

RECEIVED

8:59 am, May 03, 2010

Alameda County
Environmental Health

Aaron Costa Project Manager Marketing Business Unit Chevron Environmental Management Company 6111 Bollinger Canyon Road San Ramon, CA 94583 Tel (925) 543-2961 Fax (925) 543-2324 acosta@chevron.com

Alameda County Health Care Services 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Re: Chevron Service Station No. 9-4800

700 Castro Street

Oakland, CA Oakland, CA

I have reviewed the attached report dated April 30, 2010.

I agree with the conclusions and recommendations presented in the referenced report. The information in this report is accurate to the best of my knowledge and all local Agency/Regional Board guidelines have been followed. This report was prepared by Conestoga-Rovers & Associates, upon who assistance and advice I have relied.

This letter is submitted pursuant to the requirements of California Water Code Section 13267(b)(1) and the regulating implementation entitled Appendix A pertaining thereto.

I declare under penalty of perjury that the foregoing is true and correct to the best of my knowledge.

Sincerely,

Aaron Costa Project Manager

Attachment: Report

5900 Hollis Street, Suite A Emeryville, California 94608

Telephone: (510) 420-0700 Fax: (510) 420-9170

http://www.craworld.com

April 30, 2010 Reference No. 060061

Mr. Mark Detterman Alameda County Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Re: Fourth Quarter 2009 Groundwater Monitoring and Sampling Report

Chevron Service Station 9-4800

1700 Castro Street Oakland, California

Fuel Leak Case No. RO0000341

Dear Mr. Mark Detterman:

Conestoga-Rovers & Associates (CRA) is submitting this *Fourth Quarter 2009 Groundwater Monitoring and Sampling Report* on behalf of Chevron Environmental Management Company (Chevron), for the site referenced above. On November 18, 2009, Blaine Tech Services of San Jose, California (Blaine Tech) monitored and sampled the site wells. Groundwater monitoring data is being submitted in accordance with the reporting requirements of 23CCR2652d. Presented below are the site background, site geology and hydrogeology, previous investigation summary, current monitoring and sampling results, CRA's conclusions, and anticipated future activities.

SITE BACKGROUND

Site Description

The site is an active Chevron-branded service station located on the northeast corner of the intersection on Castro Street and 17th Street in Oakland (Figure 1). Surrounding properties are a mixture of commercial and residential. The current facility consists of a convenience store, five dispenser islands, and two gasoline underground storage tanks (USTs) (Figure 2). Currently there are four monitoring wells onsite and one monitoring well offsite. In December 2004, monitoring wells MW-5 and MW-6 were properly destroyed. To date, 12 soil borings have been advanced onsite. In 2004, four USTs, two dispenser islands, and a station building were removed and replaced with the current site improvements.

Equal Employment Opportunity Employer

Site Geology

Sediments in this region consist of alluvial fan deposits composed of clay, silt, poorly graded aeolian sand, and gravel. The total thickness of these deposits can be 500 feet. Generally unconfined conditions prevail in the water bearing formations of these deposits.¹ At the site, fill material has been encountered between 1 and 5 feet below grade (fbg). Beneath the fill, interbedded layers of silty sand, clayey sand, and sandy silt have been encountered to approximately 13 fbg. The unconfined shallow water-bearing zone consists of a fine sand observed between approximately 13 and 29 fbg and is underlain by a clay to the total depth explored of 31.5 fbg.

Hydrogeology

The site is located within the East Bay Plain, a northwest trending alluvial plain in a Franciscan Complex depression. Groundwater in this region has been identified as beneficial for agricultural, municipal, and industrial uses.² Groundwater occurs principally in alluvial deposits of Pleistocene to Holocene ages that overlie non-water bearing rocks of the Franciscan assemblage. Groundwater beneath the site has been monitored annualy since June 1997. Groundwater depth ranges from 23.10 fbg (MW-2) to 28.86 fbg (MW-7). Groundwater flows consistently toward the west.

RESULTS OF FOURTH QUARTER 2009 MONITORING EVENT

Groundwater Monitoring

Blaine Tech gauged and sampled wells MW-1 through MW-4 and MW-7 on November 18, 2009. Groundwater elevations ranged from 6.58 feet above mean sea level (ft-msl) in MW-7 to 8.45 ft-msl in MW-3. Groundwater flowed toward the west at a gradient of 0.006. Blaine Tech's November 19, 2009 *Groundwater Monitoring and Sampling Report* is included as Attachment A. Groundwater potentiometric and hydrocarbon concentration data for this event are presented on Figure 2.

East Bay Plain Groundwater Basin Beneficial Use Evaluation Report, Alameda and Contra Costa Counties, California; California Regional Water Quality Control Board – San Francisco Bay Region Groundwater Committee; June 1999.

² Table 2-2 Existing and Potential Beneficial Uses in Groundwater in Identified Basins; *Water Quality Control Plan (Basin Plan) for the San Francisco Bay Basin*; California Regional Water Quality Control Board- San Francisco Bay Region, January 18, 2007.

- 3 -

Current hydrocarbon concentrations are presented and compared to environmental screening levels (ESLs) where groundwater is a potential source of drinking water³ in Table A. Total petroleum hydrocarbons as diesel (TPHd) and gasoline (TPHg), benzene, toluene, ethylbenzene, xylenes (BTEX), and methyl tertiary butyl ether (MTBE) concentrations this quarter are within historical ranges and are consistent with seasonal fluctuations.

TABLE A:	TABLE A: SUMMARY OF ENVIRONMENTAL SCREENING LEVELS										
	TPHd	ТРНд	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE				
Groundwater ESLs	100	100	1.0	40	30	20	5				
	concentrations in micrograms per liter (µg/L)										
MW-1	150	<50	<0.5	< 0.5	0.6	<0.5	310				
MW-2	2,800	5,400	4	1	69	34	79				
MW-3	240	280	25	< 0.5	<0.5	9	170				
MW-4	860	120	<0.5	< 0.5	<0.5	<0.5	150				
MW-7	250	100	<1	<1	<1	<1	2,800				

Dissolved Hydrocarbon Delineation

Dissolved TPHd, TPHg, and BTEX concentrations are delineated by low concentrations in all directions, except to the north of MW-2. The highest MTBE concentrations are located offsite and are not delineated.

Concentration Trends

TPHd, TPHg, benzene and MTBE concentrations are decreasing from the historical maximum concentration in all wells.

Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Prepared by California Regional Water Quality Control Board San Francisco Bay Region, Interim Final -November 2007, (Revised May 2008), Table F-1a-Groundwater Screening Levels-Current or Potential Drinking Water Resource.

CONCLUSIONS AND RECOMMENDATIONS

The fourth quarter 2009 sampling event results indicate:

- Dissolved hydrocarbon concentrations are decreasing
- The TPHd, TPHg, and BTEX plume has stabilized at its maximum spatial extent and is now shrinking as evidenced by decreasing hydrocarbon concentrations
- To determine that MTBE is biodegrading, CRA will analyze groundwater samples for several bioparameters, including compound specific isotope analysis (CSIA) during the second quarter of 2010.

ANTICIPATED FUTURE ACTIVITIES

Semi-Annual Groundwater Sampling

Blaine Tech will gauge and sample site wells during the second and fourth quarters. CRA will prepare a summary of site conditions and submit the sampling report with additional recommendations within 60 days of the sampling date. The CSIA data may not be available to submit in the Second Quarter 2010 report.

Semi-Annual Groundwater Sampling

ANTICIPATED FUTURE ACTIVITIES

Blaine Tech will gauge and sample site wells during the second and fourth quarters. CRA will prepare a summary of site conditions and submit the sampling report with additional recommendations within 60 days of the sampling date. The CSIA data may not be available to submit in the Second Quarter 2010 report.

We appreciate the opportunity to work with you on this project. Please contact Mr. Brandon Wilken at (510) 420-3355, if you have any questions or comments regarding this report.

Sincerely,

CONESTOGA-ROVERS & ASSOCIATES

Ian Hull Brandon S. Wilken, P.G. #7564

IH/doh/4 Encl.

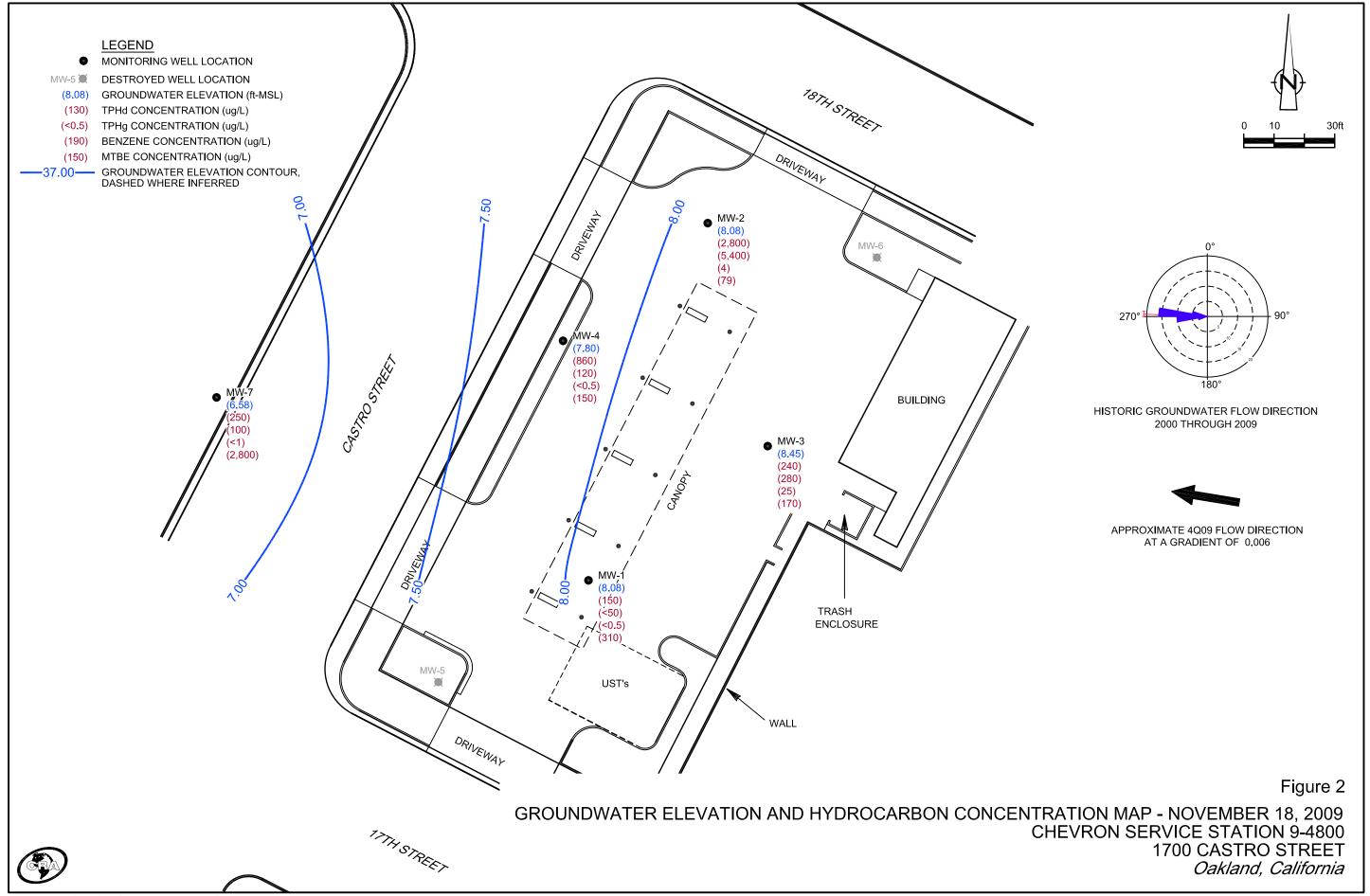
Figure 1 Vicinity Map

Can Auch

Figure 2 Groundwater Elevation and Hydrocarbon Concentration Map

Table 1 Groundwater Monitoring Data and Analytical ResultsTable 2 Groundwater Analytical Results - Oxygenate Compounds

Attachment A Blaine Tech's November 19, 2009 Fourth Quarter Monitoring Report Lancaster Laboratories' December 2, 2009 Analytical Results Report


c.c.: Mr. Aaron Costa, Chevron

FIGURES

Chevron Service Station 9-4800

TABLES

TABLE 1

GROUNDWATER MONITORING DATA AND ANALYTICAL RESULTS
CHEVRON SERVICE STATION 9-4800
1700 CASTRO STREET, OAKLAND, CALIFORNIA

WELL ID/	TOC*	GWE	DTW	TPH-DRO	TPH-GRO	В	T	E	X	MTBE
DATE	(ft.)	(msl)	(ft.)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
										_
MW-1										
06/04/97	30.75	4.39	25.82	71 ¹	890	100	110	29	150	<10
09/16/97	30.75	4.85	25.90	75 ¹	1,600	210	210	60	250	<10
12/17/97	30.75	4.88	25.87	65 ¹	940	120	100	41	160	<25
03/18/98	30.75	5.90	24.85	77^{1}	530	91	39	22	65	6.8
06/28/98	30.75	5.92	24.83	140^{1}	1,100	220	140	37	120	14
09/07/98	30.75	5.56	25.19	280^{1}	1,700	530	86	84	240	49
12/09/98	30.75	5.10	25.65	240^{1}	1,700	240	130	100	270	32
03/11/99	30.75	5.30	25.45	98 ¹	353	53.9	28.6	20.5	56.1	14.1
06/17/99	30.75	5.39	25.36	217 ¹	810	270	150	95	340	15
09/29/99	30.75	5.13	25.62	153 ¹	659	76	49.7	35.1	118	12.6
12/14/99	30.75	5.07	25.68	$188^{1,2}$	2,760	287	199	139	502	<12.5
$03/09/00^3$	30.75	5.54	25.21	166 ¹	1,590	238	94.9	72.2	247	22.3
06/10/00	30.75	5.73	25.02		1,460	242	47.8	83.8	151	97.3
09/30/00	30.75	5.30	25.45	240^{7}	650 ⁶	130	49	69	190	21
12/22/00	30.75	5.05	25.70	200 ⁹	640^{6}	110	33	58	160	68
03/01/01	30.75	5.25	25.50	211 ⁷	1,500 ⁶	210	67.9	109	320	87.3
05/04/01	30.75	5.41	25.34	130 ⁷	991	127	32.6	73.0	137	95.4
09/05/01	30.75	5.16	25.59	SAMPLED SEM	II-ANNUALLY					
12/21/01	30.75	5.17	25.58	210	2,000	220	16	110	400	34
03/15/02	30.75	5.60	25.15							
06/15/02	30.75	5.49	25.26	140	350	54	0.61	12	40	130
09/06/02	30.75	5.26	25.49	SAMPLED SEM	II-ANNUALLY					
12/06/02	30.75	5.12	25.63	2,900	900	71	2.1	39	150	34

TABLE 1

GROUNDWATER MONITORING DATA AND ANALYTICAL RESULTS
CHEVRON SERVICE STATION 9-4800
1700 CASTRO STREET, OAKLAND, CALIFORNIA

MW-1 (cont) 03/03/03	MTBE	\boldsymbol{X}	$\boldsymbol{\mathit{E}}$	T	В	TPH-GRO	TPH-DRO	DTW	GWE	TOC*	WELL ID/
03/03/03 30.75 5.46 25.29 SAMPLED SEMI-ANNUALLY	/L) (μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(ft.)	(msl)	(ft.)	DATE
03/03/03 30.75 5.46 25.29 SAMPLED SEMI-ANNUALLY 06/17/03 ¹⁴ 30.75 5.64 25.11 180 290 34 0.6 23 99 09/16/03 30.75 5.37 25.38 SAMPLED SEMI-ANNUALLY 12/31/03 ¹⁴ 30.75 5.20 25.55 150 1,500 97 6 70 22/03/26/04 30.75 5.74 25.01 SAMPLED SEMI-ANNUALLY 08/17/04 ¹⁴ 30.75 4.59 26.16 860 500 44 5 12 5 12 11/16/04 ¹⁴ 34.01 7.85 26.16 <26 570 33 <0.5 14 59/02/18/05 34.01 8.25 25.76 SAMPLED SEMI-ANNUALLY 05/06/05 ¹⁴ 34.01 8.62 25.39 110 170 13 <0.5 4 11 15											
$06/17/03^{14}$ 30.75 5.64 25.11 180 290 34 0.6 23 99 09/16/03 30.75 5.37 25.38 SAMPLED SEMI-ANNUALLY 12/31/03^{14} 30.75 5.20 25.55 150 1,500 97 6 70 25 03/26/04 30.75 5.74 25.01 SAMPLED SEMI-ANNUALLY 11/16/04^{14} 30.75 4.59 26.16 860 500 44 5 12 5 12 11/16/04^{14} 34.01 7.85 26.16 <26 570 33 <0.5 14 5 02/18/05 34.01 8.25 25.76 SAMPLED SEMI-ANNUALLY 05/06/05^{14} 34.01 8.62 25.39 110 170 13 <0.5 4 11											MW-1 (cont)
09/16/03 30.75 5.37 25.38 SAMPLED SEMI-ANNUALLY 12/31/03 ¹⁴ 30.75 5.20 25.55 150 1,500 97 6 70 22 03/26/04 30.75 5.74 25.01 SAMPLED SEMI-ANNUALLY 08/17/04 ¹⁴ 30.75 4.59 26.16 860 500 44 5 12 5 11/16/04 ¹⁴ 34.01 7.85 26.16 <26						II-ANNUALLY	SAMPLED SEM	25.29	5.46	30.75	03/03/03
$12/31/03^{14}$ 30.75 5.20 25.55 150 $1,500$ 97 6 70 $2.003/26/04$ 30.75 5.74 25.01 SAMPLED SEMI-ANNUALLY $08/17/04^{14}$ 30.75 4.59 26.16 860 500 44 5 12 $501/16/04^{14}$ 34.01 7.85 26.16 <26 570 33 <0.5 14 $36/16/05$ 34.01 8.25 25.76 SAMPLED SEMI-ANNUALLY $05/06/05^{14}$ 34.01 8.62 25.39 110 170 13 <0.5 4 11	0 92	90	23	0.6	34	290	180	25.11	5.64	30.75	$06/17/03^{14}$
$03/26/04$ 30.75 5.74 25.01 SAMPLED SEMI-ANNUALLY $08/17/04^{14}$ 30.75 4.59 26.16 860 500 44 5 12 $51/1/16/04^{14}$ 34.01 7.85 26.16 <26 570 33 <0.5 14 $50/18/05$ 34.01 8.25 25.76 SAMPLED SEMI-ANNUALLY $05/06/05^{14}$ 34.01 8.62 25.39 110 170 13 <0.5 4 11						II-ANNUALLY	SAMPLED SEM	25.38	5.37	30.75	09/16/03
$08/17/04^{14}$ 30.75 4.59 26.16 860 500 44 5 12 500 $11/16/04^{14}$ 34.01 7.85 26.16 <26 570 33 <0.5 14 $02/18/05$ 34.01 8.25 25.76 SAMPLED SEMI-ANNUALLY $05/06/05^{14}$ 34.01 8.62 25.39 110 170 13 <0.5 4 110	86	230	70	6	97	1,500	150	25.55	5.20	30.75	$12/31/03^{14}$
$11/16/04^{14}$ 34.01 7.85 26.16 <26 570 33 <0.5 14 50 50 50 50 50 50 50 50 50 50 50 50 50						II-ANNUALLY	SAMPLED SEM	25.01	5.74	30.75	03/26/04
02/18/05 34.01 8.25 25.76 SAMPLED SEMI-ANNUALLY 05/06/05 ¹⁴ 34.01 8.62 25.39 110 170 13 <0.5 4	4 76	54	12	5	44	500	860	26.16	4.59	30.75	$08/17/04^{14}$
$05/06/05^{14}$ 34.01 8.62 25.39 110 170 13 <0.5 4	3 48	53	14	< 0.5	33	570	<26	26.16	7.85	34.01	$11/16/04^{14}$
						II-ANNUALLY	SAMPLED SEM	25.76	8.25	34.01	02/18/05
00 / 0E / 0E 24 01 0 21 0E 70 CAMDIED CEMIANNUALLY	8 220	18	4	< 0.5	13	170	110	25.39	8.62	34.01	$05/06/05^{14}$
08/05/05 54.01 8.51 25.70 SAMPLED SEMI-AINNUALLY						II-ANNUALLY	SAMPLED SEM	25.70	8.31	34.01	08/05/05
$11/07/05^{14}$ 34.01 7.99 26.02 260^{20} 180 7 <0.5 3	4 260	24	3	< 0.5	7	180	260^{20}	26.02	7.99	34.01	$11/07/05^{14}$
02/06/06 34.01 8.33 25.68 SAMPLED SEMI-ANNUALLY						II-ANNUALLY	SAMPLED SEM	25.68	8.33	34.01	02/06/06
$05/08/06^{14}$ 34.01 9.03 24.98 730 270 23 <0.7 1 1	8 590	18	1	< 0.7	23	270	730	24.98	9.03	34.01	$05/08/06^{14}$
08/08/06 34.01 8.49 25.52 SAMPLED SEMI-ANNUALLY						II-ANNUALLY	SAMPLED SEM	25.52	8.49	34.01	08/08/06
$11/08/06^{14}$ 34.01 8.11 25.90 380 <50 0.6 <0.5 <0.5	2 140	2	< 0.5	< 0.5	0.6	<50	380	25.90	8.11	34.01	$11/08/06^{14}$
02/06/07 34.01 8.03 25.98 SAMPLED SEMI-ANNUALLY						II-ANNUALLY	SAMPLED SEM	25.98	8.03	34.01	02/06/07
$05/01/07^{14}$ 34.01 8.23 25.78 750 58 0.8 <0.5 <0.5	280	1	< 0.5	< 0.5	0.8	58	750	25.78	8.23	34.01	$05/01/07^{14}$
07/31/07 34.01 8.01 26.00 SAMPLED SEMI-ANNUALLY						II-ANNUALLY	SAMPLED SEM	26.00	8.01	34.01	07/31/07
$11/08/07^{14}$ 34.01 7.85 26.16 330 <50 <0.5 <0.5 <0.5	9 270	0.9	<0.5	< 0.5	< 0.5	<50	330	26.16	7.85	34.01	$11/08/07^{14}$
02/04/08 34.01 8.04 25.97 SAMPLED SEMI-ANNUALLY						II-ANNUALLY	SAMPLED SEM	25.97	8.04	34.01	02/04/08
$05/01/08^{14}$ 34.01 8.06 25.95 86 <50 <0.5 <0.5 <0.5	0.5 470	<0.5	<0.5	< 0.5	<0.5	<50	86	25.95	8.06	34.01	$05/01/08^{14}$
08/01/08 34.01 7.97 26.04 SAMPLED SEMI-ANNUALLY						II-ANNUALLY	SAMPLED SEM	26.04	7.97	34.01	08/01/08
$11/13/08^{14}$ 34.01 7.88 26.13 <50 170 1 <0.5 <0.5	2 190	2	<0.5	< 0.5	1	170	<50	26.13	7.88	34.01	$11/13/08^{14}$

TABLE 1

GROUNDWATER MONITORING DATA AND ANALYTICAL RESULTS
CHEVRON SERVICE STATION 9-4800
1700 CASTRO STREET, OAKLAND, CALIFORNIA

WELL ID/	TOC*	GWE	DTW	TPH-DRO	TPH-GRO	В	T	E	X	MTBE
DATE	(ft.)	(msl)	(ft.)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
MW-1 (cont)										
02/23/09	34.01	8.07	25.94	SAMPLED SEM	II-ANNUALLY					
$05/20/09^{14}$	34.01	8.38	25.63	88 J	<50	0.6 J	<0.5	< 0.5	2	190
08/25/09	34.01	8.21	25.80	SAMPLED SEM	II-ANNUALLY					
11/18/09 ¹⁴	34.01	8.08	25.93	150	<50	<0.5	<0.5	0.6 J	<0.5	310
MW-2										
06/04/97	30.00	5.13	24.87	$4,000^{1}$	13,000	790	30	420	1,700	4000
09/16/97	30.00	5.06	24.94	2,200 ¹	4,000	360	9.7	210	460	1500
12/17/97	30.00	5.18	24.82	2,100 ¹	4,100	380	<10	200	460	2100
03/18/98	30.00	6.43	23.57	3,700 ¹	8,400	1,800	<50	350	630	13,000
$06/28/98^4$	30.00	6.21	23.79	4,400 ¹	9,300	740	340	710	2,300	3800
09/07/98	30.00	5.78	24.22	$3,100^{1}$	9,900	1,000	150	640	1,800	$4500/4100^5$
12/09/98	30.00	5.31	24.69	1,900 ¹	8,500	860	74	610	960	$2600/2600^5$
03/11/99	30.00	5.79	24.21	2,700 ¹	12,500	1,520	42.2	645	2,250	$3400/5050^5$
06/17/99	30.00	5.69	24.31	$7,150^{1}$	27,000	2,200	260	1500	5,900	4700
09/29/99	30.00	5.45	24.55	$3,030^{1}$	6910	582	11.1	491	1,170	1970
12/14/99	30.00	5.39	24.61	615 ^{1,2}	4230	282	12.3	284	690	631
$03/09/00^3$	30.00	6.08	23.92	$3,300^1$	15,300	1,110	39.4	1,040	3,030	2,470
06/10/00	30.00	6.13	23.87		7,360	560	40.7	627	1,280	1,260
09/30/00	30.00	5.67	24.33	1,800 ⁷	3,600 ⁶	280	<10	420	430	290
12/22/00	30.00	5.39	24.61	870 ⁹	1,500 ⁶	100	<1.3	160	59	380
03/01/01	30.00	5.79	24.21	1,320 ⁷	2,340 ⁶	171	<5.00	238	157	864
05/04/01	30.00	5.83	24.17	$3,100^7$	11,900	199	33.9	1,420	290	3,890

TABLE 1

GROUNDWATER MONITORING DATA AND ANALYTICAL RESULTS
CHEVRON SERVICE STATION 9-4800
1700 CASTRO STREET, OAKLAND, CALIFORNIA

WELL ID/	TOC*	GWE	DTW	TPH-DRO	TPH-GRO	\boldsymbol{B}	T	E	X	MTBE
DATE	(ft.)	(msl)	(ft.)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
MW-2 (cont)										
09/05/01	30.00	5.45	24.55	2,200	3,300	170	1.7	310	110	1,100
12/21/01	30.00	5.60	24.40	980	1,100	58	0.72	120	14	450
03/15/02	30.00	6.05	23.95	2,200	5,000	250	9.1	470	430	1,800
06/15/02	30.00	5.84	24.16	3,700	5,200	240	5.2	540	210	2,200
09/06/02	30.00	5.59	24.41	2,200	2,100	84	1.4	250	30	1,000
12/06/02	30.00	5.44	24.56	730	780	21	< 0.50	58	3.4	480
03/03/03	30.00	5.79	24.21	3,500	4,800	220	1.9	650	46	4,400
$06/17/03^{14}$	30.00	6.07	23.93	4,100	4,700	140	4	370	84	2,700
$09/16/03^{14}$	30.00	5.69	24.31	1,800 ¹⁵	1,300	38	<1	110	3	1,300
$12/31/03^{14}$	30.00	5.64	24.36	330	990	11	<0.5	23	3	440
03/26/04	30.00	6.25	23.75	SAMPLED SEM	II-ANNUALLY					
$08/17/04^{14}$	30.00	5.53	24.47	400	300	9	< 0.5	18	1	340
$11/16/04^{14}$	32.59	8.14	24.45	4,300	10,000	91	7	830	1,300	1,100
02/18/05	32.59	8.67	23.92	SAMPLED SEM	II-ANNUALLY					
$05/06/05^{14}$	32.59	9.06	23.53	1,300	4,900	62	4	290	320	400
08/05/05	32.59	8.61	23.98	SAMPLED SEM	II-ANNUALLY					
$11/07/05^{14}$	32.59	8.27	24.32	300^{20}	800	2	<0.5	< 0.5	<0.5	66
02/06/06	32.59	8.76	23.83	SAMPLED SEM	II-ANNUALLY					
$05/08/06^{14}$	32.59	9.49	23.10	2,100	6,100	32	4	430	460	360
08/08/06	32.59	8.79	23.80	SAMPLED SEM	II-ANNUALLY					
$11/08/06^{14}$	32.59	8.32	24.27	770	120	12	< 0.5	0.7	8	840
02/06/07	32.59	8.30	24.29	SAMPLED SEM	II-ANNUALLY					
$05/01/07^{14}$	32.59	8.54	24.05	160	850	<0.5	< 0.5	16	36	100

TABLE 1

GROUNDWATER MONITORING DATA AND ANALYTICAL RESULTS
CHEVRON SERVICE STATION 9-4800
1700 CASTRO STREET, OAKLAND, CALIFORNIA

WELL ID/	TOC*	GWE	DTW	TPH-DRO	TPH-GRO	В	T	E	\boldsymbol{X}	MTBE
DATE	(ft.)	(msl)	(ft.)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
MW-2 (cont)										
07/31/07	32.59	8.28	24.31	SAMPLED SEM	II-ANNUALLY					
$11/08/07^{14}$	32.59	8.12	24.47	800	180	< 0.5	<0.5	<0.5	<0.5	37
02/04/08	32.59	8.38	24.21	SAMPLED SEM	II-ANNUALLY					
$05/01/08^{14}$	32.59	8.34	24.25	500	430	< 0.5	<0.5	<0.5	5	120
08/01/08	32.59	8.26	24.33	SAMPLED SEM	II-ANNUALLY					
$11/13/08^{14}$	32.59	8.17	24.42	2,600	2,500	3	1	190	83	240
02/23/09	32.59	8.38	24.21	SAMPLED SEM	II-ANNUALLY					
$05/20/09^{14}$	32.59	8.94	23.65	2,800 J	4,000	4	1	42	55	160
08/25/09	32.59	8.59	24.00	SAMPLED SEM	II-ANNUALLY					
11/18/09 ¹⁴	32.59	8.08	24.51	2,800	5,400	4	1 J	69	34	79
MW-3										
06/04/97	31.32	5.27	26.05	<50	190	26	20	1.5	16	8.2
09/16/97	31.32	5.17	26.15	<50	270	58	53	6.1	30	21
12/17/97	31.32	5.22	26.10	<50	290	50	54	8.1	37	21
03/18/98	31.32	6.42	24.90	<50	390	140	33	4.6	30	94
06/28/98	31.32	6.39	24.93	<50	290	90	11	1.6	13	150
09/07/98	31.32	5.97	25.35	<50	170	46	20	4.3	19	120
12/09/98	31.32	5.41	25.91	55 ¹	660	120	93	22	72	150
03/11/99	31.32	5.85	25.47	<50	653	136	69.5	13.7	63.8	144
06/17/99	31.32	5.90	25.42	103 ¹	530	190	110	24	88	210
09/29/99	31.32	5.61	25.71	232^{1}	433	97.8	61.4	16.9	56.6	156
12/14/99	31.32	5.55	25.77	$<50^{2}$	8650	1040	795	212	800	995

TABLE 1

GROUNDWATER MONITORING DATA AND ANALYTICAL RESULTS
CHEVRON SERVICE STATION 9-4800
1700 CASTRO STREET, OAKLAND, CALIFORNIA

WELL ID/	TOC*	GWE	DTW	TPH-DRO	TPH-GRO	В	T	E	X	MTBE
DATE	(ft.)	(msl)	(ft.)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
MW-3 (cont)										
$03/09/00^3$	31.32	6.14	25.18	74.6^{1}	1170	304	103	25.2	114	539
06/10/00	31.32	6.29	25.03		359	63.8	27.8	10.5	35.4	393
09/30/00	31.32	5.79	25.53	100^{8}	220^{6}	42	33	12	38	67
12/22/00	31.32	5.52	25.80	110 ⁹	370^{6}	96	48	18	58	180
03/01/01	31.32	5.75	25.57	144^{7}	912 ⁶	218	89.0	36.0	110	310
05/04/01	31.32	5.96	25.36	<50	1,260	146	79.6	38.2	101	1,070
09/05/01	31.32	5.61	25.71	SAMPLED SEM	II-ANNUALLY					
12/21/01	31.32	5.67	25.65	180	850	160	11	32	84	300
03/15/02	31.32	6.15	25.17							
06/15/02	31.32	6.01	25.31	<50	550	110	3.0	23	58	590
09/06/02	31.32	5.74	25.58	SAMPLED SEM	II-ANNUALLY					
12/06/02	31.32	5.56	25.76	160	350	60	1.3	11	32	530
03/03/03	31.32	5.92	25.40	SAMPLED SEM	II-ANNUALLY					
$06/17/03^{14}$	31.32	6.19	25.13	130	560	90	2	19	57	590
09/16/03	31.32	5.85	25.47	SAMPLED SEM	II-ANNUALLY					
$12/31/03^{14}$	31.32	5.67	25.65	120	840	140	24	25	87	670
03/26/04	31.32	6.33	24.99	SAMPLED SEM	II-ANNUALLY					
$08/17/04^{14}$	31.32	5.46	25.86	110	630	84	18	11	35	410
$11/16/04^{14}$	34.16	8.26	25.90	92	740	100	4	21	45	460
02/18/05	34.16	8.79	25.37	SAMPLED SEM	II-ANNUALLY					
$05/06/05^{14}$	34.16	9.18	24.98	83	290	43	<1	6	11	740
08/05/05	34.16	8.81	25.35	SAMPLED SEM	II-ANNUALLY					
$11/07/05^{14}$	34.16	8.47	25.69	66	220	29	0.7	3	26	440

TABLE 1

GROUNDWATER MONITORING DATA AND ANALYTICAL RESULTS
CHEVRON SERVICE STATION 9-4800
1700 CASTRO STREET, OAKLAND, CALIFORNIA

WELL ID/	TOC*	GWE	DTW	TPH-DRO	TPH-GRO	В	T	E	\boldsymbol{X}	MTBE
DATE	(ft.)	(msl)	(ft.)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
MW-3 (cont)										
02/06/06	34.16	8.88	25.28	SAMPLED SEM	II-ANNUALLY					
05/08/06 ¹⁴	34.16	9.67	24.49	310	560	70	<1	3	24	3,300
08/08/06	34.16	9.00	25.16	SAMPLED SEM	II-ANNUALLY					
$11/08/06^{14}$	34.16	8.57	25.59	210	510	<0.5	< 0.5	<0.5	< 0.5	73
02/06/07	34.16	8.48	25.68	SAMPLED SEM	II-ANNUALLY					
05/01/07 ¹⁴	34.16	8.70	25.46	84	260	36	< 0.5	0.8	18	1,200
07/31/07	34.16	8.46	25.70	SAMPLED SEM	II-ANNUALLY					
$11/08/07^{14}$	34.16	8.29	25.87	260	270	32	0.9	3	29	440
02/04/08	34.16	8.48	25.68	SAMPLED SEM	II-ANNUALLY					
05/01/08 ¹⁴	34.16	8.50	25.66	82	240	30	< 0.5	<0.5	20	690
08/01/08	34.16	8.40	25.76	SAMPLED SEM	II-ANNUALLY					
11/13/08 ¹⁴	34.16	8.36	25.80	<50	720	22	< 0.5	<0.5	7	790
02/23/09	34.16	8.44	25.72	SAMPLED SEM	II-ANNUALLY					
$05/20/09^{14}$	34.16	8.86	25.30	210	460	42	<0.5	1	20	450
08/25/09	34.16	8.60	25.56	SAMPLED SEM	II-ANNUALLY					
11/18/09 ¹⁴	34.16	8.45	25.71	240	280	25	<0.5	<0.5	9	170
NOTAL A										
MW-4										
04/08/99	30.13			 1	130	3.1	<0.5	<0.5	7.7	4,700
06/17/99	30.13	5.19	24.94	3,780 ¹	590	58	<5.0	<5.0	160	6,200
09/29/99	30.13	4.96	25.17	1,130 ¹	692	10.7	<2.5	5.51	236	7,840
12/14/99	30.13	4.91	25.22	571 ^{1,2}	625	<10	3.83	<10	94.6	4,470
$03/09/00^3$	30.13	5.45	24.68	600 ¹	402	3.76	1.18	<0.5	71.4	3,140

TABLE 1

GROUNDWATER MONITORING DATA AND ANALYTICAL RESULTS
CHEVRON SERVICE STATION 9-4800
1700 CASTRO STREET, OAKLAND, CALIFORNIA

WELL ID/	TOC*	GWE	DTW	TPH-DRO	TPH-GRO	В	T	E	X	MTBE
DATE	(ft.)	(msl)	(ft.)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
MW-4 (cont)										
06/10/00	30.13	5.53	24.60		<1,000	13.2	<10.0	<10.0	97.8	3,080
09/30/00	30.13	5.09	25.04	1,400 ⁷	280^{6}	21	0.67	6.3	60	3,300
12/22/00	30.13	4.90	25.23	740^{9}	240^{6}	2.2	< 0.50	1.3	25	2,200
03/01/01	30.13	5.15	24.98	661 ⁷	193	2.31	< 0.500	1.34	12.1	1,220
05/04/01	30.13	5.25	24.88	1,100 ⁷	722	12.0	<5.00	17.1	89.4	2,390
09/05/01	30.13	4.96	25.17	2,500	1,400	23	2.2	19	260	2,300
12/21/01	30.13	5.06	25.07	1,100	310	2.9	< 0.50	2.6	32	860
03/15/02	30.13	5.44	24.69	3,100	520	5.0	< 0.50	15	6.8	2,700
06/15/02	30.13	5.29	24.84	2,400	950	16	3.6	41	100	$2,200/2,400^{12}$
09/06/02	30.13	5.07	25.06	2,600	640	9.6	0.52	9.8	28	1,700
12/06/02	30.13	4.93	25.20	1,400	280	3.6	< 0.50	1.7	<1.5	730
03/03/03	30.13	5.28	24.85	1,500	280	2.7	< 0.50	7.3	2.3	910
$06/17/03^{14}$	30.13	5.44	24.69	2,000	660	8	1	38	16	1,100
09/16/03 ¹⁴	30.13	5.15	24.98	$2,100^{16}$	480	6	<1	11	3	710
$12/31/03^{14}$	30.13	5.07	25.06	1,400	220	3	< 0.5	2	<0.5	390
03/26/04	30.13	5.60	24.53	SAMPLED SEN	MI-ANNUALLY					
$08/17/04^{14}$	30.13	4.68	25.45	2,100	470	12	1	28	4	370
$11/16/04^{14}$	33.07	7.63	25.44	960	270	7	< 0.5	7	6	270
02/18/05	33.07	8.07	25.00	SAMPLED SEN	MI-ANNUALLY					
05/06/05 ¹⁴	33.07	8.38	24.69	350	86	0.7	<0.5	<0.5	< 0.5	110
08/05/05	33.07	8.05	25.02	SAMPLED SEN	MI-ANNUALLY					
$11/07/05^{14}$	33.07	7.74	25.33	150	54	0.6	<0.5	<0.5	< 0.5	59
02/06/06	33.07	8.13	24.94	SAMPLED SEN	MI-ANNUALLY					

TABLE 1

GROUNDWATER MONITORING DATA AND ANALYTICAL RESULTS
CHEVRON SERVICE STATION 9-4800
1700 CASTRO STREET, OAKLAND, CALIFORNIA

WELL ID/	TOC*	GWE	DTW	TPH-DRO	TPH-GRO	В	T	E	X	MTBE
DATE	(ft.)	(msl)	(ft.)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
MW-4 (cont)										
$05/08/06^{14}$	33.07	8.80	24.27	200	66	0.5	<0.5	<0.5	< 0.5	92
08/08/06	33.07	7.91	25.16	SAMPLED SEM	II-ANNUALLY					
$11/08/06^{14}$	33.07	7.84	25.23	400	55	<0.5	<0.5	<0.5	< 0.5	40
02/06/07	33.07	7.79	25.28	SAMPLED SEM	II-ANNUALLY					
$05/01/07^{14}$	33.07	7.99	25.08	150	67	< 0.5	< 0.5	< 0.5	< 0.5	76
07/31/07	33.07	7.80	25.27	SAMPLED SEM	II-ANNUALLY					
$11/08/07^{14}$	33.07	7.65	25.42	850	<50	< 0.5	< 0.5	< 0.5	< 0.5	44
02/04/08	33.07	7.84	25.23	SAMPLED SEM	II-ANNUALLY					
$05/01/08^{14}$	33.07	7.86	25.21	110	<50	<0.5	<0.5	<0.5	< 0.5	67
08/01/08	33.07	7.79	25.28	SAMPLED SEM	II-ANNUALLY					
$11/13/08^{14}$	33.07	7.64	25.43	330	64	<0.5	<0.5	<0.5	1	220
02/23/09	33.07	8.01	25.06	SAMPLED SEM	II-ANNUALLY					
$05/20/09^{14}$	33.07	8.34	24.73	560	130	< 0.5	< 0.5	< 0.5	< 0.5	190
08/25/09	33.07	8.10	24.97	SAMPLED SEM	II-ANNUALLY					
11/18/09 ¹⁴	33.07	7.80	25.27	860	120	<0.5	<0.5	<0.5	<0.5	150
MW-7										
05/04/01 ¹¹	31.90	4.03	27.87	<50	<50.0	< 0.500	<5.00	<5.00	<5.00	567/470 ¹²
09/05/01	31.90	3.86	28.04	<50	<50.0	<0.50	<0.50	<0.50	<1.5	1,400/1,300 ¹²
12/21/01	31.90	3.04	28.86	210	<50	<0.50	<0.50	<0.50	<1.5 <1.5	620/670 ¹²
03/15/02	31.90	3.04 4.18	28.86	<50	<50	<0.50	<0.50	<0.50	<1.5 <1.5	320/350 ¹²
					<50			<0.50		850/960 ¹²
06/15/02	31.90	4.06	27.84	<50		<0.50	<0.50		<1.5	•
09/06/02	31.90	3.93	27.97	<50	59	< 0.50	< 0.50	< 0.50	<1.5	1,900

TABLE 1

GROUNDWATER MONITORING DATA AND ANALYTICAL RESULTS
CHEVRON SERVICE STATION 9-4800
1700 CASTRO STREET, OAKLAND, CALIFORNIA

WELL ID/	TOC^*	GWE	DTW	TPH-DRO	TPH-GRO	В	T	E	\boldsymbol{X}	MTBE
DATE	(ft.)	(msl)	(ft.)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
MW-7 (cont)										
12/06/02	31.90	3.87	28.03	<50	68	< 0.50	< 0.50	< 0.50	<1.5	2,200
03/03/03	31.90	4.21	27.69	<50	<50	< 0.50	< 0.50	< 0.50	<1.5	1,300
$06/17/03^{14}$	31.90	4.14	27.76	<50	79	< 0.5	<0.5	<0.5	<0.5	2,500
$09/16/03^{14}$	31.90	4.07	27.83	< 50 ¹⁷	110	<5	<5	<5	<5	4,400
$12/31/03^{14}$	31.90	4.04	27.86	<50	76	<2	<2	<2	<2	3,000
$03/26/04^{14}$	31.90	4.25	27.65	<50	61	<1	<1	<1	<1	2,000
$08/17/04^{14}$	31.90	4.02	27.88	2,200	130	<5	<5	<5	<5	8,000
$11/16/04^{14}$	34.35	6.48	27.87	<50	200	<3	<3	<3	<3	7,300
$02/18/05^{14}$	34.35	6.75	27.60	64	86	<10	<10	<10	<10	5,700
$05/06/05^{14}$	34.35	6.92	27.43	60	160	<5	<5	<5	<5	8,400
$08/05/05^{14}$	34.35	6.70	27.65	81^{18}	500	<5	<5	<5	<5	20,000 ¹⁹
$11/07/05^{14}$	34.35	6.56	27.79	68	300	<10	<10	<10	<10	24,000
$02/06/06^{14}$	34.35	6.81	27.54	72 ²¹	300	<0.5	<0.5	<0.5	<0.5	14,000
$05/08/06^{14}$	34.35	7.20	27.15	94	80	<2	<2	3	7	6,500
$08/08/06^{14}$	34.35	6.82	27.53	150	520	<10	<10	<10	<10	17,000
$11/08/06^{14}$	34.35	6.60	27.75	440	900	<5	<5	<5	<5	41,000
$02/06/07^{14}$	34.35	6.59	27.76	200	590	<5	<5	<5	<5	31,000
$05/01/07^{14}$	34.35	6.70	27.65	190	380	<3	<3	<3	<3	14,000
$07/31/07^{14}$	34.35	6.60	27.75	270	570	<3	<3	<3	<3	15,000
$11/08/07^{14}$	34.35	6.52	27.83	150	520	<5	<5	<5	<5	25,000
$02/04/08^{14}$	34.35	6.66	27.69	87	540	<1	<1	<1	<1	17,000
$05/01/08^{14}$	34.35	6.63	27.72	<50	230	<5	<5	<5	<5	10,000
$08/01/08^{14}$	34.35	6.51	27.84	<50	330	<3	<3	<3	<3	12,000

TABLE 1

GROUNDWATER MONITORING DATA AND ANALYTICAL RESULTS
CHEVRON SERVICE STATION 9-4800
1700 CASTRO STREET, OAKLAND, CALIFORNIA

WELL ID/	TOC*	GWE	DTW	TPH-DRO	TPH-GRO	В	T	E	\boldsymbol{X}	MTBE
DATE	(ft.)	(msl)	(ft.)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
MW-7 (cont)										
$11/13/08^{14}$	34.35	6.34	28.01	64	390	<10	<10	<10	<10	16,000
$02/23/09^{14}$	34.35	6.70	27.65	100	270	<3	<3	<3	<3	11,000
$05/20/09^{14}$	34.35	6.80	27.55	48 J	210	<1	<1	<1	<1	6,300
$08/25/09^{14,22}$	34.35	6.65	27.70	<100 U	160	<3	<3	<3	<3	5,700
11/18/09 ¹⁴	34.35	6.58	27.77	250	100	<1	<1	<1	<1	2,800
MW-5										
04/08/99	30.93			<50	<50	<0.5	<0.5	<0.5	<0.5	<2.5
06/17/99	30.93	4.93	26.00	53.8 ¹	<50	<0.5	<0.5	<0.5	<0.5	<2.5
09/29/99	30.93	4.73	26.20	<50	<50	<0.5	<0.5	<0.5	<0.5	<2.5
12/14/99	30.93	4.61	26.32	<50 ²	<50	<0.5	<0.5	<0.5	<0.5	0.598
$03/09/00^3$	30.93	5.00	25.93	<50	<50	<0.5	<0.5	<0.5	<0.5	<2.5
06/10/00	30.93	5.21	25.72		<50.0	< 0.500	< 0.500	< 0.500	< 0.500	<2.50
09/30/00	30.93	4.79	26.14	130^{8}	<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5
12/22/00	30.93	4.60	26.33	250^{8}	<50	< 0.50	< 0.50	< 0.50	< 0.50	9.1
03/01/01	30.93	4.77	26.16	77.4^{7}	<50.0	< 0.500	< 0.500	< 0.500	< 0.500	<2.50
05/04/01	30.93	4.89	26.04	NOT SAMPLEI	D DUE TO INSUF	FICIENT WAT	ER			
09/05/01	30.93	4.72	26.21	SAMPLED SEM	II-ANNUALLY					
12/21/01	30.93	4.73	26.20	110	<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
03/15/02	30.93	5.06	25.87							
06/15/02	30.93	4.95	25.98	<50	<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
09/06/02	30.93	4.75	26.18	SAMPLED SEM	II-ANNUALLY					
12/06/02	30.93	4.61	26.32	<50	<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5

TABLE 1

GROUNDWATER MONITORING DATA AND ANALYTICAL RESULTS
CHEVRON SERVICE STATION 9-4800
1700 CASTRO STREET, OAKLAND, CALIFORNIA

WELL ID/	TOC*	GWE	DTW	TPH-DRO	TPH-GRO	В	T	E	\boldsymbol{X}	MTBE
DATE	(ft.)	(msl)	(ft.)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
MW-5 (cont)										
03/03/03	30.93	4.94	25.99	SAMPLED SEM	II-ANNUALLY					
$06/17/03^{14}$	30.93	5.06	25.87	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5
09/16/03	30.93	4.84	26.09	SAMPLED SEM	II-ANNUALLY					
$12/31/03^{14}$	30.93	4.72	26.21	<50	<50	<0.5	<0.5	< 0.5	<0.5	<0.5
03/26/04	30.93	5.19	25.74	SAMPLED SEM	II-ANNUALLY					
08/17/04	30.93	TO BE DEST	ROYED							
DESTROYED -	2005									
MW-6										
04/08/99	30.58				<50	<0.5	<0.5	< 0.5	<0.5	4.5
06/17/99	30.58	5.99	24.59	<50	<50	<0.5	<0.5	< 0.5	<0.5	<2.5
09/29/99	30.58	5.81	24.77	<50	<50	<0.5	<0.5	< 0.5	< 0.5	4.46
12/14/99	30.58	5.74	24.84	< 50 ²	<50	<0.5	<0.5	< 0.5	< 0.5	4.13
$03/09/00^3$	30.58	6.49	24.09	<50	<50	<0.5	<0.5	< 0.5	< 0.5	2.82
06/10/00	30.58	6.58	24.00		<50.0	< 0.500	< 0.500	< 0.500	< 0.500	<2.50
09/30/00	30.58	6.00	24.58	110^{8}	<50	< 0.50	< 0.50	< 0.50	< 0.50	7.3
12/22/00	30.58	5.75	24.83	100^{8}	<50	< 0.50	< 0.50	< 0.50	< 0.50	4.5
03/01/01	30.58	6.07	24.51	141^{7}	<50.0	< 0.500	< 0.500	< 0.500	< 0.500	7.52
05/04/01	30.58	6.26	24.32	<50	<50.0	< 0.500	<5.00	< 5.00	<5.00	2.74
09/05/01	30.58	5.99	24.59	SAMPLED SEM	II-ANNUALLY					
12/21/01	30.58	5.93	24.65	200	<50	< 0.50	< 0.50	< 0.50	<1.5	8.5
03/15/02	30.58	6.44	24.14							
06/15/02	30.58	6.25	24.33	<50	<50	< 0.50	< 0.50	< 0.50	<1.5	4.3

TABLE 1

GROUNDWATER MONITORING DATA AND ANALYTICAL RESULTS
CHEVRON SERVICE STATION 9-4800
1700 CASTRO STREET, OAKLAND, CALIFORNIA

WELL ID/	TOC*	GWE	DTW	TPH-DRO	TPH-GRO	В	T	E	\boldsymbol{X}	MTBE
DATE	(ft.)	(msl)	(ft.)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
MW-6 (cont)										
09/06/02	30.58	5.98	24.60	SAMPLED SEM	II-ANNUALLY					
12/06/02	30.58	5.79	24.79	64	<50	< 0.50	< 0.50	< 0.50	<1.5	5.0
03/03/03	30.58	6.14	24.44	SAMPLED SEM	II-ANNUALLY					
$06/17/03^{14}$	30.58	6.47	24.11	<50	<50	<0.5	<0.5	<0.5	<0.5	13
09/16/03	30.58	6.06	24.52	SAMPLED SEM	II-ANNUALLY					
$12/31/03^{14}$	30.58	6.00	24.58	<50	<50	<0.5	<0.5	<0.5	0.5	14
03/26/04	30.58	6.69	23.89	SAMPLED SEM	II-ANNUALLY					
08/17/04	30.58	TO BE DEST	ROYED							
DESTROYED -	2005									
TRIP BLANK										
06/04/97					<50	<0.5	<0.5	<0.5	<0.5	<2.5
09/16/97					<50	< 0.5	<0.5	<0.5	<0.5	<2.5
12/17/97					<50	< 0.5	<0.5	<0.5	<0.5	<2.5
03/18/98					<50	< 0.5	<0.5	<0.5	<0.5	<2.5
06/28/98					<50	<0.5	<0.5	<0.5	<0.5	<2.5
09/07/98					<50	< 0.5	<0.5	<0.5	<0.5	<2.5
12/09/98					<50	<0.5	<0.5	<0.5	<0.5	<2.5
03/11/99					<50	<0.5	<0.5	<0.5	<0.5	<5.0
06/17/99					<50	<0.5	<0.5	<0.5	<0.5	<2.5
12/14/99					<50	<0.5	<0.5	<0.5	<0.5	<2.5
$03/09/00^3$					<50	<0.5	<0.5	< 0.5	< 0.5	<2.5
06/10/00					<50.0	< 0.500	< 0.500	< 0.500	< 0.500	<2.50

TABLE 1

GROUNDWATER MONITORING DATA AND ANALYTICAL RESULTS
CHEVRON SERVICE STATION 9-4800
1700 CASTRO STREET, OAKLAND, CALIFORNIA

WELL ID/	TOC*	GWE	DTW	TPH-DRO	TPH-GRO	В	T	E	\boldsymbol{X}	MTBE
DATE	(ft.)	(msl)	(ft.)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
TRIP BLANK	(cont)									
09/30/00					<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5
$12/22/00^{10}$					<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5
03/01/01					<50.0	< 0.500	< 0.500	< 0.500	< 0.500	<2.50
05/04/01					<50.0	< 0.500	<5.00	<5.00	< 5.00	< 0.500
09/05/01					<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
QA										
12/21/01					<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
03/15/02					<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
06/15/02					<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
09/06/02					<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
12/06/02					<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
$03/03/03^{13}$										
$06/17/03^{14}$					<50	<0.5	<0.5	< 0.5	< 0.5	<0.5
$09/16/03^{14}$					<50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5
$12/31/03^{14}$					<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
$03/26/04^{14}$					<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
$08/17/04^{14}$					<50	<0.5	<0.5	< 0.5	< 0.5	<0.5
$11/16/04^{14}$					<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
$02/18/05^{14}$					<50	<0.5	<0.5	<0.5	<0.5	<0.5
$05/06/05^{14}$					<50	<0.5	<0.5	<0.5	< 0.5	< 0.5
$08/05/05^{14}$					<50	<0.5	<0.5	<0.5	<0.5	<0.5
$11/07/05^{14}$					<50	0.6^{19}	<0.5	<0.5	<0.5	<0.5
02/06/06 ¹⁴					<50	<0.5	<0.5	<0.5	<0.5	<0.5

TABLE 1

GROUNDWATER MONITORING DATA AND ANALYTICAL RESULTS
CHEVRON SERVICE STATION 9-4800
1700 CASTRO STREET, OAKLAND, CALIFORNIA

WELL ID/	TOC*	GWE	DTW	TPH-DRO	TPH-GRO	В	T	E	\boldsymbol{X}	MTBE
DATE	(ft.)	(msl)	(ft.)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
QA (cont)										
$05/08/06^{14}$					<50	<0.5	< 0.5	< 0.5	<0.5	<0.5
$08/08/06^{14}$					<50	<0.5	< 0.5	< 0.5	<0.5	<0.5
$11/08/06^{14}$					<50	<0.5	<0.5	< 0.5	<0.5	<0.5
$02/06/07^{14}$					<50	<0.5	< 0.5	< 0.5	<0.5	<0.5
$05/01/07^{14}$					<50	<0.5	< 0.5	< 0.5	<0.5	<0.5
$07/31/07^{14}$					<50	<0.5	<0.5	< 0.5	<0.5	<0.5
$11/08/07^{14}$					<50	<0.5	<0.5	< 0.5	<0.5	<0.5
$02/04/08^{14}$					<50	<0.5	<0.5	< 0.5	<0.5	<0.5
$05/01/08^{14}$					<50	<0.5	<0.5	< 0.5	<0.5	<0.5
$08/01/08^{14}$					<50	<0.5	< 0.5	< 0.5	<0.5	<0.5
$11/13/08^{14}$					<50	<0.5	< 0.5	< 0.5	<0.5	<0.5
$02/23/09^{14}$					<50	<0.5	< 0.5	< 0.5	<0.5	<0.5
$05/20/09^{14}$					<50	<0.5	< 0.5	< 0.5	< 0.5	<0.5
$08/25/09^{14}$					<50	<0.5	< 0.5	< 0.5	< 0.5	<0.5
11/18/09 ¹⁴					<50	<0.5	0.5 J	<0.5	<0.5	<0.5

TABLE 1

GROUNDWATER MONITORING DATA AND ANALYTICAL RESULTS CHEVRON SERVICE STATION 9-4800 1700 CASTRO STREET, OAKLAND, CALIFORNIA

WELL ID/	TOC^*	GWE	DTW	TPH-DRO	TPH-GRO	В	T	\boldsymbol{E}	\boldsymbol{X}	MTBE
DATE	(ft.)	(msl)	(ft.)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)

EXPLANATIONS:

Groundwater monitoring data and laboratory analytical results prior to June 10, 2000, were compiled from reports prepared by Blaine Tech Services, Inc.

Groundwater mo	onitoring data and laboratory analytical	results prior to June 10, 2000, were compiled from reports prepai	red by Blaine Tech Services, Inc.
TOC = Top of Ca	asing	TPH-G = Total Petroleum Hydrocarbons as Gasoline	E = Ethylbenzene
(ft.) = Feet		TPH = Total Petroleum Hydrocarbons	X = Xylenes
GWE = Groundy	vater Elevation	DRO = Diesel Range Organics	MTBE = Methyl Tertiary Butyl Ether
(msl) = Mean sea	level	GRO = Gasoline Range Organics	= Not Measured/Not Analyzed
DTW = Depth to	Water	B = Benzene	$(\mu g/L)$ = Micrograms per liter
TPH-D = Total P	etroleum Hydrocarbons as Diesel	T = Toluene	QA = Quality Assurance/Trip Blank
*	The following wells: MW-1, MW-2, MW	-3, MW-4, and MW-7, were resurveyed by Morrow Surveying or	September 13, 2004. TOC
•	elevation was surveyed on April 11, 200	1, by Virgil Chavez Land Surveying. The benchmark for the surv	vey was the top of curb at the south
•	end of the return at the southeast corner	of Castro Street and 18th Street. (Benchmark Elevation = 29.65 fe	eet above msl).
1	Chromatogram pattern indicates an unic	dentified hydrocarbon.	
2	Sample was extracted outside EPA reco	mmended holding time.	

- 3 TPH-G, BTEX and MTBE was analyzed outside EPA recommended holding time.
- 4 EPA Method 8240.
- 5 Confirmation run.
- 6 Laboratory report indicates gasoline C6-C12.
- 7 Laboratory report indicates unidentified hydrocarbons C9-C24.
- 8 Laboratory report indicates unidentified hydrocarbons >C16.
- 9 Laboratory report indicates unidentified hydrocarbons C9-C40.
- 10 Laboratory report indicates this sample was analyzed outside of the EPA recommended holding time.
- Well development performed.
- 12 MTBE by EPA Method 8260.
- Due to laboratory error the trip blank sample was not analyzed.
- 14 BTEX and MTBE by EPA Method 8260.
- Laboratory report indicates the surrogate data for the method blank is outside QC limits. Results from the re-extraction are within the limits. The hold time had expired prior to re-extraction so all results are reported from the original extract. The TPH-D result from the re-extraction is 910 ppb.

TABLE 1

GROUNDWATER MONITORING DATA AND ANALYTICAL RESULTS CHEVRON SERVICE STATION 9-4800 1700 CASTRO STREET, OAKLAND, CALIFORNIA

WELL ID/	TOC*	GWE	DTW	TPH-DRO	TPH-GRO	В	T	E	\boldsymbol{X}	MTBE
DATE	(ft.)	(msl)	(ft.)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
16	,		U			-			re within the limi ction is 1,700 ppb	ts. The hold time
17	,		U		ethod blank is ou ted from the orig	-				ts. The hold time
18	Laboratory r	eport indicate	s the observe	d sample pattern	is not typical of	#2 fuel/diesel.	It elutes in the D	RO range later t	han #2 fuel.	
19	Analytical re	sult confirme	d.							
20	Laboratory r	eport indicate	s the observe	d sample pattern	includes #2 fuel,	/diesel and an a	ndditional patteri	n which elutes la	nter in the DRO ra	inge.
21	Laboratory r	eport indicate	s the observe	d sample pattern	is not typical of	#2 fuel/diesel.	The result is due	to individual p	eak(s) eluting in t	he
	DRO range.	-						_		
22	The DRO me	ethod blank ha	ad a detection	of 33 ug/L. The	DRO result for sa	ample MW-7 sh	ould be consider	ed estimated du	e to method blan	k
	contaminatio	on.				-				
J	Estimated va	alue								
U	Compound r	not detected								

TABLE 2

GROUNDWATER ANALYTICAL RESULTS - OXYGENATE COMPOUNDS
CHEVRON SERVICE STATION 9-4800
1700 CASTRO STREET, OAKLAND, CALIFORNIA

WELL ID/	ETHANOL	TBA	MTBE	DIPE	ETBE	TAME
DATE	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
MW-1						
06/17/03			92			
12/31/03	<50		86			
08/17/04	<50		76			
11/16/04	<50		48			
05/06/05	<50		220			
11/07/05	<50		260			
05/08/06	<50		590			
11/08/06	<50		140			
05/01/07	<50		280			
11/08/07	<50		270			
05/01/08	<50		470			
11/13/08	<50		190			
05/20/09	<50		190			
11/18/09	<50		310			
MW-2						
06/17/03			2,700			
09/16/03	<130		1,300			
12/31/03	<50		440			
08/17/04	<50		340			
11/16/04	<100		1,100			
05/06/05	<50		400			

TABLE 2

GROUNDWATER ANALYTICAL RESULTS - OXYGENATE COMPOUNDS
CHEVRON SERVICE STATION 9-4800
1700 CASTRO STREET, OAKLAND, CALIFORNIA

WELL ID/	ETHANOL	TBA	MTBE	DIPE	ETBE	TAME
DATE	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
MW-2 (cont)						
11/07/05	<50		66			
05/08/06	<50		360			
11/08/06	<50		840			
05/01/07	<50		100			
11/08/07	<50		37			
05/01/08	<50		120			
11/13/08	<50		240			
05/20/09	<50		160			
11/18/09	<100		79			
MW-3						
06/17/03			590			
12/31/03	66		670			
08/17/04	<50		410			
11/16/04	<50		460			
05/06/05	<100		740			
11/07/05	<50		440			
05/08/06	<100		3,300			
11/08/06	<50		73			
05/01/07	<50		1,200			
11/08/07	<50		440			
05/01/08	<50		690			

TABLE 2

GROUNDWATER ANALYTICAL RESULTS - OXYGENATE COMPOUNDS
CHEVRON SERVICE STATION 9-4800
1700 CASTRO STREET, OAKLAND, CALIFORNIA

WELL ID/	ETHANOL	TBA	MTBE	DIPE	ETBE	TAME
DATE	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
MW-3 (cont)						
11/13/08	<50		790			
05/20/09	<50		450			
11/18/09	<50		170			
MW-4						
04/08/99	<25,000	<5000	5400	<100	<100	<100
06/15/02		840	2,400	<2	<2	110
06/17/03		520	1,100	<0.5	<0.5	110
09/16/03	<100		710			
12/31/03	<50		390			
08/17/04	<50	66	370	<0.5	<0.5	50
11/16/04	<50		270			
05/06/05	<50	21	110	<0.5	<0.5	8
11/07/05	<50		59			
05/08/06	<50		92			
11/08/06	<50		40			
05/01/07	<50	10	76	<0.5	<0.5	6
11/08/07	<50		44			
05/01/08	<50	12	67	<0.5	<0.5	4
1/13/08	<50		220			
5/20/09	<50	58	190	<0.5	<0.5	6
1/18/09	<50		150			

TABLE 2

GROUNDWATER ANALYTICAL RESULTS - OXYGENATE COMPOUNDS
CHEVRON SERVICE STATION 9-4800
1700 CASTRO STREET, OAKLAND, CALIFORNIA

WELL ID/	ETHANOL	TBA	MTBE	DIPE	ETBE	TAME
DATE	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
MW-7						
05/04/01	<500	57	470	<2.0	<2.0	11
09/05/01	<500	<100	1,300	<2	<2	32
12/21/01	<500	<100	670	<2	<2	15
03/15/02	<500	<100	350	<2	<2	8
06/15/02		<100	960	<2	<2	18
06/17/03		37	2,500	<0.5	<0.5	53
09/16/03	< 500		4,400			
12/31/03	<200		3,000			
08/17/04	< 500	<50	8,000	<5	<5	140
11/16/04	<250		7,300			
02/18/05	<1,000		5,700			
05/06/05	< 500	<50	8,400	<5	<5	140
08/05/05	<500		20,000 ¹			
11/07/05	<1,000		24,000			
02/06/06	<50		14,000			
05/08/06	<200		6,500			
08/08/06	<1,000		17,000			
11/08/06	<500		41,000			
02/06/07	<500		31,000			
05/01/07	<250	<10	14,000	<3	<3	260
07/31/07	<250		15,000			

TABLE 2

GROUNDWATER ANALYTICAL RESULTS - OXYGENATE COMPOUNDS
CHEVRON SERVICE STATION 9-4800
1700 CASTRO STREET, OAKLAND, CALIFORNIA

WELL ID/	ETHANOL	TBA	MTBE	DIPE	ETBE	TAME
DATE	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
MW-7 (cont)						
11/08/07	<500		25,000			
02/04/08	<100		17,000			
05/01/08	<500	<20	10,000	<5	<5	170
08/01/08	<250		12,000			
11/13/08	<1,000		16,000			
02/23/09	<250		11,000			
05/20/09	<100	31	6,300	<1	<1	120
08/25/09	<250		5,700			
11/18/09	<130		2,800			
MW-5						
04/08/99	<500	<100	<2.0	<2.0	<2.0	<2.0
06/17/03			<0.5			
09/16/03	SAMPLED SEMI-AN	NUALLY				
12/31/03	<50		<0.5			
08/17/04	TO BE DESTROYED					
DESTROYED -	2005					
NOW C						
MW-6		400		• 0	• •	
04/08/99	<500	<100	5.6	<2.0	<2.0	<2.0
06/17/03			13			
09/16/03	SAMPLED SEMI-AN	NUALLY				

TABLE 2

GROUNDWATER ANALYTICAL RESULTS - OXYGENATE COMPOUNDS CHEVRON SERVICE STATION 9-4800 1700 CASTRO STREET, OAKLAND, CALIFORNIA

WELL ID/	ETHANOL	TBA	MTBE	DIPE	ETBE	TAME
DATE	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
MW-6 (cont)						
12/31/03	<50		14			
08/17/04	TO BE DESTROYED					
DESTROYED - 2	2005					

EXPLANATIONS:

Groundwater laboratory analytical results prior to May 4, 2001, were compiled from reports prepared by Blaine Tech Services, Inc.

TBA = t-Butyl alcohol

MTBE = Methyl Tertiary Butyl Ether

DIPE = di-Isopropyl ether

ETBE = Ethyl t-butyl ether

TAME = t-Amyl methyl ether

 $(\mu g/L)$ = Micrograms per liter

-- = Not Analyzed

Laboratory report confirmed analytical result.

ATTACHMENT A							
BLAINE TECH'S NOVEMBER 19, 2009 FOURTH QUARTER MONITORING REPORT							

November 19, 2009

Chevron Environmental Management Company Aaron Costa 6111 Bollinger Canyon Rd. San Ramon, CA 94583

> Fourth Quarter 2009 Monitoring at Chevron Service Station 94800 1700 Casrto St. Oakland, CA

Monitoring performed on November 18, 2009

Blaine Tech Services, Inc. Groundwater Monitoring Event 091118-JO1

This submission covers the routine monitoring of groundwater wells conducted on November 18, 2009 at this location. Five monitoring wells were measured for depth to groundwater (DTW). Five monitoring wells were sampled. All sampling activities were performed in accordance with local, state and federal quidelines.

Water levels measurements were collected using an electronic slope indicator. All sampled wells were purged of three case volumes, depending on well recovery, or until water temperature, pH and conductivity stabilized. Purging was accomplished using electric submersible pumps, positive air-displacement pumps or stainless steel, Teflon or disposable bailers. Subsequent sample collection and sample handling was performed in accordance with EPA protocols using disposable bailers. Alternately, where applicable, wells were sampled utilizing no-purge methodology. All reused equipment was decontaminated in an integrated stainless steel sink with de-ionized water supplied Hotsy pressure washer and Liquinox or equivalent.

Samples were delivered under chain-of-custody to Lancaster Laboratories of Lancaster, Pennsylvania, for analysis. Monitoring well purgewater and equipment rinsate water was collected and transported under bill-of-lading to IWM facilities of San Jose, California.

Enclosed documentation from this event includes copies of the Well Gauging Sheet, Well Monitoring Data Sheets, and Chain-of-Custody.

Blaine Tech Services, Inc.'s activities at this site consisted of objective data and sample collection only. No interpretation of analytical results, defining of hydrogeologic conditions or formulation of recommendations was performed.

Please call if you have any questions.

Sincerely,

Pete Cornish

Pott Cin

Blaine Tech Services, Inc.

Project Manager

attachments: SOP

Well Gauging Sheet

Individual Well Monitoring Data Sheets

Chain of Custody

Wellhead Inspection Form

Bill of Lading Calibration Log

cc: CRA

Attn: Charlotte Evans 5900 Hollis St. Suite A Emeryville, CA 94608

BLAINE TECH SERVICES, INC. METHODS AND PROCEDURES FOR THE ROUTINE MONITORING OF GROUNDWATER WELLS AT CHEVRON SITES

Blaine Tech Services, Inc. performs environmental sampling and documentation as an independent third party. We specialize in groundwater monitoring assignments and intentionally limit the scope of our services to those centered on the generation of objective information.

To avoid conflicts of interest, Blaine Tech Services, Inc. personnel do not evaluate or interpret the information we collect. As a state licensed contractor (C-57 well drilling –water – 746684) performing strictly technical services, we do not make any professional recommendations and perform no consulting of any kind.

SAMPLING PROCEDURES OVERVIEW

SAFETY

All groundwater monitoring assignments performed for Chevron comply with Chevron's safety guidelines, 29 CFR 1910.120 and SB-198 Injury and Illness Prevention Program (IIPP). All Field Technicians receive the full 40-hour 29CFR 1910.120 OSHA SARA HAZWOPER course, medical clearance and on-the-job training prior to commencing any work on any Chevron site.

INSPECTION AND GAUGING

Wells are inspected prior to evacuation and sampling. The condition of the wellhead is checked and noted according to a wellhead inspection checklist.

Standard measurements include the depth to water (DTW) and the total well depth (TD) obtained with industry standard electronic water level indicators that are graduated in increments of hundredths of a foot.

The water in each well is inspected for the presence of immiscibles. When free product is suspected, its presence is confirmed using an electronic interface probe (e.g. GeoTech). No samples are collected from a well containing over two-hundredths of a foot (0.02') of product.

EVACUATION

Depth to water measurements are collected by our personnel prior to purging and minimum purge volumes are calculated anew for each well based on the height of the water column and the diameter of the well. Expected purge volumes are never less than three case volumes and are set at no less than four case volumes in some jurisdictions.

Well purging devices are selected on the basis of the well diameter and the total volume to be

evacuated. In most cases the well will be purged using an electric submersible pump (i.e. Grundfos) suspended near (but not touching) the bottom of the well.

PARAMETER STABILIZATION

Well purging completion standards include minimum purge volumes, but additionally require stabilization of specific groundwater parameters prior to sample collection. Typical groundwater parameters used to measure stability are electrical conductivity, pH, and temperature. Instrument readings are obtained at regular intervals during the evacuation process (no less than once per case volume).

Stabilization standards for routine quarterly monitoring of fuel sites include the following: Temperature is considered to have stabilized when successive readings do not fluctuate more than +/- 1 degree Celsius. Electrical conductivity is considered stable when successive readings are within 10%. pH is considered to be stable when successive readings remain constant or vary no more than 0.2 of a pH unit.

DEWATERED WELLS

Normal evacuation removes no less than three case volumes of water from the well. However, less water may be removed in cases where the well dewaters and does not immediately recharge.

MEASURING RECHARGE

Upon completion of well purging, a depth to water measurement is collected and notated to ensure that the well has recharged to within 80% of its static, pre-purge level prior to sampling.

Wells that do not immediately show 80% recharge or dewatered wells will be allowed approximately 2 hours to recharge prior to sampling or will be sampled at site departure. All wells requiring off-site traffic control in the public right-of-way, the 80% recharge rule may be disregarded in the interests of Health and Safety. The sample may be collected as soon as there is sufficient water. The water level at time of sampling will be noted.

PURGEWATER CONTAINMENT

All non-hazardous purgewater evacuated from each groundwater monitoring well is captured and contained in on-board storage tanks on the Sampling Vehicle and/or special water hauling trailers. Effluent from the decontamination of reusable apparatus (sounders, electric pumps and hoses etc.), consisting of groundwater combined with deionized water and non-phosphate soap, is also captured and pumped into effluent tanks.

Non-hazardous purgewater is transported under standard Bill of Lading documentation to a Blaine Tech Services, Inc. facility before being transported to a Chevron approved disposal facility.

SAMPLE COLLECTION DEVICES

All samples are collected using disposable bailers.

SAMPLE CONTAINERS

Sample material is decanted directly from the sampling bailer into sample containers provided by the laboratory that will analyze the samples. The transfer of sample material from the bailer to the sample container conforms to specifications contained in the USEPA T.E.G.D. The type of sample container, material of construction, method of closure and filling requirements are specific to the intended analysis. Chemicals needed to preserve the sample material are commonly placed inside the sample containers by the laboratory or glassware vendor prior to delivery of the bottle to our personnel. The laboratory sets the number of replicate containers.

TRIP BLANKS

Trip Blanks, if requested, are taken to the site and kept inside the sample cooler for the duration of the event. They are turned over to the laboratory for analysis with the samples from that site.

DUPLICATES

Duplicates, if requested, may be collected at a site. The Duplicate sample is collected, typically from the well containing the most measurable contaminants. The Duplicate sample is labeled the same as the original.

SAMPLE STORAGE

All sample containers are promptly placed in food grade ice chests for storage in the field and transport (direct or via our facility) to the designated analytical laboratory. These ice chests contain quantities of restaurant grade ice as a refrigerant material. The samples are maintained in either an ice chest or a refrigerator until relinquished into the custody of the laboratory or laboratory courier.

DOCUMENTATION CONVENTIONS

A label must be affixed to all sample containers. In most cases these labels are generated by our office personnel and are partially preprinted. Labels can also be hand written by our field personnel. The site is identified with the store number and site address, as is the particular groundwater well from which the sample is drawn (e.g. MW-1, MW-2, S-1 etc.). The time and date of sample collection along with the initials of the person who collects the sample are handwritten onto the label.

Chain of Custody records are created using client specific preprinted forms following USEPA specifications.

Bill of Lading records are contemporaneous records created in the field at the site where the non-hazardous purgewater is generated. Field Technicians use preprinted Bill of Lading forms.

DECONTAMINATION

All equipment is brought to the site in clean and serviceable condition and is cleaned after use in each well and before subsequent use in any other well. Equipment is decontaminated before leaving the site.

The primary decontamination device is a commercial steam cleaner. The steam cleaner is detuned to function as a hot pressure washer that is then operated with high quality deionized water that is produced at our facility and stored onboard our sampling vehicle. Cleaning is facilitated by the use of proprietary fixtures and devices included in the patented workstation (U.S. Patent 5,535,775) that is incorporated in each sampling vehicle. The steam cleaner is used to decon reels, pumps and bailers.

Any sensitive equipment or parts (i.e. Dissolved Oxygen sensor membrane, water level indicator, etc.) that cannot be washed using the high pressure water, will be sprayed with a non-phosphate soap and deionized water solution and rinsed with deionized water.

DISSOLVED OXYGEN READINGS

Dissolved Oxygen readings are taken pre- and/or post-purge using YSI meters (e.g. YSI Model 550) or HACH field test kits.

The YSI meters are able to collect accurate in-situ readings. The probe allows downhole measurements to be taken from wells with diameters as small as two inches. The probe and reel is decontaminated between wells as described above. The meter is calibrated between wells as per the instructions in the operating manual. The probe is lowered into the water column and the reading is allowed to stabilize prior to collection.

OXYIDATON REDUCTION POTENTIAL READINGS

All readings are obtained with either Corning or Myron-L meters (e.g. Corning ORP-65 or a Myron-L Ultrameter GP). The meter is cleaned between wells as described above. The meter is calibrated at the start of each day according to the instruction manual.

FERROUS IRON MEASUREMENTS

All field measurements are collected at time of sampling with a HACH test kit.

WELL GAUGING DATA

Project 7	# <u>0911</u>	18-Jo1	Date	11-18-09		Client	chevon	
Site	1700	Custro	St.	Oakland	CA.			

	 	 -1			Thickness	Volume of			Survey	
		Well		Depth to	of	Immiscibles			Point:	
		Size	Sheen /	Immiscible	Immiscible		Depth to water		TOB or	
Well ID	Time	(in.)	Odor	Liquid (ft.)	Liquid (ft.)	(ml)	(ft.)	bottom (ft.)	£OÇ	Notes
MW-1	6718	2					25.93	30.69	The state of the s	
MW-L	0725	2					24.51	30.30	Threat area (meaning)	
MW-3	0722	2					25.71	30.25	and the state of t	
MW-4	0728	2					25.27	28.82	A CONTRACTOR OF THE CONTRACTOR	
MW-3 MW-4 MW-7	0735	2					25.27	30.14		
										1
		-								
					<u> </u>					<u> </u>

Project #	Oquib	- 301		Station #:	7-4400	
Sampler:	Jo			Date: 11-18	-09	
Weather:	cleur			Ambient Air	Гетреrature: 6	5°
Well I.D.	: MW - 1			Well Diamete	r: (2) 3 4	6 8
Total We	ll Depth:	30.6	Ч	Depth to Wate	er: 25,93	
Depth to	Free Produ			Thickness of	Free Product (fe	et):
Reference	ed to:	PVC	Grade	D.O. Meter (i	f req'd):	YSI HACH
DTW wit	h 80% Red	charge [(F	Height of Water	Column x 0.20	0) + DTW]: 2	6.87
Purge Metho	Bailer Disposable Ba	Displacement	Waterra Peristaltic Extraction Pump Other	Well Diamo	Disposable Bailer Extraction Port Dedicated Tubing r:	Diameter Multiplier
0.7 1 Case Volum	_(Gals.) X ne Sp	S ecified Volum	= 2.(Calculated Vo	Gals.	0.04 4" 0.16 6" 0.37 Oth	0.65 1.47 er radius ² * 0.163
Time	Temp (°F)	рН	Cond. (mS or (uS))	Turbidity (NTUs)	Gals. Removed	Observations
०स्थ	67.8	6.98	1222	>1000	0.7	claudy
0745	67.8	6.71	1210	>1000	1.4	1
0747	67.9	6-68	1224	7600	2-1	И
Did well	dewater?	Yes	No	Gallons actua	lly evacuated:	2.1
Sampling	Date: 11-	18-09	Sampling Time	e: 0755	Depth to Wate	r: 26.03
Sample I.	D.: Mu	√- ℓ		Laboratory:	Lancaste) Ot	her
Analyzed	for: TPH	-G BTEX	MTBE OXYS	Other: Se	e coc	
Duplicate	e I.D.:		Analyzed for:	TPH-G BTEX	MTBE OXYS	Other:
D.O. (if r	eq'd):		Pre-purge:	mg/	Post-purge:	$^{ m mg}/_{ m L}$
O.R.P. (if	req'd):		Pre-purge:	m\	Post-purge:	mV

Project #:	OGIII	- 101		Station #: 9	- 4460	
Sampler:	Jo			Date: 16-16-	09	
Weather:	clear			Ambient Air T	emperature: 6	55°
Well I.D.	: Mw - 2			Well Diameter	: (2) 3 4	6 8
Total We	ll Depth:	30.30		Depth to Water	r: 24.51	
Depth to	Free Produ	ıct:		Thickness of F	ree Product (fee	et):
Reference	ed to:	(PVC)	Grade	D.O. Meter (if	req'd):	YSI HACH
DTW wit	h 80% Rec	charge [(H	leight of Water	Column x 0.20) + DTW]: 2	25.67
Purge Metho	Bailer Disposable Bailer Positive Air D Electric Subm	Displacement nersible	Waterra Peristaltic Extraction Pump Other	Well Diamete	Disposable Bailer Extraction Port Dedicated Tubing er Multiplier Well 0.04 4"	Diameter Multiplier 0.65
1 Case Volun	(Gals.) X ne Sp	ecified Volun	$=\frac{2.7}{\text{Calculated Vo}}$	_ Gals. 2" Jume 3"	0.16 6" 0.37 Othe	1.47 radius ² * 0.163
Time	Temp (°F)	рН	Cond. (mS or (LS)	Turbidity (NTUs)	Gals. Removed	Observations
0810	62.6	7.04	969	316	0.9	ocor
0812	62.4	6.97	999	305	1.8	1
0814	67.6	6.89	995	301	2.7	
	10					
Did well	dewater?	Yes	No	Gallons actuall	y evacuated:	2.7
Sampling	Date: 11-	16-04	Sampling Time	e: 060)	Depth to Water	r: Missed
Sample I.	D.: Mu	v- 9		Laboratory:	- marine	her
Analyzed	for: TPH	-G BTEX	MTBE OXYS	Other: Se	e coc	
Duplicate	: I.D.:		Analyzed for:	TPH-G BTEX N	MTBE OXYS	Other:
D.O. (if r	eq'd):		Pre-purge:	$^{mg}/_{L}$	Post-purge:	mg/L
O.R.P. (if	req'd):		Pre-purge:	mV	Post-purge:	mV

						
Project #	OGIILB	- 101		Station #: 9	- 4400	
Sampler:				Date: 11-18-	09	
Weather:				Ambient Air T	emperature:	
Well I.D.	: MW - 3	>		Well Diameter	: ② 3 4	6 8
Total We	ll Depth:	J.	30.15	Depth to Water	r: 25.7(
Depth to	Free Produ	ıct:		Thickness of F	ree Product (fee	et):
Reference	ed to:	(PVC)	Grade	D.O. Meter (if	req'd):	YSI HACH
DTW wit	h 80% Red	charge [(H	leight of Water	Column x 0.20) + DTW]: 2	6.62
Purge Meth	Bailer Disposable Ba	Displacement	Waterra Peristaltic Extraction Pump Other	Well Diamete	Disposable Bailer Extraction Port Dedicated Tubing	Diameter Multiplier
1 Case Volum	_(Gals.) X _ ne Sp	S ecified Volun	$\underline{} = \underbrace{\mathcal{L}}_{\text{Calculated Vo}}$	Gals. 1" 2" 3"	0.04 4" 0.16 6" 0.37 Othe	0.65 1.47 r radius ² * 0.163
Time	Temp (°F)	рН	Cond. (mS or µS)	Turbidity (NTUs)	Gals. Removed	Observations
0847	67.1	6.88	1291	16)	0.7	odul
0849	67.0	6.49	1364	262	1.4	
0851	67.0	6.71	1317	341	2.[
Did well	dewater?	Yes	N ₀	Gallons actuall	y evacuated:	2.1
Sampling	g Date: 11-	16-09	Sampling Time	e: 1900	Depth to Water	r: 25.93
Sample I	.D.: ML	v- 3		Laboratory:	Lancaste Otl	ner
Analyzec	l for: трн	-G BTEX	MTBE OXYS	Other: Se-	e coc	
Duplicate	e I.D.:		Analyzed for:		MTBE OXYS	Other:
D.O. (if r	req'd):		Pre-purge:	mg/L	Post-purge:	mg/L
O.R.P. (i	f req'd):		Pre-purge:	mV	Post-purge:	mV

Project #	: Oalle	ا در -		Station #: q	- 4400	
Sampler:	Jo			Date: 11-18-	09	
Weather:	Cleuf			Ambient Air T	emperature: (38°
Well I.D.	: Mw - 4	ł		Well Diameter	: (2) 3 4	6 8
Total We	ell Depth:	28.82		Depth to Wate	r: 25.27	
Depth to	Free Produ	ıct:		Thickness of F	ree Product (fe	et):
Referenc	ed to:	(PVC)	Grade	D.O. Meter (if	req'd):	YSI HACH
DTW wit	th 80% Red	charge [(H	leight of Water	Column x 0.20) + DTW]: 2	25.98
Purge Meth	Bailer Disposable B	Displacement	Waterra Peristaltic Extraction Pump Other	Sampling Method: Other:	Bailer Disposable Bailer Extraction Port Dedicated Tubing	
0.5 1 Case Volur	_(Gals.) X ne Sp	S ecified Volum	= 1.5 Calculated Vo	Gals. Gals. Well Diamete 1" 2" 3"	er Multiplier Well 0.04 4" 0.16 6" 0.37 Othe	Diameter Multiplier 0.65 1.47 radius ² * 0.163
Time	Temp (°F)	рН	Cond. (mS of uS)	Turbidity (NTUs)	Gals. Removed	Observations
0424	68.1	6.78	921	614	0.5	
0830	62.9	6.45	904	562	1.0	
0832	68.0	6.71	899	564	1.5	
Did well	dewater?	Yes	16	Gallons actuall	y evacuated:	1.5
Sampling	Date: 11-	18-09	Sampling Time	e: (984)	Depth to Water	r: 25.62
Sample I.	D.: Mu	J. 4		Laboratory:	Lancaste Otl	her
Analyzed			MTBE OXYS	Other: Sea	e coc	
Duplicate	e I.D.:		Analyzed for:	TPH-G BTEX N	MTBE OXYS	Other:
D.O. (if r	eq'd):		Pre-purge:	$^{ m mg}/_{ m L}$	Post-purge:	mg/ _L
O.R.P. (i1	f req'd):		Pre-purge:	mV	Post-purge:	mV

Project #	oquie	- 101		Station #:	- 4400	
Sampler:	Jo			Date: 11. 18.	-09	
Weather:	Clew			Ambient Air T	emperature:	80
Well I.D.	: MW -	7		Well Diameter	r: 2 3 4	6 8
Total We	ll Depth:	30.14	<i>.</i>	Depth to Wate	er: 27.44	
Depth to	Free Produ	ıct:		Thickness of I	Free Product (fee	et):
Reference	ed to:	(PVC)	Grade	D.O. Meter (if	req'd):	YSI HACH
DTW wit	h 80% Red	charge [(F	Height of Water	Column x 0.20) + DTW]:	28.24
Purge Metho	Bailer Disposable B Positive Air I Electric Subm	Displacement nersible	Waterra Peristaltic Extraction Pump Other	Well Diame	Disposable Bailer Extraction Port Dedicated Tubing : ter Multiplier Well 0.04 4"	Diameter Multiplier 0.65
1 Case Volum	(Gals.) X ne Sp	ecified Volun	$= \frac{1.7}{\text{Calculated Vo}}$	_ Gals. 2" Jume 3"	0.16 6" 0.37 Othe	1.47 radius ² * 0.163
	(00)		Cond.	Turbidity	C.I. D. 1	
Time	Temp (°F)	pН	(mS or (15)	(NTUs)	Gals. Removed	Observations
0907	62.7	7.23	1127	>1000	0.4	
0909	67.4	7.18	1118	21000	0.8	
6911	64.3	7.20	1104	2000	1.2	
Did well	dewater?	Yes	No	Gallons actual	ly evacuated:	1.2
Sampling	Date: 11-	18-09	Sampling Time	e: 6620	Depth to Water	r: 27.97
Sample I.	D.: ML	y. 7		Laboratory:	Lancaster Otl	her
Analyzed	Town		MTBE OXYS	Other: Se.	e coc	
Duplicate	e I.D.:	***************************************	Analyzed for:		MTBE OXYS	Other:
D.O. (if r	eq'd):	•	Pre-purge:	mg/ _I	Post-purge:	nng/ _L
O.R.P. (if req'd): Pre-purge				mV	Post-purge:	mV

CHAIN OF CUSTODY FORM

C	hevron	Environ	nental Mana	igement Compar		linger Canyon	Rd.	Sar	ı Ra	ımo						CC		of
Chevron Site Number:	94800			Chevron Consulta	nt: <u>CRA</u>			5/				ANAL	YSE	SR	EQU	IRED		Programme and the second secon
Chevron Site Global II	D: <u>T060010</u>	<u> 2076</u>		Address: 5900 Holl	lis St. Suite A Er	neryville,	H	W								J\$-		Preservation Codes
Chevron Site Address	1700 Cas	rto St.,		CAConsultant Con	tact: <u>Charlotte Eva</u>	ns	0							iii				H =HCL T= Thiosulfate
Oakland, CA				Consultant Phone	No. <u>510-420-3351</u>	-	HVOC	SCREEN				L		GREASE				N =HNO ₃ B = NaOH
Chevron PM: AARON	COSTA			Consultant Projec	t No. <u>09111</u>	g - Jo (ALKALINITY		≪				$\mathbf{S} = H_2SO_4 \mathbf{O} =$ Other
Chevron PM Phone N	o.: <u>(925)54</u> :	<u>3-2961</u>		Sampling Compar	ny: Blaine Tech Se	ervices	OXYGENATES	Н			STLC 🗆			.10IL				Other
☑ Retail and Termina ☑ Construction/Retail		Unit (RTBU)	Job	Sampled By (Print	:): <u>H. Offi</u>		N HS	ORO [.s.	310.1		413.1				
区 Construction/Retail	Job			Sampler Signature	e: her	and the second s) XXC	0			TTLC	EPA		EPA				
		8 00-0-OML MBER-0- WE		Lancaster Laboratories	Other Lab	Temp. Blank Check Time Temp.	1 .	4		Na			ΥΗΝ		603	⁻ ²⁰	1	Special Instructions Must meet lowest
(WBS ELEMENTS: SITE ASSESSMENT: A1L SITE MONITORING: OML	REMEDIATION N	I IMPLEMENTATI MAINTENANCE &	ON: R5L MONITORING: M1L	⊠ Lancaster, PA Lab Contact: Jill Parker		0600 1°C 1000 2°C 200 2°C 1400 2°C	MTBER		MTBE	Mg, Mn, Na	22 METALS		NDUCTI		22			detection limits possible for 8260 Compounds
THIS IS A LEGAL DOCE CORREC		<u>L</u> fields mus Completei		2425 New Holland Pike, Lancaster, PA 17601 Phone No: (717)656-2300		1400 <u>TC</u>	EPA 8260B/GC/MS	5B GRO	в втех 🗆	6010 Ca, Fe, K, N	EPA6010/7000 TITLE	EPA150.1 PH □	SM2510B SPECIFIC CONDUCTIVITY	EPA 418.1 TRPH □				
	SAMPL	EID					260	8015	8021B	010	010,	50.1	10B	8.	2			
Field Point Name	Matrix	Top Depth	Date (yymmdd)	Sample Time	# of Containers	Container Type	EPA 8 TPH-(EPA 8	EPA 8	EPA 6	EPA6	EPA1	SM25	EPA 4	17)		•	Notes/Comment s
Mw-1	W		Oquic	0 755	8	missel	X	X							K			
MW-2				0520	Champion	417.000	X	X							x			
MW.3				0900	NIC PRINCES	A STATE OF THE STA	X	X							2			
Mw-4	-			0 540	profession of the second	Agranda Agrand	X	R							80			
116.3	V		on and the second	0920		b	×	X							X			
eas			3	0720	2	Vous	X	X									1	TPK-G(only)
																	-	NO TP4-D
					1													-
																		i
Relinquished By	Comp	-	Date/Time:	Relinquished To	Company	Date/Time		l			ind T		L	L		<u> </u>	ll	
huy	BK		8609 1415	Just /	13/5		115		Hot	ndaro ırs□		Othe					ours[72
Relinquished By	Comp	eany E	Date/Time	Relinguished To	Company	Date/Time			Sar	nple l	Integ	-	,	ck by	· lab ·	on arı	rival)	
Relinquished By	Comp	anv F	Date/Time	Relinquished To	Company	Date/Time			Inta	ct:		On I	ce:	· · · · · · · · · · · · · · · · · · ·	Te	emp:		-
	Comp		- 5.57 1 11110	. tomquonou 10	Company	Date/ Time										· ##		

WELLHEAD INSPECTION CHECKLIST

Page _____ of ____

Client Cha	e Wigh						Date	11- W	3-09	
Site Address	1700	Custro	SŁ	Oak	and	<u>c4</u>	····			
Job Number	091118	- 101				Tech	nician	<u>80</u>		
Well ID	Well Inspected - No Corrective Action Required	WELL IS SECURABLE BY DESIGN (12"or less)	WELL IS CLEARLY MARKED WITH THE WORDS "MONITORING WELL" (12"or less)	Water Bailed From Wellbox	Wellbox Components Cleaned	Cap Replaced	Lock Replaced	Other Action Taken (explain below)	Well Not Inspected (explain below)	Repair Order Submitted
Mw-l	1								-	
MW-Z		y X	9/>					\searrow		
Mw-3	1	U								
MW-4	1									
MW-7	人									
			,							

				÷						
NOTES:	Mgv Z	3/3	B0 16	hisse	y 1/3	Tui	5	Bioke	27	

SOURCE RECORD **BLL OF LADING**FOR NON-HAZARDOUS PURGEWATER RECOVERED FROM GROUNDWATER WELLS AT CHEVRON FACILITIES IN THE STATE OF CALIFORNIA. THE NON-HAZARDOUS PURGE- WATER WHICH HAS BEEN RECOVERED FROM GROUND- WATER WELLS IS COLLECTED BY THE CONTRACTOR, MADE UP INTO LOADS OF APPROPRIATE SIZE AND HAULED BY IWM TO THEIR FACILITY IN SAN JOSE, CALIFORNIA.

The contractor performing this work is BLAINE TECH SERVICES, INC. (BTS), 1680 Rogers Ave. San Jose CA (408)573-0555). Blaine Tech Services, Inc. is authorized by CHEVRON PRODUCTS COMPANY (CHEVRON) to recover, collect, apportion into loads, and haul the Non-Hazardous Well Purgewater that is drawn from wells at the CHEVRON facility indicated below and to deliver that purgewater to BTS. Transport routing of the Non-Hazardous Well Purgewater may be direct from one Chevron facility to BTS; from one Chevron facility to BTS via another Chevron facility; or any combination thereof. The Non-Hazardous Well Purgewater is and remains the property of CHEVRON.

This **Source Record BILL OF LADING** was initiated to cover the recovery of Non-Hazardous Well Purgewater from wells at the Chevron facility described below:

9-4800		Aanon	Costa	
CHEVRON#		Chevron E	ngineer	
1700	custro	Oaklee	J	CA
street number	street name	city		state

WELL I.D. GALS.	WELL I.D. GALS.
MW-1 / 2.1	
MW.Z 1 2.7	
MW-3 / 7.1	
MW-4 / 1.5	
MW-7/1-2.6	
added equip. rinse water / TOO. 4	any other adjustments /
TOTAL GALS. PRECOVERED	loaded onto BTS vehicle #
BTS event # time	e date
091118-501	0945 11 18 109
signature ()	
************	* * * * * * * * * * * * * * *
REC'D AT	time date 1400[1_/_16/09_
unloadeaby	
signature //	

TEST EQUIPMENT CALIBRATION LOG

PROJECT NAM	TE Chevron	9-460		PROJECT NUM	1BER 091116-Jo1		
EQUIPMENT NAME	EQUIPMENT NUMBER		STANDARDS USED	EQUIPMENT READING	CALIBRATED TO: OR WITHIN 10%:	TEMP.	INITIALS
myron L vitta meder II	6227814	11-18-09	7,10,4 3900ms	3871-us		2000	6
			7				
			11/00	e .			
						10.1	
		·					
				·			

ATTACHMENT B

LANCASTER LABORATORIES' DECEMBER 2, 2009 ANALYTICAL REPORT

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared for:

Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

925-842-8582

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

December 02, 2009

Project: 94800

Samples arrived at the laboratory on Friday, November 20, 2009. The PO# for this group is 0015040460 and the release number is COSTA. The group number for this submittal is 1172086.

Client Sample Description	<u>Lancaster Labs (LLI) #</u>
MW-1-W-091118 NA Water	5844358
MW-2-W-091118 NA Water	5844359
MW-3-W-091118 NA Water	5844360
MW-4-W-091118 NA Water	5844361
MW-7-W-091118 NA Water	5844362
QA-T-091118 NA Water	5844363

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

ELECTRONIC	Chevron c/o CRA	Attn: Report Contact
COPY TO		
ELECTRONIC	CRA	Attn: Charlotte Evans

COPY TO

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Questions? Contact your Client Services Representative Jill M Parker at (717) 656-2300

Respectfully Submitted,

Robin C. Runkle Senior Specialist

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-1-W-091118 NA Water

Facility #94800 BTST

1700 Castro St-Oakland T0600102076 MW-1

LLI Sample # WW 5844358 LLI Group # 1172086

CA

Project Name: 94800

Discard: 01/02/2010

Collected: 11/18/2009 07:55 by JO Account Number: 10991

Submitted: 11/20/2009 09:00 Chevron

Reported: 12/02/2009 at 08:22 6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

COMW1

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	ug/l	
06067	Benzene		71-43-2	N.D.	0.5	1	1
06067	Ethanol		64-17-5	N.D.	50	250	1
06067	Ethylbenzene		100-41-4	0.6 J	0.5	1	1
06067	Methyl Tertiary Buty	yl Ether	1634-04-4	310	0.5	1	1
06067	Toluene		108-88-3	N.D.	0.5	1	1
06067	Xylene (Total)		1330-20-7	N.D.	0.5	1	1
GC Vol	latiles	SW-846	8015B	ug/l	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	N.D.	50	100	1
GC Ext	tractable TPH	SW-846	8015B	ug/l	ug/l	ug/l	
06609	TPH-DRO CA C10-C28		n.a.	150	32	100	1

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution
No.					Date and Time		Factor
06067	BTEX, MTBE, ETOH	SW-846 8260B	1	D093282AA	11/24/2009 13:	15 Ginelle L Feister	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	D093282AA	11/24/2009 13:	15 Ginelle L Feister	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	09327B20A	11/24/2009 07:	04 Tyler O Griffin	1
01146	GC VOA Water Prep	SW-846 5030B	1	09327B20A	11/24/2009 07:	04 Tyler O Griffin	1
06609	TPH-DRO CA C10-C28	SW-846 8015B	1	093250002A	11/24/2009 03:	14 Diane V Do	1
02376	Extraction - Fuel/TPH (Waters)	SW-846 3510C	1	093250002A	11/22/2009 18:	30 Elaine F Stoltzfu	s 1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-2-W-091118 NA Water

Facility #94800 BTST

1700 Castro St-Oakland T0600102076 MW-2

LLI Sample # WW 5844359 LLI Group # 1172086

CA

Project Name: 94800

Collected: 11/18/2009 08:20 by JO Account Number: 10991

Submitted: 11/20/2009 09:00 Chevron

Reported: 12/02/2009 at 08:22 6001 Bollinger Canyon Rd L4310

Discard: 01/02/2010 San Ramon CA 94583

COMW2

CAT No.	Analysis Name		CAS Number	As Re Resul	ceived t	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l		ug/l	ug/l	
06067	Benzene		71-43-2	4		1	2	2
06067	Ethanol		64-17-5	N.D.		100	500	2
06067	Ethylbenzene		100-41-4	69		1	2	2
06067	Methyl Tertiary But	yl Ether	1634-04-4	79		1	2	2
06067	Toluene		108-88-3	1	J	1	2	2
06067	Xylene (Total)		1330-20-7	34		1	2	2
	reporting limits for level of non-target o			ds were	raised du	ie to		
GC Vol	latiles	SW-846	8015B	ug/l		ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	5,400		250	500	5
GC Ext	tractable TPH	SW-846	8015B	ug/l		ug/l	ug/l	
06609	TPH-DRO CA C10-C28		n.a.	2,800		320	1,000	10

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
06067	BTEX, MTBE, ETOH	SW-846 8260B	1	D093282AA	11/24/2009 13:3	9 Ginelle L Feister	2
01163	GC/MS VOA Water Prep	SW-846 5030B	1	D093282AA	11/24/2009 13:3	9 Ginelle L Feister	2
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	09327B20A	11/24/2009 09:1	5 Tyler O Griffin	5
01146	GC VOA Water Prep	SW-846 5030B	1	09327B20A	11/24/2009 09:1	5 Tyler O Griffin	5
06609	TPH-DRO CA C10-C28	SW-846 8015B	1	093250002A	11/24/2009 03:5	5 Diane V Do	10
02376	Extraction - Fuel/TPH (Waters)	SW-846 3510C	1	093250002A	11/22/2009 18:3	O Elaine F Stoltzfus	s 1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-3-W-091118 NA Water

Facility #94800 BTST

1700 Castro St-Oakland T0600102076 MW-3

LLI Sample # WW 5844360 LLI Group # 1172086

CI3

Project Name: 94800

Collected: 11/18/2009 09:00 by JO Account Number: 10991

Submitted: 11/20/2009 09:00 Chevron

Reported: 12/02/2009 at 08:22 6001 Bollinger Canyon Rd L4310

Discard: 01/02/2010 San Ramon CA 94583

COMW3

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	ug/l	
06067	Benzene		71-43-2	25	0.5	1	1
06067	Ethanol		64-17-5	N.D.	50	250	1
06067	Ethylbenzene		100-41-4	N.D.	0.5	1	1
06067	Methyl Tertiary Buty	yl Ether	1634-04-4	170	0.5	1	1
06067	Toluene		108-88-3	N.D.	0.5	1	1
06067	Xylene (Total)		1330-20-7	9	0.5	1	1
GC Vo	latiles	SW-846	8015B	ug/l	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	280	50	100	1
GC Ext	tractable TPH	SW-846	8015B	ug/l	ug/l	ug/l	
06609	TPH-DRO CA C10-C28		n.a.	240	32	100	1

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution
No.					Date and Time		Factor
06067	BTEX, MTBE, ETOH	SW-846 8260B	1	D093282AA	11/24/2009 14	4:02 Ginelle L Feiste:	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	D093282AA	11/24/2009 14	4:02 Ginelle L Feiste:	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	09327B20A	11/24/2009 07	7:26 Tyler O Griffin	1
01146	GC VOA Water Prep	SW-846 5030B	1	09327B20A	11/24/2009 07	7:26 Tyler O Griffin	1
06609	TPH-DRO CA C10-C28	SW-846 8015B	1	093250002A	11/24/2009 03	3:34 Diane V Do	1
02376	Extraction - Fuel/TPH (Waters)	SW-846 3510C	1	093250002A	11/22/2009 18	3:30 Elaine F Stoltzf	ıs 1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-4-W-091118 NA Water

Facility #94800 BTST

1700 Castro St-Oakland T0600102076 MW-4

LLI Sample # WW 5844361 LLI Group # 1172086

CA

Project Name: 94800

Discard: 01/02/2010

Collected: 11/18/2009 08:40 by JO Account Number: 10991

Submitted: 11/20/2009 09:00 Chevron

Reported: 12/02/2009 at 08:22 6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

COMW4

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	ug/l	
06067	Benzene		71-43-2	N.D.	0.5	1	1
06067	Ethanol		64-17-5	N.D.	50	250	1
06067	Ethylbenzene		100-41-4	N.D.	0.5	1	1
06067	Methyl Tertiary Buty	yl Ether	1634-04-4	150	0.5	1	1
06067	Toluene		108-88-3	N.D.	0.5	1	1
06067	Xylene (Total)		1330-20-7	N.D.	0.5	1	1
GC Vol	latiles	SW-846	8015B	ug/l	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	120	50	100	1
GC Ext	tractable TPH	SW-846	8015B	ug/l	ug/l	ug/l	
06609	TPH-DRO CA C10-C28		n.a.	860	32	100	1

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Method	Trial#	Batch#	Analysis		Analyst	Dilution
No.					Date and Time	•		Factor
06067	BTEX, MTBE, ETOH	SW-846 8260B	1	D093282AA	11/24/2009 1	4:25	Ginelle L Feister	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	D093282AA	11/24/2009 1	4:25	Ginelle L Feister	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	09327B20A	11/24/2009 0	7:48	Tyler O Griffin	1
01146	GC VOA Water Prep	SW-846 5030B	1	09327B20A	11/24/2009 0	7:48	Tyler O Griffin	1
06609	TPH-DRO CA C10-C28	SW-846 8015B	1	093250002A	11/24/2009 0	2:32	Diane V Do	1
02376	Extraction - Fuel/TPH (Waters)	SW-846 3510C	1	093250002A	11/22/2009 1	.8:30	Elaine F Stoltzfus	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-7-W-091118 NA Water

Facility #94800 BTST

1700 Castro St-Oakland T0600102076 MW-7

LLI Sample # WW 5844362 LLI Group # 1172086

CA

Project Name: 94800

Collected: 11/18/2009 09:20 by JO Account Number: 10991

Submitted: 11/20/2009 09:00 Chevron

Reported: 12/02/2009 at 08:22 6001 Bollinger Canyon Rd L4310

Discard: 01/02/2010 San Ramon CA 94583

COMW7

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	ug/l	
06067	Benzene		71-43-2	N.D.	1	3	2.5
06067	Ethanol		64-17-5	N.D.	130	630	2.5
06067	Ethylbenzene		100-41-4	N.D.	1	3	2.5
06067	Methyl Tertiary Buty	yl Ether	1634-04-4	2,800	13	25	25
06067	Toluene		108-88-3	N.D.	1	3	2.5
06067	Xylene (Total)		1330-20-7	N.D.	1	3	2.5
GC Vo	latiles	SW-846	8015B	ug/l	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	100	50	100	1
GC Ext	tractable TPH	SW-846	8015B	ug/l	ug/l	ug/l	
06609	TPH-DRO CA C10-C28		n.a.	250	32	100	1

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution
No.					Date and Time		Factor
06067	BTEX, MTBE, ETOH	SW-846 8260B	1	D093282AA	11/24/2009 14:49	Ginelle L Feister	2.5
06067	BTEX, MTBE, ETOH	SW-846 8260B	1	D093282AA	11/24/2009 15:12	Ginelle L Feister	25
01163	GC/MS VOA Water Prep	SW-846 5030B	1	D093282AA	11/24/2009 14:49	Ginelle L Feister	2.5
01163	GC/MS VOA Water Prep	SW-846 5030B	2	D093282AA	11/24/2009 15:12	Ginelle L Feister	25
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	09327B20A	11/24/2009 08:10	Tyler O Griffin	1
01146	GC VOA Water Prep	SW-846 5030B	1	09327B20A	11/24/2009 08:10	Tyler O Griffin	1
06609	TPH-DRO CA C10-C28	SW-846 8015B	1	093250002A	11/24/2009 02:53	Diane V Do	1
02376	Extraction - Fuel/TPH	SW-846 3510C	1	093250002A	11/22/2009 18:30	Elaine F Stoltzfus	3 1
	(Waters)						

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: QA-T-091118 NA Water

Facility #94800 BTST

1700 Castro St-Oakland T0600102076 QA

LLI Sample # WW 5844363 LLI Group # 1172086

CA

Project Name: 94800

Discard: 01/02/2010

Collected: 11/18/2009 07:50 Account Number: 10991

Submitted: 11/20/2009 09:00 Chevron

Reported: 12/02/2009 at 08:22 6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

COQA-

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	ug/l	
06054	Benzene		71-43-2	N.D.	0.5	1	1
06054	Ethylbenzene		100-41-4	N.D.	0.5	1	1
06054	Methyl Tertiary Buty	yl Ether	1634-04-4	N.D.	0.5	1	1
06054	Toluene		108-88-3	0.5 J	0.5	1	1
06054	Xylene (Total)		1330-20-7	N.D.	0.5	1	1
GC Vo	latiles	SW-846	8015B	ug/l	ug/l	ug/l	
01728	TPH-GRO N. CA water	C6-C12	n.a.	N.D.	50	100	1

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution
No.					Date and Time		Factor
06054	BTEX+MTBE by 8260B	SW-846 8260B	1	P093321AA	11/28/2009 10:44	Kelly E Keller	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	P093321AA	11/28/2009 10:44	Kelly E Keller	1
01728	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	09327B20A	11/24/2009 03:27	Tyler O Griffin	1
01146	GC VOA Water Prep	SW-846 5030B	1	09327B20A	11/24/2009 03:27	Tyler O Griffin	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 3

Quality Control Summary

Client Name: Chevron Group Number: 1172086

Reported: 12/02/09 at 08:22 AM

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank MDL**	Blank <u>LOQ</u>	Report <u>Units</u>	LCS %REC	LCSD %REC	LCS/LCSD <u>Limits</u>	RPD	RPD Max
Batch number: D093282AA	Sample numl	ber(s): 58	844358-584	4362					
Benzene	N.D.	0.5	1	uq/l	102		79-120		
Ethanol	N.D.	50.	250	ug/l	106		40-158		
Ethylbenzene	N.D.	0.5	1	ug/l	97		79-120		
Methyl Tertiary Butyl Ether	N.D.	0.5	1	ug/l	98		76-120		
Toluene	N.D.	0.5	1	ug/l	104		79-120		
Xylene (Total)	N.D.	0.5	1	ug/l	105		80-120		
Batch number: P093321AA	Sample numl	ber(s): 58	344363						
Benzene	N.D.	0.5	1	uq/l	101	101	79-120	0	30
Ethylbenzene	N.D.	0.5	1	ug/l	94	95	79-120	1	30
Methyl Tertiary Butyl Ether	N.D.	0.5	1	uq/l	101	101	76-120	1	30
Toluene	N.D.	0.5	1	ug/l	98	96	79-120	1	30
Xylene (Total)	N.D.	0.5	1	ug/l	95	94	80-120	1	30
Batch number: 09327B20A	Sample numl	ber(s): 58	844358-584	4363					
TPH-GRO N. CA water C6-C12	N.D.	50.	100	ug/l	118	127	75-135	7	30
Batch number: 093250002A	Sample numl	her(a) · 58	844358-584	4362					
TPH-DRO CA C10-C28	N.D.	32.	100	ug/l	74	75	56-122	2	20

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	MS <u>%REC</u>	MSD %REC	MS/MSD <u>Limits</u>	<u>RPD</u>	RPD <u>MAX</u>	BKG <u>Conc</u>	DUP <u>Conc</u>	DUP <u>RPD</u>	Dup RPD <u>Max</u>
Batch number: D093282AA	Sample	number(s)	: 5844358	-584436	2 UNSP	K: P844411			
Benzene	102	108	80-126	6	30				
Ethanol	108	114	37-164	5	30				
Ethylbenzene	99	106	71-134	6	30				
Methyl Tertiary Butyl Ether	103	100	72-126	3	30				
Toluene	103	112	80-125	8	30				
Xylene (Total)	104	112	79-125	7	30				
Batch number: P093321AA	Sample	number(s)	: 5844363	UNSPK:	P8458	74			
Benzene	102		80-126						
Ethylbenzene	91		71-134						
Methyl Tertiary Butyl Ether	102		72-126						
Toluene	95		80-125						
Xylene (Total)	89		79-125						

^{*-} Outside of specification

- **-This limit was used in the evaluation of the final result for the blank
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 3

Quality Control Summary

Client Name: Chevron Group Number: 1172086

Reported: 12/02/09 at 08:22 AM

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

DUP DUP Dup RPD Analysis Name %REC %REC <u>Limits</u> MAX Conc Conc RPD Max Batch number: 09327B20A Sample number(s): 5844358-5844363 UNSPK: P844295 TPH-GRO N. CA water C6-C12 63-154

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: BTEX, MTBE, ETOH

Batch number: D093282AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
5844358	96	92	95	98
5844359	96	93	96	102
5844360	97	93	94	98
5844361	98	92	95	98
5844362	95	90	94	95
Blank	97	94	93	93
LCS	97	95	92	101
MS	97	92	93	102
MSD	98	96	93	101
Limits:	80-116	77-113	80-113	78-113

Batch number: P093321AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
5844363	86	85	84	81
Blank	86	82	84	80
LCS	86	86	84	82
LCSD	85	85	84	82
MS	86	86	86	85
Limits:	80-116	77-113	80-113	78-113

Analysis Name: TPH-GRO N. CA water C6-C12

Batch number: 09327B20A

Trifluorotoluene-F

5844358	107
5844359	117
5844360	105
5844361	106
5844362	107
5844363	105
Blank	106
LCS	117
LCSD	119
MS	118

*- Outside of specification

- **-This limit was used in the evaluation of the final result for the blank
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 3 of 3

Quality Control Summary

Client Name: Chevron Group Number: 1172086

Reported: 12/02/09 at 08:22 AM

Surrogate Quality Control

Limits:	63-135
	Name: TPH-DRO CA C10-C28
Batch numl	ber: 093250002A
	Orthoterphenyl
5844358	82
5844359	105
5844360	84
5844361	86
5844362	85
Blank	85
LCS	93
LCSD	96
Limits:	59-131

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

	houson	Envison		09-05 agement Compa	CHAIN OF (CUSTODY FOR	M Pd -	, Sai	a Da	 .	- (`A	046	:02		CO	c 1	_ of _ (_
Chevron Site Number		CHAROIT	inental mana	Chevron Consulta		illiger Carryon	Nu.	Sai	i Ra	Ш		ANAL					<u> </u>	_01
Chevron Site Global I	D: <u>T06001</u>	02076		Address: 5900 Hol		mooniilo	H	¥		\Box						#	F	Preservation Codes
Chevron Site Address: 1700 Casrto St CAConsultant Contact: CE								į –										≃HCL T= hiosulfate
Oakland, CA				1	Consultant Phone No. 510-420-3351					Í		È		GREASE			N	≃HNO₃ B = NaOH
Chevron PM: AARON	COSTA		Consultant Project No. Oq1118 - Jol					ဖြ				ALKALINITY		8			s	≈ H ₂ SO ₄ 0 =
Chevron PM Phone N		3-2961		!				오			STLC			101		}		ther rccf #1099
☑ Retail and Terminal Business Unit (RTBU) Job ☑ Construction/Retail Job			Job	Sampling Company: Blaine Tech Services Sampled By (Print): J. Offiz Sampler Signature:			CXXGENATER	ORO 🗆			TTLC [] ST	EPA 310.1		EPA 413.1				rp#11720
(WBS ELEMENTS: SITE ASSESSMENT: A1L SITE MONITORING: OML THIS IS A LEGAL DOC	OOSITE NU REMEDIATION OPERATION	JMBER-0- WI n Implementat Maintenance 8	BS ION: R5L IMONITORING: M1L ST BE FILLED OUT	Lancaster Laboratories ☑ Lancaster, PA Lab Contact: Jiil Parker 2425 New Holland Pike, Lancaster, PA 17601 Phone No: (717)656-2300	Other Lab	Temp. Blank Check Time Temp. OCO 1000 TO 1000	8260B/GC/MS	GRON DRO (B BTEX□ MTBE □	Ca, Fe, K, Mg, Mn, Na	EPA6010/7000 TITLE 22 METALS 🗇	РНО	SM2510B SPECIFIC CONDUCTIVITY	418.1 TRPH []	me (5250)		de fo	Special Instructions ust meet lowest stection limits possible 18260 Compounds ample # 5844358
Field Point Name	SAMPL Matrix	E ID Too Depth	Date	Sample Time	# of Containers	Container Type	EPA 8260	EPA 8015B	EPA 8021B	EPA 6010 Ca,	PA6010/	EPA150.1 PH []	M2510B	EPA 418.	EThans			lotes/Comment
Mw-i	W		(yymmdd)	0755	8	miled	Y		ш	"		ш	· · ·	Ш	x			\$
MW-Z	-		Oques	0820	ĭ	1	入	×		-	$\neg \dashv$				x		_	
Mw.3	 			0900		 	×	X		+					×			
Mw- 4	11			0840		 	X	メ	-	\dashv			-		8	_	1	
ML.T			 	0920		1	×	X		\dashv					ž	\dashv	\top	
RA	TY		مل	0720	2	Vous	X	X							/ ¥		e n	24-G (only)
										_ 							WO .	TP¥- D
Relinquished By Relinquished By	Comp) 1(-1 ⁶	Date/Time:	Relinquished To	Company Company	Date/Time	4.5		Turn Stan Hour Sam	dard s□	×	2. Othe			lab c	48 hou	/al)	72
Reinquished By	Comp yer (any E	19-09 1001 Date/Time 332 19444	Relinquished To	Company	Date/Time	001	111	Intac	t: <u>/</u>	_	On le	ce:	12	Ter COC		· <u> </u>	4.0

Lancaster Laboratories Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

N.D.	none detected	BMQL	Below Minimum Quantitation Level
TNTC	Too Numerous To Count	MPN	Most Probable Number
IU	International Units	CP Units	cobalt-chloroplatinate units
umhos/cm	micromhos/cm	NTU	nephelometric turbidity units
С	degrees Celsius	F	degrees Fahrenheit
Cal	(diet) calories	lb.	pound(s)
meq	milliequivalents	kg	kilogram(s)
g	gram(s)	mg	milligram(s)
ug	microgram(s)	I	liter(s)
ml	milliliter(s)	ul	microliter(s)
m3	cubic meter(s)	fib >5 um/ml	fibers greater than 5 microns in length per ml

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.

Inorganic Qualifiers

- ppb parts per billion
- **Dry weight**Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture.

U.S. EPA data qualifiers:

9	lifier	(uu	9	 u	" 9	•

A B C D E	TIC is a possible aldol-condensation product Analyte was also detected in the blank Pesticide result confirmed by GC/MS Compound quatitated on a diluted sample Concentration exceeds the calibration range of the instrument	B E M N S	Value is <crdl, (msa)="" additions="" amount="" but="" calculation<="" control="" due="" duplicate="" estimated="" for="" injection="" interference="" limits="" met="" method="" not="" of="" precision="" spike="" standard="" th="" to="" used="" within="" ≥idl=""></crdl,>
J	Estimated value	U	Compound was not detected
N	Presumptive evidence of a compound (TICs only)	W	Post digestion spike out of control limits
Р	Concentration difference between primary and	*	Duplicate analysis not within control limits
	confirmation columns >25%	+	Correlation coefficient for MSA < 0.995
U	Compound was not detected		
X,Y,Z	Defined in case narrative		

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY – In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.