

RECEIVED

9:00 am, Jul 20, 2010

Alameda County Environmental Health Aaron Costa Project Manager Marketing Business Unit Chevron Environmental Management Company 6111 Bollinger Canyon Road San Ramon, CA 94583 Tel (925) 543-2961 Fax (925) 543-2324 acosta@chevron.com

Alameda County Health Care Services 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Re: Chevron Service Station No. 9-4800 1700 Castro Street Oakland, CA

I have reviewed the attached report dated July 19, 2010.

I agree with the conclusions and recommendations presented in the referenced report. The information in this report is accurate to the best of my knowledge and all local Agency/Regional Board guidelines have been followed. This report was prepared by Conestoga-Rovers & Associates, upon whose assistance and advice I have relied.

This letter is submitted pursuant to the requirements of California Water Code Section 13267(b)(1) and the regulating implementation entitled Appendix A pertaining thereto.

I declare under penalty of perjury that the foregoing is true and correct to the best of my knowledge.

Sincerely,

Aaron Costa Project Manager

Attachment: Report

5900 Hollis Street, Suite A Emeryville, California 94608 Telephone: (510) 420-0700 http://www.craworld.com

Fax: (510) 420-9170

July 19, 2010

Reference No. 060061

Mr. Mark Detterman Alameda County Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Re: First Semi-Annual 2010 Groundwater Monitoring and Sampling Report Chevron Service Station 9-4800 1700 Castro Street Oakland, California Fuel Leak Case No. RO0000342

Dear Mr. Mark Detterman:

Conestoga-Rovers & Associates (CRA) is submitting this *First Semi-Annual 2010 Groundwater Monitoring and Sampling Report* on behalf of Chevron Environmental Management Company (Chevron), for the site referenced above. On May 18, 2010, Blaine Tech Services, Inc. of San Jose, California (Blaine Tech) monitored and sampled the site wells. Groundwater monitoring data is being submitted in accordance with the reporting requirements of 23CCR2652d. Presented below are the site background, current monitoring and sampling results, intrinsic bioremediation evaluation, compound specific isotope analysis (CSIA), CRA's conclusions and recommendations, and anticipated future activities.

SITE BACKGROUND

Site Description

The site is an active Chevron-branded service station located on the northeast corner of the intersection on Castro Street and 17th Street in Oakland, California (Figure 1). Surrounding properties are a mixture of commercial and residential. The current facility consists of a convenience store, five dispenser islands, and two gasoline underground storage tanks (USTs) (Figure 2). Currently there are four monitoring wells onsite and one monitoring well offsite. In December 2004, monitoring wells MW-5 and MW-6 were properly destroyed. To date, 12 soil borings have been advanced onsite. In 2004, four USTs, five dispenser islands, and a station building were removed and replaced with the current site improvements.

Equal Employment Opportunity Employer

Reference No. 060061

Site Geology

Sediments in this region consist of alluvial fan deposits composed of clay, silt, poorly graded aeolian sand, and gravel. The total thickness of these deposits can be 500 feet. Generally unconfined conditions prevail in the water bearing formations of these deposits.¹ At the site, fill material has been encountered between 1 and 5 feet below grade (fbg). Beneath the fill, interbedded layers of silty sand, clayey sand, and sandy silt have been encountered to approximately 13 fbg. The unconfined shallow water-bearing zone consists of a fine sand observed between approximately 13 and 29 fbg and is underlain by a clay to the total depth explored of 31.5 fbg.

- 2 -

Hydrogeology

The site is located within the East Bay Plain, a northwest trending alluvial plain in a Franciscan Complex depression. Groundwater in this region has been identified as beneficial for agricultural, municipal, and industrial uses.² Groundwater occurs principally in alluvial deposits of Pleistocene to Holocene ages that overlie non-water bearing rocks of the Franciscan assemblage. Groundwater beneath the site has been monitored since June 1997. Historical depth to groundwater ranges from approximately 23 to 29 fbg and flows consistently toward the west.

RESULTS OF FIRST SEMI-ANNUAL 2010 MONITORING EVENT

Groundwater Monitoring

Blaine Tech gauged and sampled wells MW-1 through MW-4 and MW-7 on May 18, 2010. Depth to groundwater ranged from 23.65 to 27.51 fbg and flowed toward the west at a gradient of 0.011. Blaine Tech's May 19, 2010 *Second Quarter 2010 Monitoring* report is included as Attachment A. Groundwater potentiometric and hydrocarbon concentration data for this event are presented on Figure 2. Lancaster Laboratories' June 1, 2010 *Analytical Results* report is included as Attachment B.

¹ East Bay Plain Groundwater Basin Beneficial Use Evaluation Report, Alameda and Contra Costa Counties, California; California Regional Water Quality Control Board – San Francisco Bay Region Groundwater Committee; June 1999.

² Table 2-2 Existing and Potential Beneficial Uses in Groundwater in Identified Basins; *Water Quality Control Plan (Basin Plan) for the San Francisco Bay Basin;* California Regional Water Quality Control Board- San Francisco Bay Region, January 18, 2007.

Reference No. 060061

- 3 -

Current hydrocarbon concentrations are presented and compared to environmental screening levels (ESLs) where groundwater is a potential source of drinking water3 in Table A. Total petroleum hydrocarbons as diesel (TPHd) and gasoline (TPHg), benzene, toluene, ethylbenzene, xylenes (BTEX), and methyl tertiary butyl ether (MTBE) concentrations this quarter are within historical ranges and are consistent with seasonal fluctuations.

TABLE A:	SUMM	ARY OF	ENVIRON	MENTA	L SCREENING	LEVELS	
	TPHd	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
Groundwater ESLs	100	100	1.0	40	30	20	5
		C01	ncentration	ıs in micro	grams per liter ((µg/L)	
MW-1	110	<50	< 0.5	< 0.5	< 0.5	< 0.5	230
MW-2	1,100	580	< 0.5	< 0.5	< 0.5	< 0.5	22
MW-3	150	63 J	11	< 0.5	< 0.5	1	110
MW-4	340	56 J	< 0.5	< 0.5	< 0.5	< 0.5	70
MW-7	160	76 J	<1	<1	<1	<1	2,400

Concentration Trends

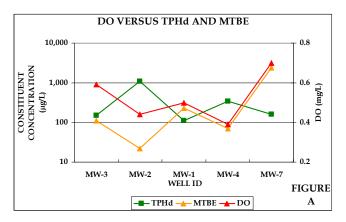
TPHd, TPHg, benzene and MTBE concentrations continue to remain non-detect or decreasing from the previous sampling event and the historical maximum concentrations in all wells.

INTRINSIC BIOREMEDIATION EVALUATION AND COUMPOUND SPECIFIC ISOTOPE ANALYSIS

To assess the extent to which natural hydrocarbon biodegradation is occurring, Blaine Tech collected intrinsic bioremediation parameter data from all site wells on May 18, 2010. Groundwater was analyzed for dissolved oxygen (DO), oxidation reduction potential (ORP), nitrates, sulfates, dissolved total ferrous iron, and methane. Attachment B includes the DO and ORP data recorded on the Field Data Sheets and bioparameter analytical data is presented in Attachment B. A discussion of the bioparameter data, including graphs, is presented below. Intrinsic bioremediation evaluation graphs are included as Attachment C.

³ *Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater*, Prepared by California Regional Water Quality Control Board San Francisco Bay Region, Interim Final - November 2007, (Revised May 2008), Table F-1a-Groundwater Screening Levels-Current or Potential Drinking Water Resource.

Reference No. 060061


DISCUSSION OF BIOPARAMETER DATA

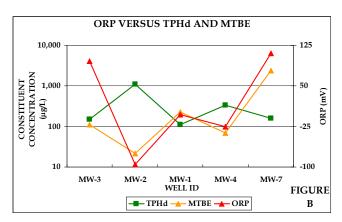
To summarize typical parameter relationships, active biodegradation is indicated by inverse relationships between hydrocarbon concentrations and DO, ORP, nitrate and sulfate concentrations, and a direct relationship between hydrocarbon concentrations and ferrous iron and methane concentrations. Each of these parameters is discussed below.

- 4 -

Dissolved Oxygen

During aerobic biodegradation, DO concentrations are reduced as aerobic respiration occurs. DO is the most thermodynamically favored electron acceptor used in aerobic biodegradation of petroleum hydrocarbons. Active aerobic biodegradation of BTEX compounds requires at least 1 milligram per liter (mg/L) DO in groundwater. DO concentrations can be as high as 8 to 13 mg/L in oxygen-saturated groundwater that is free of hydrocarbons. Inverse

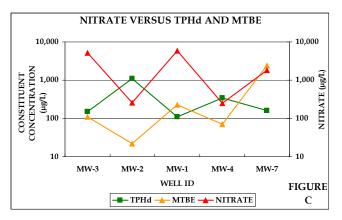
relationships between DO and hydrocarbon concentrations indicate the occurrence of aerobic degradation, provided that at least 1 to 2 mg/L of DO is present in groundwater. At the site, DO concentrations ranged from 0.39 to 0.70 mg/L. As shown in Figure A, DO concentrations vary inversely with respect to TPHd concentrations in all wells, and DO concentrations are directly correlating to MTBE concentrations. DO concentrations in all wells are below 1 mg/L and source area DO concentrations are even lower, suggesting that DO is being depleted.



- 5 -

Reference No. 060061

Oxidation-Reduction Potential

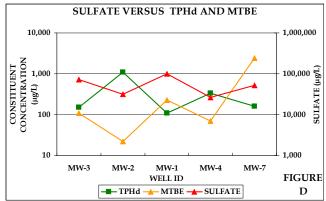

The ORP of groundwater is a measure of electron activity and is an indicator of the relative tendency of a solute species to gain or lose electrons. The ORP of groundwater generally ranges from -400 millivolts (mV) to +800mV. Under oxidizing conditions the ORP of groundwater is positive, while under reducing conditions the ORP is usually negative. Reducing conditions (negative ORP) suggests that anaerobic biodegradation is occurring. As shown in Figure B, ORP concentrations vary

inversely with respect to TPHd concentrations in all wells, and ORP concentrations are directly proportional to MTBE concentrations. ORP ranges from -95 to +110 mV, indicating that aerobic biodegradation is occurring on the edges of the hydrocarbon plume and anaerobic biodegradation is occurring within the core of the hydrocarbon plume.

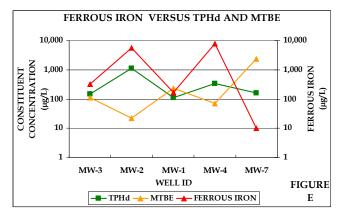
Nitrate

After DO has been depleted in groundwater, nitrate may be used as an electron acceptor for anaerobic biodegradation. In this denitrification process, nitrate is reduced to nitrite. If nitrate concentrations vary inversely with hydrocarbon concentrations and if nitrates are depleted in the core of the plume, anaerobic hydrocarbon biodegradation is probably occurring. At this site, nitrate was detected in all wells except MW-4, which was analyzed past the hold time.

Nitrate concentrations ranged from 260 μ g/L in MW-2 to a maximum concentration of 5,800 μ g/L in MW-1 (Figure C). Nitrate concentrations vary inversely with TPHd concentrations. The lower nitrate concentrations in respect to wells MW-2 and MW-4 indicate that anaerobic biodegradation of TPHd is occurring in the source area.


- 6 -

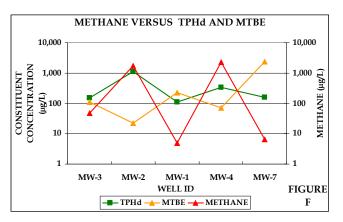
Sulfate


After DO and nitrate have been depleted in groundwater, sulfate may be used as an electron acceptor for anaerobic biodegradation. If sulfate concentrations vary inversely with hydrocarbon concentrations, anaerobic biodegradation of fuel hydrocarbons is probably occurring. At this site, sulfate concentrations range from 26,500 µg/L in MW-4 to 101,000 µg/L in MW-1. As shown on Figure D, sulfate concentrations vary inversely with TPHd concentrations which suggests that anaerobic biodegradation is occurring at the site.

Ferrous Iron

In some cases ferric iron is used as an electron acceptor during anaerobic biodegradation of petroleum hydrocarbons. In this process, ferric iron is reduced to ferrous iron, which may be soluble in water. As shown on Figure E, ferrous iron concentrations are directly proportional to the hydrocarbon concentrations which suggest that anaerobic biodegradation is occurring in the source area.

Reference No. 060061



Reference No. 060061

Methane

Since methane is not present in fuels, it can be used as an indicator of biodegradation. Methane is produced only under strong reducing conditions by methanogens. Methanogens are one of the most common classes of naturally occurring microorganisms. Methanogens are anaerobic organisms that can utilize either acetate or hydrogen, which are common products of fermentative bacteria. Methanogenic microorganisms become metabolically active if electron acceptors

stronger than carbon dioxide have been depleted and hydrogen and/or acetate are being produced and are available. If carbon dioxide is being used as an electron acceptor methane concentrations will be directly proportional to biodegradation across the dissolved hydrocarbon plume. At this site, we see a direct relationship between elevated concentrations of methane and TPHd; therefore anaerobic biodegradation is occurring in the source area.

-7-

Summary of Intrinsic Bioremediation Evaluation

In summary, it is evident from the nitrate, sulfate, ferrous iron, and methane data that anaerobic hydrocarbon biodegradation is occurring in the dissolved hydrocarbon source area. ORP data suggests that the edges of the hydrocarbon plume are degrading aerobically. Figures A through F are included as Attachment C.

COMPOUND SPECIFIC ISOTOPE ANALYSIS EVALUATION

CSIA was conducted to improve our understanding of the contribution of MTBE biodegradation to natural attenuation at the site. Enrichment in the heavy isotope (¹³C) occurs as a result of biodegradation. Carbon isotope values (δ^{13} C) increase (become more positive) with enrichment in the heavy isotopes. Physical processes, such as dilution and dispersion, do not result in significant isotopic enrichment. To evaluate the contribution of biodegradation to MTBE natural attenuation, Blaine Tech collected grab-groundwater samples for CSIA from wells MW-1 through MW-4 and MW-7 on May 18, 2010. CSIA laboratory analytical data is included as Attachment D.

Reference No. 060061

Table B includes MTBE and TBA concentrations, TBA/MTBE ratios, and MTBE and TBA CSIA data.

- 8 -

TAE	BLE B: MTBE A	ND TBA CON	CENTRATION	AND CSIA DA	АТА
Well	MTBE	TBA	TBA/MTBE	MTBE $\delta^{13}C$	ΤΒΑ δ13C
	(µg/L)	(µg/L)	RATIO	(‰)	(‰)
MW-1	230	9	0.039	-32.5	BQL
MW-2	22	6	0.273	-29.1	BQL
MW-3	110	470	4.273	-18.8	-29.1
MW-4	70	33	0.471	-27.6	-27.0
MW-7	2,400	4	0.002	-33.9	BQL

1. BQL = below quantification limit

2. ‰= parts per mil

In MW-3, the TBA/MTBE ratio is greater than 1, indicating MTBE biodegradation and transformation to TBA. The δ^{13} C enrichment observed in MW-3 is significant and suggests anaerobic biodegradation of MTBE in this well, consistent with the higher TBA concentration. The δ^{13} C enrichment in MW-2 and MW-4 is 3 to 4 ‰ higher, as compared to MW-1 and MW-7. This suggests that MTBE biodegradation is occurring in MW-2 and MW-4.

The carbon isotope fractionation observed in MW-2, MW-3, and MW-4 suggests MTBE biodegradation is occurring in these wells. Therefore, biodegradation is contributing to MTBE natural attenuation along the plume's edges.

CONCLUSIONS AND RECOMMENDATIONS

The first semi-annual 2010 sampling event results indicate:

- TPHd, TPHg, benzene and MTBE concentrations continue to remain non-detect or decreasing from the previous sampling event and the historical maximum concentrations in all wells.
- Nitrate, sulfate, ferrous iron, and methane data suggest that anaerobic hydrocarbon biodegradation is occurring in the dissolved hydrocarbon source area.
- ORP data suggests that the edges of the hydrocarbon plume are degrading aerobically.
- Based on CSIA data, biodegradation is contributing to MTBE natural attenuation along the plume's edges.

Reference No. 060061

ANTICIPATED FUTURE ACTIVITIES

Semi-Annual Groundwater Sampling

Blaine Tech will gauge and sample the site wells during the fourth quarter. CRA will prepare and submit the sampling results within 60 days of the sampling date.

-9-

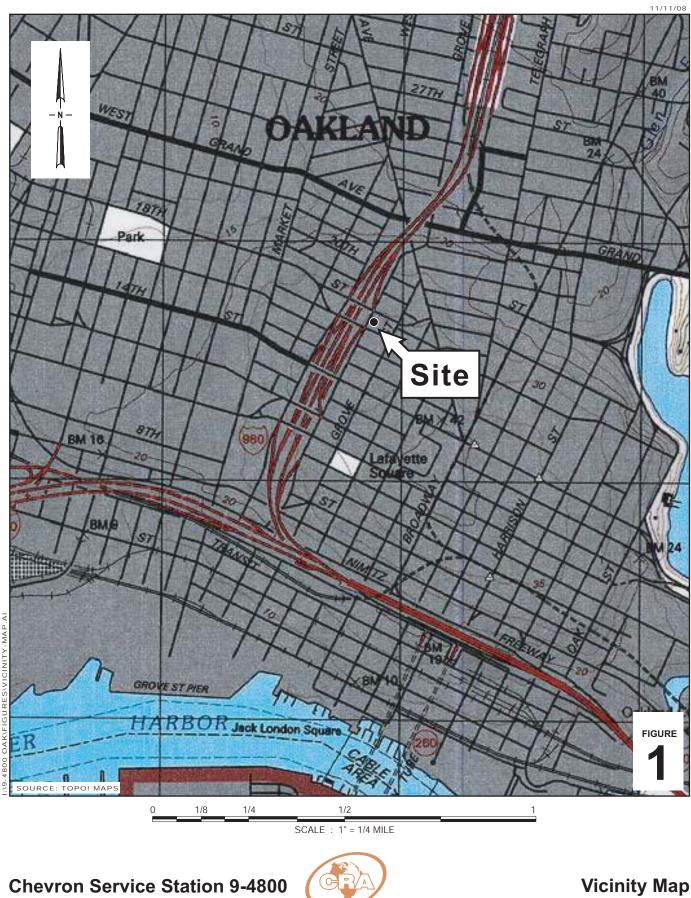
We appreciate the opportunity to work with you on this project. Please contact Mr. Nathan Lee at (510) 420-3333, if you have any questions or comments regarding this report.

Sincerely,

CONESTOGA-ROVERS & ASSOCIATES

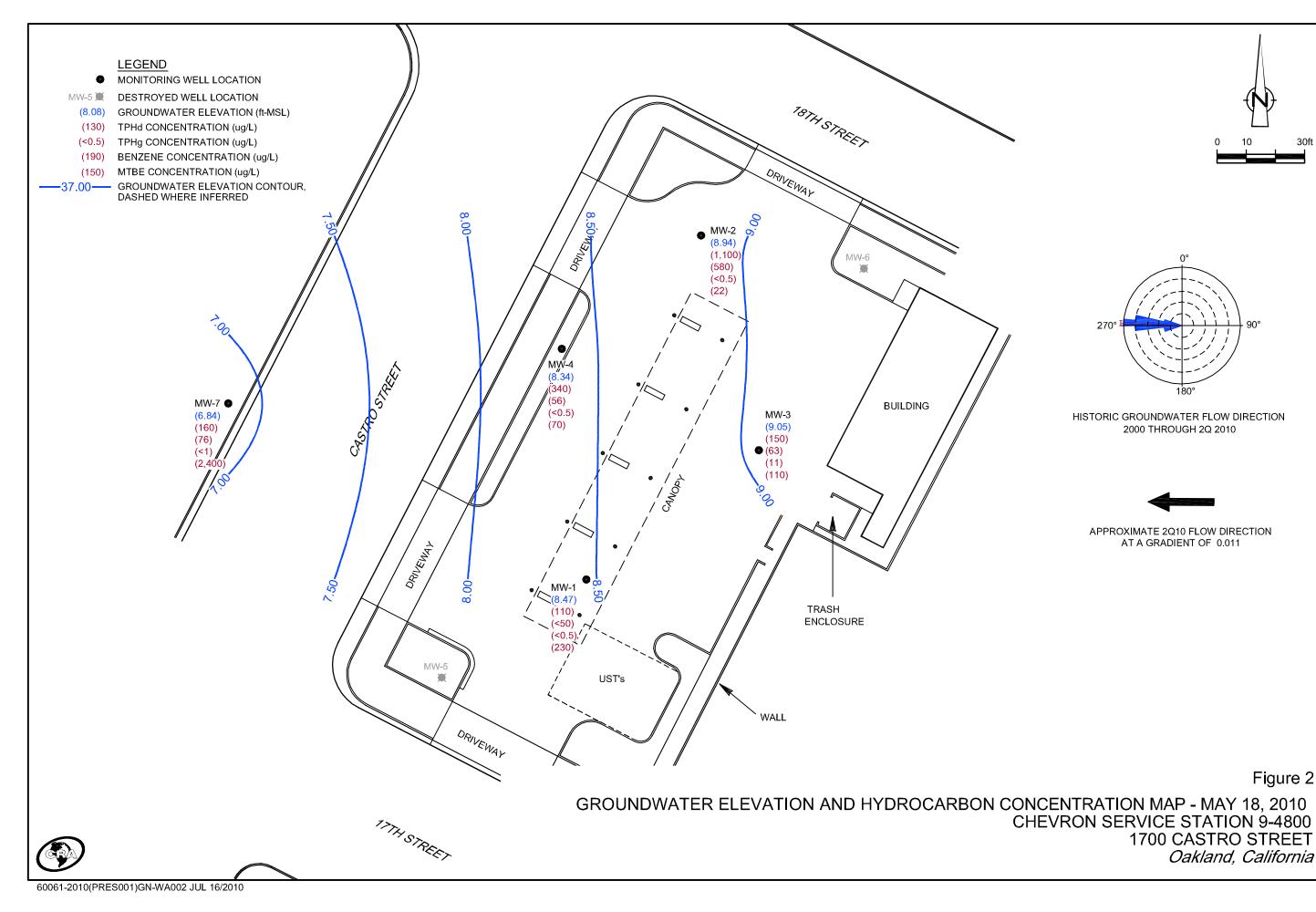
lan Auch

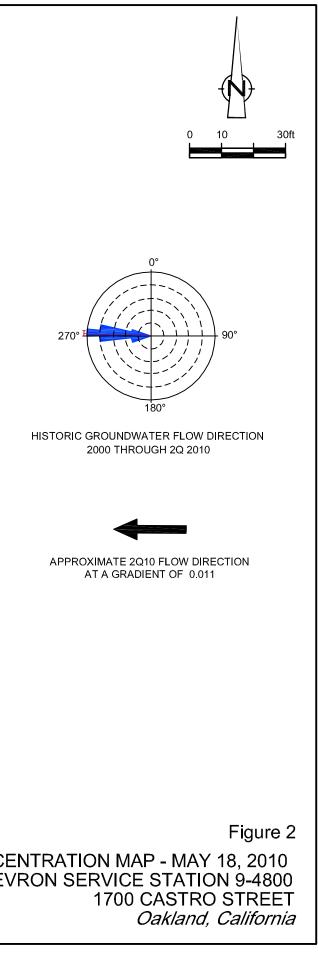
Brandon S. Wilken, P.G. #7564


Ian Hull

IH/doh/5 Encl.

Figure 1 Figure 2	Vicinity Map Groundwater Elevation and Hydrocarbon Concentration Map
Table 1	Groundwater Monitoring and Sampling Data
Attachment A Attachment B	Blaine Tech's May 19, 2010 <i>Second Quarter 2010 Monitoring</i> Report Lancaster Laboratories' June 1, 2010 <i>Analytical Results</i> Report
Attachment C	Bioparameter Data
Attachment D	Compound Specific Isotope Analysis Laboratory Analytical Data


c.c.: Mr. Aaron Costa, Chevron


FIGURES

1700 Castro Street Oakland, California

Page 1 of 15

					HYDROC	CARBONS			Р	RIMARY	VOCS				ADDITI	ONAL	VOCS	
Location	Date	TOC*	DTW	GWE	TPH-DRO	TPH-GRO	В	Т	E	X	MTBE by VOC	MTBE by SW8240	MTBE by SW8260	ETHANOL	TBA	DIPE	ETBE	TAME
	Units	ft	ft	ft	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
					1													
MW-1	06/04/1997	30.75	25.82	4.39	71 ¹	890	100	110	29	150	<10	-	-	-	-	-	-	-
MW-1	09/16/1997	30.75	25.90	4.85	75 ¹	1600	210	210	60	250	<10	-	-	-	-	-	-	-
MW-1	12/17/1997	30.75	25.87	4.88	65 ¹	940	120	100	41	160	<25	-	-	-	-	-	-	-
MW-1	03/18/1998	30.75	24.85	5.90	77 ¹	530	91	39	22	65	6.8	-	-	-	-	-	-	-
MW-1	06/28/1998	30.75	24.83	5.92	140 ¹	1100	220	140	37	120	-	14	-	-	-	-	-	-
MW-1	09/07/1998	30.75	25.19	5.56	280 ¹	1700	530	86	84	240	49	-	-	-	-	-	-	-
MW-1	12/09/1998	30.75	25.65	5.10	240 ¹	1700	240	130	100	270	32	-	-	-	-	-	-	-
MW-1	03/11/1999	30.75	25.45	5.30	98^1	353	53.9	28.6	20.5	56.1	14.1	-	-	-	-	-	-	-
MW-1	06/17/1999	30.75	25.36	5.39	217^{1}	810	270	150	95	340	15	-	-	-	-	-	-	-
MW-1	09/29/1999	30.75	25.62	5.13	153 ¹	659	76	49.7	35.1	118	12.6	-	-	-	-	-	-	-
MW-1	12/14/1999	30.75	25.68	5.07	188 ^{1,2}	2760	287	199	139	502	<12.5	-	-	-	-	-	-	-
MW-1	$03/09/2000^3$	30.75	25.21	5.54	166^{1}	1590	238	94.9	72.2	247	22.3	-	-	-	-	-	-	-
MW-1	06/10/2000	30.75	25.02	5.73	-	1460	242	47.8	83.8	151	97.3	-	-	-	-	-	-	-
MW-1	09/30/2000	30.75	25.45	5.30	240^{7}	650^{6}	130	49	69	190	21	-	-	-	-	-	-	-
MW-1	12/22/2000	30.75	25.70	5.05	200 ⁹	640^{6}	110	33	58	160	68	-	-	-	-	-	-	-
MW-1	03/01/2001	30.75	25.50	5.25	211 ⁷	1500^{6}	210	67.9	109	320	87.3	-	-	-	-	-	-	-
MW-1	05/04/2001	30.75	25.34	5.41	130 ⁷	991	127	32.6	73.0	137	95.4	-	-	-	-	-	-	-
MW-1	09/05/2001	30.75	25.59	5.16	SAMPLED S	SEMI-ANNUA	ALLY											
MW-1	12/21/2001	30.75	25.58	5.17	210	2000	220	16	110	400	34	-	-	-	-	-	-	-
MW-1	03/15/2002	30.75	25.15	5.60	SAMPLED S	SEMI-ANNUA	ALLY											
MW-1	06/15/2002	30.75	25.26	5.49	140	350	54	0.61	12	40	130	-	-	-	-	-	-	-
MW-1	09/06/2002	30.75	25.49	5.26	SAMPLED S	SEMI-ANNU	ALLY											
MW-1	12/06/2002	30.75	25.63	5.12	2900	900	71	2.1	39	150	34	-	-	-	-	-	-	-
MW-1	03/03/2003	30.75	25.29	5.46	SAMPLED S	SEMI-ANNU												
MW-1	$06/17/2003^{14}$	30.75	25.11	5.64	180	290	34	0.6	23	90	-	-	92	-	-	-	-	-
MW-1	09/16/2003	30.75	25.38	5.37	SAMPLED S													
MW-1	$12/31/2003^{14}$	30.75	25.55	5.20	150	1500	97	6	70	230	-	-	86	<50	-	-	-	-

Page 2 of 15

					HYDROC	ARBONS			Р	RIMARY	VOCS				ADDITI	ONAL V	VOCS	
Location	Date	TOC*	DTW	GWE	TPH-DRO	TPH-GRO	В	Т	Е	X	MTBE by VOC	MTBE by SW8240	MTBE by SW8260	ETHANOL	TBA	DIPE	ETBE	TAME
	Units	ft	ft	ft	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
MW-1 MW-1	03/26/2004 $08/17/2004^{14}$	30.75 30.75	25.01 26.16	5.74 4.59	SAMPLED S 860	EMI-ANNUA 500	ALLY 44	5	12	54			76	<50				
MW-1	$11/16/2004^{14}$	34.01	26.16	7.85	<26	500 570	33	<0.5	14	53	-	-	48	<50	-	-	-	-
MW-1	02/18/2005	34.01	25.76	8.25	SAMPLED S			<0.5	14	55	-	-	40	~ 50	-	-	-	-
MW-1	05/06/2005 ¹⁴	34.01	25.39	8.62	110	170	13	<0.5	4	18	-	-	220	<50	-	-	-	-
MW-1	08/05/2005	34.01	25.70	8.31	SAMPLED S	EMI-ANNUA	ALLY											
MW-1	$11/07/2005^{14}$	34.01	26.02	7.99	260^{20}	180	7	< 0.5	3	24	-	-	260	<50	-	-	-	-
MW-1	02/06/2006	34.01	25.68	8.33	SAMPLED S	EMI-ANNUA	ALLY											
MW-1	$05/08/2006^{14}$	34.01	24.98	9.03	730	270	23	<0.7	1	18	590	-	-	<50	-	-	-	-
MW-1	08/08/2006	34.01	25.52	8.49	SAMPLED S	EMI-ANNUA	ALLY											
MW-1	$11/08/2006^{14}$	34.01	25.90	8.11	380	<50	0.6	< 0.5	< 0.5	2	140	-	-	<50	-	-	-	-
MW-1	02/06/2007	34.01	25.98	8.03	SAMPLED S	EMI-ANNUA	ALLY											
MW-1	$05/01/2007^{14}$	34.01	25.78	8.23	750	58	0.8	< 0.5	< 0.5	1	-	-	280	<50	-	-	-	-
MW-1	07/31/2007	34.01	26.00	8.01	SAMPLED S	EMI-ANNUA	ALLY											
MW-1	$11/08/2007^{14}$	34.01	26.16	7.85	330	<50	< 0.5	< 0.5	< 0.5	0.9	-	-	270	<50	-	-	-	-
MW-1	02/04/2008	34.01	25.97	8.04	SAMPLED S	EMI-ANNUA	ALLY											
MW-1	$05/01/2008^{14}$	34.01	25.95	8.06	86	<50	< 0.5	< 0.5	< 0.5	<0.5	-	-	470	<50	-	-	-	-
MW-1	08/01/2008	34.01	26.04	7.97	SAMPLED S	EMI-ANNUA	ALLY											
MW-1	$11/13/2008^{14}$	34.01	26.13	7.88	<50	170	1	<0.5	<0.5	2	-	-	190	<50	-	-	-	-
MW-1	02/23/2009	34.01	25.94	8.07	SAMPLED S	EMI-ANNUA	ALLY											
MW-1	05/20/2009	34.01	25.63	8.38	88 J	<50	0.6 J	< 0.5	< 0.5	2	-	-	190	<50	-	-	-	-
MW-1	08/25/2009	34.01	25.80	8.21	SAMPLED S													
MW-1	11/18/2009	34.01	25.93	8.08	150	<50	< 0.5	< 0.5	0.6 J	< 0.5	-	-	310	<50	-	-	-	-
MW-1	05/18/2010	34.01	25.54	8.47	110	<50	<0.5	<0.5	<0.5	<0.5	-	-	230	<50	9	-	-	-
MW-2	06/04/1997	30.00	24.87	5.13	4000 ¹	13000	790	30	420	1700	4000	-	-	-	-	-	-	-
MW-2	09/16/1997	30.00	24.94	5.06	2200^{1}	4000	360	9.7	210	460	1500	-	-	-	-	-	-	-

Page 3 of 15

					HYDROC	ARBONS			Р	RIMARY	VOCS				ADDITI	ONAL V	VOCS	
Location	Date	TOC*	DTW	GWE	TPH-DRO	TPH-GRO	В	Т	Е	X	MTBE by VOC	MTBE by SW8240	MTBE by SW8260	ETHANOL	TBA	DIPE	ETBE	TAME
	Units	ft	ft	ft	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
MW-2	12/17/1997	30.00	24.82	5.18	2100^{1}	4100	380	<10	200	460	2100	-	-	-	-	-	-	-
MW-2	03/18/1998	30.00	23.57	6.43	3700 ¹	8400	1800	<50	350	630	13000	-	-	-	-	-	-	-
MW-2	$06/28/1998^4$	30.00	23.79	6.21	4400^{1}	9300	740	340	710	2300	-	3800	-	-	-	-	-	-
MW-2	09/07/1998	30.00	24.22	5.78	3100^{1}	9900	1000	150	640	1800	$4500 / 4100^5$	-	-	-	-	-	-	-
MW-2	12/09/1998	30.00	24.69	5.31	1900^{1}	8500	860	74	610	960	2600 / 2600 ⁵	-	-	-	-	-	-	-
MW-2	03/11/1999	30.00	24.21	5.79	2700^{1}	12500	1520	42.2	645	2250	5050 / 3400 ⁵	-	-	-	-	-	-	-
MW-2	06/17/1999	30.00	24.31	5.69	7150^{1}	27000	2200	260	1500	5900	4700	-	-	-	-	-	-	-
MW-2	09/29/1999	30.00	24.55	5.45	3030^{1}	6910	582	11.1	491	1170	1970	-	-	-	-	-	-	-
MW-2	12/14/1999	30.00	24.61	5.39	615 ^{1,2}	4230	282	12.3	284	690	631	-	-	-	-	-	-	-
MW-2	03/09/2000 ³	30.00	23.92	6.08	3300^{1}	15300	1110	39.4	1040	3030	2470	-	-	-	-	-	-	-
MW-2	06/10/2000	30.00	23.87	6.13	-	7360	560	40.7	627	1280	1260	-	-	-	-	-	-	-
MW-2	09/30/2000	30.00	24.33	5.67	1800^{7}	3600^{6}	280	<10	420	430	290	-	-	-	-	-	-	-
MW-2	12/22/2000	30.00	24.61	5.39	870 ⁹	1500^{6}	100	<1.3	160	59	380	-	-	-	-	-	-	-
MW-2	03/01/2001	30.00	24.21	5.79	1320^{7}	2340^{6}	171	< 5.00	238	157	864	-	-	-	-	-	-	-
MW-2	05/04/2001	30.00	24.17	5.83	3100 ⁷	11900	199	33.9	1420	290	3890	-	-	-	-	-	-	-
MW-2	09/05/2001	30.00	24.55	5.45	2200	3300	170	1.7	310	110	1100	-	-	-	-	-	-	-
MW-2	12/21/2001	30.00	24.40	5.60	980	1100	58	0.72	120	14	450	-	-	-	-	-	-	-
MW-2	03/15/2002	30.00	23.95	6.05	2200	5000	250	9.1	470	430	1800	-	-	-	-	-	-	-
MW-2	06/15/2002	30.00	24.16	5.84	3700	5200	240	5.2	540	210	2200	-	-	-	-	-	-	-
MW-2	09/06/2002	30.00	24.41	5.59	2200	2100	84	1.4	250	30	1000	-	-	-	-	-	-	-
MW-2	12/06/2002	30.00	24.56	5.44	730	780	21	< 0.50	58	3.4	480	-	-	-	-	-	-	-
MW-2	03/03/2003	30.00	24.21	5.79	3500	4800	220	1.9	650	46	4400	-	-	-	-	-	-	-
MW-2	$06/17/2003^{14}$	30.00	23.93	6.07	4100	4700	140	4	370	84	-	-	2700	-	-	-	-	-
MW-2	$09/16/2003^{14}$	30.00	24.31	5.69	1800^{15}	1300	38	<1	110	3	-	-	1300	<130	-	-	-	-
MW-2	$12/31/2003^{14}$	30.00	24.36	5.64	330	990	11	< 0.5	23	3	-	-	440	<50	-	-	-	-
MW-2	03/26/2004	30.00	23.75	6.25	SAMPLED S	EMI-ANNUA	ALLY											
MW-2	08/17/2004 ¹⁴	30.00	24.47	5.53	400	300	9	<0.5	18	1	-	-	340	<50	-	-	-	-

Page 4 of 15

					HYDROC	CARBONS			P	RIMARY	VOCS				ADDITI	ONAL V	VOCS	
Location	Date	TOC*	DTW	GWE	TPH-DRO	TPH-GRO	В	Т	Ε	X	MTBE by VOC	MTBE by SW8240	MTBE by SW8260	ETHANOL	TBA	DIPE	ETBE	TAME
	Units	ft	ft	ft	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
MW-2 MW-2	$11/16/2004^{14}$ 02/18/2005	32.59 32.59	24.45 23.92	8.14 8.67	4300 SAMPLED S	10000 SEMI-ANNUA	91	7	830	1300	-	-	1100	<100	-	-	-	-
MW-2	$05/06/2005^{14}$	32.59	23.53	9.06	1300	4900	62	4	290	320	_	_	400	<50	-	-	_	-
MW-2	08/05/2005	32.59	23.98	8.61		EMI-ANNUA		Ŧ	270	020			100	-00				
MW-2	$11/07/2005^{14}$	32.59	24.32	8.27	300 ²⁰	800	2	< 0.5	<0.5	< 0.5	-	-	66	<50	-	_	-	_
MW-2	02/06/2006	32.59	23.83	8.76		EMI-ANNUA		0.0	0.0	0.0				20				
MW-2	$05/08/2006^{14}$	32.59	23.10	9.49	2100	6100	32	4	430	460	360	-	-	<50	-	-	-	-
MW-2	08/08/2006	32.59	23.80	8.79		EMI-ANNUA												
MW-2	$11/08/2006^{14}$	32.59	24.27	8.32	770	120	12	< 0.5	0.7	8	840	-	-	<50	-	-	-	-
MW-2	02/06/2007	32.59	24.29	8.30		EMI-ANNUA	\LLY											
MW-2	$05/01/2007^{14}$	32.59	24.05	8.54	160	850	<0.5	< 0.5	16	36	-	-	100	<50	-	-	-	-
MW-2	07/31/2007	32.59	24.31	8.28	SAMPLED S	EMI-ANNUA	LLY											
MW-2	$11/08/2007^{14}$	32.59	24.47	8.12	800	180	< 0.5	< 0.5	< 0.5	< 0.5	-	-	37	<50	-	-	-	-
MW-2	02/04/2008	32.59	24.21	8.38	SAMPLED S	EMI-ANNUA	LLY											
MW-2	$05/01/2008^{14}$	32.59	24.25	8.34	500	430	< 0.5	< 0.5	<0.5	5	-	-	120	<50	-	-	-	-
MW-2	08/01/2008	32.59	24.33	8.26	SAMPLED S	EMI-ANNUA	LLY											
MW-2	$11/13/2008^{14}$	32.59	24.42	8.17	2600	2500	3	1	190	83	-	-	240	<50	-	-	-	-
MW-2	02/23/2009	32.59	24.21	8.38	SAMPLED S	EMI-ANNUA	LLY											
MW-2	05/20/2009	32.59	23.65	8.94	2800 J	4000	4	1	42	55	-	-	160	<50	-	-	-	-
MW-2	08/25/2009	32.59	24.00	8.59	SAMPLED S	EMI-ANNUA	LLY											
MW-2	11/18/2009	32.59	24.51	8.08	2800	5400	4	1 J	69	34	-	-	79	<100	-	-	-	-
MW-2	05/18/2010	32.59	23.65	8.94	1100	580	<0.5	<0.5	<0.5	<0.5	-	-	22	<50	6	-	-	-
MW-3	06/04/1997	31.32	26.05	5.27	<50	190	26	20	1.5	16	8.2	-	-	-	-	-	-	-
MW-3	09/16/1997	31.32	26.15	5.17	<50	270	58	53	6.1	30	21	-	-	-	-	-	-	-
MW-3	12/17/1997	31.32	26.10	5.22	<50	290	50	54	8.1	37	21	-	-	-	-	-	-	-
MW-3	03/18/1998	31.32	24.90	6.42	<50	390	140	33	4.6	30	94	-	-	-	-	-	-	-

Page 5 of 15

				HYDROC	CARBONS			Р	RIMARY	VOCS				ADDITI	ONAL V	/OCS	
Date	TOC*	DTW	GWE	TPH-DRO	TPH-GRO	В	Т	Е	X	MTBE by VOC	MTBE by SW8240	MTBE by SW8260	ETHANOL	TBA	DIPE	ETBE	TAME
Units	ft	ft	ft	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
06/28/1998	31.32	24.93	6.39	<50	290	90	11	1.6	13	-	150	-	-	-	-	-	-
09/07/1998	31.32	25.35	5.97	<50	170	46	20	4.3	19	120	-	-	-	-	-	-	-
12/09/1998	31.32	25.91	5.41	55 ¹	660	120	93	22	72	150	-	-	-	-	-	-	-
03/11/1999	31.32	25.47	5.85	<50	653	136	69.5	13.7	63.8	144	-	-	-	-	-	-	-
06/17/1999	31.32	25.42	5.90		530	190	110	24	88	210	-	-	-	-	-	-	-
09/29/1999	31.32	25.71	5.61		433	97.8	61.4	16.9	56.6	156	-	-	-	-	-	-	-
12/14/1999	31.32	25.77	5.55		8650	1040	795	212	800	995	-	-	-	-	-	-	-
$03/09/2000^3$	31.32	25.18	6.14	74.6^{1}	1170	304	103	25.2	114	539	-	-	-	-	-	-	-
06/10/2000	31.32	25.03	6.29	-	359	63.8	27.8	10.5	35.4	393	-	-	-	-	-	-	-
09/30/2000	31.32	25.53	5.79			42	33	12	38	67	-	-	-	-	-	-	-
12/22/2000	31.32	25.80	5.52			96	48	18	58	180	-	-	-	-	-	-	-
03/01/2001	31.32	25.57	5.75	144^{7}	912 ⁶	218	89.0	36.0	110	310	-	-	-	-	-	-	-
05/04/2001	31.32	25.36	5.96	<50	1260	146	79.6	38.2	101	1070	-	-	-	-	-	-	-
09/05/2001	31.32	25.71	5.61	SAMPLED S	EMI-ANNUA	ALLY											
12/21/2001	31.32	25.65	5.67	180	850	160	11	32	84	300	-	-	-	-	-	-	-
03/15/2002	31.32	25.17	6.15	SAMPLED S	EMI-ANNUA	ALLY											
06/15/2002	31.32	25.31	6.01	<50	550	110	3.0	23	58	590	-	-	-	-	-	-	-
09/06/2002	31.32	25.58	5.74	SAMPLED S	EMI-ANNUA	ALLY											
12/06/2002	31.32	25.76	5.56	160	350	60	1.3	11	32	530	-	-	-	-	-	-	-
03/03/2003	31.32	25.40	5.92	SAMPLED S	EMI-ANNUA	ALLY											
$06/17/2003^{14}$	31.32	25.13	6.19	130	560	90	2	19	57	-	-	590	-	-	-	-	-
09/16/2003	31.32	25.47	5.85	SAMPLED S	EMI-ANNUA	ALLY											
$12/31/2003^{14}$	31.32	25.65	5.67	120	840	140	24	25	87	-	-	670	66	-	-	-	-
03/26/2004	31.32	24.99	6.33	SAMPLED S	EMI-ANNUA	ALLY											
$08/17/2004^{14}$	31.32	25.86	5.46	110	630	84	18	11	35	-	-	410	<50	-	-	-	-
$11/16/2004^{14}$	34.16	25.90	8.26	92	740	100	4	21	45	-	-	460	<50	-	-	-	-
02/18/2005	34.16	25.37	8.79	SAMPLED S	EMI-ANNUA	ALLY											
	Units 06/28/1998 09/07/1998 12/09/1998 03/11/1999 06/17/1999 09/29/1999 12/14/1999 03/09/2000 ³ 06/10/2000 09/30/2000 12/22/2000 03/01/2001 05/04/2001 09/05/2001 12/21/2001 03/15/2002 06/15/2002 06/15/2002 06/15/2002 12/06/2002 12/06/2002 12/06/2003 12/31/2003 ¹⁴ 09/16/2003 12/31/2003 ¹⁴ 03/26/2004 08/17/2004 ¹⁴ 11/16/2004 ¹⁴	Unitsft $06/28/1998$ 31.32 $09/07/1998$ 31.32 $12/09/1998$ 31.32 $12/09/1998$ 31.32 $03/11/1999$ 31.32 $06/17/1999$ 31.32 $09/29/1999$ 31.32 $09/29/1999$ 31.32 $09/29/1999$ 31.32 $03/09/2000^3$ 31.32 $06/10/2000$ 31.32 $09/30/2000$ 31.32 $09/30/2000$ 31.32 $09/30/2000$ 31.32 $09/30/2000$ 31.32 $09/30/2001$ 31.32 $05/04/2001$ 31.32 $05/04/2001$ 31.32 $05/04/2001$ 31.32 $09/05/2001$ 31.32 $09/05/2002$ 31.32 $09/06/2002$ 31.32 $09/06/2002$ 31.32 $09/06/2003$ 31.32 $09/16/2003^{14}$ 31.32 $09/16/2003^{14}$ 31.32 $03/26/2004$ 31.32 $03/26/2004^{14}$ 31.32 $11/16/2004^{14}$ 34.16	Unitsftft $06/28/1998$ 31.32 24.93 $09/07/1998$ 31.32 25.35 $12/09/1998$ 31.32 25.91 $03/11/1999$ 31.32 25.47 $06/17/1999$ 31.32 25.42 $09/29/1999$ 31.32 25.71 $12/14/1999$ 31.32 25.77 $03/09/2000^3$ 31.32 25.77 $03/09/2000^3$ 31.32 25.33 $12/22/2000$ 31.32 25.53 $12/22/2000$ 31.32 25.57 $05/04/2001$ 31.32 25.71 $12/21/2001$ 31.32 25.71 $12/21/2001$ 31.32 25.71 $12/21/2001$ 31.32 25.71 $12/21/2001$ 31.32 25.71 $06/15/2002$ 31.32 25.71 $09/06/2002$ 31.32 25.71 $09/06/2002$ 31.32 25.76 $03/03/2003$ 31.32 25.76 $03/03/2003$ 31.32 25.40 $06/17/2003^{14}$ 31.32 25.47 $12/31/2003^{14}$ 31.32 25.47 $12/31/2003^{14}$ 31.32 25.86 $03/26/2004$ 31.32 25.86 $11/16/2004^{14}$ 34.16 25.90	Unitsftftft $06/28/1998$ 31.32 24.93 6.39 $09/07/1998$ 31.32 25.35 5.97 $12/09/1998$ 31.32 25.35 5.97 $12/09/1998$ 31.32 25.47 5.85 $06/17/1999$ 31.32 25.47 5.85 $06/17/1999$ 31.32 25.71 5.61 $12/14/1999$ 31.32 25.77 5.55 $03/09/2000^3$ 31.32 25.38 6.14 $06/10/2000$ 31.32 25.33 5.79 $12/22/2000$ 31.32 25.53 5.79 $12/22/2000$ 31.32 25.53 5.79 $12/22/2000$ 31.32 25.57 5.75 $03/01/2001$ 31.32 25.57 5.75 $05/04/2001$ 31.32 25.71 5.61 $12/21/2001$ 31.32 25.57 5.74 $12/21/2001$ 31.32 25.58 5.74 $09/05/2002$ 31.32 25.58 5.74 $12/06/2002$ 31.32 25.76 5.56 $03/03/2003$ 31.32 25.40 5.92 $06/17/2003^{14}$ 31.32 25.47 5.85 $12/31/2003^{14}$ 31.32 25.65 5.67 $03/26/2004$ 31.32 25.90 8.26	Date TOC* DTW GWE OP Units ft ft ft ug/L 06/28/1998 31.32 24.93 6.39 <50	Units ft ft ft ug/L ug/L ug/L 06/28/1998 31.32 24.93 6.39 <50	Date TOC* DTW GWE OP FL B Units ft ft ft ft ug/L ug/L ug/L ug/L 06/28/1998 31.32 24.93 6.39 <50	Date TOC* DTW GWE E P B T Units ft ft ft ft ug/L ug/L ug/L ug/L 06/28/1998 31.32 24.93 6.39 <50	Date TOC* DTW GWE ug/L	Date TOC* DTW GWE E Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Units ft ft ft ft ft ft ft ft ft g Ng/L ug/L ug/L	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

Page 6 of 15

					HYDROC	ARBONS			P	RIMARY	' VOCS			1	ADDITIO	ONAL 1	VOCS	
Location	Date	TOC*	DTW	GWE	TPH-DRO	TPH-GRO	В	Т	Ε	X	MTBE by VOC	MTBE by SW8240	MTBE by SW8260	ETHANOL	TBA	DIPE	ETBE	TAME
	Units	ft	ft	ft	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
MW-3	05/06/2005 ¹⁴	34.16	24.98	9.18	83	290	43	<1	6	11	_	-	740	<100	-	-	-	-
MW-3	08/05/2005	34.16	25.35	8.81		EMI-ANNUA												
MW-3	$11/07/2005^{14}$	34.16	25.69	8.47	66	220	29	0.7	3	26	-	-	440	<50	-	-	-	-
MW-3	02/06/2006	34.16	25.28	8.88		EMI-ANNUA												
MW-3	$05/08/2006^{14}$	34.16	24.49	9.67	310	560	70	<1	3	24	3300	-	-	<100	-	-	-	-
MW-3	08/08/2006	34.16	25.16		SAMPLED SI			_	_	_	_							
MW-3	$11/08/2006^{14}$	34.16	25.59	8.57	210	510	<0.5	<0.5	<0.5	<0.5	73	-	-	<50	-	-	-	-
MW-3	02/06/2007	34.16	25.68	8.48		EMI-ANNUA												
MW-3	05/01/2007 ¹⁴	34.16	25.46	8.70	84	260	36	<0.5	0.8	18	-	-	1200	<50	-	-	-	-
MW-3	07/31/2007	34.16	25.70	8.46		EMI-ANNUA												
MW-3	$11/08/2007^{14}$	34.16	25.87	8.29	260	270	32	0.9	3	29	-	-	440	<50	-	-	-	-
MW-3	02/04/2008	34.16	25.68	8.48		EMI-ANNUA												
MW-3	$05/01/2008^{14}$	34.16	25.66	8.50	82	240	30	<0.5	<0.5	20	-	-	690	<50	-	-	-	-
MW-3	08/01/2008	34.16	25.76	8.40		EMI-ANNUA												
MW-3	$11/13/2008^{14}$	34.16	25.80	8.36	<50	720	22	<0.5	<0.5	7	-	-	790	<50	-	-	-	-
MW-3	02/23/2009	34.16	25.72	8.44		EMI-ANNUA												
MW-3	05/20/2009	34.16	25.30	8.86	210	460	42	<0.5	1	20	-	-	450	<50	-	-	-	-
MW-3	08/25/2009	34.16	25.56	8.60		EMI-ANNUA												
MW-3	11/18/2009	34.16	25.71	8.45	240	280	25	<0.5	<0.5	9	-	-	170	<50	-	-	-	-
MW-3	05/18/2010	34.16	25.11	9.05	150	63 J	11	<0.5	<0.5	1	-	-	110	<50	470	-	-	-
MW-4	04/08/1999	30.13	-	-	-	130	3.1	<0.5	<0.5	7.7	4700 / 5400	-	-	<25000	<5000	<100	<100	<100
MW-4	06/17/1999	30.13	24.94	5.19	3780 ¹	590	58	<5.0	<5.0	160	6200	-	-	-	-	-	-	-
MW-4	09/29/1999	30.13	25.17	4.96	1130 ¹	692	10.7	<2.5	5.51	236	7840	-	-	-	-	-	-	-
MW-4	12/14/1999	30.13	25.22	4.91	571 ^{1,2}	625	<10	3.83	<10	94.6	4470	-	-	-	-	-	-	-
MW-4	03/09/2000 ³	30.13	24.68	5.45	600^{1}	402	3.76	1.18	<0.5	71.4	3140	-	-	-	-	-	-	-
MW-4	06/10/2000	30.13	24.60	5.53	-	<1000	13.2	<10.0	<10.0	97.8	3080	-	-	-	-	-	-	-

Page 7 of 15

					HYDROC	ARBONS			Р	RIMARY	VOCS				ADDITI	ONAL V	OCS	
Location	Date	TOC*	DTW	GWE	TPH-DRO	TPH-GRO	В	Т	Ε	X	MTBE by VOC	MTBE by SW8240	MTBE by SW8260	ETHANOL	TBA	DIPE	ETBE	TAME
	Units	ft	ft	ft	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
MW-4 MW-4	09/30/2000 12/22/2000	30.13 30.13	25.04 25.23	5.09 4.90	1400^{7} 740^{9} 661^{7}	280 ⁶ 240 ⁶	21 2.2	0.67 <0.50	6.3 1.3	60 25	3300 2200	-	-	-	- -	- -	-	-
MW-4	03/01/2001	30.13	24.98	5.15	-	193	2.31	< 0.500	1.34	12.1	1220	-	-	-	-	-	-	-
MW-4	05/04/2001	30.13	24.88	5.25	1100 ⁷	722	12.0	< 5.00	17.1	89.4	2390	-	-	-	-	-	-	-
MW-4	09/05/2001	30.13	25.17	4.96	2500	1400	23	2.2	19	260	2300	-	-	-	-	-	-	-
MW-4 MW-4	12/21/2001	30.13 30.13	25.07 24.69	5.06 5.44	1100 3100	310 520	2.9 5.0	<0.50 <0.50	2.6 15	32 6.8	860 2700	-	-	-	-	-	-	-
MW-4	03/15/2002 06/15/2002	30.13 30.13	24.69 24.84	5.44 5.29	2400	950	5.0 16	<0.50 3.6	41	0.0 100	2200	-	2400 ¹²	-	- 840	<2.0	- <2.0	- 110
MW-4	09/06/2002	30.13	24.04 25.06	5.07	2400	930 640	9.6	0.52	41 9.8	28	1700	-	2400	-	040	×2.0	N2.0	110
MW-4	12/06/2002	30.13	25.00 25.20	4.93	1400	280	3.6	< 0.52	9.8 1.7	<1.5	730	-	-	-	-	-	-	-
MW-4	03/03/2002	30.13	23.20	4.95 5.28	1400	280 280	2.7	< 0.50	7.3	2.3	910	-	-	-	-	-	-	-
MW-4	$05/05/2003^{14}$ $06/17/2003^{14}$	30.13	24.69	5.44	2000	660	8	1	38	16	-		1100	-	520	< 0.5	< 0.5	110
MW-4	$09/16/2003^{14}$	30.13	24.98	5.15	2100 ¹⁶	480	6	<1	11	3	_	_	710	<100	-	-0.0	-0.0	-
MW-4	$12/31/2003^{14}$	30.13	25.06	5.07	1400	220	3	<0.5	2	<0.5	_	_	390	<50	-	-	_	-
MW-4	03/26/2004	30.13	24.53	5.60	SAMPLED S			-0.0	-	-0.0			070	.00				
MW-4	$08/17/2004^{14}$	30.13	25.45	4.68	2100	470	12	1	28	4	_	_	370	<50	66	< 0.5	< 0.5	50
MW-4	$11/16/2004^{14}$	33.07	25.44	7.63	960	270	7	< 0.5	7	6	-	-	270	<50	-	-	_	_
MW-4	02/18/2005	33.07	25.00	8.07	SAMPLED S													
MW-4	05/06/2005 ¹⁴	33.07	24.69	8.38	350	86	0.7	< 0.5	< 0.5	<0.5	-	-	110	<50	21	< 0.5	< 0.5	8
MW-4	08/05/2005	33.07	25.02	8.05	SAMPLED S		ALLY											
MW-4	$11/07/2005^{14}$	33.07	25.33	7.74	150	54	0.6	< 0.5	< 0.5	<0.5	-	-	59	<50	-	-	-	-
MW-4	02/06/2006	33.07	24.94	8.13	SAMPLED S	EMI-ANNUA	ALLY											
MW-4	05/08/2006 ¹⁴	33.07	24.27	8.80	200	66	0.5	< 0.5	< 0.5	<0.5	92	-	-	<50	-	-	-	-
MW-4	08/08/2006	33.07	25.16	7.91	SAMPLED S	EMI-ANNUA	ALLY											
MW-4	11/08/2006 ¹⁴	33.07	25.23	7.84	400	55	< 0.5	< 0.5	< 0.5	< 0.5	40	-	-	<50	-	-	-	-
MW-4	02/06/2007	33.07	25.28	7.79	SAMPLED S	EMI-ANNUA	ALLY											
MW-4	$05/01/2007^{14}$	33.07	25.08	7.99	150	67	<0.5	<0.5	<0.5	<0.5	-	-	76	<50	10	<0.5	<0.5	6

Page 8 of 15

					HYDROC	ARBONS			Р	RIMARY	VOCS				ADDITI	ONAL	VOCS	
Location	Date	TOC*	DTW	GWE	TPH-DRO	TPH-GRO	В	Т	Ε	X	MTBE by VOC	MTBE by SW8240	MTBE by SW8260	ETHANOL	TBA	DIPE	ETBE	TAME
	Units	ft	ft	ft	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
MW-4	07/31/2007	33.07	25.27		SAMPLED SI													
MW-4	$11/08/2007^{14}$	33.07	25.42	7.65	850	<50	<0.5	<0.5	<0.5	<0.5	-	-	44	<50	-	-	-	-
MW-4	02/04/2008	33.07	25.23		SAMPLED SI													
MW-4	$05/01/2008^{14}$	33.07	25.21	7.86	110	<50	< 0.5	<0.5	< 0.5	<0.5	-	-	67	<50	12	< 0.5	< 0.5	4
MW-4	08/01/2008	33.07	25.28	7.79	SAMPLED SI													
MW-4	$11/13/2008^{14}$	33.07	25.43	7.64	330	64	< 0.5	<0.5	< 0.5	1	-	-	220	<50	-	-	-	-
MW-4	02/23/2009	33.07	25.06		SAMPLED SI	EMI-ANNU∤												
MW-4	05/20/2009	33.07	24.73	8.34	560	130	< 0.5	<0.5	<0.5	<0.5	-	-	190	<50	58	< 0.5	< 0.5	6
MW-4	08/25/2009	33.07	24.97	8.10	SAMPLED SI	EMI-ANNU#	ALLY											
MW-4	11/18/2009	33.07	25.27	7.80	860	120	< 0.5	<0.5	<0.5	<0.5	-	-	150	<50	-	-	-	-
MW-4	05/18/2010	33.07	24.73	8.34	340	56 J	<0.5	<0.5	<0.5	<0.5	-	-	70	<50	33	<0.5	<0.5	4
MW-7	05/04/2001 ¹¹	31.90	27.87	4.03	<50	<50.0	<0.500	<5.00	<5.00	<5.00	567	-	470^{12}	<500	57	<2.0	<2.0	11
MW-7 MW-7	09/05/2001	31.90	28.04	4.03 3.86	<50 <50	<50.0	< 0.500	< 0.50	< 0.50	<5.00	1400	-	1300 ¹²	<500	<100	<2.0 <2.0	<2.0 <2.0	32
MW-7 MW-7	12/21/2001	31.90	28.86	3.04	<50 210	<50	< 0.50	< 0.50	< 0.50	<1.5	620	-	670 ¹²	<500	<100	<2.0	<2.0 <2.0	32 15
MW-7	03/15/2002	31.90	27.72	4.18	<50	<50 <50	< 0.50	< 0.50	< 0.50	<1.5	350 / 320	-	350 ¹²	<500	<100	<2.0	<2.0	8
MW-7	06/15/2002	31.90	27.84	4.06	<50	<50 <50	< 0.50	< 0.50	< 0.50	<1.5	850	-	960 ¹²	-500	<100	<2.0	<2.0	18
MW-7	09/06/2002	31.90	27.04	3.93	<50	<50 59	< 0.50	< 0.50	< 0.50	<1.5	1900	-	-	-	-	-	-	-
MW-7	12/06/2002	31.90	28.03	3.87	<50	68	< 0.50	< 0.50	< 0.50	<1.5	2200	-	-	-	-	_	-	_
MW-7	03/03/2003	31.90	27.69	4.21	<50	<50	<0.50	< 0.50	< 0.50	<1.5	1300	-	-	-	-	-	-	-
MW-7	$05/05/2003^{14}$ $06/17/2003^{14}$	31.90	27.09	4.14	<50	<50 79	< 0.5	< 0.5	< 0.5	< 0.5	-	-	- 2500	-	37	- <0.5	< 0.5	- 53
MW-7	$09/16/2003^{14}$	31.90	27.83	4.07	<50 ¹⁷	110	<0.5	<5	<5	<5	-	-	4400	<500	-	-0.0	-0.0	-
MW-7	$12/31/2003^{14}$	31.90	27.85	4.07	<50	76	<2.0	<2.0	<2.0	<2.0	-	-	3000	<500 <200	-	-	-	-
MW-7	12/31/2003 $03/26/2004^{14}$	31.90	27.65	4.04	<50	70 61	<2.0 <1	<2.0 <1	<2.0 <1	<2.0 <1	-	-	2000	~200 -	-	-	-	-
MW-7	03/20/2004 $08/17/2004^{14}$	31.90 31.90	27.83	4.23	<50 2200	130	<5	<5	<5	<5	-	-	8000	- <500	- <50	- <5	- <5	- 140
MW-7 MW-7	$11/16/2004^{14}$	31.90 34.35	27.88 27.87	4.02 6.48	2200 <50	130 200	<5 <3	<5 <3	<5 <3	<5 <3	-	-	8000 7300	<500 <250	~50	~0	~3	140
	11/16/2004 $02/18/2005^{14}$										-	-			-	-	-	-
MW-7	02/ 10/ 2005	34.35	27.60	6.75	64	86	<10	<10	<10	<10	-	-	5700	<1000	-	-	-	-

Page 9 of 15

					HYDROC	ARBONS			P	RIMARY	VOCS			Ŀ	ADDITIC	ONAL V	VOCS	
Location	Date	TOC*	DTW	GWE	TPH-DRO	TPH-GRO	В	Т	Ε	X	MTBE by VOC	MTBE by SW8240	MTBE by SW8260	ETHANOL	TBA	DIPE	ETBE	TAME
	Units	ft	ft	ft	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
MW-7 MW-7	05/06/2005 ¹⁴ 08/05/2005 ¹⁴	34.35 34.35	27.43 27.65	6.92 6.70	$\begin{array}{c} 60\\ 81^{18} \end{array}$	160 500	<5 <5	<5 <5	<5 <5	<5 <5	-	-	8400 20000 ¹⁹	<500 <500	<50 -	<5 -	<5 -	140 -
MW-7	11/07/2005 ¹⁴	34.35	27.79	6.56	68	300	<10	<10	<10	<10	-	-	24000	<1000	-	-	-	-
MW-7	02/06/2006 ¹⁴	34.35	27.54	6.81	72 ²¹	300	<0.5	< 0.5	<0.5	< 0.5	14000	-	-	<50	-	-	-	-
MW-7	05/08/2006 ¹⁴	34.35	27.15	7.20	94	80	<2.0	<2.0	3	7	6500	-	-	<200	-	-	-	-
MW-7	$08/08/2006^{14}$	34.35	27.53	6.82	150	520	<10	<10	<10	<10	17000	-	-	<1000	-	-	-	-
MW-7	$11/08/2006^{14}$	34.35	27.75	6.60	440	900	<5	<5	<5	<5	41000	-	-	<500	-	-	-	-
MW-7	$02/06/2007^{14}$	34.35	27.76	6.59	200	590	<5	<5	<5	<5	-	-	31000	<500	-	-	-	-
MW-7	$05/01/2007^{14}$	34.35	27.65	6.70	190	380	<3	<3	<3	<3	-	-	14000	<250	<10	<3	<3	260
MW-7	$07/31/2007^{14}$	34.35	27.75	6.60	270	570	<3	<3	<3	<3	-	-	15000	<250	-	-	-	-
MW-7	$11/08/2007^{14}$	34.35	27.83	6.52	150	520	<5	<5	<5	<5	-	-	25000	<500	-	-	-	-
MW-7	$02/04/2008^{14}$	34.35	27.69	6.66	87	540	<1	<1	<1	<1	-	-	17000	<100	-	-	-	-
MW-7	$05/01/2008^{14}$	34.35	27.72	6.63	<50	230	<5	<5	<5	<5	-	-	10000	<500	<20	<5	<5	170
MW-7	$08/01/2008^{14}$	34.35	27.84	6.51	<50	330	<3	<3	<3	<3	-	-	12000	<250	-	-	-	-
MW-7	$11/13/2008^{14}$	34.35	28.01	6.34	64	390	<10	<10	<10	<10	-	-	16000	<1000	-	-	-	-
MW-7	$02/23/2009^{14}$	34.35	27.65	6.70	100	270	<3	<3	<3	<3	-	-	11000	<250	-	-	-	-
MW-7	05/20/2009	34.35	27.55	6.80	48 J	210	<1	<1	<1	<1	-	-	6300	<100	31	<1	<1	120
MW-7	08/25/2009	34.35	27.70	6.65	<100 U	160	<3	<3	<3	<3	-	-	5700	<250	-	-	-	-
MW-7	11/18/2009	34.35	27.77	6.58	250	100	<1	<1	<1	<1	-	-	2800	<130	-	-	-	-
MW-7	05/18/2010	34.35	27.51	6.84	160	76 J	<1	<1	<1	<1	-	-	2400	<100	<4	<1	2	52
QA	12/21/2001	_	_	_	_	<50	<0.50	<0.50	<0.50	<1.5	<2.5		_	_	-			
QA QA	$\frac{12}{21}\frac{2001}{2002}$	-	-	-	-	<50 <50	<0.50	<0.50	< 0.50	<1.5 <1.5	<2.5 <2.5	-	-	-	-	-	-	-
QA QA	05/15/2002	-	-	-	-	<50 <50	<0.50	<0.50	< 0.50	<1.5 <1.5	<2.5 <2.5	-	-	-	-	-	-	-
QA QA	08/15/2002	-	-	-	-	<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5 <2.5	-	-	-	-	-	-	-
QA QA	12/06/2002	-	-	-	-	<50 <50	<0.50	<0.50	< 0.50	<1.5 <1.5	<2.5 <2.5	-	-	-	-	-	-	-
QA QA	12/06/2002 $06/17/2003^{14}$	-	-	-	-	<50 <50	<0.50 <0.5	<0.50 <0.5	<0.50 <0.5	<1.5 <0.5	~2.0	-	- <0.5	-	-	-	-	-
QA	00/ 1/ 2003	-	-	-	-	~50	NU.3	NU.3	~0.5	NU.3	-	-	NU.0	-	-	-	-	-

Page 10 of 15

					HYDROC	ARBONS	PRIMARY VOCS								ADDITIONAL VOCS					
Location	Date	TOC*	DTW	GWE	TPH-DRO	TPH-GRO	В	Т	Е	X	MTBE by VOC	MTBE by SW8240	MTBE by SW8260	ETHANOL	TBA	DIPE	ETBE	TAME		
	Units	ft	ft	ft	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L		
QA QA QA	09/16/2003 ¹⁴ 12/31/2003 ¹⁴ 03/26/2004 ¹⁴	-	-	- -	- -	<50 <50 <50	<0.5 <0.5 <0.5	<0.5 <0.5 <0.5	<0.5 <0.5 <0.5	<0.5 <0.5 <0.5	- -	- -	<0.5 <0.5 <0.5	-	-	-	-	-		
QA	$08/17/2004^{14}$	-	_	-	_	<50	< 0.5	< 0.5	< 0.5	<0.5	-	_	<0.5	-	_	_	-	-		
QA	$11/16/2004^{14}$	_		_	_	<50	< 0.5	<0.5	<0.5	<0.5	_	_	<0.5	_	_	_	_	_		
QA	$02/18/2005^{14}$	_		_	_	<50	< 0.5	<0.5	<0.5	<0.5	_	_	<0.5	_	_	_	_	_		
QA	$05/06/2005^{14}$	-	-	-	_	<50	< 0.5	< 0.5	< 0.5	< 0.5	_	-	< 0.5	-	-	-	-	-		
QA	$08/05/2005^{14}$	_	_	-	_	<50	< 0.5	<0.5	< 0.5	<0.5	-	-	< 0.5	-	-	_	-	-		
QA	$11/07/2005^{14}$	-	_	_	-	<50	0.6	< 0.5	< 0.5	< 0.5	-	-	< 0.5	_	-	-	-	-		
~ QA	02/06/2006 ¹⁴	-	-	-	-	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	-	-	-	-	-	-		
QA	05/08/2006 ¹⁴	-	-	-	-	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	-	-	-	-	-	-		
QA	$08/08/2006^{14}$	-	-	-	-	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	-	-	-	-	-	-		
QA	$11/08/2006^{14}$	-	-	-	-	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	-	-	-	-	-	-		
QA	$02/06/2007^{14}$	-	-	-	-	<50	< 0.5	< 0.5	< 0.5	< 0.5	-	-	< 0.5	-	-	-	-	-		
QA	$05/01/2007^{14}$	-	-	-	-	<50	< 0.5	< 0.5	< 0.5	< 0.5	-	-	< 0.5	-	-	-	-	-		
QA	$07/31/2007^{14}$	-	-	-	-	<50	< 0.5	< 0.5	< 0.5	< 0.5	-	-	< 0.5	-	-	-	-	-		
QA	$11/08/2007^{14}$	-	-	-	-	<50	< 0.5	< 0.5	< 0.5	< 0.5	-	-	< 0.5	-	-	-	-	-		
QA	$02/04/2008^{14}$	-	-	-	-	<50	< 0.5	< 0.5	< 0.5	< 0.5	-	-	<0.5	-	-	-	-	-		
QA	$05/01/2008^{14}$	-	-	-	-	<50	< 0.5	< 0.5	< 0.5	< 0.5	-	-	< 0.5	-	-	-	-	-		
QA	$08/01/2008^{14}$	-	-	-	-	<50	< 0.5	< 0.5	< 0.5	< 0.5	-	-	< 0.5	-	-	-	-	-		
QA	$11/13/2008^{14}$	-	-	-	-	<50	< 0.5	< 0.5	< 0.5	< 0.5	-	-	<0.5	-	-	-	-	-		
QA	$02/23/2009^{14}$	-	-	-	-	<50	<0.5	<0.5	< 0.5	<0.5	-	-	<0.5	-	-	-	-	-		
QA	05/20/2009	-	-	-	-	<50	<0.5	<0.5	<0.5	<0.5	-	-	< 0.5	-	-	-	-	-		
QA	08/25/2009	-	-	-	-	<50	<0.5	< 0.5	< 0.5	< 0.5	-	-	< 0.5	-	-	-	-	-		
QA	11/18/2009	-	-	-	-	<50	< 0.5	0.5 J	< 0.5	< 0.5	-	-	< 0.5	-	-	-	-	-		
QA	05/18/2010	-	-	-	-	<50	<0.5	<0.5	<0.5	<0.5	-	-	<0.5	-	-	-	-	-		

Page 11 of 15

		·			HYDROC.	ARBONS	PRIMARY VOCS							1	ADDITIONAL VOCS					
Location	Date	TOC*	DTW	GWE	TPH-DRO	TPH-GRO	В	Т	Ε	X	MTBE by VOC	MTBE by SW8240	MTBE by SW8260	ETHANOL	TBA	DIPE	ETBE	TAME		
	Units	ft	ft	ft	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L		
MW-5	04/08/1999	30.93	-	-	<50	<50	< 0.5	<0.5	<0.5	<0.5	<2.0 / <2.5	-	-	<500	<100	<2.0	<2.0	<2.0		
MW-5	06/17/1999	30.93	26.00	4.93	53.8 ¹	<50	< 0.5	<0.5	<0.5	<0.5	<2.5	-	-	-	-	-	-	-		
MW-5	09/29/1999	30.93	26.20	4.73	<50	<50	< 0.5	<0.5	<0.5	<0.5	<2.5	-	-	-	-	-	-	-		
MW-5	12/14/1999	30.93	26.32	4.61	$< 50^{2}$	<50	< 0.5	<0.5	<0.5	< 0.5	0.598	-	-	-	-	-	-	-		
MW-5	$03/09/2000^3$	30.93	25.93	5.00	<50	<50	<0.5	<0.5	<0.5	<0.5	<2.5	-	-	-	-	-	-	-		
MW-5	06/10/2000	30.93	25.72	5.21	-	<50.0	< 0.500	< 0.500	< 0.500	< 0.500	<2.50	-	-	-	-	-	-	-		
MW-5	09/30/2000	30.93	26.14	4.79	130 ⁸	<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5	-	-	-	-	-	-	-		
MW-5	12/22/2000	30.93	26.33	4.60	250 ⁸	<50	< 0.50	< 0.50	< 0.50	< 0.50	9.1	-	-	-	-	-	-	-		
MW-5	03/01/2001	30.93	26.16	4.77	77.4^{7}	<50.0	< 0.500	< 0.500	< 0.500	< 0.500	<2.50	-	-	-	-	-	-	-		
MW-5	05/04/2001	30.93	26.04	4.89	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
MW-5	09/05/2001	30.93	26.21	4.72	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
MW-5	12/21/2001	30.93	26.20	4.73	110	<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5	-	-	-	-	-	-	-		
MW-5	03/15/2002	30.93	25.87	5.06	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
MW-5	06/15/2002	30.93	25.98	4.95	<50	<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5	-	-	-	-	-	-	-		
MW-5	09/06/2002	30.93	26.18	4.75	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
MW-5	12/06/2002	30.93	26.32	4.61	<50	<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5	-	-	-	-	-	-	-		
MW-5	03/03/2003	30.93	25.99	4.94	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
MW-5	$06/17/2003^{14}$	30.93	25.87	5.06	<50	<50	< 0.5	<0.5	<0.5	<0.5	-	-	< 0.5	-	-	-	-	-		
MW-5	09/16/2003	30.93	26.09	4.84	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
MW-5	$12/31/2003^{14}$	30.93	26.21	4.72	<50	<50	< 0.5	<0.5	< 0.5	< 0.5	-	-	< 0.5	<50	-	-	-	-		
MW-5	03/26/2004	30.93	25.74	5.19	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
MW-5	08/17/2004	30.93	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
MW-6	04/08/1999	30.58	-	-	-	<50	<0.5	<0.5	<0.5	<0.5	5.6 / 4.5	-	-	<500	<100	<2.0	<2.0	<2.0		
MW-6	06/17/1999	30.58	24.59	5.99	<50	<50	< 0.5	<0.5	< 0.5	< 0.5	<2.5	-	-	-	-	-	-	-		
MW-6	09/29/1999	30.58	24.77	5.81	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	4.46	-	-	-	-	-	-	-		
MW-6	12/14/1999	30.58	24.84	5.74	$< 50^{2}$	<50	< 0.5	<0.5	< 0.5	< 0.5	4.13	-	-	-	-	-	-	-		
	. ,																			

Page 12 of 15

					HYDROC	CARBONS	NS PRIMARY VOCS								ADDITIONAL VOCS						
Location	Date	TOC*	DTW	GWE	TPH-DRO	TPH-GRO	В	Т	Е	X	MTBE by VOC	MTBE by SW8240	MTBE by SW8260	ETHANOL	TBA	DIPE	ETBE	TAME			
	Units	ft	ft	ft	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L			
MW-6 MW-6	03/09/2000 ³ 06/10/2000	30.58 30.58	24.09 24.00	6.49 6.58	<50 -	<50 <50.0	<0.5 <0.500	<0.5 <0.500	<0.5 <0.500	<0.5 <0.500	2.82 <2.50	-	-	-	-	-	-	-			
MW-6	09/30/2000	30.58	24.58	6.00	110^{8}	<50	< 0.50	< 0.50	< 0.50	< 0.50	7.3	-	-	-	-	-	-	-			
MW-6	12/22/2000	30.58	24.83	5.75	100^{8}	<50	< 0.50	< 0.50	< 0.50	< 0.50	4.5	-	-	-	-	-	-	-			
MW-6	03/01/2001	30.58	24.51	6.07	141^{7}	<50.0	< 0.500	< 0.500	< 0.500	< 0.500	7.52	-	-	-	-	-	-	-			
MW-6	05/04/2001	30.58	24.32	6.26	<50	<50.0	< 0.500	<5.00	<5.00	<5.00	2.74	-	-	-	-	-	-	-			
MW-6	09/05/2001	30.58	24.59	5.99	-	-	-	-	-	-	-	-	-	-	-	-	-	-			
MW-6	12/21/2001	30.58	24.65	5.93	200	<50	< 0.50	< 0.50	< 0.50	<1.5	8.5	-	-	-	-	-	-	-			
MW-6	03/15/2002	30.58	24.14	6.44	-	-	-	-	-	-	-	-	-	-	-	-	-	-			
MW-6	06/15/2002	30.58	24.33	6.25	<50	<50	< 0.50	< 0.50	< 0.50	<1.5	4.3	-	-	-	-	-	-	-			
MW-6	09/06/2002	30.58	24.60	5.98	-	-	-	-	-	-	-	-	-	-	-	-	-	-			
MW-6	12/06/2002	30.58	24.79	5.79	64	<50	< 0.50	< 0.50	< 0.50	<1.5	5.0	-	-	-	-	-	-	-			
MW-6	03/03/2003	30.58	24.44	6.14	-	-	-	-	-	-	-	-	-	-	-	-	-	-			
MW-6	$06/17/2003^{14}$	30.58	24.11	6.47	<50	<50	< 0.5	<0.5	<0.5	<0.5	-	-	13	-	-	-	-	-			
MW-6	09/16/2003	30.58	24.52	6.06	-	-	-	-	-	-	-	-	-	-	-	-	-	-			
MW-6	$12/31/2003^{14}$	30.58	24.58	6.00	<50	<50	< 0.5	< 0.5	< 0.5	0.5	-	-	14	<50	-	-	-	-			
MW-6	03/26/2004	30.58	23.89	6.69	-	-	-	-	-	-	-	-	-	-	-	-	-	-			
MW-6	08/17/2004	30.58	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			
Trip Blank	06/04/1997	-	-	-	-	<50	<0.5	<0.5	<0.5	<0.5	<2.5	-	-	-	-	-	-	-			
Trip Blank	09/16/1997	-	-	-	-	<50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5	-	-	-	-	-	-	-			
Trip Blank	12/17/1997	-	-	-	-	<50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5	-	-	-	-	-	-	-			
Trip Blank	03/18/1998	-	-	-	-	<50	< 0.5	<0.5	<0.5	< 0.5	<2.5	-	-	-	-	-	-	-			
Trip Blank	06/28/1998	-	-	-	-	<50	< 0.5	< 0.5	< 0.5	< 0.5	-	<2.5	-	-	-	-	-	-			
Trip Blank	09/07/1998	-	-	-	-	<50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5	-	-	-	-	-	-	-			
Trip Blank	12/09/1998	-	-	-	-	<50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5	-	-	-	-	-	-	-			
Trip Blank	03/11/1999	-	-	-	-	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0	-	-	-	-	-	-	-			

Page 13 of 15

GROUNDWATER MONITORING AND SAMPLING DATA CHEVRON SERVICE STATION 9-4800 1700 CASTRO STREET, OAKLAND, CALIFORNIA

					HYDROC	ARBONS			P	RIMARY		ADDITIONAL VOCS						
Location	Date	TOC*	DTW	GWE	TPH-DRO	TPH-GRO	В	Т	Ε	X	MTBE by VOC	MTBE by SW8240	MTBE by SW8260	ETHANOL	TBA	DIPE	ETBE	TAME
	Units	ft	ft	ft	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L						
Trip Blank	06/17/1999	-	-	-	-	<50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5	-	-	-	-	-	-	-
Trip Blank	12/14/1999	-	-	-	-	<50	< 0.5	< 0.5	< 0.5	<0.5	<2.5	-	-	-	-	-	-	-
Trip Blank	03/09/2000 ³	-	-	-	-	<50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5	-	-	-	-	-	-	-
Trip Blank	06/10/2000	-	-	-	-	<50.0	< 0.500	< 0.500	< 0.500	< 0.500	<2.50	-	-	-	-	-	-	-
Trip Blank	09/30/2000	-	-	-	-	<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5	-	-	-	-	-	-	-
Trip Blank	$12/22/2000^{10}$	-	-	-	-	<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5	-	-	-	-	-	-	-
Trip Blank	03/01/2001	-	-	-	-	<50.0	< 0.500	< 0.500	< 0.500	< 0.500	<2.50	-	-	-	-	-	-	-
Trip Blank	05/04/2001	-	-	-	-	<50.0	< 0.500	<5.00	<5.00	<5.00	< 0.500	-	-	-	-	-	-	-
Trip Blank	09/05/2001	-	-	-	-	<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5	-	-	-	-	-	-	-

EXPLANATIONS:

TOC = Top of casing

DTW = Depth to water

GWE = Groundwater elevation

LNAPLT = Light not-aqueous phase liquid thickness

TPH-GRO = Total petroleum hydrocarbons - gasoline range organics

BTEX = Benzene, toluene, ethylbenzene, xylene

MTBE = Methyl tertiary butyl ether

TBA = Tertiary butyl alcohol

DIPE = Di-isopropyl ether

ETBE = Ethyl tertiary butyl ether

TAME = Tertiary amyl methyl ether

Ft = Feet

Ft-amsl = Feet above mean sea level

Gal = Gallons

 μ g/L = Micro grams per liter

-- = Not available/not applicable

TABLE 1 GROUNDWATER MONITORING AND SAMPLING DATA CHEVRON SERVICE STATION 9-4800 1700 CASTRO STREET, OAKLAND, CALIFORNIA

		HYDROCARBONS		PRIMARY VOCS								ADDITI	ONAL	VOCS				
Location	Date	TOC*	DTW	GWE	TPH-DRO	TPH-GRO	В	Т	Ε	X	MTBE by VOC	MTBE by SW8240	MTBE by SW8260	ETHANOL	TBA	DIPE	ETBE	TAME
	Units	ft	ft	ft	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L

<x = Not detected above laboratory method detection limits

U = Compound not detected

J = Estimated value

QA = Quality assurance

- The following wells: MW-1, MW-2, MW-3, MW-4, and MW-7, were resurveyed by Morrow Surveying on September 13, 2004. TOC elevation was surveyed on April 11, 2001, by Virgil Chavez Land Surveying. The benchmark for the survey was the top of curb at the south end of the return at the southeast corner of Castro Street and 18th Street. (Benchmark Elevation = 29.65 feet above msl).
- 1 Chromatogram pattern indicates an unidentified hydrocarbon.
- 2 Sample was extracted outside EPA recommended holding time.
- 3 TPH-G, BTEX and MTBE was analyzed outside EPA recommended holding time.
- 4 EPA Method 8240.
- 5 Confirmation run.
- 6 Laboratory report indicates gasoline C6-C12.
- 7 Laboratory report indicates unidentified hydrocarbons C9-C24.
- 8 Laboratory report indicates unidentified hydrocarbons >C16.
- 9 Laboratory report indicates unidentified hydrocarbons C9-C40.
- 10 Laboratory report indicates this sample was analyzed outside of the EPA recommended holding time.
- 11 Well development performed.
- 12 MTBE by EPA Method 8260.
- 14 BTEX and MTBE by EPA Method 8260.
- 15 Laboratory report indicates the surrogate data for the method blank is outside QC limits. Results from the re-extraction are within the limits. The hold time had expired prior to re-extraction so all results are reported from the original extract. The TPH-D result from the re-extraction is 910 ppb.
- 16 Laboratory report indicates the surrogate data for the method blank is outside QC limits. Results from the re-extraction are within the limits. The hold time had expired prior to re-extraction so all results are reported from the original extract. The TPH-D result from the re-extraction is 1,700 ppb.
- 17 Laboratory report indicates the surrogate data for the method blank is outside QC limits. Results from the re-extraction are within the limits. The hold time had expired prior to re-extraction so all results are reported from the original extract. Similar results were obtained in both extracts.
- 18 Laboratory report indicates the observed sample pattern is not typical of #2 fuel/diesel. It elutes in the DRO range later than #2 fuel.

TABLE 1 GROUNDWATER MONITORING AND SAMPLING DATA CHEVRON SERVICE STATION 9-4800 1700 CASTRO STREET, OAKLAND, CALIFORNIA

			HYDROC		PRIMARY VOCS								ONAL	AL VOCS				
Location	Date	TOC*	DTW	GWE	TPH-DRO	TPH-GRO	В	Т	Ε	X	MTBE by VOC	MTBE by SW8240	MTBE by SW8260	ETHANOL	TBA	DIPE	ETBE	TAME
	Units	ft	ft	ft	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L

19 Analytical result confirmed.

20 Laboratory report indicates the observed sample pattern includes #2 fuel/diesel and an additional pattern which elutes later in the DRO range.

21 Laboratory report indicates the observed sample pattern is not typical of #2 fuel/diesel. The reported result is due to individual peak(s) eluting in the DRO range.

ATTACHMENT A

BLAINE TECH'S MAY 19, 2010 SECOND QUARTER 2010 MONITORING REPORT

May 19, 2010

Chevron Environmental Management Company Aaron Costa 6111 Bollinger Canyon Rd. San Ramon, CA 94583

> Second Quarter 2010 Monitoring at Chevron Service Station 94800 1700 Casrto St. Oakland, CA

Monitoring performed on May 18, 2010

Blaine Tech Services, Inc. Groundwater Monitoring Event 100518-FS2

This submission covers the routine monitoring of groundwater wells conducted on May 18, 2010 at this location. Five monitoring wells were measured for depth to groundwater (DTW). Five monitoring wells were sampled. All sampling activities were performed in accordance with local, state and federal guidelines.

Water levels measurements were collected using an electronic slope indicator. All sampled wells were purged of three case volumes, depending on well recovery, or until water temperature, pH and conductivity stabilized. Purging was accomplished using electric submersible pumps, positive air-displacement pumps or stainless steel, Teflon or disposable bailers. Subsequent sample collection and sample handling was performed in accordance with EPA protocols using disposable bailers. Alternately, where applicable, wells were sampled utilizing no-purge methodology. All reused equipment was decontaminated in an integrated stainless steel sink with de-ionized water supplied Hotsy pressure washer and Liquinox or equivalent.

Samples were delivered under chain-of-custody to Lancaster Laboratories of Lancaster, Pennsylvania, for analysis. Monitoring well purgewater and equipment rinsate water was collected and transported under bill-of-lading to IWM facilities of San Jose, California.

Enclosed documentation from this event includes copies of the Well Gauging Sheet, Well Monitoring Data Sheets, and Chain-of-Custody.

Blaine Tech Services, Inc.'s activities at this site consisted of objective data and sample collection only. No interpretation of analytical results, defining of hydrogeologic conditions or formulation of recommendations was performed.

Please call if you have any questions.

Sincerely,

AZA

Dustin Becker Blaine Tech Services, Inc. Senior Project Manager

- attachments: SOP Well Gauging Sheet Individual Well Monitoring Data Sheets Chain of Custody Wellhead Inspection Form Bill of Lading Calibration Log
- cc: CRA Attn: Nathan Lee 5900 Hollis St. Suite A Emeryville, CA 94608

BLAINE TECH SERVICES, INC. METHODS AND PROCEDURES FOR THE ROUTINE MONITORING OF GROUNDWATER WELLS AT CHEVRON SITES

Blaine Tech Services, Inc. performs environmental sampling and documentation as an independent third party. We specialize in groundwater monitoring assignments and intentionally limit the scope of our services to those centered on the generation of objective information.

To avoid conflicts of interest, Blaine Tech Services, Inc. personnel do not evaluate or interpret the information we collect. As a state licensed contractor (C-57 well drilling –water – 746684) performing strictly technical services, we do not make any professional recommendations and perform no consulting of any kind.

SAMPLING PROCEDURES OVERVIEW

SAFETY

All groundwater monitoring assignments performed for Chevron comply with Chevron's safety guidelines, 29 CFR 1910.120 and SB-198 Injury and Illness Prevention Program (IIPP). All Field Technicians receive the full 40-hour 29CFR 1910.120 OSHA SARA HAZWOPER course, medical clearance and on-the-job training prior to commencing any work on any Chevron site.

INSPECTION AND GAUGING

Wells are inspected prior to evacuation and sampling. The condition of the wellhead is checked and noted according to a wellhead inspection checklist.

Standard measurements include the depth to water (DTW) and the total well depth (TD) obtained with industry standard electronic water level indicators that are graduated in increments of hundredths of a foot.

The water in each well is inspected for the presence of immiscibles. When free product is suspected, its presence is confirmed using an electronic interface probe (e.g. GeoTech). No samples are collected from a well containing over two-hundredths of a foot (0.02') of product.

EVACUATION

Depth to water measurements are collected by our personnel prior to purging and minimum purge volumes are calculated anew for each well based on the height of the water column and the diameter of the well. Expected purge volumes are never less than three case volumes and are set at no less than four case volumes in some jurisdictions.

Well purging devices are selected on the basis of the well diameter and the total volume to be

evacuated. In most cases the well will be purged using an electric submersible pump (i.e. Grundfos) suspended near (but not touching) the bottom of the well.

PARAMETER STABILIZATION

Well purging completion standards include minimum purge volumes, but additionally require stabilization of specific groundwater parameters prior to sample collection. Typical groundwater parameters used to measure stability are electrical conductivity, pH, and temperature. Instrument readings are obtained at regular intervals during the evacuation process (no less than once per case volume).

Stabilization standards for routine quarterly monitoring of fuel sites include the following: Temperature is considered to have stabilized when successive readings do not fluctuate more than +/- 1 degree Celsius. Electrical conductivity is considered stable when successive readings are within 10%. pH is considered to be stable when successive readings remain constant or vary no more than 0.2 of a pH unit.

DEWATERED WELLS

Normal evacuation removes no less than three case volumes of water from the well. However, less water may be removed in cases where the well dewaters and does not immediately recharge.

MEASURING RECHARGE

Upon completion of well purging, a depth to water measurement is collected and notated to ensure that the well has recharged to within 80% of its static, pre-purge level prior to sampling.

Wells that do not immediately show 80% recharge or dewatered wells will be allowed approximately 2 hours to recharge prior to sampling or will be sampled at site departure. All wells requiring off-site traffic control in the public right-of-way, the 80% recharge rule may be disregarded in the interests of Health and Safety. The sample may be collected as soon as there is sufficient water. The water level at time of sampling will be noted.

PURGEWATER CONTAINMENT

All non-hazardous purgewater evacuated from each groundwater monitoring well is captured and contained in on-board storage tanks on the Sampling Vehicle and/or special water hauling trailers. Effluent from the decontamination of reusable apparatus (sounders, electric pumps and hoses etc.), consisting of groundwater combined with deionized water and non-phosphate soap, is also captured and pumped into effluent tanks.

Non-hazardous purgewater is transported under standard Bill of Lading documentation to a Blaine Tech Services, Inc. facility before being transported to a Chevron approved disposal facility.

SAMPLE COLLECTION DEVICES

All samples are collected using disposable bailers.

SAMPLE CONTAINERS

Sample material is decanted directly from the sampling bailer into sample containers provided by the laboratory that will analyze the samples. The transfer of sample material from the bailer to the sample container conforms to specifications contained in the USEPA T.E.G.D. The type of sample container, material of construction, method of closure and filling requirements are specific to the intended analysis. Chemicals needed to preserve the sample material are commonly placed inside the sample containers by the laboratory or glassware vendor prior to delivery of the bottle to our personnel. The laboratory sets the number of replicate containers.

TRIP BLANKS

Trip Blanks, if requested, are taken to the site and kept inside the sample cooler for the duration of the event. They are turned over to the laboratory for analysis with the samples from that site.

DUPLICATES

Duplicates, if requested, may be collected at a site. The Duplicate sample is collected, typically from the well containing the most measurable contaminants. The Duplicate sample is labeled the same as the original.

SAMPLE STORAGE

All sample containers are promptly placed in food grade ice chests for storage in the field and transport (direct or via our facility) to the designated analytical laboratory. These ice chests contain quantities of restaurant grade ice as a refrigerant material. The samples are maintained in either an ice chest or a refrigerator until relinquished into the custody of the laboratory or laboratory courier.

DOCUMENTATION CONVENTIONS

A label must be affixed to all sample containers. In most cases these labels are generated by our office personnel and are partially preprinted. Labels can also be hand written by our field personnel. The site is identified with the store number and site address, as is the particular groundwater well from which the sample is drawn (e.g. MW-1, MW-2, S-1 etc.). The time and date of sample collection along with the initials of the person who collects the sample are handwritten onto the label.

Chain of Custody records are created using client specific preprinted forms following USEPA specifications.

Bill of Lading records are contemporaneous records created in the field at the site where the non-hazardous purgewater is generated. Field Technicians use preprinted Bill of Lading forms.

DECONTAMINATION

All equipment is brought to the site in clean and serviceable condition and is cleaned after use in each well and before subsequent use in any other well. Equipment is decontaminated before leaving the site.

The primary decontamination device is a commercial steam cleaner. The steam cleaner is detuned to function as a hot pressure washer that is then operated with high quality deionized water that is produced at our facility and stored onboard our sampling vehicle. Cleaning is facilitated by the use of proprietary fixtures and devices included in the patented workstation (U.S. Patent 5,535,775) that is incorporated in each sampling vehicle. The steam cleaner is used to decon reels, pumps and bailers.

Any sensitive equipment or parts (i.e. Dissolved Oxygen sensor membrane, water level indicator, etc.) that cannot be washed using the high pressure water, will be sprayed with a non-phosphate soap and deionized water solution and rinsed with deionized water.

DISSOLVED OXYGEN READINGS

Dissolved Oxygen readings are taken pre- and/or post-purge using YSI meters (e.g. YSI Model 550) or HACH field test kits.

The YSI meters are able to collect accurate in-situ readings. The probe allows downhole measurements to be taken from wells with diameters as small as two inches. The probe and reel is decontaminated between wells as described above. The meter is calibrated between wells as per the instructions in the operating manual. The probe is lowered into the water column and the reading is allowed to stabilize prior to collection.

OXYIDATON REDUCTION POTENTIAL READINGS

All readings are obtained with either Corning or Myron-L meters (e.g. Corning ORP-65 or a Myron-L Ultrameter GP). The meter is cleaned between wells as described above. The meter is calibrated at the start of each day according to the instruction manual.

FERROUS IRON MEASUREMENTS

All field measurements are collected at time of sampling with a HACH test kit.

WELL GAUGING DATA

Project # 100518-F52 Date 5-18-10 Client CHEUBON

Site 1700 CASTRO ST. DAKLAND CA

	Well ID	Time	Well Size (in.)	Sheen / Odor	Depth to Immiscible Liquid (ft.)	Thickness of Immiscible Liquid (ft.)	Immiscibles Removed		Depth to well bottom (ft.)	Survey Point: TOB or TOC	Notes
	MW-1	1340						25.54 - 30	30	toc	
	MW -2	1320						23.65	30.00		
ſ	MW-3	1330	2	cDof				25.11	30.15		
Γ	nw-4	1405	2					2477	28.78		
	Mw-7	1349	2					27.51	30 52	J.	
				1							
					14. 2						
											·
la, Anno ann ann an Ann			· .								
		-									
											13
				1970							

BLAINE TECH SERVICES, INC. SAN JOSE SACRAMENTO LOS ANGELES SAN DIEGO SEATTLE

www.blainetech.com

Project #	: (00	518-	Fs 2	Station #:	9-4800							
Sampler:	F	5		Date: 5	- 18-10							
Weather	51	Y NN		Ambient Air Temperature: 68° F								
Well I.D	.: _ MW	-		Well Diameter: 2 3 4 6 8								
Total We	ell Depth:	30.5	4	Depth to Water: 25.54								
Depth to	Free Produ	uct:		Thickness of I	Free Product (fe	eet):						
Referenc	ed to:	PVC	Grade	D.O. Meter (if	req'd):	VSP HACH						
DTW wit	h 80% Re	charge [(I	Height of Water	Column x 0.20)) + DTW]:	26.54						
Purge Meth	Bailer Disposable B	Displacement	Waterra Peristaltic Extraction Pump Other	Sampling Method	Disposable Bailer Extraction Port Dedicated Tubing							
O. ? 1 Case Volum	_(Gals.) X ne Sp	3 ecified Volur	= 2.1 mes Calculated Vo	Gals. 2" 3"	0.04 4" 0.16 6" 0.37 Oth	0.65 1.47 radius ² * 0.163						
Time	Temp (°F)	pН	Cond. (mS or fS)	Turbidity (NTUs)	Gals. Removed	Observations						
1458	67.9	6.5	1088	290	0.7	34 -						
1501	67.8	6.6	1075	619	1.6							
1504	67.2	6.5	1052	+ 87	2.4							
					· · · · · · · · · · · · · · · · · · ·							
Did well o	lewater?	Yes	NO	Gallons actual	ly evacuated:	2.4						
Sampling	Date: 5-	18-10	Sampling Time	: 1515	Depth to Wate	r: 26.50						
Sample I.I	D.: MW	-		Laboratory:	Lancaste Ot	her						
Analyzed	for: TPH-	G BTEX	MTBE OXYS	Other SEE	Coc.							
Duplicate	I.D.:		Analyzed for:		MTBE OXYS	Other:						
D.O. (if re	q'd):		Pre-purge:	0.50 mg/L	Post-purge:	mg/L						
D.R.P. (if	req'd):		Pre-purge:	-3 mV	Post-purge:	st mV						

T											
Project #	: (00	518-	FSZ	Station #:	9-4800						
Sampler	Ŧ	5		Date: 5	- 18-10						
Weather	e	ver co	+s-t	Ambient Air Temperature: 68°							
Well I.D		- 2		Well Diameter: 2 3 4 6 8							
Total We	ell Depth:	30.	00	Depth to Wate	er: 23.65)					
Depth to	Free Produ	ict:		Thickness of F	Free Product (fe	eet):					
Referenc	ed to:	PVC	Grade	D.O. Meter (if	req'd):	YSD HACH					
DTW wit	th 80% Red	charge [(H	Height of Water	· Column x 0.20) + DTW]:	24.92					
Purge Meth	Bailer Disposable Ba	Displacement	Waterra Peristaltic Extraction Pump Other	Sampling Method	Disposable Bailer Extraction Port Dedicated Tubing	Diameter Multiplier					
۱.۱ ۱ Case Volur	_(Gals.) X ne Sp	<u>3</u> ecified Volur	$= \frac{3.3}{\text{Calculated Vc}}$	Gals. 2" 3"	0.04 4" 0.16 6" 0.37 Oth	0.65 1.47 er radius ² * 0.163					
Time	Temp (°F)	pН	Cond. (mS or µS)	Turbidity (NTUs)	Gals. Removed	Observations					
1630	67.3	6.7	884	48	Salara Salara						
(632	66.9	6.7	885	54	2.2						
1634	66.8	6.7	867	78	3.3						
Did well o	lewater?	Yes	ۯ	Gallons actuall	y evacuated:	3.3					
Sampling	Date: 5-	18-10	Sampling Time	e: 1640	Depth to Wate	r: 23,95					
Sample I.	D.: MW	-2	,	Laboratory:	Lancaster Ot	her					
Analyzed	for: TPH-0	G BTEX	MTBE OXYS	Other SEE	Çoc.						
Duplicate	I.D.:		Analyzed for:		ATBE OXYS	Other:					
D.O. (if re	eq'd):		Pre-purge:	0.44 ^{mg} / _L	Post-purge:	mg/L					
D.R.P. (if	req'd):	,	Pre-purge:	- 1 5 mV	Post-purge:	mV					
	-										

Project #	: (00	518-	Fs 2	Station #:	9-4800							
Sampler:	F	5		Date: 5	- 18-10							
Weather:	5	UNNY		Ambient Air Temperature: 68°7								
Well I.D.	: MW	- 3		Well Diameter: 2 3 4 6 8								
Total We	ll Depth:	30.13	5	Depth to Water: 25.11								
Depth to	Free Produ	ict:		Thickness of I	Free Product (fe	eet):						
Reference	ed to:	evc	Grade	D.O. Meter (if	req'd):	WSL HACH						
DTW wit	h 80% Rec	charge [(H	leight of Water	Column x 0.20)) + DTW]:	26.11						
Purge Metho Cog	Bailer Disposable Ba	isplacement	Waterra Peristaltic Extraction Pump Other		Disposable Bailer Extraction Port Dedicated Tubing							
1 Case Volun		ecified Volun	nes Calculated Vo	- 1 21	0.37 Oth	er radius ² * 0.163						
Time	Temp (°F)	pH	Cond. (mS or LS)	Turbidity (NTUs)	Gals. Removed	Observations						
1603	67.1	6.6	1119	96	0.9							
1605	67.0	6.6	1121	123	1.3	· · · · · · · · · · · · · · · · · · ·						
1607	67.1	6.n	1108	70	2.7							
Did well c	lewater?	Yes	No	Gallons actual	y evacuated:	2.7						
Sampling	Date: 5-	18-10	Sampling Time	e: 1615	Depth to Wate	r: 25.20						
Sample I.I	D.: MW	5		Laboratory:	Lancaste Ot	her						
Analyzed	for: TPH-0	G BTEX	MTBE OXYS	Other SEE	Coc.							
Duplicate	I.D.:		Analyzed for:		ATBE OXYS	Other:						
D.O. (if re	q'd):		Pre-purge:	0.59° ^{mg} /L	Post-purge:	mg/L						
D.R.P. (if	req'd):		Pre-purge:	ኖሬ mV	Post-purge:	mV						

Project #: 100518 - Fs2	Station #:	9-4800					
Sampler: Fr	Date: 5-	- 18-10					
Weather: Surry	Ambient Air Temperature: 7°° F						
Well I.D.: MW - 4	Well Diameter: 2 3 4 6 8						
Total Well Depth: 28.78	Depth to Water	r: 24.73					
Depth to Free Product:	Thickness of F	ree Product (fee	et):				
Referenced to: Grade	D.O. Meter (if	req'd):	YSI HACH				
DTW with 80% Recharge [(Height of Wate	r Column x 0.20) + DTW]:	25.54				
Purge Method: Bailer Waterra Disposable Baile Peristaltic Positive Air Displacement Extraction Pump Electric Submersible Other	Sampling Method: Other: 	Disposable Bailer Extraction Port Dedicated Tubing	Diameter <u>Multiplier</u> 0.65				
$\frac{0.7}{1 \text{ Case Volume}} (\text{Gals.}) \times \frac{3}{\text{Specified Volumes}} = \frac{2.1}{\text{Calculated V}}$	Gals. 2" olume 3"	0.16 6" 0.37 Othe	1.47 sr radius ² * 0.163				
TimeTemp ($^{\circ}F$)pHCond. (mS or μS)	Turbidity (NTUs)	Gals. Removed	Observations				
1420 67.3 6.5 816	125	0.7	de .				
1423 67.5 6.5 910	368	۱. ۹	ġ.				
1426 67.4 6.5 970	(9)	2.1					
		р. 					
Did well dewater? Yes No	Gallons actuall	y evacuated:	2.1				
Sampling Date: 5-18-10 Sampling Tim	ne: 1430	Depth to Water	r: 25.50				
Sample I.D.: Mw-4	Laboratory:	Lancaste Otl					
Analyzed for: TPH-G BTEX MTBE OXYS	Other SEE	Çoç.					
Duplicate I.D.: Analyzed for:		ATBE OXYS	Other:				
D.O. (if req'd): Pre-purge	: 0.39 ^{mg} / _L	Post-purge:	mg/L				
O.R.P. (if req'd): Pre-purge	: -25 mV	Post-purge:	mV				

Project #	: (00	518-	FSZ	Station #:	9-4800							
Sampler:	F	5		Date: 5	- 18-10							
Weather:	20	1~~~		Ambient Air Temperature: 65°F								
Well I.D	: _ MW	-7		Well Diameter: 2 3 4 6 8								
Total We	ell Depth:	30,0	L	Depth to Water: 27.51								
Depth to	Free Produ	uct:		Thickness of F	Free Product (fe	eet):						
Referenc	ed to:	PVC	Grade	D.O. Meter (if	req'd):	(YSI) HACH						
DTW wit	th 80% Re	charge [(I	Height of Water	Column x 0.20) + DTW]:	28.01						
Purge Meth	Bailer Bisposable B	Displacement	Waterra Peristaltic Extraction Pump Other	Sampling Method	Disposable Bailer Extraction Port Dedicated Tubing	- Diameter Multiplier						
0.5	_(Gals.) X	3	= 1.5	Gals. 1"	0.04 4" 0.16 6"	0.65						
1 Case Volur	ne Sp	ecified Volur	nes Calculated Vo	lume 3"	0.37 Oth	er radius ² * 0.163						
Time	Temp (°F)	pН	Cond. (mS or µS	Turbidity (NTUs)	Gals. Removed	Observations						
1532	66.9	7.0	1054	321	0.5							
1534	67.1	6.6	1026	137	1							
1536	67.0	6.6	1025	356	1.5							
		all had the spectrum and the balance of the spectrum state										
Did well o	dewater?	Yes	No	Gallons actuall	y evacuated:	1.5						
Sampling	Date: 5-	18-10	Sampling Time	e: 1545	Depth to Wate	r: 21.95						
Sample I.	D.: MW	- 7-	·	Laboratory:	Lancaster Ot	her						
Analyzed	for: TPH-	G BTEX	MTBE OXYS	Other SEE	Çoc.							
Duplicate	I.D.:		Analyzed for:		ATBE OXYS	Other:						
D.O. (if re	eq'd):		Pre-purge:	0.70 ^{mg/} L	Post-purge:							
O.R.P. (if	req'd):		Pre-purge:	llo mV	Post-purge:	mV						

Chevi	on Envir	onmental Man	agement Compar	CHAIN OF C 1V = 6111 Bol	Jus IUL linger C	anvon	N Rd m	Sar	n Re	mo	n (<u>م</u>	0 <i>1</i> 5	83		\sim	C	(of
hevron Site Number: 948	0	********	Chevron Consulta	nt: CRA		<u>anyon</u>			8 9 7 6			INAL	YSE	SRE	OUI			
hevron Site Global ID: <u>T06</u>	0102076		Address: <u>5900 Hol</u>		mervville,		*	Ц							H	N	HO	Preservation Codes
hevron Site Address: 170	Casrto St.,		<u>CA</u> Consultant Con		<u>meryvnie,</u>												METHANE (BOISM) TBA	H =HCL T= Thiosulfate
akland, CA			Consultant Phone		3			SCREEN				ΣLIN		OIL & GREASE			80	N =HNO ₃ B = NaOH
hevron PM: AARON COST	-		Consultant Projec	t No	18-F	51		Sc			_	310.1 ALKALINITY		& Gr			N A A H	$S = H_2SO_4 O = O$
hevron PM Phone No.: (92			Sampling Compar			*****	VTES	Н			STLC []	1 AL		10			ŝ,	Other
Retail and Terminal Busi Construction/Retail Job	ess Unit (R1	rBU) Job	Sampled By (Print		fivor	-CTONG	OXYGENATESE	ORO I				A 310		413.1			~ 9	
Charge Code: NWRTB-0094800-0-OML			Sampler Signature	9: £ { 		•	X	0			OTL	EPA		EPA			500.0 FE 350	
NWRTB 00SIT WBS ELEMENTS:	NUMBER-0)- WBS	Lancaster Laboratories	Other Lab	Temp. Bla Time 1305	ink Check Temp.	MTBEN			, Na	METALS [] 1		YTIVI				N S	Special Instructions Must meet lowest
ITE ASSESSMENT: A1L REMEN ITE MONITORING: OML OPERA	TION MAINTENAI	NCE & MONITORING: M1L	IXI Lancaster, PA Lab Contact: Jill Parker		1500	0.1		R.	MTBE []	K, Mg, Mn, Na	8		LONGNG			(m	FATE	detection limits possible for 8260 Compounds
FHIS IS A LEGAL DOCUMENT CORRECTLY	ALL FIELDS	i must be filled out E tely .	2425 New Holland Pike, Lancaster, PA 17601 Phone No: (717)656-2300		******		8260B/GC/MS -G [] BTEX #	B GROG	в втех 🛛	Ъ.	EPA6010/7000 TITLE	ЕРА150.1 РН 🗆	SM2510B SPECIFIC CONDUCTIVITY	EPA 418.1 TRPH	ETHANOL	•	5 6 506	
SA	IPLE ID			••••••••••••••••••••••••••••••••••••••			3260	30151	8021B	010	010/	50.1	108	118.1	260	3015	FJ	
Field Point Name Ma	ix Top De	pth Date (yymmdd)	Sample Time	# of Containers	Contai	ner Type	EPA (EPA 8015B	EPA (EPA 6010 Ca,	EPA6	EPA1	SM25	EPA 4	EPA 8260	EPA 8015	NITEATES	Notes/Comment s
MW-1 W		100518	1515	13	VOAS	AMBE	×	X							$\boldsymbol{\lambda}$	X	X	
Mn-2			1640	13		[X	X					, in the second s		x	×	X	
MN-3			1615	13			X	X							κ	X	X	
AN-4			1430	13			X	X							\times	×	X	5 0246ENA 8260
mn-7 1			1545	13			X	X							X	X	X	5 0×46E~4
QA T		*	1300	2		k	X	X										
							<u> </u>											
elinquished By	ompany BTS	Date/Time:	Relinquished to	Company	 Date/Ti ≤/187/10		ـــــــــــــــــــــــــــــــــــــ	<u> </u>	Sta	narou ndard irs 🗆	nd T	ime: 2ª Othe		urs□		'48 h	nours	DLD 1 72 IFEPROUS IRON
elinquished By	ompany	Date/Time	Relinquished To	Company	Date/Ti				Sar	nple I	1.	rity: (Che	•	lab (on ar	tival)	,
elinquished By (ompany	Date/Time	Relinquished To	Company	Date/Ti	me	807	Relinquished To Company Date/Time OSSO Coc #				On l	ce:			<u>I</u> M		

WELLHEAD INSPECTION CHECKLIST

Page _____ of _____

Client	LEURO.	×					Date	J- 18	- 16	
Site Address			STRO	<u>ST.</u>	0,	<u>sk La</u>	<u>~ 0</u>	, <u>s</u> a		
Job Number								5		
Well ID	Well Inspected - No Corrective Action Required	WELL IS SECURABLE BY DESIGN (12"or less)	WELL IS CLEARLY MARKED WITH THE WORDS "MONITORING WELL" (12"or less)	Water Bailed From Wellbox	Wellbox Components Cleaned	Cap Replaced	Lock Replaced	Other Action Taken (explain below)	Well Not Inspected (explain below)	Repair Order Submitted
MWI		~								
MN - 2										
Mw- 3	~	~	~	~						
mn-d		r		V						
MN- 7	k					 				
									,	
			s							
NOTES:	MN-2		TAG	1/2	TABE	BR	0 4 8 ~		BOL	7 5
An	- Al D	TAC	pt=6	-B-s-						5

CHEVRON-NORTHERN CALIFORNIA TYPE A BILL OF LADING

SOURCE RECORD **BILL OF LADING** FOR NON-HAZARDOUS PURGEWATER RECOVERED FROM GROUNDWATER WELLS AT CHEVRON FACILITIES IN THE STATE OF CALIFORNIA. THE NON-HAZARDOUS PURGE- WATER WHICH HAS BEEN RECOVERED FROM GROUND- WATER WELLS IS COLLECTED BY THE CONTRACTOR, MADE UP INTO LOADS OF APPROPRIATE SIZE AND HAULED BY IWM TO THEIR FACILITY IN SAN JOSE, CALIFORNIA.

The contractor performing this work is BLAINE TECH SERVICES, INC. (BTS), 1680 Rogers Ave. San Jose CA (408)573-0555). Blaine Tech Services, Inc. is authorized by CHEVRON PRODUCTS COMPANY (CHEVRON) to recover, collect, apportion into loads, and haul the Non-Hazardous Well Purgewater that is drawn from wells at the CHEVRON facility indicated below and to deliver that purgewater to BTS. Transport routing of the Non-Hazardous Well Purgewater may be direct from one Chevron facility to BTS; from one Chevron facility to BTS via another Chevron facility; or any combination thereof. The Non-Hazardous Well Purgewater is and remains the property of CHEVRON.

This **Source Record BILL OF LADING** was initiated to cover the recovery of Non-Hazardous Well Purgewater from wells at the Chevron facility described below:

9-4	800	AAI	LON	COSTA	
CHEVRO	N #		Chevro	on Engineer	
1700	CASTRO	ST.	OA	KLA~D	4
street num	iber str	eet name		city	state

WELL I.D. GALS.	WELL I.D. GALS.
Mw-1 1 2.4	/
MW-2 1 3.3	/
mw.3 / 2.7	/
Mm-al 1 2.1	/
mn-7 / 1.5	/
/	/
	/
Liv /	/
added equip. rinse water_/ 8	any otheradjustments_/
TOTAL GALS. RECOVERED2 &	loaded onto BTS vehicle #
BTS event # tin 100518-F52	ne date //8//0
signature	
* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * *
REC'D AT	time date
BLAINE TECH SER	<u>11005 5 / 18 / 10</u>
signature	

TEST EQUIPMENT CALIBRATION LOG

PROJECT NAM	PROJECT NAME CHENRON @ 1700 CASTRO ST. PROJECT NUMBER 100518-FS2											
EQUIPMENT NAME	EQUIPMENT NUMBER	DATE/TIME OF TEST	USED	EQUIPMENT READING	CALIBRATED TO: OR WITHIN 10%:	TEMP.	INITIALS					
MYRON L	620 9577	5-18-10	1 4.0 7.0 10.0 ComD. 3900,005	4-01/6.98/9.81 3895 MS	755	69° F	Fi					
1	Ý	1	ORF 237.5	235	L	20° C	丙					
451 550	056188644	5-18-10-1300	100%	85 %	455	Automotive account account	T					
				e" .								
							······					

ATTACHMENT B

LANCASTER LABORATORIES' JUNE 1, 2010 ANALYTICAL RESULTS REPORT

ANALYTICAL RESULTS

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425 Prepared for:

Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

June 01, 2010

Project: 94800

Submittal Date: 05/19/2010 Group Number: 1195178 PO Number: 0015061031 Release Number: COSTA State of Sample Origin: CA

Client Sample Description MW-1-W-100518 NA Water MW-2-W-100518 NA Water MW-3-W-100518 NA Water MW-4-W-100518 NA Water MW-7-W-100518 NA Water QA-T-100518 NA Water Lancaster Labs (LLI) # 5984028 5984029 5984030 5984031 5984032 5984033

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

ELECTRONIC CRA COPY TO ELECTRONIC Chevron c/o CRA COPY TO ELECTRONIC CRA COPY TO Attn: Nathan Lee Attn: Report Contact Attn: Ian Hull

Questions? Contact your Client Services Representative Jill M Parker at (717) 656-2300 Ext. 1241

Respectfully Submitted,

Roh Chi-

Robin C. Runkle Senior Specialist

Page 1 of 2

Sample Description:	MW-1-W-100518 NA Water	LLI Sample	# V	WW 5984028
	Facility #94800 BTST	LLI Group	# 1	1195178
	1700 Castro St-Oakland T0600102076 MW-1	Account	# 1	10991

Project Name: 94800

Collected:	05/18/2010	15:15	by FS	Chevron
				6001 Bollinger Canyon Rd L4310
Submitted:	05/19/2010	08:50		San Ramon CA 94583
Reported:	06/01/2010	16:25		

Discard: 07/02/2010

CASM1

CAT No.	Analysis Name			CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846	826	0B	ug/l	ug/l	ug/l	
10943	Benzene			71-43-2	N.D.	0.5	1	1
10943	t-Butyl alcohol			75-65-0	9	2	5	1
10943	Ethanol			64-17-5	N.D.	50	250	1
10943	Ethylbenzene			100-41-4	N.D.	0.5	1	1
10943	Methyl Tertiary Buty	yl Ether		1634-04-4	230	0.5	1	1
10943	Toluene			108-88-3	N.D.	0.5	1	1
10943	Xylene (Total)			1330-20-7	N.D.	0.5	1	1
GC Vol	latiles	SW-846	801	5B	ug/l	ug/l	ug/l	
	TPH-GRO N. CA water			n.a.	N.D.	50	100	1
	TPH-DRO CA C10-C28	SW-846		5 B n.a.	ug/l 110	ug/l 32	ug/l 100	1
								Ŧ
GC Mis	scellaneous	SW-846	801	5B modified	ug/l	ug/l	ug/l	
07105	Methane			74-82-8	N.D.	5.0	15	1
Wet Ch	nemistry	EPA 300	0.0		ug/l	ug/l	ug/l	
00368	Nitrate Nitrogen			14797-55-8	5,800	250	500	5
00228	Sulfate			14808-79-8	101,000	3,000	10,000	10
		SM20 35 modifie		Fe B	ug/l	ug/l	ug/l	
08344	Ferrous Iron			n.a.	170	10	100	1

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10943	BTEX/MTBE 8260 Water	SW-846 8260B	1	Z101453AA	05/26/2010 01:11	Florida A Cimino	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	Z101453AA	05/26/2010 01:11	Florida A Cimino	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	10141A20A	05/21/2010 18:29	Marie D John	1
01146	GC VOA Water Prep	SW-846 5030B	1	10141A20A	05/21/2010 18:29	Marie D John	1
06609	TPH-DRO CA C10-C28	SW-846 8015B	1	101420002A	05/25/2010 21:07	Melissa McDermott	1
07105	Volatile Headspace Hydrocarbon	SW-846 8015B modified	1	101440037A	05/26/2010 18:03	Elizabeth J Marin	1

*=This limit was used in the evaluation of the final result

Page 2 of 2

Sample Description: MW-1-W-100518 NA Water Facility #94800 BTST 1700 Castro St-Oakland T0600102076 MW-1

LLI Sample # WW 5984028 LLI Group # 1195178 Account # 10991

Project Name: 94800

Collected: 05/18/2010 15:15 by

Submitted: 05/19/2010 08:50 Reported: 06/01/2010 16:25 Discard: 07/02/2010 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

CASM1

Laboratory Sample Analysis Record

Chevron

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor
02376	Extraction - Fuel/TPH (Waters)	SW-846 3510C	1	101420002A	05/23/2010	10:50	Timothy J Attenberger	1
00368	Nitrate Nitrogen	EPA 300.0	1	10140196601B	05/20/2010	16:43	Ashley M Adams	5
00228	Sulfate	EPA 300.0	1	10140196601B	05/25/2010	13:48	Ashley M Adams	10
08344	Ferrous Iron	SM20 3500 Fe B modified	1	10139834402A	05/19/2010	22:45	Daniel S Smith	1

Page 1 of 2

Sample Description:	MW-2-W-100518 NA Water	LLI Sample	#	WW 5984029
	Facility #94800 BTST	LLI Group	#	1195178
	1700 Castro St-Oakland T0600102076 MW-2	Account	#	10991

Project Name: 94800

Collected:	05/18/2010	16:40	by	FS	Chev	ron
					6001	Bol

Submitted: 05/19/2010 08:50 Reported: 06/01/2010 16:25 Discard: 07/02/2010 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

CASM2

CAT No.	Analysis Name			CAS Number	As Rece: Result	ived	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846	826	0B	ug/l		ug/l	ug/l	
10943	Benzene			71-43-2	N.D.		0.5	1	1
10943	t-Butyl alcohol			75-65-0	6		2	5	1
10943	Ethanol			64-17-5	N.D.		50	250	1
10943	Ethylbenzene			100-41-4	N.D.		0.5	1	1
10943	1 1 .	yl Ether		1634-04-4	22		0.5	1	1
10943	Toluene			108-88-3	N.D.		0.5	1	1
10943	Xylene (Total)			1330-20-7	N.D.		0.5	1	1
00 11-1	latiles	SW-846	001	ED	ug/l		ug/l	ug/l	
			001				-	-	
01728	TPH-GRO N. CA water	C6-C12		n.a.	580		50	100	1
GC Ext	tractable TPH	SW-846	801	.5B	ug/l		ug/l	ug/l	
06609	TPH-DRO CA C10-C28			n.a.	1,100		32	100	1
GC Mis	scellaneous	SW-846	801	5B modified	ug/l		ug/l	ug/l	
07105	Methane			74-82-8	1,700		50	150	10
Wet Ch	nemistry	EPA 300	0.0		ug/l		ug/l	ug/l	
00368	Nitrate Nitrogen			14797-55-8	260	J	250	500	5
00228	Sulfate			14808-79-8	31,200		1,500	5,000	5
		SM20 35 modifie		Fe B	ug/l		ug/l	ug/l	
08344	Ferrous Iron			n.a.	5,700		250	2,500	25

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10943	BTEX/MTBE 8260 Water	SW-846 8260B	1	Z101453AA	05/26/2010 01:33	Florida A Cimino	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	Z101453AA	05/26/2010 01:33	Florida A Cimino	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	10141A20A	05/21/2010 18:51	Marie D John	1
01146	GC VOA Water Prep	SW-846 5030B	1	10141A20A	05/21/2010 18:51	Marie D John	1
06609	TPH-DRO CA C10-C28	SW-846 8015B	1	101420002A	05/26/2010 02:10	Melissa McDermott	1
07105	Volatile Headspace Hydrocarbon	SW-846 8015B modified	1	101440037A	05/26/2010 16:57	Elizabeth J Marin	10

*=This limit was used in the evaluation of the final result

Page 2 of 2

Sample Description: MW-2-W-100518 NA Water Facility #94800 BTST 1700 Castro St-Oakland T0600102076 MW-2

LLI Sample # WW 5984029 LLI Group # 1195178 Account # 10991

Project Name: 94800

Collected:	05	/18	/2010	16:40	by FS

Submitted: 05/19/2010 08:50 Reported: 06/01/2010 16:25 Discard: 07/02/2010 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

CASM2

Laboratory Sample Analysis Record

Chevron

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Tim	me	Analyst	Dilution Factor
02376	Extraction - Fuel/TPH (Waters)	SW-846 3510C	1	101420002A	05/23/2010	10:50	Timothy J Attenberger	1
00368	Nitrate Nitrogen	EPA 300.0	1	10140196601B	05/20/2010	16:59	Ashley M Adams	5
00228	Sulfate	EPA 300.0	1	10140196601B	05/20/2010	16:59	Ashley M Adams	5
08344	Ferrous Iron	SM20 3500 Fe B modified	1	10139834402A	05/19/2010	22:45	Daniel S Smith	25

Page 1 of 2

Sample Description:	MW-3-W-100518 NA Water	LLI Sample	# WW 5984030
	Facility #94800 BTST	LLI Group	# 1195178
	1700 Castro St-Oakland T0600102076 MW-3	Account	# 10991

Project Name: 94800

Collected:	05/18/	2010	16:15	by FS
------------	--------	------	-------	-------

Submitted: 05/19/2010 08:50 Reported: 06/01/2010 16:25 Discard: 07/02/2010 Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

CASM3

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	ug/l	
10943	Benzene		71-43-2	11	0.5	1	1
10943	t-Butyl alcohol		75-65-0	470	2	5	1
10943	Ethanol		64-17-5	N.D.	50	250	1
10943	Ethylbenzene		100-41-4	N.D.	0.5	1	1
10943	Methyl Tertiary But	yl Ether	1634-04-4	110	0.5	1	1
10943	Toluene		108-88-3	N.D.	0.5	1	1
10943	Xylene (Total)		1330-20-7	1	0.5	1	1
CC Vol	latiles	SW-846	8015B	ug/l	ug/l	ug/l	
01728				63 J	50	100	1
01/28	TPH-GRO N. CA water	06-012	n.a.	63 U	50	100	1
GC Ext	ractable TPH	SW-846	8015B	ug/l	ug/l	ug/l	
06609	TPH-DRO CA C10-C28		n.a.	150	32	100	1
GC Mis	scellaneous	SW-846	8015B modified	ug/l	ug/l	ug/l	
07105	Methane		74-82-8	48	5.0	15	1
Wet Ch	nemistry	EPA 300).0	ug/l	ug/l	ug/l	
00368	Nitrate Nitrogen		14797-55-8	5,100	250	500	5
00228	Sulfate		14808-79-8	73,200	1,500	5,000	5
		SM20 35 modifie	500 Fe B ed	ug/l	ug/l	ug/l	
08344	Ferrous Iron		n.a.	330	10	100	1

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10943	BTEX/MTBE 8260 Water	SW-846 8260B	1	Z101453AA	05/26/2010 01	:55 Florida A Cimino	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	Z101453AA	05/26/2010 01	:55 Florida A Cimino	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	10141A20A	05/21/2010 19	:13 Marie D John	1
01146	GC VOA Water Prep	SW-846 5030B	1	10141A20A	05/21/2010 19	:13 Marie D John	1
06609	TPH-DRO CA C10-C28	SW-846 8015B	1	101420002A	05/26/2010 02	:30 Melissa McDermott	1
07105	Volatile Headspace Hydrocarbon	SW-846 8015B modified	1	101440037A	05/26/2010 00	:16 Elizabeth J Marin	1

*=This limit was used in the evaluation of the final result

Page 2 of 2

Sample Description: MW-3-W-100518 NA Water Facility #94800 BTST 1700 Castro St-Oakland T0600102076 MW-3

LLI Sample # WW 5984030 LLI Group # 1195178 Account # 10991

Project Name: 94800

Collected: 05/18/2010 16:15 by	by FS
--------------------------------	-------

Submitted: 05/19/2010 08:50 Reported: 06/01/2010 16:25 Discard: 07/02/2010 Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

CASM3

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Tim	me	Analyst	Dilution Factor
02376	Extraction - Fuel/TPH (Waters)	SW-846 3510C	1	101420002A	05/23/2010	10:50	Timothy J Attenberger	1
00368	Nitrate Nitrogen	EPA 300.0	1	10140196602B	05/20/2010	17:15	Ashley M Adams	5
00228	Sulfate	EPA 300.0	1	10140196602B	05/20/2010	17:15	Ashley M Adams	5
08344	Ferrous Iron	SM20 3500 Fe B modified	1	10139834402A	05/19/2010	22:45	Daniel S Smith	1

Page 1 of 2

Sample Description:	MW-4-W-100518 NA Water	LLI Sample	#	WW 5984031
	Facility #94800 BTST	LLI Group	#	1195178
	1700 Castro St-Oakland T0600102076 MW-4	Account	#	10991

Project Name: 94800

Collected:	05/18/2010	14:30	by FS

Submitted: 05/19/2010 08:50 Reported: 06/01/2010 16:25 Discard: 07/02/2010 Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

CASM4

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	ug/l	
10943	t-Amyl methyl ether		994-05-8	4	0.5	1	1
10943	Benzene		71-43-2	N.D.	0.5	1	1
10943	t-Butyl alcohol		75-65-0	33	2	5	1
10943	Ethanol		64-17-5	N.D.	50	250	1
10943	Ethyl t-butyl ether		637-92-3	N.D.	0.5	1	1
10943	Ethylbenzene		100-41-4	N.D.	0.5	1	1
10943	di-Isopropyl ether		108-20-3	N.D.	0.5	1	1
10943	Methyl Tertiary But	yl Ether	1634-04-4	70	0.5	1	1
10943	Toluene		108-88-3	N.D.	0.5	1	1
10943	Xylene (Total)		1330-20-7	N.D.	0.5	1	1
GC Vo	latiles	SW-846	8015B	ug/l	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	56 J	50	100	1
GC Ext	tractable TPH	SW-846	8015B	ug/l	ug/l	ug/l	
	TPH-DRO CA C10-C28		n.a.	340	32	100	1
GC Mi	scellaneous	SW-846	8015B modified	ug/l	ug/l	ug/l	
07105	Methane		74-82-8	2,300	50	150	10
Wet Cl	hemistry	EPA 300	0.0	ug/l	ug/l	ug/l	
00368	Nitrate Nitrogen		14797-55-8	N.D.	250	500	5
	The holding time wa proceeding with the			otified and a	pproved		
00228			14808-79-8	26,500	1,500	5,000	5
		SM20 35 modifie	500 Fe B ed	ug/l	ug/l	ug/l	
08344	Ferrous Iron		n.a.	7,900	250	2,500	25

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

	Laboratory Sample Analysis Record									
CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution			
No.					Date and Time		Factor			
10943	BTEX/MTBE 8260 Water	SW-846 8260B	1	Z101443AA	05/25/2010 06:40	Florida A Cimino	1			
01163	GC/MS VOA Water Prep	SW-846 5030B	1	Z101443AA	05/25/2010 06:40	Florida A Cimino	1			

*=This limit was used in the evaluation of the final result

Page 2 of 2

Sample Description: MW-4-W-100518 NA Water Facility #94800 BTST 1700 Castro St-Oakland T0600102076 MW-4

LLI Sample # WW 5984031 LLI Group # 1195178 Account # 10991

Project Name: 94800

Collected:	05	18	/2010	14:30	by FS
COTTCCCCC.	001	0 /	2010	TI:00	Dy 10

Submitted: 05/19/2010 08:50 Reported: 06/01/2010 16:25 Discard: 07/02/2010 Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

CASM4

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Tim	ne	Analyst	Dilution Factor
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	10141A20A	05/21/2010	19:35	Marie D John	1
01146	GC VOA Water Prep	SW-846 5030B	1	10141A20A	05/21/2010	19:35	Marie D John	1
06609	TPH-DRO CA C10-C28	SW-846 8015B	1	101420002A	05/25/2010	21:27	Melissa McDermott	1
07105	Volatile Headspace Hydrocarbon	SW-846 8015B modified	1	101440037A	05/26/2010	17:13	Elizabeth J Marin	10
02376	Extraction - Fuel/TPH (Waters)	SW-846 3510C	1	101420002A	05/23/2010	10:50	Timothy J Attenberger	1
00368	Nitrate Nitrogen	EPA 300.0	1	10140196602B	05/20/2010	17:32	Ashley M Adams	5
00228	Sulfate	EPA 300.0	1	10140196602B	05/20/2010	17:32	Ashley M Adams	5
08344	Ferrous Iron	SM20 3500 Fe B modified	1	10139834402A	05/19/2010	22:45	Daniel S Smith	25

Page 1 of 2

Sample Description:	MW-7-W-100518 NA Water	LLI Sample	# WW 5984032
	Facility #94800 BTST	LLI Group	# 1195178
	1700 Castro St-Oakland T0600102076 MW-7	Account	# 10991

Project Name: 94800

Collected:	05/18/2010	15:45	by FS

Submitted: 05/19/2010 08:50 Reported: 06/01/2010 16:25 Discard: 07/02/2010 Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

CASM7

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	ug/l	
10943	t-Amyl methyl ether		994-05-8	52	1	2	2
10943	Benzene		71-43-2	N.D.	1	2	2
10943	t-Butyl alcohol		75-65-0	N.D.	4	10	2
10943	Ethanol		64-17-5	N.D.	100	500	2
10943	Ethyl t-butyl ether		637-92-3	2	1	2	2
10943	Ethylbenzene		100-41-4	N.D.	1	2	2
10943	di-Isopropyl ether		108-20-3	N.D.	1	2	2
10943	Methyl Tertiary But	yl Ether	1634-04-4	2,400	10	20	20
10943	Toluene		108-88-3	N.D.	1	2	2
10943	Xylene (Total)		1330-20-7	N.D.	1	2	2
GC Vol	latiles	SW-846	8015B	ug/l	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	76 J	50	100	1
GC Ext	ractable TPH	SW-846	8015B	ug/l	ug/l	ug/l	
06609	TPH-DRO CA C10-C28		n.a.	160	32	100	1
GC Mis	scellaneous	SW-846	8015B modified	ug/l	ug/l	ug/l	
07105	Methane		74-82-8	6.5 J	5.0	15	1
Wet Ch	nemistry	EPA 300).0	ug/l	ug/l	ug/l	
00368	Nitrate Nitrogen		14797-55-8	1,800	250	500	5
00228	Sulfate		14808-79-8	51,500	1,500	5,000	5
		SM20 35 modifie	500 Fe B ed	ug/l	ug/l	ug/l	
08344	Ferrous Iron		n.a.	N.D.	10	100	1

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10943	BTEX/MTBE 8260 Water	SW-846 8260B	1	Z101443AA	05/25/2010 07:02	Florida A Cimino	2
10943	BTEX/MTBE 8260 Water	SW-846 8260B	1	Z101443AA	05/25/2010 07:24	Florida A Cimino	20
01163	GC/MS VOA Water Prep	SW-846 5030B	1	Z101443AA	05/25/2010 07:02	Florida A Cimino	2
01163	GC/MS VOA Water Prep	SW-846 5030B	2	Z101443AA	05/25/2010 07:24	Florida A Cimino	20

*=This limit was used in the evaluation of the final result

Page 2 of 2

Sample Description: MW-7-W-100518 NA Water Facility #94800 BTST 1700 Castro St-Oakland T0600102076 MW-7

LLI Sample # WW 5984032 LLI Group # 1195178 Account # 10991

Project Name: 94800

Collected:	05/	/18	/2010	15:45	by FS

Submitted: 05/19/2010 08:50 Reported: 06/01/2010 16:25 Discard: 07/02/2010 Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

CASM7

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Tim	ie	Analyst	Dilution Factor
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	10141A20A	05/21/2010	19:56	Marie D John	1
01146	GC VOA Water Prep	SW-846 5030B	1	10141A20A	05/21/2010	19:56	Marie D John	1
06609	TPH-DRO CA C10-C28	SW-846 8015B	1	101420002A	05/25/2010	21:48	Melissa McDermott	1
07105	Volatile Headspace Hydrocarbon	SW-846 8015B modified	1	101440037A	05/26/2010	00:54	Elizabeth J Marin	1
02376	Extraction - Fuel/TPH (Waters)	SW-846 3510C	1	101420002A	05/23/2010	10:50	Timothy J Attenberger	1
00368	Nitrate Nitrogen	EPA 300.0	1	10140196602B	05/20/2010	17:48	Ashley M Adams	5
00228	Sulfate	EPA 300.0	1	10140196602B	05/20/2010	17:48	Ashley M Adams	5
08344	Ferrous Iron	SM20 3500 Fe B modified	1	10139834402A	05/19/2010	22:45	Daniel S Smith	1

Page 1 of 1

Sample Description: QA-T-100518 NA Water Facility #94800 BTST 1700 Castro St-Oakland T0600102076 QA

LLI Sample	#	WW 5984033
LLI Group	#	1195178
Account	#	10991

Project Name: 94800

Collected: 05/18/2010 13:00

Submitted: 05/19/2010 08:50 Reported: 06/01/2010 16:25 Discard: 07/02/2010 Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

CASQA

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	ug/l	
10943	Benzene		71-43-2	N.D.	0.5	1	1
10943	Ethylbenzene		100-41-4	N.D.	0.5	1	1
10943	Methyl Tertiary But	yl Ether	1634-04-4	N.D.	0.5	1	1
10943	Toluene		108-88-3	N.D.	0.5	1	1
10943	Xylene (Total)		1330-20-7	N.D.	0.5	1	1
GC Vol	latiles	SW-846	8015B	ug/l	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	N.D.	50	100	1

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10943	BTEX/MTBE 8260 Water	SW-846 8260B	1	Z101522AA	06/01/2010 12:50	Ginelle L Feister	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	Z101522AA	06/01/2010 12:50	Ginelle L Feister	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	10141A20A	05/21/2010 16:41	Marie D John	1
01146	GC VOA Water Prep	SW-846 5030B	1	10141A20A	05/21/2010 16:41	Marie D John	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 4

Quality Control Summary

Client Name: Chevron Reported: 06/01/10 at 04:25 PM Group Number: 1195178

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Laboratory Compliance Quality Control

<u>Analysis Name</u>	Blank <u>Result</u>	Blank MDL**	Blank <u>LOQ</u>	Report <u>Units</u>	LCS <u>%REC</u>	LCSD <u>%REC</u>	LCS/LCSD <u>Limits</u>	<u>RPD</u>	<u>RPD Max</u>	
Batch number: Z101443AA	Sample num									
t-Amyl methyl ether	N.D.	0.5	1	ug/l	96	99	77-120	3	30	
Benzene	N.D.	0.5 2.	1 5	ug/l	94	95	79-120	1	30	
t-Butyl alcohol Ethanol	N.D. N.D.	2. 50.	250	ug/l ug/l	91 96	92 101	73-120 40-158	1 5	30 30	
Ethyl t-butyl ether	N.D.	0.5	1	ug/1 ug/1	95	96	76-120	2	30	
Ethylbenzene	N.D.	0.5	1	ug/1	96	97	79-120	1	30	
di-Isopropyl ether	N.D.	0.5	1	ug/l	94	96	71-124	2	30	
Methyl Tertiary Butyl Ether	N.D.	0.5	1	ug/l	95	97	76-120	2	30	
Toluene	N.D.	0.5	1	ug/l	96	96	79-120	1	30	
Xylene (Total)	N.D.	0.5	1	ug/l	97	98	80-120	2	30	
Batch number: Z101453AA	Sample number(s): 5984028-5984030									
Benzene	N.D.	0.5	1	ug/l	95		79-120			
t-Butyl alcohol	N.D.	2.	5	ug/l	93		73-120			
Ethanol	N.D.	50.	250	ug/l	94		40-158			
Ethylbenzene Mathul Mautieur Dutul Ethen	N.D.	0.5	1	ug/l	97		79-120			
Methyl Tertiary Butyl Ether Toluene	N.D. N.D.	0.5 0.5	1 1	ug/l ug/l	95 97		76-120 79-120			
Xylene (Total)	N.D.	0.5	1	ug/1 ug/1	98		80-120			
-				ug/1	50		00 120			
Batch number: Z101522AA	Sample num			17						
Benzene	N.D.	0.5	1	ug/l	92		79-120			
Ethylbenzene Methyl Tertiery Dutyl Ether	N.D. N.D.	0.5 0.5	1 1	ug/l ug/l	96 93		79-120 76-120			
Methyl Tertiary Butyl Ether Toluene	N.D. N.D.	0.5	1	ug/1 ug/1	95 95		79-120			
Xylene (Total)	N.D.	0.5	1	ug/1 ug/1	97		80-120			
-				5.	51		00 120			
Batch number: 10141A20A	Sample num									
TPH-GRO N. CA water C6-C12	N.D.	50.	100	ug/l	109	100	75-135	9	30	
Batch number: 101420002A	Sample numb	oer(s): 59	984028-598	4032						
TPH-DRO CA C10-C28	N.D.	32.	100	ug/l	88	85	56-122	3	20	
Batch number: 101440037A	Sample num	per(s): 59	84028-598	4032						
Methane	N.D.	5.0	15	ug/l	87		80-120			
Batch number: 10140196601B	Sample num									
Nitrate Nitrogen	N.D.	50.	100	ug/l	101		90-110			
Sulfate	N.D.	300.	1,000	ug/l	99		89-110			
Batch number: 10140196602B	Sample num	per(s): 59	984030-598	4032						
Nitrate Nitrogen	N.D.	50.	100	ug/l	100		90-110			
Sulfate	N.D.	300.	1,000	ug/l	99		89-110			
		()								
Batch number: 10139834402A	Sample numb				0.0		00 105			
Ferrous Iron	N.D.	10.	100	ug/l	99		92-105			

*- Outside of specification

**-This limit was used in the evaluation of the final result for the blank

(1) The result for one or both determinations was less than five times the LOQ.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 4

Quality Control Summary

Client Name: Chevron	Group Numb	er: 1195178
Reported: 06/01/10 at 04:25 PM		
Lab	oratory Compliance	Quality Control

Analysis Name	Blank <u>Result</u>	Blank <u>MDL**</u>	Blank <u>LOQ</u>	Report <u>Units</u>	LCS <u>%REC</u>	LCSD <u>%REC</u>	LCS/LCSD <u>Limits</u>	<u>RPD</u>	<u>RPD Max</u>
<u>-</u>									

Sample Matrix Quality Control Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	MS <u>%REC</u>	MSD <u>%REC</u>	MS/MSD <u>Limits</u>	<u>RPD</u>	RPD <u>MAX</u>	BKG <u>Conc</u>	DUP <u>Conc</u>	DUP <u>RPD</u>	Dup RPD <u>Max</u>
Batch number: Z101443AA	Sample	number(s)	: 5984031	-598403	2 UNSP	K: P986102			
t-Amyl methyl ether	102		75-122						
Benzene	102		80-126						
t-Butyl alcohol	93		67-119						
Ethanol	99		37-164						
Ethyl t-butyl ether	100		74-122						
Ethylbenzene	107		71-134						
di-Isopropyl ether	99		70-129						
Methyl Tertiary Butyl Ether	97		72-126						
Toluene	104		80-125						
Xylene (Total)	106		79-125						
Batch number: Z101453AA	Sample	number(s)	: 5984028	-598403	0 UNSP	K: P984005			
Benzene	100	100	80-126	0	30				
t-Butyl alcohol	91	91	67-119	0	30				
Ethanol	98	97	37-164	1	30				
Ethylbenzene	102	103	71-134	1	30				
Metĥyl Tertiary Butyl Ether	99	98	72-126	1	30				
Toluene	102	103	80-125	1	30				
Xylene (Total)	103	103	79-125	0	30				
Batch number: Z101522AA	Sample	number(s)	: 5984033	UNSPK:	P9921	58			
Benzene	101	101	80-126	1	30				
Ethylbenzene	101	103	71-134	2	30				
Methyl Tertiary Butyl Ether	94	98	72-126	3	30				
Toluene	102	103	80-125	1	30				
Xylene (Total)	103	105	79-125	1	30				
Batch number: 10141A20A TPH-GRO N. CA water C6-C12	Sample 100	number(s)	: 5984028 63-154	-598403	3 UNSP	K: P983788			
Batch number: 101440037A	Sample	number(s)	: 5984028	-598403	2 UNSP	K: P984779			
Methane	-1667 (2)	-1833 (2)	35-157	8	20				
Batch number: 10140196601B	-	number(s)		-598402	9 UNSP	K: P984335	BKG: P984335	5	
Nitrate Nitrogen Sulfate	117* 100		90-110 90-110			13,100 9,000	13,100 8,200	0 9 (1)	20 20
		1 ()						,	-
Batch number: 10140196602B	-	number(s)		-598403	2 UNSP.		BKG: P984997		2.0
Nitrate Nitrogen Sulfate	121* 117*		90-110 90-110			N.D. 69,500	N.D. 69,100	0 (1) 1	20 20
5411400	±± /		20 110			00,000	00,100	-	20
Batch number: 10139834402A	Sample	number(s)	: 5984028	-598403	2 UNSP	K: 5984029	BKG: 5984029)	

*- Outside of specification

**-This limit was used in the evaluation of the final result for the blank

(1) The result for one or both determinations was less than five times the LOQ.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 3 of 4

Quality Control Summary

Client Name: Chevron Reported: 06/01/10 at 04:25 PM Group Number: 1195178

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

	MS	MSD	MS/MSD		RPD	BKG	DUP	DUP	Dup RPD
<u>Analysis Name</u>	%REC	%REC	Limits	RPD	MAX	Conc	Conc	RPD	Max
Ferrous Iron	99	98	73-120	1	6	5,700	5,700	0 (1)	5

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: UST VOCs by 8260B - Water Batch number: Z101443AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzen
5984031	100	97	100	98
5984032	99	97	101	99
Blank	100	97	101	99
LCS	99	99	100	98
LCSD	100	99	101	100
MS	100	99	101	112
Limits:	80-116	77-113	80-113	78-113
Analysis N	ame: UST VOCs by 8260B - er: Z101453AA	Water		
Baten numb	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzen
5984028	99	97	101	98
5984029	99	97	101	99
5984030	99	97	101	98
Blank	98	96	101	98
LCS	100	99	101	98
MS	99	98	101	98
MSD	99	98	101	99
Limits:	80-116	77-113	80-113	78-113
	ame: UST VOCs by 8260B -	Water		
Batch numb	er: Z101522AA		T]]0	
	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzen
5984033	99	98	100	97
Blank	98	97	99	97
LCS	98	97	99	97
MS	98	99	99	97
MSD	99	100	100	98
Limits:	80-116	77-113	80-113	78-113
	ame: TPH-GRO N. CA water er: 10141A20A Trifluorotoluene-F	C6-C12		

*- Outside of specification

**-This limit was used in the evaluation of the final result for the blank

(1) The result for one or both determinations was less than five times the LOQ.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ΡМ

Page 4 of 4

Quality Control Summary

Client	Nan	ne:	Chevro	on	
Reporte	ed:	06/	01/10	at	04:25

Group Number: 1195178

Surrogate Quality Control

5984028	94
5984029	94
5984030	91
5984031	92
5984032	94
5984033	90
Blank	92
LCS	115
LCSD	115
MS	109

Limits: 63-135

Analysis Name: TPH-DRO CA C10-C28 Batch number: 101420002A Orthoterphenyl

5984028	84
5984029	91
5984030	82
5984031	84
5984032	75
Blank	87
LCS	106
LCSD	105
Limits:	59-131
Analysis N	ame: Volatile Headspace Hydrocarbon
	ame: Volatile Headspace Hydrocarbon er: 101440037A Propene
Batch numb	er: 101440037A
	er: 101440037A Propene
Batch numb	er: 101440037A Propene 47
Batch numb 5984028 5984029	er: 101440037A Propene 47 91
Batch numb 5984028 5984029 5984030	er: 101440037A Propene 47 91 47
Batch numk 5984028 5984029 5984030 5984031	er: 101440037A Propene 47 91 47 86
Batch numb 5984028 5984029 5984030 5984031 5984032	er: 101440037A Propene 47 91 47 86 46
Batch numk 5984028 5984029 5984030 5984031 5984032 Blank	er: 101440037A Propene 47 91 47 86 46 87

Limits: 42-131

*- Outside of specification

**-This limit was used in the evaluation of the final result for the blank

(1) The result for one or both determinations was less than five times the LOQ.

Chevron Site Numbe	r: <u>94800</u>			5178 gement Compar Chevron Consulta	int: <u>CRA</u>	linger C	anyon		_	1 Ka		n, C /		YSE:	S RE	QUIF	RED		
Chevron Site Global	D: <u>T060010</u>	2076	I	Address: <u>5900 Holl</u>	lis St. Suite A E	mervville.		ł	ч							H .	N N		Preservation Codes
Chevron Site Addres	s: <u>1700 Ca</u> s	srto St.		CAConsultant Con													(EOIXM)	2	H =HCL T= Thiosulfate
Dakland, CA				Consultant Phone		3		HVOCID	SCREEN		[[GREASE	Í	a	ĕ.	N =HNO3 B = NaOH
Chevron PM: <u>AARON</u>	I COSTA			Consultant Project		_	51		ဖိ				ALKALINITY		~ ১		ANE	64	S = H ₂ SO ₄ O =
Chevron PM Phone I	No.: <u>(925)54</u>	<u>3-2961</u>		Sampling Compar				ESL	오			ЅТ∟С 🛛	Fk		ē		1		Other
Retail and Termin	al Business	Unit (RTBU)	Job	Sampled By (Print			UCTOR 6	OXYGENATESD			- [310.1	ĺ	413.1		ž	-	
☑ Construction/Reta		, ,		Sampler Signature				ζ de	oro				EPA		EPA			22	
WBS ELEMENTS DITE ASSESSMENT: A1L DITE MONITORING: OML THIS IS A LEGAL DOG	00SITE NU REMEDIATIO OPERATION	IMBER-0- WI n Implementat Maintenance &	BS ION: R5L MONITORING: M1L ST BE FILLED OUT	Lancaster Laboratories D Lancaster, PA Lab Contact: Jill Parker 2425 New Holland Pike, Lancaster, PA 17601 Phone No: (717)656-2300	Other Lab	Temp. Bla Time 1300 1500 1645		8260B/GC/MS G [] BTEX MTBP24 O	GROFA DRO	B BTEX () MTBE ()	6010 Ca, Fe, K, Mg, Mn, Na	EPA6010/7000 TITLE 22 METALS	DHC	SM2510B SPECIFIC CONDUCTIVITY	TRPH D	ETHA	трн-о 🔟	I SULFATES (SO	Special Instructions Must meet lowest detection limits possible for 8260 Compounds
Field Point Name	SAMPL Matrix	E ID Top Depth	Date (yymmdd)	Sample Time	# of Containers	Contair	ner Type	EPA 8260 TPH-G []	EPA 8015B	EPA 8021B	EPA 6010	EPA6010	EPA150.1 PH []	SM2510B	EPA 418.1	EPA 8260	EPA 8015	TEP-1	Notes/Comment
MW-1	w		100518	1515	3	VOAS	AMBEL	<u>،</u> ک	X							X	X	X	
MN-2	1		_ 1	1640	13		1	X	X		T		_			2	×	X	
nn-3				1615	13			X	X							γ.	X	X	
<u>~~-4</u>				1430	13			X	X							×	X	X	5 GXYGEN
MN-7	<u>↓</u>			1545	15			X	X							X	X.	メ	5 0×4660
QA	+		4	1300	2	<u> </u>	v	×	×									-	
																		+ +	
Relinquished By	Com	<u> </u>	Date/Time:	Reliaquished to	Company	Date/Til 5/187/0		 		Star Hou	narou ndard ırsロ		24 Othe	rロ	ırs□	- D	48 hoi TKA	urs 🛙 TE / S	UD T2 FERROUS IRON
Relinquished By	Com	pany (Date/Time	Relinquisted To	Company	Date/Ti	me			San Inta		п.				lab o	n arriv	val) (
Relinquished By	Com	pany	Date/Time	Relinquished To	Company	Date/Til B kG	me Lus O	850	5			inter .			C	OC :	¥		

Lancaster Laboratories Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

N.D. TNTC IU umhos/cm C Cal meq g ug	none detected Too Numerous To Count International Units micromhos/cm degrees Celsius (diet) calories milliequivalents gram(s) microgram(s) milliter(s)	BMQL MPN CP Units NTU F Ib. kg mg I	Below Minimum Quantitation Level Most Probable Number cobalt-chloroplatinate units nephelometric turbidity units degrees Fahrenheit pound(s) kilogram(s) milligram(s) liter(s)
ml m3	milliliter(s) cubic meter(s)	ul fib >5 um/ml	microliter(s) fibers greater than 5 microns in length per ml

 less than – The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.

- > greater than
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.
- ppb parts per billion

Dry weight basis Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture.

U.S. EPA data qualifiers:

Organic Qualifiers

- **A** TIC is a possible aldol-condensation product
- **B** Analyte was also detected in the blank
- C Pesticide result confirmed by GC/MS
- **D** Compound quatitated on a diluted sample
- E Concentration exceeds the calibration range of the instrument
- J Estimated value
- **N** Presumptive evidence of a compound (TICs only)
- **P** Concentration difference between primary and confirmation columns >25%
- **U** Compound was not detected
- **X,Y,Z** Defined in case narrative

Inorganic Qualifiers

- B Value is <CRDL, but ≥IDL
- **E** Estimated due to interference
- **M** Duplicate injection precision not met
- N Spike amount not within control limits
- S Method of standard additions (MSA) used for calculation
- U Compound was not detected
- W Post digestion spike out of control limits
- * Duplicate analysis not within control limits
- + Correlation coefficient for MSA < 0.995

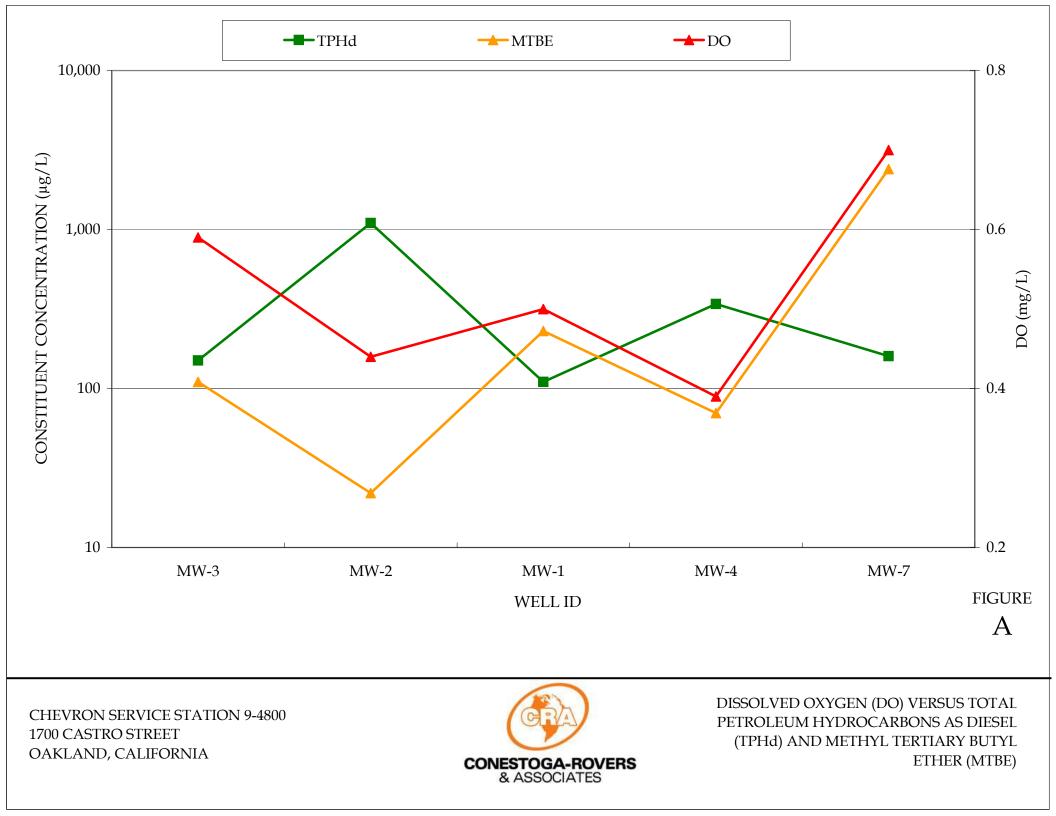
Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY – In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.

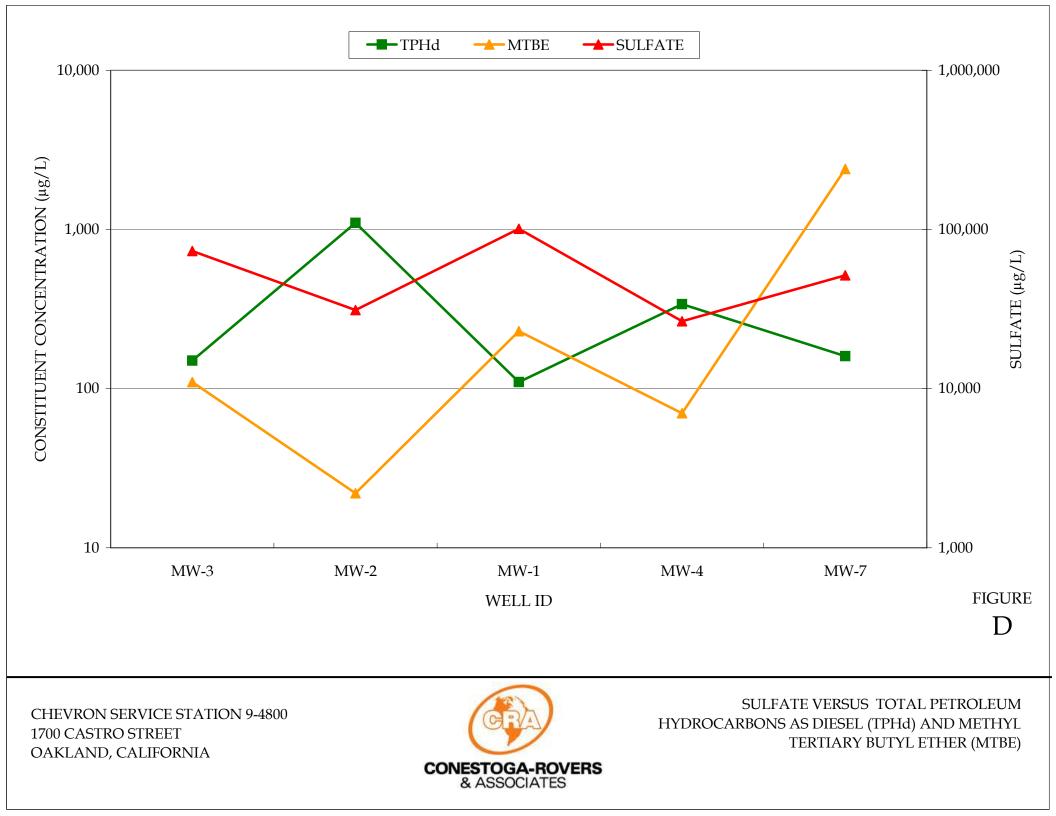
ATTACHMENT C

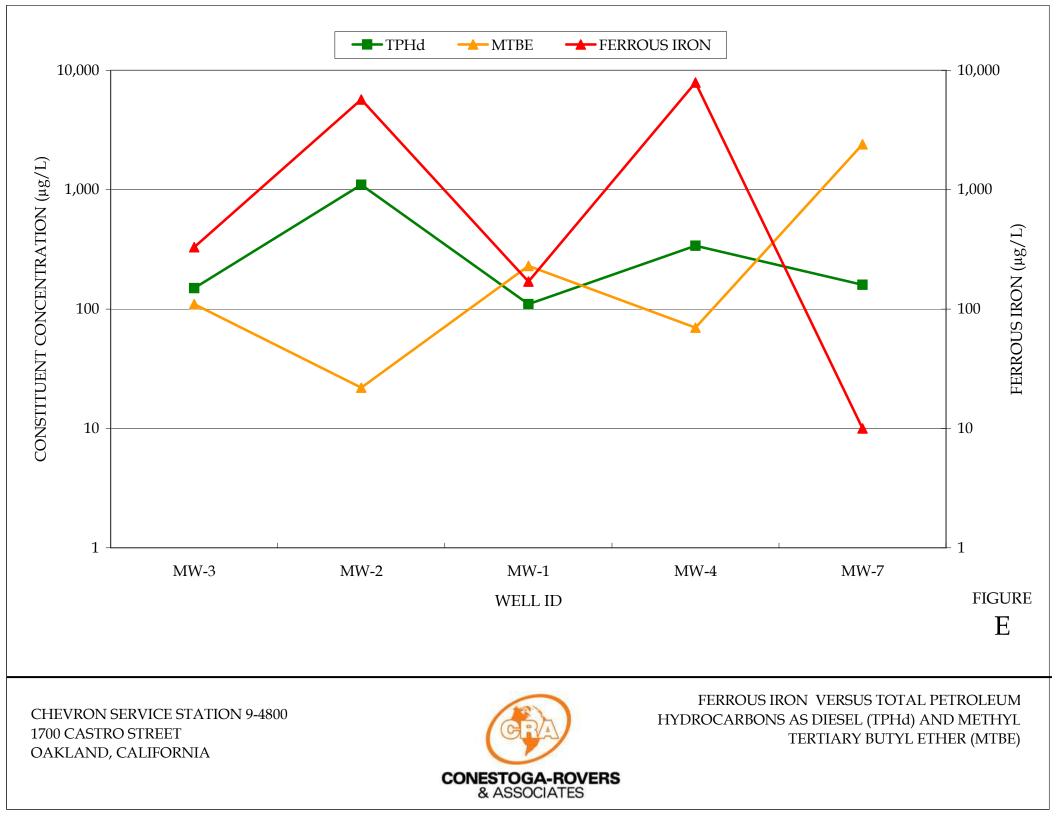
BIOPARAMETER DATA

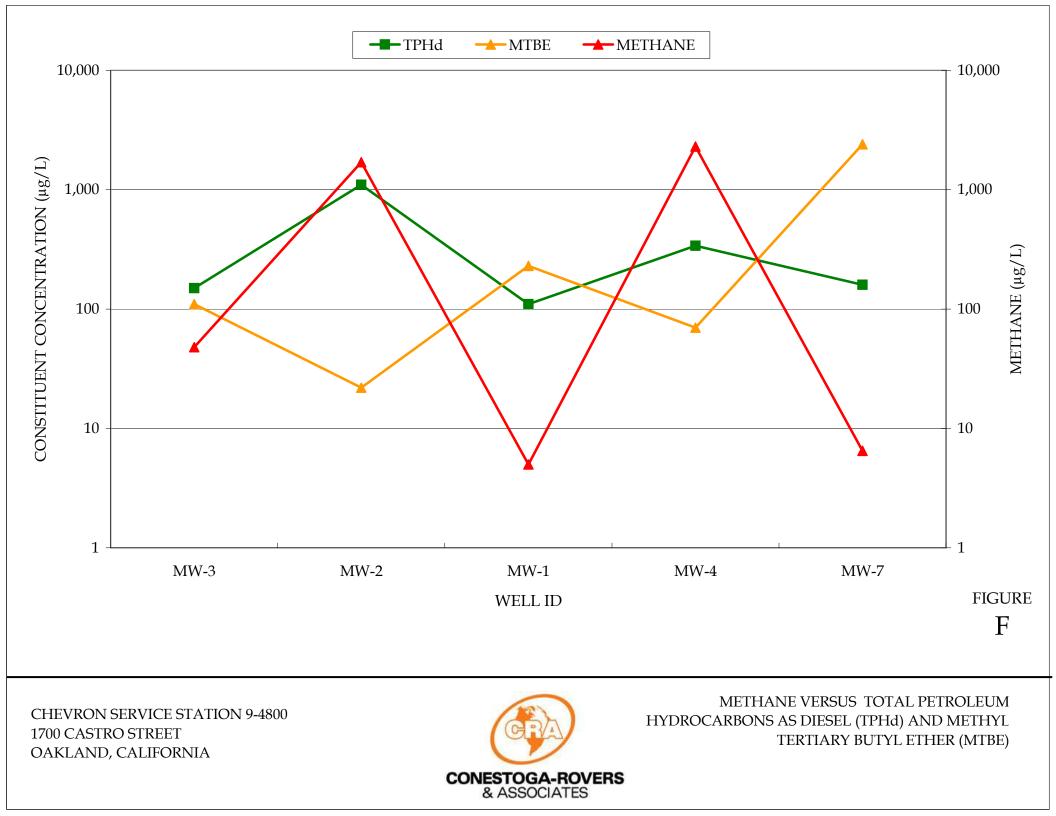

ATTACHMENT C


BIOPARAMETER DATA
CHEVRON SERVICE STATION 9-4800
1700 CASTRO STREET, OAKLAND, CALIFORNIA

Well ID	Date	TPHd (µg/L)	MTBE (μg/L)	DO pre-purge (mg/L)	ORP pre-purge (mV)	Nitrate (µg/L)	Sulfate (µg/L)	Dissolved Total Ferrous Iron (µg/L)	Methane (µg/L)
MW-3	5/18/2010	150	110	0.59	96	5,100	73,200	330	48
MW-2	5/18/2010	1,100	22	0.44	-95	260	31,200	5,700	1,700
MW-1	5/18/2010	110	230	0.50	-3	5,800	101,000	170	< 5.0
MW-4	5/18/2010	340	70	0.39	-25	< 250 a	26,500	7,900	2,300
MW-7	5/18/2010	160	2,400	0.70	110	1,800	51,500	< 10	6.5 J
Ideal Relations	hip With Hydrocd	arbon Concen	trations	Inverse	Inverse	Inverse	Inverse	Direct	Direct
Observed Relat	ionship With TPI	Id Concentra	tions	Inverse	Inverse	Inverse	Inverse	Direct	Direct
Observed Relationship With MTBE Concentrations			Direct	Direct	Direct	Direct	Inverse	Inverse	
Sufficient DO or ORP for Intrinsic Aerobic Bioremediation In the Source Area			No	No					

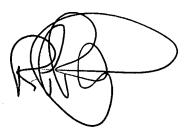

EXPLANATIONS:


TPHg = Total petroleum hydrocarbons as gasoline as presented in Table 1Methane by EPA Method 8015B ModifiedMTBE= Methyl Tertiary Butyl Ether as presented in Table 1 $\mu g/L = micrograms per literTotal TPHg + MTBE = Sum of TPHg and MTBE concentrationsmg/L = milligrams per literDO = Dissolved oxygen (measured in the field)mV= millivoltORP = Oxidation reduction potential (measured in the field)a= Laboratory hold time not metNitrate and Sulfate by EPA Method 300.0<x = Below laboratory method detection limit x</td>Dissolved total ferrous iron by SM20 3500 Fe B modifiedJ= Estimated value$



ATTACHMENT D

COMPOUND SPECIFIC ISOTOPE ANALYSIS LABORATORY ANALYTICAL DATA



The University of Oklahoma®

CONOCOPHILLIPS SCHOOL OF GEOLOGY AND GEOPHYSICS

ClientChevronProject name #9-4800/0OU Project Ref. #440Number/Type of Samples5/waterAnalysis RequiredC C SIA,Date Received5/20/2014Date Analysis Completed6/4/2010

Chevron & CRA 9-4800/060061 440 5/water C CSIA, MTBE, TBA 5/20/2010 6/4/2010

Notes

"corrected $\delta 13C$ ": the correction [X] accounts for the method bias, based on the external standard runs, see QAQC data below. "corrected $\delta 13C$ " should be used to compare data from different sampling events na/nd-peak not acquired (above quantitation limit, if so the sample was rerun with higher dilution higher dilution x) or compound not detected bql-signal below quantitation limit

Replicate runs

Replicate runs				
Run #	Sample ID	dilution x	TBA δ13C ‰	MtBE δ13C ‰
6518	MW-1	51	na/nd	-31.9
6525	MW-2	13	na/nd	-28.5
6532	MW-2	3	na/nd	-28.6
6522	MW-3	28	-28.3	-18.3
6527	MW-3	17	-28.2	-18.2
6523	MW-4	25	na/nd	-27.1
6528	MVV-4	8	na/nd	-27.0
6534	MW-4	1	-26.1	na/nd
6517	MW-7	463	na/nd	-33.4
6531	MW- 7	357	na/nd	-33.2
QAQC, standards				
Run #	Sample ID	ΤΒΑ δ13C ‰	MtBE δ13C ‰	
6511	standard	na/nd	-29.6	
6519	standard	-24.8	-29.4	
6520	standard	-24.4	-29.1	
6521	standard	-24.3	-29.1	
6524	standard	-24.1	-29.1	
6530	standard	-24.2	-28.9	
6533	standard	-24.3	-29.3	
	average δ13C	-24.4	-29.2	

max stdev n=2

correction [x]

off-line 613C of Std compound

710 Sarkeys Energy Center 100 East Boyd Street, Norman, Oklahoma 73019-1009 PHONE: (405) 325-3253 FAX: 325-3140

0.5

-25.2

-0.9

0.5

-29.8

-0.6

The University of Oklahoma®

CONOCOPHILLIPS SCHOOL OF GEOLOGY AND GEOPHYSICS

Averages	Corrected 513C ‰	
Sample ID	ΤΒΑ δ13C ‰	MtBE δ13C ‰
MW-1	bql	-32.5
MW-2	bql	-29.1
MW-3	-29.1	-18.8
MW-4	-27.0	-27.6
MW-7	bql	-33.9

QAQC – precision

Sample ID	Dev of replicate δ13C	
MW-2		0.1
MW-3	0.1	0.1
MW-4		0.1
MW-7		0.1

710 Sarkeys Energy Center 100 East Boyd Street, Norman, Oklahoma 73019-1009 PHONE: (405) 325-3253 FAX: 325-3140

