PROTECTION

SECOR
International Incorporated

August 14, 1998

98 AUG 19 AM 1:52

Mr. Barney Chan
Hazardous Materials Specialist
Alameda County Department
of Environmental Health
1131 Harbor Bay Parkway, 2nd Floor
Alameda, California 94502

SUMMARY REPORT FOR ADDITIONAL SITE CHARACTERIZATION, 580 JULIE ANN WAY, OAKLAND, CALIFORNIA, ST ID #4008, FOR METZ BAKING COMPANY

Dear Mr. Chan:

SECOR International Incorporated (SECOR) is pleased to submit this Summary Report presenting the procedures and results of additional Site characterization conducted at 580 Julie Ann Way in Oakland, California (the Site, see Figure 1, Site Location Map). SECOR is submitting this document on behalf of the Metz Baking Company (Metz) which operated the Site as a San Francisco French Bread Company (SFFBC) baking and distribution facility. The scope of work performed was in general accordance with SECOR's Work Plan dated October 31, 1997, as conditionally approved by the Alameda County Department of Environmental Health (ACDEH) in a November 7, 1997 letter.

SITE BACKGROUND

The Site is located in a mixed commercial/industrial area and consists of a large warehouse/bakery and an open asphalt parking/work area (Figure 2). The Site is used by the SFFBC to prepare and distribute baked food products. The Site formerly operated one 8,000-gallon capacity gasoline underground storage tank (UST) and one 10,000-gallon capacity diesel UST. Previous subsurface investigations conducted by Groundwater Technology, Inc. (GTI) in June 1991 and SECOR in November 1993 indicated the presence of total petroleum hydrocarbons as gasoline (TPHg) and TPH as diesel (TPHd) in soil samples collected in the immediate vicinity of the USTs. At soil boring locations further away from the USTs, low to non-detectable concentrations of TPHg and TPHd were reported; however, elevated concentrations of high-boiling point hydrocarbons (total oil and grease/total recoverable petroleum hydrocarbons) were reported at all boring locations where analyzed.

SECOR supervised the excavation and removal of the two USTs in September 1995. Petroleum hydrocarbon-impacted soil and groundwater were observed during UST removal activities, laboratory analysis of collected soil and groundwater samples revealed the presence of TPHg, TPHd, and high-boiling hydrocarbons. Based on the apparent composition of these high-boiling point hydrocarbons and their pervasive presence in fill soil underlying the Site, it was determined that the source of these hydrocarbons is not related to the USTs. SECOR supervised the installation of four groundwater monitoring wells (MW-1 through MW-4) adjacent to the former USTs in February and August 1996, soil and groundwater samples collected and analyzed during these activities revealed the presence of TPHg, TPHd, TPH as motor oil (TPHmo), and benzene, toluene, ethylbenzene, and xylenes (BTEX).

PRELIMINARY FIELD ACTIVITIES

Prior to initiation of field activities, SECOR obtained a well construction permit from Alameda County Public Works Agency and encroachment permits from the City of Oakland for work in the public right-of-way. The proposed well locations were cleared with respect to underground utilities and other obstructions by California Utility Surveys (CUS) and Underground Service Alert (USA) was notified 48-hours in advance of field activities. SECOR also updated the existing Site-specific Health and Safety Plan (HASP) to address the proposed scope of work.

FIELD ACTIVITIES

Drilling and Soil Sampling

Three boreholes (MW-5, MW-6, and MW-7) were advanced on May 20, 1998 by Gregg Drilling & Testing, Inc. of Martinez, California under the direction of a SECOR geologist utilizing a truck-mounted drill rig equipped with 8-inch diameter hollow-stem augers (Figure 2). Three boreholes (MW-5, MW-6, and MW-7) were advanced to a total depth of 16 feet below ground surface (bgs). Relatively undisturbed soil samples were collected for lithologic description and possible chemical analysis at 5- to 5.5-foot intervals using a California-modified split-spoon sampler lined with three 6-inch long brass tubes. Soil cuttings generated during field activities were placed in 55-gallon drums and stored on-site pending appropriate disposal.

A SECOR geologist described the soil encountered according to the Unified Soil Classification System (USCS) and maintained boring logs of these descriptions that are included as an attachment. A representative soil sample from each sample interval was screened in the field for the presence of volatile organic compounds (VOCs) using an organic vapor meter 580B Photoionization Detector (PID). Screening results are documented on the boring logs. SECOR selected one to three soil samples for chemical analysis from the MW-5, MW-6, and MW-7 borehole locations.

The ends of the brass tubes containing the soil samples were covered with teflon sheeting, fitted with plastic end caps, labeled, and stored in an ice-filled cooler. The samples selected for chemical analysis were transported to Chromalab Environmental Services (Chromalab) in Pleasanton, California, a state-certified laboratory with a completed chain-of-custody record. The soil samples collected during the investigation were analyzed for TPHg, TPHd, and TPHmo by EPA Method 8015, modified and BTEX and methyl tertiary butyl ether (MTBE) by EPA Method 8020. Three soil samples collected from MW-7 were also analyzed for total organic carbon (TOC) by EPA Method 9060. Additionally, analysis of polynuclear aromatic hydrocarbons (PAHs) by EPA Method 8270A was performed for the soil samples collected from wells MW-5 through MW-7 as requested by the ACDEH to evaluate the presence of heavy oil constituent.

Monitoring Well Installation

Three boreholes were converted to groundwater monitoring wells MW-5, MW-6, and MW-7 and completed at a total depth of 15 feet bgs after backfilling the borehole with filter sand from 16 feet bgs (Figure 2). Each well was completed with 11 feet of capped, flush-threaded, 2-inch diameter Schedule 40 PVC 0.020-inch machine slotted well screen from 15 feet bgs and completed with blank casing to ground

surface. Filter sand was placed in the annular space between the wall of the borehole and casing to a height of one foot above the screened interval. One foot of bentonite pellets was placed above the sand and hydrated. A cement-grout mixture (5% bentonite) was then placed into the remaining annular space to ground surface. A flush-mounted, protective water-tight monument cover was then grouted slightly above ground surface to complete the well installation. Each well was also fitted with a locking water-tight well cap. Well construction details are provided on Table 1 and are displayed graphically on the attached boring logs.

Well Development and Sampling

Newly-installed groundwater monitoring wells were developed on June 4, 1998 by alternately surging with a surge block and bailing with a PVC bailer. Well development continued until the groundwater was reasonably free of sediment. During well development, measurements and observations of pH, electrical conductivity, temperature, color, and turbidity were recorded on the attached Water Sample Field Data Sheets. Ten casing volumes of groundwater were removed from wells MW-5 through MW-7 during development. Three casing volumes of groundwater were removed from wells MW-1 through MW-4, which had been previously developed and sampled. All water generated during well development and sampling was stored in 55-gallon drums at an on-site location pending appropriate disposal.

Following well development, SECOR collected groundwater samples from each well for chemical analysis on June 4, 1998. The groundwater samples were collected using a disposable PVC bailer and decanted directly into laboratory-supplied sample containers. Each of the sample containers was labeled, sealed in plastic bags, and placed in an ice-filled cooler. The samples were submitted to Chromalab along with a completed chain-of-custody record. The groundwater samples collected were analyzed for TPHg, TPHd, and TPHmo by EPA Method 8015, modified, for BTEX and MTBE by EPA Method 8020. Additionally, all groundwater collected from wells MW-1 through MW-7 were analyzed for total dissolved solids (TDS) by EPA Method 160.1.

WELL SURVEY AND WATER LEVEL MEASUREMENTS

The newly-installed wells and existing Site wells were surveyed for the top of PVC casing elevation by Ron Archer, Civil Engineer, Inc. of Pleasanton, California, a California-licensed land surveyor. Table 1 summarizes well construction details and wellhead elevations. Wellhead elevations were surveyed with respect to mean sea level (msl) using the brass disc benchmark, set in a standard monument casing at the intersection of Coliseum Way and Kevin Court. The elevation of this benchmark was taken at 7.69 feet above msl. Depth-to-groundwater measurements for all Site wells were recorded on June 4, 1998 using an electronic water-level indicator which are included the attached Field Report. These measurements along with calculated groundwater elevations are presented on Table 1.

SUBSURFACE CONDITIONS

Soil beneath the Site consists of fill material extending to approximately 7 to 9.5 feet bgs overlying Bay Mud that is present to the total depth explored of 16 feet bgs. Fill material consists of light olive brown to very dark gray sandy clay and gravelly sand and is identified as fill material based on the presence of

brick and concrete fragments and pieces of wood and tires. This interpretation of fill soil is consistent with observations made during UST removal and previous Site investigation activities. Consistency of this material ranged from stiff to hard and all fill soil was observed to be moist. Underlying the fill material is Bay Mud which consists of very dark gray organic clay, dark greenish gray clay, and lesser amounts of sandy clay. Bay Mud deposits were observed to be soft to very stiff and contained root material. This soil interval ranged in plasticity from low to high, density of this interval was low, with weak platy or subangular blocky soil structures. These deposits were typically moist, however, groundwater was observed where pore space was present. The subsurface conditions beneath the Site are displayed on generalized geologic cross section A-A' (Figure 3).

Results of field screening with the PID indicated the presence of organic vapors at the borehole MW-5 through MW-7 locations ranging from 1 to 85 parts per million (ppm). A chemical odor was also noted in the samples of fill material collected at approximately 4 feet bgs in these three wells. The field screening results and field observations are included on the attached boring logs.

Groundwater was first encountered at approximately 10 feet bgs during borehole advancement only at the MW-7 location. On June 4, 1998, stabilized groundwater measurement in wells MW-1, MW-2, MW-3, MW-4, and MW-7 ranged from 2.72 to 5.60 feet below the top of the PVC casing translating to groundwater elevations between 4.10 and 7.40 feet above msl. No groundwater was encountered during borehole advancement at the MW-5 and MW-6 locations. However, SECOR constructed a monitoring well at the MW-5 and MW-6 borehole locations based on the presence of groundwater at the other nearby wells and borehole locations. On June 4, 1998, stabilized groundwater in wells MW-5 and MW-6 were measured at depths of 5.44 and 7.92 feet below top of PVC casing, respectively. Groundwater elevations calculated from the June 4, 1998 depth-to-groundwater measurements were contoured and displayed as Figure 4. This map indicates a generalized groundwater flow direction towards the north under an average hydraulic gradient of 0.036 feet per foot (ft/ft). Depth-to-groundwater measurements and groundwater elevations are summarized on Table 1.

SOIL AND GROUNDWATER ANALYTICAL RESULTS

Soil and groundwater analytical results are summarized on Tables 2 and 3 and laboratory analytical reports and chain-of-custody records are attached. Soil samples collected from the MW-5, MW-6, and MW-7 boreholes at depths ranging from 4 to 15 feet bgs were submitted for chemical analysis. Soil sample MW-5-4 was reported to contain benzene and xylenes at respective concentrations of 2.1 milligrams per kilogram (mg/kg) and 1.2 mg/kg. Soil sample MW-6-4 was reported to contain TPHd and TPHmo at respective concentrations of 12 mg/kg and 110 mg/kg. Soil sample MW-7-4 was reported to contain TPHd at a concentration of 3.3 mg/kg. Chromalab indicated that these TPHd results do not match the pattern of the fresh diesel standard. TPHg and PAHs were not detected above the laboratory reporting limit in any of the soil samples analyzed. Three soil samples collected from the MW-7 borehole location at depths of 4, 10, 15 feet bgs were reported to contain TOC concentrations at 0.622%, 0.731%, and 0.078%, respectively.

The groundwater sample collected from well MW-1 was reported to contain TPHg at a concentration of 1,800 micrograms per liter ($\mu g/\ell$). The maximum BTEX concentrations were reported in the samples collected from wells MW-1 and MW-2 at 160 $\mu g/\ell$, 2.6 $\mu g/\ell$, 300 $\mu g/\ell$, and 3.5 $\mu g/\ell$, respectively. TPHd

was reported in each of the seven collected samples at concentrations ranging from $120 \mu g/\ell$ to $4,100 \mu g/\ell$. TPHmo was reported in samples collected from wells MW-1, MW-4, and MW-7 at respective concentrations of 640 $\mu g/\ell$, 710 $\mu g/\ell$, and 540 $\mu g/\ell$. However, Chromalab indicated that these TPHd and TPHmo results do not match the patterns of the laboratory standards. MTBE was not detected in any of these samples above the laboratory reporting limit of 5.0 $\mu g/\ell$. TDS was reported in all seven of the collected groundwater samples at concentrations ranging from 580 milligrams per liter (mg/ ℓ) to 43,000 mg/ ℓ . Groundwater analytical results are displayed graphically on Figure 5.

SUMMARY AND CONCLUSIONS

Based on the results of the additional Site characterization work described herein and previous investigation findings, the following conclusions can be made.

- Two primary soil intervals are present within the upper 16 feet bgs: fill material extends from the ground surface to approximate depths of 7 to 9.5 feet bgs and is underlain by Bay Mud deposits which extend to the total depth explored (16 feet bgs).
- First encountered groundwater occurs at approximately 3 to 8 feet bgs and flows in a general northerly direction. Based on lithologic differences, the fill soils underlying the Site are expected to be more permeable and transmissive than the underlying Bay Mud deposits, which are composed predominantly of clay-rich soils. Accordingly, the majority of groundwater storage and transport in the shallow subsurface is expected to occur within the fill material.
- Analytical results for groundwater samples collected from newly-installed monitoring wells MW-5
 and MW-6 (located downgradient from the former USTs and dispensers) indicate that significant
 off-Site migration of gasoline-range hydrocarbons (TPHg) and BTEX originating at the former
 gasoline UST and dispensers has not occurred.
- Low concentrations of diesel-range hydrocarbons (TPHd) were present in soil samples from borings MW-6 and MW-7 and groundwater samples collected from each of the newly-installed wells (MW-5 through MW-7). Diesel-range hydrocarbons present in soil and groundwater samples from these wells do not match the laboratory diesel standard and were reported by the laboratory as in the late diesel range. It is believed that the source of these diesel-range hydrocarbons is likely related to the occurrence of higher-boiling point hydrocarbons observed to be present in fill soils throughout the area, and not related to the former USTs.
- Groundwater beneath the subject Site is not used for drinking purposes due to the high TDS concentrations (greater than 3,000 mg/ ℓ).

RECOMMENDATIONS

Based on the results of this investigation and previous Site activities, the extent of petroleum hydrocarbons, related to the former USTs, in groundwater beneath the Site has been defined. Groundwater chemical results demonstrate that the concentrations of petroleum hydrocarbons are low and the impacted area of

the contaminants is limited. Therefore, SECOR proposes to perform the Tier II Risk-Based Corrective Action (RBCA) Risk Assessment for the Site closure. SECOR will also conduct quarterly groundwater monitoring for the Site for three more quarters to obtain additional hydrologic and chemical data in groundwater.

If you have any questions or comments, please do not hesitate to contact us at (415) 882-1548.

Sincerely,

SECOR International Incorporated

Liping Zhang Project Manager Bruce E. Scarbrough, R.G. Principal Geologist

cc: Mr. Christopher Rants, Metz Baking Company

Attachments:

Table 1 - Well Construction Details and Groundwater Elevations

Table 2 - Soil Analytical Results

Table 3 - Groundwater Analytical Results

Figure 1 - Site Location Map

Figure 2 - Site Plan with Cross Section Location

Figure 3 - Generalized Geologic Cross Section A-A'

Figure 4 - Groundwater Elevation Contour Map, June 4, 1998

Figure 5 - Groundwater Chemical Results, June 4, 1998

Appendix A - Boring Logs

Appendix B - Field Report and Water Sample Field Data Sheets

Appendix C - Laboratory Analytical Results and Chain-of-Custody Records

TABLE 1 WELL CONSTRUCTION DETAILS AND GROUNDWATER ELEVATIONS

580 Julie Ann Way Oakland, California

WELL NUMBER	TOTAL DEPTH®	SCREENED INTERVAL [®]	CASING DIAMETER®)	TOP OF CASING ELEVATION®	DATE	DEPTH TO GROUNDWATER ⁽⁶⁾	GROUNDWATER ELEVATION [©]
MW-1	14.5	4.5-14.5	2	10.06	08/16/96 08/22/96 06/04/98	4.41 4.45 3.66	5.65 5.61 6.40
MW-2	15	5-15	2	10.17	08/16/96 08/22/96 06/04/98	4.52 4.54 3.83	5.65 5.63 6.34
MW-3	15	5-15	2	10.12	08/16/96 08/22/96 06/04/98	12.66 7.99 2.72	-2.54 2.13 7.40
MW-4	15	5-15	2	9.70	08/16/96 08/22/96 06/04/98	5.72 5.72 5.60	3.98 3.98 4.10
MW-5	15	4-15	2	9.42	06/04/98	5.44	3.98
MW-6	15	4-15	2	9.88	06/04/98	7.92	1.96
MW-7	15	4-15	2	9.91	06/04/98	3.58	6.33

NOTES:

- (a) Measured in feet below ground surface.
- (b) Measured in inches.
- (c) Measured in feet above mean sea level.
- (d) Measured in feet below top of PVC casing.

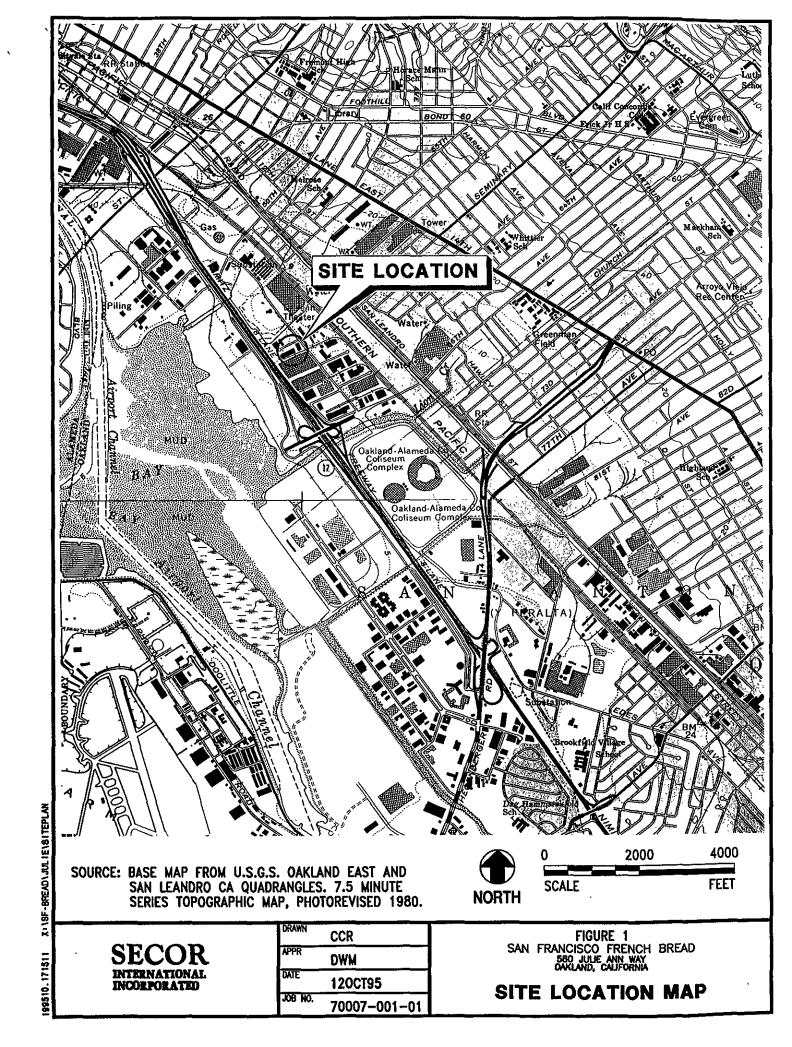
TABLE 2 SOIL ANALYTICAL RESULTS

580 Julie Ann Way Oakland, California

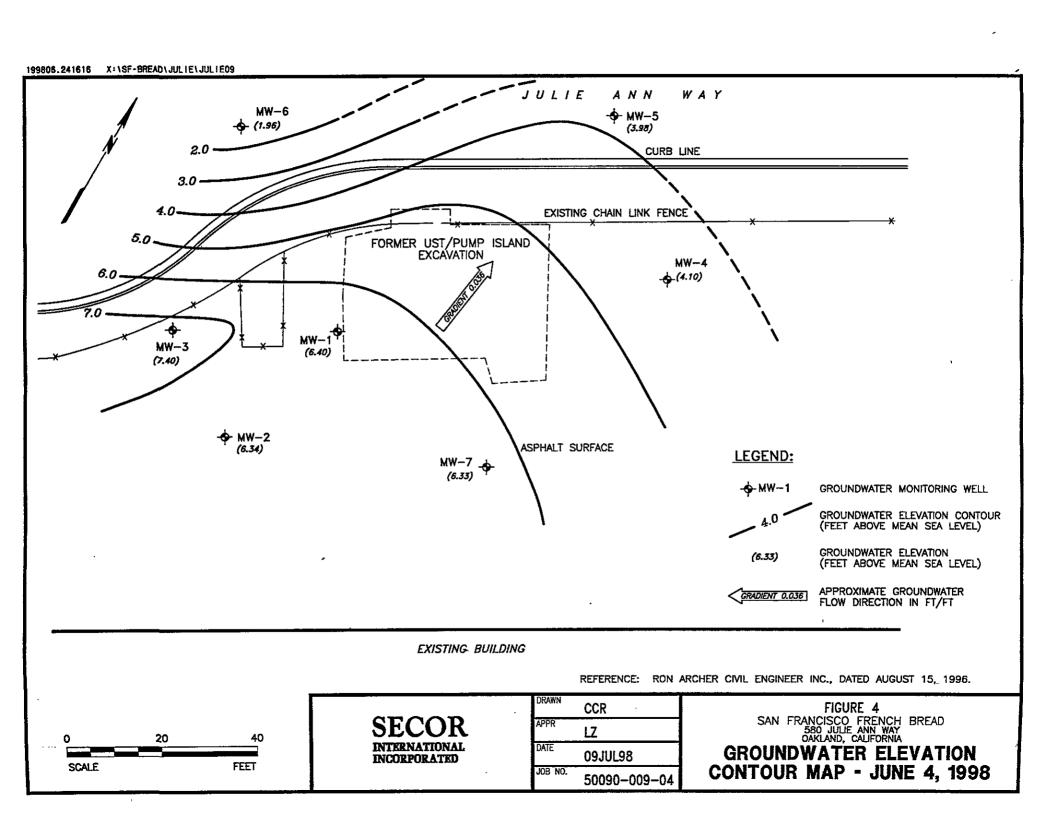
SAMPLE NUMBER	SAMPLE DEPTH®	TPHg ⁽⁰⁾ (mg/kg) ₍₀₎	TPHd ⁽⁰⁾ (mg/kg)	TPHmo ^(c) (mg/kg)	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Xylenes (mg/kg)	MTBE ⁽⁰ (mg/kg)	TOC® (mg/kg)	PAH ^{®)} (mg/kg)
MW-5-4	4.0-4.5	ND ⁶⁾ <10	ND<1	ND<50	2.1	ND<0.62	ND<0.62	1.2	ND<0.62	NA [®]	ND ^(k)
MW-6-4	4.0-4.5	ND<1.0	12 ⁰	110	ND < 0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	NA	ND ^(x)
MW-7-4	4.0-4.5	ND<1.0	3.3 [©]	ND<50	ND < 0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	6,220	ND∞
MW-7-10	10.0-10.5	NA	NA	NA	NA _	NA	NA	NA	NA	7,310	NA
MW-7-15	15.0-15.5	NA	NA	NA	NA	NA	NA	NA	NA	778	NA

NOTES:

- (a) Measured in feet below ground surface.
- (b) Total petroleum hydrocarbons as gasoline.
- (c) Milligrams per kilogram.
- (d) Total petroleum hydrocarbons as diesel.
- (e) Total petroleum hydrocarbons as motor oil.
- (f) Methyl tertiary butyl ether.
- (g) Total organic carbon.
- (h) Polynuclear aromatic hydrocarbons.
- (i) ND: Not detected at specified laboratory reporting limit.
- (j) NA: Not analyzed.
- (k) Laboratory reporting limit for polynuclear aromatic hydrocarbons ranging from 0.05 mg/kg to 0.2 mg/kg.
- (I) Hydrocarbon reported is in the late diesel range and does not match the laboratory diesel standard, see attached certified laboratory analytical report.


TABLE 3 GROUNDWATER ANALYTICAL RESULTS

580 Julie Ann Way Oakland, California


SAMPLE	DATE	TPHg ^(s)	ΤΡΗd ^(c)	TPHmo ^(d)	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE ^(e)	Lead	TDS ^(g)
NUMBER		(µg/ℓ) ^(b)	(μg/l)	(µgH)	(µg/t)	(µg/ℓ)	(µg/l)	(μg/ŧ)	(μg/θ)	(mg/l) ^(f)	(mg/l)
MW-1	02/28/96	5,900	ND ^(h) < 10	1,700	540	9.0	950	110	NA ⁽ⁱ⁾	NA	NA
	08/16/96	5,600	5,400 ^(h)	4,000	540	7.3	950	110	NA	ND<0.05	NA
	06/04/98	1,800	1,600 ^(k)	640 ⁽ⁱ⁾	160	2.6	300	1.6	ND<5.0	NA_	580
MW-2	08/16/96	2,700	3,000 ^(j)	1,800	63	36	65	100	NA	ND<0.05	NA
	06/04/98	ND < 50	4,100 ^(k)	ND < 500	10	0.72	2.3	3.5	ND < 5.0	NA	2,900
MW-3	08/16/96	ND < 50	730 ⁽ⁱ⁾	640	3.1	ND<0.5	ND<0.5	ND<0.5	NA	ND<0.05	NA
	06/04/98	ND < 50	860 ^(k)	ND < 500	3.9	ND<0.5	ND<0.5	ND<0.5	ND < 5.0	NA	5,100
MW-4	08/16/96	460	2,800 ⁽ⁱ⁾	3,000	17	1.0	9.1	1.4	NA	ND<0.05	NA
	06/04/98	ND < 50	1,400 ^(k)	710 ⁽ⁱ⁾	18	1.6	2.5	1.9	ND < 5.0	NA	2,000
MW-5	06/04/98	ND<50	970 ^(k)	ND<500	7.2	ND<0.5	ND<0.5	ND<0.5	ND < 5.0	NA	9,900
MW-6	06/04/98	ND<50	120 ^(k)	ND<500	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	NA	43,000
MW-7	06/04/98	ND < 50	900 ^(k)	540 ⁽¹⁾	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND < 5.0	NA	6,100

NOTES:

- (a) Total petroleum hydrocarbons as gasoline.
- (b) Micrograms per liter.
- (c) Total petroleum hydrocarbons as diesel.
- (d) Total petroleum hydrocarbons as motor oil.
- (e) Methyl tertiary butyl ether.
- (f) Milligrams per liter.
- (g) Total dissolved solids.
- (h) ND: Not detected at specified laboratory reporting limit.
- (i) NA: Not Analyzed.
- Lighter and heavier hydrocarbons were found in the range of diesel, but do not resemble a diesel fingerprint. Possible gasoline and motor oil, see attached certified laboratory analytical report.
- (k) Hydrocarbon reported does not match the pattern of the laboratory diesel standard, see attached certified laboratory analytical report.
- (l) Hydrocarbon reported does not match the pattern of the laboratory motor oil standard, see attached certified laboratory analytical report.

		,

Appendix A
Boring Logs

Project:		58	30 J	ULIE	ANN	WAY	OAKLAND, CA		Log of Boring/Monitoring Well:
Boring L	ocation	: N	ORTH	l Of	FOR	MER	STs ON JULIE ANN WY F	Project No.: 50090-009-04	MW-5
Subcontr							· · · · · · · · · · · · · · · · · · ·	By: CM Drawn By: CCR	
Sampling							···		Comments:
Start Da							Finish Date/Time: 5		4
First Wo	ter (bg	s): N(OT E	NCC	DUNTE	RED	Stabilized Water Leve		
Sample Number			et)		<u> </u> <u> </u>	-	urface Elevation: NA	Casing Top Elevation: NA	Boring Abandonment/
] Z	foo /	(шас	(Fe	ery	Symbol	Level	LITHOLOGIC	Well Construction Details	
jo Hr.	Blows/foot	PID (ppm)	Depth (Feet)	Recovery	SOSO	Water		sistency, moisture, other)	, Traffic-rated
, y	<u> </u>	Δ.		<u>مح</u>) ⊃	\$		Christy Box	
HAND AUGER	/2	0.5	1 - 2 - 3 - 4				(SP) with silt, fine—gro (30,55,15,0) (FILL) BLACK (2.5Y N2/0) So and trace gravel, fine- fine pieces of concret	2.5Y 5/3) GRAVELLY SAI ained sand, dense, moi ANDY CLAY (CL) with si grained sand, gravel is e and brick, stiff, mois	cdsing Cdement Crout Bentonite Pellets
	50/6	85	5 — 6 — 7 — 8 —			*	(5,25,15,55) (FILL) VERY DARK GRAY (2.5)	moderate chemical odo Y N3/0) ORGANIC CLAY plasticity, low density,	
MW-510	5	1	9 — 10 — 11 — 12 — 13 —				fibrous organic materi structure (0,0,0,100)	al in zones, weak platy	2"ø Sch.40 PVC 0.020" Slot Screen
MW-5-15	34	2	14— 15— 16—				stiff, moist, moderate	(5GY 4/1) CLAY (CL) to high plasticity, roots ular blocky soil structury)	
Section 1/2 Prices (are properly with a			17— 18— 19— 20— 21— 23— 24— 25— 26— 27— 28— 29— 30—				,		

SECOR

Reviewed By:	 Date:	<u></u>
Revised Bv:	Date:	

Page_1_of_1_

Bering Location: NW OF FORMER USTs ON JULIE ANN WY Project No: 50090—009—04 Subcontrolarie word Expinents CRECG/HSA Lugged By CM Drove By CR Sampling Method: CAL MODIFICE SPUT—SPOON Monitoring Device: OWA 5808 Signation Method: CAL MODIFICE SPUT—SPOON Monitoring Device: OWA 5808 Signation Method: CAL MODIFICE SPUT—SPOON Monitoring Device: OWA 5808 First Water (pap): NOT ENCOUNTERED Signation NOT ENCOUNTERED Surface Elevation: NA Casing Top Devation: NA Well Construction Details Confidence, mosture, other) Well Construction Details (sold): Spot Spot Spot Spot Spot Spot Spot Spot	Project:		5	30 J	ULIE	ANN	I WA	, OAKLAN	ND, CA					Log	of Boring/Monitoring Well:
Sompling Welchod: CAL MODIFIED SPLIT-SPOON Monitoring Device: O'M, 5808 Comments: Stort Dote/Time: 5/20/98//0330 Finish Dote/Time: 5/20/98//1030 Finish Dote/Time: 5/20	Boring Lo	ocation	1: N	W O	F	RMEF	R US1	s ON JUL	JE ANN W	Υ	Project No.:	50090-00	9-04		NAVA/ &
Stert Deley/Time: 5/20/98//0930 First Worler (Dep): NOT ENCOUNTERED Sterificed Worle Level (Logh): 7.92 FT. Strate Elevation: NA Cosing Top Bevalion: NA HTHOLOGIC DESCRIPTION (color, grain size, consistency, moisture, other) Well Construction Details Traffic-rated (Christy Box ASPHALT LIGHT OLIVE BROWN (2.5Y 5/3) GRAVELLY SAND (SP) with sitt, fine-grained sand, dense, moist (30,95,15,0) (FILL) VERY DARK GRAY (SY 3/1) SANDY CLAY (CL) with sitt and trace gravel, fine-grained sand, stiff, fine to medium gravel, angular pieces of brick and concrete, moist moderate plasticity, foint chemical odor (5,25,15,55) (FILL) VWN-8-15 22 2 DARK GREENISH GRAY (SGY 4/1) CLAY (CL) stiff, moist, moderate to high plasticity, low density, buttery structure (0,0,0,100) (BAY MUD) DARK GREENISH GRAY (SGY 4/1) CLAY (CL) stiff, moist, moderate to high plasticity, subangular blocky soil structure (0,0,0,100) (BAY MUD) DARK GREENISH GRAY (SGY 4/1) SANDY CLAY (CL) fine-grained sand, very stiff, moist, low plasticity (0,40,0,50) (BAY MUD) DARK GREENISH GRAY (SGY 4/1) SANDY CLAY (CL) fine-grained sand, very stiff, moist, low plasticity (0,40,0,50) (BAY MUD) DARK GREENISH GRAY (SGY 4/1) SANDY CLAY (CL) fine-grained sand, very stiff, moist, low plasticity (0,40,0,50) (BAY MUD)	Subcontr	actor	and E	quipm	ent:	GREG	G/HS	A		Logge	d By: CM	Drawn By:	CCR	1	INI AA - Ø
Stert Dete/Time: 5/20/98//0930 First Worler (Dep): NOT ENCOUNTERED Steinfixed Worle Level (Dep): 7.92 FT. Steinfixed Worle Level (Dep): 7.92 FT. Well Construction Details LIGHT OLIVE BROWN (2.5Y 5/3) GRAVELLY SAND (SP) with silt, fine-grained sand, dense, moist (30,55),50) (FTLL) WW-6-10 6 1 10-11-11-11-11-11-11-11-11-11-11-11-11-1	Sampling	Metho	od: C	AL N	(ODI	FIED	SPLIT	-SPOON	Monitoring (Device:	OVM 580B			Con	nments:
Frest Woler (bgo): NOT ENCOUNTERED Stockied Woler Level (bgo): 7,92 FT. Surface Elevation: NA Cosing Top Elevation: NA HTHOLOGIC DESCRIPTION Codor, grain size, consistency, moisture, other) Surface Elevation: NA Cosing Top Elevation: NA HTHOLOGIC DESCRIPTION Codor, grain size, consistency, moisture, other) Surface Elevation: NA Cosing Top Elevation: NA HTHOLOGIC DESCRIPTION Codor, grain size, consistency, moisture, other) Surface Elevation: NA HTHOLOGIC DESCRIPTION Codor, grain size, consistency, moisture, other) Surface Elevation: NA HTHOLOGIC DESCRIPTION Codor, grain size, consistency, moisture, other) Surface Elevation: NA ASPHALT LIGHT OLIVE BROWN (2.5Y 5/3) GRAVELLY SAND (SP) with sitt, fine-grained sand, dense, moist (30,55,15,0) (FILL) VERY DARK GRAY (SY 3/1) SANDY CLAY (CL) with sitt and trace gravel, fine-grained sond, stiff, fine to medium gravel, angular pieces of brick and concrete, moist, moderate plasticity, foint chemical odor (5,25,15,55) (FILL) NW-6-10 6 1 10 OLIVE GRAY (SY 5/2) ORCANIC CLAY (OH) stiff, moist, high plasticity, low density, buttery structure (0,0,0,100) (BAY MUD) Structure (0,0,0,100) (BAY MUD) DARK GREENISH GRAY (SGY 4/1) CLAY (CL) stiff, moist, moderate to high plasticity, subangular biocky soil structure (0,0,0,100) (BAY MUD) DARK GREENISH GRAY (SGY 4/1) SANDY CLAY (CL) fine-grained sond, very stiff, moist, low plasticity (0,40,0,60) (BAY MUD) DARK GREENISH GRAY (SGY 4/1) SANDY CLAY (CL) fine-grained sond, very stiff, moist, low plasticity (0,40,0,60) (BAY MUD) DARK GREENISH GRAY (SGY 4/1) SANDY CLAY (CL) stiff, moist, moderate to high plasticity, subangular biocky soil structure (0,0,0,100) (BAY MUD) DARK GREENISH GRAY (SGY 4/1) SANDY CLAY (CL) stiff, moist, moderate to high plasticity, subangular biocky soil structure (0,0,0,100) (BAY MUD) DARK GREENISH GRAY (SGY 4/1) SANDY CLAY (CL) stiff, moist, moderate to high plasticity, subangular biocky soil structure (0,0,0,100) (BAY MUD)										· · · · ·				1	
Surface Bevotion: NA Cosing Top Devotion: NA Boring Abandonment / Well Construction Details LITHOLOGIC DESCRIPTION (color, grain size, consistency, moisture, other) Well Construction Details Info@construction Details Info@constructio														1	
ASPHALT LIGHT CLIVE BROWN (2.5Y 5/3) GRAVELLY SAND (SP) with silt, fine—grained sand, dense, moist (SP) with silt, moist (SP) with silt, moist (SP) with silt, fine—grained sand, dense, fine—grained sand, dense, dense, dense, dense, dense, dense, dense, dense, dense, den								Surface Ele					NA	,	Boring Abandonment /
ASPHALT LIGHT CLIVE BROWN (2.5Y 5/3) GRAVELLY SAND (SP) with silt, fine—grained sand, dense, moist (SP) with silt, moist (SP) with silt, moist (SP) with silt, fine—grained sand, dense, fine—grained sand, dense, dense, dense, dense, dense, dense, dense, dense, dense, den	i i	ος	· 근	eet)		&	e					<u> </u>	 ,		•
ASPHALT LIGHT CLIVE BROWN (2.5Y 5/3) GRAVELLY SAND (SP) with silt, fine—grained sand, dense, moist (SP) with silt and trace gravel, fine—grained sand, stiff, fine to medium gravel, angular pieces of brick and concrete, moist, moderate plasticity, faint chemical odor (5,25,15,55) (FILL) WW-6-10 6 1 10	e Se	s/fc	اق	<u>ج</u>	very	ςς S	2						->		won construction Details
ASPHALT LIGHT CLIVE BROWN (2.5Y 5/3) GRAVELLY SAND (SP) with silt, fine—grained sand, dense, moist (SP) with silt, moist (SP) with silt, moist (SP) with silt, fine—grained sand, dense, fine—grained sand, dense, dense, dense, dense, dense, dense, dense, dense, dense, den	Samp	Blow		Dept	Reco	SS	*Agte		(color, grain	size, c	onsistency, n	ioisture, othe	er)		Traffic-rated
ASPHALT LIGHT OLIVE BROWN (2.5Y 5/3) GRAVELLY SAND (SP) with sitt, fine-grained sand, dense, moist (SP) with sitt, fine-grained sand, strip fine-grained sand, striff, fine to medium gravel, angular pieces of brick and concrete, moist, moderate plasticity, faint chemical odor (5,25,15,55) (FILL) WW-6-10 6 1 10- Bentonite Pelets P2/* Sch.40 PVC Blonk Cosing Coment				0 —										-	Christy Box
WW-6-4 32 2 5 -		ASPHALT LIGHT OLIVE BROWN (2.5Y 5/3) GRAVELLY SAND (SP) with silt, fine—grained sand, dense, moist (30,55,15,0) (FILL) VERY DARK GRAY (5Y 3/1) SANDY CLAY (CL) with silt and trace gravel, fine—grained sand, stiff, fine to medium gravel, angular pieces of brick and concrete, moist, moderate plasticity,													- 2"ø Sch.40
WW-6-4 32 2 5 -	UGE														Casing
WW-6-4 32 2 5 -															
WW-6-4 32 2 5 -	NA.														Bentonite
MW-6-10 6 1 10 11 12 13 14 19 19 19 19 19 19 19															Pellets
MW-6-10 6 1 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 28 28 28 28 28 28 28 28 28 28 28 28	MW-6-4														
MW-6-10 6 1 10 11 12 13 14 14 15 16 17 18 19 20 21 22 21 21 22 23 24 25 26 27 28 28 28 28 28 28 28 28 28 28 28 28 28	1 ,			-				faint c	nemical (odor	(5,25,15,	ob) (FILL)			
MW-6-10 6 1 10 11 10 11 12 13 14 MW-6-15 22 21 13 14 DARK GREENISH GRAY (5GY 4/1) CLAY (CL) stiff, moist, moderate to high plasticity, subangular blocky soil structure (0,0,0,100) (BAY MUD) DARK GREENISH GRAY (5GY 4/1) SANDY CLAY (CL) fine—grained sand, very stiff, moist, low plasticity (0,40,0,60) (BAY MUD) DARK GREENISH GRAY (5GY 4/1) SANDY CLAY (CL) fine—grained sand, very stiff, moist, low plasticity (0,40,0,60) (BAY MUD) DARK GREENISH GRAY (5GY 4/1) SANDY CLAY (CL) fine—grained sand, very stiff, moist, low plasticity (0,40,0,60) (BAY MUD)				-											
OLIVE GRAY (5Y 5/2) ORGANIC CLAY (OH) stiff, moist, high plasticity, low density, buttery texture, roots, faint H2O odor, weak platy structure (0,0,0,100) (BAY MUD) DARK GREENISH GRAY (5GY 4/1) CLAY (CL) stiff, moist, moderate to high plasticity, subangular blocky soil structure (0,0,0,100) (BAY MUD) DARK GREENISH GRAY (5GY 4/1) SANDY CLAY (CL) fine—grained sand, very stiff, moist, low plasticity (0,40,0,60) (BAY MUD) The structure (0,0,0,100) (BAY MUD) DARK GREENISH GRAY (5GY 4/1) SANDY CLAY (CL) fine—grained sand, very stiff, moist, low plasticity (0,40,0,60) (BAY MUD) The structure (0,0,0,100) (BAY MUD) DARK GREENISH GRAY (5GY 4/1) CLAY (CL) stiff, moist, moderate to high plasticity, subangular blocky soil structure (0,0,0,100) (BAY MUD) End Cap PEND Cap Post Cap Post Cap Cap Post Cap Cap Post Cap Cap Cap Cap Cap Cap Cap Cap				7-			_								#2/12 Sond
stiff, moist, high plasticity, low density, buttery texture, roots, faint H2O odor, weak platy structure (0,0,0,100) (BAY MUD) DARK GREENISH GRAY (5GY 4/1) CLAY (CL) stiff, moist, moderate to high plasticity, subangular blocky soil structure (0,0,0,100) (BAY MUD) DARK GREENISH GRAY (5GY 4/1) SANDY CLAY (CL) fine-grained sand, very stiff, moist, low plasticity (0,40,0,60) (BAY MUD) DARK GREENISH GRAY (5GY 4/1) SANDY CLAY (CL) fine-grained sand, very stiff, moist, low plasticity (0,40,0,60) (BAY MUD) End Cap DARK GREENISH GRAY (5GY 4/1) SANDY CLAY (CL) fine-grained sand, very stiff, moist, low plasticity (0,40,0,60) (BAY MUD)				8 -			-	OLIVE	CRAY (5Y	′ 5 /2°	ORGANI	CLAY (JH)		
Structure (0,0,0,100) (BAY MUD) Structure (0,0,0,100) (BAY MUD)	i			9 —	11		1	stiff, r	noist, 'nig	h pla	sticity, lo	w density	, butter	у	
DARK GREENISH GRAY (5GY 4/1) CLAY (CL) stiff, moist, moderate to high plasticity, subangular blocky soil structure (0,0,0,100) (BAY MUD) DARK GREENISH GRAY (5GY 4/1) SANDY CLAY (CL) fine-grained sand, very stiff, moist, low plasticity (0,40,0,60) (BAY MUD) DARK GREENISH GRAY (5GY 4/1) SANDY CLAY (CL) fine-grained sand, very stiff, moist, low plasticity (0,40,0,60) (BAY MUD) End Cop Sond	MW-6-10	c	١.	10-			}	texture	roots,	faint :	H20 odor	, weak p	laty		
DARK GREENISH GRAY (5GY 4/1) CLAY (CL) stiff, moist, moderate to high plasticity, subangular blocky soil structure (0,0,0,100) (BAY MUD) DARK GREENISH GRAY (5GY 4/1) SANDY CLAY (CL) fine-grained sand, very stiff, moist, low plasticity (0,40,0,60) (BAY MUD) End Cap DARK GREENISH GRAY (5GY 4/1) SANDY CLAY (CL) fine-grained sand, very stiff, moist, low plasticity (0,40,0,60) (BAY MUD)			'	- 11 -				Structu	16 (0,0,0	, 100)	(BAT MC	,			2"4 Sch 40
DARK GREENISH GRAY (5GY 4/1) CLAY (CL) stiff, moist, moderate to high plasticity, subangular blocky soil structure (0,0,0,100) (BAY MUD) DARK GREENISH GRAY (5GY 4/1) SANDY CLAY (CL) fine—grained sand, very stiff, moist, low plasticity (0,40,0,60) (BAY MUD) DARK GREENISH GRAY (5GY 4/1) SANDY CLAY (CL) fine—grained sand, very stiff, moist, low plasticity (0,40,0,60) (BAY MUD) Sand				-			1	l l							-
DARK GREENISH GRAY (5GY 4/1) CLAY (CL) stiff, moist, moderate to high plasticity, subangular blocky soil structure (0,0,0,100) (BAY MUD) DARK GREENISH GRAY (5GY 4/1) SANDY CLAY (CL) fine—grained sand, very stiff, moist, low plosticity (0,40,0,60) (BAY MUD) DARK GREENISH GRAY (5GY 4/1) SANDY CLAY (CL) fine—grained sand, very stiff, moist, low plosticity (0,40,0,60) (BAY MUD) DARK GREENISH GRAY (5GY 4/1) SANDY CLAY (CL) fine—grained sand, very stiff, moist, low plosticity (0,40,0,60) (BAY MUD)			ĺ	i -			}	ĺ							Slot Screen
MW-6-15 22 2 14				13-	1	// //	!	DARK	GREENISH	GRA	r (5GY 4	/1) CLAY	(CL) s	tiff.	
DARK GREENISH GRAY (5GY 4/1) SANDY CLAY (CL) fine-grained sand, very stiff, moist, low plasticity (0,40,0,60) (BAY MUD) DARK GREENISH GRAY (5GY 4/1) SANDY CLAY (CL) fine-grained sand, very stiff, moist, low plasticity (0,40,0,60) (BAY MUD)	1			14-			1	moist,	moderate	e to l	high plasi	ticity, sub	angular		
(CL) fine-grained sand, very stiff, moist, low plasticity (0,40,0,60) (BAY MUD) 17- 18- 19- 20- 21- 22- 23- 24- 25- 26- 27- 28- 28-	MW-6-15	22	,	15-			}	<u>_</u>							12521
18- 19- 20- 21- 22- 23- 24- 24- 25- 26- 27- 28-			_	16-	,		 	(CL) f	GREENISH ine-arain	ed sa	r (561 4) nd. verv	/ I / SAND stiff. moi	T CLAT st. low		Sand
18— 19— 20— 21— 22— 23— 24— 25— 26— 27— 28—				17-				\ plastic	ity (0,40,	0,60)	(BAY MU	D)			<u></u>
19— 20— 21— 21— 23— 24— 25— 26— 27— 28— 27— 28— 28— 28— 28— 28— 28— 28— 28— 28— 28				-	1										-
20 - 21 - 21 - 22 - 23 - 23 - 24 - 25 - 26 - 27 - 28 - 28 - 28 - 28 - 28 - 28 - 28		 		} -]			ļ							F
21 — 22 — 23 — 24 — 25 — 26 — 27 — 27 — 27 — 28 — 28 — 28 — 28 — 28				19-	1										<u>'</u>
22— 23— 24— 25— 26— 27— 28—				20-	1										t
23— 24— 25— 26— 27— 28—	i			21 –	1										F
23— 24— 25— 26— 27— 28—				22-	1	1		l							<u></u>
24— 25— 26— 27— 28—				-	1										Ŀ
1 1 1 126-7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<u> </u>			-	-										-
1 1 1 126-7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				24-		ĺ									- -
1 1 1 126-7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7086			25-	1	1	1	(<u></u>
1 1 1 126-7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	免			26-	1										- .
1 1 1 126-7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ર્છ			27-											F
	Ž.			-											<u>_</u>
	§		•	-	1										
	8	1		-	1										F
	<u></u>			30-			<u> </u>	4							

SECOR

Reviewed By:		Date:	
Revised By:		Date:	

Project:		5	80 J	IULIE	ANN	WA)	, OAKLAN	ID, CA			_			Log of	Boring/N	Ionitoring) Well:	· · · · ·
Boring L	ocation	n: S	E OF	F0	RMER	UST	s			Projec	t No.:	50090-00	9-04		KAN.	۸ <i>۱</i> _7		
Subcontr	actor	and E	quipm	nent:	GREG	G/HS	A		Logg	ed By:	СМ	Drawn By:	CCR		IVIV	N-7		
Sampling	Meth	od: C	AL N	10DI	FIED	SPLIT	-SPOON	Monitorir	ng Device:	OVM	580B			Comme	nts:			
Start Da	te/Tim	ne: 5	/20,	/98/	//130	0		Finish De	ate/Time:	5/20	/98//	/1400						
First Wa	ter (bo	js): 1(0.0	FEET	•			Stabilize	d Water L	evel (bg	s): 3.5	8 FT.						
Sample Number	Blows/foot	(mdd) (Depth (Feet)	Recovery	USCS Symbol	Water Level	Surface Ele		NA LITHOLO ain size,	OGIC DE	SCRIF	Elevation: PTION pisture, other	NA ·)		Boring Abandonment/ Well Construction Details			ails
Š	緩	운		Se.	Sn	Wa									Traffic-rate Christy Box			
HAND AUGER	with sit did tide dialet, line-didited t																-2"ø Sc PVC B Casing -Cemen Grout -Benton Pellets	lank it nite
MW-7-4	50	5	5 - 6 - 7 - 8 - 9 - 9				plastici	coars te and ity, piec 15,55)	ces of	el, and hard, wire,	gular mois faint	pieces o st, moder chemica	f rate I odor	- - - - - - -			- # 2/12	Sand
MW-7-10	7	0	10— 11— 12— 13—			<u></u>	(OH) s buttery structu (BAY M	stiff, m / textur ire, roo MUD)	oist, hi re, sub- ots, fair	gh plo angulo nt H2:	asticit ur blo S odd	RGANIC CL cy, low de cky soil or (0,0,0,	ensity, 100)		2/12 San 2/6 Sch.4 PVC 0.020 Slot Scree			
MW-7-15	25	0	14- 15- 16-				very s	tiff, mo	oist, mo	oderat	e to	'1) CLAY high plas	(CL) sticity	- - - - - -				ap
199906.221449 x:\Locs\sfb(sbc)am\ww-7			17- 18- 19- 20- 21- 22- 23- 24- 25- 26- 27- 28- 29- 30-															

SECOR

 Reviewed By:
 Date:

 Revised By:
 Date:

Page_1_of_1

Appendix B

Field Report and Water Sample Field Data Sheets

FIELD REPORT

DEPTH TO WATER / FLOATING PRODUCT SURVEY

PROJECT NO .: 500 90-009-04 LOCATION: 580 Julio Ann Way, Oak. DATE: 6-4-98 CLIENT/STATION #: SFFB - Oats. FIELD TECHNICIAN: Z-Melancon DAY OF WEEK: Kurs.

OTW ORDER	WELL ID	SURFACE SEAL	LID SECURE	GASKET	LOCK	EXPANDING CAP	TOTAL DEPTH (Feet)	FIRST DEPTH TO WATER (Feet)	SECOND DEPTH TO WATER (Feet)	DEPTH TO FLOATING PRODUCT (Feet)	FLOATING PRODUCT THICKNESS (Feet)	COMMENTS
	MWI						14,40	3,66	3,66			
	MW-2						14,55	3.83	3,83			
	MW-3						14,80	2.72	2,72	•		
_	MW-Y						14.80	5.60	5,60			
	MW-5							5,44				·
<u></u>	MW-6						14.75	7.92	7.90	*		Probably not a quilibrium
	MW-7						14,70	3,58	3.58			
_												-
												!
									Ų.		*	
	•				·	•						

Pion tof t

SECOR International Inc. WATER SAMPLE FIELD DATA SHEET PROJECT #: 50090-009-04 PURGED BY: CM WELL I.D.: CLIENT NAME: SFF B SAMPLED BY: CM SAMPLE I.D.: MW-LOCATION: 580 Julie Ann Way, Ogton OA SAMPLES: DATE PURGED 6-4-98 START (2400hr) 12:45 END (2400hr) DATESAMPLED 6-4-98 SAMPLETIME (2400hr) 13/30 Trezonent Effluent SAMPLE TYPE: Groundwater L Surface Water CASING DIAMETER: Other (8'£_0) (02_1) Casing Volume: (gallons per foot) (0.67)(2.60)(1.02)1.83 CASING VOLUME (gal) = DEPTH TO BOTTOM (feet) = CALCULATED PURGE (gal) = 5,48 DEPTH TO WATER (fcct) = WATER COLUMN HEIGHT (feet) = $\frac{10.79}{10.79}$ ACTUAL PURGE (gal) = FIELD MEASUREMENTS pН TIME VOLUME TEMP. CONDUCTIVITY . COLOR DATE TURBIDITY (wits) (2400hr) (gal) (umhos/cm) (visual) (degrees F) (VIV) 2.0 15 13:00 SAMPLE INFORMATION SAMPLE TURBIDITY: SAMPLE DEPTH TO WATER: ANALYSES: 80% RECHARGE: __YES __NO SAMPLE VESSEL/PRESERVATIVE: ODOR: PURGING EQUIPMENT SAMPLING EQUIPMENT Bladder Pump Bailer (Teflon) Bzilcr (Tcfloa) Bladder Pump Bailer (PVC or X disposable) Contrifugal Pump Centrifugal Pump Bailer (PVC) Submersible Pump Submersible Pump Bailer (Stainless Steel) Bailer (Stainless Steel) Peristaltic Pump Peristaltic Pump Dedicated Dedicated Other: Diso. Other: Pump Deput: LOCK#:

SIGNATURE:

REMARKS:

Page of

SECOR International Inc. WATER SAMPLE FIELD DATA SHEET
PROJECT 8: 50090-009-04 PURGED BY: CM WELLID.: MW-2
CLIENT NAME: SFFB SAMPLED BY: ZM SAMPLE LD.: MW-2
LOCATION: 580 Julie Agn Way, Offlerd QA SAMPLES:
DATE PURGED 6-4-88 START (2400hr) 11:40 END (2400hr) 11:55
DATE SAMPLED 6-4-98 SAMPLE TIME (2400hr) 12:00
SAMPLE TYPE: Groundwater Surface Water Treatment Effluent Other
CASING DIAMETER: 2- 13- 4- 5- 6- 8- Other Casing Volume: (gallons per foot) (0.17) (0.38) (0.67) (1.02) (1.50) (2.60) ()
DEPTH TO BOTTOM (fcct) = 14.55 CASING VOLUME (gal) = 1.82
DEPTH TO WATER (feet) = 3.83 CALCULATED PURGE (gal) = 5.47
WATER COLUMN HEIGHT (feet) = $\frac{10.72}{6.0}$ ACTUAL PURGE (gal) = $\frac{6.0}{}$
FIELD MEASUREMENTS
DATE TIME VOLUME TEMP. CONDUCTIVITY pH .COLOR TURBIDITY (2400hr) (gal) (degrees F) (umbos/cm) (upis) (visual) (NTO) (1 11:95 2.0 73.5 4600 7.30 9-c., // (1 11:55 6.0 71.8 4280 7.27 6.) SAMPLE INFORMATION SAMPLE TURBIDITY SAMPLE TURBIDITY
SAMPLE DEPTH TO WATER: SAMPLE TURBIDITY:
80% RECHARGE: YES NO ANALYSES:
PURGING EQUIPMENT SAMPLING EQUIPMENT
Bladder Pump Centrifugal Pump Bailer (Teflon) Bailer (PVC) Submersible Pump Peristaltic Pump Dedicated Dother: Dump Depth: Bailer (Teflon) Bladder Pump Bailer (Teflon) Centrifugal Pump Bailer (Teflon) Bailer (Teflon) Centrifugal Pump Bailer (Teflon) Dedicated Dother: Do
WELLINTEGRITY: 4634 LOCK#:
REMARKS:
MCMATIDE THE SHARE SHARE IN THE STATE OF THE

SECOR International Inc. WATER SAMPLE FIELD DATA SHEET

WATER SAME TIES DAWN GASET										
PROJECT 6: 50090-009-04 PURGED BY: EM WELL I.D.: MW-3	_									
CLIENT NAME: SFFB SAMPLED BY: CM SAMPLE LD.: MW-3	_									
LOCATION: 580 Julit Alson Way, Oalthand QA SAMPLES:										
DATE PURGED 6-4-98 START (2400hr) 11:25 END (2400hr) 11:40										
DATE SAMPLE TIME (2400hr) 13:40										
SAMPLE TYPE: Groundwater Surface Water Treatment Effluent Other	_									
CASING DIAMETER: 2" 3" 4" 5" 6" 8" Other Casing Volume: (gallons per foot) (0.17) (0.38) (0.67) (1.02) (1.50) (2.60) ()										
DEPTH TO BOTTOM (feet) = 14.8 Casing volume (gai) = 2.05										
DEPTH TO WATER (fcct) = $\frac{2.72}{6.16}$ CALCULATED PURGE (gal) = $\frac{6.16}{6}$										
WATER COLUMN HEIGHT (1001) = 12.08 ACTUAL PURGE (1001) = 1000 ACTUAL PURGE (1000) = 1000 ACTUAL PURGE (10000) = 1000 ACTUAL PURGE (10000) = 1000 ACTUAL PURGE (10000										
FIELD MEASUREMENTS										
DATE TIME VOLUME TEMP. CONDUCTIVITY pH .COLOR TURBIDITY (2400hr) (gal) (degrees F) (umhos/cm) (units) (visual) (NTU) 11:30 2.0 70.7 3450 7.34 / out 11:40 5.0 * 70.7 10230 7.05 9744 / out 11:40 5.0 * 70.7 10230 7.05 9744 / out SAMPLE DEPTH TO WATER: SAMPLE INFORMATION SAMPLE DEPTH TO WATER: SAMPLE TURBIDITY:										
80% RECHARGE: YES NO ANALYSES:										
ODOR: SAMPLE VESSEL / PRESERVATIVE:										
PURGING EQUIPMENT SAMPLING EQUIPMENT										
Bladder Pump Bailer (Teflon) Centrifugal Pump Bailer (PVC) Submersible Pump Bailer (Stainless Steel) Peristaltic Pump Dedicated Other: Dedicated Bladder Pump Bailer (Teflon) Centrifugal Pump Bailer (Teflon) Centrifugal Pump Bailer (Teflon) Peristaltic Pump Bailer (Teflon) Centrifugal Pump Bailer (Teflon) Centrifugal Pump Bailer (Teflon) Other: Other:	lc)									
WELL INTEGRITY: 400 0 LOCK#:										
REMARKS: * VITY										
SIGNATURE IIIal Market										

SECOR Inter	
PROJECT E: 50090-009-04 PURGED BY: CLIENT NAME: SFFB SAMPLED BY: LOCATION: 580 Julit Agn Way, Octile and	
DATE PURGED 6-4-98 START (2400hr) DATE SAMPLE TIME (2-5) SAMPLE TYPE: Groundwater Surface Water	400hr) 13:20
CASING DIAMETER: 2- 3- 4- Casing Volume: (gallons per foot) (0.17) (0.38)	5 6 8 Other
DEPTH TO BOTTOM (fcct) = $\frac{14.8}{5.60}$ WATER COLUMN HEIGHT (fcct) = $\frac{9.20}{9.20}$	CASING VOLUME (gal) = $\frac{1.56}{4.69}$ CALCULATED PURGE (gal) = $\frac{4.69}{6.0}$ ACTUAL PURGE (gal) = $\frac{6.0}{6.0}$
FIELD MEAS	CUREMENTS
(2400hr) (gal) (degrees F) (um	OCTIVITY pH .COLOR TURBIDITY (hos/cm) (units) (visual) (NTU) 180 7.22 Cloudy low 140 6.96 4 4 1730 6.99 6.99 Mod
SAMPLE DEPTH TO WATER:	ORMATION SAMPLE TURBIDITY:
80% RECHARGE:YESNO ANAI ODOR: SAMPLE VESSEL / PRESERVA	LYSES:
PURGING EQUIPMENT Bladder Pump Bailer (Teflon) Bailer (PVC) Subgressible Pump Bailer (Stainless Steel) Peristaluc Pump Other: Pump Depth:	SAMPLING EQUIPMENT Bladder Pump Centrifugal Pump Submersible Pump Peristaltic Pump Dedicated Dedicated SAMPLING EQUIPMENT Bailer (Teflou) Bailer (PVC ordisposable) Bailer (Stainless Steel) Dedicated
WELL INTEGRITY: 700 C	LOCK#:

SECOK International Inc. WATER SAMPLE FIELD DATA SHEET

PROJECT 6: 500 90 - 009 - 04 PURGED BY:				
CLIENT NAME: SFF S SAMPLED BY:	SAMPLELD : MW-5			
LOCATION: 580 Julie Ann Way, Oakley	QA SAMPLES:			
DATE PURGED 6-4-98 START (2400hr)	10:05 END (2400hr) 10:25			
DATE SAMPLE TIME	(2400hr) 14:00 -			
SAMPLE TYPE: Groundwater Surface Water	Trezoment Effluent Other			
CASING DIAMETER: 2- 1/3- 3- 40 Casing Volume: (gallons per foot) (0.17) (0.38)	5- 6- 8* Other (0.67) (1.02) (1.50) (2.60) (
DEPTH TO BOTTOM (fcct) = 14,85	CASING VOLUME (gal) = 1.60			
DEPTH TO WATER (Ica) = 5.49	CALCULATED PURGE (gal) = 16,00			
WATER COLUMN HEIGHT (fcct) = 9,4/	ACTUAL PURGE (gal) =			
	ASUREMENTS			
•				
	DUCTIVITY pH .COLOR TURBIDITY mikos/cm) (units) (visual) (NTU)			
6-4 10:10 10 69,9 11	1400 724 Erey mad.			
10:15 3.0 69.2 10	430 7,22 m			
10:20 6.0 69.6	5.100 7.12			
10:25 9.57 67.3	7.08 " "			
	·			
SAMPLE II	VFORMATION			
SAMPLE DEPTH TO WATER:	SAMPLE TURBIDITY:			
	<u> </u>			
80% RECHARGE: YES NO AN	ALYSES:			
ODOR: SAMPLE VESSEL / PRESERT	JATTYE-			
ODOR: SAMPLE VESSEL / PRESER				
PURGING EQUIPMENT	SAMPLING EQUIPMENT			
Bladder Pump Bailer (Tefion)	Bladder Pump Bailer (Teffon)			
Cennifugal Pump Bailer (PVC)	Centrifugal Pump Bailer (PVC or Adisposable) Submersible Pump Bailer (Stainless Steel)			
Submersible Pump Bailer (Stainless Steel) Peristalic Pump Dedicated	Submersible Pump Bailer (Stainless Steel) Peristaltic Pump Dedicated			
Other: Dist. By/er	Other			
Pump Depth:				
	LOCK#:			
4 1				
REMARKS: A Ury				
7/1/1/1/1/				
CICHATURE / LA ////	n of			

SECOK International Inc. WATER SAMPLE FIELD DATA SHEET

PROJECT #: 50090-009-04	PURGED BY:	WELLI.D.: MM	1-6
CLIENT NAME: SFF 13	SAMPLED BY:	SAMPLE L.D.:	w-6
LOCATION: 580 Julie Ann Wa	ix, Oakland	. QA SAMPLES:	
DATE PURGED 6-4-98	START (2400hd) 9725	END (2400hr)	
DATE SAMPLED 6-4-98	SAMPLE TIME (2400hr)	4:30	•
SAMPLE TYPE: Groundwater	Surface Water T	reziment Effluent Other	
CASING DIAMETER: 2" X Casing Volume: (gallons per foot) (0.17)	3*4*5*	6° 8° (2.60)	Other
DEPTH TO BOTTOM ($feet$) = 14.7 .	<u>.</u>	ASING VOLUME (gai) =	1.16
DEPTH TO WATER (fcc) = $\frac{7.90}{100}$		ALCULATED PURGE (gal) =	11.65
WATER COLUMN HEIGHT (fcct) = . 6.8	<u> </u>	CTUAL PURGE (gal) =	
	FIELD MEASUREMEN	775	
	EMP. CONDUCTIVITY FROM F) (uninos/cm) 7.5 > 20000 7.5 > 20000 7.7 > 20000 7.8 > 20000 7.8 > 20000 7.9 > 20000 7.9 > 20000 7.9 > 20000 7.9 > 20000 7.9 > 20000 7.9 > 20000	*** OX XXDI IC TITID DITATIVA	TURBIDITY (NTU) High
80% RECHARGE:YESNO	ANALYSES:		*
ODORSAMPLE V	ESSEL / PRESERVATIVE		· · · · · · · · · · · · · · · · · · ·
PURGING EQUIPMENT		SAMPLING EQUIPMENT	
Bladder Pump Baile Centrifugal Pump Baile Subayersible Pump Baile Peristalac Pump Dodie Other: Disp. Buile	r (Stainless Steel)Submer		C or X disposable)
Pump Depth:			•
WELL INTEGRITY: 7 60 d		LOCK#:	
REMARKS: # Dry		,	
1/2/1-1			
SIGNATURE:	W.	. Pag	c of

SECOR International Inc. WATER SAMPLE FIELD DATA SHEET
PROJECT E: 500 90 - 009 - 04 PURGED BY:
DATE PURGED 6-4-98 START (2400hr) 10.40 END (2400hr) 11:20 DATE SAMPLED 6-4-98 SAMPLE TIME (2400hr) 13:00 SAMPLE TYPE: Groundwater Surface Water Treatment Effluent Other
CASING DIAMETER: 2- \(\sigma \) 3- \(4^{\cdot} \) 5- \(6^{\cdot} \) 8" \(\cdot \) Other \(\cdot \) Casing Volume: (gallons per foot) (0.17) (0.38) (0.67) (1.02) (1.50) (2.60) ()
DEPTH TO BOTTOM (feet) = $\frac{14.7}{.}$ Casing volume (gal) = $\frac{1.89}{.}$ Depth to water (feet) = $\frac{3.58}{.}$ Calculated purge (gal) = $\frac{18.90}{.}$ Water column height (feet) = $\frac{11.12}{.}$ Actual purge (gal) = $\frac{20.0}{.}$
FIELD MEASUREMENTS
DATE TIME VOLUME TEMP. CONDUCTIVITY pH .COLOR TURBIDITY (2400hr) (gal) (degrees F) (umhos/cm) (units) (visual) (NTU) 6-4 10:45 1.0 71.8 7030 7.52 M.6.eey High 11 10:55 8.0 71.3 8750 7.35 0 11 11:00 11.0 71.7 9730 7.38 1. eq 11 11:10 18.0 72.2 8570 7.17 11 0 11 11:20 20.0 72.7 8620 7.19 4 9
SAMPLE INFORMATION
SAMPLE DEPTH TO WATER: SAMPLE TURBIDITY:
80% RECHARGE:YESNO ANALYSES: ODOR: SAMPLE VESSEL / PRESERVATIVE:
PURGING EQUIPMENT Bladder Pump Bailer (Teflon) Centrifugal Pump Bailer (PVC) Submersible Pump Bailer (Stainless Steel) Peristaltic Pump Dedicated Other: Pump Depth:
WELL INTEGRITY: 565 LOCK#:
STEMATTIDE I I I I I I I I I I I I I I I I I I

Appendix C

Laboratory Analytical Results and Chain-of-Custody Records

Environmental Services (SDB)

June 4, 1998

Submission #: 9805342

SECOR SAN FRANCISCO 90 New Montgomery St., Suite 620 San Francisco, CA 94105-4503

Attn: Liping Zhang

RE: Analysis for project SFFB-OAKLAND, number 50090-009-04.

REPORTING INFORMATION

Samples were received cold and in good condition on May 22, 1998. They were refrigerated upon receipt and analyzed as described in the attached report. ChromaLab followed EPA or equivalent methods for all testing reported.

No discrepancies were observed or difficulties encountered with the testing.

Client Sample ID	Matrix	Date collected	Sample #
MW-5,10'	SOIL	May 20, 1998	187213
MW-5,15'	SOIL	May 20, 1998	187214
MW-5,4'	SOIL	May 20, 1998	187208
MW-6,10'	SOIL	May 20, 1998	187216
MW-6,15'	SOIL	May 20, 1998	187215
MW-6,4'	SOIL	May 20, 1998	187209
MW-7,10'	SOIL	May 20, 1998	187211
MW-7,15'	SOIL	May 20, 1998	187212
MW-7.4!	SOIL	May 20. 1998	187210

Afsaneh Salimpour Project Manager

Environmental Services (SDB)

June 1, 1998

Submission #: 9805342

SECOR SAN FRANCISCO

Atten: Liping Zhang

Project: SFFB-OAKLAND

Received: May 22, 1998

Project#: 50090-009-04

re: One sample for Polynuclear Aromatic Hydrocarbons (PAHs) analysis.

Method: SW846 Method 8270A Nov 1990

Client Sample ID: MW-5,4'

Spl#: 187208 Sampled: May 20, 1998 Matrix: SOIL Run#: 12949 Extracted: May 28, 1998 Analyzed: May 29, 1998

REPORTING BLANK BLANK DILUTION
RESULT LIMIT RESULT SPIKE FACTOR
(mg/Kg) (mg/Kg) (mg/Kg) (%)

ANALYTE	(mq/Kq)	(mg/Kg)	(mg/Kg)	(%)	
NAPHTHALENE	N.D.	0.10	N.D.		1
ACENAPHTHYLENE	N.D.	0.10	N.D.		1
ACENAPHTHENE	N.D.	0.10	N.D.	91.3	1
FLUORENE	N.D.	0.10	N.D.		1
PHENANTHRENE	N.D.	0.10	N.D.		1
ANTHRACENE	N.D.	0.10	N.D.		1
FLUORANTHENE	N.D.	0.10	N.D.		ī
PYRENE	N.D.	0.10	N.D.	77.3	<u>ī</u>
BENZO (A) ANTHRACENE	N.D.	0.10	N.D.		ī
CHRYSENE	N.D.	0.10	N.D.		ī
BENZO (B) FLUORANTHENE	N.D.	0.10	N.D.		ī
BENZO (K) FLUORANTHENE	N.D.	0.20	N.D.	•	ī
BENZO (A) PYRENE	N.D.	0.050	N.D.		ī
INDENO(1,2,3-CD)PYRENE	N.D.	0.20	N.D.		1
DIBENZO (A, H) ANTHRACENE	N.D.	0.20	N.D.		ī
BENZO (GHL) PERYLENE	N.D.	0.20	N.D.		ī

Michael Lee

Michael Verona

Operations Manager

Analyst

Environmental Services (SDB)

June 1, 1998

Submission #: 9805342

Project#: 50090-009-04

SECOR SAN FRANCISCO

Atten: Liping Zhang

Project: SFFB-OAKLAND

Received: May 22, 1998

re: One sample for Polynuclear Aromatic Hydrocarbons (PAHs) analysis.

Method: SW846 Method 8270A Nov 1990

Client Sample ID: MW-6,4'

ANALYTE	RESULT (mg/Kg)	REPORTING LIMIT (mg/Kg)	BLANK RESULT (mg/Kg)	BLANK D SPIKE (%)	ILUTION FACTOR
NAPHTHALENE	N.D.	0.10	$\frac{1 \text{Mg/Kg/}}{\text{N.D.}}$		
ACENAPHTHYLENE	N.D.	0.10	N.D.		+
ACENAPHTHENE	Ñ.D.	0.10	N.D.	91.3	1
FLUORENE	N.D.	0.10	N.D.		i
PHENANTHRENE	N.D.	0.10	N.D.		ī
ANTHRACENE	N.D.	0.10	N.D.		ī
FLUORANTHENE	N.D.	0.10	N.D.		ī
PYRENE	N.D.	0.10	N.D.	77.3	ī
BENZO (A) ANTHRACENE	N.D.	0.10	N.D.		ī
CHRYSENE	N.D.	0.10	N.D.		ī
BENZO (B) FLUORANTHENE	N.D.	0.10	N.D.		1
BENZO (K) FLUORANTHENE	N.D.	0.20	N.D.		1
BENZO (A) PYRENE	N.D.	0.050	N.D.		1
INDENO (1,2,3-CD) PYRENE	N.D.	0.20	N.D.		1
DIBENZO (A, H) ANTHRACENE	N.D.	0.20	N.D.		1
BENZO (GHI) PERYLENE	N.D.	0.20	N.D.		1

Michael Lee

Analyst

Michael Verona

Operations Manager

Environmental Services (SDB)

June 1, 1998

Submission #: 9805342

SECOR SAN FRANCISCO

Atten: Liping Zhang

Project: SFFB-OAKLAND

Received: May 22, 1998

Project#: 50090-009-04

re: One sample for Polynuclear Aromatic Hydrocarbons (PAHs) analysis.

Method: SW846 Method 8270A Nov 1990

Client Sample ID: MW-7,4

Spl#: 187210 Sampled: May 20, 1998 Matrix: SOIL

Extracted: May 28, 1998

Run#: 12949 Analyzed: June 1, 1998

		REPORTING	BLANK	BLANK :	DILUTION
	RESULT	LIMIT	RESULT	SPIKE	FACTOR
ANALYTE	(mg/Kg)	(mg/Kg)	(mg/Kg)	(%)	
NAPHTHALENE	N.D.	0.50	N.D.		5
ACENAPHTHYLENE	N.D.	0.50	N.D.		5
ACENAPHTHENE	N.D.	0.50	N.D.	91.3	5
FLUORENE	N.D.	0.50	N.D.		5
PHENANTHRENE	N.D.	0.50	N.D.		5
ANTHRACENE	N.D.	0.50	N.D.		5
FLUORANTHENE	N.D.	0.50	N.D.		5
PYRENE	N.D.	0.50	N.D.	77.3	5
BENZO (A) ANTHRACENE	N.D.	0.50	N.D.		
CHRYSENE	N.D.	0.50	N.D.		5
BENZO (B) FLUORANTHENE	N.D.	0.50	N.D.		5
BENZO (K) FLUORANTHENE	N.D.	1.0	N.D.		5
BENZO (A) PYRENE	N.D.	0.25	N.D.		5
INDENO(1,2,3-CD)PYRENE	N.D.	1.0	N.D.		5
DIBENZO (A, H) ANTHRACENE	N.D.	1.0	N.D.		5
BENZO (GHI) PERYLENE	N.D.	1.0	N.D.		5

Note: Reporting limits raised due to matrix interference.

Michael Lee

Analyst

Michael Veropa

Operations Manager

Environmental Services (SDB)

June 1, 1998

Submission #: 9805342

Project#: 50090-009-04

SECOR SAN FRANCISCO

Atten: Liping Zhang

Project: SFFB-OAKLAND

Received: May 22, 1998

re: Blank spike and duplicate report for Polynuclear Aromatic Hydrocarbons

(PAHs) analysis.

Method: SW846 Method 8270A Nov 1990

Matrix: SOIL
Lab Run#: 12949

Analyzed: May 28, 1998

Bas Rully.	14747	maryzea. May 20, 1990								
		Spike %					%			
		Spike	Amount	Amount	Found	Spike	Recov	Contro]	L %	RPD
		BSP	Dup	BSP	Dup	BSP	Dup			
Analyte		(mg/K	g)	(mg/Kc	7)	(%)	(%)	Limits	RPD	Lim
ACENAPHTHENE		1.00	1.00	0.913	0.860	91.3	86.0	49-102	5.98	30
PYRENE		1.00	1.00	0.773	0.741	77.3	74.1	25-117	4.23	35

Environmental Services (SDB)

June 1, 1998

Submission #: 9805342

SECOR SAN FRANCISCO

Atten: Liping Zhang

Project: SFFB-OAKLAND

Project#: 50090-009-04

Received: May 22, 1998

re: Matrix spike report for Polynuclear Aromatic Hydrocarbons (PAHs)

analysis.

Method: SW846 Method 8270A Nov 1990

Matrix: SOIL

Lab Run#: 12949 Instrument: Analyzed: May 28, 1998

Spiked Sample Spike Amt Amt Found Spike Recov % RPD MS Amount MS MSD MS MSD MSD Control Lim (%) (mg/Kg) (mg/Kg) (mg/Kg) Limits RPD <u>Analyte</u> 0.989 1.13 113 **ACENAPHTHENE** N.D. 0.9921.12114 49-102 0.88 30 N.D. 0.989 0.992 0.992 0.996 100 100 35 PYRENE 25-117 0

> Sample Spiked: 187210 Submission #: 9805342 Client Sample ID: MW-7,4'

Environmental Services (SDB)

June 1, 1998

Submission #: 9805342

SECOR SAN FRANCISCO

Atten: Liping Zhang

Project: SFFB-OAKLAND Project#: 50090-009-04

Received: May 22, 1998

re: Surrogate report for 3 samples for Polynuclear Aromatic

Hydrocarbons (PAHs) analysis.

Method: SW846 Method 8270A Nov 1990

Lab Run#: 12949 Matrix: SOIL

				Recovery
Sample#	Client Sample ID	Surrogate	Recovered	<u>Limits</u>
187208-1	MW-5,4'	NITROBENZENE-D5	87.3	23-120
187208-1	MW-5,4¹	2~FLUOROBIPHENYL	86.1	30-115
187208-1	MW-5,4'	TERPHENYL-D14	72.6	18-137
187209-1	MW-6,4'	NITROBENZENE-D5	82.3	23-120
187209-1	MW-6,4'	2-FLUOROBIPHENYL	85.3	30-115
187209-1	MW-6,4'	TERPHENYL-D14	66.8	18-137
187210-1	MW-7,4'	NITROBENZENE-D5	66.4	23-120
187210-1	MW-7,4'	2-FLUOROBIPHENYL	98.6	30-115
187210-1	MW-7,4'	TERPHENYL-D14	95.0	18-137
			% 1	Recovery
Sample#	OC Sample Type	Surrogate	Recovered	<u>Limits</u>
187825-1	Reagent blank (MDB)	NITROBENZENE-D5	86.6	23-120
187825-1	Reagent blank (MDB)	2~FLUOROBIPHENYL	88.2	30-115
187825-1	Reagent blank (MDB)	TERPHENYL-D14	72.6	18-137
187826-1	Spiked blank (BSP)	NITROBENZENE-D5	87.4	23-120
187826-1	Spiked blank (BSP)	2-FLUOROBIPHENYL	87.0	30-115
187826-1	Spiked blank (BSP)	TERPHENYL-D14	71.4	18-137
187827-1	Spiked blank duplicate		86.7	23-120
187827-1	Spiked blank duplicate		87.0	30-115
187827-1	Spiked blank duplicate	(BSD)TERPHENYL-D14	71 .7	18-137
187828-1	Matrix spike (MS)	NITROBENZENE-D5	80.2	23-120
187828-1	Matrix spike (MS)	2-FLUOROBIPHENYL	106	30-115
187828-1	Matrix spike (MS)	TERPHENYL-D14	89.0	18-137
187829-1	Matrix spike duplicate		81.6	23-120
187829-1	Matrix spike duplicate		112	30-115
187829-1	Matrix spike duplicate	(MSD) TERPHENYL-D14	89.4	18-137

\$105 QCSURR1229 LINDA 01-Jun-98 16:0

Environmental Services (SDB)

June 1, 1998

Submission #: 9805342

page 2

SECOR SAN FRANCISCO

Atten: Liping Zhang

Project: SFFB-OAKLAND

Project#: 50090-009-04

Received: May 22, 1998

re: Surrogate report for 3 samples for Polynuclear Aromatic

Hydrocarbons (PAHs) analysis.

Method: SW846 Method 8270A Nov 1990

Lab Run#: 12949

\$105 QCSURR1229 LINDA 01-Jun-98 16:0

Environmental Services (SDB)

May 29, 1998

Submission #: 9805342

SECOR SAN FRANCISCO

Atten: Liping Zhang

Project: SFFB-OAKLAND

Received: May 22, 1998

Project#: 50090-009-04

re: 1 sample for TEPH analysis.

Method: EPA 8015M

Sampled: May 20, 1998

Matrix: SOIL

Run#: 12952

Extracted: May 28, 1998

Analyzed: May 28, 1998

Spl# CLIENT SPL ID	(mg/Kg)_	Motor Oil (mg/Kg)	
187208 MW-5,4'	N.D.	N.D.	
Reporting Limits Blank Result	1.0 N.D.	50 N.D.	
Blank Spike Result (%)	86.4		

Carolyn House

Anayryst

Bruce Havlik

Analyst

Environmental Services (SDB)

May 29, 1998

Submission #: 9805342

SECOR SAN FRANCISCO

Atten: Liping Zhang

Project: SFFB-OAKLAND

Received: May 22, 1998

Project#: 50090-009-04

re: 1 sample for TEPH analysis.

Method: EPA 8015M

Matrix: SOIL

Run#: 12952 Extracted: May 28, 1998

Analyzed: May 29, 1998

CLIENT SPL ID

Sampled: May 20, 1998

Diesel

Motor Oil

187209 MW-6,4'

(mg/Kg)

(mg/Kg)

12 110 Hydrocarbon reported is in the late Diesel range and does not match our Note: Diesel standard.

Reporting Limits

Blank Result

Blank Spike Result (%)

5.0

100

N.D.

N.D.

86.4

Bruce Havlik

Analyst

Environmental Services (SDB)

May 29, 1998

Submission #: 9805342

50090-009-04

SECOR SAN FRANCISCO

Atten: Liping Zhang

Project: SFFB-OAKLAND

Received: May 22, 1998

re: 1 sample for TEPH analysis.

Method: EPA 8015M

Matrix: SOIL

Run#: 12952 Extracted: May 28, 1998

Analyzed: May 28, 1998

CLIENT SPL ID

Sampled: May 20, 1998

Diesel (mg/Kg)

Project#:

Motor Oil (mg/Kg)

187210 MW-7.4'

N.D.

Note: Hydrocarbon reported is in the late Diesel range and does not match our Diesel standard.

Reporting Limits

Blank Result

Blank Spike Result (%)

1.0 N.D. 50

N.D.

86.4

Bruce Havlik

Analyst

Environmental Services (SDB)

May 29, 1998

Submission #: 9805342

SECOR SAN FRANCISCO

Atten: Liping Zhang

Project: SFFB-OAKLAND

Project#: 50090-009-04

Received: May 22, 1998

re: Blank spike and duplicate report for TEPH analysis.

Method: EPA 8015M

Matrix: SOIL Lab Run#: 12952

Analyzed: May 28, 1998

Spike

Analyte	Spike BSP (mg/Kg	Dup		Found Dup)	Spike BSP (%)	Recov Dup (%)	Control % Limits RPD	% RPD Lim
DIESEL	83.3	83.3	72.0	84.0	86.4	101	60-130 15.6	

Environmental Services (SDB)

May 29, 1998

Submission #: 9805342

SECOR SAN FRANCISCO

Atten: Liping Zhang

Project: SFFB-OAKLAND

Project#: 50090-009-04

Received: May 22, 1998

re: Matrix spike report for TEPH analysis.

Method: EPA 8015M

Matrix: SOIL

DIESEL

Lab Run#: 12952 Instrument:

1.5

Analyzed: May 29, 1998

95.7 93.6 60-130 2.22 25

Sam Amo	.ked ple Spik unt MS [/Kg) (m	e Amt MSD g/Kg)	MS	Found MSD /Kg)	Spike MS (%)	MSD	Control Limits		
------------	--	-----------------------	----	----------------------	--------------------	-----	-------------------	--	--

78.2 76.4

Sample Spiked: 187148
Submission #: 9805338
Client Sample ID: 49B11-02

81.6

81.7

Environmental Services (SDB)

May 29, 1998

Submission #: 9805342

SECOR SAN FRANCISCO

Atten: Liping Zhang

Project: SFFB-OAKLAND Project#: 50090-009-04

Received: May 22, 1998

re: Surrogate report for 3 samples for TEPH analysis.

Method: EPA 8015M Lab Run#: 12952 Matrix: SOIL

			% Recovery
Sample#	Client Sample ID	Surrogate	Recovered Limits
187208-1	MW-5,4'	O-TERPHENYL	96.6 60-130
187209-1	MW-6,4'	O-TERPHENYL	116 60-130
187210-1	MW-7,4'	O-TERPHENYL	112 60-130
			% Recovery
Sample#	QC Sample Type	Currocale	The manage of a Taluada and Ta
Dampie	Ос запрте туре	Surrogate	Recovered Limits
187836-1		O-TERPHENYL	107 60-130
187836-1	Reagent blank (MDB)	O-TERPHENYL	107 60-130
187836-1 187837-1	Reagent blank (MDB) Spiked blank (BSP)	O-TERPHENYL O-TERPHENYL	107 60-130 97.4 60-130

S010 QCSURR1229 MIKELEE 29-May-98 10

Environmental Services (SDB)

June 2, 1998

Submission #: 9805342

SECOR SAN FRANCISCO

Atten: Liping Zhang

Project: SFFB-OAKLAND

Received: May 22, 1998

Project#: 50090-009-04

re: One sample for Gasoline BTEX MTBE analysis.

Method: SW846 8020A Nov 1990 / 8015Mod

Client Sample ID: MW-5,4'

Sp1#: 187208 Sampled: May 20, 1998 Matrix: SOIL

Run#:12999 Analyzed: June 1, 1998

ANALYTE	RESULT (mg/Kg)	REPORTING LIMIT (mg/Kg)	BLANK RESULT (mg/Kg)	BLANK SPIKE (%)	DILUTION FACTOR
GASOLINE	N.D.	10	N.D.	91	1
MTBE	N.D.	0.62	N.D.	96	1
BENZENE	2.1	0.62	N.D.	100	1
TOLUENE	N.D.	0.62	N.D.	102	1
ETHYL BENZENE	N.D.	0.62	N.D.	111	1
XYLENES	1.2	0.62	N.D.	115	1

Hydrocarbon found in Gasoline Range is uncharacteristic of Gasoline Profile. If quantified using Gasoline's response factor, concentration would equal 150mg/Kg.Surrogate Recoveries biased high due to Hydrocarbon co-elution.

Vincent Vancil

Analyst

Environmental Services (SDB)

June 2, 1998

Submission #: 9805342

SECOR SAN FRANCISCO

Atten: Liping Zhang

Project: SFFB-OAKLAND

Received: May 22, 1998

Project#: 50090-009-04

re: One sample for Gasoline BTEX MTBE analysis.

Method: SW846 8020A Nov 1990 / 8015Mod

Client Sample ID: MW-6,4'

Spl#: 187209 Sampled: May 20, 1998 Matrix: SOIL

Run#:13007

Analyzed: June 2, 1998

ANALYTE	RESULT (mg/Kg)	REPORTING LIMIT (mg/Kg)	BLANK RESULT (mg/Kg)	BLANK I SPIKE (%)	OILUTION FACTOR
GASOLINE	N.D.	1.0	N.D.	92	1
MTBE	N.D.	0.0050	N.D.	103	1
BENZENE	N.D.	0.0050	N.D.	98	1
TOLUENE	N.D.	0.0050	N.D.	104	1
ETHYL BENZENE	N.D.	0.0050	N.D.	100	1
XYLENES	N.D.	0.0050	N.D.	105	1

Vincent Vancil

Analyst

Michael Verona

Environmental Services (SDB)

June 2, 1998

Submission #: 9805342

SECOR SAN FRANCISCO

Atten: Liping Zhang

Project: SFFB-OAKLAND

Received: May 22, 1998

Project#: 50090-009-04

re: One sample for Gasoline BTEX MTBE analysis.

Method: SW846 8020A Nov 1990 / 8015Mod

Client Sample ID: MW-7,4'

Spl#: 187210

Matrix: SOIL

Sampled: May 20, 1998

Run#:13029

Analyzed: June 2, 1998

		REPORTING	BLANK	BLANK DILUTION
	RESULT	LIMIT	RESULT	SPIKE FACTOR
ANALYTE	(mg/Kg)	(mg/Kg)	(mg/Kg)	(%)
GASOLINE	N.D.	1.0	N.D.	88 1
MTBE	N.D.	0.0050	N.D.	90 1
BENZENE	N.D.	0.0050	N.D.	90 1
TOLUENE	N.D.	0.0050	N.D.	91 1
ETHYL BENZENE	N.D.	0.0050	N.D.	89 1
XYLENES	N.D.	0.0050	N.D.	93 1

Vincent Vancil

Analyst

Michael Verona

Environmental Services (SDB)

June 2, 1998

Submission #: 9805342

SECOR SAN FRANCISCO

Atten: Liping Zhang

Project#: 50090-009-04 Project: SFFB-OAKLAND

Received: May 22, 1998

re: Blank spike and duplicate report for Gasoline BTEX MTBE analysis.

Spike

Method: SW846 8020A Nov 1990 / 8015Mod

Matrix: SOIL 12999 Lab Run#:

Analyzed: May 31, 1998

Amount Found Spike Recov Spike Amount Dup BSP RPD **BSP** Dup BSP Dup Control % (mg/Kg) (mg/Kg)(%) (왕) Limits RPD Lim 14.2 91.2 114 65-135 12.5 12.5 11.4 22.2

<u>Analyte</u> GASOLINE 75-125 2.50 2.50 2.41 2.45 96.4 98.0 1.65 MTBE 2.45 99.6 2.50 2.50 2.49 98.0 77-123 1.62 BENZENE 2.55 2.78 2.50 2.73 2.50 1.98 2.50 102 100 78-122 35 TOLUENE 1.82 35 2.50 2.50 111 109 70-130 ETHYL BENZENE 7.50 8.60 8.35 115 111 75-125 3.54 7.50 XYLENES

Environmental Services (SDB)

June 2, 1998

Submission #: 9805342

SECOR SAN FRANCISCO

Atten: Liping Zhang

Project: SFFB-OAKLAND Project#: 50090-009-04

Received: May 22, 1998

re: Surrogate report for 1 sample for Gasoline BTEX MTBE analysis. Method: SW846 8020A Nov 1990 / 8015Mod

Lab Run#: 12999 Matrix: SOIL

Sample#	Client Sample ID	Surrogate	% Recovered	Recovery Limits_
187208-1	MW-5,4'	TRIFLUOROTOLUENE	65.8	65-135
187208-1	MW-5,4'	4-BROMOFLUOROBENZENE	206	65-135
				Recovery
Sample#	QC Sample Type	Surrogate	Recovered	<u>Limits</u>
188189-1	Reagent blank (MDB)	TRIFLUOROTOLUENE	105	65-135
188189-1	Reagent blank (MDB)	4-BROMOFLUOROBENZENE	142	65-135
188190-1	Spiked blank (BSP)	TRIFLUOROTOLUENE	105	65-135
188190-1	Spiked blank (BSP)	4-BROMOFLUOROBENZENE	147	65-135
188191-1	Spiked blank duplicate	(BSD) TRIFLUOROTOLUENE	96.0	65-135
188191-1	Spiked blank duplicate	(BSD) 4-BROMOFLUOROBENZENE	147	65-135

V135 QCSURR1229 VINCE 02-Jun-98 16:2

Environmental Services (SDB)

June 2, 1998

Submission #: 9805342

SECOR SAN FRANCISCO

Atten: Liping Zhang

Project: SFFB-OAKLAND Project#: 50090-009-04

Received: May 22, 1998

re: Blank spike and duplicate report for Gasoline BTEX MTBE analysis.

Method: SW846 8020A Nov 1990 / 8015Mod

Matrix: SOIL Lab Run#: 13007

Analyzed: June 1, 1998

Spike Spike Amount Amount Found Spike Recov ક RPD BSP BSP Dup BSP Dup Dup Control % (%) (%) Limits RPD Lim Analyte (mg/Kg) (mg/Kg)89.2 0.461 0.500 0.500 0.446 92.2 75-125 3.31 GASOLINE 82.1 22.6 0.0821 103 75~125 0.100 0.100 0.103 MTBE 35 35 0.0975 0.0882 97.5 88.2 0.100 0.100 77~123 10.0 BENZENE 0.100 0.0890 89.0 78-122 15.5 0.100 0.104 104 TOLUENE 0.100 0.100 0.100 0.0870 87.0 100 70~130 13.9 ETHYL BENZENE 14.6 0.300 0.300 0.315 0.272 105 90.7 75-125 **XYLENES**

Environmental Services (SDB)

June 2, 1998

Submission #: 9805342

SECOR SAN FRANCISCO

Atten: Liping Zhang

Project: SFFB-OAKLAND

Project#: 50090-009-04

Received: May 22, 1998

re: Matrix spike report for Gasoline BTEX MTBE analysis.

Method: SW846 8020A Nov 1990 / 8015Mod

Matrix: SOIL

Analyzed: June 2, 1998 Lab Run#: 13007 Instrument: 3400-2

<u>Analyte</u>	Spiked Sample Amount (mg/Kg)	Spike MS (mg	Amt MSD /Kg)	Amt Fo MS (mg/Ko	MSD	Spike MS (%)	Recor MSD (%)	Contro	% l % RPD <u>RPD Lim</u>	
	37 D	0 450	0 400	0 005	0 200	60.4	C-1 F	CF 425	4 00 05	
GASOLINE	N.D.	0.472	0.488	0.285	0.300				1.80 35	
MTBE	N.D.	0.0943	0.0976	0.0712	0.0747	75.5	76.5	65-135	1.32 35	,
BENZENE	N.D.	0.0943	0.0976	0.0728	0.0766	77.2	78.5	65-135	1.67 35	;
TOLUENE	N.D.	0.0943	0.0976	0.0727	0.0767	77.1	78.6	65-135	1.93 35	5
ETHYL BENZENE	N.D.	0.0943	0.0976	0.0693	0.0726	73.5	74.4	65-135	1.22 35	j
XYLENES	N.D.	0.283	0.293	0.216	0.227	76.3	77.5	65-135	1.56 35	;

Sample Spiked: 187149 Submission #: 9805338 Client Sample ID: 49B11-07

Environmental Services (SDB)

June 2, 1998

Submission #: 9805342

SECOR SAN FRANCISCO

Atten: Liping Zhang

Project#: 50090-009-04 Project: SFFB-OAKLAND

Received: May 22, 1998

re: Surrogate report for 2 samples for Gasoline BTEX MTBE analysis. Method: SW846 8020A Nov 1990 / 8015Mod

Lab Run#: 13007 Matrix: SOIL

				ecovery
Sample#	Client Sample ID	Surrogate	Recovered	<u>Limits</u>
187209-1	MW-6,4'	TRIFLUOROTOLUENE	79.8	53-125
187209-1	MW-6,4'	4-BROMOFLUOROBENZENE	61.8	58-124
187210-1	MW-7,4'	TRIFLUOROTOLUENE	54.8	53-125
187210-1	MW-7,4'	4-BROMOFLUOROBENZENE	33.4	58-124
			% R	ecovery
Sample#	QC Sample Type	Surrogate	Recovered	<u>Limits</u>
188245-1	Reagent blank (MDB)	TRIFLUOROTOLUENE	104	53-125
188245-1	Reagent blank (MDB)	4-BROMOFLUOROBENZENE	90.8	58-124
188246-1	Spiked blank (BSP)	TRIFLUOROTOLUENE	97.9	53-125
188246-1	Spiked blank (BSP)	4-BROMOFLUOROBENZENE	97.4	58-124
188247-1	Spiked blank duplicate	(BSD) TRIFLUOROTOLUENE	83.2	53-125
188247-1	Spiked blank duplicate	(BSD) 4-BROMOFLUOROBENZENE	84.9	58-124
188435-1	Matrix spike (MS)	TRIFLUOROTOLUENE	75.7	53-125
188435-1	Matrix spike (MS)	4-BROMOFLUOROBENZENE	61.4	58-124
188436-1	Matrix spike duplicate	(MSD) TRIFLUOROTOLUENE	70.3	53-125
188436-1	Matrix spike duplicate	(MSD) 4-BROMOFLUOROBENZENE	55.3	58-124

V132 QCSURR1229 VINCE 02-Jun-98 16:2

Environmental Services (SDB)

June 2, 1998

Submission #: 9805342

SECOR SAN FRANCISCO

Atten: Liping Zhang

Project: SFFB-OAKLAND Project#: 50090-009-04

Received: May 22, 1998

re: Surrogate report for 1 sample for Gasoline BTEX MTBE analysis. Method: SW846 8020A Nov 1990 / 8015Mod

Lab Run#: 13029 Matrix: SOIL

Sample#	Client Sample ID	Surrogate	% Recovered	Recovery Limits
187210-2	MW-7,4'	TRIFLUOROTOLUENE	69.7	53-125
187210-2	MW-7,4'	4-BROMOFLUOROBENZENE	44.3	58-124
			8	Recovery
Sample#	QC Sample Type	Surrogate	Recovered	<u>Limits</u>
188482-1	Reagent blank (MDB)	TRIFLUOROTOLUENE	90.1	53-125
188482-1	Reagent blank (MDB)	4-BROMOFLUOROBENZENE	94.8	58-124
188483-1	Spiked blank (BSP)	TRIFLUOROTOLUENE	81.4	53-125
188483-1	Spiked blank (BSP)	4-BROMOFLUOROBENZENE	95.5	58-124
188484-1	Spiked blank duplicate	(BSD)TRIFLUOROTOLUENE	70.9	53-125
188484-1	Spiked blank duplicate	(BSD) 4-BROMOFLUOROBENZENE	78.4	58-124

V132 QCSURR1229 VINCE 02-Jun-98 16:2

Environmental Services (SDB)

June 2, 1998

Submission #: 9805342

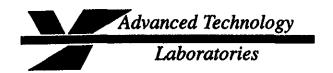
SECOR SAN FRANCISCO

Atten: Liping Zhang

Project: SFFB-OAKLAND Project#: 50090-009-04

Received: May 22, 1998

re: Blank spike and duplicate report for Gasoline BTEX MTBE analysis.


Method: SW846 8020A Nov 1990 / 8015Mod

Matrix: SOIL Lab Run#: 13029

Analyzed: June 2, 1998

Spike

		phrve			
	Spike Amount	Amount Found	Spike Recov		8
	BSP Dup	BSP Dup	BSP Dup	Control %	RPD
Analyte	(mg/Kg)	(mg/Kg)	(왕) (왕)	Limits RPD	<u>Lim</u>
GASOLINE	0.500 0.500	0.438 0.410	87.6 82.0	75-125 6.60	35
MTBE	0.100 0.100	0.0901 0.0856	90.1 85.6	75-125 5.12	35
BENZENE	0.100 0.100	0.0900 0.0789	90.0 78.9	77-123 13.1	35
TOLUENE	0.100 0.100	0.0912 0.0807	91.2 80.7	78-122 12.2	35
ETHYL BENZENE	0.100 0.100	0.0886 0.0786	88.6 78.6	70-130 12.0	35
XYLENES	0.300 0.300		92.7 82.7	75-125 11.4	35

June 1, 1998 ELAP No.: 1838

Chromalab, Inc. 1220 Quarry Lane Pleasanton, CA 94566-4756

ATTN:

Mr. Chris Rowley

Client's Project:

9805342

Lab No.:

26298-001/003

Gentlemen:

Enclosed are the results for sample(s) received by Advanced Technology Laboratories and tested for the parameters indicated in the enclosed chain of custody.

Thank you for the opportunity to service the needs of your company. Please feel free to call me at (562) 989 - 4045 if I can be of further assistance to your company.

Sincerely,

Edgar P. Caballero Laboratory Director

EPC/lb

Enclosures

This cover letter is an integral part of this analytical report.

This report portains only to the samples investigated and does not necessarily apply to other apparently identical or similar materials. This report is submitted for the exclusive use of the client to whom it is addressed. Any reproduction of this report or use of this Laboratory's name for advertising or publicity purpose without authorization is prohibited

Cilent:

Chromalab, Inc. Mr. Chris Rowley

Client's Project:

9805342

Date Received: Date Sampled: 05/27/98 05/20/98 6.2×10 or

					*******************************	****************	000 000 000 000 000 000 000 000 000 00											
Eab No.	Sample I D.	Amilysis	Date Amilyzed	Results.	Mutrix, Units	MDL	DLR	Analyst										
26298-001	MW-7, 4'	EPA 9060 (TOC)	05/29/98	6220	Soil, mg/kg	30	60	IG										
26298-002	MW-7, 10'	EPA 9060 (TOC)	05/29/98	7310	Soil, mg/kg	30	60	IG										
26298-003	MW-7, 15'	EPA 9060 (TOC)	05/29/98	778	Soil, mg/kg	30	60	IG										
								ļ										
					<u> </u>													
					1													

MDL	-	Method Detection Limit
ND	=	Not Detected (Below DLR)
DF	=	Dilution Factor (DLR/MDL)

Reviewed/Approved By:	Cherry de los m
	Cheryl De Los Reyes
	Department Supervisor

Date: 6/1/98

The cover letter is an integral part of this analytical report.

Spike Recovery and RPD Summary Report

Method Analyst EPA 9060

IG

Data File:

8149-15

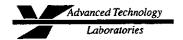
Date

05/29/98

Sample ID:

26298-003

Matrix:


SOIL

QC Batch:TOC 980529S-1

ANALYTE	UNITS	LCS Conc	LCS Res	% Rec	METH BLANK	SPL CONC	SPK ADDED	MS RESULT	MSD RESULT	%MS REC	%MSD REC	% REC Limit	RPD	RPD Limit	MDL
TOC	mg/Kg	2000	1980	99	ND	778	2000	2930	3100	108	116	59-137	6	21	30
													• • • • • • • • • • • • • • • • • • • •		

Approved by: <u>Chesyl deh</u> Cheryl De Los Reyes Inorganics Supervisor

Date: 6/1/98

ADV TECH

CHROMALAB, INC.

1220 Quarry Lane • Pleasanton, California 94566-4756 510/484-1919 • Facsimile 510/484-1096

Chain of Custody

DATE 5.21-98 PAGE 1 Environmental Services (SDB) (DOHS 1094) ANALYSIS REPORT COMPANY NUMBER OF CONTAINERS ADDRESS _ SAMPLERS (SIGNATURE) (PHONE NG.) (FAX NO.) SAMPLE ID. MATRIX PRESERV. TIME C-1090 PROJECT INFORMATION SAMPLE RECEIPT 1. RELINQUISHED BY 2 RELINQUISHED BY PROJECT NAME **TOTAL NO. OF CONTAINERS** (TIME) (SIGNATURE) (TIME) (SIGNATURE) **HEAD SPACE** REC'D GOOD CONDITION/COLD (PRINTED NAME) (DATE) (PRINTED NAME) CONFORMS TO RECORD (COMPANY) (COMPANY) 72 OTHER RECEIVED BY (LABORATORY) RECEIVED BY RECEIVED BY SPECIAL INSTRUCTIONS/COMMENTS. (SIGNATURE) (SIGNATURE) (PRINTED NAME) (PRINTED NAME) (COMPANY) (COMPANY)

1005542 [167 2 08 - 16 💢 🖼	LIEN UE: DE:		667	/Ø1										Ch	ain-	of Cu	ıstod	ス y Nu	999 mber:	6	
161	1.1 17	18 9a2*)C(ord					<u></u>			
Find Office San Francisco																			a part of t	his Recor	d.
Field Office: San Francisco Address: 90 New Montgomery San Francisco, CA	5%	<u></u>	Uj	1/2	62	20			Jol	Na	me: _	SF	F	<u>B</u>	- (19 K	14 m	1		···-	
San Francisco, CA	94	1/6	25				_		Loc	catio	n: _	<u>58</u>	<u>0</u> L/	<u> Ju</u>	li e	<u> </u>	<u> </u>	W	"Y		
	- r									Λ.		s Red	<u> </u>	<u>, 4</u>	<u>a,</u>	<u>C</u> 1	<u> </u>				
Project # 50090 -009 -04 Task #	_ t		8					T	<u> </u>	T ~:	alysi	S NEC	Jues			,					Τ
Project # 50090-009-04 Task # Project Manager Liping 26 4 4 4 4 Laboratory Chrows 4 lbb Turnaround Time Standard / * Hold	· 休	٤.	WTPH-G/MTBE ed)/8020	ed)	VTPH 418.1	atiles	anics (C/MS)	Volatiles	Organics IC/MS)	CBs		ıtant	s	194416	matic						of Containers
Sampler's Name Charles Melancon Sampler's Signature Sample ID Date Time Ma	atrix	# CED 7.67	TPHg/BTEX/ 8015 (modifi	TPHd/WTPH-D 8015 (modified)	TPH 418.1/WTPH 418.1	Aromatic Volatiles 602/8020	Volatile Orge 624/8240 (G	Halogenated Volatiles	Semi-volatile Organics 625/8270 (GC/MS)	Pesticides/PCBs	Total Lead	Priority Pollutant Metals (13)	TCLP Metals	Total o	Polygo	<u> </u>			ments/		Nimber
MW-5, 4" 5-20-98 So	;/	\times	\ge	X	<u> </u>				_					Z	X	ļ	11 7				
MW-5 10-					_			<u> </u>	-		ļ		<u>`</u>			*	HO/0	1			+
MW-5, 15							ļ. <u> </u>	-	ـــ	ļ	-	-		1		*	1401	<u>a_</u>			 '
MW-6, 4	-	\times	\mathbf{X}	\preceq				+			-	-		120		V	1/2	11			+
MW-6, 10						ļ,—	<u> </u>	1		-	╂				<u> </u>	X	H01				
MW-6, 15						ļ <u> </u>	-	-	-	 		-			Y	 70	/TU/	19			+
MW-7, 4		\triangle	\triangle	\triangle		ļ. <u></u>		-		 	-					200					+;
MW-7, 10	/ 								-		 				-		 				1
MW-713 Y V	<u>'</u>						 	_			 				1		7_				\dagger
Special Instructions/Comments:		Relir	nguis	shed	by∶,				/	Re	ceive	g by	1	Zan		1			Sample F		
	[Sign			ed E		La	#	<u></u>	Sig	ın #	ttec	n ff	<u>//_A</u>	egs.	- 13			otal no. of o		\vdash
A HOLD FERDING		Print Com			(<u> </u>	~ /\ = (U	121	an	104	Pri	nt 🚣	7/5/21 ny <u>C</u>	1x	-20	u a	AN L	ا ا		hain of cust n good cond	-	-
* Hold pending instructions		Time						- 3/;	98	Tin		4.	20		ate _	7/21/	4	100 4. 11	-	to record:	
		Relin Sign Prin Com	rquis A t A	shed	by:	Sal Sal Sal	im,	pou ou	<u></u>	PRe Sig	ceive gn Q int _ mpa	0 [[]	10 de 14	4 (ate_	() 5 1 k 5 27			Contact: _		
SECOR CUSTREC Rev. 1/95													-	Da	ate: _	51	20	15	Page	e/_of	:

Environmental Service (SDB)

Sample Receip	ot Checklist	- lator
Client Name: SECOR SAN FRANCISCO	Date/Time Received:	5 121(48) 0 5/22/3 8 16:50
	Received by: A.S.	Act to
Checklist completed by:	5-7798 Reviewed	by: (S) 1916
z ~ A //	name: Client - C/L	
Shipping container/cooler in good condition?	Yes No	
Custody seals intact on shipping container/cooler?	Yes No	Not Present
Custody seals intact on sample bottles?	Yes No	Not Present
Chain of custody present?		Yes V No
Chain of custody signed when relinquished and receiv	red?	Yes No
Chain of custody agrees with sample labels?		Yes No
Samples in proper container/bottle?		Yes No
Sample containers intact?		Yes No
Sufficient sample volume for indicated test?		Yes No
All samples received within holding time?	25	YesNo
Container/Temp Blank temperature in compliance?	Temp:	YesNo
Water - VOA vials have zero headspace? No VO	OA vials submitted	Yes No
Water - paracceptable upon receipt? Adju	checked by	chemist for VOAs
Any No and/or NA (not applicable) response must be		
Client contacted: Date contacted:	Person contac	ted:
Contacted by: Regarding:		
Comments:		
-		
Corrective Action:		

Environmental Services (SDB)

June 25, 1998

Submission #: 9806139

SECOR CONCORD 1390 Willow Pass Road, Suite 360 Concord, CA 94520-5250

Attn: Liping Zhang

RE: Analysis for project SFFB, number 50090-009-04.

REPORTING INFORMATION

Samples were received cold and in good condition on June 5, 1998. They were refrigerated upon receipt and analyzed as described in the attached report. ChromaLab followed EPA or equivalent methods for all testing reported.

No discrepancies were observed or difficulties encountered with the testing.

Client Sample ID	Matrix	Date collected	Sample #
MW-1	WTR	June 4, 1998	189623
MW-2	WTR	June 4, 1998	189624
MM-3	WTR	June 4, 1998	189625
MW - 4	WTR	June 4, 1998	189626
MW-5	WTR	June 4, 1998	189627
MW-6	WTR	June 4, 1998	189628
MW - 7	WTR	June 4, 1998	189629

Afsaneh Salimpour Project Manager

Environmental Services (SDB)

June 18, 1998

Submission #: 9806139

SECOR CONCORD

Atten: Liping Zhang

Project: SFFB

Project#: 50090-009-04

Received: June 5, 1998

re: 7 samples for Total Dissolved Solids analysis.

Method: EPA 160.1

Sampled: June 4, 1998

Matrix: WATER

Extracted: June 9, 1998

Run#: 13176 Analyzed: June 9, 1998

			TOTAL	DISSOLVED	REPORTI SOLI LIMIT		BLANK SPIKE	DILUTION FACTOR
Spl#	CLIENT	SPL	ID	(mg/L)	(mq/L)	(mg/L)	(%)	
189623	MW-1	-		580	10	N.D.	99.1	1
189624	MW-2			2900	10	N.D.	99.1	1
189625	MW - 3			5100	10	N.D.	99.1	1
189626	MW-4			2000	10	N.D.	99.1	1
189627	MW-5			9900	10	N.D.	99.1	1
189628	MW-6			43000	10	N.D.	99.1	1
189629	MW - 7			6100	10	N.D.	99.1	1

Aman Ullah Analyst

Michael Verona Operations Manager

Environmental Services (SDB)

June 18, 1998

Submission #: 9806139

SECOR CONCORD

Atten: Liping Zhang

Project: SFFB

Project#: 50090-009-04

Received: June 5, 1998

re: Blank spike and duplicate report for Total Dissolved Solids analysis.

Method: EPA 160.1

Matrix: WATER

Lab Run#: 13176 Analyzed: June 9, 1998

Spike

Analyte	Spike BSP (mg/L)	\mathtt{Dup}		t Found Dup	Spike BSP (%)	Recov Dup (%)	Control % Limits RPD	% RPD Lim
TOTAL DISSOLVED SOLIDS	1000	1000	991	1040	99.1	104	80-120 4.82	20

Environmental Services (SDB)

June 18, 1998

Submission #: 9806139

SECOR CONCORD

Atten: Liping Zhang

Project: SFFB

Project#: 50090-009-04

Received: June 5, 1998

re: 7 samples for TEPH analysis.

Method: EPA 8015M

Matrix: WATER Extracted: June 11, 1998

Sampled: June 4, 1998 Run#: 13225 Analyzed: June 11, 1998

					Diesel		Motor Oil	1.	
Spl# CLIE	NT SPL ID				(ug/L)		(ug/L)		
189624 MW-2				•	4100		N.D.		
Note:	Hydrocarbon	reported	does	not match	the pattern	of	our Diesel	Standard.	
189625 MW-3					860		N.D.		
Note:	Hydrocarbon	reported	does	not match	the pattern	of a	our Diesel	Standard.	
189626 MW-4					1400		710		
Note:	Hydrocarbon	reported	does	not match	the pattern	of	our Diesel	Standard.	
	Hydrocarbon	reported	does	not match	the pattern	ı of	our Motor	oil Standard.	
189627 MW-5					970		N.D.		
Note:	Hydrocarbon	reported	does	not match	the pattern	of	our Diesel	Standard.	

Hydrocarbon reported does not match the pattern of our Diesel Standard.

Extracted: June 11, 1998 Matrix: WATER Analyzed: June 12, 1998 Sampled: June 4, 1998 Run#: 13225

Spl# CLIEN	NT SPL ID						iesel ug/L)		Motor Oi (ug/L)	1
189623 MW-1							1600		640	
Note:	Hydrocarbon	reported	does	not	match	the	pattern	o£	our Diesel	Standard.
	Hydrocarbon	reported	does	not	match	the	pattern	o£	our Motor	oil Standard.
189628 MW-6							120		N.D.	
Note:	Hydrocarbon	reported	does	not	match	the	pattern	ο£	our Diesel	Standard.
189629 MW-7	_	_					900		540	
Note:	Hydrocarbon	reported	does	not	match	the	pattern	of	our Diesel	Standard.
	Hydrocarbon	reported	does	not	match	the	pattern	ο£	our Motor	oil Standard.

Reporting Limits 50 500 N.D. N.D.

Blank Result 106 Blank Spike Result (%)

> Bruce Havlik For Analyst

Environmental Services (SDB)

June 18, 1998

Submission #: 9806139

SECOR CONCORD

Atten: Liping Zhang

Project: SFFB

Project#: 50090-009-04

Received: June 5, 1998

re: Blank spike and duplicate report for TEPH analysis.

Method: EPA 8015M

Matrix: WATER

Lab Run#: 13225 Analyzed: June 11, 1998

Spike

Analyte	Spike : BSP (ug/L)	Amount Dup	'	Found Dup	Spike BSP (%)	Recov Dup (%)	Control % Limits RPD	% RPD <u>Lim</u>
DIESEL	2500	2500	2650	2480	106	99.2	60-130 6.63	3 25

Environmental Services (SDB)

June 18, 1998

Submission #: 9806139

SECOR CONCORD

Atten: Liping Zhang

Project: SFFB Project#: 50090-009-04

Received: June 5, 1998

re: Surrogate report for 7 samples for TEPH analysis.

Method: EPA 8015M Lab Run#: 13225 Matrix: WATER

			% Recovery
Sample#	Client Sample ID	Surrogate	Recovered Limits
189623-1	MW-1	O-TERPHENYL	112 60-130
189624-1	MW-2	O-TERPHENYL	118 60-130
189625-1	MW-3	O-TERPHENYL	106 60-130
189626-1	MW-4	O-TERPHENYL	106 60-130
189627-1	MW-5	O-TERPHENYL	111 60-130
189628-1	MW-6	O-TERPHENYL	104 60-130
189629-1	MW - 7	O-TERPHENYL	114 60-130
			% Recovery
Sample#	QC Sample Type	Surrogate	Recovered Limits
190433-1	Reagent blank (MDB)	O-TERPHENYL	93.4 60-130
190434-1	Spiked blank (BSP)	O-TERPHENYL	128 60-130
190435-1	Spiked blank duplicate	(BSD)O-TERPHENYL	104 60-130

S010 QCSURR1229 AFSANEH 18-Jun-98 1

Environmental Services (SDB)

June 18, 1998

Submission #: 9806139

SECOR CONCORD

Atten: Liping Zhang

Project: SFFB

Project#: 50090-009-04

Received: June 5, 1998

re: One sample for Gasoline BTEX MTBE analysis.

Method: SW846 8020A Nov 1990 / 8015Mod

Client Sample ID: MW-1

Sp1#: 189623

Matrix: WATER

Sampled: June 4, 1998

Run#:13238

Analyzed: June 11, 1998

ANALYTE	RESULT (ug/L)	REPORTING LIMIT (ug/L)	BLANK RESULT (ug/L)	BLANK DILUTION SPIKE FACTOR (%)	•
GASOLINE	1800	50	N.D.	98 1	
MTBE	N.D.	5.0	N.D.	87 1	
BENZENE	160	0.50	N.D.	92 1	
TOLUENE	2.6	0.50	N.D.	92 1	
ETHYL BENZENE	300	0.50	N.D.	95 1	
XYLENES	1.6	0.50	N.D.	95 1	

Vincent Vancil

Analyst

Environmental Services (SDB)

June 18, 1998

Submission #: 9806139

SECOR CONCORD

Atten: Liping Zhang

Project: SFFB

Project#:

50090-009-04

Received: June 5, 1998

re: One sample for Gasoline BTEX MTBE analysis.

Method: SW846 8020A Nov 1990 / 8015Mod

Client Sample ID: MW-2

Sampled: June 4, 1998

Spl#: 189624

Matrix: WATER

Run#:13238

Analyzed: June 11, 1998

	RESULT	REPORTING LIMIT	BLANK RESULT	BLANK DILUTION SPIKE FACTOR	
ANALYTE	(ug/L)	(ug/L)	(ug/L) _	(%)	
GASOLINE	N.D.	50	N.D.	98 1	_
MTBE	N.D.	5.0	N.D.	87 1	
BENZENE	10	0.50	N.D.	92 1	
TOLUENE	0.72	0.50	N.D.	92 1	
ETHYL BENZENE	2.3	0.50	N.D.	95 1	
XYLENES	3.5	0.50	N.D.	95 1	

Note: Hydrocarbon found in Gasoline Range is uncharacteristic of Gasoline Profile. If quantified using Gasoline's response factor, concentration would equal 1700ug/L.

Vincent Vancil

Analyst

Michael Verona

Operations Manager

AFSANEH 15:14

Environmental Services (SDB)

June 18, 1998

Submission #: 9806139

SECOR CONCORD

Atten: Liping Zhang

Project: SFFB

Project#: 50090-009-04

Received: June 5, 1998

re: One sample for Gasoline BTEX MTBE analysis.

Method: SW846 8020A Nov 1990 / 8015Mod

Client Sample ID: MW-3

Spl#: 189625 Sampled: June 4, 1998 *Matrix:* WATER

Run#:13238

Analyzed: June 11, 1998

ANALYTE	RESULT (ug/L)	REPORTING LIMIT (ug/L)	BLANK RESULT (ug/L)	BLANK SPIKE	DILUTION FACTOR
GASOLINE	N.D.	50	N.D.	98	1
MTBE	N.D.	5.0	N.D.	87	1
BENZENE	3.9	0.50	N.D.	92	1
TOLUENE	N.D.	0.50	N.D.	92	1
ETHYL BENZENE XYLENES	N.D. N.D.	0.50 0.50	N.D. N.D.	95 95	1 1

Vincent Vancil

Analyst

Operations Manager

AFSANEH 15:14

Environmental Services (SDB)

June 18, 1998

Submission #: 9806139

SECOR CONCORD

Atten: Liping Zhang

Project: SFFB

Project#: 50090-009-04

Received: June 5, 1998

re: One sample for Gasoline BTEX MTBE analysis.

Method: SW846 8020A Nov 1990 / 8015Mod

Client Sample ID: MW-4

Sp1#: 189626

Matrix: WATER

Sampled: June 4, 1998

Run#:13238

Analyzed: June 11, 1998

ANALYTE	RESULT (ug/L)	REPORTING LIMIT (ug/L)	BLANK RESULT (ug/L)	BLANK DILU SPIKE FAC' (%)	
GASOLINE	N.D.	50	N.D.	98 1	
MTBE	N.D.	5.0	N.D.	87 1	
BENZENE	18	0.50	N.D.	92 1	
TOLUENE	1.6	0.50	N.D.	92 1	
ETHYL BENZENE	2.5	0.50	N.D.	95 1	
XYLENES	1.9	0.50	N.D.	95 1	

Note: Hydrocarbon found in Gasoline Range is uncharacteristic of Gasoline

Profile. If quantified using Gasoline's response factor, concentration

would equal 650ug/L.

Vincent Vancil

Analyst

Michael Verona

Operations Manager

AFSANEH 15-14

Environmental Services (SDB)

June 18, 1998

Submission #: 9806139

SECOR CONCORD

Atten: Liping Zhang

Project: SFFB

Project#: 50090-009-04

Received: June 5, 1998

re: One sample for Gasoline BTEX MTBE analysis.

Method: SW846 8020A Nov 1990 / 8015Mod

Client Sample ID: MW-5

Sp1#: 189627

Matrix: WATER

Sampled: June 4, 1998

Run#:13238

Analyzed: June 11, 1998

ANALYTE	RESULT (ug/L)	REPORTING LIMIT (ug/L)	BLANK RESULT (ug/L)	(%)	LUTION ACTOR
GASOLINE	N.D.	50	N.D.	98	1
MTBE	N.D.	5.0	N.D.	87	1
BENZENE	7.2	0.50	N.D.	92	1
TOLUENE	N.D.	0.50	N.D.	92	1
ETHYL BENZENE	N.D.	0.50	N.D.	95	1
XYLENES	N.D.	0.50	N.D.	95	1

Note: Hydrocarbon found in Gasoline Range is uncharacteristic of Gasoline Profile. If quantified using Gasoline's response factor, concentration

would equal 120ug/L.

Vincent Vancil

Analyst

Michael Verona

Environmental Services (SDB)

June 18, 1998

Submission #: 9806139

SECOR CONCORD

Atten: Liping Zhang

Project: SFFB

Project#: 50090-009-04

Received: June 5, 1998

re: One sample for Gasoline BTEX MTBE analysis.

Method: SW846 8020A Nov 1990 / 8015Mod

Client Sample ID: MW-6

Spl#: 189628

Matrix: WATER

Sampled: June 4, 1998

Run#:13238

Analyzed: June 11, 1998

ANALYTE	RESULT (ug/L)	REPORTING LIMIT (ug/L)	BLANK RESULT (ug/L)	BLANK SPIKE (%)	DILUTION FACTOR
GASOLINE	N.D.	50	N.D.	98	1
MTBE	N.D.	5.0	N.D.	87	1
BENZENE	N.D.	0.50	N.D.	92	1
TOLUENE	N.D.	0.50	N.D.	92	1
ETHYL BENZENE	N.D.	0.50	N.D.	95	1
XYLENES	N.D.	0.50	N.D.	95	1

Vincent Vancil

Analyst

Michael Verona

Operations Manager

AFSANEH 15.14

Environmental Services (SDB)

June 18, 1998

Submission #: 9806139

SECOR CONCORD

Atten: Liping Zhang

Project: SFFB

Project#: 50090-009-04

Received: June 5, 1998

re: One sample for Gasoline BTEX MTBE analysis.

Method: SW846 8020A Nov 1990 / 8015Mod

Client Sample ID: MW-7

Spl#: 189629 Sampled: June 4, 1998 Matrix: WATER

Run#:13238

Analyzed: June 11, 1998

ANALYTE	RESULT (ug/L)	REPORTING LIMIT (ug/L)	BLANK RESULT (ug/L)	BLANK D SPIKE (%)	ILUTION FACTOR
GASOLINE	N.D.	50	N.D.	98	1
MTBE	N.D.	5.0	N.D.	87	1
BENZENE	N.D.	0.50	N.D.	92	1
TOLUENE	N.D.	0.50	N.D.	92	1
ETHYL BENZENE	N.D.	0.50	N.D.	95	1
XYLENES	N.D.	0.50	N.D.	95	1

Vincent Vancil

Analyst

Operations Manager

AFSANEH 15-14

Environmental Services (SDB)

June 18, 1998

Submission #: 9806139

Project#: 50090-009-04

SECOR CONCORD

Atten: Liping Zhang

Project: SFFB

Received: June 5, 1998

re: Surrogate report for 7 samples for Purgeable Volatile Aromatic

Organic Compounds analysis.

Method: SW846 8020A Nov 1990 / 8015Mod

Lab Run#: 13238
Matrix: WATER

			%	Recovery
Sample#	Client Sample ID	Surrogate	Recovered	Limits
189623-1	MW-1	TRIFLUOROTOLUENE	102	58-124
189623-1	MW-1	4-BROMOFLUOROBENZENE	130	50-150
189624-1	MW-2	TRIFLUOROTOLUENE	85.7	58-124
189624-1	MW-2	4-BROMOFLUOROBENZENE	116	50-150
189625-1	MW-3	TRIFLUOROTOLUENE	80.0	58-124
189625-1	MW-3	4-BROMOFLUOROBENZENE	117	50-150
189626-1	MW-4	TRIFLUOROTOLUENE	95.0	58-124
189626-1	MW-4	4-BROMOFLUOROBENZENE	123	50-150
18 <i>962</i> 7-1	MW-5	TRIFLUOROTOLUENE	85.2	58-124
189627-1	MW-5	4-BROMOFLUOROBENZENE	124	50-150
189628-1	MW-6	TRIFLUOROTOLUENE	86.9	58-124
189628-1	MW-6	4-BROMOFLUOROBENZENE	139	50-150
189629-1	MW-7	TRIFLUOROTOLUENE	86.3	58-124
189629-1	MW - 7	4-BROMOFLUOROBENZENE	127	50-150
			8	Recovery
Sample#	QC Sample Type	Surrogate	Recovered	<u>Limits</u>
190519-1	Reagent blank (MDB)	TRIFLUOROTOLUENE	89.7	58-124
190519-1	Reagent blank (MDB)	4-BROMOFLUOROBENZENE	135	50-150
190520-1	Spiked blank (BSP)	TRIFLUOROTOLUENE	83.8	58-124
190520-1	Spiked blank (BSP)	4-BROMOFLUOROBENZENE	127	50-150
190521-1	Spiked blank duplicate	(BSD) TRIFLUOROTOLUENE	88.8	58-124
190521-1	Spiked blank duplicate	(BSD) 4-BROMOFLUOROBENZENE	139	50-150
190522-1	Matrix spike (MS)	TRIFLUOROTOLUENE	96.0	58-124
190523-1	Matrix spike duplicate	(MSD)TRIFLUOROTOLUENE	86.1	58-124

V132 QCSURR1229 AFSANEH 18-Jun-98 1

Environmental Services (SDB)

June 18, 1998

Submission #: 9806139

SECOR CONCORD

Atten: Liping Zhang

Project: SFFB

Received: June 5, 1998

Project#: 50090-009-04

re: Blank spike and duplicate report for Gasoline BTEX MTBE analysis.

Method: SW846 8020A Nov 1990 / 8015Mod

Matrix: WATER Lab Run#: 13238

Analyzed: June 10, 1998

		Spike			
	Spike Amount	Amount Found	Spike Recov		%
	BSP Dup	BSP Dup	BSP Dup	Control %	RPD
Analyte	(ug/L)	(ug/L)	(%) (%)	Limits RPD	Lim
GASOLINE MTBE BENZENE TOLUENE ETHYL BENZENE XYLENES	500 500 100 100 100 100 100 100 100 100 300 300	489 460 86.8 93.6 92.3 96.6 91.9 98.2 94.8 100 285 307	97.8 92.0 86.8 93.6 92.3 96.6 91.9 98.2 94.8 100 95.0 102	75-125 6.11 75-125 7.54 77-123 4.55 78-122 6.63 70-130 5.34 75-125 7.11	20 20 20 20

Environmental Services (SDB)

June 18, 1998

Submission #: 9806139

SECOR CONCORD

Atten: Lipias Zhang

Project: SFFB

Project#: 50090-009-04

Received: June 5, 1998

re: Matrix spike report for Gasoline BTEX MTBE analysis.

Method: SW846 8020A Nov 1990 / 8015Mod

Matrix: WATER

Lab Run#: 13238 Instrument: 3400-3

Analyzed: June 11, 1998

Analyte	Spiked Sample Amount (ug/L)	MS	e Amt MSD	Amt 1 MS (ug/1	Found MSD L)	Spike MS (%)	Recor MSD (%)	v Control Limits	-	% RPD Lim
MTBE BENZENE TOLUENE XYLENES	N.D. 160 2.6 1.6	100 100 100 300	100 100 100 300	118 236 96.0 299	104 218 86.7 277	76.0 93.4	58.0 84.1	65-135 65-135 65-135 65-135	26.9 10.5	20 20

Sample Spiked: 189623 Submission #: 9806139 Client Sample ID: MW-1 1613/189623-189629 Chain-of Custody Number: SECOR Chain-of Custody Record Additional documents are attached, and are a part of this Record. Field Office: San Francisco Job Name: SFFB Location: 580 Julie Ann Way **Analysis Request** Project # 50090-009-04_Task #_ SUBM #: 9806139 REF: ASLFVP Project Manager Liping Places
Laboratory Chroniglab, Semi-volatile Organics 625/8270 (GC/MS) Pesticides/PCBs 608/8080 CLIENT: SECOR-CD Volatile Organics 624/8240 (GC/MS) Halogenated Volatiles 601/8010 DUE: 06/12/98 Turnaround Time Standar Aromatic Volatiles 602/8020 REF #:40237 Priority Pollutant Metals (13) Sampler's Name Charles Melancon Sampler's Signature Comments/ Instructions Sample ID Matrix Time Date 6-4-98 13.30 water 12:00 13:40 Sample Receipt Received 199 Relinquished Special Instructions/Comments: Total no. of containers: Print . Chain of custody seals: Rec'd. in good condition/cold: Company _ Company Time Conforms to record: Received by: Relinquished Client: ___ Client Contact: _ Company _ Company Date 6-599 Client Phone: SECOR CUSTREC Rev 1/95

Date: 6 / 4 / 98 Page / of 1

Environmental Service (SDB)

Sample Receipt Checklist

Client Name: SECOR CONCORD	Date/Time Received: 06/05/98 1818
Reference/Submis: 40237 9806139	Received by:
Checklist completed by:	Date Reviewed by: Thitials Date
Matrix: H2O Carrie	er name: Client - (C/L)
Shipping container/cooler in good condition?	Yes No Not Present
Custody seals intact on shipping container/cooler?	
Custody seals intact on sample bottles?	Yes No Present
Chain of custody present?	Yes No
Chain of custody signed when relinquished and rece	eived? YesNo
Chain of custody agrees with sample labels?	YesNo
Samples in proper container/bottle?	YesNo
Sample containers intact?	YesNo
Sufficient sample volume for indicated test?	Yes No
All samples received within holding time?	Yes No
Container/Temp Blank temperature in compliance?	Temp: OC Yes No
Water - VOA vials have zero headspace? No	VOA vials submitted Yes No
Water - pH acceptable upon receipt?	djusted? Checked by themist for VOAs
Any No and/or NA (not applicable) response must be	e detailed in the comments section below.
Client contacted: Date contacted	i: Person contacted:
Contacted by: Regarding:	
Comments:	
-	
Corrective Action:	