SW-846 6020A	1	142600639001A	09/19/2014	09:15	Choon Y Tian	1
06049	Zinc	SW-846 6020A	1	142600639001A	09/18/2014	15:43	Maria A Orrs	1
00259	Mercury	SW-846 7470A	1	142605713003	09/18/2014	11:55	Damary Valentin	1
10639	ICP/MS SW846 (IV) Water Digest	SW-846 3010A modified	1	142600639001	09/17/2014	21:30	Annamaria Kuhns	1
05713	WW SW846 Hg Digest	SW-846 7470A	1	142605713003	09/17/2014	23:10	Annamaria Kuhns	1

Analysis Report

Account

LL Sample # WW 7599096

10880

LL Group # 1503190

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: EFF-W-140912 Grab Groundwater Facility# 95607 CRAW 5269 Crow Canyon-Castro Va T0600100344

Project Name: 95607

Collected:	09	/12/201	4 15:00	by DS
------------	----	---------	---------	-------

Submitted: 09/13/2014 08:50 Reported: 09/29/2014 12:55 ChevronTexaco 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

CCVEF

Laboratory Sample Analysis Record									
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor	
08255	Total Cyanide (water)	SW-846 9012A	1	14260117101A	09/18/2014	10:44	Drew M Gerhart	1	
02393	Phenols (water)	SW-846 9066	2	14261120101A	09/19/2014	12:02	Drew M Gerhart	1	
08256	Cyanide Water Distillation	SW-846 9012A	1	14260117101A	09/17/2014	10:30	Nancy J Shoop	1	
08123	Phenol Distillation (SW-846)	SW-846 9065	2	14261120101A	09/18/2014	10:45	Nancy J Shoop	1	
08079	HEM (oil & grease)	EPA 1664A	1	14260807901A	09/17/2014	18:03	Michelle L Lalli	1	

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MID-2-W-140912 Grab Groundwater Facility# 95607 CRAW 5269 Crow Canyon-Castro Va T0600100344

LL Sample # WW 7599097 LL Group # 1503190 Account # 10880

Project Name: 95607

Collected:	09/12/	2014	14:30	by	DS
	/			- 1	

Submitted: 09/13/2014 08:50 Reported: 09/29/2014 12:55 ChevronTexaco 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

CCVM2

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-846 826	50B	ug/l	ug/l	ug/l	
10335	Acetone	67-64-1	N.D.	6	20	1
10335	t-Amyl methyl ether	994-05-8	N.D.	0.5	1	1
10335	Benzene	71-43-2	N.D.	0.5	1	1
10335	Bromobenzene	108-86-1	N.D.	1	5	1
10335	Bromochloromethane	74-97-5	N.D.	1	5	1
10335	Bromodichloromethane	75-27-4	N.D.	0.5	1	1
10335	Bromoform	75-25-2	N.D.	0.5	4	1
10335	Bromomethane	74-83-9	N.D.	0.5	1	1
10335	2-Butanone	78-93-3	N.D.	3	10	1
10335	t-Butyl alcohol	75-65-0	N.D.	5	20	1
10335	n-Butylbenzene	104-51-8	N.D.	1	5	1
10335	sec-Butylbenzene	135-98-8	N.D.	1	5	1
10335	tert-Butylbenzene	98-06-6	N.D.	1	5	1
10335	Carbon Disulfide	75-15-0	N.D.	1	5	1
10335	Carbon Tetrachloride	56-23-5	N.D.	0.5	1	1
10335	Chlorobenzene	108-90-7	N.D.	0.5	1	1
10335	Chloroethane	75-00-3	N.D.	0.5	1	1
10335	2-Chloroethyl Vinyl Ether	110-75-8	N.D.	2	10	1
	2-Chloroethyl vinyl ether may no preserve this sample.	t be recovered	if acid was used	l to		
10335	Chloroform	67-66-3	N.D.	0.5	1	1
10335	Chloromethane	74-87-3	N.D.	0.5	1	1
10335	2-Chlorotoluene	95-49-8	N.D.	1	5	1
10335	4-Chlorotoluene	106-43-4	N.D.	1	5	1
10335	1,2-Dibromo-3-chloropropane	96-12-8	N.D.	2	5	1
10335	Dibromochloromethane	124-48-1	N.D.	0.5	1	1
10335	1,2-Dibromoethane	106-93-4	N.D.	0.5	1	1
10335	Dibromomethane	74-95-3	N.D.	0.5	1	1
10335	1,2-Dichlorobenzene	95-50-1	N.D.	1	5	1
10335	1,3-Dichlorobenzene	541-73-1	N.D.	1	5	1
10335	1,4-Dichlorobenzene	106-46-7	N.D.	1	5	1
10335	Dichlorodifluoromethane	75-71-8	N.D.	0.5	1	1
10335	1,1-Dichloroethane	75-34-3	N.D.	0.5	1	1
10335	1,2-Dichloroethane	107-06-2	N.D.	0.5	1	1
10335	1,1-Dichloroethene	75-35-4	N.D.	0.5	1	1
10335	cis-1,2-Dichloroethene	156-59-2	N.D.	0.5	1	1
10335	trans-1,2-Dichloroethene	156-60-5	N.D.	0.5	1	1
10335	1,2-Dichloropropane	78-87-5	N.D.	0.5	1	1
10335	1,3-Dichloropropane	142-28-9	N.D.	0.5	1	1
10335	2,2-Dichloropropane	594-20-7	N.D.	0.5	1	1
10335	1,1-Dichloropropene	563-58-6	N.D.	1	5	1
10335	cis-1,3-Dichloropropene	10061-01-5	N.D.	0.5	1	1
10335	trans-1,3-Dichloropropene	10061-02-6	N.D.	0.5	1	1
10335	Ethanol	64-17-5	N.D.	50	250	1
10335	ECHYL C-DUTYL ETHER	637-92-3	N.D.	0.5	1	1
10335	Etnyipenzene	100-41-4	N.D.	0.5	10	1
10335	Freon 113	/6-13-1	N.D.	2	TO	1
10335		0/-00-3	N.D.	2	5	1
10335	∠-nexanone di Igopropul othor	591-78-6 108 20 2	N.D.	з 0 Е	1	⊥ 1
10335	ar-reobrobàt eruer	108-20-3	и.U.	0.5	1	1
		*=This limit way	s used in the evaluati	on of the final result		

Analysis Report

Account

LL Sample # WW 7599097

10880

LL Group # 1503190

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MID-2-W-140912 Grab Groundwater Facility# 95607 CRAW 5269 Crow Canyon-Castro Va T0600100344

Project Name: 95607

COTTCCCCCC, OJ/IZ/ZOIT IT.JO Dy L	Collected:	09/	/12	/2014	14:30	by	DS
-----------------------------------	------------	-----	-----	-------	-------	----	----

Submitted: 09/13/2014 08:50 Reported: 09/29/2014 12:55 ChevronTexaco 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

CCVM2

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l	ug/l	ug/l	
10335	Isopropylbenzene	98-82-8	N.D.	1	5	1
10335	p-Isopropyltoluene	99-87-6	N.D.	1	5	1
10335	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	1	1
10335	4-Methyl-2-pentanone	108-10-1	N.D.	3	10	1
10335	Methylene Chloride	75-09-2	N.D.	2	3	1
10335	Naphthalene	91-20-3	N.D.	1	5	1
10335	n-Propylbenzene	103-65-1	N.D.	1	5	1
10335	Styrene	100-42-5	N.D.	1	5	1
10335	1,1,1,2-Tetrachloroethane	630-20-6	N.D.	0.5	1	1
10335	1,1,2,2-Tetrachloroethane	79-34-5	N.D.	0.5	1	1
10335	Tetrachloroethene	127-18-4	N.D.	0.5	1	1
10335	Toluene	108-88-3	N.D.	0.5	1	1
10335	1,2,3-Trichlorobenzene	87-61-6	N.D.	1	5	1
10335	1,2,4-Trichlorobenzene	120-82-1	N.D.	1	5	1
10335	1,1,1-Trichloroethane	71-55-6	N.D.	0.5	1	1
10335	1,1,2-Trichloroethane	79-00-5	N.D.	0.5	1	1
10335	Trichloroethene	79-01-6	N.D.	0.5	1	1
10335	Trichlorofluoromethane	75-69-4	N.D.	0.5	1	1
10335	1,2,3-Trichloropropane	96-18-4	N.D.	1	5	1
10335	1,2,4-Trimethylbenzene	95-63-6	N.D.	1	5	1
10335	1,3,5-Trimethylbenzene	108-67-8	N.D.	1	5	1
10335	Vinyl Chloride	75-01-4	N.D.	0.5	1	1
10335	m+p-Xylene	179601-23-1	N.D.	0.5	1	1
10335	o-Xylene	95-47-6	N.D.	0.5	1	1
GC Vo	Latiles SW-846	8015B	ug/l	ug/l	ug/l	
01728	TPH-GRO N. CA water C6-C12	n.a.	N.D.	50	100	1

General Sample Comments

CA ELAP Lab Certification No. 2792 Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record									
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor		
10335	8260 Full List w/ Sep. Xylenes	SW-846 8260B	1	N142591AA	09/16/2014 10:51	Linda C Pape	1		
01163	GC/MS VOA Water Prep	SW-846 5030B	1	N142591AA	09/16/2014 10:51	Linda C Pape	1		
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	14258B94A	09/16/2014 17:01	Miranda P Tillinghast	1		
01146	GC VOA Water Prep	SW-846 5030B	1	14258B94A	09/16/2014 17:01	Miranda P Tillinghast	1		

Analysis Report

Account

LL Sample # WW 7599098

10880

LL Group # 1503190

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MID-1-W-140912 Grab Groundwater Facility# 95607 CRAW 5269 Crow Canyon-Castro Va T0600100344

Project Name: 95607

Collected:	09/	12/20	14 14:	15	bv	DS
001100000.	0 - / .	/		1 0	~ ,	

Submitted: 09/13/2014 08:50 Reported: 09/29/2014 12:55 ChevronTexaco 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

CCVM1

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-846	5 8260B	ug/l	ug/l	ug/l	
10335	Acetone	67-64-1	N.D.	6	20	1
10335	t-Amyl methyl ether	994-05-8	N.D.	0.5	1	1
10335	Benzene	71-43-2	N.D.	0.5	1	1
10335	Bromobenzene	108-86-1	N.D.	1	5	1
10335	Bromochloromethane	74-97-5	N.D.	1	5	1
10335	Bromodichloromethane	75-27-4	N.D.	0.5	1	1
10335	Bromoform	75-25-2	N.D.	0.5	4	1
10335	Bromomethane	74-83-9	N.D.	0.5	1	1
10335	2-Butanone	78-93-3	N.D.	3	10	1
10335	t-Butyl alcohol	75-65-0	N.D.	5	20	1
10335	n-Butylbenzene	104-51-8	N.D.	1	5	1
10335	sec-Butylbenzene	135-98-8	N.D.	1	5	1
10335	tert-Butylbenzene	98-06-6	N.D.	1	5	1
10335	Carbon Disulfide	75-15-0	N.D.	1	5	1
10335	Carbon Tetrachloride	56-23-5	N.D.	0.5	1	1
10335	Chlorobenzene	108-90-7	N.D.	0.5	1	1
10335	Chloroethane	75-00-3	N.D.	0.5	1	1
10335	2-Chloroethyl Vinyl Ether	110-75-8	N.D.	2	10	1
	2-Chloroethyl vinyl ether m preserve this sample.	ay not be recovered	if acid was us	ed to		
10335	Chloroform	67-66-3	N.D.	0.5	1	1
10335	Chloromethane	74-87-3	N.D.	0.5	1	1
10335	2-Chlorotoluene	95-49-8	N.D.	1	5	1
10335	4-Chlorotoluene	106-43-4	N.D.	1	5	1
10335	1,2-Dibromo-3-chloropropane	96-12-8	N.D.	2	5	1
10335	Dibromochloromethane	124-48-1	N.D.	0.5	1	1
10335	1,2-Dibromoethane	106-93-4	N.D.	0.5	1	1
10335	Dibromomethane	74-95-3	N.D.	0.5	1	1
10335	1,2-Dichlorobenzene	95-50-1	N.D.	1	5	1
10335	1,3-Dichlorobenzene	541-73-1	N.D.	1	5	1
10335	1,4-Dichlorobenzene	106-46-7	N.D.	1	5	1
10335	Dichlorodifluoromethane	75-71-8	N.D.	0.5	1	1
10335	1,1-Dichloroethane	75-34-3	N.D.	0.5	1	1
10335	1,2-Dichloroethane	107-06-2	N.D.	0.5	1	1
10335	1,1-Dichloroethene	75-35-4	N.D.	0.5	1	1
10335	cis-1,2-Dichloroethene	156-59-2	N.D.	0.5	1	1
10335	trans-1,2-Dichloroethene	156-60-5	N.D.	0.5	1	1
10335	1,2-Dichloropropane	78-87-5	N.D.	0.5	1	1
10335	1,3-Dichloropropane	142-28-9	N.D.	0.5	1	1
10335	2,2-Dichloropropane	594-20-7	N.D.	0.5	1	1
10335	1,1-Dichloropropene	563-58-6	N.D.	1	5	1
10335	cis-1,3-Dichloropropene	10061-01-5	N.D.	0.5	1	1
10335	trans-1,3-Dichloropropene	10061-02-6	N.D.	0.5	1	1
10335	Ethanol	64-17-5	N.D.	50	250	1
10335	Ethyl t-butyl ether	637-92-3	N.D.	0.5	1	1
10335	Ethylbenzene	100-41-4	N.D.	0.5	1	1
10335	Freon 113	76-13-1	N.D.	2	10	1
10335	Hexachlorobutadiene	87-68-3	N.D.	2	5	1
10335	2-Hexanone	591-78-6	N.D.	3	10	1
10335	di-Isopropyl ether	108-20-3	N.D.	0.5	1	1
		* 551 * 1* *	1.1 1			

Analysis Report

Account

LL Sample # WW 7599098

10880

LL Group # 1503190

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MID-1-W-140912 Grab Groundwater Facility# 95607 CRAW 5269 Crow Canyon-Castro Va T0600100344

Project Name: 95607

COTTCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	Collected:	09/	12/	/2014	14:15	by	DS
--	------------	-----	-----	-------	-------	----	----

Submitted: 09/13/2014 08:50 Reported: 09/29/2014 12:55 ChevronTexaco 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

CCVM1

		CAS Number	Result	Detection Limit*	Quantitation	Dilution Factor
GC/MS	Volatiles SW-846	8260B	ug/l	ug/l	ug/l	
10335	Isopropylbenzene	98-82-8	N.D.	1	5	1
10335	p-Isopropyltoluene	99-87-6	N.D.	1	5	1
10335	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	1	1
10335	4-Methyl-2-pentanone	108-10-1	N.D.	3	10	1
10335	Methylene Chloride	75-09-2	N.D.	2	3	1
10335	Naphthalene	91-20-3	N.D.	1	5	1
10335	n-Propylbenzene	103-65-1	N.D.	1	5	1
10335	Styrene	100-42-5	N.D.	1	5	1
10335	1,1,1,2-Tetrachloroethane	630-20-6	N.D.	0.5	1	1
10335	1,1,2,2-Tetrachloroethane	79-34-5	N.D.	0.5	1	1
10335	Tetrachloroethene	127-18-4	N.D.	0.5	1	1
10335	Toluene	108-88-3	N.D.	0.5	1	1
10335	1,2,3-Trichlorobenzene	87-61-6	N.D.	1	5	1
10335	1,2,4-Trichlorobenzene	120-82-1	N.D.	1	5	1
10335	1,1,1-Trichloroethane	71-55-6	N.D.	0.5	1	1
10335	1,1,2-Trichloroethane	79-00-5	N.D.	0.5	1	1
10335	Trichloroethene	79-01-6	N.D.	0.5	1	1
10335	Trichlorofluoromethane	75-69-4	N.D.	0.5	1	1
10335	1,2,3-Trichloropropane	96-18-4	N.D.	1	5	1
10335	1,2,4-Trimethylbenzene	95-63-6	N.D.	1	5	1
10335	1,3,5-Trimethylbenzene	108-67-8	N.D.	1	5	1
10335	Vinyl Chloride	75-01-4	N.D.	0.5	1	1
10335	m+p-Xylene	179601-23-1	N.D.	0.5	1	1
10335	o-Xylene	95-47-6	N.D.	0.5	1	1
GC Vo	latiles SW-846	8015B	ug/l	ug/l	ug/l	
01728	TPH-GRO N. CA water C6-C12	n.a.	N.D.	50	100	1

General Sample Comments

CA ELAP Lab Certification No. 2792 Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

	Laboratory Sample Analysis Record									
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Tim	le	Analyst	Dilution Factor		
10335	8260 Full List w/ Sep. Xylenes	SW-846 8260B	1	N142591AA	09/16/2014	11:16	Linda C Pape	1		
01163	GC/MS VOA Water Prep	SW-846 5030B	1	N142591AA	09/16/2014	11:16	Linda C Pape	1		
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	14258B94A	09/16/2014	17:27	Miranda P Tillinghast	1		
01146	GC VOA Water Prep	SW-846 5030B	1	14258B94A	09/16/2014	17:27	Miranda P Tillinghast	1		

Analysis Report

LL Sample # WW 7599099 LL Group # 1503190 Account # 10880

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: INF-W-140912 Grab Groundwater Facility# 95607 CRAW 5269 Crow Canyon-Castro Va T0600100344

Project Name: 95607

Collected:	09/12/2014	14:00	by DS
------------	------------	-------	-------

Submitted: 09/13/2014 08:50 Reported: 09/29/2014 12:55 ChevronTexaco 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

CCVIN

CAT No.	Analysis Name	CAS Number	As Rece: Result	ived	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-846 826	0B	ug/l		ug/l	ug/l	
10335	Acetone	67-64-1	21	J	12	40	2
10335	t-Amyl methyl ether	994-05-8	N.D.		1	2	2
10335	Benzene	71-43-2	1,800		10	20	20
10335	Bromobenzene	108-86-1	N.D.		2	10	2
10335	Bromochloromethane	74-97-5	N.D.		2	10	2
10335	Bromodichloromethane	75-27-4	N.D.		1	2	2
10335	Bromoform	75-25-2	N.D.		1	8	2
10335	Bromomethane	74-83-9	N.D.		1	2	2
10335	2-Butanone	78-93-3	15	J	6	20	2
10335	t-Butyl alcohol	75-65-0	28	J	10	40	2
10335	n-Butylbenzene	104-51-8	3	J	2	10	2
10335	sec-Butylbenzene	135-98-8	3	J	2	10	2
10335	tert-Butylbenzene	98-06-6	9	J	2	10	2
10335	Carbon Disulfide	75-15-0	N.D.		2	10	2
10335	Carbon Tetrachloride	56-23-5	N.D.		1	2	2
10335	Chlorobenzene	108-90-7	N.D.		1	2	2
10335	Chloroethane	75-00-3	N.D.		1	2	2
10335	2-Chloroethyl Vinyl Ether	110-75-8	N.D.		4	20	2
	2-Chloroethyl vinyl ether may no preserve this sample.	t be recovered :	if acid v	vas used	to		
10335	Chloroform	67-66-3	N.D.		1	2	2
10335	Chloromethane	74-87-3	N.D.		1	2	2
10335	2-Chlorotoluene	95-49-8	N.D.		2	10	2
10335	4-Chlorotoluene	106-43-4	N.D.		2	10	2
10335	1,2-Dibromo-3-chloropropane	96-12-8	N.D.		4	10	2
10335	Dibromochloromethane	124-48-1	N.D.		1	2	2
10335	1,2-Dibromoethane	106-93-4	N.D.		1	2	2
10335	Dibromomethane	74-95-3	N.D.		1	2	2
10335	1,2-Dichlorobenzene	95-50-1	N.D.		2	10	2
10335	1,3-Dichlorobenzene	541-73-1	N.D.		2	10	2
10335	1,4-Dichlorobenzene	106-46-7	N.D.		2	10	2
10335	Dichlorodifluoromethane	75-71-8	N.D.		1	2	2
10335	1,1-Dichloroethane	75-34-3	N.D.		1	2	2
10335	1,2-Dichloroethane	107-06-2	N.D.		1	2	2
10335	1,1-Dichloroethene	75-35-4	N.D.		1	2	2
10335	cis-1,2-Dichloroethene	156-59-2	N.D.		1	2	2
10335	trans-1,2-Dichloroethene	156-60-5	N.D.		1	2	2
10335	1,2-Dichloropropane	78-87-5	N.D.		1	2	2
10335	1,3-Dichloropropane	142-28-9	N.D.		1	2	2
10335	2,2-Dichloropropane	594-20-7	N.D.		1	2	2
10335	1,1-Dichloropropene	563-58-6	N.D.		2	10	2
10335	cis-1,3-Dichloropropene	10061-01-5	N.D.		1	2	2
10335	trans-1,3-Dichloropropene	10061-02-6	N.D.		1	2	2
10335	Ethanol	64-17-5	N.D.		100	500	2
10335	Ethyl t-butyl ether	637-92-3	N.D.		1	2	2
10335	Ethylbenzene	100-41-4	120		1	2	2
10335	Freon 113	76-13-1	N.D.		4	20	2
10335	Hexachlorobutadiene	87-68-3	N.D.		4	10	2
10335	2-Hexanone	591-78-6	N.D.		6	20	2
10335	di-isopropyl ether	108-20-3	N.D.		1	2	2
		*=This limit was	used in th	e evaluatio	on of the final result		

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: INF-W-140912 Grab GroundwaterLL Sample # WW 7599099Facility# 95607 CRAWLL Group # 15031905269 Crow Canyon-Castro Va T0600100344Account # 10880

Project Name: 95607

Collected:	09/12/	2014	14:00	by DS
	/ /			- 4

Submitted: 09/13/2014 08:50 Reported: 09/29/2014 12:55 ChevronTexaco 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

CCVIN

CAT No.	Analysis Name	CAS Number	As Receiv Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC/MS	Volatiles SW-84	5 8260B	ug/l	ug/l	ug/l	
10335	Isopropylbenzene	98-82-8	25	2	10	2
10335	p-Isopropyltoluene	99-87-6	N.D.	2	10	2
10335	Methyl Tertiary Butyl Ether	1634-04-4	4	1	2	2
10335	4-Methyl-2-pentanone	108-10-1	N.D.	6	20	2
10335	Methylene Chloride	75-09-2	N.D.	4	6	2
10335	Naphthalene	91-20-3	59	2	10	2
10335	n-Propylbenzene	103-65-1	42	2	10	2
10335	Styrene	100-42-5	N.D.	2	10	2
10335	1,1,1,2-Tetrachloroethane	630-20-6	N.D.	1	2	2
10335	1,1,2,2-Tetrachloroethane	79-34-5	N.D.	1	2	2
10335	Tetrachloroethene	127-18-4	N.D.	1	2	2
10335	Toluene	108-88-3	19	1	2	2
10335	1,2,3-Trichlorobenzene	87-61-6	N.D.	2	10	2
10335	1,2,4-Trichlorobenzene	120-82-1	N.D.	2	10	2
10335	1,1,1-Trichloroethane	71-55-6	N.D.	1	2	2
10335	1,1,2-Trichloroethane	79-00-5	N.D.	1	2	2
10335	Trichloroethene	79-01-6	N.D.	1	2	2
10335	Trichlorofluoromethane	75-69-4	N.D.	1	2	2
10335	1,2,3-Trichloropropane	96-18-4	N.D.	2	10	2
10335	1,2,4-Trimethylbenzene	95-63-6	15	2	10	2
10335	1,3,5-Trimethylbenzene	108-67-8	7 3	r 2	10	2
10335	Vinyl Chloride	75-01-4	N.D.	1	2	2
10335	m+p-Xylene	179601-23-1	78	1	2	2
10335	o-Xylene	95-47-6	16	1	2	2
GC Vol	atiles SW-84	6 8015B	ug/l	ug/l	ug/l	
01728	TPH-GRO N. CA water C6-C12	n.a.	6,000	250	500	5
Metals	SW-84	5 6020A	ug/l	ug/l	ug/l	
06024	Antimony	7440-36-0	0.48	0.33	2.0	1
06025	Arsenic	7440-38-2	13.1	0.82	4.0	1
06026	Barium	7440-39-3	192	0.58	4.0	1
06027	Beryllium	7440-41-7	0.071 J	0.045	1.0	1
06028	Cadmium	7440-43-9	N.D.	0.17	1.0	1
06031	Chromium	7440-47-3	6.6	0.50	4.0	1
06032	Cobalt	7440-48-4	2.1	0.10	1.0	1
06033	Copper	7440-50-8	4.1	0.50	4.0	1
06035	Lead	7439-92-1	1.5 3	0.082	2.0	1
06038	Molybdenum	7439-98-7	2.1	0.25	1.0	1
06039	Nickel	7440-02-0	15.2	0.79	4.0	1
06041	Selenium	7782-49-2	N.D.	0.50	4.0	1
06042	Silver	7440-22-4	N.D.	0.13	1.0	1
06045	Thallium	7440-28-0	N.D.	0.15	1.0	1
06048	Vanadium	7440-62-2	6.6	0.22	1.0	1
06049	Zinc	7440-66-6	26.1 3	2.4	30.0	1
	SW-84	6 7470A	ug/l	ug/l	ug/l	
00259	Mercury	7439-97-6	N.D.	0.060	0.20	1
	-					

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample	Description:	NF-W-140912 Grab Grou	Indwater	$\mathbf{L}\mathbf{L}$	Sample	#	WW 7599099
		acility# 95607 CRAW		$\mathbf{L}\mathbf{L}$	Group	#	1503190
		269 Crow Canyon-Castr	o Va T0600100344	Acc	count	#	10880

Project Name: 95607

Collected: 09/12/2014 14:00 by DS

Submitted: 09/13/2014 08:50 Reported: 09/29/2014 12:55 ChevronTexaco 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

CCVIN

CAT No.	Analysis Name		CAS Number	As Rec Result	eived	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
Wet Ch	nemistry	SW-846	9012A	ug/l		ug/l	ug/l	
08255	Total Cyanide (water	r)	57-12-5	N.D.		5.0	10	1
		SW-846	9066	ug/l		ug/l	ug/l	
02393	Phenols (water)		n.a.	34	J	15	40	1
		EPA 166	54A	ug/l		ug/l	ug/l	
08079	HEM (oil & grease)		n.a.	N.D.		1,400	5,000	1

General Sample Comments

CA ELAP Lab Certification No. 2792 Trip blank vials were not received by the laboratory for this sample group.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor
10335	8260 Full List w/ Sep. Xylenes	SW-846 8260B	1	N142591AA	09/16/2014	11:40	Linda C Pape	2
10335	8260 Full List w/ Sep. Xylenes	SW-846 8260B	1	N142591AA	09/16/2014	12:04	Linda C Pape	20
01163	GC/MS VOA Water Prep	SW-846 5030B	1	N142591AA	09/16/2014	11:40	Linda C Pape	2
01163	GC/MS VOA Water Prep	SW-846 5030B	2	N142591AA	09/16/2014	12:04	Linda C Pape	20
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	14258B94A	09/16/2014	19:09	Miranda P Tillinghast	5
01146	GC VOA Water Prep	SW-846 5030B	1	14258B94A	09/16/2014	19:09	Miranda P Tillinghast	5
06024	Antimony	SW-846 6020A	1	142600639001A	09/18/2014	16:01	Maria A Orrs	1
06025	Arsenic	SW-846 6020A	1	142600639001A	09/18/2014	16:01	Maria A Orrs	1
06026	Barium	SW-846 6020A	1	142600639001D	09/18/2014	16:01	Maria A Orrs	1
06027	Beryllium	SW-846 6020A	1	142600639001A	09/18/2014	16:01	Maria A Orrs	1
06028	Cadmium	SW-846 6020A	1	142600639001A	09/18/2014	16:01	Maria A Orrs	1
06031	Chromium	SW-846 6020A	1	142600639001A	09/18/2014	16:01	Maria A Orrs	1
06032	Cobalt	SW-846 6020A	1	142600639001A	09/18/2014	16:01	Maria A Orrs	1
06033	Copper	SW-846 6020A	1	142600639001A	09/18/2014	16:01	Maria A Orrs	1
06035	Lead	SW-846 6020A	1	142600639001A	09/18/2014	16:01	Maria A Orrs	1
06038	Molybdenum	SW-846 6020A	1	142600639001C	09/19/2014	14:42	Maria A Orrs	1
06039	Nickel	SW-846 6020A	1	142600639001A	09/18/2014	16:01	Maria A Orrs	1
06041	Selenium	SW-846 6020A	1	142600639001B	09/18/2014	16:01	Maria A Orrs	1
06042	Silver	SW-846 6020A	1	142600639001A	09/18/2014	16:01	Maria A Orrs	1
06045	Thallium	SW-846 6020A	1	142600639001A	09/18/2014	16:01	Maria A Orrs	1
06048	Vanadium	SW-846 6020A	1	142600639001A	09/18/2014	16:01	Maria A Orrs	1
06049	Zinc	SW-846 6020A	1	142600639001A	09/18/2014	16:01	Maria A Orrs	1
00259	Mercury	SW-846 7470A	1	142605713003	09/18/2014	11:58	Damary Valentin	1

Analysis Report

Account

LL Sample # WW 7599099

10880

LL Group # 1503190

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: INF-W-140912 Grab Groundwater Facility# 95607 CRAW 5269 Crow Canyon-Castro Va T0600100344

Project Name: 95607

Collected: 09/12/2014 14:00 by DS

Submitted: 09/13/2014 08:50 Reported: 09/29/2014 12:55

CCVIN

ChevronTexaco 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

	Laboratory Sample Analysis Record										
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor			
10639	ICP/MS SW846 (IV) Water Digest	SW-846 3010A modified	1	142600639001	09/17/2014	21:30	Annamaria Kuhns	1			
05713	WW SW846 Hg Digest	SW-846 7470A	1	142605713003	09/17/2014	23:10	Annamaria Kuhns	1			
08255	Total Cyanide (water)	SW-846 9012A	1	14260117101A	09/18/2014	10:46	Drew M Gerhart	1			
02393	Phenols (water)	SW-846 9066	2	14261120101A	09/19/2014	12:05	Drew M Gerhart	1			
08256	Cyanide Water Distillation	SW-846 9012A	1	14260117101A	09/17/2014	10:30	Nancy J Shoop	1			
08123	Phenol Distillation (SW-846)	SW-846 9065	2	14261120101A	09/18/2014	10:45	Nancy J Shoop	1			
08079	HEM (oil & grease)	EPA 1664A	1	14260807901A	09/17/2014	18:03	Michelle L Lalli	1			

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: ChevronTexaco Reported: 09/29/14 at 12:55 PM Group Number: 1503190

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank <u>MDL**</u>	Blank <u>LOQ</u>	Report <u>Units</u>	LCS <u>%REC</u>	LCSD <u>%REC</u>	LCS/LCSD <u>Limits</u>	<u>RPD</u>	RPD <u>Max</u>
Batch number: N142591AA	Sample nu	umber(s): 7	7599096-75	99099					
Acetone	N.D.	6.	20	ug/l	87		55-129		
t-Amyl methyl ether	N.D.	0.5	1	ug/l	90		75-120		
Benzene	N.D.	0.5	1	ug/l	95		78-120		
Bromobenzene	N.D.	1.	5	ug/l	94		80-120		
Bromochloromethane	N.D.	1.	5	uq/l	100		80-121		
Bromodichloromethane	N.D.	0.5	1	ug/l	86		73-120		
Bromoform	N.D.	0.5	4	ug/l	82		61-120		
Bromomethane	N.D.	0.5	1	ug/l	87		53-130		
2-Butanone	N.D.	3.	10	ug/l	91		54-133		
t-Butyl alcohol	N.D.	5.	20	ug/l	98		75-120		
n-Butylbenzene	N.D.	1.	5	ug/l	89		68-120		
sec-Butylbenzene	N.D.	1.	5	ug/l	95		75-120		
tert-Butylbenzene	N.D.	1.	5	ug/l	97		80-120		
Carbon Disulfide	N.D.	1.	5	uq/l	74		58-126		
Carbon Tetrachloride	N.D.	0.5	1	ug/l	93		74-130		
Chlorobenzene	N.D.	0.5	1	ug/l	98		80-120		
Chloroethane	N.D.	0.5	1	ug/l	84		56-120		
2-Chloroethyl Vinyl Ether	N.D.	2.	10	ug/l	90		62-128		
Chloroform	N.D.	0.5	1	ug/l	95		80-122		
Chloromethane	N.D.	0.5	1	ug/l	88		63-120		
2-Chlorotoluene	N.D.	1.	5	ug/l	97		80-120		
4-Chlorotoluene	N.D.	1.	5	ug/l	96		80-120		
1,2-Dibromo-3-chloropropane	N.D.	2.	5	ug/l	79		56-120		
Dibromochloromethane	N.D.	0.5	1	ug/l	88		72-120		
1,2-Dibromoethane	N.D.	0.5	1	ug/l	95		80-120		
Dibromomethane	N.D.	0.5	1	ug/l	92		80-120		
1,2-Dichlorobenzene	N.D.	1.	5	ug/l	94		80-120		
1,3-Dichlorobenzene	N.D.	1.	5	ug/l	93		80-120		
1,4-Dichlorobenzene	N.D.	1.	5	ug/l	93		80-120		
Dichlorodifluoromethane	N.D.	0.5	1	ug/l	91		55-127		
1,1-Dichloroethane	N.D.	0.5	1	ug/l	92		80-120		
1,2-Dichloroethane	N.D.	0.5	1	ug/l	99		65-135		
1,1-Dichloroethene	N.D.	0.5	1	ug/l	89		76-124		
cis-1,2-Dichloroethene	N.D.	0.5	1	ug/l	96		80-120		
trans-1,2-Dichloroethene	N.D.	0.5	1	ug/l	94		80-120		
1,2-Dichloropropane	N.D.	0.5	1	ug/l	94		80-120		
1,3-Dichloropropane	N.D.	0.5	1	ug/l	93		80-120		
2,2-Dichloropropane	N.D.	0.5	1	ug/l	86		67-124		
1,1-Dichloropropene	N.D.	1.	5	ug/l	99		80-126		
cis-1,3-Dichloropropene	N.D.	0.5	1	ug/l	91		80-120		
trans-1,3-Dichloropropene	N.D.	0.5	1	ug/l	88		76-120		
Ethanol	N.D.	50.	250	ug/l	97		58-139		
Ethyl t-butyl ether	N.D.	0.5	1	ug/l	89		69-120		

*- Outside of specification

**-This limit was used in the evaluation of the final result for the blank

(1) The result for one or both determinations was less than five times the LOQ.

Analysis Report

Group Number: 1503190

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: ChevronTexaco Reported: 09/29/14 at 12:55 PM

-	Blank	Blank	Blank	Report	LCS	LCSD	LCS/LCSD		RPD
<u>Analysis Name</u>	<u>Result</u>	<u>MDL**</u>	LOQ	<u>Units</u>	<u>%REC</u>	%REC	<u>Limits</u>	<u>RPD</u>	Max
Ethylbenzene	N.D.	0.5	1	ug/l	93		79-120		
Freon 113	N.D.	2.	10	ug/l	88		67-127		
Hexachlorobutadiene	N.D.	2.	5	ug/l	104		51-125		
2-Hexanone	N.D.	3.	10	ug/l	87		57-127		
di-Isopropyl ether	N.D.	0.5	1	uq/l	93		61-132		
Isopropylbenzene	N.D.	1.	5	ug/l	96		80-120		
p-Isopropyltoluene	N.D.	1.	5	ug/l	92		76-120		
Methyl Tertiary Butyl Ether	N.D.	0.5	1	ug/l	90		75-120		
4-Methvl-2-pentanone	N.D.	3.	10	ug/l	89		51-124		
Methylene Chloride	N.D.	2.	3	ug/1	93		80-120		
Naphthalene	N.D.	1	5	ug/1	86		47-126		
n-Propylbenzene	N.D.	1.	5	ug/1	95		80-120		
Styrene	N.D.	1.	5	ug/1	89		80-120		
1.1.1.2-Tetrachloroethane	N.D.	0.5	1	ug/1	92		80-120		
1,1,2,2-Tetrachloroethane	N.D.	0.5	1	ug/1	87		70-120		
Tetrachloroethene	N.D.	0.5	1	ug/1	102		80-120		
Toluene	N.D.	0.5	1	ug/1	94		80-120		
1 2 3-Trichlorobenzene	N D	1	5	ug/1	95		68-123		
1 2 4-Trichlorobenzene	N D	1	5	ug/1	98		73-120		
1 1 1-Trichloroethane	N D	1. 0.5	1	ug/1	84		66-126		
1 1 2-Trichloroethane	N.D.	0.5	1	ug/1	93		80-120		
Trichloroethene	N.D.	0.5	1	ug/1	97		80-120		
Trichlorofluoromethane	N.D.	0.5	1	ug/1	101		58-135		
1 2 3-Trichloropropage	N.D.	1	5	ug/1	91		76-120		
1 2 A-Trimethylbenzene	N.D.	1	5	ug/1	23		80-120		
1,2,4-IIImethylbenzene	N.D.	1.	5	ug/1	93		80-120		
Vinul Chlorido	N.D.	1.	1	ug/1	94		60-120		
	N.D. N.D	0.5	1	ug/1	93		83-120		
m+p-Aylene	N.D.	0.5	1	ug/1	93		80-120		
0-xylene	N.D.	0.5	T	ug/1	91		80-120		
Batch number: 14258B94A	Sample nu	umber(s): 7	599096-75	99099					
TPH-GRO N. CA water C6-C12	N.D.	50.	100	ug/l	125	120	80-139	4	30
Ratch number, 142600639001A	Sample n	mber(g), 7	599096 75	ممممم					
Antimony			2000,73	/1	0.2		00 100		
Anonia	N.D.	0.33	2.0	ug/1	92		80-120		
Porullium	N.D.	0.82	4.0	ug/1	105		00 112		
Cadmium	N.D.	0.045	1.0	ug/1	105		90-113		
Caulii uii	N.D. N.D	0.17	1.0	ug/1	94		90-114		
Coholt	N.D. N.D	0.50	4.0	ug/1	102		90-113		
Coball	N.D.	0.10	1.0	ug/1	95		0/-113		
Copper	N.D.	0.50	4.0	ug/1	99		90-113		
Lead	N.D.	0.082	2.0	ug/1	103		90-110		
NICKEI	N.D.	0.79	4.0	ug/1	98		90-113		
Silver	N.D.	0.13	1.0	ug/1	98		90-115		
Thallium	N.D.	0.15	1.0	ug/1	107		90-115		
Vanadium	N.D.	0.22	1.0	ug/1	102		89-116		
Zinc	N.D.	2.4	30.0	ug/l	102		90-119		
Batch number: 142600639001B	Sample nu	umber(s): 7	599096,75	99099					
Selenium	N.D.	0.50	4.0	ug/l	102		90-114		
Batch number: 1426006390010	Sample n	mber(s). 7	599096 75	99099					
Molybdenum	N.D.	0.25	1.0	ug/l	104		89-115		
				-					
Batch number: 142600639001D	Sample nu	umber(s): 7	599096,75	99099					
Barium	N.D.	0.58	4.0	uq/l	97		88-113		

*- Outside of specification

**-This limit was used in the evaluation of the final result for the blank

(1) The result for one or both determinations was less than five times the LOQ.

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: ChevronTexaco		G							
Analysis Name	Blank <u>Result</u>	Blank <u>MDL**</u>	Blank <u>LOQ</u>	Report <u>Units</u>	LCS <u>%REC</u>	LCSD <u>%REC</u>	LCS/LCSD <u>Limits</u>	<u>RPD</u>	RPD <u>Max</u>
Batch number: 142605713003 Mercury	Sample nu N.D.	mber(s): 7 0.060	2599096,759 0.20	99099 ug/l	86		80-120		
Batch number: 14260117101A Total Cyanide (water)	Sample nu N.D.	mber(s): 7 5.0	10 1599096	99099 ug/l	97		90-110		
Batch number: 14261120101A Phenols (water)	Sample nu N.D.	mber(s): 7 15.	2599096,759 40	99099 ug/l	95		82-109		
Batch number: 14260807901A HEM (oil & grease)	Sample nu N.D.	mber(s): 7 1,400.	2599096,759 5,000	99099 ug/l	96	93	78-114	3	16

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

	MS	MSD	MS/MSD		RPD	BKG	DUP	DUP	Dup RPD
<u>Analysis Name</u>	<u>%REC</u>	<u>%REC</u>	<u>Limits</u>	<u>RPD</u>	MAX	Conc	Conc	<u>RPD</u>	<u>Max</u>
Batch number: N142591AA	Sample	number(s	s): 7599096	6-75990	99 UNSI	PK: P589332			
Acetone	78	76	35-144	4	30				
t-Amyl methyl ether	93	93	65-117	0	30				
Benzene	100	100	72-134	0	30				
Bromobenzene	100	99	82-115	1	30				
Bromochloromethane	102	105	76-134	2	30				
Bromodichloromethane	90	89	73-125	1	30				
Bromoform	85	85	48-118	1	30				
Bromomethane	93	96	47-129	4	30				
2-Butanone	80	78	44-135	3	30				
t-Butyl alcohol	88	91	67-119	4	30				
n-Butylbenzene	100	101	74-134	1	30				
sec-Butylbenzene	107	107	74-137	0	30				
tert-Butylbenzene	105	107	81-121	1	30				
Carbon Disulfide	83	84	53-149	1	30				
Carbon Tetrachloride	105	106	75-148	1	30				
Chlorobenzene	104	103	87-124	0	30				
Chloroethane	90	94	55-130	4	30				
2-Chloroethyl Vinyl Ether	92	93	10-151	0	30				
Chloroform	103	102	81-134	1	30				
Chloromethane	96	99	61-125	3	30				
2-Chlorotoluene	105	106	82-118	1	30				
4-Chlorotoluene	105	105	84-122	0	30				
1,2-Dibromo-3-chloropropane	82	83	50-123	1	30				
Dibromochloromethane	92	93	74-116	0	30				
1,2-Dibromoethane	96	96	77-116	0	30				
Dibromomethane	96	96	83-119	0	30				
1,2-Dichlorobenzene	98	99	84-119	0	30				
1,3-Dichlorobenzene	98	98	86-121	0	30				
1,4-Dichlorobenzene	99	99	85-121	0	30				
Dichlorodifluoromethane	106	108	58-156	2	30				
1,1-Dichloroethane	100	99	84-129	2	30				
1,2-Dichloroethane	103	102	63-142	1	30				

*- Outside of specification

**-This limit was used in the evaluation of the final result for the blank

(1) The result for one or both determinations was less than five times the LOQ.

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: ChevronTexaco Reported: 09/29/14 at 12:55 PM Group Number: 1503190

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

	MS	MSD	MS/MSD		RPD	BKG		DUP		DUP	Dup RPD
<u>Analysis Name</u>	<u>%REC</u>	<u>%REC</u>	<u>Limits</u>	RPD	MAX	<u>Conc</u>		<u>Conc</u>		<u>RPD</u>	Max
1,1-Dichloroethene	100	102	79-137	2	30						
cis-1,2-Dichloroethene	102	103	80-141	0	30						
trans-1,2-Dichloroethene	104	105	86-131	1	30						
1,2-Dichloropropane	100	100	83-124	0	30						
1,3-Dichloropropane	96	94	81-120	2	30						
2,2-Dichloropropane	95	96	69-135	1	30						
1,1-Dichloropropene	111	111	86-137	0	30						
cis-1,3-Dichloropropene	95	95	70-116	0	30						
trans-1,3-Dichloropropene	90	90	74-119	0	30						
Ethanol	85	90	53-146	6	30						
Ethyl t-butyl ether	93	93	74-122	0	30						
Ethylbenzene	102	102	71-134	0	30						
Freon 113	104	105	89-148	0	30						
Hexachlorobutadiene	124	123	56-134	0	30						
2-Hexanone	83	82	38-131	1	30						
di-Isopropyl ether	97	97	70-129	0	30						
Isopropylbenzene	110	109	75-128	1	30						
p-Isopropyltoluene	103	103	76-123	1	30						
Methyl Tertiary Butyl Ether	93	93	72-126	0	30						
4-Methyl-2-pentanone	91	89	45-128	1	30						
Methylene Chloride	98	98	78-133	0	30						
Naphthalene	96	98	52-125	1	30						
n-Propulbenzene	107	107	74-134	1	30						
Styrene	101	102	78-125	0	30						
1 1 1 2-Tetrachloroethane	99	97	80-123	2	30						
1 1 2 2-Tetrachloroethane	95	9/	72-128	1	30						
Totrachloroothono	111 (2)	112 (2)	72-120 00 120	1	30						
Teluene	101	105 (2)	00-120 00 125	1	30						
1 2 2 Trichlershenzene	101	105	60-125	2	30						
1,2,3-IIICHIOIODEHZEHE	105	105	62-133 EC 137	1	30						
1,2,4-IIICHIOIODEHZEHE	100	107	56-137	1	30						
1,1,1-IIICHIOFOethane	93	95	09-140	2	30						
1,1,2-Trichloroethane	94	92	/1-141	2	30						
Trichloroethene	101	100	88-133	0	30						
Trichlorofluoromethane	11/	121	63-163	3	30						
1,2,3-Trichloropropane	87	85	76-118	1	30						
1,2,4-Trimethylbenzene	99	99	72-130	0	30						
1,3,5-Trimetnyibenzene	101	101	65-132	0	30						
Vinyl Chloride	105	110	66-133	4	30						
m+p-Xylene	104	103	79-125	1	30						
o-Xylene	102	102	79-125	0	30						
Batch number: 142600639001A	Sample	number(g)	. 7599094	5 75990		DK . 759	9096	BKG. 75	9909	6	
Antimony	96 96	100	75-125	3	20	1 6	Т.	1 3	.T.	21* (1)	20
Argenic	103	113	75-125	8	20	3 1	.т	3 0	.т	5 (1)	20
Berullium	103	106	83-123	3	20	N D	0	D N	0	0 (1)	20
Cadmium	95	99	84-118	4	20	N.D.		ND.		0(1)	20
Chromium	101	101	83_116	1	20	N D		N D		0 (1)	20
Cobalt	707	100	86-11/	1	20	N D		M D		0(1)	20
Conner	90	103	8/_11 <i>6</i>		20	1 2	.т	1 2	.т.	6 (1)	20
Cobher	99 106	100	04-110	* 2	20	1.3 N D	U		U	0 (1)	20
Nickol	100	102	09-120 05 117	6	20	л.D. М.D.		и.р.			20
Cilwon	91	103	03-11/	ю Г	20	и.р.		M.D.			20
STIVET	20	TOT	04-110	2	20	м.р.		м.р.		U (1)	∠∪

*- Outside of specification

**-This limit was used in the evaluation of the final result for the blank

(1) The result for one or both determinations was less than five times the LOQ.

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: ChevronTexaco Reported: 09/29/14 at 12:55 PM Group Number: 1503190

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name Thallium Vanadium		MS <u>%REC</u> 109 103	MSD <u>%REC</u> 107 106	MS/MSD Limits 90-125 87-117	<u>RPD</u> 2 2	RPD <u>MAX</u> 20 20	BKG <u>Conc</u> N.D. 1.9	DUP <u>Conc</u> N.D. 1.9	DUP <u>RPD</u> 0 (1) 1 (1)	Dup RPD <u>Max</u> 20 20 20
Zinc		96	99	75-125	3	20	4.2 J	3.7 J	13 (1)	20
Batch number: Selenium	142600639001B	Sample 105	number(s) 107	: 7599096, 75-125	7599099 2	9 UNSPK 20	: 7599096 N.D.	BKG: 7599096 N.D.	0 (1)	20
Batch number: Molybdenum	142600639001C	Sample 105	number(s) 107	: 7599096, 87-115	7599099 2	9 UNSPK 20	: 7599096 2.5	BKG: 7599096 2.8	12 (1)	20
Batch number: Barium	142600639001D	Sample 106	number(s) 113	: 7599096, 75-125	7599099 4	9 UNSPK 20	: 7599096 31.5	BKG: 7599096 31.3	0	20
Batch number: Mercury	142605713003	Sample 858 (2)	number(s) 6951 (2)	: 7599096, 80-120	7599099 18	9 UNSPK 20	: P601198 299	BKG: P601198 305	2	20
Batch number: Total Cyanide	14260117101A (water)	Sample 101	number(s)	: 7599096, 43-137	7599099) UNSPK	: P595993 N.D.	BKG: P595993 N.D.	0 (1)	20
Batch number: Phenols (water	14261120101A)	Sample 95	number(s) 95	: 7599096, 50-133	7599099 0	9 UNSPK 8	: 7599096			
Batch number: HEM (oil & gre	14260807901A ase)	Sample 94	number(s)	: 7599096, 78-114	7599099) UNSPK	: P601828			

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: VOCs- 5ml Water by 8260B										
Batch nu	mber: N142591AA									
	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene						
7599096	101	102	98	93						
7599097	101	101	98	93						
7599098	102	102	98	93						
7599099	99	113	98	95						
Blank	101	102	98	94						
LCS	102	101	100	97						
MS	103	101	99	98						
MSD	103	101	99	97						
Limits:	80-116	77-113	80-113	78-113						
Analveie	Name, TDU_CDO N	CA water C6-C12								
Anarysis Name: IFF-GRO N. CA Water CO-CI2										
Daten nu	Trifluorotoluono F									
	THILLOLULUIU EIIE-F									
7599096	87									

7599097 98

*- Outside of specification

**-This limit was used in the evaluation of the final result for the blank

(1) The result for one or both determinations was less than five times the LOQ.

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: ChevronTexaco Reported: 09/29/14 at 12:55 PM Group Number: 1503190

Surrogate Quality Control

7599098	91
7599099	99
Blank	87
LCS	92
LCSD	94
Limits:	63-135

*- Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Environmental ______ nalysis Request/Chain of Cu___ody

🔅 eurofins					~ ^															
Environmental			Acct. #	10	380	<u>O</u> Gro	up # _	50	319	0	{	Sample	# 7	599	70°	}6-	-99	L		
Client: Chevron EMC						Matrix					A	naly	ses	Requ	ieste	d			For Lab Us	se Only
Project Name/#: Castro Valley	Site ID #:	95607				00					F	Prese	ervat	ion C	ode	s			SF #:	
Project Manager: Judy Gilbert	P.O. #:	Direct Bill	To Ch	nevro	ť	ace													SCR #:	
Sampler: Darrell Smolks	PWSID #:				ime	Grou		S											Preservat	ion Codes
Phone #: 925 334 - 8617	Quote #:				Sed			iner				Υ		5					H = HCI	T = Thiosulfate
State where sample(s) were collected: \mathcal{CA} GW	E Effluent					ble ES		onta	_	00	30	602(4A	906					N = HNO ₃	B = NaOH
	Colle	ction	P	nposite		Pota er NPD	er:	al # of Co	g by 8015N	Cs by 826	3E by 82(TALS by	3 by 1664	nolics by	by 9012				S = H₂SO₄ O = Other	P = H ₃ PO ₄
Sample Identification	Date	Time	Gra	Con	Soil	Wat	oth	Tot	-HdT	NOV	MTE	ME	TOC	Phe	CN				Rem	narks
EFF 🌮	9/2/14	300	\times			×		п	×	×	X	X	х	×	×					
MID-2	9/12/14	230	\times			×		6	X	×	×									
MID-1	9/12/14	215	×			×		6	X	Х	X									
INF ₂	9/12/19	200	×			×		×	X		×	X	\times	×	×					
					 															
			ļ						<u> </u>											
						<u> </u>														
		<u> </u>			Reli	nguished	bv:			Da	l ate	Tir	ne	Rece	eived	bv:			Date	Time
(Rush TAT is subject to laboratory approx	k): Stand	arges)	Rusn	Ľ				<u>.</u>	1	GI	SIN	, zi	22			, . , .				
Data requite are peopled: ASAP					Reli	nquished	by:	no	~~~	Da	ate	Tir	ne	Rece	eived	by:			Date	Time
Rush results requested by (please check):	ail G	Phor		1		•								$ \rangle$						
E-mail Address: igilbert@craworld.com_dsmc		rld com		_	Reli	nquished	by:			Da	ate	Tir	ne	Rece	lyed	by:			Date	Time
Phone: 510 470 -3314	925 3	34 - 8	617	7		\setminus	\ \													
Data Package Options (please check if required)			- an ann Maran	Reli	nquished	b <u>y:</u>			Da	ate	Tir	ne	Rece	eived	þу:			Date	Time	
Type I (Validation/non-CLP) MA MCP					Ē		$\langle \rangle$													
Type III (Reduced non-CLP)					Reli	nquished	by:	$\overline{\}$		Da	ate	Tir	ne	Rece	ived	Øy:	~		Date	Time
Type IV (CLP SOW)	2-13														\leq	5			41314	050
Type VI (Raw Data Only)					Reli	nquished	by C	omme	ercial	Carrie	ər:			C					9.11	
EDD Required? Yes 🔄 No 📋 If ye	s, format: _	Zip File			UPS	$\underline{\times}$	FedE	Ex		Other				Tem	perat	ure up	oon re	eceipt	<u>.\4</u>	°C

Eurofins Lancaster Laboratories Environmental, LLC • 2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300

🔅 eurofins

Lancaster Laboratories Environmental

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

•			•
RL	Reporting Limit	BMQL	Below Minimum Quantitation Level
N.D.	none detected	MPN	Most Probable Number
TNTC	Too Numerous To Count	CP Units	cobalt-chloroplatinate units
IU	International Units	NTU	nephelometric turbidity units
umhos/cm	micromhos/cm	ng	nanogram(s)
С	degrees Celsius	F	degrees Fahrenheit
meq	milliequivalents	lb.	pound(s)
g	gram(s)	kg	kilogram(s)
μg	microgram(s)	mg	milligram(s)
mL	milliliter(s)	L	liter(s)
m3	cubic meter(s)	μL	microliter(s)
		pg/L	picogram/liter

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- **ppm** parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter per liter of gas.
- ppb parts per billion
- Dry weight basis Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture. All other results are reported on an as-received basis.

Data Qualifiers:

C - result confirmed by reanalysis.

J - estimated value – The result is \geq the Method Detection Limit (MDL) and < the Limit of Quantitation (LOQ).

U.S. EPA CLP Data Qualifiers:

Organic Qualifiers

- A TIC is a possible aldol-condensation product
- B Analyte was also detected in the blank
- C Pesticide result confirmed by GC/MS
- **D** Compound quantitated on a diluted sample
- E Concentration exceeds the calibration range of the instrument
- **N** Presumptive evidence of a compound (TICs only)
- **P** Concentration difference between primary and confirmation columns >25%
- U Compound was not detected
- X,Y,Z Defined in case narrative

Inorganic Qualifiers

- B Value is <CRDL, but ≥IDL
- **E** Estimated due to interference
- M Duplicate injection precision not met
- **N** Spike sample not within control limits
- **S** Method of standard additions (MSA) used for calculation
- U Compound was not detected
- W Post digestion spike out of control limits
- * Duplicate analysis not within control limits
- + Correlation coefficient for MSA < 0.995

Analytical test results meet all requirements of NELAC unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

Times are local to the area of activity. Parameters listed in the 40 CFR part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL, LLC BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL AND (B) WHETHER EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

9/19/2014 Ms. Judy Gilbert Conestoga-Rovers Associates (CRA) 5900 Hollis Street Suite A Emeryville CA 94608

Project Name: Castro Valley Project #: 311950 2014.7 Workorder #: 1409199B

Dear Ms. Judy Gilbert

The following report includes the data for the above referenced project for sample(s) received on 9/13/2014 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-3 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kyle Vagadori at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kga Vych

Kyle Vagadori Project Manager

180 Blue Ravine Road, Suite B Folsom, CA 95630

WORK ORDER #: 1409199B

Work Order Summary

CLIENT:	Ms. Judy Gilbert	BILL TO:	Accounts Payable
	Conestoga-Rovers Associates (CRA)		Conestoga-Rovers Associates (CRA)
	5900 Hollis Street		2055 Niagara Falls Blvd.
	Suite A		Suite Three
	Emeryville, CA 94608		Niagara Falls, NY 14304
PHONE:	510-420-3314	P.O. #	311950 2014.7
FAX:	510-420-9170	PROJECT #	311950 2014.7 Castro Valley
DATE RECEIVED:	09/13/2014	CONTACT	Kyle Vagadori
DATE COMPLETED:	09/19/2014	contact.	Kyle v agadoli

			KECEH I	FINAL
FRACTION #	<u>NAME</u>	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	EFF	Modified TO-3	Tedlar Bag	Tedlar Bag
02A	INF-2	Modified TO-3	Tedlar Bag	Tedlar Bag
03A	Lab Blank	Modified TO-3	NA	NA
04A	LCS	Modified TO-3	NA	NA
04B	LCS	Modified TO-3	NA	NA
04BB	LCSD	Modified TO-3	NA	NA

CERTIFIED BY:

layes

DATE: <u>09/19/14</u>

DECEIDT

FINAT

Technical Director

Certification numbers: AZ Licensure AZ0775, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704434-13-6, UT NELAP CA009332014-5, VA NELAP - 460197, WA NELAP - C935 Name of Accrediting Agency: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005, Effective date: 10/18/2013, Expiration date: 10/17/2014. Eurofins Air Toxics Inc.. certifies that the test results contained in this report meet all requirements of the NELAC standards

> This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, Inc. 180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 9563 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

🛟 eurofins

LABORATORY NARRATIVE Modified TO-3 Conestoga-Rovers Associates (CRA) Workorder# 1409199B

Two 1 Liter Tedlar Bag samples were received on September 13, 2014. The laboratory performed analysis for volatile organic compounds in air via modified EPA Method TO-3 using gas chromatography with photo ionization and flame ionization detection. The TPH results are calculated using the response of Gasoline. A molecular weight of 100 is used to convert the TPH ppmv result to ug/L. The method involves concentrating up to 200 mL of sample. The concentrated aliquot is then dry purged to remove water vapor prior to entering the chromatographic system.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	ТО-3	ATL Modifications
Daily Calibration Standard Frequency	Prior to sample analysis and every 4 - 6 hrs	Prior to sample analysis and after the analytical batch = 20 samples.</td
Initial Calibration Calculation	4-point calibration using a linear regression model	5-point calibration using average Response Factor
Initial Calibration Frequency	Weekly	When daily calibration standard recovery is outside 75 - 125 %, or upon significant changes to procedure or instrumentation
Moisture Control	Nafion system	Sorbent system
Minimum Detection Limit (MDL)	Calculated using the equation $DL = A+3.3S$, where A is intercept of calibration line and S is the standard deviation of at least 3 reps of low level standard	40 CFR Pt. 136 App. B
Preparation of Standards	Levels achieved through dilution of gas mixture	Levels achieved through loading various volumes of the gas mixture

Receiving Notes

According to the Chain of Custody (COC), samples EFF and INF-2 were collected on 9/12/14. However, the date on the sample tag reflects a collection date of 9/114/14. Therefore the date on the sample tag was used to calculate the sample holding time.

Analytical Notes

Samples EFF and INF-2 were transferred from Tedlar bags into summa canisters to extend the hold time from 3 days to 14 days. Canister pressurization resulted in a dilution factor which was applied to all analytical results.

Total Xylenes concentration is calculated by summing the individual concentrations of m,p-Xylene and O-Xylene.

The recovery of surrogate Fluorobenzene in samples EFF and INF-2 was outside control limits due to high level hydrocarbon matrix interference. Data is reported as qualified.

The detection of m,p-xylenes may have been masked in samples INF-2 due to complex hydrocarbon interference.

Definition of Data Qualifying Flags

Seven qualifiers may have been used on the data analysis sheets and indicate as follows:

- B Compound present in laboratory blank greater than reporting limit.
- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the detection limit.
- M Reported value may be biased due to apparent matrix interferences.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

- b-File was quantified by a second column and detector
- r1-File was requantified for the purpose of reissue

Summary of Detected Compounds MODIFIED EPA METHOD TO-3 GC/PID/FID

Client Sample ID: EFF

Lab ID#: 1409199B-01A

Compound	Rpt. Limit (ppmv)	Rpt. Limit (ug/L)	Amount (ppmv)	Amount (ug/L)
Benzene	0.0020	0.0064	0.39 M	1.2 M
Toluene	0.0020	0.0076	0.22	0.84
Ethyl Benzene	0.0020	0.0088	0.12	0.52
Total Xylenes	0.0040	0.018	0.53	2.3
Methyl tert-butyl ether	0.0020	0.0073	0.19	0.68
TPH (Gasoline Range)	0.050	0.21	46	190

Client Sample ID: INF-2

Lab ID#: 1409199B-02A

Compound	Rpt. Limit (ppmv)	Rpt. Limit (ug/L)	Amount (ppmv)	Amount (ug/L)
Benzene	0.20	0.64	44 M	140 M
Toluene	0.20	0.76	8.3	31
Ethyl Benzene	0.20	0.88	1.3	5.6
Total Xylenes	0.40	1.8	0.89 M	3.8 M
Methyl tert-butyl ether	0.20	0.73	38	140
TPH (Gasoline Range)	5.0	21	4200	17000

Client Sample ID: EFF Lab ID#: 1409199B-01A MODIFIED EPA METHOD TO-3 GC/PID/FID

٦

File Name: Dil. Factor:	d091806 2.02	Date of Collection: 9/11/14 4:30:00 AM Date of Analysis: 9/18/14 03:44 PM				
Compound	Rpt. Limit (ppmv)	Rpt. Limit (ug/L)	Amount (ppmv)	Amount (ug/L)		
Benzene	0.0020	0.0064	0.39 M	1.2 M		
Toluene	0.0020	0.0076	0.22	0.84		
Ethyl Benzene	0.0020	0.0088	0.12	0.52		
Total Xylenes	0.0040	0.018	0.53	2.3		
Methyl tert-butyl ether	0.0020	0.0073	0.19	0.68		
TPH (Gasoline Range)	0.050	0.21	46	190		

 $\label{eq:maintender} \begin{array}{l} \mathsf{M} = \mathsf{Reported} \ \mathsf{value} \ \mathsf{may} \ \mathsf{be} \ \mathsf{biased} \ \mathsf{due} \ \mathsf{to} \ \mathsf{apparent} \ \mathsf{matrix} \ \mathsf{interferences}. \\ \mathsf{Q} = \mathsf{Exceeds} \ \mathsf{Quality} \ \mathsf{Control} \ \mathsf{limits}, \ \mathsf{possibly} \ \mathsf{due} \ \mathsf{to} \ \mathsf{matrix} \ \mathsf{effects}. \\ \textbf{Container Type: 1 Liter Tedlar Bag} \end{array}$

		Method		
Surrogates	%Recovery	Limits		
Fluorobenzene (FID)	257 Q	75-150		
Fluorobenzene (PID)	206 Q	75-125		

Client Sample ID: INF-2 Lab ID#: 1409199B-02A MODIFIED EPA METHOD TO-3 GC/PID/FID

٦

File Name: Dil. Factor:	d091807 202	Date of Collection: 9/11/14 4:20: Date of Analysis: 9/18/14 04:40 F		
Compound	Rpt. Limit (ppmv)	Rpt. Limit (ug/L)	Amount (ppmv)	Amount (ug/L)
Benzene	0.20	0.64	44 M	140 M
Toluene	0.20	0.76	8.3	31
Ethyl Benzene	0.20	0.88	1.3	5.6
Total Xylenes	0.40	1.8	0.89 M	3.8 M
Methyl tert-butyl ether	0.20	0.73	38	140
TPH (Gasoline Range)	5.0	21	4200	17000

 $\label{eq:main} \begin{array}{l} \mathsf{M} = \mathsf{Reported} \ \mathsf{value} \ \mathsf{may} \ \mathsf{be} \ \mathsf{biased} \ \mathsf{due} \ \mathsf{to} \ \mathsf{apparent} \ \mathsf{matrix} \ \mathsf{interferences}. \\ \mathsf{Q} = \mathsf{Exceeds} \ \mathsf{Quality} \ \mathsf{Control} \ \mathsf{limits}, \ \mathsf{possibly} \ \mathsf{due} \ \mathsf{to} \ \mathsf{matrix} \ \mathsf{effects}. \end{array}$

Container Type: 1 Liter Tedlar Bag

		Method
Surrogates	%Recovery	Limits
Fluorobenzene (FID)	246 Q	75-150
Fluorobenzene (PID)	196 Q	75-125

Client Sample ID: Lab Blank Lab ID#: 1409199B-03A MODIFIED EPA METHOD TO-3 GC/PID/FID

٦

File Name: Dil. Factor:	d091804 1.00	Date of Collection: NA Date of Analysis: 9/18/14 01:35 PM		
Compound	Rpt. Limit (ppmv)	Rpt. Limit (ug/L)	Amount (ppmv)	Amount (ug/L)
Benzene	0.0010	0.0032	Not Detected	Not Detected
Toluene	0.0010	0.0038	Not Detected	Not Detected
Ethyl Benzene	0.0010	0.0043	Not Detected	Not Detected
Total Xylenes	0.0020	0.0087	Not Detected	Not Detected
Methyl tert-butyl ether	0.0010	0.0036	Not Detected	Not Detected
TPH (Gasoline Range)	0.025	0.10	Not Detected	Not Detected

Container Type: NA - Not Applicable

Surrogates	%Recovery	Method Limits
Fluorobenzene (FID)	92	75-150
Fluorobenzene (PID)	86	75-125

Client Sample ID: LCS Lab ID#: 1409199B-04A MODIFIED EPA METHOD TO-3 GC/PID/FID

1

File Name: Dil. Factor:	d091809b 1.00	Date of Collection: NA Date of Analysis: 9/18/14 09:16 PM	
Compound		%Recovery	Method Limits
Benzene		87	75-125
Toluene		86	75-125
Ethyl Benzene		91	75-125
Total Xylenes		95	75-125
Methyl tert-butyl ether		89	75-125

Container Type: NA - Not Applicable

		Method
Surrogates	%Recovery	Limits
Fluorobenzene (PID)	92	75-125

Client Sample ID: LCS Lab ID#: 1409199B-04B MODIFIED EPA METHOD TO-3 GC/PID/FID

File Name: Dil. Factor:	d091802 1.00	Date of Collection: NA Date of Analysis: 9/18/14 11:43 AM	
Compound		%Recovery	Method Limits
TPH (Gasoline Range)		82	75-125
Container Type: NA - Not Ap	plicable		Method
Surrogates		%Recovery	Limits
Fluorobenzene (FID)		97	75-150

Client Sample ID: LCSD Lab ID#: 1409199B-04BB MODIFIED EPA METHOD TO-3 GC/PID/FID

File Name: Dil. Factor:	d091808 1.00	Date of Collection: NA Date of Analysis: 9/18/14 07:53 PM	
Compound		%Recovery	Method Limits
TPH (Gasoline Range)		81	75-125
Container Type: NA - Not Ap	plicable		Method
Surrogates		%Recovery	Limits
Fluorobenzene (FID)		98	75-150