Fornio Linon			
ornia Linen	Rental Co., Inc. 989 41ST STREET · OAKLA	ND, CALIFORM	A 94608 • PHONE: (510) 653-6300 • FAX: (510) 601
WE RENT TA TOWELS, M/ GARMENTS	BLE LINENS, APRONS, ESTABLISHED O ATS, AND WASHABLE FOR ALL BUSINESSES	VER 80 YEAPS	PROMPT ECONOMICAL SERVICE
AND PROFES	ssions		
Julie 10, 2008			RECEIVED
Mr. Steven Pl	unkett		2:46 pm, Jun 19, 2008
Alameda Cou	nty Department of Environmental Health		Alemente Country
Alameda, CA	94502		Alameda County
· · · · · · · · · · · · · · · · · · ·			Environmental Health
SUBJECT:	QUARTERLY GROUNDWATER MONI (FEBRUARY THROUGH APRIL 2008) C Fuel Leak Case RO0000337 California Linen Rental Company 989 41 st Street Oakland, CA 94608	TORING . ERTIFICA	AND SAMPLING REPORT TION
Dear Mr. Plur	ikett:		
You will find Inc.	enclosed one copy of the following docume	nt prepared	by RGA Environmental,
• Qu 20	arterly Groundwater Monitoring and Sampl 08) dated May 29, 2008 (document 0304.R1	ing Report .3).	(February Through April
I declare, und above-mention	er penalty of perjury, that the information ar ned report for the subject site is true and corre	nd/or recon	nmendations contained in the est of my knowledge.
Please direct a	Il future correspondence to:		
	7		
California Lin	en Supply Co., Inc.		
California Lin c/o Donald J. 1 2104 Magnetii	en Supply Co., Inc. Miller, President		
California Lin c/o Donald J. 2104 Magnoli Walnut Creek	en Supply Co., Inc. Miller, President a Way CA 94595		
California Lin c/o Donald J. 2104 Magnoli Walnut Creek	en Supply Co., Inc. Miller, President a Way , CA 94595		
California Lin c/o Donald J. 2104 Magnoli Walnut Creek Should you ha	en Supply Co., Inc. Miller, President a Way , CA 94595 .ve any questions, please do not hesitate to cal	11 me at (92	5) 938-2491.
California Lin c/o Donald J. 2104 Magnoli Walnut Creek, Should you ha Cordially,	en Supply Co., Inc. Miller, President a Way , CA 94595 .ve any questions, please do not hesitate to cal	11 me at (92	5) 938-2491.
California Lin c/o Donald J. 2104 Magnoli Walnut Creek Should you ha Cordially, California Lin	en Supply Co., Inc. Miller, President a Way , CA 94595 .ve any questions, please do not hesitate to cal en Supply Co.	11 me at (92	5) 938-2491.
California Lin c/o Donald J. 2104 Magnoli Walnut Creek Should you ha Cordially, California Lin	en Supply Co., Inc. Miller, President a Way , CA 94595 .ve any questions, please do not hesitate to cal en Supply Co.	11 me at (92	5 <u>)</u> 938-2491.
California Lin c/o Donald J. 2104 Magnoli Walnut Creek Should you ha Cordially, California Lin	en Supply Co., Inc. Miller, President a Way , CA 94595 ive any questions, please do not hesitate to cal en Supply Co.	11 me at (92	5) 938-2491.
California Lin c/o Donald J. 2104 Magnoli Walnut Creek Should you ha Cordially, California Lin Donald J. Mill	en Supply Co., Inc. Miller, President a Way , CA 94595 ive any questions, please do not hesitate to cal en Supply Co.	11 me at (92	5) 938-2491.
California Lin c/o Donald J. 2104 Magnoli Walnut Creek Should you ha Cordially, California Lin Donald J. Mill President	en Supply Co., Inc. Miller, President a Way , CA 94595 Ive any questions, please do not hesitate to cal en Supply Co.	11 me at (92	5) 938-2491.
California Lin c/o Donald J. 2104 Magnoli Walnut Creek Should you ha Cordially, California Lin Donald J. Mill President cc: LeRoy Plaza,	en Supply Co., Inc. Miller, President a Way , CA 94595 ive any questions, please do not hesitate to cal en Supply Co. er Griffin, Oakland Fire Department, Office of Suite 3341, Oakland, CA 94612	ll me at (92	5) 938-2491. y Services, 250 Frank Ogawa
California Lin c/o Donald J. 2104 Magnoli Walnut Creek Should you ha Cordially, California Lin Donald J. Mill President cc: LeRoy Plaza, 0304.L80	en Supply Co., Inc. Miller, President a Way , CA 94595 ive any questions, please do not hesitate to cal en Supply Co. er Griffin, Oakland Fire Department, Office of Suite 3341, Oakland, CA 94612	ll me at (92	5) 938-2491. y Services, 250 Frank Ogawa

May 29, 2008 Report 0304.R13 RGA Job #CLR18960

Mr. Donald Miller California Linen Rental Company 2104 Magnolia Way Walnut Creek, CA 94595-1619

SUBJECT: QUARTERLY GROUNDWATER MONITORING AND SAMPLING REPORT (FEBRUARY THROUGH APRIL 2008) Fuel Leak Case RO0000337 California Linen Rental Company 989 41st Street Oakland, CA

Dear Mr. Miller:

RGA Environmental, Inc. (RGA) is pleased to present this report documenting the results of the most recent monitoring and sampling of the wells (MW1, MW2, MW4 through MW7, I1, E1 through E4, and E6 through E9) at the subject site. This work was performed in accordance with a request from the Alameda County Department of Environmental Health (ACDEH) dated January 2, 2003. The wells were purged and sampled on April 3 through 7, 2008. A Site Location Map (Figure 1) and Site Vicinity Map (Figure 2) showing the well locations are attached with this report.

BACKGROUND

The site is currently vacant, and was most recently used as a linen cleaning facility. Detailed discussions of the historic land use, historic subsurface investigations, and remedial actions are provided in RGA's Subsurface Investigation and Well Installation Report (Borings B18 Through B27, B29 Through B48, And Wells E1, E2, E3, E6, E7, I1 and I2) dated April 24, 2007 (document 0304.R5) and RGA's Well Installation Report (E4, E8 and E9) dated May 14, 2007 (document 0304.R9).

Two subsurface investigations related to petroleum distillates (paint thinner) are presently ongoing in the immediate vicinity of the site, with groundwater monitoring wells located approximately 250 feet to the west and slightly north of the subject site. The investigations are for the Kozel property (located to the north of 41^{st} Street) and the Dunne Paints property (located to the south of 41^{st} Street). In addition, a third subsurface investigation related to petroleum hydrocarbons is located at the Fidelity Roof facility approximately 250 feet to the south of the south

FIELD ACTIVITIES

On April 3 through 7, 2008 all groundwater wells at the site were monitored, purged and sampled by RGA personnel. The wells were monitored for depth to water and the presence of free product or sheen. Depth to water was measured to the nearest 0.01 foot using an electric water level indicator. The presence of free product or sheen was evaluated using a transparent bailer and with

1466 66th Street

Emeryville, California 94608

08 510.547.7771 phone

510.547.1983 fax

gas-finding paste on a steel tape. Free product was not observed in any of the wells. No sheen was observed on water from any of the wells, with the exception of oil droplets which were detected on the bailer in well 11. No petroleum hydrocarbon odors were detected in the purge water from the wells with the exception of MW1 which was described as light to moderate, E3 and I1 which was described as moderate to strong. Depth to water level measurements are presented in Table 1.

Prior to sampling, the wells were purged of a minimum of three casing volumes of water. During purging operations, the field parameters of electrical conductivity, temperature, and pH were monitored. Once a minimum of three casing volumes had been purged, or the wells had been pumped dry, water samples were collected using a clean Teflon bailer. The water samples were transferred to 40-milliliter glass Volatile Organic Analysis (VOA) vials containing hydrochloric acid preservative and to one-liter amber glass bottles which were sealed with Teflon-lined screw caps. The VOA vials were overturned and tapped to assure that no air bubbles were present.

The sample containers were then transferred to a cooler with ice, and later were transported to McCampbell Analytical, Inc. in Pacheco, California. McCampbell Analytical, Inc. is a State-Certified hazardous waste testing laboratory. Chain of custody documentation accompanied the samples to the laboratory. Records of the field parameters measured during well purging are attached with this report.

HYDROGEOLOGY

Water levels in wells MW1, MW2, MW4 through MW7, I1, E1 through E4, and E6 through E9 were monitored once during the quarter. Since the previous quarter, groundwater levels have decreased in all of the wells by amounts ranging from 0.60 to 2.78 feet with the exception of E4, where the water level increased by 12.51 feet. A summary of historic groundwater monitoring data and the depth to water level measurements collected during this quarter are presented in Table 1.

Survey data is only available for wells MW1 and MW2, therefore the groundwater flow direction was not calculated for the site. In addition, the survey data is suspect because historic groundwater flow directions calculated at the site using wells MW1, MW2 and MW3 prior to the destruction of well MW3 consistently showed a north-northwest groundwater flow direction at the site, which is not consistent with the southwesterly groundwater flow direction identified at the adjacent property at 1001 42nd Street.

LABORATORY RESULTS

The groundwater samples collected from groundwater wells MW1, MW2, MW4 through MW7, E1 through E4, and E6 through E9 at the subject site were analyzed for Total Petroleum Hydrocarbons as Motor Oil (TPH-MO) and Total Petroleum Hydrocarbons as Diesel (TPH-D) using EPA Method 3510C and 3630C in conjunction with EPA Method 8015C, and Total Petroleum Hydrocarbons as Gasoline (TPH-G) and methyl tertiary-butyl ether (MTBE), benzene, toluene, ethylbenzene, and total xylenes (BTEX) using EPA Method 5030B in conjunction with modified EPA Method 8015C and EPA Method 8021B.

None of the analytes were detected in wells E1, E7, E9, MW2, and wells MW4 through MW7, as was the case during the previous quarterly monitoring and sampling event on January 9 through11, 2008. None of the analytes were detected in wells E2 and E3, also, which shows a decrease in analyte concentration in these wells since the last quarterly sampling event. None of the analytes were detected in wells E4 and MW1, with the exception of benzene at concentrations of 0.57, and 1.5 μ g/L, respectively. None of the analytes were detected in well E6, with the exceptions of TPH-G, benzene, and xylenes, at concentrations of 59, 1.4, and 0.84 μ g/L, respectively. TPH-G, TPH-D, benzene, toluene, ethylbenzene, and xylenes were detected in well E8, at concentrations of 630, 310, 2.2, 0.88, 22, and 25 μ g/L, respectively. The only increase in analyte concentrations since the previous monitoring and sampling event was benzene in wells E6 and E8, and TPH-D, toluene, and ethylbenzene in well E8. Review of the laboratory analytical reports shows that the result reported as TPH-D for well E8 is identified as containing both gasoline and diesel-range compounds. The laboratory analytical results are summarized in Table 2. Copies of the laboratory analytical reports and chain of custody documentation are attached with this report.

DISCUSSION AND RECOMMENDATIONS

Based on the presence of the oil droplets in well II and the fact that several wells surrounding II were sampled, the sample from I1 was not analyzed. The sample results show that no analytes were detected in 10 of the 14 wells, and that in two of the four wells where analytes were detected, only benzene was detected at concentrations of 0.57 and 1.5 ug/L. Since the previous quarter, analyte concentrations only increased in well E8 (TPH-D, benzene, toluene and ethylbenzene) and in well E6 (benzene). All other analyte concentrations either decreased or remained not detected. None of the analytes exceeded their respective San Francisco Bay Regional Water Quality Control Board Table A November 2007 Environmental Screening Levels with the exception of benzene in well E6, benzene in well MW1, and TPH-G, TPH-D, benzene and xylenes in well E8.

Based on the sample results, RGA recommends that case closure be requested.

DISTRIBUTION

Copies of this report will be uploaded to the ACDEH ftp website and GeoTracker website, and one copy of the report will be forwarded to Mr. LeRoy Griffin at the City of Oakland Fire Department.

LIMITATIONS

This report was prepared solely for the use of California Linen Rental Company. The content and conclusions provided by RGA in this assessment are based on information collected during our investigation, which may include, but not be limited to, visual site inspections; interviews with the site owner, regulatory agencies and other pertinent individuals; review of available public documents; subsurface exploration and our professional judgment based on said information at the time of preparation of this document. Any subsurface sample results and observations presented herein are considered to be representative of the area of investigation; however, geological conditions may vary between borings and may not necessarily apply to the general site as a whole.

If future subsurface or other conditions are revealed which vary from these findings, the newlyrevealed conditions must be evaluated and may invalidate the findings of this report.

This report is issued with the understanding that it is the responsibility of the owner, or his representative, to ensure that the information contained herein is brought to the attention of the appropriate regulatory agencies, where required by law. Additionally, it is the sole responsibility of the owner to properly dispose of any hazardous materials or hazardous wastes left onsite, in accordance with existing laws and regulations.

This report has been prepared in accordance with generally accepted practices using standards of care and diligence normally practiced by recognized consulting firms performing services of a similar nature. RGA is not responsible for the accuracy or completeness of information provided by other individuals or entities which is used in this report. This report presents our professional judgment based upon data and findings identified in this report and interpretation of such data based upon our experience and background, and no warranty, either express or implied, is made. The conclusions presented are based upon the current regulatory climate and may require revision if future regulatory changes occur.

Should you have any questions or comments, please do not hesitate to contact us at (510) 547-7771.

Sincerely,

RGA Environmental, Inc.

for

Karin Schroeter Project Manager

and H. King

Paul H. King California Registered Geologist #5901 Expires: 12/31/09

Attachments: Tables 1 & 2 Site Location Map (Figure 1) Site Vicinity Map (Figure 2) Well Monitoring and Purge Data Sheets Laboratory Analytical Reports Chain of Custody Documentation

PHK/sjc 0304.R13

TABLES

Well No	Date	Depth To Water (ft)
E1	4/3/2008	9.03
	1/9/2008	7.57
	10/5/2007	10.01
	7/31/2007	10.50
	3/28/2007	9.17
	11/1/2006	24.15*
E2	4/3/2008	7.85
	1/9/2008	5.96
	10/5/2007	9.54
	7/31/2007	17.00
	3/29/2007	8.18
	11/1/2006	24.55*
E3	4/3/2008	9.07
	1/9/2008	6.74
	10/5/2007	10.76
	7/31/2007	16.70
	3/29/2007	9.24
	11/1/2006	24.35*
	11/1/2000	21100
F4	4/3/2008	8 4 4
21	1/9/2008	20.95
	10/5/2007	11.73
	7/21/2007	28.00*
	1/51/2007	12.15
	4/3/2007	8 20**
	4/3/2007	0.20
F6	4/3/2008	7 87
LO	1/9/2008	5.58
	10/5/2007	0.77
	7/21/2007	7.77 10.78*
	3/20/2007	7 07
	11/1/2006	17.10*
	11/1/2000	17.10
F7	4/3/2008	8 99
L7	1/9/2008	6.64
	10/5/2007	10.31
	7/31/2007	22.80*
	2/28/2007	22.00
	10/21/2006	0.78
	10/31/2000	9.49
EQ	1/2/2008	7.06
Lo	4/3/2008	1.00
	1/9/2008	4.28
	7/21/2007	25.20
	1/51/2007	23.20
	4/0/2007	9.39
	4/3/2007	8.29***
FO	1/3/2000	6.61
E9	4/5/2008	0.01
	1/9/2008	4.29
	10/5/2007	ð.3ð 22.20
	//51/2007	22.20
	4/0/2007	10.25
	4/3/2007	8.23**
T1	4/2/2000	0.00
11	4/3/2008	8.82
	1/9/2008	6.87
	10/5/2007	9.96
	7/31/2007	11.80
	10/31/2006	20.33

NOTES: * = Well being pumped/extracted prior to monitoring. ** = Prior to well development. Wells E8 and E9 were constructed in slant borings.

Well No	Date	Depth To Water (ft)
MW1	4/3/2008	7.89
	1/9/2008	5.66
	10/5/2007	9.40
	7/31/2007	19.50*
	10/31/2006	22.12*
	4/2/2003	7.00
MW2	4/3/2008	8.93
	1/9/2008	7.72
	10/5/2007	9.59
	7/31/2007	9.20
	10/31/2006	8.80
	4/2/2003	9.09
MW4	4/3/2008	9.15
	1/9/2008	7.24
	10/5/2007	11.33
	2/28/2007	18.96
MW5	4/3/2008	8.20
	1/9/2008	7.60
	10/5/2007	8.74
	2/28/2007	7.95
MW6	4/3/2008	9.33
	1/9/2008	6.91
	10/5/2007	10.21
	2/28/2007	7.40
MW7	4/3/2008	8.32
	1/9/2008	5.62
	11/21/2007	8.89

NOTES:

* = Well being pumped/extracted prior to monitoring.** = Prior to well development.

Wells E8 and E9 were constructed in slant borings.

Sample No.	Sample Date	TPH-G	TPH-D	TPH-MO	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
E1	4/04/08	ND<50	ND<50	ND<250	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0
E1	1/11/08	ND<50	ND<50	ND<250	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0
E1	10/05/07	ND<50	ND<50	ND<250	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0
E1	7/31/07	ND<50	ND<50	ND<250	ND<0.5	0.86	ND<0.5	1.2	ND<5.0
E1-W	03/28/07	ND<50	ND<50	ND<250	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0
E1-W	11/1/06	ND<50	ND<50	ND<250	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0
E2	4/04/08	ND<50	ND<50	ND<250	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0
E2	1/10/08	76	68,b, d	ND<250	1.0	ND<0.5	1.7	2.1	ND<5.0
E2	10/8/07	ND<50	ND<50	ND<250	ND<0.5	ND<0.5	ND<0.5	2.8	ND<5.0
E2	7/31/07	ND<50	160, b,f	790	ND<0.5	1.9	0.71	4.2	ND<5.0
E2-W	3/29/07	ND<50	ND<50	ND<250	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0
E2-W	11/1/06	1900,c	1100,b,d,f	1500	0.52	6.9	17	150	ND<5.0
E3	4/04/08	ND<50	ND<50	ND<250	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0
E3	1/11/08	110	110,d	ND<250	0.93	ND<0.5	ND<0.5	0.83	ND<5.0
E3	10/5/07	ND<50	ND<50	ND<250	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0
E3	7/31/07	ND<50	ND<50	ND<250	0.51	2.3	ND<0.5	2.3	ND<5.0
E3-W	3/29/07	ND<50	210, b	ND<250	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0
E3-W	11/1/06	2600,c	640,d,f	260	ND<1.7	ND<1.7	44	350	ND<17
ESL		100	100	100	1.0	40	30	20	5.0

Notes:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

TPH-MO = Total Petroleum Hydrocarbons as Motor Oil.

MTBE = Methyl Tertiary Butyl Ether.

ND = Not Detected.

a = strongly aged gasoline or diesel range compounds are significant.

b = no recognizable pattern.

c = heavier gasoline range compounds are significant (aged gasoline?)

d = gasoline range compounds are significant.

f = oil range compounds are significant.

i = unmodified or weakly modified gasoline is significant.

ESL = Environmental Screening Level developed by San Francisco Bay – Regional Water Quality Control Board (SF-RWQCB) updated November 2007, from Table A. Groundwater is a current or potential source of drinking water.

Values in bold exceed their respective ESL value.

Sample No.	Sample Date	TPH-G	TPH-D	TPH-MO	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
E4	4/04/08	ND<50	ND<50	ND<250	0.57	ND<0.5	ND<0.5	ND<0.5	ND<0.5
E4	1/10/08	ND<50	ND<50	ND<250	0.57	ND<0.5	ND<0.5	ND<0.5	ND<0.5
E4	10/5/07	ND<50	ND<50	ND<250	0.92	ND<0.5	ND<0.5	ND<0.5	ND<5.0
E4	8/02/07	ND<50	63, b	ND<250	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0
E4-W	4/06/07	11,000	810, d	ND<250	63	ND<1.0	6.0	13	ND<10
E6	4/04/08	59	ND<50	ND<250	1.4	ND<0.5	ND<0.5	0.84	ND<5.0
E6	1/10/08	91	93,b,d	ND<250	0.88	ND<0.5	0.52	1.1	ND<5.0
E6	10/8/07	ND<50	ND<50	ND<250	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0
E6	8/01/07	ND<50	1,400, f	2,400	1.4	ND<0.5	ND<0.5	ND<0.5	ND<5.0
E6-W	3/29/07	160, c	240, b,d	ND<250	ND<0.5	ND<0.5	4.2	8.5	ND<5.0
E6-W	11/1/06	310,g	260,d,f, g	470	4.9	ND<0.5	ND<0.5	6.4	ND<5.0
E7	4/04/08	ND<50	ND<50	ND<250	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0
E7	1/10/08	ND<50	ND<50	ND<250	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0
E7	10/5/07	ND<50	ND<50	ND<250	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0
E7	8/01/07	ND<50	ND<50	ND<250	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0
E7-W	3/28/07	ND<50	ND<50	ND<250	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0
E7-W	10/31/06	ND<50	ND<50	ND<250	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0
ESL		100	100	100	1.0	40	30	20	5.0

Notes:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

TPH-MO = Total Petroleum Hydrocarbons as Motor Oil.

MTBE = Methyl Tertiary Butyl Ether

ND = Not Detected.

a = strongly aged gasoline or diesel range compounds are significant.

b = no recognizable pattern.

c = heavier gasoline range compounds are significant (aged gasoline?)

d = gasoline range compounds are significant.

f = oil range compounds are significant.

g = liquid sample that contains greater than ~1 vol. % sediment

ESL = Environmental Screening Level developed by San Francisco Bay – Regional Water Quality Control Board (SF-RWQCB) updated November 2007, from Table A. Groundwater is a current or potential source of drinking water.

Values in bold exceed their respective ESL value.

Sample No.	Sample Date	TPH-G	TPH-D	TPH-MO	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
E8	4/07/08	630	310,b, d	ND<250	2.2	0.88	22	25	ND<5.0
E8	1/9/08	690, b,c	240,d	ND<250	1.2	0.67	7.5	68	ND<5.0
E8	10/8/07	400,b,c	81, d	ND<250	1.2	1.3	6.9	58	ND<5.0
E8	8/01/07	ND<50	ND<50	ND<250	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0
E8-W	4/06/07	110, c	54, d	ND<250	0.62	ND<0.5	ND<0.5	11	ND<5.0
E9	4/04/08	ND<50	ND<50	ND<250	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0
E9	1/9/08	ND<50	ND<50	ND<250	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0
E9	10/8/07	ND<50	ND<50	ND<250	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0
E9	8/01/07	ND<50	ND<50	ND<250	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0
E9-W	4/06/07	110, c	62, d	ND<250	ND<0.5	ND<0.5	ND<0.5	5.1	ND<5.0
I1	10/5/07	ND<50	85, b	ND<250	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0
I1	8/01/07	ND<50	ND<50	ND<250	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0
I1-W	11/1/06	ND<50,g	ND<50, g	ND<250	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0
I2		No	Samples						
ESL		100	100	100	1.0	40	30	20	5.0

Notes:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

TPH-MO = Total Petroleum Hydrocarbons as Motor Oil.

MTBE = Methyl Tertiary Butyl Ether

ND = Not Detected.

a = strongly aged gasoline or diesel range compounds are significant.

b = no recognizable pattern.

c = heavier gasoline range compounds are significant (aged gasoline?)

d = gasoline range compounds are significant.

f = oil range compounds are significant.

g = liquid sample that contains greater than \sim 1 vol. % sediment

i = unmodified or weakly modified gasoline is significant.

k = lighter than water immiscible sheen/product is present.

ESL = Environmental Screening Level developed by San Francisco Bay – Regional Water Quality Control Board (SF-RWQCB) updated November 2007, from Table A. Groundwater is a current or potential source of drinking water.

Values in bold exceed their respective ESL value.

Sample No.	Sample Date	TPH-G	TPH-D	TPH-MO	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
MW1	4/04/08	ND<50	ND<50	ND<250	1.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0
MW1	1/10/08	63	ND<50	ND<250	1.8	ND<0.5	0.79	2.0	ND<5.0
MW1	10/8/07	ND<50	ND<50	ND<250	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0
MW1	8/01/07	ND<50	230, b, f	500	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0
MW1-W	3/29/07	ND<50	180, b, f	370	0.63	ND<0.5	ND<0.5	0.83	ND<5.0
MW1-W	11/1/06	8500,c	5800,d,f	2600	ND<5.0	30	69	1000	ND<50
MW1	4/2/03	24000	NA	NA	ND<0.5	ND<0.5	ND<0.5	0.74	ND<5.0
MW1	03/18/92	77000	1400	NA	17,000	18000	2300	1300	ND<0.05
MW1	11/21/91	47000	9800	NA	6000	7200	2200	1000	NA
MW1	08/15/91	59000	3500	NA	3800	5500	1100	4800	NA
MW1	06/05/91	23000	560	NA	2000	1200	640	2500	NA
MW1	01/28/91	99000	1700	NA	4400	7400	1800	8600	NA
MW1	10/23/90	50000	1100	NA	3300	4000	4200	4700	NA
MW1	07/25/90	34000	ND	NA	2000	670	120	1500	NA
MW1	02/20/90	73000	2200	NA	7500	5900	680	5300	NA
MW1	10/02/89	70000	610	NA	2800	2400	2300	4800	NA
ESL		100	100	100	1.0	40	30	20	5.0

Notes:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

TPH-MO = Total Petroleum Hydrocarbons as Motor Oil.

MTBE = Methyl Tertiary Butyl Ether

ND = Not Detected.

NA = Not Analyzed

a = strongly aged gasoline or diesel range compounds are significant.

b = no recognizable pattern.

c = heavier gasoline range compounds are significant (aged gasoline?)

d = gasoline range compounds are significant.

f = oil range compounds are significant.

g = liquid sample that contains greater than ~ 1 vol. % sediment

i = unmodified or weakly modified gasoline is significant.

ESL = Environmental Screening Level developed by San Francisco Bay – Regional Water Quality Control Board (SF-RWQCB) updated November 2007, from Table A. Groundwater is a current or potential source of drinking water.

Values in bold exceed their respective ESL value.

Sample No.	Sample Date	TPH-G	TPH-D	TPH-MO	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
MW2	4/04/08	ND<50	ND<50	ND<250	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0
MW2	1/9/08	ND<50	ND<50	ND<250	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0
MW2	10/5/07	ND<50	ND<50	ND<250	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0
MW2	7/31/07	ND<50	ND<50	ND<250	ND<0.5	ND<0.5	ND<0.5	0.59	ND<5.0
MW2-W	3/28/07	ND<50	ND<50	ND<250	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0
MW2-W	11/1/06	ND<50	ND<50	ND<250	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0
MW2	4/2/03	ND<50	NA	NA	4000	1600	2000	1400	ND< 50
MW2	03/18/92	ND	ND	NA	ND	1.1	ND	3.3	NA
MW2	11/21/91	ND	ND	NA	ND	ND	ND	ND	NA
MW2	08/15/91	ND	ND	NA	ND	ND	ND	ND	NA
MW2	06/05/91	ND	ND	NA	ND	ND	ND	ND	NA
MW2	01/28/91	ND	ND	NA	ND	ND	ND	ND	NA
ESL		100	100	100	1.0	40	30	20	5.0

Notes:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

TPH-MO = Total Petroleum Hydrocarbons as Motor Oil.

MTBE = Methyl Tertiary Butyl Ether

ND = Not Detected.

NA = Not Analyzed

a = strongly aged gasoline or diesel range compounds are significant.

b = no recognizable pattern.

c = heavier gasoline range compounds are significant (aged gasoline?)

d = gasoline range compounds are significant.

f = oil range compounds are significant.

g = liquid sample that contains greater than ~1 vol. % sediment

i = unmodified or weakly modified gasoline is significant.

ESL = Environmental Screening Level developed by San Francisco Bay – Regional Water Quality Control Board (SF-RWQCB) updated November 2007, from Table A. Groundwater is a current or potential source of drinking water.

Values in bold exceed their respective ESL value.

Sample No.	Sample Date	TPH-G	TPH-D	TPH-MO	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
MW2	10/23/90	ND	ND	NA	ND	ND	ND	ND	NA
MW2	07/25/90	ND	ND	NA	ND	ND	ND	ND	NA
MW2	02/20/90	ND	ND	NA	ND	ND	ND	ND	NA
MW2	10/02/89	ND	ND	NA	ND	ND	ND	ND	NA
MW3	02/20/90	ND	ND	NA	ND	ND	ND	ND	NA
MW3	10/02/89	ND	ND	NA	ND	ND	ND	ND	NA
MW4	4/04/08	ND<50	ND<50	ND<250	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0
MW4	1/10/08	ND<50	ND<50	ND<250	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0
MW4	10/5/07	ND<50	ND<50	ND<250	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0
MW4	2/28/07	ND<50	ND<50	ND<250	NA	NA	NA	NA	NA
MW5	4/03/08	ND<50	ND<50	ND<250	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0
MW5	1/11/08	ND<50	ND<50	ND<250	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0
MW5	10/8/07	ND<50, g	ND<50, g	ND<250	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0
MW5	2/28/07	ND<50, g	ND<50, g	ND<250	NA	NA	NA	NA	NA
ESL		100	100	100	1.0	40	30	20	5.0

Notes:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

TPH-MO = Total Petroleum Hydrocarbons as Motor Oil.

MTBE = Methyl Tertiary Butyl Ether

ND = Not Detected.

NA = Not Analyzed

a = strongly aged gasoline or diesel range compounds are significant.

b = no recognizable pattern.

c = heavier gasoline range compounds are significant (aged gasoline?)

d = gasoline range compounds are significant.

f = oil range compounds are significant.

g = liquid sample that contains greater than \sim 1 vol. % sediment

i = unmodified or weakly modified gasoline is significant.

ESL = Environmental Screening Level developed by San Francisco Bay – Regional Water Quality Control Board (SF-RWQCB) updated November 2007, from Table A. Groundwater is a current or potential source of drinking water.

Values in bold exceed their respective ESL value.

Sample No.	Sample Date	TPH-G	TPH-D	TPH-MO	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
MW6	4/03/08	ND<50	ND<50	ND<250	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0
MW6	1/11/08	ND<50	ND<50	ND<250	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0
MW6	10/8/07	ND<50, g	ND<50,g	ND<250	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0
MW6	2/28/07	ND<50	140, j	ND<250	NA	NA	NA	NA	NA
MW7	4/03/08	ND<50	ND<50	ND<250	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0
MW7	1/10/08	ND<50	ND<50	ND<250	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0
MW7	11/21/07	NA	ND<50	ND<250	NA	NA	NA	NA	NA
ESL		100	100	100	1.0	40	30	20	5.0

Notes:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

TPH-MO = Total Petroleum Hydrocarbons as Motor Oil.

MTBE = Methyl Tertiary Butyl Ether

ND = Not Detected.

NA = Not Analyzed

a = strongly aged gasoline or diesel range compounds are significant.

b = no recognizable pattern.

c = heavier gasoline range compounds are significant (aged gasoline?)

d = gasoline range compounds are significant.

f = oil range compounds are significant.

g = liquid sample that contains greater than ~1 vol. % sediment

i = unmodified or weakly modified gasoline is significant.

j = kerosene / kerosene range

ESL = Environmental Screening Level developed by San Francisco Bay – Regional Water Quality Control Board (SF-RWQCB) updated November 2007, from Table A. Groundwater is a current or potential source of drinking water.

Values in bold exceed their respective ESL value.

FIGURES

WELL MONITORING AND PURGE DATA SHEETS

NI

RGA ENVIRONMENTAL GROUNDWATER MONITORING/WELL PURGING DATA SHEET site Name California Lincalentals Well No 0304 198 Job No. Date 4/3 108 σΥ 9.03 No TOC to Water (ft.) Sheen 24.7 Well Depth (ft.) Free Product Thickness (0.65)Well Diameter Sample Collection Method 6.0 Disposeble Gal./Casing Vol. Daile-3001= 30.6 ps/cn ELECTRICAL ΰĊ TIME GAL. PURGED <u>нa</u> TEMPERATURE CONDUCTIVIT 046 3.4 6.95 17.7 4,000 1048 6.8 **F**1. 0 000 10.2 050 9 6. 000 1052 6 13 \mathcal{O} 000 4 1054 .0 17 6 000 1056 20.4 8 6 . 6 000 13.8 93 8.9 1058 1000 1103 well 9,6 6.9 000 17.2 deviatering 6.90 20.5 1109 3<u>0.6</u> 1000 TJIZ NOTES: Sample time =) Nocheen or phe odo-.

GROUNDWATER MONITO	ORMENTAL BRING/WELL PURGING
Site Name California Line Kutels	Well No EQ
JOD NO. 0304	Date 4/3/08 + 4/4/05
TOC to Water (ft.) 7.85	Sheen NU
Well Depth (ft.) 24.6	Free Product Thickness
Well Diameter <u>4" (0.65)</u>	Sample Collection Method
Gal./Casing Vol. 0.9	Disposable bailer
30-1=33.7	C ELECTRICAL LISKE
1553 3.6 6.78	17.9 > 400
1555 7.2 6.90	17.1 24.000
1557 10.9 6.85	16.6 24.000
1559 14.5 6.81	16.9 24.000 Struch
1601 18.1 5,6,846.8	2 17.5 >4,000 garatering
51- 1603-1604 71.8 6.80	18,7 >4,000 Draw
1611 25.4 6.79	18.8 24,000
1617 29.0 6.81	19,0 >4,000 > increased
1619 32.7 6187	19.2 >4,000 rate
NOTES	
No color + No sheen	
Sample time => 17	74C

,

RGA ENVIRONMENTAL GROUNDWATER MONITORING/WELL PURGING										
Site Name Californic Lin	u Rintels	SHEET Well No.	F3							
JOB NO. 0704		Date 4/3/07 +4/4/08								
TOC to Water (ft.) 9.07		Sheen N_{-5}								
Well Depth (ft.) 24.7		Free Product Thickness								
Well Diameter $4^{\prime\prime}$ (0.6.	(2	Sample Collection Method								
Gal./Casing Vol. 10.7		Pisoz	sable bailer							
3001=30	5.6									
TIME GAL. PURGED	pH -7	TEMPERATURE	CONDUCTIVITY MS/Cm							
165 + 3.4	6.83	16-7	3,526							
6.8	6.89	16.7	3,272							
1657 10.2	6.89	16.7	3,244							
1659 13.6	6.88	16.7	3,217							
1700 17.0	6.87	17.0	3,224							
1701 20,4	6.88	17.4	3,252							
1703 23.8	6,84	17.7	3,276							
1707 27.2	6.82	17.9	3 588							
1711 30.6	6.81	18.6	3 607							
- Yester										
	·									
	·····									
	- <u></u>									
		<u></u>								
			·							
	a rule									
NOTES:	-pheolor +	nosheen								
ـــــــــــــــــــــــــــــــــــــ	ct Sample	time=>1750								

PURGE07.00

/

	GROU	RGA ENVIRON NDWATER MONITOR	NMENTAL ING/WELL PURGING	
Site Na	me CaliforniaL	in Rentels	EET Woll No	EΥ
Job No.	0304		Neri No	108 + 4/4/28
TOC to I	Water (ft) 8.44	1	Sheen A	15
Well Der	oth (ft.) 27.8		Free Prod	ust Thickness ()
Well Dia	ameter $4''(0)$.65)	Sample Co	lection Method
Gal./Cas	sing vol 12.6		Dispose	He hales
	301-2	28	<u> </u>	
TIME	GAL. PURGED	<u>pH</u>	TEMPERATURE	CONDUCTIVITY
142)	4.2	sx <u>6.8</u> 6.77	18:4	2,338
1425	8.4	6.76	17.6	2,310
1427	17.6	6.74	17.4	2,362
1429	16.8	6.72	17.4	2,398
143	21.0	6:72	17.3	2,426
143)	25.2	54-6.71	17.5	1985
1435	19.4	6.71	17.7	2,547- 2,547
1440	33.6	6.66	17.7	2,558
1444	37.8	6.64	17.6	2,723
		- <u></u>	. <u></u>	,
	• ••••••••••••••••••••••••••••••••••••			
		<u></u>		
	· · · · · · · · · · · · · · · · · · ·		<u></u>	
		<u></u>		
NOTES:	Noshe - No odo	~		
<u>-</u>	Somole the	51540		an de la companya de
PURGEOZ		~ 7		

.

	GROUN	RGA ENVIR DWATER MONITC	CONMENTAL	
Site Na Job No. TOC to Mell Dep Well Dia Gal./Cas TIME 1675 1677 1677 1630 1632 1633 1634 1635	$\begin{array}{r} \text{GROUN} \\ \text{me} & \underline{Califiraic Liau} \\ \hline 0304 \\ \text{Water (ft.)} & \underline{7.87} \\ \text{pth (ft.)} & \underline{19.9} \\ \text{ameter} & \underline{5.94''(0.} \\ \text{sing Vol.} & \underline{7.9} \\ \hline 3.01 - 23 \\ \hline 3.01 - 23$	RGA ENVIR DWATER MONITO DATA S 1.7 6.47 6.47 6.76 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.22 6.37 6.34 6.31	RONMENTAL DRING/WELL PURGING SHEET Well No. Date $4/3/6$ Sheen N Free Produ Sample Col 15,5 16,9 16,2 16,2 16,4	$\frac{E6}{28 \pm \frac{4}{4}/\frac{9}{08}}$ ct Thickness $\underline{\times}$ lection Method ble <u>back</u> ELECTRICAL <u>fs/cm</u> $\frac{24,000}{3,672}$ 3,672 3,641 3,614 3,927 3,945 24,000 24,000 3,927 3,945 24,000 24,000 3,927 3,945 24,000 24,000
NOTES :	No Sheen + No			

S

.

ND

RGA ENVIRONMENTAL						
GROUNDWATER MONITON DATA S	HEET					
site Name <u>California Lineakertals</u>	Well No	E7				
JOD NO. 0304	Date 4/3/	08 + 4/4/=8				
TOC to Water (ft.) 8.49	Sheen_//	0				
Well Depth (ft.) 24.0	Free Produc	ct Thickness				
Well Diameter 4" (0.65)	Sample Col	lection Method				
Gal./Casing Vol. 9.8	Dispos	cle bailer				
5001= 29.4	¢Ċ	ELECTRICAL MACK.				
TIME GAL. PURGED DH	TEMPERATURE	CONDUCTIVITY				
1129 3.2 6.90	18.6	3,250				
1131 6.4 6.84	18.1	3,086				
1133 9.9 6,94	17.7	3,034				
1135 13.0 6,82	17.7	7,997				
1137 16.2 6.79	17.8	2,988				
1139 19.6 6.82	17.9	3,022				
1141 22.8 6.83	18.4	3,643), we'l				
1143 26.0 6.83	18.9	3,063 3 devatering				
1151 29.4 6.84	20.3 -	3,088				
		/				
NOTES: No Shend No dor						
Simple time >17	00					

	GROU	RGA ENVI NDWATER MONIT	RONMENTAL ORING/WELL PURGING	2	
0 44 - 14	Califactul		SHEET	, ra	
Site Nan	ne <u>Chitomic Lin</u> 0204	in Kintels	Well No.	Eð	
JON DOL			Date 4/3	108 3 4/7/08	
TOC to W	Nater (ft.) 7.06		Sheen	<u>po</u>	
Well Dep	oth (ft.) 33.9	(C)	Free Prod	duct Thickness \mathcal{Q}	
Well Dia	imeter 7 (0.1	[دە	Sample Co	ollection Method	
Gal./Cas	ing vol. 7.2		Vispos	alle bailer	
TIME	5vol=51	6	C C	ELECTRICAL MS	len
0921	S. 7	6.70	169	1784	, -
0924	11 4	6 67	175	1262	
1978	17.2	6.20	$\frac{1}{7}$	1720	
0934	229	1.70	17.3	1752	
09201	28.6	6.10	5148-01011	1 T Ja dun	Plack+r
NACZ	244	6.01	10/1	4466	
1003	$\frac{\mathbf{y}_{-}(\cdot \mathbf{y}_{-})}{\mathbf{y}_{-}(\cdot \mathbf{y}_{-})}$	$\frac{6.70}{6.13}$	$\frac{1.7.1}{157.1}$	$-\frac{1}{180}$	
1005	40.1	6.69	18,8	1,897	
1010	45.8	6.75	19.0	1851	
1014	21.10	6.70	11,5	1,877	
·····					
····			······		
					
NOTES :	mod-strong phe o	dor Noshe	دم		
	ł	sample	hme ⇒ 1075		

ND

RGA ENVIRONMENTAL						
	GROUN	DWATER MONITO	RING/WELL PURGIN(Sheet	3		
Site Name	Calitornia Line	n Kentals	Well No.	- E 9		
Job No	0304		Date 4/1	5/08 24/4/28		
TOC to Wa	ter (ft.) 0.61		Sheen	NJJ		
Well Dept	h (ft.) 31.4		Free Prod	duct Thickness 💋		
Well Diam	eter 4" (0,65		Sample Co	ollection Method		
Gal./Casi	ng vol. 16.2		Pise	osable bailer		
	3001=48	.6	0	C ELECTRICAL Mycm		
1222	GAL. PURGED	<u>ph</u> 6,68	TEMPERATURE	<u>CONDUCTIVITY</u>		
1224	<u> </u>	662	190	17501		
1227	11. 7	6:60	191	$\frac{1}{7}$		
1227	21.6	6. (4 -	- 19.2	$\frac{1}{1}$		
1241	170	6.50	19 4	$\frac{1}{1}$		
1346	22.4	6.56	19.7	1/41		
1254	37.4 -	6.55	19,9	r 635		
1400	43.2	655	20.2	1 63 2		
1404	48.6	<u>6,55</u>	20.5	1,630		
<u></u>				11000		
		- <u></u>				
		<u></u>				
		And Provide Parling of				
		<u>778</u>				
				an <u>a ang ka</u> na kanang manakan kanang		
						
				· · · · · · · · · · · · · · · · · · ·		
NOTES :	Well draws down	+ this only N	20-25/10-5			
<u> </u>	No chin + 0.2 ide	~ San alati-	2 1535			
		<u> </u>				

RGA ENVIRONMENTAL GROUNDWATER MONITORING/WELL PURGING DATA SHEET

NES

Egler

ELECTRICAL

CONDUCTIVITY

4000

000

000

000

000

000

000

1000

000

Site Name Cal Dornig Linealertels Well No 0304 4/3/05 Job No. Date 8.82 TOC to Water (ft.) Sheen Well Depth (ft.) Free Product Thickness Well Diameter 2" (0.16) Sample Collection Method 22 possible Gal./Casing Vol. 30-1=6.6 6C PURGED TIME GAL. <u>рН</u> TEMPERATURE 633 7.18 0.7 6,4 636 .4 7,24 2.7 639 , 25 9 7.25 Q 1 3.6 64 7.24 8,0 64 .4 7.Jc 64 51 8.1 1649 8.3 5.8 7.06 1651 6,96 ς. 6.6

~ gassunter finding parte = hesotive/none able anot. Well close to demintering upon end parge NOTES: (hecked Oresonce up onbuilt- anit mess produc Sample time = 1655 Sheen + mulphe ador PURGE07.00

(10)

	GROUNDW	RGA ENVIRO	NMENTAL ING/WELL PURGING		
Site Name	alternia Linen	Rentels	HEET Well No. 🖊	mw1	
Job No.	0304		Date 4/3/	08 24/4/08	
TOC to Water	(ft.) 7.89		SheenN	0	
Well Depth (ft.) <u>221</u>		Free Produ	ct Thickness 😥	
Well Diamete	r_ 4" (0.65)		Sample Col	lection Method	
Gal./Casing	vol. 9.3		Dispose	able byler	
	3001=27.9			ELECTRICAL	s/cm
TIME	GAL. PURGED		TEMPERATURE	CONDUCTIVITY	
1430	3.1	6.75	17,-1	74000	
1951	6.2	6.66	17.2	24000	
1500	<u> </u>	6.80	$\frac{16,5}{11,2}$	<u> </u>	
1502	12.7	6,80	16. >	24,000	
1504	15.5	6.79	16.5	74,000	
1506	18.6	6.14	16.8	24,000	
1500	21.7	6.65	17.6	24,000	weil
1510	29.0	6.70	18:5	27,000	denatering
1515	27.9	6.91		24,00 -	
	· · · · · · · · · · · · · · · · · · ·	<u></u>	erene en de la Mandale en Mandale en est		
					
		<u></u>			
NOTES: L+-r	nod. pheodo	No sheen.	Sample Tive > 17	.30	
	ι.		•		

swolls lot yours hast 20000 ND 20 RGA ENVIRONMENTAL GROUNDWATER MONITORING/WELL PURGING DATA SHEET site Name California Linen Rentals MW2 Well No. 0304 108 Job No. Date 4/3/08 +4 8.97 TOC to Water (ft.) Sheen 22.7 Well Depth (ft.) Free Product Thickness 4" (0.65)Well Diameter Sample Collection Method 9.0 bailer sposable Gal./Casing Vol. ps/cm 3001=77.0 ELECTRICAL ٥С TIME CONDUCTIVITY GAL. PURGED <u>рН</u> TEMPERATURE 6.95 3.0 9,0 えてる 6.9 8.4 6.Ù 2 6.9 1248 9.0 8.1 23 1250 6.89 12.0 2 18-1 1252 8.2 5.0 VO 8.0 18.8 1253 098 6.80 Well dewitering 1254 9.6 21.0 094 6.78 NA3.75 gallous 1301 Weil dewater We 19:0 No shear a rodon Sarple time = 1525 NOTES:

ND

RGA ENVIRONMENTAL GROUNDWATER MONITORING/WELL PURGING						
site Name Californie Linen Re	intels	Well No	N W 4			
Job No. 0304		Date 4/3/	28 +4/4/25			
TOC to Water (ft.) 9.15	-	Sheen A	10			
Well Depth (ft.) 76.3	-	Free Produc	T Thickness			
Well Diameter 1.5" (1).0"	9)	Sample Coll	ection Method			
Gal./Casing Vol. 116	-	-5 PE th	hine & S/C Check Walve			
301=4.8	-	$\sim + c \sim - c$	ELECTRICAL USA			
TIME GAL. PURGED	Ha	TEMPERATURE	CONDUCTIVITY			
1520 0.5	6,86	17.5	21818			
1524 1.0	6.30	17.5	1,753			
1526 1.6	6.81	17.2	2,740			
12901 7.1	6.82	17.1	2,748			
1534 7-6 Well d	eventured a	~ 2.2 gallins."	MS/ow rechange			
<u>4.3</u>						
4.8						
		<u></u>				
		American (1997) - Maria (1997)				
NOTES: No the share						
/VO JNec + /VO 00+-						
Saryine TIMEY 10+3h	2 7115	0				

ND

RGA ENVIRONMENTAL						
	GROUND	WATER MONITOR DATA SI	LING/WELL PURGING HEET			
Site Name	California Linen	lentel 5	Well No	MWS		
Job No	0304		Date 4/3/	08		
TOC to Wate	r (ft.) <u>8,70</u>		Sheen	NO		
Well Depth	(ft.) <u>25.1</u>		Free Produc	ct Thickness 🖉		
Well Diamet	er <u>1.5 (0.04</u>	<u>9)</u>	Sample Col:	lection Method		
Gal./Casing	vol. 1.6		PE tabi	ng & S/S check ralue		
17 T M 12	sus-4.8) 	5 C	ELECTRICAL MStem		
1426	().≤	7.26	19	1.50%		
1430	1.0	717	19.1	1446		
1433	1.6	71S	19,0	1, 453		
1436	2.1	7.10	19.0	1,468		
1438	2.6	7.07	18.9	1,487		
1441	3.2	7.06	19.3	1,491		
1443	3-7 Well	de watere	~ 3.35211.25			
	4.2					
	of st si-					
	#*** <u>***</u> ******************************					
Nome				a - Anna - An		
NOTES :	No sheent no	odo-				
	Shaple	the=>145	shrj			

ND

-

GROINDA	RGA ENVIRO	NMENTAL ING/WELL PURGING	
	DATA SH	HEET	
Site Name California Linea K	intels	Well No.	<u>NM ~</u>
Job No. 0304		Date <u>4/3/3</u>	5
TOC to Water $(ft.) = \frac{9.33}{2}$		Sheen 🕺 🔨	0
Well Depth (ft.) 24.5		Free Produc	ct Thickness
Well Diameter 1.5" (0.0"	$\underline{\nu}$	Sample Coll	lection Method
Gal./Casing Vol. 14		PETubin	g & S/s checkvalue
302=4.2		<u>َ</u>	ELECTRICAL MS/CM
TIME GAL. PURGED	Ha ()	TEMPERATURE	CONDUCTIVITY
$\frac{1}{1222}$ $\frac{0.5}{0.5}$	6,72	17.5	1,269
100	6.10	17.0	1,293
1336 1.9	6.86	16.5	4247
1)50 1.9	6.87	16.5	1,251
1592 2.9	6.86	16.4	1/245
1345 2.8	6.88	16.5	1,262
1347 3.3	6.90	16.6	1,270
1350 3.8	6.87	16.8	1,285
1352 4.2 vell	devoterch@	NY. O gallons	
	- <u></u>		
	- the tage of tage		
Annale - Marine - Alan - Annale - Annal			
			A STATE OF THE OTHER AND A STATE OF THE OTHER ADDRESS OF
annalise and a subscription of the subscription of			
NOTES:	Nho that I a	nondon	
	Chn al.	1mo-2+251-1410	an a

ND

-

GROUNDWATE	GA ENVIRONMENT	AL ELL DURGING	
	DATA SHEET	FUD FORGING	
site Name (alterniching Kint	Lls	Well No	MW7
Job No. 0304		Date 4/3/0	δ
TOC to Water (ft.) 8.32		Sheen	0
Well Depth (ft.) 20.0		Free Product	t Thickness 🦉
Well Diameter <u>J'' (0.16)</u>		Sample Colle	ection Method
Gal./Casing Vol9		Pisposch	le bailer
3-1=5.7		ەر	ELECTRICAL MS/CM
TIME GAL PURGED		ERATURE	CONDUCTIVITY
1216 0.6	F.17-	<u></u>	2,811
1549 1.2 7	1.6 16	», (2,848
1552 1.9	7.13 16	1,1	2,910
1554 2.5	7.15 16	. 1	2,911
1556 3.1	7.14 16	<u>,)</u>	2,913
1558 3.8	7.09 16	. 2	2,899
1600 4,4	2.06 16	. 3	2,840
1602 5.0	7,07 16	- <u>y</u>	2,852
1601 5.7	7.08 16	* 5	2,860
NOTES:	sheen + No -	dar	
<i>j</i> ot	Sampl	ctime => 167	51 < 1615

LABORATORY REPORTS AND CHAIN OF CUSTODY DOCUMENTATION

McCampbell An "When Quality	1534 Will Web: www.mc Telepho	ow Pass Road, Pittsburg, campbell.com E-mail: m one: 877-252-9262 Fax:	CA 94565-1701 aain@mccampbell.com 925-252-9269	
RGA EnvironmentalClient Project ID: # CLR18 California Linen Rentals1466 66th Street		8960/0304;	Date Sampled:	04/03/08-04/04/08
			Date Received:	04/07/08
Emeryville CA 94608	Client Contact: Steven Carmack		Date Reported:	04/14/08
Linery vine, Cri 94000	Client P.O.:		Date Completed:	04/10/08

WorkOrder: 0804156

April 14, 2008

Dear Steven:

Enclosed within are:

- 1) The results of the 14 analyzed samples from your project: # CLR18960/0304; California Linen
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

		RGA Environ 1466 - 66 th S	nmental, Inc.			0804156																
R	LA	510-658-436 510-834-015 paul.king@r	33 52 fax gaenv.com	СНА		1	OF	CUST	ODY	REC	OR	C							PAGE	1	0F	(
	PROJECT	NUMBER:	304	Liher Ren	tals			Sten	:[[]]		//	/		THE	/							
	SAMPLED BY: (PRINTED AND SIGNATURE) Steve Carmack Hug							Parme	_		ABER OF	AMAL YS	The second	5/	//	//		ESERVA	/	REL	ARKS	
	SAMPLE	NUMBER	DATE	TIME	m	PE	0	SAMPLE LO	CATION		CON	R	1	1/	/			5				
t	E1		4/08	1215	Hz	0					7	X	X	1			146	N	ome	1 Tur	any	Time
++	E3		4.4.08	1750							7	x	X	_					1			\square
++	66		4.4.08	1745							7	X	X	-				-	+			\square
t	E7 E8		4.4.08	1200							7	X X	X	-	-							
T	Eq		4.4.08	1535	H			12 0000			7	X	X	1								
++	nw1		4.5.08	1730			ON HO	n per x	AX		77	X X	X	+				-	_			
+ +	MWA		4.4.08	1575	\square						77	X X	XX	+	ICI	E / to	82	-		+		
+ 1	MWS		4.3.08	1455		-					7	X	X	-	GC HE DE	OD CAD S	ONDIT		AR	PPROP	AINERS	\leq
T	MW	7	4.3.08	1615	1	1					7	X	x	+	PR	ESER	VATION	- rold	OAG	WETAL	OTHER	
	RELINQUI	SHED BY:	(SIGNATURE	<u> </u>	DA' 4/7/	TE	USL CSL	RECEIVED	ay: (sici	NATURE)	2	TOTAL	NO. 0	OF SAMP HPMENT) OF CONTL HPMENT)	ABIDIS	15 05	- 1	BORA	TORY:	u fa	alytic	c1
-	RELINDUISHED BY: (SIGNATURE) BATE TIME						Zee	H. BUR	BY: (SIG	NATURE)		A	yel	R	con (del	ITAC		877	TORY	-97	G 2	BER:
	RELINQUISHED BY: (SIGNATURE) DATE TIME							RECEIVED F	OR LAB	ORATORY	8Y:			SAMP	TACH	AN AL IED:	()Y	REQU ES (EST SI	HEET		
Results and billing to: + Invice a (so the RGA Environmental, Inc. I is downer yachvan paul.king@rgaenv.com										Ai	(b=#	U (pre:	se~vi	d n	1	ACL					

McCampbell Analytical, Inc.

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252-9262				WorkO	order: 0804156	Clie	ntCode: RGAE		
		WriteOn	EDF	Excel	Fax	🖌 Email	HardCopy	ThirdParty	J-flag
Report to:				В	sill to:		Req	uested TAT:	5 days
Steven Carmack	Email:	paul.king@rgae	nv.com; pdking	0000@a	Lisa Devito				
RGA Environmental	TEL:	(510) 658-6916	FAX: (510) 8	34-0152	RGA Environr	mental			
1466 66th Street	PO:				1466 66th Str	eet	Dat	e Received:	04/07/2008
Emeryville, CA 94608	ProjectNo	: # CLR18960/03	04; California L	inen	Emeryville, C/	۹ 94608	Dat	e Printed:	04/07/2008
-		Rentals			lisa.devito@rg	gaenv.com			

					Requested Tests (See legend below)											
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0804156-001	E1	Water	4/4/2008 12:15		В	А										
0804156-002	E2	Water	4/4/2008 17:40		В	Α										
0804156-003	E3	Water	4/4/2008 17:50		В	А										
0804156-004	E4	Water	4/4/2008 15:40		В	А										
0804156-005	E6	Water	4/4/2008 17:45		В	А										
0804156-006	E7	Water	4/4/2008 12:00		В	А										
0804156-007	E8	Water	4/4/2008 10:25		В	А										
0804156-008	E9	Water	4/4/2008 15:35		В	Α										
0804156-010	MW1	Water	4/4/2008 17:30		В	Α										
0804156-011	MW2	Water	4/4/2008 15:25		В	А										
0804156-012	MW4	Water	4/4/2008 10:25		В	А										
0804156-013	MW5	Water	4/3/2008 14:55		В	А										
0804156-014	MW6	Water	4/3/2008 14:10		В	А										
0804156-015	MW7	Water	4/3/2008 16:15		В	А										

Test Legend:

1 G-MBTEX_W	2 TPH(DMO)WSG_W
6	7
11	12

3	
8	

4	
9	

5			
10			

Prepared by: Kimberly Burks

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc. "When Ouality Counts"

Sample Receipt Checklist

Client Name:	RGA Environmen	tal			Date a	and Time Received:	4/7/2008 4	:43:36 PM
Project Name:	# CLR18960/0304	; California Linen	Rent	als	Check	klist completed and r	eviewed by:	Kimberly Burks
WorkOrder N°:	0804156	Matrix <u>Water</u>			Carrie	r: <u>Rob Pringle (M</u>	AI Courier)	
		Chain	of Cu	stodv (C	OC) Informa	ation		
	10				<u>, </u>			
Chain of custody	/ present?		Yes	V	No 🗀			
Chain of custody	/ signed when relinqui	shed and received?	Yes	\checkmark	No 🗆			
Chain of custody	agrees with sample	abels?	Yes	\checkmark	No 🗌			
Sample IDs noted	d by Client on COC?		Yes	\checkmark	No 🗆			
Date and Time of	f collection noted by Cl	ient on COC?	Yes	✓	No 🗆			
Sampler's name	noted on COC?		Yes	✓	No 🗆			
		6		Dessint	Information			
		<u></u>	ampie	Receipt	Information	<u>l</u>	_	
Custody seals in	tact on shipping conta	iner/cooler?	Yes		No 🗆		NA 🔽	
Shipping contain	er/cooler in good conc	lition?	Yes	\checkmark	No 🗆			
Samples in prop	er containers/bottles?		Yes	✓	No 🗆			
Sample containe	ers intact?		Yes	\checkmark	No 🗆			
Sufficient sample	e volume for indicated	test?	Yes	✓	No 🗌			
		Samula Draca			ld Time (UT) Information		
		Sample Flese	valio			<u>j mormation</u>		
All samples rece	ived within holding tim	e?	Yes	\checkmark	No 🗌			
Container/Temp	Blank temperature		Coole	er Temp:	8.2°C		NA 🗆	
Water - VOA via	Water - VOA vials have zero headspace / no bubbles?				No 🗆	No VOA vials subm	itted	
Sample labels cl	Sample labels checked for correct preservation?				No 🗌			
TTLC Metal - pH	acceptable upon rece	ipt (pH<2)?	Yes		No 🗆		NA 🗹	

Client contacted:

Date contacted:

Contacted by:

Comments:

	McCampbell	Analy ality Counts	tical, Inc.	:	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269									
RGA	Environmental		Client Proje	ect ID: #	CLR	R18960/0304;	California	Date Sample	ed: 04/03/08-	-04/04/	08			
1466 (66th Street		Linen Rent	als				Date Received: 04/07/08						
Emen	aville CA 94608		Client Con	tact: Ste	ven (Carmack	Date Extract	ed: 04/09/08-	04/09/08-04/10/08					
Linery	Vinc, CA 94000		Client P.O.					Date Analyz	ed 04/09/08-	04/09/08-04/10/08				
Extracti	Gasolin	e Range (C 6-C12) Vola Analy	t ile Hydr ytical method	ocar s SW	bons as Gaso /8021B/8015Cm	line with BTF	X and MTBE	* Work Order	: 0804	156			
Lab ID	Client ID	TPH(g)	MTBE	,	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS				
001B	E1	W	ND	ND		ND	ND	ND	ND	1	95			
002B	E2	W	ND	ND		ND	ND	ND	ND	1	110			
003B	E3	W	ND	ND		ND	ND	ND	ND	1	118			
004B	E4	W	ND	ND		0.57	ND	ND	ND	1	105			
005B	E6	W	59,a	59,a ND		1.4	ND	ND	0.84	1	102			
006B	E7	W	ND	ND		ND	ND	ND	ND	1	110			
007B	E8	W	630,a	ND		2.2	0.88	22	25	1	98			
008B	Е9	W	ND	ND		ND	ND	ND	ND	1	111			
010B	MW1	W	ND	ND		1.5	ND	ND	ND	1	104			
011B	MW2	W	ND	ND		ND	ND	ND	ND	1	92			
012B	MW4	W	ND	ND		ND	ND	ND	ND	1	92			
013B	MW5	W	ND	ND		ND	ND	ND	ND	1	91			
014B	MW6	W	ND	ND		ND	ND	ND	ND	1	91			
015B	MW7	W	ND	ND		ND	ND	ND	ND	1	91			
Reporting Limit for DF =1; W 50 5.						0.5	0.5	0.5	0.5	1	μg/L			
ND at	means not detected at or bove the reporting limit	NA	NA		NA	NA	NA	NA	1	mg/Kg				

* water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; p) see attached narrative.

	Campbell An "When Quality	alytical,	Inc.	1534 V Web: www. Teler	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269							
RGA Environm	nental	Client Proje	ct ID: # C	LR18960/0304;	Date Sampled: 04/03/08-04/04/08							
1466 66th Stree	>t	California L	inen Renta	ls	Date Received: 04/07/	Date Received: 04/07/08						
		Client Cont	act: Stever	n Carmack	Date Extracted: 04/07/	08						
Emeryville, CA	94608	Client P.O.:			Date Analyzed: 04/07/	08-04/10/)8					
	Total E	xtractable Pe	etroleum H	ydrocarbons with Silic	a Gel Clean-Up*							
Extraction method:	SW3510C/3630C		Analytical	methods: SW8015C	Wo	rk Order: 0	804156					
Lab ID	Client ID		Matrix	TPH-Diesel (C10-C23)	TPH-Motor Oil (C18-C36)	DF	% SS					
0804156-001A	E1		W	ND	ND	1	105					
0804156-002A	E2		W	ND	ND	1	108					
0804156-003A	04156-003A E3		W	ND	ND	1	110					
0804156-004A	E4	E4		ND	ND	1	105					
0804156-005A	E6		W	ND	ND	1	105					
0804156-006A	E7		W	ND	ND	1	115					
0804156-007A	E8		W	310,d,b	ND	1	115					
0804156-008A	E9		W	ND	ND	1	114					
0804156-010A	MW1		W	ND	ND	1	117					
0804156-011A	MW2		W	ND	ND	1	117					
0804156-012A	MW4		W	ND	ND	1	114					
0804156-013A	MW5		W	ND	ND	1	115					
0804156-014A MW6			W	ND	ND	1	114					
0804156-015A	0804156-015A MW7		W	ND	ND	1	102					

Reporting Limit for DF =1;	W	50	250	μg/L
ND means not detected at or	S	NA	NA	mg/Kg
above the reporting limit				

* water samples are reported in μ g/L, wipe samples in μ g/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in μ g/L.

#) cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract; &) low or no surrogate due to matrix interference.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel (asphalt); f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to matrix interference; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit; p) see attached narrative.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder 0804156

EPA Method SW8021B/8015Cm Extraction SW5030B BatchID: 34852 Spiked Sample ID: 0804156-0										0804156-01	5B	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc)		
, and y to	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex ^f)	ND	60	90.6	83.8	7.78	96.4	89.3	7.65	70 - 130	20	70 - 130	20
MTBE	ND	10	104	94.1	10.5	121	99	19.7	70 - 130	20	70 - 130	20
Benzene	ND	10	93.8	83.1	12.2	93.2	93.2	0	70 - 130	20	70 - 130	20
Toluene	ND	10	85	76.8	10.2	85.6	84.6	1.18	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	94.6	87.1	8.25	94.4	92.5	2.02	70 - 130	20	70 - 130	20
Xylenes	ND	30	89.7	82.7	8.14	89.5	88.9	0.650	70 - 130	20	70 - 130	20
%SS:	91	10	98	94	4.82	95	95	0	70 - 130	20	70 - 130	20
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:												

NONE

BATCH 34852 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0804156-001B	04/04/08 12:15 PM	04/09/08	04/09/08 3:18 AM	0804156-002B	04/04/08 5:40 PM	04/09/08	04/09/08 4:41 AM
0804156-003B	04/04/08 5:50 PM	04/09/08	04/09/08 5:11 AM	0804156-004B	04/04/08 3:40 PM	04/10/08	04/10/08 2:10 AM
0804156-005B	04/04/08 5:45 PM	04/10/08	04/10/08 3:10 AM	0804156-006B	04/04/08 12:00 PM	04/09/08	04/09/08 6:12 AM
0804156-007B	04/04/08 10:25 AM	04/10/08	04/10/08 3:40 AM	0804156-008B	04/04/08 3:35 PM	04/09/08	04/09/08 7:12 AM
0804156-010B	04/04/08 5:30 PM	04/10/08	04/10/08 2:40 AM	0804156-011B	04/04/08 3:25 PM	04/09/08	04/09/08 5:59 AM
0804156-012B	04/04/08 10:25 AM	04/09/08	04/09/08 7:04 AM	0804156-013B	04/03/08 2:55 PM	04/09/08	04/09/08 7:36 AM
0804156-014B	04/03/08 2:10 PM	04/09/08	04/09/08 8:09 AM	0804156-015B	04/03/08 4:15 PM	04/09/08	04/09/08 8:41 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0804156

EPA Method SW8015C	Extrac	ction SW	3510C/30	630C	Ba	tchID: 34	806	Sp	iked Sam	ked Sample ID: N/A Acceptance Criteria (%)			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)		
, indigite	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD MS / MSD RPD LCS/LCSD 0.455 N/A N/A 70 - 130	RPD				
TPH-Diesel (C10-C23)	N/A	1000	N/A	N/A	N/A	119	120	0.455	N/A	N/A	70 - 130	30	
%SS:	N/A	2500	N/A	N/A	N/A	116	117	0.939	N/A	N/A	70 - 130	30	
All target compounds in the Method E NONE	lank of this	extraction	batch we	ere ND les	s than the	method R	L with th	e following	exceptions:				

BATCH 34806 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0804156-012A	04/04/08 10:25 AM	04/07/08	04/08/08 10:55 PM	0804156-013A	04/03/08 2:55 PM	04/07/08	04/08/08 7:16 AM
0804156-014A	04/03/08 2:10 PM	04/07/08	04/08/08 8:22 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification N° 1644

McCampbell Analytical, Inc.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0804156

EPA Method SW8015C	Extrac	ction SW	3510C/36	630C	Ba	tchID: 34	853	Sp	iked Sam	ole ID:	N/A	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	CSD LCS-LCSD Acceptance Criteria (%) Rec. % RPD MS / MSD RPD LCS/LCSD RI 111 0.889 N/A N/A 70 - 130 3 105 2.09 N/A N/A 70 - 130 3	RPD			
TPH-Diesel (C10-C23)	N/A	1000	N/A	N/A	N/A	112	111	0.889	N/A	N/A	70 - 130	30
%SS:	N/A	2500	N/A	N/A	N/A	107	105	2.09	N/A	N/A	70 - 130	30
All target compounds in the Method E NONE	Blank of this	extraction	batch we	ere ND les	s than the	method R	L with th	e following	exceptions:			

	BATCH 34853 SUMMARY												
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed						
0804156-001A	04/04/08 12:15 PM	04/07/08	04/08/08 11:29 AM	0804156-002A	04/04/08 5:40 PM	04/07/08	04/08/08 12:22 PM						
0804156-003A	04/04/08 5:50 PM	04/07/08	04/10/08 3:13 AM	0804156-004A	04/04/08 3:40 PM	04/07/08	04/08/08 2:03 PM						
0804156-005A	04/04/08 5:45 PM	04/07/08	04/08/08 2:39 PM	0804156-006A	04/04/08 12:00 PM	04/07/08	04/08/08 12:40 AM						
0804156-007A	04/04/08 10:25 AM	04/07/08	04/08/08 1:46 AM	0804156-008A	04/04/08 3:35 PM	04/07/08	04/08/08 3:08 PM						
0804156-010A	04/04/08 5:30 PM	04/07/08	04/08/08 2:52 AM	0804156-011A	04/04/08 3:25 PM	04/07/08	04/08/08 3:58 AM						

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification N° 1644

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0804156

EPA Method SW8015C	Extrac	ction SW	3510C/36	630C	Ba	tchID: 34	855	Sp	iked Sam	N/A		
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	e Criteria (%)	1
, include	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH-Diesel (C10-C23)	N/A	1000	N/A	N/A	N/A	110	109	0.865	N/A	N/A	70 - 130	30
%SS:	N/A	2500	N/A	N/A	N/A	114	116	1.22	N/A	N/A	70 - 130	30
All target compounds in the Method B NONE	%SS: N/A 2500 N/A N/A N/A 114 116 1.22 N/A N/A 70 - 130 30 All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: N/A N/A N/A N/A 70 - 130 30 NONE Image: NON											

TCH 34855 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0804156-015A	04/03/08 4:15 PM	l 04/07/08	04/08/08 5:26 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification N° 1644

